

Engineering

Land/Site Development

Municipal Infrastructure

Environmental/ Water Resources

Traffic/

Transportation

Recreational

Planning

Land/Site Development

Planning Application Management

Municipal Planning

Urban Design

Expert Witness (LPAT)

Wireless Industry

Landscape Architecture

Streetscapes & Public Amenities

Open Space, Parks & Recreation

Recreation

Community & Residential

Commercial & Institutional

Environmental Restoration

Site Servicing Brief Greystone Village Forecourt Townhomes

295 & 355 Deschâtelets Avenue

Prepared for: Greystone Village Inc.

Greystone Village Forecourt Townhomes 295 & 355 Deschâtelets Avenue Site Servicing Brief

Prepared For:

Greystone Village Inc.

Prepared By:

NOVATECH

Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario K2M 1P6

> Prepared: August 14, 2024 Revised: October 17, 2024 Revised: November 29, 2024 Revised: December 20, 2024

> > Novatech File: 114025 Ref: R-2024-097

December 20, 2024

City of Ottawa Planning, Infrastructure and Economic Development Department Infrastructure Approvals Division, 110 Laurier Avenue West, 4th Floor Ottawa, ON K1P 1J1

Attention: Vincent Duquette

Reference: Greystone Village Forecourt Townhomes – 295 & 355 Deschâtelets Avenue

Site Servicing Brief

Novatech File No.: 114025

Please find enclosed a copy of the revised Site Servicing Brief for the Greystone Village Forecourt Townhomes, located at 295 and 355 Deschâtelets Avenue in Old Ottawa East, east of Main Street/Deschâtelets Avenue, south of des Oblats Avenue, west of Scholastic Drive and north of Deschâtelets Avenue within the City of Ottawa. The report demonstrates how the proposed site will be serviced with storm, sanitary, watermain, utilities, and stormwater management and is submitted for your review and approval.

This report is supplementary to the following reports to provide specifics related to the Greystone Village Forecourt Townhome buildings which are part of the overall Greystone Village subdivision development:

- "Greystone Village, 175 Main Street Site Servicing, Stormwater Management, Noise, Erosion and Sediment Control Brief" dated February 24, 2016
- "Greystone Village 175 Main Street: Site Servicing, Stormwater Management, Noise, Erosion and Sediment Control Brief (Phase 2 and 3), R-2017-089", dated May 26, 2017
- "Greystone Village 175 Main Street: Site Servicing, Stormwater Management, Noise, Erosion and Sediment Control Brief Phase 2 and 3 (Master Servicing Study Update), R 2017 089", dated December 20, 2024.

If you have any questions or comments, please do not hesitate to contact us.

Sincerely,

NOVATECH

Trevor McKay, P. Eng.

Senior Project Manager | Land Development Engineering

TABLE OF CONTENTS

1.0	INTRODUCTION	
1.1	GEOTECHNICAL INVESTIGATION	
1.2	ADDITIONAL REPORTS	
1.3	APPROVALS	2
2.0	SANITARY SERVICING	2
2.1		
	2.1.1 Proposed System	
2.2		
	2.2.1 Proposed System	
2.3	•	
3.0	WATERMAIN	
3.1		
-	3.1.1 Previous Studies	
_	3.1.2 Proposed System	
3.2		
3.3		
4.0	STORMWATER MANAGEMENT	6
4.1	STORMWATER MANAGEMENT CRITERIA	7
4.	4.1.1 Minor System (Storm Sewers)	
4.	4.1.2 Major System (Emergency Overland Flow)	
	4.1.3 Water Quality Control	
4.	4.1.4 Erosion and Sediment Control	
4.2		
	4.2.1 Design Storms	
	4.2.2 Modelling Parameters	
4.3		
	4.3.1 Previous Studies (2017 MSS)	
	4.3.2 Storm System	
4.4		
	4.4.1 Storm Flows – Forecourt Townhomes	
	4.4.2 HGL Check	
	4.4.3 Inlet Control Devices	
	4.4.4 Major System Flows	
	Direct Runoff Areas	
	Overland Flow From Controlled Areas	
4.5		
5.0	SITE GRADING	
5.1		
5.2		
5.3	EMERGENCY OVERLAND FLOW ROUTE	14
6.0	UTILITIES	15
7.0	EROSION AND SEDIMENT CONTROL	15
8.0	CONCLUSIONS	
J.U		

LIST OF TABLES

Table 2.1: Forecourt Townhome - Proposed Sanitary Flow Summary

Table 3.1: Water Operating Conditions

Table 3.2: Available Fire Flows

Table 4.1: Storm Flows – Forecourt Townhomes

Table 4.2: Hydraulic Grade Line Elevations and USF Clearance

Table 4.3: Inlet Control Devices & Ponding Depths

Table 4.4: Summary of Flows to Major System from Forecourt Townhomes

LIST OF FIGURES

Figure 1: Key Plan

Figure 2: Existing Conditions – Block 28 and Block 29

Figure 3: Concept Plan - Block 28 and Block 29

Figure 4: Sanitary Drainage Area Plan – Block 29

Figure 5: Sanitary Drainage Area Plan – Block 28

Figure 6: Watermain Layout and Nodes – Block 29

Figure 7: Watermain Layout and Nodes - Block 28

Figure 8: Hydrant Coverage

Figure 9: Storm Drainage Area Plan – Block 29

Figure 10: Storm Drainage Area Plan – Block 28

LIST OF APPENDICIES

Appendix A – Sanitary Sewer Design

Appendix B – Water Boundary Conditions & Hydraulic Calculations

Appendix C – Stormwater Management Design

Appendix D – Existing Approvals

Appendix E – Drawings

LIST OF DRAWINGS (APPENDIX E)

114025-FT-ESC1 - Erosion and Sediment Control & Removals Plan - Block 29

114025-FT-ESC2 - Erosion and Sediment Control & Removals Plan - Block 28

114025-FT-GP1 - General Plans of Services - Block 29

114025-FT-GP2 - General Plans of Services - Block 28

114025-FT-GR1 - Grading Plan - Block 29

114025-FT-GR2 - Grading Plan – Block 28

Novatech Page ii

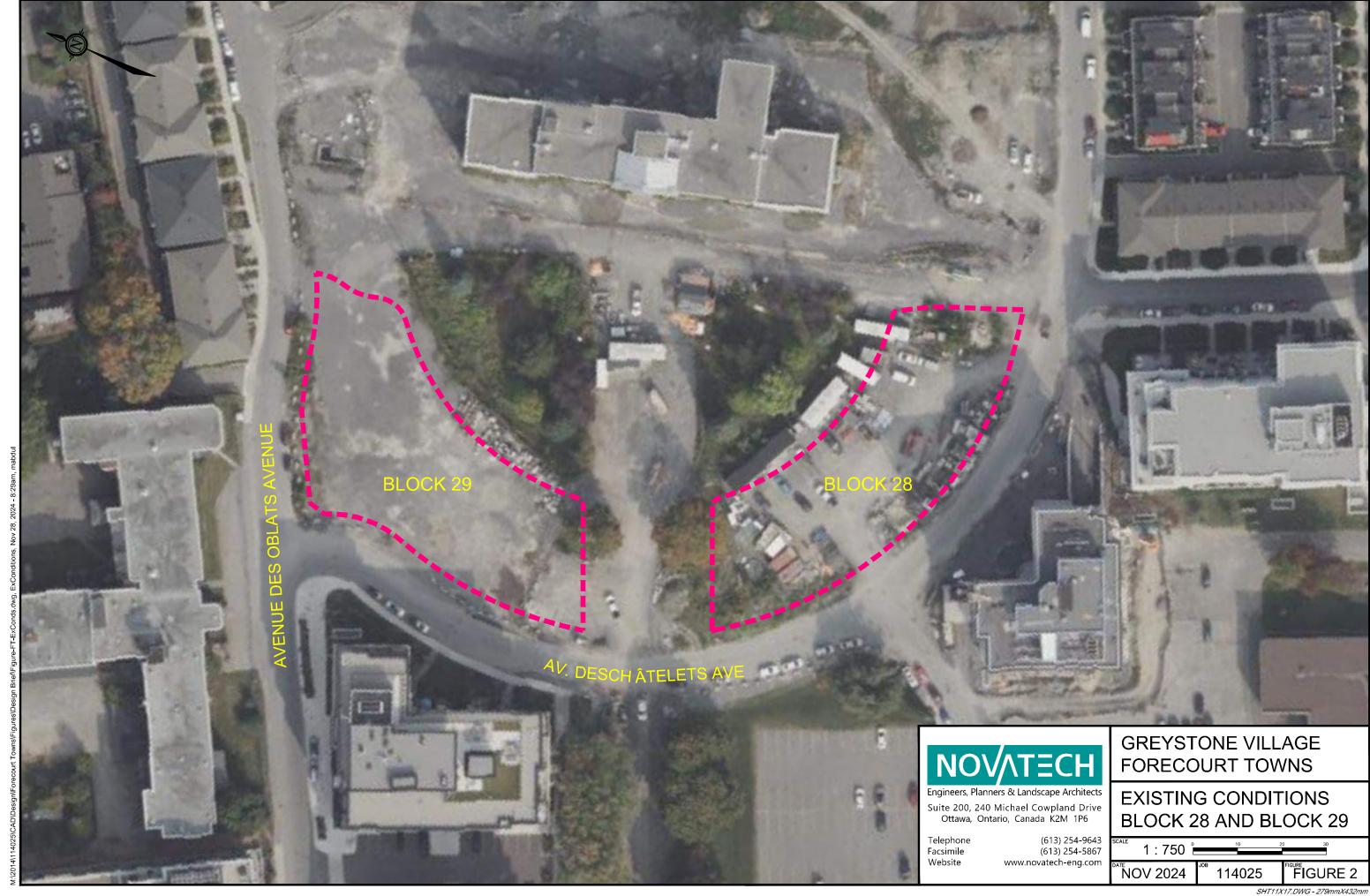
1.0 INTRODUCTION

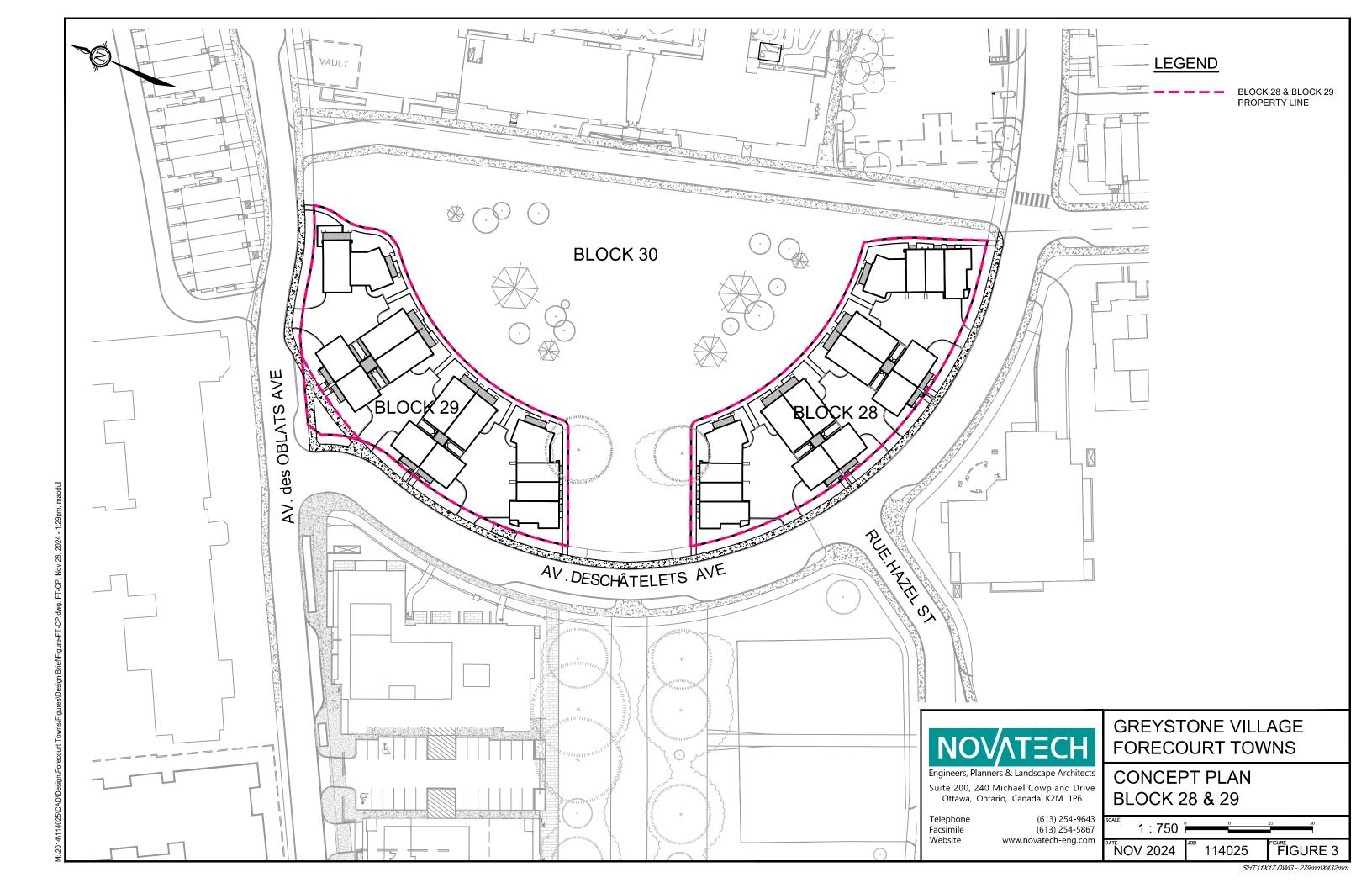
Novatech has been retained by Greystone Village Inc. to prepare this Site Servicing Brief in support of the site plan application of the Greystone Village Forecourt Townhomes at 295 Deschâtelets Avenue (Block 29) and 355 Deschâtelets Avenue (Block 28) in Old Ottawa East, located within the Greystone Village plan of subdivision limits. The key plan (**Figure 1**) highlights the Greystone Village subdivision limits and the Forecourt Townhome site locations (the Subject Property).

The Subject Property is comprised of two development blocks (Block 28 and Block 29) separated by a landscaped pedestrian connection through the heritage designated grand allée between Deschâtelets Avenue and the proposed Forecourt Park. The property is currently vacant. The subject property was historically grassed, with mature trees located on the adjacent lands to the east. The topsoil has been stripped from the majority of the subject property and granular material placed for temporary construction use, as shown on the existing conditions plan (**Figure 2**).

It is proposed to construct a total of 18 semi-detached dwellings and 12 townhouse dwellings on the Subject Property. Refer to **Figure 3** – Concept Plan – Forecourt Townhomes for proposed site layout. This Site Servicing Brief will confirm how the property will be serviced by sanitary, water, stormwater management, and utilities.


1.1 Geotechnical Investigation


Refer to Paterson's geotechnical report (*Geotechnical Investigation – Proposed Residential Development – 295 & 355 Deschatelets Avenue – Ottawa, Ontario*, PG6948-1, dated February 1, 2024) and the subsequent memorandums (*Geotechnical Tree Planting Recommendations within 4.5m Setback – Proposed Residential Development – 295 & 355 Deschatelets Avenue – Ottawa, Ontario*, PG6948-MEMO.01, dated April 29, 2024 & *Geotechnical Response to City Comment – Proposed Residential Development – 295 & 355 Deschatelets Avenue – Ottawa, Ontario*; PG6948-MEMO.02, dated October 7, 2024) for geotechnical considerations.


1.2 Additional Reports

This report provides information on the considerations and approach by which Novatech has designed and evaluated the proposed servicing for the Greystone Village Forecourt Townhomes. This report should be read in conjunction with the following:

- Greystone Village, 175 Main Street Site Servicing, Stormwater Management, Noise, Erosion and Sediment Control Brief, dated February 24, 2016 (Referred to as Master Servicing Study 2016);
- Greystone Village, 175 Main Street Site Servicing, Stormwater Management, Noise, Erosion and Sediment Control Brief – Phase 2 and 3, dated May 26, 2017 (Referred to as Master Servicing Study 2017);
- Greystone Village Phase 3 Condos 375 Deschâtelets Avenue Site Servicing Brief (dated February 10, 2023).
- Greystone Village 175 Main Street: Site Servicing, Stormwater Management, Noise, Erosion and Sediment Control Brief - Phase 2 and 3 (Master Servicing Study Update), R 2017-089", December 20, 2024.

1.3 Approvals

The Greystone Village subdivision has received approvals by the Rideau Valley Conservation Authority and the Ministry of the Environment, Conservation and Parks and the City of Ottawa, for the right of way pipes and storm sewer outlets which will service the development blocks (Block 28 & Block 29). Relevant approvals are as follows. Refer to **Appendix D** for details.

MECP

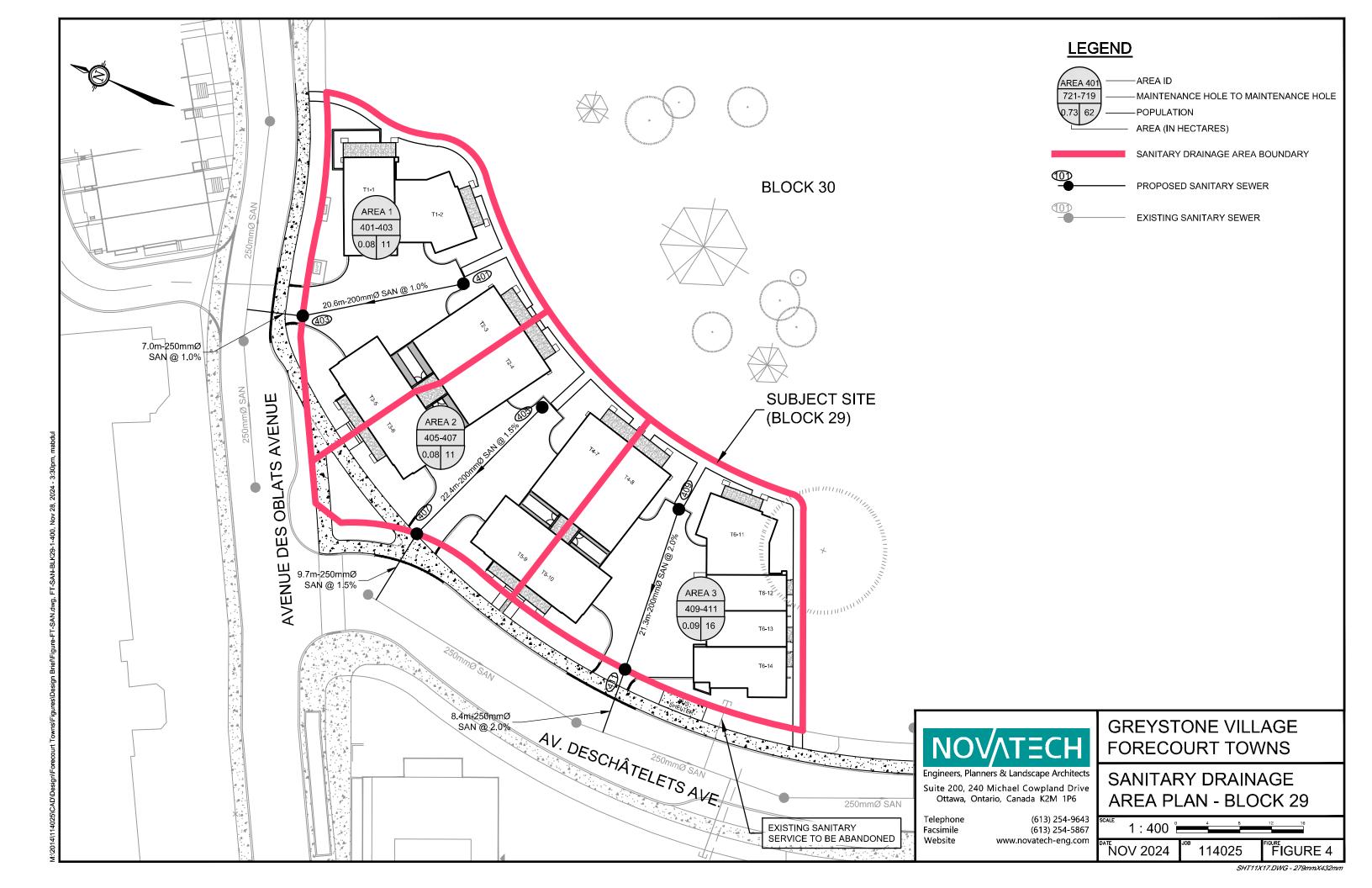
- ECA Number 4082-AAZQ6P Storm and Sanitary Sewers within Phase 1;
- ECA Number 8946-ACUP7W Stormwater Outfall and Oil / Grit Separator within Phase 1;
- ECA Number 0292-AP6PWR Storm and Sanitary Sewers within Phase 2 & 3;
- ECA Number 3454-APEHFQ Stormwater Outfall and Oil / Grit Separator within Phase 2 & 3;

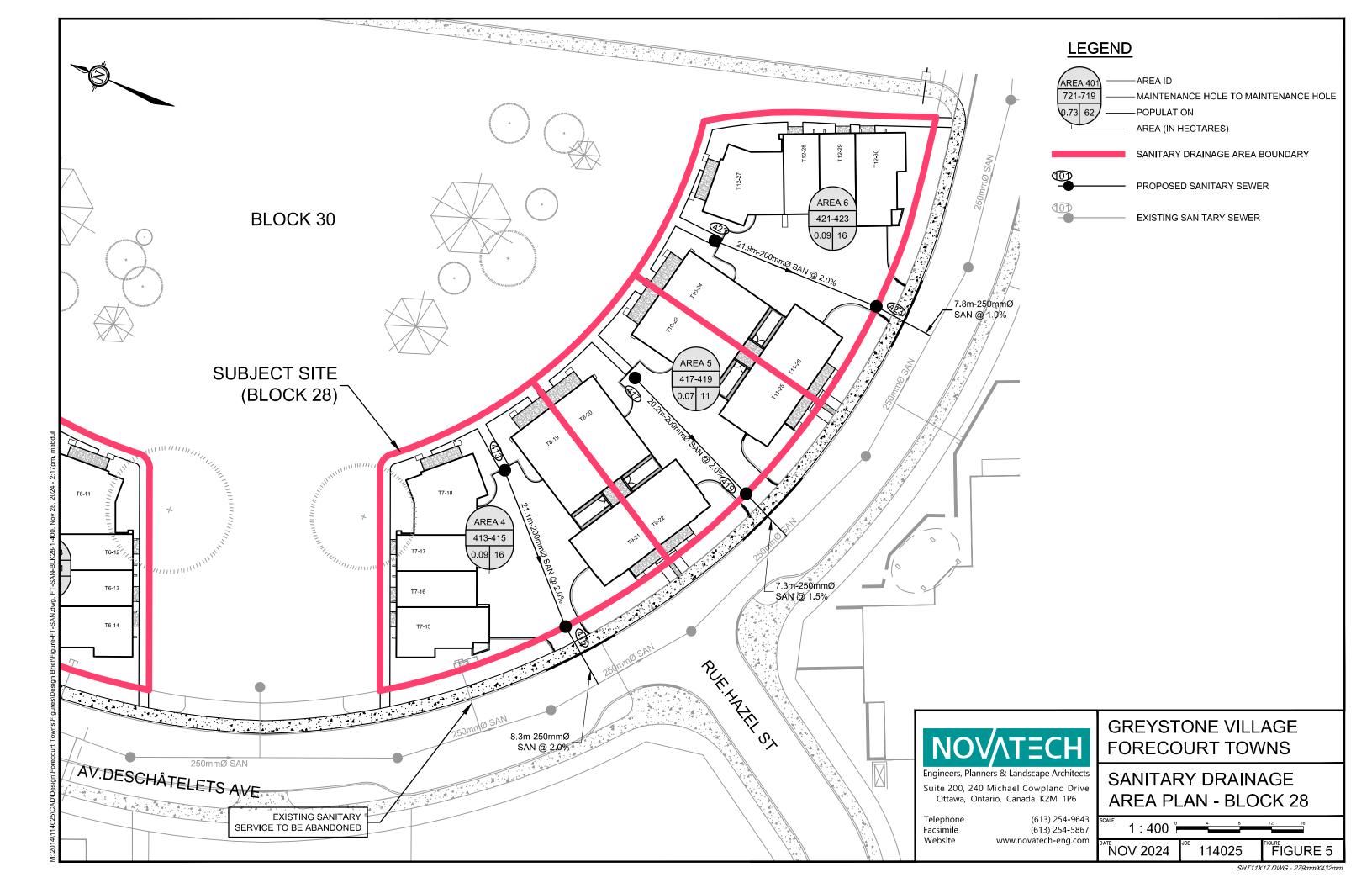
RVCA

- File Number RV3-34/16 Phase 1 Stormwater Outlet
- File Number RV3-08/17 Phase 2 Stormwater Outlet

An amendment to the above noted Environmental Compliance Approvals (ECA's) is in the process of being filed to amend the existing ECA's to reflect the changes in stormwater design flows from the overall development as detailed in the Master Servicing Study Update (MSSU, 2024).

2.0 SANITARY SERVICING


Each car court will be serviced by 200mm dia. sanitary sewers within the property, connecting to a maintenance hole at the property line and a 250mm diameter sanitary sewer within the city right-of-way which connects to the existing 250mm diameter sanitary sewers on Oblats Avenue and Deschâtelets Avenue respectively. Each townhome unit will be serviced individually with 135mm diameter sanitary services, complete with backwater valves, and will be connected the proposed 200mm diameter sanitary sewer located in the adjacent car court. Refer to **Figure 4** – Sanitary Drainage Area Plan – Block 29 and **Figure 5** – Sanitary Drainage Area Plan – Block 28 for proposed sanitary sewer locations and drainage area boundaries.


2.1 Design Criteria

2.1.1 Proposed System

The current sanitary design is based on design criteria outlined in the City of Ottawa's Technical Bulletin ISTB 2018-01 and are as follows:

- Residential Average Sewage Flow = 280 L/capita/day
- Residential Peaking Factor = Harmon Equation
- Max Peaking Factor = 4.0
- Infiltration Allowance = 0.33 L/s/ha
- Population Density:
 - 2.7/unit (Towns)
- Minimum Pipe Slope (200mm) = 0.32%
- Minimum Full Flow Velocity = 0.6m/s
- Maximum Full Flow Velocity = 3.0m/s

2.2 Proposed Sanitary Design – Forecourt Townhomes

2.2.1 Proposed System

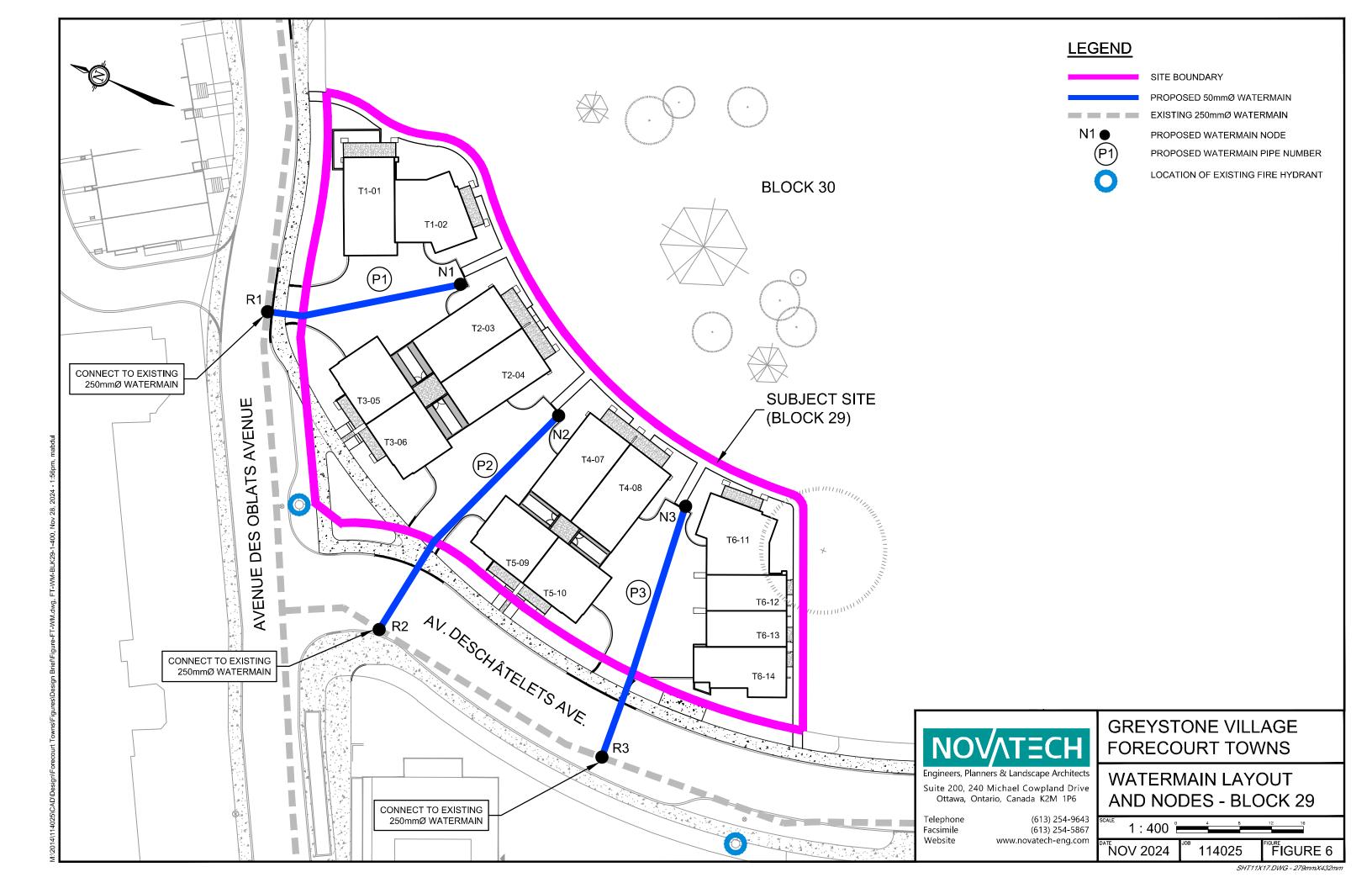
The peak sanitary flows are summarized below in **Table 2.2**. Refer to **Appendix A** for proposed Sanitary Design Sheets and to the Sanitary Drainage Areas Plans **Figure 4** & **Figure 5** for additional information.

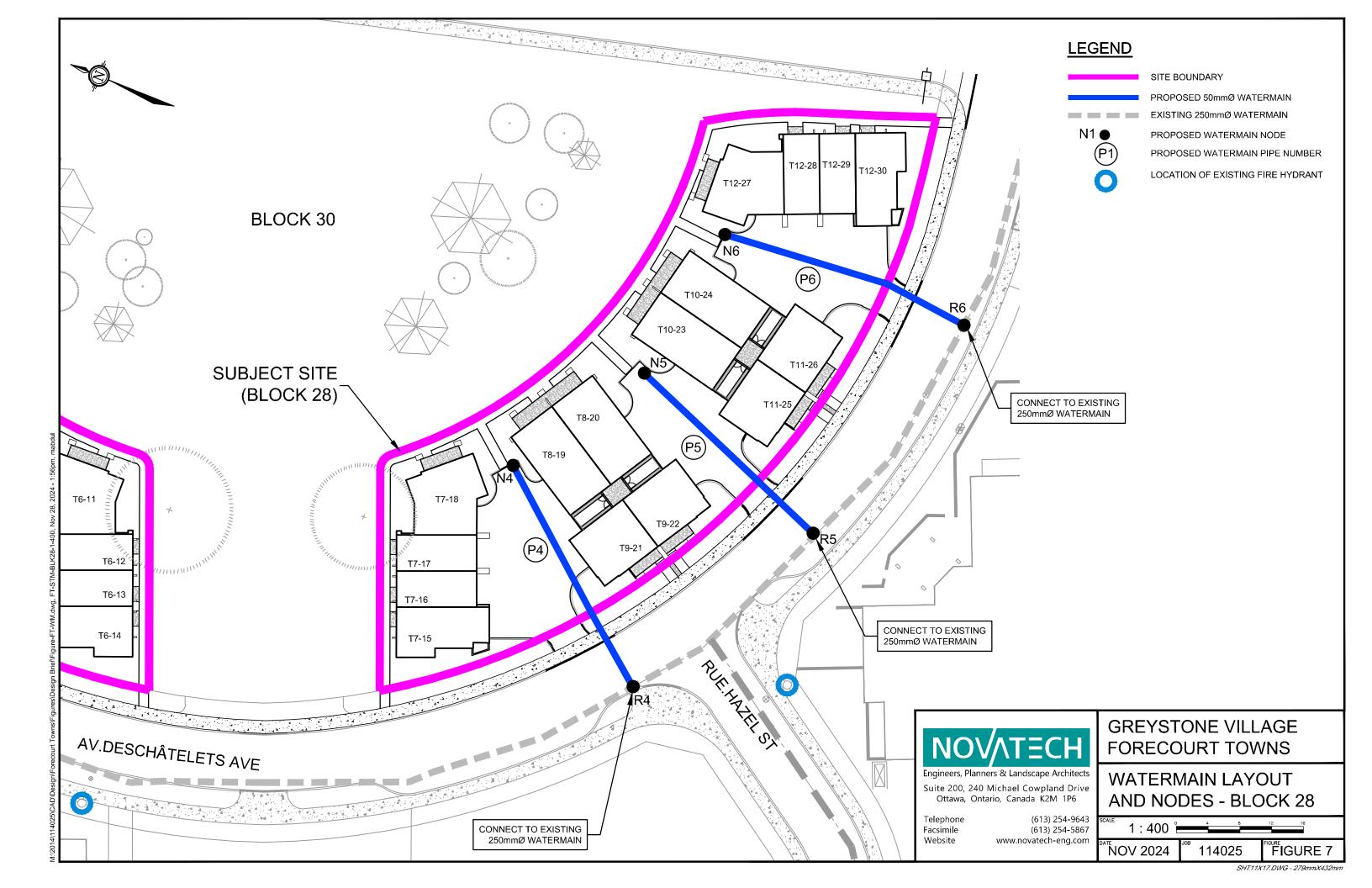
Table 2.1: Forecourt Townhome - Proposed Sanitary Flow Summary

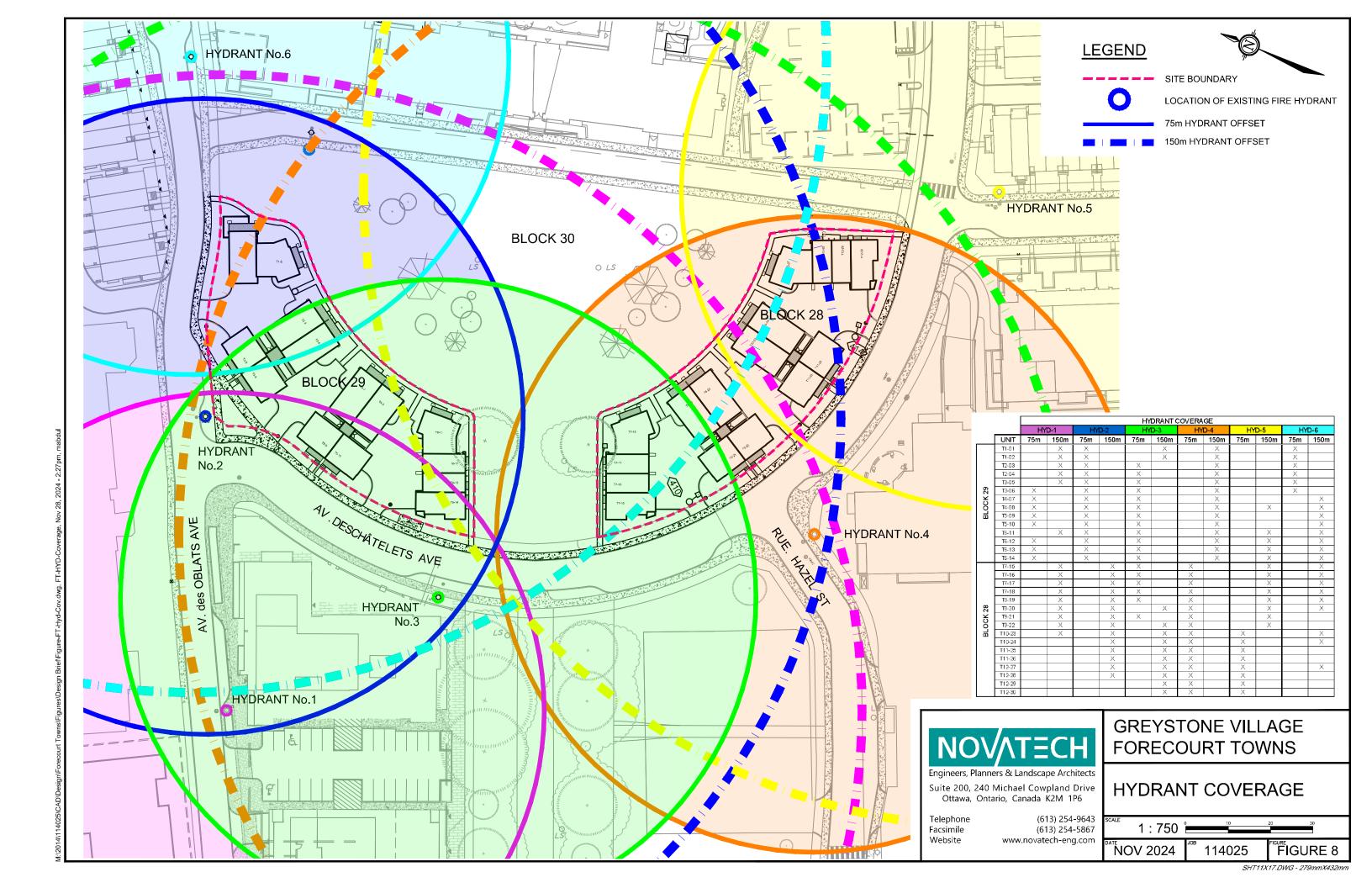
Development Condition	Population	Peak Res. Flow (L/s)	Peak Ext. Flow (L/s)	Peak Design Flow (L/s)
Total Flow Outlet 1	11	0.13	0.03	0.16
Total Flow Outlet 2	70	0.83	0.14	0.97
Total Flow to Rideau Ri	1.13			

The original MSS (2017) contemplated the site plan design for the Forecourt Townhome blocks to direct all sanitary sewer flows to the Phase 1 sanitary sewer outlet via Deschâtelets Avenue. The proposed site plan necessitates a portion of the sanitary sewer flows from 295 Deschatelets Avenue (Block 29) to be directed to the Phase 2 sanitary sewer.

The original MSS (2017) contemplated sanitary sewer flows of 1.98L/s from these Block (refer to **Appendix A** for MSS design sheet and drainage area plan). The MSSU (2024) has been updated to reflect the updated proposal, resulting in a net decrease of sanitary sewer flows from these two areas of 0.85L/s. The overall decrease is due to a reduction in the number of proposed units (30 instead of 42) and the change in the City of Ottawa design criteria (280L/capita/day instead of 350L/capita/day).


There is a slight increase in flow (+/- 0.16L/s) to the Phase 2 sanitary sewer system on Oblats Avenue from the MSS (2017), however the MSSU (2024) demonstrates that this increase has a negligible impact on sewer, which ultimately outlets to the same trunk sewer as Phase 1.


2.3 Sanitary Conclusion


For the proposed Forecourt Townhome site there is a net decrease of 0.85 L/s to the peak sanitary flow contributing to the Greystone Village subdivision sewer system, compared to the sanitary flows accounted for in the original Master Servicing Studies (2016 & 2017). As confirmed by the MSSU (2024), the downstream sanitary sewers have adequate capacity to accommodate the flows from this development.

3.0 WATERMAIN

The two (2) proposed development blocks will have a number of townhomes accessed from one of 3 communal car courts per block. Each car court will be serviced by a 50mm diameter watermain, connecting to the existing 250mm diameter watermains on Oblats Avenue and Deschâtelets Avenue respectively. Each townhome unit will be serviced individually with 19mm diameter water services, complete with curb stops and standposts located 2m from the foundations. Refer to **Figure 6** – Watermain Layout and Nodes – Block 29 and **Figure 7** – Watermain Layout and Nodes – Block 28 and for proposed watermain locations. Fire flows for the development blocks are to be provided by the hydrant network located within the existing right-of-ways (ROW). Refer to **Figure 8** - Hydrant Coverage for the location of the existing hydrants.

3.1 Design Criteria

3.1.1 Previous Studies

The Master Site Servicing, Stormwater Management, Noise, Erosion and Sediment Control Briefs (2016 & 2017) as listed above were completed prior to the City of Ottawa issuing Technical Bulletin ISTB 2018-01 & ISTB-2021-03. Therefore, the master servicing studies for Greystone Village were based on the following City of Ottawa design criteria:

Demands:

- Average Daily Demand = 350L/capita/day
- Maximum Daily Demand = 2.5 x Average Daily Demand
- Peak Hour Demand = 2.2 x Maximum Daily Demand

Residential

- Population Density:
 - o 3.4/unit (Singles)
 - o 2.7/unit (Towns)
 - 2.1/unit (Apartment)

System Requirements

- Maximum Pressure (System) = 100psi (690 kPa)
- Maximum Pressure (Service) = 80psi (552kPa)
- Minimum Allowable Pressure (excluding fire flow conditions) = 40psi (276 kPa)
- Minimum Allowable Pressure (including fire flow conditions) = 20psi (138 kPa)

Friction Factors:

Watermain Size: C-Factor: 300mm diameter 120 200mm and 250mm diameter 110 150mm to 50mm diameter 100

The water distribution network included with the MSS (2017) provided adequate system pressures during all scenarios within the development. The conclusions of the report, with respect to watermain, remain valid, and were substantiated by the MSSU (2024).

3.1.2 Proposed System

The current design is based on design criteria outlined in the City of Ottawa's Technical Bulletin ISTB 2018-01 & ISTB 2021-03. The development population is less than 500 people, therefore peaking factors have been based on Table 3-3 of the MOE Guidelines.

Demands:

- Average Daily Demand = 280L/capita/day
- Maximum Daily Demand = 9.5 x Average Daily Demand
- Peak Hour Demand = 14.3 x Average Daily Demand

Population densities, system requirements and friction factors are consistent with the design criteria utilized for the previous studies. Refer to **Appendix B** for the residential demand calculations.

3.2 Proposed Watermain Design

High pressure and maximum age (average day demand) checks; and minimum pressure (peak hour demand) checks were completed for the proposed watermains. Hydraulic modeling was completed using EPAnet, Version 2.2, based on the boundary conditions provided by the City of Ottawa (refer to **Appendix B**). The results are listed in **Table 3.1** below:

Table 3.1: Water Operating Conditions

		Average Daily	Peak Hour		
Connection	Demand (L/s)	Pressure (kPa / psi)	Age (hrs)	Demand (L/s)	Pressure (kPa / psi)
1	0.035	492.3 / 71.4	0.38	0.50	395.1 / 57.3
2	0.035	488.8 / 70.9	0.52	0.50	390.9 / 56.7
3	0.052	489.5 / 71.0	0.38	0.75	390.2 / 56.6
4	0.052	493.7 / 71.6	0.36	0.75	394.4 / 57.2
5	0.035	495.7 / 71.9	0.44	0.50	397.8 / 57.7
6	0.052	499.2 / 72.9	0.34	0.75	400.6 / 58.1

Refer to **Figure 6** and **Figure 7** for the location of the connection points and the layout of the proposed development blocks. Based on the results listed in **Table 3.1**, the proposed development blocks can be serviced with 50mm watermain from the existing Oblats Avenue and Deschatelets Avenue watermain. In addition, the pipe properties were also reviewed to ensure that hydraulic losses within the 50mm pipe were acceptable. Refer to **Appendix C** for complete hydraulic analysis results.

The required fire flows for the proposed units vary between 8000L/min and 11000L/min (refer to fire flow calculations in **Appendix C**). The boundary conditions provided by the City of Ottawa confirmed that pressures within the existing watermain network were greater than 20psi at the maximum requested fire flows (minimum head of 103.5m available at the property limits during fire flow conditions). City of Ottawa guidelines (ISTB-2021-03, August 2021) note that Class AA hydrants can supply 5700L/min of fire flow if located within 75m of the unit and 3800L/min if located within 75-150m of the location. Refer to **Table 3.2** for verification that there is sufficient hydrant coverage within the existing ROW to supply the fire flow demand for the proposed development.

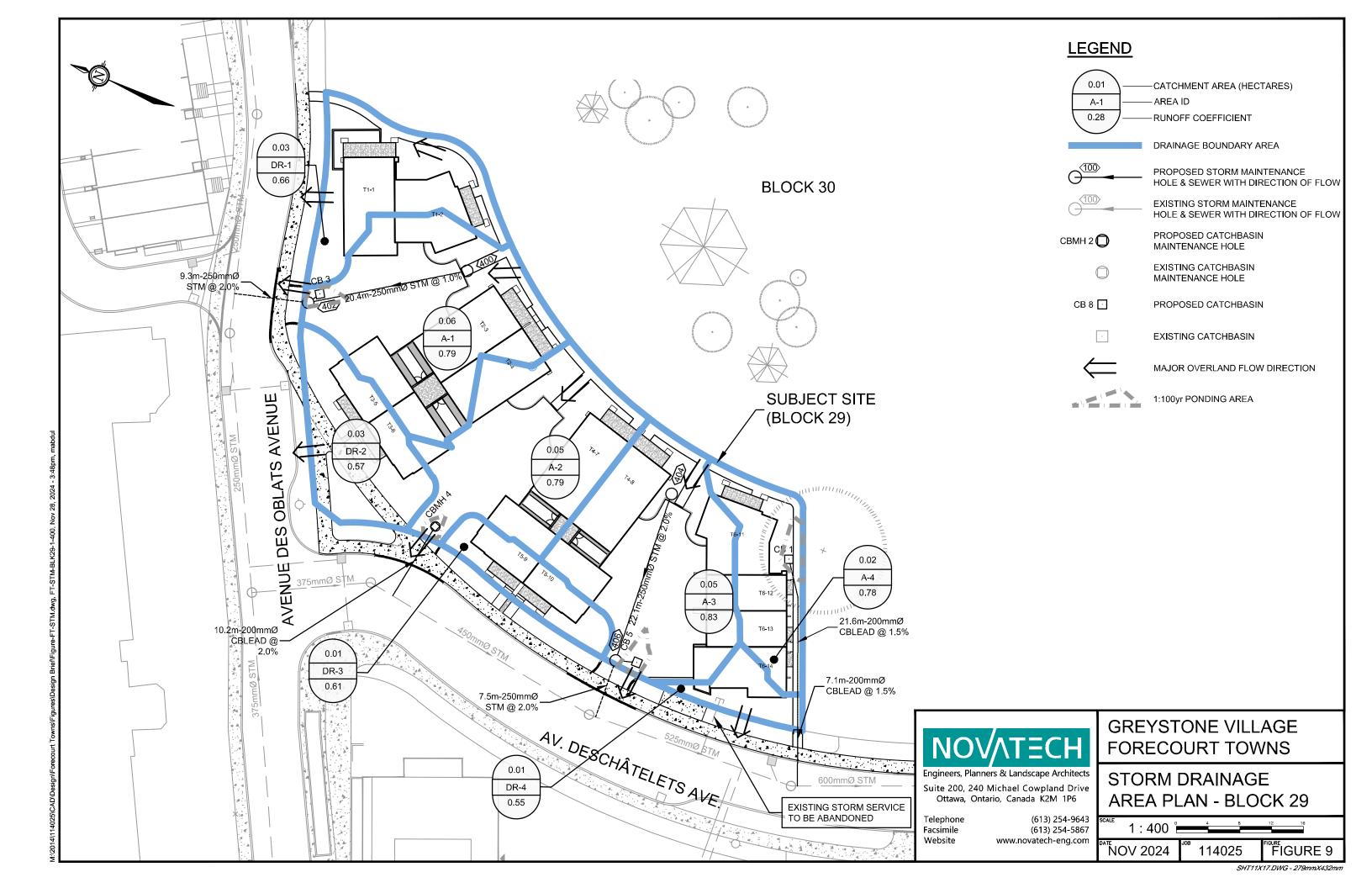
Table 3.2: Available Fire Flows

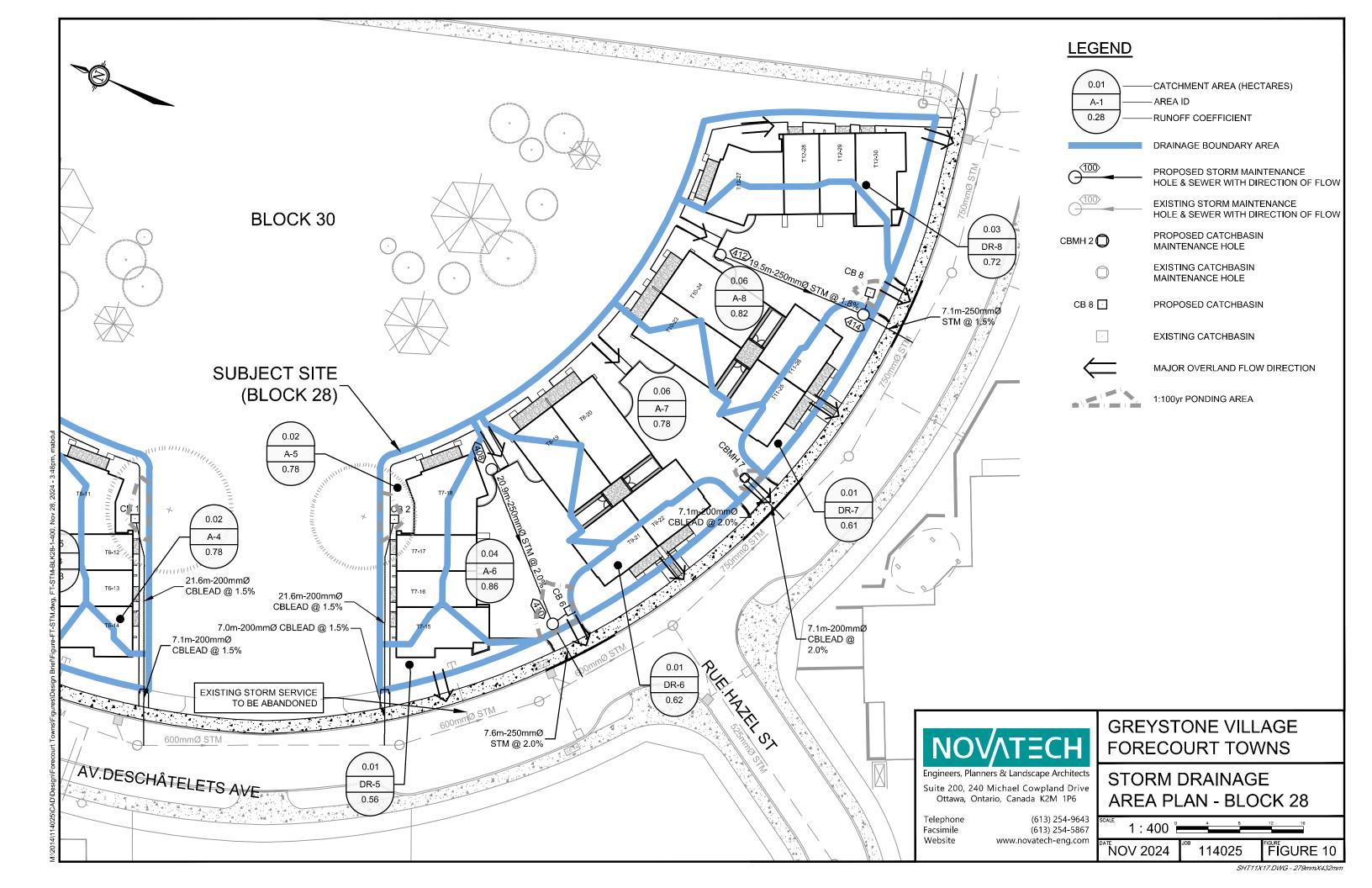
Housing Block	Required Fire Flow (L/min)	Hydrants <75m	Hydrants 75m-150m	Maximum Available Fire Flow* (L/min)
1	8000	2	3	22800
2	10000	3	2	24700
3	9000	3	2	24700
4	10000	3	2	24700
5	9000	3	2	24700

Housing Block	Required Fire Flow (L/min)	Hydrants <75m	Hydrants 75m-150m	Maximum Available Fire Flow* (L/min)
6	10000	2	4	26600
7	10000	2	4	26600
8	10000	1	5	24700
9	9000	1	4	21000
10	10000	2	3	22800
11	9000	2	2	19000
12	11000	2	1	15200

^{* -} Theoretical maximum fire flow that could be supplied based on Class AA hydrants with no system constraints.

Based on the results listed in **Table 3.2**, the existing hydrants located on existing Oblats Avenue, Deschâtelets Avenue, De Mazenod Avenue and Hazel Street allow for adequate coverage to provide fire flows in excess of the demands for the proposed units.


3.3 Watermain Conclusion


The existing 250mm dia. Deschâtelets Avenue and Oblats Avenue watermains provide adequate pressures to service the proposed development blocks. The proposed 50mm private mains are sufficient to meet the residential demand flows. The existing Oblats Avenue, Deschâtelets Avenue, De Mazenod Avenue and Hazel Street hydrants provide adequate fire protection to the proposed development.

4.0 STORMWATER MANAGEMENT

The storm drainage design for the Greystone Village Forecourt Townhomes is shown on the Storm Drainage Area Plans provided as **Figure 9** (Block 29) and **Figure 10** (Block 28). Each block consists of four clusters of slab-on-grade townhomes (i.e. no basements) separated by three car courts:

- The two outer car courts for both Block 28 and Block 29 will have 250mm storm sewers to collect foundation drainage from the Forecourt Townhomes.
- Each townhome block will be serviced with at least one 100mm diameter storm service for foundation drainage with backwater valves for flood protection.
- Surface drainage from the Forecourt Townhomes will be collected by catchbasins (CBs) and catchbasin maintenance holes (CBMHs). The locations of the storm sewer inlets are shown on Figures 9 and 10.
- The proposed 250mm storm sewer in the northwest car court of Block 29 will outlet to the
 existing storm sewer on Oblats Avenue. The remaining storm sewers and CB leads for
 the Forecourt Townhomes will outlet to the existing storm sewer on Deschatelets Avenue.
- There will be some direct runoff from front and side yard areas adjacent to Oblats Avenue and Deschatelets Avenue. The direct runoff areas are identified on the Storm Drainage Area Plans.

4.1 Stormwater Management Criteria

The stormwater management criteria used in the design of the Greystone Village Forecourts Townhomes have been based on the following:

- Greystone Village, 175 Main Street Site Servicing, Stormwater Management, Noise, Erosion and Sediment Control Brief – Phase 2 and 3 dated May 26, 2017, (Novatech, May 2017/Ref. # R-2017-089).
 - This report outlined the design criteria for all future development within Greystone Village, including the Forecourt Townhome Blocks.
 - Master Servicing Study Update (MSSU, 2024) includes the same stormwater management criteria as the 2017 MSS report.
- City of Ottawa Sewer Design Guidelines (October 2012).

4.1.1 Minor System (Storm Sewers)

- Storm sewers are to be sized to convey the post-development 1:5-year peak flow.
- Provide additional storage (if necessary) to control the total site runoff to the allowable minor system release rate (5-year storm) for all storms up to the 100-year event.
- Ensure 100-year controlled flow rates do not exceed or have adverse effects on the existing storm system.
- Inlet control device (ICD) flow rates are to be calculated for each drainage area to ensure that the following stormwater management (SWM) objectives are satisfied:
- Surface water accumulation at street low points shall not be present for storm events up to and including the 1:5-year event.
- Ponding depths shall not exceed 0.30 m and shall not be within 0.30 m (vertical) of the nearest building opening.

4.1.2 Major System (Emergency Overland Flow)

• Runoff that exceeds the 100-year storm event is to be conveyed overland to Deschâtelets Avenue and Oblats Avenue.

4.1.3 Water Quality Control

 Water quality control will be provided via two existing Vortechnic hydrodynamic separators at the storm outlets to the Rideau River. These Vortechnic units have been designed to provide an Enhanced level of water quality treatment for the entire Greystone Village development, including the Forecourt Townhome blocks. No additional water quality treatment measures are proposed.

4.1.4 Erosion and Sediment Control

- A qualified inspector should conduct daily visits during construction to ensure that the contractor is working in accord with the design drawings and that mitigation measures are being implemented as specified;
- Inserts and filter fabric are to be placed under all proposed and existing catchbasins and storm manhole covers;
- After complete build-out, all sewers are to be inspected and cleaned and all sediment and construction fencing is to be removed.

4.2 Stormwater Management Modeling

The City of Ottawa Sewer Design Guidelines (October 2012) requires hydrologic / hydraulic modeling for all dual drainage systems. The performance of the proposed storm drainage system was originally evaluated using the PCSWMM model as part of the Master Servicing Study (MSS 2017). The MSS PCSWMM model has been updated using available as-built information for the storm drainage infrastructure in Greystone Village and all current development proposals as part of the Master Servicing Study Update (MSSU, 2024). The results of the analysis were used to:

- Calculate the total post-development runoff from Forecourt Townhomes.
- Calculate the storm sewer hydraulic grade line for 100-year event.

A PCSWMM model version has been prepared as part of this design submission. Model schematics and output files are provided in **Appendix C**. The MSSU (2024) has been submitted under a separate cover.

4.2.1 Design Storms

The hydrologic / hydraulic analysis was completed using the following synthetic design storms and historical storms. The IDF parameters used to generate the design storms were taken from the City of Ottawa Sewer Design Guidelines (October 2012).

3 Hour Chicago Storms:	24 Hour Chicago Storms:
-	

5-year 3hr Chicago storm 100-year 3hr Chicago storm 100-year+20% 3hr Chicago storm 100-year 24hr Chicago storm

12 Hour SCS Type II Storms: Historical Storms:

5-year 24-hour SCS Type II storm
100-year 24-hour SCS Type II storm
August 4, 1988 storm
August 8, 1996 storm

The 3-hour Chicago distribution generates the highest peak flows for both the minor and major systems and was determined to be the critical storm distribution for the design of the storm drainage system.

The proposed drainage system has also been stress tested using a 3-hour Chicago design storm that has a 20% higher intensity and total volume compared to the 100-year event. This storm distribution is provided in **Appendix C**.

4.2.2 Modelling Parameters

The hydrologic parameters for each subcatchment were developed based on the proposed land use and grading. Subcatchments were modeled using the standard SWMM5 runoff module with Horton's Equation for infiltration.

Infiltration

Infiltration losses for all subcatchments were modeled using Horton's infiltration equation, which defines the infiltration capacity of soil over the duration of a precipitation event using a decay function that ranges from an initial maximum infiltration rate to a minimum rate as the storm progresses. The default values for the City of Ottawa were used for all catchments.

Horton's Equation: Initial infiltration rate: $f_o = 76.2 \text{ mm/hr}$ $f(t) = f_c + (f_o - f_c)e^{-k(t)}$ Final infiltration rate: $f_c = 13.2 \text{ mm/hr}$ Decay Coefficient: k = 4.14/hr

Depression Storage

The default values for depression storage in the City of Ottawa were used for all catchments. Rooftops were assumed to provide no depression storage (zero-impervious parameter).

Depression Storage (pervious areas): 4.67 mm
Depression Storage (impervious areas): 1.57 mm

Equivalent Width

'Equivalent Width' refers to the width of the subcatchment flow path. This parameter is calculated as described in Section 5.4.5.6 of the *City of Ottawa Sewer Design Guidelines* (October 2012).

Impervious Values

Runoff coefficients for each subcatchment were determined based on the proposed site plan. Percent impervious values were calculated using the following equation:

$$\%imp = (C - 0.20) / 0.70$$

A table with the subcatchment parameters for each of the Forecourt Townhomes drainage areas and their previously used areas (A3 and A7 in 2017 MSS) are provided in **Appendix C**.

Boundary Condition

The existing storm sewers outlet to the Rideau River in two locations, which has a 100-year flood elevation of 57.85m adjacent the site. Outlet 1 is located in the southeast corner of Phase 1 of the subdivision development, east of the Telmon Street and Scholastic Drive intersection. Outlet 2 is in the eastern portion of Phase 2, directly east of the Oblats Avenue and Scholastic Drive intersection. Refer to **Appendix C** for model schematics and outlet locations.

4.3 Proposed Stormwater System

4.3.1 Previous Studies (2017 MSS)

The existing sewers on Oblates Avenue and Deschâtelets Avenue were sized using the Rational Method based on a 5-year level of service, using the drainage areas and runoff coefficients from the Master Servicing Study (MSS 2017). Stormwater flows from the Forecourt Townhome blocks were allocated to discharge to the Rideau River via the following outlets.

- Outlet 1 Located within Phase 1 of the Greystone Village development.
 - All of Block 28 and the majority of Block 29.
- Outlet 2 Located within Phase 2-3 of the Greystone Village development.
 - o The northeast portion of Block 29.

Updates to MSS (2017)

The drainage patterns and outlets for the Forecourt Townhomes site are generally consistent with the drainage patterns considered in the MSS (2017), but there have been some changes to drainage patterns and release rates from some of the other development areas within the MSS study limits. The overall storm drainage model from the MSS (2017) has been updated (MSSU, 2024) to reflect the proposed storm drainage system for the Forecourt Townhomes, along with the other development blocks within the study area. The Subcatchment area updates to reflect the Forecourt Townhomes have required some adjustments to the Subcatchment boundaries for adjacent areas. For details of the changes refer to MSSU (2024).

Areas A3 & A7 (2017 MSS)

In the storm drainage model prepared for the MSS (2017), the Forecourt Townhomes were represented by two catchment areas (Areas A3 and A7). These catchments have been updated and discretized into sixteen (16) smaller subcatchment areas to reflect the detailed grading design for the Forecourt Townhomes as shown on **Figure 9** and **Figure 10**.

4.3.2 Storm System

Runoff from the proposed site will be captured by a combination of onsite catchbasins and catchbasin maintenance holes, with some limited direct runoff to Deschâtelets Avenue and Oblats Avenue which will be captured by the existing catchbasins in the ROW. Refer to **Figure 9** – Storm Drainage Area Plan – Block 29 and **Figure 10** – Storm Drainage Area Plan – Block 28.

Inlet Control Devices

Inlet control devices (ICDs) are to be installed within the proposed catchbasins and CBMHs in the Forecourt Townhome blocks to limit the inflows to the minor system during larger events. The ICDs have been sized based on the City of Ottawa standard orifice style ICD sizes (i.e. 83, 94, 102, 108, 127, 157, & 178mm) or low flow IPEX Tempest as required. ICD discharge curves for all proposed sizes are provided in **Appendix C**.

The ICDs have been sized to provide a 5-year inlet capture rate to prevent surface ponding during a 5-year storm event; and to ensure that during the 100-year storm event surface ponding does not exceed 0.30m.

4.4 Results

To capture the Forecourt Townhomes design and other updates within Greystone Village development, a Master Servicing Study Update (MSSU 2024) has been prepared and submitted under a separate cover. The results of this report are consistent with the MSSU (2024) and the same PCSWMM model has been used.

4.4.1 Storm Flows – Forecourt Townhomes

Storm flows from the Forecourt Townhomes site will be captured by a combination of catchbasins and catchbasin maintenance holes within the proposed site and some overland drainage to existing catchbasins on Oblats Avenue and Deschâtelets Avenue. A summary of the flows in comparison with Areas A3 and A7 of MSS 2017 (previously assumed condition) is provided in **Table 4.1**. Refer to the Model Schematics in **Appendix C** for Subcatchment locations.

Table 4.1: Storm Flows – Forecourt Townhomes

Subcatchment ID	Outlet	System	Approach Rate		Captured Flow Rate (L/s)	
			5yr	100yr	5yr	100yr
	P	roposed Condit	ion			
A3-A-1	CB3	Minor System	16.8	29.3	15.5	16.3
A3-A-2	CBMH4	Minor System	14.0	24.4	13.4	16.2
A3-A-3	CB5	Minor System	14.1	24.5	13.5	16.2
A3-A-4	CB1	Minor System	5.6	9.8	3.4	3.7
A3-DR1	Oblats Ave.	Overland	7.4	14.1		
A3-DR2	Oblats Ave.	Overland	6.5	13.6		
A3-DR3	Deschâtelets Ave.	Overland	2.6	4.7	-	-
A3-DR4	Deschâtelets Ave.	Minor System	2.4	4.6	-	-
A7-A-5	CB2	Minor System	5.6	9.8	3.6	3.6
A7-A-6	CB6	Minor System	11.5	19.7	10.7	11.5
A7-A-7	СВМН7	Minor System	16.7	29.3	15.7	16.2
A7-A-8	CB8	Minor System	17.0	29.5	15.8	16.3
A7-DR5	Deschâtelets Ave.	Overland	2.6	4.6	-	-
A7-DR6	Deschâtelets Ave.	Overland	2.6	4.8	-	-
A7-DR7	Deschâtelets Ave.	Overland	2.6	4.8	-	-
A7-DR8	Deschâtelets Ave.	Overland	7.9	14.4	-	-
	Previo	us Condition (M	SS 2017)			
А3	Deschâtelets Ave.	Overland	69	40	-	-
A7	Deschâtelets Ave.	Overland	69	40	-	-

4.4.2 HGL Check

The hydraulic grade line (HGL) in the proposed storm sewers was evaluated using the PCSWMM model. The HGL is provided in **Table 4.2**. It provides the estimated HGL elevations for the 100-year storm event and proposed underside-of-footing (USF) elevations. In addition, this table includes the resulting HGL elevations from the 'stress test' event; using a 3-hour Chicago design storm that has a 20% higher intensity and total volume compared to the 100-year event.

The results of the HGL analysis demonstrate that the proposed storm sewers have sufficient capacity to convey the controlled minor system flows during the 100-year design event.

MH ID	Obvert Elev	T/G Elev	100yr HGL*	100yr+20% HGL*	Min USF	Design USF**	Top of Slab**	Clearan	ce*** (m)
	(m)	(m)	Elev(m)	Elev(m)	(m)	(m)	(m)	100yr	100yr+ 20%
MH400	63.34	65.24	62.79	62.79	63.64	63.11	65.45	2.66	2.66
MH402	63.14	64.88	62.95	62.95	63.44	63.11	65.45	2.50	2.50
MH404	63.51	65.53	63.26	63.26	63.81	63.36	65.70	2.44	2.44
MH406	63.07	65.21	62.86	62.86	63.37	63.36	65.70	2.84	2.84
MH408	63.23	65.30	62.98	62.98	63.53	63.21	65.55	2.57	2.57
MH410	62.81	64.76	62.55	62.55	63.11	62.96	65.30	2.75	2.75
MH412	62.53	64.56	62.28	62.28	62.83	62.61	64.95	2.67	2.67
MH414	62.18	64.27	62.00	62.07	62.48	62.61	64.95	2.95	2.88

^{*} Results of 3hour Chicago Storm

4.4.3 Inlet Control Devices

Table 4.3 summarizes the ICD sizes, types and heads for the 5-year and 100-year design events for each inlet to the storm sewer. As noted in this table, there is no surface ponding during the 5-year storm event as the simulated hydraulic grade line is below the top of grate elevation of the structure.

Table 4.3 - Inlet Control Devices & Ponding Depths

	Inlet	Outlet	Inlet Elev.		5yr		100y	/r
ICD Name	Node	Node	(m)	ICD Type	Ponding (m)	Head (m)	Ponding (m)	Head (m)
A3-A1-OR	CB3	MH402	63.64	83mm	0.00	1.20	0.07	1.27
A3-A2-OR	CBMH4	MH172	63.95	83mm	0.00	0.87	0.05	1.25
A3-A3-OR	CB5	MH406	63.93	83mm	0.00	0.89	0.06	1.26
A3-A4-LMF	CB1	MH168	63.72	LMF 60	0.00	1.17	0.08	1.28
A7-A5-LMF	CB2	MH166	63.64	LMF 60	0.00	1.22	0.05	1.25
A7-A6-LMF	CB6	MH410	63.51	LMF 105	0.00	1.18	0.17	1.37
A7-A7-LMF	CBMH7	MH164	63.25	83mm	0.00	1.19	0.06	1.26
A7-A8-OR	CB8	MH414	62.83	83mm	0.00	1.22	0.06	1.27

4.4.4 Major System Flows

A portion of the uncontrolled flows from Forecourt Townhomes will flow overland to either Oblats Avenue or Deschâtelets Avenue. The MSSU (2024) checked overland flow depths and velocities using the updated model (the same model used for this submission) to ensure that the results conform to the SWM design criteria. **Table 4.4** shows the summary of major system flows for the 5-year, 100-year and stress test model runs.

^{**} All units are Slab on Grade (i.e. No Basements)

^{***} Clearance is calculated to Top of Slab

Direct Runoff Areas

Based on the detailed grading design for the Forecourt Townhomes, storm runoff from Areas A3-DR1 and A3-DR2 will flow directly to the major system in Oblats Avenue. Storm runoff from Areas A3-DR3, A3-DR4 and A7-DR5, A7-DR6, A7-DR7, A7-DR8 will flow directly to the major system in Deschâtelets Avenue.

Overland Flow From Controlled Areas

Runoff from less frequent storms (greater than the 5-year event) that exceed ICD and minor system capacity, from area A3-A-1 will flow overland towards Oblats Avenue, while excess flows from A3-A-2, A3-A-3, A3-A-4, A7-A-5, A7-A-6, A7-A-7 and A7-A-8 will flow overland towards Deschâtelets Avenue. Based on the model results (refer to MSSU 2024), the Forecourt Townhomes site will have no adverse effects on the major system flows throughout the development.

Table 4.4 – Summary of Flows to Major System from Forecourt Townhomes

Area	Flow to Major System (L/s)								
Area	5-year	100-year	Stress Test						
	Controlled Areas								
A3-A1	0	13	19						
A3-A2	0	8	13						
A3-A3	0	8	13						
A3-A4	0	6	10						
A7-A5	0	5	8						
A7-A6	0	8	11						
A7-A7	0	13	19						
A7-A8	0	13	19						
	Uncon	trolled Areas							
A3-DR1	7	14	17						
A3-DR2	7	14	17						
A3-DR3	3	5	6						
A3-DR4	3	5	6						
A3-DR5	3	5	6						
A7-DR6	3	5	6						
A7-DR7	3	5	6						
A7-DR8	8	14	17						

4.5 LID Features

The site design has incorporated permeable surfaces wherever practical (walkways, garbage pads, landscaped areas) to promote infiltration and reduce stormwater runoff. The stormwater design does not account for the presence of these measures on the site based on the previous report, *Greystone Village – 175 Main Street – Potential Low Impact Development Opportunities, Prepared by Novatech, dated November 25, 2015, Ref. R-2015-182*, which indicated that LID features were not feasible for the development given the existing soils.

5.0 SITE GRADING

5.1 Existing Conditions

The site is currently vacant. Both blocks previously had the topsoil removed and granular material placed to provide temporary construction staging area. The current grades are general in line with the original (pre-development) grading of the property which was primarily a grassed area surrounded by mature trees prior to the development works. The site has minimal slopes with the topography slightly higher in the central portions sloping gradually to the northeast and southeast. There are currently no operational drainage structures located within the site limits or on the adjacent park block (Block 30) and surface flows from all three block (Block 28, Block 29 and Block 30) eventually reach the drainage structures located within the Oblats Avenue and Deschâtelets Avenue ROW.

5.2 Proposed Conditions

The design grades will tie into proposed back of sidewalk elevations along Oblats Avenue and Deschâtelets Avenue. Elevations along the eastern boundary of the site are set to direct drainage away from the Block 30 property line. This requires a proposed elevation difference of up to 0.6m from the existing elevations. It is proposed to provide terracing from the property line to the existing ground elevations where required onto the Block 30 property. It is anticipated the maximum extent of the grading impacts onto the adjacent block will be 2m. The terracing would be reviewed to ensure that the terracing did not create any new drainage issues on the adjacent block. For detailed grading refer to the Grading Plans (114025-FT-GR1 & 114025-FT-GR2, Appendix E).

The proposed grading will fall within these ranges:

- Landscaped Areas: Minimum 2% Maximum 6%, Maximum Terracing: 3H:1V
- Driveway and Parking Areas: 0.5% 5%
- Entrance: 2% maximum

5.3 Emergency Overland Flow Route

In the case of a major rainfall event exceeding the capture capacity of the on-site drainage structures, the site will be graded to provide an overland flow route for the stormwater to leave the site. The major system flow route from the subject site will overflow through the car court entrances to the adjacent ROW (Oblats Avenue and Deschâtelets Avenue), as discussed in **Section 4.4.4**. There are two small drainage areas along the eastern portions of the property, specifically adjacent to the large heritage trees, where major system flows are unable to be directed to the City ROW before outletting to the adjacent park block. This is consistent with the existing drainage conditions and is unavoidable without significant impacts to the critical root zones of the heritage trees. The finished floor elevations of the buildings are a minimum of 0.15m above the major system overflow points along hard surfaced areas and 0.3m in landscaped areas. The emergency overland flow routes are shown on the Storm Drainage Area Plans (**Figure 9** & **Figure 10**).

6.0 UTILITIES

The Forecourt Townhome blocks will be serviced with hydro, gas, Bell and Rogers with connections to Oblats Avenue and Deschâtelets Avenue. Canada Post will service the site with community mailboxes. Site lighting will be provided along roadways, sidewalks and walkways as per City standards.

7.0 EROSION AND SEDIMENT CONTROL

Erosion and sediment control measures will be implemented during construction in accordance with the "Guidelines on Erosion and Sediment Control for Urban Construction Sites" (Government of Ontario, May 1987). Typical erosion and sediment control measures recommended include, but are not limited to, the use of silt fences around perimeter of site, filter fabric or inserts under catch basin/maintenance hole lids, heavy duty silt fence barrier, straw bale check dams, rock check dams, turbidity curtain, dewatering trap, temporary water passage system, riprap, mud mats, silt bags for dewatering operations, topsoil and sod to disturbed areas and natural grassed waterways. Dewatering and sediment control techniques will be developed for the individual situations based on the above guidelines and utilizing typical measures to ensure erosion and sediment control is controlled in an acceptable manner and there is no negative impact to adjacent lands, water bodies or water treatment/conveyance facilities.

The following erosion and sediment control measures will be implemented during construction. Details are provided on the Erosion and Sediment Control Plan.

- All erosion and sediment control measures are to be installed to the satisfaction of the engineer, the municipality and the conservation authority prior to undertaking any site alterations (filling, grading, removal of vegetation, etc.) and remain present during all phases of site preparation and construction.
- A qualified inspector should conduct daily visits during construction to ensure that the contractor is working in accordance with the design drawings and that mitigation measures are being implemented as specified.
 - A light duty silt fence barrier is to be installed in the locations shown on the Erosion and Sediment Control & Removals Plan (114025-FT-ESC1 & 114025-FT-ESC2, Appendix E).
 - Catch basin inlet protection measures are to be established for all proposed and existing catch basins and storm sewer structures.
 - After complete build-out, all sewers are to be inspected and cleaned and all sediment and construction fencing is to be removed.
- The contractor shall ensure that proper dust control is provided with the application of water (and if required, calcium chloride) during dry periods.
- The contractor shall immediately report to the engineer or inspector any accidental discharges of sediment material into any ditch or sewer system. Appropriate response measures shall be carried out by the contractor without delay.
- The contractor acknowledges that failure to implement erosion and sediment control measures may result in penalties imposed by any applicable regulatory agency.

Temporary erosion and sediment control measures would be implemented both prior to commencement and during construction in accordance with the "Guidelines on Erosion and Sediment Control for Urban Construction Sites", (Government of Ontario, May 1987).

8.0 CONCLUSIONS

This report confirms the proposed Greystone Village Forecourt Townhome development can be adequately serviced with storm and sanitary sewers and watermain. The report is summarized below:

Sanitary Servicing

The sanitary flows have decreased for the Forecourt Townhome site compared to the
calculated flows in the Master Servicing Study (MSS 2017) and is consistent with the
Master Servicing Study Update (MSSU 2024). There is adequate servicing capacity in the
existing sanitary sewer to support the proposed development.

Watermain

- The proposed 50mm dia. watermains are sufficient to provide the required residential water demands for the development.
- The existing hydrants on De Mazenod Avenue, Deschâtelets Avenue, Oblats Avenue and Hazel Street are sufficient to provide the required fire flow demands for the proposed development.

Stormwater Management

- The two (2) proposed development parcels, each consisting of six (6) semi-detached or townhome blocks, are proposed to be serviced by a combination of 250mm diameter storm sewers and 200mm diameter catchbasin leads. Each parcel will require four (4) connections to the existing storm sewers within the Oblats Avenue and Deschâtelets Avenue ROW.
- Runoff from the site will be captured by a combination of catchbasins and catchbasin maintenance holes or will drain overland to Oblats Avenue or Deschâtelets Avenue.
 - o There will be no ponding in the 5-year event.
 - o Ponding depths in the 100-year event will be less than 0.30m.
 - The ponding will not touch the building envelops in the stress test event.
- The impact of the proposed development on the existing sewers (Capacity, HGL, and Overland flow depths and velocities) within the Greystone Subdivision ROW have been analyzed in the MSSU (2024) and found to have no negative impacts on the downstream system.
- Updated ECA approvals will be obtained for the existing storm sewer outlets through the subdivision approvals based on the MSSU (2024).

Utilities

 The development will be serviced by hydro (Hydro Ottawa), gas (Enbridge), Bell and Rogers from the existing services on Deschâtelets Avenue and Oblats Avenue.

Erosion and Sediment Control

 Erosion and sediment control measures will be implemented prior to construction and remain in place until vegetation is established.

T. J. MCKAY

100195434 December 20, 202

SHOVINCE OF ONTRE

This report is respectfully submitted for site plan approval. Please contact the undersigned should you have questions or require additional information.

NOVATECH

Prepared by:

Vahid Mehdipour, M.Sc.

Engineering Intern | Water Resources

Vahid Mehdipour

Reviewed by:

Trevor McKay, P. Eng.

Senior Project Manager | Land Development Engineering

Greystone Village Forecourt Townhomes – 29	5 & 355 Deschâtelets Avenue

Site Servicing Report

APPENDIX A

Sanitary Sewer Design

SANITARY SEWER DESIGN SHEET

Novatech Project #: 114025-5

Project Name: Greystone Village - Forecourt Townhomes - Block 28 (355 Deschatelets Avenue)

Date: 11/29/2024 Input By: Mo Abdul Reviewed By: Trevor McKay

Drawing Reference: Figure 5 - Sanitary Drainage Area Plan (Block 28)

Legend: Design Input by User

As-Built Input by User Cumulative Cell

Calculated Design Cell Output

Reference: City of Ottawa - Sewer Design Guidelines (2012 and TBs)

MOE - Design Guidelines for Sewage Works (2008)

		Demand													Design Capacity									
Street					Residential Flow Extraneous Flow Area Method Total Design Flow										W Proposed Sewer Pipe Sizing / Design									
	Area ID	From MH	To MH		Semis / Towns	Apts	Population	Cumulative Population	Average Pop. Flow Q(g)	Design Peaking Factor M	Peak Design Pop. Flow Q(p)	Res. Drainage Area	Cumulative Res. Drainage Area	Cumulative Extraneous Drainage Area	Design Extraneous Flow Q(e)	Total Peak Design Flow Q(D)	Pipe Length	Pipe Size (mm) and Material	Pipe ID Actual	Roughness	Design Grade So	Capacity Qfull	Full Flow Velocity	Q(D) / Qfull
							(in 1000's)	(in 1000's)	(L/s)		(L/s)	(ha.)	(ha.)	(ha.)	(L/s)	(L/s)	(m)		(m)		(%)	(L/s)	(m/s)	1
Block 28	A4	413	415		6		0.016	0.016	0.05	3.71	0.19	0.088	0.088	0.088	0.03	0.22	21.1	200 PVC	0.203	0.013	2.00	48.4	1.49	0.5%
Block 28		415	EX-PH1				0.000	0.016	0.05	3.71	0.19	0.000	0.088	0.088	0.03	0.22	8.3	250 PVC	0.254	0.013	2.00	87.7	1.73	0.3%
																								l i
Block 28	A5	417	419		4		0.011	0.011	0.04	3.73	0.13	0.066	0.066	0.066	0.02	0.15	20.2	200 PVC	0.203	0.013	2.00	48.4	1.49	0.3%
Block 28		419	EX-PH1				0.000	0.011	0.04	3.73	0.13	0.000	0.066	0.066	0.02	0.15	7.3	250 PVC	0.254	0.013	1.50	76.0	1.50	0.2%
Block 28	A6	421	423		6		0.016	0.016	0.05	3.71	0.19	0.088	0.088	0.088	0.03	0.22	22.2	200 PVC	0.203	0.013	2.00	48.4	1.49	0.5%
Block 28		423	EX-PH1				0.000	0.016	0.05	3.71	0.19	0.000	0.088	0.088	0.03	0.22	7.8	250 PVC	0.254	0.013	1.90	85.5	1.69	0.3%
Total to Phase 1 Sewers	A4+A5+A6			0	16	0	0.043	0.043	0.14	3.66	0.51	0.242	0.242	0.242	0.08	0.59	86.9							[

Demand Equation / Parameters

Q(p) + Q(ici) + Q(e)1. Q(D) =

2. Q(p) = (P x q x M x K / 86,400)

3. q= 4. M = Harmon Formula (maximum of 4.0)

5. K = 0.8

6. Park flow is considered equivalent to a single unit / ha Park Demand =

7. Q(ici) = ICI Area x ICI Flow x ICI Peak

8. Q(e) = 0.33

(design)

Definitions

(design)

single unit equivalent / park ha (~ 3,600 L/ha/day)

Q(D) = Peak Design Flow (L/s)

Q(p) = Peak Design Population Flow (L/s)

Q(q) = Average Population Flow (L/s)

Singles Semis / Towns Apts P = Residential Population = 3.4 2.1 q = Average Capita Flow

M = Harmon Formula K = Harmon Correction Factor

Q(ici) = Industrial / Commercial / Institutional Flow (L/s)

Q(e) = Extraneous Flow (L/s)

Institutional / 0	Commercial / Industrial	<u>Industrial</u>	Commercial / Ins	<u>titutional</u>
ICI Dook *	Design =	35000	28000	L/gross ha/day
ICI Peak *	Design =	1.0	1.5	* ICL Peak = 1.0 Default 1.5 if ICL in contributing area is >20% (design only)

Capacity Equation

Q full = $1000*(1/n)*A_n*R^{2/3}*So^{0.5}$

Definitions

Q full = Capacity (L/s)

n = Manning coefficient of roughness (0.013)

 A_p = Pipe flow area (m²)

R = Hydraulic Radius of wetted area (dia./4 for full pipes)

So = Pipe slope/gradient

SANITARY SEWER DESIGN SHEET

Novatech Project #: 114025-5

Project Name: Greystone Village - Forecourt Townhomes - Block 29 (295 Deschatelets Avenue)

Date: 11/29/2024
Input By: Mo Abdul
Reviewed By: Trevor McKay

Drawing Reference: Figure 4 - Sanitary Drainage Area Plan (Block 29)

Legend: Design Input by User

As-Built Input by User Cumulative Cell

Calculated Design Cell Output

Reference: City of Ottawa - Sewer Design Guidelines (2012 and TBs)

MOE - Design Guidelines for Sewage Works (2008)

			Demand													Design Capacity								
Street			To MH		Residential Flow Extraneous Flow Area Method Total Design Flow										Total Design Flow	Flow Proposed Sewer Pipe Sizing / Design								
	Area ID	From MH		Singles	Semis /	Apts	Population	Cumulative Population	Average Pop. Flow Q(q) (L/s)	Design Peaking Factor	Peak Design Pop. Flow	Res. Drainage Area	Cumulative Res. Drainage Area (ha.)	Cumulative Extraneous Drainage Area (ha.)	Design Extraneous Flow Q(e) (L/s)	Total Peak Design Flow	Pipe Length	Pipe Size (mm) and Material	Pipe ID Actual	Roughness	Design Grade	Capacity	Full Flow Velocity	Q(D) / Qfull
					Towns		(in 1000's)	(in 1000's)		М	Q(p) (L/s)	(ha.)				Q(D) (L/s)	(m)		(m)	n	So (%)	Qfull (L/s)	(m/s)	
Block 29	A1	401	403		4		0.011	0.011	0.04	3.73	0.13	0.085	0.085	0.085	0.03	0.16	20.6	200 PVC	0.203	0.013	1.00	34.2	1.06	0.5%
Block 29		403	EX-PH2				0.000	0.011	0.04	3.73	0.13	0.000	0.085	0.085	0.03	0.16	7.0	250 PVC	0.254	0.013	1.00	62.0	1.22	0.3%
Total to Phase 2 Sewers	A1			0	4	0	0.011	0.011	0.04	3.73	0.13	0.085	0.085	0.085	0.03	0.16	27.6							ĺ
Block 29	A2	405	407		4		0.011	0.011	0.04	3.73	0.13	0.078	0.078	0.078	0.03	0.16	22.4	200 PVC	0.203	0.013	1.50	41.9	1.29	0.4%
Block 29		407	EX-PH1				0.000	0.011	0.04	3.73	0.13	0.000	0.078	0.078	0.03	0.16	9.7	250 PVC	0.254	0.013	1.50	76.0	1.50	0.2%
Block 29	A3	409	411		6		0.016	0.016	0.05	3.71	0.19	0.089	0.089	0.089	0.03	0.22	21.3	200 PVC	0.203	0.013	2.00	48.4	1.49	0.5%
Block 29		411	EX-PH1				0.000	0.016	0.05	3.71	0.19	0.000	0.089	0.089	0.03	0.22	8.4	250 PVC	0.254	0.013	2.00	87.7	1.73	0.3%
Total to Phase 1 Sewers	A2+A3			0	10	0	0.027	0.027	0.09	3.69	0.32	0.167	0.167	0.167	0.06	0.38	61.8							

Demand Equation / Parameters

1. Q(D) = Q(p) + Q(ici) + Q(e)2. $Q(p) = (P \times q \times M \times K / 86,400)$

3. q = 280

4. M = Harmon Formula (maximum of 4.0)
5. K = 0.8

6. Park flow is considered equivalent to a single unit / ha

Park Demand = 4 single unit equivalent / park ha (~ 3,600 L/ha/day)

L/per person/day

(design)

(design)

7. Q(ici) = ICI Area x ICI Flow x ICI Peak

8. Q(e) = 0.33 L/s/ha (design)

Definitions

Q(D) = Peak Design Flow (L/s)

Q(p) = Peak Design Population Flow (L/s)

Q(q) = Average Population Flow (L/s)

 Singles
 Semis / Towns
 Apts

 P = Residential Population =
 3.4
 2.7
 2.1

q = Average Capita Flow

M = Harmon FormulaK = Harmon Correction Factor

Q(ici) = Industrial / Commercial / Institutional Flow (L/s)

Q(e) = Extraneous Flow (L/s)

Institutional /	Commercial / Industrial	Industrial	Commercial / Ins	titutional
IOI Darata	Design =	35000	28000	L/gross ha/day
ICI Peak *	Design =	1.0	1.5	* ICL Peak = 1.0 Default 1.5 if ICL in contributing area is >20% (design only

Capacity Equation

Q full = $1000*(1/n)*A_p*R^{2/3}*So^{0.5}$

Definitions

Q full = Capacity (L/s)

n = Manning coefficient of roughness (0.013)

 A_p = Pipe flow area (m²)

R = Hydraulic Radius of wetted area (dia./4 for full pipes)

So = Pipe slope/gradient

SANITARY SEWER DESIGN SHEET Greystone Village - 175 Main Street Developer: Greystone Village Inc.

Additional Condo Units

PROJECT #: 114025

DESIGNED BY: SZ

CHECKED BY: JAG

DATE PREPARED: 15-Dec-15

DATE REVISED: 04-Apr-16

DATE REVISED :

DATE REVISED: 15-Mar-17
DATE REVISED: 26-May-17

21-Jun-16

	26-May-1	7								1	1		DDODGOTD OFFICE											
LOCATION		INDIVIDUAL								TIVE	PEAK	POPULATION	PEAK	PEAK	PROPOSED SEWER									
STREET	FROM MH	TO MH	Area	Single Units	Townhouse Units	Condo Units	Future School Residence	Retirement Home Units	Population (in 1000's)	AREA (ha.)	Population (in 1000's)	•	FACTOR M	FLOW Q(p) (L/s)	EXTRAN. FLOW Q(i) (L/s)	DESIGN FLOW Q(d) (L/s)	LENGTH (m)	PIPE SIZE (mm)	PIPE ID (mm)	TYPE OF PIPE	GRADE %	CAPACITY (L/s)	FULL FLOW VELOCITY (m/s)	Qpeak/ Qcap
*DESCHATELETS AVENUE	151	149	1&2	Block 29	21	80			0.225	0.64	0.225	0.640	4.0	3.64	0.18	3.82	30.6	200	203.20	DR 35	0.65	27.6	0.85	14%
*DESCHATELETS AVENUE	149	147	3	Block 20					0.220	0.05	0.225	0.690	4.0	3.64	0.19	3.83	27.8	200	203.20	DR 35	0.40	21.6	0.67	18%
*DESCHATELETS AVENUE	147	145	4							0.31	0.225	1.000	4.0	3.64	0.28	3.92	33.6	200	203.20	DR 35	0.40	21.6	0.67	18%
*DESCHATELETS AVENUE	145	193	5	Block 28	21		112		0.281	0.74	0.505	1.740	4.0	8.13	0.49	8.62	20.2	200	203.20	DR 35	0.40	21.6	0.67	40%
*DESCHATELETS AVENUE	193	143		2.00.0.20							0.505	1.74	4.0	8.13	0.49	8.62	20.2	200	203.20	DR 35	0.40	21.6	0.67	40%
DESCHATELETS AVENUE	143	141	6			75			0.158	0.21	0.663	1.95	3.9	10.49	0.55	11.04	31.1	200	203.20	DR 35	0.40	21.6	0.67	51%
DESCHATELETS AVENUE	141	139	7							0.08	0.663	2.030	3.9	10.49	0.57	11.06	27.0	200	203.20	DR 35	0.40	21.6	0.67	51%
DESCHATELETS AVENUE	139	133	8							0.09	0.663	2.120	3.9	10.49	0.59	11.09	21.8	200	203.20	DR 35	0.40	21.6	0.67	51%
**FORECOURT	133	131	9		 	ļ			0.149	0.80			1.5	0.05	0.22	0.28	75.3	200	203.20	DR 35	0.40	21.6	0.67	68%
DE MAZENOD AVENUE	100	101	10		12	102			0.247	0.47	0.910	2.590	3.8	14.10	0.73	14.82	70.0	200	200.20	DIV 00	0.40	21.0	0.07	0070
DE MAZENOD AVENUE	105	131	11		12	102			0.247	0.48	0.247	0.480	4.0	4.00	0.13	4.13	73.6	200	203.20	DR 35	0.40	21.6	0.67	19%
JEREMIAH KEALEY STREET	131	129	12		6				0.016	0.19	1.172	3.260	3.8	17.83	0.91	19.02	47.7	250	254.00	DR 35	0.40	39.2	0.77	48%
JEREMIAH KEALEY STREET	129	127	13		6				0.016	0.19	1.189	3.450	3.8	18.06	0.97	19.30	48.7	250	254.00	DR 35	0.40	39.2	0.77	49%
	.20								0.0.0	00		000		10.00		10.00		200			01.10		5	
DESCHATELETS AVENUE	133	135	14		3	47			0.107	0.34	0.107	0.340	4.0	1.73	0.10	1.83	51.2	200	203.20	DR 35	0.65	27.6	0.85	7%
DESCHATELETS AVENUE	135	137	15		3	20			0.050	0.13	0.157	0.470	4.0	2.54	0.13	2.67	49.3	200	203.20	DR 35	0.40	21.6	0.67	12%
SCHOLASTIC DRIVE	137	127	16	4					0.014	0.19	0.171	0.660	4.0	2.76	0.18	2.95	69.9	200	203.20	DR 35	0.40	21.6	0.67	14%
SCHOLASTIC DRIVE	127	125	17	4					0.014	0.17	1.373	4.280	3.7	20.61	1.20	22.09	59.6	250	254.00	DR 35	0.40	39.2	0.77	56%
SCHOLASTIC DRIVE	125	109									1.373	4.280	3.7	20.61	1.20	22.09	13.6	250	254.00	DR 35	0.40	39.2	0.77	56%
PHILOSOPHER PRIVATE	101	111	18	4					0.014	0.17	0.014	0.170	4.0	0.22	0.05	0.27	24.8	200	203.20	DR 35	0.65	27.6	0.85	1%
TELMON STREET	111	103	19							0.07	0.014	0.240	4.0	0.22	0.07	0.29	17.1	200	203.20	DR 35	0.40	21.6	0.67	1%
TELMON STREET	103	105	20	1					0.003	0.03	0.017	0.270	4.0	0.28	0.08	0.35	8.4	200	203.20	DR 35	0.40	21.6	0.67	2%
TELMON STREET	105	107	21	7	3				0.032	0.26	0.049	0.530	4.0	0.79	0.15	0.94	46.3	200	203.20	DR 35	0.40	21.6	0.67	4%
TELMON STREET	107	109	22	4	3				0.022	0.21	0.071	0.740	4.0	1.14	0.21	1.35	39.7	200	203.20	DR 35	0.40	21.6	0.67	6%
OUTLET	109	113									1.443	5.020	3.7	21.58	1.41	23.26	11.9	250	254.00	DR 35	0.40	39.2	0.77	59%
OUTLET	113	115	23							0.04	1.443	5.060	3.7	21.58	1.42	23.27	43.3	250	254.00	DR 35	5.13	140.5	2.77	17%
CLEGG	123	121	24	6					0.020	0.19	0.020	0.190	4.0	0.33	0.05	0.38	72.5	200	203.20	DR 35	3.16	60.8	1.88	1%
CLEGG	121	117	25	8				1	0.027	0.18	0.048	0.370	4.0	0.77	0.10	0.87	77.0	200	203.20	DR 35	0.40	21.6	0.67	4%
CLEGG	117	115									0.048	0.370	4.0	0.77	0.10	0.87	9.5	200	203.20	DR 35	0.42	22.2	0.68	4%
OUTLET	115	119									1.491	5.430	3.7	22.23	1.52	24.03	10.6	250	254.00	DR 35	0.41	39.7	0.78	60%
																		l						

SANITARY SEWER DESIGN SHEET Greystone Village - 175 Main Street Developer: Greystone Village Inc.

Additional Condo Units

PROJECT #: 114025

DESIGNED BY: SZ CHECKED BY: JAG

 DATE PREPARED :
 15-Dec-15

 DATE REVISED :
 04-Apr-16

 DATE REVISED :
 21-Jun-16

 DATE REVISED :
 15-Mar-17

 DATE REVISED :
 26-May-17

LOCATION						IN	DIVIDUAL				CUMULA	TIVE	DEAK	DODUL ATION	PEAK	PEAK				PROPO	SED SEWE	R		
STREET	FROM MH	TO MH	Area	Single Units	Townhouse Units	Condo Units	Future School Residence	Retirement Home Units	Population (in 1000's)	AREA (ha.)	Population (in 1000's)	AREA (ha.)	PEAK FACTOR M	POPULATION FLOW Q(p) (L/s)	EXTRAN. FLOW Q(i) (L/s)	DESIGN FLOW Q(d) (L/s)	LENGTH (m)	PIPE SIZE (mm)	PIPE ID (mm)	TYPE OF PIPE	GRADE %	CAPACITY (L/s)	FULL FLOW VELOCITY (m/s)	Qpeak/ Qcap

^{*}Part of future phase 2 outletting through phase 1A at outlet 1.

Notes: Definitions:

1. Q(d) = Q(p) + Q(i) Q(d) = Design Flow (L/sec)
2. Q(i) = 0.28 L/sec/ha Q(p) = Population Flow (L/sec)
3. Q(p) = (PxqxM/86,400) Q(i) = Extraneous Flow (L/sec)

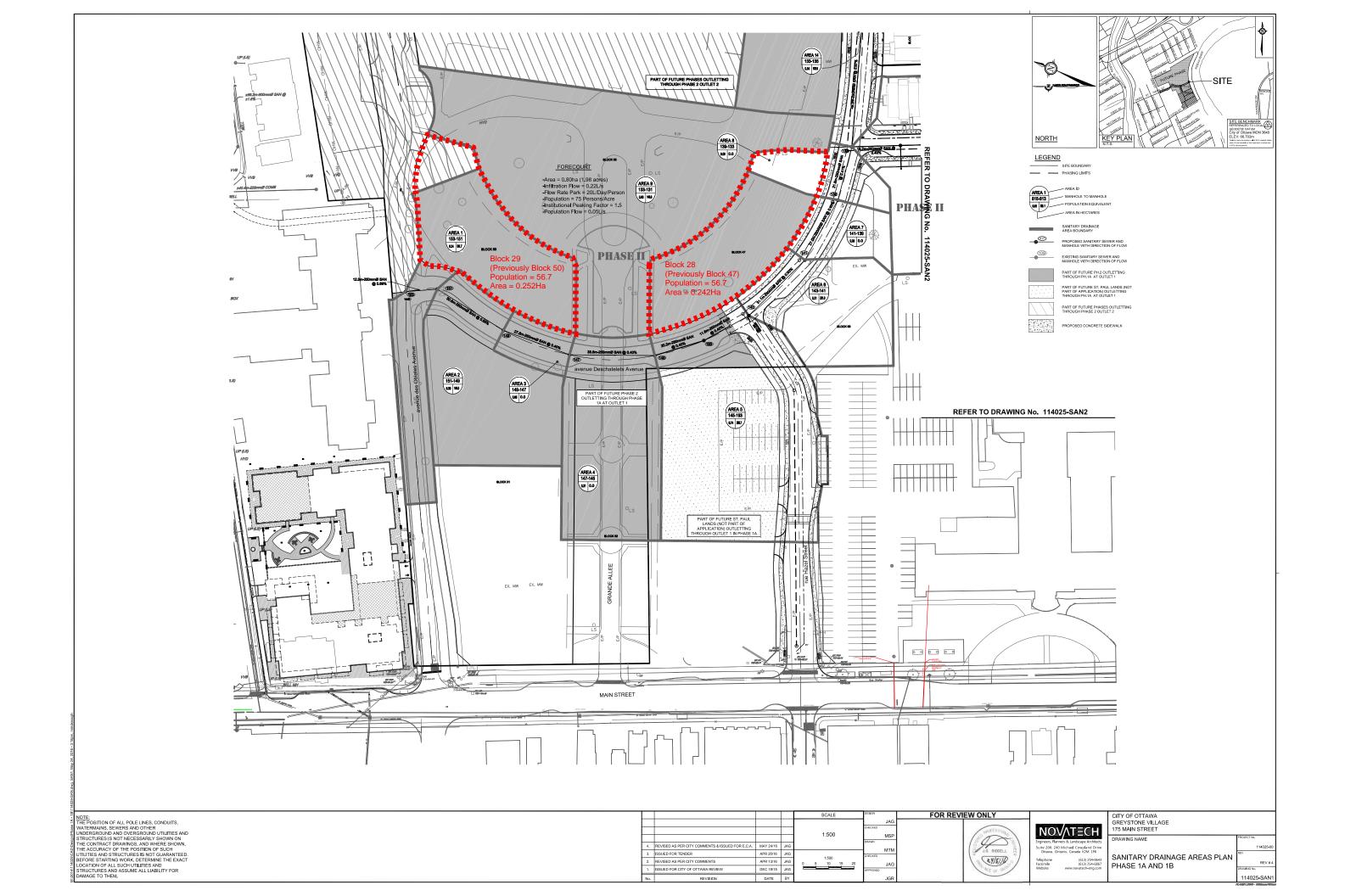
** Parkland: Area = 0.91 ha, Flow Rate for parks with flush toilets = 20L/Day/Person, peak design flow from parkland to be added to peak design flow of subsequent pipes.

Population = 75 Persons/acre

Details from Appendix 4-A OSDG

Institutional Peaking factor = 1.5

P = Population (3.4 persons/single unit, 2.7 persons/townhouse, 2.1 persons/apartment, 2.0 persons/ school residence, 1.4 persons/retirement residence)


q = Average per capita flow = 350 L/cap/day - Residential

q = Average per gross ha. flow = 35000 L/gross ha/day - Light industrial

q = Average per gross ha. flow = 50000 L/gross ha/day - Commercial/Mixed use

M = Harmon Formula (maximum of 4.0)

Min pipe size 200mm @ min. slope 0.32%

Greystone Village Forecourt Townhomes – 295 & 355 Deschâtelets Avenue	Site Servicing Report
Groyatorio Villago i orototati rominorios – 290 ti 300 Descriateiro Averlue	Site derivering Nepolt
APPENDIX B	
Water Boundary Conditions & Hydraulic Calculations	

Boundary Condition Request

Novatech Project #: 114025-5

Small System =

Project Name: Greystone Village - Forecourt
Townhomes: Block 29

Date: 6/28/2024

Input By: Trevor McKay Reviewed By: Trevor McKay

Drawing Reference: 114025-FT-GP1, Revision 1 - Markup

YES

Legend: Input by User No Input Required

Calculated Cells \rightarrow

Reference: Ottawa Design Guidelines - Water Distribution (2010 and TBs)

MOE Design Guidelines for Drinking-Water Systems (2008)

Fire Underwriter's Survey Guideline (2020)

Ontario Building Code, Part 3 (2012)

	# of Dwellings	Area (ha.)	Pop. Equiv.	Average Day Demand (L/s)	Maximum Day Demand (L/s)	Peak Hour Demand (L/s)				
Residential Input - Cor	Residential Input - Connection 1									
Semis / Townhomes	4		10.80	0.04	0.33	0.50				
Residential Input - Cor	nnection 2									
Semis / Townhomes	4		10.80	0.04	0.33	0.50				
Residential Input - Cor	Residential Input - Connection 3									
Semis / Townhomes	6		16.20	0.05	0.50	0.75				
Totals	14	0.00	37.80	0.12	1.16	1.75				

Summary

i. Type of Development and Units:	Residential, Freehold Townhomes
ii. Site Address:	295 Deschatelets Avenue
iii. Proposed Water Service Connection Location(s):	3 Individual - 50mm diameter service connections (dead ends) servcing 4 (Oblats Avenue), 4 (Deschatelets Avenue), and 6 units (Deschatelets Avenue) respectively
TI-O1 13 ONNECTION #1 CONNECTION #	T2-03 167L/s T2-04 T6-11 167L/s T5-10 T6-12 T6-13

CONNECTION 1:

iv. Average Day Flow Demand:	0.04	L/s
v. Peak Hour Flow Demand:	0.50	L/s
vi. Maximum Day Flow Demand:	0.33	L/s
vii. Required Fire Flow #1:	10000	L/min

CONNECTION 2:

iv. Average Day Flow Demand:	0.04	L/s
v. Peak Hour Flow Demand:	0.50	L/s
vi. Maximum Day Flow Demand:	0.33	L/s
vii. Required Fire Flow #2:	10000	L/min

CONNECTION 3:

iv. Average Day Flow Demand:	0.05	L/s
v. Peak Hour Flow Demand:	0.75	L/s
vi. Maximum Day Flow Demand:	0.50	L/s
vii. Required Fire Flow #3:	10000	L/min

Design Parameters

Residential									
Unit Type Population Equiv.	Singles	Semis/ Towns	Apts (2-BR)	Apts (1-BR)	Apts (Avg)				
Fopulation Equiv.	3.4	2.7	2.1	1.4	1.8				
Dailly Demand			L/per pe	rson/day					
Average Demand	280								
Basic Demand			20	00					

Residential Peaking Factors		Max Day	Peak Hour
	Pop.	(x Avg Day)	(x Avg Day)
	0	9.50	14.30
Small System	30	9.50	14.30
(If Applicable)	150	4.90	7.40
Modified	300	3.60	5.50
Modified	450	3.00	5.50
	500	2.90	5.50
Large System (Default)	> 500	2.50	5.50

Boundary Condition Request

Novatech Project #: 114025-5

Small System =

Project Name: Greystone Village - Forecourt
Townhomes: Block 28

Date: 6/28/2024

Input By: Trevor McKay Reviewed By: Trevor McKay

Drawing Reference: 114025-FT-GP2, Revision 1 - Markup

YES

Legend: Input by User No Input Required

Calculated Cells \rightarrow

Reference: Ottawa Design Guidelines - Water Distribution (2010 and TBs)

MOE Design Guidelines for Drinking-Water Systems (2008)

Fire Underwriter's Survey Guideline (2020)

Ontario Building Code, Part 3 (2012)

	# of Dwellings	Area (ha.)	Pop. Equiv.	Average Day Demand (L/s)	Maximum Day Demand (L/s)	Peak Hour Demand (L/s)				
Residential Input - Cor	nnection 1									
Semis / Townhomes	6		16.20	0.05	0.50	0.75				
Residential Input - Cor	nnection 2									
Semis / Townhomes	4		10.80	0.04	0.33	0.50				
Residential Input - Cor	Residential Input - Connection 3									
Semis / Townhomes	6		16.20	0.05	0.50	0.75				
Totals	16	0.00	43.20	0.14	1.33	2.00				

Summary

i. Type of Development and Units:	Residential, Freehold Townhomes
ii. Site Address:	295 Deschatelets Avenue
iii. Proposed Water Service Connection Location(s):	3 Individual - 50mm diameter service connections (dead ends) servcing 6 units, 4 units, and 6 units from Deschatelets Avenue
PROPOSED BERGEE, SAW, SITM & WATER LOCATION PROPOSED BERGEE, SAW & WATER LOCATION OF REEDIE PROPOSED BERGEE SAW, SITM & WATER LOCATION OF REEDIE SAW,	T10-24 T10-24 T10-24 T10-24 T10-25 T11-26 T10-25 T11-26 T11-26 T11-26 T11-25 T11-26 T11-25 T11-26 T11-25 T11-26 T11-25 T11-26 T11-25 T11-26 T1
T6-11 167L/s T6-12 T6-13 T6-14 T6-14 T7-15 T7-16 T7-17 T7-17 T7-17 T7-17 T7-18 T	T9-21 CONNECTION #5 CONNECTION #5 CONNECTION #4

CONNECTION 4:

iv. Average Day Flow Demand:	0.05	L/s
v. Peak Hour Flow Demand:	0.75	L/s
vi. Maximum Day Flow Demand:	0.50	L/s
vii. Required Fire Flow #4:	10000	L/min

CONNECTION 5:

iv. Average Day Flow Demand:	0.04	L/s
v. Peak Hour Flow Demand:	0.50	L/s
vi. Maximum Day Flow Demand:	0.33	L/s
vii. Required Fire Flow #5:	10000	L/min

CONNECTION 6:

iv. Average Day Flow Demand:	0.05	L/s
v. Peak Hour Flow Demand:	0.75	L/s
vi. Maximum Day Flow Demand:	0.50	L/s
vii. Required Fire Flow #6:	11000	L/min

Design Parameters

	Residential					
Unit Type Population Equiv.	Singles	Semis/ Towns	Apts (2-BR)	Apts (1-BR)	Apts (Avg)	
Fopulation Equiv.	3.4	2.7	2.1	1.4	1.8	
Dailly Demand		L/per person/day				
Average Demand		280				
Basic Demand		200				

Residential Peaking Factors		Max Day (x Avg Day)	Peak Hour (x Avg Day)
	Pop.	(x Avg Day)	(X AVG Day)
	0	9.50	14.30
Small System	30	9.50	14.30
(If Applicable)	150	4.90	7.40
Modified	300	3.60	5.50
ou	450	3.00	5.50
	500	2.90	5.50
Large System (Default)	> 500	2.50	5.50

From: Duquette, Vincent < Vincent.Duquette@ottawa.ca>

Sent: Tuesday, July 30, 2024 9:34 PM

To: Trevor McKay

Cc: Evan Garfinkel

Subject: RE: Pre-Consultation Phase 2 Follow-up - 295-355 Deschâtelets Avenue -

PC2024-0184

Attachments: 295 & 355 Deschatelets Avenue July 2024.pdf

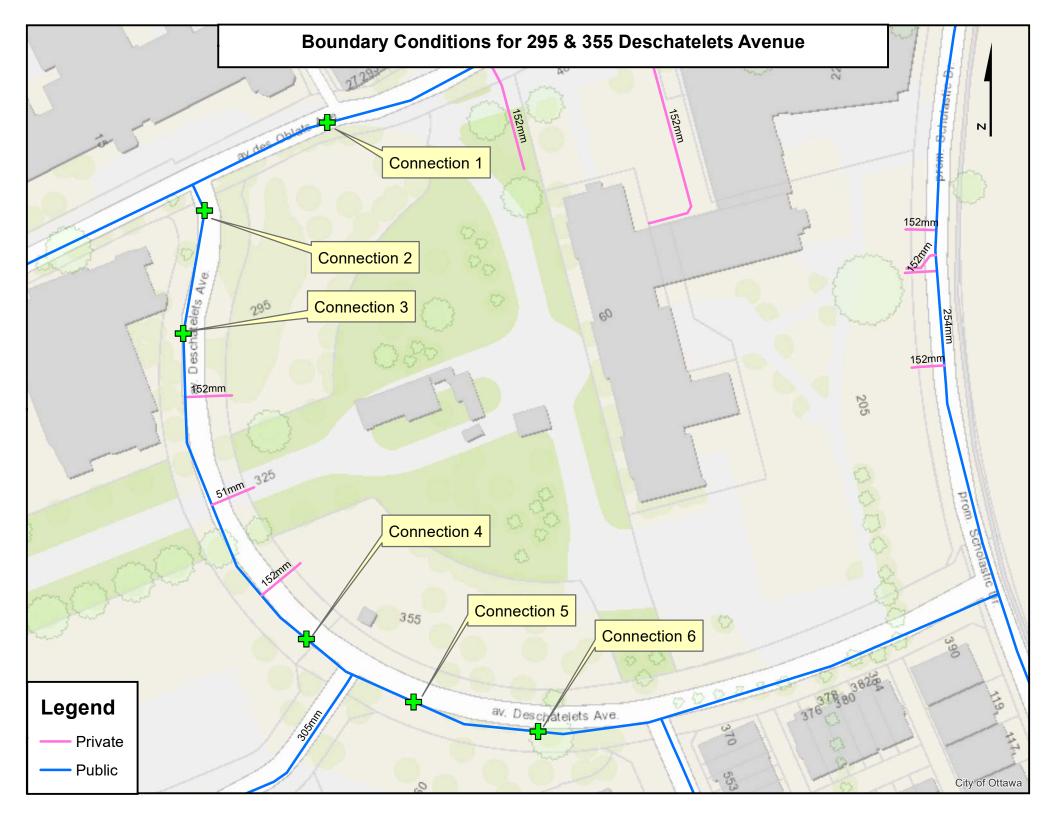
Hi Trevor,

Thanks for your patience on this as well, the result just came in today. See below results of the boundary conditions requested.

The following are boundary conditions, HGL, for hydraulic analysis at 295 & 355 Deschatelets Avenue (zone 1W) assumed to connected via <u>six connections</u> (three for each parcel) to the 254mm watermain on Oblats Avenue and the 254mm watermain on Deschatelets Avenue (see attached PDF for location).

All Connections:

Minimum HGL: 105.3 m


Maximum HGL: 115.1 m

	Fire Flow rate	Max Day + Fire Flow (m)
Connection 1		103.5
Connection 2		103.9
Connection 3	167 (L/s)	104.3
Connection 4		106.1
Connection 5		106.2
Connection 6	183 (L/s)	105.3

These are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

Best Regards,

Novatech Project #: 114025-05

Project Name: Greystone Village - Forecourt Townhomes

Date: 6/28/2024
Input By: Trevor McKay
Reviewed By: Trevor McKay

Drawing Reference: 114025-FT-GP2, Revision 1 - Markup

Legend: Input by User

No Input Required

Reference: Fire Underwriter's Survey Guideline (2020)

Formula Method

Building Description: Block 28: Townhome Block 7 (A3 unit + 2 x B1 units + B2 unit)

Type V - Wood frame

Step		Base Fire F	Choose		Value Used	Total Fire Flow (L/min)
	Construction Ma		low	Mult	plier	
	Construction wa	Type V - Wood frame	Yes	1.5	pilei	
	Coefficient	Type IV - Mass Timber	165	Varies		
1	related to type	Type III - Ordinary construction		varies	1.5	
	of construction	Type II - Non-combustible construction		0.8	1.5	
	С	Type I - Fire resistive construction (2 hrs)		0.6		
	Floor Area	Type I - File resistive construction (2 fils)		0.6		
	1 1001 Alea	Building Footprint (m ²)	229.5			
		Number of Floors/Storeys	3			
2	A	Protected Openings (1 hr) if C<1.0	No No			
2			INO		689	
		Area of structure considered (m²) Base fire flow without reductions			009	
	F	$\mathbf{F} = 220 \mathbf{C} (\mathbf{A})^{0.5}$	-			9,000
	Ta .	Reductions or Su		Daduatian	(C	
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction	Surcharge	
	(1)	Non-combustible	Vac	-25%	-15% 7,	
3		Limited combustible	Yes	-15%		7,650
		Combustible		0%		
		Free burning		15% 25%		
	Sprinkler Reduc	Rapid burning	FUS Table 4		ction	
	Sprinkler Reduc	Adequately Designed System (NFPA 13)	FUS Table 4	-30%	Ction	
		Standard Water Supply		-10%		
4		Fully Supervised System		-10%		
4	(2)	Fully Supervised System	Cumulat	ive Sub-Total	0%	0
		Area of Sprinklered Coverage (m²)	Cumulat	0%	U 7/0	
		Area of Sprinklered Coverage (m²)	Cun	nulative Total	0%	
	Exposure Surch	arge	FUS Table 5	idiative rotar	Surcharge	
	Exposure ourcil	North Side	>30m		0%	
		East Side	>30m		0%	
5	(2)	South Side	3.1 - 10 m		20%	2,678
5	(3)	100411 0140	0.1 10 111			2,070
5	(3)	West Side	10.1 - 20 m		15%	
5	(3)	West Side	10.1 - 20 m	nulative Total	15%	
5	(3)		Cun	nulative Total	15% 35%	
5	(3)	Results	Cun	nulative Total	35%	10 000
6	(1) + (2) + (3)		Cun	nulative Total		10,000 167

Novatech Project #: 114025-05

Project Name: Greystone Village - Forecourt Townhomes

Date: 6/28/2024
Input By: Trevor McKay
Reviewed By: Trevor McKay

Drawing Reference: 114025-FT-GP2, Revision 1 - Markup

Building Description: Block 28: Townhome Block 8 (2 x A2 units)

Type V - Wood frame

Legend: Input by User

No Input Required

Reference: Fire Underwriter's Survey Guideline (2020)

Step			Choose		Value Used	Total Fire Flow (L/min)
		Base Fire F	low			(=/11111)
	Construction Ma	iterial		Mult	iplier	
		Type V - Wood frame	Yes	1.5		
	Coefficient	Type IV - Mass Timber		Varies		
1	related to type of construction	Type III - Ordinary construction		1	1.5	
	C	Type II - Non-combustible construction		0.8		
	Ŭ	Type I - Fire resistive construction (2 hrs)		0.6		
	Floor Area					
		Building Footprint (m ²)	158.6			
	A	Number of Floors/Storeys	3			
2	A	Protected Openings (1 hr) if C<1.0	No			
		Area of structure considered (m ²)			476	
	F	Base fire flow without reductions				7,000
	Г	$F = 220 \text{ C (A)}^{0.5}$				7,000
		Reductions or Su	ırcharges			
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction	/Surcharge	
	(1)	Non-combustible		-25%		
3		Limited combustible	Yes	-15%		
3		Combustible		0%	-15%	5,950
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduc	tion	FUS Table 4	Redu	ction	
		Adequately Designed System (NFPA 13)		-30%		
		Standard Water Supply		-10%		
4	(2)	Fully Supervised System		-10%		0
	(2)		Cumulat	ive Sub-Total	0%	U
		Area of Sprinklered Coverage (m²)		0%		
			Cun	nulative Total	0%	
	Exposure Surch	arge	FUS Table 5		Surcharge	
		North Side	3.1 - 10 m		20%	
5		East Side	>30m		0%	
Ū	(3)	South Side	3.1 - 10 m		20%	3,868
		West Side	0 - 3 m		25%	
				nulative Total	65%	
		Results				
		Total Required Fire Flow, rounded to nea	rest 1000L/min		L/min	10,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or	L/s	167
		(=,000 E/IIIII)		or	USGPM	2,642

Novatech Project #: 114025-05

Project Name: Greystone Village - Forecourt Townhomes

Date: 6/28/2024
Input By: Trevor McKay
Reviewed By: Trevor McKay

Drawing Reference: 114025-FT-GP2, Revision 1 - Markup

Building Description: Block 28: Townhome Block 9 (2 x C units)

Type V - Wood frame

Legend: Input by User

No Input Required

Reference: Fire Underwriter's Survey Guideline (2020)

Step			Choose		Value Used	Total Fire Flow
		Base Fire F	low			(L/min)
	Construction Material			Mult	iplier	
	Conoci docion ind	Type V - Wood frame	Yes	1.5	•	
	Coefficient	Type IV - Mass Timber	100	Varies		
1	related to type of construction	Type III - Ordinary construction		1	1.5	
		Type II - Non-combustible construction		0.8		
	С	Type I - Fire resistive construction (2 hrs)		0.6		
	Floor Area	,	I.		l l	
		Building Footprint (m ²)	123.2			
		Number of Floors/Storeys	3			
2	Α	Protected Openings (1 hr) if C<1.0	No			
		Area of structure considered (m ²)			370	
	F	Base fire flow without reductions				6.000
	F	$F = 220 \text{ C (A)}^{0.5}$				6,000
		Reductions or Su	ircharges			
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction	/Surcharge	
	(1)	Non-combustible		-25%		
•		Limited combustible	Yes	-15%		
3		Combustible		0%	-15%	5,100
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduc	tion	FUS Table 4	Redu	iction	
		Adequately Designed System (NFPA 13)		-30%		
		Standard Water Supply		-10%		
4	(2)	Fully Supervised System		-10%		0
	(2)		Cumulat	ive Sub-Total	0%	U
		Area of Sprinklered Coverage (m²)		0%		
			Cun	nulative Total	0%	
	Exposure Surch	arge	FUS Table 5		Surcharge	
		North Side	10.1 - 20 m		15%	
5		East Side	0 - 3 m		25%	
•	(3)	South Side	3.1 - 10 m		20%	3,825
		West Side	10.1 - 20 m		15%	
				nulative Total	75%	
		Results				
		Total Required Fire Flow, rounded to nea	rest 1000L/min		L/min	9,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or	L/s	150
		(=,000 Emili)		or	USGPM	2,378

Novatech Project #: 114025-05

Project Name: Greystone Village - Forecourt Townhomes

Date: 6/28/2024
Input By: Trevor McKay
Reviewed By: Trevor McKay

Drawing Reference: 114025-FT-GP2, Revision 1 - Markup

Building Description: Block 28: Townhome Block 10 (2 x A2 units)

Type V - Wood frame

Legend: Input by User

No Input Required

Reference: Fire Underwriter's Survey Guideline (2020)

Step			Choose		Value Used	Total Fire Flow (L/min)
	•	Base Fire F	low		<u>'</u>	, ,
	Construction Ma	terial		Mult	iplier	
	Coefficient	Type V - Wood frame	Yes	1.5		
1	Coefficient related to type	Type IV - Mass Timber		Varies		
'	of construction	Type III - Ordinary construction		1	1.5	
	C	Type II - Non-combustible construction		0.8		
	Ğ	Type I - Fire resistive construction (2 hrs)		0.6		
	Floor Area					
		Building Footprint (m ²)	158.6			
	A	Number of Floors/Storeys	3			
2	A	Protected Openings (1 hr) if C<1.0	No			
		Area of structure considered (m ²)			476	
	F	Base fire flow without reductions				7,000
	F	$F = 220 \text{ C (A)}^{0.5}$				7,000
		Reductions or Su	ırcharges			
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction	/Surcharge	
	(1)	Non-combustible		-25%		
•		Limited combustible	Yes	-15%		
3		Combustible		0%	-15%	5,950
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduc	tion	FUS Table 4	Redu	ction	
		Adequately Designed System (NFPA 13)		-30%		
		Standard Water Supply		-10%		
4	(0)	Fully Supervised System		-10%		•
	(2)		Cumulat	ive Sub-Total	0%	0
		Area of Sprinklered Coverage (m²)		0%		
			Cur	nulative Total	0%	
	Exposure Surch	arge	FUS Table 5		Surcharge	
		North Side	3.1 - 10 m		20%	
-		East Side	>30m		0%	
5	(3)	South Side	3.1 - 10 m		20%	3,868
		West Side	0 - 3 m		25%	
			Cur	nulative Total	65%	
		Results	;		-	
		Total Required Fire Flow, rounded to nea	rest 1000L/min		L/min	10,000
6	(1) + (2) + (3)			or	L/s	167
		(2,000 L/min < Fire Flow < 45,000 L/min)		or	USGPM	2,642

Novatech Project #: 114025-05

Project Name: Greystone Village - Forecourt Townhomes

Date: 6/28/2024
Input By: Trevor McKay
Reviewed By: Trevor McKay

Drawing Reference: 114025-FT-GP2, Revision 1 - Markup

Building Description: Block 28: Townhome Block 11 (2 x C units)

Type V - Wood frame

Legend: Input by User

No Input Required

Reference: Fire Underwriter's Survey Guideline (2020)

Step			Choose		Value Used	Total Fire Flow
		Base Fire F	10			(L/min)
	To		low		1	
	Construction Ma				iplier	
	Coefficient	Type V - Wood frame	Yes	1.5		
1	related to type	Type IV - Mass Timber		Varies	4.5	
	of construction	Type III - Ordinary construction		1	1.5	
	С	Type II - Non-combustible construction		0.8		
		Type I - Fire resistive construction (2 hrs)		0.6		
ı	Floor Area		1			
		Building Footprint (m ²)	123.2			
	Α	Number of Floors/Storeys	3			
2	,	Protected Openings (1 hr) if C<1.0	No			
		Area of structure considered (m ²)			370	
	F	Base fire flow without reductions				6,000
	•	$F = 220 \text{ C (A)}^{0.5}$				0,000
		Reductions or Su	ırcharges			
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction	/Surcharge	
	(1)	Non-combustible		-25%		
3		Limited combustible	Yes	-15%		
3		Combustible		0%	-15%	5,100
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduc	tion	FUS Table 4	Redu	ction	
		Adequately Designed System (NFPA 13)		-30%		
		Standard Water Supply		-10%		
4	(0)	Fully Supervised System		-10%		•
	(2)		Cumulat	tive Sub-Total	0%	0
		Area of Sprinklered Coverage (m²)		0%		
			Cur	nulative Total	0%	
	Exposure Surch	arge	FUS Table 5		Surcharge	
		North Side	3.1 - 10 m		20%	
5		East Side	0 - 3 m		25%	
э	(3)	South Side	10.1 - 20 m		15%	3,825
		West Side	10.1 - 20 m		15%	
			Cur	nulative Total	75%	
		Results	5			
		Total Required Fire Flow, rounded to nea	rest 1000L/min		L/min	9,000
6	(1) + (2) + (3)			or	L/s	150
-		(2,000 L/min < Fire Flow < 45,000 L/min)		or	USGPM	2,378
				1	J	_,,,,

Novatech Project #: 114025-05

Project Name: Greystone Village - Forecourt Townhomes

Date: 6/28/2024
Input By: Trevor McKay
Reviewed By: Trevor McKay

Drawing Reference: 114025-FT-GP2, Revision 1 - Markup

Legend: Input by User

No Input Required

Reference: Fire Underwriter's Survey Guideline (2020)

Formula Method

Building Description: Block 28: Townhome Block 12 (A3 unit + 2 x B1 units + B2 unit)

Type V - Wood frame

Step		Base Fire F	Choose		Value Used _	Total Fire Flow (L/min)
	Construction Ma		low	Multi	iplier	
	Construction wa	Type V - Wood frame	Yes	1.5	pilei	
	Coefficient	Type IV - Mass Timber	165	Varies		
1	related to type	Type III - Ordinary construction		varies	1.5	
	of construction	Type II - Non-combustible construction		0.8	1.5	
	С	Type I - Fire resistive construction (2 hrs)		0.6		
	Floor Area	Type 1 - Fire resistive construction (2 his)		0.0		
	11001 Area	Building Footprint (m ²)	229.5			
		Number of Floors/Storeys	3	-		
2	Α	Protected Openings (1 hr) if C<1.0	No	-		
_		Area of structure considered (m ²)	140		689	
		Base fire flow without reductions			000	
	F	$F = 220 \text{ C (A)}^{0.5}$				9,000
	1	Reductions or Su	ırcharges			
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction	/Surcharge	
	Cocupanty maza	Non-combustible	1 00 14510 0	-25%	J. J. J.	
	(1)	Limited combustible	Yes	-15%		
3		Combustible		0%	-15%	7,650
		Free burning		15%		,
		Rapid burning		25%		
	Sprinkler Reduc	tion	FUS Table 4	Redu	ction	
		Adequately Designed System (NFPA 13)		-30%		
		Standard Water Supply		-10%		
4	(2)	Fully Supervised System		-10%		0
	(2)		Cumulat	ive Sub-Total	0%	U
		Area of Sprinklered Coverage (m²)		0%		
			Cur	nulative Total	0%	
	Exposure Surch	arge	FUS Table 5		Surcharge	
		North Side	>30m		0%	
5		East Side	10.1 - 20 m		15%	
•	(3)	South Side	20.1 - 30 m		10%	3,443
		West Side	3.1 - 10 m		20%	
				nulative Total	45%	
		Results				
		Total Required Fire Flow, rounded to nea	rest 1000L/min		L/min	11,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or	L/s	183
		(,		or	USGPM	2,906

Novatech Project #: 114025-05

Project Name: Greystone Village - Forecourt Townhomes

Date: 6/28/2024 Input By: Trevor McKay Reviewed By: Trevor McKay

Drawing Reference: 114025-FT-GP1, Revision 1 - Markup

Building Description: Block 29: Townhome Block 1 (A2b unit + A3 unit)

Type V - Wood frame

•	NOV	VIECH
	Engineers, Planne	rs & Landscape Architect

	No Input Required	
Reference:	Fire Underwriter's Survey G	uideline (2020)
	Formula Method	

Legend: Input by User

Step			Choose		Value Used	Total Fire Flow
Otop			0110030		Value Osca	(L/min)
	•	Base Fire F	low			, ,
	Construction Ma	iterial		Multi	iplier	
		Type V - Wood frame	Yes	1.5		
l .	Coefficient	Type IV - Mass Timber		Varies		
1	related to type of construction	Type III - Ordinary construction		1	1.5	
	C	Type II - Non-combustible construction		0.8		
	C	Type I - Fire resistive construction (2 hrs)		0.6		
	Floor Area					
		Building Footprint (m ²)	155			
		Number of Floors/Storeys	3	-		
2	A	Protected Openings (1 hr) if C<1.0	No	-		
		Area of structure considered (m ²)			465	
	F	Base fire flow without reductions				
	Г	$F = 220 \text{ C (A)}^{0.5}$				7,000
		Reductions or Su	ırcharges			
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction/	/Surcharge	
		Non-combustible		-25%		
3		Limited combustible	Yes	-15%		
3	(1)	Combustible		0%	-15%	5,950
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduc	tion	FUS Table 4	Redu	ction	
		Adequately Designed System (NFPA 13)		-30%		
		Standard Water Supply		-10%		
4	(2)	Fully Supervised System		-10%		0
	(2)		Cumulat	ive Sub-Total	0%	·
		Area of Sprinklered Coverage (m²)		0%		
				nulative Total	0%	
	Exposure Surch		FUS Table 5		Surcharge	
		North Side	10.1 - 20 m	-	15%	
5	4-1	East Side	>30m		0%	
	(3)	South Side	>30m	-	0%	2,083
		West Side	3.1 - 10 m		20%	
				nulative Total	35%	
	•	Results		1		
		Total Required Fire Flow, rounded to nea	rest 1000L/min		L/min	8,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or	L/s	133
		, , , , , , , , , , , , , , , , , , , ,		or	USGPM	2,114

Novatech Project #: 114025-05

Project Name: Greystone Village - Forecourt Townhomes

Date: 6/28/2024
Input By: Trevor McKay
Reviewed By: Trevor McKay

Drawing Reference: 114025-FT-GP1, Revision 1 - Markup

Building Description: Block 29: Townhome Block 2 (2 x A2 units)

Type V - Wood frame

Legend: Input by User

No Input Required

Reference: Fire Underwriter's Survey Guideline (2020)

Step			Choose		Value Used	Total Fire Flow (L/min)
		Base Fire F	low	•	-	, ,
	Construction Ma	terial		Mult	iplier	
	Coefficient	Type V - Wood frame	Yes	1.5		
1	Coefficient related to type	Type IV - Mass Timber		Varies		
'	of construction	Type III - Ordinary construction		1	1.5	
	C	Type II - Non-combustible construction		0.8		
		Type I - Fire resistive construction (2 hrs)		0.6		
	Floor Area					
		Building Footprint (m ²)	158.6			
	Α	Number of Floors/Storeys	3			
2	A	Protected Openings (1 hr) if C<1.0	No			
		Area of structure considered (m ²)			476	
	F	Base fire flow without reductions				7,000
	F	$F = 220 \text{ C (A)}^{0.5}$				7,000
		Reductions or Su	ırcharges			
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction	/Surcharge	
		Non-combustible		-25%		
•		Limited combustible	Yes	-15%		
3	(1)	Combustible		0%	-15%	5,950
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduc	tion	FUS Table 4	Redu	ction	
		Adequately Designed System (NFPA 13)		-30%		
		Standard Water Supply		-10%		
4	(2)	Fully Supervised System		-10%		0
	(2)		Cumulat	ive Sub-Total	0%	U
		Area of Sprinklered Coverage (m²)		0%		
			Cur	nulative Total	0%	
	Exposure Surch	arge	FUS Table 5		Surcharge	
		North Side	3.1 - 10 m		20%	
5		East Side	3.1 - 10 m		20%	
อ	(3)	South Side	>30m		0%	3,570
		West Side 3.1 -			20%	
			Cur	nulative Total	60%	
	·	Results	;			
		Total Required Fire Flow, rounded to nea	rest 1000L/min		L/min	10,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or	L/s	167
		(2,000 L/IIIII) < FIIE FIOW < 45,000 L/MIN)		or	USGPM	2,642

Novatech Project #: 114025-05

Project Name: Greystone Village - Forecourt Townhomes

Date: 6/28/2024
Input By: Trevor McKay
Reviewed By: Trevor McKay

Drawing Reference: 114025-FT-GP1, Revision 1 - Markup

Building Description: Block 29: Townhome Block 3 (2 x C units)

Type V - Wood frame

Legend: Input by User

No Input Required

Reference: Fire Underwriter's Survey Guideline (2020)

Step			Choose		Value Used	Total Fire Flow (L/min)
		Base Fire F	low	•	-	,
	Construction Ma	terial		Mult	iplier	
	Coefficient	Type V - Wood frame	Yes	1.5		
1	Coefficient related to type	Type IV - Mass Timber		Varies		
'	of construction	Type III - Ordinary construction		1	1.5	
	C	Type II - Non-combustible construction		0.8		
	Ŭ	Type I - Fire resistive construction (2 hrs)		0.6		
	Floor Area					
		Building Footprint (m ²)	123.2			
	A	Number of Floors/Storeys	3			
2	A	Protected Openings (1 hr) if C<1.0	No			
		Area of structure considered (m ²)			370	
	F	Base fire flow without reductions				6 000
	F	$F = 220 \text{ C (A)}^{0.5}$				6,000
		Reductions or Su	ircharges			
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction	/Surcharge	
		Non-combustible		-25%		
_		Limited combustible	Yes	-15%		
3	(1)	Combustible		0%	-15%	5,100
	` ,	Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduc		FUS Table 4	Redu	ction	
		Adequately Designed System (NFPA 13)		-30%		
		Standard Water Supply		-10%		
4	(0)	Fully Supervised System		-10%		
	(2)	, ,	Cumulat	ive Sub-Total	0%	0
		Area of Sprinklered Coverage (m²)		0%		
			Cun	nulative Total	0%	
	Exposure Surch	arge	FUS Table 5		Surcharge	
		North Side	10.1 - 20 m		15%	
_		East Side	10.1 - 20 m		15%	
5	(3)	South Side	3.1 - 10 m		20%	3,570
		West Side 3.1 - 10 m			20%	
				nulative Total	70%	
	-	Results	;		-	
		Total Required Fire Flow, rounded to nea			L/min	9,000
6	(1) + (2) + (3)	•		or	L/s	150
0		(2,000 L/min < Fire Flow < 45,000 L/min)		or	USGPM	2,378

Novatech Project #: 114025-05

Project Name: Greystone Village - Forecourt Townhomes

Date: 6/28/2024
Input By: Trevor McKay
Reviewed By: Trevor McKay

Drawing Reference: 114025-FT-GP1, Revision 1 - Markup

Building Description: Block 29: Townhome Block 4 (2 x A2 units)

Type V - Wood frame

Legend: Input by User

No Input Required

Reference: Fire Underwriter's Survey Guideline (2020)

Step			Choose		Value Used	Total Fire Flow
Otep			Onload		Value Oscu	(L/min)
	•	Base Fire F	low		<u>'</u>	, ,
	Construction Ma	iterial		Mult	iplier	
		Type V - Wood frame	Yes	1.5		
	Coefficient	Type IV - Mass Timber		Varies		
1	related to type of construction	Type III - Ordinary construction		1	1.5	
	C	Type II - Non-combustible construction		0.8		
	C	Type I - Fire resistive construction (2 hrs)		0.6		
	Floor Area			•		
		Building Footprint (m ²)	158.6			
	Α	Number of Floors/Storeys	3			
2	A	Protected Openings (1 hr) if C<1.0	No			
		Area of structure considered (m ²)			476	
	F	Base fire flow without reductions				7,000
	Г	$F = 220 \text{ C (A)}^{0.5}$				7,000
		Reductions or Su	ırcharges			
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction	/Surcharge	
		Non-combustible		-25%		
3	(1)	Limited combustible	Yes	-15%		
3		Combustible		0%	-15%	5,950
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduc	tion	FUS Table 4	Redu	ıction	
		Adequately Designed System (NFPA 13)		-30%		
		Standard Water Supply		-10%		
4	(2)	Fully Supervised System		-10%		0
	(-)		Cumulat	ive Sub-Total	0%	Ü
		Area of Sprinklered Coverage (m²)		0%		
				nulative Total	0%	
	Exposure Surch		FUS Table 5		Surcharge	
		North Side	3.1 - 10 m		20%	
5		East Side	>30m	-	0%	
-	(3)	South Side	3.1 - 10 m	-	20%	3,868
		West Side	0 - 3 m	<u> </u>	25%	
				nulative Total	65%	
		Results		1	T	
		Total Required Fire Flow, rounded to nea	rest 1000L/min		L/min	10,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or	L/s	167
		, , , , , , , , , , , , , , , , , , , ,		or	USGPM	2,642

Novatech Project #: 114025-05

Project Name: Greystone Village - Forecourt Townhomes

Date: 6/28/2024
Input By: Trevor McKay
Reviewed By: Trevor McKay

Drawing Reference: 114025-FT-GP1, Revision 1 - Markup

Building Description: Block 29: Townhome Block 5 (2 x C units)

Type V - Wood frame

Legend: Input by User

No Input Required

Reference: Fire Underwriter's Survey Guideline (2020)

Step			Choose		Value Used	Total Fire Flow (L/min)
	l.	Base Fire F	low			(111111)
	Construction Ma			Mult	iplier	
		Type V - Wood frame	Yes	1.5		
	Coefficient	Type IV - Mass Timber		Varies		
1	related to type of construction	Type III - Ordinary construction		1	1.5	
	C	Type II - Non-combustible construction		0.8		
	C	Type I - Fire resistive construction (2 hrs)		0.6		
	Floor Area	• • • • • • • • • • • • • • • • • • • •				
		Building Footprint (m ²)	123.2			
		Number of Floors/Storeys	3			
2	A	Protected Openings (1 hr) if C<1.0	No			
		Area of structure considered (m ²)			370	
	F	Base fire flow without reductions				6 000
	F	$F = 220 \text{ C (A)}^{0.5}$				6,000
		Reductions or Su	ırcharges			
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction	/Surcharge	
		Non-combustible		-25%		
•		Limited combustible	Yes	-15%		
3	(1)	Combustible		0%	-15%	5,100
		Free burning		15%		
		Rapid burning		25%		
	Sprinkler Reduc	tion	FUS Table 4	Redu	ction	
		Adequately Designed System (NFPA 13)		-30%		
		Standard Water Supply		-10%		
4	(2)	Fully Supervised System		-10%		0
	(2)		Cumulat	ive Sub-Total	0%	U
		Area of Sprinklered Coverage (m²)		0%		
			Cun	nulative Total	0%	
	Exposure Surch	arge	FUS Table 5		Surcharge	
		North Side	3.1 - 10 m		20%	
5		East Side	0 - 3 m		25%	
	(3)	South Side	10.1 - 20 m		15%	3,825
		West Side	10.1 - 20 m		15%	
				nulative Total	75%	
		Results	·			
		Total Required Fire Flow, rounded to near	rest 1000L/min		L/min	9,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or	L/s	150
		(=,000 E/IIIII)		or	USGPM	2,378

Novatech Project #: 114025-05

Project Name: Greystone Village - Forecourt Townhomes

Date: 6/28/2024
Input By: Trevor McKay
Reviewed By: Trevor McKay

Drawing Reference: 114025-FT-GP1, Revision 1 - Markup

Legend: Input by User

No Input Required

Reference: Fire Underwriter's Survey Guideline (2020)

Formula Method

Building Description: Block 29: Townhome Block 6 (A3 unit + 2 x B1 units + B2 unit)

Type V - Wood frame

Step			Choose		Value Used	Total Fire Flow
		Base Fire F	low			(L/min)
	Construction Ma		TOW	Mult	iplier	
	Construction Ma	Type V - Wood frame	Yes	1.5	•	
	Coefficient	Type IV - Mass Timber	163	Varies		
1	related to type	Type III - Ordinary construction		1	1.5	
	of construction	Type II - Non-combustible construction		0.8	1.0	
	С	Type I - Fire resistive construction (2 hrs)		0.6		
	Floor Area	Type 1-1 lie resistive construction (2 ms)		0.0		
	1100171100	Building Footprint (m ²)	229.5			
		Number of Floors/Storeys	3			
2	Α	Protected Openings (1 hr) if C<1.0	No			
_		Area of structure considered (m ²)	110		689	
		Base fire flow without reductions				
	F	$F = 220 \text{ C (A)}^{0.5}$				9,000
	•	Reductions or Su	ırcharges			
	Occupancy haza	rd reduction or surcharge	FUS Table 3	Reduction	/Surcharge	
	occupancy naza	Non-combustible	1 00 145.00	-25%		
	(1)	Limited combustible	Yes	-15%		
3		Combustible	100	0%	-15%	7,650
	()	Free burning		15%		,
		Rapid burning		25%		
	Sprinkler Reduc	, ,	FUS Table 4	Redu	iction	
	'	Adequately Designed System (NFPA 13)		-30%		
		Standard Water Supply		-10%		
4	(0)	Fully Supervised System		-10%		•
	(2)		Cumulat	ive Sub-Total	0%	0
		Area of Sprinklered Coverage (m²)		0%		
			Cun	nulative Total	0%	
	Exposure Surch	arge	FUS Table 5		Surcharge	
		North Side	3.1 - 10 m		20%	
5		East Side	>30m		0%	
Э	(3)	South Side	>30m		0%	2,678
		West Side	10.1 - 20 m		15%	
			Cun	nulative Total	35%	
		Results	1			
		Total Required Fire Flow, rounded to nea	rest 1000L/min		L/min	10,000
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or	L/s	167
		(2,000 L/IIIII < FIIE FIOW < 45,000 L/IIIII)		or	USGPM	2,642

R6

Greystone Village Forecourt Townhomes – 295 355 Deschâtelets Avenue Hydraulic Analysis

Greystone Village Forecourt Towns 295 & 355 Deschateletes Avenue **Average Daily Demand** Node **Pressure Unit Headloss** Age **Demand** Head (LPS) (m) Elev (m) No. (m) (PSI) (m/km) (hrs) N1 65.1 0.04 115.1 50.0 71.4 0.03 0.4 115.1 65.5 0.04 49.6 70.9 0.03 N2 0.5 0.05 49.7 71.0 0.05 N3 65.4 115.1 0.4 N4 65.0 0.05 115.1 50.1 71.6 0.05 0.4 0.04 71.9 0.03 N5 64.8 115.1 50.3 0.4 N6 64.4 0.05 115.1 50.7 72.4 0.05 0.4 R1 115.1 R2 115.1 115.1 R3 R4 115.1 115.1 R5

115.1

Greystone Village Forecourt Townhomes – 295 355 Deschâtelets Avenue Hydraulic Analysis

Greystone Village Forecourt Towns 295 & 355 Deschateletes Avenue **Peak Hour Demand** Pressure Node **Unit Headloss** Demand Head (LPS) (m) Elev (m) No. (m) (PSI) (m/km) N1 65.1 0.50 105.2 40.1 57.3 3.53 65.5 0.50 105.2 39.7 56.7 3.53 N2 N3 65.4 0.75 105.0 39.6 7.48 56.6 N4 65.0 0.75 105.1 40.1 57.2 7.48 N5 0.50 105.2 40.4 64.8 57.7 3.53 N6 64.4 0.75 105.1 40.7 58.1 7.48 R1 105.3 R2 105.3 R3 105.3 R4 105.3 R5 105.3 R6 105.3

vstone Village Forecou	rt Townhom	es – 295 & 35	55 Deschâtele	ts Avenue		Site Servi	icing Rep
			APPEN	NDIX C			
		Storm	water Man	agement [Design		

STORM SEWER DESIGN SHEET (5 YEAR DESIGN EVENT)

Greystone Village - Forecourt Townhomes

L	OCATION		AR	REA								PROPOSEI	SEWER				
Location	From Node	To Node	Total Area	Weighted Runoff Coefficient	Indiv 2.78 AR	Time of Concentration	Rain Intensity (5 year)	Peak Flow	Total Peak Flow (Q)	Pipe	Size	Grade	Length	Capacity	Full Flow Velocity	Time of Flow	Q/Qfull
			(ha)			(min)	(mm/hr)	(L/s)	(L/s)	Туре	(mm)	(%)	(m)	(l/s)	(m/s)	(min.)	(%)
A-5	CB-2	EXIS	0.02	0.78	0.05	10.00	104.19	4.9	4.9	PVC	200	1.50	28.6	41.9	1.29	0.37	11.7%
	408	410							0.0	PVC	250	2.00	20.9	87.7	1.73	0.20	0.0%
A-6	410	EXIS	0.04	0.86	0.09	10.00	104.19	9.8	9.8	PVC	250	2.00	7.6	87.7	1.73	0.07	11.1%
A-7	СВМН	EXIS	0.06	0.78	0.12	10.00	104.19	12.4	12.4	PVC	200	2.00	7.1	48.4	1.49	0.08	25.6%
	412	414							0.0	PVC	250	1.80	19.5	83.2	1.64	0.20	0.0%
A-8	414	EXIS	0.06	0.82	0.14	10.00	104.19	14.1	14.1	PVC	250	1.50	7.1	76.0	1.50	0.08	18.5%

Project: Forecourt Townhomes (114025)

Q = 2.78 AIR WHERE: Q = PEAK FLOW IN LITRES PER SECOND (L/s)

A = AREA IN HECTARES (ha)

I = RAINFALL INTENSITY IN MILLIMETERS PER HOUR (mm/hr)
R = WEIGHTED RUNOFF COEFFICIENT

WHERE: Q = CAPACITY (L/s)

n = MANNING COEFFICIENT OF ROUGHNESS (0.013)

 $A = FLOW AREA (m^2)$

Designed: Mo Abdul Checked: T. McKay Date: November 29, 2024

STORM SEWER DESIGN SHEET (5 YEAR DESIGN EVENT)

Greystone Village - Forecourt Townhomes

L	OCATION		AR	REA								P	ROPOSED SE	WER			
Location	From Node	To Node	Total Area	Weighted Runoff Coefficient	Individ 2.78 AR	Time of Concentration	Rain Intensity (5 year)	Peak Flow	Total Peak Flow (Q)	Pipe	Size	Grade	Length	Capacity	Full Flow Velocity	Time of Flow	Q/Qfull
			(ha)			(min)	(mm/hr)	(L/s)	(L/s)	Type	(mm)	(%)	(m)	(l/s)	(m/s)	(min.)	(%)
	400	402							0.0	PVC	250	1.00	20.4	62.0	1.22	0.28	0.0%
A-1	402	EXIS	0.06	0.79	0.12	10.00	104.09	12.7	12.7	PVC	250	2.00	9.3	87.7	1.73	0.09	14.5%
A-2	СВМН4	EXIS	0.05	0.79	0.10	10.00	104.09	10.5	10.5	PVC	200	2.00	10.2	48.4	1.49	0.11	21.7%
	404	406							0.0	PVC	250	2.00	22.1	87.7	1.73	0.21	0.0%
A-3	406	EXIS	0.05	0.83	0.12	10.00	104.09	12.6	12.6	PVC	250	2.00	7.5	87.7	1.73	0.07	14.3%
A-4	CB-1	EXIS	0.02	0.78	0.05	10.00	104.09	4.8	4.8	PVC	200	1.50	28.7	41.9	1.29	0.37	11.6%

Project: Forecourt Townhomes (114025)

Q = 2.78 AIR WHERE : Q = PEAK FLOW IN LITRES PER SECOND (L/s)

A = AREA IN HECTARES (ha)

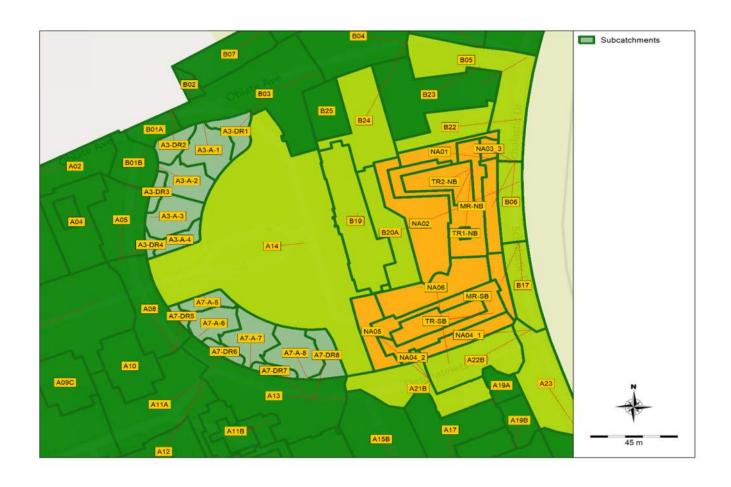
I = RAINFALL INTENSITY IN MILLIMETERS PER HOUR (mm/hr)
R = WEIGHTED RUNOFF COEFFICIENT

WHERE: Q = CAPACITY (L/s)

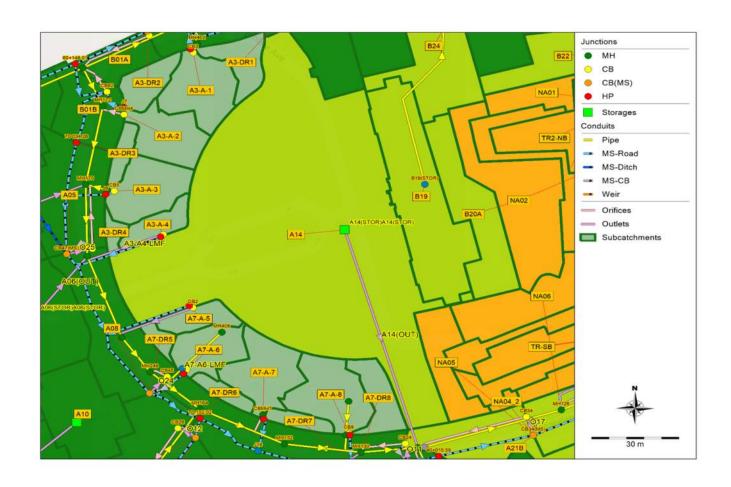
n = MANNING COEFFICIENT OF ROUGHNESS (0.013)

 $A = FLOW AREA (m^2)$

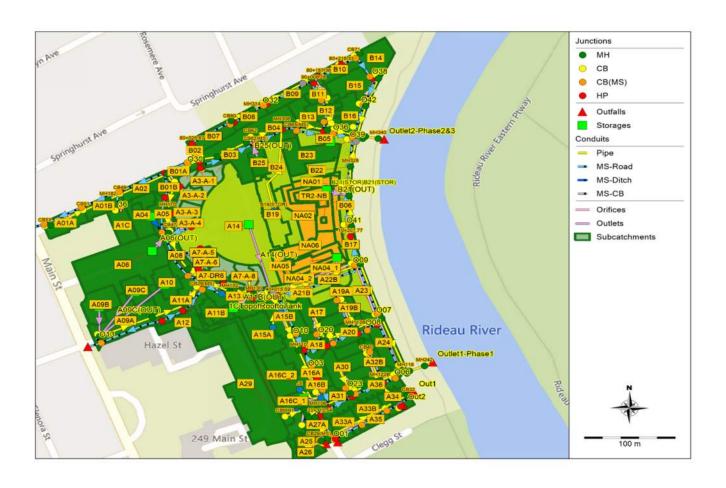
Designed: Mo Abdul Checked: T. McKay Date: November 29, 2024



Model Schematics


Forecourt Townhomes Subcatchments

Model Schematics


Model Details for Forecourt Townhomes

Model Schematics

Overall Model of Greystone Village

Subcatchment Parameters

1

Name	Area (ha)	Width (m)	Flow Length (m)	Slope (%)	Imperv. (%)	Zero Imperv (%)	Runoff Coeff.				
Proposed Areas for Forecourt Townhomes											
A3-A-1	0.06	18	33	1.5	84	50	0.79				
A3-A-2	0.05	18	28	1.0	84	50	0.79				
A3-A-3	0.05	18	28	0.5	90	50	0.83				
A3-A-4	0.02	7	29	2.0	83	50	0.78				
A3-DR1	0.03	10	30	1.8	66	50	0.66				
A3-DR2	0.03	15	20	1.5	53	50	0.57				
A3-DR3	0.01	16	6	1.5	59	50	0.61				
A3-DR4	0.01	8	13	2.3	50	50	0.55				
A7-A-5	0.02	7	29	2.2	83	50	0.78				
A7-A-6	0.04	18	22	2.0	94	50	0.86				
A7-A-7	0.06	18	33	1.5	83	50	0.78				
A7-A-8	0.06	18	33	1.6	89	50	0.82				
A7-DR5	0.01	8	13	1.0	51	50	0.56				
A7-DR6	0.01	15	7	1.5	60	50	0.62				
A7-DR7	0.01	15	7	1.5	59	50	0.61				
A7-DR8	0.03	8	38	2.0	74	50	0.72				
Total =	0.50					Average =	0.71				
			2017 Master	Servici	ng Study	Areas					
А3	0.14	21	65	1.5	100	100	0.90				
A7	0.14	21	65	1.5	100	100	0.90				
Total =	0.28					Average =	0.90				

	WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.011)
Created by Va Latest Updat	hid Mehdipour e:
December 6	2024 10:38 AM PM
******	***
Element Cou	int
******	***
Number of r	ain gages 1
Number of s	ubcatchments 104
Number of r	odes 256
Number of I	nks 371
Number of p	ollutants 0
Number of I	and uses 0
******	*****
Raingage Su	mmary
******	*****
	Data Recording
Name	Data Source Type Interval
RG01	3hrChic-100yr INTENSITY 10 min.
******	********
Subcatchme	

Name	Area Width %Imperv %Slope Rain Gage Outlet
A01A	0.09 40.00 85.70 0.7000 RG01 CB53(MS)
A01B	0.08 42.00 61.40 0.5000 RG01 CB51(MS)
A02	0.07 47.00 70.00 0.5000 RG01 CB49(MS)

A04	0.10 14.29 100.00 1.5000 RG01	A04(STOR)
A05	0.10 65.00 57.10 0.5000 RG01	CB47(MS)
A06A	0.25 25.00 54.00 1.5000 RG01	CB1-GAPark
A06B	0.18 20.00 3.00 1.5000 RG01	GA-ParkSouthStorage
A08	0.12 100.00 83.00 0.5000 RG01	CB45(MS)
A09A	0.26 150.00 47.00 0.5000 RG01	CB28(MS)
A09B	0.13 33.50 100.00 1.5000 RG01	A09B(STOR)
A09C	0.08 32.42 100.00 1.5000 RG01	A09C(STOR)
A10	0.09 36.38 100.00 1.5000 RG01	A10(STOR)
A11A	0.20 75.00 47.00 0.5000 RG01	CB26(MS)
A11B	0.08 17.00 100.00 1.5000 RG01	A11B(STOR)
A11B-TR	0.03 15.00 100.00 1.5000 RG01	J2
A12	0.08 17.80 86.00 0.5000 RG01	CB26(MS)
A13	0.19 60.00 73.00 0.5000 RG01	CB24(MS)
A14	0.80 65.00 46.00 1.0000 RG01	A14(STOR)
A15A	0.15 30.00 100.00 1.5000 RG01	A15A(STOR)
A15B	0.16 45.00 71.00 0.5000 RG01	CB22(MS)
A16A	0.05 30.00 76.00 0.5000 RG01	CB08(MS)
A16B	0.05 30.00 73.00 0.5000 RG01	CB06(MS)
A16C_1	0.05 31.79 100.00 1.5000 RG01	A16C(STOR)
A16C_2	0.14 28.00 100.00 1.5000 RG01	J5
A17	0.12 35.00 94.00 0.5000 RG01	CB39(MS)
A18	0.28 70.00 71.00 0.6000 RG01	CB09(MS)
A19A	0.03 24.32 77.00 0.5000 RG01	CB35(MS)
A19B	0.04 29.36 77.00 0.5000 RG01	CB36(MS)
A1C	0.09 21.06 100.00 1.5000 RG01	CB-PL
A20	0.11 70.00 60.00 0.5000 RG01	CB18(MS)
A21B	0.11 52.00 71.40 1.2000 RG01	CB34(MS)
A22B	0.11 100.00 47.10 0.7000 RG01	CB20(MS)
A23	0.13 58.44 70.00 0.5000 RG01	CB16(MS)
A24	0.16 55.00 74.00 0.5000 RG01	CB15(x2-DICBs)
A25	0.05 29.41 76.00 0.5000 RG01	CB29(MS)
A26	0.05 15.00 39.00 0.5000 RG01	CB29B(L)
A27A	0.10 80.00 69.00 0.5000 RG01	CB01(MS)
A27B	0.05 17.86 80.00 0.5000 RG01	CB55
A28	0.11 8.09 14.00 0.5000 RG01	СВМН1

A29	0.58	40.00	39.00	0.5000 RG01	CBMH1
A30	0.12	25.67	94.00	0.5000 RG01	CB42(MS)
A31	0.20	45.00	79.00	0.5000 RG01	CB12(MS)
A32A	0.02	12.74	77.00	0.5000 RG01	CB40(MS)
A32B	0.04	50.00	77.00	0.5000 RG01	CB41(MS)
A33A	0.06	35.29	76.00	0.5000 RG01	CB30(MS)
A33B	0.07	41.18	76.00	0.5000 RG01	CB31(MS)
A34	0.05	29.41	80.00	0.5000 RG01	CB32
A35	0.10	93.00	39.00	0.5000 RG01	CB31B(L)
A36	0.13	70.00	71.00	0.5000 RG01	CB14(MS)
A3-A-1	0.06	18.00	84.00	1.5000 RG01	CB3
A3-A-2	0.05	18.00	84.00	1.0000 RG01	СВМН4
A3-A-3	0.05	18.00	90.00	0.5000 RG01	CB5
A3-A-4	0.02	7.00	83.00	2.0000 RG01	CB1
A3-DR1	0.03	10.00	66.00	1.8000 RG01	60+224.17
A3-DR2	0.03	15.00	53.00	1.5000 RG01	CB60(MS)
A3-DR3	0.01	16.00	59.00	1.5000 RG01	70-034.26
A3-DR4	0.01	8.00	50.00	2.3000 RG01	CB47(MS)
A7-A-5	0.02	7.00	83.00	2.2000 RG01	CB2
A7-A-6	0.04	18.00	94.00	2.0000 RG01	CB6
A7-A-7	0.06	18.00	83.00	1.5000 RG01	СВМН7
A7-A-8	0.06	18.00	89.00	1.6000 RG01	CB8
A7-DR5	0.01	8.00	51.00	1.0000 RG01	CB45(MS)
A7-DR6	0.01	15.00	60.00	1.5000 RG01	70-152.02
A7-DR7	0.01	15.00	59.00	1.5000 RG01	70-208.50
A7-DR8	0.03	8.00	74.00	2.0000 RG01	70-208.50
B01A	0.03	27.76	80.00	1.1000 RG01	CB60(MS)
B01B	0.06	42.00	74.00	0.6000 RG01	CB82
B02	0.01	18.00	70.00	0.9000 RG01	CB58(MS)
B03	0.24	35.00	90.00	2.1000 RG01	CB62(MS)
B04	0.19	50.00	66.00	2.7000 RG01	CB65(MS)
B05	0.18	40.00	57.00	3.8000 RG01	CB75(MS)
B06	0.06	45.00	69.00	2.0000 RG01	CB76(MS)
B07	0.09	47.00	76.00	1.2000 RG01	CB80(MS)
B08					
500	0.07	40.00	86.00	1.5000 RG01	CB63(MS)

B10	0.07	45.00	76.00	1.7000 RG01	CB71(MS)
B11	0.04	20.00	70.00	1.8000 RG01	CB69(MS)
B12	0.09	28.00	84.00	1.0000 RG01	CB67(MS)
B13	0.09	15.00	64.00	2.5000 RG01	CB70(MS)
B14	0.08	36.00	61.00	0.5000 RG01	CB73(MS)
B15	0.15	60.00	60.00	0.5000 RG01	CB79(MS)
B16	0.12	90.00	64.00	0.5000 RG01	CB74(4x-DICBs)
B17	0.07	45.00	81.00	1.0000 RG01	CB77(MS)
B19	0.16	18.68	100.00	1.5000 RG01	B19(STOR)
B20A	0.08	13.55	40.00	0.5000 RG01	NA02
B22	0.07	14.80	57.00	0.5000 RG01	MH328
B23	0.17	32.81	100.00	1.5000 RG01	B23(STOR)
B24	0.12	23.44	86.00	0.5000 RG01	CB65(MS)
B25	0.06	20.80	100.00	1.5000 RG01	B25(STOR)
Condo2B_TR	0	.02 11	.77 10	0.00 1.5000 RG01	J4
MR-NB	0.11	6.47	100.00	0.5000 RG01	B21(STOR)
MR-SB	0.09	7.50	100.00	0.5000 RG01	A22A(STOR)
NA01	0.04	7.27	21.00	0.5000 RG01	CB76(MS)
NA02	0.12	24.00	31.00	0.5000 RG01	MH326
NA03_1	0.03	3 5.71	53.00	0.5000 RG01	CB77(MS)
NA03_2	0.04	4 6.15	53.00	0.5000 RG01	CB76(MS)
NA03_3	0.01	1 2.50	53.00	0.5000 RG01	CB76(MS)
NA04_1	0.04	5.38	43.00	0.5000 RG01	CB20(MS)
NA04_2	0.01	L 6.25	43.00	0.5000 RG01	CB34(MS)
NA05	0.05	8.33	29.00	0.5000 RG01	CB34(MS)
NA06	0.09	15.00	28.50	0.5000 RG01	MH126
TR1-NB	0.01	16.67	100.0	0 0.5000 RG01	B21(STOR)
TR2-NB	0.04	5.00	100.00	0.5000 RG01	B21(STOR)
TR-SB	0.05	10.42	100.00	0.5000 RG01	A22A(STOR)

Node Summary

Invert Max. Ponded External

Name Type Elev. Depth Area Inflow

10+171.51	JUNCTION	62.19	0.30	0.0
10+207.77	JUNCTION	62.95	0.30	0.0
10+314.72	JUNCTION	62.96	0.30	0.0
20.033.19	JUNCTION	62.71	0.30	0.0
20+069.15	JUNCTION	62.92	0.30	0.0
20+115.54	JUNCTION	63.18	0.30	0.0
30+038.20	JUNCTION	63.17	0.30	0.0
30+074.39	JUNCTION	62.99	0.30	0.0
40+015.59	JUNCTION	63.53	0.30	0.0
40+084.71	JUNCTION	63.25	0.30	0.0
40+121.60	JUNCTION	63.57	0.30	0.0
40+157.95	JUNCTION	63.10	0.30	0.0
50+102.24	JUNCTION	65.72	0.30	0.0
50+127.37	JUNCTION	65.53	0.30	0.0
60.370.58	JUNCTION	59.00	0.30	0.0
60+148.01	JUNCTION	65.19	0.30	0.0
60+224.17	JUNCTION	63.88	0.30	0.0
60+288.71	JUNCTION	61.96	0.30	0.0
70-034.26	JUNCTION	65.16	0.30	0.0
70-152.02	JUNCTION	64.61	0.30	0.0
70-208.50	JUNCTION	63.90	0.32	0.0
80+003.32	JUNCTION	64.85	0.30	0.0
80+025.67	JUNCTION	64.79	0.30	0.0
80+078.80	JUNCTION	64.12	0.30	0.0
80+121.22	JUNCTION	62.54	0.30	0.0
80+187.36	JUNCTION	60.33	0.30	0.0
80+216.33	JUNCTION	59.71	0.30	0.0
80+267	JUNCTION	59.16	0.30	0.0
90.071.47	JUNCTION	59.98	0.30	0.0
90+008.28	JUNCTION	60.60	0.30	0.0
A15A(STOR)	JUNCTION	63.40	0.30	0.0
B19(STOR)	JUNCTION	63.00	0.30	0.0
CB01	JUNCTION	60.14	1.49	0.0
CB01(MS)	JUNCTION	61.33	0.30	0.0
CB06	JUNCTION	61.94	1.59	0.0

CB06(MS)	JUNCTION	63.23 0.30 0.0
CB08	JUNCTION	62.05 1.66 0.0
CB08(MS)	JUNCTION	63.41 0.30 0.0
CB09	JUNCTION	61.74 1.60 0.0
CB09(MS)	JUNCTION	63.04 0.30 0.0
CB1	JUNCTION	63.72 1.42 0.0
CB12	JUNCTION	61.45 1.78 0.0
CB12(MS)	JUNCTION	62.93 0.30 0.0
CB14	JUNCTION	61.23 1.75 0.0
CB14(MS)	JUNCTION	62.68 0.30 0.0
CB15(x2-DIC	Bs) JUNCTION	61.08 1.88 0.0
CB16(2x-DIC	Bs) JUNCTION	61.63 1.67 0.0
CB16(MS)	JUNCTION	63.00 0.30 0.0
CB18	JUNCTION	61.54 1.57 0.0
CB18(MS)	JUNCTION	62.81 0.30 0.0
CB2	JUNCTION	63.64 1.50 0.0
CB20	JUNCTION	61.46 1.99 0.0
CB20(MS)	JUNCTION	63.15 0.30 0.0
CB22	JUNCTION	62.08 1.52 0.0
CB22(MS)	JUNCTION	63.30 0.30 0.0
CB24	JUNCTION	62.40 1.66 0.0
CB24(MS)	JUNCTION	63.76 0.30 0.0
CB26	JUNCTION	63.38 1.51 0.0
CB26(MS)	JUNCTION	64.59 0.30 0.0
CB28	JUNCTION	63.57 1.84 0.0
CB28(MS)	JUNCTION	65.11 0.30 0.0
CB29	JUNCTION	60.45 1.70 0.0
CB29(MS)	JUNCTION	61.85 0.30 0.0
CB29B(L)	JUNCTION	60.38 2.13 0.0
СВЗ	JUNCTION	63.64 1.50 0.0
CB30	JUNCTION	59.71 1.82 0.0
CB30(MS)	JUNCTION	61.23 0.30 0.0
CB31	JUNCTION	59.50 1.82 0.0
CB31(MS)	JUNCTION	61.02 0.30 0.0
CB31B(L)	JUNCTION	59.39 1.80 0.0
CB32	JUNCTION	59.47 1.72 0.0

CB34	JUNCTION	62.16 1.61	0.0
CB34(MS)	JUNCTION	63.47 0.3	0.0
CB35	JUNCTION	61.90 1.82	0.0
CB35(MS)	JUNCTION	63.42 0.3	0.0
CB36	JUNCTION	61.92 1.71	0.0
CB36(MS)	JUNCTION	63.33 0.3	0.0
CB39	JUNCTION	62.00 1.70	0.0
CB39(MS)	JUNCTION	63.40 0.3	0.0
CB40	JUNCTION	61.77 1.53	0.0
CB40(MS)	JUNCTION	63.00 0.3	0.0
CB41	JUNCTION	61.60 1.55	0.0
CB41(MS)	JUNCTION	62.85 0.3	0.0
CB42	JUNCTION	61.81 1.70	0.0
CB42(MS)	JUNCTION	63.21 0.3	0.0
CB45	JUNCTION	62.92 2.09	0.0
CB45(MS)	JUNCTION	64.71 0.3	0.0
CB47	JUNCTION	63.22 2.04	0.0
CB47(MS)	JUNCTION	64.96 0.3	5 0.0
CB49	JUNCTION	64.82 0.71	0.0
CB49(MS)	JUNCTION	65.23 0.3	0.0
CB5	JUNCTION	63.93 1.50	0.0
CB51	JUNCTION	63.02 1.98	0.0
CB51(MS)	JUNCTION	64.70 0.3	0.0
CB53	JUNCTION	63.04 1.74	0.0
CB53(MS)	JUNCTION	64.48 0.3	0.0
CB55	JUNCTION	62.51 1.82	0.0
CB56	JUNCTION	62.42 1.57	0.0
CB58	JUNCTION	63.26 1.80	0.0
CB58(MS)	JUNCTION	64.76 0.3	0.0
СВ6	JUNCTION	63.51 1.50	0.0
CB60	JUNCTION	63.16 2.04	0.0
CB60(MS)	JUNCTION	64.90 0.3	0.0
CB62	JUNCTION	61.16 2.14	0.0
CB62(MS)	JUNCTION	63.00 0.3	0.0
CB63	JUNCTION	61.06 1.90	0.0
CB63(MS)	JUNCTION	62.66 0.3	0.0

CB65	JUNCTION	59.43 2.12 0.0
CB65(MS)	JUNCTION	61.25 0.30 0.0
CB67	JUNCTION	58.43 2.11 0.0
CB67(MS)	JUNCTION	60.24 0.30 0.0
CB69	JUNCTION	58.38 1.89 0.0
CB69(MS)	JUNCTION	59.97 0.30 0.0
CB70	JUNCTION	58.31 1.90 0.0
CB70(MS)	JUNCTION	59.91 0.30 0.0
CB71	JUNCTION	57.66 2.23 0.0
CB71(MS)	JUNCTION	59.59 0.30 0.0
CB73	JUNCTION	57.75 1.90 0.0
CB73(MS)	JUNCTION	59.35 0.30 0.0
CB74(4x-DI0	CBs) JUNCTION	56.95 2.27 0.0
CB75	JUNCTION	57.62 1.90 0.0
CB75(MS)	JUNCTION	59.22 0.30 0.0
CB76	JUNCTION	59.61 1.90 0.0
CB76(MS)	JUNCTION	61.21 0.30 0.0
CB77	JUNCTION	60.97 1.90 0.0
CB77(MS)	JUNCTION	62.57 0.30 0.0
CB78	JUNCTION	58.46 1.95 0.0
CB79	JUNCTION	57.34 1.90 0.0
CB79(MS)	JUNCTION	58.94 0.30 0.0
CB8	JUNCTION	62.83 1.51 0.0
CB80	JUNCTION	62.53 1.90 0.0
CB80(MS)	JUNCTION	64.13 0.30 0.0
CB82	JUNCTION	63.39 2.00 0.0
CBMH1	JUNCTION	61.92 3.38 0.0
СВМН4	JUNCTION	63.95 1.50 0.0
СВМН7	JUNCTION	63.25 1.50 0.0
CB-PL	JUNCTION	64.79 0.51 0.0
HP01	JUNCTION	61.04 0.30 0.0
HP02	JUNCTION	61.28 0.30 0.0
HP03	JUNCTION	60.87 0.30 0.0
HP04	JUNCTION	62.65 0.30 0.0
J10	JUNCTION	64.87 0.30 0.0
J11	JUNCTION	64.77 0.60 0.0

J12	JUNCTION	64.50	0.30	0.0	
J13	JUNCTION	64.09	0.30	0.0	
J14	JUNCTION	63.60	1.49	0.0	
J15	JUNCTION	58.41	4.44	0.0	
J16	JUNCTION	64.32	0.30	0.0	
J17	JUNCTION	56.35	2.46	0.0	
J3	JUNCTION	60.28	1.93	0.0	
J5	JUNCTION	61.42	0.20	0.0	
J6	JUNCTION	64.90	0.30	0.0	
J7	JUNCTION	65.20	0.30	0.0	
J8	JUNCTION	65.18	0.30	0.0	
J9	JUNCTION	64.95	0.30	0.0	
MH314(DUI	MMY) JUNCT	ION	58.40	1.85	0.0
MH328(DUI	MMY) JUNCT	ION	57.01	2.51	0.0
Clegg	OUTFALL	61.30	0.30	0.0	
MainNorth	OUTFALL	64.7	0.3	0.0)
MainSouth	OUTFALL	65.0	0.3	0.0)
Out1	OUTFALL	60.50	0.30	0.0	
Out2	OUTFALL	60.50	0.30	0.0	
Out3	OUTFALL	62.50	0.30	0.0	
Outlet1-Pha	se1 OUTFALL	56	5.00 0	.90 (0.0
Outlet2-Pha	ase2&3 OUTFAL	.L !	56.00	0.75	0.0
A04(STOR)	STORAGE	61.1	13 4.0	0.0)
A09B(STOR)	STORAGE	100	.00 0	.15 0	0.0
A09C(STOR)	STORAGE	100	.00 0	.15 0	0.0
A10(STOR)	STORAGE	100.	00 0.:	15 0.	0
A11B(STOR)	STORAGE	60.	98 3.	05 0.	.0
A14(STOR)	STORAGE	62.7	70 1.5	0.0)
A16C(STOR)	STORAGE	65.	22 0.	78 0.	.0
A22A(STOR)	STORAGE	100	.00 0	.15 (0.0
B21(STOR)	STORAGE	100.	00 0.:	15 0.	0
B23(STOR)	STORAGE	56.5	3.6	9 0.0)
B25(STOR)	STORAGE	100.	00 0.:	15 0.	0
CB1-GAPark	STORAGE	61.	99 3.	23 0.	.0
СВМН2	STORAGE	60.9	8 3.00	0.0	
Dummy-MH	1128 STORAC	SE .	59.91	3.81	0.0

GA-ParkSou	thStorage STOR	AGE	64.50	0.90	0.0
J2	STORAGE	65.37	0.15	0.0	
J4	STORAGE	100.00	0.15	0.0	
MH100	STORAGE	59.9	7 1.7	2 0.0	
MH102	STORAGE	59.9	00 4.9	5 0.0	
MH104	STORAGE	59.8	3.13	3 0.0	
MH106	STORAGE	59.6	55 2.5	3 0.0	
MH108	STORAGE	59.5	59 2.4	1 0.0	
MH110	STORAGE	59.6	3.8	1 0.0	
MH110B	STORAGE	59.	42 3.7	7 0.0	
MH112B	STORAGE	59.	24 3.7	4 0.0	
MH114	STORAGE	58.0)8 4.9	6 0.0	
MH118	STORAGE	58.4	11 4.4	4 0.0	
MH122	STORAGE	59.3	3.6	3 0.0	
MH122B	STORAGE	58.	58 4.2	6 0.0	
MH124	STORAGE	60.5	55 2.82	2 0.0	
MH126	STORAGE	61.3	31 2.1	5 0.0	
MH128	STORAGE	60.0	02 3.8	1 0.0	
MH130	STORAGE	60.9	98 3.00	0.0	
MH132	STORAGE	61.3	34 2.9	7 0.0	
MH136	STORAGE	60.9	00 2.2!	5 0.0	
MH140	STORAGE	60.8	30 2.2	5 0.0	
MH144	STORAGE	59.4	14 3.6	0.0	
MH148	STORAGE	61.2	22 2.2	5 0.0	
MH152	STORAGE	59.9	3.60	6 0.0	
MH164	STORAGE	61.4	3.2	3 0.0	
MH166	STORAGE	61.6	55 3.2	2 0.0	
MH168	STORAGE	61.7	4 3.30	0.0	
MH170	STORAGE	61.1	3 4.09	0.0	
MH172	STORAGE	62.0	06 3.10	5 0.0	
MH174	STORAGE	62.1	7 3.0	6 0.0	
MH176	STORAGE	62.9	00 2.3	4 0.0	
MH178	STORAGE	62.0	02 3.42	2 0.0	
MH180	STORAGE	62.8	35 1.70	5 0.0	
MH182	STORAGE	62.4	18 2.43	3 0.0	
MH220	STORAGE	59.4	17 2.2	5 0.0	

MH222	STORAGE	59.03	1.97	0.0
MH224	STORAGE	59.17	1.75	0.0
MH226	STORAGE	60.21	2.46	0.0
MH228	STORAGE	60.07	1.79	0.0
MH230	STORAGE	59.77	3.67	0.0
MH238	STORAGE	58.14	4.28	0.0
MH242	STORAGE	56.00	5.68	0.0
MH246	STORAGE	59.84	4.44	0.0
MH248	STORAGE	61.61	3.16	0.0
MH250	STORAGE	62.63	3.11	0.0
MH300	STORAGE	62.40	2.46	0.0
MH302	STORAGE	61.52	2.79	0.0
MH304	STORAGE	60.91	2.53	0.0
MH306	STORAGE	59.44	2.65	0.0
MH308	STORAGE	58.67	2.95	0.0
MH310	STORAGE	56.51	3.55	0.0
MH312	STORAGE	61.64	2.55	0.0
MH314	STORAGE	60.61	2.45	0.0
MH316	STORAGE	57.13	3.07	0.0
MH318	STORAGE	57.52	2.07	0.0
MH320	STORAGE	56.95	3.02	0.0
MH322	STORAGE	56.91	3.12	0.0
MH324	STORAGE	60.65	2.14	0.0
MH326	STORAGE	59.17	2.64	0.0
MH328	STORAGE	58.04	2.39	0.0
MH330	STORAGE	57.05	2.25	0.0
MH332	STORAGE	56.53	2.67	0.0
MH334	STORAGE	56.33	2.70	0.0
MH336	STORAGE	56.35	2.96	0.0
MH338	STORAGE	56.34	2.91	0.0
MH340	STORAGE	56.01	2.32	0.0
MH400	STORAGE	62.79	2.45	0.0
MH402	STORAGE	62.86	2.02	0.0
MH404	STORAGE	63.26	2.27	0.0
MH406	STORAGE	62.79	2.42	0.0
MH408	STORAGE	62.98	2.32	0.0

MH410	STORAGE	62.49	2.27	0.0
MH412	STORAGE	62.28	2.28	0.0
MH414	STORAGE	61.90	2.37	0.0
VortechsPh1	STORAGE	58.40	4.04	0.0
VortechsPh2	STORAGE	56.34	2.95	0.0

Link Summary

		Node To Node Type Length %Slope Roughness
1	A04(STOR	R) CB47(MS) CONDUIT 22.3 0.7629 0.0350
10	СВМН4	J7 CONDUIT 2.6 -1.9497 0.0160
11	MH406	MH170 CONDUIT 7.5 1.9898 0.0130
12	J8	CB47(MS) CONDUIT 5.0 4.4043 0.0160
13	J6	80+003.32 CONDUIT 5.0 1.0001 0.0160
14	J9	CB47(MS) CONDUIT 36.2 -0.0276 0.0160
15	J7	CB82 CONDUIT 5.0 38.8338 0.0160
16	CB5	J8 CONDUIT 5.0 -1.0001 0.0160
18	J10	CB45(MS) CONDUIT 57.6 0.2778 0.0160
19	MH412	MH414 CONDUIT 19.5 1.7924 0.0130
2	MH402	MH300 CONDUIT 9.3 2.0391 0.0130
20	MH408	MH410 CONDUIT 20.9 2.0090 0.0130
22	MH410	MH248 CONDUIT 7.6 1.9689 0.0130
23	J11	CB45(MS) CONDUIT 5.0 7.2187 0.0160
24	CB1	J9 CONDUIT 5.0 -2.2005 0.0160
25	CB2	J10 CONDUIT 1.8 -1.6753 0.0160
28	J12	J16 CONDUIT 5.0 3.6224 0.0160
29	CB6	J11 CONDUIT 5.0 -1.2001 0.0160
3	GA-ParkS	outhStorage CB45(MS) CONDUIT 5.0 7.8238 0.0350
30	СВМН7	J12 CONDUIT 5.0 -1.0001 0.0160
32	CB8	J13 CONDUIT 5.0 -1.0001 0.0160
33	J13	70-208.50 CONDUIT 5.0 3.4020 0.0160
35	J14	CB-PL CONDUIT 5.9 0.0052 0.0160
37	CB-PL	CB49(MS) CONDUIT 5.0 -4.6049 0.0160

4	CB3 Je	5 COND	UIT 5.0	-1.2001 0.0160
5	B23(STOR)	CB70(MS)	CONDUIT	10.3 0.8737 0.0160
6	J5 J3	CONDU	IT 20.0	5.7244 0.0130
7	CB1-GAPark	CB47(MS)	CONDUIT	5.0 -0.8000 0.0350
9	MH414	MH132	CONDUIT	7.1 1.5495 0.0130
A15A(O	JT) A15A(S	TOR) Dumm	y-MH128 C	CONDUIT 6.8 53.3333 0.0130
B19(OU7	Γ) B19(STO	R) MH306	CONDUI	T 110.0 1.8185 0.0130
C01	10+171.51	CB76(MS)	CONDUIT	24.5 3.9841 0.0160
C02	10+207.77	CB77(MS)	CONDUIT	15.0 2.5158 0.0160
C03	10+314.72	CB15(x2-DI0	CBs) CONDUI	T 54.8 0.5423 0.0160
C04	20.033.19	CB14(MS)	CONDUIT	14.5 0.2063 0.0160
C05	20+069.15	CB12(MS)	CONDUIT	5.4 -0.1866 0.0160
C06	20+115.54	40+157.95	CONDUIT	14.5 0.5522 0.0160
C07	20+115.54	CB01(MS)	CONDUIT	27.3 6.8039 0.0160
C08	30+038.20	CB09(MS)	CONDUIT	7.8 1.7202 0.0160
C09	30+074.39	CB18(MS)	CONDUIT	11.2 1.6519 0.0160
C10	40+015.59	CB34(MS)	CONDUIT	33.5 0.1851 0.0160
C100	CB55	CB56 C	ONDUIT	19.4 1.7515 0.0350
C101	CB56	20+115.54	CONDUIT	13.4 3.8084 0.0350
C102	CB58	CB58(MS)	CONDUIT	5.0 0.0061 0.0160
C103	CB58(MS)	80+003.32	CONDUIT	7.4 -1.2218 0.0160
C104	CB58(MS)	80+025.67	CONDUIT	17.5 -0.1718 0.0160
C105	CB60	CB60(MS)	CONDUIT	5.0 0.0061 0.0160
C106	CB60(MS)	80+003.32	CONDUIT	16.1 0.3110 0.0160
C107	CB62	CB62(MS)	CONDUIT	5.0 0.0061 0.0160
C108	CB62(MS)	60+288.71	CONDUIT	35.1 2.9504 0.0160
C109	CB63	CB63(MS)	CONDUIT	5.0 0.0061 0.0160
C11	40+015.59	CB22(MS)	CONDUIT	50.4 0.4606 0.0160
C110	CB63(MS)	80+121.22	CONDUIT	5.0 2.4007 0.0160
C111	CB65	CB65(MS)	CONDUIT	5.0 0.0061 0.0160
C112	CB65(MS)	90.071.47	CONDUIT	33.8 3.7492 0.0160
C113	CB67	CB67(MS)	CONDUIT	5.0 0.0061 0.0160
C114	CB67(MS)	90.071.47	CONDUIT	11.3 2.2636 0.0160
C115	CB69	CB69(MS)	CONDUIT	5.0 0.0061 0.0160
C116	CB69(MS)	CB67(MS)	CONDUIT	28.2 -0.9585 0.0160
C117	CB70	CB70(MS)	CONDUIT	5.0 0.0061 0.0160

C118	CB70(MS)	CB75(MS)	CONDUIT	22.4 3.0872 0.0160
C119	CB71	CB71(MS)	CONDUIT	5.0 0.0061 0.0160
C12	40+084.71	30+038.20	CONDUIT	26.7 0.2880 0.0160
C120	CB71(MS)	CB73(MS)	CONDUIT	27.2 0.8815 0.0160
C121	CB73	CB73(MS)	CONDUIT	5.0 0.0061 0.0160
C122	CB73(MS)	80+267	CONDUIT	5.0 3.8027 0.0160
C123	CB74(4x-DI	CBs) 60.370.	58 CONDUI	T 13.5 -0.5942 0.0160
C124	CB74(4x-DI	CBs) MH332	CONDUIT	5.0 1.0001 0.0130
C125	CB75	CB75(MS)	CONDUIT	5.0 0.0061 0.0160
C126	CB76	CB76(MS)	CONDUIT	5.0 0.0061 0.0160
C127	CB76(MS)	CB75(MS)	CONDUIT	60.0 3.3174 0.0160
C128	CB77	CB77(MS)	CONDUIT	5.0 0.0061 0.0160
C129	CB77(MS)	10+171.51	L CONDUIT	21.2 1.8082 0.0160
C13	40+121.60	CB08(MS)	CONDUIT	15.3 1.0579 0.0160
C130	CB78	80+187.36	CONDUIT	20.6 -1.0697 0.0160
C131	CB79	CB79(MS)	CONDUIT	5.0 0.0061 0.0160
C132	CB79(MS)	CB74(4x-D	OICBs) CONDUI	T 32.7 0.0611 0.0160
C133	CB80	CB80(MS)	CONDUIT	5.0 0.0061 0.0160
C134	CB80(MS)	80+078.80	CONDUIT	5.0 0.2000 0.0160
C135	CBMH1	CB56	CONDUIT	31.1 4.2138 0.0350
C136	HP01	Out2	CONDUIT	5.0 10.8635 0.0350
C137	HP02	Clegg	CONDUIT	5.0 -0.4000 0.0160
C138	HP03	Out1	CONDUIT	5.0 7.4203 0.0350
C139	HP04	Out3	CONDUIT	5.0 3.0014 0.0350
C14	40+121.60	CB06(MS)	CONDUIT	16.1 2.1287 0.0160
C140	MH100	MH104	CONDUIT	25.1 0.4787 0.0130
C141	MH102	MH246	CONDUIT	10.6 0.5192 0.0130
C142	MH104	MH106	CONDUIT	10.6 0.3774 0.0130
C143	MH106	MH108	CONDUIT	12.4 0.4039 0.0130
C144	MH108	MH144	CONDUIT	30.9 0.2593 0.0130
C145_1	MH108	J3	CONDUIT	10.0 0.5300 0.0130
C145_2	J3	MH110	CONDUIT	63.8 0.4969 0.0130
C146	MH110	MH110B	CONDUIT	31.4 0.6688 0.0130
C147	MH110B	MH112B	CONDUIT	36.2 0.4972 0.0130
C148				
	MH112B	MH114	CONDUIT	31.9 0.5014 0.0130

C15	40+157.95	20+069.15	CONDUIT	30.6	0.5877	0.0160
C150	J15 MI	H238 CC	ONDUIT 4.	7 1.00	639 0.0	130
C151	MH118	VortechsPh1	CONDUIT	5.0	0.2000	0.0130
C152	MH122	MH122B	CONDUIT	18.9	0.2541	0.0130
C153	MH122B	MH118	CONDUIT	31.1	0.2891	0.0130
C154	MH124	MH114	CONDUIT	70.2	0.2707	0.0130
C155	MH126	MH124	CONDUIT	54.8	0.4839	0.0130
C156_1	MH128	Dummy-MH	128 CONDUI	Т	21.5 0.	5114 0.0130
C156_2	Dummy-MH	128 MH110	CONDUI	Т	54.7 0.	5117 0.0130
C158	MH128	MH126	CONDUIT	49.4	0.5062	0.0130
C159	MH130	MH128	CONDUIT	19.8	0.4541	0.0130
C16	50+102.24	CB28(MS)	CONDUIT	72.0	0.8543	0.0160
C160	MH132	MH130	CONDUIT	26.4	0.3028	0.0130
C161	MH136	MH144	CONDUIT	36.4	0.4996	0.0130
C162	MH140	MH122B	CONDUIT	39.3	0.5007	0.0130
C163	MH144	MH122	CONDUIT	18.2	0.6590	0.0130
C164	MH148	MH112B	CONDUIT	41.5	0.4989	0.0130
C165	MH152	MH110B	CONDUIT	36.5	0.5007	0.0130
C166	MH164	MH132	CONDUIT	30.8	0.2595	0.0130
C167	MH166	MH248	CONDUIT	17.3	0.1734	0.0130
C168	MH168	MH166	CONDUIT	33.4	0.2698	0.0130
C169	MH170	MH168	CONDUIT	27.2	0.2574	0.0130
C17	50+102.24	50+127.37	CONDUIT	26.2	0.7620	0.0160
C170	MH172	MH170	CONDUIT	32.2	0.3102	0.0130
C171	MH174	MH172	CONDUIT	15.2	0.1318	0.0130
C172	MH174	MH300	CONDUIT	32.9	1.7931	0.0130
C173	MH176	MH250	CONDUIT	60.4	0.4801	0.0130
C174	MH178	MH164	CONDUIT	37.3	0.2410	0.0130
C175	MH180	MH182	CONDUIT	61.8	0.3725	0.0130
C176	MH182	MH174	CONDUIT	71.5	0.3076	0.0130
C177	MH220	MH222	CONDUIT	75.1	0.5061	0.0130
C178	MH222	MH122B	CONDUIT	30.9	0.4989	0.0130
C179	MH224	MH222	CONDUIT	16.4	0.5014	0.0130
C18	50+127.37	CB26(MS)	CONDUIT	33.5	2.7931	0.0160
C180	MH226	MH228	CONDUIT	28.3	0.5026	0.0130
C181	MH228	MH100	CONDUIT	7.6	0.5283	0.0130

C182	MH230	MH106	CONDUIT	9.1 0.4952 0.0130
C183	MH238	MH242	CONDUIT	15.4 1.5540 0.0130
C184	MH242	Outlet1-Phase	e1 CONDUIT	9.4 1.1740 0.0130
C185	MH246	MH230	CONDUIT	14.8 0.4744 0.0130
C186	MH248	MH164	CONDUIT	12.2 0.5757 0.0130
C187	MH250	MH178	CONDUIT	38.5 0.4669 0.0130
C188	MH300	MH302	CONDUIT	26.3 3.0825 0.0130
C189	MH302	MH304	CONDUIT	34.1 1.7865 0.0130
C19	60.370.58	CB75(MS)	CONDUIT	5.0 -4.4043 0.0160
C190	MH304	MH306	CONDUIT	44.7 3.2874 0.0130
C191	MH306	MH308	CONDUIT	13.6 3.8943 0.0130
C192	MH308	MH310	CONDUIT	39.7 2.8950 0.0130
C193	MH310	MH334	CONDUIT	34.2 0.2632 0.0130
C194	MH312	MH314	CONDUIT	33.0 3.1256 0.0130
C195	MH314	MH314(DUM	MY) CONDUIT	72.7 3.0400 0.0130
C196	MH314(DUM	MY) MH316	CONDUI	7.7 5.7446 0.0130
C197	MH316	MH320	CONDUIT	38.6 0.4404 0.0130
C198	MH318	MH316	CONDUIT	61.1 -0.1145 0.0130
C199	MH320	MH322	CONDUIT	7.3 0.5472 0.0130
C20	60+148.01	CB49(MS)	CONDUIT	55.0 -0.0818 0.0160
C200	MH322	MH310	CONDUIT	21.9 0.2738 0.0130
C201	MH324	MH326	CONDUIT	37.7 3.7131 0.0130
C202	MH326	MH328	CONDUIT	35.4 3.1407 0.0130
C203	MH328	MH328(DUM	MY) CONDUI	29.6 3.4783 0.0130
C204	MH328(DUM	MY) MH334	CONDUIT	10.0 2.4007 0.0130
C205	MH330	MH332	CONDUIT	36.8 0.4072 0.0130
C206	MH332	MH334	CONDUIT	35.8 0.5585 0.0130
C207	MH334	MH336	CONDUIT	5.0 0.2000 0.0130
C208	MH336	VortechsPh2	CONDUIT	5.0 0.2000 0.0130
C209	J17 M	H338 CC	ONDUIT 5.	0 0.4000 0.0130
C21	60+148.01	CB60(MS)	CONDUIT	27.7 1.0286 0.0160
C210	MH338	MH340	CONDUIT	14.2 0.2189 0.0130
C211	MH340	Outlet2-Phase	e2&3 CONDUIT	2.9 0.3415 0.0130
C212	VortechsPh1	MH238	CONDUIT	5.0 0.2000 0.0130
C213	VortechsPh2	MH338	CONDUIT	5.0 0.0061 0.0130
C22	60+148.01	CB82 (CONDUIT 2	21.6 0.4389 0.0160

C23	60+224.17	CB62(MS)	CONDUIT	29.5 2.9667 0.0160
C24	60+288.71	CB65(MS)	CONDUIT	16.5 4.3385 0.0160
C25	70-034.26	CB82	CONDUIT	24.9 0.2688 0.0160
C26	70-034.26	CB47(MS)	CONDUIT	42.7 0.4610 0.0160
C27_1	70-152.02	J16	CONDUIT	24.0 1.1915 0.0160
C27_2	J16	70-208.50	CONDUIT	35.0 1.1903 0.0160
C28	70-208.50	CB24(MS)	CONDUIT	17.5 0.8136 0.0160
C29	80+003.32	60+224.17	CONDUIT	38.7 2.5211 0.0160
C30	80+025.67	CB80(MS)	CONDUIT	50.3 1.3125 0.0160
C31	80+078.80	CB63(MS)	CONDUIT	38.4 3.8029 0.0160
C32	80+121.22	CB78	CONDUIT	53.9 4.5098 0.0160
C33	80+187.36	90+008.28	CONDUIT	10.7 -2.5152 0.0160
C34	80+187.36	80+216.33	CONDUIT	28.9 2.1432 0.0160
C35	80+216.33	CB71(MS)	CONDUIT	17.4 0.6911 0.0160
C36	80+267	CB79(MS)	CONDUIT	36.3 0.6065 0.0160
C37	90.071.47	CB70(MS)	CONDUIT	10.6 0.7108 0.0160
C38	90+008.28	CB69(MS)	CONDUIT	23.3 2.7014 0.0160
C39	CB01	CB01(MS)	CONDUIT	5.0 0.0061 0.0160
C40	CB01(MS)	CB30(MS)	CONDUIT	36.6 0.2735 0.0160
C41	CB01(MS)	HP02	CONDUIT	5.5 0.9091 0.0160
C42	CB06	CB06(MS)	CONDUIT	5.0 0.0061 0.0160
C43	CB06(MS)	40+157.95	CONDUIT	22.2 0.5845 0.0160
C44	CB08	CB08(MS)	CONDUIT	5.0 0.0061 0.0160
C45	CB08(MS)	40+084.71	CONDUIT	21.2 0.7448 0.0160
C46	CB09	CB09(MS)	CONDUIT	5.0 0.0061 0.0160
C47	CB09(MS)	30+074.39	CONDUIT	30.6 0.1472 0.0160
C48	CB12	CB12(MS)	CONDUIT	5.0 0.0061 0.0160
C49	CB12(MS)	20.033.19	CONDUIT	33.2 0.6627 0.0160
C50	CB14	CB14(MS)	CONDUIT	5.0 0.0061 0.0160
C51	CB14(MS)	CB15(x2-DI	CBs) CONDUIT	17.9 0.1116 0.0160
C52	CB16(2x-DIC	CBs) CB16(MS)) CONDUIT	5.0 0.0061 0.0160
C53	CB16(MS)	10+314.72	CONDUIT	13.2 0.3251 0.0160
C54	CB18	CB18(MS)	CONDUIT	5.0 0.0061 0.0160
C55	CB18(MS)	10+314.72	CONDUIT	13.6 -1.0819 0.0160
C56	CB20	CB20(MS)	CONDUIT	5.0 0.0061 0.0160
C57	CB20(MS)	CB16(MS)	CONDUIT	65.7 0.2283 0.0160

C58	CB20(MS)	10+207.77	CONDUIT	37.6 0.5403 0.0160
C59	CB22	CB22(MS)	CONDUIT	5.0 0.0061 0.0160
C60	CB22(MS)	40+084.71	CONDUIT	21.7 0.2216 0.0160
C61	CB24	CB24(MS)	CONDUIT	5.0 0.0061 0.0160
C62	CB24(MS)	40+015.59	CONDUIT	10.6 2.1474 0.0160
C63	CB26	CB26(MS)	CONDUIT	5.0 0.0061 0.0160
C64	CB26(MS)	70-152.02	CONDUIT	7.5 -0.1999 0.0160
C65	CB28	CB28(MS)	CONDUIT	5.0 0.0061 0.0160
C66	CB28(MS)	MainSouth	CONDUIT	15.5 0.6017 0.0160
C67	CB29	CB29(MS)	CONDUIT	5.0 0.0061 0.0160
C68	CB29(MS)	CB01(MS)	CONDUIT	16.3 3.1971 0.0160
C69	CB29B(L)	HP04	CONDUIT	5.0 -51.0954 0.0350
C70	CB30	CB30(MS)	CONDUIT	5.0 0.0061 0.0160
C71	CB30(MS)	CB31(MS)	CONDUIT	32.6 0.6438 0.0160
C72	CB31	CB31(MS)	CONDUIT	5.0 0.0061 0.0160
C73	CB31(MS)	CB32	CONDUIT	31.5 0.4004 0.0160
C74	CB31B(L)	HP01	CONDUIT	5.0 -2.9212 0.0350
C75	CB32	нроз с	ONDUIT	5.0 0.0061 0.0350
C76	CB34	CB34(MS)	CONDUIT	5.0 0.0061 0.0160
C77	CB34(MS)	CB20(MS)	CONDUIT	63.4 0.5045 0.0160
C78	CB35	CB35(MS)	CONDUIT	5.0 0.0061 0.0160
C79	CB35(MS)	CB36(MS)	CONDUIT	28.2 0.3187 0.0160
C80	CB36	CB36(MS)	CONDUIT	5.0 0.0061 0.0160
C81	CB36(MS)	30+074.39	CONDUIT	20.3 1.6493 0.0160
C82	CB39	CB39(MS)	CONDUIT	5.0 0.0061 0.0160
C83	CB39(MS)	30+038.20	CONDUIT	18.0 1.2471 0.0160
C84	CB40	CB40(MS)	CONDUIT	5.0 0.0061 0.0160
C85	CB40(MS)	CB41(MS)	CONDUIT	29.2 0.5143 0.0160
C86	CB41	CB41(MS)	CONDUIT	5.0 0.0061 0.0160
C87	CB41(MS)	20.033.19	CONDUIT	11.4 1.2325 0.0160
C88	CB42	CB42(MS)	CONDUIT	5.0 0.0061 0.0160
C89	CB42(MS)	20+069.15	CONDUIT	13.8 2.1080 0.0160
C90	CB45	CB45(MS)	CONDUIT	5.0 0.0061 0.0160
C91	CB45(MS)	70-152.02	CONDUIT	20.1 0.5224 0.0160
C92	CB47	CB47(MS)	CONDUIT	5.0 0.0061 0.0160
C93	CB47(MS)	CB45(MS)	CONDUIT	61.3 0.4079 0.0160

C94	CB49	CB49(MS)	CONDUIT	5.0 0.0061 0.0160
C95	CB49(MS)	CB51(MS)	CONDUIT	45.7 1.1604 0.0160
C96	CB51	CB51(MS)	CONDUIT	5.0 0.0061 0.0160
C97	CB51(MS)	CB53(MS)	CONDUIT	45.8 0.4806 0.0160
C98	CB53	CB53(MS)	CONDUIT	5.0 0.0061 0.0160
C99	CB53(MS)	MainNorth	CONDUIT	17.8 -1.2388 0.0160
OR52	CBMH1	MH102	CONDUIT	7.6 0.3947 0.0130
STM-15	MH404	MH406	CONDUIT	22.1 1.9913 0.0130
STM-390	CBMH2	MH128	CONDUIT	9.2 0.9804 0.0130
STM-68	MH400	MH402	CONDUIT	20.4 0.9804 0.0130
Weir-Outle	et1 MH118	J15	CONDUIT	5.0 0.2000 0.0130
Weir-Outle	et2 MH336	J17	CONDUIT	5.0 0.4000 0.0130
1C-OR	J14	MH168	ORIFICE	
A06(OUT)	CB1-GA	Park MH168	ORIFICE	
A3-A1-OR	CB3	MH402	ORIFICE	
A3-A2-OR	CBMH4	MH172	ORIFICE	
A3-A3-OR	CB5	MH406	ORIFICE	
A7-A7-OR	СВМН7	MH164	ORIFICE	
A7-A8-OR	CB8	MH414	ORIFICE	
OR01	CB01	MH100	ORIFICE	
OR02	CB06	MH108	ORIFICE	
OR03	CB08	MH108	ORIFICE	
OR04	CB09	MH110B	ORIFICE	
OR05	CB12	MH144	ORIFICE	
OR06	CB14	MH122B	ORIFICE	
OR07	CB15(x2-D	ICBs) MH114	ORIFICE	
OR08	CB16(2x-D	ICBs) MH124	ORIFICE	
OR09	CB18	MH112B	ORIFICE	
OR1	GA-ParkSou	uthStorage MH	166 ORIFIC	Œ
OR10	CB20	MH126	ORIFICE	
OR11	CB22	MH110	ORIFICE	
OR12	CB24	MH130	ORIFICE	
OR13	CB26	MH178	ORIFICE	
OR14	CB28	MH176	ORIFICE	
OR15	CB29	MH226	ORIFICE	
OR16	CB29B(L)	MH228	ORIFICE	

OR17	CB30	MH220	ORIFICE
OR18	CB31	MH220	ORIFICE
OR19	CB31B(L)	MH222	ORIFICE
OR20	CB32	MH224	ORIFICE
OR21	CB34	MH126	ORIFICE
OR22	CB35	MH148	ORIFICE
OR23	CB36	MH148	ORIFICE
OR24	CB39	MH152	ORIFICE
OR25	CB40	MH140	ORIFICE
OR26	CB41	MH140	ORIFICE
OR27	CB42	MH136	ORIFICE
OR28	CB45	MH248	ORIFICE
OR29	CB47	MH170	ORIFICE
OR30	CB49	MH182	ORIFICE
OR31	CB51	MH180	ORIFICE
OR32	CB53	MH180	ORIFICE
OR33	CB55	MH102	ORIFICE
OR34	CB56	MH230	ORIFICE
OR35	CB58	MH300	ORIFICE
OR36	CB60	MH174	ORIFICE
OR37	CB62	MH304	ORIFICE
OR38	CB63	MH314	ORIFICE
OR39	CB65	MH308	ORIFICE
OR40	CB67	MH322	ORIFICE
OR41	CB69	MH316	ORIFICE
OR42	CB70	MH310	ORIFICE
OR43	CB71	MH318	ORIFICE
OR44	CB73	MH330	ORIFICE
OR45	CB75	MH328(DI	JMMY) ORIFICE
OR46	CB76	MH326	ORIFICE
OR47	CB77	MH324	ORIFICE
OR48	CB78	MH314(DI	JMMY) ORIFICE
OR49	CB79	MH330	ORIFICE
OR50	CB80	MH312	ORIFICE
OR51	CB82	MH174	ORIFICE
1C-Out	CB-PL	J14	OUTLET

1CTopofRoo	oftoTank J2	A11B(ST	OR) OUTLET
A04(OUT)	A04(STOR)	MH170	OUTLET
A09B(OUT)	A09B(STO	R) MH176	OUTLET
A09C(OUT)	A09C(STO	R) MH176	OUTLET
A10(OUT)	A10(STOR)	MH176	OUTLET
A11B(OUT)	A11B(STO	R) MH130	OUTLET
A14(OUT)	A14(STOR)	СВМН2	OUTLET
A16C(OUT)	A16C(STO	R) J3	OUTLET
A22A(OUT)	A22A(STO	R) MH126	OUTLET
A3-A4-LMF	CB1	MH168	OUTLET
A7-A5-LMF	CB2	MH166	OUTLET
A7-A6-LMF	CB6	MH410	OUTLET
B21(OUT)	B21(STOR)	MH326	OUTLET
B23(OUT)	B23(STOR)	MH310	OUTLET
B25(OUT)	B25(STOR)	MH304	OUTLET
001	CB01(MS)	CB01	OUTLET
002	CB06(MS)	CB06	OUTLET
003	CB08(MS)	CB08	OUTLET
004	CB09(MS)	CB09	OUTLET
005	CB12(MS)	CB12	OUTLET
O06	CB14(MS)	CB14	OUTLET
007	CB16(MS)	CB16(2x-DIC	CBs) OUTLET
008	CB18(MS)	CB18	OUTLET
009	CB20(MS)	CB20	OUTLET
010	CB22(MS)	CB22	OUTLET
011	CB24(MS)	CB24	OUTLET
012	CB26(MS)	CB26	OUTLET
013	CB28(MS)	CB28	OUTLET
014	CB29(MS)	CB29	OUTLET
015	CB30(MS)	CB30	OUTLET
016	CB31(MS)	CB31	OUTLET
017	CB34(MS)	CB34	OUTLET
O18	CB35(MS)	CB35	OUTLET
019	CB36(MS)	CB36	OUTLET
O20	CB39(MS)	CB39	OUTLET
021	CB40(MS)	CB40	OUTLET

O22	CB41(MS)	CB41	OUTLET
O23	CB42(MS)	CB42	OUTLET
O24	CB45(MS)	CB45	OUTLET
O25	CB47(MS)	CB47	OUTLET
O26	CB49(MS)	CB49	OUTLET
O27	CB51(MS)	CB51	OUTLET
O28	CB53(MS)	CB53	OUTLET
O29	CB58(MS)	CB58	OUTLET
O30	CB60(MS)	CB60	OUTLET
O31	CB62(MS)	CB62	OUTLET
O32	CB63(MS)	CB63	OUTLET
O33	CB65(MS)	CB65	OUTLET
O34	CB67(MS)	CB67	OUTLET
O35	CB69(MS)	CB69	OUTLET
O36	CB70(MS)	CB70	OUTLET
O37	CB71(MS)	CB71	OUTLET
O38	CB73(MS)	CB73	OUTLET
O39	CB75(MS)	CB75	OUTLET
O40	CB76(MS)	CB76	OUTLET
O41	CB77(MS)	CB77	OUTLET
O42	CB79(MS)	CB79	OUTLET
043	CB80(MS)	CB80	OUTLET
OL1	J4	A04(STOR)	OUTLET

Cross Section Summary

Full Full Hyd. Max. No. of Full

Conduit	Shape	Depth	Area	Rad.	Width	Barrels	Flow
1	TRIANGULAR	0.30	0.45	0.15	3.00	1 312.	94
10	RECT_OPEN	0.30	1.50	0.27	5.00	1 5439	.79
11	CIRCULAR	0.25	0.05	0.06	0.25	1 83.89)
12	RECT_OPEN	0.30	1.50	0.27	5.00	1 8175	.91
13	RECT_OPEN	0.30	1.50	0.27	5.00	1 3895	.92

14	RECT_OPEN	0.30 0.4	2 0.21 1.40	1 154.15	
15	RECT_OPEN	0.30 1.5	0.27 5.00	1 24277.53	
16	RECT_OPEN	0.30 1.5	0.27 5.00	1 3895.92	
18	RECT_OPEN	0.30 0.4	2 0.21 1.40	1 488.81	
19	CIRCULAR	0.25 0.05	0.06 0.25	1 79.62	
2	CIRCULAR	0.25 0.05	0.06 0.25	1 84.92	
20	CIRCULAR	0.25 0.05	0.06 0.25	1 84.29	
22	CIRCULAR	0.25 0.05	0.06 0.25	1 83.45	
23	RECT_OPEN	0.30 1.5	0.27 5.00	1 10467.19	
24	RECT_OPEN	0.30 1.5	0.27 5.00	1 5779.14	
25	RECT_OPEN	0.30 1.5	0.27 5.00	1 5042.46	
28	RECT_OPEN	0.30 1.5	0.27 5.00	1 7414.75	
29	RECT_OPEN	0.30 1.5	0.27 5.00	1 4267.82	
3	RECT_OPEN	0.30 1.50	0 0.27 5.00	1 4981.51	
30	RECT_OPEN	0.30 1.5	0.27 5.00	1 3895.92	
32	RECT_OPEN	0.30 1.5	0.27 5.00	1 3895.92	
33	RECT_OPEN	0.30 1.5	0.27 5.00	1 7185.63	
35	RECT_OPEN	0.30 1.5	0.27 5.00	1 280.54	
37	RECT_OPEN	0.30 1.5	0.27 5.00	1 8360.04	
4	RECT_OPEN	0.30 1.50	0 0.27 5.00	1 4267.82	
5	TRIANGULAR	0.30 0.4	5 0.15 3.00	1 732.55	
6	CIRCULAR	0.20 0.03	0.05 0.20	1 78.48	
7	RECT_OPEN	0.35 1.09	5 0.28 3.00	1 1158.84	
9	CIRCULAR	0.25 0.05	0.06 0.25	1 74.03	
A15A(OU	T) CIRCULAR	0.20	0.03 0.05 0	0.20 1 239.54	
B19(OUT)	CIRCULAR	0.30	0.07 0.07 0.	30 1 130.41	
C01	HALF(A1-A1)S	cholastic(13m	ROW) 0.30	1.12 0.17 6.51	1 4235.12
C02	HALF(A1-A1)S	cholastic(13m	ROW) 0.30	1.12 0.17 6.51	1 3365.43
C03	HALF(A-A)Sch	olastic(10.5mF	ROW) 0.30 1	1.03 0.19 5.26	1 1557.63
C04	(I-I)Telmon(up	per)(16mROV	/) 0.30 2.52	0.16 16.00 1	2075.23
C05	(I-I)Telmon(up	per)(16mROV	/) 0.30 2.52	0.16 16.00 1	1973.36
C06	(B-B)Telmon(lo	ower)(16mRO	W) 0.30 2.5	2 0.16 16.00	1 3395.06
C07	(B-B)Telmon(lo	ower)(16mRO	W) 0.30 2.5	2 0.16 16.00	1 11917.03
C08	(D-D)Oblates(ı	upper)(20mRC	OW) 0.30 3.0	07 0.15 20.00	1 7030.75
C09	(D-D)Oblates(upper)(20mRC	OW) 0.30 3.0	07 0.15 20.00	1 6889.65
C10	(E1-E1)Descha	telets(upper):	16.5mROW 0.3	30 2.61 0.16 16	5.50 1 2032.76

C100	Ditch 0.30 0.45 0.15 3.00 1 472.89
C101	Ditch 0.30 0.45 0.15 3.00 1 697.31
C102	RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55
C103	(PVT)PrivateSt(11mROW) 0.30 2.15 0.20 11.00 1 5020.42
C104	(PVT)PrivateSt(11mROW) 0.30 2.15 0.20 11.00 1 1882.67
C105	RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55
C106	(D-D)Oblates(upper)(20mROW) 0.30 3.07 0.15 20.00 1 2989.65
C107	RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55
C108	(D-D)Oblates(upper)(20mROW) 0.30 3.07 0.15 20.00 1 9207.72
C109	RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55
C11	(E-E)DeMazenod(16.5mROW) 0.30 2.61 0.16 16.50 1 3206.46
C110	(PVT)PrivateSt(11mROW) 0.30 2.15 0.20 11.00 1 7037.47
C111	RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55
C112	(D-D)Oblates(upper)(20mROW) 0.30 3.07 0.15 20.00 1 10379.60
C113	RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55
C114	(PVT)PrivateSt(11mROW) 0.30 2.15 0.20 11.00 1 6833.62
C115	RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55
C116	(PVT)PrivateSt(11mROW) 0.30 2.15 0.20 11.00 1 4446.87
C117	RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55
C118	(D-D)Oblates(upper)(20mROW) 0.30 3.07 0.15 20.00 1 9418.73
C119	RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55
C12	(D-D)Oblates(upper)(20mROW) 0.30 3.07 0.15 20.00 1 2876.74
C120	(A2-A2)Sanctuary(11mROW) 0.30 2.15 0.20 11.00 1 4264.44
C121	RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55
C122	(A2-A2)Sanctuary(11mROW) 0.30 2.15 0.20 11.00 1 8857.21
C123	HALF(A2-A2)Sanctuary(11mROW) 0.30 1.07 0.19 5.51 1 1704.48
C124	CIRCULAR 0.38 0.11 0.09 0.38 4 175.35
C125	RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55
C126	RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55
C127	HALF(A1-A1)Scholastic(13mROW) 0.30 1.12 0.17 6.51 1 3864.56
C128	RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55
C129	HALF(A1-A1)Scholastic(13mROW) 0.30 1.12 0.17 6.51 1 2853.13
C13	(E-E)DeMazenod(16.5mROW) 0.30 2.61 0.16 16.50 1 4859.44
C130	(PVT)PrivateSt(11mROW) 0.30 2.15 0.20 11.00 1 4697.71
C131	RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55
C132	HALF(A2-A2)Sanctuary(11mROW) 0.30 1.07 0.19 5.51 1 546.69

C133	RECT_OPEN	0.30	1.50	0.28	5.00) 1	315.55	
C134	(PVT)PrivateSt(1	.1mRO\	N) 0.3	30 2.	15 0	.20 1	1.00 1	2031.05
C135	Ditch 0.	30 0.	4 5 0.	15 3.	00	1 733	3.48	
C136	Ditch 0.	30 0.	4 5 0.	15 3.	00	1 117	7.71	
C137	(B-B)Telmon(low	ver)(16	mROW)	0.30	2.52	2 0.1	.6 16.00	1 2889.48
C138	Ditch 0.	30 0.	45 0.	15 3.	00	1 973	3.34	
C139	Ditch 0.	30 0.	4 5 0.	15 3.	00	1 619	9.03	
C14	(E-E)DeMazenod	(16.5m	ROW)	0.30	2.61	0.16	16.50	1 6893.11
C140	CIRCULAR	0.30	0.07	0.07	0.30	1	66.91	
C141	CIRCULAR	0.38	0.11	0.09	0.38	1	126.34	
C142	CIRCULAR	0.30	0.07	0.07	0.30	1	59.41	
C143	CIRCULAR	0.45	0.16	0.11	0.45	1	181.20	
C144	CIRCULAR	0.45	0.16	0.11	0.45	1	145.19	
C145_1	CIRCULAR	0.38	0.11	0.09	0.38	3 1	127.65	
C145_2	CIRCULAR	0.38	0.11	0.09	0.38	3 1	123.60	
C146	CIRCULAR	0.82	0.53	0.21	0.82	1 :	1173.98	
C147	CIRCULAR	0.82	0.53	0.21	0.82	1 :	1012.27	
C148	CIRCULAR	0.82	0.53	0.21	0.82	1 :	1016.50	
C149	CIRCULAR	0.90	0.64	0.23	0.90	1 :	1270.86	
C15	(I-I)Telmon(uppe	r)(16m	ROW)	0.30	2.52	0.16	16.00	1 3502.31
C150	CIRCULAR	0.90	0.64	0.23	0.90	1 :	1867.36	
C151	CIRCULAR	0.60	0.28	0.15	0.60	1	274.61	
C152	CIRCULAR	0.53	0.22	0.13	0.53	1	216.80	
C153	CIRCULAR	0.60	0.28	0.15	0.60	1	330.17	
C154	CIRCULAR	0.45	0.16	0.11	0.45	1	148.33	
C155	CIRCULAR	0.38	0.11	0.09	0.38	1	121.98	
C156_1	CIRCULAR	0.75	0.44	0.19	0.75	5 1	796.19	
C156_2	CIRCULAR	0.75	0.44	0.19	0.75	5 1	796.40	
C158	CIRCULAR	0.30	0.07	0.07	0.30	1	68.80	
C159	CIRCULAR	0.75	0.44	0.19	0.75	1	750.24	
C16	(G-G)Hazel(15mF	ROW)	0.30	2.34	0.15	15.00	1 388	30.91
C160	CIRCULAR	0.75	0.44	0.19	0.75	1	612.65	
C161	CIRCULAR	0.25	0.05	0.06	0.25	1	42.04	
C162	CIRCULAR	0.25	0.05	0.06	0.25	1	42.08	
C163	CIRCULAR	0.53	0.22	0.13	0.53	1	349.14	
C164	CIRCULAR	0.25	0.05	0.06	0.25	1	42.01	

C165	CIRCULAR	0.25	0.05	0.06	0.25	1	42.08			
C166	CIRCULAR	0.75	0.44	0.19	0.75	1	567.14			
C167	CIRCULAR	0.60	0.28	0.15	0.60	1	255.71			
C168	CIRCULAR	0.60	0.28	0.15	0.60	1	318.94			
C169	CIRCULAR	0.53	0.22	0.13	0.53	1	218.18			
C17	(G-G)Hazel(15n	nROW)	0.30	2.34	0.15	15.0	0 1	3665.07		
C170	CIRCULAR	0.45	0.16	0.11	0.45	1	158.79			
C171	CIRCULAR	0.38	0.11	0.09	0.38	1	63.67			
C172	CIRCULAR	0.25	0.05	0.06	0.25	1	79.63			
C173	CIRCULAR	0.45	0.16	0.11	0.45	1	197.55			
C174	CIRCULAR	0.53	0.22	0.13	0.53	1	211.15			
C175	CIRCULAR	0.30	0.07	0.07	0.30	1	59.02			
C176	CIRCULAR	0.38	0.11	0.09	0.38	1	97.24			
C177	CIRCULAR	0.25	0.05	0.06	0.25	1	42.31			
C178	CIRCULAR	0.30	0.07	0.07	0.30	1	68.31			
C179	CIRCULAR	0.25	0.05	0.06	0.25	1	42.11			
C18	(G-G)Hazel(15n	nROW)	0.30	2.34	0.15	15.0	0 1	7017.20		
C180	CIRCULAR	0.25	0.05	0.06	0.25	1	42.16			
C181	CIRCULAR	0.25	0.05	0.06	0.25	1	43.23			
C182	CIRCULAR	0.38	0.11	0.09	0.38	1	123.39			
C183	CIRCULAR	0.90	0.64	0.23	0.90	1	2256.85	5		
C184	CIRCULAR	0.90	0.64	0.23	0.90	1	1961.65	5		
C185	CIRCULAR	0.38	0.11	0.09	0.38	1	120.77			
C186	CIRCULAR	0.60	0.28	0.15	0.60	1	465.90			
C187	CIRCULAR	0.45	0.16	0.11	0.45	1	194.83			
C188	CIRCULAR	0.25	0.05	0.06	0.25	1	104.41			
C189	CIRCULAR	0.25	0.05	0.06	0.25	1	79.49			
C19	HALF(A2-A2)Sa	nctuary(11mRO	W) 0	.30 1	.07	0.19	5.51	1 4640).52
C190	CIRCULAR	0.30	0.07	0.07	0.30	1	175.34			
C191	CIRCULAR	0.30	0.07	0.07	0.30	1	190.84			
C192	CIRCULAR	0.38	0.11	0.09	0.38	1	298.34			
C193	CIRCULAR	0.60	0.28	0.15	0.60	1	315.00			
C194	CIRCULAR	0.25	0.05	0.06	0.25	1	105.14			
C195	CIRCULAR	0.25	0.05	0.06	0.25	1	103.69			
C196	CIRCULAR	0.25	0.05	0.06	0.25	1	142.54			
C197	CIRCULAR	0.38	0.11	0.09	0.38	1	116.36			

C198	CIRCULAR 0.25 0.05 0.06 0.25 1 20.12
C199	CIRCULAR 0.38 0.11 0.09 0.38 1 129.71
C20	(H-H)Oblates(lower)12.2mROW 0.30 2.13 0.18 12.20 1 1196.90
C200	CIRCULAR 0.38 0.11 0.09 0.38 1 91.76
C201	CIRCULAR 0.30 0.07 0.07 0.30 1 186.35
C202	CIRCULAR 0.38 0.11 0.09 0.38 1 310.74
C203	CIRCULAR 0.38 0.11 0.09 0.38 1 327.01
C204	CIRCULAR 0.38 0.11 0.09 0.38 1 271.68
C205	CIRCULAR 0.38 0.11 0.09 0.38 1 111.88
C206	CIRCULAR 0.75 0.44 0.19 0.75 1 832.04
C207	CIRCULAR 0.75 0.44 0.19 0.75 1 497.90
C208	CIRCULAR 0.60 0.28 0.15 0.60 1 274.61
C209	CIRCULAR 0.75 0.44 0.19 0.75 1 704.14
C21	(D-D)Oblates(upper)(20mROW) 0.30 3.07 0.15 20.00 1 5436.68
C210	CIRCULAR 0.75 0.44 0.19 0.75 1 520.93
C211	CIRCULAR 0.75 0.44 0.19 0.75 1 650.65
C212	CIRCULAR 0.60 0.28 0.15 0.60 1 274.61
C213	CIRCULAR 0.60 0.28 0.15 0.60 1 47.94
C22	(F-F)Deschatelets(lower)(17.5mROW) 0.30 2.77 0.16 17.50 1 3320.08
C23	(D-D)Oblates(upper)(20mROW) 0.30 3.07 0.15 20.00 1 9233.09
C24	(D-D)Oblates(upper)(20mROW) 0.30 3.07 0.15 20.00 111165.49
C25	(F-F)Deschatelets(lower)(17.5mROW) 0.30 2.77 0.16 17.50 1 2598.18
C26	(F-F)Deschatelets(lower)(17.5mROW) 0.30 2.77 0.16 17.50 1 3402.69
C27_1	(E1-E1)Deschatelets(upper)16.5mROW 0.30 2.61 0.16 16.50 1 5157.14
C27_2	(E1-E1)Deschatelets(upper)16.5mROW 0.30 2.61 0.16 16.50 1 5154.43
C28	(E1-E1)Deschatelets(upper)16.5mROW 0.30 2.61 0.16 16.50 1 4261.64
C29	(D-D)Oblates(upper)(20mROW) 0.30 3.07 0.15 20.00 1 8511.47
C30	(PVT)PrivateSt(11mROW) 0.30 2.15 0.20 11.00 1 5203.58
C31	(PVT)PrivateSt(11mROW) 0.30 2.15 0.20 11.00 1 8857.33
C32	(PVT)PrivateSt(11mROW) 0.30 2.15 0.20 11.00 1 9645.59
C33	(PVT)PrivateSt(11mROW) 0.30 2.15 0.20 11.00 1 7203.39
C34	(A2-A2)Sanctuary(11mROW) 0.30 2.15 0.20 11.00 1 6649.28
C35	(A2-A2)Sanctuary(11mROW) 0.30 2.15 0.20 11.00 1 3775.78
C36	(A2-A2)Sanctuary(11mROW) 0.30 2.15 0.20 11.00 1 3537.20
C37	(D-D)Oblates(upper)(20mROW) 0.30 3.07 0.15 20.00 1 4519.38
C38	(PVT)PrivateSt(11mROW) 0.30 2.15 0.20 11.00 1 7465.18

C39	RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55
C40	(PVT)PrivateSt(11mROW) 0.30 2.15 0.20 11.00 1 2375.48
C41	(B-B)Telmon(lower)(16mROW) 0.30 2.52 0.16 16.00 1 4356.13
C42	RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55
C43	(E-E)DeMazenod(16.5mROW) 0.30 2.61 0.16 16.50 1 3612.18
C44	RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55
C45	(E-E)DeMazenod(16.5mROW) 0.30 2.61 0.16 16.50 1 4077.31
C46	RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55
C47	(D-D)Oblates(upper)(20mROW) 0.30 3.07 0.15 20.00 1 2056.86
C48	RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55
C49	(I-I)Telmon(upper)(16mROW) 0.30 2.52 0.16 16.00 1 3719.08
C50	RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55
C51	HALF(A-A)Scholastic(10.5mROW) 0.30 1.03 0.19 5.26 1 706.51
C52	RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55
C53	HALF(A-A)Scholastic(10.5mROW) 0.30 1.03 0.19 5.26 1 1205.98
C54	RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55
C55	(D-D)Oblates(upper)(20mROW) 0.30 3.07 0.15 20.00 1 5575.75
C56	RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55
657	
C57	HALF(A-A)Scholastic(10.5mROW) 0.30 1.03 0.19 5.26 1 1010.61
C57	HALF(A-A)Scholastic(10.5mROW) 0.30 1.03 0.19 5.26 1 1010.61 HALF(A1-A1)Scholastic(13mROW) 0.30 1.12 0.17 6.51 1 1559.67
C58	HALF(A1-A1)Scholastic(13mROW) 0.30 1.12 0.17 6.51 1 1559.67
C58 C59	HALF(A1-A1)Scholastic(13mROW) 0.30 1.12 0.17 6.51 1 1559.67 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55
C58 C59 C60	HALF(A1-A1)Scholastic(13mROW) 0.30 1.12 0.17 6.51 1 1559.67 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 (E-E)DeMazenod(16.5mROW) 0.30 2.61 0.16 16.50 1 2224.30
C58 C59 C60 C61	HALF(A1-A1)Scholastic(13mROW) 0.30 1.12 0.17 6.51 1 1559.67 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 (E-E)DeMazenod(16.5mROW) 0.30 2.61 0.16 16.50 1 2224.30 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55
C58 C59 C60 C61 C62	HALF(A1-A1)Scholastic(13mROW) 0.30 1.12 0.17 6.51 1 1559.67 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 (E-E)DeMazenod(16.5mROW) 0.30 2.61 0.16 16.50 1 2224.30 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 (E1-E1)Deschatelets(upper)16.5mROW 0.30 2.61 0.16 16.50 1 6923.35
C58 C59 C60 C61 C62 C63	HALF(A1-A1)Scholastic(13mROW) 0.30 1.12 0.17 6.51 1 1559.67 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 1 2224.30 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 1 2224.30 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 1 6.50 1 6923.35 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 1 6.50 1 6923.35
C58 C59 C60 C61 C62 C63 C64	HALF(A1-A1)Scholastic(13mROW) 0.30 1.12 0.17 6.51 1 1559.67 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 (E-E)DeMazenod(16.5mROW) 0.30 2.61 0.16 16.50 1 2224.30 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 (E1-E1)Deschatelets(upper)16.5mROW 0.30 2.61 0.16 16.50 1 6923.35 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 (G-G)Hazel(15mROW) 0.30 2.34 0.15 15.00 1 1877.10
C58 C59 C60 C61 C62 C63 C64 C65	HALF(A1-A1)Scholastic(13mROW) 0.30 1.12 0.17 6.51 1 1559.67 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 (E-E)DeMazenod(16.5mROW) 0.30 2.61 0.16 16.50 1 2224.30 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 (E1-E1)Deschatelets(upper)16.5mROW 0.30 2.61 0.16 16.50 1 6923.35 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 (G-G)Hazel(15mROW) 0.30 2.34 0.15 15.00 1 1877.10 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55
C58 C59 C60 C61 C62 C63 C64 C65	HALF(A1-A1)Scholastic(13mROW) 0.30 1.12 0.17 6.51 1 1559.67 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 (E-E)DeMazenod(16.5mROW) 0.30 2.61 0.16 16.50 1 2224.30 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 (E1-E1)Deschatelets(upper)16.5mROW 0.30 2.61 0.16 16.50 1 6923.35 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 (G-G)Hazel(15mROW) 0.30 2.34 0.15 15.00 1 315.55 (G-G)Hazel(15mROW) 0.30 2.34 0.15 15.00 1 3256.87
C58 C59 C60 C61 C62 C63 C64 C65 C66	HALF(A1-A1)Scholastic(13mROW) 0.30 1.12 0.17 6.51 1 1559.67 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 1 2224.30 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 1 2224.30 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 1 6.50 1 6923.35 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 1 1877.10 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 1 3256.87 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 1 3256.87 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 1 3256.87
C58 C59 C60 C61 C62 C63 C64 C65 C66 C67	HALF(A1-A1)Scholastic(13mROW) 0.30 1.12 0.17 6.51 1 1559.67 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 1 2224.30 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 1 2224.30 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 1 6.50 1 6923.35 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 1 1877.10 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 1 3256.87 (G-G)Hazel(15mROW) 0.30 1.50 0.28 5.00 1 315.55 1 3256.87 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 1 3256.87 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 1 3256.87 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.00 1 3256.87 RECT_OPEN 0.30 1.50 0.28 5.00 1 31.00 <t< td=""></t<>
C58 C59 C60 C61 C62 C63 C64 C65 C66 C67 C68 C69	HALF(A1-A1)Scholastic(13mROW) 0.30 1.12 0.17 6.51 1 1559.67 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 1 2224.30 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 1 2224.30 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 1 6.50 1 6923.35 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 1 6923.35 (G-G)Hazel(15mROW) 0.30 1.50 0.28 5.00 1 315.55 1 877.10 RECT_OPEN 0.30 1.50 0.28 5.00 1 315.55 1 3256.87 (G-G)Hazel(15mROW) 0.30 1.50 0.28 5.00 1 315.55 1 3256.87 (PVT)PrivateSt(11mROW) 0.30 2.15 0.20 1 0.2 1 0.2 1 8121.33 Ditch 0.30 0.45 0.15 3.00 1 2554.13 1 0.2 1 8121.33
C58 C59 C60 C61 C62 C63 C64 C65 C66 C67 C68 C69	HALF(A1-A1)Scholastic(13mROW)
C58 C59 C60 C61 C62 C63 C64 C65 C66 C67 C68 C69 C70	HALF(A1-A1)Scholastic(13mROW)

```
C75
         Ditch
                   0.30 0.45 0.15 3.00
C76
         RECT OPEN
                       0.30 1.50 0.28 5.00
                                             1 315.55
C77
        (E1-E1)Deschatelets(upper)16.5mROW 0.30 2.61 0.16 16.50
                                                                1 3355.76
         RECT_OPEN
C78
                       0.30 1.50 0.28 5.00
                                              1 315.55
        (PVT)PrivateSt(11mROW) 0.30 2.15 0.20 11.00 1 2564.21
C79
         RECT OPEN
                       0.30 1.50 0.28 5.00
C80
                                              1 315.55
C81
        (PVT)PrivateSt(11mROW) 0.30 2.15 0.20 11.00 1 5833.00
C82
         RECT_OPEN
                       0.30 1.50 0.28 5.00
                                              1 315.55
C83
        (PVT)PrivateSt(11mROW) 0.30 2.15 0.20 11.00 1 5072.27
                                              1 315.55
C84
         RECT_OPEN
                       0.30 1.50 0.28 5.00
        (PVT)PrivateSt(11mROW) 0.30 2.15 0.20 11.00 1 3257.14
C85
         RECT_OPEN
C86
                       0.30 1.50 0.28 5.00
                                              1 315.55
        (PVT)PrivateSt(11mROW) 0.30 2.15 0.20 11.00 1 5042.43
C87
         RECT_OPEN
                       0.30 1.50 0.28 5.00
C88
                                              1 315.55
        (PVT)PrivateSt(11mROW) 0.30 2.15 0.20 11.00 1 6594.57
C89
C90
         RECT OPEN
                       0.30 1.50 0.28 5.00
                                              1 315.55
C91
        (F-F)Deschatelets(lower)(17.5mROW) 0.30 2.77 0.16 17.50
                                                               1 3622.38
         RECT_OPEN
C92
                       0.30 1.50 0.28 5.00
                                              1 315.55
C93
        (F-F)Deschatelets(lower)(17.5mROW) 0.30 2.77 0.16 17.50
                                                                1 3200.63
         RECT_OPEN
C94
                       0.30 1.50 0.28 5.00
                                              1 315.55
        (H-H)Oblates(lower)12.2mROW 0.30 2.13 0.18 12.20
                                                         1 4506.89
C95
         RECT_OPEN
                                              1 315.55
C96
                       0.30 1.50 0.28 5.00
        (H-H)Oblates(lower)12.2mROW 0.30 2.13 0.18 12.20
C97
                                                           1 2900.43
         RECT OPEN
C98
                       0.30 1.50 0.28 5.00
                                              1 315.55
C99
         (H-H)Oblates(lower)12.2mROW 0.30 2.13 0.18 12.20
                                                          1 4656.58
         CIRCULAR
                                              1 110.16
OR52
                       0.38 0.11 0.09 0.38
          CIRCULAR
                       0.25 0.05 0.06 0.25
                                             1 83.92
STM-15
           CIRCULAR
STM-390
                        0.30 0.07 0.07 0.30
                                              1 95.76
          CIRCULAR
STM-68
                       0.25 0.05 0.06 0.25
                                             1 58.89
Weir-Outlet1 RECT_OPEN
                          0.90 2.16 0.51 2.40
                                                 1 4770.04
Weir-Outlet2 RECT_OPEN
                          0.75 1.35 0.41 1.80
                                                 1 3619.61
```

Transect	Δ1-Δ1	Scholastic	(13mROW)
Hallsett	MT-MT	iociioiastici	TOUROW

Λ	ros	٠.

ect (A1-A	1)Scholast	ic(13mRC	W)	
0.0005	0.0021	0.0048	0.0085	0.0133
0.0192	0.0262	0.0342	0.0433	0.0534
0.0646	0.0769	0.0902	0.1047	0.1201
0.1367	0.1543	0.1730	0.1928	0.2129
0.2330	0.2531	0.2732	0.2934	0.3135
0.3339	0.3549	0.3765	0.3987	0.4215
0.4448	0.4687	0.4933	0.5184	0.5441
0.5704	0.5972	0.6247	0.6528	0.6814
0.7106	0.7404	0.7708	0.8018	0.8334
0.8655	0.8983	0.9316	0.9655	1.0000
0.0167	0.0334	0.0500	0.0667	0.0834
0.1001	0.1167	0.1334	0.1501	0.1668
0.1835	0.2001	0.2168	0.2335	0.2502
0.2669	0.2835	0.3002	0.3196	0.3524
0.3851	0.4177	0.4502	0.4826	0.5149
0.5473	0.5782	0.6077	0.6359	0.6628
0.6885	0.7129	0.7362	0.7584	0.7796
0.7997	0.8189	0.8372	0.8546	0.8712
0.8870	0.9021	0.9164	0.9301	0.9432
0.9557	0.9675	0.9789	0.9897	1.0000
n:				
0.0307	0.0614	0.0921	0.1228	0.1535
0.1842	0.2149	0.2456	0.2763	0.3069
0.3376	0.3683	0.3990	0.4297	0.4604
	0.0005 0.0192 0.0646 0.1367 0.2330 0.3339 0.4448 0.5704 0.7106 0.8655 0.0167 0.1001 0.1835 0.2669 0.3851 0.5473 0.6885 0.7997 0.8870 0.9557	0.0005 0.0021 0.0192 0.0262 0.0646 0.0769 0.1367 0.1543 0.2330 0.2531 0.3339 0.3549 0.4448 0.4687 0.5704 0.5972 0.7106 0.7404 0.8655 0.8983 0.0167 0.0334 0.1001 0.1167 0.1835 0.2001 0.2669 0.2835 0.3851 0.4177 0.5473 0.5782 0.6885 0.7129 0.7997 0.8189 0.8870 0.9021 0.9557 0.9675 at: 0.0307 0.0614	0.0005 0.0021 0.0048 0.0192 0.0262 0.0342 0.0646 0.0769 0.0902 0.1367 0.1543 0.1730 0.2330 0.2531 0.2732 0.3448 0.4687 0.4933 0.5704 0.5972 0.6247 0.7106 0.7404 0.7708 0.8655 0.8983 0.9316 0.1001 0.1167 0.1334 0.1835 0.2001 0.2168 0.2669 0.2835 0.3002 0.5473 0.5782 0.6077 0.6885 0.7129 0.7362 0.7997 0.8189 0.8372 0.8870 0.9021 0.9164 0.9557 0.9675 0.9789 0.0307 0.0614 0.0921 0.1842 0.2149 0.2456	0.01922 0.02622 0.03422 0.0433 0.0646 0.0769 0.0902 0.1047 0.1367 0.1543 0.1730 0.1928 0.2330 0.2531 0.2732 0.2934 0.34448 0.4687 0.4933 0.5184 0.5704 0.5972 0.6247 0.6528 0.7106 0.7404 0.7708 0.8018 0.8655 0.8983 0.9316 0.9655 0.1001 0.1167 0.1334 0.1501 0.1835 0.2001 0.2168 0.2335 0.2669 0.2835 0.3002 0.3196 0.5473 0.5782 0.6077 0.6359 0.6885 0.7129 0.7362 0.7584 0.7997 0.8189 0.8372 0.8546 0.8870 0.9021 0.9164 0.9301 0.9557 0.9675 0.9789 0.9897 0.0307 0.0614 0.0921 0.1228 0.1842 0.2456 0.2763

0.0307	0.0614	0.0921	0.1228	0.1535
0.1842	0.2149	0.2456	0.2763	0.3069
0.3376	0.3683	0.3990	0.4297	0.4604
0.4911	0.5218	0.5525	0.5781	0.5782
0.5782	0.5783	0.5783	0.5784	0.5785
0.5953	0.6122	0.6290	0.6459	0.6628
0.6796	0.6965	0.7134	0.7302	0.7471
0.7639	0.7808	0.7977	0.8145	0.8314
0.8482	0.8651	0.8820	0.8988	0.9157
0.9326	0.9494	0.9663	0.9831	1.0000

Λ	,	^	_	

	0.0006	0.0022	0.0050	0.0090	0.0140
	0.0202	0.0274	0.0358	0.0453	0.0560
	0.0677	0.0806	0.0946	0.1097	0.1259
	0.1433	0.1618	0.1814	0.2021	0.2239
	0.2463	0.2687	0.2911	0.3135	0.3359
	0.3585	0.3814	0.4046	0.4282	0.4521
	0.4763	0.5009	0.5258	0.5510	0.5766
	0.6025	0.6287	0.6553	0.6822	0.7094
	0.7369	0.7648	0.7931	0.8216	0.8505
	0.8798	0.9093	0.9392	0.9694	1.0000
Hrad:					
	0.0148	0.0295	0.0443	0.0591	0.0738
	0.0886	0.1034	0.1181	0.1329	0.1476
	0.1624	0.1772	0.1919	0.2067	0.2215
	0.2362	0.2510	0.2658	0.2805	0.2953
	0.3243	0.3533	0.3822	0.4110	0.4398
	0.4688	0.4971	0.5249	0.5520	0.5785
	0.6044	0.6297	0.6544	0.6786	0.7022
	0.7254	0.7479	0.7700	0.7916	0.8127
	0.8334	0.8536	0.8733	0.8926	0.9115
	0.9300	0.9481	0.9657	0.9831	1.0000
Widtl	n:				
	0.0364	0.0729	0.1093	0.1457	0.1822
	0.2186	0.2551	0.2915	0.3279	0.3644
	0.4008	0.4372	0.4737	0.5101	0.5465
	0.5830	0.6194	0.6559	0.6923	0.7287
	0.7288	0.7289	0.7289	0.7290	0.7291
	0.7399	0.7508	0.7616	0.7724	0.7833
	0.7941	0.8049	0.8158	0.8266	0.8375
	0.8483	0.8591	0.8700	0.8808	0.8916
	0.9025	0.9133	0.9241	0.9350	0.9458
	0.9567	0.9675	0.9783	0.9892	1.0000

Transect (A-A)Scholastic(10.5mROW)

Λ	raa	i
н	ıea	ı

	0.0006	0.0023	0.0052	0.0093	0.0146
	0.0210	0.0286	0.0373	0.0472	0.0583
	0.0705	0.0839	0.0985	0.1142	0.1311
	0.1492	0.1684	0.1888	0.2104	0.2323
	0.2543	0.2762	0.2982	0.3201	0.3421
	0.3642	0.3867	0.4096	0.4327	0.4563
	0.4801	0.5044	0.5290	0.5539	0.5791
	0.6048	0.6307	0.6570	0.6837	0.7107
	0.7381	0.7658	0.7939	0.8223	0.8510
	0.8801	0.9096	0.9394	0.9695	1.0000
Hrad:					
	0.0147	0.0294	0.0441	0.0588	0.0735
	0.0882	0.1029	0.1176	0.1323	0.1470
	0.1617	0.1764	0.1911	0.2058	0.2205
	0.2352	0.2499	0.2646	0.2816	0.3105
	0.3394	0.3681	0.3967	0.4253	0.4538
	0.4826	0.5107	0.5381	0.5649	0.5910
	0.6165	0.6414	0.6657	0.6894	0.7125
	0.7351	0.7571	0.7786	0.7995	0.8200
	0.8400	0.8595	0.8786	0.8972	0.9153
	0.9331	0.9504	0.9673	0.9838	1.0000
Width	n:				
	0.0380	0.0760	0.1140	0.1520	0.1900
	0.2280	0.2660	0.3040	0.3420	0.3800
	0.4180	0.4560	0.4940	0.5320	0.5700
	0.6080	0.6460	0.6841	0.7157	0.7158
	0.7159	0.7160	0.7160	0.7161	0.7162
	0.7275	0.7389	0.7502	0.7616	0.7730
	0.7843	0.7957	0.8070	0.8184	0.8297
	0.8411	0.8524	0.8638	0.8751	0.8865
	0.8978	0.9092	0.9205	0.9319	0.9432
	0.9546	0.9659	0.9773	0.9886	1.0000

Area:					
	0.0005	0.0019	0.0043	0.0076	0.0119
	0.0172	0.0234	0.0305	0.0386	0.0477
	0.0577	0.0686	0.0805	0.0934	0.1072
	0.1220	0.1377	0.1544	0.1720	0.1906
	0.2097	0.2288	0.2478	0.2669	0.2860
	0.3054	0.3256	0.3466	0.3683	0.3908
	0.4141	0.4381	0.4628	0.4884	0.5146
	0.5417	0.5695	0.5981	0.6274	0.6575
	0.6883	0.7199	0.7522	0.7854	0.8192
	0.8539	0.8893	0.9254	0.9623	1.0000
Hrad:					
	0.0186	0.0373	0.0559	0.0745	0.0932
	0.1118	0.1304	0.1490	0.1677	0.1863
	0.2049	0.2236	0.2422	0.2608	0.2795
	0.2981	0.3167	0.3354	0.3540	0.3726
	0.4093	0.4459	0.4823	0.5187	0.5549
	0.5908	0.6246	0.6563	0.6859	0.7136
	0.7395	0.7637	0.7862	0.8072	0.8268
	0.8451	0.8620	0.8778	0.8925	0.9062
	0.9190	0.9308	0.9418	0.9521	0.9616
	0.9705	0.9787	0.9863	0.9934	1.0000
Width	n:				
	0.0251	0.0501	0.0752	0.1002	0.1253
	0.1503	0.1754	0.2004	0.2255	0.2505
	0.2756	0.3006	0.3257	0.3507	0.3758
	0.4008	0.4259	0.4509	0.4760	0.5010
	0.5011	0.5011	0.5012	0.5012	0.5013
	0.5212	0.5412	0.5611	0.5811	0.6010
	0.6210	0.6409	0.6609	0.6808	0.7008
	0.7207	0.7407	0.7606	0.7806	0.8005
	0.8205	0.8404	0.8604	0.8803	0.9002

Transect (C-C)Oblates(mid)(19mROW)

0.9202 0.9402 0.9601 0.9801 1.0000

	0.0004	0.0016	0.0036	0.0064	0.0100
	0.0145	0.0197	0.0257	0.0325	0.0401
	0.0486	0.0578	0.0678	0.0787	0.0903
	0.1028	0.1160	0.1301	0.1449	0.1606
	0.1770	0.1943	0.2123	0.2312	0.2509
	0.2717	0.2939	0.3175	0.3418	0.3667
	0.3923	0.4185	0.4454	0.4729	0.5011
	0.5299	0.5593	0.5893	0.6201	0.6514
	0.6834	0.7160	0.7493	0.7832	0.8177
	0.8529	0.8887	0.9252	0.9623	1.0000
Hrad	:				
	0.0190	0.0380	0.0570	0.0760	0.0950
	0.1140	0.1329	0.1519	0.1709	0.1899
	0.2089	0.2279	0.2469	0.2659	0.2849
	0.3039	0.3229	0.3419	0.3609	0.3798
	0.3988	0.4178	0.4368	0.4558	0.4748
	0.4935	0.5106	0.5355	0.5680	0.5991
	0.6288	0.6572	0.6843	0.7102	0.7349
	0.7586	0.7811	0.8027	0.8234	0.8432
	0.8621	0.8801	0.8975	0.9140	0.9299
	0.9452	0.9597	0.9737	0.9871	1.0000
Widt	h:				
	0.0211	0.0422	0.0633	0.0844	0.1055
	0.1266	0.1477	0.1688	0.1899	0.2109
	0.2320	0.2531	0.2742	0.2953	0.3164
	0.3375	0.3586	0.3797	0.4008	0.4219
	0.4430	0.4641	0.4852	0.5063	0.5274
	0.5652	0.6031	0.6304	0.6472	0.6640
	0.6808	0.6976	0.7144	0.7312	0.7480
	0.7648	0.7816	0.7984	0.8152	0.8320
	0.8488	0.8656	0.8824	0.8992	0.9160
	0.9328	0.9496	0.9664	0.9832	1.0000

Transect (D-D)Oblates(upper)(20mROW)

Area:

0.0004 0.0016 0.0035 0.0063 0.0098

	0.0141	0.0192	0.0251	0.0317	0.0392
	0.0474	0.0564	0.0662	0.0768	0.0881
	0.1002	0.1132	0.1269	0.1414	0.1566
	0.1727	0.1895	0.2072	0.2256	0.2447
	0.2651	0.2869	0.3101	0.3341	0.3587
	0.3841	0.4102	0.4370	0.4645	0.4927
	0.5216	0.5513	0.5816	0.6126	0.6443
	0.6767	0.7098	0.7436	0.7781	0.8134
	0.8493	0.8859	0.9232	0.9613	1.0000
Hrad:					
	0.0197	0.0394	0.0590	0.0787	0.0984
	0.1181	0.1378	0.1574	0.1771	0.1968
	0.2165	0.2362	0.2558	0.2755	0.2952
	0.3149	0.3346	0.3543	0.3739	0.3936
	0.4133	0.4330	0.4527	0.4723	0.4920
	0.5113	0.5287	0.5539	0.5870	0.6183
	0.6481	0.6764	0.7032	0.7286	0.7528
	0.7757	0.7974	0.8181	0.8378	0.8564
	0.8742	0.8911	0.9071	0.9224	0.9370
	0.9508	0.9640	0.9766	0.9886	1.0000
Widtl	h:				
	0.0200	0.0401	0.0601	0.0802	0.1002
	0.1202	0.1403	0.1603	0.1804	0.2004
	0.2204	0.2405	0.2605	0.2806	0.3006
	0.3206	0.3407	0.3607	0.3808	0.4008
	0.4208	0.4409	0.4609	0.4810	0.5010
	0.5390	0.5769	0.6049	0.6228	0.6408
	0.6588	0.6767	0.6947	0.7126	0.7306
	0.7486	0.7665	0.7845	0.8024	0.8204
	0.8384	0.8563	0.8743	0.8922	0.9102
	0.9282	0.9461	0.9641	0.9820	1.0000

Transect (E1-E1)Deschatelets(upper)16.5mROW

0.0005	0.0018	0.0041	0.0073	0.0115
0.0165	0.0225	0.0294	0.0372	0.0459

	0.0555	0.0661	0.0776	0.0900	0.1033
	0.1175	0.1327	0.1487	0.1657	0.1836
	0.2024	0.2220	0.2416	0.2612	0.2808
	0.3007	0.3214	0.3428	0.3650	0.3879
	0.4115	0.4359	0.4610	0.4868	0.5134
	0.5407	0.5687	0.5975	0.6270	0.6572
	0.6882	0.7199	0.7524	0.7855	0.8194
	0.8541	0.8895	0.9256	0.9624	1.0000
Hrad:					
	0.0186	0.0373	0.0559	0.0745	0.0931
	0.1118	0.1304	0.1490	0.1677	0.1863
	0.2049	0.2235	0.2422	0.2608	0.2794
	0.2980	0.3167	0.3353	0.3539	0.3726
	0.3912	0.4218	0.4584	0.4949	0.5313
	0.5674	0.6014	0.6334	0.6636	0.6919
	0.7185	0.7434	0.7668	0.7887	0.8093
	0.8286	0.8466	0.8635	0.8794	0.8942
	0.9082	0.9212	0.9334	0.9449	0.9556
	0.9657	0.9751	0.9840	0.9922	1.0000
Nidth	n:				
	0.0242	0.0484	0.0726	0.0968	0.1210
	0.1452	0.1694	0.1936	0.2178	0.2420
	0.2662	0.2904	0.3146	0.3387	0.3629
	0.3871	0.4113	0.4355	0.4597	0.4839
	0.5081	0.5162	0.5163	0.5163	0.5164
	0.5357	0.5551	0.5744	0.5937	0.6131
	0.6324	0.6518	0.6711	0.6905	0.7098
	0.7292	0.7485	0.7679	0.7872	0.8065
	0.8259	0.8452	0.8646	0.8839	0.9033
	0.9226	0.9420	0.9613	0.9807	1.0000

Transect (E-E)DeMazenod(16.5mROW)

0.0005	0.0018	0.0041	0.0073	0.0115
0.0165	0.0225	0.0294	0.0372	0.0459
0.0555	0.0661	0.0776	0.0900	0.1033

	0.1175	0.1327	0.1487	0.1657	0.1836
	0.2024	0.2220	0.2416	0.2612	0.2808
	0.3007	0.3214	0.3428	0.3650	0.3879
	0.4115	0.4359	0.4610	0.4868	0.5134
	0.5407	0.5687	0.5975	0.6270	0.6572
	0.6882	0.7199	0.7524	0.7855	0.8194
	0.8541	0.8895	0.9256	0.9624	1.0000
Hrad	:				
	0.0186	0.0373	0.0559	0.0745	0.0931
	0.1118	0.1304	0.1490	0.1677	0.1863
	0.2049	0.2235	0.2422	0.2608	0.2794
	0.2980	0.3167	0.3353	0.3539	0.3726
	0.3912	0.4218	0.4584	0.4949	0.5313
	0.5674	0.6014	0.6334	0.6636	0.6919
	0.7185	0.7434	0.7668	0.7887	0.8093
	0.8286	0.8466	0.8635	0.8794	0.8942
	0.9082	0.9212	0.9334	0.9449	0.9556
	0.9657	0.9751	0.9840	0.9922	1.0000
Widt	h:				
	0.0242	0.0484	0.0726	0.0968	0.1210
	0.1452	0.1694	0.1936	0.2178	0.2420
	0.2662	0.2904	0.3146	0.3387	0.3629
	0.3871	0.4113	0.4355	0.4597	0.4839
	0.5081	0.5162	0.5163	0.5163	0.5164
	0.5357	0.5551	0.5744	0.5937	0.6131
	0.6324	0.6518	0.6711	0.6905	0.7098
	0.7292	0.7485	0.7679	0.7872	0.8065
	0.8259	0.8452	0.8646	0.8839	0.9033
	0.9226	0.9420	0.9613	0.9807	1.0000

Transect (F-F)Deschatelets(lower)(17.5mROW)

0.0004	0.0017	0.0039	0.0069	0.0108
0.0156	0.0212	0.0276	0.0350	0.0432
0.0523	0.0622	0.0730	0.0847	0.0972
0.1106	0.1248	0.1400	0.1559	0.1728

	0.1905	0.2091	0.2285	0.2488	0.2694
	0.2903	0.3120	0.3343	0.3573	0.3810
	0.4054	0.4305	0.4562	0.4827	0.5099
	0.5377	0.5662	0.5955	0.6254	0.6560
	0.6873	0.7193	0.7519	0.7853	0.8194
	0.8541	0.8895	0.9257	0.9625	1.0000
Hrad:					
	0.0187	0.0374	0.0561	0.0748	0.0935
	0.1121	0.1308	0.1495	0.1682	0.1869
	0.2056	0.2243	0.2430	0.2617	0.2804
	0.2991	0.3177	0.3364	0.3551	0.3738
	0.3925	0.4112	0.4299	0.4516	0.4884
	0.5248	0.5593	0.5921	0.6232	0.6526
	0.6805	0.7068	0.7318	0.7553	0.7777
	0.7988	0.8187	0.8377	0.8556	0.8725
	0.8885	0.9037	0.9181	0.9318	0.9447
	0.9570	0.9686	0.9796	0.9901	1.0000
Widtl	n:				
	0.0228	0.0456	0.0685	0.0913	0.1141
	0.1369	0.1598	0.1826	0.2054	0.2282
	0.2511	0.2739	0.2967	0.3195	0.3423
	0.3652	0.3880	0.4108	0.4336	0.4565
	0.4793	0.5021	0.5249	0.5440	0.5440
	0.5622	0.5805	0.5987	0.6170	0.6352
	0.6534	0.6717	0.6899	0.7082	0.7264
	0.7446	0.7629	0.7811	0.7994	0.8176
	0.8358	0.8541	0.8723	0.8906	0.9088
	0.9270	0.9453	0.9635	0.9818	1.0000
Trans	ect (G-G)I	Hazel(15m	ROW)		
Δrea.					

0.0	005	0.0021	0.0046	0.0082	0.0129
0.0	185	0.0252	0.0329	0.0417	0.0515
0.0	623	0.0741	0.0870	0.1009	0.1158
0.1	318	0.1488	0.1667	0.1847	0.2027
0.2	207	0.2388	0.2568	0.2748	0.2929

	0.3113	0.3306	0.3507	0.3716	0.3933
	0.4158	0.4392	0.4634	0.4884	0.5142
	0.5409	0.5683	0.5966	0.6257	0.6556
	0.6864	0.7180	0.7503	0.7835	0.8176
	0.8524	0.8881	0.9246	0.9619	1.0000
Hrad:					
	0.0188	0.0377	0.0565	0.0753	0.0942
	0.1130	0.1318	0.1507	0.1695	0.1883
	0.2072	0.2260	0.2448	0.2637	0.2825
	0.3013	0.3202	0.3481	0.3851	0.4220
	0.4588	0.4954	0.5319	0.5684	0.6047
	0.6406	0.6741	0.7052	0.7340	0.7606
	0.7851	0.8077	0.8284	0.8475	0.8649
	0.8809	0.8956	0.9089	0.9212	0.9323
	0.9424	0.9517	0.9600	0.9677	0.9745
	0.9808	0.9864	0.9914	0.9960	1.0000
Nidth	n:				
	0.0267	0.0534	0.0802	0.1069	0.1336
	0.1603	0.1870	0.2138	0.2405	0.2672
	0.2939	0.3206	0.3474	0.3741	0.4008
	0.4275	0.4542	0.4676	0.4677	0.4677
	0.4678	0.4678	0.4679	0.4679	0.4680
	0.4893	0.5106	0.5318	0.5531	0.5744
	0.5957	0.6170	0.6382	0.6595	0.6808
	0.7021	0.7234	0.7446	0.7659	0.7872
	0.8085	0.8298	0.8510	0.8723	0.8936
	0.9149	0.9362	0.9574	0.9787	1.0000
Frans	ect (H-H)C	Oblates(lo	wer)12.2r	nROW	

0.000	6 0	.0023	0.0051	0.0091	0.0141
0.020	4 0	.0277	0.0362	0.0458	0.0566
0.068	4 0	.0815	0.0956	0.1109	0.1273
0.144	8 0	.1635	0.1831	0.2029	0.2228
0.242	6 0	.2624	0.2822	0.3020	0.3218
0.341	9 0	.3626	0.3839	0.4058	0.4282

	0.4512	0.4749	0.4991	0.5238	0.5492
	0.5752	0.6017	0.6288	0.6566	0.6849
	0.7137	0.7432	0.7733	0.8039	0.8351
	0.8669	0.8993	0.9323	0.9659	1.0000
Hrad	:				
	0.0164	0.0329	0.0493	0.0658	0.0822
	0.0986	0.1151	0.1315	0.1480	0.1644
	0.1808	0.1973	0.2137	0.2301	0.2466
	0.2630	0.2795	0.3039	0.3362	0.3684
	0.4004	0.4324	0.4643	0.4961	0.5278
	0.5596	0.5899	0.6189	0.6466	0.6729
	0.6981	0.7220	0.7447	0.7664	0.7870
	0.8066	0.8253	0.8431	0.8600	0.8761
	0.8914	0.9059	0.9198	0.9330	0.9456
	0.9575	0.9689	0.9798	0.9901	1.0000
Widt	h:				
	0.0329	0.0657	0.0986	0.1314	0.1643
	0.1971	0.2300	0.2628	0.2957	0.3285
	0.3614	0.3942	0.4271	0.4599	0.4928
	0.5256	0.5585	0.5750	0.5750	0.5751
	0.5751	0.5752	0.5753	0.5753	0.5754
	0.5924	0.6094	0.6264	0.6433	0.6603
	0.6773	0.6943	0.7113	0.7283	0.7452
	0.7622	0.7792	0.7962	0.8132	0.8302
	0.8471	0.8641	0.8811	0.8981	0.9151
	0.9321	0.9490	0.9660	0.9830	1.0000

Transect (I-I)Telmon(upper)(16mROW)

0.0005	0.0019	0.0043	0.0076	0.0119
0.0172	0.0234	0.0305	0.0386	0.0477
0.0577	0.0686	0.0805	0.0934	0.1072
0.1220	0.1377	0.1544	0.1720	0.1906
0.2097	0.2288	0.2478	0.2669	0.2860
0.3054	0.3256	0.3466	0.3683	0.3908
0.4141	0.4381	0.4628	0.4884	0.5146

	0.5417	0.5695	0.5981	0.6274	0.6575
	0.6883	0.7199	0.7522	0.7854	0.8192
	0.8539	0.8893	0.9254	0.9623	1.0000
Hrad:					
	0.0186	0.0373	0.0559	0.0745	0.0932
	0.1118	0.1304	0.1490	0.1677	0.1863
	0.2049	0.2236	0.2422	0.2608	0.2795
	0.2981	0.3167	0.3354	0.3540	0.3726
	0.4093	0.4459	0.4823	0.5187	0.5549
	0.5908	0.6246	0.6563	0.6859	0.7136
	0.7395	0.7637	0.7862	0.8072	0.8268
	0.8451	0.8620	0.8778	0.8925	0.9062
	0.9190	0.9308	0.9418	0.9521	0.9616
	0.9705	0.9787	0.9863	0.9934	1.0000
Width	1:				
	0.0251	0.0501	0.0752	0.1002	0.1253
	0.1503	0.1754	0.2004	0.2255	0.2505
	0.2756	0.3006	0.3257	0.3507	0.3758
	0.4008	0.4259	0.4509	0.4760	0.5010
	0.5011	0.5011	0.5012	0.5012	0.5013
	0.5212	0.5412	0.5611	0.5811	0.6010
	0.6210	0.6409	0.6609	0.6808	0.7008
	0.7207	0.7407	0.7606	0.7806	0.8005
	0.8205	0.8404	0.8604	0.8803	0.9002
	0.9202	0.9402	0.9601	0.9801	1.0000

Transect (J1-J1)Clegg(lower)(20mROW)

0.0004	0.0016	0.0037	0.0066	0.0103
0.0148	0.0202	0.0263	0.0333	0.0412
0.0498	0.0593	0.0696	0.0807	0.0926
0.1054	0.1190	0.1334	0.1486	0.1647
0.1816	0.1993	0.2177	0.2362	0.2548
0.2737	0.2936	0.3144	0.3361	0.3587
0.3822	0.4066	0.4319	0.4581	0.4852
0.5132	0.5421	0.5719	0.6026	0.6342

	0.6667	0.7002	0.7345	0.7697	0.8058
	0.8429	0.8808	0.9196	0.9594	1.0000
Hrad:					
	0.0209	0.0418	0.0627	0.0836	0.1045
	0.1254	0.1463	0.1671	0.1880	0.2089
	0.2298	0.2507	0.2716	0.2925	0.3134
	0.3343	0.3552	0.3761	0.3970	0.4179
	0.4388	0.4597	0.4907	0.5318	0.5727
	0.6129	0.6501	0.6844	0.7160	0.7451
	0.7718	0.7962	0.8185	0.8390	0.8576
	0.8747	0.8902	0.9044	0.9173	0.9290
	0.9397	0.9493	0.9581	0.9661	0.9733
	0.9798	0.9857	0.9910	0.9957	1.0000
Width	1:				
	0.0200	0.0401	0.0601	0.0802	0.1002
	0.1202	0.1403	0.1603	0.1804	0.2004
	0.2204	0.2405	0.2605	0.2806	0.3006
	0.3206	0.3407	0.3607	0.3808	0.4008
	0.4208	0.4409	0.4509	0.4510	0.4510
	0.4730	0.4949	0.5169	0.5388	0.5608
	0.5828	0.6047	0.6267	0.6486	0.6706
	0.6926	0.7145	0.7365	0.7584	0.7804
	0.8024	0.8243	0.8463	0.8682	0.8902
	0.9122	0.9341	0.9561	0.9780	1.0000

Transect (J-J)Clegg(upper)(20mROW)

0.0004	0.0016	0.0037	0.0066	0.0103
0.0148	0.0202	0.0263	0.0333	0.0412
0.0498	0.0593	0.0696	0.0807	0.0926
0.1054	0.1190	0.1334	0.1486	0.1647
0.1816	0.1993	0.2177	0.2362	0.2548
0.2737	0.2936	0.3144	0.3361	0.3587
0.3822	0.4066	0.4319	0.4581	0.4852
0.5132	0.5421	0.5719	0.6026	0.6342
0.6667	0.7002	0.7345	0.7697	0.8058

	0.8429	0.8808	0.9196	0.9594	1.0000
Hrad:					
	0.0209	0.0418	0.0627	0.0836	0.1045
	0.1254	0.1463	0.1671	0.1880	0.2089
	0.2298	0.2507	0.2716	0.2925	0.3134
	0.3343	0.3552	0.3761	0.3970	0.4179
	0.4388	0.4597	0.4907	0.5318	0.5727
	0.6129	0.6501	0.6844	0.7160	0.7451
	0.7718	0.7962	0.8185	0.8390	0.8576
	0.8747	0.8902	0.9044	0.9173	0.9290
	0.9397	0.9493	0.9581	0.9661	0.9733
	0.9798	0.9857	0.9910	0.9957	1.0000
Width	n:				
	0.0200	0.0401	0.0601	0.0802	0.1002
	0.1202	0.1403	0.1603	0.1804	0.2004
	0.2204	0.2405	0.2605	0.2806	0.3006
	0.3206	0.3407	0.3607	0.3808	0.4008
	0.4208	0.4409	0.4509	0.4510	0.4510
	0.4730	0.4949	0.5169	0.5388	0.5608
	0.5828	0.6047	0.6267	0.6486	0.6706
	0.6926	0.7145	0.7365	0.7584	0.7804
	0.8024	0.8243	0.8463	0.8682	0.8902
	0.9122	0.9341	0.9561	0.9780	1.0000

Transect (P-P)PrivateSt(4mRoad)

Area:

0.0007	0.0028	0.0063	0.0111	0.0174
0.0250	0.0340	0.0445	0.0563	0.0695
0.0841	0.1001	0.1174	0.1362	0.1563
0.1779	0.2008	0.2249	0.2491	0.2732
0.2974	0.3216	0.3458	0.3700	0.3942
0.4184	0.4426	0.4668	0.4910	0.5152
0.5394	0.5637	0.5879	0.6121	0.6363
0.6606	0.6848	0.7090	0.7333	0.7575
0.7817	0.8060	0.8302	0.8545	0.8787
0.9030	0.9272	0.9515	0.9757	1.0000

0.0130	0.0260	0.0389	0.0519	0.0649
0.0779	0.0909	0.1038	0.1168	0.1298
0.1428	0.1557	0.1687	0.1817	0.1947
0.2077	0.2206	0.2412	0.2665	0.2917
0.3168	0.3418	0.3667	0.3915	0.4162
0.4407	0.4652	0.4895	0.5138	0.5379
0.5620	0.5859	0.6098	0.6335	0.6571
0.6807	0.7041	0.7275	0.7507	0.7739
0.7969	0.8198	0.8427	0.8654	0.8881
0.9107	0.9331	0.9555	0.9778	1.0000

Width:

0.0573	0.1146	0.1719	0.2292	0.2864
0.3437	0.4010	0.4583	0.5156	0.5729
0.6302	0.6875	0.7448	0.8020	0.8593
0.9166	0.9739	0.9964	0.9966	0.9967
0.9969	0.9970	0.9972	0.9973	0.9975
0.9977	0.9978	0.9980	0.9981	0.9983
0.9984	0.9986	0.9987	0.9988	0.9989
0.9989	0.9990	0.9991	0.9992	0.9992
0.9993	0.9994	0.9995	0.9995	0.9996
0.9997	0.9998	0.9998	0.9999	1.0000

Transect (PVT)PrivateSt(11mROW)

Area:

0.0006	0.0022	0.0050	0.0090	0.0140
0.0202	0.0274	0.0358	0.0453	0.0560
0.0677	0.0806	0.0946	0.1097	0.1259
0.1433	0.1618	0.1814	0.2021	0.2239
0.2463	0.2687	0.2911	0.3135	0.3359
0.3585	0.3814	0.4046	0.4282	0.4521
0.4763	0.5009	0.5258	0.5510	0.5766
0.6025	0.6287	0.6553	0.6822	0.7094
0.7369	0.7648	0.7931	0.8216	0.8505
0.8798	0.9093	0.9392	0.9694	1.0000

Hrad:

	0.0148	0.0295	0.0443	0.0591	0.0738
	0.0886	0.1034	0.1181	0.1329	0.1476
	0.1624	0.1772	0.1919	0.2067	0.2215
	0.2362	0.2510	0.2658	0.2805	0.2953
	0.3243	0.3533	0.3822	0.4110	0.4398
	0.4688	0.4971	0.5249	0.5520	0.5785
	0.6044	0.6297	0.6544	0.6786	0.7022
	0.7254	0.7479	0.7700	0.7916	0.8127
	0.8334	0.8536	0.8733	0.8926	0.9115
	0.9300	0.9481	0.9657	0.9831	1.0000
Widtl	h:				
	0.0364	0.0729	0.1093	0.1457	0.1822
	0.2186	0.2551	0.2915	0.3279	0.3644
	0.4008	0.4372	0.4737	0.5101	0.5465
	0.5830	0.6194	0.6559	0.6923	0.7287
	0.7288	0.7289	0.7289	0.7290	0.7291
	0.7399	0.7508	0.7616	0.7724	0.7833
	0.7941	0.8049	0.8158	0.8266	0.8375
	0.8483	0.8591	0.8700	0.8808	0.8916
	0.9025	0.9133	0.9241	0.9350	0.9458
	0.9567	0.9675	0.9783	0.9892	1.0000
Trans	oct Ditch				

Transect Ditch

Area:

0.0004	0.0016	0.0036	0.0064	0.0100
0.0144	0.0196	0.0256	0.0324	0.0400
0.0484	0.0576	0.0676	0.0784	0.0900
0.1024	0.1156	0.1296	0.1444	0.1600
0.1764	0.1936	0.2116	0.2304	0.2500
0.2704	0.2916	0.3136	0.3364	0.3600
0.3844	0.4096	0.4356	0.4624	0.4900
0.5184	0.5476	0.5776	0.6084	0.6400
0.6724	0.7056	0.7396	0.7744	0.8100
0.8464	0.8836	0.9216	0.9604	1.0000

Hrad:

0.0200 0.0400 0.0600 0.0800 0.1000

	0.1200	0.1400	0.1600	0.1800	0.2000
	0.2200	0.2400	0.2600	0.2800	0.3000
	0.3200	0.3400	0.3600	0.3800	0.4000
	0.4200	0.4400	0.4600	0.4800	0.5000
	0.5200	0.5400	0.5600	0.5800	0.6000
	0.6200	0.6400	0.6600	0.6800	0.7000
	0.7200	0.7400	0.7600	0.7800	0.8000
	0.8200	0.8400	0.8600	0.8800	0.9000
	0.9200	0.9400	0.9600	0.9800	1.0000
Width	n:				
	0.0200	0.0400	0.0600	0.0800	0.1000
	0.1200	0.1400	0.1600	0.1800	0.2000
	0.2200	0.2400	0.2600	0.2800	0.3000
	0.3200	0.3400	0.3600	0.3800	0.4000
	0.4200	0.4400	0.4600	0.4800	0.5000
	0.5200	0.5400	0.5600	0.5800	0.6000
	0.6200	0.6400	0.6600	0.6800	0.7000
	0.7200	0.7400	0.7600	0.7800	0.8000
	0.8200	0.8400	0.8600	0.8800	0.9000
	0.9200	0.9400	0.9600	0.9800	1.0000

Transect HALF(A1-A1)Scholastic(13mROW)

Area:

Hrad:

0.0005	0.0021	0.0048	0.0085	0.0133
0.0192	0.0261	0.0341	0.0432	0.0534
0.0646	0.0768	0.0902	0.1046	0.1200
0.1366	0.1542	0.1729	0.1926	0.2127
0.2328	0.2529	0.2730	0.2931	0.3133
0.3337	0.3547	0.3763	0.3984	0.4212
0.4446	0.4685	0.4930	0.5182	0.5439
0.5702	0.5970	0.6245	0.6526	0.6812
0.7104	0.7403	0.7707	0.8017	0.8333
0.8654	0.8982	0.9315	0.9655	1.0000
:				

 0.0175
 0.0349
 0.0524
 0.0698
 0.0873

 0.1047
 0.1222
 0.1396
 0.1571
 0.1745

	0.1920	0.2094	0.2269	0.2443	0.2618
	0.2792	0.2967	0.3141	0.3343	0.3680
	0.4016	0.4349	0.4681	0.5010	0.5338
	0.5665	0.5976	0.6272	0.6553	0.6820
	0.7074	0.7314	0.7542	0.7758	0.7963
	0.8156	0.8340	0.8514	0.8679	0.8835
	0.8982	0.9122	0.9254	0.9379	0.9498
	0.9610	0.9716	0.9816	0.9910	1.0000
Widtl	h:				
	0.0306	0.0613	0.0919	0.1226	0.1532
	0.1839	0.2145	0.2452	0.2758	0.3065
	0.3371	0.3678	0.3984	0.4291	0.4597
	0.4904	0.5210	0.5517	0.5772	0.5773
	0.5774	0.5775	0.5777	0.5778	0.5779
	0.5948	0.6116	0.6285	0.6454	0.6623
	0.6792	0.6961	0.7130	0.7298	0.7467
	0.7636	0.7805	0.7974	0.8143	0.8312
	0.8480	0.8649	0.8818	0.8987	0.9156
	0.9325	0.9493	0.9662	0.9831	1.0000
Trans	ect HALF(A2-A2)Sar	nctuary(11	LmROW)	
Area:					
	0.0006	0.0022	0.0050	0.0089	0.0140
	0.0201	0.0274	0.0358	0.0453	0.0559
	0.0677	0.0805	0.0945	0.1096	0.1258
	0.1432	0.1616	0.1812	0.2019	0.2237
	0.2461	0.2685	0.2909	0.3132	0.3356
	0.3582	0.3811	0.4043	0.4279	0.4518
	0.4760	0.5006	0.5255	0.5507	0.5763
	0.6022	0.6284	0.6550	0.6819	0.7092
	0.7367	0.7647	0.7929	0.8215	0.8504

Hrad:

 0.0154
 0.0308
 0.0462
 0.0615
 0.0769

 0.0923
 0.1077
 0.1231
 0.1385
 0.1539

 0.1693
 0.1846
 0.2000
 0.2154
 0.2308

0.8797 0.9092 0.9392 0.9694 1.0000

	0.2462	0.2616	0.2770	0.2923	0.3077
	0.3375	0.3672	0.3966	0.4259	0.4550
	0.4844	0.5130	0.5408	0.5679	0.5944
	0.6201	0.6452	0.6696	0.6934	0.7166
	0.7391	0.7611	0.7825	0.8034	0.8237
	0.8435	0.8627	0.8815	0.8998	0.9176
	0.9349	0.9518	0.9683	0.9844	1.0000
Widt	n:				
	0.0364	0.0727	0.1091	0.1455	0.1819
	0.2182	0.2546	0.2910	0.3273	0.3637
	0.4001	0.4364	0.4728	0.5092	0.5456
	0.5819	0.6183	0.6547	0.6910	0.7274
	0.7275	0.7277	0.7278	0.7279	0.7281
	0.7389	0.7498	0.7607	0.7716	0.7825
	0.7933	0.8042	0.8151	0.8260	0.8368
	0.8477	0.8586	0.8695	0.8804	0.8912
	0.9021	0.9130	0.9239	0.9347	0.9456
	0.9565	0.9674	0.9782	0.9891	1.0000

Transect HALF(A-A)Scholastic(10.5mROW)

Area:

Hrad:

0.0006	0.0023	0.0052	0.0093	0.0146
0.0210	0.0285	0.0373	0.0472	0.0582
0.0704	0.0838	0.0984	0.1141	0.1310
0.1490	0.1683	0.1886	0.2102	0.2321
0.2540	0.2760	0.2979	0.3199	0.3418
0.3640	0.3864	0.4093	0.4324	0.4560
0.4798	0.5041	0.5287	0.5536	0.5789
0.6045	0.6305	0.6568	0.6835	0.7105
0.7379	0.7656	0.7937	0.8221	0.8509
0.8800	0.9095	0.9393	0.9695	1.0000
0.0154	0.0308	0.0461	0.0615	0.0769
0.0923	0.1077	0.1231	0.1384	0.1538

	0.3540	0.3834	0.4126	0.4416	0.4705
	0.4996	0.5279	0.5554	0.5822	0.6083
	0.6336	0.6582	0.6821	0.7053	0.7279
	0.7499	0.7712	0.7920	0.8121	0.8317
	0.8508	0.8693	0.8873	0.9048	0.9218
	0.9383	0.9544	0.9700	0.9852	1.0000
Width	ո։				
	0.0379	0.0759	0.1138	0.1517	0.1897
	0.2276	0.2655	0.3034	0.3414	0.3793
	0.4172	0.4552	0.4931	0.5310	0.5690
	0.6069	0.6448	0.6828	0.7144	0.7145
	0.7147	0.7148	0.7149	0.7151	0.7152
	0.7266	0.7380	0.7494	0.7608	0.7722
	0.7836	0.7949	0.8063	0.8177	0.8291
	0.8405	0.8519	0.8633	0.8747	0.8861
	0.8975	0.9089	0.9203	0.9316	0.9430
	0.9544	0.9658	0.9772	0.9886	1.0000

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Flow Units LPS

Process Models:

Rainfall/Runoff YES

RDII NO

Snowmelt NO

Groundwater NO

Flow Routing YES

Ponding Allowed YES

Infiltration Method HORTON
Flow Routing Method DYNWAVE
Starting Date 10/29/2015 00:00:00
Ending Date 10/30/2015 00:00:00
Antecedent Dry Days 0.0
Report Time Step 00:01:00
Wet Time Step 00:00:30
Dry Time Step 00:01:00
Routing Time Step 1.00 sec
Variable Time Step NO
Maximum Trials 8
Number of Threads 4
Head Tolerance 0.001500 m

Control Actions Taken

****** Volume Depth
Runoff Quantity Continuity hectare-m mm

Initial LID Storage 0.005 0.491
Total Precipitation 0.723 71.667
Evaporation Loss 0.000 0.000
Infiltration Loss 0.170 16.841
Surface Runoff 0.553 54.843
Final Storage 0.005 0.492
Continuity Error (%)0.025
****** Volume Volume
Flow Routing Continuity hectare-m 10^6 ltr

Water Quality NO

Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.553	5.533
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	0.000	0.000
External Outflow	0.553	5.535
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.015	0.150
Final Stored Volume	0.015	0.152
Continuity Error (%)	-0.065	

Highest Continuity Errors

Node 60+148.01 (61.59%)

Node CB6 (-11.43%)

Node 40+157.95 (8.82%)

Node 80+267 (-4.10%)

Node MH410 (1.86%)

Highest Flow Instability Indexes

Link OR44 (135)

Link OR49 (134)

Link OR43 (13)

Link A7-A6-LMF (6)

Link OL1 (4)

Routing Time Step Summary

Minimum Time Step : 1.00 sec

Average Time Step : 1.00 sec

Maximum Time Step : 1.00 sec

Percent in Steady State : 0.00

Average Iterations per Step: 2.01

Percent Not Converging : 0.02

	Total To	tal To	tal To	tal To	tal To	tal Pea	ak Runo	ff
	Precip R	unon	Evap	Infil F	Runoff	Runoff	Runoff	Coeff
Subcatchmer	nt n	nm	mm	mm	mm	mm 1	10^6 ltr	LPS
A01A	71.67	0.00	0.00	6.30	65.38	0.06	43.04	0.912
A01B	71.67	0.00	0.00	17.35	54.33	0.04	32.51	0.758
A02	71.67	0.00	0.00	13.33	58.36	0.04	31.24	0.814
A04	71.67	0.00	0.00	0.00	71.68	0.07	49.39	1.000
A05	71.67	0.00	0.00	19.25	52.44	0.05	41.73	0.732
A06A	71.67	0.00	0.00	26.27	45.41	0.11	66.76	0.634
A06B	71.67	0.00	0.00	49.49	22.18	0.04	15.37	0.310
A08	71.67	0.00	0.00	7.47	64.22	0.08	57.53	0.896
A09A	71.67	0.00	0.00	28.20	43.49	0.11	105.03	0.607
A09B	71.67	0.00	0.00	0.00	71.68	0.09	64.46	1.000
A09C	71.67	0.00	0.00	0.00	71.69	0.06	39.68	1.000
A10	71.67	0.00	0.00	0.00	71.69	0.06	44.64	1.000
A11A	71.67	0.00	0.00	28.54	43.15	0.09	69.64	0.602
A11B	71.67	0.00	0.00	0.00	71.68	0.06	39.64	1.000
A11B-TR	71.67	0.00	0.00	0.00	71.69	0.0	2 14.88	3 1.000
A12	71.67	0.00	0.00	8.91	62.77	0.05	38.38	0.876
A13	71.67	0.00	0.00	12.20	59.48	0.11	80.52	0.830
A14	71.67	0.00	0.00	27.13	44.55	0.36	205.92	0.622

A15A	71.67	0.00	0.00	0.00	71.68	0.11 74.31 1.000
A15B	71.67	0.00	0.00	13.19	58.49	0.09 65.69 0.816
A16A	71.67	0.00	0.00	10.64	61.05	0.03 22.94 0.852
A16B	71.67	0.00	0.00	11.99	59.69	0.03 22.54 0.833
A16C_1	71.67	0.00	0.00	0.00	71.70	0.04 24.80 1.000
A16C_2	71.67	0.00	0.00	0.00	71.68	0.10 69.36 1.000
A17	71.67	0.00	0.00	2.64	69.04	0.08 58.55 0.963
A18	71.67	0.00	0.00	17.20	54.49	0.15 123.44 0.760
A19A	71.67	0.00	0.00	13.56	58.14	0.02 14.57 0.811
A19B	71.67	0.00	0.00	13.59	58.11	0.02 19.41 0.811
A1C	71.67	0.00	0.00	0.00	71.68	0.06 44.61 1.000
A20	71.67	0.00	0.00	22.32	49.38	0.05 50.40 0.689
A21B	71.67	0.00	0.00	12.67	59.02	0.06 49.90 0.824
A22B	71.67	0.00	0.00	23.54	48.15	0.05 44.92 0.672
A23	71.67	0.00	0.00	13.45	58.23	0.08 55.78 0.813
A24	71.67	0.00	0.00	11.70	59.98	0.10 69.01 0.837
A25	71.67	0.00	0.00	14.20	57.50	0.03 24.16 0.802
A26	71.67	0.00	0.00	32.35	39.33	0.02 13.36 0.549
A27A	71.67	0.00	0.00	13.73	57.96	0.06 45.04 0.809
A27B	71.67	0.00	0.00	12.17	59.51	0.03 24.07 0.830
A28	71.67	0.00	0.00	50.05	21.62	0.02 6.27 0.302
A29	71.67	0.00	0.00	37.30	34.37	0.20 59.06 0.480
A30	71.67	0.00	0.00	4.05	67.64	0.08 58.66 0.944
A31	71.67	0.00	0.00	9.52	62.16	0.12 86.75 0.867
A32A	71.67	0.00	0.00	13.63	58.07	0.01 9.69 0.810
A32B	71.67	0.00	0.00	13.46	58.24	0.02 19.44 0.813
A33A	71.67	0.00	0.00	14.20	57.50	0.03 29.00 0.802
A33B	71.67	0.00	0.00	14.20	57.50	0.04 33.83 0.802
A34	71.67	0.00	0.00	12.00	59.69	0.03 24.33 0.833
A35	71.67	0.00	0.00	27.34	44.35	0.04 37.28 0.619
A36	71.67	0.00	0.00	12.93	58.75	0.08 57.20 0.820
A3-A-1	71.67	0.00	0.00	9.79	61.91	0.04 29.33 0.864
A3-A-2	71.67	0.00	0.00	9.79	61.90	0.03 24.44 0.864
A3-A-3	71.67	0.00	0.00	6.36	65.33	0.03 24.55 0.912
A3-A-4	71.67	0.00	0.00	10.28	61.42	0.01 9.77 0.857
A3-DR1	71.67	0.00	0.00	19.36	52.34	0.02 14.13 0.730

A3-DR2	71.67	0.00	0.00	25.43	46.27	0.01 13.64 0.646
A3-DR3	71.67	0.00	0.00	22.50	49.22	0.00 4.76 0.687
A3-DR4	71.67	0.00	0.00	26.52	45.19	0.00 4.66 0.631
A7-A-5	71.67	0.00	0.00	10.27	61.43	0.01 9.77 0.857
A7-A-6	71.67	0.00	0.00	3.78	67.93	0.03 19.74 0.948
A7-A-7	71.67	0.00	0.00	10.35	61.34	0.04 29.29 0.856
A7-A-8	71.67	0.00	0.00	6.86	64.83	0.04 29.48 0.905
A7-DR5	71.67	0.00	0.00	26.20	45.50	0.00 4.60 0.635
A7-DR6	71.67	0.00	0.00	22.03	49.69	0.00 4.76 0.693
A7-DR7	71.67	0.00	0.00	22.50	49.21	0.00 4.76 0.687
A7-DR8	71.67	0.00	0.00	15.30	56.40	0.02 14.40 0.787
B01A	71.67	0.00	0.00	8.77	62.94	0.02 14.39 0.878
B01B	71.67	0.00	0.00	11.50	60.20	0.04 27.65 0.840
B02	71.67	0.00	0.00	17.03	54.70	0.01 4.82 0.763
B03	71.67	0.00	0.00	4.42	67.26	0.16 113.16 0.939
B04	71.67	0.00	0.00	19.37	52.32	0.10 89.29 0.730
B05	71.67	0.00	0.00	19.31	52.38	0.09 72.10 0.731
B06	71.67	0.00	0.00	13.62	58.08	0.03 28.03 0.810
B07	71.67	0.00	0.00	10.59	61.10	0.05 42.02 0.853
B08	71.67	0.00	0.00	6.13	65.56	0.05 33.92 0.915
В09	71.67	0.00	0.00	6.12	65.59	0.07 53.46 0.915
B10	71.67	0.00	0.00	10.55	61.15	0.04 33.16 0.853
B11	71.67	0.00	0.00	17.20	54.50	0.02 19.24 0.761
B12	71.67	0.00	0.00	9.83	61.86	0.06 43.93 0.863
B13	71.67	0.00	0.00	20.61	51.08	0.05 39.30 0.713
B14	71.67	0.00	0.00	21.99	49.70	0.04 35.20 0.694
B15	71.67	0.00	0.00	22.54	49.15	0.07 63.80 0.686
B16	71.67	0.00	0.00	20.30	51.39	0.06 56.60 0.717
B17	71.67	0.00	0.00	8.35	63.34	0.04 33.42 0.884
B19	71.67	0.00	0.00	0.00	71.68	0.11 78.72 1.000
B20A	71.67	0.00	0.00	33.10	38.57	0.03 15.03 0.538
B22	71.67	0.00	0.00	20.24	51.44	0.04 23.48 0.718
B23	71.67	0.00	0.00	0.00	71.68	0.12 84.21 1.000
B24	71.67	0.00	0.00	6.29	65.39	0.08 54.75 0.912
B25	71.67	0.00	0.00	0.00	71.69	0.04 29.76 1.000
Condo2B_TR	71.	67 0.	00 0.	.00 0.	00 71.6	59 0.01 9.92 1.000

MR-NB	71.67	0.00	0.00	0.00	71.66	0.08	47.95 1.000
MR-SB	71.67	0.00	0.00	0.00	71.67	0.06	41.61 1.000
NA01	71.67	0.00	0.00	41.83	29.85	0.01	4.93 0.416
NA02	71.67	25.72	0.00	38.52	58.88	0.07	26.59 0.605
NA03_1	71.67	0.00	0.00	26.60	45.08	0.01	8.29 0.629
NA03_2	71.67	0.00	0.00	26.97	44.71	0.02	9.69 0.624
NA03_3	71.67	0.00	0.00	26.23	45.45	0.00	3.21 0.634
NA04_1	71.67	0.00	0.00	28.04	43.64	0.02	9.44 0.609
NA04_2	71.67	0.00	0.00	25.33	46.37	0.00	2.08 0.647
NA05	71.67	0.00	0.00	38.42	33.25	0.02	7.06 0.464
NA06	71.67	0.00	0.00	35.62	36.05	0.03	18.38 0.503
TR1-NB	71.67	0.00	0.00	0.00	71.70	0.01	4.96 1.000
TR2-NB	71.67	0.00	0.00	0.00	71.67	0.03	19.26 1.000
TR-SB	71.67	0.00	0.00	0.00	71.68	0.04	24.62 1.000

Node Depth Summary

Average Maximum Maximum Time of Max Reported

Average Maximum Maximum Time of Max Reported

Depth Depth HGL Occurrence Max Depth

Node	Type Mete	rs Me	ters N	leters d	ays hr:min	Meters
10+171.51	JUNCTION	0.00	0.05	62.24	0 01:10	0.05
10+207.77	JUNCTION	0.00	0.04	62.99	0 01:11	0.04
10+314.72	JUNCTION	0.00	0.10	63.06	0 01:13	0.10
20.033.19	JUNCTION	0.00	0.09	62.80	0 01:10	0.09
20+069.15	JUNCTION	0.01	0.08	63.00	0 01:10	0.08
20+115.54	JUNCTION	0.00	0.00	63.18	0 00:00	0.00
30+038.20	JUNCTION	0.00	0.06	63.23	0 01:10	0.06
30+074.39	JUNCTION	0.00	0.07	63.06	0 01:11	0.07
40+015.59	JUNCTION	0.00	0.07	63.60	0 01:10	0.07
40+084.71	JUNCTION	0.00	0.07	63.33	0 01:11	0.07
40+121.60	JUNCTION	0.00	0.00	63.57	0 00:00	0.00

40+157.95	JUNCTION	0.00	0.02	63.12	0 01:11	0.02
50+102.24	JUNCTION	0.00	0.00	65.72	0 00:00	0.00
50+127.37	JUNCTION	0.00	0.00	65.53	0 00:00	0.00
60.370.58	JUNCTION	0.00	0.15	59.15	0 01:10	0.15
60+148.01	JUNCTION	0.00	0.00	65.19	0 01:31	0.00
60+224.17	JUNCTION	0.00	0.03	63.91	0 01:10	0.03
60+288.71	JUNCTION	0.00	0.05	62.01	0 01:10	0.05
70-034.26	JUNCTION	0.00	0.02	65.18	0 01:10	0.02
70-152.02	JUNCTION	0.00	0.06	64.66	0 01:10	0.06
70-208.50	JUNCTION	0.00	0.07	63.97	0 01:11	0.07
80+003.32	JUNCTION	0.00	0.03	64.88	0 01:10	0.03
80+025.67	JUNCTION	0.00	0.00	64.79	0 00:00	0.00
80+078.80	JUNCTION	0.00	0.03	64.15	0 01:10	0.03
80+121.22	JUNCTION	0.00	0.03	62.57	0 01:10	0.03
80+187.36	JUNCTION	0.00	0.00	60.33	0 00:00	0.00
80+216.33	JUNCTION	0.00	0.00	59.71	0 00:00	0.00
80+267	JUNCTION	0.00	0.04	59.20	0 01:10	0.04
90.071.47	JUNCTION	0.00	0.09	60.08	0 01:10	0.09
90+008.28	JUNCTION	0.00	0.00	60.60	0 00:00	0.00
A15A(STOR)	JUNCTION	0.00	0.08	63.48	0 01:10	0.08
B19(STOR)	JUNCTION	0.01	0.17	63.17	0 01:10	0.17
CB01	JUNCTION 0	0.02 1	20 6	1.34 0	01:10	1.20
CB01(MS)	JUNCTION	0.00	0.03	61.36	0 01:10	0.03
CB06	JUNCTION 0	0.02 1	30 6	3.24 0	01:10	1.30
CB06(MS)	JUNCTION	0.00	0.03	63.26	0 01:10	0.03
CB08	JUNCTION 0	0.02 1	37 6	3.42 0	01:10	1.37
CB08(MS)	JUNCTION	0.00	0.02	63.43	0 01:10	0.02
CB09	JUNCTION 0	0.02 1	30 6	3.04 0	01:11	1.30
CB09(MS)	JUNCTION	0.00	0.11	63.15	0 01:10	0.11
CB1	JUNCTION 0.	.04 1.	28 65	5.00 0	01:11	1.28
CB12	JUNCTION 0	0.02 1	.48 6	2.93 0	01:10	1.47
CB12(MS)	JUNCTION	0.00	0.06	62.99	0 01:10	0.06
CB14	JUNCTION 0	0.03 1	.52 6	2.75 0	01:10	1.52
CB14(MS)	JUNCTION	0.00	0.11	62.79	0 01:10	0.11
CB15(x2-DICI	Bs) JUNCTION	N 0.0	1 1.0	6 62.14	4 0 01:1	2 1.05
CB16(2x-DICE	Bs) JUNCTION	N 0.03	3 1.4	2 63.0	5 0 01:1	0 1.41

CB16(MS)	JUNCTION 0.00	0.07 63.07	0 01:10 0.06
CB18	JUNCTION 0.03	1.48 63.02 0	01:13 1.48
CB18(MS)	JUNCTION 0.00	0.25 63.06	0 01:13 0.25
CB2	JUNCTION 0.03 1	.25 64.89 0	01:10 1.25
CB20	JUNCTION 0.03	1.72 63.18 0	01:11 1.72
CB20(MS)	JUNCTION 0.00	0.06 63.21	0 01:10 0.06
CB22	JUNCTION 0.02	1.06 63.14 0	01:11 1.06
CB22(MS)	JUNCTION 0.00	0.08 63.38	0 01:10 0.08
CB24	JUNCTION 0.02	1.36 63.76 0	01:10 1.36
CB24(MS)	JUNCTION 0.00	0.06 63.82	0 01:10 0.06
CB26	JUNCTION 0.02	1.12 64.50 0	01:11 1.12
CB26(MS)	JUNCTION 0.00	0.08 64.67	0 01:10 0.08
CB28	JUNCTION 0.01	1.00 64.57 0	01:10 1.00
CB28(MS)	JUNCTION 0.00	0.04 65.15	0 01:10 0.04
CB29	JUNCTION 0.01	0.74 61.19 0	01:10 0.74
CB29(MS)	JUNCTION 0.00	0.02 61.87	0 01:10 0.02
CB29B(L)	JUNCTION 0.01	0.86 61.23	0 01:10 0.84
CB3	JUNCTION 0.02 1	.27 64.91 0	01:10 1.27
CB30	JUNCTION 0.02	1.52 61.23 0	01:12 1.52
CB30(MS)	JUNCTION 0.00	0.04 61.27	0 01:10 0.04
CB31	JUNCTION 0.02	1.47 60.97 0	01:12 1.46
CB31(MS)	JUNCTION 0.00	0.05 61.07	0 01:10 0.05
CB31B(L)	JUNCTION 0.03	1.72 61.12	0 01:10 1.72
CB32	JUNCTION 0.03	1.54 61.01 0	01:11 1.54
CB34	JUNCTION 0.02	1.07 63.23 0	01:11 1.07
CB34(MS)	JUNCTION 0.00	0.05 63.52	0 01:10 0.05
CB35	JUNCTION 0.01	0.64 62.54 0	01:10 0.64
CB35(MS)	JUNCTION 0.00	0.02 63.44	0 01:10 0.02
CB36	JUNCTION 0.01	0.78 62.70 0	01:11 0.78
CB36(MS)	JUNCTION 0.00	0.03 63.36	0 01:10 0.03
CB39	JUNCTION 0.03	1.41 63.41 0	01:10 1.41
CB39(MS)	JUNCTION 0.00	0.05 63.45	0 01:10 0.05
CB40	JUNCTION 0.00	0.34 62.11 0	01:10 0.33
CB40(MS)	JUNCTION 0.00	0.02 63.02	0 01:10 0.02
CB41	JUNCTION 0.01	0.79 62.39 0	01:10 0.79
CB41(MS)	JUNCTION 0.00	0.03 62.88	0 01:10 0.03

CB42	JUNCTION 0.03 1.41 63.22 0 01:10	1.41
CB42(MS)	JUNCTION 0.00 0.04 63.25 0 01:10	0.04
CB45	JUNCTION 0.02 1.79 64.71 0 01:10	1.79
CB45(MS)	JUNCTION 0.00 0.05 64.76 0 01:10	0.05
CB47	JUNCTION 0.02 1.09 64.31 0 01:10	1.09
CB47(MS)	JUNCTION 0.00 0.04 65.00 0 01:10	0.04
CB49	JUNCTION 0.01 0.34 65.16 0 01:10	0.34
CB49(MS)	JUNCTION 0.00 0.01 65.24 0 01:10	0.01
CB5	JUNCTION 0.02 1.26 65.19 0 01:10	1.26
CB51	JUNCTION 0.02 1.68 64.70 0 01:10	1.68
CB51(MS)	JUNCTION 0.00 0.03 64.73 0 01:10	0.03
CB53	JUNCTION 0.03 1.51 64.55 0 01:11	1.51
CB53(MS)	JUNCTION 0.00 0.09 64.57 0 01:11	0.09
CB55	JUNCTION 0.02 1.58 64.09 0 01:10	1.58
CB56	JUNCTION 0.00 0.15 62.57 0 01:10	0.15
CB58	JUNCTION 0.00 0.51 63.77 0 01:11	0.51
CB58(MS)	JUNCTION 0.00 0.01 64.77 0 01:10	0.01
CB6	JUNCTION 0.02 1.37 64.88 0 01:11	1.37
CB60	JUNCTION 0.02 1.75 64.91 0 01:10	1.75
CB60(MS)	JUNCTION 0.00 0.03 64.93 0 01:10	0.03
CB62	JUNCTION 0.02 1.14 62.30 0 01:10	1.14
CB62(MS)	JUNCTION 0.00 0.05 63.05 0 01:10	0.05
CB63	JUNCTION 0.02 1.06 62.12 0 01:10	1.05
CB63(MS)	JUNCTION 0.00 0.04 62.70 0 01:10	0.04
CB65	JUNCTION 0.04 1.84 61.27 0 01:10	1.84
CB65(MS)	JUNCTION 0.00 0.07 61.32 0 01:10	0.07
CB67	JUNCTION 0.03 1.82 60.25 0 01:10	1.82
CB67(MS)	JUNCTION 0.00 0.03 60.27 0 01:10	0.03
CB69	JUNCTION 0.02 1.64 60.02 0 01:12	1.64
CB69(MS)	JUNCTION 0.00 0.06 60.03 0 01:12	0.06
CB70	JUNCTION 0.02 1.62 59.93 0 01:11	1.62
CB70(MS)	JUNCTION 0.00 0.08 59.99 0 01:10	0.08
CB71	JUNCTION 0.22 1.94 59.60 0 01:10	1.94
CB71(MS)	JUNCTION 0.00 0.04 59.63 0 01:10	0.04
CB73	JUNCTION 0.11 1.60 59.35 0 01:11	1.59
CB73(MS)	JUNCTION 0.00 0.03 59.38 0 01:10	0.03

CB74(4x-DIC	CBs) JUNC	TION (0.91	1.82 5	8.77 0 01	:11 1.82
CB75	JUNCTION	0.25	1.65	59.27	0 01:11	1.65
CB75(MS)	JUNCTIO).O NC	00 0.	11 59.	33 0 01:1	0 0.11
CB76	JUNCTION	0.02	1.35	60.96	0 01:11	1.34
CB76(MS)	JUNCTIO).0 NC	00 0.	06 61.	27 0 01:1	0 0.06
CB77	JUNCTION	0.03	1.62	62.59	0 01:10	1.62
CB77(MS)	JUNCTIO	O.O	00 0.	06 62.	63 0 01:1	0 0.06
CB78	JUNCTION	0.03	1.76	60.22	0 01:11	1.76
CB79	JUNCTION	0.54	1.70	59.04	0 01:12	1.70
CB79(MS)	JUNCTIO	O.O	00 0.	12 59.	06 0 01:1	2 0.12
CB8	JUNCTION	0.02	1.27	64.10	0 01:10	1.27
CB80	JUNCTION	0.03	1.61	64.14	0 01:10	1.61
CB80(MS)	JUNCTIO).O NC	00 0.	05 64.	18 0 01:1	0 0.05
CB82	JUNCTION	0.01	0.44	63.83	0 01:10	0.43
CBMH1	JUNCTIO	N 0.0	2 0.2	27 62.1	.9 0 01:20	0.27
CBMH4	JUNCTIO	N 0.0	2 1.2	25 65.2	0 01:05	5 1.25
СВМН7	JUNCTIO	N 0.0	2 1.2	26 64.5	0 01:10	1.26
CB-PL	JUNCTION	0.00	0.05	64.84	0 01:10	0.05
HP01	JUNCTION	0.00	0.06	61.10	0 01:10	0.06
HP02	JUNCTION	0.02	0.06	61.34	0 01:10	0.06
HP03	JUNCTION	0.00	0.07	60.94	0 01:11	0.07
HP04	JUNCTION	0.00	0.00	62.65	0 00:00	0.00
J10	JUNCTION	0.00	0.02	64.89	0 01:10	0.02
J11	JUNCTION	0.00	0.11	64.88	0 01:11	0.11
J12	JUNCTION	0.00	0.01	64.51	0 01:10	0.01
J13	JUNCTION	0.00	0.01	64.10	0 01:10	0.01
J14	JUNCTION	0.01	0.68	64.28	0 01:10	0.68
J15	JUNCTION	0.01	0.54	58.95	0 01:13	0.54
J16	JUNCTION	0.00	0.06	64.38	0 01:11	0.06
J17	JUNCTION	1.50	1.86	58.21	0 01:11	1.86
J3	JUNCTION	0.01	0.28	60.56	0 01:13	0.28
J5	JUNCTION	0.01	0.15	61.57	0 01:10	0.15
J6	JUNCTION	0.00	0.01	64.91	0 01:10	0.01
J7	JUNCTION	0.00	0.00	65.20	0 01:10	0.00
J8	JUNCTION	0.00	0.00	65.18	0 01:10	0.00
J9	JUNCTION	0.00	0.05	65.00	0 01:11	0.05

MH314(DUM	MY) JUNC	TION	0.01	0.93	59.33 0	01:12 0.93
MH328(DUM	MY) JUNC	TION	0.85	1.64	58.65 0	01:11 1.64
Clegg	OUTFALL 0	.00 0.	.04 61	1.34 (0 01:10	0.04
MainNorth	OUTFALL	0.00	0.00	64.70	0 00:00	0.00
MainSouth	OUTFALL	0.00	0.04	65.06	0 01:10	0.04
Out1	OUTFALL 0	.00 0	.07 60).57 (0 01:11	0.07
Out2	OUTFALL 0	.00 0	.06 60	0.56 (0 01:10	0.06
Out3	OUTFALL 0	.00 0	.00 62	2.50 (00:00	0.00
Outlet1-Phase	e1 OUTFALI	1.85	5 1.8	5 57.8	35 0 00:	00 1.85
Outlet2-Phase	e2&3 OUTFA	LL 1.	85 1.	.85 57	'.85 0 0	0:00 1.85
A04(STOR)	STORAGE	0.84	2.51	63.64	0 01:20	6 2.51
A09B(STOR)	STORAGE	0.00	0.04	100.0	0 01:	26 0.04
A09C(STOR)	STORAGE	0.00	0.04	100.0	4 0 01:	25 0.04
A10(STOR)	STORAGE	0.00	0.04	100.04	1 0 01:2	.5 0.04
A11B(STOR)	STORAGE	0.41	1.95	62.93	3 0 01:3	30 1.95
A14(STOR)	STORAGE	0.05	1.25	63.95	0 01:13	3 1.25
A16C(STOR)	STORAGE	0.00	0.01	65.23	3 0 01:1	.0 0.01
A22A(STOR)	STORAGE	0.01	0.11	100.1	.1 0 01:	37 0.11
B21(STOR)	STORAGE	0.01	0.11	100.11	0 01:4	0 0.11
B23(STOR)	STORAGE	1.43	3.61	60.12	0 01:10	3.61
B25(STOR)	STORAGE	0.00	0.04	100.04	0 01:2	5 0.04
CB1-GAPark	STORAGE	0.03	1.67	63.66	6 0 01:1	1.67
СВМН2	STORAGE	0.02	0.27	61.25	0 01:02	0.27
Dummy-MH1	28 STORA	GE 0	.04 1	12 6	1.03 0 0	01:12 1.11
GA-ParkSouth	Storage STOR	AGE	0.01	0.17	64.67 0	01:44 0.17
J2 S	TORAGE 0.0	0.0	4 65.	41 0	01:30	0.04
J4 S	TORAGE 0.0	0.0	3 100	.03 0	01:20	0.03
MH100	STORAGE	0.02	0.29	60.26	0 01:13	0.29
MH102	STORAGE	0.01	0.33	60.23	0 01:13	0.33
MH104	STORAGE	0.03	0.34	60.18	0 01:13	0.34
MH106	STORAGE	0.08	0.48	60.13	0 01:13	0.48
MH108	STORAGE	0.09	0.52	60.11	0 01:13	0.52
MH110	STORAGE	0.03	0.94	60.57	0 01:12	0.94
MH110B	STORAGE	0.04	1.06	60.48	0 01:12	2 1.06
MH112B	STORAGE	0.04	1.10	60.34	0 01:12	2 1.10
MH114	STORAGE	0.86	1.90	59.98	0 01:12	1.90

MH118	STORAGE	0.07	0.91	59.32	0 01:13	0.91
MH122	STORAGE	0.10	0.50	59.80	0 01:13	0.50
MH122B	STORAGE	0.07	1.02	59.60	0 01:13	1.02
MH124	STORAGE	0.03	0.35	60.90	0 01:11	0.35
MH126	STORAGE	0.02	0.30	61.62	0 01:10	0.30
MH128	STORAGE	0.03	1.10	61.12	0 01:12	1.10
MH130	STORAGE	0.32	0.96	61.94	0 01:12	0.96
MH132	STORAGE	0.04	0.67	62.01	0 01:12	0.67
MH136	STORAGE	0.01	0.12	61.02	0 01:10	0.12
MH140	STORAGE	0.01	0.14	60.94	0 01:11	0.14
MH144	STORAGE	0.04	0.44	59.88	0 01:12	0.44
MH148	STORAGE	0.01	0.15	61.37	0 01:11	0.15
MH152	STORAGE	1.42	1.53	61.45	0 01:10	1.53
MH164	STORAGE	0.03	0.65	62.08	0 01:11	0.64
MH166	STORAGE	0.02	0.51	62.16	0 01:11	0.51
MH168	STORAGE	0.02	0.50	62.24	0 01:10	0.50
MH170	STORAGE	0.77	1.17	62.30	0 01:11	1.17
MH172	STORAGE	0.03	0.33	62.39	0 01:11	0.33
MH174	STORAGE	0.05	0.37	62.54	0 01:11	0.37
MH176	STORAGE	0.06	0.28	63.18	0 01:11	0.28
MH178	STORAGE	0.02	0.42	62.44	0 01:12	0.42
MH180	STORAGE	0.01	0.22	63.07	0 01:11	0.22
MH182	STORAGE	0.05	0.26	62.74	0 01:11	0.26
MH220	STORAGE	0.01	0.62	60.09	0 01:14	0.62
MH222	STORAGE	0.02	0.77	59.80	0 01:14	0.77
MH224	STORAGE	0.01	0.65	59.82	0 01:14	0.65
MH226	STORAGE	0.00	0.09	60.30	0 01:11	0.09
MH228	STORAGE	0.01	0.21	60.28	0 01:13	0.21
MH230	STORAGE	0.01	0.38	60.15	0 01:13	0.38
MH238	STORAGE	0.03	0.62	58.76	0 01:13	0.62
MH242	STORAGE	1.86	2.29	58.29	0 01:13	2.29
MH246	STORAGE	0.02	0.37	60.21	0 01:13	0.37
MH248	STORAGE	0.03	0.50	62.11	0 01:11	0.50
MH250	STORAGE	0.05	0.28	62.91	0 01:11	0.28
MH300	STORAGE	0.00	0.09	62.49	0 01:11	0.09
MH302	STORAGE	0.00	0.10	61.62	0 01:11	0.10

MH304	STORAGE	0.01	0.14	61.05	0	01:10	0.14
MH306	STORAGE	0.01	0.22	59.66	0	01:10	0.22
MH308	STORAGE	0.01	0.45	59.12	0	01:11	0.43
MH310	STORAGE	1.35	2.13	58.64	0	01:11	2.13
MH312	STORAGE	0.00	0.07	61.71	0	01:10	0.07
MH314	STORAGE	0.01	0.10	60.71	0	01:10	0.10
MH316	STORAGE	0.73	1.87	59.00	0	01:12	1.87
MH318	STORAGE	0.34	1.51	59.03	0	01:13	1.51
MH320	STORAGE	0.91	1.90	58.85	0	01:12	1.90
MH322	STORAGE	0.95	1.91	58.82	0	01:12	1.91
MH324	STORAGE	0.02	0.08	60.73	0	01:10	0.08
MH326	STORAGE	0.01	0.13	59.30	0	01:12	0.13
MH328	STORAGE	0.02	0.69	58.73	0	01:12	0.69
MH330	STORAGE	0.81	1.63	58.68	0	01:11	1.63
MH332	STORAGE	1.33	2.13	58.66	0	01:11	2.13
MH334	STORAGE	1.53	2.20	58.53	0	01:11	2.20
MH336	STORAGE	1.50	1.86	58.21	0	01:11	1.86
MH338	STORAGE	1.51	1.84	58.18	0	01:11	1.84
MH340	STORAGE	1.84	2.08	58.09	0	01:11	2.08
MH400	STORAGE	0.00	0.00	62.79	0	00:00	0.00
MH402	STORAGE	0.00	0.09	62.95	0	01:10	0.09
MH404	STORAGE	0.00	0.00	63.26	0	00:00	0.00
MH406	STORAGE	0.00	0.07	62.86	0	01:10	0.07
MH408	STORAGE	0.00	0.00	62.98	0	00:00	0.00
MH410	STORAGE	0.00	0.06	62.55	0	01:11	0.06
MH412	STORAGE	0.00	0.00	62.28	0	00:00	0.00
MH414	STORAGE	0.00	0.10	62.00	0	01:11	0.10
VortechsPh1	STORAGE	0.06	0.72	59.12		0 01:13	0.72
VortechsPh2	STORAGE	1.51	1.86	58.20		0 01:11	1.86

Node Inflow Summary

Flow

Lateral Total

Lateral Total Time of Max Inflow Inflow Balance Inflow Inflow Occurrence Volume Volume Error Node Type LPS LPS days hr:min 10^6 ltr 10^6 ltr Percent	
Node Type LPS LPS days hr:min 10^6 ltr 10^6 ltr Percent 10+171.51 JUNCTION 0.00 42.07 0 01:10 0 0.0247 0.030	
10+171.51 JUNCTION 0.00 42.07 0 01:10 0 0.0247 0.030	
10+171.51 JUNCTION 0.00 42.07 0 01:10 0 0.0247 0.030	
10+207.77 JUNCTION 0.00 25.89 0 01:10 0 0.0139 0.594	
10+314.72 JUNCTION 0.00 116.82 0 01:11 0 0.053 0.212	
20.033.19 JUNCTION 0.00 74.76 0 01:10 0 0.0484 0.830	
20+069.15 JUNCTION 0.00 43.48 0 01:10 0 0.0337 -0.054	ļ
20+115.54 JUNCTION 0.00 0.00 0 00:00 0 0 0.000 ltr	
30+038.20 JUNCTION 0.00 85.07 0 01:10 0 0.064 -0.209	
30+074.39 JUNCTION 0.00 134.88 0 01:10 0 0.0787 -0.42	2
40+015.59 JUNCTION 0.00 115.32 0 01:10 0 0.0705 0.55	5
40+084.71 JUNCTION 0.00 62.27 0 01:10 0 0.0343 1.859	1
40+121.60 JUNCTION 0.00 0.00 0 00:00 0 0 0.000 ltr	
40+157.95 JUNCTION 0.00 4.55 0 01:10 0 0.00154 9.671	
50+102.24 JUNCTION 0.00 0.00 0 00:00 0 0 0.000 ltr	
50+127.37 JUNCTION 0.00 0.00 0 00:00 0 0 0.000 ltr	
60.370.58 JUNCTION 0.00 352.51 0 01:10 0 0.201 -0.007	
60+148.01 JUNCTION 0.00 0.02 0 01:10 0 1.55e-005 9.54	4 ltr
60+224.17 JUNCTION 14.13 26.11 0 01:10 0.0157 0.0202 0.	395
60+288.71 JUNCTION 0.00 86.14 0 01:10 0 0.062 0.051	
70-034.26 JUNCTION 4.76 4.76 0 01:10 0.00492 0.00492 0.	023
70-152.02 JUNCTION 4.76 66.29 0 01:10 0.00497 0.0368 -0.	065
70-208.50 JUNCTION 19.15 102.54 0 01:10 0.0218 0.0676 0	077
80+003.32 JUNCTION 0.00 19.13 0 01:10 0 0.00678 0.70	5
80+025.67 JUNCTION 0.00 0.00 0 00:00 0 0 0.000 ltr	
80+078.80 JUNCTION 0.00 22.53 0 01:10 0 0.0119 0.462	
80+121.22 JUNCTION 0.00 35.60 0 01:10 0 0.0216 -0.15:	Ĺ
80+187.36 JUNCTION 0.00 0.00 0 00:00 0 0 0.000 ltr	
80+216.33 JUNCTION 0.00 0.00 0 00:00 0 0 0.000 ltr	
80+267 JUNCTION 0.00 23.04 0 01:10 0 0.0115 -3.942	
90.071.47 JUNCTION 0.00 197.35 0 01:10 0 0.133 0.055	
90+008.28 JUNCTION 0.00 0.00 0 00:00 0 0 0.000 ltr	
A15A(STOR) JUNCTION 74.31 74.31 0 01:10 0.108 0.108 0.	020

Maximum Maximum

B19(STOR)	JUNCTION 78.72 78.72 0 01:10 0.115 0.115 -0.003
CB01	JUNCTION 0.00 39.97 0 01:05 0 0.0592 0.008
CB01(MS)	JUNCTION 45.04 56.58 0 01:10 0.058 0.0656 -0.102
CB06	JUNCTION 0.00 18.77 0 01:07 0 0.0283 0.015
CB06(MS)	JUNCTION 22.54 22.54 0 01:10 0.0298 0.0298 -0.008
CB08	JUNCTION 0.00 18.95 0 01:07 0 0.0288 -0.018
CB08(MS)	JUNCTION 22.94 22.94 0 01:10 0.0305 0.0305 -0.367
CB09	JUNCTION 0.00 75.25 0 01:10 0 0.144 0.004
CB09(MS)	JUNCTION 123.44 204.04 0 01:10 0.153 0.217 -0.049
CB1	JUNCTION 9.77 12.41 0 01:07 0.0123 0.0149 -0.134
CB12	JUNCTION 0.00 59.19 0 01:10 0 0.115 0.012
CB12(MS)	JUNCTION 86.75 127.97 0 01:10 0.124 0.158 -0.218
CB14	JUNCTION 0.00 49.10 0 01:04 0 0.0888 0.014
CB14(MS)	JUNCTION 57.20 120.39 0 01:10 0.0764 0.124 0.069
CB15(x2-DICE	3s) JUNCTION 69.01 183.83 0 01:12 0.096 0.18 0.000
CB16(2x-DICE	3s) JUNCTION 0.00 44.63 0 01:03 0 0.0803 0.002
CB16(MS)	JUNCTION 55.78 73.67 0 01:10 0.0757 0.0872 -0.294
CB18	JUNCTION 0.00 50.41 0 01:05 0 0.0889 -0.001
CB18(MS)	JUNCTION 50.40 175.59 0 01:10 0.0543 0.136 0.723
CB2	JUNCTION 9.77 9.77 0 01:10 0.0123 0.0125 0.018
CB20	JUNCTION 0.00 35.11 0 01:05 0 0.0649 0.002
CB20(MS)	JUNCTION 54.37 87.91 0 01:10 0.0682 0.0886 0.262
CB22	JUNCTION 0.00 67.13 0 01:10 0 0.109 0.010
CB22(MS)	JUNCTION 65.69 134.20 0 01:10 0.0936 0.141 -0.372
CB24	JUNCTION 0.00 57.86 0 01:09 0 0.11 0.008
CB24(MS)	JUNCTION 80.52 174.81 0 01:10 0.113 0.181 -0.086
CB26	JUNCTION 0.00 68.85 0 01:10 0 0.121 0.000
CB26(MS)	JUNCTION 108.03 108.03 0 01:10 0.137 0.137 0.022
CB28	JUNCTION 0.00 81.67 0 01:10 0 0.102 -0.000
CB28(MS)	JUNCTION 105.03 105.03 0 01:10 0.113 0.113 -0.002
CB29	JUNCTION 0.00 12.59 0 01:10 0 0.0211 0.000
CB29(MS)	JUNCTION 24.16 24.16 0 01:10 0.0287 0.0287 0.023
CB29B(L)	JUNCTION 13.36 13.36 0 01:10 0.0197 0.0197 -0.298
CB3	JUNCTION 29.33 29.33 0 01:10 0.0371 0.0372 -0.037
CB30	JUNCTION 0.00 18.36 0 01:10 0 0.0275 -0.010
CB30(MS)	JUNCTION 29.00 35.38 0 01:10 0.0345 0.0368 0.191

CB31	JUNCTION 0.00 23.30 0 01:10 0 0.0351 0.002
CB31(MS)	JUNCTION 33.83 49.68 0 01:10 0.0402 0.0494 0.041
CB31B(L)	JUNCTION 37.28 37.28 0 01:10 0.0444 0.0444 -0.009
CB32	JUNCTION 24.33 48.82 0 01:10 0.0298 0.0442 -0.132
CB34	JUNCTION 0.00 50.04 0 01:10 0 0.0864 0.006
CB34(MS)	JUNCTION 58.86 92.39 0 01:10 0.0839 0.106 -0.240
CB35	JUNCTION 0.00 11.62 0 01:10 0 0.0157 0.000
CB35(MS)	JUNCTION 14.57 14.57 0 01:10 0.0174 0.0174 -0.020
CB36	JUNCTION 0.00 13.00 0 01:10 0 0.0193 0.000
CB36(MS)	JUNCTION 19.41 22.32 0 01:10 0.0232 0.025 -0.446
CB39	JUNCTION 0.00 20.99 0 01:04 0 0.0524 0.010
CB39(MS)	JUNCTION 58.55 58.55 0 01:10 0.0829 0.0829 0.015
CB40	JUNCTION 0.00 8.09 0 01:10 0 0.0107 0.000
CB40(MS)	JUNCTION 9.69 9.69 0 01:10 0.0116 0.0116 0.093
CB41	JUNCTION 0.00 12.99 0 01:10 0 0.0192 0.000
CB41(MS)	JUNCTION 19.44 21.00 0 01:10 0.0233 0.0242 -0.333
CB42	JUNCTION 0.00 19.82 0 01:07 0 0.0489 -0.020
CB42(MS)	JUNCTION 58.66 58.66 0 01:10 0.0812 0.0812 0.060
CB45	JUNCTION 0.00 46.66 0 01:10 0 0.0754 0.005
CB45(MS)	JUNCTION 62.13 79.30 0 01:10 0.0816 0.0906 -0.239
CB47	JUNCTION 0.00 35.95 0 01:10 0 0.0568 0.007
CB47(MS)	JUNCTION 46.39 57.95 0 01:10 0.0589 0.0659 0.129
CB49	JUNCTION 0.00 8.23 0 01:10 0 0.0169 0.015
CB49(MS)	JUNCTION 31.24 31.24 0 01:10 0.0409 0.0409 -0.070
CB5	JUNCTION 24.55 24.55 0 01:10 0.0327 0.0327 0.024
CB51	JUNCTION 0.00 26.20 0 01:10 0 0.0411 -0.011
CB51(MS)	JUNCTION 32.51 32.89 0 01:10 0.0435 0.0437 -0.613
CB53	JUNCTION 0.00 36.56 0 01:03 0 0.0614 -0.001
CB53(MS)	JUNCTION 43.04 48.13 0 01:10 0.0588 0.0617 0.555
CB55	JUNCTION 24.07 24.07 0 01:10 0.0298 0.0298 -0.004
CB56	JUNCTION 0.00 5.43 0 01:10 0 0.00118 0.002
CB58	JUNCTION 0.00 10.98 0 01:10 0 0.00774 -0.001
CB58(MS)	JUNCTION 4.82 11.20 0 01:10 0.00547 0.00774 -0.030
CB6	JUNCTION 19.74 19.74 0 01:10 0.0272 0.0287 -10.261
CB60	JUNCTION 0.00 23.47 0 01:07 0 0.0306 -0.025
CB60(MS)	JUNCTION 28.03 28.03 0 01:10 0.0328 0.0328 0.117

CB62	JUNCTION 0.00 51.34 0 01:10 0 0.117 0.011
CB62(MS)	JUNCTION 113.16 138.47 0 01:10 0.159 0.179 -0.099
CB63	JUNCTION 0.00 19.65 0 01:10 0 0.0362 0.008
CB63(MS)	JUNCTION 33.92 55.91 0 01:10 0.0459 0.0577 -0.113
CB65	JUNCTION 0.00 52.92 0 01:04 0 0.116 0.003
CB65(MS)	JUNCTION 144.05 229.39 0 01:10 0.178 0.24 -0.004
CB67	JUNCTION 0.00 25.28 0 01:06 0 0.0415 -0.011
CB67(MS)	JUNCTION 43.93 43.93 0 01:10 0.0557 0.0557 -0.176
CB69	JUNCTION 0.00 24.30 0 01:06 0 0.027 -0.001
CB69(MS)	JUNCTION 19.24 29.17 0 01:10 0.0218 0.0273 1.022
CB70	JUNCTION 0.00 33.68 0 01:09 0 0.0519 0.001
CB70(MS)	JUNCTION 39.30 303.22 0 01:10 0.046 0.199 0.142
CB71	JUNCTION 0.00 17.30 0 01:07 0 0.0325 -0.010
CB71(MS)	JUNCTION 33.16 33.16 0 01:10 0.0428 0.0428 0.244
CB73	JUNCTION 0.00 30.55 0 01:10 0 0.0396 0.118
CB73(MS)	JUNCTION 35.20 54.18 0 01:10 0.0398 0.0501 0.114
CB74(4x-DICB	s) JUNCTION 56.60 448.56 0 01:10 0.0617 0.304 0.000
CB75	JUNCTION 0.00 35.12 0 01:07 0 0.0774 -0.035
CB75(MS)	JUNCTION 72.10 393.43 0 01:10 0.0943 0.279 0.074
CB76	JUNCTION 0.00 26.79 0 01:10 0 0.0559 0.002
CB76(MS)	JUNCTION 45.56 85.10 0 01:10 0.0692 0.0939 0.077
CB77	JUNCTION 0.00 22.17 0 01:06 0 0.0469 0.018
CB77(MS)	JUNCTION 41.64 63.17 0 01:10 0.0579 0.0717 0.093
CB78	JUNCTION 53.46 88.04 0 01:10 0.0722 0.0938 -0.273
CB79	JUNCTION 0.00 22.22 0 01:05 0 0.0459 -0.017
CB79(MS)	JUNCTION 63.80 84.27 0 01:10 0.0737 0.0857 0.832
CB8	JUNCTION 29.48 29.48 0 01:10 0.0389 0.0389 0.032
CB80	JUNCTION 0.00 21.05 0 01:06 0 0.043 0.004
CB80(MS)	JUNCTION 42.02 42.02 0 01:10 0.055 0.055 0.163
CB82	JUNCTION 27.65 37.28 0 01:10 0.0361 0.0404 -0.000
CBMH1	JUNCTION 65.34 65.34 0 01:20 0.223 0.223 -0.000
СВМН4	JUNCTION 24.44 24.44 0 01:10 0.031 0.031 -0.009
СВМН7	JUNCTION 29.29 29.29 0 01:10 0.0368 0.0368 -0.024
CB-PL	JUNCTION 44.61 67.05 0 01:10 0.0645 0.0883 0.009
HP01	JUNCTION 0.00 19.24 0 01:10 0 0.00501 0.126
HP02	JUNCTION 0.00 11.67 0 01:10 0 0.00418 0.264

HP03	JUNCTION	0.00 2	3.87 0	01:11	0 0.011	16 0.048	
HP04	JUNCTION	0.00	0.00 0	00:00	0 0	0.000 ltr	
J10	JUNCTION	0.00 7.	49 O C	1:05	0.00236	-0.024	
J11	JUNCTION	0.00 8.	16 0 0	1:05	0.00156	0.027	
J12	JUNCTION	0.00 13	.05 0	01:10	0 0.0048	1 -0.007	
J13	JUNCTION	0.00 13	.36 0	01:04	0 0.0051	5 -0.003	
J14	JUNCTION	0.00 66	.96 0	01:10	0 0.0883	-0.000	
J15	JUNCTION	0.00 124	1.41 0	01:13	0 1.59	-0.000	
J16	JUNCTION	0.00 76	.54 0	01:10	0 0.0407	0.358	
J17	JUNCTION	0.00 796	5.89 0	01:11	0 1.44	-0.007	
J3	JUNCTION	0.00 94.	16 0 0	1:10	0 0.14	1.027	
J5	JUNCTION	69.36 69	.36 0	01:10	0.1 0.1	0.004	
J6	JUNCTION	0.00 13.	31 0 0	1:05	0.00469	-0.012	
J7	JUNCTION	0.00 9.3	32 0 0:	1:05 0	0.00264	0.012	
J8	JUNCTION	0.00 9.0	03 0 0	1:06 0	0.00234	-0.013	
J9	JUNCTION	0.00 13.	85 O C	1:09	0.00397	0.535	
MH314(DUI	IUL (YMM	NCTION	0.00 90	0.78 0 01	:04 0	0.173	-0.018
MH328(DUI	IUL (YMM	NCTION	0.00 12	8.24 0 0	1:14 0	0.402	0.035
Clegg	OUTFALL	0.00 11	.27 0	01:10	0 0.0041	6 0.000	
MainNorth	OUTFAL	L 0.00	0.00	0 00:00	0 0	0.000 lt	tr
MainSouth	OUTFAL	L 0.00	20.77	0 01:10	0.0	106 0.00	00
Out1	OUTFALL	0.00 23	.86 0	01:11	0 0.0116	0.000	
Out2	OUTFALL	0.00 19	.10 0	01:10	0 0.005	0.000	
Out3	OUTFALL	0.00	.00 00	00:00	0 0	0.000 ltr	
Outlet1-Pha	se1 OUTF	ALL 0.00	1688.3	3 0 01:1	3 0	3.86 0.	000
Outlet2-Pha	se2&3 OUT	FALL 0.	00 914.	07 0 01::	11 0	1.65	0.000
A04(STOR)	STORAG	E 49.39	51.79	0 01:10	0.0717	0.1 0.	435
A09B(STOR)	STORAC	GE 64.46	64.46	0 01:10	0.0932	0.0932	-0.011
A09C(STOR)	STORAC	GE 39.68	39.68	0 01:10	0.0574	0.0574	-0.009
A10(STOR)	STORAG	E 44.64	44.64	0 01:10	0.0645	0.0645 -	0.009
A11B(STOR)	STORAC	GE 39.64	41.74	0 01:10	0.0573	0.0842	0.026
A14(STOR)	STORAG	E 205.92	205.92	0 01:10	0.356	0.356	0.011
A16C(STOR)	STORAC	GE 24.80	24.80	0 01:10	0.0358	0.0358	-0.021
A22A(STOR) STORAG	GE 66.23	66.23	0 01:10	0.1	0.1 0.0	01
B21(STOR)							
222(0.0)	STORAG	E 72.17	72.17	0 01:10	0.115	0.115 0	.001

B25(STOR)	STORAGE	29.76 29.76	0 01:10	0.04	3 0.04	3 -0.010
CB1-GAPark	STORAGE	66.76 66.76	0 01:10	0.11	14 0.1	14 0.002
СВМН2	STORAGE	0.00 108.00	0 01:01	0	0.356	0.002
Dummy-MH1	128 STORA	GE 0.00 763	3.08 0 01:	11	0 1	.92 0.007
GA-ParkSout	hStorage STOR	AGE 15.37	15.37 0 01	1:20	0.0399	0.0399 0.003
J2	STORAGE 14.	88 14.88 0	01:10 0.0	215	0.0245	-0.182
J4	STORAGE 9.9	92 9.92 0 0	1:10 0.01	43 0	0.0173	-2.574
MH100	STORAGE	0.00 60.81	0 01:10	0	0.1	0.088
MH102	STORAGE	0.00 76.61	0 01:13	0	0.252	0.026
MH104	STORAGE	0.00 59.63	0 01:11	0	0.1	0.185
MH106	STORAGE	0.00 132.02	0 01:15	0	0.353	-0.003
MH108	STORAGE	0.00 216.72	0 01:12	0	0.447	-0.001
MH110	STORAGE	0.00 843.13	0 01:10	0	2.13	-0.065
MH110B	STORAGE	0.00 908.01	0 01:10	0	2.32	-0.000
MH112B	STORAGE	0.00 964.17	0 01:11	0	2.45	-0.012
MH114	STORAGE	0.00 1280.31	0 01:12	0	3	0.013
MH118	STORAGE	0.00 1688.06	0 01:13	0	3.86	-0.009
MH122	STORAGE	0.00 283.72	0 01:12	0	0.611	-0.000
MH122B	STORAGE	0.00 408.81	0 01:13	0	0.864	0.009
MH124	STORAGE	0.00 138.09	0 01:10	0	0.364	-0.002
MH126	STORAGE	18.38 100.96	0 01:10	0.032	4 0.28	34 0.000
MH128	STORAGE	0.00 726.69	0 01:12	0	1.81	0.000
MH130	STORAGE	0.00 619.97	0 01:12	0	1.46	0.001
MH132	STORAGE	0.00 557.73	0 01:12	0	1.27	0.035
MH136	STORAGE	0.00 17.20	0 01:10	0	0.0489	-0.002
MH140	STORAGE	0.00 20.71	0 01:10	0	0.0299	-0.006
MH144	STORAGE	0.00 283.72	0 01:12	0	0.61	-0.000
MH148	STORAGE	0.00 24.04	0 01:10	0	0.0351	-0.005
MH152	STORAGE	0.00 17.23	0 01:10	0	0.054	-0.000
MH164	STORAGE	0.00 541.49	0 01:11	0	1.23	-0.015
MH166	STORAGE	0.00 303.15	0 01:10	0	0.657	0.004
MH168	STORAGE	0.00 299.70	0 01:10	0	0.607	-0.009
MH170	STORAGE	0.00 184.66	0 01:11	0	0.393	0.060
MH172	STORAGE	0.00 122.74	0 01:11	0	0.219	-0.008
MH174	STORAGE	0.00 107.07	0 01:10	0	0.191	0.155
MH176	STORAGE	0.00 105.16	0 01:10	0	0.318	0.284

MH178	STORAGE	0.00	172.62	0 01:11	0	0.439	-0.001
MH180	STORAGE	0.00	50.99	0 01:10	0	0.102	-0.003
MH182	STORAGE	0.00	58.36	0 01:10	0	0.119	-0.489
MH220	STORAGE	0.00	37.66	0 01:11	0	0.0626	0.243
MH222	STORAGE	0.00	67.13	0 01:14	0	0.134	-0.075
MH224	STORAGE	0.00	17.70	0 01:06	0	0.0326	0.087
MH226	STORAGE	0.00	12.32	0 01:10	0	0.0211	-0.068
MH228	STORAGE	0.00	25.57	0 01:10	0	0.0409	-0.155
MH230	STORAGE	0.00	80.15	0 01:15	0	0.253	-0.054
MH238	STORAGE	0.00	1688.13	0 01:13	0	3.86	-0.000
MH242	STORAGE	0.00	1688.29	0 01:13	0	3.86	-0.000
MH246	STORAGE	0.00	77.71	0 01:14	0	0.252	-0.029
MH248	STORAGE	0.00	357.32	0 01:10	0	0.762	0.006
MH250	STORAGE	0.00	104.88	0 01:11	0	0.317	-0.353
MH300	STORAGE	0.00	26.41	0 01:11	0	0.0402	-0.001
MH302	STORAGE	0.00	26.38	0 01:11	0	0.0402	0.021
MH304	STORAGE	0.00	81.42	0 01:10	0	0.2	-0.003
MH306	STORAGE	0.00	159.18	0 01:10	0	0.315	0.010
MH308	STORAGE	0.00	204.97	0 01:10	0	0.431	-0.006
MH310	STORAGE	0.00	357.35	0 01:09	0	0.862	-0.038
MH312	STORAGE	0.00	18.43	0 01:10	0	0.043	-0.003
MH314	STORAGE	0.00	37.44	0 01:10	0	0.0792	0.021
MH316	STORAGE	0.00	112.61	0 01:06	0	0.234	-0.049
MH318	STORAGE	0.00	13.99	0 01:07	0	0.0332	0.021
MH320	STORAGE	0.00	118.76	0 01:16	0	0.235	-0.000
MH322	STORAGE	0.00	141.61	0 01:15	0	0.277	-0.000
MH324	STORAGE	0.00	18.50	0 01:10	0	0.0469	-0.001
MH326	STORAGE	26.59	77.55	0 01:12	0.070	7 0.28	38 -0.043
MH328	STORAGE	23.48	96.59	0 01:10	0.036	0.32	4 0.056
MH330	STORAGE	0.00	37.75	0 01:09	0	0.0871	-0.055
MH332	STORAGE	0.00	476.15	0 01:10	0	0.39	-0.000
MH334	STORAGE	0.00	916.89	0 01:11	0	1.65	0.000
MH336	STORAGE	0.00	914.56	0 01:11	0	1.66	-0.000
MH338	STORAGE	0.00	913.93	0 01:11	0	1.66	-0.000
MH340	STORAGE	0.00	914.06	0 01:11	0	1.65	0.000
MH400	STORAGE	0.00	0.00	0 00:00	0	0 0	0.000 ltr

MH402	STORAGE	0.00	16.32	0 01:10	0	0	.0325	-0.000
MH404	STORAGE	0.00	0.00	0 00:00	0		0 0.	.000 ltr
MH406	STORAGE	0.00	16.22	0 01:10	0	0	.0303	-0.001
MH408	STORAGE	0.00	0.00	0 00:00	0		0 0.	.000 ltr
MH410	STORAGE	0.00	11.48	0 01:11	. 0	0	.0305	1.899
MH412	STORAGE	0.00	0.00	0 00:00	0		0 0.	.000 ltr
MH414	STORAGE	0.00	16.30	0 01:10	0	0	.0338	0.041
VortechsPh1	STORAGE	0.00	446.7	0 0 01:	:13	0	2.27	0.000
VortechsPh2	STORAGE	0.00	117.3	2 0 01:	:11	0	0.213	0.000

Node Surcharge Summary

Surcharging occurs when water rises above the top of the highest conduit.

Max. Height Min. Depth

Hours Above Crown Below Rim

 Node
 Type
 Surcharged
 Meters
 Meters

 CB29B(L)
 JUNCTION
 0.23
 0.557
 1.268

 J17
 JUNCTION
 24.00
 0.519
 0.601

 MH314(DUMMY)
 JUNCTION
 0.26
 0.681
 0.919

MH328(DUMMY) JUNCTION 24.00 1.266 0.869

Node Flooding Summary

No nodes were flooded.

Storage Volume Summary

								1ax Time	of Max Max	kimum
	Volume	Pcnt	Pcr	it P	cnt	Volume	Pcn	nt Occurre	ence Outflo	w
Storage Unit	100	00 m3	Fu	II L	oss I	Loss 10	00 m3	B Full da	ys hr:min	LPS
A04(STOR)	0.0	015	21	0	0	0.045	63	0 01:26	11.20	
A09B(STOR)	0.	.002	1	0	0	0.043	23	0 01:26	10.40	
A09C(STOR)	0.	.002	1	0	0	0.027	23	0 01:25	6.40	
A10(STOR)	0.0	002	1	0	0	0.030	23	0 01:25	7.20	
A11B(STOR)	0.	.007	13	0	0	0.035	64	0 01:3	0 7.73	
A14(STOR)	0.0	001	0	0	0	0.041	3	0 01:13	108.00	
A16C(STOR)	0.	.000	0	0	0	0.000	1	0 01:10	24.80	
A22A(STOR)	0	.005	5	0	0	0.056	53	0 01:37	8.84	
B21(STOR)	0.0	006	5	0	0	0.063	50	0 01:40	10.17	
B23(STOR)	0.0	019	39	0	0	0.049	98	0 01:10	84.18	
B25(STOR)	0.0	001	1	0	0	0.020	23	0 01:25	4.80	
CB1-GAPark	0.	.000	0	0	0	0.005	33	0 01:14	59.46	
CBMH2	0.0	00	1	0	0	0.000	9	0 01:02	108.72	
Dummy-MH	128	0.00	00	1	0	0.0	00	29 0 02	1:12 760.8	5
GA-ParkSout	thStorage	0.0	001	0	0	0 0.	014	9 0 0	1:44 7.66	
J2	0.004	8	0	0	0	.013 29	0	01:30 2	.10	
J4	0.003	7	0	0	0	.008 17	0	01:20 2	.40	
MH100	0.0	00	1	0	0	0.000	17	0 01:13	59.63	
MH102	0.0	00	0	0	0	0.000	7	0 01:13	77.71	
MH104	0.0	00	1	0	0	0.000	11	0 01:13	58.57	
MH106	0.0	00	3	0	0	0.001	19	0 01:13	133.98	
MH108	0.0	00	4	0	0	0.001	22	0 01:13	215.65	
MH110	0.0	00	1	0	0	0.002	25	0 01:12	824.44	
MH110B	0.0	000	1	0	0	0.002	28	0 01:12	899.46	
MH112B	0.0	000	1	0	0	0.002	29	0 01:12	960.03	
MH114	0.0	04	17	0	0	0.009	38	0 01:12	1280.08	
MH118	0.0	00	2	0	0	0.004	20	0 01:13	1688.10	
MH122	0.0	00	3	0	0	0.001	14	0 01:13	283.90	
MH122B	0.0	000	2	0	0	0.001	24	0 01:13	409.01	

MH124	0.000	1	0	0	0.000	12	0 01:11	137.51
MH126	0.000	1	0	0	0.000	14	0 01:10	98.03
MH128	0.000	1	0	0	0.003	29	0 01:12	726.49
MH130	0.001	11	0	0	0.002	32	0 01:12	618.69
MH132	0.000	1	0	0	0.001	22	0 01:12	557.08
MH136	0.000	0	0	0	0.000	5	0 01:10	17.20
MH140	0.000	0	0	0	0.000	6	0 01:11	20.62
MH144	0.000	1	0	0	0.000	12	0 01:12	283.72
MH148	0.000	0	0	0	0.000	7	0 01:11	23.91
MH152	0.002	39	0	0	0.002	42	0 01:10	17.23
MH164	0.000	1	0	0	0.001	20	0 01:11	540.30
MH166	0.000	1	0	0	0.001	16	0 01:11	300.61
MH168	0.000	1	0	0	0.001	15	0 01:10	296.74
MH170	0.001	19	0	0	0.001	29	0 01:11	186.12
MH172	0.000	1	0	0	0.000	10	0 01:11	122.87
MH174	0.000	2	0	0	0.000	12	0 01:11	106.55
MH176	0.000	3	0	0	0.000	12	0 01:11	104.88
MH178	0.000	1	0	0	0.000	12	0 01:12	172.16
MH180	0.000	1	0	0	0.000	12	0 01:11	50.83
MH182	0.000	2	0	0	0.000	11	0 01:11	58.27
MH220	0.000	0	0	0	0.001	27	0 01:14	34.61
MH222	0.000	1	0	0	0.001	39	0 01:14	71.61
MH224	0.000	1	0	0	0.001	37	0 01:14	18.25
MH226	0.000	0	0	0	0.000	4	0 01:11	12.31
MH228	0.000	0	0	0	0.000	12	0 01:13	24.56
MH230	0.000	0	0	0	0.000	10	0 01:13	82.12
MH238	0.000	1	0	0	0.002	14	0 01:13	1688.29
MH242	0.005	33	0	0	0.006	40	0 01:13	1688.33
MH246	0.000	0	0	0	0.000	8	0 01:13	79.65
MH248	0.000	1	0	0	0.001	16	0 01:11	356.13
MH250	0.000	1	0	0	0.000	9	0 01:11	104.00
MH300	0.000	0	0	0	0.000	3	0 01:11	26.38
MH302	0.000	0	0	0	0.000	4	0 01:11	26.36
MH304	0.000	0	0	0	0.000	6	0 01:10	81.34
MH306	0.000	0	0	0	0.000	8	0 01:10	159.05
MH308	0.000	0	0	0	0.001	15	0 01:11	200.79

MH310	0.002	38	0	0	0.002	60	0 01:11	364.70
MH312	0.000	0	0	0	0.000	3	0 01:10	18.43
MH314	0.000	0	0	0	0.000	4	0 01:10	37.39
MH316	0.001	24	0	0	0.002	61	0 01:12	118.76
MH318	0.000	17	0	0	0.002	73	0 01:13	17.36
MH320	0.001	30	0	0	0.002	63	0 01:12	124.59
MH322	0.001	31	0	0	0.002	61	0 01:12	145.91
MH324	0.000	1	0	0	0.000	4	0 01:10	18.49
MH326	0.000	0	0	0	0.000	5	0 01:12	77.55
MH328	0.000	1	0	0	0.001	29	0 01:12	99.07
MH330	0.001	36	0	0	0.002	73	0 01:11	42.42
MH332	0.001	50	0	0	0.002	80	0 01:11	467.75
MH334	0.002	56	0	0	0.002	81	0 01:11	914.56
MH336	0.004	51	0	0	0.005	63	0 01:11	914.02
MH338	0.004	52	0	0	0.005	63	0 01:11	914.06
MH340	0.002	79	0	0	0.002	90	0 01:11	914.07
MH400	0.000	0	0	0	0.000	0	0 00:00	0.00
MH402	0.000	0	0	0	0.000	4	0 01:10	16.32
MH404	0.000	0	0	0	0.000	0	0 00:00	0.00
MH406	0.000	0	0	0	0.000	3	0 01:10	16.22
MH408	0.000	0	0	0	0.000	0	0 00:00	0.00
MH410	0.000	0	0	0	0.000	3	0 01:11	11.48
MH412	0.000	0	0	0	0.000	0	0 00:00	0.00
MH414	0.000	0	0	0	0.000	4	0 01:11	20.54
VortechsPh1	0.000	2	0	0	0.002	18	0 01:13	446.69
VortechsPh2	0.002	51	L (0 0	0.002	63	0 01:11	117.06

Outfall Loading Summary

Flow Avg Max Total

Freq Flow Flow Volume

Outfall Node Pcnt LPS LPS 10^6 ltr

 Clegg
 2.75
 1.74
 11.27
 0.004

 MainNorth
 0.00
 0.00
 0.00
 0.000

 MainSouth
 3.24
 3.79
 20.77
 0.011

 Out1
 1.40
 9.60
 23.86
 0.012

 Out2
 0.87
 6.67
 19.10
 0.005

 Out3
 0.00
 0.00
 0.00
 0.000

 Outlet1-Phase1
 48.20
 92.59
 1688.33
 3.857

 Outlet2-Phase2&3
 74.26
 25.70
 914.07
 1.649

System 16.34 140.09 2629.20 5.537

Link Flow Summary

Maximum Time of Max Maximum Max/ Max/

|Flow| Occurrence |Veloc| Full Full

Link	Туре	LPS day	rs hr:min	m/sec	Flow	Depth
1	CONDUIT	0.00	0 00:00	0.00	0.00	0.06
10	CONDUIT	9.32	0 01:05	0.07	0.00	0.09
11	CONDUIT	16.22	0 01:10	1.32	0.19	0.30
12	CONDUIT	8.32	0 01:10	0.09	0.00	0.07
13	CONDUIT	13.00	0 01:10	0.19	0.00	0.06
14	CONDUIT	6.15	0 01:09	0.14	0.04	0.14
15	CONDUIT	8.23	0 01:10	0.01	0.00	0.50
16	CONDUIT	9.03	0 01:06	0.06	0.00	0.10
18	CONDUIT	5.54	0 01:10	0.12	0.01	0.11
19	CONDUIT	0.00	0 00:00	0.00	0.00	0.14
2	CONDUIT	16.32	0 01:10	1.18	0.19	0.33
20	CONDUIT	0.00	0 00:00	0.00	0.00	0.00
22	CONDUIT	11.48	0 01:11	1.19	0.14	0.25
23	CONDUIT	0.00	0 00:00	0.00	0.00	0.08

24	CONDUIT	9.83	0 01:07	0.09 0.00 0.36	
25	CONDUIT	7.49	0 01:05	0.09 0.00 0.11	
28	CONDUIT	13.04	0 01:10	0.11 0.00 0.11	
29	CONDUIT	8.16	0 01:05	0.05 0.00 0.47	
3	CONDUIT	0.00	00:00	0.00 0.00 0.08	
30	CONDUIT	13.05	0 01:10	0.08 0.00 0.11	
32	CONDUIT	13.36	0 01:04	0.09 0.00 0.11	
33	CONDUIT	13.17	0 01:10	0.15 0.00 0.10	
35	CONDUIT	66.96	0 01:10	0.36 0.24 0.12	
37	CONDUIT	22.44	0 01:10	0.55 0.00 0.03	
4	CONDUIT	13.31	0 01:05	0.08 0.00 0.13	
5	CONDUIT	69.38	0 01:10	1.35 0.09 0.34	
6	CONDUIT	69.36	0 01:10	2.40 0.88 0.87	
7	CONDUIT	0.00	00:00	0.00 0.00 0.05	
9	CONDUIT	20.54	0 01:12	1.21 0.28 0.63	
A15A(OUT)	COND	UIT 74	.31 0 01	:10 5.76 0.31	0.69
B19(OUT)	CONDU	JIT 78.3	38 0 01:	10 1.93 0.60 0).56
C01	CHANNEL	41.34	0 01:10	0.90 0.01 0.18	3
C02	CHANNEL	25.42	0 01:11	0.64 0.01 0.17	7
C03	CHANNEL	96.61	0 01:13	0.63 0.06 0.32	<u>?</u>
C04	CHANNEL	70.70	0 01:11	0.24 0.03 0.34	ļ
C05	CHANNEL	43.78	0 01:11	0.26 0.02 0.24	ļ
C06	CHANNEL	0.00	0 00:00	0.00 0.00 0.03	
C07	CHANNEL	0.00	0 00:00	0.00 0.00 0.05	
C08	CHANNEL	83.19	0 01:10	0.57 0.01 0.28	3
C09	CHANNEL	132.41	0 01:11	0.41 0.02 0.5	2
C10	CHANNEL	35.25	0 01:10	0.29 0.02 0.20)
C100	CHANNEI	5.43	0 01:10	0.37 0.01 0.18	3
C101	CHANNEI	0.00	0 00:00	0.00 0.00 0.00)
C102	CONDUIT	0.00	0 00:00	0.00 0.00 0.02	!
C103	CHANNEI	6.51	0 01:10	0.57 0.00 0.06	5
C104	CHANNEI	0.00	0 00:00	0.00 0.00 0.02	2
C105	CONDUIT	0.00	0 00:00	0.00 0.00 0.08	}
C106	CHANNEI	6.17	0 01:10	0.28 0.00 0.10)
C107	CONDUIT	0.00	0 00:00	0.00 0.00 0.09)
C108	CHANNEI	86.14	0 01:10	0.98 0.01 0.1	7

C109	CONDUIT	0.00	0 00:00	0.00 0.00 0.07
C11	CHANNEL	72.55	0 01:10	0.41 0.02 0.24
C110	CHANNEL	35.60	0 01:10	0.77 0.01 0.12
C111	CONDUIT	0.00	0 00:00	0.00 0.00 0.14
C112	CHANNEL	182.08	0 01:10	0.85 0.02 0.27
C113	CONDUIT	0.00	0 00:00	0.00 0.00 0.07
C114	CHANNEL	15.27	0 01:10	0.12 0.00 0.20
C115	CONDUIT	0.00	0 00:00	0.00 0.00 0.18
C116	CHANNEL	9.94	0 01:10	0.36 0.00 0.14
C117	CONDUIT	0.00	0 00:00	0.00 0.00 0.16
C118	CHANNEL	270.53	0 01:10	0.94 0.03 0.31
C119	CONDUIT	0.00	0 00:00	0.00 0.00 0.09
C12	CHANNEL	54.85	0 01:12	0.40 0.02 0.22
C120	CHANNEL	19.05	0 01:10	0.50 0.00 0.12
C121	CONDUIT	0.00	0 00:00	0.00 0.00 0.05
C122	CHANNEL	23.04	0 01:10	0.59 0.00 0.12
C123	CHANNEL	353.21	0 01:10	0.95 0.21 0.51
C124	CONDUIT	444.74	0 01:10	1.01 0.63 1.00
C125	CONDUIT	0.00	0 00:00	0.00 0.00 0.25
C126	CONDUIT	0.00	0 00:00	0.00 0.00 0.09
C127	CHANNEL	53.85	0 01:10	0.48 0.01 0.27
C128	CONDUIT	0.00	0 00:00	0.00 0.00 0.13
C129	CHANNEL	42.07	0 01:10	0.87 0.01 0.18
C13	CHANNEL	0.00	0 00:00	0.00 0.00 0.04
C130	CHANNEL	0.00	0 00:00	0.00 0.00 0.18
C131	CONDUIT	0.00	0 00:00	0.00 0.00 0.37
C132	CHANNEL	52.02	0 01:12	0.34 0.10 0.32
C133	CONDUIT	0.00	0 00:00	0.00 0.00 0.09
C134	CHANNEL	22.53	0 01:10	0.45 0.01 0.13
C135	CHANNEL	0.00	0 00:00	0.00 0.00 0.00
C136	CHANNEL	19.10	0 01:10	0.93 0.02 0.21
C137	CHANNEL	11.27	0 01:10	0.14 0.00 0.16
C138	CHANNEL	23.86	0 01:11	0.86 0.02 0.25
C139	CHANNEL	0.00	0 00:00	0.00 0.00 0.00
C14	CHANNEL	0.00	0 00:00	0.00 0.00 0.04
C140	CONDUIT	59.63	0 01:11	0.93 0.89 0.96

C141	CONDUIT	77.71	0 01:14	0.92	0.62	0.93
C142	CONDUIT	58.57	0 01:11	1.01	0.99	1.00
C143	CONDUIT	133.98	0 01:15	1.01	0.74	0.97
C144	CONDUIT	215.65	0 01:13	1.48	1.49	0.86
C145_1	CONDUIT	59.54	0 01:13	0.84	0.47	0.62
C145_2	CONDUIT	71.91	0 01:08	1.09	0.58	0.88
C146	CONDUIT	816.18	0 01:10	1.75	0.70	1.00
C147	CONDUIT	899.46	0 01:11	1.68	0.89	1.00
C148	CONDUIT	960.03	0 01:12	1.80	0.94	1.00
C149	CONDUIT	1280.08	0 01:12	2.09	1.01	0.92
C15	CHANNEL	2.77	0 01:11	0.03 (0.00	0.17
C150	CONDUIT	1241.44	0 01:13	3.14	0.66	0.60
C151	CONDUIT	446.70	0 01:13	1.58	1.63	1.00
C152	CONDUIT	283.90	0 01:13	1.65	1.31	0.74
C153	CONDUIT	409.01	0 01:13	1.45	1.24	1.00
C154	CONDUIT	137.51	0 01:11	1.23	0.93	0.66
C155	CONDUIT	98.03	0 01:10	1.17	0.80	0.71
C156_1	CONDUIT	726.49	0 01:12	1.64	0.91	1.00
C156_2	CONDUIT	760.85	5 0 01:12	1.72	0.96	5 1.00
C158	CONDUIT	0.00	0 00:00	0.00	0.00	0.38
C159	CONDUIT	618.69	0 01:12	1.69	0.82	0.77
C16	CHANNEL	0.00	0 00:00	0.00	0.00	0.07
C160	CONDUIT	557.08	0 01:12	1.35	0.91	0.88
C161	CONDUIT	17.20	0 01:11	0.79	0.41	0.45
C162	CONDUIT	20.62	0 01:11	0.83	0.49	0.50
C1 C2						
C163	CONDUIT	283.72	0 01:12		0.81	0.84
C163	CONDUIT			1.47	0.81 0.57	
		23.91	0 01:11	1.47 0.86	0.57	0.55
C164 C165	CONDUIT	23.91 17.23	0 01:11 0 01:10	1.47 0.86 0.80	0.57 0.41	0.55
C164 C165 C166	CONDUIT	23.91 17.23 540.30	0 01:11 0 01:10 0 01:11	1.47 0.86 0.80 1.33	0.57 0.41	0.55 0.45
C164 C165 C166 C167	CONDUIT CONDUIT	23.91 17.23 540.30 300.61	0 01:11 0 01:10 0 01:11 0 01:10	1.47 0.86 0.80 1.33 1.24	0.57 0.41 0.95	0.55 0.45 0.87 0.84
C164 C165 C166 C167 C168	CONDUIT CONDUIT CONDUIT CONDUIT	23.91 17.23 540.30 300.61 296.74	0 01:11 0 01:10 0 01:11 0 01:10	1.47 0.86 0.80 1.33 1.24 1.19	0.57 0.41 0.95 1.18	0.55 0.45 0.87 0.84
C164 C165 C166 C167 C168 C169	CONDUIT CONDUIT CONDUIT CONDUIT	23.91 17.23 540.30 300.61 296.74 186.12	0 01:11 0 01:10 0 01:11 0 01:10 0 01:10 0 01:11	1.47 0.86 0.80 1.33 1.24 1.19	0.57 0.41 0.95 1.18 0.93 0.85	0.55 0.45 0.87 0.84 0.85
C164 C165 C166 C167 C168 C169	CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT	23.91 17.23 540.30 300.61 296.74 186.12 0.00	0 01:11 0 01:10 0 01:11 0 01:10 0 01:10 0 01:11	1.47 0.86 0.80 1.33 1.24 1.19 1.02	0.57 0.41 0.95 1.18 0.93 0.85	0.55 0.45 0.87 0.84 0.85
C164 C165 C166 C167 C168 C169	CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT CONDUIT	23.91 17.23 540.30 300.61 296.74 186.12 0.00 122.87	0 01:11 0 01:10 0 01:11 0 01:10 0 01:10 0 01:11 0 00:00 0 01:11	1.47 0.86 0.80 1.33 1.24 1.19 1.02 0.00 (0.57 0.41 0.95 1.18 0.93 0.85	0.55 0.45 0.87 0.84 0.85 0.82 0.00

C173	CONDUIT	104.88	0 01:11	1.20	0.53	0.54	
C174	CONDUIT	172.16	0 01:12	1.12	0.82	0.67	
C175	CONDUIT	50.83	0 01:11	1.04	0.86	0.66	
C176	CONDUIT	58.27	0 01:11	0.87	0.60	0.61	
C177	CONDUIT	34.61	0 01:13	0.75	0.82	1.00	
C178	CONDUIT	71.61	0 01:17	1.01	1.05	1.00	
C179	CONDUIT	18.25	0 01:21	0.61	0.43	1.00	
C18	CHANNEL	0.00	0 00:00	0.00	0.00	0.14	
C180	CONDUIT	12.31	0 01:11	0.56	0.29	0.61	
C181	CONDUIT	24.56	0 01:11	0.73	0.57	0.89	
C182	CONDUIT	82.12	0 01:15	1.02	0.67	1.00	
C183	CONDUIT	1688.29	0 01:13	3.76	0.75	0.66	
C184	CONDUIT	1688.33	0 01:13	2.65	0.86	1.00	
C185	CONDUIT	79.65	0 01:15	0.92	0.66	1.00	
C186	CONDUIT	356.13	0 01:10	1.61	0.76	0.85	
C187	CONDUIT	104.00	0 01:11	1.22	0.53	0.53	
C188	CONDUIT	26.38	0 01:11	1.77	0.25	0.34	
C189	CONDUIT	26.36	0 01:11	1.14	0.33	0.48	
C19	CHANNEL	352.51	0 01:10	1.26	0.08	0.43	
C190	CONDUIT	81.34	0 01:10	1.96	0.46	0.60	
C191	CONDUIT	159.05	0 01:10	2.97	0.83	0.71	
C192	CONDUIT	200.79	0 01:09	1.94	0.67	1.00	
C193	CONDUIT	364.70	0 01:13	1.29	1.16	1.00	
C194	CONDUIT	18.43	0 01:10	1.23	0.18	0.35	
C195	CONDUIT	37.39	0 01:10	1.43	0.36	0.71	
C196	CONDUIT	88.80	0 01:04	2.15	0.62	1.00	
C197	CONDUIT	118.76	0 01:16	1.08	1.02	1.00	
C198	CONDUIT	17.36	0 01:20	0.35	0.86	1.00	
C199	CONDUIT	124.59	0 01:16	1.13	0.96	1.00	
C20	CHANNEL	0.02	0 01:10	0.03	0.00	0.01	
C200	CONDUIT	145.91	0 01:15	1.32	1.59	1.00	
C201	CONDUIT	18.49	0 01:10	1.68	0.10	0.21	
C202	CONDUIT	77.55	0 01:12	2.23	0.25	0.67	
C203	CONDUIT	99.07	0 01:14	0.99	0.30	1.00	
C204	CONDUIT	128.36	0 01:14	1.16	0.47	1.00	
C205	CONDUIT	42.42	0 01:12	0.38	0.38	1.00	

C206	CONDUIT	467.75	0 01:11	1.06 0.56 1.00
C207	CONDUIT	914.56	0 01:11	2.07 1.84 1.00
C208	CONDUIT	117.32	0 01:11	0.41 0.43 1.00
C209	CONDUIT	796.89	0 01:11	1.80 1.13 1.00
C21	CHANNEL	0.00	0 01:31	0.00 0.00 0.05
C210	CONDUIT	914.06	0 01:11	2.07 1.75 1.00
C211	CONDUIT	914.07	0 01:11	2.07 1.40 1.00
C212	CONDUIT	446.69	0 01:13	1.72 1.63 0.86
C213	CONDUIT	117.06	0 01:11	0.41 2.44 1.00
C22	CHANNEL	0.00	0 00:00	0.00 0.00 0.00
C23	CHANNEL	25.62	0 01:10	0.46 0.00 0.14
C24	CHANNEL	85.66	0 01:10	0.77 0.01 0.19
C25	CHANNEL	1.40	0 01:10	0.14 0.00 0.06
C26	CHANNEL	3.24	0 01:10	0.17 0.00 0.10
C27_1	CHANNEL	64.59	0 01:10	0.59 0.01 0.19
C27_2	CHANNEL	74.06	0 01:11	0.52 0.01 0.22
C28	CHANNEL	99.78	0 01:11	0.70 0.02 0.22
C29	CHANNEL	12.20	0 01:10	0.42 0.00 0.10
C30	CHANNEL	0.00	0 00:00	0.00 0.00 0.08
C31	CHANNEL	22.21	0 01:10	0.56 0.00 0.12
C32	CHANNEL	34.88	0 01:10	0.76 0.00 0.23
C33	CHANNEL	0.00	0 00:00	0.00 0.00 0.00
C34	CHANNEL	0.00	0 00:00	0.00 0.00 0.00
C35	CHANNEL	0.00	0 00:00	0.00 0.00 0.06
C36	CHANNEL	21.60	0 01:10	0.15 0.01 0.27
C37	CHANNEL	195.86	0 01:10	0.84 0.04 0.29
C38	CHANNEL	0.00	0 00:00	0.00 0.00 0.10
C39	CONDUIT	0.00	0 00:00	0.00 0.00 0.07
C40	CHANNEL	6.40	0 01:10	0.16 0.00 0.11
C41	CHANNEL	11.67	0 01:10	0.16 0.00 0.15
C42	CONDUIT	0.00	0 00:00	0.00 0.00 0.06
C43	CHANNEL	4.55	0 01:10	0.31 0.00 0.07
C44	CONDUIT	0.00	0 00:00	0.00 0.00 0.05
C45	CHANNEL	4.60	0 01:10	0.20 0.00 0.15
C46	CONDUIT	0.00	0 00:00	0.00 0.00 0.19
C47	CHANNEL	126.23	0 01:10	0.46 0.06 0.30

C48	CONDUIT	0.00	0 00:00	0.00	0.00	0.11
C49	CHANNEL	66.80	0 01:10	0.39	0.02	0.26
C50	CONDUIT	0.00	0 00:00	0.00	0.00	0.31
C51	CHANNEL	70.39	0 01:10	0.44	0.10	0.33
C52	CONDUIT	0.00	0 00:00	0.00	0.00	0.19
C53	CHANNEL	25.56	0 01:10	0.57	0.02	0.25
C54	CONDUIT	0.00	0 00:00	0.00	0.00	0.76
C55	CHANNEL	98.58	0 01:12	0.12	0.02	0.58
C56	CONDUIT	0.00	0 00:00	0.00	0.00	0.16
C57	CHANNEL	18.93	0 01:10	0.29	0.02	0.21
C58	CHANNEL	25.89	0 01:10	0.55	0.02	0.18
C59	CONDUIT	0.00	0 00:00	0.00	0.00	0.13
C60	CHANNEL	58.81	0 01:10	0.33	0.03	0.24
C61	CONDUIT	0.00	0 00:00	0.00	0.00	0.11
C62	CHANNEL	115.32	0 01:10	0.80	0.02	0.22
C63	CONDUIT	0.00	0 00:00	0.00	0.00	0.14
C64	CHANNEL	34.62	0 01:10	0.21	0.02	0.23
C65	CONDUIT	0.00	0 00:00	0.00	0.00	0.07
C66	CHANNEL	20.77	0 01:10	0.36	0.01	0.14
C67	CONDUIT	0.00	0 00:00	0.00	0.00	0.04
C68	CHANNEL	11.54	0 01:10	0.60	0.00	0.09
C69	CHANNEL	0.00	0 00:00	0.00	0.00	0.50
C70	CONDUIT	0.00	0 00:00	0.00	0.00	0.06
C71	CHANNEL	15.99	0 01:10	0.26	0.00	0.14
C72	CONDUIT	0.00	0 00:00	0.00	0.00	0.08
C73	CHANNEL	24.79	0 01:10	0.27	0.01	0.27
C74	CHANNEL	19.24	0 01:10	0.18	0.03	0.48
C75	CHANNEL	23.87	0 01:11	0.42	0.86	0.35
C76	CONDUIT	0.00	0 00:00	0.00	0.00	0.09
C77	CHANNEL	34.36	0 01:10	0.32	0.01	0.19
C78	CONDUIT	0.00	0 00:00	0.00	0.00	0.04
C79	CHANNEL	2.91	0 01:10	0.15	0.00	0.08
C80	CONDUIT	0.00	0 00:00	0.00	0.00	0.04
C81	CHANNEL	9.25	0 01:10	0.33	0.00	0.16
C82	CONDUIT	0.00	0 00:00	0.00	0.00	0.10
C83	CHANNEL	41.19	0 01:10	0.54	0.01	0.17

C84	CONDUIT	0.00	0 00:00	0.00	0.00	0.03
C85	CHANNEL	1.56	0 01:10	0.11	0.00	0.07
C86	CONDUIT	0.00	0 00:00	0.00	0.00	0.04
C87	CHANNEL	7.97	0 01:10	0.14	0.00	0.19
C88	CONDUIT	0.00	0 00:00	0.00	0.00	0.08
C89	CHANNEL	41.31	0 01:10	0.32	0.01	0.21
C90	CONDUIT	0.00	0 00:00	0.00	0.00	0.08
C91	CHANNEL	28.33	0 01:10	0.33	0.01	0.17
C92	CONDUIT	0.00	0 00:00	0.00	0.00	0.06
C93	CHANNEL	11.92	0 01:10	0.20	0.00	0.14
C94	CONDUIT	0.00	0 00:00	0.00	0.00	0.01
C95	CHANNEL	0.38	0 01:10	0.05	0.00	0.06
C96	CONDUIT	0.00	0 00:00	0.00	0.00	0.05
C97	CHANNEL	5.12	0 01:10	0.19	0.00	0.18
C98	CONDUIT	0.00	0 00:00	0.00	0.00).26
C99	CHANNEL	0.00	0 00:00	0.00	0.00	0.14
OR52	CONDUIT	65.28	0 01:20	0.93	0.59	0.61
STM-15	CONDUIT	0.00	0 00:00	0.00	0.00	0.09
STM-390	CONDUIT	108.	72 0 01:0	2 1.0	67 1.1	4 0.88
STM-68	CONDUIT	0.00	0 00:00	0.00	0.00	0.12
Weir-Outlet1	CONDU	IT 124	1.41 0 01	:13	1.70 0	.26 0.34
Weir-Outlet2	CONDU	IT 796	.89 0 01:	:11 0).59 0.	22 1.00
1C-OR	ORIFICE	66.79	0 01:10		1.00	
A06(OUT)	ORIFICE	59.46	0 01:14		1.0	00
A3-A1-OR	ORIFICE	16.32	0 01:10		1.0	00
A3-A2-OR	ORIFICE	16.21	0 01:05		1.0	00
A3-A3-OR	ORIFICE	16.22	0 01:10		1.0	00
A7-A7-OR	ORIFICE	16.24	0 01:10		1.0	00
A7-A8-OR	ORIFICE	16.30	0 01:10		1.0	00
OR01	ORIFICE	36.76	0 01:08		1.00	
OR02	ORIFICE	16.50	0 01:10		1.00	
OR03	ORIFICE	16.94	0 01:10		1.00	
OR04	ORIFICE	74.63	0 01:11		1.00	
OR05		E0 E0	0.01:10		1.00	
	ORIFICE	36.30	0 01.10		2.00	
OR06	ORIFICE				1.00	

OR08	ORIFICE	40.08	0 01:10	1.00
OR09	ORIFICE	40.97	0 01:13	1.00
OR1	ORIFICE	7.66	0 01:44	1.00
OR10	ORIFICE	28.08	0 01:20	1.00
OR11	ORIFICE	66.80	0 01:11	1.00
OR12	ORIFICE	56.00	0 01:10	1.00
OR13	ORIFICE	68.68	0 01:11	1.00
OR14	ORIFICE	81.16	0 01:10	1.00
OR15	ORIFICE	12.32	0 01:10	1.00
OR16	ORIFICE	13.29	0 01:10	1.00
OR17	ORIFICE	16.20	0 01:11	1.00
OR18	ORIFICE	21.46	0 01:11	1.00
OR19	ORIFICE	18.59	0 01:05	1.00
OR20	ORIFICE	17.70	0 01:06	1.00
OR21	ORIFICE	49.20	0 01:11	1.00
OR22	ORIFICE	11.37	0 01:10	1.00
OR23	ORIFICE	12.68	0 01:11	1.00
OR24	ORIFICE	17.23	0 01:10	1.00
OR25	ORIFICE	7.97	0 01:10	1.00
OR26	ORIFICE	12.74	0 01:10	1.00
OR27	ORIFICE	17.20	0 01:10	1.00
OR28	ORIFICE	45.25	0 01:10	1.00
OR29	ORIFICE	34.96	0 01:10	1.00
OR30	ORIFICE	8.03	0 01:10	1.00
OR31	ORIFICE	24.14	0 01:10	1.00
OR32	ORIFICE	26.87	0 01:11	1.00
OR33	ORIFICE	18.26	0 01:10	1.00
OR34	ORIFICE	4.95	0 01:10	1.00
OR35	ORIFICE	10.10	0 01:11	1.00
OR36	ORIFICE	19.26	0 01:10	1.00
OR37	ORIFICE	50.95	0 01:10	1.00
OR38	ORIFICE	19.01	0 01:10	1.00
OR39	ORIFICE	45.92	0 01:10	1.00
OR40	ORIFICE	19.62	0 01:06	1.00
OR41	ORIFICE	17.93	0 01:20	1.00
OR42	ORIFICE	29.73	0 01:09	1.00

OR43	ORIFICE 1	3.99 0	01:07	1.00
OR44	ORIFICE 2	8.11 0	01:11	1.00
OR45	ORIFICE 3	2.55 0	01:07	1.00
OR46	ORIFICE 2	5.30 0	01:11	1.00
OR47	ORIFICE 1	8.50 0	01:10	1.00
OR48	ORIFICE 6	0.59 0	01:04	1.00
OR49	ORIFICE 1	5.22 0	01:33	1.00
OR50	ORIFICE 1	8.43 0	01:10	1.00
OR51	ORIFICE 2	9.78 0	01:10	1.00
1C-Out	DUMMY	0.00	0 00:00	
1CTopofRoof	toTank DUM	MY 2	.10 0 00:43	
A04(OUT)	DUMMY	11.20	0 00:58	
A09B(OUT)	DUMMY	10.40	0 01:01	
A09C(OUT)	DUMMY	6.40	0 01:01	
A10(OUT)	DUMMY	7.20	0 01:01	
A11B(OUT)	DUMMY	7.73	0 00:58	
A14(OUT)	DUMMY	108.00	0 01:01	
A16C(OUT)	DUMMY	24.80	0 01:10	
A22A(OUT)	DUMMY	8.84	0 01:37	
A3-A4-LMF	DUMMY	3.65	0 01:11	
A7-A5-LMF	DUMMY	3.60	0 01:10	
A7-A6-LMF	DUMMY	11.48	0 01:11	
B21(OUT)	DUMMY	10.17	0 01:40	
B23(OUT)	DUMMY	14.80	0 00:54	
B25(OUT)	DUMMY	4.80	0 01:01	
001	DUMMY 3	39.97 C	0 01:05	
002	DUMMY 2	18.77 C	0 01:07	
003	DUMMY 2	18.95 C	0 01:07	
004	DUMMY 7	75.25 C	0 01:10	
005	DUMMY 5	59.19 0	0 01:10	
006	DUMMY 4	49.10 C	0 01:04	
007	DUMMY 4	44.63 C	0 01:03	
008	DUMMY 5	50.41 0	0 01:05	
O09	DUMMY 3	35.11 C	0 01:05	
O10	DUMMY 6	67.13 C	0 01:10	
011	DUMMY 5	57.86 C	0 01:09	

012	DUMMY	68.85	0 01:10
013	DUMMY	81.67	0 01:10
014	DUMMY	12.59	0 01:10
015	DUMMY	18.36	0 01:10
016	DUMMY	23.30	0 01:10
017	DUMMY	50.04	0 01:10
O18	DUMMY	11.62	0 01:10
019	DUMMY	13.00	0 01:10
O20	DUMMY	20.99	0 01:04
021	DUMMY	8.09	0 01:10
O22	DUMMY	12.99	0 01:10
O23	DUMMY	19.82	0 01:07
O24	DUMMY	46.66	0 01:10
025	DUMMY	35.95	0 01:10
O26	DUMMY	8.23	0 01:10
027	DUMMY	26.20	0 01:10
O28	DUMMY	36.56	0 01:03
O29	DUMMY	10.98	0 01:10
O30	DUMMY	23.47	0 01:07
031	DUMMY	51.34	0 01:10
O32	DUMMY	19.65	0 01:10
O33	DUMMY	52.92	0 01:04
O34	DUMMY	25.28	0 01:06
O35	DUMMY	24.30	0 01:06
O36	DUMMY	33.68	0 01:09
O37	DUMMY	17.30	0 01:07
O38	DUMMY	30.55	0 01:10
O39	DUMMY	35.12	0 01:07
O40	DUMMY	26.79	0 01:10
041	DUMMY	22.17	0 01:06
O42	DUMMY	22.22	0 01:05
O43	DUMMY	21.05	0 01:06
OL1	DUMMY	2.40	0 00:50

Flow Classification Summary	
********	*

*****	*************
	Adjusted Fraction of Time in Flow Class
	/Actual Up Down Sub Sup Up Down Norm Inlet
Conduit	Length Dry Dry Crit Crit Crit Crit Ltd Ctrl
1	1.00 0.83 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10	1.00 0.99 0.00 0.00 0.01 0.00 0.00 0.00
11	1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
12	1.00 0.83 0.16 0.00 0.01 0.00 0.00 0.00 0.95 0.00
13	1.00 0.00 0.98 0.00 0.02 0.00 0.00 0.00 0.95 0.00
14	1.00 0.83 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00
15	1.00 0.32 0.67 0.00 0.01 0.00 0.00 0.00 0.95 0.00
16	1.00 0.99 0.00 0.00 0.01 0.00 0.00 0.00
18	1.00 0.82 0.14 0.00 0.03 0.00 0.00 0.00 0.95 0.00
19	1.00 0.96 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.0
2	1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
20	1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
22	1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
23	1.00 0.82 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00
24	1.00 0.87 0.00 0.00 0.03 0.00 0.00 0.10 0.01 0.00
25	1.00 0.97 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00
28	1.00 0.00 0.99 0.00 0.01 0.00 0.00 0.00
29	1.00 0.97 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00
3	1.00 0.82 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00
30	1.00 0.99 0.00 0.00 0.01 0.00 0.00 0.00
32	1.00 0.99 0.00 0.00 0.01 0.00 0.00 0.00
33	1.00 0.97 0.02 0.00 0.01 0.00 0.00 0.00 0.96 0.00
35	1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
37	1.00 0.85 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00
4	1.00 0.98 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00
5	1.00 0.85 0.13 0.00 0.00 0.01 0.00 0.00 0.94 0.00
6	1.00 0.00 0.00 0.00 0.83 0.17 0.00 0.00 0.97 0.00
-	4.00.000.000.000.000.000.000.047.000.000

9	1.00 0.00 0.00 0.00 0.01 0.00 0.00 0.99 0.01 0.00
A15A(OUT)	1.00 0.00 0.00 0.00 0.01 0.02 0.00 0.97 0.02 0.00
B19(OUT)	1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
C01	1.00 0.00 0.00 0.00 0.91 0.09 0.00 0.00
C02	1.00 0.00 0.00 0.00 0.99 0.01 0.00 0.00
C03	1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
C04	1.00 0.00 0.00 0.00 0.77 0.23 0.00 0.00 0.03 0.00
C05	1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
C06	1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
C07	1.00 0.85 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.0
C08	1.00 0.00 0.00 0.00 0.78 0.22 0.00 0.00 0.05 0.00
C09	1.00 0.00 0.00 0.00 0.86 0.14 0.00 0.00 0.02 0.00
C10	1.00 0.00 0.00 0.00 0.86 0.14 0.00 0.00 0.02 0.00
C100	1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
C101	1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
C102	1.00 0.90 0.00 0.00 0.00 0.10 0.00 0.00
C103	1.00 0.00 0.00 0.00 0.92 0.08 0.00 0.00 0.00 0.00
C104	1.00 0.90 0.10 0.00 0.00 0.00 0.00 0.00
C105	1.00 0.86 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00
C106	1.00 0.00 0.86 0.00 0.13 0.02 0.00 0.00 0.94 0.00
C107	1.00 0.74 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.00
C108	1.00 0.00 0.74 0.00 0.14 0.12 0.00 0.00 0.88 0.00
C109	1.00 0.82 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.00
C11	1.00 0.00 0.00 0.00 0.83 0.17 0.00 0.00 0.03 0.00
C110	1.00 0.00 0.82 0.00 0.05 0.12 0.00 0.00 0.94 0.00
C111	1.00 0.75 0.00 0.00 0.01 0.00 0.24 0.00 0.00 0.00
C112	1.00 0.00 0.75 0.00 0.20 0.05 0.00 0.00 0.98 0.00
C113	1.00 0.89 0.00 0.00 0.01 0.00 0.11 0.00 0.00 0.0
C114	1.00 0.00 0.89 0.00 0.11 0.00 0.00 0.00 0.97 0.00
C115	1.00 0.90 0.00 0.00 0.01 0.00 0.09 0.00 0.00
C116	1.00 0.89 0.00 0.00 0.03 0.08 0.00 0.00 0.01 0.00
C117	1.00 0.85 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00
C118	1.00 0.79 0.06 0.00 0.13 0.02 0.00 0.00 0.99 0.00
C119	1.00 0.83 0.00 0.00 0.00 0.06 0.06 0.00 0.00
C12	1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
C120	1.00 0.83 0.00 0.00 0.07 0.10 0.00 0.00 0.00 0.00

C121	1.00 0.89 0.00 0.00 0.00 0.01 0.00 0.00 0.00	
C122	1.00 0.00 0.89 0.00 0.10 0.01 0.00 0.00 0.98 0.00	
C123	1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00	
C124	1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00	
C125	1.00 0.81 0.00 0.00 0.01 0.00 0.19 0.00 0.00 0.0	
C126	1.00 0.85 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.0	
C127	1.00 0.80 0.04 0.00 0.10 0.06 0.00 0.00 0.97 0.00	
C128	1.00 0.82 0.00 0.00 0.01 0.00 0.17 0.00 0.00 0.00	
C129	1.00 0.00 0.82 0.00 0.05 0.12 0.00 0.00 0.87 0.00	
C13	1.00 0.84 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00	
C130	1.00 0.99 0.01 0.00 0.00 0.00 0.00 0.00	
C131	1.00 0.90 0.00 0.00 0.02 0.00 0.08 0.00 0.00 0.0	
C132	1.00 0.90 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00	
C133	1.00 0.82 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.00	
C134	1.00 0.00 0.82 0.00 0.18 0.00 0.00 0.00 0.87 0.00	
C135	1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00	
C136	1.00 0.00 0.00 0.00 0.97 0.03 0.00 0.00 0.93 0.00	
C137	1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00	
C138	1.00 0.00 0.00 0.00 0.95 0.05 0.00 0.00 0	
C139	1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00	
C14	1.00 0.84 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00	
C140	1.00 0.00 0.15 0.00 0.85 0.00 0.00 0.00 0.96 0.00	
C141	1.00 0.00 0.00 0.00 0.10 0.01 0.00 0.89 0.01 0.00	
C142	1.00 0.00 0.00 0.00 0.02 0.00 0.00 0.98 0.00 0.00	
C143	1.00 0.00 0.43 0.00 0.57 0.00 0.00 0.00 0.92 0.00	
C144	1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00	
C145_1	1.00 0.00 0.94 0.00 0.00 0.00 0.06 0.00 0.00 0.00	
C145_2	1.00 0.00 0.00 0.00 0.01 0.00 0.00 0.99 0.00 0.00	
C146	1.00 0.00 0.00 0.00 0.88 0.12 0.00 0.00 0.84 0.00	
C147	1.00 0.00 0.00 0.00 0.99 0.01 0.00 0.00	
C148	1.00 0.00 0.00 0.00 0.01 0.00 0.00 0.99 0.00 0.00	
C149	1.00 0.00 0.00 0.00 0.10 0.00 0.00 0.89 0.05 0.00	
C15	1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00	
C150	1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00	
C151	1.00 0.00 0.01 0.00 0.99 0.00 0.00 0.00	
C152	1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00	

C153	1.00 0.00 0.00 0.00 0.13 0.00 0.00 0.87 0.02 0.00	
C154	1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00	
C155	1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00	
C156_1	1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00	
C156_2	1.00 0.00 0.00 0.00 0.90 0.10 0.00 0.00	
C158	1.00 0.91 0.09 0.00 0.00 0.00 0.00 0.00	
C159	1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00	
C16	1.00 0.91 0.09 0.00 0.00 0.00 0.00 0.00	
C160	1.00 0.00 0.05 0.00 0.95 0.00 0.00 0.00 0	
C161	1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00	
C162	1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00	
C163	1.00 0.00 0.02 0.00 0.98 0.00 0.00 0.00 0.96 0.00	
C164	1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00	
C165	1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00	
C166	1.00 0.00 0.00 0.00 0.95 0.00 0.00 0.05 0.02 0.00	
C167	1.00 0.00 0.03 0.00 0.97 0.00 0.00 0.00 0.72 0.00	
C168	1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00	
C169	1.00 0.00 0.00 0.00 0.02 0.00 0.00 0.98 0.00 0.00	
C17	1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00	
C170	1.00 0.00 0.00 0.00 0.01 0.00 0.00 0.99 0.00 0.00	
C171	1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00	
C172	1.00 0.90 0.10 0.00 0.00 0.00 0.00 0.00	
C173	1.00 0.00 0.06 0.00 0.93 0.00 0.00 0.01 0.96 0.00	
C174	1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00	
C175	1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00	
C176	1.00 0.00 0.00 0.00 0.01 0.00 0.00 0.99 0.00 0.00	
C177	1.00 0.00 0.00 0.00 0.02 0.00 0.00 0.98 0.01 0.00	
C178	1.00 0.00 0.00 0.00 0.05 0.00 0.00 0.95 0.02 0.00	
C179	1.00 0.00 0.00 0.00 0.03 0.00 0.00 0.97 0.00 0.00	
C18	1.00 0.88 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00	
C180	1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00	
C181	1.00 0.00 0.00 0.00 0.02 0.00 0.00 0.98 0.00 0.00	
C182	1.00 0.00 0.00 0.00 0.07 0.00 0.00 0.93 0.03 0.00	
C183	1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00	
C184	1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00	
C185	1.00 0.00 0.82 0.00 0.18 0.00 0.00 0.00 0.85 0.00	

C186	1.00 0.00 0.00 0.00 0.01 0.00 0.00 0.98 0.00 0.00
C187	1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
C188	1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
C189	1.00 0.00 0.84 0.00 0.15 0.01 0.00 0.00 0.97 0.00
C19	1.00 0.00 0.81 0.00 0.15 0.05 0.00 0.00 0.98 0.00
C190	1.00 0.00 0.00 0.00 0.81 0.19 0.00 0.00 0.99 0.00
C191	1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
C192	1.00 0.00 0.01 0.00 0.99 0.00 0.00 0.00
C193	1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
C194	1.00 0.00 0.00 0.00 0.84 0.16 0.00 0.00 0.43 0.00
C195	1.00 0.00 0.00 0.00 0.83 0.17 0.00 0.00 0.99 0.00
C196	1.00 0.00 0.00 0.00 0.01 0.00 0.00 0.98 0.00 0.00
C197	1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
C198	1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
C199	1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
C20	1.00 0.00 0.85 0.00 0.15 0.00 0.00 0.00 0.91 0.00
C200	1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
C201	1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
C202	1.00 0.00 0.00 0.00 0.01 0.00 0.00 0.99 0.01 0.00
C203	1.00 0.00 0.01 0.00 0.99 0.00 0.00 0.00
C204	1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
C205	1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
C206	1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
C207	1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
C208	1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
C209	1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
C21	1.00 0.00 0.00 0.00 0.95 0.05 0.00 0.00 0
C210	1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
C211	1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
C212	1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
C213	1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
C22	1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
C23	1.00 0.00 0.00 0.00 0.82 0.18 0.00 0.00 0.19 0.00
C24	1.00 0.00 0.00 0.00 0.83 0.17 0.00 0.00 0.88 0.00
C25	1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
C26	1.00 0.00 0.00 0.00 0.84 0.16 0.00 0.00 0.04 0.00

C27_1	1.00	0.00	0.00	0.00	0.98	3 0.02	2 0.00	0.00	0.9	5 0.00
C27_2	1.00	0.00	0.00	0.00	0 1.00	0.00	0.00	0.00	0 1.00	0.00
C28	1.00	0.00	0.00	0.00	0.58	0.42	0.00	0.00	0.03	0.00
C29	1.00	0.00	0.00	0.00	0.99	0.01	0.00	0.00	1.00	0.00
C30	1.00	0.82	0.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C31	1.00	0.00	0.00	0.00	0.95	0.05	0.00	0.00	0.12	0.00
C32	1.00	0.00	0.00	0.00	0.01	0.00	0.00	0.99	0.01	0.00
C33	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C34	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C35	1.00	0.83	0.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C36	1.00	0.00	0.00	0.00	0.96	0.04	0.00	0.00	0.08	0.00
C37	1.00	0.00	0.00	0.00	0.76	0.24	0.00	0.00	0.00	0.00
C38	1.00	0.90	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C39	1.00	0.85	0.00	0.00	0.00	0.00	0.15	0.00	0.00	0.00
C40	1.00	0.85	0.00	0.00	0.15	0.01	0.00	0.00	0.96	0.00
C41	1.00	0.00	0.85	0.00	0.15	0.00	0.00	0.00	0.99	0.00
C42	1.00	0.84	0.00	0.00	0.00	0.00	0.16	0.00	0.00	0.00
C43	1.00	0.00	0.84	0.00	0.14	0.02	0.00	0.00	0.95	0.00
C44	1.00	0.84	0.00	0.00	0.00	0.00	0.16	0.00	0.00	0.00
C45	1.00	0.00	0.84	0.00	0.15	0.02	0.00	0.00	0.96	0.00
C46	1.00	0.84	0.00	0.00	0.00	0.00	0.15	0.00	0.00	0.00
C47	1.00	0.00	0.84	0.00	0.16	0.00	0.00	0.00	0.91	0.00
C48	1.00	0.74	0.00	0.00	0.00	0.00	0.26	0.00	0.00	0.00
C49	1.00	0.00	0.74	0.00	0.24	0.02	0.00	0.00	0.96	0.00
C50	1.00	0.79	0.00	0.00	0.01	0.00	0.20	0.00	0.00	0.00
C51	1.00	0.79	0.00	0.00	0.00	0.00	0.00	0.21	0.00	0.00
C52	1.00	0.83	0.00	0.00	0.01	0.00	0.16	0.00	0.00	0.00
C53	1.00	0.00	0.83	0.00	0.15	0.02	0.00	0.00	0.95	0.00
C54	1.00	0.89	0.00	0.00	0.02	0.00	0.09	0.00	0.00	0.00
C55	1.00	0.00	0.00	0.00	0.94	0.06	0.00	0.00	0.04	0.00
C56	1.00	0.83	0.00	0.00	0.01	0.00	0.16	0.00	0.00	0.00
C57	1.00	0.81	0.02	0.00	0.17	0.00	0.00	0.00	0.00	0.00
C58	1.00	0.00	0.83	0.00	0.13	0.03	0.00	0.00	0.91	0.00
C59	1.00	0.78	0.00	0.00	0.00	0.00	0.22	0.00	0.00	0.00
C60	1.00	0.00	0.78	0.00	0.20	0.02	0.00	0.00	0.95	0.00
C61	1.00	0.75	0.00	0.00	0.00	0.00	0.25	0.00	0.00	0.00

C62	1.00	0.00	0.75	0.00	0.21	0.05	0.00	0.00	0.96	0.00
C63	1.00	0.88	0.00	0.00	0.00	0.00	0.12	0.00	0.00	0.00
C64	1.00	0.00	0.00	0.00	0.97	0.03	0.00	0.00	0.03	0.00
C65	1.00	0.91	0.00	0.00	0.00	0.00	0.09	0.00	0.00	0.00
C66	1.00	0.91	0.00	0.00	0.07	0.01	0.00	0.00	0.92	0.00
C67	1.00	0.89	0.00	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C68	1.00	0.85	0.05	0.00	0.01	0.09	0.00	0.00	0.01	0.00
C69	1.00	0.87	0.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C70	1.00	0.89	0.00	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C71	1.00	0.89	0.00	0.00	0.11	0.00	0.00	0.00	0.96	0.00
C72	1.00	0.89	0.00	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C73	1.00	0.89	0.00	0.00	0.01	0.00	0.00	0.10	0.01	0.00
C74	1.00	0.00	0.00	0.00	0.01	0.00	0.00	0.99	0.00	0.00
C75	1.00	0.00	0.00	0.00	0.01	0.00	0.99	0.00	0.00	0.00
C76	1.00	0.83	0.00	0.00	0.00	0.00	0.17	0.00	0.00	0.00
C77	1.00	0.81	0.02	0.00	0.13	0.04	0.00	0.00	0.01	0.00
C78	1.00	0.89	0.00	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C79	1.00	0.89	0.00	0.00	0.11	0.00	0.00	0.00	0.96	0.00
C80	1.00	0.89	0.00	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C81	1.00	0.00	0.89	0.00	0.10	0.01	0.00	0.00	0.96	0.00
C82	1.00	0.73	0.00	0.00	0.01	0.00	0.26	0.00	0.00	0.00
C83	1.00	0.00	0.73	0.00	0.25	0.02	0.00	0.00	0.97	0.00
C84	1.00	0.89	0.00	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C85	1.00	0.89	0.00	0.00	0.11	0.00	0.00	0.00	0.96	0.00
C86	1.00	0.89	0.00	0.00	0.00	0.00	0.11	0.00	0.00	0.00
C87	1.00	0.00	0.89	0.00	0.11	0.00	0.00	0.00	0.97	0.00
C88	1.00	0.87	0.00	0.00	0.00	0.00	0.13	0.00	0.00	0.00
C89	1.00	0.00	0.87	0.00	0.13	0.00	0.00	0.00	0.98	0.00
C90	1.00	0.82	0.00	0.00	0.00	0.00	0.18	0.00	0.00	0.00
C91	1.00	0.00	0.82	0.00	0.15	0.03	0.00	0.00	0.96	0.00
C92	1.00	0.83	0.00	0.00	0.00	0.00	0.17	0.00	0.00	0.00
C93	1.00	0.81	0.02	0.00	0.17	0.00	0.00	0.00	0.99	0.00
C94	1.00	0.85	0.00	0.00	0.00	0.00	0.15	0.00	0.00	0.00
C95	1.00	0.83	0.02	0.00	0.14	0.01	0.00	0.00	0.99	0.00
C96	1.00	0.83	0.00	0.00	0.00	0.00	0.16	0.00	0.00	0.00
C97	1.00	0.82	0.02	0.00	0.09	0.07	0.00	0.00	0.01	0.00

C98	1.00 0.83 0.00 0.00 0.01 0.00 0.15 0.00 0.00 0.00
C99	1.00 0.83 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OR52	1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
STM-15	1.00 0.97 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.0
STM-390	1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
STM-68	1.00 0.96 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Weir-Outlet1	1.00 0.96 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00
Weir-Outlet2	1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

Conduit Surcharge Summary

Hours Hours

	Hour	s Full	Ab	ove Full	Capacity	
Conduit	Both End	ds Upst	ream D	nstream	Normal Flow	Limited
15	0.01	0.01 ().11 (0.01	0.01	
6	0.01 0	.01 0	.22 0	.01	0.01	
A15A(OUT)	0.0	1 0.0	1 0.3	7 0.01	0.01	
C124	24.00	24.00	24.00	0.18	0.09	
C140	0.01	0.01	0.05	0.01	0.01	
C142	0.03	0.05	0.03	0.01	0.03	
C143	0.01	0.01	0.01	0.01	0.01	
C144	0.01	0.01	0.01	0.18	0.01	
C145_2	0.01	0.01	0.16	0.01	0.01	
C146	0.11	0.11	0.18	0.01	0.01	
C147	0.18	0.18	0.22	0.01	0.01	
C148	0.10	0.22	0.10	0.01	0.10	
C149	0.01	0.17	0.01	0.03	0.01	
C151	0.56	0.99	0.56	0.98	0.56	
C152	0.01	0.01	0.01	0.17	0.01	
C153	0.41	0.41	0.54	0.17	0.32	
C156_1	0.15	0.15	0.17	0.01	0.01	

C156_2	0.14	0.17	0.14	0.01	0.14
C167	0.01	0.01	0.01	0.15	0.01
C171	0.01	0.01	0.01	0.27	0.01
C177	0.23	0.23	0.35	0.01	0.01
C178	0.35	0.35	0.47	0.08	0.24
C179	0.32	0.32	0.35	0.01	0.01
C182	0.03	0.03	0.06	0.01	0.01
C184	24.00	24.00	24.00	0.01	0.38
C185	0.01	0.01	0.03	0.01	0.01
C192	0.03	0.03	0.54	0.01	0.01
C193	24.00	24.00	24.00	0.19	0.19
C195	0.01	0.01	0.26	0.01	0.01
C196	0.26	0.26	0.33	0.01	0.01
C197	24.00	24.00	24.00	0.06	0.08
C198	24.00	24.00	24.00	0.01	0.01
C199	24.00	24.00	24.00	0.01	0.07
C200	24.00	24.00	24.00	0.30	0.36
C202	0.01	0.01	0.14	0.01	0.01
C203	0.15	0.15	23.83	0.01	0.01
C204	24.00	24.00	24.00	0.01	0.01
C205	24.00	24.00	24.00	0.01	0.01
C206	24.00	24.00	24.00	0.01	0.01
C207	24.00	24.00	24.00	0.28	0.67
C208	24.00	24.00	24.00	0.01	0.09
C209	24.00	24.00	24.00	0.08	0.08
C210	24.00	24.00	24.00	0.26	0.26
C211	24.00	24.00	24.00	0.17	0.57
C212	0.01	0.56	0.01	0.98	0.01
C213	24.00	24.00	24.00	0.35	0.82
STM-390	0.01	0.01	0.01	0.54	0.01
Weir-Outlet2	24.0	0 24.	00 24	.00 0.0	1 0.01

Analysis begun on: Fri Dec 06 10:39:00 2024

Analysis ended on: Fri Dec 06 10:39:16 2024

Total elapsed time: 00:00:16

5yr 12hr SCS		<u>100yr 12</u>	hr SCS	<u> 100yr +20%</u>	100yr +20% 12hr SCS		
Time	Intensity	Time	Intensity	Time	Intensity		
(h:mm)	(mm/hr)	(h:mm)	(mm/hr)	(h:mm)	(mm/hr)		
0:00	0.00	0:00	0.00	0:00	0.00		
0:30	1.69	0:30	2.82	0:30	3.38		
1:00	0.79	1:00	1.31	1:00	1.58		
1:30	1.46	1:30	2.44	1:30	2.93		
2:00	1.46	2:00	2.44	2:00	2.93		
2:30	1.91	2:30	3.19	2:30	3.83		
3:00	1.69	3:00	2.82	3:00	3.38		
3:30	2.25	3:30	3.76	3:30	4.51		
4:00	2.25	4:00	3.76	4:00	4.51		
4:30	3.03	4:30	5.07	4:30	6.09		
5:00	3.82	5:00	6.39	5:00	7.66		
5:30	6.07	5:30	10.14	5:30	12.17		
6:00	48.08	6:00	80.38	6:00	96.46		
6:30	12.25	6:30	20.47	6:30	24.57		
7:00	5.39	7:00	9.02	7:00	10.82		
7:30	3.60	7:30	6.01	7:30	7.21		
8:00	3.15	8:00	5.26	8:00	6.31		
8:30	2.47	8:30	4.13	8:30	4.96		
9:00	2.58	9:00	4.32	9:00	5.18		
9:30	1.69	9:30	2.82	9:30	3.38		
10:00	1.35	10:00	2.25	10:00	2.70		
10:30	1.91	10:30	3.19	10:30	3.83		
11:00	1.24	11:00	2.07	11:00	2.48		
11:30	1.12	11:30	1.88	11:30	2.25		
12:00	1.12	12:00	1.88	12:00	2.25		
Total Rainfall	56.17 mm	Total Rainfall	93.91 mm	Total Rainfall	112.69 mm		

<u>July 1 1979</u>		<u>August</u>	<u>4 1988</u>	August 8	<u>August 8 1996</u>		
	Time (h:mm)	Intensity (mm/hr)	Time (h:mm)	Intensity (mm/hr)	Time (h:mm)	Intensity (mm/hr)	
	0:00	0.0	0:00	0.0	0:00	0.0	
	0:05	2.3	0:05	0.1	0:05	4.0	
	1:05	2.3	1:05	0.1	1:05	11.9	
	2:05	8.9	2:05	0.0	2:05	26.5	
	3:05	8.9	3:05	3.7	3:05	13.3	
	4:05	8.9	4:05	6.2	4:05	0.0	
	5:05	8.9	5:05	101.5	5:05	2.7	
	6:05	38.1	6:05	15.5	6:05	0.0	
	7:05	38.1	7:05	29.3	7:05	8.0	

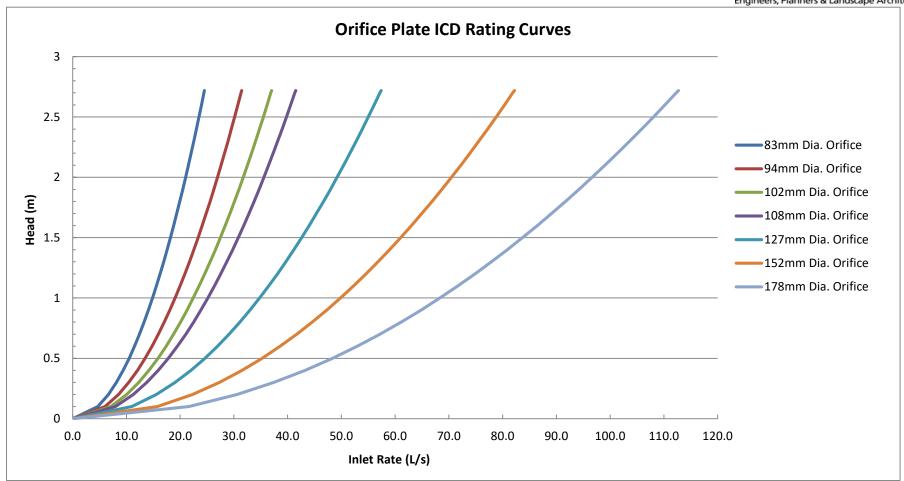
Design Storm Time Series Data		City of O	ttawa	NO	NOVATECH Engineers, Planners & Landscape Architects		
8:05	38.1	8:05	19.8	8:05	18.6		
9:05	38.1	9:05	1.5	9:05	10.6		
10:05	38.1	10:05	1.7	10:05	21.2		
11:05	38.1	11:05	5.4	11:05	2.7		
12:05	38.1	12:05	24.6	12:05	2.7		
13:05	50.8	13:05	26.5	13:05	15.9		
14:05	50.8	14:05	34.9	14:05	66.3		
15:05	76.2	15:05	10.2	15:05	55.7		
16:05	106.7	16:05	27.1	16:05	122.0		
17:05	106.7	17:05	104.4	17:05	88.9		
18:05	71.1	18:05	27.5	18:05	9.3		
19:05	71.1	19:05	62.5	19:05	8.0		
20:05	30.5	20:05	31.8	20:05	4.0		
21:05	30.5	21:05	79.8	21:05	0.0		
22:05	30.5	22:05	67.5	22:05	2.7		
23:05	30.5	23:05	156.2	23:05	0.0		
0:05	3.8	0:05	5.1	0:05	0.0		
1:05	3.8	1:05	0.2	1:05	0.0		
2:05	3.8	2:05	0.2	2:05	5.3		
3:05	3.8	3:05	0.2	3:05	0.0		
4:05	3.8	4:05	0.2	4:05	0.0		
5:05	3.8	5:05	0.2	5:05	0.0		
6:05	3.8	6:05	0.2	6:05	0.0		
7:05	3.8	7:05	0.2	7:05	0.0		
8:05	3.8	8:05	0.2	8:05	0.0		
9:05	3.8	9:05	0.2	9:05	4.0		
10:05	3.8	10:05	0.2	10:05	53.1		
11:05	3.8	11:05	12.8	11:05	69.0		
Takal Dainfall	03.00	12:05	14.0	12:05	63.7		
Total Rainfall	83.99 mm	13:05	22.2	13:05	58.4		
		14:05	21.8 1.4	14:05	47.8		
		15:05 16:05	0.2	15:05 16:05	15.9 13.3		
		17:05	0.2	17:05	8.0		
		18:05	0.2	18:05	5.3		
		19:05	0.2	19:05	6.6		
		20:05	0.2	20:05	2.7		
		21:05	0.2	21:05	4.0		
		22:05	0.2	22:05	2.7		
		23:05	0.2	23:05	4.0		
		0:05	0.2	0:05	2.7		
		1:05	0.2	1:05	5.3		
		2:05	0.2	2:05	4.0		
		3:05	0.2	3:05	2.7		
		4:05	0.2	4:05	4.0		
		5:05	0.2	5:05	2.7		
		6:05	0.2	6:05	1.3		

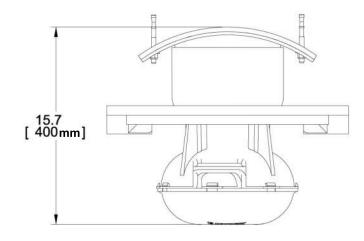
Design Stor	rm Time	Series	Data
-------------	---------	--------	------

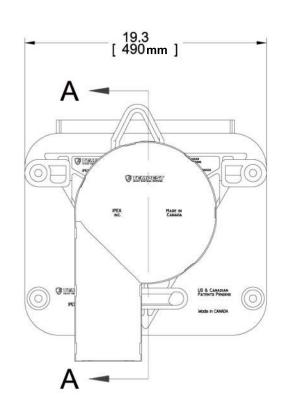
Total Rainfall 42.51 mm

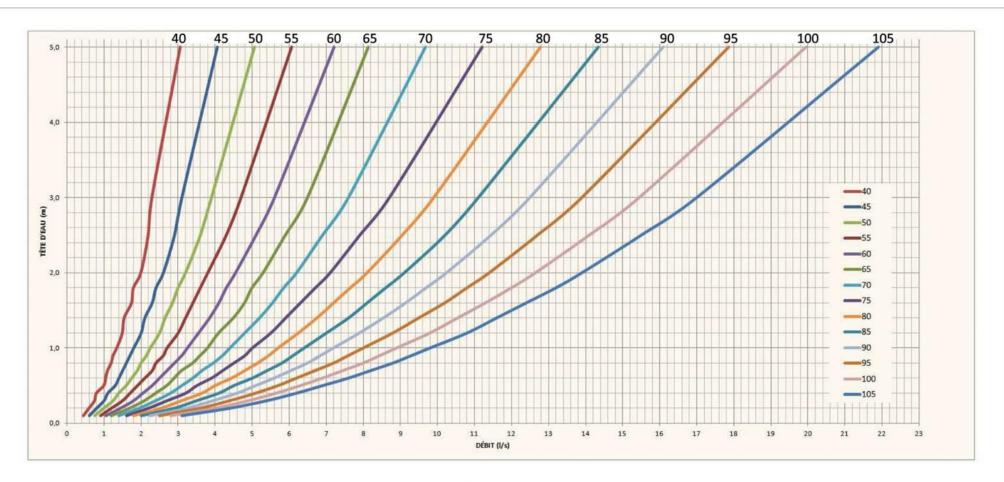
City	٥f	Ottawa
CILV	OI.	Ullawa

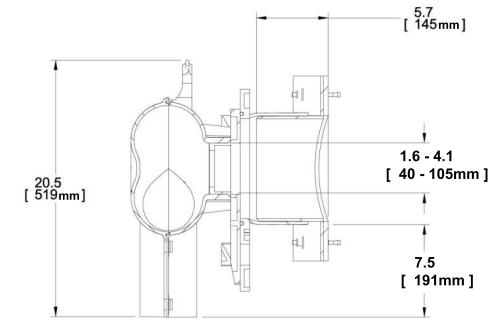
7:05	0.2	7:05	1.3
8:05	0.2	8:05	0.0
9:05	0.2	9:05	0.0
10:05	0.2	10:05	0.0
11:05	2.9	11:05	0.0
12:05	7.8	12:05	2.7
13:05	10.0	13:05	0.0
14:05	6.3	14:05	0.0
15:05	5.1	15:05	0.0
16:05	9.8	16:05	0.0
17:05	2.6	17:05	0.0
18:05	1.7	18:05	0.0
19:05	0.0	19:05	0.0
20:05	0.0	20:05	1.3
21:05	0.0	21:05	0.0
22:05	0.0	22:05	0.0
23:05	0.0	23:05	0.0

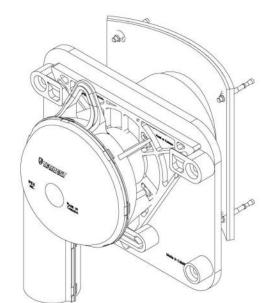

Total Rainfall 80.59 mm Total Rainfall 73.90 mm


Total Rainfall 71.67 mm Total Rainfall 86.00 mm


<u>5yr 3hr Chicago</u>		<u>100yr 3hr</u>	· Chicago	100yr +20% 3	100yr +20% 3hr Chicago		
Time	Intensity	Time	Intensity	Time	Intensity		
(h:mm)	(mm/hr)	(h:mm)	(mm/hr)	(h:mm)	(mm/hr)		
0:00	0.00	0:00	0.00	0:00	0.00		
0:10	3.68	0:10	6.05	0:10	7.26		
0:20	4.58	0:20	7.54	0:20	9.05		
0:30	6.15	0:30	10.16	0:30	12.19		
0:40	9.61	0:40	15.97	0:40	19.16		
0:50	24.17	0:50	40.65	0:50	48.78		
1:00	104.19	1:00	178.56	1:00	214.27		
1:10	32.04	1:10	54.05	1:10	64.86		
1:20	16.34	1:20	27.32	1:20	32.78		
1:30	10.96	1:30	18.24	1:30	21.89		
1:40	8.29	1:40	13.74	1:40	16.49		
1:50	6.69	1:50	11.06	1:50	13.27		
2:00	5.63	2:00	9.29	2:00	11.15		
2:10	4.87	2:10	8.02	2:10	9.62		
2:20	4.30	2:20	7.08	2:20	8.50		
2:30	3.86	2:30	6.35	2:30	7.62		
2:40	3.51	2:40	5.76	2:40	6.91		
2:50	3.22	2:50	5.28	2:50	6.34		
3:00	2.98	3:00	4.88	3:00	5.86		


Clarence Crossing 112057 ICD Rating Curves





SECTION A-A

e Village Forecourt Townho	omes – 295 & 3	55 Deschâtelets	Avenue
		APPENI	DIX D

Existing Approvals

Site Servicing Report

CONTENT COPY OF ORIGINAL

Ministry of the Environment and Climate Change Ministère de l'Environnement et de l'Action en matière de changement climatique

ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER 4082-AAZQ6P Issue Date: June 24, 2016

Greystone Village Inc. 1737 Woodward Drive, 2nd Floor

Ottawa, Ontario K2C 0P9

Site Location: 175 Main Street

City of Ottawa, Ontario

You have applied under section 20.2 of Part II.1 of the <u>Environmental Protection Act</u>, R.S.O. 1990, c. E. 19 (Environmental Protection Act) for approval of:

sanitary and storm sewers to be constructed in the City of Ottawa, as follows:

- sanitary sewers on Hazel Street (from Station 50+0000 to Station 50+175), Deschatelets Avenue (from Station 70+125 to Station 70+335), Scholastic Drive (from Station 10+225 to Station 10+392), Jeremiah Kealey Street (from Station 30+000 to Station 30+108), De Mazenod Avenue (from Station 40+000 to Station 40+168), Telmon Street (from Station 20+000 to Station 20+189), Clegg Street (from Station 90+000 to Station 90+179), and Easement (Block 61) (from Station 10+392 to Station 10+435); and
- storm sewers on Hazel Street (from Station 50+0000 to Station 50+175), Deschatelets Avenue (from Station 70+125 to Station 70+335), Scholastic Drive (from Station 10+225 to Station 10+392), Jeremiah Kealey Street (from Station 30+000 to Station 30+108), De Mazenod Avenue (from Station 40+000 to Station 40+168), and Telmon Street (from Station 20+000 to Station 20+189);

all in accordance with the application from Greystone Village Inc., dated May 18, 2016, including final plans and specifications prepared by Novatech Engineering.

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

- 1. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The environmental compliance approval number;
- 6. The date of the environmental compliance approval;
- 7. The name of the Director, and;
- 8. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

CONTENT COPY OF ORIGINAL

The Secretary* Environmental Review Tribunal 655 Bay Street, Suite 1500 Toronto, Ontario M5G 1E5

<u>AND</u>

The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment and Climate Change 135 St. Clair Avenue West, 1st Floor Toronto, Ontario M4V 1P5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 326-5370 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 24th day of June, 2016

Gregory Zimmer, P.Eng.
Director
appointed for the purposes of Part II.1 of the
Environmental Protection Act

YH/

c: District Manager, MOECC Ottawa District Office M. Rick O'Connor, City Clerk, City of Ottawa Joshua White, P.Eng., Project Manager, Development Review, City of Ottawa Linda Carkner, Program Manager, Infrastructure, City of Ottawa J.G. Riddell, P.Eng., Novatech Engineering

Ministry of the Environment and Climate Change Ministère de l'Environnement et de l'Action en matière de changement climatique

AMENDED ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER 8946-ACUP7W Issue Date: August 17, 2016

Greystone Village Inc. 1737 Woodward Drive, Unit. 2

Ottawa, Ontario K2C 0P9

K2C 01

Site Location: 175 Main Street

Lot H, Concession D

City of Ottawa,

You have applied under section 20.2 of Part II.1 of the <u>Environmental Protection Act</u>, R.S.O. 1990, c. E. 19 (Environmental Protection Act) for approval of:

an amendment of stormwater management Works for the Phase I of Greystone Village subdivision development, located on the north side of Clegg Street, south side of Springhurst Avenue, between Main Street and Rideau River within the Rideau watershed, in the City of Ottawa, for the collection, treatment and disposal of stormwater run-off, to add stormwater management facilities, to service approximately 7.48 hectares, discharging to Rideau River, providing Enhanced Level of quality control and erosion protection, consisting of the following:

Proposed Works:

oil and grit separator (catchment area 7.48 hectares): - one (1) oil and grit separator (Vortechs 11000 or Equivalent), located at the intersection of Telmon Street and Scholastic Drive, west side of Rideau River, receiving inflows from the storm sewers of the subdivision development, identified below, having a sediment storage capacity of approximately 4.280 m³, an oil storage capacity of approximately 2,378 L, a total storage volume of approximately 13.592 m³, and a maximum treatment flow rate of approximately 495 L/s, discharging via a 600 mm diameter outflow pipe to the storm sewer outfall, identified below;

storm sewer outfall (Outlet#1-catchment area 7.48 hectares): - one (1) 825 mm diameter storm sewer outfall with a concrete headwall and rip-rap protection, receiving inflows from the oil and grit separator, identified above, discharging to the Rideau River;

Previous Works:

sanitary sewers on Hazel Street (from Station 50+0000 to Station 50+175), Deschatelets Avenue (from Station 70+125 to Station 70+335), Scholastic Drive (from Station 10+225 to Station 10+392), Jeremiah Kealey Street (from Station 30+000 to Station 30+108), De Mazenod Avenue (from Station 40+000 to Station 40+168), Telmon Street (from Station 20+000 to Station 20+189), Clegg Street (from Station 90+000 to Station 90+179), and Easement (Block 61) (from Station 10+392 to Station 10+435); and

storm sewers on Hazel Street (from Station 50+0000 to Station 50+175), Deschatelets Avenue (from Station 70+125 to Station 70+335), Scholastic Drive (from Station 10+225 to Station 10+392), Jeremiah Kealey Street (from Station 30+000 to Station 30+108), De Mazenod Avenue (from Station 40+000 to Station 40+168), and Telmon Street (from Station 20+000 to Station 20+189);

including erosion/sedimentation control measures during construction and all other controls and appurtenances essential for the proper operation of the aforementioned Works;

all in accordance with the submitted supporting documents listed in Schedule "A" forming part of this Approval.

For the purpose of this environmental compliance approval, the following definitions apply:

"Approval" means this entire document including the application and any supporting documents listed in any schedules in this Approval;

"Director" means a person appointed by the Minister pursuant to section 5 of the Environmental Protection Act for the purposes of Part II.1 of the Environmental Protection Act;

"Equivalent" means a substituted product that meets the required quality and performance standards of a named product;

"Ministry" means the ministry of the government of Ontario responsible for the Environmental Protection Act and the Ontario Water Resources Act and includes all officials, employees or other persons acting on its behalf;

"Owner" means the Greystone Village Inc., and includes their successors and assignees;

"Previous Works" means those portions of the sewage Works previously approved under an Approval;

"Works" means the sewage works described in the Owner's application(s) and this Approval.

You are hereby notified that this environmental compliance approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1. GENERAL PROVISIONS

- (1) The Owner shall ensure that any person authorized to carry out work on or operate any aspect of the Works is notified of this Approval and the Conditions herein and shall take all reasonable measures to ensure any such person complies with the same.
- (2) The designation of the City of Ottawa as the operating authority of the site on the application for approval of the Works dose not relieve the owner from the responsibility of complying with any and all of the this approval.
- (3) Except as otherwise provided by these Conditions, the Owner shall design, build, install, operate and maintain the Works in accordance with the description given in this Approval, and the application for approval of the Works.
- (4) Where there is a conflict between a provision of any submitted document referred to in this Approval and the Conditions of this Approval, the Conditions in this Approval shall take precedence, and where there is a conflict between the listed submitted documents, the document bearing the most recent date shall prevail.
- (5) Where there is a conflict between the listed submitted documents, and the application, the application shall take precedence unless it is clear that the purpose of the document was to amend the application.
- (6) The Conditions of this Approval are severable. If any Condition of this Approval, or the application of any requirement of this Approval to any circumstance, is held invalid or unenforceable, the application of such Condition to other circumstances and the remainder of this Approval shall not be affected thereby.
- (7) The issuance of, and compliance with the Conditions of this Approval does not:
 - (a) relieve any person of any obligation to comply with any provision of any applicable statute, regulation or other legal requirement, including, but not limited to, the obligation to obtain approval from the local conservation authority necessary to construct or operate the sewage Works; or
 - (b) limit in any way the authority of the Ministry to require certain steps be taken to require the Owner to furnish any further information related to compliance with this Approval.

2. EXPIRY OF APPROVAL

(1) This Approval will cease to apply to those parts of the Works which have not been constructed within **five (5) years** of the date of this Approval.

3. CHANGE OF OWNER

- (1) The Owner shall notify the Director, in writing, of any of the following changes within **thirty (30)** days of the change occurring:
 - (a) change of Owner;
 - (b) change of address of the Owner;
 - (c) change of partners where the Owner is or at any time becomes a partnership, and a copy of the most recent declaration filed under the <u>Business Names Act</u>, R.S.O. 1990, c. B17 shall be included in the notification to the Director;
 - (d) change of name of the corporation where the Owner is or at any time becomes a corporation, and a copy of the most current information filed under the <u>Corporations Information Act</u>, R.S.O. 1990, c. C39 shall be included in the notification to the Director.

4. OPERATION AND MAINTENANCE

- (1) The Owner shall inspect the Works at least **once a year** and, if necessary, clean and maintain the Works to prevent the excessive build-up of sediments and/or vegetation.
- (2) The Owner shall maintain a record of the results of these inspections and any cleaning and maintenance operations undertaken, and shall make the record available for inspection by the Ministry. The record shall include the following:
 - (a) the name of the Works; and
 - (b) the date and results of each inspection, maintenance and cleaning, including an estimate of the quantity of any materials removed.

5. MONITORING AND REPORTING

(1) The Owner shall carry out a monitoring program for the inspection and maintenance of the Works as outline in this Approval and shall make the information available to the Ministry staff upon request. The monitoring program shall consist of annul maintenance logs listing the depth of sediment in the oil and grit separator and shall note the date of each inspection, maintenance and cleaning including an estimate of the quantity of materials removed, and maintenance operations undertaken.

6. <u>TEMPORARY EROSION AND SEDIMENT CONTROL</u>

(1) The Owner shall install and maintain temporary sediment and erosion control measures during construction and conduct inspections once every **two (2) weeks** and after each significant storm event (a significant storm event is defined as a minimum of 25 mm of rain in any 24 hours period). The inspections and maintenance of the temporary sediment and erosion control

measures shall continue until they are no longer required and at which time they shall be removed and all disturbed areas reinstated properly.

(2) The Owner shall maintain records of inspections and maintenance which shall be made available for inspection by the Ministry, upon request. The record shall include the name of the inspector, date of inspection, and the remedial measures, if any, undertaken to maintain the temporary sediment and erosion control measures.

7. RECORD KEEPING

The Owner shall retain for a minimum of **five (5) years** from the date of their creation, all records and information related to or resulting from the operation, maintenance and monitoring activities required by this Approval.

Schedule "A"

- 1. <u>Application for Environmental Compliance Approval</u>, dated March 9, 2016, received on March 31, 2016, submitted by Novatech;
- 2. <u>Site Servicing, Stormwater Management, Noise Erosion and Sediment Control Brief, for Greystone Village 175 Main Street, Ottawa, Ontario, dated December 18, 2015, prepared by Novatech;</u>
- 3. Pipe Data Form and Storm and Sanitary Sewer Design Sheets, prepared by Novatech;
- 4. Set of Engineering Drawings (8 drawings) for Greystone Village Phase 1A & 1B, City of Ottawa, dated December, 2015, prepared by Novatech;
- 5. E-mail from Justin Gauthier of Novatech to the Ministry, dated August 15, 2016; and
- 6. E-mail from Justin Gauthier of Novatech to the Ministry, dated August 16, 2016.

The reasons for the imposition of these terms and conditions are as follows:

- 1. Condition 1 is imposed to ensure that the Works are built and operated in the manner in which they were described for review and upon which approval was granted. This Condition is also included to emphasize the precedence of Conditions in the Approval and the practice that the Approval is based on the most current document, if several conflicting documents are submitted for review
- 2. Condition 2 is included to ensure that, when the Works are constructed, the Works will meet the standards that apply at the time of construction to ensure the ongoing protection of the environment.
- 3. Condition 3 is included to ensure that the Ministry records are kept accurate and current with respect to approved Works and to ensure that any subsequent Owner of the Works is made aware of the Approval and continue to operate the Works in compliance with it.
- 4. Condition 4 is included to require that the Works be properly operated and maintained such that the environment is protected.
- 5. Condition 5 is included to enable the Owner to evaluate and demonstrate the performance of the Works on a continual basis, so that the Works are properly operated and maintained at a level which is consistent with the design objectives specified in the Approval and that the Works do not cause any impairment of the receiving watercourse.
- 6. Condition 6 is included as installation, regular inspection and maintenance of the temporary sediment and erosion control measures is required to mitigate the impact on the downstream receiving watercourse during construction, until they are no longer required.
- 7. Condition 7 is included to require that all records are retained for a sufficient time period to adequately evaluate the long-term operation and maintenance of the Works.

Upon issuance of the environmental compliance approval, I hereby revoke Approval No(s). 4082-AAZQ6P issued on June 24, 2016.

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me, the Environmental Review Tribunal and in accordance with Section 47 of the Environmental Bill of Rights, 1993, S.O. 1993, c. 28 (Environmental Bill of Rights), the Environmental Commissioner, within 15 days after receipt of this Notice, require a hearing by the Tribunal. The Environmental Commissioner will place notice of your appeal on the Environmental Registry. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

1. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in

- respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The environmental compliance approval number;
- 6. The date of the environmental compliance approval;
- 7. The name of the Director, and;
- 8. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
655 Bay Street, Suite 1500
Toronto, Ontario
M5G 1E5

<u>AND</u>

The Environmental Commissioner 1075 Bay Street, Suite 605 Toronto, Ontario M5S 2B1

AND

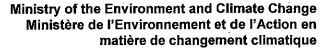
The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment and Climate Change 135 St. Clair Avenue West, 1st Floor Toronto, Ontario M4V 1P5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 326-5370 or www.ert.gov.on.ca

This instrument is subject to Section 38 of the Environmental Bill of Rights, 1993, that allows residents of Ontario to seek leave to appeal the decision on this instrument. Residents of Ontario may seek leave to appeal within 15 days from the date this decision is placed on the Environmental Registry. By accessing the Environmental Registry at www.ebr.gov.on.ca, you can determine when the leave to appeal period ends.

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 17th day of August, 2016


Gregory Zimmer, P.Eng.

Director

appointed for the purposes of Part II.1 of the *Environmental Protection Act*

TN/

District Manager, MOECC Ottawa Office
 M. Rick O'Connor, City Clerk, City of Ottawa
 Joshua White, P.Eng., Project Manager, Development Review, City of Ottawa
 Linda Carkner, Program Manager, Infrastructure, City of Ottawa
 J.G. Riddell, Novatech Engineering
 Justin Gauthier, Novatech Engineering

ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER 0292-AP6PWR Issue Date: July 12, 2017

Greystone Village Inc. 1737 Woodward Drive, Unit 2 Ottawa, Ontario K2C 0P9

Site Location:

Greystone Village, Phase 2 and 3

175 Main Street

City of Ottawa, Ontario

You have applied under section 20.2 of Part II.1 of the <u>Environmental Protection Act</u>, R.S.O. 1990, c. E. 19 (Environmental Protection Act) for approval of:

storm and sanitary sewers to be constructed in the City of Ottawa, as follows:

- sanitary sewers on Oblates Avenue (from Station 60+007.53 to Station 60+373.35), Scholastics Drive (from Station 10+0075 to Station 10+195.89), Deschatelets Avenue (from Station 70+000 to Station 70+132), and Block 58 (from Station 0+002 to Station 0+048.5); and
- storm sewers on Oblates Avenue (from Station 60+007.53 to Station 60+373.35), Scholastics Drive (from Station 10+0075 to Station 10+195.89), and Deschatelets Avenue (from Station 70+000 to Station 70+132);

all in accordance with the submitted application and supporting documents listed in Schedule "A" forming part of this Approval.

For the purpose of this environmental compliance approval, the following definitions apply:

- 1. "Approval" means this entire document and any schedules attached to it, and the application;
- 2. "Director" means a person appointed by the Minister pursuant to section 5 of the EPA for the purposes of Part II.1 of the EPA;
- 3. "District Manager" means the District Manager of the appropriate local District Office of the Ministry, where the Works are geographically located;

- 4. "EPA" means the Environmental Protection Act, R.S.O. 1990, c.E.19, as amended;
- 5. "Ministry" means the ministry of the government of Ontario responsible for the EPA and OWRA and includes all officials, employees or other persons acting on its behalf;
- 6. "Owner" means Greystone Village Inc., and includes their successors and assignees;
- 7. "OWRA" means the Ontario Water Resources Act, R.S.O. 1990, c. O.40, as amended;
- 8. "Works" means the sewage works described in the Owner's application, and this Approval;
- 9. "Professional Engineer" means a person entitled to practice as a Professional Engineer in the Province of Ontario under a licence issued under the Professional Engineers Act.

You are hereby notified that this environmental compliance approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1. GENERAL CONDITIONS

- 1. The Owner shall ensure that any person authorized to carry out work on or operate any aspect of the Works is notified of this Approval and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same.
- 2. Except as otherwise provided by these Conditions, the Owner shall design, build, install, operate and maintain the Works in accordance with the description given in this Approval, and the application for approval of the Works.
- 3. Where there is a conflict between a provision of any document in the schedule referred to in this Approval and the conditions of this Approval, the conditions in this Approval shall take precedence, and where there is a conflict between the documents in the schedule, the document bearing the most recent date shall prevail.
- 4. Where there is a conflict between the documents listed in Schedule 'A' and the application, the application shall take precedence unless it is clear that the purpose of the document was to amend the application.
- 5. The conditions of this Approval are severable. If any condition of this Approval, or the application of any requirement of this Approval to any circumstance, is held invalid or unenforceable, the application of such condition to other circumstances and the remainder of this Approval shall not be affected thereby.

- 6. The issuance of, and compliance with the conditions of, this Approval does not:
 - a. relieve any person of any obligation to comply with any provision of any applicable statute, regulation or other legal requirement, including, but not limited to, the obligation to obtain approval from the local conservation authority/MNR necessary to construct or operate the sewage works; or
 - b. limit in any way the authority of the Ministry to require certain steps be taken to require the Owner to furnish any further information related to compliance with this Approval.

2. EXPIRY OF APPROVAL

- 1. This Approval will cease to apply to those parts of the Work which have not been constructed within five (5) years of the date of this Approval.
- 2. In the event that completion and commissioning of any portion of the Works is anticipated to be delayed beyond the specified expiry period, the Owner shall submit an application of extension to the expiry period, at least twelve (12) months prior to the end of the period. The application for extension shall include the reason(s) for the delay, whether there is any design change(s) and a review of whether the standards applicable at the time of Approval of the Works are still applicable at the time of request for extension, to ensure the ongoing protection of the environment.

3. CHANGE OF OWNER

- 1. The Owner shall notify the District Manager and the Director, in writing, of any of the following changes within thirty (30) days of the change occurring:
 - a. change of Owner;
 - b. change of address of the Owner;
 - c. change of partners where the Owner is or at any time becomes a partnership, and a copy of the most recent declaration filed under the <u>Business Names Act</u>, R.S.O. 1990, c.B17 shall be included in the notification to the District Manager; or
 - d. change of name of the corporation where the Owner is or at any time becomes a corporation, and a copy of the most current information filed under the <u>Corporations Information Act</u>,
 R.S.O. 1990, c. C39 shall be included in the notification to the District Manager.
- 2. In the event of any change in ownership of the Works, other than a change to a successor municipality, the Owner shall notify in writing the succeeding owner of the existence of this Approval, and a copy of such notice shall be forwarded to the District Manager and the Director.
- 3. The Owner shall ensure that all communications made pursuant to this condition refer to the

number at the top of this Approval.

4. Notwithstanding any other requirements in this Approval, upon transfer of the ownership or assumption of the Works to a municipality if applicable, any reference to the District Manager shall be replaced with the Water Supervisor.

4. OPERATION AND MAINTENANCE

1. If applicable, any proposed storm sewers or other stormwater conveyance in this Approval can be constructed but not operated until the proposed stormwater management facilities in this Approval or any other Approval that are designed to service the storm sewers or other stormwater conveyance are in operation.

Schedule "A"

1.	Application for Environmental Compliance Approval for Municipal and Private Sewage Works,
	dated May 17, 2017 and received on June 14, 2017, submitted by Greystone Village Inc.

The reasons for the imposition of these terms and conditions are as follows:

- 1. Condition 1 is imposed to ensure that the Works are constructed and operated in the manner in which they were described and upon which approval was granted. This condition is also included to emphasize the precedence of conditions in the Approval and the practice that the Approval is based on the most current document, if several conflicting documents are submitted for review. Condition 1.6 is included to emphasize that the issuance of this Approval does not diminish any other statutory and regulatory obligations to which the Owner is subject in the construction, maintenance and operation of the Works. The Condition specifically highlights the need to obtain any necessary conservation authority approvals. The Condition also emphasizes the fact that this Approval doesn't limit the authority of the Ministry to require further information.
- 2. Condition 2 is included to ensure that, when the Works are constructed, the Works will meet the standards that apply at the time of construction to ensure the ongoing protection of the environment.
- 3. Condition 3 is included to ensure that the Ministry records are kept accurate and current with respect to approved Works and to ensure that subsequent owners of the Works are made aware of the Approval and continue to operate the Works in compliance with it.
- 4. Condition 4 is included to prevent the operation of stormwater pipes and other conveyance until such time that their required associated stormwater management Works are also constructed.

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

- a. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- b. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include:

- 1. The name of the appellant;
- 2. The address of the appellant;
- 3. The environmental compliance approval number;
- 4. The date of the environmental compliance approval;
- 5. The name of the Director, and;
- 6. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
655 Bay Street, Suite 1500
Toronto, Ontario

<u>AND</u>

The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment and Climate Change 135 St. Clair Avenue West, 1st Floor * Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 326-5370 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 12th day of July, 2017

C. Labaye

Christina Labarge, P.Eng.

Director

appointed for the purposes of Part II.1 of the *Environmental Protection Act*

SW/

c: District Manager, MOECC Ottawa District Office
 City Clerk, City of Ottawa (File No. D07-16-15-0001)
 Justin Gauthier, Project Manager, Novatech Engineering
 Joshua White, P.Eng., Senior Engineer, Development Review, City of Ottawa
 Linda Carkner, Program Manager, ROW Unit, City of Ottawa

	•		
			and the second s
	. *		
	-		
	•		

Ministry of the Environment and Climate Change Ministère de l'Environnement et de l'Action en matière de changement climatique

ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER 3454-APEHFQ Issue Date: July 31, 2017

Greystone Village Inc.

1737 Woodward Drive, 2nd Floor

Ottawa, Ontario

K2C 0P9

Site Location: Greystone Village Phase 2 and 3

175 Main Street

City of Ottawa, Ontario

You have applied under section 20.2 of Part II.1 of the <u>Environmental Protection Act</u>, R.S.O. 1990, c. E. 19 (Environmental Protection Act) for approval of:

storm sewers and an associated **stormwater outfall** to be constructed in the City of Ottawa on Block 58, from Station (0+024.35) to Station (0+056.7), and discharging to the Rideau River;

one (1) **oil/grit separator** (**catchment area - 2.7 hectares**): **-** the establishment of an off-line oil/grit separator (model stormceptor 5000 or Equivalent) in the City of Ottawa, for the treatment and disposal of stormwater run-off for all storm events up to and including the 100-year storm event, to provide Enhanced Level water quality protection for a total catchment area of approximately 2.7 hectares, having a sediment storage capacity of 20,940 litres, an oil storage capacity of 3,360 litres, a total holding capacity of 24,710 litres, and a maximum treatment flow rate of 61 litres/second, discharging to Rideau River:

including erosion/sedimentation control measures during construction and all other controls and appurtenances essential for the proper operation of the aforementioned Works;

all in accordance with the submitted supporting documents listed in Schedule "A" forming part of this Approval.

For the purpose of this environmental compliance approval, the following definitions apply:

- 1. "Approval" means this entire document and any schedules attached to it, and the application;
- 2. "Director" means a person appointed by the Minister pursuant to section 5 of the EPA for the

purposes of Part II.1 of the EPA;

- 3. "District Manager" means the District Manager of the appropriate local District Office of the Ministry, where the Works are geographically located;
- 4. "EPA" means the Environmental Protection Act, R.S.O. 1990, c.E.19, as amended;
- 5. "*Equivalent* " means a substituted oil and grit separator that meets the required quality and performance standards of the approved oil and grit separator;
- 6. "*Ministry* " means the ministry of the government of Ontario responsible for the *EPA* and *OWRA* and includes all officials, employees or other persons acting on its behalf;
- 7. "Owner" means Greystone Village Inc., and includes its successors and assignees;
- 8. "OWRA" means the Ontario Water Resources Act, R.S.O. 1990, c. O.40, as amended;
- 9. "Water Supervisor" means the Water Supervisor of the appropriate local office of the Safe Drinking Water Branch of the Ministry, where the Works are geographically located;
- 10. "Works" means the sewage works described in the Owner's application, and this Approval.

You are hereby notified that this environmental compliance approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1. GENERAL CONDITIONS

- 1. The *Owner* shall ensure that any person authorized to carry out work on or operate any aspect of the *Works* is notified of this *Approval* and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same.
- 2. Except as otherwise provided by these Conditions, the *Owner* shall design, build, install, operate and maintain the *Works* in accordance with the description given in this *Approval*, and the application for approval of the *Works*.
- 3. Where there is a conflict between a provision of any document in the schedule referred to in this *Approval* and the conditions of this *Approval*, the conditions in this *Approval* shall take precedence, and where there is a conflict between the documents in the schedule, the document bearing the most recent date shall prevail.
- 4. Where there is a conflict between the documents listed in Schedule 'A' and the application, the

- application shall take precedence unless it is clear that the purpose of the document was to amend the application.
- 5. The conditions of this *Approval* are severable. If any condition of this *Approval*, or the application of any requirement of this *Approval* to any circumstance, is held invalid or unenforceable, the application of such condition to other circumstances and the remainder of this *Approval* shall not be affected thereby.
- 6. The issuance of, and compliance with the conditions of, this *Approval* does not:
 - a. relieve any person of any obligation to comply with any provision of any applicable statute, regulation or other legal requirement, including, but not limited to, the obligation to obtain approval from the local conservation authority/MNR necessary to construct or operate the sewage works; or
 - b. limit in any way the authority of the *Ministry* to require certain steps be taken to require the *Owner* to furnish any further information related to compliance with this *Approval*.

2. EXPIRY OF APPROVAL

- 1. This *Approval* will cease to apply to those parts of the *Work* which have not been constructed within five (5) years of the date of this *Approval*.
- 2. In the event that completion and commissioning of any portion of the *Works* is anticipated to be delayed beyond the specified expiry period, the *Owner* shall submit an application of extension to the expiry period, at least twelve (12) months prior to the end of the period. The application for extension shall include the reason(s) for the delay, whether there is any design change(s) and a review of whether the standards applicable at the time of *Approval* of the *Works* are still applicable at the time of request for extension, to ensure the ongoing protection of the environment.

3. CHANGE OF OWNER

- 1. The *Owner* shall notify the District Manager and the *Director*, in writing, of any of the following changes within thirty (30) days of the change occurring:
 - a. change of Owner;
 - b. change of address of the Owner;
 - c. change of partners where the *Owner* is or at any time becomes a partnership, and a copy of the most recent declaration filed under the <u>Business Names Act</u>, R.S.O. 1990, c.B17 shall be included in the notification to the District Manager; or
 - d. change of name of the corporation where the *Owner* is or at any time becomes a corporation, and a copy of the most current information filed under the <u>Corporations Information Act</u>,

R.S.O. 1990, c. C39 shall be included in the notification to the District Manager.

- 2. In the event of any change in ownership of the *Works*, other than a change to a successor municipality, the *Owner* shall notify in writing the succeeding owner of the existence of this *Approval*, and a copy of such notice shall be forwarded to the District Manager and the *Director*.
- 3. The *Owner* shall ensure that all communications made pursuant to this condition refer to the number at the top of this *Approval*.
- 4. Notwithstanding any other requirements in this *Approval*, upon transfer of the ownership or assumption of the *Works* to a municipality if applicable, any reference to the *District Manager* shall be replaced with the *Water Supervisor*.

4. OPERATION AND MAINTENANCE

- 1. If applicable, any proposed storm sewers or other stormwater conveyance in this *Approval* can be constructed but not operated until the proposed stormwater management facilities in this *Approval* or any other *Approval* that are designed to service the storm sewers or other stormwater conveyance are in operation.
- 2. The *Owner* shall make all necessary investigations, take all necessary steps and obtain all necessary approvals so as to ensure that the physical structure, siting and operations of the *Works* do not constitute a safety or health hazard to the general public.
- 3. The *Owner* shall undertake an inspection of the condition of the *Works*, at least once a year, and undertake any necessary cleaning and maintenance to ensure that sediment, debris and excessive decaying vegetation are removed from the *Works* to prevent the excessive build-up of sediment, oil/grit, debris and/or decaying vegetation, to avoid reduction of the capacity and/or permeability of the *Works*, as applicable. The *Owner* shall also regularly inspect and clean out the inlet to and outlet from the *Works* to ensure that these are not obstructed.
- 4. The *Owner* shall design, construct and operate the *Works* with the objective that the effluent from the *Works* is essentially free of floating and settleable solids and does not contain oil or any other substance in amounts sufficient to create a visible film, sheen, foam or discoloration on the receiving waters.
- 5. The *Owner* shall maintain a logbook to record the results of these inspections and any cleaning and maintenance operations undertaken, and shall keep the logbook at the *Owner's* administration office for inspection by the *Ministry*. The logbook shall include the following:
 - a. the name of the Works; and
 - b. the date and results of each inspection, maintenance and cleaning, including an estimate of the quantity of any materials removed and method of clean-out of the *Works*.

- 6. The *Owner* shall prepare an operations manual prior to the commencement of operation of the *Works* that includes, but is not necessarily limited to, the following information:
 - a. operating and maintenance procedures for routine operation of the Works;
 - b. inspection programs, including frequency of inspection, for the *Works* and the methods or tests employed to detect when maintenance is necessary;
 - c. repair and maintenance programs, including the frequency of repair and maintenance for the *Works*:
 - d. contingency plans and procedures for dealing with potential spills and any other abnormal situations and for notifying the District Manager; and
 - e. procedures for receiving, responding and recording public complaints, including recording any follow-up actions taken.
- 7. The *Owner* shall maintain the operations manual current and retain a copy at the location of the *Works* for the operational life of the *Works*. Upon request, the *Owner* shall make the manual available to *Ministry* staff.

5. TEMPORARY EROSION AND SEDIMENT CONTROL

- 1. The *Owner* shall install and maintain temporary sediment and erosion control measures during construction and conduct inspections once every two (2) weeks and after each significant storm event (a significant storm event is defined as a minimum of 25 mm of rain in any 24 hours period). The inspections and maintenance of the temporary sediment and erosion control measures shall continue until they are no longer required and at which time they shall be removed and all disturbed areas reinstated properly.
- 2. The *Owner* shall maintain records of inspections and maintenance which shall be made available for inspection by the *Ministry*, upon request. The record shall include the name of the inspector, date of inspection, and the remedial measures, if any, undertaken to maintain the temporary sediment and erosion control measures.

6. REPORTING

- 1. One (1) week prior to the start-up of the operation of the *Works*, the *Owner* shall notify the District Manager (in writing) of the pending start-up date.
- 2. The *Owner* shall, upon request, make all manuals, plans, records, data, procedures and supporting documentation available to *Ministry* staff.
- 3. The *Owner* shall prepare and submit a performance report to the District Manager on an annual basis, within ninety (90) days following the end of the period being reported upon. The first such report shall cover the first annual period following the commencement of operation of the *Works* and subsequent reports shall be submitted to cover successive annual periods following

thereafter. The reports shall contain, but shall not be limited to, the following information:

- a. a description of any operating problems encountered and corrective actions taken;
- b. a summary of all maintenance carried out on any major structure, equipment, apparatus, mechanism or thing forming part of the *Works*, including an estimate of the quantity of any materials removed from the *Works*;
- c. a summary of any complaints received during the reporting period and any steps taken to address the complaints;
- d. a summary of all spill or abnormal discharge events; and
- e. any other information the District Manager requires from time to time.

Schedule "A"

- 1. Application for Environmental Compliance Approval under M&P Sewage Works, dated May 15, 2017 and received on June 29, 2017, submitted by The Greystone Village Inc.;
- 2. Greystone Village Phase 2 and 3, 175 Main Street, Plan and Profile, Storm Outlet 2 (including Grading, Erosion and Sediment Control) Revision 4, dated May 26, 2017, prepared by Novatech Engineering;
- 3. Greystone Village Phase 2 and 3, 175 Main Street, Site Servicing, stormwater management, Noise, Erosion & Sediment Control design beirf, revised May 26, 2017, prepared by Novatech Engineering;

The reasons for the imposition of these terms and conditions are as follows:

- 1. Condition 1 is imposed to ensure that the *Works* are constructed and operated in the manner in which they were described and upon which approval was granted. This condition is also included to emphasize the precedence of conditions in the *Approval* and the practice that the *Approval* is based on the most current document, if several conflicting documents are submitted for review. Condition 1.6 is included to emphasize that the issuance of this *Approval* does not diminish any other statutory and regulatory obligations to which the *Owner* is subject in the construction, maintenance and operation of the *Works*. The Condition specifically highlights the need to obtain any necessary conservation authority approvals. The Condition also emphasizes the fact that this *Approval* doesn't limit the authority of the *Ministry* to require further information.
- 2. Condition 2 is included to ensure that, when the *Works* are constructed, the *Works* will meet the standards that apply at the time of construction to ensure the ongoing protection of the environment.
- 3. Condition 3 is included to ensure that the *Ministry* records are kept accurate and current with respect to approved *Works* and to ensure that subsequent owners of the *Works* are made aware of the *Approval* and continue to operate the *Works* in compliance with it.
- 4. Condition 4 is included as regular inspection and necessary removal of sediment and excessive decaying vegetation from the *Works* are required to mitigate the impact of sediment, debris and/or decaying vegetation on the treatment capacity of the *Works*. The Condition also ensures that adequate storage is maintained in the *Works* at all times as required by the design. Furthermore, this Condition is included to ensure that the *Works* are operated and maintained to function as designed. Condition 4.1 is included to prevent the operation of stormwater pipes and other conveyance until such time that their required associated stormwater management Works are also constructed.
- 5. Condition 5 is included as installation, regular inspection and maintenance of the temporary sediment and erosion control measures is required to mitigate the impact on the downstream receiving watercourse during construction until they are no longer required.
- 6. Condition 6 is included to provide a performance record for future references, to ensure that the *Ministry* is made aware of problems as they arise, and to provide a compliance record for all the terms and conditions outlined in this *Approval*, so that the *Ministry* can work with the *Owner* in resolving any problems in a timely manner.

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

a. The portions of the environmental compliance approval or each term or condition in the environmental compliance

approval in respect of which the hearing is required, and;

b. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include:

- 1. The name of the appellant;
- 2. The address of the appellant;
- 3. The environmental compliance approval number;
- 4. The date of the environmental compliance approval;
- 5. The name of the Director, and;
- 6. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
655 Bay Street, Suite 1500
Toronto, Ontario
M5G 1E5

AND

The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment and Climate Change 135 St. Clair Avenue West, 1st Floor Toronto, Ontario M4V 1P5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 326-5370 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 31st day of July, 2017

Christina Labarge, P.Eng.

Director

appointed for the purposes of Part II.1 of the *Environmental Protection Act*

C. Labaye

MS/

c: District Manager, MOECC Ottawa office
 Justin Gauthier, Project Manager, Novatech Engineering
 City Clerk, City of Ottawa (File No. D07-16-15-0001)
 Joshua White, P.Eng., Senior Engineer, Development Review, City of Ottawa
 Linda Carkner, Program Manager, Row Unit, City of Ottawa

3889 Rideau Valley Drive, P.O. Box 599, Manotick, ON K4M 1A5 tel 613-692-3571 | 1-800-267-3504 | fax 613-692-0831 + www.rvca.ca

LETTER OF PERMISSION – ONT. REG. 174/06, SECTION 28 CONSERVATION AUTHORITIES ACT 1990, AS AMENDED.

Date: 15 July, 2016. File: RV3-34/16 Contact: Hal Stimson (613) 692-3571 Ext 1127 hal.stimson@rvca.ca

Mr. David Kardish Greystone Village Inc. c/o The Regional Group 1737 Woodward Dr. Ottawa, Ontario K2C 0P9

Permit for development under Section 28 of the Conservation Authorities Act for storm water outlet in a regulated area at Lot Part H Concession D (old Nepean Township) City of Ottawa known municipally as 175 Main Street

Dear Mr. Kardish

The Rideau Valley Conservation Authority has reviewed your application on behalf of Regional Group and understands the proposal to be for: the installation of a new 900 mm diameter concrete stormwater outlet pipe including headwall and river stone plunge pool discharging to the Rideau River just downstream of Clegg Street in the vicinity of the future Telmon Street.

This proposal was reviewed under Ontario Regulation 174/06, the "Development, Interference with Wetlands and Alterations to Shorelines and Watercourses" regulation.

PERMISSION AND CONDITIONS

By this letter the Rideau Valley Conservation Authority hereby grants you approval to undertake this project as outlined in your permit application but subject to the following conditions:

- Approval is subject to the understanding of the project as described above and outlined in the application and submitted plans including:
 - Drawing No. 114025-PR9 for Project No. 114025-00 titled Storm Outlet Plan and Profile & Grading, Erosion and Sediment Control Plan Station 0+000 to 0+050, dated May 24/16, revision No. 6, as prepared by Novatech Engineering and stamped by J. G. Riddell, P. Eng.

No conditions are subject to change/revision by the on-site contractor(s).

- 2. There will be no in-water works between March 15 and July 1, of any given year to protect local aquatic species populations during their spawning and nursery time periods.
- 3. It is recommended that you retain the services of an engineer to conduct on-site inspections to ensure adequacy of the work, verify stability of the final grade and confirm all imported fill is of a suitable type and has been adequately placed and compacted.
- 4. A De-watering Plan and Sediment and Erosion Control Plan must be submitted by the contractor to this office for review prior to construction activities commencing.
- 5. It is recommended that you ensure your contractor(s) are provided with a copy of this letter so as to ensure compliance with the conditions listed herein.
- 6. Any excess excavated material, as a result of the work, must be disposed of in a suitable location outside any regulatory floodplain and fill regulated area. No changes to area grades are to occur as a result of the work.
- 7. Only clean material free from particulate matter may be placed in the water.
- 8. Operate machinery from outside the water, or on the water in a manner that minimizes disturbance to the banks or bed of the watercourse. Equipment shall not be cleaned in the watercourse or where wash-water can enter any watercourse. Machinery is to arrive on site in a clean condition and is to be maintained free of fluid leaks.
- 9. All materials and equipment used for the purpose of site preparation and project completion must be operated (washed, refuelled, and serviced) and all fuel stored in a manner that prevents any deleterious substance (e.g. petroleum products, silt, debris etc.) from entering any watercourse.
- 10. Any stockpiled materials shall be stored and stabilized away from the water.
- 11. Work in water shall not be conducted at times when flows are elevated due to local rain events, storms or seasonal floods.

- 12. Sediment barriers should be used on site in an appropriate method according to the Ontario Provincial Standard Specifications (OPSS) for silt barriers as a minimum. If the sediment and erosion control methods include silt fence it should be placed along the shoreline to prevent overland flow on disturbed areas from entering the watercourse. Soil type, slope of land, drainage area, weather, predicted sediment load and deposition should be considered when selecting the type of sediment/erosion control.
- 13. Sediment and erosion control measures shall be in place before any excavation or construction works commence. All sediment/erosion control measures are to be monitored regularly by experienced personnel and maintained as necessary to ensure good working order. In the event that the erosion and sedimentation control measures are deemed not to be performing adequately, the contractor shall undertake immediate additional measures as appropriate to the situation to the satisfaction of the Conservation Authority.
- 14. Develop a response plan that is to be implemented immediately in the event of flooding, a sediment release or spill of a deleterious substance. This plan is to include measures to: a) stop work, contain sediment-laden water and other deleterious substances and prevent their further migration into the watercourse and downstream receiving watercourses; b) notify the RVCA and all applicable authorities in the area c) promptly clean-up and appropriately dispose of the sediment-laden water and deleterious substances; and d) ensure clean-up measures are suitably applied so as not to result in further alteration of the bed and/or banks of the watercourse.
- 15. The owner is ultimately responsible for failure to comply with any and/or all of these conditions and must take all precautions to ensure no sediment runoff from the work site into any watercourse during and after the construction period. Failure to comply with the approval and/or conditions of this letter will result in the permit being revoked and may also result in legal action being initiated to resolve the matter to the Conservation Authority's satisfaction.
- 16. The applicant agrees that Authority staff may visit the subject property, before, during and after project completion, to ensure compliance with the conditions as set out in this letter of permission.
- 17. A new application must be submitted should any work as specified in this letter be ongoing or planned for or after July 18, 2018.
- 18. That the Authority be given twenty-four hours notice prior to the start of construction and within twenty-four hours of project completion.
- 19. All other approvals as might be required from the Municipality, and/or other Provincial or Federal Agencies must be obtained prior to initiation of work. This includes but is not limited to the Endangered Species Act., the Ontario Water Resources Act., Environmental Protection Act., Public Lands Act, and the Fisheries Act.

By this letter the Rideau Valley Conservation Authority assumes no responsibility or liability for any flood, erosion, or slope failure damage which may occur either to your property or the structures on it or if any activity undertaken by you adversely affects the property or interests of adjacent landowners. This letter does not relieve you of the necessity or responsibility for obtaining any other federal, provincial or municipal permits. This permit is not transferable to subsequent property owners.

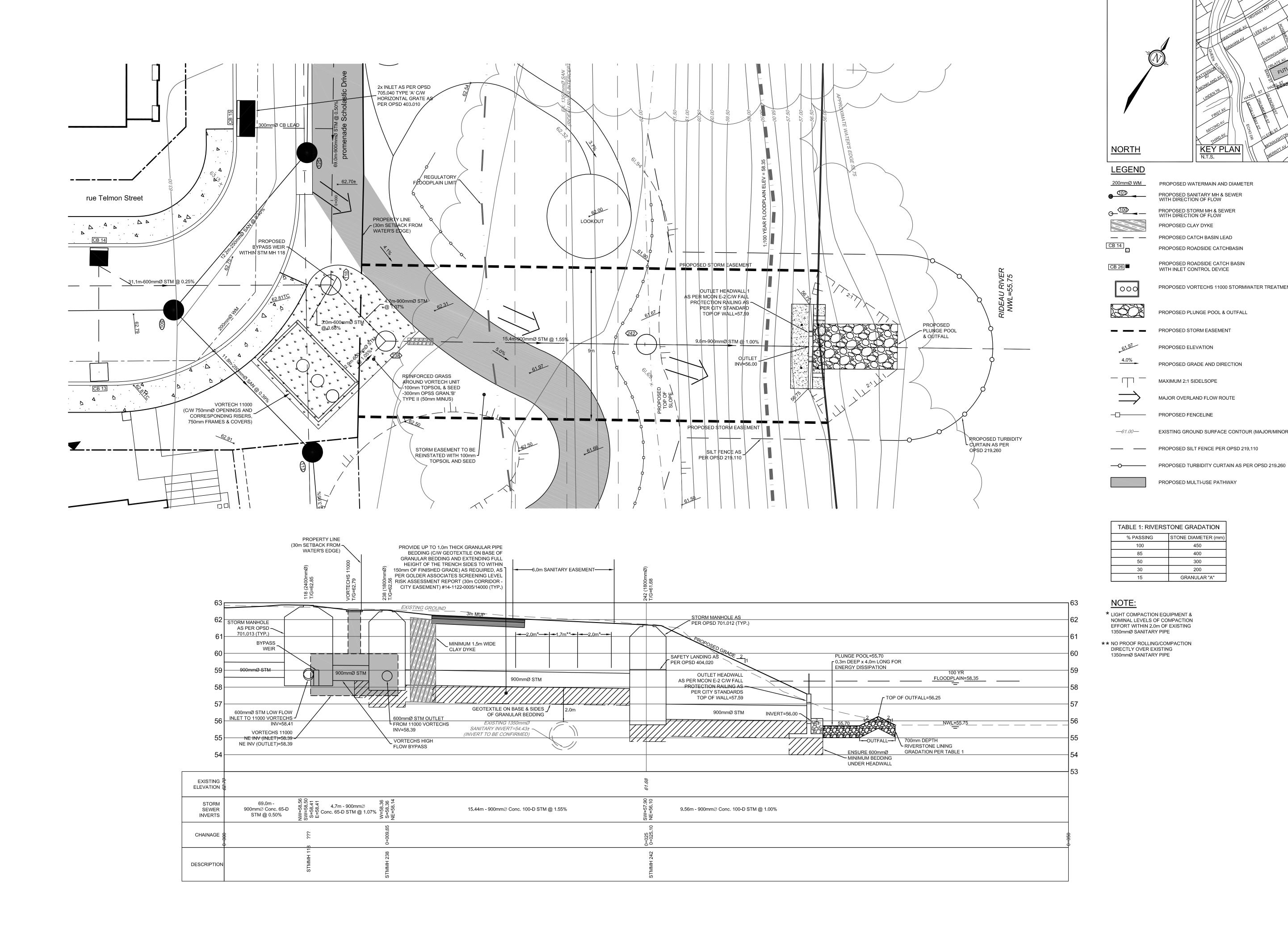
Should you have any questions regarding this letter, please contact Hal Stimson at our Manotick office.

Terry K. Davidson, P. Eng.

Conservation Authority S. 28 Signing delegate

O. Reg. 174/06

Cc: M. St. Pierre, P. Eng. Novatech T. McLaurin, MNRF Kemptville


- Pursuant to the provisions of S. 28(12) of the Conservation Authorities Act (R.S.O.1990, as amended.) any or all of the conditions set out above may be appealed to the Executive Committee of the Conservation Authority in the event that they are not satisfactory or cannot be complied with.
- Failure to comply with the conditions of approval or the scope of the project may result in the cancelling of the permission and/or initiation of legal action under S. 28(16) of the Act.
- This letter of permission does not come into full force and effect until the attached copy of this letter is returned to the Authority offices in Manotick signed and dated which return shall be taken as indicating acceptance of the conditions of the Authority's approval and acknowledgement that the details of the proposal as described in this letter are a fair and accurate representation of the proposed undertaking.

Name:

Signed:

(1....)

Date: Vuly/s/2016

SITE BENCHMARK REFERENCED TO LOCAL GEODETIC DATUM
City of Ottawa MON 3640

ELEV: 66.702m

PROPOSED SANITARY MH & SEWER WITH DIRECTION OF FLOW

PROPOSED STORM MH & SEWER WITH DIRECTION OF FLOW

PROPOSED ROADSIDE CATCHBASIN

PROPOSED ROADSIDE CATCH BASIN WITH INLET CONTROL DEVICE

PROPOSED PLUNGE POOL & OUTFALL

PROPOSED GRADE AND DIRECTION

MAJOR OVERLAND FLOW ROUTE

PROPOSED MULTI-USE PATHWAY

300

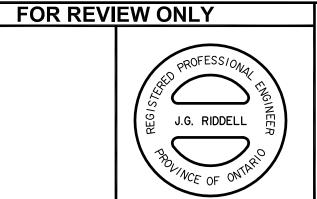
200

GRANULAR "A"

EXISTING GROUND SURFACE CONTOUR (MAJOR/MINOR)

PROPOSED ELEVATION

MAXIMUM 2:1 SIDELSOPE


PROPOSED VORTECHS 11000 STORMWATER TREATMENT UNIT

PROPOSED CLAY DYKE

REFER TO 114025-N&L FOR ADDITIONAL NOTES

NOTE:
THE POSITION OF ALL POLE LINES, CONDUITS,
WATERMAINS, SEWERS AND OTHER UNDERGROUND AND OVERGROUND UTILITIES AND STRUCTURES IS NOT NECESSARILY SHOWN ON THE CONTRACT DRAWINGS, AND WHERE SHOWN, THE ACCURACY OF THE POSITION OF SUCH UTILITIES AND STRUCTURES IS NOT GUARANTEED. BEFORE STARTING WORK, DETERMINE THE EXACT LOCATION OF ALL SUCH UTILITIES AND STRUCTURES AND ASSUME ALL LIABILITY FOR DAMAGE TO THEM.

				SCALE	DESIGN	
7.	ISSUED FOR ORDERING OF MATERIAL	JUNE 14/16	JAG		DDB	\prod
6.	REVISED AS PER CITY COMMENTS & ISSUED FOR E.C.A.	MAY 24/16	JAG	1:100 HORIZONTAL	CHECKED	
5.	ISSUED FOR TENDER	APR 20/16	JAG	1:100 VERTICAL	DDB	4
4.	REVISED AS PER CITY COMMENTS	APR 13/16	JAG			
3.	REVISED AS PER CITY STORM OUTFALL COMMENTS #2	MAR 11/16	JAG	1:100	CHECKED BET	-
2.	REVISED AS PER CITY STORM OUTFALL COMMENTS	FEB 25/16	JAG	0 1 2 3 4	DDB	
1.	ISSUED FOR CITY OF OTTAWA REVIEW	DEC 18/15	JAG		APPROVED	1
No.	REVISION	DATE	BY		JGR	

NO\	V/\T=CH
Engineers, Plan	ners & Landscape Architects
) Michael Cowpland Drive ntario, Canada K2M 1P6
Telephone Facsimile Website	(613) 254-9643 (613) 254-5867 www.novatech-eng.com

CITY OF OTTAWA GREYSTONE VILLAGE 175 MAIN STREET DRAWING NAME STORM OUTLET 114025-00 PLAN AND PROFILE & GRADING, EROSION AND REV # 7

114025-PR9

SEDIMENT CONTROL PLAN

STATION 0+000 TO 0+050

3889 Rideau Valley Drive, P.O. Box 599, Manotick, ON K4M 1A5 tel 613-692-3571 | 1-800-267-3504 | fax 613-692-0831 | www.rvca.ca

LETTER OF PERMISSION – ONT. REG. 174/06, SECTION 28 CONSERVATION AUTHORITIES ACT 1990, AS AMENDED.

Date: 21 April, 2017. File: RV3-08/17 Contact: Hal Stimson (613) 692-3571 Ext 1127 hal.stimson@rvca.ca

Mr. David Kardish Greystone Village Inc. c/o The Regional Group 1737 Woodward Dr. Ottawa, Ontario K2C 0P9

Permit for development under Section 28 of the Conservation Authorities Act for storm water outlet and soil remediation in a regulated area at Lot Part H Concession D (old Nepean Township) City of Ottawa known municipally as 175 Main Street

Dear Mr. Kardish

The Rideau Valley Conservation Authority has reviewed your application on behalf of Regional Group and understands the proposal to be for: 1) the installation of a new 750 mm diameter concrete stormwater outlet pipe including headwall and river stone plunge pool discharging to the Rideau River east of the intersection of Oblate Avenue and Scholastic Drive and including a compensatory cut of fill previously approved.2) removal and replacement of contaminated soil in the RVCA regulated area with existing grades to be re-established.

This proposal was reviewed under Ontario Regulation 174/06, the "Development, Interference with Wetlands and Alterations to Shorelines and Watercourses" regulation and is approved in an amended form noting that the construction of buildings request (lots 12 and 13) will need to form a separate application pending registration of the lots and verification of appropriate flood proofing measures in the final building design.

PERMISSION AND CONDITIONS

By this letter the Rideau Valley Conservation Authority hereby grants you approval to undertake this project as outlined in your permit application but subject to the following conditions:

- 1. Approval is subject to the understanding of the project as described above and outlined in the application and submitted plans including:
 - Drawing No. 114025-PR6-B for Project No. 114025-00 titled Plan and Profile Phase 2 and 3 Storm Outlet 2 (Incl. Grading, Erosion and Sediment Control) Station 0+000 to 0+54, dated Nov 21/16, revision No. 1, as prepared by Novatech Engineering and stamped by J. G. Riddell, P. Eng.
 - Drawing No. 114025-GR3-B for Project No. 114025-00 titled Grading, Erosion and Sediment Control Plan Phase 2 and 3, dated Nov 21/16, revision No. 1, as prepared by Novatech Engineering and stamped by J. G. Riddell, P. Eng.
 - Drawing No. 114025-GP3-B for Project No. 114025-00 titled General Plan of Services Phase 2 and 3, dated Nov 21/16, revision No. 1, as prepared by Novatech Engineering.
 - Drawing No. 114025-LG-B for Project No. 114025-00 titled RVCA Remediation Permit Plan, dated Feb 13/17, revision No. 1, as prepared by Novatech Engineering.
 - Technical memorandum for project 14-1122-0005 dated February 3, 2017 from Susan Trickey, P. Eng. of Golder Associates.

No conditions are subject to change/revision by the on-site contractor(s).

- 2. There will be no in-water works between March 15 and July 1, of any given year to protect local aquatic species populations during their spawning and nursery time periods.
- 3. No encroachment for fill remediation purposes is to occur within 15m of the top of the river bank. Construction access fencing should be installed to clearly demarcate the construction access limits.
- 4. All grades within the 30m setback are to be restored to existing and stabilized upon completion of the remediation work.
- 5. It is recommended that you retain the services of an engineer to conduct on-site inspections to ensure adequacy of the work, verify stability of the final grade and confirm all imported fill is of a suitable type and has been adequately placed and compacted and that the recommendations of the geotechnical technical memorandum are followed.
- 6. A De-watering Plan and Sediment and Erosion Control Plan must be submitted by the contractor to this office for review prior to construction activities commencing on the storm outlet.
- 7. It is recommended that you ensure your contractor(s) are provided with a copy of this letter so as to ensure compliance with the conditions listed herein.
- 8. All disturbed soil areas must be appropriately stabilized to prevent erosion.

- Any excess excavated material, as a result of the work, must be disposed of in a suitable location outside
 any regulatory floodplain and fill regulated area. No changes to area grades are to occur as a result of the
 work.
- 10. A final as built grading plan shall be submitted immediately upon completion of the approved works prepared by an Ontario Land Surveyor or Professional Engineer licensed to practice in Ontario indicating that grades achieved on the site conform to those indicated on the approved plan. Only clean material free from particulate matter may be placed in the water.
- 11. Operate machinery from outside the water, or on the water in a manner that minimizes disturbance to the banks or bed of the watercourse. Equipment shall not be cleaned in the watercourse or where wash-water can enter any watercourse. Machinery is to arrive on site in a clean condition and is to be maintained free of fluid leaks.
- 12. All materials and equipment used for the purpose of site preparation and project completion must be operated (washed, refuelled, and serviced) and all fuel stored in a manner that prevents any deleterious substance (e.g. petroleum products, silt, debris etc.) from entering any watercourse.
- 13. Any stockpiled materials shall be stored and stabilized away from the water.
- 14. Work in water shall not be conducted at times when flows are elevated due to local rain events, storms or seasonal floods.
- 15. Sediment barriers should be used on site in an appropriate method according to the Ontario Provincial Standard Specifications (OPSS) for silt barriers as a minimum. If the sediment and erosion control methods include silt fence it should be placed along the shoreline to prevent overland flow on disturbed areas from entering the watercourse. Soil type, slope of land, drainage area, weather, predicted sediment load and deposition should be considered when selecting the type of sediment/erosion control.
- 16. Sediment and erosion control measures shall be in place before any excavation or construction works commence. All sediment/erosion control measures are to be monitored regularly by experienced personnel and maintained as necessary to ensure good working order. In the event that the erosion and sedimentation control measures are deemed not to be performing adequately, the contractor shall undertake immediate additional measures as appropriate to the situation to the satisfaction of the Conservation Authority.
- 17. Develop a response plan that is to be implemented immediately in the event of flooding, a sediment release or spill of a deleterious substance. This plan is to include measures to: a) stop work, contain sediment-laden water and other deleterious substances and prevent their further migration into the watercourse and downstream receiving watercourses; b) notify the RVCA and all applicable authorities in the area c) promptly clean-up and appropriately dispose of the sediment-laden water and deleterious

substances; and d) ensure clean-up measures are suitably applied so as not to result in further alteration of the bed and/or banks of the watercourse.

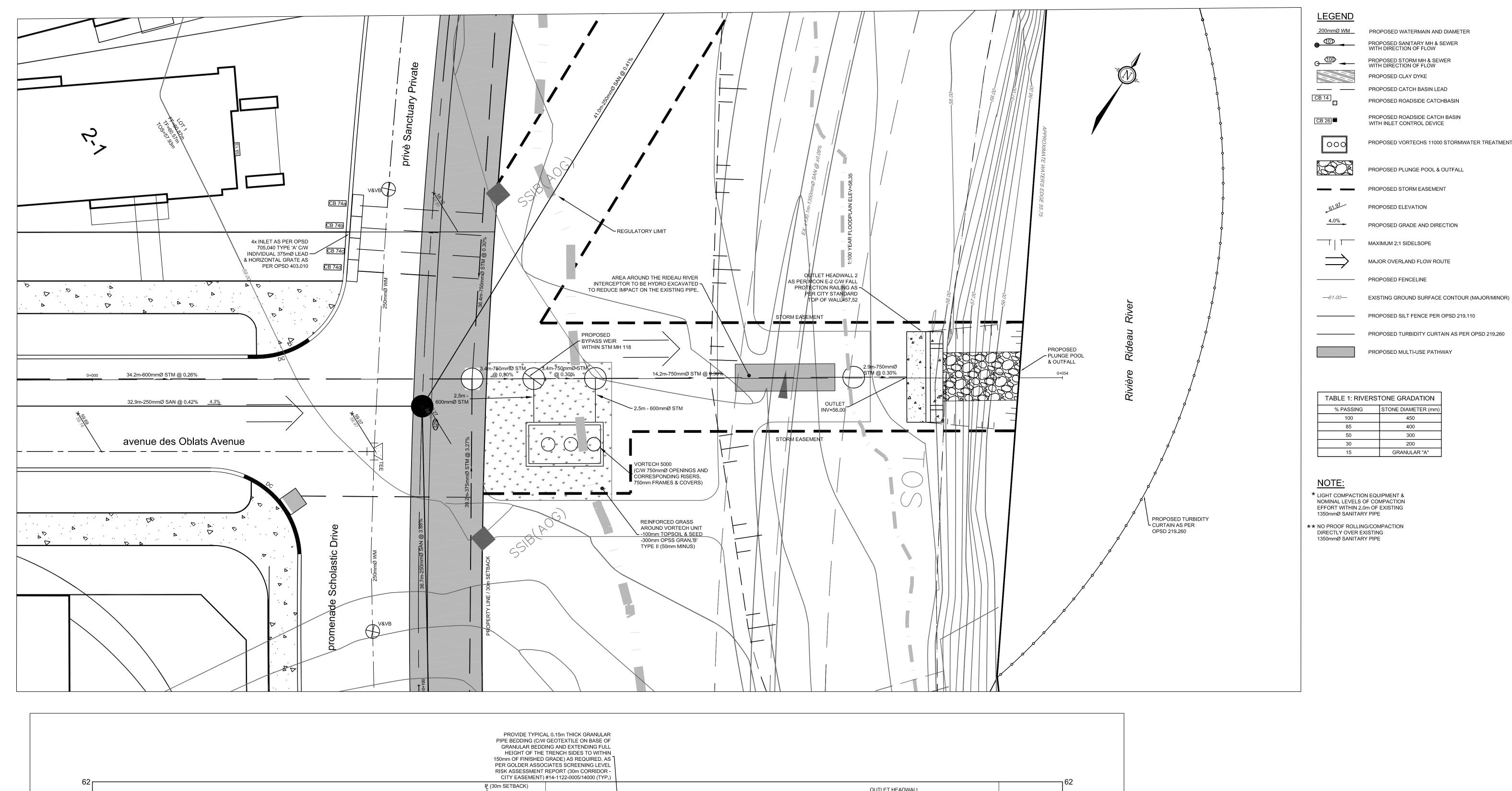
- 18. The owner is ultimately responsible for failure to comply with any and/or all of these conditions and must take all precautions to ensure no sediment runoff from the work site into any watercourse during and after the construction period. Failure to comply with the approval and/or conditions of this letter will result in the permit being revoked and may also result in legal action being initiated to resolve the matter to the Conservation Authority's satisfaction.
- 19. The applicant agrees that Authority staff may visit the subject property, before, during and after project completion, to ensure compliance with the conditions as set out in this letter of permission.
- A new application must be submitted should any work as specified in this letter be ongoing or planned for or after April 25, 2019.
- 21. That the Authority be given twenty-four hours notice prior to the start of construction and within twenty-four hours of project completion.
- 22. All other approvals as might be required from the Municipality, and/or other Provincial or Federal Agencies must be obtained prior to initiation of work. This includes but is not limited to the Endangered Species Act., the Ontario Water Resources Act., Environmental Protection Act., Public Lands Act, and the Fisheries Act.

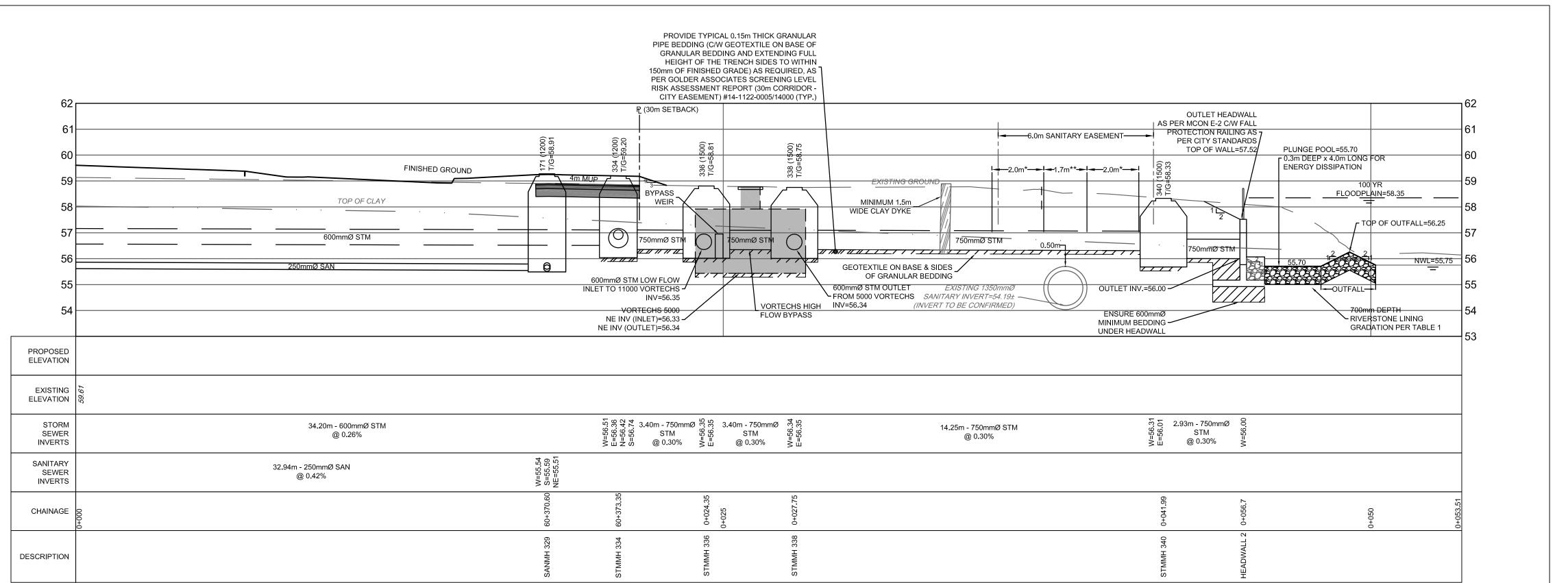
By this letter the Rideau Valley Conservation Authority assumes no responsibility or liability for any flood, erosion, or slope failure damage which may occur either to your property or the structures on it or if any activity undertaken by you adversely affects the property or interests of adjacent landowners. This letter does not relieve you of the necessity or responsibility for obtaining any other federal, provincial or municipal permits. This permit is not transferable to subsequent property owners.

Should you have any questions regarding this letter, please contact Hal Stimson at our Manotick office.

Terry K. Davidson, P. Eng.

Conservation Authority S. 28 Signing delegate


O. Reg. 174/06


Cc: J. Gauthier, E.I.T. Novatech

T. McLaurin, MNRF Kemptville

- Pursuant to the provisions of S. 28(12) of the Conservation Authorities Act (R.S.O.1990, as amended.)
 any or all of the conditions set out above may be appealed to the Executive Committee of the Conservation Authority in the event that they are not satisfactory or cannot be complied with.
- Failure to comply with the conditions of approval or the scope of the project may result in the cancelling of the permission and/or initiation of legal action under S. 28(16) of the Act.
- This letter of permission does not come into full force and effect until the attached copy of this letter is
 returned to the Authority offices in Manotick signed and dated which return shall be taken as indicating
 acceptance of the conditions of the Authority's approval and acknowledgement that the details of the
 proposal as described in this letter are a fair and accurate representation of the proposed undertaking.

Name:	(print)	
Signed:	Date:	

NOTE:
THE POSITION OF ALL POLE LINES, CONDUITS,
WATERMAINS, SEWERS AND OTHER UNDERGROUND AND OVERGROUND UTILITIES AND STRUCTURES IS NOT NECESSARILY SHOWN ON THE CONTRACT DRAWINGS, AND WHERE SHOWN, THE ACCURACY OF THE POSITION OF SUCH UTILITIES AND STRUCTURES IS NOT GUARANTEED. BEFORE STARTING WORK, DETERMINE THE EXACT LOCATION OF ALL SUCH UTILITIES AND STRUCTURES AND ASSUME ALL LIABILITY FOR DAMAGE TO THEM.

PRELIMINARY NOT FOR CONSTRUCTION

				SCALE	BESIGN	
					JAG	
				1:100 HORIZONTAL	CHECKED	
				1:100 VERTICAL	MSP DRAWN	
					CHECKED MTM	
				1:100 0 1 2 3 4	JAG	
1.	ISSUED FOR CITY OF OTTAWA REVIEW	NOV 21/16	JAG		APPROVED	
No.	REVISION	DATE	BY		JGR	

FOR REVIEW ONLY J.G. RIDDELL 21/11/6

NOV/NTECH Engineers, Planners & Landscape Architects Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario, Canada K2M 1P6 Telephone Facsimile Website (613) 254-5867 www.novatech-eng.com

CITY OF OTTAWA GREYSTONE VILLAGE 175 MAIN STREET DRAWING NAME PLAN AND PROFILE

PROPOSED STORM MH & SEWER WITH DIRECTION OF FLOW

PROPOSED ROADSIDE CATCHBASIN

PROPOSED ROADSIDE CATCH BASIN WITH INLET CONTROL DEVICE

PROPOSED PLUNGE POOL & OUTFALL

PROPOSED STORM EASEMENT

PROPOSED GRADE AND DIRECTION

MAJOR OVERLAND FLOW ROUTE

PROPOSED MULTI-USE PATHWAY

STONE DIAMETER (mm

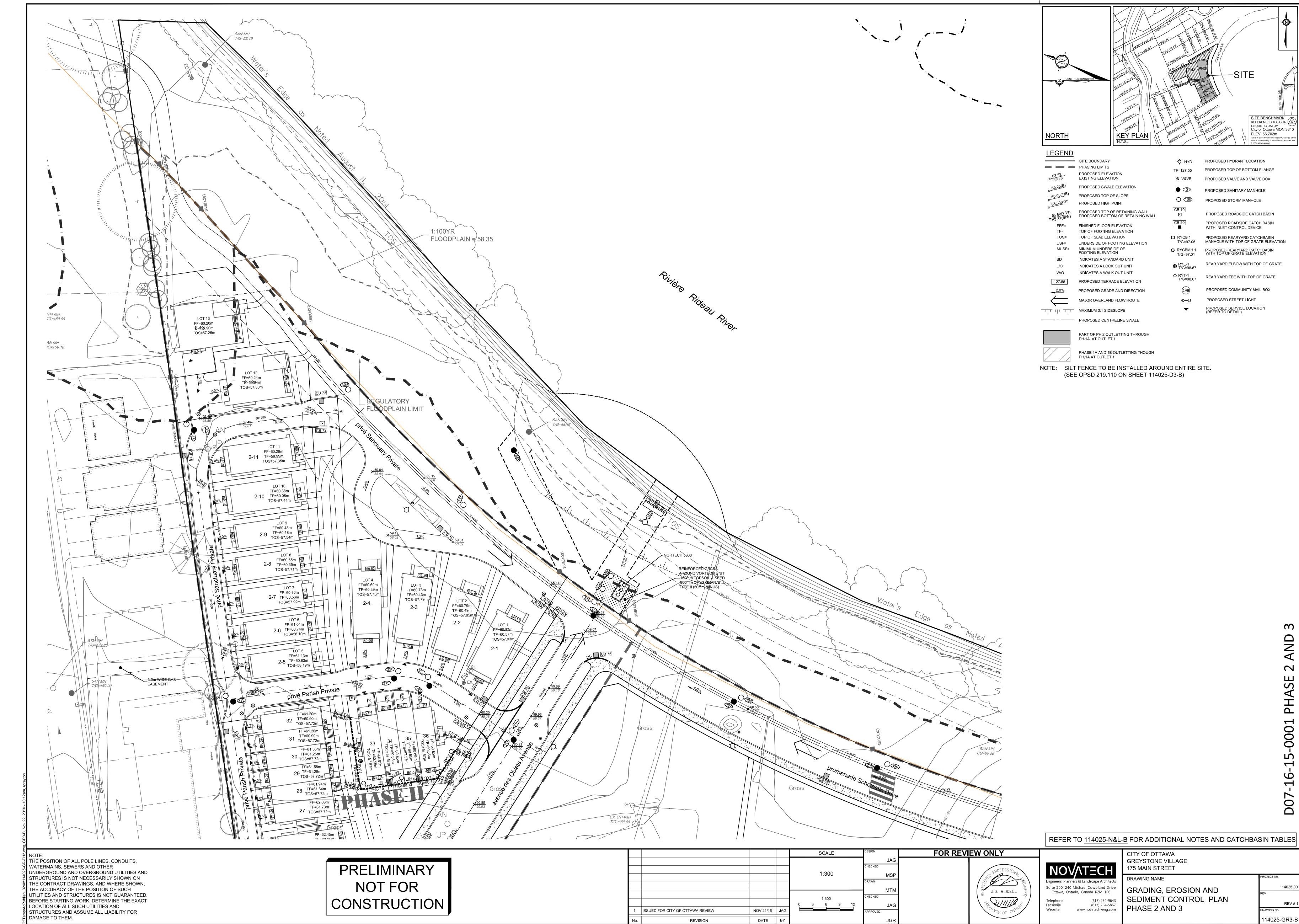
450 400 300

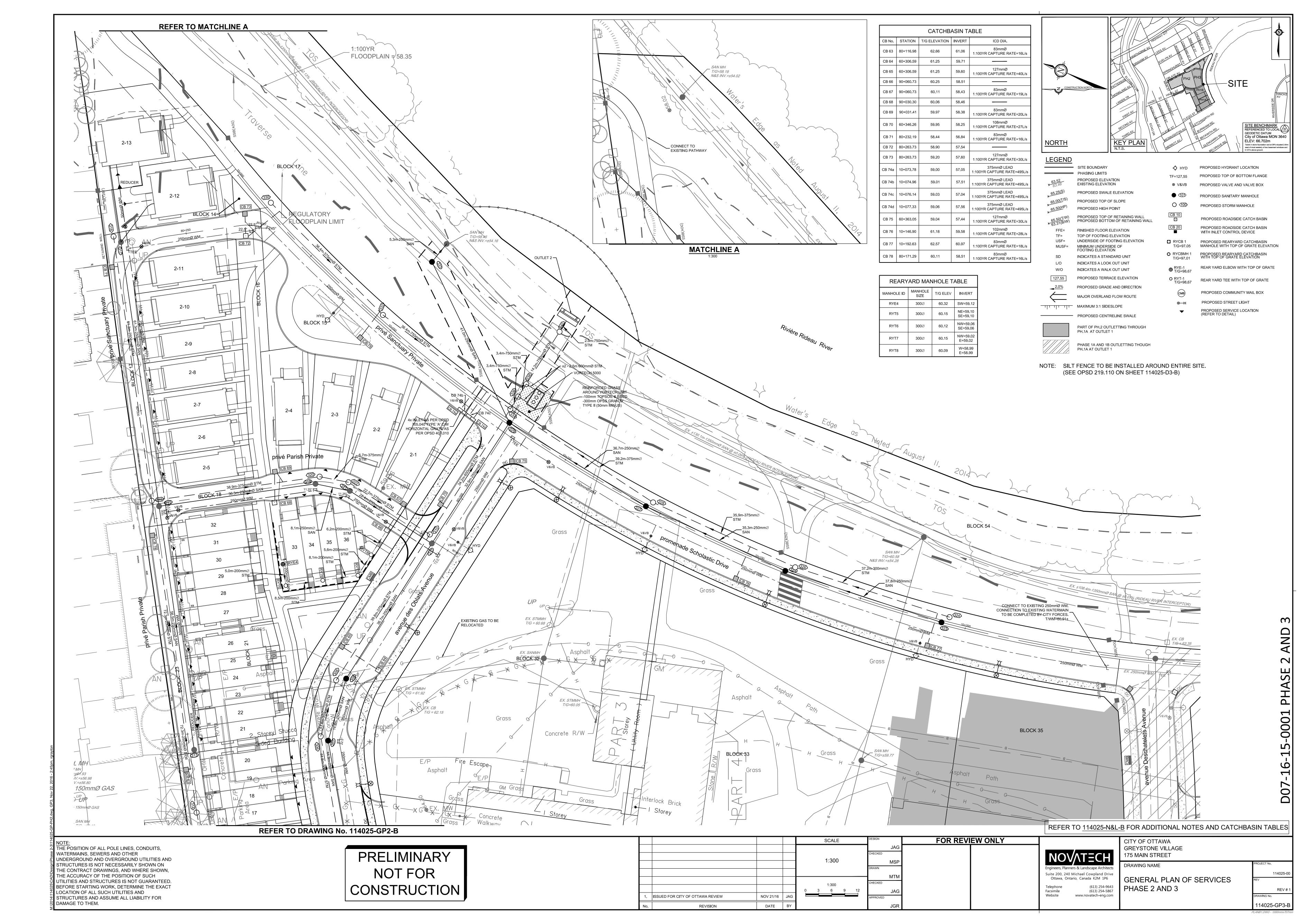
200 GRANULAR "A"

PROPOSED ELEVATION

MAXIMUM 2:1 SIDELSOPE

PROPOSED VORTECHS 11000 STORMWATER TREATMENT UNIT

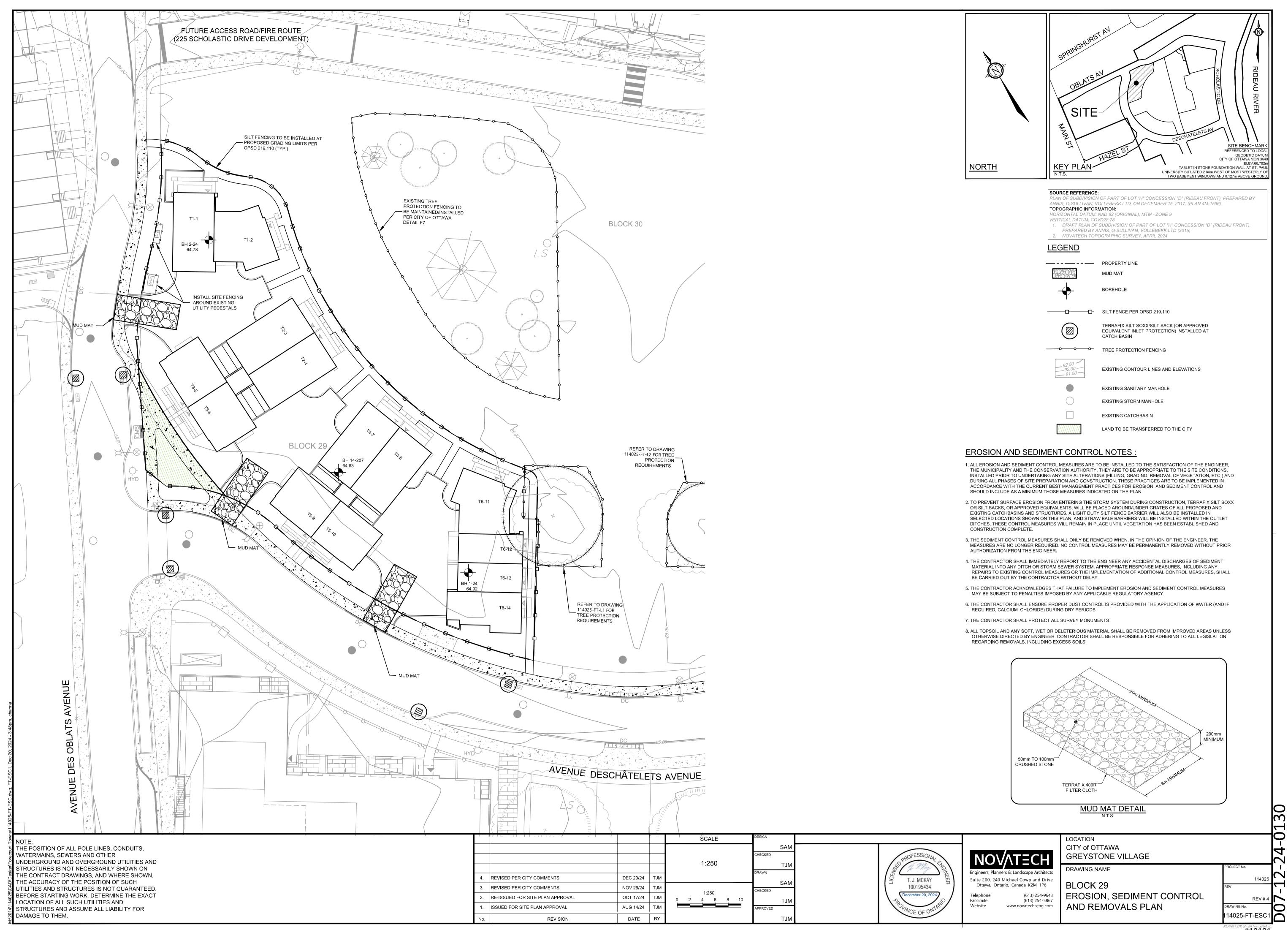

PROPOSED CLAY DYKE

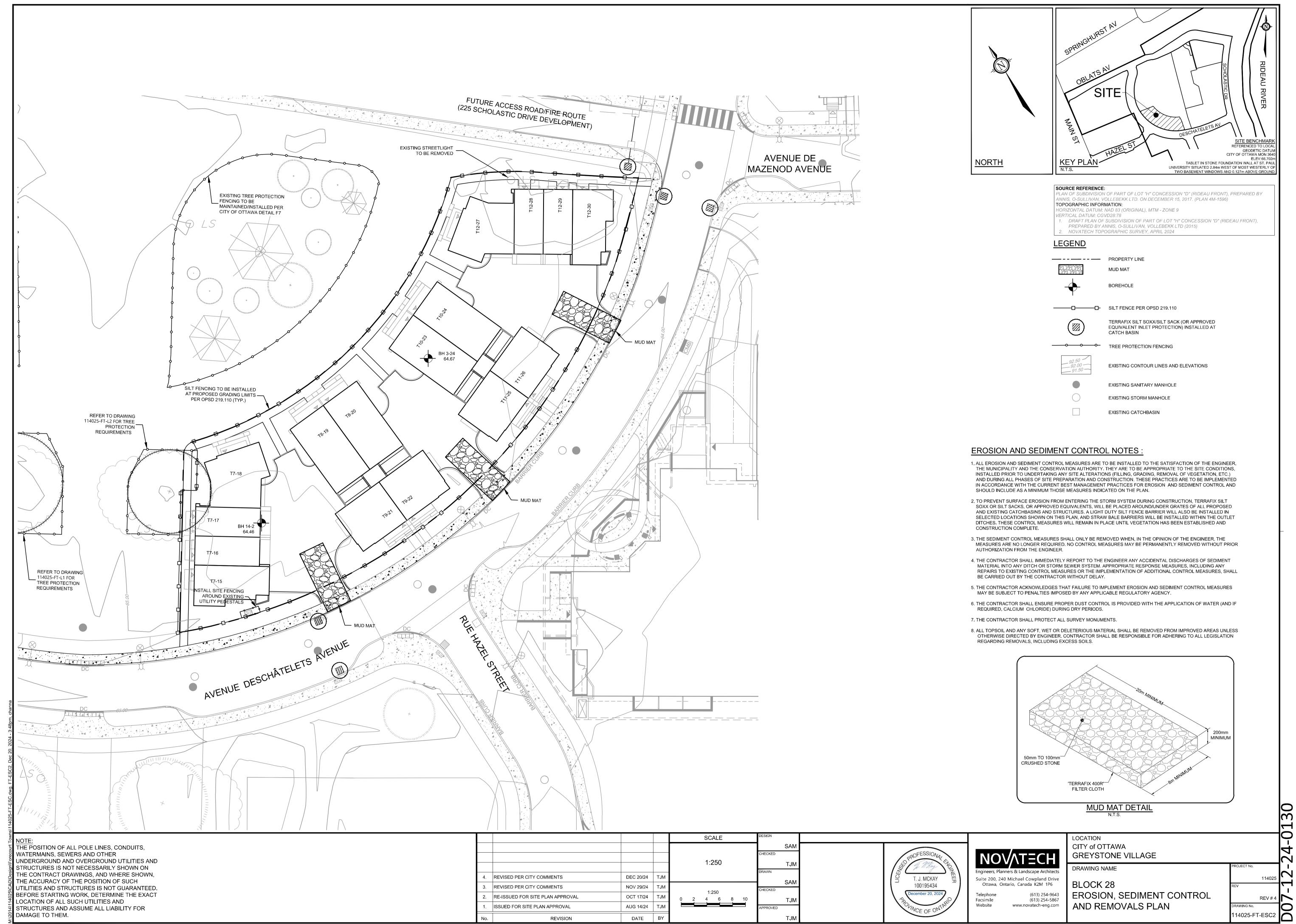

PHASE 2 AND 3 STORM OUTLET 2 (INCL. GRADING, EROSION AND SEDIMENT CONTROL) STATION 0+000 TO 0+54


REV # 1 114025-PR6-B

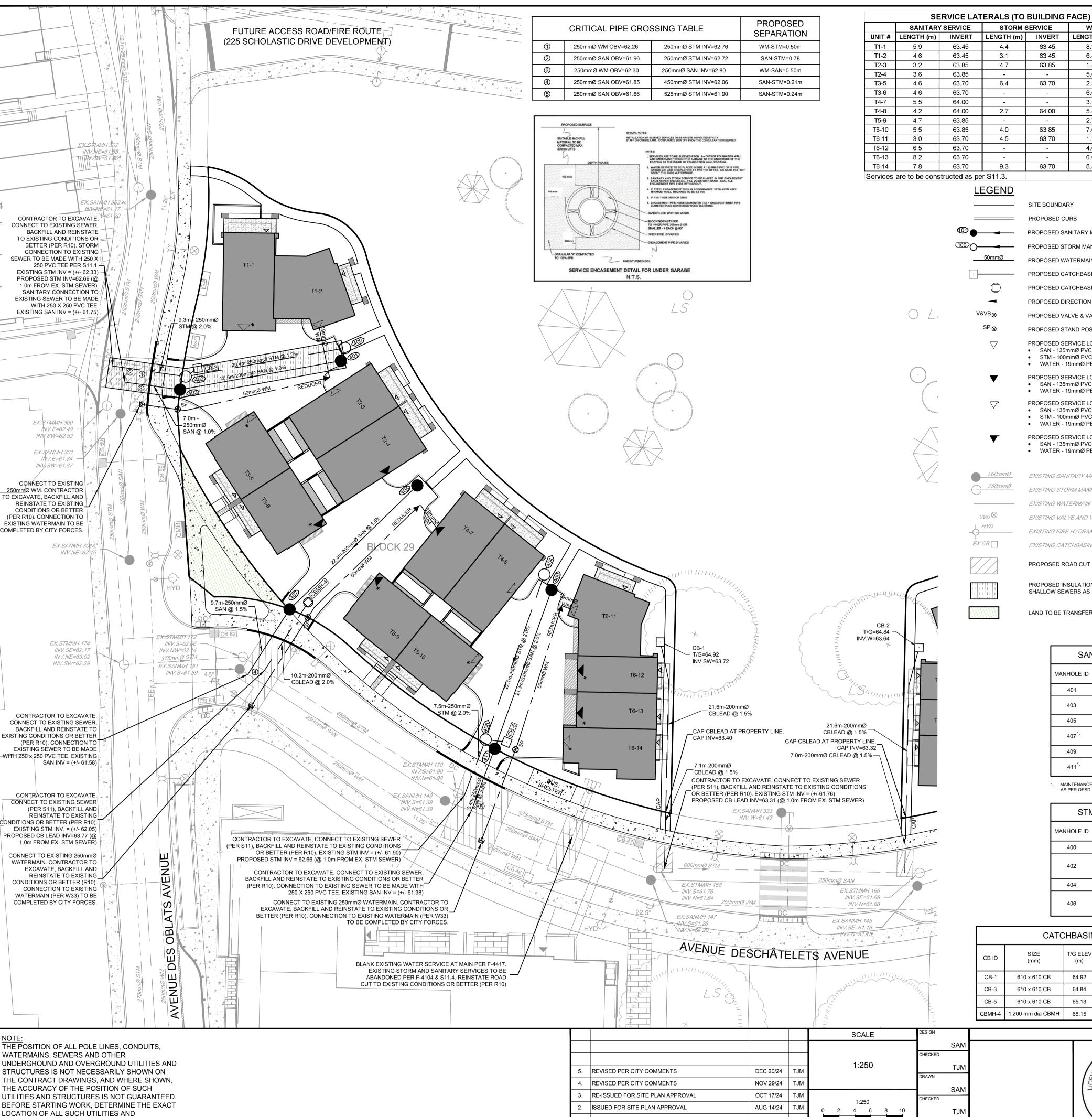
114025-00

REFER TO 114025-N&L-B FOR ADDITIONAL NOTES AND CATCHBASIN TABLES




	Grevstone	Village F	orecourt	Townhomes -	295 &	355	Deschâtelets Avenue
--	-----------	-----------	----------	-------------	-------	-----	---------------------

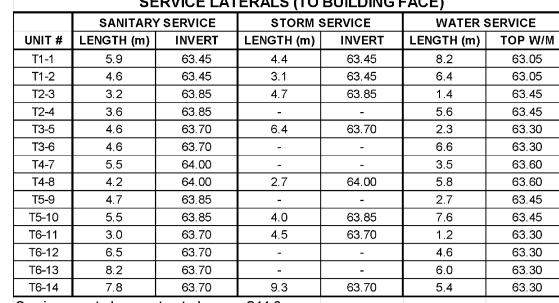
Site Servicing Report


APPENDIX E

Drawings

130

STRUCTURES AND ASSUME ALL LIABILITY FOR


DAMAGE TO THEM.

ISSUED FOR DISCUSSION

REVISION

APR 26/24

DATE

PROPOSED CURB

SITE BOUNDARY

PROPOSED SANITARY MANHOLE & SEWER PROPOSED STORM MANHOLE & SEWER

PROPOSED WATERMAIN

PROPOSED CATCHBASIN AND LEAD PROPOSED CATCHBASIN MANHOLE

PROPOSED DIRECTION OF FLOW

PROPOSED VALVE & VALVE BOX LOCATION

PROPOSED STAND POST LOCATION

PROPOSED SERVICE LOCATION SAN - 135mmØ PVC DR28 @ 2.0% (1.0% MIN) STM - 100mmØ PVC DR28 @ 2.0% (1.0% MIN) WATER - 19mmØ PEX

PROPOSED SERVICE LOCATION

 SAN - 135mmØ PVC DR28 @ 2.0% (1.0% MIN) WATER - 19mmØ PEX

PROPOSED SERVICE LOCATION C/W SLEEVE SAN - 135mmØ PVC DR28 @ 2.0% (1.0% MIN) • STM - 100mmØ PVC DR28 @ 2.0% (1.0% MIN)

WATER - 19mmØ PEX

PROPOSED SERVICE LOCATION C/W SLEEVE SAN - 135mmØ PVC DR28 @ 2.0% (1.0% MIN) WATER - 19mmØ PEX

EXISTING SANITARY MANHOLE & SEWER

EXISTING STORM MANHOLE AND SEWER EXISTING WATERMAIN

EXISTING VALVE AND VALE BOX

EXISTING FIRE HYDRANT C/W LEAD

PROPOSED ROAD CUT LIMITS

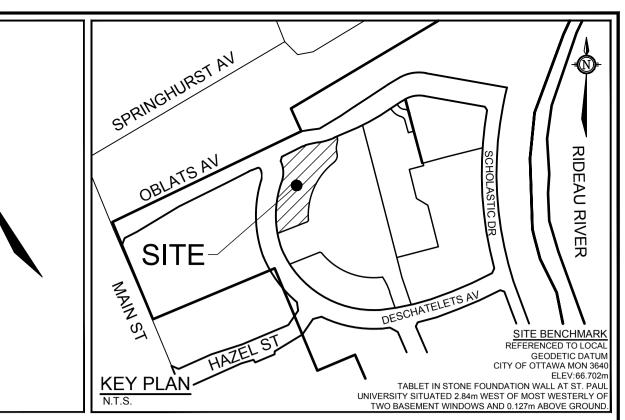
EXISTING CATCHBASIN

PROPOSED INSULATION FOR SHALLOW SEWERS AS PER S35

LAND TO BE TRANSFERRED TO THE CITY

SAN MANHOLE TABLE							
MANHOLE ID	SIZE (mm)	T/G ELEV (m)	INVERT (m)				
401	1200mmØ	65.26	NW=63.10				
403	1200mmØ	64.96	SE=62.89 N=62.84				
405	1200mmØ	65.49	NW=62.78				
407 ^{1.}	1200mmØ	65.21	SE=62.44 W=61.73				
409	1200mmØ	65.41	W=62.70				
411 ^{1.}	1200mmØ	65.23	E=62.27 W=61.55				

MAINTENANCE HOLE TO HAVE EXTERNAL DROP STRUCTURE AS PER OPSD 1003.010


STN	MANHO	DLE TAB	LE
MANHOLE ID	SIZE (mm)	T/G ELEV (m)	INVERT (m)
400	1200mmØ	65.24	NW=63.09
402	1200mmØ	64.88	SE=62.89 N=62.86 SE=63.60
404	1200mmØ	65.53	W=63.26
406	1200mmØ	65.21	E=62.82 W=62.79

T. J. MCKAY

100195434

S=63.88

	CATO	CHBASIN	TABLE		
CB ID	SIZE (mm)	T/G ELEV (m)	INVERT (m)	ICD DIA (mm)	100yr CAPTURE RATE (L/s)
CB-1	610 x 610 CB	64.92	SW=63.72	LMF 60	3.7
CB-3	610 x 610 CB	64.84	NW=63.64	83mmØ	16.3
CB-5	610 x 610 CB	65.13	N=63.93	83mmØ	16.2
CBMH-4	1,200 mm dia CBMH	65.15	W=63.95	83mmØ	16.2

SOURCE REFERENCE ISION OF PART OF LOT "H" CONCESSION "D" (RIDEAU FRONT), PREPARED BY NNIS, O-SULLIVAN, VOLLEBEKK LTD. ON DECEMBER 15, 2017. (PLAN 4M-1596) TOPOGRAPHIC INFORMATION:

HORIZONTAL DATUM: NAD 83 (ORIGINAL) MTM - ZONF 9 ERTICAL DATUM: CGVD28:78

DRAFT PLAN OF SUBDIVISION OF PART OF LOT "H" CONCESSION "D" (RIDEAU FRONT), PREPARED BY ANNIS, O-SULLIVAN, VOLLEBEKK LTD (2015) NOVATECH TOPOGRAPHIC SURVEY, APRIL 2024

GENERAL NOTES:

NORTH

1. DIMENSIONS AND LAYOUT INFORMATION SHALL BE CONFIRMED PRIOR TO START OF CONSTRUCTION.

2. THE ORIGINAL TOPOGRAPHY AND GROUND FLEVATIONS. SERVICING AND SURVEY INFORMATION SHOWN ON THIS PLAN ARE SUPPLIED FOR INFORMATION PURPOSES ONLY. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO VERIFY THE ACCURACY OF ALL INFORMATION OBTAINED FROM THIS PLAN. PRIOR TO COMMENCING ANY ON SITE SERVICING THE CONTRACTOR SHALL VERIFY THE ELEVATIONS OF THE EXISTING SEWERS, WATERMAINS AND UTILITIES IN THE OBLATS AVENUE AND DESCHÂTELETS AVENUE RIGHT OF WAY.

3. CO-ORDINATE AND SCHEDULE ALL WORK WITH OTHER TRADES AND CONTRACTORS.

4. BEFORE COMMENCING CONSTRUCTION, PROVIDE PROOF OF COMPREHENSIVE ALL RISK AND OPERATIONAL LIABILITY INSURANCE. INSURANCE POLICY TO NAME THE OWNER, ENGINEER AND THE CITY AS CO-INSURED.

5. CONNECT TO EXISTING SYSTEMS AS DETAILED, INCLUDING ALL RESTORATION WORK NECESSARY TO REINSTATE SURFACES TO EXISTING CONDITIONS OR BETTER.

6. DETERMINE THE EXACT LOCATION, SIZE, MATERIAL AND ELEVATION OF ALL EXISTING UTILITIES PRIOR TO COMMENCING CONSTRUCTION. PROTECT AND ASSUME RESPONSIBILITY FOR ALL EXISTING UTILITIES WHETHER OR NOT SHOWN ON THESE DRAWINGS.

7. OBTAIN AND PAY FOR ALL NECESSARY PERMITS AND APPROVALS BEFORE COMMENCING CONSTRUCTION. 8. RESTORE ALL TRENCHES AND SURFACE FEATURES TO EXISTING CONDITIONS OR BETTER AND TO THE

9. REMOVE FROM SITE ALL DEBRIS AND EXCESS EXCAVATED MATERIAL UNLESS OTHERWISE INSTRUCTED BY THE

10. ALL ELEVATIONS ARE GEODETIC AND UTILIZE METRIC UNITS.

SATISFACTION OF MUNICIPAL AUTHORITIES.

11. REFER TO STRUCTURAL PLANS FOR UNDERSIDE OF FOOTING AND TOP OF FOUNDATION INFORMATION.

12. REFER TO GEOTECHNICAL INVESTIGATION PG6948-1 (DATED FEBRUARY 1, 2024), PREPARED BY PATERSON GROUP 13. CONTRACTOR TO PROVIDE THE CONSULTANT WITH A MARKED UP COPY OF THE GENERAL PLAN OF SERVICES

INDICATING ALL SERVICING AS-BUILT INFORMATION SHOWN ON THIS PLAN. AS-BUILT INFORMATION MUST INCLUDE: PIPE MATERIAL, SIZES, LENGTHS, SLOPES, INVERT AND T/G ELEVATIONS, STRUCTURE LOCATIONS, VALVE AND HYDRANT LOCATIONS. T/WM ELEVATIONS AND ANY ALIGNMENT CHANGES, ETC

14. ALL WORK TO BE CONSTRUCTED TO CITY OF OTTAWA AND ONTARIO PROVINCIAL STANDARDS.

15. ALL UNITS ARE PROPOSED TO BE SLAB ON GRADE (I.E. NO BASEMENTS).

SEWER NOTES:

CATCHBASIN (600x600mm) STORM / SANITARY MAINTENANCE HOLE (1200Ø) S24.1 / S24 & S25 CITY OF OTTAWA STORM SEWER PVC SDR 35 SANITARY SEWER PVC SDR 35 CITY OF OTTAWA PVC SDR28 (S11.3) CITY OF OTTAWA SANITARY AND STORM SERVICES S25 & S28.1 CBMH FRAME & COVER CITY OF OTTAWA CB FRAME & COVER

2. ALL CATCHBASIN AND CATCHBASIN MAINTENANCE LEADS ARE TO BE 200mm DIA. PVC SDR 35 AT 2% SLOPE UNLESS OTHERWISE SPECIFIED ON THE DRAWING.

3. INSULATE ALL PIPES (SAN/STM) THAT HAVE LESS THAN 2.0m COVER AS PER THE INSULATION DETAIL FOR SHALLOW SEWERS AS PER DETAIL S35.

4. SERVICES ARE TO BE CONSTRUCTED TO 1.0m FROM BUILDING FACE AT 2.0% SLOPE (1.0% MINIMUM). SERVICES TO

BE CONNECTED TO MAINLINE SEWER AS PER CITY OF OTTAWA S11.1. 5. PIPE BEDDING AND COVER ARE TO BE COMPACTED TO AT LEAST 98% OF THE STANDARD PROCTOR MAXIMUM DRY DENSITY. THE COVER MATERIAL SHALL CONSIST OF OPSS GRANULAR 'A' AND SHOULD EXTEND FROM THE SPRING

6. SANITARY PIPE TO BE IPEX SDR 35 OR EQUIVALENT WITH JOINT PRESSURE RATING OF 345kPA MINIMUM. WHERE PRIVATE SANITARY SEWER DOES NOT HAVE 2.5m CLEARANCE TO THE WATERMAIN, THE CONTRACTOR SHALL COMPLETE PRESSURE TESTING OF THE SANITARY SEWER TO CONFIRM THE 345kPa (min.) PRESSURE RATING OF THE SANITARY PIPE. TESTING TO BE COMPLETED PRIOR TO SANITARY LATERAL INSTALLATIONS

THE SITE SERVICING CONTRACTOR SHALL PERFORM FIELD TESTS FOR QUALITY CONTROL OF ALL SANITARY SEWERS. LEAKAGE TESTING SHALL BE COMPLETED IN ACCORDANCE WITH OPSS 410.07.16 AND 407.07.24. DYE TESTING IS TO BE COMPLETED ON ALL SANITARY AND STORM SERVICES TO CONFIRM PROPER CONNECTION TO

THE SEWER MAINS. THE FIELD TESTS SHALL BE PERFORMED IN THE PRESENCE OF THE ENGINEER. 8. STORM MAINTENANCE HOLES SHALL HAVE 300mm SUMPS AND CATCHBASIN MAINTENANCE HOLES SHALL HAVE

9. CONTRACTOR TO TELEVISE (CCTV) ALL PROPOSED SEWERS, 200mmØ OR GREATER PRIOR TO BASE COURSE ASPHALT. UPON COMPLETION OF CONTRACT, THE CONTRACTOR IS RESPONSIBLE TO FLUSH AND CLEAN ALL SEWERS & APPURTENANCES.

10. CONTRACTOR SHALL OBTAIN A VIDEO INSPECTION OF THE CITY SEWER SYSTEM WITHIN OBLATS AVENUE AND DESCHÂTELETS AVENUE RIGHT OF WAY UPON COMPLETION OF CONSTRUCTION TO DETERMINE IF THE CITY SEWER SYSTEM SUSTAINED ANY DAMAGES AS A RESULT OF CONSTRUCTION ON THE LANDS.

WATERMAIN NOTES:

WATERMAIN TRENCHING THERMAL INSULATION IN SHALLOW TRENCHES WATERMAIN CROSSING BELOW SEWER / OVER SEWER W25 / W25.2 WATER SERVICE: 19mm PEX SDR9CTS WATERMAIN: 50mm PEX SDR9CTS

LINE OF THE PIPE TO AT LEAST 300mm ABOVE THE OBVERT OF THE PIPE

600mm SUMPS UNLESS OTHERWISE INDICATED.

SUPPLY AND CONSTRUCT ALL WATERMAINS AND APPURTENANCES IN ACCORDANCE WITH THE CITY OF OTTAWA STANDARDS AND SPECIFICATIONS. EXCAVATION, INSTALLATION, BACKFILL AND RESTORATION OF ALL WATERMAINS BY THE CONTRACTOR. CONNECTIONS AND SHUT-OFFS AT THE MAIN SHALL BE

3. WATERMAIN SHALL BE MINIMUM 2.4m DEPTH BELOW GRADE UNLESS OTHERWISE INDICATED. CONTRACTOR TO SUPPLY AND INSTALL INSULATION AS PER W22 FOR ALL WATERMAIN LESS THAN 2.4m

4. PROVIDE MINIMUM CLEARANCE BETWEEN OUTSIDE OF PIPES AT ALL CROSSINGS PER W25 (0.50m) AND

5. WATER SERVICES ARE TO BE INSTALLED 1.0m FROM THE BUILDING FACE, WITH 15m OF PIPE LEFT COILED

6. CURB STOPS ARE TO BE LOCATED 2.0m FROM THE FOUNDATION WALL WHEREVER POSSIBLE

7. WATERMAINS LOCATED WITHIN 2.4m FROM OPEN STRUCTURES ARE TO BE INSULATED AS PER CITY OF OTTAWA STANDARD DETAIL W23

GREYSTONE VILLAGE DRAWING NAME

Suite 200, 240 Michael Cowpland Drive

Facsimile

Website

Ottawa, Ontario, Canada K2M 1P6

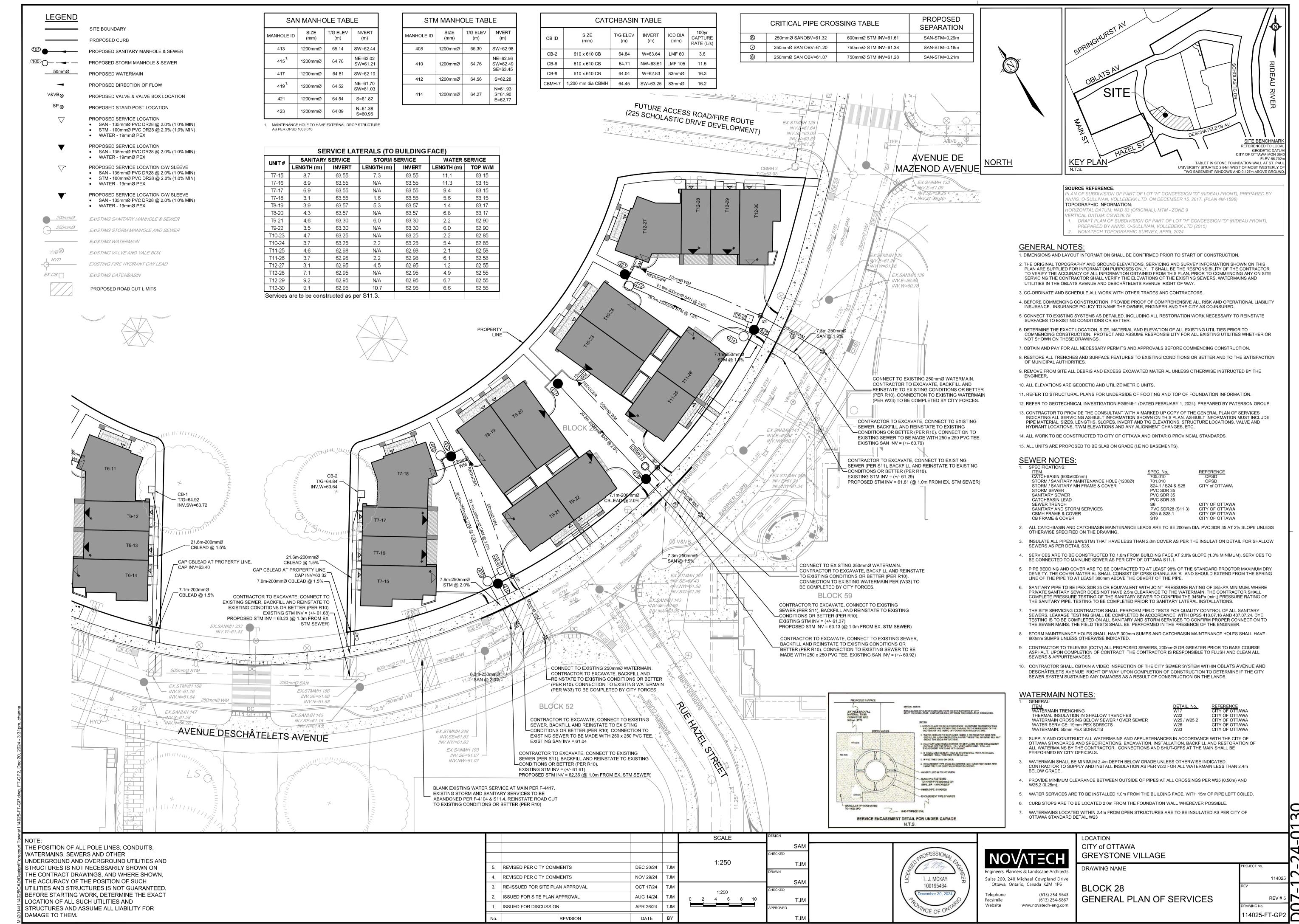
(613) 254-9643

(613) 254-5867

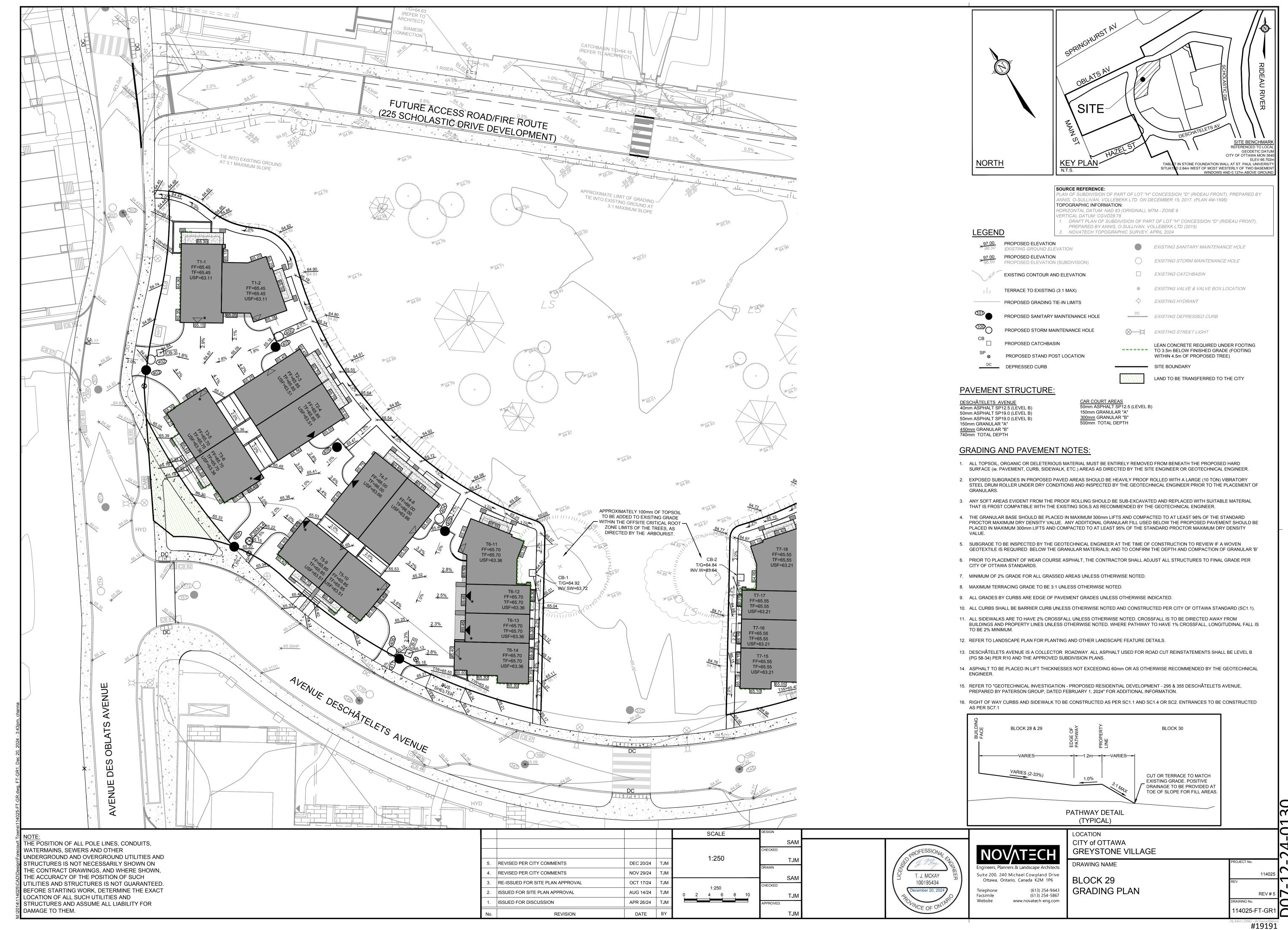
www.novatech-eng.com

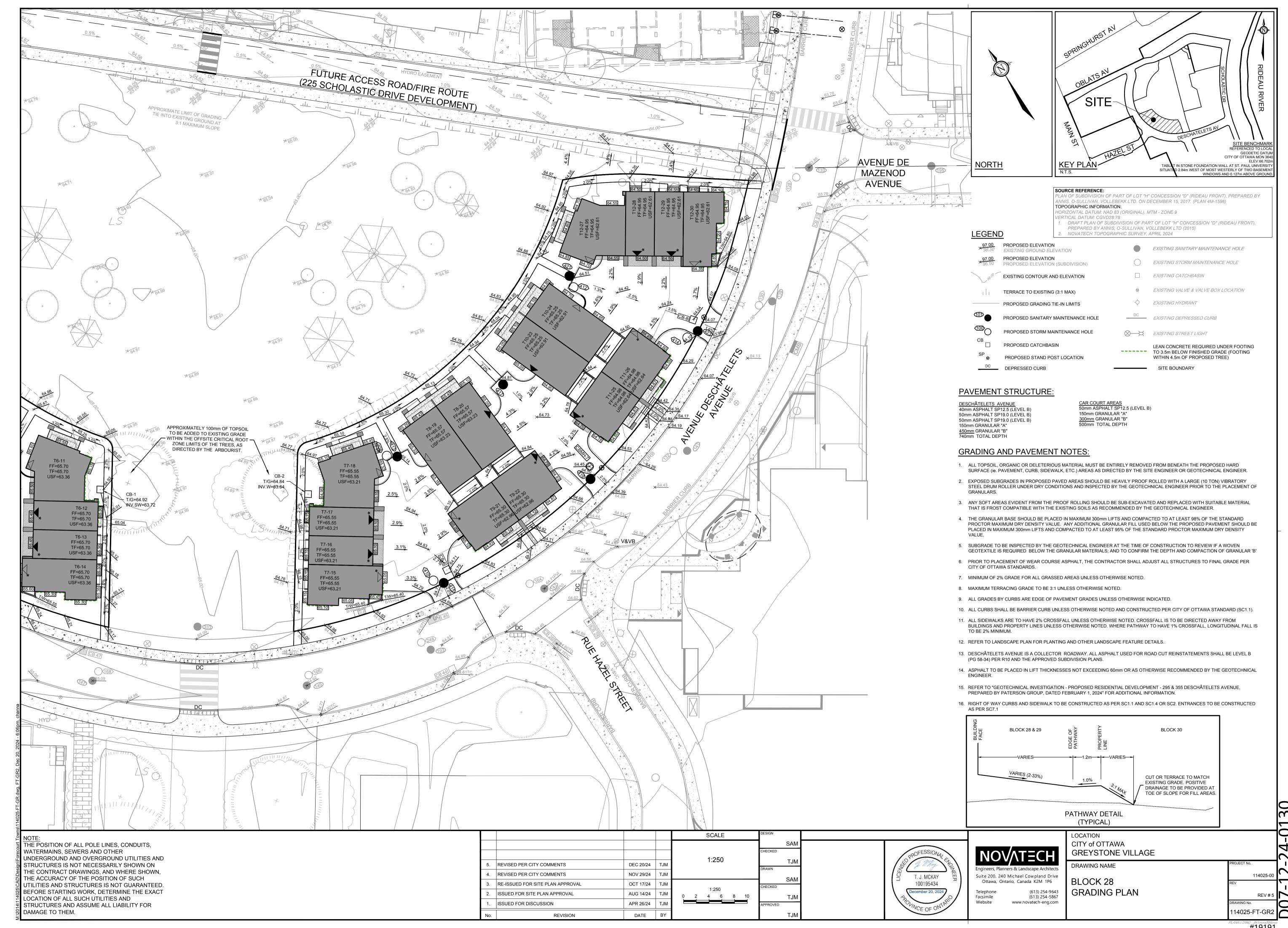
BLOCK 29

CITY of OTTAWA


GENERAL PLAN OF SERVICES

REV # 5 14025-FT-GP1


114025


CITY OF OTTAWA

CITY OF OTTAWA

G-841mmx594mm #19191

