

Site Servicing and Stormwater Management Report 1869 Maple Grove Road, Ottawa, ON

Client:

10886378 Canada Incorporated 190 Lisgar Street Ottawa, ON K2P OCA

Submitted for: Zoning By-law Amendment, Plan of Subdivision

Project Name: 1869 Maple Grove Road

Project Number: OTT-00254810-A0

Prepared By:

EXP 2650 Queensview Drive Ottawa, ON K2B 8H8 t: +1.613.688.1899 f: +1.613.225.7337

Date Submitted: September 25, 2020

EXP Services Inc. 1869 Maple Grove Road, Ottawa, ON OTT-00254810-A0 September 25, 2020

Site Servicing and Stormwater Management Report 1869 Maple Grove Road, Ottawa, ON

Client: 10886378 Canada Inc. 190 Lisgar Street Ottawa, ON K2P OCA

Submitted for: Zoning By-law Amendment, Plan of Subdivision

Project Name: 1869 Maple Grove Road

Project Number: OTT-00254810-A0

Prepared By:

EXP 2650 Queensview Drive Ottawa, ON K2B 8H8 t: +1.613.688.1899 f: +1.613.225.7337

Prepared by:

Approved by:

Jason Fitzpatrick, P.Eng. Project Engineer Bruce Thomas, P.Eng. Senior Project Manager

Date Submitted: September 25, 2020

i

Table of Contents

1	Introduction1		
	1.1	Overview	1
2	Existi	ng Conditions	2
3	Existi	ng Infrastructure	2
4	Wate	r Servicing	4
	4.1	Existing Water Servicing	4
	4.2	Water Servicing Proposal	4
	4.3	Water Servicing Design	4
	4.4	Water Servicing Design Criteria	5
	4.5	Estimated Water Demands	5
	4.6	Boundary Conditions	6
	4.7	Fire Flow Requirements	6
	4.8	Review of Hydrant Spacing	7
5	Sewa	ge Servicing	8
	5.1	Existing Sewage Conditions	8
	5.2	Proposed Sewage Conditions	8
6	Storm	Servicing & Stormwater Management	10
	6.1	Design Criteria	10
	6.2	Minor System Design Criteria	10
	6.3	Major System Design Criteria	11
	6.4	Runoff Coefficients	11
	6.5	Pre-Development Conditions	11
	6.6	Allowable Release Rate	13
	6.7	Proposed Stormwater System	13
	6.8	Flow Attenuation and Storagep	13
	6.9	Water Balance	14
7	Erosic	on & Sediment Control	15
8	Concl	usions and Recommendations	16
9	Legal	Notification	17

List of Figures

Figure 1-1 - Site Location	1
Figure A1 - Pre-Development Drainage Areas	A
Figure A2 - Post-Development Drainage Areas	A
Figure A3 – Fire Hydrant Locations	A

List of Tables

Table 4-1 - Summary of Water Supply Design Criteria	5
Table 4-2 : Water Demand Summary	5
Table 4-3 : Boundary Conditions and Pressures Summary	6
Table 4-4 : Summary of Design Parameters Used in Calculating Required Fire Flows (RFF) Using FUS	7
Table 4-5 – Required Fire Flows	7
Table 5-1 – Summary of Wastewater Design Criteria / Parameters	8
Table 5-2 – Summary of Anticipated Sewage Rates	9
Table 6-1 – Summary of Runoff Coefficients	11
Table 6-2 – Summary of Pre-Development Flows	13
Table 6-3 – Summary of Post-Development Flows	13
Table 6-4 – Summary of Post-Development Storage	14
Table B1 – Water Demand Chart	В
Table B2 – Fire Flow Requirements Based on Fire Underwriters Survey (FUS) – Block 1-West	В
Table B3 – Fire Flow Requirements Based on Fire Underwriters Survey (FUS) – Block 1-East	В
Table B4 – Fire Flow Requirements Based on Fire Underwriters Survey (FUS) – Block 2	В
Table B5 – Fire Flow Requirements Based on Fire Underwriters Survey (FUS) – Block 3-West	В
Table B6 – Fire Flow Requirements Based on Fire Underwriters Survey (FUS) – Block 3-East	В
Table B7 – Available Fire Flows Based on Hydrant Spacing	В
Table B8 – Estimated Water Pressure at Proposed Blocks	В
Table C1 – Sanitary Sewer Design Sheet	C
Table D1 – Estimation of Catchment Time of Concentration for Pre-Development Conditions	D
Table D2 – Estimation of Peak Flows (Pre-Development Conditions) Using Calculated Time Of Concentration	D
Table D3 – Estimation of Allowable Minor System Flows to Maple Grove Storm Sewer	D
Table D4 – Average Runoff Coefficients for Post-Development Conditions	D
Table D5 – Summary of Post-Development Peak Flows (Uncontrolled and Controlled)	D
Table D6 – Summary of Post Development Storage	D
Table D7 – Storage Volumes for 2-year, 5-year, 100-year, and 100-year Plus 20% Storms (Based on MRM)	D
Table D8 – 5-Year Storm Sewer Calculation Sheet	D
StormTech Chambers – North (Layout)	D
StormTech Chambers – North	D
StormTech Chambers – South (Layout)	D
StormTech Chambers - South	D

StormTech MC3500 Chambers - Spec SheetD
Tempest-Technical-Manual (page 5 only)D

List of Appendices

pAppendix A - Figures	A
Appendix B – Water Servicing Tables	B
Appendix C – Sanitary Servicing Tables	C
Appendix D – Stormwater Servicing	
Appendix E – Consultation / Correspondence	E
Appendix F – Background Information	F
Appendix G – Checklist	G
Appendix H – Drawings	Н

1 Introduction

1.1 Overview

EXP Services Inc. (EXP) was retained by 10886378 Canada Incorporated to prepare a Site Servicing and Stormwater Management Report for the proposed redevelopment of 1869 Maple Grove Road in support of a Plan of Subdivision, Zoning By-law Amendment and Part Lot Control applications.

The 0.41-hectare site is situated along Maple Grove Road as illustrated in **Figure 1-1** below. The site is within the City of Ottawa urban boundary, outside the Greenbelt, and situated in Ward 6 (Stitsville-Kanata West). The description of the subject property is noted below:

• Part of Lot 1, Concession 1, Geographic Township of Huntley, City of Ottawa, Part 1, Plan 5R-2908, PIN 044870350

The proposed development will consist of three (3) blocks containing a total of eight (8) townhomes that will face Maple Grove Road, eight (8) townhomes that will face Bensinger Way, and two (2) townhomes that will face Mykonos Crescent.

This report will discuss the adequacy of the adjacent municipal watermain, sanitary sewers and storm sewers to provide the required water supply, convey the sewage and stormwater flows that will result from the proposed development. This report provides a design brief for submission, along with the engineering drawings, for City approval.

Figure 1-1 - Site Location

2 Existing Conditions

The existing property is surrounded by the Fairwinds West residential subdivision. Development of the adjacent subdivision began in 2012 and was completed in 2015.

The existing site topography slopes northwest towards Bensinger Way and appears to be self contained with no drainage outlet. A single residential home is situated on the property.

3 Existing Infrastructure

The site includes a single-family detached home that will be removed during the redevelopment of the site.

From review of the sewer and watermain mapping, as-built drawings and Utility Central Registry (UCC) plans, the following summarizes the infrastructure within the subject property and the infrastructure on the adjacent streets along the frontage of the property and adjacent offsite infrastructure:

Within property

• A well, and septic system within the property that will be abandoned.

Maple Grove Road

- 300mm watermain.
- 200mm sanitary sewer.
- 450mm sanitary sewer.
- 525mm storm sewer.
- 2250mm storm sewer.
- Gas / Bell / Streetlighting/ Hydro.

Bensinger Way

- 200mm watermain.
- 200mm sanitary sewer.
- 600mm storm sewer.
- Gas /Bell / Streetlighting / Hydro.

Mykonos Crescent

- 200mm watermain.
- 200mm sanitary sewer.
- 375mm storm sewer.
- 450mm storm sewer.
- Gas / Hydro / Bell / Streetlighting.

As-built drawings for Maple Grove Road, Bensinger Way, and Mykonos Crescent were obtained from the City of Ottawa and are included in **Appendix F** for reference.

1.3 Pre-Consultation / Permits / Approvals

A pre-consultation meeting was held with the City prior to design commencement. This meeting outlined the submission requirements and provided information to assist with the development proposal. The proposed site is located within Mississippi Valley Conservation Authority (MVCA) jurisdiction, therefore signoff from the MVCA will be required prior to final approval. The MVCA was contacted to confirm the stormwater management quality control requirements. A copy of the correspondence with the MVCA is attached in **Appendix E**.

It is expected that an Environmental Compliance Approval (ECA) will be required from the Ministry of Environment, Conservation and Parks (MECP), formerly the Ministry of the Environment and Climate Change (MOECC), for this onsite private Sewage Works. The onsite Sewage Works will include the onsite stormwater works for flow controls and associated stormwater detention. Further discussions with City of Ottawa staff will be required to confirm the ECA requirements and to determine whether a direct submission or Transfer-of-Review submission will be required.

In addition, various design guidelines were referred to in preparing the current report including:

- Bulletin ISDTB-2012-4 (20 June 2012)
 - Technical Bulletin ISDTB-2014-01 (05 February 2014)
 - Technical Bulletin PIEDTB-2016-01 (September 6, 2016)
 - Technical Bulletin ISDTB-2018-01 (21 March 2018)
 - Technical Bulletin ISDTB-2018-04 (27 June 2018)
- Ottawa Design Guidelines Water Distribution, July 2010 (WDG001), including:
 - Technical Bulletin ISDTB-2014-02 (May 27, 2014)
 - Technical Bulletin ISTB-2018-02 (21 March 2018)
- Stormwater Management Planning and Design Manual, Ontario Ministry of the Environment and Climate Change, March 2003 (SMPDM).
- Design Guidelines for Drinking-Water Systems, Ontario Ministry of the Environment and Climate Change, 2008 (GDWS).
- Fire Underwriters Survey, Water Supply for Public Fire Protection (FUS), 1999.
- Ontario Building Code 2012, Ministry of Municipal Affairs and Housing.
- Kanata West Master Servicing Study, Stantec, CCL/IBI, June 16, 2020 (Volumes 1 ad 2)
- Deign Brief for Pond 4 Kanata West, Mattamy Homes, DSEL, JFSA, December 10, 2014

4 Water Servicing

4.1 Existing Water Servicing

The site is within the City of Ottawa 3W pressure zone and supplied from the Stittsville elevated reservoir. The existing home is serviced by an onsite well which will be abandoned prior to development.

4.2 Water Servicing Proposal

The proposed development will consist of 18-townhome units. An architectural site plan is provided in **Appendix H.** The site will be serviced by the existing 305mm watermain on Maple Grove Road, the 203mm watermain on Bensinger Way, and the 203mm watermain on Mykonos Crescent.

Water supply for each townhome will be provided by individual water services connecting to the existing watermains. The proposed servicing is detailed on Drawing C002.

4.3 Water Servicing Design

The water servicing requirements for the proposed development is designed in accordance with the City Design Guidelines (July 2010). The following steps indicate the basic methodology that was used in our analysis:

- Estimated water demands under average day, maximum day and peak hour conditions. As the total population estimate was less than 500, therefore residential peaking factors based on MECP Table 3-3 used.
- Estimated the required fire flow (RFF) based on the Fire Underwriters Survey (FUS).
- Obtained hydraulic boundary conditions (HGL) from the City, based on the above water demands and required fire flows.
- Boundary condition data and water demands were used to estimate the pressure at the proposed blocks, and this was compared to the City's design criteria.

Please refer to Appendix B for detailed calculations of the total water demands.

A review of the estimated watermain pressures at the building connections, based on the boundary conditions provided, were completed based on using a single water service feed to each individual townhome unit. **Table B6** in **Appendix B** provides a comparison of anticipated pressures at the building connection based on using a single 19mm service.

Based on results, a single 19mm service to each unit would result in a pressure of 66.7 psi to 66.9 psi at the buildings under peak hour conditions.

Detailed calculations of the anticipated water pressures, based on City of Ottawa boundary conditions, is provided in Table B6.

No pressure reducing measures are required as operating pressures are within 50 psi and 80 psi. It was estimated that the anticipated pressures under average day demands will range between 72.9 psi and 73.1 psi.

4.4 Water Servicing Design Criteria

The design parameters that were used to establish water and fire flow demands are summarized **Table 4-1**.

Table 4-1 - Summary of Water Supply Design Criteria	

Design Parameter	Value	Applies
Population Density – Single-family Home	3.4 persons/unit	
Population Density – Semi-detached Home	2.7 persons/unit	
Population Density – Townhome or Terrace Flat	1.8 persons/unit	✓
Population Density – Bachelor Apartment	1.4 persons/unit	
Population Density – Bachelor + Den Apartment	1.4 persons/unit	
Population Density – One Bedroom Apartment	1.4 persons/unit	
Population Density – One Bedroom plus Den Apartment	1.4 persons/unit	
Population Density – Two Bedroom Apartment	2.1 persons/unit	
Population Density – Two Bedroom plus Den Apartment	2.1 persons/unit	
Average Day Demands – Residential	350 L/person/day	√
Average Day Demands – Commercial / Institutional	28,000 L/gross ha/day	
Average Day Demands – Light Industrial / Heavy Industrial	35,000 or 55,000 L/gross ha/day	
Maximum Day Demands – Residential	9.5 x Average Day Demands (MECP)	✓
Maximum Day Demands – Commercial / Institutional	1.5 x Average Day Demands	
Peak Hour Demands – Residential	14.3 x Average Day Demands (MECP)	✓
Peak Hour Demands – Commercial / Institutional	2.7 x Average Day Demands	
Fire Flow Requirements Calculation	FUS	✓
Depth of Cover Required	2.4m	✓
Maximum Allowable Pressure	551.6 kPa (80 psi)	✓
Minimum Allowable Pressure	275.8 kPa (40 psi)	✓
Minimum Allowable Pressure during fire flow conditions	137.9 kPa (20 psi)	✓

4.5 Estimated Water Demands

Table 4-2 below summarizes the anticipated domestic water demands for all residential blocks under average day, maximum day and peak hour conditions.

Table 4-2 : Water Demand Summary

	Water D			
Water Demand Conditions	Block 1	Block 2	Block 3	Totals (L/sec)
Average Day	0.09	0.02	0.09	0.20
Max Day	0.83	0.21	0.83	1.87
Peak Hour	1.25	0.31	1.25	2.82

4.6 Boundary Conditions

Hydraulic Grade Line (HGL) boundary conditions were obtained from the City for design purposes. A copy of the correspondence received from the City is provided in **Appendix F**.

The following hydraulic grade line (HGL) boundary conditions are summarized in **Table 4-3** below:

Table 4-3 : Boundary Conditions and Pressures Summary

	Demands per Block			
Water Demand Conditions	Block 1	Block 2	Block 3	
Minimum HGL	156.4	156.4	156.4	
Max Day + Fire Flow	154.7	147.0	141.4	
Maximum HGL	160.2	160.2	160.2	
Min Pressure (psi)	69.4	69.4	69.7	
Max Pressure (psi)	74.8	74.8	75.1	

4.7 Fire Flow Requirements

Water for fire protection will be available utilizing the proposed fire hydrants located along the adjacent roadways: Maple Grove Road, Bensinger Way, and Mykonos Crescent. The required fire flows for the proposed blocks were calculated based on typical values as established by the Fire Underwriters Survey 1999 (FUS).

The following equation from the Fire Underwriters document "Water Supply for Public Fire Protection", 1991, was used for calculation of the on-site supply rates required to be supplied by the hydrants:

F = 200 * C * V (A)

where:

F	=	Required Fire flow in Litres per minute
С	=	Coefficient related to type of Construction
А	=	Total Floor Area in square metres

The proceeding **Table 4-4** summarizes the parameters used for estimating the Required Fire Flows (RFF) based on the Fire Underwriters Survey (FUS) and the latest City of Ottawa Technical Bulletins. The RFFs were estimated in accordance with ISTB-2018-02, and based on floor areas provided by the architect, which are illustrates in **Appendix H**.

The following summarizes the parameters used for both proposed blocks.

- Type of Construction Non-combustible
- Occupancy
 Limited combustible
- Sprinkler Protection no sprinkler system

Blocks 1 and 3 will be divided in half with a firewall to reduce the building area and the required fire flow.

		Block 1		Block 3	
Design Parameter	4 western units	4 eastern units	Block 2	4 western units	4 eastern units
Coefficient Related to type of Construction., C	1.5	1.5	1.5	1.5	1.5
Total Floor Area (m2)	673	673	368	673	673
Fire Flow prior to reduction (L/min)	9,000	9,000	6,000	9,000	9,000
Reduction Due to Occupancy Non-combustible (-25%), Limited Combustible (-15%), Combustible (0%), Free Burning (+15%), Rapid Burning (+25%)	-15%	-15%	-15%	-15%	-15%
Reduction due to Sprinkler (Max 50%) Sprinkler Conforming to NFPA 13 (-30%), Standard Water Supply (- 10%), Fully Supervised Sprinkler (-10%)	0%	0%	0%	0%	0%
Increase due to Exposures	+44%	+40%	+39%	+52%	+32%
Can the Total Fire Flow be Capped at 10,000 L/min (167 L/sec) based on "TECHNCAL BULLETIN ISTB-2018-02", (yes/no)	no	yes	yes	yes	yes
Total RFF	183	167	117	167	167

Table 4-4 : Summary of Design Parameters Used in Calculating Required Fire Flows (RFF) Using FUS

The estimated required fire flows (RFFs) based on the FUS methods is: 183 L/sec for Block 1 (most critical), 117 L/sec for Block 2, and 167 L/sec for Block 3.

4.8 Review of Hydrant Spacing

A review of the hydrant spacing was completed to ensure compliance with Appendix I of Technical Bulletin ISTB-2018-02. As per Section 3 of Appendix I all hydrants within 150 metres were reviewed to assess the total possible contribution of flow from these contributing hydrants. For each hydrant the distance to the proposed block was determined to arrive at the contribution of fire flow from each. All hydrants are expected to be of Class AA as per Section 5.1 of Appendix I. For each hydrant the straight-line distance, distance measured along a fire route or roadway, whether its location is accessible, and its contribution to the required fire flow.

Table 4-5 – Required Fire Flows

Block Number	Required Fire Flow (L/min)	Available Fire Flow Based on Hydrant Spacing as per ISTB-2018-02 (L/min)		
Block 1 (4 west units) 11,000 (or 183 L/sec)		±24,700		
Block 1 (4 east units)	10,000 (or 167 L/sec)	±22,800		
Block 2	7,000 (or 117 L/sec)	±13,300		
Block 3 West (4 west units)	10,000 (or 167 L/sec)	±17,100		
Block 3 East (4 east units)	10,000 (or 167 L/sec)	±17,100		

The total minimum available contribution of flow from hydrants was estimated at 22,800 L/min for Block 1, 13,300 L/min for Block 2, and 17,100 L/min for Block 3, whereas the maximum required fire flows (RFF) for each block is 11,000 L/min, 7,000 L/min, and 10,000 L/min respectively. Therefore, the available flows from hydrants exceed each building's fire flow requirements as identified in Appendix I of Technical Bulletin ISTB-2018-02. Additional information on the available flows from hydrants is provided in **Table B5**.

5 Sewage Servicing

5.1 Existing Sewage Conditions

Sewage from the existing onsite residential home is discharged into a septic tank and field bed.

5.2 Proposed Sewage Conditions

It is proposed to provide single sanitary sewer service connections from each proposed townhome unit to the existing sanitary sewers on Maple Grove Drive, Bensinger Way, and Mykonos Crescent. The sanitary sewer laterals were sized based on a population flow with an area-based infiltration allowance. Individual 135mm diameter sanitary sewer laterals are proposed with a minimum 1.0% slope, having a capacity of 11.5 L/sec based on Manning's Equation under full flow conditions. **Table 5-1** below summarizes the design parameters used.

Table 5-1 – Summary of Wastewater Design Criteria / Parameters

Design Parameter	Value	Applies
Population Density – Single-family Home	3.4 persons/unit	
Population Density – Semi-detached Home	2.7 persons/unit	
Population Density – Duplex	2.3 persons/unit	
Population Density – Townhome (row)	2.7 persons/unit	✓
Population Density – Bachelor Apartment	1.4 persons/unit	
Population Density – Bachelor + Den Apartment	1.4 persons/unit	
Population Density – One Bedroom Apartment	1.4 persons/unit	
Population Density – One Bedroom plus Den Apartment	1.4 persons/unit	
Population Density – Two Bedroom Apartment	2.1 persons/unit	
Population Density – Two Bedroom plus Den Apartment	2.1 persons/unit	
Average Daily Residential Sewage Flow	280 L/person/day	✓
Average Daily Commercial / Intuitional Flow	28,000 L/gross ha/day	
Average Light / Heavy Industrial Daily Flow	35,000 / 55,000 L/gross ha/day	
Residential Peaking Factor – Harmon Formula (Min = 2.0, Max =4.0, with K=0.8)	$M = 1 + \frac{14}{4 + P^{0.5}} * k$	~
Commercial Peaking Factor	1.5	
Institutional Peaking Factor	1.5	
Industrial Peaking Factor	As per Table 4-B (SDG002)	
Unit of Peak Extraneous Flow (Dry Weather / Wet Weather)	0.05 or 0.28 L/s/gross ha	
Unit of Peak Extraneous Flow (Total I/I)	0.33 L/s/gross ha	✓

The total estimated peak sanitary flow rate from the proposed property is **0.75 L/sec** (all blocks) based on City Design Guidelines. Sewage rates below include a total infiltration allowance of 0.33 L/ha/sec based on the total gross site area.

Table 5-2 – Summary of Anticipated Sewage Rates

Courses Constitution	Sanitary Sewage Flow (L/sec)				
Sewage Condition	Maple Grove Drive	Bensinger Way	Mykonos Cres		
Average Day Sewage Flow	0.070	0.070	0.018		
Infiltration Flow (at 0.33 L/ha/sec)	0.045	0.045	0.045		
Peak Wet Weather Sewage Flow	0.32	0.32	0.11		

The minimum sewer capacity of the 200mm diameter connecting sanitary sewer run on Maple Grove Drive (with a slope of 0.60%) has a calculated full flow capacity of 25.9 L/sec. The 200mm diameter pipe then connects into a 450mm diameter pipe downstream of the sewer run. The total estimated peak sewage flow is 0.75 L/s compared to the existing single home with an estimated peak sewage flow of 0.18 L/sec. It is anticipated that the increase in peak sewage flows can be accommodated in the downstream sanitary sewer system.

6 Storm Servicing & Stormwater Management

The stormwater works are subject to both the Mississippi Valley Conservation Authority (MVCA) and City of Ottawa (COO) approval. The MVCA as contacted to clarify the quality control requirements. The MVCA has noted that the original criteria from the Kanata West Master Servicing Plan was normal water quality control or 70% TSS removal. This was upgrades to enhanced protection (80% TSS), so therefore it is understood that quality control is already in place for the development. Correspondence from the MVCA is provided in **Appendix E**, which clarifies that no onsite quality control is required.

Also clarified during the pre-consultation meeting, the requirements related to stormwater quantity control are noted as follows:

- Stormwater quantity control criteria be consistent with the criteria specified in the Pond 4 final report (see attached) and/or in the Kanata west Master servicing Study.
- When using the modified rational method to calculate the storage requirements for the site, the underground storage should not be included in the overall available storage. The modified rational method assumes that the restricted flow rate is constant throughout the storm which, in this case, underestimates the storage requirement prior to the 100-year head elevation being reached. Alternately, if you wish to include the underground storage, you may use an assumed average release rate equal to 50% of the peak allowable rate. Otherwise, disregard the underground storage as available storage or provide modeling to support the design.

6.1 Design Criteria

A review of the reports; Kanata West Master Servicing Study (KWMSS), Deign Brief for Pond 4 (DBP4), along with contacting the MVCA was completed to determine the stormwater management quantity and quality control requirements for the site. The following briefly summarizes the SWM requirements

- Minor system flows to discharge to local storm sewer on Maple Grove Road.
- The allowable discharge rate to the local storm sewer to be based on 5-year storm with a time of concentration of (Tc) of 10 minutes and runoff coefficient (C_{AVG}) of 0.65. This was established from the storm sewer design for Pond 4.
- Provide quantity control for runoff in excess of the allowable rate for all storms up to the 100-year event.
- No onsite quality control requirements are required, as the site is located within the drainage catchment tributary to the City's Pond 4 which is located approximately 1.6 km east of the site along Maple Grove Road. Pond 4 was designed for an enhanced treatment (80%TSS) as noted in the DBP4.
- An infiltration target range between 70-100 mm/yr is required as noted in Section 5.7 of the Kanata West Mater Servicing Study. A slightly higher infiltration target of 104 mm/yr was established. Developments upstream of Pond 4 are required to provide pre- versus post-development water balance. Infiltration BMPs to be used to meet infiltration targets.

The proposed stormwater system is designed in conformance with the above-noted criteria along with the latest version of the City of Ottawa Design Guidelines (October 2012). Additional design criteria that relates to this design report is provided in the proceeding sections below.

6.2 Minor System Design Criteria

- Onsite storm sewer was sized based on the Rational Method and Manning's Equation under free flow conditions for the 5year storm using a 10-minute inlet time.
- Since a detailed site plan was available for the site, including building footprints, calculations of the average runoff coefficients for each drainage area was completed.
- Minimum sewer slopes to be based on minimum velocities for storm sewers of 0.80 m/sec.

• Allowable maximum discharge rate established based on the 5-year storm with a time of concentration of (Tc) of 10 minutes and runoff coefficient (C_{AVG}) of 0.65.

6.3 Major System Design Criteria

- The major system has been designed to accommodate on-site detention with sufficient capacity to attenuate the 100-year design storm. On-site storage is calculated based on the 100-year design storm with on-site detention storage provided using underground chambers.
- On site storage is provided and calculated for up to the 100-year design storm. There is no surface ponding proposed on the ground surface. Outflow rates from underground storage chamber were set at 50% of the rate to account for head, as per City guidelines.
- Overland flow routes are provided.
- The vertical distance from the spill elevation on the street and the ground elevation at the buildings is at least 150mm.
- The emergency overflow spill elevation is at least 30 cm below the lowest building opening.

6.4 Runoff Coefficients

Runoff coefficients used were based on actual areas taken from CAD. Runoff coefficients for impervious surfaces (roofs, asphalt, and concrete) were taken as 0.90, whereas those for pervious surfaces (grass/landscaping) were taken as 0.20. Average runoff coefficients were calculated for catchments (or drainage areas) using the area-weighting routine in PCSWMM.

The runoff coefficients for pre-development and post-development catchments are provided in **Appendix D**, with a summary provided in in **Table 6-1** below.

Table 6-1 – Summary of Runoff Coefficients

Location	Area (hectares)	Pre-Deve	lopment	Post-Development		
		Cavg	Imp (%)	Cavg	Imp (%)	
Entire Site	0.4052	0.28	11.9	0.53	47.8	

6.5 Pre-Development Conditions

No specific design requirements were established to meet a pre-development flow rate, rather the stormwater design shall meet the requirements of the master servicing reports. A pre-development time of concentration was calculated for comparison with the standard 10 minutes, set by the SDG002. A time of concentration of 15.8 minutes was calculated based on the slope and length of the site catchment. Under pre-development conditions stormwater runoff from the 0.4052-hectare site is relatively self contained due to the build up of residential homes around it. Prior to development of the adjacent subdivision, runoff from the site was directed in a north easterly direction. **Figure A1** illustrates these pre-development conditions and the following

Table 6-2 provides pre-development peak runoff rates using the calculated time of concentration of 15.8 minutes, however it should be noted that the standard time of concentration of 10 minutes was used to estimate peak runoff under post-development conditions.

Table 6-2 – Summary of Pre-Development Flows

Return Period Storm	Total Peak Flows (L/sec)
2-year	18.9
5-year	25.6
100-year	54.7

6.6 Allowable Release Rate

The Kanata West Master Servicing Study assigned a runoff coefficient of 0.65 for the subject site based on the 5-year storm with a time of concentration of 10 minutes. Therefore, control of runoff for up to the 100-year storm will be controlled to the 5-year rate. The allowable release rate was calculated at 76.4 L/sec based on a 5-year storm event. **Table D3** provides detailed calculations on the allowable peak flow.

6.7 Proposed Stormwater System

Stormwater runoff from the proposed site will drain from a combination of controlled and uncontrolled areas. As a result of the changes onsite the overall post-development runoff coefficient will increase over pre-development conditions. This increase in runoff is the result of changes due to site development (i.e. additional hard surfaces, roof areas and hard landscaping).

A storm drainage plan is illustrated on **Figure A2**. A total four (4) subcatchments (or drainage areas) within the development site are shown on this drawing with average runoff coefficients calculated for each drainage area. The proposed stormwater works consists of the following elements:

- Underground storage chambers complete with a downstream inlet control device (ICD). This then discharges to the storm sewer on Maple Grove Road.
- Remaining drainage areas along frontage of Maple Grove Road, Bensinger Way and Mykonos Crescent flow uncontrolled to the municipal right-of-way.

Return Period Storm	Road Storm Sewers (L/sec)		Peak Uncontrolled Flows to Bensinger Way	Peak Uncontrolled Flows to Mykonos Cres	Total Peak Flows (L/sec)	Allowable Peak Flows (L/sec)
	Uncontrolled	Controlled	(L/sec)	(L/sec)		
2-year	10.4	3.10	10.1	2.6	26.2	
5-year	14.2	4.20	13.7	3.5	35.6	76.4
100-year	30.3	9.00	29.4	7.5	76.2	

Table 6-3 – Summary of Post-Development Flows

6.8 Flow Attenuation and Storagep

As a result of utilizing flow control, attenuation (or storage) of runoff is necessary. This will be achieved utilizing storage in underground chambers. Using the allowable release rates, the Modified Rational Method was used to determine the 2-year, 5-year, 100-year 100-yr + 20% (Climate change) volumes that are necessary for corresponding release rates. It should be noted that the release rates used for the 100-year and Climate Change storm events were set at 50% of the maximum allowable release rate. The maximum release rate of 9.0 L/sec was set, in order to ensure that the summation of all controlled and uncontrolled peak flows discharging (both minor and major system) meet the allowable rate of 76.4 L/sec.

The largest internal drainage area (S01) which is located in the rear-yards of the townhomes is tributary to proposed underground chambers. The chambers were sized to accommodate the 100-yr plus 20% storm within the chambers, without psurface ponding.

Table 6-4 below provides the volumes necessary to detain the 100-year plus 20\$ storm, based on 50% of the allowable release rate (taking into account uncontrolled runoff). **Table D12** summarizes the combined controlled and uncontrolled flows leaving the subject site. A summary of the 100-year flows, 100-year required storage volumes, with the provided voles in Identified in **Table 6-4** below.

Table 6-4 – Summary of Post-Development Storage

Area No.	Outlet	Rele	ase Rate	e (L/s)	Storage Required (m ³) (MRM)			Storage Provided (m ³)	Control Method
			5-yr	100-yr	2-yr	5-yr	100- yr	Chambers	ICD
S01	Maple Grove Road Storm Sewer	2.8	3.7	8.0	21.8	29.0	61.2	62.7	TEMPEST Model LMF-75

6.9 Water Balance

As noted in Design Criteria6.1- Design Criteria an infiltration target of 100 mm/year is required as noted in the Kanata West Master Servicing Study, and 104 mm/year is noted in the Pond 4 Design Brief. Infiltration BMPs to be used to meet infiltration targets as developments upstream of Pond 4 are required to provide pre- versus post-development water balance.

A review of the water balance method, as noted in section 3.2.3 of the MECP's SMPDM was competed to estimate the anticipated change in infiltration that will occur as a result of development of the subject property.

From Table 3.1 of the Ministry's SMPDM the total yearly pre-development and post-development infiltration amounts we estimated based on the site area and corresponding percent pervious. Using an infiltration allowance of 276 mm for fine sand within urban lawns (Table 3.1), the following infiltration amounts were estimated as follows:

- total yearly infiltration = 276 mm x Area(ha) x (100-%IMP)/100 x (1/1000mm/m x 10000 m²/ha)
- total yearly infiltration (pre-dev) = $276 \text{ mm x } 0.4052 \text{ ha x } (100\%-11.9\%)/100x 10m^3/ha/mm = 985 \text{ m}^3$
- total yearly infiltration (post-dev) = 276 mm x 0.4052 ha x (100%-47.8%)/100x 10m³/ha/mm = 584 m³

Based on the area of the site and a yearly infiltration target of 104 mm/year, the infiltration requirement would be: $104 \text{ mm/year} \times 0.4052 \times 10 = 421.4 \text{ m}^3$. Although there would be a net increase of 401 m3 between pre and post development, the target infiltration rate is 104 mm/year. The total yearly infiltration under post-development conditions is estimated at 584 m^3 , therefore no additional infiltration practises are necessary, based on the calculated level of imperviousness.

Although the proposed stormwater design already meets the minimum infiltration target of 104 mm/year, additional infiltration will result since underground storage chambers will be used for quantity control. The proposed underground chambers consist of open-bottom pipes (half-arches) with granular bottom areas that will promote infiltration. The following briefly summarizes the additional infiltration practises proposed:

- (35.6m² + 51 m²) = 86.6 m² footprint area of the StormTech Chambers. These chambers are 1.14m in high arch pipes having open bottoms to promote infiltration (230mm bedding).
- 80.8m of 250mm perforated pipes and swales in rear-yard swales. (As per S29, 0.85m bottom width, 75mm bedding)

The following summarizes the additional underground volumes that will be available for infiltration based on a stone void ratio of 0.40.

Infiltration volume below chambers = 86.6 m² x 0.23m x 0.40 = 8.0 m³
 Infiltration volume below swales = 80.8m x 0.85m x 0.15m x 0.40 = 4.1 m³
 = 12.1 m³

The post-development yearly infiltration of 584 m3, exceeds the required target of 421.4 m3 based target rate of 104 mm/yr as established in the master studies. An additional 12.1 m3 of underground infiltration will be provided, during storm events.

7 Erosion & Sediment Control

During all construction activities, erosion and sedimentation shall be controlled by the following techniques:

- Filter cloth shall be installed between the frame and cover of all adjacent catch basins and catch basin manhole structures.
- Heavy duty silt fencing will be used to control runoff around the construction area. Silt fencing locations are identified on the site grading and erosion control plan.
- A mud mat will be installed at the construction entrance to help avoid mud from being transported to offsite roads.
- Visual inspection shall be completed daily on sediment control barriers and any damage repaired immediately. Care will be taken to prevent damage during construction operations.
- In some cases, barriers may be removed temporarily to accommodate the construction operations. The affected barriers will be reinstated at night when construction is completed.
- Sediment control devices will be cleaned of accumulated silt as required. The deposits will be disposed of as per the requirements of the contract.
- During the course of construction, if the engineer believes that additional prevention methods are required to control erosion and sedimentation, the contractor will install additional silt fences or other methods as required to the satisfaction of the engineer.
- Construction and maintenance requirements for erosion and sediment controls are to comply with Ontario Provincial Standard Specification (OPSS) OPSS 805 and City of Ottawa specifications.

EXP Services Inc. 1869 Maple Grove Road, Ottawa, ON OTT-00254810-A0 September 25, 2020

8 Conclusions and Recommendations

This Functional Servicing & Stormwater Report outlines the rationale which will be used to service the proposed development. The following summarizes the servicing requirements for the site:

<u>Water</u>

- Single water services shall connect into each townhome connecting off the facing street.
- The Required Fire Flows (RFFs) were estimated at 11,000 L/min (183 L/sec) and 10,000 L/min (167 L/sec) for Block 1, 7,000 L/min (117 L/sec) for Block 2, and 10,000 L/min (167 L/sec) for Block 3. For Blocks 1 and 3, fire walls will be used to separate the blocks into two areas. The total available flows for firefighting purposes, based on the contribution from hydrants, was estimated at 22,800 L/min for Block 1, 13,300 L/min for Block 2, and 17,100 L/min for Block 3.
- Based on hydraulic boundary conditions (HGL) provided by the City of Ottawa, a system pressure of between 66.7 psi and 66.9 psi under peak hourly demands is anticipated at all three blocks. This exceeds the City's guideline of 20 psi.

<u>Sewage</u>

• Estimated peak sewage flows **0.75 L/sec** are anticipated. This exceeds current sewage flows of 0.18 L/sec under existing conditions. Although peak sewage rates exceed existing conditions, the receiving sanitary sewers on adjacent streets have adequate capacity to convey sewage flows, as offsite sanitary sewers accounted for the site during their design process.

Stormwater

- For the stormwater system, the allowable capture rate from the entire site was calculated based on a runoff coefficient of 0.65, time of concentration of 10 minutes for a 5-year storm event. The allowable release rate for the entire site was calculated to be **76.4 L/sec**. Runoff in excess of this will be detained onsite for up to the 100-year storm.
- Two minor surface drainage areas will flow uncontrolled to the right-of-way. The 100-year peak flows from these two areas were accounted for (i.e. subtracted) from the total runoff rate to establish the allowable rate.
- In order to meet the allowable release rate, a total retention volume of ±58.9 m³ metres is required for the 100-yr storm.
 In addition, the 100-yr +20% volume is 74.8 m³.
- Runoff from the surface areas will be collected and detained in an underground stormwater chamber located along the east side of the site and connects into Maple Grove Road storm sewer. The volume necessary to detain the 100-year event, is 58.9 m³, based on using 50% of the allowable release rate as required by the City of Ottawa. The underground chambers will be sized to hold a minimum volume of approximately 79.2 m³.
- A single inlet control device (**Tempest LMF-90**) within a storm manhole just downstream of the underground chambers will be used to control storm outflow.
- A yearly infiltration target of 104mm/year was taken from the Pond 4 Design Brief. Based on this, the yearly infiltration requirement is **421.4 m³**. The total yearly infiltration under post-development conditions was estimated at **584 m³**, therefore meeting the target rate.

Erosion & Sediment Control

• Erosion and sediment control methods will be used during construction to limit erosion potential.

9 Legal Notification

This report was prepared by EXP Services Inc. for the account of 10886378 Canada Incorporated.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

EXP Services Inc. 1869 Maple Grove Road, Ottawa, ON OTT-00254810-A0 September 25, 2020

Appendix A - Figures

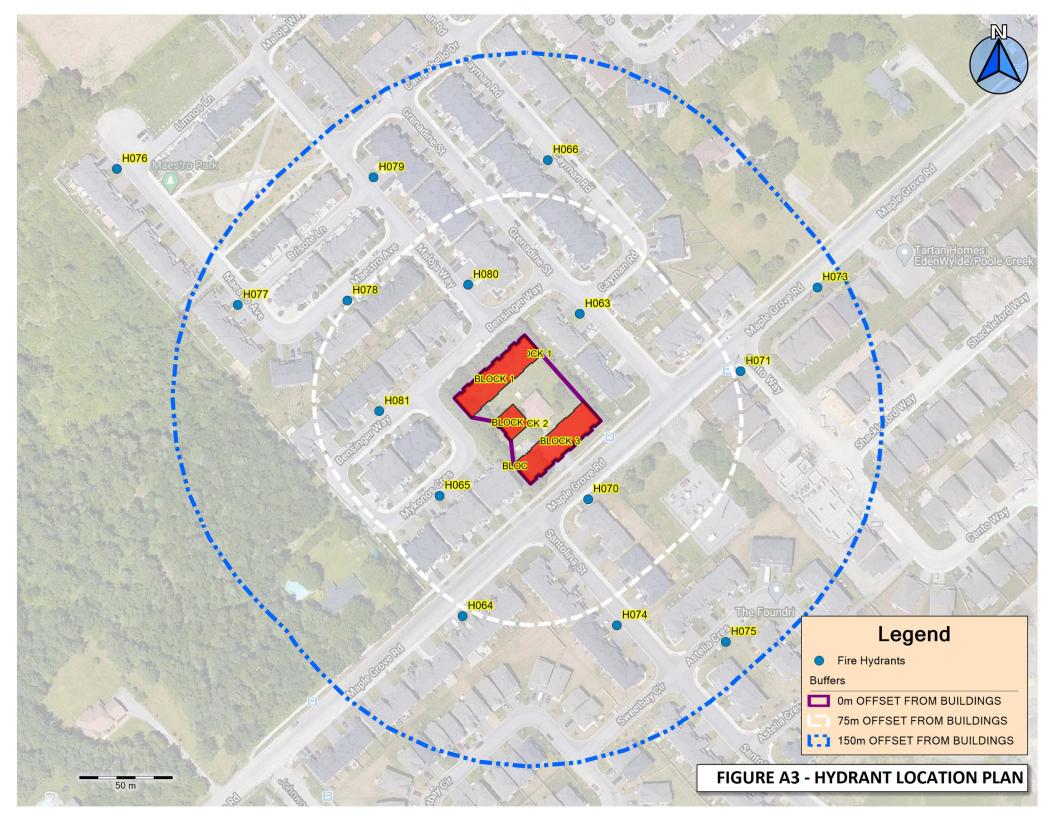

Figure A1 - Pre-Development Drainage Areas

Figure A2 - Post-Development Drainage Areas

Figure A3 – Fire Hydrant Locations

EXP Services Inc. 1869 Maple Grove Road, Ottawa, ON OTT-00254810-A0 September 25, 2020

Appendix B – Water Servicing Tables

- Table B1 Water Demand Chart
- Table B2 Fire Flow Requirements Based on Fire Underwriters Survey (FUS) Block 1-West
- Table B3 Fire Flow Requirements Based on Fire Underwriters Survey (FUS) Block 1-East
- Table B4 Fire Flow Requirements Based on Fire Underwriters Survey (FUS) Block 2
- Table B5 Fire Flow Requirements Based on Fire Underwriters Survey (FUS) Block 3-West
- Table B6 Fire Flow Requirements Based on Fire Underwriters Survey (FUS) Block 3-East
- Table B7 Available Fire Flows Based on Hydrant Spacing
- Table B8 Estimated Water Pressure at Proposed Blocks

TABLE B1: Water Demand Chart

Project No: Designed by: Checked By:	350	4810 ck s	ау									Population Single Fam Semi-Detab Duplex Townhome Bachelor A 1 Bedroom 3 Bedroom 4 Bedroom Avg. Apartr	ily nced (Row) partmei Apartn Apartn Apartn Apartn	nt nent nent		3.4 2.7 2.3 2.7 1.4 1.4 2.1 3.1 4.1 1.8	person/ur person/ur person/ur person/ur person/ur person/ur person/ur person/ur	nit nit nit nit nit nit nit					*e	exp).
				No. of R	lesiden	tial Un	its					Re		al Dema king	ands in (L/s	ec)			Comn Pea	nercial			Total D	Demands	(L/sec)
	Sin	gles/Sen	nis/Tow	ns			Apart	ments					Fac	tors g Day)					Fac						
Proposed Buildings	Single Familty	Semi- Detached	Duplexz	Townhome	Bachelor	1 Bedroom	2 Bedroom	3 Bedroom	4 Bedroom	Avg Apt.	Total Persons (pop)	Avg. Day Demand (L/day)	Max Day	Peak Hour	Max Day Demand (L/day)	Peak Hour Demand (L/day)	Area (m²)	Avg Demand (L/day)	Max Day	Peak Hour	Max Day Demand (L/day)	Peak Hour Demand (L/day)	Avg Day (L/s)	Max Day (L/s)	Max Hour (L/s)
Block 1				8							21.6	7,560	9.50	14.30	71,820	108,108							0.09	0.83	1.25
Block 2				2							5.4	1890	9.50	14.30	17,955	27,027							0.03	0.03	0.31
Block 3				8							21.6	7,560	9.50	14.30	71,820	108,108							0.02	0.21	1.25
Biook o				Ű							2.1.0	1,000	0.00		1 1,020	100,100							0.00	0.00	
Total =				18							48.6	17,010			161,595	243,243	1						0.20	1.87	2.82
PEAKING FACTORS F Dwelling Units Serviced 10 50 100 150 167	Equiv Pop 30 150 300 450 500	Night Min	3-3 (Peal Maxim Day Factor 9.50 4.90 3.60 3.00 2.90	Peak Hour		Vater Sy	stems S	ervicing	Fewer 1	Րhan 50	0 persons														

TABLE B-2 FIRE FLOW REQUIREMENTS BASED ON FIRE UNDERWRITERS SURVEY(FUS) 1999 LOCATION: Block 1 - WEST

An estimate of the Fire Flow required for a given fire area may be estimated by:

F = 220 * C * SQRT(A)

where:

F = required fire flow in litres per minute

A = total floor area in m^2 (including all storeys, but excluding basements at least 50% below grade) C = coefficient related to the type of construction

Task	Options	Multiplier			Inpu	t	Value Used	Fire Flow Total (L/min)
	Wood Frame	1.5						
Choose Building	Ordinary Construction							
Frame (C)	Non-combustible Construction	0.8			Wood Fr	ame	1.5	
	Fire Resistive Construction	0.6						
Input Building Floor Areas (A)			Area	% Used	Area Used	Fire Wall Used to Split	673.0 m²	
	Floor 2		673	673 50% 337 Block		0/0.0111		
	Floor 1		673	50%	337			
Fire Flow (F)	F = 220 * C * SQRT(A)							8,561
Fire Flow (F)	Rounded to nearest 1,000							9,000

Task	Options		Multiplier					Input			Value Used	Fire Flow Change (L/min)	Fire Flow Total (L/min)
	Non-combustible		-25%										
Choose	Limited Combustible		-15%										
Combustibility of	Combustible		0%				Limited	d Combustib	le		-15%	-1,350	7,650
Building Contents	Free Burning		15%										
	Rapid Burning		25%		1								
	Adequate Sprinkler Conforms to NFPA13		-30%				No		0%	0	7,650		
	No Sprinkler		0%										
Choose Reduction Due to Sprinkler	Standard Water Supply for Fire Department Hose Line and for Sprinkler System		-10%			Not Stan	dard Wat		0%	0	7,650		
System	Not Standard Water Supply or Unavailable		0%										
	Fully Supervised Sprinkler System		-10%			N	lot Fully S		0%	0	7.650		
	Not Fully Supervised or N/A		0%			K	iot rully 3	076	0	7,050			
							E	xposed Wall	Length				
Choose Structure Exposure Distance	Exposures	Separ- ation Dist (m)	Cond	Separation Conditon	Exposed Wall type	Length (m)	No of Storeys	Lenth- height Factor	Sub- Conditon	Charge (%)	Total Charge (%)	Total Exposure Charge (L/min)	
Exposure Distance	Side 1 (west)	23	4	20.1 to 30	Type A	14	2	28	4A	8%			
	Side 2 (east)	0	1	0 to 3	.,,		Fire W	-		10%			
	Side 3 (north)	27	4	20.1 to 30	Type A	31	2	62	4C	9%	44%	3,366	11,016
	Side 4 (south)	9	2	3.1 to 10		14	2	28	40 2A	17%			
	Side 4 (souti)	9	Z	5.1 (0 10	Type A	14		-					44.000
							lot	al Required	Fire Flow, Ro			-	11,000
Obtain Required												re Flow, L/s =	183
Fire Flow			Can the 1	otal Fire Flow	be Capped a	at 10,000 L	/min (167	L/sec) based	on "TECHNCA	L BULLETIN	ISTB-2018-	02", (yes/no) =	No
								Total Req	uired Fire Flow	(RFF). If R	FF < 167 use	e RFF (L/sec) =	183
<u>Exposure Charges for</u> Type A	Exposing Walls of Wood Fra Wood-Frame or non-conbustib		ruciton (f	rom Table G5	<u>i)</u>								
Туре В	Ordinary or fire-resisitve with u		l openings										
Туре С	Ordinary or fire-resisitve with s	emi-protec	ted openi	ngs									
Type D	Ordinary or fire-resisitve with b	lank wall											
Conditons for Separat	tion Condition												
Om to 3m	1												
3.1m to 10m	2												
10.1m to 20m	3												
20.1m to 30m	4												
30.1m to 45m	5												
> 45.1m	6												

TABLE B-3 FIRE FLOW REQUIREMENTS BASED ON FIRE UNDERWRITERS SURVEY(FUS) 1999 LOCATION: Block 1 - EAST

2

An estimate of the Fire Flow required for a given fire area may be estimated by:

F = 220 * C * SQRT(A)

where:

F = required fire flow in litres per minute

A = total floor area in m^2 (including all storeys, but excluding basements at least 50% below grade) C = coefficient related to the type of construction

Task	Options	Multiplier			Input	t	Value Used	Fire Flow Total (L/min)
	Wood Frame	1.5						
Choose Building	Ordinary Construction	1						
Frame (C)	Non-combustible Construction	0.8			Wood Fra	ame	1.5	
	Fire Resistive Construction	0.6						
Input Building Floor Areas (A)			Area	% Used	Area Used	Fire Wall Used to Split	673.0 m²	
	Floor 2		673	50%	337	Block	0/0.0111	
	Floor 1		673	50%	337			
Fire Flow (F)	F = 220 * C * SQRT(A)							8,561
Fire Flow (F)	Rounded to nearest 1,000							9,000

Options	Multiplier Input							Value Used	Fire Flow Change (L/min)	Fire Flow Total (L/min)		
Non-combustible		-25%										
Limited Combustible		-15%	L. C.									
Combustible		0%				Limited	l Combustib	le		-15%	-1,350	7,650
Free Burning		15%										
Rapid Burning		25%										
Adequate Sprinkler Conforms to NFPA13						No		0%	0	7,650		
No Sprinkler		0%										
Standard Water Supply for Fire Department Hose Line and for Sprinkler System		-10%		Not Standard Water Supply or Unavailable						0%	0	7,650
Not Standard Water Supply or Unavailable		0%										
Fully Supervised Sprinkler System		-10%			Not Fully Supervised or N/A						0	7,650
Not Fully Supervised or N/A		0%	1				0,0	Ű	1,000			
	0	-				E:	xposed Wall	Length				
Exposures	ation Dist (m)	Cond	Separation Conditon	Exposed Wall type	Length (m)	No of Storeys	Lenth- height Factor	Sub- Conditon	Charge (%)	Total Charge (%)	Total Exposure Charge (L/min)	
Side 1 (west)	23	4	20.1 to 30	Type A		F	ire Wall		10%			
· · /	9	2	3.1 to 10	Type A	14	2	28	2A	17%	1		
Side 3 (north)	26	4	20.1 to 30		46		92	4A	8%	40%	3,060	10,710
					-					1		
	04	5	50.1 (0 45	Турс А	25			-		ne Nearest	1 000 L /min =	11,000
						100	arrequireu					183
		Can the	otal Fire Flow	be Capped a	it 10,000 L	/min (167 I						Yes
							Total Req	uired Fire Flow	(RFF). If RI	FF < 167 use	RFF (L/sec) =	167
Wood-Frame or non-conbustib	le			<u>)</u>								
		dea openii	195									
ion Condition												
2												
3												
4												
5												
6												
	Non-combustible Limited Combustible Combustible Free Burning Rapid Burning Adequate Sprinkler Conforms to NFPA13 No Sprinkler Standard Water Supply for Fire Department Hose Line and for Sprinkler System Not Standard Water Supply or Unavailable Fully Supervised Sprinkler System Not Fully Supervised or N/A Exposures Side 1 (west) Side 2 (east) Side 3 (north) Side 4 (south) Exposing Walls of Wood Fra Wood-Frame or non-conbustib Ordinary or fire-resisitve with u Ordinary or fire-resisitve with b Ion Condition 1 2 3 4 5	Non-combustible Limited Combustible Combustible Free Burning Rapid Burning Adequate Sprinkler Conforms to NFPA13 No Sprinkler Standard Water Supply for Fire Department Hose Line and for Sprinkler System Not Standard Water Suppy or Unavailable Fully Supervised Sprinkler System Not Fully Supervised or N/A Side 1 (west) 23 Side 2 (east) 9 Side 3 (north) 26 Side 4 (south) 34	Non-combustible -25% Limited Combustible -15% Combustible 0% Free Burning 15% Rapid Burning 25% Adequate Sprinkler -30% No Sprinkler 0% Standard Water Supply for Fire Department Hose Line and for Sprinkler System -10% Not Standard Water System 0% Not Standard Water System 0% Not Standard Water System 0% Fully Supervised Sprinkler System 0% Not Fully Supervised or N/A 0% Side 1 (west) 23 4 Side 2 (east) 9 2 Side 3 (north) 26 4 Side 4 (south) 34 5 Can the 1 Can the 1 Condition Can the 1	Non-combustible -25% Limited Combustible -15% Combustible 0% Free Burning 15% Rapid Burning 25% Adequate Sprinkler -30% No Sprinkler 0% Standard Water Supply for Fire Department Hose Line and for Sprinkler System -10% Not Standard Water Supply for Supply or Unavailable 0% Fully Supervised Sprinkler System -10% Not Fully Supervised or N/A 0% Stade 1 (west) 23 4 Side 1 (west) 23 4 Side 2 (east) 9 2 3.1 to 10 Side 3 (north) 26 4 20.1 to 30 Side 4 (south) 34 5 30.1 to 45	Non-combustible -25% Limited Combustible -15% Combustible 0% Free Burning 15% Rapid Burning 25% Adequate Sprinkler -30% No Sprinkler System 0% Standard Water Supply for Frie Department Hose Line and for Sprinkler System -10% Not Standard Water Supply or Unavailable 0% Fully Supervised Sprinkler System -10% Not Fully Supervised or N/A 0% Exposures Separ- ation Dist (m) 23 4 20.1 to 30 Type A Side 1 (west) 23 4 20.1 to 30 Type A Side 2 (east) 9 2 3.1 to 10 Type A Side 3 (north) 26 4 20.1 to 30 Type A Side 4 (south) 34 5 30.1 to 45 Type A Can the Total Fire Flow be Capped a Can the Total Fire Flow be Capped a Can the Total Fire Flow be Capped a	Non-combustible -25% Limited Combustible -15% Combustible 0% Free Burning 15% Rapid Burning 25% Adequate Sprinkler -30% Conforms to NFPA13 -30% No Sprinkler 0% Standard Water Supply for Fire Department Hose Line and for Sprinkler System -10% Not Standard Water Supply or Unavailable 0% Fully Supervised Sprinkler System -10% Not Standard Water Supply or Unavailable 0% Fully Supervised Sprinkler System -10% Not Standard Water Supply or Unavailable 0% Fully Supervised Sprinkler System -10% NA 0% Exposures Stepar- alist (m) 23 4 20.1 to 30 Type A Side 1 (west) 23 4 20.1 to 30 Type A 4.6 Side 2 (east) 9 2 3.1 to 10 Type A 4.6 Side 4 (south) 34 5 30.1 to 45 Type A 25 Can the Total Fire Flow be Capped at 10,000 L Can the Total Fire Flo	Non-combustible -25% Limited Combustible -15% Combustible 0% Free Burning 15% Rapid Burning 25% Adequate Sprinkler -30% Conforms to NFPA13 -30% No Sprinkler 0% Standard Water Supply for Fire Department Hose Line -10% Not Standard Water 0% Supply or Unavailable 0% Fully Supervised Sprinkler -10% System -10% Not Fully Supervised Sprinkler -10% Not Fully Supervised or 0% N/A Separ- ation Dist (m) Cond Separation Conditon Exposed Wall type Length (m) No of Storeys Side 1 (west) 23 4 20.1 to 30 Type A 14 2 Side 2 (east) 9 2 3.1 to 10 Type A 4.6 2 Side 4 (south) 34 5 30.1 to 45 Type A 2.5 2 Can the Total Fire Flow be Capped at 10,000 L/min (167 to 10) Type A 2.5 2 2 Condition	Non-combustible -25% Limited Combustible -15% Combustible 0% Bapid Burning 15% Rapid Burning 25% Adequate Sprinkler -30% Conforms to NFPA13 0% Standard Water Supply for Fire Department Hose Line and for Sprinkler System -10% Not Standard Water Supply or Unavailable 0% Fully Supervised Sprinkler System 0% Not Standard Water System 0% Not Standard Water System 0% Not Standard Water System 0% Not Standard Water System 0% Not Fully Supervised or NA 0% Exposures Separ- ation (m) Cond Separation Conditon Exposed Wall type Lenth- height Factor Side 1 (west) 23 4 20.1 to 30 Type A 14 2 28 Side 3 (north) 26 4 20.1 to 30 Type A 4.6 2 9.2 Side 4 (south) 34 5 30.1 to 45 Type A 4.6 2 9.2 Side 4 (south) 34 5 30.1 to 45 Type A 4.6 2 9.2 Side 4 (south) 34 5 30.1 to 45 Total Required	Non-combustible -25% Limited Combustible -15% Combustible 0% Free Burning 15% Rapid Burning 25% Adequate Sprinkler -30% No Sprinkler 0% Standard Water Supply for Fire Department Hose Line and for Sprinkler -10% Not Standard Water System -10% Not Fully Supervised Sprinkler -10% Skite 1 (west) 23 4 Side 2 (east) 9 2 Side 4 (south) 34 5 30.1 to 45 Type A 14 2 Side 4 (south) 34 5 30.1 to 45 Can the Total Fire Flow be Capped at 10.000 Unin (167 Usec) based on "ECHNC/A Ordinary or fire-resistive with uprotected openings Ordinary or fire-resistive with uprotected openings Ordinary or fire-resistive	Non-combustible -25% Limited Combustible -15% Combustible 0% Free Burning 15% Rapid Burning 25% Adequate Sprinkler -30% No Sprinkler 0% Standard Water Supply for Fire Department Hose Line -10% and for Sprinkler 30% Not Standard Water Supply or Unavailable 0% Standard Water Supply or Unavailable 0% Not Standard Water Supply or Unavailable 0% Fully Supervised Sprinkler -10% Not Fully Supervised or N/A System -10% Not Fully Supervised or N/A Exposures Separation 0% Side 1 (west) 23 4 20.1 to 30 Type A Side 2 (east) 9 2 3 .1 to 10 Type A Side 2 (east) 9 2 3 .1 to 10 Type A Side 2 (east) 26 4 20.1 to 30 Type A Side 4 (south) 24 5 30.1 to 45 Type A Side 4 (south) 26 4 20.1 to 30 Type A Side 4 (south) 26 5 30.1 to 45 Type A Side 4 (south) 26 5 30.1 to 45 Type A Side 4 (south) 26 5 30.1 to 45 Type A Side 4 (south) 26 5 30.1 to 45 Type A Side 4 (south) 26 5 30.1 to 45 Type A Side 4 (south) 26 5 30.1 to 45 Type A Side 4 (south) 27 5 30.1 to 45 Type A Side 4 (south) 34 5 30.1 to 45 Type A Side 4 (south) 34 5 30.1 to 45 Type A Side 4 (south) 34 5 30.1 to 45 Type A Side 4 (south) 34 5 30.1 to 45 Type A Side 4 (south) 34 5 30.1 to 45 Type A Side 4 (south) 34 5 30.1 to 45 Type A Side 4 (south) 34 5 30.1 to 45 Type A Side 4 (south) 34 5 30.1 to 45 Type A Side 4 (south) 34 5 30.1 to 45 Type A Side 4 (south) 34 5 30.1 to 45 Type A Side 7 the Total Fire Flow, Rounded to th Condition C Side 7 the Total Fire Flow Recent Side 9 the Side 9 th Side 7 the Total Fire Flow Recent Side 9 th Side 9 th 10 Kits Side 9 th Side 9 th Side 9 th 10 Kits Side 9 th Side 9 th	Non-combustible 25% Used Combustible 35% 15% Combustible 0% 15% Rapid Burning 25%	Non-combustible -25% Limited Combustible -1 June of the transmission of transmissing of transmission of transmission of transmissing of transmissin

TABLE B-4 FIRE FLOW REQUIREMENTS BASED ON FIRE UNDERWRITERS SURVEY(FUS) 1999 LOCATION: Block 2

An estimate of the Fire Flow required for a given fire area may be estimated by:

F = 220 * C * SQRT(A)

where:

F = required fire flow in litres per minute

A = total floor area in m^2 (including all storeys, but excluding basements at least 50% below grade) C = coefficient related to the type of construction

Task	Options	Multiplier			Inpu	t	Value Used	Fire Flow Total (L/min)
	Wood Frame	1.5						
Choose Building	Ordinary Construction	1						
Frame (C)	Non-combustible Construction	0.8			Wood Fr	ame	1.5	
	Fire Resistive Construction	0.6						
Input Building Floor Areas (A)			Area	% Used	Area Used		368.0 m²	
	Floor 2		184	100%	184		300.0 11	
	Floor 1		184	100%	184			
Fire Flow (F)	F = 220 * C * SQRT(A)							6,330
Fire Flow (F)	Rounded to nearest 1,000							6,000

Task	Options		Multipl	ier				Input			Value Used	Fire Flow Change (L/min)	Fire Flow Total (L/min)		
	Non-combustible		-25%)											
Choose	Limited Combustible		-15%)	1										
Combustibility of	Combustible		0%		1		Limited		-15%	-900	5,100				
Building Contents	Free Burning		15%		1										
-	Rapid Burning		25%		1										
	Adequate Sprinkler														
	Conforms to NFPA13		-30%	•			No		0%	0	5,100				
	No Sprinkler		0%												
Choose Reduction Due to Sprinkler	Standard Water Supply for Fire Department Hose Line and for Sprinkler System		-10%	1		Not Stan	dard Wat		0%	0	5,100				
System	Not Standard Water Supply or Unavailable		0%												
	Fully Supervised Sprinkler System		-10%			N	lot Fully S		0%	0	5,100				
	Not Fully Supervised or N/A		0%				lot rully 5	070	0	5,100					
							E	xposed Wall	oosed Wall Length						
Choose Structure	Exposures	Separ- ation Dist (m)	Cond	Separation Conditon	Exposed Wall type	Length (m)	No of Storeys	Lenth- height Factor	Sub- Conditon	Charge (%)	Total Charge (%)	Total Exposure Charge (L/min)			
Exposure Distance	Side 1 (west)	50	6	> 45.1	Type A	0	0	0	6	0%					
	Side 2 (east)	38	5	30.1 to 45	Type A	14	2	28	5A	5%		1,989			
	Side 3 (north)	9	2	3.1 to 10	Type A	14	2	28	2A	17%	39%		7,089		
		10	2					-		17%					
	Side 4 (south)	10	Z	3.1 to 10	Type A	14	2	28	2A						
							lot	al Required	Fire Flow, Ro				7,000 117		
Obtain Required	Total Required Fire Flow, L/s = Can the Total Fire Flow be Capped at 10,000 L/min (167 L/sec) based on "TECHNCAL BULLETIN ISTB-2018-02", (yes/no) =														
Fire Flow			Can the 1	Fotal Fire Flow	be Capped a	at 10,000 L	/min (167 l	L/sec) based o	on "TECHNCA	L BULLETIN	I ISTB-2018-	02", (yes/no) =	Yes		
								Total Requ	uired Fire Flow	(RFF). If R	FF < 167 use	RFF (L/sec) =	117		
Exposure Charges for Type A Type B Type C Type D	r Exposing Walls of Wood Fra Wood-Frame or non-conbustib Ordinary or fire-resisitve with u Ordinary or fire-resisitve with s Ordinary or fire-resisitve with b	le nprotectec emi-protec	l openings	5	<u>n</u>										
Conditons for Separa Separation Dist	<u>tion</u> Condition														
0m to 3m	1														
3.1m to 10m	2														
10.1m to 20m	3														
20.1m to 30m	4														
	-														
30.1m to 45m > 45.1m	5 6														

TABLE B-5 FIRE FLOW REQUIREMENTS BASED ON FIRE UNDERWRITERS SURVEY(FUS) 1999 LOCATION: Block 3 - WEST

4

An estimate of the Fire Flow required for a given fire area may be estimated by:

F = 220 * C * SQRT(A)

where:

F = required fire flow in litres per minute

A = total floor area in m^2 (including all storeys, but excluding basements at least 50% below grade) C = coefficient related to the type of construction

Task	Options	Multiplier			Inpu	t	Value Used	Fire Flow Total (L/min)					
	Wood Frame	1.5											
Choose Building	Ordinary Construction	1											
Frame (C)	Non-combustible Construction	0.8			Wood Fr	ame	1.5						
	Fire Resistive Construction												
Input Building Floor Areas (A)			Area %Used		Area Used		673.0 m²						
	Floor 2		673 673	50% 50%	337 337		070.0111						
	Floor 1	Floor 1											
Fire Flow (F)	F = 220 * C * SQRT(A)							8,561					
Fire Flow (F)	Rounded to nearest 1,000												

Task	Options		Multipl	ier				Input			Value Used	Fire Flow Change (L/min)	Fire Flow Total (L/min)		
	Non-combustible		-25%												
Choose	Limited Combustible		-15%]										
Combustibility of	Combustible		0%				Limited	-15%	-1,350	7,650					
Building Contents	Free Burning		15%		1										
	Rapid Burning		25%		1										
	Adequate Sprinkler Conforms to NFPA13		-30%				No	0%	0	7,650					
	No Sprinkler		0%		1										
Choose Reduction Due to Sprinkler	Standard Water Supply for Fire Department Hose Line and for Sprinkler System		-10%			Not Stan	dard Wat		0%	0	7,650				
System	Not Standard Water Supply or Unavailable		0%												
	Fully Supervised Sprinkler System		-10%			Ν	ot Fully S	iupervised or	c N/A		0%	0	7.650		
	Not Fully Supervised or N/A		0%			K	ot Fully 5	0 76	0	7,050					
Choose Structure							E	xposed Wall	Length						
	Exposures	Separ- ation Dist (m)	Cond	Separation Conditon	Exposed Wall type	Length (m)	No of Storeys	Lenth- height Factor	Sub- Conditon	Charge (%)	Total Charge (%)	Total Exposure Charge (L/min)			
Exposure Distance	Side 1 (west)	6	2	3.1 to 10	Type A	14	2	28	2A	17%					
	Side 2 (east)	0	1	0 to 3	Type A			ire Wall		10%	1	3,978			
	Side 3 (north)	10	2	3.1 to 10	Type A	14	2	28	2A	17%	52%		11,628		
	Side 4 (south)	30	4	20.1 to 30		15	2	30	4A	8%					
	Side 4 (soutil)	30	4	20.1 10 50	Type A	15							40.000		
							lot	tal Required	Fire Flow, Ro				12,000 200		
Obtain Required		Total Required Fire Flow, L/s =													
Fire Flow			Can the 1	otal Fire Flow	be Capped a	at 10,000 L	/min (167	L/sec) based (on "TECHNCA	L BULLETIN	I ISTB-2018-	02", (yes/no) =	Yes		
								Total Requ	uired Fire Flow	(RFF). If R	FF < 167 use	RFF (L/sec) =	167		
<u>Exposure Charges for</u> Type A	• Exposing Walls of Wood Fra Wood-Frame or non-conbustib		ruciton (f	rom Table G5	<u>)</u>										
Туре В	Ordinary or fire-resisitve with u		l openings												
Туре С	Ordinary or fire-resisitve with s	emi-protec	ted openi	ngs											
Туре D	Ordinary or fire-resisitve with b	lank wall													
Conditons for Separat Separation Dist	tion Condition														
Om to 3m	1														
3.1m to 10m	2														
10.1m to 20m	3														
20.1m to 30m	4														
30.1m to 45m	5														
> 45.1m	6														

TABLE B-6 FIRE FLOW REQUIREMENTS BASED ON FIRE UNDERWRITERS SURVEY(FUS) 1999 LOCATION: Block 3 - EAST

An estimate of the Fire Flow required for a given fire area may be estimated by:

F = 220 * C * SQRT(A)

where:

F = required fire flow in litres per minute

A = total floor area in m^2 (including all storeys, but excluding basements at least 50% below grade) C = coefficient related to the type of construction

Task	Options	Multiplier			Input	t	Value Used	Fire Flow Total (L/min)
	Wood Frame	1.5						
Choose Building	Ordinary Construction	1						
Frame (C)	Non-combustible Construction	0.8			Wood Fra	ame	1.5	
	Fire Resistive Construction							
Input Building Floor Areas (A)			Area	% Used	Area Used		673.0 m²	
	Floor 2		673	50%	337		0/0.0111	
	Floor 1	673	50%	337				
Fire Flow (F)	F = 220 * C * SQRT(A)							8,561
Fire Flow (F)	Rounded to nearest 1,000		9,000					

Task	Options		Multipl	ier				Input			Value Used	Fire Flow Change (L/min)	Fire Flow Total (L/min)		
	Non-combustible		-25%)											
Choose	Limited Combustible		-15%)											
Combustibility of	Combustible		0%				Limited		-15%	-1,350	7,650				
Building Contents	Free Burning		15%		1										
	Rapid Burning		25%												
	Adequate Sprinkler Conforms to NFPA13		-30%	1			No		0%	0	7,650				
	No Sprinkler		0%												
Choose Reduction Due to Sprinkler	Standard Water Supply for Fire Department Hose Line and for Sprinkler System		-10%	1		Not Stan	dard Wat		0%	0	7,650				
System	Not Standard Water Supply or Unavailable		0%												
	Fully Supervised Sprinkler System		-10%			N	ot Fully S		0%	0	7.650				
	Not Fully Supervised or N/A		0%			IN	ot Fully S	0 76	U	7,030					
							E	xposed Wall	Length						
Choose Structure	Exposures	Separ- ation Dist (m)	Cond	Separation Conditon	Exposed Wall type	Length (m)	No of Storeys	Lenth- height Factor	Sub- Conditon	Charge (%)	Total Charge (%)	Total Exposure Charge (L/min)			
Exposure Distance	Side 1 (west)	0	1	0 to 3	Type A		F	ire Wall		10%					
		10				14	2	28	2A	17%	1				
	Itiding Contents Free Burning 15% Rapid Burning 25% Adequate Sprinkler 0% Adequate Sprinkler -30% No Sprinkler 0% System Standard Water Supply for Fire Department Hose Line and for Sprinkler System -10% Not Standard Water Supply or Unavailable 0% Not Sprinkler System -10% Not Standard Water Supply or Unavailable 0% Not Fully Supervised Sprinkler -10% Not Fully Supervised or N/A 0% Not Fully Supervised Sprinkler -10% Not Fully Supervised or N/A 0% Not Fully Supervised Sprinkler -10% Not Fully Supervised or N/A 0% System Side 1 (west) 0 1 0 to 3 Type A Free Wall 10% Side 1 (west) 0 1 0 to 3 Type A Free Wall 10% 32% Side 1 (west) 0 1 0 to 3 Type A Exposed 0% 0% 32% Side 1 (west) 0 1 0 to 3 Type A Erewall 10% 32% Side 4 (wouth) 50 6 45.1	32%	2,448	10,098											
	()	-	-			-									
	Side 4 (souti)	50	0	245.1	Type A	U	-	÷	-				40.000		
							101	ai Required	FIFE FIOW, RC			-	10,000 167		
	Total Required Fire Flow, L/s =														
Fire Flow			Can the T	Fotal Fire Flow	be Capped a	it 10,000 L	/min (167 l	L/sec) based (on "TECHNCA	L BULLETIN	I ISTB-2018-	02", (yes/no) =	Yes		
								Total Requ	lired Fire Flow	(RFF). If R	FF < 167 use	RFF (L/sec) =	167		
Гуре А Гуре В Гуре С	Wood-Frame or non-conbustib Ordinary or fire-resisitve with u Ordinary or fire-resisitve with s	le nprotectec emi-protec	l openings	;	<u>)</u>										
Type D		iank wall													
Om to 3m															
3.1m to 10m															
10.1m to 20m															
20.1m to 30m															
	-														
30.1m to 45m	5														

	Block	1 (West)	Block	1 (East)	BI	ock 2	Block 3	3 (West)	Block 3 (East)		
Hydrant #	¹ Distance (m)	² Fire Flow Contribution (L/min)	¹ Distance (m)	² Fire Flow Contribution (L/min)	Distance (m)	Fire Flow Contribution (L/min)	Distance (m)	Fire Flow Contribution (L/min)	Distance (m)	Fire Flow Contribution (L/min)	
348015H064	NA		NA		NA		83	3,800	104	3,800	
348016H070	NA		NA		NA		29	5,700	36	5,700	
348016H071	NA		NA		NA		118	3,800	94	3,800	
348015H065	59	5,700	127	3,800	50	5,700	NA		NA		
348016H081	50	5,700	73	5,700	79	3,800	NA		NA		
348016H080	63	5,700	63	5,700	132	3,800	NA		NA		
348016H079	136	3,800	119	3,800	NA		NA		NA		
348016H063	107	3,800	83	3,800	NA		147	3,800	125	3,800	
Total Fire Fflow Avail		24,700		22,800		13,300		17,100		17,100	
in L/min (L/sec)		(412)		(380)		(222)		(285)		(285)	
FUS RFF in L/min		11,000		10,020		7,000		10,020		10,020	
(L/sec)		(183)		(167)		(117)		(167)		(167)	
Meets Requreiment (Yes/No)		Yes		Yes		Yes		Yes		Yes	

TABLE B7: FIRE FLOW CONTRIBUTIONS BASED ON HYDRANT SPACING

Notes:

¹Distance is measured along a road or fire route.

²Fire Flow Contribution for Class AA Hydrant from Table 1 of Appendix I, ISTB-2018-02

TABLE B4ESTIMATED WATER PRESSURE AT PROPOSED BUILDING

Description	From	То	Demand (L/sec)	Pipe Length (m)	Pipe Dia (mm)	Dia (m)	Q (m3/sec)	Area (m2)		Vel		Head Loss (m)	Elev From (m)	Elev To (m)				Pressure To kPa (psi)		Pressure Drop (psi)
Avg Day Conditons																				
Single 19mm service Block 1	Main	Building	0.01	15 m	19	0.019	0.0000		110	0.0397	0.00029	0.0044	107.60	108.96	-1.4	516.0	(74.8)	502.6	(72.9)	1.9
Single 19mm service Block 2	Main	Building	0.01	15 m	19	0.019	0.0000	0.000284	110	0.0353	0.00023	0.0035	107.60	108.96	-1.4	516.0	(74.8)	502.6	(72.9)	1.9
Single 19mm service Block 3	Main	Building	0.01	15 m	19	0.019	0.0000	0.000284	110	0.0397	0.00029	0.0044	107.40	108.80	-1.4	518.0	(75.1)	504.2	(73.1)	2.0
Max Day Conditons																				
Single 19mm service Block 1	Main	Building	0.10	15 m	19	0.019	0.0001	0.000284	110	0.3659	0.01784	0.2676	107.60	108.96	-1.4	516.0	(74.8)	500.0	(72.5)	2.3
Single 19mm service Block 2	Main	Building	0.11	15 m	19	0.019	0.0001	0.000284	110	0.3703	0.01824	0.2736	107.60	108.96	-1.4	516.0	(74.8)	500.0	(72.5)	2.3
Single 19mm service Block 3	Main		0.10	15 m	19		0.0001		110	0.3659		0.2750	107.40	108.80	-1.4	518.0	(75.1)	500.0	(72.8)	2.3
Single 19mm Service Block 3	wan	Building	0.10	15 m	19	0.019	0.0001	0.000284	110	0.3659	0.01784	0.2676	107.40	108.80	-1.4	518.0	(75.1)	501.6	(72.8)	2.4
Peak Hour Conditons																				
Single 19mm service Block 1	Main	Building	0.16	15 m	19	0.019	0.0002	0.000284	110	0.5511	0.03809	0.5713	107.60	108.96	-1.4	478.7	(69.4)	459.8	(66.7)	2.7
Single 19mm service Block 2	Main	Building	0.16	15 m	19	0.019	0.0002	0.000284	110	0.5467	0.03753	0.5629	107.60	108.96	-1.4	478.7	(69.4)	459.9	(66.7)	2.7
Single 19mm service Block 3	Main	Building	0.16	15 m	19	0.019	0.0002	0.000284	110	0.5511	0.03809	0.5713	107.40	108.80	-1.4	480.7	(69.7)	461.4	(66.9)	2.8
Water Demand Info Average Demand (L/sec) = Max Day Demand (L/sec) = Peak Hr Deamand (L/sec) = Fireflow Requriement (L/sec) =	Block 1 0.09 0.83 1.25 183	Block 2 0.02 0.21 0.31 117	Block 3 0.09 0.83 1.25 167			Hazen W	/illiams C F	actor for Fr	iction L	oss in Pip	e, C=	110								
Max Day Plus FF Demand (L/sec) =	183.8	117.2	167.8																	
From watermain to building =	15 m	15 m	15 m																	
Connection # (from City)	#3	#2	#1																	
Connection to	Bensinger	Mykonos	Maple Grove	•																
Min HGL (m)	156.4	156.4	156.4																	
Max HGL (m)	160.2	160.2	160.2																	
Max Day + FF (167 L/s) HGL (m)	141.4	147.0	154.7																	
Approx Ground Elev at Conn (m) =	107.6	107.6	107.4																	
Approx Bldg FF Elev (m) =	108.96	108.96	108.80																	
Min Pressure (m) =	48.8	48.8	49.0																	
Max Pressure (m) =	52.6	52.6	52.8																	
Min Pressure (Pa) =	478,728	478,728	480,690																	
Max Pressure (Pa) =	516,006	516,006	517,968																	
Min Pressure (psi) =	69.4	69.4	69.7																	
Max Pressure (psi) =	74.8	74.8	75.1																	

.

EXP Services Inc. 1869 Maple Grove Road, Ottawa, ON OTT-00254810-A0 September 25, 2020

Appendix C – Sanitary Servicing Tables

Table C1 – Sanitary Sewer Design Sheet

*exp.

Table C1: SANITARY SEWER CALCULATION SHEET

	LOCATION	N					RES	EDENTI	AL AREA	S AND PO	OPULAIT	rons				CC	OMMERC	IAL	IN	IDUSTR	IAL	INSTIT	UTIONAL	IN	ILTRATI	ON					SEWER	DATA		
							NUM	BER OF U	JNITS			POPU	LATION			ARE	A (ha)		AREA	A (ha)	Peak			AREA	(ha)								- 1-	
Street	U/S MH	D/S MH	Desc	Area (ha)	Singles	Semis T	ſowns	1-Bed Apt.					ACCU					Peak Flow (L/sec)	INDIV	ACCU		AREA (Ha)	ACCU AREA (Ha)	INDIV	ACCU		FLOW	Dia	Dia	Slope (%)		Capacity (L/sec)		Full Velocity (m/s)
Maple Grove Rd	MHSA65072	MHSA65073		0.1719			8.00					21.6	21.6	3.70	0.26									0.1719	0.17	0.06	0.32	200	201.2	0.58	72.020	25.4	1%	0.92
Mykonos Cres			EXSA1	0.2521			14.00					37.8	37.8																					
Mykonos Cres				0.0512			2.00					5.4	43.2																					
Mykonos Cres	MHSA65629	MHSA65630	SA2	0.0665			2.00					5.4	48.6	3.65	0.57									0.0665	0.3186	0.11	0.68	200	201.2	1.51	10.610	41.0	2%	1.49
Mykonos Cres	MHSA65630	MHSA6526	EXSA3	0.0530									48.6	3.65	0.57									0.0530	0.3716	0.12	0.70	200	201.2	1.00	35.120	33.3	2%	1.21
Bensinger Way			EXSA4	0.3682			15.00					40.5	89.1	3.80 3.61	1.04									0.3682	0.7398	0.24	1.29							
Bensinger Way			EXSA5	0.1883			5.00					13.5	102.6	3.59	1.19									0.1883	0.1883	0.06	1.26							
Bensinger Way	MHSA6526	MHSA6525	SA3	0.1667			8.00					21.6	124.2	3.57	1.44									0.1667	0.5383	0.18	1.61	200	201.2	1.04	50.840	34.0	5%	1.24
				1.32			54					145.8			5.08									1.01										
Residential Avg. Dail	v Flow a (I /p/day	v) =		1.52	280	c		rial Peak	Factor =		15	_	rea >20%)			nulation	Flow, (L/s	ec) =	P*q*M/	86.4		Unti Typ	e	Persons		Designe	ed:			Project	:			
Commercial Avg. Dai or L/gross ha/sec =					28,000 0.324	C	.on inter						rea <20%)		Peak Ext	traneous	Flow, (L/s ng Factor	sec) =	I*Ac 1 + (14/		i)) * К	Singles Semi-De	_	3.4 5.7			atrick, P.	.Eng.		1869 M	aple Gro	ve Drive		
Institutianal Avg. Da	ily Flow (L/s/ha)	=			28,000	Ir	nstitutic	onal Peak	Factor =				rea >20%)		-		Area (hec	,				Townho		2.7		Checke	d:			Locatio	n:			
or L/gross ha/sec = Light Industrial Flow	(L/gross ha/day)	-			0.324 35,000							(when a	rea <20%)				housands			2 2/2		Single A 2-bed A	ot. Unit	1.4 2.1		B. Thor	nas, P.E	ng.		Ottawa	Ontario			
or L/gross ha/sec =	() (h = (d)				0.40509				ction Fac	tor, K =	0.80						Qcap (L/se	ec) =	1/N S ^{1/}	² R ^{2/3} A _c		3-bed A		3.1		Cile Def				Dees N				
Light Industrial Flow or L/gross ha/sec =	(L/gross ha/day)	=			55,000 0.637		Aanning eak ext	·	flow I (I	/s/ha) =	0.013	(Total I/	n.		(Mannir	ig s Equat	tion)					4-bed A	ot. Unit	4.1		File Ref	erence: SAN - S	ower D	eian	Page N	U:			
01 L/B/033 110/Sec -					0.057	r	Can CAL	ancous	10w, 1 (L	, s, na) =	0.55	(Total I)	,														SAN - 3 Sept 25,			1 of 1				

Appendix D – Stormwater Servicing

- Table D1 Estimation of Catchment Time of Concentration for Pre-Development Conditions
- Table D2 Estimation of Peak Flows (Pre-Development Conditions) Using Calculated Time Of Concentration
- Table D3 Estimation of Allowable Minor System Flows to Maple Grove Storm Sewer
- Table D4 Average Runoff Coefficients for Post-Development Conditions
- Table D5 Summary of Post-Development Peak Flows (Uncontrolled and Controlled)
- Table D6 Summary of Post Development Storage
- Table D7 Storage Volumes for 2-year, 5-year, 100-year, and 100-year Plus 20% Storms (Based on MRM)
- Table D8 5-Year Storm Sewer Calculation Sheet
- StormTech Chambers North (Layout)
- StormTech Chambers North
- StormTech Chambers South (Layout)
- **StormTech Chambers South**
- StormTech MC3500 Chambers Spec Sheet
- Tempest-Technical-Manual (page 5 only)

TABLE D1

ESTIMATION OF CATCHMENT TIME OF CONCENTRATION (PRE-DEVELOPMENT CONDITIONS)

Catchment No.	Area (ha)	High Elev (m)	Low Elev (m)	Flow Path Length (m)	Indiv Slope	Avg. C	Time of Conc. Tc	Description
PRE_S01	0.4052	107.5	106.6	51.0	1.8	0.28	15.77	See Note 1
Total	0.4052							
Notes 1) For Catchment from MTO Draina				-		ased on Fede	ral Aviation F	ormula (Airport Method),

TABLE D2

ESTIMATION OF PEAK FLOWS (PRE-DEVELOPMENT CONDITIONS) USING CALACUTLED TIME OF CONCENTRATIONS

		Time of		Storm = 2 yr			Storm = 5 y	r	S	torm = 100 y	/r
Catchment No.	Area (ha)	Conc, Tc (min)	l₂ (mm/hr)	Cavg	Q _{5PRE} (L/sec)	l₅ (mm/hr)	Cavg	Q _{5PRE} (L/sec)	l ₁₀₀ (mm/hr)	Cavg	Q _{100PRE} (L/sec)
PRE_S01	0.4052	15.77	60.01	0.28	18.9	81.15	0.28	25.6	138.74	0.35	54.7
Total	0.4052				18.9			25.6			54.7
Notes 1) Intensity, I = 73 2) Intensity, I = 99 3) Intensity, I = 17 4) Cavg for 100-ye	98.071/(Tc+6. 735.688/(Tc+6	035) ^{0.814} (5-yea 5.014) ^{0.820} (100	nr, City of 0tt -year, City of	awa) Ottawa)							

TABLE D3ESTIMATION OF ALLOWABLE MINOR SYSTEM FLOWS TO MAPLE GROVE STORM SEWERBased on 5-year Storm Sewer Design with C=0.65 & Tc=10mins (Pond 4 Desing Brief, DSEL)

		Time of		Storm = 5 yr						
Catchment No.	Area (ha)	Conc, Tc	I ₅		Q _{ALLOW}					
		(min)	(mm/hr)	Cavg	(L/sec)					
PRE_S01	0.4052	10	104.29	0.65	76.4					
Total					76.4					
Notes										
1) Allowable Flow	s to Storm Se	wer on Maple	Grove Based	on DSEL Strm S	Sewer					
Desing for Pond 4 with Cavg or C = 0.65, Tc=10 mins, A=0.40 ha										
2) Peak flows in excess of Allowable rate to be discharged downstream, and strored										
in roadway pondr	na areas and	park storaae a	s per Pond 4	Desian Brief DS	EL					

TABLE D4

AVERAGE RUNOFF COEFFICIENTS (Post-Development)

Runoff Coeffien	ts	C _{ASPH/CONC} =	<u>0.90</u>	C _{ROOF} =	<u>0.90</u>	C _{GRASS} =	<u>0.20</u>			
Area No.	Asphalt & Conc Areas (m ²)	A * C _{asph}	Roof Areas (m ²)	A * C _{ROOF}	Grassed Areas (m ²)	A * C _{GRASS}	Sum AC	Total Area (m ²)	C _{AVG} (see note)	Comment
S01								2433	0.44	Surface Areas
S02								719	0.68	Surface Areas
S03								696	0.68	Surface Areas
S04								202	0.60	Surface Areas
Totals								4,050	0.53	
Notes 1) Cavg derived w	vith area-wei	ghting comman	d in PCSWM	IM						

TABLE D5 SUMMARY OF POST-DEVELOPMENT PEAK FLOWS (Uncontrolled and Controlled)

		Time of		Storm :	= 2 yr			Storm	= 5 yr			Storm	i = 100 yr		
		Conc, Tc			Q	Q _{CAP}			Q	Q _{CAP}		I ₁₀₀	Q		
Area No	Area (ha)	(min)	C _{AVG}	l ₂ (mm/hr)	(L/sec)	(L/sec)	C _{AVG}	I ₅ (mm/hr)	(L/sec)	(L/sec)	C _{AVG}	(mm/hr)	(L/sec)	Q _{CAP} (L/sec)	Comments
S01	0.2433	10	0.44	76.81	22.9	3.10	0.44	104.19	31.0	4.20	0.55	178.56	66.4	9.00	Controlled - Maple Grove
S02	0.0719	10	0.68	76.81	10.4	(10.4)	0.68	104.19	14.2	(14.2)	0.85	178.56	30.3	(30.3)	Uncontrolled - Maple Grove
Total to Maple	e Grove Road	Storm Sewers	s (overland-	+pipe) =		13.5				18.4				39.3	
S03	0.0696	10	0.68	76.81	10.1	(10.1)	0.68	104.19	13.7	(13.7)	0.85	178.56	29.4	(29.4)	Uncontrolled - Bensinger
Total to Bensi	nger Way Sto	rm Sewers (ov	verland) =			10.1				13.7				29.4	
S04	0.0202	10	0.60	76.81	2.6	2.6	0.60	104.19	3.5	3.5	0.75	178.56	7.5	7.5	Uncontrolled- Mykonos
Total to Myko	nos Crescent	Storm Sewers	(overland)	=		(2.6)				(3.5)				(7.5)	
Totals =	0.4050				46.0	26.2			62.4	35.6			133.6	76.2	
Allowable rate	es for compari	ison												76.4	
<u>Notes</u>															
2-yr Storm Inte	ensity, I = 732	.951/(Tc+6.19	99)^0.810	City of Ottawa	n)										
5-yr Storm Inte	ensity, I = 998	.071/(Tc+6.03	35)^0.814	City of Ottawa	r)										
100-yr Storm I	Intensity, I = 1	735.688/(Tc+	6.014)&^0.	820 (City of O	tawa)										
Time of Conce	ntration (min), Tc =	10												
For Flows und	er column Qco	ap which are s	shown in br	ackets (0.0) ,	denotes flov	vs that are	uncontrolled	d							

TABLE D6

SUMMARY OF POST DEVELOPMENT STORAGE

		Rel	ease Rate (L/s)		¹ Storage R	Required (m ⁸	3)		Stora	ge Provided	(m³)		
Area No.	Area (ha)	2-yr	5-yr	100-yr	2-yr (MRM)	5-yr (MRM)	100-yr (MRM)	100-yr +20 (MRM)	Pipe	Surface Ponding	UG Chambers	UG CB/MHs	Total	Control Method
S01	0.2433	3.10	4.20	9.00	16.0	21.5	58.9	74.8			79.2		79.2	ICD - TEMPEST LMF TYPE 90 Controlled 9 L/sec @ 1.44m (Actual 8.6 L/sec for LMF 90 at 1.44m)
S02	0.0719	10.44	14.16	30.34										None
S03	0.0696	10.11	13.71	29.37										None
S04	0.0202	2.59	3.51	7.52										None
Totals	0.4050	26.23	35.58	76.22	16.0	21.5	58.9	74.8						
<u>Notes</u> 1) The storage I	required is bo	ased on the N	1odified Rat	ional Method	(MRM) for	the relase re	ates noted.							

	Area No:	S01																		
	C _{AVG} =	0.44	(2-yr)																	
	C _{AVG} =	0.44	(5-yr)																	
	C _{AVG} =	0.55	(100-yr, N	/lax 1.0)					Actua	al Release	Rate (L/sec) =	9.0								
Tim	e Interval =	5.00	(mins)			Pe	rcentage c	of Actual Ra	ate (City of	Ottawa re	equirement) =	50%	(Set to 50%	% when U/G	6 storage us	ed)				
Draiı	nage Area =	0.2433	(hectares)		Release	Rate Used	d for Estim	ation of 10	0-year Sto	rage (L/sec) =	4.5		1 I		Intensity	/ Incr (%) =	20%	Use 20%	, for
																			Climate	Change
													•					•		
	R	elease Rate =	3.1	(L/sec)		Relea	ase Rate =	4.2	(L/sec)		Rele	ase Rate =	4.5	(L/sec)			ase Rate =		(L/sec)	
	Re	turn Period =	2	(years)		Retur	n Period =	5	(years)		Retur	n Period =	100	(years)		Retur	n Period =	100+20%	(years)	
Duration	IDF Par	rameters, A =		, B =			neters, A =	998.1		0.814		neters, A =	1735.7		0.820		neters, A =	1735.7	, B =	-
(mins)		(I = A/	T _c +C)	, C =	6.199	(1	= A/(T _c +C)		, C =	6.053	(1	= A/(T _c +C)		, C =	6.014	(1	$= A/(T_c+C)$, C =	6.014
(11113)	Rainfall	Peak Flow	Release	Storage	Storage	Rainfall	Peak	Release	Storage	Storage	Rainfall	Peak	Release	Storage	Storage	Rainfall	Peak	Release	Storage	Storag
	Intensity, I	(L/sec)	Rate	Rate	(m ³)	Intensity, I	Flow	Rate	Rate	(m ³)	Intensity, I	Flow	Rate	Rate	(m ³)	Intensity, I	Flow	Rate	Rate	(m ³)
	(mm/hr)	(L/ 300)	(L/sec)	(L/sec)	(111.)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(111)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(11)	(mm/hr)	(L/sec)	(L/sec)	(L/sec)	(111)
0	167.2	49.8	3.1	46.7	0.0	230.5	68.6	4.2	64.4	0.0	398.6	148.3	4.5	143.8	0.0	478.3	177.9	4.5	173.4	0.0
5	103.6	30.8	3.1	27.7	8.3	141.2	42.0	4.2	37.8	11.3	242.7	90.3	4.5	85.8	25.7	291.2	108.3	4.5	103.8	31.2
10	76.8	22.9	3.1	19.8	11.9	104.2	31.0	4.2	26.8	16.1	178.6	66.4	4.5	61.9	37.2	214.3	79.7	4.5	75.2	45.1
15 20	61.8 52.0	18.4 15.5	3.1 3.1	15.3	13.8 14.9	83.6	24.9 20.9	4.2 4.2	20.7	18.6 20.0	142.9 120.0	53.2	4.5	48.7	43.8 48.1	171.5	63.8	4.5	59.3 49.0	53.4
20	45.2	13.4	3.1	12.4 10.3	14.9	70.3 60.9	18.1	4.2	16.7 13.9	20.0	120.0	44.6 38.6	4.5 4.5	40.1 34.1	48.1 51.2	143.9 124.6	53.5 46.4	4.5 4.5	49.0 41.9	58.9 62.8
30	40.0	11.9	3.1	8.8	15.9	53.9	16.0	4.2	11.8	20.3	91.9	34.2	4.5	29.7	53.4	110.2	40.4	4.5	36.5	65.7
35	36.1	10.7	3.1	7.6	16.0	48.5	14.4	4.2	10.2	21.5	82.6	30.7	4.5	26.2	55.1	99.1	36.9	4.5	32.4	68.0
40	32.9	9.8	3.1	6.7	16.0	44.2	13.1	4.2	8.9	21.5	75.1	28.0	4.5	23.5	56.3	90.2	33.5	4.5	29.0	69.7
45	30.2	9.0	3.1	5.9	15.9	40.6	12.1	4.2	7.9	21.3	69.1	25.7	4.5	21.2	57.2	82.9	30.8	4.5	26.3	71.1
50	28.0	8.3	3.1	5.2	15.7	37.7	11.2	4.2	7.0	21.0	64.0	23.8	4.5	19.3	57.9	76.7	28.5	4.5	24.0	72.1
55	26.2	7.8	3.1	4.7	15.5	35.1	10.5	4.2	6.3	20.6	59.6	22.2	4.5	17.7	58.3	71.5	26.6	4.5	22.1	73.0
60	24.6	7.3	3.1	4.2	15.2	32.9	9.8	4.2	5.6	20.2	55.9	20.8	4.5	16.3	58.7	67.1	25.0	4.5	20.5	73.6
65	23.2	6.9	3.1	3.8	14.8	31.0	9.2	4.2	5.0	19.6	52.6	19.6	4.5	15.1	58.8	63.2	23.5	4.5	19.0	74.1
70 75	21.9 20.8	6.5 6.2	3.1 3.1	3.4 3.1	14.4 13.9	29.4 27.9	8.7 8.3	4.2 4.2	4.5 4.1	19.1 18.4	49.8 47.3	18.5 17.6	4.5 4.5	14.0 13.1	58.9 58.9	59.7 56.7	22.2 21.1	4.5 4.5	17.7 16.6	74.5 74.7
80	19.8	5.9	3.1	2.8	13.5	26.6	7.9	4.2	3.7	17.8	47.3	17.0	4.5	13.1	58.7	54.0	20.1	4.5	15.6	74.7
85	18.9	5.6	3.1	2.5	13.0	25.4	7.5	4.2	3.3	17.1	43.0	16.0	4.5	11.5	58.5	51.5	19.2	4.5	14.7	74.8
90	18.1	5.4	3.1	2.3	12.4	24.3	7.2	4.2	3.0	16.3	41.1	15.3	4.5	10.8	58.3	49.3	18.4	4.5	13.9	74.8
95	17.4	5.2	3.1	2.1	11.9	23.3	6.9	4.2	2.7	15.6	39.4	14.7	4.5	10.2	58.0	47.3	17.6	4.5	13.1	74.7
100	16.7	5.0	3.1	1.9	11.3	22.4	6.7	4.2	2.5	14.8	37.9	14.1	4.5	9.6	57.6	45.5	16.9	4.5	12.4	74.5
Max =					16.0					21.5					58.9					74.8
lotes															City of Ot	tawa IDF Data	a (from SD	G002)		
	w is equal to ntensity, I = A	the product of	2.78 x C x I	хA											IDF cu	rve equations (I	Intensity in	mm/hr)		
	• ·	elease Rate, Pe	eak Flow)													r Intensity =	1735.688 /	(Time in mi	$n + 6.014)^{0}$.820
) Storage	Rate = Peak F	low - Release														Intensity =	= 1569.580 / = 1402.884 /	(Time in mi	n + 6.014) [°]	0.820
	Duration x	-														Intensity =	1174.184 /	(Time in mi	n + 6.014) ⁶	0.816
		Max Storage O		'n											5 year I	ntensity =	= 998.071 / C	Fime in min	$+6.053)^{0.8}$	\$14
		for City of Otta		'n											5 year I 2 year I	ntensity =	998.071 / (732.951 / (Fime in min	+	· 6.053) ^{0.8}

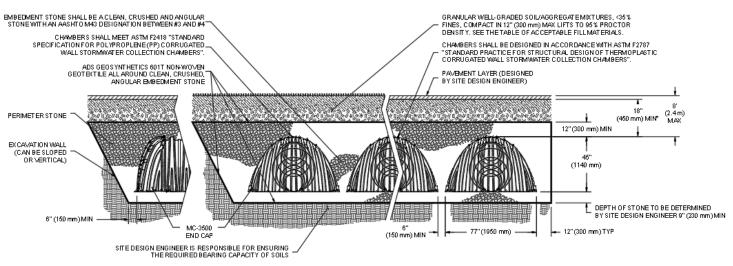
TABLE D8: 5-YEAR STORM SEWER CALCULATION SHEET

Return Period Storm =	5-year	(2-year, 5-year, 100-year)
Default Inlet Time=	10	(minutes)
Manning Coefficient =	0.013	(dimensionless)

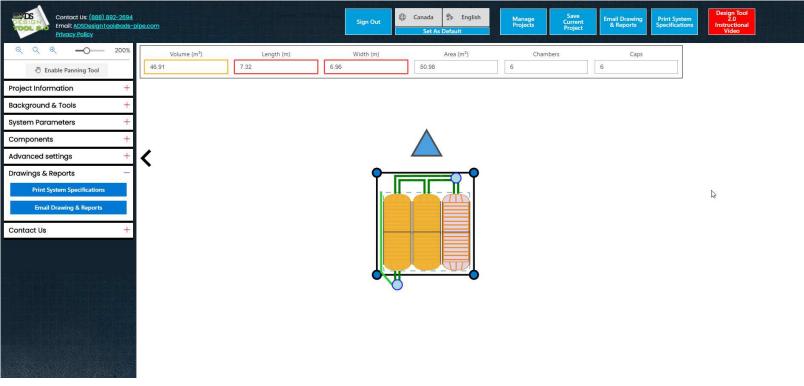
			AR	EA INFO					FLOW (L	JNRESTRICT	ED)							SE	WER DATA	۱				
From Node	To Node	Street	Area No.	Area (ha)	∑ Area (ha)	Average R	Indiv. 2.78*A*R	Accum. 2.78*A*R	Tc (mins)	I (mm/h)	Indiv. Flow	Return Period	Q (L/s)	Dia (mm) Actual	Dia (mm) Nominal	Туре	Slope (%)	Length (m)	Capacity, Q _{CAP} (L/sec)	Velocit Vf	y (m/s) Va	Time in Pipe, Tt (min)	Hydraul Q/Q _{CAP}	lic Ratios Va/Vf
MHST67819	MHST67820	Maple Grove Road	EX Maple Grove	0.9574	0.9574	0.65	1.730	1.730	10.00	104.19	180.25	5-year	180.3											
		Maple Grove Road	S01	0.2433	1.2007	0.46	0.311	2.041	10.00	104.19	32.42	5-year	212.7											
		Maple Grove Road	S02	0.0719	1.2726	0.66	0.132	1.862	10.00	104.19	13.75	5-year	194.0	533.0	525	CONC	0.64	73.55	358.21	1.59	1.12	1.09	0.54	0.71
		Mykonos Cres	EX Mykonos Cres			0.69	0.978	0.978	10.60	101.13	98.93	5-year	98.9											
MHST68715	MHST68712	Mykonos Cres	S04	0.0202	0.5302	0.52	0.029	1.007	10.60	101.13	2.95	5-year	101.9	447.9	450	PVC	0.92	10.85	270.03	1.72	1.22	0.15	0.38	0.71
		Bensinger Way	EX Bensinger Wav	1.1834	1.1830	0.69	2.270	2.270	12.82	91.33	207.33	5-vear	207.3											
MHST68712	MHST67058	Bensinger Way	S03	0.0696	1.1650	0.09	0.128	2.270	12.82	91.33 91.33	11.66	5-year	207.3 219.0	610.0	600	PVC	0.20	10.85	286.97	0.97	0.95	0.19	0.76	0.98
		Densinger Huy		0.0000	1.2020	0.00	0.120	2.000	12.02	01.00	11.00	Jycui	210.0	010.0	000		0.20	10.00	200.01	0.01	0.00	0.10	0.10	0.00
TOTALS =																								4
														Designed:				Project:						
<u>Definitions:</u> Q = 2.78*AIR, w	/here						Ottawa	Rainfall Inter	nsity Values a	from Sewer	Design Gui	idelines, SD	G002	J. Fitzpatr	ck, P.Eng.			1869 Ha	zeldean Ro	ad				
Q = Peak Flow	in Litres per second	1 (L/s)						2-vear	732.951	6.199	0.810			Checked:				Location	:					
A = Watershee	I Area (hectares)							5-year	998.071	6.053	0.814			P. Thoma	DEng			1960 Ца	zeldeen De	ad Ottow				
I = Rainfall Inte								100-year	1735.688	6.014	0.820			B. Thomas, P.Eng. 1869 Hazeldean Road, Ottawa, ON										
R = Runoff Coe	efficients (dimension	nless)												Dwg Reference: File Ref: Sheet N					Sheet No):				
														C004				254810 s 2020.xls	STM - Sewe x	r Design S	Sheets, Se	ept 25,	1 of 1	

<u>User Inputs</u>

MC-3500


Chamber Model:

Results

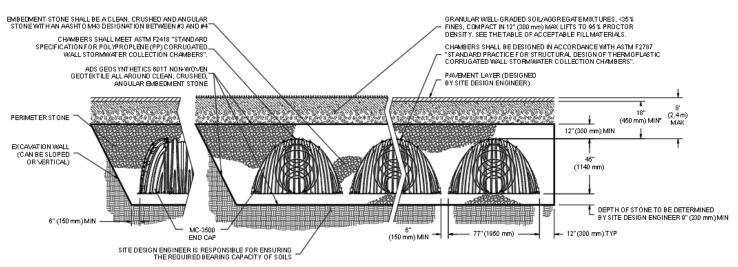

System Volume and Bed Size

		System volume an	
Outlet Control Structure:	Yes		
Project Name:	1869 Maple Grove	Installed Storage Volume:	46.91 cubic meters.
Engineer:	jason fitzpatrick	Storage Volume Per Chamber:	3.11 cubic meters.
Project Location:		Number Of Chambers Required:	6
Measurement Type:	Metric	Number Of End Caps Required:	6
Required Storage Volume:	45.00 cubic meters.	Chamber Rows:	3
Stone Porosity:	40%	Maximum Length:	7.32 m.
Stone Foundation Depth:	229 mm.	Maximum Width:	6.96 m.
Stone Above Chambers:	305 mm.	Approx. Bed Size Required:	50.98 square me-
Average Cover Over Chambers:	457 mm.		ters.
Design Constraint Dimensions:	(15.00 m. x 8.50 m.)	System Compo	<u>onents</u>

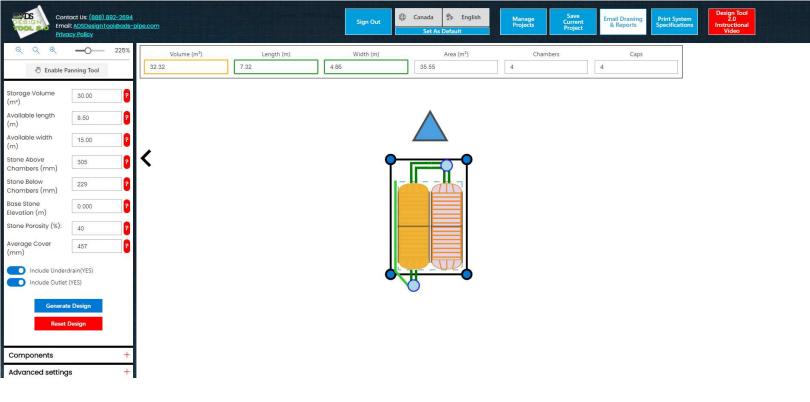
Amount Of Stone Required: 64.26 cubic meters Volume Of Excavation (Not Including 85.46 cubic meters Fill):

MINMUM COVER TO BOTTOM OF FLBUBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 24"

<u>User Inputs</u>


MC-3500

Chamber Model:


Results

Outlat Control Structures	Vee	<u>System volume an</u>	a bea size
Outlet Control Structure:	Yes		
Project Name:	1869 Maple Grove	Installed Storage Volume:	32.32 cubic meters.
Engineer:	jason fitzpatrick	Storage Volume Per Chamber:	3.11 cubic meters.
Project Location:		Number Of Chambers Required:	4
Measurement Type:	Metric	Number Of End Caps Required:	4
Required Storage Volume:	30.00 cubic meters.	Chamber Rows:	2
Stone Porosity:	40%	Maximum Length:	7.32 m.
Stone Foundation Depth:	229 mm.	Maximum Width:	4.86 m.
Stone Above Chambers:	305 mm.	Approx. Bed Size Required:	35.55 square me-
Average Cover Over Chambers:	457 mm.		ters.
Design Constraint Dimensions:	(15.00 m. x 8.50 m.)	System Compo	onents

Amount Of Stone Required: 45.45 cubic meters Volume Of Excavation (Not Including 59.59 cubic meters Fill):

MINMUM COVER TO BOTTOM OF FLBUBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 24"

STORMTECH MC-3500 CHAMBER

Designed to meet the most stringent industry performance standards for superior structural integrity while providing designers with a cost-effective method to save valuable land and protect water resources. The StormTech system is designed primarily to be used under parking lots, thus maximizing land usage for private (commercial) and public applications. StormTech chambers can also be used in conjunction with Green Infrastructure, thus enhancing the performance and extending the service life of these practices.

STORMTECH MC-3500 CHAMBER

(not to scale)

Nominal Chamber Specifications

Size (L x W x H) 90" x 77" x 45" 2,286 mm x 1,956 mm x 1,143 mm

Chamber Storage 109.9 ft³ (3.11 m³)

Min. Installed Storage* 178.9 ft³ (5.06 m³)

Weight 134 lbs (60.8 kg)

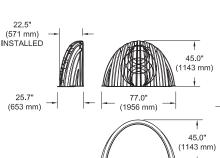
Shipping 15 chambers/pallet 7 end caps/pallet

7 pallets/truck

*Assumes a minimum of 12" (300 mm) of stone above, 9" (230 mm) of stone below chambers, 9" (230 mm) of stone between chambers/end caps and 40% stone porosity. **STORMTECH MC-3500 END CAP** (not to scale)

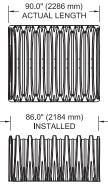
Nominal End Cap Specifications

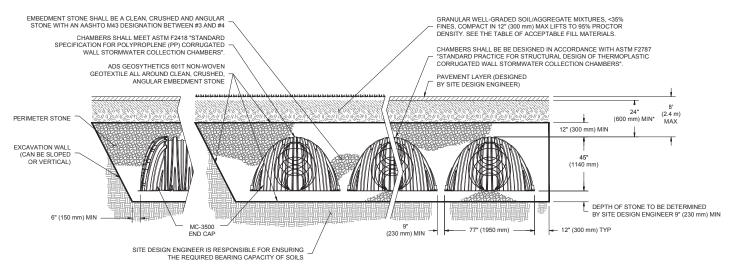
Size (L x W x H) 26.5" x 71" x 45.1" 673 mm x 1,803 mm x 1,145 mm


End Cap Storage 14.9 ft³ (1.30 m³)

Min. Installed Storage* 46.0 ft³ (1.30 m³)

Weight 49 lbs (22.2 kg)


*Assumes a minimum of 12" (300 mm) of stone above, 9" (230 mm) of stone below, 6" (150 mm) of stone perimeter, 9" (230 mm) of stone between chambers/ end caps and 40% stone porosity.



77.0'

(1956 mm)

*MINIMUM COVER TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 30" (750 mm)

MC-3500 CHAMBER SPECIFICATION

STORAGE VOLUME PER CHAMBER FT³ (M³)

	Bare Chamber	Chamber and Stone Foundation Depth in. (mm)			
	Storage ft ³ (m ³)	9" (230 mm) 12" (300 mm)		15" (375 mm)	18" (450 mm)
MC-3500 Chamber	109.9 (3.11)	178.9 (5.06)	184.0 (5.21)	189.2 (5.36)	194.3 (5.5)
MC-3500 End Cap	14.9 (.42)	46.0 (1.33)	47.7 (1.35)	49.4 (1.40)	51.1 (1.45)

Note: Assumes 9" (230 mm) row spacing, 40% stone porosity, 12" (300 mm) stone above and includes the bare chamber/end cap volume.

AMOUNT OF STONE PER CHAMBER

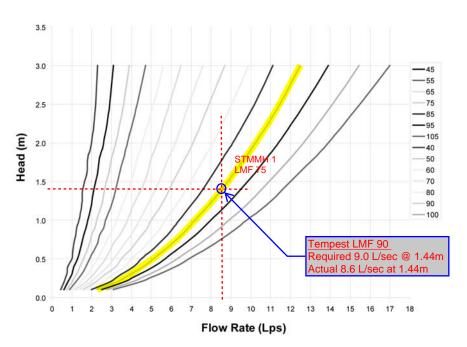
	Stone Foundation Depth			
ENGLISH TONS (yds ³)	9" 12"		15"	18"
MC-3500 Chamber	9.1 (6.4)	9.7 (6.9)	10.4 (7.3)	11.1 (7.8)
MC-3500 End Cap	4.1 (2.9)	4.3 (3.0)	4.5 (3.2)	4.5 (3.2)
METRIC KILOGRAMS (m ³)	230 mm	300 mm	375 mm	450 mm
MC-3500 Chamber	8,220 (4.9)	8,831 (5.3)	9,443 (5.6)	10,054 (6.0)
MC-3500 End Cap	3,699 (2.2)	3,900 (2.3)	4,100 (2.5)	4,301 (2.6)

Note: Assumes 12" (300 mm) of stone above and 9" (230 mm) row spacing and 6" (150 mm) of perimeter stone in front of end caps.

VOLUME EXCAVATION PER CHAMBER YD³ (M³)

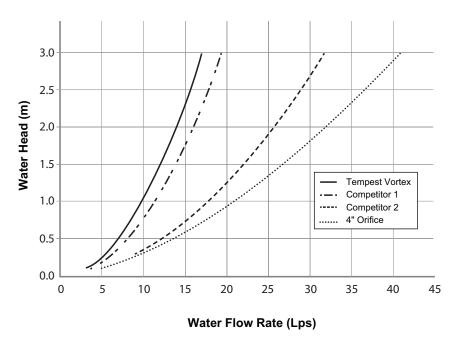
	Stone Foundation Depth			
	9" (230 mm)	12" (300 mm)	15" (375mm)	18" (450 mm)
MC-3500 Chamber	12.4 (9.5)	12.8 (9.8)	13.3 (10.2)	13.8 (10.5)
MC-3500 End Cap	4.1 (3.1)	4.2 (3.2)	4.4. (3.3)	4.5 (3.5)

Note: Assumes 9" (230 mm) of separation between chamber rows and 24" (600 mm) of cover. The volume of excavation will vary as depth of cover increases.



Working on a project? Visit us at www.stormtech.com and utilize the StormTech Design Tool

For more information on the StormTech MC-3500 Chamber and other ADS products, please contact our Customer Service Representatives at 1-800-821-6710


THE MOST ADVANCED NAME IN WATER MANAGEMENT SOLUTIONS™

ADS "Terms and Conditions of Sale" are available on the ADS website, www.ads-pipe.com The ADS logo and the Green Stripe are registered trademarks of Advanced Drainage Systems, Inc. StormTech* is a registered trademark of StormTech, Inc. © 2017 Advanced Drainage Systems, Inc. #S150909 09/17 CS Advanced Drainage Systems, Inc. 4640 Trueman Blvd., Hilliard, OH 43026 1-800-821-6710 www.ads-pipe.com

Chart 1: LMF 14 Preset Flow Curves

IPEX

EXP Services Inc. 1869 Maple Grove Road, Ottawa, ON OTT-00254810-A0 September 25, 2020

Appendix E – Consultation / Correspondence

Email Received from City of Ottawa on Water System Boundary Conditions.

Email Received from MCVA on Stormwater Quality Control Requirements

Moe Ghadban

From:	Kuruvilla, Santhosh <santhosh.kuruvilla@ottawa.ca></santhosh.kuruvilla@ottawa.ca>
Sent:	Friday, March 6, 2020 7:51 AM
То:	Moe Ghadban
Cc:	Shen, Stream
Subject:	RE: Request for Boundary Conditions - 1869 Maple Grove Road
Attachments:	1869 Maple Grove _Boundary Conditions_04March2020.docx

Hi Moe,

Please find attached the boundary conditions for the subject application.

Also, a second feed may be required if the number of units fed by the P-loop exceeds 50. A new watermain connecting BC #1 and #3 is preferred.

Thanks,

Santhosh Ext. 27599

From: Moe Ghadban <Moe.Ghadban@exp.com>
Sent: February 28, 2020 2:30 PM
To: Kuruvilla, Santhosh <Santhosh.Kuruvilla@ottawa.ca>
Subject: Request for Boundary Conditions - 1869 Maple Grove Road

CAUTION: This email originated from an External Sender. Please do not click links or open attachments unless you recognize the source.

ATTENTION : Ce courriel provient d'un expéditeur externe. Ne cliquez sur aucun lien et n'ouvrez pas de pièce jointe, excepté si vous connaissez l'expéditeur.

We are working on a site plan application for 1869 Maple Grove Rd , and would appreciate if you could arrange for IAD/water Resources to provide hydraulic boundary conditions that we will need for the watermain design. I have attached a sketch of the site and the approximate boundary condition locations.

The following is a summary of the demands and the required fire flows (RFF) we have estimated. We would appreciate the hydraulic boundary conditions based on our estimated water demands and required fire flows as noted below:

There are 3 separate blocks, and they shall all connect into different streets (Maple Grove Rd, Mykonos Cres, and Bensinger Way).

1869 Maple Grove Rd (Block 1, Boundary Location #1):

Average Day:0.09L/secMax Day:0.8 L/secPeak Hour:1.3 L/sec

Fire flow (RFF): 167 L/sec (based on FUS method) Max Day + FF: 167.8 L/sec.

1869 Maple Grove Rd (Block 2, Boundary Location #2):

Average Day:0.02L/secMax Day:0.2 L/secPeak Hour:0.31 L/secFire flow (RFF):117 L/sec (based on FUS method)Max Day + FF:117.2 L/sec.

1869 Maple Grove Rd (Block 3, Boundary Location #3):

Average Day:0.09L/secMax Day:0.8 L/secPeak Hour:1.3 L/secFire flow (RFF):200 L/sec (based on FUS method)Max Day + FF:200.8 L/sec.

Regards,

Moe Ghadban, P.Eng EXP | Engineering Designer t : +1.613.688.1899 | m : +1.613.808.4089 | e : moe.ghadban@exp.com 2650 Queensview Drive Suite 100 Ottawa, ON K2B 8H6 CANADA

<u>exp.com</u> | <u>legal disclaimer</u> keep it green, read from the screen

ı

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Boundary Conditions 1869 Maple Grove

Provided Information

	Demand		
Connection 1	L/min	L/s	
Average Daily Demand	5	0.09	
Maximum Daily Demand	48	0.80	
Peak Hour	78	1.30	
Fire Flow Demand #1	10,020	167.00	

Connection 2	Demand		
Connection 2	L/min	L/s	
Average Daily Demand	1	0.02	
Maximum Daily Demand	12	0.20	
Peak Hour	19	0.31	
Fire Flow Demand #1	7,020	117.00	

Oomrootien 2	Demand		
Connection 3	L/min	L/s	
Average Daily Demand	5	0.09	
Maximum Daily Demand	48	0.80	
Peak Hour	78	1.30	
Fire Flow Demand #1	12,000	200.00	

Location

<u>Results</u>

Connection 1 - Maple Grove Rd.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	160.2	75.1
Peak Hour	156.4	69.7
Max Day plus Fire 1	154.7	67.2

¹ Ground Elevation = 107.4 m

Connection 2 - Mykonos Cres.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	160.2	74.7
Peak Hour	156.4	69.3
Max Day plus Fire 1	147.0	55.9

¹ Ground Elevation = 107.6 m

Connection 3 - Bensinger Way

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	160.2	74.8
Peak Hour	156.4	69.4
Max Day plus Fire 1	141.4	48.0

¹ Ground Elevation = 107.6 m

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

Moe Ghadban

From:	Matt Craig <mcraig@mvc.on.ca></mcraig@mvc.on.ca>
Sent:	Wednesday, January 15, 2020 10:05 AM
То:	Moe Ghadban
Cc:	Jason Fitzpatrick; Bruce Thomas
Subject:	RE: Request for SWM Criteria for 1869 Maple Grove

Hi Moe,

The original criteria in the Kanata West Mater Servicing Study is normal water quality control. Recent SWM facility (e.g. Arcadia ponds) have been designed for enhanced water quality control. This increase in criteria is at the request of the City Ottawa.

MVCA issued a permit for Pond 4 (Permit No. W14-126) so it is understood that water quality control criteria is already set for this specific subdivision.

Regards

Matt Craig | Manager of Planning and Regulations | Mississippi Valley Conservation Authority

www.mvc.on.ca |t. 613 253 0006 ext. 226| f. 613 253 0122 | mcraig@mvc.on.ca

This e-mail originates from the Mississippi Valley Conservation e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. If you are not the intended recipient, please notify me at the telephone number shown above or by return e-mail and delete this communication and any copy immediately. Thank you.

From: Moe Ghadban <Moe.Ghadban@exp.com>
Sent: January 13, 2020 4:36 PM
To: Matt Craig <mcraig@mvc.on.ca>
Cc: Jason Fitzpatrick <jason.fitzpatrick@exp.com>; Bruce Thomas <bruce.thomas@exp.com>
Subject: FW: Request for SWM Criteria for 1869 Maple Grove

Hi Matt,

We are preparing a site servicing and stormwater report for a proposed 18 unit townhome development, located at 1869 Maple Grove Road in the City of Kanata. As the site is within the MVCA's jurisdiction we are requesting CA's clarification on the stormwater management requirements. The project will require Major Zoning By-law Amendment, Plan of Subdivision and Lifting of Part Lot Control Applications.

The subject property is within the Kanata west – Pond 4 subcatchment, which was designed for normal level of protection (70%TSS). In addition the storm water quantity control requirements were established at a 5 year capture with the minor system flows to the local 525mm on Maple Grove Dr with major system flows routed to maple grove drive. It is our intent to provide a storm connection from the interior rear yard areas, with the remaining drainage from the front yards to discharge directly to Maple Grove Dr, Bensinger Way, and Mykonos Cres.

Please see the attached site plan. Thank you for your review and input.

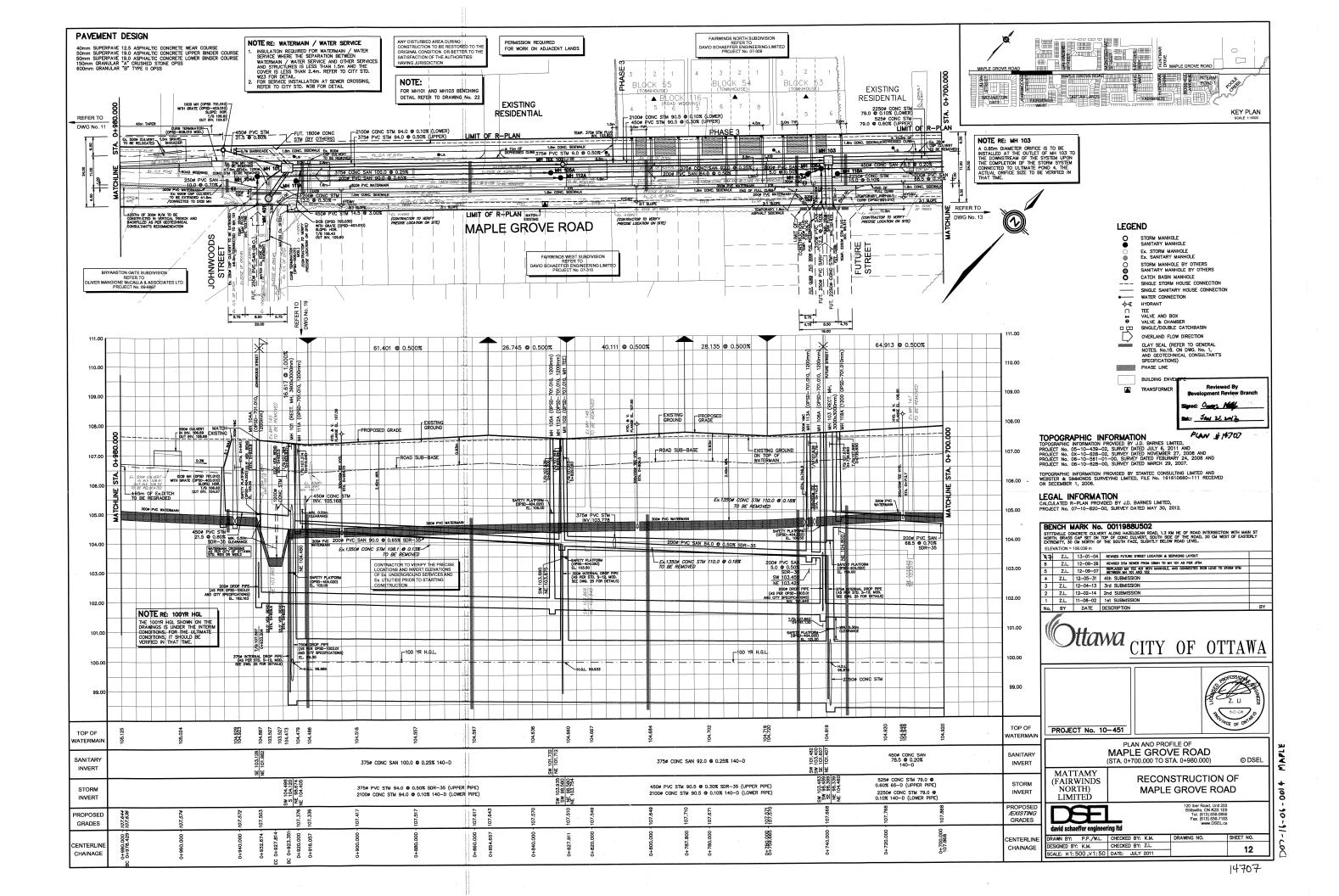
Regards,

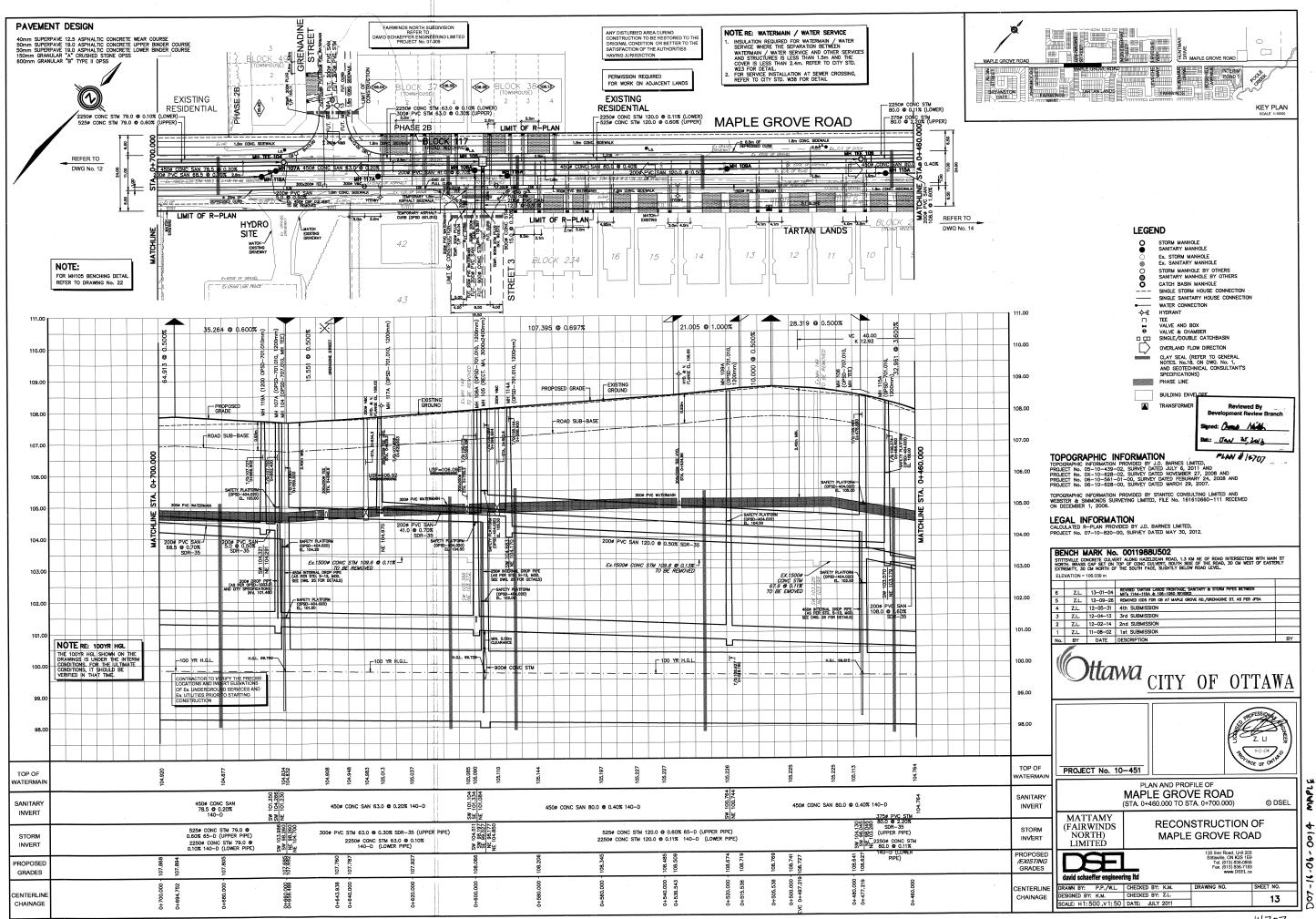
Moe Ghadban EXP | Engineering Designer t : +1.613.688.1899 | m : +1.613.808.4089 | e : moe.ghadban@exp.com 2650 Queensview Drive Suite 100 Ottawa, ON K2B 8H6 CANADA

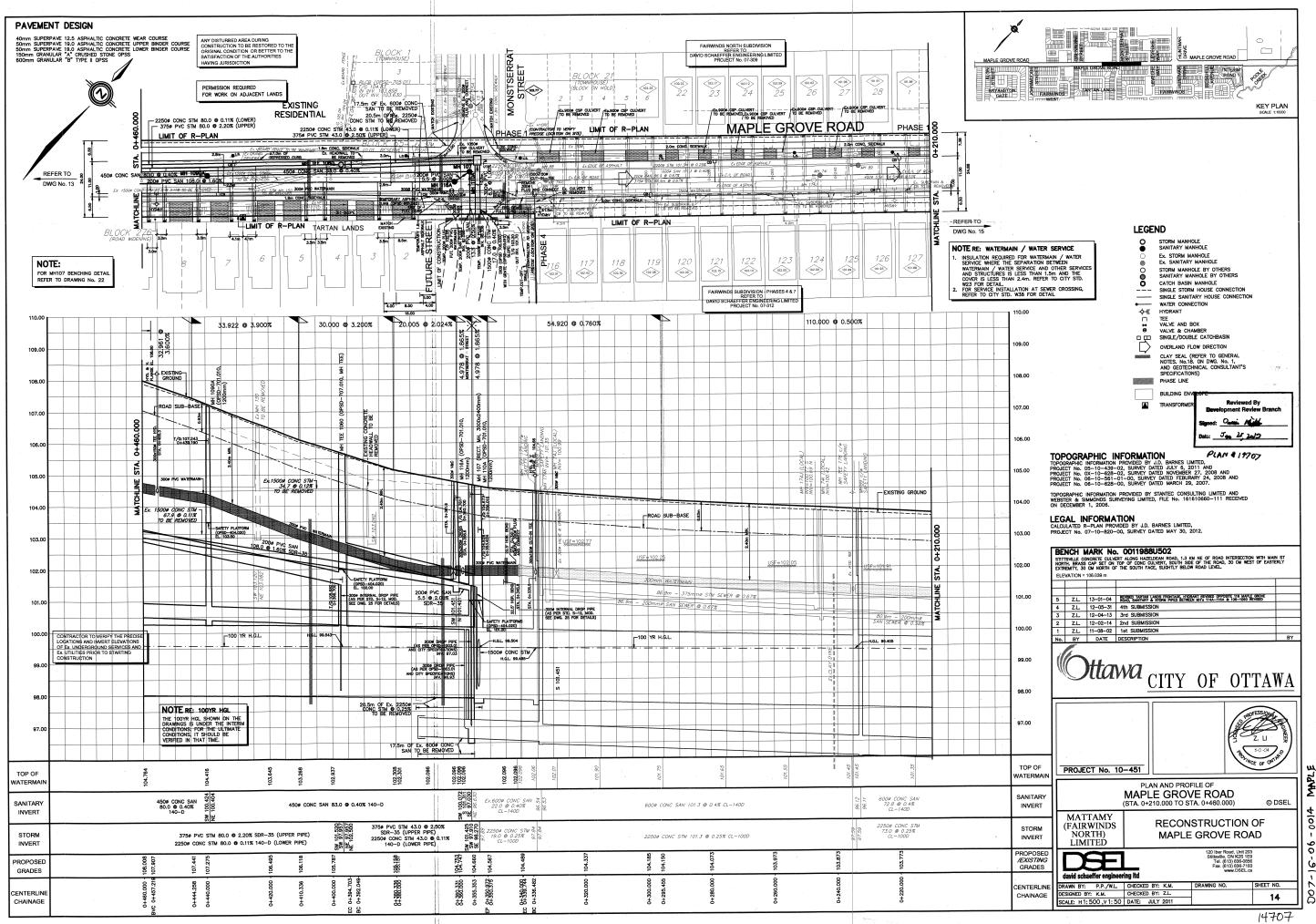
<u>exp.com</u> | <u>legal disclaimer</u> keep it green, read from the screen

EXP Services Inc. 1869 Maple Grove Road, Ottawa, ON OTT-00254810-A0 September 25, 2020

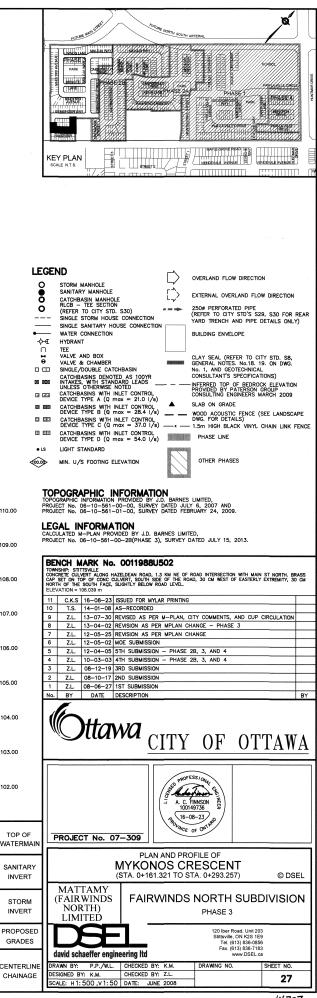
Appendix F – Background Information

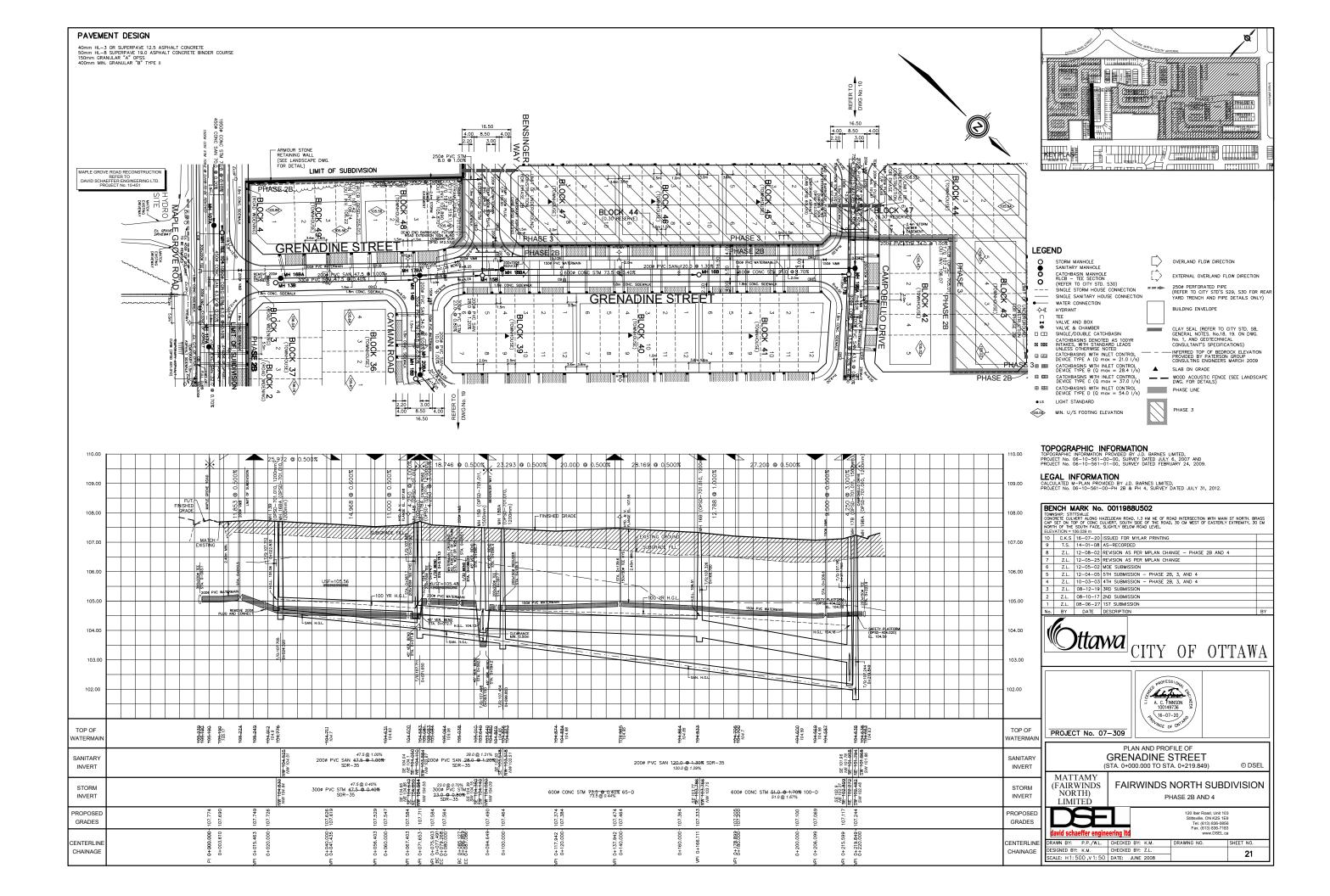

City of Ottawa Vault Drawings (10 Plans)

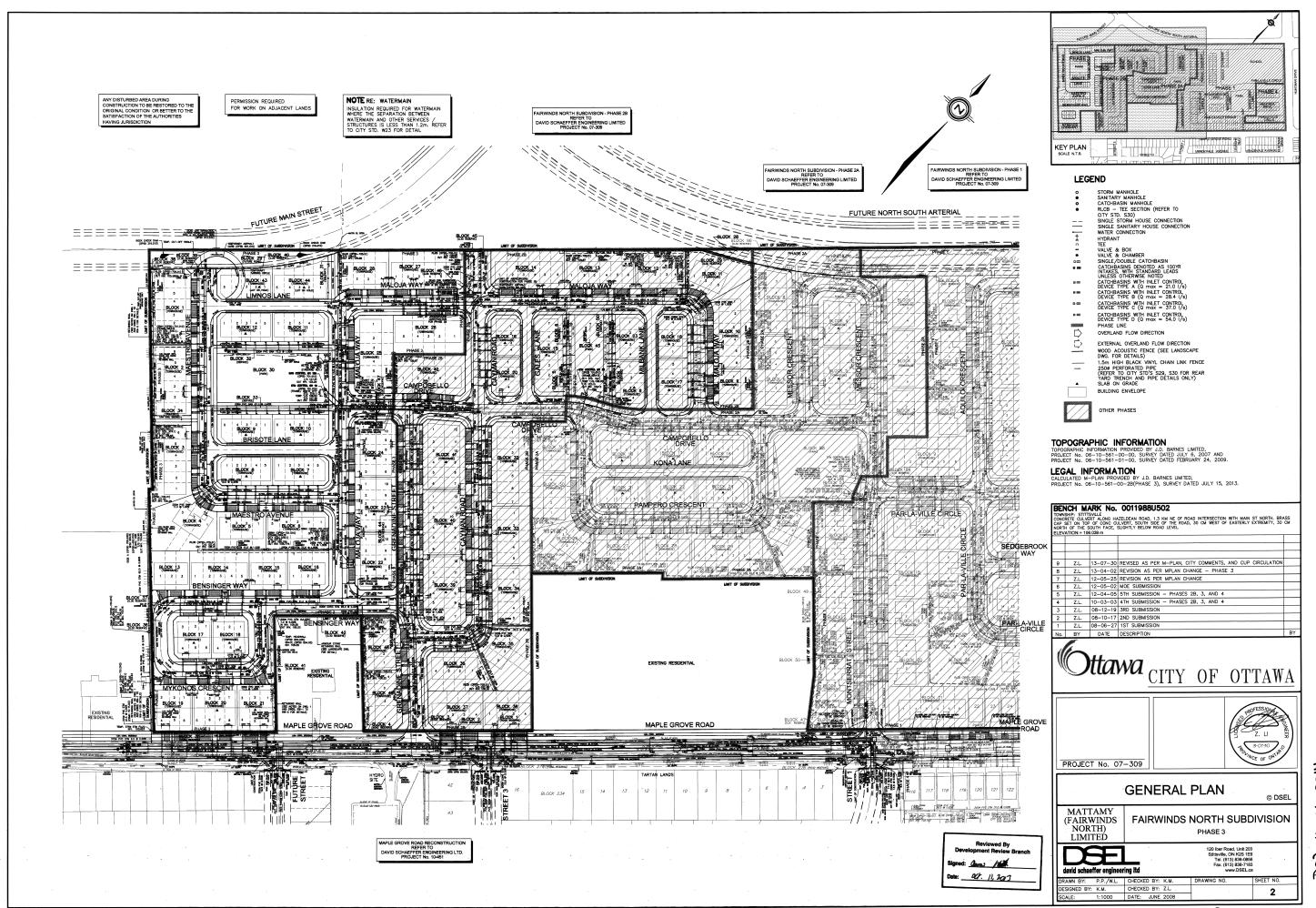

Excerpt pages from "Design Brief for the Reconstruction of Maple Grove Road", Mattamy Homes, by DSEL, dated May 31, 2012 (total 3 pages).

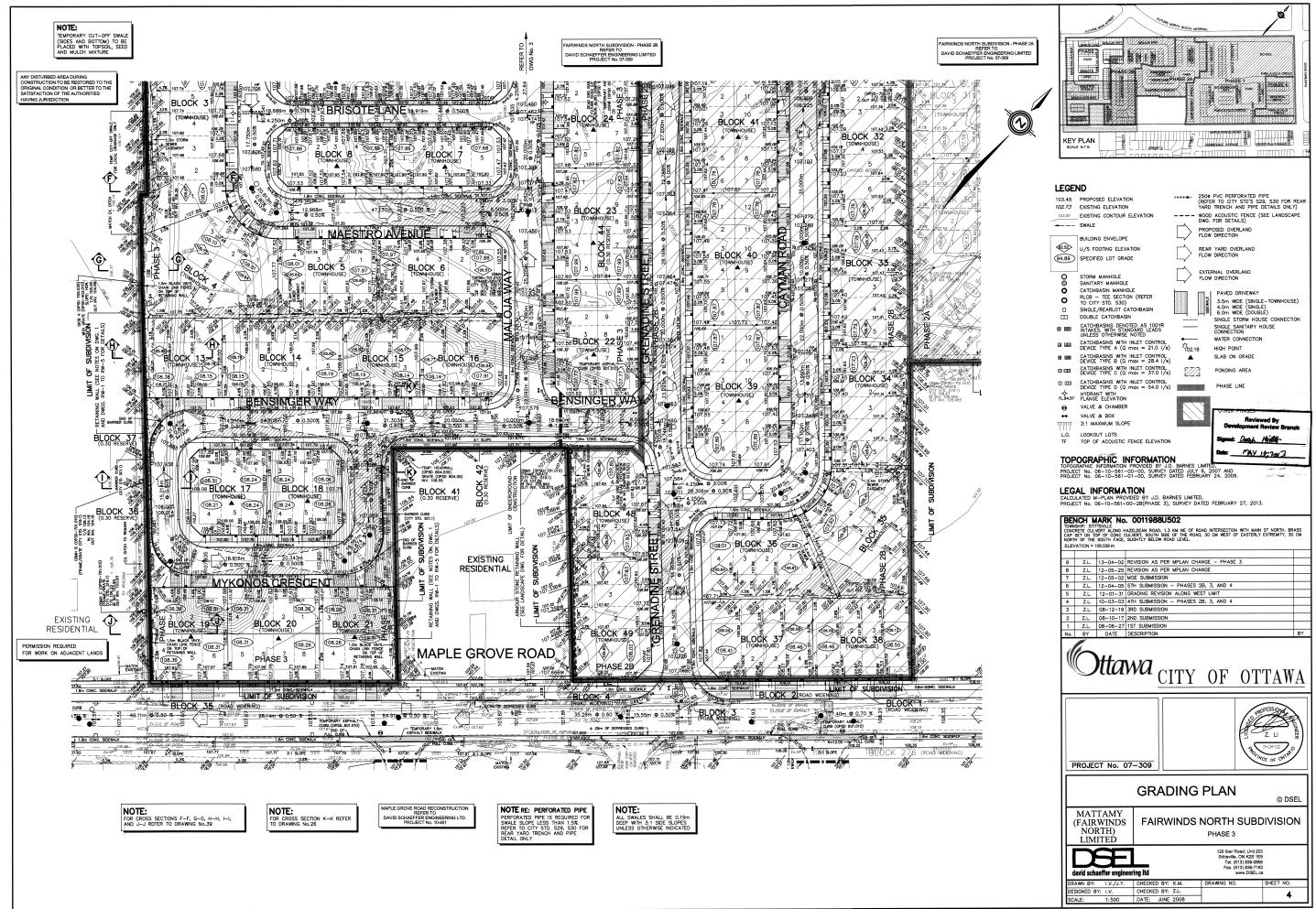

Excerpt pages from "Design Brief for Fairwinds North, Phase 2B and 4" Mattamy Homes, by DSEL/JFSA, dated August 02, 2012 (total 3 pages).

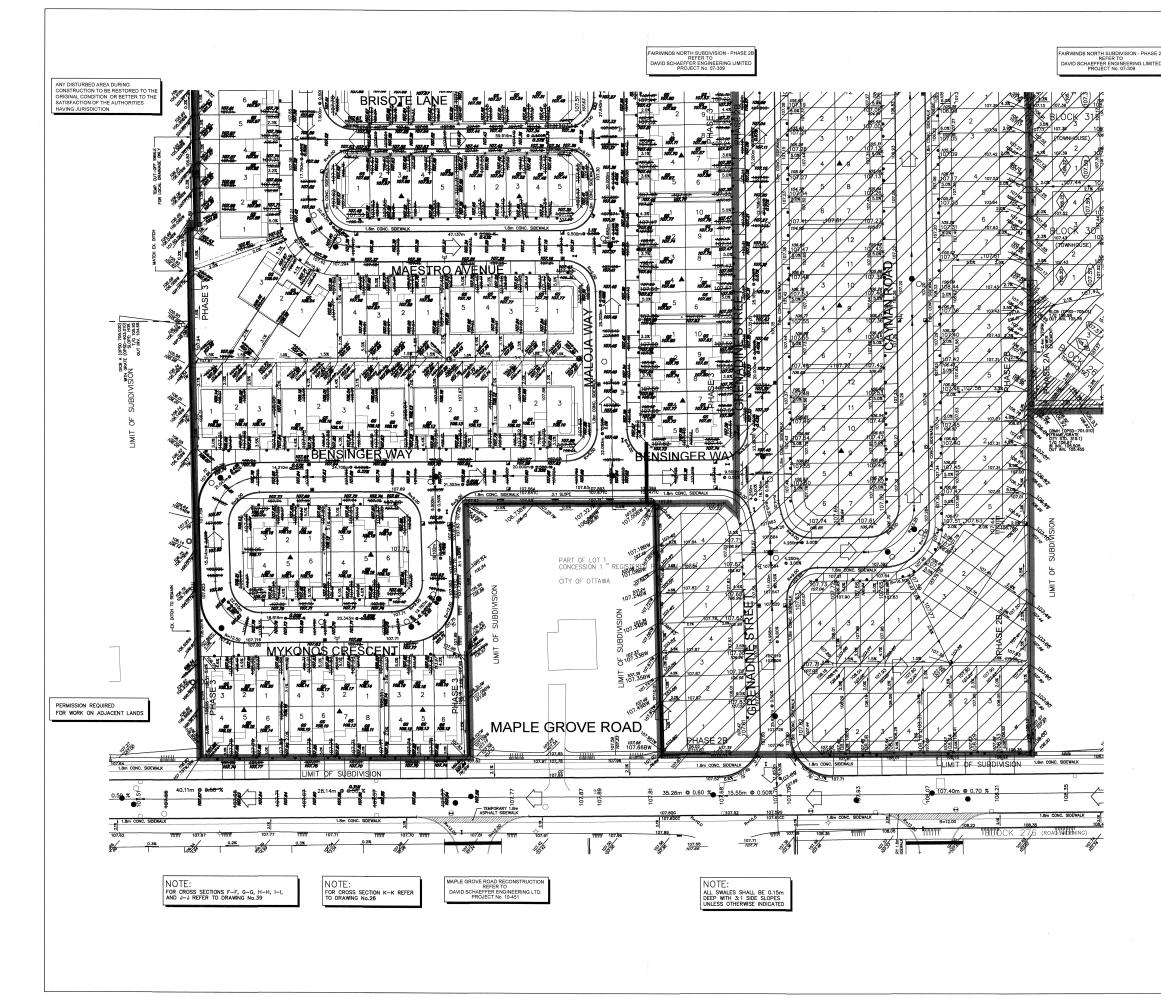
Excerpt pages from "Design Brief for Pond 4, Kanata North" Mattamy Homes, by DSEL/JFSA, dated May 31, 2012 (total 10 pages).

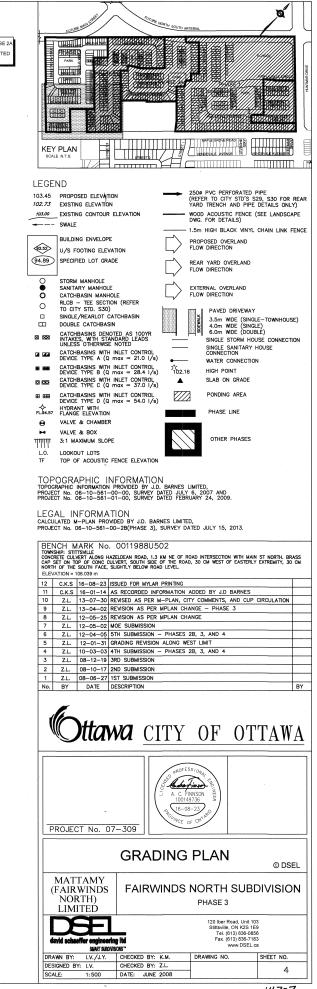

Excerpt pages from "Kanata West, Master Servicing Study", Volume 1 of 2, by Stantec / CCL-IBI, dated June 16, 2006 (total 5 pages).

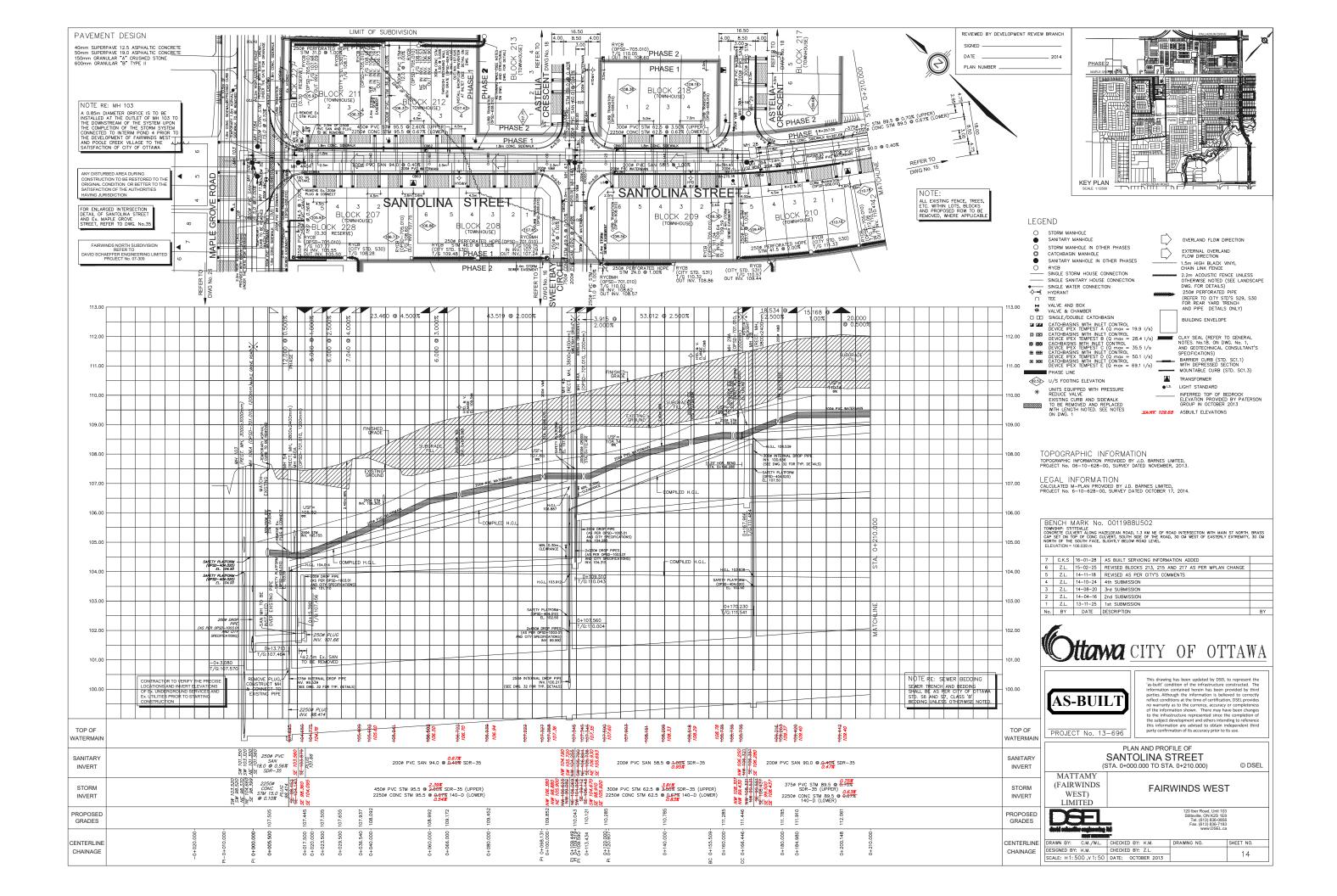


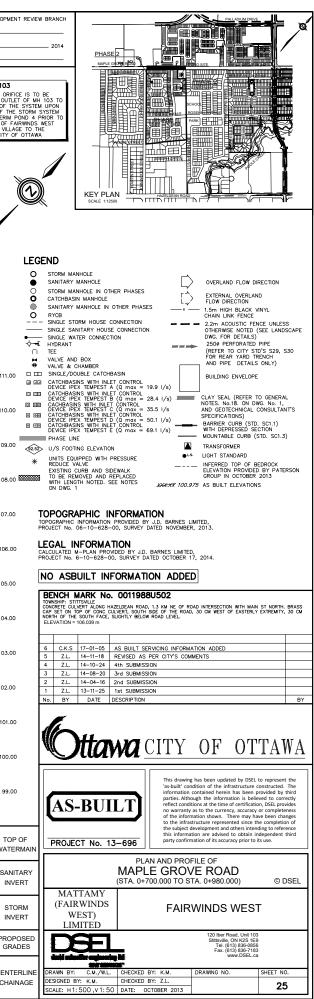







Ţ

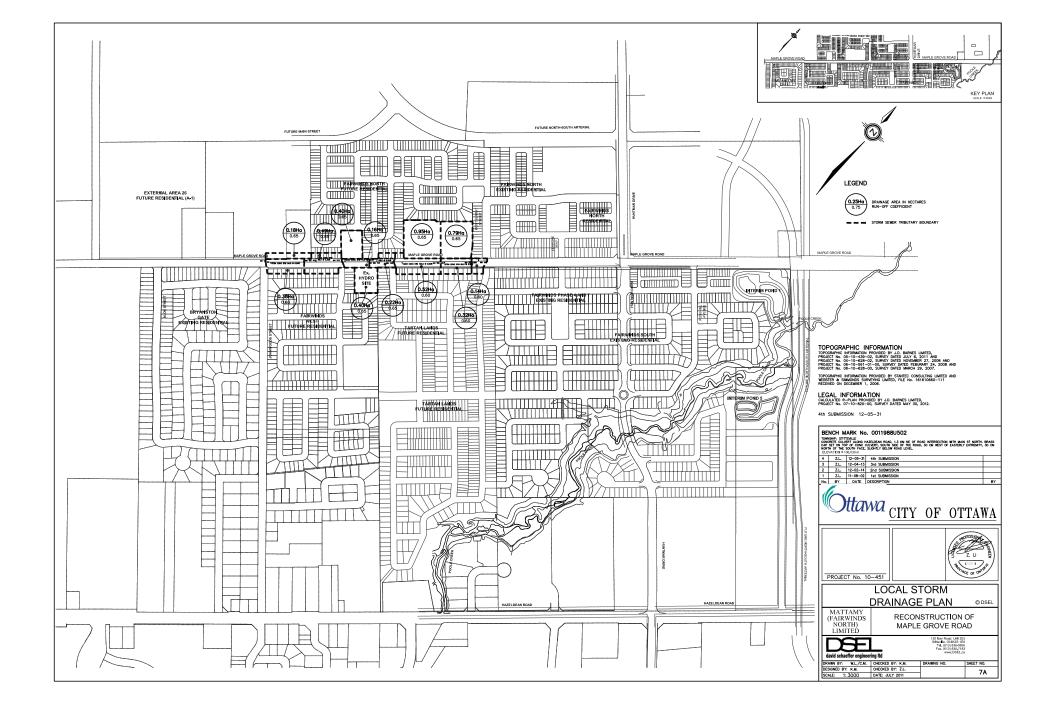

DO7 - 16 - 06 - 0014


nases28_3_4(Subm7_Ph3(Grading\03_04_309grad.dwg, 02/04/2013 1:04:03 PM, hpan, 1:2!

40mm SUPER 50mm SUPER 50mm SUPER 150mm GRAN	NT DESIGN RPAVE 12.5 ASPHALTIC CONCRETE WEAR COURSE RPAVE 13.0 ASPHALTIC CONCRETE UPPER BINDER COURSE UILAR *A' CRUSHED STONE OPSS UULAR *B' TYPE II OPSS NULAR *B' TYPE II OPSS Note for the period UILAR *B' TYPE II OPSS Note of the period UILAR *B' TYPE II OPSS Note of the period UILAR *B' TYPE II OPSS Note of the period UILAR *B' TYPE II OPSS Note of the period Note of	/ WATER EN EN EN ER SERVICES IND THE SATISFACTION OF THE AUTHORITIES HAVING JURISDICTION IROSSING,	RESIDENTIAL 4	▲5,6 5 6 ▲ 00# CONC STM 92.4 Ø 0.10% (LOWER) 7 8	DETAIL OF SANTOLINA STREET AND EX. MAPLE GROVE STREET, REFER TO DWG. No.35 2 1 1 CK 21 EXISTING RESIDENTIAL 22500 COVIC STM 48	EWED BY DEVELOPME NED TE
	450# TUE 0	CONC STM 94.0 0 0.112 (LOWER) CONC STM 94.0 0 0.112 (LOWER) CONC STM 94.0 0 0.112 (LOWER) CONC STM 94.0 0 0.000 (MPRER) CONC STM 94.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		PHASE 3 PHASE 3 PHA	THE CONC. STORM APPRAT	INECTED TO INTERIM DEVELOPMENT OF F 3 POOLE CREEK VILL ISFACTION OF CITY O 90%
		(TDWNH0USE) (TCP STD - 530) (TCP STD -	21- PHASE 1 (2. 1700) 4 3 2 1 6 5 BLOCK 205 (TOWNHOUSE) (05.90)	Line Line <td< td=""><td></td><td></td></td<>		
ROSEHILL REQUIRED RE-PURE	ODS STREET NORTH OF LAVENUE IS NOT DJ. FJ. JOHWOODDS STREET PARK BY CITY OF OTTAWA	61.401 @ 0.500%	26.745 @ 0.500% 40.111 @ 0.		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	111.0
109.00	9800.000 9800.000 9800.000 9800.000 9800.000 9800.000 9800.000 9800.000 9800.000 120000 12000 12000 12000 120000 12000 12000 1		1 1 105 (p=20-70.00)		2014 2014 2014 2014 2014 2014 2014 2014	109.00
105.00	Image: State of the s	5W 3		2		105.0
104.00	Ist Pre citr's Of Than Y Str. V25 OF V252 Y	PVC SAN 90.0 0 0.05% SDR-35	Ex. 3266 PPC: \$TWr IV/ 103.178 IV/ 103.178 <tdi< td=""><td>5xEPT PARM 5xEPT PARM 0050-0000</td><td>48.5 ¢i 0.70% Ex SDR-35</td><td>104.0</td></tdi<>	5xEPT PARM 5xEPT PARM 0050-0000	48.5 ¢i 0.70% Ex SDR-35	104.0
101.00	NOTE RE: 100YR HOL X 374 AUX 000 PATE X 87 A 650-302.07 X 87 A 500-302 X				1	101.0
99.00 TOP OF WATERMAIN		04.510 04.570 04.570 04.510	04.650	04.720 04.720 04.730	0000 0000 STM	99.0
SANITARY	25: 1021.000 ME 101.220 N	2 2 2 2 375# CONC SAN 100.0 @ 0.26% 140-D	284 101.660 NE 101.640 NE 101.640	2 2 2 375ø CONC SAN 92.0 @ 0.25% 140-D	2 2 2 005: 100 30 025: 100 30 025: 100 30 140-D 140-D	SAN
STORM INVERT	S W 104 400 NE 704 420 NE 704 320	375# PVC STM 94.0 @ 0.50% SDR-35 (UPPER PIPE) 2100# CONC STM 94.0 @ 0.11% 140-D (LOWER PIPE)	SW 103 800 A SW 88500 A ME 103 780	4500 PVC STM 92.4 @ 0.30% SDR-35 (URPER PUPE) 21000 CONC STM 92.4 @ 0.10% 140-D (LOWER PUPE)	いいか 2559 CONC STM 78.6 ゆ 2556 K 2000 (1) なる 2558 K 2000 (1) なる 2558 K 2000 (1) なる 2558 K 2000 (1) なる 2559 CONC STM 78.6 ゆ 2550 CONC STM 78.6 ゆ 2550 CONC STM 78.6 ゆ 2550 CONC STM 78.6 ゆ 2550 CONC STM 78.6 ゆ	ST
PROPOSED GRADES	1021 - 021 - 021 - 022 - 1022	000 - 107.417 000 - 107.517 657 107.643	- 107.570 107.510 - 107.549	200 - 107.649 900 - 107.710 200 - 107.677 200 - 107.677 200 - 107.577 200 - 107.577 200 - 107.577 200 - 107.577	000 - 107.668 000 - 107.768 000 - 107.768	PROF GR/
CENTERLINE CHAINAGE	BC 0+980,00 BC 0+982,00 0+942,00 0+922,67 BC 0+923,00 0+916,05	0+900.00 0+880.00 0+860.00	0+840.000 0+827.911 0+820.000	0+369 885 0+722 200 0+722 200	0+ 740.000 0+ 720.000 0+ 720.000 0+ 720.000	CENTI CHAI

120 Iber Road, Unit 203 Stittsville, Ontario K2S 1E9 Tel. (613) 836-0856 Fax (613) 836-7183 www.DSEL.ca

DESIGN BRIEF


FOR THE

RECONSTRUCTION OF MAPLE GROVE ROAD MATTAMY HOMES

CITY OF OTTAWA

PROJECT NO.: 10-451

MAY 31, 2012 REVISION 4, 4TH SUBMISSION © DSEL

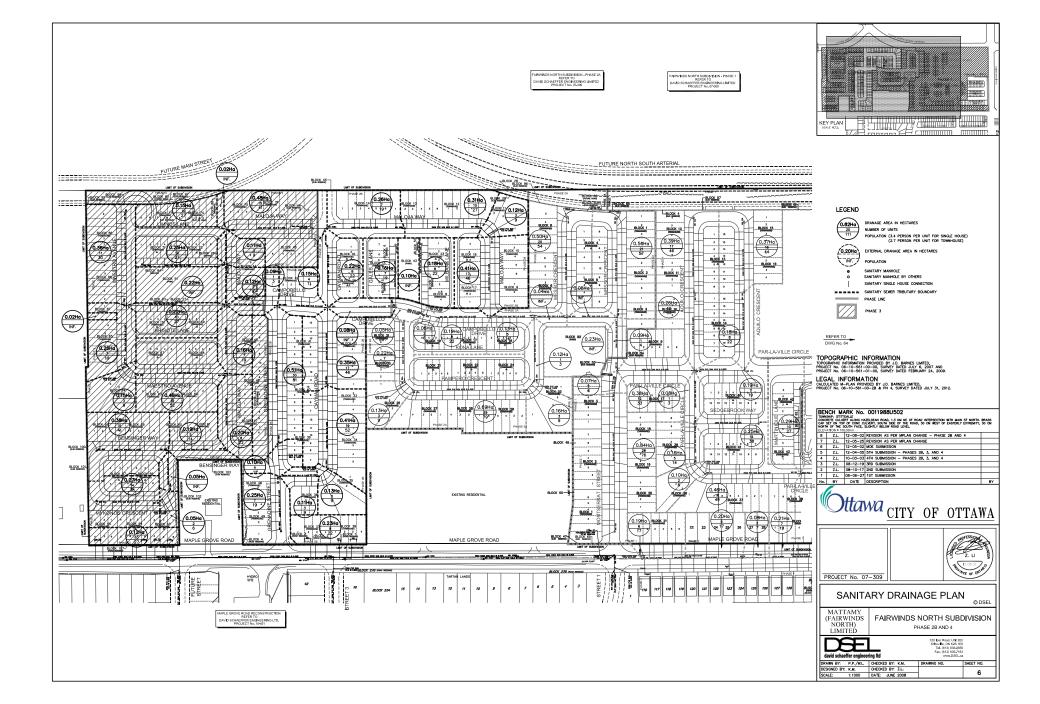
STORM SEWER CALCULATION SHEET (RATIONAL METHOD)

Manning	0.013			Retur	n Frequ	iency																		<u>`</u>	λιαν	Y M
ARE						FLOW													SEWER							
				= 0.38		0.45		0.60		0.61		0.65	Indiv.	Accum.) DIA. (mm)	TYPE	SLOPE		CAPACITY			RATIC
Location	From Node	To Node	A	No.	A	No.	A	No.	A	No.	A	No.	2.78 AC	2.78 AC	Conc.	Intensity	Q (l/s)	(actual)	(nominal)		(%)	(m)	(l/s)	(m/s)	FLOW (min.)) Q/Q fu
MAPLE GRO	VE ROAD	I		1										+								1				+
						ļ.,					0.18		0.33	0.33												
	101	102					0.38				<u> </u>	-	0.63	0.96	10.00	104.19	100	375	375	PVC	0.50	94.0	124	1.12	1.40	0.81
·	102	103				1			+		0.49		0.89	0.89	10.00	104.19	92	450	450	PVC	0.30	99.0	156	0.98	1.68	0.59
											0.40		0.72	0.72												<u> </u>
	103	104									0.16		0.29	1.73	10.00	104.19	181	525	525	CONC	0.60	70.0	333	1.54	0.76	0.54
																					0.00					
	104	105									0.22	<u> </u>	0.40	0.40	10.00	104.19	41	300	300	PVC	0.30	63.0	53	0.75	1.40	0.78
											0.95		1.72	1.72												
	105	106					0.52						0.87	2.58	10.00	104.19	269	525	525	CONC	0.60	120.0	333	1.54	1.30	0.81
				+							0.79		1.43	1.43										<u> </u>		
	106	1060					0.32				0.10		0.53	1.96	10.00	104.19	204	375	375	PVC	3.20	80.0	314	2.84	0.47	0.65
	1000	407					0.44								40.00	101.10		075	075	PVC	2.50	40.0	077	0.54	0.00	
	1060	107					0.14				•		0.23	0.23	10.00	104.19	24	375	375	PVC	2.50	43.0	277	2.51	0.29	0.09
																										-
																			ļ							
												-					ROFESSIO	Va	-							<u> </u>
								ľ								18										
																181		×21	\							
				-												<u><u></u> <u>0</u></u>	7 11									+
																		고								-
																	UN-31	2/012	4							
				-														L BRO			+					
																	WINCE OF C	MIC		· .			-	_		
																	CHARLES CHARLES AND DESCRIPTION	and the second se					ļ			
							-	<u> </u>																		
																										+
Definitions: Q = 2.78 AIR	where															Designed:		K.M.		PROJEC	1:	REG	CONSTRUCT		E GROVE RC	JAD
Q = Peak Flow in Litres per second (L/s) A = Areas in hectares (ha) I = Rainfall Intensity (mm/h)								Checked:								:		LOCATION:								
															<u> </u>		Z.L.					City of Ottawa				
I = Rainfall In R = Runoff C	itensity (mm/h)															Dwg. Re		age Plan D		File Ref:	10-451		Date: May		Sheet No. 1 of	F 1
								1	Local Storm Draina								190 man, Darg 10.774 10-401					May, 2012 1 of 1				

120 Iber Road, Unit 203 Stittsville, Ontario K2S 1E9 Tel. (613) 836-0856 Fax (613) 836-7183 www.DSEL.ca

DESIGN BRIEF

FOR


FAIRWINDS NORTH PHASE 2B AND 4

MATTAMY HOMES

CITY OF OTTAWA

PROJECT NO.: 07-309

AUGUST 2, 2012 REVISION 5, 5TH SUBMISSION © DSEL

STORM SEWER CALCULATION SHEET (RATIONAL METHOD)

Manning 0.013		Tretain requerey						listannioque		. istain requeite)				Return Frequency								= 5 yea									Т			FLOW							SEWER	DATA			
	LO	CATION	P-	0.25	D-	0.27	P-	0.50	D-	0.64		0.90	D-	0.57	D-	0.69	D-	0.80	D-	0.84	Indiv.	Accum		Rainfall	Poak Flow		DIA (mm)	TYPE	SI OPE		CAPACITY		TIME OF												
ocation	From Node	To Node	A	No.	A	No.	A	No.	A	No.	A	0.90 No.	A	No.	A A	0.69 No.	A	0.80 No.				2.78 AC		Intensity		(actual)			(%)	(m)	(l/s)		FLOW (min.												
hase 3						I	L																											-											
	er Way																																	-											
	4B	5B	1												0.14	5			0.14	4	0.60	0.60	10.00	104.19	62	366.42	375	PVC	0.60	63.5	128	1.21	0.87	(
Bensi	nger Way, Pi	pe 5B-15B	1			-																0.60	10.87																						
konos	s Crescent						L									$\left \right $																		+											
	1B	2B																	0.26	1	0.61	0.61	10.00	104.19	63	299.36	300	PVC	0.60	24.5	74	1.06	0.39												
	2B	3B																	0.06	2	0.14	0.75	10.39	102.20	76	366.42	375	PVC	0.30	11.0	90	0.86	0.21	1											
	3B	5B																	0.05	3	0.12	0.86	10.60	101.13	87	447.87	450	PVC	0.30	32.5	154	0.98	0.55	(
Bensi	nger Way, Pi	pe 5B-15B																				0.86	11.15																						
	er Way																																												
		nsinger Way, P													_		_				0.60	0.60	10.87																						
ontribut		konos Crescen																			0.86	1.46	11.15																						
	5B	15B	0.40	7											0.28	6					0.82	2.27	11.15	98.47	224	610.00	600	CONC	0.20	98.0	287	0.98	1.66												
Grena	dine Street,	Pipe 15B-16B	T	<u>т</u> т	_	T	T												_			2.27	12.82											+											
aestro	Avenue			11			I		partite statute.	Norman Contractor																								\vdash											
	6B	7B					/	-01	FESS	OAL.							0.14				1.27	1.27	10.00	104.19	132	686.00	675	CONC		85.5	481	1.30	1.10												
	7B	8B					10	Se.	CONFERENCE OF	A	1						0.08	32			0.41	1.68	11.10	98.74	166	686.00	675	CONC	0.20	52.0	392	1.06	0.82												
	8B	9B					14		2		2				0.05	24					0.10	1.77	11.91	95.07	169	686.00	675	CONC	0.20	10.0	392	1.06	0.16												
	9B	10B					2	1	2	\rightarrow					0.15	25	0.10	26			0.51	2.28	12.07	94.40	216	686.00	675	CONC	0.20	76.5	392	1.06	1.20												
Maloja	a Way, Pipe	10B-12B					uj.	Start a	No country card	1000 2 LN 2 CM	1 m											2.28	13.27																						
							3		Z.L		20																							⊢											
						- 1	-	-			-																																		
						1		M	11-	29	25	V																						-											
						-			the.	4	Ro /																							1											
						-		Phil	Salar Branderson	- D	8° /																							⊢											
						-		11	CEOF	OL.	-																							⊢											
								-	- AND AND	and the second																								+											
																																		⊢											
																																		⊢											
						-																												\vdash											
																																		⊢											
						+																									<u> </u>			\vdash											
finition							L																	Designed	1 1:			PROJE	CT:			s North Sul		L											
	AIR, where	0									Notes															K.M.					PH.	ASES 2B, 3	3, 4												
	Flow in Litre s in hectares	s per second (L	_/s)								infall-lı ocity =			/e										Checked	:	Z.L.		LOCAT	ION:		City of	Ottawa													
	all Intensity (n								2, 10		oony -	0.101	1.000											Dwg. Ref	ference.	£.L.		File Ref	f.		Date:		Sheet No.												
	off Coefficient							1																	Drainage P	N			07-309		August		1 of												

DESIGN BRIEF

FOR

POND 4 KANATA WEST

MATTAMY HOMES

CITY OF OTTAWA

PROJECT NO.: 12-644

AUGUST 9, 2013

REVISED DECEMBER 10, 2014

4TH SUBMISSION

© DSEL

Note that while a normal level of protection will be provided by Pond 4 prior to discharge to the Carp River in accordance with the *KWMSS*, enhanced protection (80% TSS removal) is required for those flows discharging to Poole Creek via the diversion pipe. This is provided by a weir control installed at the diversion pipe outlet to direct the full "first flush" flows - in this case, the 25 mm storm flows - to Pond 4 for treatment. This approach is supported by MVCA as per the correspondence presented in *Appendix H*.

Additionally, as requested by MVCA and in accordance with *KWMSS* requirements, baseflow augmentation will be provided by a 200 mm diameter circular vertical orifice controlling the first 0.2 m of active storage volume (greater than or equal to 10% of the 100-year active storage). A summary of the required Pond 4 characteristics is provided in *Table 2*.

2.3 Proposed Deviations from the Master Servicing Study

The Pond 4 design contains deviations from the *KWMSS*. Firstly, an interim (partiallyconstructed) pond was introduced to support the development of the drainage areas to the south trunk sewer, prior to construction of the north trunk sewer and developments. The size of the ultimate conditions (fully constructed) pond, servicing the north and south developments, was increased to account for the recently updated October 2012 *City of Ottawa Sewer Design Guidelines*, wherein those development lands serviced by the north trunk under ultimate conditions are to have 5-year minor system capture rates, and 10-year capture rates on arterial roads (contrary to the more restrictive capture rates specified in the *KWMSS*). A summary of deviations in both interim and ultimate conditions inlet pipe dimensions and flows is presented in *Table 1A*.

KWMSS Deviations – Inlet Pipe Dimensions and Flows							
Item	KWMSS	Current Design	Current Design				
		Interim	Ultimate				
South Trunk Inlet Pipe	2550 mm @	2550 mm @	2550 mm @				
Dimensions	0.3% slope	0.3% slope	0.3% slope				
North Trunk Inlet Pipe	2250 mm @	N/A	To be resized at a				
Dimensions	0.4% slope	IN/A	future design stage				
South Trunk Inlet Pipe	91.26 m	01 502 m	91.777 m				
Downstream Invert	91.20 11	91.503 m	91./// M				
North Trunk Inlet Pipe	91.22 m	N/A	To be resized at a				
Downstream Invert	91.22 11	IN/A	future design stage				
10-Year, 12-hour SCS							
South Trunk Inflow to Pond	12.372 m³/s	11.804 m³/s	11.804 m³/s				
North Trunk Inflow to Pond	7.337 m ³ /s	N/A	10.734 m³/s				
Major Inflow to Pond	1.682 m³/s	4.965 m³/s	0.520 m³/s				
100-Year, 12-hour SCS							
South Trunk Inflow to Pond	14.320 m³/s	15.245 m³/s	15.245 m³/s				
North Trunk Inflow to Pond	7.680 m³/s	N/A	16.631 m³/s				
Major Inflow to Pond	3.570 m³/s	8.424 m ³ /s	0.760 m ³ /s				

 Table 1A

 KWMSS Deviations – Inlet Pipe Dimensions and Flows

The *KWMSS* Pond 4 outlet controls consist of a 350 mm diameter quality control orifice at an invert of 93.20 m, and a 30 m long broad-crested quantity control weir at an invert of 94.20 m. Although the *KWMSS* specifies a requirement for a baseflow augmentation volume equal to or

4, **Proposed Fairwinds Residential Development – Maple Grove Road - Ottawa** (Paterson Group, August 2014) provided in **Appendix J**. Summary sheets for borehole and test pit investigations are also included in **Appendix J**.

The conclusion of the geotechnical review is that the proposed stormwater management pond is acceptable from a geotechnical perspective. Specifically:

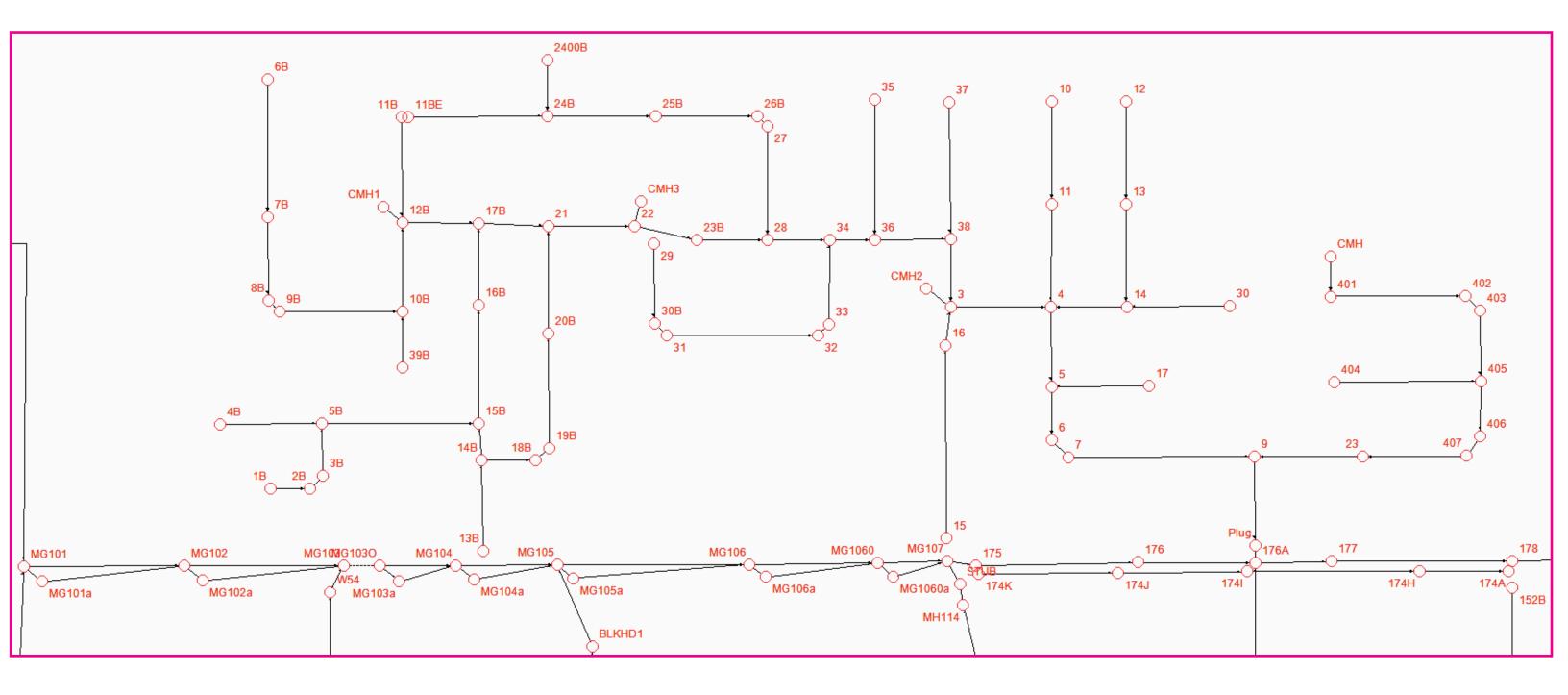
- The natural undisturbed clay deposit will serve as a clay liner for the pond. Where silty sand or sandy silt is encountered along the pond side walls or bottom, consideration should be given to subexcavating the pervious soil and replacing it with suitable clay from the pond excavation.
- The proposed excavation side slopes, varying between 5H:1V and 3H:1V, are considered to be stable in the long term.
- The proposed concrete structures (e.g. headwalls, outlet structures, etc.) can be founded within the firm silty clay, but geotechnical field confirmation must be completed before pouring concrete footings or placing granular materials for these structures.
- The interim conditions east forebay inlet will be removed during construction of the ultimate pond, and should be backfilled with a workable, brown silty clay fill placed in maximum 300 mm loose lifts and compacted using several passes of a sheepsfoot roller. The pond sidewall should be reinstated in the same manner. It is further recommended that the granular thickness below the proposed access pathway be thickened to 500 mm of a Granular A or Granular B Type II, compacted to at least 98% of its SPMDD.
- Portions of the proposed storm sewer will require 50 mm to 100 mm thick rigid insulation in order to provide sufficient frost protections.

12.0 THERMAL MITIGATION

Thermal mitigation is not a concern for the proposed SWM facility, given that the allowable outflow temperature for the Carp River is 30° Celsius. Nonetheless, thermal mitigation measures will be provided at the SWM facility by the application of effective shading with landscape material and increased riparian vegetation along the permanent pool.

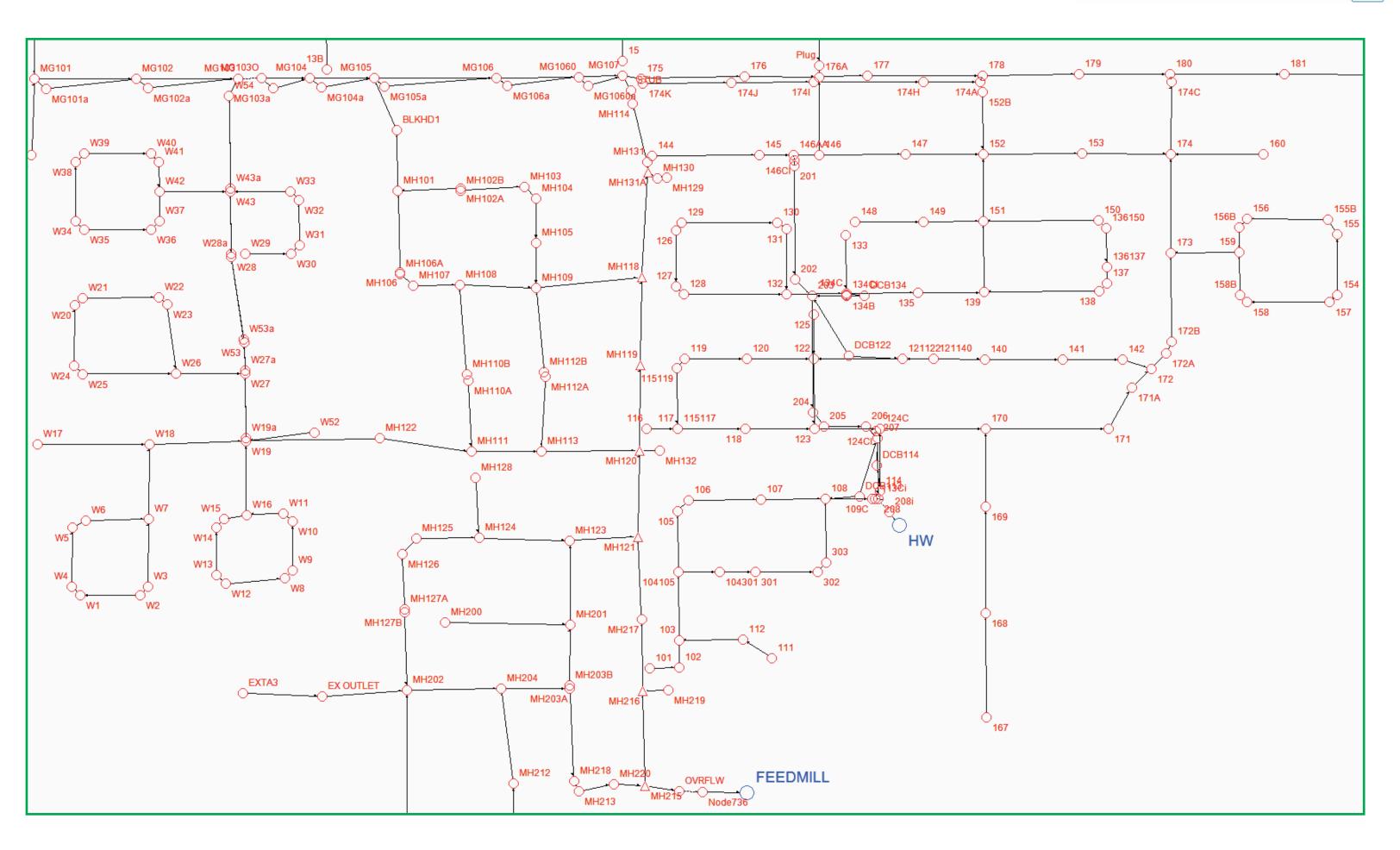
13.0 WATER BALANCE

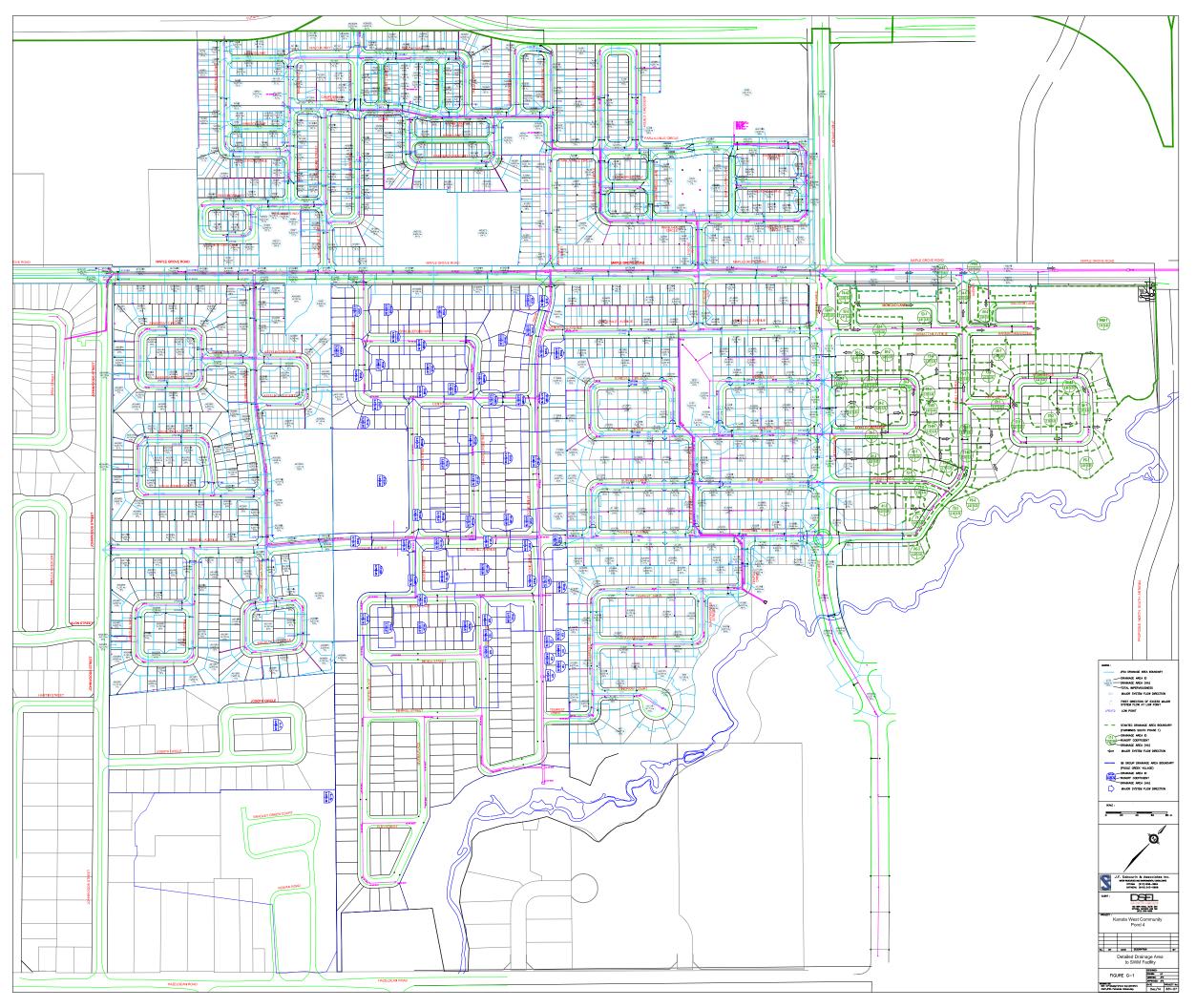
In accordance with the *KWMSS*, post-development infiltration on the pond block is not intended to compensate for decreases in infiltration on upstream areas; each development is required to provide its own pre- versus post-development water balance.

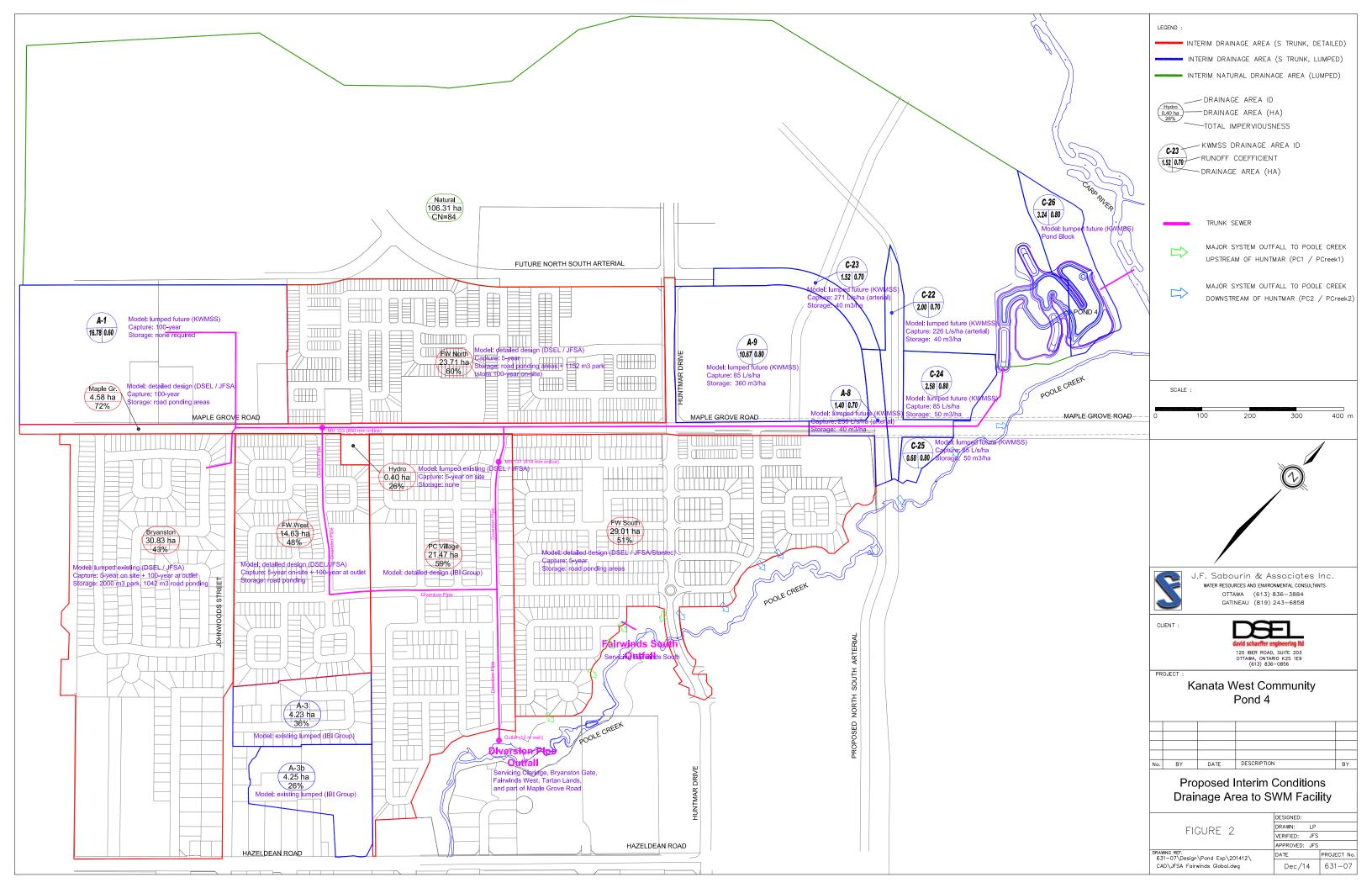

14.0 EROSION AND SEDIMENT CONTROL

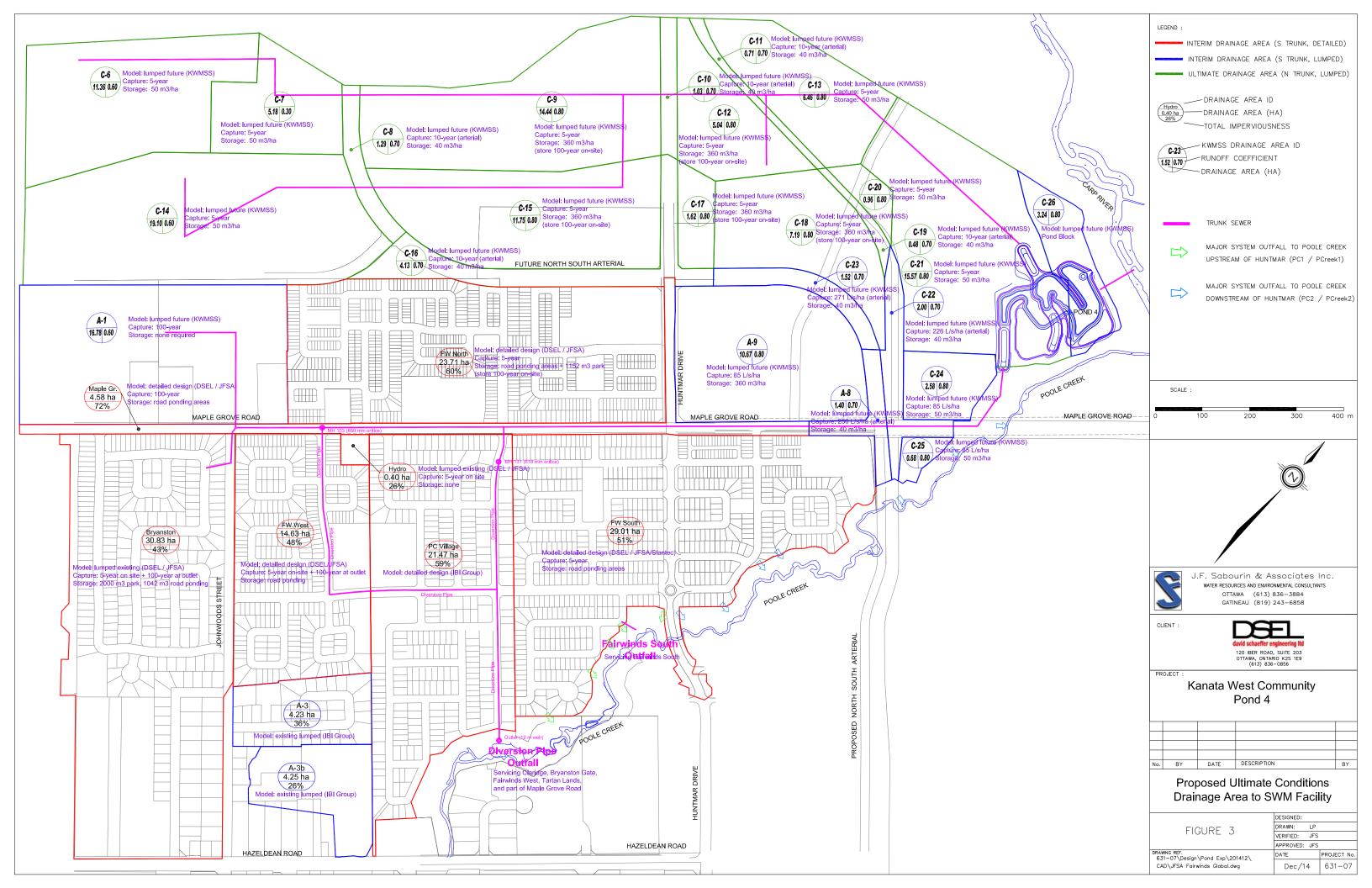
An erosion and sediment control strategy will be implemented at the detailed design stage. The erosion and sediment control strategy will include the following:

$(Z: \setminus$.	US100C.dat)			P631: De	sign Brief	for Pon	d 4, Kanata	West, Matta	my Homes
01336>	0 'AHS1'	'M104SW'	66 9	2	1	12	'MG103'	0	
	* Maple Grove Road		F.0	0	1	0	137.1	0	
01338> 01339>		'LM101NW' 'LM101NW'	59 2. 27 2.		1 1	0 0	'X' 'X'	0	
01340>		'LM101SW'	10 2		1	140.5	'MG101a'	0	
01341>		'LM101SW'	59 2		1	0	'X'	0	
01342> 01343>		'LM101SW' 'MLPovf'	27 2 10 2		1 1	0 140.5	'X' 'MG101a'	0	
01344>		'LM101W1'	440 2		1	0	'X'	0	
01345>		'LM101W1'	440 2		1	0	' X '	0	
01346> 01347>	* Existing Maple (1 'LM101W1'	rove Road, with ro' 'M101NW'	adside ditch 10 1	storage ad 1	ccounted for 35	0	'MG101'	0	
01348>		'LM102N1'	27 2		1	0	'X'	0	
01349>		'LM102S1'	10 2	2 2	1	97.5	'MG102a'	0	
01350>		'LM102N1'	62 2		1	0	'X'	0	
01351> 01352>		'LM102NW' 'LM102NW'	41 2 29 2		1 1	0 0	'X' 'X'	0	
01353>		'LM102SW'	10 2		1	97.5	'MG102a'	0	
01354>		'LM102S1'	45 2		1	0	'X'	0	
01355> 01356>		'MLPovf' 'LM102S1'	10 2 44 2		1 1	97.5 0	'MG102a' 'X'	0	
01357>		'LM102SY'	41 2		1	0	'X'	0	
01358>	0 'M102SW'	'LM102SW'	29 2	2 0	1	0	' X '	0	
01359>		'MLPovf'	10 2		1	97.5	'MG102a'	0	
01360> 01361>		'M104NE' 'M104SE'	75 2. 35 2.		4	97.5 97.5	'MG104a' 'MG104a'	0	
01362>		'LM104NW'	21 2		1	0	'X'	0	
01363>	0 'M104NW'	'LM104NW'	41 2		1	0	'X'	0	
01364>		'LM104SW'	10 2 41 2		1 1	97.5 0	'MG104a' 'X'	0	
01365> 01366>		'LM104SW' 'LM104SW'	38 2		1	0	'X'	0	
01367>	* Assume 30 cm max		ad over lead	pipe) to (capture 100-y			-	
01368>		'MLPovf'	10 2		1	109 07 F	'MG104a'	0	
01369> 01370>		'M104E1' 'M104E2'	54 2. 76 2.		4	97.5 97.5	'MG105a' 'MG105a'	0	
01371>		'M174K-N'	58 2		1	0	'X'	0	
01372>		'M174K-S'	79 2		5	97.5	'MG1060a'	0	
01373> 01374>		'M1060NE' 'M1060SE'	76 2 71 2		5 5	97.5 97.5	'MG106a' 'MG106a'	0	
01375>		'74A1N'	86 2		4	97.5	'174H'	0	
01376>	0 'M174H-S'	'52-B1S'	70 2	2 2	4	97.5	'174H'	0	
01377>		'M174H-N'	76 2		5	97.5	'174I'	0	
01378> 01379>		'M174I-E' 'M174I-W'	59 2. 65 2.		1 1	0 0	'X' 'X'	0	
01380>		'M174H-S'	74 2		5	97.5	'174I'	0	
01381>		'M174I-N'	59 2		4	97.5	'174J'	0	
01382> 01383>		'M174I-S' 'M174J-N'	73 2 94 2		4 5	97.5 97.5	'174J' '174K'	0	
01384>		'M174J-S'	58 2		5	97.5	'174K'	0	
	* No major system								
01386>	1 'MLPovf' * Tartan Lands rea	'PCreekli' rvarde draining in	10 1 to Fairwinds	0 South	1	0	'X'	0	
01388>		'All6Rl'	33 1		1	0	'X'	0	
01389>		'A116R2'	46 1		1	0	' X '	0	
01390>		'A128R4'	45 1	2 0		Î	' <u>x'</u>		
01391> 01392>		Downstream	4		1 1 M a	ax	Receiving	Inlet	
01393>	14p1	Major	2 Section	Sectio	n 1 Inl	et	'2	mot	
		System	Length	Type		pacity			
01206~	System CONDITI	Cystoni **	20	111		puony	/		
01397>	Segment ture of		from Bryansco	Gate/			/		
01398>	I 'BGout'	'M101W2'	10 1	2	1	0	'N4A02i	1	
	* Ultimate Conditi * Assume 5-year ca						/		
01401>	0 PND-1R'	'PCreek2A'	200 1	5 1	46	0	'181	0	
<mark>01402></mark>	* Existing resider	ntial lots 🔥 be de	velop <mark>o</mark> d at 6	💈 impervio	ousness under)
01403>	0 'WEXT1' * Existing resider	'M102N2'	75 9 veloped at 64	-			'MG103'	0 5-yr DD Capt	,
01404>		'M105NE'	100 9		1	73.5	'MG105'	0 0 capt.	/
01406>	* Existing resider	ntial lots to be de	veloped at 64	% impervi	usness under	ultimate	e conditions (5-yr DD Capt.)
01407>		'M106NW'	95 9	2		61	'MG106'	0	
01408>	* ENDMJR								
	ENDMJRS			Nu	mber Inlet				
01411>	*				ets Type	•			
01412> 01413>	* Infiltration Pa *								
01413>									
01415>	* Maximum	Minimum							
01416>		Infiltration Deca							
01417> 01418>		Rate Rate (mm/hr) (s^-							
01418>		INFMIN DECA							
01420>	76.2	13.2 0.00							
01421>		Data							
	* Unit Area Flow	Daid							
	* (None)								
01423>	* (None) ENDUAH								


FIGURE A-1: ULTIMATE CONDITIONS XPSWMM MODEL SCHEMATIC




FIGURE A-1: ULTIMATE CONDITIONS XPSWMM MODEL SCHEMATIC



KANATA WEST

MASTER SERVICING STUDY Volume 1 of 2

JUNE 16, 2006

Reference # 1604-00406

Stantec Consulting Ltd. 1505 Laperriere Ave. Suite 100 Ottawa, Ontario KIZ 7T1

Cumming Cockburn Limited/IBI 1770 Woodward Drive Ottawa, Ontario K2C 0P8

Natural Environment (NE) 20%

All three alternatives will have essentially the same impact on the natural environment. Alternative I has a minor increased impact due to the number of ponds (8) and there location within the KWCP.

5.5.2 Selection of Stormwater Management Alternatives

Based on the above evaluation, Alternative III is selected as the preferred stormwater management alternative. This option offers the greatest amount of flexibility for phasing opportunities while providing an economical servicing solution that meets the objectives of the Carp River Watershed/Subwatershed Study.

5.6 Best Management Practices

The Carp River Watershed/Subwatershed Study (Robinson Consultants, November 2004) proposes target infiltration rates of 104 mm/yr and 73 mm/yr for areas of moderate and low recharge, respectively, within the KWCP. To meet the identified infiltration targets suggested the following best management practices (BMP's) were recommended and are shown on Figures 7.3.3 through 7.3.7 in Appendix 3.4.

- Subsurface Infiltration;
- Biofilters;
- Wet ponds; and
- Dry ponds.

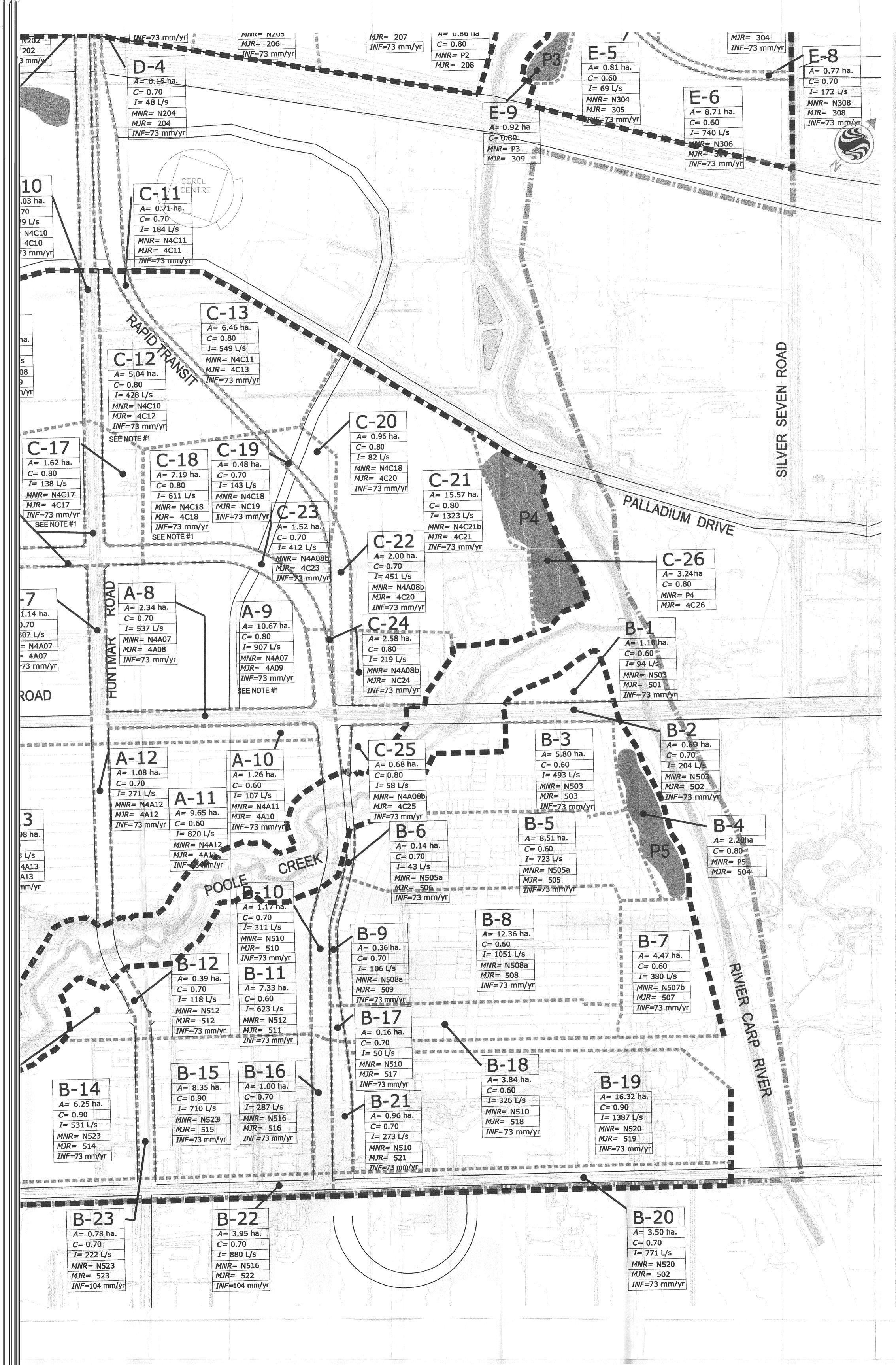
A water balance and subsurface hydrogeological investigation at the detailed design stage will dictate which of the proposed BMPs will be selected for specific developments.

Given the establishment of the dominant soil associations that exist in the Study area (see Figure 5.4), and considering the extent of the poorly draining soils within the nearly flat topography, it is apparent that drainage in the Study area is primarily governed by the characteristics of the poorly draining silty clay to clay soils underlying all but a small percentage of the Study area. As a result, the establishment of the infiltration rates of the soils can be simplified to reflect the silty clay to clay soils and the till material over bedrock. Table 5.6 below summarizes the anticipated infiltration rates of these two principal soil groups, based on soil characteristics and borehole data regarding degree of compaction.

Soil Groups	Estimated Infiltration Rates ¹ (mm/yr)	Percent of Annual Rainfall Infiltrated
Castor, Dalhousie, North Gower (silty clay to clay)	50-70 mm/yr	5-7
Anstruther, Farmington, Nepean (sandy loams to till)	70-100 mm/yr	7-11

Table 5.6 -Summary of Infiltration Rates of Principal Soil Groups

area of extensive employment between Feedmill Creek and Campeau Drive. Normal and 100yr water levels in the pond are 92.70 and 93.96, respectively.

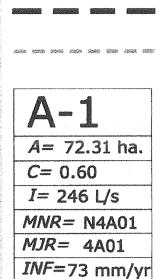

- Pond 2 is proposed just upstream of the confluence of Feedmill Creek and the Carp River on the south bank and will service future extensive employment and high profile employment lands between Feedmill Creek and Highway 417. Normal and 100yr water levels in the pond are 93.25 and 94.23, respectively.
- Pond 3 is proposed on the north bank or the Carp River between the future transitway and Highway 417. It will service low density business park and community retail lands between Didsbury Road and the Carp River. Normal and 100yr water levels in the pond are 92.90 and 94.20, respectively.
- Pond 4 adjacent to the Carp River is proposed just upstream of Palladium Drive and downstream of the Poole Creek confluence with the Carp River and will service a mixed use area bound by Pool Creek, Palladium Drive and the Kanata West Community Boundary. Normal and 100yr water levels in the pond are 93.25 and 94.74, respectively.
- Pond 5 is proposed upstream of the confluence of Poole Creek and the Carp River along the south-west bank of the Carp River. Pond 5 will service residential and retail developments between Poole Creek, the Carp River and Hazeldean Road. Normal and 100yr water levels in the pond are 93.44 and 94.94, respectively.
- Pond 6 is to be located north-east of Feedmill Creek at the intersection with Huntmar Road and will service business park and extensive employment developments. Normal and 100yr water levels in the pond are 98.00 and 98.94, respectively.
- Pond 7 is proposed south of Highway 417 and west of the future north-south arterial and will service business park and extensive employment lands. Normal and 100yr water levels in the pond are 102.20 and 102.92, respectively.

It is noted that additional post development modeling was completed with CH2MHill in order to create an overall post development model. For this separate analysis, a dynamic downstream water level was used and iterated until convergence was observed. In order to maintain the conservative nature of the HGL assessment, the results above reflect a static downstream water level equal in elevation to the 100yr MVC floodplain obtained from the 1983 analysis.

5.13 Stormwater Implementation

• All developments are to be designed in accordance with the City of Ottawa Sewer Design Guidelines, First Edition, November 2004.

Ipex inlet control devices, or an equivalent restrictor which reproduces the same stagestorage-discharge curve, shall be used to restrict runoff to 85L/s/ha and provide 50m³/ha of major system storage, with the exception of arterial roadways where inlets shall be sized for the peak 10 yr release rate.



Stantec Consult g Ltd. 1505 Laperriere Avenue Ottawa ON Canada K1Z 7T1 Tel. 613.722.4420 Fax. 613.722.2799 www.stantec.com

The Contractor shall verify and be responsible for all dimensions. DO NOT scale the drawing — any errors or omissions shall be reported to Stantec Consulting Ltd. without delay The Copyrights to all designs and drawings are the property of Stantec Consulting Ltd. Reproduction or use for other than that authorized by Stantec Consulting Ltd. is forbidden

Copyright Reserved

Notes

KANATA-WEST CONCEPT PLAN BOUNDARY POND DRAINAGE BOUNDARY STORM SEWER DRAINAGE LIMIT

DRAINAGE AREA IDENTIFICATION AREA IN HECTARES RUNOFF COEFFICIENT 100yr. INLET CAPACITY (L/s) MINOR SYSTEM NODE NUMBER MAJOR SYSTEM SEGMENT NUMBER INFILTRATION

* REFER TO FIGURE 3.2 IN KANATA WEST MASTER SERVICING STUDY FOR FURTHER INFILTRATION DETAILS

1. THOSE AREAS WHICH ARE COMPLETELY SURROUNDED BY ARTERIAL ROADWAYS (SPECIFICALLY AREAS A-9, C-9, C-12, C-15, C-17, C-18) MUST PROVIDE SURFACE STORAGE IN THE AMOUNT OF 360m³/ha, OR IN SUFFICIENT QUANTITY TO DEMONSTRATE COMPLETE CONTAINMENT OF THE 100yr EVENT. (i.e. NO MAJOR SYSTEM FLOW IN THE 1:100yr EVENT)

> Comming Cockburn Limited / IBBI 1770 WOODWARD DR., OTTAWA (613)225-1311

				Annonesistan descriptions and a second second second
	a nurr Phones (Ma reh Santhar a).		anagan menanya bahasalah tahu dapat	
	terilari terminenal anangaran	antideate subscription of the subscription of		
2 REVISED FOR DEC.21/05 SUBMISSION	anan ana sa	GBU	SJP	DEC.21/05
1 REVISED AS PER CITY COMMENTS (Sept.	16/05)	GBU	MAF	OCT.28/05
Revision		Ву	Appd.	Date
File Name: 160400406	LTM	MAF	MAF	AUG./05
	Dwn.	Chkd.	Dsgn.	Date

Client/Project

Title

Kanata West Concept Plan Master Servicing Study

Ottawa, Ontario

STORM DRAINAGE AREA PLAN SOUTH PONDS

Project No. 60400406	Scale 0 30 1:3000	90 150m
Drawing No.	Sheet	Revision
ST-PS	3 of 7	2
to a second s		

EXP Services Inc. 1869 Maple Grove Road, Ottawa, ON OTT-00254810-A0 September 25, 2020

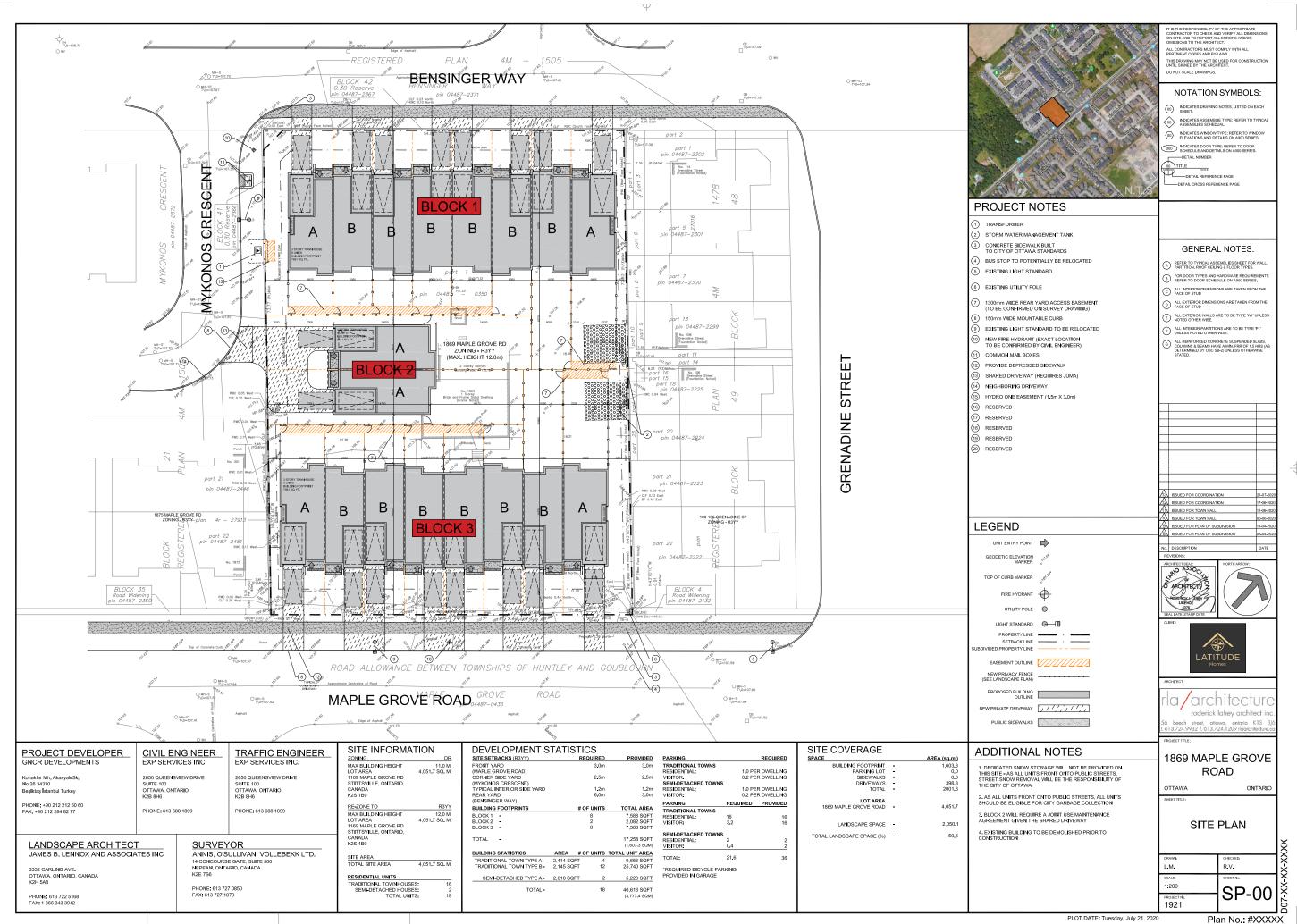
Appendix G – Checklist

GEN	ERAL CONTENT	RESPONSE
	Executive Summary (for larger reports only).	Not included
\boxtimes	Date and revision number of the report.	Date of report provided
\boxtimes	Location map and plan showing municipal address, boundary, and layout of proposed development.	Page 1, and Appendix A
	Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.	Section 2 of report
\boxtimes	Summary of Pre-consultation Meetings with City and other approval agencies.	In Appendix E
	Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.	No Master Servicing Studies.
\boxtimes	Statement of objectives and servicing criteria.	Section 1 of report
\boxtimes	Identification of existing and proposed infrastructure available in the immediate area.	Section 2 & 3 of report
	Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).	Not applicable
	Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.	Not applicable
	Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.	Not applicable
	Proposed phasing of the development, if applicable.	Not applicable
	Reference to geotechnical studies and recommendations concerning servicing.	Not applicable
	All preliminary and formal site plan submissions should have the following information: Metric scale North arrow (including construction North) Key plan	Functional Report, Civil and Architectural Plans provided all this information.
	name and contact information of applicant and property owner	
	Property limits including bearings and dimensions	
	Existing and proposed structures and parking areas Easements, road widening and rights-of-way	
	Adjacent street names	
DEVE	LOPMENT SERVICING REPORT: WATER	RESPONSE
	Confirm consistency with Master Servicing Study, if available Availability of public infrastructure to service proposed development Identification of system constraints	Not applicable
\boxtimes	Identify boundary conditions	Section 4.5
\boxtimes	Confirmation of adequate domestic supply and pressure	Section 4.2
	Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.	Section 4.2
\boxtimes	Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.	Section 4.2 & Table B-5 Appendix B
	Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design	Not applicable
\boxtimes	Address reliability requirements such as appropriate location of shut-off valves Check on the necessity of a pressure zone boundary modification.	Section 4.2, Drawing C100
	Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range	Section 4.4 & Table B-1, Table B-2, Appendix B
	Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.	Section 4.2

	Description of off-site required feeder mains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.	Not applicable
\boxtimes	Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.	Table B-1 Appendix B
	Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.	Not applicable
DEVE	LOPMENT SERVICING REPORT: WASTEWATER	RESPONSE
	Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).	Section 5.1
	Confirm consistency with Master Servicing Study and/or justifications for deviations.	Not applicable
	Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers.	Section 5.2
\square	Description of existing sanitary sewer available for discharge of wastewater from proposed development.	Section 5.2
	Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)	Not applicable
\boxtimes	Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.	Table C-1 in Appendix C
\boxtimes	Description of proposed sewer network including sewers, pumping stations, and forcemains.	Section 5.2
	Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality).	Not applicable
	Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.	Not applicable
	Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.	Not applicable
	Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity. Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.	Not applicable Not applicable
	Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding. Special considerations such as contamination, corrosive environment etc.	Not applicable Not applicable
	Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.	Not applicable
	Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding. Special considerations such as contamination, corrosive environment etc.	Not applicable Not applicable
	Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding. Special considerations such as contamination, corrosive environment etc. LOPMENT SERVICING REPORT: STORMWATER CHECKLIST Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain,	Not applicable Not applicable RESPONSE
	Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding. Special considerations such as contamination, corrosive environment etc. ELOPMENT SERVICING REPORT: STORMWATER CHECKLIST Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property)	Not applicable Not applicable RESPONSE Section 6
	Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding. Special considerations such as contamination, corrosive environment etc. ELOPMENT SERVICING REPORT: STORMWATER CHECKLIST Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property) Analysis of available capacity in existing public infrastructure. A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns,	Not applicable Not applicable RESPONSE Section 6 Not applicable Site is too small to be
	Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding. Special considerations such as contamination, corrosive environment etc. ELOPMENT SERVICING REPORT: STORMWATER CHECKLIST Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property) Analysis of available capacity in existing public infrastructure. A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern. Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative	Not applicable Not applicable RESPONSE Section 6 Not applicable Site is too small to be considered
	Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding. Special considerations such as contamination, corrosive environment etc. ELOPMENT SERVICING REPORT: STORMWATER CHECKLIST Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property) Analysis of available capacity in existing public infrastructure. A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern. Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects. Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of	Not applicable Not applicable RESPONSE Section 6 Not applicable Site is too small to be considered Not Applicable
	Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding. Special considerations such as contamination, corrosive environment etc. ELOPMENT SERVICING REPORT: STORMWATER CHECKLIST Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property) Analysis of available capacity in existing public infrastructure. A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern. Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects. Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements. Description of the stormwater management concept with facility locations and descriptions with references	Not applicable Not applicable RESPONSE Section 6 Not applicable Site is too small to be considered Not Applicable Not Applicable Not Applicable
	Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding. Special considerations such as contamination, corrosive environment etc. EOPMENT SERVICING REPORT: STORMWATER CHECKLIST Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property) Analysis of available capacity in existing public infrastructure. A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern. Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects. Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements. Description of the stormwater management concept with facility locations and descriptions with references and supporting information.	Not applicable Not applicable RESPONSE Section 6 Not applicable Site is too small to be considered Not Applicable Not Applicable Section 6.2 & 6.3
	Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding. Special considerations such as contamination, corrosive environment etc. EOPMENT SERVICING REPORT: STORMWATER CHECKLIST Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property) Analysis of available capacity in existing public infrastructure. A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern. Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects. Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements. Description of the stormwater management concept with facility locations and descriptions with references and supporting information. Set-back from private sewage disposal systems. Watercourse and hazard lands setbacks. Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that	Not applicableNot applicable RESPONSE Section 6Not applicableSite is too small to be consideredNot ApplicableNot ApplicableSection 6.2 & 6.3Not Applicable

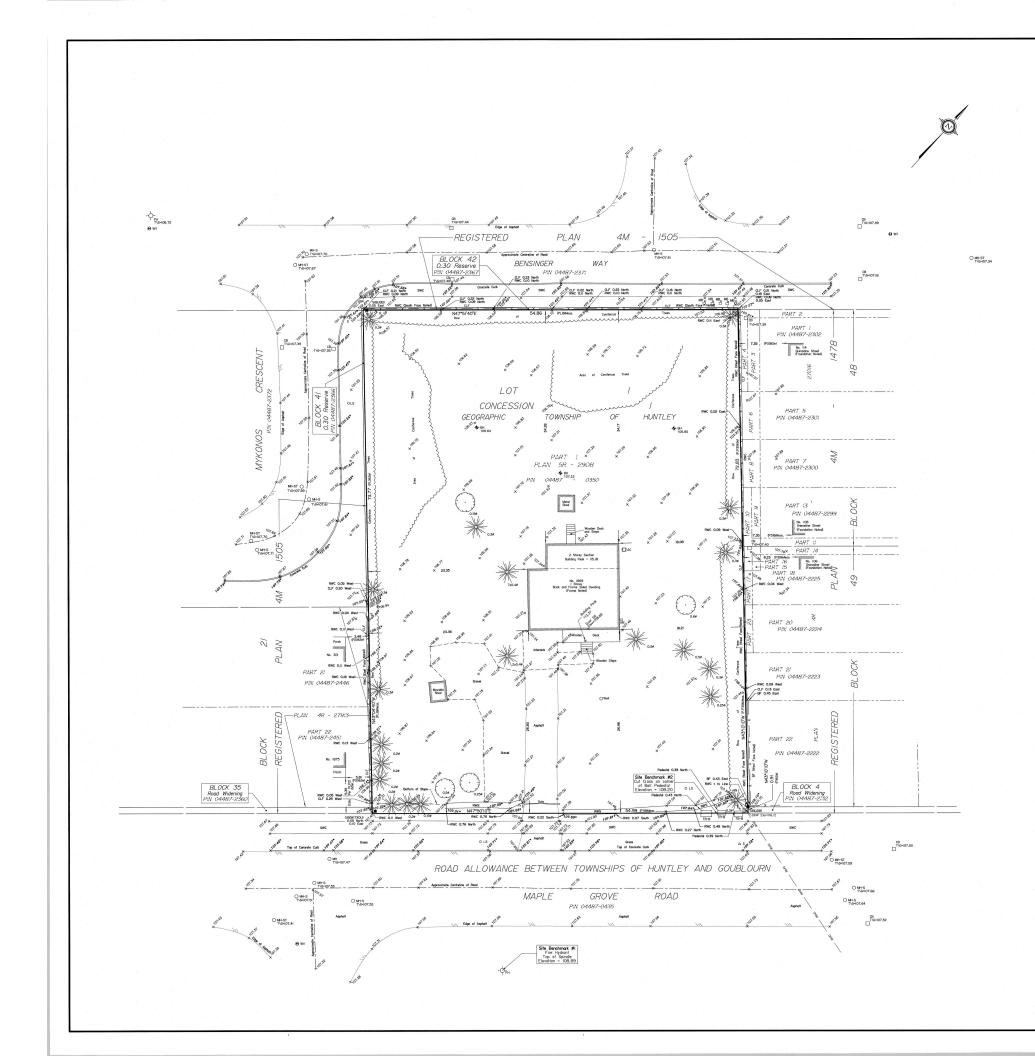
	Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals.	Not Applicable
\boxtimes	Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.	Section 6.6, 6.8 & Table D- 1 & D-4 of Appendix D
	Any proposed diversion of drainage catchment areas from one outlet to another.	Not Applicable
	Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities.	Section 6.8
	If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100-year return period storm event.	Not Applicable
	Identification of potential impacts to receiving watercourses Identification of municipal drains and related approval requirements.	Not Applicable
\boxtimes	Descriptions of how the conveyance and storage capacity will be achieved for the development.	Section 6.9
	100-year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.	Site Grading and Erosion and Sediment Plan
	Inclusion of hydraulic analysis including hydraulic grade line elevations.	Not Applicable
\boxtimes	Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.	Section 7
	Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.	Not Applicable – No requirements from Conservation Authority
	Identification of fill constraints related to floodplain and geotechnical investigation.	See geotechnical report
\boxtimes	The Servicing Study shall provide a list of applicable permits and regulatory approvals necessary for the proposed development as well as the relevant issues affecting each approval. The approval and permitting shall include but not be limited to the following:	Appendix E
	Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in theAct.	Not Applicable
	Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.	Not Applicable
	Changes to Municipal Drains.	Not Applicable
	Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.)	Not Applicable
CON	CLUSION CHECKLIST	RESPONSE
\boxtimes	Clearly stated conclusions and recommendations	In Section 8
\boxtimes	Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.	Appendix E
\boxtimes	All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario	Signed and stamped

EXP Services Inc. 1869 Maple Grove Road, Ottawa, ON OTT-00254810-A0 September 25, 2020


Appendix H – Drawings

Architectural Site Plan Drawings

- Site Plan, SP-00
- Topo Survey


Engineering Drawings (included separately)

- Notes and Legend, C001
- Site Servicing Plan, C002
- Site Grading Plan, C003
- Storm Drainage Plan, C004.
- Sanitary Drainage Plan, C005
- Erosion and Sediment Control Plan, C006
- Details Page, C007

Þ

ф

SURVEYOR'S REAL PROPERTY REPORT PART 1 Plan of PART OF LOT 1 CONCESSION 1 GEOGRAPHIC TOWNSHIP OF HUNTLEY CITY OF OTTAWA Surveyed by Annis, O'Sullivan, Vollebekk Ltd.

Scale 1:200

Metric DISTANCES AND COORDINATES SHOWN ON THIS PLAN ARE IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048.

Surveyor's Certificate

LCERTIFY THAT:
 LCERTIFY THAT:
 LCERTIFY THAT:
 Act and the Survey and plan are correct and in accordance with the Survey
 Act and the Survey and Survey and Survey and Survey and Survey and Survey and Survey
 Act and the Survey and Survey and Survey and Survey and Survey and Survey
 Survey and Survey and Survey and Survey
 Survey and Survey and Survey and Survey

Date 24/19

T. Hartwick Ontario Land Survey

PART 2 THIS PLAN MUST BE READ IN CONJUNCTION WITH SURVEY REPORT DATED: December 24th, 2019

Notes & Legend

	Denotes	
-0-		Survey Monument Planted
		Survey Monument Found
SIB		Standard Iron Bar
(WIT)		Witness
(OU)		Origin Unknown
Meas.	· •	Measured
(AOG)	•	Annis, O'Sullivan, Vollebekk Ltd.
(PL)	•	Registered Plan 4M-1505
(P)	•	Registered Plan 4M-1478
(PI)		Plan 4R-22948
(P2)		Plan 4R-27913
(P3)		Plan 4R-27016
\odot	•	Deciduous Tree
whee		
*	·	Coniferous Tree
OFH	÷ .	Fire Hydrant
(B WV		Water Valve
O MH-ST		Maintenance Hole (Storm Sewer)
OMHS		Maintenance Hole (Sanitary)
OMH		Maintenance Hole (Unidentified)
— они	-	Overhead Wires
C8	с. ж.	Catch Basin
💠 вн	-	Borehole
🗆 GM		Gas Meter
a 19-8	Α.,	Bell Terminal Box
ΔS		Sign
CLF		Chain Link Fence
BF		Board Fence
		Gate
O UP		Utility Pole
• AN		Anchor
O LS		Light Standard
C AC		Air Conditioner
C/L		Centreline
ø		Diameter
RWS	× .	Stone Retaining Wall
RWC	•	Concrete Retaining Wall
SWC	· · ·	Concrete Sidewalk
+ 65.00	· .	Location of Elevations
+ 65.00*		Top of Concrete Curb and Retaining W
В мв		Mail Box

ASSOCIATION OF ONTA LAND SURVEYORS PLAN SUBMISSION FOR 2104127

Bearings are grid, derived from Can-Net 2016 Real Time Network GPS observations, MTM Zone 9 (76°30' West Longitude) NAD-83 (original).

ELEVATION NOTES

Lieuvations shown are geodetic and are referred to the CGVD28 geode
 It is the responsibility of the user of this information to verify that the jol has not been altered or disturbed and that it's relative elevation and de agrees with the information shown on this drawing.

- UTILITY NOTES 1. This strawing cannot be accepted as acknowledging all of the utilities and it will be the responsibility of the user to contact the respective utility authorities for confirmation. rface utilities were located
- the pertinent utility authority is eaking ground, probing, excavat
- CARINE, O'Sulvan, Volebaki Ld, 2019. "This PLAN IS PROTECTED BY COPYRIGHT" ANNIS, O'SULLIVAN, VOLLEBEKK LTD. 14 Concourse Guide, Sale 500 Phone: (61) 327-4950 / Fax: (613) 327-4079 Earch Ignardigenetion

