

120 lber Road, Suite 103 Ottawa, Ontario K2S 1E9 Tel. (613)836-0856 Fax (613) 836-7183 www.DSEL.ca

FUNCTIONAL SERVICING REPORT

FOR

MINTO COMMUNITIES – CANADA & 2559688 ONTARIO INC. KANATA NORTH

CITY OF OTTAWA

PROJECT NO.: 17-982

APRIL 2020 – 3RD SUBMISSION © DSEL

FUNCTIONAL SERVICING REPORT FOR MINTO COMMUNITIES – CANADA & 2559688 ONTARIO INC. KANATA NORTH

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Existing Conditions	3
1.2	Required Permits / Approvals	3
1.3	Summary of Pre-Consultation	3
	 1.3.1 City of Ottawa, July 11th, 2018 1.3.2 Previous Submissions 	
2.0	GUIDELINES, PREVIOUS STUDIES, AND REPORTS	
2.1	Existing Studies, Guidelines, and Reports	5
3.0	WATER SUPPLY SERVICING	6
3.1	Existing Water Supply Services	6
3.2	Water Supply Servicing Design	6
3.3	Water Supply Conclusion	7
4.0	WASTEWATER SERVICING	8
4.1	Existing Wastewater Services	8
4.2	Wastewater Design	8
4.3	Wastewater Servicing Conclusions	11
5.0	STORMWATER MANAGEMENT	12
5.1	Existing Stormwater Drainage	12
5.2	Stormwater Management Strategy	12
5.3	Floodplain Mapping	.14
5.4	Proposed Outlet – Stormwater Management (SWM) Pond 3	15
5.5	Low Impact Development Measures	16
5.6	Stormwater Servicing Conclusions	17
6.0	UTILITIES	18
7.0	EROSION AND SEDIMENT CONTROL	19
8.0	CONCLUSIONS AND RECOMMENDATIONS	20

FIGURES AND DRAWINGS

- Figure 1: Site Location
- Figure 2: Concept Plan
- Figure 3: Storm Servicing Plan
- Figure 4: Watermain Servicing Plan
- Figure 5: Sanitary Servicing Plan
- Figure 6: Offsite Sanitary Servicing Plan
- Figure 7: SWM Pond
- Figure 8: SWM Pond Aerial Map
- Figure 9: SWM Pond Drainage Area
- Drawing 1: Conceptual Grading Plan
- Drawing 2: Storm Servicing Appendix
- Drawing 3: Sanitary Servicing Appendix

TABLES

Table 1: Development Statistic Projections per April 9, 2020 Concept Plan	2
Table 2: Anticipated Permit/Approval Requirements	
Table 3: Water Supply Design Criteria	
Table 4: Wastewater Design Criteria	
Table 5: Storm Sewer Design Criteria	13
Table 6: Pond 3 Water Level Summary	
-	

APPENDICES

- Appendix A: Development Study Checklist, Draft Plan of Subdivision, Record of Pre-Consultation, Record of City Comments
- Appendix B: Excerpts from the Supporting Documents & City Correspondence
- Appendix C: Sanitary Servicing Design
- Appendix D: Stormwater Servicing Design
- Appendix E: SWM Pond 3 Design & Kanata North Community Pond 3 / Preliminary Stormwater Management Design (JFSA, April 2020)

FUNCTIONAL SERVICING REPORT FOR MINTO COMMUNITIES – CANADA & 2559688 ONTARIO INC. KANATA NORTH

APRIL 2020 – 3RD SUBMISSION

CITY OF OTTAWA PROJECT NO.: 17-982

1.0 INTRODUCTION

Minto Communities – Canada have retained David Schaeffer Engineering Ltd. (DSEL) to prepare a Functional Servicing Report (FSR) in support of their application for draft plan approval.

Minto Communities – Canada is proposing a residential development on 936 March Road (PIN 04527-1004) within the Kanata North Urban Expansion Area (KNUEA). The FSR study area encompasses lands owned by Minto Communities – Canada and 2559688 Ontario Inc., which are subject to development permit and zoning by-law amendment applications. The study area measures approximately 56 ha and is generally located north of the existing Brookside Subdivision, east of March Road and west of a former CN railway corridor, with a stormwater management pond to the east of the decommissioned railway corridor and west of March Valley Road. The subject area can be seen in *Figure 1*.

The proposed draft plan of subdivision contemplates approximately 353 single detached units, 465 executive townhomes and 110 avenue townhomes. The study area also contemplates a school site, neighborhood parks, a woodlot, a stormwater management pond block and two commercial mixed-use blocks fronting existing March Road. The roads are proposed to consist of 26 m, 24 m, 18m and 16.5 m wide Right-of-Ways (ROW). The proposed concept plan can be seen in *Appendix A* and *Figure 2*. Corresponding development statistics can be seen summarized in *Table 1* below.

Land Use	Total Area (ha)	Projected Residential Units	Residential Population per Unit *	Projected Population *
Residential &	33.22	353 Singles	3.4	1201
Roads	55.22	575 Towns	2.7	1553
Commercial Mixed Use	9.35			
School	2.51			
Storm Pond	4.47			
Parks	3.10			
Open Space	0.18			
Creek Buffer	0.42			
Woodlot	2.40			
Total	55.65	928		2754

Table 1: Development Statistic Projections per April 9, 2020 Concept Plan

* NOTE: Population projections may differ from population estimates used in background Transportation Studies, Planning Rationale, and other studies. Population projection and residential population per unit values are based on Ministry of Environment, Conservation and Parks guidelines for servicing demand calculations. Local Roads included in Block estimates above.

The FSR study area and surrounding lands are governed by the broader *Kanata North Community Design Plan* (CDP) (*City of Ottawa, June 28, 2016*) and the Kanata North Master Servicing Study (*MSS*) (*City of Ottawa, June 28 2016*). The study area is considered as part of the southeast quadrant of the KNUEA within the *MSS*. The *MSS* design plan and preliminary serviceability report were completed in order to prepare a preferred servicing strategy and cohesive development concept for the core KNUEA (181 ha total area). The reports identify existing infrastructure and environmental constraints, describe the neighbourhood-level trunk services that will service all properties within its study area, establish targets for future site-specific stormwater management plans, and identify required infrastructure upgrades to support the proposed development of the KNUEA.

The proposed draft plan is in conformance with the demonstration plan for the study area, prepared as part of the *MSS*, with the exception of minor alterations to the draft plan's road alignment and to land use locations within the study area.

This FSR is provided to demonstrate conformance with the design criteria of the City of Ottawa, the *MSS*, other background studies, and general industry practice. This FSR has also been prepared in accordance with the City of Ottawa's Servicing Study Guidelines for Development Applications, as demonstrated by the checklist included in *Appendix A*.

1.1 Existing Conditions

Under existing conditions, the study area is predominantly occupied by agricultural uses. A forested area exists in the northeast corner of the study area. The lands to the west, north and east are also predominantly occupied by agricultural uses.

The existing elevations within the study area generally range from 79 m to 70 m. There is a ridge approximately 8 m in height located in the middle of the study area that runs in the north south direction. The soil profile in the area consists of topsoil, stiff silty clay underlain by glacial till and bedrock. The *MSS* indicates that the maximum permissible grade raise for the study area is up to 3.0 m. Similarly, the site geotechnical report recommends a permissible grade raise restriction of 3 m. Additional geotechnical details can be found within the *Geotechnical Investigation – Proposed Residential Development 936 March Road Report:* PG4554-1 Revision 5 (April 24, 2020, Paterson Group).

The proposed development is located within the jurisdiction of the Mississippi Valley Conservation Authority (MVCA). The study area is located within the Shirley's Brook sub-watershed.

The western portion of the study area drains to Shirley's Brook to the south via adjacent existing drainage channels. The eastern portion of the study area drains into Shirley's Brook via existing drainage channels to the east. See *Appendix B* for details.

1.2 Required Permits / Approvals

The City of Ottawa must approve detailed engineering design drawings and reports prior to construction of the municipal infrastructure identified in this report. This is expected to occur as part of the approval process for *Planning Act* development applications.

The additional approvals and permits listed in **Table 2** could be expected to be required prior to construction of the municipal infrastructure detailed herein. Please note that other permits and approvals may be required, as detailed in the other studies submitted as part of the *Planning Act* development applications (e.g. *Tree Conservation Report, Environmental Impact Statement, Phase 1 Environmental Site Assessment, etc.*).

1.3 Summary of Pre-Consultation

1.3.1 City of Ottawa, July 11th, 2018

A formal Pre-Application Consultation with City of Ottawa staff occurred July 11th, 2018. The purpose of the meeting was to discuss the proposed development, review technical considerations and identify/confirm the studies required to accompany the submission of a Plan of Subdivision application. A copy of the Pre-Application Consultation meeting notes can be found in *Appendix A*.

Agency	Permit/Approval Required	Trigger	Remarks
MVCA	Permit under Ontario Regulation 153/06, MVCA's Development, Interference with Wetlands and Alterations to Shorelines and Watercourses Regulation	Construction of new pond and alterations of existing watercourse.	Proposed stormwater management strategy is to have flows directed to new stormwater management pond per the <i>MSS</i> . Existing watercourses through the site may be altered as part of development.
MECP	Environmental Compliance Approval	Construction of new sanitary sewers, storm sewers, and stormwater management works.	The MECP is expected to review the stormwater collection system, wastewater collection system and stormwater management works by transfer of review submission.
MECP	Permit to Take Water (PTTW)	Construction of proposed land uses (e.g. basements for residential homes) and services.	Pumping of groundwater or surface water may be required during construction, given site conditions, proposed land uses, and on-site/off-site municipal infrastructure.
City of Ottawa	MOE Form 1 – Record of Watermains Authorized as a Future Alteration.	Construction of watermains.	The City of Ottawa is expected to review the watermains on behalf of the MOE through the Form 1 – Record of Watermains Authorized as a Future Alteration.
City of Ottawa	Commence Work Notification (CWN)	Construction of new sanitary and storm sewer throughout the subdivision.	The City of Ottawa will issue a commence work notification for construction of the sanitary and storm sewers once an ECA is issued by the MECP.
City of Ottawa / Private Landowners	Permission/license to access/occupation and/or legal property instruments.	Construction of servicing infrastructure beyond the boundaries of the subdivision.	Construction activities and permanent infrastructure beyond the boundaries of the subdivision may trigger legal agreements.

Table 2: Anticipated Permit/Approval Requirements

1.3.2 Previous Submissions

The City of Ottawa and other affected parties provided comments to Minto Communities – Canada and 2559688 Ontario Inc. about the development concept and the original January 2019 submission of this Functional Servicing Report. A second submission was completed in September 2019 to address the provided comments.

The City of Ottawa and other affected parties provided comments on the second submission. This April 2020 version of the FSR addresses these comments and includes a modified concept plan for the lands. A record of City comments related to this FSR and corresponding response can be found in *Appendix A*.

2.0 GUIDELINES, PREVIOUS STUDIES, AND REPORTS

2.1 Existing Studies, Guidelines, and Reports

The following documents informed the preparation of this FSR report:

- Ottawa Sewer Design Guidelines, City of Ottawa, SDG002, October 2012. (Sewer Design Guidelines)
 - Technical Bulletin ISDTB-2014-01, Revisions to Ottawa Design Guidelines Sewer, City of Ottawa, February 5, 2014. (ISDTB-2014-01)
 - Technical Bulletin PIEDTB-2016-01, Revisions to Ottawa Design Guidelines Sewer, City of Ottawa, September 6, 2016. (*PIEDTB-2016-01*)
 - Technical Bulletin ISTB-2018-01, Revisions to Ottawa Design Guidelines Sewer, City of Ottawa, March 21, 2018. (ISTB-2018-01)
 - Technical Bulletin ISTB-2019-02, Revisions to Ottawa Design Guidelines Sewer, City of Ottawa, July 8, 2019. (ISTB-2019-02)
- Ottawa Design Guidelines Water Distribution, City of Ottawa, July 2010. (Water Supply Guidelines)
 - Technical Bulletin ISD-2010-2, City of Ottawa, December 15, 2010. (ISDTB-2010-2)
 - o Technical Bulletin ISDTB-2014-02, City of Ottawa, May 27, 2014. (ISDTB-2014-02)
 - o Technical Bulleting ISTB-2018-02, City of Ottawa, March 21, 2018. (ISTB-2018-02)
- Design Guidelines for Sewage Works, Ministry of the Environment, 2008. (MOE Design Guidelines)
- Stormwater Planning and Design Manual, Ministry of the Environment, March 2003. (SWMP Design Manual)
- Erosion & Sediment Control Guidelines for Urban Construction, Greater Golden Horseshoe Area Conservation Authorities, December 2006. (*E&S Guidelines*)
- Ontario Building Code Compendium, Ministry of Municipal Affairs and Housing Building Development Branch, 2012 and as updated from time to time. (OBC)
- > Mississippi-Rideau Source Water Protection Plan, MVCA & RVCA, August 2014.
- > Kanata North Community Design Plan, Novatech, June 28, 2016. (CDP)
- > Kanata North Master Servicing Study, Novatech, June 28, 2016. (MSS)
- > Kanata North Environmental Management Plan, Novatech, June 28, 2016. (EMP)
- > Kanata North Transportation Master Plan, Novatech, June 28, 2016. (TMP)
- Geotechnical Investigation Proposed Residential Development 936 March Road, Paterson Group, Report: PG4554-1 Revision 5, April 24, 2020
- Stormwater Management Pond review memo Paterson Memorandum Report PG4554-MEMO.06, April 22, 2020
- Briarridge Sanitary Pumping Station Pre-Design Report, Cumming Cockburn, March 2001, revised June 2001
- Shirley's Brook and Watt's Creek Phase 2 Stormwater Management Study AECOM, April 2015.
- Kanata North EMP Stormwater Management Solution Addendum: Shirley's Brook at March Valley Road, Novatech, February 4, 2020 (EMP Addendum)

3.0 WATER SUPPLY SERVICING

3.1 Existing Water Supply Services

The study area lies within the existing City of Ottawa 2Ww pressure zone. Existing 200 mm and 300 mm diameter trunk watermains exist within the residential subdivision to the south of the study area. These watermains are connected to existing 400 mm diameter watermains within Klondike Road and March Road. Existing watermains in the vicinity of the study area are illustrated on *Figure 4*.

3.2 Water Supply Servicing Design

Water supply servicing and hydraulic analysis for the study area were contemplated as part of the *MSS*. The preferred design concept indicated by the *MSS*, for servicing of the study area, consists of connecting to the existing 200 mm diameter watermain within Celtic Ridge Crescent and a proposed extension of the 400 mm diameter watermain within March Road.

The proposed development will be serviced internally by a trunk 300 mm diameter watermain and a network of local watermains to be designed in accordance with the *Water Supply Guidelines*, as summarized in *Table 3* below. Potable water will be supplied to the study area through pressurized local watermains on each street, connecting to the trunk 300 mm diameter watermain. The proposed watermain network can be seen in *Figure 4*.

Design Parameter	Value	
Residential Single Family	3.4 P/unit	
Residential Semi-detached	2.7 P/unit	
Residential Townhouse/Back-to-Back	2.1 P/unit	
Residential Apartment (High Density)	1.8 P/unit	
Residential Average Daily Demand	280 L/d/P *	
Residential Maximum Daily Demand **	2.5 x Average Daily **	
Residential Maximum Hourly **	5.5 x Average Daily **	
Minimum Watermain Size	150mm diameter	
Minimum Depth of Cover	2.4m from top of watermain	
During normal operating conditions desired operating	350kPa and 480kPa	
pressure is within		
During normal operating conditions pressure must not drop	275kPa	
below		
During normal operating conditions pressure must not	552kPa	
exceed		
During fire flow operating pressure must not drop below	140kPa	
* Residential Average Daily Demand assumed to be 280 L/d/P in accordance with 2018 changes to Sanitary Design Guidelines, see Section 4.0.		
-Table updated to reflect ISD-2010-2 ** Residential Max. Daily and Max. Hourly peaking factors per MOE Guidelines for Drinking-Water Systems Table 3-3 for 0 to 500 persons. City Guidelines used for populations greater than 500 persons.		

Table 3: Water Supply Design Criteria

Consistent with the *MSS*, the study area will be serviced entirely from the 2Ww pressure zone and site grading is planned to not exceed 93 m to maintain minimum pressures greater than 275 kpa. Per the *MSS*, services where the grade is below 74 m will likely require pressure reducing valves to keep maximum pressures below 552 kpa.

Through the detailed design of the study area, a complete hydraulic analysis will be prepared for the water distribution network to confirm that water supply is available within the required pressure range under the anticipated demands during average day, peak hour and fire flow conditions prior to full buildout of the KNUEA. Depending on the status of other developments in the KNUEA, an interim condition or agreements for off-site works may be required to provide a looped network of watermains within the KNUEA. In circumstances where infrastructure may be required outside of the study area, land owner agreements will be put in place to facilitate cost sharing and access, when necessary.

3.3 Water Supply Conclusion

Consistent with the *MSS*, potable water will be delivered to the proposed study area via a trunk 300 mm diameter watermain running through the study area connecting to the existing watermain within Celtic Ridge Crescent and the proposed extension of the March Road watermain. Potable water will be supplied to the study area through pressurized local watermains on each street, connecting to the trunk 300 mm diameter watermain.

A complete hydraulic analysis will be prepared at the time of detailed design. The watermain network will be sized to meet peak hour and maximum day plus fire flow demands and conform to all relevant City Standards and policies and take into consideration the various draft plan configurations.

In circumstances where infrastructure may be required outside of the study area, there will be agreements in place facilitating cost sharing and access, when necessary.

4.0 WASTEWATER SERVICING

4.1 Existing Wastewater Services

The existing residential subdivision to the south of the study area is serviced by the sanitary sewer network that conveys wastewater to the Briar Ridge Pump Station (BRPS), located south of Klondike Road and east of the former CN railway corridor. The BRPS discharges into the East March Trunk sanitary sewer. Two pumps are currently operating in the BRPS and a third is to be added when necessary per the *Briarridge Sanitary Pumping Station Pre-Design Report* (Cumming Cockburn, March 2001, revised June 2001). Furthermore, Hatch Limited has completed the independent *Briar Ridge Pump Station Capacity Assessment* (Hatch, September 21, 2018), which can be found in *Appendix C*. It was recommended that the current pumps be replaced and a third pump be added to service the expected future flows, seeing as the station is nearing 20 years of service, and are pumping at ~70 L/s, which is above the expected capacity of 61 L/s

The BRPS upgrades are included in the *Infrastructure Master Plan* (City of Ottawa, 2013) (pg 219) and the *City of Ottawa 2014 Development Charges Background Study* (October 27, 2017) (pg B-22, item 10.5074) with anticipated timing for construction between 2019 & 2031. Per discussions with City staff, it is understood that the scheduled upgrades to the BRPS will increase the capacity at the station to 175 L/s. City staff have indicated that the upgrades are scheduled to be completed by the end of 2021. Correspondence with City staff can be found in *Appendix B*.

4.2 Wastewater Design

The wastewater servicing strategy for the study area was considered within the *MSS*, with a portion of the study area draining to the south and the remaining portion draining to the west.

Per the *MSS*, the eastern residential portion of the study area is to have its wastewater drain into the existing sanitary sewer system to the south of the study area before being conveyed to the Briar Ridge Pump Station. The BRPS then directs flows towards the East March Trunk sanitary sewer.

The remaining western portion of the study area is to have its wastewater drain to a proposed 600 mm diameter sanitary sewer within March Road before being conveyed to the proposed upsized sanitary sewers in Shirley's Brook Drive and ultimately into the East March Trunk sanitary sewer, as identified in the *MSS*.

Figure 5 illustrates the proposed sanitary sewer network. Consistent with the *MSS*, the study area's wastewater servicing is split between the existing sanitary sewers draining south toward the BRPS and the proposed March Road sanitary sewer. The proposed location of the drainage split is the Shirley's Brook Tributary 2 corridor, with all lands east of the split draining south and the 2559688 Ontario Inc. lands west of the tributary draining

to March Road. Preliminary sanitary drainage area information as well as sewer and road surface elevations can be seen in *Figure 5* and *Appendix C*.

The proposed development will be serviced by a network of gravity sewers, ranging in diameter from 200 mm to 450 mm, designed in accordance with the wastewater design parameters from ISTB-2018-01 and the Sewer Design Guidelines, summarized in **Table 4** below. These design parameters represent a peak flow reduction from the outdated wastewater design parameters used during the *MSS* design.

Design Parameter	Value	
Residential - Single Family	3.4 p/unit	
Residential – Townhome/ Semi	2.7 p/unit	
Residential Townhouse/Back-to-Back	2.1 p/unit	
Residential Apartment (High Density)	1.8 p/unit	
Average Daily Demand	280 L/d/per	
Peaking Factor	Harmon's Peaking Factor, where K=0.8	
Commercial / Institutional Flows	28,000 L/gross ha/day	
Commercial / Institutional Peak Factor	1.5 if contribution >20%, otherwise 1.0	
Light Industrial Flows	35,000 L/gross ha/day	
Industrial Peaking Factor	Per Figure in Appendix 4-B, City of Ottawa	
	Guidelines	
Infiltration and Inflow Allowance	0.33 L/s/gross ha for all areas	
Park Peaking Factor	1.0	
Sanitary sewers are to be sized employing the	$Q = \frac{1}{4R} \frac{2}{3} S^{\frac{1}{2}}$	
Manning's Equation	$Q = -AK^{3/3}S^{3/2}$	
Minimum Sewer Size	200 mm diameter	
Minimum Manning's 'n'	0.013	
Minimum Depth of Cover	2.5 m from crown of sewer to grade	
Minimum Full Flowing Velocity	0.6 m/s	
Maximum Full Flowing Velocity	3.0 m/s	
Extracted from Sections 4 and 6 of the City of Ottawa Sewer Design Guidelines, October 2012,		
Technical Bulletins, and recent residential subdivision	ons in the City of Ottawa.	

Table 4: Wastewater Design Criteria

Per the *MSS*, the total anticipated peak flow conveyed through the study area to the existing BRPS sanitary infrastructure south of the study area is 66.49 L/s, see *Appendix* **B** for exerpts from the MSS. Using the design parameters set out in *Table 4*, a preliminary sanitary analysis was undertaken using the draft plan along with the latest available information for the external drainage areas from the *MSS* and the existing Brookside subdivision to the south. As the exact distribution of future residential homes is not known at the time of this FSR, population densities that conservatively represent the current population projection were applied to the proposed residential areas to account for any possible changes in population at the detailed design stage. A population of 2,899 is considered for the study area compared to the 2,754 population anticipated by the concept plan. A calculated peak flow of 59.37 L/s is anticipated to discharge to the existing sanitary sewer network to the south (89% of the peak flow anticipated in the *MSS*).

The study area's wastewater flows are proposed to connect into existing manhole MH225A within Celtic Ridge Crescent, upstream of the MH209A tie-in location shown in the *MSS*. Recent survey information for existing MH209A (*Appendix C*) shows that the sanitary sewer is roughly 0.1 m higher than reported in the *MSS*. As such, a new sanitary sewer alignment will be necessary within the eastern Celtic Ridge Boulevard between MH209A and MH225A. As shown in the *MSS*, it would be in conflict with the existing 1220x1930 mm elliptical storm sewer running from Celtic Ridge Crescent to Shirley's Brook. Additional details can be found in *Appendix C*. By connecting the new 450 mm dia. sewer into MH225A, the *MSS* identified downstream sewer upsizing to 450 mm dia. will need to extend to MH225A. The proposed upsized downstream sewer will not conflict with any of the existing infrastructure and has adequate capacity to service the study area's wastewater flows. The external sanitary sewer strategy will be finalized at the detailed design stage.

No further deviations from the *MSS* wastewater servicing strategy are proposed, aside from the use of the latest wastewater design parameters, the minor changes to the drainage split and the revised external sewer connection location. Consistent with the *MSS*, the proposed sanitary sewer network is to include an overflow outlet to Pond 3 at an elevation of 67.50 m to provide relief to the existing trunk sewer along the decommissioned rail line and not raise the HGL in the existing sanitary sewer downstream. The proposed sanitary overflow outlet is illustrated in *Figure 5*, with a 375 mm sanitary sewer connection at an invert of 67.33 m to storm manhole MH 98 (100-year storm HGL = 67.255 m). An updated hydraulic gradeline analysis for the sanitary sewer system will be undertaken as part of the detailed design for the study area, based on results from the City of Ottawa's ongoing BRPS assessment and upgrade design.

The external sanitary sewer upgrades along Celtic Ridge Boulevard and the sanitary sewer overflow to the Pond 3 storm sewer system will be constructed by the initiating owner(s) and costs will be shared by all benefitting land owners within the Kanata North development area. The Kanata North land owners group is in the process of finalizing a cost sharing agreement for all group infrastructure, including the off-site sanitary sewers and the sanitary overflow.

It is understood that there is limited capacity within the BRPS to accommodate additional development within the CDP. Per discussions with City staff, see *Appendix B*, the current capacity for new developments is 15 L/s. Coordination with the City throughout the design and approval process will ensure that adequate capacity is available within the system before any construction approvals are granted for the study area.

The commercial mixed-use blocks west of Shirley's Brook Tributary 2 will drain towards the proposed 600 mm diameter trunk sanitary sewer within March Road. The latest design information for the proposed sanitary extension in March Road, provided by Novatech, can be found in *Appendix C*. This information will be confirmed and incorporated into the detailed design of the study area. The peak total flow will be lower than anticipated in the *MSS*, based on the City of Ottawa Sewer Design Guidelines' latest wastewater parameters and the reduced tributary area due to the drainage split change. In

circumstances where infrastructure may be required outside of the study area, there will be agreements in place facilitating cost sharing and access where necessary.

4.3 Wastewater Servicing Conclusions

A network of local gravity sewers is proposed within the study area to convey flow to existing and proposed offsite sanitary sewers, in accordance with the *MSS*.

The majority of the study area is intended to convey wastewater into the existing BRPS sanitary sewer system to the south of the study area and ultimately to the Briar Ridge Pump Station. A sanitary sewer overflow to Pond 3 will be incorporated into the wastewater system design to provide sanitary sewer hydraulic gradeline relief to both proposed and existing development within the system. Offsite upgrades to the existing sanitary sewer along Celtic Ridge Boulevard will be required to convey flows from the proposed development to the BRPS. It is understood that there is limited capacity within the BRPS to accommodate additional development within the CDP. Coordination with the City throughout the design and approval process will ensure that adequate capacity is available within the system before any construction approvals are granted for the study area.

The remaining western portion of the study area is to convey wastewater to the proposed sanitary sewer within March Road, and ultimately into the East March Trunk sanitary sewer.

The sewers are to be designed in conformance with all relevant City of Ottawa and MECP Guidelines and Policies. Per ISTB-2018-01, the City's current design parameters represent a flow reduction from the outdated standards used within the *MSS*.

5.0 STORMWATER MANAGEMENT

5.1 Existing Stormwater Drainage

The study area is located within the Shirley's Brook sub-watershed. Under existing conditions the western portion of the study area drains into Shirley's Brook via Shirley's Brook Tributary 2. The eastern portion of the study area drains into Shirley's Brook to the east via existing drainage channels. See *Appendix B* for the existing drainage patterns for the study area.

5.2 Stormwater Management Strategy

The overall stormwater management strategy for the study area was considered within the *MSS*. Both the minor and major systems are to be directed towards the proposed stormwater management (SWM) Pond 3 to be situated in the northeast corner of the study area.

Figure 3 illustrates the proposed trunk storm sewer network. The trunk storm sewers, ranging in diameter from 750 mm to 3000 mm, collect stormwater runoff from the study area and portions of March Road. The storm sewer network ultimately drains towards SWM Pond 3 to the east. Local storm sewers will provide service to all roads and development blocks within the study area. Consistent with the *MSS*, rear yards backing onto the Shirley's Brook tributary and the decommissioned rail corridor are to drain to Tributary 2 and the existing ditches within the decommissioned rail corridor respectively. The existing ditches in the decommissioned rail corridor are to SWM Pond 3.

The study area will be serviced by a storm sewer system designed in accordance with the amendment to the storm sewer and stormwater management elements of *PIETB-2016-01*. As such, the minor storm system is proposed to be designed for the following minimum rates of capture, deviating from the *MSS*:

- 2-year event for local streets;
- ➢ 5-year event for collector roads; and
- > 10-year event for arterial roads.

Inlet control devices (ICD) will be employed to ensure that storm flows entering the minor system are limited to the flows described above. *Table 5* summarizes the standards that will be employed in the detailed design of the trunk and local storm sewers.

Design Parameter	Value
Minor System Design Return Period	2-Year (Local Streets), 5-Year (Collector Streets), 10-Year
	(Arterial Streets) – PIEDTB-2016-01
Major System Design Return Period	100-Year
Intensity Duration Frequency Curve	A
(IDF)	$i = \frac{A}{(t_a + B)^C}$
2-year storm event:	$(t_c + B)^{\circ}$
A = 723.951, B = 6.199, C = 0.810	
5-year storm event:	
A = 998.071, B = 6.053, C = 0.814	
Minimum Time of Concentration	10 minutes
Rational Method	Q = CiA
Runoff coefficient for paved and roof	0.90
areas	
Runoff coefficient for landscaped areas	0.20
Storm sewers are to be sized	$Q = \frac{1}{2} A R^{\frac{2}{3}} S^{\frac{1}{2}}$
employing the Manning's Equation	$Q = -AR^{3}S^{2}$
Minimum Sewer Size	250 mm diameter
Minimum Manning's 'n'	0.013
Service Lateral Size	100 mm dia PVC SDR 28 with a minimum slope of 1.0%.
Minimum Depth of Cover	1.7m from crown of sewer to grade (based on recent
	residential subdivisions in City of Ottawa)
Minimum Full Flowing Velocity	0.8 m/s
Maximum Full Flowing Velocity	6.0 m/s
Clearance from 100-Year Hydraulic	0.30 m
Grade Line to Building Opening	
Max. Allowable Flow Depth on	35 cm above gutter (PIEDTB-2016-01)
Municipal Roads	. ,
Extent of Major System	To be contained within the municipal right-of-way or adjacent
	to the right-of-way provided that the water level must not
	touch any part of the building envelope and must remain
	below the lowest building opening during the stress test event
	(100-year + 20%) and 15cm vertical clearance is maintained
	between spill elevation on the street and the ground elevation
	at the nearest building envelope (PIEDTB-2016-01)
Stormwater Management Model	DDSWMM (release 2.1), SWMHYMO (v. 5.02) and
	XPSWMM (v. 10)
Model Parameters	Fo = 76.2 mm/hr, Fc = 13.2 mm/hr , DCAY = $4.14/hr$,
	D.Stor.Imp. = 1.57 mm, D.Stor.Per. = 4.67 mm
Imperviousness	Based on runoff coefficient (C) where
	Percent Imperviousness = $(C - 0.2) / 0.7 \times 100\%$.
Design Storms	Chicago 3-hour Design Storms and 24-hour SCS Type II
	Design Storms. Maximum intensity averaged over 10
Listeria el Escarta	minutes.
Historical Events	July 1st, 1979, August 4th, 1988 and August 8th, 1996
Climate Change Street Test	20% increase in the 100-year, 3-hour Chicago storm
recently approved residential subdivision des	Guidelines, October 2012, as amended by PIEDTB-2016-01, and based on

Table 5: Storm Sewer Design Criteria

Preliminary sizing of the storm sewer network is provided in **Appendix D**, based on rational method calculations and the design parameters set out in **Table 5**. Conservative runoff coefficients were applied based on the coefficients used within the *MSS*, see **Appendix B** for details. A peak rational method flow of 5714 L/s was anticipated to outlet into Pond 3. Preliminary storm drainage area information as well as sewer and road surface elevations can be seen in **Figure 3** and **Appendix D**.

Note that the drainage swale to the east of the decommissioned rail corridor, directing flow to Pond 3 from the study area, is proposed to be replaced with storm sewer. There is expected to be standing water in 303 m of the storm sewer system (ranging in depth from 1.04 m to 1.36 m, within a 3000 mm diameter pipe), from MH 97 west of the rail corridor to the Pond 3 south forebay. No additional deviations from the *MSS*'s stormwater management strategy are anticipated at this stage.

A preliminary hydraulic gradeline (HGL) analysis has been completed for the proposed storm sewer network as detailed in the *Kanata North Community Pond 3 / Preliminary Stormwater Management Design* (JFSA, April 2020), included in *Appendix E*. The results of the analysis find that a 0.30 m freeboard is provided between the hydraulic gradeline and the estimated underside of footing elevations (assumed 1.8m below ground level) throughout the study area. A detailed HGL analysis based on the 100-year 3-hour Chicago and 24-hour SCS design storms will be prepared and further analyzed, and the storm sewer network will be refined accordingly, at the detailed design stage.

Consistent with the *MSS*, major system drainage is proposed to be directed towards and along the local and collector roads, ultimately draining into SWM Pond 3 to the east. The existing ditches within the decommissioned rail corridor will direct the overland flow from the study area to the culverts crossing the decommissioned rail corridor to allow for the overland flow to drain towards Pond 3. Major system flow routing is illustrated on the conceptual grading plan *Drawing 1*. The *MSS* and the *Geotechnical Investigation – Proposed Residential Development 936 March Road Report:* PG4554-1 Revision 5 (April 24, 2020, Paterson Group) both report a preliminary grade raise restriction of up to 3 m. The conceptual grading plan does not propose any grades exceeding the 3 m grade raise restriction.

5.3 Floodplain Mapping

An existing drainage channel, a tributary of Shirley's Brook (referred to as Tributary 2 in the *MSS*), runs through the study area. According to the *EMP*, within the study area, the drainage channel has sufficient capacity to confine the 100-year peak flow within the top of bank and existing channel corridor. Existing floodplain limits from the *EMP* and *MSS* can be seen in *Appendix B*. The draft plan includes a 40 m wide corridor and an additional 6 m buffer to respect the existing drainage channel and the 35 m meander belt width identified within the *EMP*. Consistent with the *MSS*, a culvert will be installed under the proposed road crossing to convey the 100-year peak flow without stormwater overtopping the proposed road. A 1800x1200 mm culvert is proposed as shown in the

cross-section on *Drawing 1*. The sizing of the culvert(s) will be confirmed during detailed design of the study area.

5.4 Proposed Outlet – Stormwater Management (SWM) Pond 3

Consistent with the *MSS*, the proposed outlet for both the minor and major systems from the proposed development is SWM Pond 3. Pond 3 is to be situated east of the study area and west of March Valley Road, and ultimately drains into Shirley's Brook. The Kanata North Land Owner's Group is advancing the proposal to pursue Shirley's Brook Realignment Alternatives Option 2, illustrated in Figure 6.5 of the *EMP*, see **Appendix D**.

Since the time of the *EMP*, the Shirley's Brook Realignment Alternatives have been reevaluated in the *EMP Addendum*. Option 2, consisting of the rehabilitation and stabilization of the existing reach of Shirley's Brook along the eastern side of March Valley Road, is presented as the preferred solution.

The conceptual Pond 3 footprint is shown in *Figure 7*. Consistent with the *MSS*, Pond 3 is to service stormwater runoff from both the study area and the future development lands to the north (northeast quadrant of the KNUEA). Drainage assumptions for the external drainage area are consistent with the MSS, as shown in *Figure 9*. The proposed Pond 3 will provide Enhanced Protection quality control (80% TSS removal).

2-year, 5-year and 100-year quantity control target release rates were set in the EMP and MSS, based on the 24-hour SCS Type II design storm distribution. As detailed within the Kanata North Community Pond 3 / Preliminary Stormwater Management Design (JFSA, April 2020), the quantity control requirements were updated by Novatech in January 2020 to incorporate the Kanata North pre and post-development conditions modeling from the EMP within the larger existing conditions model of Shirley's Brook, created as part of the Shirley's Brook and Watt's Creek Phase 2 Stormwater Management Study (AECOM, April 2015). Pond 3 quantity control targets are set to match post to pre-development flows within the main branch of Shirley's Brook. The quantity control targets specified by Novatech in January 2020 specify unit release rates for Pond 3 of 1.1 L/s/ha, 1.9 L/s/ha and 3.5 L/s/ha for the 2-, 5- and 100-year 24-hour SCS Type II design storms, respectively. Furthermore, post to pre-development control of the 25 mm 4-hour Chicago storm to a unit release rate of 0.55 L/s/ha is specified for the extended detention component of Pond 3. These quantity control targets have been assessed by Matrix Solutions Inc (letter dated February 3, 2020, included in the EMP Addendum) to evaluate the downstream erosive effects within the Shirley's Brook channel, and the assessment concludes that a resulting small decrease in hours of exceedance within the downstream channel is expected to result in a maintenance of existing channel processes, but is not expected to exacerbate erosion/widening. Refer to Appendix E for more details.

Pond 3 is proposed to operate at a permanent pool elevation of 64.80 m, lower than the *MSS* proposed permanent pool elevation of 65.50 m. It is noted that the *MSS* preliminary pond outlet and permanent pool was designed higher than the assumed water levels in Shirley's Brook, providing flexibility to lower the operating levels within the pond upon

detailed design to best suit development conditions. The proposed 100-year water level in the pond is 66.58 m, below the MSS 100-year water level of 67.00 m. Additional pond design details can be found in *Appendix E*. Additional Pond 3 water level information can be found in *Table 6* below.

Event	Pond 3 Water Level
Permanent Pool (NWL)	64.80 m
Extended Detention	65.30 m
2-Year	65.63 m
5-Year	65.89 m
10-Year	66.06 m
25-Year	66.26 m
100-Year	66.58 m

 Table 6: Pond 3 Water Level Summary

The proposed Pond 3 has been designed to best adhere to the design intentions of the pond design in the *EMP* and MSS – meeting the quantity control targets necessary to maintain existing flow conditions within Shirley's Brook, and retaining as much of the adjacent woodlot as possible. An overlay of the proposed Pond 3 footprint onto an aerial photo illustrating the interaction of the pond with the natural landscape is presented in *Figure 8*.

The proposed pond outlet consists of an outlet structure on the west side of March Valley, with a 525 mm diameter culvert crossing under the road, to a headwall structure within the embankment of Shirley's Brook. The design of the pond outlet will be coordinated with the design of the Shirley's Brook rehabilitation project.

5.5 Low Impact Development Measures

Section 11.7.4 of the *EMP* states that "The alluvial sand deposits east of March Road represent the most suitable areas for LID within the KNUEA. The alluvial soils are relatively shallow and underlain by clay and/or bedrock, and do not provide any significant contribution to groundwater recharge. However, these soils can provide storage and attenuation of runoff, and contribute to baseflow in Shirley's Brook."

The suitability of LIDs for the proposed development have been evaluated from a geotechnical and hydrogeological perspective by Paterson Group, in the *Groundwater Infiltration Review* (Paterson Group, June 21, 2019). The recommendations of the memo conclude that "...existing conditions at the subject site currently allow for only minimal volumes of recharge to occur. As such, the applicability of secondary infiltration measures is considered limited for Low Impact Development Measures (LIDs), such as rear yard catch basins and amended topsoil finishes. It should also be noted that previous attempts within the City of Ottawa to induce additional surface water infiltration in similarly low permeability soils have resulted in detrimental effects to both homeowners and their properties due to poorly maintained drainage systems." A copy of the Paterson memo is included in *Appendix D*.

5.6 Stormwater Servicing Conclusions

Consistent with the *MSS*, a network of local gravity sewers is proposed within the study area to capture stormwater and convey the flows to the proposed trunk storm sewer network. The trunk storm sewer network will outlet into SWM Pond 3 via storm sewers traversing the adjacent undeveloped land. Flows not captured in the sewer network are to be directed towards SWM Pond 3 via the proposed roadways and existing drainage swales and culverts.

The storm sewer network and stormwater management facility designs are to be designed in conformance with all relevant City of Ottawa and MECP Guidelines.

The Kanata North Land Owner's Group is advancing their proposal to proceed with the *EMP*'s Shirley's Brook Realignment Alternatives Option 2, consisting of the rehabilitation and stabilization of the existing reach of Shirley's Brook along the eastern side of March Valley Road – as presented in the *EMP* Addendum.

Consistent with the *MSS*, Pond 3 is to service stormwater runoff from both the study area and the future development lands to the north (northeast quadrant of the KNUEA). Pond 3 is to provide Enhanced Protection quality control (80% TSS removal) prior to discharge to Shirley's Brook. Post to pre-development quantity control will be provided to maintain existing flow conditions within Shirley's Brook, including attenuation of the 25 mm 4-hour Chicago storm to a unit release rate of 0.55 L/s/ha. The post to pre-development quantity control targets have been assessed and are not expected to exacerbate erosion/widening in the downstream channel of Shirley's Brook.

6.0 UTILITIES

Utility services were consulted as part of the *MSS* process to provide information regarding their existing infrastructure, initial plans for servicing the KNUEA, and to identify any known constraints.

Hydro Ottawa is reported to have overhead infrastructure running through the KNUEA on the east side of March Road. Per the *MSS*, the existing infrastructure on March Road will need to be upgraded in order to service the KNUEA.

Enbridge Gas is reported to have service extended off the 6" high-pressure gas main within the west side of March Road near the study area.

Bell and Rogers are reported to have services up to the intersection of March Road and Old Carp Road, southwest of the study area. Service to the KNUEA would extend off this location. Per the *MSS*, Rogers' existing infrastructure would require upgrading to service the KNUEA.

DSEL has begun coordination with the utility services to confirm the servicing plans for the study area.

7.0 EROSION AND SEDIMENT CONTROL

Soil erosion occurs naturally and is a function of soil type, climate and topography. The extent of erosion losses is exaggerated during construction where vegetation has been removed and the top layer of soil becomes agitated.

Prior to topsoil stripping, earthworks or underground construction, erosion and sediment controls will be implemented and will be maintained throughout construction.

Silt fence will be installed around the perimeter of the active part of the site and will be cleaned and maintained throughout construction. Silt fence will remain in place until the working areas have been stabilized and re-vegetated.

Catchbasins will have catchbasin inserts installed during construction to protect from silt entering the storm sewer system.

Specifically, the following recommendations to the Contractor will be included in contract documents.

- Limit extent of exposed soils at any given time.
- Re-vegetate exposed areas as soon as possible.
- Minimize the area to be cleared and grubbed.
- Protect exposed slopes with plastic or synthetic mulches.
- Install silt fence to prevent sediment from exiting the construction area and entering existing ditches/stormwater systems.
- Install mud mat at the construction access in order to prevent mud tracking onto adjacent roads.
- > No refueling or cleaning of equipment near existing watercourses.
- Provide sediment traps and basins during dewatering.
- Install catchbasin inserts.
- > Plan construction at proper time to avoid flooding.

The Contractor will, at every rainfall, complete inspections and guarantee proper performance. The inspection is to include:

- Verification that water is not flowing under silt barriers.
- > Clean and change inserts at catch basins.

8.0 CONCLUSIONS AND RECOMMENDATIONS

The overall municipal servicing strategy for the study area was contemplated as part of the Kanata North Community Design Plan (City of Ottawa, June 28, 2016) and the Kanata North Master Servicing Study (City of Ottawa, June 28 2016). More recently, the stormwater servicing strategy was contemplated as part of the Kanata North Environmental Management Plan Stormwater Management Solution Addendum: Shirley's Brook at March Valley Road (Novatech, February 4, 2020).

This *Functional Servicing Study* (FSR) (*DSEL, April 2020*) provides details on the planned on-site and off-site municipal services for the subject property and demonstrates that adequate municipal infrastructure capacity is available for the planned development of the study area.

Prior to detailed design of the infrastructure presented in this report, this FSR will require approval under the *Planning Act* as supporting information for the development applications. Project-specific approvals are also expected to be required for the infrastructure presented in this report from the City of Ottawa, Ministry of Environment, Conservation, and Parks, Department of Fisheries and Oceans and Mississippi Valley Conservation Authority.

Prepared by, **David Schaeffer Engineering Ltd.**

David Schaeffer Engineering Ltd.

BLani

Per: Braden Kaminski, E.I.T.

Per: Matt Wingate, P.Eng

© DSEL

z:\projects\17-982_minto_kanata-north\b_design\b3_reports\b3-2_servicing (dsel)\2020-04-23_982_fsr_sub3\2020-04-28_982_fsr.docx

Appendix A

Development Study Checklist, Draft Plan of Subdivision, Record of Pre-Consultation, Record of City Comments

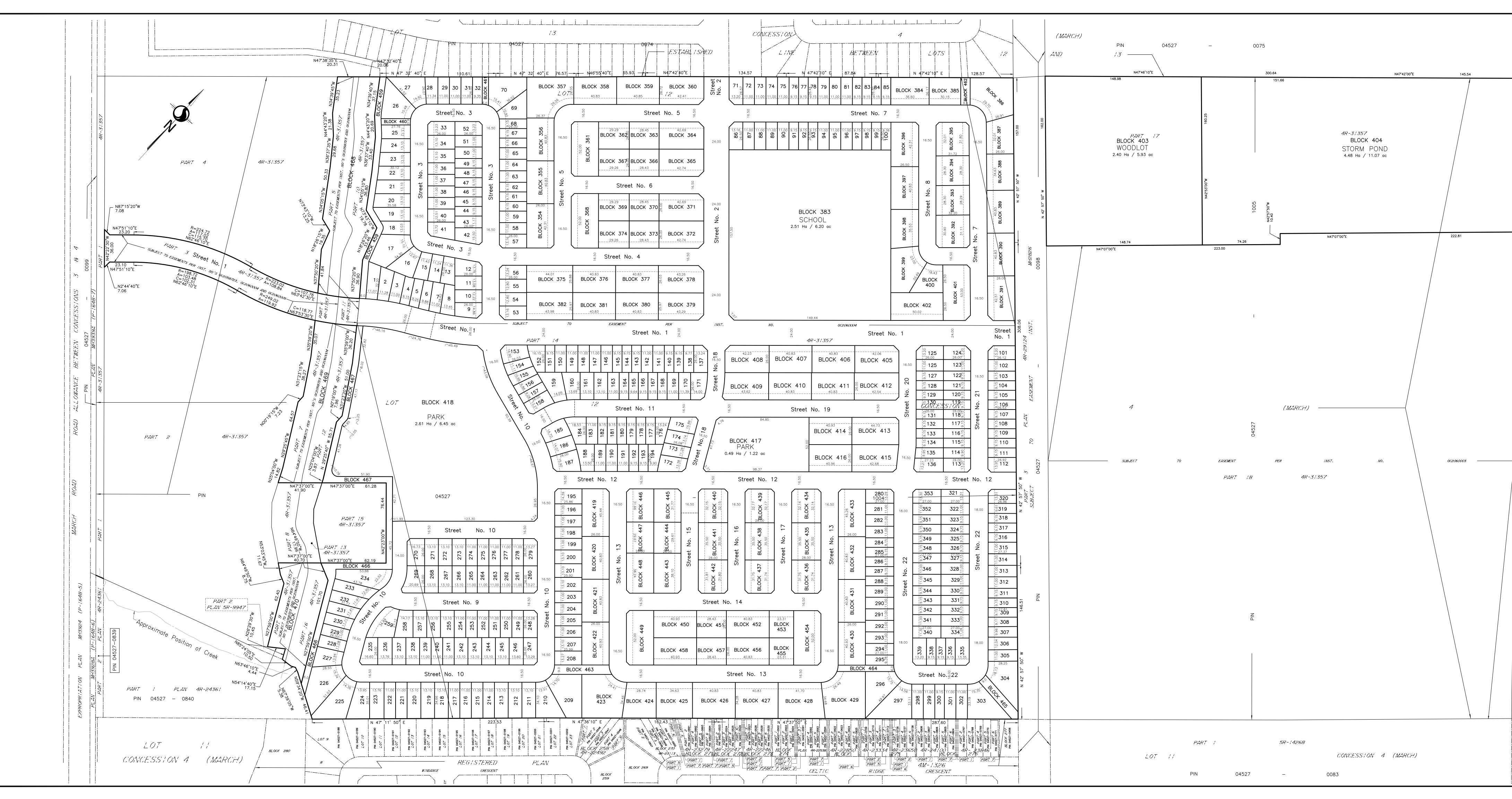
DEVELOPMENT SERVICING STUDY CHECKLIST

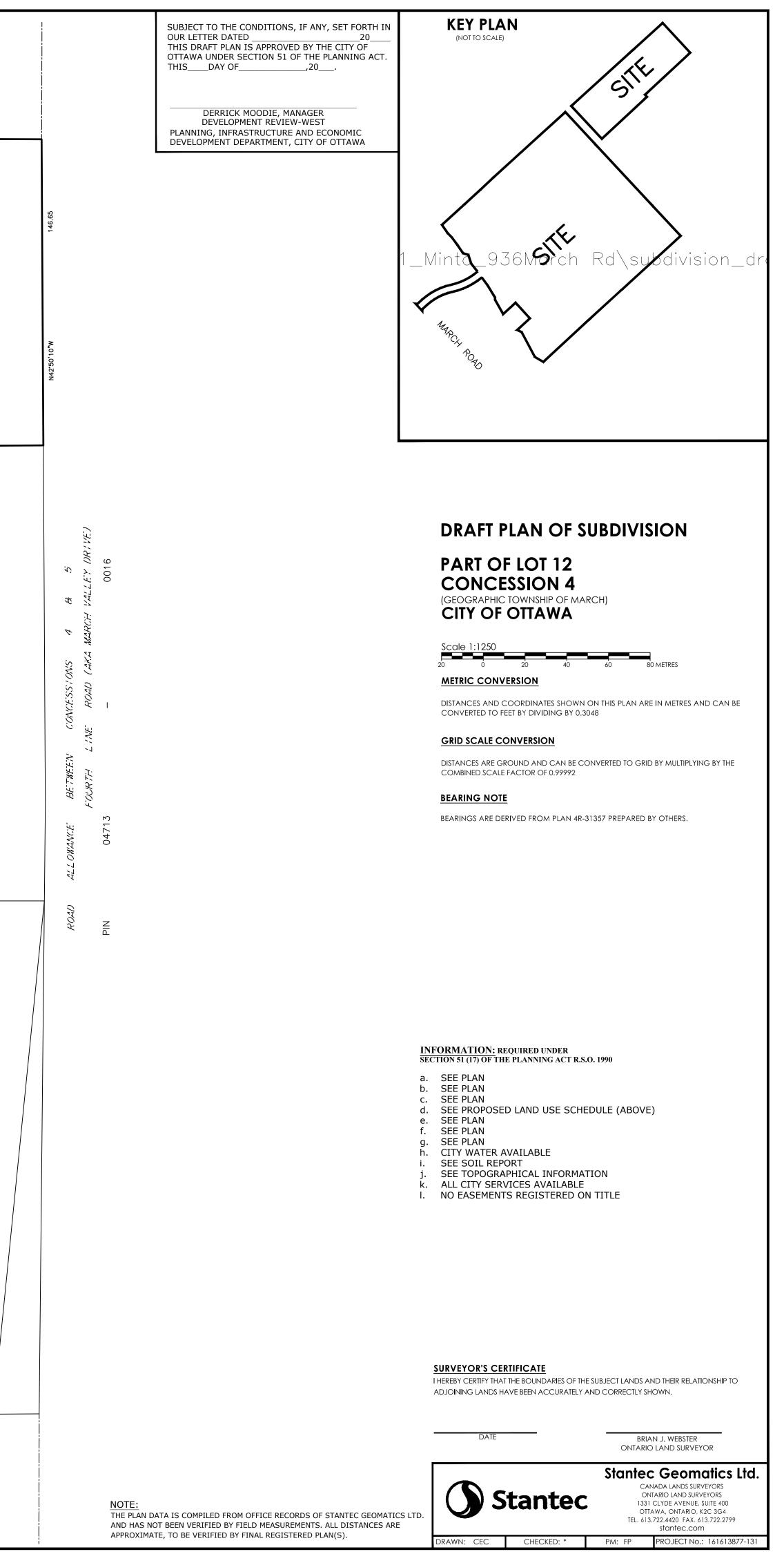
4.1	General Content	
	Executive Summary (for larger reports only).	N/A
	Date and revision number of the report.	Title Page
	Location map and plan showing municipal address, boundary, and layout of proposed development.	Figure 1
	Plan showing the site and location of all existing services.	Figures 3/4/5/6
	Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.	Section 1.0 & Section 2.0
	Summary of Pre-consultation Meetings with City and other approval agencies.	Section 1.3 & Appendix A
	Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.	All sections
	Statement of objectives and servicing criteria.	Section 1.0 & Section 3.2, Section 4.2, and Section 5.2
	Identification of existing and proposed infrastructure available in the immediate area.	Sections 3.1, Section 4.1, and Section 5.1
	Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).	Sections 1.1 & 1.2
	Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.	Drawing 1
	Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.	Hydrogeological Assessment (Paterson Group, Dec 6, 2018)
	Proposed phasing of the development, if applicable.	N/A. Depends on landowner preferred timing
	Reference to geotechnical studies and recommendations concerning servicing.	Section 1.1 & Section 2.1
	All preliminary and formal site plan submissions should have the following information: -Metric scale -North arrow (including construction North) -Key plan -Name and contact information of applicant and property owner -Property limits including bearings and dimensions -Existing and proposed structures and parking areas	All Figures
	-Easements, road widening and rights-of-way -Adjacent street names	

4.2 Development Servicing Report: Water	
Confirm consistency with Master Servicing Study, if available	Section 3.2
Availability of public infrastructure to service proposed development	MSS & Section 3.2
Identification of system constraints	MSS & Section 3.2
Identify boundary conditions	Detailed hydraulic assessment N/A for FSR

		MSS.
	Confirmation of adequate domestic supply and pressure	Detailed hydraulic assessmen
		N/A for FSR.
	Confirmation of adequate fire flow protection and confirmation that fire flow is	MSS.
	calculated as per the Fire Underwriter's Survey. Output should show available	Detailed hydraulic assessmen
	fire flow at locations throughout the development.	N/A for FSR.
٦	Provide a check of high pressures. If pressure is found to be high, an assessment	Detailed hydraulic assessmen
	is required to confirm the application of pressure reducing valves.	N/A for FSR.
	Definition of phasing constraints. Hydraulic modeling is required to confirm	Detailed hydraulic assessmen
	servicing for all defined phases of the project including the ultimate design	N/A for FSR.
	Address reliability requirements such as appropriate location of shut-off valves	Detailed hydraulic assessmen
	Address reliability requirements such as appropriate location of shut-on valves	N/A for FSR.
	Check on the necessity of a pressure zone boundary modification	MSS.
	Reference to water supply analysis to show that major infrastructure is capable	MCC
7	of delivering sufficient water for the proposed land use. This includes data that	MSS.
	shows that the expected demands under average day, peak hour and fire flow	Detailed hydraulic assessme
	conditions provide water within the required pressure range	N/A for FSR.
	Description of the proposed water distribution network, including locations of	MSS, Section 3.2 & Figure 5.
]	proposed connections to the existing system, provisions for necessary looping,	Detailed hydraulic assessmer
	and appurtenances (valves, pressure reducing valves, valve chambers, and fire	N/A for FSR.
	hydrants) including special metering provisions.	N/A IOI FSR.
	Description of off-site required feedermains, booster pumping stations, and	
1	other water infrastructure that will be ultimately required to service proposed	MSS.
	development, including financing, interim facilities, and timing of	IVI55.
	implementation.	
	Confirmation that water demands are calculated based on the City of Ottawa	Continue 2 2
	Design Guidelines.	Section 3.2
	Provision of a model schematic showing the boundary conditions locations,	Detailed hydraulic assessmer
	streets, parcels, and building locations for reference.	N/A for FSR.

4.3 Development Servicing Report: Wastewate	r
Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).	Section 4.2
Confirm consistency with Master Servicing Study and/or justifications for deviations.	Section 4.2
Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers.	MSS
Description of existing sanitary sewer available for discharge of wastewater from proposed development.	Section 4.1 & 4.2
Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)	MSS, Section 4.2, Figure 5 & 6, Appendix C
Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.	Appendix C
Description of proposed sewer network including sewers, pumping stations, and forcemains.	MSS, Section 4.2, Appendix C & Figure 5


Discussion of previously identified environmental constraints and impact servicing (environmental constraints are related to limitations imposed development in order to preserve the physical condition of watercourse vegetation, soil cover, as well as protecting against water quantity and c	on the MSS es,
Pumping stations: impacts of proposed development on existing pumpin stations or requirements for new pumping station to service developme	
Forcemain capacity in terms of operational redundancy, surge pressure maximum flow velocity.	and MSS
Identification and implementation of the emergency overflow from sani pumping stations in relation to the hydraulic grade line to protect agains basement flooding.	
Special considerations such as contamination, corrosive environment et	c. MSS


4.4 Development Servicing Report: Stormwater Checklist

Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property)	Section 1.1 & Section 5.1
Analysis of available capacity in existing public infrastructure.	MSS & Section 5.4
A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern.	Figure 3, Appendix B
Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects.	MSS, Section 5.4 & Kanata North Community Pond 3 / Preliminary Stormwater Management Design (JFSA, April 2019)
Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.	MSS & Section 5.4
Description of the stormwater management concept with facility locations and descriptions with references and supporting information	Section 5.2, Section 5.4 & Figures 3, 7-9
Set-back from private sewage disposal systems.	N/A
Watercourse and hazard lands setbacks.	MSS, Section 5.3
Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.	Record of consultation forthcoming.
Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists.	MSS, Section 5.2, Section 5.3 & Section 5.4
Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period).	Kanata North Community Pond 3 / Preliminary Stormwater Management Design (JFSA, April 2019)
Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals.	MSS, Section 5.4 & Kanata North Community Pond 3 / Preliminary Stormwater Management Design (JFSA, April 2019)
Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.	Kanata North Community Pond 3 / Preliminary Stormwater Management Design (JFSA, April 2019)
Any proposed diversion of drainage catchment areas from one outlet to another.	N/A

DEVELOPMENT SERVICING STUDY CHECKLIST

Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities.	Section 5.2, Appendix D & Figure 3
If quantity control is not proposed, demonstration that downstream system has	
adequate capacity for the post-development flows up to and including the 100- year return period storm event.	N/A
Identification of potential impacts to receiving watercourses	MSS
Identification of municipal drains and related approval requirements.	N/A
Descriptions of how the conveyance and storage capacity will be achieved for	Kanata North Community Pond
the development.	3 / Preliminary Stormwater Management Design (JFSA, April 2019)
100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.	Section 5.3 & Drawing 1
Inclusion of hydraulic analysis including hydraulic grade line elevations.	Kanata North Community Pond
	3 / Preliminary Stormwater Management Design (JFSA, April 2019)
Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.	Section 7.0
Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.	MSS, Section 5.3
Identification of fill constraints related to floodplain and geotechnical investigation.	Section 1.1
4.5 Approval and Permit Requirements: Checkl	ist
Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement ct. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act.	Section 1.2
Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.	Section 1.2
Changes to Municipal Drains.	N/A
Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.)	Section 1.2
4.6 Conclusion Checklist	
Clearly stated conclusions and recommendations	Section 8.0
Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.	Appendix A
All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario	Section 8.0

Braden Kaminski

From:	Beth Henderson <bhenderson@minto.com></bhenderson@minto.com>
Sent:	Monday, July 16, 2018 4:04 PM
То:	Emilie Coyle; Paul Black; Miguel Tremblay - FoTenn Urban Planners & Designers (tremblay@fotenn.com); Steve Pichette; McKinley Environmental; Matt Wingate; Christen hav Conden (as as asymbolic astronometric@reastronometric
	Christopher Gordon (gogogordons.chris@rogers.com); Dave Gilbert (dgilbert@patersongroup.ca); Mark D'Arcy; 'Karyn Munch'; 'Ben Mortimer'; 'Webster,
	Brian'
Subject:	FW: Pre-Consultation Follow-up: 936 March Road
Attachments:	936 March.pdf; Plan & Study List.pdf

Hi All

Please find attached and below the comments from the city from our pre consultation meeting last Wednesday July 11th 20118.

Thanks Beth

Beth Henderson Senior Land Development Manager MINTO COMMUNITIES - CANADA 200-180 Kent St, Ottawa, ON K1P 0B6 T 613.782.2311 A division of The Minto Group

You are receiving this email because you may have expressly consented to receive commercial electronic messages from Minto Group of Companies (Minto Properties Inc, Minto Communities Canada Inc., Minto Communities LLC.) and affiliates. To unsubscribe, please <u>click here</u>. Contact Minto Group of Companies at 200-180 Kent Street, Ottawa ON K1P 0B6 or 1-877-751-2852. <u>Click here</u> to access our privacy policy.

The information in this email is intended solely for the addressee(s) named and may contain privileged, confidential or personal information. If you have received this communication in error, please reply by e-mail to the sender and delete or destroy all copies of this message. Any other distribution, disclosure or copying is strictly prohibited.

From: McCreight, Laurel [mailto:Laurel.McCreight@ottawa.ca]
Sent: Friday, July 13, 2018 12:05 PM
To: Emilie Coyle <coyle@fotenn.com>
Cc: Beth Henderson <BHenderson@minto.com>
Subject: Pre-Consultation Follow-up: 936 March Road

Hi Emilie,

Please refer to the below regarding the Pre-Consultation Meeting held on Wednesday Jull 11th, 2018 for the property at 936 March Road for a proposed plan of subdivision. I have also attached the Plans & Study List.

<u>General</u>

- Proposal to develop a subdivision containing approximately 800 units, 396 being single-family dwellings and 400 being townhomes
- Two blocks have been severed, under an application to Committee of Adjustment, fronting onto March Road and retained by the current property owner for future commercial development
- The proposed subdivision will consist of a park block and school block along with the residential blocks
- The current proposal is generally consistent with the council approved Kanata North Community Design Plan
- The subject property currently contains an existing farmhouse that is being retained along with its access
- The western portion of the property contains a 40-metre creek corridor.
- The applicants are proposing a Zoning By-law Amendment for both the commercial and subdivision portions
- The commercial portion is proposing to be rezoned from Rural Countryside (RU) to General Mixed Use (GM)

Planning/Urban Design

- The property is subject to the Kanata North Community Design Plan (CDP)
- The subject property is currently zoned Rural Countryside (RU) with the intent of rezoning the property
- There is a concern regarding the applicant's proposal of rezoning RU to GM without a Master Plan for the remaining commercial blocks
 - A concept plan will be required to demonstrate layout of the site
- Please be aware of the gateway features in the CDP
 - \circ $\;$ There are currently two labelled potential community gateways where the CDP has a maximum of two $\;$
 - Potential neighbourhood gateway also identified
- Please provide more linkages throughout the site in the northwest corner towards the creek
- Consider realigning Block 42 to align the pathway to the street
 - It is understood that there is an easement on title for this existing access and it may be difficult to move the location
 - \circ Please describe if this can / cannot be accommodated in the Planning Rationale
- The attached image also illustrates other linkages that are recommended
- The ideal layout would have the back-to-back townhomes block along the collector to allow for a multi-use pathway (MUP) and to ensure driveways do not interfere
- Please provide a similar form of housing located in the existing residential neighbourhood to the south (along the southern property line)
- A mixture of product type dispersed throughout the subdivision is encouraged
- There is a 6-metre MUP around the retained dwelling
- A right-of-way of 1.8 metres is preferable for tree planting along the MUP
- The hedge row in Block 34, the southern portion, is to be enhanced and retained
- Please note the woodlot is to be conveyed to the City as part of the natural heritage system and is to be shown separately on the plans from the stormwater management pond (two separate blocks)
- Discussion regarding the rail corridor
 - The corridor may be acquired, but there are no guarantees, depends on whether the City has the funds and how much of the corridor is actually being sold
 - At minimum, we should be protecting for the potential and access will need to be provided across the corridor for the SWM connection
- Please be aware of the location of clay soils and their relation to tree planting

Engineering

- Master Servicing Study to be followed
- Please incorporate LIDs where possible

Transportation

• Follow Traffic Impact Assessment Guidelines – Full Traffic Impact Assessment will be required.

- Start this process as soon as possible
- The application will not be deemed complete until the submission of the draft step 1-4, including the functional draft RMA package (if applicable) and/or monitoring report (if applicable)
- ROW protection on March Road between Urban Area Limit and Terry Fox Drive is 44.5m even (Note: An additional 5.0 m on the Greenbelt side may be required to construct a rural cross section)
- Noise Feasibility Impact Studies required prior to DPA and Detailed Noise Impact Assessment required prior to registration, for the following:
 - \circ Road
 - Rail (if applicable)

Environmental / Forestry

- The Environmental Management Plan (EMP) and CDP will provide direction for the development
- When filling up the corridor limits, be cognizant of the transitions as there are regulations about drainage into the corridor
 - No retaining walls or rear yard drainage
- There are perched culverts along the rail ditch, if there is the opportunity to fix the culverts, the EMP suggests it be done
- Please be advised of the coordination that will have to take place for the obtaining of a turtle permit
 - A Ministry of Natural Resources permit may be required
- There is a high presence of butternut trees on the subject property with majority surrounding the existing dwelling that is being retained
- Further butternut planting is supported along the woodlot
- A tree permit is required prior to any tree removal on site
- A Tree Conservation Report will need to be submitted for review as part of the Plan of Subdivision submission requirements (can be combined with the EIS)

<u>Parks</u>

- Please provide further connectivity throughout the proposal from the streets to the park block
- It is anticipated the park may be suitable for more active uses

Mississippi Valley Conservation Authority

- The stormwater management pond at the bottom of the inlet is to be constructed as soon as possible and completed as part of the development
- Some temporary sediment ponds may be required for construction
- Be sure to implement the MSS.
- Current regulation mapping extends beyond the established corridor primarily into the proposed commercial block but there is spillage into the eastern side of the property
 - This results in the way of MNR however does not incorporate stormwater management controls until developed
- The flood limit anticipates full build up, upstream, with no stormwater management
 - Flood plain mapping will be reduced to incorporate the stormwater management pond upon its completion
 - o There is confidence it will be reduced to 40-metres
- There is currently an issue in the interim for crossing
 - o If it is temporary, pre-servicing permits will be required
 - This will include a hydraulic-pumping analysis
 - The crossing on the map would have to look at flows and flooding
- The floodwater is currently over topping by 0.3metres
- Please show the reduced spill area on pond 2

Please do not hesitate to contact me if you have any questions.

Regards, Laurel

1

۱

Laurel McCreight MCIP, RPP Planner Development Review West Urbaniste Examen des demandes d'aménagement ouest

City of Ottawa | Ville d'Ottawa 613.580.2424 ext./poste 16587 ottawa.ca/planning / ottawa.ca/urbanisme

ABSENCE ALERT - I will be away from July 20 to August 8

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

COMMENT No.	Соммент	Response	CONSULTANT
ENGINEERIN	G COMMENTS		
Functional Se	ervicing Report, prepared by DSEL, Project # 17-982, dated Jan	uary 2019.	
21	The referenced Geotechnical Investigation within the FSR is outdated. DSEL Response: This was a typo. The latest Geotechnical Investigation is now referenced in the revised FSR.	Geotechnical report references have been updated to reflect the April 24, 2020 revision in the revised servicing report.	DSEL
	City Comment: The revised FSR still referenced a Geotechnical Investigation dated November 28, 2018. The Geotechnical Investigation submitted with the application is dated August 9, 2019.		
22	Additional information is required regarding the following infrastructure upgrades required to service Minto's development: a. New overflow for Briar Ridge PS to Pond 3 b. Pipe upgrades to existing 375mm diameter sewer within rail corridor north of Klondike Road c. New 600mm diameter sewer within Shirley's Brook Drive to connect to the East March Trunk Sewer d. Increase station capacity at the Briar Ridge PS DSEL Response: No new information related to the BRPS sewer system was available at the writing of the FSR. The proposed preliminary design incorporates a sanitary overflow that is consistent with the recommendations in the Master Servicing Study, with a sewer overflow invert elevation of Proposed pipe upgrades alongside the rail corridor and Celtic Ridge are illustrated on Figure 6 'Offsite Sanitary Servicing'. Existing sewer elevations have been surveyed to inform the design.	Discussion has been incorporated into Section 4.2 of the revised servicing report and correspondence with City staff has been included in Appendix B.	DSEL

COMMENT No.	Соммент	Response	CONSULTANT
	City Comment: Development in Kanata North designated to be serviced by the Briaridge PS cannot proceed until capacity (and other items) at the station is increased to accommodate growth. The developer will be required to work with the City to ensure all the required upgrades to the Briaridge PS are implemented before any approvals are granted. No approvals will be granted until an ECA amendment is in place for the Briaridge PS. The KN landowners' group may need to front-end the work required at the station to advance growth in the area. More details on who will be responsible for the sanitary overflow and off-site sewer works should be included in		
23	the Report (cost shared with Valecraft?). Please summarize the stormwater criteria that is to be followed at the time of detailed design. DSEL Response: The quality, quantity and erosion control requirements to be followed during the detailed design are described in the Kanata North Community Pond 3 / Preliminary Stormwater Management Design (JFSA, Sept 2019), provided in Appendix E. The pond is to provide enhanced quality control and to ensure 2 to 100-year post- development peak flows at all key nodes along the main branch of Shirley's Brook are equal to or less than pre- development levels. The pond has not been designed to provide additional erosion control measures above what is provided by the quality/quantity control targets above. City Comment: Section 5.2 of the 2016 EMP states that as part of the quantity control design criteria, it must be demonstrated that there will be no adverse impacts on erosion in the watercourse resulting from the future development within the KNUEA. Similarly, Section 9.5 of the 2016 EMP states that confirmation will be required regarding what level of control for more frequent events	As detailed in the Kanata North Community Pond 3 / Preliminary Stormwater Management Design (JFSA, April 2020), the updated quantity control targets specified by Novatech on January 29, 2020 specify unit release rates for Pond 3 of 1.1 L/s, 1.9 L/s and 3.5 L/s for the 2-, 5- and 100- year 24-hour SCS Type II design storms, respectively. Furthermore, post- to pre-development control of the 25 mm 4-hour Chicago storm to a unit release rate of 0.55 L/s/ha is specified for the extended detention component of Pond 3. We understand that these stormwater management controls have been evaluated for erosion impacts in the February 4, 2020 "Kanata North Environmental Management Plan Stormwater Management Solution Addendum: Shirley's Brook at March Valley Road" by Novatech.	DSEL JFSA

COMMENT No.	Соммент	Response	CONSULTANT
	may still be required to avoid erosion impacts on the relocated brook. Given the above, erosion control measures cannot be ignored for the design of the pond and must be evaluated within JFSA's Report. Further review of JFSA's report and modelling files will be reviewed once JFSA's revised modelling is submitted (as per email correspondence with Beth Henderson dated October 30, 2019).		
26	A hydrodynamic model of the conceptual design of SWM Pond 3 and connecting storm sewers documented in the MSS is to be completed to support the general pond stage- storage-discharge characteristics, inlet channel configuration, storm trunk sewer network design, and to demonstrate that the hydraulic design and grading plan are compatible to avoid basement flooding, and facilitate subsequent phased build-out in the catchment area of SWM Pond 3. City Comment: Further review of JFSA's report and modelling files will be reviewed once JFSA's revised modelling is submitted (as per email correspondence with Beth Henderson dated October 30, 2019).	As detailed in the Kanata North Community Pond 3 / Preliminary Stormwater Management Design (JFSA, April 2020), the performance of the pond has been evaluated based on SWMHYMO modelling of the drainage area to the pond and a stage-storage-outflow relationship for the pond under free outfall and restrictive downstream conditions. The hydraulic gradeline in the proposed storm sewer network has been evaluated using spreadsheet calculations, shown in Appendix A of the JFSA memo. Note that a separate PCSWMM model of the Valecraft storm sewer and inlet channel to the pond has been prepared by Stantec in the November 15, 2019 "Valecraft Homes Part of Lot 13, Concession 4 Functional Site Servicing and Stormwater Management Report".	DSEL JFSA
27	The evaluation and selection of the preferred SWM approach in the Northeast and Southeast quadrants of Kanata North is documented in Figure 6-4 and Table 6-4 of the KN EMP. The preferred SWM approach is described in Section 6.4.3 of the EMP as follows: 6.4.3 Northeast / Southeast Quadrants The recommended SWM strategy for the KNUEA lands east of March Road is a single SWM facility located adjacent to March Valley Road at the eastern limit of Woodlot S23. Storm runoff from the KNUEA would be directed to the proposed facility through a pair of open channels on either side of the woodlot. The elevation of the proposed SWM	The general location of Pond 3 is consistent with the preferred location in the EMP. As detailed in Section 5.4 of the revised servicing report, Pond 3 has been designed to meet all stormwater management control targets while retaining as much of the adjacent woodlot as possible. An overlay of the proposed Pond 3 footprint onto aerial photo is illustrated in Figure 8 of the revised servicing report.	DSEL JFSA

COMMENT No.	Соммент	Response	CONSULTANT
	COMMENTfacility will be low enough to accommodate the required sanitary overflow.The westward shift in the proposed location of the SWM Block in the Draft Plan represents a deviation from the location of the preferred SWM facility documented in the 	Response The possibility of eliminating quantity controls for SWM Pond 3 has been evaluated and dismissed by Novatech using updated modelling, where the Kanata North pre- and post-development conditions SWMHYMO models from the June 2016 Environmental Management Plan (updated where applicable) were incorporated within the larger existing conditions SWMHYMO model of Shirley's Brook prepared by AECOM in the April 2015 Shirley's Brook and Watt's Creek Phase 2 Stormwater Management Study.	CONSULTANT
	Because the scope of quantity control requirements will directly influence the size of the SWM Block, it is likely in all Parties interest to make the determination about the scope of quantity control requirements prior to Draft Plan		

COMMENT No.	Соммент	Response	CONSULTANT
	approval (rather than at detailed design, as reflected in the revised EMP text).		
	City Comment: Further review of JFSA's report and modelling files will be reviewed once JFSA's revised modelling is submitted (as per email correspondence with Beth Henderson dated October 30, 2019).		
Please note t development		nit (SMU) regarding the engineering design submission for the	above noted
32	The stormwater management facility in the servicing brief is showing a small portion of the ultimate sized pond as identified in the MSS. While the interim pond is sized to service 56 ha in comparison to 181 ha for the ultimate pond, further analysis is required to demonstrate appropriate level of serviceability for the interim and ultimate conditions. It was discussed during the CDP stage that further analysis, including HGL, would be completed prior to draft plan approval. DSEL Response: The revised Pond 3 design is representative of the ultimate design. The HGL analysis is presented in Appendix E of the FSR. City Comment: The HGL review will be pending circulation of the revised modelling prepared by JFSA. The report does not clearly explain the HGL with all ponds in function. A rational must be provided on how all ponds (Ponds 1, 2 and 3) will function and not the scenario of Pond 3 functioning alone.	As detailed in the Kanata North Community Pond 3 / Preliminary Stormwater Management Design (JFSA, April 2020), the updated quantity control targets specified by Novatech on January 29, 2020 specify unit release rates for Pond 3 of 1.1 L/s, 1.9 L/s and 3.5 L/s for the 2-, 5- and 100- year 24-hour SCS Type II design storms, respectively. These quantity controls are specified to provide post- to pre- development control on Shirley's Brook, where post- development conditions including full build-out of development to Ponds 1, 2 and 3.	DSEL JFSA
35	Is the conceptual grading plan showing the potential grade raise for the subdivision? We would like to avoid submerged pipes and the potential of the channel to be used as extended TSS treatment.	Noted.	DSEL

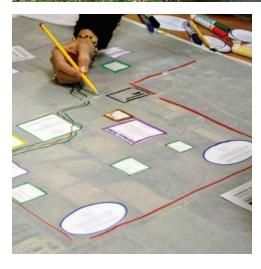
COMMENT No.	Соммент	Response	CONSULTANT
	DSEL Response: The Conceptual Grading Plan does illustrate the proposed cut or fill depth between the centerline of road and the existing ground surface. The proposed 3000mm storm sewer between the subdivision and pond will have standing water. Subdivision storm sewers upstream of MH 97, at the bottom of the subdivision storm sewer system, will not have standing water. City Comment: Submerged inlets will be subject to		
36	conditions and securities in the agreement.Provide the following elevations for Pond 3 (we will requirethe extended detention as well), Shirley's Brooke, theproposed channel and the tributary:a.NWLb.2 yearc.5 yeard.10 yeare.25 yearf.100 yearCity Comment: Further review of JFSA's report andmodelling files will be reviewed once JFSA's revisedmodelling is submitted (as per email correspondence withBeth Henderson dated October 30, 2019).	For Pond 3, the water levels are as follows: Permanent Pool (NWL) = 64.80 m Extended Detention = 65.30 m 2-Year = 65.63 m 5-Year = 65.89 m 10-Year = 66.06 m 25-Year = 66.26 m 100-Year = 66.58 m A Pond 3 water level summary has been included in Section 5.4 of the revised servicing report.	DSEL
Please note t New Comme		nit regarding the engineering design submission for the above	noted development:
37	A proposed 1800*1200 concrete culvert is identified. Structure number 640655 has been assigned by AMB Structures.	Noted.	DSEL
MVCA COM	/IENTS		
	-	Servicing Report – Minto Communities (Kanata North), City of g comments are offered:	Ottawa" prepared by

COMMENT	•	P	0
No.	Соммент	Response	CONSULTANT
53	It is unclear in the report whether the stormwater strategy will require on-site storage as a result of the capacity and the design of Pond 3. The details of the required storage, possible ponding areas and their ponding depths should be included in the detailed design of the report.	On-site / surface storage may be proposed as part of the major system design for the subdivision at the detailed design stage; however, it is not required to support the design of Pond 3.	DSEL
54	The design and details of the outlet from Pond 3 to Shirley's Brook should be included in the detailed design. We understand there are on-going discussions regarding the outlet of Pond 3 and the realignment work associated with Shirley's Brook in proximity to March valley Road.	The proposed functional Pond 3 outlet design consists of a storm sewer crossing March Valley Road to the existing Shirley's Brook channel alignment within the eastern March Valley Road boulevard, consistent with the Kanata North Environmental Management Plan Stormwater Management Solution Addendum: Shirley's Brook at March Valley Road (Novatech, February 4, 2020).	DSEL
Conclusion /	Recommendations		
58	At this stage of the review process for the subdivision and zoning by-law amendment applications, MVCA recommends that the applicant address the comments raised in regard to the EIS, SWM, conformity with the EMP and our regulation mapping. MVCA is open to discussing planning mechanisms to ensure issues relating to natural hazards are addressed prior to registration and approval.	Noted.	McKinley DSEL
NCC COMME	INTS		
Previously, th	ne NCC had submitted comments dated 27 February 2019 (atto	ached for reference).	
60	New Preferred Solution – Option #2 Given our engineering review of submitted materials (Environmental Management Plan (Novatech, 2016); Functional Servicing Report for Minto Communities – Canada & 2559688 Ontario Inc. Kanata North (DSEL, 2019)), the NCC is satisfied that adequate information has been provided to satisfy our initial concerns.	Noted.	DSEL Novatech
	this development on 8th November 2019, the NCC understands that the overall SWM solution for the KNUEA will be modified and the realignment of Shirley's Brook as		

COMMENT No.	Соммент	Response	CONSULTANT
	the recommended solution will not proceed. Rather, Option #2 described to be "Improvements can be made to Shirley's Brook within the March Valley Road right-of-way to stabilize the banks and improve the channel morphology" will be implemented.		
Engineering	Comments		
	reviewed the functional servicing report Minto Communities – ata North Community Pond 3 / Preliminary Stormwater Manag	- Canada & 2559688 Ontario Inc Kanata north (DSEL, Sept 20 gement Design (JFSA, Sept 2019).)19 2nd submission)
62	Proposed Approach for SWM The JFSA 2019 report identifies that the proposed pond controls per the June 2016 EMP (100-year unit release rate of 9.8 L/s/ha from Pond 3) would be insufficient to control post-development peak flows to pre-development levels. The re-assessment of appropriate controls for Pond 3 in the 2019 JFSA report identified a 100-year release rate of 4.7 L/s/ha (Table 4). This value is more in line with the existing conditions baseline model from the subwatershed study (AECOM 2015). The Preliminary SWM Design also calls for 80% TSS removal via the pond. Therefore, the proposed approach to control water quantity and flood risk (peak flows) and water quality based on sediment loading from the 936 March Minto subdivision is reasonable.	As detailed in the Kanata North Community Pond 3 / Preliminary Stormwater Management Design (JFSA, April 2020), the updated quantity control targets specified by Novatech on January 29, 2020 specify unit release rates for Pond 3 of 1.1 L/s, 1.9 L/s and 3.5 L/s for the 2-, 5- and 100- year 24-hour SCS Type II design storms, respectively. 80% TSS removal will also be provided. These quantity controls are specified to provide post- to pre-development control on Shirley's Brook, where post-development conditions including full build-out of development to Ponds 1, 2 and 3.	DSEL/JFSA
63	Lack of Erosion Control The design, however, includes no implementation of specific erosion control targets via Pond 3, nor any low impact development measures. The potential negative impacts of increased runoff volume on in-channel erosion within Shirley's Brook on the downstream federal lands has not been properly assessed, or mitigated against. As noted by JFSA (2019) on page 4 of their report: "A continuous erosion analysis of the main branch of Shirley's Brook may be required to confirm this assumption [no erosion control point in Pond 3] based on the revised Pond 3 design, and potentially for Ponds 1 and 2, which to our knowledge have	It is understood that the stormwater management controls detailed in the Kanata North Community Pond 3 / Preliminary Stormwater Management Design (JFSA, April 2020) have been evaluated for erosion impacts in the Kanata North Environmental Management Plan Stormwater Management Solution Addendum: Shirley's Brook at March Valley Road (Novatech, February 4, 2020).	DSEL/JFSA

COMMENT No.	Соммент	Response	CONSULTANT
	only been evaluated based on erosion in tributaries to Shirley's Brook and not the main branch".		
64	Erosion Analysis Requirement An erosion analysis that assesses the effects of this proposed ZBA and Plan of Subdivision (and one that assesses the entire CDP) on the main branch of Shirley's Brook should be conducted, and appropriate mitigation or compensation measures should be implemented to protect downstream federal lands (and all lands) from increased erosion risk due to the proposed development(s).	See Comment 63.	DSEL JFSA Novatech
65	NCC Recommendation An erosion analysis should be undertaken by the proponent(s) in their analyses to support the new preferred design solution that will incorporate Option 2 (Improvements to Shirley's Brook within the March Valley Road right-of-way) versus Option 3 within the overall SWM solution for the KNUEA. The erosion analysis should include the identification of appropriate mitigation or compensation measures for implementation.	See Comment 63.	DSEL JFSA Novatech
ADDITIONAL	COMMENTS		
Briar Ridge P	ump Station Capacity Distribution		
67	This action has been brought up to management, but no action is required as discussed in the meeting.	Noted. Discussions with City staff has been included in Appendix B of the revised servicing report. Coordination with the City throughout the detailed design and approval process will ensure that adequate capacity is available within the system before any construction approvals are granted for the study area.	DSEL

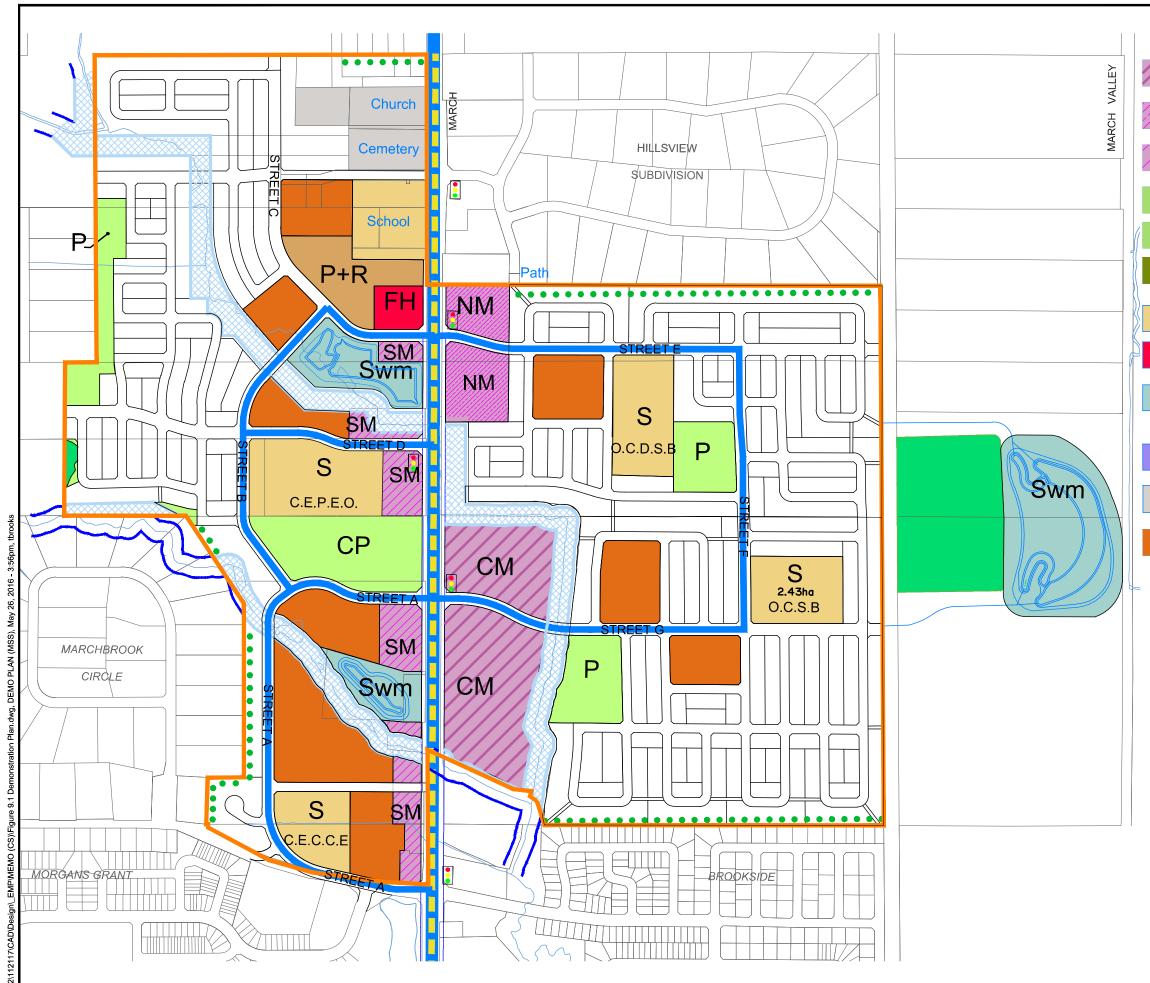
Appendix B


Excerpts from Supporting Documents & City Correspondence:

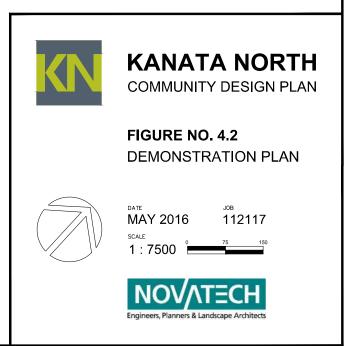
- Kanata North MSS (Novatech, June 2016)
- Infrastructure Master Plan (City of Ottawa, 2013)
- Development Charges Background Study (City of Ottawa, 2014)
- Briar Ridge PS Upgrades Correspondence (City of Ottawa, Jan 2020)

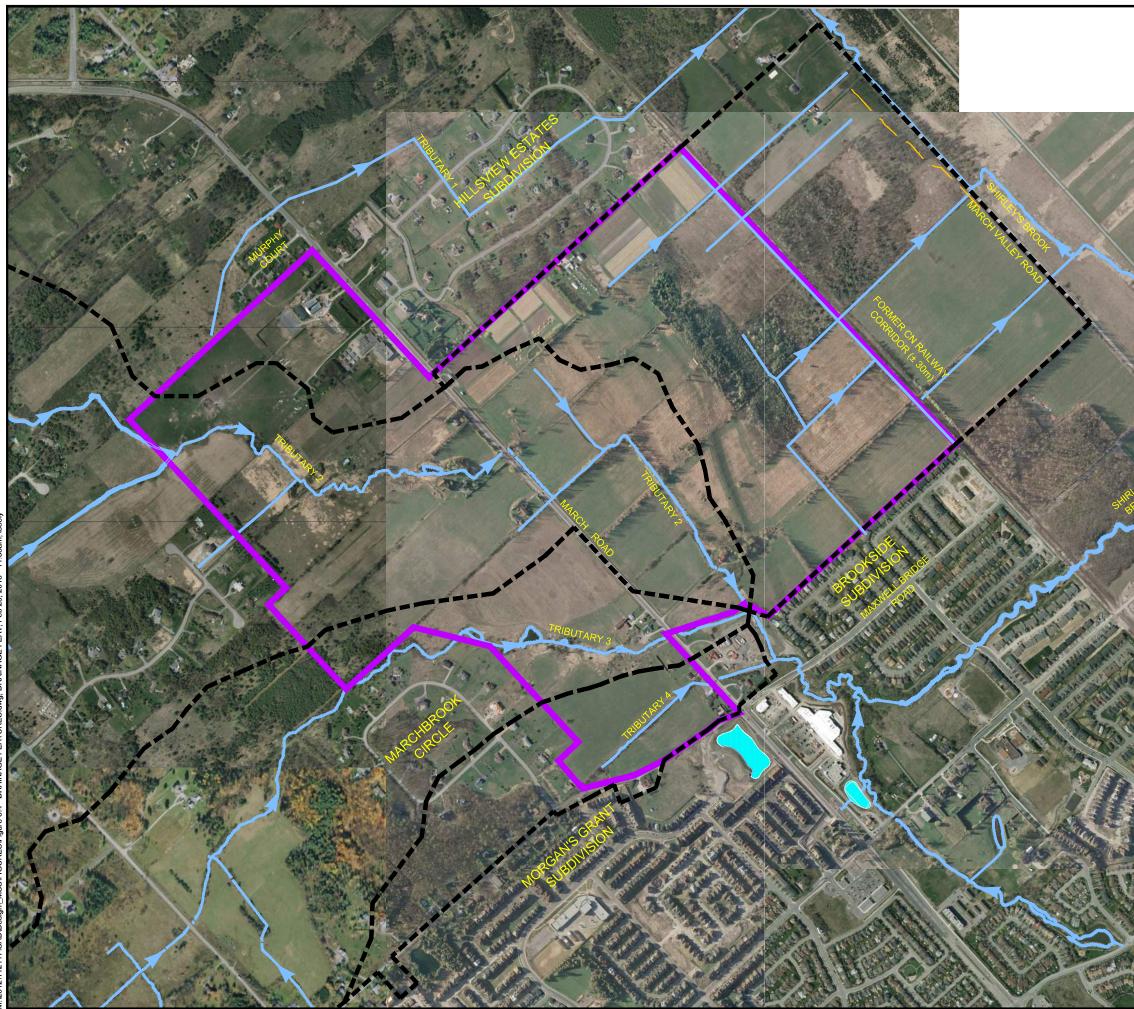
MASTER SERVICING STUDY

<image>



FINAL JUNE 28, 2016


REPORT



	LEGEND	
CM	Community Mixed Use	Residential Street-Oriented ²
NM	Neighbourhood Mixed Use	 Limit of Study Area
SM	Service Mixed Use	 Transition
CP	Community Park	appropriate to adjacent
Р	Park	residential
	Natural Heritage Feature	Arterial Road (45.0m)
S	School	Collector Road (24.0m)
FH	Fire Hall	 Median Bus
Swm	Stormwater Management	Rapid Transit
	Pond	 Existing Creek Corridor
P+R	Park and Ride	Re-aligned Creek
	Institutional	Corridor
	Residential Multi-Unit ¹	Signals

¹ Townhouses, Stacked Townhouses, Back-to-Back Townhouses, Low-rise Apartments (Max 4 Storeys)

² Singles, Semis, Townhouses (Max 3 Storeys)

M:2012112117/CAD/Design/ MSS/FIGURES/Figure 3.4 - DRAINAGE FEATURES dwg, DRAINAGE FEAT, Feb 23, 2016 - 11:38am, Issely

KANATA NORTH URBAN EXPANSION AREA (KNUEA)

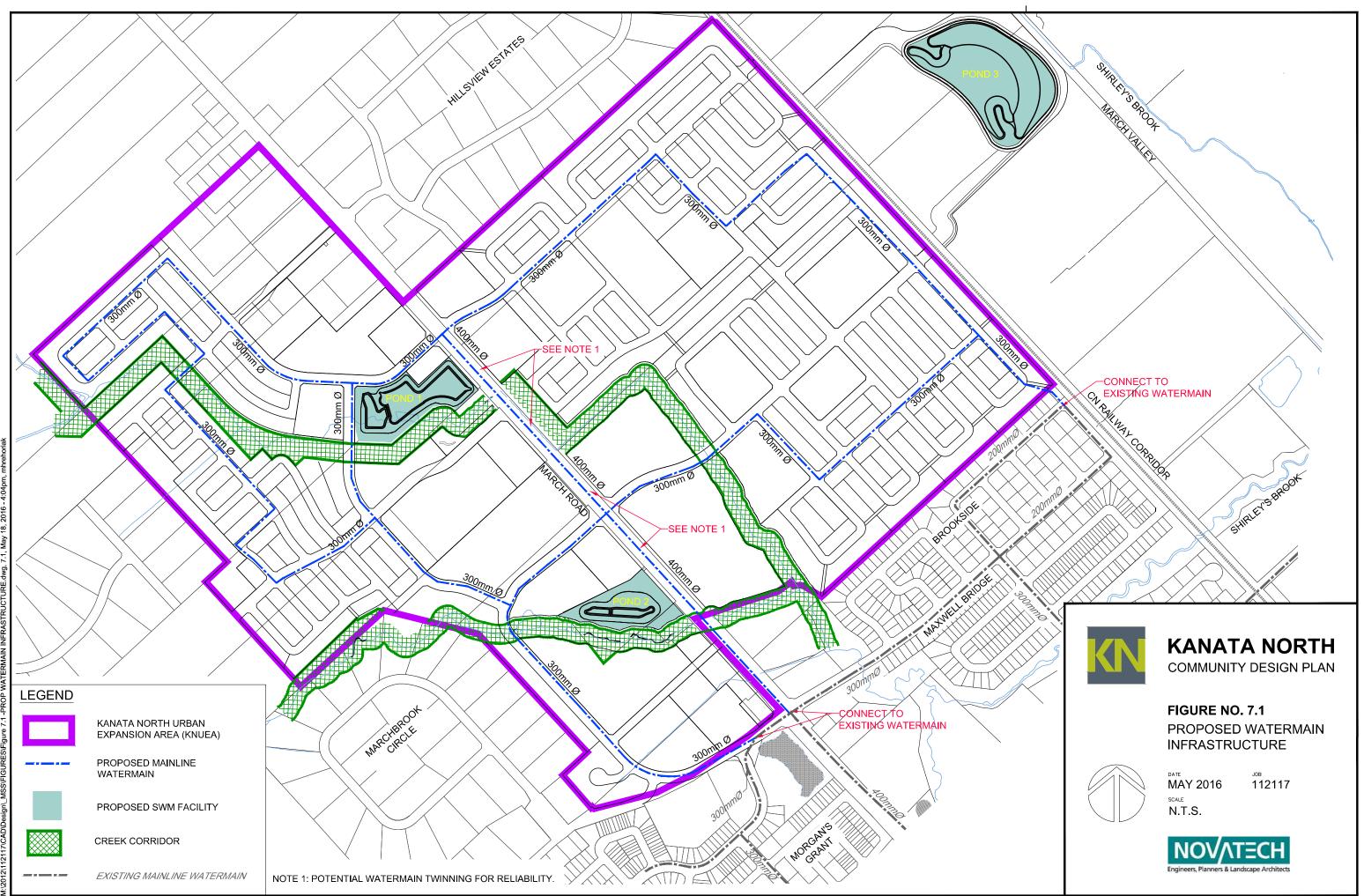
EXISTING DRAINAGE CHANNEL AND DIRECTION OF FLOW

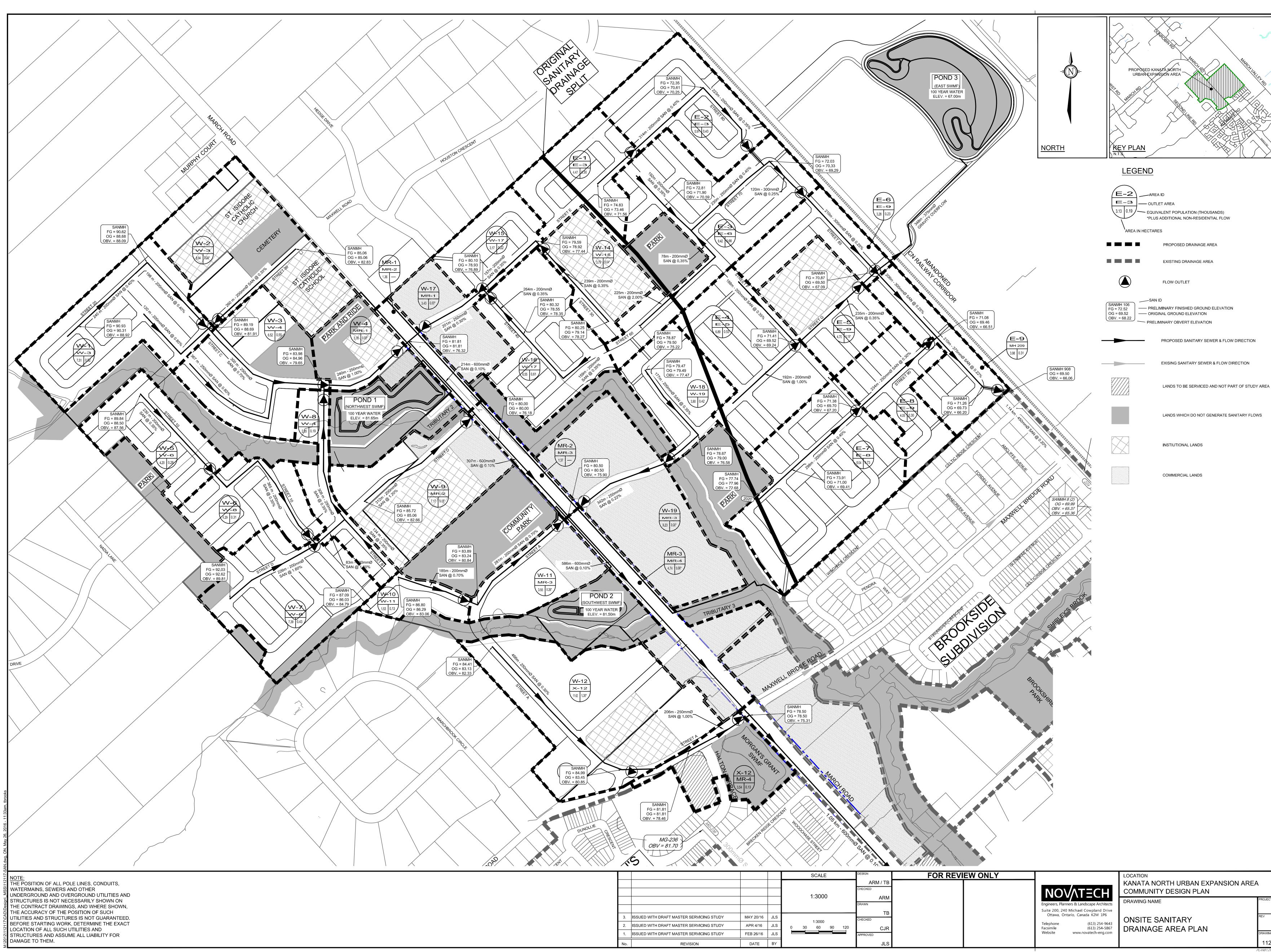
SUBWATERSHED BOUNDARY

SHIRLEY'S BROOK FLOOD PLAIN

EXISTING SWM FACILITY

KANATA NORTH


COMMUNITY DESIGN PLAN

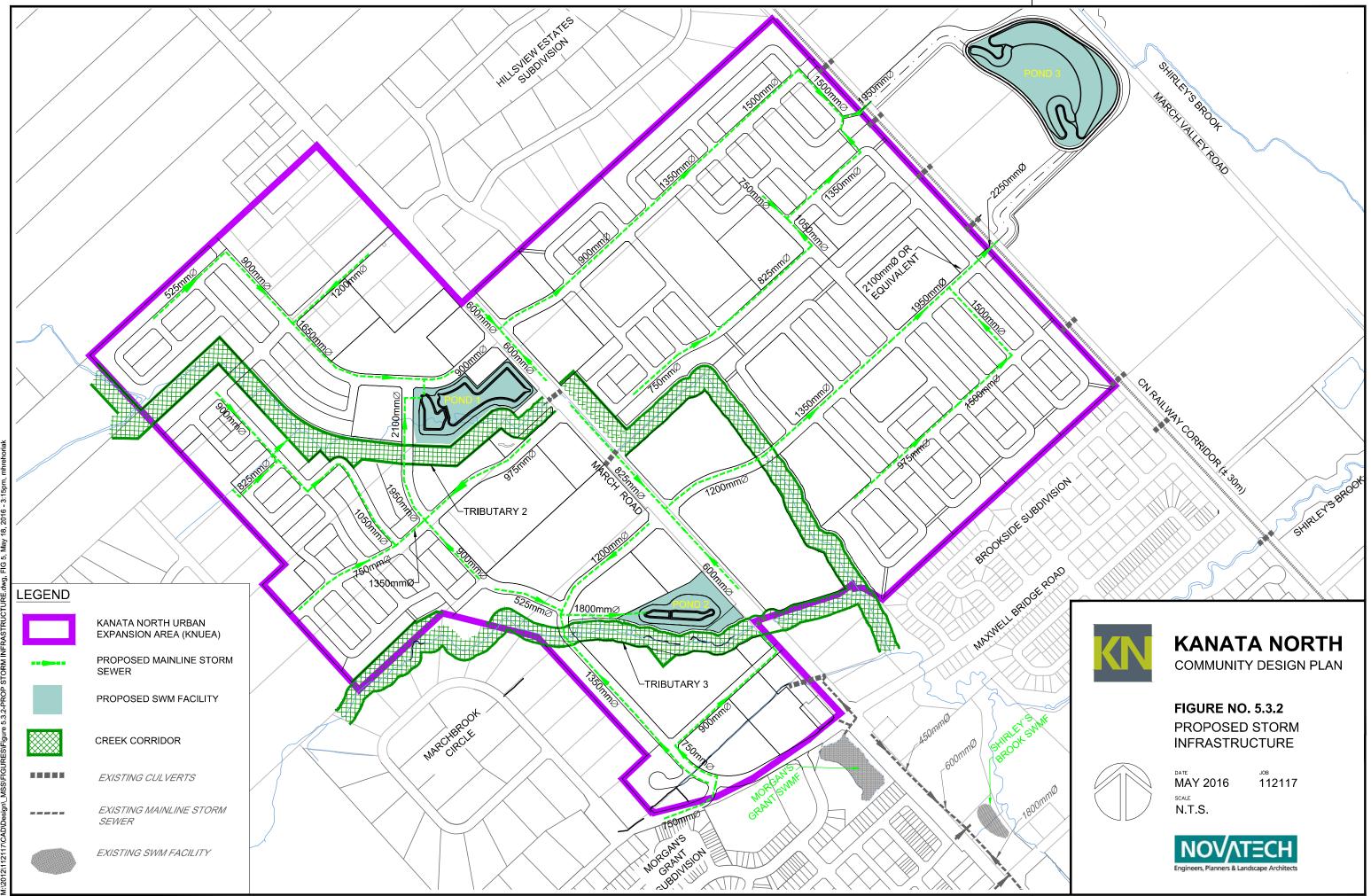

FIGURE NO. 3.4

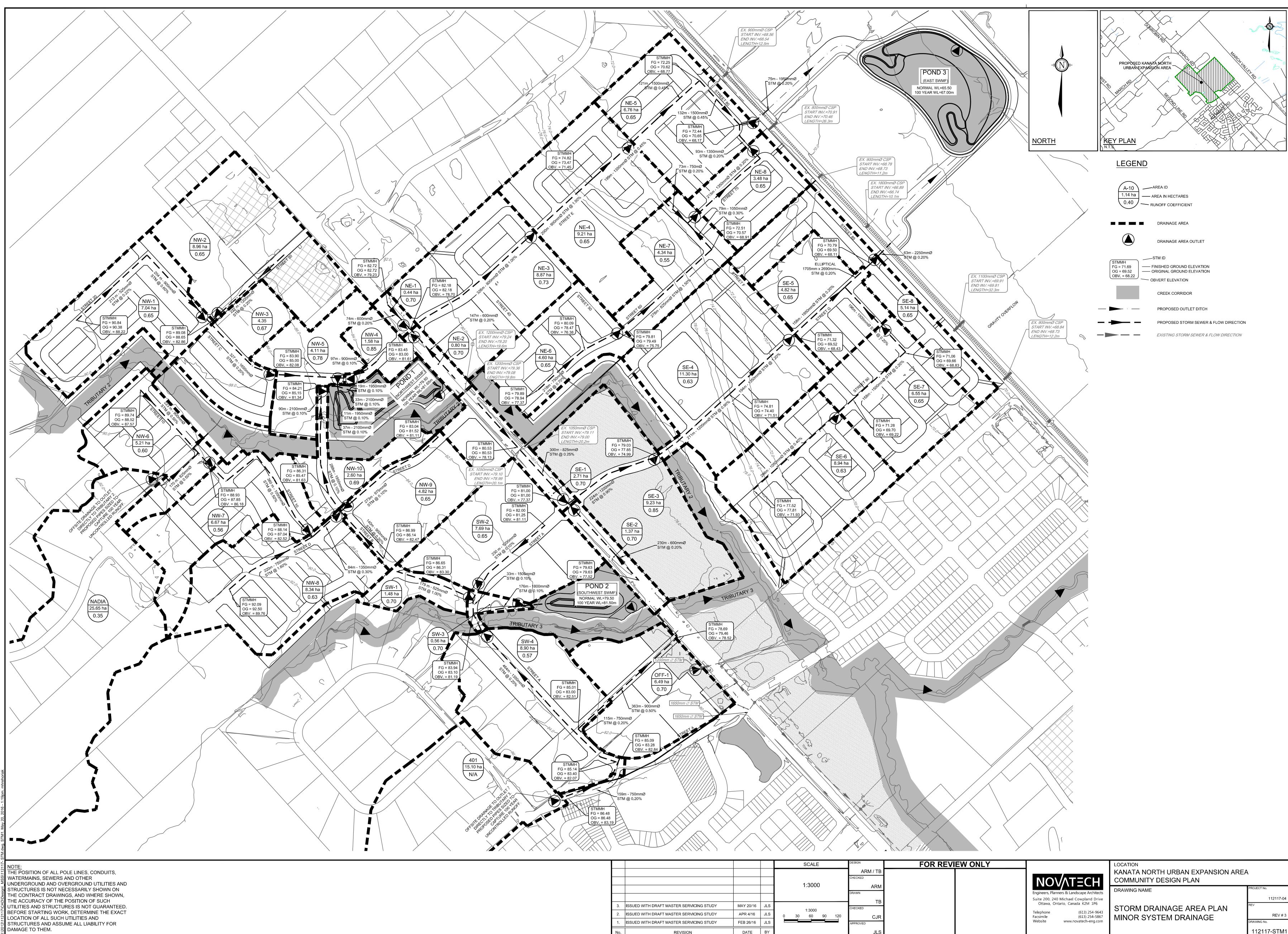
DRAINAGE FEATURES & SUBWATERSHED BOUNDARIES FEB 2016 112117

CHT11v17 DM/C 970mmv/39mm

DJECT No. 112117-04 REV # 3 RAWING No. 112117-SAN1

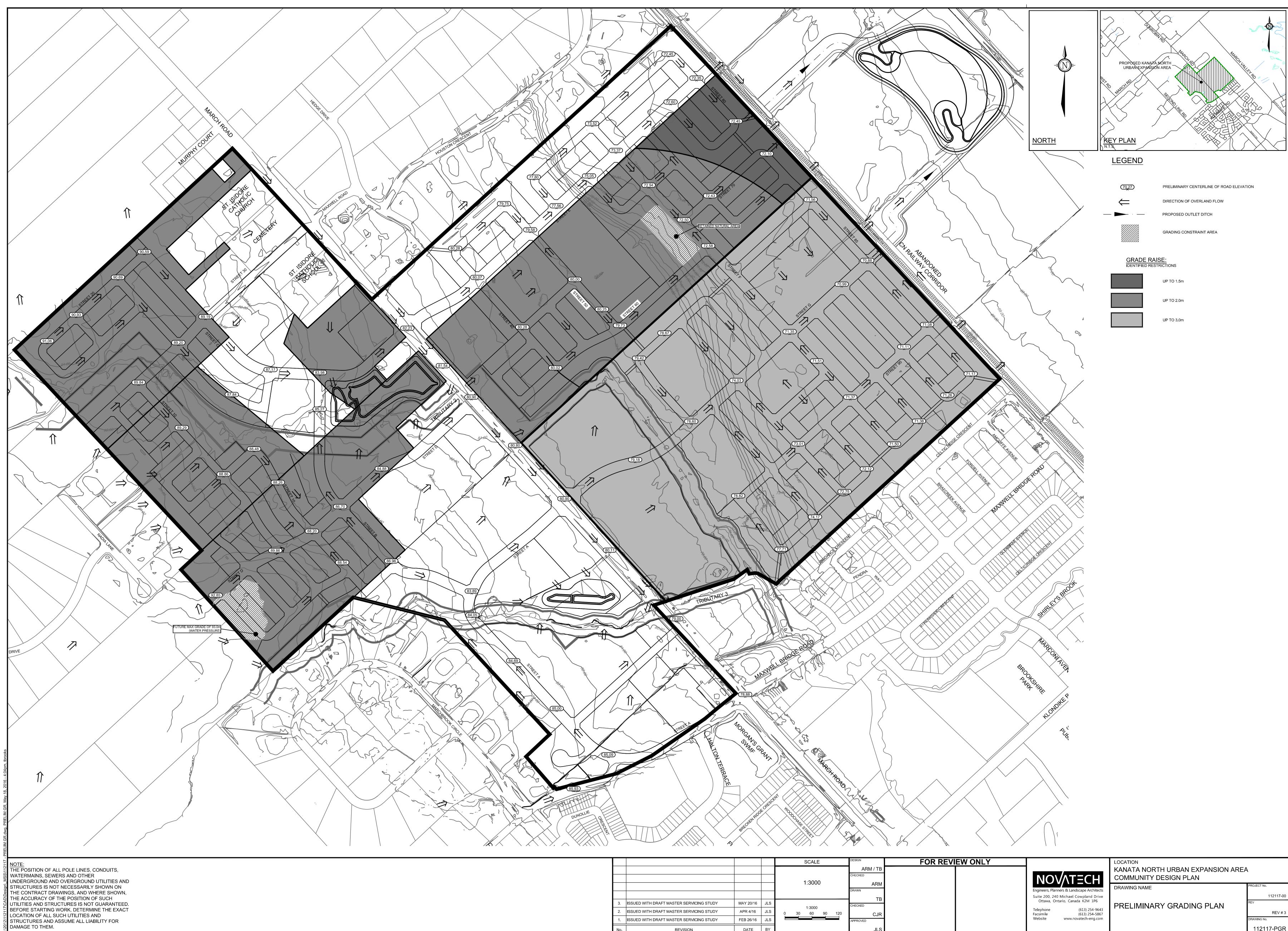
PLANB1.DWG -

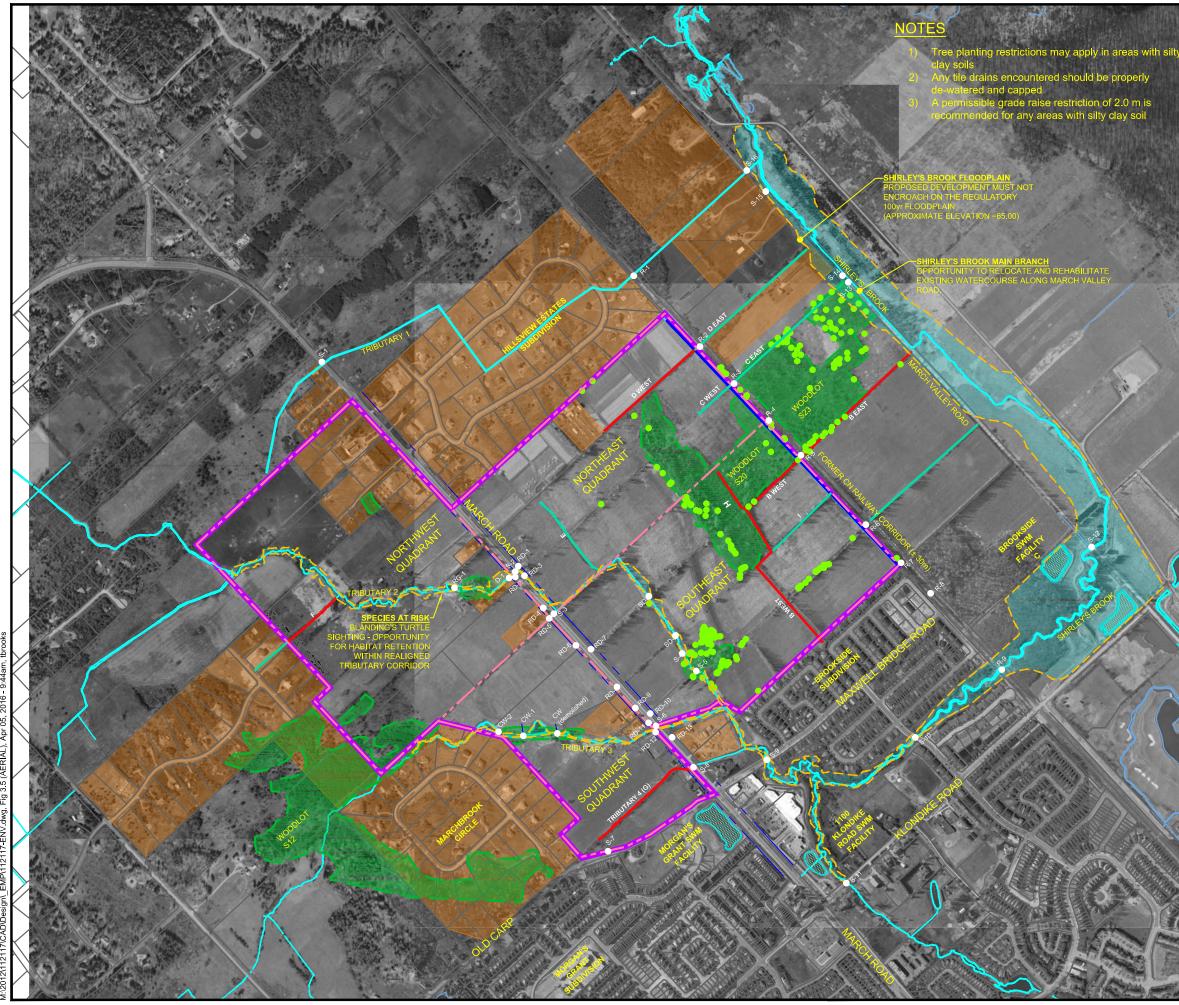

KANATA NORTH URBAN EXPANSION AREA COMMUNITY DESIGN PLAN


TABLE C-6b: SANITARY SEWER DESIGN SHEET

				[eers, Plar	nners &	Landsca
LOCATION				RESIDENTIAL AREA AND POPULATION								ICI			-	_	INFIL	RATION		FLOW		PIPE							
• • •		-	1						umulative				IND		CON		INST								<u></u>				
Street	From	То	Total	Dwellings	Density (Net h	<i>,</i> ,		Residentia				Area			Area		Area Acc		Total			Infiltration	Total				elocity C		
	Node	Node	Area (ha)	SFH SD/TH 3.4 2.7	Low ³ Hig 101 16		Area		p. Fa Exist		low		Area F (ha)	Factor	(ha)	Area	Are (ha) (ha		-	New (ha)	Exist	Flow (I/s)	Flow (I/s)	Act (mm)	Nom			· /	Q/Qfull
			(na)	pers/ea pers/ea			(ha)	New	EXIST	(1	l/s)	(na)	(na)		(na)	(IIa)	(11a) (11a) (l/s)	(ha)	(na)		(1/5)	(1/5)	(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((70) ((11/5)	(l/s)	(%)
EAST KNCDP					polo/lia pol/																			1					
E-1	E-1	E-3	4.47		3.00	303	3.0 3.0			4.00	4.9							0.	-			1.3	6.2		200		0.67		28%
-2	E-2	E-3	5.91		4.29	433	3.3 7.2	9 736		3.88	11.6							0.	5.91	10.38		2.9	14.5	203	200	0.35	0.62	20.2	72%
- 0	E 2	E-6	9.42		0.51	05	7.5 40.0	0 1394		2.70	20.9							0	0.42	19.80		5.5	20.4	054	250	0.40	0.77	20.0	67%
Ξ-3	E-3	E-0	9.42		6.51	60	7.5 13.8	1394		3.70	20.9							0.	9.42	19.80		5.5	26.4	204	250	0.40	0.77	39.2	07%
Ξ-4	E-4	E-5	6.89		3.12	1.36 534	1.1 3.1	2 534		3.96	8.6							0.	0 6.89	6.89		1.9	10.5	203	200	1.00	1.05	34.2	31%
E-5	E-5	E-9	4.70		1.46	147	7.5 4.5	682 682		3.90	10.8					:	2.29 2.3	29 2.	4.70	11.59		3.2	16.0	203	200	0.35	0.62	20.2	79%
	= -	5 0																											
Ē-6	E-6	E-9	3.28		2.32	234	1.3 16.1	2 1628		3.65	24.1							0.	3.28	23.08		6.5	30.6	305	300	0.25	0.69	50.4	61%
7	E-7	E-8	10.04		7.21	728	3.2 7.2	1 728		3.88	11.5							0.	0 10.04	10.04		2.8	14.3	203	200	0.40	0.67	21.6	66%
E-8	E-8	E-9	4.05		2.94		6.9 10.1				15.8							0.	-			3.9			250		0.67		58%
																								· · · · ·					
E-9 Fatal Flower From Foot Khill FA	E-9	MH 209	3.98		3.06		9.1 33.9				49.7						2.		3.98			14.8		381	375	0.22	0.75	85.7	78%
Fotal Flows From East KNUEA			52.74			36	44 33.9	1 3644		3.37	49.7						2.	29 1.9	9	52.74		14.77	ob.49		—				
X-1 (Brookside Subdivision)*		MH 209	32.80			2216	6.1 26.0	4	2216	3.55	18.2				6.76	6.76		2	3 32.80		32.80	11.5	32.0						
,				*Population from	Novatech #10310										50				02.00		52.00		02.0	_ †					
	MH 209	MH 208					0.0 59.9				63.3					6.76	2.2				32.80	26.2				0.20		132.9	
X-2 (Brookside Subdivision)	MH 208 MH 207	MH 207 MH 206	3.12	44		118	0.0 59.9 3.8 63.0				63.3 64.0					6.76 6.76	2.2				32.80 35.92	26.2 27.3	97.4 99.2			0.20		132.9 132.9	
X-2 (Brookside Subdivision)**	MH 207 MH 206	MH 200 MH 205	9.81	244		658					67.9					6.76	2.2			52.74		30.8				0.20		136.2	
			0.01		107 Units from No							7 units I	lorth of	Klondik	e and W					•=	10110	0010	10010			0.2.	0.00		
																			Í										
K-13 (Future Industrial Lands)	Future	MH 205	20.99									15.85	15.85	3.6				13.	2 20.99	20.99		5.9	19.1	ı — — — — — — — — — — — — — — — — — — —					
Briar Ridge Pump Station Access Road	MH 205	MH 204					72.8	8 3644	2994	3.13	67.9		15.85	3.6		6.76	24	29 21.	0.00	70 70	45.73	26.6	125.6	457	450	0.20	0.81	132.9	0.49/
Briar Ridge Pump Station Access Road	MH 203 MH 204	MH 204 MH 203					72.8				67.9 67.9		15.85	3.6		6.76	2.2				45.73		125.6					132.9	
Briar Ridge Pump Station Access Road	MH 203	MH 202					72.8				67.9		15.85	3.6		6.76	2.2						125.6	457		0.25		148.6	
Briar Ridge Pump Station Access Road	MH 202	MH 201A					72.8	8 3644	2994	3.13	67.9		15.85	3.6		6.76	2.2		0.00	73.73		36.6	125.6		450	0.26		151.6	83%
Briar Ridge Pump Station Access Road	MH 201A	MH 201					72.8				67.9		15.85	3.6		6.76	2.2			73.73		36.6	125.6			0.25	0.91	148.6	85%
Briar Ridge Pump Station Access Road	MH 201	MH 200					72.8				67.9		15.85	3.6		6.76	2.2					36.6	125.6 125.6	457	450 450	0.25		148.6	
Briar Ridge Pump Station Access Road	MH 200	EXMH1					72.8	8 3644	2994	3.13	67.9		15.85	3.6		6.76	2.4	29 21.	0.00	73.73	40.73	30.0	123.0	437	430	0.23	0.87	142.5	88%
RIDDELL VILLAGE (X-4)***		EXMH1	42.42			31	00		3100	3.43	24.6					2	2.96 2.9	96 1.0) 42.42		42.42	14.8	40.5	1					
				***Population fror	n Novatech #103	106 Sanita	ry Sewer	Design Shee	t																				
																								I					
		EXMH2 EXMH4					72.8		6094 6094		85.6		15.85 15.85	3.6 3.6		6.76 6.76					88.15 88.15		160.8	457	450 450	0.30	0.99 0.99	162.8	99%
X-14 (Future Industrial Lands east of Marshes Golf Course)		EXMH5	19.23				72.8							3.1		6.76			5 0.00 5 19.23		88.15		178.1		450		1.20		
		PS					72.8				85.6		35.08	3.1		6.76					88.15	56.9	178.1				1.14		
Briar Ridge Pump Station							72.8	8 3644	6094	2.97	85.6		35.08	3.1		6.76	5.	25 35.	6 0.00	92.96	88.15	56.9	178.1						
VEST KNUEA / MARCH ROAD						1					<u> </u>			Т			1								<u> </u>		1		
																		1	1					_ †	\rightarrow				
N-1	W-1	W-3	7.51		5.14	519	9.1 5.1	4 519			8.3							0.	7.51	7.51		2.1	10.4	203	200	0.40	0.67	21.6	48%
N 2	M(2	M/ 2	0.04		0.00	000	24 01				0.0						4.22					0.5	10.4	000	- 2020	0.05	0.00	00.0	E00/
N-2	W-2	W-3	8.94		2.36	238	3.4 2.3	6 238			3.9 0.0						4.32 4.3	s∠ 3.	o 8.94	8.94		2.5	10.1	203	200	0.35	0.62	20.2	5U%
N-3	W-3	W-4	6.52		1.97	2.16 546	6.7 11.6	3 1304		3.72								0.	0 6.52	22.97		6.4	26.1	254	250	0.70	1.02	51.9	50%
																												-	
V-5	W-5	W-6	4.20		2.74		6.7 2.7				4.5								0 4.20				5.7				0.62		
V-6	W-6	W-8	4.29		3.04	307	7.0 5.7	8 584			9.3							0.	4.29	8.49		2.4	11.7	203	200	0.35	0.62	20.2	58%
<i>I-</i> 7	W-7	W-8	7.39		4.24	425	3.2 4.2	4 428			0.0 6.9							0	0 7.39	7 30		21	9.0	203	200	1 60	1.33	43.2	21%
••			1.03		T.47	420					0.0							0.	1.53	1.58		2.1	3.0	200	200			+U.2	<u>~</u> 1/0
V-8	W-8	W-9	2.85		1.02 0	0.55 19 [.]	1.6 11.5	9 1204		3.75	18.3					_		0.	2.85	18.73		5.2	23.5	254	250	0.35	0.72	36.7	64%
V-4	W-4	MR-1	3.10			(0.0 23.2	2 2508		3.51					0.35	0.35	0.83 5.	15 4.	3.10	26.07		7.3	47.7	254	250	1.00	1.22	62.0	77%
N-14	W-14	W-15	3.79		0.36	24	6.4 0.3	6 36			0.0						2.89 2.	89 2	5 3 70	3 70		1 1	4.2	203	200	0.35	0.62	20.2	21%
N-14 N-15	W-14	W-13 W-17	3.19		2.20		2.2 2.5				4.2						2.05 2.1	09 2.	-			1.1			200		0.62		
		1 1 1																		5.00			2.1						

NOV


CH


	ISSUED WITH DRAFT MASTER SERVICING STUDY	MAY 20/16
	ISSUED WITH DRAFT MASTER SERVICING STUDY	APR 4/16
	ISSUED WITH DRAFT MASTER SERVICING STUDY	FEB 26/16
		DATE
-	REVISION	DATE

112117-STM1 PLANB1.DWG - 1

3.	ISSUED WITH DRAFT MASTER SERVICING STUDY	MAY 20/16	JLS		
2.	ISSUED WITH DRAFT MASTER SERVICING STUDY	APR 4/16	JLS	0	30
1.	ISSUED WITH DRAFT MASTER SERVICING STUDY	FEB 26/16	JLS		
No.	REVISION	DATE	BY		

ΞΑ	N
	PROJECT No.
	112117-00
	REV
	REV # 3
	DRAWING No.
	112117-PGR
/	PLANB1.DWG - 1000mmx707mn

LE	GEND	- GEN	ERAL

LEGEND	- GENERAL
—	KANATA NORTH URBAN EXPANSION AREA (KNUEA)
	DRAINAGE CHANNEL
	STUDY AREA QUADRANT BOUNDARY
LEGEND	- CONSTRAINTS
	FLOODPLAIN BOUNDARY (APPROXIMATE - MVCA/ AECOM)
	ADJACENT AREAS SERVICED BY WELLS
	HYDRAULIC STRUCTURE ID•BDBEAVER DAM•CWCONCRETE WEIR•DDRIVEWAY CULVERT•RRAILWAY CULVERT•RDROADWAY CULVERT•RGROCK GABIAN BASKET•SSHIRLEY'S BROOK CULVERTHEADWATER DRAINAGE CHANNEL TOBE COMPENSATED
	HEADWATER DRAINAGE CHANNEL NOT REQUIRING COMPENSATION OR MITIGATION
А	DRAINAGE CHANNEL ID
LEGEND	- FEATURES
	EXISTING SWM FACILITY
	WOODED AREA
•	BUTTERNUT LOCATIONS (EXAMPLES)

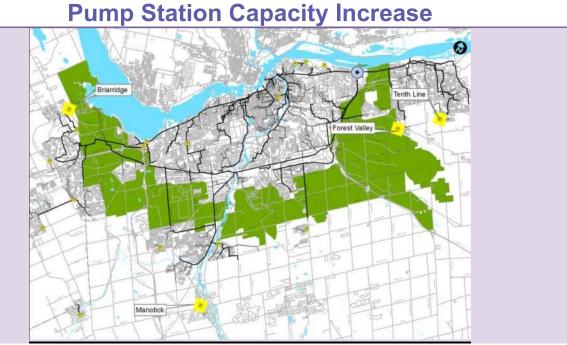
KANATA NORTH

COMMUNITY DESIGN PLAN

FIGURE NO. 3.5 EXISTING ENVIRONMENTAL INVENTORY

APR 2016 scale AS SHOWN

₀₀ 112117



Infrastructure Master Plan

November 2013

Scope and Justification

Capacity increases to the Manotick, Briarridge, Forest Valley and Tenth Line Pump Stations is needed to accommodate growth which is expected to occur within their catchment area. The proposed work will involve the replacement of existing pumps with larger ones.

<u>Timing</u>

2019 – 2031 Replace existing pumps. (rate of development and flow monitoring will determine the exact timing).

Action Item Funding

Construction Cost Estimate = \$0.9 M Capital Cost Estimate* = \$1.5 M (100% Development Charges, 0% Rate) *Including construction cost, engineering, city internal costs and contingency allowance.

EA Requirements and Consultation

This is Schedule A (pre-approved) Class EA project. No public consultation required before implementation.

Follow Up Actions

Monitor flows to the stations and rate of development in contributing areas.

CITY OF OTTAWA 2014 DEVELOPMENT CHARGES BACKGROUND STUDY

OFFICE CONSOLIDATION INCORPORATING BACKGROUND STUDY (APRIL 28, 2014) AS AMENDED BY:

- THE MAY 12 ADDENDUM AND PLANNING COMMITTEE REPORT 70A AS APPROVED BY COUNCIL ON JUNE 11, 2014
- THE AUGUST 7, 2014 AMENDMENT RE AFFORDABLE HOUSING;
- THE SEPTEMBER 22, 2015 SETTLEMENT AGREEMENT; AND
- THE MARCH 24, 2017 AMENDMENT (ROADS AND RELATED SERVICES ONLY)

City of Ottawa in consultation with Watson & Associates Economists Ltd.

PREPARED OCTOBER 27, 2017

City of Ottawa	rea-Specific Development Charge Projects	
	Area-Spec	

s by Area		Durol	\$000																										Τ	Γ								Π							Ţ	T			6.760	50	1,564	4,896	275	ſ
Allocation of Expenditures by Area		Outside Groonholt	S000	3,608	4,336	7,700	9,962	7 2/10	4 500	450	3,900	5,363	1,900	1,500	3,300							500	194	006	60	193	412	373	C	415	62	450	1,439		u U	334	100	Π	000.01	71 71	400	427	256	640	142	36	33	908						I
Allocation c		Inside Groonholt														5,800	180	890	3,895	710,000																		Π		I								T		Γ				Ī
		Jon-residential	\$000	397	650	1,155	1,096	775	247	50	429	590	285	210	462	1,682	52	258	1,130	15,12/		06	35	162	11	35	74	67	C	50	6	54	173		÷	40	12		LF 4 C	7/1/	80	85	51	128	28	7	/	182	1.014	00	235	734	41	
		Residential N	\$000	3,211	3,686	6,545	8,866	2,000	4 005	401	3,471	4,773	1,615	1,290	2,838	4,118	128	632	2,765	39,485		410	159	738	49	158	338	306	c	365	70	396	1,266		U	294	88		0 70L	0,700 57	320	342	205	512	114	29	797 	726	5.746	43	1,329	4,162	234	
		Growth	5000	3,608	4,336	7,700	9,962	2,000	2,247 4 500	450	3,900	5,363	1,900	1,500	3,300	5,800	180	890	3,895	710,00		500	194	006	60	193	412	373	C	415	62	450	1,439		U U	755	100		00001	11 200'0T	400	427	256	640	142	36	55	806	6.760	50	1,564	4,896	275	
	Post	Period	S000								·				•		1,620	8,010		·		•																					•		·			·		ľ	•			
Less	Grants,	Subsidies &	SOOD				·	•				'	-						'				439	1,676	757	1,329	1,425	521	1 005	4,627	169		7,444		107	718	100								'			·						Î
	Benefit to	Existing	_	5,192	1	•		7 534	+cr/7	1 050		596	-			52,200		•	125,930	3/2,1/3			1	-	1			'	'	ľ	'		-				ľ	Π			'			'		'		·	6.240	47	736	544	31	Î
	Benefit to	Existing		59%	%0	%0	%0	U% 53%	%6r	20%	%0	10%	%0	%0	%0	%06	%0	%0	97%	81%		%0	%0	%0	%0	%0	%0	%0	700	%0	%0	%0	%0		700	%0	%0		,00	%0 %0	%0	%0	%0	%0	%0	%0	0% 0	%0	48%	48%	32%	10%	10%	
Gross	Capital	Cost Ectimato		8,800	4,336	7,700	9,962	2,000	4 500	1 500	3,900	5,959	1,900	1,500	3,300	58,000	1,800	8,900	129,825	421,185		500	633	2,576	817	1,522	1,837	894	1 005	5,042	248	450	8,883		707	557	200	Π	C00 01	71 71	400	427	256	640	142	36	33	908	13.000	97	2,300	5,440	306	Î
Increased Service Needs Gross	Attributable to Anticipated	Development -	Project Description	Tri-Township/March Ridge Collector Replacement		South Nepean Collector Phase 3	Kanata West Trunk Sewers	Fernbank Collector Sewer - Front-enging Agreement March Road Dumning Station Conversion	- 9		Acres Road Pump Station Upgrade	Stittsvile / Fernbank Interceptor Sewer		Pump Stations Capacity Increase - Replacement	Area 6 Pumping Station	O'Connor Flood Control Works	Rideau River Collector Upgrade	Rideau River Collector Twinni	Wastewater System Renewal Program	wastewater system kenewal Program - Intensincation Areas	East Urban Community		1 5	Cumberland Trunk Sewers	Neighbourhood 5 Trunk Sewer Oversizing	Orleans South Business Park	EUC Sanitary Sewer System	2017-2019 Cardinal Creek Sanitary Sewers	South Urban Community SUIC Nanazan Sawar Oversizing North of Jock	SUC Nepean Sewer Oversizing South of Jock	2 10	1	SUC Riverside South		West Urban Community	Naliala Lakes ivoitii Town Centre Sever System			Debt Payments	5 9		South Nepean Collector Phase 2 - Debt Payments	North Kanata Sewer Phase 2 - Debt Payments	Fernbank Sanitary Sewers - Debt Payments	March Pump Station Conversion - Debt Payments	Riverside South Community Trunk Oversizing - Debt Payments	-	Barrhaven South Oversizing (South of Jock River) - Debt Payments	Manotick Pump Station and Forcemain ¹			Mahogany Pump Station + Forcemain ¹		
Summary	of	Timing by	2015-2031					2018			Г	Ē		2019-2031	2018 /	2015-2031 (1202-2027		T	2017		2016		2017-2018 E	2017-2019	2018		2015	20	2020		2010	2017	19		1000 1000	2015-2031 8		2015-2031			2015-2031			2015-2031	2015	2015	2015	2015	2015	
-	- +		E	10.0094	10.0194	10.0294	10.0394	10.050A	10 5024	10 5034	10.5044	10.5054	10.5064	10.5074		10.5074	10.5074	10.5074	10.2004	TU.2004		10.00X1	10.00X2	10.00X3	10.00X4	10.00X5	10.00X6	10.00X7	10.00Y8	10.00X9	10.00X10	10.00X11	10.00X12	Ī	10.00712	10 00X14	10.00X17		10 41 44	10 4244	10.1894	10.0194	10.2644	10.0494	10.0594	10.2044	10.1/94	10.1894	10.1AM4	10.1BM4	10.20M4	10.30M4	10.70M4	

16,500 **31,921**

NOTES: ¹ To be recovered within the boundaries of Rural Manotock ² To be recovered within the boundaries of the Village of Richmond (amended by Council, 2015)

2021

10.508A4 10.508B4

otal

Braden Kaminski

From: Sent: To: Subject: Attachments: Steve Pichette Friday, January 3, 2020 12:56 PM Matt Wingate FW: Briar Ridge PS - available capacity for Kanata North BriaridgePS_VacantLands.pdf

FYI

Stephen Pichette, P.Eng. Ottawa Manager

DSEL

david schaeffer engineering ltd.

120 Iber Road, Unit 103 Stittsville, ON K2S 1E9

phone: (613) 836-2205 cell: (613) 314-6513 email: spichette@DSEL.ca

This email, including any attachments, is for the sole use of the intended recipient(s) and may contain private, confidential, and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you are not the intended recipient or if this information has been inappropriately forwarded to you, please contact the sender by reply email and destroy all copies of the original.

From: Bougadis, John <John.Bougadis@ottawa.ca>
Sent: January 3, 2020 12:31 PM
To: John Riddell <j.riddell@novatech-eng.com>; Steve Pichette <SPichette@dsel.ca>
Cc: Candow, Julie <julie.candow@ottawa.ca>; Zaknoun, Hasnaa <hasnaa.zaknoun@ottawa.ca>; Ahmad, Shohan <Shohan.Ahmad@ottawa.ca>
Subject: Briar Ridge PS - available capacity for Kanata North

Hi John and Steve,

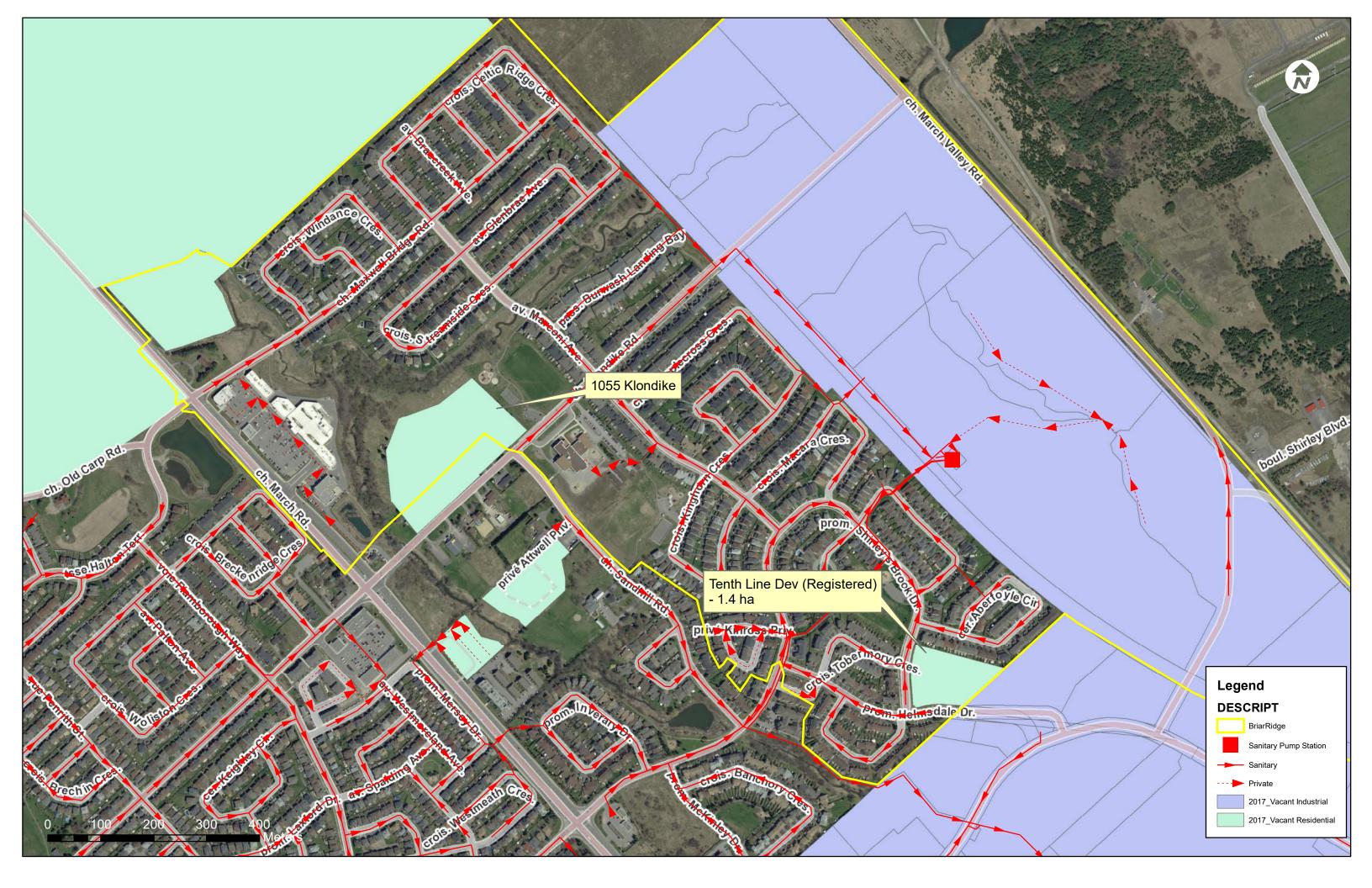
I spoke with Operations staff yesterday on capacity available at Briar Ridge PS to accommodate growth within the original catchment area and Kanata North. Our internal assessment concludes that **15 L/s** of sanitary capacity is available to service new developments at this time. A portion of the 15 l/s must be preserved to service the 1055 Klondike application (see attached). The other vacant parcel near Helmsdale and Shirley's Brooke Drive is not an active file within Development Review Services.

Capacity available for Minto is 15 l/s less peak sanitary flow from 1055 Klondike. Upgrades to increase capacity at the station to 175 l/s is scheduled to be completed by the end of 2021. The project will be managed by the City.

Please feel free to call me if you have any questions.

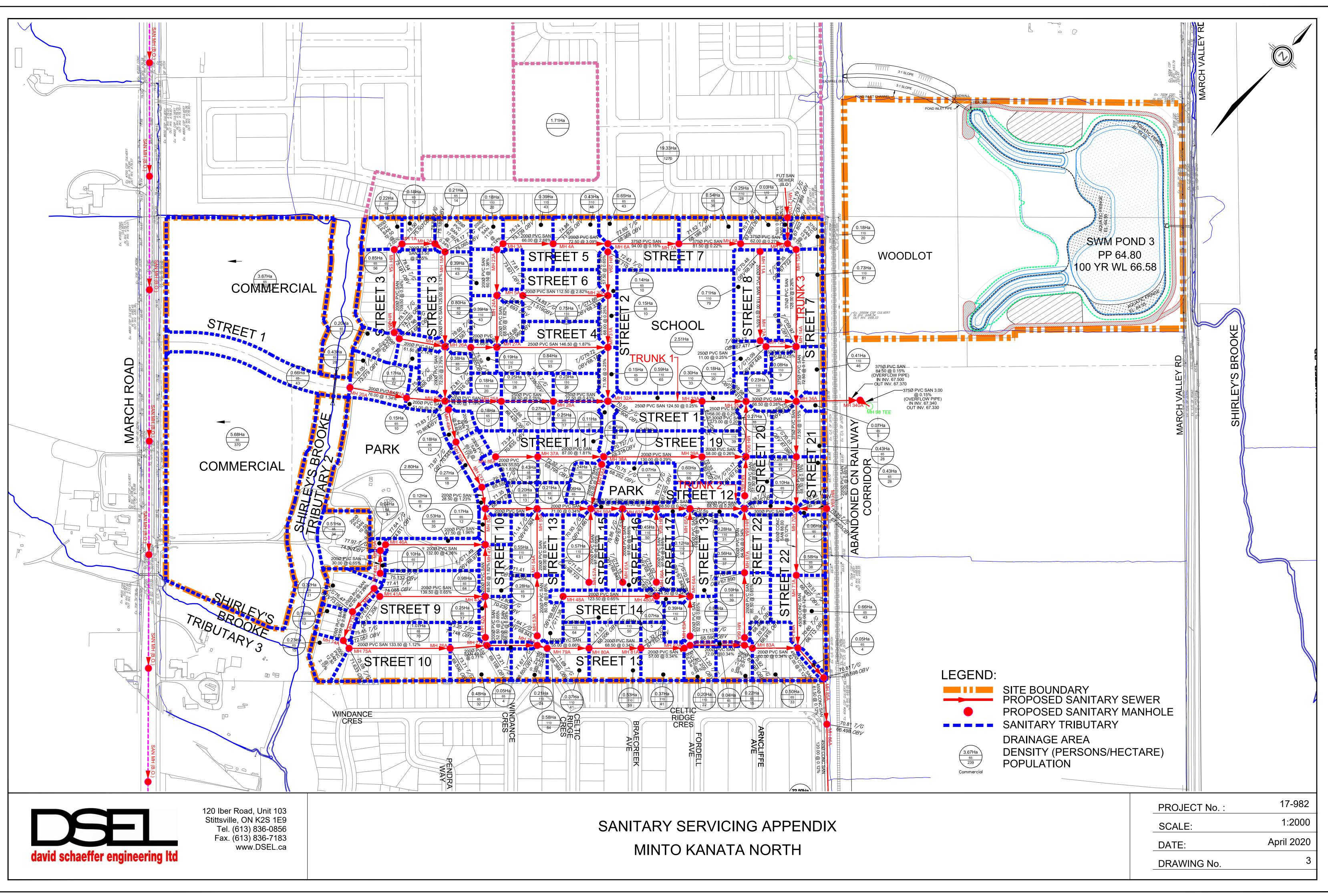
Thanks

John Bougadis, M.A.Sc., P.Eng.


ı.

ı

Senior Project Manager, Infrastructure Planning Asset Management Branch Planning, Infrastructure and Economic Development Department City of Ottawa **1**613.580.2424 ext.14990


This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Appendix C

Sanitary Servicing Design

SANITARY SEWER CALCULATION SHEET

SANITAF	RY SEWER C	ALCULA	TION SH	IEET																					\bigcirc	ttav	va	
2	LOCATION			RE	SIDENTIAL A	REA AND	POPULATIO	ON			CO	MM	IN	STIT	PA	RK	C+I+I	I	NFILTRATIO	N					PIPE			_
	STREET	FROM M.H.	TO M.H.	AREA (ha)	UNITS	POP.	CUMUI AREA (ha)	POP.	PEAK FACT.	PEAK FLOW (I/s)	AREA (ha)	ACCU. AREA (ha)	AREA (ha)	ACCU. AREA (ha)	AREA (ha)	ACCU. AREA (ha)	PEAK FLOW (I/s)	TOTAL AREA (ha)	ACCU. AREA (ha)	INFILT. FLOW (I/s)	TOTAL FLOW (I/s)	DIST (m)	DIA (mm)	SLOPE	CAP. (FULL) (I/s)	RATIO Q act/Q cap	(FULL) (m/s)	
				(lia)			(114)			(1/5)	(IId)	(11a)	(IId)	(114)	(IId)	(114)	(1/5)	(11a)	(114)	(1/5)	(1/5)	(11)	(11111)	(70)	(1/5)		(11/5)	-
Trunk 2		69A	70A	0.00		0	0.00	0				0.00		0.00		0.00	0.00	0.06	0.00	0.00	0.00	40.0	200	0.65	26.44	0.00	0.84	
To Trunk 3, Pip	e 70A - 71A	69A	70A	0.06		0	0.06	0				0.00		0.00		0.00	0.00	0.06	0.06	0.02	0.02	40.0	200	0.05	20.44	0.00	0.84	_
10 114111 0, 1 15				3.42		223	3.42	223				0.00		0.00		0.00		3.42	3.42									-
		52A	55A	0.20		13	3.62	236	3.5	2.67		0.00		0.00	2.76	2.76	0.30	2.96	6.38	2.11	5.08	68.5	200	0.34	19.12	0.27	0.61	_
		55A	59A	1.13 0.21		125 14	4.75 4.96	361 375	3.4	4.17		0.00		0.00		2.76 2.76	0.30	1.13 0.21	7.51 7.72	2.55	7.01	71.0	200	0.34	19.12	0.37	0.61	
		334	- 39A	0.21		63	5.53	438	0.4	4.17		0.00		0.00		2.76	0.50	0.21	8.29	2.00	7.01	71.0	200	0.54	13.12	0.57	0.01	-
				0.24		16	5.77	454				0.00		0.00		2.76		0.24	8.53									
		59A	62A	0.06		4	5.83	458	3.4	5.04		0.00		0.00		2.76	0.30	0.06	8.59	2.83	8.17	42.0	250	0.25	29.73	0.27	0.61	
		62A	60A	0.45		50 5	6.28 6.35	508 513	3.4	5.61		0.00		0.00		2.76	0.30	0.45	9.04 9.11	3.01	8.91	44.5	300	0.25	48.35	0.18	0.68	-
		02/1	004	0.45		50	6.80	563	0.4	0.01		0.00		0.00	0.49	3.25	0.00	0.94	10.05	0.01	0.01		000	0.20	40.00	0.10	0.00	-
		60A	65A	0.12		14	6.92	577	3.4	6.27		0.00		0.00		3.25	0.35	0.12	10.17	3.36	9.98	68.5	300	0.20	43.25	0.23	0.61	_
		054	00.4	1.63		180	8.55	757	0.0	0.44		0.00		0.00		3.25	0.05	1.63	11.80	0.00	40.74	00.5	000	0.00	40.05	0.00	0.04	_
		65A	68A	0.28		31 75	8.83 9.98	788 863	3.3	8.41		0.00		0.00		3.25 3.25	0.35	0.28	12.08 13.23	3.99	12.74	68.5	300	0.20	43.25	0.29	0.61	_
		68A	70A	0.10		7	10.08	870	3.3	9.22		0.00		0.00		3.25	0.35	0.10	13.33	4.40	13.97	68.5	300	0.20	43.25	0.32	0.61	-
To Trunk 3, Pip	e 70A - 71A						10.08	870				0.00		0.00		3.25			13.33									_
Truck																												_
Trunk 1				0.66		43	0.66	43				0.00		0.00		0.00		0.66	0.66									-
\sim		20A	21A	0.43		28	1.09	71	3.6	0.83		0.00		0.00		0.00	0.00	0.43	1.09	0.36	1.19	76.0	200	1.34	37.97	0.03	1.21	-
OFESSION		21A	22A	0.15		10	1.24	81	3.6	0.95		0.00		0.00		0.00	0.00	0.15	1.24	0.41	1.36	51.0	200	2.24	49.09	0.03	1.56	_
				3.03 0.18		197 20	4.27	278 298				0.00		0.00		0.00		3.03	4.27 4.45									_
MA	121	22A	25A	0.18		12	4.45	310	35	3.47		0.00		0.00		0.00	0.00	0.18	4.45	1.53	5.00	74.5	200	1.19	35.78	0.14	1.14	-
41		LLI	20/1	0.25		28	4.88	338	0.0	0.17		0.00		0.00		0.00	0.00	0.25	4.88	1.00	0.00	11.0	200	1.10	00.10	0.11		-
W. LIU	Ť.	25A	28A	0.27		18	5.15	356	3.4	3.96		0.00		0.00		0.00	0.00	0.27	5.15	1.70	5.66	68.5	250	0.25	29.73	0.19	0.61	_
0016793	2 2	28A	32A	0.23		26 17	5.38 5.63	382 399	3.4	4.42		0.00		0.00		0.00	0.00	0.23	5.38 5.63	1.86	6.28	72.5	250	0.43	39.00	0.16	0.79	_
		20A	32A	3.19		351	8.82	750	3.4	4.42		0.00		0.00		0.00	0.00	3.19	8.82	1.00	0.20	72.5	250	0.43	39.00	0.10	0.79	-
20-04-22	0			0.11		8	8.93	758				0.00		0.00		0.00		0.11	8.93									-
	8	32A	33A	0.59		65	9.52	823	3.3	8.75		0.00		0.00		0.00	0.00	0.59	9.52	3.14	11.90	124.5	250	0.25	29.73	0.40	0.61	
VCE OF ON	/	33A	35A	0.30		33 105	9.82 10.77	856 961	3.3	9.08		0.00	2.51	2.51 2.51		0.00	0.81	2.81 0.95	12.33 13.28	4.07	13.96	58.0	250	0.25	29.73	0.47	0.61	_
				0.95		35	11.30	996				0.00	-	2.51		0.00		0.95	13.20									-
		35A	34A	0.23		26	11.53		3.2	10.71		0.00		2.51		0.00	0.81	0.23	14.04	4.63	16.16	66.5	250	0.28	31.47	0.51	0.64	-
<u>To Trunk 3, Pip</u>	e 34A - 40A			_			11.53	1022				0.00		2.51		0.00			14.04									_
Trunk 3				-																							-	-
Contribution Fr	om Valecraft			19.33		1270	19.33	1270				0.00		0.00	1.71	1.71		21.04	21.04									-
		2170A	9A	0.03		2	19.36		3.2	13.13		0.00		0.00		1.71	0.18	0.03	21.07	6.95	20.26	34.5	375	0.15	67.91	0.30	0.61	_
To Trunk 3, Pip	e 9A - 10A						19.36	1272				0.00		0.00		1.71			21.07							-		-
Contribution 5-	om Trunk 3, Pipe 2170	A 0A					10.26	1272			-	0.00		0.00		1.71		21.07	21.07									_
	om trunk 5, Pipe 2170	<u> </u>		0.82	\vdash	91	19.36 20.18	1363				0.00		0.00		1.71		0.82	21.07									-
				1.19		78	21.37	1441				0.00		0.00		1.71		1.19	23.08									
			10.1	0.25			21.62			15.16		0.00		0.00		1.71	0.46	0.25	23.33	7 70	00.46	10.5	075	0.15	07.01		0.01	_
		9A 10A	10A 14A	0.18		20 81	21.80			15.18 15.94		0.00		0.00		1.71	0.18 0.18	0.18	23.51	7.76 8.00	23.12	13.5 128.0	375 375	0.15	67.91 89.40	0.34	0.61	
				DESIGN PA	RAMETER		22.00	1570	0.1	10.94		0.00		Designe	d:		0.10	0.13	PROJEC		27.12	120.0				0.27	0.01	-
Park Flow = Average Daily Fl	ow =	9300 280	L/ha/da I/p/day	0.10764			Industrial	Peak Fact	or = 291	per MOE G	raph					A.K.							Mint	o Kanata	North			
Comm/Inst Flow		28000	L/ha/da	0.3241	l/s/Ha		Extraneou				L/s/ha			Checked	:				LOCATIC	DN:								-
Industrial Flow =		35000	L/ha/da	0.40509		I	Minimum '	Velocity =		0.600	m/s					W.L.								City of	Ottawa			
Max Res. Peak F	⁻ actor = /Park Peak Factor =	4.00 1.00					Manning's		(Conc)	0.013	(Pvc)	0.013																
								se coeff=		2.7				Dwg. Re					File Ref:				Date:				Sheet N	

982_SAN3_FSR.xlsx

SANITARY SEWER CALCULATION SHEET

Manning's n=0.013 STREE Contribution From Tru Contribution From Tru Contribution From Tr	LOCATION	FROM M.H. 14A	TO M.H.		UNITS POP.	ND POPULAT																	S	LULLY Y	n	
Contribution From Tru Contribution From Tru		м.н.			UNITS POP.					CON		INSTIT		PARK	C+I+I		INFILTRATIO						PIPE			
Contribution From Tru	runk 1, Pipe 33A -	14A	WLTL	(ha)		CUML AREA	JLATIVE POP.	PEAK FACT.	PEAK FLOW	AREA	ACCU. AREA		ACCU. AREA	AREA ACCU. AREA	PEAK FLOW	TOTAL AREA	ACCU. AREA	INFILT. FLOW	TOTAL FLOW	DIST	DIA	SLOPE	CAP. (FULL)	RATIO Q act/Q cap	(FULL)	EL. (ACT.)
Contribution From Tru	runk 1, Pipe 33A -			(na)		(ha)	101.	TAOT.	(l/s)	(ha)	(ha)		(ha)	(ha) (ha)	(l/s)	(ha)	(ha)	(I/s)	(l/s)	(m)	(mm)	(%)	(I/s)	a nora onb	(m/s)	(m/s)
Contribution From Tru	runk 1, Pipe 33A -																									
Contribution From Tru	runk 1, Pipe 33A -		0.4.4	0.97	107	23.50	1677	0.4	47.00		0.00		0.00	1.71	0.40	0.97	25.21	0.40	05.07	70.5	075	0.47	70.00	0.00	0.05	0.00
Contribution From Tru	TUTIK T, PIPE 33A -	· 2 A A	34A	0.41	46	23.91	1723	3.1	17.36		0.00		0.00	1.71 0.00	0.18	0.41	24.65 38.69	8.13	25.67	72.5	375	0.17	72.29	0.36	0.65	0.60
		34A 34A	40A	0.43	28	35.87	2773	3.0	26.75		0.00		2.51	1.71	1.00	0.43	39.12	12.91	40.66	73.5	375	0.15	67.91	0.60	0.61	0.64
		40A	70A	0.43	28	36.30	2801	3.0	27.00		0.00		2.51	1.71	1.00	0.43	39.55	13.05	41.05	68.5	375	0.15	67.91	0.60	0.61	0.64
Contribution From Tru	runk 2, Pipe 68A -					10.08	870				0.00		0.00	3.25		13.33	52.88									
	runk 2, Pipe 69A -					0.06	0				0.00		0.00	0.00		0.06	52.94									
		70A	71A	0.58	64	47.02	3735	2.9	34.96		0.00		2.51	4.96	1.35	0.58	53.52	17.66	53.96	88.0	450	0.12	98.76	0.55	0.62	0.63
T T L 0 D' 044		71A	84A	0.66	43	47.68		2.9	35.31		0.00		2.51	4.96	1.35	0.66	54.18	17.88	54.54	96.0	450	0.12	98.76	0.55	0.62	0.64
To Trunk 3, Pipe 84A	A - 85A					47.68	3778				0.00	4	2.51	4.96			54.18									<u> </u>
								+														1	1			┿───
Contribution From Tru	rupk 2 Dipo 71A	941		+		47.68	3778				0.00		2.51	4.96		54.18	54.18									───
	IULIKO, PIPE / IA -	047		0.04	3	47.68	3781	+			0.00		2.51	4.96		0.04	54.18									──
┣────┼───				0.04	4	47.72		+		├	0.00		2.51	4.96	ł	0.04	54.22			├ -		<u> </u>	<u> </u>		+	<u>+</u>
├ ───┤───				2.29	149	50.06	3934	1			0.00		2.51	4.96		2.29	56.56								1	<u>+</u>
				1.67	143	51.73	4118				0.00		2.51	4.96		1.67	58.23									<u> </u>
				0.72	47	52.45	-				0.00		2.51	4.96		0.72	58.95									<u> </u>
		84A	85A	0.05	4	52.50	4169	2.9	38.56		0.00		2.51	4.96	1.35	0.05	59.00	19.47	59.37	52.0	450	0.12	98.76	0.60	0.62	0.65
		85A	86A	0.00		52.50	4169	2.9	38.56		0.00		2.51	4.96	1.35	0.00	59.00	19.47	59.37	61.5	450	0.12	98.76	0.60	0.62	0.65
		86A	87A			52.50	4169	2.9	38.56		0.00		2.51	4.96	1.35	0.00	59.00	19.47	59.37	120.0	450	0.12	98.76	0.60	0.62	0.65
		87A	88A			52.50	4169	2.9	38.56		0.00		2.51	4.96	1.35	0.00	59.00	19.47	59.37	17.5	450	0.12	98.76	0.60	0.62	0.65
		88A	225A			52.50	4169	2.9	38.56		0.00		2.51	4.96	1.35	0.00	59.00	19.47	59.37	5.0	450	0.12	98.76	0.60	0.62	0.65
		225A	224A	22.50	1648	75.00	5817	2.7	51.78		0.00		2.51	4.96	1.35	22.50	81.50	26.90	80.02	97.5	450	0.12	98.76	0.81	0.62	0.69
		224A	209A	0.22	11	75.22	5828	2.7	51.87		0.00		2.51	4.96	1.35	0.22	81.72	26.97	80.18	66.5	450	0.12	98.76	0.81	0.62	0.69
		209A	208A	9.05	553	84.27	6381	2.7	56.17		0.00		2.51	4.96	1.35	9.05	90.77	29.95	87.47	50.0	450	0.20	127.50	0.69	0.80	0.86
		208A	207A	0.00	000	84.27		2.7	56.17		0.00		2.51	4.96	1.35	0.00	90.77	29.95	87.47	111.5	450	0.20	127.50	0.69	0.80	0.86
		200/1	20171			01.21	0001	2.7	00.17		0.00	-	2.01	1.00	1.00	0.00	00.11	20.00	01.11	111.0	100	0.20	121.00	0.00	0.00	0.00
				_																						1
		OF	ESSION																							
		PROF	DVAL																							
	/	1200	h.r.	\diamond																						
	/	SAV		61		_																				<u> </u>
	/	$\leq \mathcal{O}$	- 1 11 1	2																						<u> </u>
		g W	, LIU	m																						<u> </u>
		- 100	67932	70																						<u> </u>
																										<u> </u>
	/	~ 20	0-04-22	0																						1
		10,	1	8																						
		VINO	OF ONTH																							
		, UE	OF O.			_														├ ──						—
┢────┼───				<u> </u>											ļ	 						ļ	ļ		 	──
				+		-		-				<u> </u>					-									┿
			і Г	DESIGN PARA	AMETERS		1	1	I			De	esigned		I	1	PROJECT	Г.	I	L		I	I	I	1	<u> </u>
Park Flow =		9300	L/ha/da	0.10764 1									seignou	A.K.			. ACOLO	•••			Mint	o Kanata	North			
Average Daily Flow =		280	l/p/day	0.10704 1	i on la	Industrial	Peak Fac	tor = oc -		ranh				A.N.								o nunata				
Average Daily Flow = Comm/Inst Flow =		280	i/p/day L/ha/da	0.3241 I	l/s/Ha	Extraneo		101 - as p		rapn L/s/ha		Ch	necked:				LOCATIO	NI								
												Cr	iecked:	14/1			LUCATIO	IN.				City	Ottown			
Industrial Flow = Max Res. Peak Factor :		35000 4.00	L/ha/da	0.40509 l	l/s/Ha		Velocity =	(Conc)	0.600		0.013			W.L.								City of	Ottawa			
Commercial/Inst./Park		4.00				Manning' Townhou		(CONC)	0.013 2.7	(FVC)	0.013		vg. Refe	Prence.			File Ref:				Date:				Sheet No	2
Institutional =	- Can I dolor -	0.32	l/s/Ha				ouse coeff=		3.4					ainage Plan, Dwgs	No		i ne i tel.		17-982		Date.	April 2020			of	-

David Schaeffer Engineering Ltd. - Briar Ridge Pumping Station Capacity Assessment Briar Ridge Pumping Station Capacity Assessment - September 21, 2018

David Schaeffer Engineering Ltd. Briar Ridge Pumping Station Capacity Assessment

Briar Ridge Pumping Station Capacity Assessment

Sept. 21, 2018	А	Draft 1	Jebran Iqbal	Peter Rüsch	Peter Rüsch	
Date	Rev.	Status	Prepared By	Checked By	Approved By	Approved By
			HATCH	l i		Client

David Schaeffer Engineering Ltd. - Briar Ridge Pumping Station Capacity Assessment Briar Ridge Pumping Station Capacity Assessment - September 21, 2018

Table of Contents

1.	Intro	ductio	n	1
2.	Meth	odolo	gy and Results	1
	2.1	Briar	Ridge Pumping Station Location & Introduction	1
	2.2	Site L	ayout and General Arrangement of the PS & Forcemains	1
	2.3	Site \	/isit and Observations	2
	2.4	Site S	Survey and Confirmation of PS / Forcemain Elevations	2
	2.5		city of the Pumping Station	3
	2	.5.1	Approach	3
	2	.5.2	MOE Certificate of Approval for the Pumping Station.	3
	2	.5.3	Existing Pump Models / Pump Numbers	4
	2	.5.4	Derived System Curve and Theoretical Duty Point for the 300 mm Forcemain	
	2	.5.5	Pump Performance, SCADA Data Analysis and Capacity Summary	4
	2	.5.6	Forcemain Velocities, Forcemain Redundancy and Transients	
3.	Reco	mmer	ndations	6

Appendices:

Appendix A:	Location Plan
-------------	---------------

- Appendix B: CCL Preliminary Design Report
- Appendix C: General Arrangement
- Appendix D: Survey Data and Calculations
- Appendix E: MOE Certificate of Approval
- Appendix F: Pump Curve
- Appendix G: System Curve
- Appendix H: SCADA Data e-mail & Sample SCADA Data
- Appendix I: Briar Ridge Pump Station Capacity Table (attributed to NOVATECH)

1. Introduction

Hatch has been retained by David Schaeffer Engineering Ltd (DSEL) for a capacity assessment of the Briar Ridge Pumping Station in the former city of Kanata, in Ottawa.

The purpose of this report is to:

- Provide a summary of the field investigation and relevant findings pertinent to the capacity¹ of the Briar Ridge Pumping Station; and
- Provide an analysis of SCADA data to confirm the pumping station capacity.
- Provide an overview of the present likely capacity and an upgrade path to reach the design capacity².

This report is submitted to David Schaeffer Engineering Ltd. for review and comments.

2. Methodology and Results

2.1 Briar Ridge Pumping Station Location & Introduction

The Briar Ridge pumping station is located at 960 Klondike Road in Kanata, Ottawa, accessible via an access road approximately 350 m northeast of Marconi Avenue. A location plan is attached in Appendix A of this report.

DSEL provided Hatch with a preliminary design report prepared by Cumming Cockburn Limited (CCL). A copy of this report is attached in Appendix B of this report. In line with the purpose of this assignment, Hatch did not review CCL's design, but confirmed performance relevant parameters of the station, in order to confirm the design capacity of the station.

2.2 Site Layout and General Arrangement of the PS & Forcemains

The general arrangement (plan and cross section) for this facility is attached in Appendix C. A short description of the Pumping Station is as follows:

- The Briar Ridge pumping station receives sewage at the east edge of the facility via a 450 mm gravity sewer to the wet well;
- The wet well is currently equipped with two Flygt submersible pumps (one duty, one standby) with space for a third for future installation at any time;
- 200 mm pump discharge lines run from the wet well to the PS control building;
- The PS control building, with controls and a standby generator on the main floor, and flow meters and pressure transducers in the basement; and
- The pump station discharges sewage west along Shirley's Brook Drive through two PVC SDR25 forcemains which are 200 mm and 300 mm in diameter.

¹ In the strict sense capacity means the maximum rate at which a pumping station can pump on a continuous basis. ² At the time of the visit to the pumping station only the 300 mmm forcemain was in use, data is extrapolated/theoretically calculated for the 200 mm forcemain.

2.3 Site Visit and Observations

Hatch visited the Briar Ridge Pumping Station on Tuesday, July 24, 2018, from 11:00 am to 1:30 pm. During this visit, the following was observed / confirmed:

- One pump was being operated at a time based on the inflow, with each pump alternating use³;
- The pressure gauges for the pumps were defunct, but the pressure transducers were working; and
- Only one forcemain (300 mm) was in operation;

The following operational parameters were observed and / or reported by City staff4:

 Pressure and Flow readings for the PS would be made available from the SCADA system. City staff noted that SCADA data would be available in 10 s intervals, which would allow for the confirmation of total PS flows / determination of the fraction that a duty pump is running over an extended time period. Hatch has requested, and received SCADA data from the City of Ottawa. An e-mail exchange between the City of Ottawa and Hatch, is attached in Appendix H.

2.4 Site Survey and Confirmation of PS / Forcemain Elevations

The purpose of the survey Hatch conducted was to confirm key elevations pertaining to the pumping station, to correlate with the As-built drawings⁵. Hatch surveyed and confirmed the following elevations:

- The top of the Wet Well;
- The main floor level of the PS control building;
- The basement floor level of the PS control building;
- The elevation of the pressure transducers for both forcemains;
- The lid elevation of the discharge manhole;
- The pipe invert of the discharge MH directly below the lid;
- An estimate for the discharge pipe obvert was made based on the configuration in the discharge MH;

A summary of these elevations, and elevations taken from the as-built drawings, is provided below, detailed calculations and details of the survey shots are attached in Appendix D.

³ Hatch recorded flow data only from pump 1 (RSP1) from the Miltronics display

⁴ At the time of the pumping station visit.

⁵ As-built drawings per definition, are based on the records from third parties, and may not be fully accurate.

Label	Measured Elevation (m)	Design Elevation (m)
Wet Well Overflow	N/A	60.6
High High Alarm	N/A	60.2
High Level Alarm	N/A	60.1
2nd Pump Starts	N/A	60
1st Pump Starts	59.77	59.8
Pumps Stop	58.59	58.6
300 mm Forcemain Outlet Manhole	74.693	74.746
300 mm Forcemain Outlet Pipe Obvert	72.293	72.765
PS Metering Room Floor	65.522	65.500
Pressure Transducer 200 mm	66.417	-
Pressure Transducer 300 mm	66.417	-

Table 1: Elevations Summary

2.5 Capacity of the Pumping Station

2.5.1 Approach

Hatch has reviewed the pumping station performance from 4 different vantage points, to reduce the risk of any one measurement inaccuracy to cause a misrepresentation of the pumping station performance. These following vantage points were selected:

- Record pump flow rates and wet well water levels in 10s intervals from pump start to pump stop by reading from the Miltronics displays;
- Record wet well water levels in 10s intervals from pump start to pump stop by using a laser level during pump operation;
- Determine theoretical performance of the pumping station, i.e. can the system curve and intersection of the pump curve and system curve be re-created as per the preliminary design report; and
- Perform SCADA data analysis to confirm the duty point of the pumping station.

Hatch furthermore located the MOE Certificate of approval to confirm the key operating parameters that were submitted to the MOE at the time of obtaining approval. Ultimately, at least 3 of these vantage points would confirm the actual capacity of the pumping station, provided there is a plausible explanation for the 4th point not matching the results of the other points.

2.5.2 MOE Certificate of Approval for the Pumping Station.

Hatch obtained the MOE Certificate of Approval for the PS, attached in Appendix E. In this certificate the following is noted:

- Initial Design Peak Flow Capacity of 53 L/s⁶, with 1 duty and 1 standby pump.
- Single Pump Capacity of 55 L/s @ 23 m TDH

⁶ This capacity appears to be based on both forcemains being operational.

2.5.3 Existing Pump Models / Pump Numbers

The pumping station is equipped with 2 identical Flygt CP 3201.180 Pumps. A pump curve, taken from the reviewed shop drawings is attached in Appendix F of this report. Space for a third pump is available in the wet well, and could be installed at any given stage.

2.5.4 Derived System Curve and Theoretical Duty Point for the 300 mm Forcemain

Based on the information gathered and as-built drawings, Hatch derived a system curve for the pumping station, attached in Appendix G of this report. Hatch has noted the duty point taken from the preliminary design report on this curve, and denoted it "Duty Point". This system curve matches the system curve in the preliminary design report very closely, with observed differences most likely with the operational levels in the wet well and in the interpretation of local losses.

Based on this theoretical analysis it would appear as if the pumping station, when operated as intended, will reach the design capacity (Flow) as noted in the MOE Certificate of Approval

2.5.5 Pump Performance, SCADA Data Analysis and Capacity Summary

The duty point noted in the pump curve provided by Flygt is located at the Best Efficiency Point (BEP) @ 60.9 L/s with a head of 22.5m. This pump curve, intended as the average expected performance of the pump was overlaid with the derived system curve, the recorded pump flow data, and the pump flows from the SCADA data. The lower range of expected operation shown on Flygt's curve was also plotted. These curves were compared to verify and determine the actual duty point of the system, as well as the flow rate of the pump in comparison to the manufacturer's data.

It has to be noted that this point is somewhat speculative based on the shop drawing pump curve. Alternatively, it is feasible that the impellor of the pump has worn somewhat, reducing flow and head, and (again speculative) at the published efficiency this would result in a feasible operating point of ~ 69.7 L/s. The plotted system and pump curves can be seen in Appendix G.

Hatch has analysed the flow data for the flow meter for the 300 mm forcemain. To verify the recorded observed data, Hatch has extracted a subset of the data for the time noted in July 24, 2018 (from 12:06:40 pm to 1:05:00 pm) to review the capacity for each of the pumps, this dataset is attached in Appendix H of this report. The findings are summarised below:

- Observed capacity of the pump running at the time of observation (RSP1) appears to be ~70 L/s;
- The alternate pump (RSP2) capacity under the same operating conditions appears be ~66 L/s.⁷

Hatch has received (refer to Appendix I) a table of a capacity analysis completed by NOVATECH in 2016, using the certificate of approval, theoretical data from the pre-design report, and extracted SCADA information from various years for both typical use and storm events. This table confirms the following performance for the design and calculates the available capacity for the final CCL ultimate design:

⁷ RSP2 was not recorded during the site visit, but is assumed to run at similar capacity as, if not slightly less than, RSP1, confirmed with the SCADA information.

- Rated Pump Capacity (2 pumps), 200 & 300 mm forcemain: 55 L/s⁸
- Ultimate Design at Build-Out Capacity (3 pumps), 200 & 300 mm forcemain: 183 L/s⁹

While on site, Hatch made the following observations:

- The pump flow rate that was being reached by RSP1 was ~70 L/s, notably higher than the installed design noted in the certificate of approval and the capacity analysis by NOVATECH. Likely, this is due to the increased inflow over time.
- The pump head identified by Flygt @ 70 L/s would be in the operational range of 17.15 m 19.63 m. On site, the head that was recorded @ ~70 L/s was in the range of 15.33 m 16.25 m. The reduction in capacity points to wear of the pumps in the timeframe between 2001 (installation) and 2018. The reduction in capacity is approximately in the order of 11%-18%.

Given the uncertainties / inconsistencies in the data findings, Hatch is of the opinion that the current confirmed duty point, or firm capacity of the pumping station (single duty pump, and single standby pump) is 70 L/s, when operating with the 300 mm forcemain. Likewise¹⁰ a similar reduction in pump capacity is assumed for the operating point for each pump with the 200 mm forcemain, approximately at 52 L/s.

With both forcemains in operation, the theoretical duty point with the current pumps would be at approximately 80 L/s.

As such it appears that the pumping station, provided that the current pumps are replaced and a third pump is added to the station, will reach the intended design capacity of 183 L/s with both forcemains in operation.

2.5.6 Forcemain Velocities, Forcemain Redundancy and Transients

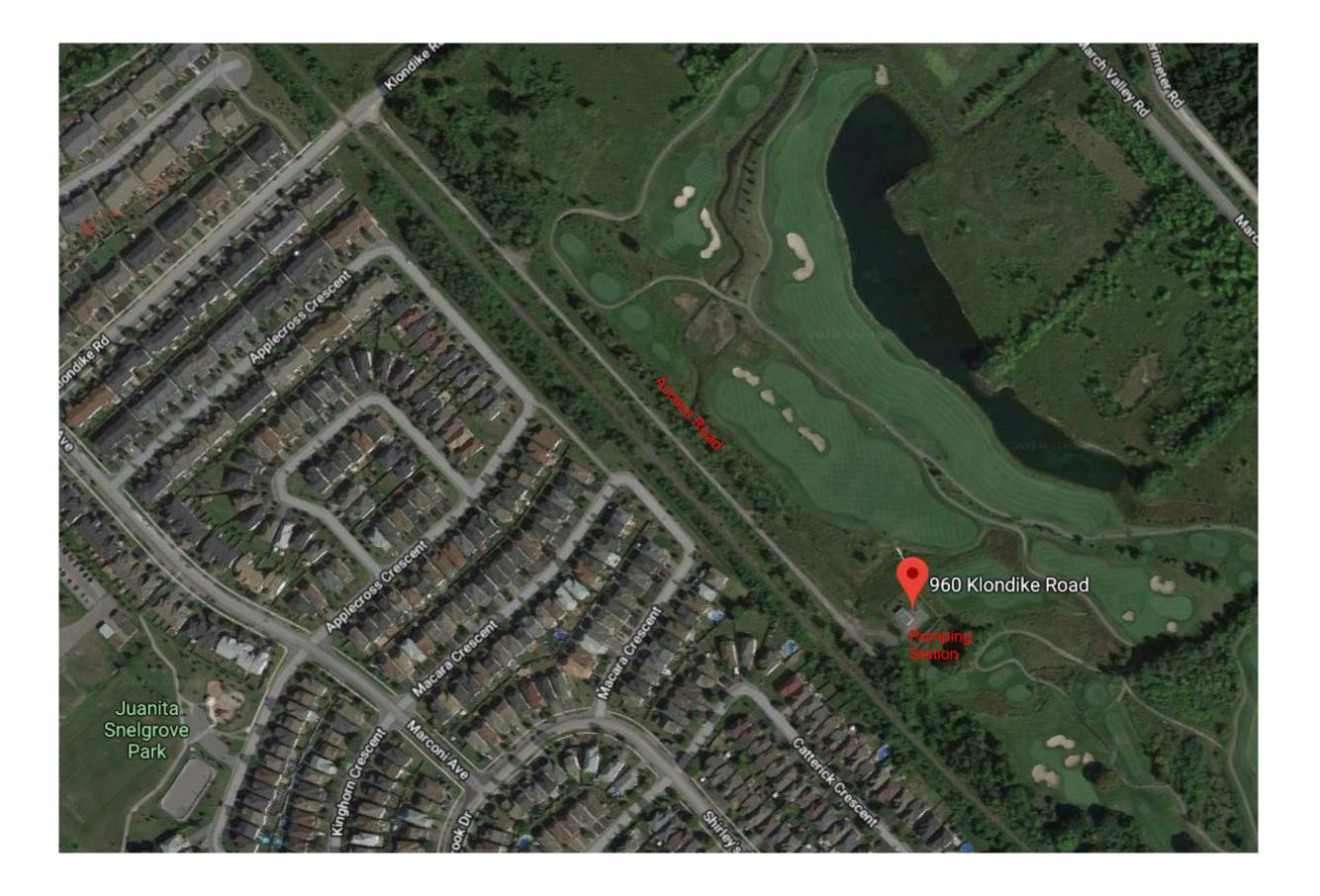
At the confirmed duty point, the forcemain velocity has been calculated at 0.95 m/s. This is based on a 300 mm nominal diameter PVC DR 25 forcemain, ID 308 mm. This velocity is within the range required by the MOE (between 0.6 m/s - 1.1 m/s cleansing velocities, with maximum velocity of 3 m/s). For the 200 mm nominal diameter PVC DR 25 forcemain, ID 212 mm, the velocity is calculated to be ~1.47 m/s at the duty point of 52 L/s. The preliminary design report (section 2.4) the target design velocity design criteria are between 1.1 m/s and 2.5 m/s. The flow velocity for the 300 mm is less than the targeted range in the pre-design report, but matches up to what should be expected by the graph showing velocities at various flow rates for different sized forcemains in the pre-design report.

In the SCADA data analysis, there do not appear to be transients on pump shutdown, as the flow records indicate that, on pump shutdown, the flows are reduced to zero and stay at zero and do not fluctuate and there are no negative pressures found that would be indicative of transients.

⁸ Data obtained from MOE Certificate of Approval

⁹ Data obtained from CCL "Briarridge Sanitary Pumping Station Pre-Design Report, City of Kanata"

¹⁰ Hatch notes that test were not conducted with the 200 mm forcemain. Hence the result in somewhat speculative, but would be a fair indication of a likely capacity.


During the site visit, Hatch did not note any transient typical noises on pump shutdown, apart from normal ball valve shutdown. These reasons are a good indication that pressures are not excessive when a single pump is used in combination with the 300 mm forcemain.

3. Recommendations

Hatch recommends that the following be undertaken:

- A pump test should be undertaken when servicing a pump. This would confirm the pump performance. Since the pumps do not appear to have been replaced since they were first installed in 2001, they will most likely need to be replaced depending on the results of a pump test, due to the not insignificant reduction of pump performance.
- At this stage, the pumping station is nearing the 20 year intended pumping requirement phase (indicated in the pre-design report), meaning the pumping station capacity should currently be at 61 L/s. As determined by the analysis, the pumps are currently pumping at ~70 L/s. Based on the observances and calculations of the current and expected flows, the current pumps should be replaced and a third pump may be added alongside the replacement of the current pumps to service the expected flows.

APPENDIX A: LOCATION PLAN

APPENDIX B: CCL PRE-DESIGN REPORT

IBI GROUP 400–333 Preston Street Ottawa ON K1S 5N4 Canada tel 613 225 1311 fax 613 225 9868 ibigroup.com

Transmittal

To/Attention Mr. Matt Wingate		Company/Address	Telephone No	
		DSEL 120 Iber Road Suite 103 Ottawa, Ontario K2S 1E9	(613) 836-0856	
cc				
Delivery	By Cou	rier	No of Copies 1	
From	Jim Mo	ffatt		
Sent By				
Date	May 7,	2018		
Project No	3345-L	D		
Subject	Briarridge Sanitary Pumping Station – Pre-Design Report, City of Kanata		Design Report, City of Kanata	

Comments

Please find enclosed one copy of the above mentioned report.

Regards,

IBI GROUP

James I. Moffatt, P. Eng. Associate

JIM/ks Encl.

D:\Users\Karen.Suprunchuk\Desktop\Guys Folders\Jim\CTB_mwingate_2018-05-07.docx\2018-05-07\KS

BRIARRIDGE SANITARY PUMPING STATION PRE-DESIGN REPORT CITY OF KANATA

Project 3345-LD

Prepared for

TENTH LINE DEVELOPMENT INC.

Prepared by

CUMMING COCKBURN LIMITED 1770 Woodward Drive Ottawa, Ontario K2C 0P8

MARCH 2001

Revised June 2001

TABLE OF CONTENTS

CLAR	IFICATI	ONi
1.0	INTRO 1.1 1.2 1.3	DDUCTION
2.0	HYDR 2.1 2.2 2.3 2.4	AULIC ANALYSIS3Flow Projections3Changes to Drainage Area5Forcemain Sizing5Forcemain Velocities62.4.120 Year Design Approach72.4.2Build Out Design Approach7
3.0	PUMP 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	PING EQUIPMENT AND FORCEMAIN SELECTION 8 Station Head and System Curves 8 Pump Selection 8 Low Flow Impacts and Mitigation 10 Reducing Retention Times 10 Selected Forcemains 11 Existing Conditions 11 Recommended Pumps and Forcemain 11 External Forcemain 12
4.0	GENE 4.1 4.2	RAL STATION ARRANGEMENT AND EQUIPMENT
5.0	ELEC ⁻ 5.1 5.2 5.3 5.4	TRICAL REQUIREMENTS 13 Main Power Supply 13 Electrical Systems 13 Emergency Power Supply 14 Instrumentation and Controls 14
6.0	SITE F 6.1 6.2 6.3	REQUIREMENTS 15 Location and Access 15 Soil Conditions 15 Landscape Architecture 15

APPENDICES

APPENDIX "A" - DEVELOPMENT CAPACITY ANALYSIS APPENDIX "B" - INDUSTRIAL PEAKING FACTORS AND DESIGN FLOW CALCULATIONS APPENDIX "C" - ITT FLYGT PERFORMANCE CURVES

CLARIFICATION

On January 1, 2001, the former Regional Municipality of Ottawa-Carleton and eleven local Cities and Townships covering the total geographic area of the former Region were amalgamated under provincial legislation as the City of Ottawa. Included in the amalgamation was the former City of Kanata where the Briarridge Pumping Station will be located.

The draft of this report was prepared and submitted for comments/approval prior to the date of municipal amalgamation. Consequently, this report contains numerous references to the former municipalities both in the report text and Figures. For continuity the references to the former municipalities in this report remain unchanged.

Briarridge Pumping Station Kanata North Tenth Line Development Inc. June 2001

Page i

Cumming Cockburn Limited

1.0 INTRODUCTION

1.1 Background

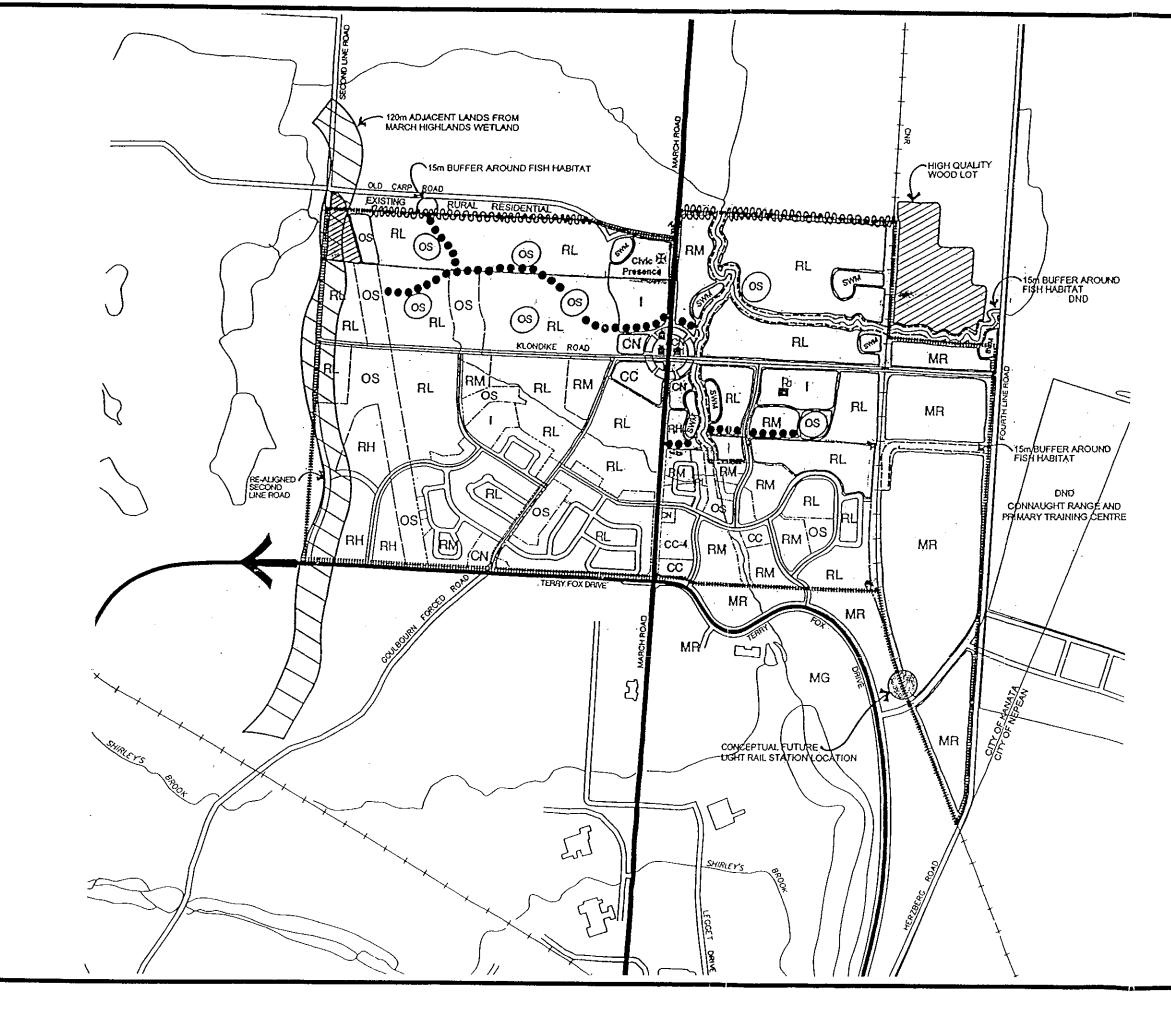
In 1990 a group of landowners in the area north of the South March community in the City of Kanata applied to the City of Kanata and the Regional Municipality of Ottawa-Carleton to amend their respective Official Plans to permit urban development. In response to this the City completed a concept plan that dealt with land use, development, transportation environment and infrastructure issues. That study was the basis for the Regional Official Plan Amendment 41 (ROPA 41) that was adopted by Regional Council in March 1994.

The Ministry of Municipal Affairs refused to approve ROPA 41 and the issue was referred to the Ontario Municipal Board (OMB). Following the hearing in July 1995, the OMB approved ROPA 41 in January 1996. The approval set several requirements that had to be met before urban development could proceed in the area called Kanata North Urban Expansion Area (KNUEA). Those requirements were incorporated with the Regional Official Plan (ROP).

One of the key requirements was the preparation of a study that addressed the various matters set out in the ROP policies. To that end, in 1998, the City of Kanata completed a study¹ which addressed the necessary issues and also recommended a concept plan for the study area. Figure 1 attached is the concept plan recommended in the 1998 Kanata study.

With regard to the ability of current and future municipal infrastructure to meet the demands of the KNUEA the following paragraph is extracted from the 1998 study.

"A report was prepared for Phase One, using a very aggressive growth rate to determine the impact of the "worst-case" scenario on transportation and infrastructure requirements. The only specific additional unplanned item that arose in this scenario was for March Road to be widened to six lanes instead of the planned four lanes. There was also a contributory impact on Terry Fox Drive. In subsequent planning analysis, a more conservative and realistic growth rate was used and no additional unplanned facilities were required. The proposed plan has been designed to conform to Regional Master Plans for Infrastructure".


Subsequent to completion of the 1998 study and concept plan under Regional Official Plan Amendment 8, the Region adopted the plan and the City of Kanata is presently preparing a local Official Plan Amendment in accordance with the 1998 concept plan.

1.2 Briarridge Drainage Area

Both the Marchwood Trunk and the East March Trunk provide the necessary sanitary wastewater outlet for the South March community and the Kanata North Urban Expansion Area.

Kanata North Urban Expansion Area Study Concept Plan

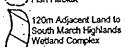
1

KANATA NORTH URBAN EXPANSION STUDY

mmin Study Area Boundary ----Existing Urban Area Boundary

LEGEND:

Urban Land Use Designations RL Low Density Residential


- RM Medium Density Residential
- Rif High Density Residential OS Park and Open Space
- cc
- Community Commercial Neighbourhood Commercial ĊN
- Institutional
- General Industrial MG
- MR Restricted Industrial

Roads

Major Arterial

Heritage Resources Building of Heritage Interest Heritage Precinct

- **Community Facilities** Pa School Site (Conceptual Location) IF Fire Station (Conceptual Location) MESSACE Civic Presence (Conceptual Location)
- Environmental Resources
- High Quality Wood Lot
- 10000 Rural/Urban Buffer
- Fish Habitat

Storn Water Management Facility

Park and Open Spaces

Conceptual Park Location

•••Linkage

CONCEPT PLAN

BRIARRIDGE SANITARY PUMPING STATION PRE-DESIGN REPORT CITY OF KANATA

Cumming Cockburn Limited

SOUTH MARCH AND KANATA NORTH CONCEPT PLAN

DATE NOV. 2000

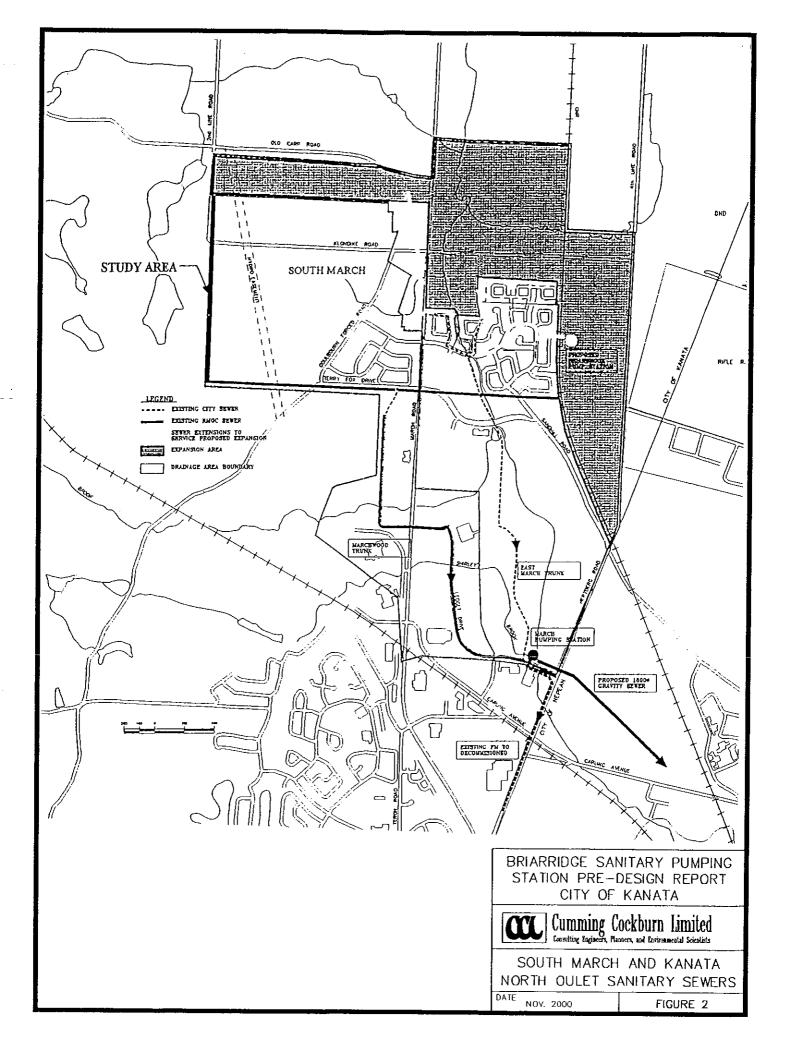
FIGURE 1

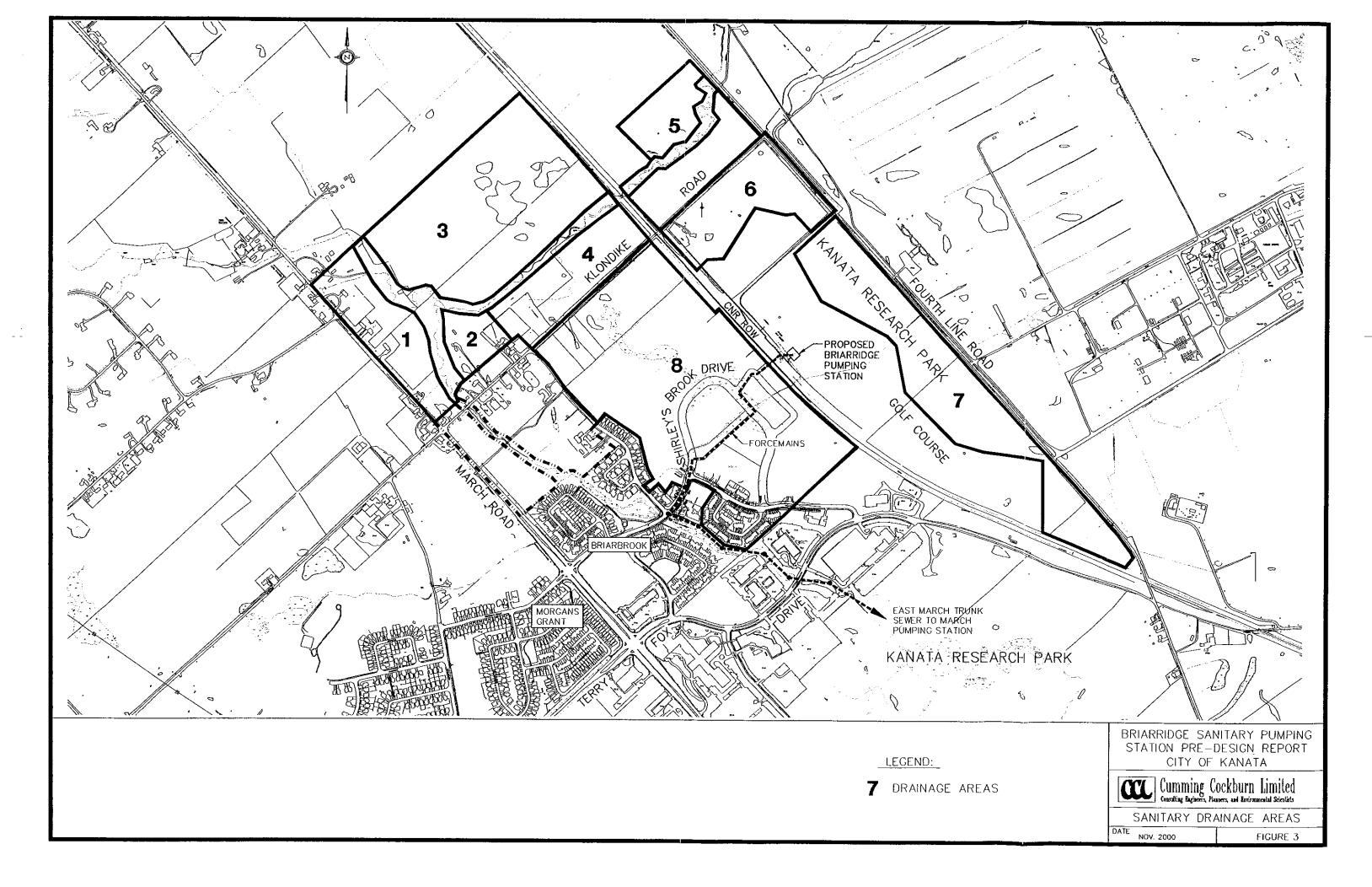
Figure 2, which was extracted from the 1998 report, shows the South March and KNUEA areas together with the two outlet sewers. Wastewater flows from the South March community west of March Road will be directed to the Marchwood Trunk. All the wastewater from the Kanata North Urban Expansion Area will be directed to the East March Trunk.

Most of the area east of March Road, including all lands north of Klondike Road and east of the Ottawa Central Railway (OCR) railway track are tributary to the proposed Briarridge Pumping Station. Figure 3 shows the detailed tributary area together with the proposed pumping station location and EMT sewer location.

The total gross area tributary to the proposed pumping station is about 179 ha. Allowing for lands adjacent to Shirley's Brook as open space and the proposed golf course in the Kanata Research Park, the net drainage area to the station is about 128 ha.

Development of a small portion of the drainage area was completed in the mid 1990's along Helmsdale Drive. That development consists of 88 townhouse units in the medium density residential area in the south of the drainage area immediately east of Shirley's Brook. Flows from that area drain to a temporary lift station on Helmsdale Road. That station, which discharges into the terminus of the EMT sewer, will be decommissioned upon completion of the Briarridge Pumping Station.


In accordance with the adopted concept plan, the lands in the pumping station drainage area will be low or medium density residential, (with one elementary school) or restricted industrial. All lands east of the OCR tracks will be industrial and those west of the tracks will be residential.


1.3 Purpose of Report

This brief or pre-design report is completed to provide the affected approval agencies and eventual station owners and operators with a blue print for the station and forcemain upon which final design and construction will be based.

This report will detail expected wastewater flow rates from inception to build out. It will establish a plan to collect and discharge those flows from early developments to build out. The plan will address the issues of initial low flows and resultant velocities and resident times both in the station and forcemain.

The City of Ottawa (former Region) will eventually own and operate the station and much of the criteria discussed herein will be based on design guidelines and operating procedures used by the former Region.

2.0 HYDRAULIC ANALYSIS

2.1 Flow Projections

The total area of both the South March community and the Kanata North Urban Expansion Area is about 414 ha (refer to Appendix "A" Development Capacity Analysis reproduced from the 1998 report). That report, which mirrors closely Regional projections, estimates that there were 938 housing units in the South March community in 1998 and predicts there will be a total of 3121 units by 2021 and 4290 units at build out. The report also estimates that the build out population will be 14290 which equates to 3.33 people per unit.

The 1998 study also included information and predictions concerning housing densities and general rates of development. These are:

Low density residential

Medium density residential

Development rate

17 to 25 units per hectare 15 to 35 units per hectare 94 units per year

With regard to development rates for industrial lands within the Briarridge Pumping Station drainage area, a development rate similar to projected residential units is assumed.

The following design criteria was also used:

<u>Design</u>

Flow per capita 350 l/d

Peaking factor	Harmon =	p in 1000's
Industrial	35,000 l/ha/d	
Industrial peaking fa	actor MOE guideline	s (see Appendix "B")
Infiltration	0.28 l/ha/s	

The Region has also asked that monitored flow rates also be evaluated for the Briarridge Pumping Station drainage area. These flows are:

<u>Monitored</u>

Flow per capita	300 I/d	
Peaking factor Industrial Industrial peaking Infiltration:	Modified Harmon = 15,000 l/ha/d 2.0	p in 1000's
DW Inflow	0.05 l/ha/s	
WW Event (typ)	0.15 to 0.20 l/ha/s	
WW Event (large)	0.28 l/ha/s	
WW Event (rare)	0.30 to 0.50 l/ha/s	

Page 3

The Region has completed extensive flow monitoring throughout the region. Results of the monitoring indicate that during most times flows less than those predicted by the standard MOE design criteria occur. Therefore the Region asked that the pumping system proposed for Briarridge include its findings. The Region provided the pertinent monitored criteria noted above which is based on its extensive monitoring program.

Based on the above information and criteria, Table 1 summarizes the expected flow projections from 2001 to build out. The detailed calculations are included in Appendix "B". An inflow and infiltration rate of 0.28 l/s/ha was used to calculate the monitored annual peak flow and a rate of 0.50 l/s/ha was used to calculate the monitored rare event

			Estimated I	Flows (I/s)			
		2001			2011		
	Design Peaked	Monitored Annual Peak	Monitored Rare Event	Design Peaked	Monitored Annual Peak	Monitore d Rare Event	
Residential	5.64	3.81	4.56	35.65	24.67	30.59	
Industrial				64.35	18.05	26.81	
TOTAL	5.64	3.81	4.56	100.00	42.72	57.40	
		2021	· · · · · · · · · · · · · · · · · · ·		Build Out		
	Design Peaked	Monitored Annual Peak	Monitored Rare Event	Design Peaked	Monitored Annual Peak	Monitore d Rare Event	
Residential	49.98	34.85	43.38	65.01	45.62	56.99	
Industrial	88.85	26.95	40.03	108.79	34.40	51.09	
TOTAL	138.83	61.80	83.41	173.80	80.02	108.08	

TA	BL	E	1

The design of the station will consider both the peak design flow projections which will be the maximum peak wet weather flow predicted by tradition MOE design guidelines. The station design will also consider the monitored peak annual wet weather flow rate. This rate is the expected wet weather event that traditionally will be expected to occur during the spring snow melt. Thus the hydraulic design of the station will consider station operation under both these events to buildout. The third column in Table 1 was included to show that the predicted monitored extreme or rare event was still less than the flows predicted by MOE design criteria.

Page 4

Landowners for drainage areas 2, 3 and 4 have petitioned the Region to change the current residential land use in those areas to restricted industrial. A supplementary design sheet was completed assuming that the above three areas developed with industrial uses as opposed to residential, and the resultant estimated flows were found to be less than 5% higher than residential uses. Therefore to be slightly conservative the flow calculations given in this report assume that drainage areas 2, 3 and 4 develop as industrial uses and not residential.

2.2 Changes to Drainage Area

Most of the tributary drainage areas to the Briarridge station are proposed light industrial uses. A portion of these include Areas 6 & 7 as shown on Figure 3. Those two areas will be developed around a portion of a proposed golf course between the railroad and Fourth Line Road. In terms of sanitary flows tributary to the station, the golf course development will have negligible impact.

In the unlikely event that the approximately 20 hectare area taken up by the golf course in this area should development as an industrial park, similar to Areas 6 & 7 a sensitivity analysis on tributary flows to the station was completed. A detailed design sheet describing that event is included in Appendix B.

Without any contributary flows from the golf course the estimated peak flow to the station is 174 l/s. The peak flow will increase to 199 l/s if the area taken up by the golf course should develop as light industrial. Since the golf course is presently under construction it is unlikely it will develop as light industrial in the foreseeable future. In the improbable event it does, then additional pumping capability in the Briarridge station may have to be reviewed at that time as well as available outlet sewer capacity. The initial design of the Briarridge station does not allow for flows from the area taken up by the golf course.

2.3 Forcemain Sizing

The Region has stipulated that as owners and operators of the proposed Briarridge Pumping Station, it requires a dual forcemain design. Also, although a small portion of the Briarridge Pumping Station drainage area is developed (88 townhouse units over 3.37 ha) the forcemain and pumping capabilities should consider the fact that full development of the drainage area could take a generation or more.

The station and forcemain are to be designed to enable optimum performance for the 20 year design period including the initial low flow period. The pumping station is also designed to accommodate build-out design peak flows. These two conditions and resultant infrastructure must be considered for a staged development covering 128 ha.

The following conditions and assumptions were considered in the pre-design of the station and forcemains.

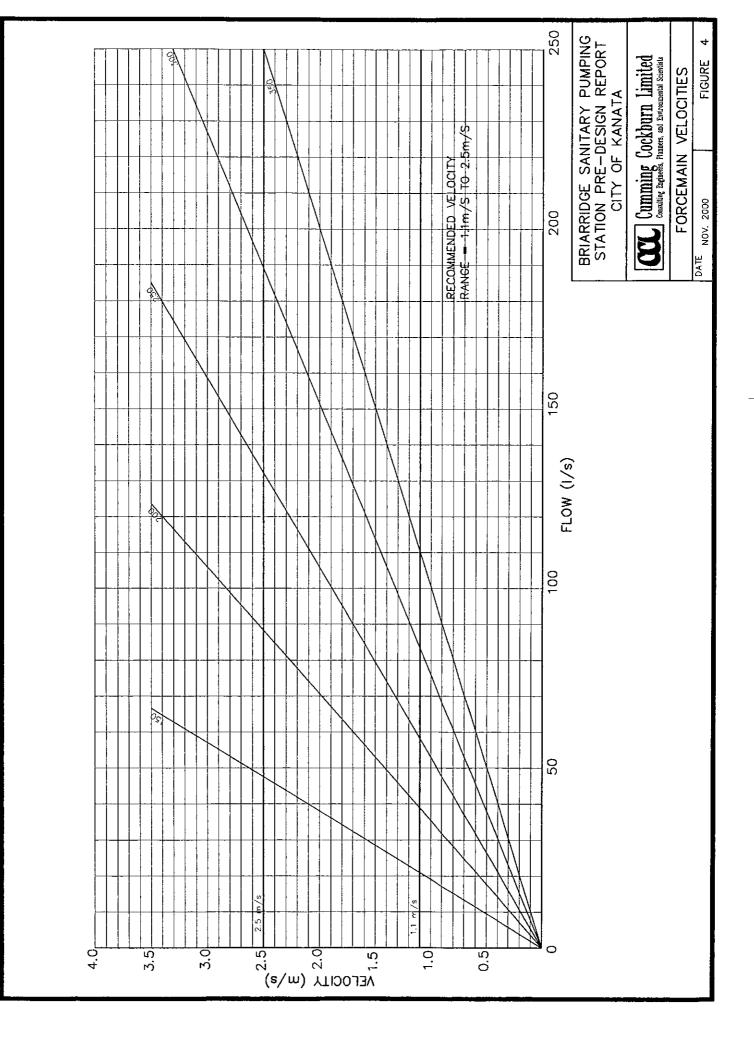
• Pumping capacity should be staged to match the 10 year, 20 year and build-out estimated flows.

- To provide added protection against basement flooding by wastewater, an emergency overflow to an existing outlet storm ditch will be constructed. The overflow is a "last resort" level of protection since the station will have sufficient firm pumping capacity powered from the local electrical grid. Additionally the station is proposed to include an emergency back up diesel generator. The level of protection proposed to be provided by the overflow is the annual wet weather monitored event equivalent to about 80 l/s.
- The Ministry of Environment stipulates that the firm station capacity is the available pumping capacity when the largest installed pump is out service. Thus the firm pumping capacity for the Briarridge Pumping Station will be:

10 year	100 l/s
20 year	136 l/s
Build Out	174 l/s

The firm capacity can take advantage of both forcemains.

• Simultaneous failure of a pump and forcemain is assumed to be of minimal probability. If a forcemain is out of service, the capacity of the station may be based on all installed pumps being in service. The station installed capacity (all pumps in service) when pumping through the smallest forcemain is to be greater than or equal to the Monitored Annual Peak Flow indicated in Table 1. For the Briarridge Pumping Station these pumping requirements are:


10 year	43 l/s
20 year	61 l/s
Build Out	80 l/s

For purposes of further evaluation the forcemain material considered in this report is equivalent to PVC DR 25. At the time of final design other materials such as Ductile Iron or High Density Polyethylene (HDPE) or another class of PVC material could also be considered.

2.4 Forcemain Velocities

The typical recommended minimum cleansing velocity for forcemains is 0.80 m/s. Velocities below that limit lack the re-suspension ability to cleanse the mains and operational difficulties arise. To ensure cleansing velocities are adequately achieved for the Briarridge Pumping Station it is assumed that the minimum design velocity will be 1.10 m/s. Because the Briarridge forcemain will discharge directly to a gravity sewer, a maximum operational velocity of 2.5 m/s will be a target. Infrequent events, which may result in slightly higher velocities, can be tolerated. Energy consumption needed for large velocities should be avoided.

Thus for the Briarridge Pumping Station the minimum and maximum design velocity criteria will be 1.1 m/s and 2.5 m/s respectively. Figure 4 shows the velocity characteristics for several size forcemains over a range of flows.

The two forcemains can be sized to handle the 20 year or build out design flow ranges. Sizing the two forcemains to handle the 20 year design flow range enables the smallest forcemain's diameter, volume and retention time to be reduced. However, consideration must also be given to the build out flow ranges when sizing the two forcemains.

2.4.1 20 Year Design Approach

The smallest forcemain is to convey the 20 year Monitored Annual Peak event flow of 61 l/s, if the second main is out of service. Figure 4, indicates that the smallest forcemain with a velocity less than 2.5 m/s at 61 l/s is 200 mm ø.

The diameter of the second forcemain is dependent upon that of the smallest forcemain. The expected flow for the 20 year peak design will be 136 l/s. At the maximum design velocity of 2.5 m/s, the required total forcemain area will be 0.054 m^2 for two forcemains. The total cross sectional area of a 200 mm ø and 150 mm ø forcemain is 0.056 m^2 . However a 150 mm ø forcemain cannot convey the 20 year Monitored Annual Peak event flow of 61 l/s. Therefore the minimum size of the second forcemain must be 200 mm ø.

Thus the two forcemains must be able to convey the 20 year design peak flow of 136 l/s. Also all installed pumps discharging to the smallest forcemain must deliver a minimum flow of 61 l/s.

For the 20 year design, the forcemain (F/M) alternatives given further evaluation are:

F/M Alternative 1	200 and 200 mm ø
F/M Alternative 2	200 and 250 mm ø
F/M Alternative 3	200 and 300 mm ø

2.4.2 Build Out Design Approach

The smallest forcemain must convey the build-out Monitored Annual Peak event flow of 80 l/s if the second forcemain is out of service. The smallest standard pipe diameter which can satisfy the 2.5 m/s maximum velocity criteria is 200 mm ø.

Both forcemains must be capable of conveying the build out design peak flow of 174 l/s. The minimum required cross sectional area at the design velocity of 2.5 m/s would therefore be 0.068 m^2 . Two 200 mm ø forcmains have a total area of 0.070 m^2 .

With the largest pump out of service, the two forcemains must be able to convey the build-out design peak flow of 174 l/s. Also all installed pumps discharging to the smallest forcemain are to convey a flow of 80 l/s.

For the build-out design the following forcemain alternatives were given further consideration.

F/M Alternative 4	250 and 250 mm ø
F/M Alternative 5	250 and 300 mm ø

3.0 PUMPING EQUIPMENT AND FORCEMAIN SELECTION

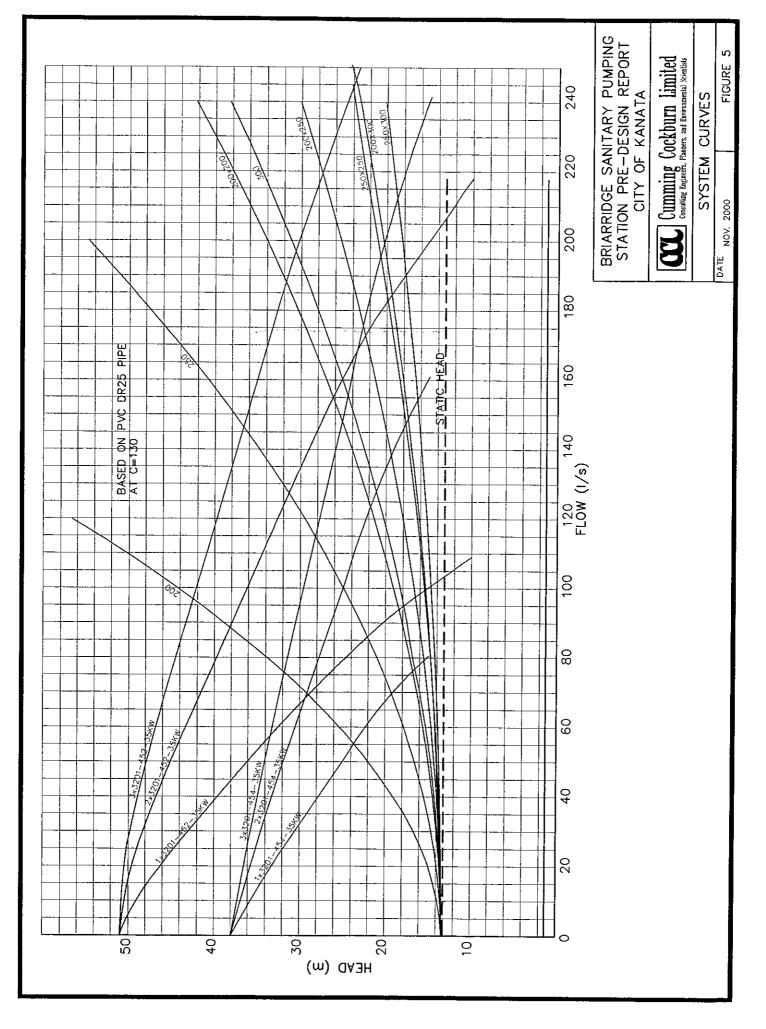
3.1 Station Head and System Curves

Figure 3 shows the proposed location of the Briarridge Pumping Station and discharge forcemains. The average static lift for the station will be about 13.37 metres. The outlet elevation at the end of the East March Trunk is 72.77 metres. The approximate storage limits in the station wet well will be between 58.4 m and 60.4 m.

Based on an average static lift of 13.37 m some preliminary system curves are shown in Figure 5.

In 1994 Coscan Development Corporation had started preliminary design on the Briarridge Pumping Station (then called the Briarbrook Pumping Station). Some of the design assumptions implemented at that time are proposed to be employed in the design of the Briarridge Pumping Station.

In 1994, a pre-fabricated fibre reinforced plastic (FRP) wet well c/w ITT Flygt submersible pumps was proposed. The Region has successfully used this application for at least two recent applications (1996 River Road and 1998 Hemlock) and were involved in discussions during the preliminary design of the Briarbrook Pumping Station.


The proposed duty pumps will be constant speed. The Briarridge Pumping Station is not a large station and constant speed driven pumps can be easily upgraded through the build out period to match changing flow conditions. A combination of impeller changes, pump changes or additional pumps can adequately match the flow sizes to build out conditions. It should be recognized that a normal pump life is about 20 years. It is likely that at the end of the life of the initial pump installation, larger pumps if deemed necessary at that time could be installed.

It is recommended that a 3.66 m ø (12 foot) fibre reinforced plastic (FRP) wet well using submersible constant speed sewage pumps be installed in the Briarridge Pumping Station.

3.2 Pump Selection

All the calculated pumping rates hereafter are based on submersible pumps by ITT Flygt. The following section examines pumps in combination with the previously identified dual forcemain alternatives and system curves. In particular, one pump model seems to be well suited for the analysis; the C3201 35kW unit at 1755 rpm and 452 impeller. A pump curve is also included for impeller 454. That impeller may be a better selection during the early years of operation. The manufacturers hydraulic and electrical performance pump curves for these models are included in Appendix "C".

The C3201 pump curves for one, two and three units in a parallel operation are superimposed on the single and dual forcemain alternative system curves as shown in Figure 5. These figures indicate the estimated discharge capacity and duty points for the various possible operating conditions.

Table 2 which was developed from the values in Figure 5 for the 452 impeller, presents the maximum pumping capacities for the various alternative forcemain configurations.

	20 YEAR DESIGN			BUILD-OUT DESIGN	
ALTERNATIVES	1	2	3	4	5
Pumping Capacity in Dedicated	Forcemain		•		
Forcemain A (mmø)	200	200	200	250	250
 Pump Pumps Pumps (1) 	69 88 97	69 88 97	69 88 97	86 127 147	86 127 147
Forcemain B (mmø)	200	250	300	250	300
 Pump Pumps Pumps 	69 88 97	86 127 147	95 155 197	86 127 147	95 155 197
Firm Capacity (2) Installed Capacity	155 188	173 220	183 247	182 244	190 "265
Pumping Capacity in Combined	Forcemains				•••• •
Forcemain A&B	200+200	200+250	200+300	250+250	250+300
 Pump Pumps Pumps Pumps 	94 155 188	97 173 220	99 183 247	99 182 244	101 190 "265

TABLE 2 PUMPING CAPACITIES WITH ALTERNATIVE FM'S

Small F/M

Both FM's

Notes: (1) 20 yr installed (monitored) cap. = 61 l/s 20 yr F/M Cap. (Design) = 136 l/s (2) B/O installed (monitored) cap. = 80 l/s

B/O F/M Cap. (Design) = 174 l/s

For the build-out design approach, the pump/forcemain combination must deliver 174 l/s. From Table 2 alternatives 3, 4 and 5 will provide the required capacity to meet that criteria. Before making a final decision on the preferred forcemain design some consideration to the issue of low flows, system retention times and resultant impacts should be considered.

3.3 Low Flow Impacts and Mitigation

Hydrogen sulfide (H_2S) gas suppression and mitigation has direct bearing on the evaluation of the forcemain alternatives. H_2S forms in domestic wastewater under anerobic conditions (i.e. no oxygen environment). The opportunities for such events in the Briarridge Pumping Station will be in the wet well and in the forcemain. The longer the wastewater is held in anerobic conditions (retention time) the greater the concentration of sulfide in the wastewater which is discharged from the forcemain. There are three ways to address this potential problem:

- minimize retention times in wet wells and forcemain;
- suppress sulfide formation in wet wells and forcemains by oxygenation or chemical addition; and
- mitigate the negative impacts of H₂S released in the downstream sewers.

3.4 Reducing Retention Times

Wet well retention times are typically short as compared to forcemain retention times. This will be the case with the Briarridge Pumping Station. Wet well retention times can be kept to a minimum by shortening the distance between normal "pump-on" elevation and "pump-off" elevation. Mixers can also be added to a wet well to provide oxygenation.

Forcemain retention time can be reduced by discharging through a smaller forcemain during early years of development. Thus there would be an advantage to using a smaller forcemain, given a choice, to lessen the possibility of H_2S formation.

Anerobic reactions that play a role in the formation of hydrogen sulfide are relatively slow. They require hours (6-7 hrs) to happen under optimal environmental conditions (e.g. a temperature range of $30-35^{N}$ C, the presence of suitable nutrients, etc.). At lower temperatures (e.g. $10-15^{N}$ C) these reactions may require weeks or even months. However, the conversion of H₂S to sulphuric acid is quite rapid and may occur in seconds.

Table 3 shows expected retention times in a 200 mm diameter forcemain for the Briarridge station. Even with early low flows of 1 l/s the expected maximum retention in the forcemain can be controlled to about 7.5 hours. It is reasonable to expect initial dry weather flows to the Briarridge station will be at least 1 l/s. Measured dry weather average flows to the current station were in the 0.7 l/s range.

It is therefore unlikely that problems arising from the formation of sulfuric acid resulting from hydrogen sulfide in the forcemain will happen for the Briarridge station since the optimum environment will not exist. However, to be safe in this regard, allowances in the proposed control building will be provided for the future addition of hydrogen sulfide suppression appurtenances such as storage, pumps, electrical, plumbing, etc.

3.5 Selected Forcemains

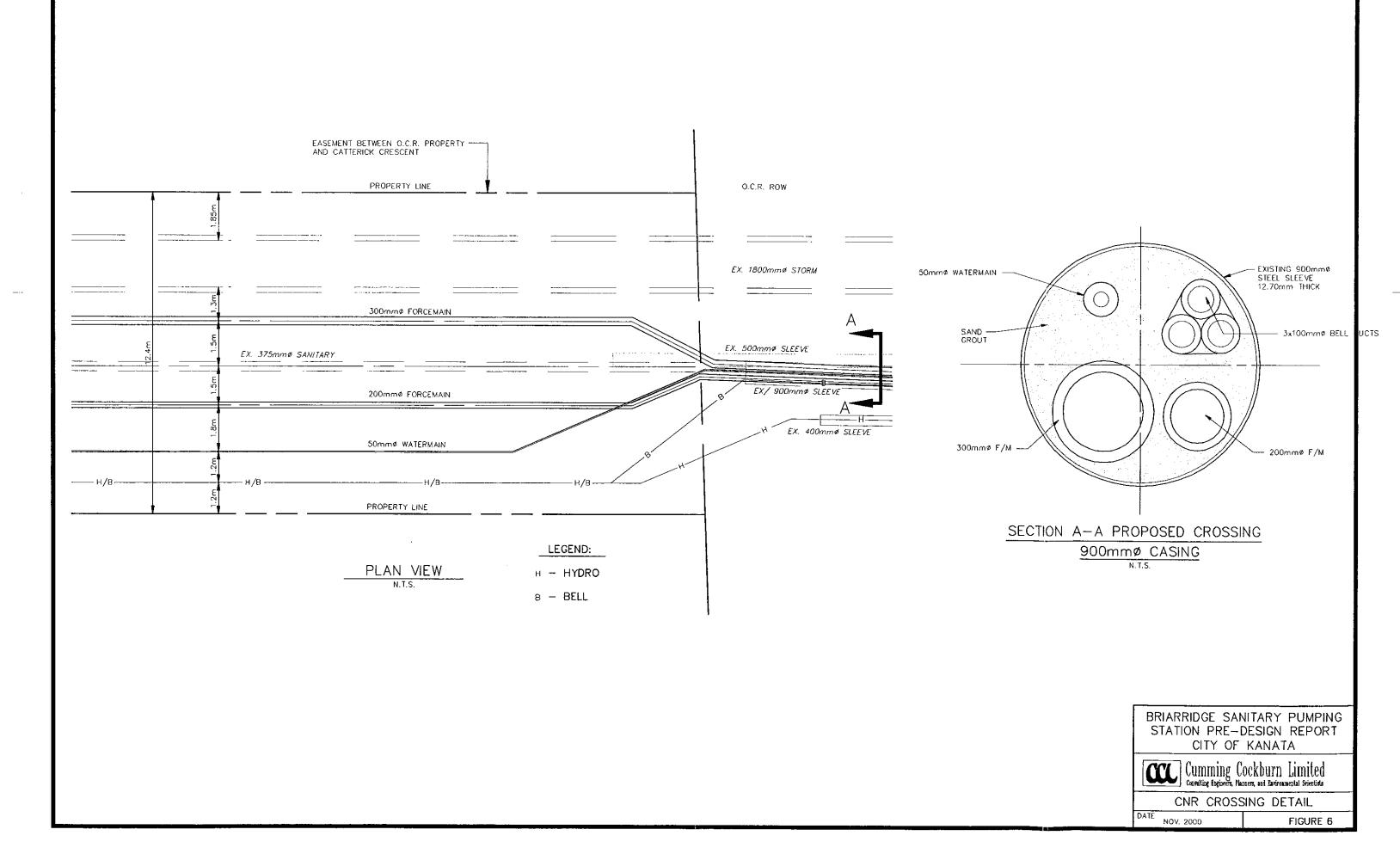
Alternatives 3, 4 and 5 meet the design criteria established for this report. It is recommended that the 200 mm and 300 mm diameter forcemains be constructed for the Briarridge station.

Alternative 4 (2 x 250mm forcemain) offers no flexibility for initial low flow periods or energy efficiency in later years of development. Alternative 5 will offer the largest flow capability but will be less effective in early years of development in terms of forcemain retention times. Alternative 3 combines the best option for the initial development period and build out condition. At a firm capacity of about 183 l/s it has some flexibility for increases in development trends for the catchment area.

3.6 Existing Conditions

As stated earlier, a portion of the Briarridge Pumping Station drainage area has already developed. Part of that development included a short section of Shirley's Brook Drive in which the ultimate forcemain from the Briarridge Pumping Station was to be located. In order to eliminate the need to re-excavate about 165 metres of Shirley's Brook Drive, a ductile iron forcemain was constructed. That forcemain includes a 15m length of 400 mm ø pipe and 150 m of 350 mm ø pipe. The discharge forcemain from the existing temporary pumping station runs parallel with that forcemain. It is therefore proposed to connect the larger Briarridge forcemain to the existing 350 mm ø pipe but construct the smaller forcemain in the existing south boulevard of Shirley's Brook Drive. That boulevard is 7.5 m wide and should provide sufficient room to accommodate the new pipe.

Both storm and sanitary sewer outlets from some of the area tributary to the Briarridge Pumping Station have to cross under the OCR tracks. In anticipation of further development in South March, in the early 1990's several steel casings were constructed under the tracks. These casings were designed to carry the necessary future infrastructure to develop the Briarridge Pumping Station including, utility supply, sanitary sewer and forcemain. A separate 1800 mm ø storm sewer was also constructed under the tracks at that time.


One of those casings (900 mm ø) was sized to carry a water supply, forcemain and bell ducts. Figure 6 attached shows the proposed forcemain, watermain and bell duct configuration within the steel casing as well as the plan location for all infrastructure from the railway tracks to the nearest subdivision street Catterick Crescent.

3.7 Recommended Pumps and Forcemain

The recommended forcemain combination is 200 mm and 300 mm diameter. Each forcemain will be approximately 750 m long.

Two 35 kW pumps could be installed initially (one pump firm capacity) and a third pump added in the future when necessary (approximately 20 years) to provide the ultimate firm capacity. For the CP3201 model pumps, the 452 impeller (330 mm) must be used to provide ultimate firm capacity.

Page 11

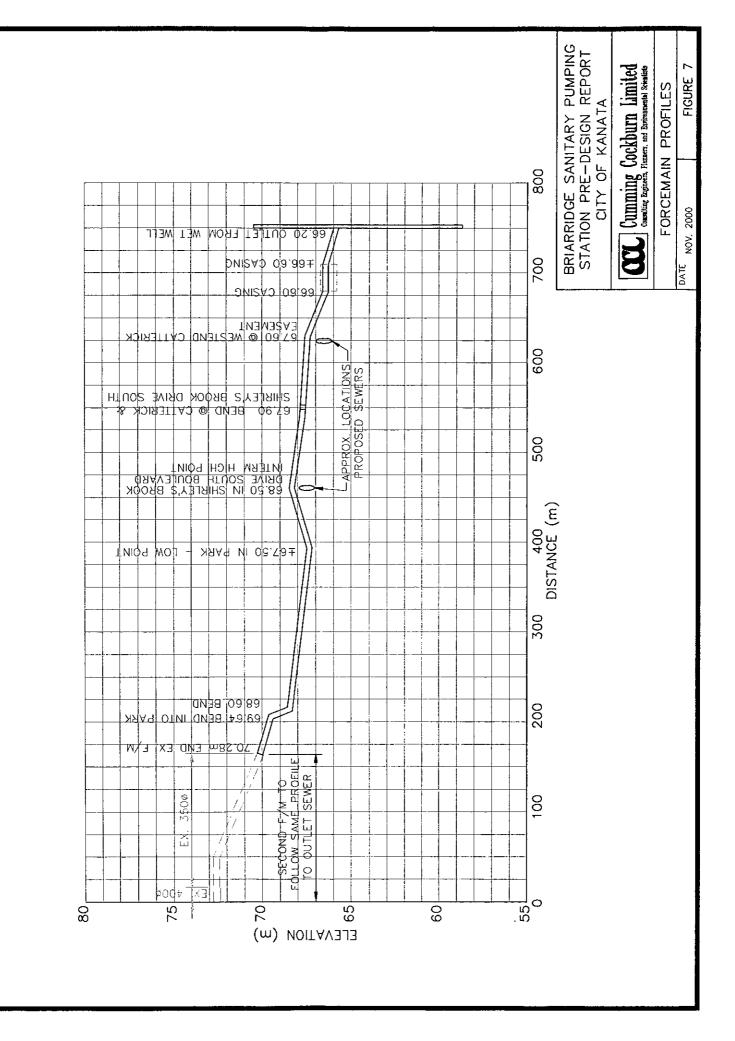
However, it is recommended that initially, a smaller 454 impeller (281 mm) be installed in the pumps. Using a 200 mm ø forcemain that impeller will pump about 55 l/s at a velocity of 1.5 m/s. The reason for initially fitting the pumps with smaller impellers is to reduce the peak electrical demand and power costs of the pumps, and to increase their running time versus off time.

3.8 External Forcemain

A preliminary plan and profile of the proposed forcemains is shown in Figure 7. It is proposed that the two forcemains be installed at identical elevations with a lateral separation of 1.0m. Because the forcemains are being installed in an urban roadway cross section, they are subject to some location restrictions. It is proposed to install both mains at the same time since it will be expensive to install the second forcemain in the future when the subdivision has been built out.

It is proposed to install both forcemains in the existing 900 mm ø steel casing under the OCR tracks. The forcemains will then be routed along the Catterick Crescent boulevard to Shirley's Brook Drive (south). In Shirley's Brook Drive (south) the forcemains can be located under the roadway asphalt surface.

The forcemain is then proposed to cross Shirley's Brook Drive south and be constructed through a future park land to Shirley's Brook Drive north. From there the larger forcemain can be constructed under the roadway asphalt in Shirley's Brook Drive north to the existing 350 mmø outlet and the smaller one along the south Boulevard ultimately discharging to the existing gravity sewer at a new manhole.


Vertically, the forcemains will have an intermediate high point near Shirley's Brook Drive south and low point in the park area. The saw tooth profile pattern is unavoidable because of conflicts with subdivision sewers. An air release valve complete with chamber will be required at the high point and a drain out chamber will be required at the low point. Cover over the forcemain will be about 2.0 m.

4.0 GENERAL STATION ARRANGEMENT AND EQUIPMENT

4.1 Pump Station Layout

As stated earlier, some work had already been completed in 1994 regarding the design of the Briarridge Pumping Station. With regard to the wet well, capacity for three pumps in a 3600 mm \emptyset (12 foot) fibre reinforced plastic (FRP) wet well was designed. The same arrangement is proposed at this time. The wet well will be a permanent undivided FRP with two pumps initially installed and full provision for a third pump. Such a well would be almost identical to ones presently existing in two other Regional stations.

Figure 8 shows the proposed initial arrangement for the wet well in both elevation and plan view. The well will be equipped with a manually removed trash rack at the sewer inlet. The well is also proposed to be fitted with an emergency overflow pipe discharging to a nearby drainage ditch. That ditch is part of the storm outlet system for surrounding lands and is tributary to a treatment facility east of Fourth Line Road.

The expected 1:100 year flood level in the ditch is 67.0 metres. The lowest residential basement will be about 67.50m. Therefore there is a narrow window for construction of an overflow. The overflow should be fitted with a back water valve and gate valve. The overflow issue will have to be reviewed by the Ministry of Environment.

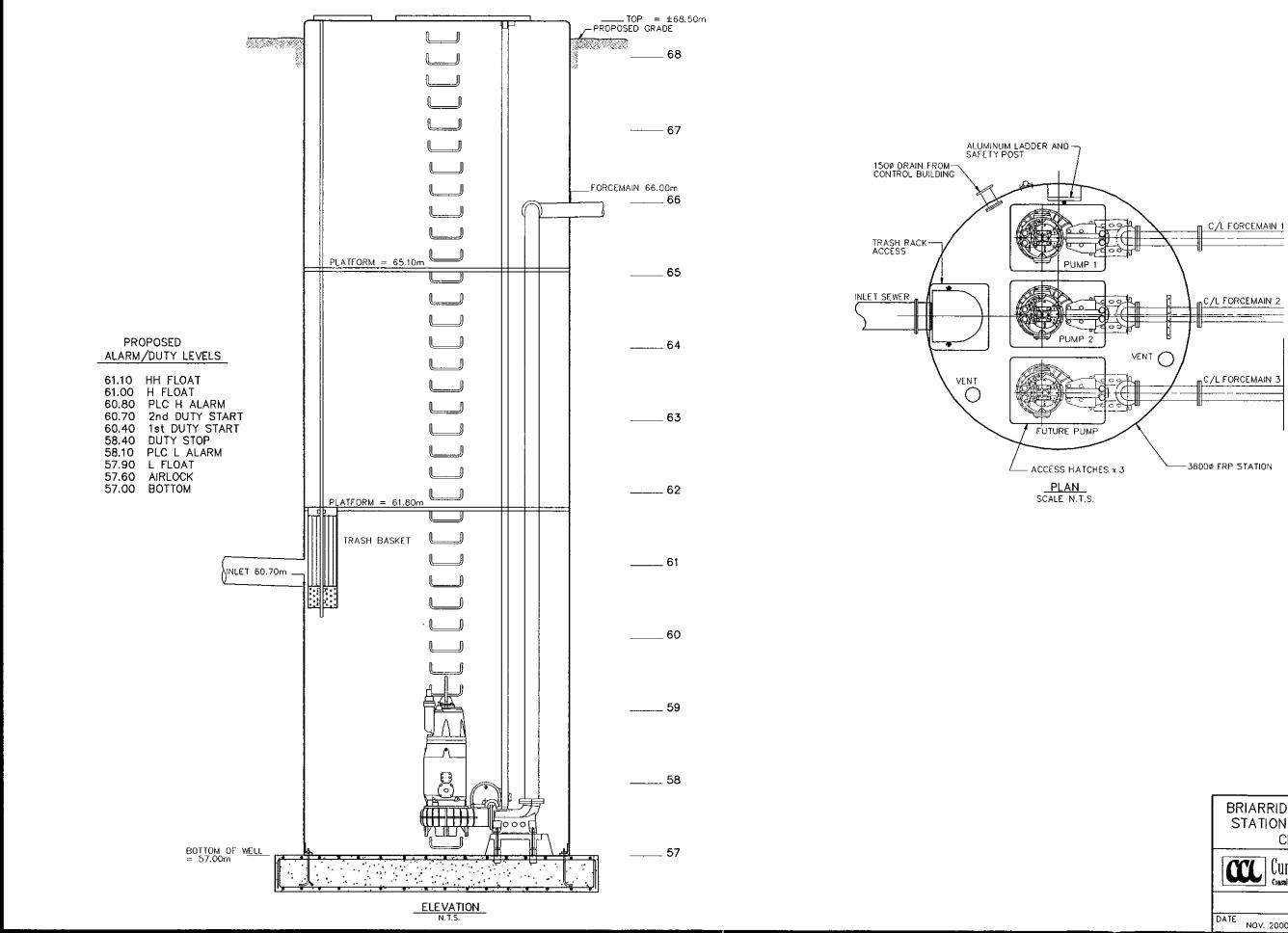
4.2 Building Layout

The control building will include three separate work areas for the Briarridge Pumping Station. One room will be the generator room in which will be installed the back-up power generator, louvers and fuel supply. The second room will include the power supply, motor controls, PLC panels, working space and washroom. The third room will be the chemical room. This room will provide the station operators with the space and ability to add a H_2S suppression system in the future if warranted.

Part of the station system design will include flow meters, pressure transmitters and by-pass connection. Instead of constructing these appurtenances in separate chambers, a basement will be provided below the building control room for easy operational access and control. A typical arrangement is shown in Figure 9. Final layout details can be confirmed at the design stage.

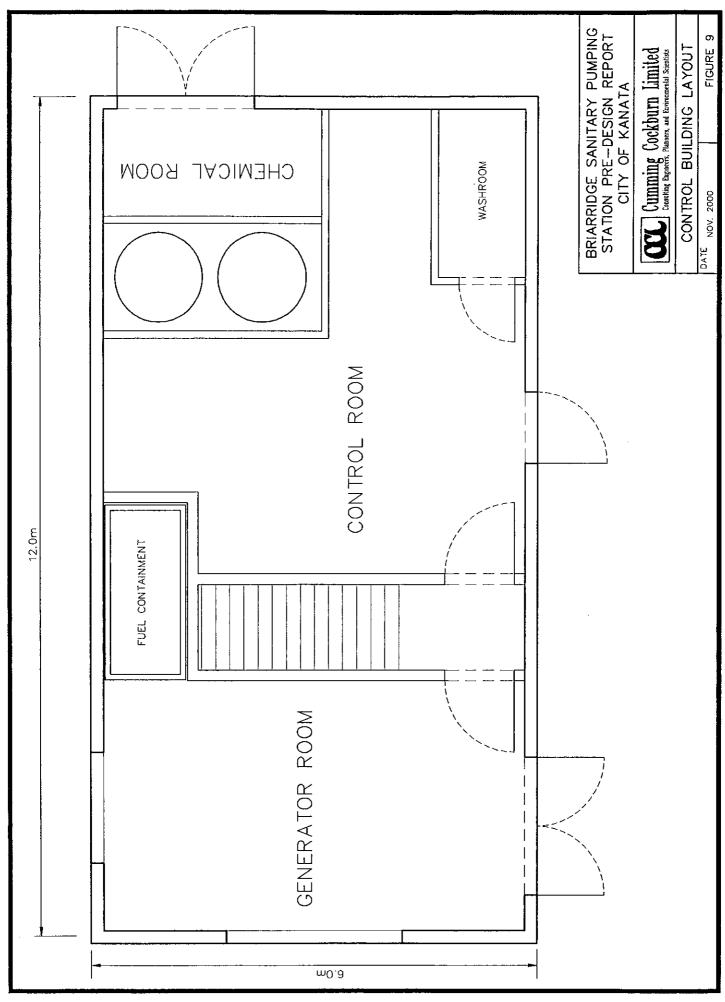
5.0 ELECTRICAL REQUIREMENTS

5.1 Main Power Supply


The electrical power supply to the pumping station has been assumed to be 600 volt, 3 phase, 60 Hertz. Major pieces of equipment will operate on 600 V 3 pH 60 Hz power supply. A lighting transformer and lighting panel will be provided. Power available from the lighting panel will be either 110 volt or 240 volt single phase 60 Hertz. All lighting and outlets and minor pieces of equipment will be operated from this power source.

5.2 Electrical Systems

Motor starters and/or breakers will be contained in a modular motor control centre (MCC) with sections for incoming supply, main breakers, etc. A separate process metering control panel will be provided adjacent to the MCC section in which will be mounted the independent wet well level indicators, magnetic flow indicator readings and any other necessary process indicators. Reduced voltage (auto transformer) starting will be provided in order to minimize the "in-rush" or "start-up" current and thereby reduce the size of emergency generator required. Deceleration or "ramp-down" stops will also be included.


Wiring to all fixtures and equipment will be through conduits which will be exposed to view. Since the wet well is an area in which an explosive gas mixture could be present, conduit, wiring and fixtures in this area will be provided to comply with Ontario Hydro regulations for areas classified as Class 1, Group D, Division 1 areas.

Page 13

-- --

BRIARRIDGE SAN STATION PRE-E			
CITY OF	KANATA		
Cumming Cockburn Limited CostalUng Roginera, Plannera, and Environmental Scientifies			
WET	WELL		
DATE NOV. 2000	FIGURE 8		

5.3 Emergency Power Supply

An emergency diesel driven generator will be installed to provide standby power sufficient to start two pumps and all ancillary equipment deemed to be necessary to be operated during emergency situations. Tentative sizing is for a 125 kW generator powered by a diesel driven engine. The sizing of the generator set will be reviewed and confirmed during final design.

Diesel generator controls and starting system will be direct current operated. A battery rack will be provided to start the generator. A trickling battery charger will be provided to maintain a full charge in the battery rack at all times.

An automatic transfer switch will be provided to control the diesel generator set. A loss of incoming power to controls will start the emergency generator. The generator set will be allowed to come to full speed prior to any loads being put on it. Upon resumption of main power feed, all equipment will be shut down prior to switching back to the main feed. After the transfer switch to the main power feed, the generator will be operated for a recommended "cool down" period.

As noted in a previous section, the motors for the pumps are anticipated to be 35 kW (47 Hp). With motors of this size, it is recommended that the temperature of the motor windings be monitored by temperature sensors or thermistors. If any of the motors windings become too warm, the thermistor will fail, shut down the operating pump and provide an alarm to the PLC and thereby the generator station alarm.

5.4 Instrumentation and Controls

Pumping station operation will be controlled in automatic mode by a programmable logic controller (PLC) at the pumping station. Manual control of the pumps will also be provided for start-up and maintenance. The wet well will be equipped with dual ultrasonic level controls and back up float controls.

The PLC will monitor the wet well liquid level, and stop the pumps on this basis. The wet well level will be indicated on a control panel at the pumping station.

The discharge flow from the pumps will be measured by magnetic flow meters complete with a wall mounted display in the control building.

The PLC system can also monitor numerous alarm points. The detailed requirements of the telemetering system will be determined during final design. Expansion of the PLC, to provide additional information, can be achieved by expanding the PLC with additional electronic output expansion modules. These additional outputs can be "telemetered" to a remote monitoring station from the PLC at a later date as part of the installation of a Supervisory Control and Data Acquisition (SCADA) expansion.

6.0 SITE REQUIREMENTS

6.1 Location and Access

The proposed pumping station site is shown on Figure 3. Access will be from a gravel road from Klondike Road parallel to the OCR rail line. The site detail plan is shown in Figure 10. The site will be located on a 26 m x 35 m easement within the Kanata Research Park golf course.

The site will be equipped to the owners requirements concerning lighting, fencing, windows and general security.

A proposed flow chart for the Briarridge Pumping Station is included in Figure 11. Flow will enter the site from up to three different locations and be directed to an inlet manhole prior to discharge into the wet well. It is proposed to install either a sluice gate on the outlet from the inlet manhole or a line valve on the wet well inlet sewer. That isolation device will assist operations during by-pass periods.

As stated earlier, the forcemain control appurtenances such as valves, meters, and by-pass connections will be located in the building basement. Discharge from the wet well will enter the building in three separate lines and connect to a common header which will discharge into the two forcemains.

Appropriate isolation and valving (including check and gate valves) will be provided for operational flow control, metering and by-pass isolation.

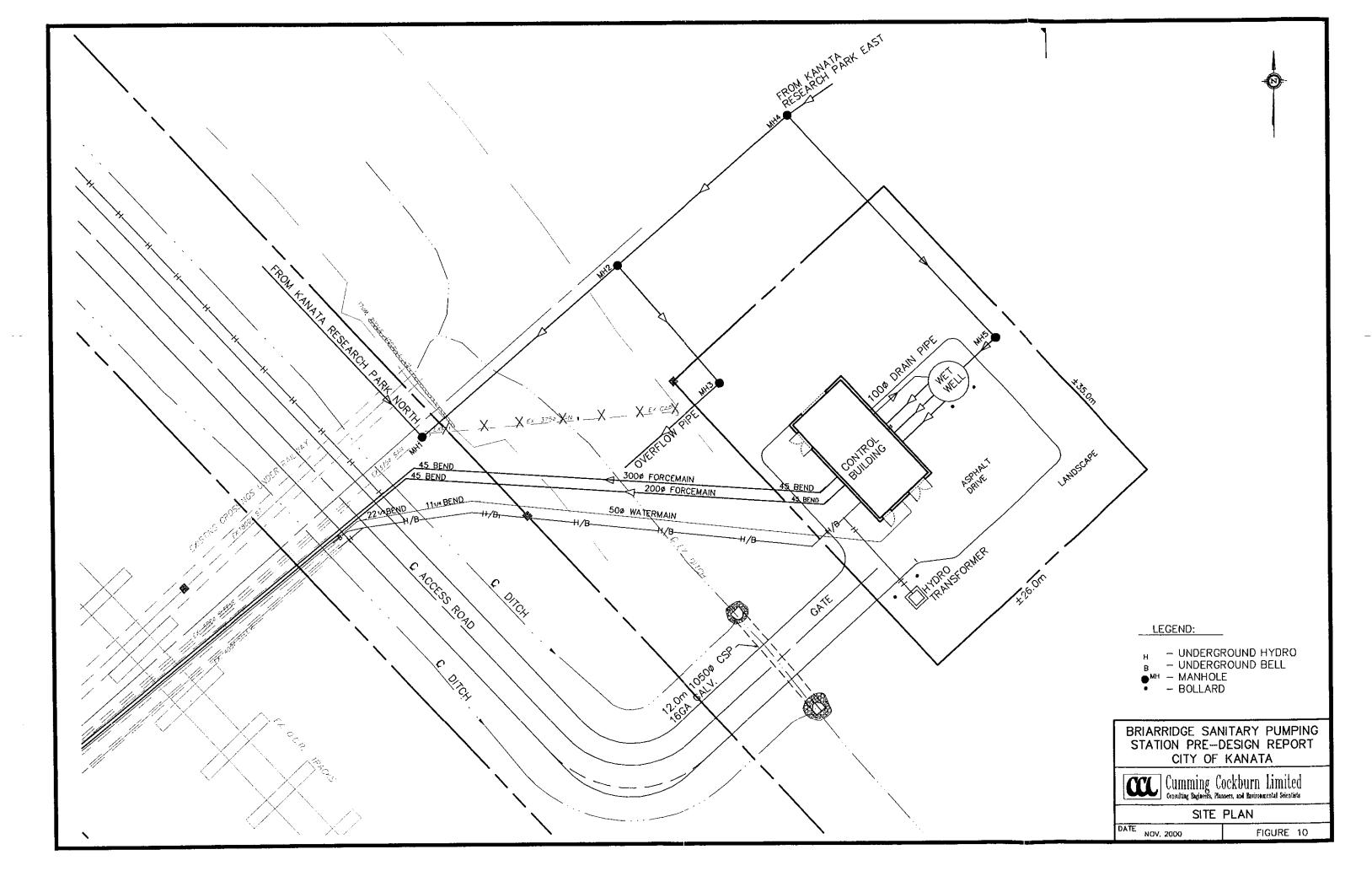
6.2 Soil Conditions

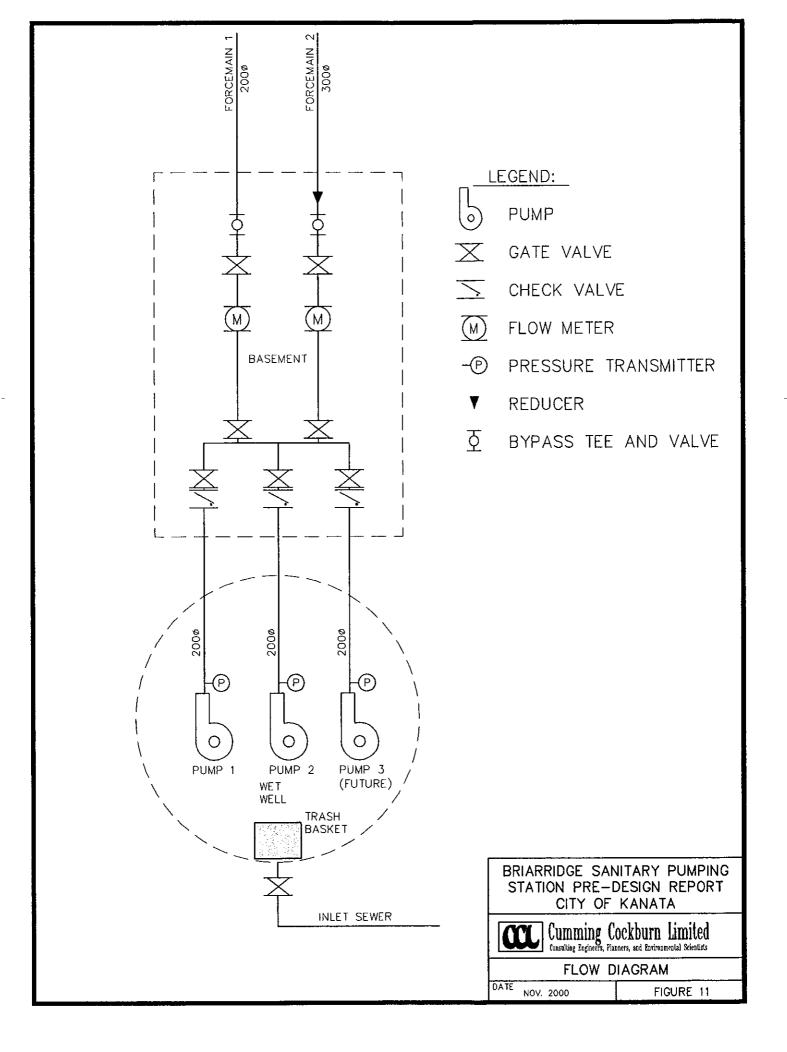
Two boreholes taken in the vicinity of the station indicate that bedrock near the 63 m elevation is immediately overlaid with a thin layer of glacial till and then 4 to 5 metres of very stiff to weathered clay.

A geotechnical report was completed in 1994 by John D. Paterson and Associates Ltd. (report no. SG264-94). The report includes recommendations for municipal services construction, including soil bearing information for the control building and wet well. In particular the report provides design guidelines for the wet well including earth pressure and buoyancy criteria.

It is expected that about half of the wet well excavation will be in solid rock. This rock will have to be removed by blasting. The report will also include guidelines for rock anchor design for the wet well. Soil bearing pressure for the control building and wet well are provided.

6.3 Landscape Architecture


The exterior treatment and arrangement of the pumping station site will be done in such a manner to allow for ease of access and mobility of both vehicles and operation personnel. The landscape treatment should be durable and require very little maintenance, and the type of grass selected should require minimal maintenance.


Page 15

It is recommended that vehicular access to and around the station be on a paved surface. Asphalt surfaces should also be provided for necessary pedestrian movement of operation personnel.

Briarridge Pumping Station Kanata North Tenth Line Development Inc. June 2001 .

APPENDIX "A"

[

DEVELOPMENT CAPACITY ANALYSIS

TOTAL	413.72 172797 3988 4290		rch (EA)		
Other (Roads/ Railway)	46.22	SNO	South March (incl. KNUEA) 2021	779 2994 215 3988	
and	15.85	EMPLOYMENT PROJECTIONS	larch ng		
ITAL Ravines	10.18	MENT PR	South March (excluding KNUEA) 2021	612 129 741	
ENVIRONMENTAL SWM Woodlot Ravines EIS/ Weti	0.97	ЕМРLОҮ	South March- Current (30/06/98	06 0 6	
-	5.77			Commercial Business Park Other TOTAL	
Open Space/ Parks	36.84			Comme Busine Other TOTAL	
Busines Park	52.8 139115 2994				
ccial. N'hood	6.97 17425 469				
COMMERCIAL Commun N'hood Busines Open Park Space	4.83 12075 325				
NAL Churc	1.24 10				:
INSTITUTIONAL Schools Civic Churc Pres.	8.01 4182 90				
School	5.36		South March (incl. KNUEA) 2021/ Buildout	290	
rial. High Resid.	12.81 640	<u>N</u>	South (incl. H t 2021/ B	3121/4290	
RESIDENTIAL Low Med. High Resid. Resid. Resid.	31.57 1105	ECTION	South March South March (excluding (incl. KNUEA KNUEA) 2021/Buildout 2021/ Buildou	3121	
RE Low Resid	a 174.3 a 2545	s PROJ	South M (excludii KNUEA)) 2021/Bui	3121/3121	
	Land Area 174.3 31.57 12.81 Bldg. Area Jobs Units 2545 1105 640	HOUSING PROJECTIONS	South South March South March March- (excluding (incl. KNUEA) Current KNUEA) (30/06/98) 2021/Buildout 2021/ Buildout	8 8 9 3 8	

Note: All land areas are expressed in hectares and Building Areas are expressed in square metres. (1 square metre = 10.76 square feet)

Note: Building area calculations only apply to Commercial and Business Park lands. Note: The assumed rate of growth in the entire South March community (including the current South March community and the KNUEA) is 94 units per year (historical growth rate of the South March community since its initial development).

SOUTH MARCH COMMUNITY (INCLUDING KANATA NORTH URBAN EXPANSION AREA) DEVELOPMENT CAPACITY ANALYSIS

APPENDIX "B"

Π

[

INDUSTRIAL PEAKING FACTORS AND DESIGN FLOW CALCULATIONS

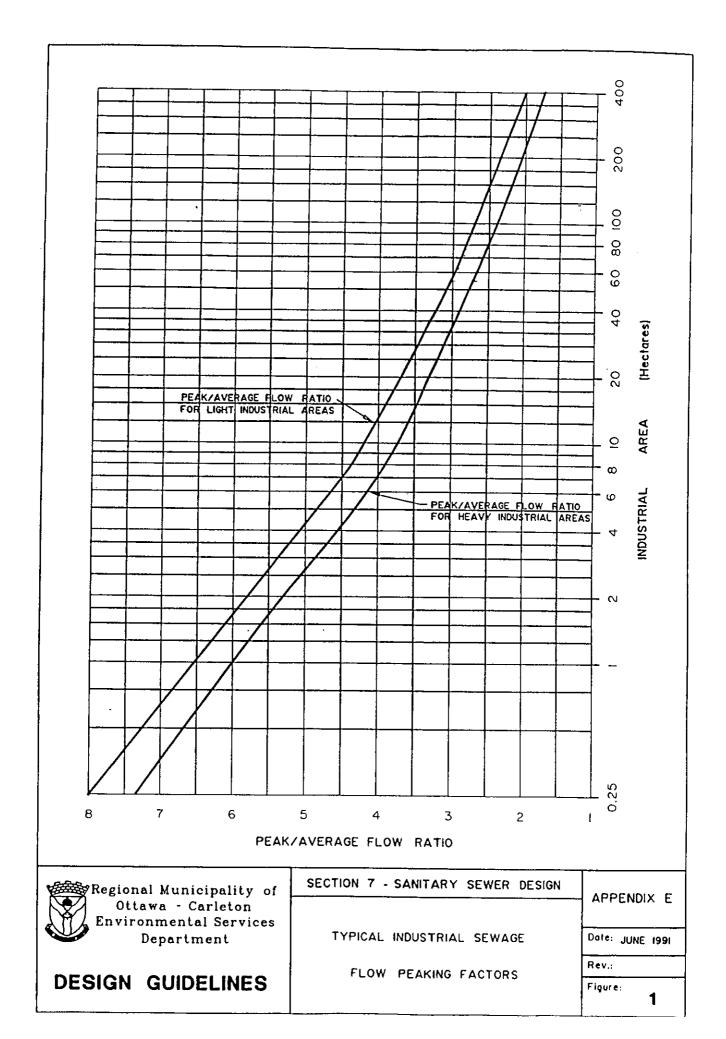
BUILDOUT	
SANITARY FLOW CALCULATIONS TO	BRIARRIDGE PUMPING STATION

		SEAVED AT 1 A V
		NITOPED - PECIDENTIAL DEAVED WITH VARMONIMINISTRIAL DEAVED AT 1.0.
ALION		TAT DEAVED WITU U
KRIDGE PUMPING STATIO		TOPED = PERIDENTI

- -

					3RIARRID (BRIARRIDGE PUMPING STATION	STATION													
				č	MONITOR	ED = RESID.	ENTIAL PEA	KED WITH	(MONITORED = RESIDENTIAL PEAKED WITH HARMON/INDUSTRIAL PEAKED AT 1.0)	IDUSTRIAL	PEAKED A	T1.0)						Project: Date:	5345-LU-U3 Nov. 22, 2000	
	2001										1102	<u> </u>						r11e:	Buildout2	
	1	A D C A	Nava	WV NUISAA	140		INOM	NITODED	(4)		LINITS	ADEA 2	NaCa	DESIGN UN	N (16)		NOM	(90 USACLINOM		
	CIIND			AVG	AK	AVC DWF	AVC DWFIAVC DWF	71	PK DWF ANN. WWF RARE WWF	F RARE W	- Fi		1	AVG	Y	AVG DWF	AVC DWF	PK DWF	AVC DWFLAVC DWFLPK DWF ANN. WWFLRARE WWF	RARE WWF
				W/0 I/I		W/0 I/I					-			N/0 I/I		W/OIN	•			
RESIDENTIAL	88	3.37	290	1.17	5.64	10'1	1.18	3.04	13.81		4.56 5	584 26.9	6261 0	7.81	35.65	6.70	8.04	18.48	24.67	30.59
INDUSTRIAL		0	0	0	0	0	0.00	•		0	0	39.8	~	16.12	64.35	16.9	8.90	8.90	18.05	26.81
TOTALS	88	3.37	290	1.17	5.64	1.01	1.18	3.04	3.81		4-56 5	584 66.7	1929	23.94	100.00	13.61	16.94	27.38	42.72	57.40
	2021				N						BUILDOUT	DOUT							North Automatica Contractory and the second s	
	STINI1	AREA	POPN	DESIGN (1/c)	(16)		MO	MONITORED (1/s)	(8)		UNITS	S AREA	POPN	DESIGN ()(s)	N (J/s)		NOM	MONITORED (1/s)	(5)	
				AVG W/O I/I	PEAK	AVG DWF W/O I/I	AVG DWF AVG DWF W/O I/I	1	PK DWF ANN. WWF RARE WWF	F RARE W				AVG W/O I/I	X	AVC DWF W/O I/I	AVC DWF	PK DWF	AVC DWF AVC DWF PK DWF ANN. WWF RARE WWF W/O I/I	RARE WWI
RESIDENTIAL	843	38.8	2783	11.27	49.98		99.66	25.92	34.85		43.38 1124	24 51.7	3710		65.01	12.88	12.88	33.73	45.62	56.99
INDUSTRIAL		57,45	ō	23.27	85.90	76.9	12.85	12.85	26.06		38.70	75.84	-	30.72	108.79	13.17	16.96	16.96	34.40	51.09
TOTALS	843	96.25	2783	34.55	135.89	19.64	22.51	38.77	16.03		82.08 1124	127.54	3710	45.75	173.80	26.05	29.84	50.69		108.08
											ŀ						Revision No. 1:		Jan. 24, 2001	
									ſī								Revision No. 2:	3:	June 20, 2001	
U	UNIT SANITARY FLOWS	NITA	RY F	LOWS																
SOURCE		Mon	Monitored			Design	gn		;											
Residential (Lpcd)																				
Average		90g				350						Inflow/I	ufiltration A	llowances L	ised For Mon	Inflow/Infiltration Allowances Used For Monitored Events Are:	Are:			
Peak Factor		Harmon (K=0.6)	(K=0.6)			Harmon (K=1.0)	K=1.0)					Алпи	Annual Peak Flow	w =	0.28 I/s	/s				
Unit Population	 	3.3 ppu	ndc									Rarc	Rare Event =		0.50 l/s	/s				
ICI (L/ha/d)	<u> </u>																			
Industrial Average		15000				35000														
Peak Factor		-	non-coinci	(non-coincident peak)		MOE Guidelines	ines													

0.28


0.08 0.20

0.05 0.15 0.28 0.30

Inflow/Inflitration (L/ha/s) Dry Weather Inflow (Low) Wet Weather Event (Typ) Wet Weather Event (Large) Wet Weather Event (Rare)

0.50

SEWER DESIGN SHEET SANITARY

-- -

CUMMING COCKBURN 1770 WOODWARD DRIVE OTTAWA, ONTARIO K2C OP8

PROJECT :

BRIARBROOK PUMPING STATION CITY OF KANATA TENTH LINE DEVELOPMENT INC.

K2C OP8			UEVELOFEK:												
LOCATION		-	RESIDENTIAL		INDUSTRIAL	tIAL	TOTAL		PEAK FI	PEAK FLOWS (1/s)			INFILTRATION	7	PEAK
	FROM	TO	POPN	AVG	AREA	AVG		RESIDENTIAL	IAL	INDUSTRIAL	NAL	TOTAL	AREA	FLOW	~
AREA	НМ	НМ		FLOW (1/s)		FLOW (1/s)	/ FLOW	PK FACT	FLOW	PK FACT	FLOW	FLOW	(Ha)	(5/1)	FLOW (Vs)
AREA 1 (Residential)			610	2.47			2.47						6.10		
AREA 2 (L. Industrial)					3.10	1.2	1.26 1.26						3.10		
AREA 3 (L. Industrial)					27.50	11.14	14 11.14						27.50		
AREA 4 (L. Industrial)					7.00	2.84	34 2.84						7.00		<u> </u>
AREA 5 (L. Industrial)			<u> </u>		10.10	4.09	9 4.09						10.10		
AREA 6 (L. Industrial)			<u>. </u>		9.50	3.85	35 3.85						9.50		
AREA 7 (L. Industrial)					18.64	7.55	55 7.55						18.64		
AREA 8 (Residential)			3100	12.56		0.00	00 12.56			_			45.57		
TOTAL FLOW			3710	15.03	75.84	30.72	72 45.75	3.36	50.53	2.85	87.56	138.09	127.51	35.	35.70
Average Flows													Date:	October	October 16, 2000
Residential Flow/Capita = Industrial Flow = Infiltration Allowance =	0.0042 l/s 35000 l/Ha/d 0.28 l/Ha/s	l/s /Ha/d /Ha/s		Note:	Information Population	Information for Area 8 Taken From Recent MOE Application Population Projections: Area 1 = Medium F	n From Rece	nt MOE Appl Area 1 = Me	MOE Application Area 1 = Medium Res. = 100 p/Ha.	= 100 p/Ha			File: Project:		v D-03
Peaking Factors Residential = Industrial	Harmon Formula MOE Guidelines	ormula delines	II	1+14/(4+P	1+14/(4+P^0.5) Max. of 4.0	. of 4.0		where P is	where P is population in thousands	in thousar	spi		Revision No. 1:	: June 20, 2001	, 2001

-

CUMMING COCKBURN	V.	<u>د</u> ر .	PROTECT .			RRIARREC	RELARGOOK PLIMPING STATION	IPING S	LATION															
OTTAWA, ONTARIO K2C OP8	4	- #	DEVELOPER:	ER:	-01-	CITY OF KANATA TENTH LINE DEVI	CITY OF KANATA TENTH LINE DEVELOPMENT INC.	LOPMEI	VT INC.															
LOCATION		F	RESIDENTIAL	AL	===	INDUSTRIAL	IAL	-	TOTAL		PEAK FL	PEAK FLOWS (Us)			INFILTRATION	LION		PEAK			PROPOSI	PROPOSED SEWER		
	FROM	2	POPN	Zd	AVC	AREA	AREA	AVC	AVC	RESIDENTIAL	[VF	INDUSTRIAL	IAL	TOTAL	AREA	AREA	FLOW	WET W.	CAP	VEL	LCTH.	PIPE	GRADE	TYPE
AREA	HM	HW	INCREM 1	TOTAL	FLOW ID (Us)	INCREM	TOTAL	FLOW (V5)	FLOW (Vs)	PK FACT	FLOW	PK FACT	FLOW	FLOW	INCREM (Ha)	TOTAL (Ha)	(5/1)	FLOW (I/s)	l/s	s/m	(m)	(mm)	%	PIPE
Gravity Sewers AREA 8 (Residential)			3100	3100	12.56	<u></u>			12.56	3.43	43.08				45.57	45.57	12.76	12.76	146.39	1.28		375	<i>0</i> :64	0.64 CONC
AREAS 2 to 6 (ludust.) AREA 1 (Residential)		-	610	610	2.47	57.20	57.20	23.17	25.64	3.93	17.9	3.00	15'69	79.22	63.30	63.30	17.72	96.94	139.55	0.85	8.0	450	0.22	0.22 CONC
	-	4	0	3710	15.03	0.00	57.20	23.17	38.20	3.36	50.53	3.00	12.69	120.05	0.00	108.87	30.48	150.53	162.86	66.0	44.0	450	0.30	0.30 CONC
AREA 7 (Industrial)		শ	0	•	0.00	18.64	18.64	7.55	7.55	0.00	00.0	3.75	28.32	28.32	18.64	18.64	5.22	33.54	34.00	0.67	5.0	250	0.30	0.30 PVC
	4	4 INLET	0	3710	15.03	0.00	75.84	30.72	45.75	3.36	50.53	2.85	87.56	138.09	0.00	127.51	35.70	173.79	188.14	1.15	31.5	450	0.40	0.40 CONC
Overflow Sewer	2 0	Outlet	ц 	Level of Protection is Annual Wet Weather Flow = 80	stection is	Annual W	et Weathe	r Flow = 8	0 I/s.		_								87.34	1.20	31.5	300	0.75	0.75 PVC
							l					······································												
Average Flows Residential Flow/Capita = Industrial Flow = Infitration Allowance =	350 l/c/d 35000 l/Ha/d 0.28 l/Ha/s	/c/d /Ha/d /Ha/s		Notes:		nformation opulation .rea 1 = M	Information for Area 8 Taken From Population Projections: Area 1 = Medium Res. = 100 p/Ha.	} Taken F1 s: . = 100 p/1	om Recent	I I I I 1. Information for Area 8 Taken From Recent MOE Application Projections: 2. Area 1 = Medium Res. = 100 pMa.	lication				Date: File: Project:		Cubber 16, 2000 SanFlow 3345-LD-03	0000		Revision No. 1:	_	June 20, 2001		

SANITARY SEWER DESIGN SHEET

-- -

Information for Area 8 Taken From Recent MOE Application Population Projections:
 Area 1 = Medium Res. # 100 pHa.

1+14/(4+P~0.5) Max. of 4.0

IJ

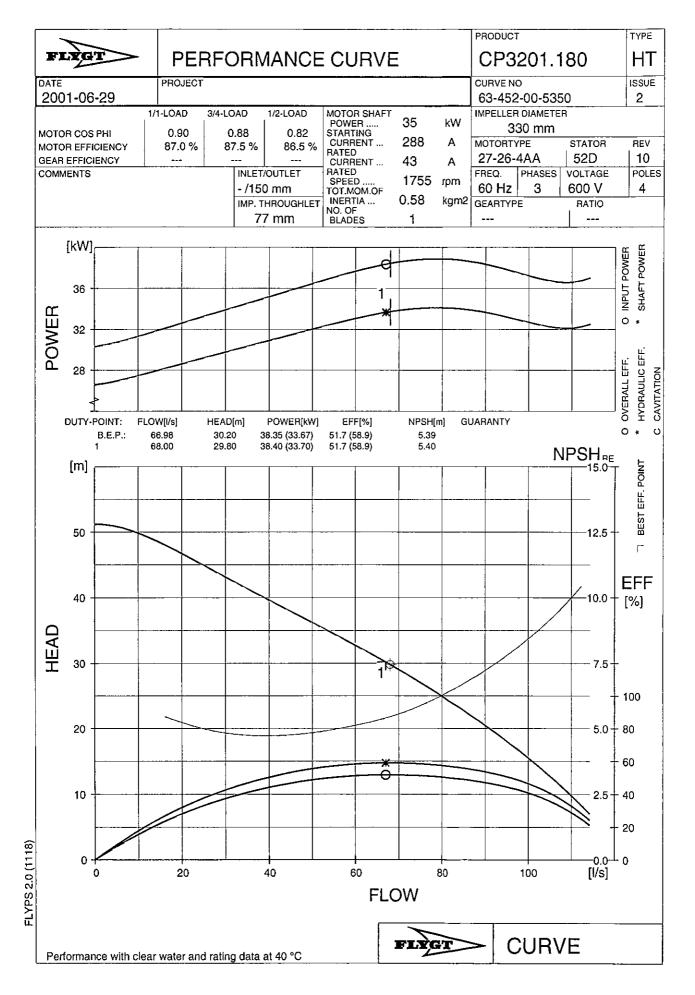
Harmon Formula MOE Guidelines

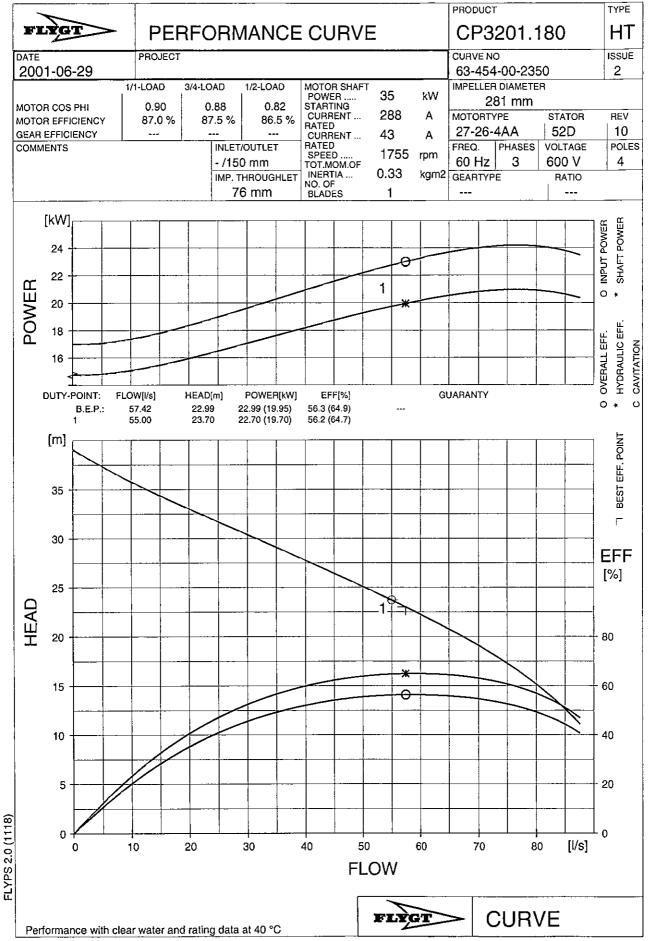
Peaking Factors Residential = Industrial

where P is population in thousands

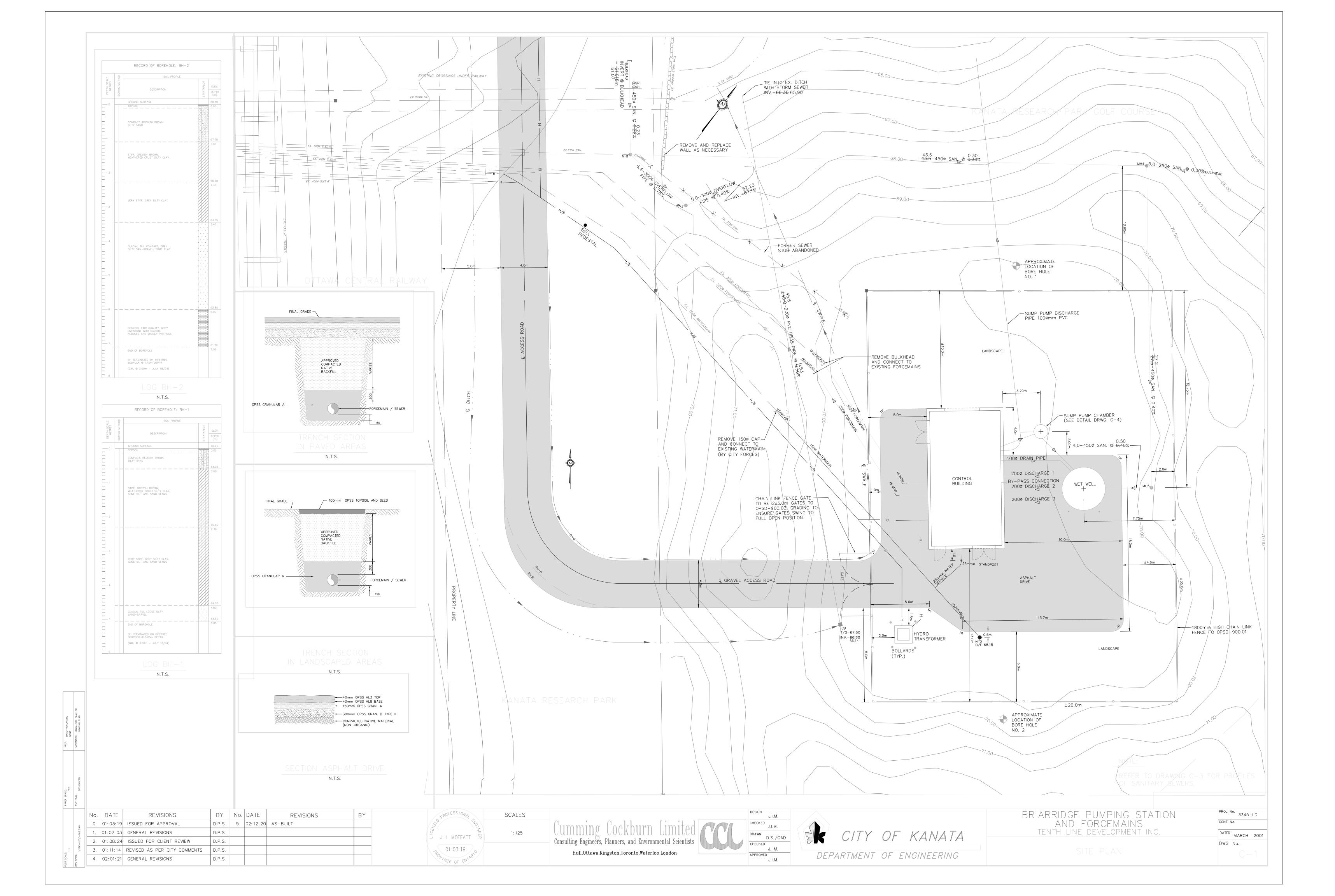
			SANITARY	ſ A R Y	SEWI	VER	DESIGN	GN	SHEET	ЕT							
CUMMING COCKBURN 1770 WOODWARD DRIVE OTTAWA, ONTARIO	LE S		PROJECT		щ	BRIARBR CITY OF F	RBROOK PUMPING STATION OF KANATA	PING ST	ATION			AREAS	,3,&4 AS	INDUSTR	AREAS 2,3,&4 AS INDUSTRIAL AND	[
K2C 0P8			DEVELOPER :	ER :	Ľ	ENTH LI	TENTH LINE DEVELOPMENT INC.	OPMEN	IT INC.			ADD G(DLF COU	RSE AS I	ADD GOLF COURSE AS INDUSTRIAL		
LOCATION			RESIDENTIAL	AL	_	INDUSTRIAL	JAL		TOTAL		PEAK F	PEAK FLOWS (I/s)			INFILTRATION		PEAK
4 9 4	FROM	TO	POPN		AVG	AREA		AVG	AVG	RESIDENTIAL	AL	INDUSTRIAL	凝닏	TOTAL	AREA	FLOW	WET W.
AKEA	МН	НН			(1/s)		Li	(1/s)	r LUW (1/s)	FK FAUL	FLUW	FK FACI	FLUW	FLOW	(H2)	(1/s)	FLOW (1/s)
AREA 1 (Residential)			610		2.47				2.47						6.10		
AREA 2 (L. Industrial)						3.10		1.26	1.26						3.10		
AREA 3 (L. Industrial)		<u> </u>				27.50		11.14	11.14						27.50		
AREA 4 (L. Industrial)		<u> </u>				7.00		2.84	2.84					•	7.00		
AREA 5 (L. Industrial)						10.10		4.09	4.09						10.10		
AREA 6 (L. Industrial)						9.50		3.85	3.85						9.50		
AREA 7 (L. Industrial)						18.64		7.55	7.55						18.64		
GOLF COURSE						20.00		8.10	8.10						20.00		
AREA 8 (Residential)			3100		12.56			0.00	12.56						45.57		
TOTAL FLOW			3710		15.03	95.84		38.82	53.85	3.36	50.53	2.75	106.77	157.30	147.51	41.30	198.60
Average Flows															Date:	1005 30 42-50	
Residential Flow/Capita = Industrial Flow = Infiltration Allowance =	0.0042 I/s 35000 UHa/d 0.28 UHa/s	l/s VHa/d VHa/s		Note:		formation pulation F	Information for Area 8 Taken From Recent MOE Application Population Projections: Area 1 = Medium F	laken Fro	m Recent	.MOE Application Area 1 = Medium Res. = 100 p/Ha.	cation dium Res.	= 100 p/Hz			File: Project:	SanFlow 3345-LD-03	ŝ
Peaking Factors Residential = Industrial	Harmon Formula MOE Guidelines	ormula Ielines	R	<u>+</u>	1+14/(4+P^0.5)		Max. of 4.0		-	where P is population in thousands	opulation	in thousa	spi		Revision No. 1:	June 20, 2001	100

_ _


- -


APPENDIX "C"

Ċ


T

ITT FLYGT PERFORMANCE CURVES

APPENDIX C: GENERAL ARRANGEMENT

APPENDIX D: SURVEY DATA AND CALCULATIONS

RAW SURVEY DATA

PRS87429907110	5025195.07	449919.056	95.23	
1	5023046.9	428082.37	68.049	CP1
2	5023033.86	428074.738	67.656	CP2
3	5023049.53	428080.497	68.549	WETWELLTOP
4	5023032.87	428077.856	67.697	CP3
5	5022545.34	427666.298	74.695	FM1
6	5022545.95	427666.63	74.69	FM1
7	5022545.24	427666.884	74.694	FM1
8	5022542.08	427675.15	74.701	FM2
9	5022541.62	427674.735	74.698	FM2
10	5022542.13	427674.368	74.671	FM2

Basement Floor Elevation: 65.522m *Determined from traverse started at CP3 +/-4.8cm

Height Of Pressure Gauge (Measured From Bottom of Floor): .895m

Elevation of Pressure Gauge : 65.522m+.895m = 66.417 m

Elevation of CP3 determined from closing loop:67.745Error:67.745m-67.697m = .048m

Recorded Data

As-Built WW Bottom (m)

As-Built Top of WW (m)

As-Built WW Height (m)

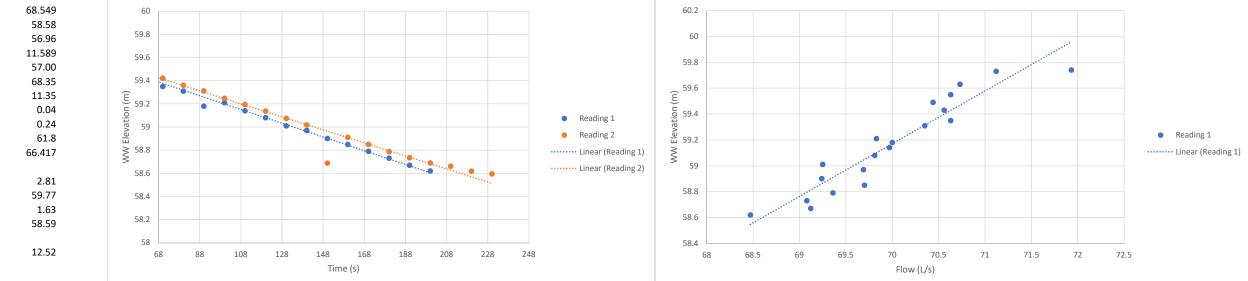
WW Bottom Error (m)

WW Height Error (m)

Pump Start Height (m)

Pump Stop Height (m)

Static Head (m)


Pump Start Elevation (m)

Pump Stop Elevation (m)

Ultrasonic Level Sensor Elev (m)

Pressure Transducer Elev (m)

Reading 1	Start 12:07 PM		20	20	40	50	60	70			100	440	420	120	440	450	460	470	400	100		Stop 12:10 PM		
t (s		10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200	210		
Milltronics flow reading, Q (L/s		71.93	71.12	70.73	70.63	70.44	70.56	70.63	70.35	70	69.83	69.97	69.81	69.25	69.69	69.24	69.7	69.36	69.08	69.12	68.47	50		
h (m		2.78	2.77	2.67	2.59	2.53	2.47	2.39	2.35	2.22	2.25	2.18	2.12	2.05	2.01	1.94	1.89	1.83	1.77	1.71	1.66	1.63		
True WW Elevs (m) 59.77	59.74	59.73	59.63	59.55	59.49	59.43	59.35	59.31	59.18	59.21	59.14	59.08	59.01	58.97	58.9	58.85	58.79	58.73	58.67	58.62	58.59		
Reading 2	Start 1:00 PM	l Approxima	ited																					Stop 1:05 PM Approxima
t (s) O	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200	210	220	230
d (laser reading)(m) 8.739	8.8	8.84	8.89	8.95	9.005	9.06	9.127	9.189	9.238	9.302	9.356	9.412	9.475	9.531	9.861	9.637	9.7	9.762	9.815	9.86	9.888	9.931	9.954
True WW Elevs (m) 59.81	59.749	59.709	59.659	59.599	59.544	59.489	59.422	59.36	59.311	59.247	59.193	59.137	59.074	59.018	58.688	58.912	58.849	58.787	58.734	58.689	58.661	58.618	58.595
Calculated Depth, h (m) 2.85	2.789	2.749	2.699	2.639	2.584	2.529	2.462	2.4	2.351	2.287	2.233	2.177	2.114	2.058	1.728	1.952	1.889	1.827	1.774	1.729	1.701	1.658	1.635
Milltronics Pump Stop Reading (m) Top of WW to Fluid Level @ Pump Stop (m)	1.62 9.969						Time	e vs Eleva	ition										Flow vs E	Elevation				
Top of WW Elev (m)	68.549		60											60.2										
Fluid level Elevation @ Pump Stop (m) Bottom of WW (m)	58.58 56.96		59.8											60										
Surveyed WW Height	11.589	9	59.6											50.0										

SCADA Data																					
S	Start																		Stop		
	12:06 PM																		12:10 PM		
t (s)	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200
RSP1, Q (L/s)	69.2	69.2	70.5	70.5	70.5	70.5	70.5	70.5	70.5	70.5	70.5	69.5	69.5	69.5	69.5	69.5	69.5	69.5	68.5	38.4	38.4
h (m)	2.76	2.76	2.5	2.47	2.37	2.31	2.26	2.21	2.16	2.06	2.06	1.95	1.83	1.78	1.78	1.72	1.72	1.67	1.57	1.57	1.57
True WW Elevs (m)	59.72	59.72	59.46	59.43	59.33	59.27	59.22	59.17	59.12	59.02	59.02	58.91	58.79	58.74	58.74	58.68	58.68	58.63	58.53	58.53	58.53
Pressure (kPa)	91	91	92.8	92.8	92.8	92.8	92.8	92.8	92.8	92.8	92.8	92.8	91.8	91.8	91.8	91.8	91.8	91.8	91.8	0	0
Pressure Head (m)	9.28	9.28	9.47	9.47	9.47	9.47	9.47	9.47	9.47	9.47	9.47	9.47	9.36	9.36	9.36	9.36	9.36	9.36	9.36	0.00	0.00
Pressure Head Correction (m)	2.58	2.58	2.51	2.48	2.38	2.32	2.27	2.22	2.17	2.07	2.07	1.96	1.74	1.69	1.69	1.63	1.63	1.58	1.48	-7.89	-7.89
Pressure Head WW Elevs (m)	59.54	59.54	59.47	59.44	59.34	59.28	59.23	59.18	59.13	59.03	59.03	58.92	58.70	58.65	58.65	58.59	58.59	58.54	58.44	49.07	49.07
S	Start																			Stop	
	1:01 PM																			1:05 PM	
t (s)	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	
RSP1, Q (L/s)	62	69.6	69.6	69.6	69.6	69.6	69.6	69.6	69.6	68.6	68.6	68.6	68.6	68.6	68.6	68	68	68	68	68	
h (m)	2.72	2.72	2.62	2.6	2.53	2.53	2.43	2.37	2.32	2.26	2.17	2.08	2.08	1.94	1.94	1.81	1.71	1.71	1.6	1.6	
True WW Elevs (m)	59.68	59.68	59.58	59.56	59.49	59.49	59.39	59.33	59.28	59.22	59.13	59.04	59.04	58.9	58.9	58.77	58.67	58.67	58.56	58.56	
Pressure (kPa)	101	92.2	92.2	93.7	92.4	92.4	92.4	92.4	92.4	92.4	92.4	92.4	91.1	91.1	91.1	91.2	91.2	91.2	91.2	22.3	
Pressure Head (m)	10.30	9.40	9.40	9.56	9.42	9.42	9.42	9.42	9.42	9.42	9.42	9.42	9.29	9.29	9.29	9.30	9.30	9.30	9.30	2.27	
	3.56	2.67	2.57	2.70	2.50	2.50	2.40	2.34	2.29	2.23	2.14	2.05	1.91	1.77	1.77	1.66	1.56	1.56	1.45	-5.58	
True WW Elevs (m)	60.52	59.63	59.53	59.66	59.46	59.46	59.36	59.30	59.25	59.19	59.10	59.01	58.87	58.73	58.73	58.62	58.52	58.52	58.41	51.38	
	11.77	12.67	12.77	12.63	12.84	12.84	12.94	13.00	13.05	13.11	13.20	13.29	13.42	13.56	13.56	13.68	13.78	13.78	13.89		
		15.48	15.58	15.45	15.65	15.65	15.75	15.81	15.86	15.92	16.01	16.10	16.23	16.37	16.37	16.49	16.59	16.59	16.70		

ted

Discharge Manholes

MH1 (Center of Sandhill and Shirley's Brook Intersection) 300 mm FM Discharge

Angle Deading (Dim to EAA Invert) (m)		ion soo min nii Discharge
Angle Reading (Rim to FM Invert) (m)	3	
MH diameter (m)	1.2	
FM diameter (m)		300 mm installed into existing 350 mm FM, discharging ir
Invert (ground to FM Invert) (m)	2.750	
Obvert (ground to FM Obvert) (m)	2.400	
Reading Angle (degrees)	24	
Top of MH1 elevation (m)	74.693	
Actual Invert Elevation (m)	71.943	
Actual Obvert Elevation (m)	72.293	
MH2 (East of Intersection) 200 mm FM	Discharge	
Top of MH2 elevation (m)	74.69	
FM diameter (m)	0.2	
MH diameter (m)	1.5	
As-built Obvert Elevation (m)	72.765	
Invert Elevation (m)	72.565	
Low Level Elevation (m)	58.59	
As-Built FM Discharge Elevation (m)	66.1	
Suction Head (m)	7.51	
Discharge Head 200mm FM (m)	6.665	
Discharge Head 300mm FM (m)	6.193	
Static Head 200mm FM (m)	14.175	
Static Head 300mm FM (m)	13.703	

nto MH1

APPENDIX E: CERTIFICATE OF APPROVAL

Ministère de l'Environnement CERTIFICATE OF APPROVAL MUNICIPAL AND PRIVATE SEWAGE WORKS NUMBER 3079-4ZVRAG

Tenth Line Development Inc. 210 Gladstone Avenue, Suite 2001 Ottawa, Ontario K2P 0Y6

Site Location: Briarridge Sewage Pumping Station Lots 9 and 10, Concession IV Ottawa City, (Ward 4 - Kanata), Ontario

You have applied in accordance with Section 53 of the Ontario Water Resources Act for approval of:

a sanitary sewage pumping station having an initial design peak flow capacity of 53 litres per second, to be constructed to serve the Briarridge Subdivision and surrounding drainage area of approximately 128 hectares, located approximately 130 metres north-east of Catterick Crescent, in the City of Ottawa, consisting of:

SEWAGE PUMPING STATION

a 3.66 metres diameter by approximately 11 metres depth, fiber reinforced plastic (FRP) wet well, equipped with two (2) submersible pumps (one duty, one standby), each rated at 55 litres per second at a total dynamic head of 23 metres, complete with piping, fittings, valves, by-pass connection, level controls, power supply, and a remote control building of 72 square metres floor area, complete with control room, chemical room, valve room and generator room, housing a 125 kilowatts rated standby power diesel generator set, telemetry system for remote station status indication, and all other items necessary to have a complete and operable pumping station;

SANITARY FORCEMAIN AND OVERFLOW PIPE

external piping consisting of a 300 millimetre diameter emergency overflow pipe from the pumping station to the nearby ditch to the west of the pumping station, and dual forcemains (200 millimetre and 300 millimetre diameter) from the pumping station, through the golf course access easement and railway corridor, along Block 24, Catterick Crescent, Shirley's Brook Drive (south), through the park area (Block 17) and Shirley's Brook Drive (north) for connection to the existing capped forcemain east of Helmsdale Road (for 300 millimetre diameter) and the existing trunk sanitary sewer at Sandhill Road (for 200 millimetre diameter); and

SANITARY SEWERS

to be constructed in the railway corridor, the pumping station access road, the golf course access easement and the pumping station site;

all in accordance with the application from Tenth Line Developments, dated March 20, 2001, including final plans, specifications, hydraulic design data sheets and "Briarridge Sanitary Pumping Station Pre-Design Report, City of Kanata", prepared by Cumming Cockburn Ltd., Consulting Engineers.

For the purpose of this Certificate of Approval and the terms and conditions specified below, the following definitions apply:

1. "Certificate" means this entire Certificate of Approval document, issued in accordance with Section 53 of the *Ontario Water Resources Act*;

2. "Director" means any Ministry employee appointed by the Minister pursuant to Section 5 of the Ontario Water Resources

CONTENT COPY OF ORIGINAL

Act;

3. "Environmental Appeal Board" means the Environmental Review Tribunal established pursuant to the Environmental Review Tribunal Act;

4. "Ministry" means the Ontario Ministry of the Environment;

5. "Owner" means Tenth Line Development Inc.; and

6. "works" means the sewage works described in the Owner's application, this Certificate and in the supporting documentation referred to herein, to the extent approved by this Certificate.

You are hereby notified that this approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

GENERAL CONDITIONS

1. Except as otherwise provided by these Conditions, the Owner shall design, build, install, operate and maintain the works in accordance with the description given in this Certificate, the application for approval of the works and the submitted supporting documents and plans and specifications as listed in this Certificate.

2. Where there is a conflict between a provision of any submitted document referred to in this Certificate and the Conditions of this Certificate, the Conditions in this Certificate shall take precedence, and where there is a conflict between the listed submitted documents, the document bearing the most recent date shall prevail.

The reasons for the imposition of these terms and conditions are as follows:

Conditions No. 1 and No. 2 are imposed to ensure that the works are built and operated in the manner in which they were described for review and upon which approval was granted. These conditions are also included to emphasize the precedence of Conditions in the Certificate and the practice that the Approval is based on the most current document, if several conflicting documents are submitted for review.

In accordance with Section 100 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, Chapter 0.40, as amended, you may by written notice served upon me and the Environmental Appeal Board within 15 days after receipt of this Notice, require a hearing by the Board. Section 101 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, Chapter 0.40, provides that the Notice requiring the hearing shall state:

1. The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;

2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The Certificate of Approval number;
- 6. The date of the Certificate of Approval;
- 7. The name of the Director;
- 8. The municipality within which the works are located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary* Environmental Appeal Board 2300 Yonge St., 12th Floor P.O. Box 2382 Toronto, Ontario M4P 1E4 <u>AND</u>

The Director Section 53, *Ontario Water Resources Act* Ministry of the Environment 2 St. Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5

CONTENT COPY OF ORIGINAL

* Further information on the Environmental Appeal Board's requirements for an appeal can be obtained directly from the Board at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

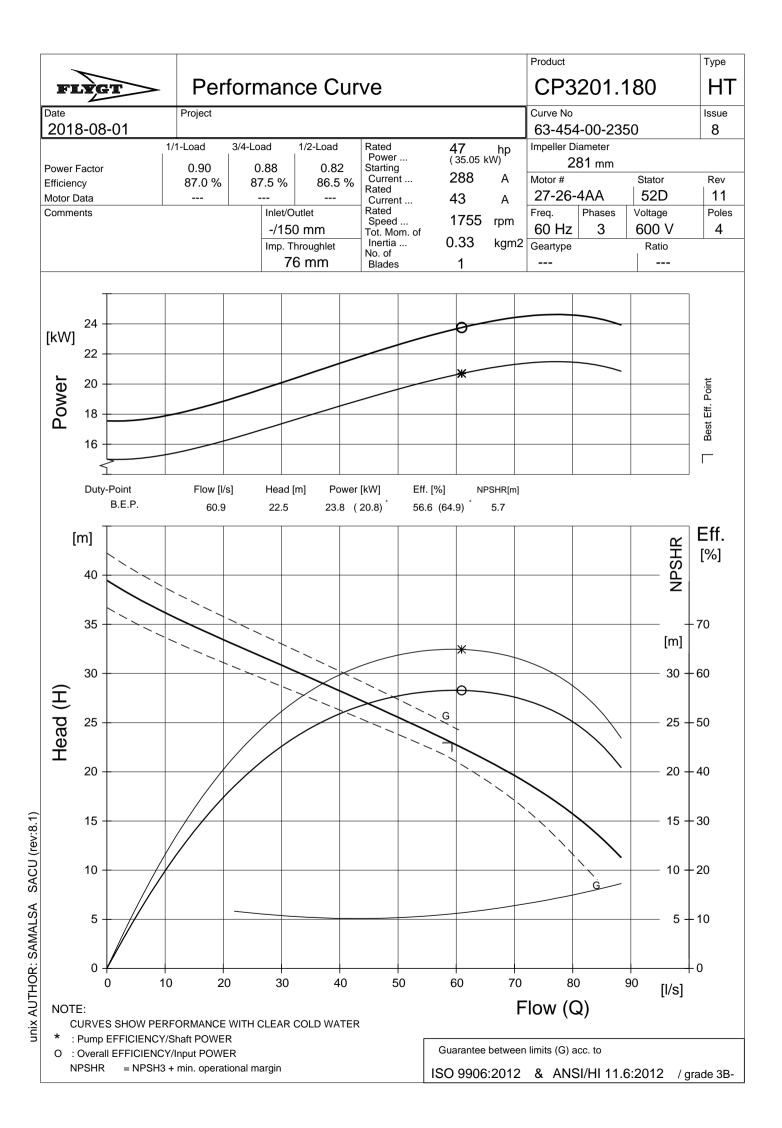
The above noted sewage works are approved under Section 53 of the Ontario Water Resources Act.

DATED AT TORONTO this 24th day of August, 2001

Yvonne Hall, P.Eng. Director Section 53, *Ontario Water Resources Act*

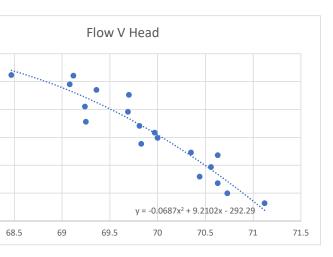
KC/

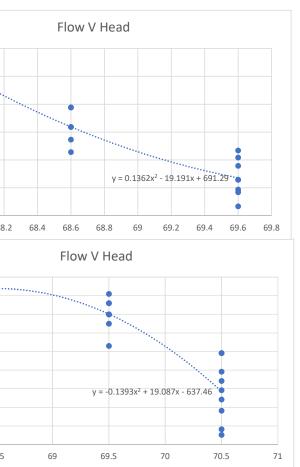
c: District Manager, MOE Ottawa District Office


Jim Moffatt, P. Eng., Cumming Cockburn Limited

P. Pagé, City Clerk & Director, Secretariat Services, The Corporation of the City of Ottawa

R. Phillips, Interim Coordinator - Ottawa West, The Corporation of the City of Ottawa


C. Goulet, P.Eng., MOE Ottawa District Office


APPENDIX F: PUMP CURVE

											_												
Flygt CP 3201.190, 35 kW, 600V	1755 RPM	47 HP																					
Actual Data																							
Flow Rate, Q (L/s)	0	10	20	30	40	50	60	70	80	88.37				0.921									
Head, h (m)	39.472	36.186	33.433	30.849	28.227	25.553	22.738	19.628	15.718	12.13												16.400	
Reduced Head	36.71	33.76	31.11	28.69	26.29	23.8	21.05	17.15	11.62	-	J											16.200	
																						10.200	
Recorded data 1		74.40	70 70	70.00	70.44	70 50	70.00	70.25	70	co 02	co 07	CO 01	co 25	<u> </u>	CO 24	co 7	co ac	60 00	CO 12	CO 47		16.000	
MiniCAS Reading, Q (L/s) 300 mm FM Static Head (m)	12 552	71.12 12.563	70.73 12.663	70.63 12.743	70.44 12.803	70.56 12.863	70.63	70.35	70	69.83	69.97	69.81			69.24	69.7	69.36		69.12 13.623				
()	12.553																					15.800	
200 mm FM Static Head (m)	13.025				13.275																		
Wet Well Elevation (m) 300 mm Pipe Area (m2)	59.740 0.071	59.730	59.630	59.550	59.490	59.430	59.350	59.310	59.180	59.210	59.140	59.080	59.010	58.970	58.900	58.850	58.790	58.730	58.670	58.620		15.600	
	0.071	1.006	1.001	0.999	0.997	0.998	0.999	0.995	0.990	0.988	0.990	0.988	0.980	0.986	0.980	0.986	0.981	0.977	0.978	0.969			
300 mm Velocity (m/s) Friction Losses (m)	0.000	2.248	2.225	2.219	2.208	2.215	2.219	2.203	2.183	2.173	2.181		2.140			2.165				2.095		15.400	
Local Losses (m)	0.000	-	-	0.509	0.506	0.508	0.509	0.505	0.500	0.497	0.499	0.497				0.496		0.487	-	2.095 0.478			
Static Lift		0.516 12.563	0.510			12.863																15.200 – 68	
Total Dynamic Head (m)	12.555			-	12.803 15.517																	00	
Total Dynamic Head (m)		13.327	15.558	13.471	15.517	15.580	15.071	13.091	15.755	15.755	13.833	15.882	13.912	13.303	10.021	10.104	10.140	10.100	10.242	10.240			
SCADA Reading 1																							
Flow Rate, Q (L/s)	69.6	69.6	69.6	69.6	69.6	69.6	69.6	69.6	68.6	68.6	68.6	68.6	68.6	68.6	68	68	68	68	68				
300 mm FM Static Head (m)	12.613	12.713	12.733	12.803	12.803	12.903	12.963	13.013	13.073	13.163	13.253	13.253	13.393	13.393	13.523	13.623	13.623	13.733	13.733	1	16.400 -		
200 mm FM Static Head (m)	13.045	13.305	13.335	13.435	13.495	13.545	13.595	13.645	13.745	13.745	13.855	13.975	14.025	14.025	14.085	14.085	14.135	14.235	14.235		10.400		
Wet Well Elevation (m)	59.680	59.580	59.560	59.490	59.490	59.390	59.330	59.280	59.220	59.130	59.040	59.040	58.900	58.900	58.770	58.670	58.670	58.560	58.560	1	16.200	•	
300 mm Pipe Area (m2)	0.071																						Sec.
300 mm Velocity (m/s)	0.985	0.985	0.985	0.985	0.985	0.985	0.985	0.985	0.970	0.970	0.970	0.970	0.970	0.970	0.962	0.962	0.962	0.962	0.962	1	16.000		
Friction Losses (m)	2.160	2.160	2.160	2.160	2.160	2.160	2.160	2.160	2.102	2.102	2.102	2.102	2.102	2.102	2.069	2.069	2.069	2.069	2.069				
Local Losses (m)	0.494	0.494	0.494	0.494	0.494	0.494	0.494	0.494	0.480	0.480	0.480	0.480	0.480	0.480	0.472	0.472	0.472	0.472	0.472	1	15.800		
Static Lift	12.613	12.713	12.733	12.803	12.803	12.903	12.963	13.013	13.073	13.163	13.253	13.253	13.393	13.393	13.523	13.623	13.623	13.733	13.733				
300 mm Total Dynamic Head (m)	15.267	15.367	15.387	15.457	15.457	15.557	15.617	15.667	15.656	15.746	15.836	15.836	15.976	15.976	16.063	16.163	16.163	16.273	16.273	1	15.600		
SCADA Reading 2																				1	15.400		
Flow Rate, Q (L/s)	69.2	69.2	70.5	70.5	70.5	70.5	70.5	70.5	70.5	70.5	70.5	69.5	69.5	69.5	69.5	69.5	69.5	69.5	68.5				
Wet Well Elevation (m)	59.72	59.72	59.46	59.43	59.33	59.27	59.22	59.17	59.12	59.02	59.02	58.91	58.79	58.74	58.74	58.68	58.68	58.63	58.53	1	15.200		
300 mm Pipe Area (m2)	0.071	39.72	59.40	39.43	39.33	39.27	39.22	59.17	J9.12	39.02	39.02	30.91	36.79	36.74	36.74	36.06	30.00	36.05	30.33		67.	8 68	68.2
300 mm Velocity (m/s)	0.979	0.979	0.997	0.997	0.997	0.997	0.997	0.997	0.997	0.997	0.997	0.983	0.983	0.983	0.983	0.983	0.983	0.983	0.969				
Friction Losses (m)	2.137	2.137	2.212	2.212	2.212	2.212	2.212	2.212	2.212	2.212		2.154	2.154		2.154	2.154	2.154		2.097				
Local Losses (m)	0.488	0.488	0.507	0.507	0.507	0.507	0.507	0.507	0.507	0.507	0.507	0.493		0.493	0.493	0.493	-	0.493			16.400		
Static Lift		12.573						13.123								13.61					16.300		••••••
300 mm Total Dynamic Head (m)	12.373	12.373			12.903 15.682					-	-												
Soo mini rotai Dynamic neau (m)			13.332	13.362	13.082	13./42	13.732	13.042	13.032	13.332	13.352	10.030	10.130	10.200	10.200	10.200	10.200	10.510	10.330		16.200		

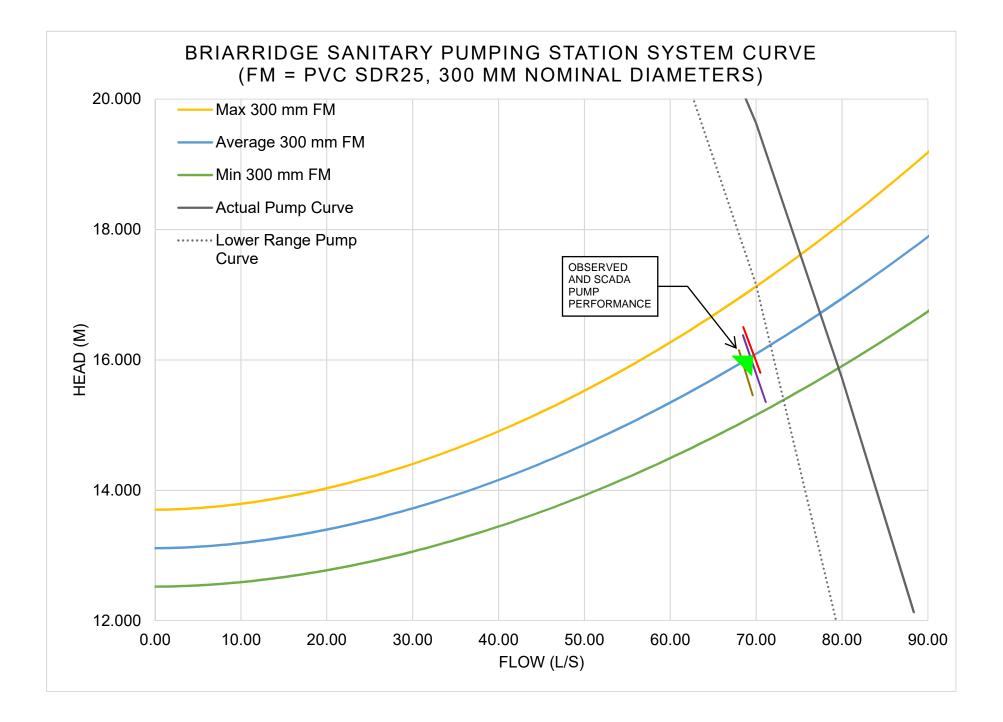
APPENDIX G: SYSTEM CURVE

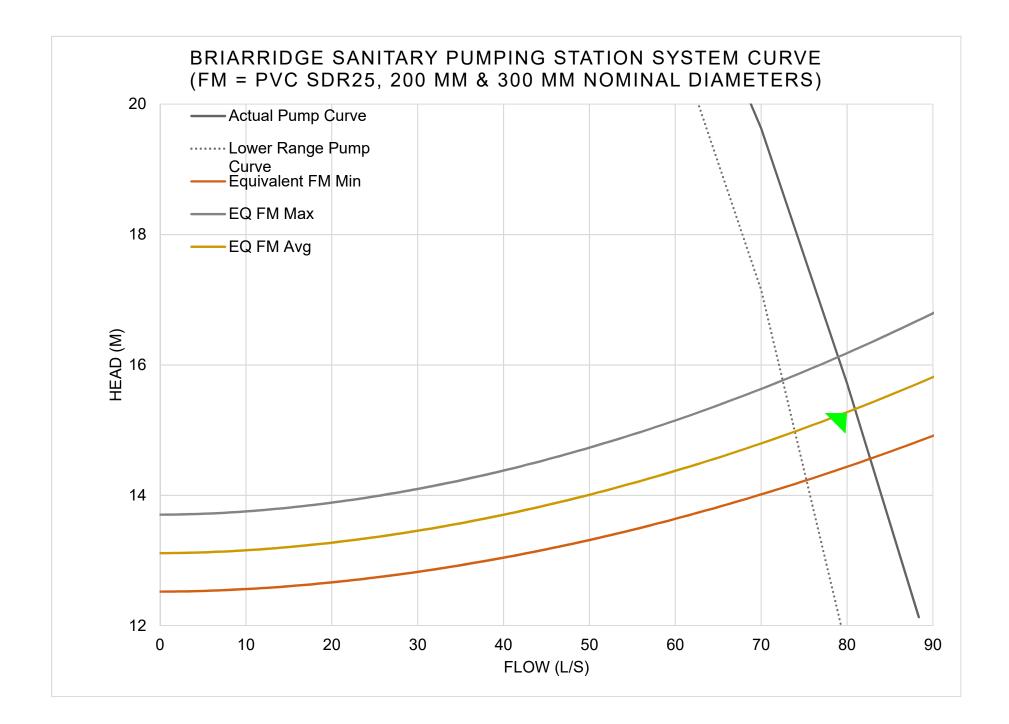
System Curve 200 mm FM Determination of Briarridge PS

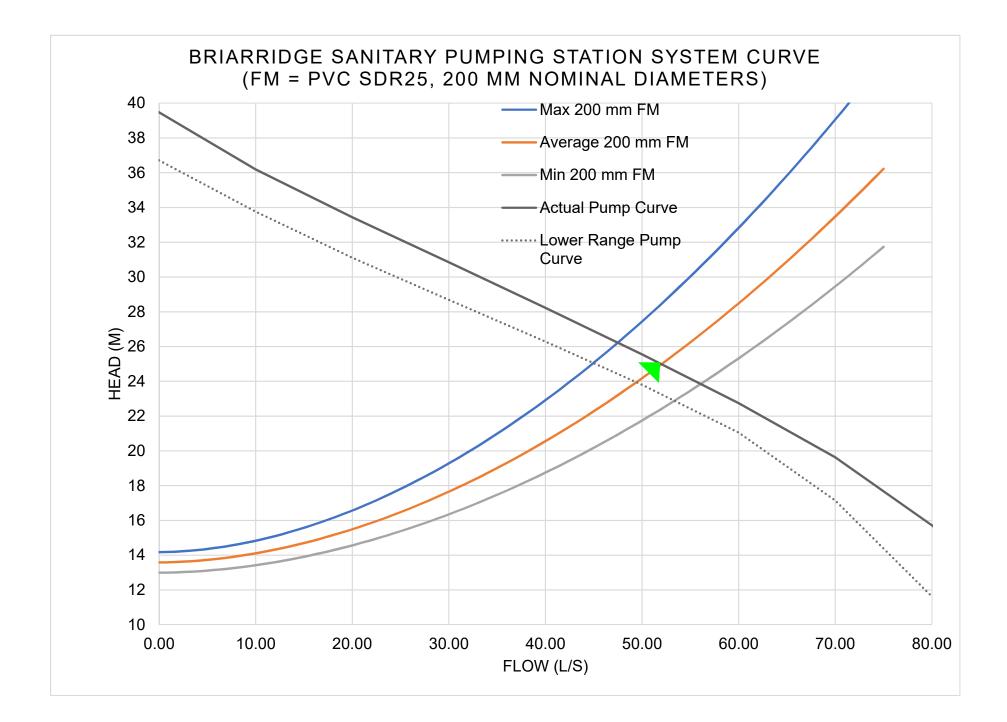
59.77 m

58.59 m

Equivalent FM 72.765 m (obvert) 72.293 m (As-Built Obvert) Elevation at HP Elevation at HP Elevation at HP 72.293 m 750 m 750 m Forcemain Length Forcemain Length Forcemain Length 750 m Forcemain Inner Diameter 212 mm (Nominal Diameter = 200mm, PVC DR25) Forcemain Inner Diameter 308 mm (Nominal Diameter = 300mm, PVC DR25) EQ FM Inner Diameter **347.52** mm


Sump Max Level Sump Min Level Sump Intermediate Level


Sump Min Leve		58.59 ו																						
Sump Intermed	iate Level	59.18 ı	n																					
L					nm FM				300 mm FM				-	Equivalent FM										
	Friction Losses:		ses:	Local Losses:	Sys	stem Curv	ve		Friction Losses:		es:	Local Losses:			/e		Friction Losses:		es: L			System Curve		
-			HW-C		k=						HW-C		k=						HW-C		k=			
· · ·	Velocity (m/s):	100	115	130		Max	Ave	Min	Velocity (m/s):	110	120	130		Max	Ave	Min	,	110	120	130	10	Max	Ave	Min
0.00	0	0	0	0	-	14.175	13.585	12.995	0	0	0	0	0	13.703	13.113	12.523	0	0	0	0	0	13.703	13.113	12.523
0.75	0.0212471								0.010066302			0.00049	5.16465E-05	13.704	13.114	12.524	0.007906996				3.18657E-05	13.703	13.113	12.523
1.50	0.0424942								0.020132604			0.00177	0.000206586	13.706	13.115	12.525	0.015813993		0.00114		0.000127463	13.704	13.114	12.524
2.25	0.0637413								0.030198906				0.000464818	13.709	13.118	12.527	0.023720989				0.000286792	13.706	13.116	12.525
3.00	0.0849884								0.040265207				0.000826344	13.713	13.121	12.530	0.031627986				0.000509852	13.708	13.118	12.527
3.75	0.1062355								0.050331509				0.001291162	13.717	13.125	12.534	0.039534982	0.007311	0.006223	0.005366	0.000796644	13.711	13.120	12.529
4.50	0.127482599								0.060397811				0.001859274	13.723	13.131	12.538	0.047441978				0.001147167	13.714	13.123	12.532
5.25	0.148729699								0.070464113	0.024545	0.020892	0.018013	0.002530678	13.730	13.136	12.544	0.055348975				0.001561422	13.718	13.126	12.535
6.00	0.169976799					14.4283	13.78557	13.15932	0.080530415	0.031431	0.026753	0.023067	0.003305376	13.738	13.143	12.549	0.063255971	0.017459	0.014861	0.012813	0.002039408	13.722	13.130	12.538
6.75	0.191223899					14.49052	13.83494	13.19985	0.090596717	0.039093	0.033274	0.02869	0.004183366	13.746	13.150	12.556	0.071162968	0.021715	0.018483	0.015937	0.002581125	13.727	13.134	12.542
7.50	0.212470999								0.100663018				0.00516465	13.756	13.159	12.563	0.079069964				0.003186575	13.733	13.139	12.546
8.25	0.233718099								0.11072932				0.006249226	13.766	13.168	12.571	0.08697696				0.003855755	13.738	13.144	12.550
9.00	0.254965199								0.120795622				0.007437096	13.777	13.177	12.579	0.094883957				0.004588667	13.745	13.149	12.555
9.75	0.276212299								0.130861924				0.008728258	13.789	13.187	12.588	0.102790953			0.03149	0.005385311	13.751	13.155	12.560
10.50	0.297459399	0.651797	0.5032	0.400949	0.067646861	14.89444	14.1558	13.4636	0.140928226	0.088607	0.075419	0.065028	0.010122714	13.802	13.199	12.598	0.11069795				0.006245686	13.758	13.161	12.565
11.25	0.318706499								0.150994528				0.011620462	13.815	13.210	12.609	0.118604946				0.007169793	13.766	13.168	12.571
12.00	0.339953599			0.5134407	0.088355084	15.09802	14.31767	13.5968	0.16106083	0.113467	0.096579	0.083273	0.013221504	13.830	13.223	12.619	0.126511942	0.063029	0.053648	0.046257	0.008157631	13.774	13.175	12.577
12.75	0.361200699	0.933844	0.7209	0.574449					0.171127131	0.126949	0.108055	0.093168	0.014925838	13.845	13.236	12.631	0.134418939	0.070518	0.060023	0.051753	0.0092092	13.783	13.182	12.584
13.50	0.382447798	1.038121	0.8014	0.6385939	0.111824403	15.32495	14.4982	13.74542	0.181193433	0.141124	0.120121	0.103571	0.016733466	13.861	13.250	12.643	0.142325935	0.078392	0.066725	0.057532	0.010324501	13.792	13.190	12.591
14.25	0.403694898	1.147453	0.8858	0.7058489	0.124594473	15.44705	14.59537	13.82544	0.191259735	0.155987	0.132771	0.114479	0.018644386	13.878	13.264	12.656	0.150232932	0.086648	0.073752	0.063591	0.011503534	13.801	13.198	12.598
15.00	0.424941998	1.2618	0.974	0.7761892	0.138054818	15.57486	14.6971	13.90924	0.201326037	0.171532	0.146003	0.125887	0.0206586	13.895	13.280	12.670	0.158139928	0.095283	0.081102	0.069928	0.012746298	13.811	13.207	12.606
15.75	0.446189098	1.381126	1.0662	0.8495916	0.152205437	15.70833	14.80336	13.9968	0.211392339	0.187753	0.15981	0.137792	0.022776106	13.914	13.296	12.684	0.166046924	0.104294	0.088771	0.076541	0.014052794	13.821	13.216	12.614
16.50	0.467436198	1.505393	1.1621	0.9260338	0.16704633	15.84744	14.91413	14.08808	0.221458641	0.204647	0.174189	0.15019	0.024996906	13.933	13.312	12.698	0.173953921	0.113677	0.096759	0.083428	0.015423021	13.832	13.225	12.622
17.25	0.488683298	1.634568	1.2618	1.0054952	0.182577497	15.99215	15.02938	14.18307	0.231524943	0.222207	0.189136	0.163077	0.027320998	13.953	13.329	12.713	0.181860917	0.123432	0.105061	0.090586	0.016856979	13.843	13.235	12.630
18.00	0.509930398	1.768619	1.3653	1.0879559	0.198798938	16.14242	15.14908	14.28175	0.241591244	0.24043	0.204647	0.176451	0.029748384	13.973	13.347	12.729	0.189767914	0.133555	0.113677	0.098015	0.018354669	13.855	13.245	12.639
18.75	0.531177498	1.907515	1.4725	1.1733969	0.215710653	16.29823	15.27321	14.38411	0.251657546	0.259312	0.220718	0.190309	0.032279062	13.995	13.366	12.746	0.19767491	0.144043	0.122605	0.105713	0.019916091	13.867	13.256	12.649
19.50	0.552424598	2.051227	1.5834	1.2618005	0.233312642	16.45954	15.40175	14.49011	0.261723848	0.278848	0.237347	0.204647	0.034913034	14.017	13.385	12.763	0.205581906	0.154895	0.131842	0.113677	0.021541244	13.879	13.266	12.658
20.25	0.573671698	2.199727	1.6981	1.3531494	0.251604906	16.62633	15.53468	14.59975	0.27179015	0.299036	0.25453	0.219462	0.037650298	14.040	13.405	12.780	0.213488903	0.166109	0.141387	0.121907	0.023230128	13.892	13.278	12.668
21.00	0.594918798	2.352989	1.8164	1.4474272	0.270587443	16.79858	15.67197	14.71301	0.281856452	0.319871	0.272264	0.234753	0.040490856	14.063	13.426	12.798	0.221395899	0.177682	0.151238	0.130401	0.024982744	13.906	13.289	12.678
21.75	0.616165898	2.510986	1.9383	1.5446182	0.290260255	16.97625	15.81361	14.82988	0.291922754	0.341349	0.290546	0.250516	0.043434706	14.088	13.447	12.817	0.229302896	0.189613	0.161393	0.139157	0.026799092	13.919	13.301	12.689
22.50	0.637412997	2.673694	2.064	1.6447073	0.31062334	17.15932	15.95957	14.95033	0.301989055	0.363468	0.309372	0.266749	0.04648185	14.113	13.469	12.836	0.237209892	0.2019	0.171851	0.148174	0.028679171	13.934	13.314	12.700
23.25	0.658660097	2.84109	2.1932	1.74768	0.3316767	17.34777	16.10985	15.07436	0.312055357	0.386224	0.328742	0.283449	0.049632286	14.139	13.491	12.856	0.245116888	0.21454	0.18261	0.157451	0.030622981	13.948	13.326	12.711
24.00	0.679907197	3.013151	2.326	1.8535223	0.353420334	17.54157	16.26441	15.20194	0.322121659	0.409614	0.348651	0.300616	0.052886016	14.166	13.515	12.877	0.253023885	0.227533	0.193669	0.166986	0.032630523	13.963	13.339	12.723
24.75	0.701154297	3.189855	2.4624	1.9622208	0.375854242	17.74071	16.42325	15.33308	0.332187961	0.433636	0.369097	0.318245	0.056243038	14.193	13.538	12.897	0.260930881	0.240877	0.205027	0.176779	0.034701796	13.979	13.353	12.734
25.50	0.722401397	3.371181	2.6024	2.0737625	0.398978424	17.94516	16.58635	15.46774	0.342254263	0.458286	0.390079	0.336335	0.059703354	14.221	13.563	12.919	0.268837877	0.254569	0.216682	0.186828	0.036836801	13.994	13.367	12.747
26.25	0.743648497	3.557109	2.7459	2.1881348	0.42279288	18.1549	16.75369	15.60593	0.352320565	0.483561	0.411592	0.354885	0.063266962	14.250	13.588	12.941	0.276744874	0.268609	0.228632	0.197132	0.039035538	14.011	13.381	12.759
27.00	0.764895597	3.747618	2.893	2.3053257	0.44729761	18.36992	16.92526	15.74762	0.362386867	0.50946	0.433636	0.373892	0.066933864	14.279	13.614	12.964	0.28465187	0.282996	0.240877	0.20769	0.041298006	14.027	13.395	12.772
27.75	0.786142697	3.942691	3.0435	2.4253233	0.472492615	18.59018	17.10104	15.89282	0.372453168	0.535978	0.456208	0.393354	0.070704058	14.310	13.640	12.987	0.292558867	0.297726	0.253415	0.218501	0.043624205	14.044	13.410	12.785
28.50	0.807389797	4.142308	3.1976	2.5481165	0.498377893	18.81569	17.28102	16.04149	0.38251947	0.563115	0.479305	0.413269	0.074577546	14.341	13.667	13.011	0.300465863	0.3128	0.266245	0.229563	0.046014136	14.062	13.425	12.799
29.25	0.828636897	4.346451	3.3552	2.673694	0.524953445	19.0464	17.46518	16.19365	0.392585772	0.590866	0.502927	0.433636	0.078554326	14.372	13.694	13.035	0.308372859	0.328215	0.279367	0.240877	0.048467798	14.080	13.441	12.812
30.00	0.849883997	4.555103	3.5163	2.8020453	0.552219272	19.28232	17.65352	16.34926	0.402652074	0.619231	0.52707	0.454453	0.0826344	14.405	13.723	13.060	0.316279856	0.343971	0.292778	0.25244	0.050985192	14.098	13.457	12.826
30.75	0.871131097	4.768248	3.6808	2.93316	0.580175373	19.52342	17.84601	16.50834	0.412718376	0.648206	0.551733	0.475718	0.086817766	14.438	13.752	13.086	0.324186852	0.360067	0.306478	0.264253	0.053566318	14.117	13.473	12.841
31.50	0.892378196	4.985869	3.8488	3.067028	0.608821747	19.76969	18.04265	16.67085	0.422784678	0.67779	0.576914	0.497429	0.091104426	14.472	13.781	13.112	0.332093849	0.3765	0.320465	0.276313	0.056211174	14.136	13.490	12.856
32.25	0.913625296	5.207949	4.0203	3.2036395	0.638158396	20.02111	18.24342	16.8368	0.432850979	0.70798	0.602611	0.519586	0.095494378	14.506	13.811	13.138	0.340000845	0.39327	0.334739	0.28862	0.058919763	14.155	13.507	12.871
33.00	0.934872396	5.434474	4.1951	3.3429849	0.668185319	20.27766	18.44831	17.00617	0.442917281	0.738775	0.628822	0.542186	0.099987624	14.542	13.842	13.165	0.347907841	0.410376	0.349299	0.301174	0.061692083	14.175	13.524	12.886
33.75	0.956119496	5.665428	4.3734	3.4850549	0.698902516	20.53933	18.65731	17.17896	0.452983583	0.770171	0.655545	0.565227	0.104584162	14.578	13.873	13.193	0.355814838	0.427816	0.364143	0.313974	0.064528134	14.195	13.542	12.902
34.50	0.977366596	5.900797	4.5551	3.6298406	0.730309987	20.80611	18.87041	17.35515	0.463049885	0.802167	0.68278	0.58871	0.109283994	14.614	13.905	13.221	0.363721834	0.445589	0.379272	0.327017	0.067427917	14.216	13.560	12.917
35.25	0.998613696	6.140566	4.7402	3.7773331	0.762407732	21.07797	19.0876	17.53474	0.473116187	0.834762	0.710523	0.612631	0.114087118	14.652	13.938	13.250	0.371628831	0.463695	0.394683	0.340305	0.070391431	14.237	13.578	12.934
36.00	1.019860796	6.384721	4.9287	3.9275238	0.795195752	21.35492	19.30886	17.71772	0.483182489	0.867953	0.738775	0.63699	0.118993536	14.690	13.971	13.279	0.379535827	0.482132	0.410376	0.353836	0.073418677	14.259	13.597	12.950
36.75	1.041107896	6.633249	5.1205	4.0804043	0.828674045	21.63692	19.53419	17.90408	0.493248791	0.901739	0.767532	0.661785	0.124003246	14.729	14.005	13.309	0.387442823	0.500899	0.42635	0.367609	0.076509654	14.280	13.616	12.967
37.50	1.062354996	6.886136	5.3157	4.2359664	0.862842612	21.92398	19.76358	18.09381	0.503315092	0.936117	0.796793	0.687015	0.12911625	14.768	14.039	13.339	0.39534982	0.519996	0.442604	0.381624	0.079664363	14.303	13.635	12.984
38.25	1.083602096	7.143369	5.5143	4.394202	0.897701454	22.21607	19.99701	18.2869	0.513381394	0.971086	0.826558	0.712679	0.134332546	14.808	14.074	13.370	0.403256816	0.53942	0.459138	0.39588	0.082882803	14.325	13.655	13.002
39.00	1.104849196								0.523447696	1.006644	0.856823	0.738775	0.139652136	14.849	14.109	13.401	0.411163813	0.559172	0.47595	0.410376	0.086164975	14.348	13.675	13.020
39.75	1.126096295	7.670825	5.9215	4.718663	0.969489959	22.81531	20.47596	18.68315	0.533513998	1.042789	0.887589	0.765302	0.145075018	14.891	14.146	13.433	0.419070809	0.57925	0.49304	0.425111	0.089510878	14.372	13.696	13.038
40.50	1.147343395	7.941022	6.13	4.8848732	1.006419623	23.12244	20.72147	18.88629	0.5435803	1.07952	0.918854	0.792259	0.150601194	14.933	14.182	13.466	0.426977805	0.599654	0.510406	0.440085	0.092920513	14.396	13.716	13.056


FM1	FM2	Equivalent						
0.061	0.163	0.225						
HW - C	130							

(Nominal Diameter = 350 mm)

41.25	1.168590495 8.215516 6.3419 5.0537267	1.044039561 23.43456 20.97098 19.09277	0.553646602 1.116836 0.950615 0.819644	0.156230662 14.9	976 14.220	13.499	0.434884802 0.620382 0.528049 0.455297	0.096393879	14.420	13.737	13.075
42.00	1.189837595 8.494296 6.5571 5.2252164	1.082349773 23.75165 21.2245 19.30257	0.563712904 1.154734 0.982873 0.847458	0.161963424 15.0	020 14.258	13.532	0.442791798 0.641433 0.545968 0.470747	0.099930977	14.444	13.759	13.094
42.75	1.211084695 8.777349 6.7757 5.3993352	1.121350259 24.0737 21.482 19.51569	0.573779205 1.193212 1.015625 0.875697	0.167799478 15.0	064 14.296	13.566	0.450698795 0.662808 0.564161 0.486434	0.103531806	14.469	13.781	13.113
43.50	1.232331795 9.064666 6.9974 5.5760762	1.161041019 24.40071 21.74348 19.73212	0.583845507 1.232271 1.04887 0.904362	0.173738826 15.1	109 14.336	13.601	0.458605791 0.684504 0.582628 0.502357	0.107196367	14.495	13.803	13.133
44.25	1.253578895 9.356234 7.2225 5.7554327	1.201422053 24.73266 22.00894 19.95185	0.593911809 1.271907 1.082608 0.933451	0.179781466 15.1	155 14.375	13.636	0.466512787 0.706521 0.601369 0.518515	0.110924659	14.520	13.825	13.152
45.00	1.274825995 9.652043 7.4509 5.9373981	1.242493362 25.06954 22.27836 20.17489	0.603978111 1.31212 1.116836 0.962963	0.1859274 15.2	201 14.416	13.672	0.474419784 0.728859 0.620382 0.534909	0.114716683	14.547	13.848	13.173
45.75	1.296073095 9.952083 7.6825 6.1219659	1.284254944 25.41134 22.55174 20.40122	0.614044413 1.352908 1.151553 0.992898	0.192176626 15.2		13.708	0.48232678 0.751516 0.639667 0.551537	0.118572438	14.573	13.871	13.193
46.50	1.317320195 10.25634 7.9174 6.3091298	1.326706801 25.75805 22.82906 20.63084	0.624110715 1.39427 1.186759 1.023253	0.198529146 15.2		13.745	0.490233777 0.774492 0.659223 0.568398	0.122491924	14.600	13.895	13.214
47.25	1.338567295 10.56481 8.1555 6.4988835	1.369848931 26.10966 23.11033 20.86373	0.634177016 1.436204 1.222452 1.054029	0.204984958 15.3		13.782	0.498140773 0.797785 0.67905 0.585494	0.126475143	14.627	13.919	13.235
48.00	1.359814395 10.87748 8.3968 6.6912209	1.413681336 26.46617 23.39552 21.0999	0.644243318 1.478709 1.258631 1.085223	0.211544064 15.3		13.820	0.506047769 0.821396 0.699147 0.602822	0.130522092	14.655	13.943	13.256
48.75	1.381061494 11.19434 8.6414 6.8861359	1.458204015 26.82755 23.68465 21.33934	0.65430962 1.521784 1.295295 1.116836	0.218206462 15.4		13.858	0.513954766 0.845323 0.719513 0.620382	0.134632773	14.683	13.967	13.278
49.50	1.402308594 11.51539 8.8893 7.0836227	1.503416968 27.1938 23.97769 21.58204	0.664375922 1.565427 1.332443 1.148865	0.224972154 15.4		13.897	0.521861762 0.869566 0.740147 0.638174	0.138807186	14.711	13.992	13.300
50.25	1.423555694 11.8406 9.1403 7.2836755	1.549320195 27.56492 24.27464 21.828	0.674442224 1.609637 1.370073 1.181311	0.231841138 15.5	544 14.715	13.936	0.529768759 0.894124 0.76105 0.656197	0.14304533	14.740	14.017	13.322
51.00	1.444802794 12.16997 9.3946 7.4862885	1.595913696 27.94089 24.57549 22.0772	0.684508526 1.654413 1.408185 1.214172	0.238813416 15.5	596 14.760	13.976	0.537675755 0.918996 0.782221 0.67445	0.147347206	14.769	14.043	13.345
51.75	1.466049894 12.5035 9.652 7.6914562	1.643197471 28.3217 24.88024 22.32965	0.694574828 1.699754 1.446777 1.247447	0.245888986 15.6	549 14.806	14.016	0.545582751 0.944182 0.803658 0.692934	0.151712813	14.799	14.068	13.368
52.50	1.487296994 12.84117 9.9127 7.899173	1.69117152 28.70734 25.18888 22.58534	0.704641129 1.745658 1.485849 1.281136	0.25306785 15.7	702 14.852	14.057	0.553489748 0.969681 0.825362 0.711648	0.156142151	14.829	14.095	13.391
53.25	1.508544094 13.18298 10.177 8.1094335	1.739835844 29.09782 25.5014 22.84427	0.714707431 1.792124 1.525399 1.315237	0.260350006 15.7	755 14.899	14.099	0.561396744 0.995492 0.847332 0.73059	0.160635221	14.859	14.121	13.414
54.00	1.529791194 13.52891 10.444 8.3222324	1.789190441 29.4931 25.8178 23.10642	0.724773733 1.839151 1.565427 1.34975	0.267735456 15.8	310 14.946	14.140	0.569303741 1.021615 0.869566 0.749762	0.165192023	14.890	14.148	13.438
54.75	1.551038294 13.87896 10.714 8.5375644	1.839235313 29.8932 26.13806 23.3718	0.734840035 1.886737 1.605932 1.384674	0.275224198 15.8		14.183	0.577210737 1.048048 0.892066 0.769161	0.169812556	14.921	14.175	13.462
55.50	1.572285394 14.23313 10.987 8.7554243	1.889970458 30.2981 26.46219 23.64039	0.744906337 1.934883 1.646912 1.420008	0.282816234 15.9		14.226	0.585117733 1.074792 0.914829 0.788789	0.174496821	14.952	14.202	13.486
56.25	1.593532494 14.59139 11.264 8.9758072	1.941395878 30.70778 26.79018 23.9122	0.754972639 1.983586 1.688366 1.455751	0.290511562 15.9		14.269	0.59302473 1.101846 0.937856 0.808643	0.179244817	14.984	14.230	13.511
57.00	1.614779594 14.95374 11.544 9.1987079	1.993511572 31.12225 27.12201 24.18722	0.765038941 2.032845 1.730294 1.491903	0.298310184 16.0		14.313	0.600931726 1.129208 0.961147 0.828725	0.184056544	15.016	14.258	13.536
	1.636026693 15.32018 11.826 9.4241215										
57.75		2.04631754 31.5415 27.45769 24.46544	0.775105242 2.08266 1.772695 1.528462	0.306212098 16.0		14.358	0.608838723 1.15688 0.9847 0.849032	0.188932003	15.049	14.287	13.561
58.50	1.657273793 15.6907 12.112 9.6520432	2.099813781 31.96551 27.79721 24.74686	0.785171544 2.133029 1.815567 1.565427	0.314217306 16.1		14.403	0.616745719 1.184859 1.008514 0.869566	0.193871194	15.082	14.315	13.586
59.25	1.678520893 16.06529 12.402 9.8824682	2.154000298 32.39429 28.14055 25.03147	0.795237846 2.183951 1.858911 1.602799	0.322325806 16.2		14.448	0.624652715 1.213145 1.032591 0.890326	0.198874116	15.115	14.344	13.612
60.00	1.699767993 16.44394 12.694 10.115392	2.208877088 32.82781 28.48773 25.31927	0.805304148 2.235425 1.902724 1.640576	0.3305376 16.2		14.494	0.632559712 1.241738 1.056928 0.91131	0.203940769	15.149	14.374	13.638
60.75	1.721015093 16.82664 12.989 10.350809	2.264444152 33.26608 28.83872 25.61025	0.81537045 2.287451 1.947006 1.678757	0.338852686 16.3	329 15.399	14.541	0.640466708 1.270637 1.081526 0.932519	0.209071154	15.183	14.404	13.665
61.50	1.742262193 17.21339 13.288 10.588716	2.32070149 33.70909 29.19353 25.90442	0.825436752 2.340027 1.991757 1.717343	0.347271066 16.3	390 15.452	14.588	0.648373705 1.299842 1.106385 0.953952	0.214265271	15.217	14.434	13.691
62.25	1.763509293 17.60418 13.589 10.829108	2.377649103 34.15683 29.55215 26.20176	0.835503053 2.393151 2.036975 1.756331	0.355792738 16.4	452 15.506	14.635	0.656280701 1.329352 1.131503 0.97561	0.219523118	15.252	14.464	13.718
63.00	1.784756393 17.999 13.894 11.07198	2.435286989 34.60929 29.91456 26.50227	0.845569355 2.446824 2.08266 1.795721	0.364417704 16.5	514 15.560	14.683	0.664187697 1.359166 1.15688 0.99749	0.224844698	15.287	14.495	13.745
63.75	1.806003493 18.39785 14.202 11.317328	2.49361515 35.06646 30.28078 26.80594	0.855635657 2.501044 2.12881 1.835513	0.373145962 16.5	577 15.615	14.732	0.672094694 1.389284 1.182515 1.019594	0.230230009	15.323	14.526	13.773
64.50	1.827250593 18.80071 14.513 11.565148	2.552633584 35.52834 30.65079 27.11278	0.865701959 2.555811 2.175426 1.875706	0.381977514 16.6	541 15.670	14.781	0.68000169 1.419706 1.208409 1.041921	0.235679051	15.358	14.557	13.801
65.25	1.848497693 19.20759 14.827 11.815435	2.612342293 35.99493 31.02459 27.42278	0.875768261 2.611122 2.222505 1.916299	0.390912358 16.7		14.830	0.687908687 1.450431 1.234561 1.064469	0.241191825	15.395	14.589	13.829
66.00	1.869744793 19.61847 15.144 12.068185	2.672741276 36.46621 31.40216 27.73593	0.885834563 2.666978 2.270048 1.957292	0.399950496 16.7		14.880	0.695815683 1.481458 1.26097 1.08724	0.246768331	15.431	14.621	13.857
66.75	1.890991892 20.03334 15.465 12.323394	2.733830533 36.94217 31.78351 28.05222	0.895900865 2.723377 2.318053 1.998683	0.409091926 16.8		14.931	0.703722679 1.512786 1.287636 1.110232	0.252408567	15.468	14.653	13.886
67.50	1.912238992 20.45221 15.788 12.581058	2.795610064 37.42282 32.16864 28.37167	0.905967166 2.780319 2.36652 2.040473	0.41833665 16.9		14.982	0.711629676 1.544417 1.314559 1.133445	0.258112536	15.506	14.686	13.915
				0.427684666 16.9					15.543		
68.25	1.933486092 20.87506 16.114 12.841173	2.858079869 37.90814 32.55753 28.69425	0.916033468 2.837803 2.415449 2.08266			15.033	0.719536672 1.576348 1.341738 1.15688	0.263880236		14.719	13.944
69.00	1.954733192 21.30189 16.444 13.103735	2.921239948 38.39813 32.95018 29.01998	0.92609977 2.895827 2.464837 2.125244	0.437135976 17.0		15.085	0.727443668 1.608579 1.369172 1.180534	0.269711667	15.581	14.752	13.973
69.75	1.975980292 21.73269 16.776 13.36874	2.985090302 38.89278 33.34658 29.34883	0.936166072 2.954391 2.514685 2.168224	0.446690578 17.1		15.138	0.735350665 1.64111 1.396861 1.204409	0.27560683	15.620	14.785	14.003
70.50	1.997227392 22.16746 17.112 13.636184	3.049630929 39.39209 33.74674 29.68081	0.946232374 3.013494 2.564991 2.2116	0.456348474 17.1		15.191	0.743257661 1.673941 1.424806 1.228503	0.281565724	15.659	14.819	14.033
71.25	2.018474492 22.60618 17.451 13.906062	3.114861831 39.89605 34.15064 30.01592	0.956298676 3.073135 2.615756 2.25537	0.466109662 17.2		15.244	0.751164658 1.70707 1.453005 1.252817	0.28758835	15.698	14.854	14.063
72.00	2.039721592 23.04886 17.793 14.178372	3.180783006 40.40464 34.55829 30.35416	0.966364977 3.133314 2.666978 2.299535	0.475974144 17.3	312 16.256	15.299	0.759071654 1.740498 1.481458 1.27735	0.293674707	15.737	14.888	14.094
72.75	2.060968692 23.49548 18.137 14.45311	3.247394456 40.91788 34.96967 30.6955	0.976431279 3.194029 2.718657 2.344094	0.485941918 17.3	383 16.318	15.353	0.76697865 1.774224 1.510164 1.302101	0.299824796	15.777	14.923	14.125
73.50	2.082215792 23.94605 18.485 14.730271	3.31469618 41.43574 35.38478 31.03997	0.986497581 3.255279 2.770791 2.389045	0.496012986 17.4	454 16.380	15.408	0.774885647 1.808248 1.539124 1.327071	0.306038617	15.817	14.958	14.156
74.25	2.103462892 24.40054 18.836 15.009853	3.382688178 41.95823 35.80362 31.38754	0.996563883 3.317065 2.823381 2.43439	0.506187346 17.5	526 16.443	15.464	0.782792643 1.842569 1.568337 1.352259	0.312316168	15.858	14.994	14.188
75.00	2.124709991 24.85897 19.19 15.291851	3.45137045 42.48534 36.22618 31.73822	1.006630185 3.379384 2.876425 2.480126	0.516465 17.5	599 16.506	15.520	0.79069964 1.877186 1.597802 1.377665	0.318657452	15.899	15.029	14.219
76.00	2.153039458 25.47631 19.666 15.671601	3.544020572 43.19533 36.79538 32.21062	1.020051921 3.463306 2.947857 2.541716	0.530329216 17.6	597 16.591	15.595	0.801242302 1.923803 1.637481 1.411877	0.327211634	15.954	15.078	14.262
77.00	2.181368925 26.1006 20.148 16.055632	3.637897848 43.9135 37.37118 32.68853	1.033473656 3.548174 3.020094 2.604001	0.544377064 17.7		15.671	0.811784963 1.970946 1.677607 1.446475	0.335879117	16.010	15.126	14.305
78.00	2.209698391 26.73184 20.636 16.443937	3.733002278 44.63984 37.95357 33.17194	1.046895392 3.633986 3.093135 2.666978	0.558608544 17.8		15.749	0.822327625 2.018613 1.71818 1.481458	0.3446599	16.066	15.176	14.349
79.00	2.238027858 27.37002 21.128 16.836506	3.829333862 45.37435 38.54254 33.66084	1.060317128 3.720741 3.166978 2.730647	0.573023655 17.9		15.827	0.832870287 2.066804 1.759198 1.516825	0.353553983	16.123	15.226	14.393
80.00	2.266357324 28.01511 21.626 17.233332	3.9268926 46.117 39.13808 34.15522	1.073738864 3.808437 3.241622 2.795007	0.587622399 18.0		15.906	0.843412949 2.115517 1.800662 1.552575	0.362561367	16.125	15.276	14.438
81.00	2.294686791 28.66711 22.129 17.634407	4.025678492 46.86779 39.74018 34.65509	1.0871606 3.897071 3.317065 2.860056	0.602404775 18.2		15.985	0.853955611 2.164752 1.842569 1.588709	0.371682052	16.239	15.327	14.483
82.00	2.323016257 29.32601 22.638 18.039722	4.125691538 47.6267 40.34882 35.16041	1.100582335 3.986643 3.393305 2.925792	0.617370783 18.3		16.066	0.864498273 2.214507 1.884919 1.625224	0.380916036	16.298	15.379	14.529
83.00	2.351345724 29.99178 23.152 18.449271	4.226931738 48.39372 40.96401 35.6712	1.114004071 4.07715 3.470342 2.992216	0.632520423 18.4		16.148	0.875040935 2.264782 1.927712 1.662121	0.390263322	16.358	15.431	14.575
84.00	2.37967519 30.66443 23.671 18.863046	4.329399092 49.16883 41.58572 36.18745	1.127425807 4.168591 3.548174 3.059324	0.647853695 18.5		16.230	0.885583596 2.315576 1.970946 1.699399	0.399723907	16.418	15.484	14.622
85.00	2.408004657 31.34394 24.196 19.28104	4.4330936 49.95203 42.21396 36.70913	1.140847543 4.260965 3.626799 3.127117	0.663370599 18.6		16.313	0.896126258 2.366888 2.014621 1.737056	0.409297793	16.479	15.537	14.669
86.00	2.436334124 32.03029 24.726 19.703244	4.538015261 50.7433 42.8487 37.23626	1.154269279 4.354269 3.706217 3.195592	0.679071135 18.7		16.398	0.90666892 2.418717 2.058736 1.775093	0.41898498	16.541	15.591	14.717
87.00	2.46466359 32.72347 25.261 20.129651	4.644164077 51.54263 43.48995 37.76882	1.167691014 4.448501 3.786425 3.26475	0.694955303 18.8	346 17.594	16.483	0.917211582 2.471061 2.10329 1.813509	0.428785467	16.603	15.645	14.765
88.00	2.492993057 33.42347 25.801 20.560255	4.751540046 52.35001 44.1377 38.3068	1.18111275 4.543662 3.867422 3.334588	0.711023103 18.9	958 17.691	16.569	0.927754244 2.523921 2.148282 1.852303	0.438699254	16.666	15.700	14.814
89.00	2.521322523 34.13029 26.347 20.995049	4.86014317 53.16543 44.79192 38.85019	1.194534486 4.639748 3.949208 3.405105	0.727274535 19.0	070 17.789	16.655	0.938296906 2.577295 2.193713 1.891474	0.448726342	16.729	15.755	14.863
90.00	2.54965199 34.8439 26.898 21.434024	4.969973447 53.98888 45.45263 39.399	1.207956222 4.736758 4.03178 3.476301	0.743709599 19.1	183 17.888	16.743	0.948839568 2.631183 2.23958 1.931022	0.45886673	16.793	15.811	14.913
91.00	2.577981456 35.56431 27.454 21.877176	5.081030879 54.82034 46.1198 39.95321	1.221377958 4.834691 4.115137 3.548174	0.760328295 19.2	298 17.988	16.832	0.959382229 2.685583 2.285884 1.970946	0.469120419	16.858	15.868	14.963
92.00	2.606310923 36.29148 28.015 22.324495	5.193315464 55.6598 46.79343 40.51281	1.234799693 4.933546 4.199279 3.620723	0.777130623 19.4		16.921	0.969924891 2.740494 2.332623 2.011245	0.479487408	16.923	15.925	15.014
93.00	2.634640389 37.02543 28.582 22.775977	5.306827203 56.50726 47.4735 41.0778	1.248221429 5.03332 4.284203 3.693947	0.794116583 19.5		17.011	0.980467553 2.795917 2.379797 2.05192	0.489967698	16.989	15.983	15.065
94.00	2.662969856 37.76613 29.153 23.231614	5.421566096 57.36269 48.16002 41.64818	1.261643165 5.134012 4.36991 3.767845	0.811286175 19.6		17.102	0.991010215 2.85185 2.427405 2.092969	0.500561288	17.055	16.041	15.117
95.00	2.691299323 38.51357 29.73 23.691399	5.537532143 58.2261 48.85298 42.22393	1.275064901 5.235621 4.456396 3.842416	0.828639399 19.7		17.194	1.001552877 2.908292 2.475447 2.134392	0.511268178	17.123	16.100	15.169
96.00	2.719628789 39.26775 30.313 24.155327	5.654725344 59.09747 49.55235 42.80505	1.288486637 5.338145 4.543662 3.917658	0.846176255 19.8		17.287	1.012095539 2.965242 2.523921 2.176188	0.522088369	17.125	16.159	15.221
97.00	2.747958256 40.02865 30.9 24.62339	5.773145699 59.97679 50.25815 43.39154	1.301908372 5.441584 4.631705 3.993572	0.863896743 20.0		17.380	1.022638201 3.0227 2.572828 2.218356	0.53302186	17.190	16.219	15.274
57.00		5	1.031/000/2 5.TT150T T.031/05 5.55372	5.00000743 20.0	10.003	17.300	0200201 J.0227 2.572020 2.210330	0.0002100	1,.233	10.213	13.274

APPENDIX H: SCADA DATA EMAIL & SAMPLE SCADA DATA

Iqbal, Jebran

From: Sent: To: Subject: Attachments: Rusch, Peter Friday, September 14, 2018 1:25 PM Iqbal, Jebran FW: Request for Information for Briar Ridge Pumping Station briar_storm_event.xlsx; Briar_scada_16-30.xlsx

From: Gauthier, Sebastien <sebastien.gauthier@ottawa.ca>
Sent: Friday, August 17, 2018 8:47 AM
To: Rusch, Peter <peter.rusch@hatch.com>
Subject: RE: Request for Information for Briar Ridge Pumping Station

Good morning,

My apologies for the wait. Attached is the SCADA data you had requested.

Regards,

Sebastien

From: Rusch, Peter <<u>peter.rusch@hatch.com</u>>
Sent: Friday, August 17, 2018 8:39 AM
To: Gauthier, Sebastien <<u>sebastien.gauthier@ottawa.ca</u>>
Cc: Zaknoun, Hasnaa <<u>hasnaa.zaknoun@ottawa.ca</u>>; lqbal, Jebran <<u>jebran.iqbal@hatch.com</u>>
Subject: RE: Request for Information for Briar Ridge Pumping Station

Good morning & Happy Friday!

We have, in the meantime been able to obtain pump curves from the manufacturer.

We would appreciate an update on the status of the SCADA data request.

Kind regards,

Peter

From: Gauthier, Sebastien <<u>sebastien.gauthier@ottawa.ca</u>>
Sent: Friday, August 17, 2018 8:35 AM
To: Rusch, Peter <<u>peter.rusch@hatch.com</u>>
Cc: Zaknoun, Hasnaa <<u>hasnaa.zaknoun@ottawa.ca</u>>
Subject: RE: Request for Information for Briar Ridge Pumping Station

We have not been able to locate any such pump curves for this particular station. We will continue trying to locate them. If and when we find them they will be sent immediately.

Sebastien Gauthier Engineering Stdt II - Union 40hrs Public Works & Enviro Services Dept. Wastewater Collection Proc. Eng. Unit GREEN'S CREEK DR, 800 ext. 22608

From: Zaknoun, Hasnaa
Sent: Friday, August 10, 2018 10:29 AM
To: Gauthier, Sebastien <<u>sebastien.gauthier@ottawa.ca</u>>
Subject: FW: Request for Information for Briar Ridge Pumping Station

Just following up on the pump curves, have you sent them?

Hasnaa Zaknoun

From: Rusch, Peter peter.rusch@hatch.com>
Sent: Wednesday, August 01, 2018 2:22 PM
To: Zaknoun, Hasnaa <<u>hasnaa.zaknoun@ottawa.ca</u>>; Procyshen, Douglas <<u>Douglas.Procyshen@ottawa.ca</u>>
Cc: Laberge, Scott <<u>Scott.Laberge@ottawa.ca</u>>; Gauthier, Sebastien <<u>sebastien.gauthier@ottawa.ca</u>>; Iqbal, Jebran
<<u>jebran.iqbal@hatch.com</u>>
Subject: RE: Request for Information for Briar Ridge Pumping Station

Hi Doug and Hasnaa:

Firstly: thank you for arranging access for us last week at the pumping station, we have reviewed the information we have gathered and seems that we have collected all the data that we required from the field visit.

We would like to obtain the following info:

While we have asked Flygt for the actual pump curves based on when the pumps were sold, we have not received them as yet.

Does the City have the actual curves – and were there pump tests done for these pumps? If so, we would appreciate a copy of both.

Was there an issue with one of the pumps initially? As per the information we have from Flygt, it appears that the pumps were manufactured in different years, although it is not known to us when in the years.

There was We (read I) missed that the station was set to have one of the pumps run only, and hence I need a bit more extensive SCADA data – as detailed below.

SCADA data:

We request the following SCADA data for the pumping station for two weeks, starting with Monday, July 16, 2018 at midnight, and ending on Sunday, July 29, at midnight.

Since we do not know if both pumps were used in this timeframe, we also request a similar SCADA data set for when the other pump is running.

Thirdly, we are requesting a SCADA data set for say 72 h, starting just before a heavy rainfall event in the catchment of the PS.

Scott:

We noticed in the station that the stairs down to the basement were rather slippery – this may be something that may require attending to.

Kind regards,

Peter

From: Zaknoun, Hasnaa <<u>hasnaa.zaknoun@ottawa.ca</u>>
Sent: Tuesday, June 26, 2018 4:41 PM
To: Gammie, Colleen <<u>colleen.gammie@hatch.com</u>>
Cc: Laberge, Scott <<u>Scott.Laberge@ottawa.ca</u>>; Rusch, Peter <<u>peter.rusch@hatch.com</u>>; Gauthier, Sebastien
<<u>sebastien.gauthier@ottawa.ca</u>>; Procyshen, Douglas <<u>Douglas.Procyshen@ottawa.ca</u>>;
Subject: RE: Request for Information for Briar Ridge Pumping Station

Hello Colleen,

I just forwarded you the as-built drawings for this station. As for the SCADA data, I need you to be a bit more specific as to what exactly you need. Please contact Doug (CCed) for coordinating access to the station. Thanks

Hasnaa Zaknoun

From: Gammie, Colleen <<u>colleen.gammie@hatch.com</u>>
Sent: Tuesday, June 26, 2018 8:52 AM
To: Zaknoun, Hasnaa <<u>hasnaa.zaknoun@ottawa.ca</u>>
Cc: Laberge, Scott <<u>Scott.Laberge@ottawa.ca</u>>; Rusch, Peter <<u>peter.rusch@hatch.com</u>>
Subject: RE: Request for Information for Briar Ridge Pumping Station

Good morning Hasnaa,

Following up on the request below. Please give me a call if you have any questions.

Thank you,

Colleen Gammie, EIT Project Associate / Infrastructure

Tel: +1 289 288-2705 5035 South Service Road, Sixth Floor, Burlington Ontario Canada L7L 6M9

From: Gammie, Colleen
Sent: Thursday, June 14, 2018 9:53 AM
To: 'hasnaa.zaknoun@ottawa.ca' <<u>hasnaa.zaknoun@ottawa.ca</u>>
Cc: 'Scott.Laberge@ottawa.ca' <<u>Scott.Laberge@ottawa.ca</u>>
Subject: Request for Information for Briar Ridge Pumping Station

Good morning Hasnaa,

Hatch has been retained by David Schaeffer Engineering Ltd. on behalf of Minto to perform investigations into the pumping capacity of (and an evaluation of inflow into) the Briar Ridge Pump Station (BRPS), situated in the west end of the City of Ottawa (Kanata). As part of the capacity confirmation we would like to determine the peak hourly inflow rate from SCADA data.

Hatch is requesting the following information from the City of Ottawa, at your earliest convenience:

- As-built drawings for the layout of the pumping station, including forcemain, in either PDF of Tiff
- Available SCADA information (and format)

Hatch would like to visit the site as early as next week to confirm layout and certain elevations as part of our work, and would like to coordinate with the City of Ottawa to facilitate entry into the station building and opening of maintenance holes and other necessary structures.

Please let me know if this is possible at your earliest convenience.

Thank you,

Colleen Gammie, EIT Project Associate / Infrastructure

Tel: +1 289 288-2705 5035 South Service Road, Sixth Floor, Burlington Ontario Canada L7L 6M9

ΗΔΤCΗ

NOTICE - This message from Hatch is intended only for the use of the individual or entity to which it is addressed and may contain information which is privileged, confidential or proprietary. Internet communications cannot be guaranteed to be secure or error-free as information could be intercepted, corrupted, lost, arrive late or contain viruses. By communicating with us via e-mail, you accept such risks. When addressed to our clients, any information, drawings, opinions or advice (collectively, "information") contained in this e-mail is subject to the terms and conditions expressed in the governing agreements. Where no such agreement exists, the recipient shall neither rely upon nor disclose to others, such information without our written consent. Unless otherwise agreed, we do not assume any liability with respect to the accuracy or completeness of the information set out in this e-mail. If you have received this message in error, please notify us immediately by return e-mail and destroy and delete the message from your computer.

.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

י י

ı.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Description Data Type Hi Engineeri Lo Engineer Eng Units	BRIA: WEIBRIA DoubleFloaDoul ng 327.67	A: FIT1 D BRI	A: RSFBRI/ bleFloaDou 1 0	A: RSF BRIA	.: PIT1 DIS BR	IA: FIT2 DIS0 ubleFloat 3,277 0	2FIAAACTBRIA.F_CV CHARGE FLOW ACTUAL (F	_CV)
	WW level Flow	v 300mm RSF	P1 RSF	2 Press	sure kPa Flo	w 200mm FN	Л I/s	
TimeStamp Time Zone	OPSCP1.VOPS	CP1.WWOPS	SCP1.FOPS	SCP1.FOPS	CP1.WW0 [°] OP	SCP1.WW02	2FIAAACTBRIA.F_CV	
7/24/2018 12:06 GMT-4.0	2.76	69.2	1	0	91	0		
7/24/2018 12:07 GMT-4.0	2.76	69.2	1	0	91	0		
7/24/2018 12:07 GMT-4.0	<no data=""> <no< td=""><td>Data> <no< td=""><td>Data> <no< td=""><td>Data> <no< td=""><td>Data> <n< td=""><td>o Data></td><td></td><td></td></n<></td></no<></td></no<></td></no<></td></no<></no>	Data> <no< td=""><td>Data> <no< td=""><td>Data> <no< td=""><td>Data> <n< td=""><td>o Data></td><td></td><td></td></n<></td></no<></td></no<></td></no<>	Data> <no< td=""><td>Data> <no< td=""><td>Data> <n< td=""><td>o Data></td><td></td><td></td></n<></td></no<></td></no<>	Data> <no< td=""><td>Data> <n< td=""><td>o Data></td><td></td><td></td></n<></td></no<>	Data> <n< td=""><td>o Data></td><td></td><td></td></n<>	o Data>		
7/24/2018 12:07 GMT-4.0	<no data=""> <no< td=""><td>Data> <no< td=""><td>Data> <no< td=""><td>Data> <no< td=""><td>Data> <n< td=""><td>o Data></td><td></td><td></td></n<></td></no<></td></no<></td></no<></td></no<></no>	Data> <no< td=""><td>Data> <no< td=""><td>Data> <no< td=""><td>Data> <n< td=""><td>o Data></td><td></td><td></td></n<></td></no<></td></no<></td></no<>	Data> <no< td=""><td>Data> <no< td=""><td>Data> <n< td=""><td>o Data></td><td></td><td></td></n<></td></no<></td></no<>	Data> <no< td=""><td>Data> <n< td=""><td>o Data></td><td></td><td></td></n<></td></no<>	Data> <n< td=""><td>o Data></td><td></td><td></td></n<>	o Data>		
7/24/2018 12:07 GMT-4.0	2.5	70.5	1	0	92.8	0		
7/24/2018 12:07 GMT-4.0	2.47	70.5	1	0	92.8	0		
7/24/2018 12:07 GMT-4.0	2.37	70.5	1	0	92.8	0		
7/24/2018 12:08 GMT-4.0	2.31	70.5	1	0	92.8	0		
7/24/2018 12:08 GMT-4.0	2.26	70.5	1	0	92.8	0		
7/24/2018 12:08 GMT-4.0	2.21	70.5	1	0	92.8	0		
7/24/2018 12:08 GMT-4.0	2.16	70.5	1	0	92.8	0		
7/24/2018 12:08 GMT-4.0	2.06	70.5	1	0	92.8	0		
7/24/2018 12:08 GMT-4.0	2.06	70.5	1	0	92.8	0		
7/24/2018 12:09 GMT-4.0	1.95	69.5	1	0	92.8	0		
7/24/2018 12:09 GMT-4.0	1.83	69.5	1	0	91.8	0		
7/24/2018 12:09 GMT-4.0	1.78	69.5	1	0	91.8	0		
7/24/2018 12:09 GMT-4.0	1.78	69.5	1	0	91.8	0		
7/24/2018 12:09 GMT-4.0	1.72	69.5	1	0	91.8	0		
7/24/2018 12:09 GMT-4.0	1.72	69.5	1	0	91.8	0		
7/24/2018 12:10 GMT-4.0	1.67	69.5	1	0	91.8	0		
7/24/2018 12:10 GMT-4.0	1.57	68.5	0	0	91.8	0		
7/24/2018 12:10 GMT-4.0	1.57	38.4	0	0	0	0		
7/24/2018 12:10 GMT-4.0	1.57	38.4	0	0	0	0		
7/24/2018 12:10 GMT-4.0	1.57	0	0	0	21	0		
7/24/2018 12:10 GMT-4.0	1.57	0	0	0	22.4	0		

APPENDIX I: BRIAR RIDGE PUMP STATION CAPACITY TABLE (ATTRIBUTED TO NOVATECH)

COMMUNITY DESIGN PLAN

Table C-4: Briar Ridge Pump Station (BRPS) - Capacity Analysis

PROJECT :		-	112117
DESIGNED I	BY:		ARM
CHECKED B	Y:		CJR
DATE:	Mar-16		

Design Data

	Design	Theoretical		No. of	Pump li	npellers	Rated
	Area	Peak Flow	Forcemains	Pumps	Model	Dia	Capacity
	(ha)	(L/s)	(mm)	(Qty)		(mm)	(L/s)
Installed Design *	128	53	200 & 300	2	454	281	55
Ultimate Design at Build-Out **	128	173.8	200 & 300	3	452	330	183

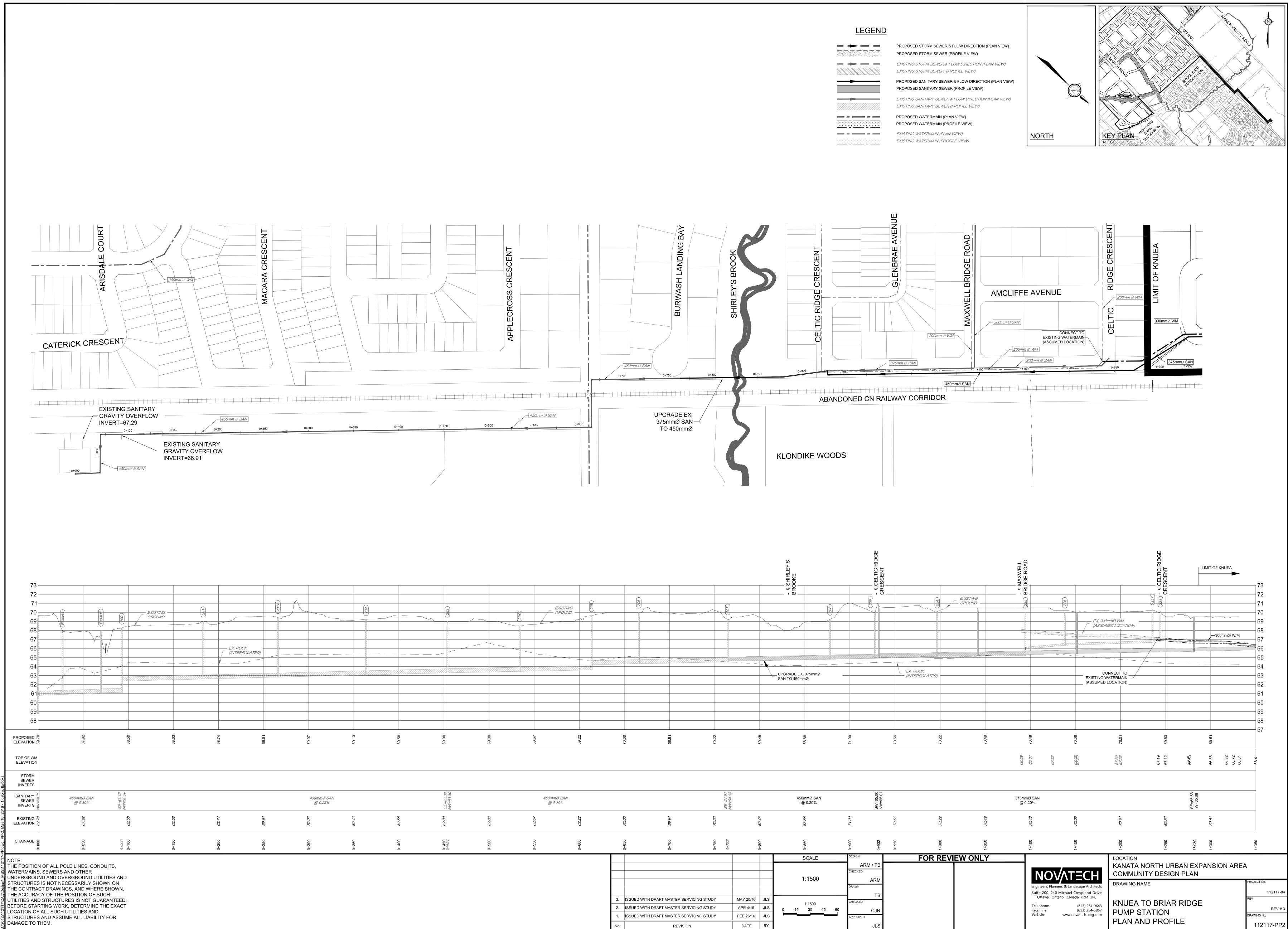
*Installed Design approved per MOE Certificate of Approval 3079-4ZVRAG, dated August 24, 2001 **Refer to Cumming Cockburn Limited "Briarridge Sanitary Pumping Station Pre-Design Report, City of Kanata" June, 2001

Existing (Current) Flows

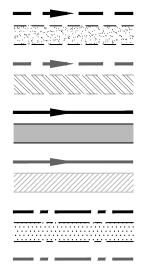
Based on existing conditions (as determined by monitored data provided by the City & aerial imagery) and full build out of existing design drainage area.

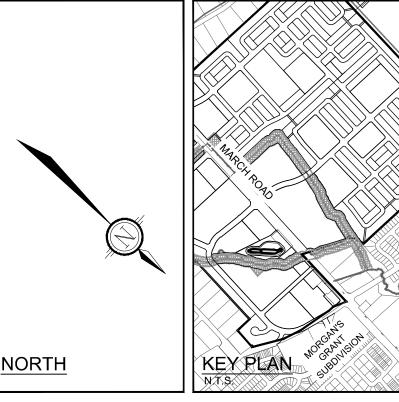
	BF	RPS Observe	ed Flows (Pe	er City of Otta	wa SCADA)	-				-	Theoret	ical Desigr	n Flows (B	uild out o	of design	drainage	area)		
Note	Date	Max observed Inflow	Peak I/I	Avg DWF	Peak DWF	Peak I/I + Peak DWF	Units	Total Area	1/1		F	Populatior	ı			I	CI		Total
								****	0.28 L/s/ha	Area	Рор	Avg	PF	Peak	Area	Avg	PF	Peak	
		(L/s)	(L/s)		(L/s)	(L/s)	(Qty)	(ha)	(L/s)		(pers)	(L/s)		(L/s)	(ha)	(L/s)		(L/s)	(L/s)
BRPS Purr	np Station Observed	l Flows																	
Typical	Winter-16	23.3	4.43	11.1	18.9 ***	23.3													
Typical	Jan-15 to Dec-15	29.9	12.56	10.2	17.3 ***	29.9													
Event	Jun-14	37.3	20.64	9.8	16.7 ***	37.3													
Typical	Winter -14	27.1	9.25	10.5	17.9 ***	27.1													
Event	Apr-13	23.1	12.6		18.7	31.3													
Typical	Jan-13			10.9	17.5		1131	81.1	22.72		3442	13.94	3.39	47.28	8.68	3.52	1.5	5.27	75.28
Event	Apr-11	31.9	23		18.7	41.7													
Event	Jul-09	43.7	34.7		12.9	47.6													
Event	Sep-04	43.4	41.1		4.8	45.9	261	18.7	5.24		759	3.07	3.87	11.91		0.00	1.5	0.00	17.15
	*** Note: Peaking ****Note: Total A	rea based o					nformation	used to calcu	ulate design l	/1									
	out of Design Drain	3					1			1	1								
	ows - Full Buildout of							49.4	13.84	10.45	680	2.75	3.32	9.15	32.32	13.09	3.3	43.21	66.20
Existing Fl	ows - Observed as c	of March 20	16					81.1	22.72		·			18.87					41.59
Distribu	ution of Total FI	ows on F	ull Buildo	out	Bas	sed on 65per	s/ha of unc	leveloped res	sidential area	\langle			То	tal Flows	Tributary	/ to BRPS	on Full B	suildout =	107.79
					Existing Flows					<u> </u>	Theoret	ical Desigr	n Flows (B	uild out o	of desian	drainage	area)		
					Peak DWF	Developed		Total Area	1/1			opulation				, i i i i i i i i i i i i i i i i i i i			Total
	Note		Condition		Pro-Rated	Area		*	0.28 L/s/ha	Area	Рор	Avg	PF	Peak	Area	Avg	PF	Peak	
					(L/s)	(ha)		(ha)	(L/s)		(pers)	(L/s)		(L/s)	(ha)	(L/s)		(L/s)	(L/s)
	Dood Woot		Existing		9.29	39.95		49.02	13.73	9.07	590	2.39	3.32	7.94					30.95
Klondike F	Road west							1		1	1			1	1110	4		1	04.00
Klondike F Klondike F			Future					19.18	5.37						14.18	5.74	3.3	18.956	24.33
Klondike F			3					19.18 19.80	5.37 5.54						14.18 18.14	5.74 7.35	3.3 3.3	18.956 24.25	24.33 29.79
Klondike F March Va	Road East		Future		9.58	41.19				1.38	90	0.36	3.32	1.21					

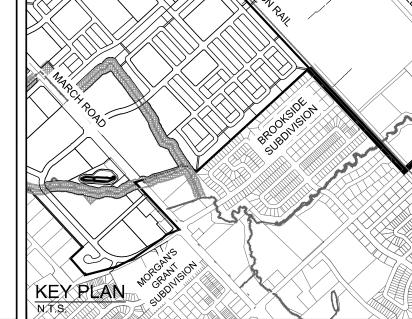
*Excluding Park and Open Space

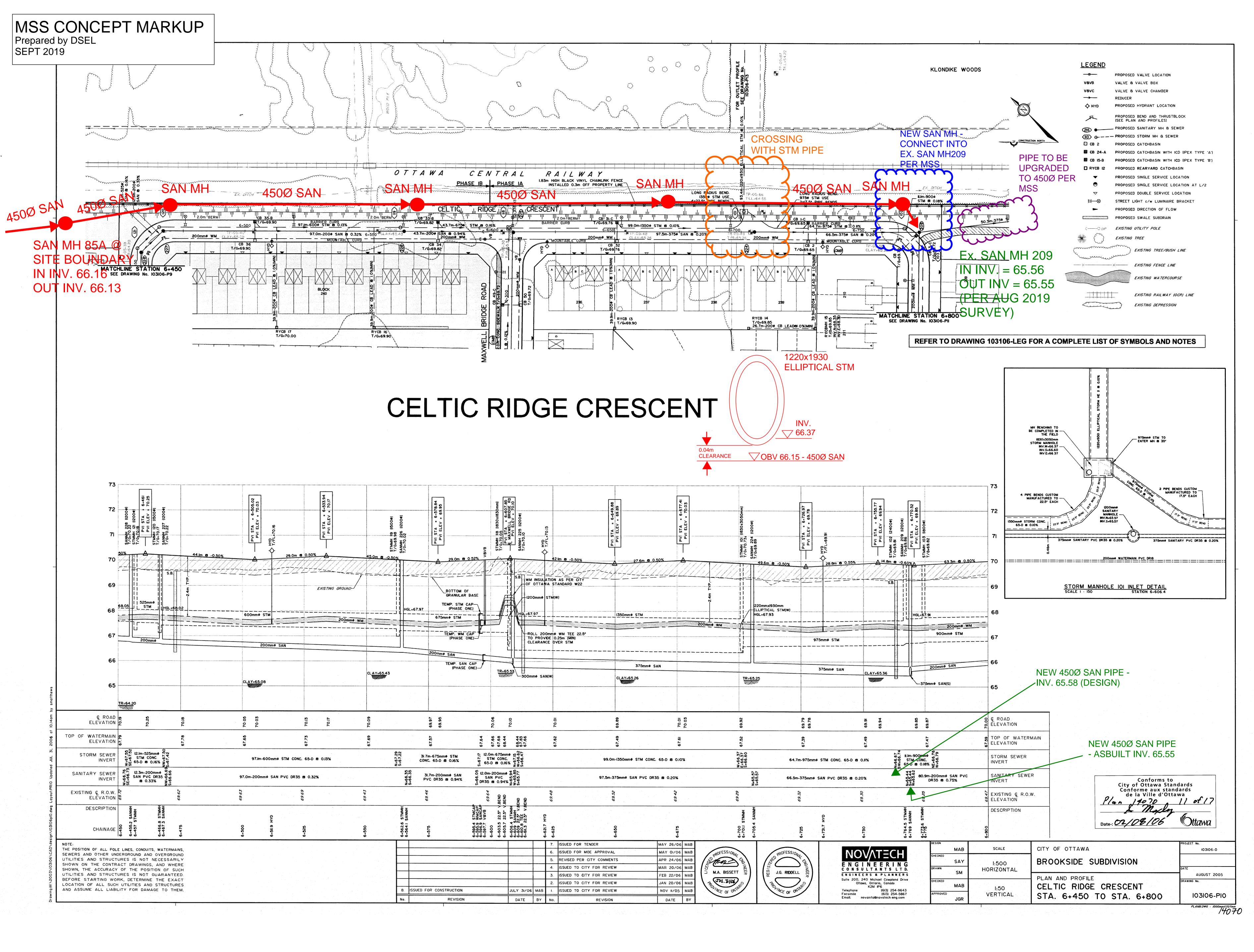

Available Capacity

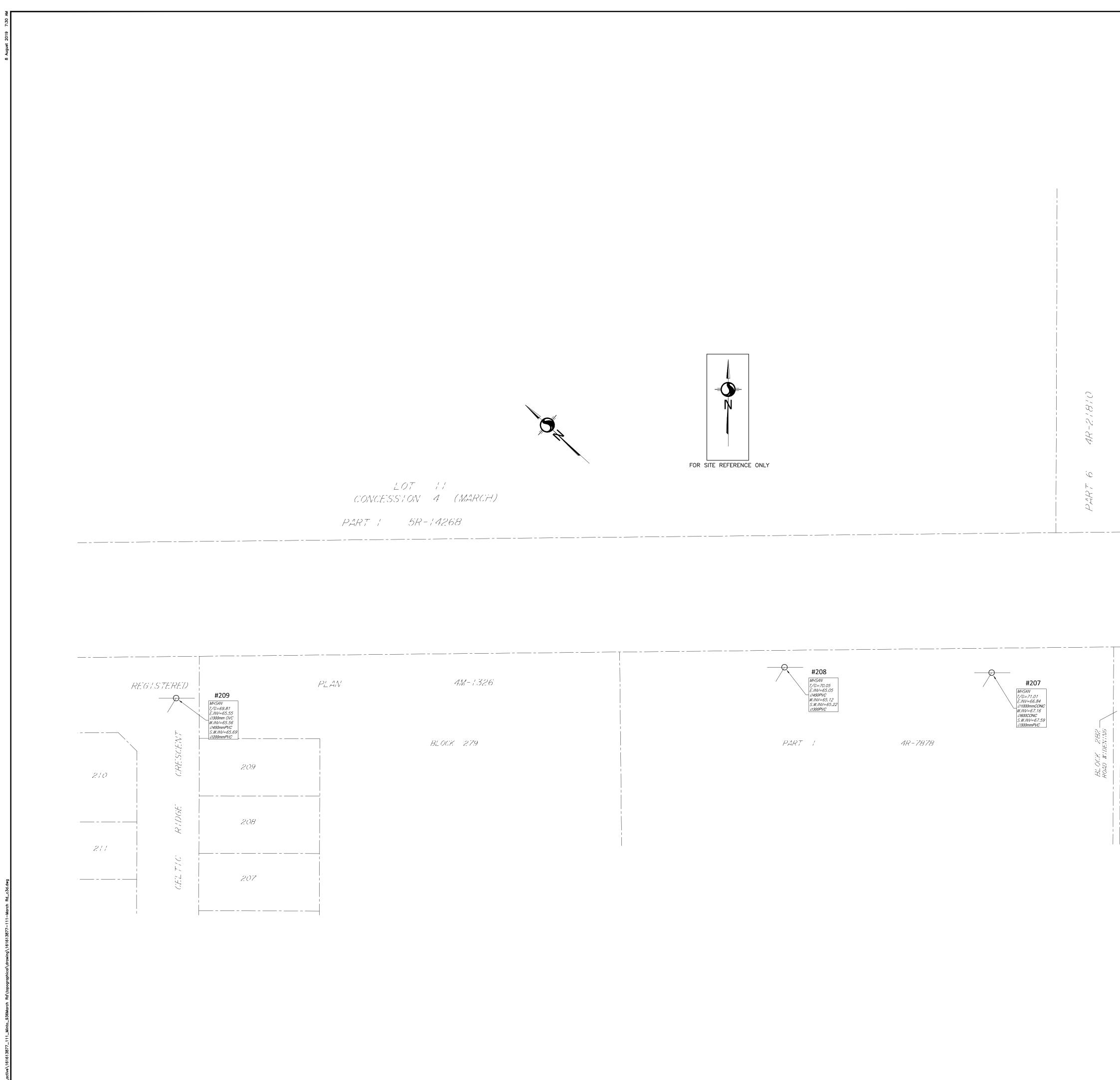
Assuming BRPS is upgraded from MOE	approved capacity to CCL u	Itimate design.		Flo	w
				(L.	/s)
		Ultimate Constructed Capacity (per CCL 2007	1 Report)	18	33
		Total Flows on Full Buildout of drainage area	l	107.79	-
		2031 Design Flows (per 2013 IMP, including	some KNUEA flow)	-	80
		Available Capacity within Original BRPS Desig	gn Parameters	75.21	103.00
DESIGN PARAMETERS				-	
Average Daily Flow (Future)=	350 L/cap/day	Industrial Peak Factor =	per MOE graph		
Indust/Comm/Inst Flow =	35000 L/ha/day	Max Res Peak Factor=	4		
Extraneous Flow =	0.28 L/s/ha	Comm/Inst Peak Factor=	1.5		


PREPARED BY: NOVATECH 2016-04-01


\\novatech2008\nova2\2012\112117\DATA\Calculations\Sewer Calcs\SAN\BRPS\201603-BRPS-Flow calcs.xlsx




	- & SHIRLEY'S BROOKE
	UPGRADE EX. 375 SAN TO 450mmØ
69.58 69.58 69.00 69.00 69.00 69.00 69.00	69.45


	SE=63.30 NW=63.30		450mm @ 0.,	0Ø SAN 20%			SE=64.51 NW/=64.58		450mmØ SAN @ 0.20%		SW=65.00 NW=65.01			375mmØ SAN @ 0.20%				SE=65.68 W=65.68	
69.58	00 69	69.00	68.67	69.22	70.00	69.91	70.22	69.45	68.88	71.00	70.56	70.22	70.49	70.48	70.06	70.01	69.53	69.51	
0+400	0+450 0+454	0+500	0+550	0+600	0+650	002+0	0+750 <i>0+765</i>	0+800	0+850	006+0	0+932 0+950	1+000	1+050	1+100	1+150	1+200	1+250	1+282 1+300	
									SCALE 1:1500		RM / TB	FOR REV			VATECH		NORTH URBA		SION AREA
						H DRAFT MASTER SERVIO		MAY 20/16 JLS	-	DRAWN	ARM TB			Engineers, Pla Suite 200, 24	inners & Landscape Architects 40 Michael Cowpland Drive Ontario, Canada K2M 1P6	DRAWING NA	ME		
					2. ISSUED WIT	H DRAFT MASTER SERVIC H DRAFT MASTER SERVIC H DRAFT MASTER SERVIC	CING STUDY	MAY 20/16 JLS APR 4/16 JLS FEB 26/16 JLS	1:1500 0 15 30 45 60	CHECKED	CJR			Telephone Facsimile Website	(613) 254-9643 (613) 254-5867 www.novatech-eng.com	PUMP S			
					No.	REVISION		DATE BY	1		JLS							=	P

Stantec Geomatics Ltd. 400 - 1331 Clyde Avenue Ottawa ON Tel. 613.722.4420 www.stantec.com

¥ Copyright 2018 Stantec Geomatics Ltd. The reproduction, alteration or use of this REPORT in whole or in part without the express permission of Stantec Geomatics Ltd. is STRICTLY PROHIBITED.

TOPOGRAPHIC SKETCH of MINTO KANATA NORTH 936 MARCH ROAD CITY OF OTTAWA

Scale 1:500

METRIC CONVERSION DISTANCES AND COORDINATES SHOWN ON THIS PLAN ARE IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048

VERTICAL DATUM NOTE ELEVATIONS ARE REFERRED TO THE CANADIAN GEODETIC VERTICAL DATUM (CGVD-1928 : 1978) AND ARE DERIVED FROM BENCHMARK MONUMENT No. 00119833012, HAVING A PUBLISHED ELEVATION OF 70.191 METRES.

HORIZONTAL DATUM NOTE PROJECTION: UNIVERSAL TRANSVERSE MERCATOR

fAHA žNCB9⁻-ž7A+*š′\$fKL

DATUM: NAD 83 (ORIGINAL)

DISTANCES ON THIS PLAN MAY BE CONVERTED TO GROUND DISTANCES BY DIVIDING BY A COMBINED SCALE FACTOR OF 0.99991802.

UTILITY NOTES

ΓZ

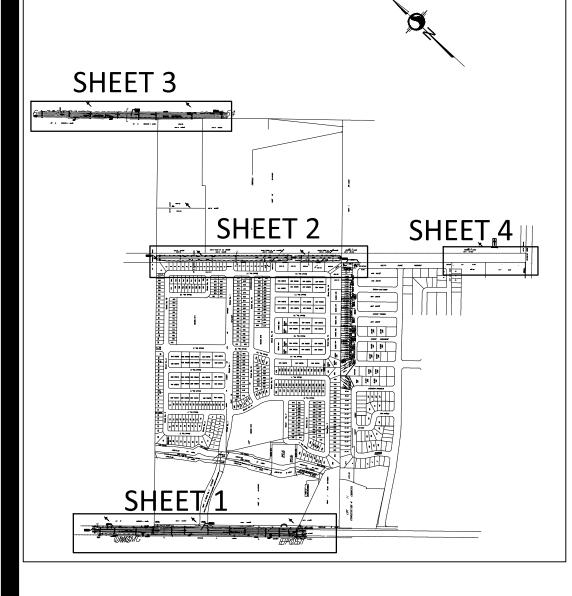
0

#205

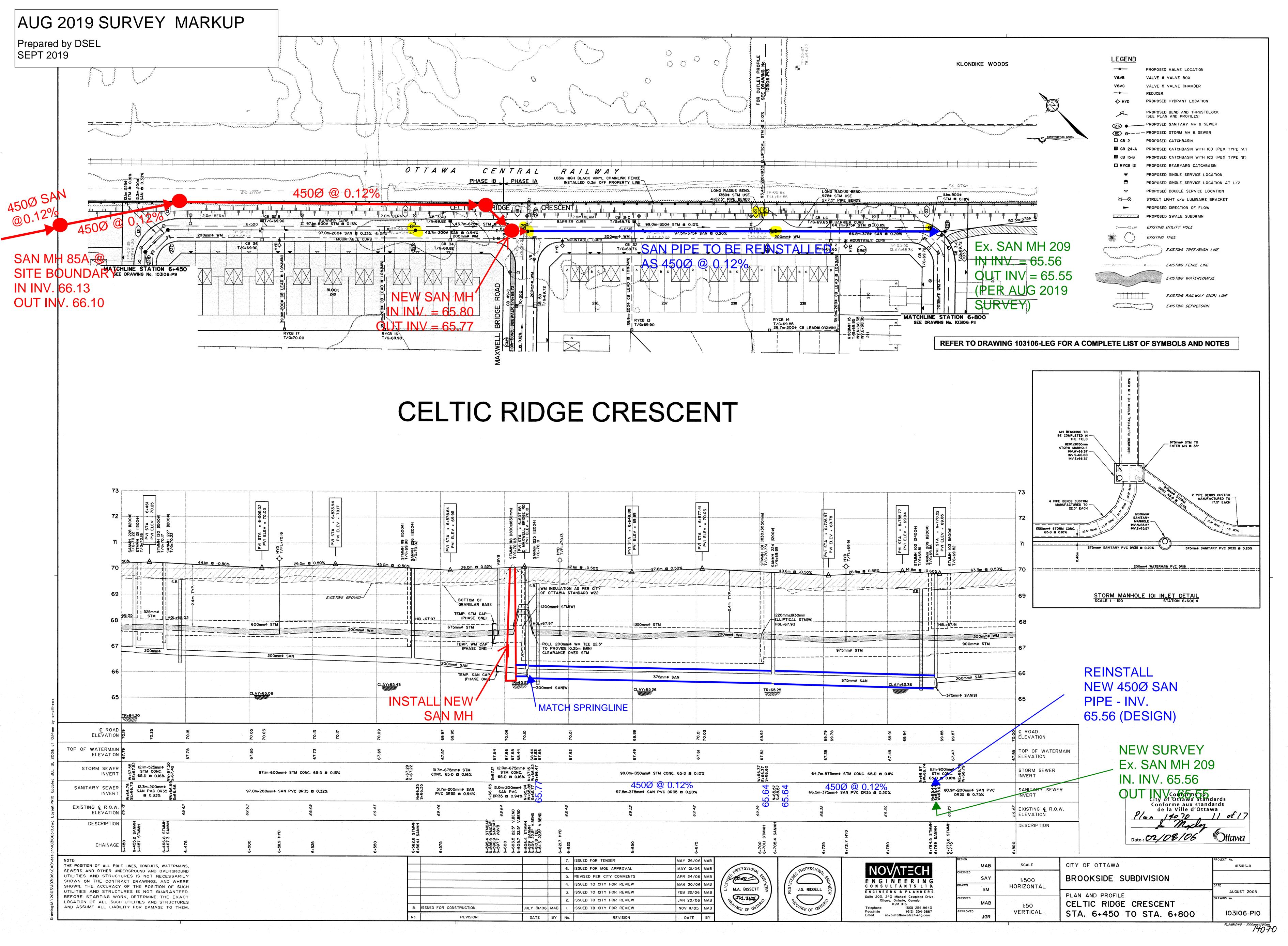
#206

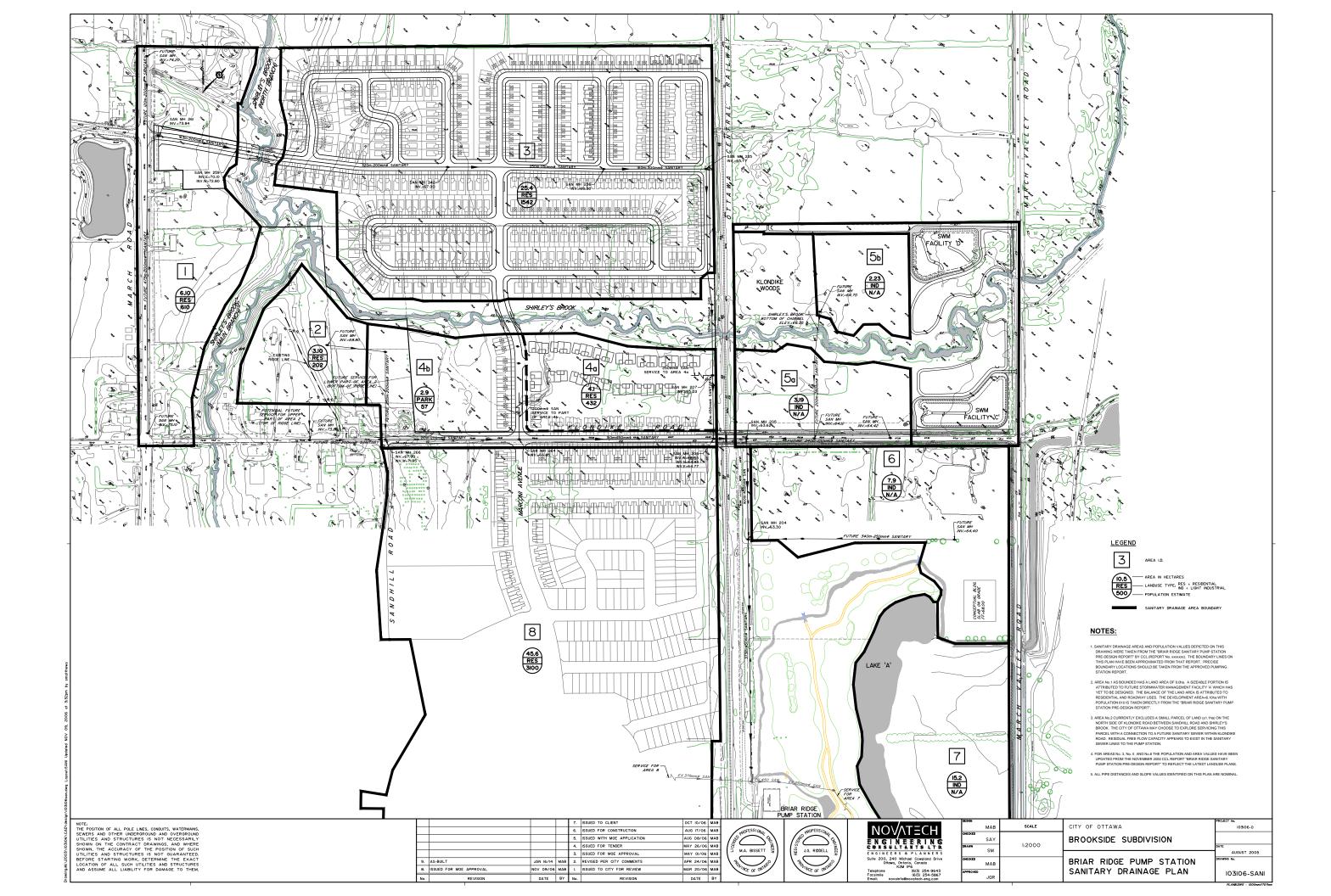
MHSAN T/G=70,17 N.INV=64.72 TOP OF WATER S.INV=64.77 TOP OF WATER W.INV=64.77 TOP OF WATER

MHSAN T/G=70.23 TOP OF WATER=66.73 COULD NOT SEE PIPE


- 1. THIS DRAWING CANNOT BE ACCEPTED AS ACKNOWLEDGING ALL OF THE UNDERGROUND UTILITIES AND IT WILL THE RESPONSIBILITY OF THE USER TO CONTACT THE RESPECTIVE AUTHORITIES FOR CONFIRMATION OR LOCATION.
- . BEFORE ANY WORK INVOLVING PROBING, EXCAVATING, ETC. A FIELD LOCATION OF UNDERGROUND PLANT BY THE PERTINENT UTILITY AUTHORITY IS MANDATORY.

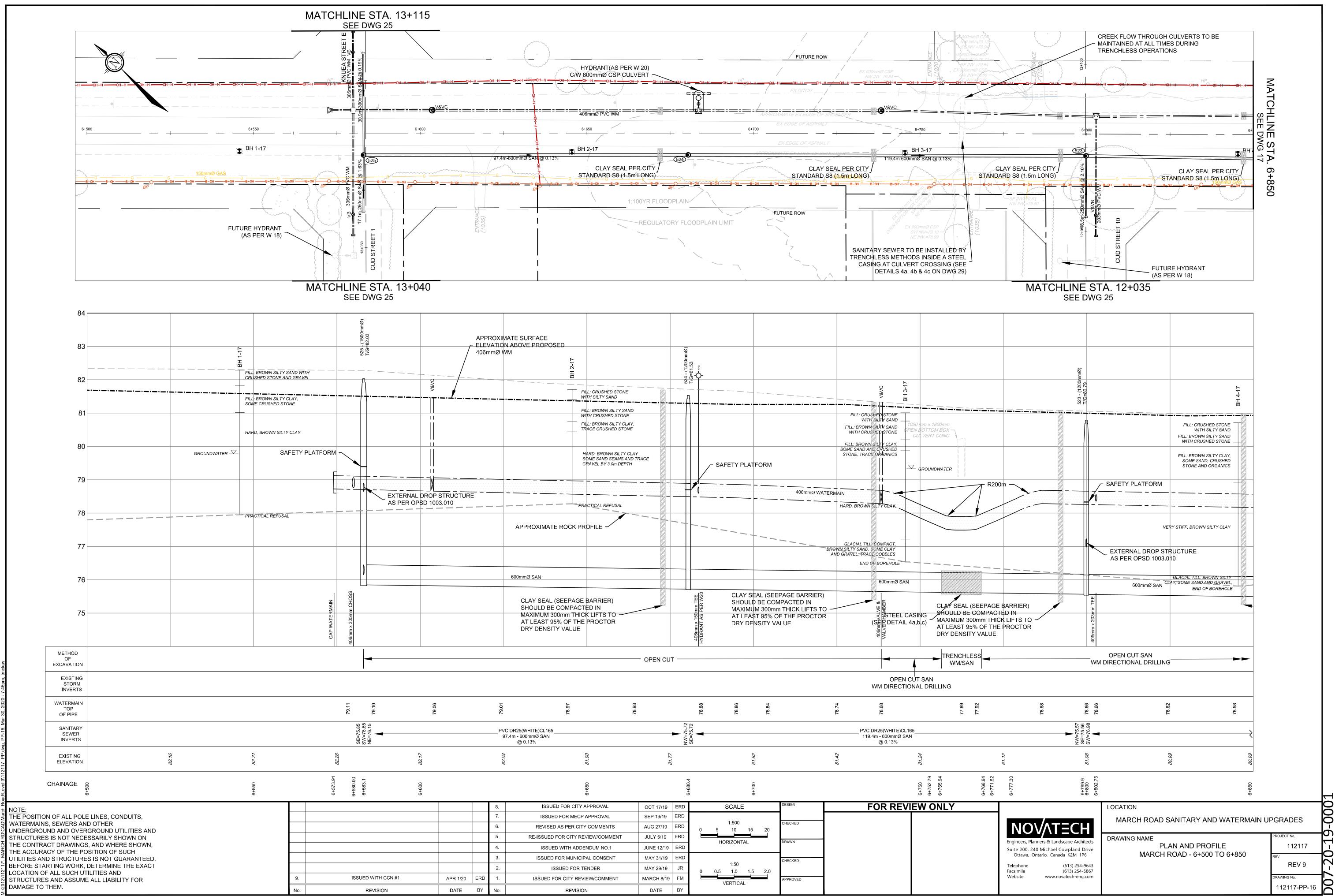
LEGEND


ES EP		DENOTES
PM		"
CL		"
DI		"
ΤB		"
BB		"
EGR		"
\odot		"
Õ	MHSAN	"
\bigcirc	MHSTM	"
-	SN	"
0	LS	"
•	AN	"
	MB	"
	POST	
۰	BOL	"


EDGE OF SHOULDER EDGE OF PAVEMENT PAINT MARKINGS CENTERLINE DITCH TOP OF BANK BOTTOM OF BANK EDGE OF GRAVEL TREE DECIDUOUS MAINTENANCE HOLE SANITARY MAINTENANCE HOLE STORM SIGN LIGHT STANDARD ANCHOR MAILBOX POST BOLLARD

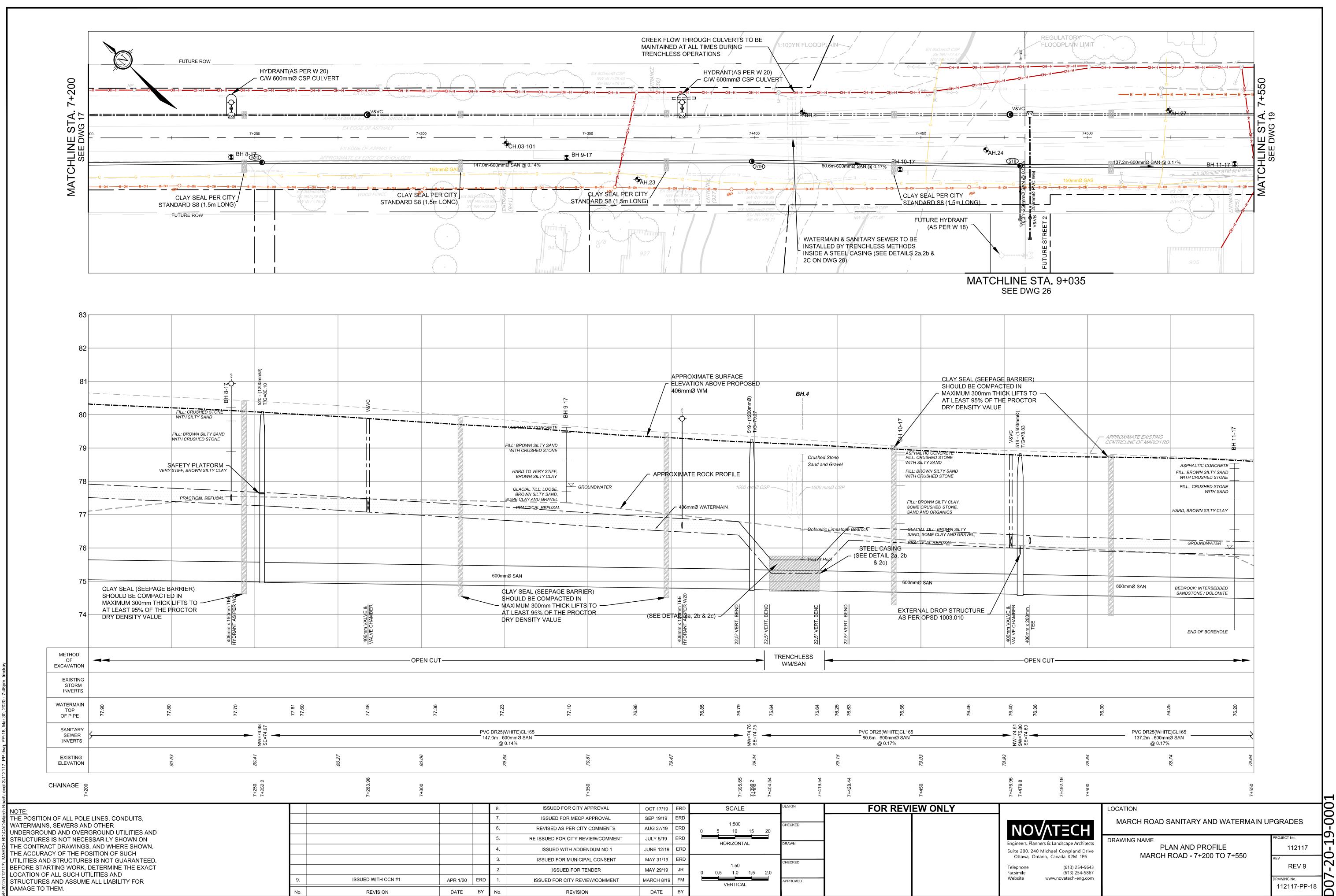
SHEET INDEX

SHEET 4 OF 4

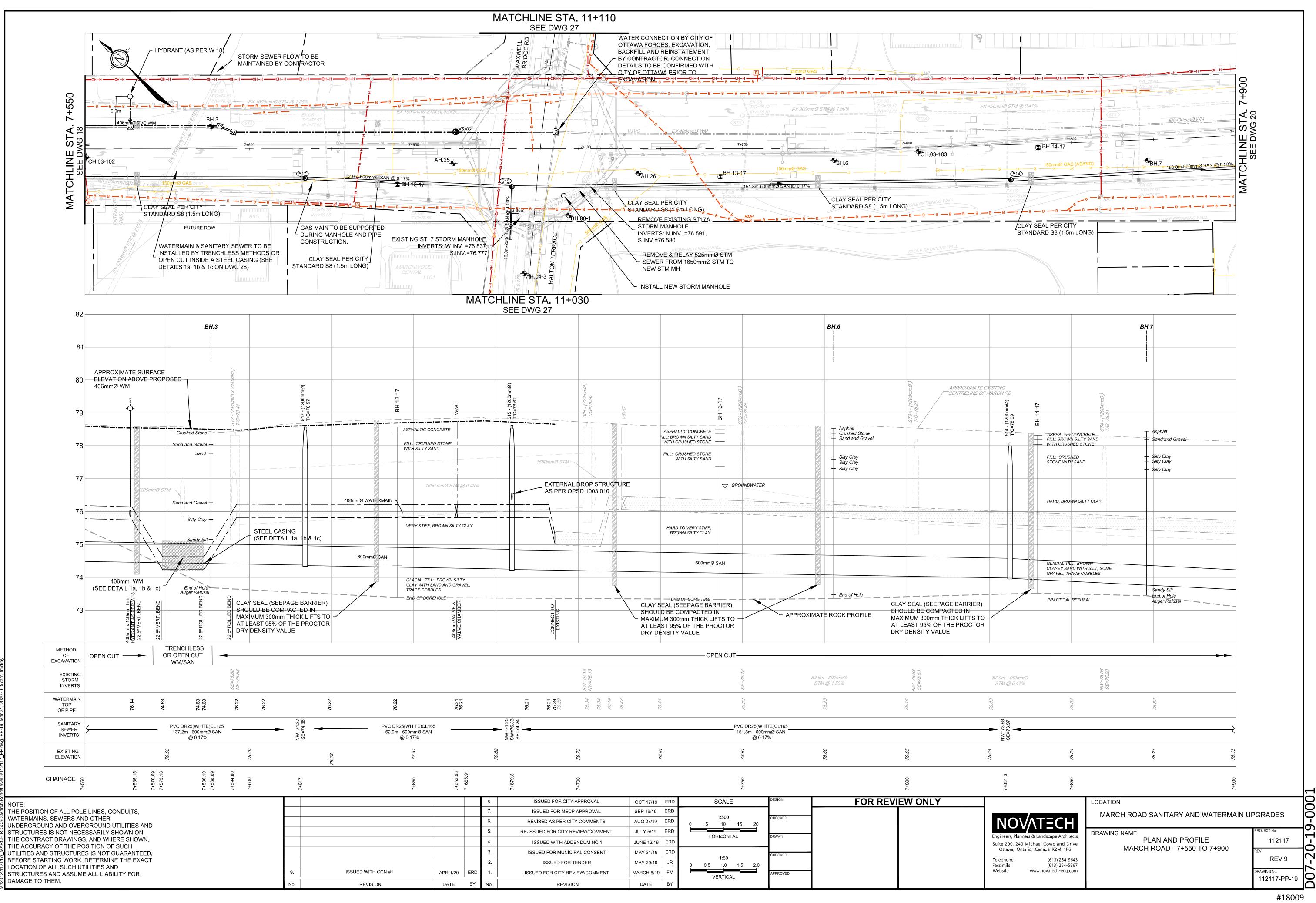


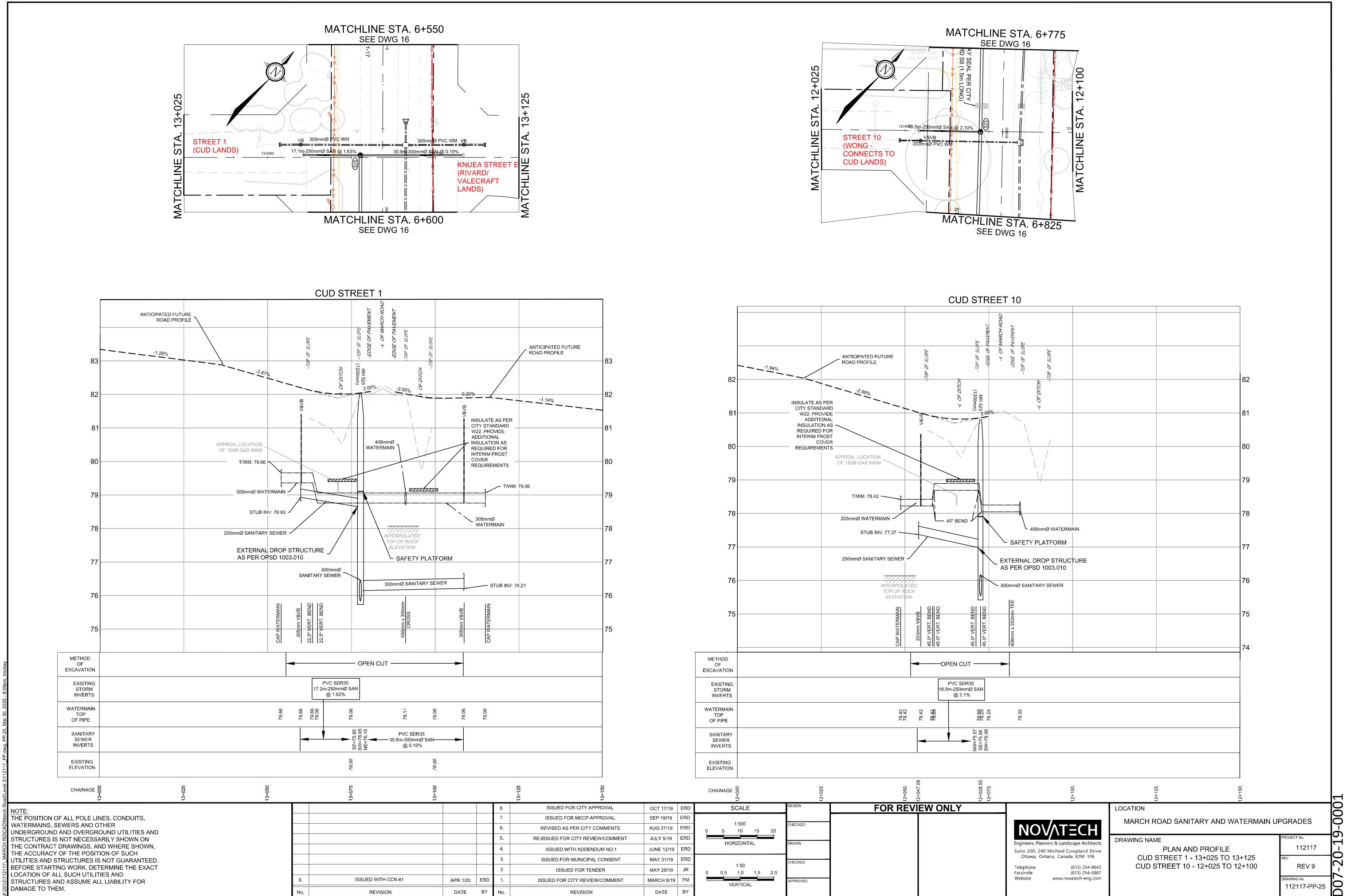
BROOKSIDE SUBDIVISION SANITARY SEWER DESIGN SHEET

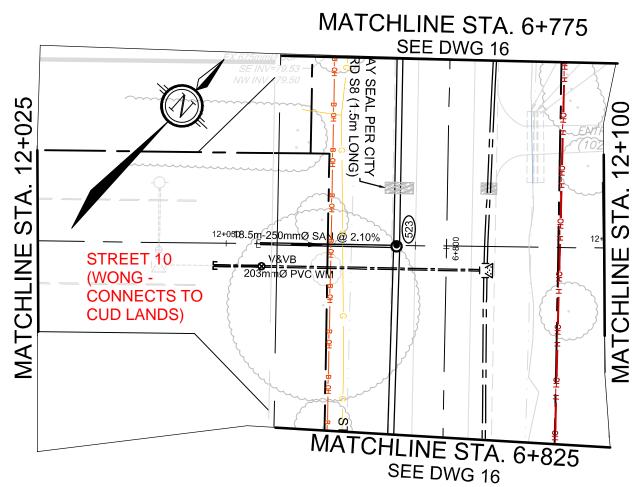
LOC	ATION			RESID	DENTIAL	AREA	AND P	OPULAT	ΓΙΟΝ			IND			INST	ICI	I	INFILTR	ATION	FLOW				PIF	ΡE		
Street	From	То	Area	Dwe	llings	Pop.	Cum	ulative	Peak	Peak	Area	Accu.	Peak	Area	Accu.	Peak	Total	Accu.	Infiltration	Total	Length	Dia	Dia	Slope	Velocity	Capacity	Ratio
	Node	Node		SFH	TH		Area	Pop.	Factor	Flow			Factor		Area	Flow	Area	Area	Flow	Flow	, , , , , , , , , , , , , , , , , , ,	Act	Nom		(Full)	(Full)	Q/Qfull
			(ha)				(ha)			(l/s)	(ha)	(ha)		(ha)	(ha)	(l/s)	(ha)		(l/s)	(l/s)	(m)	(mm)	(mm)	(%)	(m/s)	(l/s)	(%)
Area 1 - March Roa																											
Alea I - March Koa	Offsite	MH 261	6.10			610	6.10	610.0	3.93	9.7							6.1	6.1	1.7	11.4							
	MH 261	MH 260	0.10			010	6.29										0.1		1.7	11.4	92.0	203	200	0.33	0.61	19.6	58%
	MH 260		0.13				6.46										0.2		1.8	11.5	71.0	203			1.12	36.3	32%
	MH 259		0.17				6.59										0.2		1.8	11.6	54.4	203		0.37	0.64	20.8	56%
																					-						
Area 3 - Brookside	Subdivisi	on																									
Maxwell Bridge Rd		MH 256	0.24	3		10.2	6.83	620.2	3.92	9.9							0.2	6.8	1.9	11.8	42.6	203	200	2.35	1.62	52.4	22%
Windance Cres	MH 249	MH 257	0.47	7		23.8	0.47	23.8									0.5		0.1	0.5	54.7	203			1.49	48.3	1%
	MH 257	MH 256	0.37	5		17.0	0.84	40.8	4.00	0.7							0.4	0.8	0.2	0.9	51.5	203	200	0.82	0.95	31.0	3%
Maxwell Bridge Rd	MH 256	MH 255	0.60	9		30.6	8.27	691.6	3 90	10.9							0.6	8.3	2.3	13.2	80.5	203	200	1.11	1.11	36.0	37%
maxiron bridge ru	MH 255	MH 250	0.38	6		20.4	8.65	712		11.2			-			-	0.4		2.4	13.6	56.4	203			1.22	39.7	34%
				-												1											
Pendra Way	MH 246	MH 254	0.44	7		23.8	0.44	23.8									0.4	0.4	0.1	0.5	52.0	203			1.00	32.4	2%
	MH 254	MH 253	0.22	2		6.8	0.66	30.6									0.2		0.2	0.7	11.5	203			0.82	26.7	3%
	MH 253	MH 252	0.00			0.0	0.66	30.6									0.0	-	0.2	0.7	35.2	203			0.80	25.8	3%
	MH 252 MH 251	MH 251 MH 250	0.11	1		3.4 30.6	0.77	34.0 61.2									0.1		0.2	0.8	10.6 67.8	203 203			0.86	27.8 26.5	3% 5%
			0.54	9		30.0	1.20	01.2	4.00	1.0							0.5	1.2	0.3	1.5	07.0	203	200	0.00	0.02	20.5	5%
Maxwell Bridge Rd	MH 250	MH 242	0.42	6		20.4	10.27	793.6	3.86	12.4							0.4	10.3	2.9	15.3	82.0	203	200	0.80	0.94	30.6	50%
Windance Cres	MH 249	MH 248	0.15	2		6.8	0.15	6.8	4.00	0.1							0.2	0.2	0.0	0.2	20.2	203	200	1.00	1.05	34.2	0%
	MH 248	MH 247	0.23	2		6.8	0.38	13.6	4.00	0.2							0.2	0.4	0.1	0.3	13.1	203	200	2.30	1.60	51.8	1%
	MH 247	MH 246	0.49	6		20.4	0.87	34.0									0.5		0.2	0.8	81.5	203			1.80	58.2	1%
	MH 246	MH 245	0.94	14		47.6	1.81	81.6									0.9	-	0.5	1.8	123.0	203			1.15	37.4	5%
	MH 245 MH 244	MH 244 MH 243	0.20		3		2.01	89.7 103.2	4.00								0.2		0.6 0.6	2.0 2.3	11.2 29.8	203 203		0.36	0.63	20.5 19.9	10% 11%
	MH 244 MH 243	MH 243 MH 242	0.18	7			2.19		4.00								0.2		0.8	2.3	29.8	203		0.34	0.61	19.9	16%
	WIT 245	10111242	0.75	,	12	50.2	2.00	140.0	4.00	2.7							0.0	2.0	0.0	0.1	100.0	200	200	0.02	0.00	10.0	1070
Maxwell Bridge Rd	MH 242	MH 240	0.39	5		17.0	13.46	956.5	3.81	14.8							0.4	13.5	3.8	18.5	82.0	254	250	0.38	0.75	38.2	49%
Celtic Ridge Cres	MH 233	MH 241	0.63		20	54.0	0.63	54.0	4 00	0.9							0.6	0.6	0.2	1.1	73.3	203	200	0.33	0.61	19.6	5%
Cellic Ridge Cres	MH 241	MH 240	0.05		13		1.08		4.00								0.5		0.2	1.7	63.7	203		1.21	1.16	37.6	5%
			0.10			00.1		00.1									0.0		0.0		00.1	200	200			01.0	0,0
Maxwell Bridge Rd	MH 240	MH 238	0.40		9	24.3	14.94	1069.9	3.78	16.4							0.4	14.9	4.2	20.6	82.0	254	250	0.24	0.60	30.4	68%
Celtic Ridge Cres	MH 233	MH 232	0.19		3		0.19	8.1	4.00								0.2		0.1	0.2	12.4	203		0.65	0.85	27.6	1%
	MH 232	MH 231	0.46		12	32.4	0.65	40.5	4.00	0.7							0.5	0.7	0.2	0.8	73.3	203	200	0.40	0.67	21.6	4%
Celtic Ridge Cres	MH 230	MH 231	0.41		11	29.7	0.41	29.7	4.00	0.5							0.4	0.4	0.1	0.6	82.1	203	200	0.33	0.61	19.6	3%
Dragorook Avo	MLL 004	MU 220	0.00			75.0	1.00	145.0	4.00	0.4		<u> </u>				 	0.0	2.0	0.0	2.0	100.0	202	200	0.22	0.04	10.0	150/
Braecreek Ave	MH 231 MH 239	MH 239 MH 238	0.92		28 4		1.98 2.15		4.00							<u> </u>	0.9		0.6 0.6	2.9 3.1	120.0 27.4	203 203		0.33	0.61	19.6 46.1	15% 7%
	200		5.17			.0.0	2.13	100.0	00	2.5	-	+	-			1	5.2	2.2	0.0	0.1	-1.4	200	200	1.02	1.72		, /0
Maxwell Bridge Rd	MH 238	MH 236	0.42		13	35.1	17.51	1261.6	3.73	19.1							0.4	17.5	4.9	24.0	82.0	254	250	0.24	0.60	30.4	79%
Fordell Ave	MH 230	MH 237	0.86		30	81.0	0.86	81.0	4.00	1.3							0.9	0.9	0.2	1.6	110.0	203	200	0.32	0.60	19.3	8%
	MH 230	MH 237	0.00		50		1.09					-					0.9		0.2	1.0	39.1	203		2.30	1.60	51.8	4%
			5.25		0	10.2	1.03	51.2	7.00	1.0		1					5.2		0.0	1.5	55.1	200	200	2.00	1.00	51.0	-1/0


BROOKSIDE SUBDIVISION SANITARY SEWER DESIGN SHEET

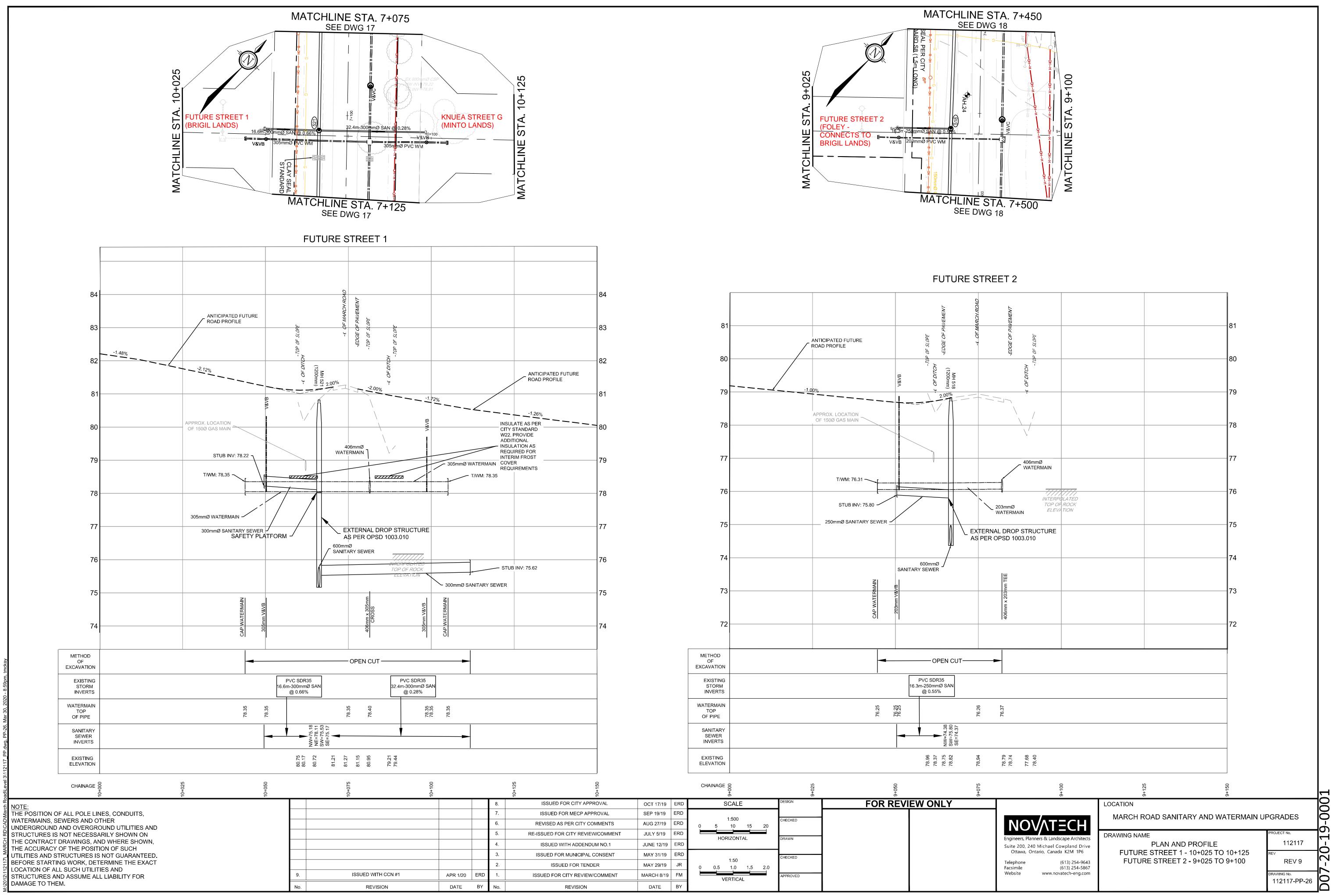
LOC	ATION			RESID	DENTIAL	L AREA	AND P	OPULAT	ION			IND			INST	ICI	I	NFILTR	ATION	FLOW				PIF	Έ		
Street	From	То	Area	Dwe	llings	Pop.	Cum	lative	Peak	Peak	Area	Accu.	Peak	Area	Accu.	Peak	Total	Accu.	Infiltration	Total	Length	Dia	Dia	Slope	Velocity	Capacity	Ratio
	Node	Node		SFH	TH		Area		Factor			Area	Factor		Area		Area		Flow	Flow	g.	Act	Nom		(Full)	(Full)	Q/Qfull
	Nouc	Nouc	(ha)	0111			(ha)	T Op.	1 actor	(l/s)	(ha)	(ha)	1 20101	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)	(mm)	(%)	(m/s)	(l/s)	(%)
Maxwell Bridge Rd	MH 236	MH 234	0.39		12	32.4	· · /	1391.2	3 70	20.9	(114)	(114)		(114)	(IId)	(#3)	0.4	19.0	. ,	26.2	82.0	305	300	. ,	0.68	49.4	53%
Maxwell Bridge Ru	10111230	10111234	0.55		12	52.4	10.99	1391.2	5.70	20.9							0.4	19.0	5.5	20.2	02.0	303	300	0.24	0.00	43.4	5570
Arncliffe Ave	MH 229	MH 235	0.87		30	81.0	0.87	81.0	4.00	13							0.9	0.9	0.2	1.6	120.0	203	200	0.33	0.61	19.6	8%
	MH 235	MH 234	0.07		6			97.2	4.00								0.2	1.1		1.9	29.3	203			1.80		3%
	1111 200	10111201	0.22		Ŭ	10.2	1.00	07.2	4.00	1.0							0.2		0.0	1.0	20.0	200	200	2.00	1.00	00.2	070
Maxwell Bridge Rd	MH 234	MH 225	0.26		6	16.2	20.34	1504.6	3 68	22.4							0.3	20.3	5.7	28.1	79.8	305	300	0.25	0.69	50.4	56%
					-																						
Celtic Ridge Cres	MH 230	MH 229	0.43		12	32.4	0.43	32.4	4.00	0.5							0.4	0.4	0.1	0.6	81.9	203	200	0.32	0.60	19.3	3%
	MH 229	MH 228	0.38		11		0.81	62.1	4.00								0.4	0.8	-	1.2	70.3	203	200	0.33	0.61	19.6	6%
	MH 228	MH 227	0.10		0		0.91	62.1	4.00								0.1	0.9		1.3	12.3	203	200	0.33	0.61	19.6	6%
	MH 227	MH 226	0.46		13		1.37	97.2	4.00								0.5	1.4		2.0	97.0	203	200	0.32	0.60	19.3	10%
	MH 226	MH 225	0.21		5			110.7	4.00								0.2	1.6	-	2.2	43.7	203			1.02		7%
Celtic Ridge Cres	MH 225	MH 224	0.58		12	32.4	22.50	1647.7	3.65	24.4							0.6	22.5	6.3	30.7	97.5	381	375	0.20	0.72	81.7	38%
	MH 224	MH 209	0.22		4			1658.5	3.65								0.2	22.7		30.9	66.5	381	375	0.20	0.72		38%
									2.50										5				2.0			2	
Streamside Cres	MH 217	MH 218	0.26	2		6.8	0.26	6.8	4.00	0.1				1			0.3	0.3	0.1	0.2	12.4	203	200	1.00	1.05	34.2	1%
	MH 218	MH 219	0.96	20		68.0	1.22	74.8	4.00								1.0	1.2		1.6	120.0	203	200	0.80	0.94	30.6	5%
	MH 219	MH 220	0.62	11		37.4	1.84	112.2	4.00								0.6	1.8		2.3	77.8	203	200	0.32	0.60	19.3	12%
Glenbrae Ave	MH 220	MH 221	0.96		28		2.80	187.8	4.00								1.0	2.8		3.8	118.9	203	200	0.32	0.60	19.3	20%
	MH 221	MH 222	1.04		33		3.84	276.9	4.00								1.0	3.8		5.6	119.0	203	200	0.32	0.60	19.3	29%
	MH 222	MH 223	0.20		3		4.04	285.0	4.00								0.2	4.0		5.7	12.9	203	200	0.39	0.66		27%
	MH 223	MH 210	0.22		4		4.26	295.8	4.00								0.2	4.3		6.0	72.9	203	200	0.33	0.61	19.6	30%
Streamside Cres	MH 217	MH 216	0.37	5		17.0	0.37	17.0	4.00	0.3							0.4	0.4	0.1	0.4	40.1	203	200	0.65	0.85	27.6	1%
	MH 216	MH 215	0.17	2		6.8	0.54	23.8	4.00								0.2	0.5		0.5	13.6	203	200		0.85		2%
	MH 215	MH 214	0.17	2		6.8	0.71	30.6	4.00								0.2	0.7		0.7	31.6	203	200		0.75		3%
	MH 214	MH 213	1.02	18		61.2	1.73	91.8	4.00								1.0	1.7	0.5	2.0	119.0	203	200	0.90	1.00	32.4	6%
	MH 213	MH 212	0.50	7		23.8	2.23	115.6	4.00								0.5	2.2	0.6	2.5	56.5	203	200	0.32	0.60	19.3	13%
Celtic Ridge Cres	MH 212	MH 211	1.04	16		54.4	3.27	170.0	4.00	2.8							1.0	3.3	0.9	3.7	124.9	203	200	0.32	0.60	19.3	19%
Ŭ	MH 211	MH 210	0.94	16		54.4	4.21	224.4	4.00	3.6							0.9	4.2	1.2	4.8	122.0	203	200	0.33	0.61	19.6	25%
Celtic Ridge Cres	MH 210	MH 209	0.58	11		37.4	9.05	557.6	3.95	8.9							0.6	9.1	2.5	11.5	80.9	203	200	0.75	0.91	29.6	39%
Easement	MH 209	MH 208	0.06			0.0	31.83	2216.1	3.55	31.9							0.1	31.8	8.9	40.8	50.3	381	375	0.20	0.72	81.7	50%
	MH 208	MH 207	0.24			0.0	32.07	2216.1	3.55	31.9							0.2	32.1	9.0	40.9	111.6	381	375	0.20	0.72	81.7	50%
Area 4a - Phase 2	Lands																										
	MH 273	MH 272	0.57		9	24.3	0.57	24.3	4.00	0.4							0.6	0.6	0.2	0.6	66.0	203	200	0.65	0.85	27.6	2%
	MH 272	MH 271	0.92		16	43.2	1.49	67.5	4.00	1.1							0.9	1.5	0.4	1.5	90.2	203	200	0.40	0.67	21.6	7%
	MH 271	MH 270	1.06		19	51.3	2.55	118.8	4.00	1.9							1.1	2.6	0.7	2.6	113.0	203	200	0.40	0.67	21.6	12%
	MH 270	MH 207	0.00		0	0.0	2.55	118.8	4.00	1.9							0.0	2.6	0.7	2.6	16.0	254	250	0.32	0.69	35.1	8%
Easement	MH 207	MH 206	0.22			0.0	34.84	2240.4	3.55	32.2							0.2	34.8	9.8	41.9	100.0	457	450	0.20	0.81	132.9	32%
Area 2																											
	Area 2	MH 266	3.10			202	3.10	202.0	4.00	3.3							3.1	3.1	0.9	4.1	-	203	200	0.32	0.60	19.3	21%
Klondike Road & A	rea 4b																										
	MH 266	MH 265	0.24				3.34	202.0	4.00	3.3							0.2	3.3	0.9	4.2	93.7	203	200	0.32	0.60	19.3	22%
		<u> </u>																									
	Park	MH 265	1.89				1.89	0.0	4.00	0.0							1.9	1.9	0.5	0.5	13.0	203	200	0.32	0.60	19.3	3%
	MH 265	MH 264	0.31				5.54	202.0	4.00	3.3				1			0.3	5.5	1.6	4.8	120.0	203	200	0.32	0.60	19.3	25%

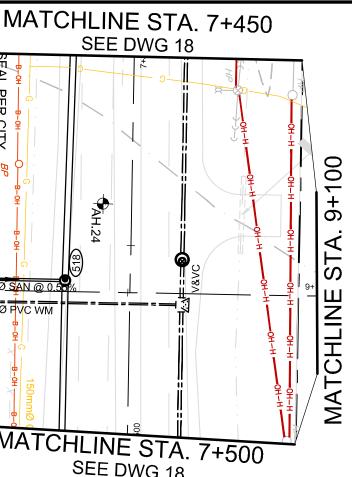


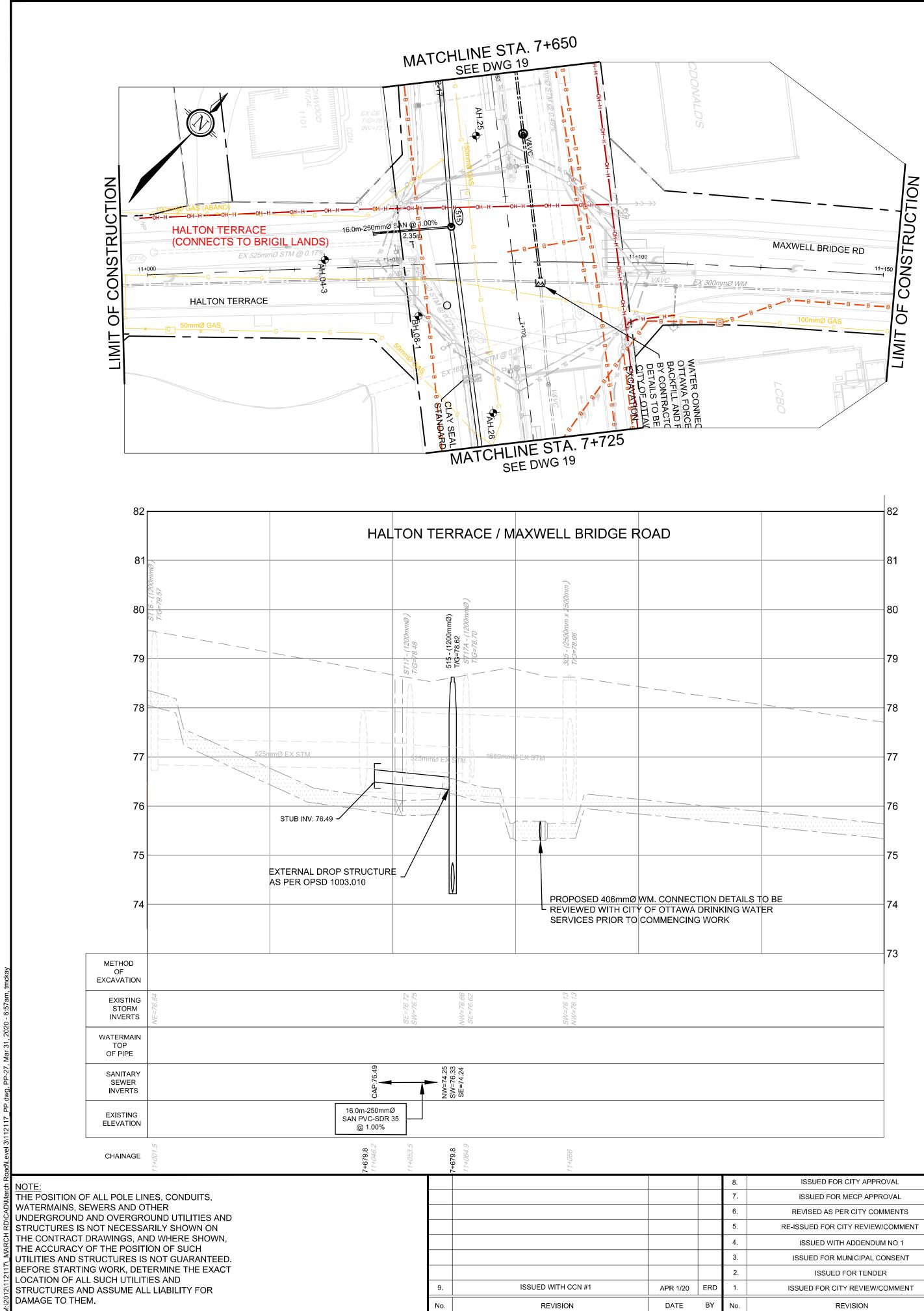

#18009



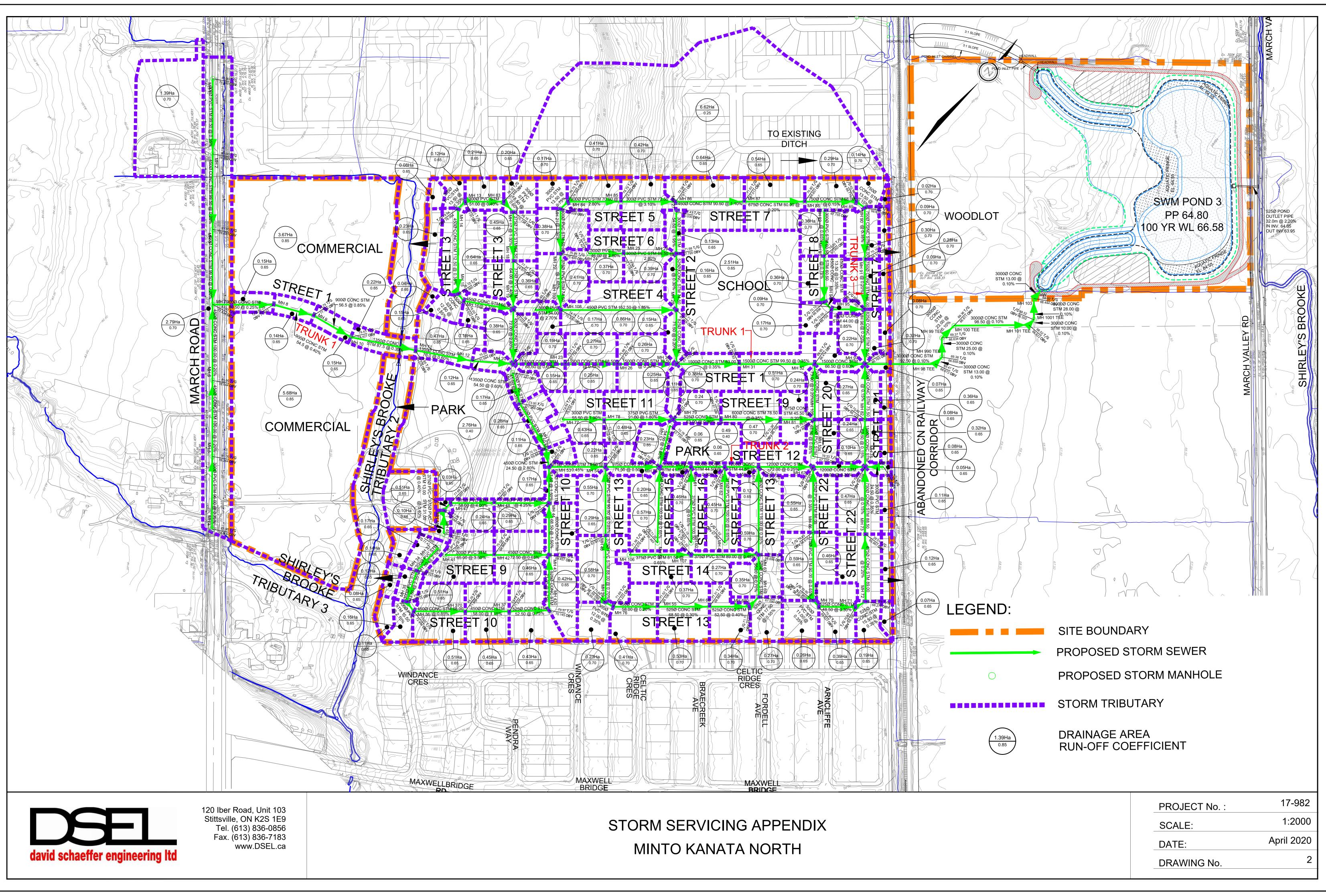
77.36			77.23	77.10	76.96	76.85	76.79	75.64	75.64	76.25 76.63	76.56	0
			.0m - 60	VHITE)CL165 00mmØ SAN 0.14%			NW=74.76 SE=74.75				PVC DR25(WHITE)CL165 80.6m - 600mmØ SAN @ 0.17%	
			79.84	79.61	79.47		79.34			79.18		79.03
				7+350			7+395.65 7+388.2	7+404.54	7+419.54	NN 80N+7		7+450
			8.	ISSUED FOR CITY APPROVAL	OCT 17/19 E	ERD	SCALE		DESIGN		FOR REVIE	W ONLY
			7.	ISSUED FOR MECP APPROVAL	SEP 19/19 E	RD						
							4 500					
			6.	REVISED AS PER CITY COMMENTS	AUG 27/19 E	ERD 0	1:500 5 10 15	20	CHECKED			
			6. 5.	REVISED AS PER CITY COMMENTS RE-ISSUED FOR CITY REVIEW/COMMENT			5 10 15	20				
					JULY 5/19 E	U		20	CHECKED			
			5.	RE-ISSUED FOR CITY REVIEW/COMMENT	JULY 5/19 E		5 10 15 HORIZONTAL	20				
			5.	RE-ISSUED FOR CITY REVIEW/COMMENT	JULY 5/19 E JUNE 12/19 E MAY 31/19 E		5 10 15 HORIZONTAL 1:50	20	DRAWN			
	APR 1/20	ERD	5. 4. 3.	RE-ISSUED FOR CITY REVIEW/COMMENT ISSUED WITH ADDENDUM NO.1 ISSUED FOR MUNICIPAL CONSENT	JULY 5/19 E JUNE 12/19 E MAY 31/19 E MAY 29/19 E		5 10 15 HORIZONTAL 1:50 0.5 1.0 1.5	20	DRAWN			
	APR 1/20	ERD	5. 4. 3. 2.	RE-ISSUED FOR CITY REVIEW/COMMENT ISSUED WITH ADDENDUM NO.1 ISSUED FOR MUNICIPAL CONSENT ISSUED FOR TENDER	JULY 5/19 E JUNE 12/19 E MAY 31/19 E MAY 29/19 MARCH 8/19	ERD IRD	5 10 15 HORIZONTAL 1:50	20	DRAWN CHECKED			


#18009





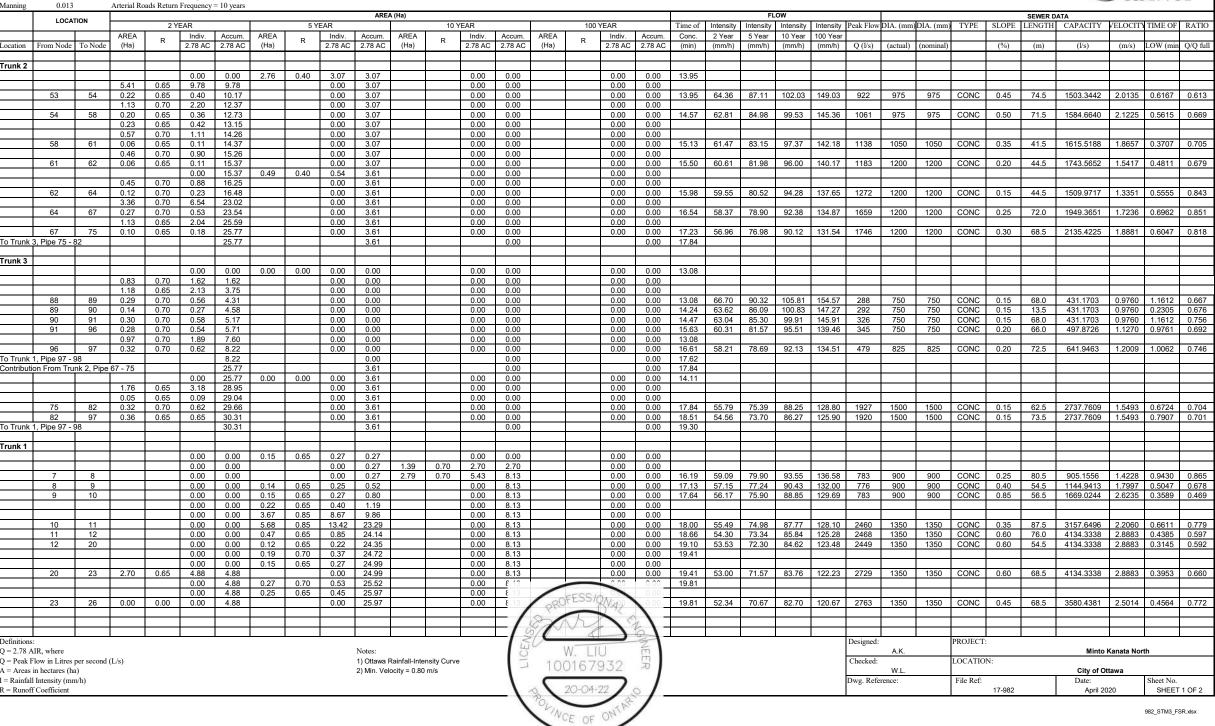
#18009


		CANU											
	1	SANI		ENANCE HOLE DATA						SANITARY SEV	VER DATA		
NO.	STATION	OFFSET	COVER	STRUCTURE		ATION	MAINTENA		_		-		
					T/GRATE	LOW/INV	FROM	ТО	DIA	LENGTH	MATERIAL	UP STR.	DOWN STR.
501	0+398.29	10.01L	S24	OPSD 701.012	74.80	71.40	525	524	600	97.4	AWWA-C301(L) PVC DR25	75.85	75.72
502	0+340.73	6.89L	S24	OPSD 701.011	74.87	71.52					AWWA-C301(L)	, 0.00	, , , , , , , , , , , , , , , , , , , ,
504	0+197.33	8.03L	S24 SL	OPSD 701.011	78.29	71.68	524	523	600	119.4	PVC DR25	75.72	75.57
505	0+180.64	8.05L	S24	OPSD 701.011	78.63	71.70	F 2 2	E22	C00	152.0	AWWA-C301(L)		75.27
506	0+057.95	11.50L	S24 SL	OPSD 701.011*	80.06	71.82	523	522	600	152.8	PVC DR25 AWWA-C301(L)	75.56	75.37
507	8+681.85	13.93R	S24 SL	OPSD 701.011*	80.04	71.94	522	521	600	152	PVC DR25	75.36	75.18
508	8+559.58	13.54R	S24 SL	OPSD 701.010*	79.39	72.09					AWWA-C301(L)		
509	8+442.00	14.16R	S24 SL	OPSD 701.010	78.82	72.21	521	520	600	147.6	PVC DR25	75.17	74.98
510	8+342.38	14.27R	S24 SL	OPSD 701.010	78.37	72.31	520	519	600	147	AWWA-C301(L) PVC DR25	74.97	74.76
511	8+222.86	14.04R	S24 SL	OPSD 701.010	77.87	72.43	520	515	000	147	AWWA-C301(L)	74.57	74.70
512	8+131.04	12.69R	S24 SL	OPSD 701.010	77.53	72.52	519	518	600	80.6	PVC DR25	74.75	74.61
513	7+981.08	10.27R	S24 SL	OPSD 701.010	77.50	73.22					AWWA-C301(L)		
514	7+831.3	10.66R	S24 SL	OPSD 701.010	78.09	73.97	518	517	600	137.2	PVC DR25	74.60	74.37
515	7+679.85	11.60R	S24 SL	OPSD 701.010	78.62	74.24	517	515	600	62.9	AWWA-C301(L) PVC DR25	74.36	74.25
517	7+616.99	8.94R	S24 SL	OPSD 701.010	78.57	74.36					AWWA-C301(L)		
518	7+479.78	8.59R	S24	OPSD 701.011	78.83	74.60	515	514	600	151.8	PVC DR25	74.24	73.98
519	7+399.24	7.22R	S24	OPSD 701.010	79.27	74.75	F14	513	600	150	AWWA-C301(L)	72.07	73.22
520	7+252.23	7.44R	S24	OPSD 701.010	80.10	74.97	514	513	600	150	PVC DR25 AWWA-C301(L)	73.97	/3.22
521	7+104.63	8.44R	S24	OPSD 701.011	80.82	75.17	513	512	600	149.3	PVC DR25	73.22	72.52
522	6+952.63	8.59R	S24	OPSD 701.010	80.73	75.36					AWWA-C301(L)		
523	6+799.86	6.59R	S24	OPSD 701.010	80.79	75.56	512	511	525	91.4	PVC DR25	72.52	72.43
524	6+680.43	6.56R	S24	OPSD 701.010	81.53	75.72	511	510	600	119.4	AWWA-C301(L) PVC DR25	72.43	72.31
525	6+583.05	6.61R	S24	OPSD 701.011	82.03	75.85		510	000	115.4	AWWA-C301(L)	72.43	72.51
							510	509	600	100.1	PVC DR25	72.31	72.21
* - STRU(CTURAL A	DEQUAC	Y TO BE	CONFIRMED E	BY THE CON	TRACTOR.					AWWA-C301(L)		
							509	508	600	117.8	PVC DR25	72.21	72.09
SL - SELF	= LEVELLI	NG FRAM	1E AND C	OVER REQUIE	RED.		508	507	600	122.3	AWWA-C301(L) PVC DR25	72.09	71.97
											AWWA-C301(L)		
				LATFORMS TO			507	506	600	84.3	PVC DR25	71.94	71.85
MATERIA	L SUBJEC	T TO THE	E SATISF	ACTION OF TH	IE CITY OF C	DTTAWA.	FOC	FOF	600	124.0	AWWA-C301(L)	71.00	71 70
							506	505	600	124.9	PVC DR25 AWWA-C301(L)	71.82	71.70
							505	504	600	16.7	PVC DR25	71.70	71.68
											AWWA-C301(L)		
							504	502	600	142.7	PVC DR25	71.68	71.54
							502	501	600	55.2	AWWA-C301(L) PVC DR25	71.52	71.46
							502	501		JJ.Z	AWWA-C301(L)	11.32	/ 1.40
							501	107	600	9.5	PVC DR25	71.40	71.38

		8.	ISSUED FOR CITY APPROVAL	OCT 17/19	ERD	SCALE	DESIGN	FOR REVIEW ONLY
		7.	ISSUED FOR MECP APPROVAL	SEP 19/19	ERD	4,500		
		6.	REVISED AS PER CITY COMMENTS	AUG 27/19	ERD	1:500 0 5 10 15 20	CHECKED	
		5.	RE-ISSUED FOR CITY REVIEW/COMMENT	JULY 5/19	ERD	HORIZONTAL	DRAWN	
		4.	ISSUED WITH ADDENDUM NO.1	JUNE 12/19	ERD	HORALOWING	DIOWIN	
		3.	ISSUED FOR MUNICIPAL CONSENT	MAY 31/19	ERD	4.50	CHECKED	4 1
		2.	ISSUED FOR TENDER	MAY 29/19	JR	1:50 0 0.5 1.0 1.5 2.0		
APR 1/20	ERD	1.	ISSUED FOR CITY REVIEW/COMMENT	MARCH 8/19	FM	VERTICAL	APPROVED	
DATE	BY	No.	REVISION	DATE	BY			

			L
ΝΟΛΤΞϹΗ	LOCATION MARCH ROAD SANITARY AND WATERMAIN U	PGRADES	∂-00C
Engineers, Planners & Landscape Architects Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6	DRAWING NAME PLAN AND PROFILE	PROJECT No. 112117 REV	0-16
Telephone(613) 254-9643Facsimile(613) 254-5867Websitewww.novatech-eng.com	MAXWELL BRIDGE ROAD - 11+000 TO 11+150	REV 9 DRAWING №. 112117-PP-27	D07-2

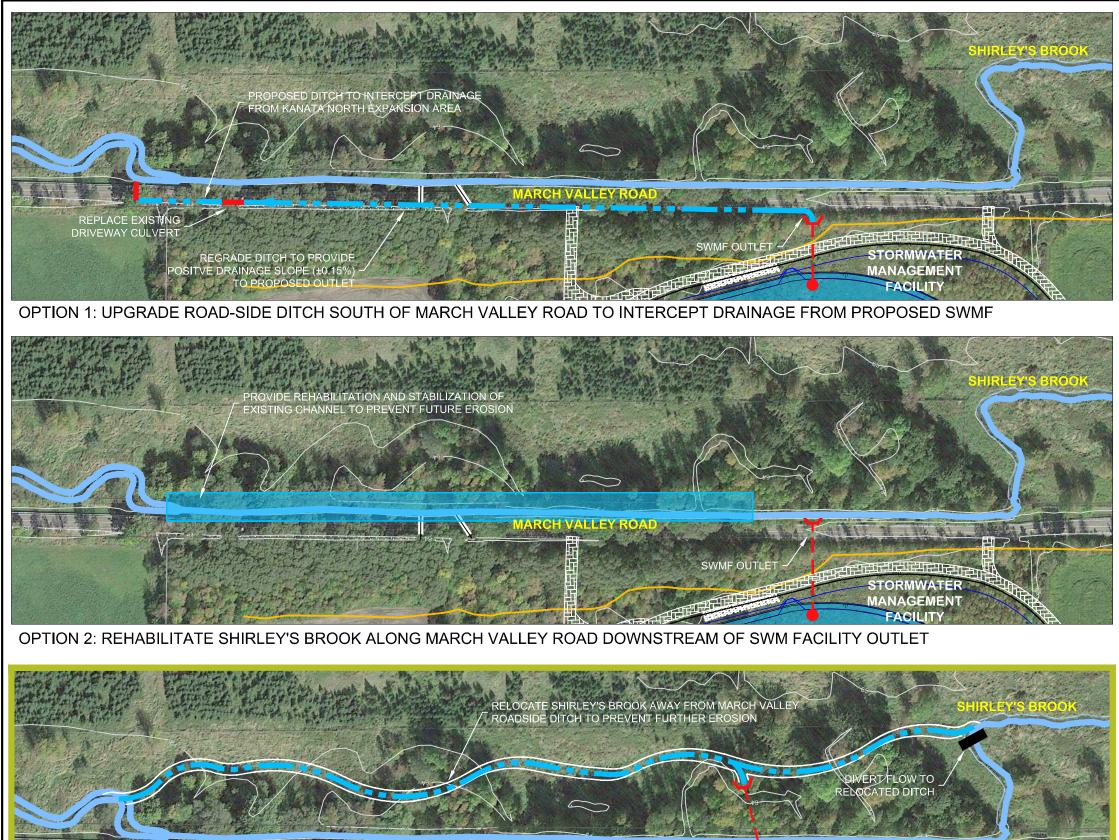
Appendix D


Stormwater Servicing Design

STORM SEWER CALCULATION SHEET (RATIONAL METHOD)

Local Roads Return Frequency = 2 years

Collector Roads Return Frequency = 5 years



STORM SEWER CALCULATION SHEET (RATIONAL METHOD)

Local Roads Return Frequency = 2 years Collector Roads Return Frequency = 5 years

				Roads Retur	m Frequency	y = 5 years																								111C	את	IW	U
inning	0.013		Arterial Ro	ads Return	Frequency	= 10 years				ADE	A (Ha)								1		EI	LOW							SEWER D				
	LOCA	TION		2 Y	EAR			5 Y	/EAR	AREA	ч (па)	10 Y	EAR			100	YEAR		Time of	Intensity	Intensity		Intensity	Peak Flow	DIA. (mm)	DIA. (mm)	TYPE	SLOPE		CAPACITY	VELOCIT	TIME OF	RAT
			AREA	R	Indiv.	Accum.	AREA	R	Indiv.	Accum.	AREA	R	Indiv.	Accum.	AREA	R	Indiv.	Accum.	Conc.	2 Year	5 Year		100 Year										
ation	From Node	To Node	(Ha)	ĸ	2.78 AC	2.78 AC	(Ha)	IX.	2.78 AC	2.78 AC	(Ha)	IX.	2.78 AC	2.78 AC	(Ha)	IX.	2.78 AC	2.78 AC	(min)	(mm/h)	(mm/h)	(mm/h)	(mm/h)	Q (l/s)	(actual)	(nominal)		(%)	(m)	(l/s)	(m/s)	LOW (mir	Q/Q
					0.00	4.88	0.26	0.70	0.51	26.48			0.00	8.13			0.00	0.00	20.26				-								-		
					0.00	4.88	0.25	0.65	0.45	26.93			0.00	8.13			0.00	0.00	20.20														
	26	30	0.00	0.00	0.00	4.88			0.00	26.93			0.00	8.13			0.00	0.00	20.27	51.61	69.67	81.53	118.95	2791	1500	1500	CONC	0.30	78.5	3871.7786	2.1910	0.5971	0.
			0.11	0.05	0.00	4.88 5.08	0.00	0.00	0.00	26.93			0.00	8.13			0.00	0.00	20.86														
			0.11	0.65	0.20	5.87			0.00	26.93 26.93			0.00	8.13 8.13			0.00	0.00															
			2.75	0.70	5.35	11.22			0.00	26.93			0.00	8.13			0.00	0.00															
					0.00	11.22	0.38	0.70	0.74	27.67			0.00	8.13			0.00	0.00															
	30	31			0.00	11.22 11.22	0.00	0.00	0.00	27.67 28.66			0.00	8.13 8.13			0.00	0.00	20.86	50.68	68.41	80.05	116.78	3113	1500	1500	CONC	0.35	83.0	4181.9989	2.3665	0.5845	0
	31	32			0.00	11.22			4.54	33.20			0.00	8.13			0.00	0.00	21.45	49.81	67.22	78.66	114.74	3431	1500	1500	CONC	0.35	99.5	4181.9989	2.3665	0.7007	0
			0.52	0.65	0.94	12.16			0.00	33.20			0.00	8.13			0.00	0.00															Ĺ
			0.95	0.65	1.72	13.88			0.00	33.20			0.00	8.13			0.00	0.00			L		ļ								1		\downarrow
	32	97	0.91	0.65	1.64	15.52 15.52	0.22	0.70	0.00 0.43	33.20 33.62			0.00	8.13 8.13			0.00	0.00	22.15	48.81	65.86	77.05	112.39	3599	1500	1500	CONC	0.60	66.5	5475.5219	3.0985	0.3577	0
tributi	ion From Tru		82 - 97		0.00	30.31	0.22	0.70	0.43	3.61			0.00	0.00			0.00	0.00	19.30	-0.01	00.00	11.00	112.58	3333	1500	1000	CONC	0.00	00.0	3713.3219	0.0000	0.3317	
	ion From Tru		96 - 97			8.22				0.00				0.00				0.00	17.62			1											
			0.16	0.65	0.29	54.35			0.00	37.24			0.00	8.13			0.00	0.00													<u> </u>		\vdash
	97	98 TEE	0.36	0.65	0.65	55.00 55.00	0.07	0.65	0.00 0.13	37.24 37.36			0.00	8.13 8.13			0.00	0.00	22.51	48.32	65.19	76.27	111.24	5714	3000	3000	CONC	0.10	92.5	14193.7303	2.0080	0.7678	0
	98 TEE	990 TEE	1		0.00	55.00	0.07	0.00	0.13	37.36			0.00	8.13			0.00	0.00		48.32			111.24	5714	3000	3000	CONC	0.10	13.0	14193.7303			0
	990 TEE	99 TEE			0.00	55.00			0.00	37.36			0.00	8.13			0.00	0.00	22.51	48.32	65.19	76.27	111.24	5714	3000	3000	CONC	0.10	25.0	14193.7303	2.0080	0.2075	0
	99 TEE	100 TEE			0.00	55.00			0.00	37.36			0.00	8.13			0.00	0.00		48.32			111.24		3000		CONC		23.0	14193.7303			0
	100 TEE 101 TEE	101 TEE 1001 TEE	I		0.00	55.00 55.00	ł		0.00	37.36 37.36			0.00	8.13 8.13			0.00	0.00		48.32 48.32	65.19 65.19	76.27 76.27	111.24 111.24	5714 5714	3000 3000	3000 3000	CONC CONC	0.10	98.5 10.0	14193.7303 14193.7303	2.0080	0.8176	0
	1001 TEE	103			0.00	55.00			0.00	37.36			0.00	8.13			0.00	0.00	22.51	48.32	65.19	76.27	111.24	5714	3000	3000	CONC	0.10	28.0	14193.7303	2.0080	0.2324	0
	103	HW			0.00	55.00			0.00	37.36			0.00	8.13			0.00	0.00	22.51	48.32	65.19	76.27	111.24	5714	3000	3000	CONC	0.10	13.0	14193.7303	2.0080	0.1079	0.
								-	-								-														-		_
																																	-
																						<u> </u>	/	FORIE									
																							OROF	FRANK	VA,								
																						- /	on	L	1× A	-							
																						18		NZ	12	1-							
																							() —	4		7							
																						3	W	/. LIU		<u> </u>							
																						15	100	1679	32	20							-
																						1	_			1-							
																							2 2	0-04-22	2/0								
																							Por	-	2	/ _							
																							WC)	E OF C	141	_							-
																						<u> </u>	~	- 01	/								1
								-	-								-														-		_
																																	L
							<u> </u>		-								+				<u> </u>										+	<u> </u>	\vdash
		-			-													-	-														┢──
																							L										\downarrow
																																	\vdash
nitions	s:	I	I	I	I	I	L	1	1	I	I		l	1	I	I	1	I	I	I	L	1	L	Designed:		l	PROJECT		I	I	1	L	1
2.78 A	AIR, where									Notes:														-	A.K.					Minto	Kanata Nor	th	
	Flow in Litres		(L/s)								Rainfall-Inter													Checked:			LOCATIO	N:					
	in hectares (ha ll Intensity (mr									2) Min. Vel	ocity = 0.80	m/s												Dwg. Refe	W.L.		File Ref:			City of O Date:	ttawa	Sheet No.	
	ff Coefficient																							- "5. Kele			i ne reci.	17-982		April 20		SHEET NO.	

LEY SWMF OUTLET 파비는 문제 문제 문제 STORMWATER MANAGEMENT FACILITY

OPTION 3: REALIGN SHIRLEY'S BROOK THROUGH WOODED AREA, AWAY FROM MARCH VALLEY ROAD (PREFERRED)

LEGEND

KNUEA EXISTING DRAINAGE CHANNEL PROPOSED DRAINAGE CHANNEL

KANATA NORTH

COMMUNITY DESIGN PLAN

FIGURE NO. 6.5 SHIRLEY'S BROOK

REALIGNMENT **ALTERNATIVES** DATE MAY 2016 112117 SCALE

patersongroup

consulting engineers

re:	Groundwater Infiltration Review
	Proposed Mixed-Use Development
	936 March Road - Ottawa
to:	Minto Communities 2559688 - Ms. Beth Henderson - bhenderson@minto.com
date:	June 21, 2019
file:	PG4554-MEMO.01R

Paterson Group (Paterson) has prepared the current memorandum report to provide a review of the hydrogeological characteristics in support of groundwater infiltration recommendations for the aforementioned site.

Background Information

It is currently understood that the proposed mixed-use development consists of a mixture of single family and townhouse style residential dwellings, a school located in the central portion of the site and future commercial developments to be located at the western end of the site fronting onto March Road. It is also understood that the development will be serviced by municipal infrastructure that outlets to a stormwater management pond.

Multiple geotechnical and environmental investigations were completed for the proposed development, as part of which a total of 41 boreholes and 17 test pits were advanced to a maximum depth of 7.5 m. The results of the investigations indicated that, in general, the subsurface profile at the test hole locations consisted of topsoil overlying a layer of hard to firm brown silty clay that became grey with depth. This was typically underlain by a till deposit composed of a silty sand/silty clay matrix with gravel, cobbles and boulders. A deposit of silty sand was noted above the silty clay layer at borehole locations within the central portion of the site. Where encountered, the silty sand deposit was typically 0.5 to 1.5 m in thickness.

Practical refusal to augering was encountered on the inferred bedrock surface at depths ranging from approximately 1.3 m on the western portion of the site to approximately 7.8 m at the eastern boundary of the site. Based on available geological mapping, the site is located in an area where bedrock in the western portion of the site consists of interbedded sandstone and dolomite of the March formation, while bedrock in the eastern portion of the site consists of the area is expected to range from 3 to 10 m.

Ms. Beth Henderson Page 2 File: PG4554-MEMO.01R

Hydrogeological Setting

The subject site is located within the Shirley's Brook subwatershed of the Ottawa West watershed. The only surface water feature identified within the study area is an unnamed tributary to Shirley's Brook, which transects the site in a northwest to southeast direction.

Hydraulic Conductivity

Hydraulic conductivity testing was not completed as part of the various investigations for the proposed development. The hydraulic conductivity values were conservatively estimated based upon previous experience at similar sites in the area, information obtained from the results of the geotechnical field program and typical published values for similar stratigraphy. The values are interpreted to be approximately 1.0×10^{-7} to 1.0×10^{-10} m/sec for silty clay and 1.0×10^{-6} to 1.0×10^{-12} m/sec for limestone/dolomite bedrock.

Water Levels and Flow Directions

Water levels within the flexible piezometers installed within the boreholes ranged from 0.8 to 4.4 m depth. It should be noted that groundwater levels may have been influenced by surface water infiltrating the backfilled boreholes. Subsequently, groundwater level readings within the piezometers can be influenced by perched water in the backfill material within the borehole. As such, long-term groundwater levels are also estimated based on other factors such as colour, moisture levels and consistency of the recovered soil samples. Based on these observations, the long-term groundwater level at the subject site is expected to range from 2.5 to 4.5 m depth.

Based on the recovered water levels, shallow groundwater flow is expected to reflect local topography. The regional groundwater flow direction is expected to trend eastward towards Shirley's Bay and the Ottawa River, located approximately 2.2 km east of the proposed development.

Groundwater Recharge and Discharge

In general, groundwater will follow the path of least resistance from areas of higher hydraulic head to areas of lower hydraulic head. While upward and downward hydraulic gradients may be indicative of discharge and recharge, respectively, other factors must be considered.

Ms. Beth Henderson Page 3 File: PG4554-MEMO.01R

Based on the hydraulic conductivity estimates obtained from previous studies and published literature, the silty clay overburden is generally considered to act as a confining layer. It is our interpretation that groundwater will generally flow laterally through the upper layer of topsoil/weathered brown silty clay, as opposed to vertically upwards or downwards through overburden soils with lower hydraulic conductivity such as the grey silty clay. While small amounts of groundwater recharge and discharge could potentially take place on a localized scale where overburden thickness is minimal and/or contains silty sand near surface, neither the topographical or geological conditions are suitable for recharge or discharge to be occurring on a large scale at the subject site.

Recommendations

As previously discussed, existing conditions at the subject site currently allow for only minimal volumes of recharge to occur. As such, the applicability of secondary infiltration measures is considered limited for Low Impact Development Measures (LIDs), such as rear yard catch basins and amended topsoil finishes. It should also be noted that previous attempts within the City of Ottawa to induce additional surface water infiltration in similarly low permeability soils have resulted in detrimental effects to both homeowners and their properties due to poorly maintained drainage systems.

While some loss of infiltration can be expected as a result of impervious surfaces, such as rooftops and roadways, directing drainage to municipal services, the majority of the existing infiltration potential is expected to be maintained through urban lawns and landscaped areas.

We trust that this information satisfies your requirements.

Best Regards,

Paterson Group Inc.

Michael Laflamme, P.Geo.

David J. Gilbert, P.Eng.

Paterson Group Inc.

Head Office and Laboratory 154 Colonnade Road South Ottawa - Ontario - K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344 Northern Office and Laboratory 63 Gibson Street North Bay - Ontario - P1B 8Z4 Tel: (705) 472-5331 Fax: (705) 472-2334 **St. Lawrence Office** 993 Princess Street Kingston - Ontario - K7L 1H3 Tel: (613) 542-7381

Appendix E

SWM Pond 3 Design & Kanata North Community Pond 3 / Preliminary Stormwater Management Design (JFSA, April 2019) Date: April 2020 File: 17-982

Minto Kanata North OTTAWA Calculation of Pond 3 South Forebay Size

© DSEL

Settling Criteria

From the SWMP Manual, the required length for settling is as follows:

$L\min = \left(\frac{r Q_p}{V_s}\right)$	0.5	where:	-	to width ratio outflow during design quality storm g velocity
		Input:	r = Q _p = V _s =	11.0 0.055 m ³ /s 0.0003 m/s
I –	110 m			

 $L_{min} = 44.9 \text{ m}$

Dispersion Criteria

From the SWMP Manual, the required length for dispersion is as follows:

$L \min = \frac{80}{d}$		where:	d = depth o	um inflow (10 YR) of permanent pool d final velocity
		Input:	Q = d = Vf =	3.77 m ³ /s 1.5 m 0.5 m/s
=	40.2 m			

 $L_{min} = 40.2 \text{ m}$

The minimum forebay length is determined by the larger of the settling or dispersion criteria.

Minimum Length of Forebay Required	44.9 m
Length of Forebay Provided	145.0 m

Date: April 2020 17-982 File:

Minto Kanata North OTTAWA **Calculation of Pond 3 North Forebay Size**

© DSEL

Settling Criteria

From the SWMP Manual, the required length for settling is as follows:

$L\min = \left(\frac{r Q_p}{V_s}\right)^{0.5}$	where:	-	n to width ratio outflow during design quality storm ng velocity
	Input:	r = Q _p = V _s =	11.0 0.055 m ³ /s 0.0003 m/s
l = 110 m		3	

 $L_{min} = 44.9 \text{ m}$

Dispersion Criteria

From the SWMP Manual, the required length for dispersion is as follows:

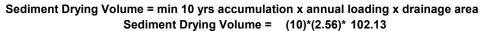
$L \min = \frac{80}{d}$		where:	d = depth c	um inflow (10 YR) of permanent pool I final velocity
		Input:	Q = d =	2.75 m ³ /s 1.5 m
			Vf =	0.5 m/s
L _{min} =	29.3 m			

29.3 m min

The minimum forebay length is determined by the larger of the settling or dispersion criteria.

Minimum Length of Forebay Required	44.9 m
Length of Forebay Provided	145.0 m

Date: April, 2020 File: 17-982


Minto Kanata North City of Ottawa SWM Pond 3 Sediment Management Area

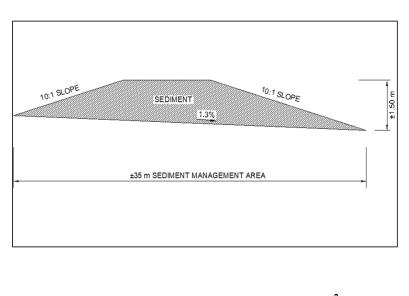

As per Table 6.3 in the MOE SWMP Manual, the annual sediment loading for this catchments will be $2.56 \text{ m}^3/\text{ha}$

Table 6.3 Annual Sediment Loadings								
Catchement	Annual Loading (kg/ha)	Wet Density	Annual Loading					
Imperviousness		(kg/m ³)	(m³/ha)					
35%	770	1230	0.6					
55%	2300	1230	1.9					
70%	3495	1230	2.8					
85%	4680	1230	3.8					

Interpolate for Catchement Imperviousness of 66% - Annual Loading = Total Drainage Area =

2.56 m³/ha 102.13 ha

= 2615 m³

Provided Sediment Drying Area Capacity = 3744 m³

BaseArea= 7290 m²

J.F. Sabourin and Associates Inc. 52 Springbrook Drive

WATER RESOURCES AND ENVIRONMENTAL CONSULTANTS

52 Springbrook Drive Ottawa (Stittsville), ON K2S 1B9 TEL: (613) 836-3884 FAX: (613) 836-0332 WEB: www.jfsa.com

April 22, 2020

David Schaeffer Engineering Limited 120 Iber Road, Unit 103 Stittsville, Ontario K2S 1E9

Attention: Mr. Matt Wingate, P.Eng.

Subject: Kanata North Community Pond 3 / Preliminary Stormwater Management Design our file: 1808-19

As requested by your office, we have evaluated, based on the available information as described below, the preliminary stage-storage-discharge relationship for Kanata North Stormwater Management (SWM) Pond 3, as well as preliminary hydraulic gradeline results for the storm sewer servicing the drainage area to Pond 3.

STORMWATER MANAGEMENT REQUIREMENTS

The Kanata North Community is serviced by Ponds 1 and 2 discharging to tributaries of Shirley's Brook, and Pond 3 discharging to the main branch of Shirley's Brook. Quality, erosion and quantity control targets for these ponds were initially set in the June 2016 *Kanata North Community Design Plan Environmental Management Plan Report* by Novatech, and revised by Novatech most recently in modelling files received January 29, 2020. The January 29, 2020 modelling files were updated by Novatech to incorporate the Kanata North pre- and post-development conditions SWMHYMO models from the June 2016 *Environmental Management Plan* (updated where applicable) within the larger existing conditions SWMHYMO model of Shirley's Brook prepared by AECOM in the April 2015 *Shirley's Brook and Watt's Creek Phase 2 Stormwater Management Study*, and to adjust quantity control requirements for the ponds to match post- to pre-development flows on the main branch of Shirley's Brook.

The updated quantity control targets specified by Novatech on January 29, 2020 specify unit release rates for Pond 3 of 1.1 L/s, 1.9 L/s and 3.5 L/s for the 2-, 5- and 100-year 24-hour SCS Type II design storms, respectively. Furthermore, post- to pre-development control of the 25 mm 4-hour Chicago storm to a unit release rate of 0.55 L/s/ha is specified for the extended detention component of Pond 3.

The preliminary pond stage-storage-discharge curve, outlet controls, extended detention drawdown time calculations, and operating characteristics are presented in Attachment B for Pond 3 based on these quantity control requirements and an enhanced level of quality control for a wet pond per Ministry of the Environment requirements. An updated drainage area of 102.13 ha at 66% imperviousness to Pond 3 was provided by DSEL. The pond operation was evaluated under both free outfall and restrictive downstream conditions, where restrictive downstream conditions at the pond outfall were modelled based on the 100-year flood level of 65.28 m at cross-section 2199.535 on Shirley's Brook, per the April 2015 Shirley's Brook and Watt's Creek Phase 2 Stormwater Management Study. The maximum 100-year pond level based on these controls and under restrictive downstream conditions is 66.58 m.

PRELIMINARY HYDRAULIC GRADELINE CALCULATIONS

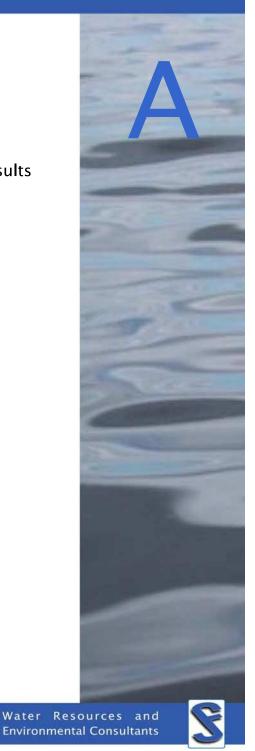
Preliminary hydraulic gradeline calculations for the proposed storm sewer to Pond 3 were performed using spreadsheet calculations and are presented in Attachment A. Pipe data, storm sewer layout and Rational Method flows in the storm sewer are as provided by DSEL. The Rational Method flows were calculated based on the 2-, 5- or 10-year level of service requirements, and the 100-year flows in the hydraulic gradeline calculations were

estimated as 14% greater than the Rational Method flows, to account for the additional flows captured by catchbasin grates, lead pipes and / or inlet control devices under the higher surface water depths of the 100-year storm. Note that a conservative water level of 66.80 m was assumed in Pond 3 to allow for any future design variation.

As may be seen in Attachment C, a freeboard of 0.3 m between the hydraulic gradeline and the estimated underside of footing elevations (estimated as 1.8 m below ground level) has been provided throughout the proposed development.

Yours truly, J.F. Sabourin and Associates Inc.

1


Laura Pipkins, P.Eng.

cc: J.F. Sabourin, M.Eng, P.Eng. Director of Water Resources Projects

Attachment A:Pipe Data and Hydraulic Simulation ResultsAttachment B:Preliminary Pond 3 Design

ATTACHMENT

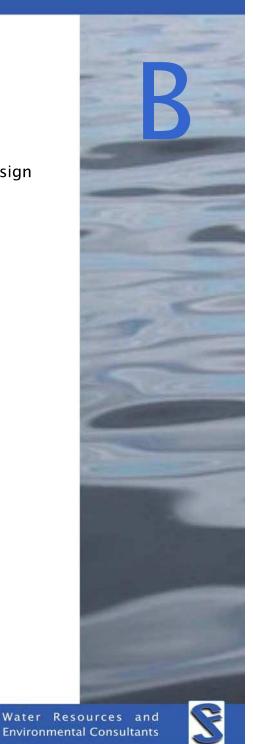
Pipe Data and Hydraulic Simulation Results

JFSA

Table A-1: Storm Sewer Hydraulic Gradeline Calculations

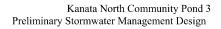
	Pipe Parameters							Flow Characteristics		Friction and Minor Losses						HGL Computations				USF Check				
Manhole	Number	Invert E	levation	Diameter	Length	MH Cover	MH Cover	Width	Slope	n	Qcap	Flow	V actual	per Darc	y-Weisbach	Friction	Minor Loss	Minor	Losses	Surch.	HGL	HGL	USF	Freeboard
(u/s)	(d/s)	(u/s)	(d/s)]		Elev.	Elev.					(1)	Q/a	f	H_L	Losses	Coefficient	Losses		(u/s)	(u/s)	(d/s)	(2)	To USF
		(m)	(m)	(mm)	(m)	(m)	(m)	(mm)	(%)		(L/s)	(L/s)	(m/s)		(m)	(m)		(m)	(m)	(m)	(m)	(m)		(m)
92	93	67.46	67.06	300	60.5	70.48	70.30	N/A	0.65	0.013	78	61	1.225	0.031	0.243	0.243	0.02	0.002	0.245	0.545	68.300	68.055	68.68	0.380
93	94	66.90	66.48	450	60.5	70.30	70.12	N/A	0.70	0.013	239	117	1.509	0.027	0.102	0.102	0.39	0.045	0.148	0.705	68.055	67.907	68.50	0.445
94	95	66.45	66.32	450	13.5	70.12	70.09	N/A	0.90	0.013	270	140	1.723	0.027	0.033	0.033	0.39	0.059	0.092	1.011	67.907	67.816	68.32	0.413
95	96	66.31	65.94	450	44.0	70.09	69.97	N/A	0.85	0.013	263	153	1.717	0.027	0.127	0.127	0.78	0.117	0.244	1.057	67.816	67.572	68.29	0.474
86	87	69.66	68.67	450	90.5	72.58	71.63	N/A	1.10	0.013	299	231	2.080	0.027	0.594	0.594	0.02	0.004	0.599	-0.154	69.957	67.955	70.78	0.823
87	88	66.34	66.18	675	80.0	71.63	70.80	N/A	0.20	0.013	376	301	1.171	0.024	0.103	0.103	0.02	0.001	0.104	0.944	67.955	67.851	69.83	1.875
88	89	66.10	66.00	750	68.0	70.80	70.50	N/A	0.15	0.013	431	328	1.078	0.023	0.059	0.059	0.26	0.015	0.074	1.000	67.851	67.776	69.00	1.149
89	90	65.97	65.95	750	13.5	70.50	70.36	N/A	0.15	0.013	431	332	1.077	0.023	0.012	0.012	0.54	0.032	0.044	1.057	67.776	67.732	68.70	0.924
90	91	65.89	65.79	750	68.0	70.36	70.16	N/A	0.15	0.013	431	371	1.098	0.023	0.076	0.076	0.02	0.001	0.077	1.093	67.732	67.655	68.56	0.828
91	96	65.77	65.64	750	66.0	70.16	69.96	N/A	0.20	0.013	498	393	1.255	0.023	0.082	0.082	0.02	0.002	0.084	1.138	67.655	67.572	68.36	0.705
96	97	65.56	65.42	825	72.5	69.96	69.75	N/A	0.20	0.013	642	547	1.353	0.022	0.105	0.105	1.330	0.124	0.229	1.187	67.572	67.342	68.16	0.588
65	66	67.59	67.01	375	90.0	70.90	70.63	N/A	0.65	0.013	141	93	1.373	0.029	0.255	0.255	0.020	0.002	0.257	0.560	68.525	68.268	69.10	0.575
66	67	66.09	65.79	525	86.0	70.63	70.38	N/A	0.35	0.013	254	170	1.268	0.026	0.135	0.135	1.33	0.109	0.244	1.650	68.268	68.024	68.83	0.562
65	70	68.30	68.26	300	11.0	70.90	70.95	N/A	0.35	0.013	57	41	0.885	0.031	0.020	0.020	0.47	0.019	0.039	-0.112	68.490	68.242	69.10	0.610
70	71	68.00	67.86	525	48.5	70.95	70.82	N/A	0.30	0.013	236	102	1.057	0.026	0.027	0.027	0.21	0.012	0.039	-0.285	68.242	68.065	69.15	0.908
71	72	67.81	67.75	525	15.5	70.82	70.78	N/A	0.35	0.013	254	127	1.185	0.026	0.013	0.013	0.64	0.045	0.059	-0.265	68.065	67.944	69.02	0.955
72	73	67.60	67.42	675	89.0	70.78	70.51	N/A	0.20	0.013	376	194	1.062	0.024	0.048	0.048	0.02	0.001	0.049	-0.332	67.944	67.716	68.98	1.036
73	75	65.25	65.11	750	88.5	70.51	70.25	N/A	0.15	0.013	431	248	1.012	0.023	0.044	0.044	0.02	0.001	0.045	1.719	67.716	67.671	68.71	0.994
106	107	67.70	67.17	375	81.5	71.38	71.20	N/A	0.65	0.013	141	63	1.253	0.029	0.105	0.105	0.02	0.002	0.107	1.024	69.102	68.995	69.58	0.478
107	63	67.07	66.64	375	89.0	71.20	70.94	N/A	0.48	0.013	121	103	1.238	0.029	0.306	0.306	1.33	0.104	0.410	1.551	68.995	68.585	69.40	0.405
49	62	66.91	66.26	375	100.5	71.02	70.72	N/A	0.65	0.013	141	77	1.315	0.029	0.192	0.192	1.33	0.117	0.309	1.274	68.558	68.248	69.22	0.662
60	61	67.02	66.37	375	100.5	71.15	70.86	N/A	0.65	0.013	141	78	1.317	0.029	0.201	0.201	1.33	0.118	0.318	1.230	68.623	68.304	69.35	0.727
56	58	66.94	66.29	525	100.5	71.22	70.93	N/A	0.65	0.013	347	97	1.395	0.026	0.051	0.051	1.33	0.132	0.183	1.123	68.586	68.403	69.42	0.834
57	58	67.36	67.01	375	54.5	70.76	70.92	N/A	0.65	0.013	141	36	1.075	0.029	0.023	0.023	1.33	0.078	0.102	0.766	68.505	68.403	68.96	0.455
39	40	67.65	67.04	375	88.0	71.66	71.40	N/A	0.70	0.013	147	99	1.429	0.029	0.280	0.280	0.02	0.002	0.282	1.144	69.173	68.891	69.86	0.687
40	54	66.89	66.57	525	90.5	71.40	71.14	N/A	0.35	0.013	254	183	1.282	0.026	0.163	0.163	1.33	0.111	0.274	1.478	68.891	68.617	69.60	0.709
39	76	68.96	68.92	300	12.0	71.66	71.69	N/A	0.35	0.013	57	39	0.878	0.031	0.020	0.020	0.21	0.008	0.028	0.167	69.431	69.403	69.86	0.429
76	55	68.77	68.66	450	58.0	71.69	71.52	N/A	0.20	0.013	128	108	0.901	0.027	0.083	0.083	0.02	0.001	0.084	0.181	69.403	69.320	69.89	0.487
55	68	68.58	68.38	525	68.5	71.52	71.31	N/A	0.30	0.013	236	186	1.212	0.026	0.128	0.128	0.02	0.001	0.130		69.320	69.190	69.72	0.400
68	680	68.36	68.15	525	52.5	71.31	71.15	N/A	0.40	0.013	272	229	1.416	0.026	0.149	0.149	0.39	0.040	0.189		69.190	69.001	69.51	0.320
680	69	68.09	67.99	525	17.5	71.15	71.10	N/A	0.55	0.013	319	262	1.652	0.026	0.065	0.065	0.39	0.054	0.119	0.391	69.001	68.882	69.35	0.349
69	63	66.57	66.17	525	56.0	71.10	70.93	N/A	0.70	0.013	360	311	1.878	0.026	0.293	0.293	0.02	0.004	0.297	1.792	68.882	68.585	69.30	0.418
63	64	65.95	65.54	750	116.0	70.93	70.59	N/A	0.35	0.013	659	480	1.638	0.023	0.215	0.215	1.33	0.182	0.397	1.887	68.585	68.188	69.13	0.545
41	42	74.00	71.72	300	65.0	76.97	75.02	N/A	3.50	0.013	181	81	2.505	0.031	0.453	0.453	0.020	0.006	0.459	-0.160		70.001	75.17	1.034
42	43	69.42	68.95	450	72.5	75.02	72.89	N/A	0.65	0.013	230	150	1.549	0.027	0.201	0.201	1.330	0.163	0.364	0.133	70.001	69.636	73.22	3.219
50	51	71.14	71.00	300	41.5	73.84	73.97	N/A	0.35	0.013	57	27	0.806	0.031	0.032	0.032	0.08	0.003	0.035	-0.157	71.286	71.136	72.04	0.754
51	52	70.97	70.04	300	68.5	73.97	72.75	N/A	1.35	0.013	112	68	1.673	0.031	0.342	0.342	0.11	0.016	0.357	-0.132		69.945	72.17	1.034
52	53	69.39	68.71	450	24.5	72.75	71.51	N/A	2.80	0.013	477	420	3.391	0.027	0.532	0.532	1.07	0.627	1.159	0.101	69.945		70.95	1.005
45	46	74.13	74.00	375	31.0	77.63	77.96	N/A	0.40	0.013	111	97	1.135	0.027	0.094	0.094	0.32	0.021	0.115		74.397		75.83	1.433
46	47	73.97	73.92	375	13.0	77.96	77.66	N/A	0.40	0.013	111	99	1.135	0.029	0.034	0.034	0.32	0.021	0.072	-0.099	74.249		76.16	1.911
47	48	73.85	71.53	375	58.0	77.66	75.01	N/A	4.00	0.013	351	134	2.994	0.029	0.341	0.341	0.02	0.009	0.350	-0.215			75.86	1.848
48	44	71.51	68.43	375	72.5	75.01	71.63	N/A	4.00	0.013	361	176	3.261	0.029	0.731	0.731	1.33	0.003	1.452	-0.213	71.696		73.21	1.514
33	34	74.40	73.53	300	41.5	77.41	76.50	N/A	2.10	0.013	140	27	1.532	0.023	0.032	0.032	0.16	0.019	0.051	-0.211	74.488		75.61	1.122
34	35	73.50	72.48	300	41.5	76.50	75.45	N/A	2.10	0.013	140	27 45	1.864	0.031	0.032	0.032	0.18	0.019	0.031	-0.211			74.70	1.091
35	36	72.42	72.09	300	43.5	75.45	75.45 75.07	N/A	2.35	0.013	140 140	45 69	1.004	0.031	0.095	0.095	0.54 0.54	0.098	0.190	-0.166	72.562		73.65	1.088
36	370	72.01	71.44	450			75.07 74.29		0.85	0.013	263	09 146	1.702	0.031	0.078	0.078	0.02	0.003	0.180	-0.155	72.253		73.27	1.017
370	370	72.01	70.75	450 450	68.0 58.0	75.07 74.29		N/A											0.161				72.49	0.802
370	430	70.71	70.73		58.0		73.78	N/A	1.15	0.013	306 272	208 265	2.067	0.027	0.307	0.307	0.02	0.004				70.039	72.49	0.802
57	430	10.11	10.32	525	52.5	73.78	73.37	N/A	0.75	0.013	372	265	1.874	0.026	0.199	0.199	1.33	0.238	0.437	-0.199	11.037	10.038	11.30	0.940

Table A-1: Storm Sewer Hydraulic Gradeline Calculations


	Pipe Parameters							Flow Characteristics				Friction and Minor Losses						_ Computa	USF	Check				
Manhole	Number	er Invert Elevation		Diameter Lengt		h MH Cover MH Cover Wid		Width	Slope	n	Qcap	Flow	V actual	per Darc	y-Weisbach	Friction	Minor Loss	Minor	Losses	Surch.	HGL	HGL	USF	Freeboard
(u/s)	(d/s)	(u/s)	(d/s)			Elev.	Elev.					(1)	Q/a	f	Η _L	Losses	Coefficient	Losses		(u/s)	(u/s)	(d/s)	(2)	To USF
		(m)	(m)	(mm)	(m)	(m)	(m)	(mm)	(%)		(L/s)	(L/s)	(m/s)		(m)	(m)		(m)	(m)	(m)	(m)	(m)		(m)
430	43	69.62	69.07	525	73.0	73.37	72.74	N/A	0.75	0.013	372	318	1.943	0.026	0.399	0.399	0.02	0.004	0.403	-0.106	70.039	69.636	71.57	1.531
43	44	68.86	67.83	600	68.5	72.74	71.48	N/A	1.50	0.013	752	481	2.837	0.025	0.420	0.420	0.02	0.008	0.428	0.179	69.636	69.208	70.94	1.304
44	53	67.43	66.70	975	47.5	71.48	71.51	N/A	1.55	0.013	2790	652	3.100	0.021	0.040	0.040	0.78	0.382	0.422	0.799	69.208	68.786	69.68	0.472
74	75	67.55	67.46	300	24.5	70.25	70.25	N/A	0.35	0.013	57	8	0.572	0.031	0.002	0.002	1.33	0.022	0.024	-0.155	67.695	67.671	68.45	0.755
53	54	66.70	66.37	975	74.5	71.35	71.13	N/A	0.45	0.013	1503	1053	2.196	0.021	0.164	0.164	0.02	0.005	0.169	1.111	68.786	68.617	69.55	0.764
54	58	66.35	65.99	975	71.5	71.13	70.94	N/A	0.50	0.013	1585	1210	2.355	0.021	0.209	0.209	0.02	0.006	0.214	1.297	68.617	68.403	69.33	0.713
58	61	65.76	65.62	1050	41.5	70.94	70.85	N/A	0.35	0.013	1616	1299	2.088	0.021	0.094	0.094	0.02	0.004	0.098	1.593	68.403	68.304	69.14	0.737
61	62	65.54	65.45	1200	44.5	70.85	70.71	N/A	0.20	0.013	1744	1350	1.709	0.020	0.053	0.053	0.02	0.003	0.056	1.564	68.304	68.248	69.05	0.746
62	64	65.43	65.36	1200	44.5	70.71	70.58	N/A	0.15	0.013	1510	1400	1.524	0.020	0.057	0.057	0.02	0.002	0.060	1.617	68.248	68.188	68.91	0.662
64	67	65.32	65.14	1200	72.0	70.58	70.39	N/A	0.25	0.013	1949	1840	1.963	0.020	0.160	0.160	0.02	0.004	0.164	1.671	68.188	68.024	68.78	0.592
67	75	65.12	64.91	1200	68.5	70.39	70.25	N/A	0.30	0.013	2135	1941	2.145	0.020	0.170	0.170	0.78	0.183	0.353	1.707	68.024	67.671	68.59	0.566
75	82	64.74	64.65	1500	62.5	70.24	70.02	N/A	0.15	0.013	2738	2147	1.715	0.018	0.058	0.058	0.02	0.003	0.061	1.432	67.671	67.611	68.44	0.769
82	97	64.63	64.52	1500	73.5	70.02	69.76	N/A	0.15	0.013	2738	2140	1.722	0.018	0.067	0.067	1.33	0.201	0.268	1.486	67.611	67.342	68.22	0.609
77	78	70.04	68.98	300	55.5	73.34	72.31	N/A	1.90	0.013	133	68	1.904	0.031	0.275	0.275	0.02	0.004	0.278	-0.149	70.186	69.073	71.54	1.354
78	79	68.86	67.27	375	91.0	72.31	70.73	N/A	1.75	0.013	232	141	2.204	0.029	0.585	0.585	0.02	0.005	0.590	-0.165	69.073	68.150	70.51	1.437
79	80	66.70	66.51	525	63.0	70.72	70.53	N/A	0.30	0.013	236	173	1.190	0.026	0.102	0.102	0.02	0.001	0.104	0.925	68.150	68.046	68.92	0.770
80	81 105	66.44	66.16	600	78.5	70.53	70.30	N/A	0.35	0.013	363	296	1.438	0.025	0.183	0.183	0.02	0.002	0.185	1.010	68.046	67.862	68.73	0.684
81	105	66.12	66.03	675	45.5	70.30	70.17	N/A	0.20	0.013	376	319	1.185	0.024	0.065	0.065	1.33	0.095	0.161	1.064	67.862	67.701	68.50	0.638
104	105	67.03	66.71	300	48.5	70.33	70.18	N/A	0.65	0.013	78	38	1.099	0.031	0.075	0.075	0.04	0.002	0.077	0.453	67.778	67.701	68.53	0.752
105	32	65.96	65.81	750	73.0	70.18	69.96	N/A	0.20	0.013	498	377	1.248	0.023	0.084	0.084	1.33	0.106	0.189	0.994	67.701	67.512	68.38	0.679
84	85 86	74.05	72.09	300	70.0	76.75	74.79	N/A	2.80	0.013	162	70	2.223	0.031	0.365	0.365	0.02	0.005	0.370	-0.163	74.186 72.273	72.273	74.95 72.99	0.764
85	00 21	72.07 74.05	69.82 72.05	300	72.5	74.79	72.60	N/A	3.10	0.013	170	138	2.698	0.031	1.475	1.475	0.02	0.007	1.482	-0.096	74.169	69.957 74.119	72.99 74.95	0.717
84 21	21	73.91	73.95 73.14	300	13.5	76.75	76.65	N/A	0.75	0.013	84	29	1.080	0.031	0.012	0.012	0.390	0.023	0.035	-0.179	74.109	73.294	74.95 74.85	0.781 0.731
21	109	73.06	71.84	300	59.0	76.65	75.84	N/A	1.30	0.013	110	93	1.758	0.031	0.544	0.544	0.02	0.003	0.547	-0.090	73.294	70.457	74.85 74.04	0.731
108	109	72.35	71.43	375	74.5	75.84 75.65	74.66	N/A	1.65	0.013	225	157	2.216	0.029	0.599	0.599	1.33	0.333	0.932	-0.145	72.439	70.457	73.85	1.411
109	28	69.75	66.93	300	34.0	75.65	74.74	N/A	2.70	0.013	159	29	1.713	0.031	0.031	0.031	0.02	0.003	0.033	-0.213	72.439	68.069	73.83 72.94	2.483
24	20 25	72.12	70.84	450 300	152.5 46.0	74.74	70.72 73.54	N/A N/A	1.85 2.80	0.013	388 162	317 63	2.735	0.027 0.031	1.881 0.196	1.881 0.196	1.33 0.02	0.507 0.005	2.388 0.200	0.257	72.253	71.016	73.03	0.777
25	29	70.82	68.87	300		74.83 73.54	73.54 71.66			0.013			2.166		1.206				1.644			68.207	71.74	0.724
27	29	69.73	68.67	300	69.5 54.5	73.34	71.68	N/A N/A	2.80 1.95	0.013 0.013	162 135	127 28	2.543 1.532	0.031 0.031	0.045	1.206 0.045	1.33 0.02	0.438	0.044		69.821	68.207	70.63	0.809
29	28	67.27	67.05	525	74.5	72.43	70.71	N/A	0.30	0.013	236	20 184	1.208	0.026	0.045	0.136	0.02	0.002	0.048		68.207	68.069	69.88	1.673
28	30	66.40	66.26	825	74.5	70.71	70.50	N/A	0.30	0.013	230 642	502	1.334	0.020	0.087	0.087	1.33	0.001	0.208	0.412	68.069	67.861	68.91	0.841
13	14	75.83	75.78	300	13.5	78.51	78.54	N/A	0.35	0.013	57	19	0.729	0.022	0.007	0.007	0.39	0.011	0.200	-0.181	75.950	75.912	76.71	0.760
14	15	75.63	75.24	450	112.5	78.54	78.12	N/A	0.35	0.013	169	119	1.152	0.027	0.195	0.195	0.33	0.022	0.216	-0.172	75.912	75.464	76.74	0.828
15	16	75.21	75.14	450	12.0	78.12	78.00	N/A	0.55	0.013	211	131	1.411	0.027	0.025	0.025	0.32	0.022	0.058	-0.172	75.464	75.288	76.32	0.856
16	19	75.10	73.57	450	66.5	78.00	76.64	N/A	2.30	0.013	432	156	2.508	0.027	0.023	0.198	1.07	0.343	0.541		75.288	73.182	76.20	0.912
13	83	75.81	75.61	300	51.0	78.51	78.32	N/A	0.40	0.013	-52 61	33	0.891	0.027	0.060	0.060	0.47	0.049	0.079			75.756	76.71	0.740
83	17	75.55	75.44	300	18.5	78.32	78.16	N/A	0.60	0.013	75	62	1.186	0.031	0.000	0.000	0.32	0.013	0.099	-0.093	75.756	75.580	76.52	0.764
17	18	75.36	74.52	375	64.5	78.16	77.31	N/A	1.30	0.013	200	128	1.934	0.029	0.344	0.344	0.02	0.023	0.347		75.580	74.769	76.36	0.780
18	19	74.50	73.61	375	64.0	77.31	76.38	N/A	1.40	0.013	200	177	2.116	0.029	0.650	0.650	0.02	0.005	0.655			73.182	75.51	0.741
19	20	72.88	70.87	450	72.0	76.38	73.80	N/A	2.80	0.013	477	377	3.347	0.023	1.260	1.260	1.33	0.760	2.020	-0.150		70.091	74.58	1.398
1000	1001A	74.66	74.37	300	82.0	78.15	78.55	N/A	0.35	0.013	57	0	0.000	0.021	0.000	0.000	0.06	0.000	0.000	-0.300	74.659	74.342	76.35	1.691
1001A	10	74.34	74.13	300	61.5	78.55	80.10	N/A	0.35	0.013	57	0	0.000	0.031	0.000	0.000	1.33	0.000	0.000	-0.300	74.342		76.75	2.408
1	2	78.30	77.95	300	99.5	81.00	81.00	N/A	0.35	0.013	57	0	0.000	0.031	0.000	0.000	0.02	0.000	0.000	-0.300		77.802	79.20	0.900
2	3	77.80	77.60	450	99.5	81.00	81.00	N/A	0.20	0.013	128	0	0.000	0.027	0.000	0.000	0.02	0.000	0.000	-0.450		77.583	79.20	1.398
3	7	77.58	77.38	450	99.5	81.00	81.00	N/A	0.20	0.013	128	0	0.000	0.027	0.000	0.000	1.33	0.000	0.000	-0.450			79.20	1.617
4	5	78.30	77.96	300	96.0	81.00	81.00	N/A	0.35	0.013	57	0	0.000	0.031	0.000	0.000	0.02	0.000	0.000		78.300		79.20	0.900
5	6	77.81	77.61	450	100.0	81.00	81.00	N/A	0.20	0.013	128	0	0.000	0.027	0.000	0.000	0.02	0.000	0.000	-0.450		77.594	79.20	1.386
L			1									-						1		1.00	I	1		

Pipe Parameters													eristics		Fri	ction and	Minor Losses	HGL	. Computa	USF Check				
Manhole Number Invert Elevation		Diameter	Length	MH Cover	MH Cover	Width	Slope	n	Qcap	Flow	V actual	per Darc	y-Weisbach	Friction	Minor Loss	Minor	Losses	Surch.	HGL	HGL	USF	Freeboard		
(u/s)	(d/s)	(u/s)	(d/s)			Elev.	Elev.					(1)	Q/a	f	Η _L	Losses	Coefficient	Losses		(u/s)	(u/s)	(d/s)	(2)	To USF
		(m)	(m)	(mm)	(m)	(m)	(m)	(mm)	(%)		(L/s)	(L/s)	(m/s)		(m)	(m)		(m)	(m)	(m)	(m)	(m)		(m)
6	7	77.59	77.39	450	100.0	81.00	81.00	N/A	0.20	0.013	128	0	0.000	0.027	0.000	0.000	1.33	0.000	0.000	-0.450	77.594	77.034	79.20	1.606
7	8	76.93	76.73	900	80.5	81.00	80.29	N/A	0.25	0.013	905	25	0.636	0.022	0.000	0.000	0.08	0.002	0.002	-0.800	77.034	76.824	79.20	2.166
8	9	76.70	76.49	900	54.5	80.29	79.79	N/A	0.40	0.013	1145	46	0.905	0.022	0.000	0.000	0.08	0.003	0.004	-0.779	76.824	76.579	78.49	1.666
9	10	76.46	75.98	900	56.5	79.79	79.43	N/A	0.85	0.013	1669	69	1.307	0.022	0.001	0.001	0.11	0.010	0.010	-0.776	76.579	73.852	77.99	1.411
10	11	73.08	72.77	1350	87.5	79.43	78.05	N/A	0.35	0.013	3158	1991	2.342	0.019	0.122	0.122	0.02	0.006	0.127	-0.575	73.852	72.835	77.63	3.778
11	12	72.17	71.72	1350	76.0	78.05	75.50	N/A	0.60	0.013	4134	2018	2.884	0.019	0.109	0.109	0.04	0.015	0.124	-0.687	72.835	70.997	76.25	3.415
12	20	70.33	70.01	1350	54.5	75.50	73.76	N/A	0.60	0.013	4134	2007	2.869	0.019	0.077	0.077	0.04	0.015	0.092	-0.687	70.997	70.091	73.70	2.703
20	23	69.37	68.96	1350	68.5	73.76	72.71	N/A	0.60	0.013	4134	2333	2.994	0.019	0.131	0.131	0.02	0.009	0.140	-0.628	70.091	68.103	71.96	1.869
23	26	66.39	66.08	1350	68.5	72.71	71.66	N/A	0.45	0.013	3580	2383	2.682	0.019	0.137	0.137	0.02	0.007	0.144	0.364	68.103	67.959	70.91	2.807
26	30	65.93	65.70	1500	78.5	71.66	70.49	N/A	0.30	0.013	3872	2425	2.333	0.018	0.092	0.092	0.02	0.006	0.098	0.528	67.959	67.861	69.86	1.901
30	31	65.68	65.38	1500	83.0	70.49	70.24	N/A	0.35	0.013	4182	2822	2.551	0.018	0.132	0.132	0.02	0.007	0.139	0.686	67.861	67.722	68.69	0.829
31	32	65.28	64.93	1500	99.5	70.24	69.95	N/A	0.35	0.013	4182	3197	2.608	0.018	0.204	0.204	0.02	0.007	0.210	0.940	67.722	67.512	68.44	0.718
32	97	64.91	64.52	1500	66.5	69.95	69.75	N/A	0.60	0.013	5476	3451	3.289	0.018	0.158	0.158	0.02	0.011	0.170	1.098	67.512	67.342	68.15	0.638
97	98	63.77	63.67	3000	92.5	69.75	69.47	N/A	0.10	0.013	14194	5775	1.909	0.015	0.015	0.015	0.39	0.072	0.088	0.577	67.342	67.255	67.95	0.608
98	990	63.67	63.66	3000	13.0	69.47	69.47	N/A	0.10	0.013	14194	5652	1.917	0.015	0.002	0.002	0.39	0.073	0.075	0.583	67.255	67.180	N/A	N/A
990	99	63.66	63.63	3000	25.0	69.38	69.37	N/A	0.10	0.013	14194	5635	1.911	0.015	0.004	0.004	0.39	0.073	0.077	0.521	67.180	67.103	N/A	N/A
99	100	63.63	63.61	3000	23.0	69.37	69.36	N/A	0.10	0.013	14194	5604	1.900	0.015	0.004	0.004	0.39	0.072	0.075	0.469	67.103	67.028	N/A	N/A
100	101	63.61	63.51	3000	98.5	69.36	68.58	N/A	0.10	0.013	14194	5574	1.891	0.015	0.015	0.015	0.39	0.071	0.086	0.417	67.028	66.941	N/A	N/A
101	1001B	63.51	63.50	3000	10.0	68.52	68.52	N/A	0.10	0.013	14194	5454	1.899	0.015	0.001	0.001	0.39	0.072	0.073	0.429	66.941	66.868	N/A	N/A
1001B	103	63.50	63.47	3000	28.0	68.52	68.52	N/A	0.10	0.013	14194	5442	1.895	0.015	0.004	0.004	0.32	0.059	0.063	0.366	66.868	66.806	N/A	N/A
103	Pond 3	63.44	63.43	3000	13.0	68.52	68.52	N/A	0.10	0.013	14194	5409	1.884	0.015	0.002	0.002	0.02	0.004	0.006	0.362	66.806	66.800	N/A	N/A

Note: 100-year HGL boundary condition at Pond 3 set to 66.80 m (2 m above the permanent pool elevation). ⁽¹⁾ Flow set equal to Rational Method flows (per DSEL) + 14% to account for additional flows captured during the 100-year storm. ⁽²⁾ USF estimated as 1.8 m below the upstream manhole cover elevation.


ATTACHMENT

Preliminary Pond 3 Design

JFSA

Table B-1 : Summary of Drainage Area

(ha)		Area x Imp.	Required Sto	itorage ⁽¹⁾ (m ³)
	(%)		Permanent Pool	Quality Control
SWM Pond 3 102.13	99	6740.58	17941	4085

⁽¹⁾ Permanent pool and quality control provided for MOE enhanced protection (Wet Pond).

Table B-2 : Actual Volumes to Meet Allowable Release Rates

¹⁾ Unit release rates set by Novatech on January 29, 2020 based on matching pre-development flows on Shirley's Brook under post-development conditions with Ponds 1	/'s Brook under post-dev	pment flows on Shirley	atching pre-develo	2020 based on ma	/atech on January 29,	release rates set by Nov
64660	0.322	63770	0.328	0.357	0.0035	00yr/24hr SCS
57410	0.294	56560	0.300	N/A	N/A	50yr/24hr SCS
50900	0.265	50100	0.271	N/A	N/A	25yr/24hr SCS
42530	0.220	41800	0.226	N/A	N/A	10yr/24hr SCS
35830	0.171	35180	0.176	0.194	0.0019	5yr/24hr SCS
26020	0.091	25230	0.101	0.112	0.0011	2yr/24hr SCS
14790	0.011	14320	0.054	A/N	N/A	25mm/4hr Chicago ⁽⁵⁾
14869	0.055	14869	0.055	0.056	0.00055	Extended Detention (5)
4085	0.020	4085	0.020	N/A	N/A	Quality Control ⁽⁴⁾
31251	N/A	31251	V/N	N/A	N/A	Permanent Pool ⁽⁴⁾
(m ³)	(m ³ /s)	(m ³)	(m³/s)	~	~	
Used	Outflow	Used	Outflow	(m ³ /s)	(m ³ /s/ha)	
Storage	Provided	Storage	Provided	Outflow ⁽²⁾	Rate ⁽¹⁾	Component
Restrictive Downstream Conditions ⁽³⁾	Restrictive Down	Free Outfall Conditions	Free Outfa	Target	Unit Release	Pond

1, 2 and 3 in place.

⁽²⁾ Target release rates based on post-development drainage area to SWM Pond.

⁽³⁾ Restrictive downstream water level set at 65.28 m as per the 100-year flood level at cross-section 2199.535 on Shirley's Brook (Shirley's Brook & Watt's Creek Phase 2 Stormwater

Management Study (AECOM, April 2015)

⁽⁴⁾ Permanent Pool as per MOE requirements for enhanced protection; Quality Control = 40 m³/ha released over 24-48 hours.

(5) 25 mm 4-hour Chicago storm runoff to be contained within extended detention volume; unit release rate based on pre-development 25 mm storm flows.

Table B-3: Extended Detention Parameters for SWM Facility

Permanent Poo	ol Parameters	Quality Orifice Parameters
Area (C3)	27750.60 m ²	Diameter 0.200 m
Volume	31251.15 m ³	
PP Elev	64.800 m	Area 0.031 m ²
QC Elev	64.944 m	Invert 64.800 m
h (m)	0.144 m	C _o 0.62

Notes:

- C3 is the intercept from the area-depth linear regression.

- PP Elev indicates the elevation of the permanent pool.

- QC Elev indicates the elevation of the storage volume required by MOE for quality control.

- h is the maximum water elevation above the orifice (m).

Table B-4: Extended Detention Drawdown Time for SWM Facility

Elev.		Active Storage		C2	Drawdown Time	Drawdown Time	Flow	Demarkation
(m)	V (m ³)	A (m²)	depth (m)	(m²/m)	(h)	(days)	(m ³ /s)	Point
64.80	0.00	27750.60	0.00				0.000	PP Elev
64.85	1397.25	27961.20	0.05	4212	40.00	1.67	0.007	
64.90	2820.78	28473.75	0.10	7231	56.92	2.37	0.014	
64.944	4085.00	28830.51	0.14	7504	68.56	2.86	0.020	QC Elev
64.95	4260.42	28880.01	0.15	7529	70.04	2.92	0.020	
65.00	5721.57	29286.45	0.20	7679	81.26	3.39	0.027	
65.05	7173.72	29749.77	0.25	7997	91.35	3.81	0.033	
65.10	8653.41	29758.32	0.30	6692	100.07	4.17	0.039	
65.15	10160.64	30309.30	0.35	7311	108.78	4.53	0.043	
65.20	11705.22	30945.87	0.40	7988	117.15	4.88	0.047	
65.25	13269.60	31492.08	0.45	8314	125.03	5.21	0.051	
65.30	14869.26	32117.04	0.50	8733	132.74	5.53	0.055	Ext. Det.
65.35	16495.38	32659.65	0.55	8926	140.07	5.84	0.058	
65.40	18130.77	32975.01	0.60	8707	146.81	6.12	0.061	
65.45	19792.98	33507.45	0.65	8857	153.72	6.41	0.064	
65.50	21481.47	33825.24	0.70	8678	160.09	6.67	0.067	
65.55	23195.34	34348.59	0.75	8797	166.67	6.94	0.070	
65.60	24888.96	34697.70	0.80	8684	172.80	7.20	0.072	
65.65	26671.23	35199.00	0.85	8763	179.10	7.46	0.075	
65.70	28461.96	35481.06	0.90	8589	184.86	7.70	0.077	
65.75	30236.31	36762.12	0.95	9486	192.57	8.02	0.080	
65.80	32056.47	37405.53	1.00	9655	198.94	8.29	0.082	

Notes:

- C2 is the slope coefficient from the area-depth linear regression.

- PP Elev indicates the elevation of the permanent pool.

- QC Elev indicates the elevation of the storage volume required by MOE for quality control.

- Ext Det indicates the elevation of extended detention.

Table B-	5A: Stage-	lable B-5A: Stage-Storage-Outflow Curve for SWM Facility (Free Outfall Conditions)	IOW CURVE TOP SV	tor SWI	// Facility (Free U	ree Outra	II Conditions)	ns)		, Overflow		
			Vertical Orifice	Orifice	Vartical Orifice	Drifing	Vertical Bact		Ernad Creeted Wei	r over now		
							Verlical Ner Midth (m)					
			UIA (III)	0.200	uia (iii)	0.100	Height (m)	0.200	L (III)	000.21		
			Area (m ²)	0.031	Area (m ²)	0.025	Area (m ^z)	0.060				
			Invert (m)	64.80	Invert (m)	65.30	Invert (m)	65.70	Š	1.580		
			ں © (0	0.62 0.027	ے © °	0.62	ပိ (0.62	Invert (m)	66.70		
Elevation	Active Sto.	Demarkation	ط روز ل Head	0.uz/ Outflow	д (@ р Head	Outflow	لاس Head	Outflow	n contr. Head	Outflow	Outflow	Storage
(u)	(m ³)	Points	(m)	(m ³ /s)	(m)	(m ³ /s)	(m)	(s/ _s m)	(ш)	(m ³ /s)	(m³/s)	(ha-m)
64.80	0	PP Elev	000"0	0000	0000	000 0	0000	000"0	0000	0000	000.0	0 000
64.85	1397		0.050	0.007	0.000	0.000	0.000	0.000	0.000	000.0	0.007	0.140
64.90	2821		0.100	0.014	0.000	0.000	000.0	0.000	0.000	000.0	0.014	0.282
64 <u>.</u> 944	4082	QC Elev	0.144	0.020	0000	0.000	0000	00000	0000	00000	0.020	0.408
64.95 CF 00	4260 5700		0.150	0.020	0.000	0.000	0.000	0.000	0.000	00000	0.020	0.426
00.00 65.05	7710		0.200	0.033	0000						0.033	Z1C-0
65.10	8653		0.300	0.039	0.000	0.000	0.000	0.000	0.000	0.000	0.039	0.865
65.15	10161		0.350	0.043	0.000	0.000	0.000	0.000	0.000	0.000	0.043	1.016
65.20	11705		0.400	0.047	0.000	0.000	0.000	0.000	0.000	0.000	0.047	1.171
65.25	13270		0.450	0.051	0.000	0.000	0.000	0.000	0.000	0.000	0.051	1.327
65.30	14869	Ext. Det.	0.500	0.055	0.000	0.000	0.000	000.0	0000	0000	0.055	1.487
65.35	16495		0.550	0.058	0.050	0.006	000.0	000	000.0	000 [.] 0	0.064	1.650
65.40	18131		0.600	0.061	0.100	0.012	0.000	000.0	000.0	000.0	0.073	1.813
65.45	19793		0.650	0.064	0.150	0.017	0.000	000.0	000.0	000.0	0.081	1.979
65.50	21481		0.700	0.067	0.200	0.023	0.000	0.000	000.0	000 [.] 0	060.0	2.148
65.55	23195		0.750	0.070	0.250	0.028	0.000	000	000.0	0000	0.098	2.320
65.60	24889		0.800	0.072	0.300	0.032	0.000	000	000.0	0000	0.104	2.489
65.65 0	26671		0.850	0.075	0.350	0.036	0.000	00000	0000	000.0	0.110	2.667
65.70	28462		0.900	0.077	0.400	0.039	0.000	0000	0000	0000	0.116	2.846
65.75	30236		0.950	0.080	0.450	0.042	0.050	0.006	0000	000.0	0.127	3.024
00.00	90075		1 050	790.0	0.500	0.040	0.100	01.0.0	0000	000 0	0.143	3.200
00.00	040/4			0.004	0.500	0.047		070.0	00000		0.100	0.407
	30093			000.0	0.000	0.000	0.200		00000	00000	001.0	0.000
00.90	38121 10100		061-1	0.088	0000	700.0	002.0	0.004	0.000	000.0	CU2.U	3.812
00.00	40.160		1 200	0.090 0.090	0.700 0.500	0.00 0	0.300 0.00	0.074	0.000	0.000 0	0.219	4.016
66.05 22	42230		1.250	0.093	0.750	0.057 î î î î	0.350	0.082	0.000	0.000	0.232 0.232	4.223
66.10	44298		1.300	0.095	0.800	0.059	0.400	060.0	0000	0000	0.244	4.430
66.15	46384		1.350	0.096	0.850	0.061	0.450	0.097	000.0	000.0	0.255	4.638
66.20	48481		1.400	0.098	0.900	0.063	0.500	0.104	000.0	000.0	0.265	4.848
66.25	50592		1.450	0.100	0.950	0.065	0.550	0.111	000.0	000.0	0.276	5.059
66.30	52713		1.500	0.102	1.000	0.067	0.600	0.117	000.0	0.000	0.285	5.271
66.35	54837		1.550	0.104	1.050	0.068	0.650	0.122	0.000	0.000	0.295	5.484

Table B-5A: Stage-Storage-Outflow Curve for SWM Facility (Free Outfall Conditions)

			Quality Control 1	control 1	Quantity Control 1	control 1	Quantity Control 2	ontrol 2	Emergency Overflow	Overflow		
			Vertical Uritice	Uritice	Vertical Uritice	Uritice	Vertical Rect. Uritice	ct. Uritice	Broad Crested Weil	sted Weir		
			Dia (m)	0.200	Dia (m)	0.180	Width (m)	0.300	r (m)	12.000		
							Height (m)	0.200				
			Area (m ²)	0.031	Area (m ²)	0.025	Area (m ²)	0.060				
			Invert (m)	64.80	Invert (m)	65.30	Invert (m)	65.70	°. ℃	1.580		
			ပိ	0.62	ပိ	0.62	ပိ	0.62	Invert (m)	66.70		
			Q @ D	0.027	0 @ D	0.021	C∾	1.800	n contr.	0		
Elevation	Active Sto.	Demarkation	Head	Outflow	Head	Outflow	Head	Outflow	Head	Outflow	Outflow	Storage
(m)	(m ³)	Points	(ш)	(m³/s)	(ш)	(m³/s)	(m)	(s/ _s m)	(ɯ)	(s/ _s m)	(m ³ /s)	(ha-m)
66.40	56989		1.600	0.106	1.100	0.070	0.700	0.128	0.000	0.000	0.304	5.699
66.45	59145		1.650	0.107	1.150	0.072	0.750	0.133	0.000	000.0	0.312	5.914
66.50	61300		1.700	0.109	1.200	0.074	0.800	0.138	0.000	000.0	0.321	6.130
66.55	63488		1.750	0.111	1.250	0.075	0.850	0.143	0.000	0.000	0.329	6.349
66.60	65674		1.800	0.112	1.300	0.077	0.900	0.147	0.000	000.0	0.337	6.567
66.65	67934		1.850	0.114	1.350	0.078	0.950	0.152	0.000	000.0	0.344	6.793
66.70	70627	Ovf Elev	1.900	0.116	1.400	0.080	1.000	0.156	000'0	0.000	0.352	7.063
66.75	72341		1.950	0.117	1.450	0.081	1.050	0.161	0.050	0.212	0.571	7.234
66.80	74569		2.000	0.119	1.500	0.083	1.100	0.165	0.100	0.600	0.966	7.457
66.85	76838		2.050	0.120	1.550	0.084	1.150	0.169	0.150	1.101	1.475	7.684
66.90	79209		2.100	0.122	1.600	0.086	1.200	0.173	0.200	1.696	2.077	7.921
66.95	81627		2.150	0.124	1.650	0.087	1.250	0.177	0.250	2.370	2.758	8.163
67.00	84116		2.200	0.125	1.700	0.089	1.300	0.181	0.300	3.115	3.510	8.412
67.05	86673		2.250	0.127	1.750	060.0	1.350	0.184	0.350	3.926	4.327	8.667
67.10	89286		2.300	0.128	1.800	0.091	1.400	0.188	0.400	4.797	5.204	8.929
67.15	91993		2.350	0.129	1.850	0.093	1.450	0.191	0.450	5.723	6.137	9.199
67.20	94858		2.400	0.131	1.900	0.094	1.500	0.195	0.500	6.703	7.123	9.486
67.25	97449		2.450	0.132	1.950	0.095	1.550	0.198	0.550	7.734	8.160	9.745
67.30	100310	Top of Berm	2.500	0.134	2.000	0.097	1.600	0.202	0.600	8.812	9.244	10.031
Notes :	- PP Elev inc	PP Elev indicates the elevatio	ion of the pe	n of the permanent pool	ol.							

Table B-5A: Stage-Storage-Outflow Curve for SWM Facility (Free Outfall Conditions)

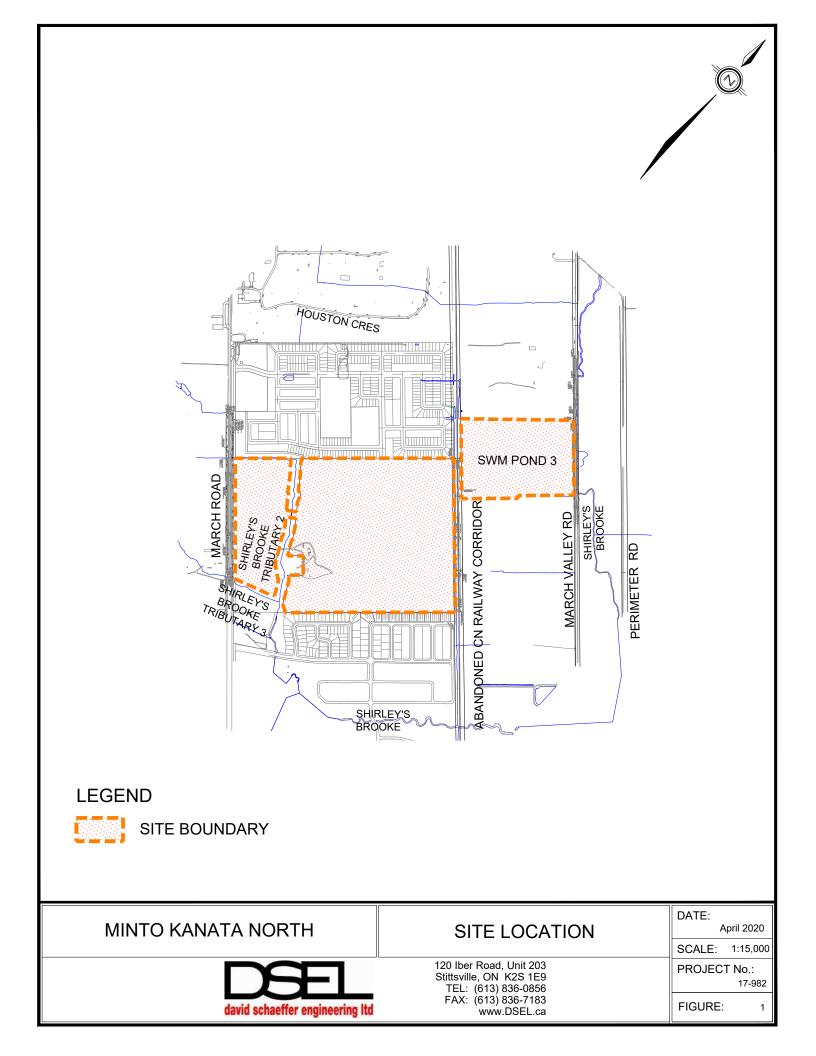
- PP Elev indicates the elevation of the permanent pool.
 - QC Elev indicates the elevation of the storage volume required by MOE for quality control.

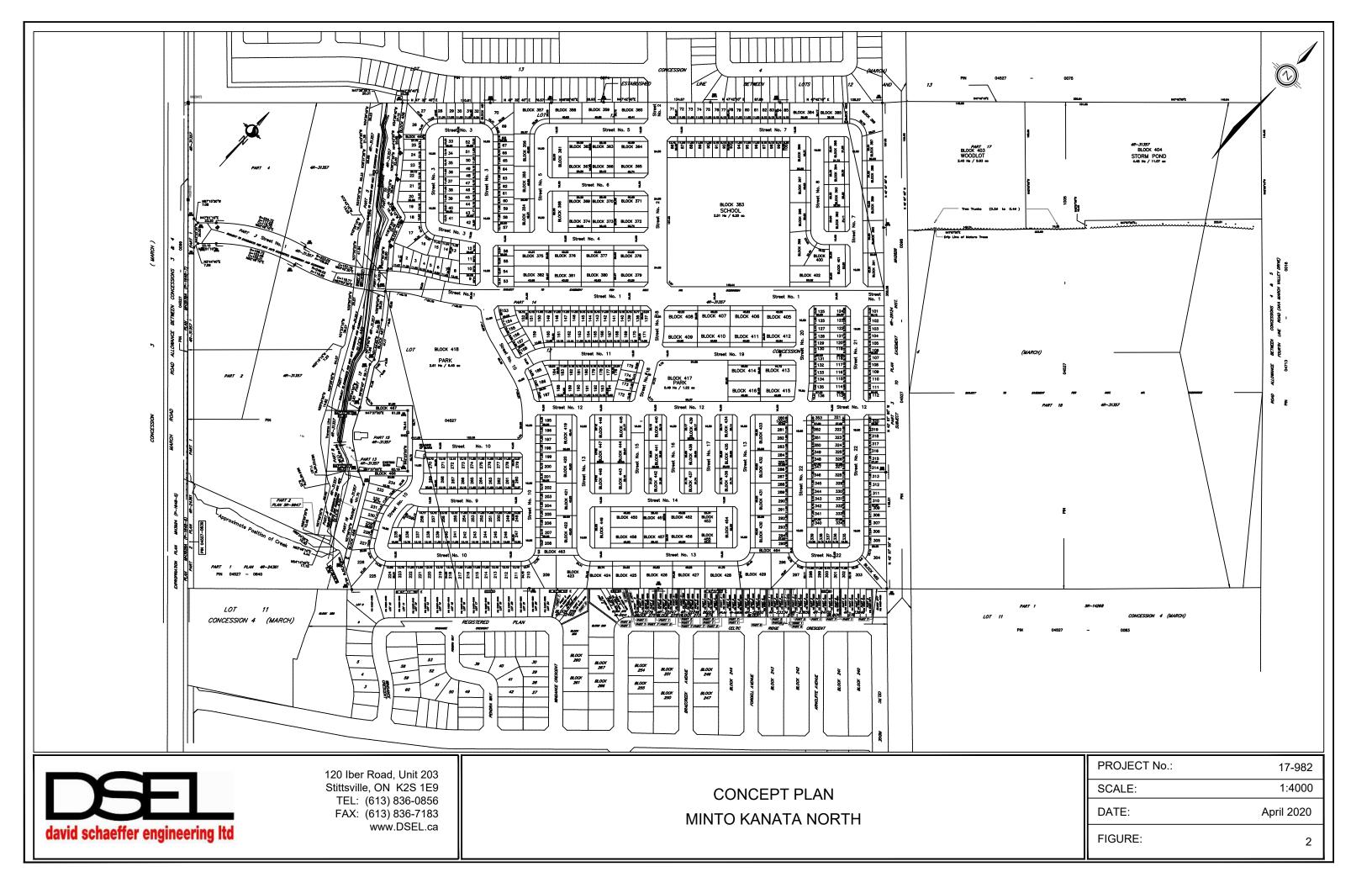
- Ext Det indicates the elevation of extended detention provided.

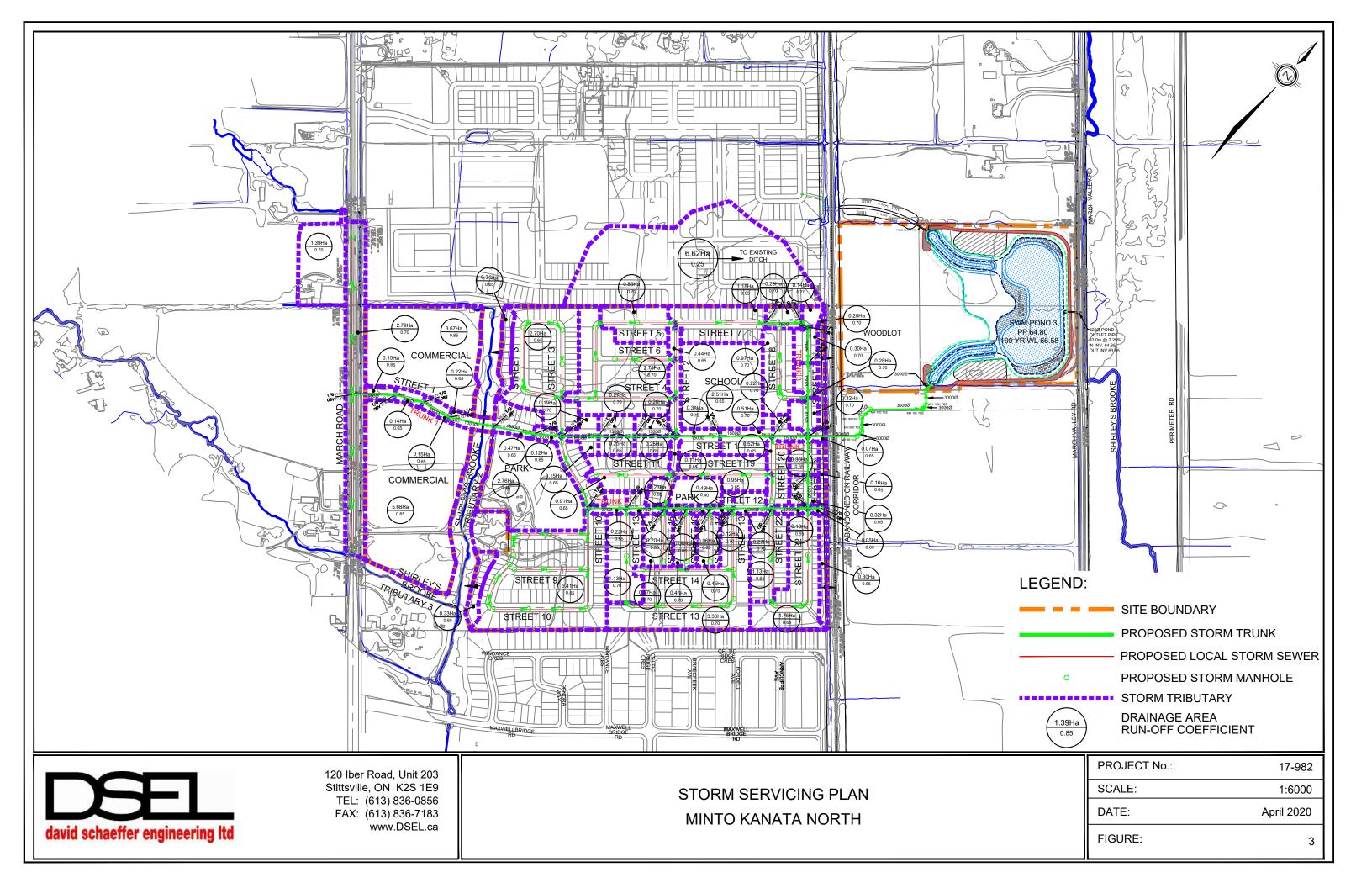
Ovf Elev indicates the elevation of the overflow provided above the 100-year water level.
 Top of Berm indicates the elevation at the top of the berm.

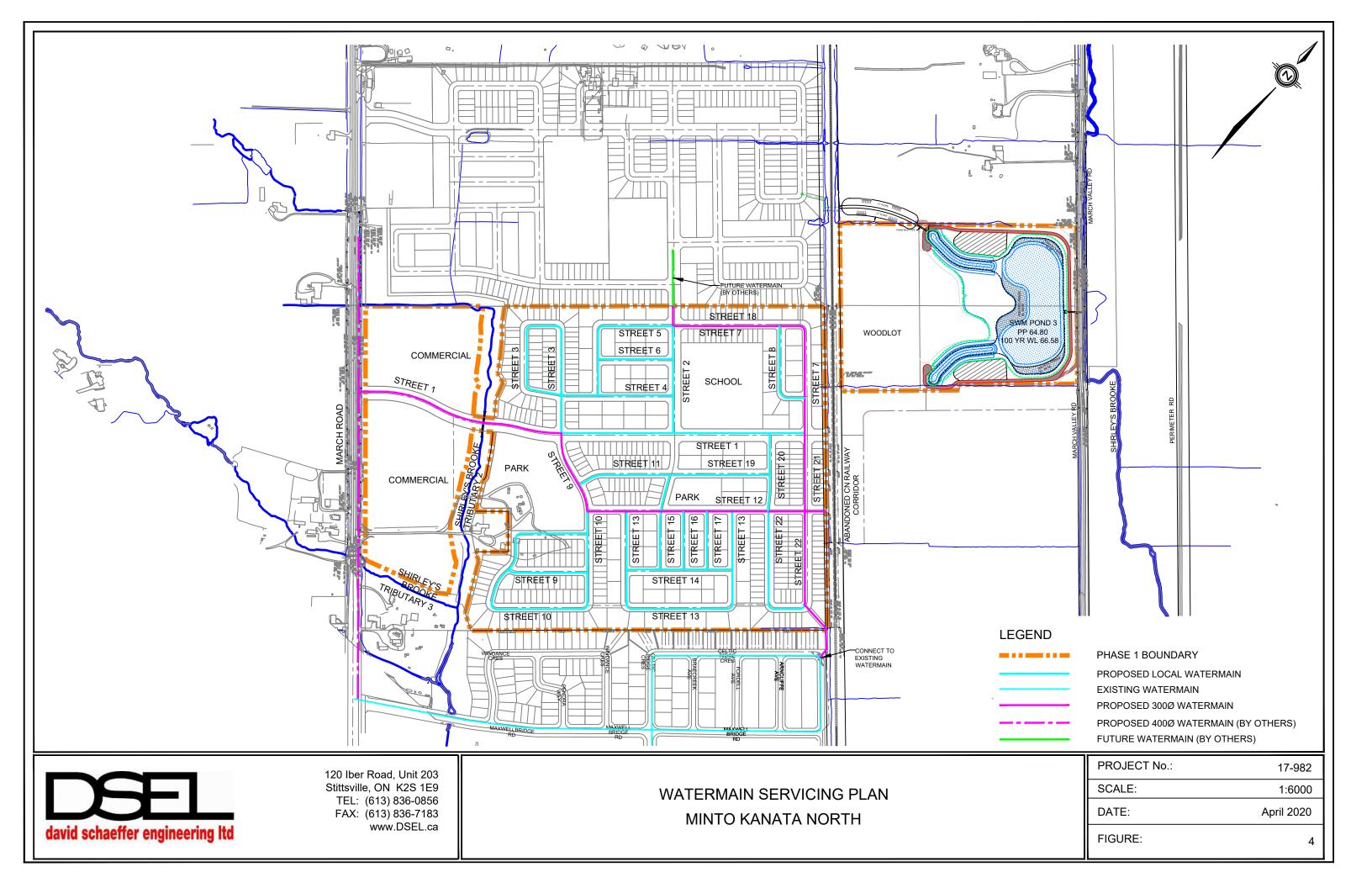
Storage 000"0 0.140 0.282 0.408 0.426 0.865 1.016 1.813 1.979 2.148 2.320 2.489 2.846 3.206 3.407 3.609 3.812 4.016 4.223 4.430 4.638 4.848 5.059 5.484 (ha-m) 0.572 0.717 1.171 1.487 1.650 2.667 3.024 1.327 5.271 Outflow 0.072 0.080 0.145 0.174 0.205 0.219 0.242 0.253 0.274 0.283 (s/。m) 0.000 0.000 0.000 0.000 000.0 0.000 0.000 0.000 0.000 0.000 0.012 0.029 0.042 0.053 0.087 0.094 0.100 0.112 0.128 0.264 000"0 0.191 0.231 Emergency Overflow Outflow **Broad Crested Weir** <u>12.000</u> 1.580 66.70 (m³/s) 0.000 0.000 0.000 0.000 000.0 0.000 0.000 0.000 0.000 0.000 0.000 0000.0 0.000 0.000 000.0 0000.0 0.000 0.000 0.000 0.000 0.000 000.0 0.000 0.000 0.000 0.000 0000.0 0.000 0.000 0.000 0.000 000.0 000.0 С Invert (m) Head 0.000 0.000 0.000 0.000 0.000 0.000 000.0 0.000 000.0 0.000 E n contr. Table B-5B: Stage-Storage-Outflow Curve for SWM Facility (Restrictive Downstream Conditions) Ē ໐ັ Vertical Rect. Orifice Outflow 65.70 0.62 0.016 1.800 (s/,m) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 000.0 0.006 0.028 0.052 0.074 060.0 0.122 Quantity Control 2 090.0 0.000 0.000 0.000 0.000 0.000 0.000 000.0 000.0 0.064 0.082 0.097 0.104 0.111 0.117 0.200 000.0 Height (m) Width (m) Area (m²) Invert (m) 0.500 Head 0.000 0.00.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00.0 000.0 000.0 0.000 0.000 0.000 0.000 0.000 0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450 0.550 0.600 0.650 0000 0.000 ပိ ໐ັ E Outflow 0.025 (m³/s) 000.0 0.000 0.000 0.000 0.000 000.0 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.012 0.017 0.031 0.035 0.038 0.044 0.047 0.049 0.052 0.054 0.056 0.058 0.063 0.066 0.068 0.070 0.072 0.021 0.041 0.061 0.064 0.62 U.180 Quantity Control Vertical Orifice Invert (m) റ റ്റ്ര വ Dia (m) Area (m²) 0.250 0.450 0.500 0.550 0.600 1.050 Head 000"0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.050 0.100 0.150 0.200 0.300 0.350 0.400 0.650 0.700 0.750 0.800 0.850 0.900 0.950 1.000 (E Outflow 0.031 65.28 0.027 (m³/s) 0.000 0.000 000.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.023 0.030 0.036 0.040 0.045 0.049 0.052 0.056 0.059 0.062 0.065 0.068 0.073 0.076 0.078 0.080 0.083 0.085 0.087 0.089 000"0 0.071 0.200 0.62 Vertical Orifice Quality Control Invert (m) Area (m²) 0 @ D Dia (m) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.120 0.220 0.270 0.320 0.370 0.420 0.470 0.520 0.570 0.620 0.670 0.720 0.770 0.870 0.920 0.970 1.020 1.070 0.000 0.070 0.170 0.820 Head 000"0 ပိ (ju Demarkation Ext. Det. QC Elev PP Elev Points Active Sto. 14869 23195 24889 30236 32056 34074 36095 42230 50592 52713 11705 13270 16495 18131 19793 21481 28462 38121 40160 44298 46384 48481 10161 26671 54837 8653 4082 4260 5722 7174 1397 2821 (m²) 0 Elevation 64.944 66.35 64.85 64.95 65.05 65.10 65.15 65.45 65.85 65.95 66.05 66.10 66.15 66.20 64.80 64.90 65.00 65.20 65.25 65.30 65.35 65.40 65.50 65.55 65.60 65.65 65.70 65.75 65.80 65.90 66.00 66.25 66.30 (E

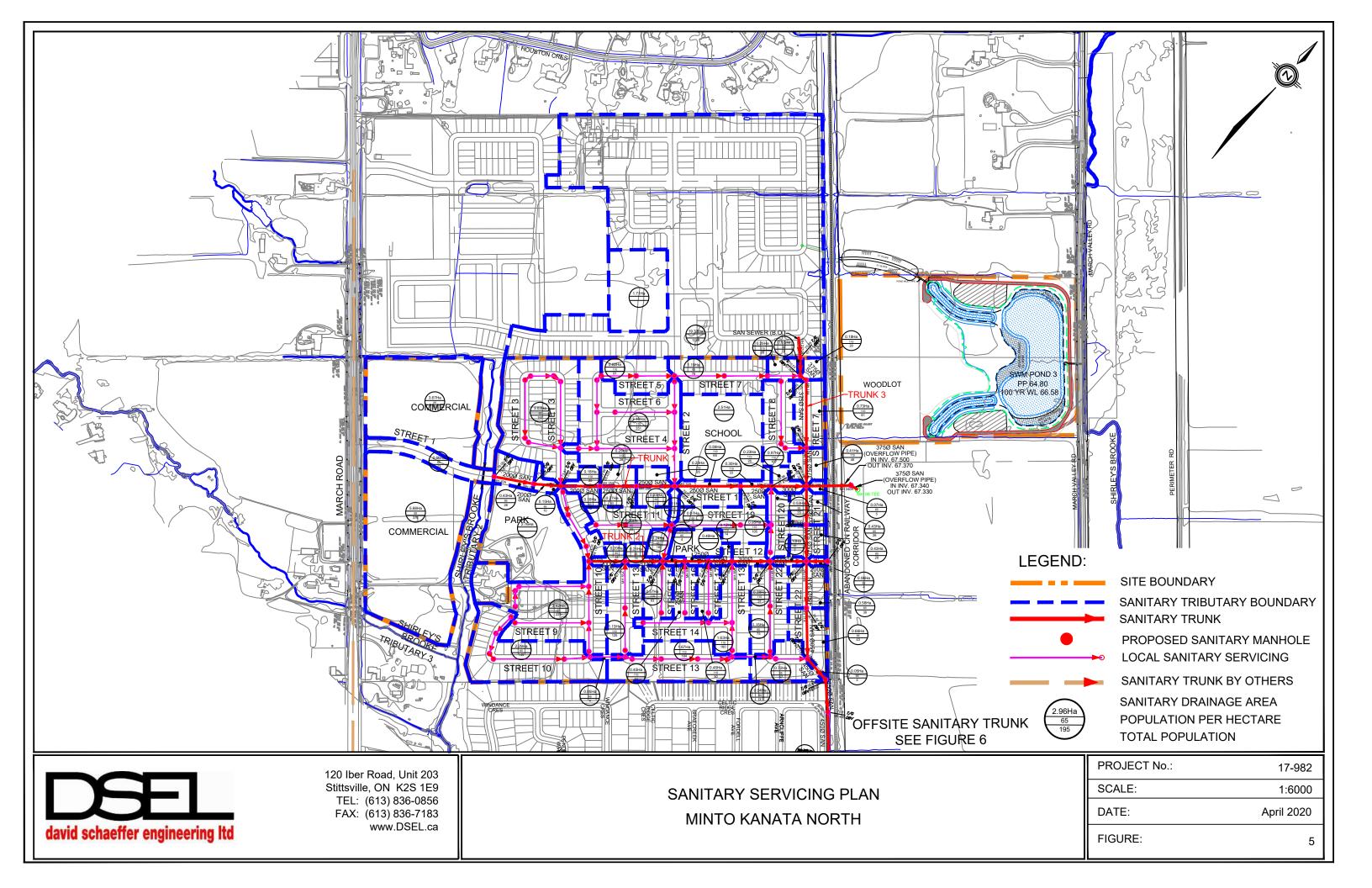
							<u>ol.</u>	n of the permanent pool	ion of the pe	- PP Elev indicates the elevation	- PP Elev in	Notes :
10.031	9.235	8.812	0.600	0.202	1.600	0.099	2.000	0.123	2.020	Top of Berm	100310	67.30
9.745	8.151	7.734	0.550	0.198	1.550	0.098	1.950	0.121	1.970		97449	67.25
9.486	7.114	6.703	0.500	0.195	1.500	0.096	1.900	0.120	1.920		94858	67.20
9.199	6.128	5.723	0.450	0.191	1.450	0.095	1.850	0.118	1.870		91993	67.15
8.929	5.195	4.797	0.400	0.188	1.400	0.094	1.800	0.116	1.820		89286	67.10
8.667	4.317	3.926	0.350	0.184	1.350	0.092	1.750	0.115	1.770		86673	67.05
8.412	3.500	3.115	0.300	0.181	1.300	0.091	1.700	0.113	1.720		84116	67.00
8.163	2.748	2.370	0.250	0.177	1.250	060.0	1.650	0.111	1.670		81627	66.95
7.921	2.067	1.696	0.200	0.173	1.200	0.088	1.600	0.110	1.620		79209	66.90
7.684	1.465	1.101	0.150	0.169	1.150	0.087	1.550	0.108	1.570		76838	66.85
7.457	0.956	0.600	0.100	0.165	1.100	0.086	1.500	0.106	1.520		74569	66.80
7.234	0.561	0.212	0.050	0.161	1.050	0.084	1.450	0.105	1.470		72341	66.75
7.063	0.342	0000	000'0	0.156	1.000	0.083	1.400	0.103	1.420	Ovf Elev	70627	66.70
6.793	0.334	000.0	000.0	0.152	0.950	0.081	1.350	0.101	1.370		67934	66.65
6.567	0.326	000.0	000.0	0.147	0.900	0.080	1.300	0.099	1.320		65674	66.60
6.349	0.318	000.0	000.0	0.143	0.850	0.078	1.250	0.097	1.270		63488	66.55
6.130	0.310	000.0	000.0	0.138	0.800	0.077	1.200	0.095	1.220		61300	66.50
5.914	0.301	000.0	000.0	0.133	0.750	0.075	1.150	0.093	1.170		59145	66.45
5.699	0.292	000 [.] 0	000 ⁻ 0	0.128	0.700	0.073	1.100	0.091	1.120		56989	66.40
(ha-m)	(s/ _s /s)	(s/ _s m)	(m)	(s/ _s u)	(m)	(m ³ /s)	(ш)	(s/ _s m)	(m)	Points	(m³)	(m)
/ Storage	Outflow	Outflow	Head	Outflow	Head	Outflow	Head	Outflow	Head	Demarkation	Active Sto.	Elevation
		0	n contr.	1.800	່ ທັ	0.021	0 @ D	0.027	0 @ D			
		66.70	Invert (m)	0.62	ပိ	0.62	ပိ	0.62	ပိ			
		1.580	° v	65.70	Invert (m)	65.30	Invert (m)	65.28	Invert (m)			
				0.060	Area (m ²)	0.025	Area (m ²)	0.031	Area (m ²)			
				0.200	Height (m)							
		12.000	L (m)	0.300	Width (m)	0.180	Dia (m)	0.200	Dia (m)			
		sted Weir	Broad Crested Weir	ct. Orifice	Vertical Rect. Orifice	Orifice	Vertical Orifice	Orifice	Vertical Orifice			
		y Overflow	Emergency Overflow	Control 2	Quantity Control 2	control 1	Quantity Control 1	control 1	Quality Control 1			

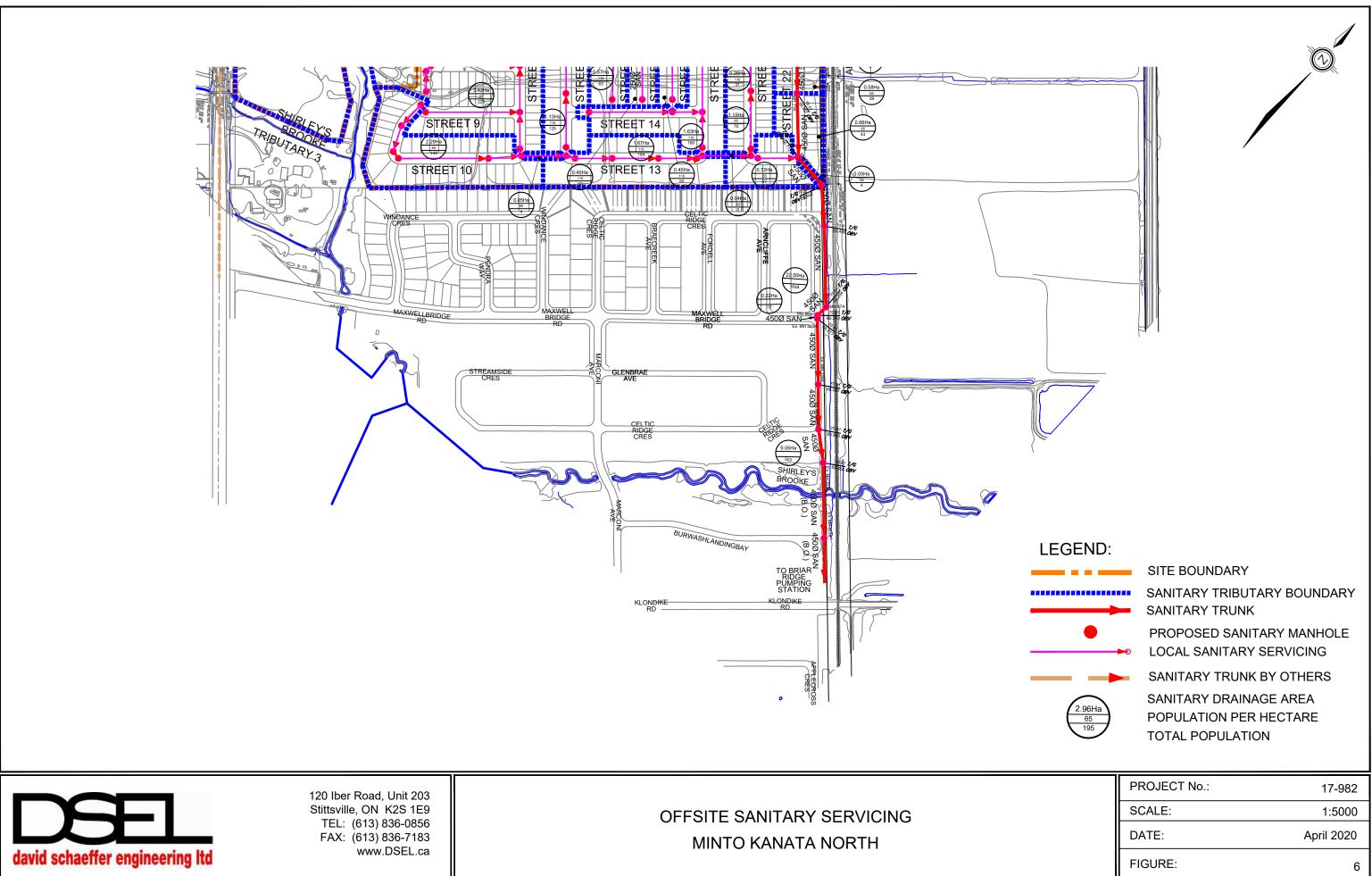

Table B-5B: Stage-Storage-Outflow Curve for SWM Facility (Restrictive Downstream Conditions)

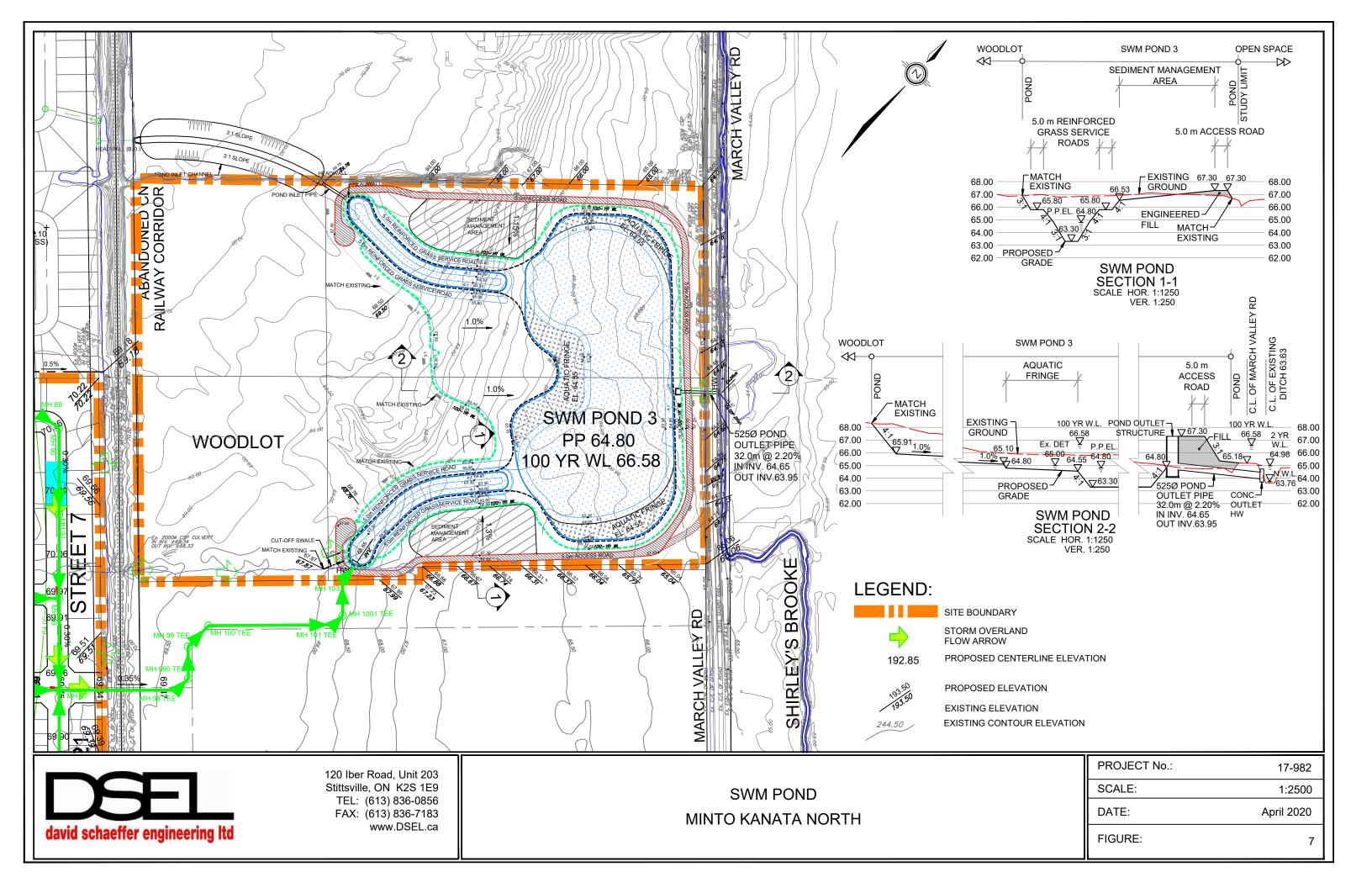

- PP Elev indicates the elevation of the permanent pool. - QC Elev indicates the elevation of the storage volume required by MOE for quality control.

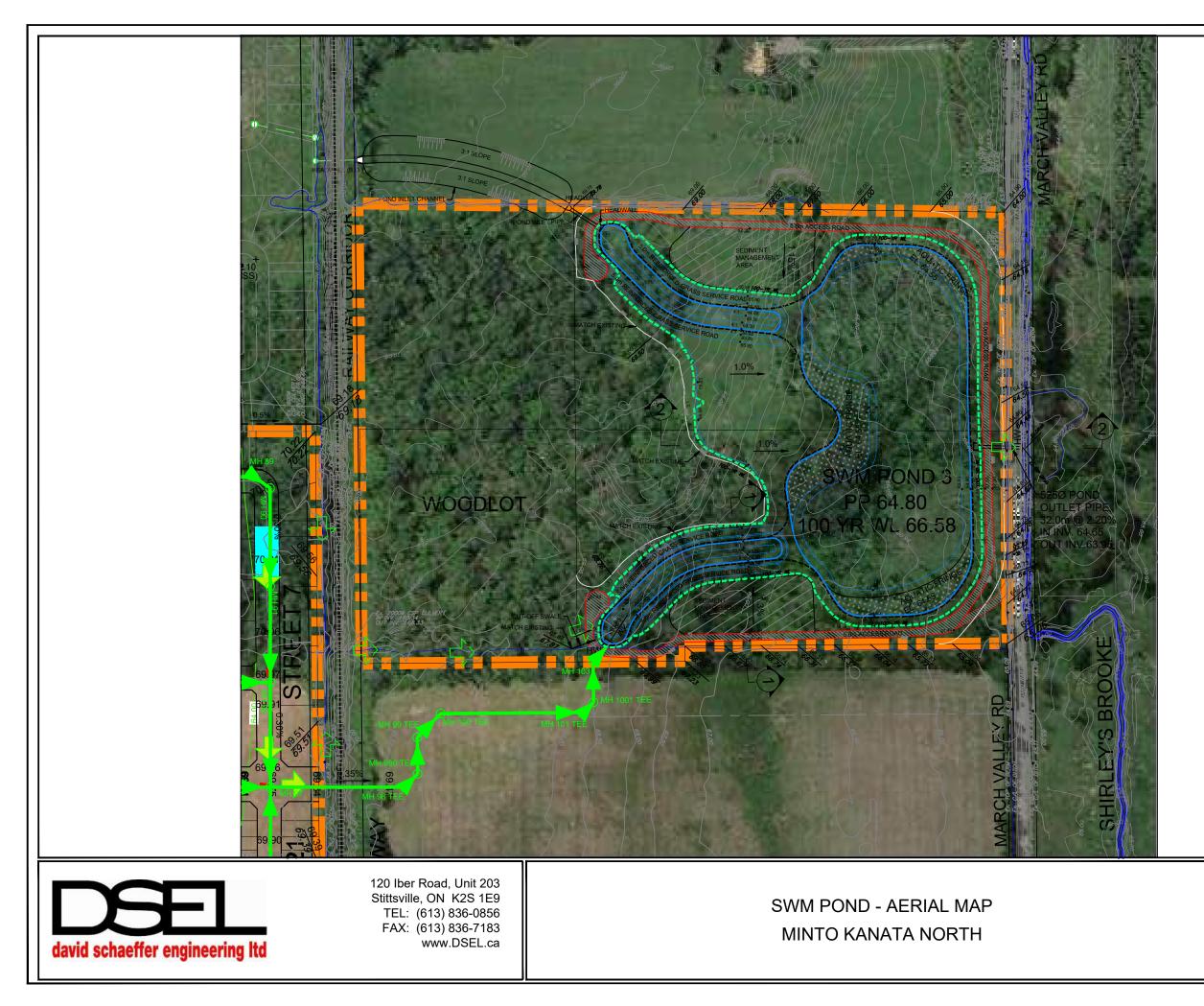

- Ext Det indicates the elevation of extended detention provided.


Ovf Elev indicates the elevation of the overflow provided above the 100-year water level.
 Top of Berm indicates the elevation at the top of the berm.


DRAWINGS & FIGURES







LEGEND:

192.85

SITE BOUNDARY

STORM OVERLAND FLOW ARROW

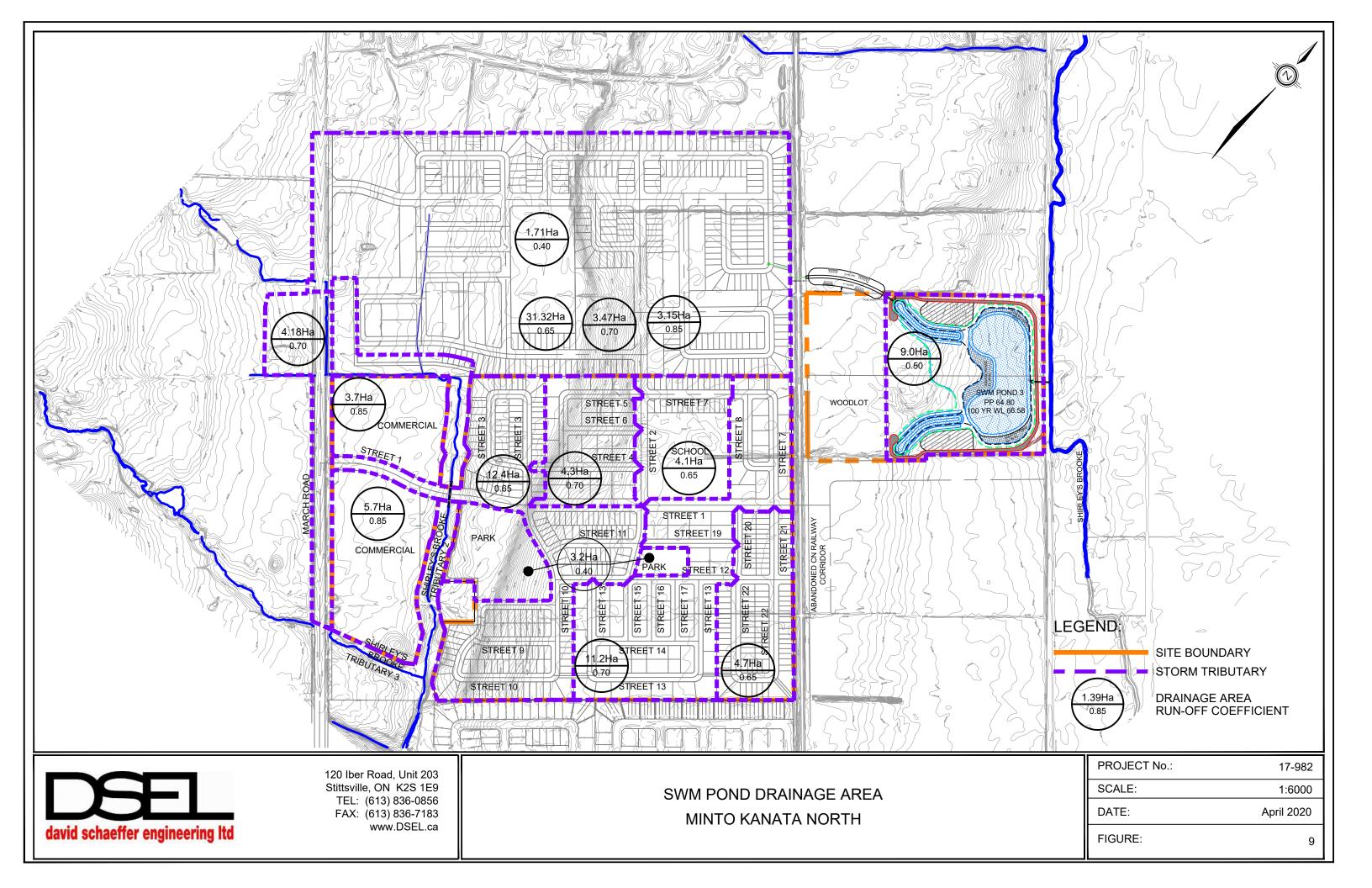
PROPOSED CENTERLINE ELEVATION

PROPOSED ELEVATION

EXISTING ELEVATION EXISTING CONTOUR ELEVATION

PROJECT No.:

17-982 1:2500


SCALE:

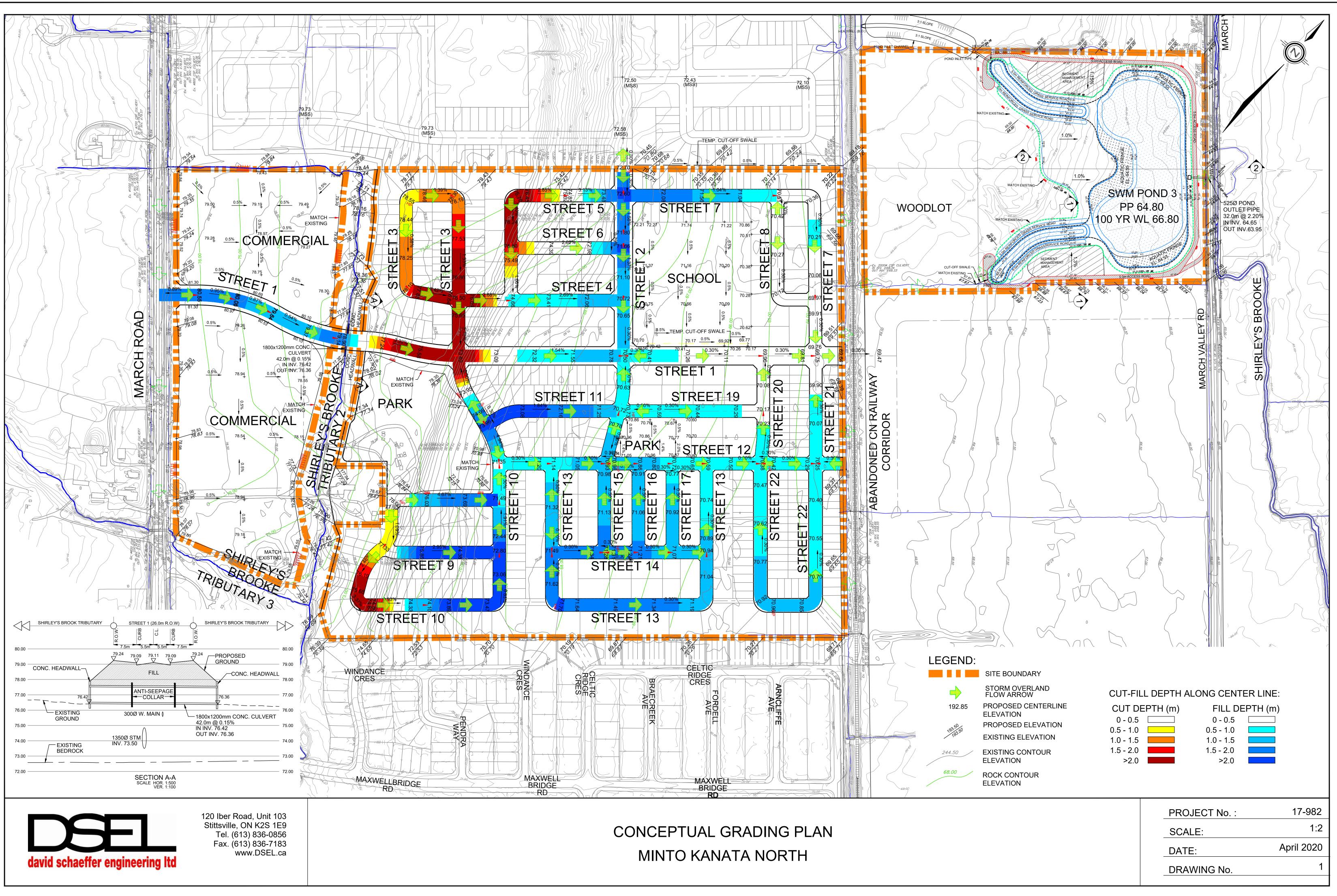

April 2020

FIGURE:

DATE:

8

