

Phase Two Environmental Site Assessment

6171 Hazeldean Road, Ottawa, Ontario

Type of Document: Final

Client:

11654128 Canada Inc. 100-768 St, Joseph Boulevard Gatineau, Quebec J8Y 4B8

Project Number: OTT-00258780-C0

Prepared By: Leah Wells, B.A.Sc., E.I.T.

Reviewed By: Chris Kimmerly, M.Sc, P.Geo.

EXP Services Inc. 100-2650 Queensview Drive Ottawa, ON K2B 8H6 Canada

Date Submitted: July 24, 2020

Phase Two Environmental Site Assessment 6171 Hazeldean Road, Ottawa, Ontario

Type of Document:

Final

Client:

11654128 Canada Inc. 100-768 St. Joseph Boulevard Gatineau, Quebec J8Y 4B8

Project Number:

OTT-00258780-C0

Prepared By:

EXP Services Inc. 100-2650 Queensview Drive Ottawa, ON K2B 8H6 Canada

T: 613 688-1899 F: 613 225-7337 www.exp.com

Leab Wells, B.A.Sc., E.I.T.

Environmental Engineer-in-Training

Earth & Environmental

Chris Kimmerly, M.Sc., P.Geo.

Manager - Senior Geoscientist

Earth & Environmental

The Qualified Person can confirm that the Phase Two Environmental Site Assessment was conducted per the requirements of Ontario Regulation 153/04, as amended, and in accordance with generally accepted professional practices.

Date Submitted:

July 24, 2020

Legal Notification

This report was prepared by EXP Services Inc. for the account of 11654128 Canada Inc.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties unless a reliance letter has been addressed to, or otherwise provides reliance to, such third party. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

Executive Summary

EXP Services Inc. (EXP) was retained by 11654128 Canada Inc. to conduct a Phase Two Environmental Site Assessment (ESA) of the property located at 6171 Hazeldean Road in Ottawa (Stittsville), Ontario hereinafter referred to as the "Phase Two property". The objective of the Phase Two ESA was to address areas of potential environmental concern (APECs) identified in a Phase One ESA conducted at the Phase Two property by EXP.

The Phase Two property is currently vacant and has not been used for any purpose defined by Ontario Regulation 153/04. EXP understands that the proposed future property use is residential.

This report has been prepared in accordance with the Phase Two ESA standard as defined by Ontario Regulation 153/04 (as amended), and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 7 of this report.

The findings of the Phase One ESA were presented in a report entitled *Phase One Environmental Site Assessment, 6171 Hazeldean Road, Ottawa, Ontario,* EXP Services Inc., dated April 7, 2020. The Phase One ESA identified the following Potentially Contaminating Activities (PCA) and Area of Potential Environmental Concern (APEC):

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA) as per O. Reg 153/04	Location of PCA (On-Site or Off-Site)	Potential Contaminants of Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
APEC 1 – Fill material for site is from unknown source	Entire property	PCA#30 – Importation of Fill Material of Unknown Quality	On-site	Benzene, toluene, ethylbenzene, xylene (BTEX), petroleum hydrocarbons (PHC), and/or metals	Soil

The Phase Two ESA consisted of advancing a total of six boreholes and 16 test pits at the Phase Two property. Soil samples were collected and submitted for laboratory analysis of PHC, BTEX, and metals.

For assessment purposes, EXP selected the 2011 Table 3 Site Condition Standards (SCS) in a non-potable groundwater condition for residential/parkland/institutional property use and coarse textured soil. The results were also compared to Table 1 full depth background SCS. Based on the Phase Two ESA results, the following summary is provided:

- The investigation revealed that the subsurface conditions is comprised of a surficial layer of topsoil or
 granular fill overlying heterogenous fill material, which is underlain by glacial till or by bedrock. On the
 south side of the property, near Hazeldean Road, peat was encountered in the boreholes and test pits.
 The peat and marl layer were encountered at depths between 0.75 to 3.1 mbgs.
- Bedrock, or refusal at probable bedrock, was encountered in all of the boreholes and test pits. Depth
 to bedrock varied across the property between 0.6 mbgs to 6.2 mbgs. BH-1 to BH-3 were advanced
 into the bedrock for characterization, all other boreholes and all test pits were terminated at bedrock.
 Bedrock consisted of dark grey limestone with shale laminations.

- Groundwater measurements taken on May 14, 2020 and July 2, 2020 in monitoring wells installed in three of the boreholes indicate that the groundwater table to be at a depth of 1.2 to 2.6 m in May and 2.02 m to 2.75 m below grade in July. Groundwater flow is interpreted to be towards the northeast. The groundwater table is subject to seasonal fluctuation and may be at higher depths during wet weather conditions.
- Ten soil samples were submitted for laboratory analysis of BTEX and PHC. Twelve soil samples were submitted for metals and inorganics.
- For assessment purposes, EXP selected the 2011 Table 1 (Ontario Background) and Table 3 SCS in a non-potable groundwater condition for residential/parkland/institutional property use and coarse textured soil.
- All of the soil samples were within the MECP (Ministry of the Environment, Conservation and Parks)
 Table 3 SCS for all parameters that were analysed. All but one soil sample met the criteria for MECP
 Table 1 SCS.
- Based on the results of the Phase Two ESA, the site meets the SCS for the intended residential land
 use.
- Soil samples were submitted for laboratory analysis of BTEX, PHC, and metals. All of the soil samples
 were within the MECP Table 3 SCS for all parameters that were analysed. All but one soil sample met
 the criteria for MECP Table 1 SCS.
- Based on the results of the Phase Two ESA, the site meets the SCS for the intended residential land
 use.

The Qualified Person has confirmed that the Phase Two Environmental Site Assessment was conducted per the requirements of Ontario Regulation 153/04, as amended, and in accordance with generally accepted professional practices.

Table of Contents

1	Intro	duction	1
	1.1 1.2 1.3 1.4	Site Description Property Ownership Current and Proposed Future Uses Applicable Site Condition Standards	1 1
2	Back	ground Information	4
	2.1 2.2	Physical Setting Past Investigations	
3	Scop	e of the Investigation	5
	3.1 3.2 3.3 3.4 3.5 3.6	Overview of Site Investigation Scope of Work Media Investigated Phase One Conceptual Site Model Deviations from Sampling and Analysis Plan Impediments	5 5 5
4	Inves	tigation Method	7
	4.1	General	7
	4.2	Borehole Drilling	7
	4.3	Test Pitting	7
	4.4	Soil Sampling	7
	4.5	Field Screening Measurements	
	4.6	Groundwater: Piezometer Installation	
	4.7	Groundwater: Field Measurement of Water Quality Parameters	
	4.8	Groundwater: Sampling	
	4.9 4.10	Sediment: SamplingAnalytical Testing	
	4.10	Residue Management	
	4.12	Elevation Surveying	
	4.13	Quality Assurance and Quality Control Measures	
5		ew and Evaluation	11
	5.1	Geology	11
	5.2	Groundwater: Elevations	
	5.3	Groundwater: Hydraulic Gradients	
	5.4	Soil Texture	

	5.5	Soil: Fi	eld Screening	.12
	5.6	Soil Qu	ality	.12
		5.6.1	Petroleum Hydrocarbons	. 12
		5.6.2	Metals	.12
		5.6.3	Chemical Transformation and Soil Contaminant Sources	.12
		5.6.4	Evidence of Non-Aqueous Phase Liquid	. 12
		5.6.5	Maximum Concentrations	. 13
	5.7	Ground	water Quality	.13
	5.8	Sedime	nt Quality	.13
	5.9	Quality	Assurance and Quality Control Results	.13
	5.10	Phase ⁻	Two Conceptual Site Model	.14
		5.10.1	Introduction	. 14
		5.10.2	Physical Site Description	.14
		5.10.3	Geological and Hydrogeological Setting	. 15
		5.10.4	Underground Utilities	
		5.10.5	Potentially Contaminating Activities	.16
		5.10.6	Areas of Potential Environmental Concern/Potential Contaminants of Concern	
		5.10.7	Investigation	
		5.10.8	Contaminants of Concern (COC)	
		5.10.9	Contaminant Fate and Transport	. 16
6	Concl	usions		17
7	Limita	tion of L	iability, Scope of Report, and Third Party Reliance	18
8	Refere	ences		20

List of Appendices

Appendix A: Figures
Appendix B: Survey Plan

Appendix C: Sampling and Analysis Plan

Appendix D: Borehole Logs

Appendix E: Analytical Summary Tables

Appendix F: Laboratory Certificates of Analysis

List of Figures

Figure 1: Site Location Plan

Figure 2: Areas of Potential Environmental Concern

Figure 3: Borehole and Test Pit Location Plan

Figure 4: Cross Section Plan Figure 5: Cross Section A-A',

Figure 6: Soil Analytical Results - PHC and BTEX Figure 6A: Soil Analytical Results - PHC and BTEX

Figure 7: Soil Analytical Results - Metals Figure 7A: Soil Analytical Results - Metals

1 Introduction

EXP Services Inc. (EXP) was retained by 11654128 Canada Inc. to conduct a Phase Two Environmental Site Assessment (ESA) of the property located at 6171 Hazeldean Road in Ottawa (Stittsville), Ontario hereinafter referred to as the "Phase Two property". The objective of the Phase Two ESA was to address areas of potential environmental concern (APECs) identified in a Phase One ESA that was conducted by EXP.

The Phase Two property is currently vacant and has not been used for any purpose as defined by Ontario Regulation 153/04. EXP understands that the proposed future property use is residential.

This report has been prepared in accordance with the Phase Two ESA standard as defined by Ontario Regulation 153/04 (as amended), and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 7 of this report.

1.1 Site Description

The Phase Two property is located on the north side of Hazeldean Road, 160 m east of Carp Road, at 6171 Hazeldean Road in Ottawa, Ontario. The Phase Two property is rectangular in shape and has an area of approximately 9.0 hectares. The property is currently vacant. A Site Location Plan is provided as Figure 1 in Appendix A.

The Phase Two property is in an arterial main street zoned area. The property is legally described as PART OF LOT 23 CONCESSION 12, GOULBOURN, PARTS 2, 4 AND 6 PLAN 4R23045 CITY OF OTTAWA and property identification number (PIN) 044871709.

The surrounding area of the Phase Two property was observed to be residential and vacant properties to the north, and residential and commercial properties to the east, south, and west. No environmentally sensitive activities or infrastructures that could present any environmental concerns to the Phase Two property were observed on the adjacent properties based on observations made from the boundaries of the Phase Two property.

1.2 Property Ownership

The Phase Two property is currently owned by Kavanagh Family Investments Limited. Authorization to proceed with this investigation was provided by Carmine Zayoun. Contact information for Mr. Zayoun is 100-768 St. Joseph Boulevard Gatineau, Quebec J8Y 4B8.

1.3 Current and Proposed Future Uses

At the time of the investigation, the Phase Two property was not used for any purpose defined by Ontario Regulation 153/04. The proposed future use for the Phase Two property is residential.

1.4 Applicable Site Condition Standards

Analytical results obtained for soil and groundwater samples were compared to Site Condition Standards (SCS) established under subsection 169.4(1) of the Environmental Protection Act, and presented in the document entitled Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, (MOE, 2011). This document provides tabulated background SCS (Table 1) applicable to environmentally sensitive sites and effects based generic SCS (Tables 2 to 9) applicable to non-environmentally sensitive sites. The effects-based SCS (Tables 2 to 9) are protective of human health and the environment for different groundwater conditions (potable and non-potable), land use scenarios

(residential, parkland, institutional, commercial, industrial, community and agricultural/other), soil texture (coarse or medium/fine) and restoration depth (full or stratified).

Table 1 to 9 SCS are summarized as follows:

- Table 1 applicable to sites where background concentrations must be met (full depth), such as sensitive sites where site-specific criteria have not been derived
- Table 2 applicable to sites with potable groundwater and full depth restoration
- Table 3 applicable to sites with non-potable groundwater and full depth restoration
- Table 4 applicable to sites with potable groundwater and stratified restoration
- Table 5 applicable to sites with non-potable groundwater and stratified restoration
- Table 6 applicable to sites with potable groundwater and shallow soils (bedrock encountered at depths of 2 metres or less across one-third or more of the site)
- Table 7 applicable to sites with non-potable groundwater and shallow soils (bedrock encountered at depths of 2 metres or less across one-third or more of the site)
- Table 8 applicable to sites with potable groundwater and that are within 30 m of a water body
- Table 9 applicable to sites with non-potable groundwater and that are within 30 m of a water body

Application of the generic or background SCS to a specific site is based on a consideration of site conditions related to soil pH, thickness and extent of overburden material, and proximity to an area of environmental sensitivity or of natural significance. For some chemical parameters, consideration is also given to soil textural classification with SCS having been derived for both coarse and medium-fine textured soil conditions.

For assessment purposes, EXP selected the 2011 Table 3 SCS in a non-potable groundwater condition for residential/parkland/institutional property use and coarse textured soil. The selection of this category was based on the following factors:

- Both medium and fine textured and coarse textured soils were identified during the current investigation, coarse texture was selected as the more conservative criteria;
- Bedrock is more than 2 metres below grade for greater than 2/3 of the subject property;
- There are no surface water bodies within 30 metres of the subject property;
- The soil at the Phase Two property has a pH value between 5 and 9 for surficial soils and between 5 and 11 for subsurface soils, as confirmed during the current investigation;
- The Phase Two property is not located within an area of natural significance, does not include nor is adjacent to an area of natural significance, and does not include land that is within 30 metres of an area of natural significance;
- Properties surrounding the subject property are supplied with potable water from the City of Ottawa through its water distribution system;
- The Phase Two property is not located in an area designated in a municipal official plan as a well-head protection area;
- The Phase Two property is planned for residential use; and
- It is the opinion of the Qualified Person who oversaw this work that the Phase Two property is not a sensitive site.

For reference, the analytical results were also compared to Table 1 full depth background SCS.

2 Background Information

2.1 Physical Setting

The Phase One property is located on the north side of Hazeldean Road, 160 m east of Carp Road, at 6171 Hazeldean Road in Ottawa, Ontario. The site has a total area of 9.0 hectares and is approximately rectangular in shape. The site is zoned AM9, arterial main street zoning.

The Phase Two property is located in a residential area. Potable water is available from the City of Ottawa.

Topographically, the Phase Two property is relatively flat, regionally topography slopes to the northeast. Given the topography at the site, groundwater is inferred to flow north to the northeast towards Feedmill Creek, which is approximately 200 m north of the Phase Two property.

In accordance with Section 41 of the Ontario Regulation 153/04 (as amended), the Phase Two property is not an environmentally sensitive area. In addition, the Phase Two property is not located within an area of natural significance and it does not include land that is within 30 metres of an area of natural significance.

Based on the Phase Two ESA investigation, the Phase Two property is not a shallow soil property as defined in Section 43.1 of the regulation. It does not include all or part of a water body or is adjacent to a water body or includes land that is within 30 metres of a water body.

A review of geological maps revealed that, under any fill, the natural overburden deposits in the area is glacial till that would consist of clay, silt, sand, and gravel. Bedrock geology maps indicated limestone of the Bobcaygeon Formation. Based on well records, bedrock is expected approximately 0.5 to 4.5 mbgs.

2.2 Past Investigations

The findings of the Phase One ESA were presented in a report entitled *Phase One Environmental Site Assessment, 6171 Hazeldean Road, Ottawa, Ontario,* EXP Services Inc., dated April 7, 2020. The Phase One ESA identified the following Potentially Contaminating Activities (PCA) and Areas of Potential Environmental Concern (APEC):

Table 2.1 - Areas of Potential Environmental Concern and Potentially Contaminating Activity

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA) as per O. Reg 153/04	Location of PCA (On-Site or Off-Site)	Potential Contaminants of Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
APEC 1 – Fill material for site is from unknown source	Entire property	PCA#30 – Importation of Fill Material of Unknown Quality	On-site	Benzene, toluene, ethylbenzene, xylene (BTEX), petroleum hydrocarbons (PHC), and/or metals	Soil

Other findings of the Phase One ESA are included in Section 3.4 of this report.

The Phase One ESA was conducted per the requirements of Ontario Regulation 153/04, as amended, and in accordance with generally accepted professional practices. A copy of the Phase One conceptual site model is provided as Figure 3 in Appendix A.

3 Scope of the Investigation

3.1 Overview of Site Investigation

The purpose of the Phase Two ESA was to investigate the soil quality at the Phase Two property and to obtain soil data to further characterize conditions in the soil related to the PCA described above and within the APEC shown on Figure 2 in Appendix A.

The property is currently vacant, and not used for any purpose defined by Ontario Regulation 153/04. EXP understands that the property has always been vacant and that the proposed future property use is residential.

3.2 Scope of Work

The scope of work for the Phase Two ESA was as follows:

- Request local utility locating companies (e.g., cable, telephone, gas, hydro) to mark any underground utilities present at the Phase Two property;
- Retain a private utility locating company to mark any underground utilities present in the vicinity of the borehole locations and to clear the individual borehole locations;
- Advance a total of six boreholes and complete three of them as piezometers;
- Excavate a total of 16 test pits;
- Collect representative soil samples for chemical analysis of PHC, BTEX, and metals;
- Measure groundwater levels in the piezometers;
- Complete a survey of the piezometer locations relative to a geodetic or other permanent benchmark and in reference with the Universal Transverse Mercator (UTM) coordinate system for vertical and horizontal control; and
- Review the analytical data and prepare a report of the findings.

Gary Cui, E.I.T. conducted the field assessment work and Leah Wells, B.A.Sc., E.I.T. was the report author for this project. Both were supervised by Chris Kimmerly, M.Sc., P. Geo. Mr. Kimmerly is a Qualified Person, as defined by Ontario Regulation 153/04.

3.3 Media Investigated

The Phase Two ESA included the investigation of soil on the Phase Two property. Based on the nature of the APEC identified in the Phase One, groundwater was not investigated. As there are no water bodies on the Phase Two property, no surface water or sediment sampling was required.

The contaminants of potential concern (COPC) identified in the Phase One ESA were identified as target parameters for this Phase Two ESA. The APEC and COPC identified in the Phase One ESA are outlined in Section 2.2.

3.4 Conceptual Site Model

The Phase Two property is located at 6171 Hazeldean Road in Ottawa, Ontario, as shown on Figure 1 in Appendix A. At the time of the investigation the Phase Two property was vacant, the proposed future property use is residential. The surrounding properties are used for residential and commercial purposes. The Phase Two property has an area of approximately 9.0 hectares. A site plan is presented as Figure 2 in Appendix A.

The Phase One ESA conducted by EXP identified the following on-site PCA. No off-site PCA were identified.

• PCA #30 – Importation of Fill of Unknown Quality

The location of the APEC that may be affected by the PCA are shown on Figure 2 in Appendix A.

3.5 Deviations from Sampling and Analysis Plan

The field investigative and sampling program was carried out following the requirements of the Phase Two property, as described in Section 4. No significant deviations from the sampling and analysis plan (SAAP), as provided in Appendix C, were reported that affected the sampling and data quality objectives for the Phase Two property.

The samples were logged and screened in the field for indications of impact based on visual, olfactory observations and combustible gas measurements however only the first six test pits were field screened with a combustible gas monitor, as the weather prohibited screening of the remainder of the samples. The field screening measurements, in parts per million by volume (ppmv), are presented in the borehole logs provided in Appendix D.

3.6 Impediments

No physical impediments were encountered during the field investigation. The entire Phase Two property was accessible at the time of the investigation.

4 Investigation Method

4.1 General

The Phase Two property investigative activities consisted of the drilling of boreholes and excavating test pits to facilitate the collection of soil samples for chemical analysis and the installation of piezometers for hydrogeological property characterization.

4.2 Borehole Drilling

Prior to the commencement of drilling, the locations of underground public utilities including telephone, natural gas and electrical lines were marked at the Phase Two property by locating companies. A private utility locating contractor was also retained to clear the individual borehole locations.

On March 24, 2020 six boreholes (BH1 to BH6) were advanced at the Phase Two property by George Downing Estate Drilling Ltd. (Downing), a licensed well contractor, under the full-time supervision of EXP staff. A CME 55 track mounted drill rig was used to advance the boreholes. Piezometers were installed in BH-1, BH-3 and BH-5 to facilitate groundwater monitoring. The locations of the boreholes are presented on Figure 3 in Appendix A.

No petroleum-based greases or solvents were used during drilling activities. EXP staff continuously monitored the drilling activities and recorded the depth of soil sample collection and total depth of boring. Field observations are summarized on the borehole logs provided in Appendix D.

4.3 Test Pitting

The site investigative activities consisted of the advancement of 16 test pits to facilitate the collection of soil samples for chemical analysis and to record relevant geotechnical information.

Prior to the commencement of excavation, the locations of underground public utilities including telephone, natural gas and electrical lines were marked at the subject property by public locating companies. A private utility locating contractor was also retained to clear the property.

On March 17, 2020, 16 test pits (TP-01 to TP-16) were advanced at the Phase Two property by Thomas Cavanagh Construction (Cavanagh), under the full-time supervision of EXP staff. A Caterpillar 320D LLR excavator was used to complete the test pits. Dedicated nitrile gloves (one pair per sample) were used during sample handling. TP-01 and TP-02 did not penetrate the frozen ground and were therefore not recorded as part of the investigation, as the conditions observed at these test pits did not accurately reflect the subsurface conditions of the site.

Soil samples for geologic characterization were collected at regular depth intervals to a maximum of 4.2 m in the overburden materials. EXP staff continuously monitored the excavating activities to log the stratigraphy observed from the pits, to record the depth of the samples, to record total depths of excavation, and to screen the samples by recording visual or olfactory observations of potential impacts and measuring petroleum vapours. Field observations are documented on the test pit logs provided in Appendix B.

The locations of the test pits are shown on Figure 3 in Appendix A.

4.4 Soil Sampling

The soil sampling during the completion of this Phase Two ESA was undertaken in general accordance with the SAAP presented in Appendix C.

Grab soil samples for geologic characterization were collected on a continuous basis in the overburden materials during test pit excavation. Soil samples were not collected during the borehole drilling program.

Geologic details of the test pits and recovered cores were logged by EXP field staff. EXP staff continuously monitored the drilling and excavation activities to log the stratigraphy observed from the recovered soil cores, to record the depth of soil sample collection, to record total depths of borings/excavation, and to record visual or olfactory observations of potential impacts. Field observations are summarized on the borehole logs provided in Appendix D.

Soil samples identified for possible laboratory analysis were collected from the test pits and placed directly into pre-cleaned, laboratory-supplied glass sample jars/vials. Samples to be analysed for PHC fraction F1 and BTEX were collected using a soil core sampler and placed into vials containing methanol as a preservative. The jars and vials were sealed with Teflon-lined lids to minimize headspace and reduce the potential for induced volatilization during storage/transport prior to analysis. All soil samples were placed in clean coolers containing ice prior to and during transportation to the subcontract laboratory, Bureau Veritas Laboratories (BV Labs) of Ottawa, Ontario. The samples were transported/submitted within 24 hours of collection to the laboratory following chain of custody protocols for chemical analysis.

4.5 Field Screening Measurements

The remaining portion of each soil sample was placed in a sealed Ziploc plastic bag and allowed to reach ambient temperature prior to field screening with a combustible vapour meter calibrated to hexane gas prior to use. The field screening measurements were made by inserting the instrument's probe into the plastic bag while manipulating the sample to ensure volatilization of the soil gases. These 'headspace' readings provide a real-time indication of the relative concentration of combustible vapours encountered in the subsurface during drilling and are used to aid in the assessment of the vertical and horizontal extent of potential impacts and the selection of soil samples for analysis.

Readings of potential hydrocarbon vapour concentrations in the soil samples collected during the test pitting investigation were recorded using an RKI Eagle 2, where there was sufficient recovery. This instrument is designed to detect and measure concentrations of combustible gas in the atmosphere to within 5 parts per million by volume (ppmv) from 0 ppmv to 200 ppmv, 10 ppmv increments from 200 ppmv to 1,000 ppmv, 50 ppmv increments from 1,000 ppmv to 10,000 ppmv, and 250 ppmv increments above 10,000 ppmv. It is equipped with two ranges of measurement, reading concentrations in ppmv or in percentage lower explosive limit (% LEL). The RKI Eagle 2 instrument can determine combustible vapour concentrations in the range equivalent to 0 to 11,000 ppmv of hexane.

The instrument was configured to eliminate any response from methane for all sampling conducted at the subject property. Instrument calibration is checked on a daily basis in both the ppmv range and % LEL range using standard gases comprised of known concentrations of hexane (400 ppmv, 40% LEL) in air. If the instrument readings are within $\pm 10\%$ of the standard gas value, then the instrument is deemed to be calibrated, however if the readings are greater than $\pm 10\%$ of the standard gas value then the instrument is re-calibrated prior to use.

Only the first six test pits were field screened, as the weather prohibited screening of the remainder of the samples. The field screening measurements, in parts per million by volume (ppmv), are presented in the borehole logs provided in Appendix D.

Soil samples were selected for laboratory analysis based on combustible vapour measurements and visual and olfactory evidence of impacts, where observed. Six fill samples and four native soil samples were submitted for laboratory analysis of PHC and BTEX. Seven fill samples, four native soil samples and on duplicate were submitted for laboratory analysis of metals. All samples were also analysed for pH.

4.6 Groundwater: Piezometer Installation

Piezometers were installed in three of the boreholes. The piezometers were installed in general accordance with the Ontario Water Resources Act - R.R.O. 1990, Regulation 903 (as amended) and were installed by Downing, a licensed well contractor, using a CME 45 track-mounted drill rig.

The piezometers consisted of a 25 mm diameter Schedule 40 PVC screen that was no more than 3.0 m long and a 31 mm diameter Schedule 40 PVC riser pipe that was at least 0.8 m long. The annular space around the wells was backfilled with sand to an average height of 0.3 m above the top of the screen. A bentonite seal was added from the top of the sand pack to approximately 0.3 m below ground surface. Details of the monitoring well installations are shown on the borehole logs provided in Appendix D.

4.7 Groundwater: Field Measurement of Water Quality Parameters

On May 14, 2019, the monitoring wells were inspected for general physical condition and groundwater depth. Groundwater elevations were measured again on July 2, 2020

Table 4.1 – Monitoring and Elevation Data

Monitoring Well ID	Ground Elevation (m)	Date of Last Reading	Depth to Water (m)	Elevation of Groundwater (m)
DI I 04	447.4	May 14, 2020	1.20	115.94
BH-01	117.1	July 2, 2020	2.02	115.08
DI LOG	400.4	May 14, 2020	1.60	118.77
BH-03	120.4	July 2, 2020	2.11	118.29
	BH-05 116.5	May 14, 2020	2.60	113.90
BH-05		July 2, 2020	2.75	113.75
TP -7	117.6	Completion	1.7	115.9
TP-11	119.2	Completion	0.9	118.3
TP-12	119.6	Completion	1.5	118.1
TP-13	119.4	Completion	2.6	116.8
TP-17	120.8	Completion	3.1	117.70

Water levels observations were made in the exploratory boreholes at the times and under the conditions stated in the scope of services. These data were reviewed and EXP's interpretation of them discussed in the text of the report. Note that fluctuations in the level of the groundwater may occur due to seasonal variation such as precipitation, snowmelt, rainfall activities, and other factors not evident at the time of measurement and therefore may be at a higher level during wet weather periods.

Water levels observations were made in the exploratory boreholes at the times and under the conditions stated in the scope of services. These data were reviewed and EXP's interpretation of them discussed in the text of the report. Note that fluctuations in the level of the groundwater may occur due to seasonal variation such as precipitation, snowmelt, rainfall activities, and other factors not evident at the time of measurement and therefore may be at a higher level during wet weather periods

Groundwater flow direction was determined to be to the northeast.

4.8 Groundwater: Sampling

Based on the nature of the APEC identified in the Phase One report, groundwater sampling was not determined to be required at the Phase Two property.

4.9 Sediment: Sampling

As no water body was present at the Phase Two property, sediment sampling was not part of the Phase Two ESA.

4.10 Analytical Testing

The contracted laboratory selected to perform chemical analysis on all soil samples was BV Labs. BV Labs is an accredited laboratory under the Standards Council of Canada/Canadian Association for Laboratory Accreditation in accordance with ISO/IEC 17025:1999- *General Requirements for the Competence of Testing and Calibration Laboratories*.

4.11 Residue Management

The drill cuttings from drilling activities and soil excavated from test pits were disposed of on site. Fluids from cleaning drilling equipment were disposed of by the driller at their facility.

4.12 Elevation Surveying

A geodetic elevation survey was conducted to obtain vertical control of the piezometer locations. The ground surface elevation of each test pit and borehole location was surveyed using a level and Universal Transverse Mercator (UTM) coordinates.

4.13 Quality Assurance and Quality Control Measures

A QA/QC program was also implemented to ensure that the analytical results received are accurate and dependable. A QA/QC program is a system of documented checks that validate the reliability of the data. Quality Assurance is a system that ensures that quality control procedures are correctly performed and documented. Quality Control refers to the established procedures observed both in the field and in the laboratory, designed to ensure that the resulting end data meet intended quality objectives. The QA/QC program implemented by EXP incorporated the following components:

- Collecting and analysing blind duplicate soil samples to ensure analytical precision
- Using dedicated and/or disposable sampling equipment
- Following proper decontamination protocols to minimize cross-contamination
- Maintaining field notes and completing field forms to document field activities
- Using only laboratory-supplied sample containers and following prescribed sample protocols, including using proper preservation techniques, meeting sample hold times, and documenting sample transmission on chains of custody, to ensure the integrity of the samples is maintained

BV Lab's QA/QC program involved the systematic analysis of control standards for the purpose of optimizing the measuring system as well as establishing system precision and accuracy and included calibration standards, method blanks, reference standards, spiked samples, surrogates and duplicates.

5 Review and Evaluation

5.1 Geology

The detailed soil profiles encountered in the boreholes and test pits are provided on the borehole and test pit logs in Appendix D. Boundaries of soils indicated on the logs are intended to reflect transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change.

A 100 mm to 200 mm thick layer of topsoil was encountered at the surface in Borehole Nos. 2, 6 and at Test Pit Nos. 5, 11, 12 and 13.

Heterogeneous fill material was encountered at all borehole and test pit locations and extended to depths ranging between 0.3 m to 2.9 m (Elevations 119.8 m to 114.2 m). The fill extends to the surface of the bedrock/auger refusal depths of 0.3 m 2.3 m (Elevation 117.8 m to 115.7 m) in Borehole Nos. 1, 3 and 4 and in Test Pit Nos. 3 to 5,10, 11, 13 and 14.

Peat/marl complex deposit was encountered underlying the fill material in Borehole Nos. 2, 4 and 5 and in Test Pit Nos. 6 to 9, 12, and 15 at depths ranging from 0.8 m to 2.3 (Elevations 118.8 m to 114.2) and extended to depths ranging from 1.4 m to 3.6 m (Elevations 118.5 m to 113.5 m).

The organic peat in Borehole No. 5 is underlain by a deposit of silty sand with some gravel which extends to 5.3 m depth (Elevation 111.2 m).

The peat/marl in Borehole No. 2 and in Test Pit Nos. 7, 8, 15, fill in Borehole No. 6, Test Pit 16 to 18 and the silty sand in Borehole No. 5 are underlain by glacial till deposit which extends to auger refusal depth, i.e. inferred surface of the bedrock contacted at depths of 1.8 m to 6.2 m (Elevation 118.1 m to 110.3 m). The glacial till is grey and comprised of silty sand with clay and numerous cobbles and boulders.

Refusal to augers or to excavator bucket advancement was encountered in all boreholes/test pits at depths ranging between 0.3 and 6.2 m below the existing ground surface (Elevation 115.3 m to 118.1 m).

Based on the geological profile, a cross-section of the site was prepared, as shown on Figure 5 in Appendix A.

5.2 Groundwater: Elevations

Three piezometers were installed on Phase Two property. The maximum depth of borehole advancement was 7.2 metres below ground surface.

Groundwater elevations and water levels were measured at the Phase Two property on May 14, 2020 and July 2, 2020. These are provided in Table 4.1. Groundwater flow was determined to be to the northeast.

EXP notes that groundwater levels can be influenced by seasonal changes, the presence of subsurface structures, or fill, however based on the presence of Feedmill Creek approximately 200 metres north of the Phase Two property and the lack of utilities on the Phase Two property, it is unlikely that any of these factors will affect the groundwater flow direction at the Phase Two property. Similarly, no buried utilities are present on the Phase Two property; therefore, it is unlikely that the presence of subsurface utilities has affected the direction of groundwater flow.

5.3 Groundwater: Hydraulic Gradients

Horizontal hydraulic gradients were not calculated for the groundwater flow. Groundwater flow direction was determined to be to the northeast.

5.4 Soil Texture

Based on field observations and grain size analysis, the soil texture was determined to be primarily coarse textured, as silty sand and gravel fill is the predominant soil type on site. Grain-size analyses performed on four (4) fill samples (Appendix D). A review of these figures revealed a fill composition of 7 to 51 percent gravel, 39 to 86 percent sand and 7 to 31 percent silt and clay.

5.5 Soil: Field Screening

Field screening involved using the combustible vapour meter to measure vapour concentrations, in ppmv, in the collected soil samples in order to assess the presence of soil gases which would imply potential petroleum hydrocarbon impact. Vapour readings were observed for the first six test pits, after which the weather prohibited vapour readings. The test pit vapour readings ranged from non-detectable to 5 ppmv. No staining or odours were observed in any of the soil samples.

5.6 Soil Quality

In accordance with the scope of work, chemical analyses were performed on selected soil samples recovered from the test pits. The selection of representative "worst case" soil samples from the testpits was based on field visual or olfactory evidence of impacts and/or presence of potential water bearing zones. Copies of the laboratory Certificates of Analysis are provided in Appendix F.

The MECP Table 3 SCS are applicable if soil pH is in the range of 5 to 9 for surficial soil (less than 1.5 m below soil surface) and 5 to 11 for subsurface soil (greater than 1.5 m below soil surface). The Certificates of Analysis include twelve pH measurements. Samples were collected from both depths less than 1.5 mbgs, depths greater than 1.5 mbgs. The pH results for all samples were between 7.12 and 7.80 which is within the acceptable range for the application of MECP Table 3 SCS.

5.6.1 Petroleum Hydrocarbons

Ten soil samples were submitted for chemical analysis of PHC and BTEX. All of the soil samples were within the MECP Table 3 SCS. Nine of the ten soil samples submitted were within the MECP Table 1 SCS.

The PHC and BTEX results are provided in Table 1 in Appendix E and shown on Figures 6 and 6A in Appendix A.

5.6.2 Metals

Twelve soil samples and one field duplicate were submitted for chemical analysis of metals. All of the soil samples were within the MECP Table 3 SCS and the Table 1 Ontario background concentrations

The metals results are provided in Table 2 in Appendix E and shown on Figures 7 and 7A in Appendix A.

5.6.3 Chemical Transformation and Soil Contaminant Sources

There are no soil contaminant sources on the Phase Two property. All parameters met the applicable Table 3 SCS and as such chemical transformations are not a significant concern at the Phase Two property.

5.6.4 Evidence of Non-Aqueous Phase Liquid

Inspection of the soil samples retrieved from the boreholes and test pits did not indicate the presence of non-aqueous phase liquid (NAPL), staining, or sheen. Odours were not observed during soil sampling activities. NAPL is not expected to be present at the Phase Two property.

5.6.5 Maximum Concentrations

None of the soil samples exceeded the applicable Table 3 SCS. Maximum soil concentrations are provided in Table 3 in Appendix E.

5.7 Groundwater Quality

Based on the nature of the APEC identified in the Phase One report, groundwater sampling was not determined to be required at the Phase Two property.

5.8 Sediment Quality

As there were no water bodies on the Phase Two property, surface water and sediment sampling were not required.

5.9 Quality Assurance and Quality Control Results

Quality assurance and quality control measures were taken during the field activities to meet the objectives of the sampling and quality assurance plan to collect unbiased and representative samples to characterize existing conditions in the fill/upper overburden materials and groundwater at the Phase Two property. QA/QC measures, as described in Section 4.13, included:

- Collecting and analysing blind duplicate soil samples to ensure analytical precision
- Using dedicated and/or disposable sampling equipment
- Following proper decontamination protocols to minimize cross-contamination
- Maintaining field notes and completing field forms to document field activities
- Using only laboratory-supplied sample containers and following prescribed sample protocols, including using proper preservation techniques, meeting sample hold times, and documenting sample transmission on chains of custody, to ensure the integrity of the samples is maintained

Duplicate soil sample pairs TP11-Fill and TP21-Fill were submitted for chemical analysis of metals. For QA/QC purposes, the analytical sample results are quantitatively evaluated by calculating the relative percent difference (RPD) between the samples and their duplicates. Since laboratory duplicates are a measure of laboratory precision, while field duplicates are a measure of both field and laboratory precision, the RPD alert limits for field duplicates were determined to be twice the limits for laboratory duplicates. The RPD are provided in Table 4 in Appendix E. All of the RPD were either within the alert limits or not calculable.

Certificates of Analysis were received from BV Labs reporting the results of all the chemical analyses performed on the submitted soil and groundwater samples. Copies of the BV Labs Certificates of Analysis are provided in Appendix F. A review of the Certificates of Analysis prepared by BV Labs indicates that they were in compliance with the requirements set out under subsection 47(3) of Ontario Regulation 153/04 (as amended).

The analytical program conducted by BV Labs included analytical test group specific QA/QC measures to evaluate the accuracy and precision of the analytical results and the efficiency of analyte recovery during solute extraction procedures. The BV Labs laboratory QA/QC program consisted of the preparation and analysis of laboratory duplicate samples to assess precision and sample homogeneity, method blanks to assess analytical bias, spiked blanks and QC standards to evaluate analyte recovery, matrix spikes to evaluate matrix interferences. The laboratory QA/QC results are presented in the Quality Assurance Report provided in the Certificate of Analysis prepared by Maxxam. The QA/QC results are reported as percent recoveries for matrix spikes, spike blanks and QC standards, relative percent difference for laboratory duplicates and analyte concentrations for method blanks.

The BV Labs QA/QC results were assessed against test group control limits in the case of spiked blanks, matrix spikes and surrogate recoveries and alert criteria in the case of method blanks and laboratory duplicates. Review of the laboratory QA/QC results reported by BV Labs indicated that they were within acceptable control limits or below applicable alert criteria for the sampled media and analytical test groups. Based on the assessment of the QA/QC, the analytical results reported by BV Labs are of acceptable quality and data qualifications are not required.

5.10 Phase Two Conceptual Site Model

This section presents a Conceptual Site Model (CSM) providing a narrative, graphical and tabulated description integrating information related to the Phase Two property's geologic and hydrogeological conditions, areas of potential environmental concern/potential contaminating activities, the presence and distribution of contaminants of concern, contaminant fate and transport, and potential exposure pathways.

5.10.1 Introduction

The Phase Two ESA Property is located at 6171 Hazeldean Road in Ottawa, as shown on Figure 1 in Appendix A. The Phase Two property is vacant and has never been developed. The surrounding properties are used for residential and commercial purposes. Future use of the property is intended to be residential.

Refer to Table 5.1 for the Site identification information.

Civic Address 6171 Hazeldean Road, Ottawa, Ontario

Current Land Use Not used for any purpose defined by Ontario Regulation 153/04, vacant land

Proposed Future Land Use Residential

Property Identification Number 044871709

UTM Coordinates NAD83 Zone 18 426475.08 m E, 5013477.78 m N

Site Area 9.0 ha

Property Owner Kavanagh Family Investments Limited

Table 5.1 - Site Identification Details

5.10.2 Physical Site Description

The Phase Two property is located on the north side of Hazeldean Road, 160 m east of Carp Road, at 6171 Hazeldean Road in Ottawa, Ontario. The Phase Two property is rectangular in shape and has an area of approximately 9.0 hectares. The property is currently vacant field. A Site Location Plan is provided as Figure 1 in Appendix A.

The Phase Two property is in an arterial main street zoned area. The property is legally described as PART OF LOT 23 CONCESSION 12, GOULBOURN, PARTS 2, 4 AND 6 PLAN 4R23045 CITY OF OTTAWA and property identification number (PIN) 044871709.

The surrounding area of the Phase Two property was observed to be residential and vacant properties to the north, and residential and commercial properties to the east, south, and west. No environmentally sensitive activities or infrastructures that could present any environmental concerns to the Phase Two property were observed on the adjacent properties based on observations made from the boundaries of the Phase Two property.

The review of the topographic map indicated that the Phase One property and surrounding area were slope to the northeast. Given the topography at the site, groundwater is inferred to flow north to the northeast towards Feedmill Creek. Feedmill Creek is a tributary to Carp River and located 200 m north of the site.

In accordance with Section 41 of the Ontario Regulation 153/04 (as amended), the Phase Two property is not an environmentally sensitive area. In addition, the Phase Two property is not located within an area of natural significance and it does not include land that is within 30 metres of an area of natural significance.

Based on the Phase Two ESA investigation, the Phase Two property is not a shallow soil property as defined in Section 43.1 of the regulation. It does not include all or part of a water body or is adjacent to a water body or includes land that is within 30 metres of a water body.

5.10.3 Geological and Hydrogeological Setting

The detailed soil profiles encountered in the boreholes and test pits are provided on the borehole and test pit logs in Appendix D. Boundaries of soils indicated on the logs are intended to reflect transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change

The investigation revealed that the subsurface conditions is comprised of a surficial layer of topsoil or granular fill overlying heterogenous fill material, which is underlain by glacial till or by bedrock.

On the south side of the property, near Hazeldean Road, peat was encountered in the boreholes and test pits. The inferred horizontal extent of the peat layer is illustrated on Figure 3. The peat and marl layer was encountered at depths between 0.75 to 3.1 mbgs.

Bedrock, or refusal at probable bedrock, was encountered in all of the boreholes and test pits. Depth to bedrock varied across the property between 0.6 mbgs to 6.2 mbgs. BH-1 to BH-3 were advanced into the bedrock for characterization, all other boreholes and all test pits were terminated at bedrock. Bedrock consisted of dark grey limestone with shale laminations.

Based on the geological profile, a cross-section of the site was prepared, as shown on Figure 5 in Appendix A.

A summary of factors that apply to the Phase Two property is provided in Table 5.2

Table 5.2 Site Characteristics

Characteristic	Description	
Minimum Depth to Bedrock	0.3 mbgs	
Minimum Depth to Overburden Groundwater	1.2 mbgs (May 14, 2019)	
Shallow Soil Property	No, majority of bedrock is greater than 2.0 mbgs	
Proximity to water body or ANSI	200 m	
Soil pH	7.12 - 7.80	
Soil Texture	Coarse	
Current Property Use	Not defined by O.Reg 153	

Future Property Use	Residential	
Proposed Future Building	Single and multi-unit residences	
Areas Containing Suspected Fill	Entire property	

5.10.4 Underground Utilities

Active utilities are not expected to be present at the Phase Two property. The site is located in an area of municipally supplied water and sewer.

5.10.5 Potentially Contaminating Activities

Ontario Regulation 153/04 defines a PCA as one of 59 operations set out in Table 2 of Schedule D that occurs or has occurred in a Phase Two study area. The following PCA was identified:

PCA #30 – Importation of Fill of Unknown Quality; and

5.10.6 Areas of Potential Environmental Concern/Potential Contaminants of Concern

Ontario Regulation 153/04 defines an APEC as an area on a property where one or more contaminants are potentially present. The following APEC were identified on the Phase Two property, as shown on Figure 2 in Appendix A:

APEC #1 – Entirety of the Phase Two property

5.10.7 Investigation

The Phase Two ESA was conducted to assess the soil quality at the Phase Two property. As indicated above, the analytical program of the Phase Two ESA included testing of soil for PHC, BTEX, and metals from the boreholes and test pits on the Phase Two property. The boreholes and test pit locations are shown on Figure 3 in Appendix A.

5.10.8 Contaminants of Concern (COC)

Based on the results of the investigation, no COC at the Phase Two property exceeded the applicable MECP Table 3 SCS. Soil analytical results are provided in Figures 6 and 6A and 7 and 7A in Appendix A.

5.10.9 Contaminant Fate and Transport

Based on the nature of the APEC identified in the Phase One report, groundwater sampling was not determined to be required at the Phase Two property.

6 Conclusions

For assessment purposes, EXP selected the 2011 Table 3 Site Condition Standards (SCS) in a non-potable groundwater condition for residential/parkland/institutional property use and coarse textured soil. The results were also compared to Table 1 full depth background SCS. Based on the Phase Two ESA results, the following summary is provided:

- The investigation revealed that the subsurface conditions is comprised of a surficial layer of topsoil or granular fill overlying heterogenous fill material, which is underlain by glacial till or by bedrock. On the south side of the property, near Hazeldean Road, peat was encountered in the boreholes and test pits. The peat and marl layer were encountered at depths between 0.75 to 3.1 mbgs.
- Bedrock, or refusal at probable bedrock, was encountered in all of the boreholes and test pits. Depth
 to bedrock varied across the property between 0.6 mbgs to 6.2 mbgs. BH-1 to BH-3 were advanced
 into the bedrock for characterization, all other boreholes and all test pits were terminated at bedrock.
 Bedrock consisted of dark grey limestone with shale laminations.
- Groundwater measurements taken on May 14, 2020 and July 2, 2020 in monitoring wells installed in three of the boreholes indicate that the groundwater table to be at a depth of 1.2 to 2.6 m in May and 2.02 m to 2.75 m below grade in July. Groundwater flow is interpreted to be towards the northeast. The groundwater table is subject to seasonal fluctuation and may be at higher depths during wet weather conditions.
- Ten soil samples were submitted for laboratory analysis of BTEX and PHC. Twelve soil samples were submitted for metals and inorganics.
- For assessment purposes, EXP selected the 2011 Table 1 (Ontario Background) and Table 3 SCS in a non-potable groundwater condition for residential/parkland/institutional property use and coarse textured soil.
- All of the soil samples were within the MECP (Ministry of the Environment, Conservation and Parks)
 Table 3 SCS for all parameters that were analysed. All but one soil sample met the criteria for MECP
 Table 1 SCS.
- Based on the results of the Phase Two ESA, the site meets the SCS for the intended residential land use.
- Soil samples were submitted for laboratory analysis of BTEX, PHC, and metals. All of the soil samples
 were within the MECP Table 3 SCS for all parameters that were analysed. All but one soil sample met
 the criteria for MECP Table 1 SCS.
- Based on the results of the Phase Two ESA, the site meets the SCS for the intended residential land use.

The Qualified Person can confirm that the Phase Two Environmental Site Assessment was conducted per the requirements of Ontario Regulation 153/04, as amended, and in accordance with generally accepted professional practices.

7 Limitation of Liability, Scope of Report, and Third Party Reliance

Basis of Report

This report ("Report") is based on site conditions known or inferred by the investigation undertaken as of the date of the Report. Should changes occur which potentially impact the condition of the site the recommendations of EXP may require re-evaluation. Where special concerns exist, or 11654128 Canada Inc. ("the Client") has special considerations or requirements, these should be disclosed to EXP to allow for additional or special investigations to be undertaken not otherwise within the scope of investigation conducted for the purpose of the Report.

Reliance on Information Provided

The evaluation and conclusions contained in the Report are based on conditions in evidence at the time of site inspections and information provided to EXP by the Client and others. The Report has been prepared for the specific site, development, building, design or building assessment objectives and purpose as communicated by the Client. EXP has relied in good faith upon such representations, information and instructions and accepts no responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of any misstatements, omissions, misrepresentation or fraudulent acts of persons providing information. Unless specifically stated otherwise, the applicability and reliability of the findings, recommendations, suggestions or opinions expressed in the Report are only valid to the extent that there has been no material alteration to or variation from any of the information provided to exp. If new information about the environmental conditions at the Site is found, the information should be provided to EXP so that it can be reviewed and revisions to the conclusions and/or recommendations can be made, if warranted.

Standard of Care

The Report has been prepared in a manner consistent with the degree of care and skill exercised by engineering consultants currently practicing under similar circumstances and locale. No other warranty, expressed or implied, is made. Unless specifically stated otherwise, the Report does not contain environmental consulting advice.

Complete Report

All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment form part of the Report. This material includes, but is not limited to, the terms of reference given to EXP by the Client, communications between EXP and the Client, other reports, proposals or documents prepared by EXP for the Client in connection with the site described in the Report. In order to properly understand the suggestions, recommendations and opinions expressed in the Report, reference must be made to the Report in its entirety. EXP is not responsible for use by any party of portions of the Report.

Use of Report

The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. No other party may use or rely upon the Report in whole or in part without the written consent of EXP. Any use of the Report, or any portion of the Report, by a third party are the sole responsibility of such third party. EXP is not responsible for damages suffered by any third party resulting from unauthorised use of the Report.

Report Format

Where EXP has submitted both electronic file and a hard copy of the Report, or any document forming part of the Report, only the signed and sealed hard copy shall be the original documents for record and working purposes. In the event of a dispute or discrepancy, the hard copy shall govern. Electronic files transmitted by EXP utilize specific software and hardware systems. EXP makes no representation about the compatibility of these files with the Client's current or future software and hardware systems. Regardless of format, the documents described herein are EXP's instruments of professional service and shall not be altered without the written consent of EXP.

8 References

This study was conducted in general accordance with the applicable Regulations, Guidelines, Policies, Standards, Protocols and Objectives administered by the Ministry of the Environment. Specific reference is made to the following:

- EXP Services Inc., Phase One Environmental Site Assessment, 6171 Hazeldean Road, Ottawa, Ontario, April 7, 2020.
- Freeze and Cheery, Groundwater, Prentice Hall, 1979. Prentice Hall
- Ontario Ministry of the Environment, Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario, December 1996
- Ontario Ministry of the Environment, Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011
- Ontario Ministry of the Environment, Guide for Completing Phase Two Environmental Site Assessments under Ontario Regulation 153/04, June 2011.
- Ontario Ministry of the Environment, Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, July 1, 2011.
- Ontario Regulation 153/04, made under the Environmental Protection Act, as amended
- Ontario Regulation 903/90, made under the Water Resources Act, as amende

Appendices

Appendix A : Figures

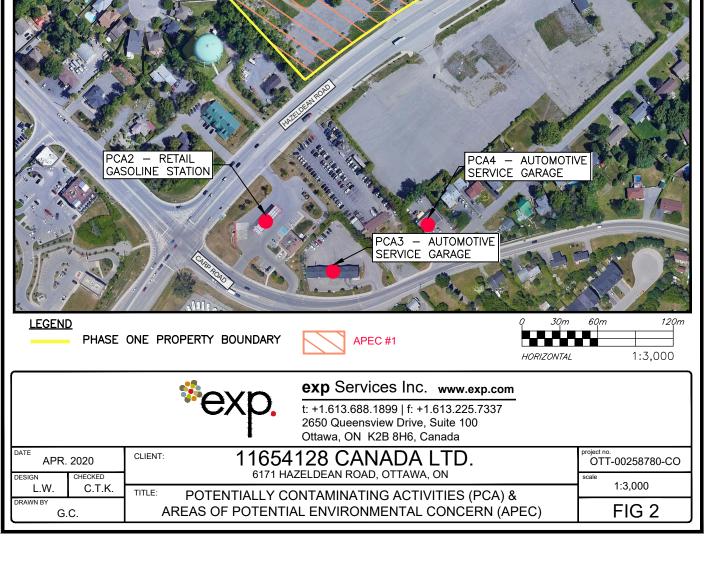
SITE LOCATION PLAN

1:20,000

FIG₁

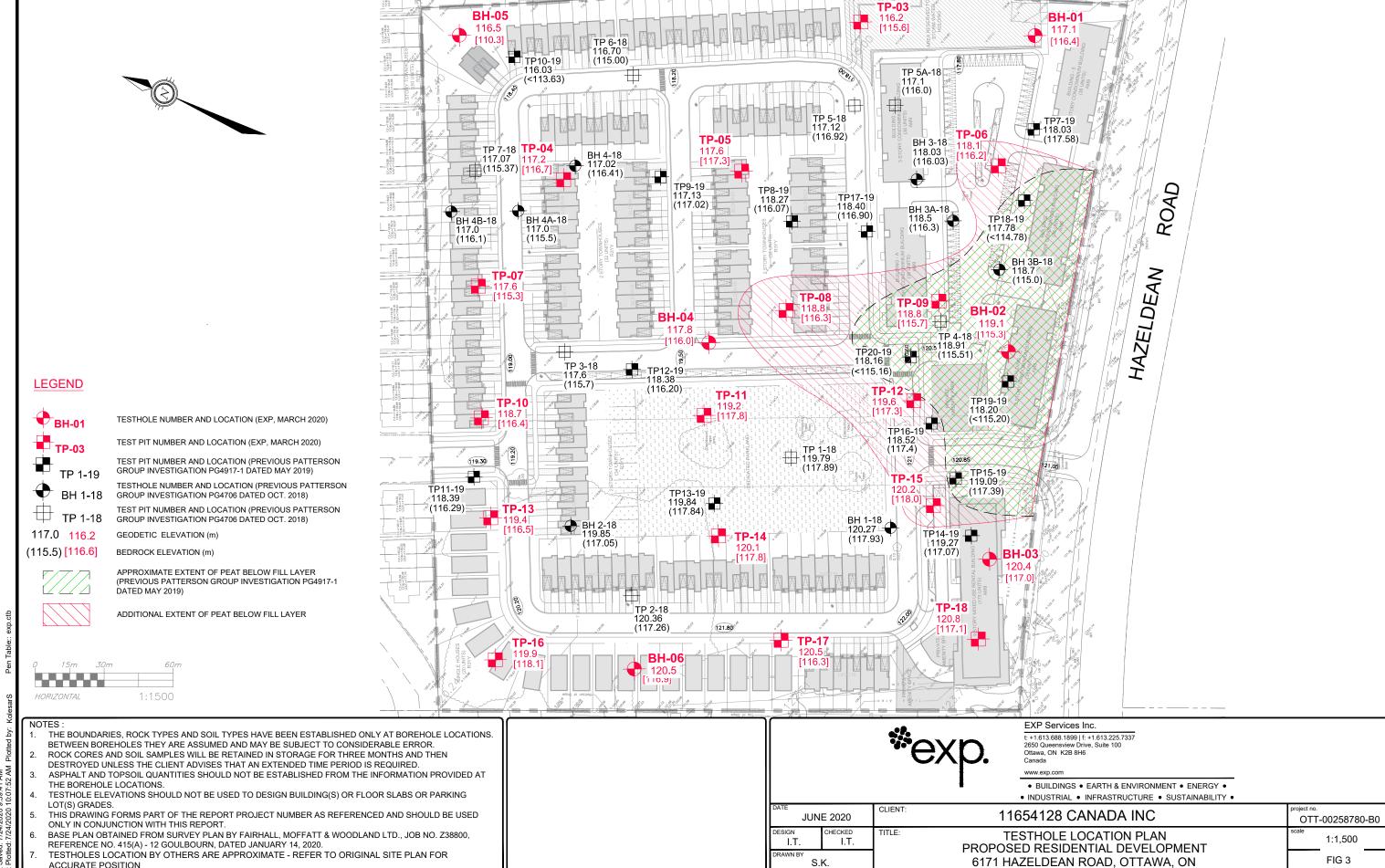
Pen Table:: exp-64.ctb

CuiG

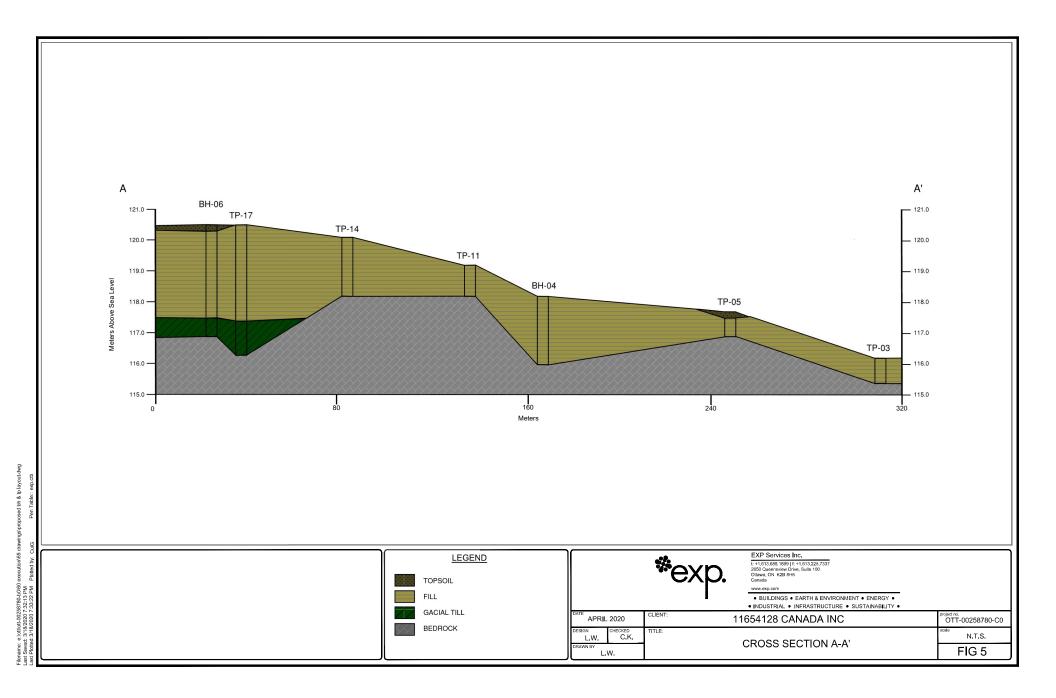

I.T.

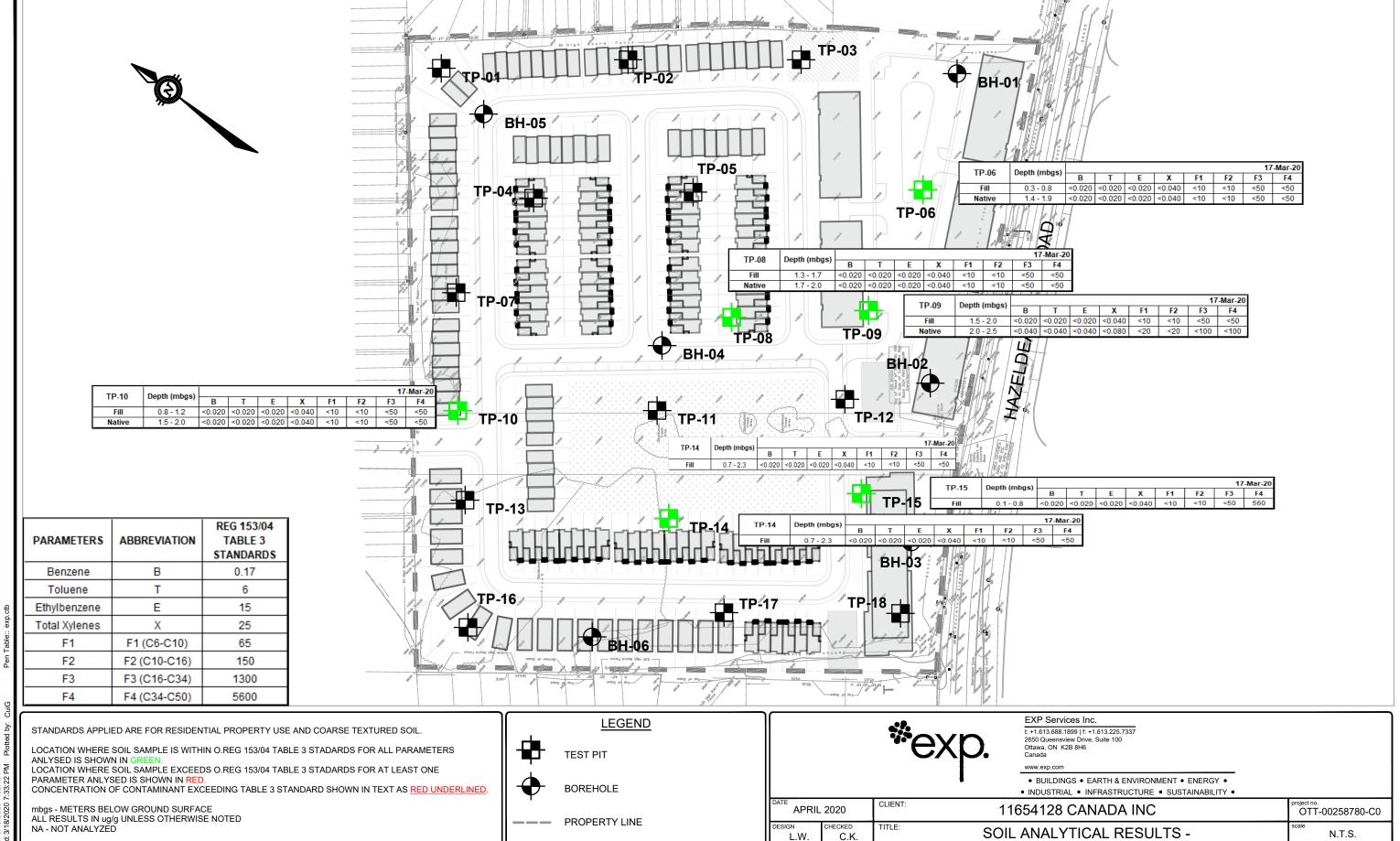
DRAWN BY

I.T.


G.C.

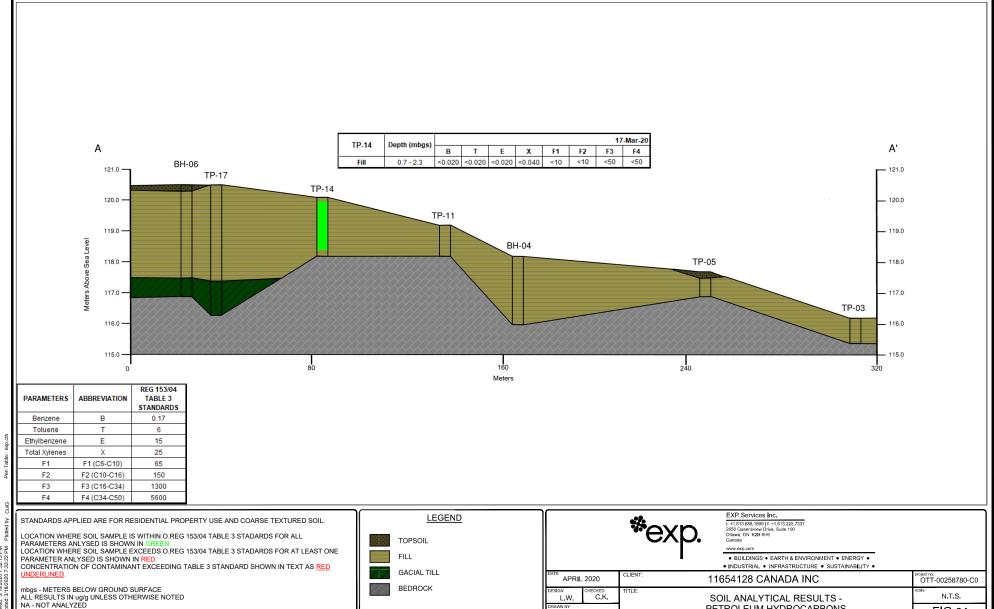
TITLE:




INFERRED DIRECTION GROUNDWATER FLOW

CuiG Plotted by: 4/14/2020 5:26:18 PM :4/14/2020 5:32:48 PM

ACCURATE POSITION

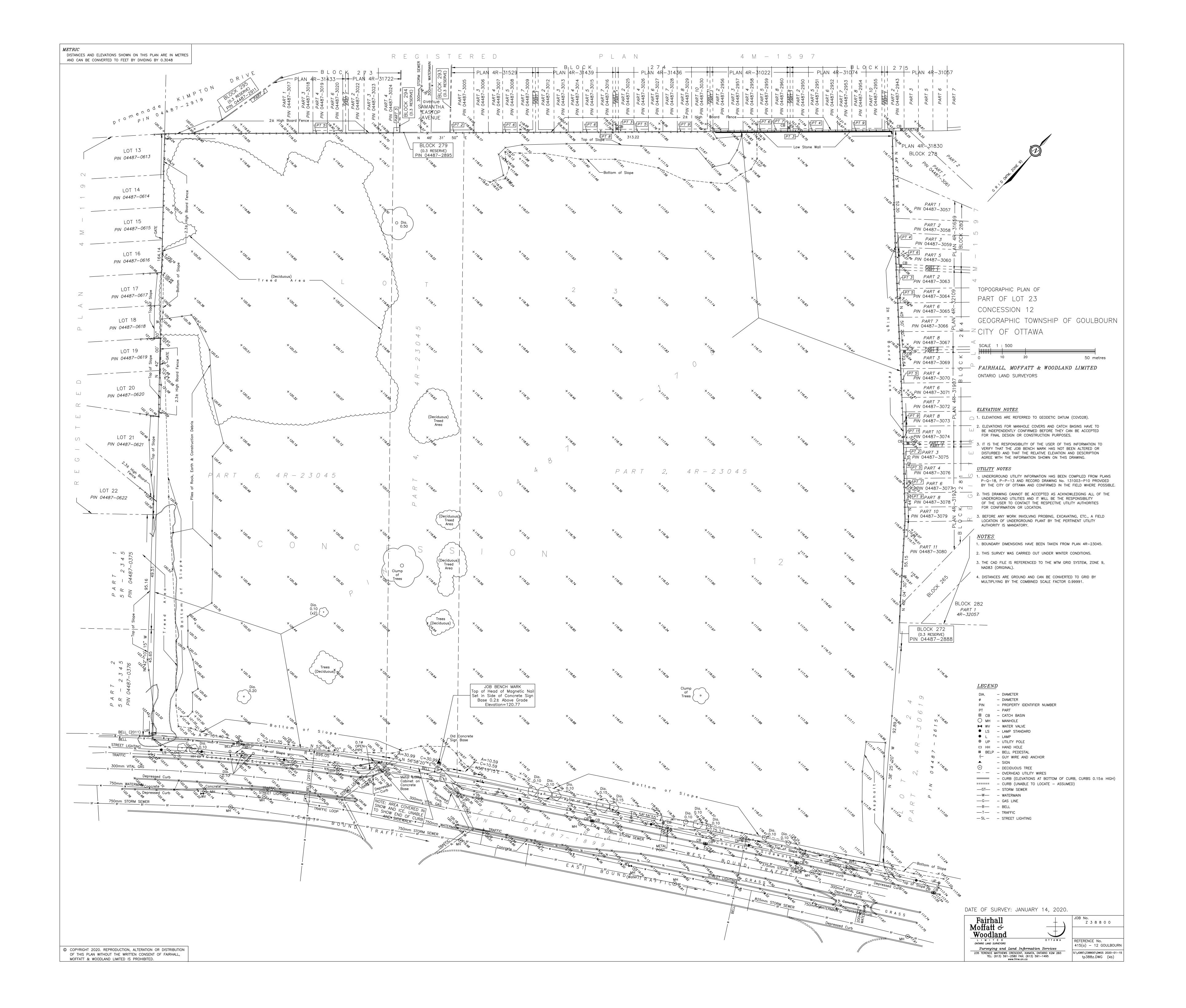


PETROLEM HYDROCARBONS

FIG 7A

L.W.

PETROLEUM HYDROCARBONS


FIG 6A

Filename: e.tottlott-00258780-b0160 execution165 drawingstproposed bh & tp layout.dwg
Last Sweet 31/8/2020 5.231.5 PM
Last Sweet 31/8/2020 5.031.5 PM

EXP Services Inc. 11654128 Canada Inc Phase Two Environmental Site Assessment 6171 Hazeldean Road, Ottawa, Ontario OTT-00258780-C0 July 24, 2020

Appendix B : Survey Plan

EXP Services Inc. 11654128 Canada Inc Phase Two Environmental Site Assessment 6171 Hazeldean Road, Ottawa, Ontario OTT-00258780-C0 July 24, 2020

Appendix C: Sampling & Analysis Plan

OTT-00258780-C0 6171 Hazeldean Road, Ottawa, Ontario Sampling and Analysis Plan

Project Objective

Future use of the property is intended to be residential. Based on a Phase One ESA completed by EXP, the previous use of the RSC property was not defined, based on the definitions outlined in Ontario Regulation 153/04. Regulation 153/04 requires that an RSC be filed if the proposed future land use is more sensitive than the previous use.

SAFETY FIRST

- Lead Safety Discussion
- All workers to orient themselves to site
- Plan sequence of drilling and take note of terrain conditions between BH/MW locations
- Check locates
- Review HASP
- Review forecast and plan for changing weather conditions

Drilling

A total of 6 BH will be drilled and piezometers will be installed in 2 of them. A total of 18 test pits will be excavated.

Based on the previous uses of the Phase Two property, the following on-site potentially contaminating activities (PCA) were identified:

PCA #30 – Importation of Fill of Unknown Quality

No off-site PCA were identified.

Consequently, the following areas of potential environmental concern (APEC) were identified:

• APEC #1 – Entirety of Phase Two property

Drilling requirements are as follows:

- 6 boreholes to be drilled for geotechnical analysis, no soil samples will be taken during the drilling.
- One piezometer to be screened across in the overburden, one piezometer to be screened in the bedrock (3.0 metre screen).
- Bedrock is expected to be present between 0.5 to 4.5 mbgs across the site across the site.

• As drilling progresses, log stratigraphy, describing soil type, colour, staining, odour.

Excavation and soil sampling are as follows:

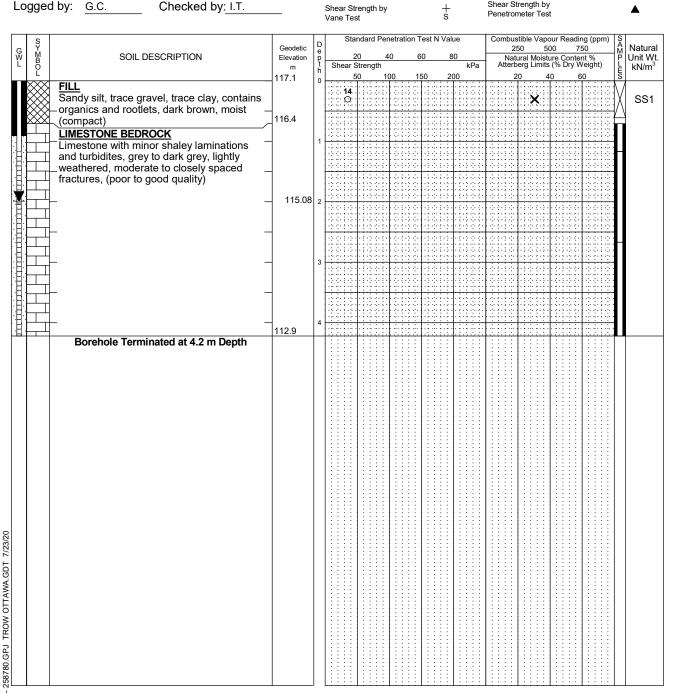
- All test pits to be excavated to bedrock/refusal.
- Bedrock is expected to be present between 0.5 to 4.5 mbgs across the site
- As drilling/excavation progresses, log each sample, describing soil type, colour, staining, odour, petroleum vapour.
- 2 soil samples from each test pit 1 fill and 1 native/worst case (water table depth) to be collected from each test pit. Ten samples shall be submitted for analysis of BTEX, PHC F1 to F4, ICPMS Metals, pH; one field duplicate shall be submitted for analysis of metals.

Locates

See project folder and HASP binder.

Soil Sampling

- Soil samples should be submitted to Maxxam
- All soil samples should be submitted for analysis of BTEX, PHC F1 to F4, ICPMS metals
- All soil samples from the test pits should be submitted for analysis of pH (make sure the surficial sample is entirely above 1.5 m and the worst case sample is entirely below 1.5 m)
- Based on the above, there should be 10 samples and 1 field duplicate.


Soil Cuttings

• Soil cuttings may be left on site

EXP Services Inc. 11654128 Canada Inc Phase Two Environmental Site Assessment 6171 Hazeldean Road, Ottawa, Ontario OTT-00258780-C0 July 24, 2020

Appendix D : Borehole Logs

Project No: OTT-00258780-B0 Figure No. Project: Geotechnical Investigation - Proposed Residential Development Page. 1 of 1 Location: 6171 Hazeldean Road, Ottawa, Ontario Date Drilled: 'March 24, 2020 Split Spoon Sample \boxtimes Combustible Vapour Reading × Auger Sample Natural Moisture Content Drill Type: CME 45 Track-Mounted Drill Rig SPT (N) Value 0 0 Atterberg Limits Dynamic Cone Test Datum: Undrained Triaxial at Geodetic Elevation \oplus % Strain at Failure Shelby Tube Shear Strength by

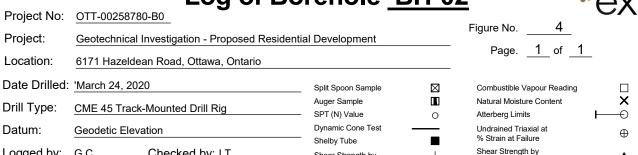
NOTES:

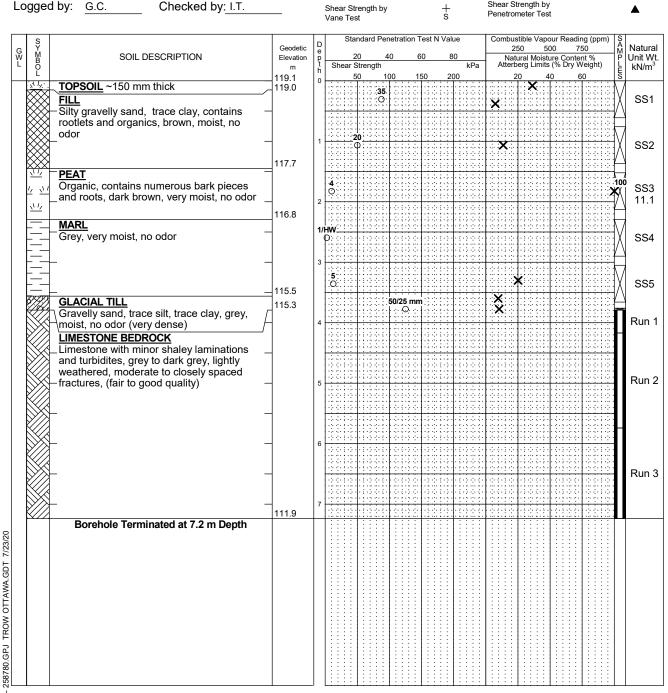
BH LOGS

LOG OF

Borehole data requires interpretation by EXP before use by others

2. Borehole backfilled upon completion of drilling.


3. Field work supervised by an EXP representative.

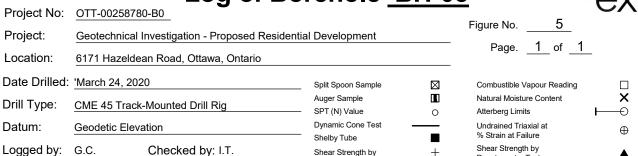

4. See Notes on Sample Descriptions

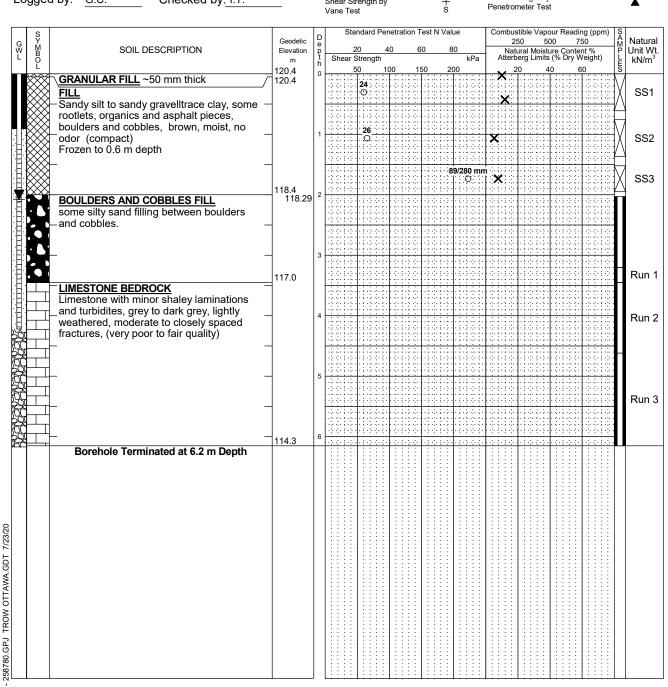
5. Log to be read with EXP Report OTT-00258780-B0

WATER LEVEL RECORDS						
Date	Water Level (m)	Hole Open To (m)				
'March 24, 2020	Dry					
'May 14, 2020	1.2					
July 2, 2020	2.0					

CORE DRILLING RECORD							
Run	Depth	% Rec.	RQD %				
No.	(m)						
1	0.71 - 1.17	100	61				
2	1.17 - 2.67	100	34				
3	2.67 - 4.22	98	72				

NOTES:


Borehole data requires interpretation by EXP before use by others


2. Borehole backfilled upon completion of drilling.

- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5.Log to be read with EXP Report OTT-00258780-B0

WATER LEVEL RECORDS						
Date	Water Level (m)	Hole Open To (m)				
'March 24, 2020	Dry					

CORE DRILLING RECORD						
Run	Depth	% Rec.	RQD %			
No.	(m)					
1	3.79 - 4.17	100	47			
2	4.17 - 5.74	97	39			
3	5.74 - 7.24	100	61			

NOTES:

LOG OF

Borehole data requires interpretation by EXP before use by others

2. Borehole backfilled upon completion of drilling.

3. Field work supervised by an EXP representative.

4. See Notes on Sample Descriptions

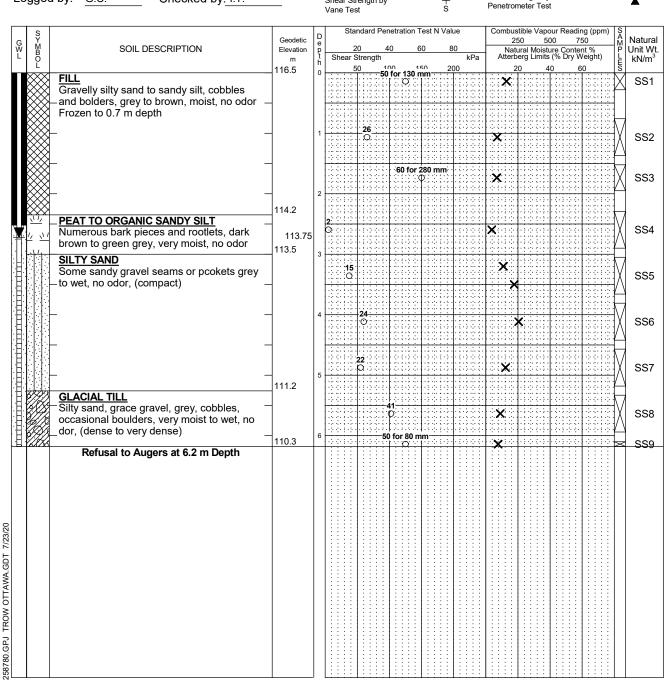
5.Log to be read with EXP Report OTT-00258780-B0

WATER LEVEL RECORDS					
Date	Water Level (m)	Hole Open To (m)			
'March 24, 2020	Dry	• •			
'May 14, 2020	1.6				
July 2, 2020	2.1				

CORE DRILLING RECORD						
Run	Depth	% Rec.	RQD %			
No.	(m)					
1	2.03 - 3.2	48	26			
2	3.2 - 3.45	100	0			
3	3.45 - 4.62	61	30			
4	4.62 - 6.15	85	48			

Log of Borohola BH-01

Project No: <u>OTT-00258780-B0</u>	льс)	CII	Ole	; <u> </u>	<u> </u>				•	(2	ΧĻ
Project: Geotechnical Investigation - Propose	d Residen	tial	Develo	pment			F	Figure N		<u>6</u>	-		ı
Location: 6171 Hazeldean Road, Ottawa, Onta	rio							Pag	ge	1_ of			
Date Drilled: 'March 24, 2020			Split Spo	on Samp	le			Combus	tible Vap	our Readi	ng		
Drill Type: CME 45 Track-Mounted Drill Rig			Auger Sa	ample				Natural N		Content			×
Datum: Geodetic Elevation		-	SPT (N)		st			Atterbero Undraine	ed Triaxia		-		- О
Logged by: G.C. Checked by: I.T.		_	Shelby T Shear St					% Strain Shear St					•
			Vane Tes			+ s		Penetror	neter Te	st			
G W B SOIL DESCRIPTION C L	Geodetic Elevation m 117.8		Shear S	20 4 Strength	10 6		ue 80 kPa 00	Nati Atterb	50 5 ural Mois erg Limit	ture Conte s (% Dry V	50		Natural Unit Wt. kN/m³
FILL Silty gravelly sand to silty sand, trace clay, rootlets and organics, cobbles and boulders, asphalt fill between 0.4 to 0.7 m	117.1					60 ⊕		×				M	SS1
\depth, brown, moist, no odor \tilde{V} \tilde{V} \rightarrow \text{Frozen to 0.4 m depth} ORGANIC SANDY SILT	116.4	1	9					×				M	SS2 20.5
Some peat inclusions, green-grey, very moist, no odor	116.0		10.011.0	50	for 130 i	mm		×	.,			X	SS3
Refusal to Augers at 1.8 m Depth													


258780.GPJ TROW OTTAWA.GDT 7/23/20

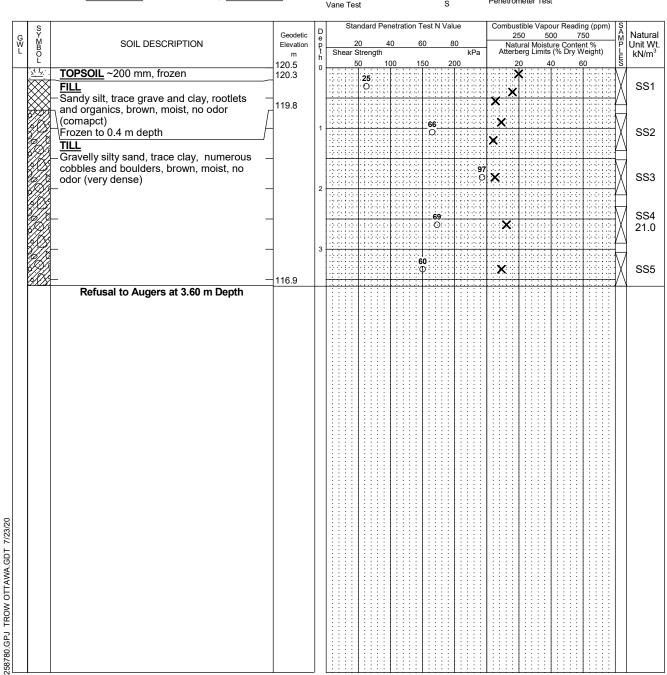
- Borehole data requires interpretation by EXP before use by others
- 2. Borehole backfilled upon completion of drilling.
- $3. \mbox{{\it Field}}$ work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- NOTES:
 1. Boreh use by
 2. Boreh
 3. Field v
 4. See N
 5. Log to 5.Log to be read with EXP Report OTT-00258780-B0

WATER LEVEL RECORDS						
Date	Water Level (m)	Hole Open To (m)				
'March 24, 2020	Dry					

CORE DRILLING RECORD						
Run	Depth	% Rec.	RQD %			
No.	(m)					

Project No:	OTT-00258780-B0	<u></u>		Eigen No. 7		·/\
Project:	Geotechnical Investigation - Proposed Resident	tial Development		Figure No/_ Page. 1 of 1		
Location:	6171 Hazeldean Road, Ottawa, Ontario			Page. <u>1</u> of <u>1</u>	_	
Date Drilled:	March 24, 2020	_ Split Spoon Sample	\boxtimes	Combustible Vapour Reading		
Drill Type:	CME 45 Track-Mounted Drill Rig	Auger Sample - SPT (N) Value	Ⅲ ○	Natural Moisture Content Atterberg Limits	<u> </u>	× ⊸
Datum:	Geodetic Elevation	Dynamic Cone Test — Shelby Tube	_	Undrained Triaxial at % Strain at Failure		\oplus
Logged by:	G.C. Checked by: I.T.	Shear Strength by	_ +	Shear Strength by		•

NOTES


LOG OF

- Borehole data requires interpretation by EXP before use by others
- 2.A 32 mm diameter monitoring well installed as shown.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-00258780-B0

WATER LEVEL RECORDS						
Date	Water Level (m)	Hole Open To (m)				
'March 24, 2020	Dry					
'May 14, 2020	2.4					
July 2, 2020	2.8					

CORE DRILLING RECORD							
Run No.	Depth	% Rec.	RQD %				
INO.	(111)						

	Log of Bor	rehole B	H-06	•	*exn
Project No:	OTT-00258780-B0			0	
Project: Location:	Geotechnical Investigation - Proposed Residential 6171 Hazeldean Road, Ottawa, Ontario	l Development		Figure No8_ Page1_ of _	1 1_
	'March 24, 2020 CME 45 Track-Mounted Drill Rig	Split Spoon Sample Auger Sample		Combustible Vapour Reading Natural Moisture Content	×
_	Geodetic Elevation	SPT (N) Value Dynamic Cone Test Shelby Tube	<u> </u>	Atterberg Limits Undrained Triaxial at % Strain at Failure	⊢ ⊕
Logged by:	G.C. Checked by: I.T.	Shear Strength by Vane Test	+ s	Shear Strength by Penetrometer Test	A

BH LOGS

LOG OF 1

- Borehole data requires interpretation by EXP before use by others
- 2. Borehole backfilled upon completion of drilling.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5.Log to be read with EXP Report OTT-00258780-B0

WAT	ER LEVEL RECO	RDS
Date	Water Level (m)	Hole Open To (m)
'March 24, 2020	Dry	

	CORE DR	RILLING RECOF	RD
Run	Depth	% Rec.	RQD %
No.	(m)		

	Log of 10	30 1 10 <u>11 00</u>	<u> </u>	$\leftarrow x$
Project No:	OTT-00258780-B0		Figure No. 9	
Project:	Geotechnical Investigation - Proposed Residentia	l Development		_
Location:	6171 Hazeldean Road, Ottawa, Ontario		Page. <u>1</u> of <u>1</u>	_
Date Drilled:	'March 17, 2020	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	CAT 320D Excavator	Auger Sample SPT (N) Value O	Natural Moisture Content Atterberg Limits	× ⊢—⊖
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	G.C. Checked by: I.T.	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	A

)	S		Geodetic	D	St	anda	rd P	enet	tratio	n T	est l	N Va	lue		С	omb							n) S A M P	Natur
W L	M B O	SOIL DESCRIPTION	Elevation	p t	Shear	20 Strei	nath	40		6	0		30	kPa	F	N Atte	atu	ral M erg Li	oistu mits	ure C	onte	nt % /eight)	P	Unit W
	Ľ		116.2	h 0		50			150		2			<u> </u>			20		40 60			L E S	KIN/II	
	\bowtie	Gravelly sand to silty sand, some cobbles	,			· [·		+				• {• }	ŀi.	} ÷ ÷	:	:::	4	: i : :	. ; .	. ; . ;	÷÷			
	\bowtie	and boulders, clayey silt inclusions, brow	n,		1								1		1:	:::	1			1	**			
	SOIL DESCRIPTION Solic Description Comparison Comp																							
	 	_	115.6	Elevation m 116.2 P																				
	\sim		113.0			†:		†				::	†	 	†:	#	\dagger	: :			: :		#	
		Depth on Inferred Bedrock				1						: :	1		:	: :		: :			: :		:	
												: :	1		:									
						1						: :	1		:									
						:						: :	1		:			: :			: :		:	
												::			:			: :			: :			
															:									
						1:						::			:			: :			: :			
						1:						: :						: :			: :			
						1						: :			:	: :		: :			: :			
												: :			:	: :		: :			: :			
												: :			:									
						1						: :			:									
												: :	1		:									
												: :			:									
															:									
															:									
															:			: :			: :			
															:									
															:									
												: :	1		:									
					L	Ŀ					-	::	Ŀ	: : :	Ŀ	::	1	::			::		: _	
I.E	TES: Borehole	e/Test Pit data requires Interpretation by exp.	WATE	RL	EVEL R	REC	ORE	s								С	OR	RE D	RIL			ECOR	RD.	
b	efore u	aa bu atbara	Elapsed		Water			Нс	ole (Эрє	n	\dashv	F	lun		De	epth	<u> </u>	$\overline{}$	0/,	Red	<u> </u>	R	QD %
		backfilled with excavated material and y compacted using excavator bucket. 'Mai	Time		evel (m	. \			<u>To (</u>					lo.			m)			/(110	٠.		, QD

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WAT	ER LEVEL RECO	RDS
Elapsed	Water	Hole Open
Time	Level (m)	To (m)
'March 17, 2020	Dry	
	,	

	CORE DR	RILLING RECOF	RD
Run No.	Depth (m)	% Rec.	RQD %
	, ,		

Project No:	OTT-00258780-B0	<u> </u>	•	$\nabla \lambda$
-roject No.	O11-00256760-BU		Figure No. 10	
Project:	Geotechnical Investigation - Proposed Residentia	al Development	1 iguro 110	_
_ocation:	6171 Hazeldean Road, Ottawa, Ontario		Page. <u>1</u> of <u>1</u>	_
Date Drilled:	'March 17, 2020	Split Spoon Sample	Combustible Vapour Reading	
Orill Type:	CAT 320D Excavator	Auger Sample SPT (N) Value O	Natural Moisture Content Atterberg Limits	× ⊢—⊙
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
ogged by:	G.C. Checked by: I.T.	Shear Strength by +	Shear Strength by Penetrometer Test	•

	S		Geodetic	D		,	Star	ndar	d Pe	enet	trati	on ⁻	Tes	t N	Valu	ue			Com							ng (p	pm)	S	Notes
G W L	M	SOIL DESCRIPTION	Elevation	l e			20)		40		6	60		8			╁		Nati	50 ural	Moi	500 stur	e Cr	/: onte	50 nt % Veigh	_	M P	Natu Unit V
L	SYMBOL		117.2	p t h	1	Shea				400					20		kPa		At			Lim					t)	SAMPLES	kN/r
		FILL		0	+	; ;	50	, ::		100	::	: :	50	::	20	10		+		2	0	: :	40	; ;	::	60 : :	; :	٥	
	\bowtie	Gravelly sand to silty sand, cobbles	and		10			• : • :	:::	+	: ; · : :		1:	· :: :	• ; •	. : -		+		; .: : :	· ; ·		:	111	**	1:::	::::		
	\bowtie	boulders, some clayey silt inclusions	5,		1:	$\ddot{\cdot}$: :			: :	11	1:	: :	:			1		: :	1::	: :		::::	:::	111	1111		
	\bowtie	brown, moist									: : : :	: ::		: :	:							: :			: :				
	$\otimes \otimes$		116.7									: :		: :		:								<u> </u>	:::		: :		
		Refusal to Excavator Bucket at 0	.5 m					: :						: :		1					:	: :			: :				
		Depth on Inferred Bedrock			1	\vdots	:	: :	::		: :	: :	1:	: :	:	:	: : :		: : :	: :	:	: :	:	\vdots	: :	1 : :	: :		
					1			: :	: :				1			:					:				: :		: :		
					1	: :	:	: :	: :		: :	: :	1	: :	:	:	: : :			: :	:	: :	:	: :	: :	1 : :	: :		
					1	: :	:	: :	: :		: :	: :	1	: :	:	:	: : :			: :	:	: :	:	: :	: :	1 : :	: :		
															:												: :		
					1	: :	:	: :	: :		: :		1	: :	:	:					:	: :		: :	: :	1 : :	: :		
															:	:													
					1:	: :		: :	: :				1:	: :		:	: : :				:				: :	: :			
																:					:								
						: :	:	: :	: :		: :	: :	:	: :	:	:	: : :			: :	:	: :		: :	: :	: :	; ;		
																:									: :		: :		
					:	\vdots	:	: :	: :		: :	: :	:	: :	:	:	: : :			: :	:	: :	:	\vdots	: :	1 : :	: :		
					1			: :								1					:								
					1	: :	:	: :	: :		: :	: :	1	: :	:	:	: : :		: : :	: :	:	: :	:	\vdots	: :	1 : :	: :		
					1			: :					1	: :	:	:					:	: :			: :				
								: :			: :			: :	:	1						: :			: :		: :		
								: :			: :			: :	÷	1					l	: :			: :				
					1	: :		: :	: :		: :	: :	1	: :	:	:						: :		: :	: :	1 : :	: :		
						::		: :	: :				1		:	:					:	: :		: :	: :		: :		
					:	::		: :	: :		: :	: :	:	: :	:	:					1	: :	:	: :	: :	1 : :	: :		
								: :	: :				1	: :		:					:				: :		: :		
								: :						: :	:	:					:								
					:	: :	:	: :	: :		: :	: :	1	: :	:	:	: : :				:	: :		: :	: :	1 : :	: :		
															:												: :		
					1	: :	-	: :	: :		: :		1	: :	:	:					:	: :		: :	: :	1 : :	: :		
															:	1					:								
					:	: :	:	: :	: :		: :	: :	1:	: :	÷	:	: : :		: : :	: :	:	: :	:	\vdots	: :	1 : :	: :		
								: :								:											: :		
					1:	: :	:	: :	::		: :	: :	1:	: :	:	:	: : :		: : :	: :	:	: :	:	\vdots	: :	1 : :	: :		
					:			: :								1					:								
					:	: :	:	: :	: :		: :	: :	1	: :	:	:	: : :			: :	:	: :	:	\vdots	: :	1 : :	: :		
								: :					1			:					:				: :				
								: :						: :	:	1											: :		
						: :		: :	: :			: :	:	: :		1					:				: :	1 : :			
								: :			: :	: :			:	:					:	: :	:	: :	: :				
						::		: :					1	: :		:									: :	: :	::		
					:			: :								1					:		:		: :				
						::		: :	: :			: :	1	: :		:	: : :				:			::	: :	: :			
						::	:	: :					1	: :		1					:			: :	: :	: :	: :		
_					Ŀ	-	:	::	-	1	: :	::	l:	::	: :	Ŀ	: : :	1			Ŀ	::	:	<u>::</u>	<u>: :</u>	<u> </u>	::		
) 	OTES: Borehol	e/Test Pit data requires Interpretation by exp.	WATE	RL				CC	RE													DR	RILL			ECC			
			Elapsed Time		W ev_	ate					ole To						un lo.			ept (m)				%	Red	C.		RC	QD %
:. I	ı est pit nominal	backfilled with excavated material and ly compacted using excavator bucket.	'March 17, 2020			Ory					10	1111	_		1	- 11	υ.	T		1111							+		

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

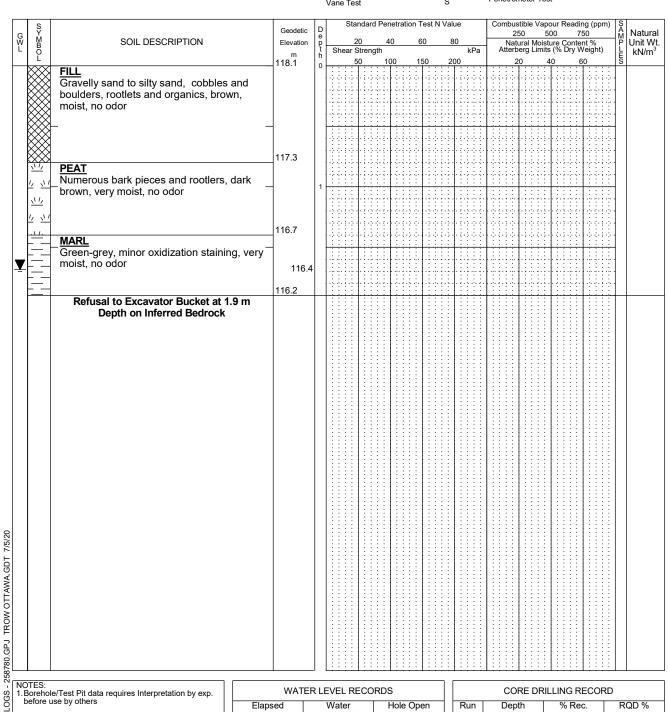
ER LEVEL RECO	RDS
Water	Hole Open
Level (m)	To (m)
Dry	
	Level (m)

	CORE DR	RILLING RECOF	RD
Run No.	Depth (m)	% Rec.	RQD %
	, ,		

Project No: OTT-00258780-B0 Figure No. Project: Geotechnical Investigation - Proposed Residential Development Page. _1_ of 1 Location: 6171 Hazeldean Road, Ottawa, Ontario Date Drilled: 'March 17, 2020 Split Spoon Sample \boxtimes Combustible Vapour Reading × Auger Sample Natural Moisture Content Drill Type: CAT 320D Excavator SPT (N) Value 0 0 Atterberg Limits Dynamic Cone Test Datum: Undrained Triaxial at Geodetic Elevation \oplus Shelby Tube % Strain at Failure Shear Strength by Logged by: G.C. Checked by: I.T. Shear Strength by Ť

	00	official by. 1.1.			Van	e Tes	st	Dy				S		Р	enetro	ome	eter To	est					
	S		Geodetic	Ď		Sta	ndar	d Pe	netra	tion T	Γest	N Val	ue			250	1	500)	750	g (ppm) 0	S	Natural
G W L	SYMBOL	SOIL DESCRIPTION	Elevation m	D e p t h	Sh	near S		gth	40		0		kPa	╁	Na Atte	atura rber	al Moi g Lim	istur iits (e Co % Dr	nteni y We	t % eight)	SAMP-LIES	Natural Unit Wt. kN/m³
	<u> </u>	TOPSOIL ~100 mm thick	m 117.6 117.5	0			50	1	00	1	50	21	00	+		20		40		60) 	S	
		FILL Silty sand, some gravel, brown, moist, no	117.3				. ; . ;								: : :								
		Refusal to Excavator Bucket at 0.3 m Depth on Inferred Bedrock																					

LOGS - 258780.GPJ TROW OTTAWA.GDT 7/5/20

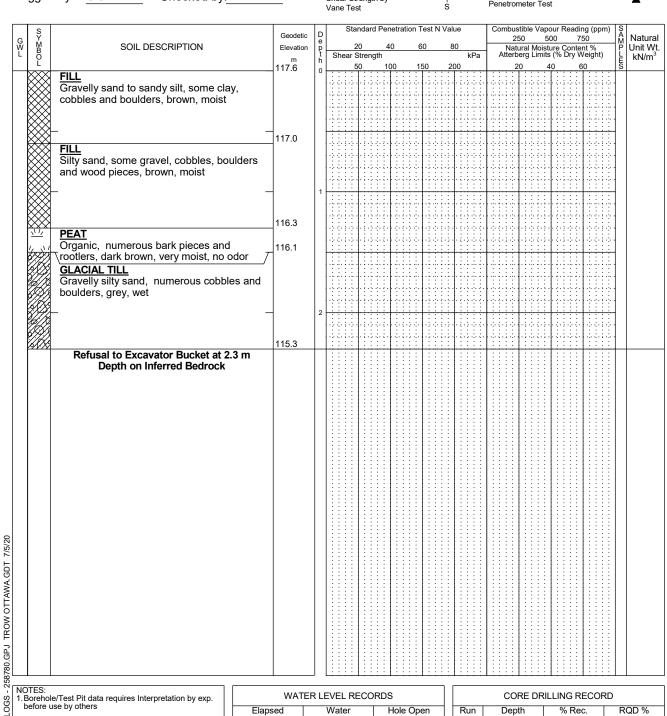

르

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WATER LEVEL RECORDS					
Elapsed	Water	Hole Open			
Time	Level (m)	To (m)			
'March 17, 2020	Dry				
	-				

CORE DRILLING RECORD							
Run No.							

Project No:	OTT-00258780-B0	<u> </u>		CV
Project:	Geotechnical Investigation - Proposed Residentia	Figure No. 12	_	
Location:	6171 Hazeldean Road, Ottawa, Ontario		Page. <u>1</u> of <u>1</u>	-
Date Drilled:	'March 17, 2020	Split Spoon Sample	Combustible Vapour Reading	
Orill Type:	CAT 320D Excavator	Auger Sample SPT (N) Value O	Natural Moisture Content Atterberg Limits	× ⊢—⊙
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
_ogged by:	G.C. Checked by: I.T.	Shear Strength by +	Shear Strength by	•

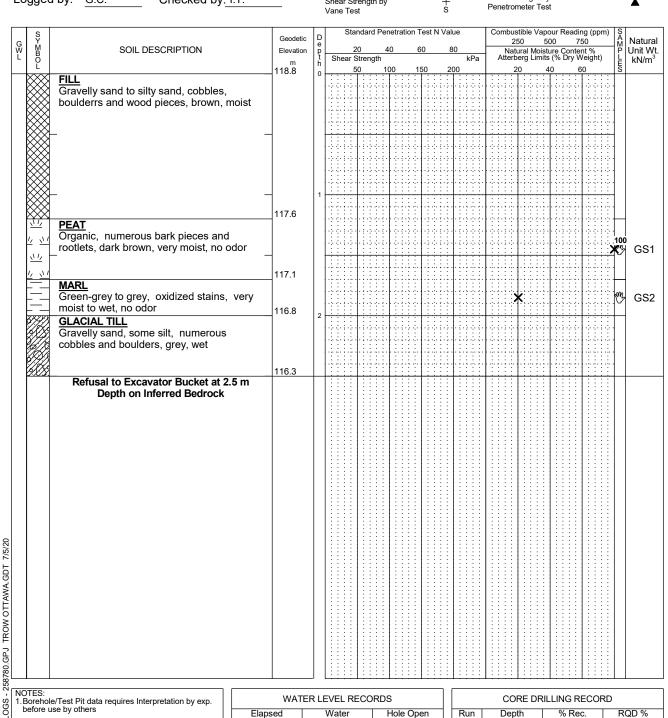

₽

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WATER LEVEL RECORDS							
Elapsed	Water	Hole Open					
Time	Level (m)	To (m)					
'March 17, 2020	1.7						

CORE DRILLING RECORD								
Run No.								
	\/							

	-			
Project No:	OTT-00258780-B0		Figure No. 13	• • • • • • • • • • • • • • • • • • • •
Project:	Geotechnical Investigation - Proposed Residentia	al Development		-
Location:	6171 Hazeldean Road, Ottawa, Ontario		Page. <u>1</u> of <u>1</u>	-
Date Drilled:	'March 17, 2020	Split Spoon Sample	Combustible Vapour Reading	
Orill Type:	CAT 320D Excavator	Auger Sample SPT (N) Value	Natural Moisture Content Atterberg Limits	× ⊢—⊙
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
_ogged by:	G.C. Checked by: I.T.	Shear Strength by + S	Shear Strength by Penetrometer Test	_



- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WATER LEVEL RECORDS						
Elapsed	Water	Hole Open				
Time	Level (m)	To (m)				
'March 17, 2020	Dry					
	-					

CORE DRILLING RECORD									
Run No.									
INO.	(111)								

Project No: OTT-00258780-B0 Figure No. Project: Geotechnical Investigation - Proposed Residential Development 1 of 1 Page. Location: 6171 Hazeldean Road, Ottawa, Ontario Date Drilled: 'March 17, 2020 Split Spoon Sample \boxtimes Combustible Vapour Reading X Auger Sample Natural Moisture Content Drill Type: CAT 320D Excavator SPT (N) Value 0 0 Atterberg Limits Dynamic Cone Test Datum: Undrained Triaxial at Geodetic Elevation \oplus % Strain at Failure Shelby Tube Shear Strength by Logged by: G.C. Checked by: I.T. Shear Strength by

₽

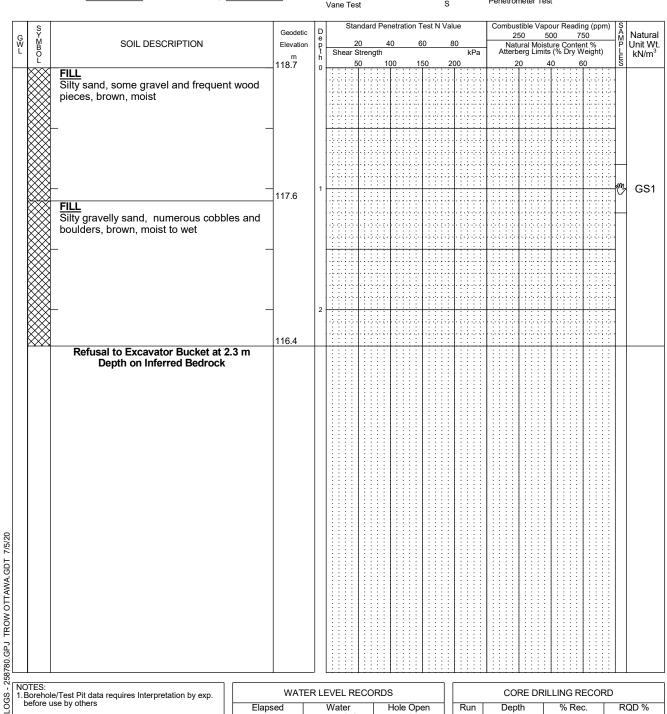
- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WATER LEVEL RECORDS						
Elapsed	Water	Hole Open				
Time	Level (m)	To (m)				
'March 17, 2020	Dry					
	-					

CORE DRILLING RECORD							
Run Depth % Rec. RQD % No. (m)							
INO.	(111)						

Project: OTT-00258780-B0 Project: Geotechnical Investigation - Proposed Residen								Figure No		15 of 1	C	·^	
Location:	6171 Hazeldean Road, Ottawa, Ontar	io						Page	. <u> </u>	01			
Date Drilled:	March 17, 2020		_	Split Spoon Sample		\boxtimes		Combustib	le Vapour F	Reading			
Drill Type:	CAT 320D Excavator		_	Auger Sample SPT (N) Value				Natural Mo		tent		× →	
Datum:	Geodetic Elevation		_	Dynamic Cone Test	-			Undrained % Strain at	Triaxial at			\oplus	
Logged by:	G.C. Checked by: I.T.			Shelby Tube Shear Strength by Vane Test		+ s		Shear Stre Penetrome	ngth by			A	
S Y W B L O	SOIL DESCRIPTION	Geodetic Elevation	D e p t	20 40	ition Te			250	500	Reading (ppm 750 Content % Dry Weight)) SAMPLES	Natural Unit Wt.	
ĭ FILL	elly sand, trace silt, brown, moist, no	118.8	h 0	50 100	15	0 200	kPa	20	40 	60	E S	kN/m³	
odor FILL Silty and I	sand, some gravel, contains cobbles coulders, contains wood pieces, n, moist	118.5	1										
<u>VV</u> <u>PEA</u>	n grey, moist T erous bark pieces and rootletrs, dark	117.6									100		
<u> </u>	n, very moist, no odor Y CRUST	116.8	2			· · · · · · · · · · · · · · · · · · ·					***	GS1	
Silty	clay, trace sand and gravel, light n, no odor	116.3						>	<		1979	GS2	
MAR Gree odor	<u>L</u> n-grey to dark grey, very moist, no	110.5											
<u> </u>	efusal to Excavator Bucket at 3.1 m	115.7	3								=		

TP LOGS - 258780.GPJ TROW OTTAWA.GDT 7/5/20

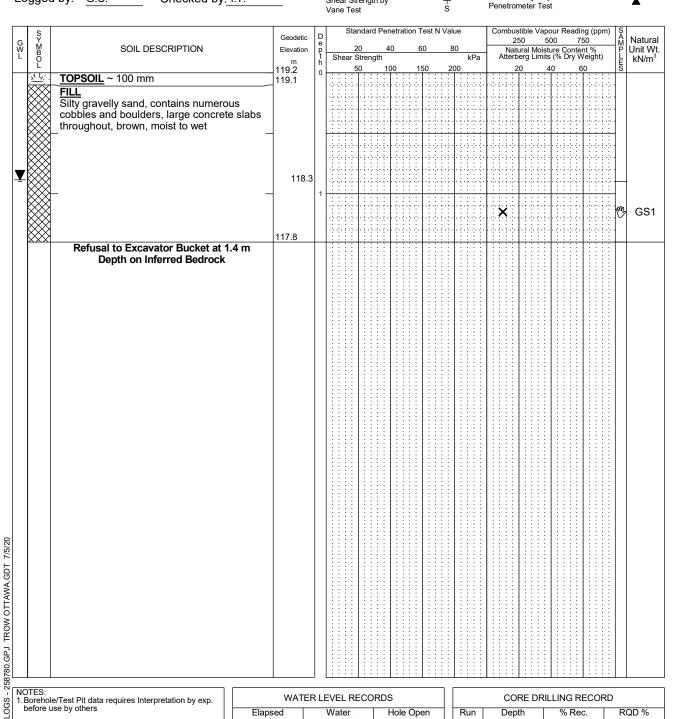

LOG OF TEST PIT

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WATER LEVEL RECORDS								
Elapsed	Water	Hole Open						
Time	Level (m)	To (m)						
'March 17, 2020	Dry							

	CORE DRILLING RECORD						
Run							
No.	(m)						

	Log	1 1631111 11 -10		$\rightarrow x$
Project No:	OTT-00258780-B0		5: 16	
Project:	Geotechnical Investigation - Proposed Re	esidential Development	Figure No16	
Location:	6171 Hazeldean Road, Ottawa, Ontario		Page. <u>1</u> of <u>1</u>	
Date Drilled:	'March 17, 2020	Split Spoon Sample	Combustible Vapour Reading	
Orill Type:	CAT 320D Excavator	Auger Sample SPT (N) Value	Natural Moisture Content Atterberg Limits	X
Datum:	Geodetic Elevation	Dynamic Cone Test ———	Undrained Triaxial at % Strain at Failure	⊕
_ogged by:	G.C. Checked by: I.T.	Shelby Tube Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	•
l e l		Standard Penetration Test N Value	Combustible Vapour Reading (ppm)	Isl

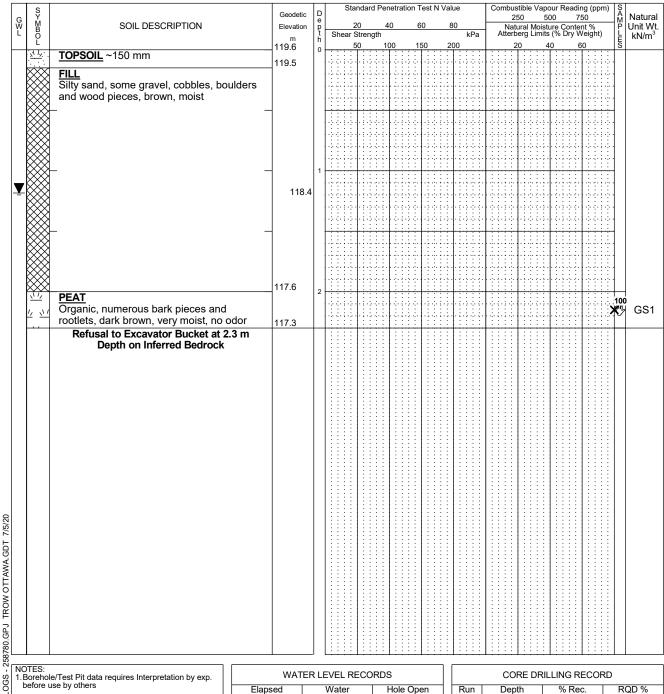

르

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WATER LEVEL RECORDS						
Elapsed	Water	Hole Open				
Time	Level (m)	To (m)				
'March 17, 2020	Dry					
, i	,					

CORE DRILLING RECORD						
Run Depth % Rec. RQD %						
INO.	(111)					

Project No:	OTT-00258780-B0	<u> </u>	-	ロス
i Tojeci No.	<u>011-00238760-B0</u>		Figure No. 17	
Project:	Geotechnical Investigation - Proposed Residentia	al Development		-
Location:	6171 Hazeldean Road, Ottawa, Ontario		Page. <u>1</u> of <u>1</u>	-
Date Drilled:	'March 17, 2020	Split Spoon Sample	Combustible Vapour Reading	
Orill Type:	CAT 320D Excavator	Auger Sample	Natural Moisture Content	×
Jilli Type.	CAT 320D Excavator	SPT (N) Value	Atterberg Limits	\longrightarrow
Datum:	Geodetic Elevation	Dynamic Cone Test ———	Undrained Triaxial at	\oplus
		Shelby Tube	% Strain at Failure	•
_ogged by:	G.C. Checked by: I.T.	Shear Strength by +	Shear Strength by	•

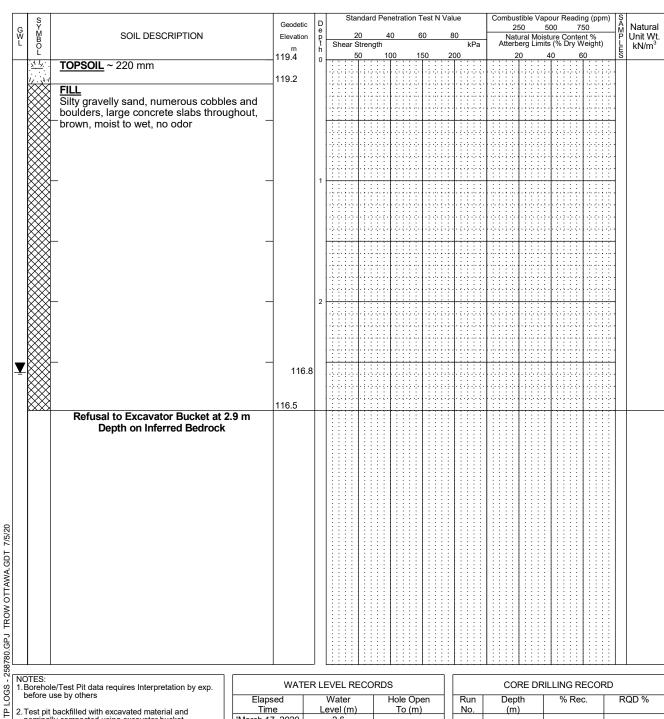

르

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WATER LEVEL RECORDS							
Elapsed Water Hole Open							
Time	Level (m)	To (m)					
'March 17, 2020	0.9						

CORE DRILLING RECORD						
Run Depth % Rec. RQD %						
INO.	(111)					

Log of Test Pit TP-12 Project No: OTT-00258780-B0 Figure No. Project: Geotechnical Investigation - Proposed Residential Development Page. 1 of 1 Location: 6171 Hazeldean Road, Ottawa, Ontario Date Drilled: 'March 17, 2020 Split Spoon Sample \boxtimes Combustible Vapour Reading × Auger Sample Natural Moisture Content Drill Type: CAT 320D Excavator SPT (N) Value 0 0 Atterberg Limits Dynamic Cone Test Datum: Undrained Triaxial at Geodetic Elevation \oplus % Strain at Failure Shelby Tube Shear Strength by Logged by: G.C. Checked by: I.T. Shear Strength by Penetrometer Test Vane Test Standard Penetration Test N Value Combustible Vapour Reading (ppm) SYMBOL Geodetic 250 500 750 SOIL DESCRIPTION Elevation Natural Moisture Content % Atterberg Limits (% Dry Weight) Shear Strength 119.6 TOPSOIL ~150 mm 119.5 Silty sand, some gravel, cobbles, boulders

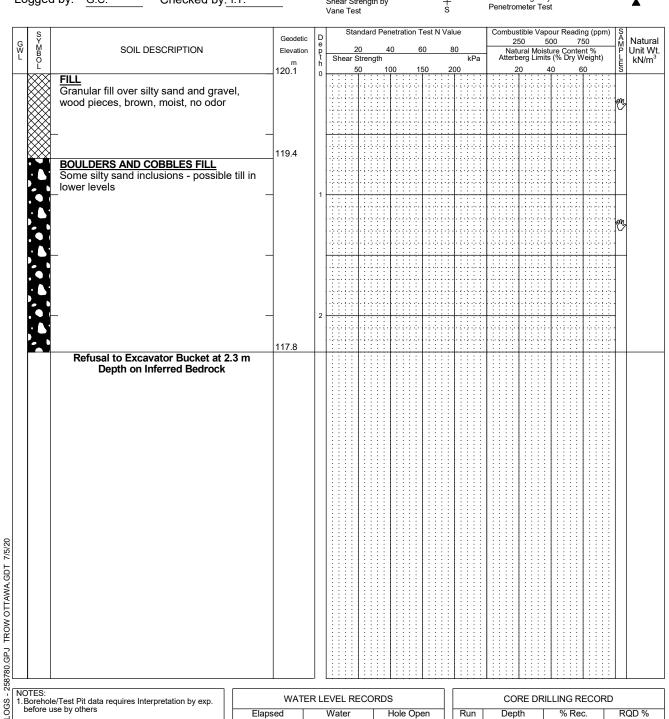

₽

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WATER LEVEL RECORDS							
Elapsed	Water	Hole Open					
Time	Level (m)	To (m)					
'March 17, 2020	1.2						

CORE DRILLING RECORD						
Run Depth % Rec. RQD % No. (m)						
	\/					

	Log	of Te	99	st Pit TI	P-13			6	7,	X
Project No:	OTT-00258780-B0					- :	10		I I	'\
Project:	Geotechnical Investigation - Proposed R	Residenti	al [Development		Figure No.	19 1 of 1	_		
Location:	6171 Hazeldean Road, Ottawa, Ontario)				Page.	_1_ of _1	_		
Date Drilled:	'March 17, 2020			Split Spoon Sample	\boxtimes	Combustible V	/apour Reading			コ
Drill Type:	CAT 320D Excavator			Auger Sample SPT (N) Value		Natural Moistu Atterberg Limit		<u> </u>		X e
Datum:	Geodetic Elevation			Dynamic Cone Test Shelby Tube	_	Undrained Tria % Strain at Fa	axial at	•		⊕
Logged by:	G.C. Checked by: I.T.	_	5	Shear Strength by /ane Test	+ s	Shear Strengtl Penetrometer			4	A
G Y M B O L	SOIL DESCRIPTION	Geodetic Elevation m	D e p t	Standard Penetration 7 20 40 6 Shear Strength	60 80	250 Natural M	/apour Reading (p 500 750 loisture Content % mits (% Dry Weigh	. [řΊU	Natu Jnit N kN/n

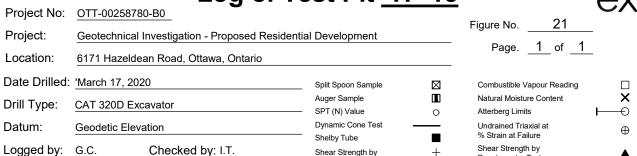


- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WATER LEVEL RECORDS							
Elapsed	Water	Hole Open					
Time	Level (m)	To (m)					
'March 17, 2020	2.6						

CORE DRILLING RECORD						
Run Depth % Rec. RQD % No. (m)						
···/						

Project No:	OTT-00258780-B0			ロス
riojectivo.	<u>011-00236760-B0</u>		Figure No. 20	
Project:	Geotechnical Investigation - Proposed Residentia	al Development		-
Location:	6171 Hazeldean Road, Ottawa, Ontario		Page. <u>1</u> of <u>1</u>	-
Date Drilled:	'March 17, 2020	Split Spoon Sample	Combustible Vapour Reading	
Orill Type:	CAT 320D Excavator	Auger Sample	Natural Moisture Content	×
Jilli Type.	CAT 320D Excavator	SPT (N) Value	Atterberg Limits	\longrightarrow
Datum:	Geodetic Elevation	Dynamic Cone Test	Undrained Triaxial at	\oplus
_oaaed bv:	G.C. Checked by: I.T.	Shelby Tube	% Strain at Failure Shear Strength by	_
LUUUEU DV.	G.C. CHECKEU DV. I. I.	Shear Strength by +	onour outriguity	


NOTES: 1.Borehole/Test Pit data requires Interpretation by exp. before use by others

2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.

- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WATER LEVEL RECORDS							
Elapsed	Water	Hole Open					
Time	Level (m)	To (m)					
'March 17, 2020	Dry						
	-						

CORE DRILLING RECORD									
Run No.	Depth	RQD %							
INO.	(111)								

S		Geodetic	D	Standa	d Pe	netra	tion T	est N	√alue				ustil 250	ole Va	pour 500		ling (750	ppm)) S A	Natur
S Y M B O	SOIL DESCRIPTION	Elevation	e p	20		40	6	0	80		┢	N	atur	al Mois g Limi	sture	Cont	ent.9	6	SAMPLES	Unit V
Ō		120.2	p t h	Shear Strer 50	-	00	15	:n	200	kPa		Atte	rber 20	g Limi	ts (% 40		weig 60	jht)	Ę	kN/n
	FILL Granular fill (150mm) OVER silty sand wi gravel, rootlets and asphalt pieces, cobbles and blulders below 0.8 m depth, brown, moist, no odor		0																	
	-		1																	
		118.8																		
<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	PEAT Organic, numerous bark pieces and root dark brown, very moist, no odor GLACIAL TILL	s, 118.5											×	.					m	g GS
	Gravelly sand, trace silt and gravel, oxidized stains, numerous cobbles and boulders, brown, wet		2									·								
	Refusal to Excavator Bucket at 2.2 m	118.0										1 1				:::::		111		
					::	Ŀ	::	:::	:	: : :	1	::	: _			: : :	1:	:::	<u>:</u>	

르

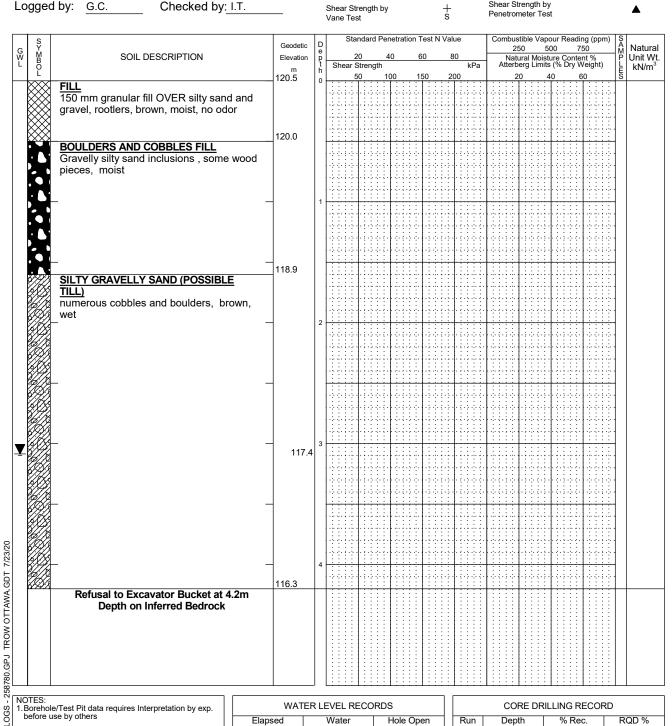
- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WATER LEVEL RECORDS							
Elapsed	Water	Hole Open					
Time	Level (m)	To (m)					
'March 17, 2020	Dry						

CORE DRILLING RECORD									
Run No.	Depth	RQD %							
INO.	(111)								

Project No: OTT-00258780-B0 Figure No. Project: Geotechnical Investigation - Proposed Residential Development 1 of 1 Page. Location: 6171 Hazeldean Road, Ottawa, Ontario Date Drilled: 'March 17, 2020 Split Spoon Sample \boxtimes Combustible Vapour Reading × Auger Sample Natural Moisture Content Drill Type: CAT 320D Excavator SPT (N) Value 0 0 Atterberg Limits Dynamic Cone Test Undrained Triaxial at Datum: Geodetic Elevation \oplus % Strain at Failure Shelby Tube Shear Strength by Logged by: G.C. Checked by: I.T. Shear Strength by

ş		Geodetic	D		d Per	netration T	est N Va	alue		ustible Vap		ing (ppm) 750	S	Natura
S Y M B O	SOIL DESCRIPTION	Elevation	l e	20	4	0 6	0	80	N.	atural Mois erberg Limit	ture Conte	ent %	SAMP LIES	Unit V kN/m
Ŏ		119.9		Shear Stren 50	-	00 1	50	kPa 200	Atte			Neight) 60	۱Ĕ	kN/n
	FILL	119.9	0	30	<u> </u>	JU 1:		200	1:::::		1			
\bowtie	Silty sand, some gravel, wood pieces troughout, brown, moist				<u>.</u> .			11111			43333		.	1
\bowtie	troughout, brown, moist				÷:			+ : : : : :			1:::::		+	1
\bowtie													1	1
	_				<u>;</u> ;;								1	1
\bowtie					i.i.			4	ļ.;.;.;.				.	1
\bowtie					÷ į ·			+ ! ! ! ! !	+		1		.	i
\bowtie		118.9	١.					1:::::	+ : : : :		1::::		1	i
	SILTY SAND (POSSIBLE TILL) Silty gravelly sand, numerous cobbles a		1		<u></u>	3. 3. 3.]	i
	Silty gravelly sand, numerous cobbles a boulders, brown, moist to wet	ind			<u>:</u> :			1			; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		.	1
	bodiders, brown, moist to wet				÷ŀ			11111	+		1000		+	i
					111		-2 -2 -2	1:::::					1	i
	_				<u> </u>]	1
		440.4			<u>.</u>			ļ::::::			<u> </u>		-	i
91/33	Refusal to Excavator Bucket at 1.8 n	118.1 1	+		÷	 		 	 	: : : : :	 	+	H	
	Depth on Inferred Bedrock													1
					: :									i
					11									i
					: :									i
														1
														i
														i
					11									i
														1
					: :									i
					::									i
														1
					: :									i
					: :									i
														1
					: :									i
														i
					: :									i
					: :									
					\vdots									
					\vdots									
					$\vdots \\ \vdots$									1
					$\vdots \\ \vdots$									1
					\vdots									
			_		::	Liii		1::::	1:::		1::::	1::::		
OTES:	e/Test Pit data requires Interpretation by exp. use by others	WATE	RL	EVEL RECC	RDS	3			C	ORE DRI	LLING F	RECORD	1	
	una hu athara	Elapsed		Water		Hole Ope		Run		pth	% Re		D/	QD %

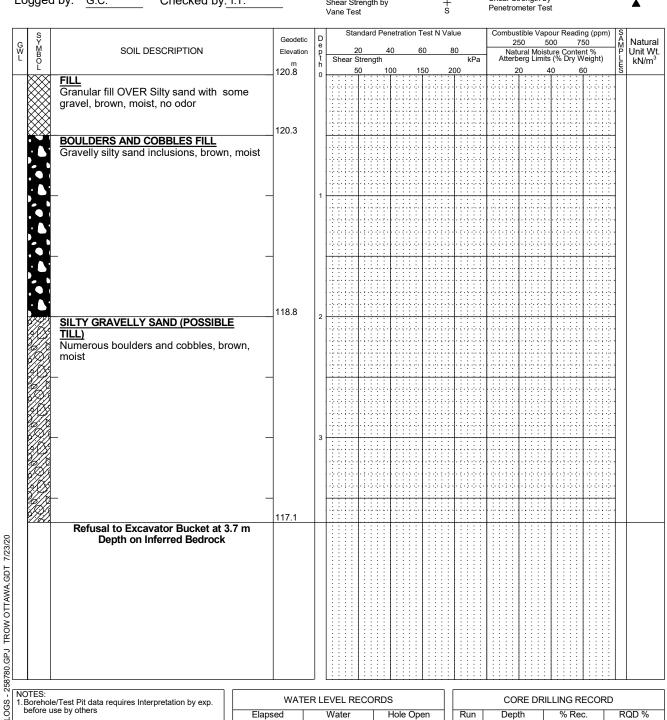

르

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WATER LEVEL RECORDS							
Elapsed	Water	Hole Open					
Time	Level (m)	To (m)					
'March 17, 2020	Dry						
	-						

CORE DRILLING RECORD									
Depth (m)	RQD %								
···/									

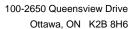
	Log or re	<i>-</i> 36116 11 -11	,	$\longrightarrow X$
Project No:	OTT-00258780-B0		Fig. 12	
Project:	Geotechnical Investigation - Proposed Residentia	al Development	Figure No. 23	
ocation:	6171 Hazeldean Road, Ottawa, Ontario		Page1 of _1	<u></u>
Date Drilled:	'March 17, 2020	Split Spoon Sample	Combustible Vapour Reading	
Orill Type:	CAT 320D Excavator	Auger Sample	Natural Moisture Content	×
om Typo.	ON OZOB EXCAVATOR	SPT (N) Value	Atterberg Limits	\longrightarrow
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
oggod by	C C Charlend by U.T.		Shear Strength by	



- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

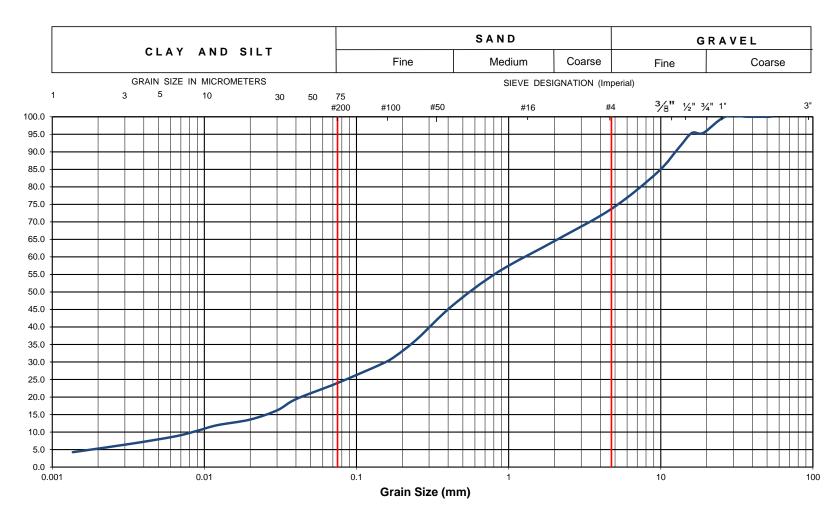
WATER LEVEL RECORDS								
Elapsed	Water	Hole Open						
Time	Level (m)	To (m)						
'March 17, 2020	3.1							

CORE DRILLING RECORD									
Run No.	Depth	RQD %							
INO.	(111)								

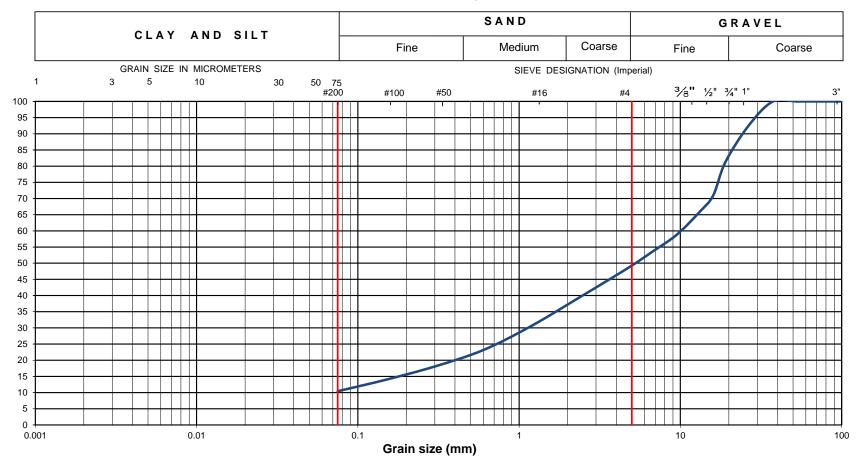

Project No:	OTT-00258780-B0	<u> </u>	•	CV
i roject ive.	011-00230700-00		Figure No. 24	
Project:	Geotechnical Investigation - Proposed Residentia	al Development		-
Location:	6171 Hazeldean Road, Ottawa, Ontario		Page. <u>1</u> of <u>1</u>	-
Date Drilled:	'March 17, 2020	Split Spoon Sample	Combustible Vapour Reading	
Orill Type:	CAT 320D Excavator	Auger Sample	Natural Moisture Content	×
Jilli Type.	CAT 320D Excavator	SPT (N) Value	Atterberg Limits	\longrightarrow
Datum:	Geodetic Elevation	Dynamic Cone Test ———	Undrained Triaxial at	\oplus
		Shelby Tube	% Strain at Failure	•
_oaaed bv:	G.C. Checked by: I.T.	Shear Strength by +	Shear Strength by	•

- 2. Test pit backfilled with excavated material and nominally compacted using excavator bucket.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. This Figure is to read with exp. Services Inc. report OTT-00258780-B0

WATER LEVEL RECORDS										
Elapsed	Water	Hole Open								
Time	Level (m)	To (m)								
'March 17, 2020	Dry									


CORE DRILLING RECORD										
Run No.	Depth % Rec. RQD %									
INO.	(111)									

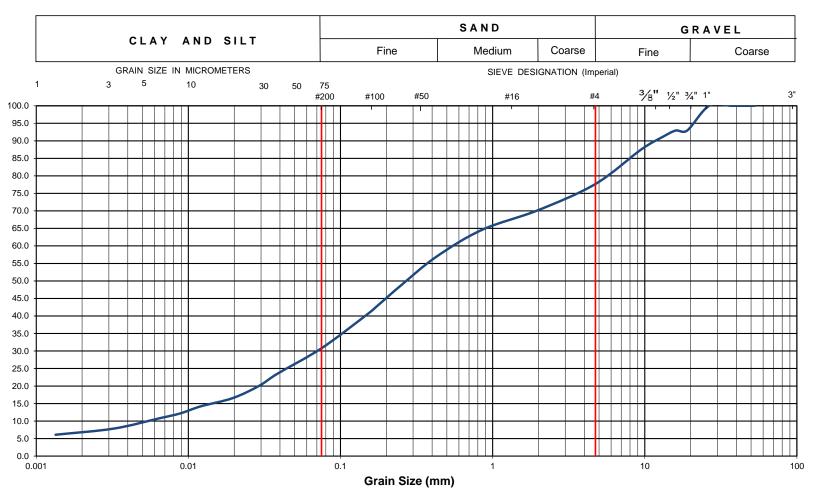
Percent Passing


Grain-Size Distribution Curve Method of Test For Particle Size Analysis of Soil ASTM C-136/ASTM D422

EXP Project No.:	OTT-00258780-B0	Project Name :	Project Name : Geotechnical Investigation - Proposed Residential Development								
Client :	11654128 Canada Inc.	Project Location	Project Location : 6171 Hazeldean Rd, Ottawa, ON								
Date Sampled :	March 20, 2020	Borehole No:		BH2	San	Sample No.: SS2			Depth (m):	0.8-1.4	
Sample Description :		% Silt and Clay	24	% Sand	50	% Gravel		26	Figure :	25	
Sample Description : Silty Gravelly Sand (SM)								rigure .	25		

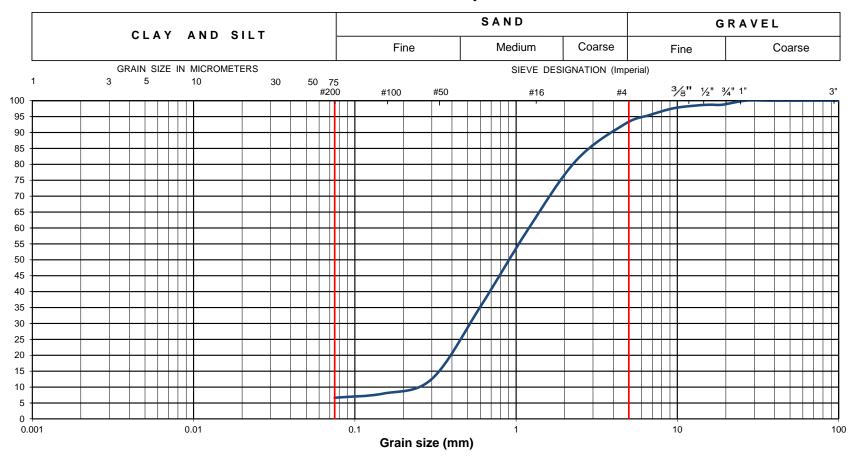
Grain-Size Distribution Curve Method of Test For Sieve Analysis of Aggregate ASTM C-136

100-2650 Queensview Drive Ottawa, ON K2B 8H6


EXP Project No.:	OTT-00258780-B0	Project Name :	oject Name: Geotechnical Investigation - Proposed Residentia						ial Development		
Client :	11654128 Canada Inc.	Project Location	1 :	6171 Hazeldean Rd, Ottawa, ON							
Date Sampled :	March 24, 2020	Borehole No:		ВН3	Sample:		SS2	Depth (m):	0.8-1.4		
Sample Composition :		Gravel (%)	51	Sand (%)	39	Silt & Clay (%)	10	Figure :	26		
Sample Description : Well Graded Sandy Gravel (GW)								rigule .	20		

Percent Passing

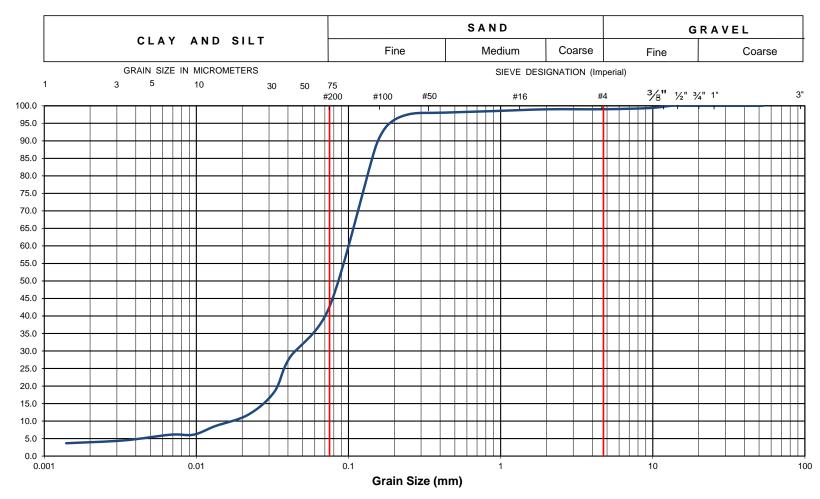
Grain-Size Distribution Curve Method of Test For Particle Size Analysis of Soil ASTM C-136/ASTM D422


100-2650 Queensview Drive Ottawa, ON K2B 8H6

EXP Project No.:	OTT-00258780-B0	Project Name :	Project Name : Geotechnical Investigation - Proposed Residential Development								
Client :	11654128 Canada Inc.	Project Location	Project Location : 6171 Hazeldean Rd, Ottawa, ON								
Date Sampled :	March 24, 2020	Borehole No:		BH4	Sample No.: SS			S1	Depth (m) :	0-0.6	
Sample Description :		% Silt and Clay	31	% Sand	47	% Gravel		22	Figure :	27	
Sample Description : Silty Gravelly Sand (SM)								rigure :	21		

Grain-Size Distribution Curve Method of Test For Sieve Analysis of Aggregate ASTM C-136

100-2650 Queensview Drive Ottawa, ON K2B 8H6

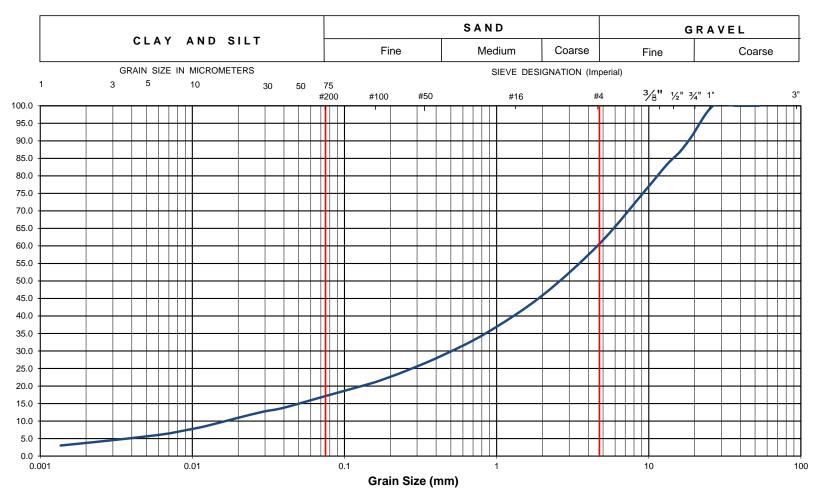

EXP Project No.:	OTT-00258780-B0	Project Name :	Project Name : Geotechnical Investigation - Proposed Reside				Residenti	tial Development		
Client :	11654128 Canada Inc.	Project Location	ı :	6171 Hazeldean Rd, Ottawa, ON						
Date Sampled :	March 17, 2020	Borehole No:		TP14	Sample:		\S1	Depth (m) :	0 - 0.6	
Sample Composition :		Gravel (%)	7	Sand (%)	86	Silt & Clay (%)	7	Figure :	28	
Sample Description : Well Graded Sand (SW)								rigure :	20	

Percent Passing

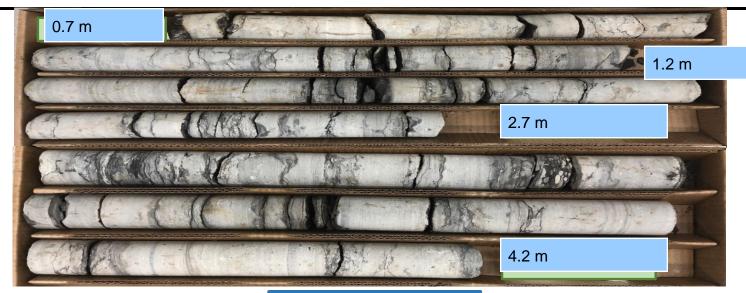
Grain-Size Distribution Curve Method of Test For Particle Size Analysis of Soil ASTM C-136/ASTM D422

100-2650 Queensview Drive Ottawa, ON K2B 8H6

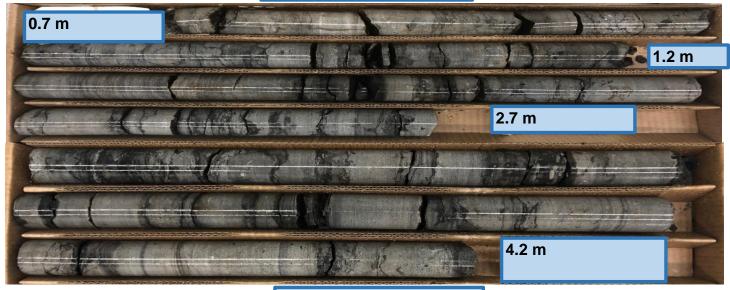
EXP Project No.:	OTT-00258780-B0	Project Name :	Project Name : Geotechnical Investigation - Proposed Residential Development								
Client :	11654128 Canada Inc.	Project Location	Project Location : 6171 Hazeldean Rd, Ottawa, ON								
Date Sampled :	March 24, 2020	Borehole No:		BH5	Sample No.:			S 6	Depth (m):	3.8-4.4	
Sample Description :		% Silt and Clay	43	% Sand	56	% Gravel		1	Figure :	29	
Sample Description : Silty Sand (SM)								rigure .	29		



Percent Passing


Grain-Size Distribution Curve Method of Test For Particle Size Analysis of Soil ASTM C-136/ASTM D422

100-2650 Queensview Drive Ottawa, ON K2B 8H6


Unified Soil Classification System

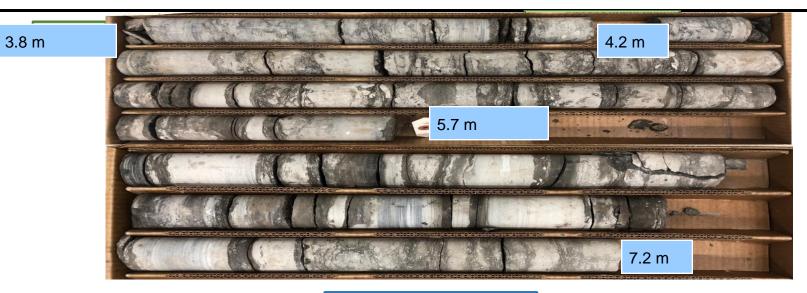
EXP Project No.:	OTT-00258780-B0	Project Name :	Geotechnical Investigation - Proposed Residential Development									
Client :	1165128 Canada Inc.	165128 Canada Inc. Project Location :				6171 Hazeldean Rd, Ottawa, ON						
Date Sampled :	March 24, 2020	Borehole No:	Borehole No:		Sample No.:		SS5		Depth (m):	3.0-3.6		
Sample Description :		% Silt and Clay	17	% Sand	44	% Gravel		39	Figure :	30		
Sample Description : Silty Sand & Gravel (SM)									rigule .	30		

DRY BEDROCK CORES

WET BEDROCK CORES

Borehole No. **BH-1**

Core Runs Run 1 : 0.7 - 1.2 m Run 2 : 1.2 - 2.7 m Run 3> 2.7 - 4.2 m Project Name: **Propsoed Residential Development. 6171 Hazeldean Road, Ottawa, ON**


Project No:

OTT-000258780-B0

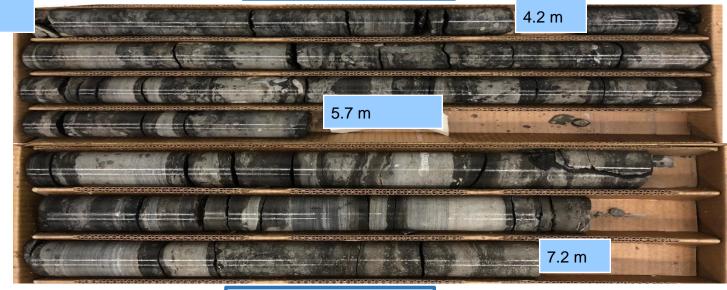

ROCK CORE PHOTOGRAPHS

Figure No:

Fig 31

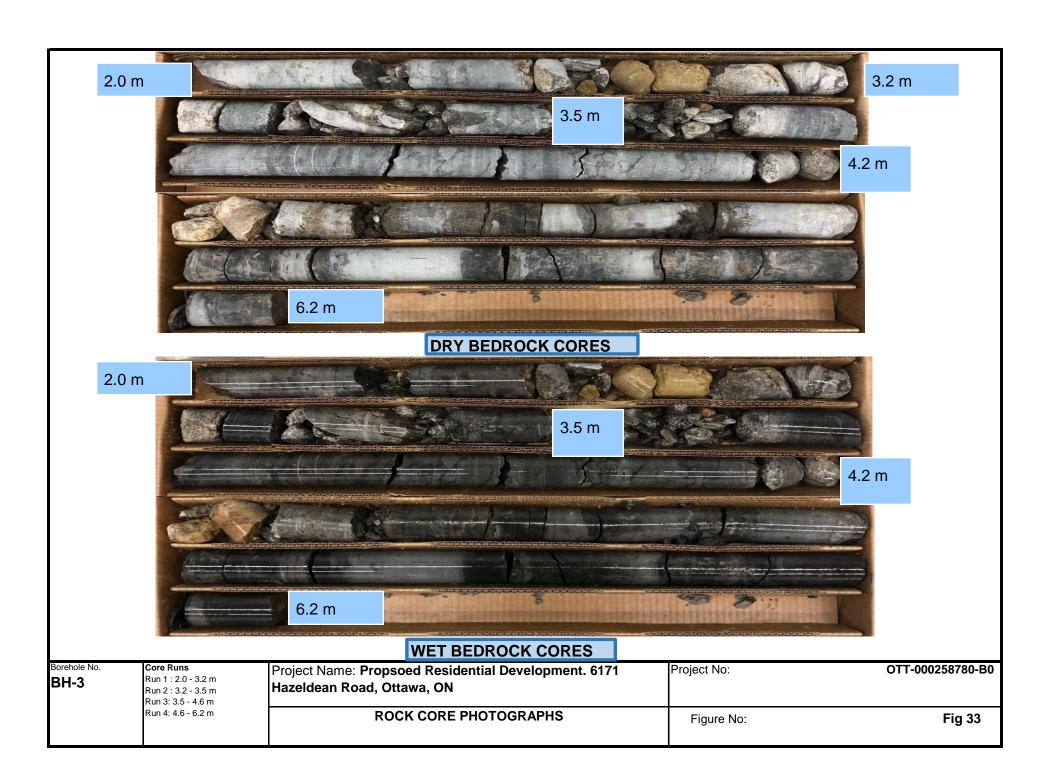
DRY BEDROCK CORES

WET BEDROCK CORES

Borehole No. BH-2

3.8 m

Core Runs Run 1 : 3.8 - 4.2 m Run 2 : 4.2 - 5.7 m Run 3: 5.7 - 7.2 m Project Name: **Propsoed Residential Development. 6171 Hazeldean Road, Ottawa, ON**


Project No:

OTT-000258780-B0

ROCK CORE PHOTOGRAPHS

Figure No:

Fig 32

EXP Services Inc. 11654128 Canada Inc Phase Two Environmental Site Assessment 6171 Hazeldean Road, Ottawa, Ontario OTT-00258780-C0 July 24, 2020

Appendix E : Analytical Summary Tables

Table 1 - Petroleum Hydrocarbons in Soil 6171 Hazeldean Road, Ottawa, Ontario OTT-00258780-C0

O11-00258780-C0													Page 1 of 1
Sample ID				TP06-Fill	TP06-Native	TP08-Fill	TP08-Native	TP09-Fill	TP09-Native	TP10-Fill	TP10-Native	TP14-Fill	TP15-Fill
Sampling Date	11	MECP Table 1 SCS ¹	MECP Table 3 SCS ²	17-Mar-20	17-Mar-20								
Sample Depth (mbgs)	Units	Residential	Residential	0.3 - 0.8	1.4 - 1.9	1.3 - 1.7	1.7 - 2.0	1.5 - 2.0	2.0 - 2.5	0.8 - 1.2	1.5 - 2.0	0.7 - 2.3	0.1 - 0.8
Laboratory ID				MHA371	MHA372	MHA373	MHA374	MHA375	MHA376	MHA377	1.5 - 2.0	MHA379	MHA380
Date of Analysis				25-Mar-20	25-Mar-20								
Laboratory Certificate of Analysis				C073569	C073569								
Benzene	ug/g	0.02	0.17	<0.020	<0.020	<0.020	<0.020	< 0.020	<0.040	<0.020	<0.020	<0.020	<0.020
Toluene	ug/g	0.2	6	<0.020	<0.020	<0.020	<0.020	<0.020	<0.040	<0.020	<0.020	<0.020	<0.020
Ethylbenzene	ug/g	0.05	15	<0.020	<0.020	< 0.020	<0.020	< 0.020	<0.040	<0.020	<0.020	<0.020	<0.020
Total Xylenes	ug/g	0.05	25	<0.040	< 0.040	< 0.040	< 0.040	< 0.040	<0.080	< 0.040	< 0.040	< 0.040	<0.040
F1 (C6-C10) - BTEX*	ug/g	25	65	<10	<10	<10	<10	<10	<20	<10	<10	<10	<10
F2 (C10-C16)	ug/g	10	150	<10	<10	<10	<10	<10	<20	<10	<10	<10	<10
F3 (C16-C34)	ug/g	240	1300	<50	<50	<50	<50	<50	<100	<50	<50	<50	<50
F4 (C34-C50)**	ug/g	120	5600	<50	<50	<50	<50	<50	<100	<50	<50	<50	560

In instances where the PHC F2 to F4 chromatogram did not reach baseline, the F4 fraction result shown is the highest value obtained via the gas chromatograph/flame ionization detection method or the gravimetric method.

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011,

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 3 Full Depth Generic Site Condition Standards (SCS) in a Potable Ground Water Condition for Residential/Parkland/Institutional property use and coarse textured soils.

Table 1 Full Depth Background Site Condition Standards (SCS) for Residential/Parkland/Institutional property use and coarse textured soils.

NOTES:

_

*

<(RDL) NV

N/A m bgs

**

Not Applicable

Parameter not analyzed

No Value

Metres below ground surface

F1 fraction does not include BTEX.

All results are reported in ppm (ug/g) unless otherwise indicated.

Indicates soil exceedance of MECP Table 1 SCS for Residential/Parkland/Institutional property use Indicates soil exceedance of MECP Table 3 SCS for Residential/Parkland/Institutional property use Indicates RDL exceedence of MECP Table 1 SCS for Residential/Parkland/Institutional property use

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

Page 1 of 1

Table 2 - Inorganic Parameters in Soil 6171 Hazeldean Road, Ottawa, Ontario OTT-00258780-C0

Sample ID				TP06-Fill	TP06-Native	TP08-Fill	TP08-Native	TP09-Fill	TP09-Native	TP10-Fill	TP10-Native	TP11-Fill	TP21-Fill (Field Duplicate of TP11- Fill)	TP14-Fill	TP15-Fill
Sampling Date	Units	MECP Table 1 SCS 1	MECP Table 3 SCS 2	17-Mar-20	17-Mar-20	17-Mar-20	17-Mar-20	17-Mar-20	17-Mar-20	17-Mar-20	1.5 - 2.0	17-Mar-20	17-Mar-20	17-Mar-20	17-Mar-20
Sample Depth (mbgs)	Units	Residential	Residential	0.3 - 0.8	1.4 - 1.9	1.3 - 1.7	1.7 - 2.0	1.5 - 2.0	2.0 - 2.5	0.8 - 1.2	1.5 - 2.0	0.9 - 1.4	0.9 - 1.4	0.7 - 2.3	0.1 - 0.8
Laboratory ID	1		Ī	MHA371	MHA372	MHA373	MHA374	MHA375	MHA376	MHA377	MHA378	MIA870	MIA871	MHA379	MHA380
Date of Analysis	1			25-Mar-20	25-Mar-20	25-Mar-20	25-Mar-20	25-Mar-20	25-Mar-20	25-Mar-20	25-Mar-20	1-Apr-20	1-Apr-20	25-Mar-20	25-Mar-20
Laboratory Certificate of Analysis				C073569	C073569	C073569	C073569	C073569	C073569	C073569	C073569	C078311	C078311	C073569	C073569
Metals															
Antimony	ug/g	1.3	7.5	0.38	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Arsenic	ug/g	18	18	2.0	1.2	<1.0	<1.0	<1.0	<1.0	1.1	<1.0	1.3	1.4	2.7	3.5
Barium	ug/g	220	390	110	48	83	80	59	190	85	53	65	65	66	110
Beryllium	ug/g	2.5	5	0.37	0.21	0.33	0.30	0.24	<0.20	0.41	0.23	0.35	0.35	0.56	0.66
Boron (HWS)	ug/g	NV	1.5	0.18	<0.050	0.12	<0.050	0.085	0.094	0.13	<0.050	0.11	0.08	0.055	0.11
Boron (Total)	ug/g	36	120	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	5.3	5.6
Cadmium	ug/g	1.2	1.2	0.16	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.11	0.15	<0.10	0.29
Chromium	ug/g	70	160	18	14	16	15	13	1.1	19	16	15	16	18	24
Chromiun VI	ug/g	0.66	8	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18
Cobalt	ug/g	21	22	7.4	5.2	5.3	5.2	4.5	0.58	7.5	9.2	5.2	5.4	11	11
Copper	ug/g	92	180	6.4	13	12	11	10	4.3	13	24	10	10	15	13
Lead	ug/g	120	120	47	3.1	5.1	3.8	5.0	<1.0	9.8	4.8	9.0	8.9	7.1	20
Mercury	ug/g	0.27	0.27	< 0.050	<0.050	< 0.050	< 0.050	0.058	<0.050	< 0.050	<0.050	< 0.050	<0.050	<0.050	0.067
Molybdenum	ug/g	2	6.9	<0.50	1.2	< 0.50	<0.50	<0.50	0.99	<0.50	<0.50	<0.50	<0.50	<0.50	0.67
Nickel	ug/g	82	130	9.0	8.9	9.5	10	8.0	3.5	13	13	9.3	9.8	15	18
Selenium	ug/g	1.5	2.4	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Silver	ug/g	0.5	25	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Thallium	ug/g	1	1	0.13	0.075	0.11	0.093	0.080	0.15	0.17	0.15	0.10	0.087	0.25	0.27
Uranium	ug/g	2.5	23	0.55	1.1	0.61	0.52	0.62	2.0	0.59	0.49	0.52	0.50	0.65	0.58
Vanadium	ug/g	86	86	38	28	29	27	26	<5.0	34	42	29	29	42	46
Zinc	ug/g	290	340	37	23	27	25	26	9.7	35	28	33	34	69	66
Other Inorganics															
рН	N/A	NV	NV	7.48	7.66	7.34	7.67	7.59	7.12	7.37	7.80	7.46	7.59	7.63	7.37
Conductivity	mS/cm	0.57	0.7	0.34	0.25	0.17	0.12	0.16	0.24	0.20	0.13	0.16	0.16	0.12	0.17
SAR	N/A	2.4	5	0.19	0.23	0.28	0.29	0.27	0.76	0.25	0.31	0.25	0.25	0.31	0.26
Cyanide (Free)	ug/g	0.051	0.051	0.03	<0.01	0.01	<0.01	0.02	0.04	0.02	<0.01	0.01	0.02	<0.01	0.03

NOTES:

<(RDL)

NV N/A

m bgs

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April

2011, Table 1 Full Depth Background Site Condition Standards (SCS) for Residential/Parkland/Institutional property use and coarse textured soils.

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 3 Full Depth Generic Site Condition Standards (SCS) in a Potable Ground Water Condition for Residential/Parkland/Institutional property use property use and coarse textured soils.

All results are reported in ppm (ug/g) unless otherwise indicated.

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

No Value

Not Applicable

Parameter not analyzed Metres below ground surface

Indicates soil exceedance of MECP Table 1 SCS for Residential/Parkland/Institutional property use Indicates soil exceedance of MECP Table 3 SCS for Residential/Parkland/Institutional property use

Table 3 - Maximum Concentrations in Soil 6171 Hazeldean Road, Ottawa, Ontario

OTT-00258780-C0 Page 1 of 1

Parameter	Sample Location	Sample Depth (mbgs)	Sampling Date	Maximum Concentration	MECP Table 3
Petroleum Hydrocarbons					
F1 PHC (C6 - C10) - BTEX	TP-09	2.0 - 2.5	17-Mar-20	<20	55
F2 PHC (C10-C16)	TP-09	2.0 - 2.5	17-Mar-20	<20	98
F3 PHC (C16-C34)	TP-09	2.0 - 2.5	17-Mar-20	<100	300
F4 PHC (C34-C50)	TP-15	0.1 - 0.8	17-Mar-20	560	2800
Benzene	TP-09	2.0 - 2.5	17-Mar-20	<0.04	0.21
Ethylbenzene	TP-09	2.0 - 2.5	17-Mar-20	<0.04	2
Toluene	TP-09	2.0 - 2.5	17-Mar-20	<0.04	2.3
Xylenes, total	TP-09	2.0 - 2.5	17-Mar-20	<0.08	3.1
Inorganic Parameters					
Antimony	TP-06	0.3 - 0.8	17-Mar-20	0.38	7.5
Arsenic	TP-15	0.1 - 0.8	17-Mar-20	3.5	18
Barium	TP-09	2.0 - 2.5	17-Mar-20	190	390
Beryllium	TP-15	0.1 - 0.8	17-Mar-20	0.66	4
Boron (HWS)	TP-06	0.3 - 0.8	17-Mar-20	0.18	
Boron	TP-15	0.1 - 0.8	17-Mar-20	5.6	120
Cadmium	TP-15	0.1 - 0.8	17-Mar-20	0.29	1.2
Chromium	TP-15	0.1 - 0.8	17-Mar-20	24	160
Chromium IV	All Locations	0.1 - 2.5	17-Mar-20	<0.18	
Cobalt	TP-14	0.7 - 2.3	17-Mar-20	11	22
Cobait	TP-15	0.1 - 0.8	17-Mar-20	11	22
Copper	TP-10	1.5 - 2.0	17-Mar-20	24	140
Lead	TP-06	0.3 - 0.8	17-Mar-20	47	120
Mercury	TP-15	0.1 - 0.8	17-Mar-20	0.067	
Molybdenum	TP-06	1.4 - 1.9	17-Mar-20	1.20	6.9
Nickel	TP-15	0.1 - 0.8	17-Mar-20	18	100
Selenium	All Locations	0.1 - 2.5	17-Mar-20	<0.50	2.4
Silver	All Locations	0.1 - 2.5	17-Mar-20	<0.20	20
Thallium	TP-15	0.1 - 0.8	17-Mar-20	0.27	1
Uranium	TP-09	2.0 - 2.5	17-Mar-20	2.0	23
Vanadium	TP-15	0.1 - 0.8	17-Mar-20	46	86
Zinc	TP-14	0.7 - 2.3	17-Mar-20	69	340

NOTES:

Analysis by Maxxam Analytics

All results are in ppm on dry weight basis

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

Results were compared to Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 3 Full Depth Generic Site Condition Standards (SCS) in a Non- Potable Ground Water Condition for Residential/Parkland/Institutional property use and coarse textured soils.

Table 4 - Relative Percent Differences - Inorganic Parameters in Soil 6171 Hazeldean Road, Ottawa, Ontario

OTT-00258780-C0 Page 1 of 1

						l ago i oi i
Parameter	Units	RDL	TP11-Fill	Dup 1	RPD (%)	Alert Limit (%)
			17-Mar-20	17-Mar-20	, ,	
Inorganic Parameters						
Antimony	ug/g	0.20	<0.20	<0.20	nc	60
Arsenic	ug/g	1.0	1.3	1.4	7	60
Barium	ug/g	0.50	65	65	0	60
Beryllium	ug/g	0.20	0.35	0.35	0	60
Boron (HWS)	ug/g	0.05	0.11	0.08	32	60
Boron (Total)	ug/g	5.0	<5.0	<5.0	nc	60
Cadmium	ug/g	0.10	0.11	0.15	31	60
Chromium	ug/g	1.0	15	16	6	60
Chromium IV	ug/g	0.2	<0.18	<0.18	nc	60
Cobalt	ug/g	0.10	5.2	5.4	4	60
Copper	ug/g	0.50	10	10	0	60
Lead	ug/g	1.0	9	8.9	1	60
Mercury	ug/g	0.050	<0.050	<0.050	nc	60
Molybdenum	ug/g	0.50	<0.50	<0.50	nc	60
Nickel	ug/g	0.50	9.3	9.8	5	60
Selenium	ug/g	0.50	<0.50	<0.50	nc	60
Silver	ug/g	0.20	<0.20	<0.20	nc	60
Thallium	ug/g	0.050	0.1	0.087	14	60
Uranium	ug/g	0.050	0.52	0.5	4	60
Vanadium	ug/g	5.0	29	29	0	60
Zinc	ug/g	5.0	33	34	3	60
Cyanide	ug/g	0.01	0.01	0.02	67	60

NOTES:

Analysis by Bureau Veritas Laboratories

All results on dry weight basis; <RDL means not detected at reporting detection limit (RDL)

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in bold

EXP Services Inc. 11654128 Canada Inc Phase Two Environmental Site Assessment 6171 Hazeldean Road, Ottawa, Ontario OTT-00258780-C0 July 24, 2020

Appendix F: Laboratory Certificates of Analysis

Your Project #: OTT-00258780-C0 Your C.O.C. #: 764708-02-01

Attention: Chris Kimmerly

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2020/03/25

Report #: R6123615 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C073569 Received: 2020/03/18, 16:20

Sample Matrix: Soil # Samples Received: 10

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Hot Water Extractable Boron (1)	10	2020/03/20	2020/03/23	CAM SOP-00408	R153 Ana. Prot. 2011
Free (WAD) Cyanide (1)	10	2020/03/20	2020/03/24	CAM SOP-00457	OMOE E3015 m
Conductivity (1)	1	2020/03/20	2020/03/20	CAM SOP-00414	OMOE E3530 v1 m
Conductivity (1)	9	2020/03/23	2020/03/23	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1, 2)	10	2020/03/20	2020/03/23	CAM SOP-00436	EPA 3060/7199 m
Petroleum Hydro. CCME F1 & BTEX in Soil (1, 3)	10	N/A	2020/03/22	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (1, 4)	10	2020/03/20	2020/03/23	CAM SOP-00316	CCME CWS m
F4G (CCME Hydrocarbons Gravimetric) (1)	1	2020/03/25	2020/03/25	CAM SOP-00316	CCME PHC-CWS m
Strong Acid Leachable Metals by ICPMS (1)	10	2020/03/20	2020/03/20	CAM SOP-00447	EPA 6020B m
Moisture (1)	10	N/A	2020/03/20	CAM SOP-00445	Carter 2nd ed 51.2 m
pH CaCl2 EXTRACT (1)	10	2020/03/20	2020/03/20	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR) (1)	1	N/A	2020/03/20	CAM SOP-00102	EPA 6010C
Sodium Adsorption Ratio (SAR) (1)	9	N/A	2020/03/24	CAM SOP-00102	EPA 6010C

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Your Project #: OTT-00258780-C0 Your C.O.C. #: 764708-02-01

Attention: Chris Kimmerly

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2020/03/25

Report #: R6123615 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C073569 Received: 2020/03/18, 16:20

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Laboratories Mississauga
- (2) Soils are reported on a dry weight basis unless otherwise specified.
- (3) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated.

(4) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas Laboratories conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Katherine Szozda Project Manager 25 Mar 2020 15:42:37

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Katherine Szozda, Project Manager Email: Katherine.Szozda@bvlabs.com

Phone# (613) 274-0573

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Client Project #: OTT-00258780-C0

Sampler Initials: GC

O.REG 153 METALS & INORGANICS PKG (SOIL)

BV Labs ID		MHA371	MHA372	MHA373			MHA373		
Sampling Date		2020/03/17	2020/03/17	2020/03/17			2020/03/17		
COC Number		764708-02-01	764708-02-01	764708-02-01			764708-02-01		
	UNITS	TP06-FILL	TP06-NATIVE	TP08-FILL	RDL	QC Batch	TP08-FILL Lab-Dup	RDL	QC Batch
Calculated Parameters									
Sodium Adsorption Ratio	N/A	0.19	0.23	0.28		6644792			
Inorganics					•				
Conductivity	mS/cm	0.34	0.25	0.17	0.002	6648741			
Available (CaCl2) pH	рН	7.48	7.66	7.34		6646370			
WAD Cyanide (Free)	ug/g	0.03	<0.01	0.01	0.01	6646601			
Chromium (VI)	ug/g	<0.18	<0.18	<0.18	0.18	6645790			
Metals					•				
Hot Water Ext. Boron (B)	ug/g	0.18	<0.050	0.12	0.050	6646529	0.12	0.050	6646529
Acid Extractable Antimony (Sb)	ug/g	0.38	<0.20	<0.20	0.20	6646434			
Acid Extractable Arsenic (As)	ug/g	2.0	1.2	<1.0	1.0	6646434			
Acid Extractable Barium (Ba)	ug/g	110	48	83	0.50	6646434			
Acid Extractable Beryllium (Be)	ug/g	0.37	0.21	0.33	0.20	6646434			
Acid Extractable Boron (B)	ug/g	<5.0	<5.0	<5.0	5.0	6646434			
Acid Extractable Cadmium (Cd)	ug/g	0.16	<0.10	<0.10	0.10	6646434			
Acid Extractable Chromium (Cr)	ug/g	18	14	16	1.0	6646434			
Acid Extractable Cobalt (Co)	ug/g	7.4	5.2	5.3	0.10	6646434			
Acid Extractable Copper (Cu)	ug/g	6.4	13	12	0.50	6646434			
Acid Extractable Lead (Pb)	ug/g	47	3.1	5.1	1.0	6646434			
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	1.2	<0.50	0.50	6646434			
Acid Extractable Nickel (Ni)	ug/g	9.0	8.9	9.5	0.50	6646434			
Acid Extractable Selenium (Se)	ug/g	<0.50	<0.50	<0.50	0.50	6646434			
Acid Extractable Silver (Ag)	ug/g	<0.20	<0.20	<0.20	0.20	6646434			
Acid Extractable Thallium (TI)	ug/g	0.13	0.075	0.11	0.050	6646434			
Acid Extractable Uranium (U)	ug/g	0.55	1.1	0.61	0.050	6646434			
Acid Extractable Vanadium (V)	ug/g	38	28	29	5.0	6646434			
Acid Extractable Zinc (Zn)	ug/g	37	23	27	5.0	6646434			
Acid Extractable Mercury (Hg)	ug/g	<0.050	<0.050	<0.050	0.050	6646434			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: OTT-00258780-C0

Sampler Initials: GC

O.REG 153 METALS & INORGANICS PKG (SOIL)

BV Labs ID		MHA374			MHA374			MHA375		
Sampling Date		2020/03/17			2020/03/17			2020/03/17		
COC Number		764708-02-01			764708-02-01			764708-02-01		
	UNITS	TP08-NATIVE	RDL	QC Batch	TP08-NATIVE Lab-Dup	RDL	QC Batch	TP09-FILL	RDL	QC Batch
Calculated Parameters										
Sodium Adsorption Ratio	N/A	0.29		6644792				0.27		6644792
Inorganics	•						•		•	
Conductivity	mS/cm	0.12	0.002	6646314	0.12	0.002	6646314	0.16	0.002	6648741
Available (CaCl2) pH	рН	7.67		6646370	7.71		6646370	7.59		6646370
WAD Cyanide (Free)	ug/g	<0.01	0.01	6646601	<0.01	0.01	6646601	0.02	0.01	6646601
Chromium (VI)	ug/g	<0.18	0.18	6645790	<0.18	0.18	6645790	<0.18	0.18	6645790
Metals	•						•		•	
Hot Water Ext. Boron (B)	ug/g	<0.050	0.050	6646529				0.085	0.050	6646529
Acid Extractable Antimony (Sb)	ug/g	<0.20	0.20	6646434				<0.20	0.20	6646434
Acid Extractable Arsenic (As)	ug/g	<1.0	1.0	6646434				<1.0	1.0	6646434
Acid Extractable Barium (Ba)	ug/g	80	0.50	6646434				59	0.50	6646434
Acid Extractable Beryllium (Be)	ug/g	0.30	0.20	6646434				0.24	0.20	6646434
Acid Extractable Boron (B)	ug/g	<5.0	5.0	6646434				<5.0	5.0	6646434
Acid Extractable Cadmium (Cd)	ug/g	<0.10	0.10	6646434				<0.10	0.10	6646434
Acid Extractable Chromium (Cr)	ug/g	15	1.0	6646434				13	1.0	6646434
Acid Extractable Cobalt (Co)	ug/g	5.2	0.10	6646434				4.5	0.10	6646434
Acid Extractable Copper (Cu)	ug/g	11	0.50	6646434				10	0.50	6646434
Acid Extractable Lead (Pb)	ug/g	3.8	1.0	6646434				5.0	1.0	6646434
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	0.50	6646434				<0.50	0.50	6646434
Acid Extractable Nickel (Ni)	ug/g	10	0.50	6646434				8.0	0.50	6646434
Acid Extractable Selenium (Se)	ug/g	<0.50	0.50	6646434				<0.50	0.50	6646434
Acid Extractable Silver (Ag)	ug/g	<0.20	0.20	6646434				<0.20	0.20	6646434
Acid Extractable Thallium (TI)	ug/g	0.093	0.050	6646434				0.080	0.050	6646434
Acid Extractable Uranium (U)	ug/g	0.52	0.050	6646434				0.62	0.050	6646434
Acid Extractable Vanadium (V)	ug/g	27	5.0	6646434				26	5.0	6646434
Acid Extractable Zinc (Zn)	ug/g	25	5.0	6646434				26	5.0	6646434
Acid Extractable Mercury (Hg)	ug/g	<0.050	0.050	6646434				0.058	0.050	6646434

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: OTT-00258780-C0

Sampler Initials: GC

O.REG 153 METALS & INORGANICS PKG (SOIL)

BV Labs ID		MHA376	MHA377	MHA378	MHA379		
Sampling Date		2020/03/17	2020/03/17	2020/03/17	2020/03/17		
COC Number		764708-02-01	764708-02-01	764708-02-01	764708-02-01		
	UNITS	TP09-NATIVE	TP10-FILL	TP10-NATIVE	TP14-FILL	RDL	QC Batch
Calculated Parameters							
Sodium Adsorption Ratio	N/A	0.76	0.25	0.31	0.31		6644792
Inorganics	•	•					-
Conductivity	mS/cm	0.24	0.20	0.13	0.12	0.002	6648741
Available (CaCl2) pH	рН	7.12	7.37	7.80	7.63		6646370
WAD Cyanide (Free)	ug/g	0.04	0.02	<0.01	<0.01	0.01	6646601
Chromium (VI)	ug/g	<0.18	<0.18	<0.18	<0.18	0.18	6645790
Metals	_						
Hot Water Ext. Boron (B)	ug/g	0.094	0.13	<0.050	0.055	0.050	6646529
Acid Extractable Antimony (Sb)	ug/g	<0.20	<0.20	<0.20	<0.20	0.20	6646434
Acid Extractable Arsenic (As)	ug/g	<1.0	1.1	<1.0	2.7	1.0	6646434
Acid Extractable Barium (Ba)	ug/g	190	85	53	66	0.50	6646434
Acid Extractable Beryllium (Be)	ug/g	<0.20	0.41	0.23	0.56	0.20	6646434
Acid Extractable Boron (B)	ug/g	<5.0	<5.0	<5.0	5.3	5.0	6646434
Acid Extractable Cadmium (Cd)	ug/g	<0.10	<0.10	<0.10	<0.10	0.10	6646434
Acid Extractable Chromium (Cr)	ug/g	1.1	19	16	18	1.0	6646434
Acid Extractable Cobalt (Co)	ug/g	0.58	7.5	9.2	11	0.10	6646434
Acid Extractable Copper (Cu)	ug/g	4.3	13	24	15	0.50	6646434
Acid Extractable Lead (Pb)	ug/g	<1.0	9.8	4.8	7.1	1.0	6646434
Acid Extractable Molybdenum (Mo)	ug/g	0.99	<0.50	<0.50	<0.50	0.50	6646434
Acid Extractable Nickel (Ni)	ug/g	3.5	13	13	15	0.50	6646434
Acid Extractable Selenium (Se)	ug/g	<0.50	<0.50	<0.50	<0.50	0.50	6646434
Acid Extractable Silver (Ag)	ug/g	<0.20	<0.20	<0.20	<0.20	0.20	6646434
Acid Extractable Thallium (Tl)	ug/g	0.15	0.17	0.15	0.25	0.050	6646434
Acid Extractable Uranium (U)	ug/g	2.0	0.59	0.49	0.65	0.050	6646434
Acid Extractable Vanadium (V)	ug/g	<5.0	34	42	42	5.0	6646434
Acid Extractable Zinc (Zn)	ug/g	9.7	35	28	69	5.0	6646434
Acid Extractable Mercury (Hg)	ug/g	<0.050	<0.050	<0.050	<0.050	0.050	6646434
RDL = Reportable Detection Limit QC Batch = Quality Control Batch	•						

QC Batch = Quality Control Batch

Client Project #: OTT-00258780-C0

Sampler Initials: GC

O.REG 153 METALS & INORGANICS PKG (SOIL)

BV Labs ID		MHA379			MHA380		
Sampling Date		2020/03/17			2020/03/17		
COC Number		764708-02-01			764708-02-01		
	UNITS	TP14-FILL Lab-Dup	RDL	QC Batch	TP15-FILL	RDL	QC Batch
Calculated Parameters							
Sodium Adsorption Ratio	N/A				0.26		6644792
Inorganics	_						
Conductivity	mS/cm				0.17	0.002	6648741
Available (CaCl2) pH	рН				7.37		6646370
WAD Cyanide (Free)	ug/g				0.03	0.01	6646601
Chromium (VI)	ug/g				<0.18	0.18	6645790
Metals							
Hot Water Ext. Boron (B)	ug/g				0.11	0.050	6646529
Acid Extractable Antimony (Sb)	ug/g	<0.20	0.20	6646434	<0.20	0.20	6646434
Acid Extractable Arsenic (As)	ug/g	2.9	1.0	6646434	3.5	1.0	6646434
Acid Extractable Barium (Ba)	ug/g	62	0.50	6646434	110	0.50	6646434
Acid Extractable Beryllium (Be)	ug/g	0.54	0.20	6646434	0.66	0.20	6646434
Acid Extractable Boron (B)	ug/g	5.2	5.0	6646434	5.6	5.0	6646434
Acid Extractable Cadmium (Cd)	ug/g	0.13	0.10	6646434	0.29	0.10	6646434
Acid Extractable Chromium (Cr)	ug/g	18	1.0	6646434	24	1.0	6646434
Acid Extractable Cobalt (Co)	ug/g	11	0.10	6646434	11	0.10	6646434
Acid Extractable Copper (Cu)	ug/g	14	0.50	6646434	13	0.50	6646434
Acid Extractable Lead (Pb)	ug/g	6.9	1.0	6646434	20	1.0	6646434
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	0.50	6646434	0.67	0.50	6646434
Acid Extractable Nickel (Ni)	ug/g	15	0.50	6646434	18	0.50	6646434
Acid Extractable Selenium (Se)	ug/g	<0.50	0.50	6646434	<0.50	0.50	6646434
Acid Extractable Silver (Ag)	ug/g	<0.20	0.20	6646434	<0.20	0.20	6646434
Acid Extractable Thallium (TI)	ug/g	0.26	0.050	6646434	0.27	0.050	6646434
Acid Extractable Uranium (U)	ug/g	0.64	0.050	6646434	0.58	0.050	6646434
Acid Extractable Vanadium (V)	ug/g	43	5.0	6646434	46	5.0	6646434
Acid Extractable Zinc (Zn)	ug/g	67	5.0	6646434	66	5.0	6646434
Acid Extractable Mercury (Hg)	ug/g	<0.050	0.050	6646434	0.067	0.050	6646434
DDI - Departable Detection Limit			_				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: OTT-00258780-C0

Sampler Initials: GC

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

BV Labs ID		MHA371	MHA372	MHA373	MHA374	MHA375		
Sampling Date		2020/03/17	2020/03/17	2020/03/17	2020/03/17	2020/03/17		
COC Number		764708-02-01	764708-02-01	764708-02-01	764708-02-01	764708-02-01		
	UNITS	TP06-FILL	TP06-NATIVE	TP08-FILL	TP08-NATIVE	TP09-FILL	RDL	QC Batch
Inorganics								
Moisture	%	17	11	16	17	16	1.0	6645991
BTEX & F1 Hydrocarbons								
Benzene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	6647927
Toluene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	6647927
Ethylbenzene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	6647927
o-Xylene	ug/g	<0.020	<0.020	<0.020	<0.020	<0.020	0.020	6647927
p+m-Xylene	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	6647927
Total Xylenes	ug/g	<0.040	<0.040	<0.040	<0.040	<0.040	0.040	6647927
F1 (C6-C10)	ug/g	<10	<10	<10	<10	<10	10	6647927
F1 (C6-C10) - BTEX	ug/g	<10	<10	<10	<10	<10	10	6647927
F2-F4 Hydrocarbons								
F2 (C10-C16 Hydrocarbons)	ug/g	<10	<10	<10	<10	<10	10	6646100
F3 (C16-C34 Hydrocarbons)	ug/g	<50	<50	<50	<50	<50	50	6646100
F4 (C34-C50 Hydrocarbons)	ug/g	<50	<50	<50	<50	<50	50	6646100
Reached Baseline at C50	ug/g	Yes	Yes	Yes	Yes	Yes		6646100
Surrogate Recovery (%)								
1,4-Difluorobenzene	%	101	100	98	102	100		6647927
4-Bromofluorobenzene	%	100	98	98	97	98		6647927
D10-Ethylbenzene	%	104	99	104	97	109		6647927
D4-1,2-Dichloroethane	%	103	103	102	103	101		6647927
o-Terphenyl	%	73	71	79	69	69		6646100

QC Batch = Quality Control Batch

Client Project #: OTT-00258780-C0

Sampler Initials: GC

O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

BV Labs ID		MHA376		MHA377	MHA378	MHA379	MHA380		
Sampling Date		2020/03/17		2020/03/17	2020/03/17	2020/03/17	2020/03/17		
COC Number		764708-02-01		764708-02-01	764708-02-01	764708-02-01	764708-02-01		
	UNITS	TP09-NATIVE	RDL	TP10-FILL	TP10-NATIVE	TP14-FILL	TP15-FILL	RDL	QC Batch
Inorganics									
Moisture	%	57	1.0	16	11	12	13	1.0	6645991
BTEX & F1 Hydrocarbons	•		•					•	
Benzene	ug/g	<0.040	0.040	<0.020	<0.020	<0.020	<0.020	0.020	6647927
Toluene	ug/g	<0.040	0.040	<0.020	<0.020	<0.020	<0.020	0.020	6647927
Ethylbenzene	ug/g	<0.040	0.040	<0.020	<0.020	<0.020	<0.020	0.020	6647927
o-Xylene	ug/g	<0.040	0.040	<0.020	<0.020	<0.020	<0.020	0.020	6647927
p+m-Xylene	ug/g	<0.080	0.080	<0.040	<0.040	<0.040	<0.040	0.040	6647927
Total Xylenes	ug/g	<0.080	0.080	<0.040	<0.040	<0.040	<0.040	0.040	6647927
F1 (C6-C10)	ug/g	<20	20	<10	<10	<10	<10	10	6647927
F1 (C6-C10) - BTEX	ug/g	<20	20	<10	<10	<10	<10	10	6647927
F2-F4 Hydrocarbons									
F2 (C10-C16 Hydrocarbons)	ug/g	<20	20	<10	<10	<10	<10	10	6646100
F3 (C16-C34 Hydrocarbons)	ug/g	<100	100	<50	<50	<50	<50	50	6646100
F4 (C34-C50 Hydrocarbons)	ug/g	<100	100	<50	<50	<50	86	50	6646100
Reached Baseline at C50	ug/g	Yes		Yes	Yes	Yes	No		6646100
Surrogate Recovery (%)									
1,4-Difluorobenzene	%	100		100	98	102	99		6647927
4-Bromofluorobenzene	%	99		97	99	100	98		6647927
D10-Ethylbenzene	%	106		109	99	106	110		6647927
D4-1,2-Dichloroethane	%	104		104	104	104	104		6647927
o-Terphenyl	%	76		80	79	86	78		6646100
RDL = Reportable Detection I QC Batch = Quality Control B									

QC Batch = Quality Control Batch

Client Project #: OTT-00258780-C0

Sampler Initials: GC

PETROLEUM HYDROCARBONS (CCME)

BV Labs ID		MHA380						
Sampling Date		2020/03/17						
COC Number		764708-02-01						
	UNITS	TP15-FILL	RDL	QC Batch				
F2-F4 Hydrocarbons								
F2-F4 Hydrocarbons								
F2-F4 Hydrocarbons F4G-sg (Grav. Heavy Hydrocarbons)	ug/g	560	100	6652658				
,	ug/g	560	100	6652658				

Client Project #: OTT-00258780-C0

Sampler Initials: GC

TEST SUMMARY

BV Labs ID: MHA371 Sample ID: TP06-FILL

Shipped:

Collected: 2020/03/17

Matrix: Soil

Received: 2020/03/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	6646529	2020/03/20	2020/03/23	Suban Kanapathippllai
Free (WAD) Cyanide	TECH	6646601	2020/03/20	2020/03/24	Louise Harding
Conductivity	AT	6648741	2020/03/23	2020/03/23	Mandeep Kaur
Hexavalent Chromium in Soil by IC	IC/SPEC	6645790	2020/03/20	2020/03/23	Violeta Porcila
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6647927	N/A	2020/03/22	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6646100	2020/03/20	2020/03/23	Ksenia Trofimova
Strong Acid Leachable Metals by ICPMS	ICP/MS	6646434	2020/03/20	2020/03/20	Viviana Canzonieri
Moisture	BAL	6645991	N/A	2020/03/20	Kruti Jitesh Patel
pH CaCl2 EXTRACT	AT	6646370	2020/03/20	2020/03/20	Surinder Rai
Sodium Adsorption Ratio (SAR)	CALC/MET	6644792	N/A	2020/03/24	Automated Statchk

BV Labs ID: MHA372 Sample ID: TP06-NATIVE Matrix: Soil

Collected: 2020/03/17 Shipped:

Received: 2020/03/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	6646529	2020/03/20	2020/03/23	Suban Kanapathippllai
Free (WAD) Cyanide	TECH	6646601	2020/03/20	2020/03/24	Louise Harding
Conductivity	AT	6648741	2020/03/23	2020/03/23	Mandeep Kaur
Hexavalent Chromium in Soil by IC	IC/SPEC	6645790	2020/03/20	2020/03/23	Violeta Porcila
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6647927	N/A	2020/03/22	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6646100	2020/03/20	2020/03/23	Ksenia Trofimova
Strong Acid Leachable Metals by ICPMS	ICP/MS	6646434	2020/03/20	2020/03/20	Viviana Canzonieri
Moisture	BAL	6645991	N/A	2020/03/20	Kruti Jitesh Patel
pH CaCl2 EXTRACT	AT	6646370	2020/03/20	2020/03/20	Surinder Rai
Sodium Adsorption Ratio (SAR)	CALC/MET	6644792	N/A	2020/03/24	Automated Statchk

BV Labs ID: MHA373 **Collected:** 2020/03/17 Sample ID: TP08-FILL Shipped:

Matrix: Soil **Received:** 2020/03/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	6646529	2020/03/20	2020/03/23	Suban Kanapathippllai
Free (WAD) Cyanide	TECH	6646601	2020/03/20	2020/03/24	Louise Harding
Conductivity	AT	6648741	2020/03/23	2020/03/23	Mandeep Kaur
Hexavalent Chromium in Soil by IC	IC/SPEC	6645790	2020/03/20	2020/03/23	Violeta Porcila
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6647927	N/A	2020/03/22	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6646100	2020/03/20	2020/03/23	Ksenia Trofimova
Strong Acid Leachable Metals by ICPMS	ICP/MS	6646434	2020/03/20	2020/03/20	Viviana Canzonieri
Moisture	BAL	6645991	N/A	2020/03/20	Kruti Jitesh Patel
pH CaCl2 EXTRACT	AT	6646370	2020/03/20	2020/03/20	Surinder Rai
Sodium Adsorption Ratio (SAR)	CALC/MET	6644792	N/A	2020/03/24	Automated Statchk

Client Project #: OTT-00258780-C0

Sampler Initials: GC

TEST SUMMARY

BV Labs ID: MHA373 Dup

Sample ID: TP08-FILL Matrix: Soil

Shipped:

Collected: 2020/03/17

Received: 2020/03/18

Date Analyzed Test Description Instrumentation Batch Extracted Analyst

Hot Water Extractable Boron ICP 6646529 2020/03/20 2020/03/23 Suban Kanapathippllai

BV Labs ID: MHA374 Sample ID: TP08-NATIVE Collected:

2020/03/17

Matrix: Soil

Shipped: Received:

2020/03/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	6646529	2020/03/20	2020/03/23	Suban Kanapathippllai
Free (WAD) Cyanide	TECH	6646601	2020/03/20	2020/03/24	Louise Harding
Conductivity	AT	6646314	2020/03/20	2020/03/20	Kazzandra Adeva
Hexavalent Chromium in Soil by IC	IC/SPEC	6645790	2020/03/20	2020/03/23	Violeta Porcila
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6647927	N/A	2020/03/22	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6646100	2020/03/20	2020/03/23	Ksenia Trofimova
Strong Acid Leachable Metals by ICPMS	ICP/MS	6646434	2020/03/20	2020/03/20	Viviana Canzonieri
Moisture	BAL	6645991	N/A	2020/03/20	Kruti Jitesh Patel
pH CaCl2 EXTRACT	AT	6646370	2020/03/20	2020/03/20	Surinder Rai
Sodium Adsorption Ratio (SAR)	CALC/MET	6644792	N/A	2020/03/20	Automated Statchk

BV Labs ID: MHA374 Dup Sample ID: TP08-NATIVE

Matrix: Soil

Collected:

Collected:

2020/03/17

2020/03/17

Shipped:

Received: 2020/03/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Free (WAD) Cyanide	TECH	6646601	2020/03/20	2020/03/24	Louise Harding
Conductivity	AT	6646314	2020/03/20	2020/03/20	Kazzandra Adeva
Hexavalent Chromium in Soil by IC	IC/SPEC	6645790	2020/03/20	2020/03/23	Violeta Porcila
pH CaCl2 EXTRACT	AT	6646370	2020/03/20	2020/03/20	Surinder Rai

BV Labs ID: MHA375 Sample ID: TP09-FILL

Shipped:

Matrix: Soil Received: 2020/03/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	6646529	2020/03/20	2020/03/23	Suban Kanapathippllai
Free (WAD) Cyanide	TECH	6646601	2020/03/20	2020/03/24	Louise Harding
Conductivity	AT	6648741	2020/03/23	2020/03/23	Mandeep Kaur
Hexavalent Chromium in Soil by IC	IC/SPEC	6645790	2020/03/20	2020/03/23	Violeta Porcila
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6647927	N/A	2020/03/22	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6646100	2020/03/20	2020/03/23	Ksenia Trofimova
Strong Acid Leachable Metals by ICPMS	ICP/MS	6646434	2020/03/20	2020/03/20	Viviana Canzonieri
Moisture	BAL	6645991	N/A	2020/03/20	Kruti Jitesh Patel
pH CaCl2 EXTRACT	AT	6646370	2020/03/20	2020/03/20	Surinder Rai
Sodium Adsorption Ratio (SAR)	CALC/MET	6644792	N/A	2020/03/24	Automated Statchk

Client Project #: OTT-00258780-C0

Sampler Initials: GC

TEST SUMMARY

BV Labs ID: MHA376 Sample ID: TP09-NATIVE

Matrix: Soil

Collected: 2020/03/17

Shipped:

Received: 2020/03/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	6646529	2020/03/20	2020/03/23	Suban Kanapathippllai
Free (WAD) Cyanide	TECH	6646601	2020/03/20	2020/03/24	Louise Harding
Conductivity	AT	6648741	2020/03/23	2020/03/23	Mandeep Kaur
Hexavalent Chromium in Soil by IC	IC/SPEC	6645790	2020/03/20	2020/03/23	Violeta Porcila
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6647927	N/A	2020/03/22	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6646100	2020/03/20	2020/03/23	Ksenia Trofimova
Strong Acid Leachable Metals by ICPMS	ICP/MS	6646434	2020/03/20	2020/03/20	Viviana Canzonieri
Moisture	BAL	6645991	N/A	2020/03/20	Kruti Jitesh Patel
pH CaCl2 EXTRACT	AT	6646370	2020/03/20	2020/03/20	Surinder Rai
Sodium Adsorption Ratio (SAR)	CALC/MET	6644792	N/A	2020/03/24	Automated Statchk

BV Labs ID: MHA377 Sample ID: TP10-FILL
Matrix: Soil

Collected: 2020/03/17

Shipped:

Received: 2020/03/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	6646529	2020/03/20	2020/03/23	Suban Kanapathippllai
Free (WAD) Cyanide	TECH	6646601	2020/03/20	2020/03/24	Louise Harding
Conductivity	AT	6648741	2020/03/23	2020/03/23	Mandeep Kaur
Hexavalent Chromium in Soil by IC	IC/SPEC	6645790	2020/03/20	2020/03/23	Violeta Porcila
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6647927	N/A	2020/03/22	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6646100	2020/03/20	2020/03/23	Ksenia Trofimova
Strong Acid Leachable Metals by ICPMS	ICP/MS	6646434	2020/03/20	2020/03/20	Viviana Canzonieri
Moisture	BAL	6645991	N/A	2020/03/20	Kruti Jitesh Patel
pH CaCl2 EXTRACT	AT	6646370	2020/03/20	2020/03/20	Surinder Rai
Sodium Adsorption Ratio (SAR)	CALC/MET	6644792	N/A	2020/03/24	Automated Statchk

BV Labs ID: MHA378 Sample ID: TP10-NATIVE

Matrix: Soil

Collected: 2020/03/17

Shipped:

Received: 2020/03/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	6646529	2020/03/20	2020/03/23	Suban Kanapathippllai
Free (WAD) Cyanide	TECH	6646601	2020/03/20	2020/03/24	Louise Harding
Conductivity	AT	6648741	2020/03/23	2020/03/23	Mandeep Kaur
Hexavalent Chromium in Soil by IC	IC/SPEC	6645790	2020/03/20	2020/03/23	Violeta Porcila
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6647927	N/A	2020/03/22	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6646100	2020/03/20	2020/03/23	Ksenia Trofimova
Strong Acid Leachable Metals by ICPMS	ICP/MS	6646434	2020/03/20	2020/03/20	Viviana Canzonieri
Moisture	BAL	6645991	N/A	2020/03/20	Kruti Jitesh Patel
pH CaCl2 EXTRACT	AT	6646370	2020/03/20	2020/03/20	Surinder Rai
Sodium Adsorption Ratio (SAR)	CALC/MET	6644792	N/A	2020/03/24	Automated Statchk

Report Date: 2020/03/25

exp Services Inc

Client Project #: OTT-00258780-C0

Sampler Initials: GC

TEST SUMMARY

BV Labs ID: MHA379

Collected: 2020/03/17

Sample ID: TP14-FILL Matrix: Soil

Shipped:

Received: 2020/03/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	6646529	2020/03/20	2020/03/23	Suban Kanapathippllai
Free (WAD) Cyanide	TECH	6646601	2020/03/20	2020/03/24	Louise Harding
Conductivity	AT	6648741	2020/03/23	2020/03/23	Mandeep Kaur
Hexavalent Chromium in Soil by IC	IC/SPEC	6645790	2020/03/20	2020/03/23	Violeta Porcila
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6647927	N/A	2020/03/22	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6646100	2020/03/20	2020/03/23	Ksenia Trofimova
Strong Acid Leachable Metals by ICPMS	ICP/MS	6646434	2020/03/20	2020/03/20	Viviana Canzonieri
Moisture	BAL	6645991	N/A	2020/03/20	Kruti Jitesh Patel
pH CaCl2 EXTRACT	AT	6646370	2020/03/20	2020/03/20	Surinder Rai
Sodium Adsorption Ratio (SAR)	CALC/MET	6644792	N/A	2020/03/24	Automated Statchk

BV Labs ID: MHA379 Dup Sample ID: TP14-FILL Matrix: Soil

Collected: 2020/03/17

Shipped:

Received: 2020/03/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Strong Acid Leachable Metals by ICPMS	ICP/MS	6646434	2020/03/20	2020/03/20	Viviana Canzonieri

BV Labs ID: MHA380 Sample ID: TP15-FILL Collected:

2020/03/17

Matrix: Soil

Shipped: Received: 2020/03/18

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	6646529	2020/03/20	2020/03/23	Suban Kanapathippllai
Free (WAD) Cyanide	TECH	6646601	2020/03/20	2020/03/24	Louise Harding
Conductivity	AT	6648741	2020/03/23	2020/03/23	Mandeep Kaur
Hexavalent Chromium in Soil by IC	IC/SPEC	6645790	2020/03/20	2020/03/23	Violeta Porcila
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	6647927	N/A	2020/03/22	Abdikarim Ali
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	6646100	2020/03/20	2020/03/23	Ksenia Trofimova
F4G (CCME Hydrocarbons Gravimetric)	BAL	6652658	2020/03/25	2020/03/25	Rashmi Dubey
Strong Acid Leachable Metals by ICPMS	ICP/MS	6646434	2020/03/20	2020/03/20	Viviana Canzonieri
Moisture	BAL	6645991	N/A	2020/03/20	Kruti Jitesh Patel
pH CaCl2 EXTRACT	AT	6646370	2020/03/20	2020/03/20	Surinder Rai
Sodium Adsorption Ratio (SAR)	CALC/MET	6644792	N/A	2020/03/24	Automated Statchk

exp Services Inc Client Project #: OTT-00258780-C0

Sampler Initials: GC

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	6.3°C
-----------	-------

Sample MHA371 [TP06-FILL]: SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Sample MHA372 [TP06-NATIVE] : SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Sample MHA373 [TP08-FILL]: SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Sample MHA374 [TP08-NATIVE]: SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Sample MHA375 [TP09-FILL]: SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Sample MHA376 [TP09-NATIVE]: F1 BTEX analysis: Detection limits were adjusted for high moisture content.

F2 F4 Analysis: Detection limits were adjusted for high moisture content.

Sample MHA377 [TP10-FILL]: SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Sample MHA378 [TP10-NATIVE]: F1/BTEX Analysis: Greater than 10g of soil was submitted in the field preserved vial. This significantly exceeds the protocol specification of approximately 5g. Additional methanol was added to the vial to ensure extraction efficiency.

SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Sample MHA379 [TP14-FILL]: SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Sample MHA380 [TP15-FILL]: SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

exp Services Inc

Client Project #: OTT-00258780-C0

Sampler Initials: GC

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6646100	o-Terphenyl	2020/03/23	87	60 - 130	89	60 - 130	73	%		
6647927	1,4-Difluorobenzene	2020/03/22	99	60 - 140	102	60 - 140	100	%		
6647927	4-Bromofluorobenzene	2020/03/22	99	60 - 140	101	60 - 140	100	%		
6647927	D10-Ethylbenzene	2020/03/22	92	60 - 140	104	60 - 140	104	%		
6647927	D4-1,2-Dichloroethane	2020/03/22	104	60 - 140	107	60 - 140	104	%		
6645790	Chromium (VI)	2020/03/23	63 (1)	70 - 130	90	80 - 120	<0.18	ug/g	NC	35
6645991	Moisture	2020/03/20							3.5	20
6646100	F2 (C10-C16 Hydrocarbons)	2020/03/23	86	50 - 130	86	80 - 120	<10	ug/g	NC	30
6646100	F3 (C16-C34 Hydrocarbons)	2020/03/23	86	50 - 130	88	80 - 120	<50	ug/g	NC	30
6646100	F4 (C34-C50 Hydrocarbons)	2020/03/23	87	50 - 130	90	80 - 120	<50	ug/g	NC	30
6646314	Conductivity	2020/03/20			104	90 - 110	<0.002	mS/cm	0.94	10
6646370	Available (CaCl2) pH	2020/03/20			100	97 - 103			0.54	N/A
6646434	Acid Extractable Antimony (Sb)	2020/03/20	91	75 - 125	104	80 - 120	<0.20	ug/g	NC	30
6646434	Acid Extractable Arsenic (As)	2020/03/20	96	75 - 125	104	80 - 120	<1.0	ug/g	5.7	30
6646434	Acid Extractable Barium (Ba)	2020/03/20	NC	75 - 125	99	80 - 120	<0.50	ug/g	6.0	30
6646434	Acid Extractable Beryllium (Be)	2020/03/20	98	75 - 125	99	80 - 120	<0.20	ug/g	5.0	30
6646434	Acid Extractable Boron (B)	2020/03/20	96	75 - 125	97	80 - 120	<5.0	ug/g	3.6	30
6646434	Acid Extractable Cadmium (Cd)	2020/03/20	98	75 - 125	99	80 - 120	<0.10	ug/g	24	30
6646434	Acid Extractable Chromium (Cr)	2020/03/20	100	75 - 125	98	80 - 120	<1.0	ug/g	1.0	30
6646434	Acid Extractable Cobalt (Co)	2020/03/20	95	75 - 125	101	80 - 120	<0.10	ug/g	1.3	30
6646434	Acid Extractable Copper (Cu)	2020/03/20	96	75 - 125	101	80 - 120	<0.50	ug/g	4.8	30
6646434	Acid Extractable Lead (Pb)	2020/03/20	98	75 - 125	98	80 - 120	<1.0	ug/g	1.9	30
6646434	Acid Extractable Mercury (Hg)	2020/03/20	90	75 - 125	96	80 - 120	<0.050	ug/g	NC	30
6646434	Acid Extractable Molybdenum (Mo)	2020/03/20	97	75 - 125	102	80 - 120	<0.50	ug/g	NC	30
6646434	Acid Extractable Nickel (Ni)	2020/03/20	98	75 - 125	102	80 - 120	<0.50	ug/g	2.5	30
6646434	Acid Extractable Selenium (Se)	2020/03/20	99	75 - 125	103	80 - 120	<0.50	ug/g	NC	30
6646434	Acid Extractable Silver (Ag)	2020/03/20	96	75 - 125	102	80 - 120	<0.20	ug/g	NC	30
6646434	Acid Extractable Thallium (TI)	2020/03/20	97	75 - 125	99	80 - 120	<0.050	ug/g	1.8	30
6646434	Acid Extractable Uranium (U)	2020/03/20	98	75 - 125	97	80 - 120	<0.050	ug/g	2.4	30
6646434	Acid Extractable Vanadium (V)	2020/03/20	NC	75 - 125	101	80 - 120	<5.0	ug/g	2.7	30
6646434	Acid Extractable Zinc (Zn)	2020/03/20	NC	75 - 125	97	80 - 120	<5.0	ug/g	2.0	30
6646529	Hot Water Ext. Boron (B)	2020/03/23	93	75 - 125	91	75 - 125	<0.050	ug/g	0.27	40

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: OTT-00258780-C0

Sampler Initials: GC

			Matrix	Spike	SPIKED	BLANK	Method Blank		RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6646601	WAD Cyanide (Free)	2020/03/24	95	75 - 125	99	80 - 120	<0.01	ug/g	NC	35
6647927	Benzene	2020/03/22	74	60 - 140	97	60 - 140	<0.020	ug/g	NC	50
6647927	Ethylbenzene	2020/03/22	82	60 - 140	104	60 - 140	<0.020	ug/g	NC	50
6647927	F1 (C6-C10) - BTEX	2020/03/22					<10	ug/g	NC	30
6647927	F1 (C6-C10)	2020/03/22	72	60 - 140	85	80 - 120	<10	ug/g	NC	30
6647927	o-Xylene	2020/03/22	83	60 - 140	101	60 - 140	<0.020	ug/g	NC	50
6647927	p+m-Xylene	2020/03/22	83	60 - 140	103	60 - 140	<0.040	ug/g	NC	50
6647927	Toluene	2020/03/22	79	60 - 140	100	60 - 140	<0.020	ug/g	NC	50
6647927	Total Xylenes	2020/03/22					<0.040	ug/g	NC	50
6648741	Conductivity	2020/03/23			102	90 - 110	<0.002	mS/cm	1.2	10
6652658	F4G-sg (Grav. Heavy Hydrocarbons)	2020/03/25	98	65 - 135	101	65 - 135	<100	ug/g	0	50

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) The matrix spike recovery was below the lower control limit. This may be due in part to the reducing environment of the sample. The sample was reanalyzed with the same results.

exp Services Inc Client Project #: OTT-00258780-C0

Sampler Initials: GC

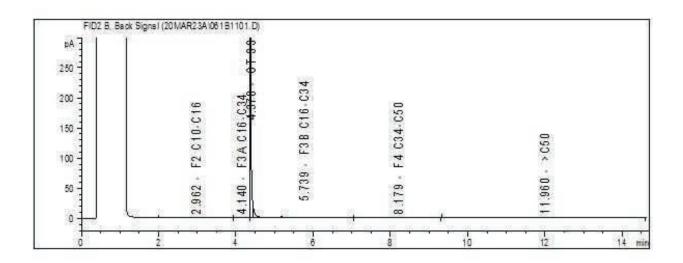
VALIDATION SIGNATURE PAGE

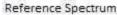
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

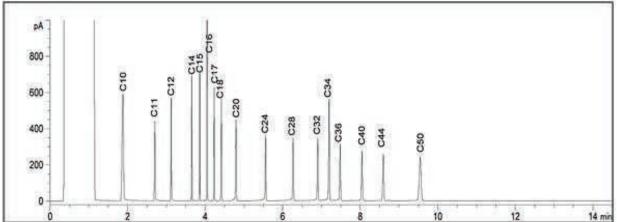
Anastassia Hamanov, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

DUREAU VERITAS		Bureau Ventas Laboratories 6740 Campobello Road, Mississauga, Or	ntario Canada L5N 21	L8 Tel:(905) 817-5	700 Tall-free 800	-563-6266 Fax:	(905) 817-5	777 www.bv	labs.com	}		,	•		18-Mar- erine Szo	zda	Page: of
		NVOICE TO:			REPO	RT TO:				PROJECT INFORMATION:					ly:		
mpany Name:	#17498 exp Se		Company							Quotation	#.	B917	18		073569		Bottle Order #:
ention:	Accounts Payab		Attention	Chris K	immerly					P.O.#		OTT	00059790 00	- URE	ENV		
dress:	100-2650 Queer Ottawa ON K2B	Charles and the Control of the Contr	Address	-						Project:		OTT-00258780-C0			Ě	COC#:	764708 Project Manager:
	(613) 688-1899	Fax (613) 225-7337	7.	-		Fax		-		Project Na Site #	me.	1.00	20 0		1000000		N. V. Mark Company March
ail		va@exp.com; Karen.Burke@exp.		Chris.K	immerly@ex					Sampled I	3v	60	hun	. 2		C#764708-02-01	Katherine Szozda
Regulation	SULATED DRINKIN SUBMITTED on 153 (2011)	G WATER OR WATER INTENDED ON THE BY LABS DRINKING WAT Other Regulatio	ER CHAIN OF C	USTODY	MUST BE	e circle): -VI	1-F4 (Soil)	anics Pkg	AN.	ALYSIS RE	QUESTED	(PLEASE	BE SPECIFIC)	2 1		Turnaround Time (TAT). Please provide advance notice indard) TAT: (Rush TAT is not specified): 5-7 Working days for most tests.	
Table 2	Ind/Comm Coarse	Reg 558. Storm Sewer				Field Filtered (please circle): Metals / Hg / Cr VI	g 153 PHCs, BTEX/F1-F4	g 153 Metals & Inorge		1				90	Please note: Sta days - contact yo	ndard TAT for certain tests such as ur Project Manager for details. ush TAT (if applies to entire sub T on Number	
Sample	Barcode Label	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix	- E	D.Reg	O.Reg (Soil)		per .	23		•		# of Bottles	Com	nents
		TP06-Fill	2020/03/17	T.E.	5		1	J			3.				4		
		TPO6-Notive	II.	1(le		/	V							4		
		TP08-Fill	U	((V		V	V							4		V
		TP08-Native	V.e	ν(1.1		V	V							4		
		Trog-Fill	1.(1.1	44		V	V							4		
		TPO9-Notive	- "	U/	ι(V	V							4		
		TPIO-Fill	10	~ (. (V	~							4		
		TP10-Native	5-	5.6	М		/								4		
		TP+4, Fill	\L	1.5	L C		V								7		84 Re.
		IPIS Fill	٤,	и			V	V							4		
cli	RELINDUISHED BY: (S	gnature/Print) Date; (YY)		an Ind	RECEIVED	BY: (Signature/	er.	2	olo	MM/DD) 3/18 03/19	16:	ime 20 100	# jars used and not submitted	Time Sensitive	1	y Use Only (*C) on Recei Custody: Presen Intact	Seal Yes No


Bureau Veritas Canada (2019) Inc.


exp Services Inc


Client Project #: OTT-00258780-C0

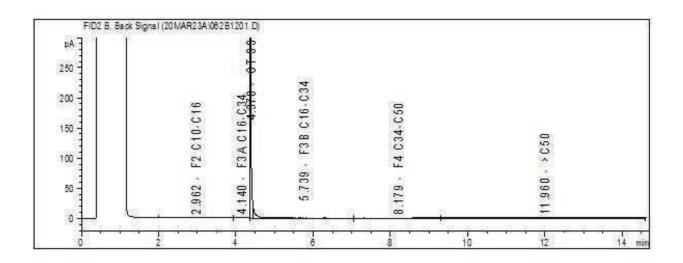
Client ID: TP06-FILL

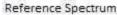
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

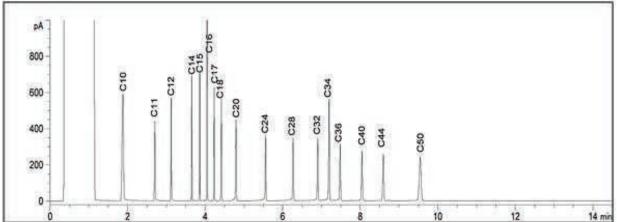
TYPICAL PRODUCT CARBON NUMBER RANGES

 Gasoline: C6 - C12
 Diesel: C10 - C24
 Jet Fuels: C6 - C16

 Varsol: C8 - C12
 Fuel Oils: C6 - C32
 Creosote: C10 - C26


 Kerosene: C8 - C16
 Motor Oils: C16 - C50
 Asphalt: C18 - C50+


exp Services Inc


Client Project #: OTT-00258780-C0

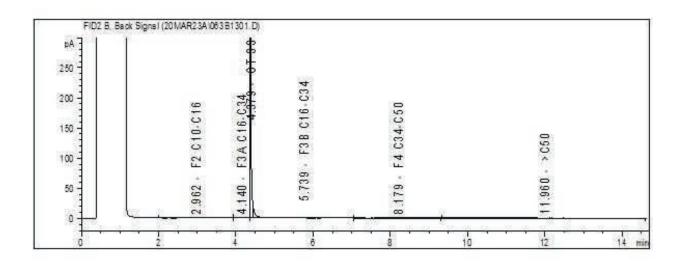
Client ID: TP06-NATIVE

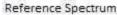
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

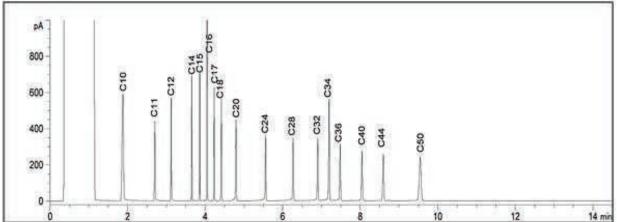
TYPICAL PRODUCT CARBON NUMBER RANGES

 Gasoline: C6 - C12
 Diesel: C10 - C24
 Jet Fuels: C6 - C16

 Varsol: C8 - C12
 Fuel Oils: C6 - C32
 Creosote: C10 - C26


 Kerosene: C8 - C16
 Motor Oils: C16 - C50
 Asphalt: C18 - C50+


exp Services Inc


Client Project #: OTT-00258780-C0

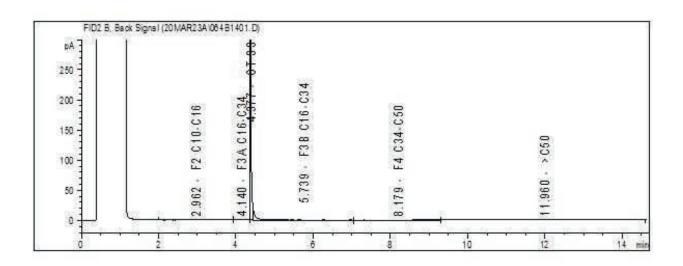
Client ID: TP08-FILL

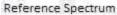
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

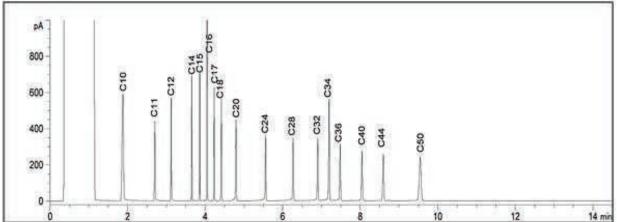
TYPICAL PRODUCT CARBON NUMBER RANGES

 Gasoline: C6 - C12
 Diesel: C10 - C24
 Jet Fuels: C6 - C16

 Varsol: C8 - C12
 Fuel Oils: C6 - C32
 Creosote: C10 - C26


 Kerosene: C8 - C16
 Motor Oils: C16 - C50
 Asphalt: C18 - C50+


exp Services Inc


Client Project #: OTT-00258780-C0

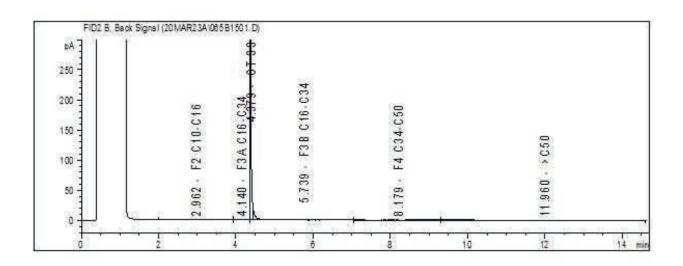
Client ID: TP08-NATIVE

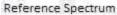
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

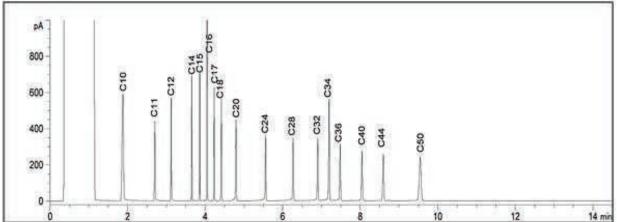
TYPICAL PRODUCT CARBON NUMBER RANGES

 Gasoline: C6 - C12
 Diesel: C10 - C24
 Jet Fuels: C6 - C16

 Varsol: C8 - C12
 Fuel Oils: C6 - C32
 Creosote: C10 - C26


 Kerosene: C8 - C16
 Motor Oils: C16 - C50
 Asphalt: C18 - C50+


exp Services Inc


Client Project #: OTT-00258780-C0

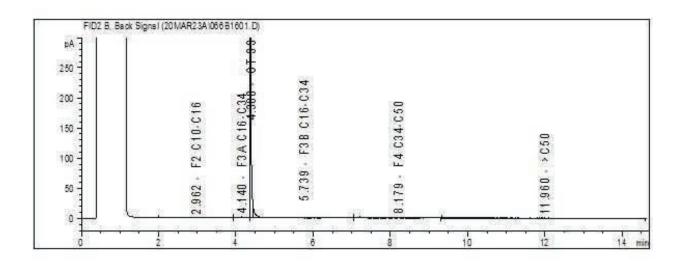
Client ID: TP09-FILL

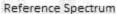
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

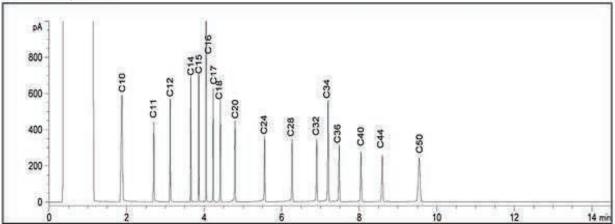
TYPICAL PRODUCT CARBON NUMBER RANGES

 Gasoline: C6 - C12
 Diesel: C10 - C24
 Jet Fuels: C6 - C16

 Varsol: C8 - C12
 Fuel Oils: C6 - C32
 Creosote: C10 - C26


 Kerosene: C8 - C16
 Motor Oils: C16 - C50
 Asphalt: C18 - C50+


exp Services Inc


Client Project #: OTT-00258780-C0

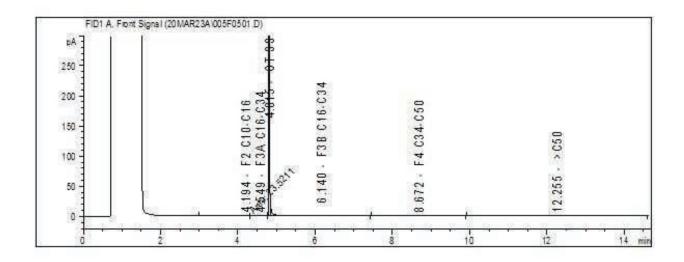
Client ID: TP09-NATIVE

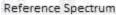
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

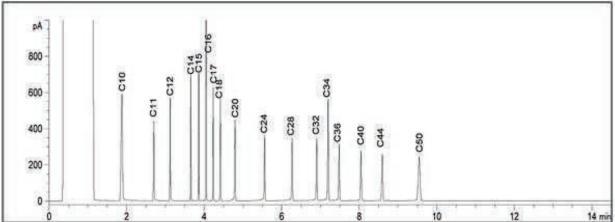
TYPICAL PRODUCT CARBON NUMBER RANGES

 Gasoline: C6 - C12
 Diesel: C10 - C24
 Jet Fuels: C6 - C16

 Varsol: C8 - C12
 Fuel Oils: C6 - C32
 Creosote: C10 - C26


 Kerosene: C8 - C16
 Motor Oils: C16 - C50
 Asphalt: C18 - C50+


exp Services Inc


Client Project #: OTT-00258780-C0

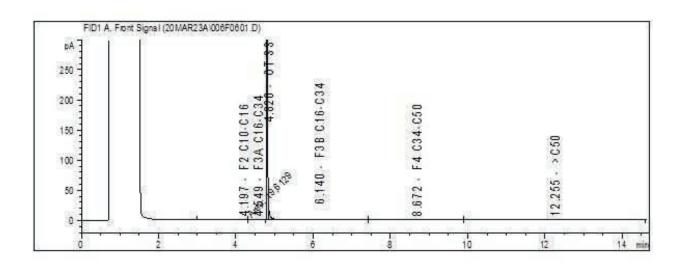
Client ID: TP10-FILL

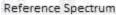
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

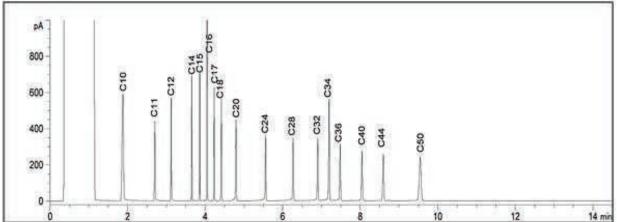
TYPICAL PRODUCT CARBON NUMBER RANGES

 Gasoline: C6 - C12
 Diesel: C10 - C24
 Jet Fuels: C6 - C16

 Varsol: C8 - C12
 Fuel Oils: C6 - C32
 Creosote: C10 - C26


 Kerosene: C8 - C16
 Motor Oils: C16 - C50
 Asphalt: C18 - C50+


exp Services Inc


Client Project #: OTT-00258780-C0

Client ID: TP10-NATIVE

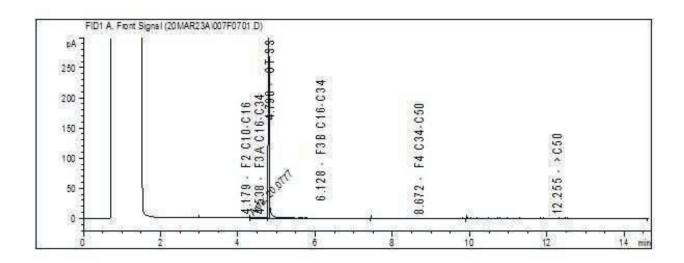
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

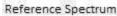
TYPICAL PRODUCT CARBON NUMBER RANGES

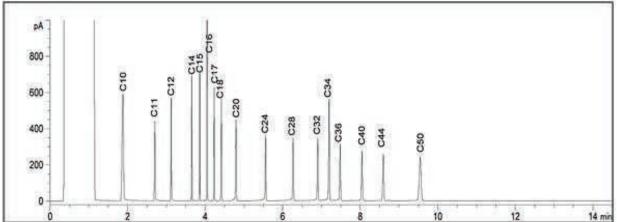
 Gasoline: C6 - C12
 Diesel: C10 - C24
 Jet Fuels: C6 - C16

 Varsol: C8 - C12
 Fuel Oils: C6 - C32
 Creosote: C10 - C26

 Kerosene: C8 - C16
 Motor Oils: C16 - C50
 Asphalt: C18 - C50+


BV Labs Job #: C073569 Report Date: 2020/03/25 BV Labs Sample: MHA379


exp Services Inc


Client Project #: OTT-00258780-C0

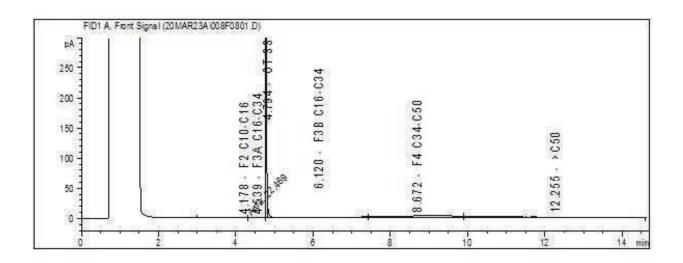
Client ID: TP14-FILL

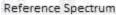
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

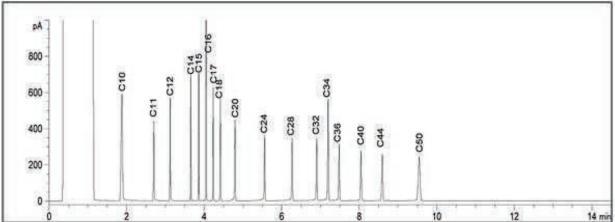
TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline: C6 - C12	Diesel: C10-C24	Jet Fuels: C6 - C16
Varsol: C8 - C12	Fuel Oils: C6 - C32	Creosote: C10 - C26
Kerosene: C8 - C16	Motor Oils: C16 - C50	Asphalt: C18 - C50+

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.


BV Labs Job #: C073569 Report Date: 2020/03/25 BV Labs Sample: MHA380


exp Services Inc


Client Project #: OTT-00258780-C0

Client ID: TP15-FILL

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

TYPICAL PRODUCT CARBON NUMBER RANGES

 Gasoline: C6 - C12
 Diesel: C10 - C24
 Jet Fuels: C6 - C16

 Varsol: C8 - C12
 Fuel Oils: C6 - C32
 Creosote: C10 - C26

 Kerosene: C8 - C16
 Motor Oils: C16 - C50
 Asphalt: C18 - C50+

Note: This information is provided for reference purposes only. Should detailed chemist interpretation or fingerprinting be required, please contact the laboratory.

Your Project #: OTT-00258780-C0 Your C.O.C. #: 764708-01-01

Attention: Chris Kimmerly

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2020/04/01

Report #: R6131711 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C078311 Received: 2020/03/25, 12:45

Sample Matrix: Soil # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Hot Water Extractable Boron (1)	2	2020/03/27	2020/03/30	CAM SOP-00408	R153 Ana. Prot. 2011
Free (WAD) Cyanide (1)	2	2020/03/26	2020/03/31	CAM SOP-00457	OMOE E3015 m
Conductivity (1)	2	2020/03/30	2020/03/30	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1, 2)	2	2020/03/26	2020/03/27	CAM SOP-00436	EPA 3060/7199 m
Strong Acid Leachable Metals by ICPMS (1)	2	2020/03/27	2020/03/27	CAM SOP-00447	EPA 6020B m
Moisture (1)	2	N/A	2020/03/26	CAM SOP-00445	Carter 2nd ed 51.2 m
pH CaCl2 EXTRACT (1)	2	2020/03/26	2020/03/26	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR) (1)	2	N/A	2020/03/30	CAM SOP-00102	EPA 6010C

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Laboratories Mississauga
- (2) Soils are reported on a dry weight basis unless otherwise specified.

Your Project #: OTT-00258780-C0 Your C.O.C. #: 764708-01-01

Attention: Chris Kimmerly

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2020/04/01

Report #: R6131711 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C078311 Received: 2020/03/25, 12:45

Encryption Key

Katherine Szozda Project Manager 01 Apr 2020 15:27:10

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Katherine Szozda, Project Manager Email: Katherine.Szozda@bvlabs.com

Phone# (613) 274-0573

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

exp Services Inc

Client Project #: OTT-00258780-C0

Sampler Initials: GC

O.REG 153 METALS & INORGANICS PKG (SOIL)

	1		I	1	
BV Labs ID		MIA870	MIA871		
Sampling Date		2020/03/17	2020/03/17		
COC Number		764708-01-01	764708-01-01		
	UNITS	TP-11 FILL	TP-21 FILL	RDL	QC Batch
Calculated Parameters					
Sodium Adsorption Ratio	N/A	0.25	0.25		6653547
Inorganics	•			•	
Conductivity	mS/cm	0.16	0.16	0.002	6659737
Moisture	%	16	17	1.0	6655496
Available (CaCl2) pH	рН	7.46	7.59		6655411
WAD Cyanide (Free)	ug/g	0.01	0.02	0.01	6656316
Chromium (VI)	ug/g	<0.18	<0.18	0.18	6655240
Metals	•			•	
Hot Water Ext. Boron (B)	ug/g	0.11	0.080	0.050	6657283
Acid Extractable Antimony (Sb)	ug/g	<0.20	<0.20	0.20	6657277
Acid Extractable Arsenic (As)	ug/g	1.3	1.4	1.0	6657277
Acid Extractable Barium (Ba)	ug/g	65	65	0.50	6657277
Acid Extractable Beryllium (Be)	ug/g	0.35	0.35	0.20	6657277
Acid Extractable Boron (B)	ug/g	<5.0	<5.0	5.0	6657277
Acid Extractable Cadmium (Cd)	ug/g	0.11	0.15	0.10	6657277
Acid Extractable Chromium (Cr)	ug/g	15	16	1.0	6657277
Acid Extractable Cobalt (Co)	ug/g	5.2	5.4	0.10	6657277
Acid Extractable Copper (Cu)	ug/g	10	10	0.50	6657277
Acid Extractable Lead (Pb)	ug/g	9.0	8.9	1.0	6657277
Acid Extractable Molybdenum (Mo)	ug/g	<0.50	<0.50	0.50	6657277
Acid Extractable Nickel (Ni)	ug/g	9.3	9.8	0.50	6657277
Acid Extractable Selenium (Se)	ug/g	<0.50	<0.50	0.50	6657277
Acid Extractable Silver (Ag)	ug/g	<0.20	<0.20	0.20	6657277
Acid Extractable Thallium (TI)	ug/g	0.10	0.087	0.050	6657277
Acid Extractable Uranium (U)	ug/g	0.52	0.50	0.050	6657277
Acid Extractable Vanadium (V)	ug/g	29	29	5.0	6657277
Acid Extractable Zinc (Zn)	ug/g	33	34	5.0	6657277
Acid Extractable Mercury (Hg)	ug/g	<0.050	<0.050	0.050	6657277
RDL = Reportable Detection Limit	•		-	•	
QC Batch = Quality Control Batch					

exp Services Inc

Client Project #: OTT-00258780-C0

Sampler Initials: GC

TEST SUMMARY

BV Labs ID: MIA870 Sample ID: TP-11 FILL

Matrix: Soil

Collected: 2020/03/17 Shipped:

Received: 2020/03/25

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	6657283	2020/03/27	2020/03/30	Jolly John
Free (WAD) Cyanide	TECH	6656316	2020/03/26	2020/03/31	Louise Harding
Conductivity	AT	6659737	2020/03/30	2020/03/30	Mandeep Kaur
Hexavalent Chromium in Soil by IC	IC/SPEC	6655240	2020/03/26	2020/03/27	Violeta Porcila
Strong Acid Leachable Metals by ICPMS	ICP/MS	6657277	2020/03/27	2020/03/27	Daniel Teclu
Moisture	BAL	6655496	N/A	2020/03/26	Prgya Panchal
pH CaCl2 EXTRACT	AT	6655411	2020/03/26	2020/03/26	Kazzandra Adeva
Sodium Adsorption Ratio (SAR)	CALC/MET	6653547	N/A	2020/03/30	Automated Statchk

BV Labs ID: MIA871 Sample ID: TP-21 FILL

Matrix: Soil

Collected: 2020/03/17

Shipped: Received: 2020/03/25

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	6657283	2020/03/27	2020/03/30	Jolly John
Free (WAD) Cyanide	TECH	6656316	2020/03/26	2020/03/31	Louise Harding
Conductivity	AT	6659737	2020/03/30	2020/03/30	Mandeep Kaur
Hexavalent Chromium in Soil by IC	IC/SPEC	6655240	2020/03/26	2020/03/27	Violeta Porcila
Strong Acid Leachable Metals by ICPMS	ICP/MS	6657277	2020/03/27	2020/03/27	Daniel Teclu
Moisture	BAL	6655496	N/A	2020/03/26	Prgya Panchal
pH CaCl2 EXTRACT	AT	6655411	2020/03/26	2020/03/26	Kazzandra Adeva
Sodium Adsorption Ratio (SAR)	CALC/MET	6653547	N/A	2020/03/30	Automated Statchk

Report Date: 2020/04/01

exp Services Inc

Client Project #: OTT-00258780-C0

Sampler Initials: GC

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

rackage 1 3.7 C	Package 1	3.7°C
-----------------	-----------	-------

Sample MIA870 [TP-11 FILL]: SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Sample MIA871 [TP-21 FILL]: SAR Analysis: Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

exp Services Inc

Client Project #: OTT-00258780-C0

Sampler Initials: GC

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6655240	Chromium (VI)	2020/03/27	80	70 - 130	90	80 - 120	<0.18	ug/g	NC	35
6655411	Available (CaCl2) pH	2020/03/26			99	97 - 103			0.088	N/A
6655496	Moisture	2020/03/26							17	20
6656316	WAD Cyanide (Free)	2020/03/31	81	75 - 125	95	80 - 120	<0.01	ug/g	NC	35
6657277	Acid Extractable Antimony (Sb)	2020/03/27	87	75 - 125	95	80 - 120	<0.20	ug/g	NC	30
6657277	Acid Extractable Arsenic (As)	2020/03/27	97	75 - 125	101	80 - 120	<1.0	ug/g	19	30
6657277	Acid Extractable Barium (Ba)	2020/03/27	NC	75 - 125	93	80 - 120	<0.50	ug/g	4.5	30
6657277	Acid Extractable Beryllium (Be)	2020/03/27	99	75 - 125	96	80 - 120	<0.20	ug/g	2.5	30
6657277	Acid Extractable Boron (B)	2020/03/27	98	75 - 125	95	80 - 120	<5.0	ug/g	4.3	30
6657277	Acid Extractable Cadmium (Cd)	2020/03/27	96	75 - 125	94	80 - 120	<0.10	ug/g	7.5	30
6657277	Acid Extractable Chromium (Cr)	2020/03/27	95	75 - 125	94	80 - 120	<1.0	ug/g	0.70	30
6657277	Acid Extractable Cobalt (Co)	2020/03/27	92	75 - 125	98	80 - 120	<0.10	ug/g	0.56	30
6657277	Acid Extractable Copper (Cu)	2020/03/27	93	75 - 125	95	80 - 120	<0.50	ug/g	1.4	30
6657277	Acid Extractable Lead (Pb)	2020/03/27	95	75 - 125	96	80 - 120	<1.0	ug/g	5.0	30
6657277	Acid Extractable Mercury (Hg)	2020/03/27	87	75 - 125	87	80 - 120	<0.050	ug/g	NC	30
6657277	Acid Extractable Molybdenum (Mo)	2020/03/27	99	75 - 125	94	80 - 120	<0.50	ug/g	NC	30
6657277	Acid Extractable Nickel (Ni)	2020/03/27	92	75 - 125	95	80 - 120	<0.50	ug/g	9.1	30
6657277	Acid Extractable Selenium (Se)	2020/03/27	103	75 - 125	99	80 - 120	<0.50	ug/g	NC	30
6657277	Acid Extractable Silver (Ag)	2020/03/27	95	75 - 125	97	80 - 120	<0.20	ug/g	NC	30
6657277	Acid Extractable Thallium (TI)	2020/03/27	98	75 - 125	97	80 - 120	<0.050	ug/g	11	30
6657277	Acid Extractable Uranium (U)	2020/03/27	99	75 - 125	95	80 - 120	<0.050	ug/g	3.7	30
6657277	Acid Extractable Vanadium (V)	2020/03/27	NC	75 - 125	96	80 - 120	<5.0	ug/g	0.60	30
6657277	Acid Extractable Zinc (Zn)	2020/03/27	NC	75 - 125	98	80 - 120	<5.0	ug/g	3.6	30
6657283	Hot Water Ext. Boron (B)	2020/03/30	86	75 - 125	103	75 - 125	<0.050	ug/g	6.1	40

Report Date: 2020/04/01

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: OTT-00258780-C0

Sampler Initials: GC

			Matrix	Spike	SPIKED	BLANK	Method B	lank	RPE	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
6659737	Conductivity	2020/03/30			101	90 - 110	<0.002	mS/cm	7.0	10

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

exp Services Inc Client Project #: OTT-00258780-C0

Sampler Initials: GC

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Charlette	
Anastassia Hamanov, Scientific Specialist	
Evo Parille Q	
Fwa Praniic M Sc. (Chem Scientific Specialist	

1

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

BUREAU				rio Canada L5N 2L	8 Tel:(905) 817-5	5700 Toll-free:800	-563-6266 Fax:	(905) 817-	5777 www.	bvlabs.com					СН	AIN OF CUST	ODY RECORD		Page of	
	II	VOICE TO:				REPO	ORT TO:						PROJECT	INFORMATION:			Laboratory L	se Only:		
Company Name:	#17498 exp Se	rvices Inc		Company	Name:					ima"iii	Quotation	#. B91718					BV Labs Job #:			
Attention:	Accounts Payab			Attention:	Chris I	Kimmerly		401	776 112	San Visco III	P.O. #:									
Address:		AND DESCRIPTION OF THE PROPERTY OF THE PROPERT		Address:	SS:					Project:		OTT-0	0258780-C0		10.	76	764708			
Tel:	(613) 688-1899	Address: Tel: Email: DRINKING WATER OR WATER INTENDED FOR HUMAN CON BMITTED ON THE BY LABS DRINKING WATER CHAIN OF CUS BMITTED ON THE BY LABS DRINKING WATER CHAIN OF CUS Medium/Fine CCME Sanitary Sewer Bylaw Coarse Reg 558. Storm Sewer Bylaw MISA Municipality PWQO Other Ude Criteria on Certificate of Analysis (Y/N)? Label Sample (Location) Identification Date Sampled Coarse							A SHOULD SEE STATE OF SECURITY	me;	-					Projec	Project Manager:			
Email:					Chris.I	Kimmerly@ex	p.com Fax:				COST CONTRACTOR	No.	-	01:10				Kather	rine Szozda	
										as ANA	Company of the second		(PLEASE BI			10.50	Turnaround Time (T.	AT) Required:		
	SUBMITTED	ON THE BV LABS I	DRINKING WATE	R CHAIN OF C	USTODY	WOOT DE		_		102			T W	m= = 1 = 1		(B) 1 - 12	Please provide advance no		S	
Regulation	on 153 (2011)		Other Regulations		Special I	nstructions	circle):	(Soil	Pkg	1				. 5		The way our second of the second				
	Res/Park Medium		Sanitary Sewer	Bylaw			≥ Se Ci	1-F4	anics	4			31			- Committee Comm				
Table 2	Ind/Comm Coarse			law			Field Filtered (please of Metals / Hg / Cr VI	Reg 153 PHCs, BTEX/F1-F4 (Soil)	Inorg	20						Please note: S	Standard TAT for certain tests suc		s/Furans are > t	
Table 3	Agriculti Literat		Municipality				peu (S, B	8 8 8	T.							Meet A State of the State of th	euhmission)		
							Filte	PH(3 Met	1						 - CARCER HONESON SIGNAL 		_ Time Required:		
	Include Criteri	on Certificate of A	nalysis (Y/N)?				N N	g 15.	100	1						Rush Confirma	ation Number:	(call lab for #)		
Sample	Barcode Label	Sample (Location)) Identification	Date Sampled	Time Sampled	Matrix	- 1	O.Re	O.Re (Soil)	d						# of Bottles		omments		
TP-	11 Fill			t020/03/17	15m	5			V	1							-			
2 TP-	21 Fill				, Pm	5			1	1										
3				107(1	+ .					"										
-			-						-			_				-				
-									-		I									
5													25-M	ar-20 12.4	5					
6			1									Kath	erina 6	laure on w					Bottle Order #:	
									-		II	OTT-00258780-C0 OTT-00258780-C0 OTT-00258780-C0 OTT-00258780-C0 Regul (will be Standard Please days - Co Standard Plea								
				-			accide the			PROJECT INFORMATION: B91718 B91718 BV Labs Job Project: Project: Project Name: Site #: Sampled By: ANALYSIS REQUESTED (PLEASE BE SPECIFIC) Turnar Regular (Standard) TAT: (will be applied if Rush TAT Is not days - contact you Project Mann Job Specific Rush TAT (if ap Date Required: Rush Confirmation Number: # of Bottles # of Bottles Date: (YYMM/DD) Time # jars used and not submitted Laboratory Use Only										
1	alici		Con No	dels-	ihor	anto		÷			— _K									
170	curysis	ong.	10. 11			JC (C)			-				-+	i		+				
0				CIIC					-	-							OA	1 Tu		
AT	· 1/1			1 A		RECEIVED I	BY: (Signature/F	Print)	_	- /	/			# jars used and not submitted	-		200 Carlo Indiania			
Ch.	ris Cimr	nevly	1030/03	125 A	yr (c		Jung	~~	-	20060	3/2/	16	2-45		Fime Sensitiv	Temperatur	Pre	dy Seal Ye sent	No No	
JNLESS OTHERW	ISE AGREED TO IN WR	ITING, WORK SUBMITTE OF OUR TERMS WHICH	ED ON THIS CHAIN OF	CUSTODY IS SUB	JECT TO BV LAB	S' STANDARD TER	MS AND CONDI	TIONS. SIG	GNING OF	THIS CHAIN	OF CUSTO	DY DOCUM	IENT IS		100000	CONTRACTOR OF	w	ite: BV Labs	Vallour Cl	

Bureau Veritas Canada (2019) Inc.

VERITAS	6740	Campobello Ro	ad, Mississauga, On	tario Canada L5N 2	L8 Tel:(905) 817-5	5/00 Toll-free 800	563-6266 Fax:	(905) 817-	5/// www.t	oviabs.com	1			•									
	INVOICE	TO:				REPO	RT TO:						PROJEC	T INFOR	MATION:			Laborate	ory Use Only:				
any Name:	#17498 exp Services	Inc	*	Compan	y Name:		- 0				Quotation	#:	B917	18				BV Labs Job #:		Bottle Order	#:		
ion:	Accounts Payable			Attention	Chris I	Kimmerly					P.O.#.				tox eres						Ш		
SS:	100-2650 Queensview	v Drive		Address							Project:		OTT-	0025878	80-C0			72227		764708			
	Ottawa ON K2B 8H6 (613) 688-1899		/613) 20E 7227		-		na record				Project Na	me.	-				-	COC #:		Project Manag	er:		
	accounting.ottawa@e		(613) 225-7337		Chris	Kimmerly@ex	Fax:				Site #: Sampled B		-/	20	1		<u> </u>	C#764708-01-01		Katherine Szoz	rda		
AOE REC	ULATED DRINKING WA			050000000			-			as AN	ALYSIS REG	4	(PLEASE)	BE SPECI	FIC)		_	57//AE 57/97,57/157	ime (TAT) Required				
IOE REG	SUBMITTED ON TI					INIUS I DE	100		I	12							THE REAL PROPERTY.	Please provide adva			4		
Regulation	on 153 (2011)		Other Regulation	15	Special I	nstructions	circle):	(Soil)	Pkg		1 1	*					100000000000000000000000000000000000000	(Standard) TAT:					
	Res/Park Medium/Fine	ССМЕ	Sanitary Sawe		эрсоли		- G	1-7	53	4	1 1						100	plied if Rush TAT is not specifi TAT = 5-7 Working days for mo					
	Ind/Comm Coarse	Reg 558.	Storm Sewer I				/ Cr	BTEX/F	agnor a	20	1 1						Please not	te: Standard TAT for certain te:	sts such as BOD and	Dioxins/Furans	are > 5		
	Agri/Other For RSC	MISA	Municipality				Field Filtered (please ci	BTE	- S	C							days - con	stact your Project Manager for o	details.				
ole		PWQO					itere als /	PHCs	Metal	1								cific Rush TAT (if applies to					
	Include Criteria on Certificate of Analysis (Y/N)? Be Barcode Label Sample (Location) Identification						Met Met	83	53	1	'						Date Requ Rush Con	firmation Number:	Time Requi		-		
-						1		1	<u> </u>	Reg	O.Reg (Soil)	9			*				# of Bottle	H .	(call lab fo	r#)	_
Sample	Barcode Label S	Sample (Location) Identification	Date Sampled	Time Sampled	Matrix		0	0.80	-			- 2				117.31.43344		Comments				
TP-	(1 Fill			1020/0x/p	SW	5			V	1													
TP.	-21 Fill			2020/03/	17 Pm	5			/	1													
											<u> </u>		25.										
						-		-	-		-	Ye	23-A	1ar-20	12:4:	5							
												Kati	herine	Szozd	la								
								-			+ "	11111111		1	1111						_		
				240 12								(0783	511									
A	nalysis	mls	for n	edals-	Thon	an 6					K	JY	OT	T-00	l								
1 / 1	1112	3	1	CTIC	(1													ON TU		(0)		
				- no															JW 44		-		
	ELINQUISHED BY: (Signatur	1 me 1 mm	Date: (YY/		me	DECEMENT	Y: (Signature/	Defeat		Date: (YY)	MM/DD)		ime	# inte	used and		Labo	oratory Use Only					
77.7	× 125				-vh (NEGEIVED E	5 day	~ ~~	_	7	03/20		ime 2 - 4 ς		ubmitted	Time Sensit			Custody Seal	Yes	No		
CV	ric [Cimmer	7	2020/0	1100 1	V. (Tall	1 -			-	of.		+			1emper	rature (°C) on Recei	Present Intact	X			
	WISE AGREED TO IN WRITING.	/				0		15						_				((7)	White: BV Labs	100	w: Clie		

Bureau Veritas Canada (2019) Inc.