
Fastfrate

Site Servicing and Stormwater Management Report

Fastfrate Ottawa Warehouse and Distribution Facility

Client Project Number : GA18-0631-01

CIMA+ file number: A001083 December 2, 2022 – Revision 4 – For Site Plan Control

Fastfrate

Site Servicing and Stormwater Management Report

Fastfrate Ottawa Warehouse and Distribution Facility

Juli São

Julien Sauvé, P.Eng. PEO membership number: 100200100

Mahand

Prepared by:

Prepared by:

Guillaume LeBlond, M.A.Sc., EIT PEO membership number: 100530467

Verified by:

Christian Lavoie-Lebel, P.Eng. PEO membership number: 100067842

600-1400 Blair Towers Place, Ottawa, Ontario Canada K1J 9B8

CIMA+ file number: A001083 December 2, 2022 – Revision 4 – For Site Plan Control

Executive Summary

This Site Servicing and Stormwater Management Report presents the proposed potable water, sanitary and storm servicing for the Fastfrate Ottawa Warehouse and Distribution Facility. This report will be used in support of the Site Plan Approval process.

Sanitary servicing of the site will be achieved with an on-site wastewater treatment system. This system consists of a sewer, septic tank, pumping chamber, Level IV treatment unit, shallow-buried trench system and mantle. It is anticipated that and Environmental Compliance Approval (ECA) from the MECP will be required, as the system will treat over 10,000 L/d of sanitary sewage.

Potable water will be supplied to the site by a new drinking water well, with sufficient capacity to service the intended development. Since the site is not serviced by municipal watermains, and since the proposed drinking water well will not have the capacity required to provide fire protection, the fire protection volumes will be provided from the permanent pool of the proposed stormwater management wet pond. The fire protection system consists of two (2) dry hydrants, a Siamese connection, and a building sprinkler system.

The stormwater management (SWM) for the Fastfrate site is subject to the overall SWM of the Hawthorne Industrial Park, as presented in the Hawthorne Industrial Park Stormwater Management Report (HIP SWM report), prepared by J.L. Richards & Associates, and dated May 2009. This report also demonstrates how the proposed SWM strategy conforms to the requirements of the HIP SWM report and of the regulatory authorities. Overall, the SWM strategy will be achieved with a system of ditches, culverts, and a wet pond which will provide stormwater quality and quantity control for the site.

Confidentiality and Ownership

Unless CIMA+ Canada Inc. and its client have agreed otherwise, the intellectual property rights and all documents delivered by CIMA+, whether in hard or electronic copy, are the property of CIMA+, which reserves copyright therein. It is strictly prohibited to use or reproduce such proprietary rights on any support, even in part, without the authorization of CIMA+.

Notice to the Reader

This document was prepared by CIMA+ for:

Fastfrate - Ottawa

The material included in this document reflects the opinion of CIMA+. Any use of this document, reference to it, or decision based on it by someone else will be their own responsibility. CIMA+ will not take any responsibility for damages resulting in decisions or actions taken by someone else based on this document.

Table of involved resources

In addition to the signatories of this report, the following individuals have also been involved in the study and writing of the report as technical experts within the project team:

Name	Discipline
Kayla Schmidt, M.A.Sc., P.Eng. – (CIMA+)	Septic System Design
Uzoechina Ukeje – (GWAL)	Building Fire Protection / Mechanical
Robert Neck, M.Eng., P.Geo. (Limited) – (GHD)	Hydrogeology

Table of Contents

1.	Introduction	. 1
1.1 1.2 1.3 1.3.1	Site Description and Proposed Development Existing Infrastructure Summary of Applicable Background Documents Stormwater Management Report, Hawthorne Industrial Park By J.L. Richards & Associates	. 2
	I – May 2009. Hydrogeological Assessment Report by GHD, 2022. Septic Assessment Report by GHD, 2022. Environmental Impact Study by GHD, 2022. Consultation and Permits	. 2 . 2 . 2
2.	Sanitary Servicing	. 4
2.1 2.2 2.3 2.3.1 2.3.2 2.4	Existing Conditions Sanitary Sewer Onsite Wastewater Disposal System Daily Design Sewage Flow System Design Sanitary Servicing Summary and Conclusions	. 4 . 5 . 5 . 5
3.	Potable Water Servicing	14
3.1 3.2 3.2.1 3.2.2 3.3 3.3.1 3.3.2 3.4	Existing Conditions. Building Water Demands (Domestic and Fire Protection). Potable Water Quantity Requirements . Fire Protection Quantity Requirements. Proposed Water Supply Well. Well Quality. Well Quality. Conclusion – Potable Water Servicing.	14 14 15 16 16
4.	Storm Water Management	17
4.2 4.2.1 4.2.2 4.3 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.4.6 4.4.5 4.4.6 4.4.7 4.5 4.6	Stormwater Management Strategy Deviations from the HIP SWM Report & Drainage Plan Allowable Post Development Flow Rates and Quantity Control Requirements Design Criteria and Assumptions Proposed Storm Servicing Stormwater Quality Control Stormwater Quantity Control Stormwater Quantity Control Stormwater Quantity Control Stormwater Quantity Control Building Service Connection Deviations from the Ottawa Sewer Design Guidelines – Swale Minimum Slope Culvert Ends Proposed SWM Pond Sizing Calculations	17 18 19 19 20 21 23 23 23 23 23 24 25
4.6.1 4.6.2	Sediment Accumulation Volume Pond Controls	

	Watercourse Protection Measures SWM Conclusions	
5.	Conclusion	. 28
6.	References	. 28

List of Tables

Table 2-1: Sanitary Peak Flow Determination Design Criteria	4
Table 2-2: Peak Sanitary Flows – Sanitary Sewer Sizing	4
Table 2-3: Daily Design Sewage Flow Rate and Septic Tank Volume	5
Table 2-4: Minimum Clearances for Treatment Units	7
Table 2-5: Minimum Clearances for Distribution Piping and Leaching Chambers	8
Table 2-6: Theoretical Pumping Flow Rates	9
Table 2-7: OBC Treatment Unit Levels and Required Effluent Concentrations	9
Table 3-1 Potable Water Design Flows	14
Table 3-2 Potable Water Design Flows – City of Ottawa Design Guidelines – Water Distribution	14
Table 4-1: Post-development Allowable 100-year Release Flows – HIP SWM Facility	18
Table 4-2: Post-development Allowable 100-year Release Rates – HIP SWM Facility	19
Table 4-3: Wet Pond Volume Calculations – 74% Impervious; 80% TSS Removal	20
Table 4-4: Post-development Flowrate and Storage Summary	20
Table 4-5: Culvert Sizing Summary – Freeflow	21
Table 4-6: Culvert Sizing Summary – Submerged Outlet	22
Table 4-7: Summary of Backwater Elevations – 100-year	22
Table 4-8: Summary of Site Spill Points	22
Table 4-9: Ditch Sizing Summary	23
Table 4-10: Summary of Required SWM Pond Volumes	24
Table 4-11: Summary of Provided SWM Pond Volumes	25
Table 4-12 Resulting Release Flow with Proposed Controls	26

List of Appendices

Appendix A – J.L. Richards HIP Storm Water Management Report

Appendix A.1 – J.L. Richards HIP Storm Water Management Report Appendix A.2. – MOE Certificate of Approval Hawthorne Industrial Park

Appendix B – Stormwater Management Plans and Calculations

Appendix B.1 – SWM drawing Pre-Development Appendix B.2 – SWM drawing Post-Development Appendix B.3 – Storm Area Drainage Plan for HIP from J.L. Richards Appendix B.4 – Identification of Source Data from HIP SWM Report by J.L. Richards Appendix B.5 – Storm Runoff Coefficient Appendix B.6 – Storm Post-Dev 10 & 10-Year uncontrolled Appendix B.7 – Stormwater Management – Storage and Drawdown Full Release Rate Appendix B.8 – Stormwater Management – Storage and Drawdown Half Release Rate Appendix B.9 – Somme Street Ditch Elevation (100-year) Appendix B.10 - Storm Hydraulic Grade ine Appendix B.11 – SWM Pond Control Sizing Appendix B.12 – Storm Service Connection Sizing Appendix B.13-1 – Road Culvert Calculation Reports Appendix B.13-2 – Site Culvert Calculation Reports – Freeflow Outlet Condition Appendix B.13-3 – Site Culvert Calculation Reports – Submerged Outlet Condition Appendix B.13-4 – Culvert Flow Profile Types Appendix B.14 - Ditch Calculation Reports Appendix B.15 – Site Storage Volume Calculations

Appendix B.16 – Culvert Ends (Roadside Safety Assessment)

Appendix C – Potable Water & Fire Protection Calculations

Appendix C.1 – Water Supply

Appendix C.2 – Fire Flow

Appendix C.3 – Gravity Watermain for Fire Protection

Appendix C.4 – Ice Thickness Calculation

Appendix D – Sanitary Servicing Calculations

Appendix D.1 – Sanitary Sewer Flow

Appendix D.2 – Sanitary Sewer Sizing

Appendix E – Septic System Detailed Calculations

Appendix F – Correspondance

Appendix F.1 – Combine Correspondance

Appendix F.2 – Development Servicing Study Checklist

Appendix G – Technical References

Appendix G.1 – Armtech Corrugated Steel Pipe

Appendix G.2 – FT Solmax – Geomembrane HDPE 1.0mm BLACK technical Data Sheet

Appendix G.3 – Backflow preventer – Checkmate Brochure

1. Introduction

CIMA+ was retained by CIVITAS & Fastfrate to prepare a Site Servicing and Stormwater Management Report for the proposed construction of a warehouse containing cross-docks and office building, at 301 Somme Street in Ottawa, Ontario.

The purpose of this assessment is to confirm that the proposed development will be serviced adequately by the proposed water supply well, septic system and stormwater management. This assessment shall be used in support of the application for Site Plan Approval.

The detailed design of sediment and erosion control measures, site servicing (storm, sanitary, water) and grading, as well as measures for the control of stormwater runoff, are considered in this report, in general accordance with the Ottawa Sewer Design Guidelines (2012), the Ottawa Design Guidelines – Water Distribution (2010) and associated Technical Bulletins.

1.1 Site Description and Proposed Development

The Site is located near the intersection of Rideau Road and Somme Street. The subject site is currently vacant and measures approximately 4.05 ha. The site is bounded by Somme Street to the south and west, by Rideau Road and Christie Creek to the north and by vacant land to the east. The proposed development is a 76,505 sq. ft. warehouse building with associated loading dock areas and employee parking stalls. Refer to the project drawings for the site plan of the proposed development (prepared by CIVITAS).

Figure 1-1 : Site Location & Key Plan

The objective of this study is to assess current site servicing conditions through the review of available background documents and to present detailed concepts, calculations, and results to provide adequate site servicing for the new building and associated parking lot.

1.2 Existing Infrastructure

The proposed site is part of the Hawthorne Industrial Park (HIP) which is currently serviced by roads and an existing open ditch system and SWM facility that convey stormwater and provide SWM quantity control for the entire HIP. The site is not serviced by municipal sewers or municipal watermains.

1.3 Summary of Applicable Background Documents

- + MOE SWM Manual (2003)
- + 2012 Ottawa Sewer Design Guidelines, as amended by technical bulletins
- + 2010 Ottawa Design Guidelines for Water Supply, as amended by technical bulletins
- + Existing Master SWM Report (prepared by J.L. Richards Associates Ltd., May 2009)
- + Hydrogeological Assessment Report (prepared by GHD, 2022)
- + Septic Assessment Report (prepared by GHD, 2022)
- + Environmental Impact Study (prepared by GHD, 2022)
- 1.3.1 Stormwater Management Report, Hawthorne Industrial Park By J.L. Richards & Associates Limited May 2009.

This report addresses stormwater management within the Hawthorne Industrial Park (**Appendix A – JL Richards SWM Plan**). The contents of this report are discussed in more detail in **Section 4**.

1.3.2 Hydrogeological Assessment Report by GHD, 2022.

This report addresses the hydrogeological characteristics of the site and assessing the capacity of the on-site well (GHD, 2021a).

1.3.3 Septic Assessment Report by GHD, 2022.

This report addresses the percolation rate of the site and assessing the capacity of the on-site septic system (GHD, 2021b).

1.3.4 Environmental Impact Study by GHD, 2022.

A scoped environmental impact study was prepared for this project. This report summarised the investigations of potential environmental impacts and required mitigation measures, & setbacks to be respected during construction of this project.

1.4 Consultation and Permits

In response to the pre-consultation requirements defined in the City's Development Servicing Study Checklist, the following agencies were consulted in support of the preparation of this report. The Development Servicing Study Checklist as well as all relevant correspondence with the consulted agencies can be found in **Appendix F**.

City of Ottawa

A Pre-Application Consultation meeting was done with the City of Ottawa. The meeting discussions revolved around planning, engineering, and transportation requirements. Details of this consultation are included in **Appendix F**.

CIMA+ had a second meeting with Harry Alvey from the City of Ottawa on May 18, 2021. The discussion was mostly about SWM strategies and fire protection. Details of this consultation are included in **Appendix F.**

South Nation Conservation Authority (SNCA)

The subject site falls under the jurisdiction of the South Nation Conservation Authority (SNCA). CIMA+ contacted James Holland from the SNCA to identify the any Natural Heritage/Hazards features that may impact the development as well as any Storm Water Management Criteria for the site and required approvals/permits. Correspondence with James Holland has been included in **Appendix F**.

Ministry of the Environment, Conservation and Parks (MECP)

CIMA+ expects that the proposed development will require an Environmental Compliance Approval (ECA) as the development requires an on-site wastewater treatment system treating over 10,000 L/d.

It is expected that the application can be submitted directly to the MECP, and not through the City of Ottawa's Transfer of Review (ToR) Program. The correspondence with the City project manager has been provided in **Appendix F**.

2. Sanitary Servicing

2.1 Existing Conditions

The HIP and the subject site are not serviced by municipal sanitary sewers.

2.2 Sanitary Sewer

Design Criteria

The design criteria for determining the sanitary peak flow rates for the proposed development follow the parameters outlined in Figure 4.3 – Peak Flow Design Parameters Summary of the City of Ottawa Sewer Design Guidelines, 2012 as amended by all applicable Technical Bulletins. These criteria was used to size the sanitary sewers on this project. Namely, the following parameters have been used in determining the peak sanitary flow rates:

Table 2-1: Sanitary Peak Flow Determination Design Criteria

Design Criterion	Commercial Areas
Commercial Average Flow	2.80 L/m²/day
Commercial Peaking Factor	1.5
Total Infiltration Allowance	0.33 L/s/effective gross hectare (for all areas)

Proposed Sanitary Peak Flows for Sanitary Sewer Sizing

The estimated peak flows from the proposed development based on the design criteria listed in **Table 2-1** are outlined in the following Table.

Table 2-2: Peak Sanitary Flows – Sanitary Sewer Sizing

Flow Type	Total Flow Rate (L/s)
Average Dry Weather Flow Rate	0.23
Peak Dry Weather Flow Rate	0.35
Peak Wet Weather Flow Rate	0.35

Detailed calculations for peak sanitary flows for sanitary sewer sizing are presented in **Appendix D**.

Sanitary Sewer Sizing

The flows indicated above will be directed from the building to the onsite wastewater disposal system through a new 200mm diameter PVC sanitary sewer. This sewer sizing is acceptable per the calculations and sewer design sheets (refer to **Appendix D**).

2.3 Onsite Wastewater Disposal System

2.3.1 Daily Design Sewage Flow

Onsite wastewater treatment systems are regulated under the Ontario Regulation 332/12, the Building Code Act (1992) (OBC), Part 8 of Division B provides the information required the design, construction, installation, operation, and maintenance of these system. The Fastfrate warehouse facility requires a Class 4 system to accept both greywater and human waste.

The proposed Fastfrate facility will be developed with a maximum of 41 loading bays and will be provided with a total of 7 water closets. The daily design sewage flow for the Fastfrate facility was calculated to be 12,800 L/d in accordance with Table 8.2.1.3.3.B of the OBC. For non-residential occupancies, the septic tank working capacity shall be three times the daily design sanitary sewage flow. Therefore, the septic tank must have a minimum working volume of 38,400 L. A summary of the daily sewage design flow calculations are provided in **Table 2-3** below.

Parameter as per OBC – Table 8.2.1.3.B.	Volume (L) as per OBC	Design Basis for Fastfrate	Flow (L/d) ⁽¹⁾	
Warehouse				
a) Per water closet, and	950 7 6,650			
b) Per loading bay	150 41 6,150			
	12,800			
Minimum Septic Tank Volume (3x the Daily Design Flow) (L) 38,400				
Notes: 1. Column 2 x Column 3 = Column 4 (e.g. $950 \pm x.7 = 6.650 \pm (d)$				
1. Column 2 x Column 3 = Column 4 (e.g., 950 L x 7 = 6,650 L/d)				

Table 2-3: Daily Design Sewage Flow Rate and Septic Tank Volume

2.3.2 System Design

A Class 4 septic system typically consists of a septic tank and leaching bed. Depending on the system, a pumping chamber to dose the leaching bed and/or a level IV treatment unit may be required. The design of the septic system is based on the following two factors:

- + Daily sewage design flowrate
- + Percolation Time of the native soil (T-Time)

The percolation time (T-Time) of the native soil is defined as the amount of time it takes for water to travel 1 cm. Typical T-times of soils ranges from 1 to 50 minutes, with some soils up to 125 minutes. GHD limited (GHD) was retained to excavate test pits to help determine soil stratigraphy and the T-time. Five test pits were advanced to depths ranging from 2.4 to 3.4 m within the proposed septic system area and SWM pond. The soil stratigraphy consisted of fill at each location and described as gravelly sand with silt trace clay to a silty sand with gravel and clay. Fill was observed to the bottom of each test pit. Refer to GHD's septic assessment (GHD, 2021b) for more information. Groundwater seepage was encountered at each test pit and was observed between 1.8 and 2.4 m below ground surface. GHD estimated the T-time to have an average value of 12 to 20 min/cm, based upon gradation test results only. As a conservative approach, a Design T-time of 20 min/cm was selected for sizing the leaching bed for this site.

There are 5 types of leaching beds regulated in Ontario under the OBC:

- 1. Conventional Leaching Bed
- 2. Sand Filter Bed
- **3.** Shallow Buried Trench (SBT)
- 4. Type A Dispersal Bed
- 5. Type B Dispersal Bed

For the Fastfrate site, a raised SBT leaching bed was selected as it would meet all space and site constraints. The footprint of the SBT system is smaller than a conventional absorption trench system such as a conventional leaching or sand filter bed because the soil is not relied upon for any significant portion of the treatment.

A SBT is an alternative to a conventional leaching bed and are always used in conjunction with a treatment unit capable of consistently providing effluent with 10 mg/L five-day carbonaceous biochemical oxygen demand (cBOD₅) and 10 mg/L suspended solids (SS). A SBT leaching bed is a pressurized distribution system which delivers regular timed doses of effluent to small diameter laterals (typically 25 mm PVC pipe) supported inside of a plastic chamber. The laterals are perforated at regular intervals on the top of the pipe with an adequate number of orifices on the bottom to provide self-drainage to prevent freezing during cold weather. When the dosing pump starts, effluent is forced along the entire length of the lateral and sprayed upwards where it hits the chamber and trickles down into the soil. The pump is sized to account for friction losses, static losses, and a residual pressure head of at least 600 mm at the furthest point from the pump. This ensures the entire footprint of the leaching bed is utilized and provides a more efficient distribution and use of the soil absorption system. For soils with T-times of up to 50 min/cm, hourly dosing is generally sufficient to allow the ponded water in the trench to infiltrate into the soil.

Septic Tank, Pumping Chamber & Level IV Treatment Unit Clearances

As per Section 8.2.1.6.(1), the septic tank, level IV treatment unit and the pumping chamber will meet the minimum clearances for treatment unit listed in the OBC Table 8.2.1.6.A. In addition, as per 8.7.4.0.(11), the distances set out in column 2 of Table 8.2.1.6.B. shall be increased by twice the height that the leaching bed is raised above the original grade. The current grade at the site where the septic system will be installed is 90.950 meters above sea level (m ASL). The SBT will be raised with a sand mantle below the SBT. The top of grade of the SBT at the highest elevation is 91.6 m. Therefore, the minimum clearances must be increased by 1.3m. A summary of the clearances required for the treatment units (septic system, pumping chamber, and level IV treatment unit) and the SBT leaching bed at the Fastfrate facility septic system is given in **Table 2-4** and **Table 2-5** below, respectively.

It is noted that there will be a SWM facility located east of the septic system, which will be considered as a pond for establishing minimum separation requirements.

Object ⁽¹⁾	Treatment Units Minimum Clearance, m	Additional Clearance required for the Treatment Units at Fastfrate, m ⁽²⁾	Total Clearance required for the Treatment Units at Fastfrate, m ⁽³⁾
Structure	1.5	1.3	2.8
Well	15	1.3	16.3
Lake	15	1.3	16.3
Pond	15	1.3	16.3
Reservoir	15	1.3	16.3
River	15	1.3	16.3
Spring	15	1.3	16.3
Stream	15	1.3	16.3
Property Line	3	1.3	4.3
Notes:			

1. Columns 1 and 2 are taken from OBC Table 8.2.4.6.A

2. [SBT Top of Grade (91.6 m) - Original ground elevation (90.95 m)] x 2 = 1.3 m

3. Total Clearances required for the Treatment Units for the Fastfrate facility

Table 2-5: Minin	num Clearances for L	Distribution Piping and	d Leaching Chambers
Object ⁽¹⁾	Distribution Piping and Leaching Chambers Minimum Clearance, m ⁽¹⁾	Additional Clearance required for the SBT leaching bed at Fastfrate, m ⁽²⁾	Total Clearance required for the SBT leaching bed at Fastfrate ⁽³⁾
Structure	5	1.3	6.3
Well with a watertight casing to a depth of at least 6 m	15	1.3	16.3
Any other well	30	1.3	31.3
Lake	15	1.3	16.3
Pond	15	1.3	16.3
Reservoir	15	1.3	16.3
River	15	1.3	16.3
Spring not used as a source of potable water	15	1.3	16.3
Stream	15	1.3	16.3
Property Line	3	1.3	4.3
Notes:			•

1. Columns 1 and 2 is taken from OBC Table 8.2.4.6.B

2. [SBT Top of Grade (91.6 m) - Original ground elevation (90.95 m)] x 2 = 1.3 m

Total Clearances required for the Treatment Units for the Fastfrate facility 3.

Pumping Chamber

In accordance with sentence 8.7.6.1(3) of the OBC, the pump chamber should have a volume between 50% and 75% of the daily design capacity is recommended. Therefore, it is recommended the pump chamber have a minimum working capacity of 19,200 L.

Submersible Pumps

Wastewater will flow by gravity to the septic tank, and then by gravity to the pumping chamber. The discharge from the pumping chamber and the rest of the system will be pressurized and require submersible pumps. Submersible, readily available and replaceable pumps are wired and rated for an effluent with 3 mm to 20 mm solids handling capacity. An alternating duplex pump configuration is recommended to allow time for service in the event of a pump failure. The specified pump must have a capacity equal to or greater than the calculated maximum pressure requirement as per the SBT design at the design flow. Five submersible pumps will be required:

- + Two pumps for the pumping chamber discharge which will operate in a duty / standby configuration with rotation on stop, time, and failure
- + Two pumps for the level IV treatment discharge which will operate in a duty / standby configuration with rotation on stop, time, and failure
- One pump for the level IV treatment discharge that will recycle effluent upstream of the septic + tank.

The submersible pumps will be provided by the level IV treatment unit supplier, Waterloo Biofilter. Waterloo Biofilter typically specifies Little Giant WS Effluent Series submersible pumps. As per item 8.6.1.3.(4), when a pump or siphon is required the pump or siphon shall be designed to discharge a dose of at least 75% of the internal volume of the distribution pipe within a time period not exceeding fifteen minutes. Therefore, the volume required to dose 75% of 175 m of 50 mm diameter schedule 40 PVC pipe is approximately 64.5 L within 15 minutes, or a required pump flow rate of 4.30 L/min (0.07 L/s). Sentence 8.7.6.1.(2) requires residual pressure (minimum 600 mm as per sentence 8.7.6.1.(2) at the furthest lateral) to ensure the entire bed is dosed.

The Little Giant WS Effluent Series includes submersible pumps capable of dosing 1.70 L/s to 9.5 L/s, depending on the model. With a minimum flow rate of 0.07 L/s, the Little Giant submersible pumps will provide more than the minimum required dosing flowrate. There are several Little Giant WS Effluent Series submersible pump models. The Hazen William formula was used to calculate the theoretical total dynamic head (TDH) in meters of each of the three pumping scenarios and plotted against the different Little Giant submersible pump curves to find the theoretical operating flowrate. A summary of the results in listed in Table 2-6 below. Refer to **Appendix E** for the pump system curves and calculations.

System	Recommended Pump Model	Theoretical Operating Point
Pumping Chamber Discharge	WS50HM-12-20	3.2 L/s at 12.8 m TDH
Level IV Treatment Discharge to SBT	WS100HM-12-20	2.2 L/s at 23.8 m TDH
Level IV Treatment Discharge Recycle Line	WS50M-20	5.7 L/s at 3.1 m TDH

Table 2-6	Theoretical	Pumpina	Flow Rates
10010 2 0.	ricorcuca	i uniping	11011110105

Level IV Treatment Unit

A Level IV Treatment is required for SBT type leaching beds. The Waterloo Biofilter level IV treatment unit will be designed to meet the level IV treatment effluent requirements of 10 mg/L for both SS and cBOD₅, as listed in Table 2-7 (adapted from OBC Table 8.6.2.2.).

ltem	Column 1 Classification of Treatment Unit ⁽¹⁾	Column 2 Suspended Solids ⁽²⁾	Column 3 CBOD ₅ ⁽²⁾
1.	Level II	30	25
2.	Level III	15	15
3.	Level IV	10	10
			the levels of treatment described in
CAN/BNQ 3680-600, "Onsite F	Residential Wastewater Treatr	nent Technologies"	
2. Maximum concentration in n	ng/L based on a 30-day avera	ge.	

Table 2-7: OBC	Treatment Unit	I evels and	Required	Ffluent	Concentrations
		Lovoid una	rtogunou	LIIIGOII	00110011010110

The level IV treatment unit must be certified to CAN/BNQ 3680-600 "Onsite Residential Water Treatment Technologies". The treatment units installed in Ontario typically either use aeration or a filter media to provide treatment. Aeration treatment units have higher operation and maintenance costs and effort as blowers are required in addition to pumps. Filter media type treatment units do not require blowers and require the filter media to be replaced approximately every 10+ years or to the manufacturer's recommendation. A filter media type level IV treatment unit such as a Waterloo Biofilter is recommended for this application. The sanitary waste from the warehouse will flow by gravity to the septic tank, where settling will occur, and the effluent will flow by gravity to a pumping chamber. The pumping chamber will consist of 2 pumps (duty/ standby configuration with frequent rotation via an alternating timer), which will pump the effluent to the level IV treatment unit to evenly dose the filter media. The filtered water will then be either pumped to the shallow buried trench by one of two pumps (duty / standby configuration with frequenting rotation on an alternating timer) or recycled to the inlet of the septic tank by a third dedicated pump. This recycle line from the level IV treatment unit post nitrification will allow for partial denitrification of the effluent – the reduction in effluent nitrates. All pumps will be controlled and monitored by a common control panel for remote monitoring, control, and data logging over a stable cellular network to Waterloo Biofilter who will contact personnel from the Fastfrate facility. Alarms include high water, float failure and pump failure from the Waterloo Smart Panel. A flow schematic of the system is given in Figure 2-1 below.

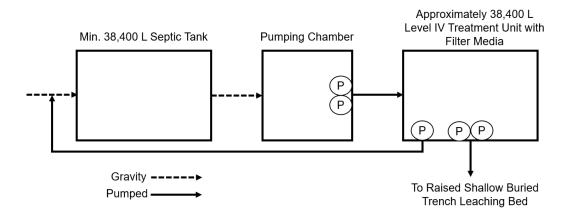


Figure 2-1: Septic System Process Flow Schematic

Shallow Buried Trench Leaching Bed

Due to the shallow groundwater seepage observed at 1.8 to 2.4 m below the surface and the requirement that the bottom of the leaching bed must be a minimum of 900 mm above the top of the high ground water table, the leaching bed must be raised. Due to the limited available space on the site, a SBT system with a sand mantle is recommended to minimize the system footprint. The sand mantle will be approximately 15 m in total length with the last 3 meters of the mantle changing direction slightly more north-west than the first 12 m of the mantle. Even with the irregular shape of the mantle, effluent will flow through the mantle as the T-time of the sand mantle will be imported sand fill with a percolation rate of 6 to 10 minutes/cm and have a maximum 5% if fines passing through a No. 200 sieve.

The length of the SBT distribution pipe laterals is calculated based on the T-time and the Table 8.7.3.1 in the OBC. The percolation tests of the native soil in the area of the proposed septic bed yield 12 to 20 minutes/cm according the GHD report. As per Table 8.7.3.1 in the OBC, a percolation between 1 to 20 minutes/cm corresponds to the following formula to calculate the length of distribution pipe required:

$$L = \frac{Q}{75}$$

Where:

L = The length of distribution pipe in m

Q = Total Daily Design Flow Rate (12,800 L/d for the Fastfrate Facility)

Therefore, the SBT must have a minimum distribution pipe length of 171 m (rounded up to the nearest meter). The OBC stipulates the maximum length of a SBT distribution run is 30 m as specified in clause 8.7.3.2(2)(a). To accommodate the clearances for the SWM pond and property line, 7 distribution pipe runs of 25 m (175 m total) is recommended.

Each lateral shall include a test port at the end of each line. Each test port will have a long radius sweep bend at the end, equipped with a normally closed ball valve and a removal plug with a drilled orifice the same diameter as the lateral spray orifices. The test ports are intended to allow individual line squirt testing and testing of all lines at once. The plugs will be removable to allow line flushing and cleaning as necessary.

The spray orifice size is important in the flow/pressure calculation, and it is recommended that 3 mm sizing be used as a default. OOWA best practices recommends orifices are spaced between 0.6 to 1.2 m along the lateral for even distribution of effluent. The orifices for the Fastfrate facility are specified to be spaced 0.6 m apart.

In addition to the spray orifices, drain orifices are recommended to be evenly spaced, facing downward, on each lateral to allow for drain-out and prevent freezing between pump cycles. It is recommended to have a drain orifice every 2 to 4 spray orifices, offset from the spray orifices and having orifice shields installed to prevent erosion of the trench base. The drain orifices will be spaced every 3 m apart and will be offset from the spray orifices.

OOWA Best Practices recommends the manifold should be at least one trade size larger than the laterals, typically between 32 mm (1.25" nominal) and 50 mm (2" nominal). The distribution laterals will be 25 mm diameter Schedule 40 PVC, and the manifold will be 50 mm diameter Schedule 40 PVC. Each lateral will include a ball valve for isolation and a 50 mm to 25 mm reducer. The components of the SBT leaching bed are given in the section below.

Fill will be required for the raised SBT system. The contact area at the base of the fill system was carefully considered. The contact area between the fill and the native receiving soils is important in order to safely transition treated effluent from the fill to the native soils without causing environmental risks. Due to inconsistent native soil type at the site and as a precaution, a sand mantle is recommended.

The mantle for the Fastfrate septic system was designed according to Option 2 of the Ontario Onsite Wastewater Association (OOWA) Best Practices: Shallow Buried Trench Guidance Document:

The contact area between the native soils and the fill material is which the SBT bed and mantle area should be at least equal to the following formula:

$$A = \frac{Q \times T}{850}$$

Where:

 $A = \text{Contact Area} (m^2)$

T = The T-time of the receiving soils (a conservative T-time of 20 minutes/cm was used)

Q = Total Daily Design Flow Rate (12,800 L/d for the Fastfrate facility)

Therefore, the minimum recommended mantle area is 302 m². The total mantle surface area provided (extended and beneath the SBT) has an approximate contact surface area of 660 m² and is over double the minimum surface area as calculated by the OOWA Best Practices.

Each lateral shall include a test port at the end of each line this may be an individual access port at the end of each lateral. Each test port will have a long radium sweep bend at each test port equipped with a normal closed ball valve and a removal plug with a drilled orifice the same diameter as the lateral spray orifices. The test ports are intended to allow individual line squirt testing and testing of all lines at once. The plugs will be removable to allow line flushing and cleaning as necessary.

The orifice size is important in the flow/pressure calculation, and it is recommended that 3 mm sizing be used as a default. OOWA Best Practices recommends orifices are spaced between 0.6 to 1.2 me along the later for even distribution of effluent. The orifices for the Fastfrate facility septic system are specified to be spaced 0.6 m apart.

The drain orifices are evenly spaced, facing downward, on each lateral to allow for drain-out and prevent freezing during pump cycles. It is recommended to have a drain orifice every 2 to 4 spray orifices, offset from the spray orifices and having orifice shields installed to prevent erosion of the trench base. The drain orifices will be spaced every 3 m apart and will be offset from the spray orifices.

OOWA Best Practices recommends the manifold should be at least one trade size larger than the laterals, typically between 32 mm (1.25" nominal) and 50 mm (2" nominal). The distribution laterals will be 25 mm diameter Schedule 40 PVC pipe, and the manifold will be 50 mm diameter Schedule 40 PVC pipe. Each lateral will include a ball valve for isolation and a 50 mm to 25 mm reducer. To summarize, the components of the SBT system for the Fastfrate facility include:

- Treatment Unit certified to Level IV CAN/BNQ 3680-600 "Onsite Residential Wastewater Treatment Technologies"
- + Dosing pump chamber and pumps equipped with timer controls.
- + Forcemain from dosing chamber to distribution manifold which typically is PVC schedule 40
- + Manifold (header) assembly, consisting of 50 mm (2") pressure pipe (PVC Schedule 40)
- Laterals in the leaching bed consisting of 25 mm (1") pressure pipe (PVC Schedule 40) with 3 mm orifice holes spaced evenly along the top of the pipe and 3 mm drain holes on the bottom
- + Pipe support to keep the lateral off the bottom of the trench
- Leaching chamber covering the laterals. Large diameter pipe cut in half is not acceptable, as the footprint of the sidewalls is not sufficient to prevent settling of the chambers over time. Chambers with a wide resting foot are preferred.
- + Filter cloth over the chambers
- + "Sweep 90' fitting extending within 10 cm of the finished grade at the end of each lateral. The vertical piece may be equipped with a ball valve if desired, and terminate with a threaded cap.

Ground Water Elevation and Native Fill

The septic, pump chamber, and level IV treatment unit tanks will require to be wrapped in a waterproof material to prevent groundwater infiltration. Due to the inconsistency of the fill material observed and the shallow groundwater seepage encountered by GHD, the leaching bed will be required to be raised. The 100-year flood elevation is 90.1 m ASL, therefore the SBT leaching bed and sand mantle have been designed to be above this elevation as not to flood out the septic system during a 100-year storm event. It is recommended prior to placement of the imported fill that any surficial organics are to be removed from the tile bed and mantle area. Additionally, the existing fill material is recommended to be compacted to ensure uneven settlement does not occur.

2.4 Sanitary Servicing Summary and Conclusions

The sanitary servicing design for the proposed development conforms to the requirements of the City of Ottawa Sewer Design Guidelines, 2012, as amended by all applicable Technical Bulletins.

The on-site wastewater disposal system (Septic Tank, Level IV treatment unit and shallow-buried trench system) conform to the requirements of the Ontario Building Code part 8. However, due to the Total Daily Design Sewage Flow being >10,000L, and ECA from the MECP will be required for this system.

3. Potable Water Servicing

3.1 Existing Conditions

The site is currently undeveloped and is not serviced by municipal watermains. As such potable water for this site will be provided by a groundwater supply well. Refer to the GHD's Hydrogeological Assessment (GHD, 2022) for more information.

3.2 Building Water Demands (Domestic and Fire Protection)

3.2.1 Potable Water Quantity Requirements

Based on design flows from the OBC, the average daily water use for the facility is **8.9 L/min** (**Table 3-1**). Considering a peak demand of 35.6 L/min (average demand * 4), the well discharge of 60 L/min in the Hydrogeological Report will sufficiently meet the water demand requirements of the facility.

Parameter as per OBC – Table 8.2.1.3.B.	Volume (L) as per OBC	Design Basis for Fastfrate	Flow (L/d) ⁽¹⁾
Warehouse			
a) Per water closet, and	950	7	6,650
b) Per loading bay	150	41	6,150
	Total Daily	/ Design Flow (L/d)	12,800
Notes:			
1. Column 2 x Column 3 = Column 4 (e.g	g., 950 L x 7 = 6,	650 L/d)	

Table 3-1 Potable Water D	esian Flows
---------------------------	-------------

The above water demands were also compared with ones obtained following the City of Ottawa Design Guidelines – Water Distribution, 2010 as amended by all applicable Technical Bulletins. The peak water demand obtained using this method is **0.75 L/s (45.0 L/min).** This value is also within well discharge capacity. (**Table 3-2**).

Table 3-2 Potable Water Design Flows – City of Ottawa Design Guidelines – Water Distribution

Demand Type	Average Daily Demand (L/s)	Maximum Daily Demand (L/s)	Maximum (Peak) Hour Demand (L/s)
Commercial	0.28	0.42	0.75
Total	0.28	0.42	0.75

3.2.2 Fire Protection Quantity Requirements

The facility is not connected to a municipal water supply and will therefore require other means of fire protection. The fire protection flow and volumes have been determined by Civilec in a report. Refer to (**Appendix C**).

3.2.2.1 Fire Protection Flow

The Fire Protection flow identified in Civilec report is 7500L/min (125L/s). Refer to (**Appendix C**). The fire flow will be divided between one intake pipe to supply the sprinkler system and two dry fire hydrants. The intake pipe to supply the sprinkler system has been designed for the entire fire flow.

3.2.2.2 Fire Protection Volume

The Fire Protection Volume required for this site as per Civilec report is $675m^3$. Refer to (**Appendix C**). The current pond configuration has a storage capacity of $683m^3$ of volume between the max ice thickness (88.610) and the top of the intake pipe (87.550).

3.2.2.3 Fire Protection System

The proposed SWM wet pond shall be used for storing water for fire protection. Refer to **Section 4.5** for more information on the design of the proposed SWM pond.

A fire pump located in a 2-hour fire rated mechanical room in the building shall serve the Fire Protection system. The fire pump inlet shall be connected to an 8.0 m deep sump, to be hydraulically connected to the pond via an intake pipe at the base of Pond.

To ensure that the fire protection volumes are adequate during winter conditions, the maximum ice thickness on the permanent pool of the SWM wet pond was determined based on the Annual Freezing Degree Days method. Based on an Ice cover condition coefficient of 2.4 and the Annual Freezing Degree Days value 785 °C-day for 2019, the ice thickness of 67.24 cm was obtained. Based on this calculation, the design ice thickness used is of 69 cm. Detailed calculations are presented in **Appendix C**.

The permanent pool of the proposed SWM pond provides fire protection volumes of 683 m³ with Ice cover, and 1305 m³ without ice cover. This volume will provide sufficient volume of water to supply the building, fire protection intake, and two (2) dry hydrants.

A free-standing Siamese connection will be located outside the front entrance and would be used to supply the sprinkler system if the pump within the shaft were unable to draw water from the fire protection pond.

To prevent exfiltration and maintain the water level of the permanent pool, the SWM pond will be constructed with a liner. Specifications for the liner are provided in **Appendix G**. In the event the water level in the sump & pond drops below the minimum level, makeup water will be provided to the sump and pond from the well to mitigate losses due to infiltration and evaporation. Alarm indicators will monitor the levels in the sump & pond, and will control the supply of makeup water to the pond and sump from the well.

The building fire protection system requires 6624 US gal. per minute (110 L/s) per NFPA 13. As such, the building fire protection intake was sized as a 450mm pipe, slopes at 0.2% with a capacity of 127 L/s under gravity free flow conditions (Factor of safety = 1.15). An intake screen capacity of 220 L/s is also specified for the building fire protection intake (Factor of safety = 2.0).

3.3 **Proposed Water Supply Well**

3.3.1 Well Quality

Samples tested from an existing water supply well confirmed that there were no health-related parameters in exceedance of the Ontario Drinking Water Standards (ODWS). There were several parameters that exceeded their respective ODWS for aesthetic objectives including hardness, total dissolved solids, turbidity, manganese, and iron. These parameters will require commercially available treatment equipment (for example a water softener for treatment of hardness). The treatment systems will be determined later in the design process. A detailed breakdown of test results is presented in GHD's Hydrogeological Assessment (GHD, 2022).

As a proactive measure, it is recommended that bacteriological treatment (i.e., ultraviolet treatment) be used at a minimum. It is anticipated that the well system will be regulated and will require treatment to meet appropriate standards to ensure potable water is available to employees and visitors. A water treatment specialist should be retained for treatment and a qualified engineer should review the final treatment system before use.

3.3.2 Well Quantity

The water supply well referred to as TW-2 in the Hydrogeological Assessment is capable of providing long-term quantities of groundwater at a pumping rate of 60 L/min based upon the pumping test completed (GHD, 2022). After 6 hours of pumping, the well drawdown was 1.15 m with 23.9 m of available drawdown remaining. A total of 21,600 L was pumped from the well during the testing.

Based upon the septic total daily design values of 12,800 L/day, the well exceeds the daily design quantities estimated. The actual water volume required for the development on a daily basis is expected to be much less than 10,000 L/day. The water supply well and the aquifer that it is drilled into can safely provide the long-term quantities required for this development based upon the testing completed without significant interference to future and existing neighbouring wells.

3.4 Conclusion – Potable Water Servicing

The proposed well will provide sufficient potable water supply for the development, while the proposed SWM pond permanent pool will provide sufficient fire protection volume for the development.

4. Storm Water Management

4.1 Background

As previously mentioned, the subject site is currently vacant and is part of the Hawthorne Industrial Park (HIP). The site is generally flat and slopes towards the North-East corner before it reaches the 6m tall embankment and reaches Christie Creek on Rideau Road. There is a fill layer of approx. 6m thick across most of the site.

The HIP sector and the Fastfrate site are subject to the HIP Stormwater Management Report and associated drawings (**Appendix A**), developed by J.L. Richards and dated May 2009. This report established the Stormwater Management design for the HIP, which was then used as the design basis for the roads, open ditch system, and HIP SWM facility (refer to Drawings issued for MOE Approval; **Appendix A**).

The HIP SWM facility, located east of the industrial site, only provides stormwater quantity control for the HIP sector. The HIP SWM facility controls storm events up to the 2 - year post-development peak flow to 50% of the 2-year pre-development peak flow; and controls post-development peak flows to pre-development levels for storm events ranging from the 2-year to the 100-year recurrence. The HIP SWM report specifies that individual parcels of the HIP must provide stormwater quality control.

4.2 Stormwater Management Strategy

4.2.1 Deviations from the HIP SWM Report & Drainage Plan

The proposed SWM strategy for this site deviates from that of the HIP SWM report.

The drainage plan for the HIP divides the drainage of the Fastfrate site between two outlets. Part of the site drains to Christie Creek while the remainder drains to the HIP SWM facility via the open ditch system along Somme Street. (**Figure 4-1**).

To simplify the SWM strategy the drainage distribution between both outlets has been altered from what was presented in the HIP SWM report, redirecting more runoff towards the HIP SWM facility (**Figure 4-1**). This simplifies the site grading and allows all quality control measures to be in a single location. Therefore, the proposed conditions require quantity control (through on-site retention) to respect the allowable release flowrates up to the 100-year storm stipulated in the HIP SWM report.

Figure 4-1 SWM Drainage Area from HIP SWM (left), and from Proposed SWM (right)

The original drainage plans and sewer design sheets for the HIP sector, as well as the proposed SWM plan for the Fastfrate site are provided in **Appendix B**.

4.2.2 Allowable Post Development Flow Rates and Quantity Control Requirements

The allowable release rate for the proposed site was determined based on parameters of the HIP SWM report, sewer design sheets and SWM plans. Since the Fastfrate site is smaller than its corresponding catchments of the HIP SWM report, the allowable release rate for the catchments to the HIP SWM facility was re-calculated to account for this. For this calculation, the runoff coefficient, time of concentration and rainfall intensity were kept identical to the HIP SWM report.

Based on this calculation, the allowable release rate for the site to the HIP SWM facility is of **906.9 L/s**, up to and including the 100-year storm event to comply with the HIP SWM report (**Table 4-1**). Supporting calculations and location of sourced information can be found in **Appendix B**.

Catchment ID	Catchment	Runoff	Time of	Rainfall	Allowable
	area	Coefficient	Concentration	Intensity	Release Flow
	(ha)	(factored)	(minutes)	(mm/hr)	(L/s)
Fastfrate Site – HIP SWM Report	3.06	0.88	19.43	122.15	906.87

Table 4-1: Post-development Allowable 100-year Release Flows – HIP SWM Facility

The uncontrolled release flow for the proposed site was calculated and compared with the values determined in **Table 4-1**. This comparison is summarised in **Table 4-2**.

Quantity control is therefore required for this site due to the catchment redistribution discussed in Section 4.2.1. Supporting calculations and location of sourced information can be found in **Appendix B.**

Catchment ID	Catchment area (ha)	Runoff Coefficient (factored)	Uncontrolled Release Flow – 100year (L/s)	Allowable Release Flow – 100-year (L/s)	Allowable Release Rate – 100-year (L/s/ha)
Fastfrate Site – HIP SWM Report	3.06	0.88	906.9	906.9	296.89
Fastfrate Site – Proposed SWM	3.66	0.92	1093.2	906.9	247.78

Table 4-2: Post-development Allowable 100-year Release Rates – HIP SWM Facility

Similar calculations for the redistribution of catchments that outlet to Christie Creek were undertaken and are included in **Appendix B.**

4.3 Design Criteria and Assumptions

- + Quality control requirements: 80% TSS Removal must be provided for our site as required by the South Nation Conservation Authority (SNCA).
- + Per the HIP SWM report, the existing open ditch system is designed to the 100-year event, and the existing culverts are designed to the 10-year event.
- The current site plan deviates from the HIP SWM report. To conform with the original SWM, the 100-year allowable release rate to the SWM facility must remain at 906.9 L/s (refer to Section 4.2.2).

4.4 **Proposed Storm Servicing**

All detailed SWM calculations and plans are presented in Appendix B.

4.4.1 Stormwater Quality Control

As specified in the HIP SWM report, the HIP SWM facility was not designed to provide quality control. It was anticipated that each individual parcel was to provide its own quality control and achieve the normal level of protection (70% TSS Removal).

Through consultation with the South Nation Conservation Authority (SNCA, refer to **Appendix F**) the quality control requirements for the HIP parcels have been revised to the enhanced level of protection (80% TSS removal).

The portion of the site that naturally drains into Christie Creek will not require quality treatment since this area will remain undeveloped and vegetated. Therefore, only the developed portion of the site draining towards the Somme Street ditches and to the existing HIP SWM facility will be treated for quality.

The quality control requirements will be achieved using a combination of grassed swales and a wet pond, operating as a "treatment train". The grassed swales, which are sloped to promote infiltration and low channel velocities (<0.5 m/s) will provide the required pre-treatment for the wet pond.

The wet pond was designed based on the volumetric water quality criteria, interpolated Table 3.2 of the MECP SWM guidelines (2003). Since the proposed site has an imperviousness ratio of 74%, the total storage requirement for quality control is of 231.67 m³/ha. The wet pond requires a total water Quality Storage of 847m³. In the pond dimensioning, at least 701.5 m³ will be provided in the permanent pool and at least 147m³ will be provided as extended detention (**Table 4-3**).

For this facility, the extended detention volume will be retained for a period of at least 12 hours, as per the MECP SWM Guidelines on wet ponds with < 8 ha of drainage area.

Quality Control Volumes	MECP Storage Requirement (m³/ha)	Catchment Area (ha)	Required Storage Volume (m³)
Permanent Pool	191.67	3.66	701.5
Extended Detention	40	3.00	146.4
Total	231.67	3.66	847.9

Table 4-3: Wet Pond Volume Calculations – 74% Impervious; 80% TSS Removal

4.4.2 Stormwater Quantity Control

The anticipated post-development flow rates and required storage when controlled to the allowable post-development release rate are summarized below.

The site's SWM outlet will likely to be submerged during the 100-year storm due to the water level in the Somme street ditch. Considering this, the storage volumes for this site were determined assuming constant discharge at **half of the allowable release rate**. This method is used to provide the additional retention required because of the hydraulic grade line at the outlet. The storage requirements at the full and half release rates are compared in **Table 4-4**, and Supporting calculations can be found in **Appendix B**.

At a release rate of **435.4** L/s, a storage volume of **716** m^3 is proposed in the SWM pond and a storage volume of **115** m^3 is proposed on roofs for a total of **831** m^3 . This volume can be accumulated on the site available storage volume. The available storage volumes do not account for surface storage in storm sewers, culverts or other ponding areas.

For the roof sub-areas of the warehouse and office building, the proposed release rate is **236.7** L/s. This release rate generates **115** m^3 of roof storage, which is conservative with respect to the maximum available storage on the building roof (**Table 4-4**). This release rate cannot be reduced further without exceeding available roof storage.

Retention Areas	100-year – Full Release Rate (L/s)	100-year – Half Release Rate (L/s)	100-year Storage Volume – Full Release Rate (m³)	100-year Storage Volume – Half Release Rate (m³)	Available Storage Volume (m³)
Roof Sub- Area	236	.7	11	5.0	143.9

Table 4-4: Post-development Flowrate and Storage Summary

Client Project Number : GA18-0631-01

SWM Pond & Swales	670.2	216.76	329.9	716.0	996.1
Total Site	906.9	453.4	444.9	831.0	1140.0

To protect the site from a backwater in the Somme street Ditch, the outlet pipe will be equipped with an inline backflow preventer (**Appendix G**). This coupled with the ample available storage capacity on site will be sufficient to ensure the site SWM functions properly in the event of prolonged surcharging of the receiving open ditch system during the 100-year event.

As mentioned in section 3.2.2.3, the SWM Pond will be equipped with an impermeable liner. In order to mitigate any impact of seasonal groundwater infiltration into the SWM pond the liner is to be installed up to the surface.

4.4.3 Site Culverts, Stormwater Outlet and Backwater Elevations

The site culverts were sized based the 100-year peak flow and resulting backwater elevations. The backwater elevations were determined based on elevations culvert headwater, calculated assuming steady-state flow conditions and a constant tailwater elevation.

To simplify the headwater calculation, upstream culverts used the downstream culvert's headwater elevation as the upstream tailwater elevation.

The 100-year water level in the municipal ditch (90.07 m ASL) was used as the tailwater elevation for the site's stormwater outlet. This depth was determined from grades in the Somme Street Ditch and its 100-year flow depth determined in the HIP SWM report.

Because of the flat nature of the site, the site's culverts are designed for the 100-year design storm due to the limited freeboard between the site and Somme street catchments.

A summary of the site culvert design under freeflow and submerged condition of the site outlet are presented in **Table 4-5** and **Table 4-6**, respectively. Detailed calculations supporting the culvert sizing are available under **Appendix B**.

Culvert	Size	Catchment	Q _{100y} (L/s)	нw	HW/D	HW elevation	TW elevation
East Ditch	1x CSPA 1030x740	A2	446	0.56	0.76	90.09	89.82
West Ditch	1x CSPA 910x660	A1	231	0.575	0.87	90.09	89.82
STM Pond Transfer Culvert	2x CSPA 1030x740	A1-A7	907	0.595	0.80	89.82	89.50

Table 4-5: Culvert Sizing Summary – Freeflow
--

Culvert	Size	Catchment	Q _{100y} (L/s)	HW	HW/D	HW elevation	TW elevation
East Ditch	1x CSPA 1030x740	A2	446	0.92	1.24	90.45	90.300
West Ditch	1x CSPA 910x660	A1	231	0.92	1.39	90.51	90.300
STM Pond Transfer Culvert	2x CSPA 1030x740	A1 to A7	907	1.00	1.35	90.300	90.150

Further to the tables above, the backwater elevations resulting from the 100-year design storm are summarized below, for both the Freeflow and Submerged Outlet conditions. Based on these elevations, the water surface elevation on the site remains at 0.300 from the building underside of footing in both conditions.

Location	Headwater Elevation – Freeflow Outlet Condition	Headwater Elevation – Surcharged Outlet Condition	Reference to Supporting Calculations		
	(m)	(m)			
Outlet Pipe	90.09	90.150			
Culvert #1	90.09	90.51	HW for "West Site – 100y"		
Culvert #2	90.16	90.45	HW for "East Site – 100y"		
Culvert #3	90.55	90.55	HW for "West Entrance"		
Culvert #4	90.22	90.22	HW for "East Entrance"		
Culvert #5	89.82	90.30	HW for "Transfer Culvert – 100y"		

Table 4-7: Summary of Backwater Elevations – 100-year

Spill points have been included in the site to mitigate the risk of localised flooding should site culverts be blocked during the 100-year design storm (**Table 4-8**).

Table 4-8: Summary of Site Spill Points

10010 1 0.				
Site Spill Points	Spill Elevation			
	(m)			
SWM Pond Overflow to Somme Street Ditch	90.200			
West Site Spill to Christie Creek	90.280			
East Site Spill to Christie Creek	90.280			
SWM Pond Overflow u/s of Transfer Culvert	90.375			

Site ditches have been designed to convey the 100-year flow with a manning`s 'n'-value of 0.03 for long grassed swale. Detailed calculations with input values shown in **Table 4-9** have been provided in **Appendix B**, . A summary of inputs to the calculations is provided

Table 4-9: Ditch Sizing Summary

Ditch Catchment		Q _{100y} (L/s)
East Ditch	A2	446
West Ditch	A1	231

4.4.4 Municipal Ditch and Road Culverts

The east and west entrances to the site cross the existing open ditch system and require installation of culverts. The sizing of the culverts was determined with consideration of the upstream municipal culverts since the SWM system outlet for stormwater is situated downstream of these culverts. The culverts were sized for the 10-year storm, as per the HIP SWM report. Culvert sizing suitability calculations can be found in **Appendix B**.

4.4.5 Building Service Connection

A 600 mm storm sewer service connection will be provided on the south side of the proposed building and will be directed towards the SWM pond. The storm sewer will convey controlled runoff from the roof and uncontrolled runoff from catchments A4 and A5 (refer to **Appendix B**).

4.4.6 Deviations from the Ottawa Sewer Design Guidelines – Swale Minimum Slope

The slope of the swales conveying stormwater for this site are inferior to the minimum slope specified in section 6.4.1 of the Sewer Design guidelines.

The grassed swales are intended to contribute to runoff quality control, operating with the proposed wet pond as a "treatment train". The reduced slope of grassed swales promotes infiltration and low channel velocities (<0.5 m/s). This improves the effectiveness of grassed swales for runoff quality control (LID SWM Planning and Design Manual).

Based on the interpretation from percolation tests for this site, the soil infiltration rate can be estimated to range between 30 to 50mm/hr. With dry swales, an underdrain is typically recommended if the soil infiltration rate is <15 mm/hr.

As such, the risk of prolonged ponding of water in the ditches is mitigated by the soil infiltration rate and presence of on-site existing fill and well draining soil.

4.4.7 Culvert Ends

Given the addition of localized clear zone with recoverable slopes at the culvert location is not feasible, an assessment of roadway safety implications for the culvert ends were completed by CIMA+ in accordance with the MTO Roadside Design Manual and MTO

Roadside Evaluation Manual. The assessment focused on the installation of guiderails to shield the culvert ends.

Although the culvert ends are located within the clear zone, the installation of new guide rail is also considered a hazard within the clear zone, and thus the collision risk and severity with the new guiderail may outweigh the benefits of shielding the culvert ends. The installation of guide rail is generally recommended where the Cost/Benefit (CB) ratio is \geq 1. The findings of the analysis produced a CB Ratio of -4.27 for the west entrance and -2.23 for the east entrance meaning that the collision risk and severity with a new guiderail is greater than that of the culvert ends. Refer to **Appendix B.16** for the MTO Roadside Evaluation spreadsheet and calculations.

4.5 Proposed SWM Pond Sizing

This section presents the proposed sizing of the SWM Pond for this project. A summary of the required volumes to be provided in the Wet Pond is presented in **Table 4-10**, and a breakdown of the pond levels and provided volumes is presented in **Table 4-11**.

Parameter	Required Volume (m³)	Source
Retention Volume	Full Release Rate: 329.9 Half Release Rate: 716.04	Table 4-4
Extended Detention	146.4	Table 4-3
Fire Protection Volume	675	Section 3.2.2.2
Permanent Pool for Quality Control	701.5	Table 4-3
Sediment Accumulation Volume (25 years)	226.8	Section 4.6.1

Table 4-10: Summary of Required SWM Pond Volumes

Contro	Bottom Elevation	Top Elevation	Depth	Provided Volume	Required Volume			
		(m ASL)	(m ASL)	(m)	(m³)	(m³)		
to 90.375 to 90.200		90.150	90.375	0.225	232.9	-		
		90.150	90.200	0.050	50.8			
Retention Volume		89.500	90.150	0.650	Pond: 610.3 Swales: 436.0 <u>Total:</u> 1046.3	Full Release Rate 329.9	Half Release Rate 716.04	
Extende	d Detention		89.300	89.500	0.200	169.1	146.4	
	Fire Protection	With Ice Cover	87.550	88.610	1.06	683		675
	Volume	Normal	87.550	89.300	1.60	1305	-	
Permanent Pool (PP) Depth of Fire Protection Intake		87.100	87.550	0.450	209	-		
	Sediment Accumulation Volume		86.100	87.100	1.0	327	226.8	
	Total PP Volume		86.100	89.300	3.2	1946	701.5	

Table 4-11: Summary of Provided SWM Pond Volumes

4.6 Calculations

4.6.1 Sediment Accumulation Volume

Based on the MECP SWM planning and design guidelines, a conservative estimate of the sediment accumulation volume required for a duration of 25 years is 226.8 m³ assuming an annual TSS loading of 3.10 m^3 /ha/year and a removal efficiency of 80%.

4.6.2 Pond Controls

As defined in the City of Ottawa Sewer Design Guidelines (2012), the Rational Method is a valid approach to determination of peak flows and pipe capacity for drainage areas of less than 40 ha in size. Thus, the Rational Method has been used in the determination of required storage volumes to store the 100-year storm events to the pre-determined allowable release rates.

4.6.2.1 Extended Detention Control (Quality)

The wet pond will use a 200mm reverse pipe with **one 80 mm dia. orifice plate** to control the detention time to the minimum detention time of 12h, per MOE Guidelines for drainage areas less than 8 ha.

Using equation 4.10 from the MECP SWM guidelines resulted in a drawdown time of 15.53 hours.

$$t = \frac{2 A_p}{C A_o (2g)^{0.5}} \left(h_1^{0.5} - h_2^{0.5} \right)$$

Equation 4.10: Drawdown Time

Where:

t = drawdown time in seconds

 A_p = surface area of pond (m²)

C = discharge coefficient

 A_0 = cross-sectional area of the orifice (m²)

g = gravitational acceleration constant

 h_1 = starting water elevation above the orifice (m)

 h_2 = ending water elevation above the orifice (m)

$$t = \frac{2A_p}{CA_0(2g)^{0.5}} \left(h_1^{0.5} - h_2^{0.5}\right)$$
$$t = \frac{2(876.75)}{(0.63)(0.005)(2*9.81)^{0.5}} (0.2^{0.5} - 0^{0.5})$$
$$t = 55906 \, s = 15.53 \, hours$$

4.6.2.2 Release Rate Control (Quantity)

The release rate control, under free flow conditions, will be achieved by **one 450x830 mm rectangular orifice** set at an invert elevation of **89.500 m ASL** and **one 200x775 mm rectangular orifice** set at an invert elevation of **89.925 m ASL**. The outlet structure will control the 100-year release rate to 906.6 L/s under freeflow outlet conditions, and to 470.8 L/s under submerged outlet conditions (Table 4-12).

Release Rate Control Flow condition	Controlled Release Flow (L/s)	Max. Water Surface Elevation at pond outlet (m ASL)
Free Flow Outlet Condition	906.6	90.090
Submerged Outlet Condition	470.8	90.170

Table 4-12 Resulting Release Flow with Proposed Controls

4.6.3 Watercourse Protection Measures

Erosion protection of the soils is required at the inlet and outlet ends of the culverts across the site to provide channel stabilization and scour resistance of the flowing water based on the outlet velocity generated by the check flow for scour, which is the 100-year event.

Design Chart 2.17 of the MTO Drainage Management Manual specifies the maximum permissive flow velocities for a channel based on the channel's native lining material (i.e. soil type). The maximum permissible velocity of a silty sand channel shall be 1.5m/s for water carrying fine silts. In accordance with HDDS WC-3, section 3.2, where the velocity is exceeded the stone size for scour and erosion protection shall be as follows.

		Table	4-13. Scour	FIDIECIIDIT	Siziriy		
Stone Sizes for Scour and Erosion Protection-Low Volume Roads							
Velocity (m/s)	<2.0	<2.6	<3.0	<3.5	<4.0	<4.7	<5.0
Nominal Stone Size* (mm)	100	200	300	400	500	800	1000

Table 1-13. Scour Protection Sizing

* Maximum size of stone to be 1.5 times the nominal stone size. 80% of stones (by mass) must have a diameter of at least 60% of nominal stone size.

The proposed culverts for the Fastfrate site all have velocities below 1.5m/s during the 100-year event and therefore would not require any scour protection. However, to be conservative, CIMA+ recommends scour protection at each culvert entrance and outlet. A nominal stone size of 100mm for erosion protection at the disturbed areas of the watercourse, upstream and downstream within the vicinity of the structure required. The protective apron shall consist of a minimum thickness of 1.5 times the nominal stone size and shall extend for a distance of two times the total culvert rise. Protection along the inlet and outlet embankments to an elevation of 0.3m above the high-water mark is also recommended.

4.7 SWM Conclusions

The storm servicing design for the proposed development generally conforms to the requirements of the City of Ottawa Sewer Design Guidelines, 2012, as amended by all applicable Technical Bulletins. The storm servicing design also conforms to the HIP SWM report (J.L. Richards, 2009). Justifications have been provided where deviations were proposed by the SWM strategy.

The allowable release rate for the site post-development was calculated to be 906.9 L/s. It is expected that this can be achieved via roof storage and the proposed SWM wet pond.

A Roof Flow Control Declaration will be provided upon completion of the Mechanical and Structural design.

5. Conclusion

The current study demonstrates how the proposed servicing of the site will be achieved, in that the proposed SWM strategy conforms to the existing SWM plan and that the proposed Potable Water, Fire Protection and Sanitary Servicing works will be sufficient to service the proposed development.

Within the site, all services have been designed in keeping with the City of Ottawa design requirements and the requirements of the HIP SWM Report.

We trust this site servicing and stormwater management report is to your satisfaction. If you have any questions regarding this report, please do not hesitate to contact the undersigned.

6. References

CIMA+. 2021. Fastfrate Ottawa Warehouse and Distribution Facility Somme Street Ottawa, ON - Civil Drawings Issued for Site Plan Approval. Ottawa, ON : s.n., 2021.

City of Ottawa. 2012, 2020. Sewer Design Guidelines – as ammended by Technical Bulletins. Ottawa : s.n., 2012, 2020.

—. 2010, 2020. *Water Design Guidelines – as ammended by Technical Bulletins.* Ottawa : s.n., 2010, 2020.

GHD. 2020. Geotechnical Investigation Warehouse and Offices Intersection of Rideau Street and Somme Street, Ottawa, Ontario. Ottawa : s.n., September 10, 2020.

-. 2022. Hydrogeological Assessment Report – Proposed Commercial Development Rideau Road and Somme Street Gloucester Con 6 from Rideau River, Lot 26 Ottawa, Ontario. Ottawa : s.n., January 19, 2021.

—. 2021. Scoped Environmental Impact Study – Proposed Development, Part of Lot 26, Concession 6, 301 Somme Street, Gloucester, Ontario, City of Ottawa. 2021.

-. 2021. Septic Assessment and Percolation Rate Evaluation – Proposed Commercial Development Rideau Road and Somme Street Gloucester Con 6 from Rideau River, Lot 26 Ottawa, Ontario. Ottawa : s.n., April 12, 2021.

J.L. Richards & Associates Ltd. 2009. *Stormwater Management Report – Hawthorne Industrial Park.* Ottawa : s.n., May 2009.

Ministry of the Environment. 2003. *Stormwater Management Planning and Design Manual.* Toronto : s.n., 2003.

2017. Ontario Building Code, O Reg. 332/12. 2017.

CIMA* Engineering for People

Appendix A-1 -JL Richards Storm Water Management Report

STORMWATER MANAGEMENT REPORT

HAWTHORNE INDUSTRIAL PARK

February 2009 (Revised April 2009) (Revised May 2009)

Prepared for:

R.W. TOMLINSON LIMITED

5597 Power Road Ottawa, Ontario K1G 3N4

Prepared by:

J.L. RICHARDS & ASSOCIATES LIMITED Consulting Engineers, Architects & Planners 864 Lady Ellen Place

Ottawa, Ontario K1Z 5M2

JLR 20983

STORMWATER MANAGEMENT REPORT

HAWTHORNE INDUSTRIAL PARK

- TABLE OF CONTENTS -

			<u>PA</u>	GE
1.0	INTR(1.1 1.2 1.3	DDUCTION Background General Objectives		. 1
2.0	STOR 2.1 2.2	M DRAINAGE		3
3.0	STOR 3.1 3.2	M SERVICING General Description of Conveyance Systems and Design Basis 3.2.1 Open Ditch System 3.2.2 Culvert System	 	.5 .5 .6
4.0	WATE	R BALANCE		. 9
5.0	WATE 5.1 5.2	R QUALITY General Water Quality Requirement		10
6.0	HYDR 6.1 6.2 6.3 6.4 6.5 6.6	OLOGICAL ANALYSIS General Synthetic Design Storm Simulation and Hydrological Parameters Simulation of Pre- and Post-Development (Uncontrolled) Conditions Simulation of Phase-1 Post-Development (Controlled) Conditions Simulation of Phase-2 Post-Development (Controlled) Conditions Simulation of Phase-2 Post-Development (Controlled) Conditions Simulation of July 1, 1979 Historical Storm Event and Flood Potential 6.6.1 Simulation of July 1, 1979 Historical Storm Event	· · · ·	11 12 14 15 17 18 18
7.0	EROSI	ON AND SEDIMENT CONTROL MEASURES DURING CONSTRUCTION .		20
8.0		ARY AND CONCLUSION		

- LIST OF FIGURES -

Figure 1	Key Plan
Figure 2	Pre-Development Storm Drainage Area Plan
Figure 3	Post-Development - Phase 1 Storm Drainage Area Plan
Figure 4	Post-Development - Phase 2 Storm Drainage Area Plan

R.W. Tomlinson Limited

- LIST OF TABLES -

Table 1	Summary of Peak Flow Rates	3
Table 2	Typical Potential Land Use Breakdown	6
Table 3	Water Quality Infiltration Requirements 1	1
Table 4	SWMHYMO Simulation Results 1	5
Table 5	SWMHYMO Simulation Results	•
	(Post-Development - Phase 1 Controlled Conditions) 1	7
Table 6	SWMHYMO Simulation Results	•
	(Post-Development - Phase 2 Controlled Conditions) 1	8
		-

- LIST OF DRAWINGS -

Site Servicing & Grading Plan Storm Drainage Area Plans SG D-ST1 and D-ST2 Plan and Profiles 01, 02 and 03 Stormwater Management Facility SWM1 Erosion and Sedimentation Control Plan ESC Details DT

- LIST OF APPENDICES -

JLR 20983		J.L. Richards & Associates L
APPENDIX 'K'	•	SWMHYMO INPUT AND OUTPUT FILES (July 1, 1979 Historical Storm Event)
APPENDIX 'J'	-	ASSESSMENT OF CULVERT CROSSING DURING AN EXTREME STORM EVENT
APPENDIX 'I'	-	CERTIFICATE OF APPROVAL - EXISTING SETTLING PONDS
APPENDIX 'H'	-	SWMHYMO INPUT AND OUTPUT FILES (Post-Development Phase 2 Controlled Conditions)
APPENDIX 'G'	-	SWMHYMO INPUT AND OUTPUT FILES (Post-Development Phase 1 Controlled Conditions)
APPENDIX 'F'	-	STAGE-STORAGE-DISCHARGE TABLE
APPENDIX 'E'	-	SWMHYMO INPUT AND OUTPUT FILES (Pre - and Uncontrolled Post-Development Conditions)
APPENDIX 'D'	-	HYDROLOGICAL PARAMETERS (CN _{pre} , Imperviousness Calculation, Time to Peak Calculation)
APPENDIX 'C"	-	WATER QUALITY - INFILTRATION CALCULATION
APPENDIX 'B'	-	CONVENTIONAL CULVERT DESIGN SHEET
APPENDIX 'A'	-	RATIONAL METHOD DESIGN SHEETS (1:10 Year and 1:100 Year Design Sheets)

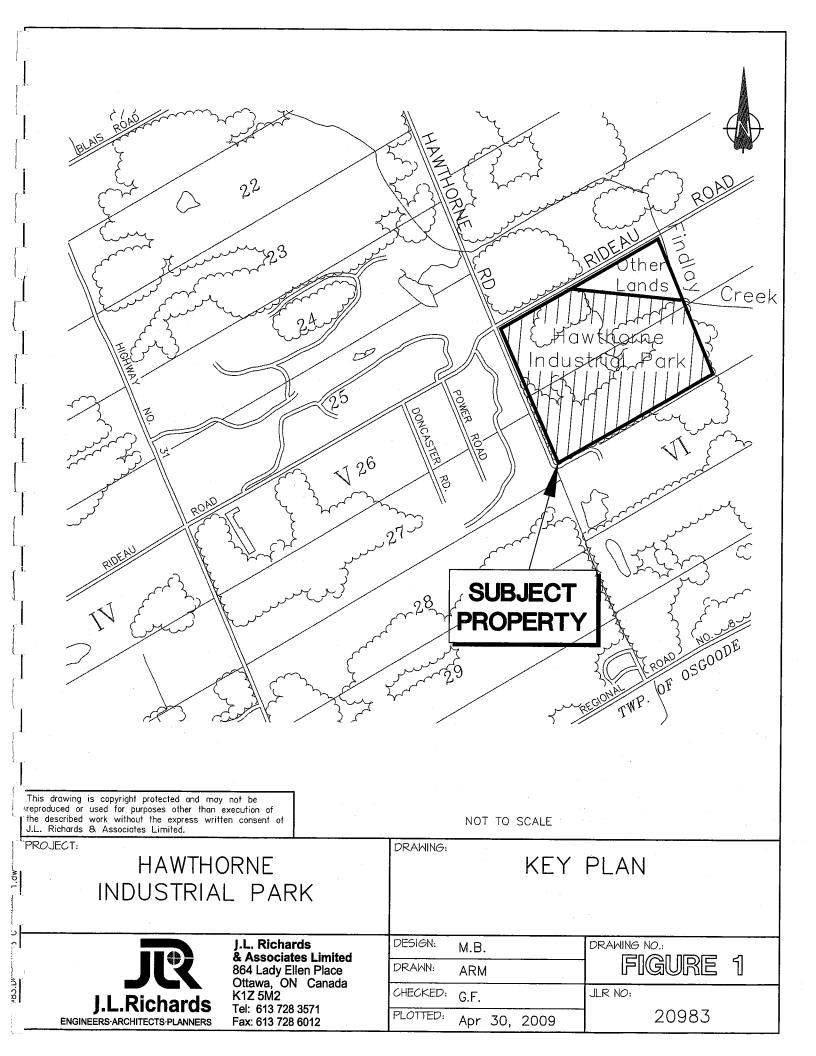
STORMWATER MANAGEMENT REPORT

HAWTHORNE INDUSTRIAL PARK

1.0 INTRODUCTION

1.1 Background

In 1999, J.L. Richards & Associates Limited (JLR) completed a Stormwater Management Study, on behalf of Beaver Road Builders Ltd., for the development of a proposed area previously referred to as the Hawthorne Road Industrial Subdivision. The main objective of the1999 Study was to develop a conceptual storm servicing alternative (including stormwater management) that would support the proposed development without adversely affecting the hydrological regimes of receiving streams. The 1999 Study provided a conceptual design of the conveyance system and on-site storage requirements for the proposed development in order to satisfy the regulatory agencies of the time, namely the Region of Ottawa-Carleton, the City of Gloucester and the South Nation Conservation Authority (SNC).


The current landowner, R.W. Tomlinson Limited (Tomlinson), now wishes to complete the development of the subject land, herein referred to as the Hawthorne Industrial Park (HIP).

1.2 General

The proposed 70 hectare (ha) site is located immediately southeast of the Hawthorne Road/ Rideau Road intersection (refer to Figure 1) in the City of Ottawa (formerly in the City of Gloucester) and is expected to service future industrial operations varying in size. Over the past decade, the site has been used to dispose of fill materials resulting from Tomlinson's construction activities. The fill material has been placed in areas where fill was required for the construction of the proposed HIP.

Currently, Orgaworld Canada Ltd. (Orgaworld), has leased approximately 10 ha within HIP, which will house the source separated organics program being implemented by the City of Ottawa in 2009. The Orgaworld site includes a Stormwater Management Facility with a capacity of 15,994 m³ providing on-site water quantity and quality control.

In addition, a permanent facility within the above subject lands is a total suspended solids (TSS) treatment facility. Consisting of three (3) ponds, this facility was designed

to provide aggregate wash water management to Tomlinson's existing quarry operations on the west side of Hawthorne Road (refer to Appendix 'l' for a copy of the Ministry of the Environment (MOE) Certificate of Approval (C of A) related to these works). In addition to the existing aggregate wash treatment facility, it is proposed to construct separate stormwater management facilities to service water quantity and quality requirements for the HIP.

1.3 Objectives

This Stormwater Managment Report (SWMR) was prepared to demonstrate that the subject lands can be developed as an Industrial Park Subdivision in compliance with the current surface water objectives of the watershed. Since the subject lands drain to Findlay Creek, which is tributary to the North Castor River, storm runoff criteria for this development must be in accordance with the recommendations of the document entitled "Shield's Creek Subwatershed Study, Totten Sims Hubicki Associates, June, 2004", referred throughout this Report as SCSS. More specifically, the above Report provided the following design criteria with regard to stormwater:

Water Quantity

Peak Flow Post-development peak flows must be controlled to pre-development levels for storm events ranging from a 1:2 year to a 1:100 year recurrence.

Infiltration Section 5.5 of the SCSS recommends that the quantity and quality of groundwater infiltration be maintained to pre-development rates.

<u>Erosion</u> The stormwater management strategy for the proposed HIP must be developed to maintain the erosion potential to current levels.

Water Quality

The proposed stormwater management strategy for HIP must be developed to meet a Normal Level of Protection (as per the MOE's publication entitled "Stormwater Management Planning and Design Manual, March, 2003", referred throughout this Report as SWMPDM, which corresponds to a standard approach used in urban development to obtain a targeted total suspended solids (TSS) removal rate of 70%.

2.0 STORM DRAINAGE

2.1 General

Storm servicing for the HIP was designed using the dual drainage concept, also known as the minor/major drainage system. The minor drainage system is mainly comprised of an on-site open ditch and culvert system. The minor system was designed to capture and convey runoff during frequent storm events up to a 1:10 year recurrence. The major system formed by swales/ditches, streets, etc. was sized to accommodate runoff during storm events exceeding 1:10 year up to the 1:100 year recurrence.

The open ditches, culverts and swales were sized using the Rational Method. An inlet time of 15 minutes and runoff coefficients (C-factors) ranging from 0.20 to 0.90 were used in the sizing of the conveyance systems. It should be noted, however, that C-factors used were increased by 10% for the 1:25 year peak flow calculations and by 25% for the 1:100 year recurrence, as per Section 5.4.5.2.1 of the City of Ottawa's Sewer Design Guidelines (November 2004). Rainfall intensities (i.e., Intensity-Duration-Frequency curves (IDF)) required by the Rational Method were also extracted from the City of Ottawa's Sewer Design Guidelines. Peak flow rates for the HIP and Hawthorne Road and Rideau Road are summarized in Table 1 (refer to Appendix 'A' for copies of the Rational Method Design Sheets for the 1:10 year and 1:100 year storm events).

Description	Peak Flows (L/s)		
	10 Year	100 Year	
Hawthorne Industrial Park (HIP)	5,422	12,814	
Hawthorne Road / Rideau Road	3,192	5,417	

Table 1 - Summary of Peak Flow Rates

2.2 Design Criteria

The municipal infrastructure associated with the HIP was designed using the following criteria:

- The <u>HIP open ditch system</u> was sized with sufficient capacity to convey, under free-flowing conditions, the <u>1:100 year peak flow rate</u>, as calculated by the Rational Method (refer to Appendix 'A' for a copy of the 1:100 year Design Sheet).
- The <u>Hawthorne Road open ditch system</u> was sized with sufficient capacity to convey, under free-flowing conditions, the <u>1:100 year peak flow rate</u>, as calculated by the Rational Method (refer to Appendix 'A' for a copy of the 1:100 year Design Sheet).
- The existing downstream ditch system along <u>Rideau Road</u> was evaluated to ensure sufficient capacity to convey, under free-flowing conditions, <u>the 1:100 year</u> <u>peak flow rate</u>, as calculated by the Rational Method (refer to Appendix 'A' for a copy of the 1:100 year Design Sheet).
- The <u>culverts</u> included in the HIP and along Hawthorne Road/Rideau Road were sized with sufficient capacity to convey the <u>1:10 year peak flow rate</u> without overtopping the roadway embankment (refer to Appendix 'A' for a copy of the 1:10 year Design Sheet).
- Given that the receiving watercourse was found to shelter fisheries, the SCSS recommended that a <u>"normal" level of protection</u> be achieved for quality control. To fulfill this requirement, industrial sites must direct runoff to an appropriately sized oil/grit separator unit before stormwater can be conveyed off site to the open roadside ditch/culvert system. To achieve quality control for the internal roads, it is proposed to provide infiltration storage volume in the roadside open ditch system, as per the requirements presented in Table 3.2 of the SWMPDM.
- The SCSS recommended that the erosion potential be maintained to current levels for the receiving water course. To fulfill the above requirement, the two year post-development peak flow will be controlled to 50% of the pre-development peak flow rate.
 - Storage volume is to be implemented for the control of the post-development peak flows to pre-development levels for storm events ranging from a 1:2 year to a 1:100 year recurrence to comply with the recommendations of the SCSS.

This Stormwater Management Report (SWMR) has been written to demonstrate that the subject land could be developed in compliance with the above surface water criteria and also prepared in accordance with the SWMPDM. The proposed stormwater management strategy for the HIP was developed to meet a "normal" level of protection, which corresponds to a standard approach used in land development to obtain a targeted TSS removal rate of 70%.

3.0 STORM SERVICING

3.1 General

Peak flow estimation is an important task that is carried out for any proposed development. There are several reasons that explain why flood flow rates are computed as part of site development. The main purpose of these calculations, however, is to allow for the proper configuration and sizing of the proposed conveyance systems to minimize the risk of flooding.

Drainage works are designed for a real or hypothetical storm event that may or may not happen during the lifetime of the facilities. At the onset of the design process, design criteria are adopted that may vary with the type of project, in recognition of the impacts of failure. For this particular project, the level of protection adopted (storm events up to a 1:100 year recurrence) was based on design storm characteristics of an infrequent storm event having a low probability to occur.

3.2 Description of Conveyance Systems and Design Basis

Flowing water can be conveyed to an outlet by either open-channel flow or pipe flow. Storm runoff generated by the subject lands is to be collected and conveyed by a roadside ditch/culvert system before discharging to Findlay Creek via an end-of-pipe stormwater management facility (SWMF).

Sizing of the conveyance systems was carried out using various levels of service. The open ditch system was sized with sufficient capacity to convey, under free-flowing conditions, storm runoff up to the 1:100 year recurrence, while roadway culverts were sized to provide conveyance of the 1:10 year peak flow rates without overtopping the roadway embankments.

As part of this sizing exercise, Storm Drainage Area Plans were prepared and included in this Report (refer to Drawing D-ST1 for the HIP and Drawing D-ST2 for Hawthorne and Rideau Road) that show the delineated area for each of the conveyance segments (i.e., from node location to node location), along with its assigned runoff coefficient (C-factor) based on the type of surface. Since the final development of Hawthorne Industrial Park is unknown at this time, a conservative on-site runoff coefficient (C-factor) of 0.70 was used. Table 2 illustrates the breakdown of a typical site that would generate a weighted runoff coefficient of 0.70.

Type of Surface	Area (%)	C-Factor
Building	10	1.0
Asphalt Parking	35	0.90
Gravel	35	0.70
Grass	20	0.20
Overall	100	0.70

Table 2 - Typical Potential Land Use Breakdown

It should be noted that the C-factors shown on the Storm Drainage Area Plans denote those associated with 1:10 year peak flow calculations. As recommended in Section 5.4.5.2.1 of the City of Ottawa's Sewer Design Guidelines, C-factors shown on drawings were increased by 10% and 25% for the 1:25 year and 1:100 year peak flow calculations, respectively (refer to Appendix 'A' for copies of the Rational Method Design Sheets).

3.2.1 Open Ditch System

An open ditch channel is a conduit used to convey flowing water from one location to another, with a free surface. A channel can be classified as either artificial (i.e., manmade) or natural. Artificial channels are those constructed or developed as a result of human activity. This type of conveyance system is usually implemented as a long and mild-sloped channel built in the ground, which provides conveyance of water between two points, with sections of regular geometry and shape. An open ditch system is generally designed to follow site topography and the vertical profile of the adjacent roadway. The most commonly used shapes for open channel ditches are trapezoidal and triangular, with the latter shape utilized mainly for ditches servicing small drainage areas. The open ditches associated with the HIP and Hawthorne Road were sized with sufficient capacity to convey 1:100 year peak flow rates. As previously noted, the Rational Method Design Sheets (refer to Appendix 'A' for copy of the 1:100 year design sheet) were used to quantify the 1:100 year peak flow rates. The open ditch configuration was carried out utilizing Manning's relationship, along with the proposed geometry and slope of the channel. Two Storm Drainage Area Plans were prepared (refer to Drawings D-ST1 and D-ST2) showing proposed ditch inverts that match those shown on the Rational Method Design Sheets. Based on the ditch sizing exercise, it was determined that triangular shape ditches with 3:1 side slopes and variable depths provided the necessary conveyance of the 1:100 year peak flow rate. The Site Servicing and Grading Plan (refer to Drawing SG) was developed to provide the configuration of open ditch segments.

The existing open ditches along Rideau Road were also evaluated to ensure sufficient capacity was able to convey the 1:100 year peak flow rates resulting from upstream construction works (i.e., construction of Hawthorne Road). The Rational Method Design Sheets (refer to Appendix 'A' for copy of the 1:100 year design sheet) were used to quantify the 1:100 year peak flow rates. An existing 900 mm diameter culvert crossing under Hawthorne Road conveys flow along the north side of Rideau Road (refer to Drawing D-ST2). The capacity of this existing culvert was estimated at 1,400 L/s under a 1.5 m headwater (refer to Appendix 'B' for Culvert Design Summary Table). Upon the review of existing topography, any headwater depths greater than 1.5 m resulted in runoff being directed northerly along Hawthorne Road towards Findlay Creek. In light of the above, the existing open ditches along Rideau Road were evaluated using a conservative plug flow of 1,400 L/s in addition to surface runoff generated by the contributing areas.

3.2.2 Culvert System

The principal function of a culvert is to convey water through an embankment while, at the same time, supporting the weight of the overlying fill and vehicular movement. Culverts can be made of many different materials; steel, polyvinylchloride (PVC), high density polyethylene (HDPE) and concrete. Culverts selected for the HIP and Hawthorne Road are made of corrugated steel, in either round or arch shape. Field observations have shown that there are two major types of culvert flow conditions: inlet control and outlet control.

-7-

1. Flow Under Inlet Control

Flow with inlet control means that the discharge capacity of a culvert is controlled at the culvert entrance by the depth of headwater and by the entrance geometry, including the barrel shape, cross sectional area and the type of inlet edge. The roughness and length of the culvert barrel, and the outlet conditions are not factors in determining the culvert capacity. The longitudinal slope reduces headwater only to a small degree and can normally be neglected for conventional culverts flowing in inlet control.

2. Flow Under Outlet Control

Flow with outlet control means that the discharge capacity of a culvert is controlled by the depth of tailwater, including the velocity head within the barrel, the entrance and friction losses. The roughness, length of the culvert barrel, and slope are factors in determining the culvert capacity; the inlet geometry is of lesser importance.

To avoid having to conduct detailed hydraulic computations that would determine the type of flow under which a culvert will probably operate, the procedure recommended by the MTO (refer to MTO's Drainage Management Manual) was utilized. This methodology, referred to as the Conventional Culvert Design procedure, requires that MTO's Design Charts and Design Nomographs be used for both inlet and outlet control conditions. The higher headwater depth that is calculated from those two operating conditions would indicate the type of control and would provide the governing headwater depth. This methodology was utilized to size each culvert crossing, along with the 1:10 year peak flow rates calculated by the Rational Method Design Sheets (refer to Appendix 'A') for each of the conveyance segments. Furthermore, this calculation sheet also provides proposed culvert sizes, along with the type of control and governing depth found when using the conventional culvert design procedure. A summary of the various parameters estimated using MTO's nomographs at each of the culverts has been tabulated using MTO's Form D4-I (refer to Appendix 'B' for Conventional Culvert Design Sheet). This analysis shows that the proposed culvert crossings within the HIP and along Hawthorne Road are capable of conveying the 1:10 year peak flow rates as a minimum, without overtopping any of the roadway embankments. The hydraulic calculations were carried out assuming a roughness coefficient of 0.024 for any of the CSP and CSPA culverts. The Site Servicing and Grading Plan (Drawing SG) shows proposed culvert sizes, lengths and invert elevations at each of the crossings.

The proposed 1030 x 740 mm CSPA culvert crossing under the entrance of the pond access road was of concern due to the high flow rate during the 1:100 year storm event.

There was a possibility that the excess flow overtopping this culvert could short circuit into SWMF via the pond access road. Therefore, an analysis of the flow overtopping the proposed entrance culvert was conducted and the results confirmed that the residual flow would indeed be contained within the right-of-way corridor (refer to Appendix 'J' for desktop calculation).

4.0 WATER BALANCE

Water balance analyses are typically carried out to assess any changes in infiltration to subsurface water-bearing zones as a result of the urbanization (i.e., increase of hard surfaces) of land. The SCSS has identified the need to maintain a necessary level of quantity and quality groundwater recharge via infiltration. Groundwater recharge is required to maintain subsurface base flow to streams and wetlands in addition to maintaining groundwater levels for private and municipal wells. The Hydrogeological Study completed by Golder Associates Limited in 2008 for the HIP identified the site as being underlain by a shallow and deep aquifer separated by an impermeable rock layer. The upper aquifer provided subsurface groundwater flow to streams, while the lower aquifer was the main source for well water supply. Therefore, groundwater recharge for this site was intended to provide subsurface base flow into the receiving Findlay Creek.

Construction fill operations have been active for the HIP since 1994. The results of the geotechnical field investigation conducted by Inspec-Sol Incorporated in 2008 indicates that as much as 5.5 m of fill material (MW7-08) has been placed on parts of the site. The non-native heterogenous fill material is comprised mainly of silty clay and contains trace amounts of road and construction materials. Although the soil component of the fill material exhibits the characteristics of silty clay, the varying composition and density of the remaining portion of the fill affects its permeability in localized areas. Given the above existing conditions, it is difficult to determine how groundwater recharge will behave as subsurface flow in the existing fill matrix, particularly from individual sites within the HIP. The MOE expressed concerns about the use of infiltration strategies on the individual sites given the past history as a construction fill site. Furthermore, the MOE SWMPDM does not endorse the use of infiltration basins on lands zoned for industrial use as there is an increased risk of groundwater contamination should a spill occur on site.

An option was considered to provide infiltration for the entire site at the base of the endof-pipe Dry Pond facility. Upon further investigation, the geotechnical report indicated that there was a high groundwater table at the proposed pond location. In addition, insitu soils in the area exhibited poor drainage properties which would have resulted in long retention times at the base of the pond, making it difficult to meet the water balance deficit requirements for the entire site while attempting to mimic the pre-development hydrological cycle.

Representatives from the City and SNC were consulted, and it was concluded that the SCSS groundwater balance targets for this site would be difficult to meet. It was also recognized that on-site infiltration strategies for this industrial subdivision could have a detrimental effect on groundwater quality and jeopardize the natural ecological integrity of receiving waters. In light of the above, it was decided by the approval authorities that the requirement for the water balance would be waived for the HIP development.

5.0 WATER QUALITY

5.1 General

Urbanization has been found to modify the hydrological regime of a receiving stream if inadequate stormwater management measures are implemented. The potential impacts associated with runoff arise primarily from the amount of urban area that is impervious to rain and snowmelt water. These impervious surfaces increase the amount of direct surface runoff that is generated and is conveyed more efficiently to the receiving stream. As part of the SCSS, fisheries resources have been inventoried along this watercourse, along with its associated tributaries. Given that the receiving watercourses were found to shelter fisheries, the approved document recommended that a "normal" level of protection be achieved. To fulfil this requirement, it is proposed that each individual site provide an oil/grit separator and infiltration storage be provided within the roadside open ditch system, as per the requirements presented in the SWMPDM.

5.2 Water Quality Requirement

Stormwater servicing for the HIP has been developed in accordance with the water quality recommendations of the SCSS (70% TSS removal). To fulfil this requirement, individual sites will be required to provide an oil/grit separator be installed to provide quality treatment (i.e., 70% TSS removal) of surface runoff before entering the roadside open ditch/culvert system. In addition, the oil/grit separator will be able to capture and contain hydrocarbons in the event of an on-site accidental spill.

To fulfill the water quality objectives for the paved portion of the HIP internal roads, it is proposed to provide infiltration within the open roadside ditch system to meet the storage volume requirements presented in Table 3.2 of the SWMPDM. Based on the normal level of service required and an imperviousness of 100% for the internal roads, Table 3.2 yields an extrapolated storage volume requirement of 35 m³/ha. To achieve this storage volume, a clear stone envelope complete with a 200 mm diameter perforated pipe will be installed at the base of the roadside ditches to meet the required storage volume (Refer to Appendix C for calculations).

The following table presents the calculated infiltration volume required for water quality control and those provided by the roadside open ditch system to meet the recommended MOE Design Guidelines.

Phase	Area (ha)	Infiltration Volume Requirement (m ³)	Infiltration Method	Length of 200 mm diameter Perf. Pipe (m)	Infiltration Volume Provided (m ³)
1	1.58	55.1	Open Ditch	1760	55.3
2	0.21	7.4	Open Ditch	240	7.5
Total	1.79	62.5	Open Ditch	2000	62.8

Table 3 - Water Quality Infiltration Requirements

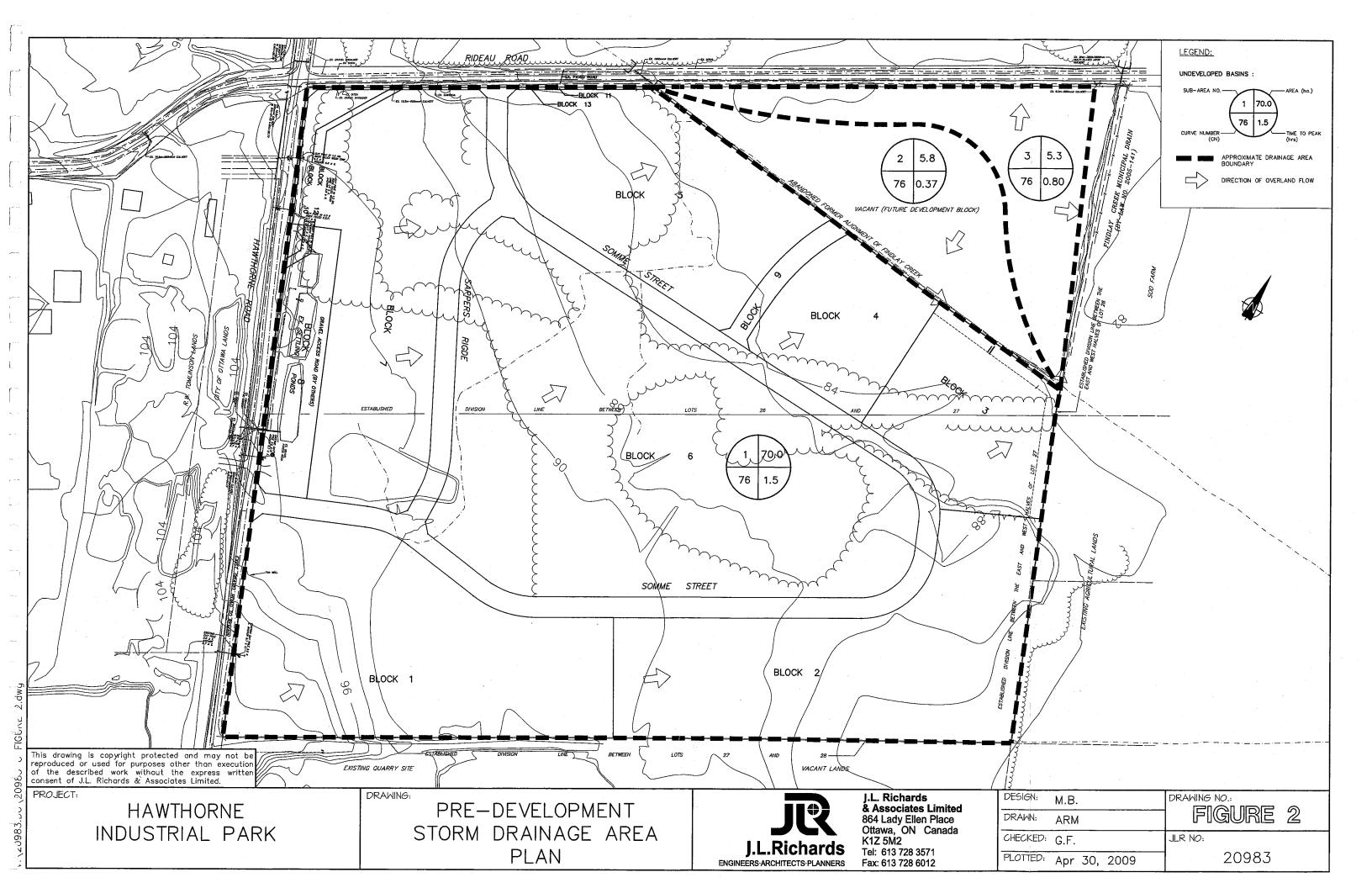
As shown in the above Table, the infiltration volume provided by the proposed open roadside ditch network (62.8 m³) exceeds that obtained from Table 3.2 (62.5 m³) of the SWMPDM. It should be noted that additional storage within the void space of the clear stone envelope was not accounted for and would increase the actual infiltration storage volume shown in Table 3.

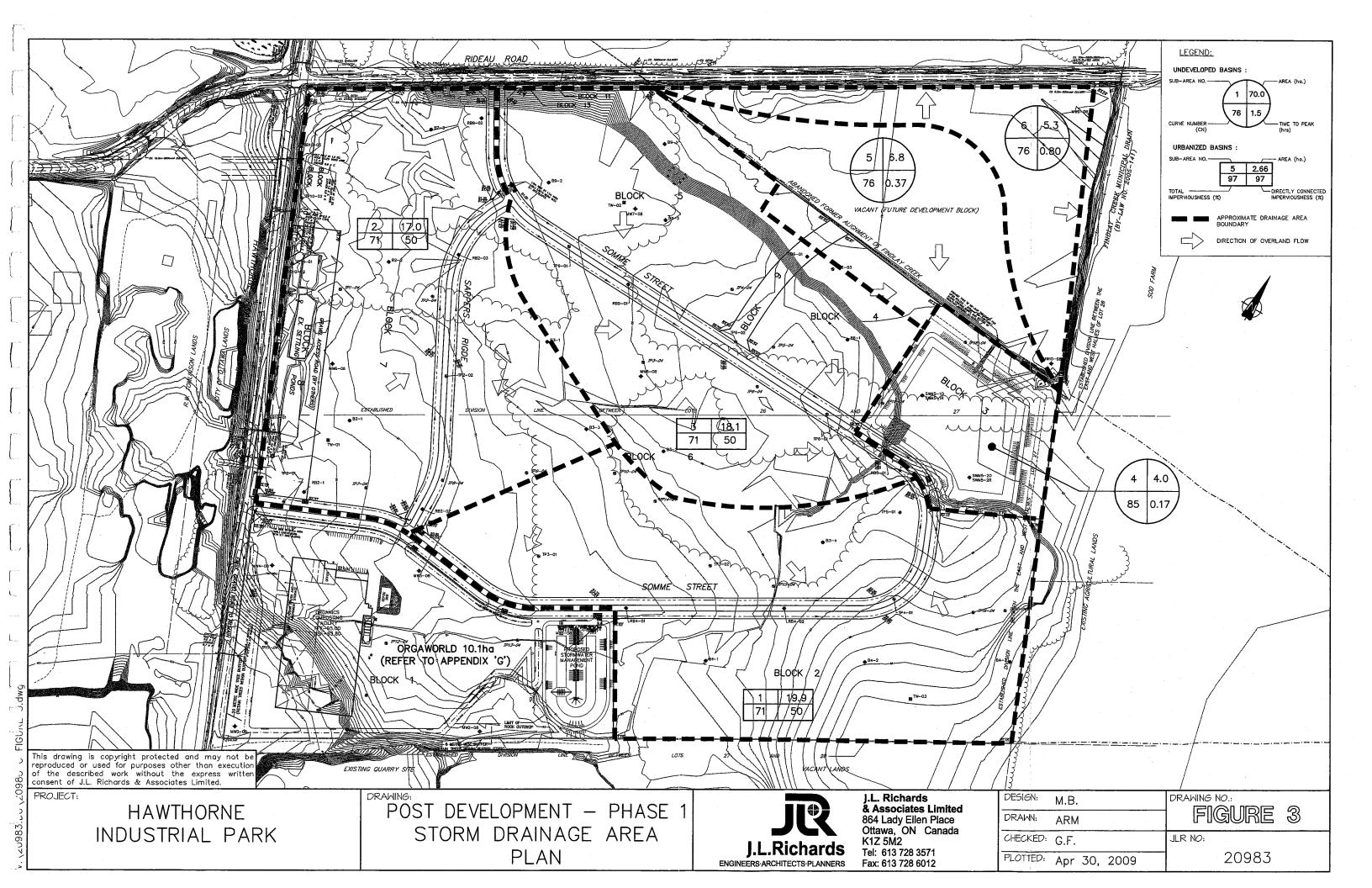
6.0 HYDROLOGICAL ANALYSIS

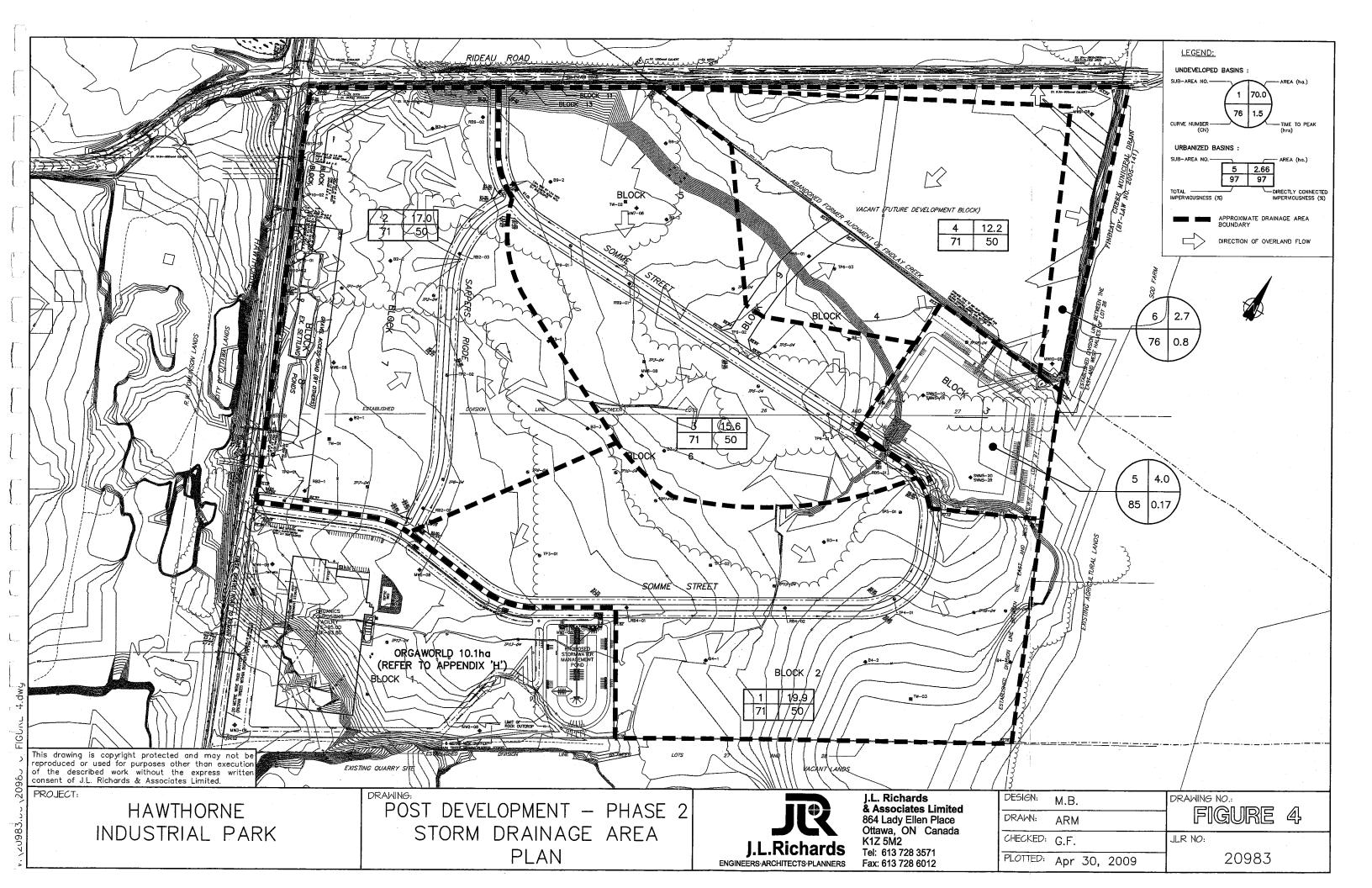
6.1 General

To satisfy the surface water objectives presented in Subsections 1.3 and 2.2, a hydrological analysis was carried out to quantify peak flow rate variations resulting from the development of the proposed HIP. To quantify this variation, the SWMHYMO Stormwater Management Hydrological Model (Version 4.02, July, 1999) was utilized to calculate peak flows during severe storm events.

To carry out the hydrological analysis, three storm drainage plans were developed; one representing the pre-development drainage conditions, one representing the post-development conditions for the current study area, Phase 1, and the other for the post-development drainage conditions, including future development, Phase 2. For each of these plans, subwatershed boundaries were delineated based on existing topography of the site and the proposed overland flow direction following development of the site (refer to Figures 2, 3 and 4 for details).


6.2 Synthetic Design Storm Simulation and Hydrological Parameters


Peak runoff rates were calculated for both pre- and post-development conditions using synthetic design storm event modelling. Peak flow rates were estimated using the 3-hour Chicago Design Storm Event, as this synthetic storm event has been recognized as the most critical event for urban runoff applications (refer to Section 5.4.3.1 of the City of Ottawa's Sewer Design Guidelines). The design storm analysis was completed using volumes derived from the Intensity-Duration-Frequency (IDF) curve equation shown in Section 5.4.2 of the City of Ottawa Sewer Design Guidelines compiled using data from 1967 to 1997.


A SWMHYMO data file was developed to represent both pre- and post-development conditions of the subject area. Simulation of surficial runoff generated from undeveloped subwatersheds was carried out using the "DESIGN NASHYD" command along with the SCS procedure to compute rainfall losses. The SCS procedure uses the Curve Number (CN) method to compute rainfall losses and the Nash unit hydrograph to simulate the hydrological response from undeveloped watersheds. To simulate surface runoff from urban subwatersheds, the "CALIB STANDHYD" command was utilized. Hydrological parameter selection and methodology is described below:

Curve Number (CN)

In order to estimate a Curve Number that represents pre-development conditions, the geotechnical investigation completed by Inspec-Sol, entitled "Geotechnical Study Subdivision Plan, Hawthorne Industrial Park, Lots 26 and 27 Concession 6, Southeast of Hawthorne and Rideau Roads, Ottawa, Ontario" dated December 19, 2008 was used. At the time of this investigation, large amounts of fill material were encountered over the majority of the site, which does not reflect the pre-development conditions. As such, only native soils encountered below fill material were used to establish pre-development condition Curve Numbers. The review of the geotechnical investigation shows native

soils ranging from silty sand in Blocks 4 and 5, to silty clay in Blocks 3, 5, 7 and 8, to sandstone and limestone in parts of Blocks 2 and 3. These soils have been classified by Inspec-Sol as being associated with hydrologic soil groups (HSG), ranging from "B" to "D" for silty sand to silty clay, respectively. Areas where rock was encountered (i.e., Sandstone and Limestone) were classified as "Rockland." Based on this information and current land usage, as interpreted from aerial photography, a pre-development Curve Number (CN) of 76 has been calculated using the Ministry of Transportation of Ontario (MTO) Chart H2-8. Detailed calculations for the HIP have been included in Appendix 'D'.

Under post-development conditions, it is proposed to provide sufficient grade differential to allow for positive drainage to meet City of Ottawa Design Standards. As the subject lands are to be developed as an Industrial Park with a significant increase in hard surfaces (i.e., buildings, asphalt and gravel), the post-development conditions were, therefore, analysed taking into consideration the low potential of these surfaces to infiltrate storm runoff.

Imperviousness

Surface runoff under post-development conditions is greatly impacted by the imperviousness of its tributary area. Since the final development of the HIP is unknown, a conservative assumption for typical surfaces encountered in similar industrial parks was developed, as illustrated in Table 2. To determine the imperviousness based on the assumed breakdown presented in Table 2, an imperviousness calculation was carried out and is presented in Appendix 'D'. The imperviousness calculation was based on the following assumptions:

- an imperviousness of 100% was assigned for building footprints;
- an imperviousness of 100% was assigned for all asphalt parking surfaces.
- an imperviousness of 70% was assigned for all gravel surfaces; and
- it was assumed that 50% of the total imperviousness (TIMP) 50 % was modelled as directly connected imperviousness (XIMP).

Based on the above, a total imperviousness of 70% was calculated, which is equivalent to a runoff coefficient of 0.7. The hydrological analysis was, therefore, carried out using

a total imperviousness of 70%, consistent with the runoff coefficient used for sizing the open ditch/culvert system.

Time to Peak (T,)

Time to peak calculations were carried out under pre-development conditions. Time of concentration was first estimated using the Uplands Method Chart based on the various flow paths. Once calculated, the times to peak were set to 67% (i.e., 2/3) of the time of concentration (T_e). Under pre-development conditions, a 90 minute time to peak was calculated (refer to Appendix 'D' for calculations). When modelling post-development conditions, the "CALIB STANDHYD" command was used to calculate the time to peak associated with the proposed site surfaces and grades (refer to Appendix 'E' for SWMHYMO outputs).

6.3 Simulation of Pre- and Post-Development (Uncontrolled) Conditions

The hydrological analysis was carried over the entire HIP under both the pre- and post-development conditions. As stated in Section 6.1, two post-development conditions were investigated, namely, Phase 1 and Phase 2. Phase 1 evaluates servicing for the current Study area, while Phase 2 includes the current Study area along with servicing of an additional 11.2 ha of land to the north east, shown on drawings as "Future Development Block."

Peak flow rates were computed with SWMHYMO using the procedure and parameters described in Subsection 6.2. Table 4 presents the simulated peak runoff rates under a 3 hour Chicago design storm event for both the pre- and post- (uncontrolled) development conditions for the HIP (refer to Appendix 'E' for SWMHYMO data input and output files), along with those under a 4 hour - 25 mm storm.

Datum Davied	Peak Flow Rates (L/s)					
Return Period or Storm Depth	Pre-Development	Phase 1 Pre-Development Post-Development (Uncontrolled)				
25 mm	252	1,941	2,231			
2	467	3,077	3,548			
5	826	4,812	5,554			
10	1,097	6,135	7,029			
25	1,468	7,772	9,013			
50	1,767	9,240	10,588			
100	2,093	10,662	12,132			

Table 4 - SWMHYMO Simulation Results

Simulation results presented in the above table show that uncontrolled post-development peak flows substantially exceed those obtained under pre-development conditions. Based on the design criterion for water quantity (refer to Subsections 1.3 and 2.2 for details), post-development peak flows should be maintained to their pre-development levels for storm events ranging from a 1:5 year to a 1:100 year recurrence. In addition, the 2-year post-development peak flow should be controlled to 50% of the 2-year pre-development peak flow to satisfy the erosion criterion. Water quantity control measures were, therefore, found to be necessary for the development of this site. Details and stormwater servicing approaches proposed to fulfil the design criteria listed in Subsections 1.3 and 2.2 are presented in the following Subsections.

6.4 Simulation of Phase 1 Post-Development (Controlled) Conditions

Development of the subject lands (i.e., 70 ha, as illustrated on Figure 3) will increase the imperviousness of the subject area. To achieve the surface water objectives listed in Subsections 1.3 and 2.2, it is proposed that an end-of-pipe facility be constructed that would provide storage volume for retention of runoff.

The stormwater management criteria for the development of the HIP consist of maintaining erosion potential and peak flow rates at the pre-development levels. Storm servicing of the Subdivision was, therefore, developed such that all of these requirements were fulfilled, along with the achievement of a "normal" protection level. It

is proposed to implement the following stormwater management servicing approach for the development of the HIP:

End-of-Pipe SWMF (Block 3)

Based on the proposed grading, the end-of-pipe facility was found to generate a volume of 37,240 m³ (3.25 m depth). A low flow ditch sized for 2 year storm events was also included in the bottom of the end-of-pipe facility to convey flows to the outlet structure. The configuration of the outlet structure would be as follows:

- 1 x 150 mm diameter orifice within a 200 mm diameter Polyvinyl Chloride (PVC) pipe at elevation 82.90 m, which serves as outlet to the facility;
- 2 x 600 mm diameter Corrugated Steel Pipe culvert at elevation 84.80 m, which also serves as outlet to the facility;
- One (1) emergency overflow spillway (6.0 m wide) at elevation 86.15 m, which serves as outlet to the facility during a storm event greater than 1:100 year.

The above configuration was used to develop a Stage-Storage-Discharge relationship that relates the storativity and outlet capabilities of the proposed facility at various geodetic elevations (refer to Appendix 'F' for copy of this Table). This data (storage-discharge table) was then used as input to the SWMHYMO's ROUTE RESERVOIR command.

A SWMHYMO file, representing the post-development controlled conditions of the HIP, was developed incorporating the storage volume and the outflow capability of the proposed end-of-pipe facility. The following table presents the simulated peak runoff rates for the three (3) hour Chicago design storm under the post-development controlled conditions (refer to Appendix 'G' for SWMHYMO data input and output files), along with those under the four (4) hour - 25 mm storm.

Return Period	Peak Flow Rates (L/s)			
or Storm Depth	Pre-Development	Phase 1 Post-Development (Controlled) ⁽¹⁾		
25 mm	252	127		
2 year	467	194 ⁽²⁾		
5 year	826	359		
10 year	1,097	589		
25 year	1,468	939		
50 year	1,767	1,191		
100 year	2,093	1,531		

Table 5 - SWMHYMO Simulation Results (Post-Development - Phase 1 Controlled Conditions)

Note:

(1) Post-development flow is the sum of flows from the end-of-pipe facility and two uncontrolled Sub-Areas totalling 12.1 ha.

(2) 2 year post-development peak flow less than half the 2-year predevelopment peak flow (233 L/s).

Simulation results presented in Table 5 show that the Phase 1 post-development controlled peak flows will be maintained below pre-development levels for the HIP. Consequently, the water quantity objective defined in Subsections 1.3 and 2.2 will be met under Phase 1.

6.5 Simulation of Phase 2 Post-Development (Controlled) Conditions

Development of Phase 2, as depicted on Figure 4, includes the Future Development Block located in the northeast corner of the HIP. This additional land could be serviced by the previously proposed end-of-pipe, without any modifications to facility size or outlet structure. However, a second inlet would be required in the northeast corner of the facility, which could be designed during the detailed design stage of the Future Development Block.

A SWMHYMO file, representing the Phase 2 post-development controlled conditions of the HIP, was developed incorporating the storage volume and the outflow capability of the proposed end-of-pipe facility. The following table presents the simulated peak runoff rates for the three (3) hour Chicago design storm under the Phase 2 post-development controlled conditions (refer to Appendix 'H' for SWMHYMO data input and output files), along with those under the four (4) hour - 25 mm storm.

Deturn Devied	Peak Flow Rates (L/s)			
Return Period or Storm Depth	Pre-Development	Phase 2 Post-Development (Controlled) ⁽¹⁾		
25 mm	252	73		
2 year	467	156 ⁽²⁾		
5 year	826	457		
10 year	1,097	729		
25 year	1,468	1,051		
50 year	1,767	1,348		
100 year	2,093	1,515		

Table 6 - SWMHYMO Simulation Results (Post-Development - Phase 2 Controlled Conditions)

Note: (1) Post-development flow is the sum of flows from the end-of-pipe facility and one uncontrolled Sub-Area totalling 2.7 ha.

(2) 2-year post-development peak flow less than half the 2 year predevelopment peak flow (233 L/s).

Simulation results presented in Table 6 show that the Phase 2 post-development controlled peak flows will be maintained below pre-development levels for the HIP. Consequently, the water quantity objective defined in Subsections 1.3 and 2.2 will also be met under Phase 2.

6.6 Simulation of the July 1, 1979 Historical Storm Event and Flood Potential

6.6.1 Simulation of the July 1, 1979 Historical Storm Event

In addition to designing the major drainage system to convey the 1:100 year storm event, the performance of both the open ditch system and SWMF was also assessed under the July 1, 1979 historical storm event. This historical storm event is defined as a high volume / low intensity storm event (when compared to the 1:100 year event) which occurred mostly over a three hour period (refer to Table 5.6 in the Ottawa Sewer Design Guidelines). As shown in Table 5.6, the maximum intensity of 106.7 mm/hr only occurred for a 10 minute period (i.e, between the 85 to 95 minute time interval). The 1:100 year storm event intensities used to size the open ditch system were found to exceed the highest intensity of 106.7 mm/hr (refer to Appendix 'A' for 1:100 year Rational Method Sheet) with the exception of the most downstream ditch section (i.e., from Node 19 to Pond) where an intensity of 101.69 mm/hr was rather utilized. If an intensity of 106.7 mm/hr was used, the overall peak flow would increase from 12,814 L/s to 13,430 L/s substantially less than the free-flowing capacity of 52,735 L/s for the proposed ditch configuration. Consequently, the proposed open ditch system has the ability to convey flows generated by the July 1, 1979 storm event.

To supplement the above open ditch analysis, a hydrological analysis was also conducted to assess the performance of the SWMF under the July 1, 1979 storm event. A SWMHYMO file was, therefore, developed for the controlled Phase 2 post-development conditions of the HIP. Simulation results show that the Phase 2 post-development runoff during the July 1, 1979 storm event will be contained within the SWMF with all three of the outlet culverts flowing full in addition to approximately 210 mm of flow depth over the emergency overflow channel (refer to Appendix 'K' for SWMHYMO data input and output files). Therefore, the outlet of the SWMF has sufficient capacity to convey the July 1, 1979 historical storm event via the designated overland flow route without overtopping the banks.

6.6.2 Flood Potential

Draft approval Condition 12 of the draft subdivision conditions by the former Region of Ottawa-Carleton requires that "The owner shall complete a study indicating the extent of potential flooding on the property from Findlay Creek. The study including all models and assumptions shall be to the satisfaction of the South Nation River Conservation Authority." This condition was included as part of the original February 10, 1998 draft conditions (Gloucester File: S-RU-94-03).

Many changes have occurred on-site and adjacent to the site since Condition 12 was included in the draft approval for this site. Improvements to the roadside ditch were made along Rideau Road, immediately adjacent to the site. Surface runoff generated by the lands north of Rideau Road and conveyed to the small tributary located within the HIP site has now been re-directed toward the northeast corner of the site where the existing 3.8 m wide x 2.8 m high multi plate arch culvert crosses Rideau Road. A

municipal drainage report was prepared by Stantec Consulting in 2004 for this section of Findlay Creek which assessed the overall geomorphological conditions and provided recommendations for future maintenance. In addition, the SCSS conducted a flood hazard analysis. The 100 year flows from the Stantec model were plotted along the creeks modelled. Floodlines were shown in Figure 6.2.3 of the report. No floodlines were indicated for the section of Findlay Creek adjacent to the HIP site.

As indicated previously in the Section 4 of this Report, as much as 5.5 m of construction fill has been added to the site since 1994. The placed fill material on the site has eliminated the natural low lying areas and raised the site grade approximately 4.5 m above the top of creek bank. The current site grades will be maintained as a minimum for the development of the HIP subdivision. Therefore, we have no concerns about flooding on the property from Findlay Creek given the above changes to the site and improvements to the adjacent drainage network. Consequently, Condition 12 of the draft approval should be considered as being satisfied on the basis that this condition is out of date based on the current site conditions.

7.0 EROSION AND SEDIMENT CONTROL MEASURES DURING CONSTRUCTION

During construction of the roadway, the collection systems (i.e., ditches, culverts, sewers, etc.) and end-of-pipe facility, appropriate erosion and sediment control measures, as outlined in MNR's "Guidelines on Erosion and Sediment Control for Urban Construction Sites," will be implemented to trap sediment on site. To ensure proper implementation, the proposed measures have been incorporated onto Drawing ESC (Drawing entitled "Erosion and Sedimentation Control Plan"). The measures shown on this Drawing were developed based on topography and site constraints. As a minimum, the following measures will be implemented during construction:

- Supply and installation of straw bale flow check dams (as per OPSD 219.180) at the upstream end of each culvert. Proposed locations of straw bale barriers are indicated on Drawing ESC.
- Supply and installation of topsoil and hydroseed along the entire open ditch system once grading has been completed for a section. Mulching will be carried out immediately after hydroseeding. This will allow for immediate bank stabilization of the system and will prevent sediment ladden from occurring from exposed ditch surfaces.

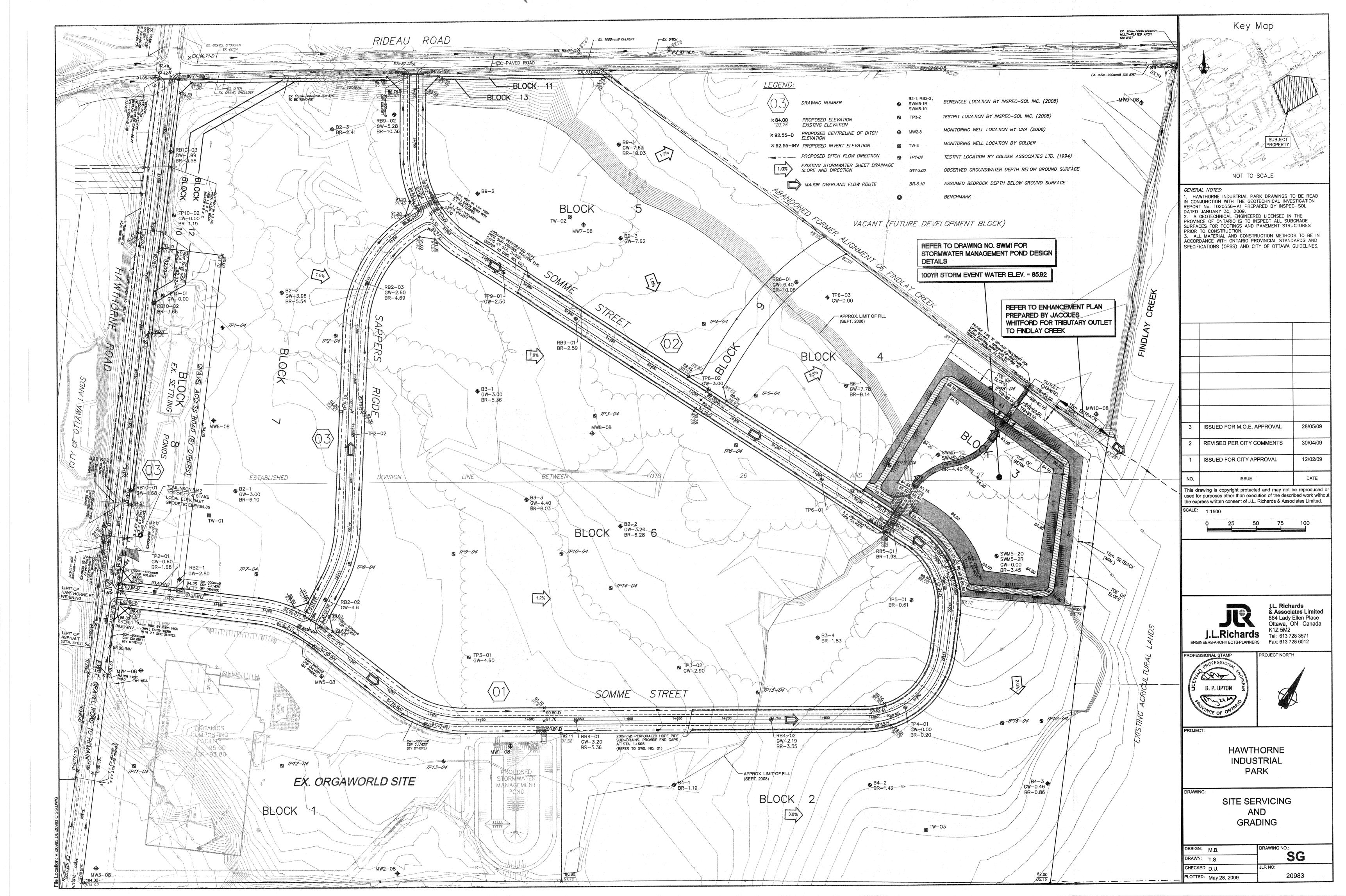
-20-

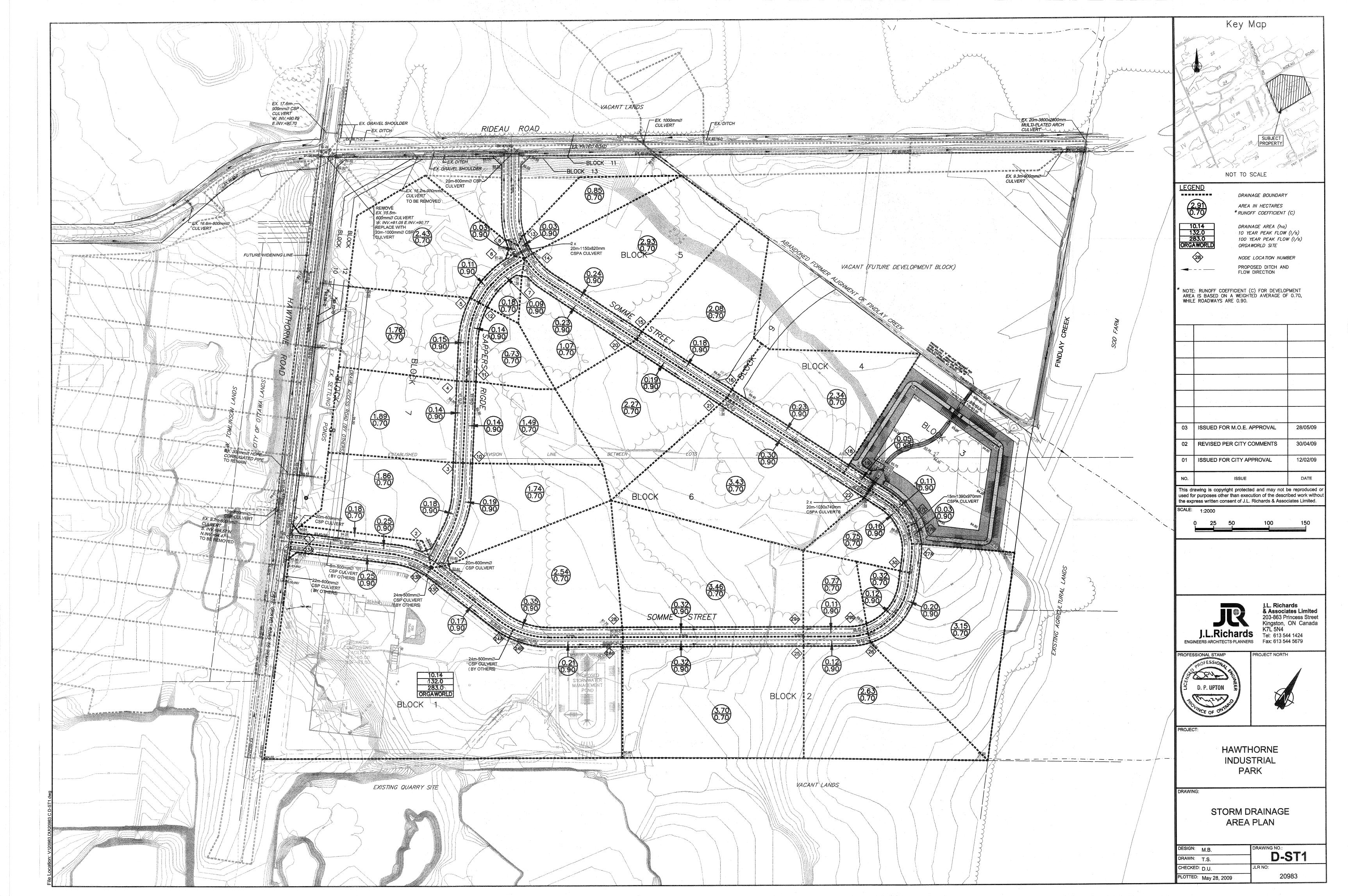
- Supply and installation of light duty silt fences (as per OPSD 219.110) at the toe of slope surrounding the proposed stormwater management pond (refer to Drawing ESC for details). It is recommended that silt fences also be used to enclose borrow and stockpile areas resulting from topsoil stripping activities or any excavating activities; locations to be determined in the field during grading operations.
- If dewatering and pumping operations become necessary, filtration is proposed using sediment dewatering bags prior to discharge off-site.

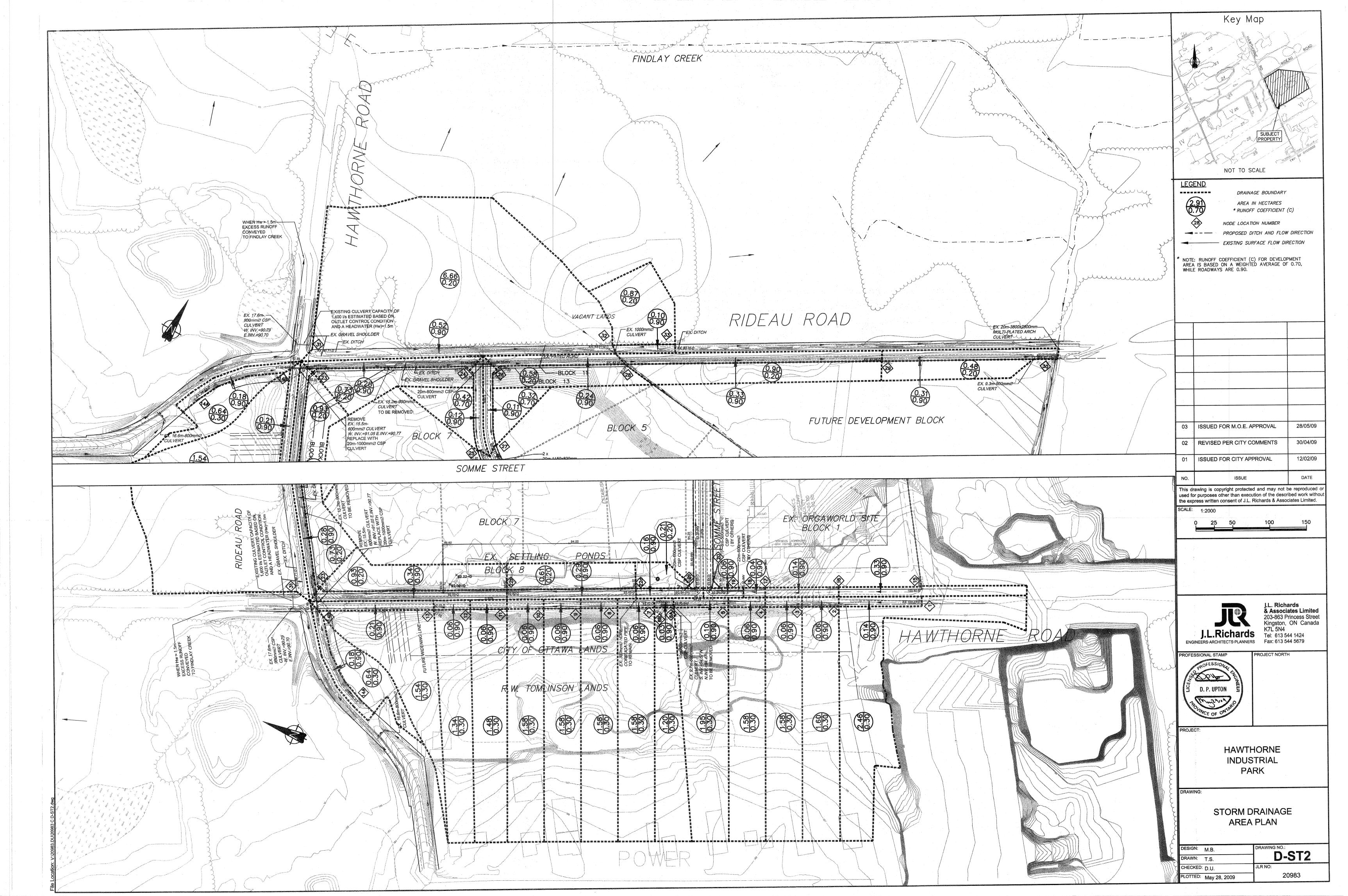
All control measures will be carried out in accordance with the following documents:

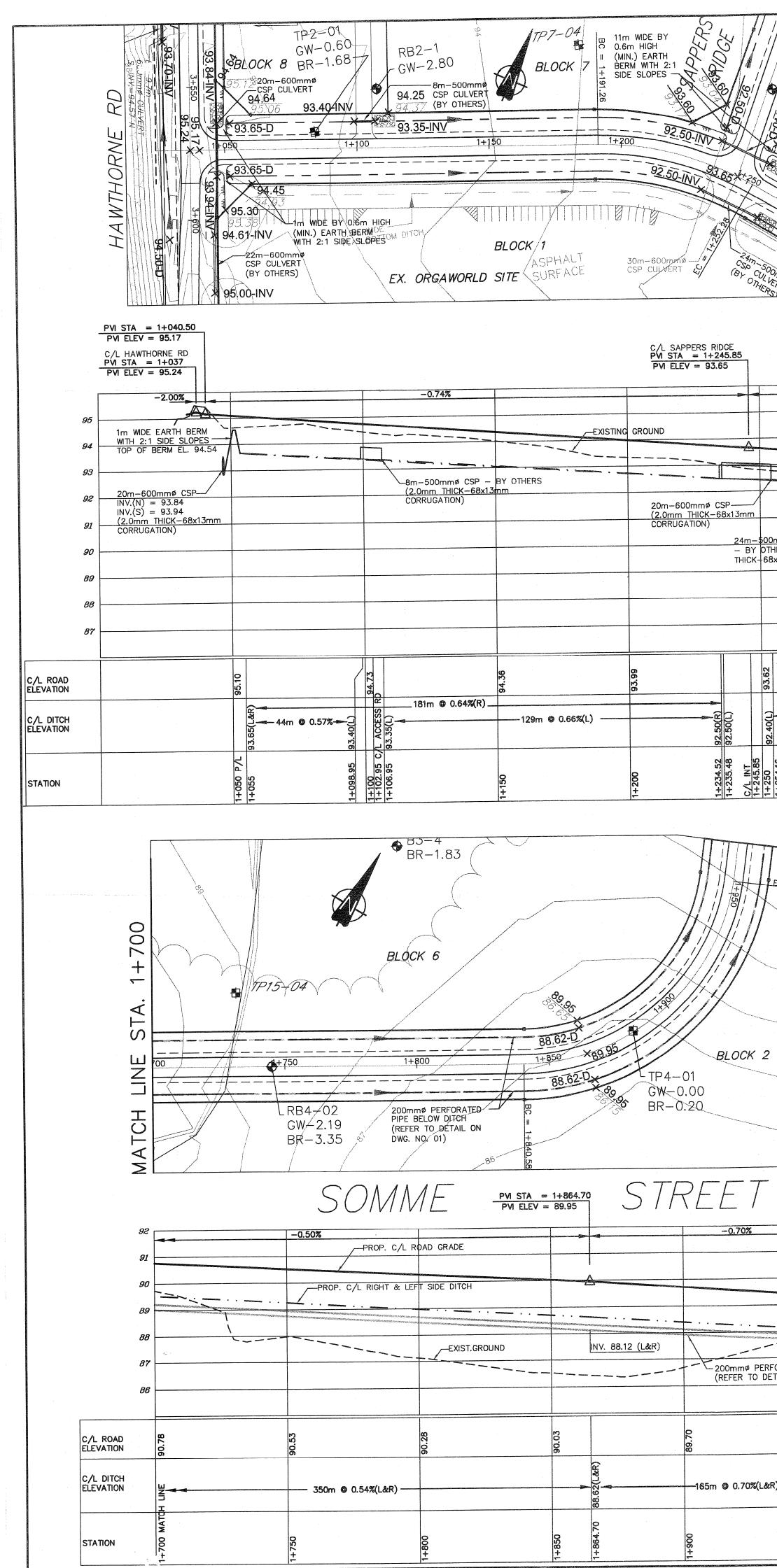
- "Guidelines on Erosion and Sediment Control for Urban Construction Sites" published by Ontario Ministries of Natural Resources, Environment, Municipal Affairs and Housing, and Transportation and Communication, Association of Construction Authorities of Ontario, and Urban Development Institute, Ontario, May 1987.
- ii) "Erosion and Sediment Control" Training Manual by Ministry of Environment, Spring 1998.
- iii) Applicable Regulations and Guidelines of the Ministry of Natural Resources. As a minimum, during the construction of the conveyance systems, the following Stormwater Management Practices will be used:

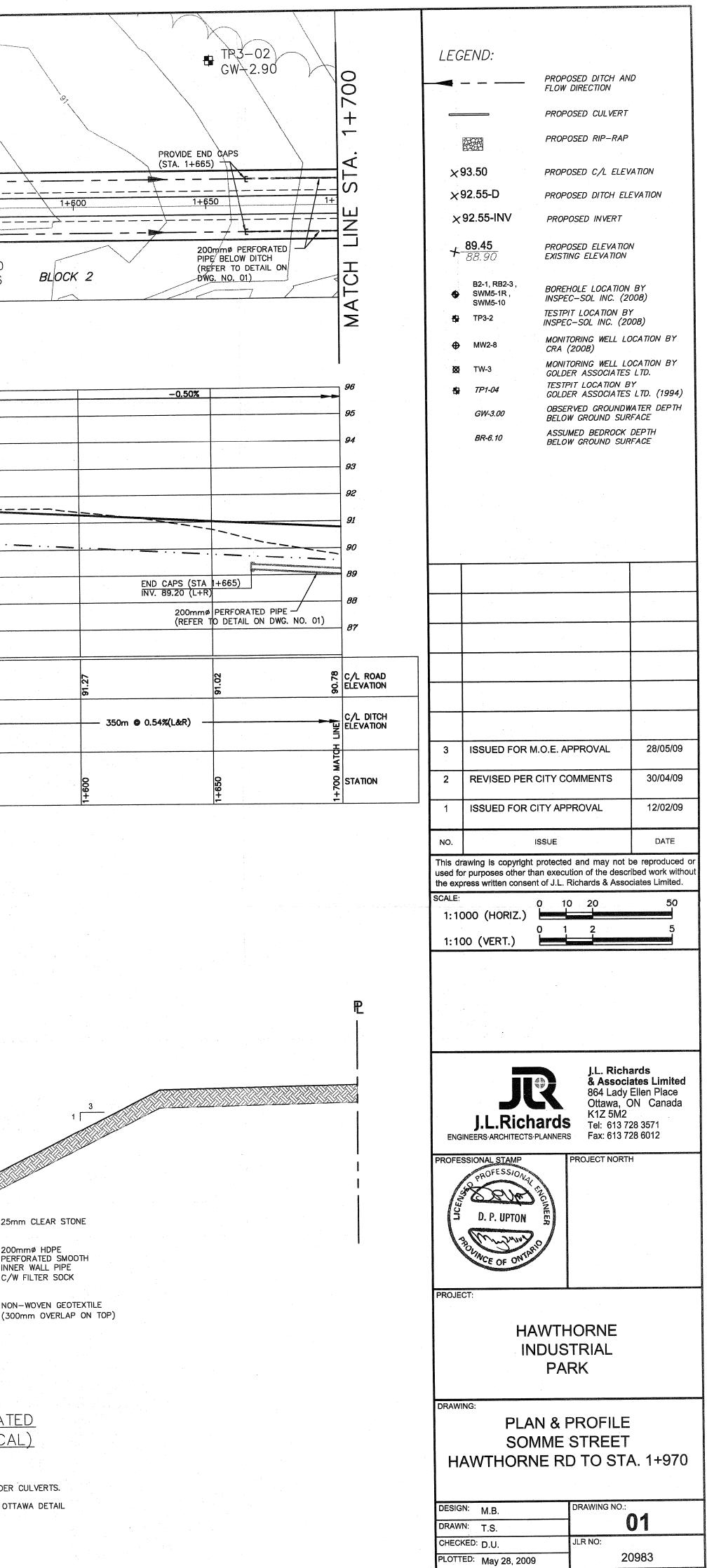
Any stockpiled material will be kept on flat areas during construction, well away from any natural flow paths. In the event that the stockpile is placed in other areas where potential washoff to the conveyance system is expected, silt fences will be installed to enclose the materials and prevent any washoff to the conveyance system.

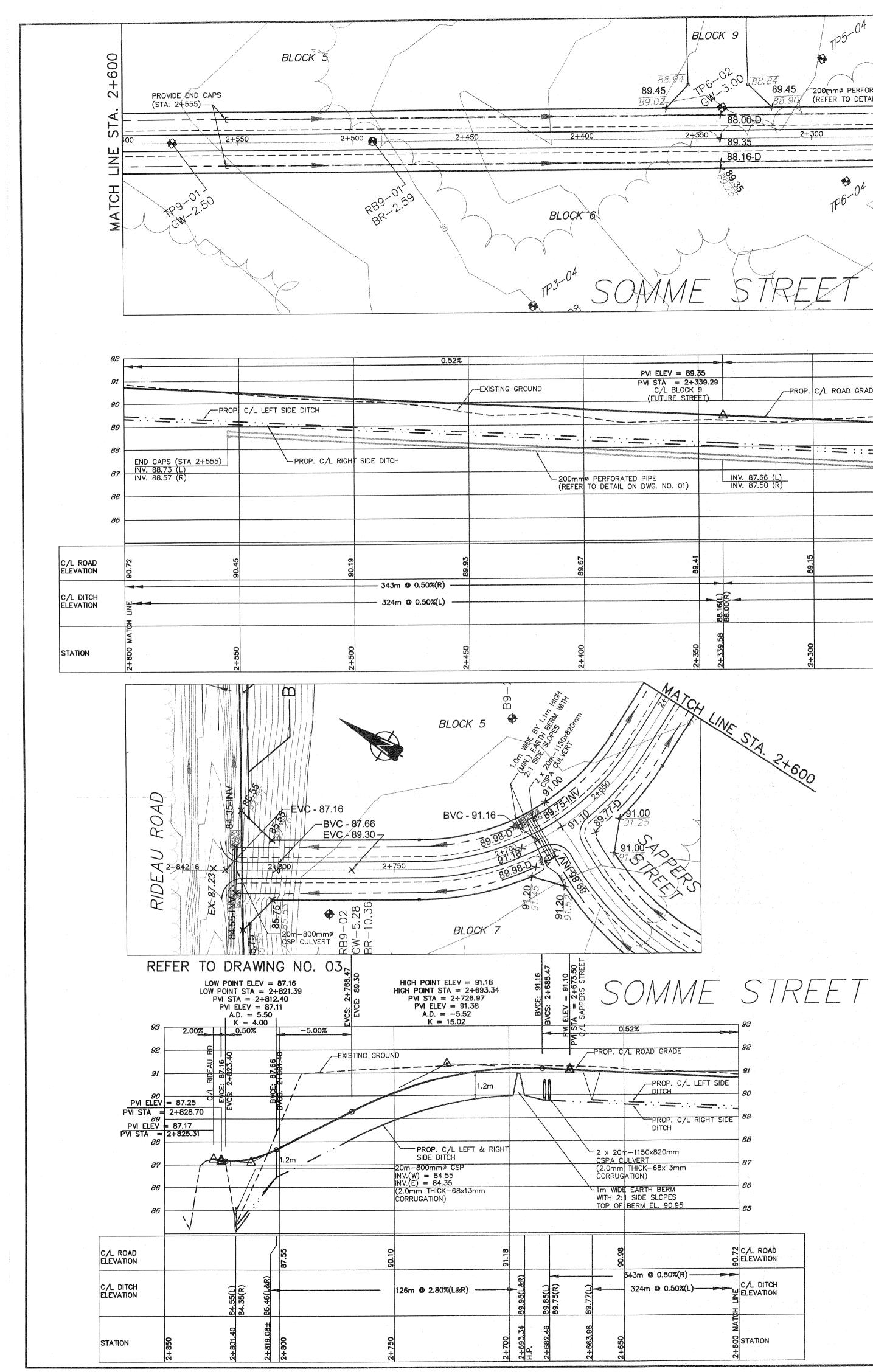

8.0 SUMMARY AND CONCLUSION


- 1. This Stormwater Management Report has been prepared to present a complete approach in achieving the stormwater criteria developed as part of the approved document entitled "Shields Creek Subwatershed Study."
- Stormwater servicing for the proposed HIP has been designed using the dual drainage concept. Storm servicing will be carried out with the use of an open ditch/culvert system. The open ditch system has been designed to convey the 1:00 year peak flow rates. Similarly, the culverts have been sized to convey the 1:10 year flow without any overtopping.
- 3. To fulfil the design criteria associated with water quality (as per the SCSS), it is proposed to provide both on-site oil/grit separators and infiltration storage volume within the roadside open ditch system. As per the requirements set out in Table 3.2 of the MOE SWMPDM, a total infiltration volume of 62.5 m³ is required under Phase 2 to achieve a "normal" level of protection (i.e., TSS removal of 70%).
- 4. Water balance and infiltration requirements were not implemented due to existing site conditions and proposed industrial use development.
- 5. The 2-year post-development peak flow will be controlled to 50% of the 2-year pre-development peak flow. Therefore, meeting the SCSS recommendations associated with erosion potential.
- 6. Simulation results presented in Tables 5 and 6 show that proposed infrastructure will maintain peak flows below pre-development levels for both Phase 1 and Phase 2 of the HIP. Consequently, this design criterion (peak flow control) will be fulfilled.
- 7. A detailed Erosion and Sedimentation Control Plan has been prepared to reduce the impact of construction activities on Findlay Creek.

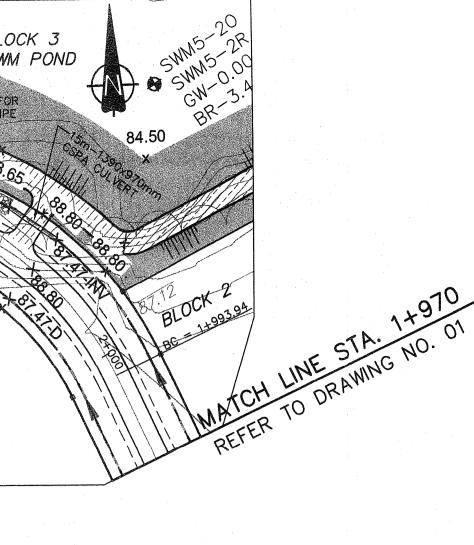

R.W. Tomlinson Limited


Prepared by: Mark Buchanan, E.I.T. NM. PROFESSIONA LICENSE ENGINEER Ma J. S. G. FORGET ONTARIO POLINI Reviewed by: Reviewed by: J.S. Guy Forget, P.Eng.





RB2-W W-GW-G				TP3- GW-	-01 4.60		BLOCK 6
93.60 92.730 550 93.60 93.60 93.60 93.60 93.60 93.60 93.60 93.60 93.60	1m WIDE FLAT BOTTO	M DITCH	1+400 1+400	1+45 D-INV		97. → 90.50-D 1+500 ×91.70 90.50-D	550
00 MERTO NERTO NERTO NERTO NERTO NERTO NERTO NERTO NERTO NERTO NE	MO * 1 * 1 ·	30m - 2 x - 2 600mmø CSP CULVERTS . BLOCK 1	-24m-500mmø CSP CULVERT (BY OTHERS)		RLD STITE		92.11 LRB4-01 91.52 GW-3.20 BR-5.36
			-0.73%		PVI	STA = 1+514.70 VI ELEV = 91.70	
DOmmø CSP		24m-500mmø CSP - - BY OTHERS (2.0mm THICK-68x13mm CORF		PROP. C/L RO			
DOmmø CSP THERS (2.0mm 58x13mm CORRUGATION)		THICK-68x13mm CORF		PROP. C/L RIGHT	SIDE DITCH		
92.40(L) 93.02	ග හැ 110m @ 0.82%(F		61 91.50(R) 4 671 91.40(R) 4 92.53	260m @ 0.73%(L)	[- Si 120m @ 0.75%(R)	70 90.50(L&R)	91.52
142000000000000000000000000000000000000	O DRAWING NO). 02	1+372.61 1+394.671 1+400		1+450	1+500	1+550
FC = 1+954.86	VL SIA. 1-	F970					
2				EDGE OF SHOULDER			
					3 1	100mn AND H	YDROSEED
g	92 91 90					150mm	25n 200 PER INN C/V (30
RFORATED PIPE DETAIL ON DWG NO. 01)	39 38 37 36						TCH PERFORAT
® &R)	/L ROAD LEVATION /L DITCH LEVATION					<u>PIPE INSTALL</u> I <u>NOTE:</u> 1. SUB-DRAIN TO BE NO	<u>ATION (TYPICA</u> N.T.S. DN-PERFORATED PIPE UNDER RUCTED AS PER CITY OF OTT
1+950 1+970 MATC	TATION						



85

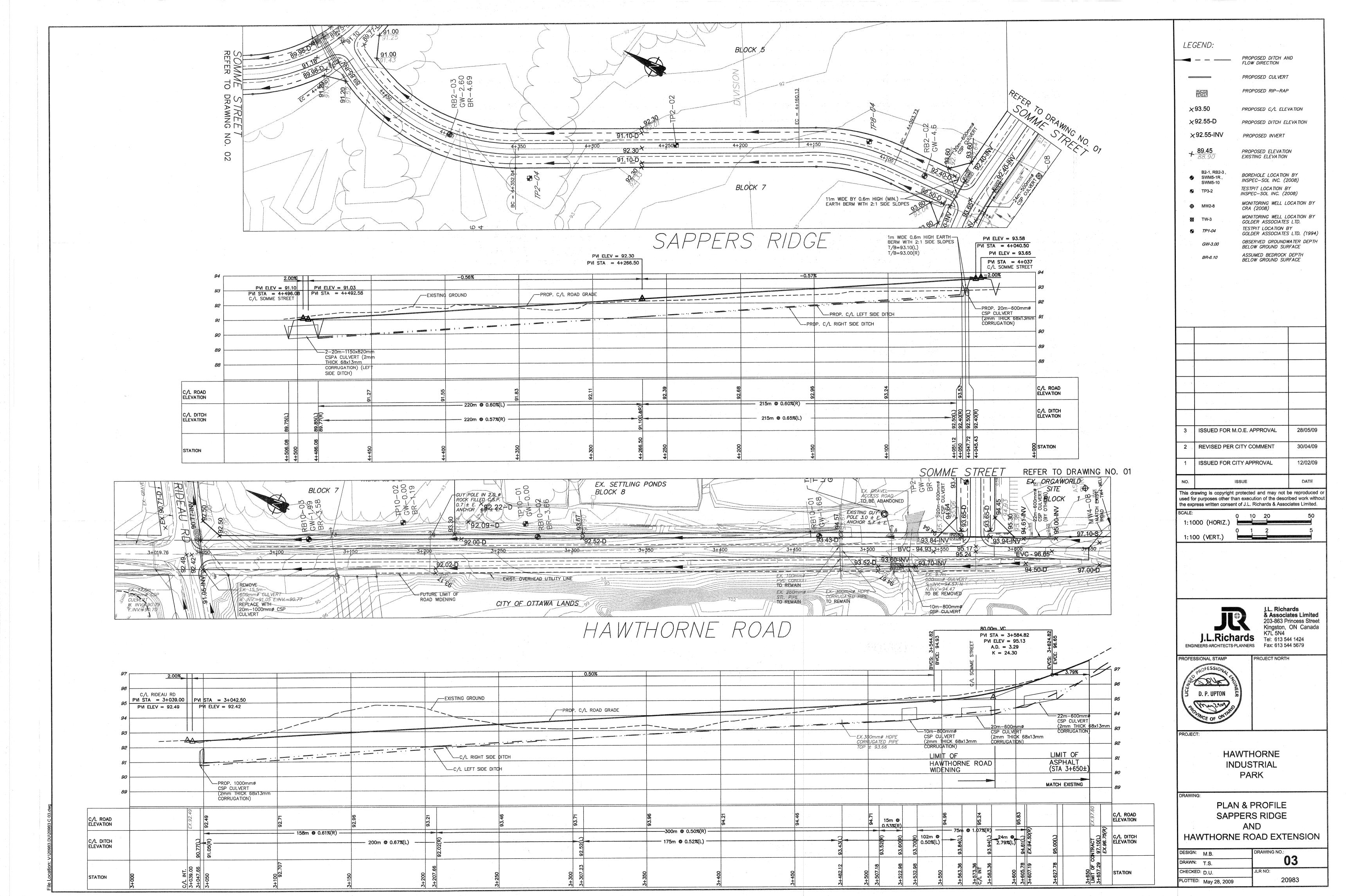
C/L ROAD

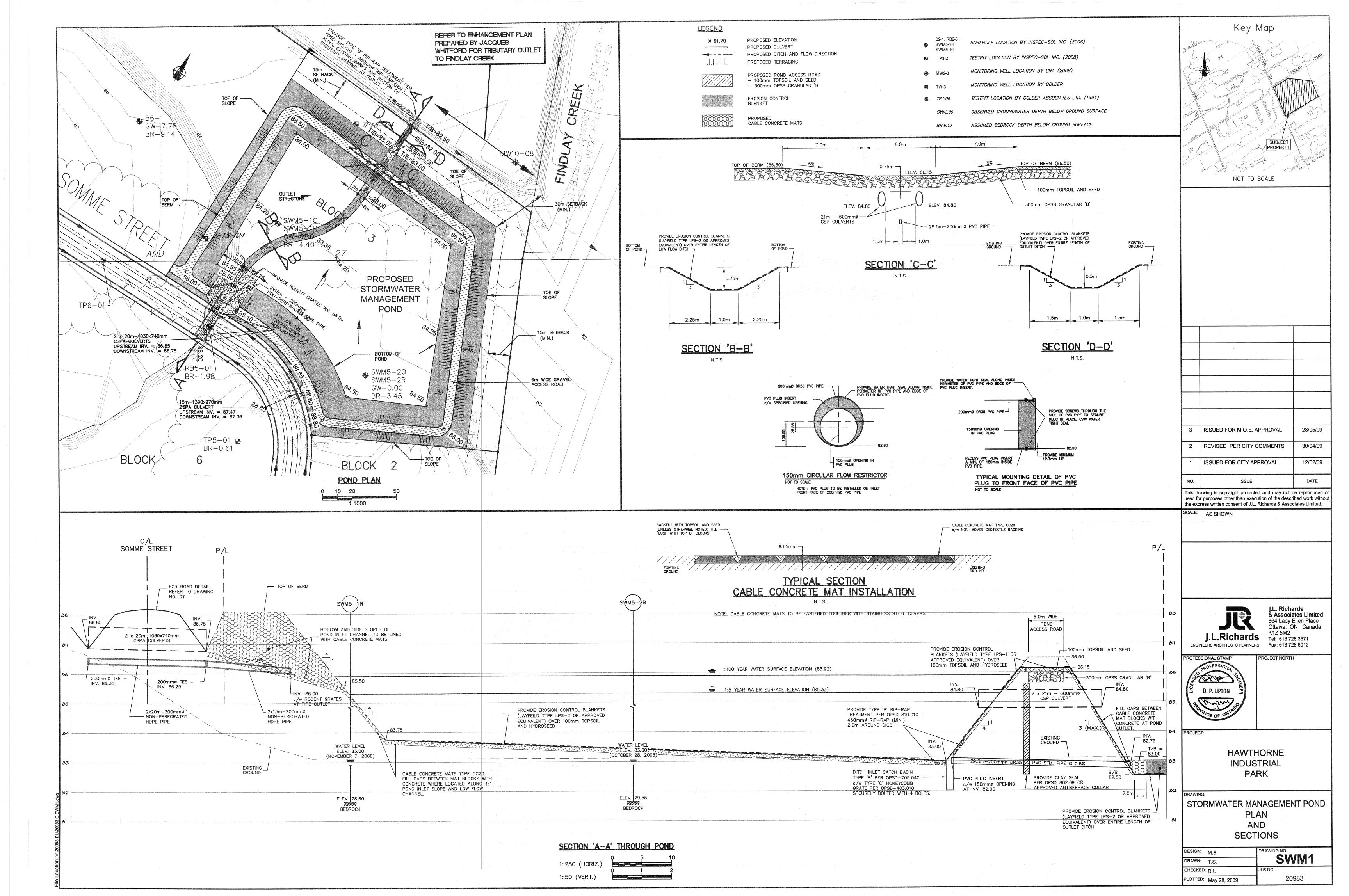
STATION

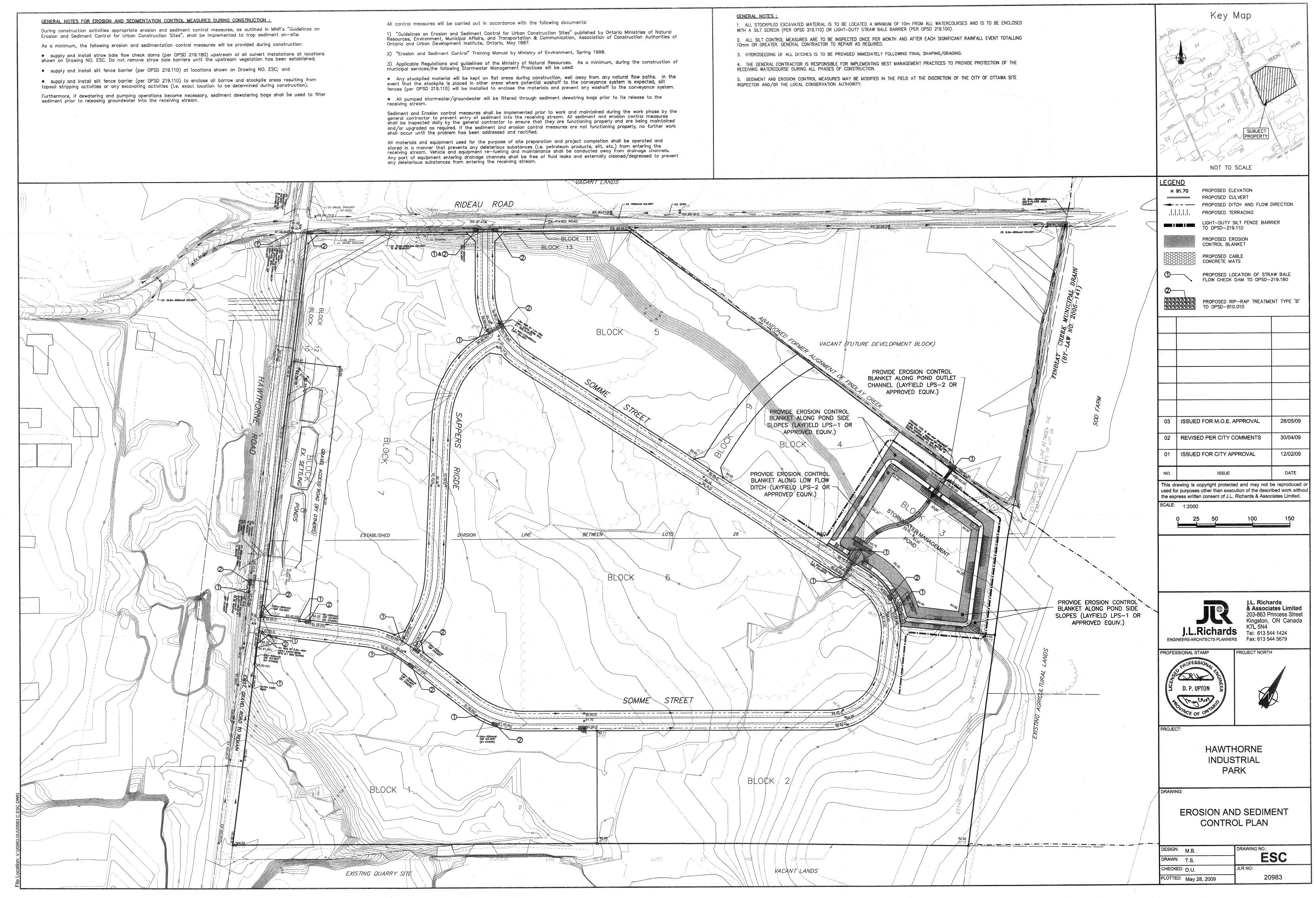
BLOCK 9 P4 TP6-3.00 88.84 89.45 200mmø PERFORATED PIPE BELC (REFER TO DETAIL ON DWG. NO.	DW DITCH	84.55 85.50 85.00	83.75 2 × 23m 200mmø NON-PERFORATED PIP 84.50 85.50 F PROVIDE CONNEC PERFOR	SWM POND TEE TIONS FOR ATED PIPE	$+ 34.50 \\ SWM5-2R \\ SWM5-2R \\ SWM5-00 \\ GW-3.4 \\ BR-3.4 \\ BR-3.4$
		86.75-INV		88.65 44 CU 40	×
2+350 2+300 2+2	50 2+200	2+150		MAR Contraction	onn All
<u> </u>		86.85-IN		1950 XXX 60	
				8	Here and the second sec
TP6-04	TP6-01	2 x 20m-1030x740mm CSPA CULVERTS	88-301 R85-1.98 BR-1.98	888 × 198 × 198 × 198 8	BLOCK 2 BLOCK
ME STREET			TP5-01 BR-0.	61	BLC 10992
					-0.70%
	0.50%	PVI ELEV = 88.20	-0.75% PVI EI	LEV = 88.80	
V = 89.85 = 2+339.29 BLOCK 9 RE STREET)PROP. C/L ROAD GRADE		PVI STA = 2+109.74		Service and a service of the service	91
BLOCK 9 RE_STREET)PROP. C/L ROAD GRADE			2 x 20m-1030x740mm CSPA CULVERTS		
			CORRUGATION)	n	89
		1	WA		IN TRANSPORTANE AND
INV. 87.66 (L) INV. 87.50 (R)				-15m-139	87 90x970mm
0. 01) INV. 87.50 (R)		an an anna san an chuir an		CSPA CU (2.0mm	JLVER THICK–68x13mm ATION)
		TEES (STA 2+115) INV. 86.35 (L) INV. 86.25 (R)			85
		INV. 86.25 (R)	TEES (STA 2+105) INV. 86.35 (L) INV. 86.25 (R)	200mmø PER (REFER TO DE	FORATED PIPE ETAIL ON DWG. NO. 01)
<u>15.15</u> 88.90	38.65	38.40	88.27	88.65	ති C/L ROAD ස්විත්රිතා
	230m @ 0.54%(R)		→ 72m @ 0.71%(R)	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	.70%(u&R)
				· · · · · · · · · · · · · · · · · · ·	
				87.	
200 00 00			.74	.74	
2+350 2+339.58 2+339.58 2+339.58 2+350 2+250	2+200	+150	2+109.74 86. 2+100 2+100		H 4000 000 000 000 000 000 000 000 000 0

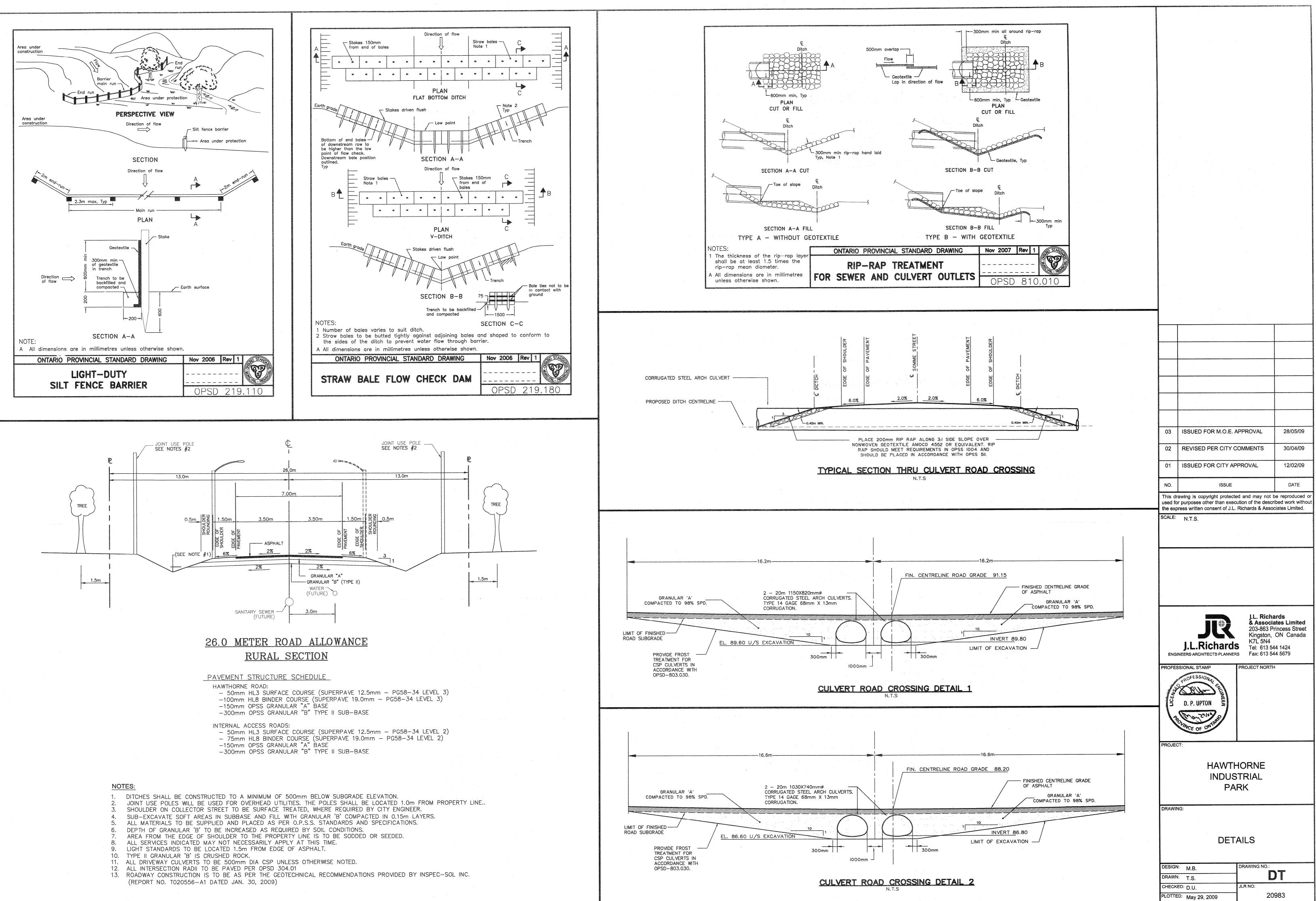
LEGEND:	PROPOSED DITCH AN	D.	
	PROPOSED DITCH AND FLOW DIRECTION		
	PROPOSED CULVERT		
	PROPOSED RIP-RAP		
×93.50	PROPOSED C/L ELEVATION		
×92.55-D	.55-D PROPOSED DITCH ELEVAT		
+ <u>89.45</u> 88.90	PROPOSED ELEVATION EXISTING ELEVATION		
B2-1, RB2-3 , SWM5-1R , SWM5-10	BOREHOLE LOCATION BY INSPEC-SOL INC. (2008)		
🖶 ТР3-2	TESTPIT LOCATION BY INSPEC-SOL INC. (20	08)	
⊕ MW2-8	MONITORING WELL LOCATION BY CRA (2008) MONITORING WELL LOCATION BY		
32 9 TW-3 ∰ <i>TP1-04</i>	GOLDER ASSOCIATES LTD. TESTPIT LOCATION BY		
GW-3.00	GOLDER ASSOCIATES LTD. (1994) OBSERVED GROUNDWATER DEPTH		
BR-6.10	BELOW GROUND SURFACE ASSUMED BEDROCK DEPTH BELOW GROUND SURFACE		
		/	
3 ISSUED FOR M.O.E. APPROVAL 28/05/09			
2 REVISED PER CITY COMMENTS		30/04/09	
1 ISSUED FOR C	1 ISSUED FOR CITY APPROVAL		
NO.	ISSUE	DATE	
used for purposes other th	protected and may not b nan execution of the descri nt of J.L. Richards & Assoc	bed work without	
SCALE:			
1:100 (VERT.)	0 1 2	5	
1:100 (VERT.)		an a	
J.L. Richards			
& Associates Limited 864 Lady Ellen Place Ottawa, ON Canada			
J.L.Richards K1Z 5M2 Tel: 613 728 3571			
ENGINEERS ARCHITECTS	PLANNERS Fax: 613 72 PROJECT NORTH		
a OFESSION			
A BUN IN			
Ma 29142	The same		
BOWNCE OF ONTAR			
PROJECT:			
HAWTHORNE INDUSTRIAL			
PARK			
	PARK		
	PARK	, newsymmetry a ference and a ference of the ferenc	
DRAWING:	N & PROFILE	net and a state of the state of t	
PLA SON	N & PROFILE IME STREET		
PLA SON	N & PROFILE	ROAD	
PLA SON	N & PROFILE IME STREET	ROAD	

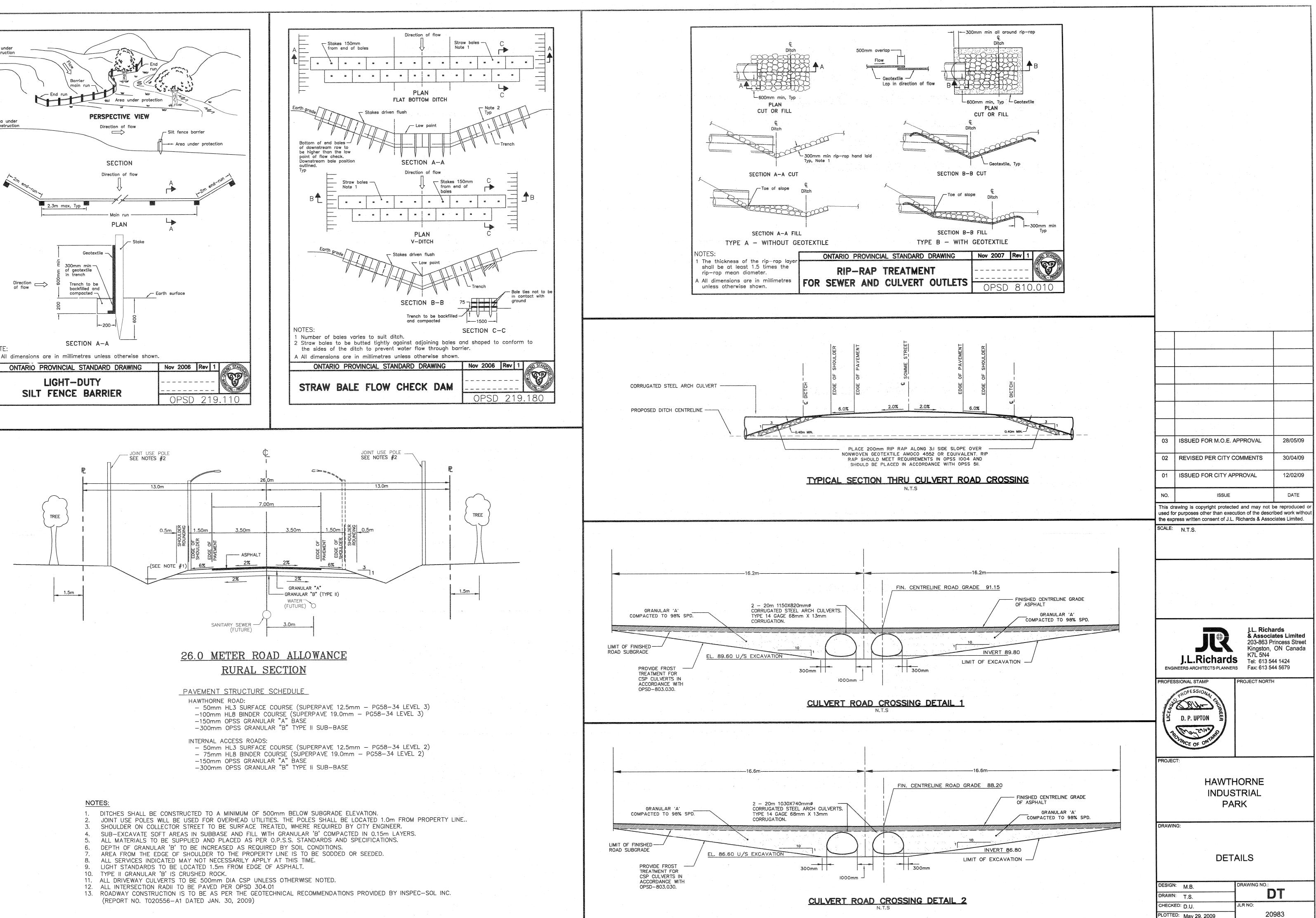
02


20983


JLR NO:


DRAWN: T.S.


CHECKED: D.U.


PLOTTED: May 28, 2009

APPENDIX 'A'

RATIONAL METHOD DESIGN SHEETS (1:10 year and 1:100 year Design Sheets)

1:10 year Ottawa International Airport IDF Curve

Hawthorne Industrial Park

City of Ottawa

JLR 20983 February 2009 (Revised April 2009)

	Increas	e Runoff	Coefficie	nt by	0.0%																		1							
	NC	DES			DRAINAG	SE AREA			PĒAK F	LOW GEN	VERATIO	N				OPEN I	DITCH/SV	VALE DAT	Α			CUL	VERTS SIZ	ZED UNDER	1:10 YEAF	STORME	VENT	FLOW	U/S	D/S
DETAILS			Area	at C of				2.78AR	2.78AR	TIME	INTENS.	PEAK FL.	BW	D _{10yr}	D _{max}	SS	SLOPE	Q _{10yr}	Q _{100yr}	VEL.	LENGTH	No. of	DIA	BxD	INLET	OUTLET	HW	TIME	Inv	In
	FROM	TO	0.70	0.90	SUM(A)	SUM(A*C)	TOTAL		СЛМ	min.	mm/hr	l/s	m	m	m	X:1	%	l/s	1/s	m/s	m	Barrels				CONTROL		(min)	(m)	(m
	1110		(ha)	(ha)		, í	A*C					"0		•••		74.1	,,,,					Darrolo	(mm)	(m)			(m)	()	(,	
NORTHERN CATCHMENT AREA																										L				<u> </u>
			4.90	0.18	2.04	1.46	1.46	4.07	4.07	45.00	97.85	398.2	0.00	0.42	1.20	3.00	0.50	424.2	6973.0	0.80	136.80			<u> </u>		<u> </u>		0.04	00.50	
WEST SIDE SAPPERS RIDGE	2	3	1.86 1.89	0.18	2.04	1.40	2.92	4.07	8.11	15.00	88.22		0.00	0.42	1.20	3.00	0.50	904.2	8856.1	1.16	136.60	·						2.84 1.60	92.50 91.82	
WEST SIDE SAPPERS RIDGE	4	5	1.76	0.14	1.91	1.36	4.28	3.79	11.90	17.84		995.9	0.00	0.58	1.20	3.00	0.50	1011.3	7029.1	1.10	112.85		+		+			1.88	90.93	
WEST SIDE SAPPERS RIDGE	5	6	2.43	0.11	2.54	1.80	6.08	5.00	16.90	21.32		1334.4	0.00	0.65	1.20	3.00	0.62	1513.4		1.19	82.79		+					1.16	90.36	
	<u> </u>		2.40		2.04		0.00	0.00	10.00	22.47	10.00	1004.4		. 0.00	1.20	0.00	0.02	1010.4		_ 1.10	02.10							1.10	00.00	00.
RTH ENTRANCE TO SOMME STREET	8	6		0.03	0.03	0.03	0.03	0.08	0.08	15.00	97.85	7.3	0.00	0.20	1 20	3.00	1 30	94.9	11276.7	0.79	10.00							0.21	89.98	80 (
THENTRANCE TO SOMME STREET	0			0.05	0.03	0.03	0.03	0.08	0.00	15.21	97.00	1.5	0.00	0.20	1.20	3.00	1.30	54.5	112/0.7	0.79	10.00						1	0.21	09.90	- 09.0
	-			0.00	0.00	0.00	0.44	0.00	46.07	00.47	76.04	1005.0	· · · · · · · · · · · · · · · · · · ·				0.50				00.00	_		1 15 - 0.00		VEO	0.75	0.00	00.07	
CULVERT CROSSING	6	14		0.00	0.00	0.00	6.11	0.00	16.97	22.47 22.85	76.34	1295.8				· · · · ·	0.50		+		20.00	2		1.15 x 0.82	NO	YES	0.75	0.38	89.85	89.7
														· .																
ORTH PORTION SOMME STREET	13	14	0.85	0.03	0.88	0.62	0.62	1.73	1.73		97.85	169.2	0.00	0.30	1.20	3.00	2.30	372.0	14999.4	1.38	10.00					L		0.12	89.98	89.
										15.12			, i.						· · · · · · · · · · · · · · · · · · ·						· · · · ·	<u> </u>			{ '	
ORTH PORTION SOMME STREET	14	15	2.93	0.24	3.17	2.27	8.99	6.30	25.00	22.85	75.52	1888.2	0.00	0.74	1.20	3.00	0.50	1926.6	6992.8	1.17	184.04				ł			2.62	89.75	88.1
ORTH PORTION SOMME STREET	15	16	2.08	0.18	2.26	1.62	10.61	4.50	29.50	25.47	70.36	2075.4	0.00	0.77	1.20	3.00	0.57	2291.4	7480.8	1.29	145.08				1	1 ·		1.88	88.83	88.
ORTH PORTION SOMME STREET	16	18	2.34	0.23	2.57	1.85	12.46	5.13	34.63	27.35	67.11	2323.9	0.00	0.80	1.20	3.00	0.51	2399.6	7074.8	1.25	185.66							2.48	88.00	87.0
ORTH PORTION SOMME STREET	18	19	0.00	0.05	0.05	0.05	12.50	0.13	34.75	29.82 30.31	63.30	2199.9	0.00	0.76	1.20	3.00	0.72	2476.8	8372.8	1.43	41.86		<u> </u>					0.49	87.05	86.
· · · · · · · · · · · · · · · · · · ·								· · · ·		30.31																			 '	├──
EAST SIDE SAPPERS RIDGE	9	10	1.74	0.19	1.93	1.39	1.39	3.86	3.86	15.00		378.0	0.00	0.41	1.20	3.00	0.50	399.2		0.79	147.87							3.11	92.40	
EAST SIDE SAPPERS RIDGE	10		1.49	0.14	1.63	1.17	2.56	3.25	7.11	18.11		622.0	0.00	0.49	1.20	3.00	0.66	735.9	8019.2	1.02	111.04	· · ·	<u> </u>		l			1.81	91.66	
EAST SIDE SAPPERS RIDGE	11	12	0.73	0.14	0.87	0.64	3.20	1.77	8.88	19.92	82.40	732.0	0.00	0.52	1.20	3.00	0.55	785.5	7304.8	0.97	104.49				ļ			1.80	90.93	
EAST SIDE SAPPERS RIDGE	12		0.18	0.09	0.27	0.21	3.40	0.58	9.46	21.72	78.02	738.2	0.00	0.49	1.20	3.00	0.81	818.5		1.14	72.55		<u> </u>					1.06	90.36	
	7 20	20	1.07	0.23	1.30	0.96	4.36	2.66	12.12	22.79	75.66	916.9	0.00	0.57	1.20	3.00	0.50	956.8	6966.1	0.98	177.39				· · · · ·			3.01	89.77	
ORTH PORTION SOMME STREET ORTH PORTION SOMME STREET	20	21 22	2.27 3.43	0.19	2.46	1.76 2.67	6.12	4.89	17.01 24.44	25.80	69.76 65.80	1186.8 1608.1	0.00	0.62	1.20	3.00	0.50	1200.1	6981.9	1.04	147.49 232.84							2.36	88.89	
ORTH PORTION SOMME STREET	21	- 22	3.43	0.30	3.73	2.07	8.79	7.43		31.40	05.80	1000.1	0.00	0.70	1.20	3.00	0.56	1759.0	7404.4	1.20	232.84						<u> </u>	3.24	88.16	- 86.0 •
SOUTHERN CATCHMENT AREA					•																		-						 !	┣──
OUTH PORTION SOMME STREET	23Å	23B	0.00	0.25	0.25	0.23	0.23	0.63	0.63	15.00	97.85	61.2	0.00	0.20	1.20	3.00	0.64	66.3	7883.5	0.55	181.00			· · · · · · · · · · · · · · · · · · ·	<u> </u>	1		5.46	93.65	92.5
CULVERT CROSSING	23B	23C		0.00	0.00	0.00	0.23	0.00	0.63	20.46	81.05	50.7					0.42				24.00	1	500		NO	YES	0.33	1.55	92.50	
OUTH PORTION SOMME STREET	23C	24A	0.00	0.17	0.17	0.15	0.38	0.43	1.05	22.00	77.38	81.3	0.00	0.22	1.20	3.00	0.82	97.0	8946.1	0.67	110.00							2.74	92.40	
CULVERT CROSSING	24A	24B		0.00	0.00	0.00	0.38	0.00	1.05	24.75		75.3					0.42				24.00	1	500		NO	YES	0.34	1.04	91.50	
OUTH PORTION SOMME STREET	24B	24C	0.00	0.21	0.21	0.19	0.57	0.53	1.58	25.79	69.78	110.0	0.00	0.25	1.20	3.00	0.70	126.0	8258.2	0.67	142.00							3.52	91.40	90.4
ORGAWORLD - SITE	U/S	24C	1:10 year p	eak flow = 1	1 32 L/s, see Ta	able 4 of Orgaworld	l Stormwater Si	te Managem	ent Plan, Se	i pt. 2008		132.0													1					<u> </u>
																			· .						·					
OUTH PORTION SOMME STREET				0.32		2.88	3.44	8.00			64.05		0.00			3.00	0.54		7289.5	0.97	244.84		<u> </u>			ļ	· · · · ·		90.41	
OUTH PORTION SOMME STREET	25					1.95	5.39				58.41		0.00			3.00	0.51		7041.5		90.75				· · · · ·		──┤			
OUTH PORTION SOMME STREET	26		3.15 0.00			2.39 0.03	7.78 7.81				56.65 54.29		0.00			3.00	0.65		7970.4	<u>1.19</u> 1.18	157.06 20.00		<u> </u>				┼───┤		88.62	
CULVERT CROSSING		27B 27C	0.00	0.03	0.03	0.03	7.81				54.29		0.00	0.01	1.20	3.00	0.65 0.73	1312.4	7973.8	1.18	20.00	······-		1.39 X 0.97	YES	NO	0.87	0.28	87.60	
CORNER OF POND	27B 27C		0.00			0.00	7.88				54.00		0.00	0.65	1 20	3.00	0.73	1622.0	8324.0	1 28	72.00			1.39 × 0.97			0.07		87.47 87.36	
			0.00	<u> </u>			1.00	V.4.V	21.00	38.67	00.70	1017.2	0.00	0.00	1.20	0.00	<u></u>	1022.0	0027.0	1.20	12.00		†			†		0.34	01.00	00.
				ľ															1				1.							<u> </u>

DATE : 5/27/2009

OPEN DITCH/CULVERT DESIGN SHEET

Prepared by: M. Buchanan, E.I.T.

J.L. RICHARDS AND ASSOCIATES LIMITED, Consulting Engineers, Architects and Planners

1:10 year Ottawa International Airport IDF Curve

Hawthorne Industrial Park

City of Ottawa

JLR 20983 February 2009 (Revised April 2009)

	NO	DES			DRAINAC	SE AREA			PEAK F	LOW GE	NERATIO	N				OPEN	DITCH/SV	NALE DAT	A			CUL	VERTS SI	ZED UNDER	1:10 YEAF	R STORM E	VENT	FLOW	U/S	D/
DETAILS	1		Area a	at C of			TOTAL	2.78AR	2.78AR	TIME	INTENS	. PEAK FL.	BW	D _{10yr}	D _{max}	SS	SLOPE	Q _{10yr}	Q _{100yr}	VEL.	LENGTH	No. of	DIA	BxD	INLET	OUTLET	HW	TIME	Inv	In
	FROM	то	0.70	0.90	SUM(A)	SUM(A*C)	A*C		СОМ	min.	mm/hr	l/s	m	m	m	X:1	%	l/s	l/s	m/s	m	Barrels			CONTRO	LCONTROL	. 1:10	(min)	(m)	(n
			(ha)	(ha)																			(mm)	(m)			(m)			
VENTRANCE TO SOMME STREET	1	2	0.18	0.25	0.43	0.35	0.35	0.97	0.97	15.00	97.85		0.00	0.32	1.20	3.00	0.61	226.9	7702.7	0.74	189.60							4.28		
CULVERT CROSSING	2	9		0.00	0.00	0.00	0.35	0.00	0.97	19.28	84.12	81.3					0.50				20.00	1	600		NO	YES	0.52	1.16	92.50	92
OUTH PORTION SOMME STREET	9	28	2.54	0.35	2.89	2.10	2.44	5.83	6.80	20.44	81.10	551.2	0.00	0.47	1.20	3.00	0.73	694.0	8450.7	1.05	272.58								92.40	
OUTH PORTION SOMME STREET	28	29A	3.46	0.32	3.78	2.71	5.15	7.53	14.33	24.77	71.65	1026.7	0.00	0.61	1.20	3.00	0.54	1198.8	7283.5	1.07	245.24							3.81	90.41	
OUTH PORTION SOMME STREET	29A	29B	0.77	0.11	0.88	0.64	5.79	1.78	16.11	28.58	65.15	1049.5	0.00	0.62	1.20	3.00	0.53	1239.6	7212.0	1.07	86.51				- 4 - 1				89.08	
OUTH PORTION SOMME STREET	29B	30	0.32	0.12	0.44	0.33	6.13	0.92	17.03	29.92	63.16	1075.8	0.00	0.58	1.20	3.00	0.70	1191.6	8282.1	1.18	94.12								88.62	
OUTH PORTION SOMME STREET	30	22	0.75	0.16	0.91	0.67	6.80	1.86	18.89	31.25	61.31	1158.5	0.00	0.58	1.20	3.00	0.97	1402.6	9748.4	1.39	124.55							1.49	87.96	86
										32.74																				
CULVERT CROSSING	22	19		0.00	0.00	0.00	15.59	0.00	43.33	32.74	59.38	2573.1		·			0.50		· · · · ·		20.00	2		1.03 X 0.74	YES	NO	1.30	0.08	86.85	86
COLVENT ORCOGING		10		0.00	0.00	0.00	10.00	0.00	40.00	32.82	00.00	2010.1					0.00				20.00	<u> </u>		1.00 / 0.14			1.00	0.00	00.00	
A											1																	·····	*	-
POND INLET	19	POND	-	0.00	0.00	0.00	35.97	0.00	100.06	38.67	52.87	5422.6	3.09	0.38	1.20	3.00	5.68	5629.1	13135.2	3.50	22.00							0.10	86.75	85
POND OUTLET DITCH	POND	DITCH	1·10 year or	ptrolled po	st developme	ent peak flow = 696	/s see SWMH	YMO output	of this Repr	l	<u> </u>	696.0	1.00	0.27	0.38	3.00	2.08	750.9	1506.6	1.54	24.00		<u> </u>			<u> </u>		0.26	82.50	87

Note: Conveyance Capacitites for the Open Ditch/Swale were calculated based on a Manning's Roughness Coefficient (n) of 0.030

DATE : 5/27/2009

OPEN DITCH/CULVERT DESIGN SHEET

Prepared by: M. Buchanan, E.I.T.

Hawthorne Industrial Park

City of Ottawa

JLR 20983

•

.

ſ ł

l

ſ 1

1 ł

Į

I

DETAILS Area at C of (na) Area at C of (na) SUM(A ¹).25 ^c (na) SUM(A ¹).25 ^c (nc) TO (na) CONTROL (na) SUM(A ¹).25 ^c (nc) TO (na) Control (na) SUM(A ¹).25 ^c (nc) TO (na) Control (na) SUM(A ¹).25 ^c (nc) TO (na) SUM(A ¹).25 ^c (nc) Control (na) SUM(A ¹).25 ^c (nc) TO (na) Sum(A ¹).25 ^c (nc) No.of Image: Sum at the sum a	1:100 year Ottawa International Airpo			ff Coeffici	ent by	25.0%	1			Febi	uary 20	009 (Rev	ised Apri	2009)											Checked	by: G. F	orget,	P.Eng
Field Field <th< th=""><th></th><th>NC</th><th>DES</th><th></th><th></th><th>DRAINAG</th><th>GE AREA</th><th></th><th></th><th>PEAK F</th><th>OW GE</th><th>NERATIO</th><th>N</th><th></th><th></th><th>OPEN D</th><th>DITCH/SV</th><th>VALE DAT</th><th>4</th><th></th><th>CULVER</th><th>RTS SIZED</th><th>UNDER 1:1</th><th>0 YEAR ST</th><th>ORM EVENT</th><th>FLOW</th><th>U/S</th><th>D/S</th></th<>		NC	DES			DRAINAG	GE AREA			PEAK F	OW GE	NERATIO	N			OPEN D	DITCH/SV	VALE DAT	4		CULVER	RTS SIZED	UNDER 1:1	0 YEAR ST	ORM EVENT	FLOW	U/S	D/S
Hold ID Lo Data Dat	DETAILS			Area	t at C of		SUM(A*1.25*C)	TOTAL	2.78AR	2.78AR	TIME	INTENS	PEAK FL.	BW	D	SS	SLOPE	CAPAC.	VEL.	LENGTH	No. of	DIA	BxD	INLET	OUTLET	TIME	Inv	Inv
NORTHENE GATURATION OF ATTACK IM IM <		FROM	1 TO	0.70	0.90	SUM(A)	25% increase			СОМ	min.	mm/hr	l/s	m	m	X:1	%	l/s	m/s	m	Barrels			CONTROL	CONTROL	(min)	(m)	(m)
Wets disc supporter node i <td></td> <td><u> </u></td> <td></td> <td>(ha)</td> <td>(ha)</td> <td></td> <td>in C factor</td> <td>~ ~ ~</td> <td></td> <td></td> <td></td> <td>· ·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(mm)</td> <td>(m)</td> <td> </td> <td></td> <td></td> <td><u> </u></td> <td>┣━━</td>		<u> </u>		(ha)	(ha)		in C factor	~ ~ ~				· ·										(mm)	(m)				<u> </u>	┣━━
Wets disc supporter node i <td>NORTHERN CATCHMENT AREA</td> <td></td> <td></td> <td></td> <td>_</td> <td>+</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	NORTHERN CATCHMENT AREA				_	+																-						
West Single All-PERS NODE 3 4 180 0.14 2.03 1.00 <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>n=</td> <td></td> <td></td> <td></td> <td>·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>· · ·</td> <td></td> <td></td> <td><u> </u></td>			1					n=				·						1							· · ·			<u> </u>
wees state i<	WEST SIDE SAPPERS RIDGE	2	3	1.86	0.18	2.04	1.81	1.81	5.02	5.02	15.00	142.89	718.0	0.00	1.20	3.00	0.50	6973.0	1.61	136.80		· .				1.41		
WEST BIO SAPPERS NODE 5 6 2.40 0.11 2.40 1.40 2.00 1.20 2.00 2.00 1.20 2.00 2.00		3	4	_																	· · · ·							
ORTH PORTION SCOME STREET 0 0 0 0 <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td>·</td> <td></td> <td></td> <td>· ·</td> <td></td> <td></td> <td></td> <td></td>					_	_															·			· ·				
OWNERT ENTRANCE TO SOMME STREET 0 0 0 <th< td=""><td>WEST SIDE SAPPERS RIDGE</td><td>- 5</td><td>6</td><td>2.43</td><td>0.11</td><td>2.54</td><td>2.23</td><td>7.53</td><td>6.21</td><td>20.92</td><td></td><td>126.06</td><td>2637.5</td><td>0.00</td><td>1.20</td><td>3.00</td><td>0.62</td><td>7762.6</td><td>1.80</td><td>82.79</td><td></td><td></td><td></td><td></td><td></td><td>0.77</td><td>90.36</td><td>89.85</td></th<>	WEST SIDE SAPPERS RIDGE	- 5	6	2.43	0.11	2.54	2.23	7.53	6.21	20.92		126.06	2637.5	0.00	1.20	3.00	0.62	7762.6	1.80	82.79						0.77	90.36	89.85
CULVERT CROSSING C DOB DOB O.O. C.O. T.O. T.O. T.O. D.O.	· · · · · · · · · · · · · · · · · · ·																											
CULVEPT CROSSING 6 4 6 0	NORTH ENTRANCE TO SOMME STREET	T 8	6		0.03	0.03	0.03	0.03	0.08	0.08		142.89	11.9	0.00	1.20	3.00	1.30	11276.7	2.61	10.00						0.06	89.98	89.85
NORTH PORTION SOMME STREET 13 14 0.00 0.0	· · ·										15.06																	
NORTH PORTION SOMME STREET 13 14 0.00 0.0	CULVERT CROSSING	6	14		0.00	0.00	0.00	7.56	0.00	21.01	19.24	122.91	2581.8				0.50			20.00	2		1.15 x 0.82	NO	YES	0.19	89.85	89.75
NORTH PORTION SOMME STREET 14 15 2 15 5 15 5 15 5 15 5 15 </td <td></td> <td></td> <td></td> <td></td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td></td> <td>0.00</td> <td></td>					0.00	0.00	0.00		0.00																			
NORTH PORTION SOMME STREET 14 15 2 15 5 15 5 15 5 15 5 15 </td <td></td> <td>15.00</td> <td></td> <td>007.4</td> <td></td> <td>4.00</td> <td></td> <td>0.00</td> <td>44000 4</td> <td>0.47</td> <td>10.00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											15.00		007.4		4.00		0.00	44000 4	0.47	10.00								
NORTH PORTION SOMME STREET 14 15 28 17 28 111 7 308 19.4 121 3760 100 120 100 100 17.2 100 120 300 100 170 140 150 180 170 180 170 280 180 170 280 180 120 300 100 170 160 170 160 170 160 170 160 170 160 170 160 170	NORTH PORTION SOMME STREET	13	14	0.85	0.03	0.88	0.77	0.77	2.15	2.15		142.89	307.4	0.00	1.20	3.00	2.30	14999.4	3.47	10.00				· · · ·		0.05	89.98	89.75
NORTH PORTION SOMME STREET 15 16 2.28 2.00 13.3 5.68 8.51 2.12 11.0 4.244 0.00 1.70 1.40 1.83 8.24 0.28 1.40 1.83 8.24 0.28 1.40 1.83 8.24 0.28 1.41 1.80 1.72 1.80 1.74 1.84 1.80 8.25 1.84 1.					-	+					15.05							-										
NORTH PORTION SOMME STREET 15 16 2.28 2.00 13.3 5.68 8.51 2.12 11.0 4.244 0.00 1.70 1.40 1.83 8.24 0.28 1.40 1.83 8.24 0.28 1.40 1.83 8.24 0.28 1.41 1.80 1.72 1.80 1.74 1.84 1.80 8.25 1.84 1.	NORTH PORTION SOMME STREET	14	15	2.93	0.24	3.17	2.80	11.13	7.79	30.95	19.43	122.15	3780.5	0.00	1.20	3.00	0.50	6992.8	1.62	184.04	1			· · ·		1.89	89.75	88.83
NORTH PORTION SOMME STREET 16 18 2.3 2.27 12.41 6.33 42.42 2.27 11.05 473.60 0.00 1.20 3.00 0.17 67.45 1.44 186.86 1.68 1.68 65.00 77.4 1.44 186.86 1.68 1.68 65.00 77.4 1.44 186.86 1.68				_																								
Carbon Supers Nides P D L P	NORTH PORTION SOMME STREET	16	18	2.34	0.23						22.72		4736.0	0.00	1.20	3.00	0.51	7074.8	1.64	185.66						1.89		
EAST SIDE SAPPERS RIDGE 9 10 174 171 4.76 4.76 150 120 100 120 100	NORTH PORTION SOMME STREET	18	19	0.00	0.05	0.05	0.05	15.46	0.14	42.98		104.93	4509.7	0.00	1.20	3.00	0.72	8372.8	1.94	41.86						0.36	87.05	86.75
EAST SIDE SAPPERS RIDOCE 10 11 1.44 0.14 0.30 0.26 7.80 10.04 11.04 1.00 91.66 90.02 1.86 111.04 11.04 11.04 1.00 91.66 90.03 90.33 10.4 0.00 1.66 91.04 10.04 91.65 90.05 73.04 1.69 10.04 91.05 10.04 91.04 10.04 90.05 90.05 73.04 1.69 10.04 91.05 10.04 91.05 10.04 91.05 10.04 91.05 90.05 73.04 10.04 91.05 10.05 90.05 73.04 10.04 10.05 90.05 73.04 10.04 10.05 90.05 73.04 10.04 10.04 10.05 90.05 89.7 88.6 10.01 10.04 10.05 10.04 10.05 10.04 10.05 10.04 10.04 10.04 10.05 10.05 10.04 10.04 10.05 10.05 10.04 10.04 10.05 10.05 10.05 10.04 10.05 10.04 10.05 10.05 10.05 10.05	·				· ·						24.97	·																
EAST SIDE SAPPERS RIDOCE 10 11 1.44 0.14 0.30 0.26 7.80 10.04 11.04 1.00 91.66 90.02 1.86 111.04 11.04 11.04 1.00 91.66 90.03 90.33 10.4 0.00 1.66 91.04 10.04 91.65 90.05 73.04 1.69 10.04 91.05 10.04 91.04 10.04 90.05 90.05 73.04 1.69 10.04 91.05 10.04 91.05 10.04 91.05 10.04 91.05 90.05 73.04 10.04 91.05 10.05 90.05 73.04 10.04 10.05 90.05 73.04 10.04 10.05 90.05 73.04 10.04 10.04 10.05 90.05 89.7 88.6 10.01 10.04 10.05 10.04 10.05 10.04 10.05 10.04 10.04 10.04 10.05 10.05 10.04 10.04 10.05 10.05 10.04 10.04 10.05 10.05 10.05 10.04 10.05 10.04 10.05 10.05 10.05 10.05		<u>م</u>	10	1 74	0.10	1.02	1 71	1 71	4.76	4.76	15.00	142.80	680.4	0.00	1 20	3.00	0.50	6006.6	1.62	147.97						1.52	02.40	01.66
EAST SIDE SAPPERS NIDGE 11 12 0.78 0.77 0.78			-																									<u>.</u>
LAST SIDE SAPPERS RIDGE 12 7 0.18 0.09 0.27 0.25 1.80 0.26 1.26.3 1.80 <th< td=""><td></td><td>-</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		-	_																									
NORTH PORTION SOMME STREET 7 20 1.07 0.23 1.30 1.17 5.35 3.24 1.487 19.13 123.33 18.84.1 0.00 1.20 3.00 0.50 6986.1 1.81 177.39 C 1.83 87.77 88.8 NORTH PORTION SOMME STREET 21 22 2.43 0.30 3.73 3.30 10.83 8.76 2.475 1.20 3.00 0.56 740.4 1.71 23.284 1.62 1.474 1.62 88.69 88.16 86.6 86.7 SOUTHEON SOMME STREET 21 22 3.33 10.83 3.18 30.10 2.475 1.20 3.00 0.56 740.4 1.71 23.284 1.20 1.20 3.00 0.56 740.4 1.71 23.284 1.65 3.65 2.62 1.65 3.65 740.4 1.71 1.23 3.00 1.65 3.65 7.62 1.65 3.65 7.62 1.65 3.65 7.62 1.65			7																						<u>†</u>			
NORTH PORTION SOMME STREET 20 21 2.7 0.19 2.46 2.18 7.53 6.05 20.92 20.97 116.41 24.55 0.00 1.20 3.00 0.56 6981.9 1.62 147.49 C C 1.52 88.89 88.1 NORTH PORTION SOMME STREET 21 22 3.43 0.30 3.73 3.30 10.83 9.18 30.10 22.47 111.29 3360 0.56 740.44 1.71 23.28 - - 2.8 88.6 88.7 SOUTH PORTION SOMME STREET 23.4 23.8 0.00 2.25 0.25 0.25 0.70 16.65 134.29 93.3 - <td></td> <td>7</td> <td>20</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td>		7	20																1					<u> </u>				
Image: Normal system Image: Normal system <th< td=""><td>NORTH PORTION SOMME STREET</td><td>20</td><td></td><td>2.27</td><td></td><td></td><td></td><td></td><td></td><td></td><td>20.97</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.62</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.52</td><td></td><td></td></th<>	NORTH PORTION SOMME STREET	20		2.27							20.97								1.62							1.52		
SOUTH PORTION SOMME STREET 248 246 0.00 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.26 1.70 15.00 142.89 99.3 0.00 1.82 18.01 1.82 18.01 1.82 18.01 1.82 18.01 1.82 18.01 1.82 18.00 1.82 18.00 1.82 18.00 1.82 18.00 1.82 18.00 1.82 18.00 1.82 18.00 1.82 18.00 1.82 18.00 1.82 18.00 1.82 18.00 1.82 18.00 1.82 18.00 1.82 18.00 1.82 18.00 1.82 18.00 1.82 18.00 1.82 18.00 1.82 18.00 1.82 18.01 1.20 1.82 18.00 1.82 18.01 1.20 1.82 18.00 1.82 18.01 1.20 1.82 18.00 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.	NORTH PORTION SOMME STREET	21	22	3.43	0.30	3.73	3.30	10.83	9.18	30.10	22.49	111.29	3350.0	0.00	1.20	3.00	0.56	7404.4	1.71	232.84						2.26	88.16	86.85
SOUTH PORTION SOMME STREET 23A 23B 0.00 0.25 0.25 0.25 0.70 15.00 14.28 99.3 CULVERT CROSSING 23B 23C 0.00											24.75													· · · · ·				
CULVERT CROSSING 23B 23C 0.00 0.00 0.00 0.25 0.00 0.70 16.65 134.29 93.3 SOUTH PORTION SOMME STREET 23C 24A 0.00 0.17 0.17 0.42 0.47 1.17 17.49 130.34 152.2 CULVERT CROSSING 24A 24B 0.00 0.01 0.17 0.42 0.47 1.17 17.49 130.34 152.2 CULVERT CROSSING 24A 24B 0.00 0.01 0.021 0.63 0.58 1.75 18.91 124.24 217.6 0.042 24.00 1 500 NO YES 0.84 92.60 92.40 SOUTH PORTION SOMME STREET 24B 24C 0.00 0.21 0.63 0.58 1.75 18.91 124.24 21.06 0.02 1.24 91.40 90.42 ORGAWORLD - SITE U/S 24C 1100 year reak from -283 les are table 4 of Orgaword Stormwater Site Management Plan. Sept. 2008 283.0 2483.0	SOUTHERN CATCHMENT AREA				-												· · · ·											<u> </u>
CULVERT CROSSING 23B 23C 0.00 0.00 0.00 0.25 0.00 0.70 16.65 134.29 93.3 SOUTH PORTION SOMME STREET 23C 24A 0.00 0.17 0.17 0.42 0.47 1.17 17.49 130.34 152.2 CULVERT CROSSING 24A 24B 0.00 0.01 0.17 0.42 0.47 1.17 17.49 130.34 152.2 CULVERT CROSSING 24A 24B 0.00 0.01 0.021 0.63 0.58 1.75 18.91 124.24 217.6 0.042 24.00 1 500 NO YES 0.84 92.60 92.40 SOUTH PORTION SOMME STREET 24B 24C 0.00 0.21 0.63 0.58 1.75 18.91 124.24 21.06 0.02 1.24 91.40 90.42 ORGAWORLD - SITE U/S 24C 1100 year reak from -283 les are table 4 of Orgaword Stormwater Site Management Plan. Sept. 2008 283.0 2483.0																				404		1						
SOUTH PORTION SOMME STREET 23C 24A 0.00 0.17 0.17 0.17 0.42 0.47 1.17 17.49 130.34 152.2 0.00 0.82 8946.1 2.07 110.0 0 0 0.89 92.40 91.5 CULVERT CROSSING 24A 24B 0.00 0.00 0.02 0.21 0.42 0.00 1.17 18.38 126.45 147.6 0.42 0.42 24.00 1 500 NO YES 0.53 91.50 91.64				0.00									1	0.00	1.20	3.00		7883.5	1.82			- 500			VEC			
CULVERT CROSSING 24A 24B 0.00 0.00 0.00 0.42 0.00 1.17 18.38 126.45 147.6 SOUTH PORTION SOMME STREET 24B 24C 0.00 0.21 0.21 0.21 0.21 0.63 0.58 1.75 18.91 124.24 217.6 0.00 0.70 8258.2 1.91 142.00 1 500 NO YES 0.53 91.00 91.4 ORGAWORLD - SITE U/S 24C 1.00 yer peat flow = 281 kg, see table 4 of Orgaworld Stormware Streemer Plan, Sept 2008 283.00 7.00 7.283.0 0.00 1.20 3.00 0.70 8258.2 1.91 142.00 1 500 NO YES 0.53 91.0 91.4 ORGAWORLD - SITE U/S 24C 1.00 yer peat flow = 281 kg, see table 4 of Orgaworld Stormware Stremer Plan, Sept 2008 2 283.0 0.00 1.20 3.00 0.70 8258.2 1.91 142.00 1 500 NO YES 0.53 91.60 91.4 ORGAWORLD - SITE U/S 2.4 O				0.00	· · · · · · · · · · · · · · · · · · ·									0.00	4.00	0.00		P 0040 4	0.07		- 1	500		NO	YES			
SOUTH PORTION SOMME STREET 24B 24C 0.00 0.21 0.21 0.21 0.63 0.58 1.75 18.91 124.24 217.6 0.00 1.20 3.00 0.70 8258.2 1.91 142.00 1.01 1.01 1.24 91.40 90.4 ORGAWORLD - SITE U/S U/S C Image: Comparison of the set of Orgaword Set Orgaword				0.00	_									0.00	1.20	3.00		8946.1	2.07		1	500			VEG			
ORGAWORLD - SITE U/S 24C 1:10 year yeak flow = 28 J/s, see Table 4 of Orgaword 5 Urmwater Site Managewert Plan, See Table 4 of Orgaword 5 Urmwater Site Managewert Plan, See Table 4 of Orgaword 5 Urmwater Site Managewert Plan, See Table 4 of Orgaword 5 Urmwater Site Managewert Plan, See Table 4 of Orgaword 5 Urm and See Table 4 Orgaword 5 Urm and See Table 4 Orgaword 5 Urm and See Table 4 Orgaword 5 Urm				0.00										0.00	1 20	3.00		8258.2	1 91			500			123			
SOUTH PORTION SOMME STREET 24C 25 3.70 0.32 4.02 3.56 4.19 9.89 11.64 20.15 119.40 1672.8 SOUTH PORTION SOMME STREET 25 26 2.63 0.12 2.75 2.42 6.61 6.73 18.37 22.57 111.05 232.0 0.00 1.20 3.00 0.54 728.5 1.69 244.84 2.42 90.41 89.0 SOUTH PORTION SOMME STREET 25 26 2.63 0.12 2.75 2.42 6.61 6.73 18.37 22.57 111.05 232.0 0.00 1.20 3.00 0.51 7041.5 1.63 90.75 2.42 90.41 89.08 88.62 87.6 SOUTH PORTION SOMME STREET 26 27A 3.15 0.20 3.03 0.08 26.67 24.91 104.09 3059.5 0.00 1.20 3.00 0.65 797.4 1.84 157.06 1.42	COOLINE ON COMME ON CEL	240	240	0.00	0.21	0.21	0.21	0.00	0.00	1.75	10.01	124.24	211.0	0.00	1.20	0.00	0.70	0230.2	1.51	142.00						1.27	51.40	30.41
SOUTH PORTION SOMME STREET 25 26 2.63 0.12 2.75 2.42 6.61 6.73 18.37 22.57 111.05 232.0 0.00 1.63 90.75	ORGAWORLD - SITE	U/S	24C	1:100 year	peak flow =	283 I/s, see T	Table 4 of Orgaworld S	Stormwater S	ite Manager	nent Plan, Se	pt. 2008	ļ	283.0					l		<u> </u>								
SOUTH PORTION SOMME STREET 25 26 2.63 0.12 2.75 2.42 6.61 6.73 18.37 22.57 111.05 232.0 0.00 1.63 90.75	SOUTH PORTION SOMME STREET	240	25	3 70	0.32	4.02	3.56	4 10	9.80	11.64	20.15	119.40	1672.8	0.00	1 20	3.00	0.54	7289.5	1 60	244.84		+				2 4 2	90.41	80.09
SOUTH PORTION SOMME STREET 26 27A 3.15 0.20 3.35 2.96 9.57 8.22 26.59 23.49 108.17 3159.5 0.00 1.20 3.00 0.65 7970.4 1.84 157.06 1.42 88.62 87.6 SOUTH PORTION SOMME STREET 27A 27B 0.00 0.03 0.03 0.03 0.03 0.03 0.03 9.60 0.08 26.67 24.91 104.09 3059.5 0.00 1.20 3.00 0.65 7970.4 1.84 157.06 0.18 87.60 87.4 SOUTH PORTION SOMME STREET 27A 27B 0.00 0.03 0.03 0.03 0.03 0.03 9.60 0.08 26.67 24.91 104.09 3059.5 0.00 1.20 3.00 0.65 7973.8 1.84 157.06 0.18 87.60 87.4 CULVERT CROSSING 27B 27C 0.00 0.01 0.31 26.98 25.18 103.36 3071.7 0.00 1.20 3.00																								<u> </u>	1			
SOUTH PORTION SOMME STREET 27A 27B 0.00 0.03 0.03 0.03 0.03 9.60 0.08 26.67 24.91 104.09 3059.5 0.00 1.85 20.00 1 1.39 X 0.97 YES NO 0.08 87.60 87.40 CULVERT CROSSING 27B 27C 0.00 0.00 0.00 9.60 0.00 26.67 25.09 103.59 3046.2 1.39 X 0.97 YES NO 0.09 87.47 87.33 CORNER OF POND 27C 19 0.00 0.11 0.11 9.71 0.31 26.98 25.18 103.36 3071.7 0.00 1.20 3.00 0.71 8324.0 1.93 72.00 1.39 X 0.97 YES NO 0.62 87.66 86.83																						-						
CULVERT CROSSING 27B 27C 0.00 0.00 0.00 9.60 0.00 26.67 25.09 103.59 3046.2 0.73 1 1.39 X 0.97 YES NO 0.09 87.47 87.3 CORNER OF POND 27C 19 0.00 0.11 0.11 9.71 0.31 26.98 25.18 103.36 3071.7 0.00 1.20 3.00 0.71 8324.0 1.93 72.00 1 1.39 X 0.97 YES NO 0.09 87.47 87.3											24.91	104.09	3059.5															
	CULVERT CROSSING								0.00	26.67	25.09	103.59	3046.2								1		1.39 X 0.97	YES	NO			
25.80	CORNER OF POND	27C	19	0.00	0.11	0.11	0.11	9.71	0.31	26.98		103.36	3071.7	0.00	1.20	3.00	0.71	8324.0	1.93	72.00						0.62	87.36	86.85
											25.80							<u></u>	ļ	<u> </u>								I

DATE : 5/27/2009

OPEN DITCH/CULVERT DESIGN SHEET

Prepared by: M. Buchanan, E.I.T.

Checked by: C. Ford 4 D F...

Hawthorne Industrial Park

City of Ottawa

JLR 20983

February 2009 (Revised April 2009)

1:100 year Ottawa International Airport IDF Curve

		e Runofi DES	Coefficie	· ·	25.0% DRAINAG			I	PEAK F	LOW GE	NERATIO	N			OPEN I	DITCH/SW	ALE DAT	4		CULVER	TS SIZED	UNDER 1:1	OYEAR STO		FLOW	U/S	D/S
DETAILS	FROM	ТО		at C of		SUM(A*1.25*C)	TOTAL	2.78AR			1	PEAK FL.	BW	D	SS	SLOPE	CAPAC.	VEL. m/s	LENGTH	1 · ·	DIA	BxD	INLET	OUTLET		Inv (m)	Inv (m)
	FROM	10	0.70 (ha)	0.90 (ha)	SUM(A)	25% increase in C factor	A*C		CUM	min.	mm/hr	U/S	m	m	X:1	70	1/5	11/5	m	Barrels	(mm)	(m)	CONTROL	CONTROL	(min)	(m)	(m)
SW ENTRANCE TO SOMME STREET	1	2	0.18	0.25	0.43	0.40	0.40	1.12	1.12	15.00	142.89	160.5	0.00	1.20	3.00	0.61	7702.7	1.78	189.60						1.77	93.65	92.50
CULVERT CROSSING	2	9	_	0.00	0.00	0.00	0.40	0.00	1.12	16.77	133.71	150.2			·	0.50			20.00	1	600		NO	YES	0.63	92.50	92.40
SOUTH PORTION SOMME STREET	9	28	2.54	0.35	2.89	2.58	2.98	7.16	8.29	17.40	130.77	1083.6	0.00	1.20	3.00	0.73	8450.7	1.96	272.58						2.32	92.40	90.41
SOUTH PORTION SOMME STREET	28	29A	3.46	0.32	3.78	3.35	6.33	9.31	17.59	19.72	121.01	2128.9	0.00	1.20	3.00	0.54	7283.5	1.69	245.24						2.42	90.41	
SOUTH PORTION SOMME STREET	29A	29B	0.77	0.11	0.88	0.79	7.11	2.19	19.78	22.15	112.40	2223.0	0.00	1.20	3.00	0.53	7212.0	1.67	86.51						0.86	89.08	
SOUTH PORTION SOMME STREET	29B	30	0.32	0.12	0.44	0.40	7.51	1.11	20.89	23.01	109.65	2290.7	0.00	1.20	3.00	0.70	8282.1	1.92	94.12						0.82	88.62	
SOUTH PORTION SOMME STREET	30	22	0.75	0.16	0.91	0.82	8.33	2.27	23.16	23.83	107.18	2482.3	0.00	1.20	3.00	0.97	9748.4	2.26	124.55			L			0.92	87.96	86.75
										24.75																	
CULVERT CROSSING	22	19		0.00	0.00	0.00	19.16	0.00	53.26	24.75	104.53	5567.5				0.50			20.00	2		1.03 X 0.74	YES	NO	0.04	86.85	86.7!
· · · · · · · · · · · · · · · · · · ·	1. A.									24.79																	
	- 10	DOND								05.00		10010.0		0.55	5.00	5.00	40405.0	4.00	00.00								
POND INLET	19	POND		0.00	0.00	0.00	44.32	0.00	123.22	25.80	101.69	12813.8	3.09	0.55	5.00	5.68	13135.2	4.09	22.00						0.09	86.75	85.50
POND OUTLET DITCH	POND	DITCH	1:100 year c	ontrolled p	ost developm	l nent peak flow = 1,432	l/s, see SWI	MHYMO outp	ut of this R	eport	J	1432.0	1.00	0.38	3.00	2.08	1506.6	1.85	24.00						0.22	82.50	82.00

Note: Conveyance Capacitites for the Open Ditch/Swale were calculated based on a Manning's Roughness Coefficient (n) of 0.030

DATE : 5/27/2009

OPEN DITCH/CULVERT DESIGN SHEET

Prepared by: M. Buchanan, E.I.T.

J.L. RICHARDS AND ASSOCIATES LIMITED, Consulting Engineers, Architects and Planners

Hawthorne Road & Rideau Road

City of Ottawa

JLR 20983 February 2009

	Increas	se Runof	f Coeffici	ent by	0.0%	5 up C = 1	1.0																							_		
	ŇŌ	DES					AGE ARE	EA					NERATIO			T-5				WALE DAT		I	1	the second se			R 1:10 YEAF			FLOW	U/S	D/S
DETAILS				· · · · · · · · · · · · · · · · · · ·	(A) at C c				TOTAL	2.78AR	2.78AR			PEAK FL.	BW	D _{10yr}	D _{max}	SS	SLOPE	1	Q _{100yr}	VEL.	LENGTH	No. of	DIA	BxD	INLET	OUTLET	HW	TIME	lnv	Inv
	FROM	ТО	0.20 (ha)	0.30 (ha)	0.70 (ha)	0.90 (ha)	SUM(A)	SUM(A*C)	A*C		CUM	min.	mm/hr	l/s	m	m	m	X:1	%	l/s	l/s	m/s	m	Barrels	(mm)	(m)	CONTROL	CONTROL	1:10 (m)	(min)	(m)	(m)
l		+	(iia)	(112)	(11a)			1				+	1													(11)						<i> </i>
WEST CATOUNISHIE ADEA							<u> </u>												<u> </u>				····	i						'		┢───┘
WEST CATCHMENT AREA	-		-						<u> </u>		<u> </u>																			├ ────′		'
FRT SIDE HAWTHODNE DOAD				2.46		0.14	2.60	0.96	0.00	2.40	2.40	15.00	97.85	235.0	0.00	0.41	0.50	3.00	0.20	250.1	424.5	0.50	112.00		<u> </u>					3.76	103 22	103.00
UST SIDE HAWTHORNE ROAD	1	2		1.60		0.14	1.66	0.86	0.86	1.48	3.89	18.76	85.54	332.5	0.00	0.41	0.50	3.00	5.00	337.3	2141.9	1.80	50.00		+					0.46		100.50
WEST SIDE HAWTHORNE ROAD		4	1	1.58	1	0.06	1.64	0.53	1.93	1.40	5.35	19.23	84.26	451.1	0.00	0.27	0.50	3.00	7.00	490.1	2534.3	2.24	50.00	:						0.37		97.00
EST SIDE HAWTHORNE ROAD		5		1.58		0.06	1.64	0.53	2.45	1.47		19.60	83.26	568.0	0.00	0.34	0.50	3.00	5.00	765.9	2141.9	2.21	50.00							0.38	97.00	94.50
EST SIDE HAWTHORNE ROAD	5	6a		1.95		0.10	2.05	0.68	3.13	1.88	8.70	19.98	82.27	715.6	0.00	0.45	0.65	3.00	1.07	747.0	1991.5	1.23	75.00							1.02		93.70
CULVERT CROSSING	6a	6b	-			0.00	0.00	0.00	3.13	0.00			79.73						1.00				10.00	1	800		YES	NO	0.84	0.12		93.60
WEST SIDE HAWTHORNE ROAD		7	 	1.20	_	0.03	1.23	0.39	3.52	1.08	9.77	21.11	79.45	776.5	0.00	0.53	1.15	3.00	0.53	817.1	6447.9	0.97	15.00			· · · · ·				0.26		93.52
EST SIDE HAWTHORNE ROAD		8		1.58		0.06	1.64	0.53	4.04	1.47 1.47	11.24	21.37 22.23	78.83	886.3 977.2	0.00	0.56	1.15	3.00	0.50	916.3 1006.2	6243.2 6243.2	0.97	50.00 50.00	1	+		+			0.86		93.27 93.02
VEST SIDE HAWTHORNE ROAD		9		1.58		0.06	1.64	0.53	5.10	1.47	-	23.06	75.07	1064.4	0.00	0.60	1.15	3.00	0.50	11000.2	6243.2	1.00	50.00		-		+			0.82		92.77
WEST SIDE HAWTHORNE ROAD		11	·	1.58		0.06	1.64	0.53	5.63	1.47		23.88	73.39	1148.3	0.00	0.62	1.15	3.00	0.50	1202.1	6243.2	1.04	50.00							0.80		92.52
'EST SIDE HAWTHORNE ROAD		12	1	1.48		0.06	1.54	0.50	6.13	1.38		24.68	71.83	1223.3	0.00	0.63	1.15	3.00	0.50	1254.5	6243.2	1.05	50.00							0.79	92.52	92.27
EST SIDE HAWTHORNE ROAD		13		1.34		0.06	1.40	0.46	6.58		18.30	25.47	70.35	1287.3	0.00	0.64	1.15	3.00	0.50	1308.3	6243.2	1.06	50.00							0.78		92.02
JEST SIDE HAWTHORNE ROAD	13	14b		1.54	•	0.21	1.75	0.65	7.23	1.81	20.11	26.25	68.96	1386.6	0.00	0.64	1.15	3.00	0.61	1449.7	6918.0	1.18	158.00							2.23	92.02	91.05
	ļ	ļ		ļ				·				28.49		·					ļ													
	140	146		0.64		0.10	0.00	0.25	0.05	0.00	0.00	15.00	07.05	06.2	0.00	0.20	1 20	3.00	4.06	167.6	24661.5	1.40	140.00							1.67	96.73	91.05
SW RIDEAU & HAWTHORNE	14a	14b		0.64	·	0.18	0.82	0.35	0.35	0.98	0.98	16.67	97.85	96.3	0.00	0.20	1.30	3.00	4.00	107.0	24001.5	1.40	140.00							1.07	90.75	91.05
		1	-								<u> </u>	10.07						·		1		<u></u>										!
CULVERT CROSSING	14b	23	•			0.00	0.00	0.00	7.59	0.00	21.09	28.49	65.29	1377.2					1.40	1			20.00	1	1000		YES	NO	1.14	0.19	91.05	90.77
												28.68																				
										1. A.																						
EAST CATCHMENT AREA																							ļ		· · · · · · ·					/		└── ┘
	45	40				0.00	0.00	0.00	0.00	0.00		45.00	07.05	00.0	0.00	0.25	0.00	3.00	0.45	101 7	105.4	0.54	110.00	· · · · · · · · · · · · · · · · · · ·	<u> </u>					3.38	102.90	103.30
AST SIDE HAWTHORNE ROAD	15	<u>16</u> 17				0.33	0.33	0.30	0.30	0.83	0.83	15.00 18.38	97.85 86.64	80.8	0.00	0.25	0.30	3.00	6.20	101.7	165.4 610.8	1.49	100.00							1.12		97.10
AST SIDE HAWTHORNE ROAD	17					0.04	0.14	0.04	0.42	0.35		19.50	83.52	101.5	0.00	0.16	1.20	3.00	6.36	115.8	24949.6	1.51	33.00								97.10	
CULVERT CROSSING	18	19				0.00	0.00	0.00	0.46	0.00	1.28	19.86	82.56	105.3					1.77				22.00	1 ;	600		YÉS	NO	0.30	0.98		94.61
FAST SIDE HAWTHORNE ROAD	19	20				0.06	0.06	0.05	0.51	0.15	1.43	20.85	80.08	114.2	0.00	0.21	0.70	3.00	2.79	158.3	3925.7	1.20	24.00							0.33	94.61	93.94
CULVERT CROSSING	20	21				0.00	0.00	0.00	0.51	0.00	1.43	21.18	79.28	113.1					0.50				20.00	1	600		NO	YES	0.37	0.83	93.94	93.84
AST SIDE HAWTHORNE ROAD	21	22a	0.21			0.16	0.37	0.19	0.70	0.52	-	22.02	77.35	150.3	0.00	0.29	0.80	3.00	0.50	158.5	2372.0	0.63	82.00							2.18		93.43
EAST SIDE HAWTHORNE ROAD	22a	22b	0.61			0.29	0.90	0.38	1.08	1.06	3.01	24.19	72.77	218.9	0.00	0.33	1.17	3.00	0.52	228.1 309.6	6666.4	0.70	175.00							4.18 5.14		92.52 90.77
EAST SIDE HAWTHORNE ROAD	22b	23	0.93	<u> </u>		0.34	1.27	0.49	1.57	1.37	4.38	28.37 33.51	65.47	286.5	0.00	0.35	1.17	3.00	0.70	309.0	7734.6	0.04	200.00		+		-			0.14	92.59	90.77
· · · · · · · · · · · · · · · · · · ·												00.01				·					1						-					
SOUTH CATCHMENT AREA		1	1		· · · · ·	1	· · · ·			i	†	<u>†</u>	1					1	1		1		† · · ·		1		1				·	
	1										1																					
SOUTH SIDE RIDEAU ROAD	23	24	0.73	8		0.28	1.01	0.40	9.56	1.11	26.57	33.51	58.43	1552.8	0.00	0.51	1.74	3.00	2.65	1642.9	43339.8	2.11	235.00							1.86	90.77	84.55
												35.37		·											L		<u> </u>			L!		
												15.00		- 100 1	0.00				0.00	405.4	10510.0	4 00	405.74				- <u>.</u>				00.00	00.40
WEST SIDE SOMME STREET	25	24			0.42	0.12	0.54	0.40	0.40	1.12	1.12		97.85	109.4	0.00	0.18	1.20	3.00	2.80	105.1	16548.0	1.08	125.74			ļ				1.94	89.98	86.46
·		<u> </u>		·				<u></u>				16.94				·				+	<u> </u>					<u> </u>				!		
CULVERT CROSSING	.24	26			-	0.00	0.00	0.00	9.96	0.00	27.69	35.37	56.28	1558.5			· · · · · · · · · · · · · · · · · · ·		1.00				20.00	1	800		NO	YES	2.31	0.11	84.55	84.35
		1	1	1	1	1	0.00	0.00	0.00	0.00	1	35.48							1	1		<u> </u>			1	1	1					
	1	1	1	1		1	· ·	1		1	1		1	1		1		1	1		1											
EAST SIDE SOMME STREET	27	26		1	0.32	0.11	0.43	0.32	0.32	0.90	0.90	15.00	97.85	87.9	0.00	0.17	1.20	3.00	2.80	90.3	16548.0	1.04	125.74							2.01	89.98	86.46
				ļ								17.01	ļ			1									ļ	ļ		ļ]		
				<u> </u>			0.00		40.00			25.40	F0.40	46575	0.00	- 0.00			074	1005 7	40040.1	1 20	102.70		· · · · ·					2.36	04.25	02.04
SOUTH SIDE RIDEAU ROAD	26	28	0.58			0.24	0.82	0.33	10.62	0.92	29.51		56.16	1657.5	0.00	0.66	2.20	3.00	0.71	1695.7	42043.4	1.30	183.76		 	<u> </u>				2.30	84.35	03.04
	<u>I</u>		<u> </u>		1	1		<u> </u>				37.84							<u> </u>		1		L	L	1	<u> </u>		1		 /		<u> </u>

10 year Ottawa International Airport IDF Curve Increase Runoff Coefficient by 0.0% up C = 1.0

l

DATE : 4/28/2009

OPEN DITCH/CULVERT DESIGN SHEET

Prepared by: M. Buchanan, E.I.T.

J.L. RICHARDS AND ASSOCIATES LIMITED, Consulting Engineers, Architects and Planners

Hawthorne Road & Rideau Road

City of Ottawa

JLR 20983 February 2009

10 year Ottawa International Airport IDF Curve Increase Runoff Coefficient by

	NO	DES				DRAIN	AGE ARE	A			PEAK FL	OW GEN	NERATIO	N				OPEN I	DITCH/SV	VALE DAT.	Α			CUL	/ERTS SIZ	ZED UNDE	R 1:10 YEAR	R STORM EV	/ENT	FLOW	U/S
DETAILS				AREA (A) at C o	f .			TOTAL	2.78AR	2.78AR	TIME	INTENS	PEAK FL.	BW	D _{10yr}	D _{max}	SS	SLOPE	Q _{10yr}	Q _{100yr}	VEL.	LENGTH	No. of	DIA	BxD	INLET	OUTLET	HW	TIME	Inv
	FROM	то	0.20 (ha)	0.30 (ha)	0.70 (ha)	0.90 (ha)	SUM(A)	SUM(A*C)	A*C		CUM	min.	mm/hr	l/s	m	m	m	X:1	%	l/s	l/s	m/s	m	Barrels	(mm)	(m)	CONTRO		. 1:10 (m)	(min)	(m)
ORTH CATCHMENT AREA			Eviating	000			-it. h -f - r	a ditah flavva ta						1400.0										1						[]	
ORTH SIDE RIDEAU ROAD	21	32	Existing 6.66		n dia. Cui	0.52	7.18	e ditch flows to	1.80	эк 5.00	5.00	20.00	97.26	1400.0	0.00	0.58	1.50	3.00	1.93	1074 2	24880.1	1.96	400.00							3.41	90.71
KTH SIDE RIDEAU ROAD	31	52	0.00			0.52	1.10	1.60	1.00	5.00	5.00	23.41	97.20		0.00	0.50	1.50	3.00	1.95	1974.5	24000.1	1.90	400.00						├┦	3.41	90.71
												20.41							<u> </u>										<u> </u>	<i>!</i>	<u> </u>
	33	32	0.87			0.10	0.97	0.26	0.26	0.73	0.73	15.00	115.83		0.00	0.40	1.50	3.00	0.16	213.3	7240.8	0.44	92.00	i						3.45	83.16
												18.45				-														[]	
TING CULVERT CROSSING	32°	28			 .	0.00	0.00	0.00	2.06	0.00	5.74	23.41	87.93						-0.15				20.00	1	1000				<u> </u>	0.14	83.01
								· .				23.55																		,	<u> </u>
OUTH CATCHMENT AREA	ŝ						_																								
JTH SIDE RIDEAU ROAD	28	29	0.90		<u> </u>	0.33	1.23	0.48	13.16	1.33	36.58	37.84	53 68	3363.5	0.00	1.17	2.20	3.00	0.14	3437.1	18513.7	0.84	347.24							6.91	83.04
UTH SIDE RIDEAU ROAD	29	30	0.48		1	0.31	0.79	0.38	13.53	1.04		44.76				0.90	2.20	3.00	0.51		35640.2		236.20				1			2.91	82.56

ote: Conveyance Capacitites for the Open Ditch/Swale were calculated based on a Manning's Roughness Coefficient (n) of 0.030

DATE : 4/28/2009

OPEN DITCH/CULVERT DESIGN SHEET

Prepared by: M. Buchanan, E.I.T.

1:100 year Ottawa International Airport IDF Curve

City of Ottawa

JLR 20983 February 2009

	NIC		Coefficie	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				: A		1	DEAVE	OW OF	EDATIO	N			ODEN		ALE DATA						O VEAD OT	ORM EVENT	EL OW	11/2	D/0
	NO	DES					AGE ARE						IERATIO							· · · · · ·	LIENOTU						-	U/S	D/S
DETAILS	FROM	то	0.20 (ha)	AREA (/ 0.30 (ha)	A) at C o 0.70 (ha)	-	SUM(A)	SUM(A*1.25*C) 25% increase in C factor	TOTAL A*C	2.78AR	2.78AR CUM	TIME min.	INTENS mm/hr	PEAK FL. I/s	BW m	D m	SS X:1	SLOPE	CAPAC. I/s	VEL. m/s	LENGTH m	No. of Barrels	DIA (mm)	BxD (m)	INLET CONTRO	OUTLET	TIME (min)	lnv (m)	lnv (m)
· · · · · · · · · · · · · · · · · · ·																													
WEST CATCHMENT AREA							· · · · ·			<u> </u>	_							<u> </u>										 	
EST SIDE HAWTHORNE ROAD	1	2		2.46		0.14	2.60	1.06	1.06	2.95	2.95	15.00	142.89	422.1	0.00	0.50	3.00	0.20	424.5	0.57	112.00						3.30	103.22	103 (
EST SIDE HAWTHORNE ROAD	2	2		1.60		0.06	1.66	0.66	1.00	1.83	4.79	18.30	126.80		0.00	0.50	3.00	5.00	2141.9	2.86	50.00						0.29	103.00	_
EST SIDE HAWTHORNE ROAD	3	4		1.58		0.06	1.64	0.65	2.38	1.81	6.60	18.59	125.56		0.00	0.50	3.00	7.00	2534.3	3.38	50.00	1					0.25	100.50	
VEST SIDE HAWTHORNE ROAD	4	5		1.58		0.06	1.64	0.65	3.03	1.81	8.42	18.84	124.54		0.00	0.50	3.00	5.00	2141.9	2.86	50.00						0.29	97.00	
VEST SIDE HAWTHORNE ROAD CULVERT CROSSING	5 6A	6A 6B		1.95		0.10	2.05	0.83	3.86 3.86	2.31	10.73	19.13 19.92	123.35		0.00	0.65	3.00	1.07	1991.5	1.57	75.00	1	800		YES	NO	0.80	94.50 93.70	93.7 93.6
VEST SIDE HAWTHORNE ROAD	6B	7		1.20		0.00	1.23	0.48	4.34	1.33	12.06	19.92	119.99		0.00	1.15	3.00	0.53	6447.9	1.63	15.00	· · · · ·	000				0.00	93.60	93.5
VEST SIDE HAWTHORNE ROAD	7	8		1.58	1	0.06	1.64	0.65	4.99	1.81	13.88		119.42		0.00	1.15	3.00	0.50	6243.2	1.57	50.00						0.53	93.52	93.2
VEST SIDE HAWTHORNE ROAD	8	9		1.58		0.06	1.64	0.65	5.64	1.81	15.69	20.67	117.47		0.00	1.15	3.00	0.50	6243.2	1.57	50.00						0.53	93.27	
VEST SIDE HAWTHORNE ROAD	9	10		1.58	ļ	0.06	1.64	0.65	6.30	1.81	17.50		115.59		0.00	1.15	3.00	0.50	6243.2 6243.2	1.57	50.00						0.53	93.02	92.7
VEST SIDE HAWTHORNE ROAD	10 11	11 12		1.58		0.06	1.64 1.54	0.65	6.95 7.56	<u>1.81</u> 1.71	19.32 21.03	21.73 22.26	113.78		0.00	1.15 1.15	3.00	0.50	6243.2	<u>1.57</u> 1.57	50.00 50.00	· · · · · · · · · · · · · · · · · · ·					0.53	92.77 92.52	
VEST SIDE HAWTHORNE ROAD	12	13		1.34		0.06	1.40	0.56	8.13	1.56	22.59	22.79	110.34		0.00	1.15	3.00	0.50	6243.2	1.57	50.00						0.53	92.27	92.0
VEST SIDE HAWTHORNE ROAD	13	14B		1.54		0.21	1.75	0.79	8.91	2.19	24.78	23.32	108.70	2693.6	0.00	1.15	3.00	0.61	6918.0	1.74	158.00						1.51	92.02	91.0
												24.83									· · · ·							· · ·	
SW RIDEAU & HAWTHORNE	144	14B		0.64		0.18	0.82	0.42	0.42	1.17	1.17	15.00	142.89	166.8	0.00	1.30	3.00	4.06	24661.5	4.86	140.00				-		0.48	96.73	91.0
SW RIDEAU & HAWTHORNE	14/	140		0.04		0.10	0.62	0.42	0.42		1.1/	15.48	142.09	100.0	0.00	1.50	3.00	4.00	24001.3	4.00	140.00						0.40	30.73	91.0
						1										· · · ·	-												
CULVERT CROSSING	14B	23				0.00	0.00	0.00	9.33	0.00	25.95		104.32	2706.8				1.40			20.00	1	1000		YES	NO	0.10	91.05	90.7
·												24.93			-													 	┣──
EAST CATCHMENT AREA											<u> </u>						· · ·			-		· · · · · · · · · · · · · · · · · · ·	l						
EAGE SATISTIMENT ANEA							1														· · ·								<u> </u>
EAST SIDE HAWTHORNE ROAD	15	16				0.33	0.33	0.33	0.33	0.92	0.92	15.00	142.89	131.1	0.00	0.30	3.00	0.45	165.4	0.61	110.00						2.99	103.80	103.3
AST SIDE HAWTHORNE ROAD	16	17				0.14	0.14	0.14	0.47	0.39	1.31	17.99	128.11	167.4	0.00	0.30	3.00	6.20	610.8	2.26	100.00						0.74	103.30	
	17	18				0.04	0.04	0.04	0.51	0.11	1.42	18.73	124.98	177.2 176.6	0.00	1.20	3.00	6.36 1.77	24949.6	5.78	33.00 22.00	1	600		YES	NO	0.10	97.10 95.00	95.0 94.6
CULVERT CROSSING EAST SIDE HAWTHORNE ROAD	18 19	19 20				0.00	0.00	0.00	0.51 0.57	0.00	1.42 1.58	19.41	124.58	170.0	0.00	0.70	3.00	2.79	3925.7	2.67	22.00		000		TEO		0.59	95.00	
CULVERT CROSSING	20	21				0.00	0.00	0.00	0.57	0.00	1.58	19.56		192.7			0.00	0.50	002017		20.00	1	600		NO	YES	0.49	93.94	
EAST SIDE HAWTHORNE ROAD	21	22A	0.21			0.16	0.37	0.21	0.78	0.59	2.18	20.05	119.76	260.5	0.00	0.80	3.00	0.50	2372.0	1.24	82.00						1.11	93.84	93.43
EAST SIDE HAWTHORNE ROAD	22A	22B	0.61			0.29	0.90	0.44	1.23	1.23	3.41	21.16	115.75		0.00	1.17	3.00	0.52	6666.4	1.62	175.00						1.80	93.43	92.52
EAST SIDE HAWTHORNE ROAD	22B	23	0.93			0.34	1.27	0.57	1.80	1.59	5.00	22.95 25.25	109.83	548.8	0.00	1.17	3.00	0.70	7734.6	1.88	260.00						2.30	92.59	90.77
												20.20													-				<u> </u>
SOUTH CATCHMENT AREA														,															
SOUTH SIDE RIDEAU ROAD	23	24	0.73	-		0.28	1.01	0.46	11.59	1.29	32.23		103.15	3324.7	0.00	1.74	3.00	2.65	43339.8	4.77	235.00					· · · · ·	0.82	90.77	84.5
												26.08		<u> </u>														├──	I
WEST SIDE SOMME STREET	25	24			0.42	0.12	0.54	0.49	0.49	1.36	1.36	15.00	142.89	193.7	0.00	1.20	3.00	2.80	16548.0	3.83	125.74				+	+	0.55	89.98	86.4
						· · ·						15.55														·			
														-															
CULVERT CROSSING	24	26				0.00	0.00	0.00	12.08	0.00	33.59		100.99	3391.7				1.00			20.00	1	800		NO	YES	0.05	84.55	84.3
										 		26.12	<u> </u>					+		·····									<u> </u>
EAST SIDE SOMME STREET	27	26		· · · · · · ·	0.32	0.11	0.43	0.39	0.39	1.08	1.08	15.00	142.89	154.9	0.00	1.20	3.00	2.80	16548.0	3.83	125.74		<u> </u>				0.55	89.98	86.4
												15.55																	
														005									ļ		· · ·		4.00	04.05	
SOUTH SIDE RIDEAU ROAD	26	28	0.58	I	I .	0.24	0.82	0.39	12.86	1.07	35.74	26.12	100.86	1 3604.7	0.00	2.20	3.00	0.71	42043.4	2.90	183.76			1	1	1	1.06	84.35	83.0/

DATE : 4/28/2009

OPEN DITCH/CULVERT DESIGN SHEET

Prepared by: M. Buchanan, E.I.T.

Hawthorne Road & Rideau Road

City of Ottawa

JLR 20983 February 2009

1:100 year Ottawa International A	Airport l	DF Cur	ve									F	ebruary	2009												Checked	ḋ by: G.∣	Forget,	, P.Eng
	Increase	e Runoff	Coefficie	ent by	25.0%	up C = 1	1.0																	-					
	NO	DES				DRAIN	AGE ARE	A		J	PEAK FI	OW GEN	NERATIO	1			OPEN D	DITCH/SW	ALE DATA	1		CULVER	TS SIZED	UNDER 1:1	0 YEAR ST	ORM EVENT	FLOW	U/S	D/S
DETAILS				AREA (A	A) at C o	of		SUM(A*1.25*C)	TOTAL	2.78AR	2.78AR	TIME	INTENS.	PEAK FL.	BW	D	SS	SLOPE	CAPAC.	VEL.	LENGTH	No. of	DIA	BxD	INLET	OUTLET	TIME	inv	Inv
	FROM	TO		0.30 (ha)		1	SUM(A)	25% increase in C factor	A*C	:	СОМ	min.	mm/hr	l/s	m	m	X:1	%	l/s	m/s	m	Barrels	(mm)	(m)	CONTRO	CONTROL	(min)	(m)	(m)
NORTH CATCHMENT AREA																													
			Existing	900 mm	n dia. Cul	lvert Cap	acity befo	re ditch flows to F	indlay Cre	ek				1400.0													_		
NORTH SIDE RIDEAU ROAD	31	32	6.66			0.52	7.18	2.19	2.19	6.07	6.07	20.00	119.95	2128.6	0.00	1.50	3.00	1.93	24880.1	3.69	400.00						1.81	90.71	83.01
						ļ						21.81						-											—
NORTH SIDE RIDEAU ROAD	33	32	0.87			0.10	0.97	0.32	0.32	0.88	0.88	15.00	142.89	126.1	0.00	1.50	3.00	0.16	7240.8	1.07	92.00						1.43	83 16	83.01
			0.07			0.10	0.07	0.02	0.02	0.00	0.00	16.43	142.00	12011	0.00	1.00	0.00		/2:0.0		02.00							00.10	100.01
EXISTING CULVERT CROSSING	32	28			l	0.00	0.00	0.00	2.50	0,00	6.96	21.81 21.93	113.52	2189.7				-0.15			20.00	1	1000				0.12	83.01	83.04
SOUTH CATCHMENT AREA								· · · · · · · · · · · · · · · · · · ·				21.35			_														+
SOUTH SIDE RIDEAU ROAD	28	29	0.90			0.33	1.23	0.56	15.91	1.54	44.24		98.22		0.00	2.20	3.00	0.14	18513.7										82.56
SOUTH SIDE RIDEAU ROAD	29	30 .	0.48			0.31	0.79	0.43	16.34	1.20	45.44	31.72	88.42	5417.3	0.00	2.20	3.00	0.51	35640.2	2.45	236.20						1.60	82.56	81.35

Note: Conveyance Capacitites for the Open Ditch/Swale were calculated based on a Manning's Roughness Coefficient (n) of 0.030

DATE : 4/28/2009

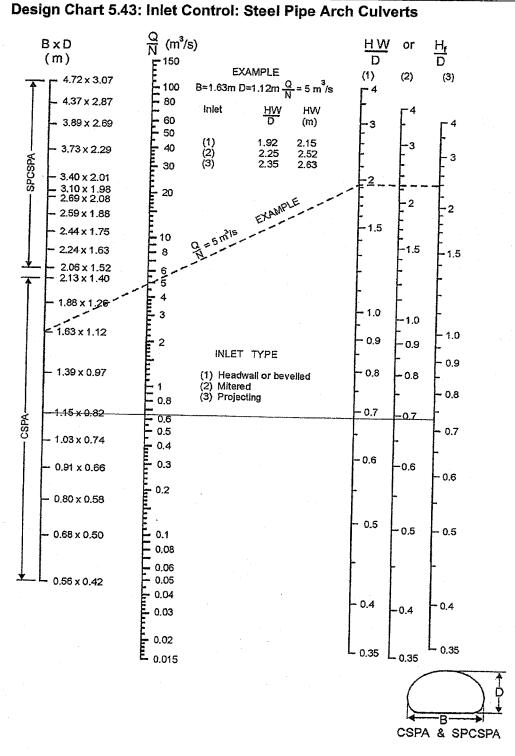
OPEN DITCH/CULVERT DESIGN SHEET

Prepared by: M. Buchanan, E.I.T.

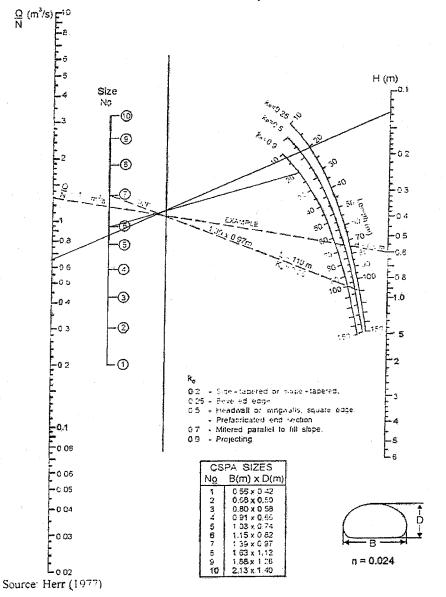
HAWTHORNE INDUSTRIAL PARK

1:10 YEAR ROADSIDE CULVERT DESIGN

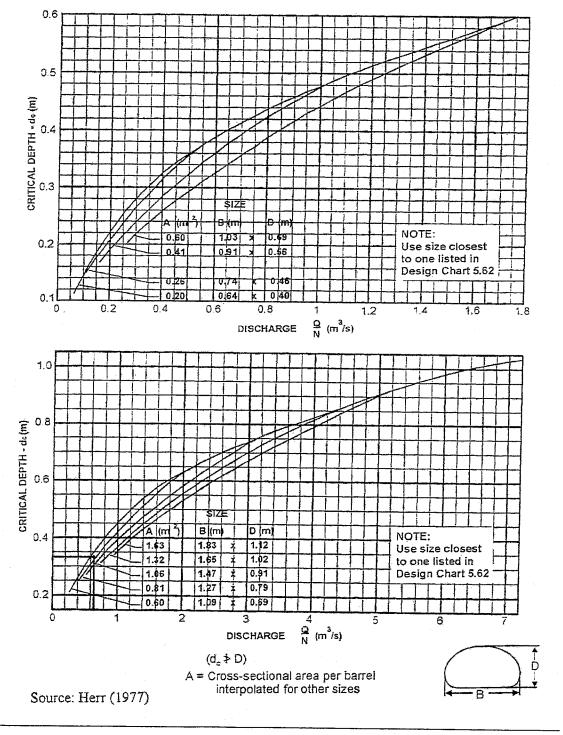
CONVENTIONAL CULVERT DESIGN


				DESIGN	ATA						CULVERT	DATA			INI	ET CONTRO	-				OUTLET C	ONTROL				GOVERNING	
Station	Q	d	d _e	AHV	/ Ske	1	L	S	Description	в	D or H	N	Q/N	A (each)	Q/NB	HW/D	HW	K	H	d _c	(d _c + D)/2	τw	h。	LS	HW	HW	V.
	(m³/s)	(m)	(m)	(m)			(m)	(m/m)		(m)	(m)		(m³/s)	(m²)	(m³/s/m)		(m)		(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m/s)
1	2	3	4	5	6	3	7	8	9	10a	10b	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
						<u> </u>	ł		Li			I				1			II		<u>_</u> _						
6 to 14	1.296	0.6	7 0.0	5	1.1	0	20.0	0.005	CSPA 6	1.15	0.82	2	0.648	0.74	-	0.73	0.60	0.9	0.13	0.33	0.58	0.72	0.72	0.10	0.75	0.75	L
23B to 23C	0.051	0.2	2 0.0	5 1	.15	0	24.0	0.004	CSP 500	N/A	0.5	1[0.051	0.20		0.50	0.25	0.9	0.1	0.15	0.33	0.27	0.33	0.10	0.33	0.33	
24A to 24B	0.075	0.2	5 0.0	5 1	.15	0	24.0	0.004	CSP 500	N/A	0.5	1	0.075	0.20		0.54	0.27	0.9	0.1	0.18	0.34	0.30	0.34	0.10	0.34	0.34	
2 to 9	0.081	0.4	7 0.0	5 1	.15	0	20.0	0.005	CSP 600	N/A	0.6	1	0.081	0.28		0.50	0.30	0.9	0.1	0.19	0.40	0.52	0.52	0.10	0.52	0.52	
27B to 27C	1.304	0.6	1 0.0	5 1	.23	0	15.0	0.007	CSPA 7	1.39	0.97	1	1.304	1.06		0.90	0.87	0.9	0.22	0.45	0.71	0.66	0.71	0.11	0.82	0.87	
22 to 19	2.573	0.3	3 0.0	5 1	.35	0	20.0	0.005	CSPA 5	1.03	0.74	2	1.287	0.61		1.75	1.30	0.9	0.74	0.51	0.63	0.43	0.63	0.10	1.27	1.30	
3 4 5	From Forn Flood Dep Embedme Col. 3 + co Allowance	th nt below o ol. 4 + allo	hannel inv vable bacl	water	1	10a/b D 11 N 13 A	ulvert Sloj (circular) umber of rea per ba or box onl	or B x H (a Barreis arrel	arch)		16 17 (18 (Charts D5-1 HW = col. 1 Chart D5-8 Charts D5-2 Charts D5-3	5 x D (col. A to G	10)		22 F 23 C 24 F	Col. 3 + col. I_0 = larger of Col. 7 x col. IW = col. 1 arger of co	of cols. 20 . 8 8 + col. 22	2 - col. 23		26	Outlet velo	city if requi	ed (Subse	ction 3.2.3)		

Prepared by: Mark Buchanan, E.I.T. Reviewed by: Guy Forget, P.Eng. Date: February 2009

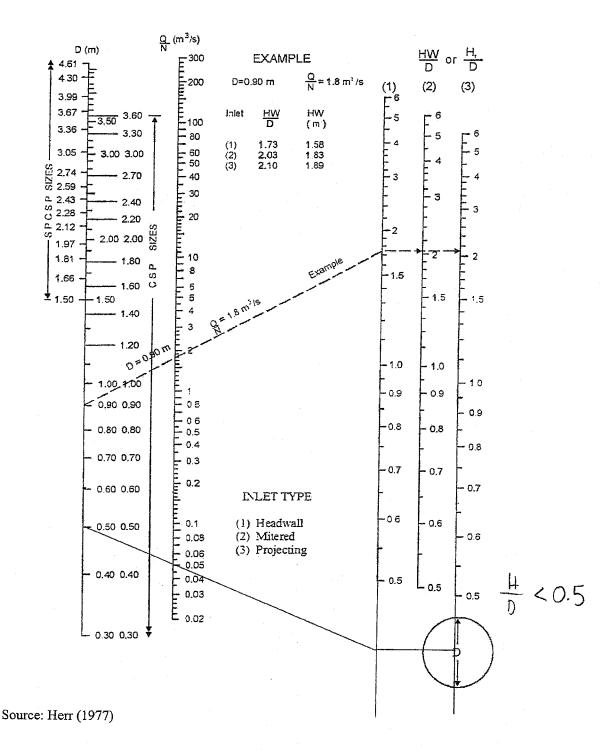

Culverts

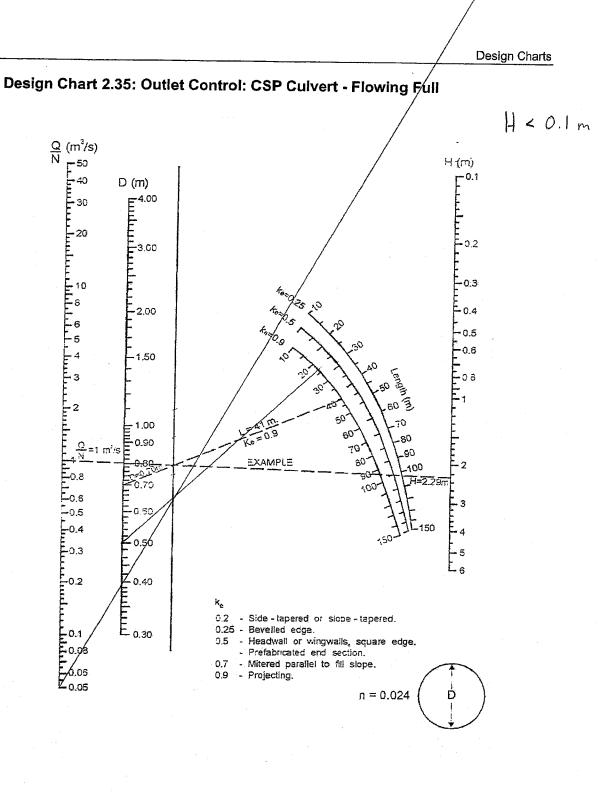
Culvert Crossing &- (14) 2x1.15m x 0.82m


MTO Drainage Management Manual

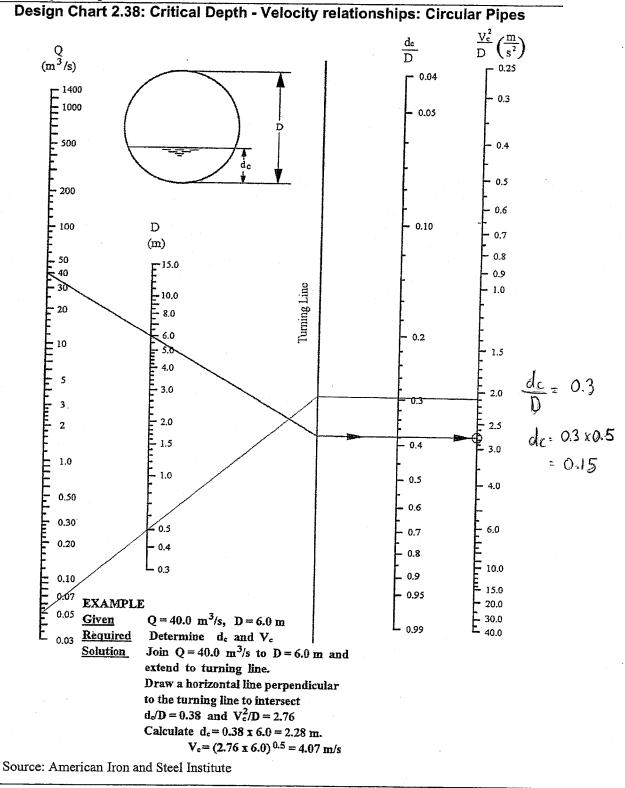
Source: Herr (1977)

Design Chart 5.47: Outlet Control: Pipe Arch CSP Culvert - Flowing Full


Design Chart 5.53: CSP Pipe Arch Culverts

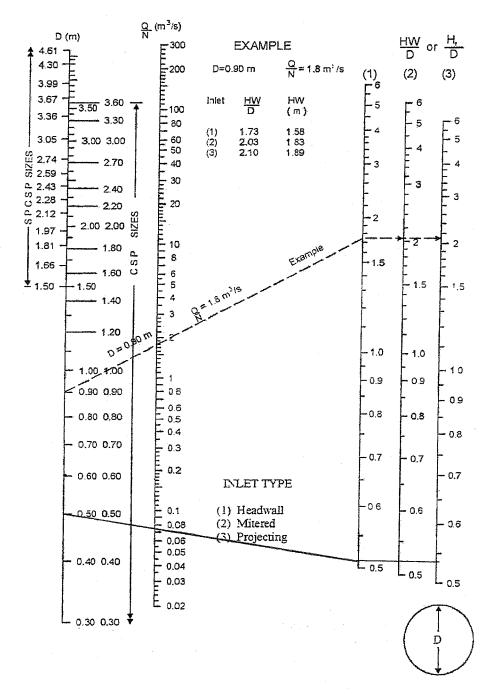

MTO Drainage Management Manual

Culvert Crossing

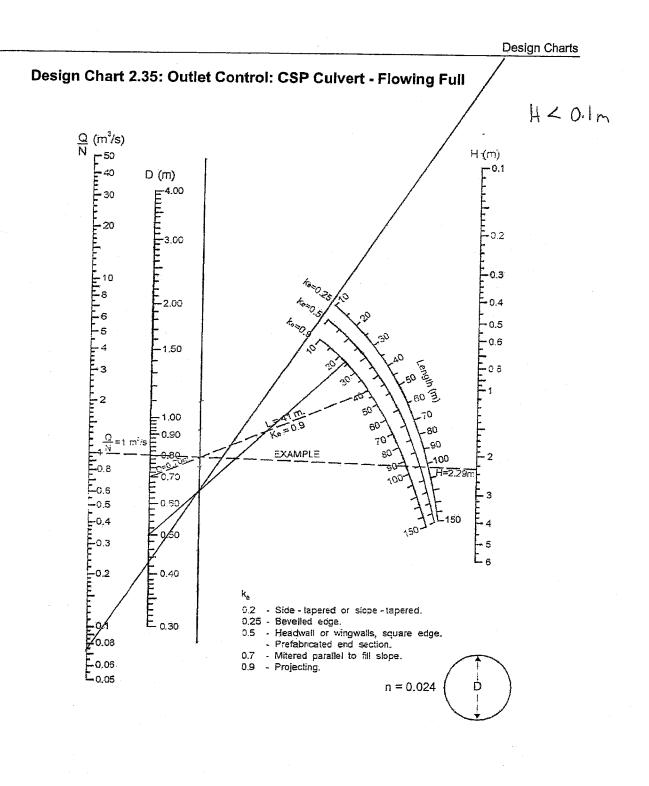

Design Chart 2.32: Inlet Control: Circular CSP and SPCSP Culverts

(23b) +, (23) 500 mm @

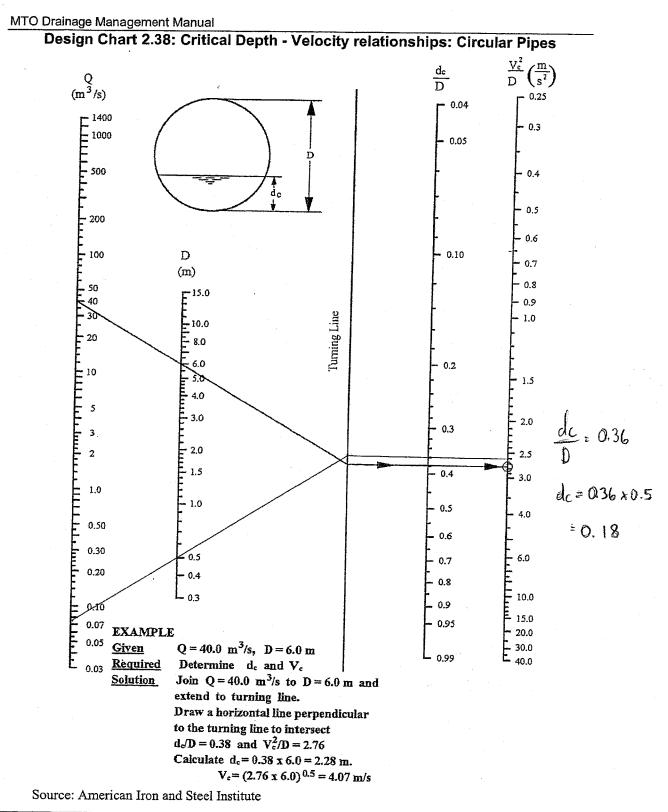
Source: Herr (1977)



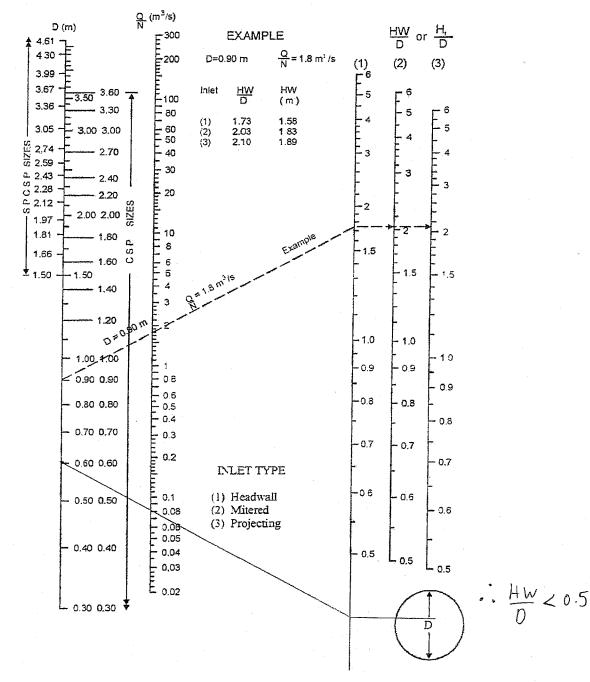
Culvert Crossing (24a to (24b)

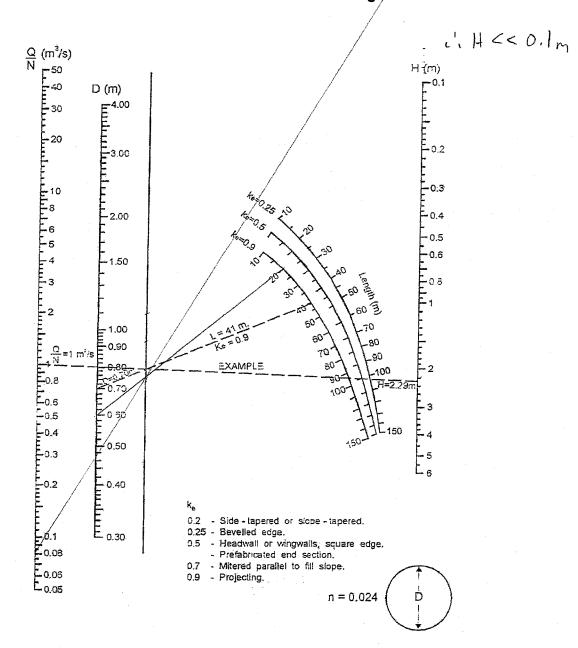

500 mm &

MTO Drainage Management Manual


Design Chart 2.32: Inlet Control: Circular CSP and SPCSP Culverts

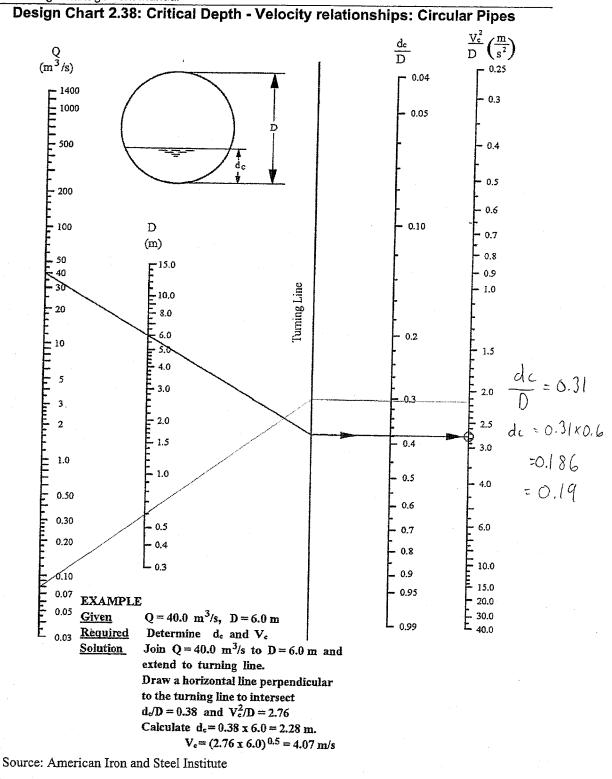
Source: Herr (1977)


Source: Herr (1977)


Culvert Crossing 2 - (9) 600 mm &

MTO Drainage Management Manual

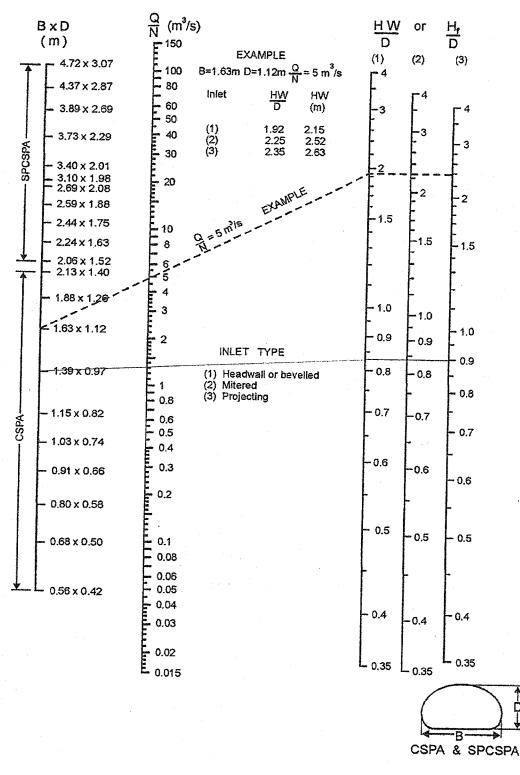
Design Chart 2.32: Inlet Control: Circular CSP and SPCSP Culverts



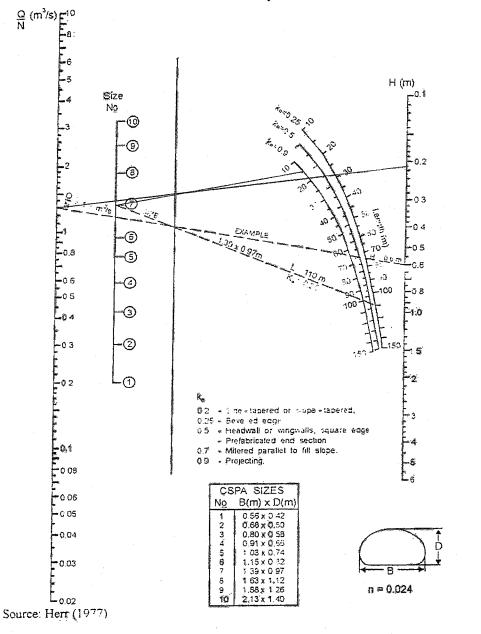
Source: Herr (1977)

Design Chart 2.35: Outlet Control: CSP Culvert - Flowing Full

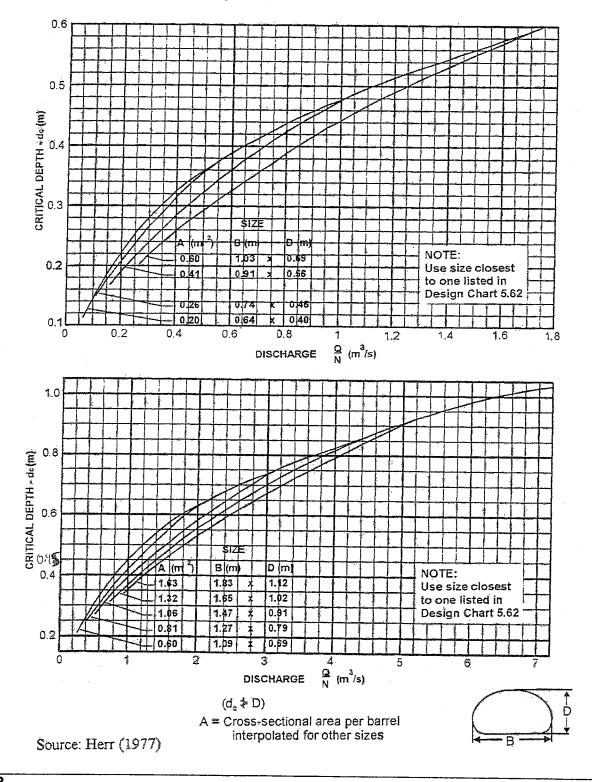
Source: Herr (1977)



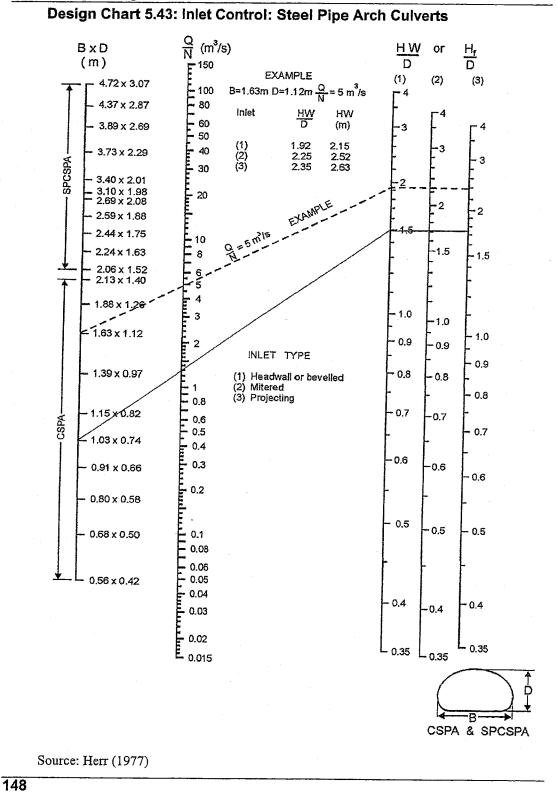
Culvert Crossing 270 10 270 1.39 × 0.97 m


Ď

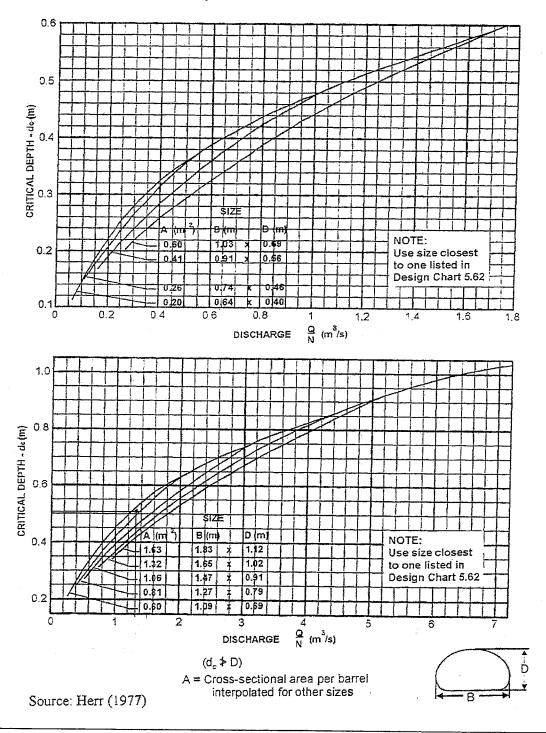
MTO Drainage Management Manual


Design Chart 5.43: Inlet Control: Steel Pipe Arch Culverts

Source: Herr (1977)


Design Chart 5.47: Outlet Control: Pipe Arch CSP Culvert - Flowing Full

Design Chart 5.53: CSP Pipe Arch Culverts


Culvert Crossing 22-19 2× 1.03m × 0.74m

MTO Drainage Management Manual

Design Chart 5.47: Outlet Control: Pipe Arch CSP Culvert - Flowing Full

Design Chart 5.53: CSP Pipe Arch Culverts

APPENDIX 'B'

CONVENTIONAL CULVERT DESIGN SHEET

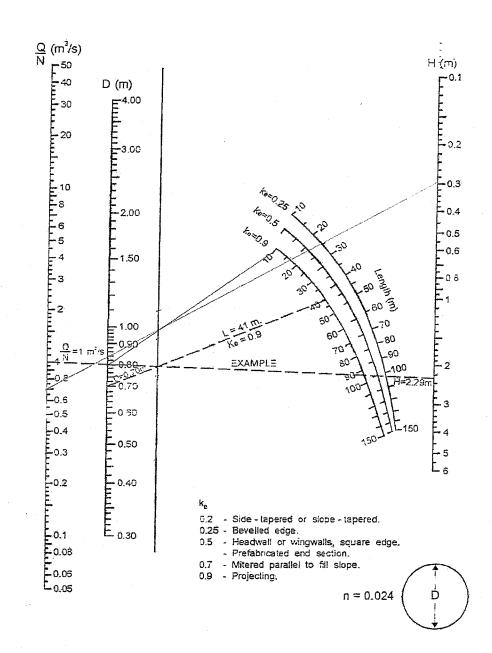
[]

11

112

11.

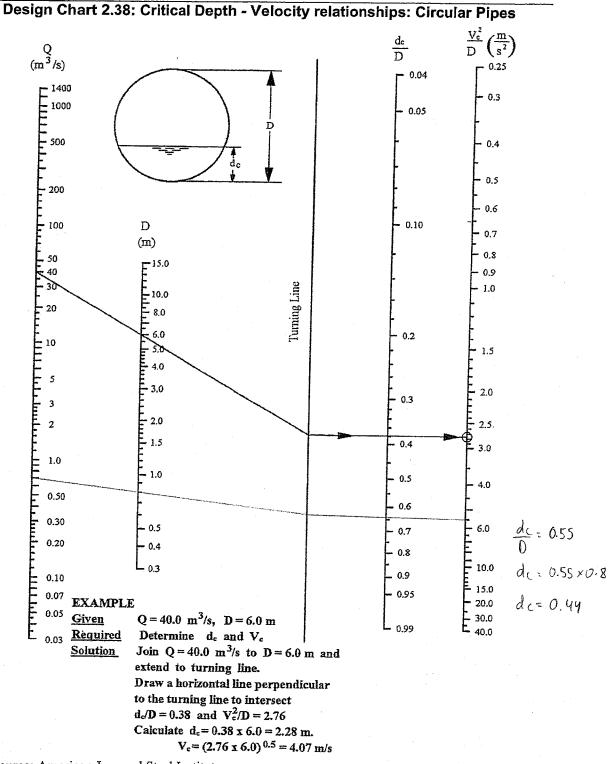
HAWTHORNE ROAD & RIDEAU ROAD


1:10 YEAR ROADSIDE CULVERT DESIGN

CONVENTIONAL CULVERT DESIGN

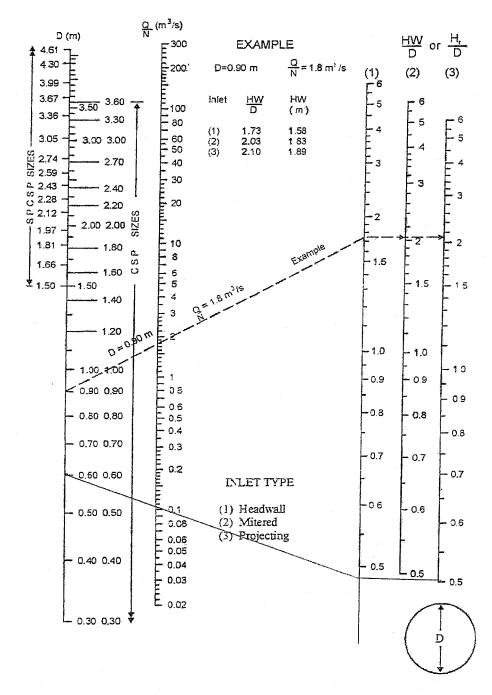
				DESIGN DA	ra -				CI	ULVERT DAT	A		IN IN	LET CONTRO	L				OUTLET C	ONTROL				GOVERNING	VEL
Station	Q	d	d _e	AHW	Skew No.	L	S	Description	D or B x D	N	Q/N	A (each)	Q/NB	HW/D	HW	Ke	H	d _c	(d _c + D)/2	TW	h。	LS	HW	HW	۷°
	(m³/s)	(m)	(m)	(m)		(m)	(m/m)	·	(m)		(m³/s)	(m²)	(m³/s/m)		(m)		(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m/s)
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
					1	l	L												<u> </u>						
6A to 6B	0.694	0.53	0.0	5 1.1:	3 0	10.0	0.010	CSP 800	0.8	1	0.694	0.50		1.05	0.84	0.9	0.30	0.44	0.62	0.58	0.62	0.10	0.82	0.84	
18 to 19	0.105	0.21	0.0	5 1.34	4 0	22.0	0.018	CSP 600	0.6	1	0.105	0.28		0.50	0.30	0.9	0.04	0.22	0.41	0.26	0.41	0.39	0.06	0.30	
20 to 21	0.113	0.29	0.0	5 0.8 [.]		20.0	0.005	CSP 600	0.6	1	0.113	0.28		0.52	0.31	0.9	0.05	0.26	0.43	0.34	0.43	0.10	0.37	0.37	
20 10 21	0.110	0.20		0.0		20.0	0.000		0.0	· · · · ·	0.110	0.20		0.02	0.01	0.01	0.00	0.20	0.401	0.01		0.10	0.07	0.07	
14B to 23	1.377	0.51	0.0	5 1.5	3 0	20.0	0.014	CSP 1000	1.0	1	1.377	0.79		1.14	1.14	0.9	0.55	0.68	0.84	0.56	0.84	0.28	1.11	1.14	
24 to 26	1.559	0.66	0.0	5 2.42	2 0	20.0	0.010	CSP 800	0.8	1	1.559	0.50		2.55	2.04	0.9	1.75	0.72	0.76	0.71	0.76	0.20	2.31	2.31	
																			Ì	T				•	
																				T					
		÷													r		ſ		1						•
				1	1		· · · · · · · · · · · · · · · · · · ·	1						·											
3 4 5	Flood Dept Embedmer Col. 3 + co	nt below ch	annel inve able backv	10 D (circular) or B x D (other)16 HW = col. 15 x Iel invert11 Number of Barrels17 Chart D5-8backwater13 Area per barrel18 Charts D5-2A to										22 23 24	Col. 7 x col. HW = col. 1	of cols. 20 a	- col. 23		26 (Dutlet veloc	ity if requi	red (Subsec	tion 3.2.3)		

Prepared by: Mark Buchanan, E.I.T. Reviewed by: Guy Forget, P.Eng. Date: February 2009

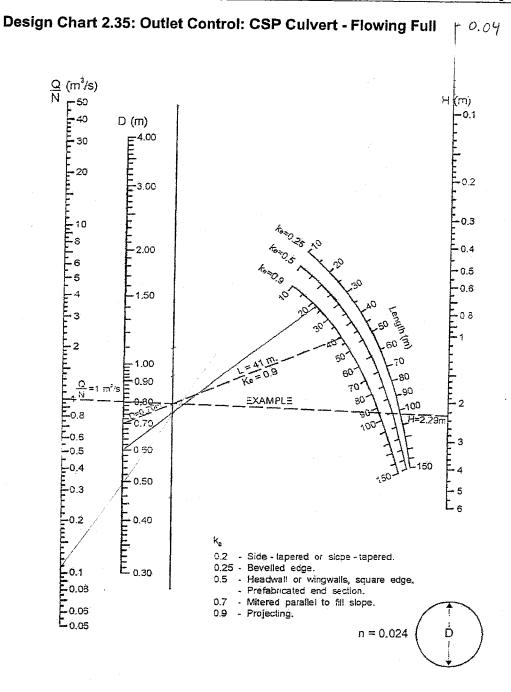

Culverts Hawt Rd

Design Chart 2.35: Outlet Control: CSP Culvert - Flowing Full

Source: Herr (1977)

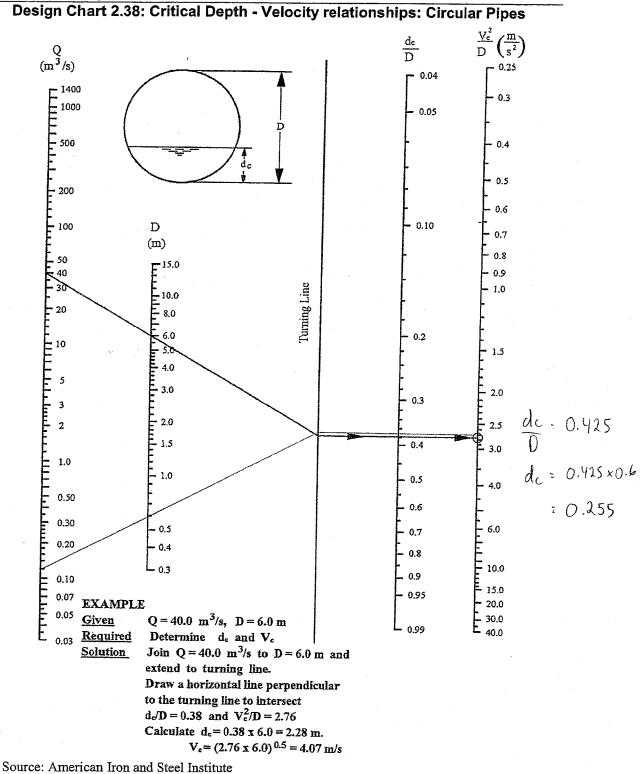


Source: American Iron and Steel Institute


Culvert Crossing (18) to (19) 600mm &

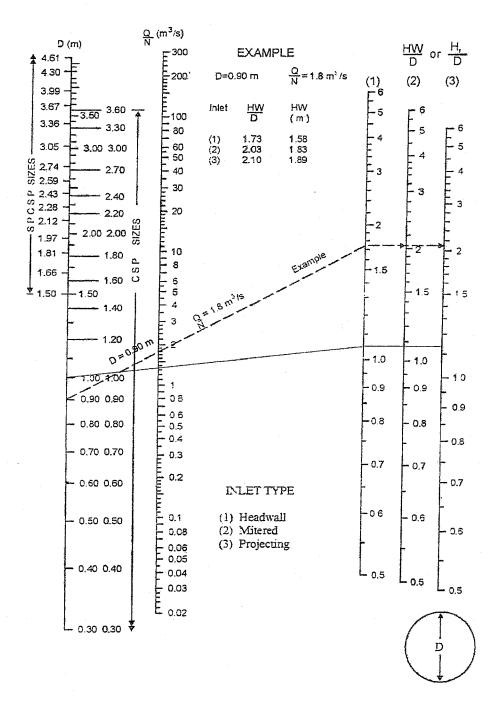
MTO Drainage Management Manual

Design Chart 2.32: Inlet Control: Circular CSP and SPCSP Culverts



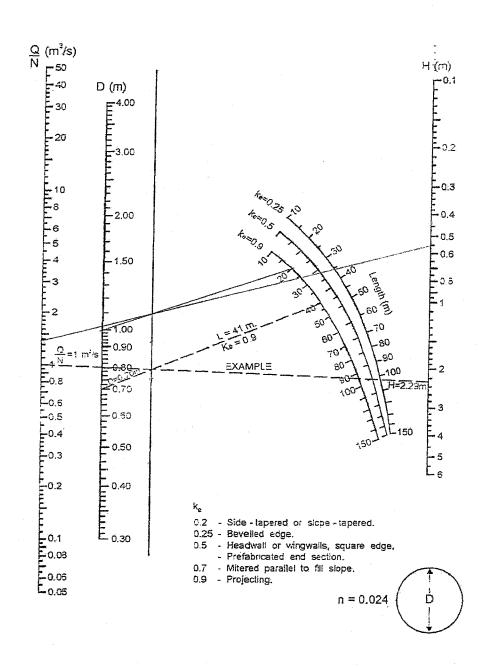
Source: Herr (1977)

Source: Herr (1977)

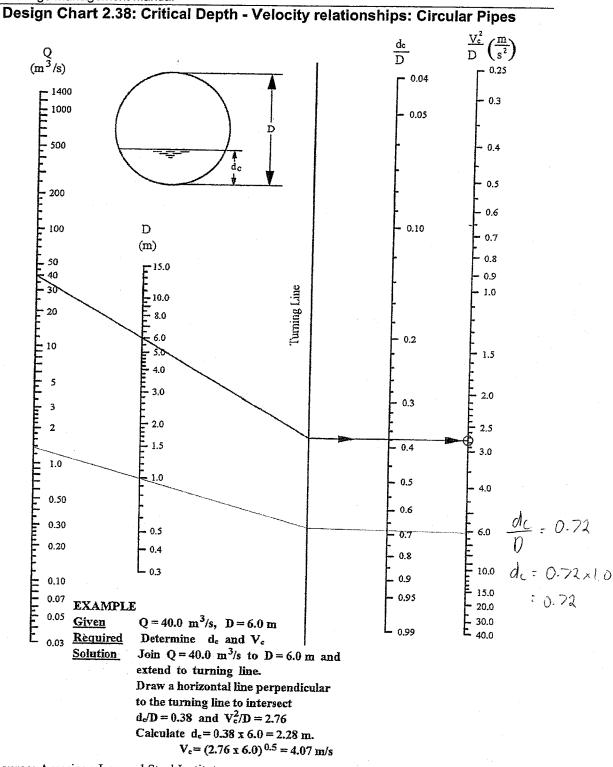


Culvent Crossing [14] to [23] 1000mm @

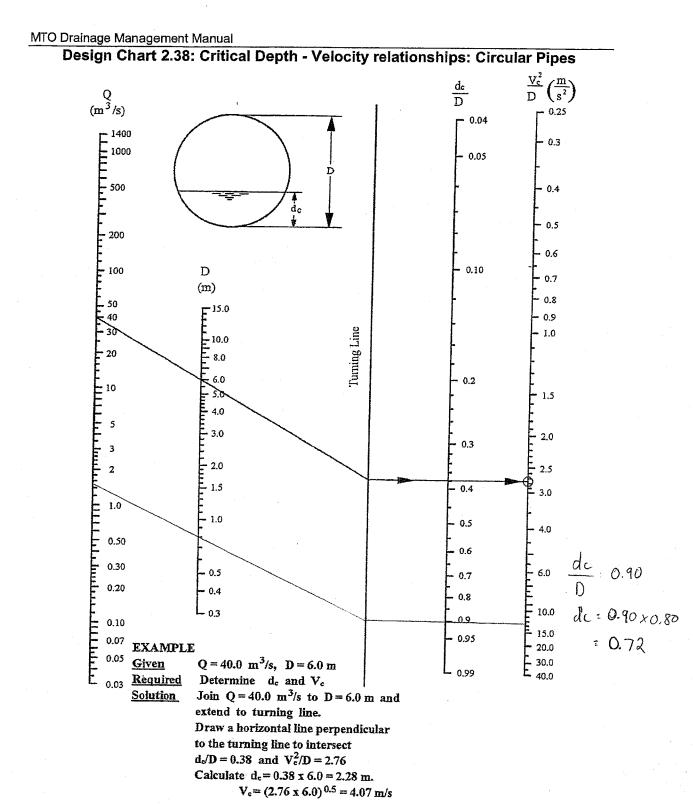
MTO Drainage Management Manual


Design Chart 2.32: Inlet Control: Circular CSP and SPCSP Culverts

Source: Herr (1977)


68

k. . .



Design Chart 2.35: Outlet Control: CSP Culvert - Flowing Full

Source: Herr (1977)

Source: American Iron and Steel Institute

Source: American Iron and Steel Institute

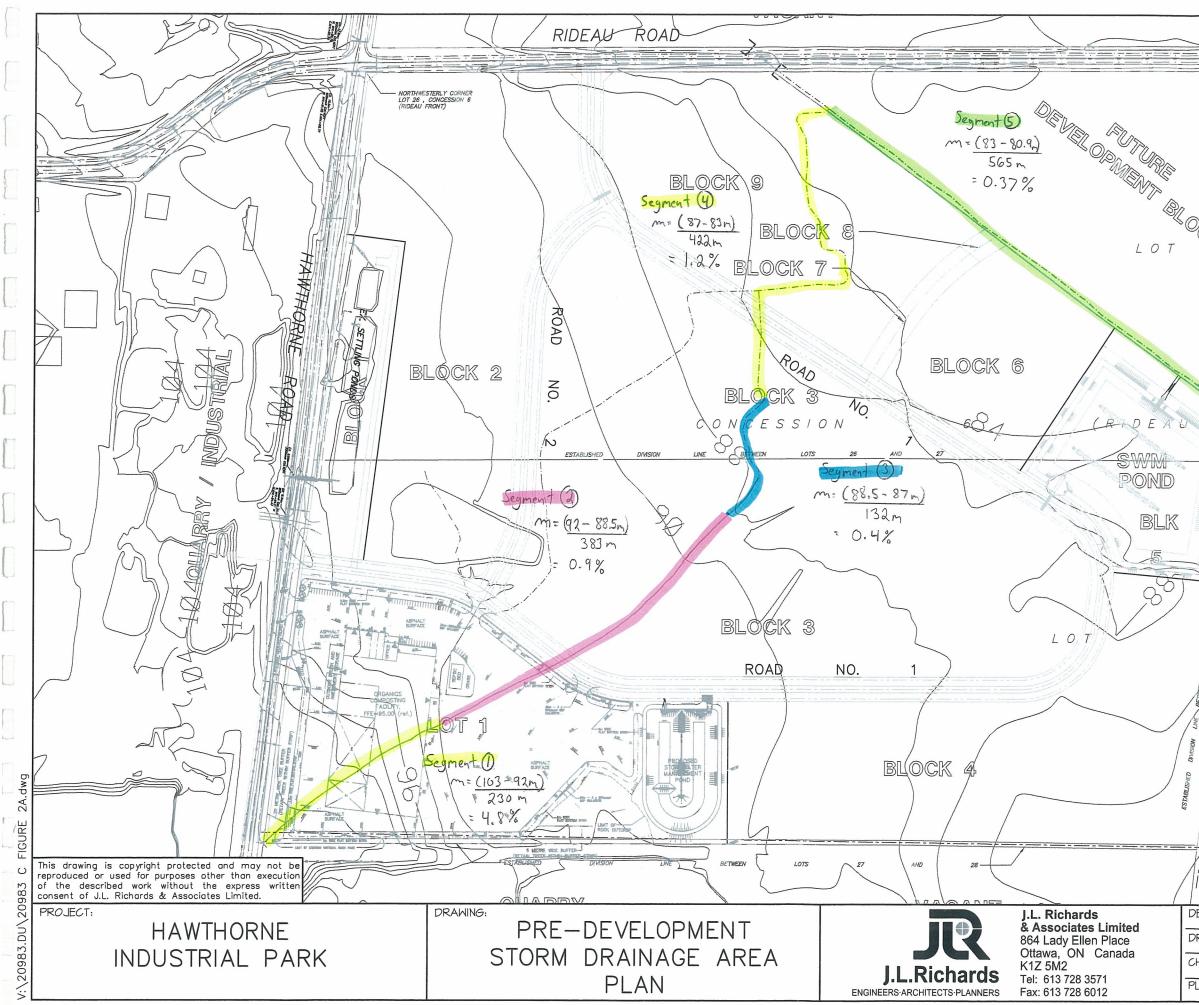
APPENDIX 'C'

WATER QUALITY - INFILTRATION CALCULATION

1

JOB NO. 20983 PROJECT Hawthorne Industrial lark Length of Perforated Pipe in Ditches ву____ MB____ DATE ___ Арт 14/09 ENGINEERS ARCHITECTS Level of Service Normal 70% TSS removal Imperviousness 100% for internal roads Extrapolating from Table 3.2 SWMPDM water quality infiltration requirement = 35 m³/ha Area of Asphalt Phare 1 Phase 2 Lenyth = 2250 mwidth = 7m
15750 m² 300 m 7 m 2100 m Required Storage $= 1.575 \text{ ba} \times 35 \text{ m}^3$ = 0.21 ha x 35 m³ $= 55.1 \, \text{m}^3$ = 7.35 m³ Required Length of 200mm & Perforated Pipe $Length = \frac{55.1 n^3}{77 (0.1)^2 m^2}$ $= \frac{7.35}{97} (0.1)^{2} m^{2}$ = 1755 m = 234 m

APPENDIX 'D'


HYDROLOGICAL PARAMETERS (CN_{pre}, Imperviousness Calculation, Time to Peak Calculation)

JOB NO. 2098) PROJECT Hanthorne Industrial Park % Impenvious Culculation BY _____ B___ DATE __ Jan 22/69 ENGINEERS Typical Site Development with C=0.7 Building Footprint 10% Asphalt Parking 35% Gravel 35% Grass 20% 100% Building Foot print = 100% Impenvious

Asphalt Parking = 100% Impervious Gravel = 70% Impervious Grass = 0% Impervious

% Imp. = 10% × 1 + 35% × 1 + 35% × 0.7 + 20% × 0 = 70%

	LEGEND:
	AREA NO. AREA (ho.) AREA (ho.) TO PEAK CURVE NUMBER APPROXIMATE DRAINAGE AREA BOUNDARY DIRECTION OF OVERLAND FLOW
AND NEST HULES OF LOT 28 THE	
BLOCK	10 ·····
AGRICUL THE EAST AND	
DESIGN: M.B.	DRAWING NO .:
DRAWN: ARM	FIGURE 2
CHECKED: G.F. PLOTTED: Jan 21, 2009	JLR NO: 20983
PLOTTED: Jan 21, 2009	20900

JOB NO. 20983
PROJECT Hawthorne Industrial Park
Time of Concentration - Pre-development
BY MB DATE Jan 22/09
Segment (D)
slope =
$$(103 - 92)m$$

 $= 4.8\%$
Uplands Method Curve B - Woodland
Velocity = 0.32 m/s
Time = $\frac{230 m}{0.32 m/s}$
 $= 719 sec$
Segment (B)
slope = $(92 - 88.5)m$
 $= 0.9\%$
Uplands Method Curve C - Pasture
Velocity = 0.21 m/s
Time = $\frac{383 m}{0.21 m/s}$
 $= 1824 sec$

SHEET____OF__

JOB NO. ________20983 PROJECT Hawthorne Industrial Park Time of Concentration - Pre-development BY______ DATE _____ Jan_ 22/09 ENGINEERS ARC Segment 3 $| Slope = \frac{(88.5 - 87)m}{132m}$ = 0.4% Uplands Method Curve A - Forest (heavy litter) Velocity = 0.05 m/s $Time = \frac{132 m}{0.05 m/s}$ = 2640 sec. Segment (9) $1 slope = \frac{(87 - 83)m}{422m}$ = 1.2% Uplands Method Curve F - Grassed waterway Velocity = 0.47 m/s $Time = \frac{422}{0.47} m/c$ = 898 sec

JOB NO. 20983
PROJECT Hawthorne Industrial Park
Time of Concentration - Pre-Development
BY MB DATE Jan 22/09
Segment (S)
Slope =
$$(33-80.9)$$
 m
= 0.37%
Uplands Method Curve F - Grassed Waterway
Velocity = 0.28 m/s
Time = $\frac{565}{0.28}$ m
= 2018 sec
Total Time = $0 + (3 + (3) + (9) + (5))$
= 719 + 1824 + 2640 + 898 + 2018
= 8099 sec
Time to Peak = $\frac{2}{3}$ x 8099 sec
= 5399 sec
= 90 min

[.

APPENDIX 'E'

SWMHYMO INPUT AND OUTPUT FILES (Pre - and Uncontrolled Post-Development Conditions)

(V:\...P_STPH1.dat)

00001> 2 Meetric units 00002> *#****##*****************************	00136> [-1 , -1] (max twenty pts)
00003> *# Project Name : Hawthorne Industrial Park Project Number: [20983] *	00138> ************************************
00005> *# Revised : N/A *	00139> * Remaining Hawthorne Industrial Park * 00140> ************************************
00006> *# Devæloped by : Mark Buchanan, E.I.T. * 00007> *# Reviewed by : Guy Forget, P.Eng. *	00141> * 00142> * SUB-AREA No.1
00008> *# Compwany : J.L. Richards & Associates Limited * 00009> *# License # : 4418403 *	00143>
00010> *#****** ****************************	00145> XIMP=[0.50], TIMP=[0.71], DWF=[0.0](Cms), LOSS=[2],
00012> * 00013> *#***********************************	00146> SCS curve number CN=[81], 00147> Pervious surfaces: IAper=[4.57] (num), SLPP=[1.5] (%),
00014> *# FILENAME: V:\20983.DU\ENG\SWMHYMO\20983PST.DAT *	00148> LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m 00149> Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.6] (%),
00015> *# FILE DEVELOPED FOR SITE PLAN APPLICATION AND DETAILED DESIGN * 00016> *# OF A FACILITY ASSOCIATED WITH THE OTTAWA COMPOSTING SITE *	00150> DGI=[580] (m], MNI=[0.03], SCI=[0.0] (min 00151> RAINFALL=[, , ,] (mm/hr) , END=-1
00017> *#***********************************	00152> **
00019> ************************************	00154> **
00021> * PROFOSED COMPOSTING SITE UNDER POST-DEVELOPMENT UNCONTROLLED CONDITIONS *	00155> * 00156> * SUB-AREA No.2
00023>	00157> 00158> CALIB STANDHYD ID=[3 }, NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha),
00024> ************************************	00159> XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], 00160> SCS curve number CN=[81],
00026> * FOR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR * 00027> ******** ***************************	00161> Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), 00162> LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m)
00028> 00029> ******** ***************************	00163> Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.65] (%).
00030> * POST-DEVELOPMENT UNCONTROLLED CONDITIONS * 00031> ******* ****************************	00164> LGI=[450] (m), MNI=[0.03], SCI=[0.0] (min 00165> RAINFALL=[, , , ,] (mm/hr) , END=-1 00166> *\$
00032> 00033> ******* *************************	00167> *
00034> * CALCULATION OF 4 HR 25 MM STORM EVENT *	00168> * SUB-AREA No.3 00169>
00035> ************************************	00170> CALIE STANDHYD ID=[4], NHYD=["HIP04"], DT=[2.5] (min), AREA=[18.1] (ha), 00171> XIMD=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2], 00172
00037> START TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0] 00038> *% [] <storm filename,="" for="" line="" nstorm="" one="" per="" td="" time<=""><td>00172> SCS curve number CN=[81], Output SLPP=[1.5](%), 00173> Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), SLPP=[1.5](%),</td></storm>	00172> SCS curve number CN=[81], Output SLPP=[1.5](%), 00173> Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), SLPP=[1.5](%),
00039> READ STORM STORM_FILENAME=["4HR25-15.STM"] 00040> *%	00174> LGP=[10.0](m), MNP=[0.25), SCP=[0.0](m 00175> Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.5](%),
00041> DEFAULT VALUES ICASEdef=[1], read and print values 00042> DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]	LGI = [600] (m), MNI = [0.03], SCI = [0.0] (min)
00043> +8	00177> RAINFALL=[, , , ,](mm/hr), END=-1
00045> ******** ** ************************	00179> ADD HYD IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4] 00180> *%
00046> * ORGAWORLD FILE * 00047> ************************************	00181> * 00182> *SUB-AREA No.4
00048> 00049> * SUB-AREA No.1	00183> 00184> DESIGN NASHYD ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha),
00050> 00051> CALIB STANDHYD ID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha).	00185> DWF={ 0 } (cms), CN/C={ 85 }, TP=[0.17]hrs,
00052> XIMP=[0.84], TIMP=[0.84], DWF=[0.0] (cms), LOSS=[2], 00053> SCS curve number CN=[81],	00186> RAINFALL=[, , , ,](mm/hr), END=-1 00187> *%
00054> Pervious surfaces: $[Aper=[4,67](mm), SLPP=[1,0](%).$	00189>
00056> Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.52] (%),	00190> ADD HYD IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] 00191> *%
00057> LGI=[204.72](m), MNI=[0.03], SCI=[0.0] 00058> RAINFALL=[, , ,](mm/hr), END=-1	00192> 00193> * SUB-AREA NO. 5
00059> **	00194> 00195> DESIGN NASHYD ID = [10], NHYD=["A2"], DT=[2.5]min, AREA=[6.8](ha),
00061> * SUB-AREA No.2 00062>	00196> DWF=[0](cms), CNC=[76], TP=[0.37]hrs,
00063> CALIB STANDHYD ID=[2], NHYD=["020"], DT=[2.5](min), AREA=[1.54](ha)	00197> RAINFALL=[, , ,](mm/hr), END=-1 00198> *%
00065> SCS curve number CN=[81],	00199> 00200> * SUB-AREA NO 4
00066> Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), 00067> LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min),	00201> 00202> DESIGN NASHYD ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[5.3](ha),
00068> Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.50] (%), 00069> LGI=[244.34] (m), MNI=[0.03], SCT=[0.0]	00203> DWF=[0](cms), CNC=[76], TP=[0.804]hrs,
00070> RAINFALL=[, , ,] (mm/hr) , END=-1	0205> **
00072> * 00073> * SUB-AREA No.3	00207> *8
00074>	00208> 00209> ************************************
00075> CALIB STANDHYD ID=[3], NHYD=["030"], DT=[2.5] (min), AREA=[1.4] (ha), 00076> XIMP=[0.97], TIMP=[0.97], DWF=[0.0] (cms), LOSS=[2],	00210> * CALCULATION OF 3HR - 1:2 YEAR STORM EVENT * 00211> ***********************************
00077> SCS curve number CN=[81], 00078> Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%),	00212> 00213> START TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]
00079> LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min), 00080> Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.51] (%),	00214> *% [] <storm filename,="" for="" line="" nstorm="" one="" per="" time<br="">00215> *%</storm>
D0081> LGI=[225.63] (m), MNI=(0.03], SCI=[0.0 00082> RAINFALL=[, , ,] (mm/hr) , END=-1	00216> CHICAGO STORM IUNITS=[2], TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0](min) 00217>
00083> **	00218> A=[732.951], B=[6.199], and C=[0.810], 00219> *8
00085> *8	00220> DEFAULT VALUES ICASEdef=[1], read and print values
00086> ADD HYD IDsum=[5], NHYD=["050"], IDs to add=[3+4] 00087> *\$	00221> DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"] 00222> *%
00089> * SUB-AREA No.4	00223> 00224> ***********************************
00090> 00091> CALIB STANDHYD	00225> * ORGAWORLD FILE * 00226> ***********************************
00092> XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], 00093> SC5 curve number CN=[81],	00227> 00228> * SUB-AREA No.1
00094> Pervious surfaces: [Aper=[4.67] (mm), SLPP=[0.7] (%),	00229>
00096> Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.93] (%),	00230> CALIE STANDHYD ID=[1], NHYD=["010"], DT=[2.5] (min), AREA=[2.07] (ha), 00231> XIMP=[0.84], TIMP=[0.84], DWF=[0.0] (cms), LOSS=[2],
00098> RAINFALL=[, , , ,] (mu/hr), END=-1	00232> SCS curve number CN=[81], 00233> Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%),
00099> *8	00234> LGP=[20] (m), MNP=[0.25], SCP=[0.0] (mi 00235> Impervious surfaces; IAimp=[1.57] (mm), SLPI=[0.52] (%).
00101> * SUB-AREA No.5 00102>	00236> LGI=[204.72] (m), MNI=[0.03], SCI=[0.0] 00237> RAINFALL=[, , ,] (mm/hr), END=-1
00103> CALIE STANDHYD ID=[7], NHYD=["070"], DT=[2.5] (min), AREA=[2.66] (ha), 00104> XIMP=[0.97], THP=[0.97], DWF=[0.0] (cms), LOSS=[2],	00238> *\$
00105> SCS curve number CN=[81], 00106> Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%),	00240> * SUB-AREA No.2 00241>
U(107)	00242> CALIB STANDHYD ID=[2], NHYD=["020"], DT=[2.5] (min), AREA=[1.54] (ha),
00109> LGI=[207.25] (m), MNI=[0.03], SCI=[0.0] (00243> XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], 00244> SCS curve number CN=[81],
00110> RAINFALL=[, , , ,] (mm/hr) , END=-1 00111> *\$	00245> Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%), 00246> LGP=[5](m), MNP=[0.03], SCP=[0.0](min).
00112> ADD HYD IDsum=[8], NHYD=["080"], IDs to add=[6+7] 00113> *%	00247> Impervious surfaces: IAimpe[1,57] (mm), SLF=[0.50] (%], 00248> IGI=[244.34] (m), MNI=[0.03], SCI=[0.0]
00114> ADD HYD IDsum=[9], NHYD=["090"], IDs to add=[5+8] 00115> *8	00249> RAINFALL=[, , , ,] (mm/hr), RMA=[0.03], SC1=[0.0] 00249>
00116> 00117> ROUTE RESERVOIR IDout=[10], NHYD=["POND"], IDin=[9],	00251> *
00118> RDT=[1.0] (min),	00252> * SUB-AREA No. 3 00253>
00119> TABLE of (OUTFLOW-STORAGE) values 00120> (cms) - (ha-m)	00254> CALIB STANDHYD ID=[3], NHYD=["030"], DT=[2.5] (min), AREA=[1.4] (ha), 00255> XIMP=[0.97], TIMP=[0.97], DWF=[0.0] (cms), LOSS=[2],
00121> [0.000, 0.0000] 00122> [0.008, 0.0656]	00256> SCS curve number [0], bit [0] [01, [1], bit[0] [01, [1], bit[0] [0], bit[0], bit[0], bit[0], bit[0] [0], bit[0], bit[0], bit[0], bit[0] [0]
00123> [0.017, 0.131] 00124> [0.093, 0.2831]	$L_{GP}=[5]$ (m), MNP=[0.03], SCP=[0.0] (min),
00125> [0.233, 0.3971] 00126> [0.337, 0.4731]	00260> LGI=[225.63] (m), MNI=[0.03], SCI=[0.0
00127> [0.465, 0.5491]	00261> RAINFALL=[,,,,](mm/hr), END=-1 00262> *%
00128> { 0.531, 0.5871] 00129> { 0.593, 0.6251]	00263> ADD HYD IDsum=[4], NHYD=["040"], IDs to add=[1+2] 00264> *%
00130> [0.654, 0.6631] 00131> [0.797, 0.7391]	00265> ADD HYD IDsum=[5], NHYD=["050"], IDs to add=[3+4] 00266> *%
00132> [0.950, 0.8274] 00133> [1.304, 0.9157]	002675 * 002675 * 002685 * SUB-AREA No.4
00134> [1.880, 1.0040]	00269>
00135> [2.577, 1.0923]	00270> CALIB STANDHYD ID=[6], NHYD={"060"}, DT=[2.5] (min), AREA=[0.89] (ha),

J. L. Richards & Associates Limited

Page 0

(V:\...P*STPH1.dat)

00271> 00272>	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), Loss=[2], SCS curve number CN=[81],</pre>	00406> *****************	•••••
00273> 00274>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[0.7](%), LGP=[40](m), MNP=[0.25], SCP=[0.0](min)	00408> * SUB-AREA No.1 00409>	
00275> 00276>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.93] (%), LGI=[164.82] (m), MNI=[0.03], SCI=[0.0] (00410> CALIB STANDHYD 00411>	ID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha),
00277> 00278> *8	RAINFALL=[, , , ,](mu/hr), END=-1	00412> 00412>	<pre>XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
00279> * 00280> * SUB-ALREA No.5		00414>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[20] (m), MNP=[0.25], SCP=[0.0] (mi)
00281> 00282> CALIB S TANDHYD		00415> 00416>	LGI=[204.72] (m), MNI=[0.03], SCI=[0.0]
00283>	ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMD=[0.97], TIMD=[0.97], DWF=[0.0](cms), LOSS=[2],	00417> 00418> *%	RAINFALL=[, , , ,](mm/hr) , END=-1
00284> 00285>	SCS curve number CN=[81], Pervious surfaces: IAper≂[4.67](mm), SLPP=[1.5](%),	00419> * 00420> * SUB-AREA No.2	
00286> 00287>	LGP=[20.0] (m), MNP=[0.25], SCP=[0.0) (mi Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.61] (%),	00421> 00422> CALIB STANDHYD	ID=[2], NHYD=["020"], DT=[2.5](min), AREA=[1.54](ha),
00288> 00289>	LGI=[207.25] (m), MNI=[0.03], SCI=[0.0) (RAINFALL=[, , , ,] (mm/hr) , END=-1	00423> 00424>	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81],</pre>
00290> *%	IDsum=[8], NHYD=["080"], IDs to add=[6+7]	00425>	Pervious surfaces: Ther=[4 67] (mm) SLDD=[1 0] (%)
00292> *%	IDsum=[9], NHYD=["090"], IDs to add=[5+8]	00426> 00427>	$LGP \approx [5] (m)$, MNP=[0.03], SCP=[0.0] (min), Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.50] (%),
00294> *%		00428> 00429>	LGI=[244.34] (m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , ,] (mm/hr) , END=-1
00296> ROUTE RESERVOIR	<pre>IDout=[10], NHYD=["POND"], IDin=[9],</pre>	00430> *%	
00297> 00298>	RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values	00432> * SUB-AREA No.3 00433>	
00299> 00300>	(cms) - (ha-m) [0.000, 0.0000]	00434> CALIB STANDHYD 00435>	<pre>ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],</pre>
00301> 00302>	[0.008, 0.0656] [0.017, 0.1311]	00436> 00437>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.0](%),
00303> 00304>	[0.093, 0.2831] [0.233, 0.3971]	00438> 00439>	LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min),
00305> 00306>	[0.337, 0.4731] [0.465, 0.5491]	00440>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.51](%), LGI=[225.63](m), MNI=[0.03], SCI=[0.0
00307> 00308>	[0.531, 0.5871]	00442> *8	RAINFALL=[, , , ,] (mm/hr) , END=-1
00309>	[0.593, 0.6251] [0.654, 0.6631]	00443> ADD HYD 00444> *%	IDsum=[4], NHYD=["040"], IDs to add=[1+2]
00310> 00311>	[0.797, 0.7391] [0.950, 0.8274]	00445> ADD HYD 00446> *8	IDsum=[5], NHYD=["050"], IDs to add=[3+4]
00312> 00313>	[1.304, 0.9157] [1.880, 1.0040]	00447> * 00448> * SUB-AREA No.4	
00314> 00315>	$\begin{bmatrix} 2.577, 1.0923 \end{bmatrix}$ $\begin{bmatrix} -1, -1 \end{bmatrix}$ (max twenty pts)	00449> 00450> CALIB STANDHYD	<pre>ID=[6], NHYD≃["060"], DT={2.5}(min), AREA=(0.89)(ha),</pre>
00316> 00317> ***********************	*******	00451> 00452>	XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81].
00318> * Remaining Ha	awthorne Industrial Park *	00453>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[0.7] (%),
00320> * 00321> * SUB-AREA No.1		00455>	LGP=[40] (m), MNP=[0.25], SCP=[0.0] (min) Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.93] (%),
00322> 00323> CALIB STANDHYD		00457>	LGI=[164.82] (m), MNI=[0.03], SCI=[0.0] (RAINFALL=[, , ,] (mm/hr) , END=-1
00324>	ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMD=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],	00458> *%	
00325> 00326>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),	00460> * SUB-AREA No.5 00461>	
00327> 00328>	LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.6](%),	00462> CALIB STANDHYD 00463>	<pre>ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],</pre>
00329> 00330>	LGI=[580] (m], MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , , ,] (mm/hr) , END=-1	00464>	SCS curve number CN=[81], Pervious surfaces: Taper=[4 67] (mm) SIPD=[1 5](8)
00331> *%	IDsum=[2], NHYD=("HIP02"), IDs to add=[10+1]	00466> 00467>	LGP=[20.0] (m), MNP=[0.25], SCP=[0.0] (mi Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.61] (%),
00333> **		00468> 00469>	LGI = [207.25] (m), MNI = [0.03], SCI = [0.0] (m)
00335> * SUB-AREA No.2 00336>		00470> *8	
00337> CALIB STANDHYD 00338>	ID=[3], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha),	00471> ADD HYD 00472> *%	IDsum=[8], NHYD=["080"], IDs to add=[6+7]
00339> 00340>	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>	00473> ADD HYD 00474> *%	IDsum=[9], NHYD=["090"}, IDs to add=[5+8]
00341>	Pervious surfaces: LAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m	00475> 00476> ROUTE RESERVOIR	<pre>IDout=[10], NHYD=["POND"], IDin=[9],</pre>
00342> 00343>	<pre>Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.65](%), LGI=[450](m), MNI=[0.03], SCI=[0.0](min</pre>	00477> 00478>	RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values
00344> 00345> **	RAINFALL=[, , , ,] (mm/hr) , END=-1	00479> 00480>	(cms) - (ba-m) [0.000, 0.0000]
00346> * 00347> * SUB-AREA No.3		00481>	[0.008, 0.0656] [0.017, 0.1311]
00348> 00349> CALIB STANDHYD	<pre>ID=[4], NHYD=["HIP04"], DT=[2.5] (min), AREA=[18.1] (ha), XIMD=[0.50], TIMD=[0.71], DMD=[0.0] (cms), LOSS=[2],</pre>	00483>	[0.093, 0.2831] [0.233, 0.3971]
00350>	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>	00485>	[0.337, 0.4731] [0.465, 0.5491]
00352> 00353>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m	00487> 00488>	[0.531, 0.5871] [0.593, 0.6251]
00354> 00355>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.5] (%), LGI=[600] (m), MNI=[0.03], SCI=[0.0] (min	00489>	[0.654, 0.6631]
00356> 00357> *%	RAINFALL=[, , ,] (mm/hr) , END=-1	00491>	[0.797, 0.7391] [0.950, 0.8274]
00358> ADD HYD 00359> **	IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4]	00492> 00493>	[1.304, 0.9157] [1.880, 1.0040]
00360> * 00361> *SUB-AREA No.4		00494> 00495>	<pre>[2.577, 1.0923] [-1 , -1] (max twenty pts)</pre>
00362>	· · · · · · · · · · · · · · · · · · ·	00496> 00497> *********************	
00363> DESIGN NASHYD 00364>	<pre>ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cms), CN/C=[85], TP=[0.17]hrs,</pre>	00499> **************	Wthorne Industrial Park * *************************
00365> 00366> *%	RAINFALL=[, , , ,] (num/hr), END=-1	00500> * 00501> * SUB-AREA No.1	
00367> 00368>		00502> 00503> CALIB STANDHYD	ID=[]], NHYD=["HIP01"], ואים (2.51/min) (10 סו /)
00369> ADD HYD 00370> *%	IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6]	00504> 00505>	<pre>ID=[1], NHYD=["HIP01"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number cM=[61]</pre>
00371> 00372> * SUB-AREA NO. 5		00506> 00507>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), CDP=[100 01/m], SLPP=[0.25], CDP=[0.01/m]
00373> 00374> DESIGN NASHYD	TD = [10] MEVD-[#32#] $DT = [2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -$	00508>	LGP=[100.0] (m), MNP=[0.25], SCP=[0.0) (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.6] (%),
00375>	ID = [10], NHYD=["A2"], DT=[2.5]min, AREA=[6.8](ha), DWF=[0](cms), CNC=[76], TP=[0.37]hrs, DNTNDVI	00509> 00510>	LGI=[580] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , , ,](mm/hr), END=-1
00376> 00377> *8	RAINFALL=[, , , ,] (mm/hr), END=-1	00511> *% 00512> ADD HYD	<pre>IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1]</pre>
00378> 00379> * SUB-AREA NO 4		00513> *%	-
00380> 00381> DESIGN NASHYD	ID = [1], $NHYD = ["A3"]$, $DT = [2.5]min$, $AREA = [5.3]$ (ha),	00515> * SUB-AREA No.2 00516>	
00382> 00383>	DWF=(0)(CMS), CNC=[76], TP=[0.804]nrs, RAINFALL=[, , , ,](mm/hr), END=-1	00517> CALIB STANDHYD 00518>	<pre>ID=[3], NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],</pre>
00384> *% 00385> ADD HYD	<pre>IDsum=[2], NHYD={"0020"}, IDs to add=[7+10+1]</pre>	00519> 00520>	SCS curve number CN=[01], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%),
00386> *%		00521>	LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m
00388>	******	00522>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.65] (%), LGI=[450] (m), MNI=[0.03], SCI=[0.0] (min
00390> * CALCULATI	ON OF 3HR - 1:5 YEAR STORM EVENT *	00524> 00525> *%	RAINFALL=[, , , ,)(mm/hr) , END=-1
00392>	**********	00526> * 00527> * SUB-AREA No.3	
00393> START 00394> *%	TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0] [] <storm filename,="" for="" line="" nstorm="" one="" per="" td="" time<=""><th>00528> 00529> CALIB STANDHYD</th><td><pre>ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[18.1](ha),</pre></td></storm>	00528> 00529> CALIB STANDHYD	<pre>ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[18.1](ha),</pre>
00395> *% 00396> CHICAGO STORM	<pre>IUNITS=[2], TD=[3.0] (hrs), TPRAT=[0.333], CSDT=[10.0] (min)</pre>	00530> 00531>	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81],</pre>
00397> 00398>	ICASEC=[1], D=[5:0] (III 5), IFART=[5:335], CSDT=[10:0] (IIII), A=[998.071], B=[6.053], and C=[0.814],	00532> 00533>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%),
		00534>	LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimpe[1.57] (mm), SLPT=[0.5] (%),
00401>	ICASEdef=[1], read and print values DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]	00535> 00536>	LGI=[600](m), MNI=[0.03], SCI=[0.0](min RAINFALL=[, , , ,](mm/hr), END=-1
00402> *%		00537> *%	IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4]
00404> *********************************		00539> *%	-1
		I	

J. L. Richards & Associates Limited

1.

L.

$(V: \... P STPH1.dat)$

-				
005415	> *SUB-ARIEA No.4		1 00676>	
00542>	>		00677>	* Remainir
00543>	> DESIGN INASHYD	<pre>ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cms), CN/C=[85], TP=[0.17]hrs,</pre>	00678>	******
00545>	>	RAINFALL=[, , , ,] (mm/hr), END=-1	00680>	* SUB-AREA No.
005462	› *8		00681>	CALIB STANDHYL
00548>			00683>	
	*8	IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6]	00684>	
00551>			00686>	
00553>	•		00687>	
00554>	> DESIGN INASHYD	ID = [10], $NHYD = ["A2"]$, $DT = [2.5]min$, $AREA = [6.8]$ (ha), DWF = [0] (cms), $CNC = [76]$, $TP = [0, 37]$ hrs	00689>	**
00556>		ID = [10], NHYD=["A2"], DT=[2.5]min, AREA=[6.8](ha), DWF=[0](cms), CNC=[76], TP=[0.37]hrs, RAINFALLE[, , ,] (mm/hr), END=-1	00691>	ADD HYD
00557>		-	00692>	*8
00559>	* SUB-AFREA NO 4		00694>	* SUB-AREA No.
00561>	DESIGN NASHYD	ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[5.3](ha),	00695>	CALIB STANDHY
00562>		DWF=[0](cms), CNC=[76], TP=[0.804]hrs,	00697>	
00564>	**	RAINFALL=[, , , ,] (mm/hr), END=-1	00698>	
	ADD HYD	IDsum=[2], NHYD=["0020"], IDs to add=[7+10+1]	00700>	
00567>	•		00701>	
00568>	• * CALCULATI	**************************************	00703>	*8
00570>	*******	***************************************	00705>	*
00571> 00572>	START	TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]	00706>	* SUB-AREA No.
00573>		[] <storm filename,="" for="" line="" nstorm="" one="" per="" td="" time<=""><td>00708></td><td>CALIB STANDHYD</td></storm>	00708>	CALIB STANDHYD
00575>	CHICAGO STORM	IUNITS=[2], TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0](min)	00709>	
00576>		ICASEcs=[1],	00711>	
00578>	*8	A=[1174.184], B=[6.014], and C=[0.816],	00712>	
00579>	DEFAULT VALUES	ICASEdef=[1], read and print values DEFVAL FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]	00714>	
00581>	*8		00716>	
00582>	******	********	00717> 00718>	ADD HYD
00584>	* ORGAWORI	LD FILE *	00719>	•
00586>			00721>	*SUB-AREA No.4
00587>	* SUB-AREA No.1		00722>	DESIGN NASHYD
00589>	CALIB STANDHYD	<pre>ID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha),</pre>	00723>	
00590> 00591>		<pre>XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>	00725>	*8
00592>		Pervious surfaces: IAper=[4.67](mm), SLPP=[1.0](%),	00727>	
00593>		LGP=[20](m), MNP=[0.25], SCP=[0.0](mi Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.52](%).		ADD HYD
00595> 00596>		Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.52] (%), LGI=(204.72] (m), MMI=[0.03], SCI=[0.0]	00730>	-
00597>		RAINFALL=[, , , ,] (mm/hr) , END=-1	00731>	* SUB-AREA NO.
00598>	* * SUB-AREA No.2		00733>	DESIGN NASHYD
00600>			00734>	
00601>	CALIB ST.ANDHYD	ID=[2], NHYD=["020"}, DT=[2.5](min), AREA=[1.54](ha), XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2],	00736>	*8
00603>		SCS curve number CN=[81],	00738>	* SUB-AREA NO
00604> 00605>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[5) (m), MNP=[0.03], SCP=[0.0] (min).	00739>	DESIGN NASHYD
00606> 00607>		LGP=[5](m), MMP=[0.03], SCP=[0.0](min), Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.50](%), IGI=[244,24](m), SLPI=[0.50](%),	00741>	bioren habilit
00608>		LGI=[244.34] (m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , , ,](mm/hr), END=-1	00742>	*§
00609> 00610>			00744>	
00611>	* SUB-AREA No.3		00746>	*******
00612>	CALIB STANDHYD	ID=[3], NHYD=["030"], DT=[2.5] (min), AREA=[1.4] (ha),	00747>	
00614>		XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],	00749>	
00615> 00616>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.0](%),	00750>	START
00617> 00618>		LGP=[5](m), MNP=[0.03], SCP=[0.0](min), Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.51](%),	00752>	*8
00619>		LGI = [225, 63] (m), $MNI = [0, 03]$, $SCI = [0, 0]$	00753>	*8 CHICAGO STORM
00620> 00621>	*8	RAINFALL=[, , ,](mm/hr), END=-1	00755>	
00622>	ADD HYD	IDsum=[4], NHYD=["040"], IDs to add=[1+2]	00757>	*8
	*8 ADD HYD	IDsum=[5], NHYD=["050"], IDs to add=[3+4]	00758>	DEFAULT VALUES
00625>			00760>	*8
	* * SUB-AREA No.4		00761>	*****
00628>	CALIB STANDHYD		00763>	* ORGZ
00630>	JIRADALD	ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],	00765>	************
00631>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[0.7] (%),	00766>	* SUB-AREA No.1
00633>		LGP=[40] (m), MNP=[0.25], SCP=[0.0] (min)	00768>	CALIB STANDHYD
00634> 00635>		LGE=[40](m), MND=[0.25], SCP=[0.0](min) Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.93](%), LGI=[164.82](m), MAI=[0.03], SCI=[0.0](00769>	
00636> 00637>	**	RAINFALL=[, , , ,] (mm/hr) , END=-1	00771>	
00638>	*	,	00772> 00773>	
00639> 00640>	* SUB-AREA No.5		00774>	
00641>	CALIB STANDHYD	ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha),	00776>	
00642> 00643>		XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],	00777> 1	* * SUB-AREA No.2
00644> 00645>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%),	00779>	
00646>		LGP=[20.0] (m), MNP=[0.25], SCP=[0.0] (mi Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.61] (%),	00781>	CALIB STANDHYD
00647> 00648>		LGI=[207.25] (m), MNI=[0.03], SCI=[0.0](RAINFALL=[, , ,](mm/hr), END=-1	00782> 00783>	
00649>	*8		00784>	÷
00651>		IDsum=[8], NHYD=["080"], IDs to add=[6+7]	00785>	
00652>	ADD HYD	IDsum=[9], NHYD=["090"], IDs to add=[5+8]	00787>	
00654>			00788>	
00655> 00656>	ROUTE RESERVOIR	<pre>IDout={10], NHYD={"POND"}, IDin={9], RDT=[1.0](min),</pre>	00790>	SUB-AREA No.3
00657>		TABLE of (OUTFLOW-STORAGE) values		CALIB STANDHYD
00658> 00659>		(cms) - (ha-m) [0,000, 0,0000]	00793>	
00660>		[0.008, 0.0656]	00795>	
00661> 00662>		[0.017, 0.1311] [0.093, 0.2831]	00796>	
00663>		[0.233, 0.3971]	00798>	
00665>		[0.465, 0.5491]	00799>	
00666> 00667>		[0.531, 0.5871] [0.593, 0.6251]	00801> 7	DD HYD
00668>		[0.654, 0.6631]	00803> 7	DD HYD
00669> 00670>		[0.797, 0.7391] [0.950, 0.8274]	00804> *	*******
00671>		[1.304, 0.9157]	00806> *	SUB-AREA No.4
00673>		[1.880, 1.0040] { 2.577, 1.0923]	00807>	ALIB STANDHYD
00674> 00675>		[-1 , -1] (max twenty pts)	00809>	
			00810>	

****** * Remaining Hawthorne Industrial Park * * SUB-AREA No.1 ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](rmm), SLPF=[1.5](%), LGP=[10.0.0](m), NNP=[0.25], SCD=[0.0](m Impervious surfaces: IAimpe[1.57](rmm), SLPT=[0.6](%), CGP=[500](m), MNT=[0.03], SCI=[0.0](min RAINFALL=[, , ,](mm/hr), END=-1 CALIB STANDHYD ADD HYD IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1] * * SUB-AREA No.2 CALIB STANDHYD *8-----* SUB-AREA No.3 ID=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[18.1](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: TApper[4.57](mm), SLPP=[1.5](%), LGP=[10.0.0](m), NNP=[0.25], SCP=[0.0](m Impervious surfaces: TAimp=[1.57](mm), SLPI=[0.5](%), CD=[50.0](m), NNT=[0.0], SCI=[0.0](min RAINFALL=[, , ,](mm/hr), END=1 CALTE STANDHYD *8-----ADD HYD *8-----------IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4] *SUB-AREA No.4 DESIGN NASHYD ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cms), CN/C=[85], TP=[0.17]hrs, RAINFALL=[, , , ,](mm/hr), EMD=-1 **-----ADD HYD IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] * SUB-AREA NO. 5 DESIGN NASHYD ID = [10], NHYD=["A2"], DT=[2.5]min, AREA=[6.6](ha), DWF=[0](cms), CNC=[76], TP=[0.37]hrs, RAINFALL=[, , , ,](mm/hr), END=-1 **----* SUB-AREA NO 4 ID = [1], NHYD=("A3"], DT=[2.5]min, AREA=[5.3](ha), DWF=[0](cms), CNC=[76], TP=[0.804]hrs, RAINFALL=[,,,,](nm/hr), END=-1 DESIGN NASHYD IDsum=[2], NHYD=["0020"], IDs to add=[7+10+1] ADD HYD **** * CALCULATION OF 3HR - 1:25 YEAR STORM EVENT TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]
[] <--storm filename, one per line for NSTORM time</pre> START *%-----CHICAGO STORM IUNITS=[2], TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0](min) ICASEcs=[1], A=[1402.884], B=[6.018], and C=[0.819], DEFAULT VALUES ICASEdef=[1], read and print values DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"] *8---***** * ORGAWORLD FILE * * SUB-AREA No.1 ID=[1], NHVD=["010"], DT=[2.5] (min), AREA=[2.07] (ha), XIMP=[0.84], TIMP=[0.84], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[20] (m), MMP=[0.25], SCP=[0.0] (mi Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.52] (%), LGP=[20] (m), SLPI=[0.52] (%), CGP=[20] (m), SLPI=[0.52] (%), CGP=[20] (m), MP=[0.03], SCI=[0.0] CALIB STANDHYD * SUB-AREA No.2 ID=[2], NHYD=["020"], DT=[2.5](min), AREA=[1.54](ha), XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.0](%), LGP=[5](m), NMF=[0.03], SCP=[0.0](min), Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.50](%), LGP=[24,434](m), MNF=[0.03], SCI=[0.0] RAINFALL=[, , ,](mm/hr), END=-1 CALIB STANDHYD **-----* SUB-AREA No.3 ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.0](%), LGP=[5](m), MNP=[0.03], SCP=[0.0](min), Impervious surfaces: IAper=[4.67](mm), SLPP=[1.0](%), LGP=[5](m), MNT=[0.03], SCI=[0.0](%), RAINFALL=[, , , ,](mm/hr), END=1 CALTE STANDHYD ADD HYD IDsum=[4], NHYD=["040"], IDs to add=[1+2] -----ADD HYD IDsum=[5], NHYD=["050"], IDs to add=[3+4]

ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],

33> *% 34> CHICAGO STORM 35> 36> 37> *%	A=[1569.580], B=[6.014], and C=[0.820],	010712>	LGP=[100.0](m), MNP=[0.25], SCP=[0.0] Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.5](%),
34> CHICAGO STORM		01070> 01071>	Pervious surfaces: IAper=[4.67] (nm), SLPP=[1.5] (%),
33 *9		01068>	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
31> START 32> *%	<pre>TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0] [] <storm filename,="" for="" line="" nstorm="" one="" per="" pre="" time<=""></storm></pre>	01066> 01067> CALIB STANDHYD	ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[18.1](ha),
29> ************************************	*************************	01064> * 01065> * SUB-AREA No.3	
27> *********************** 28> * CALCU	**************************************	01062> 01063> *%	RAINFALL=[,,,,](mm/hr), END=-1
25> 26>	-	01060> 01061>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.25], SCP=[0.1 IGI=[450] (m), SLPI=[0.65] (%), IGI=[450] (m), MNI=[0.03], SCI=[0.0]
23> ADD HYD 24> *%	IDsum=[2], NHYD=["0020"], IDs to add=[7+10+1]	010575 01058> 01059>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.1
21> 22> *% 	RAINFALL=[, , , ,] (mm/hr), END=-1	01056> 01057>	<pre>ID=[3], NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
19> DESIGN NASHYD 20>	<pre>ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[5.3](ha), DWF=[0](cms), CNC=[76], TP=[0.804]hrs,</pre>	01053> - SOB-AREA NO.2 01054> 01055> CALIB STANDHYD	ID=[3], NHYD=["HITP(13"], pm=[2 5]/min) appa_[13]/
17> * SUB-AREA NO 18>		01051> * 01052> * 01053> * SUB-AREA No.2	
15> *% 16>		01050> ADD HYD 01051> *%	IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1]
13> 14>	DWF=[0](cms), CNC=[76], TP=[0.37]hrs, RAINFALL=[, , ,](mm/hr), END=-1	01048> 01049> *8	LGI=[580](m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , ,](mm/hr), END=-1
11> 12> DESIGN NASHYD	ID = [10], NHYD=("A2"], DT=[2.5]min, AREA=[6.8](ha),	01045> 01046> 01047>	LGP=(100.0](m), MNP=[0.25], SCP=[0. Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.6](%), IJT=[580](m) MNI=[0.03] SCT=[0.03]
09> 10> * SUB-AREA NO.		01043> 01044> 01045>	SCS curve number CN=[81], Pervious surfaces: lAper=[4,67](nm), SLPP=[1,5](%).
07> ADD HYD 08> *%	IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6]	01041> CALIB STANDHYD 01042> 01043>	ID=[1], NHYD=["HIP01"], DT=[2.5](min), AREA=[19.9](ha) XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS_CUTTO_NUMBER_CN=[31]
05> 06>	· · · · · · · · · · · · · · · · · · ·	01039> * SUB-AREA No.1 01040> 01041> CALIB STANDHYD	
02> 03> 04> *&	DWF=[0] (cms), CN/C=[85], TP=[0.17]hrs, RAINFALL=[, , , ,] (mm/hr), END=-1	01037> ************************************	
01> DESIGN NASHYD 02>	ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0] (ha), DWF=[0] (cms), CN/C=[85], TP=[0] 17]hrs	01036> * Remaining H	**************************************
99> *SUB-AREA No.4 00>		01033> 01034> 01025> ++++++++++++++++++++++++++++++++++++	[-1 , -1] (max twenty pts)
96> ADD HYD 97> *& 98> *	IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4]	01031> 01032>	[1.880, 1.0040] [2.577, 1.0923]
94> 95> *& 96> ADD HYD	RAINFALL=[, , , ,] (mm/hr), END=-1	01029> 01030>	[0.950, 0.8274] [1.304, 0.9157]
92> 93> 94>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.5] (%), LGI=[600] (m), MNI=[0.03], SCI=[0.0] (min	01027> 01028>	[0.654, 0.6631] [0.797, 0.7391]
90> 91>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%), LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m)	01025> 01026>	[0.531, 0.5871] [0.593, 0.6251]
88> 89>	XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],	01023> 01024>	(0.233, 0.2971) (0.337, 0.4731) (0.465, 0.5491)
86> 87> CALIB STANDHYI	<pre>ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[18.1](ba).</pre>	01021> 01022>	[0.017, 0.1311] [0.093, 0.2831] [0.233, 0.3971]
34> * 35> * SUB-AREA No.	3	01019>	[0.000, 0.0000] [0.008, 0.0656] [0.017, 0.1311]
82> 83> *8	RAINFALL=[, , , ,] (mm/hr), END=-1	01017> 01018>	(cms) - (ha-m)
80> 81>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.65] (%), LGI=[450] (m), MNI=[0.03], SCI=[0.0] (min	010143 ROOTE RESERVOIR 01015> 01016>	IDOUT=[10], MHYD=("POND"], IDin=[9], RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values
76> 79>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m	01012> ** 01013> 01014> ROUTE RESERVOIR	IDout=[10], NHYD=["POND"], IDin=[9],
76> 77>	XIMP=[0.50], TIMP=[0.71], DT=[2.5](mLh), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],	01010> *\$ 01011> ADD HYD 01012> *\$	IDsum={9}, NHYD=["090"], IDs to add=[5+8]
74> 75> CALIB STANDHYI	D=[3], NHYD=["HIP03"], DT=[2,5](min), AFFA=[17](ha)	01008> *\$ 01009> ADD HYD 01010> *\$	IDsum=[8], NHYD=["080"], IDs to add=[6+7]
72> * 73> * SUB-AREA No.		01006> 01007> 01008> *8	LGI=[207.25](m), MNI=[0.03], SCI=[0 RAINFALL=[, , ,](mm/hr), END=-1
70> ADD HYD 71> *%	IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1]	01004> 01005> 01006>	LGP=[20.0) (m), MNP=[0.25], SCP=[0.0] Impervious surfaces: IAimp=[1.57] (mn), SLPI=[0.61] (%), LGI=[207.25] (m), MNI=[0.03], SCI=[[
68> 69> *%	LGI=[580](m), MNI=[0.03], SCI=[0.0}(min RAINFALL=[, , , ,](mm/hr), END=-1	01002> 01003>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%),
66> 67>	LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.6] (%), IGT=[580] (m), MNL=[0.03] SCT=[0.0] (m)	01000> CALIB STANDHYD 01001> 01002>	<pre>ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],</pre>
63> 64> 65>	SCS curve number CN=[81], Pervious surfaces: IAppe=[4.67] (mm), SLPP=[1.5] (%), LAP=[100 0] (m) MMP=[0.25] SCP=[0.0] (m)	00998> * SUB-AREA No.5 00999>	
61> CALIB STANDHY 62> 63>	XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],	00996> *8	
59> * SUB-AREA No 60> 61> CALIB STANDHY		00994>	LGI=[164.82](m), MNI=[0.03], SCI=[(RAINFALL=[, , ,](mm/hr), END=-1
157> ********* ***** 158> * 159> * SUB-AREA No		00992> 00993>	LGP=[40] (m), MNP=[0.25], SCP=[0.0] Impervious surfaces: IAimp=[1.57] (mm), SIPT=[0.93] (%)
56> * Remaini	**************************************	00990> 00991>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](nm), SLPP=[0.7](%),
153> 154> 155\ ********	<pre>[-1 , -1] (max twenty pts)</pre>	00988> CALIB STANDHYD 00989>	ID=[6], NHYD=["060"], DT=[2.5] {min}, AREA=[0.89] (ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0] (cms), LOSS=[2],
151> 152>	[1.880, 1.0040] { 2.577, 1.0923]	00986> * SUB-AREA No.4 00987>	
149> 150>	[0.950, 0.8274] [1.304, 0.9157]	00984> *%	
147> 148>	[0.654, 0.6631] [0.797, 0.7391]	00982> *%	IDsum=[4], NHID=["040"], IDs to add=[1+2] IDsum=[5], NHYD=["050"], IDs to add=[3+4]
345> 346>	{ 0.531, 0.5871} { 0.593, 0.6251}	00980> *%	RAINFALL=[, , ,] (mm/hr) , END=-1
43>	[0.233, 0.3971] [0.337, 0.4731] [0.465, 0.5491]	00977> 00978> 00979>	Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.51](%) LGI=[225.63](m), MNI=[0.03], SCI:
40> 41> 42>	(0.017, 0.1311) [0.093, 0.2831] [0.233, 0.3971]	00975>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%), LGP=[5](m), MNP=[0.03], SCP=[0.010]
38> 39>	[0.000, 0.0000) [0.008, 0.0656]	00973>	<pre>ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=(0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[6],</pre>
136> 137>	TABLE of (OUTFLOW-STORAGE) values (cms) - (ha~m)	00971> 00972> CALIB STANDHYD	ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha),
134> ROUTE RESERVO 135>	RDT=[1.0](min),	00969> * 00970> * SUB-AREA No.3	
132> *8		00966> 00967> 00968> *%	LGI=[244.34] (m), MNI=[0.03], SCI= RAINFALL=[, , ,] (mm/hr), EMD=-1
330> *% 331> ADD HYD	IDsum=[8], NHYD=["060"], IDs to add=[6+7] IDsum=[9], NHYD=["090"], IDs to add=[5+8]	00964> 00965>	LGP=[5](m), MNP=[0.03], SCP=[0.0](; Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.50](;).
827> 828> *% 829> ADD HYD	RAINFALL=[, , ,](mu/hr), END=-1	00962> 00963>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.0](%),
B25> B26>	<pre>Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.61] (%), LGI=[207.25] (m), MNI=[0.03], SCI=[0.0]</pre>	00960> CALIB STANDHYD 00961>	<pre>ID=[2], NHYD=["020"], DT=[2.5](min), AREA=[1.54](h XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2],</pre>
823> 824>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[20.0] (m), MNP=[0.25], SCP=[0.0] (m)	00958> * SUB-AREA No.2	
821> 822>	XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],	00956> *% 00957> *	RAINFALL=[, , ,](mm/hr), END=-1
819> 820> CALIB STCANDHY		00954> 00955>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.52] (%),
817> *		00952>	LGP=[20](m), MNP=[0.25], SCP=[0.25]
315>	RAINFALL = [, , , ,] (mm/hr), END = -1	00950>	SCS curve number CN=[81],
813> 814> 815> *% 816> *% 817> * 818> * SUB-AF%EA No		00948> CALIB STANDHYD 00949> 00950> 00951>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (LGP=[20] (m), MNP=[0.25], SC

J. L. Richards & Associates Limited

i.....

$(V: \... PSTPH1.dat)$

ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DMF=[0](cms), CN/C=[85], TP=[0.17]hrs, RAINFALL=[, , , ,](mm/hr), END=-1 01081> DESIGN NJASHYD 01082> 01217> * 01218> * SUB-AREA No.1 01219> 01220> CALIB STANDHYD 01083> 01084> ID=[1], NHYD=["HIP01"], DT=[2.5] (min), AREA=[19.9] (ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[10.01] (m), MMP=[0.25], SCS=[0.0] (m Impervious surfaces: IAimpe[1.57] (mm), SLPI=(0.6] (%), LGT=[500] (m), MMT=[0.03], SCI=[0.0] (min RAINFALL=[, , ,] (mm/hr], EMD=-1 01085> 01086> 01086> 01087> ADD HYD 01088> *%------01221> 01222> 01222> 01223> 01224> 01225> IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] 01080> 01090> * SUB-AREA NO. 5 01091> 01092> DESIGN NIASHYD 01093> 01226> ID = [10], NHYD=["A2"], DT=[2.5]min, AREA=[6.8](ha), DWF=[0](cms), CNC=[76], TP=[0.37]hrs, RAINFALL=[, , , ,](mm/hr), END=-1 01227> 01220> *&-----01229> ADD HYD 01230> *&-----01231> * 01231> * 01232> * SUB-AREA No.2 010945 IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1] 01095> 01095> * SUB-AREA NO 4 01097> * SUB-AREA NO 4 01098> 01099> DESIGN NASHYD 01233> 01234> CALIB STANDHYD 01235> 01236> ID = [1], NHYD=["A3"}, DT=[2.5]min, AREA=[5.3](ha), DWF=[0](cms), CNC=[76], TP=[0.804]hrs, RAINFALL=[, , , ,](mm/hr), END=-1 01100> 01101> 012375 01237> 01238> 01239> 01240> 01241> 01242> *8--01105> 01106> *** 01107> * ********** CALCULATION OF 3HR - 1:100 YEAR STORM EVENT 01108> ****** 01109> 01110> START 01111> *% 01243> * 01244> * SUB-AREA No.3 TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]
[] <--storm filename, one per line for NSTORM time</pre> 01245> 01246> CALIB STANDHYD 01247> ID=[4], NHYD=["HIP04"], DT=[2.5] (min), AREA=[18.1] (ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[100.0] (m), NNP=[0.25], SCP=[0.0] (m) Impervious surfaces: IAmpe=[1.57] (mm), SLPT=[0.5] (%), LGI=[600] (m), NNI=[0.03], SCI=[0.0] (min RAINFALL=[, , ,] (mm/hr), END=-1 01112> 01112> *%-----01113> CHICAGO STORM 01114> 01115> 01115> 01116> *%-----01117> DEFAULT VALUES UUNITS=[2], TD=[3.0] (hrs), TPRAT=[0.333], CSDT=(10.0] (min) ICASEcs=[1], A=[1735.688], B=[6.014], and C=[0.820], 01248> 01249> 01250> 01251> 01252> 01252> 01253> ICASEdef=[1], read and print values DEFVAL_FILENAME={V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"] 01254> 01255> ADD HYD 01255> *0-----01257> * 01258> *SUB-AREA No.4 01259> IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4] 01260> DESIGN NASHYD ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0] {ha}, DWF=[0] (cms), CN/C=[85], TP=[0.17]hrs, RAINFALL=[, , , ,](mm/hr), END=-1 01260> 01261> 01262> 01263> 01264> ID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha), XIM0=[0.84], TIM0=[0.84], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IApe=[4.67](mm), SLPP=[1.0](%). 01128> 01128> 01130> 01131> 01132> 01132> 01132> 01133> 01134> 01135> * 01135> * 01135> * 01135> * 01135> * 01135> CALIB STANDHYD 01136> 01140> SCS curve number CN=[8]], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[20] (m), MNP=[0.25], SCP=[0.0] (mi Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.52] (%), LGP=[204.72] (m), MNT=[0.03], SCT=[0.0] RAINFALL=[, , ,] (mm/hr), END=-1 01265: 01266> 01267> ADD HYD IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] 01268> 01269> * SUB-AREA NO. 5 01270> ID = [10], NHYD=["A2"], DT=[2.5]min, AREA=[6.8](ha), DWF=[0](cms), CNC=[76], TP=[0.37]hrs, RAINFALL=[, , , ,](mm/hr), END=-1 01271> DESIGN NASHYD ID=[2], NHYD=["020"], D7=[2.5] (min), AREA=[1.54](ha), XIMP=[0.92], TIMP=[0.92], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LOP=[5] (m), NNP=[0.03], SCP=[0.0] (min), Impervious surfaces: IAmp=[1.57] (mm), SLPI=[0.50] (%), LOI=[244.34] (m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , , ,] (mm/hr), EDD=-1 01273> 01274> 01275> 01140> 01141> 01142> 01142> 01143> 01144> 01275> * SUB-AREA NO 4 01277> 01278> DESIGN NASHYD ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[5.3](ha), DWF=[0](cms), CNC=[76], TP=[0.804]hrs, RAINFALL=[, , , ,)(mm/hr), END=-1 011445 011455 011465 011475 *%------011485 * 011485 * SUB-AREA No.3 01279> 01281> 01282> ADD HYD 01283> *&-----01284> 01285> FINISH 01286> IDsum=[2], NHYD=["0020"], IDs to add=[7+10+1] 01150> 01151> CALIB STANDHYD ID={ 3 }, NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.57], TIMP=(0.57], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: IAper=[4.67](rmm), SLPP=[1.0](%), LGP=[5](m), MNF=[0.03], SCP=[6.0](min), Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.51](%), LGC=[2.26.53](m), MNF=[0.03], SCI=[0.0 RAINPALL=[, , ,](mm/hr), END=-1 DUTFLOW-STORAGE (cms) - (ha-m) 0.0, 0.0 0.10, 0.374 0.50, 0.748 0.50, 1.122 0.85, 1.496 1.20, 1.870 1.30, 2.244 1.50, 2.618 -1, -1 01155> 01155> 01156> 01157> 01158> 01159> *%------01160> ADD HYD 01161> *%------01292> 01292> 01293> 01294> 01295> 01295> 01296> 01297> -----IDsum=[4], NHYD=["040"], IDs to add=[1+2] IDsum=[5], NHYD=["050"], IDs to add=[3+4] 01162> ADD HYD 01163> **-----01163> *&-----01164> * 01165> * SUB-AREA No.4 01166> 01298> (cms) - (ha-m) 0.0, 0.0 0.16, 0.45 0.31, 0.900 0.60, 1.350 0.95, 1.800 1.40, 2.25 1.45, 2.700 1.50, 3.150 -1, -1 ID=[6], NHYD=["060"], DT=[2.5] (min), AREA=[0.89] (ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (nm), SLPF=[0.7] (%), LoD=[40] (m), MMP=[0.25], SCT=[0.0] (min) Impervious surfaces: IAimp=[1.57] (nm), SLPT=[0.93] (%), LoT=[164.82] (m), MMT=[0.03], SCT=[0.0] (RAINFALL=[, , ,] (mm/hr), END=-1 01167> CALIB STANDHYD 01168> 01169> 01170> 01171> 01303> 01304> 01305> 01305> 01306> 01307> 01308> 01173> 01174> 01309> 01309> 01310> 01311> 01312> 01313> 01314> 01315> 01316> 01317> 01318> 01319> 01320> 01175>
01176> (max twenty pts) 01177> * SUB-AREA No.5 01177> - SOB-AREA NO.3 01178> 01178> CALIB STANDHYD 01180> 01181> 01182> ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](nm), SLPF=[0.5](%), LOP=[20.0](m), MNF=[0.25], SCP=[0.0](mi Impervious surfaces: IAimp=[1.57](rmm), SLPI=[0.63](%), LOE=[20.0](mi, MNF=[0.03]), SCI=[0.0](RAINFALL=[, , ,](mm/hr), END=-1 01183> 01184> 01185> 01165-01186> 01187> *%------01188> ADD HYD 799> *%------HYD 01321> 01322> 01322> 01323> 01324> 01325> IDsum=[8], NHYD=["080"], IDs to add=[6+7] 01190> ADD HYD 01191> *%-----IDsum=[9], NHYD=["090"], IDs to add=[5+8] 01325> 01326> 01327> 01328> 01329> 01330> 01331> 01331> 01192> 01193> ROUTE RESERVOIR 01194> 01195> IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values transform (ha-m)
 (ha-m)
 0.0000[
 0.0656]
 0.1311[
 0.2831]
 0.3971]
 0.4731] 01196> cms) - 0.000, 0.008, 0.017, 0.093, 0.233, 0.337, 0.465, 0.531, 0.593, 0.654, 0.797, 0.950, 1.304, 01333> 01334> 01335> 01335> 01336> 01337> 01198> 01199> 01200> 01201> 01202> 0.4731] 0.5491] 0.5871] 0.6251] 0.6631] 0.7391] 0.8274] 01337> 01338> 01339> 01340> 01341> 01342> 01343> 01203> 01204> 01205> 01206> 01207> 01208: 01209> 0.9157 01343> 01344> 01345> 01345> 01346> 01347> 01348> 01210> 01211> 01212> 1.880, 2.577, -1 1.0040 1.0923] -1] (max twenty pts) 01213> 01349>
01350> 01214> 01215> Remaining Hawthorne Industrial Park

00001 -

00002> 00003> 00004> 00005> 00006>

000007> 00008> 000009> 00010> 00011> 00012>

00013>

00014> 00014> 00015> 00016> 00017> 00018>

00018> 00019> 00020> 00021> 00022> 00023> 00023> 00024> 00025>

00026>

00091>

00128> 00128> 00128> 00129> 00130>

001302 00131> 00132> 00133> 00134> 00135>

Storage Coeff. (min)= Unit Hyd. Tpeak (min)≈ Unit Hyd. peak (cms)= 29.27 (ii) 30.00 .04 00136> 10.80 (ii)
 SSSSS
 W
 M
 H
 H
 Y
 M
 M
 000
 999
 999
 929

 S
 W
 W
 M
 H
 H
 Y
 MM
 999
 999
 999
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 9000
 9000
 10.00 00137> 00138> 00139> 00140> 00141> 00142> 00143> 00144> 00145> 00145> 00146> 00147> 00148> 00147> 00148> 00149> 00150> *TOTALS* .158 (iii) 1.292 20.508 24.999 .820 .16 1.29 23.43 25.00 .94 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .00 1.75 5.17 25.00 .21
 Stolmater Hallagement Hidrologic Model
 999
 999
 999

 Stolmater Hallagement Hidrologic Model
 999
 999
 999

 Stolmater Hallagement Hidrologic Model
 990
 999
 999

 Stolmater Hallagement Hidrologic Model
 990
 999
 999

 Stolmater Hallagement Hidrologic Model
 900
 999
 999

 Stolmater Hallagement Hidrologic Model
 900
 999
 999

 Stolmater Hallagement Hidrologic Simulation model

 Distributed by:
 J.F. Sabourin and Associates Inc.

 Ottawa, Ontario:
 6131
 727-5199

 Gatineau, Quebec:
 (613)
 243-6658

 E-Mail:
 swhymo@jfsa.Com
 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (i) AN FACTIONS SELECTED FOR FRAVIOUS LOSSES:
 (ii) TIME STEP (DI) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 CALLE STANDHYD
 Area
 {ha}=
 1.54

 1 02:020
 DT=
 2.50
 Total Imp(%)=
 92.00
 Dir. Conn. (%)=
 92.00
 +++++++ Licensed user: J. L. Richards & Associates Limited ++++++ +++++++ Ottawa SRLNL#:4418403 +++++++ IMPERVIOUS PERVIOUS (i) Surface Area Dep. Storage Average Slope Length Mannings n (ha) = (mm) = (%) = (m) = =
 00028>
 ++++++
 PROGRAM ARRAY DIMENSIONS ++++++

 00030>
 Maximum value for ID numbers :
 10

 0031>
 Max. number of rinfall points :
 15000

 0032>
 Max. number of flow points :
 15000

 0033>
 Max. number of flow points :
 15000
 1.42 1.57 .50 .12 4.67 1.00 244.34 5.00 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 45.63 12.50 12.15 (ii) 12.50 .09 7.24 15.00 14.15 (ii) 15.00
 00035
 DETAILED OUTPUT

 00036
 DETAILED OUTPUT

 00037
 TIME: 10:30:14 RUN COUNTER: 000173

 00038
 Input filename: V:\20983.DU\ENC\3RDSUB-1\SWMHYMO\PSTPHI.dat

 00040>
 Summary filename: V:\20983.DU\ENC\3RDSUB-1\SWMHYMO\PSTPHI.out

 00042>
 Summary filename: V:\20983.DU\ENC\3RDSUB-1\SWMHYMO\PSTPHI.sum

 00045>
 1:

 00045>
 3:

 00045>
 3:
 .08 *TOTALS* .121 (iii) 1.333 21.969 24.999 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (nms)= TOTAL RAINFALL (nms)= RUNOFF COEFFICIENT = .00 1.46 5.17 25.00 .21 .12 1.33 1.33 23.43 25.00 .94 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (1) CN PROCEDURG SELECTED FOR PERVIOUS LOSSES;
 (2) CN *= 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00185> 00185> 00186> 00187> 00188> 00188> 001:0006-----SUB-AREA No.3 00189> 00190> 00192> 00193> 00193> 00194> 00195> 00196> 00196> 00197> 00198> 00199> 00199> 00200> | CALIE STANDHYD | Area (ha)= 1.40 | 03:030 DT= 2.50 | Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS PERVIOUS (1) 1.36 1.57 .51 225.63 .030 .04 4.67 1.00 5.00 .030 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 45.63 12.50 11.52 (ii) 12.50 7.97 00201> 00202> 00203> 00205> 00205> 00205> 00205> 00205> 00205> 00205> 00205> 00205> 00205> 00210> 00212> 00212> 00214> 00214> 00215> 00215> 00215> 00215> 00215> 00215> 12.50 13.44 (ii) 12.50 .09 .10 *TOTALS* .118 (iii) 1.333 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = .00 1.42 5.17 25.00 .12 1.33 23.43 25.00 .94 22.881 .21 .915 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (i) CN FROCLIDERS SELECTED FOR PERVIOUS LOSSES: $CN^* = 61.0$ Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 AREA
 QPEAK
 TPEAK
 R.V.

 (ha)
 (cms)
 (hrs)
 (mm)

 2.07
 .158
 1.29
 20.51

 1.54
 .121
 1.33
 21.97
 (cms) .000 .000 00222> 00223> 00224> 00225> 00226> 00227> ID1 01:010 +ID2 02:020 SUM 04:040
 D00950
 D019002

 D00910
 Filename: V:\20983.DU\ENG\3RDSUE-1\SWMYYMO\4HR25-1

 D00929
 FRAD STORM
 Filename: V:\20983.DU\ENG\3RDSUE-1\SWMYYMO\4HR25-1

 D00930
 Comments: 4hr-15 min 25 MM STORM EVENT (CHICAGO DI

 D0095>
 TIME
 RAIN

 D0095>
 TIME
 RAIN

 D0095>
 LES
 1.777

 D0095>
 50
 2.357

 D0095>
 50
 2.357

 D0095>
 75
 3.618

 D0095>
 1.00
 8.975

 D0095
 1.00
 8.975
 3.61 .278 1.33 21.13 .000 00228> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. AREA (ha) 1.40 3.61
 QPEAK
 TPEAK
 R.V.

 (cms)
 (hrs)
 (mm)

 .118
 1.33
 22.88

 .276
 1.33
 21.13
 (cms) .000 .000 5.01 .396 1.33 21.62 .000

PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =

00262> 00263> 00264> 00265> 00266> 00267> 00268> 00269> 00269> 00270>

J. L. Richards & Associates Limited

IMPERVIOUS

1.74 1.57 .52 204.72 .030

45.63 10.00

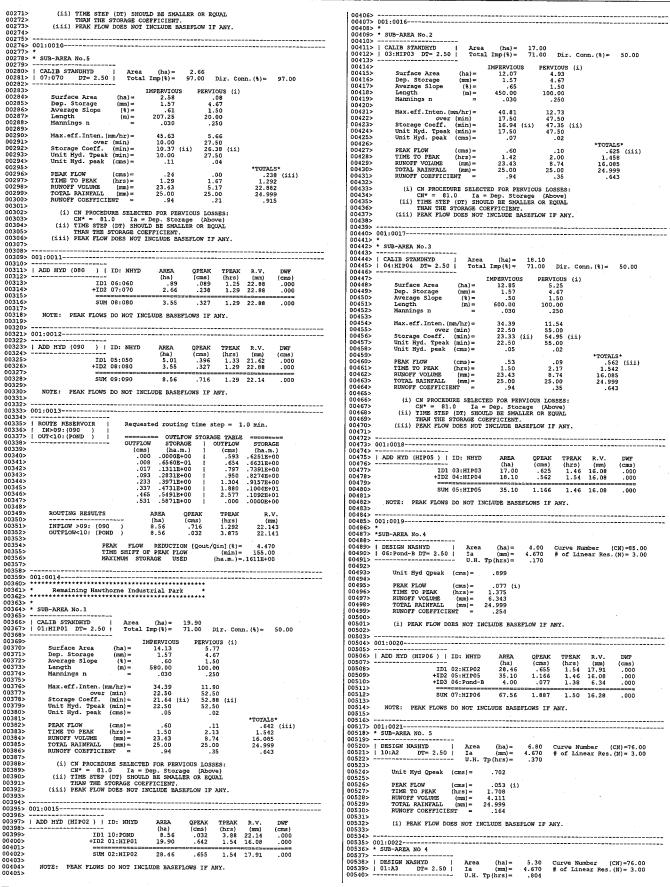
PERVIOUS (i)

.33 4.67 1.00 20.00 .250

Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n =

Max.eff.Inten. (mm/hr) = over (min)

Page 0


TOTALS .089 (iii) 1.250 22.882

.00 2.00 5.17 25.00

.21

.09 1.25 23.43 25.00 .94

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)

3541>	00676> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 00677> THAN THE STORAGE COEFFICIENT.
1542> Unit Hyd Qpeak (cms)= .252 1543>	00678> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
0544> PEAK FLOW (cms)= .025 (i) 0545> TIME TO PEAK (hrs)= 2.333	00679> 00680>
0546> RUNOFF VOLUME (mm) = 4.110 0547> TOTAL RAINFALL (mm) = 24.999	00681> 001:0006
0548> RUNOFF COEFFICIENT = .164 0549>	00683> * SUB-AREA No.3 00684>
(1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 0551>	006847
)552>	0068>
)554>)555> (ADD HYD (0020) (ID: NHYD AREA QPEAK TPEAK R.V. DWF	00689> Surface Area (ha)= 1.36 04
1556> (ha) (cms) (hrs) (mm) (cms)	00691> Average Slope (%)= .51 1.00
0558> +ID2 10:A2 6.80 .053 1.71 4.11 .000	00692> Length (m) = 225.63 5.00 00693> Mannings n = .030 .030 00694>
	00695> Max.eff.Inten.(mm/hr) = 76.81 16.59
0561> 5UM 02:0020 79.66 1.941 1.50 14.43 .000 1562>	00696> over (min) 10.00 10.00 00697> Storage Coeff. (min)= 9.35 (ii) 10.79 (ii)
1563> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 1564>	00698> Unit Hyd. Tpeak (min)= 10.00 10.00 00699> Unit Hyd. peak (cms)= .12 .11
1565>	00700> *TOTALS*
567> ************************************	00701> PEAK FLOW (cms)= .18 .00 .166 (iii) 00702> TIME TO PEAK (hrs)= 1.08 1.13 1.083 00703> RUNOFF VOLUME (mm)= 30.29 8.52 29.637 00704> TOTAL RAINFALL (mm)= 31.86 31.86 31.860
1569> ************************************	00704> TOTAL RAINFALL (mm) = 31.86 31.86 31.860 00705> RUNOFF COEFFICIENT = .95 .27 .330
S71> START Project dir.: V:\20983.DU\ENG\3RDSUB-1\SWMHYMO\ 572> TZERO = .00 hrs on 0 0 0 0 0 1574> METOUT = 2 (output = METRIC) 0 0 0 0 0	00706>
1573 TZERO = .00 hrs on 0	00707> (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSES: 00708> CN* = 81.0 Ia = Dep. Storage (Above) 00709> (11) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
5757 NRON - 661	D0710> THAN THE STORAGE COEFFICIENT.
576> NSTORM= 0 577>	00711> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00712>
578> 001:0002578>579>	00713>
5/95	00715>
581> Ptotal= 31.86 mm B= 6.199 582> C= .810 583> used in: INTENSITY = A / (t + B)^C	00716> ADD HYD (040) ID: NHYD AREA QPEAK TPEAK R.V. DWF 00717>
584>	007175 (ma) (cms) (hrs) (ma) 007185 ID1 01:010 2.07 .245 1.08 26.91 .000 007195 +ID2 02:020 1.54 .192 1.08 28.55 .000
586> Storm time step = 10.00 min	00720>
588>	00722> 00723> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
589> TIME RAIN TIME RAIN TIME RAIN TIME RAIN TIME RAIN 590> hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr 591> .17 2.015 1.00 76.005 1.03 5.095 2.67 2.684	00724> 00725>
591> .17 2.815 1.00 76.805 1.83 5.095 2.67 2.684 592> .33 3.498 1.17 24.079 2.00 4.291 2.83 2.463	00726> 001:0008
592> .33 3.499 1.17 24.079 2.00 4.291 2.83 2.463 593> .50 4.687 1.33 12.364 2.17 3.718 3.00 2.279 594> .67 7.305 1.50 8.244 2.33 3.248 2.463 595> .83 18.209 1.67 6.303 2.50 2.953	00728> ADD HYD (050) ID: NHYD AREA QPEAK TPEAK R.V. DWF 00729> (ha) (cms) (hrs) (mm) (cms)
595> .83 18.209 1.67 6.303 2.50 2.953 596>	00730> ID1 03:030 1.40 .186 1.08 29.64 .000
597> 598> 001:0003	
599>	00733> SUM 05:050 5.01 .623 1.08 28.13 .000 00734>
600> DEFAULT VALUES Filename: V:\20983.DU\ENG\3RDSUB-1\SWMHYMO\ORGA.VAL 601> ICASEdv = 1 (read and print data)	00735> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00736>
602> FileTitle= ENTER YOUR COMMENTS ON THIS LINE AND THE NEXT ONE 603> PARAMETER VALUES MUST BE ENTERD AFTER COLUMN 60D	00737>
604> Horton's infiltration equation parameters: 605> [Fo= 50.00 mm/hr] [Fc= 7.50 mm/hr] [DCAY= 2.00 /hr] [F= .00 mm]	00739> * 00740> * SUB-AREA NO.4
5075 [IApper= 4.67 nm] [LGP=40.00 m] [MNF=.250] 6085 Parameters for IMPENVIOUS surfaces in STANDNYD: 6095 [IAimpe 1.57 nm] (CLP=1.50] [MNT=.035]	007415
orov Parameters used in WASHID:	00745> IMPERVIOUS PERVIOUS (i)
611> [Ia* 4.67 mm] [N= 3.00] 612>	007465 Surface Area (ha)= .66 .03 007477 Dep. Storage (mm)= 1.57 4.67 007488 Average Slope (%)= .93 .70 007489 Length (m)= 164.82 40.00 007505 Manningsn = .030 .250
513> 001:0004 614> ************************************	00748> Average Slope (%)= .93 .70 00749> Length (m)= 164.82 40.00
515> * ORGAWORLD FILE * 516> ******	00750> Mannings n = .030 .250 00751>
617> * SUB-AREA No.1 618>	00752> Max.eff.Inten.(mm/hr)= 76.81 10.24 00753> cver (min) 7.50 30.00
5185 5195 CALLES STANDHYD Area (ha)= 2.07 5205 01:010 DT= 2.50 Total Imp(%)= 84.00 Dir. Conn.(%)= 84.00 521>	00754 Storage Coeff. (min) = 6.47 (ii) 30.53 (ii)
521>	00756> Unit Hyd. peak (cms)= .16 .04
523> Surface Area (ha)= 1.74 .33 524> Dep. Storage (mm)= 1.57 4.67	00758> PEAK FLOW (cms)= .14 .00 .139 (iii)
525> Average Slope (%) = .52 1.00	00759> TIME TO PEAK (hrs)= 1.04 1.54 1.042 00760> RUNOFF VOLUME (mm)= 30.29 8.52 29.637 00761> TOTAL RAINFALL (mm)= 31.86 33.86 31.860
	00/62> RUNOFF COEFFICIENT = .95 .27 .930
528> 529> Max.eff.Inten.(mm/hr)= 76.81 11.88	00763> 00764> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
630> over (min) 10.00 22.50 631> Storage Coeff. (min)= 8.77 (ii) 22.21 (ii)	00765> CN* = 81.0 Ia = Dep. Storage (Above) 00766> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
632> Unit Hyd. Tpeak (min)= 10.00 22.50 633> Unit Hyd. peak (cms)= .12 .05	00767> THAN THE STORAGE COEFFICIENT. 00768> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
534> *TOTALS*	00765> 00770>
535/ TLAW LOUW (ms)= .24 .01 .248 (lal) 535/ TLNE TO PEAK (hrs)= 1.08 1.38 1.083 537/ RUNOFF VOLUME (mm)= 30.29 6.52 26.807 538/ TOTAL PALNFALL (mm)= 31.85 31.866 1.8660	00771> 001:0010
S18 TOTAL RAINFALL (mm)= 31.86 31.86 31.860 539> RUNOFF COEFFICIENT = .95 .27 .841	00773> * SUB-AREA No.5
5395 RUNDEF COEFFICIENT = .95 .27 .841 5405 5415 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	00774>
542> CN* = 81.0 Ia = Dep. Storage (Above)	00///>
44> THAN THE STORAGE COEFFICIENT.	00776> IMPERVIOUS PERVIOUS (i) 00779> Surface Area (ha)= 2.58 .08
45> (iii) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 546>	00781> Average Slope (%)= .61 1.50
547>	00782> Length (m)= 207.25 20.00 00783> Mannings n = .030 .250
549> * 550> * SUB-AREA No.2	00784> 00785> Max.eff.Inten.(mm/hr)= 76.81 12.71
551> 552> CALIB STANDHYD Area (ha)= 1.54	00786> over (min) 7.50 20.00
53> 02:020 DT= 2.50 Total Imp(%)= 92.00 Dir. Conn.(%)= 92.00	00788> Unit Hyd. Tpeak (min)= 7.50 20.00
55> IMPERVIOUS PERVIOUS (i)	00/90> *TOTALS*
\$55> Surface Area (ha)= 1.42 .12 \$57> Dep. Storage (mm)= 1.57 4.67	00791> PEAK FLOW (cms)= .38 .00 .379 (iii) 00792> TIME TO PEAK (hrs)= 1.04 1.33 1.042
58> Average Slope (%)= .50 1.00 59> Length (m)= 244.34 5.00	00793> RUNOFF VOLUME (mm) = 30.29 8.52 29.637 00794> TOTAL RAINFALL (mm) = 31.86 31.86 31.860
60> Mannings n = .030 .030 61>	00795> RUNOFF COEFFICIENT = .95 .27 .930 00796>
	00797> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
64> Storage Coeff. (min) = 9.87 (ii) 11.36 (ii) 65> Unit Hyd. Tpeak (min) = 10.00 12.50	00799> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
	00801> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
	00802>
567> *TOTALS* 568> PEAK FLOW (cms)= .19 .00 .192 (iii)	00803>
567> *TOTALS* 568> PEAK FLOW (cms)= .19 .00 .192 (iii) 569> TIME TO PEAK (brs)= 1.08 .117 .1.083	00803>
567> *TOTAL5* 568> PEAK FLOW (cms)= .19 .00 .192 (iii) 569> TIME TO PEAK (hrs)= 1.08 1.17 1.083 570> RUNOFF VOLDYE (mm)= 30.29 8.52 28.548 571> TOTAL RAINFALL (mm)= 31.86 31.86 31.860	08035
567> *TOTALS* 568> PEAK FLOW (cms)= .19 .00 .192 (iii) 569> TIME TO PEAK (brs)= 1.08 .117 .1.083	00803>

J. L. Richards & Associates Limited

0

0

Page 2

(V:\PSTPH1.out)	J. L. Richards & Associates Limi
00811> SUM 08:080 3.55 .518 1.04 29.64 .000	00946> Length (m)= 600.00 100.00
00812> 00813> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00814>	00947> Mannings n = .030 .250 00948>
00815>	00949> Max.eff.Inten.(mm/hr)= 50.44 22.17 00950> over (min) 20.00 45.00
008175	00951> Storage Coeff. (min)= 20.01 (ii) 44.37 (ii) 00952> Unit Hyd. Tpeak (min)= 20.00 45.00 00953> Unit Hyd. peak (cms)= .06 .03
00819> (ha) (cms) (hrs) (mm) (cms) 00820> ID1 05:050 5.03 602 1.08 28 32 000	00954> *TOTALS*
00821> +ID2 08:080 3.55 .518 1.04 29.64 .000 00822>	OUSSS/ PORK FLOW (cms)= .00 .18 .874 (lll) OUSSS/ TIME TO PEAK (hrs)= 1.25 1.79 1.292 OUSSS/ RUNOPF VOLUME (mm)= 30.29 13.34 21.814 OUSSS/ TOTAL RAINFALL (mm)= 31.66 31.860 31.860
00823> SUM 09:090 8.56 1.118 1.08 28.76 .000 00824>	00959> RUNOFF COEFFICIENT = .95 .42 .685
00825> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00826> 00827>	00960> 00961> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
00828 > 001:0013 00828 > 001:0013	00962> CN* = 81.0 Ia = Dep. Storage (Above) 00963> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
10920 DOUTE DESERVOID Democrated exchange the start of a start	00964> THAN THE STORAGE COEFFICIENT. 00965> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00966>
00031> IND12 ASSAVOIR Requested fouring time steps = 1.0 min. 0031> IND93:(09) 00831> COUT<10:(POND)	0966>
00835> .000 .0000E+00 .593 .6251E+00	00969> 00970> ADD HYD (HIP05) ID: NHYD AREA QPEAK TPEAK R.V. DWF
00837> .017 .1311E+00 .797 .7391E+00	00971> (ha) (cms) (hrs) (mm) (cms) 00972> ID1 03:HIP03 17.00 .978 1.17 21.81 .000
0038> .033 .2831£+00 .950 .8274£+00 10839> .233 .3971£+00 1.304 .9157£+00 10840> .337 .4731£+00 1.880 .1004£+01	00973> +ID2 04:HIP04 18.10 .874 1.29 21.81 .000 00974>
0840> .337 .4731E+00 [1.880 .1004E+01 0841> .465 .5491E+00 [2.577 .1092E+01 0842> .531 .5871E+00 [.000 .0000E+00	00975> SUM 05:HIP05 35.10 1.814 1.21 21.81 .000 00976> 00977> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF AWY.
0843> 0844> ROUTING RESULTS AREA QPEAK TPEAK R.V.	00977> NOIL: PERK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00979>
0845> (ha) (cms) (hrs) (mm) 0846> INFLOW >09: (090) 8.56 1.118 1.083 28.757	00980> 001:0019
0847> OUTFLOW<10: (POND) 8.56 .056 3.000 28.754 0848>	00982> *SUB-AREA No.4
0849> PEAK FLOW REDUCTION [Qout/Qin] (%) = 5.030 0850> TIME SHIFT OF PEAK FLOW (min) = 115.00 0851> MANUMM STOPACE USED (b) = 12.00FL00	00984> DESIGN NASHYD Area (ha)= 4.00 Curve Number (CN)=85.00 00985> 06:Pond-B DT= 2.50 Ia (mm]= 4.670 # of Linear Res.(N)= 3.00 00986>
0852> 0852> 0853>	00987>
0854> 001:0014	00988> Unit Hyd Opeak (cms)= .899 00989> 00990> PEAK FLOW (cms)= .145 (i)
0856> * Remaining Hawthorne Industrial Park * 0857> ************************************	U09905 PEAR FLOW (Cmms)= .145 (1) 009915 TIME TO PEAR (hcs)= 1.167 009925 RUNOFF VOLUME (mm)= 10.266 009925 TOTAL RAIFFELT_ (mm)= 31.680
0858> * 0859> * SUB-AREA No.1	
0860> 0861> CALIB STANDHYD Area (ha)= 19.90	00995> 00996> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
0862> 01:HIP01 DT= 2.50 Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 0863>	00997> 00998> 00110020
10865> Surface Area (ha)= 14.13 5.77 10866> Dep. Storage (mm)= 1.57 4.67	01000>
0867> Average Slope (%)= .60 1.50 0868> Length (m)= 580.00 100.00	01002> (ha) (cms) (hrs) (mm) (cms)
10869> Mannings n = .030 .250 10870>	01003> ID1 02:HIP02 28.46 1.039 1.25 23.90 000 01004> +ID2 05:HIP05 35.10 1.814 1.21 21.81 000 01005> +ID3 06:Pond-B 4.00 .145 1.17 10.27 000
0871> Max.eff.Inten.(mm/hr)= 54.21 23.06 0872> over (min) 17.50 42.50 0873> Storage.Coeff.(min)= 18.04 (ii) 42.02 (ii)	01005> SUM 07:HIP06 67.56 2.992 1.21 22.01 .000
10873> Storage Coeff. {min}= 18.04 (ii) 42.02 (ii) 10874> Unit Hyd. Tpeak (min)= 17.50 42.50 10875> Unit Hyd. peak (cms)≈ .06 .03	01008> 01009> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01010>
10876> *TOTALS*	01011>
0878> TIME TO PEAK (hrs)= 1.21 1.71 1.250 0879> RUNOFF VOLUME (mm)= 30.29 13.34 21.814	01013> * SUB-AREA NO. 5
USE1> RUNOFF COEFFICIENT = .95 .42 .685	U1014> U1014> DESIGN NASHYD Area (ha)= 6.80 Curve Number (CN)=76.00 U1015> D0:SIGN NASHYD I a (mm)= 4.670 # of Linear Res.(N)= 3.00 U1017>
0882> 0883> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 0884> CN* = 81.0 Ia = Den. Storage (above)	01018>
0884> CN* = 81.0 Ia = Dep. Storage (Above) 0885> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 08865> THAN THE STORAGE COEFFICIENT.	01019> Unit Hyd Opeak (cms)= .702 01020> 01021> PEAK FLOW (cms)= .102 (i)
0887> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 0888>	01021> PEAK FLOW (cms)= .102 (i) 01022> TIME TO PEAK (hrs)= 1.458 01023> RUNOFF VOLUME (mm)= 6.883
0889>0000000000000000000000000000000	01024> TOTAL RAINFALL (mm) = 31.860 01025> RUNOFF COEFFICIENT = .216
0891>	01026> 01027> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
0893> (ha) (cms) (hrs) (cm) (cms) 0894> ID1 10:POND 8.56 .056 3.00 28.75 .000 0855> +1D2 01:HIPO1 19.90 1.020 1.25 21.81 .000	01028>
B896> Image: Sum 02:HIP02 28.46 1.039 1.25 23.90 0.000	01031> * SUB-AREA NO 4
0898> 0899> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	01033> DESIGN NASHYD Area (ha)= 5.30 Curve Number (CN)=76.00 01034> 01:A3 DT= 2.50 Ia (mm)= 4.670 # of Linear Res.(N)= 3.00
0900> 0901> 0902-001-0016	01036>
1902> 001:0016 1903> * 904> * SUB-AREA No.2	01037> Unit Hyd Qpeak (cms)= .252 01038> 01039> PEAK FLOW (cms)= .048 (i)
0905>0000000000000000000000000000000	01040> TIME TO PEAK (hrs)= 2.083
0907> 03:HIP03 DT= 2.50 Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00	01042> TOTAL RAINFALL (mm) = 31.860 01043> RUNOFF COEFFICIENT = .216
J909> IMPERVIOUS PERVIOUS (i) J910> Surface Area (ha)= 12.07 4.93	01044> 01045> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
0911> Dep. Storage (mm)= 1.57 4.67 0912> Average Slope (%)= .65 1.50 0913> Length (m)= 450.00 100.00	01046> 01047> 01047>
1913> Length (m)= 450.00 100.00 1914> Mannings n = .030 .250 1915>	01049>
0916> Max.eff.Inten.(mm/hr)= 59.23 25.04 0917> over (min) 15.00 37.50	01050> ADD HYD (0020) ID: NHYD AREA QPEAK TPEAK R.V. DMF 01051>
918> Storage Coeff. (min)≃ 14.60 (ii) 37.60 (ii) 919> Unit Hyd. Tpeak (min)≃ 15.00 37.50	01053> +ID2 10:A2 6.80 .102 1.46 6.88 .000 01054> +ID3 01:A3 5.30 .048 2.08 6.88 .000
920> Unit Hyd. peak (cms)= .08 .03 921> *TOTALS*	01055> 5UM 02:0020 79.66 3.077 1.21 19.71 .000
922> PEAK FLOW (cms)= .91 .19 .978 (iii) 923> TIME TO PEAK (hrs)= 1.17 1.63 1.167 924> DUNNER WOLLDE (ms)= 20.20 12.24 21.014	01057> 01058> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
5924> RUNOFF VOLUME (mm.)= 30.29 13.34 21.814 1925> TOTAL RAINFALL (mm.)= 31.86 31.86 31.860 926> RUNOFF COEFICIENT = .95 .42 .685	01059> 01060>
1927>	01061> 01:0024
U929> CN* = 01.0 Ia = Dep. Storage (Above) U930> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL	01064> ************************************
1931> THAN THE STORAGE COEFFICIENT. 1932> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	01066> START Project dir.: V:\20983.DU\ENG\3RDSUB-1\SWMHYMO\
)933> 1934>	01065> TZERO = .00 hrs on 0 01065> METOUT= 2 (output = METRIC) 01077> NRUN = 00
9935> 001:0017	01070> NRUN = 001 01071> NSTORM= 0
1937> * SUB-AREA No.3 1938> 1939> CALIB STANDHYD Area (ha) = 18.10	01073> 001:0002
1939 = 18.10 1940 > 0.4:HIP04 DT = 2.50 Total Imp(%) = 71.00 Dir. Conn.(%) = 50.00 $1941 >$	01074> 01075> CHICAGO STORM IDF curve parameters: A= 998.071 01076> Ptotal=42.51 rm B= 6.053
0942> IMPERVIOUS PERVIOUS (i) 0943> Surface Area (ha)= 12.85 5.25	01075> Chickov Sloket IDF curve parameters: A= 996.071 01075> - Prototal= 42.51 mm 010775> C= .814 010775> used in: INTENSITY = A / (t + B) ^ C
0944> Dep. Storage (mm)= 1.57 4.67 0945> Average Slope (%)= .50 1.50	01079> 01080> Duration of storm = 3.00 hrs

Storm time step = 10.00 min Time to peak ratio = .33	01216> 5UM 04:040 3.61 .645 1.04 37.64 .000 01217>
TIME RAIN TIME RAIN TIME RAIN TIME RAIN	01218> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01219>
hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr .17 3.682 1.00 104.193 1.83 6.689 2.67 3.510	01220>
.33 4.582 1.17 32.037 2.00 5.629 2.03 3.220 .50 6.151 1.33 16.337 2.17 4.872 3.00 2.978 .67 9.614 1.50 10.955 2.33 4.305	01222> 01223> ADD HYD (050) ID: NHYD AREA QPEAK TPEAK R.V. DWF
.83 24.170 1.67 8.287 2.50 3.864	01224> (ha) (cms) (hrs) (mm) (cms) 01225> ID1 03:030 1.40 .274 1.04 40.16 .000
	01226> +ID2 04:040 3.61 .645 1.04 37.64 .000 01227>
00 1:0003	01228> SUM 05:050 5.01 .918 1.04 38.34 .000 01222>
JDEFAULT VALUES Filename: V:\20983.DU\ENG\3RDSUB-1\SWHYMO\ORGA.VAL ICASEdv = 1 [read and print data) FileTitle= EMTER VONC COMMENTS ON THIS LINE AND THE NEXT ONE PARAMETER VALUES MUST BE ENTERD AFTER COLUMN 60 Unterla infilmment	01230> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
FileTitle= ENTER YOUR COMMENTS ON THIS LINE AND THE NEXT ONE	01231> 01232>
	01233> 001:0009
[Fo= 50.00 mm/hr] [Fc= 7.50 mm/hr] [DCAY= 2.00 /hr] [F= .00 mm] Parameters for PERVIOUS surfaces in STANDHYD:	01235> * SUB-AREA No.4 01236>
[LAper= 4.67 nm] [LGP=40.00 m] [MNP= .250] Parameters for IMPERVIOUS surfaces in STANDHYD:	01237> CALIB STANDHYD Area (ha)= .89 01238> 06:060 DT= 2.50 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 01239>
[IAimp= 1.57 mm] [CLI= 1.50] [MNI= .035] Parameters used in NASHYD:	
[Ia: 4.67 mm] [N= 3.00]	01240> IMPERVIOUS PERVIOUS (i) 01241> Surface Area (ha)= .86 .03
	01242> Dep. Storage (mm)= 1.57 4.67 01243> Average Slope (%)= .93 .70
** ORGAWORLD FILE *	01244> Length (m)= 164.82 40.00 01245> Mannings n = .030 .250
* SUB-AREA No.1	01246>
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	01248> over (min) 5.00 25.00
CALIE STANDHYD   Area (ha)= 2.07   Cl:010 DT= 2.50   Total Imp(%)= 84.00 Dir. Conn.(%)= 84.00	01249> Storage Coeff. (min)= 5.72 (ii) 24.02 (ii) 01250> Unit Hyd. Tpeak (min)= 5.00 25.00
IMPERVIOUS PERVIOUS (1)	01251> Unit Hyd. peak (cms)= .20 .05 01252> *TOTALS*
Surface Area         (ha) =         1.74         .33           Dep. Storage         (mm) =         1.57         4.67	01253>         PEAK FLOW         (cms)=         .20         .00         .205         (iii)           01254>         TIME TO PEAK         (hrs)=         1.00         1.38         1.000
• Average Slope (%)= .52 1.00 Length (m)= 204.72 20.00	01255> RUNOFF VOLUME (mm) = 40.94 14.70 40.157
Mannings n = .030 .250	012265 TOTAL RAINFALL (nm) = 42.51 42.51 42.51 01257> RUNOFF COEFFICIENT = .96 .35 .945 01258>
Max.eff.Inten. $(ma/hr) = 104.19$ 24.26	01259> (i) CN PROCEDURE SELECTED FOR DEPUTOUS LOSSES.
over (min) $7.50$ $17.50$ Storage Coeff. (min) = $7.76$ (ii) $17.86$ (ii)	01260> CN* = 81.0 Ia = Dep. Storage (Above) 01261> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
Unit Hyd. Tpeak (min)= 7.50 17.50 Unit Hyd. peak (cms)= .15 .06	01262> THAN THE STORAGE COEFFICIENT. 01263> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
PEAK FLOW (cms) = 36 01 262 (sid)	01264> 01265>
TIME TO PEAK {hrs}= 1.04 1.25 1.042 RUNOFF VOLUME [mm]= 40.94 14.70 36.745 TOTAL RAINFALL (mm]= 42.51 42.51 42.514	01266> 001:0010
TOTAL RAINFALL (mm) = 42.51 42.51 42.51 RUNOFF COEFFICIENT = .96 .35 .864	01268> * SUB-AREA No.5
	01269>
<ul> <li>(1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:</li> <li>CN* = 81.0 Ia = Dep. Storage (Above)</li> <li>(11) TIME SEPE (NT) EXPLISION DE REVIER DE</li></ul>	
THAN THE STORAGE COEFFICIENT.	01273> IMPERVIOUS PERVIOUS (1) 01274> Surface Area (ha)= 2.58 08
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	01275> Dep. Storage (mma)= 1.57 4.67
001:0005	01277> Length (m) = 207.25 20.00
*	01278> Mannings n = .030 .250 01279>
* SUB-AREA NO.2	01280> Max.eff.Inten.(mm/hr)= 104.19 24.26 01281> over (min) 7.50 17.50
CALIB STANDHYD   Area (ha) = 1.54   O2:020 DT= 2.50   Total Imp(%) = 92.00 Dir. Conn.(%) = 92.00	01282> Storage Coeff. (min)= 7.45 (ii) 16.40 (ii) 01283> Unit Hyd. Tpeak (min)= 7.50 17.50
IMPERVIOUS PERVIOUS (1)	01284> Unit Hyd. peak (cms)= .15 .07
Surface Area (ha)= 1.42 .12 Dep. Storage (mm)= 1.57 4.67	01286> PEAK FLOW (cms)= .54 .00 .538 (iii)
Average Slope (%)= .50 1.00	01288> RUNOFF VOLUME (num) = 40.94 14.70 40.157
Length (m)= 244.34 5.00 Mannings n = ,030 ,030	01289> TOTAL RAINFALL (xum) = 42.51 42.51 42.514 01290> RUNOFF COEFFICIENT = .96 .35 .945
Max.eff.Inten.(mm/hr)≈ 104.19 31.02	01291> 01292> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES.
over (min) 7.50 10.00 Storage Coeff. (min)= 8.73 (ii) 9.85 (ii)	01293> CN* = 81.0 Ia = Dep. Storage (Above) 01294> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
Unit Hyd. Tpeak (min) = 7.50 10.00 Unit Hyd. peak (cms) = .14 .11	01295> THAN THE STORGE COEFFICIENT. 01296> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
PEAK FLOW (cms)= .28 .01 .283 (iii)	01297> 01297>
TIME TO PEAK $(hrs) = 1.04$ 1.13 1.042	01299> 001:0011
TOTAL RAINFALL (mm) = 42.51 42.51 42.514	01300> 01301>   ADD HYD (080 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF
RUNOFF COEFFICIENT = .96 .35 .914	01301>         IADD HYD         0060         ID: NHTD         AREA         OPERAK         FEAK         R.V.         DWF           01302>
(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 81.0$ Ia = Dep. Storage (Above)	01304> +ID2 07:070 2.66 .538 1.04 40.16 .000 01305>
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.	01306> SUM 08:080 3.55 .733 1.04 40.16 .000 01307>
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	01308> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
001:0006	01309> 01310>
*	01311> 001:0012
* SUB-AREA No.3	01313>   ADD HYD (090 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF 01314> (ha) (cms) (hrs) (mm) (cms)
CALIB STANDHYD   Area (ha)= 1.40   03:030 DT= 2.50   Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00	01315> ID1 05:050 5.01 .918 1.04 38.34 .000
IMPERVIOUS PERVIOUS (1)	
	01319>
Surface Area $(ha) = 1.36$ .04	01320> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01321>
Surface Area (ha)= 1.36 .04 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= .51 1.00	01322>
	01323> 001:0013
Surface Area (ha)=       1.36       .04         Dep. Storage (m)=       1.57       4.67         Average Slope (%)=       .51       1.00         Length (m)=       225.63       5.00         Mannings n       =       .030       .030         Max.eff.lnten.(mm/hr)=       104.19       31.02	01323> 001:0013 01324>
Surface Area         (ha)=         1.36         .04           Dep. Storage         (mm)=         1.57         4.67           Average Stope         (%)=         .51         1.00           Length         (m)=         225.63         5.00           Mannings         -         .030         .030           Max.eff.Inten.(mm/hr)=         104.19         31.02           over (min)         7.50         10.00	01324> 01325>   ROUTE RESERVOIR   Requested routing time step = 1.0 min. 01326>   IN>09: (90 )
<pre>Surface Area (ha)= 1.36 0.4 Dep. Storage (mm)= 1.57 4.67 Average Storage (mm)= 1.57 4.67 Average Stope (%)= .51 1.00 Length (m)= 225.63 5.00 Mannings = .030 .030 Max.eff.Inten.(mm/hr)= 104.19 31.02 over (min) 7.50 10.00 Storage Coeff. (min)= 8.28 (ii) 9.39 (ii) Unit Hyd. Tpeak (min)= 7.50</pre>	013245 013255   ROUTE RESERVOIR   Requested routing time step = 1.0 min. 013265   IN>09: (090)   01327>   OUT<10: (POND )
<pre>Surface Area (ha)= 1.36 0.4 Dep. Storage (mm)= 1.57 4.67 Average Storage (mm)= 1.57 4.67 Average Store (%)= .51 1.00 Length (m)= 225.63 5.00 Mannings n = .030 .030 Max.eff.Inten.(mm/hr)= 104.19 31.02 over (min) 7.50 10.00 Storage Cosff. (min)= 8.28 (ii) 9.39 (ii) Unit Hyd. Tpeak (min)= 7.50 10.00 Unit Hyd. peak (cms)= .14 .12 TOTALSE</pre>	01324>
<pre>Surface Area (ha)= 1.36 0.4 Dep. Storage (mm)= 1.57 4.67 Average Storage (mm)= 1.57 4.67 Average Store (%)= .51 1.00 Length (m)= 225.63 5.00 Mannings n = .030 .030 Max.eff.Inten.(mm/hr)= 104.19 31.02 over (min) 7.50 10.00 Storage Cosff. (min)= 8.28 (ii) 9.39 (ii) Unit Hyd. Tpeak (min)= 7.50 10.00 Unit Hyd. peak (cms)= .14 .12 TOTALSE</pre>	01324>
<pre>Surface Area (ha)= 1.36 0.4 Dep. Storage (mm)= 1.57 4.67 Average Storage (mm)= 1.57 4.67 Average Store (%)= .51 1.00 Length (m)= 225.63 5.00 Mannings n = .030 .030 Max.eff.Inten.(mm/hr)= 104.19 31.02 over (min) 7.50 10.00 Storage Cosff. (min)= 8.28 (ii) 9.39 (ii) Unit Hyd. Tpeak (min)= 7.50 10.00 Unit Hyd. peak (cms)= .14 .12 TOTALSE</pre>	01324>
Surface Area (ha)= 1.36 .04 Dep. Storage (mm)= 1.57 4.67 Average Storage (m)= 2.57 4.67 Average Store (%)= 2.56.3 5.00 Mannings n = .030 .030 Max.eff.Inten.(mm/hr)= 104.19 31.02 over (min) 7.50 10.00 Storage Coeff. (min)= 8.28 (ii) 9.39 (ii) Unit Hyd. Tpeak (min)= 7.50 10.00 Unit Hyd. Tpeak (min)= 1.4 .12 PEAK FLOW (cms)= .27 .00 .274 (iii) TIME TO FEAK (hrs)= 1.04 1.13 1.042	01324>       Requested routing time step = 1.0 min.         01325>       IN>09:(90)       I         01325>       IN>09:(90)       I         01325>       OUTXL0:(POD)       I         01325>       OUTXL0:(POD)       I         01328>       OUTXL0:(POD)       I         01329>       OUTXL0:(POD)       I         01329>       OUTXL0:(POD)       I         01330>       .000       .00000000         01331>       .000       .0000         01332>       .017       .13112+00         01333>       .033       .23124:00         01334>       .2333       .39712+00         01335>       .337       .337
Surface Area (ha) = 1.36 .04 Dep. Storage (mm) = 1.57 4.67 Average Storage (mm) = 1.57 4.67 Average Storage (mm) = 1.57 4.67 Average Store (%) = .51 1.00 Length (m) = 225.63 5.00 Mannings n = .030 .030 Max.eff.Inten.(mm/hr) = 104.19 31.02 over (min) 7.50 (10.00 Storage Coeff. (min) = %.28 (ii) 9.39 (ii) Unit Hyd. peak (min) = 7.50 10.00 Unit Hyd. peak (ms) = .14 .12 PEAK FLOW (cms) = .27 .00 .274 (iii) THME TO PEAK (hrs) = 1.04 1.13 1.042 RUNOFF VOIDME (mm) = 40.54 14.70 40.157 RUNOFF COEFFICIENT = .96 .35 .945 (i) CN PROCEDURE SELECTE FOR PENVIOUS LOSSE-	01324>
Surface Area (ha) = 1.36 .04 Dep. Storage (mm) = 1.57 4.67 Average Storage (mm) = 1.57 4.67 Average Storage (mm) = 1.57 4.67 Average Store (%) = .51 1.00 Length (m) = 225.63 5.00 Mannings n = .030 .030 Max.eff.Inten.(mm/hr) = 104.19 31.02 over (min) 7.50 10.00 Storage Coeff. (min) = 8.28 (ii) 9.39 (ii) Unit Hyd. Tpeak (min) = 7.50 10.00 Unit Hyd. Tpeak (min) = .14 .12 PEAK FLOW (cms) = .14 .12 TIME TO PEAK (hrs) = 1.04 1.13 1.274 (iii) TUME TO PEAK (hrs) = 1.04 1.03 1.274 (iii) TUME TO PEAK (hrs) = 1.04 1.13 1.027 TUME TO PEAK (hrs) = .27 .00 1.274 (iii) TUME TO PEAK (hrs) = .27 .00 1.274 (iii) RUNOFF VOLUME mm) = 40.54 14.70 40.157 RUNOFF COEFFICIENT = .96 .51 42.51 RUNOFF COEFFICIENT = .96 .505 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSES: CN* = 81.0 Ta = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SKALLER OR EQUAL	01324>       Requested routing time step = 1.0 min.         01325>       INFORM ESERVOIR   Requested routing time step = 1.0 min.         01325>       INFORM ESERVOIR   Requested routing time step = 1.0 min.         01325>       OUTLFOW STORAGE TABLE         01325>       OUTLFOW STORAGE   OUTFLOW STORAGE TABLE         01325>       (mms) (ha.m.)         01330>       .000 0002+00         01332>       .008         01332>       .008         01333>       .008         01334>       .033         01335>       .008         01334>       .033         .033       .033         .01335>       .008         .01334>       .033         .0335>       .033         .0333       .033         .0334>       .033         .0335>       .0371400         .0336>       .0371400         .0335>       .3371400         .0337       .47312400         .0337       .531         .531       .58715400         .0338>       .00000000000
<pre>Surface Area (ha)= 1.36  .04 Dep. Storage (mm)= 1.57  4.67 Average Storage (h)= 2.56.3  5.00 Mannings n = .030  .030 Max.eff.Inten.(mm/hr)= 104.19  31.02</pre>	01324>
Surface Area (ha)= 1.36 .04 Dep. Storage (mm)= 1.57 4.67 Average Storage (mm)= 1.57 4.67 Average Storage (mm)= 1.57 4.67 Average Storage (mm)= 1.57 4.67 Average Storage Coeff. (m)= 225.63 5.00 Mannings n = .030 .030 Max.eff.Inten.(mm/hr)= 104.19 31.02 over (min) 7.50 10.00 Unit Hyd. Tpeak (min)= 1.4 .12 PEAK FLOW (cms)= .27 .00 .274 (iii) TIME TO FEAK (hrs)= 1.04 1.13 1.042 RUMOFF VOLUME (mm)= 40.94 14.70 40.157 TOTAL RAINFALL (mm)= 40.94 14.70 40.157 TOTAL RAINFALL (mm)= 42.51 42.51 4 RUMOFF COEFFICIENT = .96 .35 .945 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	01324>         Requested routing time step = 1.0 min.           01325>         INF095(190)         I           01325>         OUTX10: (FOND)         I           01330>         OUT000         I         .553           01332>         .000         .0000 0000E+00         .553           01332>         .017         .131E+00         .797           01335>         .233         .3371E+00         .1304           01335>         .233         .3371E+00         1           01335>         .455         .5491E+00         .0000E+00           01336>         .455         .5491E+00         .0000E+00           01338>         BOUTING RESULTS         AREA         0EEAK         TPEAK           01340>         THFLOW v09: (090)         E.56         1.651         1.042         39.996           01341         INFLOW v10: (000D)         E.56         .0092         2.625         39.933 </td
Sutface Area (ha) = 1.36 .04 Dep. Storage (mm) = 1.57 4.67 Average Storage (%) = .51 1.00 Length (m) = 225.63 5.00 Mannings n = .030 .030 Max.eff.Inten.(mm/hr) = 104.19 31.02 over (min) = 8.28 (ii) 9.39 (ii) Unit Hyd. Peak (min) = 7.50 10.00 Unit Hyd. Peak (min) = .14 .10 PEAK FLOW (cms) = .14 .12 TIME TO PEAK (hrs) = 1.04 1.13 1.042 RUMOFY VOLUME (mm) = 42.51 42.51 42.514 RUMOFY OVERTHE SELECTED FOR PERVIOUS LOSSES: (i) CM PERCEDURE SELECTED FOR PERVIOUS LOSSES: (ii) I as De Storage (Above) (iii) TIME STEP (OT) SHOLD DE SKORAGE (Above) (iii) PEAK FLOW ODES NOT INCLUDE BASEFLOW IF ANY.	01324>         Requested routing time step = 1.0 min.           01325>         INF09:(990)         I           01325>         OUTX10:(POND)         I           01330>         .000         .0000000+00 I         .553           01332>         .017         .1311E+00 I         .797           01333>         .033         .23312+00 I         .304           01335>         .23312+00 I         1.304         .9157E+00 I           01335>         .337         .4731E+00 I         .00000000+00 I         .551           01335>         .465         .5491E+00 I         .00000E+00 I         .0000E+00 I           01335>         .465         .5491E+00 I         .00000E+00 I         .0000E+00 I           01335>         .000TINN RESULTS         AREA         QEEX         THEA         Nm           01341>         INFLOW >09:(090)         6.56         .651         .042         39.096           01342>
Surface Area (ha) = 1.36 .04 Dep. Storage (mm) = 1.57 4.67 Average Storage (mm) = 1.57 4.67 Average Store (%) = .51 1.00 Length (m) = 225.63 5.00 Mannings n = .030 .030 Max.eff.Inten.(mm/hr) = 104.19 31.02 Correct (min) 7.50 10.00 Storage Correct (min) 7.50 10.00 Unit Hyd. Tpeak (min) = 8.28 (ii) 9.39 (ii) Unit Hyd. Tpeak (min) = .16 10.00 Unit Hyd. Tpeak (ms) = .14 .12 "TOTALS" PEAK (hrs) = 1.04 1.13 1.042 TIME TO PEAK (hrs) = 1.04 1.13 1.042 TUTALS" (John Market (hrs) = .27 .00 .274 (iii) TOTAL RAINFALL (mm) = 42.51 42.51 42.514 RUNOFT COEFFICIENT = .96 .35 .945 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 I se Torage (Above) (ii) TIME STORAGE COEFFICIENT: (iii) FEAK FLAW DOES NOT INCLUBE BASEFLOW IF ANY. CONTOCOM	01324>
Surface Area (ha) = 1.36 .04 Dep. Storage (mm) = 1.57 4.67 Average Storage (mm) = 2.56 3 5.00 Mannings n = .030 .030 Max.eff.Inten.(mm/hr) = 104.19 31.02 over (min) 7.50 10.00 Storage Coeff. (min) = 8.28 (ii) 9.39 (ii) Unit Hyd. Tpeak (min) = 7.50 10.00 Unit Hyd. Tpeak (mm) = .14 .12 PEAK FLOW (cms) = .27 .00 .274 (iii) THE TO PEAK (trs) = 1.04 1.13 1.042 RUNOFF VOLUME (mm) = 40.94 14.70 40.157 TOTAL RAINFALL (mm) = 42.51 42.51 42.514 RUNOFF COEFFICIENT = .96 .35 .945 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	01324>       Requested routing time step = 1.0 min.         01325>       INF095(090)       0UTLF0W STORACE TABLE         01325>       OUTS(0)(FON)       OUTLF0W STORACE (OUTLOW STORACE)         01328>       OUTS(0)(FON)       (cms)         01325>       (cms)       (cms)         01332>       .000       .0000000+00       .553         01333>       .000       .0000       .6551200         01333>       .001       .008       .65602-01         01333>       .023       .2331200       .77312000         01335>       .2331200       .3371200       .82742+00         01335>       .4551200       .5491200       .531300         01335>       .000000000       .531       .0000000000         01335>       .0000000000       .5312000       .0000000000         01335>       .0000000000       .5312000       .0000000000         01335>       .000000000       .531       .0451       .0000000000         01335>       .00000000       .551       .6551       .63906         01341>       INFLOW >09: (000)       6.56       .069       2.625       .9093         01342>       OUTFLOW       EEDWCTION (000000000000000)       .5413

J. L. Richards & Associates Limited

Page 4

1.21 28.40

.000

TIME hrs 2.67 2.83 3.00

RAIN mm/hr 4.049 3.714 3.434

01486> 01487> 01488> 01489> 01489> 01490> 
 TIME TO PEAK (hrs) =
 1.167

 RUNOFF VOLUME (mm) =
 17.325

 TOTAL RAINFALL (mm) =
 42.514

 RUNOFF COEFFICIENT =
 .408
 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01491> IMPERVIOUS Surface Area (ha) = 14.13 01358> 01359> 01360> 01361> 01362> 01363> 01364> 01365> PERVIOUS (i) 5.77 4.67 1.50 Dep. Storage Average Slope Length Mannings n (mm) = (%) = (%) = (m) = = = (m) =1.57 .60 580.00 .030 ..50 1.50 100.00 .250 80.14 15.00 15.43 (ii) 15.00 .07 42.65 35.00 34.18 (ii) 35.00 .03 01365> 01366> 01367> 01368> 01369> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01370> 01370> 01371> 01372> 01373> 01374> 01375> .40 1.54 21.31 42.51 .50 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 1.41 1.17 40.94 42.51 .96 1.572 (iii) 1.208 31.126 42.514 .732 01376> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOLD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01378> 01379> 01380> 01381> 
 PEAK FLOW
 (cms) =
 .187 (i)

 TIME TO PEAK
 (hrs) =
 1.458

 RUNOFF VOLUME
 (mm) =
 12.131

 TOTAL RAINFALL
 (mm) =
 42.514

 RUNOFF COEFFICIENT
 _285
 01516> 01517> 01517> 01518> 01519> 01382> 01518-01519-01520-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01522-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01523-01392> SUM 02:HIP02 28.46 1.615 1.21 33.52 .000 01393> 01394> NOTE: PEAK FLOWS DO 01395> 01396> ------01397> 001:0016------NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 001.0016_____ 01398> * SUB-AREA No.2 01399> CALIE STANDHYD ( Area (ha)= 17.00 03:H1P03 DT= 2.50 [ Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 01400> 01401> 01402> 01403> 01536> 01537> 01538> 01539> 01540> Surface Area (ha) = Dep. Storage (nm) = Average Slope (%) = Length (m) = Mannings n = 01403> 01404> 01405> 01406> 01406> 01407> 01408> PERVIOUS (i) 4.93 4.67 1.50 12.07 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01541> .65 450.00 .030 100.00 01409> 01410> 01411> 01412> 01413> 01413> 01414> 01415> 01416> 01417> 01418> 01419> 01419> 01420> 89.76 47.48 12.50 30.00 12.36 (ii) 30.32 (ii) 12.50 30.00 .09 .04 Max.eff.Inten.(mm/hr) = over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= SUM 02:0020 79.66 4.812 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 1.36 1.13 40.94 42.51 .96 *TOTALS* 01551> - TOTALS* 1.504 (iiii) 1.167 31.126 42.514 .732 .37 01552> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 1.46 21.31 42.51 .50 01421> 01421> 01422> 01423> 01424> 01425> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) THE STEP UP) SHOULD ES NAILER OR EQUAL THAN THE STORAGE COEFFICIENT. (ii) PERK FLOW DOES NOT INCLUDE BASEFICON IF ANY. 01426> 01428> 01427> 01428> 01429> 01430> 01431> 001:0017-------* SUB-AREA No.3 01432> 01433> 01434> 01435> 01435> | CALIB STANDHYD | Area (ha)= 18.10 | 04:HIP04 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = B= 6.014 C= .816used in: INTENSITY = A / (t + B)^C IMPERVIOUS 01438> 01438> 01439> 01440> 01441> PERVIOUS (i) 12.85 1.57 .50 600.00 .030 5.25 Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = .33 01575> 01576> 01577> 01577> 01578> 01579> ..50 100.00 01442 01443> 01444> 01445> 01446> 01446> 01447> 01448> 01449> 01450> 01450> 01451> 01452> 01453> 
 73.27
 42.65

 17.50
 35.00

 17.24
 (ii)

 17.50
 35.00

 .07
 .03

 TIME
 RAIN |
 TIME |
 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = 01580> 01581> 01582> 01583> 01583> 01584> *TOTALS* PEAK FLOW {cms}= TIME TO PEAK {hrs}= RUNOFF VOLUME {mm}= TOTAL RAINFALL {mm}= RUNOFF COEFFICIENT = 1.364 (iii) 1.250 31.126 42.514 .732 

 01584>
 ...

 01585>
 ...

 01586>
 ...

 01586>
 ...

 01586>
 ...

 01586>
 ...

 01586>
 ...

 01586>
 ...

 01586>
 ...

 01580>
 ...

 01580>
 ...

 01580>
 ...

 01580>
 ...

 01581>
 Filename: V:\20983.DU\ENG\3RDSUB-\SWMHYMO\ORGA.VAL

 01582>
 FileTitle= ....

 01582>
 FileTitle= ....

 01585
 Borton's infiltration equation parameters:

 01585
 Darameters for IMCPU-S 00 main() [DCPU-S00 main() [DCPU-S00 main()]

 01585
 Darameter for IMCPU-S 00 main() [DPU-200]

 01585
 Parameters for IMCPU-100 main() [DPU-200]

 01595
 ILAper= 4.67 mm] [LGP-40.00 m] SMPA-250]

 01601>
 [Ia= 4.67 mm] [N= 3.00]

 01602>
 [Ia= 4.67 mm] [N= 3.00]

 01602
 [Ia= 4.67 mm] [N= 3.00]

 01603
 001:0004

 1.19 .35 01585> .35 1.54 21.31 42.51 .50 1.21 40.94 42.51 .96 01454> 01455> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR SQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFICOW IF ANY. 01456> 01457> 01458> 01459> 01460> 01461: 01462> 01463> 01464> 001:0018------01465 - LIDD HYD (HIPO5 ) | ID: NHYD AREA QPEAK TPEAK R.V. 01465 - DD HYD (HIPO5 ) | ID: NHYD AREA QPEAK TPEAK R.V. 01465 - DD HYD (HIPO5 ) | ID: NHYD 317.00 1.506 1.17 01466 - HD 204 HIPO4 18.10 1.366 1.25 31.13 01466 - HD 204 HIPO4 18.10 1.366 1.25 31.13 DWF (cms) .000 .000 01468> 01468> 01469> 01470> SUM 05:HIP05 35.10 2.800 1.17 31.13 .000 01471> 01472> 01472> 01473> 01474> 01475> 01475> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 001:0019---01477> *SUB-AREA No.4 01478> | DESIGN NASHYD | Area (ha)= 4.00 Curve Number (CN)=85.00 | 06:Pond-B DT= 2.50 | Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 ------ U.H. Tp(hrs)= .170 01479> 01480> 01481> 01482> 01614> 01615> 01616> 01617> 01618> 01619> 01620> Unit Hyd Qpeak (cms)= .899 01483> 01484> 01485> Max.eff.Inten.(mm/hr)= over (min) 122.14 PEAK FLOW (cms)= .260 (i)

J. L. Richards & Associates Limited

Page 5

34.69

 01756>
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL

 01757>
 THAN THE STORAGE COEFFICIENT.

 01758>
 (ii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 01758>
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 01759>
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 01759>
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 01762>
 * SUB-AREA NO.5

 01765>
 (CALIB SZANDHYD i Area (ha)= 2.66

 01765>
 (CALIB SZANDHYD i Area (ha)= 2.58

 01765>
 (CALIB SZANDHYD i Area (ha)= 2.58

 01765>
 UPERVIOUS PERVIOUS (i)

 01765>
 UPERVIOUS PERVIOUS (i)

 01765>
 UPERVIOUS PERVIOUS (i)

 01765>
 Length (m) = 1.57
 4.67

 01771>
 Average Slope (%)= .61
 1.50

 01775>
 Length (m) = 10.01
 14.75

 01775>
 Storage cover (min) 7.50
 15.00

 01775>
 Max.eff.Inten.(mm/hr)= 122.14
 34.69

 01775>
 Unit Hyd. peak (ma)= .16
 .00

 01778>
 Unit Hyd. peak (ma)= .164
 .01

 01778>
 RUNOFF VOLVDE (m)= .47.93
 19.25

 01780>

 7.28
 (ii)
 16.04
 (ii)

 7.50
 15.00
 ...
 ...

 .15
 .07
 ...
 ...
 ...

 .43
 .02
 ...
 ...
 ...

 1.04
 1.21
 ...
 ...
 ...

 47.93
 19.25
 ...
 ...

 49.50
 ...
 ...
 ...
 ...

 ...
 ...
 ...
 ...
 ...
 ...
 Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 01621> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01756> 01622> 01623> 01624> 01625> 01625> 01626> 01627> *TOTALS* .437 (iii) 1.042 43.345 49.505 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 01628> 01620> 01629> 01630> 01631> 01632> .876 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) 11 TIME STEP (DT) SHOULD BE SHALLER OR EQUAL THAN THE STORAGE COEPFICIENT. (ii) PEAR FLOW DOES NOT INCLUDE BASEFICOW IF ANY. 01633> 01634> 01635> 01636> 01637> ------01638> 001:0005-----01639> CALLE STANDHYD | Area (ha)= 1.54 02:020 DT= 2.50 | Total Imp(\$)= 92.00 Dir. Conn. (\$)= 92.00 Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS PERVIOUS (1) 01645> 1.42 1.57 .50 244.34 .030 01646> 01647> 01648> 01649> 01650> 01651> .12 4.67 1.00 5.00 .030 01651> 01652> 01653> 01654> 01655> 01656> 01657> 01658> 01659> 01660> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)≃ Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= *TOTALS* .341 (iii) 1.042 45.640 49.505 .922 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = .33 1.04 47.93 49.50 .97 .01 1.13 19.25 49.50 .39 01660> 01661> 01662> 01663> 01664> 01665> 01665> 01665> (hrs) (nm) 1.00 47.07 1.04 47.07 (cms) .000 .000 (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEF (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. SUM 08:080 3.55 .876 1.04 47.07 01801> 01802> 01803> .000 01668> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01669> 01670> -----01671> 001:0006----01672> * 01804> 01805> 01806> 001:0012----- 
 IDD
 OPERAK
 CPERAK
 R.V.

 IDD
 05:050
 5.0
 1.07
 1.04
 45.09

 +ID2
 08:080
 3.55
 .876
 1.04
 47.07

 SUM
 09:090
 8.56
 1.904
 1.04
 45.91
 01807> -----01808> | ADD HYD (090 ) | ID: NHYD 01809> -----01672> 01673> 01674> 01675> 01675> 01676> 01677> 01678> * SUB-AREA No.3 

 SUBAREA R0.3

 | CALIE STANDHYD |
 Area (ha) = 1.40

 (03:030 DT= 2.50 |
 Total Imp(%) = 97.00 Dir. Conn.(%) = 97.00

 IMPERVIOUS PERVIOUS (i)
 IMPERVIOUS PERVIOUS (i)

 Surface Area (ha) = 1.36 .04
 .04

 Dep. Storage (mm) = 1.57 4.67
 Average Slope (%) = .51 1.00

 Length (m) = 225.63 5.00
 .030

 -----(cms) .000 .000 01810> 01811> 01812> 01813> 01813> 01814> 01815> .000 01679> 01680> 01681> 01682> 01683> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. .51 225.63 .030 01683> 01684> 01685> 01685> 01687> 01688> Max.eff.Inten.(mm/hr)= 122.14 48.18 Requested routing time step = 1.0 min. over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 7.50 7.77 (ii) 8.70 (ii) 7.50 7.50 15 .15 OUTLIFOW STORAGE TABLE ====== OUTFLOW STORAGE | OUTFLOW STORAGE 
 Instant
 OUTLEOW STORAGE
 I

 (cmms)
 (ha.m.)
 (

 .000
 .00002+000
 (

 .000
 .00002+000
 (

 .003
 .28312+000
 (

 .13112+000
 (
 .233
 .39712+000

 .337
 .47312+000
 (
 .337

 .455
 .54912+000
 (
 .531
 .58712+000
 STORAGE 01823> 01824> 01825> 01688> 01689> 01690> 01691> 01692> 01693> 
 OUTFLOW
 STORAGE

 (cms)
 (ha.m.)

 .593
 .6251E+00

 .797
 .7391E+00

 .950
 .8274E+00

 1.304
 .9157E+00

 1.880
 .1004E+01

 2.577
 .1092E+01

 .000
 .0000E+00
 ******* PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .33 1.04 47.93 49.50 .97 .00 1.08 19.25 49.50 .39 .329 (iii) 1.042 47.074 49.505 .951 01826> 01828> 01829> 01830> 01831> 01832> 01693> 01694> 01695> 01695> 01696> 01697> 01698> CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) ili Time STEP (T) SHOULD BE SMALLER OR BUGAL THAN THE STORAGE COEFFICIENT. (ii) PEAR FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 01833> 01833> 01834> 01835> 01836> 01837> ROUTING RESULTS 01699> 
 ROUTING RESULTS
 AREA
 QPEAK

 INFLOW >09:
 (090)
 8.56
 1.984

 OUTFLOW<10:</td>
 (POND)
 8.56
 .132
 TPEAK R.V. 01700> (hrs) 1.042 2.278 (mm) 45.914 45.912 01701> 01837> 01838> 01839> 01840> 01841> 01841> PEAK FLOW REDUCTION [Quut/Qin](%)= TIME SHIFT OF PEAK FLOW (min)= MAXIMUM STORAGE USED (ha.m.)=.31 /Qin](%)= 6.640 (min)= 74.17 (ha.m.)=.3146E+00 01843> QPEAK TPEAK R.V. DWF 01718> 01719> 01720> 01721> 01722> 01722> 01723> 01724> 01725> (cms) (hrs) (nm) .329 1.04 47.07 .778 1.04 44.32 (cms) .000 .000 SUM 05:050 5.01 1.107 1.04 45.09 .000 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01725> 01726> 01727> 93.86 15.00 14.48 (ii) 15.00 .08 01862> 01863> 01864> 01865> over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 30.00 30.78 (ii) 30.00 .04 01727> 01728> 01729> 01730> 01731> 01732> 01733> 01733> 01734> 001:0009-----* SUB-AREA No.4 
 SUB-AREA NO.4

 | CALIE STANDHYD | Area (ha)= .89

 1 06:060 DT= 2.50 | Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00

 IMPERVIOUS PERVIOUS (i)

 Surface Area (ha)= .66 .03

 Dep. Storage (mm)= 1.57 4.67

 Average Slope (%)= .93 .70

 Length (m)= 164.82 40.00

 Mannings n = .030 .250
 1.70 1.17 47.93 49.50 .97 01866> PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = ******* .55 1.46 1.983 (iii) 1.208 37.426 49.505 .756 01867> 01868> 01869> 01870> 01871> 01872> 01873> 01874> 01875> 01876> 01876> 01877> 01878> 26.92 49.50 .54 01734> 01735> 01736> 01737> 01738> 01739> 01740> .86 1.57 .93 164.82 .030 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 81.0 Ia - Dep. Storage (Above)
 IIHS STEP (T) SNOULD BE SUBALER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (ii) PERK FLOW DOE NOT INCLUDE BASEFICON IF ANY. 01741> 01742> 01742> 01743> 01744> 01745> Max.eff.Inten.(mm/hr)= 122.14 5.00 5.37 (ii) 5.00 .21 .24 1.00 47.93 49.50 .97 122.14 31.19 over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 20.00 20.78 (ii) 20.00 .06 01745> 01746> 01747> 01748> 01749> 01750> 01751> 01752> 01753> 01755> *TOTALS* .245 (iii) 1.000 47.074 49.505 .951 PEAK FLOW (CRNS) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mmn) = TOTAL RAINFALL (mmn) = RUNOFF COEFFICIENT = .00 1.29 19.25 49.50 .39 01884> 01885> 01886> 01887> 01888> SUM 02:HIP02 28.46 2.044 1.21 39.98 .000 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) 01889> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

01892> 001:0016-----02026> 02027> Unit Hyd Qpeak (cms)= .252 01893> * 01894> * SUB-AREA No.2 
 PEAK FLOW
 (cms) =
 .115

 TIME TO PEAK
 (hrs) =
 2.000

 RUNOFF VOLUME
 (mm) =
 16.075

 TOTAL RAINFALL
 (mm) =
 49.505

 RUNOFF COEFFICIENT
 =
 .325
 02029> 02030> 02031> 02032> 02033> .115 (i) 2.000 
 I CALIB STANDHYD
 |
 Area (ha)=
 17.00

 | 03:HIP03 DT=2.50
 Total Imp(%)=
 71.00
 Dir. Conn.(%)=
 50.00
 01893> 01896> 01897> 01898> 01899> 01900> Surface Area (ha) = Dep. Storage (mm) = Average Slope (%) = Length (m) = Mannings n = IMPERVIOUS 12.07 1.57 .65 PERVIOUS (i) 4.93 4.67 1.50 01901> 01902> 01903> 01903> 01904> 01905> 450.00 100.00 01905> 01906> 01907> 01908> 01909> 01910> 01911> 01912> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 
 105.17
 53.81

 12.50
 27.50

 11.60 (ii)
 27.56 (ii)

 12.50
 27.50

 .09
 .04
 (cms) .000 .000 .000 SUM 02:0020 79.66 6.135 1.17 34.34 *TOTALS* 1.865 (iii) 1.167 37.426 49.505 .756 PEAK FLOW {cms}= TIME TO PEAK {hrs}= RUNOFF VOLUME {mm}= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 1.63 1.13 47.93 49.50 .97 .51 1.42 22046> SUM 02:0020 79.66 6.135 1.1 02047> 02048> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02049> .000 01912> 01913> 01914> 01915> 01915> 01916> 01917> 26.92 49.50 .54 02050> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 81.0
 I THE STEP (T) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (ii) PEAR FLOW DOES NOT INCLUDE RASEFLOW IF ANY. 01918> 01919> 01920> 01921> 01922> 01923> U1923> 01924> 01925> 01926> 01926> 01926> 01926> 01926> 01926> 01926> 01926> 01926> 01926> 01926> 01926> 01926> 01926> 01926> 01926> 01926> 01926> 01926> 01926> 01926 01930> 104:HIP04 DP 2.50 | Total Imp(%) = 71.00 Dir. Conn.(%)= 50.00 01931> 01932> 01932> 01932> 01932> 01932> 01932> 01932> 01932> 01932> 01932> 01932> 01932> 01932> 01932> 01932> 01932> 01932> 01932> 01932> 01932> 01932> 01932> 01932> 01932> 01932> 01932> 01932> 01932> 01932> 01932> 01932> 01932> 01934> 01935> 01934> 01935 01936 01935 01936 01936 01937 Mannings = 030 0250 01939 Max.eff.Inten.(mm/r) = 93.86 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 01940 019400 019400 02068> 02069> 02070> 02071> 02072> Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = .33 02072> 02073> 02074> 02075> 02076> 02077> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 93.86 57.19 15.00 32.50 15.61 (ii) 32.28 (ii) 15.00 32.50 .07 .03 
 TIME
 RAIN
 <th 01939> 01940> 01941> 01942> 01943> 01943> 01944> 01945> 01946> 01947> 01948> 01949> 01949> 01950> RATN mm/hr 4.701 4.310 3.983 .03 *TOTALS* 1.723 (iii) 1.208 37.426 49.505 02078> PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 1.49 1.17 47.93 49.50 .97 .48 1.50 02080> 02081> 02082> 26.92 49.50 .54 02083> 001:0003-----.756 01950> 01951> 01952> 01953> 01954> 01955> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (1) IN PROLEDERE SELECTED FOR PERVIOUS LOSSES:
 CN*= 81.0 I a = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE EASEFLOW IF ANY. 01956> 01962> 01963> 01964> 01965> 01965> 01965> 01967> 01969> 01970> 01:0019 01970> 01:0019 01971> *SUB-AREA No.4 SUM 05:HIP05 35.10 3.572 1.17 37.43 .000 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. Surface Area (ha) = Dep. Storage (mm) = Average Slope (%) = Length (m) = Mannings n = 01972> 01973> 01974> 01975> 01976> 01976> 01978> 01978> 01980> 01981> 01982> 01983> | DESIGN NASHYD | Area (ha)= 4.00 Curve Number (CN)=85.00 | 06:Pond-B DT= 2.50 | Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 ----- U.H. Tp(hrs)= .170 1.74 1.57 .52 204.72 .030 02111> 02112> 02112> 02113> 02114> 02114> 20.00 Unit Hyd Qpeak (cms)= .899 Max.eff.Inten.(mm/hr) = cver (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = 144.69 47.07 7.50 15.00 6.81 (ii) 14.56 (ii) 7.50 15.00 .16 .00 
 PEAK FLOW
 (cms) =
 .345
 (i)

 TIME TO PEAK
 (hrs) =
 1.167
 .107

 RUNOFF VOLUME
 (mm) =
 22.420
 .107

 TOTAL RATURALL
 (mm) =
 49.505
 .453
 02115> 02116> 02117> 02118> 02119> 02120> 01984> .52 1.04 56.66 58.23 .97 *TOTALS* .532 (iii) 1.042 51.647 58.226 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 01985> 01985> 01986> 01987> 01988> .03 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02121> 02122> 02123> 02124> 02125> 02126> 02126> 02127> 02128> 02128> 02129> 02130> 02131> 02132> 1.21 25.35 58.23 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COSFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. DWF 01992> 01993> 01993> 01994> 01995> 01996> 01997> 01998> 01999> 02000> SUM 07:HIP06 67.56 5.939 1.17 37.61 .000 02133> 001:0005-----02133> 001:0005------02134> * 02136> ------02137> | CALTB STANDHYD | Area (ha)= 1.54 02138> | 02:020 DF 2.50 | Total Imp(\$)= 92.00 Dir. Conn. (\$)= 92.00 02139> -----02137> IMPERVIOUS PERVIOUS (i) 02140> IMPERVIOUS PERVIOUS (i) 02141> Surface Area (ha)= 1.42 .12 02142> Dep. Storage [mm]= 1.57 4.67 02142> Length ... 02143> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02000> 02001> 02002> 001:0021-02003> * SUB-ARI 02004> 02004> 02005> | DESIGN -----Surface Area (ha)= Dep. Storage (mms)= Average Slope (%)= Length (m)= Mannings n = 02006> 1.42 1.57 .50 244.34 .030 02007> 02007> 02008> 02009> 02010> 02011> 02012> 02012> 02013> Unit Hyd Qpeak (cms)= .702 1.00 5.00 .030 02144> 02145> 02146> 02147> 02148> 02149> 02149> 
 PEAK FLOW
 (cms) =
 .252 (i)

 TIME TO PEAK
 (hrs) =
 1.417

 RUNOFF VOLUME
 (mm) =
 16.075

 TOTAL RAINFALL
 (mm) =
 49.505

 RUNOFF COEFFICIENT
 =
 .325
 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 144.69 65.19 7.50 7.66 (ii) 7.50 .15 7.50 8.49 (11) 7.50 .14 02013> 02014> 02015> 02016> 02017> 02018> .15 .40 1.04 56.66 58.23 .97 02151> 02152> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. *TOTALS PEAK FLOW (cms) = TIME TO PEAK {hrs} = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 02153> 02154> 02155> 02155> 02156> .01 .418 (iii) 1.042 54.152 58.226 .930 ____ 1.08 25.35 58.23 .44 -----02158> 02157> 02158> 02159> 02160> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:  $CN^* = 81.0$  Ia = Dep. Storage (Above)

J. L. Richards & Associates Limited

Page 7

	TPH1.out)	J. L. Richards & Associates Li
62> 63> (iii 64>	TIME STEP (DT) SHOULD BE SMALLER OR EQUAL     022:     THAN THE STORAGE COEFFICIENT.     022     PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.     022     022	297> 298> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
65>		000>001:0012
67> * 68> * SUB-ARE	023	302>
69>		303>   ADD HYD (090 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF 304> (ha) (cms) (hrs) (mm) (cms)
70>   CALIB S 71>   03:030		305> ID1 05:050 5.01 1.350 1.04 53.55 .000 306> +ID2 08:080 3.55 1.060 1.04 55.72 .000
72> 73>	0230	
74> Surfa	face Area (ha)= 1.36 .04 0230	309>
	Storage (mm) = 1.57 4.67 023	310> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 31>
77> Leng	th (m) = 225.63 5.00 023	312>
79>	0233	313> 001:0013
80> Max.e 81>	eff, Inten. (mm/hr)= 144.69 65.19 023	15.   ROUTE PESERVOIP   Requested routing time stop = 1.0 min
82> Store	age Coeff. (min) = 7.26 (ii) 8.09 (ii) 0233	16>   IN>09:(090) )     Image: Step = 1.0 min.       17>   OUT<10:(POND )
83> Unit 84> Unit	Hyd. Tpeak (min)= 7.50 7.50 0233 Hyd. peak (cms)= .15 .14 0233	18> OUTFLOW STORAGE   OUTFLOW STORAGE
85>	*TOTALS* 0232 (FLOW (cms)= .40 .00 .400 (iii) 0232	20> .000 .0000E+00   .593 .6251E+00
87> TIME	TO PEAK (hrs) = 1.04 1.08 1.042 0232	22> .017 .1311E+00 .797 .7391E+00
88> RUNOI 89> TOTAI	OFF VOLUME         (mm) =         56.66         25.35         55.717         0232           L RAINFALL         (mm) =         58.23         58.23         58.226         0232	23> .093 .2831E+00   .950 .8274E+00 24> .233 .3971E+00   1.304 .9157E+00
90> RUNOI 91>	OFF COEFFICIENT = .97 .44 .957 0232	25> .337 .4731E+00   1.680 .1004E+01
92> (i)	) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 0233	26> .465 .5491E+00   2.577 .1092E+01 27> .531 .5871E+00   .000 .0000E+00
93> 94> (ii)	CN* = 81.0     Ia = Dep. Storage (Above)     0233       ) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL     0233	28>
95>	THAN THE STORAGE COEFFICIENT. 0233	30> (ha) (cms) (hrs) (mm)
97>	) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 0233	31> INFLOW >09: (090 ) 8.56 2.410 1.042 54.451
98>	0233	33>
0>	0233	34>         PEAK         FLOW         REDUCTION         [Qout/Qin] (%) =         7.838           35>         TIME         SHIFT OF         PEAK         FLOW         (min) =         60.83           36>         MEXIMUM         STOPBACE         USEN         (harmonic - 2612FLOO)
1> ( ADD HYD 2>	(040) ID: NHYD AREA OPEAK TPEAK R.V. DWF 0233	
3>	ID1 01:010 2.07 .532 1.04 51.65 .000 0233	38>
4> 5>	+ID2 02:020 1.54 .418 1.04 54.15 .000 0233	39> 001:0014
6> 7>	SUM 04:040 3.61 .950 1.04 52.72 .000 0234	41> * Remaining Hawthorne Industrial Park * 42> ************************************
> NOTE:	PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 0234	42> ************************************
}> )> <b></b>	0234	44> * SUB-AREA NO.1 45>
	0234	46>   CALIB STANDHYD   Area (ha) = 19.90
I ADD HYD	(050 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF 0234	47>   01:HIP01 DT= 2.50   Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00
>  >	(ha) (cms) (hrs) (nm) (cms) 0234 ID1 03:030 1.40 .400 1.04 55.72 .000 0235	49> IMPERVIOUS PERVIOUS (i)
>	+ID2 04:040 3.61 .950 1.04 52.72 .000 0235	51> Dep. Storage (mm) = 1.57 4.67
>	SUM 05:050 5.01 1.350 1.04 53.55 .000 0235	53> Length (m) = 580.00 100.00
> NOTE:	PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 0235	54> Mannings n = .030 .250
>	0235	56> Max.eff.Inten.(mm/hr)= 124.54 81.98
	0235	57> over (min) 12.50 27.50 58> Storage Coeff. (min)= 12.93 (ii) 27.37 (ii)
> * > * SUB-AREA	0235	59> Unit Hyd. Tpeak (min) = 12.50 27.50
>	0236	61> *TOTALS*
>   CALIB ST >   06:060	TANDHYD         Area         (ha)=         .89         0236           DT=         2.50         Total Imp(%)=         97.00         Dir. Conn.(%)=         97.00         0236	62> PEAK FLOW (cms)= 2.16 .77 2.548 (iii)
>	0236	64> RUNOFF VOLUME (mm) = 56.66 34.22 45.437
> Surfa	IMPERVIOUS         PERVIOUS (i)         0236           ace Area         (ha) =         .86         .03         0236	65> TOTAL RAINFALL (mm)= 58.23 58.23 58.226 66> RUNOFF COEFFICIENT = .97 .59 .780
> Dep.	Storage (mm) = 1.57 4.67 0236 age Slope (%) = .93 .70 0236	67>
> Lengt	th (m)= 164.82 40.00 0236	69> CN* = 81.0 Ia = Dep. Storage (Above)
>	ings n = .030 .250 0237 0237	71> THAN THE STORAGE COEFFICIENT.
>	eff.Inten.(mm/hr) = 144.69 44.12 0237 over (min) 5.00 17.50 037	72> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
> Stora	age Coeff. (min) = 5.02 (ii) 18.44 (ii) 0237	74>
> Unit	Hyd. peak (cms) = .22 .06 0237	75> 001:0015 76>
> > peak	*TOTALS* 0237	77>   ADD HYD (HIPO2 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF
> TIME	TO PEAK (hrs)= 1.00 1.25 1.000 0237	79> ID1 10: POND 8.56 .189 2.06 54.45 .000
> TOTAL	FF VOLUME (mm) = 56.66 25.35 55.717 0238 L RAINFALL (mm) = 58.23 58.23 58.226 0238	80> +ID2 01:HIP01 19,90 2.548 1.17 45.44 .000
> RUNOF	FF COEFFICIENT = .97 .44 .957 0238	82> SUM 02:HIP02 28.46 2.622 1.17 48.15 .000
> (i)	) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 0238	84> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
• (ii)	CN* = 81.0 Ia = Dep. Storage (Above) 0238 ) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 0238	
>	THAN THE STORAGE COEFFICIENT. 0238	87> 001:0016
>	0238	88> * 89> * SUB-AREA No.2
001:0010	0239	90> 91>   CALIB STANDHYD   Area (ha)= 17.00
> * > * SUB-AREA	0239	92>   03:HIP03 DT= 2.50   Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00
	A NO.5 0239	93> 94> IMPERVIOUS PERVIOUS (1)
)   CALIB ST ) 07:070	TANDHYD         Area         (ha)=         2.66         0239           DT=         2.50           Total Imp(%)=         97.00         Dir. Conn.(%)=         97.00         0239	95> Surface Area (ha)= 12.07 4.93
	0239	97> Average Slope (%)= .65 1.50
Surfa	IMPERVIOUS         PERVIOUS (i)         0239           ace Area         (ha)=         2.58         .08         0239	98> Length (m)= 450.00 100.00 99> Mannings n = .030 .250
Dep.	Storage $(mm) = 1.57$ 4.67 [0240]	00>
· Lengt	th (m)= 207.25 20.00 0240.	02> over (min) 10.00 25.00
> Manni	ings n ≈ .030 .250 0240. 0240	D3> Storage Coeff. (min) = 10.21 (ii) 24.30 (ii)
Max.e	eff.Inten.(mm/hr)= 144.69 51.33 0240 over(min) 7.50 12.50 0240	05> Unit Hyd. peak (cms)= .11 .05
> Stora	age Coeff. (min) = 6.54 (ii) 13.16 (ii) 0240	7> PEAK FLOW (cms) = 2.10 .71 2.398 (iii)
> Unit: > Unit:	Hyd. Tpeak (min)= 7.50 12.50 0240 Hyd. peak (cms)= .16 .09 0240	08> TIME TO PEAK (hrs)= 1.08 1.38 1.125
-	*TOTALS* 0241	10> TOTAL RAINFALL (mm) = 58.23 58.23 58.226
> PEAR > TIME	70 DERK (bash 1 17 1 0 0	12>
> RUNOF	IO FARA         (115) =         1.04         1.17         1.042         10241           FV VOLUME         (mm) =         56.66         25.35         55.717         0241           S RAINFALL         (mm) =         58.23         58.226         02241	13> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES.
> RUNOF.	FF COEFFICIENT = .97 .44 .957 0241	15> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
> > (i)	CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 0241	16> THAN THE STORAGE COEFFICIENT.
>	$CN^* = 81.0$ Ia = Dep. Storage (Above) 0241	18>
>	THAN THE STORAGE COEFFICIENT. 0242	9>20> 001:0017
> (iii)	PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 0242	21> *
» •	0242	22> * SUB-AREA No.3 23>
	0242	<pre>X4&gt;   CALIB STANDHYD   Area (ha)= 18.10 5&gt;   04:HIP04 DT= 2.50   Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00</pre>
>   ADD HYD		
I ADD HYD	(ha) (cms) (hrs) (rms) (cms) 0242	<pre>?7&gt; IMPERVIOUS PERVIOUS (i) ?8&gt; Surface Area (ha)= 12.85 5.25</pre>
>   ADD HYD	(na) (cms) (hrs) (mm) (cms) 0242	28> Surface Area (ha)= 12.85 5.25 29> Dep. Storage (mm)= 1.57 4.67

024315 Length Mannirugs n 600.00 100.00 02566> 02567> 02568> Storm time step = 10.00 min Time to peak ratio = .33 024322 02432> 02433> 02434> 02435> 02435> 02436> 02437> 02438> 111.10 77.71 15.00 30.00 14.59 (ii) 29.34 (ii) 15.00 30.00 .08 .04 Max.eff.Inten.(mm/hr)= 
 TIME
 RAIN
 TIME
 RAIN
 TIME
 RAIN
 HIE

 hrs
 mm0/hr
 hrs</t 025692 TIME hrs 2.67 2.83 3.00 RAIN nm/hr 5.209 4.774 4.412 over (min) Storage Coeff. (min)= Unit Flyd. Tpeak (min)= Unit Flyd. peak (cms)= 02570> 02571> 02572> 02573> 02574> 02430> 02439> 02440> 02441> 02442> 02442> *TOTALS* PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 1.82 . 67 2.180 (iii) 1.208 45.437 58.226 .780 02575> 1.17 56.66 58.23 .97 02576> 02443> 02444> 02445> 02446> 02446> 02447> 02448> 02448> 02449> 02449> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02461> 02462> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02463> 02464> -----02465> 001:0019-----02471> 02472> 02473> 02474> 02475> 02475> 02476> 02477> 02478> 02478> 02479> 02481> 02481> 02482> Unit Hyd Opeak (cms) = .899 PEAK FLOW (cms) = .459 (i) TIME TO PEAK (hrs) = 1.167 RUNOFF VOLUME (mm) = 29.155 TOTAL RAINFALL (mm) = 58.226 RUNOFF COEFFICIENT = .501 
 161.47
 62.27

 7.50
 12.50

 6.51
 (ii)

 7.50
 12.50

 6.51
 (ii)

 13.44
 (ii)

 7.6
 .09

 59
 .02
 02608> 02609> 02610> 02611> 02612> 02612> 02614> 02614> 02615> over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = *TOTALS* .609 (iii) 1.042 57.952 64.806 .894 .59 .03 1.04 1.17 63.24 30.21 64.81 64.81 .98 .47 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 02615> 02616> 02617> 02618> 02619> 02620> 02620> 02622> 02622> 02622> 02624> 02625> 02625> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CM* = 81.0 Ia = Dep. Storage (Above) (ii) THM STEP (DT) SHOULD ES RUMLER OR BUDAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02488> 02489> 02490> 02491> 02492> 02492> 02493> 02626> 02627> -----02628> 001:0005-----02629> * 

 122628 001:0005----- 

 02629.*

 02630.*

 02631.*

 02632.*

 16263.*

 02633.*

 02633.*

 16263.*

 02633.*

 16263.*

 16263.*

 02633.*

 16263.*

 16263.*

 16263.*

 16263.*

 16263.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*

 1707.*
 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02494> 02495> 02502> 02503> 02504> 02505> Unit Hyd Opeak (cms)= .702 02506> 02507> 02507> 02508> 02509> 02510> 025112-025122 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW if can. 02513-025145 001:0022-----025155 001:0022-----025155 * SUB-AREA NO 4 025175 ------025155 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (CN)=76.00 025155 | DESIGN NASHYD | Area (ha)= 4.670 # of Linear Res.(N)=3.00 025205 ------ U.N. Tp(hrs)= .804 025215 ------ 2.52 02511> *TOTALS* .475 (iii) 1.042 60.594 64.806 .935 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .46 1.04 63.24 64.81 .98 .02 1.08 30.21 64.81 .47 02648> 02649> 02650> 02651> 02652> 02653> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:  $CN^* = 81.0$  Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02653> 02654> 02655> 02656> 02657> 02658> 02522> 02523> 02523> 02524> 02525> 02526> 
 PEAK FLOW
 (cms) = ...

 PEAK FLOW
 (cms) = ...

 TIME TO PEAK
 (hr.s) = 2.000

 RUNOFF VOLUME
 (mm) = 21.442

 TOTAL RAINFALL
 (mm) = 58.226

 RUNOFF COEFFICIENT = .368
 02526> 02527> 02528> 02529> 02530> 02531> 02532> 

 02662>*
 *
 SUB-AREA No.3

 02665>
 *
 SUB-AREA No.3

 02665>
 CALLE STANDHYD | Area (ha)= 1.40

 02665>
 O3:030 DF=2.50 | Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00

 02665>
 Dir. Conn.(%)= 97.00

 02665>
 Surface Area (ha)= 1.36
 .04

 02665>
 Surface Area (ha)= 1.36
 .04

 02665>
 Surface Area (ha)= 1.57
 4.67

 02675>
 Average Slope (%)= .51
 1.00

 02675>
 Max.eff.Inten.(mm/hr)= 161.47
 78.73

 02675>
 Storage (min)= 7.50
 7.50

 02675>
 Unit Hyd. Tpeak (min)= 7.50
 7.50

 02675>
 Unit Hyd. Tpeak (min)= .16
 .15

 02675>
 PEAK FLOW (cms)= .45
 .01

 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02532> 02533> 001:0023 02533> 001:0023 02535> | ADD HYD (0020 ) | ID: NHYD AREA QPEAK TPEAK R.V. DWP 02535> 02537> IDI 07:HIP06 67.56 7.499 1.17 45.61 .000 02539> +ID2 10:A2 6.80 .343 1.42 21.44 .000 02539> +ID2 01:A3 5.30 .155 2.00 21.44 .000 02540> 02540> 02542> SUM 02:0020 79.66 7.772 1.17 41.94 .000 22540> TILS UTRAS 5.30 105 2.00 22540> SUM 02:0020 79.66 7.772 1.17 22542> 22542> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02543> _____ *TOTALS* .454 (iii) 1.042 62.245 02545 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .45 .01 1.04 1.08 63.24 30.21 64.81 64.81 .98 .47 02681> 

J. L. Richards & Associates Limited

Page 9

3.61 1.084 1.04 59.08 .000 02701 SUM 04:040 02702 02837> ********** 02838> * 02839> * SUB-AREA No.1 02703> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02705>
02706>
02707> -----001:0008-Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = 14.13 1.57 .60 5.77 4.67 1.50 02846> 1.538 1.04 59.96 02847> 02848> 580.00 100. 02848> 02849> 02850> 02851> 02852> 02852> 02853> 02854> 02855> 02856> 02856> 02857> 02857> 02857> 02857> 02857> 027145 .250 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 138.95 102.13 12.50 25.00 12.38 (ii) 25.60 (ii) 12.50 25.00 .09 .04 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 02716: 001:0009-----.04 

 CALIB STANDHYD
 / Area (ha)= .89

 CGLIB STANDHYD
 / Area (ha)= .89

 D60:060
 DH= 2.50 | Total Imp(%)= 97.00

 Dir. Conn. (%)= 97.00
 Dir. Conn. (%)= 97.00

 Surface Area (ha)= .66
 .03

 Dep. Storage (mm)= 1.57
 4.57

 Average Slope (%)= .93
 .70

 Length (m)= 164.82
 40.00

 Mannings n
 - .030
 .250

 -----PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 2.46 1.13 63.24 64.81 .98 *TOTALS .95 1.38 39.90 64.81 3.001 (iii) 1.167 51.566 64.806 .796 02859> 02860> 02861> 02862> 02863> 02725> 02725> 02727> 02728> 02729> 02729> . 62 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) THE STEP (DT) SHOULD BE SHALLER OR ROUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUME BASEFICOW IF ANY. 02863> 02865> 02865> 02866> 02867> 02868> 02731> 161.47 53.28 5.00 17.50 4.80 (i1) 17.24 (i1) 5.00 17.50 .23 .07 .33 00 Max.eff.Inten.(mm/hr)= 02732> over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 02733> 02734> 02735> 02735> 02736> 02738> 02739> 02740> 02742> 02742> 02743> 02744> 02744> 02745> 02745> 02746> 02747> *TOTALS* .335 (iii) 1.000 62.245 64.806 
 PEAK FLOW
 (cms) =
 .33

 TIME TO PEAK
 (hrs) =
 1.00

 RUNOFF VOLUME
 (mm) =
 63.24

 TOTAL RAINFALL
 (mm) =
 64.81

 RUNOFF COEFFICIENT
 .98
 .00 1.25 (cms) .000 .000 30.21 64.81 .47 02876> 02876> 02877> 02878> 02879> SUM 02:HIP02 28.46 3.092 1.17 54.37 . 000 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. (i) Gr * SILO IA = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PERK FLOW DOES NOT INCLUDE EASEFLOW IF ANY. 02880> 02748> 02749> 02750> ------02751> 001:0010--02752> * 02753> * SUB-AREA 02885> -----02865> | CALIE STANDHYD | Area (ha)= 17.00 02867> | 03:HIP03 DF= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 02885> -----* SUB-AREA No.5 02888> 02889> 02890> 02754> Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS PERVIOUS (i) 12.07 1.57 .65 4.93 4.67 1.50 02891> 02892> 02893> 02894> 02895> 450.00 100.00 
 161.47
 109.61

 160.00
 22.50

 9.77
 (ii)
 22.63

 10.00
 22.50

 .11
 .05

 2.38
 .88

 1.08
 1.33

 63.24
 39.90

 64.81
 .99

 .62
 .62
 Max.eff.Inten.(mm/hr)= cver (min) Storage Coeff.(min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 02896> 02761> 02762> 02763> 02764> 02765> 02765> 02766> 02769> 02770> 02772> 02772> 02774> 02775> 02775> 02775> 02778> 02778> 02897> 02898> 02899> 02900> 02901> 02902> 02903> 02904> 02905> 02904> 02905> 02906> 02907> 02908> 02909> 02910> 02911> 02911> 02912> Max.eff.Inten.(mm/hr)= 161.47 62.27 over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 7.50 6.26 (ii) 7.50 .17 62.27 12.50 12.39 (ii) 12.50 .09 *TOTALS* 2.819 (iii) 1.125 51.566 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = *TOTALS* .886 (iii) 1.042 62.245 64.806 .960 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (nmm) = RUNOFF COEFFICIENT = .88 1.04 63.24 64.81 .98 .01 1.17 64.806 30.21 64.81 .47 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (i) AT ENCENDER SELECTION FOR FORVIOS DOSES;
 (CN* = 81.0 Is = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (i) Ch^{*} = 81.0 Ia = Dep. Storage (Above)
 (ii) THE STEP (DT) SHOULD BE SWALLER OR EQUAL THAN THE STORAGE COEPFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02913> 02781> 02782> 02782> 02783> 02784> 02785> 02785> 02785> 100 060 ) ( ID: NHYD AREA OPEAK TPEAK R.V. DWF (ha) (cms) (hrs) (mm) (cms) 02785> 100 062.25 .000 02789> 100 060.06 .89 .335 1.00 62.25 .000 02789> 100 062.25 .000 02789> 100 062.25 .000 ------Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS 12.85 1.57 .50 5.25 4.67 1.50 02925> 02926> 02927> 02928> 02930> 02930> 02931> 02932> 02933> 02935> 02936> 02936> 02937> 02938> 02938> 02938> 02938> 02941> 02941> 02942> 02944> 02944> 02945> 02945> 02945> 600.00 100.00 138.95 96.02 12.50 27.50 13.34 (ii) 26.90 (ii) 12.50 27.50 .09 .04 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff.(min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= *TOTALS* 2.596 (iii) 1.167 51.566 .83 1.42 39.90 64.81 .62 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (ram) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 2.16 1.13 63.24 64.81 .98 64.806 02804> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02805> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STRF (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02806>
02807>
------Requested routing time step = 1.0 min. 
 Requested Fouring time step - 1:0 mill:

 ========
 OUTLFOW STORAGE TABLE

 =======
 OUTFLOW STORAGE (output)

 OUTFIOW STORAGE (OUTFLOW STORAGE (Cms) (ha.m.)

 (cms) (ha.m.) (cms) (ha.m.)

 000 0000B+00 (.593 6251E+00

 001 7.331E+00 (.554 6631E+00

 033 .2831E+00 (.3971E+00 (.3971E+00

 .333 7.4731E+00 (.1.880 .1004E+01

 .465 .5931E+00 (.2.577 .1092E+01

 .531 .5871E+00 (.2.577 .1092E+01
 02947> 02948> 001:0018-----02815> 02815> 02816> 02817> 02818> 02819> 02820> 02820> 02821> 029535 02954> 02955> 02956> 02957> 02958> SUM 05:HIP05 35.10 5.372 1.13 51.57 . 000 02822: NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02823> 02824> 02825> 02825> 02826> ROUTING RESULTS 
 ROUTING RESULTS
 AREA
 OPEAK

 INFLOW >09: (090)
 8.56
 2.735

 OUTFLOW<10: (POND)</td>
 8.56
 .233
 TPEAK R.V. (hrs) 1.042 1.944 (mm) 60.910 60.908 02827> 02828> PEAK FLOW REDUCTION [Qout/Qin] (%)= 8.503 TIME SHIFT OF PEAK FLOW (min)= 54.17 MAXIMUM STORAGE USED (ha.m.)=.3967E+00 02829> 02830> 02831> 02832> 02833> _____ PEAK FLOW (cms) = .551 (i)

(V: \PSIPHI.OUL)		J. 1	. Richards & P	ssociates	Limit
02971> TIME TO PEAK (hrs)= 1.125 02972> RUNOFF VOLUME (mm)= 34.455 02973> TOTAL RAINFALL (mm)= 64.806 02974> RUNOFF COEFFICIENT = .532	03106: 03107: 03108: 03109:	<ul> <li>Unit Hyd. Tpeak (min)=</li> <li>Unit Hyd. peak (cms)=</li> </ul>	6.26 (ii) 12.72 (i 7.50 12.50 .17 .09		
02975> 02976> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02977> 02978>	0310: 03110: 03111: 03112: 03113: 	PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) =	.66 .04 1.04 1.17 70.09 35.46 71.66 71.66 .98 .49	*TOTALS* .685 (iii) 1.042 64.553 71.665 .901	
02980>	03115 03162 (cms) 03117 .000 03182 .000 03182 .000 03120 .000 03120 .000 03123	<ul> <li>(i) CN PROCEDURE SELEC</li> <li>CN* = 01.0 Ia</li> <li>(ii) TIME STEP (DT) SHO</li> <li>THAN THE STORAGE C</li> <li>(iii) PEAK FLOW DOES NOT</li> </ul>	TED FOR PERVIOUS LOSSES: = Dep. Storage (Above) ULD BE SMALLER OR EQUAL		
02988> 02989> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02990>	03123>	001:0005			
02991>	03126> 03127> 03128>	CALIB STANDHYD   Area   02:020 DT= 2.50   Tota	(ha)= 1.54 1 Imp(%)= 92.00 Dir.	Conn. (%) = 92.00	
02994> 02995>   DESIGN NASHYD   Area (ha)= 6.80 Curve Number 02995>   10:A2 DT= 2.50   Ia (mm)= 4.670 \$ of Linear Res 02997> U.H. Tp(hrs)= .370 02999> Unit Hyd Qpeak (cms)= .702 03000>	(CN)=76.00 03129> (CN)=76.00 03130> (N)= 3.00 03131> 03132> 03133> 03134 03135>	Surface Area (ha)= Dep. Storage (hm)= Average Slope (%)= Length (m)=	IMPERVIOUS PERVIOUS ( 1.42 .12 1.57 4.67		
03001> PEAK FLOW (cms)= .417 (1) 03002 TIME TO PEAK (hrs)= 1.4(1) 03003> RINOFF VOLUME (nmn)= 25.767 03004> TOTXL RAINFALL (nmn)= 64.806 03005> RUNOFF COEFFICIENT = .398	03136> 03137> 03138> 03138> 03139> 03142>	Max.eff.Inten.(mm/hr) = over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) =	178.56 93.23 7.50 7.50 7.04 (ii) 7.76 (i 7.50 7.50	i)	
03007> (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03008> 03009>	03142> 031343> 03144> 03144> 03145> 03146>	PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mma) = TOTAL RAINFALL (mma) =	.51 .02 1.04 1.08 70.09 35.46 71.66 71.66	*TOTALS* .534 (iii) 1.042 67.324 71.665	
03013>         DESIGN NASHYD         [ Area         (ha)=         5.30         Curve Number           03014>         [ 01:A3         DT= 2.50         [ Ia         (mm)=         4.670         # of Linear Res.           03015>         U.H. Tp(hrs)=         .804           03017>         Unit Hyd Opeak (cms)=         .252           03018>         D3018>         .188         (j)	03151> 03152> 03153> 03154>	<ul> <li>(i) CN PROCEDURE SELECT CN* = 81.0 Ia = (ii) TIME STEP (DT) SHOI THAN THE STORAGE CC (iii) PEAK FLOW DOES NOT</li> </ul>	DEFFICIENT. INCLUDE BASEFLOW IF ANY.	. 939	
03020> TIME TO PEAK (hrs)= 2.000 03021> RUNOFF VOLUME (nmn)= 25.767 03022> TOTAL RAINFALL (nmn)= 64.806	03156> 03157>	001:0006			
03023> RUNOFF COEFFICIENT = .398 03024> 03025> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03026> 03027>	03159> 03160> 03161> 03162>	* SUB-AREA No.3   CALIB STANDHYD   Area   03:030 DT= 2.50   Total	. Imp(%)= 97.00 Dir. (		
Construction         Construction           C03025	03164> 03165> (cms) 03165> 000 03167> 000 03167> 000 03169> 000 03169>	Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n =	IMPERVIOUS         PERVIOUS         (1)           1.36         .04         .04           1.57         4.67         .51         1.00           225.63         5.00         .030         .030		
03035- SUM 02:0020 79.66 9.240 1.17 47.79 03037- 03038- NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03038- 03040	.000 03171> 03172> 03172> 03173> 03174> 03174> 03175>	over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=	178.56 93.23 7.50 7.50 6.67 (ii) 7.39 (ii 7.50 7.50 .16 .15	.) *TOTALS*	
03041> 001:0024	03177> 03178> 03178> 03179>	PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =	.50 .01 1.04 1.08 70.09 35.46 71.66 71.66 .98 .49	.509 (iii) 1.042 69.056 71.665 .964	
03046>           START           Project dir.: V:\20983.DU\ENG\3RDSUB-1\SWM           03047>	03185> 03186>	<ul> <li>(i) CN PROCEDURE SELECT CN* = 81.0 Ia = (ii) TIME STEP (DT) SHOU THAN THE STORAGE CO (iii) PEAK FLOW DOES NOT</li> </ul>	Dep. Storage (Above) LD BE SMALLER OR EQUAL EFFICIENT.		
03055> 001:0002 03055> - CHICAGO STORM   IDF curve parameters: A=1735.688 03055>   CHICAGO STORM   IDF curve parameters: A=1735.688	03188> 03189> 03190>	001:0007			
03056>         Ptotal=71.66 mm           B=         6.014           03057>         03058>         used in:         INTENSITY = A / (t + B) ^C           03058>         03056>         Duration of storm = 3.00 hrs           03060>         Duration of storm = 10.00 prio		001:0007		K R.V. DWF ) (mm) (cms) 4 64.55 .000 4 67.32 .000	
03062>         Time to peak ratio = .33           03063>         03064>           03065>         TIME RAIN   TIME RAIN   TIME RAIN   03065>	03196> 03197> 03198> TIME RAIN 03199> hrs mm/hr 03200>	SUM 04:040 NOTE: PEAK FLOWS DO NOT IN		4 65.74 .000	
03067> .33 7.542   1.17 54.049   2.00 9.285   03068> .50 10.159   1.33 27.319   2.17 8.024	2.83 5.280 03202> 3.00 4.879 03203>	001:0008	AREA QPEAK TPEA	K R.V. DWF	
03069> .67 15.969   1.50 18.240   2.33 7.080   03070> .83 40.655   1.67 13.737   2.50 6.347   03071>	03205> 03206>	ID1 03:030 +ID2 04:040	3.61 1.220 1.0	4 69.06 .000 4 65.74 .000	
03073> 001:0003	032095	SUM 05:050	5.01 1.729 1.0	4 66.66 .000	
03076> ICASEdv = 1 (read and print data) 03077> FileTitle= ENTER YOUR COMMENTS ON THIS LINE AND THE 03078> PARAMETER VALUES NUST BE ENTERD AFTER OAT	03211> 03212>	NOTE: PEAK FLOWS DO NOT ING			
03079> Horton's infiltration equation parameters: 03080> [Fo= 50.00 mm/hr] [Fc= 7.50 mm/hr] [DCA¥= 2.00 /hr] [F= .0 03081> Parameters for FBRVIOUS surfaces in STANDHYD:	03214> 03215>	* SUB-AREA No.4			
03082> [IAper= 4.67 mm] [LGP=40.00 m] (NNP=.250) 03083> Parameters for IMPERVIOUS surfaces in STANDHYD: 03084> (IAimp= 1.57 mm] (CLI=1.50) [NNI=.035] 03085> Parameters used in NASHYD:	03217> 03218> 03219> 03220>	CALIE STANDHYD   Area   06:060 DT= 2.50   Total	IMPERVIOUS PERVIOUS (1	onn.(%)= 97.00	
03086>         [Iam         4.67 mm] [N= 3.00]           03087>         001:0004	03224> 03225>	Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n =	.86 .03 1.57 4.67 .93 .70 164.82 40.00 .030 .250		
03091> 03092> * SUB-AREA No.1 03093> 03094>   CALLE STANDHYD   Area (ha)= 2.07 03095>   01:010 DT= 2.50   Total Imp(%)= 84.00 Dir. Conn.(%)= 03096>		Max.eff.Inten.(mm/hr) = over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. Tpeak (min) =	178.56 67.61 5.00 15.00 4.62 (ii) 15.92 (ii 5.00 15.00	1	
JOSOS         IMPERVIOUS         PERVIOUS (i)           03087>         Surface Area         (ha) =         1.74         .33           03089>         Dep. Storage (mm) =         1.57         4.67           03101>         Average Slope (%) =         .52         1.00           03101>         Length         (m) =         204.72         20.00	03231> 03232> 03233> 03234> 03234> 03235>	Unit Hyd. peak (cms)= PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (num)= TOTAL RAINFALL (num)=	.24 .07 .37 .00 1.00 1.21 70.09 35.46 71 66 71 66	*TOTALS* .374 (iii) 1.000 69.056 71.665	
03102>         Mannings n         =         0.30         .250           03103>         03104>         Max.eff.Inten.(mm/hr)=         178.56         74.05           03105>         over (min)         7.50         12.50	032365 03237> 03238> 03239> 03240>	RUNOFF COEFFICIENT = (i) CN PROCEDURE SELECTE	71.66 71.66 .98 .49 D FOR PERVIOUS LOSSES: Dep. Storage (Above)	71.665 .964	
T. T. Dichanda C. Jacobiston Timitad					

J. L. Richards & Associates Limited

J

Ą.

Ì.

Page 11

11>							
12>	Unit Hyd Opeak	(cms) =	.252				
13>							
14>	PEAK FLOW	(cms) =	.223 (i)				
15>	PELAK FLOW TIME TO PEAK	(hrs) =	1.958				
16>	RUNOFF VOLUME	(mm) =	30.490				
17>	TOTAL RAINFALL	(mm) =	71.665				
18>	RUNOFF CORFFIC	IENT =	. 425				
19>							
20>	(i) PEAK FLOW	DOES NOT IN	NCLUDE BASEN	LOW IF A	NY.		
21>							
	001:0023						
25>	ADD HYD (0020 )	ID: NHYD	AREA	<b>QPEAK</b>	TPEAK	R.V.	DWF
			(ha)	(CRS)	(hrs)	(nun)	(cms)
27>	ID	1 07:HIP06	67.56	10.299	1.13	58.18	.000
28>		2 10:A2	6.80	. 497	1.42	30,49	.000
29>	+ID:	3 01:A3	5.30	.223	1.96	30.49	.000
30>							
31>	su	M 02:0020	79.66	10.662	1.17	53.97	.000
32>							
	NOTE: PEAK FLOW:	S DO NOT IN	NCLUDE BASER	LOWS IF A	ANY.		
34>							
35>							
	001:0024						
37>	FINISH						
	*****						
39> 40>				*******	*******	******	*******
	WARNINGS / ERRO		5				
	Simulation ended			10:30:17			
						*	
43> 44>							

### (V:\...PSTPH2.dat)

1

00001> 2 Metricunit	-5 ************************************	00136		<pre>[ -1 , -1 ] (max twenty pts)</pre>
00003> *# Project Name	: Hawthorne Industrial Park Project Number: [20983] *	00137:	> > *********************	****
00004> *# Date	: January, 2009 *	00139:	* Remaining Ha	wthorne Industrial Park *
00006> *# Developed by	: N/A * : Mark Buchanan, E.I.T. *	00140		********
00007> *# Reviewed by	: Guy Forget, P.Eng. *	00142:	* SUB-AREA No.1	
	: J.L. Richards & Associates Limited * : 4418403 *	00143:	> CALIB STANDHYD	<pre>ID=[ 1 ], NHYD=["HIP01"], DT=[2.5](min), AREA=[19.9](ha),</pre>
00010> *#***************	***************************************	00145:	>	XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],
00011> * 00012> *		00146:		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),
	*********	00148:	•	LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m
00014> *# FILE DEVELOPE	\20983.DU\ENG\SWMHYMO\20983PST.DAT * D FOR SITE PLAN APPLICATION AND DETAILED DESIGN *	00149:		<pre>Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.6](%).</pre>
00016> *# OF A FACILIT	Y ASSOCIATED WITH THE OTTAWA COMPOSTING SITE *	00151:	•	LGI=[580] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[,,,,] (mm/hr), END=-1
00017> *#****** ******** 00018> *	**************		• *% • ADD HYD	
00019> ***************	*************	00154;	*8	IDsum=[ 2 ], NHYD=["HIP02"], IDs to add=[10+1]
00020> * SWMHYMO : 00021> * PROPOSED COMP	FILE DEVELOPED TO INVESTIGATE FLOOD FLOWS OF THE * OSTING SITE UNDER POST-DEVELOPMENT UNCONTROLLED CONDITIONS *	001552		
00022> ***********	**************************************	001552	* SUB-AREA No.2	
00023>	*******	00158:	CALIB STANDHYD	<pre>ID=[ 3 ], NHYD=["HIP03"], DT=[2.5] (min), AREA=[17] (ha),</pre>
00025> * HYDROLOGICAL AN	ALYSIS UNDER A 4 HR-25 MM STORM AND *	00159:		XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],
00026> * FOR DESIGN STOR 00027> ******************	MS OF 1:2, 5, 10, 25, 50, AND 100 YR *	00161;	•	<pre>Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%),</pre>
00028>		00162:		LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.65] (%),
	********	00164:	•	LGI=[450] (m), MNI=[0.03], SCI=[0.0] (min
00031> ***************	LOPMENT UNCONTROLLED CONDITIONS *	00165:		RAINFALL=[,,,,](mm/hr), END=-1
00032>	*********	00167:	. *	
	**************************************	001682	* SUB-AREA No.3	
00035> ***************	***************************************	00170>	CALIB STANDHYD	<pre>ID=[ 4 ], NHYD=["HIP04"], DT=[2.5](min), AREA=[15.6](ha),</pre>
00036> 00037> START	$\nabla 2 \nabla D_{0} = \{0, 0\}$ KETOIN [2] NOTODA (0) NUM (0)	00171>		XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],
00038> *%	TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0] [ ] <storm filename,="" for="" line="" nstorm="" one="" per="" td="" time<=""><td>00172&gt;</td><td></td><td>SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),</td></storm>	00172>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),
00039> READ STORM 00040> **	STORM_FILENAME=["4HR25-15.STM"]	00174>		LGP=[100.0] (m), $MNP=[0.25]$ , $SCP=[0.0]$ (m
000405 CEFAULT VALUES	ICASEdef=[1], read and print values	00175>		Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.5] (%), LGI=[600] (m), MNI=[0.03], SCI=[0.0] (min
00042> 00043> *%	DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]	00177>	•	RAINFALL=[ , , , , ] (mm/hr) , END=-1
00044>			*8 ADD HYD	IDsum=[5], NHYD={"HIP05"}, IDs to add=[3+4]
00045> ******************	****	00180>	*8	-
	RLD FILE *	00181>	ADD HYD *8	IDsum=[ 6 ], NHYD=["HIPO6"], IDs to add=[5+2]
00048>		00183>	*	
00049> * SUB-AREA No.1 00050>			* SUB-AREA No.4	
00051> CALIB STANDHYD	ID=[ 1 ], NHYD=["010"], DT=[2.5] (min), AREA=[ 2.07 ](ha),	00186>	CALIB STANDHYD	ID=[ 7 ], NHYD=["HIP07"], DT=[2.5](min), AREA=[12.2](ha),
00052>	XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2],	00187>		XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],
00054>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%),	00188>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),
00055>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[20] (m), MNP=[ 0.25 ], SCP=[0.0] (mi	00190>		LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.7) (%),
00057>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.52] (%), LGI=[204.72] (m), MNI=[0.03 ], SCI=[0.0]	00191>		Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.7](%), LGI=[210](m), MNI=[0.03], SCI=[0.0](min
00058>	RAINFALL=[ , , , , ] (mm/hr) , END=-1	00193>		RAINFALL=[, , , ] (mm/hr) , END=-1
00059> *%		00194>	*8	1
00061> * SUB-AREA No.2		00196>	*	
00062> 00063> CALIB STANDHYD	<pre>ID=[ 2 ], NHYD=["020"], DT=[2.5](min), AREA=[ 1.54 ](ha),</pre>	00197>	*SUB-AREA No.5	
00064>	XIMP=[0,92], TIMP=[0,92], DWF=[0,0](cms), LOSS=[2],		DESIGN NASHYD	<pre>ID=[ 8 ], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha),</pre>
00065> 00066>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%),	00200>		DWF=[0](cms), CN/C=[85], TP=[0.17]hrs,
00067>	LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min),	00201>		RAINFALL=[,,,,](mm/hr), END=-1
00068> 00069>	<pre>Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.50] (%),</pre>	00203>		
00070>	LGI=[244.34] (m), MNI=[0.03 ], SCI=[0.0] RAINFALL=[, , , , ](mm/hr), END=-1	00204>	ADD HYD	IDsum=[ 9 ], NHYD=["HIP08"], IDs to add=[6+7+8]
00071> *%		00206>	*8	1
00072> * 00073> * SUB-AREA No.3		00207>	* *SUB-AREA No. 6	
00074>		00209>	*	
00075> CALIB STANDHYD 00076>	<pre>ID=[ 3 ], NHYD=["030"], DT=[2.5] (min), AREA=[1.4] (ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0] (cms), LOSS=[2],</pre>	00210>	DESIGN NASHYD	<pre>ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7] (ha), DWF=[0] (cms), CNC=[76], TP=(0.80) hrs,</pre>
00077>	SCS curve number CN=[81],	00212>		RAINFALL*[, , , , ] (mm/hr), END=-1
00078>	Pervious surfaces: $IAper=[4.67]$ (mm), $SLPP=[1.0]$ (%), $IGP=[5]$ (m), $MNP=\{0,03\}$ , $SCP=[0,0]$ (min)	00213>	*\$	
00080>	LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min), Impervious surfaces: IAimp=[1.57] (mm), SLPI=[ 0.51 ] (%),	00215>	ADD HYD	<pre>IDsum=[2], NHYD=["Ultimate"], IDs to add=[9+1]</pre>
00081>	LGI=[ 225.63 ](m), MNI=[0.03], SCI=[0.0 RAINFALL=[, , , , ](mm/hr), END=-1	00216>	*8	
00083> *8		00218>		
00084> ADD HYD 00085> *%	IDsum=[4], NHYD=[ "040"], IDs to add=[1+2]			**************************************
00086> ADD HYD	IDsum=[5], NHYD=[ "050"], IDs to add=[3+4]	00221>	**************************************	N OF SAR - 1:2 YEAR STORM EVENT *
00087> *%		00222>	(m) pm	
00089> * SUB-AREA No.4		00224>		<pre>TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0] [ ] <storm filename,="" for="" line="" nstorm="" one="" per="" pre="" time<=""></storm></pre>
00090> 00091> CALIB STANDHYD	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha),</pre>		*8	
00092>	XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],	00227>	CHICAGO STORM	IUNITS=[2], TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0](min) ICASEcs=[1],
00093>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](nm), SLPP=[0.7](%),	00228>		A = [732.951], B = [6.199], and C = [0.810],
00095>	LGP = [40] (m), $MNP = [0.25]$ , $SCP = [0.0] (min)$		*% DEFAULT VALUES	ICASEdef=[1], read and print values
00096> 00097>	Impervious surfaces: IAimp=[1.57](mm), SLPI≈[0.93](%),	00231>		DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]
00098>	LGI=[164.82] (m), MNI=[0.03], SCI=[0.0]( RAINFALL=[, , , , ](mm/hr), END=-1	00232>	- 8	
00099> *%		00234>	*******	
00101> * SUB-AREA No.5		00235>	* ORGAWORL	***************
00102>		00237>		
00103> CALIB STANDHYD 00104>	ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],	00238>	* SUB-AREA No.1	
00105>	SCS curve number CN=[81],	00240>	CALIB STANDHYD	<pre>ID=[ 1 ], NHYD=["010"], DT=[2.5](min), AREA=[ 2.07 ](ha), XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2],</pre>
00106> 00107>	Pervious surfaces: IAper=[4.67] (mum), SLPP=[1.5] (%), LGP=[20.0] (m), MNP=[0.25], SCP=[0.0] (mi	00241>		<pre>XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
00108>	Impervious surfaces: IAimp=[1,57] (mm), SLPI=[0,61] (%),	00243>		Pervious surfaces: IAper=(4,67)(mm), SLPP=(1,0)(%).
00109>	LGI=[207.25] (m), MNI=[0.03], SCI=[0.0] ( RAINFALL=[, , , ] (mm/hr) , END=-1	00244>		LGP=[20] (m), MMP=[ 0.25 ], SCP=[0.0] (mi Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.52] (%),
00111> *%		00246>		LGI = [204.72] (m), $MNI = [0.03]$ , $SCI = [0.0]$
00112> ADD HYD 00113> *8	IDsum=[8], NHYD=[ "080"], IDs to add=[6+7]	00247>	*&	RAINFALL=[, , , ] (mu/hr) , END=-1
00114> ADD HYD	IDsum=[9], NHYD=[ "090"], IDs to add=[5+8]	00249>	*	,
00115> *%	-	00250>	* SUB-AREA No.2	
00117> ROUTE RESERVOIR	<pre>IDout=[10], NHYD=["POND"], IDin=[9],</pre>	00252>	CALIB STANDHYD	ID≃[ 2 ], NHYD=["020"], DT=[2.5](min), AREA=[ 1.54 ](ha),
00118> 00119>	RDT=[1.0] (min), TABLE of ( OUTFLOW-STORAGE ) values	00253>		$XIMP = \{0, 92\}, TIMP = \{0, 92\}, DWF = \{0, 0\}, (cms), LOSS = \{2\}, DWF = \{0, 0\}, Cms = \{1, 2\}, DWF = \{0, 0\}, Cms = \{1, 2\}, DWF =$
00120>	(cms) - (ha-m)	00254>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%),
00121>	£ 0.000. 0.00001	00256>		LGP=[5](m), MNP=[0.03], SCP=[0.0](min),
00122> 00123>	[ 0.008, 0.0656] [ 0.017, 0.1311]	00257>		Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.50] (%), LGI=[244.34] (m), MNI=[0.03], SCI=[0.0]
00124>	[ 0.093, 0.2831]	00259>		RAINFALL=[, , , , ] (mm/hr) , END=-1
00125> 00126>	[ 0.233, 0.3971] [ 0.337, 0.4731]	00260>		
00127>	[ 0.465, 0.5491]	00262>	* SUB-AREA No.3	
00128> 00129>	[ 0.531, 0.5871] [ 0.593, 0.6251]	00263>		
00130>	[ 0.654, 0.6631]	00265>	CALIB STANDHYD	<pre>ID=[ 3 ], NHYD=["030"], DT=[2.5] (min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],</pre>
00131> 00132>	[ 0.797, 0.7391]	00266>		SCS curve number CN=[81],
00133>	( 0.950, 0.8274] ( 1.304, 0.9157]	00267>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%), LGP=[5](m), MNP=[0.03], SCP=[0.0](min).
00134> 00135>	[ 1.880, 1.0040]	00269>		LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min), Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.51] (%),
001337	[ 2.577, 1.0923]	00270>		LGI=[ 225.63 ](m), MNI=[0.03], SCI=[0.0

# (V:\...PSTPH2.dat)

4

ц Ц. ...

ł

00271>	RAINFALL={ , , , , ] (mm/hr) , END=-1	1 00406>	
00272> ** 00273> ADD HYD		00408> * CALCULA	**************************************
00274> *8 00275> ADD HYD	<pre>IDsum={5], NHYD=[ "050"}, IDs to add=[3+4]</pre>	00409> ************************************	******
00276> **		00411> START 00412> *%	<pre>TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0] [ ] <storm filename,="" for="" line="" nstorm="" one="" per="" pre="" time<=""></storm></pre>
00278> * SUB-AFREA No.4 00279>		00413> *% 00414> CHICAGO STORM	IUNITS=[2], TD=[3.0] (hrs), TPRAT=[0.333], CSDT=[10.0] (min)
00280> CALIB STANDHYD 00281>	ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],	00415> 00416>	ICASEcs=[1], A=[998.071], $B=[6.053]$ , and $C=[0.814]$ ,
00282> 00283>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[0.7] (%),	00417> *% 00418> DEFAULT VALUES	ICASEdef=[1], read and print values
00284> 00285>	LGP=[40] (m), MNP=[0.25], SCP=[0.0] (min) Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.93] (%),	00419> 00420> *8	DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]
00286> 00287> 00288> *8	LGI=[164.82](m), MNI=[0.03], SCI=[0.0]( RAINFALL=[, , , ](mm/hr), END=-1	001227	*******
00289> * 00290> * SUB-AREA No.5		00423> * ORGAW 00424> ***********************************	DRLD FILE *
00291> 00292> CALIB STANDHYD	ID=[ 7 ], NHYD=["070"], DT=[2.5] (min), AREA=[2.66] (ha),	00425> * SUB-AREA No.1 00427>	
00293> 00294>	XIMP=[0.97], TIMP=[0.97], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81],	00428> CALIB STANDHYD 00429>	ID=[1], NHYD=["010"], DT=[2.5] (min), AREA=[2.07] (ha),
00295> 00296>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[20.0] (m), MNP=[0.25], SCP=[0.0] (mi	00430> 00431>	<pre>XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[01], Pervious surfaces: IApper=[4.67](mm), SLPP=[1.0](%),</pre>
00297> 00298>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.61] (%), LGI=[207.25] (m), MNI=[0.03], SCI=[0.0] (	00432>	LGP=[20] (m), MDP=[0.25], SCP=[0.0] (mi Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.52] (%),
00299> 00300> *%	RAINFALL=[, , , , ](mm/hr), END=-1	00434>	LGI=[204.72] (m), MMI=[0.03], SCI=[0.0] RAINFALL=[, , , ] (mm/hr), END=-1
00301> ADD HYD 00302> *%	IDsum=[8], NHYD=[ "080"], IDs to add=[6+7]	00436> **	
00303> ADD HYD 00304> *%	IDsum=[9], NHYD=[ "090"], IDs to add=[5+8]	00438> * SUB-AREA No.2 00439>	
00305> 00306> ROUTE RESERVOIR	<pre>IDout=[10], NHYD=["POND"], IDin=[9],</pre>	00440> CALIB STANDHYD 00441>	<pre>ID=[ 2 ], NHYD=["020"], DT=[2.5](min), AREA=[ 1.54 ](ha), XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2],</pre>
00307> 00308>	RDT=[1.0}(min), TABLE of ( OUTFLOW-STORAGE ) values	00442> 00443>	SCS curve number CN=(81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%),
00309> 00310>	(cms) - (ha-m) [ 0.000, 0.0000]	00444>	LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min), Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.50] (%).
00311> 00312>	( 0.008, 0.0656) [ 0.017, 0.1311]	00446> 00447>	LGI=[244.34] (m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , , ](mm/hr), END=-1
00313> 00314> 00315>	[ 0.093, 0.2831] [ 0.233, 0.3971] [ 0.337, 0.4731]	00448> *8	
00315> 00316> 00317>	[ 0.337, 0.4731] [ 0.465, 0.5491] [ 0.531, 0.5871]	00450> * SUB-AREA No.3 00451> 00452> CALIB STANDHYD	
00318> 00319>	[ 0.593, 0.6251] [ 0.654, 0.6631]	00452> CALIB STANDAID 00453> 00454>	ID=[ 3 ], NHYD=["030"], DT=[2.5] (min), AREA=[1.4] (ha), XIM2=[0.97], TIM2=[0.97], DWF=[0.0] (cms), LOSS=[2],
00320> 00321>	[ 0.797, 0.7391] [ 0.950, 0.8274]	00455> 00456>	SCS curve number CN=[81], Pervious surfaces: LAper=[4.67](mm), SLPP=[1.0](%), LGP=[5](m), MNP=[0.03], SCP=[0.0](min),
00322> 00323>	[ 1.304, 0.9157] [ 1.880, 1.0040]	00457> 00458>	Impervious surfaces: IAimp=[1.57](mn), SLPI=[0.51](%), LGI=[225.63](m), MNI=[0.03], SCI=[0.0
00324> 00325>	[ 2.577, 1.0923] [ -1 , -1 ] (max twenty pts)	00459>	RAINFALL=[, , , ] (mm/hr) , END=-1
00326> 00327> *********************	**************	00461> ADD HYD 00462> *%	IDsum=[4], NHYD=[ "040"], IDs to add=[1+2]
00329> *****************	Wthorne Industrial Park *	00463> ADD HYD 00464> *8	IDsum=[5], NHYD=[ "050"], IDs to add=[3+4]
00330> * 00331> * SUB-AREA No.1		00465> * 00466> * SUB-AREA No.4	
00332> 00333> CALIB STANDHYD	ID=[ 1 ], NHYD=["HIP01"], DT=[2.5](min), AREA=[19.9](ha),	00467> 00468> CALIB STANDHYD	ID=[6], NHYD=["060"], DT=[2.5] (min), AREA=[0.89] (ha),
00334> 00335>	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>	00469>	XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],
00336> 00337> 00338>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%), LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m	00471> 00472>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[0.7] {%}, LGP=[40] (m), MNP=[0.25], SCP=[0.0] (min) Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.93] {%},
00339> 00340>	<pre>Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.6](%),</pre>	00473> 00474> 00475>	LGI=[164.82](m), MNI=[0.03], SCI=[0.0](
00341> *%	IDsum=[2], NHYD=["HIPO2"], IDs to add=[10+1]	00476> *%	RAINFALL=[ , , , , ](mm/hr) , END=-1
00343> *8		00478> * SUB-AREA No.5 00479>	
00345> * SUB-AREA No.2 00346>		00460> CALIB STANDHYD 00481>	ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],
00347> CALIB STANDHYD 00348>	<pre>ID=[ 3 ], NHYD={"HIP03"}, DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],</pre>	00482>	SCS curve number CN=[01], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%),
00349> 00350>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%),	00484> 00485>	LGP=[20.0] (m), MNP=[0.25], SCP=[0.0] (mi Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.61] (%),
00351> 00352>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.65] (%),	00486> 00487>	LGI=[207.25] (m), MNI=[0.03], SCI=[0.0] ( RAINFALL=[, , , , ] (mm/hr), END=-1
00353> 00354>	LGI=[450](m), MNI=[0.03], SCI=[0.0](min RAINFALL=[, , , , ](mm/hr), END=-1	00488> *% 00489> ADD HYD	IDsum=[8], NHYD=[ "080"], IDs to add=[6+7]
00355> *% 00356> * 00357> * SUB-AREA No.3	- [	00490> *8	IDsum=[9], NHYD=[ "090"], IDs to add=[5+8]
00358> 00359> CALIE STANDHYD	<pre>ID=[ 4 ], NHYD=["HIP04"], DT=[2.5](min), AREA=[15.6](ha),</pre>	00492> *% 00493> 00494> ROUTE RESERVOIR	
00360> 00361>	XIMP=[0.50], TIMP=[0.71], DMF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],	00494> ROOTE RESERVOIR 00495> 00496>	<pre>IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min), TABLE of ( OUTFLOW-STORAGE ) values</pre>
00362> 00363>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m	00497>	(cms) - (ha-m) [ 0.000, 0.0000]
00364> 00365>	<pre>Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.5](%), LGI=[600](m), MNI=[0.03], SCI=[0.0](min</pre>	00499> 00500>	[ 0.008, 0.0656] [ 0.017, 0.1311]
00366> 00367> *%	RAINFALL=[, , , , ](nm/hr), END=-1	00501> 00502>	[ 0.093, 0.2831] [ 0.233, 0.3971]
00368> ADD HYD 00369> *%	IDsum=[ 5 ], NHYD=["HIPO5"], IDs to add=[3+4]	00503> 00504>	[ 0.337, 0.4731] [ 0.465, 0.5491]
00370> ADD HYD 00371> *%	IDsum=[ 6 ], NHYD=["HIP06"], IDs to add=[5+2] -	00505> 00506>	( 0.531, 0.5871) ( 0.593, 0.6251)
00372> * 00373> * SUB-AREA No.4		00507> 00508>	[ 0.654, 0.6631] [ 0.797, 0.7391]
00374> 00375> CALIB STANDHYD 00376>	ID = [7], NHYD = ["HIP07"], DT = [2.5] (min), AREA = [12.2] (ha), XIM = [0, 50], TIM = [0, 7], NHYD = [0, 7],	00509> 00510>	[ 0.950, 0.8274] [ 1.304, 0.9157]
00376> 00377> 00378>	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5)(%),</pre>	00511> 00512>	[ 1.880, 1.0040] [ 2.577, 1.0923]
00378> 00379> 00380>	Pervious surfaces: IAper≈(4.6/] (mm), SLPP=[1.5](%), LGP=[100.0](m), MNP=[0.25), SCP=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.7](%),	00513>	[ -1 , -1 ] (max twenty pts)
00381> 00382>	IMPERVIOUS SUFFACES: IAIMPE[1.5/] [mn], Suffe[0.7] [%], LGI=[210] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , , ] (mm/hr), END=-2	00516> * Remaining H	
00383> 00384> *8		00517> * 00518> * 00519> * SUB-AREA No.1	
00385> * 00386> *SUB-AREA No.5		005193 * SUB-AREA NO.1 00520> 00521> CALIB STANDHYD	<pre>ID=[ 1 ], NHYD=("HIP01"), DT=[2.5](min), AREA=[19.9](ha),</pre>
00387> 00388> DESIGN NASHYD	ID=[ 8 ], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha),	00522> 00523>	$XIMP=\{0.50\}, TIMP=\{0.71\}, DWF=\{0.0\}(mIR), AKEA=\{19.9\}(na), XIMP=\{0.50\}, TIMP=\{0.71\}, DWF=\{0.0\}(cms), LOSS=\{2\}, SCS curve number CN=\{81\},$
00389>	DWF=[0](cms), CN/C=[85], TE=[0.17]hrs, RAINFALL=[, , , , ](mm/hr), EMD=-1	00524> 00525>	Pervious surfaces: IAper=[4,67] (mm), SLPP=[1,5](%).
00392>	· [ ]	00526>	LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m) Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.6](%), LGT=[560](m), MNT=[0.03), SCT=[0.0](min
00393> 00394> ADD HYD	IDsum=[ 9 ], NHYD=["HIP08"], IDs to add=[6+7+8]	00528> 00529> *%	RAINFALL=[ , , , ] (mm/hr) , END=-1
00395> *%		00530> ADD HYD 00531> *%	IDsum=[ 2 ], NHYD=["HIP02"], IDs to add=[10+1]
00397> *SUB-AREA No. 6 00398> *		00532> * 00533> * SUB-AREA No.2	· · · · · · · · · · · · · · · · · · ·
00399> DESIGN NASHYD 00400>	<pre>ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7](ha), DWF=[0](cms), CNC=[76], TP=[0.80]hrs,</pre>	00534> 00535> CALIB STANDHYD	<pre>ID=[ 3 ], NHYD={⁶HIP03"], DT=[2.5](min). AREA=[17](ha)</pre>
00401> 00402> *%	RAINFALL=[ , , , , ] (mm/hr), END=-1	00536> 00537>	<pre>ID=[ 3 ], NHYD=[⁶HIP03"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=(0.71), DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
00403> 00404> ADD HYD	<pre>IDsum=[2], NHYD=["Ultimate"], IDs to add=[9+1]</pre>	00538> 00539>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%), LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m
00405> *%	-	00540>	<pre>Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.65] (%),</pre>

## (V:\...PSTPH2.dat)

1 3

1

Į.

١...

## J. L. Richards & Associates Limited

42> 43> *	·	LGI=[450] (m), MNI=[0.03], SCI=[0.0] (mi) RAINFALL=[,,,,](mm/hr), END=-1
44> *		· · · · · · · · · · · · · · · · · · ·
546>		
548>	CALIB STANDHYD	<pre>ID=[ 4 ], NHYD=["HIP04"], DT=[2.5] (min), AREA=[15.6] (ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2],</pre>
549> 650>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](nm), SLPP=[1.5](%),
551> 552>		LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (r Impervious surfaces: IAimp=(1.57] (mm), SLPI=[0.5] (%),
553> 554>		LGI=[500] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , , ] (mm/hr), END=-1
555> *		
557> *		IDsum=[ 5 ], NHYD=["HIP05"], IDs to add=[3+4]
59> *	DD HYD %	IDsum=[ 6 ], NHYD=["HIP06"], IDs to add=[5+2]
	SUB-AREA No.4	
562> 563> C	ALIB STANDHYD	ID=[ 7 ], NHYD=["HIP07"], DT=[2.5](min), AREA=[12.2](ba),
564> 565>		ID=[7], NHYD=["HIP07"], DT=[2.5](min), AREA=[12.2](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],
566> 567>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%),
568> 569>		LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (n Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.7] (%),
570>		LGI=[210] (m), MNI=[0.03], SCI=[0.0] (mir RAINFALL=[, , , ] (mm/hr), END=-1
571> 572> *		
573> * 574> *	SUB-AREA No.5	
575>	ESIGN NASHYD	
577>	ESIGN NASAID	<pre>ID=[ 8 ], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[ 0 ](cms), CN/C=[ 85 ], TP=[0.17]hrs,</pre>
78> 79> *	8	RAINFALL=[,,,,](mm/hr),END=-1
80> 81>		
582> A	DD HYD %	IDsum=[ 9 ], NHYD=["HIP08"], IDs to add=[6+7+8]
84> *		· · · · · · · · · · · · · · · · · · ·
B6> *	SUB-AREA No. 6	
588>	ESIGN NASHYD	ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7](ha), DWF=[0](cms), CNC=[76], TP=[0.80]hrs,
589> 590> **	£	RAINFALL=[, , , , ] (mm/hr), END=-1
i91>	ם אצם	· · · · · · · · · · · · · · · · · · ·
593> **	8	IDsum=[2], NHYD=["Ultimate"], IDs to add=[9+1]
	******	
	CALCULATION	V OF 3HR - 1:10 YEAR STORM EVENT *
98> 99> S	-	T2ERO = [0, 0]. METOUT = [2]. NSTORM = [0]. NOTINE [0].
500> *4 501> *4	8 8	<pre>TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0] [ ] <storm filename,="" for="" line="" nstorm="" one="" per="" pre="" time<=""></storm></pre>
	HICAGO STORM	IUNITS=[2], TD=[3.0] (hrs), TPRAT=[0.333], CSDT=[10.0] (min)
04>		ICASEcs=[1], A=[1174.184], B=[6.014], and C=[0.816],
	n	
06> DE 07> 08> ** 09> 10> ** 11> * 12> **	EFAULT VALUES	ICASEdef=[1], read and print values DBFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"] 
506> DI 507> 508> *1 509> 510> *1 512> *1 512> *1 513> 514> *	EFAULT VALUES &	ICASEdef=[1], read and print values DBFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"] 
506> DI 507> 508> *1 509> 510> *1 512>	EFAULT VALUES	ICASEdef=(1), read and print values DEFVAL_FILENAME=(V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"] 
506>     DI       507>     508>       509>     510>       511>     *       512>     *       513>     514>       516>     CJ       517>     518>	ORGAWORLI SUB-AREA No.1 ALIB STANDHYD	ICASEdef=(1), read and print values DEFVAL FILERAME=(V:\22973.DU\ENG\SWHYNO\"ORGA.VAL"] 
06> DE 07> ** 09> ** 10> ** 12> ** 13> * 14> * 15> C7 17> 18> 19> 20>	ORGAWORLI SUB-AREA No.1 ALIB STANDHYD	ICASEdef=(1), read and print values DEFVAL FILERAME=(V:\22973.DU\ENG\SWHYNO\"ORGA.VAL"] 
06> DE 07> *1 09> *1 10> ** 11> * 12> ** 13> 14> * 15> CJ 17> 18> 19> 20> 21>	EFAULT VALUES	ICASEdef=(1), read and print values DEFVAL FILERAME=(V:\22973.DU/ENG\SWHIYO\"ORGA.VAL"] 
506> DI 507> 508> *1 509> 510> *1 512> *1 512> *1 513> 514> *	SUB-AREA No.1 ALIB STANDHYD	ICASEdef=(1), read and print values DEFVAL FILERAME=(V:\22973.DU\ENG\SWHYNO\"ORGA.VAL"] 
606>         DE           507>         508>           508>         510>           510>         ************************************	SUB-AREA No.1 LIB STANDHYD	ICASEdef=(1), read and print values DEFVAL FILERAME=(V:\22973.DU/ENG\SWHIYO\"ORGA.VAL"] 
065> DE 007> 5 008> 5 009> 5 10> 7 11> * 11> * 11> 7 11> 7 12> 7 1	SUB-AREA No. 2	ICASEdef=(1), read and print values DEFVAL FILERAME=(V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"] 
065 DI 007> 008> *1 009> *1 109> *1 112> *1 112> *1 112> *1 113> *1 114> *1 115> CI 117> CI 117> CI 118> *2 22> *	SUB-AREA No.1 SUB-AREA No.1 LLIB STANDHYD SUB-AREA No.2 ALIB STANDHYD	ICASEdef=(1), read and print values DEFVAL FILERAME=(V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"] 
065 DI 507> 508> *1 509> *1 510> ** 510> **	SUB-AREA No.1 SUB-AREA No.1 ALIE STANDHYD SUB-AREA No.2 ALIE STANDHYD	ICASEdef=(1), read and print values DEFVAL FILERAME=(V:\22973.DU\ENG\SWHIYNO\"ORGA.VAL"] 
006> DI 007> 008> *4 008> *1 109> ** 112> ** 112> ** 112> ** 113> * 114> * 115> CJ 117> CJ 118> 117> CJ 118> 221> 222> * 222> * 222> * 223> * 224> * 225> * 227> CJ 229> CJ 230>	SUE-AREA No.2 SUE-AREA No.2 ALLE STANDHYD	ICASEdef=(1), read and print values DEFVAL FILERAME=(V:\22973.DU\ENG\SWHIYNO\"ORGA.VAL"] 
065 DI 007> *1 007> *1 007> *1 10> *1 11> * 11> * 12> * 13> * 13> * 13> * 13> * 13> * 13> * 13> * 13> * 12> * 13> * 14> * 14> * 15> * 1	SUE-AREA No.2 ALLE STANDHYD	ICASEdef=(1), read and print values DEFVAL FILERAME=(V:\22973.DU\ENG\SWHIYMO\"ORGA.VAL"] 
0165 D1 1105 **** 11105 **** 11105 **** 11155 C7 11155 C7 11	SUB-AREA No.2 SUB-AREA No.2 ALIB STANDHYD	ICASEdef=(1), read and print values DEFVAL FILERAME=(V:\22973.DU\ENG\SWHIYNO\"ORGA.VAL"] 
0106> 017> ** (**) 0107> ** (**) 0105 ** ** (**) 1110 ** ** ** 1112 ** ** 1112 ** ** 1113 ** ** 1113 ** ** 1113	SUB-AREA No.2 SUB-AREA No.2 ALIB STANDHYD	ICASEdef=[1], read and print values DEFVAL FILERAME=[V:\22973.DU/ENG\SWHYMO\"ORGA.VAL"] 
006> 017> * 1 * 1 * 1 007> * 1 * 1 * 1 110> * * 1 111> * 1 111	SUE-AREA No.2 ALLE STANDHYD SUE-AREA No.2 ALLE STANDHYD	<pre>ICASEdef=(1), read and print values DEFVAL_FILERAME=(V:\22973.DU/ENG\SWMHYMO\"ORGA.VAL"] </pre>
006> 017> 44 017> 44 017> 44 0107> 44 0107	SUB-AREA No.2 ALIE STANDHYD SUB-AREA No.2 ALIE STANDHYD SUB-AREA No.2 ALIE STANDHYD	<pre>ICASEdef=(1), read and print values DEFVAL FILERAME=(V:\22973.DU/ENG/SWHIYO\"ORGA.VAL"] </pre>
0106> 017> 41 0107> 41 0107> 41 0107> 41 0107> 41 0110 + 41	SUB-AREA No.2 ALLE STANDHYD SUB-AREA No.2 ALLE STANDHYD SUB-AREA No.2 ALLE STANDHYD SUB-AREA No.3 LLE STANDHYD	<pre>ICASEdef=(1), read and print values DEFVAL FLERAME=(V:\22973.DU/ENG/SWHYNO\"ORGA.VAL"] </pre>
3065 D) 5075 44 5085 44 51105 47 51105 47	SUB-AREA No.2 ALLE STANDHYD SUB-AREA No.2 ALLE STANDHYD SUB-AREA No.2 ALLE STANDHYD SUB-AREA No.3 LLE STANDHYD	<pre>ICASEdef=(1), read and print values DEFVAL_FILERAME=(V:\22973.DU/ENG\SWHIYMO\"ORGA.VAL"] </pre>
$\begin{array}{llllllllllllllllllllllllllllllllllll$	SUB-AREA No.2 ALLE STANDHYD SUB-AREA No.2 ALLE STANDHYD SUB-AREA No.2 ALLE STANDHYD SUB-AREA No.3 ALLE STANDHYD	<pre>ICASEdef=(1), read and print values DEFVAL FILERAME=(V:\22973.DU/ENG\SWHYMO\"ORGA.VAL"]</pre>
066 DD 007 4 110 4 112 4 112 5 112 5 112 5 112 5 112 5 112 5 115 5 15 15 15 15 15 15 15 15 15 15 15 15 15	SUB-AREA No.1 ALIB STANDHYD SUB-AREA No.2 LLIB STANDHYD SUB-AREA No.2 LLIB STANDHYD	<pre>ICASEdef=(1), read and print values DEFVAL FILERAME=(V:\22973.DU/ENG\SWHYMO\"ORGA.VAL"]</pre>
0665 D0 0075 * 41 1105 * 41 * 5 1105 *	SUB-AREA No.2 ALIE STANDHYD SUB-AREA No.2 ALIE STANDHYD SUB-AREA No.2 ALIE STANDHYD SUB-AREA No.3 ALIE STANDHYD	<pre>ICASEdef=(1), read and print values DEFVAL FILERAME=(V:\22973.DU/ENG\SWHYMO\"ORGA.VAL"]</pre>
065 DD 075 * 1 ** . 1105 * . 1105	SUB-AREA No.1 ALIB STANDHYD SUB-AREA No.2 ALIB STANDHYD SUB-AREA No.2 ALIB STANDHYD SUB-AREA No.3 ALIB STANDHYD D HYD	<pre>ICASEdef=(1), read and print values DEFVAL FILERAME=(V:\22973.DU/ENG\SWHYMO\"ORGA.VAL"]</pre>
065 D010 + + + + + + + + + + + + + + + + + +	SUB-AREA No.1 ALIB STANDHYD SUB-AREA No.2 ALIB STANDHYD SUB-AREA No.2 ALIB STANDHYD SUB-AREA No.3 ALIB STANDHYD D HYD	<pre>ICASEdef=[1], read and print values DEFYAL FILENAME=(V: 22973.DU/ENG\SWMHYNO\"ORGA.VAL"] </pre>
065 DD 089 41 +	SUB-AREA No. 3 ALIE STANDHYD SUB-AREA No. 1 ALIE STANDHYD SUB-AREA No. 2 ALIE STANDHYD SUB-AREA No. 3 ALIE STANDHYD SUB-AREA No. 4 ALIE STANDHYD	<pre>ICASEdef=(1), read and print values DEFVAL FILERAME=(V:\22973.DU/ENG/SWHYNO\"ORGA.VAL"] </pre>
0657 4 077 4 0859 4 01010 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102 11102	SUE-AREA No.3 LIE STANDHYD SUE-AREA No.3 LIE STANDHYD SUE-AREA No.3 LIE STANDHYD SUE-AREA No.3 LIE STANDHYD SUE-AREA No.4 LIE STANDHYD	<pre>ICASEdef=[1], read and print values DEFVAL FILERAME=[V:\22973.DU\ENG\SWHYMO\"ORGA.VAL"]</pre>
30657 * 4 * * * * * * * * * * * * * * * * *	SUB-AREA No. 1 ALLE STANDHYD SUB-AREA No. 1 ALLE STANDHYD SUB-AREA No. 2 ALLE STANDHYD SUB-AREA No. 3 ALLE STANDHYD SUB-AREA No. 4 LLE STANDHYD	<pre>ICASEdef=[1], read and print values DEFVAL FILERAME=[V:\22973.DU\ENG\SWHYMO\"ORGA.VAL"]</pre>
00657 * 4 * * * * * * * * * * * * * * * * *	SUB-AREA No. 1 ALLE STANDHYD SUB-AREA No. 1 ALLE STANDHYD SUB-AREA No. 2 ALLE STANDHYD SUB-AREA No. 3 ALLE STANDHYD SUB-AREA No. 4 LLE STANDHYD	<pre>ICASEdef=[1], read and print values DEFVAL FILERAME=[V:\22973.DU\ENG\SWHYMO\"ORGA.VAL"]</pre>
30657 * 4 * * * * * * * * * * * * * * * * *	SUB-AREA NO.3 ALLE STANDHYD SUB-AREA NO.1 ALLE STANDHYD SUB-AREA NO.2 ALLE STANDHYD SUB-AREA NO.3 ALLE STANDHYD SUB-AREA NO.3 ALLE STANDHYD SUB-AREA NO.4 LIE STANDHYD	<pre>ICASEdef=(1), read and print values DEFVAL FILERAME=(V:\22973.DU/ENG/SWMHYNO\"ORGA.VAL"] </pre>
30657 * 4 * * * * * * * * * * * * * * * * *	SUB-AREA NO.1 ALIE STANDHYD SUB-AREA NO.1 ALIE STANDHYD SUB-AREA NO.2 ALIE STANDHYD SUB-AREA NO.3 ALIE STANDHYD D HYD SUB-AREA NO.4 ALIE STANDHYD	<pre>ICASEdef=[1], read and print values DEFVAL FILERAME=[V:\22973.DU\ENG\SWHYMO\"ORGA.VAL"]</pre>
306574 108855 108855 108855 108855 108855 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 10885 108855 108855 108855 108855 108855 108855 108855 108855 10	SUB-AREA NO.3 ALLE STANDHYD SUB-AREA NO.1 ALLE STANDHYD SUB-AREA NO.2 ALLE STANDHYD SUB-AREA NO.3 ALLE STANDHYD SUB-AREA NO.3 ALLE STANDHYD SUB-AREA NO.4 LIE STANDHYD	<pre>ICASEdef=(1), read and print values DEFVAL FILERAME=(V:\22973.DU/ENG/SWMHYNO\"ORGA.VAL"] </pre>
30657444443 198859444443 199859444443 1998544443 1998544443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 199844443 1998444443 199844444444444444444444444444444444444	SUE-AREA NO.3 LIE STANDHYD SUE-AREA NO.3 LIE STANDHYD SUE-AREA NO.3 LIE STANDHYD SUE-AREA NO.3 LIE STANDHYD SUE-AREA NO.4 LIE STANDHYD	<pre>ICASEdef=[1], read and print values DEFVAL FILERAME=[V:\22973.DU\ENG\SWHYNO\"ORGA.VAL"] </pre>
0067>34, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	SUB-AREA NO. 3 LIE STANDHYD SUB-AREA NO. 3 LIE STANDHYD SUB-AREA NO. 3 LIE STANDHYD SUB-AREA NO. 3 LIE STANDHYD SUB-AREA NO. 4 LIE STANDHYD	<pre>ICASEdef=[1], read and print values DEFVAL FILERAME=[V:\22973.DUVENG\SWHYNO\"ORGA.VAL"] </pre>
30657 * 4 * * * * * * * * * * * * * * * * *	SUB-AREA NO.3 LIE STANDHYD SUB-AREA NO.4 LIE STANDHYD SUB-AREA NO.2 LIE STANDHYD SUB-AREA NO.3 LIE STANDHYD SUB-AREA NO.3 LIE STANDHYD SUB-AREA NO.4 LIE STANDHYD SUB-AREA NO.5 LIE STANDHYD	<pre>ICASEdef=[1], read and print values DEFVAL FILERAME=[V:\22973.DU\ENG\SWMHYNO\"ORGA.VAL"] </pre>
066774 0708859 0100122233 0100122233 0100122233 0100122233 0100122233 0100122233 0100122233 010122233 01012223 01012223 01012223 01012223 0101223 0101223 0101223 0101223 0101223 0101223 0101223 0101223 0101223 0101223 0101223 0101223 0101223 0101223 0101223 0101223 0101223 0101223 0101223 0101223 0101223 0101223 0101223 0101223 0101223 0101223 0101223 0101223 0101223 0101223 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010123 010120 010120 010120 0101000 0100000000	SUB-AREA NO.3 LIE STANDHYD SUB-AREA NO.4 LIE STANDHYD SUB-AREA NO.2 LIE STANDHYD SUB-AREA NO.3 LIE STANDHYD SUB-AREA NO.3 LIE STANDHYD SUB-AREA NO.4 LIE STANDHYD SUB-AREA NO.5 LIE STANDHYD	<pre>ICASEdef=[1], read and print values DEFVAL FILERAME=[V:\22973.DUVENG\SWHYNO\"ORGA.VAL"] </pre>

1676		
0677>	ADD HYD	 IDsum=[8], NHYD=[ "080"], IDs to add=[6+7]
10/02	*8 ADD HYD	
)680> )681>	*8	IDsum=[9], NHYD=[ "090"], IDs to add=[5+8]
	ROUTE RESERVOIR	<pre>IDout=[10], NHYD=["POND"], IDin=[9], DDM=[1,0](m(n))</pre>
)684> )685>		RDT=[1.0] (min), TABLE of ( OUTFLOW-STORAGE ) values
686>		(cms) - (ha-m) [ 0.000, 0.0000]
)687> )688>		[ 0.008, 0.0656] [ 0.017, 0.1311]
)689> )690>		[ 0.093, 0.2831] [ 0.233, 0.3971]
)691> )692>		[ 0.337, 0.4731] [ 0.465, 0.5491]
693>		[ 0.531, 0.5871] [ 0.593, 0.6251]
695>		[ 0.654, 0.6631] [ 0.797, 0.7391]
)697> )698>		[ 0.950, 0.8274] [ 1.304, 0.9157]
699>		{ 1.880, 1.0040}
701>		[ 2.577, 1.0923] [ -1 , -1 ] (max twenty pts)
703>	*****	
704>	* Kemaining Hav	<pre>#thorne Industrial Park * #***********************************</pre>
706> 707>	* SUB-AREA No.1	
708>	CALIB STANDHYD	ID=[ 1 ], NHYD=["HIP01"], DT=[2.5](min), AREA=[19.9](ha).
710> 711>		ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=(0.50), TIMP=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[81],
712> 713>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLP=[0.6] (%),
714>		Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.25], SCP=[0.0] (m [GTP=[500](m), SLPI=[0.6], SCPI=[0.6], SCPI=[0.6
716>	*8	LGI=[580] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , , ](mm/hr) , END=-1
718>	ADD HYD	IDsum=[ 2 ], NHYD=("HIP02"], IDs to add=[10+1]
720>		· · · · · · · · · · · · · · · · · · ·
722>	* SUB-AREA No.2	
724>	CALIB STANDHYD	<pre>ID=[ 3 ], NHYD=["HIP03"], DT=[2.5] (min), AREA=[17] (ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2], SCS control purples (M=[001])</pre>
725> 726>		Pervious surfaces: IAper=[4,67] (mm), SLPP=[1,5] (%).
727> 728>		LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: Thimpe[1.57] (mm) SIBI=[0.651/8)
729> 730>		LGZ=[450](m), dMl=[0.03], SCI=[0.0](min RAINFALL=[, , , ][mm/hr], END=-1
731> 732>		
	* SUB-AREA No.3	
735>	CALIB STANDHYD	ID=[ 4 ], NHYD=("HIP04"], DT=(2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],
736> 737>		
738> 739>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m
740> 741>		Impervious surfaces: IAimp=[1.57] (nm), SLPI=[0.5](%), LGI=[600] (m), MNI=[0.03], SCI=[0.0] (min
742> 743>	*8	Scs unive namez tar[0]; Pervious surfaces: Taper=[4.67] (mm), SLPP=[1.5] (%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: Taimpe1(.57] (%), LGT=[500] (m), MNT=[0.03], SCI=[0.0] (min RAINFALL=[, , , ] (mm/hr), END=-1
744>	ADD HYD *%	IDsum=[ 5 ], NHYD=["HIP05"], IDs to add=[3+4]
746>	ADD HYD *8	IDsum=[ 6 ], NHYD=["HIP06"], IDs to add=[5+2]
748>		
750>		
752>	CALIB STANDHYD	ID=[7], NHYD=["HIP07"], DT=[2.5] (min), AREA=[12.2] (ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2], SCS current current current current states and current
753> 754>		Pervious surfaces: TAper=[4,67] (mm), SLPP=[1,5](%)
755> 756>		LGP=[100.0](m), MNN=[0.25], SCP=[0.0](m Impervious surfaces: TAimpe[1.57](mm), SLPI=[0.7](%), LGI=[210](m), MNI=[0.03], SCI=[0.0](min RAINPALL=[, , , ](mm/hr), BND=-1
757> 758>		LGI=[210] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , , ] (mm/hr), END=-1
759> 760>	*8	[
761>		
763>		
	DESIGN NASHYD	ID=[ 8 ], NHYD=["Pond-Block"], D*=12 51mm, BPBA=14 01/1-1
		<pre>ID=[ 8 ], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWD=[ 0 ](cns), CN/C=[ 85 ], TD=[0.17]hrs, BINDELICE, ND=</pre>
766> 767>		ID=[ 8 ], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWD=[ 0 ](cms), CN/C=[ 85 ], TP=[0.17]hrs, RAINFALL=[ , , , ] [mm/hr), END=-1
766> 767> 768> 769>	DESIGN NASHYD *&	RAINFALL={ , , , , } [mm/hr), END=-1
766> 767> 768> 769> 770> 771>	DESIGN NASHYD *% ADD HYD *%	RAINFALL=( , , , , ] (mm/hr), END=-1 [
766> 767> 768> 769> 770> 771> 771> 772> 773>	DESIGN NASHYD *% ADD HYD *% * *UUB-AREA NO. 6	RAINFALL=( , , , , ] (mm/hr), END=-1 [[ IDsum=[ 9 ], NHYD=["HIP08"], IDs to add=[6+7+8]
766> 767> 768> 769> 770> 771> 772> 772> 773> 773> 774>	DESIGN NASHYD *% ADD HYD *% * *UUB-AREA NO. 6	RAINFALT=(, , , , ] (mm/hr), END=-1
766> 767> 768> 769> 770> 771> 772> 773> 774> 775> 776>	DESIGN NASHYD *% ADD HYD *% *SUB-AREA No. 6	RAINFALE(, , , ) [mm/h], RND=-1 [ IDsum=[ 9 ], NHYD=["HIP08"], IDs to add=[6+7+8] [ ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7] (ha), DFF=[0](mm). CNC=[76], TP=[0.901brs
766> 767> 768> 770> 771> 772> 774> 774> 775> 776> 777>	DESIGN NASHYD *% ADD HYD *% *SUB-AREA No. 6	RAINFALL=(, , , , ] (mm/h), END=-1 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [
766> 767> 768> 769> 770> 771> 772> 773> 774> 774> 775> 776> 777> 778> 779>	DESIGN NASHYD *% ADD HYD *% ** *SUB-AREA No. 6 *DESIGN NASHYD *% ADD HYD	RAINFALE(, , , , ] (mm/h), RND1 [] IDsum=[ 9 ], NHYD=["HIP08"], IDs to add=[6+7+8] [] ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7] (ha), DWF=[0] (cms), CNC=[76], TP=[0.80]hrs, RAINFALL=[, , , , ] (mm/hr), END=-1 [] IDsum=[2], NHYD=["Ultimate"], IDs to add=[9+1]
766> 767> 768> 769> 770> 771> 771> 771> 772> 774> 775> 775> 776> 7779> 780> 781>	DESIGN NASHYD *% ADD HYD *% ** *SUB-AREA No. 6 *DESIGN NASHYD *% ADD HYD *%	RAINFALE(, , , , ] (mm/hr), END1 [] IDsum=[ 9 ], NHYD=["HIP08"], IDs to add=[6+7+8] [] ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7] (ha), DWF=[0] (cms), CKC=[76], TD=[0.80]hrs, RAINFALL=[ , , , , ] (mm/hr), END1 [] IDaum=[2], NHYD=["Ultimate"], IDs to add=[9+1] []
766> 767> 768> 770> 771> 772> 773> 774> 775> 776> 776> 777> 778> 778> 781> 781> 781> 781> 781	DESIGN NASHYD *% ADD HYD *% ** *SUB-AREA No. 6 *DESIGN NASHYD *% ADD HYD *% *CALCULATIO	RAINFALE(, , , , ] (mm/hr), END1 [] IDsum=[9], NHYD=["HIP08"], IDs to add=[6+7+8] [] ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7] (ha), DWF=[0] (cma), CNC=[76], TD=[0.80]hrs, RAINFALL=[, , , , ] (mm/hr), END1 [] [] IDsum=[2], NHYD=["Ultimate"], IDs to add=[9+1] [] N OF 3HR - 1:25 YEAR STORM EVENT *
766> 767> 768> 770> 770> 771> 773> 774> 7773> 774> 7775> 7775> 7775> 7778> 778> 781> 781> 781> 782> 781> 782> 782> 783> 783> 783> 783> 783> 783> 783> 783	DESIGN NASHYD *% ADD HYD *% ** *SUB-AREA No. 6 *DESIGN NASHYD *% ADD HYD *% *CALCULATIO	RAINFALE(, , , , ] (mm/h), END-1 IDsum=[9], NHYD=["HIP08"], IDs to add=[6+7+8] ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7] (ha), DNF=[0] (cms), CKC=[76], TP=[0.80]hrs, RAINFALE(, , , , ] (mm/h), END-1 [IDsum=[2], NHYD=["Ultimate"], IDs to add=[9+1] 
766>> 766>> 768>> 7769>> 7771>> 7774>> 7775>> 7779>> 7775>> 7778>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>> 7884>	DESIGN NASHYD *& ADD HYD * *UD-AREA NO. 6 *SUB-AREA NO. 6 * *UD-AREA NO. 6 * * * * * * * CALCULATIO * * * * * * * * * * * * *	RAINFALE(, , , , ] (mm/h), END-1 IDsum=[9], NHYD=["HIP08"], IDs to add=[6+7+8] ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7] (ha), DNF=[0] (cms), CKC=[76], TP=[0.80]hrs, RAINFALE(, , , , ] (mm/h), END-1 [IDsum=[2], NHYD=["Ultimate"], IDs to add=[9+1] 
766>> 768> 768> 770> 771> 772> 773> 774> 775> 776> 778> 778> 778> 788> 788> 7884> 785> 786> 7884> 785> 7884> 785> 7884> 785> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7884> 7894 7894 7894 7894 7894 7894 7894 7894	DESIGN NASHYD *% ADD HYD *% *SUB-AREA NO. 6 **DESIGN NASHYD *% ADD HYD *% **** ************************	RAINFALL=(, , , , ] (mm/hr), RND=-1 [IDsum=[ 9 ], NHYD=["HIP08"], IDs to add=[6+7+8] 
766>> 768>> 770> 771>> 772> 773> 773> 777>> 777>> 777>> 777>> 777>> 777>> 777>> 777>> 777>> 777>> 777>> 777>> 778> 781>> 777>> 782>> 782> 782> 782> 782> 782>	DESIGN NASHYD *& ADD HYD * *UD-AREA NO. 6 *SUB-AREA NO. 6 * *UD-AREA NO. 6 * * * * * * * CALCULATIO * * * * * * * * * * * * *	RAINFALF(, , , ) [mm/hc], END1 [IDsum=[9], NHYD=["HIP08"], IDs to add=[6+7+8] [DFF=[0](cms), CHC=[76], TP=[0.80]hrs, RAINFALL=(, , , ) [mm/hc], END1 [IDsum=[2], NHYD=["Ultimate"], IDs to add=[9+1] [IDsum=[2], TD=[1], NHYD=["Ultimate"], IDs to add=[9+1] [IDsum=[2], TD=[1], IDsum=[1], IDsum=[1
766>> 767> 768> 769> 770> 771> 773> 773> 775> 776> 778> 780> 780> 780> 780> 788> 786> 788> 788> 788> 790> 792> 792> 793>	DESIGN NASHYD  *\$ ADD HYD  * DESIGN NASHYD  * ADD HYD  * CALCULATIOI  * CALCULATIOI  *	RAINFALF(, , , , ] (mm/h), RND-1 IDsum=[9], NHYD=["HIP08"], IDs to add=[6+7+8] DWF=[0](cms), CNC=[76], TP=[0.80]hrs, RAINFALL=[, , , , ](mm/hr), END-1 IDsum=[2], NHYD=["Ultimate"], IDs to add=[9+1] IDsum=[2], NHYD=["Ultimate"], IDsum=[0] IDsum=[2], NHYD=["Ultimate"], IDsum=[0] IDsum=[2], NHYD=["Ultimate"], IDsum=[0] IDsum=[2], IDsum=[2], IDsum=[0] IDsum=[2], IDsum=[0], IDsum=[0] IDsum=[2], IDsum=[0], IDsum=[0] IDsum=[2], IDsum=[0], IDsum=[0] IDsum=[0],
766>> 767> 768> 769> 771>> 777> 777> 777> 7775> 7775> 7776> 7776> 7778> 781> 782> 7845> 7865> 7865> 7865> 7865> 7995>	DESIGN NASHYD  *\$	RAINFALE(, , , , ] [mm/h], END=-1 [] IDsum=[ 9 ], NHYD=["HIP08"], IDs to add=[6+7+8] [] ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7] (ha), DWF=[0] (cms), CKC=[76], TP=[0.80]hzs, RAINFALL=[, , , , ](mm/hr), END=-1 [] IDsum=[2], NHYD=["Ultimate"], IDs to add=[9+1] [] IDsum=[2], TD=[3.0] (hzs), TPRAT=[0.333], CSDT=[10.0] (min) [] CASBecs=[1], read and print values [] CASBeds=[1], read and print values [] CASBeds=[1], read and print values [] CASBeds=[1], read and print values [] CASBecs=[1], read and print values
766>> 767>777>777>777>777>777>777>777>77	DESIGN NASHYD  *\$ ADD HYD  * DESIGN NASHYD  * ADD HYD  * ADD HYD  * CALCULATIO  * CALCULATIO  *	RAINFALL=(, , , , ] (mm/hc), END=-1 IDsum=[ 9 ], NHYD=["HIP08"], IDs to add=[6+7+8] ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7] (ha), DWF=[0] (cms), CNC=[76], TP=[0.80]hrs, RAINFALL=[, , , , ](mm/hc), END=-1 IDsum=[2], NHYD=["Ultimate"], IDs to add=[9+1] IDsum=[2], TD=[3.0](hrs), TFPAT=[0.333], CSDT=[10.0](min) ICASEscar[], TD=[3.0](hrs), TFPAT=[0.333], CSDT=[10.0](min) ICASEscar[], read and print values DEFVAL_FILENAME=[V:\22973.DU\ENG\SNMHYMO\"ORGA.VAL"]
766>>766>>765>777>>777>>777>>777>>777>>	DESIGN NASHYD  *\$ ADD HYD  * DESIGN NASHYD  * ADD HYD  * ADD HYD  *	RAINFALL=(, , , , ] (mm/h), RND=-1 IDsum=[9], NHYD=["HIP08"], IDs to add=[6+7+8] ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7] (ha), DWF=[0] (cms), CKC=[76], TP=[0.80]hrs, RAINFALL=[, , , , ] (mm/hr), END=-1 
766>>7679> 7777>>7772> 7777> 7775> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 7777> 77779 7777> 77779 77779 77779 77779 77779 77779 77779 77779 77779 77779 77779 77779 777777	DESIGN NASHYD *% ADD HYD *% SUB-AREA NO. 6 DESIGN NASHYD *% ADD HYD *% START *% HIGAGO STORM *% DEFAULT VALUES *%	RAINFALL=(, , , , ] (mm/h), RND=-1 IDsum=[9], NHYD=["HIP08"], IDs to add=[6+7+8] ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7] (ha), DWF=[0] (cms), CKC=[76], TP=[0.80]hrs, RAINFALL=[, , , , ] (mm/hr), END=-1 
7667>76757 7679777777777777777777777777777777	DESIGN NASHYD  *\$ ADD HYD  * DESIGN NASHYD  * ADD HYD  * ADD HYD  *	RAINFALL=(, , , , ] (mm/h), RND=-1 IDsum=[9], NHYD=["HIP08"], IDs to add=[6+7+8] ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7] (ha), DWF=[0] (cms), CKC=[76], TP=[0.80]hrs, RAINFALL=[, , , , ] (mm/hr), END=-1 
7665> 7675> 7675> 770> 771>> 771>> 775> 775> 775> 775> 775> 7	DESIGN NASHYD *%	RAINFALL=(, , , , ] (mm/h), RND=-1 [] IDsum=[9], NHYD=["HIP08"], IDs to add=[6+7+8] [] ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7](ha), DWF=[0](cms), CKC=[76], TP=[0.80]hrs, RAINFALL=[, , , , ](mm/h), END=-1 [] IDsum=[2], NHYD=["Ultimate"], IDs to add=[9+1] [] IDSum=[2], TD=[3.0](hrs), TFRAT=[0.333], CSDT=[10.0](min) ICASEcs=[1], read and print values [] DEFVAL FILENAME=[V:122973.DULENG\SWMHMON"ORGA.VAL"] [] IDSUM=[1], INHYD=["Ultimate"], DT=[2.5](min), REA=[ 2.07 1(ha), IDSUMENTER[IND]] IDSUM=[1], READ[ 2.07 1(ha], IDSUMENTER
7667>7675> 7675>7773> 77773> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7775> 7	DESIGN NASHYD *% ADD HYD *% *SUB-AREA NO. 6 **% ADD HYD *% ADD HYD *% CALCULATIOI *% START *% *% DEFAULT VALUES *% *% *% *% *% *% *% *% *% *% *% *% *% *% *% *% *% *%	RAINFALL=(, , , , ] (mm/h), RND=-1 IDsum=[9], NHYD=["HIP08"], IDs to add=[6+7+8] ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7](ha), DWF=[0](cms), CNC=[76], TP=[0.80]hrs, RAINFALL=[, , , , }(mm/h), END=-1 IDsum=[2], NHYD=["Ultimate"], IDs to add=[9+1] IDsum=[2], NHYD=["Ultimate"], IDS to add=[9+1] IDSUM=[0.84], E=[6.018], and C=[0.333], CSDT=[10.0](min) IDSUM=[0.84], ITMP=[0.84], DWF=[0.0](cms), IDSS=[2], CSM IDSUM=[0.84], ITMP=[0.94], DWF=[0.0](cms), IDSS=[2], CSM IDSUM=[0.84], IDSUM=[0.84], IDSUM=[0.84], IDSUM=[0.84], IDSUM=[0.84], IDSUM=[0.84], IDSUM=[0.84], IDSUM=[0.84], IDSUM=[0.84
768>>770> 770> 7772> 7773> 7775> 7775> 7775> 7775> 7775> 7775> 77880> 7885> 7885> 7885> 7885> 7889> 7955> 7997> 7959 7959> 7959 7959 7959	DESIGN NASHYD *% ADD HYD *% *SUB-AREA NO. 6 **% ADD HYD *% ADD HYD *% CALCULATIOI *% START *% *% DEFAULT VALUES *% *% *% *% *% *% *% *% *% *% *% *% *% *% *% *% *% *%	RAINFALL=(, , , , ] (mm/h), RND=-1 IDsum=[9], NHYD=["HIP08"], IDs to add=[6+7+8] ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7](ha), DWF=[0](cms), CNC=[76], TP=[0.80]hrs, RAINFALL=[, , , , }(mm/h), END=-1 IDsum=[2], NHYD=["Ultimate"], IDs to add=[9+1] IDsum=[2], NHYD=["Ultimate"], IDS to add=[9+1] IDSUM=[0.84], E=[6.018], and C=[0.333], CSDT=[10.0](min) IDSUM=[0.84], ITMP=[0.84], DWF=[0.0](cms), IDSS=[2], CSM IDSUM=[0.84], ITMP=[0.94], DWF=[0.0](cms), IDSS=[2], CSM IDSUM=[0.84], IDSUM=[0.84], IDSUM=[0.84], IDSUM=[0.84], IDSUM=[0.84], IDSUM=[0.84], IDSUM=[0.84], IDSUM=[0.84], IDSUM=[0.84
7665> 7667> 7667> 7767> 770> 7712> 7712> 7712> 7714> 7715> 7714> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7715> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7915> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7015> 7	DESIGN NASHYD *% ADD HYD *% *SUB-AREA NO. 6 **% ADD HYD *% ADD HYD *% CALCULATIOI *% START *% *% DEFAULT VALUES *% *% *% *% *% *% *% *% *% *% *% *% *% *% *% *% *% *%	<pre>RAINFALF(, , , , , ] (mm/h), RND=-1 [ IDsum=[ 9 ], NHYD=["HIP08"], IDs to add=[6+7+8] ID = (1), NHYD=["A3"], DT=[2.5]min, AREA=[2.7](ha), DWF=[0](cms), CKC=[76], TP=[0.80]hrs, RAINFALL=[, , , , ] (mm/hr), END=-1 [IDsum=[2], NHYD=["Ultimate"], IDs to add=[9+1] [IDsum=[2], NHTD=[2], NSTORM=[0], NKUN=[0] [I ] <storm 1="" 2.07="" [id="[" [idsum="[10]]&lt;/pre" [ionits="[2]," ](ha),="" ],="" and="" area="[" csdt="[10.0](min)" defval="" dt="[2.5](min)," dwf="[0.0](ms)," filename='[0:\22973.DV\ENG\SMMHYMO\"ORGA.VAL"]' filename,="" for="" icasegs="[1]," line="" loss="[2]," nhyd='["010"],' nstorm="" one="" per="" print="" read="" td="[3.0](hrs)," time="" timp="[0.84]," tprat="[0.333]," values="" ximp="[0.84],"></storm></pre>

## (V:\...PSTPH2.dat)

### J. L. Richards & Associates Limited

00811>	RAINFALL=[, , , , }(mm/hr) , END=-1	00946>	RAINFALL≈[, , , , ](mm/hr) , END≂-1
00812> *% 00813> * 00814> * SUB-AJREA No.2		00947> 00948> *8	
00815> 00816> CALIB STANDHYD	ID=[ 2 ], NHYD=["020"], DT=[2.5](min), AREA=[ 1.54 ](ha),	00949> * 00950> *SUB-AREA No.5 00951>	
00817> 00818>	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>	00952> DESIGN NASHYD 00953>	<pre>ID=[ 8 ], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[ 0 ](cms), CN/C=[ 85 ], TP=[0.17]hrs,</pre>
00819> 00820>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min).	00954> 00955> **	RAINFALL=[, , , , ](mm/hr), END=-1
00821> 00822>	<pre>Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.50](%), LGI=[244.34](m), MNI=[0.03], SCI=[0.0)</pre>	00956> 00957>	
00823> 00824> *8	RAINFALL=[ , , , ] (mm/hr) , END=-1	00958> ADD HYD 00959> *%	IDsum=[ 9 ], NHYD=["HIP08"], IDs to add=[6+7+8]
00825> * 00826> * SUB-AREA No.3 00827>		D0960> * 00961> *SUB-AREA No. 6 00962> *	
00828> CALIB STRANDHYD 00829>	<pre>ID=[ 3 }, NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],</pre>	00963> DESIGN NASHYD 00964>	<pre>ID = [1], NHYD=["A3"], DT=(2.5]min, AREA=[2.7](ha), DWF=[0](cms), CNC=[76], TP=[0.80]hrs,</pre>
00830> 00831>	SC5 curve number CN=[81], Pervious surfaces: IAper=[4,67](mm), SLPP=[1,0](%).	00965> 00966> *%	RAINFALL=[, , , , ](mm/hr), END=-1
00832>	LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min), Impervious surfaces: IAimp=[1.57] (mm), SLPI=( 0.51 ] (%),	00967> 00968> ADD HYD	IDsum=[2], NHYD=["Ultimate"], IDs to add=[9+1]
00834> 00835> 00836> *%	LGI=[ 225.63 ] (m), MNI=[0.03], SCI=[0.0 RAINFALL=[, , , , ] (mm/hr) , END=-1	00969> *%	
00837> ADD HYD 00838> *%	IDsum=[4], NHYD=[ "040"], IDs to add=[1+2]	00972> * CALCULATI	ON OF 3HR - 1:50 YEAR STORM EVENT *
00839> ADD HYD 00840> *%	IDsum=[5], NHYD=[ "050"], IDs to add=[3+4]	00974> 00975> START	TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]
00841> * 00842> * SUB-AREA No.4 00843>		00976> *% 00977> *%	[ ] <storm filename,="" for="" line="" nstorm="" one="" per="" th="" time<=""></storm>
00843> 00844> CALIB STANDHYD 00845>	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],</pre>	00978> CHICAGO STORM 00979> 00980>	IUNITS={2}, TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0](min) ICASEcs=[1],
00846> 00847>	SCS curve number CN=[8], Pervious surfaces: IAper=[4.67] (mm), SLPP=[0.7](%),	00981> *8 00982> DEFAULT VALUES	A=[1569.580], B=[6.014], and C=[0.820], -[
00848> 00849>	LGP=[40] (m), MNP=[0.25], SCP=[0.0] (min) Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.93] (%),	00983> 00984> *%	DEFVAL FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]
00850> 00851> 00852> *%	LGI=[164.82](m), MNI=[0.03], SCI=[0.0]( RAINFALL=[, , , , ](mm/hr), END=-1	00985> 00986> *********************	******
00853> * 00853> * 00854> * SUB-AREA No.5		00987> * ORGAWOR 00988> ***********************************	LD FILE *
00855> 00856> CALIB STANDHYD	ID=[ 7 ], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ba).	00990> * SUB-AREA No.1 00991>	
00857> 00858>	<pre>ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWP=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>	00992> CALIB STANDHYD 00993>	<pre>ID=[ 1 ], NHYD=["010"], DT=[2.5](min), AREA=[ 2.07 ](ha), XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2],</pre>
00859>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), IGP=[20.0] (m), MNP=[0.25], SCP=[0.0] (mi	00994> 00995>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.0](%),
00861> 00862> 00863>	Impervious surfaces: IAimper[1.57] (m), StPI=[0.51] (h), LGI=[207.25] (m), MNI=[0.53] (h), RAINFALL=[, , , ] (mn/hr), END=-1	00996> 00997> 00998>	LGP=[20](m), MNP=[ 0.25 ], SCP=[0.0](mi Impervious surfaces: IAimpe[1.57](mm), SLPI=[0.52](%), LGI=[204.72](m), MNI=[0.03 ], SCI=[0.0]
00864> *%	   IDsum=[8], NHYD=[ "080"], IDs to add=[6+7]	00999> 01000> *%	RAINFALL=[, , , , ](mm/hr), END=-1
00866> *%	IDsum={9], NHYD=[ "090"], IDs to add=[5+8]	01001> * 01002> * SUB-AREA No.2	
00869>		01003> 01004> CALIB STANDHYD	ID=[ 2 ], NHYD=["020"], DT=[2.5](min), AREA=[ 1.54 ](ha), XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2],
00870> ROUTE RESERVOIR 00871> 00872>	IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min), TABLE of ( OUTFLOW-STORAGE ) values	01005> 01006> 01007>	SCS curve number CN=[81],
00873> 00874>	(cms) - (ha-m) [ 0.000, 0.0000]	01008> 01009>	Pervious surfaces: lAper=[4.67] (mm), SLPP=[1.0](%), LGP=[5](m), MMP=[0.03], SCP=[0.0](min), Impervious surfaces: lAimp=[1.57](mm), SLPI=[0.50](%),
00875> 00876>	[ 0.008, 0.0656] [ 0.017, 0.1311]	01010> 01011>	LGT=[243.34] (m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , , ] (mm/hr), END=-1
00877> 00878> 00879>	[ 0.093, 0.2031] [ 0.233, 0.3971]	01012> *%	-
00880> 00881>	[ 0.337, 0.4731] [ 0.465, 0.5491] [ 0.531, 0.5871]	01014> * SUB-AREA No.3 01015> 01016> CALIB STANDHYD	<pre>ID=[ 3 ], NHYD=["030"}, DT=[2.5] (min), AREA=[1.4] (ha),</pre>
00882> 00883>	[ 0.593, 0.6251] [ 0.654, 0.6631]	01017> 01018>	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81].</pre>
00884> 00885> 00886>	[ 0.797, 0.7391] [ 0.950, 0.8274]	01019> 01020>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min),
00867>	[ 1.304, 0.9157] [ 1.880, 1.0040] [ 2.577, 1.0923]	01021> 01022> 01023>	<pre>Impervious surfaces: IAimp=[1.57](mm), SLPI=[ 0.51 ](%), LGI=[ 225.63 ](m), MNI=[0.03], SCI=[0.0 RAINFALL=[ , , , ](mm/hr), END=-1</pre>
00889> 00890>	<pre>[ -1 , -1 ] (max twenty pts)</pre>	01024> *% 01025> ADD HYD	IDsum=[4], NHYD=[ "040"], IDs to add=[1+2]
00892> * Remaining Hay	**************************************	01026> *% 01027> ADD HYD	IDsum=[5], NHYD=[ "050"], IDs to add=[3+4]
00893> * 00894> * 00895> * SUB-AREA No.1		01028> *% 01029> * 01030> * SUB-AREA No.4	- ]
00896> 00897> CALIB STANDHYD	ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha),	01031> 01032> CALIB STANDHYD	ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha),
00898> 00899>	XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],	01033> 01034>	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
00900> 00901> 00902>	Pervious surfaces: IAper=[4,67] (mm), SLPP=[1.5] (%), IGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0,6] (%),	01035> 01036>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[0.7] (%), LGP=[40] (m), MNP=[0.25], SCP=[0.0] (min)
00903> 00904>	Impervious surfaces: LAimp=[1.57](mm), SLPI=[0.6](%), LGI=[580](m), MNI=[0.03], SCI=[0.0](min RAINFALL=[, , , ](mm/hr), END=-1	01037> 01038> 01039>	Impervious surfaces: lAimp=[1.57] (mm), SLPI=[0.93] (%), LGI=[164.82] (m), MNI=[0.03), SCI=[0.0] ( RAINFALL=[ , , , ] (mm/hr) , END=-1
00905> *% 00906> ADD HYD	IDsum=[ 2 ], NHYD=["HIP02"], IDs to add=[10+1]	01040> *%	RAINFALL=[, , , , ](mm/hr) , END=-1
00907> *%	-	01042> * SUB-AREA No.5 01043>	
00909> * SUB-AREA No.2 00910> 00911> CALIB STANDHYD	ID=[ 3 ], NHYD=["HIP03"], DT=[2.5] (min), AREA=[17] (ha),	01044> CALIB STANDHYD 01045> 01046>	<pre>ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], IMP=[0.97], DWP=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
00912> 00913>	XIMP=[0.50], $TIMP=[0.71]$ , $DWF=[0.0](cms)$ , $LOSS=[2]$ , SCS curve number CN=[81],	01047>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%), LGP=[20.0] (m), MNP=[0.25], SCP=[0.0] (mi
00914> 00915>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%), LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m	01049> 01050>	<pre>Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.61] (%), LGI=[207.25] (m), MNI=[0.03], SCI=[0.0] (</pre>
00916> 00917> 00918>	<pre>Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.65] (%),</pre>	01051> 01052> *%	RAINFALL=[,,,,](mm/hr), END=-1
00919> **	RAINFALL=[ , , , , ](mm/hr) , END=-1	01053> ADD HYD 01054> *% 01055> ADD HYD	IDsum=[8], NHYD=[ "080"], IDs to add=[6+7] 
00921> * SUB-AREA No.3 00922>		01056> *8	
00923> CALIB STANDHYD 00924>	ID=[ 4 ], NHYD=["HIP04"], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],	01058> ROUTE RESERVOIR 01059>	IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min),
00925> 00926>	SCS curve number CN=[61], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%),	01060> 01061>	TABLE of ( OUTFLOW-STORAGE ) values (cms) - (ha-m)
00927> 00928> 00929>	LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.5](%), LGI=[600](m), MNI=[0.03], SCI=[0.0](min	01062> 01063> 01064>	[ 0.000, 0.0000] [ 0.008, 0.0656] { 0.017, 0.131]
00930> 00931> *%	RAINFALL=[, , , , ](mm/hr), END=-1	01065> 01066>	{ 0.093, 0.2831] ( 0.233, 0.3971]
00932> ADD HYD 00933> *%	IDsum=[ 5 ], NHYD=["HIP05"], IDs to add=[3+4]	01067> 01068>	[ 0.337, 0.4731] [ 0.465, 0.5491]
00934> ADD HYD 00935> *% 00936> *	IDsum=[ 6 ], NHYD=["HIPO6"], IDs to add=[5+2]	01069> 01070> 01071>	[ 0.531, 0.5871] [ 0.593, 0.6251]
00936> * 00937> * SUB-AREA No.4 00938>		01071> 01072> 01073>	[ 0.654, 0.6631] [ 0.797, 0.7391] [ 0.950, 0.8274]
00939> CALIB STANDHYD 00940>	<pre>ID=[ 7 ], NHYD=["HIP07"], DT=[2.5](min), AREA=[12.2](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0)(cms), LOSS=[2],</pre>	01074> 01075>	[ 1.304, 0.9157]
00941> 00942>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),	01076> 01077>	$\begin{bmatrix} 1.880, 1.0040 \end{bmatrix}$ $\begin{bmatrix} 2.577, 1.0923 \end{bmatrix}$ $\begin{bmatrix} -1, - \end{bmatrix}$ (max twenty pts)
00943> 00944> 00945>	LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.7] (%), LGI=[210] (m), MMI=[0.03], SCI=[0.0] (min	01078> 01079> ************************************	*****
		01080> * Remaining Haw	thorme Industrial Park *

J. L. Richards & Associates Limited

1

1

.....

## (V:\...PSTPH2.dat)

			0. D. RICHARDS & ASSOCIATES LI
)81> ******* <del>*</del> ***************************	*********************	01216> *%	
083> * SUB-APEA No.1		01217> * 01218> * SUB-AREA No.4	
084> 085> CALIB STANDHYD	ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha),	01219> 01220> CALIB STANDHYD	ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha),
)86> )87>	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>	01221> 01222>	XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],
)88> )89>	Pervious surfaces: IAper=[4,67] (mm), SLPP=[1,5](%).	01223>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[0.7](%),
90>	LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.6] (%),	01224> 01225>	LGP=[40] (m), MNP=[0.25], SCP=[0.0] Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.93] (%),
191> 192>	LGI=[580] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , , , ] (mm/hr) , END=-1	01226> 01227>	LGI=[164.82] (m), MNI=[0.03], SCI=[
93> *% 94> ADD HYD		01228> *8	RAINFALL=[ , , , , ] (mm/hr) , END=-1
95> **	IDsum=[ 2 ], NHYD=["HIPO2"], IDs to add=[10+1]	01229> * 01230> * SUB-AREA No.5	
)96> * )97> * SUB-AIREA 10.2		01231> 01232> CALIB STANDHYD	
98> 99> CALIB STANDHYD		01233>	<pre>ID={ 7 ], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],</pre>
00>	<pre>ID=[ 3 ], NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],</pre>	01234> 01235>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%),
.01>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),	01236>	LGP=[20.0](m), MNP=[0.25], SCP=[0.0
.03> .04>	LGP = [100.0] (m), $MNP = [0,25]$ , $SCP = [0,0] (m)$	01238>	<pre>Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.61] (%), LGI=[207.25] (m), MNI=[0.03], SCI=[(</pre>
.05>	Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.65](%), LGI=[450](m), MNI=[0.03), SCI=[0.0](min	01239> 01240> *8	RAINFALL=[, , , , ](mm/hr) , END=-1
.06> .07> *&	RAINFALL=[, , , ] (mm/hr) , END=-1	01241> ADD HYD 01242> *8	IDsum=[8], NHYD=[ "080"], IDs to add=[6+7]
.08> * .09> * SUB-AREA No.3	· · · · · · · · · · · · · · · · · · ·	01243> ADD HYD	IDsum=[9], NHYD=[ "090"], IDs to add=[5+8]
.10>		01244> *8	
.11> CALIB STANDHYD .12>	<pre>ID=[ 4 ], NHYD=["HIP04"], DT=[2.5] (min), AREA=[15.6] (ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2],</pre>	01246> ROUTE RESERVOIR 01247>	<pre>IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0] (min),</pre>
13> 14>	SCS curve number CN=[81],	01248>	TABLE of { OUTFLOW-STORAGE ) values
.15>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m	01249> 01250>	(cms) - (ha-m) [ 0.000, 0.0000]
16> 17>	Impervious surfaces: IAimp=[1,57](mm), STPT=[0,5](%).	01251> 01252>	0.008. 0.06561
18>	LGI=[600] (m), MMI=[0.03], SCI=[0.0] (min RAINFALL=[, , , ](mm/hr), END=-1	01253>	[ 0.017, 0.1311] [ 0.093, 0.2831]
20> ADD HYD	<pre>IDsum=[ 5 }, NHYD=["HIP05"}, IDs to add=[3+4]</pre>	01254> 01255>	[ 0.233, 0.3971] [ 0.337, 0.4731]
21> **		01256>	[ 0.465, 0.5491]
23> *8	IDsum=[6], NHYD=["HIPO6"], IDs to add=[5+2]	01257> 01258>	[ 0.531, 0.5871] [ 0.593, 0.6251]
24> * 25> * SUB-AREA No.4		01259> 01260>	[ 0.654, 0.6631]
26> 27> CALIB STANDHYD	ID=[ 7 ], NHYD=["HIP07"], DT=[2.5](min), AREA=[12.2](ha),	01261>	[ 0.950, 0.8274]
28>	XIMP = [0.50], TIMP = [0.71], DWF = [0.0](cms), LOSS = [2].	01262> 01263>	[ 1.304, 0.9157] [ 1.880, 1.0040]
29> 30>	SCS curve number CN=[01], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%),	01264> 01265>	[ 2.577, 1.0923]
31> 32>	LGP = [100.0] (m), $MNP = [0.25]$ , $SCP = [0.0] (m)$	01266>	[ -1 , -1 ] (max twenty pts)
33>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.7] (%), LGI=[210] (m), MNI=[0.03], SCI=[0.0] (min	01267> ************************************	**************************************
34> 35>	RAINFALL=[, , , , ] (mm/hr) , END=-1	01269> ***************	**************************************
36> **	-	01270> * 01271> * SUB-AREA No.1	
37> * 38> *SUB-AREA No.5		01272> 01273> CALIB STANDHYD	ID=[ 1 ], NHYD=["HIP01"], DT=[2.5](min), AREA=[19.9](ha)
39> 40> DESIGN NASHYD		01274>	XIMP = [0.50], TIMP = [0.71], DWF = [0.01(cms), LOSS = [2].
41>	<pre>ID=[ 8 ], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[ 0 ](cms), CN/C=[ 85 ], TP=[0.17]hrs,</pre>	01275> 01276>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),
42> 43> *& <b>-</b>	RAINFALL=[ , , , ] (mm/hr), END=-1	01277>	LGP=[100.0](m), MNP=[0.25], SCP=[0.25]
44>		01278> 01279>	Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.6](%), LGI=[580](m), MMVI=[0.03], SCI=[0.0]
45> 46> ADD HYD	IDsum=[ 9 ], NHYD=["HIP08"], IDs to add=[6+7+8]	01280> 01281> *%	RAINFALL=[, , , , ] (mm/hr) , END=-1
47> *% 48> *	-	01282> ADD HYD	IDsum=[ 2 ], NHYD=["HIP02"], IDs to add=[10+1]
49> *SUB-AREA No. 6		01283> *%	
50> * 51> DESIGN NÆSHYD	<pre>ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7](ha),</pre>	01285> * SUB-AREA No.2 01286>	
52> 53>	$DWF=\{0\}$ (cms), $CNC=[76]$ , $TP=[0.80]$ hrs,	01287> CALIB STANDHYD	ID=[ 3 ], NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha),
54> *8	RAINFALL=[, , , , ] (mm/hr), END=-1	01288> 01289>	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
55> 56> ADD HYD	IDsum=[2], NHYD=["Ultimate"], IDs to add=[9+1]	01290> 01291>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%),
57> *8		01292>	$LGP \approx (100.0] (m), MNP \approx [0.25], SCP = [0.$ Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.65] (%),
	**********	01293> 01294>	LGI=[450] (m), MMI=[0.03], SCI=[0.0] RAINFALL=[, , , ](mm/hr), END=-1
60> * CALCULATION 61> ********************	V OF 3HR - 1:100 YEAR STORM EVENT *	01295> *801296> *	
52>		01297> * SUB-AREA No.3	
53> START 54> *%	TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0] [ ] <storm filename,="" for="" line="" nstorm="" one="" per="" td="" time<=""><td>01298&gt; 01299&gt; CALIB STANDHYD</td><td>ID=[4], NHYD=["HIP04"], DT=[2.5] (min), AREA=[15.6] (ha)</td></storm>	01298> 01299> CALIB STANDHYD	ID=[4], NHYD=["HIP04"], DT=[2.5] (min), AREA=[15.6] (ha)
55> *%		01300>	AIME-[0.30], IIME-[0.71], DWE-[0.0](CMS), LOSS=[2],
57>	<pre>IUNITS=[2], TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0](min) ICASEcs=[1],</pre>	01301> 01302>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),
58> 59> *%	A=[1735.688], B=[6.014], and C=[0.820],	01303> 01304>	IGP=[100.0] (m), MNP=[0.25], SCP=[0. Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.5](%),
70> DEFAULT VALUES 71>	ICASEdef=[1], read and print values	01305>	LGI = [600] (m), $MNI = [0.03]$ , $SCI = [0.0]$
72> *%	DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]	01306> 01307> *%	RAINFALL=[ , , , , ] (mm/hr) , END=-1
73> 74> ***********************	******	01308> ADD HYD 01309> *%	IDsum=[ 5 ], NHYD=["HIP05"], IDs to add=[3+4]
/5> * ORGAWORL	D FTLE *	01310> ADD HYD	IDsum=[ 6 ], NHYD=["HIP06"], IDs to add=[5+2]
17>	·	01311> *%	
<pre>/8&gt; * SUB-AREA No.1 /9&gt;</pre>		01313> * SUB-AREA No.4 01314>	
0> CALIB STANDHYD	ID=[1], NHYD=["010"], DT=[2.5] (min), AREA=[2.07](ha),	01315> CALIB STANDHYD	ID=[ 7 ], NHYD=["HIPO7"], DT=(2.5](min), AREA=[12.2](ha)
31> 32>	XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[8]]	01316> 01317>	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
33>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%), LGP=[20](m), MNP=[ 0.25 ], SCP=[0.0](mi	01318>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%),
85>	Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.52](%).	01319> 01320>	LGP=[100.0] (m), MNP=[0.25], SCP=[0.4 impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.7](%),
86> 87>	LGI=[204.72] (m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , , ](mm/hr), END=-1	01321> 01322>	LGI=[210] (m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , , ](mm/hr), END=-1
18> *8 19> *		01323>	
0> * SUB-AREA No.2		01324> *%	
01> 02> CALIB STANDHYD	ID=[2], NHYD=["020"], DT=[2.5] (min), AREA=[1.54] (ha),	01326> *SUB-AREA No.5 01327>	
93> 94>	XIMP=[0.92], TIMP=[0.92], DWF=[0.0](Cms), LOSS=[2],	01328> DESIGN NASHYD	ID=[ 8 ], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0] (he
15>	SCS curve number CN=[81], Pervious surfaces Japar=[4 67] (mm) SIDD=[1 0](8)	01329> 01330>	DWF=[0](cms), CN/C=[85], TP=[0.17]hrs, RAINFALL=[, , , ,](mm/hr), END=-1
96> 97>	LGP=[5](m), MNP=[0.03], SCP=[0.0](min), Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.50](%),	01331> *\$	RAINFAD2-(, , , , , ) (NRO/NF), END=-1
98>		01332> 01333>	
99> )0> *&	RAINFALL=[ , , , , ] (mm/hr) , END=-1	01334> ADD HYD 01335> *%	IDsum=[ 9 ], NHYD={"HIPO8"], IDs to add=[6+7+8]
)1> *		01336> *	
D2> * SUB-AREA No.3 D3>		01337> *SUB-AREA No. 6 01338> *	
04> CALIB STANDHYD	ID=[3], $NHYD=["030"]$ , $DT=[2.5]$ (min), $AREA=[1.4]$ (ha), YIMD=[0, 027] $TIMD=[0, 027]$ $DWT=[0, 01(), 2005=[23]$	01339> DESIGN NASHYD	ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7] (ha),
	XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],	01340> 01341>	DWF=[0](cms), CNC=[76], TP=(0.80)hrs, RAINFALL=[, , , , ](mm/hr), END=-1
06>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%),	01342> *%	
)6> )7>			
06> 07> 08> 09>	LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min), Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.51] (%),	01344> ADD HYD	IDsum=[2], NHYD=["Ultimate"], IDs to add=[9+1]
06> 07> 08> 09> 00> 11>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[ 0.51 ] (%), LGI=[ 225.63 ] (m), MNI=[0.03], SCT=[0.0	01345> *8	<pre>iDsum=[2], WHID=["Ultimate"], IDs to add=[9+1] </pre>
06> 07> 08> 09> 00> 11> 12> *8	<pre>Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.51](%), LGI=[225.63](m), MNI=[0.03], SCI=[0.0 RAINFALL=[, , , ](mm/hr), EMD=-1</pre>	01345> *8 01346> 01347> FINISH	IJSum=[2], WHID=["UITIMATE"], LDS to add=[941]
6> 7> 8> 9> 0> 1>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[ 0.51 ] (%), LGI=[ 225.63 ] (m), MNI=[0.03], SCT=[0.0	01345> *8 01346> 01347> FINISH 01348> 01349>	IJSum=[2], WIID=["Ultimate"], IDS to add=[941]

	00136> Storage Coeff. (min)= 10.80 (ii) 29.27 (ii)
002> 003> SSSSS W W M M H H Y Y M M 000 999 999 ========	00137> Unit Hyd. Tpeak (min)= 10.00 (11) 29.27 (11) 00138> Unit Hyd. Tpeak (min)= 10.00 30.00
002> 003> SSSSS W W M M H H Y Y M M 000 999 999 004> S W W M MM H H H Y Y MM MM 0 9 9 9 9 005> SSSSS W W M M H H H Y M M 0 0 9999 9999 JUL, 4.02 005> SSSS W W M M H H Y M M 00 9999 9999 JUL/1999 007> SSSS W M M H H Y M M 00	00139> *TOTALS* 00140> PEAK FLOW (cms)= .16 .00 .158 (iii)
006> S WW M M H H Y M M O O 9999 9999 July 1999 007> SSSSS WW M M H H Y M M ООО 9 9 ==========	00141> TIME TO PEAK (hrs)= 1.29 1.75 1.292
008> 9 9 9 9 # 4418403	00142>         RUNOFF VOLUME         (mm) =         23.43         5.17         20.508           00143>         TOTAL RAINFALL         (mm) =         25.00         25.00         24.999
	00144> RUNOFF COEFFICIENT = .94 .21 .820 00145>
)11> ****** ****************************	00146> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 00147> CN* = 81.0 Ia = Dep. Storage (Above)
113 ***** A gipelo errort and continuous budgelanis -i-ulation	00147> CN* = 81.0 Ia = Dep. Storage (Above) 00148> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 00149> THAN THE STORAGE COEFFICIENT.
based on the principles of HMX and its successors           155         OTTHYMO-83 and OTTHYMO-89.	00150> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
17> ****** Distributed by: J.F. Sabourin and Associates Inc. *******	00151> 00152>
18> ******         Ottawa, Ontario: (613) 727-5199         ******           19> *******         Gatingan Onebec: (819) 243-5858         *******	00153> 001:0005
220> ****** E-Mail: swmhymogifsa.Com *******	00155> * SUB-AREA No.2
22>	00156> 00157>   CALIE STANDHYD { Area (ha)= 1.54
23> ++++++++++++++++++++++++++++++++++++	00158>   02:020 DT= 2.50   Total Imp(%) = 92.00 Dir. Conn.(%) = 92.00 00159>
25> +++++++ 26> ++++++++++++++++++++++++++++++++++++	00160> IMPERVIOUS PERVIOUS (i)
27> 28> ****** *****************************	00162> Dep. Storage (mm)= 1.57 4.67
29> ****** +++++++ DDCCDBM ADDAY DIMENSIONS +++++++	00163>         Average Slope         (%) =         .50         1.00           00164>         Length         (m) =         244.34         5.00
Maximum Value for 1D numbers : 10 ******** 31> ****** Max. number of rainfall points: 15000 ********	00165> Mannings n = .030 .030 00166>
12> ****** Max. number of flow points : 15000 *******	00167> Max.eff.Inten.(mm/hr)= 45.63 7.24
4>	00166>         over (min)         12.50         15.00           00169>         Storage Coeff. (min)=         12.15 (ii)         14.15 (ii)
5> 6> **************************** DETAILED OUTPUT *******************************	00170>         Unit Hyd. Tpeak (min)=         12.50         15.00           00171>         Unit Hyd. peak (cms)=         .09         .08
7> ************************************	00172> *TOTALS*
9> ****** *****************************	00174> TIME TO PEAK (hrs)= 1.33 1.46 1.333
<pre>1&gt; * Output filename: V:\20983.DU\ENG\SWMHYMO\PSTPH2 out *</pre>	00175> RUNOFF VOLUME (mm) = 23.43 5.17 21.969 00176> TOTAL RAINFALL (mm) = 25.00 25.00 24.999
<pre>2&gt; * Summary filename: V:\20983.DU\ENG\SWMHYMO\PSTPH2.sum * 3&gt; * User comments: *</pre>	00177> RUNOFF COEFFICIENT = .94 .21 .879 00178>
4> * 1: * 5> * 2:*	00179> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
65 * 3; 75 ************************************	00181> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
3>	00182> THAN THE STORAGE COEFFICIENT. 00183> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
9>	0184> 00185>
1> *#***** *****************************	00186> 001:0006
3> *# Date : January, 2009 *	00187> * 00188> * SUB-AREA NO.3
4> *# Revised : N/A * 5> *# Developed by : Mark Buchanan, E.I.T. *	00189> 00190>   CALIB STANDHYD   Area (ha)= 1.40
5> *# Reviewed by : Guy Forget, P.Eng.	001915   03:030 DT= 2.50   Total Imp(%)= 97.00 Dir. Conn. (%)= 97.00 001925
3> *# License \$ : 4418403 *	00193> IMPERVIOUS PERVIOUS (1)
)> *	00194>         Surface Area         (ha) =         1.36         .04           00195>         Dep. Storage         (mm) =         1.57         4.67
l> *	00196> Average Slope (%)= .51 1.00
3> *# FILE:NAME: V:\20983.DU\ENG\SWMHYMO\20983PST.DAT *	00198> Mannings n = .030 .030
5> *# OF A FACILITY ASSOCIATED WITH THE OTTAWA COMPOSTING SITE *	00199> 00200> Max.eff.Inten.(mm/hr)= 45.63 7.97
7> *	00201>         over (min)         12.50         12.50           00202>         Storage Coeff. (min)=         11.52 (ii)         13.44 (ii)
	00203> Unit Hyd. Tpeak (min)= 12.50 12.50
0> * PROPOSED COMPOSTING SITE UNDER POST-DEVELOPMENT UNCONTROLLED CONDITIONS *	00205> *TOTALS*
2> ******** ***************************	00206>         PEAK FLOW         (cms)=         .12         .00         .118 (iii)           00207>         TIME TO PEAK (hrs)=         1.33         1.42         1.333
3> * HYDROLOGICAL ANALYSIS UNDER A 4 HR-25 MM STORM AND * 4> * FOR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR *	00208> RUNOFF VOLUME (mm)= 23.43 5.17 22.881
4> * FOR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR * 5> ************************************	00208>         RUNOPF VOLUME         (mm) =         23.43         5.17         22.881           00209>         TOTAL RAINFALL         (mm) =         25.00         25.00         24.999           00210>         RUNOFF COEFFICIENT =         .94         .21         .915
* FOR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR * S***********************************	00208>         RUNOFF VOLUME         (mm)=         23.43         5.17         22.881           00209>         TOTAL RAINFALL (mm)=         25.00         24.999         00210>         24.999           00210>         RUNOFF COEFFICIENT =         .94         .21         .915           00212>         (1)         CM DECEMBER SELECTED FOR PERFUTURE LOSSES         .915
<pre>&gt;* FOR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR * &gt;***********************************</pre>	00208>         RUNOFF VOLUME         (mm)=         23,43         5.17         22,881           00209>         TOTAL RAINFRAL         (mm)=         25,00         24,999           00210>         RUNOFF COEFFICIENT =         .94         .21         .915           00211>         00212>         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:         .00213>         .01 = = 0£, Storage (Above)           00213>         CM* = 01.0         Ia = Dep. Storage (Above)         .0214>
>*     FOR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR *       >*     POST-DEVELOPMENT UNCONTROLLED CONDITIONS *       >*     CALCULATION OF 4 HR 25 MM STORM EVENT *	00208>         RUNOFF VOLUME         (mm)=         23.43         5.17         22.831           00209>         TOTAL RAINFRALL (mm)=         25.00         24.999           00210>         RUNOFF COEFFICIENT =         .94         .21         .915           00212>         (i) CN FROCEDURE SELECTED FOR PERVIOUS LOSES:         .00213>         .0213>         .01 a= Dep. Storage (Above)           00214>         (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL         .0215>
4 * FOR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR *       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5        5	00208>         RUNOFF VOLUME         (mm)=         23.43         5.17         22.881           00209>         TOTAL RAINFALL (mm)=         25.00         24.999           00210>         RUNOFF COEFFICIENT =         .94         .21         .915           00212>         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES;         00213         .00213         .11         ENDreg         .60xvel)           00214>         (ii) TIME STEP (DT) SHOULD ES SNOLER OR EQUAL         .0215
4 * FOR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR *       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5        5	00208>         RUNOFF VOLUME         (mm)=         23.43         5.17         22.881           00209>         TOTAR ARINFRLI (mm)=         25.00         24.999           00210>         RUNOFF COEFFICIENT         94         21         .915           00211>         RUNOFF COEFFICIENT         94         .21         .915           00212>         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:         02213         CN*=         91.0         Ia = Dep. Storage (Above)           00214>         (ii) TIME STDE (DT) SHOULD BE SMALLER OR EQUAL         02215
* FOR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >     *       >	00208>         RUNOFF VOLUME         (mm)=         23.43         5.17         22.881           00209>         TOTAR ARINFRAL (mm)=         25.00         24.999           00210>         RUNOFF COEFFICIENT =         .94         .21         .915           00212>         (1) CN PROCEDURE SLECTED FOR PERVIOUS LOSSES:         .00213         .01         .01         .01           00212>         (1) CN PROCEDURE SLECTED FOR PERVIOUS LOSSES:         .02         .02         .02         .02         .01         .02         .02         .02         .02         .02         .02         .02         .02         .02         .02         .03         .03         .04         .02         .02         .02         .02         .02         .04         .02         .02         .04         .02         .05         .06         .02         .02         .04         .02         .05         .05         .06         .02         .02         .00         .00         .00         .00         .00         .01         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .0
<pre>&gt;* FOR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR * &gt; &gt; POST-DEVELOPMENT UNCONTROLLED CONDITIONS &gt;&gt; &gt; CALCULATION OF 4 HR 25 MM STORM EVENT &gt;&gt; &gt; CALCULATION OF 4 HR 25 MM STORM EVENT &gt;&gt; &gt; CALCULATION OF 4 HR 25 MM STORM EVENT &gt;&gt; &gt; CALCULATION OF 4 HR 25 MM STORM EVENT &gt;&gt; &gt; CALCULATION OF 4 HR 25 MM STORM EVENT &gt;&gt; &gt; CALCULATION OF 4 HR 25 MM STORM EVENT &gt;&gt; &gt; CALCULATION OF 4 HR 25 MM STORM EVENT &gt;&gt; &gt; CALCULATION OF 4 HR 25 MM STORM EVENT &gt;&gt; &gt; CALCULATION OF 4 HR 25 MM STORM EVENT &gt;&gt; &gt; CALCULATION OF 4 HR 25 MM STORM EVENT &gt;&gt; &gt; CALCULATION OF 4 HR 25 MM STORM EVENT &gt;&gt; &gt; CALCULATION OF 4 HR 25 MM STORM EVENT &gt;&gt; &gt; CALCULATION OF 4 HR 25 MM STORM EVENT &gt;&gt; &gt; CALCULATION OF 4 HR 25 MM STORM EVENT &gt;&gt; &gt; CALCULATION OF 4 HR 25 MM STORM EVENT &gt;&gt; &gt; CALCULATION OF 4 HR 25 MM STORM EVENT &gt;&gt; &gt; CALCULATION OF 4 HR 25 MM STORM EVENT &gt;&gt; &gt; CALCULATION OF 4 HR 25 MM STORM EVENT &gt;&gt; &gt; CALCULATION OF 4 HR 25 MM STORM EVENT &gt;&gt; &gt; CALCULATION OF 4 HR 25 MM STORM EVENT &gt;&gt; &gt; CALCULATION OF 4 HR 25 MM STORM EVENT &gt;&gt; &gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;</pre>	002008         RUNOFF VOLUME         (mm)=         23.43         5.17         22.861           002095         TOTAR RAINFRAL (mm)=         25.00         24.999           002105         RUNOFF COEFFICIENT =         .94         .21         .915           002125         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:         002135         .002135         .01         .915           002124         (ii) TIME STEP (DT) SHOULD ED STORAGE (Above)         .002145         .01         .01         .01         .02           002125         (iii) THE STEP (DT) SHOULD ED STORAGE (Above)         .02         .02         .02         .01         .00         .02         .02         .01         .02         .02         .01         .02         .02         .02         .01         .02         .02         .01         .02         .02         .02         .02         .02         .02         .02         .02         .02         .02         .02         .02         .02         .02         .02         .02         .01         .00         .02         .02         .02         .02         .02         .02         .02         .02         .02         .02         .02         .02         .02         .02         .02         .02
<pre>&gt;* FOR DESIGN SOF 1:2, 5, 10, 25, 50, AND 100 YR * &gt;* POST-DEVELOPMENT UNCONTROLLED CONDITIONS * &gt;* POST-DEVELOPMENT UNCONTROLLED CONDITIONS * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * ***********************************</pre>	002008>         RUNOFF VOLUME         (mm) =         23.43         5.17         22.861           002009>         TOTAR RAINFRAL (mm) =         23.60         25.00         24.999           00211>         RUNOFF COEFFICIENT =         .94         .21         .915           00212>         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:         00213         .00213         .01         1 m = Dep. Storage (Rhowe)           00212>         (ii) TIME STEP (DT) SHOULD ER SKALLER OR EQUAL         .00213         .01         .01         .00217           00212>         (iii) FRAK FLOW DOES NOT INCLUDE RASELLOW IF ANY.         .00217         .00218
* FOR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *       > *        > *	002008>         RUNOFF VOLUME         (mm)=         23.43         5.17         22.861           002009>         TOTAR RAINFRAL (mm)=         25.00         24.999           00211>         RUNOFF COEFFICIENT =         .94         .21         .915           00212>         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:         .00213         .00213         .01         i= Dep. Storage (Above)           00212>         (ii) TIME STDE (DT) SHOULD EE SNOLER OR EQUAL         .02145         .11         .18         .00           00213>         CI** =         81.0         I= Dep. Storage (Above)         .001         .00215           00214>         (iii) TIME STDE (DT) SHOULD EE SNOLER OR EQUAL         .00216         .001         .00217           00215>         01:0007
<pre>&gt;* FOR DESIGN SORMS OF 1:2, 5, 10, 25, 50, AND 100 YR * &gt;* POST-DEVELOPMENT UNCONTROLLED CONDITIONS * &gt;* POST-DEVELOPMENT UNCONTROLLED CONDITIONS * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * ***********************************</pre>	002008>         RUNOFF VOLUME         (mm)=         23.43         5.17         22.861           002009>         TOTAR ARINFALL (mm)=         23.60         25.00         24.999           00211>         RUNOFF COEFFICIENT =         .94         .21         .915           00212>         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:         .002135         .01************************************
<pre>&gt;* FOR DESIGN SORMS OF 1:2, 5, 10, 25, 50, AND 100 YR * &gt;* POST-DEVELOPMENT UNCONTROLLED CONDITIONS * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * &gt;* TREPO = .00 hrs on 0 * * TIME RAIN * ***********************************</pre>	002008         RUNOFF VOLUME         (mm)=         23.43         5.17         22.861           002009         TOTAR ARINFALL (mm)=         25.00         24.999           002110         RUNOFF COEFFICIENT =         .94         .21         .4.999           002112         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:         .00213         .00213         .01         .0001           002124         (ii) TIME STEP (DT) SHOULD ES SNOLER OR EQUAL         .00214         .01         .01         .02           002135         CM*= 81.0         In = Dep. Storage (Above)         .02         .02         .02         .02
<pre>&gt;* FOR DESIGN SOF 1:2, 5, 10, 25, 50, AND 100 YR * &gt;* FOR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR * &gt;* FOR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR * &gt;* FOR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR * &gt;* FOR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT ** CALCULATION OF 4 HR 25 MM STORM EVENT ** CALCULATION OF 4 HR 25 MM STORM EVENT ** CALCULATION OF 4 HR 25 MM STORM EVENT ** CALCULATION OF 4 HR 25 MM STORM EVENT ** CALCULATION ** CALCULATION OF 4 HR 25 MM STORM EVENT ** CALCULATION ** CALCULATION OF 4 HR 25 MM STORM EVENT ** CALCULATION ** CALCULATION OF 4 HR 25 MM STORM EVENT ** CALCULATION ** CALCUL</pre>	002008         RUNOFF VOLUME         (mm)=         23.43         5.17         22.861           002009         TOTAR ARINFALL (mm)=         25.00         24.999           002110         RUNOFF COEFFICIENT =         .94         .21         .4.999           002112         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:         00213         CM*=         81.0         Ia = Dep. Storage (Above)           00212>         (ii) TIME STEP (DT) SHOULD EE SNALER OR EQUAL         00214         (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.           00215         (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.         00218         001:0007
<pre>&gt; * FOR DESIGN SOF 1:2, 5, 10, 25, 50, AND 100 YR * &gt; * POST-DEVELOPMENT UNCONTROLLED CONDITIONS * &gt; * POST-DEVELOPMENT UNCONTROLLED CONDITIONS * &gt; * CALCULATION OF 4 HR 25 MM STORM EVENT * &gt; * CALCULATION OF 4 HR 25 MM STORM EVENT * &gt; * CALCULATION OF 4 HR 25 MM STORM EVENT * &gt; * CALCULATION OF 4 HR 25 MM STORM EVENT * &gt; * CALCULATION OF 4 HR 25 MM STORM EVENT * &gt; * CALCULATION OF 4 HR 25 MM STORM EVENT * &gt; * CALCULATION OF 4 HR 25 MM STORM EVENT * &gt; * CALCULATION OF 4 HR 25 MM STORM EVENT * &gt; * CALCULATION OF 4 HR 25 MM STORM EVENT * &gt; * CALCULATION OF 4 HR 25 MM STORM EVENT * &gt; * CALCULATION OF 4 HR 25 MM STORM EVENT * &gt; * CALCULATION OF 4 HR 25 MM STORM EVENT * &gt; * TZERO = .00 hrs on 0 * METOUT = 2 (output = METRIC) ************************************</pre>	00208>         RUNOFF VOLUME         (mm)=         23.43         5.17         22.861           00209>         TOTAR ARINFALL (mm)=         25.00         24.999           00210>         RUNOFF COEFFICIENT =         .94         .21         .915           00212>         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:         00213         CN* =         91.0           00212>         (ii) TIME STEP (DT) SHOULD ED SNALLER OR EQUAL         00214         (iii) TIME STEP (DT) SHOULD ED SNALLER OR EQUAL           00215>         (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.         00215           00212>         001:0007
<pre>&gt; * FOR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR * &gt; *</pre>	002008>         RUNOFF VOLUME         (mm) =         23.43         5.17         22.861           002009>         TOTAR ARINFAL (mm) =         25.40         24.999           002110>         RUNOFF COEFFICIENT =         .94         .21         .915           002110>         CM* PROCEDURE SELECTED FOR PERVIOUS LOSSES:         .00213>         .011         .00213>           00212>         (1) CM PROCEDURE SELECTED FOR PERVIOUS LOSSES:         .00213>         .00213>         .00213>           00213>         CM* =         81.0         1 a = Dep. Storage (Above)         .00214           00214>         (11) TIME STREP (DT) SHOULD BE SMALLER OR EQUAL         .00215>         .00217>         .00217>           00217>         (111) FRAK FLOW DORS NOT INCLUDE RASELLOW IF ANY.         .00220>         .00220>         .00220>           002213>
<pre>&gt; * FOR DESIGN SORMS OF 1:2, 5, 10, 25, 50, AND 100 YR * &gt; * POST-DEVELOPMENT UNCONTROLLED CONDITIONS * &gt; * POST-DEVELOPMENT UNCONTROLLED CONDITIONS * &gt; * CALCULATION OF 4 HR 25 MM STORM EVENT * &gt; * CALCULATION OF 4 HR 25 MM STORM EVENT * &gt; * ********************************</pre>	00208>         RUNOFF VOLUME         (mm)=         23.43         5.17         22.861           00209>         TOTAR ARINFALL (mm)=         25.00         24.999           002110>         RUNOFF COEFFICIENT =         .94         .21         .915           002110>         RUNOFF COEFFICIENT =         .94         .21         .915           002112>         (i) CN FROCEDURE SELECTED FOR PERVIOUS LOSSES:         00213         .CM*=         81.0         Ia = Dep. Storage (Above)           00214>         (ii) TIME STEP (DT) SHOULD EE SNALLER OR EQUAL
<pre>&gt;* FOR DESIGN SORMS OF 1:2, 5, 10, 25, 50, AND 100 YR * &gt;* POST-DEVELOPMENT UNCONTROLLED CONDITIONS * &gt;* CALCULATION OF 4 HR 25 MM STORM EVENT * ***********************************</pre>	002208>         RUNOFF VOLUME         (mm)=         23.43         5.17         22.861           002209>         TOTAR ARINFALL (mm)=         25.00         24.999           002110>         RUNOFF COEFFICIENT =         .94         .21         .915           002112>         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:         .00213         .CX*=         915           00212>         (ii) TIME STEP (DT) SHOULD EE SKALLER OR EQUAL         .00213         .CX*=         91.0           00213>         CX*=         91.0         SKOLLD EE SKALLER OR EQUAL         .00215           00214>         (iii) TIME STEP (DT) SHOULD EE SKALLER OR EQUAL         .00215         .00215           00215>         TITAN THE STORAGE COEFFICIENT.         .00217>           00216>         001:0007
<pre>&gt; * FOR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR * &gt; * ********************************</pre>	002208>         RUNOFF VOLUME         (mm) =         23.43         5.17         22.861           002209>         TOTAR ARINFALL (mm) =         25.00         24.999           002110>         RUNOFF COEFFICIENT =         .94         .21         .915           002112>         (i) CN FROCEDURE SELECTED FOR PERVIOUS LOSSES:         .00213         .CX* =         81.0         Ia = Dep. Storage (Above)           002114>         (ii) TIME STEP (DT) SHOULD EE SKALLER OR EQUAL         .00215
<pre>&gt; * FOR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR * &gt; * ********************************</pre>	00208>         RUNOFF VOLUME         (mm)=         23.43         5.17         22.861           00209>         TOTAR ARINFALL (mm)=         25.00         24.999           00211>         RUNOFF COEFFICIENT =         .94         .21         .915           00212>         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:         .00213         .CM*=         91.5           00212>         (ii) TIME STEP (DT) SHOULD EE SNALLER OR EQUAL         .00213
<pre>&gt; * FOR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR * &gt; **********************************</pre>	002008>         RUNOFF VOLUME         (mm) =         23.43         5.17         22.861           002009>         TOTAR ARINFALL (mm) =         25.00         24.999           002110>         RUNOFF COEFFICIENT =         .94         .21         .915           002110>         CM PROCEDURE SELECTED FOR PERVIOUS LOSSES:         .00213         .01         .0213           00212>         (1) TIME STEPE (DT) SHOULD BE SHALLER OR EQUAL         .01         .01         .0215           00213>         (14) TIME STEPE (DT) SHOULD BE SHALLER OR EQUAL         .01         .0215         .01           00215>         (111) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.         .001         .002         .002           00210>         .01:0007
<pre>b * FOR DESIGN SOF 1:2, 5, 10, 25, 50, AND 100 YR *</pre>	002008>         RUNOFF VOLUME         (mm) =         23.43         5.17         22.861           002009>         TOTAR ARINFALL (mm) =         25.00         24.999           002110>         RUNOFF COEFFICIENT =         .94         .21         .915           00212>         (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:         .00213         .00213         .01         .915           00212>         (1) TIME STDE (DT) SHOULD EE SNALLER OR EQUAL         .01         .01         .01         .02           00213>         (11) TIME STDE (DT) SHOULD EE SNALLER OR EQUAL         .02         .02         .02         .01         .00           00215>         (11) TIME STDE (DT) SHOULD EE SNALLER OR EQUAL         .02         .01         .00         .02         .01         .01         .01         .02         .01         .02         .02         .02         .02         .01         .00         .02         .01         .00         .01         .01         .01         .01         .01         .02         .02         .01         .000         .02         .00         .00         .00         .02         .01         .00         .00         .00         .01         .01         .01         .01         .01         .01         .00
<pre></pre>	002008>         RUNOFF VOLUME         (mm) = 23.43         5.17         22.861           002009>         TOTAR ARINFALL (mm) = 25.00         25.00         24.999           002110>         RUNOFF COEFFICIENT = .94         .21         .915           00212>         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:         .00213           00213>         CM* = 81.0         I a = Dep. Storage (Above)           00214         (ii) TIME STDE (DT) SHOULD EE SMALLER OR EQUAL           00215>         THAN THE STORAGE COEFFICIENT.           00216>         (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.           002215>
<pre>&gt; * FOR DESIGN SOF 1:2, 5, 10, 25, 50, AND 100 YR * &gt; * ********************************</pre>	002008>         RUNOFF VOLUME         (mm) =         23.43         5.17         22.861           002009>         TOTAR ARINFALL (mm) =         25.00         24.999           00211>         RUNOFF COEFFICIENT =         .94         .21         .915           00212>         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:         .00213         .00213           00213>         CM* =         81.0         1 m = Dep. Storage (Above)           00214         (ii) TIME STRE (DT) SHOULD EE SMALLER OR EQUAL         .00215           00215>         THAN THE STORAGE COEFFICIENT.         .00216           00216>         (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.         .00217           002218>
<pre>b * FOR DESIGN SOF 12, 5, 10, 25, 50, AND 100 YR *</pre>	002008>         RUNOFF VOLUME         (mm) = 23.43         5.17         22.861           002009>         TOTAR RAINFRAL (mm) = 23.60         25.00         24.999           002110>         RUNOFF COEFFICIENT = .94         .21         .915           00212>         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:         .21         .915           00212>         (ii) TIME STEP (DT) SHOLLD ER SKALLER OR EQUAL
<pre>3 * FOR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR * 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</pre>	002008>         RUNOFF VOLUME         (mm) = 23.43         5.17         22.861           002009>         TOTAR RAINFALL (mm) = 25.60         25.00         24.999           002110>         RUNOFF COEFFICIENT = .94         .21         .915           00212>         (i) FORCEDURE SELECTED FOR PERVIOUS LOSSES:         .0213         .01           00212>         (ii) TIME STEP (DT) SHOLLD EE SNCLEER OR EQUAL         .01         .0213           00213>         (iii) TIME STEP (DT) SHOLLD EE SNCLEER OR EQUAL         .0213         .01           00215>         .01:007
<pre>3 * FOR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR * 5 * POST-DEVELOPMENT UNCONTROLLED CONDITIONS * 5 * CALCULATION OF 4 HR 25 MM STORM EVENT * 5 * CALCULATION OF 4 HR 25 MM STORM EVENT * 5 * CALCULATION OF 4 HR 25 MM STORM EVENT * 5 * CALCULATION OF 4 HR 25 MM STORM EVENT * 5 * CALCULATION OF 4 HR 25 MM STORM EVENT * 5 * CALCULATION OF 4 HR 25 MM STORM EVENT * 5 * CALCULATION OF 4 HR 25 MM STORM EVENT * 5 * CALCULATION OF 4 HR 25 MM STORM EVENT * 5 * CALCULATION OF 4 HR 25 MM STORM EVENT * 5 * CALCULATION OF 4 HR 25 MM STORM EVENT * 5 * CALCULATION OF 4 HR 25 MM STORM EVENT * 5 * CALCULATION OF 4 HR 25 MM STORM EVENT * 5 * CALCULATION OF 4 HR 25 MM STORM EVENT * 5 * CALCULATION OF 4 HR 25 MM STORM EVENT * 5 * CALCULATION OF 4 HR 25 MM STORM EVENT * 5 * CALCULATION OF 4 HR 25 MM STORM EVENT * 5 * CALCULATION OF 4 HR 25 MM STORM EVENT * 5 * CALCULATION OF 4 HR 25 MM STORM EVENT * 5 * CALCULATION OF 4 HR 25 MM STORM EVENT (CHICAGO DI 5 * TIME RAIN * TIME RAIN * * TIME RAIN * * POSTOR* 0 ***********************************</pre>	002008>         RUNOFF VOLUME         (mm) = 23.43         5.17         22.861           002009>         TOTAR RAINFALL (mm) = 25.60         25.00         24.999           002110>         RUNOFF COEFFICIENT = .94         .21         .915           00212>         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:         .00213         .01         .00213           00212>         (ii) TIME STEP (DT) SHOLL BE SWALLER OR EQUAL         .01         .01         .01           00213>         (iii) PEAK ELOW DOES NOT INCLUDE BASETLOW IF ANY.         .002         .002           00210>         (iii) PEAK ELOW DOES NOT INCLUDE BASETLOW IF ANY.         .000           002210>
<pre>4 * FOR DESIGN STORMS OF 1:2, 5, 10, 22, 50, AND 100 YR * 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</pre>	002008>       RUNOFF VOLUME       (mm) = 23.43       5.17       22.861         002009>       TOTAR ARINFALL (mm) = 25.00       25.00       24.999         002110>       RUNOFF COEFFICIENT = .94       .21       .915         002122       (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:       .00213       .00213         00213>       CM* = 81.0       I a = Dep. Storage (Above)       .00214         00214       (ii) TIME STEP (DT) SHOULD EE SMALLER OR EQUAL
<pre>4 * FOR DESIGN STORMS OF 1:2, 5, 10, 22, 50, AND 100 YR * 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</pre>	002008>       RUNOFF VOLUME       (mm) = 23.43       5.17       22.681         002009>       RUNOFF COEFFICIENT = .94       .21       .915         00211>       RUNOFF COEFFICIENT = .94       .21       .915         00212>       (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:       .00213         00213>       CM* = 81.0       In = Dep. Storage (Above)         00214       (ii) TIME STEP (DT) SHOLD BE SMALLER OR EQUAL         00215>       THAN THE STORAGE COEFFICIENT.         00216>       (iii) PEAK FLOW DORS NOT INCLUDE BASEFLOW IF ANY.         00217>
<pre>4 * FOR DESIGN STORMS OF 1:2, 5, 10, 22, 50, AND 100 YR * 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</pre>	002008>         RUNOFF VOLUME         (im) = 23.43         5.17         22.861           002009>         TOTAR RAINFRAL (im) = 23.60         25.00         24.999           002110>         RUNOFF COEFFICIENT = .94         .21         .915           00212>         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
<pre>4 * FOR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR * 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</pre>	002008>         RUNOFF VOLUME         (mm) =         23.43         5.17         22.861           002009>         TOTAR RAINFALL (mm) =         25.00         24.999           002110>         RUNOFF COEFFICIENT =         .94         .21         .915           00212>         (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:         .00213         .00213           00213>         CM* = 81.0         1 a = Dep. Storage (Above)         .00214           00214>         (11) TIME STREP (D7) SHOULD BE SKALLER OR EQUAL         .00215           00215>         THAM THE STGRAGE COEFFICIENT.         .00216           00210>         .001:0007
<pre>4 * POR DESIGN STORMS OF 1:2, 5, 10, 22, 50, AND 100 YR * 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</pre>	002008>         RUNOFF VOLUME         (mm) = 23.43         5.17         22.861           002009>         TOTAR ARINFALL (mm) = 25.00         25.00         24.999           002110>         RUNOFF COEFFICIENT = .94         .21         .915           00212>         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:         .21         .915           00213>         CM* = 81.0         1 a = Dep. Storage (Above)         .21         .915           00214>         (ii) TIME STEPE (DT) SHOLLD BE SMALLER OR EQUAL
<pre>4 * POR DESIGN STORMS OF 1:2, 5, 10, 22, 5, 50, AND 100 YR * 5 **********************************</pre>	002008>         RUNOFF VOLUME         (mm) =         23.43         5.17         22.861           002009>         TOTAR ARINFALL (mm) =         25.00         24.999           002110>         RUNOFF COEFFICIENT =         .94         .21         .915           002112>         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
4 * POR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR * 5 * * * * * * * * * * * * * * * * * * *	002008>         RUNOFF VOLUME         (mm) =         23.43         5.17         22.861           002009>         TOTAR ARINFALL (mm) =         25.00         24.999           002110>         RUNOFF COEFFICIENT =         .94         .21         .915           002112>         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
<pre>4* POR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR * 5 **********************************</pre>	002008>         RUNOFF VOLUME         (mm) = 23.43         5.17         22.861           002009>         TOTAR ARINFALL (mm) = 25.00         25.00         24.999           002110>         RUNOFF COEFFICIENT = .94         .21         .915           00212>         (i) TRA CRUNPALL (mm) = .25.00         25.00         24.999           002110>         CM PROEDURE SELECTED FOR PERVIOUS LOSSES:

J. L. Richards & Associates Limited

 (Ji) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (i.i.i) FRAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00271> 00406> ------00407> 001:0016-----00408> * 00272> 00273> 00274> 00275> 00276> 00277> 00277> 00408> * 00409> * SUB-AREA No.2 00410> 001:001C)----- 
 CALLE STANDHYD
 Area
 (ha)=
 17.00

 03:HIP03
 DT=
 2.50
 Total Imp(%)=
 71.00
 Dir. Conn.(%)=
 50.00
 00411> 00412> 00412> 00413> 00414> 00415> * SUB-AFREA No.5 IMPERVIOUS 12.07 1.57 PERVIOUS (i) 4.93 4.67 1.50 00279> | CALIB STANDHYD | Area (ha)= 2.66 | 07:07C DT= 2.50 | Total Imp(\$)≏ 97.00 Dir. Conn. (\$)= 97.00 Surface Area 00280> 00281> 00282> (ha)= (na) --(nm) = (%) = (m) = = 00413> 00416> 00417> 00418> 00419> 00420> Dep. Storage Average Slope Length Mannings n 
 IMPERVIOUS
 97.00
 Dir. Conn

 Surface Area
 (ha)=
 2.56
 .08

 Degp. Storage
 (mm)=
 1.57
 4.67

 Avezrage Slope
 (%)=
 .61
 1.50

 Lerryth
 (m)=
 207.25
 20.00

 Maranings n
 =
 .030
 250
 .65 450.00 .030 00282> 00283> 00284> 00285> 00285> 00286> 00287> 00288> 100.00 .250 00421> Max.eff.Inten.(mm/hr)= 40.81 17.50 12.73 47.50 vver (min)= over (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 00422> 17.50 47.50 16.94 (11) 47.35 (11) 17.50 47.50 .07 .02 .60 10 00423> 00423> 00424> 00425> 00425> 00288> 00289> 00290> 00292> 00292> 00293> 00293> 00294> 00295> 00295> 00296> 00297> 00298> 00299> Max.eff.Inten.(mm/hr)= 45.63 5.66 over (min) St⇔rage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = 
 10.00
 27.50

 10.37 (ii)
 26.38 (ii)

 10.00
 27.50

 .11
 .04
 *TOTALS* .625 (iii) 1.458 16.085 24.999 .643 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .60 1.42 23.43 25.00 .94 .10 2.00 8.74 25.00 .35 00426> 00427> 00428> 00429> 00430> 00431> 00432> *TOTALS* .238 (iii) 1.292 22.882 .24 .00 1.29 1.67 23.43 5.17 25.00 25.00 .94 .21 PEAK FLOW (cms) = TIME TO PEAK {hrs} = RUNTOFF VOLUME (nmn) = TOTTAL RAINFALL (nmn) = RUNTOFF COEFFICIENT = (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) THEN STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE RASEFLOW IF ANY. 00432> 00433> 00434> 00435> 00435> 00436> 00437> 00299> 00300> 00301> 00302> 00303> 00304> 00304> 24.999 .915 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL TRUM THE STEP (DT) SHOULD BE SMALLER OR EQUAL TRUM THE STORAGE COEFFICIENT.
 (iii) FRAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00438> . 00305-00305-00306-00307-00308-00308-00309-00309-00309-00310-00310-00310-00310-1 ADD HYD (000 ) | ID: NHYD AREA OPEAK TPEAK R.V. 00312-00312-1 DI 06:060 .89 .099 1.25 22.88 00315-1 DI 06:060 .89 .099 1.25 22.88 00315-00315-00315-00315-00316-5 UM 08:080 3.55 .327 1.29 22.88 00315-00316-5 UM 08:080 3.55 .327 1.29 22.88 00439> 0011-----DWF (cms) .000 .000 Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = 11.08 1.57 .50 4.52 4.67 1.50 00450> 00451> 00452> 00453> 00453> .000 600.00 00316> 00317> 00318> NOTE: PEA 00319> 00320> -----00321> 001:0012 -----100.00 Max.eff.Inten. (mm/hr) = over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = 34.39 22.50 11.54 55.00 
 37.30
 16.37

 22.33
 (ii)
 55.00

 23.33
 (ii)
 54.95

 22.50
 55.00
 .02

 .45
 .00
 .17

 23.43
 8.74
 25.00

 .94
 .35
 .35
 00455> 00453> 00456> 00457> 00458> 00459> 00322> 
 AREA
 OPEAK
 TPEAK
 R.V.
 DWF

 (ha)
 (cms)
 (hms)
 (cms)
 (cms)

 5.01
 .396
 1.33
 21.62
 .000

 3.55
 .327
 1.29
 22.88
 .000

 8.56
 .716
 1.29
 22.14
 .000
 DWF *TOTALS* .484 (iii) 1.542 16.085 24.999 .643 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nm) = TOTAL RAINFALL (nm) = RUNOFF COEFFICIENT = 00459> 00460> 00461> 00462> 00463> 00463> 00464> 00465> .716 00465> 00466> 00467> 00468> 00469> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (I) AN FROEDORD SLEELIND FOR FERVIOUS DUSSES;
 (II) AT PARTICLE AND AND ADDRESS AND ADDRE Requested routing time step = 1.0 min. 00470> 
 Instruction Solution
 Construction
 Storage
 International

 OUTFLOW
 STORAGE
 OUTFLOW
 STORAGE
 Camsi
 International

 OUTFLOW
 STORAGE
 OUTFLOW
 STORAGE
 Camsi
 (nternational)

 OUD
 OUD
 OUD
 Storage
 Storage
 Storage

 OUD
 OUD
 OUD
 Storage
 Storage
 Storage

 OUD
 OUD
 Storage
 Storage
 Storage
 Storage

 OUD
 OUD
 Storage
 International
 International
 Storage

 OUD
 OUD
 International
 International
 International
 Storage

 OUD
 Storage
 International
 International
 International
 International

 OUD
 International
 International
 International
 International
 International

 International
 International
 International
 International
 International
 International

 International
 International
 International
 Internat
 <t 00471> 00472> 00472> 00472> 00472> 00472> 00472> 00472> 00472> 00472> 00472> 00472> 00472> 00472> 00472> 00472> 00472> 00472> 00472> 00472> 00472> 00472> 00472> 00472> 00472> 00472 00472> 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 00472 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 00340> 00341> 00342> 00342> 00343> 00344> SUM 05:HIP05 32.60 1.091 1.46 16.08 00344> 00345> 00346> 00347> 00348> 00349> 00350> 00351> 00352> 00353> 00354> 00481> 
 ROUTING RESULTS
 AREA
 QPEAK
 TPEAK

 INFLOW >09:
 (090)
 8.56
 .716
 1.292

 OUTFLOW:10:
 (POND)
 8.56
 .032
 3.875
 R.V. (mm) 22.143 22.141 ROUTING RESULTS PEAK FLOW REDUCTION [Qout/Qin](%)= 4.470 TIME SHIFT OF PEAK FLOW (min)= 155.00 MAXIMUM STORAGE USED (ha.m.)=.1611E+00 00355> SUM 06:HIP06 61.06 1.740 1.50 16.93 \ _____ 00495.-00495.-00495.-00495.-00495.-00495.-00495.-00495.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-00505.-005 00372> 00373> 00374> 00375> 00376> 00376> 00377> 00378> 00380> 00381> 00382> 00383> 00509> 00510> 00512> 00513> 00514> 00514> 00515> 00516> 00517> 00518> 00519> 00519> 34.39 11.90 22.50 52.50 21.64 (11) 52.88 (11) 22.50 52.50 .05 .02 45.63 14.15 10.00 40.00 10.03 (ii) 30.18 (ii) 10.00 40.00 .11 .03 Max.eff.Inten.(mm/hr) = over (min) Storage Coeff. (min) = Unit Hyd.Tpeak (min) = Unit Hyd. peak (cms) = over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= *TOTALS* .585 (iii) 1.292 16.085 24.999 .643 *TOTALS* PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (nm)= TOTAL RAINFALL (nm)= RUNOFF COEFFICIENT = 
 .60
 .11

 1.50
 2.13

 23.43
 8.74

 25.00
 25.00

 .94
 .35
 *TOTALS* .642 (iii) 1.542 16.085 24.999 .643 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .57 .08 1.29 1.88 23.43 8.74 25.00 25.00 .94 .35 00384> 00385> 00386> 00386> 00387> 00388> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) THE STEP (DT) SHOULD BE SMALLER OR BOYAL THAN THE STORAGE COEFFICIENT. (iii) FERK FLOW DOS NOT INCLUDE BASEFICOW IF ANY. 00389> 00390> 00391> _____ QPEAK TPEAK R.V. (cms) (hrs) (mm) .032 3.88 22.14 .642 1.54 16.08 DWF (cms) .000 .000 00400>
00401>
00402> SUM 02:HIP02 28.46 .655 1.54 17.91 000 00403> 00404> 00405> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00539> PEAK FLOW (cms)= .077 (i)

J. L. Richards & Associates Limited

	U. D. RICHAIUS & ASSOCIATES LIMIT
00541> TIME TO PEAK (hrs)= 1.375 00542> RUTNOFF VOLUME (mm)= 6.343	00676> 001:0005
00542> RUENOFF VOLUME (mm) = 6.343 00543> TOTEAL RAINFALL (mm) = 24.999 00544> RUENOFF COFFFICIENT = .254	00677> * 00678> * SUB-AREA No.2 00679>
00545> 00546> (i ) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	00680>   CALIB STANDHYD   Area (ha)= 1.54 00681>   02:020 DT= 2.50   Total Imp(%)= 92.00 Dir. Conn.(%)= 92.00
00547> 00548>	00682> IMPERVIOUS PERVIOUS (1)
00550>	00684> Surface Area (ha)= 1.42 .12 00685> Dep. Storage (mm)= 1.57 4.67
00551>   ADD H'YD (HIP08)   ID: NHYD AREA QPEAK TPEAK R.V. DWF 00552>	00687> Length (m)= 244.34 5.00
00555> +ID2 07:HIP07 12:20 585 1:29 16:08 .000 00555> +ID3 08:Pond-B 4.00 .077 1:38 6:34 .000	00688> Mannings n = .030 .030 00689> 00690> Max.eff.Inten.(man/hr)= 76.81 15.07
00556> SUM 09:HIP08 77.26 2.227 1.46 16.25 .000	00691> 0ver (min) 10.00 12.50 00692> Storage Coeff. (min)= 9.87 (ii) 11.36 (ii)
00558> 00559> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	00693> Unit Hyd. Tpeak (min)= 10.00 12.50 00694> Unit Hyd. peak (cms)= .11 .10
00560> 00561>	00695> *TOTALS* 00696> PEAK FLOW (cms)= .19 00 192 (311)
00562 001 002 5 00563 * 00564> *SUB-AREA NO. 6	00697>         TIME TO PEAK         (hrs)=         1.08         1.17         1.063           00689>         RUNOFF VOLUME         (mm)=         30.29         8.52         28.548           00689>         TOTAL RAINFALL         (mm)=         31.86         31.86         31.86
00565> *	00699>         TOTAL RAINFALL         (mm) =         31.86         31.86         31.860           00700>         RUNOFF COEFFICIENT =         .95         .27         .896           00701>
00567>   DESIGN NASHYD   Area (ha)= 2.70 Curve Number (CN)=76.00 00568>   01:A3 DT= 2.50   Ia (mm)= 4.670 # of Linear Res.(N)= 3.00	00702> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 00703> CN* = 81.0 Ia = Dep. Storage (Above)
00569> U.H. Tp(hrs)= .800 00570> Unit Hyd Qpeak (cms)= .129	00705> THAN THE STORE COEFICIENT.
00571> Unit Hyd Qpeak (cms)= .129 00572> 00573> PE74K FLOW (cms)≈ .013 (i)	00706> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00707>
005745 TIDE TO PEAK (http:///2.222 0057555 RUNYOFF VOLUME (nm) = 4.110 005765 TOTIL RUNFALL (nm) = 24.999	00708>
00577> RUNOFF COEFFICIENT = .164	00711> * SUB-AREA No.3
00578> 00579> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	00713>   CALIE STANDHYD   Area (ha)= 1.40 00714>   03:030 DT= 2.50   Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00
00580> 00581>	00715> IMPERVIOUS PERVIOUS (i)
005827 001:0024 005837 005845   ADD HYD (Ultima)   ID: NHYD AREA QPEAK TPEAK R.V. DWF	00717> Surface Area (ha)= 1.36 .04 00718> Dep. Storage (mm)= 1.57 4.67 00719> Average Slope (%)= .51 1.00
00585> (ha) (cms) (hrs) (mm) (cms) 00586> ID1 09:HIP08 77.26 2.227 1.46 15.25 000	00719> Average Slope (%)= .51 1.00 00720> Length (m)= 225.63 5.00 00721> Mannings n = .030 .030
00587> +ID2 01:A3 2.70 .013 2.29 4.11 .000 00588>	00722> 00723> Max.eff.Inten.(mm/hr)= 76.81 16.59
00589> SUM 02:Ultima 79.96 2.231 1.46 15.84 .000 00590>	00724> over (min) 10.00 10.00 00725> Storage Coeff. (min)= 9.35 (ii) 10.79 (ii)
00591> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00592> 00593>	00726> Unit Hyd. Tpeak (min)= 10.00 10.00 00727> Unit Hyd. peak (cms)= .12 .11
00594> 001:0025	00728> *TOTALS* 00729> PEAK FLOW (cms)= .18 .00 .186 (iii) 00730> TIME TO PEAK (hrs)= 1.08 1.13 1.083
00596> * CALCULATION OF 3HR - 1:2 YEAR STORM EVENT *	00730> TIME TO PEAK (hrs)= 1.08 1.13 1.003 00731> RUNOFF VOLUME (mm)= 30.29 8.52 29.637 00732> TOTAL RAINFALL (mm)= 31.66 31.86 31.860
00598>	00733> RUNOFF COEFFICIENT = .95 .27 .930
00600>	00735> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 00736> CN* = 81.0 Ia = Dep. Storage (Above)
00602> MRUN = 001 00603> NRUN = 001 00604> NSTORM= 0	00737> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 00738> THAN THE STORAGE COEFFICIENT.
06665 001:0002	00739> (iii) PEAK PLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00740> 00741>
00607>	00742> 001:0007
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00744>   ADD HYD (040 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF
00611> used in: INTENSITY = A / (t + B)^C 00612> Duration of storm = 3.00 brs	00746> ID1 01:010 2.07 .245 1.08 26.81 .000 00747> +ID2 02:020 1.54 .192 1.08 28.55 .000
00613>         Duration of storm = 3.00 hrs           00614>         Storm time step = 10.00 min           00615>         Time to peak ratio = .33	00748> 00749> SUM 04:040 3.61 .436 1.08 27.55 .000 00750>
00616> 00617> TIME RAIN   TIME RAIN   TIME RAIN   TIME RAIN	00751> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00752>
00618> hrs mm/hr   hrs mm/hr   hrs mm/hr   hrs mm/hr 00619> .17 2.815   1.00 76.805   1.83 5.095   2.67 2.684	00753>0001:0008
00620>         .33         3.498         1.17         24.079         2.00         4.291         2.83         2.463           00621>         .50         4.667         1.33         12.364         2.17         3.718         3.00         2.279           00622>         .67         7.305         1.50         8.324         2.33         3.288	00755>
00622> .67 7.305   1.50 8.324   2.33 3.288   00623> .63 18.209   1.67 6.303   2.50 2.953   00624>	00757>          (ha)         (cms)         (hrs)         (mm)         (cms)           00758>         ID1 03:030         1.40         .186         1.08         29.64         .000           00759>         +ID2 04:040         3.61         .435         1.08         27.55         .000
00625>	00755> +1D2 04:040 3.61 .436 1.08 27.55 .000 00760> 00761> SUM 05:050 5.01 .623 1.08 28.13 .000
00627>	00762> 00763> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
	00764> 00765>
00633> PARAMETER VALUES MUST BE ENTERD AFTER COLUMN 60 00632> Horton's infiltration equation parameters: 00633> [Fo= 50.00 mm/hr] [DEM-7.50 mm/hr] [DEM-2 2.00 /hr] [F= .00 mm.]	00765> 001:0009 00767> * 00768> * SUB-AREA No.4
00634> Parameters for PERVIOUS surfaces in STANDHYD: 00635> [IAper= 4.67 mm] [LGP=40.00 m] [MNP= .250]	00765/ 30574824 85.4 00765/
00636> Parameters for IMPERVIOUS surfaces in STANDHYD: 00637> [IAimp= 1.57 mm] [CLI= 1.50] [MNI= .035]	00771>   06:060 DT= 2.50   Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 00772>
00638> Parameters used in NASHYD: 00639> [Ia= 4.67 mm] [N= 3.00]	00773> IMPERVIOUS PERVIOUS (i) 00774> Surface Area (ha)= .86 .03
00640>	00775> Dep.Storage (mm)= 1.57 4.67 00776> Average Slope (%)= .93 .70 00777> Length (m)= 164.82 40.00
00643> * ORGAWORLD FILE * 00644> ********************************	00778> Mannings n = .030 .250
00645> * SUB-AREA No.1 00646>	00780> Max.eff.Inten.(mm/hr)= 76.81 10.24 00781> over (min) 7.50 30.00
00647>   CALIE STANDHYD   Area (ha)= 2.07 00648>   01:010 DT= 2.50   Total Imp(%)= 84.00 Dir. Conn.(%)= 84.00	00782> Storage Coeff. (min)= 6.47 (ii) 30.53 (ii) 00783> Unit Hyd. Tpeak (min)= 7.50 30.00
00649> IMPERVIOUS PERVIOUS (i) 00650> Surface Area (ha)= 1.74 .33	00785> Unit Hyd. peak (cms)= .16 .04 *TOTALS*
00651> Surface Area (ha)= 1.74 .33 00652> Dep. Storage (mm)= 1.57 4.67 00653> Average Slope (%)= .52 1.00	00786> PEAK FLOW (cms)= .14 .00 .139 (iii) 00787> TIME TO PEAK (hrs)= 1.04 1.54 1.042 00788> RUNDEF VOLUME (mm)= 30.29 8.52 29.637
00654> Length (m)= 204.72 20.00 00655> Mannings n = .030 .250	00789> TOTAL RAINFALL (mm)= 31.86 31.860 00790> RUNOFF COEFFICIENT = .95 .27 .330
00656> 00657> Max.eff.Inten.(mm/hr)= 76.81 11.88	00791> 00792> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
00658> over (min) 10.00 22.50 00659> Storage Coeff. (min)= 8.77 (ii) 22.21 (ii) 00660> Unit Hyd. Tpeak (min)= 10.00 22.50	00793> CN* = 81.0 Ia = Dep. Storage (Above) 00794> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
00660> Unit Hyd. Tpeak (min)= 10.00 22.50 00661> Unit Hyd. peak (cms)= .12 .05 *TOTALS*	00795> THAN THE STORAGE COEFFICIENT. 00796> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00797>
00663> PEAK FLOW (cms)= .24 .01 .245 (iii) 00664> TIME TO PEAK (hrs)= 1.08 1.38 1.083	00798>
00665>         RUNOFF VOLUME         (mm) =         30.29         8.52         26.807           00666>         TOTAL RAINFALL         (mm) =         31.86         31.86         31.860	00800> * 00801> * SUB-AREA NO.5
00667> RUNOFF COEFFICIENT = .95 .27 .841 00668>	00802> 00803>   CALIB STANDHYD   Area {ha}= 2.66
00669> (i) CM PROCEDURE SELECTED FOR PERVIOUS LOSSES: 00670> CM*= 81.0 Ia = Dep. Storage (Above) 00671> (ii) THME STEP (DT) SHOULD BE SWALLER OR DEQUAL	00804>   07:070 DT= 2.50   Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 00805>
00672> THAN THE STORAGE COEFFICIENT. 00673> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	00805>         IMPERVIOUS         PERVIOUS         (i)           00807>         Surface Area         (ha)=         2.58         .08           00808>         Dep. Storage         (mm)=         1.57         4.67
00674> 00675>	00803>         Average Slope         (%)=         .57         4.57           00803>         Average Slope         (%)=         .61         1.50           00810>         Length         (m)=         207.25         20.00

J. L. Richards & Associates Limited

00811> Marmings n = .030 .250	00946> Storage Coeff. (min)= 14.60 (ii) 37.80 (ii)
00812> 00813> Manst.eff.Inten.(nm/hr)= 76.81 12.71 00814> over (min) 7.50 20.00	00947> Unit Hyd. Tpeak (min)= 15.00 37.50 00948> Unit Hyd. peak (cms)= .08 .03
00814> over (min) 7.50 20.00 00815> Stesrage Coeff. (min)= 8.42 (ii) 20.00 (ii) 00816> Un≦t Hyd. Tpeak (min)= 7.50 20.00	00949> *TOTALS*
00817> Unit Hyd. peak (cms)= .14 .06	OU950/         PEAK FLOW         (cms)=         .91         .19         .978 (iii)           00951>         TIME TO PEAK (hrs)=         1.17         1.63         1.167           00952>         RUNOFF VOLUME (mm)=         30.29         13.34         21.814           00954>         TOTAL RAINFALL (mm)=         31.86         31.866         31.860           00954>         RUNOFF COEFFICIENT         =         .95         .42         .685
	00953> TOTAL RAINFALL (mm)= 31.86 31.86 31.860 00954> RUNOFF COEFFICIENT = .95 .42 .685
00820>         TIPES TO PEAK (Lms)=         .35         .00         .39 (111)           00820>         TIPES TO PEAK (Lms)=         1.04         1.33         1.042           00821>         RUTNOFF VOLUME (mm)=         30.29         8.52         29.637           00822         TOTAL RAINFALL (mm)=         31.86         31.860	00956> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES.
00823> RUNIOFF COEFFICIENT = .95 .27 .930 00824>	00958> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
00825> (i) CN PROCEDURE SELECTED FOR DEPUTOUS LOSSES.	00959> THAN THE STORAGE COEFFICIENT. 00960> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00961>
008265 CM* = 81.0 Ia = Dep. Storage (Above) 008275 (ii) TIME STEP (DT) SHOULD BE SARLLER OR EQUAL 008285 THAN THE STORAGE COEFFICIENT.	00962>
00829> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00830>	00963 * 00965 * SUB-AREA No.3
00831> 00832> 001:0011	
00833>	00966>
00835> (ha) (cms) (hrs) (mm) (cms) 00836> TD 06:060 89 130 104 29 54 000	00070
	00972> Dep. Storage (nm) = 1.57 4.67 00973> Average Slope (%) = .50 1.50
00839> SUM 08:080 3.55 .518 1.04 29.64 .000 00840>	DUSyD>         IMPERVIOUS         PERVIOUS (1)           00371>         Surface Area (ha) =         11.08         4.52           00372>         Dep. Storage (nm) =         1.57         4.67           00974>         Average Slope (\$) =         .50         1.50           00974>         Length (m) =         600.00         100.00           00974>         Mannings n         =         0.30         .250
00841> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00842>	00976> 00977> Max.eff.Inten.(mm/hr)= 50.44 22.17
00843>	00978> over (min) 20.00 45.00 00979> Storage Coeff. (min)= 20.03 (ii) 44.37 (ii)
00845>	00980> Unit Hyd. Tpeak (min)= 20.00 45.00 00981> Unit Hyd. peak (cms)= .06 .03
00847> (ha) (cms) (hrs) (nm) (cms) 00848> ID1 05:050 5.01 .623 1.08 28.13 .000	00982>
00849> +ID2 08:080 3.55 .518 1.04 29.64 .000 00850>	00984> TIME TO PEAK (nrs) = 1.25 1.79 1.292 00985> RUNOFF VOLUME (nma) = 30.29 13.34 21.814
00851> SUM 09:090 8.56 1.118 1.08 28.76 .000 00852>	003877 RONOFF CONFFICIENT = ,95 ,42 ,685
00853> NOTE: FEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00854> 00855>	00988>
00855>	009895 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 009905 CN* = 81.0 I = Dep. Storage (Above) 009915 (ii) THE STEP (DT) SHOULD BE SWALLER OR EQUAL
00858>   ROUTE RESERVOIR   Requested routing time step = 1.0 min	00992> THAN THE STORAGE COEFFICIENT. 00993> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
00850>   IN>09: (090 )   00850>   OUTK10: (20MD )   00850>   OUTK10: (20MD )   00850> ====================================	00994> 00995>
00862> (cms) (ha.m.) (cms) (ha.m.)	00996> 001:0018
00864> .008 .6560E-01   .654 .6631E+00	00997> 00996>   ADD HYD (HIPO5 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF 00999> (ha) (cms) (hrs) (mm) (cms)
00866> ,093 ,2831E+00   ,950 ,8274E+00	00999> (ha) [cms] (mrs] (cms) 01000> ID1 03:HIP03 17.00 .978 1.17 21.81 .000 01200> +ID2 04:HIP04 15.60 .753 1.29 21.81 .000
00858> .337 .47312+00 1.880 .10042+01	01002> SUM 05:HIP05 32.60 1.698 1.21 21.81 .000
00859> .465 .5491E+00   2.577 .1092E+01 00870> .531 .5871E+00   .000 .0000E+00 00871>	01004> 01005> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
00872> ROUTING RESULTS AREA QPEAK TPEAK R.V.	01006> 01007>
00874> INFLOW >09: (090 ) 8.56 1.118 1.083 28.757	01008> 001:0019
00876>	01010>   ADD HYD (HIP06)   ID: NHYD AREA QPEAK TPEAK R.V. DWF 01011> (ha) (cms) (hrs) (nm) (cms)
00878> TIME SHIFT OF PEAK FLOW (min)= 115.00	01012> ID1 05:HIP05 32.60 1.698 1.21 21.81 .000 01013> +ID2 02:HIP02 28.46 1.039 1.25 23.90 .000
00879> MAXIMUM STORAGE USED (ha.m.)=.2095E+00 00880> 00880>	01014> 01015> SUM 06:HIP06 61.06 2.733 1.21 22.79 .000
00882> 001:0014	01016> 01017> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01018>
00884> * Remaining Hawthorne Industrial Park * 00885> *******	01019>
00886> * 00887> * SUB-AREA No.1	01020> 001:0020 01021> * 01022> * SUB-AREA No.4
008865 * 008875 * SUB-AREA No.1 008995	01021> * 01022> * SUB-AREA No.4
00866 * 00887 - * SUB-AREA No.1 00887 008889 - CALIE STANDHYD   Area (ha)= 19.90 00890 >   01:HIPO1 DT= 2.50   Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 00891	01021> * 01022> * SUB-AREA No. 4
00865 * 50E-AREA No.1 00885 - * 50E-AREA No.1 00885 - CALIE STANDHYD   Area (ha)= 19.90 00885   CALIE STANDHYD   DT= 2.50   Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 00892 - MPERVIOUS PERVIOUS (i) 00893 Surface Area (ha)= 14.13 5.77	01021> * 01022> * SUB-AREA No.4 01023> 01024>   CALIB STANDHYD   Area (ha)= 12.20 01024>   CALIB STANDHYD   Area (ha)= 12.20 01025>   07:HIPO' Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 01025> IMPERVIOUS PERVIOUS (j)
00886> * 00887> * SUB-AREA No.1 00887>	01021>* 01022> * SUB-AREA No.4 01023> 01024> * SUB-AREA No.4 01023> 01024>   CALIB STANDHYD   Area (ha)= 12.20 01025>   07:HIP07 DT= 2.50   Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 01026> 01026> UPERVIOUS PERVIOUS (i) 01026> Surface Area (ha)= 6.66 3.54 01029> Dep. Storage (mm)= 1.57 4.67 01029> Average Slope (%)= 70 1 50
00866 *       *         00887 -       *         00888 >          00888 >          00888 >          00889 >          00889 >          00889 >          00890 >       01:HIPO1 DT= 2.50           00892 >       IMPERVIOUS         00893 >       Surface Area         00894 >       Dep _ Storage (mm) =         00895 >       Average Slope (%) =         00895 >       Length (m) =         00895 >       Manrings n         -       -	01021>* 01022> * SUB-AREA No.4 01023> 01024> * SUB-AREA No.4 01024> 01024>   CALIE STANDHYD   Area (ha)= 12.20 01024>   CALIE STANDHYD   Area (ha)= 12.20 01025>   07:HTP07 DT= 2.50   Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 01026> 01027> IMPERVIOUS PERVIOUS (i) 01028> Surface Area (ha)= 6.66 3.54 01029> Dep. Storage (mm)= 1.57 4.67 01030> Average Slope (%)= .70 1.50 01031> Length (m)= 210.00 100.00 01032> Mannings n = .030 .250
00866 *         00887 -         00887 -         00888 -         00887 -         00887 -         00887 -         00887 -         00887 -         00887 -         00887 -         00887 -         00887 -         00887 -         00887 -         00887 -         00887 -         00892 -         00892 -         00893 -         00893 -         Surface Area         (ha) =         161 -         00893 -         Surface Area         (ha) =         161 -         00894 -         Dep -         Storage (mm) =         161 -         161 -         162 -         163 -         164 -         165 -         165 -         166 -         169 -         169 -         169 -         169 -         169 -         160 -         160 -         161 -         162 -         163 -	01021>* 01022> * SUB-AREA No.4 01023> 01024> * SUB-AREA No.4 01025>   CALIE STANDHYD   Area (ha)= 12.20 01025>   07:HTP07 DT= 2.50   Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 01026> 01027> IMPERVIOUS PERVIOUS (i) 01028> Surface Area (ha)= 8.66 3.54 01029> Dep. Storage (mm)= 1.57 4.67 01030> Average Slope (%)= .70 1.50 01031> Length (m)= 210.00 100.00 01032> Manings n = .030 .250 01033> 01034> Max.eff.Inten.(mm/hr)= 76.81 29.02
00865 *       \$UB-AREA No.1         00885 -          00885 -          00885 -          00885 -          00885 -          00885 -          00885 -          00885 -          00892 -       IMPERVIOUS       PERVIOUS (1)         00893 -          00893 -          00893 -       Nurface Area (ha) =       14.13         00894 -       Dep _ Storage (mm) =       1.57       4.67         00895 -       Average Slope (%) =       60       1.50         00895 -       Mannings n      030       .250         00895 -       Max eff.Inten.(mm/hr) =       54.21       23.06         00900 -       over (min)       17.50       42.50         00900 -       over (min) =       10.40 (i) 42.02 (i)       10.10	0 1022 > * 5UB-AREA No. 4 0 1022 > * 5UB-AREA No. 4 0 1022 > * 5UB-AREA No. 4 0 1022 > [CALIE STANDHYD ] Area (ha)= 12.20 0 1025 > [07:HIP07 DT= 2.50 ] Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 0 1026 >
00865 *       \$UB-AREA No.1         00885 -       CALIB STANDBYD   Area (ha)= 19.90         00885 -       Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00         00885 -       D11HIPO1 DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00         00892 -       IMPERVIOUS PERVIOUS (1)         00893 -       Surface Area (ha)= 14.13         00894 -       Dep. Storage (mm)= 1.57         00895 -       Average (slope (%)= .60         00895 -       Average slope (%)= .60         00895 -       Manrings n         00895 -       Marrings n         00895 -       Marrings n         00895 -       Storage Coeff. (min)= 17.50         00895 -       Unit Hyd. Tpeak (min)= 17.50         00900 -       Unit Hyd. Tpeak (min)= 17.50         009002 -       Unit Hyd. Tpeak (min)= .06	
00886. *         00887. * SUB-AREA No.1         008885 *         00885 *         00885 *         00885 *         00885 *         00885 *         00885 *         00885 *         00885 *         00885 *         00885 *         00885 *         00885 *         00885 *         00885 *         00895 *         00895 *         00895 *         00895 *         00895 *         00895 *         00895 *         00895 *         00895 *         00895 *         00895 *         00895 *         00895 *         00895 *         00895 *         00895 *         00895 *         00895 *         00895 *         00895 *         00895 *         00895 *         00895 *         00895 *         00895 *         00905 *         00905 *         00905 *         00905 *         00905 *         00905 *	01022> *       SUB-AREA No.4         01022> *       SUB-AREA No.4         01022> *       CALIE STANDHYD 1 Area (ha)= 12.20         01024>   CALIE STANDHYD 1 DT= 2.50   Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00         01025>   07:HIP07 DT= 2.50   Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00         01026>
00886. * 00887. * SUB-AREA No.1 00885. * 00885. * 00885. * 00885. * 00885. * 00885. * 00885. * 00885. * 00895. * 00905. * 00	
000865 * 000875 * SUB-AREA No.1 000885 - CLLIB STANDHYD   Area (ha)= 19.90 000895   CLLIB STANDHYD   Area (ha)= 71.00 Dir. Conn. (%)= 50.00 000892 - 000922 - 000925 - 000945 Dep. Storage (mm)= 14.13 000954 Dep. Storage (mm)= 1.57 000954 Dep. Storage (mm)= 1.57 000955 Average Slope (%)= .60 1.50 000956 Length (m)= 580.00 00095 Max.eff.Inten.(mm/hx)= 54.21 23.06 009905 max.eff.Inten.(mm/hx)= 54.21 23.06 009905 Unit Hyd. Tpeak (mn)= 17.50 00905 Vunit Hyd. Tpeak (mn)= 17.50 00905 Vunit Hyd. Tpeak (mn)= .06 00905 PEAK FLOW (cms)= .05 00905 PEAK FLOW (cms)= .21 00905 TIMEE TO PEAK (hrs)= 1.21 00905 TIMEE TO PEAK (hrs)= .21 00905 TOTAL RAINFALL (mm)= 33.86 31.86 31.86 00905 TOTAL RAINFALL (mm)= .55 .42 .65 .42 .65 .42 .65 .42 .65 .42 .65 .42 .65 .42 .65 .42 .65 .42 .65 .42 .65 .42 .65 .42 .65 .42 .65 .44 .65 .44 .65 .44 .65 .44 .65 .44 .65 .44 .65 .44 .65 .44 .65 .44 .65 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .44 .55 .55	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
00886. * 00887 - SUB-AREA No.1 00885 - CLLIB STANDHYD   Area (ha)= 19.90 00885   CLLIB STANDHYD   Area (ha)= 71.00 Dir. Conn. (%)= 50.00 00895   01:HIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 00895   D1:HIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 00895   D1:HIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 00895   D1:HIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 00895   D1:HIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 00895   D2:HIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 00895   D2:HIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 00895   D2:HIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 00905   D2:HIPOI DT= 2.50   Total DT= 5.50	$ \begin{array}{c} 0 10223 \\ 0 10223 \\ \hline \\ 0 10223 \\ \hline \\ 0 10225 \\ \hline \\ 0 10225 \\ \hline \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 2 \\ 0 0 0 2 \\ 0 0 0 0$
00886. * 00887 - * SUB-AREA No.1 00888 00888 00889 00889 00889 00892 00892 00892 00892 00892 00892 00892 00893 - Surface Area (ha) = 14.13 5.77 4.13 5.77 4.14 5.77 4.15 4.15 4.15 5.77 4.15 4.15 4.15 5.75 4.15 5.75 5.15 5.75 5.15 5.75 5.15 5.75 5.15 5.75 5.15 5.75 5.15 5.75 5.15 5.75 5.15 5.75 5.15 5.7	$ \begin{array}{c} 0 10223 \\ 0 10223 \\ \hline \\ 0 10223 \\ \hline \\ 0 10225 \\ \hline \\ 0 10225 \\ \hline \\ 0 10225 \\ \hline \\ 0 0 1025 \\ \hline \\ 0 0 1032 \\ \hline \\ 0 0 1032 \\ \hline \\ 0 0 1033 \\ \hline \\ 0 1035 \\ \hline \\ 0 1043 \\ \hline \\ 0 1045 \\ \hline \\ 0 105 \\ \hline \\ $
00886. * 00887 - SUB-AREA No.1 00885 - CLLIB STANDHYD   Area (ha)= 19.90 00885   CLLIB STANDHYD   Area (ha)= 71.00 Dir. Conn. (%)= 50.00 00895   01:HIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 00895   D1:HIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 00895   D1:HIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 00895   D1:HIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 00895   D1:HIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 00895   D2:HIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 00895   D2:HIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 00895   D2:HIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 00905   D2:HIPOI DT= 2.50   Total DT= 5.50	$ \begin{array}{c} 0 10221 > * \\ 0 10223 > * SUB-AREA No.4 \\ 0 10223 > & \\ 0 10224 & \\ 0 10225 & & \\ 0 10225 & & \\ 0 0 1025 & & \\ 0 0 1025 & & \\ 0 0 1025 & & \\ 0 0 1025 & & \\ 0 0 1025 & & \\ 0 0 1025 & & \\ 0 0 1025 & & \\ 0 0 1025 & & \\ 0 0 1025 & & \\ 0 0 1025 & & \\ 0 1025 & & \\ 0 1025 & & \\ 0 1025 & & \\ 0 1025 & & \\ 0 1025 & & \\ 0 1025 & & \\ 0 1025 & & \\ 0 1025 & & \\ 0 1025 & & \\ 0 1025 & & \\ 0 1025 & & \\ 0 1025 & & \\ 0 1025 & & \\ 0 1025 & & \\ 0 1025 & & \\ 0 1023 & & \\ 0 1032 & & \\ 0 1033 & & \\ 0 1033 & & \\ 0 1033 & & \\ 0 1033 & & \\ 0 1033 & & \\ 0 1033 & & \\ 0 1033 & & \\ 0 1035 & & \\ 0 1035 & & \\ 0 1043 & & \\ 0 1043 & & \\ 0 1043 & & \\ 0 1043 & & \\ 0 1043 & & \\ 0 1043 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1045 & & \\ 0 1046 & & \\ 0 1045 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & \\ 0 1046 & & $
00886. * 00887 - * SUB-AREA No.1 00885 - * * SUB-AREA No.1 00885 - * * SUB-AREA No.1 00885 - * * * * * * * * * * * * * * * * * *	01022>*       SUB-AREA No.4         01022>*       SUB-AREA No.4         01022>*       CALIE STANDEND 1       Area (ha)= 12.20         01024>       ICALIE STANDEND 1       Area (ha)=       Total Imp(\$)= 71.00         01025>       IO7:HIPO7 DT=2.50         Total Imp(\$)= 71.00       Dir. Conn.(\$)= 50.00         01025>       ID7:HIPO7 DT=2.50         Total Imp(\$)= 71.00       Dir. Conn.(\$)= 50.00         01025>       Surface Area (ha)=       8.66       3.54         01025>       Dep. Storage (mm)=       1.57       4.67         01035       Average Slope (m)=       2.57       4.67         01032       Mannings n       -0.00       .250         01033>       Max.eff.Inten.(mm/hr)=       76.81       29.02         01034>       Mannings n       -0.00       .250         01035       Storage Coeff. (min)=       8.15 (ii) 30.01 (ii)         01035       Unit Hyd. Tpeak (cms)=       .14       .04         01038       Unit Hyd. Treak (mm)=       30.29       13.34       21.84         01040>       PEAK FLOW (cms)=       .91       .16       .941 (iii)         01041>       TIMP TO PERA (hrs)=       .104       .150       .042         01042>
000865 * 5UB-AREA No.1 00885 - SUB-AREA No.1 00885 - SUB-AREA No.1 00885 - CLIB STANDHYD   Area (ha)= 19.90 008895   CLIB STANDHYD DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 008915 - Totage (ha)= 14.13 5.77 008925 - MPERVIOUS PERVIOUS (i) 008925 - Surface Area (ha)= 1.57 4.67 008945 Dep. Storage (hmm)= 1.57 4.67 00895 Marnings60 1.50 008957 - Margth (ha)= 580.00 100.00 008959 - Marrings030 .230 008995 - Marrings030 .230 008995 - Marrings030 .230 009905 - Over (min) 17.50 42.50 009005 - Unit Hyd. Tpeak (cms)= .06 .03 *TOTALS* 009005 PEAK FLOW (cms)= .06 .03 *TOTALS* 009005 PEAK FLOW (cms)= .06 .03 *TOTALS* 009005 PEAK FLOW (cms)= .32.8 1.860 009007 RUNCPF VOLUME (mm)= 30.29 13.34 21.814 009005 PEAK FLOW (cms)= .05 .42 .685 009017 Storage Coeff. (min)= 13.66 31.866 009007 RUNCPF VOLUME (mm)= 30.29 13.34 21.814 009005 PEAK FLOW (cms)= .55 .42 .685 00912 (i) CN PECEURE SELECTED FOR PERVIOUS LOSSES: 00912 (i) CN = 01.0 Im = Dep. Storage (Above) 00912 (i) THE STEP (DD) SHOULD BE SEMILER OF PERVIOUS LOSSES: 00912 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00915	01022>*       SUB-AREA No.4         01022>*       SUB-AREA No.4         01022>*       CALIE STANDEND 1       Area (ha)=       12.20         01024>       ICALIE STANDEND 1       Area (ha)=       12.20         01025>       IO7:HIPO7 DT=2.50         Total Imp(\$)=       71.00       Dir. Conn. (%)=       50.00         01025>       IO7:HIPO7 DT=2.50         Total Imp(\$)=       71.00       Dir. Conn. (%)=       50.00         01025>       Surface Area (ha)=       8.66       3.54         01025>       Dep. Storage (mm)=       1.57       4.67         01025>       Average Slope (%)=       .70       1.50         01033       Mannings n       -0.30       .250         01034>       Mannings n       -0.30       .250         01035       storage Coeff. (min)=       7.50       30.00         01036       Unit Hyd. Tpeak (mm)=       .14       .04         01038       Unit Hyd. TPEK (fram)=       30.29       13.34       21.814         01040>       PERK FLOW       (cms)=       .91       .16       .941 (111)         01042>       RUNOFF COEFFICIENT (mm)=       30.29       13.34       21.814         01040>       CANFF COEFFICIENT = </td
000865 * 000875 * SUB-AREA No.1 000885 - 000885 - 000885 - 000885   CALIB STANDHYD   Area (ha)= 19.90 000895   OliHIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 000895   DiHIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 000895   Difield DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 000895   Difield DT= 2.50   Difie	01022>*       SUB-AREA No.4         01022>*       SUB-AREA No.4         01022>*       ICALIE STANDHYD 1       Area (ha)= 12.20         01024>       IOT:HPO7 DT=2.50 1       Total Imp(%)= 71.00       Dir. Conn.(%)= 50.00         01025>       IOT:HPO7 DT=2.50 1       Total Imp(%)= 71.00       Dir. Conn.(%)= 50.00         01025>       IDT:ALPO7 DT=2.50 1       TOTAL Imp(%)= 71.00       Dir. Conn.(%)= 50.00         01025>       IDT:ALPO7 DT=2.50 1       IMPERVIOUS       PERVIOUS (i)         01025>       Dap Storage (mm)= 1.70       4.67         01030>       Mannings n       .030       .250         01033>       Mannings n       .030       .250         01034>       Max.eff.Inten.(mm/hr)= 76.81       29.02         01035>       over (min) 7.50       30.00         01035       storage Coeff. (min)= 8.15 (ii) 30.01 (ii)         01035       Unit Hyd. Teak (ms)= 7.50       30.00         01035       Unit Hyd. Teak (ms)= .14       .04         01035       TIME TO FERK (he]= 1.04       1.50       1.642         01040>       PEAK FLOW (cms)= .91       .16       .941 (iii)         01041>       TIME TO FERK (he]= 1.04       1.50       1.642         01044>
000865 * 50E-AREA No.1 00885 - SUE-AREA No.1 00885 - SUE-AREA No.1 00885 - SUE-AREA No.1 00885 - CALIB STANDHYD   Area (ha)= 19.90 00880   01:HFPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 00882 - Direct Area (ha)= 14.13 5.77 00892 - Direct Area (ha)= 14.13 5.77 00895 - Direct Area (ha)= 14.13 5.77 00895 - Direct Area (ha)= 1.53 4.57 00895 - Direct Area (ha)= 1.54 4.57 00895 - Direct Area (ha)= 0.58 0.00 100.00 00897 - Manrings n 580.00 100.00 00899 - Marrings n 580.00 100.00 00900 - Over (min) 17.50 42.50 00900 - Unit Hyd. Teak (mn)= 18.04 (ii) 42.02 (ii) 00900 - Unit Hyd. Teak (mn)= 55 .21 1.020 (iii) 00905 - TOTALS + DOW (ms)= 55 .21 1.020 (iii) 00905 - TOTAL RAINFALL (mm)= 33.29 13.04 21.610 00900 - TOTAL RAINFALL (mm)= 55 .42 .665 00910 - COFFICIENT 55 .42 .665 00910 - COFFICIENT 55 .42 .665 00912 - CN* = 81.0 I a - Dep. Storage (Above) 00913 - (ii) THE STE UPD SHOLD BE SKALLER OR EQUAL 00914 - TEAN THE STORAGE COFFICIENT. 00915 - (iii) PEAK FLOW DOES NOT INCLUE BASELOW IF ANY. 00915	01022>*       SUB-AREA No.4         01022>*       SUB-AREA No.4         01022>*       ICALIE STANDEND 1       Area (ha)= 12.20         01024>       IOT:ALIE STANDEND 1       Area (ha)= 12.20         01025>       IOT:ALIE STANDEND 1       Area (ha)= 12.20         01025>       INFERVIOUS PERVIOUS (i)         01025>       INFACE Area (ha)= 6.66       5.54         01025>       Dap Storage (mm)= 1.70       4.60         01030>       Paysaresistore (min) = 1.70       4.60         01031>       Length (m)= 210.00       10.00         01032>       Mannings n       -030         01033>       Mannings n       -030         01034>       Max.eff.Inten.(mm/hr)= 76.81       29.02         01035>       Storage Coeff. (min)= 7.50       30.00         01035       Storage Coeff. (min)= 7.50       30.00         01035       Unit Hyd. Teak (ms)= 7.50       30.00         01035       Unit Hyd. Teak (ms)= 7.50       30.00         01035       TITME TO PERK (hs)= 1.04       1.50       1.642         01040>       PEAK FLOW (cms)= .91       .46       .42       .665         01040>       RUNOFF COEFFICIENT
000865 * SUB-AREA No.1 00885 - SUB-AREA No.1 00895 - SUB-AREA No.1 00997 - SUB-AREA No.1 00997 - SUB-AREA No.1 00997 - SUB-AREA No.1 00998 - SUB-AREA No.1 00999 - SUB-AREA NO.1 00990 - SUB-AREA NO.1 00990 - SUB-AREA NO.1 00900 - SUB-AREA NO.1	01022>*       SUB-AREA No.4         01022>*       SUB-AREA No.4         01022>*       CALIB STANDHYD 1       Area (ha)= 12.20         01024>       IOT.ALES STANDHYD 1       Area (ha)= 71.00       Dir. Conn.(%)= 50.00         01025>       IOT.HEPOT DT=2.50 1       Total Imp(%)= 71.00       Dir. Conn.(%)= 50.00         01025>       IOT.HEPOT DT=2.50 1       Total Imp(%)= 71.00       Dir. Conn.(%)= 50.00         01025>       Surface Area (ha)=       8.66       3.54         01025>       Dep. Storage (mm)= 1.57       4.67         01035>       Average Slope (%)= .70       1.50         01035       Mannings n       -0.30       .250         01034>       Mannings n       -0.30       .250         01035       Storage Coeff. [min)=       7.50       30.00         01036       Unit Hyd. Teak (mm)=       .16       .941 (iii)         01037       Unit Hyd. To Eak (hrs)=       .14       .44         01038       Unit Hyd. TRME (mm)=       30.29       13.34       21.814         01040>       PEAK FLOW       (cms)=       .95       .42       .665         01044>       RUNOFF COEFFICIENT =       .95       .42       .665         01044>
000865 * SUB-AREA No.1 00885 - SUB-AREA No.1 00895 - SUB-AREA No.1 00895 - SUB-AREA No.1 00895 - SUB-AREA No.1 00895 - SUB-AREA No.1 00905 - SUB-AREA SUB-AREA NO.1 00905 - SUB-AREA SUB-AREA NO.1 00905 - SUB-AREA SUB-AREA NO.2 00905 - S	01022>*       SUB-AREA No.4         01022>*       SUB-AREA No.4         01022>*       CALIB STANDEYD 1       Area (ha)= 12.20         01024>       IOT.ALES STANDEYD 1       Area (ha)= 71.00       Dir. Conn.(%)= 50.00         01025>       IOT.HEPOT DT=2.50 1       Total Imp(%)= 71.00       Dir. Conn.(%)= 50.00         01025>       IOT.HEPOT DT=2.50 1       Total Imp(%)= 71.00       Dir. Conn.(%)= 50.00         01025>       Surface Area (ha)=       8.66       3.54         01025>       Dep. Storage (mm)= 1.57       4.67         01035>       Average Slope (%)= .70       1.50         01035       Mannings n       -0.30       .250         01035       Mannings n       -0.30       .250         01036       War.eff.Inten.(mm/hz)=       7.6.81       29.02         01035       Storage Coeff. [min)=       7.50       30.00         01036       Unit Hyd. Tpeak (mm)=       1.4       .4         01037       Unit Hyd. Totak (mm)=       31.6       .4         01040>       PEAK FLOW (Cms)=       .91       .16       .941 (111)         01041>       TIME TO PEAK (hrs)=       .104       .150       1.042         010425       RUNOFF COEFFICIEMT       .9
000865 * SUB-AREA No.1 00885 - SUB-AREA No.1 00885 - SUB-AREA No.1 00885 - CLLIB STANDHYD   Area (ha)= 19.90 00890   01:HIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Corn. (%)= 50.00 00892 - The state of the stat	01022>*       SUB-AREA No.4         01022>*       SUB-AREA No.4         01022>*       ICALIB STANDHYD 1       Area (ha)= 12.20         01024>       IOTALIB STANDHYD 1       Area (ha)= 71.00       Dir. Conn.(%)= 50.00         01025>       IOTALIB STANDHYD TT= 2.50 1       Total Imp(%)= 71.00       Dir. Conn.(%)= 50.00         01025>       IOTALB STANDHYD TT= 2.50 1       Total Imp(%)= 71.00       Dir. Conn.(%)= 50.00         01025>       Surface Area (ha)=       8.66       3.54         01025>       Dep. Storage (mm)=       1.57       4.67         01030>       Average Slope (%)= .70       1.50       0.00         01031>       Length (m)=       7.6.81       29.02         01033>       Mannings n = .030       .250       0.00         01034>       Max.eff.Inten.(mn/hz)= 7.6.81       29.02       0.00         01035>       Storage Coeff. (min)= 7.50       30.00       0.01         01036>       Unit Hyd. Tpeak (ms)= .14       .04       .04         01038>       Unit Hyd. TReak (ms)= .104       1.50       1.041         01040>       PEAK FLOW (cms)= .13.66       31.86       31.86         01045>       INMOFF COEFFICIENT = .55       .42       .685         01
000865 * SUB-AREA No.1 00885 - SUB-AREA No.1 00885 - SUB-AREA No.1 00885 - CLLIB STANDHYD   Area (ha)= 19.90 00890   01:HIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 00892 - INPERVIOUS PERVIOUS (i) 00892 - INPERVIOUS PERVIOUS (i) 00893 - Bup . Storage (mm)= 1.57 4.67 00894 - Ave rays slope (%)= .60 1.50 00897 - Margth (m)= 580.00 100.00 00899 - Marrings n = .030 .250 008990 - Warrings n = .030 .250 00899 - Marrings n = .030 .250 00899 - Marrings n = .030 .250 00900 - over (min) 17.50 42.50 00900 - Unit Hyd. Tpeak (mm)= 10.04 (ii) 42.02 (ii) 00902 - Unit Hyd. Tpeak (mm)= .06 .03 *TOTALS* 00903 - Unit Hyd. Tpeak (mm)= .30.29 13.34 21.814 00905 - PEAK FLOW (cms)= .95 .21 1.020 (iii) 00907 - RUNCYF VOLUME (mm)= .30.29 13.34 21.814 00907 - RUNCYF VOLUME (mm)= .30.29 13.34 21.814 00908 - RUNCYF VOLUME (mm)= .30.29 13.34 21.814 00909 - RUNCYF COEFFICIENT = .95 .42 .685 00912 (i) (N P BOCEDURE SELECTED FOR PERVIOUS LOSSES: 00912 (i) (N PACCEDURE SELECTED FOR PENVIOUS LOSSES: 00912 (ii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00915 - (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00916 - (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00915 - (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00916 - (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00917 - MUTHON 8.56 .056 3.00 28.75 .000 00922 - IDD 10:POND 8.56 .056 3.00 28.75 .000 00923 - (IDC 1016	01022>*       SUB-AREA No.4         01022>*       SUB-AREA No.4         01022>*       CALIB STANDHYD       1 Area (ha)=       12.20         01024>       [CALIB STANDHYD JT=2.50]       Total Imp(\$)=       71.00       Dir. Conn. (%)=       50.00         01025>       [07:HIP07 DT=2.50]       Total Imp(\$)=       71.00       Dir. Conn. (%)=       50.00         01025>       [07:HIP07 DT=2.50]       Total Imp(\$)=       71.00       Dir. Conn. (%)=       50.00         01025>       [07:HIP07 DT=2.50]       Total Imp(\$)=       71.00       Dir. Conn. (%)=       50.00         01025>       [07:HIP07 DT=2.50]       Total Imp(\$)=       71.00       Dir. Conn. (%)=       50.00         01025>       Surface Area (ha)=       8.66       3.54       0.00       0.00       0.00         01035       Awarage Slope (%)=       .70       1.50       0.00       0.00         01035       Mannings n       =       0.30       .250       0.00         01035       Storage Coeff. (min) =       7.50       30.00       0.01         01036       Unit Hyd. Tpeak (ms) =       .91       .66       .941 (iii)         01037       Unit Hyd. Totak (cms) =       .91       .66       .941 (iii)
000865 * SUB-AREA No.1 00885 - SUB-AREA No.1 00885   CALIE STANDHYD   Area (ha)= 19.90 00880   01:HIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Corn. (%)= 50.00 00892   DI:HIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Corn. (%)= 50.00 00892   DI:HIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Corn. (%)= 50.00 00893   Surface Area (ha)= 14.13 5.77 00894   Dep. Storage (mm)= 1.57 4.67 00895   Maranings n = .06 1.50 00895   Maranings n = .030 .250 008995   Maranings n = .030 .250 008995   Maranings n = .030 .250 009005   Drit Hyd. Tpeak (mm)= 11.56 4.21 23.06 009005   Unit Hyd. Tpeak (mm)= 10.04 (ii) 42.02 (ii) 009005   DFEAK FLOW (cms)= .06 .03 *TOTALS* 009005   DFEAK (hcs)= 1.21 1.122 (iii) 009005   DFEAK (hcs)= 1.21 1.123 (iii) 009005   DFEAK (hcs)= .121 1.123 (iii) 009005   DFEAK (hcs)= 1.21 1.123 (iii) 009005   DFEAK (hcs)= 1.21 1.123 (iii) 009005   DFEAK (hcs)= 1.21 1.124 .660 009007 RUNCPF VOLUME (mm)= 30.29 13.34 21.814 009008 RUNCPF COEFFICIENT = .95 .42 .685 009109 (ii) (THM STEE DFD FDEN CEPTS Storage (Above) 00912 (ii) (He STEE DFD FDA DEPS Storage (Above) 00914 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00915   (iii) FEAK (hcs) DOE NOT INCLUDE BASEFLOW IF ANY. 00916   (iii) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00917   (hd) (cms) (hcs) (mm) (cms) 00922   IDD 10:POND 0.55 .056 3.00 28.75 .000 00922   IDD 10:POND 0.55 .056 3.00 28.75 .000 00922   IDD 10:POND 0.55 .056 3.00 28.75 .000 00923   ADD HYD (HF02)   ID: NHYD AREA QEEAK TFEAK R.V. DWF 00915   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00925   ADD HYD (MF00E)   ID: NHYD AREA (DEEAK TFEAK R.V. DWF 00925   ADD HYD (MF00E)   10: NHYD AREA (DEEAK TFEAK R.V. DWF 00925   ADD HYD (MF00E)   10: NHYD AREA (DEEAK TFEAK R.V. DWF 00925   IDD 10:POND 0.55 .056 3.00 28.75 .000 00925   DOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF AN	01022>*       SUB-AREA No.4         01022>*       SUB-AREA No.4         01022>*       CALIB STANDHYD 1       Area (ha)= 12.20         01024>       IOTALIB STANDHYD 1       Area (ha)= 71.00       Dir. Conn. (%)= 50.00         01025>       IOTALIB STANDHYD TT= 2.50 1       Total Imp(%)= 71.00       Dir. Conn. (%)= 50.00         01025>       IOTALEOT TT= 2.50 1       Total Imp(%)= 71.00       Dir. Conn. (%)= 50.00         01025>       Surface Area (ha)=       8.66       3.54         01025>       Dep. Storage (mm)=       1.57       4.67         01030       Average Slope (%)= .70       1.50       0.00         01031>       Length (m)= 7.681       29.02         01033>       Mannings n = .030       .250         010335       Storage Coeff. (min) = 7.50       30.00         010335       Storage Coeff. (min) = 7.50       30.00         010336       Unit Hyd. Peak (cms)= .14       .04         010335       Storage Coeff. (mm)= 30.29       13.34       21.84         01040>       PEAK FLOW (cms)= .104       1.50       1.660         01042       RUNOFF VOLUME (mm)= 31.86       31.86       31.86         01044       RUNOFF COEFFICIENT = .55       .42       .685
000865 * SUB-AREA No.1 00885 - SUB-AREA No.1 00885 - SUB-AREA No.1 00885 - CLLIB STANDHYD   Area (ha)= 19.90 00890   01:HIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 00892 - INPERVIOUS PERVIOUS (i) 00892 - INPERVIOUS PERVIOUS (i) 00893 - Bup . Storage (mm)= 1.57 4.67 00894 - Ave rays slope (%)= .60 1.50 00897 - Margth (m)= 580.00 100.00 00899 - Marrings n = .030 .250 008990 - Warrings n = .030 .250 00899 - Marrings n = .030 .250 00899 - Marrings n = .030 .250 00900 - over (min) 17.50 42.50 00900 - Unit Hyd. Tpeak (mm)= 10.04 (ii) 42.02 (ii) 00902 - Unit Hyd. Tpeak (mm)= .06 .03 *TOTALS* 00903 - Unit Hyd. Tpeak (mm)= .30.29 13.34 21.814 00905 - PEAK FLOW (cms)= .95 .21 1.020 (iii) 00907 - RUNCYF VOLUME (mm)= .30.29 13.34 21.814 00907 - RUNCYF VOLUME (mm)= .30.29 13.34 21.814 00908 - RUNCYF VOLUME (mm)= .30.29 13.34 21.814 00909 - RUNCYF COEFFICIENT = .95 .42 .685 00912 (i) (N P BOCEDURE SELECTED FOR PERVIOUS LOSSES: 00912 (i) (N PACCEDURE SELECTED FOR PENVIOUS LOSSES: 00912 (ii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00915 - (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00916 - (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00915 - (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00916 - (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00917 - MUTHON 8.56 .056 3.00 28.75 .000 00922 - IDD 10:POND 8.56 .056 3.00 28.75 .000 00923 - (IDC 1016	01022>*       SUB-AREA No.4         01022>*       SUB-AREA No.4         01022>*       CALIE STANDEND         Area (ha)= 12.20         01024>       ICALIE STANDEND         Total Imp(\$)= 71.00       Dir. Conn.(\$)= 50.00         01025>       ID7:HIP07 DT=2.50         Total Imp(\$)= 71.00       Dir. Conn.(\$)= 50.00         01025>       ID7:EXP07 DT=2.50         Total Imp(\$)= 71.00       Dir. Conn.(\$)= 50.00         01025>       Dep. Storage (m)= 1.57       1.50         01030>       Average Slope (m)= 1.57       1.50         01033>       Length (m) = 76.81       29.02         01035>       cover (min) 7.50       30.00         01035>       cover (min) 7.50       30.00         01035>       unit Hyd. Teak (min)= 7.50       30.01         01041>       THE FO PERK (hrs)= 1.04       1.60       .941         01042>       RUNOFF OULME (m)= 30.62       13.34       2.042         01043>       RUNOFF OULME (m)= 31.86       31.86       31.860         01044>       RUNOFF OULME (m)= 30.29       .4
000865 * SUB-AREA No.1 00885 * SUB-AREA No.1 00885 * SUB-AREA No.1 00885 * SUB-AREA No.1 00885 * CALLS STANDEND   Area (ha)= 19.90 00885 * Marking State of the state of	01022>*       SUB-AREA No.4         01022>*       SUB-AREA No.4         01022>*       CALIE STANDEND         Area (ha)= 12.20         01022>       IO7:HIP07 DT=2.50         Total Imp(\$)= 71.00       Dir. Conn.(%)= 50.00         01022>       DIF.Conn.(%)= 50.00       IMPERVIOUS       PERVIOUS (i)         01025>       Dif.acs       IMPERVIOUS       PERVIOUS (i)         01025>       Dep.Storage (m)=       1.665       3.54         01030>       Average Slope (m)=       1.70       4.50         01031>       Length       (m)=       20.00       100.00         01032>       Mannings n      030       .250         01033>       Max.eff.Inten.(mm/hr)=       76.81       29.02         01035>       cover (min)       7.50       30.00         01035       storage Ceeff. (min)=       8.15 (i1)       30.01 (i1)         01035       Unit Hyd. Teak (ms)=       1.46       .941 (i11)         01035       PEAK FLOW       (ms)=       1.46       .941 (i11)         01035       PEAK FLOW       (ms)=       1.64       .941 (i11)         01035       FLOW (DEBE MIN)=       31.86       31.86       31.86         01043       (INOFF C
000865 * SUB-AREA No.1 00885 * SUB-AREA No.1 00885 * SUB-AREA No.1 00885 * CLLIB STANDHYD   Area (ha)= 19.90 00890   01:HIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 00892 * The storage (ha)= 14.13 5.77 00893 * Dep. Storage (ha)= 1.57 4.67 00895 * Dep. Storage (ha)= 1.57 4.57 00995 * Dep. Storage (ha)= 17.50 42.50 00995 * Mar.eff.Inten.(hm/hr)= 18.04 (h) 42.02 (h) 00995 * Deak (ha)= 17.50 42.50 00905 * DEAK FLOW (cms)= .06 * TOTALS* 00905 * DEAK (ha)= 17.50 42.50 00905 * DEAK FLOW (cms)= .06 * TOTALS* 00905 * DEAK (ha)= 13.86 31.860 009095 * RUNCPF VOLUMS (hm)= 30.29 13.34 21.814 009005 * RUNCPF VOLUMS (hm)= 30.29 13.34 21.814 009005 RUNCPF COEFFICIENT = .95 .42 .685 00910 * (iii) DEAK (hrs)= 1.21 1.71 1.250 00907 * RUNCPF COEFFICIENT = .95 .42 .685 00910 * (iii) PEAK (hrs)= 1.21 1.71 1.250 00910 * (iii) PEAK (hrs)= 1.21 1.71 1.250 00910 * (iiii) PEAK (hrs)= 1.21 1.020 (iiii) PEAK FLOW DOES NOT INCLUDE RASEFIOW IF ANY. 00910 * (iiii) PEAK FLOW DOES NOT INCLUDE RASEFIOW IF ANY. 00915 * DIN 10:FOND 08.56 .056 3.00 28.75 .000 00922 * IDD 10:FOND 0.55 .000 IINCLUDE RASEFIOW IF ANY. 00925 * SUM 02:HIF02 28.46 1.039 1.25 23.90 .000 00925 * SUM 02:HIF02 28.46 1.039 1.25 23.90 .000 00935 * SUM 62:HIF03 DF= 2.50   TOTAI Imp(%)= 71.00 Dir. Conn.(%)= 50.00	01022>*       SUB-AREA No.4         01022>*       SUB-AREA No.4         01022>*       CALIE STANDHYD       1       Area (ha)= 12.20         01022>       D7:HIP07 DT=2.50         Total Imp(%)= 71.00       Dir. Conn.(%)= 50.00         01022>       D7:AIP07 DT=2.50         Total Imp(%)= 71.00       Dir. Conn.(%)= 50.00         01025>       Drf.ace Area (ha)=       6.69       3.54         01025>       Dep. Storage (mn)=       1.50       1.50         01030>       Average Slope (%)=       .70       1.50         01033>       Length (m)=       7.50       30.00         01033>       Manings n       .030       .250         01035>       cover (min)       7.50       30.00         01035>       cover (min)       7.50       30.00         01035>       unit Hyd. Tpeak (ms)=       .14       .04         01041>       THE FOR (cms)=       .91       .66       31.860         010425       FUNF FOUNDE(Com)=       30.29       13.34       2.645         01043>       RUNOFF OLEFFICIENT       .95       .42       .665         01044>       TOTAL RAINFALL (mm)=       31.86       31.860       31.860         01045>       (
000865 * SUB-AREA No.1 00885 - SUB-AREA No.1 00885   CALIB STANDENTD   Area (ha)= 19.90 00885   CALIB STANDENTD   Area (ha)= 71.00 Dir. Conn. (%)= 50.00 00895   D1:HIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 00895   Surface Area (ha)= 14.13 5.77 00895   Surface Area (ha)= 1.57 4.67 00995   Surface Area (ha)= 17.00 00897   Mannings n030 .250 008995   Max.eff.Inten.(mm/Nr)= 54.21 23.06 009995   Max.eff.Inten.(mm/Nr)= 54.21 23.06 009905   Unit Hyd. Tpeak (mn)= 17.50 42.50 009005   Unit Hyd. Tpeak (mn)= 17.50 42.50 009005   Unit Hyd. Tpeak (mn)= .06 .03 009005   Unit Hyd. Tpeak (mn)= .06 .03 009005   EARCHING (mn)= .05 .21 .0.020 (iii) 009005   DIMIT OF PEAK (mm)= .30.29 13.34 21.014 009005   RUNOFF COEFFICIENT	01022>*       SUB-AREA No.4         01022>*       SUB-AREA No.4         01022>*       CALIE STANDEND         Area (ha)= 12.20         01022>       D7:H2P07 DT=2.50         Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00         01022>       D107:H2P07 DT=2.50         Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00         01025>       Darface Area (ha)=       8.66 3.54         01025>       Darface Area (ha)=       8.66 3.54         01025>       Darface Area (ha)=       8.66 1.54         01025>       Day, Storage (m)=       1.70 4.60         01033>       Mannings n       .030 .00         01033>       Max.eff.Inten.(mm/hr)=       76.81 29.02         01035>       cover (min)       7.50 30.00         01035>       cover (min)       7.50 30.00         01035       torage Ceeff. (min)=       8.15 (il) 30.01 (il)         01035       Unit Hyd. Peak (cms)=       .14 .04         01035       Diverse (cms)=       .14 .04         01035       PEAK FLOW       (cms)=       .15 .1042         010434       RUNOFF VOLME (hrs)=       .14 .04       .041         010435       RUNOFF VOLME (hrs)=       .22 .665       .041         010434       (il) CN PROCEDURE SELECTED FOR PERVICUS
000865 * SUB-AREA No.1 00885 - SUB-AREA No.1 00885   CALIB STANDBYD   Area (ha)= 19.90 00895   OLHEPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 00895   DIHEPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 00895   Surface Area (ha)= 14.13 5.77 00895   Dep. Storage (mm)= 1.57 4.67 00895   Dep. Storage (mm)= 1.50 (22.50) 00895   Max.eff.Inten.(mm/Nr)= 54.21 23.06 00905   Dunit Hyd. Tpeak (mn)= 10.04 (ii) 42.02 (ii) 00905   Unit Hyd. Tpeak (mn)= 17.50 42.50 00905   Unit Hyd. Tpeak (mm)= 30.29 13.34 21.614 00905   PEAK FLOW (cms)= .95 .21 1.020 (iii) 00907   NUNOFF VOLUME (mm)= 30.29 13.34 21.614 00905   PEAK HIME (mm)= 30.29 13.34 21.614 00907   NUNOFF COEFFICIENT	101022>*       SUB-AREA No.4         01022>*       *SUB-AREA No.4         01022>*       *SUB-AREA No.4         01022>*       ICALIB STANDEND 1       Area (ha)= 12.20         01022>       ID7:H2P7 DT=2.501       Total Imp(%)= 71.00       Dir. Conn.(%)= 50.00         01022>       Surface Area (ha)=       8.665       3.54         01022>       Surface Area (ha)=       8.665       3.54         01022>       Surface Area (ha)=       8.666       3.54         01030>       Pape Storage (mm)=       1.74       4.67         01031       Length (m)=       7.50       30.00         01032>       Over (min)       7.50       30.00         01033>       Over (min)       7.50       30.00         01035>       Storage Coeff. (min)=       8.15 (ii) 30.01 (ii)         01035       Unit Hyd. Tpeak (ms)=       1.46       .441 (iii)         01035       TIME TO PERK (hrs)=       1.04       .404         01035       TIME TO PERK (hrs)=       1.04       1.50       1.642         01040>       PEAK FLOW (cms)=
000865 * SUB-AREA No.1 00885 * SUB-AREA No.1 00885 * SUB-AREA No.1 00885 * CLLIB STANDHYD   Area (ha)= 19.90 00890   01:HIPOI DT= 2.50   Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 00892 * The storage (ha)= 14.13 5.77 00893 * Dep. Storage (ha)= 1.57 4.57 00895 * Aver.args Slope (%)= .60 1.50 00895 * Manrings n = .030 .250 00895 * Marrings n = .030 .250 00895 * Marrings n = .030 .250 00995 * Dep. Storage Coeff. (hin)= 18.04 (ii) 42.02 (ii) 00995 * Dep. At The Storage Coeff. (hin)= 17.50 42.50 00903 * Unit Hyd. Peak (cms)= .06 .27 * TOTALS* 00905 * PEAK FLOW (cms)= .06 .27 * TOTALS* 00905 * DEFAK (hrs)= .121 1.71 1.250 00905 * RUNCPF VOLUMS (mm)= 30.29 13.34 21.814 00906 RUNCPF COEFFICIENT = .95 .42 .685 00910 * (iii) DEAK (hrs)= .55 .21 .0020 (iii) DEFAK (hrs)= .121 1.71 1.250 00907 * RUNCPF VOLUMS (mm)= .30.29 13.34 21.814 00908 RUNCPF COEFFICIENT = .95 .42 .685 00910 * (iii) PEAK FLOW DOES NOT INCLUDE SALER OF EQUAL (iii) PEAK FLOW DOES NOT INCLUDE RASEFIOW IF ANY. 00915 *	101223 *       SUB-AREA No.4         010223 *       SUB-AREA No.4         010225 *       107:HP07 DT=2.50           10225         107:HP07 DT=2.50           01025         07:HP07 DT=2.50           01025         07:HP07 DT=2.50           01025         Dep. Storage (mm)= 1.57 4.67         01025         Average Slope (%)= .70 1.50         01025         Average Slope (%)= .70 1.50         01033         Max.eff.Inten.(mm/hr)= 76.81 29.02         01035         Storage Coeff. (min)= 7.50 30.00         01035         Storage Coeff. (min)= 7.50 30.00         01035         Storage Coeff. (min)= 7.50 30.00         01035         Unit Hyd. Tpeak (mm)= 7.50 30.00         01035         TIME TO PERK (hcs)= 1.04 1.50 1.042         01040         PERK FLOW (cms)= .91 .16 .04 1.50 1.042         01042         RUNOFF VOLUME (mm)= 31.86 31.86 31.86 0         01044         RUNOFF COEFFICIENT = .55 .42 .685         01045         (1) CN PACEDURE SELECTED FOR PERVIOUS LOSESE:         01045

01081>		01216> Unit Hyd. Tpeak (min)= 7.50	10.00
01082> 01083> 01084>	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	01217> Unit Hyd. peak (cms)= .14 01218>	.11 *TOTALS*
	001:00233	11219>         PEAK FLOW         (cms)=         .28           01220>         TIME TO PEAK         (hrs)=         1.04           11221>         RUNOFF VOLUME         (mm)=         40.94	.01 .283 (iii) 1.13 1.042 14.70 38.845
01088>		D1221>         RUNOFF VOLUME         (nun)=         40.94           D1222>         TOTAL RAINFALL (nun)=         42.51           D1223>         RUNOFF COEFFICIENT =         .96	42.51 42.514 .35 .914
01089>	DESIGNI NASHYD   Area (ha)= 2.70 Curve Number (CN)=76.00   01:A3 DT= 2.50   Ia (mm)= 4.670 # of Linear Res.(N)= 3.00	01224> 01225> (i) CN PROCEDURE SELECTED FOR PERV	TOUS LOSSES;
01091> 01092> 01093>	01:A3 DT= 2.50   Ia (nmn)= 4.670 ∰ of Linear Res.(N)= 3.00 U.H. Tp(hrs)= .800	1226>         CN*         81.0         Ia         Dep.         Stora           01227>         (ii)         TIME         STEP         (DT)         SHOULD BE         SMALL           1228>         THAN THE         STORAGE         COEFFICIENT.	ge (Above) ER OR EQUAL
01094> 01095>	Unit Hyd Qpeak (cms)= .129	1228> THAN THE STORAGE COEFFICIENT. 1229> (iii) PEAK FLOW DOES NOT INCLUDE BAS 1230>	EFLOW IF ANY.
01096> 01097>	PE7-4K FLOW (cms)= .024 (1) TIMME TO PEAK (hrs)= 2.083 RUNTOFF VOLUME (mma)= 6.883	1231>	
01098> 01099> 01100>	TOTAL RAINFALL (mm) = 31.860	11233> * 11234> * SUB-AREA No.3	
01100> 01101> 01102>	RUNTOFF COEFFICIENT = .216 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.		1.40
01103>		1238>	<pre>97.00 Dir. Conn.(%)= 97.00 PERVIOUS (i)</pre>
01106>	001:0024	1240>         Surface Area         (ha)=         1.36           1241>         Dep. Storage         (mm)=         1.57	.04 4.67
01107> 01108> 01109>	ADD HYD (Ultima)   ID: NHYD AREA QPEAK TPEAK R.V. DWF (ha) (cms) (hrs) (mm) (cms) IDI 09:HIP08 77.26 3.542 1.21 21.98 .000	1242> Average Slope (%)= .51 1243> Length (m)= 225.63	1.00
01110> 01111>	+ID2 01:A3 2.70 .024 2.08 6.88 .000	1244> Mannings n = .030 1245> 1246> Max.eff.Inten.(mm/hr)= 104.19	.030
01112> 01113>	SUM 02:Ultima 79.96 3.548 1.21 21.47 .000	1247> over (min) 7.50 1248> Storage Coeff. (min)= 8.28 (i	10.00
01114> 01115> 01116>	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	1249> Unit Hyd. Tpeak (min)= 7.50 1250> Unit Hyd. peak (cms)= .14	10.00
011175	001-0026	1251> 1252> PEAK FLOW (cms) = .27	*TOTALS* .00 .274 (iii)
	CALCULATION OF 3HR - 1:5 YEAR STORM EVENT	1253>         TIME TO PEAK (hrs)=         1.04           1254>         RUNOFF VOLUME (mm)=         40.94           1255>         TOTAL RAINFALL (mm)=         42.51	1.13 1.042 14.70 40.157 42.51 42.514
01121> · 01122>	START   Project dir.: V:\20983.DU\ENG\SWMHYMO\	1256> RUNOFF COEFFICIENT = .96 1257>	.35 .945
01123> · 01124> 01125>	TIERO = .00 hrs on METOUT= 2 (output = METRIC)	1258>     (i) CN PROCEDURE SELECTED FOR PERV.       1259>     CN* = 81.0     Ia = Dep. Stora       1260>     (ii) TIME STEP (DT) SHOULD BE SMALL	IOUS LOSSES: ge (Above)
01126> 01127>	NRON = 001 NSTORM= 0	1260>     (ii) TIME STEP (DT) SHOULD BE SMALL       1261>     THAN THE STORAGE COEFFICIENT.       1262>     (iii) PEAK FLOW DOES NOT INCLUDE BASK	
01129> (	001:0002	1263> 1264>	
01131>	CHICAGO STORM   IDF curve parameters: A= 998.071	1265> 001:0007	
	Ptotal = 42.51 mm   B= 6.053 C= 814 used in: INTENSITY = A / (t + B)^C	1267>   ADD HYD (040 )   ID: NHYD AREA 1268> (ha) 1269> ID1 01:010 2.07	QPEAK TPEAK R.V. DWF (cms) (hrs) (mm) (cms) .362 1.04 36.75 .000
01135> 01136>	Duration of storm = $3.00 \text{ hrs}$	1270> +ID2 02:020 1.54	.283 1.04 38.84 .000
01137> 01138>	Storm time step = 10.00 min Time to peak ratio = .33	1272> SUM 04:040 3.61 1273>	.645 1.04 37.64 .000
01139> 01140> 01141>	TIME RAIN   TIME RAIN   TIME RAIN   TIME RAIN hrs mm/hr   hrs mm/hr   hrs mm/hr   hrs mm/hr	1274> NOTE: PEAK FLOWS DO NOT INCLUDE BASEF1 1275> 1276>	LOWS IF ANY.
01142> 01143>	.17 3.682   1.00 104.193   1.83 6.689   2.67 3.510 .33 4.582   1.17 32.037   2.00 5.628   2.83 3.220	1278>	
01144> 01145>	.50 6.151 / 1.33 16.337 / 2.17 4.872 / 3.00 2.978 .67 9.614 / 1.50 10.965 / 2.33 4.305 /	1279>   ADD HYD (050 )   ID: NHYD AREA 1280> (ha)	QPEAK TPEAK R.V. DWF (cms) (hrs) (mm) (cms)
01146> 01147> 01148> -	.83 24.170   1.67 8.287   2.50 3.864	1281> 1D1 03:030 1.40 1282> +ID2 04:040 3.61 283>	.274 1.04 40.16 .000 .645 1.04 37.64 .000
01149> 0 01150> -	001:0003	1283> ====================================	.918 1.04 38.34 .000
01152> -	DEFAULT VALUES   Filename: V:\20983.DU\ENG\SWMHYMO\ORGA.VAL ICASEdv = 1 (read and print data)	1286> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFI 1287>	JOWS IF ANY.
01153> 01154> 01155>	FileTitle= ENTER YOUR COMMENTS ON THIS LINE AND THE NEXT ONE PARAMETER VALUES MUST BE ENTERD AFTER COLUMN 60 Horton's inflitration equation parameters:	1288> 1289> 001:0009 1290> *	
01156> 01157>	$[F^{-}_{0}=50.00 \text{ mm/hr}]$ $[F^{-}_{0}=7.50 \text{ mm/hr}]$ $[DEAY= 2.00 /hr]$ $[F^{-}_{0}=.00 \text{ mm}]$ Parameters for PERVIOUS surfaces in STANDHYD:	1291> * SUB-AREA No.4 1292>	
01158> 01159>	[IApper= 4.67 mm] [LGP=40.00 m] [MNP= .250] Parameters for IMPERVIOUS surfaces in STANDHYD:	1293>   CALIB STANDHYD   Area (ha)= 1294>   06:060 DT= 2.50   Total Imp(%)= 9	.89 97.00 Dir. Conn.(%)= 97.00
01160> 01161> 01162>	[IAimp= 1.57 mm] (CLI= 1.50) [MMI= .035] Parameters used in NASHYD: [Internet of Comparison of the second	1295> IMPERVIOUS	PERVIOUS (1)
01163> -	001:0004	1297> Surface Area (ha)≂ .86 1298> Dep. Storage (mm)≕ 1.57 1299> Average Slope (%)≂ .93	.03 4.67 .70
01165> *	******* * ****************************	1300> Length (m)= 164.82 1301> Mannings n = .030	40.00
01168> *	SUB-AREA No.1	1302> 1303> Max.eff.Inten.(mm/hr)= 104.19	20.32
01170> (	CALIB STANDHYD / Area (ha)= 2.07 01:010 DT= 2.50 / Total Twp(%)= 84.00 Dir. Copp.(%)= 84.00	1304> over (min) 5.00 1305> Storage Coeff. (min)= 5.72 (ii 1306> Unit Hyd. Tpeak (min)= 5.00	25.00 .) 24.02 (ii)
01173>	IMPERVIOUS PERVIOUS (i)	1306> Unit Hyd. Tpeak (min)= 5.00 1307> Unit Hyd. peak (cms)= .20 1308>	25.00 .05 *TOTALS*
01174> 01175> 01176>	Surface Area (ha) = $1.74$ .33 Dep. Storage (mm) = $1.57$ 4.67	1309>         PEAK FLOW         (cms) =         .20           1310>         TIME TO PEAK         (hrs) =         1.00	.00 .205 (iii) 1.38 1.000
01176> 01177> 01178>	Average Slope (%)= .52 1.00 Length (m)= 204.72 20.00 Manningsn = .030 .250	1311>         RUNOFF VOLUME         (mm) =         40.94           1312>         TOTAL RAINFALL         (mm) =         42.51           313>         RUNOFF COEFFICIENT =         .96	14.70 40.157 42.51 42.514 .35 .945
01179> 01180>	Max.eff.Inten.(mm/hr)= 104.19 24.26	<pre>314&gt; (i) CN PROCEDURE SELECTED FOR PERVI 315&gt;</pre>	OUS LOSSES:
01181> 01182>	over (min) 7.50 17.50 Storage Coeff. (min)= 7.76 (ii) 17.86 (ii)	L316>         CN* = 81.0         Ia = Dep. Storag           L317>         (ii) TIME STEP (DT) SHOULD BE SMALLE	e (Above) R OR EQUAL
01183> 01184> 01185>	Unit Hyd. Tpeak (min)= 7.50 17.50 Unit Hyd. peak (cms)= .15 .06 *TOTALS*	1318> THAN THE STORAGE COEFFICIENT. 1319> (iii) PEAK FLOW DOES NOT INCLUDE BASE 1320>	
01186> 01187>	PEAK FLOW (cms)= .36 .01 .362 (iii) TIME TO PEAK (hrs)= 1.04 1.25 1.042		
01188> 01189>	RUNOFF VOLUME (mm) = 40.94 14.70 36.745 TOTAL RAINFALL (mm) = 42.51 42.51 42.514	323> * 324> * SUB-AREA No.5	
01190> 01191> 01192>	RUNOFF COEFFICIENT = .96 .35 .864	325> 326>   CALIB STANDHYD   Area (ha)=	2.66
01193> 01194>	CN* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR FOURT	327>   07:070 DT= 2.50   Total Imp(%)= 9 328> 329> IMPERVIOUS	7.00 Dir. Conn. (%)= 97.00 PERVIOUS (i)
01195> 01196>	THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	.330> Surface Area (ha)= 2.58 .331> Dep. Storage (mm)= 1.57	.08 4.67
01197> 01198> -	01:0005	332>         Average Slope         (%)=         .61           333>         Length         (m)=         207.25	1.50 20.00
01200> *		334> Mannings n = .030 335> 336> Max.eff.Inten.(mm/hr)= 104.19	.250
01202> - 01203>	CALIB STANDHYD   Area (ha)= 1.54	337> over (min) 7.50 338> Storage Coeff. (min)= 7.45 (ii	24.26 17.50 ) 16.40 (ii)
01204>   01205> -	02:020 DT= 2.50   Total Imp(%)= 92.00 Dir. Conn.(%)= 92.00	339> Unit Hyd. Tpeak (min)= 7.50 340> Unit Hyd. peak (cms)= .15	17.50
01206> 01207> 01208>	IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 1.42 .12 Dep. Storage (mm)= 1.57 4.67	341> 342> PEAK FLOW (cms)= .54	*TOTALS* .00 .538 (iii)
01209> 01210>	Dep. Storage         (mm)=         1.57         4.67           Average Slope         (%)=         .50         1.00           Length         (m)=         244.34         5.00	343>         TIME TO PEAK (hrs) =         1.04           344>         RUNOFF VOLUME (mm) =         40.94           345>         TOTAL RAINFALL (mm) =         42.51	1.25 1.042 14.70 40.157 42.51 42.514
01211> 01212>	Mannings n = .030 .030	346> RUNOFF COEFFICIENT = .96 347>	.35 .945
01213> 01214> 01215>	Max.eff.Inten.(mm/hr)= 104.19 31.02 over.(min) 7.50 10.00 Storrage Coeff. (min)= 8.73 (ii) 9.85 (ii)	348> (i) CN PROCEDURE SELECTED FOR PERVI 349> CN* = 81.0 Ia = Dep. Storage	a (Above)
	Storage Coeff. (min) = 8.73 (ii) 9.85 (ii)	350> (ii) TIME STEP (DT) SHOULD BE SMALLE	R OR EQUAL

01486> 001:0017------THAN THE STORAGE COEFFICIENT. (i :: i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01351> * SUB-AREA No.3 01488> - A1 01489> 01490> 01491> 01492> 01493> CALIB STANDHYD | Area (ha)= 15.60 04:HIP04 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 
 QPEAK
 TPEAK
 R.V.

 (cms)
 (hrs)
 (mm)

 .205
 1.00
 40.16

 .538
 1.04
 40.16
 ) | ID: NHYD AREA (ha) ID1 06:060 .89 +ID2 07:070 2.66 01357> | ADD H'LD (080 ) | ID: NHYD 01358> -----IMPERVIOUS 11.08 1.57 .50 600.00 .030 01358> 01359> 01360> 01361> (cms) .000 .000 PERVIOUS (1) 4.52 4.67 01493> 01494> 01495> 01495> 01496> 01497> 01498> 01499> Surface Area(ha) =Dep. Storage(mm) =Average Slope(%) =Length(m) =Mannings n= SUM 08:080 3.55 .50 013622 .733 1.04 40.16 .000 100.00 .250 NOTE : PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 73.27 42.65 17.50 35.00 17.24 (ii) 35.98 (ii) 17.50 35.00 .07 .03 01499> 01500> 01501> 01502> 01503> 01504> Max.eff.Inten.(mm/hr)= Max.eff.inten.(mm/nf)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 
 Disc.
 <thDisc.</th>
 Disc.
 <thD 01505> *TOTALS* 1.176 (iii) 1.250 31.126 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mmn)= TOTAL RAINFALL (mmn)= RUNOFF COEFFICIENT = 1.03 1.21 40.94 42.51 .96 .30 01506> 01508> 01507> 01508> 01509> 01510> 01511> 31.12. 42.514 .732 21.31 42.51 .50 01374> 01375> 01375> 01376> 01377> 01378> NOTE : PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 01512> 01513> _____ (i) If THE SELECTED FOR PRAVIOUS LOSSES;
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT,
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01379> 001:001:3-----01513> 01514> 01515> 01516> 01517> 
 OLDEFICIENT.

 01517>

 01518>

 01518>

 01519>

 01520>

 01521>

 01521>

 01521>

 01521>

 01521>

 01521>

 01521>

 01522>

 01525>

 1D1<03:HIP03</td>

 01525>

 1D2

 01525>

 01525>

 01525>

 01525>

 01525>

 01525>

 01525>

 01525>

 01525>

 01525>

 01525>

 01525>

 01525>

 01525>

 01525>

 01526>

 SUM 05:HIP05

 01526>

 01380>
 ROUTE RESERVOIR
 Requested routing time step = 1.0 min.

 01382>
 INDOS:(090)
 I

 01382>
 INDOS:(090)
 I

 01382>
 OUT-LO:(FOND)
 Economic

 01384>
 OUT-LO:(FOND)
 I

 01384>
 OUT-LO:(FOND)
 I

 01384>
 OUT-LO:(FOND)
 STORAGE

 OUTIFIOW
 STORAGE
 ADUTIFIOW
 STORAGE
 OUTFLOW
 STORAGE

 OUTFLOW
 STORAGE
 I
 OUTFLOW
 STORAGE

 (cms)
 (ha.m.)
 I
 (cms)
 (ha.m.)

 .000
 .0000E+00
 I
 533
 6251E+00

 .008
 .656E=01
 .654
 .6531E+00
 OUTFLOW (cms) .000 .008 .017 .093 .233 .337 .465 
 OUTLFOW STORAGE
 TABLE

 THOM
 STORAGE
 10TFLOW
 STORAGE

 (cms)
 (ha.m.)
 (cms)
 (ha.m.)

 .000
 .0000E+00
 :533
 .6521E+00

 .017
 .131E+00
 .797
 .731E+00

 .233
 .3971E+00
 1.304
 .9157E+00

 .337
 .4731E+00
 1.806
 .1004E+01

 .455
 .5491E+00
 1.806
 .1004E+01

 .531
 .5871E+00
 .000
 .00000E+00
 01384> 01385> 01385> 01386> 01388> 01389> 01390> 01391> 01392> 01393> 01394> 01395> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01528> 01529: R.V. (mm) 39.096 39.093 ROUTING RESULTS 01395> 01396> 01397> 01398> 01399> 01400> PEAK FLOW REDUCTION [Qout/Qin] (%)= 5.413 TIME SHIFT OF PEAK FLOW (min)= 95.00 MAXIMUM STORAGE USED (ha.m.)=.2758E+00 ...... 01540> NOTE: 01541> 01542> ------01543> 001:0020--01544> * NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY * Remaining Hawthorne Industrial Park * 01407> 
 IMPERVIOUS

 Surface Area
 [ha] =
 66

 Dep. storage
 [mm]
 1.57

 Average Slope
 (%) =
 .70

 Length
 (m) =
 210.00

 Mannings n
 =
 .030
 PERVIOUS (i) 3.54 4.67 Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = 8.66 1.57 .70 210.00 .030 14.13 1.57 .60 580.00 .030 5.77 4.67 1.50 01417> 01418> 01419> 01420> 01421> 01422> 01422> 01423> 01424> 01425> 01426> 01426> 01427> 01426> 01427> 01552> 01553> 01554> 01555> 01556> 01557> 01561> 01562> 01562> 01565> 01565> 01565> 01565> 01565> 01565> 01565> 01565> 01565> 01565> 01565> 01565> 01570> 100.00 100.00 
 104.19
 52.96

 7.50
 25.00

 7.21 (ii)
 24.40 (ii)

 7.50
 25.00

 .15
 .05
 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= *TOTALS* 1.572 (iii) 1.208 31.126 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mmn) = TOTAL RAINFALL (mmn) = RUNOFF COEFFICIENT = *TOTALS* 1.375 (iii) 1.042 31.126 42.514 .732 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 1.28 1.04 40.94 42.51 .96 1.41 .40 1.54 .31 01420> 01429> 01430> 01431> 01432> 01432> 40.94 42.51 .96 21.31 42.51 .50 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 01.0 Ia = Dep. Storage (Above) (ii) TIME STRF (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (i) TIME STEP (DT) SHOULD BE SNALLER OR EQUAL THAN THE STORAGE COSFFICIENT.
 (ii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 01434> 01436> 01436> 01437> 01438> 01439> 01440> 01572> 01446> 01446> 01447> 01448> 01449> 01450> 01451> SUM 02:HIP02 28.46 1.615 1.21 33.52 .000 Unit Hyd Qpeak (cms)= .899 01585> 01585> 01586> 01586> 01587> 01588> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 
 PEAK
 FLOW
 (cms)=
 .260
 (i)

 TIME TO PEAK
 (hrs)=
 1.167
 1.167

 RUNOFF VOLUME
 (mm)=
 17.325
 17.325

 TOTAL RAINFALL
 (mm)=
 42.514

 RUNOFF COEFFICIENT
 408
 01452/ 01453/ 01454/ 01455/ * 5UB-AREA NO.2 01455/ | CALLE STANDHYD | Area (ha)= 17.00 01455/ | CALLE STANDHYD | Area (ha)= 17.00 01580> 01589> 01590> 01591> 01592> 01593> 
 ICALIE STANDHYD
 Area
 (ha)=
 17.00

 ICALIE STANDHYD
 Area
 (ha)=
 17.00
 Dir. Conn.(%)=
 50.00

 IMPERVIOUS
 IMPERVIOUS
 PERVIOUS
 (i)
 Surface Area
 (ha)=
 12.07
 4.93

 Dep. Storage
 (mm)=
 1.57
 4.67
 Average Slope
 (%)=
 6.5
 1.50

 Length
 (m)=
 450.00
 100.00
 Mannings n
 =
 .030
 .250
 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01458> 01450> 01459> 01460> 01461> 01462> 01594> -----01594> -----01595> 001:0022------PERVIOUS (1) 2ERV1C 12.07 1.57 .65 450.00 .030 01595> 001:0022 01595> (ADD HYD (HIP08 ) | ID: NHYD AREA QPEAK TPEAK R.V. 01595> (ha) (cms) (hrs) (mm) 01599> ID1 06:HIP07 (12:20 1.375 1.04 31.13 01600> +ID2 07:HP07 12:20 1.375 1.04 31.13 01601> +ID3 08:Pend-B 4.00 .260 1.17 17.32 01600> +ID3 08:Pend-B 4.00 .260 1.17 17.32 DWF (CIAS) .000 .000 .000 01463> 01465> 01465> 01466> 01467> 01468> 09.76 47.48 12.50 30.00 12.36 (ii) 30.32 (ii) 12.50 30.00 .09 .04 +ID3 08:PONG-5 7.00 ----SUM 09:HIP08 77.26 5.545 1.17 31.29 .000 01468> 01469> 01470> 01471> 01472> 01472> 01473> 01474> 01606> 01607> 01607> 01608> 01608> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609> 01609 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 1.36 1.13 40.94 42.51 .96 *TOTALS* .37 1.46 21.31 42.51 .50 *TOTALS* 1.504 (iii) 1.167 31.126 42.514 01474> 01475> 01476> 01477> 01478> 01478> 01479> 01479> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CM* = 81.0 Ia = Dep. Storage (Above)
 (ii) THE STEP (DT) SHOULD BE SHALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) FEAK FLOW DES NOT INCLUDE BASEFLOW IF ANY. 01615> 01616> 01617> 01482> THAN THE STOREG COFFICIENT. 01483> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01484> 01484> Unit Hyd Qpeak (cms)= .129 01618> PEAK FLOW (cms)= .044 (i) TIME TO PEAK (hrs)= 2.042 01619> 01620>

J. L. Richards & Associates Limited

01463>

01481>

	U. L. RICHALDS & ASSOCIATES L
621> RUTNOFF VOLUME (mm) = 12.131 622> TOTAL RAINFALL (mm) = 42.514	01756> * 01757> * SUE-AREA No.3
623> RUINOFF COEFFICIENT = .285 624>	01758>
626> 627>	01760>   03:030 DT= 2.50   Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 01761>
628> 001:002 4 629> 630>   ADD HTD (Ultima)   ID: NHYD AREA QPEAK TPEAK R.V. DWF	01763> Surface Area (ha)= 1.36 .04 01764> Dep. Storage (mma)= 1.57 4.67
631> (ha) (cms) (hrs) (mm) (cms)	01765> Average Slope (%)= .51 1.00 01766> Length (m)= 225.63 5.00 01767> Mannings n = .030 .030
633> +ID2 01:A3 2.70 .044 2.04 12.13 .000 634>	01769> Max.eff.Inten.(mm/hr)= 122.14 48.18
636>	01770> over (min) 7.50 7.50   01771> Storage Coeff. (min)= 7.77 (ii) 8.70 (ii)
638> 639>	01772> Unit Hyd. Tpeak (min) = 7.50 7.50 01773> Unit Hyd. peak (cms) = .15 .14 01774> *TOTALS*
640> 001:002 5	
643> ******* ****************************	01777> RUNOFF VOLUME (nm) = 47.93 19.25 47.074 01778> TOTAL RAINFALL (nm) = 49.50 49.50 49.50
645>   START   Project dir.: V:\20983.DU\ENG\SWMHYMO\	01779> RUNOFF COEFFICIENT = .97 .39 .951 01780> 01781> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
647> TZERO = .00 hrs on 0 648> METCUT= 2 (output = METRIC) 649> NUTN = 001	01782> CN* = 81.0 Ia = Dep. Storage (Above) 01783> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
650> NSTORM= 0	01784> THAN THE STORAGE COEFFICIENT. 01785> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01786>
652> 001:0002	01787>
	01789> 01790>   ADD HYD (040 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF
657> used in: INTENSITY = A / (t + B)^C 558>	01791> (ha) (cms) (hrs) (num) (cms) 01792> IDI 01:010 2.07 .437 1.04 43.35 .000 01793> +ID2 02:020 1.54 .341 1.04 45.64 .000
659>     Duration of storm = 3.00 hrs       660>     Storm time step = 10.00 min	01/93> +1D2 02:020 1.54 .341 1.04 45.64 .000 01/94>
0622	01796> 01797> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
664> hrs mm/hr   hrs mm/hr   hrs mm/hr   hrs mm/hr 665> .17 4.248   1.00 122.142   1.83 7.733   2.67 4.049	01798> 01799>
666> .33 5.290   1.17 37.285   2.00 6.502   2.83 3.714 667> .50 7.108   1.33 18.954   2.17 5.625   3.00 3.434	01801>
668> .67 11.130   1.50 12.700   2.33 4.969   669> .83 28.100   1.67 9.588   2.50 4.458	01803> (ha) (cms) (hrs) (mm) (cms) 01804> ID1 03:030 1.40 .329 1.04 47.07 .000
671>	01805> +ID2 04:040 3.61 .778 1.04 44.32 .000 01806> SUM 05:0550 5.01 1.107 1.04 45.09 .000
673> 674>   DEFAULT VALUES   Filename: V:\20983.DU\ENG\SWMHYMO\ORGA.VAL	01809> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
FIGHTINE ENTER YOUR COMMENTS ON THIS LINE AND THE NEXT ONE	01810> 01811> 01812> 001:0009
678> Horton's infiltration equation parameters: 679> [Fo= 50.00 mm/hr] [Fc= 7.50 mm/hr] [DCAY= 2.00 /hr] [F= .00 mm]	01912> 011:009
680>         Parameters for PERVIOUS surfaces in STANDHYD:           681>         [IAper= 4.67 mm] [LGP=40.00 m] [MNP= .250]	01815> 01815> 01816> ( CALIB STANDHYD ( Area (ba)= .89
683> [LA1Mp= 1.57 mm] [CLI= 1.50] [MNI= .035]	01817>   06:060 DT= 2.50   Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 01818>
685> [Ia= 4.67 mm] [N= 3.00]	01819> IMPERVIOUS PERVIOUS (i) 01820> Surface Area (ha)= .86 .03 01821> Dep. Storage (mm)= 1.57 4.67
587> 001:0004 588> ******* ***************************	01822> Average Slope (%)= .93 .70 01823> Length (m)= 164.82 40.00
590> ****** *****************************	01824> Mannings n = .030 .250 01825> 01825> Max.eff.Inten.(mm/hr)= 122.14 31.19
592>593>   CALIB STANDHYD   Area (ha)= 2.07	01827> over (min) 5.00 20.00 01828> Storage Coeff. (min)= 5.37 (ii) 20.78 (ii)
1945   01:010 DT= 2.50   Total Imp(%)= 84.00 Dir, Conn.(%)= 84.00	01829> Unit Hyd. Tpeak (min)= 5.00 20.00 01830> Unit Hyd. peak (cms)= .21 .06
597>         Surface Area         (ha) =         1.74         .33           598>         Dep. Storage         (mm) =         1.57         4.67	01832> PEAK FLOW (cms)= .24 .00 .245 (iii) 01833> TIME TO PEAK (brs)= 1.00 1.29 1.000
599>         Average Slope         (%) =         .52         1.00           200>         Length         (m) =         204.72         20.00	01834>         RUNOFF VOLUME         (mm) =         47.93         19.25         47.074           01835>         TOTAL RAINFALL         (mm) =         49.50         49.50         49.505
02>	01836> RUNOFF COEFFICIENT = .97 .39 .951 01837> 01838> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
V04>         over         (min)         7.50         15.00           V05>         Storage Coeff.         (min) =         7.28         (ii)         16.04         (ii)	01838>     (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:       01839>     CN* = 81.0       01840>     (ii) TIME STEP (DT) SHOULD BE SWALLER OR EQUAL
06> Unit Hyd. Tpeak (min)= 7.50 15.00 07> Unit Hyd. peak (cms)= .15 .07	01841> THAN THE STORAGE COEFFICIENT. 01842> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
O9>         PEAK FLOW         (cms)=         .43         .02         .437         (iii)           10>         TIME TO PEAK         (hrs)=         1.04         1.21         1.042	01843> 01844>
11> RUNOFF VOLUME (mm)= 47.93 19.25 43.345 12> TOTAL RAINFALL (mm)= 49.50 49.50 49.505	01846> * 01847> * SUB-AREA No.5
14> 15> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES.	01848> 01849>   CALIB STANDHYD   Area (ha)= 2.66 01950>   07.020 Pm-2.50   Pm-21 Ym-(01- 07.00 Pic cum (01- 07.00
16> CN* = 81.0 Ia = Dep. Storage (Above) 17> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL	01850>   07:070 DT= 2.50 { Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 01851>
18> THAN THE STORAGE COEFFICIENT. 19> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	01853> Surface Area (ha) = 2.58 .08 01854> Dep. Storage (mm) = 1.57 4.67
21>	01855> Average Slope (%)= .61 1.50 01856> Length (m)= 207.25 20.00 01857> Mannings n = .030 .250
23> * 24> * SUB-AREA No.2	01858> 01859> Max.eff.Inten.(mm/hr)= 122.14 34.69
25> 26>   CALIB STANDHYD   Area (ha)= 1.54	01860> over (min) 7.50 15.00 01861> Storage Coeff. (min)= 7.00 (ii) 14.75 (ii)
28>	01862> Unit Hyd. Tpeak (min)= 7,50 15.00 01863> Unit Hyd. peak (cms)= 16 .08 01864> *TOTALS*
30> Surface Area (ha) = 1.42 .12 31> Dep. Storage (mm) = 1.57 4.67	01865> PEAK FLOW (cms) = .64 .00 .645 (iii)
32> Average Slope (%)= .50 1.00 33> Length (m)= 244.34 5.00	01867>         RUNOFF VOLUME         (nm) =         47.93         19.25         47.074           01868>         TOTAL RAINFALL         (nm) =         49.50         49.50         49.505
35>	01869> RUNOFF COEFFICIENT = .97 .39 .951 01870>
37> over (min) 7.50 10.00 ( 38> Storage Coeff. (min)= 8.20 (ii) 9.18 (ii)	01871> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 01872> CM* = 81.0 Ia = Dep. Storage (Above) 01873> (ii) TIME STEP (DT) SHOULD BE SMALLER OR REQUAL
39> Unit Hyd. Tpeak (min) = 7.50 10.00 ( 40> Unit Hyd. peak (cms) = .14 .12 (	01874> THAN THE STORAGE COEFFICIENT. 01875> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
41> *TOTALS* ( 42> PEAK FLOW (cms)= .33 .01 .341 (jij) (	01876> 01877>
43> TIME TO PEAK (hrs) = 1.04 1.13 1.042	01879> 001:0011 01879>
44> RUNOFF VOLUME (nun) = 47.93 19.25 45.640 (	(ha) (ma) (ma) (ma)
44>         RUNOFF VOLUME         (mm) =         47.93         19.25         45.640         (           45>         TOTAL FAINERALL (mm) =         49.50         49.50         49.505         (         4           46>         RUNOFF COEFFICIENT =         .97         .39         .922         (         4	01882> ID1 06:060 .89 .245 1.00 47.07 .000
44>         RUNOFF VOLUME (mm)=         47.93         19.25         45.640         (           45>         TOTAL FAINERALL (mm)=         49.50         49.505         (         (           46>         RUNOFF COEFFICIENT =         .97         .39         .922         (           47>         (1)         CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:         (         (         (           49>         CN* =         81.0         I a Dep. Storage (Above)         (         (	01882> ID1 06:060 .89 .245 1.00 47.07 .000 01883> +ID2 07:070 2.66 .645 1.04 47.07 .000 01884>
44>         RUNOFF VOLUME (mm)=         47.93         19.25         45.640         (           45>         TOTAL FAINERALL (mm)=         49.50         49.505         (         (           46>         RUNOFF COEFFICIENT =         .97         .39         .922         (           47>         (1)         CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:         (         (           48>         (1)         CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:         (         (           49>         CN* =         81.0         I a = Dep. Storage (Above)         (         (           50>         (i,i)         THM STEP (DT) SHOULD BE SMALLER OR EQUAL         (         (         (           51>         THAN THE STORAGE COEFFICIENT.         (         (         (         (	01882> ID1 06:060 .09 .245 1.00 47.07 .000 01883> +ID2 07:070 2.66 .645 1.04 47.07 .000 01884>
44>         RUNOFF VOLUME (mm)=         47.93         19.25         45.640         (1)           45>         TOTAL RAINFALL (mm)=         49.50         49.505         (4)           46>         RUNOFF COEFFICIENT =         97         .39         .922         (4)           47>         (1)         CM FROCEDURE SELECTED FOR PERVIOUS LOSSES:         (4)         (4)         (4)         (4)           48>         (1)         CM * 81.0         1a         Dep. Storage (Above)         (4)         (4)           50>         (1)         TIME STEP (DT) SHOULD BE SMALLER OR EQUAL         (5)         (4)         (4)         (4)           51>         THAN THE STORAGE COEFFICIENT         (5)         (4)         (4)         (4)           52>         (11)         FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.         (4)         (4)	01882> ID1 06:060 .99 .245 1.00 47.07 000 01883> tD2 07:07 2.66 .645 1.04 47.07 .000 01884> ID2 07:07 0.2.66 .645 1.04 47.07 .000 01884> ID2 07:07 0.2.55 .876 1.04 47.07 .000

02026> Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 15.00 32.50 ADD HTYD (090 ) | ID: NHYD ID1 05:050 +ID2 08:080 AREA (ha) 5.01 3.55 QPEAK (cms) 1.107 .876 TPEAK R.V. DWF (hrs) (rmm) (cms) 1.04 45.09 .000 1.04 47.07 .000 020205 02027> 02028> 02029> 02030> 02031> 02032> 01893> *TOTALS* 1.485 (iii) 1.208 37.426 49.505 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 1.29 1.17 47.93 49.50 .97 .42 1.50 26.92 49.50 .54 01894> 01895> 01896> 01897> 01898> SUM 09:090 8.56 1.984 1.04 45.91 . 000 01899> NOTE : PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01910> 01911> 01912> 01912> 01913> 01914> 01915> 01916> SUM 05.HIP05 32.60 3.336 1.17 37.43 02048> 02049> 02050> 02051> 02052> .000 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. ROUTING RESULTS 01917> 01918> 
 ROUTING RESULTS
 AREA
 OPEAK
 TPEAK

 INFLOW>09: (090)
 0.56
 1.944
 1.042

 OUTFLOW-10: (POND)
 8.56
 .132
 2.276
 R.V. (mm) 45.914 45.912 02053: ------01919> 01920> 01921> 01922> PEAK FLOW REDUCTION [Qout/Qin](%)= 6.640 TIME SHIFT OF PEAK FLOW (min)= 74.17 MAXIMUM STORAGE USED (ha.m.)=.3146E+00 01923> 01924> 01925> 01926> 01927> 01928> 001:001 4-----01929> * Remaining Hawthorne Industrial Park * 01930> 01931> 01932> 01932> * SUB-AREA No.1 
 IMPERVIOUS
 PERVIOUS
 (i)

 Surface Area
 (ha) =
 14.13
 5.77

 Deps. Storage
 (mm) =
 1.57
 4.67

 Average Slope
 (%) =
 60
 1.50

 Lenigth
 (m) =
 580.00
 100.00

 Mainnings n
 =
 0.30
 .250
 01938> 01939> 01940> 01941> 01942> 01943> 5.77 4.67 1.50 100.00 .250 02076> 02077> 02077> 02078> 02079> 02080> 01943> 01944> 01945> 01945> 01946> 01947> 01948> 01949> 93.86 60.56 15.00 30.00 14.48 (ii) 30.78 (ii) 15.00 30.00 .08 .04 *TOTALS* 
 Max.eff.Inten.(mm/hr)=
 122.14
 72.53

 Over (min)
 6.77 (ii)
 21.93 (ii)

 Storage Coeff. (min)=
 6.77 (ii)
 21.93 (ii)

 Unit Hyd. Tpeak (min)=
 7.50
 22.50

 Unit Hyd. peak (cms)=
 .16
 .05

 PEAK FLOW (cms)=
 1.54
 .42

 TIME TO PEAK (hrs)=
 1.04
 1.33

 RUMOFF VOLUMES (mm)=
 47.93
 26.92

 TOTAL RAINFALL (mm)=
 9.50
 49.50

 RUNOFF COEFFICIENT =
 .97
 .54
 Mam.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 02081> 02081> 02082> 02083> 02084> 02084> *TOTALS* 1.983 (iii) 1.208 37.426 49.505 .756 *TOTALS* 1.687 (111) 1.042 37.426 49.505 .756 01950> 01951> 01952> 01953> 01954> 01955> 01956> 01957> 01958> 01959> 01960> .42 1.33 26.92 49.50 .54 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nmn) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 1.70 1.17 47.93 49.50 .97 .55 1.46 26.92 49.50 .54 02085> 02086> 02087> 02088> 02089> 02090> 02090> 02091> 02092> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) Time STEP (DT) SHOULD BE SWALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02093> 02093> 02094> 02095> 02095> (i) ON FOCLEDURE SELECTED FOR PORTIOUS LOSSES:
 (CN = 81.0 I a = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01961> 01961> (111 01962> 01963> ------01964> 001:0015-01965> ------·-- · 1.21 39.98 Unit Hyd Qpeak (cms)= .899 01972> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02108> 
 PEAK FLOW
 (cms)=
 .345 (i)

 TIME TO PEAK
 (hrs)=
 1.167

 RUNOFF VOLUME
 (mm)=
 22.420

 TOTAL RAINFALL
 (mm)=
 49.505

 RUNOFF COEFFICIENT
 =
 .453
 02103> 02109> 02110> 02111> 02112> 02112> ------019775 * 01978> * SUB-AREA No.2 * SUB-ARKA NO.2 | CALIE STANDHD | Area (ha) = 17.00 03:HIPO3 DF2_50 | Total Imp(%) = 71.00 Dir. Conn.(%) = 50.00 IMPERVIOUS PERVIOUS (i) Surface Area (ha) = 12.07 4.93 Dep. Storage (ha) = 12.07 4.93 Average Slope (%) = .65 1.50 Lerigth (m) = 450.00 100.00 Mannings n = .030 .250 01979> 01980> 01981> 01982> 02114> 02115> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01983> 01983> 01984> 01985> 01985> 01986> 01987> 01988> 01989> 01990> 01991> 01992> 01993> 01994> (cms) .000 .000 .000 .000 *TOTALS* 1.865 (iii) 1.167 37.426 49.505 .756 01994> 01995> 01996> 01997> 01998> 01998> 
 PEAK FLOW
 (cms) =
 1.63

 TIME TO PEAK
 (hrs) =
 1.13

 RUNOFF VOLUME
 (mm) =
 47.93

 TOTAL RAINFALL
 (mm) =
 49.50

 RUNOFF COEFFICIENT =
 .97
 .51 1.42 26.92 49.50 .54 01999> 02000> 02001> 02002> 02003> 02004> 02004> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (i) The Storage (Above)
 (ii) Time Step (DT) SHOULD BE SWALLER OR EQUAL THAN THE STORE (DT) SHOULD BE SWALLER OR EQUAL
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02006> 
 PEAK FLOW
 (cms) =
 .059 (i)

 TIME TO PEAK (hrs) =
 2.000

 RUNOFF VOLUME (mm) =
 16.075

 TOTAL RAINFALL (mm) =
 49.505

 RUNOFF COEFFICIENT =
 .325
 02007> 02008> -----02009> 001:0017-----02010> * 02011> * SUB-AREA No.3 02142> 02143> 02144> 02145> 02145> 02146> 02147> 02148> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02018> 02019> 02020> 02020> 02021> 02022> 02022> 02155> 02155> 02156> 02157> 02158> 02158> 93.86 57.19 15.00 32.50 15.61 (ii) 32.28 (ii) Max-eff.Inten.(wm/hr)= SUM 02:Ultima 79.96 7.029 1.17 36.86 .000 02024> 02025> over (min) Storage Coeff. (min)= 02160> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

J. L. Richards & Associates Limited

(V: \	۱.	•	.P	STPH2.	out)
-------	----	---	----	--------	------

001:002 5	02295> Unit Hyd. peak (cms)= .15 .14 02297> *TOTALS* (02298> PEAK FLOW (cms)= .40 .00 .400 (iii) 02299> TIME TO PEAK (hrs)= 1.04 1.08 1.042
CALCULATION OF 3HR - 1:25 YEAR STORM EVENT     *********************************	02297>         *TOTALS*           02297>         TIME TO PEAK (Lms) =         .40         .00         .400 (jii)           02299>         TIME TO PEAK (Lms) =         1.04         1.08         1.042           02301>         TIME TO PEAK (Lms) =         1.04         1.08         1.042           02301>         RUNOFF VOLVME (mm) =         56.66         25.35         55.717           02301>         TOTAL RAINFALL (mm) =         58.23         58.226         02302>           RUNOFF COEFFICIENT         .97         .44         .957
START   Project dir.: V:\20983.DU\ENG\SWMHYMO\ TZERO = .00 hrs on 0 METCUT= 2 (output = METRIC)	02303> 02304> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
	02306> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 02307> THAN THE STORAGE COEFFICIENT.
NSTCRM≖ 0 001:0002	02308> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02309>
CHICAGO STORM   IDF curve parameters: A=1402.884	02311> 001:0007
Ptotal = 58.23 mm   B = 6.018 C = .819 used in: INTENSITY = A / (t + B)^C	102313>   ADD HYD (040)   ID: NHYD         AREA         QPEAK         TPEAK         R.V.         DWF           02314>         (ha)         (cms)         (hrs)         (mm)         (cms)           02315>         ID1 01:010         2.07         .532         1.04         51.65         .000
Duration of storm = $3.00$ hrs	02316> +ID2 02:020 1.54 .418 1.04 54.15 .000 02317>
Storm time step = 10.00 min Time to peak ratio = .33	02318>         SUM 04:040         3.61         .950         1.04         52.72         .000           02319>         O2320>         NOTE:         PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
TIME RAIN   TIME RAIN   TIME RAIN   TIME RAIN hrs mm/hr   hrs mm/hr   hrs mm/hr   hrs mm/hr .17 4.934    1.00 144.653   1.83 9.014   2.67 4.701	02321> 02322>
.17 4.934 1.00 144.693 1.1.63 9.014 2.67 4.701 .33 6.152 1.1.7 43.904 2.00 7.571 2.83 4.310 .50 8.282 1.1.33 22.224 2.17 6.544 3.00 3.983 .57 13.006 1.1.50 14.852 2.33 5.776 1	02323> 00110008
.67 13.006   1.50 14.852   2.33 5.776   .83 33.041   1.67 11.192   2.50 5.179	02326>         (ha)         (cms)         (hrs)         (mm)         (cms)           02327>         ID1 03:030         1.40         .400         1.04         55.72         .000
001:0003	02330> SUM 05:050 5.01 1.350 1.04 53.55 .000
DEFAULT VALUES   Filename: V:\20983.DU\ENG\SWMMYMO\ORGA.VAL ICASEdv = 1 (read and print data)	02331> 02332> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02333>
FileTitle= ENTER YOUR COMMENTS ON THIS LINE AND THE NEXT ONE	02334>
Horton's infiltration equation parameters: [Fo-50.00 mm/hr] [F= 7.50 mm/hr] [DCA¥ 2.00 /hr] [F≈ .00 mm] Parameters for DERVIOUS surfaces in STANDHD:	02336> * 02337> * SUB-AREA No.4 02338>
(IAper= 4.67 mm] [LGP=40.00 m] [MNP= .250] Parameters for IMPERVIOUS surfaces in STANDHYD:	02339>   CALIB STANDHYD   Area (ha)= .89   02340>   06:060 DT= 2.50   Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00
[IA:imp= 1.57 mm] (CLT= 1.50] [MNI= .035] Parameters used in NASHYD: [Ia= 4.67 mm] [N= 3.00]	02341> IMPERVIOUS PERVIOUS (i)
001.0004	02344> Dep. Storage (mm)= 1.57 4.67
* ORGAWORLD FILE	02345> Average Slope (%)= .93 .70 02346> Length (m)= 164.82 40.00 02347> Mannings n = .030 .250 02348>
* SUB-AREA No.1	02349> Max.eff.Inten.(mm/hr)= 144.69 44.12 02350> over(min) 5.00 17.50
CALIB STANDHYD   Area (ha)= 2.07   01:010 DF= 2.50   Total Imp(%)= 84.00 Dir. Conn.(%)= 84.00	U2351>         Storage Coeff.         (min)=         5.02 (11).         18.44 (11)           02352>         Unit Hyd. Tpeak (min)=         5.00         17.50           02353>         Unit Hyd. peak (cms)=         .22         .06
IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 1.74 .33 Dep. Storage (mm)= 1.57 4.67	02354> *TOTALS*
Dep - Storage (mm) = 1.57 4.67 Average Slope (%) = .52 1.00 Length (m) = 204.72 20.00 Manpling n = 010 250	023555 PEAK FLOW (cms)= .30 .00 .296 (iii) 023555 TIME TO PEAK (trs)= 1.00 1.25 1.000 023575 RUNOFF VOLDME (rms)= 56.66 25.35 55.717 023575 RUNOFF VOLDME (rms)= 56.27 56.23 55.227
	02359> RUNOFF COEFFICIENT = .97 .44 .957 02360>
Max.eff.Inten.(mm/hr)= 144.69 47.07 over (min) 7.50 15.00 Storage Coeff. (min)= 6.81 (ii) 14.55 (ii)	102361>     (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:       02362>     CN* = 01.0       02363>     (11) THE STEP (DT) SHOULD BE SMALLER OR EQUAL
Unit Hyd. Tpeak (min) = 7.50 15.00 Unit Hyd. peak (cms) = .16 .08 *TOTALS*	02364> THAN THE STORAGE COEFFICIENT. 02365> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02366>
PEAK FLOW (cms) = .52 .03 .532 (iii)	02367>
INIMAL DEPRODUCTION         INIMAL DEPRODUCTION         INIMAL DEPRODUCTION         INIMAL DEPRODUCTION           RUNNOFF VOLUME         (mm) =         56.66         25.35         51.647           TOTAL RAINFALL (mm) =         58.23         58.23         58.23         58.23           RUNNOFF COEFFICIENT =         .97         .44         .887	02369> * 02370> * SUB-AREA No.5 02371>
<pre>(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES; CN* = 81.0 Ia = Dep. Storage (Above)</pre>	02372>   CALIB STANDHYD   Area (ha)= 2.66 02373>   07:070 Dr=2.50   Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 02374>
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.	02375> IMPERVIOUS PERVIOUS (i) 02376> Surface Area (ha)= 2.58 .08
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	02378> Average Slope (%)= .61 1.50
*	02380> Mannings n = .030 .250 02381>
* SUB-AREA No.2	02382>         Max.eff.Inten.(mm/hr)=         144.69         51.33           02383>         over (min)         7.50         12.50           02384>         Storage Coeff. (min)=         6.54 (ii)         13.16 (ii)
CALTE STANDHYD   Area (ha]= 1.54   02:020 pT=2.50   Total Imp(%)= 92.00 Dir. Conn.(%)= 92.00	02385>         Unit Hyd. Tpeak (min) =         7.50         12.50           02386>         Unit Hyd. peak (cms) =         .16         .09
IMPERVIOUS PERVIOUS (1) Surface Area (ha)= 1.42 .12 Dep. Storage (mm)= 1.57 4.67	102380>         PEAK FLOW         (cms)=         .78         .01         .763 (iii)           02380>         TIME TO PEAK         (hrs)=         1.04         1.17         1.042
Average slope (%)= .50 1.00 Length (m)= 244.34 5.00	02390> RUNOFF VOLUME (mma) = 56.66 25.35 55.717 02391> TOTAL RAINFALL (mma) = 58.23 58.23 58.226
Max.eff.Inten (mm/hr)= 144.69 65.19	02392>     RUNOFF COEFFICIENT     =     .97     .44     .957       02393>     02394>     (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
over (min)         7.50         7.50           Storage Coeff. (min) =         7.66 (ii)         8.49 (ii)           Unit Hyd. Tpeak (min) =         7.50         7.50	02395> CN* = 82.0 Ia = Dep. Storage (Above) 02396> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
Unit Hyd. peak (cms)≃ .15 .14 *TOTALS*	02398> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02399>
PEAK         FLOW         (cms) =         .40         .01         .418         (iii)           TIME TO PEAK         (hrs) =         1.04         1.08         1.042           RUNOFF VOLUME         (mm) =         56.66         25.35         54.152           TOTAL RAINFALL         (mm) =         58.23         58.226         58.226	02400>
XONOFF VOLOME         (mm) =         56.65         25.35         54.152           TOTAL RAINFALL         (mm) =         58.23         58.23         58.226           RUNOFF COEFFICIENT =         .97         .44         .930	02403>   ADD HYD (080 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF
<pre>(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)</pre>	02404> (ha) (cmas) (hrs) (nma) (cmas) 02405> ID1 06:060 .89 .296 1.00 55.72 .000 02406> +ID2 07:070 2.666 .783 1.04 55.72 .000 02407>
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.	02408> SUM 08:080 3.55 1.060 1.04 55.72 .000 02409>
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	02410> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02411> 02412>
*	02413> 001:0012
	02415>   ADD HYD (090 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF 02415> (ha) (cmms) (hrs) (mm) (cms) 02417> ID1 05:050 5.01 1.350 1.04 53.55 0.000
03:030 DT= 2.50 { Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00	02410> +ID2 08:080 3.55 1.060 1.04 55.72 .000 02419>
IMPERVIOUS     PERVIOUS (i)       Surface Area     (ha)=       1.36     .04       Dep. Storage     (mm)=       1.57     4.67	02420> SUM 09:090 8.56 2.410 1.04 54.45 .000 02421>
Average Slope (%)= .51 1.00 Length (m)= 225.63 5.00	02423> 02424>
	02425> 001:0013
	02427>   ROUTE RESERVOIR   Requested routing time step = 1.0 min.

02431> (cms) (ha.m.)   (cms) (ha.m.)	02566>
02432> .000 .0000E+00   .593 .6251E+00 02433> .008 .6560E-01   .654 .6631E+00	02567>   ADD HYD (HIP05)   ID: NHYD AREA QPEAK TPEAK R.V. DWF 02568> (ha) (cms) (hrs) (num) (cms)
02435> .093 .2831E+00   .950 .8274E+00 02436> .233 .3971E+00   .1.304 .9157E+00	02569>         IDI 03:HIF03         17.00         2.398         1.13         45.44         .000           02570>         +ID2 04:HIF04         15.60         1.879         1.21         45.44         .000           02571>
02437> .337 .4731E+00   1.880 .1004E+01 02438> .465 .5491E+00   2.577 .1992E+01 02439> .531 .5871E+00   0.0008E+00	02572> SUM 05:HIP05 32.60 4.157 1.13 45.44 .000 02573>
02439> .531 .5871E+00 ( .000 .0000E+00 02440> 02441> ROUTING RESULTS AREA QPEAK TPEAK R.V.	02574> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02575> 02576>
02442> (ha) (cmms) (hrs) (mm) 02443> INFLOW >09: (090 ) 8.56 2.410 1.042 54.451	02577> 001:0019
02444> OUTFLOW(10: (POND ) 8.56 .189 2.056 54.449 02445> 02445> PEAK FLOW REDUCTION [Oout/Oin] (%)= 7.838	02579> i ADD HYD (HIPO6 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF 02580> (ha) (cms) (hrs) (mm) (cms)
02445> PEAK FLOW REDUCTION [Qout/Qin] (\$)= 7.838 02447> TIME SHIFT OF PEAK FLOW (min)= 60.83 02448> MAXIMUM STORAGE USED (ha.m.)=.36122+00	02581>         ID1 05:HIP05         32.60         4.157         1.13         45.44         .000           02582>         +ID2 02:HIP02         28.46         2.622         1.17         48.15         .000           02583>
02449>	02584> SUM 06:HIP06 61.06 6.741 1.17 46.70 .000 02585>
02451> 001:01:4 02452> ******* ****************************	02586> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02587>
02453> * Remaining Hawthorne Industrial Park * 02454> ***********************************	02588>
02456> * SUB-AREA No.1 02457>	02591> * SUB-AREA No.4
02458>   CALIB STANDHYD   Area (ha)= 19.90 02459>   01:HIE'01 DT= 2.50   Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00	02593>   CALIB STANDHYD   Area (ha)= 12.20 02594>   07:HIP07 DT= 2.50   Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00
02460> 02461> IMPERVIOUS PERVIOUS (1) 02462> Surface Area (ha)= 14.13 5,77	02595> IMPERVIOUS PERVIOUS (1)
02463> Deps. Storage (mm)= 1.57 4.67 02464> Average Slope (%)= .60 1.50	02597> Surface Area (ha)= 8.66 3.54 02598> Dep. Storage (mm)= 1.57 4.67 02599> Average Slope (%)= .70 1.50
	02600> Length (m)= 210.00 100.00 02601> Mannings n = .030 .250
02467> 02469> Max.eff.Inten.(mm/hr)= 124.54 81.98 02469> over (min) 12.50 27.50	02602> 02603> Max.eff.Inten.(mm/hr)= 144.69 101.36 02604> over (min) 7.50 20.00
02470> Storage Coeff. (min)= 12.93 (ii) 27.37 (ii) 02471> Unit Hyd. Tpeak (min)= 12.50 27.50	02604> over (min) 7.50 20.00 02605> Storage Coeff. (min)= 6.32 (ii) 19.58 (ii) 02605> Unit Hyd. Tpeak (min)= 7.50 20.00
02472> Unit Hyd. peak (cms)= .09 .04 02473> *TOTALS*	02607> Unit Hyd. peak (cms)= .17 .06 02608> *TOTALS*
02474> PEAK FLOW (cms)= 2.16 .77 2.548 (iii) 02475> TIME TO PEAK (hrs)= 1.13 1.42 1.167 02476> RUNNOFF VOLUME (mm)= 56.66 34.22 45.437	026095 PEAK FLOW (cmc) = 1.86 ED 2.100 (444)
22/16> ILLUTE TERMA (ILLS) - 1.15 1.42 1.16) 22/16> RUNOFF VOLVDE (mm) = 56.56 34.22 45.437 D24/7> TOTAL RAINFALL (mm) = 58.23 58.23 58.23 22/78> RUNOFF COEFFICIENT = .97 .59 .780	02610>         TIME TO PEAK         (Lub)         1.06         .35         2.109         (111)           02611>         TIME TO PEAK         (hrs)=         1.04         1.29         1.042           02611>         RUNOFF VOLUME         (mm)=         56.66         34.22         45.437           02612>         TOTAL RAINFALL         (mm)=         58.23         58.23         58.226           02613>         RUNOFF COEFFICIENT =         .97         .59         .780
02479> 02480> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	02614> 02615> (i) CN PROCEDURE SELECTED FOR REDUICUS LOSSES.
02481> CM* = 81.0 Ia = Dep. Storage (Above) 02482> (ii) TIME STEP (DT) SHOULD BE SWALLER OR EQUAL 02483> THAN THE STORAGE COEFFICIENT.	02616> CN* = 81.0 Ia = Dep. Storage (Above) 02617> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
22483> INAW THE STORAGE COEFFICIENT. 22484> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 22485>	02618> THAN THE STORAGE COEFFICIENT. 02619> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02620>
12486>	02621>
2488> 2489>   ADD HYD (HIP02 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF	02623> * 02624> *SUB-AREA No.5
2490>         (ha)         (cms)         (hrs)         (nm)         (cms)           2491>         ID1 10:POND         8.56         .189         2.06         54.45         .000           2492>         +ID2 01:HIP01         19.90         2.548         1.17         45.44         .000	02625> 02626> i DESIGN NASHYD   Area (ha)≃ 4.00 Curve Number (CN)=85.00 02627> i 06:Pond-B DT= 2.50   Ia (mm)≃ 4.670 # of Linear Res.(N)= 3.00
2493>	02627>   08:Pond-B DT= 2.50   Ia (num) = 4.670 # of Linear Res.(N) = 3.00 02628> U.H. Tp(hrs) = .170 02629>
2495> 2496> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	02630> Unit Hyd Qpeak (cms)= .899 02631>
12497> 12498> 001:0016	02632> PEAK FLOW (cms)= .459 (i) 02633> TIME TO PEAK (hrs)= 1.167 02634> RUNOFF VOLLME (rms)= 29.155
2500> * 22501> * SUB-AREA No.2	02634> RUNOFF VOLIME (mm)= 29.155 02635> TOTAL RAINFALL (mm)= 58.226 02636> RUNOFF COEFFICIENT = .501
22502> 22503>   CALIB STANDHYD   Area (ha)= 17.00	02637> 02638> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
22504>   03:HIPO3 DT= 2.50   Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 22505>	02639> 02640> 02641> 001:0022
2507> Surface Area (ha)= 12.07 4.93 2508> Dep. Storage (mm)= 1.57 4.67	02542> 02642>
2509> Average Slope (%)= .65 1.50 2510> Length (m)= 450.00 100.00	02644> (ha) (cms) (hrs) (mm) (cms) 02645> ID1 06:HIP06 61.06 6.741 1.17 46.70 .000
2511> Manningsn = .030 .250 2512> 2513> Max.eff.Inten.(mm/hr)= 144.69 87.13	02646>         +ID2 07:HIP07         12.20         2.109         1.04         45.44         .000           02647>         +ID3 08:Pond-B         4.00         .459         1.17         29.15         .000
2514> over (min) 10.00 25.00 2515> Storage Coeff. (min)= 10.21 (ii) 24.30 (ii)	02648> ====================================
2516> Unit Hyd. Tpeak (min)= 10.00 25.00 2517> Unit Hyd. peak (cms)= .11 .05	02651> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02652>
2518> *TOTALS* 2519> PEAK FLOW (cms)= 2.10 .71 2.399 (iii) 2520> TIME TO PEAK (hrs)= 1.08 1.38 1.125	02653>
2520> TIME TO PEAK (hrs)= 1.08 1.38 1.125 2521> RUNOFF VOLUME (mm)≈ 56.66 34.22 45.437 2522> TOTAL RAINFALL (mm)≈ 58.23 58.23 58.226	02655> * 02656> *5UD-AREA NO. 6 02657> *
2523> RUNOFF COEFFICIENT = .97 .59 .780 2524>	02658> 02659>   DESIGN NASHYD   Area (ha)= 2.70 Curve Number (CN)=76.00
2525>     (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:       2526>     CN* = 81.0       2527>     (i) TIME STEP (DT) SHOULD BE SWALLER OR EQUAL	02660>   01:A3 DT= 2.50   Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 02661> U.H. Tp(hrs)= .800
25215 (11) THE STEP (DI) SHOULD BE SMALLER OR EQUAL 5285 THAN THE STORAGE COEFFICIENT. 25295 (111) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	02662> 02663> Unit Hyd Opeak (cms)= 129 02664>
2530> 2531>	
2532> 001:0017 2533> ★ 2534 ★ SUB-AREA No.3	02667> RUNOFF VOLUME (mma) = 21.442 02668> TOTAL RAINFALL (mma) = 58.226
2535> 2536>   CALIB STANDHYD   Area (ba)= 15.60	02669> RUNOFF COEFFICIENT = .368 02670> 02671> (1) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
2537>   04:HIP04 DT= 2.50   Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 2538>	02671> (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02672> 02673>
2539> IMPERVIOUS PERVIOUS (i) 2540> Surface Area (ba)= 11.08 4.52	02674> 001:0024 02675>
2541> Dep. Storage (mm)= 1.57 4.67 2542> Average Slope (%)= .50 1.50 2543> Length (m)= 600.00 100.00	02676>         ADD HYD (Ultima)         ID: NHYD         AREA         QPEAK         TPEAK         R.V.         DWF           02677>          (ha)         (cms)         (hm)         (cms)           026778>         TD109:HTPDR         77.26         8.98         1.3.45         0.00
2544> Mannings n = .030 .250 2545>	02679> +ID2 01:A3 2.70 .079 2.00 21.44 .000 02680>
2546> Max.eff.Inten.(mm/hr)= 111.10 77.71 2547> over (min) 15.00 30.00	02682>
25465 Max.eff.Inten.(mm/hr)= 111.10 77,71 2547> over (min) 15.00 30.00 2548> Storage Coeff. (min)= 14.59 (ii) 29.34 (ii) 2549> Unit Hvd. Theak (min)= 15.00 30.00	02682> 02683> Note: Peak flows do not include baseflows if any. 02684>
25465         Max.eff.Inten.(mm/hr)=         111.10         77.71           2547>         over(min)         15.00         30.00           2548>         Storzage Coeff.(min)=         14.59 (ii)         29.34 (ii)           2549>         Unit Hyd. Tpeak (min)=         15.00         30.00           2550>         Unit Hyd.peak (cms)=         .08         .04           2551>         *TOTALS*         *TOTALS*	02682> 02683> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02684> 02685>
25465         Max.eff.Inten.(mm/hr)=         111.10         77.71           2547>         over.(min)         15.00         30.00           2548>         Storzage Coeff.(min)=         14.59 (ii)         29.34 (ii)           2549>         Unit Hyd. Tpeak (min)=         15.00         30.00           2550>         Unit Hyd.peak (cms)=         .08         .04           2551>         *TOTALS*         *TOTALS*	122682>       NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.         12684>       02685>         12687>       02687         12687>       02687         12688>       021:0025
2545>         Max.eff.inten.(mm/hr)=         111.10         77.71           2547>         over.(min)         15.00         30.00           2548>         Storząge Coeff.(min)=         14.59 (ii)         29.34 (ii)           2549>         Unit Hyd. Tpeak (min)=         15.00         30.00           2550>         Unit Hyd. peak (cms)=         .08         .04           2551>         *TOTALS*         2552         \$1.57         1.679 (iii)           2552>         PEAK FLOW (cms)=         1.17         1.46         1.208           2554>         RUNOFF VOLUME (mm)=         55.66         34.22         45.437           2555>         TOTAL RAINFALL (mm)=         58.23         58.23         58.226           2555>         TOTAL RAINFPALL         =         .97         .59         .780	02682> 02683> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02684> 02685> 001:0025
25465         Max.eff.Inten.(mm/hr)=         111.10         77.71           2547>         over (min)         15.00         30.00           25489         Storząge Coeff.(min)=         14.59 (ii)         29.34 (ii)           2549>         Unit Hyd. Tpeak (min)=         15.00         30.00           2550>         Unit Hyd. Tpeak (min)=         15.00         30.00           2551>         (cms)=         .08         .04           2552>         PEAK FLOW (cms)=         1.57         1.679 (iii)           2553>         TIME TO PEAK (hrs)=         1.17         1.46         1.208           2553>         RUNOF NUMPAL         55.65         34.22         45.437           2555>         RUNOFF COEFFICIENT         .97         .52         .626           2555>         COCCEDURE SELECTED FOR PERVIOUS LOSSES:         .760	02682>         NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.           02684>         02685>           02685>         001:0025-           02685>         CALCULATION OF HER - 1:50 YEAR STORM EVENT           02685>         CALCULATION OF HER - 1:50 YEAR STORM EVENT           02680>         CALCULATION OF HER - 1:50 YEAR STORM EVENT           02680>         CALCULATION OF HER - 1:50 YEAR STORM EVENT           02680>         CALCULATION OF HER - 1:50 YEAR STORM EVENT           02680>         CALCULATION OF HER - 1:50 YEAR STORM EVENT           02680>         CALCULATION OF HER - 1:50 YEAR STORM EVENT           02680>         CALCULATION OF HER - 1:50 YEAR STORM EVENT           02680>         CALCULATION OF HER - 1:50 YEAR STORM EVENT           02680>         CALCULATION OF HER - 1:50 YEAR STORM EVENT
22546>       Max.eff.inten.(mm/hc)=       111.10       77.71         22547>       over (min)       15.00       30.00         22548>       Storage Coeff. (min)=       14.59 (ii)       29.34 (ii)         22549>       Unit Hyd. Tpeak (min)=       15.00       30.00         22550>       Unit Hyd. Tpeak (min)=       .08       .04         22551>       TIME TO PEAK (hcs)=       1.17       1.46       1.208         22552>       PEAK FLOW       (cms)=       1.17       1.46       1.208         22553>       RUNAP YOULDER       (mm)=       56.63       34.22       45.437         22554>       RUNAPY COMPALL       min)=       55.63       34.22       45.437         22555>       RUNOFF COEPFICIENT =       .97       .59       .760         22554>       (i) ON PECCEDURE SELECTED FOR PERVIOUS LOSSES:       .2560>       .760         22555>       (i) TIME TOF EPE (PC) SHULDE BE SANLER OR EQUAL       .450×epi       .2560>	02682>       NOTE: PEAK FLOWS DO NOT INCLUDE EASEFLOWS IF ANY.         02683>       NOTE: PEAK FLOWS DO NOT INCLUDE EASEFLOWS IF ANY.         02684>       001:0025
22545>       Max.eff.inten.(mm/hr)=       111.10       77.71         22547>       over (min)       15.00       30.00         22548>       Storage Coeff. (min)=       14.59 (ii)       29.34 (ii)         22549>       Unit Hyd. Tpeak (min)=       15.00       30.00         2250>       Unit Hyd. Tpeak (min)=       0.80       .04         22521>       FEAK FLOW (cms)=       1.57       57       1.679 (iii)         22553>       TIME TO FEAK (hrs)=       1.17       1.46       1.208         22554>       RUNOFF VOLMES (mm)=       56.66       34.22       45.437         22555>       TOTAL RAITPALL (mm)=       58.23       58.23       58.226         22555>       RUNOFF COEFFICIENT =       .97       .59       .780         2555>       (i) N PROCEDURE SELECTED FOR PERVISING LOSSES:       25555       .2555         (2555)       (i) ON PROCEDURE SELECTED FOR ADVAGE LONGEN       .57       .58	02682>         NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.           02684>         02685>           02685>         001:0025-           02685>         CALCULATION OF HR - 1:50 TEAR STORM EVENT           02685>         CALCULATION OF HR - 1:50 TEAR STORM EVENT           02680>         CALCULATION OF HR - 1:50 TEAR STORM EVENT           02680>         CALCULATION OF HR - 1:50 TEAR STORM EVENT           02680>         CALCULATION OF HR - 1:50 TEAR STORM EVENT           02680>         CALCULATION OF HR - 1:50 TEAR STORM EVENT           02680>         CALCULATION OF HR - 1:50 TEAR STORM EVENT           02680>         CALCULATION OF HR - 1:50 TEAR STORM EVENT           02680>         CALCULATION OF HR - 1:50 TEAR STORM EVENT

ł

ł

L

l

ί.

01>	Ptotal = 64.81 mm   B= 6.014		I ADD HYD (040 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF
02> 03> 04>		02838>	ID1 01:010 2.07 .609 1.04 57.95 .000
05>		02839> 02840> 02841>	
07>	Time to peak ratio = .33	02842>	
09> 10>	hrs mm/hr   hrs mm/hr   hrs mm/hr	02844>	
12>	.33 6.820   1.17 48.876   2.00 8.397   2.83 4.774	02847>	001:0008
13> 14> 15>	.67 14.441   1.50 16.495   2.33 6.403	02849>	ADD HYD (050 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF (ha) (cms) (hrs) (mm) (cms)
15> 16> 17>		02850>	+ID2 04:040 3.61 1.084 1.04 59.08 .000
18>	001:0003	02852> 02853> 02854>	SUM 05:050 5.01 1.538 1.04 59.96 .000
20>	DEFAULT VALUES   Filename: V:\20983.DU\ENG\SWAHYMO\ORGA.VAL 	02855>	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
22> 23>	FileTitle= ENTER YOUR COMMENTS ON THIS LINE AND THE NEXT ONE		001:0009
4>	Herrion's infiltration equation parameters: [F o= 50.00 mm/hr] [Fc= 7.50 mm/hr] [DCAY= 2.00 /hr] [F= .00 mm]		* SUB-AREA No.4
26> 27> 28>		02861> 02862>	CALLE STANDHYD   Area (ha)= .89   06:060 DT=2.50   Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00
19> 10>	[I.Aimp= 1.57 mm] [CLI= 1.50] [MNI= .035]	02863> 02864> 02865>	
1> 2>	[Ia= 4.67 mm] [N= 3.00]	02866>	Surface Area $(ha) = .86 .03$
3> 4>	001:0004	02868>	Average Slope $(x) = .93$ .70
6>	* CRGAWORLD FILE *	02870>	Mannings n = .030 .250
18>	* SUB-AREA No.1	02872> 02873>	over (min) 5.00 17.50
0>	CALIB STANDHYD   Area (ha)= 2.07   01:010 DT=2.50   Total Imp(%)= 84.00 Dir. Conn.(%)= 84.00	02874>	Unit Hyd. Tpeak (min) = 5.00 17.50
1> 2> 3>	IMPERVIOUS PERVIOUS (1) Surface Area (ha)= 1.74 .33	02876> 02877> 02878>	Unit Hyd. peak (cms)= .23 .07 *TOTALS* PEAK FLOW (cms)= .33 .00 .335 (iii)
4> 5>	Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= .52 1.00	02878>	TIME TO PEAK (hrs)= 1.00 1.25 1.000
6> 7>	Length (m) = 204.72 20.00 Mannings n = .030 .250	02881> 02882>	RUNOFF VOLUME         (mm)=         63.24         30.21         62.245           TOTAL RAINFALL         (mm)=         64.81         64.806         64.806           RUNOFF COEFFICIENT         =         .98         .47         .960
8> 9>	Max.eff.Inten.(mm/hr) = 161.47 62.27	02883> 02884>	(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
0> 1> 2>	over (min) $7.50$ $12.50$ Storage Coeff. (min) = $6.51$ (ii) $13.44$ (ii)           Weith Weith Merchanister $7.50$ $12.50$	02885>	$CN^* = 81.0$ Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
2> 3> 4>	Unit Hyd. Tpeak (min)= 7.50 12.50 Unit Hyd. peak (cms)= .16 .09 *TOTALS*	02887> 02888> 02889>	THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
4> 5> 6>	*TOTALS* PEALK FLOW (cms)= .59 .03 .609 (iii) TIMLE TO PEAK (hrs)= 1.04 1.17 1.042	02890>	001:0010
7> 8>	RUNOFF VOLUME (mm.) = 63.24 30.21 57.952 TOTAL RAINFALL (mm.) = 64.81 64.81 64.806	02892>	
9> 0>	RUNOFF COEFFICIENT = .98 .47 .894	102904~	CALLE STANDARD   Area (ha) = 2.66
1> 2>	<ul> <li>(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 IIa = Dep. Storage (Above)         (i.i) THM STEP (DT) SHOULD BE SMALLER OR EQUAL     </li> </ul>	02896>	1075070 Dir 2.50 ( Total Imp(*)= 97.00 Dir Conn.(*)= 97.00
3> 4>	THAN THE STORAGE COEFFICIENT.	02898> 02899>	IMPERVIOUS PERVIOUS (1) Surface Area (ha) = 2.58 .08
5> 6> 7>	(iii) PLAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	02900>	Dep. Storage $(mm) = 1.57$ 4.67 Average Slope ( $b = .61$ 1.50
	001:0005	02902> 02903> 02904>	Length {m}= 207.25 20.00 Mannings n = .030 .250
1 .	* SUB-AREA No.2	02905>	Max.eff.Inten.(mm/hr)= 161.47 62.27 over (min) 7.50 12.50
2> 3>	CALIB STANDHYD   Area (ha)= 1.54   02:020 DT= 2.50   Total Imp(%)= 92.00 Dir. Conn.(%)= 92.00	02907> 02908>	Storage Coeff. (min)= 6.26 (ii) 12.39 (ii) Unit Hyd. Tpeak (min)= 7.50 12.50
4> 5> 6>	IMPERVIOUS PERVIOUS (1)	02909>	Unit Hyd. peak (cms)= .17 .09 *TOTALS*
7> 8>	Surface Area (ha)= 1.42 12 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= .50 1.00	02911> 02912> 02913>	PEAK FLOW (cms)= .88 .01 .886 (iii) TIME TO PEAK (hrs)= 1.04 1.17 1.042 RUNOFF VOLUME (mm)= 63.24 30.21 62.245
9> 0>	Length (m)= 244.34 5.00 Mannings n = .030 .030	02913>	RUNOFF VOLUME (mm) = 63.24 30.21 62.245 TOTAL RAINFALL (mm) = 64.81 64.81 64.806 RUNOFF COEFFICIENT = .98 .47 .960
1> 2>	Max.eff.Inten.(mm/hr)= 161.47 78.73	02916> 02917>	(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
3> 4>	over (min) 7.50 7.50 Storage Coeff. (min)≃ 7.33 (ii) 8.10 (ii)	02918> 02919>	$CN^* \approx 81.0$ Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
5> 6> 7>	Unit Hyd. Tpeak (min)= 7.50 7.50 Unit Hyd. peak (cms)= .15 .14 *TOTALS*	02920>	THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
/> 8> 9>	*TOTALS* PEAK FLOW (cms)= .46 .02 .475 (iii) TIME TO PEAK (hrs)= 1.04 1.06 1.042	02922> 02923> 02924>	001:0011
0> 1>	RUNOFF VOLUME (mm) = 63.24 30.21 60.594 TOTAL RAINFALL (mm) = 64.81 64.81 64.806	02925>	ADD HYD (080 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF
2> 3>	RUNOFF COEFFICIENT = .98 .47 .935	02927> 02928>	(ha) (cms) (hrs) (mm) (cms) ID1 06:060 .89 .335 1.00 62.25 .000
4> 5> 6>	<ul> <li>(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)         (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL     </li> </ul>	02929>	+ID2 07:070 2.66 .886 1.04 62.25 .000
6> 7> 8>	<ul> <li>(11) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.</li> <li>(iii) PERK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.</li> </ul>	02931> 02932> 02933>	SUM 08:080 3.55 1.197 1.04 62.25 .000 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
)>		02934>	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
2>		02936> 02937>	001:0012
	* SUB-AREA NO. 3	02939>	ADD HYD (090)   ID: NHYD AREA QPEAK TPEAK R.V. DWF (ha) (cms) (mm) (cms)
5> 6> 7>	CALIE STANDHYD   Area (ha)= 1.40   03:030 DT= 2.50   Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00	02940> 02941>	ID1 05:050 5.01 1.538 1.04 59.96 .000 +ID2 08:080 3.55 1.197 1.04 62.25 .000
/> }>	IMPERVIOUS PERVIOUS (1) Surface Area (ha)= 1.36 .04	02942> 02943> 02944>	SUM 09:090 8.56 2.735 1.04 60.91 .000
)> L>	Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= .51 1.00	02944>	
?> ?>	Length (m)= 225.63 5.00 Mannings n = .030 .030	02947>	001:0013
1> ;>	Max.eff.Inten.(mm/hr)= 161.47 78.73	02949>	<b>EXAMPLE</b> RESERVOIR <b>EXAMPLE</b> Requested routing time step = 1.0 min
5> 7>	over         (min)         7.50         7.50           Storage Coeff.         (min)=         6.95 (ii)         7.72 (ii)           Unit fund         -         -         -	02951> 02952>	IN>09:(090 ) ( OUT<10:(POND )
8> 9> 0>	Unit Hyd. Tpeak (min)= 7.50 7.50 Unit Hyd. peak (cms)= .16 .15 *TOTALS*	02953> 02954>	OUTFLOW STORAGE   OUTFLOW STORAGE
0> 1> 2>		02955> 02956> 02957>	(LMS) (IALM.) (LMS) (ALMS) (ALMS) .000 .0000b+00 (.593 .6251E+00 .008 .6560b-01 (.554 .6631E+00 .017 .131E+00 (.797 .7391E+00
3> 4>	RUNOFF VOLUME $(mn) =$ 63.24         30.21         62.245           TOTPAL RAINFALL $(mn) =$ 64.81         64.81         64.806	02958>	.017 .1311E+00   .797 .7391E+00 .093 .2831E+00   .950 .8274E+00 .233 .3971E+00   1.304 .9157E+00
5> 6>	RUNOFF COEFFICIENT # .98 .47 .960	02960> 02961>	.337 .4731E+00   1.880 .1004E+01
7> 3>	<ul> <li>(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0</li> <li>I a Dep. Storage (Above)</li> <li>(ii) THE STEP (DT) SHOULD BE SMALLER OR EQUAL</li> </ul>	02962> 02963>	.531 .5871E+00   .000 .0000E+00
9> )>	THAN THE STORAGE COEFFICIENT.	02964> 02965>	ROUTING RESULTS AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm)
1>	(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	02966>	INFLOW >09: (090 ) 8.56 2.735 1.042 60.910 OUTFLOW<10: (POND ) 8.56 .233 1.944 60.908
2>	·	02968>	

J. L. Richards & Associates Limited

02971> MAXIMUM STORAGE USED (ha.m.)=.3967E+00 03106> 03107> 03108> 03109> SUM 06:HIP06 61.06 8.054 1.13 52.87 .000 

 03107
 SUM 05:NEOG
 5.106
 5.104
 1.13
 52.87
 .000

 03108
 NOTE: PEAK FLOWS DO NOT INCLUDE BASEPLOWS IF ANY.
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 03113
 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02978> * * SUB-AFREA No.1 02979> 02980> 02960> ------02961> [CALTE STANHYD | Area (ha)= 19.90 02962> [01:HIF01 DT-2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 02963> ------ 
 INPERVIOUS

 Suiface Area
 IMPERVIOUS

 Deps. Storage
 14.13

 Avestage Slope
 (%)=

 Lerigth
 (m)=

 Marnings n
 =

 .030
 02984> PERVIOUS (i) 02985> 02985> 02986> 02987> 02988> 02988> 5.77 4.67 1.50 100.00 02990> 02990> 02991> 02992> 02993> 02994> 02995> 138.95 102.13 12.50 25.00 12.38 (ii) 25.60 (ii) 12.50 25.00 .09 .04 Max.eff.Inten. (mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 02995> 02996> 02997> 02998> 02998> 03000> 03001> *TOTALS* PEZ4K FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 2.46 TOTALS* 3.001 (iii) 1.167 51.566 64.806 .796 .95 1.13 63.24 64.81 .98 .95 1.38 39.90 64.81 .62 03002> 03003> 03004> 03005> 03006> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL HEAN THE STORAGE COEFTICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03138> 03139> 03140> 03141> 03142> 03143> 03000> 03000> 03000> 03000> 03010> 03011> 001:0015------ 
 I ADD HXD (HIP02)
 I DI: NHYD
 AREA
 OPEAK
 TPEAK
 R.V.
 DK

 Inal
 (rms)
 03012> DWF (cms) .000 .000 03013> 
 DESIGN NASHYD
 Area
 (ha)=
 4.00
 Curve Number
 (CN)=85.00

 1 05:1001-8 DT=2.50
 Ia
 (mm)=
 4.670
 # of Linear Res. (N)= 3.00

 0.11. Tp(hrs)=
 .170
 03013> 03014> 03015> 03016> 03017> 03018> 03149> 03150> 03151> 03152> 03153> 03153> 03154> 03155> .000 Unit Hyd Qpeak (cms)= .899 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03010> 03020> 03021> 03022> 
 PEAK FLOW
 (cms) =
 .551

 TIME TO PEAK
 (hrs) =
 1.125

 RUNOFF VOLUME
 (mm) =
 34.455

 TOTAL RAINFALL
 (mm) =
 64.806

 RUNOFF COEFFICIENT
 =
 5.32
 .551 (i) 1.125 03156> 03157> 03157> 03158> 03159> 03160> 03021 03022 001:0016 03022 * 5UB-AREA No.2 03025 * 5UB-AREA No.2 03025 | CALIB STANDHYD | Area (ha) = 17.00 03026 | CALIB STANDHYD | Area (ha) = 17.00 Dir. Conn. (%) = 50.00 03026 | Total Imp(%) = 71.00 Dir. Conn. (%) = 50.00 03028 | INFERVIOUS PERVIOUS (i) 03029 | Dir. Conn. (%) = 50.00 03030 Surface Area (ha) = 12.07 4.93 03031 Dep. Storage (mm) = 1.57 4.67 03032 Average Stope (%) = .65 1.50 03033 Length (m) = 450.00 100.00 03035 Max.eff.Inten. (mm/hr) = 161.47 109.61 03036 Max.eff.Inten. (mm/hr) = 161.47 109.61 03038 Storage Coeff. (min) = 9.77 (ii) 22.63 03038 Unit Hyd. Tpeak (min) = 10.00 22.50 03040 Unit Hyd. Peak (min) = 10.00 22.50 03041 PEAK FLOW (cms) = 2.38 .88 2.819 (iii) 001:0016-----*TOTALS* 2.819 (iii) 1.125 * 51.566 64.806 .796 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEPFICIENT = 2.38 1.08 63.24 64.81 .98 . 88 03042> 03043> 03044> 1.33 39.90 64.81 .62 03045> 03045> TOTAL 03046> RUNOFF 03047> 03047> 03049> 03050> (ii) 03051> 03052> (iii) 03052> 03054> 03055> 001:0017----03055> 03181> -----03182> | DESIGN NASHYD | Area (ha)= 2.70 Curve Number (CN)=76.00 03182> | 01:A3 DT= 2.50 | Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 03184> ------ U.H. Tp(hrs)= .800 03186> Unit Hyd Opeak (cms)= .129 03187> ----- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (i) TIME STEP (DT) SHOULD BE SWALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (ii) FEAK FLOW DOES NOT INCLUDE BASEFICON IF ANY.
 PEAK FLOW (cms)= .096 TIME TO FEAK (hrs)= 1.956 RUNOFF VOLUME (mm)= 25.767 TOTAL RAINFALL (mm)= 64.806 RUNOFF COEFFICIENT = .398 .096 (i) 1.958 03188> 03189> 03190> 03191> 03191> 03192> 03193> 03056> * SUB-AREA No.3 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03194> Surface Area (ha) = 03061> 03062> 03063> 03064> 03065> 03066> 03066> 03066> 03068> 03069> 03070> IMPERVIOUS PERVIOUS (1) MPERVIOU 11.08 1.57 .50 600.00 .030 4.52 4.67 1.50 100.00 .250 Dep. Storage Average Slope Length Mannings n (ma) = (ma) = (\$) = (\$) = (m) = (m.000 138.95 12.50 13.34 (ii) 12.50 .09 Max.eff.Inten.(mm/hr)= 96.02 27.50 . 000 03070> 03071> 03072> 03073> over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 27.50 26.90 (ii) 27.50 .04 03074> 03075> 03075> 03076> 03077> 03078> PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (nm)= RUNOFF COEFFICIENT = 1.86 1.13 63.24 64.81 .98 .72 2.237 (iii) 1.167 51.566 64.806 .796 1.42 39.90 64.81 .62 03078> 03079> 03080> 03081> 03082> 03083> 03084> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SWALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03085> 03086> ------03092> 03092> 03093> 03094> 03095> Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = .33 03229> 03230> 03231> 03232> SUM 05:HIP05 32.60 5.019 1.13 51.57 .000 030965 
 TIME
 RAIN
 <th NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03097> TIME hrs 2.67 2.83 3.00 03233> mm/hr 5.760 5.280 4.879 03233> 03234> 03235> 03236> 03237> 03238> 03239> 03240> ---

	D. L. RICHARDS & ASSOCIATES LIMI
	03376> SUM 05:050 5.01 1.729 1.04 66.66 .000 03377>
0243>   DEFAULT VALUES   Filename: V:\20983.DU\ENG\SWMHYMO\ORGA.VAL 02243>	03378> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03379> 03380>
03246> BARMETER VALUES MUST BE BUTERD ATTER COLUMN 60 03247> Horton's infiltration equation parameters: 03248> [Fro=5.00 nm/hr] [Fcr= 1.50 nm/hr] [DCAY= 2.00 /hr] [F= .00 nm] 03249> Parameters for PERVIOUS SUFFAces in STANDHYD: 03250> [Jone 4.52] (Jone 1.00 nm/hr]	03380> 001:0009
03248> [F'o= 50.00 mm/hr] [Fc= 7.50 mm/hr] [DCAY= 2.00 /hr] [F= .00 mm] 03249> Parameters for PERVIOUS surfaces in STANDHYD:	03383> * SUB-AREA No.4 03384>
03251> Parameters for IMPERVIOUS surfaces in STANDAYD:	03385>   CALIB STANDHYD   Area (ha)= .89 03386>   06:060 DT= 2.50   Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00
03252> [IAimpe 1.57 mm] [CLI=1.50] [MNI=.035] 03253> Pestameters used in NASHYD: 03254> [Ia= 4.57 mm] [N=3.00]	03387>
03254> [Ia* 4.67 mm] [N* 3.00] 03255>	03389> Surface Area (ha)= .86 .03 03390> Dep. Storage (mm)= 1.57 4.67
03255> 001:0004 03257> ************************************	03391> Average Slope (%) = .93 .70 03392> Length (m) = 164.82 40.00
03259> ******* ** *************************	03393> Mannings n = .030 .250  03394>
03260> * SUB-AREA No.1 03261>	03395> Max.eff.Inten.(mm/hr)= 178.56 67.61 03396> over (min) 5.00 15.00
03262>   CALIB STANDHYD   Area (ha)= 2.07 03263>   01:010 DT= 2.50   Total Imp(%)= 84.00 Dir. Conn.(%)= 84.00	03397> Storage Coeff. (min)= 4.62 (ii) 15.92 (ii) 03398> Unit Hyd. Tpeak (min)= 5.00 15.00
03264> 03265> IMPERVIOUS PERVIOUS (1) 03265> Surface Area (ha) = 1,74 .33	(033995 0111 Hyd. peak (cms)= .24 .07 034005 *TOTALS*
03247b Date Changes (11)	03401>         PEAK FLOW         (cmms)=         .37         .00         .374 (iii)           03402>         TIME TO FEAK (hrs)=         1.00         1.21         1.000           03403>         RUNOFF VOLUME (mm)=         70.09         35.46         69.056           03404>         TOTAL PAINEALL (mm)=         71.66         71.665
02265> Dep:3051age (mm)= 1.57 4.67 03265> Average 305265> 1.00 03265> Lergth (m)= 204.72 20.00 0327> Marphings n = 0.30 .250	D3403>         RUNOFF VOLUME         (mm) =         70.09         35.46         69.056           03404>         TOTAL RAINFALL         (mm) =         71.66         71.66         71.66           03405>         RUNOFF COSFFICIENT =         .98         .49         .964
03271> 03272> Max.eff.Inten.(mm/hr)= 178.56 74.05	03406> (1) CN DEOCEDUES SELECTED FOR DEPUTOUS LOSSES
03273> over (min) 7.50 12.50 03274> Storage Coeff. (min)= 6.26 (ii) 12.72 (ii)	03408> CN* = 81.0 IA = Dep. Storage (Above) 03408> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
03275> Unit Hyd. Tpeak (min) = 7.50 12.50 03276> Unit Hyd. peak (cms) = .17 .09	03410> THAN THE STORAGE COEFFICIENT. 03411> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
03277> *TOTALS* 03278> PEAK FLOW (cms) = .66 .04 .685 (jij)	03412> 03413>
03279> TIME TO PEAK (hrs)= 1.04 1.17 1.042 03280> RUNOFF VOLDME (mm)= 70.09 35.46 64.553 03281> TOTTAL RATHERLT. (mm)= 71.66 71.66 71.65	03414> 001:0010
03281> TOTAL RAINFALL (mma)= 71.66 71.66 71.665 03282> RUNOFF COEFFICIENT = .98 .49 .901 03283>	03416> * SUB-AREA NO.5 03417>
03284> (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	03418>   CALIB STANDHYD   Area (ha)= 2.66 03419>   07:070 DT= 2.50   Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00
03285> CM* = 81.0 Ia = Dep. Storage (Above) 03286> (ii) TIME STEP (DT) SHOULD BE SWALLER OR EQUAL 03287> TRAM THE STORAGE COEFFICIENT.	03420>         IMPERVIOUS         PERVIOUS         (i)           03422>         Surface Area         (ha)=         2.58         .08
03288> (iii) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03289>	03423> Dep. Storage (mm) = 1.57 4.67
03290>	03424>         Average Slope         (%)=         .61         1.50           03425>         Length         (m)=         207.25         20.00           03425>         Mannings n         =         .030         .250
03292> * 03293> * SUB-AREA No.2	03427> 03428> Max.eff.Inten.(mm/hr)= 178.56 74.05
03295> 03295> [ CALIE STANDHYD   Area (ha)= 1.54 03295> [ 02:020 DT= 2.50   Total Imp(%]= 92.00 Dir. Conn.(%)= 92.00	03429> over (min) 5,00 12,50
	03431> Unit Hyd. Tpeak (min)= 5.00 12.50 03432> Unit Hyd. peak (cms)= .20 .09
03298> IMPERVIOUS PERVIOUS (i) 03299> Surface Area (ha)= 1.42 .12	03433> *TOTALS* 03434> PEAK FLOW (cms)= 1.03 .01 1.034 (iii)
03300> Dep. Storage (mm)= 1.57 4.67 03301> Average Slope (%)= .50 1.00 03302> Length (m)= 244.34 5.00	03435> TIME TO PEAK (hrs)= 1.00 1.17 1.000 03436> RUNOFF VOLUME (mm)= 70.09 35.46 69.056
03302> Length (m)= 244.34 5.00 03303> Manningsn = 030 030 03304>	03438> RUNOFF COEFFICIENT = .98 .49 .964
03305> Max.eff.Inten.(mm/hr)= 178.56 93.23 03306> over(min) 7.50 7.50	03439> (3440> (3440> (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 03441> CN* = 81.0 Ia = Dep. Storage (Above)
03307> Storage Coeff. (min) = 7.04 (ii) 7.76 (ii) 03308> Unit Hyd. Tpeak (min) = 7.50 7.50	03441>     CN* = 81.0     Ia = Dep. Storage (Above)       03442>     (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL       03443>     THAN THE STORAGE COEFFICIENT.
03309> Unit Hyd. peak (cms)= .16 .15 03310> *TOTALS*	03444> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03445>
03311> PEAK FLOW (cms)= .51 .02 .534 (iii) 03312> TIME TO PEAK (brs)= 1.04 1.08 1.04	03446>
03313> RUNOFF VOLUME (mm) = 70.09 35.46 67.324 03314> TOTAL RAINFALL (mm) = 71.66 71.66 71.665	03448> 03449> I ADD HYD (080 )   TD: NHYD AREA OPEAK TERAK F V. DWF
03315> RUNOFF COEFFICIENT = .98 .49 .939 03316>	O3450>         Cmms         Cmms         Cmms           03451>         ID1 06:060         .89         .374         1.00         69.06         .000           03452>         +ID2 07:070         2.66         1.034         1.00         69.06         .000
03317> (i) CM PROCEDURE SELECTED FOR PERVIOUS LOSSES: 03318> CM* = 61.0 Ia = Dep. Storage (Above) 03319> (ii) THE STEP (UT) SHOULD BE SWALLER OR EQUAL	
03319> (ii) TIME STEP (DT) SHOULD BE SNALLER OR EQUAL 03320> THAN THE STORAGE COEFFICIENT. 03321> (iii) PEAK FLOW DOES NOT INCLUBE BASEFLOW IF ANY.	03454> SUM 08:080 3.55 1.408 1.00 69.06 .000 03455>
03322>	03455> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03457> 03455>
0324> 001:0006	03459> 001:0012
03326> * SUB-AREA No.3 03327>	03461>   ADD HYD (090 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF 03462> (ha) (cms) (hrs) (num) (cms)
03328>   CALIE STANDHYD   Area (ha)= 1.40 03328>   03:030 DT= 2.50   Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00	03463> ID1 05:050 5.01 1.729 1.04 66.66 .000 03464> +ID2 08:080 3.55 1.408 1.00 69.06 .000
03331> IMPERVIOUS PERVIOUS (i)	03465> ====================================
03332> Surface Area (ha)= 1.36 .04 03333> Dep. Storage (mm)= 1.57 4.67	03467> 03468> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
03334> Average Slope (%)= .51 1.00 03335> Length (m)= 225.63 5.00 03336> Mannings n = .030 .030	03469> 03470>
0336> Manningsn = .030 .030 03337> 03338> Max.eff.Inten.(mm/hr)= 178,56 93.23	03471> 001:0013 03472>
03339>         Net (min)         7.50         9.23           03339>         over (min)         7.50         7.50           03340>         Storage Coeff. (min)=         6.67 (ii)         7.39 (ii)	03473>           ROUTE RESERVOIR         Requested routing time step = 1.0 min.           03473>           IN>09:(090)                     03475>           OUT<10:(20ND)
03341> Unit Hyd. Tpeak (cms)= .16 .15	03475 - OUTFLOW STORAGE   OUTFLOW STORAGE   OUTFLOW STORAGE 03477> (cms) (ha.m.)   (cms) (ha.m.)
03343> *TOTALS*	O3478>         .000         .000 E+00         .593         .6251E+00           03479>         .008         .6560E-01         .654         .6631E+00
03345> TIME TO PEAK (hrs)= 1.04 1.08 1.042 03346> RUNOFF VOLUME (mm)= 70.09 35.46 69.056	03480> .017 .1311E+00 .797 .7391E+00 03481> .093 .2831E+00 .950 .8274E+00
U3348> RUNOFF COEFFICIENT = .98 .49 .964	03482> .233 .3971E+00 1.304 .9157E+00 03483> .337 .4731E+00 1.880 .1004E+01
03349> 03350> (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	03484> .465 .5491E+00 2.577 .1092E+01 03485> .531 .5871E+00 .000 .0000E+00
03351> CN* = 81.0 Ia = Dep. Storage (Above) 03352> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 03353> TRAN THE STORAGE COEFFICIENT.	03486> 03487> ROUTING RESULTS AREA QPEAK TPEAK R.V.
0335> THAN THE STORAGE COEFFICIENT. 03354> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03355>	03488> (ha) (cms) (hrs) (mm) 03489> INFLOW >09: (090 ) 8.56 3.067 1.042 67.655
03355> 03356> 	03490> OUTFLOW<10: (POND ) 8.56 .283 1.861 67.653 03491> 03492> PRAK FLOW REDUCTION (Oput/Opu)(%)= 9.214
03359>   ADD HYD (040 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF	03493> TIME SHIFT OF PEAK FLOW (min)= 49.17
03360>	03494> MAXIMUM STORAGE USED (ha.m.)=.4333E+00 03495> 03496>
03362>         HD 01.010         2.07         565         1.04         64.53         000           03363>         +ID2 02:020         1.54         534         1.04         67.32         000           03363>         ====================================	03497> 001:0014
03364> SUM 04:040 3.61 1.220 1.04 65.74 .000 03365>	03499> * Remaining Hawthorne Industrial Park * 03500> ***********************************
03366> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03367>	03501> * 03502> * SUB-AREA No.1
03368>	03503> 03504>   CALIB STANDHYD   Area (ba)= 19.90
03370>	03505>   01:HIP01 DT= 2.50   Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 03506>
03372> (ha) (cms) (hrs) (mm) (cms) 03373> ID1 03:030 1.40 .509 1.04 69.06 .000	03507> IMPERVIOUS PERVIOUS (i) 03508> Surface Area (ha)= 14.13 5.77
03374> +ID2 04:040 3.61 1.220 1.04 65.74 .000 03375>	03509> Dep. Storage (mm)= 1.57 4.67 03510> Average Slope (%)= .60 1.50

J. L. Richards & Associates Limited

Lerigth Marinings n 580.00 03646> 03647> 03648> 03649> 03511> 100.00 Length Mannings n (m) = 210.00 100.00 03512> 03513> Max.eff.Inten.(mm/hr) = over (min) Stc-rage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = 178.56 146.17 5.00 17.50 5.81 (ii) 17.27 (ii) 5.00 17.50 .20 .07 03514> 03515> 03516> 03517> 153.66 117.89 Max.eff.Inten.(mm/hr)= 12.50 11.89 (ii) 12.50 .09 25.00 24.37 (ii) 25.00 .05 03650> 03651> 03652> 03653> 03654> over (min)= Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 03518> 03519> 03520> 03521> 03522> *TOTALS* 2.793 (iii) 1.042 58.015 71.665 .810 PE24K FLOW (cms) = TIME TO PEAK (hrs) = RUNJOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNJOFF COEFFICIENT = *TOTALS* 3.419 (iii) 1.167 2.46 1.00 70.09 71.66 .98 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 2.77 1.13 03655> 03655> 03656> 03657> 03658> 03658> .87 1.25 1.38 45.94 71.66 1.13 70.09 71.66 .98 45.94 71.66 .64 03522> 03523> 03524> 03525> 03526> 03526> 03527> 03659> 03660> 03661> 03662> 03663> 03664> 03665> 03665> 03665> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (i.) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 TRAN THE STORAGE COEFFICIENT.
 (i.i.) FARK FLOW DOES NOT INCLUDE BASEFICON IF ANY.
 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: ON* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 QPEAK TPEAK R.V. 
 The NHID
 AREA
 QFAR
 IPLAR
 K.V.

 ID1
 10:POND
 8.56
 .283
 1.86
 67.65

 +ID2
 01:HIP01
 19.90
 3.419
 1.17
 58.02
 (cms) .000 .000 1.17 60.91 000 
 PERK FLOW
 (cms) =
 .649

 TIME TO PEAK
 (hrs) =
 1.125

 RUNOFF VOLUME
 (mm) =
 40.139

 TOTAL RAINPALL
 (mm) =
 71.665

 RUNOFF COEFFICIENT =
 560
 .649 (i) 03678> 03679> 03680> 03681> 03682> 03683> | CALIB STANDRYD | Area (ha)= 17.00 | 03:HIP03 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 03683> (i) PEAK FLC 03685> 03686> -----03687> 001:0022------03688> -----(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 
 IMPERVIOUS

 Surface Area
 (ha) = 12.07

 Dep. Storage
 (mm) = 1.57

 Average Slope
 (%) = .65

 Length
 (m) = 450.00

 Mannings
 .030
 PERVIOUS (i) 035522 4PERV1002 12.07 1.57 .65 450.00 .030 03553> 03554> 03555> 03556> 03556> 03557> 4.93 4.67 1.50 100.00 .250 03558> 03559> 03560> 03561> 03562> Max.eff.Inten.(mm/hr) = over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = 178.56 126.60 03694> 03695> SUM 09:HIP08 77.26 12.109 1.13 58.16 
 10.00
 22.50

 9.39 (ii)
 21.52 (ii)

 10.00
 22.50

 .12
 .05
 .000 03563> 03564> 03565> 03565> 03566> 03567> *TOTALS* 3.203 (iii) 1.125 58.015 71.665 .810 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (nmn)= TOTAL RAINFALL (nmn)= RUNOFF COEFFICIENT = 2.68 1.08 70.09 71.66 .98 1.05 1.33 45.94 71.66 .64 03568> 03569> 03570> 03571> 03572> 03704> (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (1) THE STEP (DT) SHOULD BE SNALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (11) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03573> 03575> 03575> 03576> 03577> Unit Hyd Qpeak (cms)= .129 03710> 
 PEAK
 FLOW
 (cmms)=
 .114

 TIME
 TO PEAK
 [hrs]=
 1.958

 RUNOFF
 VOELUME
 (mm)=
 30.490

 TOTAL
 RAINFALL
 (mm)=
 71.665

 RUNOFF
 COEFFICIENT
 .425
 .114 (i) 03711> 03712> 03712> 03713> 03714> 03715> 
 035775

 035778 > 001:0017

 03578> 001:0017

 03580> *

 03580> (ALLE STANDERYD | 03582>

 03582> (CALLE STANDERYD | 03582>

 03584> ----- 

 03585> 004:HD74 DT= 2.50 | 03585>

 03585> 03585>

 03585> Dep. Storage (mm 03587> Dep. Storage (mm 03587> Average Slope (4 03589> Length (m 03580> (Mannings n)
 CALIE STANDHYD | Area (ha)= 15.60 04:HEP04 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 Surface Area (ha)= Dep. Storage (nm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS PERVIOUS (i) 4.52 4.67 1.50 100.00 11.08 1.57 .50 600.00 .030 Dep. Storage ( Average Slope Length Mannings n 100.00 .000 03590> 03591> 03592> 03593> 03595> 03595> 03596> 03598> 03598> 03600> 03601> 03602> 03603> 03603> 03605> 153.66 117.89 12.50 25.00 12.82 (ii) 25.30 (ii) 12.50 25.00 .09 .04 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= . 000 03727> SUM 02:Ultima 79.96 12.132 1.13 57.22 .000 03728> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03730> CONTRIBUTION OF CONTRAL OF CONTRIBUTION OF CONTRAL OF CONTRUCTOR OF CONTRAL OF CONTRAL OF CONTRAL OF CONTRU PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 2.10 1.13 70.09 71.66 .98 *TOTALS* .87 1.38 45.94 71.66 .64 2.612 (iii) 1.167 58.015 71.665 .810 Simulation ended on 2009-02-09 03738> at 14:59:34 (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (1) TIME STEP (DT) SHOULD BE SMALLER OR SQUAL THAN THE STORAGE COEFFICIENT. (11) FERK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03739> 03740> 03741> 03742> 03606> (cms) .000 .000 SUM 05:HIP05 32.60 5.767 1.13 58.02 03618> 000 
 03624>
 AREA

 03625> | ADD HYD (HIF06 ) | ID: NHYD AREA
 (ha)

 03625> _______ (ha)
 03627>

 036263 _______ (ha)
 05:HIF05 32.60

 03628> ______ (ha)
 02:HIF02 28.46

 03629> _______
 03:1100.21:HIF05 28.46
 QPEAK TPEAK R.V. (cms) (hrs) (mm) 5.767 1.13 58.02 3.554 1.17 60.91 (cms) .000 .000 03629> 5430> 03631> 03631> 03632> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF 03633> 03634> 03634> 03634> 03634> 03634> 03634> 03634> 03634> 03634> 03634> 03634> 03634> 03634> 03634> 03634> 03634> 03634> 03634> 03634> 03634> 03634> 03634> 03634> 03634> 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 03635 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0375 0 SUM 06:HIP06 61.06 9.239 1.13 59.36 .000 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. * SUB-AREA No.4 03637> U3537 SUC ALLESTANDHYD | Area (ha)= 12.20 U3540> | CALLESTANDHYD | Area (ha)= 12.20 U3540> | CYNEPO' DF2.50 | Total Imp(k)= 71.00 Dir. Conn.(k)= 50.00 U3541> ------U3542> IMPERVIOUS PERVIOUS (i) U3542> Surface Area (ha)= 8.66 3.54 U3542> Dep. Storage (ma)= 1.57 4.67 U3645> Avverage Slope (k)= .70 1.50

J. L. Richards & Associates Limited

# APPENDIX'F'

## STAGE-STORAGE-DISCHARGE TABLE

PRINTED ON: 5/15/2009 AT 1:38 PM

J.L. RICHARDS & ASSOCIATES LIMITED

Hawthorne Industrial Park Configuration of Storage Facility

2.5010 2.7981 3.4096 4.0442 4.3702 0.8400 .3705 .9242 0.0574 0.2434 0.5834 .1024 .6444 3.1009 3.7240 0.0000 2.2097 VOLUME ha-m Storage Cell Configuration SWMHYMO DATA 0 31009 574 5834 8400 11024 16444 19242 22097 25010 34096 37240 40442 VOLUME 2434 27981 43702 ື AREA 20384 20770 16913 19613 6666 7299 17684 18070 18456 18842 21156 1192 **19227** 21541 21927 3093 m2 0 48 54 59 62 147 280 472 724 937 64 1262 1404 1532 1650 2409 3689 OUTFLOW TOTAL (L/S) 0.0 0.0 0.0 0.0 0.0 0.0 648.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1825.2 DISCH. WEIR FLOW (L/S) 86.15 6000 1.87 (L/S) ~ RESTRICTOR DISCH. FLOW 860.0 1183.3 673.5 1323.0 1449.3 565.4 1775.0 (L/S) (L/S) 210.0 400.0 650.0 84.80 600 0.61 80.0 0.0 0.0 0.0 0.0 0.0 0.0 2 RESTRICTOR FLOW DISCH. (IL/S) 82.90 (L/S) 53.9 59.0 61.8 78.8 150 0.61 48.3 64.5 67.1 69.6 72.0 74.3 76.6 80.9 83.0 0.0 85.1 87.1 89.0 <u>_</u> Discharge Coeff. (C_d) # of restrictors/weirs: Invert Elevation (m) Dia. or Width (mm); 84.500 84.650 84.800 84.950 85.100 85.250 86.000 86.150 86.300 86.450 84.250 85.400 85.550 85.700 85.850 ELEV. 82.900 84.000 Ē

Note: Restrictor flows estimated by MTO Design Chart 2.32: Inlet Control for elevations ≤ 85.55 for double 600 mm culverts.

SHEET 150 mm & 2 x 600 mm

V:\20983.DU\ENG\Final Submission to City\SVMHYMO with Low Flow Ditch\stage-outflow-volume_Rev5.xls

# APPENDIX'G'

# SWMHYMO INPUT AND OUTPUT FILES (Post-Development Controlled Phase 1 Conditions)

				C. D. Kichards & Associates Limit
00001>2 Metric unit	5**************************************	00136>		[ -1 , -1 ] (max twenty pts)
00003> *# Project Name	: Hawthorne Industrial Park Project Number: {209831 *	00137> 00138>		******
00005> *# Revised	: January, 2009 *	00139>		awthorne Industrial Park *
00007> *# Reviewed by	: Mark Buchanan, E.I.T. * : Guy Forget, P.Eng. *	00141> 00142>	* * SUB-AREA No.1	
00008> *# Company 00009> *# License #	: J.L. Richards & Associates Limited * : 4418403 *	00143>	CALIB STANDHYD	ID=[ 1 ]. NHYD=["HIP01"]. DT=[2 5](min) _ APEA-[10 0](b-)
00011> *	***************************************	00145> 00146>		<pre>ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5] (min), AREA=[19.9] (ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81],</pre>
00012> * 00013> *#****** *************	**********	00147>		Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),
00014> *# FILENAME: V:' 00015> *# FILE DEVELOPEI	<pre>\20983.DU\ENG\SWMHYMO\20983PST.DAT * D FOR SITE PLAN APPLICATION AND DETAILED DESIGN *</pre>	00149>		LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.6] (%),
00016> *# OF A FACILITY	ASSOCIATED WITH THE OTTAWA COMPOSTING SITE *	00150> 00151>		LGI=[580] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , , , ] (mm/hr) , END=-1
00018> *			ADD HYD	IDsum=[ 2 ], NHYD=["HIP02"], IDs to add=[10+1]
00020> * SWMHYMO H	**************************************	00154>	*8 *	
00022> *****************	DSTING SITE UNDER POST-DEVELOPMENT UNCONTROLLED CONDITIONS *	00156> 00157>	* SUB-AREA No.2	
	***********	00158> 00159>	CALIB STANDHYD	<pre>ID=[ 3 ], NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],</pre>
0D026> * FOR DESIGN STORM	ALYSIS UNDER A 4 HR-25 MM STORM AND * 45 OF 1:2, 5, 10, 25, 50, AND 100 YR *	00160>		SCS curve number CN=[81],
00027> ************************************	**************************************	00162>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.65] (%),
00029> *******************	COPMENT UNCONTROLLED CONDITIONS *	00163>		LGI=[450] (m), MNI=[0.03], SCI=[0.0] (min
	**************************************	00165>		RAINFALL={ , , , , ] (mm/hr) , END=-1
00033> *****************	**********		* * SUB-AREA No.3	
00035> *****************	ATION OF 4 HR 25 MM STORM EVENT *	00169>	CALIB STANDHYD	<pre>ID=[ 4 ], NHYD=["HIP04"], DT=[2.5](min), AREA=[18.1](ha),</pre>
00036> 00037> START	TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]	00171>		XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],
00038> *% 00039> READ STORM	[] <storm filename,="" for="" line="" nstorm="" one="" per="" time<br="">STORM_FILENAME=["4HR25-15.STM"]</storm>	00173> 00174>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%),
00040> *%	ICASEdef=[1], read and print values	00175>		LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.5](%),
00042> 00043> *%	DEFVAL_FILENAME= (V: \22973.DU\ENG\SWMHYMO\"ORGA.VAL"]	00177>		LGI=[600](m), MNI=[0.03], SCI=[0.0](min RAINFALL=[,,,,](mm/hr), END=-1
00044> 00045> ************************	•••••	00179>	*8ADD HYD	IDsum=[ 5 ], NHYD=["HIP05"], IDs to add=[3+4]
00046> * ORGAWOR	LD FILE *	00181>		-
00048> *	**************************************	00182>	*SUB-AREA No.4	
00049> * SUB-AREA No.1 00050>	· · · · · · · · · · · · · · · · · · ·	00185>	DESIGN NASHYD	<pre>ID=[ 6 ], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[ 0 ](cms), CN/C=[ 85 ], TP=[0.17]hrs,</pre>
00051> CALIB STANDHYD 00052>	ID=[ 1 ], NHYD=["010"], DT=[2.5] (min), AREA={ 2.07 } (ha), XIMP=[0.84], TIMP=[0.84], DWF=[0.0] (cms), LOSS=[2],	00186>	*8	RAINFALL=[ , , , ] (mm/hr), END=-1
00053> 00054>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (num), SLPP=[1.0](%),	00188> 00189>		· · · · · · · · · · · · · · · · · · ·
00055> 00056>	LGP=[20](m), MNP=[ 0.25 ], SCP=[0.0](mi Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.52](%).	00190>	ADD HYD	IDsum=[ 7 ], NHYD=["HIP06"], IDs to add=[2+5+6]
00057> 00058>	LGI=[204.72](m), MNI=[0.03], SCI=[0.0] RAINFALL=[,,,](mm/hr), END=-1	00192>	ROUTE RESERVOIR	IDout=[8], NHYD=["HIP-POND"], IDin=[7].
00059> *%		00194>	NOVIE RESERVOIR	RDT=[1.0] (min),
00061> * SUB-AREA No.2 00062>		00196>		TABLE of ( OUTFLOW-STORAGE ) values (cms) - (ha-m)
00063> CALIB STANDHYD 00064>	<pre>ID=[ 2 ], NHYD=["020"], DT=[2.5](min), AREA=[ 1.54 ](ha), XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2],</pre>	00197> 00198>		(cms) - (ha-m) { 0.0 , 0.0 } [ 0.045, 0.0574 ]
00065>	SCS curve number CN=[81],	00199> 00200>		( 0.054, 0.2434 ] [ 0.059, 0.5834 ]
00066> 00067>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%), LGP=[5](m), MNP=[0.03], SCP=[0.0](min),	00201>		[ 0.062, 0.8400 ] [ 0.064, 1.1024 ]
00068> 00069>	Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.50](%), LGI=[244.34](m), MNI=[0.03], SCI=[0.0]	00203>		[ 0.147, 1.3705 ] [ 0.280, 1.6444 ]
00070> 00071> *%	RAINFALL=[ , , , , ] (mm/hr) , END=-1	00205>		[ 0.472, 1.9242 ]
00072> * 00073> * SUB-AREA No.3	· · · ·	00207>		[ 0.724, 2.2097 ] [ 0.937, 2.5010 ]
00074> 00075> CALIB STANDHYD	ID=[ 3 ], NHYD=["030"], DT=[2.5] (min), AREA=[1.4] (ha),	00209>		[ 1.262, 2.7981 ] [ 1.404, 3.1009 ]
00076> 00077>	XIMP=[0.97], TIMP=[0.97], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81],	00211>		[ 1.532, 3.4096 ] [ 1.650, 3.7240 ]
00078> 00079>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%).	00213>		[ 2.409, 4.0442 ] [ 3.689, 4.3702 ]
00080> 00081>	LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min), Impervious surfaces: IAimp=[1.57] (mm), SLP=[0.51](%),	00214> 00215>		<pre>[ -1 , -1 ] (max twenty pts)</pre>
00082>	LGI=[ 225.63 ] (m), MNI=[0.03], SCI=[0.0 RAINFALL=[ , , , , ] (mm/hr) , END=-1	00216>		
00084> ADD HYD	IDsum=[4], NHYD=[ "040"], IDs to add=[1+2]	00218>	*SUB-AREA No. 5	
00085> *%	IDsum=[5], NHYD=[ "050"], IDs to add=[3+4]	00220>	* DESIGN NASHYD	ID = {9}, NHYD=["A2"], DT=[2.5]min, AREA=[6.8](ha),
00087> *%		00222>		DWF=[0](cms), CNC=[76], TP=[0.37]hrs, RAINFALL=[, , , , ](mm/hr), END=-1
00089> * SUB-AREA No.4 00090>		00224>	*	
00091> CALIB STANDHYD 00092>	ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],	00226>	*SUB-AREA No. 6 *	
00093> 00094>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.7](%),		DESIGN NASHYD	ID = [10], NHYD=["A3"], DT=[2.5]min, AREA=[5.3] (ha), DHF=[0] (cmc), CNC=[76], mp [0, 2003]=-
00095> 00096>	LGP=[40](m), MMP=(0.25], SCP=[0.0](min) Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.93](%),	00230>	*8	DWF=[0](cms), CNC=[76], TP=[0.804]hrs, RAINFALL=[, , , , ](mm/hr), END=-1
00097> 00098>	LGI=[164.82] (mm/hr), ShFi=[0.93] (%), LGI=[164.82] (m), MNI=[0.03], SCI=[0.0] ( RAINFALL=[, , , ] (mm/hr), END=-1	00232> 2	ADD HYD	IDsum=[1], NHYD=["Interim"], IDs to add=[8+9+10]
00099> *8	KAINFALL=[, , , , ](mm/hr), END=-1 -!	00234>	· · · · · · · · · · · · · · · · · · ·	-
00101> * SUB-AREA No.5 00102>		00235>	*****	*********************
00103> CALIB STANDHYD	ID=[ 7 ], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],	00238> *	**************	N OF 3HR - 1:2 YEAR STORM EVENT *
00104> 00105>	SCS curve number CN=[81],	00239>	START	T2ERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]
00106> 00107>	Pervious surfaces: $IAper=[4.67]$ (mm), $SLPP=[1.5]$ (%), LGP=[20.0] (m), $MNP=[0.25]$ , $SCP=[0.0]$ (m)	00241> 1	* % * 8	[ ] <storm filename,="" for="" line="" nstorm="" one="" per="" td="" time<=""></storm>
00108> 00109>	<pre>Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.61] (%), LGI=[207,25] (m), MNI=[0.03], SCT=[0.0] (</pre>	00243> 0	CHICAGO STORM	IUNITS=[2], TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0](min) ICASEcs=[1],
00110> 00111> *8	RAINFALL=[, , , , ](mm/hr), END=-1	00245>	*&	A = [732, 951], $B = [6, 199]$ , and $C = [0, 810]$ .
00112> ADD HYD 00113> *%	IDsum=[8], NHYD=[ "080"], IDs to add=[6+7]	00247> I	DEFAULT VALUES	ICASEdef=[1], read and print values
00114> ADD HYD 00115> **	IDsum=[9], NHYD=[ "090"], IDs to add=[5+8]		*8	DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]
00116>	, , , , , , , , , , , , , , , , , , , ,		*****	
00117> ROUTE RESERVOIR 00118>	IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min),	00253> *	* ORGAWORL	D FILE * *
00119> 00120>	TABLE of ( OUTFLOW-STORAGE ) values (cms) - (ha-m)	00254> *		
00121> 00122>	[ 0.000, 0.0000] [ 0.008, 0.0656]	00256>	CALIB STANDHYD	ID=[ 1 ]. NHYD=["010"]. DT=[2 5]/min] appa-[ 2 07 ]/
00123> 00124>	[ 0.017, 0.1311] [ 0.093, 0.2831]	00258>		<pre>ID=[ 1 ], NHYD=["010"], DT=[2.5](min), AREA=[ 2.07 ](ha), XIME=[0.84], TIME=[0.84], DWF=[0.0](cms), LOSS=[2], STS culture number (N=:501)</pre>
00125> 00126>	[ 0.233, 0.3971] [ 0.337, 0.4731]	00260>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (nm), SLPP=[1.0] (%), LGP=[20] (m), MNP=[ 0.25 ], SCP=[0.0] (mi
00127> 00128>	[ 0.465, 0.5491]	00261>		impervious surraces: iAimp=[1.57](mm), SLPI=[0.52](%),
00129>	[ 0.531, 0.5871] [ 0.593, 0.6251] [ 0.554 0.6251]	00263> 00264>		LGI=[204.72](m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , , , ](mm/hr), END=-1
00130> 00131>	( 0.654, 0.6631) [ 0.797, 0.7391]	00266> *		]
00132> 00133>	[ 0.950, 0.8274] [ 1.304, 0.9157]		SUB-AREA No.2	
00134> 00135>	[ 1.880, 1.0040] [ 2.577, 1.0923]		CALIB STANDHYD	ID=[ 2 ], NHYD=["020"], DT=[2.5](min), AREA=[ 1.54 ](ha), XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2],
		1		[], IARE-[0.02], DHE-[0.0](CHB), LOSS=[2],
	C Jacobishes Timited			

1

L

ί.,.

00271>			
	SCS curve number CN=[81],	00406>	[ 0.059, 0.5834 ]
00272> 00273>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), ICP=[5] (m) MOD=[0.02] SCP=[0.03 (-in)	00407> 00408>	[ 0.062, 0.8400 ]
00274>	LGPE151(m), SHF2[1.0](%), LGPE151(m), MMP=[0.03], SGE=[0.0](min), Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.50](%),	00409>	[ 0.064, 1.1024 ] [ 0.147, 1.3705 ]
00275> 00276>		00410>	[ 0.280, 1.6444 ]
00277> **	RAINFALL=[, , , , ](mm/hr), END=-1	00412>	0.472, 1.9242 ] 0.724, 2.2097 }
00279> * SUB-AREA No.3		00413> 00414>	[ 0.937, 2.5010 ]
00280> 00281> CALIB STANDHYD		00415>	[ 1.262, 2.7981 ] [ 1.404, 3.1009 ]
00282>	<pre>ID=[ 3 ], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],</pre>	00416> 00417>	[ 1.532, 3.4096 ] [ 1.650, 3.7240 ]
00283> 00284>	SCS curve number CN=[81],	00418>	[ 2.409, 4.0442 ]
00285>	<pre>Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%),</pre>	00419>	
00286> 00287>	<pre>Impervious surfaces: IAimp=[1.57](mm), SLPI=[ 0.51 ](%).</pre>	00421>	<pre>[ -1 , -1 ] (max twenty pts)</pre>
00288>	LGI=[ 225.63 ] (m), MNI=[0.03], SCI=[0.0 RAINFALL=[, , , ] (mm/hr), END=-1	00422> *8	
00289> *% 00290> ADD HYD		00424> *SUB-AREA No. 5	
00291> **	IDsum=[4], NHYD=[ "040"], IDs to add=[1+2]	00425> * 00426> DESIGN NASHYD	$TD = \{0\} MEVD=\{0, 0, 0\} DT=\{0, 0\}$
00292> ADD HYD 00293> *8	IDsum=[5], NHYD=[ "050"], IDs to add=[3+4]	00427>	<pre>ID = [9], NHYD={"A2"}, DT=[2.5]min, AREA=[6.8](ha), DWF=[0](cms), CNC=[76], TP=[0.37]hrs,</pre>
00294> *		00428>	RAINFALL=[,,,,](mm/hr), END=-1
00295> * SUB-AREA No.4 00296>		00430> *	
00297> CALIB STANDHYD	ID=[6], NHYD=["060"], DT=[2,5](min), AREA=[0,89](ba).	00431> *SUB-AREA No. 6 00432> *	
00298>	ID=[6], $NHYD=["060"]$ , $DT=[2.5]$ (min), $AREA=[0.89]$ (hz), XIMP=[0.97], $TIMP=[0.97]$ , $DWF=[0.0]$ (cms), $LOSS=[2]$ ,	00433> DESIGN NASHYD	ID = [10], NHYD=["A3"], DT=[2.5]min, AREA=[5.3](ha),
00300>	Pervious surfaces: $IAper=[4, 67] (mm)$ , $SLPP=[0, 7] (%)$ .	00434>	DWF = [0] (cms), CNC = [76], TP = [0.804] hrs.
00301>	LGP=[40](m), MNP=[0.25], SCP=[0.0](min) Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.93](%),	00436> *%	RAINFALL=[ , , , , ] (mm/hr), END=-1
00302> 00303>	LGI = [164, 82](m), $MNT = [0, 03]$ , $SCT = [0, 0]/$	00437> ADD HYD 00438> *%	IDsum=[1], NHYD=["Interim"], IDs to add=[8+9+10]
00304>	RAINFALL=[ , , , ] (mm/hr) , END=-1	00439>	
00306> *			***********
00307> * SUB-AREA No.5		00442> * CALCULATI	ION OF 3HR - 1:5 YEAR STORM EVENT *
00308> 00309> CALIB STANDHYD	<pre>ID=[ 7 ], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha),</pre>	00443> ***********************************	***************************************
00310>	XIMP=[0,97], TIMP=[0,97], DWF=[0,0](cms), LOSS=[2],	00445> START	TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]
00311> 00312>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%),	00446> *%	[ ] <storm filename,="" for="" line="" nstorm="" one="" per="" td="" time<=""></storm>
00313> 00314>	$LGP = \{20, 0\} (m), MNP = \{0, 25\}, SCP = \{0, 0\} (m)$	00448> CHICAGO STORM	IUNITS=[2], TD=[3.0] (hrs), TPRAT=[0.333], CSDT=[10.0] (min)
00314>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.61] (%), LGI=[207.25] (m), MNI=[0.03], SCI=[0.0] (	00449>	ICASECs=[1],
00316>	RAINFALL=[, , , ] (mm/hr) , END=-1	00451> *8	A=[998.071], B≈[6.053], and C=[0.614],
00317> *%	IDsum=[8], NHYD=[ "080"], IDs to add=[6+7]	00452> DEFAULT VALUES 00453>	ICASEdef=[1], read and print values
00319> *8		00454> *8	DEFVAL_FILENAME={V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"}
00320> ADD HYD 00321> *%	IDsum=[9], NHYD=[ "090"], IDs to add=[5+8]	00455> 00456> **********************	
00322>	· · · · · · · · · · · · · · · · · · ·	00457> * ORGAWOR	RD FILE *
00323> ROUTE RESERVOIR 00324>	IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min),	00458> ************************************	*********
00325>	TABLE of ( OUTFLOW-STORAGE ) values	004595 - 004605 * SUB-AREA No.1	
00326> 00327>	(cms) ~ (ha-m) [ 0.000, 0.0000]	00461>	
00328>	[ 0.008, 0.0656]	00462> CALIB STANDHYD 00463>	<pre>ID=[ 1 ], NHYD=["010"], DT=[2.5](min), AREA=[ 2.07 ](ha), XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2],</pre>
00329>	[ 0.017, 0.1311]	00464>	SCS curve number CN=[81],
00331>	[ 0.233, 0.3971]	00465> 00466>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%), LGP=[20](m), MNP=[ 0.25 ], SCP=[0.0](mi
00332> 00333>	0.337, 0.4731]	00467>	<pre>Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.52] (%),</pre>
00334>	[ 0.465, 0.5491] [ 0.531, 0.5871]	00468>	LGI = [204.72] (m), MNI = [0.03], SCI = [0.0]
00335>	[ 0.593, 0.6251]	00470> *8	RAINFALL=[, , , , ](mm/hr) , END=-1
00336> 00337>	[ 0.654, 0.6631] [ 0.797, 0.7391]	00471> * 00472> * SUB-AREA No.2	
00338>	[ 0.950, 0.8274]	00473>	
00339>	[ 1.304, 0.9157] [ 1.880, 1.0040]	00474> CALIB STANDHYD 00475>	<pre>ID=[ 2 ], NHYD=["020"], DT=[2.5](min), AREA=[ 1.54 ](ha),</pre>
00341>	[ 2.577, 1.0923]	00475>	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
00342>	$\begin{bmatrix} -1 & -1 \end{bmatrix}$ (max twenty pts)	00477>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%),
00344> ****************	******	00478> 00479>	LGP=[5](m), MNP=[0.03], SCP=[0.0](min), Impervious surfaces: IAimp=[1.57](mm), SLPT=[0.50](%)
00345> * Remaining Ha 00346> ********************	wthorne Industrial Park *	00480>	Impervious surfaces: IAimp=[1.57] (ma), SLP=[0.50] (%), LGI=[244.34] (m), MNI=[0.03], SCI=[0.0]
		00481>	RAINFALL=[, , , , ](mm/hr), END=-1
00347> *		00482> *8	
00348> * SUB-AREA No.1		00482> *8 00483> *	
00348> * SUB-AREA No.1 00349> 00350> CALIB STANDHYD	ID=[ 1 ], NHYD=["HIP01"], DT=[2.5](min), AREA=[19.9](ha],		
00348> * SUB-AREA No.1 00349> 00350> CALIB STANDHYD 00351>	<pre>ID=[ 1 ], NHYD=("HIPO1"), DT=[2.5](min), AREA=[19.9](ha), XLDP=[0.50], TLHP=[0.71], DWF=[0.0](cms), LOSS=[2], Secco-supervised of the second sec</pre>	00483> * 00484> * SUB-AREA No.3 00485> 00486> CALIB STANDHYD	<pre>ID=[ 3 ], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha),</pre>
00348> * SUB-AREA No.1 00349> 00350> CALIB STANDHYD 00351> 00352> 00352>	XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cmas), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: Apeg=[4.67](mm), SLPP=[1.5)(%).	00483> * 00484> * SUB-AREA No.3 00485> 00486> CALIB STANDHYD 00487>	XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],
00348> * SUB-AREA No.1 00349> CALIB STANDHYD 00350> CALIB STANDHYD 00352> 00352> 00353> 00354>	<pre>XIMP=(0.50), TIMP=(0.71), DWF=[0.01)(cras), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.51)(%), LGP=[100.01](m1, MMP=[0.251. SCP=[0.01](m)</pre>	00483> * 00484> * SUB-AREA No.3 00485> 00486> CALIB STANDHYD 00487> 00487> 00488> 00489>	<pre>XIMP=(0.97), TIMP=(0.97), DWF=(0.0)(cms), LoSS=[2], SCS curve number CN=[61], Pervious surfaces: LAper=[4.67](mma), SLPP=[1.0](%).</pre>
00340> * SUB-AREA No.1 00349> 00350> CALIB STANDHYD 00351> 00352> 00352> 00354> 00355> 00355>	XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2], SCS curve number CH=[61], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[10.0.0] (m), MMP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimpe[1.57] (mm), SLPI=[0.6] (%), LGT=[580] (m, MMT=[0.03], SCT=[0.0] (min)	00483.* 00483.* SUE-AREA No.3 00485. 00485. CALIE STANDHYD 00487. 00488. 00489. 00489. 00489.	<pre>XIMP=(0.97), TIMP=(0.97), DWF=(0.0)(cms), LoSS=[2], SCS curve number CN=[61], Pervious surfaces: LAper=[4.67](mma), SLPP=[1.0](%).</pre>
00340> * SUB-AREA No.1 00340> 00350> CALIB STANDHYD 00351> 00352> 00353> 00354> 00355> 00355> 00355> 00357> .	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CH=[81], Pervious surfaces: IApor=[4.67](mm), SLPP=[1.5](%), LGF=[100.0](m, MMP=[0.25], SCP=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.6](%), LGI=[560](m), MMI=[0.03], SCI=[0.0](min RAINFALL=[, , , ] (mm/h; ] END=1</pre>	00483> * 00485> * SUB-AREA No.3 00485> CALIB STANDHYD 00485> CALIB STANDHYD 00487> 00488> 00489> 00489> 00490> 00490> 00491> 00492>	<pre>XIMB=[0.97], TIME=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number Ch=[61], Pervious surfaces: IAper=[4.67](rmm), SLPP=[1.0](%), LOP=[5](m), MNF=[0.03], SCP=[0.0](min), Impervious surfaces: IAimp=[1.57](rmm), SLPI=[0.03], SCT=[0.0]</pre>
00340> * SUB-AREA No.1 00349> 00350> CALIB STANDHYD 00351> 00352> 00352> 00354> 00355> 00355>	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CH=[61], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), LGP=[10.0.0](m), MMP=[0.25], SCS=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.6](%), CLGT=[580](m), MMI=[0.03], SCI=[0.0][min RAINFALL=[, , , ](mm/hr), END=</pre>	00483.* 00485.* SUB-AREA No.3 00485. 004865 CALIE STANDHYD 00487. 00488. 00489. 00490.	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: IAper=[4.67](mma), SLPP=[1.0](%).</pre>
00348> * SUB-AREA No.1 00349> 00350> CALIB STANDHYD 00351> 00352> 00352> 00355> 00355> 00356> 00356> *\$ 00358> *\$ 00359> ADD HYD 00360>	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CH=[81], Pervious surfaces: IApor=[4.67](mm), SLPP=[1.5](%), LGF=[100.0](m, MMP=[0.25], SCP=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.6](%), LGI=[560](m), MMI=[0.03], SCI=[0.0](min RAINFALL=[, , , ] (mm/h; ] END=1</pre>	00483> * 00485> * SUB-AREA No.3 00485> CALIB STANDHYD 00487> 00486> CALIB STANDHYD 00487> 00480> 00490> 00490> 00491> 00492> 00493> % 00493> %	<pre>XIMB=[0.97], TIME=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number Ch=[61], Pervious surfaces: IAper=[4.67](nma), SLPP=[1.0](%), LOP=[5](m), MNF=[0.03], SCP=[0.0](min), Impervious surfaces: IAimp=[1.57](nma), SLPI=[0.03], SCI=[0.0]</pre>
00348> * SUB-AREA No.1 00349> 00350> CALIB STANDHYD 00351> 00352> 00352> 00353> 00353> 00355> 00355> 00355> 00355> * 00355> * 00355> * 00355> * 00350> * 00350> * 00360> 000 00360> 000 00360> 000 000 0000 000 * 0000 000 * 0000 * 0000 000 * 0000 * 0000 * 0000 000 * 0000 * 0000 000 * 0000 * 00000 * 00000 * 0000 * 0000 * 0000 * 00000 * 000000 * 00000 * 000000 * 000000 * 00000000	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CH=[61], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), LGP=[10.0.0](m), MMP=[0.25], SCS=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.6](%), CLGT=[580](m), MMI=[0.03], SCI=[0.0][min RAINFALL=[, , , ](mm/hr), END=</pre>	00483> * 00485> * SUB-AREA No.3 00485> CALIB STANDHYD 00485> CALIB STANDHYD 00487> 00485> 004893 00490> 00491> 00490> 00491> 00495> ADD HYD 00495> ADD HYD	<pre>XIMB=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number Ch=[81], Pervious surfaces: IAper=[4.67](nma), SLPP=[1.0](%),</pre>
00340> * SUB-AREA No.1 00340> 00350> CALIB STANDHYD 00351> 00352> 00353> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00555 00555 00555 00555 00555 00555 00555 00555 00555 00555 00555 00555 00555 00555 00555 00555 00555 00555 00555 00555 00555 00555 00555 00555 00555 00555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 005555 0055555 0055555 00555555	<pre>XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.5](%), LGP=[10.0](m), MNP=[0.25], SCP=[0.0](m Impervious surfaces: IAimpe[1.57](mm), SLPI=[0.6](%), RAIMPALL=[, , , , ](mm/hr), END=-1 </pre>	00483> * 00483> * SUB-AREA No.3 00485> 00485> 00485> 00485> 00485> 00485> 00485> 00485> 00485> 00490> 00490> 00491> 00492> 00493> 00495> ADD HVD 00495> ADD HVD 00495> 40 00495> 40 00495> 40 00495> 40 00495> 40 00495> 40 00495> 40 00495> 40 00495> 40 00495> 40 00495> 40 00495> 40 00495> 40 00495> 40 00495> 40 00495> 40 00495> 40 00495> 40 00495> 40 00495> 40 00495> 40	<pre>XIMB=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number Ch=[63], SCS curve number Ch=[63], Porvious surfaces: IAper=[4.67](mm), SLP1=[1.0](%), Impervious surfaces: IAimp=[1.57](mm), SLP1=[0.51](%), RAIMFALL=[, , , ] [mm/hr], SLP1=[0.53], SCI=[0.0] RAIMFALL=[, , , ] [mm/hr], END=-1 [] [] [] [] [] [] [] [] [] [] [] [] []</pre>
00340> * SUB-AREA No.1 00349> 00350> CALIB STANDHYD 00351> 00352> 00353> 00355> 00355> 00355> 00355> 00355> 00355> ADD HYD 00360> *% 00350> *& 00350> * SUB-AREA No.2 00362> * SUB-AREA No.2 00364> CALIB STANDHYD 00364>	<pre>XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CH=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.5], SCP=[0.0](m Impervious surfaces: IApimp=[1.57](mm), SLPT=[0.6](8), ICAT=[550](M, MWID=[0.3], SCI=[0.0](min RAINFALL=[, , , ](mm/hr), END=-1 </pre>	00483> * 00483> * SUB-AREA No.3 00485> 00486> CALIB STANDHYD 00487> 00488> 00489> 00491> 00491> 00492> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493	<pre>XIMB=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number Ch=[63], SCS curve number Ch=[63], Porvious surfaces: IAper=[4.67](mm), SLP1=[1.0](%), Impervious surfaces: IAimp=[1.57](mm), SLP1=[0.51](%), RAIMFALL=[, , , ] [mm/hr], SLP1=[0.53], SCI=[0.0] RAIMFALL=[, , , ] [mm/hr], END=-1 [] [] [] [] [] [] [] [] [] [] [] [] []</pre>
00348> * SUB-AREA No.1 00349> 00350> CALIB STANDHYD 00351> 00352> 00352> 00353> 00354> 00356> 00356> * 00356> * 00356> * 00350> * 00350> * 00350> * 00360> * 00362> * 00362> 00362> * 00362> 00363> 00364> 00365> 00365>	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CH=[61], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), LGF=[10.01(m), MMP=[0.25], SCS=[0.0](m Impervious surfaces: IAimpe[1.57](mm), SLPI=[0.6](%), LGT=(580)(m), MMT=[0.03], SCI=[0.0](min RAINFALL=[, , , ](mm/hr), END=-10.03], SCI=[0.0](min IDsum=[ 2 ], NHYD=["HIP02"], IDs to add=[10+1] </pre>	00483> * 00483> * SUB-AREA No.3 00485> 00486> CALIB STANDHYD 00487> 00488> 00489> 00491> 00492> 00492> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500> 00500	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number Ch=[61], Porvious surfaces: IAper=[4.67](nma), SLP1=[1.0](%), Impervious surfaces: IAinp=[1.57](nma), SLP1=[0.51](%), Ch=[225.63](m), MHr=[0.03], SCL=[0.0] PAINFALL=[, , , ](nm/hr), END=-1 [] Dsum=[4], NHYD=[ "040"], IDs to add=[1+2] [] Dsum=[5], NHYD=[ "050"], IDs to add=[3+4]</pre>
003485 * SUB-AREA No.1 003495 003505 CALIB STANDHYD 003512 003523 003535 00355 003355 003355 003355 003355 003355 003355 003355 003355 003355 00365 00365 00365 00365 00365 00365 00365 00365	<pre>XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), Impervious surfaces: IAper=[4.67](mm), SLPT=[0.5](%), RAINFALL=[, , , , ](mm/hr), SLPT=[0.5](%), SCP=[0.0](min HAINFALL=[, , , ](mm/hr), END=-1 </pre>	00483> * 00483> * SUB-AREA No.3 00485> 00485> CALIB STANDHYD 00487> 00488> 00489> 00490> 00490> 00490> 00490> 00491> 00492> 00493> * 00495> ADD HYD 00495> ADD HYD 00495> * 004999 * 004999 * SUB-AREA No.4 005001> * SUB-AREA No.4 00501>	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number Ch=[81], Pervious surfaces: IAper=[4.67](nma), SLPP=[1.0](%),</pre>
00346> * SUB-AREA No.1 00349> 00350> CALIB STANDHYD 00351> 00352> 00353> 00355> 00355> 00355> 00355> ADD HYD 00360> *% 00355> ADD HYD 00360> *% 00355> 00360> *% 00361> * SUB-AREA No.2 00362> * SUB-AREA No.2 00364> CALIB STANDHYD 00365> 00366> 00366>	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], LSP=[10.0](m), SLPP=[0.5](8),</pre>	00483> * 00483> * SUB-AREA No.3 00485> 004865 CALIB STANDHYD 004875 004885 004895 004895 004905 004905 004905 004912 004935 * 004955 ADD HYD 004965 * 004955 * 004995 * 004995 * 004995 * 004995 * 004995 * 005005 * SUB-AREA No.4 005015 005025 CALIB STANDHYD 005035	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number Ch=[81], Pervious surfaces: IAper=[4.67](nma), SLP=[1.0](%),</pre>
00346> * SUB-AREA No.1 00349> 00350> CALIB STANDHYD 00351> 00352> 00353> 00355> 00355> 00355> 00355> 00355> ADD HYD 00360> *% 00355> ADD HYD 00360> *% 00355> 00360> *% 00361> 00360> *SUB-AREA No.2 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00370> 00370> 00370> 00371>	<pre>XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CH=[61], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), LGP=[10.01(m), MMP=[0.25], SCP=[0.0](min RAINFALL=[, , , ](mm/hr), END=-1 IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1] </pre>	00483> * 00483> * SUB-AREA No.3 00485> 00486> CALIB STANDHYD 00487> 00488> 00489> 00489> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00495> 00495> 00495> 00495> 00495> 00495> 00495> 00495> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505 00505> 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number Ch=[81], Pervious surfaces: IAper=[4.67](nma), SLP=[1.0](%),</pre>
00346> * SUB-AREA No.1 00349> 00350> CALIB STANDHYD 00351> 00352> 00352> 00353> 00354> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00555 005555 0055555 00555555555 0055555555	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], LSP=[10.0](m), SLPP=[0.5](8),</pre>	00483> * 00483> * 00485> 004865 004865 004865 004865 004865 004865 004895 00491> 00491> 00492> 00493> 00493> 00493> 00493> 00493> 00493> 00495> ADD HYD 00495> ADD HYD 00495> ADD HYD 00495> * 00495> ADD HYD 00495> * 00505> * SUB-AREA No.4 00501> * SUB-AREA No.4 00501> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505 00505> 00505> 00505> 00505> 00505> 00505> 00505> 0	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLP1=[1.0](%), Impervious surfaces: IAimp=[1.57](mm), SLP1=[0.51](%), ICmUTALLE[, . , . ](mm/hr], SLP1=[0.51](%), ICmUTALLE[, . , . ](mm/hr], END=-1 IDmUTALLE[, . , . ](mm/hr], IDS to add=[1+2] IDmUTALLE[, . , . ](mm/hr], IDS to add=[3+4] IDmUTALLE[, . , . ](mm/hr], IDS to add=[3+4] IDmUTALLE[, . , . ](mm/hr], END=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLP=[0.7](%), ICP=[40](m), NMP=[0.25], SCP=[0.0](min) Impervious surfaces: IAimp=[1.57](cms), SLP=[0.3](%),</pre>
003485 * SUB-AREA No.1 003350 CALIB STANDHYD 003510 CALIB STANDHYD 003520 003523 003534 003554 003555 003555 * * 00355 * * 003565 * * 003565 * * 003655 * SUB-AREA No.2 003655 CALIB STANDHYD 003656 003656 003656 003656 003656 003657 003715 003775 * 003775 * 003775 * SUB-AREA No.3	<pre>XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CM=[81],</pre>	00483> * 00483> * 00485> 004865> 004865> 004865> 004865> 004865> 004865> 004865> 00487> 00487> 00487> 00487> 00490> 00491> 00491> 00491> 00492> 00493> % 004955 % 004965 % 004955 % 004965 % 00497> % 004965 % 00497> % 004965 % 00497> % 004965 % 00497> % 004965 % 00497> % 004965 % 00497> % 00507> % 00507> % 00507> % 00507> % 00507> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065> 005065 005065 005065 005065 005065 005065 005065 005065 005065 005065 005065 005065 005065 005065 005065 005065 005065 005065 005065 005065 005065 005065 005065 005065 005065 00506 00506 00506 00506 00506 00506 00506 00506 00506 00506 00506 00506 00506 00506 00506 00506 00506 00506 00506 00506 00506 00506 00506 00506 00506 00506 00506 0050 00506 0050 00506 0050 00506 0050 00506 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050 0050	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[63], Pervious surfaces: IAper=[4.67](mm), SLP=[1.0](%), Impervious surfaces: IAper=[1.57](mm), SLP=[0.0](min), Impervious surfaces: IAimp=[1.57](mm), SLP=[0.51](%), RAINFALL=[, , , ](mm/h-1), END=-1 [] [] [] [] [] [] [] [] [] [] [] [] []</pre>
00348> * SUB-AREA No.1 00349> CALIB STANDHYD 00350> CALIB STANDHYD 00351> 00352> 00352> 00355> 00356> 00356> * 00356> * 00356> * 00350> * 00350> * 00362> * SUB-AREA No.2 00362> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00370> 00370> * 00371> * 00371> * 003	<pre>XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CH=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), LGP=[10.0](m), MNP=[0.25], SCP=[0.0](min</pre>	00483> * 00483> * SUB-AREA No.3 00485> 00486> CALIB STANDHYD 00487> 00488> 00489> 00489> 00491> 00491> 00492> 00493> % 00493> % 00495> ADD HYD 00496> % 00496> % 00500> % 00500> CALIB STANDHYD 00505> 00506> 00506> 00506> 00506> 00500> % 	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLP1=[1.0](%), Impervious surfaces: IAimp=[1.57](mm), SLP1=[0.51](%), ICmUTALLE[, . , . ](mm/hr], SLP1=[0.51](%), ICmUTALLE[, . , . ](mm/hr], END=-1 IDmUTALLE[, . , . ](mm/hr], IDS to add=[1+2] IDmUTALLE[, . , . ](mm/hr], IDS to add=[3+4] IDmUTALLE[, . , . ](mm/hr], IDS to add=[3+4] IDmUTALLE[, . , . ](mm/hr], END=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLP=[0.7](%), ICP=[40](m), NMP=[0.25], SCP=[0.0](min) Impervious surfaces: IAimp=[1.57](cms), SLP=[0.3](%),</pre>
00348> * SUB-AREA No.1 00349> CALIB STANDHYD 00350> CALIB STANDHYD 00351> 00352> 00352> 00353> 00353> 00355> * 00355> * 00355> * 00355> * 00355> * 00350> * 00360> * 00360> * 00360> * 00360> * 00360> 00360> 00360> 00360> 00360> 00360> 00360> 00372> * 00372> * 00375> CALIB STANDHYD 00375> 00376> CALIB STANDHYD	<pre>XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.5](%), Impervious surfaces: IAper=[4.67](mm), SLPT=[0.5](%), RAINFALL=[, , , ](mm/hr), EHD=-1 [] [] [] [] [] [] [] [] [] [] [] [] []</pre>	00483> * 00483> * 00485> 00485> 004865 CALIB STANDHYD 00487> 004865 CALIB STANDHYD 00487> 00489> 00490> 00491> 00492> 00493> 00493> 00495> * 00495> 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00505 * 00	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[63], Pervious surfaces: IAper=[4.67](mm), SLP=[1.0](%), Impervious surfaces: IAper=[1.57](mm), SLP=[0.0](min), Impervious surfaces: IAimp=[1.57](mm), SLP=[0.51](%), RAINFALL=[, , , ](mm/h-1), END=-1 [] [] [] [] [] [] [] [] [] [] [] [] []</pre>
00346> * SUB-AREA No.1 003350 CALIB STANDHYD 003510 CALIB STANDHYD 003512 003523 003523 003554 003555 003555 & 003575 % 003565 * % 00360 * % 00360 * % 00360 * % 00365 * SUB-AREA No.2 00365 00365 00365 00365 00365 00365 00370 003715 00375 * SUB-AREA No.3 00375 00375 CALIB STANDHYD 00375 00375 CALIB STANDHYD 00375 00375 CALIB STANDHYD 00375 00375 CALIB STANDHYD 00375 CALIB STANDHYD 003775 CALIB STANDHYD 003775 CALIB STANDHYD 003775	<pre>XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.5](%), Impervious surfaces: IAper=[4.67](mm), SLPT=[0.5](%), EALINFALL=[, , , , ](mm/hr), END=-1 </pre>	00483> * 00483> * 00485> 004865 004865 004865 004865 004865 004865 004895 004995 004992 00493 00493 00493 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 00495 * 0049	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cns), LOSS=[2], SCS curve number CN=[63], Pervious surfaces: IAper=[4.67](nm), SLP=[1.0](%), Impervious surfaces: IAper=[4.67](nm), SLP=[0.0](min), RAINFALL=[, , , , ](nm/hr), SLP=[0.51](%), CD=[225.63](m), MMI=[0.03], SCI=[0.0] RAINFALL=[, , , ](nm/hr), END=-1 </pre>
00348> * SUB-AREA No.1 00349> CALIB STANDHYD 00350> CALIB STANDHYD 00351> 00352> 00352> 00353> 00353> 00355> * 00355> * 00355> * 00355> * 00355> * 00350> * 00360> * 00360> * 00360> * 00360> * 00360> 00360> 00360> 00360> 00360> 00360> 00360> 00372> * 00372> * 00375> CALIB STANDHYD 00375> 00376> CALIB STANDHYD	<pre>XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](8), LGP=[10.00](m), MMP=[0.25], SCP=[0.0](min RAINFALL=[, , , , ](mm/hr), END=-1 IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1] ID=[3], MHYD=["HIP03"], DD=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Impervious surfaces: IAP==[100.0](m), SLP=[1.5](8), Impervious surfaces: IAP==[100.0](m), SLP=[1.5](8), IMP=[0.50], TIMP=[0.71], DWF=[0.0](mn), AREA=[18.1](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](mn), LOSS=[2], SCS curve number CM=[81],</pre>	00483> * 00483> * 00483> * 00485> 004865 > 004865 > 004865 > 004865 > 004865 > 00485 > 00485 > 00485 > 00485 > 00485 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 00495 > 0049 > 00495 >	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[63], Pervious surfaces: IAper=[4.67](nm), SLP=[1.0](%), Impervious surfaces: IAper=[4.57](nm), SLP=[0.0](min), Impervious surfaces: IAinp=[1.57](nm), SLP1=[0.53](SL], SLP1=[2], SLP1=[1.57](nm), SLP1=[0.53](SL], SLP1=[0.0](NL]), IDsum=[4], NHYD=["060"], IDs to add=[1+2] </pre>
00348> * SUB-AREA No.1 00349> CALIB STANDHYD 00350> CALIB STANDHYD 00351> 00352> 00352> 00355> 00355> 00355> ADD HYD 00356> *\$ 00350> ADD HYD 00360> *\$ 00362> * SUB-AREA No.2 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00371> 00371> *\$ 00371> *\$ 00375> CALIB STANDHYD 00375> CALIB STANDHYD 00376> 00376> CALIB STANDHYD 00376> 00376> 00376> 00376> 00376> 00376> CALIB STANDHYD 00377> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00380> 00380>	<pre>XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CH=[81], Pervious surfaces: IAper=[4.67](nm), SLPP=[1.5](8), LGP=[10.0](n), MMP=[0.25], SCP=[0.0](min RAINFALL=[, , , , ](mm/hr), END=-1 IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1] IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1] IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1] IDsum=[2], NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha), XIMD=[0.50], TIMS=[0.71], DMF=[0.0](ms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](ms), SLDS=[15](6), LGP=[100.0](m), MMI=[0.25], SCD=[0.0](m Impervious surfaces: IAper=[4.67](ms), SLDS=[1.60.6](e), IMP=[0.50], TIMS=[0.71], DMF=[0.0](ms), LOSS=[2], SCS curve number CM=[81], ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[18.1](ha), XIMP=[0.50], TIMS=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], LGP=[100.0](m), MMI=[0.25], SCD=[0.0](min RAINFALL=[, , , ](mm/hr), END=-1 -[ ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[18.1](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], LGP=[100.0](m), MMI=[0.25], SCD=[0.0](m Impervious surfaces: IAper=[4.67](mm), SLDF=[0.5](6), LGP=[100.0](m), MMI=[0.25], SCD=[0.0](m Impervious surfaces: IAper=[4.67](mm), SLDF=[0.5](6), LGP=[100.0](m), MMI=[0.25], SCD=[0.0](m Impervious surfaces: IAper=[4.67](mm), SLDF=[0.5](6), LGP=[100.0](m), MMI=[0.25], SCD=[0.0](m)</pre>	00483 * 00483 * SUB-AREA No.3 004855 004865 CALIB STANDHYD 004875 004885 004895 004895 004935 004935 004935 004935 004935 004935 004935 004935 004935 004935 004935 004935 004935 004935 004935 004935 004935 004935 004935 004935 004935 004935 004935 004935 004935 004935 004935 004935 00505 CALIB STANDHYD 00505 00505 00505 00505 00515 00513 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 005	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](rmm), SLP1=[1.0](%), Impervious surfaces: IAper=[4.57](rmm), SLP1=[0.51](%), LoT=[225.63](m), MNF=[0.03], SCT=[0.0](min), RAINFALL=[, , , , ](mm/hr), END=-1 </pre>
00346> * SUB-AREA No.1 003350 CALIB STANDHYD 003510 CALIB STANDHYD 003512 003523 003534 00355 00355 00355 00357 % 00356 00357 % 00360 * % 00360 * % 00360 * SUB-AREA No.2 00365 00365 00365 00365 00365 00365 00370 003712 00372 * % 00372 * % 00375 00375 00375 CALIB STANDHYD 00375 00375 CALIB STANDHYD 00375 00375 CALIB STANDHYD 00377 00375 CALIB STANDHYD 00377 003775 CALIB STANDHYD 003775 CALIB STANDHYD 003775 00376 00376 00375 00376 00375 00376 00375 00376 00375 00376 00375 00376 00375 00376 00375 00376 00375 00376 00375 00375 00376 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 003	<pre>XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), Impervious surfaces: IAper=[4.67](mm), SLPT=[0.6](%), RAINFALL=[, , , ] (mm/hr], END=-1 </pre>	00483> * 00483> * 00485> * SUB-AREA No.3 00485> 00486> CALIB STANDHYD 00487> 00488> 00489> 00490> 00491> 00492> 00493> 00493> 00495> ADD HYD 00495> ADD HYD 00495> 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00495> * 00514> CALIB STANDHYD 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516> 00516	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: IAper=[4.67](nm), SLP=[1.0](%), Impervious surfaces: IAper=[4.57](nm), SLP=[0.0](min), RAINFALL=[, , , , ](mn/hr), SLPI=[0.51](%), CLT=[225.63](m), MH=[0.03], SCT=[0.0](min), IDsum=[4], MHTD=["040"], IDs to add=[142] </pre>
00348> * SUB-AREA No.1 00349> CALIB STANDHYD 00350> CALIB STANDHYD 00351> 00352> 00355> 00355> 00356> 00355> 400 00355> ADD HYD 00356> * 4 00356> * 4 00356> * 4 00356> * 4 00356> * 4 00356> * 4 00356> 00356> - 400 00356> 00356> 00356> 00356> 00356> 00357> * 4 00356> 00356> 00370> 00370> 00370> 00370> 00375> * SUB-AREA No.3 00376> CALIB STANDHYD 00377> 00377> * SUB-AREA No.3 00376> 00376> CALIB STANDHYD 00377> 00377> * 00376> 00376> 00377> 00376> 00376> 00377> 00376> 00376> 00377> 00376> 00377> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 00376> 0	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPF=[1.5](%), Loss=[0.0](m, NMF=[0.25], SCE=[0.0](m Impervious surfaces: IAimpe[1.57](mm), SLPT=[0.6](%), IDsum=[2], NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPF=[1.5](%), LCF=[100.0](m), NMT=[0.25], SCS=[0.0](m RAINFALL=[, , , ](mm/r), RED=-1 </pre>	00483> * 00483> * 00485> 004865> 004865> 004865> 004865> 004865> 004865> 004865> 004875 004865 004905> 004905> 004915> 004925> 004935 004935 004935 004935 004935 004935 004955 * 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 0050 00505 00505 00505 0050 0050	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLP=[0.0](min), Impervious surfaces: IAimp=[1.57](mm), SLP1=[0.51](%), CLD=[225.63](m), MMF=[0.03], SCT=[0.0](min), NHYDE[-, , , ] (mm/hr), END=-1 [] DISUM=[4], NHYDE["060"], IDs to add=[1+2] [] DISUM=[4], NHYDE["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Devices surfaces: IAper=[4.67](mm), SLP=[0.7](%), LCP=[40](m), MMT=[0.23], SCT=[0.0](min) Impervious surfaces: IAper=[4.67](mm), SLP=[0.7](%), LCP=[40](m), MMT=[0.23], SCT=[0.0](min) Impervious surfaces: IAmp=[1.57](mn), SLP=[0.7](%), LCP=[1.0](m), MMT=[0.23], SCT=[0.0](min) Impervious surfaces: IAmp=[1.57](mn), SLP=[0.53](%), ICT=[156.422](m), MMT=[0.53], SCT=[0.0](min) Impervious surfaces: IAmp=[1.57](mn), SLP=[2.65](ha), XIMP=[0.97], ITMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mn), SLP=[1.5](%), LCD=[20.0](m), MET=[2.5](min), SLP=[1.5](%), LCD=[20.0](m), MET=[2.5](m), SLP=[1.5](%), LCD=[20.0](m), MET=[2.5](m), SLP=[1.5](%), LCD=[20.0](m), MET=[0.0](m), SLP=[0.0](min) SCS curve number CM=[81],</pre>
00348> * SUB-AREA No.1 00349> CALIB STANDHYD 00350> CALIB STANDHYD 00351> 00352> 00352> 00355> 00355> 00355> * 00355> * 00355> * 00355> * 00355> * 00355> * 00355> * 00355> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00371> 00372> * 00372> * 00372> * 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00380> 00382> 00384> * 00384> * 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384> 00384>	<pre>XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CH=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](8), LGP=[10.01](m), MMT=[0.25], SCP=[0.0](min RAINFALL=[, , , , ](mm/hr), END=-1 IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1] IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1] IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1] IDsum=[2], NHYD=["HIP03"], DD=[2.5](min), AREA=[17](ha), XIMD=[0.50], TIME=[0.71], DMF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.57](mm), SLPI=[1.51(8), LGD=[100.0](m), MMI=[0.25], SCD=[0.0](m Impervious surfaces: IAper=[4.57](mm), SLPI=[0.50], SCI=[0.0](m Impervious surfaces: IAper=[4.57](mm), SLPI=[0.50], SCD=[0.0](m Impervious surfaces: IAper=[4.57](mm), SLPI=[0.50], SCD=[0.0](m IMMT=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], LGD=[100.0](m), MMI=[0.25], SCD=[0.0](m Impervious surfaces: IAper=[4.57](mm), SLPP=[1.5](8), LGD=[100.0](m), MMI=[0.25], SCD=[0.0](m Impervious surfaces: IAper=[4.57](mm), SLPP=[1.5](8), LGD=[100.0](m), MMI=[0.25], SCD=[0.0](m Impervious surfaces: IAper=[4.57](mm), SLPP=[1.5](8), LGD=[100.0](m), MMI=[0.25], SCD=[0.0](m RAINFALL=[, , , , ](mm/hr], END=-1 ID=[[5], MHYD=["HIP03"], IDT=[2.5](mn), SLIP=[0.5](8), LGD=[100.0](m), MMI=[0.25], SCD=[0.0](m) RAINFALL=[, , , , ](mm/hr], END=-1 IDSUM=[5], MHYD=["HIP03"], IDT=[2.5](m), SLIP=[0.5](8), LGD=[100.0](m), MMI=[0.03], SCI=[0.0](m) RAINFALL=[, , , , ](mm/hr], END=-1 IDSUM=[5], MHYD=["HIP03"], IDT=[2.5](m), SLIP=[1.5](8), LGD=[100.0](m), MMI=[0.03], SCI=[0.0](m) RAINFALL=[, , , , ](mm/hr], END=-1 IDSUM=[5], MHYD=["HIP03"], IDT=[2.5](m), SLIP=[1.5](8), LGD=[100.0](m), MMI=[0.03], SCI=[0.0](m) RAINFALL=[, , , , ](mm/hr], END=-1 IDSUM=[5], MHYD=["HIP03"], IDT to add=[3+4]</pre>	00483 * 00483 * SUB-AREA No.3 00485 * SUB-AREA No.3 00485 * SUB-AREA No.3 00485 * 00485 * 00485 * 00485 * 00495 * 00496 * 00500 * 00510	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[61], Pervious surfaces: IAper=[4.67](mm), SLP1=[0.01](%), Impervious surfaces: IAimp=[1.57](mm), SLP1=[0.51](%), CLC1=[225.63](m), MNT=[0.03], SCT=[0.0](min), PAINFALL=[, , , ][mm/hr], END=-1 []Dsume[4], NHYD=["040"], IDs to add=[1+2] []Dsume[4], NHYD=["050"], IDs to add=[3+4] []Dsume[5], NHYD=["050"], IDs to add=[3+4] []Dsume[5], NHYD=["050"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLP2=[0.7](%), LG2=[40](m), MMT=[0.53], SCT=[0.0](min) AINFFLL=[, , , ][mm/hr], END=-1 [] []Dsume[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLP2=[0.7](%), LG2=[40](m), MMT=[0.53], SCI=[0.0](min) AINFFLL=[, , , ][mm/hr], END=-1 [] []Dsume[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[1], PUF=[0.97], SLP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[1], PUF=[0.97], SLP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[1], PUF=[0.91], SLP=[0.91], DWF=[0.0](cms), SLP=[0.01](m), SCS curve number CM=[1], PUF=[0.91], SLP=[0.91], DWF=[0.01](cms), SLP=[0.01](m), SLP=[0.01], SLP=[0.91], DWF=[0.01](cms), SLP=[0.01](m), SCS curve number CM=[1], PUF=[0.91](m), MET=[0.03], SCI=[0.01](m), SLP=[0.01], SLP=[0.91], DWF=[0.01](cms), SLP=[0.01](m), SLP=[0.01](m), MET=[0.03], SCI=[0.01](m), SLP=[0.01](m), MET=[0.03], SCI=[0.01](m), SLP=[0.01](m), MET=[0.03], SLP=[0.01](m), SLP=[0.01](m), MET=[0.03], SLP=[0.01](m), MET=[0.03], SLP=[0.01](m), SLP=[0.01](m), MET=[0.03], SLP=[0.01](m), MET=[0.03], SLP=[0.01](m), MET=[0.03], SLP=[0.01](m), MET=[0.03], SLP=[0.01](m), MET=[0.03], SLP=[0.01](m), MET=[0.03], SLP=[0.01](m), MET=[0.03</pre>
00346> * SUB-AREA No.1 00349> (ALL STANDHYD 00350> CALLE STANDHYD 00351> (00352) 00352> (00353> (00353) 00353> (00355) 00355> (00375) 00375> (00375) 00385> (00385) 00385> (00385) (00385) (00385) (00385) (00385) (	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPF=[1.5](%), Loss=[0.0](m, NMF=[0.25], SCE=[0.0](m Impervious surfaces: IAimpe[1.57](mm), SLPT=[0.6](%), IDsum=[2], NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPF=[1.5](%), LCF=[100.0](m), NMT=[0.25], SCS=[0.0](m RAINFALL=[, , , ](mm/r), RED=-1 </pre>	00483> * 00483> * 00485> 004865> 004865> 004865> 004865> 004865> 004865> 004865> 004875 004865 004985 004985 004985 004985 004985 004985 004985 004985 004985 004985 004985 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 0050 00505 00505 0050 00505 00505 0050 0050 0000 0	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](rmm), SLP=[1.0](%), Impervious surfaces: IAper=[4.57](rmm), SLPI=[0.51](%), LoT=[225.63](m), MHI=[0.03], SCT=[0.0](min), RAINFALL=[, , , ] (rmm/hr), END=-1 </pre>
00348> * SUB-AREA No.1 00349> CALIB STANDHYD 00350> CALIB STANDHYD 00351> 00352> 00352> 00355> 00356> 00356> 00356> * 00356> * 00350> * 00350> * 00350> * 00360> * 00360> * 00360> 00360> 00360> 00360> 00360> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00	<pre>XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CH=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](8), LGP=[10.01](m), MMT=[0.25], SCP=[0.0](min RAINFALL=[, , , , ](mm/hr), END=-1 IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1] IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1] IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1] IDsum=[2], NHYD=["HIP03"], DD=[2.5](min), AREA=[17](ha), XIMD=[0.50], TIME=[0.71], DMF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.57](mm), SLPI=[1.51(8), LGD=[100.0](m), MMI=[0.25], SCD=[0.0](m Impervious surfaces: IAper=[4.57](mm), SLPI=[0.50], SCI=[0.0](m Impervious surfaces: IAper=[4.57](mm), SLPI=[0.50], SCD=[0.0](m Impervious surfaces: IAper=[4.57](mm), SLPI=[0.50], SCD=[0.0](m IMMT=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], LGD=[100.0](m), MMI=[0.25], SCD=[0.0](m Impervious surfaces: IAper=[4.57](mm), SLPP=[1.5](8), LGD=[100.0](m), MMI=[0.25], SCD=[0.0](m Impervious surfaces: IAper=[4.57](mm), SLPP=[1.5](8), LGD=[100.0](m), MMI=[0.25], SCD=[0.0](m Impervious surfaces: IAper=[4.57](mm), SLPP=[1.5](8), LGD=[100.0](m), MMI=[0.25], SCD=[0.0](m RAINFALL=[, , , , ](mm/hr], END=-1 ID=[[5], MHYD=["HIP03"], IDT=[2.5](mn), SLIP=[0.5](8), LGD=[100.0](m), MMI=[0.25], SCD=[0.0](m) RAINFALL=[, , , , ](mm/hr], END=-1 IDSUM=[5], MHYD=["HIP03"], IDT=[2.5](m), SLIP=[0.5](8), LGD=[100.0](m), MMI=[0.03], SCI=[0.0](m) RAINFALL=[, , , , ](mm/hr], END=-1 IDSUM=[5], MHYD=["HIP03"], IDT=[2.5](m), SLIP=[1.5](8), LGD=[100.0](m), MMI=[0.03], SCI=[0.0](m) RAINFALL=[, , , , ](mm/hr], END=-1 IDSUM=[5], MHYD=["HIP03"], IDT=[2.5](m), SLIP=[1.5](8), LGD=[100.0](m), MMI=[0.03], SCI=[0.0](m) RAINFALL=[, , , , ](mm/hr], END=-1 IDSUM=[5], MHYD=["HIP03"], IDT to add=[3+4]</pre>	00483> * 00483> * SUB-AREA No.3 00485> 004865> 004865> 004865> 004865> 00487> 00487> 00487> 00487> 00487> 00487> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00497> 00507> 00507> 00507> 00507> 00507> 00507> 00507> 00507> 00507> 00507> 00507> 00507> 00507> 00507> 00507> 00507> 00507> 00507> 00507> 00507> 00507> 00507> 00507> 00507> 00507> 00507> 00507> 00507> 00507> 00507> 00507> 005110 * 00507> 005110 * 005113> 005113> 005113> 005115> 005115> 005115> 005115> 005115> 00512> * 00522> *0	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLP=[1.0](%), Impervious surfaces: IAper=[4.53](mm), SLP=[0.01](min), Impervious surfaces: IAimp=[1.57](mm), SLP=[0.51](%), ICM=[25.63](m), MH=[0.03], SCI=[0.0](min), PAINFALL=[, , , ] (mm/hr), END=-1 </pre>
003485 * SUB-AREA No.1 003495 CALIB STANDHYD 003505 CALIB STANDHYD 003515 00352 00352 00353 00355 * 00355 00355 * 00355 00355 * 00355 00355 * 00355 00355 * 00355 00355 * 00355 00356 * 00355 00365 * 00365 00365 * 00365 00365 00365 00365 00365 00370 * 00375 00371 * 00372 * 00373 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375 00375	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](nm), SLPF=[0.6](8), Inpervious surfaces: IAper=[4.07](nm), SLPT=[0.6](8), Intervious surfaces: IAper=[4.07](nm), SLPT=[0.6](8), IDSUM=[2], NHYD=["HIPO3"], DT=[2.5](nm), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DMF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](nm), SLPP=[1.5](6), LGP=[100.0](nm), NMT=[0.25], SCS=[0.0](min RAINFALL=[, , , ](nm/hr), END=-1 IDsum=[2], NHYD=["HIPO3"], DT=[2.5](nm), SLPP=[1.5](6), LGP=[100.0](nm), NMT=[0.25], SCS=[0.0](min RAINFALL=[, , , ](nm/hr), END=-1 ID=[4], NHYD=["HIPO4"], DT=[2.5](nm), AREA=[18.1](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], ID=[4], NHYD=["HIPO4"], DT=[2.5](nm), SLPP=[1.5](6), LGP=[100.0](nm, NMT=[0.25], SCP=[0.0](min RAINFALL=[, , , ](nm/hr), END=-1 ] ID=[4], NHYD=["HIPO4"], DT=[2.5](nm), SLPP=[1.5](6), LGP=[100.0](nm, MNT=[0.25], SCP=[0.0](min RAINFALL=[, , ](mm/hr), END=-1 ] ID=[5], NHYD=["HIPO5"], IDS to add=[3H4] ]</pre>	00483> * 00483> * 00483> * 00485> 004865 004865 CALIB STANDHYD 00487> 004869 00489> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00503> 00503> 00503> 00504> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00513> 00522> 00522> 00522> 00522> 00522> 00522> 00523> ADD HYD 00524> 00523> ADD HYD 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524> 00524>	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[61], Pervious surfaces: IAper=[4.67](mm), SLP1=[0.01](min), Impervious surfaces: IAinp=[1:57](mm), SLP1=[0.51](%), CLC1=[225.63](m), MNF=[0.03], SCT=[0.0](min), PAINFALL=[, , , ][mm/hr], END=-1 []Dsum=[4], NHYD=[ "040"], IDs to add=[1+2] []Dsum=[4], NHYD=[ "050"], IDs to add=[1+2] []Dsum=[5], NHYD=[ "050"], IDs to add=[3+4] []Dsum=[5], NHYD=[ "050"], IDs to add=[3+4] []Dsum=[5], NHYD=[ "050"], DF=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.7](%), LGP=[40](m), NMT=[0.53], SCT=[0.0](min) Impervious surfaces: IAper=[4.67](mn), SLPP=[0.3](%), CLC1=[164.82](m), MMT=[0.03], SCI=[0.0]( NIMD=[0.97]), TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[3], Pervious surfaces: IAper=[4.67](mn), SLPP=[1.5](%), Therefore surfaces: IAPer[4.57](mn), SLP=[1.5](%), Pervious surfaces: IAPer[4.57](mn), SLP=[1.5](%), SCS curve number CM=[1.57](cm), SLP=[0.5](%), SCS curve number CM=[1.57](cm), SLP=[0.5](S), SCS curve number CM=[1.57](cm), SLP=[1.5](%), Pervious surfaces: IAmp=[1.57](cm), SLP=[0.0](min), SCZ=[0.0](min) Impervious surfaces: IAmp=[1.57](cm), SLP=[0.0](cm), IDS=[2], SCS curve number CM=[1.57](cm), SLP=[0.0](cm), IDS=[2], SCS curve number CM=[1.57](cm), SLP=[0.0](cm), IDS=[2], SCS curve number CM=[0.1], SLP=[0.0](cm), IDS=[0.0](cm), IDS=[2], SCS curve number CM=[0.1], SLP=[0.0](cm), IDS=[0.0](cm), I</pre>
00346> * SUB-AREA No.1 00346> * SUB-AREA No.1 00350> CALIB STANDHYD 00351> 00352> 00352> 00353> 00354> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375>	<pre>XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.5](%), Impervious surfaces: IAper=[1.57](mm), SLPT=[0.6](%), RAIMFALL=[, , , ](mm/hr), EHD=-1 []Dsum=[2]], NHYD=["HIPO2"], IDs to add=[10+1] []Dsum=[2]], NHYD=["HIPO2"], IDs[0.0](mm), SLPS=[2]], SCP=[0.0](mn) []RainPo1(add), SLPS=[10,0]], SCP=[0.0](mn) RAINFALL=[, , , ](mm/hr), EHD=-1 []Dsum=[1,57](mm), SLPT=[1.5](%), IDservious suffaces: IAper=[4.67](mn), SLPS=[10,0], SCF=[0.0](mn) RAINFALL=[, , , ](mm/hr), EHD=-1 []Dsum=[5], NHYD=["HIPO3"], IDT=[2.5](min), SLP=[0.5](%), IIDservious suffaces: IAper=[4.67](mm), SLPS=[0.0](mn) RAINFALL=[, , ](mm/hr), EHD=-1 []Dsum=[5], NHYD=["HIPO3"], IDT=[2.5](min), AREA=[4.0](ma), IDS=[6], NHYD=["Pond=Block"], DT=[2.5](min), AREA=[4.0](ma), IDS=[6], NHYD=["Pond=Block"], DT=[2.5](min), AREA=[4.0](ma), IDS=[6]](ma), CM/C=[6]; IDS=[0.7](ma), SLP=[0.7](ma), SLP=[0.7](ma), IDS=[6]], NHYD=["Pond=Block"], DT=[2.5](min), AREA=[4.0](ma), IDS=[6]](ma), CM/C=[6]], IDT=[0.7](ma), SLP=[0.7](ma), SLP=[0.7](ma), IDS=[6]](ma), CM/C=[6]], IDT=[0.7](ma), SLP=[0.7](ma), SLP=[0.7](ma), IDS=[6]](ma), CM/C=[6]], IDT=[0.7](ma), SLP=[0.7](ma), SLP=[0.7](ma), IDS=[6]](ma), CM/C=[6]], IDT=[0.7](ma), SLP=[0.7](ma), SLP=[0.7](ma), IDS=[6]](ma), CM/C=[6]], IDT=[0.7](ma), IDT=[0.7](ma), IDT=[0.7](ma), IDS=[0](ma), CM/C=[6]], IDT=[0.7](ma), IDT=[0](ma), IDT=[0](ma), IDT=[0](</pre>	00483> * 00483> * 00485> 004865 004865 CALIB STANDHYD 00487> 004865 004885 004893 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 00493 0049 0049	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLP=[1.0](%), Impervious surfaces: IAper=[4.53](mm), SLP=[0.01](min), Impervious surfaces: IAimp=[1.57](mm), SLP=[0.51](%), ICM=[25.63](m), MH=[0.03], SCI=[0.0](min), PAINFALL=[, , , ] (mm/hr), END=-1 </pre>
003485 * SUB-AREA No.1 003495 CALIB STANDHYD 003505 CALIB STANDHYD 003512 003523 00353 00353 00354 00354 00354 00355 00355 00355 00355 00355 00355 00355 00355 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](nm), SLPF=[0.6](8), Inpervious surfaces: IAper=[4.07](nm), SLPT=[0.6](8), Intervious surfaces: IAper=[4.07](nm), SLPT=[0.6](8), IDSUM=[2], NHYD=["HIPO3"], DT=[2.5](nm), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DMF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](nm), SLPP=[1.5](6), LGP=[100.0](nm), NMT=[0.25], SCS=[0.0](min RAINFALL=[, , , ](nm/hr), END=-1 IDsum=[2], NHYD=["HIPO3"], DT=[2.5](nm), SLPP=[1.5](6), LGP=[100.0](nm), NMT=[0.25], SCS=[0.0](min RAINFALL=[, , , ](nm/hr), END=-1 ID=[4], NHYD=["HIPO4"], DT=[2.5](nm), AREA=[18.1](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], ID=[4], NHYD=["HIPO4"], DT=[2.5](nm), SLPP=[1.5](6), LGP=[100.0](nm, NMT=[0.25], SCP=[0.0](min RAINFALL=[, , , ](nm/hr), END=-1 ] ID=[4], NHYD=["HIPO4"], DT=[2.5](nm), SLPP=[1.5](6), LGP=[100.0](nm, MNT=[0.25], SCP=[0.0](min RAINFALL=[, , ](mm/hr), END=-1 ] ID=[5], NHYD=["HIPO5"], IDS to add=[3H4] ]</pre>	00483> * 00483> * 00483> * 00485> 004865 004865 004865 004865 00485 00485 00485 00485 00485 00485 00485 00485 00485 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 0049 0049	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: IAper=[4.67](mm), SLP1=[0.01](%), Impervious surfaces: IAper=[1.57](mm), SLP1=[0.51](%), RAINFALL=[, , , , ] (mm/hr), END=-1 [] [] [] [] [] [] [] [] [] [] [] [] []</pre>
00348> * SUB-AREA No.1 00349> CALIB STANDHYD 00350> CALIB STANDHYD 00351> 00352> 00352> 00352> 00353> 00355> 00355> * 00355> * 00355> * 00362> * SUB-AREA No.2 00362> * SUB-AREA No.2 00362> 00362> * 00362> * 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00365> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375	<pre>XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.5](%), Impervious surfaces: IAper=[1.57](mm), SLPT=[0.6](%), RAIMFALL=[, , , ](mm/hr), EHD=-1 []Dsum=[2]], NHYD=["HIPO2"], IDs to add=[10+1] []Dsum=[2]], NHYD=["HIPO2"], IDs[0.0](mm), SLPS=[2]], SCP=[0.0](mn) []RainPo1(add), SLPS=[10,0]], SCP=[0.0](mn) RAINFALL=[, , , ](mm/hr), EHD=-1 []Dsum=[1,57](mm), SLPT=[1.5](%), IDservious suffaces: IAper=[4.67](mn), SLPS=[10,0], SCF=[0.0](mn) RAINFALL=[, , , ](mm/hr), EHD=-1 []Dsum=[5], NHYD=["HIPO3"], IDT=[2.5](min), SLP=[0.5](%), IIDservious suffaces: IAper=[4.67](mm), SLPS=[0.0](mn) RAINFALL=[, , ](mm/hr), EHD=-1 []Dsum=[5], NHYD=["HIPO3"], IDT=[2.5](min), AREA=[4.0](ma), IDS=[6], NHYD=["Pond=Block"], DT=[2.5](min), AREA=[4.0](ma), IDS=[6], NHYD=["Pond=Block"], DT=[2.5](min), AREA=[4.0](ma), IDS=[6]](ma), CM/C=[6]; IDS=[0.7](ma), SLP=[0.7](ma), SLP=[0.7](ma), IDS=[6]], NHYD=["Pond=Block"], DT=[2.5](min), AREA=[4.0](ma), IDS=[6]](ma), CM/C=[6]], IDT=[0.7](ma), SLP=[0.7](ma), SLP=[0.7](ma), IDS=[6]](ma), CM/C=[6]], IDT=[0.7](ma), SLP=[0.7](ma), SLP=[0.7](ma), IDS=[6]](ma), CM/C=[6]], IDT=[0.7](ma), SLP=[0.7](ma), SLP=[0.7](ma), IDS=[6]](ma), CM/C=[6]], IDT=[0.7](ma), SLP=[0.7](ma), SLP=[0.7](ma), IDS=[6]](ma), CM/C=[6]], IDT=[0.7](ma), IDT=[0.7](ma), IDT=[0.7](ma), IDS=[0](ma), CM/C=[6]], IDT=[0.7](ma), IDT=[0](ma), IDT=[0](ma), IDT=[0](</pre>	00483> * 00483> * 00485> 004865 004865 004865 004865 004865 004865 00485 00485 00485 00485 00485 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 0049 0049	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: IAper=[4.67](nm), SLP=[0.0](min), Impervious surfaces: IAper=[1.57](nm), SLP=[0.0](min), RAIMPALL=[, , , , ] (nm/hr), END=-1 [] DSUM=[4], NHYD=["060"], IDs to add=[1+2] [] DSUM=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](nm), SLP=[0.7](%), LGP=[40](nm), NMT=[0.33], SCI=[0.0](nm), Impervious surfaces: IAper=[4.67](nm), SLP=[0.7](%), LGP=[40](nm), NMT=[0.33], SCI=[0.0](nm), Impervious surfaces: IAper=[4.67](nm), SLP=[0.7](%), LGP=[40](nm), NMT=[0.33], SCI=[0.0](nm), Impervious surfaces: IAper=[4.67](nm), SLP=[0.7](%), LGP=[20.0](nm), SLP=[0.3](%), SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](nm), SLP=[0.5](%), LGP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](nm), SLP=[0.5](%), LGP=[20.0](nm), MMT=[0.33], SCI=[0.0](nm), IMT=[0.97], IMTP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](nm), SLP=[1.5](%), LGP=[20.01](nm), MMT=[0.33], SCI=[0.0](nm), IMTP=[0.97], IMTP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](nm), SLP=[1.5](%), LGP=[20.01](nm), MMT=[0.33], SCI=[0.01](nm), RAIMPALL=[, , , ] (mm/hr), END=-1 [] DSUM=[4], NHTD=[""OND"], DS to add=[5+8] ] ] Dout=[10], NHTD=[""OND"], IDIm=[9], RDT=[1.0](nm),</pre>
003485 * SUB-AREA No.1 003495 CALIB STANDHYD 003505 CALIB STANDHYD 003512 003523 00353 00353 00354 00354 00354 00355 00355 00355 00355 00355 00355 00355 00355 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356 00356	<pre>XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.5](%), Impervious surfaces: IAper=[1.57](mm), SLPT=[0.6](%), RAINFALL=[ , , , ](mm/hr), END=-1</pre>	00483> * 00483> * SUB-AREA No.3 00485> 004865 CALIB STANDHYD 00487> 004865 004895 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00493> 00502 CALIB STANDHYD 00504> 00505 00505> 00510> % 00512> % 00523> NDD HYD 00524> 00523> 00523> 00523> 00523> 00523> 00523> 00523> 00523> 00523> 00523> 00523> 00523> 00523> 00524> 00523> 00524> 00524> 00524> 00525> 00524> 00525> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525> 00527> 00525 00527> 00525> 00527> 00525 00527> 00525 00527> 00525 00527> 00525 00527> 00525 00527> 00525 00527> 00525 00527> 00525 00527 00525 00527 00525 00527 00525 00527 00525 00527 00525 00527 00525 00527 00525 00527 00525 00527 00525 00527 00525 00527 00525 00527 00525 00527 00525 00527 00525 00527 00525 00527 00525 00527 00525 00527 00525 00527 00525 00527 00525 00527 00525 00527 00525 00527 00527 00525 00527 00527 00525 00527 00525 00527	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLP1=[0.01](min), Impervious surfaces: IAinp=[1.57](mm), SLP1=[0.51](%), CLC1=[225.63](m), MNF=[0.03], SCT=[0.0](min), PAINFALL=[, , , , ](mm/hr), END=-1 IDsum=[4], NHYD=[ "040"], IDs to add=[1+2] IDsum=[5], NHYD=[ "050"], IDs to add=[1+2] IDsum=[5], NHYD=[ "050"], IDs to add=[3+4] IDsum=[5], NHYD=[ "050"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.7](%), LCT=[164.82](m), MMT=[0.03](%), RAINFALL=[, , , ](mm/hr), END=-1 IDsum=[5], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: Laper=[4.67](mn), SLPP=[0.7](%), LCT=[164.82](m), MMT=[0.03](%), IDsum=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: Laper[4.67](mn), SLPP=[1.5](%), Impervious surfaces: Laper[4.67](mn), SLPP=[1.5](%), CCS curve number CM=[81], Pervious surfaces: Laper[4.67](mn), SLPP=[1.5](%), Impervious surfaces: Laper[4.67](mn), SLPP=[1.5](%), IMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: Laper[4.67](mn), SLPP=[1.5](%), IMP=[0.97], IDs to add=[54:8] IDsum=[8], MHDP=[ "900"], IDs to add=[54:8] IDsum=[9], MHDP=[ "900"], IDsum=[9], RDSU=[1.0](min), IDsum=[9],</pre>
00348> * SUB-AREA No.1 00349> CALIB STANDHYD 00350> CALIB STANDHYD 00350> CALIB STANDHYD 00351> 00352> 00355> 00355> ADD HYD 00355> * * 00355> ADD HYD 00365> * * 00365> * * 00365> * * 00365> * * 00365> * * 00365> 00370> 00365> 00370> 00365> 00365> 00370> 00370> 00370> * 00370> * 00370> * 00370> 00370> * 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00380> 00381> 00380> 00381> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390 00390 00390 00390 00390 00390 00390 00390 00390 00390 00390 00390 00390 00390 00390 00390 00390 00390 00390 00390 00390 00390 00390 00390 00390 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300 00300	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPF=[0.5](8),</pre>	00483> * 00483> * 00485> 00485> 004865 CALIB STANDHYD 00487> 004865 004865 004865 004905 004905 004915 004925 00493> % 00493> % 00493> % 00493> % 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00515 00516 00516 00516 00516 00516 00516 00516 00516 00516 00516 00516 00516 00516 00516 00516 00516 00522 % 00225 ADD HYD 00222 % 00225 ADD HYD	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLP1=[1.0](%), Impervious surfaces: IAinp=[1.57](mm), SLP1=[0.51](%), Intervious surfaces: IAper=[4.67](mm), SLP1=[0.58](hm), XIMP=[10.97], TIMP=[0.97], DMF=[0.03](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLP2=[0.7](%), Impervious surfaces: IAper=[4.67](mm), SLP2=[0.7](%), Intervious surfaces: IAper=[4.67](mm), SLP2=[0.7](%), Intervious surfaces: IAper=[4.67](mm), SLP2=[0.3](%), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLP2=[1.5](%), IGP=[20.0](m), MMT=[0.03], SCI=[0.0](mi), Impervious surfaces: IAper=[4.67](mm), SLP2=[1.5](%), IGP=[20.0](m), MMT=[0.03], SCI=[0.0](mi), Impervious surfaces: IAper=[4.67](mm), SLP2=[1.5](%), IGP=[20.2](m), SMT=[0.61](%), IGF=[20.725](m), SMT=[0.61](%), IGF=[20.725](m), SMT=[0.61](%), IGF=[20.725](m), SMT=[0.61](%), ISCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLP2=[1.5](%), IGF=[20.725](m), SMT=[0.61](%), IAMPELL=[, , , , ](mm/hr), END=-1 Isum=[8], MHTD=["080"], IDS to add=[6+7] Isum=[9], MHTD=["080"], IDS to add=[5+8] Isum=[9], MHTD=["080"], IDS to add=[5+8] Isum=[9], MHTD=["080"], IDS to add=[5+8] Isum=[9], MHTD=["080"], IDS to add=[5+8] Isum=[9], MHTD=["080"], IDS to add=[5+8] Isum=[1.0](min), [0.000]</pre>
00348> * SUB-AREA No.1 00349> CALIB STANDHYD 00350> CALIB STANDHYD 00351> 00352> 00352> 00352> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00355> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00375> 00385> 00385> 00385> 00385> 00385> 00385> 00385> 00385> 00385> 00385> 00385> 00385> 00385> 00385> 00385> 00385> 00385> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395> 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395 00395	<pre>XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CM=[8]], Pervious surfaces: IAper=[4.67](nm), SLPP=[0.5](%), Impervious surfaces: IAper=[1.57](nm), SLPT=[0.6](%), RAIMFALL=[, , , ] (nm/hr), EMD=-1 </pre>	00483> * 00483> * 00483> * 00485> 004865 004865 CALIB STANDHYD 00487> 004885 004885 004895 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 00499 0049 00499 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 0049 004	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: IAper=[4.67](mm), SLP1=[0.01](%), Impervious surfaces: IAper=[1.57](mm), SLP1=[0.51](%), CLP1=[25.53](mm), SLP1=[0.51](%), SLP1=[1.52](mm), SLP1=[0.51](%), IDsum=[4], NHYD=["060"], IDs to add=[1+2] </pre>
00348> * SUB-AREA No.1 00349> CALIB STANDHYD 00350> CALIB STANDHYD 00351> 00352> 00352> 00353> 00355> ADD HYD 00360> * 00360> * 00371> * 00375> * SUB-AREA No.3 00376> 00376> CALIB STANDHYD 00376> 00376> CALIB STANDHYD 00377> 00377> 00376> 00376> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00380> 00390> REFERENCE 00390 REFERENCE REFERENCE 00390 ROUTE RESERVOIR 00400>	<pre>XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CM=[8]], Pervious surfaces: IAper=[4.67](nm), SLPP=[0.5](%), Impervious surfaces: IAper=[1.57](nm), SLPT=[0.6](%), RAIMFALL=[, , , ] (nm/hr), EMD=-1 </pre>	00483> * SUB-AREA No.3 00485> 004865 004865 CALIB STANDHYD 00487> 004865 004885 004895 004895 004995 00491> 00491> 004925 00493> % 004925 00493> % 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00515 00522 00522 00522 00525 00525 005515 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00525 00535 00535 00535 00532 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00533 00	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](rmm), SLP1=[0.01](min), Impervious surfaces: IAinp=[1.57](rmm), SLP1=[0.51](%), ICD=[25:63](m), MNT=[0.03], SCT=[0.0](min), PAINFALL=[, , , ] (mm/hr), END=-1 </pre>
00348> * SUB-AREA No.1 00349> CALIB STANDHYD 00350> CALIB STANDHYD 00351> 00352> 00352> 00355> CALIB STANDHYD 00355> ADD HYD 00355> ADD HYD 00362> * SUB-AREA No.2 00362> * SUB-AREA No.2 00362> * SUB-AREA No.2 00365> 00370> 00370> * 00370> * 00370> * 00370> * 00370> * 00370> CALIB STANDHYD 00370> 00370> CALIB STANDHYD 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00380> 00380> 00380> 00380> 00380> 00380> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390> 00390 00390> 00390> 00390 00390> 00390> 003	<pre>XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPT=[0.6](%), Impervious surfaces: IAper=[1.57](mm), SLPT=[0.6](%), MAINFALL=[ , , , ] (mm/hr), END=-1 IDsum=[ 2 ], NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha), XIMP=(0.50), TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPT=[1.5](%), LCP=[100.0](m), MNT=[0.25], SCS=[0.0](m RAINFALL=[ , , , ] (mm/hr), END=-1 ID=[ 4 ], NHYD=["HIP04"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], LCP=[100.0](m), MNT=[0.25], SCS=[0.0](m RAINFALL=[ , , , ] (mm/hr), END=-1 ID=[ 4 ], NHYD=["HIP04"], DT=[2.5](min), AREA=[18.1](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mn), SLPT=[1.5](%), LCP=[100.0](m), MNT=[0.25], SCS=[0.0](min RAINFALL=[ , , , ] (mm/hr), END=-1 ID=[ 6 ], NHYD=["HIP04"], DT=[2.5](min), AREA=[18.1](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mn), SLPT=[1.5](%), LCP=[100.0](m), MNT=[0.25], SCT=[0.0](min RAINFALL=[ , , , ] (mm/hr), END=-1 IDsum=[ 5 ], NHYD=["HIP05"], IDs to add=[3+4] ID=[ 6 ], NHYD=["HIP05"], IDs to add=[2+5+6] IDout=[ 6 ], NHYD=["HIP06"], IDs to add=[2+5+6] IDout=[ 8 ], NHYD=["HIP06"], IDs to add=[2+5+6] IDo</pre>	00483> * 00483> * 00485> 00485> 004865 CALIB STANDHYD 00487> 004865 004865 004865 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 00485 0045 004	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[63], Pervious surfaces: IAper=[4.67](nms), SLP=[1.0](%), Impervious surfaces: IAper=[4.67](nms), SLP=[0.5]](%), ARIMFALL=[, , , ] (nmAhr), END=-1 [10-100, NHYD=["060"], IDs to add=[1+2] [10-100, NHYD=["060"], DT=[2.5](nmi), AREA=[0.89](hm), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[61], Pervious surfaces: IAinpe[1.57](nmi), SLP=[0.7](%), Pervious surfaces: IAinpe[1.57](nmi), SLD=[0.0](min), Impervious surfaces: IAinpe[1.57](nmi), SLD=[0.0](min), IMP=[0.97], SIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[01], Pervious surfaces: IAppe=[4.67](nmi), SLD=[1.5](%), Impervious surfaces: IAppe=[4.67](nmi), SLD=[0.0](mi, Impervious surfaces: IAppe=[4.67](nmi), SLD=[0.0](mi, Impervious surfaces: IAppe=[4.67](nmi), SLD=[0.0](mi, Impervious surfaces: IAppe=[4.67](nmi), SLD=[0.0](sc], scD=[0.0](mi, Impervious surfaces: IAppe=[4.67](nmi), SLD=[1.0](s), sc]=[0.0](mi, Impervious surfaces: IAppe=[4.67](nmi), SLD=[1.0](s), sc]=[0.0](mi, Impervious surfaces: IAppe=[4.67](nmi), SLD=[1.0](s), sc]=[0.0](mi, Impervious surfaces: IAppe=[4.67] [150um=[4], MHYD=["060"], IDs to add=[548] [150um=[4], MHYD=["060"]</pre>
00348> * SUB-AREA No.1 00349> CALIB STANDHYD 00350> CALIB STANDHYD 00351> 00352> 00352> 00353> 00355> ADD HYD 00360> * 4 00360> * 5 00371> * 5 00371> * 5 00375> CALIB STANDHYD 00376> 00376> CALIB STANDHYD 00377> 003775 00376> CALIB STANDHYD 00380> 00384> * 4 00380> 00385> * 4 00385> * 5 00380> 00385> * 4 00380> 00385> * 4 00380> 00385> * 4 00380> 00385> * 4 00380> 00385> * 4 00385> * 5 00390> 00390> DESIGN NASHYD 00390> 00390> ROUTE RESERVOIR 00399> ROUTE RESERVOIR	<pre>XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.5](%), Impervious surfaces: IAper=[1.57](mm), SLPT=[0.6](%), RAIMFALL=[, , , ](mm/hr), EMD=-1 </pre>	00483 * SUB-AREA No.3 00485 * SUB-AREA No.3 00485 * SUB-AREA No.3 00485 * CALIB STANDHYD 00487 * 00487 * 00487 * 00487 * 00489 * 00489 * 00489 * 00489 * 00489 * 00489 * 00489 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490 * 00490	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: IAper=[4.67](mm), SLP1=[0.01](min), Impervious surfaces: IAimp=[1.57](mm), SLP1=[0.51](%), ICL=[225.63](m), MHYL=[0.03], SCT=[0.0](min), RAINFALL=[, , , ][(mm/hr), END=-1 ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]</pre>
00348> * SUB-AREA No.1 00349> * SUB-AREA No.1 00350> CALIB STANDHYD 00351> 00352> 00352> 00353> 00355> * 00355> * 00375> * 00375> * 00375> * 00375> * 00375> * 00375> * 00375> * 00375> * 00375> * 00385> * 003	<pre>XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.5](%), Impervious surfaces: IAper=[1.57](mm), SLPT=[0.6](%), RAIMFALL=[, , , ](mm/hr), EMD=-1 </pre>	00483> * 00483> * 00483> * 00485> 004865 CALIB STANDHYD 00487> 004865 004885 004895 004905 004913 00491 00491 00495 00492 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 0050 00495 0050 0050	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[63], Pervious surfaces: IAper=[4.67](nms), SLP=[1.0](%), Impervious surfaces: IAper=[4.67](nms), SLP=[1.0](%), Impervious surfaces: IAinp=[1.57](nms), SLP=[0.51](%), Charlestanting and the state sta</pre>
00348> * SUB-AREA No.1 00349> * SUB-AREA No.1 00350> CALIB STANDHYD 00350> CALIB STANDHYD 00351> 00352> 00353> 00355> 00355> 00355> 00355> *\$ 00355> *\$ 00352> * SUB-AREA No.2 00362> * SUB-AREA No.3 00365> 00365> 00365> 00365> 00365> 00365> 00370> 00365> 00370> 00370> 00370> *0 00370> *0 00370> *0 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00370> 00375> CALIB STANDHYD 00376> 00385> ADD HYD 00385> *5 00385> ADD HYD 00395> 00390> *5 00390> *5 00390> *5 00390> *5 00390> *5 00390> *5 00390> *5 00390> *5 00390> ADD HYD 00390> *5 00390> *5 00390> ADD HYD 00390> *5 00390> ADD HYD 00390> *5 00390> ADD HYD 00390> *5 00390> ADD HYD 00390>	<pre>XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), Impervious surfaces: IAper=[1.57](mm), SLPT=[0.6](%), Impervious surfaces: IAper=[1.57](mm), SLPT=[0.6](%), IDsum=[2], NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha), XIMP=(0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), LCP=[100.0](m), NMP=[0.25], SCS=[0.0](min) RAINFALL=[, , , , ](mm/hr], END=-1 Impervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), LCP=[100.0](m), NMP=[0.25], SCS=[0.0](min) RAINFALL=[, , , ](mm/hr], END=-1 Impervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), LCP=[10.0](m), NMP=[0.25], SCS=[0.0](min) RAINFALL=[, , , ](mm/hr], END=-1 ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[18.1](ha), XIMD=[0.50], TIMD=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve suuffaces: IAper=[4.67](mm), SLPP=[1.5](%), LCD=[100.0](m), NMP=[0.25], SCS=[0.0](min) RAINFALL=[, , , ](mm/hr], END=-1 ID=[5], NHYD=["HIP05"], ID= to add=[3+4] ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), ZMINFALL=[, , , ](mm/hr], END=-1 IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4] ID=[6], NHYD=["HIP06"], ID= to add=[3+4] ID=[6], NHYD=["HIP06"], ID= to add=[2+5+6] ID=UT=[6], NHYD=["HIP06"], ID= to add=[2+5+6] ID=UT=[6], NHYD=["HIP06"], ID= to add=[2+5+6] ID=UT=[6], NHYD=["HIP06"], ID= to add=[2+5+6] ID=UT=[6], (Cms), (CNTE(W-STORAGE) values (Cms) - (ha-m) [0.0, 0, 0, 0]</pre>	00483> * 00483> * 00485> 004865 004865 CALLB STANDHYD 00487> 004865 004895 004895 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 004995 00499 004995 004995 004995 004995 004995 004995 004995 00499 00495	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: IAper=[4.67](mm), SLP1=[0.01](min), Impervious surfaces: IAimp=[1.57](mm), SLP1=[0.51](%), ICL=[225.63](m), MHYL=[0.03], SCT=[0.0](min), RAINFALL=[, , , ][(mm/hr), END=-1 ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]</pre>

00541>	[ 0.654, 0.6631]	00676> * SUB-AREA No.2	
00542> 00543>	[ 0.797, 0.7391] [ 0.950, 0.8274]	00677> 00678> CALIB STANDHYD	
00544> 00545>	[ 1.304, 0.9157]	00679>	ID=[ 2 ], NHYD=["020"], DT=[2.5](min), AREA=[ 1.54 ](ha), XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2],
00546>	[ 1.880, 1.0040] [ 2.577, 1.0923]	00680>	SCS curve number CN=[81], Pervious surfaces: Tabar=[4 67](mm) SIDD=(1 0)(8)
00547> 00548>	<pre>[ -1 , -1 ] (max twenty pts)</pre>	00682>	LGP=[5](m), MMP=[0.03], SC=[0.0](min), Impervious surfaces 1 TAimp=[1.57](mm), SLF=[0.50](%), LG=[24,34](m), MMI=[0.03], SCI=[0.0]
	*******	00684>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.50] (%), LGI=[244.34] (m), MNI=[0.03], SCT=[0.01]
00551> **********	ling Hawthorne Industrial Park *	00685> 00686> *%	RAINFALL=[, , , , ](mm/hr) , END=-1
00552> * 00553> * SUB-AREA N	10-1	00687> *	
00554>		00688> * SUB-AREA No.3 00689>	
00555> CALIB STANDH 00556>	<pre>ID ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],</pre>	00690> CALIB STANDHYD 00691>	ID=[ 3 ], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],
00557>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),	00692>	SCS curve number CN=[81]
00559>	LGP = [100.0] (m), $MNP = [0.25]$ , $SCP = [0.0] (m)$	00693>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%), LGP=[5](m), MNP=[0.03], SCP=[0.0](min),
00560> 00561>	Impervious surfaces: IAimp=[1,57](mm), SLPT=[0,6](%).	00695>	impervious surraces: IAimp=(1.57)(mm), SLPI=(0.51)(%).
00562>	LGI=[560] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , , ] (mm/hr), END=-1	00697>	LGI=[ 225.63 ] (m), MNI=[0.03], SCI=[0.0 RAINFALL=[, , , , ] (mm/hr) , END=-1
00563> *% 00564> ADD HYD		00698> ** 00699> ADD HYD	IDsum=[4], NHYD=[ "040"], IDs to add=[1+2]
00565> *%		00700> *8	
00567> * SUB-AREA N	0.2	00701> ADD HYD 00702> *%	IDsum=[5], NHYD=[ "050"], IDs to add=[3+4]
00568> 00569> CALIB STANDH	YD TD=[3] NHYD=["HTD03"] DT-[25](min) DT=11(b-)	00703> * 00704> * SUB-AREA No.4	•
00570> 00571>	XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],	00705>	
00572>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),	00706> CALIB STANDHYD 00707>	ID=[6], NHYD=["060"], DT=[2.5] (min), AREA=[0.89] (ha),
00573> 00574>	LGP = [100,0] (m), MNP = [0,25], SCP = [0,0] (m)	00708>	XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],
00575>	<pre>Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.65](%), LGI=[450](m), MNI=[0.03], SCI=[0.0](min</pre>	00709> 00710>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[0.7] (%),
00576> 00577> *8	RAINFALL=[,,,,](mm/hr), END=-1	00711>	impervious surraces; iAimpe(1.5/)(mm), SiPi=(0.93)(%),
00578> *		00712> 00713>	LGI=[164.82](m), MNI=[0.03], SCI=[0.0]( RAINFALL=[,,,,](mm/hr), END=-1
00579> * SUB-AREA N 00580>		00714> *%	
00581> CALIB STANDH 00582>	YD ID=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[18.1](ha),	00716> * SUB-AREA No.5	
00583>	XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],	00717> 00718> CALIB STANDHYD	ID=( 7 ), NHYD=("070"), DT=(2 5) (min) BDDa-(2 60) (b-)
00584> 00585>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m	00719> 00720>	<pre>ID=[ 7 ], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],</pre>
00586>	Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.5](%),	00721>	SCS curve number CN=1811.
00587>	LGI=[600] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , , , ] (mm/hr) , END=-1	00722> 00723>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[20.0] (m), MNP=[0.25], SCP=[0.0] (mi)
00589> *%		00724>	<pre>Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.61] (%), LGI=[207.25] (m), MNI=[0.03], SCI=[0.0] (</pre>
00591> *%	IDsum={ 5 }, NHYD={"HIPO5"}, IDs to add=(3+4]	00725> 00726> *%	RAINFALL=[ , , , , ] (mm/hr) , END=-1
00592> * 00593> *SUB-AREA No.	.4	00727> ADD HYD 00728> *%	IDsum=[8], NHYD=[ "080"], IDs to add=[6+7]
00594>		00729> ADD HYD	<pre>IDsum=[9], NHYD=[ "090"], IDs to add=[5+8]</pre>
00595> DESIGN NASHYI 00596>	D ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cms), CN/C=[85], TP=[0.17]hrs,	00730> *8	
00597> 00598> *%	RAINFALL=[, , , , ] (mm/hr), END=-1	00732> ROUTE RESERVOIR	<pre>IDout=[10], NHYD=["POND"], IDin=[9],</pre>
00599>	· · · · · · · · · · · · · · · · · · ·	00733> 00734>	RDT=[1.0](min), TABLE of ( OUTFLOW-STORAGE ) values
00600> 00601> ADD HYD	IDsum=[ 7 ], NHYD=["HIP06"], IDs to add=[2+5+6]	00735>	(cms) - (ha-m)
00602> *%		00736> 00737>	[ 0.000, 0.0000] [ 0.008, 0.0656]
00604> ROUTE RESERVO		00738> 00739>	[ 0.017, 0.1311] [ 0.093, 0.2831]
00605> 00606>	RDT=[1.0] (min),	00740>	( 0.233, 0.3971)
00607>	TABLE of ( OUTFLOW-STORAGE ) values (cms) - (ha-m) [ 0.0 , 0.0 ]	00741> 00742>	[ 0.337, 0.4731] [ 0.465, 0.5491]
00608> 00609>	[ 0.0 , 0.0 ] [ 0.048, 0.0574 ]	00743> 00744>	[ 0.531, 0.5871]
00610> 00611>	[ 0.054, 0.2434 ]	00745>	[ 0.593, 0.6251] [ 0.654, 0.6631]
00612>	[ 0.059, 0.5834 ] [ 0.062, 0.8400 ]	00746>	( 0.797, 0.7391] [ 0.950, 0.8274]
00613> 00614>	[ 0.064, 1.1024 ] [ 0.147, 1.3705 ]	00748>	[ 1.304, 0.9157]
00615> 00616>	[ 0.280, 1.6444 ]	00749> 00750>	[ 1.880, 1.0040] [ 2.577, 1.0923]
00617>	[ 0.472, 1.9242 ] [ 0.724, 2.2097 ]	00751> 00752>	<pre>[ -1 , -1 ] (max twenty pts)</pre>
00618> 00619>	[ 0.937, 2.5010 ] [ 1.262, 2.7981 ]	00753> ***************	*********
00620>	[ 1.404, 3.1009 ]	00754> * Remaining H 00755> *****************	awthorne Industrial Park *
00621> 00622>	[ 1.532, 3.4096 ] [ 1.650, 3.7240 ]	00756> * 00757> * SUB-AREA No.1	
00623>	[ 2.409, 4.0442 ]	00758>	
00624> 00625>	$\begin{bmatrix} 3.689, 4.3702 \end{bmatrix}$ $\begin{bmatrix} -1, -1 \end{bmatrix}$ (max twenty pts)	00759> CALIB STANDHYD 00760>	<pre>ID=[ 1 ], NHYD=["HIP01"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],</pre>
00626> 00627> *%		00761>	SCS curve number CN=[81].
00628> *		00762> 00763>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m
00629> *SUB-AREA No. 00630> *	5	00764>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.6] (%),
00631> DESIGN NASHYD 00632>		00766>	LGI=[580] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , , , ] (mm/hr) , END=-1
00633>	DWF=[0](cms), CNC=[76], TP=[0.37]hrs, RAINFALL=[, , , , ](mm/hr), END=-1	00767> *%	IDsum=[ 2 ], NHYD=["HIP02"], IDs to add=[10+1]
00634> **		00769> **	
00636> *SUB-AREA No. 00637> *	6	00771> * SUB-AREA No.2	
00638> DESIGN NASHYD		00772> 00773> CALIE STANDHYD	<pre>ID=[ 3 ], NHYD=["HIP03"], DT=[2.5] (min), AREA=[17] (ha),</pre>
	DWF=[0](cms), CNC=[76], TP=[0.804]hrs,	00774> 00775>	XIMP=[0.50], $TIMP=[0.71]$ , $DWF=[0.0](cms)$ , $LOSS=[2]$ .
00639> 00640>	RAINFALL=[	1 00//32	SCS curve number CN=[81],
00640> 00641> *%	RAINFALL={ , , , , ] (mm/hr}, END=-1	00776>	Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),
00640> 00641> *& 00642> ADD HYD 00643> *&	PAINFALL=[ , , , , ](mm/hr), END=-1	00776> 00777>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m) IMDErvious surfaces: INimp[1.57] (mm), SUTI-[0.65] (%).
00640> 00641> *% 00642> ADD HYD 00643> *% 00644>	RAINFALL={ , , , , } [mm/hr], END=-1 	00776> 00777> 00778> 00779>	LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.65](%), LGI=[450](m), MNI=[0.03], SCI=[0.0](min
00640> 00641> *% 00642> ADD HYD 00643> *% 00644> 00645> ************************************	RAINFALL= [ , , , , ] (mm/hr), END=-1 	00776> 00777> 00778> 00779> 00780> 00781> *%	LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.65](%),
00640> 00641> *% 00642> ADD HYD 00643> *% 00644> 00645> ************************************	RAINFALL=[, , , , ](mm/hr), END=-1 IDsum=[1], NHYD=["Interim"], IDs to add=[8+9+10] 	00776> 00777> 00778> 0078> 00780> 00781> *% 00782> *	LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.65](%), LGI=[450](m), MNI=[0.03], SCI=[0.0](min
00640> 00641> *& 00642> ADD HYD 00643> *& 00644> 00645> ************ 00645> ************************************	PAINFALL=[, , , , ] (mm/hr), END=-1 TDsum=[1], NHYD=["Interim"], IDs to add=[8+9+10] ULATION OF 3HR - 2:10 YEAR STORM EVENT * TZERO=[0.0], METOUT=[2], NSTORM=[0], NEUN=10]	00776> 00777> 00778> 00780> 00781> *\$ 00781> *\$ 00782> * 00783> * SUB-AREA No.3 00784>	LGF=[100.0](m), MNP=[0.25], SCP=[0.0](m Impervious surfaces: LAImpe[1.57](mm), SLP=[0.65](%), LGI=[450](m), MMI=[0.03], SCI=[0.0](min RAINFALL=[, , , , ](mm/hr), END=-1
00640> 00641>*% 00642> ADD HYD 00643>*% 00644> 00645> ************************************	<pre>FAINFALL=[, , , , ] (mm/hr), END=-1  TDsum=[1], NHYD=["Interim"], IDs to add=[8+9+10]  ULATION OF 3HR - 1:10 YEAR STORM EVENT  TZERO=[0.0], METOUT=[2], NSTORM=[0], NEUN=[0] [] <storm <="" filename,="" for="" line="" nstorm="" one="" per="" pre="" time=""></storm></pre>	00776> 00777> 00778> 00780> 00781> *\$ 00782> * 00783> * SUB-AREA No.3 00785> CALIE STANDHYD 00785> CALIE STANDHYD	LGF=[100.0](m), MNP=[0.25], SCP=[0.0](m Impervious surfaces: IAImpe[1.57](mm), SLPI=[0.65](8), LGI=[450](m), MMI=[0.03], SCI=[0.0](min RAINFALL=[, , , , ][mm/hr), END=-1 
00640> 00641> *& 00642> ADD HYD 00643> *& 00644> 00645> ************************************	<pre>PAINFALL=[, , , , ](mm/hr), END=-1 Paintering Pain</pre>	00776> 00777> 00778> 00780> 00781> *8	LGF=[100.0](m), NMP=[0.25], SCP=[0.0](m) Impervious surfaces: IfAmpe[1.57](mm), SLP=[10.65](%) RAINFALL=[, , , ](mm/)rJ, END=-1 [] ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[18.1](ha), XIMD=[0.50], TIMD=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81],
00640> 00641>*% 00642> ADD HYD 00643> *% 00644 00645> ************************************	<pre>RAINFALL=[, , , , ] (mm/hr), END=-1</pre>	00776> 00777> 00778> 00780> 00781> *8	LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m Impervious surfaces: ILAmpe[1.57](mm), SLP=[0.65](8), LGI=[450](m), MMI=[0.03], SCI=[0.0](min RAINFALL=[, , , , ](mm/hr), END=-1 
00640> 00641>*%	RAINFALL=[, , , , ] (mm/hr), END=-1         IDsum=[1], NHYD=["Interim"], IDs to add=[8+9+10]         ULATION OF 3HR - 1:10 YEAR STORM EVENT         TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUM=[0]         [] <storm filename,="" for="" line="" nstorm="" one="" per="" td="" time<="">         IUNITS=[2], TD=[3.0] (hrs), TPRAT=[0.333], CSDT=[10.0] (min)         A=[1174.184], B=[6.014], and C=[0.816],         S         ICASSdef=[1], read and print values</storm>	00776> 00778> 00778> 00780> 00780> 00781> *1	LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m Impervious surfaces: ILAmpe[1.57](mm), SLP=[0.65](%), LGI=[450](m), MMI=[0.03], SCI=[0.0](min RAINFALL=[, , , , ](mm/hr), END=-1 
00640> 00641>*% 00642> ADD HYD 00643>*% 006444> 00645> * 00645> 00645> * 00645> 00653> *% 00653> 00655> %* 00655> %* 00655> %* 00655> %* 00655> %* 00655> %*	<pre>RAINFALL=[, , , , ] (mm/hr), END=-1 TDsum=[1], NHYD=["Interim"], IDs to add=[8+9+10] ULATION OF JHR - 1:10 YEAR STORM EVENT TZERO=[0.0], METOUT=[2], NSTORM=[0], NEUN=[0] [] <storm filename,="" for="" line="" nstorm="" one="" per="" time<br="">UNNITS=[2], TD=[3.0](hrs), TFRAT=[0.333], CSDT=[10.0](min) ICASEdes=[1], A=[0.14], and C=[0.816], TCASEdef=[1], read and print values DEFVAL FLIENAME(V:\22973.DULENG\SYMMHYO\"ORGA.VAL"] </storm></pre>	00776> 00777> 00778> 00780> 00781> *%	LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m) Impervious surfaces: ILAmpe[1.57](mm), SLP=[0.65](%), LGI=[450](m), MMI=[0.03], SCI=[0.0](min RAINFALL=[, , , , ][mm/hr], END=-1 [ ID=[4], MHYD=["HIP04"], DT=[2.5](min), AREA=[10.1](ha), XIMP=[0.50], TIMP=[0.71], DMF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mn), SLPP=[1.5](%), LGP=[100.0](m), MMI=[0.25], SCD=[0.0](min RAINFALL=[, , , ][mm/hr], END=-1
00640> 00641>*% 00642> ADD HYD 00643> *% 00644 00645> * CALC 00645> *CALC 00645> *CALC 00645> *CALC 00655> *% 00655> *% 00655> *% 00655> *% 00655> *% 00655> *%	<pre>RAINFALL=[, , , , ][mm/hr], END=-1 TDsum=[1], NHYD=["Interim"], IDs to add=[8+9+10] ULATION OF JHR - 1:10 YEAR STORM EVENT * TZERO=[0.0], METOUT=[2], NSTORM=[0], NEUN=[0] [] <storm filename,="" for="" line="" nstorm="" one="" per="" time<br="">UNNITS=[2], TD=[3.0](hrs), TFPAT=[0.333], CSDT=[10.0](min) ICASEdes=[1], A=[1.174.184], B=[6.014], and C=[0.816], TCASEdef=[1], read and print values DEFVAL_FILENAME=[V: 22973.DULENG\SWMHYNO\"ORGA.VAL"] [] &lt;</storm></pre>	00776> 00777> 00778> 00780> 00780> 00781> *8	LGF=[100.0](m), MNP=[0.25], SCF=[0.0](m) Impervious surfaces: IAImpe[1.57](mm), SLFI=[0.65](%), LGI=[450](m), MNI=[0.03], SCI=[0.0](min RAINFALL=[, , , , ](mm/hr), END=-1 ID=[4 ], NHYD=["HIP04"], DT=[2.5](min), AREA=[18.1](ha), XIMD=[0.50], TIMD=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAport=[4.67](mm), SLF=[1.5](%), IMD=FVious surfaces: IAinpe[1.57](mm), SLF=[1.5](%), IMD=FVious surfaces: IAinpe[1.57](mm), SLF=[0.25](%), IMD=FVious surfaces: IAinpe[1.57](mm), SLFI=[0.5](%), IMD=FVious surfaces: IAinpe[1.57](mm), SLFI=[0.5](%), IMD=FVious surfaces: IAinpe[1.57](mm), SLFI=[0.5](%), IMD=FVIOUS surfaces: IAinpe[1.57](mm), SLFI=[0.5](%), RAINFALL=[, , , ](mm/hr), END=-1
00640> 00641> % 00642> ADD HYD 00643> % 00644 00645> * 00645 00645> * 00645> 00645> * 00652> * 00652> * 00655> * 00655> * 00655> * 00655> * 00655> * 00655> * 00655> * 00655> * 00655> *	RAINFALL=[, , , , ] (mm/hr), END=-1         IDsum=[1], NHYD=["Interim"], IDs to add=[8+9+10]	00776> 00777> 00778> 00778> 00780> 00781> *8	LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m) Impervious surfaces: ILAmpe[1.57](mm), SLP=[0.65](%), LGI=[450](m), MMI=[0.03], SCI=[0.0](min RAINFALL=[, , , , ][mm/hr], END=-1 [ ID=[4], MHYD=["HIP04"], DT=[2.5](min), AREA=[10.1](ha), XIMP=[0.50], TIMP=[0.71], DMF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mn), SLPP=[1.5](%), LGP=[100.0](m), MMI=[0.25], SCD=[0.0](min RAINFALL=[, , , , ](mm/hr], END=-1
00640> 00641>*% 00642> ADD HYD 00643> *% 00644> 00645> ************************************	<pre>RAINFALL=[, , , , ][mm/hr], END=-1 TDsum=[1], NHYD=["Interim"], IDs to add=[8+9+10] ULATION OF JHR - 1:10 YEAR STORM EVENT * TZERO=[0.0], METOUT=[2], NSTORM=[0], NEUN=[0] [] <storm filename,="" for="" line="" nstorm="" one="" per="" time<br="">UNNITS=[2], TD=[3.0](hrs), TFPAT=[0.333], CSDT=[10.0](min) ICASEdes=[1], A=[1.174.184], B=[6.014], and C=[0.816], TCASEdef=[1], read and print values DEFVAL_FILENAME=[V: 22973.DULENG\SWMHYNO\"ORGA.VAL"] [] &lt;</storm></pre>	00776> 00777> 00778> 00778> 00780> 00781> *8	LGD=[100.0](m), MNP=[0.25], SCP=[0.0](m) Impervious surfaces: IAImpe[1.57](mm), SLPI=[0.65](8), ILGI=[450](m), MNI=[0.03], SCI=[0.0](min RAINFALL=[, , , , ](mm/hr), END=-1 [ID=[4], NHYD=("HIP04"], DT=[2.5](min), AREA=[18.1](ha), XIMD=[0.50], TIMD=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[61], Pervious surfaces: IAP0=[1.57](mm), SLP=[1.5](8), IMP=Vious surfaces: IANDP=[1.57](mm), SLP=[0.25](8), IMPEVIOUS surfaces: IANDP=[1.57](mm), SLP=[0.25](8), IMPEVIOUS surfaces: IANDP=[1.57](mm), SLP=[0.25](8), IMPEVIOUS surfaces: IANDP=[1.57](mm), SLPI=[0.25](8), IMPEVIOUS SURFACES: IANDP=[1.57](mm), SLPI=[1.57](mm), SLPI=[1.57](mm)
00640> 00641>*% 00642> ADD HYD 00643> *% 006444 00645> * CALC 00645> *CALC 00645> *CALC 00645> *0645> 00655> *% 00655> *0655> 00555> *CALC VALUE: 00555> *CALC VALUE: 005555 *CALC VALUE: 005	RAINFALL=[, , , , ] (mm/hr), END=-1         IDsum=[1], NHYD=["Interim"], IDs to add=[8+9+10]         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''         ''        ''     <	00776> 00777> 00778> 00780> 00781> *%	LGP=[100.0](m), MNP=[0.25], SCP=[0.0](mi, Impervious surfaces: IAimpe[1.57](mm), SLP=[0.65](%), IGI=[450](m), MNP=[0.03], SCI=[0.0](min RAINFALL=[, , , ][mm/hr], END=-1 ID=[4 ], NHYD=["HIP04"], DT=[2.5](min), AREA=[18.1](ha), XIMD=[0.50], TIMD=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mn), SLP=[1.5](%), LGP=[10.0](m), MMT=[0.25], SCD=[0.0](min Impervious surfaces: IAimp=[1.57](mn), SLP=[0.5](%), LGT=[600](m), MMT=[0.25], SCD=[0.0](min Impervious surfaces: IAimp=[1.57](mn), SLP=[0.5](%), LGT=[600](m), MMT=[0.25], SCD=[0.0](min RAINFALL=[, , , ](mm/hr), END=-1 IDsum=[5], NHYD=["HIP05"], IDs to add=[344]
00640> 00641>*%	RAINFALL=[, , , , ] (mm/hr), END=-1         IDsum=[1], NHYD=["Interim"], IDs to add=[8+9+10]	00776> 00777> 00778> 00780> 00781> *%	LGF=[100.0] (m), MNP=[0.25], SCP=[0.0] (m) Impervious surfaces: IAimpe[1.57] (mm), SLPI=[0.65] (%), RAINFALL=[, , , , ] (mm/hr), END=-1 ID=[4], NHYD=["HIP04"], DT=[2.5] (min), AREA=[18.1] (ha), XIMD=[0.50], TIMD=[0.71], DWT=[0.0] (cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67] (mm), SLPI=[1.5] (%), Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.5], SCS=[0.0] (min RAINFALL=[, , , ] (mm/hr), END=-1 IDsum=[5], NHYD=["HIP05"], LDS to add=[344] ID=[6], NHYD=["Pond-Block"], DT=[2.5] min, AREA=[4.0] (ha), BWF=[0] (cms), CN/c=[85], TP=[0.1] Tims,
00640> 00641>*%	<pre>RAINFALL=[, , , , ] (mm/hr), END=-1 </pre>	00776> 00778> 00778> 00780> 00780> 00781> *\$ 00781> *\$ 00781> *\$ 00785> CLIE STANDHYD 00785> 00785> 00785> 00785> 00785> 00785> 00790> 00791> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00795> 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00595 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 00505 000505 0005000000	LGF=[100.0] (m), MNP=[0.25], SCF=[0.0] (m) Impervious surfaces: IAimp=[1.57] (mm), SLF=[1.6.5] (%), RAINFALL=[, , , , ] (mm/hr], END=-1 ID=[4], NHYD=["HIP04"], DT=[2.5] (min), AREA=[18.1] (ha), XIMD=[0.50], TIMD=[0.71], DWF=[0.0] (cms), LOSS=[2], SCS curve number CA=[81], Pervious surfaces: IAper=[4.67] (mm), SLFP=[1.5] (%), Impervious surfaces: IAimp=[1.57] (mm), SLFP=[0.5] (%), ID=[0.5], NHYD=["HIP05"], IDs co add=[3+4]
00640> 00641>*% 00642> ADD HYD 00643> *% 00644> 00645> * 00645> * 00645> * 00645> * 00655> *% 00655> *% 00655> ** 00655> ** 00665> *** 00665> *** 00665> ***	<pre>RAINFALL=[, , , , ] (mm/hr), END=-1</pre>	00776> 00777> 00778> 00778> 00780> 00780> 00781> *\$ 00781> *\$ 00781> *\$ 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00790> 00791> 00792> *\$ 00793> *\$ 00795> *\$ 00795> *\$ 00795> *\$ 00795> *\$ 00795> \$UB-AREA NO.4 00796> 00796> DESIGN NASHYD 00800> 00801> 00802> *\$	LGF=[100.0] (m), MNP=[0.25], SCF=[0.0] (m) Impervious surfaces: IAimp=[1.57] (ma), SLF=[1.6.5] (%), RAINFALL=[, , , , ] (mm/hr], END=-1 ID=[4], NHYD=["HIP04"], DT=[2.5] (min), AREA=[18.1] (ha), XIMD=[0.50], TIMD=[0.71], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLFP=[1.5] (%), LGF=[100.0] (m), MMT=[0.25], SCS=[0.0] (m) Impervious surfaces: IAimp=[1.57] (mm), SLF1=[0.5] (%), ICG=[0.0] (m), MMT=[0.25], SCS=[0.0] (min RAINFALL=[, , , ] (mm/hr), END=-1 IDsum=[5], MHYD=["HIP05"], IDs to add=[3+4] ID=[6], NHYD=["Pond=Block"], DT=[2.5] min, AREA=[4.0] (ha), DWF=[0] (cms), CN/c=[85], TP=[0.17] hr.a.
00640> 00641>*% 00642> ADD HYD 00643> *% 00644> 00645> * 00645> * 00645> ************************************	<pre>RAINFALL=[, , , , ] (mm/hr), END=-1</pre>	00776> 00777> 00778> 00778> 00780> 00780> 00781> *%	LGF=[100.0](m), MNP=[0.25], SCF=[0.0](m) Impervious surfaces: IAimp=[1.57](mm), SLFI=[0.65](%), RAINFALL=[, , , , ](mm/hr], END=-1 ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[18.1](ha), XIMD=[0.50], TIMD=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAimp=[1.57](mm), SLFP=[1.5](%), LGF=[100.0](m), MMT=[0.25], SCF=[0.0](min RAINFALL=[, , , ](mm/hr), END=-1 IDsum=[5], NHYD=["HIP05"], LDS to add=[3+4] ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), RAINFALL=[, , , ](mm/hr), END=-1 ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), RAINFALL=[, , , ](mm/hr), END=-1 
00640> 00641>*%	<pre>RAINFALL=[, , , , ](mm/hr), END=-1</pre>	00776> 00777> 00778> 00780> 00780> 00781> *\$ 00782> * SUB-AREA No.3 00785> CALIE STANDHYD 00785> CALIE STANDHYD 00785> 00785> 00787> 00785> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00780> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 00800> 008000 008000 00800	LGF=[100.0] (m), MNP=[0.25], SCF=[0.0] (m) Impervious surfaces: IAimp=[1.57] (ma), SLF=[1.6.5] (%), RAINFALL=[, , , , ] (mm/hr], END=-1 ID=[4], NHYD=["HIP04"], DT=[2.5] (min), AREA=[18.1] (ha), XIMD=[0.50], TIMD=[0.71], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLFP=[1.5] (%), LGF=[100.0] (m), MMT=[0.25], SCS=[0.0] (m) Impervious surfaces: IAimp=[1.57] (mn), SLF1=[0.5] (%), ICG=[0.0] (m), MMT=[0.25], SCS=[0.0] (min RAINFALL=[, , , ] (mm/hr), END=-1 IDsum=[5], MHYD=["HIP05"], IDs to add=[3+4] ID=[6], NHYD=["Pond=Block"], DT=[2.5] min, AREA=[4.0] (ha), DWF=[0] (mon, CN/c=[85], TP=[0.17] hr.a.
00640> 00641>*%	<pre>RAINFALL=[, , , , ] (mm/hr), END=-1</pre>	00776> 00777> 00778> 00780> 00780> 00781> *\$ 00782> * SUB-AREA No.3 00785> 00785> CLIE STANDHYD 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00785> 00805> 00805> 00805> 00807> 00806> ROUTE RESERVOIR	LGF=[100.0](m), MNP=[0.25], SCF=[0.0](m) Impervious surfaces: IAimp=[1.57](mm), SLF=[1.6.55](%), IAINFALL=[, , , , ](mm/hr], END=-1 ID=[4], NHYD=["HIP04"], DT=[2.5](min], AREA=[18.1](ha), XIMP=[0.50], TIMP=[0.71], DMF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLFP=[1.5](%), LGF=[100.0](m), MNP=[0.25], SCF=[0.0](min RAINFALL=[, , , ](mm/hr), END=-1 ID=um=[5], NHYD=["HIP05"], IDs to add=[3+4] ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DHF=[0](cms), CM/CC=[85], TP=[0.17]hrs, RAINFALL=[, , , ](mm/hr), END=-1 ID=um=[7], NHYD=["HIP06"], IDs to add=[2+5+6] IDoum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] IDoum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] IDoum=[6], NHYD=["HIP06"], IDs to add=[2+5+6]
00640> 00641>*% 00642> ADD HYD 00643> *% 00644> 00645> *	<pre>RAINFALL=[, , , , ](mm/hr), END=-1</pre>	00776> 00778> 00778> 00778> 00780> 00780> 00781> *%	LGF=[100.0](m), NMP=[0.25], SCP=[0.0](m Impervious surfaces: ILAmp=[1.5](ma), SLP=[0.65](%), RAINFALL=[, , , , ](mm/hr], END=-1 

J. L. Richards & Associates Limited

L.,

00611> 00612> 00613> 00814> 00814> 00816> 00816> 00817> 00821> 00822> 00822> 00825> 00825> 00825> 00825> 00825> 00825> 00825> 00832> *\$ 00832> *\$ 00832> *\$ 00833> *\$UB-AR 00833> *\$UB-AR 00833> *\$UB-AR	NASHYD	(cms) - (ha-m) [ 0.0 , 0.0 ] [ 0.048, 0.0574 ] [ 0.054, 0.2343 ] [ 0.055, 0.5334 ] [ 0.062, 0.8400 ] [ 0.064, 1.1024 ] [ 0.147, 1.3705 ] [ 0.280, 1.6444 ] [ 0.724, 1.9242 ] [ 0.724, 2.2097 ] [ 1.262, 2.7361 ] [ 1.262, 2.7361 ] [ 1.452, 3.7240 ] [ 1.453, 3.7240 ] [ 2.695, 4.0442 ] [ 3.689, 4.3702 ] [ -1 , -1 ] (max twenty pts) ] ID = [9], NHYD=("A2"), DT=(2.5]min, AREA=[6.8] (ha),	00956 00950 00960 00960 00962 00965 00966 00966 00966 00966 00966 00969 00969	<pre>7&gt; 7&gt; 7&gt;</pre>	<pre>[ 0.465, 0.5491] [ 0.531, 0.5871] [ 0.531, 0.6251] [ 0.553, 0.6251] [ 0.797, 0.7391] [ 0.350, 0.6274] [ 1.304, 0.9157] [ 1.880, 1.0040] [ 2.577, 1.0923] [ -1 , -1 ] (max twenty pts) ***********************************</pre>
00836> 00837> 00838> *% 00839> * 00840> *SUB-AR		DWF=[0](cms), CMC=[76], TP=[0.37]hrs, RAINFALL=[, , , , ; (mm/hr), END=-1 	00972 00973 00974 00975	> * SUB-AREA No.2	
00841> * 00842> DESIGN : 00843> 00844> 00845> *% 00846> ADD HYD		<pre>ID = [10], NHYD=["A3"], DT=[2.5]min, AREA=[5.3](ha), DWF=[0](cms), CNC=[76], TP=[0.804]hrs, RAINFALE[, , , , ](mm/hr), NDB=-1 []</pre>	00976	> CALIB STANDHYD >> >> >>	<pre>ID=[ 3 ], NHYD=["HIP03"], DT=[2.5] (min), REEM=[17] (ha), XIHD=[0.50], THMD=[0.7], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[8], Pervious surfaces: Lipser=[4.67] (mm), SLPD=[1.5], CD, (a), Pervious surfaces: Lipser=[4.67] (mm), SLPD=[1.5], CD, (b), NH, CM, CM, CM, CM, CM, CM, CM, CM, CM, CM</pre>
00847> ** 00848> 00849> ******* 00850> * 00851> ******	**************************************	10-3000(21), MILDE 100(21), 105 C0 dud-[00940]           (07 3HR - 1:25 YEAR STORM EVENT           *	00982 00983 00984	> > > *8	LGP=1(100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: Lfamp=[1.57] (mm), SLP=[0.65] (%), LGE=[450] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , , ] (mm/hr), END=1
00852>			00987	> * SUB-AREA No.3	
00857> 00858> 00859> *% 00860> DEFAULT	STORM	T2ZERO=[0.0], METOUT=[2], NSTORM=[0], NRUM=[0]         [1]       <-storm filename, one per line for NSTORM time	00990 00991 00992 00993 00994 00995	> CALIB STANDHYD > > > > > > >	<pre>ID=[ 4 ], NHYD=["HIPO4"], DT=[2.5] (min), AREA=[18.1] (ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2), SCS curve number CN=[61], Pervious surfaces: IAper=[4.67] (mn), SLPP=[1.5] (%), LGP=[10.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IApinp=[1.57] (mn), SLP=[0.5] (%), LGI=[600] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[ , , , ] (mm/hz) = NND=1</pre>
00861> 00862> *%		DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]	00996	> > *8	RAINFALL=[,,,,](mm/hr), END=-1
00863>		*******	00998	> ADD HYD > *8	<pre>IDsum=[ 5 ], NHYD=["HIP05"], IDs to add=[3+4]</pre>
00865> *	ORGAWORLI	) FILE *	01000		· · · · · · · · · · · · · · · · · · ·
00867> * 00868> * SVB-AI			01002	>	
00869>			01004		<pre>ID={ 6 ], NHYD={"Pond-Block"], DT=[2.5]min, AREA=[4.0}(ha), DWF=[ 0 ] {cms}, CN/C=[ 85 ], TP=[0.17]hrs,</pre>
00870> CALIB 5: 00871> 00872> 00873>		<pre>ID=[ ], NHYD=["010"], DT=[2.5](min), AREA=[ 2.07 ](ha), XIMP=[0.84], TIMP=[0.84], DWP=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IApe=[4.67](mn), SLPP=[1.0](%), LCS=[20](m), MNP=[0.25], SCP=[0.0](mi)</pre>	01007	> *8 > >	RAINFALL=[, , , , ](mm/hr), END=-1
00874> 00875> 00876>		impervious surfaces: IAimp=[1.57](mm), SLPI=[0.52](%),	01010	> ADD HYD > *%	IDsum=[ 7 ], NHYD=["HIPO6"], IDs to add=[2+5+6]
00877> 00878> *%		LGI=[204.72] (m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , , ] (mms/hr) , END=-1	01011 01012 01013	> ROUTE RESERVOIR	<pre>IDout=[8], NHYD=["HIP-POND"], IDin=[7],</pre>
00879> * 00880> * SUB-AI	PER NO 2		01013	>	RDT=[1.0] (min), TABLE of ( OUTFLOW-STORAGE ) values
00881> 00882> CALIB 57 00883> 00884> 00885> 00885> 00885> 00885> 00889> 00889> 00890> *\$ 00891> * 00892> * SUB-AF 00893> 00894> CALIB 57	TANDHYD	<pre>ID=[ 2 ], NHYD=["020"], DT=[2.5](min), AREA=[ 1.54 ](ha), XIMD=[0.92], TIMP=[0.92], DMT=[0.0](cms), LOSS=[2], SCS curve number CN=[0], Pervious surfaces: IApe==[4.67](mm), SLD=[1.0](%), Impervious surfaces: IAimp=[1.5](mm), SLD=[1.0](%), Impervious surfaces: IAimp=[1.5](mm), SLD=[0.03](%), IGZ=[244.34](m), MNI=[0.03], SCI=[0.0](%), RAINFALL=[ , , , ](mm/hr), END=-1</pre>	01016 01017 01018 01020 01021 01022 01023 01024 01025 01026 01027 01026	> > > > > > > > > > > > > > > > > > >	$\begin{array}{c} (cms) \ - \ (ha-m) \\ [ \ 0.0 \ , \ 0.0 \ ] \\ [ \ 0.054 \ , \ 0.234 \ ] \\ [ \ 0.055 \ , \ 0.234 \ ] \\ [ \ 0.055 \ , \ 0.5834 \ ] \\ [ \ 0.064 \ , \ 0.3705 \ ] \\ [ \ 0.064 \ , \ 1.1024 \ ] \\ [ \ 0.107 \ , \ 1.3705 \ ] \\ [ \ 0.280 \ , \ 1.6444 \ ] \\ [ \ 0.280 \ , \ 1.6444 \ ] \\ [ \ 0.280 \ , \ 1.6444 \ ] \\ [ \ 0.280 \ , \ 1.6444 \ ] \\ [ \ 0.372 \ , \ 2.2997 \ ] \\ [ \ 0.372 \ , \ 2.2051 \ ] \\ [ \ 0.372 \ , \ 2.2051 \ ] \\ [ \ 0.494 \ , \ 3.1006 \ ] \\ [ \ 1.262 \ , \ 2.7961 \ ] \\ [ \ 1.404 \ , \ 3.1006 \ ] \\ [ \ 1.404 \ , \ 3.1006 \ ] \\ \end{array}$
00895> 00896> 00897> 00898> 00899> 00990> 00900>		<pre>ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIM=[0.97], ITM=[0.07], DMF=[0.01(cms), LOSS=[2], SCS curve number CN=[8]], Pervious surfaces: IApex=[4.67](mm), SLPP=[1.0](%), LGP=[5](m), MMP=[0.03], SCP=[0.0](min), Impervious surfaces: IAmp=[1.57](mm), SLPI=[0.51](%), LGT=[225.63](m), MMT=[0.03], SCI=[0.0 RAINFALL=[, , , ](mm/Ar]) = END=-1</pre>	01036:	> > > > > *8 > *	[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1, -1 ] (max twenty pts)
00902> *% 00903> ADD HYD		IDsum=[4], NHYD=[ "040"], IDs to add=[1+2]	01038:		
00904> *% 00905> ADD HYD		IDsum=[5], NHYD=[ "050"}, IDs to add=[3+4]	01040:		<pre>ID = [9], NHYD=["A2"], DT=[2.5]min, AREA=[6.8](ha), DWF=[0](cms), CNC=[76], TP=[0.37]hrs,</pre>
00906> *% 00907> *			01041: 01042:	> *8	RAINFALL=[ , , , , ] (mm/hr), END=-1
00908> * SUB-AF 00909>			01043;	> * > *SUB-AREA No. 6	
00910> CALIB ST 00911> 00912> 00913> 00914> 00915> 00916>		<pre>ID=[6], NHYD=['060'], DT=[2.5](min), AREA=[0.89](ha), XHMD=[0.97], INTP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPF=[0.7](%), LGP=[40](m), MNP=[0.25], SCP=[0.0](min) Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.93](%), LGI=[164.82](m), MNI=[0.03], SCI=[0.0](</pre>	010453 010463 010473 010483 010493 010503 010503	> * > DESIGN NASHYD > > *% > ADD HYD > *%	ID = [10], NHYD=["A3"], DT=[2.5]min, AREA=[5.3](ha), DWF=[0](cms), CNC=[76], TP=[0.804]hrs, RAINFALL=[, , , , ](mm/hr), END=-1 IDsum=[1], NHYD=["Interim"], IDs to add=[8+9+10]
00917> 00918> *%		RAINFALL=[, , , , ] (mm/hr) , END=-1		*************	' ************
00919> * 00920> * SUB-AR	REA No.5		010543	* CALCULATIO	N OF 3HR - 1:50 YEAR STORM EVENT *
00921> 00922> CALIB ST	TANDHYD	ID=[ 7 ], NHYD=["070"], DT={2.5}(min), AREA=[2.66](ha),	01056>		TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]
00923> 00924>		<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>	01058>		<pre>[JSRO=[0.0], METODI=[2], NETORN=[0], NRON=[0] [] <storm filename,="" for="" line="" nstorm="" one="" per="" pre="" time<=""></storm></pre>
00925> 00926> 00927> 00928>		Pervious surfaces: LAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[20.0] (m), MNP=[0.25], SCP=[0.0] (mi Impervious surfaces: LAimpe_[1.57] (mm), SLPI=[0.61] (%),	01060> 01061> 01062>	> CHICAGO STORM	IUNITS=[2], TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0](min) ICASEcs=[1], A=[1569.580], B=[6.014], and C=[0.820],
00929>		LGI=[207.25](m), MNI=[0.03], SCI=(0.0]( RAINFALL=[, , , ](mm/hr), END=-1	01064>	DEFAULT VALUES	ICASEdef=[1], read and print values
00930> *% 00931> ADD HYD		IDsum=[8], NHYD=[ "080"], IDs to add=[6+7]		**	DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]
00932> *% 00933> ADD HYD		IDsum=[9], NHYD=[ "090"], IDs to add=[5+8]		******	
00934> *% 00935>			01069>	* ORGAWORL	D FILE *
00936> ROUTE RE 00937>	ESERVOIR	<pre>IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min),</pre>	01071>	* * SUB-AREA No.1	
00938>		TABLE of ( OUTFLOW-STORAGE ) values	01073>	•	
00940>		(cms) - (ha-m) [ 0.000, 0.0000]	01075>		<pre>ID=[ 1 ], NHYD=["010"], DT=[2.5](min), AREA=[ 2.07 ](ha), XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2],</pre>
00941> 00942>		[ 0.008, 0.0656] [ 0.017, 0.1311]	01076>	•	SCS curve number CN=[81],
00943> 00944>		[ 0.093, 0.2831] [ 0.233, 0.3971]	01078>	•	Pervious surfaces: IAper=(4.67) (mm), SLPP=[1.0](%),
00945>		[ 0.337, 0.4731]	01080>		LGI=[204.72] (m), MNI=[0.03 ), SCI=[0.0]
			·		

J. L. Richards & Associates Limited

į.

		RAINFALL=[ , , , , ](mm/hr) , END=-1	01216> ROUTE RESERVOIR	<pre>IDout=[ 8 ], NHYD=["HIP-POND"], IDin=[ 7 ],</pre>
1083>			01217> 01218>	RDT=[1.0](min), TABLE of ( OUTFLOW-STORAGE ) values
1085>			01219> 01220>	(cms) - (ha-m) [ 0.0, 0.0 ] [ 0.0574 ]
1086> 1087>	CALIB STANDHYD	ID=[ 2 ], NHYD=["020"], DT=[2.5](min), AREA=[ 1.54 ](ha), XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2],	01221> 01222>	[ 0.048, 0.0574 ] [ 0.054, 0.2434 ]
1088> 1089>		SCE cumo number CN-1911	01223> 01224>	[ 0.059, 0.5834 ] [ 0.062, 0.8400 ]
1090>		<pre>Sections surfaces: TAper=[4.67] (mm), SLPP=[1.0] (%), LGP=(5) (m), MNE=[0.03], SCP=[0.0] (min), Impervious surfaces: TAimper[1.57] (mm), SLPI=[0.50] (%),</pre>	01225> 01226>	[ 0.064, 1.1024 ]
1092>		LGI=[244.34] (m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , , ] (mm/hr), END=-1	01227>	[ 0.147, 1.3705 ] [ 0.280, 1.6444 ]
1094> 1095>	*8		01228> 01229>	[ 0.472, 1.9242 ] [ 0.724, 2.2097 ]
1096>	* SUB-AREA No.3		01230> 01231>	[ 0.937, 2.5010 ] [ 1.262, 2.7981 ]
1098>	CALIB STANDHYD	ID=[ 3 ], NHYD=["030"], DT=[2.5] (min), AREA=[1.4] (ha),	01232> 01233>	[ 1.404, 3.1009 ] [ 1.532, 3.4096 ]
1099> 1100>		XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],	01234> 01235>	[ 1.650, 3.7240 ] [ 2.409, 4.0442 ]
1101> 1102>		Pervious surfaces: IAper=[4,67](mm), SLPP=[1,0](%)	01236> 01237>	[ 3.689, 4.3702 ]
1103> 1104>		LGP=[5](m), MNP=[0.03], SCP=[0.0](min), Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.51](%), LGI=[225.63](m), MNI=[0.03], SCI=[0.0]	01238> 01239> *8	[ -1 , -1 ] (max twenty pts)
1105>	*8	RAINFALL=[, , , , ](mm/hr), END=-1	D1240> *	
1107>	ADD HYD *8	IDsum=[4], NHYD=[ "040"], IDs to add=[1+2]	01241> *SUB-AREA No. 5 01242> *	
1109>	ADD HYD	IDsum=[5], NHYD=[ "050"], IDs to add=[3+4]	01243> DESIGN NASHYD 01244>	ID = [9], NHYD=["A2"], DT=[2.5]min, AREA={6.8}{ha}, DWF=[0](cms), CNC=[76], TP=[0.37]hrs,
1111>	*		01245> 01246> *%	RAINFALL=[ , , , , ] (mm/hr), END=-1
1113>	* SUB-AREA No.4		01247> * 01248> *SUB-AREA No. 6	
1114> 1115>	CALIB STANDHYD	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],</pre>	01249> * 01250> DESIGN NASHYD	TD = (10) MUVD = (7527) DT = (2.51min BDD = (2.21/be)
1116> 1117>		SCS curve number CN=[81].	01251> 01252>	ID = [10], NHYD=["A3"], DT=[2.5]min, AREA=[5.3](ha), DWF=[0](cms), CNC=[76], TP=[0.804]hrs,
1118> 1119>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[0.7] (%), LGP=[40] (m), MMP=[0.25], SCP=[0.0] (min)	01253> **	RAINFALL=[ , , , , ) (mm/hr), END=-1
1120> 1121>		Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.93] (%), IGI=[164.82] (m), MNI=[0.03], SCI=[0.0] (	01254> ADD HYD 01255> *%	IDsum=[1], NHYD=["Interim"], IDs to add=[8+9+10]
1122>		RAINFALL=[, , , , ](mm/hr), END=-1		*******
	* * SUB-AREA No.5		01259> ****************	ON OF 3HR - 1:100 YEAR STORM EVENT *
	CALIB STANDHYD	ID=[ 7 ], NHYD=["070"], DT=[2.5] (min), AREA=[2.56] (ha),	01260> 01261> START	TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]
L127> L128>		XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],	01262> *% 01263> *%	[ ] <storm filename,="" for="" line="" nstorm="" one="" per="" td="" time<=""></storm>
1129> 1130>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[20.0] (m), MNP=[0.25], SCP=[0.0] (mi	01264> CHICAGO STORM 01265>	<pre>IUNITS=[2], TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0]( ICASEcs=[1],</pre>
1131> 1132>		Impervious surfaces: IAimp=[1.57] (rm), SLPI=[0.61] (%), LGI=[207.25] (m), MNI=[0.03], SCI=[0.0] (	01266>	A = [1735.688], $B = [6.014]$ , and $C = [0.820]$ ,
1133>	*8	RAINFALL=[, , , , ](mn/hr), END=-1	01268> DEFAULT VALUES	ICASEdef=[1], read and print values
1135> .	ADD HYD	IDsum=[8], NHYD=[ "060"], IDs to add=[6+7]	01269> 01270> *%	DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]
137>	ADD HYD	IDsum=[9], NHYD=[ "090"], IDs to add∞[5+8]	01271> 01272> *********************	
139>	*8		01273> * ORGAWC 01274> *****************	NLD FILE *
.140> : .141> :	ROUTE RESERVOIR	IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min),	01275> * 01276> * SUB-AREA No.1	
L142> L143>		TABLE of ( OUTFLOW-STORAGE ) values (cms) - (ha-m)	01277> 01278> CALIB STANDHYD	
1144> 1145>		[ 0.000, 0.0000] [ 0.008, 0.0656]	01279>	ID=[ 1 ], NHYD=["010"], DT=[2.5](min), AREA=[ 2.07 ](ha) XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2],
1146>		[ 0.017, 0.1311]	01280> 01281>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.0](%),
1148>		[ 0.093, 0.2831] [ 0.233, 0.3971]	01282> 01283>	LGP=[20] (m), MNP=[ 0.25 ], SCP=[0.0] Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.52] (%),
1149> 1150>		[ 0.337, 0.4731] [ 0.465, 0.5491]	01284> 01285>	LGI=[204.72](m), MNI=[0.03], SCI=[0 RAINFALL=[, , , ](mm/hr), END=-1
1151> 1152>		[ 0.531, 0.5871] [ 0.593, 0.6251]	01286> *% 01287> *	[
1153> 1154>		( 0.654, 0.6631) ( 0.797, 0.7391)	01288> * SUB-AREA No.2 01289>	
1155> 1156>		[ 0.950, 0.8274] [ 1.304, 0.9157]	01290> CALIB STANDHYD 01291>	<pre>ID=[ 2 ], NHYD=["020"], DT=[2.5](min), AREA=[ 1.54 ](ha) XIMD=[0.92], TIMD=[0.92], DWF=[0.0](cms), LOSS=[2],</pre>
1157> 1158>		[ 1.880, 1.0040] [ 2.577, 1.0923]	01292> 01293>	SCS curve number CN=[81],
L159> L160>		[ -1 , -1 ] (max twenty pts)	01294> 01295>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[5] (m), MNP=[0.03], SCP=[0.0] (mi
161>	******			
162>		*************************************	01296>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.50] (%), LGI=[244.34] (m), MNI=[0.03], SCI=[0
163>	* Remaining Ha	wthorme Industrial Park *	01297> 01298> *%	Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.50](%),
163> 164> 165>	* Remaining Ha	awthorne Industrial Park *	01297> 01298> *& 01299> * 01300> * SUB-AREA No.3	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.50] (%), LGI=[244.34] (m), MNI=[0.03], SCI=[0
163> 164> 165> 166> 167> (	* Remaining Ha ************************************	<pre>www.new industrial Park * ***********************************</pre>	01297> 01298> *8 01299> * 01300> * SUB-AREA No.3 01301> 01302> CALIB STANDHYD	Impervious surfaces: IAimp=[1.57](mm), SLP=[0.03](%), LGT=[244.34](m), NH=[0.03], SCI=[0. RAINFALL=[, , , , ](mm/hr) , END=-1 
163> 164> 165> 166> 166> 168> 168>	* Remaining Ha ************************************	<pre>wwthorme Industrial Park *</pre>	01297> 01298> *% 01299> * 01300> * SUB-AREA No.3 01301> 01302> CALIE STANDHYD 01303> 01304>	<pre>Impervious surfaces: IAimp=[1.57](mm), SLD=[0.50](%), LGT=[244.34](m), NH=[0.03], SCI=[0 RAINFALL=[, , , ](mm/hr), END=-1 </pre>
163> 164> 165> 166> 166> 167> 168> 169> 169>	* Remaining Ha ************************************	<pre>awthorme Industrial Park * ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=(0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),</pre>	01297> 01298> *& 01299> * 01300> * SUB-AREA No.3 01301> 01302> CALIB STANDHYD 01303>	Impervious surfaces: IAAmp=[1.57](mm), SLP=[0.50](%), IAGT=[244.34](m), MMT=[0.03], SCI=[C RAINFALL=[, , , ](mm/hr], END=-1 
163> 164> 165> 166> 167> 168> 169> 170> 171> 172>	* Remaining Ha ************************************	<pre>swthorme Industrial Park * ID=[1], MHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=(4.67](mm), SIPP=(1.5)(%), LGP=[10.01(m), NMT=(0.51), SCP=(0.0)(m) Impervious surfaces: IAimp=(1.57](ma), SIPT=[0.6](%), LGP=[10.01(m), NMT=(0.03], SCT=[0.01(m)] </pre>	01297> 01299> * 01300> * JUB-AREA No.3 01301> 01302> CALIB STANDHYD 01303> 01304> 01305> 01305> 01306> 01306> 01306>	Impervious surfaces: IAAmpe[1.57](mm), SLP=(0.50)(%), RAINFALL=[, , , ][mm/hz], ZND=-1 ID=[3], MHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.57], TIMP=[0.57], DW=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAAmpe[1.57](mm), SLPP=[1.0](%), IGP=[5](m), MDP=[0.03], SCP=[0.0](m), Impervious surfaces: IAAmpe[-1.57](mm), SLPP=[0.51](%), Impervious surfaces: IAAmpe[-1.57](mm), SLPP=[0.51](m),
163> 164> 165> 166> 167> 168> 169> 170> 171> 172> 172> 173> 174>	* Remaining Ha ************************************	<pre>swthorme Industrial Park * ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=(4.67](mm), SLPP=(1.5)(%), LGP=[10.0](m), NNP=(0.25], SCP=(0.0)(m)</pre>	01297> 01298> *% 01299> * SUB-AREA No.3 01300> * SUB-AREA No.3 01302> CALIB STANDHYD 01303> 01305> 01305> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306 01306 01306 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 01000 00000 000000	Impervious surfaces: IAAmpe[1.57](mm), SLP=(0.50)(%), RAINFALL=[, , , ][mm/hz], ZND=-1 ID=[3], MHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.57], TIMP=[0.57], DW=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAAmpe[1.57](mm), SLPP=[1.0](%), IGP=[5](m), MDP=[0.03], SCP=[0.0](m), Impervious surfaces: IAAmpe[-1.57](mm), SLPP=[0.51](%), Impervious surfaces: IAAmpe[-1.57](mm), SLPP=[0.51](m),
163> 164> 165> 166> 166> 168> 170> 171> 172> 172> 173> 174> 175> 176> 1	* Remaining Ha * SUB-AREA No.1 CALIB STANDHYD *§ ADD HYD	<pre>swthorme Industrial Park * ID=[1], MHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=(4.67](mm), SIMP=(1.5)(%), LGP=[10.01(m), NMT=(0.51), SCP=(10.0)(m) Impervious surfaces: IAimp=(1.57](ma), SIMP=(0.51), SCP=(0.0)(m) Impervious surfaces: IAimp=(1.57](ma), SIMP=(0.01), SCT=(0.01)(m) </pre>	01297> 01298> *% 01299> * SUB-AREA No.3 01300> * SUB-AREA No.3 01302> CALIB STANDHYD 01304> 01304> 01306> 01306> 01300> 01310> % 01311> ADD HYD	<pre>Impervious surfaces: IAimp=[1.57)(mm), SLPI=[0.50](%), IGT=[244.34](m), NMI=[0.03], SCI=[( RAINFALL=[, , , ](mm/hr], END=-1 </pre>
163> 164> 165> 166> 167> 168> 170> 171> 172> 172> 174> 175> 176> 177> 176> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 177> 178>	<ul> <li>Remaining Has</li> <li>SUB-AREA No.1</li> <li>CALIE STANDHYD</li> <li>ADD HYD</li> <li>*</li> </ul>	<pre>swthorme Industrial Park * ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=(4.67](mm), SIPP=[1.5](%), LGP=[10.0](m), NM1+0[.25], SCP=[0.0](m Impervious surfaces: IAimp+[1.57](mm), SIPI=[0.03], SCI=[0.0](m), RAINFALL=[, , , , ](mm/hc), END=-1</pre>	01297> 01298> *% 01299> * UD-AREA No.3 01300> * SUB-AREA No.3 01302> CALIB STANDHYD 01303> 01304> 01304> 01304> 01307> 01307> 01309> 01310> % 01311> ADD HYD 01312> % 01311> ADD HYD	Impervious surfaces: IAimpe[1.57] (nmi, SLDI=(0.50](%), IATINFALL=[, , , ] (mm/hr], END=-1 ID=(4 3], NHYD=["030"], DT=[2.5] (min), AREA=(1.4](ha), XHMP=[0.97], TIMP=[0.97], DWF=[0.0] (cms), LOSS=(2), SCS curve number (DN=[01], DWF=[0.0], LOSS=(2), SCS curve number (SLAper=[4.67] (mm), SLEP=(1.0](%), IGP=[5](m), MNP=[0.03], SCE=[0.0](min), Impervious surfaces: IAimpe[1.57](mm), SLEP=(1.0](%), IGP=[5](m), MNH=[0.03], SCI=[0.0](min), IGP=[25.63] (m), MNH=[0.03], SCI= RAINFALL=[, , , ] (mm/hr), END=-1 IDsum=[4], NHYD=["050"], IDs to add=[142] IDsum=[5], MHYD=["050"], IDs to add=[142]
163> 164> 165> 166> 167> 168> 169> 170> 171> 172> 174> 174> 175> 177> 176> 177> 177> 178> 179> 180>	<ul> <li>Remaining Haw</li> <li>SUB-AREA No.1</li> <li>CALIE STANDHYD</li> <li>ADD HYD</li> <li>***</li> <li>SUB-AREA No.2</li> </ul>	<pre>swthorme Industrial Park * ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=(4.67](mm), SLPP=[1.5](%), Impervious surfaces: IAper[1.57](mm), SLPI=[0.6](%), Impervious surfaces: IAper[1.57](mm), Impervious surfaces: IAper[1.57](mm), Imp</pre>	01297> 01299> * 01299> * 01300> * SUB-AREA No.3 01302> CALIB STANDHYD 01302> CALIB STANDHYD 01303> 01304> 01305> 01306> 01310> * 01311> ADD HYD 01312> * 01314> * 01315> *	<pre>Impervious surfaces: IAimp=[1.57)(mm), SLD1=[0.50](%), IGT=[244.34](m), MM1=[0.03], SCI=[( RAINFALL=[, , , , ](mm/hr], END=-1 </pre>
163> 164> 165> 166> 166> 167> 168> 170> 171> 172> 173> 174> 175> 177> 177> 176> 177> 177> 180> 181> 182> 182>	<ul> <li>Remaining Has</li> <li>SUB-AREA No.1</li> <li>CALIE STANDHYD</li> <li>ADD HYD</li> <li>*</li> </ul>	<pre>industrial Park * ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.5](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), ID=[1001](m), NMYI=[0.25], SCP=[0.0](m), RAINFALL=[, , , ](mm/hr), END=-1 IDsum=[2], NHYD=["HIPO2"], IDs to add=[10+1] ID=[2], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DT=[2.5](min), ASEA=[17](ha), XIMP=[0.50], TIMP=[0.71], DT=[2.5](min), ASEA=[17](ha), XIMP=[0.50], TIMP=[0.71], DT=[2.5](min), LOSS=[2].</pre>	01297> 01298> *0	<pre>Impervious surfaces: IAimp=[1.57] (mm), SLD1=[0.50](%), IGT=[243.34](m), SM1=[0.03], SCI=[1 RAINFALL=[, , , , ](mm/h1], END=-1 ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XHMP=[0.37], TIMP=[0.37], DM7=[0.0](ms), IOS5=[2], SCS curve number CN=[61], Pervious surfaces: IPAper=[4.67](mm), SLP1=[1.0](%), Impervious surfaces: IPAper=[4.67](mm), SLP1=[0.0](m) Impervious surfaces: IPAper=[4.67](mm), SLP1=[0.51](%), IGT=[25.63](m), MMP=[0.03], SCE=[0.0](m) Impervious surfaces: IPAmp=[1.57](mm), SLP1=[0.51](%), ID=[1.53](mm/hr), END=-1 </pre>
163> 164> 165> 165> 166> 167> 168> 170> 171> 172> 174> 177> 177> 177> 177> 177> 180> 181> 182> 184> 184>	<ul> <li>Remaining Haw</li> <li>SUB-AREA No.1</li> <li>CALIE STANDHYD</li> <li>ADD HYD</li> <li>***</li> <li>SUB-AREA No.2</li> </ul>	<pre>swthorme Industrial Park * ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.5](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LoSs=[2], SCS curve number CN=[81], Pervious surfaces: IAper=(4.67](mm), SLPP=[1.5](%), ID=[1001(m), NMT=[0.25], SCD=[0.0](m), Impervious surfaces: IAper=[4.57](mm), SLP=[0.6](%), RAINFALL=[, , , ](mm/hr), END=-1 IDsum=[2], NHYD=["HIPO2"], IDs to add=[10+1] IDsum=[2], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.7]], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),</pre>	01297> 01299> * 01299> * 01300> * SUB-AREA No. 3 01301> 01302> CALIB STANDHYD 01303> 01304> 01305> 01306> 01306> 01309> 01310> * 01310> * 01311> ADD HYD 01312> * 01315> * 01315> * 01315> * SUB-AREA No. 4	<pre>Impervious surfaces: IAimp=[1.57] (mm), SLD1=[0.50](%), IGT=[243.34](m), SM1=[0.03], SCI=[1 RAINFALL=[, , , , ](mm/h1], END=-1 ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XHMP=[0.37], TIMP=[0.37], DM7=[0.0](ms), IOS5=[2], SCS curve number CN=[61], Pervious surfaces: IPAper=[4.67](mm), SLP1=[1.0](%), Impervious surfaces: IPAper=[4.67](mm), SLP1=[0.0](m) Impervious surfaces: IPAper=[4.67](mm), SLP1=[0.51](%), IGT=[25.63](m), MMP=[0.03], SCE=[0.0](m) Impervious surfaces: IPAmp=[1.57](mm), SLP1=[0.51](%), ID=[1.53](mm/hr), END=-1 </pre>
163> 164> 165> 166> 166> 168> 170> 171> 172> 172> 174> 177> 176> 177> 176> 177> 180> 188> 188> 184> 185>	<ul> <li>Remaining Haw</li> <li>SUB-AREA No.1</li> <li>CALIE STANDHYD</li> <li>ADD HYD</li> <li>***</li> <li>SUB-AREA No.2</li> </ul>	<pre>swthorme Industrial Park * ID=[1], MHYD=["HIPO1"], DT=[2.5](min), APEA=[19.9](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number (Ner[81], Pervious surfaces: IAper=(4.67](mm), SIPP=[1.5](8), Impervious surfaces: IAinp=(1.67](mm), SIPI=[0.6](8), Impervious surfaces: IAinp=(1.67](mm), SIPI=[0.6](8), Instructure (Interpretation (Interpreta</pre>	01297> 01298> *0	Impervious surfaces: IAimpe[1.57] (mm), SLPI=(0.50](%), ID=[2433](m), MMI=(0.03], SCI=(1 ID=(3], MHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=(0.57), TIMP=[0.57], DMP=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAimpe[1.57](mm), SLPP=[1.0](%), LGP=[5](m), MMY=[0.03], SCP=[0.0](m), LGP=[5](m), MMY=[0.03], SCI=[0.0](m), LGP=[5](m), MMY=[0.03], SCI=[0.0](m), ID=um=[4], MHYD=["050"], IDs to add=[142] ID=um=[5], MHYD=["050"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.57], TIMP=[0.57], DMP=[0.0](cms), LOSS=[2], SCS curve number CM=[61].
163> 164> 165> 165> 166> 167> 169> 170> 170> 177> 177> 177> 177> 177> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180>	<ul> <li>Remaining Haw</li> <li>SUB-AREA No.1</li> <li>CALIE STANDHYD</li> <li>ADD HYD</li> <li>***</li> <li>SUB-AREA No.2</li> </ul>	<pre>swthorme Industrial Park * ID=[1], MHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number (CM-[61], Pervious surfaces: IApp=(1.67](mm), SIPP=[1.5](8), LGP=[10.01(m), NMI+0[.25], SCS=[0.0](m Impervious surfaces: IAimp=(1.57](mm), SIPI=[0.6](8), Impervious surfaces: IAimp=(1.57](mm), SIPI=[0.6](8), Impervious Surfaces: IAimp=(1.57](mm), SIPI=[0.6](8), Impervious Surfaces: IAimp=(1.57](mm), SIPI=[0.6](8), ID=[3], NHYD=["HIPO2"], IDs to add=[10+1] ID=[3], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM-[61], Pervious surfaces: IApp=[4.67](mm), SIPP=[1.5](8), IGP=[10.0](m), MSIP=[0.5], SCP=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SIPI=[0.65](8), IGI=[350](m), MSIP=[0.0], CO3], SCI=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SIPI=[0.0], SIP=[0.0](m) </pre>	01297> 01298> *% 01299> *% 01300> * SUB-AREA No.3 01300> * SUB-AREA No.3 01302> CALIB STANDHYD 01306> 01306> 01306> 01306> 01310> *% 01311> ADD HYD 01312> *% 01311> ADD HYD 01312> *% 01313> ADD HYD 01312> *% 01315> SUB-AREA No.4 01316> * SUB-AREA No.4 01318> 01320> 01320> 01322>	Impervious surfaces: IAimp=[1.57] (mm), SLP!=[0.50](%), ID=[24.33](m), MH=[0.03], SCI=[1 ID=[3], MHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.57], TIMP=[0.57], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], MEDET ID=["030"], MEDET ID=[1.0](%), LGP=[5](m), MMM=[0.03], SCP=[0.0](m), LGP=[5](m), MMM=[0.03], SCP=[0.0](m), LGP=[5](m), MMM=[0.03], SCP=[0.0](m), LGP=[5](m), MMM=[0.03], SCP=[0.0](m), LGP=[1.0](%), ID=um=[4], NHYD=["050"], ID= to add=[142] ID=um=[5], MHYD=["050"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.57], TIMP=[0.57], DMT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.57](m), SLP=(0.7](§), LGP=[0.0](m), MED=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.57](m), SLP=(0.7](§), LGP=[4.0](m), MED=[0.0](m), SLP=[0.0](6], SCS curve number CN=[81], Pervious surfaces: IAper=[4.57](m), SLP=(0.7](§), LGP=[4.0](m), MM=[0.0](cms), LGS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.57](m), SLP=(0.0)(7)(§), LGP=[4.0](m), MM=[0.0], SLP=[0.0](7)(§), SCS curve number CN=[81], Pervious surfaces: IAper=[4.57](m), SLP=(0.0)(7)(§), LGP=[4.0](m), MM=[0.0], SLP=[0.0](7)(§), SCS curve number CN=[81], Pervious surfaces: IAper=[4.57](m), SLP=[0.0](7)(§), SCS curve number CN=[81], SCS curve[0.0](m), SLP=[0.0](m), SCS curve number CN=[81], SCS curve n
163> 164> 165> 165> 166> 166> 169> 170> 172> 177> 177> 177> 177> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180> 180>	* Remaining Ha * SUB-AREA No.1 CALIE STANDHYD *Q	<pre>swthorme Industrial Park * ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.5](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LoSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](8), IGP=[10.0](m), NMI=[0.25], SCS=[0.0](m), RAINFALL=[, , , ](mm/hr), END=-1 IDsum=[2], NHYD=["HIPO2"], IDs to add=[10+1] IDsum=[2], NHYD=["HIPO3"], DT=[2.5](mn), AREA=[17](ha), XIMP=[0.50], TIMP=[0.7]], DT=[2.5](mn), SLPP=[1.5](8), IGP=[100.0](m), NMI=[0.25], SCP=[0.0](m), Impervious surfaces: IAper=[4.67](mn), SLPP=[1.5](8), IGP=[100.0](m), NMI=[0.25], SCP=[0.0](m) Impervious surfaces: IAimp=[1.57](mn), SLP=[1.5](8), Impervious surfaces: IAimp=[2.57](mn), SLP=[1.5](8), Impervious surfaces: IAimp=[2.57](mn), SLP=[0.5](8), Impervious surfaces: IAimp=[2.57](mn), Impervious surfaces: IAimp=[</pre>	01297> 01298> *%	Impervious surfaces: IAimpe[1.57] (mm), SLPI=(0.50](%), ID=[2433](m), MMI=(0.03], SCI=[( RAINFALL=[, , , ](mm/hr), END=-1 ID=[3], MHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=(0.57), TIMP=[0.57], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAimpe[1.57](mm), SLPP=[1.0](%), LGP=[5](m), MMY=[0.03], SCF=[0.0](m), LGP=[5](m), MMY=[0.03], SCF=[0.0](m), LGP=[5](m), MMY=[0.03], SCT=[0.0](m), ID=um=[4], NHYD=["050"], IDs to add=[142] ID=um=[5], MHYD=["050"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.57], TIMP=[0.57], DMP=[0.0](cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: IApar=[4.57](mn), SLP=(0.7](6), LGP=[4.57], SCT=[0.57], ID= Co add=[3+4] ID=[6], MHYD=["050"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.57], SCS curve number CN=[61], Pervious surfaces: IApar=[4.57](mn), SLP=(0.7](6), LGP=[4.57](m), MSD=[0.03], SCI=[0.0](n), LGP=[4.57](m), SLD=[0.03](8), LGP=[4.57](m), SLD=[0.03](8), LGP=[4.57](m), SLD=[0.03](8), LGP=[4.57](m), SLD=[0.03](8), LGP=[4.2](m), MMI=[0.03], SCI=[0.0](n), LGP=[4.2](m), MMI=[0.03], SCI=[0.0](n), LGP=[4.2](m), MMI=[0.03](8), LGP=[4.2](m), MMI=[0.0](8), LGP=[4.2](m), MMI=
163> 164> 165> 165> 165> 165> 165> 165> 170> 171> 172> 171> 172> 172> 173> 172> 173> 174> 175> 177> 180> 185> 185> 185> 185> 185> 185> 185> 185> 185> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 190> 100 100 100 100 100 100 100 1	* Remaining Ha * SUB-AREA No.1 CALIE STANDHYD *Q	<pre>swthorme Industrial Park * ID=[1], MHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number (CM-[61], Pervious surfaces: IApp=(1.67](mm), SIPP=[1.5](8), LGP=[10.01(m), NMI+0[.25], SCS=[0.0](m Impervious surfaces: IAimp=(1.57](mm), SIPI=[0.6](8), Impervious surfaces: IAimp=(1.57](mm), SIPI=[0.6](8), Impervious Surfaces: IAimp=(1.57](mm), SIPI=[0.6](8), Impervious Surfaces: IAimp=(1.57](mm), SIPI=[0.6](8), ID=[3], NHYD=["HIPO2"], IDs to add=[10+1] ID=[3], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM-[61], Pervious surfaces: IApp=[4.67](mm), SIPP=[1.5](8), IGP=[10.0](m), MSIP=[0.5], SCP=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SIPI=[0.65](8), IGI=[350](m), MSIP=[0.0], CO3], SCI=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SIPI=[0.0], SIP=[0.0](m) </pre>	01297> 01298> *%	<pre>Impervious surfaces: IAimp=[1.57] (mm), SLD1=[0.50](%), IGT=[243.34](m), SM1=[0.03], SCI=[0 RAINFALL=[, , , , ](mm/h1], EXD=-1</pre> ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XHW=[0.97], THW=[0.97], DWF=[0.0](ms), IOS5=[2], SCS curve number CN=[61], Pervious surfaces: IAhmp=[1.57](mm), SLP1=[0.51](%), Impervious surfaces: IAhmp=[1.57](mm), SLP1=[0.51](%), ID=[25](m), MMV=[0.03], SCE=[0.0](m) Impervious surfaces: IAhmp=[1.57](mm), SLP1=[0.51](%), ID=[25](m), MMV=[0.53](m), SLP1=[0.51](%), ID=[4], MHYD=["060"], IDs to add=[142] 
163> 1645 1655 1655 1665 1665 1669 1695 1705 1705 1775 1775 1775 1775 1775 177	* Remaining Ha * SUB-AREA No.1 CALIE STANDHYD *%	<pre>swthorme Industrial Park * ID=[1], MHYD=["HIPO1"], DT=[2.5](min), AREA=[19.5](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: TApper[4.67](mm), SLPP=[1.5](%), LGD=[100.0](m), MMT=[0.03], SCS=[0.0](m) RAINFALL=[, , , ](mm/hr), EMD=-1 IDsum=[2], NHYD=["HIPO2"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], IGP=[100.0](m), MMT=[0.13], SCD=[1.5](%), LGP=[100.0](m), MMT=[0.23], SCD=[0.0](m) Impervious surfaces: TApper=[4.67](mm), SLPP=[1.5](%), LGP=[100.0](m), MMT=[0.23], SCD=[0.0](m) RAINFALL=[, , , ](mm/hr), EMD=-1 ID=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[16,1](ha), ID=[10, 10], ID=[</pre>	01297> 01298> *% 01299> *%	Impervious surfaces: IAimpe[1.57] (mm), SLPI=(0.50](%), ID=[2433](m), MMI=(0.03], SCI=[( RAINFALL=[, , , ](mm/hr), END=-1 ID=[3], MHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=(0.57), TIMP=[0.57], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAimpe[1.57](mm), SLPP=[1.0](%), LGP=[5](m), MMY=[0.03], SCF=[0.0](m), LGP=[5](m), MMY=[0.03], SCF=[0.0](m), LGP=[5](m), MMY=[0.03], SCT=[0.0](m), ID=um=[4], NHYD=["050"], IDs to add=[142] ID=um=[5], MHYD=["050"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.57], TIMP=[0.57], DMP=[0.0](cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: IApar=[4.57](mn), SLP=(0.7](6), LGP=[4.57], SCT=[0.57], ID= Co add=[3+4] ID=[6], MHYD=["050"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.57], SCS curve number CN=[61], Pervious surfaces: IApar=[4.57](mn), SLP=(0.7](6), LGP=[4.57](m), MSD=[0.03], SCI=[0.0](n), LGP=[4.57](m), SLD=[0.03](8), LGP=[4.57](m), SLD=[0.03](8), LGP=[4.57](m), SLD=[0.03](8), LGP=[4.57](m), SLD=[0.03](8), LGP=[4.2](m), MMI=[0.03], SCI=[0.0](n), LGP=[4.2](m), MMI=[0.03], SCI=[0.0](n), LGP=[4.2](m), MMI=[0.03](8), LGP=[4.2](m), MMI=[0.0](8), LGP=[4.2](m), MMI=
163> 1645 1655 1665 1665 1665 1695 1705 1705 1775 1775 1775 1775 1775 177	* Remaining Ha * SUB-AREA No.1 CALIE STANDHYD *\$	<pre>swthorme Industrial Park * ID=[1], MHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: TAiper[4.67](mm), SLPP=[1.5](8), ID=[10.0](m), MMT=[0.03], SCI=[0.0](m), Impervious surfaces: TAimp=[1.57](mm), SLPI=[0.5](8), ID=[10.0](m), MMT=[0.03], SCI=[0.0](m), ID=[100, 10], MMT=[0.0], SCI=[0.0](m), ID=[100, 10], MMT=[0.0], SCI=[0.0](m), ID=[100, 10], MMT=[0.0], SCI=[0.0](m), ID=[100, 10], MMT=[0.0](m), SLPP=[1.5](8), ID=[100, 10], MMT=[0.0], SCI=[0.0](m), RAINPALL=[, , , ](mm/hr), SMD=[1.5](8), ID=[100, 10], MMT=[0.0], SCI=[0.0](m), RAINPALL=[, , ], ](mNT=[1, 5](m), SLPP=[1.5](8), ID=[100, 10], MMT=[0.0], SCI=[0.0](m), RAINPALL=[, , ](mm/hr), SMT=[0.0], SCI=[0.0](m), RAINPALL=[, ], ](mm/hr), SMT=[0.0], SCI=[0.0](m), RAINPALL=[, ], ](mm/hr), SMT=[0.0], SCI=[0.0](m), RAINPALL=[, ](mm/hr), SMT=[0.0], SCI=[0.0](m), RAINPALL=[[, ](mm/hr), SMT=[0.0](m), RAINPALL=[[, ](mm/hr), SMT=[0.0](m), RAINPALL=[[, ](mm/hr), SMT=[0.0](m), RAINPALL=[[, ](mm/hr), SMT=</pre>	01297> 01298> *% 01299> *%	<pre>Impervious surfaces: IAimpe[1.57] (mm), SLP1=(0.50](%), IDT=[2433](m), MM1=(0.03], SCI=[( RAINFALL=[, , , , ](mm/hr), END=-1 ID=(3], NHYD=["030"], DWT=(0.0](cms), LOSS=[2], SCS curve number (DN=[0]), DWT=(0.0](cms), LOSS=[2], SCS curve number (DN=[0]), DWT=(0.0](cms), LOSS=[2], SCS curve number (DN=[0]), MT=(0.0], SCP=[0.0](m), Impervious surfaces: IDAper[4(-57](mn), SLPT=(1.0)[4), IDT=[-1, NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.57], TIMP=[0.57], IDE to add=[142] IDT=[-1, NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.57], TIMP=[0.57], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], IDT=[-1, NHYD=["060"], DT=[2.5](min), SLPP=[0.7](4), IDT=[-1, IDT=[-1, 2], SCD=[0.0](n), IDT=[-1, 2], NHYD=["070"], DT=[2.5](m), SLP=[-0.3], SCI=[-0, 2], IDT=[-1, 2], NHYD=["070"], DT=[2.5](m), SLPP=[0.7](4), IDT=[-1, 2], IDT=[-1, 2], IDT=[-1</pre>
163> 165> 1665> 1665> 1665> 1665> 1665> 1665> 1665> 1705> 1705> 1715> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775> 1775	* Remaining Ha * SUB-AREA No.1 CALIE STANDHYD *\$	<pre>swthorme Industrial Park * ID=[1], MHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](8), ID=[10.0](m), NMI=[0.03], SCI=[0.0](m), RAINFALL=[, , , ](mm/hr), END=-1 ID=[1], ID=</pre>	01297> 01298> *0	<pre>Impervious surfaces: IAAmp=[1.57] (mm), SLD1=[0.50](%), ID=[40.34](m), MM1=[0.03], SCI=[0 RAINFALL=[, , , ] (mm/hr), END=-1 ID=[3], MHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.7], DWP=[0.0](cms), LOS5=[2], SCS curve number CN=[81], Pervious surfaces: IAAmp=[1.67](mm), SLPP=[1.0](%), IGP=[5](m), MMY=[0.03], SCE=[0.0](mm), Impervious surfaces: IAAmp=[1.57](mm), SLPI=[0.51](%), ID=um=[4], NHYD=["040"], IDs to add=[1+2] ID=um=[4], NHYD=["050"], IDs to add=[1+2] ID=um=[5], NHYD=["050"], IDs to add=[3+4] ID=[6], NHYD=["050"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.57], TIMP=[0.57], DMF=[0.0](cms), LOS5=[2], SCS curve number CN=[81], Pervious surfaces: IAAmp=[1.57](mm), SLPP=[0.7](%), ID=Um=[5], NHYD=["050"], DT=[2.5](min), SLD5=[0.0](m), NIMP=[0.53](8), ID=[1.62](m), NDF=[0.53], SCT=[0.03](8), ID=[1.62](m), NDF=[0.53], SCT=[0.03](8), ID=[1.62](m), NDF=[0.53](8), ID=[1.62](m), NDF=[0.53], SCT=[0.63](6), RAINFALL=[, , , ](mm/hr), END=-1 ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.57], TIMP=[0.77], DT=[0.01(cms), LOSS=[2].</pre>
163> - 165> - 1665 - 1665 - 1665 - 1665 - 1665 - 1665 - 1665 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 1105 - 11	* Remaining Ha * SUB-AREA No.1 CALIE STANDHYD *\$	<pre>swthorme Industrial Park * ID=[1], MHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=(4.67](mm), SLPP=(1.5](8), LOP=[10.0](m), NNI=(0.25], SCS=[0.0](m) RAINFALL=[, , , , ](mm/hr), END=-1 IDsum=[2], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mn), SLPP=[1.5](8), LDF=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Parvious surfaces: IAper=[4.67](mn), SLP=[1.5](8), LDF=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[18.1](ha), XIMP=[0.50], TIMP=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mn), SLP=[1.5](8), LGS=[10.0](m), MNI=[0.25], SCP=[0.0](m) ID=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[18.1](ha), XIMP=[0.50], TIMP=[0.71], DWT=[0.0](cms), LDSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mn), SLP=[1.5](8), LGS=[100.0](m), MNI=[0.25], SCP=[0.0](m) ID=[100.0](m), MNI=[0.25], SCP=[0.0](m) ID=[100.0](m), MNI=[0.25], SCP=[0.0](m) ID=[100.0](m), MNI=[0.25], SCP=[0.0](m) IMPERVIOUS SURFACES: IAper=[4.67](mn), SLP=[1.5](8), ICF=[100.0](m), MNI=[0.25], SCP=[0.0](m) ID=[100.0](m), MNI=[0.25], SCP=[0.0](m) ID=[1000.0](m), MNI=[0.25], SCP=[0.0](m) ID=[10000.0](m), MNI=[0.25], SCP=[0.0](m) ID=[100000.0](m) ID[[100000000000000000000000000000000000</pre>	01297> 01298> *%	<pre>Impervious surfaces: IAAmp=[1.57] (mm), SLD=[0.50](%), ID=[2433](m), MMI=[0.03], SCI=[( RAINFALL=[, , , ](mm/hr), END=-1 ID=[3], MHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWP=[0.0](cms), LOS5=[2], SCS curve number CN=[81], Pervious surfaces: IApar=[4.67](mm), SLPP=[1.0](%), LGP=[5](m), MMY=[0.03], SCZ=[0.0](m), Impervious surfaces: IApar=[4.67](mm), SLPP=[0.51](%), CSC=[0.0](m), ID=un=[4], MHYD=["040"], IDs to add=[142] ID=[6], MHYD=["050"], IDs to add=[3+4] ID=[6], MHYD=["050"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOS5=[2], SCS curve number CN=[81], Pervious surfaces: IApar=[4.67](mm), SLPP=[0.7](%), LGP=[1.57](mn), SLP=[0.5], SCC=[0.0](n) Impervious surfaces: IApar=[4.67](mm), SLP=[0.3](%), XIMP=[0.97], TIMP=[0.77], DWF=[0.0](cms), LOS5=[2], SCS curve number CM=[81], Pervious surfaces: IApar=[4.67](mm), SLP=[0.3](%), XIMP=[0.97], TIMP=[0.77], DWF=[0.0](cms), LOS5=[2], SCS curve number CM=[81], Pervious surfaces: IApar=[4.67](mn), SLP==[0.3](%), NIMP=[0.97], TIMP=[0.77], DWF=[0.0](cms), LOS5=[2], SCS curve number CM=[81], Pervious surfaces: IApar=[4.67](mn), SLP=[0.3](%), NIMP=[0.97], TIMP=[0.77], DWF=[0.0](cms), LOS5=[2], SCS curve number CM=[81], Pervious surfaces: IApar=[4.67](mn), SLP=[1.5](%),</pre>
163> - 1 1665 - 1 1675 - 1 1785 - 1 1775 -	* Remaining He * SUB-AREA No.1 CALIE STANDHYD *\$	<pre>swthorme Industrial Park * ID=[1], MHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](8), ID=[10.0](m), NMI=[0.03], SCI=[0.0](m), RAINFALL=[, , , ](mm/hr), END=-1 ID=[1], ID=</pre>	01297> 01298> *% 01299> * SUB-AREA No. 3 01300> * SUB-AREA No. 3 01302> CALIB STANDHYD 01305> 01306> 01306> 01306> 01306> 01309> % 01311> ADD HYD 01312> *% 01311> ADD HYD 01312> %% 01313> ADD HYD 01313> 0132> %B-AREA No. 4 01316> * SUB-AREA No. 4 0132> 01322> 01322> 01322> 01322> 01322> 01324> 01325> 01326> * % 01325> 01326> * SUB-AREA No. 5 01330> CALIB STANDHYD 01331> 01333> 01333> 01334> 01335>	Impervious surfaces: IAimpe[1.57] (mm), SLPI=(0.50](%), RAINFALL=[, , , , ] (mm/hr) , END=-1 ID=(3.], NHYD=["030"], DYT=[2.5] (min), AREA=[1.4] (ha), XIMP=(0.97], TIMP=(0.97] DWT=(0.0] (cms), LOSS=[2], SCS surve number CN=[81], Impervious surfaces: IAimpe[1.67] (mm), SLPP=(1.0](%), Pervious surfaces: IAimpe[1.57] (mm), SLDT=(0.51) [%], ID=u=[4], NHYD=["040"], IDs to add=[1+2] ID=u=[4], NHYD=["050"], IDs to add=[1+2] ID=u=[4], NHYD=["050"], IDs to add=[1+2] ID=u=[4], NHYD=["050"], IDs to add=[3+4] ID=(6], NHYD=["050"], DT=(2.5] (min), AREA=[0.89] (ha), XIMP=[0.97], TIMP=[0.97], DMT=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], RAINFALL=[, , , ] (mm/hr), SLP=[0.7] (%), LGF=[40] (m), NMT=[0.25], SCD=[0.0] (f Impervious surfaces: IAppr=[4.67] (mm), SLP=[0.7] (%), LGF=[164.82] (m), MMT=[0.3], SCI=[0.7] RAINFALL=[, , , ] (mm/hr), RMD=-1 ID=[164.82] (m), MMT=[0.3], SCI=[0.7] ID=[164.82] (m), MMT=[0.3], SCI=[0.7] ID=[7], NHYD=["070"], DT=[2.5] (min), AREA=[2.66] (ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0] (cms), LOSS=[2], SCS curve number CR=[3], Pervious surfaces: IAppr=[4.67] (mm), SLP=[2.5] (ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0] (cms), LOSS=[2], SCS curve number CR=[3], Pervious surfaces: IAppr=[4.67] (mm), SLP=[1.5] (ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0] (cms), LOSS=[2], SCS curve number CR=[3], Pervious surfaces: IAppr=[4.67] (mn), SLP=[1.5] (ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0] (cms), LOSS=[2], SCS curve number CR=[3], Pervious surfaces: IAppr=[4.67] (mn), SLP=[1.5] (ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0] (cms), LOSS=[2], SCS curve number CR=[3], Pervious surfaces: IAppr=[4.67] (mn), SLP=[1.5] (ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0] (cms), LOSS=[2], SCS curve number CR=[3], Pervious surfaces: IAppr=[4.67] (mn), SLP=[1.5] (ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0] (cms), LOSS=[2], SCS curve number CR=[3], Pervious surfaces: IAppr=[4.67] (mn), SLP=[1.5] (ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0] (cms), LOSS=[2], SCS curve number CR=[3], Pervious surfaces: IA
163> - 1 1665 - 1 1675 - 1 1785 - 1 1775 -	* Remaining Ha * SUB-AREA No.1 CALIE STANDHYD * 1 ADD HYD * 1 * SUB-AREA NO.2 CALIE STANDHYD * 1 * SUB-AREA NO.3 CALIE STANDHYD * 1 * SUB-AREA NO.3 CALIE STANDHYD	<pre>swthorme Industrial Park * ID=[1], MHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[8]], Pervious surfaces: IAper=(4.67](mm), SLPP=(1.5)(8), LGA=[300](m), NN1=(0.03), SCI=[0.0](m) RAINFALL=[, , , , ](mm/hr), END=-1 IDsum=[2], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[8]], Pervious surfaces: IAper=[4.67](mn), SLPP=[1.5](8), LGA=[300](m), MN1=[0.03], SCI=[0.0](m) Impervious surfaces: IAper=[4.67](mn), SLPI=[0.0](m), Impervious surfaces: IAper=[4.67](mn), SLP=[1.5](8), LGA=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[18.1](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mn), SLP=[1.5](8), LGP=[100.0](m), MN1=[0.25], SCI=[0.0](m) Impervious surfaces: IAper=[4.67](mn), SLP=[1.5](8), LGP=[100.0](m), MN1=[0.03], SCI=[0.0](m), IMPerious surfaces: IAper=[4.67](mn), SLP=[1.5](8), LGP=[100.0](m), MN1=[0.03], SCI=[0.0](m), IMPervious surfaces: IAper=[4.67](mn), SLP=[1.5](8), LGP=[100.0](m), MN1=[0.03], SCI=[0.0](m), RAINFALL=[, , , , ](mm/hr), END=-1 ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[18.1](ha), XIMP=[0.50], TIMP=[0.7], DMF=[0.0](cms), LGS=[2], SCS curve number CN=[81], Pervious Surfaces: IAper=[4.67](mn), SLP=[1.5](8), LGT=[600](m), MN1=[0.03], SCI=[0.0](m) RAINFALL=[, , , , ](mm/hr), END=-1 ID=[7], MHYD=["HIP04"], DT=[2.5](m), IAP=[1.5](8), LGT=[600](m), MN1=[0.03], SCI=[0.0](m) RAINFALL=[, , , , ](mm/hr), END=-1 ID=[7], MHYD=["HIP04"], DT=[2.5](m), SLP=[1.5](8), LGT=[600](m), MN1=[0.23], SCI=[0.0](m) RAINFALL=[, , , , ](mm/hr), END=-1 ID=[7], MHYD=["HIP04"], DT=[2.5](m), SLP=[1.5](8), LGT=[600](m), MN1=[0.23], SCI=[0.0](m) RAINFALL=[, , , , ](mm/hr), END=-1 ID=[100.0](m), RN1=[0.03], SCI=[0.0](m) RAINFALL=[, , , , ](mm/hr), END=-1 ID=[100.0](m), RN1=[0.03], SCI=[0.0](m) RAINFALL=[, , , , ](mm/hr), END=-1 ID=[100.0](m), RN1=[0.03], SCI=[0.0](m) RAINFALL=[, , , , ](mm/hr), END=-1 ID=[100.0](m), RN1</pre>	01297> 01298> *% 01299> * SUB-AREA No.3 01300> * SUB-AREA No.3 01301> 01302> CALIB STANDHYD 01306> 01306> 01306> 01306> 01310> *% 01311> ADD HYD 01312> *% 01311> ADD HYD 01312> *% 01313> ADD HYD 01312> *% 01313> ADD HYD 01316> * SUB-AREA No.4 01316> 01322> 01322> 01322> 01322> 01322> 01325> 01326> *% 01327> * SUB-AREA No.5 01328> 01326> *% 01327> 01325> 01326> *% 01327> 01325> 01326> *% 01327> 01325> 01326> *% 01327> 01325> 01326> *% 01327> 01325> 01326> 01335> 01335> 01335> 01335> 01335> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 01336> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136> 0136>	Impervious surfaces: IAimpe[1.57] (mm), SLPI=(0.50](%), RAINFALL=[, , , , ] (mm/hr) , END=-1 ID=(3.], NHYD=["030"], DYT=[2.5] (min), AREA=[1.4] (ha), XIMP=(0.97], TIMP=(0.97] DWT=(0.0] (cms), LOSS=[2], SCS surve number CN=[81], Impervious surfaces: IAimpe[1.67] (mm), SLPP=(1.0](%), Pervious surfaces: IAimpe[1.57] (mm), SLDT=(0.51) [%], ID=u=[4], NHYD=["040"], IDs to add=[1+2] ID=u=[4], NHYD=["050"], IDs to add=[1+2] ID=u=[4], NHYD=["050"], IDs to add=[1+2] ID=u=[4], NHYD=["050"], IDs to add=[3+4] ID=(6], NHYD=["050"], DT=(2.5] (min), AREA=[0.89] (ha), XIMP=[0.97], TIMP=[0.97], DMT=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], RAINFALL=[, , , ] (mm/hr), SLP=[0.7] (%), LGF=[40] (m), NMT=[0.25], SCD=[0.0] (f Impervious surfaces: IAppr=[4.67] (mm), SLP=[0.7] (%), LGF=[164.82] (m), MMT=[0.3], SCI=[0.7] RAINFALL=[, , , ] (mm/hr), RMD=-1 ID=[164.82] (m), MMT=[0.3], SCI=[0.7] ID=[164.82] (m), MMT=[0.3], SCI=[0.7] ID=[7], NHYD=["070"], DT=[2.5] (min), AREA=[2.66] (ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0] (cms), LOSS=[2], SCS curve number CR=[3], Pervious surfaces: IAppr=[4.67] (mm), SLP=[2.5] (ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0] (cms), LOSS=[2], SCS curve number CR=[3], Pervious surfaces: IAppr=[4.67] (mm), SLP=[1.5] (ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0] (cms), LOSS=[2], SCS curve number CR=[3], Pervious surfaces: IAppr=[4.67] (mn), SLP=[1.5] (ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0] (cms), LOSS=[2], SCS curve number CR=[3], Pervious surfaces: IAppr=[4.67] (mn), SLP=[1.5] (ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0] (cms), LOSS=[2], SCS curve number CR=[3], Pervious surfaces: IAppr=[4.67] (mn), SLP=[1.5] (ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0] (cms), LOSS=[2], SCS curve number CR=[3], Pervious surfaces: IAppr=[4.67] (mn), SLP=[1.5] (ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0] (cms), LOSS=[2], SCS curve number CR=[3], Pervious surfaces: IAppr=[4.67] (mn), SLP=[1.5] (ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0] (cms), LOSS=[2], SCS curve number CR=[3], Pervious surfaces: IA
163> - 1665 - 1665 - 1665 - 1665 - 1665 - 1665 - 1665 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 1705 - 17	* Remaining He * SUB-AREA No.1 CALIE STANDHYD * 1 ADD HYD * 1 * SUB-AREA No.2 CALIE STANDHYD * 1 * SUB-AREA No.3 CALIE STANDHYD * 1 * SUB-AREA No.3 CALIE STANDHYD	<pre>swthorme Industrial Park * ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.5](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[8], ID=[10.0](m), NMI=[0.25], SCP=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SIPI=[0.6](8), ID=[10.0](m), NMI=[0.03], SCI=[0.0](m) IDsumm[ 2], NHYD=["HIPO2"], IDs to add=[10+1] IDsumm[ 2], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], ID=[13], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], ID=[10.0](m), NNI=[0.03], SCI=[0.0](min RAINFALL=[ , , , ](mm/hr), END=-1 ID=[1], NHYD=["HIPO3"], DT=[2.5](min), AREA=[18.1](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[3], RAINFALL=[ , , , ](mm/hr), END=-1 ID=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[18.1](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[3], SCS curve number CN=[3], RAINFALL=[ , , , ](mm/hr), END=-1 ID=[4], NHYD=["HIPO4"], DT=[2.5](min), SLPE=[1.5](8), ID=[1.57](mm), SLPE=[1.5](8), ID=[1.5](8), ID=[1.57](mm), SLPE=[1.5](8), ID=[1.57](m</pre>	01297> 01298> *% 01299> *%	<pre>Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.50](%), RAINFALL=[, , , , ] (mm/hr) , END=-1 ID=(3], NHYD=["030"], DYT=[2.5] (min), AREA=[1.4] (ha), SIMP=[0.97], TIMP=[0.97], DWT=[0.0] (cms), LOSS=[2], SCS curve number (N=[81], Pervious surfaces: IAimp=[1.57] (mm), SLPT=[1.0](%), Impervious surfaces: IAimp=[1.57] (mm), SLPT=[0.51] (%), ID=(4], NHYD=["060"], DT=(2.5] (min), AREA=[0.89] (ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0] (cms), LOSS=[2], SCS curve number (N=[01], ID=um=[4], NHYD=["050"], IDs to add=[14:2] ID=um=[4], NHYD=["050"], IDs to add=[34:4] ID=(6], NHYD=["060"], DT=(2.5] (min), AREA=[0.89] (ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], RAINFALL=[, , , ] (mm/hr), END=-1 ID=[7], NHYD=["070"], DT=[2.5] (min), AREA=[2.66] (ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], RAINFALL=[, , , ] (mm/hr), END=-1 ID=[7], NHYD=["070"], DT=[2.5] (min), AREA=[2.66] (ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], RAINFALL=[, , , ] (mm/hr), SLP=-[1.5](8), CSC surve number CN=[81], Pervious surfaces: IApp=[4.57] (mm), SLP=[2.5] (ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAimp=[1.57] (mm), SLP=-[1.5](8), CSC surve number CN=[81], Pervious surfaces: IAimp=[1.57] (mm), SLP=[0.63], SCI=[0.0] Impervious surfaces: IAimp=[1.57] (mm), SLP=[0.63], SCI=[0.0] Impervious surfaces: IAimp=[1.57] (mm), SLP=-[0.63], SCI=[0.0] Impervious surfaces: IAimp=[1.57] (mm), SLP=[0.63], SCI=[0.0] Impervious surfaces: IAimp=[1.57] (mm), SL</pre>
163> 163> 165> 1665 1665 1665 1705 1705 1705 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1705 1707 1707	* Remaining Ha * SUB-AREA No.1 CALIE STANDHYD *Q	<pre>swthorme Industrial Park * ID=[1], MHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper[4.67](mm), SLPP=[1.5](8), LGD=[300](m), MM2=[0.21], SCP=[0.0](m), RAINPALL=[, , , ](mm/hc), BMD=-1 ID=un=[2], NHYD=["HIPO2"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], ID=[4], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], ID=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[16.1](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], ID=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[16.1](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mn), SLPP=[1.5](8), ID=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[16.1](ha), XIMP=[0.50], TIMP=[0.7], DT=[2.5](min), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mn), SLPS=[1.5](4), IGP=[100.0](m), SLPS=[2], SCP=[0.0](m Impervious surfaces: IAper=[4.67](mn), SLPS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mn), SLPS=[0.5](4), Impervious surfaces: IA</pre>	01297> 01298> *%	<pre>Impervious surfaces: IAimpe[1.57] (mm), SLD1=[0.50](%), ID=[24.33](m), MM1=[0.03], SCI=[( RAINFALL=[, , , , ](mm/hr], END=-1 ID=[3], NHYD=["030"], DVT=[0.0](mm), AREA=[1.4](ha), XHVP=[0.97], TIMP=[0.97], DVT=[0.0](mm), LOS5=[2], SCS curve number CN=[3]], Pervious surfaces: IAimpe[1.57](mm), SLDP=[1.0](%), Impervious surfaces: IAimpe[1.57](mm), SLDT=[0.51](%), Impervious surfaces: IAimpe[1.57](mm), SLDT=[0.51](%), ID=[4], NHYD=["060"], DT=[2.5](min], AREA=[0.89](ha), XINP=[0.97], TIMP=[0.97], DWT=[0.0](cms), LOS5=[2], SCS curve number CN=[81], ID=[4], NHYD=["050"], IDs to add=[3+4] ID=[6], NHYD=["060"], DT=[2.5](min], AREA=[0.89](ha), XINP=[0.97], TIMP=[0.97], DWT=[0.0](cms), LOS5=[2], SCS curve number CN=[81], RAINFALL=[, , , , ](mm/hr), END=-1 ID=[7], NHYD=["070"], DT=[2.5](min], AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0](cms), LOS5=[2], SCS curve number CN=[81], RAINFALL=[, , , ,](mm/hr), END=-1 ID=[7], NHYD=["070"], DT=[2.5](min], AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0](cms), LOS5=[2], SCS curve number CN=[81], RAINFALL=[, , , ,](mm/hr), SLD=[1.5](8), ID=[7], NHYD=["070"], DT=[2.5](min], AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0](cms), LOS5=[2], SCS curve number CN=[81], Rervious surfaces: IAimpe[1.57](m), SLD=[1.5](8), CSC curve number CN=[81], Rervious surfaces: IAimpe[1.57](m), SLD=[1.5](8), CSC curve number CN=[81], Rervious surfaces: IAimpe[1.57](m), SLD=[0.5], SC=[0.0] Impervious surfaces: IA</pre>
163> 163> 165> 1665 1665 1665 1667 1675 1675 1675 1675	* Remaining He * SUB-AREA No.1 CALIE STANDHYD * 1 ADD HYD * 1 * SUB-AREA No.2 CALIE STANDHYD * 1 * SUB-AREA No.3 CALIE STANDHYD * 1 * SUB-AREA No.3 CALIE STANDHYD	<pre>swthorme Industrial Park * ID=[1], MHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](8),</pre>	01297> 01298> *%	<pre>Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.50](%), RAINFALL=[, , , , ](mm/hr), END=-1 ID=(3], NHYD=["030"], DYT=[2.5](min), AREA=[1.4](ha), SIMP=[0.97], TIMP=[0.97], DWT=[0.0](cms), LOSS=[2], SCS curve number (N=[81], Pervious surfaces: IAimp=[1.57](mm), SLPT=[1.0](%), Impervious surfaces: IAimp=[1.57](mm), SLPT=[0.51](%), ID=(4], NHYD=["060"], DT=(2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0](cms), LOSS=[2], SCS curve number (N=[0], ID=um=[4], NHYD=["050"], IDs to add=[14:2] ID=um=[4], NHYD=["050"], IDs to add=[34:4] ID=(6], NHYD=["060"], DT=(2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], RAINFALL=[, , , ](mm/hr), END=-1 ID=um=[5], NHYD=["050"], DT=[2.5](min), AREA=[0.63](ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], RAINFALL=[, , , ](mm/hr), END=-1 ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], RAINFALL=[, , , ](mm/hr), END=-1 ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAimp=[1.57](mn), SLP=-[1.5](%), CSP=[0.0](m), SMP=[0.25], SCF=[0.0] Impervious surfaces: IAimp=[1.57](mn), SLP=[0.5](s), CS=[0.0] Impervious surfaces: IAimp=[1.57](mn), SLP=[0.5](s), CS=[0.0] Impervious surfaces: IAimp=[1.57](mn), SLP=[0.5](s), SC=[0.0] Impervious surfaces: IAimp=[1.57](mn), SLP=[0.6](s), SC=[0.0] Impervious surfaces: IAimp=[1.57](mn), SLP=[0.6](s), SC=[0.0] Impervious surfaces: IA</pre>
1163> (1165) (1165) (1165) (1165) (1165) (1165) (1165) (1167) (1167) (1167) (1172) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (1173) (11	* Remaining Ha * SUB-AREA No.1 CALIE STANDHYD * 1 	<pre>swthorme Industrial Park * ID=[1], MHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper[4.67](mm), SLPP=[1.5](8), LGD=[300](m), MM2=[0.21], SCP=[0.0](m), RAINPALL=[, , , ](mm/hc), BMD=-1 ID=un=[2], NHYD=["HIPO2"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], ID=[4], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], ID=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[16.1](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], ID=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[16.1](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mn), SLPP=[1.5](8), ID=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[16.1](ha), XIMP=[0.50], TIMP=[0.7], DT=[2.5](min), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mn), SLPS=[1.5](4), IGP=[100.0](m), SLPS=[2], SCP=[0.0](m Impervious surfaces: IAper=[4.67](mn), SLPS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mn), SLPS=[0.5](4), Impervious surfaces: IA</pre>	01297> 01298> *%	<pre>Impervious surfaces: IAAmp=[1.57] (mm), SLD1=[0.50](%), ID=[43.34](m), MM1=[0.03], SCI=[0 RAINFALL=[, , , ](mm/hr), END=-1 ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.57], TIMP=[0.77], DWP=[0.0](cms), LOS5=[2], SCS curve number CN=[81], Impervious surfaces: IAAmp=[4.67](mm), SLDP=[1.0](%), IGP=[5](m), MMT=[0.03], SCT=[0.0](mi) Impervious surfaces: IAAmp=[1.57](mm), SLDP=[1.0](%), ID=mm=[4], NHYD=["040"], IDs to add=[1+2] ID=mm=[4], NHYD=["040"], IDs to add=[1+2] ID=mm=[4], NHYD=["050"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.57], TIMP=[0.97], DWF=[0.0](cms), LOS5=[2], SCS curve number CN=[81], Pervious surfaces: IAAmp=[1.57](mm), SLDP=[0.7](%), ID=[10, MHYD=["050"], DT=[2.5](min), AREA=[0.69](ha), XIMP=[0.57], TIMP=[0.97], DWF=[0.0](cms), LOS5=[2], SCS curve number CN=[81], Pervious surfaces: IAAmp=[1.57](mm), SLDP=[0.7](%), ID=[10, MHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOS5=[2], SCS curve number CN=[81], Pervious surfaces: IAAmp=[1.57](mm), SLDP=[1.5](%), LGE=[20.0](m), MMT=[0.25], SCP=[0.0](m), RAINFALL=[, , , ](mm/hr), END=-1 ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOS5=[2], SCS curve number CN=[81], Pervious surfaces: IAAmp=[1.57](mm), SLDP=[1.5](%), LGE=[20.0](m), MMT=[0.25], SCP=[0.0](m), RAINFALL=[, , , ](mm/hr), END=-1 IDeum=[8], MHYD=["080"], IDs to add=[6+7] IDeum=[8], MHYD=["090"], IDs to add=[5+8] IDout=[10], NHYD=["POND"], IDn=[9],</pre>
1163> 1163> 1165> 1165> 1165> 1165> 1165> 1175> 1175> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775> 11775>	* Remaining Ha * SUB-AREA No.1 CALIE STANDHYD * 1 	<pre>swthorme Industrial Park * ID=[1], MHYD=["HIPO1"], DT=[2.5](min), AREA=[19.5](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[8], Pervious surfaces: TApper[4.67](mm), SLPP=[1.5](8), ID=[10.0](m), MMT=[0.0], SCI=[0.0](min RAINFALL=[, , , ](mm/hr), EMD=-1 ID=un=[2], NHYD=["HIPO2"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], ID=[13], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], ID=[10.0](m), MMT=[0.03], SCI=[0.0](min RAINFALL=[, , , ](mm/hr), EMD=-1 ID=[1], ID=[15](m), ID=[1.5](m), ID=[1.5](m), IGP=[100.0](m), MMT=[0.03], SCI=[0.0](min RAINFALL=[, , , ](mm/hr), EMD=-1 ID=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[18.1](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: TApper[4.67](mm), SLPP=[1.5](4), IGP=[100.0](m), MNT=[0.25], SCP=[0.0](min RAINFALL=[, , , ](mm/hr), EMD=-1 ID=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[18.1](ha), XIMF=[0.50], TIMP=[0.7]], DT=[2.5](min), SCF=[0.0](min RAINFALL=[, , , ](mm/hr), EMD=-1 ID=[6], NHYD=["HIPO4"], DT=[2.5](min), AREA=[18.1](ha), XIMF=[0.5](4), ID=[1.5](4), ID=[1.5](4),</pre>	01297> 01298> *%	<pre>Impervious surfaces: IAAmp=[1.57] (mm), SLD=[0.50](%), ID=[43](m), MHYD=[0.03], SCI=[0 RAINFALL=[, , , ][mm/hr], END=-1 ID=[3], MHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DMP=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAAmp=[1.57](mm), SLDF=[1.0](%), ID=un=[4], NHYD=["040"], IDs to add=[1+2] ID=un=[4], NHYD=["050"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.57], TIMP=[0.97], DMP=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAPap=[4.67](mm), SLDF=[0.5](%), ID=un=[5], NHYD=["050"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.57], TIMP=[0.97], DMP=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAPap=[1.57](mm), SLDF=[0.7](%), ID=[10], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DMP=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAPap=[1.57](mn), SLDF=[0.5](%), ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DMP=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAPap=[1.57](mn), SLDF=[0.5](%), LGE=[20.0](m), MNP=[0.25], SCP=[0.0](m), RAINFALL=[, , , ](mm/hr], END=-1 ID=[9], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DMP=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAPap=[4.67](mm), SLDF=[1.5](%), LGE=[20.0](m), MNP=[0.25], SCP=[0.0](m), RAINFALL=[, , , ](mm/hr], END=-1 ID=[9], MHYD=["060"], IDs to add=[5+8] ID=[9], MHYD=["060"], IDs to add=[5+8] ID=[10](min), TABLE of (OUTFLOR-STORGE ) values</pre>
11645) 11655) 11655 11665 11667) 11670 11705 11705 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775 11775	* Remaining Ha * SUB-AREA No.1 CALIE STANDHYD *%	<pre>swthorme Industrial Park * ID=[1], MHYD=["HIPO1"], DT=[2.5](min), AREA=[19.5](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[8], Pervious surfaces: TApper[4.67](mm), SLPP=[1.5](8), ID=[10.0](m), MMT=[0.0], SCI=[0.0](min RAINFALL=[, , , ](mm/hr), EMD=-1 ID=un=[2], NHYD=["HIPO2"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], ID=[13], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], ID=[10.0](m), MMT=[0.03], SCI=[0.0](min RAINFALL=[, , , ](mm/hr), EMD=-1 ID=[1], ID=[15](m), ID=[1.5](m), ID=[1.5](m), IGP=[100.0](m), MMT=[0.03], SCI=[0.0](min RAINFALL=[, , , ](mm/hr), EMD=-1 ID=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[18.1](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: TApper[4.67](mm), SLPP=[1.5](4), IGP=[100.0](m), MNT=[0.25], SCP=[0.0](min RAINFALL=[, , , ](mm/hr), EMD=-1 ID=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[18.1](ha), XIMF=[0.50], TIMP=[0.7]], DT=[2.5](min), SCF=[0.0](min RAINFALL=[, , , ](mm/hr), EMD=-1 ID=[6], NHYD=["HIPO4"], DT=[2.5](min), AREA=[18.1](ha), XIMF=[0.5](4), ID=[1.5](4), ID=[1.5](4),</pre>	01297> 01298> *%	<pre>Impervious surfaces: IAAmp=[1.57] (mm), SLD=[0.50](%), ID=[42.43](m), XMT=[0.03], SCI=[0 RAINFALL=[, , , , ][mm/hr], END=-1 ID=[3], MHYD=["030"], DM=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DMP=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAAmp=[1.57](mm), SLDP=[1.0](%), IGP=[5](m), MMT=[0.03], SCI=[1.0](%), IGP=[5](m), MMT=[0.03], SCI=[1.0](%), ID=um=[4], NHYD=["040"], IDs to add=[3+4] ID=um=[5], MHYD=["050"], DM=[0.0](cms), LOSS=[2], SCS curve number CH=[3], RAINFALL=[, , , ][mm/hr], END=-1 ID=um=[5], NHYD=["050"], DM=[0.0](cms), LOSS=[2], SCS curve number CH=[3], SCS curve number CH=[3], Pervious surfaces: IAAmp=[1.57](mn), SLDP=[0.7](%), Pervious surfaces: IAAmp=[1.57](mn), SLDP=[0.7](%), RAINFALL=[, , , ][mm/hr], END=-1 ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CH=[6]], Pervious surfaces: IAAmp=[1.57](mn), SLDP=[0.5](%), RAINFALL=[, , , ][mm/hr], END=-1 ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](ms), SLDS=[2], SCS curve number CH=[6]], Pervious surfaces: IAAmp=[1.57](mn), SLDP=[1.5](%), IGD=[1.0], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](ms), SLDS=[2], SCS curve number CH=[6]], Pervious surfaces: IAAmp=[1.57](mm), SLDP=[1.5](%), ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](ms), SLDS=[2], SCS curve number CM=[6]], Pervious surfaces: IAAmp=[1.57](mm), SLDP=[1.5](%), ID=[9], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](ms), SLDS=[2], SCS curve number CM=[6]], Pervious surfaces: IAAmp=[1.57](mm), SLDP=[1.5](%), ID=[9], NHYD=["070"], ID to add=[5+8] ID=[9], NHYD=["070"], ID to add=[5+8] ID=[1.0](min).</pre>

52> 53>	[ 0.093, 0.283]] [ 0.233, 0.397] [ 0.337, 0.473]]
54>	[ 0.465, 0.5491]
55> 56>	[ 0.531, 0.5871] [ 0.593, 0.6251]
57> 58>	[ 0.654, 0.6631]
59>	[ 0.797, 0.7391] [ 0.950, 0.8274]
60> 61>	[ 1.304, 0.9157] [ 1.880, 1.0040]
62>	[ 2.577, 1.0923]
63> 64>	<pre>[ -1 , -1 ] (max twenty pts)</pre>
	******
66> * Remaining Ha 67> ************************************	wthorne Industrial Park * ***********************************
69> * SUB-AREA No.1	
70> 71> CALIB STANDHYD	<pre>ID≃[ 1 ], NHYD=["HIP01"], DT=[2.5](min), AREA=[19.9](ha),</pre>
72> 73>	<pre>IDe[ 1 ], NHYD=["HIP01"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
74>	<pre>Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%),</pre>
75> 76>	LGP=[100.0] (m), $MNP=[0.25]$ , $SCP=[0.0]$ ( Impervious surfaces: $IAimp=[1.57]$ (mm), $SLP7=[0.6]$ (%).
77> 78>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.6] (%), IGI=[580] (m), MNI=[0.03], SCI=[0.0] (mi
79> *8	
80> ADD HYD 81> *%	IDsum=[ 2 ], NHYD=["HIP02"], IDs to add=[10+1]
82> *	
83> * SUB-AREA No.2 84>	
85> CALIB STANDHYD	ID=[3], NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha), NHYD=[0.50], TAND=[0.73], DMT=[0.0](mma), AREA=[17](ha), NHYD=[0.73], DMT=[0.0](mma), AREA=[17](ha), AREA=[
86> 87>	SCS curve number CN=[81],
88> 89>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (
90>	Impervious surfaces: TAimp=[1,57] (mm), STPT=[0,65] (%)
91> 92>	LGI = [450] (m), $MNI = [0.03]$ , $SCI = [0.0] (m)$
93> *&	RAINFALL=[ , , , , ] (mm/hr) , END=-1
94> * 95> * SUB-AREA No.3	
96> 97> CALIB STANDHYD	ID=[ 4 ], NHYD=["HIP04"], DT=[2.5](min), AREA=[18.1](ha),
98>	XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2],
99> 20>	SCS curve number CN=[8]].
11>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%),
)2> )3>	
04>	
	RAINFALL=[, , , ] (mm/hr), END=-1
D5> *% D6> ADD HYD	RAINFALL=[, , , , ](mm/hr), END=-1 
05> *& 06> ADD HYD 07> *&	RAINFALL=[,,,,](mm/hr), END=-1
05> *% 06> ADD HYD 07> *% 08> * 09> *SUB-AREA No.4	RAINFALL=[,,,,](mm/hr), END=-1
05> *% 06> ADD HYD 07> *% 08> * 19> *SUB-AREA No.4 10> 12> DESIGN NASHYD	RAINFALL=[, , , , ](mm/hr), EHD=-1 IDsum=[5], NHYD=["HIPD5"], IDs to add=[3+4]
55 * % 56 ADD HYD 77 * % 88 * 99 * \$UB-AREA No.4 10> 11> DESIGN NASHYD 12>	RAINFALL=[, , , , ](mm/hr), EHD=-1 IDsum=[5], NHYD=["HIPD5"], IDs to add=[3+4]
55 * % 56 ADD HYD 77 * % 38 * * 95 * \$UB-AREA No. 4 00 11> DESIGN NASHYD 12> 13> 14> * %	RAINFALL=[,,,,](mm/hr), END=-1
55 * %	<pre>RAINFALL=[, , , , ](mm/hr), EKD=-1 IDsum=[5], NHYD=["HIPO5"], IDs to add=[3+4] ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cms), CN/C=[85], TP=[0.17]hrs, RAINFALL=[, , , ](mm/hr), END=-1</pre>
15> 45 5> ADD HYD 17> 45 15> ADD HYD 15> 45 15> 4	<pre>RAINFALL=[, , , , ] (mm/hr) , EKD=-1 IDsum=[5], NHYD=["HIPO5"], IDs to add=[3+4] ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cms), CM/C=[55], TP=[0.17]hrs, RAINFALL=[, , , , ](mm/hr), EKD=-1 IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6]</pre>
55 * 45 56 > ADD HYD 77 * 45 98 * * 99 * 50E-AREA No. 4 10 10 DESIGN NASHYD 12 DESIGN NASHYD 12 DESIGN NASHYD 13 DESIGN NASHYD 15 - 15	<pre>RAINFALL=[, , , , ](mm/hr), EHD=-1 IDsum=[5], NHYD=["HIPO5"], IDs to add=[3+4] ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cms), CM/C=[85], TP=[0.17]hrs, RAINFALL=[, , , , ](mm/hr), EHD=-1 IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] </pre>
<pre>55 * 45</pre>	RAINFALL=[, , , , ] (mm/hc), EKD=-1         IDsum=[5], NHYD=["HIPO5"], IDs to add=[344]         ID=(6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cms), CM/C=[55], TP=[0.17]hrs, RAINFALL=[, , , , ] (mm/hc), EKD=-1         IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6]         IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6]
<pre>15&gt; *\$</pre>	<pre>RAIMFALL=[, , , , ] (mm/hc) , EKD=-1 IDsum=[5], NHYD=["HIPO5"], IDs to add=[344] ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cms), CM/C=[55], TF=[0.17]hrs, RAIMFALL=[, , , ] (mm/hc), EKD=-1 IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] IDsum=[7], NHYD=["HIPO6"], IDin=[7], RDT=[1.0](min), TABLE of (OUTFICM==50NBCE) values</pre>
<pre>15&gt; *\$</pre>	<pre>RAIMFALL=[, , , , ] (mm/hc) , EKD=-1 IDsum=[5], NHYD=["HIPO5"], IDs to add=[344] ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cms), CM/C=[55], TF=[0.17]hrs, RAIMFALL=[, , , ] (mm/hc), EKD=-1 IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] IDsum=[7], NHYD=["HIPO6"], IDin=[7], RDT=[1.0](min), TABLE of (OUTFICM==50NBCE) values</pre>
<pre>15&gt; *\$</pre>	<pre>RAIMFALL=[, , , , ] (mm/hc) , EKD=-1 IDsum=[5], NHYD=["HIPO5"], IDs to add=[344] ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cms), CM/C=[55], TF=[0.17]hrs, RAIMFALL=[, , , ] (mm/hc), EKD=-1 IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] IDsum=[7], NHYD=["HIPO6"], IDin=[7], RDT=[1.0](min), TABLE of (OUTFICM==50NBCE) values</pre>
<pre>&gt;55 * 4c</pre>	<pre>RAIMFALL=[ , , , , ] (mm/hc) , EKD=-1 IDsum=[ 5 ], NHYD=["HIPO5"], IDs to add=[3+4] ID=[ 6 ], NHYD=["Fond-Block"], DT=[2.5]min, AREA=[4.0](ha}, DWF=[ 0 ] (cms), CM/C=[ 65 ], TP=[0.17]hrs, RAIMFALL=[ , , , ] (mm/hc), END=-1 IDsum=[ 7 ], NHYD=["HIPO6"], IDs to add=[2+5+6] IDsum=[ 7 ], NHYD=["HIP-FOND"], IDin=[ 7 ], RDT=[1.0](min],</pre>
<pre>15&gt; *\$</pre>	<pre>RAIMFALL=[ , , , , ] (mm/hc) , EKD=-1 IDsum=[ 5 ], NHYD=["HIPO5"], IDs to add=[3+4] ID=[ 6 ], NHYD=["Fond-Block"], DT=[2.5]min, AREA=[4.0](ha}, DWF=[ 0 ] (cms), CM/C=[ 65 ], TP=[0.17]hrs, RAIMFALL=[ , , , ] (mm/hc), END=-1 IDsum=[ 7 ], NHYD=["HIPO6"], IDs to add=[2+5+6] IDsum=[ 7 ], NHYD=["HIP-FOND"], IDin=[ 7 ], RDT=[1.0](min],</pre>
<pre>&gt;55 * 45</pre>	<pre>RAIMFALL=[, , , , ](mm/hc), EKD=-1 IDsum=[5], NHYD=["HIPO5"], IDs to add=[3+4] ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha}, DWF=[0](cms), CM/C=[65], TP=[0.17]hrs, RAIMFALL=[, , , ](mm/hc), END=-1 IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] IDsum=[7], NHYD=["HIP-FOND"], IDin=[7], RDT=[1.0](min], Cms] - (ha-m) [0.046, 0.2434] [0.059, 0.5844] [0.0642, 1.024] [0.0644, 1.024]</pre>
<pre>&gt;55 * 4c</pre>	<pre>RAIMFALL=[, , , , ](mm/hc), ERD=-1 IDsum=[5], NHYD=["HIPO5"], IDs to add=[3+4] ID=[6], NHYD=["Fond-Block"], DT=[2.5]min, AREA=[4.0](ha}, DWF=[0](cns), CM/C=[85], TP=[0.17]hrs, RAIMFALL=[, , , ](mm/hc), END=-1 IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] IDsum=[7], NHYD=["HIP-FOND"], IDin=[7], RDT=[1.0](min], TABLE of (OUTFLOW-STORAGE ) values (cms) - (ha-m) [ 0.044, 0.2434] [ 0.059, 0.5834] [ 0.062, 0.8400] [ 0.064, 1024]</pre>
<pre>&gt;&gt; **</pre>	<pre>RAIMFALL=[, , , , ](mm/hc), ERD=-1 IDsum=[5], NHYD=["HIPO5"], IDs to add=[3+4] ID=[6], NHYD=["Fond-Block"], DT=[2.5]min, AREA=[4.0](ha}, DWF=[0](cns), CM/C=[85], TP=[0.17]hrs, RAIMFALL=[, , , ](mm/hc), END=-1 IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] IDsum=[7], NHYD=["HIP-FOND"], IDin=[7], RDT=[1.0](min], TABLE of (OUTFLOW-STORAGE ) values (cms) - (ha-m) [ 0.044, 0.2434] [ 0.059, 0.5834] [ 0.062, 0.8400] [ 0.064, 1024]</pre>
<pre>&gt;&gt; **</pre>	<pre>RAIMFALL=[, , , , ](mm/hc), EKD=-1 IDsum=[5], NHYD=["HIPO5"], IDs to add=[3+4] ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha}, DWF=[0](cms), CM/C=[65], TP=[0.17]hrs, RAIMFALL=[, , , ](mm/hc), END=-1 IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] IDsum=[7], NHYD=["HIP-FOND"], IDin=[7], RDT=[1.0](min], Cms] - (ha-m) [0.046, 0.2434] [0.059, 0.5844] [0.0642, 1.024] [0.0644, 1.024]</pre>
<pre>b5&gt; %{</pre>	<pre>RAIMFALL=[, , , , ](mm/hc), ERD=-1 IDsum=[5], NHYD=["HIPO5"], IDs to add=[3+4] ID=[6], NHYD=["Fond-Block"], DT=[2.5]min, AREA=[4.0](ha}, DWF=[0](cns), CM/C=[85], TP=[0.17]hrs, RAIMFALL=[, , , ](mm/hc), END=-1 IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] IDsum=[7], NHYD=["HIP-FOND"], IDin=[7], RDT=[1.0](min], TABLE of (OUTFLOW-STORAGE ) values (cms) - (ha-m) [ 0.044, 0.2434] [ 0.059, 0.5834] [ 0.062, 0.8400] [ 0.064, 1024]</pre>
<pre>&gt;55 * 4c</pre>	<pre>RAIMFALL=[, , , , ](mm/hc), ERD=-1 IDsum=[5], NHYD=["HIPO5"], IDs to add=[3+4] ID=[6], NHYD=["Fond-Block"], DT=[2.5]min, AREA=[4.0](ha}, DWF=[0](cns), CM/C=[85], TP=[0.17]hrs, RAIMFALL=[, , , ](mm/hc), END=-1 IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] IDsum=[7], NHYD=["HIP-FOND"], IDin=[7], RDT=[1.0](min], TABLE of (OUTFLOW-STORAGE ) values (cms) - (ha-m) [ 0.044, 0.2434] [ 0.059, 0.5834] [ 0.062, 0.8400] [ 0.064, 1024]</pre>
<pre>&gt;&gt; **</pre>	<pre>RAIMFALL=[, , , , ](mm/hc), ERD=-1 IDsum=[5], NHYD=["HIPO5"], IDs to add=[3+4] ID=[6], NHYD=["Fond-Block"], DT=[2.5]min, AREA=[4.0](ha}, DWF=[0](cns), CM/C=[85], TP=[0.17]hrs, RAIMFALL=[, , , ](mm/hc), END=-1 IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] IDsum=[7], NHYD=["HIP-FOND"], IDin=[7], RDT=[1.0](min], TABLE of (OUTFLOW-STORAGE ) values (cms) - (ha-m) [ 0.044, 0.2434] [ 0.059, 0.5834] [ 0.062, 0.8400] [ 0.064, 1024]</pre>
<pre>&gt;55 * 4c</pre>	<pre>RAIMFALL=[, , , , ](mm/hc), ERD=-1 IDsum=[5], NHYD=["HIPO5"], IDs to add=[3+4] ID=[6], NHYD=["Fond-Block"], DT=[2.5]min, AREA=[4.0](ha}, DWF=[0](cns), CM/C=[85], TP=[0.17]hrs, RAIMFALL=[, , , ](mm/hc), END=-1 IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] IDsum=[7], NHYD=["HIP-FOND"], IDin=[7], RDT=[1.0](min], TABLE of (OUTFLOW-STORAGE ) values (cms) - (ha-m) [ 0.044, 0.2434] [ 0.059, 0.5834] [ 0.062, 0.8400] [ 0.064, 1024]</pre>
<pre>&gt;&gt; **</pre>	<pre>RAIMFALL=[, , , , ](mm/hc), EED=-1 IDsum=[5], NHYD=['HIPO5"], IDs to add=[3+4] ID=[6], NHYD=['HIPO5"], IDs to add=[3+4] ID=[6], NHYD=['HIPO5"], IDs to add=[2+5+6] IDsum=[7], NHYD=['HIPO6"], IDs to add=[2+5+6] IDsum=[7], NHYD=['HIPO6"], IDs to add=[2+5+6] IDsum=[7], NHYD=['HIPO6"], IDs to add=[2+5+6] IDsum=[7], NHYD=['HIPO6"], IDin=[7], RD7=[1.0](min], TABLE of (OUTFLOW-STORAGE ) values (cms) - (ha-m) [ 0.044, 0.2434] [ 0.059, 0.5834] [ 0.064, 1.0243] [ 0.042, 0.2434] [ 0.042, 0.3634] [ 0.042, 1.9242] [ 0.147, 1.3705] [ 0.2300, 1.6444] [ 0.472, 1.9242] [ 0.937, 2.5010] [ 1.262, 2.7801] [ 1.404, 3.1009] [ 1.522, 3.4096] [ 1.650, 3.7244] [ 2.609, 4.0302] [ 2.609, 4.0702] [ 1.600, 3.7240] [ 2.609, 4.0702] [ 1.600, 3.7240] [ 2.609, 4.0702] [ 1.9,937, 2.5010] [ 1.600, 3.7240] [ 2.609, 4.0702] [ 1.600, 3.7240] [ 2.609, 4.0702] [ 1.9,94, 3.002] [ 1</pre>
<pre>15&gt; *4</pre>	<pre>RAIMFALL=[, , , , ](mm/hc), ERD=-1 IDsum=[5], NHYD=["HIPO5"], IDs to add=[3+4] ID=[6], NHYD=["Fond-Block"], DT=[2.5]min, AREA=[4.0](ha}, DWF=[0](cns), CM/C=[85], TP=[0.17]hrs, RAIMFALL=[, , , ](mm/hc), END=-1 IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] IDsum=[7], NHYD=["HIP-FOND"], IDin=[7], RDT=[1.0](min], TABLE of (OUTFLOW-STORAGE ) values (cms) - (ha-m) [ 0.044, 0.2434] [ 0.059, 0.5834] [ 0.062, 0.8400] [ 0.064, 1024]</pre>
<pre>15 * *</pre>	<pre>RAIMFALL=[ , , , , ](mm/hc) , ERD=-1 IDsum=[ 5 ], NHYD=['HIPO5"], IDs to add=[344] ID=[ 6 ], NHYD=['HIPO5"], IDs to add=[344] ID=[ 6 ], (ma), CK/C=[ 85 ], TP=[0.17]hrs, RAIMFALL=[ , , , ](mm/hc), END=-1 IDsum=[ 7 ], NHYD=['HIPO6"], IDs to add=[24546] </pre>
<pre>&gt;&gt; *\$</pre>	<pre>RAIMFALL=[, , , , ](mm/hc), ERD=-1 IDsum=[5], NHYD=["HIPO5"], IDs to add=[3+4] ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cma), CM/C=[65], TP=[0.17]hrs, RAIMFALL=[, , , , ](mm/hc), END=-1 IDsum=[7], NHYD=["HIP-6"], IDs to add=[2+5+6] IDsum=[7], ID</pre>
<pre>15&gt; *\$</pre>	<pre>RAIMFALL=[, , , , ](mm/hc), ERD=-1 ID=um=[5], NHYD=['HIPO5'], IDs to add=[3+4] ID=[6], NHYD=['Bond-Block'], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cma), CM/C=[65], TP=[0.17]hra, RAIMFALL=[, , , , ](mm/hc), END=-1 IDsum=[7], NHYD=['HIPO6''], IDs to add=[2+5+6] ID=[6], NHYD=['HIPO6''], IDs to add=[2+5+6] ID=[7], NHYD=['HIP-6YDRAGE )values [ 0.0 (mm) - (ha-m)</pre>
<pre>N5&gt; *4</pre>	<pre>RAIMFALL=[, , , , ](mm/hc), ERD=-1 ID=um=[5], NHYD=['HIPO5'], IDs to add=[3+4] ID=[6], NHYD=['Bond-Block'], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cma), CM/C=[65], TP=[0.17]hra, RAIMFALL=[, , , , ](mm/hc), END=-1 IDsum=[7], NHYD=['HIPO6''], IDs to add=[2+5+6] ID=[6], NHYD=['HIPO6''], IDs to add=[2+5+6] ID=[7], NHYD=['HIP-6YDRAGE )values [ 0.0 (mm) - (ha-m)</pre>
<pre>N5&gt; *{</pre>	<pre>RAIMFALL=[, , , , ](mm/hc), ERD=-1 ID=um=[5], NHYD=['HIPO5'], IDs to add=[3+4] ID=[6], NHYD=['Bond-Block'], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cma), CM/C=[65], TP=[0.17]hra, RAIMFALL=[, , , , ](mm/hc), END=-1 IDsum=[7], NHYD=['HIPO6''], IDs to add=[2+5+6] ID=[6], NHYD=['HIPO6''], IDs to add=[2+5+6] ID=[7], NHYD=['HIP-6YDRAGE )values [ 0.0 (mm) - (ha-m)</pre>
<pre>15 * *</pre>	<pre>RAINFALL=[, , , , ](mm/hc), ERD=-1 ID=um=[5], NHYD=['HIPO5''], IDs to add=[3+4] ID=[6], NHYD=[''HIPO5''], IDs to add=[3+4] ID=[6], NHYD=[''HIPO5''], IDs to add=[2+5+6] IDsum=[7], NHYD=[''HIPO6''], IDs to add=[2+5+6] IDsum=[7], NHYD=[''HIP-FOND''], IDin=[7], RDT=[1.0](min], TABLE of (OUFFLOW-STORAGE ) values (CRN) - (ha=n) [ 0.0 40, 0.0574 ] [ 0.0480, 0.0574 ] [ 0.0464, 0.2434 ] [ 0.0464, 0.2434 ] [ 0.0464, 0.2434 ] [ 0.0464, 1.024 ] [ 0.0464, 1.024 ] [ 0.0472, 1.5242 ] [ 0.0574, 1.5361 ] [ 1.532, 3.4096 ] [ 1.532, 3</pre>
<pre>N5&gt; *{</pre>	<pre>RAIMFALL=[, , , , ](mm/hc), EED=-1 ID=um=[5], NHYD=['HIPO5'], IDs to add=[3+4] ID=[6], NHYD=['Pond-Block'], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cma), CN/C=[65], TP=[0.17]hra, RAIMFALL=[, , , , ](mm/hc), END=-1 ID=um=[7], NHYD=['HIPO6''], IDs to add=[2+5+6] ID=um=[7], NHYD=['HIP-FOND'], IDin=[7], RDT=[1.0](min], TABLE of (OUTFLOW-STORAGE ) values (cms) - (ha-m) [ 0.044, 0.2434] [ 0.046, 0.2434] [ 0.059, 0.5834] [ 0.062, 0.6840] [ 0.042, 0.2434] [ 0.042, 0.2434] [ 0.042, 0.6844] [ 0.042, 1.9242] [ 0.147, 1.3705] [ 0.230, 1.6444] [ 0.472, 1.9242] [ 1.404, 3.1009] [ 1.262, 2.7801] [ 1.404, 3.1009] [ 1.522, 3.4096] [ 1.522, 3.4096] [ 1.522, 3.4096] [ 1.522, 3.4096] [ 1.632, 7.2462] [ 2.609, 4.3702] [ 1.9] [ 2.1, -1] (max twenty pts) ] ID = [9], NHYD=['A2'], DT=[2.5]min, AREA=[6.8](ha), DWF=[0](cma), CNC=[76], TP=[0.301hrs, RAIMFALL=[, , , , ](mm/hc), END=-1 ] ID = [10], NHYD=['A2'], DT=[2.5]min, AREA=[5.3](ha), DWF=[0](cma), CNC=[76], TP=[0.301hrs, RAIMFALL=[, , , , ](mm/hc), END=-1 ] ID = [10], NHYD=['A2'], DT=[2.5]min, AREA=[5.3](ha), DWF=[0](cma), CNC=[76], TP=[0.301hrs, RAIMFALL=[, , , ](TP=[2.5]min, AREA=[5.3](ha), DWF=[0](cma), CNC=[76], TP=[0.301hrs, RAIMFALL=[, , , ](TP=[2.5]min, AREA=[5.3](ha), DWF=[0](TP=[0](TP=[0.201hrs, TP=[0.201hrs, RAIMFALL=[, , , ](TP=[0.201hrs, TP=[0.201hrs, RAIMFALL=[, , ](TP=[0.201hrs, TP=[0.201hrs, RAIMFALL=[, ](TP=[0.201hrs, TP=[0.201hrs, TP=[0.201h</pre>
<pre>N5&gt; *{</pre>	<pre>RAIMFALL=[, , , , ](mm/hc), EED=-1 IDsum=[5], NHYD=['HIPO5'], IDs to add=[3+4] ID=[6], NHYD=['Pond-Block'], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cma), CN/C=[65], TP=[0.17]hra, RAIMFALL=[, , , , ](mm/hc), END=-1 IDsum=[7], NHYD=['HIPO6''], IDs to add=[2+5+6] IDout=[6], NHYD=['HIP-FOND'], IDin=[7], RDT=[1.0](min], TABLE of (OUTFLOW-STORAGE) values (cms) - (ha-m) [0 0.046, 0.0741] [0 0.046, 0.0741] [0 0.046, 0.0741] [0 0.047, 1.3705] [0 0.047, 1.3705] [0 0.240, 1.6444] [0 0.724, 2.2097] [1 1.262, 2.7801] [1 1.404, 3.1009] [1 2.629, 1.4024] [2 0.064, 0.7242] [2 0.064, 1.2242] [2 0.063, 7.7240] [2 0.937, 2.5010] [1 1.262, 2.7801] [1 1.404, 3.1009] [1 2.609, 4.3702] [2 0.937, 2.5010] [1 2.609, 4.3702] [2 0.947, 1.7242] [2 0.947, 1.7242] [2 0.947, 1.7242] [2 0.957, 0.5171] [2 0.957, 2.5101] [2 0.957, 2.510</pre>
<pre>15 * *</pre>	<pre>RAIMFALL=[ , , , , ](mm/hc) , EED=-1 ID=um=[ 5 ], NHYD=["HIPO5"], IDs to add=[344] ID=[ 6 ], NHYD=["Bond-Block"], DT=[2.5]min, AREA=[4.0](ha), NMF=[ 0 ](cms), CN/C=[ 85 ], TP=[0.17]hrs, RAIMFALL=[ , , , ](mm/hc), END=-1 ID=um=[ 7 ], NHYD=["HIPO5"], IDs to add=[24546] IDout=[ 6 ], NHYD=["HIP-FOND"], IDin=[ 7 ], RDT=[1.0](min], TABLE of (OUFLOW=STORAGE ) values (cms) - (ha-m) [ 0.044, 0.0574] [ 0.0454, 0.2344] [ 0.0544, 0.2344] [ 0.0544, 0.2344] [ 0.0544, 0.2344] [ 0.0544, 0.2344] [ 0.0544, 0.2344] [ 0.0544, 0.2344] [ 0.724, 2.2077] [ 0.937, 2.5010] [ 1.4044, 3.1009] [ 1.552, 3.4096] [ 1.650, 3.7240] [ 1.650, 3.7240] [ 2.409, 4.4042] [ 3.689, 4.3702] [ -1 , -1 ] (max twenty pts) </pre>

(V: (SWM-INT.OUT)	J. L. Richards & Associates Limit
00001> =================================	00136> over (min) 10.00 30.00
00002> 00003> SSSSS W W M M H H Y Y M M 000 999 999	00137> Storage Coeff. (min) = 10.00 (ii) 29.27 (ii) 00138> Unit Hyd. Tpeak (min) = 10.00 30.00
00003>         SSSSS W W M M H H Y Y M M 000         999         999         смалалада           00004>         S W W MM MM H H Y Y M M 0 0         9 9         9         9           00005>         SSSSS W W M MM M H HHHH Y M M 0 0         9 4         9 9         9           00005>         SSSSS W W M M M H HHHHH Y M M 0 0         944         9 9         9 9         Ver. 4.02           00005>         SSSSS W W M M H H H Y M M 0 0         9999         999 Uer. 4.02         00007         9999         999 Uer. 4.02           00007>         SSSSS W M M M H H H Y M M 00         9         999         999         300         30007	00139> Unit Hyd. peak (cms)= .11 .04
00006> S WW M M H H Y M M O O 9999 9999 July 1999 00007> SSSSS WW M M H H Y M M OOO 9 9 3	00141> PEAK FLOW (cms)= .16 .00 .158 (iii)
00008> 9 9 9 9 # 4418403	00142> TIME TO PEAK (hrs)= 1.29 1.75 1.292 00143> RUNOFF VOLUME (mm)= 23.43 5.17 20.508
00009> StormWater Management HYdrologic Model 999 999 =====rese 00010>	00144> TOTAL RAINFALL (mm)= 25.00 25.00 24.999 00145> RUNOFF COEFFICIENT = .94 .21 .820
00011> *********************************	00146> 00147> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
00013> ******* A single event and continuous hydrologic simulation model ******* 00014> ******* based on the principles of HYMO and its successors *******	$\begin{array}{llllllllllllllllllllllllllllllllllll$
00013> ******* A single event and continuous hydrologic simulation model *******         00014> ******* based on the principles of HYMO and its successors ******         00015> ******* OTTHYMO-03 and OTTHYMO-09.	00150> THAN THE STORAGE COEFFICIENT.
00017> ******* Distributed by: J.F. Sabourin and Associates Inc. *******	00151> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00152>
00019> ******* Gatineau. Ouebec: (819) /2/-5199 *******	00153>
00021> ************************************	00155> * 00156> * SUB-AREA No.2
00022> 00023> ++++++++++++++++++++++++++++++++++++	
00024>         ++++++         Licensed user: J. L. Richards & Associates Limited         ++++++           00025>         +++++++         Ottawa         SERIAL#:4418403         +++++++	00158>   CALIE STANDHYD   Area (ha)= 1.54 00159>   02:020 DT=2.50   Total Imp(%)= 92.00 Dir. Conn.(%)= 92.00 00160>
000265 ++++++++++++++++++++++++++++++++++++	00161> IMPERVIOUS PERVIOUS (1)
000205 *********************************	00162>         Surface Area         (ha)=         1.42         .12           00163>         Dep. Storage         (mm)=         1.57         4.67
00025> ******* ++++++ PROGRAM ARRAY DIMENSIONS ++++++ ****** 00030> ******* Maximum value for ID numbers : 10 *******	00164>         Average Slope         (%) =         .50         1.00           00165>         Length         (m) =         244.34         5.00
00030> *******         Maximum value for ID numbers : 10         *******           00031> *******         Max.number of final points : 15000         *******           00032> *******         Max.number of flow points : 15000         *******	00166> Mannings n = .030 .030 00167>
00033> *********************************	00168> Max.eff.Inten.(mm/hr) = 45.63 7.24
00035> 00036> ******************** DETAILED OUTPUT ************************	00169> over (min) 12.50 15.00 00170> Storage Coeff. (min)= 12.15 (ii) 14.15 (ii)
(()()37> ************************************	00171> Unit Hyd. Tpeak (min)= 12.50 15.00 00172> Unit Hyd. peak (cms)= .09 .08
00038> * DATE: 2009-05-15 TIME: 08:57:02 RUN COUNTER: 000199 * 00039> ************************************	00173> *TOTALS* 00174> PEAK FLOW (cms)= .12 .00 .121 (iii)
00040> * Input filename: V:\20983.DU\ENG\FINALS-1\SWMHYM-1\SWM-INT.dat * 00041> * Output filename: V:\20983.DU\ENG\FINALS-1\SWMHYM-1\SWM-INT.out *	00175> TIME TO PEAK (hrs)= 1.33 1.46 1.333 00176> RUNOFF VOLUME (mm)= 23.43 5.17 21.969
00042> * Summary filename: V:\20983.DU\ENG\FINALS~1\SWMHYM-1\SWM-INT.sum * 00043> * User comments: *	00177> TOTAL RAINFALL (mm) = 25.00 25.00 24.999
00044> * 1: 00045> * 2: *	00179>
00046> * 3:	00180>(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:00181> $CN^* = 81.0$ Ia = Dep. Storage (Above)
00047> **** <del>7*******************************</del>	00181> (1) CN* = 81.0 Ia = Dep. Storage (LAbove) 00182> (1) THE STEP (DT) SHOULD BE SMALLER OR EQUAL 00183> THAN THE STORAGE COEFFICIENT.
00049>	00184> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00185>
00051> *#***********************************	00186>
00053> *# Date : January, 2009 00054> *# Revised : N/A *	00188> *
00055> *# Developed by * Mark Buchman F T T	00189> * SUB-AREA NO.3 00190>
00056> *# Reviewed by : Guy Forget, P.Eng. 00057> *# Company : J.L. Richards & Associates Limited * 00580 *# License # : 4418403 *	00191>   CALIE STANDHYD   Area (ha)= 1.40 00192>   03:030 DT= 2.50   Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00
00058> *# License # : 4418403 * 00059> *#***********************************	00193>
00060> * 00061> *	00195> Surface Area (ha) = 1.36 .04
00062> *#***********************************	00196> Dep. Storage (mm)≈ 1.57 4.67 00197> Average Slope (%)≈ .51 1.00
00063> *# FILENAME: V:\20983.DU\ENG\SWMHYMO\20983PST.DAT * 00064> *# FILE DEVELOPED FOR SITE PLAN APPLICATION AND DETAILED DESIGN *	00198> Length (m)= 225.63 5.00 00199> Mannings n = .030 .030
00065> *# OF A FACILITY ASSOCIATED WITH THE OTTAWA COMPOSTING SITE * 00066> *#**********************************	00200> 00201> Max.eff.Inten.(mm/hr)= 45.63 7.97
00067> * 00068> ************************************	00202> over (min) 12.50 12.50
00065> * SWMHYMO FILE DEVELOPED TO INVESTIGATE FLOOD FLOWS OF THE * 00070> * PROPOSED COMPOSITING SITE UNDER POST-DEVELOPMENT UNCONTROLLED CONDITIONS *	00204> Unit Hyd. Tpeak (min)= 12.50 12.50
00071> ************************************	00205> Unit Hyd. peak (cms)= .10 .09 00206> *TOTALS*
00073> * HYDROLOGICAL ANALYSIS UNDER & 4 HP-25 MM STORM AND *	00207>         PEAK FLOW         (cms)=         .12         .00         .118 (iii)           00208>         TIME TO PEAK (hrs)=         1.33         1.42         1.333           00209>         FINOFF VOLUME (mm)=         23.43         5.17         23.991
00074> * FOR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR * 00075> ************************************	00209> RUNOFF VOLUME (mm) = 23.43 5.17 22.881 00210> TOTAL RAINFALL (mm) = 25.00 25.00 24.999
00077> * POST-DEVELOPMENT UNCONTROLLED CONDITIONS *	00211> RUNOFF COEFFICIENT = .94 .21 .915 00212>
00078> ************************************	00213> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES;
00080> * CALCULATION OF 4 HR 25 MM STORM EVENT * 00081> ************************************	00214> CN* = 81.0 Ia = Dep. Storage (Above) 00215> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
00082	00216> THAN THE STORAGE COEFFICIENT. 00217> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
00083>   FIGHT   Project dir.: V:\20983.DU\ENG\FINALS-1\SWMHYM-1\ 00084>	00218>
12BRO = 100 HIS ON 0	00220> 001:0007
00087> NRUN = 001 00089> NSTORM= 0	00222> ADD HYD (040 )   JD: NHYD AREA OPEAK TREAK BY DWF
000895	00224> ID1 01:010 2.07 .158 1.29 20.51 .000
00091>	00226>
00093>   Ptotal= 25.00 mm   Comments: 4hr-15 min 25 MM STORM EVENT (CHICAGO DI	00227> SUM 04:040 3.61 .278 1.33 22.13 .000 00228>
00094> 00095> TIME RAIN ( TIME RAIN   TIME RAIN ( TIME RAIN )	00229> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00230>
00096> hrs mm/hr   hrs mm/hr   hrs mm/hr   hrs mm/hr	00231>
00097> .25 1.777   1.25 45.631   2.25 3.138   3.25 1.675 00098> .50 2.357   1.50 11.911   2.50 2.555   3.50 1.509 00099> .75 3.618   1.75 6.051   2.75 2.165   3.75 1.376	00233>
00100> 1.00 8.975 2.00 4.108 3.00 1.885 4.00 1.266	00234>   ADD HYD (050 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF 00235> (ha) (cms) (hrs) (nom) (cms)
00101> 00102>	00236> ID1 03:030 1.40 .118 1.33 22.88 .000 00237> +ID2 04:040 3.61 .278 1.33 21.13 .000
00103> 001:0003001:0003	00238> 507 5.01 .276 1.33 21.62 .000
00105>   DEFAULT VALUES   Filename: V:\20903.DU\ENG\FINALS~1\SWMHYM~1\ORGA.VAL 00106> ICASEdy = 1 (read and print data)	00240> 00241> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
UDIU/> FileTitle= ENTER YOUR COMMENTS ON THIS LINE AND THE NEXT ONE	00242>
00109> Horton's infiltration equation parameters:	00243>
00110> [Fo= 50.00 mm/hr] [Fc= 7.50 mm/hr] [DCAY= 2.00 /hr] [F= .00 mm] 00111> Parameters for PERVIOUS surfaces in STANDHYD:	00245> * 00246> * SUB-AREA NO.4
00112> [IAper= 4.67 mm] [LGP=40.00 m] [MNP= .250] 00113> Parameters for IMPERVIOUS surfaces in STANDEVD-	00247>
00114> [IAimp= 1.57 mm] [CLI= 1.50] [MNI= .035] 00115> Parameters used in NASHYD:	00248>   CALIB STANDHYD   Area (ha)= .89 00249>   06:060 DT= 2.50   Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 00250>
00116> [Ia= 4.67 mm] [N= 3.00] 00117>	00251> IMPERVIOUS PERVIOUS (1)
00118> 001:0004	00252> Surface Area (ha) = .86 .03 00253> Dep. Storage (nm) = 1.57 4.67
00119> ***********************************	00254> Average Slope (%)= .93 .70 00255> Length (m)= 164.82 40.00
00121> ***********************************	00256> Mannings n = .030 .250 00257>
00123> * SUB-AREA No.1 00124>	00258> Max.eff.Inten.(mm/hr)= 45.63 4.42
00125>   CALIB STANDHYD   Area (ha)= 2.07	00259> over (min) 7.50 42.50 00260> Storage Coeff. (min)= 7.97 (ii) 41.62 (ii)
00126>   01:010 DT= 2.50   Total Imp(%)= 84.00 Dir. Conn.(%)= 84.00 00127>	00261> Unit Hyd. Tpeak (min)= 7.50 42.50 00262> Unit Hyd. peak (cms)= .14 .03
00128> IMPERVIOUS PERVIOUS (i) 00129> Surface Area (ha)= 1.74 .33	00263> *TOTALS*
00130> Dep. Storage (mm)= 1.57 4.67 00131> Average Slope (%)= .52 1.00	00265> TIME TO PEAK (hrs)= 1.25 2.00 1.250
00132> Length (m)= 204.72 20.00	00266> RUNOFF VOLUME (mm)= 23.43 5.17 22.682 00267> TOTAL RAINFALL (mm)= 25.00 25.00 24.999
00133> Mannings n = .030 .250 00134>	00268> RUNOFF COEFFICIENT = .94 .21 .915 00269>
00135> Max.eff.Inten.(mm/hr)= 45.63 5.37	00270> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00406> 00272> 00273> 00274> 00274> (111) P 00275> 00276> ------00277> 001:0010-----00278> * 00279> * SUB-AREA NO * SUB-AREA No.5 IMPERVIOUS 12.07 1.57 .65 Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = 00280> 00280> ------00281> ( CALIE STANDHYD | Area (ha)= 2.66 00282> | 07:070 Dr= 2.50 | Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 00283> -----IMPERVIOUS PERVIOUS (i) 4.93 4.67 1.50 00281> 00282> 00283> 00284> 00285> 00418> 00418> 00419> 00420> 00421> 00422> 00422> Surface Area(ha) =Dep. Storage(nm) =Average Slope(%) =Length(m) =Mannings n= 450.00 100.00 .08 4.67 1.50 00285> 00286> 00287> 00288> 00289> 00289> 00290> 00291> 2.58 .250 1.57 .61 207.25 .030 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 
 40.81
 12.73

 17.50
 47.50

 16.94
 (ii)
 47.35

 17.50
 47.50

 0.07
 .02
 12.73 47.50 47.35 (ii) 20.00 00424> 00425> 00425> 00426> 00427> 00427> 45.63 10.00 10.37 (ii) 10.00 .11 .24 1.29 23.43 25.00 .94 5.66 27.50 26.38 (ii) 27.50 .04 Max.eff.Inten.(mm/hr)= Max.eff.inten.(mm/nf)s over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= *TOTALS* .625 (iii) 1.458 16.085 00292> 00293> 00294> 00295> 00296> 00297> 00298> 00299> 00300> 00301> 00302> .10 2.00 8.74 25.00 .35 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = .60 1.42 23.43 25.00 .94 00429> 00429> 00430> 00431> 00432> 00433> 00433> *TOTALS* .238 (iii) 1.292 22.882 24.999 .915 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = RUNOFF COEFFICIENT = .00 1.67 5.17 25.00 24.999 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 00435> 00436> 00436> 00437> 00438> 00439> 00440> -.21 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 00302> 00303> 00304> 00305> 00306> 00307> (i) The stable shields provide the stable (Above)
 (ii) THE STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00440> -----001:0017------00441> 001:0017------00308: 
 IMPERVIOUS
 PERVIOUS (i)

 Surface Area (ha) =
 12.85
 5.25

 Dep. Storage (mm) =
 1.57
 4.67

 Average Slope (%) =
 .50
 1.50

 Length (m) =
 600.00
 100.00

 Mannings n
 =
 .030
 00448> 00447> 00448> 00449> 00450> 00451> (cms) .000 .000 SUM 08:080 3.55 .327 1.29 00316> 00317> 00318> 22.88 .000 00452> 00453> 00454> 00455> 00455> 00319> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 34.39 11.54 22.50 55.00 23.33 (ii) 54.95 (ii) 22.50 55.00 .05 .02 001:0012-----00457> 00458> 00459> 00460> 00461> 
 AREA
 QPEAK
 TPEAK
 R.V.

 (ha)
 (cms)
 (hrs)
 (nm)

 5.01
 .396
 1.33
 21.62

 3.55
 .327
 1.29
 22.88
 DWF (cms) .000 .000 *TOTALS* .562 (iii) 1.542 16.085 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .09 2.17 8.74 25.00 .53 00461> 00462> 00463> 00464> 00465> 00465> 00466> .716 1.29 22.14 1.50 23.43 25.00 .94 8.56 .000 24.999 .35 NOTE: FEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN² = 81.0 Ia = Dep. Storage (Above)
 (i) TIME STEP (DT) SHOULD BE SNALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (ii) PERA FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00467> 00468> 00469> 00470> 00470> 00471> Requested routing time step = 1.0 min. 00337> 00338> 00339> 00340> | IN>09: (090 ) | OUT<10: (POND ) 
 OUTLFOW
 STORAGE
 ALL

 OUTFLOW
 STORAGE
 OUTFLOW
 STORAGE

 (cms)
 (ha.m.)
 (cms)
 (ha.m.)

 .000
 .0000E+00
 (.593
 .6251E+00
 00472> 00473> 00473> 00473> 00475 10475 10475 10475 10475 10475 100475 1003:HIP03 10475 1003:HIP03 17.00 1046 1003:HIP03 17.00 1.625 1.54 1.608 .000 00470 1.52 1.508 .000 00470 1.508 .000 00470 1.508 .000 00470 .150 .1508 .000 .000 .000 .000 .150 .1508 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 
 AGE TABLE
 STORAGE

 OUTFLOW
 STORAGE

 (cms)
 (ha.m.)

 .553
 .6251E+00

 .654
 .6631E+00

 .950
 .6274E+00

 .90
 .2774F+00

 1.304
 .9157E+00

 .680
 .1004E+01

 2.577
 .1092E+01

 .000
 .0000E+00
 STORAGE (ha.m.) .0000E+00 .6560E-01 .1311E+00 00340> 00341> 00342> 00343> 00344> 00345> 00346> .008 00477> 00478> 00479> 00480> 00481> 00482> 00483> .093 .2831E+00 | .233 .3971E+00 | .337 .4731E+00 | .465 .5491E+00 | .531 .5871E+00 | SUM 05:HIP05 35.10 1.166 1.46 16.08 .000 00346> 00347> 00348> 00349> 00350> 00351> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. ROUTING RESULTS 00484> TPEAK R.V. (mm) 22.143 22.141 (hrs) 1.292 3.875 00352> 00353> 00354> 00355> 00356> 00356> 
 PEAK
 FLOW
 REDUCTION {Qout/Qin} (%)=
 4.470

 TIME SHIFT OF PEAK FLOW
 {min}=
 155.00

 MAXIMUM STORAGE
 USED
 {ha.m.}=.1611E+00
 00489> ------00490> | DESIGN NASHYD | Area (ha)= 4.00 Curve Number (CN)=85.00 00491> | 06:Pond-B DT= 2.50 | Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 00492> ----- U.H. Tp(hrs)= .170 4.470 00492> 00493> 00494> 00495> 00358> Unit Hyd Qpeak (cms)= .899 PEAK FLOW (cms) = .077 TIME TO PEAK (hrs) = 1.375 RUNOFF VOLUME (mm) = 6.343 TOTAL RAINFALL (mm) = 24.999 RUNOFF COEFFICIENT = .254 00495> 00496> 00497> 00497> 00498> 00499> 00500> 00501> .077 (i) * Remaining Hawthorne Industrial Park * 00501> (i) PEA 00503> 00504> -----00505> 001:0020----(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. -----00369> 00370> 00371> 00372> 00373> 00374> Surface Area(ha)=Dep. Storage(mm)=Average Slope(%)=Length(m)=Mannings n= 14.13 1.57 .60 580.00 .030 5.77 4.67 1.50 100.00 .250 
 QPEAK
 TPEAK
 R.V.
 DWF

 (cms)
 (hrs)
 (mm)
 (cms)

 .655
 1.54
 17.91
 .000

 1.166
 1.46
 16.08
 .000

 .077
 1.38
 6.34
 .000
 00375> 00376> 00377> 00378> 00378> 00380> 00381> 00382> 00382> 00383> 00384> 00385> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 34.39 22.50 21.64 (ii) 22.50 .05 11.90 52.50 52.88 (ii) 52.50 .02 00512> SUM 07:HIP06 67.56 1.887 1.50 16.28 .000 *TOTALS* .642 (iii) 1.542 16.085 24.999 .643 PEAK FLOW (cms) = TIME TO PEAK (hrs) = TUNOFF VOLUME (mm) * TOTAL RAINFALL (mm) * RUNOFF COEFFICIENT = .60 . 11 U0518> 001:0021------00520> | ROUTE RESERVOIR | 00521> | NI>07:141F06 | | 00522> | OUT<08:(HIP-PO) | 00523> ------00524> ------1.50 23.43 25.00 2.13 8.74 25.00 .35 Requested routing time step = 1.0 min. 00386 00386> 00387> 00388> 00389> 00390> 00391> 00392> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00525> 00526> 00527> 00528> 00393; 00394; 00529> 00530> 00531> 00532> 00533> 00534> 00536> 00536> 00536> 00537> 00538> 00539> 00539> 00395> 00396> 00397> 001:0015-----AREA (ha) 8.56 19.90 
 QPEAK
 TPEAK
 R.V.
 DWF

 (cms)
 (hrs)
 (mm)
 (cms)

 .032
 3.88
 22.14
 .000

 .642
 1.54
 16.08
 .000
 00398> | ADD HYD (HIP02 ) | ID: NHYD 00399: ID1 10:POND +ID2 01:HIP01 ROUTING RESULTS R.V. (mm) 16.275 16.275 00400> AREA OPEAK TPEAK 00401> 00402> 00403> (cms) 1.887 .062 (hrs) 1.500 5.417 INFLOW >07: (HIP06 ) OUTFLOW<08: (HIP-PO) . 655 67.56 67.56 SUM 02:HIP02 28.46 1.54 17.91 .000 00404> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. PEAK FLOW REDUCTION [Qout/Qin] (%)= 3.289

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. TIME SHIFT OF PEAK FLOW (min) = 235.00 MAXIMUM STORAGE USED (ha.m.) = .8484E+00 00676> 00678> 00678> 00679> 00680> 00542> 00543> 00544> 00545> 001:0022------00546> * 00547> *SUB-AREA No. 5 00548> * 001:0022------Unit Hyd Qpeak (cms)= .702 00555 PEAK FLOW (cms) = .053 (i) TIME TO PEAK (hrs) = 1.706 RUNOFF VOLUME (mm) = 4.111 TOTAL RAINFALL (mm) = 24.999 RUNOFF COEFFICIENT = .164 00556> 00557>
00558>
00559> 00692> 00693> 00693> 00694> 00695> 00696> 00698> 00698> 00700> 00701> 00702> 00703> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 76.81 10.00 9.87 (ii) 10.00 .11 00560> 15.07 12.50 11.36 (ii) 12.50 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00563> 00563> 00564> 00565> 00566> 001:0023-----.10 *TOTALS* .192 (iii) 1.083 28.548 31.860 PEAK PLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .19 1.08 30.29 31.86 .95 .00 1.17 8.52 *SUB-AREA No. 6 00567> 00567> 00569> 00570> 00571> 00572> 00703> 00704> 00705> 00706> 00707> 00708> 00708> 
 DESIGN NASHYD
 | Area
 (ha)=
 5.30
 Curve Number
 (CN)=76.00

 | 10:A3
 DT=
 2.50
 Ia
 (mm)=
 4.670
 # of Linear Res.(N)=
 3.00

 ----- U.H. Tp(hrs)=
 .804
 31.86 .27 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SNALLER OR BOULL THAN THE STORAGE COEFFICIENT.
 (iii) PERK FLOW DOES NOT INCLUDE BASEFICOW IF ANY. 00573> Unit Hyd Qpeak (cms)= .252 PEAK FLOW (cms)= .025 (i) TIME TO PEAK (hrs)= 2.333 RUNOFF VOLUME (mm)= 4.110 TOTAL RAINFALL (mm)= 24.999 RUNOFF COEFFICIENT = .164 00574> 00575> 00576> 00577> 00710> (111) FDM + L... .... 00578> 00579> 00580> 00581> 00582> 00583> 00714 001:0006------00715 * SUB-AREA No.3 00715 * SUB-AREA No.3 007179 - -----00718 | CALIB STANDKYD | Area (ha) = 1.40 00720 - -----00721 = No:3030 Dir. Conn.(%) = 97.00 00720 - -----IMPERVIOUS PERVIOUS (i) 00722 Surface Area (ha) = 1.36 00722 Dep. Storage (mm) = 1.57 00724 Average Slope (%) = .51 1.00 00725 Length (m) = 2.52.63 00726 Manings n = .030 00727 Max.eff.Inten.(mm/hr) = 76.81 16.59 00728 Max.eff.Inten.(mm/hr) = 9.35 (ii) 10.79 (ii) 00730 Storage Coeff. (min) = 10.00 00731 Nufit Hyd. Tpeak (min) = 10.00 10.00 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 

 00583>

 00584>

 00585

 00585

 00586>

 00587

 ADD HYD (Interi) [ ID: NHYD

 AREA
 OPEAK TPEAK R.V. DWF

 00580>

 D0580>

 D0590>

 HD3

 00592>

 D0593>

 SUM 01:Interi

 00594>

 76.81 16.59 10.00 10.00 9.35 (ii) 10.79 (ii) 10.00 10.00 .12 .11 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (mn)= Unit Hyd. peak (cms)= 00731> 00731> 00732> 00733> 00734> 00735> 00736> 00737> 00737> 00738> 00739> 00740> 00741> 00742> 00742> 001:0025------*TOTALS* .186 (iiii) 1.083 29.637 31.860 .930 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (nm)= TOTAL RAINFALL (nm)= RUNOFF COEFFICIENT = .18 .00 1.08 1.13 30.29 8.52 31.86 31.86 .95 .27 005993 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 01.0 Ia = Dep. Storage (Above) (ii) Tithe STBP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) FERK FLOW DOES NOT INCLUDE RASEFLOW IF ANY. 
 AREA
 QPEAK
 TPEAK
 R.V.

 (ha)
 (cms)
 (hrs)
 (mm)

 2.07
 .245
 1.08
 26.61

 1.54
 .192
 1.08
 28.55
 DWF (cms) .000 .000 Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = .33 00618> 00618> 00618> 00619> 00620> 00754> 00755> 00756> 00756> 00757> 00758> .000 
 TIME
 RAIN
 <th 00621> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00622> ------00624> 00625> 00625> 00626> 00627> 00759> 001:0008-----00766>
00767>
00768> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00769> 00780> 00781> 00782> 00783> 00783> 00784> 00785> 00786> 00647> * ORGAWORLD FILE * 00649> * 
 76.01
 10.24

 7.50
 30.00

 6.47 (ii)
 30.53 (ii)

 7.50
 30.00

 .16
 .04
 00649> * 00650> * SUB-AREA No.1 Max.eff.Inten.(mm/hr) = over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = -----00651> 00787> 00788> 00789> 00790> 00791> 00792> 00793> *TOTALS* .139 (iii) 1.042 29.637 31.860 .930 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nm) = TOTAL RAINFALL (nm) = RUNOFF COEFFICIENT = .14 .00 1.04 1.54 30.29 8.52 31.86 31.86 .95 .27 00657> 00657> 00658> 00659> 00660> 00661> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) TINE STEP (DT) SHOULD BE SHALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (ii) PEAR FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00661> 00662> 00663> 00664> 00665> 00665> 00666> Max.eff.Inten.(mm/hr)= 76.81 11.88 
 76.81
 11.88

 10.00
 22.50

 8.77
 (ii)

 10.00
 22.51

 10.00
 22.51

 11.08
 .05

 .24
 .01

 1.08
 1.38

 30.29
 8.52

 31.86
 31.86

 .95
 .27
 over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 22.50 22.21 (ii) 22.50 .05 *TOTALS* .245 (iii) 1.083 26.807 31.860 .841 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nmn) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 00668> 00669> 00670> 00671> 00672> 00673> 00674> 00675> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)

IMPERVIOUS PERVIOUS (i) 00946> Length Mannings n (m) = 450.00 100.00 Surfæce Area Dep. Storage Averæge Slope Lengtsh Mannings n 00946> 00947> 00948> 00949> 00950> 00951> 00952> 00953> 00954> 00955> 00956> 00956> (ha) = (mm) = (%) = (m) = = 2.58 1.57 .61 207.25 .030 00812> 00813> 00814> 00815> 00815> 00816> 00817> 00818> .08 4.67 1.50 25.04 37.50 37.80 (ii) 37.50 .03 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 59.23 15.00 14.60 (ii) 15.00 .08 20.00 . 250 Max.e=ff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 76.81 7.50 8.42 (ii) 7.50 .14 12.71 20.00 20.00 (ii) 20.00 .06 00819> *TOTALS* .978 (iii) 1.167 21.814 31.860 .91 1.17 30.29 31.86 .95 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = .19 1.63 13.34 31.86 00820> 00821> 00822> 00823> 00823> 00957> 00957> 00958> 00959> 00960> 00961> *TOTALS* .379 (iii) 1.042 29.637 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = RUNOFF COEFFICIENT = .38 1.04 30.29 31.86 .00 1.33 8.52 31.86 . 42 00825; (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) TINE STEP (DT) SHOULD BE SKALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (ii) PERK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00826 00828> 00827> 00828> 00829> 00830> 00831> 00961> 00962> 00963> 00964> 00965> 00966> 31.860 .95 .27 .930 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR RQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00832> 00833> 00833> 00834> 00835> 00836> -----00973> 00974> 00975> 00976> 00977> 00978> 00978> 
 Imperiod
 Imperiod
 PERVIOUS
 PERVIOUS (i)

 Surface Area
 (ha) =
 12.85
 5.25

 Dep. Storage
 (mm) =
 1.55
 4.67

 Average Storage
 (h) =
 50
 100.00

 Mannings n
 =
 .030
 .250
 (cms) .000 .000 00843> 00843> 00844> 00845> 00845> 00846> 00847> 00848> .000 00980> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00981> 00982> 00983> 00984> 00985> 00986> 00986> 00987> 00988> 00988> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 50.44 00849> 001:0012-----20.00 45.00 20.01 (ii) 44.37 (ii) 20.00 45.00 .06 .03 45.00 44.37 (ii) 45.00 
 (ha)
 (cms)
 (hrs)
 (mn)

 1D1 05:050
 5.01
 .623
 (hrs)
 (m)

 +ID2 08:080
 3.55
 .518
 1.04
 29.64

 SUM 09:090
 8.56
 1.118
 1.08
 28.76
 *TOTALS* .874 (iii) 1.292 21.814 31.860 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .80 1.25 30.29 31.86 .95 .18 1.79 13.34 31.86 00853> 00854> 00855> 00856> 00857> 00858> 00989> 00990> 00991> 00992> 00993> 00994> 00995> .000 .42 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP (UT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEPFICIENT.
 (iii) PERK FLOW DOES NOT INCLUDE BASEICOW IF ANY. 00859-00860-00862-00862-00863> ROVTS RESERVOIR | 00863> IN>09:(D90 ) | 00865> OUT<10:(POWD ) | 00855 | OUT<10:(POWD ) | 00859; 00996> 00997> 00998> 00998> 00999> 01000> Requested routing time step = 1.0 min. 00864> 00865> 00866> 00867> 00868> OUTFLOW STORAGE | OUTFLOW STORAGE 
 CRAGE TABLE
 STORAGE

 OUTFLOW
 STORAGE

 (cms)
 (fa.m.)

 .533
 .6251E+00

 .654
 .6631E+00

 .797
 .7391E+00

 .950
 .8271E+00

 .304
 .9157E+00

 1.304
 .9157E+00

 1.380
 .0042E+01

 .000
 .0000E+00
 (cms) .000 .008 .017 (ha.m.) .0000E+00 .6560E-01 008695 .008 .6560E-01 | .017 .1311E+00 | .093 .2831E+00 { .233 .3971E+00 { .337 .4731E+00 | .465 .5491E+00 | .531 .5871E+00 | 00869> 00870> 00871> 00872> 00873> 00873> 00875> 00875> 00876> 00877> 00878> 00879> 00880> 01008> 01007> 01008> 01009> 01010> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01011> ROUTING RESULTS 
 ROUTING RESULTS
 AREA
 OPEAK
 TPEAK

 INFLOW >00:
 (090)
 8.56
 1.118
 1.083

 OUTFLOW(10:
 (POND)
 8.56
 .056
 3.003
 R.V. 0.0012 0.0022 0.0034 0 0.0034 0 0.0035 *5UB-AREA NO.4 0.0055 *5UB-AREA NO.4 (mm) 28.757 28.754 00881> PEAK FLOW REDUCTION [Qout/Qin](%)= 5.030 TIME SHIFT OF PEAK FLOW (min]= 115.00 MAXIMUM STORAGE USED (ha.m.)=.2095E+00 00882> 00883> 00884> 00885> 01020> 01021> 01022> 00886> Unit Hyd Opeak (cms)= .899 
 PEAK FLOW
 (cms) =
 .145
 (i)

 TIME TO PEAK
 (hrs) =
 1.167

 RUNOFF VOLUME
 (mm) =
 10.266

 TOTAL RAINFALL
 (mm) =
 31.860

 RUNOFF COEFFICIENT
 .322
 01023> 01023> 01024> 01025> 01026> 01026> 01027> 01028> 00891> 00892> 00893> * SUB-AREA No.1 CALIE STRANDHYD | Area (ha)= 19.90 01:HIP01 DT=2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 00894>
00895>
00896> 01028> (i) P 01030> 01031> ------01032> 001:0020--01033> ------(1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 20-----Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = PERVIOUS (i) 00897> IMPERVIOUS 14.13 1.57 .60 580.00 .030 5.77 4.67 1.50 00898> 00899> 00900> 00901> 00902> DWF (cms) 100.00 .000 54.21 23.06 17.50 42.50 18.04 (ii) 42.02 (ii) 17.50 42.50 .06 .03 00903> 00903> 00904> 00905> 00906> 00907> 00908> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = 000 .06 .95 1.21 30.29 31.86 .95 00908> 00909> 00910> 00911> 00912> 00913> 00914> 00915> *TOTALS* PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nmm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 1.020 (iii) 1.250 21.814 31.860 .685 .21 1.71 13.34 31.86 .42 01046> ------01047> | ROUTE RESERVOIR | 01048> | IN>07: (HIP06 ) | 01049> | OUT<08: (HIP-PO) | 01050> ------Requested routing time step = 1.0 min. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 00916> 00917> 00918> 00919> 01051> CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01053> 01054> 01055> 01056> 00920> 01056> 01057> 01058> 01059> 01060> 01061> 01062> 01062> ROUTING RESULTS 
 ROUTING RESULTS
 AREA
 OPEAK

 INFLOW >07:
 (H1P06)
 67.56
 2.992

 OUTFLOW<08:</td>
 (H1P-PO)
 67.56
 .093
 TPEAK R.V. TPEAK (hrs) 1.208 4.444 01063> 01064> 01065> 01066> 01066> 01067> 01068> 00929> 00930> 00931> 22.009 SUM 02:HIP02 28.46 1.039 1.25 23.90 .000 PEAK FLOW REDUCTION [Qout/Qin](%)= 3.122 TIME SHIFT OF PEAK FLOW (min)= 194.17 WAXIMUM STORAGE USED (ha.m.)=.1197E+01 00932> 00933> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00935> 00935> 001:0016--------00936> * 00937> * SUB-AREA No.2 01069> 01070> 01071> -----01072> 001:0022----01073> * 009385 01074> *SUB-AREA No. 5 01075> * 010755 * 010775 | DESIGN NASHYD | Area (ha)= 6.80 Curve Number (CN)=76.00 01078 | 09:32 DT 2.50 | Ia (num)= 4.670 # of Linear Res.(N)= 3.00 010795 ------ U.H. Tp(hrs)= .370

Surface Area Dep. Storage Average Slope Length Mannings n 01081> Unit Hvd Opeak (cms)= .702 01216> 1.42 1.57 .50 244.34 .030 01081> 01082> 01083> 01084> 01085> .12 4.67 1.00 5.00 .030 
 PERK FLOW
 (cms) =
 .102
 (i)

 TIME TO PEAK
 (hrs) =
 1.458
 1.458

 RUNOFF VOLUME
 (mm) =
 6.883
 1.860

 RUNOFF COEFFICIENT
 2.216
 2.216
 (mra) = (8) = (m) = (m) = =01218> 01219> 01220> 01221> 01222> 01223> 01223> 01224> 01086> 104.19 7.50 8.73 (ii) 7.50 .14 010807> 01087> 01088> 01089> 01090> 31.02 10.00 9.85 (ii) 10.00 .11 Max.eff.Inten.(mr over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01224> 01225> 01226> 01227> 01228> 01229> 01230> 01231> 01232> 01233> 01234> 01235> _____ 01091> -----01092> 001:0023-----PEAK FLOW (cms) = PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = *TOTALS* .283 (iii) 1.042 38.845 .28 1.04 40.94 42.51 .96 01093> 01094> 01095> 01096> .01 1.13 14.70 42.51 *SUB-AREA No. 6 42.514 .35 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 81.0 IA = Dep. Storage (Above)
 ITHE STEP (DT) SHOULD BE SMALLER OR SQUAL
 THAN THE STORAGE COEFFICIENT.
 (ii) PEAK FLOW DOES NOT INCLUDE RASEFLOW IF ANY. 01100> 01101> 01102> Unit Hyd Qpeak (cms)= .252 01236> 01237> 01237> 01238> 01239> 01240> 
 PEAK FLOW
 (cms) =
 .048
 (1)

 TIME TO FEAK
 (hrs) =
 2.083
 RUNOFF VOLUME
 (mm) =
 6.863

 TOTAL RATURALL
 (mm) =
 31.860
 RUNOFF COEFFICIENT =
 .216
 01103> 01103> 01104> 01105> 01106> 01106> 01107> 01108> 01241> 001:0006-----01241> 01:0006------01242> * SUB-REA No.3 01244> ------01245> | CALIE STANDHYD 01246> | 03:030 DT= 2.50 01247> ------01246> Surface Area 01240> Surface Area 01250> Dep. Storage 01352> Average Slope (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. CALLE STANDHYD | Area (ha)= 1.40 03:030 DT= 2.50 | Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 01110> _____ Surface Area (ha) = Dep. Storage (mm) = Average Slope (%) = Length (m) = Mannings n = IMPERVIOUS PERVIOUS (i) .04 4.67 1.00 5.00 .030 1.36 .51 225.63 .030 01252> 01253> 01254> 01255> 01256> 01256> 01257> 01258> 104.19 31.02 7.50 10.00 8.28 (ii) 9.39 (ii) 7.50 10.00 .14 .12 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 01258> 01259> 01260> 01261> 01262> *TOTALS* .274 (iii) 1.042 40.157 .42.514 .945 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .27 1.04 40.94 42.51 .96 .00 1.13 14.70 42.51 .35 01263> 01263> 01264> 01265> 01266> 01267> 01268> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL OSSES: 01269> 01270> THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01142> 01143> 01144> 01145> 01145> 01146> 01147> Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = .33 SUM 04:040 3.61 .645 1.04 37.64 01281> . 000 
 TIME
 RAIN
 TIME
 RAIN
 TIME
 RAIN
 TIME

 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs

 17
 3.682
 1.00
 104.193
 1.83
 6.689
 2.67

 .33
 4.582
 1.17
 32.037
 2.00
 5.628
 2.83

 .50
 6.151
 1.33
 16.337
 2.17
 4.872
 3.00

 .67
 9.614
 1.50
 10.965
 2.33
 4.305
 1.83
 24.170
 1.67
 8.287
 2.50
 3.864
 01282> 01283> 01284> 01148> RAIN mm/hr 3.510 3.220 2.978 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01149> 01150> 01151> 01152> ____ 01285> 01285> 01286> 01287> 01287> 01288> D1288> D1288> D1288> D1289> D10 HZD (050 ) | ID: NHYD AREA OPEAK TPEAK R.V. DWF (ha) (crms) (hrs) (nm) (crms) (ha) (crms) (hrs) (nm) (crms) 01290> D1290> D1290> D1290> D10 03:03 1.40 .274 1.04 40.16 .000 01291> HID 03:050 5.01 .918 1.04 38.34 .000 01294> 01285> 01153> 01154> 01293> SUM 05:090 01294> OLIZOS NOTE: PEAK FLOWS DO NOT INCLUDE EASEFLOWS IF ANY. Surface Area (ha) = Dep. Storage (mm) = Average Slope (%) = Length (m) = Mannings n = .03 4.67 .70 .86 1.57 .93 01307> 01308> 01309> 01310> 01311> 01312> 164.82 40.00 104.19 20.32 5.00 25.00 5.72 (ii) 24.02 (ii) 5.00 25.00 .20 .05 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff.(min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 01312> 01313> 01314> 01315> 01315> 01316> 01317> 01318> Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS PERVIOUS (1) 01181> 01182> 01183> 01184> 01185> 01186> *TOTALS* .205 (iii) 1.000 40.157 42.514 .945 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .33 4.67 1.00 20.00 .250 .20 1.00 40.94 42.51 .96 .00 1.38 14.70 42.51 .35 1.74 1.57 .52 204.72 .030 01318> 01319> 01320> 01322> 01322> 01323> 01324> 01325> 01326> 01325> 01326> 01327> 01328> 01329> 01187> 104.19 7.50 7.76 (ii) 7.50 .15 01188> 01189> 01190> 01191> 01192> 24.26 17.50 17.86 (ii) 17.50 .06 Max.eff.Inten.(mm/hr)= (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 81.0 I a = Dep. Storage (Above)
 (11) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (111) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01192> 01193> 01194> 01195> 01195> 01196> 01197> 01198> 

 01228
 (111) FEAR FLOW DOLE NOT AND TO AN PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = *TOTALS* .36 1.04 40.94 42.51 .96 .362 (iii) 1.042 36.745 42.514 .864 .01 01198> 01199> 01200> 01201> 01202> 01203> 01203> 01204> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01205> (iii) 01206> 01207> -----01208> 001:0005---01209> * 01343> 01344> 01344> 01345> 01346> 01346> 01210> * SUB-AREA No.2 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 104.19 7.50 7.45 (ii) 7.50 .15 24.26 17.50 16.40 (ii) 17.50 .07 01211> ----01211> ------01212> | CALIB STANDHYD | Area (ha)= 1.54 01213> | 02:020 DT= 2.50 | Total Imp(%)= 92.00 Dir. Conn.(%)= 92.00 01214> ------01348> 01214> 01215> 01349> 01350> IMPERVIOUS PERVIOUS (i) *TOTALS*

.538 (iii) 1.042 40.157 42.514 .945 01351> PEAK FLOW 00 01486> 01487> 01488> 01489> RUNOFF COEFFICIENT = .50 .732 TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = .54 1.04 40.94 42.51 .96 1.25 14.70 42.51 01352> 01353> 01354> 01355> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) THMS STEP (DT) SHOULD BE SHALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (ii) PEAR FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01490> 01491> 01492> 01492> 01493> .35 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:  $CN^* = 81.0$  Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01356> 01358> 01358> 01359> 01360> 01361> 01362: 
 Surface Area
 IMPERIOUS
 PERVIOUS
 Surface Area

 Dep. Storage
 (ha) =
 12.85
 5.25

 Average Slope
 (b) =
 5.0
 1.50

 Length
 (m) =
 600.00
 100.00

 Mannings n
 .030
 .250
 01501> 01502> 01503> 01504> 01505> 01370> 01371> 01372> 01373> SUM 08:080 3.55 .733 1.04 40.16 .000 01505> 01506> 01507> 01508> 01509> 01510> 01511> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 73.27 42.65 17.50 35.00 17.24 (ii) 35.98 (ii) 17.50 35.00 .07 .03 01374: 01512> 01513> 01513> 01514> 01516> 01516> 01516> 01517> 01520> 01521> 01522> 01522> 01524> 01525> 01526> 01527> -PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 1.19 1.21 40.94 42.51 .96 *TOTALS* .35 1.54 21.31 42.51 .50 *TOTALS* 1.364 (iii) 1.250 31.126 42.514 .732 01381> 01382> 01383> SUM 09:090 .000 8.56 1.651 1.04 39.10 01383> 01384> 01385> 01385> 01386> 01387> 01388> 01389> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAM THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 01390> 01391> 01392> 01393> 01394> 01395> 01395> 01396> 01397> 01398> 01399> 01400> Requested routing time step = 1.0 min. OUTFLOW STORAGE TABLE (cms) (ha.m.) | (cms) (ha.m.) .000 .0008+00 | .593 .62518+00 .008 .65608-01 | .554 .66318+00 .017 .3118+00 | .950 .82748+00 .233 .3718+00 | .304 .31578+00 .337 .47318+00 | 1.304 .31578+00 .337 .47318+00 | 2.577 .10528+01 .531 .56718+00 | 2.577 .10528+01 .531 .56718+00 | 2.577 .10528+01 .531 .56718+00 | 2.577 .10528+01 .531 .56718+00 | 2.577 .10528+01 .531 .56718+00 | 2.577 .10528+01 .531 .56718+00 | 2.577 .10528+01 .531 .56718+00 | 2.577 .10528+01 .55718+00 | 2.577 .10528+01 .55718+00 | .000 .00008+00 .551 .56718+00 | .557 01528> 001:0018----- 
 11535
 112 041H1P04
 18.10
 1.364
 1.3

 01535
 SUM 05:H1P05
 35.10
 2.600
 1.3

 01535
 SUM 05:H1P05
 35.10
 2.600
 1.3

 01537
 NOTE:
 PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 01538
 SUM 05:HIP05 35.10 2.800 1.17 31.13 01400> 01401> 01402> 01403> 01404> 01405> 01405> .000 ROUTING RESULTS 
 ROUTING RESULTS
 AREA
 OPEAK
 TPEAK

 INFLOW >09:
 (090)
 8.56
 1.651
 1.042

 OUTFLOW<10:</td>
 (POND)
 8.56
 .089
 2.622
 R.V. (mm) 39.096 39.093 01406> 01407> 01408> 01409> 01410> 01411> 01542 - "SUB-AREA No.4 01543 - DESIGN NASHYD | Area (ha)= 4.00 Curve Number (CN)=85.00 01545 | 06:Pond=BDT=2.50 | Ia (mm)= 4.670 # of Linear Res.(N)=3.00 01547 - Unit Hyd Opeak (cms)= .170 01547 - 01547 - 01548 - 016 - 019 - 019 01549 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 - 016 PEAK FLOW REDUCTION [Qout/Qin](%)= 5.413 TIME SHIFT OF PEAK FLOW (min)= 95.00 MAXIMUM STORAGE USED (ha.m.)≃.2758E+00 01412> PEAK FLOW (cms) = .260 (i) TIMB TO PEAK (hrs) = 1.167 RUNOFP VOLMEE (mm) = 17.325 TOTAL RAINFALL (mm) = 42.514 RUNOFP COBFFICIENT = .408 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01423> 01423> 01424> 01425> 01425> 01426> 01427> 01428> 
 IMPERVIOUS
 PERVIOUS
 (i)

 Surface Area
 (ba) =
 14.13
 5.77

 Dep. Storage
 (mm) =
 1.57
 4.67

 Average Slope
 (8) =
 .60
 1.50

 Length
 (m) =
 580.00
 100.00

 Mannings n
 =
 .030
 .250
 14.13 1.57 .60 580.00 .030 5.77 4.67 1.50 100.00 .250 
 OPEAK
 TPEAK
 R.V.
 DWF

 (cms)
 (hrs)
 (mm)
 (cms)

 1.615
 1.21
 33.52
 .000

 2.800
 1.17
 31.13
 .000

 .260
 1.17
 17.32
 .000
 01429> 01430> 01431> 01432> 01433> 01433> 01434> 01435> 01436> 01436> 01437> 01438> 01439> 
 0.14
 2.65

 80.14
 42.65

 15.43
 (ii)

 15.43
 (ii)

 15.00
 35.00

 .07
 .03

 1.41
 .40

 1.17
 1.54

 40.94
 21.31

 42.51
 .96
 Max.eff.Inten.(mm/hr) = over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 000 *TOTALS* 1.572 (iii) 1.208 31.126 42.514 .732 PEAK FLOW (cms)= TIME TO PEAK (brs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 014385 TIME TO PEAK (hrs)= 1.17 1.54 1.200 014395 RUNOFF VOLUME (mm)= 40.94 21.31 31.124 014405 TOTAL RAINFRALL (mm)= 42.51 42.51 42.51 014415 TOTAL RAINFRALL (mm)= 42.51 42.51 42.51 014425 (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 014445 (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 014445 CN* = 81.0 Ia = Deg. Storage (Above) 01455 (11) TIME STEP (DT) SHOULD BE SHALLER OR EQUAL 014455 THAN THE STORAGE COEFFICIENT. 01445 (11) TIME STEP (DT) SHOULD BE SHALLER OR EQUAL 01445 THAN THE STORAGE COEFFICIENT. 01455 (11) TIME STEP (DT) ANEA (Cms) (hrs) (mm) 01455 (11) TIME STEP (DT) AREA (Cms) (hrs) (mm) 01455 (11) TIME ATTACH (NG) (11) DI (NT) AREA (Cms) (hrs) (mm) 01455 (11) DI (http://doi.org/10.000 8.56 0.089 2.63 39.09 01455 (110) FOND 8.56 0.089 2.63 39.09 01455 (110) FOND 8.56 1.615 1.21 33.52 01455 (110) FOND SUM 28.46 1.615 1.21 33.52 01455 (110) CONTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01465 (110) CONTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01465 (110) CONTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01465 (110) CONTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01465 (110) CONTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01465 (110) CONTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01465 (110) CONTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01465 (110) CONTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01465 (110) CONTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01465 (110) CONTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01465 (110) CONTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01465 (110) CONTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01465 (110) CONTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01465 (110) CONTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01465 (110) CONTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01465 (110) CONTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01465 (110) CONTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01465 (110) CONTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01465 (110) CONTE: PEA 
 Acquested Folting time Step = 1.0 min.

 OUTLFON
 STORAGE TABLE

 OUTLFON
 STORAGE TABLE

 (rms)
 Ina m.

 (max)
 1 OUTFLON

 (rms)
 Ina m.

 (rms)
 01578> 01579> 01580> 01581> 01582> 01583> 01583> 01584> 01585> 01586> 01586> 01588> DWF (cms) .000 .000 01588> 01589> 01590> 01591> 01592> 01593> 01594> ROUTING RESULTS 
 ROUTING RESULTS
 AREA
 QPEAK

 (ha)
 (cms)

 INFLOW >07:
 (HIPO6)
 67.56
 4.661

 OUTFLOW<08:</td>
 (HIP-PD)
 67.56
 .288
 R.V. (mm) 31.317 31.317 TPEAK (hrs) 1.167 3.597 .000 PEAK FLOW REDUCTION [Qout/Qin] (8)= TIME SHIFT OF PEAK FLOW (min)= MAXIMUM STORAGE USED (ha.m.)=. 6.182 01595> 01596> (min) = 110.00 (ha.m.) = .1656E+01 01597> 01598> 01599> 001:0022------01600> * 01463> * 01464> * SUB-AREA No.2 _____ 014649 * SUB-AREA No.2 014655 | CALIB STANDHYD | Area (ha)= 17.00 014675 | O3:HFP03 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 014675 | O3:HFP03 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 014675 | D3:HFP03 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 014705 | D3:HFP03 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 014715 | D3:HFP03 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 014725 | Average (mm)= 1.57 4.67 014725 | Length (m)= 450.00 100.00 014735 | Length (m)= 450.00 100.00 014735 | D3:HFP03 DIR = 0.30 .250 014735 | D3:HFP03 DIR = 0.30 .250 01608> 01608> 01608> 01609> 01610> 01611> Unit Hyd Qpeak (cms)= .702 
 PEAK FLOW
 (cms) =
 .187
 (i)

 TIME TO PEAK
 (hrs) =
 1.458
 1.458

 RUNOFF VOLUME
 (rmm) =
 12.131
 1071L RAINFALL
 (mm) =
 42.514

 RUNOFF COEFFICIENT
 =
 285
 285
 285
 01475> 01476> 01477> 01478> 01479> 01480> 01481> 01482> 89.76 Max.eff.Inten.(mm/hr)= 47.48 over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)≈ 12.50 12.36 (ii) 12.50 .09 30.00 30.32 (ii) 30.00 .04 01611> 01612> 01613> 01614> 01615> 01615> 01616> 01617> *TOTALS* 1.504 (iii) 1.167 31.126 42.514 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = 1.36 1.13 40.94 42.51 .37 01483> 01484> 01485> 1.46 01618> 21.31 42.51 01619> 001:0023------01620> *

J. L. Richards & Associates Limited

1621> *SUB-AREA No. 6 1622> * 1623>	01756> TIME TO PEAK (hrs)= 1.04 1.13 1.042 01757> RUMOFF VOLUME (mm)= 47.93 19.25 45.640 01758> TOTAL RAINFALL (mm)= 49.50 49.50 49.505 01758> RUNOFF COEFFICIENT = .97 .39 .922 01760> 01761> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
1627> 1628> Unit Hyd Qpeak (cms)= .252 1629> 1630> PEAK FLOW (cms)= .086 (i) 1631> TIME TO PEAK (hrs)= 2.042 1632> RUNOFF VOLUME (mm)= 12.131 1633> TOTAL RAIMPALL (mm)= 42.514	01762> CN* = 81.0 I a = Dep. Storage (Above) 01763> (i) THE STEP (DT) SHOULD BE SMALLER OR EQUAL 01764> THAN THE STORAGE COEFFICIENT. 01765> (ii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01766>
1634> RUNOFF COEFFICIENT = .285 1635> 1636> (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 1637>	01765 * 017705 * *UB-ARE No.3 017715 017725 ( CALTE STRANDHYD [ Area (ha)= 1.40 017735   03:030 DF= 2.50   Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 017745
6439>         001:0024	01775>         IMPERVIOUS         PERVIOUS         (i)           01776>         Surface Area         (ha)=         1.36         .04           01777>         Dep. Storage         (mm)=         1.57         4.67           01776>         Average Slope         (s)=         .51         1.00
1644>         +1D2 09:A2         6.80         187         1.46         12.13         000           1645>         +1D3 10:A3         5.30         .086         2.04         12.13         .000           1646>	01780>         Mannings         =         .030         .030           01781>         01782>         Max.eff.Inten.(mm/hr) =         122.14         48.18           01783>         over (min)         7.50         7.50           01784>         Storage Coeff. (min) =         7.77 (ij)         8.70 (ij)
651> 651> 001:0025 652> * CALCULATION OF 3HR - 1:20 YEAR STORM EVENT * 655> * CALCULATION OF 3HR - 1:20 YEAR STORM EVENT *	01785> Unit Hyd. Tpeak (min)= 7.50 7.50 01786> Unit Hyd. peak (cms)= .15 .14 01787> *TOTALS* 01788> PEAK FLOW (cms)= .33 .00 .329 (iii) 01789> TIME TO FEAK (hrs)= 1.04 1.08 1.042
655>         Froject dir.: V:\20983.DU\ENG\FINALS-1\SWMHYM-1\           657> [START   Project dir.: V:\20983.DU\ENG\FINALS-1\SWMHYM-1\           658>         72ERO = .00 hrs on 0           660> METOUT= 2 (output = METRIC)           661> NETNUN = 001	01788>         PEAK FLOW         (cms)=         .33         .00         .329 (iii)           01789>         TIME TO PEAK (hrs)=         .04         1.08         1.042           01790>         RUNOFF VOLUME (mm)=         47.93         19.25         47.074           01791>         TOTAL RAINPALL (mm)=         49.50         49.50         49.505           01792>         RUNOFF COEFFICIENT =         .97         .39         .951           01793>         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:         .01795>         CN* = 81.0         I = Dep. Storage (hbove)           01795>         CN* = 81.0         T = DEMLER CORE GRULE         L
662> NSTORM 0 663>	01797> THAN THE STORAGE COEFFICIENT. 01798> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01799> 01800>
667>     B=     6.014       668>     C=     816       659>     used in:     INTENSITY = A / (t + B)^C       670>     Duration of storm = 3.00 hrs       671>     Duration of storm = 13.00 hrs       672>     Storm time step = 10.00 min	018022
673> Time to peak ratio = .33 674> 675> TIME RAIN   TIME RAIN   TIME RAIN   TIME RAIN 676> hrs mm/hr   hrs mm/hr   hrs mm/hr   hrs mm/hr 676> .17 4.248 1.00 122 142   137 733 2.67 4.040	018065 SUM 04:040 3.61 .778 1.04 44.32 .000 018095 O18095 ONT INCLUDE BASEFLOWS IF ANY. 018125 O1:0008
778>         .33         5.290         1         1.17         37.285         2.00         6.502         2.83         3.714           779>         .50         7.108         1         3.3         18.954         2.17         5.625         3.00         3.434           88>         .67         11.130         1.80         1.27.00         2.33         4.969         .83         28.100         1.67         9.588         2.50         4.458         .82>           88>         0010003	O1814>         O1814>         OPEAK         TPEAK         R.V.         DWF           01816>         ADD HYD (050)                   ID: NHYD         AREA         QPEAK         TPEAK         R.V.         DWF           01816>         (mas)         (ha)         (cms)         (hrs)         (cms)         (cms)           01817>         ID1         03:030         1.40         .329         1.04         47.07         .000           01818>         + TD2         04:040         3.61         .778         1.04         44.32         .000
363     Olifouds	01819> SUM 05:050 5.01 1.107 1.04 45.09 .000 01821> 01822> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01823> 01824>
922 Parameters for PERVIOUS surfaces in STANDHYD: 933 [LAper= 4.67 man] [L6P=40.00 m] [MNP=.250] 944 Parameters for IMPERVIOUS surfaces in STANDHYD: 955 [LAimp= 1.57 mm] [L-11 = 1.50] [MNT=.035] 966 Parameters used in NASHYD: 977 [La= 4.67 mm] [N= 3.00]	01827> * SUB-AREA No.4 01829>
99> 001:0004	01833> Surface Area (ha)= .66 .03 01834> Dep. Storage (mm)= 1.57 4.67 01835> Average Slope (%)= .93 70 01835> Length (m)= 164.82 40.00 01837> Mannings n = .030 .250
04> * SUB-ARRA No.1 05> 06>   CALIE STANDHYD   Area (ha)= 2.07 07>   01:01 DT=2.50   Total Imp(%)= 84.00 Dir. Conn.(%)= 84.00 08>	01839>         Max.eff.Inten.(mm/hr)=         122.14         31.19           01840>         over (min)         5.00         20.00           01841>         Storage Coeff. (min)=         5.37 (ii)         20.78 (ii)           01842>         Unit Hyd. Tpeak (min)=         5.00         20.00           01842>         Unit Hyd. peak (min)=         5.00         20.00           01843>         Unit Hyd. peak (min)=         5.00         20.00
10> Surface Area (ha)= 1.74 (3) PENVIOS (1) 11> Dep. Storage (mm)= 1.74 (3) 12> Dep. Storage (mm)= 5.7 (1,0) 13> Length (m)= 204.72 (20.00 14> Mannings n = 0.30 .250 15>	01844>         *TOTRLS*           01845>         FEAK FLOW (cms)=         .24         .00         .245 (iii)           01845>         TIME TO PEAK (hrs)=         1.00         1.29         1.000           01845>         TIME TO PEAK (hrs)=         1.00         1.29         1.000           01845>         TUNDFF VOLUME (mm)=         47.53         19.25         47.074           01845>         TOTAL RAINFALL (mm)=         49.50         49.50         49.505           01845>         RUNOFF COEFFICIENT =         .97         .39         .951
16>         Max.eff.Inten.(mm/hr)=         122.14         34.69           17>         over (min)         7.50         15.00           18>         Storage Coeff. (min)=         7.28 (ii)         16.04 (ii)           19>         Unit Hyd. Tpeak (min)=         7.50         15.00           20>         Unit Hyd. Tpeak (min)=         7.50         15.00           21>         *TOTALS*         *TOTALS*	018515 (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 018525 C1* = 01.0 Is + Dep. Storage (Above) 018535 (ii) TIME STEP (DT) SHOULD BE SYRLING REQUAL 018545 TIME THE STORAGE COEFFICIENT. 018555 (iii) PEAK FLOW DOES NOT INCLUDE EASEFLOW IF ANY. 01855
22>         PEAK FLOW         (cms)=         .43         .02         .437 (iii)           23>         TIME TO PEAK (hrs)=         1.04         1.21         1.042           24>         RUNOFF VOLUME (mma)=         47.93         19.25         43.345           25>         TOTAL RAINFALL (mma)=         49.50         49.505         49.505           26>         RUNOFF COEFFICIENT =         .97         .39         .876           27>          .876         .876	01857>
28>     (i) ON PROCEDURE SELECTED FOR PERVIOUS LOSSES:       29>     CN* = 81.0     Ia = Dep. Storage (Above)       30>     (ii) TIME STEP (DT) SHOULD BE SWALLER OR EQUAL       31>     THAN THE STORAGE COEFFICIENT.       32>     (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	01863>   07:070 pr=2.50   Jean (ha) = 97.00 Dir. Conn. (%) = 97.00 01863>
19 5> 001:0005 16> * 17> * SUB-AREA No.2 18>	01869>         Length         (m)=         207.25         20.00           01870>         Mannings         =         .030         .250           01871>         .0372>         Max.eff.Inten.(mm/hr)=         122.14         34.69           01872>         over (min)         7.50         15.00
iO>         O2:020         DIF 2.50         Total Imp(%)=         92.00         Dir. Conn.(%)=         92.00           12>         IMPERVIOUS         PERVIOUS (i)         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         <	01875> Unit Hyd. Tpeak (min)= 7.50 15.00 01876> Unit Hyd. peak (ms)= .16 .08 01877> *20TALS* 01878> PEAK FLOW (cms)= .64 .00 .645 (iii) 01879> TIME TO PEAK (hrs)= .04 1.21 1.042
46> Length (m)= 244.34 5.00 47> Mannings n = .030 .030 48> 49> Max.eff.Inten.(mm/hr)= 122.14 42.32 50> over (min) 7.50 10.00	01881> TOTAL RAINFALL (mm) = 49.50 49.50 49.50 01882> RUNOFF COEFFICIENT = .97 .39 .951 01883> 01884> (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 01884> (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 01885> CN* = 81.0 I a = Dec. Storare (Above)
51> Storage Coeff. (min)= 8.20 (ii) 9.18 (ii) 52> Unit Hyd. Tpeak (min)= 7.50 10.00 53> Unit Hyd. peak (cms)= .14 .12 55> PEAK FLOW (cms)= .33 .01 .341 (iii)	01865- (ii) TIME STEP (DT) SHOULD BE SWALLER OR EQUAL 01887- TIAN THE STORAGE COPFICIENT. 01888- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01890

J. L. Richards & Associates Limited

1

ł

### J. L. Richards & Associates Limited

02026> | CALIB STANDHYD | Area (ha)= 18.10 04:HIP04 DT=2.50 Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 91> 001:0011-02026> 02027> 02028> 02029> 02030> 02031> 02032> 01892> -----01893> | ADD HYD (080 ) | ID: NHYD 018944 -----01895> ID1 06:060 01895- +ID2 07:070 
 AREA
 OPEAK
 TPEAK
 R.V.
 DWF

 (ha)
 (cms)
 (hrs)
 (mm)
 (cms)

 .89
 .245
 1.00
 47.07
 .000

 2.65
 .645
 1.04
 47.07
 .000
 IMPERVIOUS PERVIOUS (1) Surface Area Dep. Storage Average Slope Length Mannings n 01895> 01895> 01896> 01897> 01898> (ha) = (mm) = (%) = (m) = = 12.85 1.57 .50 600.00 .030 5.25 4.67 1.50 100.00 
 12031>
 Dep. Storage (mm)=
 1.57

 02032>
 Average Slope (%)=
 .50

 02033>
 Length (m)=
 600.00

 02034>
 Mannings n
 =
 .030

 02035>
 02036>
 Max.eff.Inten.(mm/hr)=
 93.66

 02036>
 Max.eff.Inten.(mm/hr)=
 93.66

 02037>
 over (min)
 15.00

 02038>
 Storage Coeff. (min)=
 15.61

 02040>
 Unit Hyd. Tpeak (min)=
 15.00

 02041>
 Unit Hyd. meak (mm)=
 .07

 02042>
 PEAK FLOW (cms)=
 1.49

 02042>
 TIME TO FEAK (hrs)=
 1.17

 02044>
 TUNET COEFFICIENT
 .97

 02045>
 TOTAL RAINFALL (mm)=
 49.50

 02046>
 CN*= 81.0
 IA = Dep. St

 02046>
 CN*= 81.0
 IA = Dep. St

 02046>
 CI:1 THE STEP (D') SHOULD BE SM

 02051>
 THAN THE STORACE COEFFICIENT

 02054>
 OU14
 DENST

 02054>
 OU1018=

 02055>
 OU1001 3.55 SUM 08:080 .876 1.04 47.07 .000 01899> .250 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01900> 01901> 93.86 57 15.00 32 15.61 (ii) 32 15.00 32 .07 57.19 32.50 32.28 (ii) 32.50 .03 
 AREA
 OPEAK
 TPEAK
 R.V.
 DWF

 (ha)
 (cms)
 (hrs)
 (mm)
 (cms)

 5.01
 1.107
 1.04
 45.09
 .000

 3.55
 .876
 1.04
 47.07
 .000
 1.49 1.17 47.93 49.50 .97 *TOTALS* .48 1.50 26.92 49.50 .54 TOTALS* 1.723 (iii) 1.208 37.426 49.505 .756 SUM 09:090 8.56 1.984 1.04 45.91 .000 01911> 01911> 01912> NOTE: PE 01913> 01914> ------01915> 001:0013----01916> ------NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) Tithe STEP (DT) SHOULD BE SNALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) FERK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. Requested routing time step - 1.0 min. 01920> 01921> 01922> 01923> 01925> 01926> 01927> 02061> 02062> SUM 05:HIP05 35.10 3.572 1.17 37.43 . 000 01928> 02063> 02064> 02065> 01929> 01930> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. R.V. 02066> (mma) 45.914 45.912 01933> 02068> * 02069> *SUB-AREA No.4 02070> -----01933> 01934> 01935> 01936> 01937> 01938> PEAK FLOW REDUCTION [Qout/Qin](%)= 6.640 TIME SHIFT OF PEAK FLOW (min)= 74.17 MAXIMUM STORAGE USED (ha.m.)=.31462+00 | CALIB STANDHYD | Area (ha)= 19.90 | Ol:HIPO1 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 
 IMPERVIOUS
 PERVIOUS
 (i)

 Surface Area
 (ha)=
 14.13
 5.77

 Dep. Storage
 (mm)=
 1.57
 4.67

 Average Slope
 (i)=
 60
 1.50

 Length
 (m)=
 580.00
 100.00

 Mannings n
 =
 0.30
 .250
 01950> 01950> 01951> 01952> 01953> 01954> 01955> 01956> 01956> 01958> 01958> 01959> 01960> Max.eff.Inten.(nm/hr)= over {min} Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 93.86 60.56 15.00 30.00 14.48 (ii) 30.78 (ii) 15.00 30.00 .08 .04 02093> 02094> 02095> 02096> 02097> 02097> 01961> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01962> *TOTALS* 1.983 (iii) 1.208 37.426 49.505 .756 01963> 01964> 01965> 01965> ____ PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 1.70 1.17 47.93 49.50 .97 .55 1.46 26.92 49.50 .54 02099> 001:0021-----01967> 
 Requested routing time step = 1.0 min.

 00TFLOW STORAGE TABLE

 00TFLOW STORAGE IO UTTION STORAGE

 (co) 0000E+00 | 00TFLOW STORAGE

 (co) 0000E+00 | 00TFLOW STORAGE

 (co) 0000E+00 | 00TFLOW STORAGE

 048 S740E-01 | .037

 .054 .2434E+00 | 1.262 .279EE+01

 .054 .434E+00 | 1.262 .279EE+01

 .054 .430E+00 | 1.302E+01

 .054 .4400E+00 | 1.352 .3410E+01

 .054 .102E+01 | 1.650 .3724E+01

 .644 .102E+01 | 2.409 .44370E+01

 .470 .1924E+01 | 000 .0000E+00
 01968> 01969> 01970> 01971> 01972> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES; CN* = 81.0 Ia = Dep. Storage (Above)
 ITME STEP (JT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PERK FLOW DOE NOT INCLUDE RASEFLOW IF ANY. 02103> 02106> 02107> 02108> 02109> 02110> 02110> 02111> 02112> 02113> 02114> 02115> 02115> 02116> 02117> 02118> 02119> 02120> 02120> 02122> 
 ROUTING RESULTS
 AREA
 OPEAK

 INFLOW >07:
 (HIP06)
 67.56
 5.939

 OUTFLOW<08:</td>
 (HIP-PO)
 67.56
 .487
 TPEAK (hrs) 1.167 3.361 R.V. (mm) 37.611 37.611 01985> 01985> 01986> 01987> 01988> PEAK FLOW REDUCTION [Qout/Qin] (%)= 8.200 TIME SHIFT OF PEAK FLOW (min)= 131.67 MAXIMUM STORAGE USED (ha.m.)=.1941E+01 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 8.200 02123> 01989: 001:0016-----02124> 02125> ------02125> 001:0022------02127> * 01990> 01991> 01992> 01993> 01994> * SUB-AREA No.2 
 SUB-ARGA NO.2

 | CALIE STANDHYD
 Area (ha)= 17.00

 | 03.HIP0 DF2 - 2.50
 Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00

 IMPERVIOUS PERVIOUS (i)

 Surface Area (ha)= 12.07 4.93

 Dep. Storage (mm)= 1.57 4.67

 Average Slope (%)= .65 1.50

 Length (m)= 450.00

 Mannings n

 .030 .250
 01995: IMPERVIOUS PERVIOUS (1) 12.07 4.93 1.57 4.67 01996> 01997> 01997> 01998> 01999> 02000> 02133> 02134> 02135> 02136> 02137> 02137> 02000> 02001> 02002> 02003> 02004> 02005> 02005> 02006> 
 PEAK FLOW
 (cms) =
 .252 (i)

 TIME TO PEAK
 (hrs) =
 1.417

 RUNOFF VOLUME
 (mm) =
 16.075

 TOTAL RAINFALL
 (mm) =
 49.505

 RUNOFF COEFFICIENT
 3.25
 Max.eff.Inten.(mm/hr)= 105.17 63.81 12.50 27.50 11.60 (ii) 27.56 (ii) 12.50 27.50 .09 .04 over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = 02139> 02140> 02141> 02142> 02142> 02143> 02144> *TOTALS* 1.865 (iii) 1.167 37.426 49.505 .756 .09 1.63 1.13 47.93 49.50 .97 02008> 02009> 02010> 02011> 02011> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .51 1.42 6.92 1.42 26.92 49.50 .54 02013> 02013> 02014> 02015> 02016> 02017> 02018> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02019> 02020> 02022> 001:0017-----02023> * 02156> 
 PEAK FLOW
 (cms) =
 .115 (i)

 TIME TO PEAK
 (hrs) =
 2.000

 RUNOFF VOLUME
 (mm) =
 16.075

 TOTAL RAINFALL
 (mm) =
 49.505
 02157> 02158> 02024> * SUB-AREA No.3 02025> -----

02161> RUNOFF COEFFICIENT = .325 02163> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02164> 02165> -----02166> 001:0024-02167> -----[ CALIE STANDHYD | Area (ha)= 1.40 | 03:030 DT= 2.50 | Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 02300> 02301> 02302> 02303> 02304> 02305> -----Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS PERVIOUS (i) 
 Ceril |
 ID: NHYD
 AREA
 OPEAK
 TPEAK
 R.V.
 DWF

 (ha)
 (cms)
 (hrs)
 (mm)
 (cms)
 (hrs)
 (mm)
 (cms)

 1D1
 08:HIP-PO
 67.56
 .487
 3.36
 37.61
 .000

 +1D2
 09:A2
 6.80
 .252
 1.42
 16.08
 .000

 +1D3
 10:A3
 .30
 .115
 2.00
 16.08
 .000

 SUM
 01:Interi
 79.66
 .589
 3.04
 34.34
 .000
 02160> | ADD HYD (Interi) | ID: NHYD AREA (22160> ------ (ba) 1.36 1.57 .51 225.63 .04 4.67 1.00 5.00 .030 02160> 02169> 02170> 02171> 02172> 02173> 02174> 02306> 02306> 02307> 02308> 02309> 02310> 02311> .030 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 474.69 65.19 7.50 7.50 7.26 (ii) 8.09 (ii) 7.50 7.50 .15 .14 .40 144.69 02311> 02312> 02313> 02314> 02315> 02316> 02316> PEAK FLOW (cms) = TIME TO PEAK (hrs) = TUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COSFFICIENT = *TOTALS* .400 (iii) 1.042 55.717 58.226 .40 1.04 56.66 58.23 .97 .00 1.08 25.35 58.23 .44 02318> 02319> 02320> 02321> 02322> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 li) TIME STRP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (ii) PERK FLOW DOES NOT INCLUDE RASEIGON IF ANY.
 02323> 02196> 02197> 02198> 02199> 02200> 02200> 02201> Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = .33 
 TIME
 RAIN
 I
 TIME
 RAIN
 I
 TIME
 RAIN
 I

 hrs
 mm/hr
 hrs
 <td TIME RAIN hrs mm/hr 2.67 4.701 2.83 4.310 3.00 3.983 02202> 02203> 02204> 02205> 02205> 02206> 02207> 02208> Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = .86 1.57 .93 .03 4.67 .70 02361> 02362> 02363> 02365> 02365> 02365> 02365> 02365> 02369> 02370> 02371> 02372> 02373> 02373> 02375> 02375> 02375> 164.82 40.00 02230> * 02231> * SUB-AREA No.1 Max.eff.Inten.(mm/hr) = over (min) Storage Coeff.(min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = 144.69 5.00 5.02 (ii) 5.00 .22 .30 1.00 44.12 17.50 18.44 (ii) 17.50 .06 02231> * SUB-AREA No.1 02233> | CALIE STANDHYD | Area (ha)= 2.07 02234> | 01:010 DF 2.50 | Total Imp(s)= 84.00 Dir. Conn.(s)= 84.00 02235> | IMPERVIOUS PERVIOUS (i) 02236> Surface Area (ha)= 1.74 .33 02236> Length (h)= 1.52 1.67 02230> Length (h)= 204.72 20.00 02240> Length (h)= 204.72 20.00 02240> Mannings n = .030 .250 02240> | IMPERVIOL Read (h)= 2.07 02240> | Impervious PERVIOUS (i) 02240> | Impe *TOTALS* .296 (iii) 1.000 55.717 58.226 .957 PEAK FLOW (cms) = TIME TO PEAK (hrs) = TUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .30 1.00 56.66 58.23 .97 .00 1.25 25.35 58.23 .44 02240> 02241> 02242> 02243> 02244> 02245> 144.69 47.07 7.50 15.00 6.81 (ii) 14.56 (ii) 7.50 15.00 .16 .08 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 02377> 02378> 02379> 02380> 02381> 02382> 02383> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (i) IN PROLEDORE SELECTED FOR PERVIOUS LOSSES:
 (C) R = 81.0 I a = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFTCIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02245> 02246> 02247> 02248> 02249> 02250> 02251> 02251> .532 (iii) 1.042 51.647 58.226 .887 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .52 1.04 56.66 58.23 .97 . 03 _____ 02253> 02253> 02254> 02255> 02256> 02256> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (i) TIME STEP (DT) SHOULD BE SWALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (ii) PERK FLOW DOES NOT INCLUDE BASEFIOW IF ANY. 02258> 02259> 02260> 02261> 02262> 02263> 02264> . 02396> 02396> 02397> 02398> 02399> 02400> 001:0005-----144.69 7.50 6.54 (ii) 7.50 .16 .78 * SUB-AREA No.2 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 51.33 02265> ------02265> (CALIE STANDHYD | Area (ha)= 1.54 02267> | 02:020 DT= 2.50 | Total Imp(%)= 92.00 Dir. Conn.(%)= 92.00 02268> -----02265: 12.50 13.16 (ii) 12.50 02400> 02401> 02402> 02403> 02404> 02405> 02406> 02406> 02407> Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS PERVIOUS (i) 022692 .01 1.17 25.35 58.23 .44 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .78 1.04 56.66 58.23 .97 02269> 02270> 02271> 02272> 02273> 02273> 02274> 02275> 1.42 1.57 .50 244.34 .030 .12 4.67 1.00 .783 (iiii) 1.042 55.717 58.226 .957 TOTALS 5.00 02408> 02409> 02410> 02411> 02412> 02412> 02413> 144.69 65.19 7.50 7.50 7.66 (ii) 8.49 (ii) 7.50 7.50 .15 .14 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 I. I. = Dep. Storage (Above)
 (ii) THE STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (iii) FRAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02276> 02276> 02277> 02278> 02279> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 02413> 02414> 02415> 02415> 02416> 02417> -02280> 02281> *70727.5* PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .40 1.04 56.66 58.23 .97 *TOTALS* .418 (iii) 1.042 54.152 58.226 .930 02282> 02283> 02283> 02284> 02285> 02285> .01 1.08 25.35 58.23 02418> 001:0011------02287> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 02289> (i) CN* = 81.0 ILa = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02290> 02291> 02292> 02293> 02426> 02427> 02427> 02428> 02429> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. •0012-----02430> 001:0012-----

025665 Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 02566> 02567> 02568> 02569> 02570> 02571> 02572> 02572> .67 1.46 34.22 58.23 .59 *TOTALS* 2.180 (iii) 1.208 45.437 58.226 .780 1.82 1.17 56.66 58.23 .97 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 02435> 02436> 02437> 02438> 02439> 02440> SUM 09:090 8.56 2.410 1.04 54.45 .000 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02575> 02575> 02576> 02577> 02577> 02578> (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 02441> (a) FIGURATION CONTRACTOR FOR FORMULA DATA
 (b) CN* = 81.0 I a = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEPTCIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE ERSEFLOW IF ANY. 02442> 001:0013----- 
 02443>
 02443>

 02443>
 Roure RESERVOIR

 02444>
 Roure RESERVOIR

 02445>
 IN-09:(100)

 02447>
 IN-09:(100)

 00TFLOW
 STORAGE

 00TFLOW
 STORAGE
 02579> 02580> 02448> 02449> 02450> 02451> 02452> 02452> 02453> 02454> 02455> 02456> 02590-02591> NOTE: Pr 02592> 02593> -----02594> 001:0019----NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY 02457> R.V. (mm) 54.451 54.449 02458> 02459> ROUTING RESULTS 02460> 02461> 02462> 02595> * 02596> *SUB-AREA No.4 02597> ------PEAK FLOW REDUCTION {Qout/Qin} {%}= 7.838 TIME SHIFT OF PEAK FLOW (min)≃ 60.83 MAXIMUM STORAGE USED (ha.m.)=.3612E+00 02597> ------02598> | DESIGN NASHYD | Area (ha)= 4.00 Curve Number (CN)=85.00 02599> | 06:Pond-B Dr= 2.50 | Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 02600> ------ U.H. Tp(hrs)= .170 02463> 02464> 02601> 02602> 02603> 02604> 02605> 02606> 02606> 02608> 02609> 02610> 02611> Unit Hyd Qpeak (cms)= .899 
 PEAK FLOW
 (cms) =
 .459
 (i)

 TIME TO PEAK
 (hrs) =
 1.167

 RUNOFF VOLUME
 (mm) =
 29.155

 TOTAL RAINFALL
 (mm) =
 58.226

 RUNOFF COEFFICIENT
 =
 .501
 02474> ------02475> | CALIB STANDHYD | Area (ha)= 19.90 02476> | 01:HIP01 DF= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 02477> ------(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02477> 02478> 02479> 02612> IMPERVIOUS PERVIOUS (1) Surface Area (ha)= Dep. Storage (mm)≈ Average Slope (%)= Length (m)= Mannings n = 5.77 4.67 1.50 14.13 1.57 .60 580.00 .030 02480> 02481: 02482> 02483> 02484> 100.00 02617> 02618> 02619> 02620> 02621> 02622> 02484> 02485> 02485> 02486> 02487> 02488> 02488> 02489> 02490> 02491> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 124.54 81.98 12.50 27.50 12.93 (ii) 27.37 (ii) 12.50 27.50 .09 .04 02622> 02623> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. *TOTALS* 2.548 (iii) 1.167 45.437 58.226 .780 02624> .77 1.42 34.22 58.23 .59 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 2.16 1.13 02491> 02492> 02493> 02494> 02495> 56.66 58.23 .97 
 OUTLFOW
 STORAGE
 TABLE

 UTFLOW
 STORAGE
 I
 OUTLOW
 STORAGE

 (cms)
 (ha.m.)
 (cms)
 (ha.m.)
 (ha.m.)

 .000
 .0000E+00
 .724
 .2210E+01

 .048
 .574DE-01
 .937
 .2501E+01

 .059
 .5334E+00
 1.426
 .2796E+01

 .056
 .8334E+00
 1.4301E+01
 .666

 .662
 .8400E+01
 1.532
 .3410E+01

 .057
 .3524E+01
 1.650
 .3724E+01

 .270
 .3402E+01
 2.409
 .4042H+01

 .280
 .1624E+01
 2.609
 .4370E+01

 .472
 .1924E+01
 0.600
 .6370E+01
 02496> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (D7) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02498> 02498> 02498> 02499> 02500> 02501> 02634> 02636> 02635> 02636> 02637> 02638> 02638> 02640> 02641> 02641> 02642> 02643> 02643> 02507> 02508> 02509> 02510> 02511> 02512> TPEAK R.V. (hrs) 1.167 3.181 (mm) 45.613 45.613 02645> 02645> 02646> 02647> 02648> 02649> 02650> PEAK FLOW REDUCTION [Qout/Qin](%)= 10.306 TIME SHIFT OF PEAK FLOW (min)= 120.83 MAXIMUM STORAGE USED (ha.m.)=.2276E+01 02513> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02513> 02514> 02515> 02515> 02516> 02516> 02517> 02517> * SUB-AREA No.2 001:0016----------02550> MAXIM 02551>-----02553> 001:0022-----02554> *008-AREA No. 5 02555> *SUB-AREA No. 5 02555> * Surface Area (ha) = Dep. Storage (mm) = Average Slope (%) = Length (m) = Mannings n = 02524> 02525> 02525> 02527> 02528> 02531> 02531> 02532> 02533> 02535> 02536> 02536> 02537> 02538> 02538> 02539> 02539> 02540> 4.93 4.67 1.50 100.00 .250 450.00 144.69 87.13 10.00 25.00 10.21 (ii) 24.30 (ii) 10.00 25.00 .11 .05 2.10 .71 1.38 2.22 
 PEAK FLOW
 (cms)=
 .343 (i)

 TIME TO PEAK
 (hrs)=
 1.417

 RUNOFF VOLUME
 (mm)=
 21.442

 TOTAL RAINFALL
 (mm)=
 58.226

 RUNOFF COEFFICIENT =
 .368
 02664> 02665> 02666> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 02667> *TOTALS* 2.398 (iii) 1.125 45.437 58.226 
 PEAK FLOW
 (cms) =
 2.10
 .71

 TIME TO PEAK
 (hrs) =
 1.08
 1.38

 RUNOFF VOLUME
 (mm) =
 56.66
 34.22

 TOTAL RAINFALL
 (mm) =
 58.23
 56.23

 RUNOFF COEFFICIENT =
 .97
 .59
 02674> * 02675> *SUB-AREA No. 6 .780 02681> 02682> 02683> 02683> 02684> 02685> 
 PEAK FLOW
 (cms) =
 .155 (i)

 TIME TO PEAK
 (hrs) =
 2.000

 RUNOFF VOLUME
 (mm) =
 21.442

 TOTAL RAINFALL
 (mm) =
 58.226

 RUNOFF COEFFICIENT
 =
 .368
 02685> 02686> 02687> 02688> 02689> 02690> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02556> 02557> 02558> 02558> Surface Area{ha}=Dep. Storage(mm)=Average Slope(%)=Length(m)=Mannings n= 02691> 02691> 02692> 02693> 001:0024------02695> (ADD HYD (Interi) | ID: NHYD AREA OPEAK TPEAK R.V. DWF 02696> ------ (ha) (cms) (hrs) (mm) (cms) 02695> IDI 08:HIP-PO 67.56 .773 .18 45.61 .000 02699> +ID2 09:A2 6.80 .343 1.42 21.44 .000 02699> +ID3 10:33 5.30 .155 2.00 21.44 .000 02700> 12.85 1.57 .50 600.00 5.25 4.67 1.50 100.00 02560> 02561> .030 .250 02562> 02563> 02564> 02565> 111.10 77.71 15.00 30.00 14.59 (ii) 29.34 (ii) Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)=

		0. 1. Alchards & Associates L
02701>	> SUM 01:Interi 79.66 .939 2.60 41.94 .000	02036> Max.eff.Inten.(mm/hr)= 161.47 78.73 02037> over (min) 7.50 7.50
02703> 02704>	> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	02837> over (min) 7.50 7.50 02838> Storage Coeff. (min)= 6.95 (ii) 7.72 (ii) 02839> Unit Hyd. Tpeak (min)= 7.50 7.50
02705>	>> 001:0025>	02840> Unit Hyd. peak (cms)= .16 .15 02841> *TOTALS*
02708>	<pre>&gt; * CALCULATION OF 3HR - 1:50 YEAR STORM EVENT * ***********************************</pre>	02842>         PEAK FLOW         (cms)=         .45         .01         .454         (iii)           02843>         TIME TO PEAK         (hrs)=         1.04         1.08         1.042           02844>         RUMOFF VOLUME         (mm)=         63.24         30.21         62.245
02710>		02845> TOTAL RAINFALL (mm)= 64.81 64.81 64.806
02712>		02846> RUNOFF COEFFICIENT = .98 .47 .960 02847> 02846> (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
02714> 02715>	> NRUN = 001	02849> CN* = 81.0 IA = Dep. Storage (Above) 02850> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
		02851> THAN THE STORGE COEFFICIENT. 02852> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
027195	> 001:0002	02853> 02854>
	>   CHICAGO STORM   IDF curve parameters: A=1569.580 >   Ptotal= 64.81 mm   B= 6.014 C= .820	02855> 001:0007 02856>
02723>	<pre>vused in: INTENSITY = A / (t + B)^C</pre>	02857>   ADD HYD (040 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF 02858> (ha) (cms) (hrs) (mm) (cms)
02725>	Duration of storm = 3.00 hrs	02859> ID1 01:010 2.07 .609 1.04 57.95 .000 02860> +ID2 02:020 1.54 .475 1.04 60.59 .000 02861>
02727> 02728>	Time to peak ratio = .33	02861>
02729> 02730>	hrs mm/hr   hrs mm/hr   hrs mm/hr	02864> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02865>
02731>	33 6.820 1 1.17 48.876 2.00 8.397 2.83 4.774	02865>
02733> 02734> 02735>	.67 14.441   1.50 16.495   2.33 6.403	02868> 02869>   ADD HYD (050 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF
02736>		02870>          (ha)         (cms)         (hrs)         (mm)         (cms)           02871>         ID1         03:030         1.40         .454         1.04         62.25         .000           02872>         +ID2         04:04         3.61         1.084         1.04         59.08         .000
02738>	001:0003	
02/41/	I DEFAULT VALUES   Filename: V:\20983.DU\ENG\FINALS-1\SWMHYM-1\ORGA.VAL ICASEdv = 1 (read and print data)	02874> SUM 05:050 5.01 1.538 1.04 59.96 .000 02875> 02876> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
02742> 02743>	FileTitle= ENTER YOUR COMMENTS ON THIS LINE AND THE NEXT ONE	02877> 02878>
02744> 02745> 02746>	Horton's infiltration equation parameters: [Fo= 50.00 mm/hr] [Fc= 7.50 mm/hr] [DCAY= 2.00 /hr] [F= .00 mm]	02879> 001:0009
02746> 02747> 02748>	[Tapers 4.67 mm] [LGP=40.00 m] (MMP= 250)	02881> * SUB-AREA No.4 02882>
02749>	[IAimp= 1.57 mm] [CLI= 1.50] [MNI= .035]	02803>   CALIB STANDHYD   Area (ha)= .89 02804>   06:060 DT= 2.50   Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 02805>
02751> 02752>	[Ia= 4.67 mm] [N= 3.00]	02885> IMPERVIOUS PERVIOUS (i) 02887> Surface Area (ha)= .86 .03
02753>	001:0004	02888> Dep. Storage (mm)= 1.57 4.67 02889> Average Slope (%)= .93 .70
02755> 02756> 02757>	· ********	02890> Length (m)= 164.82 40.00 02891> Mannings n = .030 .250
02758>	* SUB-AREA No.1	02892> 02893> Max.eff.Inten.(mm/hr)= 161.47 53.28
02760>	CALIB STANDHYD   Area (ha)= 2.07   01:010 DT= 2.50   Total Imp(%)= 84.00 Dir. Conn.(%)= 84.00	02894>         over (min)         5.00         17.50           02895>         Storage Coeff. (min)=         4.80 (ii)         17.24 (ii)           02895>         Unit Hvd. Thesk (min)=         5.00         17.50
02762> 02763>		02896> Unit Hyd. Tpeak (min)= 5.00 17.50 02897> Unit Hyd. peak (cms)= .23 .07 02896> *TOTALS*
02764> 02765>	Surface Area (ha) = 1.74 .33	02899> PEAK FLOW (cms)= .33 .00 .335 (iii) 02900> TIME TO PEAK (hrs)= 1.00 1.25 1.000
02766>	Length $(m) = 204.72 = 20.00$	02901> RUNOFF VOLUME (mm) = 63.24 30.21 62.245 02902> TOTAL RAINFALL (mm) = 64.81 64.81 64.806
02768> 02769> 02770>		02903> RUNOFF COEFFICIENT = .98 .47 .960
02771>	over (min) 7.50 12.50	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
02773> 02774>	Unit Hyd. Tpeak (min) = 7.50 12.50 Unit Hyd. peak (cms) = .16 .09	02908> THAN THE STORE COEFFICIENT. 02909> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
02775> 02776>	*TOTALS* PEAK FLOW (cms)= .59 .03 .609 (iii)	02910> 02911>
02777> 02778> 02779>	RUNOFF VOLUME (mm) = 63.24 30.21 57.952	02912> 001:0010
02780>	TOTAL RAINFALL (mm) = 64.81 64.81 64.806 RUNOFF COEFFICIENT = .98 .47 .894	02914> * SUB-AREA No.5 02915>
02782> 02783>	(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)	029165 - CALIB STANDHYD.   Area (ha)= 2.66 029165   CALIB STANDHYD.   Area (ha)= 2.66 029175   07:070 DT= 2.50   Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 029185
02784> 02785>	THAN THE STORAGE COEFFICIENT.	0291>> IMPERVIOUS PERVIOUS (i) 02920> Surface Area (ha)= 2.56 .00
02786> 02787>	(111) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	02921> Dep. Storage (mm) = 1.57 4.67 02922> Average Slope (%) = .61 1.50
02788> 02789> 02790>	001:0005	02923> Length (m) = 207.25 20.00 02924> Mannings n = .030 .250
02791>	* SUB-AREA No.2	02925> 02926> Max.eff.Inten.(mm/hr)= 161.47 62.27 02927> over (min) 7.50 12.50
02793>		02928> Storage Coeff. (min)= 6.26 (ii) 12.39 (ii) 02929> Unit Hyd. Theak (min)= 7.50 12.50
02795> 02796>	IMPERVIOUS PERVIOUS (1)	02930> Unit Hyd. peak (mn) = 7.50 12.50 02930> Unit Hyd. peak (cms) = .17 .09 02931> *TOTALS*
02797>	Surface Area $(ha) = 1.42$ .12 Dep. Storage $(nu) = 1.57$ 4.67	TOTALS
02799> 02800> 02801>	Average Slope         (%) =         .50         1.00           Length         (m) =         244.34         5.00           Manninger	02934>         RUNOFF VOLUME         (nun) =         63.24         30.21         62.245           02935>         TOTAL RAINFALL         (nun) =         64.81         64.81         64.806
02801> 02802> 02803>	Mannings n = .030 .030 Max.eff.Inten.(mun/hr) = 161.47 78.73	02938> RUNOFF COEFFICIENT = .98 .47 .960 02937>
02803>	$r_{max,eir.inten.(mm/nr)} = r_{01.4} / r_{8.73} / r_{8.75} / r_{50} / r_{$	02938>     (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSES:       02930>     CD* = 81.0       1a = Dep. Storage (Above)       02940>     (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
		02940> (11) TIME STEP (DT) SHOULD BE SWALLER OR EQUAL 02941> THAN THE STORAGE COEFFICIENT. 02942> (111) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
02806> 02807>	Unit Hyd. Tpeak (min)= 7.50 7.50	
02807> 02808> 02809>	Unit Hyd. Tpeak (min) = 7.50 7.50 Unit Hyd. peak (cms) = .15 .14 *TOTALS*	02943> 02944>
02807> 02808> 02809> 02810> 02811>	Unit Hyd. Tpeak (min) = 7.50 7.50 Unit Hyd. peak (cms) = .15 .14 *TOTALS*	02943> 02944> 02945> 001:0011 02945>
02807> 02808> 02809> 02810> 02811> 02812> 02812> 02813>	Unit Hyd. Tpeak (min) = 7.50 7.50 Unit Hyd. peak (cms) = .15 .14 PEAK FLOW (cms) = .46 .02 .475 (iii) TIME TO PEAK (hrs) = 1.04 1.08 1.042	02943> 02944>
02807> 02808> 02809> 02810> 02811> 02812> 02813> 02814> 02814> 02815>	Unit Hyd. Tpeak (min) = 7.50 7.50 Unit Hyd. peak (min) = 7.50 7.50 *TOTALS* PEAK FLOW (cms) = .15 .14 *TOTALS* TIME TO PEAK (hrs) = 1.04 1.06 1.042 RUNOFF VOLUME (mm) = 63.24 30.21 60.594 TOTAL RAINFALL (mm) = 64.81 64.81 64.806 RUNOFF COEFFICIENT = .98 .47 .935 (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES	02943> 02944> 02945> 011:0011 02945> 011:0011 02945> 02945> 02945> 1 ADD HYD (080)   ID: NHYD AREA QPEAK TPEAK R.V. DWF 02946> (ha) (cms) (hrs) (mm) (cms) 02949> ID1 06:060 .89 .335 1.00 62.25 .000 02950> 4D2 07:070 2.66 .886 1.04 62.25 .000
02807> 02808> 02809> 02810> 02812> 02812> 02813> 02814> 02815> 02816> 02815> 02816>	Unit Hyd. Tpeak (min) = 7.50 7.50 Unit Hyd. peak (min) = 7.50 7.50 *TOTALS* PERK FLOW (cms) = .15 .14 *TOTALS* TIME TO PEAK (hrs) = 1.04 1.06 1.042 RUNOFF VOLIME (mm) = 63.24 30.21 60.594 TOTAL RAINFALL (mm) = 64.81 64.81 64.806 RUNOFF COEFFICIENT = .98 .47 .935 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Is a Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL	02943> 02943> 02945> 011:0011
02807> 02808> 02809> 02810> 02812> 02813> 02814> 02815> 02816> 02816> 02817> 02818> 02819>	Unit Hyd. Tpeak (min) = 7.50 7.50 Unit Hyd. peak (min) = 7.50 7.50 *TOTALS* PEAK FLOW (cms) = .15 .14 *TOTALS* TIME TO PEAK (hrs) = 1.04 1.06 1.042 RUNOFF VOLUME (mm) = 63.24 30.21 60.594 TOTAL RAINFALL (mm) = 64.81 64.81 64.806 RUNOFF COEFFICIENT = .98 .47 .935 (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES	02943> 02943> 02945> 011:0011
02807> 02808> 02809> 02810> 02812> 02812> 02813> 02814> 02815> 02816> 02817> 02818> 02818> 02818> 02818> 02819> 02820> 02821>	Unit Hyd. Tpeak (min) = 7.50 7.50 Unit Hyd. Tpeak (min) = 7.50 7.50 Unit Hyd. Tpeak (mms) = .15 .14 PEAK FLOW (cms) = .46 .02 .475 (iii) TIME TO PEAK (hrs) = 1.04 1.06 1.042 RUNOFF VOLIME (mm) = 63.24 30.21 60.594 TOTAL RAINFALL (mm) = 64.81 64.81 64.806 RUNOFF COEFFICIENT = .98 .47 .935 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Is = Dep. Storiage (Above) (ii) TIME STEP (DT) SHOULD BE SWALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	02943> 02943> 02944>
02807> 02808> 02809> 02810> 02812> 02812> 02813> 02814> 02815> 02815> 02815> 02816> 02817> 02818> 02819> 02819> 02822> 02822> 02822> 02822> 02822>	Unit Hyd. Tpeak (min) = 7.50 7.50 Unit Hyd. Tpeak (min) = 7.50 7.50 Unit Hyd. Tpeak (min) = 1.5 1.4 PEAK FLOW (cms) = 1.6 .02 .475 (iii) TIME TO PEAK (hrs) = 1.04 1.06 1.042 RUNOFF VOLIME (mm) = 63.24 30.21 60.594 TOTAL RAINFALL (mm) = 64.81 64.81 64.806 RUNOFF COEFFICIENT = .98 .47 .935 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (ii) TIME STEP (D) Is = Dep. Storage (Above) (iii) TIME STEP (D) Is = Dep. Storage (Above) (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 	02943> 02943> 02944>
02807> 02808> 02809> 02810> 02812> 02813> 02813> 02814> 02815> 02815> 02815> 02815> 02815> 02819> 02820> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822>	Unit Hyd. Tpeak (min) = 7.50 7.50 Unit Hyd. Tpeak (min) = 7.50 7.50 Unit Hyd. Tpeak (min) = 1.5 .14 PEAK FLOW (cms) = .46 .02 .475 (iii) TIME TO PEAK (hrs) = 1.04 1.06 1.042 RUNOFF VOLUME (mm) = 63.24 30.21 60.594 TOTAL RAINFALL (mm) = 64.81 64.81 64.806 RUNOFF COEFFICIENT = .98 .47 .335 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 	02943> 02944> 02945> 001:0011
02807> 02808> 02808> 02810> 02812> 02812> 02813> 02814> 02815> 02816> 02815> 02816> 02818> 02820> 02821> 02822> 02822> 02822> 02824> 02822> 02824> 02825> 02825> 02825> 02825> 02825>	Unit Hyd. Tpeak (min) = 7.50 7.50 Unit Hyd. peak (min) = 7.50 7.50 Unit Hyd. peak (mms) = 1.15 .14 PEAK FLOW (mms) = 46 .02 .475 (iii) TIME TO PEAK (hrs) = 1.04 1.08 1.042 RUNOFF VOLIME (mm) = 63.24 30.21 60.594 TOTAL RAINFALL (mm) = 64.81 64.81 64.806 RUNOFF COEFFICIENT = .98 .47 .935 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Is = Dep. Storage (Above) (ii) TINS THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 001:0006	02943> 02944> 02945> 001:0011
02807> 02808> 02808> 02810> 028110> 028112> 028112> 02812> 02814> 02815> 02815> 02815> 02815> 02815> 02819> 02819> 02821> 02822> 02822> 02822> 02822> 02824> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825>	Unit Hyd. Tpeak (min) = 7.50 7.50 Unit Hyd. peak (min) = 7.50 7.50 Unit Hyd. peak (mms) = 1.15 1.4 PEAK FLOW (mms) = 4.6 .02 .475 (iii) TIME TO PEAK (hrs) = 1.04 1.08 1.042 RUNOFF VOLIME (mm) = 63.24 30.21 60.594 TOTAL RAINFALL (mm) = 64.81 64.81 64.806 RUNOFF COEFFICIENT = .98 .47 .935 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Is = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD E SMALER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 001:0006	02943> 02944> 02945> 001:0011
02807> 02803> 02803> 02810> 028110> 028112> 02812> 02814> 02814> 02815> 02815> 02815> 02819> 02819> 02819> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822> 02822 02822 02822 02822 02822 02822	Unit Hyd. Tpeak (min) = 7.50 7.50 Unit Hyd. peak (min) = 7.50 7.50 Unit Hyd. peak (min) = 1.5 1.4 PEAK FLOW (ms) = 1.06 1.04 TIME TO PEAK (hrs) = 1.04 1.08 1.042 RUNOFF VOLIME (mm) = 63.24 30.21 60.594 TOTAL RAINFALL (mm) = 64.81 64.81 64.806 RUNOFF COEFFICIENT = .98 47 .935 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 1.a Dep. Storage (Above) (ii) THE STEP (DT) SHOULD E SMALLEN OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 001:0006	02943> 02944> 02945> 001:0011
02807> 02808> 02810> 02811> 02812> 02812> 02813> 02814> 02815> 02815> 02815> 02815> 02815> 02815> 02820> 02820> 02820> 02822> 02822> 02822> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02825> 02	Unit Hyd. Tpeak (min) = 7.50 7.50 Unit Hyd. Tpeak (min) = 7.50 7.50 Unit Hyd. Tpeak (min) = 7.50 7.50 PEAK FLOW (cms) = 1.5 14 PEAK FLOW (cms) = 1.04 1.06 1.042 RUNOFF VOLUME (mm) = 63.24 30.21 60.594 TOTAL RAINFALL (mm) = 64.81 64.81 64.806 RUNOFF COEFFICIENT = .98 .47 .335 (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (CN = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	02943> 02944> 02945> 001:0011

J. L. Richards & Associates Limited

71> 72>	<ul> <li>  ROUTE RESERVOIR   Requested routing time step = 1.0 min.</li> <li>  IN&gt;09:(090 )  </li> <li>  OUT&lt;10:(FOND )  </li> </ul>	
÷.		
73> 74> 75>		
76> 76> 77>	.000 .00002+00   .593 .6251E+00	
78> 79>	.000 .6560E-01 .654 .6631E+00 .017 .1311E+00   .797 .7391E+00	
30>	.093 .2831E+00   .950 .8274E+00 .233 .3971E+00   1.304 .9157E+00	
81> 82> 83>	.337 .4731E+00   1.880 .1004E+01 .465 .5491E+00   2.577 .1092E+01	
34>	.531 .5871E+00   .000 .0000E+00	
85> 86>	ROUTING RESULTS AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm)	
17> 18>	OUTFLOW<10: (POND ) 8.56 .233 1.944 60.908	
9> 0>		
1> 2>	MAXIMUM STORAGE USED (ha.m.)=.3967E+00	
3> 1>		
>	001:0014 * Remaining Hawthorne Industrial Park *	
>	* * SUB-AREA NO.1	
S .		
>	CALIE STANDHYD   Area (ha)= 19.90   01:HIP01 D7= 2.50   Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00	
•	IMPERVIOUS PERVIOUS (i) Surface Area (ha) = 14.13 5.77	
>	Dep. Storage $(mm) = 1.57$ 4.67 Average Slope $(8) = .60$ 1.50	
	Length $(m) = 580.00 100.00$ Mannings n = .030 .250	
	Max.eff.Inten.(mm/hr)= 138 95 102 12	
	over (min) 12.50 25.00 Storage Coeff. (min) = 12.38 (ii) 25.60 (ii)	
	Unit Hyd. Tpeak $(\min) = 12.50$ (11) Unit Hyd. Deak $(\min) = 12.50$ 25.00 Unit Hyd. Deak $(\min) = 0.9$	
	PEAK FLOW (cms) = 2.46 .95 3.001 (iii) TIME TO PEAK (hrs) = 1.13 1.38 1.167 RUNOFF VOLUME (mm) = 63.24 30 90 51 566	
	TOTAL RAINFALL (mm) = 64.81 64.81 64.806	
	<ul> <li>(1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)</li> <li>(11) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THENT THE STORAGE COEFFICIENT.</li> </ul>	
	(11) THAN THE STORAGE COEFFICIENT. (111) PRAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	
	001:0015	
	IDD         HYD         IDI         NHYD         AREA         OPEAK         TPEAK         R.V.         DWF           IDI         0.700M         (has)         (nms)         (nms)         (cms)           + IDI         10.700M         8.56         .233         1.94         60.91         .000           + IDI         10.900M         8.56         .300         1.17         51.57         .000	
	ADD HYD (HIP02)   ID: NHYD         AREA         OPEAK         TPEAK         R.V.         DWF           IDI 10:POMD         8.56         .233         1.94         60.91         .000           +ID2 01:HIP01         19.90         3.001         1.17         51.57         .000           SUM 02:HIP02         28.46         3.092         1.17         54.37         .000	
	ADD HYD (HIP02)         ID: NHYD         AREA         OPEAK         TPEAK         R.V.         DWF           ID1         10:POND         8.56         .233         1.94         60.91         .000           +ID2         01:HP01         19.90         3.001         1.17         51.57         .000           SUM         02:HIP02         28.46         3.092         1.17         54.37         .000	
	ADD HYD (HIF02)         ID: NHYD         AREA         QPEAK         TPEAK         R.V.         DWF           ID1         (ha)         (cms)         (hrs)         (mm)         (cms)           HDD         10:POND         8.56         .233         1.94         60.91         .000           +ID2         01:HIP01         19.90         3.001         1.17         51.57         .000           SUM         02:HIP02         28.46         3.092         1.17         54.37         .000           NOTE:         PEAK         FLOWS DO NOT INCLUDE BASEFICWS IF ANY.         .000         .001         .001	
	IDD         HYD         IDI         IDI         NHYD         AREA         OPEAK         TPEAK         R.V.         DWF           IDI         10:POND         8.56         .233         1.94         60.91         .000           4TD2         01:HIP01         19.90         3.001         1.17         51.57         .000           5UM         02:HIP02         28.46         3.092         1.17         54.37         .000           NOTE:         PEAK         FLAW FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.         .001         .001         .001           001:0016         .021         .021         .021         .021         .021         .021         .021	
	ADD HYD (HIF92)   ID: NHYD         AREA         OPEAK         TPEAK         R.V.         DWF           ID1 10: POND         8.56         .233         1.94 60.91         .000           +1D2 01:HIF01         19.90         3.001         1.17         51.57         .000           SUM 02:HIF02         28.46         3.092         1.17         54.37         .000           NOTE:         PEAK         FLAW FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.         .001	
	ADD HYD (HIP02)   ID: NHYD         AREA         OPEAK         TPEAK         R.V.         DWF           ID1 10: POND         8:56         .233         1.94         60.91         .000           +ID2 01: HIP01         19:90         3.001         1.17         51.57         .000           SUM 02: HIP02         28.46         3.092         1.17         54.37         .000           NOTE:         PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.         .001:0016	
	ADD HYD (HIP02)   ID: NHYD         AREA         OPEAK         TPEAK         R.V.         DWF           ID1 10: POND         8:56         .233         1.94         60.91         .000           +ID2 01: HIP01         19:90         3.001         1.17         51.57         .000           SUM 02: HIP02         28.46         3.092         1.17         54.37         .000           NOTE:         PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.         .001:0016	
	ADD HYD (HIP02)   ID: NHYD         AREA         OPEAK         TPEAK         R.V.         DWF           ID1 10: POND         8:56         .233         1.94         60.91         .000           +ID2 01: HIP01         19:90         3.001         1.17         51.57         .000           SUM 02: HIP02         28.46         3.092         1.17         54.37         .000           NOTE:         PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.         .001:0016	
	ADD HYD (HIP02)   ID: NHYD         AREA         OPEAK         TPEAK         R.V.         DWF           ID1 10: POND         6.56         .233         1.94 60.91         .000           +1D2 01:HIP01         19.90         3.001         1.17 51.57         .000           SUM 02:HIP02         28.46         3.092         1.17 54.37         .000           NOTE:         PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	
	ADD HYD (HIP02)   ID: NHYD         AREA         OPEAK         TPEAK         R.V.         DWF           ID1 10: POND         6.56         .233         1.94 60.91         .000           + TD2 01: HIP01         19.90         3.001         1.17         51.57         .000           SUM 02: HIP02         28.46         3.092         1.17         54.37         .000           NOTE:         PEAK         FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.         .000         .001:0016         .000	
	ADD HYD (HIP02)   ID: NHYD         AREA         OPEAK         TPEAK         R.V.         DWF           ID1 10: POND         6.56         .233         1.94 60.91         .000           + TD2 01: HIP01         19.90         3.001         1.17         51.57         .000           SUM 02: HIP02         28.46         3.092         1.17         54.37         .000           NOTE:         PEAK         FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.         .000         .001:0016         .000	
	ADD HYD (HIF02)         ID: NHYD         AREA         QPEAK         TPEAK         R.V.         DWF           IDI 10: POND         6.56         .233         1.94         60.91         .000           +1D2 01: HIF01         19.90         3.001         1.17         51.57         .000           SUM 02: HIF02         28.46         3.092         1.17         54.37         .000           NOTE:         PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.         .000         .001         .001         .001           001:0016	
	IDD         IDD         IDD         NEYD         AREA         OPEAK         TPEAK         R.V.         DWF           ID1         ID1         IDD         (ha)         (cms)         (hrs)         (mm)         (cms)           ID1         0:POND         8.56         .233         1.34         60.91         .000           +TD2         01:HIP01         19.90         3.001         1.17         51.57         .000           WOTE:         PEAK         FLD2         28.46         3.092         1.17         54.37         .000           NOTE:         PEAK         FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	
	IDD         IDD         IDD         NEYD         AREA         OPEAK         TPEAK         R.V.         DWF           ID1         ID1         IDD         (ha)         (cms)         (hrs)         (mm)         (cms)           ID1         0:POND         8.56         .233         1.34         60.91         .000           +TD2         01:HIP01         19.90         3.001         1.17         51.57         .000           WOTE:         PEAK         FLD2         28.46         3.092         1.17         54.37         .000           NOTE:         PEAK         FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	
	ADD HYD (HIF02)         ID: NHYD         AREA         OPEAK         TPEAK         R.V.         DWF           IDI 10: POND         6.56         .233         1.94         60.91         .000           +TD2 01:HIF01         19.90         3.001         1.17         51.57         .000           SUM 02:HIF02         28.46         3.092         1.17         54.37         .000           NOTE:         PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.         .000         .001         .001         .001           001:0016	
	ADD HYD (HIP02)         ID: NHYD         AREA         OPEAK         TPEAK         R.V.         DWF           ID1 10: POND         8.56         .233         1.94 60.91         .000           +1D2 01:HIP01         19.90         3.001         1.17         51.57         .000           *1D2 01:HIP02         28.46         3.092         1.17         54.37         .000           NOTE:         PEAK         FLOW 02:HIP02         28.46         3.092         1.17         54.37         .000           NOTE:         PEAK         FLOW 02:HIP02         28.46         3.092         1.17         54.37         .000           NOTE:         PEAK         FLOW 02:HIP02         28.46         3.092         1.17         54.37         .000           NOTE:         PEAK         FLOW 02:HIP02         28.46         3.092         1.17         54.37         .000           001:0016	
	IDD         IDI         IDI         OPEN         OPEN         TPEAK         R.V.         DWF           IDI         IDI         IDI         IDI         IDI         IDI         ICR         ICR<	
	ADD HYD (HIP02)         ID: NHYD         AREA         OPEAK         TPEAK         R.V.         DWF           ID1 10: POND         8.56         .233         1.94 60.91         .000           +1D2 01:HIP01         19.90         3.001         1.17         51.57         .000           *1D2 01:HIP02         28.46         3.092         1.17         54.37         .000           NOTE:         PEAK         FLOW 02:HIP02         28.46         3.092         1.17         54.37         .000           NOTE:         PEAK         FLOW 02:HIP02         28.46         3.092         1.17         54.37         .000           NOTE:         PEAK         FLOW 02:HIP02         28.46         3.092         1.17         54.37         .000           NOTE:         PEAK         FLOW 02:HIP02         28.46         3.092         1.17         54.37         .000           001:0016	
	ADD HYD (HIP02)         ID: NHYD         AREA         OPEAK         TPEAK         R.V.         DWF           ID1 10:POND         8.56         .233         1.94 60.91         .000           4'D2 01:HIP01         19.90         3.001         1.17         51.57         .000           *UD2 01:HIP02         28.46         3.092         1.17         54.37         .000           NOTE:         PEAK         FLOW 02:HIP02         28.46         3.092         1.17         54.37         .000           NOTE:         PEAK         FLOW 02:HIP02         28.46         3.092         1.17         54.37         .000           NOTE:         PEAK         FLOW 02:HIP02         28.46         3.092         1.17         54.37         .000           001:0016         Total Imp(%)=         71.00         Dir. Conn.(%)=         50.00           'SUF-AREA NO.2         Total Imp(%)=         71.00         Dir. Conn.(%)=         50.00           'HIP03         DT= 2.50         Total Imp(%)=         70.0         Dir. Conn.(%)=         50.00           'SUFACE Area         (ha)=         12.07         FEWYIOUS         (1)         Strassee         50.00           Surface Area         (ha)=         1.57 <td></td>	
	I ADD HYD (HIP02)   ID: NHYD HD1 10: POND 8.56 .233 1.94 60.91 .000 +1D2 01:HIP01 19.90 3.001 1.17 51.57 .000         IID1 0: POND 8.56 .233 1.94 60.91 .000 +1D2 01:HIP01 19.90 3.001 1.17 51.57 .000         IID1 0: POND 8.56 .233 1.94 60.91 .000         SUM 02:HIP02 28.46 3.092 1.17 54.37 .000         NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.         001:0016	
	I ADD HYD (HIF92 )       ID: NHYD (ha)       AREA (cms)       (hrs) (hrs)       (hrs) (mm)       000 (cms)         IDI 10: POND #1D2 01: HIF02       8.56       .233       1.345       60.91       .000         *1D2 01: HIF01       19.90       3.001       1.17       51.57       .000         WID2 01: HIF02       28.46       3.092       1.17       54.37       .000         NOTE:       PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.         001:0016       *       *       SUB -AREA NO.2         I CALIS STANDHYD       1       Area (ha)=       12.07       4.93         Dep. Storage (mm)=       1.57       4.67       4.93       50.00         Surface Area (ha)=       12.07       4.93       4.93       50.00         Mannings n       .030       .250       .250       .250         Max.eff Inten.(mm/kr)=       161.47       109.61       .00       22.50         Storage Coeff.       (min)=       5.23       88       2.819       (iii)         THM TO PEAK (hrs)=       1.06       1.33       1.125       .112       .65         PEAK FLOW       (cms)=       .38       .62       .736       .736         Max.eff Inten. (mm)=       6	
	I ADD HYD (HIF92 )       ID: NHYD (ha)       AREA (cms)       (hrs) (hrs)       (hrs) (mm)       000 (cms)         IDI 10: POND #1D2 01: HIF02       8.56       .233       1.345       60.91       .000         *1D2 01: HIF01       19.90       3.001       1.17       51.57       .000         WID2 01: HIF02       28.46       3.092       1.17       54.37       .000         NOTE:       PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.         001:0016       *       *       SUB -AREA NO.2         I CALIS STANDHYD       1       Area (ha)=       12.07       4.93         Dep. Storage (mm)=       1.57       4.67       4.93       50.00         Surface Area (ha)=       12.07       4.93       4.93       50.00         Mannings n       .030       .250       .250       .250         Max.eff Inten.(mm/kr)=       161.47       109.61       .00       22.50         Storage Coeff.       (min)=       5.23       88       2.819       (iii)         THM TO PEAK (hrs)=       1.06       1.33       1.125       .112       .65         PEAK FLOW       (cms)=       .38       .62       .736       .736         Max.eff Inten. (mm)=       6	
	I ADD HYD (HIF92)   ID: NHYD HDI 10: POND       AREA (ha)       (Cms) (ha)       (ha)       (mm) (cms)       000 (cms)         IDI 10: POND       8.56       .233       1.34       60.91       .000         IDI 10: POND       8.56       .233       1.34       60.91       .000         IDI 00: POND       8.56       .3001       1.17       51.57       .000         IDI 00: POND       8.56       .3092       1.17       54.37       .000         NOTE:       PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.       .000       .001       .001         001:0016	
	I ADD HYD (HIF92)   ID: NHYD HDI 10: POND       AREA (ha)       (Cms) (ha)       (ha)       (mm) (cms)       000 (cms)         IDI 10: POND       8.56       .233       1.34       60.91       .000         IDI 10: POND       8.56       .233       1.34       60.91       .000         IDI 00: POND       8.56       .3001       1.17       51.57       .000         IDI 00: POND       8.56       .3092       1.17       54.37       .000         NOTE:       PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.       .000       .001       .001         001:0016	
	ADD HYD (HIP02)         ID: NHYD         AREA         OPEAK         TPEAK         R.V.         DWF           IDI 10: POND         6.56         .233         1.34 60.91         .000           *1D2 01: HIP01         19.90         3.001         1.17         51.57         .000           *1D2 01: HIP01         28.46         3.092         1.17         54.37         .000           NOTE:         PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.         .000         .001         .001         .001           001:0016	
	I ADD HYD (HIP02)   ID: NHYD HD1 10: POND 8.56 .233 1.94 60.91 .000 +1D2 01:HIP01 19.90 3.001 1.17 51.57 .000         I D1 0: POND 8.56 .233 1.37 54.37 .000         I D1 0: POND 8.56 .233 1.37 54.37 .000         I D2 0: FIF02 28.46 3.092 1.17 54.37 .000         NOTE: FEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.         001:0016	
	I ADD HYD (HIP02)   ID: NHYD HD1 10: POND 8.56 .233 1.94 60.91 .000 +1D2 01:HIP01 19.90 3.001 1.17 51.57 .000         I D1 0: POND 8.56 .233 1.37 54.37 .000         I D1 0: POND 8.56 .233 1.37 54.37 .000         I D2 0: FIF02 28.46 3.092 1.17 54.37 .000         NOTE: FEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.         001:0016	
	I ADD HYD (HIP02)   ID: NHYD HD1 10: POND 8.56 .233 1.94 60.91 .000 +1D2 01:HIP01 19.90 3.001 1.17 51.57 .000         I D1 0: POND 8.56 .233 1.37 54.37 .000         I D1 0: POND 8.56 .233 1.37 54.37 .000         I D2 0: FIF02 28.46 3.092 1.17 54.37 .000         NOTE: FEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.         001:0016	
	ADD HYD (HIP22)         ID: NHYD         AREA         OPEAK         TPEAK         R.V.         DWF           IDI 10:POND         6.56         .233         1.34 60.91         .000           +TD2 01:HIP01         19.90         3.001         1.17         51.57         .000           SUM 02:HIP02         28.46         3.092         1.17         54.37         .000           NOTE:         FEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.         .000         .001         .001         .001           001:0016	
	IADD HYD (HIF92)   ID: NNYD HDJ 10: POND 8.56 .233 1.394 60.91 .000 +*D2 01:HIP02 28.46 3.092 1.17 54.37 .000         WIDE 01:HIP02 28.46 3.092 1.17 54.37 .000         NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.         001:0016	
	ADD HYD (HIP22)         ID: NHYD         AREA         OPEAK         TPEAK         R.V.         DWF           IDI 10:POND         6.56         .233         1.34 60.91         .000           +1D2 01:HIP01         19.90         3.001         1.17         51.57         .000           WID2 01:HIP02         28.46         3.092         1.17         54.37         .000           NOTE:         FEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	
	ADD HYD (HIP02)   ID: NNYD       AREA       OPEAK       TPEAK       R.V.       DWF         IDI 10: POND       8.56       .233       1.345       60.91       .000         *1D2 01:HIP01       19.90       3.001       1.17       51.57       .000         *1D2 01:HIP02       28.46       3.092       1.17       54.37       .000         NOTE:       FEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	
	ADD HTD (HIFP2 ]   ID: NHYD       AREA       QPEAK       TPEAK       R.V.       DWF         ID1 10: POND       8.56       .233       1.94       60.51       .000         #ID2 01:HIP01       19.90       3.601       1.17       51.57       .000         SUM 02:HIP02       28.46       3.092       1.17       54.37       .000         NOTE:       FEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	
	IADD HYD (HIF92 ] ID: NNYD HDI 10: POND 8.56 .233 1.34 60.91 .000 +1D2 01:HIF02 28.46 3.092 1.17 54.37 .000         WIDE 01:HIF02 28.46 3.092 1.17 54.37 .000         NOTE: FEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.         001:0016	

J. L. Richards & Associates Limited

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 001:0018-----AREA (ha) 17.00 18.10 | ADD HYD (HIP05 ) | ID: NHYD QPEAK TPEAK R.V. DWF (cms) (hrs) (mm) 2.819 1.13 51.57 2.596 1.17 51.57 (cms) .000 .000 ID1 03:HIP03 +ID2 04:HIP04 SUM 05:HIP05 35.10 5.372 1.13 51.57 .000 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 001:0019-----* *SUB-AREA No.4 Unit Hyd Qpeak (cms)= .899 
 DEAK FLOW
 (Cms) =
 .551

 TIME TO PEAK
 (hrs) =
 1.125

 RUMOFF VOLUME
 (mm) =
 34.455

 TOTAL RAINFALL
 (mm) =
 64.806

 RUNOFF COEFFICIENT =
 .532
 .551 (i) 1.125 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 001:0020------ADD HYD (HIP06) | ID: NHYD AREA (ha) ID1 02:HIP02 28.46 +ID2 05:HIP05 35.10 +ID3 06:Pcnd-B 4.00 
 QPEAK
 TPEAK
 R.V.
 DWF

 (cms)
 (hrs)
 (mm)
 (cms)

 3.092
 1.17
 54.37
 .000

 5.372
 1.13
 51.57
 .000

 .551
 1.13
 34.45
 .000
 SUM 07:HIP06 67.56 8.958 1,13 51.73 .000 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 001:0021-----ROUTE RESERVOIR Requested routing time step = 1.0 min. 
 Requested Fouring time step = 1.0 mln.

 OUFLEGW
 STORAGE TABLE

 OUFLEGW
 STORAGE TABLE

 OUTELGW
 STORAGE TABLE

 (cms)
 (ha.m.)

 IN>07: (HIP06 ) OUT<08: (HIP-PO) AREA QPEAK (ha) (cms) 67.56 8.958 67.56 .973 TPEAK (hrs) 1.125 3.097 R.V. (mm) 51.735 51.735 ROUTING RESULTS INFLOW >07: (HIP06 ) OUTFLOW<08: (HIP-PO) PEAK FLOW REDUCTION [Qout/Qin](%)= 10.864 TIME SHIFT OF PEAK FLOW [min]= 118.33 MAXIMUM STORAGE USED {ha.m.}=.2534E+01 001:0022-----SUB-AREA No. 5 DESIGN NASHYD | Area (ha)= 6.60 Curve Number (CN)=76.00 09:A2 DT= 2.50 | Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= .370 Unit Hyd Qpeak (cms)= .702 
 PEAK FLOW
 (cms) =
 .417
 (i)

 TIME TO PEAK
 (hrs) =
 1.417

 RUNOFF VOLUME
 (mm) =
 25.767

 TOTAL RAINFALL
 (mm) =
 64.806

 RUNOFF COEFFICIENT
 .398
 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01:0023-----SUB-AREA No. 6 DESIGN NASHYD | Area (ha)= 5.30 Curve Number (CN)=76.00 10:A3 DT= 2.50 | Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= .804 Unit Hyd Qpeak (cms)= .252 
 PEAK FLOW
 (cms)=
 .188 (i)

 TIME TO PEAK (hrs)=
 2.000

 RUMOFF VOLUME (mm)=
 25.767

 TOTAL RAINFALL (mm)=
 64.806

 RUMOFF COEFFICIENT =
 .398
 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01:0024-----ADD HYD (Interi) | ID: NHYD AREA 
 OPEAK
 TPEAK
 R.V.

 (cms)
 (hrs)
 (mm)

 .973
 3.10
 51.73

 .417
 1.42
 25.77

 .188
 2.00
 25.77
 DWF (ba) 1D1 08:HIP-PO 67.56 +ID2 09:A2 6.80 +ID3 10:A3 5.30 (cms) .000 .000 .000 SUM 01:Interi 79.66 1.191 2.31 47.79 . 000 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. CALCULATION OF 3HR - 1:100 YEAR STORM EVENT * START | Project dir.: V:\20983.DU\ENG\FINALS-1\SWMMYM-1\ Rainfall dir.: V:\20983.DU\ENG\FINALS-1\SWMMYM-1\ TZERO = .00 hrs on 0

(	J. L. RICHARDS & ASSOCIATES Limit
03241> METOUT= 2 (output = METRIC) 03242> NRUN = 001 03243- NSTORM= 0 03244>	03376>     CN* = 81.0     Ia = Dep. Storage (Above)       03377>     (ii)     TIME STEP (DT)     Should BE SHALLER OR EQUAL       03378>     THAN THE STORAGE COEFFICIENT.       03372>     (iii)     PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
03245> 001:0002	03380>
03247>   CHICAGO STORM   IDF curve parameters: A=1735.688           03248>   Ptotal= 71.66 mm   B= 6.014           03249> - Cc .820	03382> 001:0007
03250> used in: INTENSITY = A / (t + B)^C	03384>   ADD HYD (040 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF 03385> (ha) (cms) (hrs) (mm) (cms)
03251) 03252> Duration of storm = 3.00 hrs 03253> Storm time step = 10.00 min	03386> IDI 01:010 2.07 .665 1.04 64.55 .000 03387> +ID2 02:020 1.54 .534 1.04 67.32 .000
03254> Time to peak ratio = .33	03388>
03255> 03256> TIME RAIN   TIME RAIN   TIME RAIN   TIME RAIN   TIME RAIN	03390> 03391> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
03257>         hrs         num/hr         hrs         100         178.559 <td>03392&gt; 03393&gt;</td>	03392> 03393>
03259>         .33         7.542         1.17         54.049         2.00         9.285         2.83         5.280           03260>         .50         10.159         1.33         27.319         2.17         8.024         3.00         4.879	03394> 001:0008
03261> .67 15.969   1.50 18.240   2.33 7.080   03262> .83 40.655   1.67 13.737   2.50 6.347	03396>   ADD HYD (050 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF 03397> (ha) (cms) (hrs) (nmm) (cms)
03263> 03265> 001:0003	03398> ID1 03:030 1.40 .509 1.04 69.06 .000 03399> +ID2 04:040 3.61 1.220 1.04 65.74 .000
03266>	03400> SUM 05:050 5.01 1.729 1.04 66.66 .000
02267>           DEFAULT VALUES           Filename: V:\20903.DU\ENG\FINALS-1\SWMMYM-1\ORGA.VAL           02268>	03402> 03403> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
032705 DARAMETER VALUES MUST BE ENTERD AFTER COLUMN 60 03271> Horton's infiltration equation parameters:	03404> 03405>
03272> [For 50.00 mm/h] [Fc= 7.50 mm/h] [DCAYe 2.00 /hr] [F= .00 mm] 03273> Parameters for PERVIOUS surfaces in STANDHYD:	03406> 001:0009
03274 [Theore 4.67 mm] [TCD=40.00 m] (NOTD= 250)	03408> * SUB-AREA No.4 03409>
Corr         Ling         Ling <thling< th="">         Ling         Ling         <thl< td=""><td>03410&gt;   CALIB STANDHYD   Area (ha)= .89 03411&gt;   06:060 DT=2.50   Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 03412&gt;</td></thl<></thling<>	03410>   CALIB STANDHYD   Area (ha)= .89 03411>   06:060 DT=2.50   Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 03412>
03278> [Ia= 4.67 mm] [N= 3.00] 03279>	03413> IMPERVIOUS PERVIOUS (1)
03280> 001:000403281> ************************************	03415> Dep. Storage (mm) = 1.57 4.67
03282> * ORGAWORLD FILE * 03283> ************************************	03416> Average Slope (%)= .93 .70 03417> Length (%)= 164.82 40.00 03418> Mannings n = .030 .250
03284> * 03285> * SUB-AREA No.1	03419> 03420> Max.eff.Inten.(mm/hr)= 178.56 67.61
03286> 03287>   CALIE STANDHYD   Area (ha)= 2.07	03421> over (min) 5.00 15.00 03422> Storage Coeff. (min)= 4.62 (ii) 15.92 (ii)
03288>   01:010 DT= 2.50   Total Imp(%)= 84.00 Dir. Conn.(%)= 84.00 03289>	03423> Unit Hyd. Tpeak (min)= 5.00 15.00 03424> Unit Hyd. peak (cms)= .24 .07
03290> IMPERVIOUS PERVIOUS (1) 03291> Surface Area (ha)= 1.74 .33 03292> Dep. Storage (mm)= 1.57 4.57	03425> *TOTALS* 03426> PEAK FLOW (cms)= .37 .00 .374 (iii)
03293> Average Slope (%) = .52 1.00	03427> TIME TO PEAK (hrs)= 1.00 1.21 1.000 03428> RUNOFF VOLUME (mm)= 70.09 35.46 69.056
03294> Length (m)= 204.72 20.00 03295> Mannings n = .030 .250 03296>	03430> RUNOFF COEFFICIENT = .98 .49 .964
03297> Max.eff.Inten.(mm/hr)= 178.56 74.05 03298> over (min) 7.50 12.50	03431> 03432> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 03433> CN* = 81.0 Ia = Dep. Storage (Above)
03299> Storage Coeff. (min) = 6.26 (ii) 12.72 (ii) 03300> Unit Hyd. Tpeak (min) = 7.50 12.50	03433> CN* = 81.0 Ia = Dep. Storage (Above) 03434> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 03435> THAN THE STORAGE COEFFICIENT.
03301> Unit Hyd. peak (cms) = .17 .09 03302> *TOTALS*	03436> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03437>
03303> PEAK FLOW (cms) = .66 .04 .685 (iii)	03438>
U3304> TIME TO PEAK (hrs)= 1.04 1.17 1.042 03305> RUNOFF VOLUME (mm)= 70.09 35.46 64.553 03306> TOTAL RAINFALL (mm)= 71.66 71.66 71.665	03440> * 03441> * SUB-AREA No.5
03307> RUNOFF COEFFICIENT = .98 .49 .901 03308> 03309> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES;	03442> 03443>   CALIB STANDHYD   Area (ha)= 2.66
03310>     CN* = 01.0     Ia = Dep. Storage (Above)       03311>     (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL	03444>   07:070 DT= 2.50   Total Imp(%) = 97.00 Dir. Conn.(%) = 97.00 03445>
03312> THAN THE STORAGE COEFFICIENT. 03313> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	O3446>         IMPERVIOUS         PERVIOUS (i)           03447>         Surface Area (ha)=         2.58         .08           03448>         Dep. Storage (mm)=         1.57         4.67
03314> 03315>	03449> Average Slope (%)= .61 1.50 03450> Length (m)= 207.25 20.00
03316> 001:000500000000000000000000000000	03451> Mannings n = .030 .250 03452>
03319> * SUB-AREA NO.2 03319> 03320>   CALIE STANDERD   Area (ha)= 1.54	03453> Max.eff.Inten.(mm/hr)= 178.56 74.05 03454> over (min) 5.00 12.50
03320>   CALIB STANDHYD   Area (ha}= 1.54 03321>   02:020 DT= 2.50   Total Imp(%)= 92.00 Dir. Conn.(%)= 92.00 03322>	03455> Storage Coeff. (min)= 6.01 (ii) 11.73 (ii) 03456> Unit Hyd. Tpeak (min)= 5.00 12.50 03457> Unit Hyd. peak (max)= 20 09
03323> IMPERVIOUS PERVIOUS (1)	03458> *TOTALS*
03324> Surface Area (ha)= 1.42 12 03325> Dep. Storage (nma)= 1.57 4.67 0326> Average Slope (%)= .50 1.00	U3405> PEAK FLOW (cms)= 1.03 01 1.034 (iii) 03460> TIME TO PEAK (hrs)= 1.00 1.17 1.000 03461> RUNOFF VOLUME (mm)= 70.09 35.46 69.055
03327> Length (m)= 244.34 5.00 03328> Mannings n = .030 .030	03462> TOTAL RAINFALL (num)= 71.66 71.66 71.665 03463> RUNOFF COEFFICIENT = .98 .49 .964
03329> 03330> Max.eff.Inten.(mm/hr) = 178.56 93.23	03464> 03465> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
03331> over (min) 7.50 7.50 0332> Storage Coeff. (min)= 7.04 (ii) 7.76 (ii) 0333> Unit Kud Tarak (ii)= 7.50	03466> CN* = 81.0 Ia = Dep. Storage (Above) 03467> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
03333> Unit Hyd. Tpeak (min)= 7.50 7.50 03334> Unit Hyd. peak (cms)= .16 .15 \$707ALS*	03468> THAN THE STORAGE COEFFICIENT. 03469> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
03336> PEAK FLOW (cms) = .51 .02 .534 (iii) 03337> TIME TO PEAK (brs) = 1.04 1.08 1.042	03470> 03471>
03338> RUNOFF VOLUME (mm) ≈ 70.09 35.46 67.324 03339> TOTAL RAINFALL (mm) = 71.66 71.66 71.665	03472>001:0011 03473> 03474>   ADD HYD (080 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF
03340> RUNOFF COEFFICIENT = .98 .49 .939 03341>	03475> (ha) (cms) (hrs) (mm) (cms)
03342>       (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:         03343>       CN* = 81.0       Ia = Dep. Storage (Above)	03477> +ID2 07:070 2.66 1.034 1.00 69.06 .000 03478>
03344> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 03345> THAN THE STORAGE COEFFICIENT.	03479> SUM 08:080 3.55 1.408 1.00 69.06 .000 03480>
03346> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03347>	03481> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03482>
03349>	03483>
U3350> ★ 03351> ★ SUB-AREA No.3 03352>	03485>
J352>	O3487>         (ha)         (cms)         (hmm)         (cms)           03488>         IDI 05:050         5.01         1.729         1.04         66.66         000           03489>         +ID2 08:080         3.55         1.408         1.00         69.06         .000
03355>	
13357> Surface Area (ha) = 1.36 .04 13358> Dep. Storage (mm) = 1.57 4.67	03491> SUM 09:090 8.56 3.067 1.04 67.66 .000 03492> 03493> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
J3359> Average Slope (%)= .51 1.00 J3360> Length (m)= 225.63 5.00	03494> 03494>
33361> Mannings n = .030 .030 33362>	03496> 001:0013
03363> Max.eff.Inten.(mm/hr)= 178.56 93.23 03364> over (min) 7.50 7.50	03498>   ROUTE RESERVOIR   Requested routing time step = 1.0 min. 03499>   IN>09:(090 )
)3365> Storage Coeff. (min)= 6.67 (ii) 7.39 (ii) )3366> Unit Hyd. Tpeak (min)= 7.50 7.50	03500>   OUT<10: (POND )   ========= OUTLFOW STORAGE TABLE ==== 03501> OUTFLOW STORAGE   OUTFLOW STORAGE
3368> *TOTALS*	03502> (cms) (ha.m.) (cms) (ha.m.) 03503> .000 .0000E+00   .593 .6251E+00
J3369> PEAK FLOW (cms)= .50 .01 .509 (iii) J3370> TIME TO PEAK (hrs)= 1.04 1.08 1.042 J3371> RUNOFF VOLUME (mm)= 70.09 35.46 69.055	03504> .008 .6560E-01   .654 .6631E+00 03505> .017 .1311E+00   .797 .7391E+00
33370> TIME TO PEAK (hrs)= 1.04 1.08 1.042 3371> RUNOFFYCUNDE (man)= 70.09 35.46 69.056 33372> TOTAL RADEFICIENT (man)= 71.66 71.66 71.65 33373> RUNOFF COEFFICIENT = .98 49 .964	03506> .093 .2831E+00 .950 .8274E+00 03507> .233 .3971E+00 .1.304 .9157E+00 03508> .337 .4731F400 .1.880 .1004F+03
03374> 03375> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	03509> .465 .5491E+00   2.577 .1092E+01
	03510> .531 .5871E+00   .000 .000DE+00

03511> 03646> QPEAK (cms) 3.067 .283 ROUTING RESULTS 03647> -----03648> 001:0019------03649> * 03650> *SUB-AREA No.4 03513> 03514> 03515> 03516> 03516> TPEAK (hrs) 1.042 1.861 (mm) 67.655 67.653 *SUB-AREA No.4 PEAK FLOW REDUCTION [Qout/Qin](%)= 9.214 TIME SHIFT OF PEAK FLOW (min)= 49.17 MAXIMUM STORAGE USED (ha.m.)=.4332E+00 03518> 03519> Unit Hyd Qpeak (cms)= .899 03656> 03657> 
 PEAK FLOW (cms) =
 .649 (i)

 TIME TO PEAK (hrs) =
 1.125

 RUNOFF VOLUME (mm) =
 40.139

 TOTAL RAINFALL (mm) =
 71.665

 RUNOFF COEFFICIENT =
 .560
 03658> 03659> 03660> 03661> * Remaining Hawthorne Industrial Park 03524> 03525> 03662> 03663> 03664> 03665> 03665> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03537> 03538> 03539> 03540> 03541> 03542> 03542> 03543> 03544> 03545> 03672> 03673> 03674> 03675> 03675> 03676> 03677> 03678> 153.66 117.89 12.50 25.00 11.89 (ii) 24.37 (ii) 12.50 25.00 .09 .05 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. -TOTALS* 3.419 (iii) 1.167 58.015 71.665 .810 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = *TOTALS* 2.77 1.13 70.09 71.66 .98 1.13 1.38 45.94 71.66 03546> 03548> 03548> 03548> 03549> 03550> 
 Neurosciente forting time step - 1.0 mili.

 OUTFLOW STORAGE TABLE ------ 

 OUTFLOW STORAGE TABLE ------ 

 OUTSLOW STORAGE TABLE ------ 

 Outslow Storage ------ 

 (cms)

 (cms)

 0.000 .00008+00

 .724 .22108

 .048 .57408-01

 .937 .25018+

 .059 .55348+00

 .1028+01

 .064 .11028+01

 .064 .11028+01

 .064 .11028+01

 .2409 .4008+02

 .2419 .4008+03

 .2409 .4008+04

 .2409 .4008+03

 .2409 .4008+04

 .2409 .4008+04

 .2409 .4008+05

 .2409 .4008+01

 .2409 .4008+01

 .2409 .4008+01

 .2409 .4008+01

 .2409 .4008+01

 .2409 .4008+01

 .472 .1924E+01

 .0000 .00008+
 . 64 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03551> 03552> 03686> 03687> 03688> 03562> 03563> 03564> 03565> 03566> 03566> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03568> 03569> -----03570> 001:0016-----03571> * 03572> * SUB-AREA No.2 03573> -----_____ 
 [ CALIB STANDHYD |
 Area (ba)=
 17.00

 | 03:HIP03 DT= 2.50 |
 Total Imp(%)=
 71.00 Dir. Conn.(%)=
 50.00

 IMPERVIOUS PERVIOUS (i)
 03574> 03574> 03575> 03575> 03577> 03578> 03580> 03581> 03582> 03583> 03584> 03584> 03584> 03584> Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS PERVIOUS (1) 12.07 1.57 .65 450.00 .030 4.93 4.67 1.50 100.00 .250 .200 178.56 126.60 10.00 22.50 9.39 (ii) 21.52 (ii) 10.00 22.50 .12 .05 Max.eff.Inten.(mm/hr)=
 over (min)
Storage Coeff. (min)=
Unit Hyd. Tpeak (min)=
Unit Hyd. peak (cms)= 03586> 03586> 03587> 03588> 03589> 03590> *TOTALS* 3.203 (iii) 1.125 58.015 71.665 .810 03723> (i) PEAK FLOW 03725> 03726> -----03727> 001:0023------03728> * (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 1.05 1.33 45.94 71.66 .64 2.68 1.08 03590> 03591> 03592> 03593> 03594> 03595> 1.05 1.33 45.94 71.66 .64 _____ 70.09 71.66 .98 03729> *SUB-AREA No. 6 03730> * 

 03725>
 \$SUB-AREA No. 6

 03725>
 IDESIGN NASHYD
 | Area (ha]= 5.30 Curve Number (CN)=76.00

 03735>
 IDESIGN NASHYD
 | Area (ha]= 5.30 Curve Number (CN)=76.00

 03735>
 IDESIGN NASHYD
 | Area (ha]= 5.30 Curve Number (CN)=76.00

 03735>
 IDESIGN NASHYD
 | Area (ha]= 5.30 Curve Number (CN)=76.00

 03735>
 IDESIGN NASHYD
 | Area (ha]= 5.30 Curve Number (CN)=76.00

 03735>
 Unit Hyd Opeak (cms)=
 .804

 03735>
 Unit Hyd Opeak (cms)=
 .804

 03735>
 PEAK FLOW (cms)=
 .223 (i)

 03735>
 TIME TO FEAK (hrs)=
 1.958

 03741>
 TOTAL RAINFALL (mm)=
 71.665

 03742>
 RUNOFF COEFFICIENT
 =

 425
 ''' PEAF FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL ... THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03596> 03598> 03599> 03600> 036015 03602> -----03603> 001:0017-----03604> * 03605> * SUB-AREA No.3 03605> -----03605> ------03607> | CALIE STANDHYD | Area. (ha)= 18.10 03608> | 04:HIP04 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 03609> ------OK61D> IMPERVIOUS PERVIOUS (i) IMPERVIOUS PERVIOUS (1) Surface Area<br/>Dep. Storage(ha) =<br/>(ma) =<br/>(%) =<br/>LengthAverage Slope<br/>Length(%) =<br/>(m) =<br/>mannings n 03610> 03611> 03612> 037452 12.85 1.57 .50 5.25 4.67 1.50 100.00 03612> 03613> 03614> 03615> 03615> 03616> 03617> 600.00 .250 153.66 117.89 12.50 25.00 12.82 (ii) 25.30 (ii) 12.50 25.00 . .09 .04 Max.eff.Inten.(mm/hr) = over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = 03618> 03619> 03620> 03621> 03622> 03623> 03623> 03624> 03625> 03755> 03756> 03757> 03758> *TOTALS* 3.031 (iii) 1.167 58.015 71.665 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nm) = TOTAL RAINFALL (nm) = RUNOFF COEFFICIENT = 2.43 1.13 70.09 71.66 1.01 1.38 45.94 71.66 .64 03626> 03627> 03627> 03628> 03629> . 98 ***** 03762> --03763> ** 03764> 03765> 03766> 03767> == (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL TRAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANX. WARNINGS / ERRORS / NOTES 03630> Simulation ended on 2009-05-15 at 08:57:05 03631> 03632> 03768> 03639> 03640> 03641> 03642> 03643> SUM 05:HIP05 35.10 6.178 1.13 58.02 000 03644> 03645> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

J. L. Richards & Associates Limited

# **APPENDIX 'H'**

## SWMHYMO INPUT AND OUTPUT FILES (Post-Development Controlled Phase 2 Conditions)

#### (V:\...SWM-ALL.dat)

(V: \ SWM-ALL			J. L. Richards & Associates Limit
00001> 2 Metric unit	S ************************************	00136>	[ -1 , -1 ] (max twenty pts)
00003> *# Project Name	: Hawthorne Industrial Park Project Number: [20983] * : January, 2009 *	00138> ***************	**************************************
00005> *# Revised 00006> *# Developed by	: N/A *		Advitorie industrial Park *
00007> *# Reviewed by	: Guy Forget, P.Eng. *	00142> * SUB-AREA No.1 00143>	
000T0> *#*************	**************************************	00144> CALIB STANDHYD 00145>	<pre>ID=[ 1 ], NHYD=("HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],</pre>
00011> * 00012> *	****	00146> 00147>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mma), SLPP=[1.5](%),
00014> *# FILENAME: V:	<pre>\20983.DU\ENG\SWMHYMO\20983PST.DAT * D FOR SITE PLAN APPLICATION AND DETAILED DESIGN *</pre>	00148> 00149>	LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m) Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.6](%),
00016> *# OF A FACILIT	D FOR SITE PLAN APPLICATION AND DETAILED DESIGN * Y ASSOCIATED WITH THE OTTAWA COMPOSTING SITE *	00150> 00151>	LGI=[580] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[,,,,] (mm/hr), END=-1
00018> *	********	00152> **	IDsum=[ 2 ], NHYD=["HIP02"], IDs to add=[10+1]
00020> * SWMHYMO 00021> * PROPOSED COMP	FILE DEVELOPED TO INVESTIGATE FLOOD FLOWS OF THE * OSTING SITE INDEE POST-DEVELOPMENT INCOMPOLIED CONDITIONS *	00155> * 00155> * 00156> * SUB-AREA No.2	
00022> *********************************	**************************************	00157> 00158> CALIB STANDHYD	ID=[ 3 ], NHYD=("HIP03"), DT=[2.5](min), AREA=[17](ha),
000255 * HYDROLOGICAL AM	**************************************	00159> 00160>	XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81],
	MS OF 1:2, 5, 10, 25, 50, AND 100 YR *	00161> 00162>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m
00028>	*******	00163> 00164>	Impervious surfaces: IAimp=[1.57](mm), SLDI=[0.65](%),
00030> * POST-DEVE 00031> ************************************	LOPMENT UNCONTROLLED CONDITIONS *	00165> 00166> *%	RAINFALL=[ , , , , ] (mm/hr) , END=-1
00033> **************	ATION OF 4 HR 25 MM STORM EVENT *	00167> * 00168> * SUB-AREA No.3	
00035> ************************************	**************************************	00169> 00170> CALIB STANDHYD 00171>	ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[15.6](ha),
00037> START 00038> *%	TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]	00172>	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LoSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),</pre>
00039> READ STORM 00040> *%	<pre>[ ] <storm filename,="" for="" line="" nstorm="" one="" per="" time<br="">STORM_FILENAME=["4HR25-15.STM"] </storm></pre>	00174> 00175>	LGP=[100.0] (m), MDP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.5] (%),
00041> DEFAULT VALUES 00042>	ICASEdef=[1], read and print values DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]	00176> 00177>	LGT=[600] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , , , ] (mm/hr), END=-1
00043> *%		00178> *% 00179> ADD HYD	IDsum=[ 5 ], NHYD=["HIP05"], IDs to add=[3+4]
00045> ************************************	RLD FILE *	00180> *% 00181> ADD HYD	IDsum=[ 6 ], NHYD=["HIP06"], IDs to add=[5+2]
00047> ************************************	**************	00182> *% 00183> *	[]
00049> * SUB-AREA No.1 00050> 00051> CALIB STANDHYD		00184> * SUB-AREA No.4 00185>	
00052> 00053>	<pre>ID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha), XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[8]],</pre>	00186> CALIB STANDHYD 00187>	<pre>ID=[ 7 ], NHYD=["HIP07"], DT=[2.5](min), AREA=[12.2](ha), XIMP=(0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],</pre>
00054>	Science inducer cx=[01], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[20] (m), MNP=[ 0.25 ], SCP=[0.0] (mi.	00188> 00189> 00190>	SCS curve number CN=[81], Pervious surfaces: IApex=[4.57](mm), SLPP=[1.5](%), LGP=[100.0](m), MNP=[0.25], SC2=[0.0](m
00056>	Impervious surfaces: IAimpe[1.57] (mm), SLPI=[0.52](%), IGI=[204.72] (m), MNI=[0.03], SCI=[0.0]	00191>	impervious surfaces: LAImp=[1.5/](mm), SLPI=[0./](%),
00058> 00059> *%	RAINFALL=[, , , ] (rem/hr) , END=-1	00193> 00194>	LGI=[210] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , , , ] (mm/hr) , END=-1
00060> * 00061> * SUB-AREA No.2		00195> *8 00196> *	
00062> 00063> CALIB STANDHYD	ID=[ 2 ], NHYD=["020"], DT=[2.5](min), AREA=[ 1.54 ](ha),	00197> *SUB-AREA No.5 00198>	
00064> 00065>	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>	00199> DESIGN NASHYD 00200>	<pre>ID=[ 8 ], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0] (ha), DWF=[ 0 ] (cms), CN/C=[ 85 ], TP=[0.17]hrs,</pre>
00066> 00067>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min).	00201> 00202> *%	RAINFALL=[, , , , ] (mm/hr), END=-1
00068> 00069> 00070>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.50] (%), LGI=[244.34] (m), MNI=[0.03], SCI=[0.0]	00203> 00204> ADD HYD	IDsum=[ 9 ], NHYD=["HIP08"], IDs to add=[6+7+8]
00071> *8	RAINFALL=[ , , , ] (mm/hr) , END=-1	00205> *%	
00073> * SUB-AREA No.3 00074>		00207> ROUTE RESERVOIR 00208> 00209>	IDout=[10], NHYD=["HIP-POND"], IDin=[9], RDT=[1.0](min), TRDT=f(.0)(min),
00075> CALIB STANDHYD 00076>	ID=[ 3 ], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],	00210>	TABLE of { OUTFLOW-STORAGE } values (cms) - (ha-m) [ 0.0 0 ]
00077> 00078>	SCS curve number CN=[81],	00212> 00213>	[ 0.048, 0.0574 ] [ 0.054, 0.2434 ]
00079> 00080>	Pervious surfaces: LAper=[4.67] (mm), SLPP=[1.0](%), LGP=[5](m), MNP=[0.03], SCP=[0.0](min), Impervious surfaces: lAimp=[1.57](mm), SLPI=[0.51](%),	00214> 00215>	[ 0.059, 0.5834 ] [ 0.062, 0.8400 ]
00081> 00082>	LGI=[ 225.63 ] (m), MNI=[0.03], SCI=[0.0 RAINFALL=[, , , , ](mm/hr), END=-1	00216> 00217>	[ 0.064, 1.1024 ] [ 0.147, 1.3705 ]
00083> *% 00084> ADD HYD 00085> *%	IDsum=[4], NHYD=[ "040"], IDs to add=[1+2]	00218> 00219>	[ 0.280, 1.6444 ] [ 0.472, 1.9242 ] [ 0.724, 2.2097 ]
00086> ADD HYD 00087> *8	IDsum=[5], NHYD=[ "050"], IDs to add=[3+4]	00220> 00221> 00222>	[ 0.937, 2.5010 ]
00088> * 00089> * SUB-AREA No.4	· · · · · · · · · · · · · · · · · · ·	00223>	[ 1.262, 2.7981 ] [ 1.404, 3.1009 ] [ 1.532, 3.4095 ]
00090> 00091> CALIB STANDHYD	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha),</pre>	00225> 00226>	[ 1.650, 3.7240 ] [ 2.409, 4.0442 ]
00092> 00093>	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>	00227> 00228>	[ 3.689, 4.3702 ] [ -1 , -1 ] (max twenty pts)
00094> 00095>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[0.7] (%), LGP=[40] (m), MNP=[0.25], SCP=[0.0] (min)	00229> 00230> *%	·
00096> 00097>	Impervious surfaces: IAimp=[1.57] (nm), SLPI=[0.93] (%), LGI=[164.82] (m), MNI=[0.03), SCI=[0.0] (	00231> * 00232> *SUB-AREA No. 6	
00098> 00099> *& 00100> *	RAINFALL=[ , , , , ] (mm/hr) , END=-1	00233> 00234> DESIGN NASHYD	ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7](ha),
00100> * 00101> * SUB-AREA No.5 00102>		00235> 00236> 00237> *%	DWF=[0](cms), CNC=[76], TP=[0.80]hrs, RAINFALL=[, , , , ](mm/hr), END=-1
00102> 00103> CALIB STANDHYD 00104>	ID=[ 7 ], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],	00237> *% 00238> 00239> ADD HYD	
00105> 00106>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%),	00239> ADD HID 00240> *% 00241>	IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1] 
00107> 00108>	LGP=[20.0](m), MNP=[0.25], SCP=[0.0](mi Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.61](%),	00242>	*******
00109> 00110>	LGI=[207.25] (m), MNI=[0.03], SCI=[0.0] { RAINFALL=[,,,,](mm/hr), END=-1	00244> * CALCULAT 00245> ****************	YON OF 3HR - 1:2 YEAR STORM EVENT *
00111> *% 00112> ADD HYD	IDsum=[8], NHYD=[ "080"], IDs to add=[6+7]	00246> 00247> START	TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]
00113> *% 00114> ADD HYD		00248> *% 00249> *%	[ ] <storm filename,="" for="" line="" nstorm="" one="" per="" td="" time<=""></storm>
00115> *\$ 00116> 00117> ROUTE RESERVOIR	Thent=(10) NWVD=("00ND") Thin=(0)	002317	<pre>IUNITS=[2], TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0](min) ICASECs=[1], DCTOTECTOR DCTOTECTOTECTOR DCTOTECTOTECTOTECTOTECTOTECTOTECTOTECTOT</pre>
00117> ROUTE RESERVOIR 00118> 00119>	IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min), TABLE of ( OUTFLOW-STORAGE ) values	00252> 00253> *% 00254> DEFAULT VALUES	A=[732.951], B=[6.199], and C=[0.810],
00120> 00121>	(cms) - (ha-m)	00255>	ICASEdef=[1], read and print values DEFVAL_FILENAME=[V:\22973.DULENG\SWMHYMO\"ORGA.VAL"]
00122> 00123>	[ 0.000, 0.0000] [ 0.008, 0.0656] [ 0.017, 0.131]	00256> ************************************	, , , , , , , , , , , , , , , , , , , ,
00124> 00125>	[ 0.017, 0.1311] [ 0.093, 0.2831] [ 0.233, 0.3971]	00259> * ORGAWO 00260> *****************	RLD FILE *
00126> 00127>	[ 0.337, 0.4731] [ 0.465, 0.5491]	00261> * 00262> * SUB-AREA No.1	•
00128> 00129>	[ 0.531, 0.5871] [ 0.593, 0.6251]	00263> 00264> CALIB STANDHYD	ID=[ 1 ], NHYD=["010"], DT=[2.5](min), AREA=[ 2.07 ](ha),
00130> 00131>	[ 0.654, 0.6631] [ 0.797, 0.7391]	00265> 00266>	XIMP=[0.84], $TIMP=[0.84]$ , $DWF=[0.0]$ (cms), $LOSS=[2]$ , SCS curve number CN=[8]].
00132> 00133>	[ 0.950, 0.8274] [ 1.304, 0.9157]	00267> 00268>	Pervious surfaces: TAper=[4,67] (mm), ST.PP=[1,0] (%)
00134> 00135>	[ 1.880, 1.0040] [ 2.577, 1.0923]	00269> 00270>	LGP=[20] (m), MNP=[ 0.25 ], SCP=[0.0] (mi Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.52] (%), LGZ=[204.72] (m), MNI=[0.03 ], SCI=[0.0]
		I	

J. L. Richards & Associates Limited

#### (V:\...SWM-ALL.dat)

#### J. L. Richards & Associates Limited

002/1> 00272> *%-----00273> * 00274> *SUB-AREA No.2 00275> RAINFALL={ , , , , } (mm/hr) , END=-1 00406> RAINFALL=[ , , , , ](mm/hr) , END=-1 00408> *8-----00409> * 00410> *SUB-AREA No.5 00411> 00412> DESIGN NASHYD ID=[ 2 ], NHYD=["020"], DT=[2.5] (min), AREA=[ 1.54 ] (ha), XIMP=(0.52], TIMP=(0.92], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: IAper=[4.67] (nm), SLPP=[1.0] (%), LOP=[5] (m), NNF=[0.03], SCF=[0.0] (min), Impervious surfaces: IAimp=[1.57] (nm), SLPI=(0.50] (%), LOI=[244.34] (m), MNT=[0.03], SCI=[0.0] RAINFALL=[ , , , ] (mm/hr), END=-1 00276> CALIB STANDHYD ID=[ 8 ], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[ 0 ](cms), CN/C=[ 85 ], TP=[0.17]hrs, RAINFALL=[ , , , , ](mm/hr), END=-1 00277> 00278> 00279> 00280> 004135 00413> 00415> *\$-----00415> *0-----00416> 00417> ADD HYD 00418> *\$-----00281> 00282> IDsum=[ 9 ], NHYD=["HIP08"], IDs to add=[6+7+8] 00284> *8-----00285> * 00286> * SUB-AREA No.3 00419> 00420> ROUTE RESERVOIR 00421> 00422> 00422> 00423> 00424> IDout=[ 10 ], RDT=[1.0](min), TABLE of NHYD=["HIP-POND"], IDin≃[ 9 ], 00287> ( OUTFLOW-STORAGE ) values DUTFLOW-STORAGE ) (cms) - (ha-m) (cms) - (ha-m) (cms) - (ba-m) (cms) - (ba-m) (ba-m) (cms) - (ba-m) 00288> CALIB STANDHYD 00289; 00290> 00291> 00292> 00293> 004252 00426> 00427> 00427> 00428> 00429> 00430> 00431> 00294> 00296> *%-----00297> ADD HYD 00298> *%-----IDsum=[4], NHYD=[ "040"], IDs to add=[1+2] 00432> 00433> 00433> 00434> 00435> IDsum=[5], NHYD=[ "050"], IDs to add=[3+4] 00299> ADD HYD 00300> *%-----00301> 00302> 00303> 00436> * SUB-AREA No.4 00438> 00437> 00438> 00439> 00440> 00304> CALIB STANDHYD 409 689, 00306> 00307> 00308> 00309> 00441> (max twenty pts) . 1 00442> 00443> *8-----00444> * 00445> *SUB-AREA No. 6 00310: 00311> 00312> *&------00313> * 00314> * SUB-AREA No.5 LD = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7] (ha), DWE=[0](cms), CNC=[76], TP=[0.80]hrs, RAINFALL=[, , , , ](mm/hr), END=-1 00446> 00447> DESIGN NASHYD 00448: 00449> 00315: ID=[ 7 ], NHYD=["070"], DT=[2.5] (min), AREA=[2.66] (ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: IAper=[4.67] (mm), SILPP=[1.5] (%), LGP=[20.0] (m), MNP=[0.25], SCD=[0.0] (mi Impervious surfaces: IAimp=[1.57] (mm), SILPI=[0.61] (%), LGI=[207.25] (mm), MINI=[0.03], SCI=[0.0] ( RAINFALL=[, , , ] (mm/h), RDD=-1 00316> CALIB STANDHYD 00451> 00452> ADD HYD 00453> *%------IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1] 00318> 00320: 00321: 00322> 00323> 00324> *%------00325> ADD HYD 00326> *%------00327> ADD HYD 00328> *%------RAINFALL=[ , , , , ] (mm/hr) , IDsum=[8], NHYD=[ "080"], IDs to add=[6+7] TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]
 ( ] <--storm filename, one per line for NSTORM time</pre> 00459> START 00460> *% 00461> *%------00462> CHICAGO STORM 00463> UNITS=[2], TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0](min) ICASEcs=[1], A=[998.071], B=[6.053], and C=[0.814], IDsum=[9], NHYD=[ "090"], IDs to add=[5+8] 00329> 00330> ROUTE RESERVOIR 00331> 00464> IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min), TABLE of ( OUTFLOW-STORAGE ) values 'corr) = (ha-m) 00465> *%-----00466> DEFAULT VALUES 00467> 00468> *%-----CCASEdef=[1], read and print values DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"] 003322 00333> 00334> 00335> 00335> 00336> 00337> ha-m) 0.0000] 0.0656] 0.1311] 0.2831] 0.2831] 0.4731] 0.5491] 0.5871] 0.6651] 0.6631] 0.6251] 0.6631] 0.8274] 0.8274] 1.0040] 0.000, 0.008, 0.017, 0.093, 0.233, 0.337, 0.465, 0.531, 0.593, 0.593, 0.654, 0.797, 0.950, 1.304, 00469: ***** 00338> 00339> 00340> 00341> 00342> 00475> SUB-AREA NO.1 00475> CALIE STANDHYD 00477> 00478> 00478> ID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha), XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.0](%), ID=[20](M), MMP=[0.25], SCD=[0.0](mi Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.52](%), Icl=[204.72](m), MMI=[0.03], SCI=[0.0] RAINFALL=[, , , ](mm/hr), END=-1 00343> 00344> 00345> 00346> 00347> 00480> 00481> 1.880, 1.0040] 2.577, 1.0923) -1 , -1 ) 00482> 00348> 00483> 00483> 00485> * 00485> * 00485> * 00486> * SUB-AREA No.2 00487> 00488> CALIB STANDHYD 00488> 00348> 00349> 00350> 00351> 00352> (max twenty pts) ***** * Remaining Hawthorne Industrial Park * ID=[ 2 ], NHYD=["020"], DT=[2.5] (min), AREA=[ 1.54 ] (ha), XIMP=[0.92], TIMP=[0.92], DWF=[0.0] (cms), LOSS=[2], SCS curve number CM=[81], Pervious suffaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[5] (m), NMP=[0.03], SC2=[0.0] (min), Impervious suffaces: IAper=[4.434] (m), MNI=[0.50] (%), LGI=[244.34] (m), MNI=[0.03], SCI=[0.0] RAINFALL=[ , , ) (mm/hr], END=-1 00353> 00354> 00489> 00490> 00491> 00355> * SUB-AREA No.1 00356> 00357> CALIB STANDHYD 00358> 00359> ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5] (min), AREA=[19.9] (ha), XIMP=[0.50], TIMP=[0.7], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (nm), SLP=[0.5] (%), IGD=[10.0] (m), NNY=[0.25], SCS=[0.0] (m Impervious surfaces: IAimp=[1.57] (nm), SLPI=[0.6] (%), IGD=[10.0], NNT=[0.0], SCI=[0.0] (min RAINFALL=[, , , ] (mm/hr), END=-1 00491> 00492> 00493> 00494> 00495> 00360> 00361> 00362> 00363> 00364> 00496> *8-----00497> * * SUB-AREA No.3 00497> * 00498> * SUB-AREA No.3 00499> 00500> CALIB STANDHYD 00501> 00502> 00503> 00364> 00365> *%-----00366> ADD HYD 20367> *%------ID=[ 3 ], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: IApere[4.67](mm), SLPP=[1.0](%), LOP=[5](m), NNP=[0.03], SCP=[0.0](min), Impervious surfaces: IAimpe[1.57](mm), SLPI=[0.51](%), LOI=[225.63](m), MNN=[0.03], SCI=[0.0] RAINFALL=[, , , , ](mn/hr), END=-1 IDsum=[ 2 ], NHYD=["HIP02"], IDs to add=[10+1] 00368> * 00369> * SUB-AREA No.2 00370> 00503> 00504> 00505> 00506> 00507> 00508> 00370> 00371> CALIB STANDHYD 00372> 00373> 00374> 00375> 00376> 00376> ID=[ 3 ], NHYD=["HIPO3"], DT=[2.5] (min), AREA=[17] (ha), XIMP=[0.50], TIMP=[0.71], DWT=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: TAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[10.0] (m), MNP=[0.25], SCD=[0.0] (min RAINFALL=[, , , ] (mm/hr), EMD=-1 IDsum=[4], NHYD=[ "040"], IDs to add=[1+2] 00509> ADD HYD HYD .... HYD 00511> ADD HYD 00512> *8------00513> * 00513> * IDsum=[5], NHYD=( "050"], IDs to add=[3+4] 00377> 00379> *&-----00380> * 00381> * SUB-AREA No.3 00382> 00514> * SUB-AREA No.4 00515> 00516> CALIB STANDHYD 00517> 00518> 00519> ID=[6], NHYD=["060"], DT=[2.5] (min), AREA=[0.89] (ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], Pervicus surfaces: IAper=[4.67] (mm), SLPP=[0.7] (%), LCP=[40] (m), MNF=[0.25], SCF=[0.9] (min) Impervicus surfaces: IAmpe=[1.57] (mm), SLP=[10.93] (%), RAINPALL=[, , , , ] (mm/hr), END=-1 ID=[ 4 ], NHYD=("HIP04"], DT=[2.5] (min), AREA=[15.6] (ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN+[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), Impervious surfaces: IAimp=[1.57] (mm), SLPT=[0.5] (%), Information (MAN), SIPT=[0.5] (%), Information (MAN), Information (MAN), Information (MAN), Information RAINFALL=[, , , ] (mm/hr), EXD=-1 00383> CALIB STANDHYD 00384> 00385> 00385> 00386> 00387> 00520> 00521> 00522> 00523> 00524> *&-----00525> * 00526> * SUB-AREA No.5 003885 00389> 00390> 00391> *%-----00392> ADD HYD 00393> *%-----00394> ADD HYD RAINFALL=[,,,,](mm/hr), END=-1 IDsum=[5], NHYD=["HIPO5"], IDs to add=[3+4] 00526> * SUB-AF 00527> 00528> CALIB SI 00529> 00530> 00531> 00532> 00533> 00534> 00535> 00535> 00535> 4%-----00539> 4%-----00539> 00539> 4%-----00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 00539> 0 ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), LoP=[20.0](m), MNP=[0.25], SCP=[0.0](mi Impervious surfaces: IAimpe[1.57](mm), SLPI=[0.61](%), LoT=[20.025(m), MNT=[0.03], SCI=[0.0]( RAINPALL=[, , , ](mm/hr), END=-1 28> CALIB STANDHYD IDsum=[ 6 ], NHYD=["HIPO6"], IDs to add=[5+2] 00395> 00396> **--00396> * 00397> * SUB-AREA No.4 00398> 00399> CALIB STANDHYD ID=[ 7 ], NHYD=["HIPO7"], DT=[2.5](min), RREA=[12.2](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[01], SCS curve number CN=[01], Pervious surfaces: IApper=[0.67](mm), SLPP=[1.5](8), Impervious surfaces: IAcmp=[1.57](mm), SLPT=[0.7](8), Impervious surfaces: IAcmp=[1.57](mm), SLPT=[0.7](8), Impervious surfaces: IAcmp=[1.57](mm), SLPT=[0.7](8), SCM=[210](mm), MM2=[0.03], SCT=[0.0](min 00400 00400> 00401> 00402> 00403> 00404> 00405> IDsum=[8], NHYD=[ "080"}, IDs to add=[6+7] ____ IDsum=[9], NHYD=[ "090"], IDs to add=[5+8] 00539> ADD HYD 00540> *%---------1

## (V:\...SWM-ALL.dat)

### J. L. Richards & Associates Limited

A MARKEN         A MARKEN         A MARKEN         A MARKEN         A MARKEN           A MARKEN         A MARKEN         A MARKEN         A MARKEN         A MARKEN           A MARKEN         A MARKEN         A MARKEN         A MARKEN         A MARKEN           A MARKEN         A MARKEN         A MARKEN         A MARKEN         A MARKEN           A MARKEN         A MARKEN         A MARKEN         A MARKEN         A MARKEN           A MARKEN         A MARKEN         A MARKEN         A MARKEN         A MARKEN           A MARKEN         A MARKEN         A MARKEN         A MARKEN         A MARKEN           A MARKEN         A MARKEN         A MARKEN         A MARKEN         A MARKEN           A MARKEN         A MARKEN         A MARKEN         A MARKEN         A MARKEN           A MARKEN         A MARKEN         A MARKEN         A MARKEN         A MARKEN           A MARKEN         A MARKEN         A MARKEN         A MARKEN         A MARKEN           A MARKEN         A MARKEN         A MARKEN         A MARKEN         A MARKEN           A MARKEN         A MARKEN         A MARKEN         A MARKEN         A MARKEN           A MARKEN         A MARKEN         A MARKEN         A MARKEN	00541>		00676>	A=[1174.184], B=[6.014], and C=[0.816],
Image:		RDT=[1.0] (min) ,	00677> *% 00678> DEFAULT VALUES	ICASEdef=[1], read and print values
	00545>	(cms) - (ha-m)	00680> *%	DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]
	00547>	[ 0.008, 0.0656]	00682> **************	
	00549>	[ 0.093, 0.2831]	00684> *************	ORLD FILE * ***************
	00551>	[ 0.337, 0.4731]	00686> * SUB-AREA No.1	
	00553> 00554>	[ 0.531, 0.5871]	00688> CALIB STANDHYD	ID=[1], NHYD=["010"], $DT=[2.5]$ (min), $AREA=[2.07]$ (ha),
<ul> <li> <ul> <li></li></ul></li></ul>	0555>	{ 0.654, 0.6631]	00690>	SCS curve number CN=[81],
1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	0558>	[ 0.950, 0.8274]	00692>	LGP = [20] (m), $MNP = [0, 25]$ $SCP = [0, 0] (m)$
	0560>	[ 1.880, 1.0040] [ 2.577, 1.0923]	00694>	LGI = (204.721 (m), MNI = [0.03.1, SCT = [0.0])
<ul> <li>Marting Methods Robert 1, 21, 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2000-(1000), 2</li></ul>	0562>	<pre>[ -1 , -1 ] (max twenty pts)</pre>	00696> **	
<pre>Set a state is the state i</pre>	0564> * Remaining Ha		00699>	
ALL TANDET         For 1.1, DETECTION TO THE 1.3 (ALL TANDET)         For 1.1, DETECTION TO THE 1.3 (ALL TANDET)           ALL TANDET         For 1.1, DETECTION TO THE 1.3 (ALL TANDET)         For 1.3 (ALL TANDET)           ALL TANDET         For 1.3 (ALL TANDET)         For 1.3 (ALL TANDET)           ALL TANDET         For 1.3 (ALL TANDET)         For 1.3 (ALL TANDET)           ALL TANDET         For 1.3 (ALL TANDET)         For 1.3 (ALL TANDET)           ALL TANDET         For 1.3 (ALL TANDET)         For 1.3 (ALL TANDET)           ALL TANDET         For 1.3 (ALL TANDET)         For 1.3 (ALL TANDET)           ALL TANDET         For 1.3 (ALL TANDET)         For 1.3 (ALL TANDET)           ALL TANDET         For 1.3 (ALL TANDET)         For 1.3 (ALL TANDET)           ALL TANDET         For 1.3 (ALL TANDET)         For 1.3 (ALL TANDET)           ALL TANDET         For 1.3 (ALL TANDET)         For 1.3 (ALL TANDET)           ALL TANDET         For 1.3 (ALL TANDET)         For 1.3 (ALL TANDET)           ALL TANDET         For 1.3 (ALL TANDET)         For 1.3 (ALL TANDET)           ALL TANDET         For 1.3 (ALL TANDET)         For 1.3 (ALL TANDET)           For 1.3 (ALL TANDET)         For 1.3 (ALL TANDET)         For 1.3 (ALL TANDET)           For 1.3 (ALL TANDET)         For 1.3 (ALL TANDET)         For 1.3 (ALL TANDET)	00566> *	***************************************	00701>	ID=[ 2 ], NHYD=["020"], DT=[2.5](min), AREA=[ 1.54 ](ha), XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2],
margin [1, 1, Theore, 5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 200-5], [1, 2	00568>		00703>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%),
Next Cos	0570>	XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],	00705>	<pre>Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.50](%),</pre>
Description nutrices (Large 1, 1)         Description nutrices (Large 1, 1)         Description nutrices (Large 1, 1)           Nutrice 1, 1, nutrie (TREP), TEC (Large 1, 1)         TREP (Large 1, 1)         TRE	0572> 0573>	<pre>Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%),</pre>	00707>	RAINFALL=[, , , ] (mm/hr) , END=-1
<pre>     Add Number 1, Add Nu</pre>	0574>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.6] (%),	00709> *	
<pre></pre>	0577> *%	RAINFALL = [, , , ] (mm/hr), END = -1	00711>	TD = [3], MHYD = ["030"], DT = [25] (min), appa = [14] (ba)
All PARKA No.1         Period Process Partners (1) (Proc. (1) (Proc	10579> *&		00713>	XIMP = [0.97], TIMP = [0.97], DWF = [0.0] (cms), LOSS = [2],
Column Processing	0581> * SUB-AREA No.2		00716>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min),
Add Torrell, 10, 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 1000 (1000), 10000, 1000 (1000), 1000 (1000), 10000 (1000), 10000 (1000), 1000 (10	0583> CALIB STANDHYD	ID=[ 3 ], NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha),	00717> 00718>	Impervious surfaces: IAimp=[1.57](mm), SLPI=[ 0.51 ](%), LGI=[ 225.63 ](m), MNI=[0.03], SCI=[0.0
Destroy         Index[10, 2][1, 2007 (2] [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (2) [1, 2017 (	0585>	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>	00720> *%	RAINFALL=[, , , , ](mm/hr) , END=-1
NUMERAL         Description         Selection         Selection           NUMERAL         / 1000/11         Selection	0587>	LGP = [100.0] (m), MNP = [0.25], SCP = [0.0] (m)	00722> *%	
<ul> <li>Star-ARA No.3</li> <li>DALE STARTO</li> <li>DIC [ 1 ], METC-(TROT), Drc(1 S) (mai), ARA-(1 S, 6) (ha),</li></ul>	0589>	LGI = [450] (m), $MNI = [0.03]$ , $SCI = [0.0] (min)$	00724> *8	IDSum=[5], NHYD=[ "USO"], IDs to add=[3+4]
000000000000000000000000000000000000		=	00726> * SUB-AREA No.4	
<pre>     the function with the full of th</pre>	0593> * SUB-AREA No.3 0594>		00728> CALIB STANDHYD	ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWP=[0.0](cms), LOSS=[2]
Description         Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	0596>	XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],	00730>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.7](%).
Disperior         Disperior <thdisperior< th=""> <thdisperior< th=""> <thd< td=""><td>0598&gt;</td><td>Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%),</td><td>00733&gt;</td><td>LGP=[40] (m), MNP=[0.25], SCP=[0.0] (min) Impervious surfaces; IAimp=[1.57] (mm), SLPI=[0.93] (%).</td></thd<></thdisperior<></thdisperior<>	0598>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%),	00733>	LGP=[40] (m), MNP=[0.25], SCP=[0.0] (min) Impervious surfaces; IAimp=[1.57] (mm), SLPI=[0.93] (%).
MAXIMALE(1,, 2' Lanke(1), more (1, 1), more	0600>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.5](%),	00735>	LGI = (164.82)(m), $MNI = (0.03)$ , $SCI = [0.0]($
Oncess ADD INTO         The use (1 ), NUTD-("NIPOST), Ins to add(16-4]         Description         The standard (1-4), Stand	0602>	LGI=(600] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , , , ](mm/hr), END=-1	00737> *	
0.0000 ADD HTD         IDBURG [1, BHTD-["BIPG0"], IDB to add=[5-2]         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725         07725 <t< td=""><td>0604&gt; ADD HYD</td><td>IDsum=[ 5 ], NHYD=["HIP05"], IDs to add=[3+4]</td><td>00739&gt;</td><td></td></t<>	0604> ADD HYD	IDsum=[ 5 ], NHYD=["HIP05"], IDs to add=[3+4]	00739>	
Description         Pervices         Supervices         Supervic	0606> ADD HYD		00741>	XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],
000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100000 0001000000	0608> *		00743>	Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),
000135 1000100       XIMP=(10, 71), DTMP=(10, 71), DTMP=(10, 71), DTMP=(10, 710), SEPE(13, 710), DTMP=(10, 710), DTMP=	0610>	ID=[ 7 ]. NHYD=["HIP07"]. DT=[2.5](min). AREA=[12.2](ba).	00745>	<pre>impervious surfaces: IAimp=[1.57](mm), SLPI=[0.61](%),</pre>
Definition         Pervicus surfaces: Tapper [1, 5] (m), 527 [1, 5] (s), (m), 527	0612> 0613>	XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],	00747>	RAINFALL=[ , , , , ] (mm/hr) , END=-1
0000000       MARKALE1, , , , , 1000AR, 2000       Description         0000000       TABLE (10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	0615>	LGP = [100, 0] (m), $MNP = [0, 25]$ , $SCP = [0, 0] (m)$	00749> ADD HYD	IDsum=[8], NHYD=[ "080"], IDs to add=[6+7]
Decision	0617>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.7] (%), LGI=[210] (m), MNI=[0.03], SCI=[0.0] (min	00752> *8	IDsum=[9], NHYD=[ "090"], IDs to add=[5+8]
006223 * *       MD7[1.0] MAIN       MD7[1.0] MAIN <td>0619&gt;</td> <td>RAINFALL=[, , , , ](mm/hr), END=-1</td> <td>00754&gt; ROUTE RESERVOIR</td> <td><pre>IDout=[10], NHYD=["POND"], IDin=[9],</pre></td>	0619>	RAINFALL=[, , , , ](mm/hr), END=-1	00754> ROUTE RESERVOIR	<pre>IDout=[10], NHYD=["POND"], IDin=[9],</pre>
006232         DSIGN HASHYD         LP (0 ) HNYD-("Pond-Block", DY-(2.5)min, AREA-[4.0] (ha), BWT (0 ) HNYD-("WID0"), DSIG         (D.000, C.0000)           00625         MINFALL         (D.000, C.0000)         (D.000, C.0000)           00625         MINFALL         (D.000, C.0000)         (D.000, C.0000)           00625         (D.000, C.0000)         (D.000, C.0000)         (D.000, C.0000)	0621> *	·\	00756>	TABLE of ( OUTFLOW-STORAGE ) values
066253         DWF=[0][(cms), CM/C=[65], Tr=[0.17]hrs.         07653         07655         [0.017, 0.131]           066254         MATEALLE[, . , ] [mm/hr], ERD-1         07655         [0.023, 0.231]           066254         [0.023, 0.231]         0.0255         [0.023, 0.231]           066255         [0.023, 0.231]         [0.025, 0.233]         [0.0255           066255         [0.023, 0.231]         [0.025, 0.233]         [0.0255           066255         [0.021, 0.117]         [0.025, 0.233]         [0.025, 0.233]           066255         [0.021, 0.117]         [0.025, 0.233]         [0.025, 0.233]           066255         [0.021, 0.117]         [0.025, 0.233]         [0.025, 0.233]           06535         [0.025, 0.057]         [0.025, 0.233]         [0.0257]           06535         [0.025, 0.054]         [0.025, 0.233]         [0.0257]           06535         [0.025, 0.054]         [0.0765]         [0.537, 0.123]           06535         [0.025, 0.054]         [0.025, 0.054]         [0.0775]           06545         [0.025, 0.054]         [0.0775]         [0.0775]           06545         [0.0357, 0.073]         [0.0775]         [0.0775]           06545         [0.0357, 0.073]         [0.0775]         [0.0775]	0623>	ID = [8], NHYD = ["Pond-Block"], DT = [2,5]min, BEE = [4,0] (ba)	00758>	[ 0.000, 0.0000]
00625 * 4       007625 * 4       007625 * 4       007625 * 4       007625 * 4       007625 * 4       007625 * 4       007625 * 4       007625 * 4       007625 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00762 * 4       00776 * 4       00776 * 4       00776 * 4       00776 * 4       00775 * 4       00775 * 4       00777 * 4       00777 * 4       00777 * 4       00777 * 4       00778 * 4       00778 * 4       00778 * 4       00778 * 4       00778 * 4       00778 * 4       00778 * 4       00778 * 4       00778 * 4       00778 * 4       00778 * 4       00778 * 4       00778 * 4       00778 * 4       00778 * 4       00778 * 4       00778 * 4       00778 * 4       00778 * 4       1       00778 * 4       00778 * 4	0625>	DWF = [0](cms), CN/C = [85], TP = [0.17]hrs,	00760>	[ 0.017, 0.1311]
006239       ADD HTD       IDaume[9], NHTDe["HIPO9"], IDs to add=[6+74]       007645       [0.465, 0.567]         006333       RUTE RESERVOIR       IDoute[10], NHTDe["HIP-POND"], IDine[9],       00775       [0.633, 0.571]         006335       TABLE of (OUTFLOM-STORAGE) values       007655       [0.777, 1.0823]       [0.776]         006355       [max]       [max]       00775       [0.777, 1.0823]         006356       [0.046, 0.2374]       [00775]       [1.104, 0.317]         006357       [0.046, 0.2374]       [00775]       [1.104, 0.317]         006358       [0.046, 0.2374]       [00775]       [1.104, 0.317]         006359       [0.046, 0.2374]       [00775]       [1.104, 0.317]         006359       [0.047, 1.3705]       [00775]       [1.104, 0.317]         006453       [0.147, 1.3705]       [00775]       [00775]       [00775]         006454       [0.466, 3.1024]       [00775]       [00775]       [00775]         006455       [0.467, 1.3262]       [00775]       [00778]       [00778]         006454       [0.467, 1.3262]       [00778]       [00778]       [00778]         006455       [0.477, 1.3262]       [00778]       [00778]       [00778]       [00778]         006454<	0627> *% 0628>		00762>	[ 0.233, 0.3971]
000000000000000000000000000000000000	0630> **	IDsum=[ 9 ], NHYD=["HIP08"], IDs to add=[6+7+8]	00764>	[ 0.465, 0.5491] [ 0.531, 0.5871]
06634>       TABLE of ( OUTFLOM-STORAGE ) values        00755	0632> ROUTE RESERVOIR		00767>	[ 0.593, 0.6251] [ 0.654, 0.6631]
005655       [0.0, 0, 0, 0]         005675       [0.0, 0, 0, 0]         005675       [0.0, 0, 0, 0]         005685       [0.0, 0, 0, 0]         005685       [0.0, 0, 0, 0]         005685       [0.0, 0, 0, 0]         005685       [0.0, 0, 0, 0]         005685       [0.0, 0, 0, 0]         005685       [0.0, 0, 0, 0]         005685       [0.0, 0, 0, 0]         005685       [0.0, 0, 0]         005685       [0.0, 0, 0]         005685       [0.0, 2, 0]         005645       [0.0, 2, 0]         005645       [0.0, 2, 0]         005645       [0.0, 2, 0]         005645       [0.0, 2, 0]         005645       [0.0, 2, 0]         1.1.660, 3.7220 1       00782         005655       [0.0, 2, 0]         1.1.660, 3.7220 1       00785         005655       [0.0, 2, 0]         005655       [0.0, 2, 0]         1.1.660, 3.7220 1       00785         005655       [0.0, 2, 0]         005655       [0.0, 2, 0]         005655       [0.0, 2, 0]         1.1.660, 3.7220 1       00785         005655       [0.0, 2, 0]	0634>	TABLE of ( OUTFLOW-STORAGE ) values	00769>	[ 0.950, 0.8274]
006835       [ 0.054, 0.2434 ]         006835       [ 0.052, 0.8400 ]         006835       [ 0.062, 0.8400 ]         006835       [ 0.026, 0.8400 ]         006835       [ 0.724, 2.207 ]         006845       [ 0.724, 2.207 ]         006855       [ 0.724, 2.207 ]         006855       [ 0.724, 2.207 ]         006855       [ 0.724, 2.207 ]         006855       [ 0.724, 2.207 ]         006855       [ 0.724, 2.207 ]         006855       [ 0.724, 2.207 ]         006855       [ 0.724, 2.207 ]         006855       [ 0.724, 2.207 ]         006855       [ 0.724, 2.207 ]         006855       [ 0.724, 2.207 ]         006655       [ 1.262, 2.7881 ]         006655       [ 1.262, 2.7881 ]         006655       [ 2.409, 4.0442 ]         00655       [ 2.409, 4.0442 ]         00655       [ 2.409, 4.0442 ]         00655       [ 2.409, 4.0442 ]         00655       [ 0.788 + 1.790 ]         00655       [ 2.409, 4.0442 ]         00655       [ 2.409, 4.0442 ]         00655       [ 2.409, 4.0442 ]         00655       [ 2.7981 ]         00655       [ 2.7981 ] <td>0636&gt;</td> <td>(cms) - (ha-m) [ 0.0, 0.0 ]</td> <td>00771&gt;</td> <td>[ 1.880, 1.0040]</td>	0636>	(cms) - (ha-m) [ 0.0, 0.0 ]	00771>	[ 1.880, 1.0040]
00640>       [ 0.062, 0.3800 ]         00641>       [ 0.064, 1.024 ]         00642>       [ 0.175, 1.3705 ]         00643>       [ 0.472, 1.3242 ]         00645>       [ 0.472, 1.3242 ]         00645>       [ 0.472, 1.3242 ]         00645>       [ 0.377, 2.5010 ]         00645>       [ 0.372, 2.5010 ]         00645>       [ 1.522, 3.4066 ]         00645>       [ 1.532, 3.4066 ]         00655>       [ 1.532, 3.4066 ]         00652>       [ 1.532, 3.4066 ]         00652>       [ 1.630, 3.7240 ]         00653>       [ 2.409, 4.0442 ]         00653>       [ 2.409, 4.0442 ]         00654>       [ 2.409, 4.0442 ]         00655> **	0638>	[ 0.054, 0.2434 ]	00773>	
00643>       [ 0.280, 1.6444 ]       00773> *         00644>       [ 0.472, 1.2922 ]       00773> * SUB-AREA No.1         00645>       [ 0.297, 2.2097 ]       00780>         00646>       [ 0.297, 2.2097 ]       00780>         00647>       [ 1.262, 2.7981 ]       00780>         00646>       [ 1.404, 3.1009 ]       00780>       SCS curve number CM=[81, 00780>         00650>       [ 1.60, 4.3702 ]       00780>       SCS curve number CM=[10, 00, NMP=[0.3], SCI=[10, 00, 00780>         00655> *       00750>       [ 1.60, 1.724 [2.5]min, AREA=[2.7] (ha), 00780>       ID = [1], NHYD=["HIP01"], DT=[2.5]min, AREA=[1.0, 0]         00655> *       00750>       ID = [1], NHYD=["HIP01"], DT=[2.5]min, AREA=[2.7] (ha), 00780>       ID = [1], NHYD=["HIP02"], DT = [2.5] (min), AREA=[17] (ha), 00780>         00655> *       D0655>       D0750>       ID = [1], NHYD=["HA3"], DT=[2.5]min, AREA=[2.7] (ha), 00790>       DT = [3], MHYD=["HIP02"], DT = [2.5] (min), AREA=[17] (ha), 00790>         00665>       DDFF=[0] (cms), CKC=[76], TF=[0.60]hrs, 00795>       DT = [3], MHYD=["HIP03"], DT=[2.5] (min), AREA=[17] (ha), 00795>         00665>       DDFF=[0] (cms), CKC=[76], TF=[0.60]hrs, 0.2079       SCS curve number CM=[81], 00795>         00665>       DDFF=[0] (cms), CKC=[76], TF=[0.60]hrs, 0.2079>       SCS curve number CM=[81], 00795>         00665>       DDFF=[0] (cms), CKC=[76], TF=[	0640>	[ 0.062, 0.8400 ]	00775> **************	***************************************
00644>       [ 0.724, 1.9242 ]       00778> * SUB-AREA No.1         00645>       [ 0.724, 2.2097 ]       00780>         00646>       [ 0.337, 2.5010 ]       00780>         00647>       [ 1.262, 2.097 ]       00782>         00648>       [ 1.404, 3.1009 ]       00782>         00649>       [ 1.532, 3.0366 ]       00782>         00649>       [ 1.650, 3.7240 ]       00782>         00650>       [ 2.409, 4.0442 ]       00786>         00652>       [ 3.669, 4.3702 ]       00785>         00653>       [ -1, , -1 ]       (max twenty pts)         00650>       [ -1, , -1 ]       (max twenty pts)         00650>       [ 0.790 > ADD HYD       IDsum=[ 2 ], NHYD=[*HIPO3"], DT=[2.5] min, AREA=[2.7] (ha),         00650>       [ 0.790 > ADD HYD       IDsum=[ 2 ], NHYD=[*HIPO3"], DT=[2.5] min, AREA=[2.7] (ha),         00650>       [ 0.660>       RAINFALL=[, , , ] (mm/hr), EMD=-1         00650>       [ 0.660>       RAINFALL=[, , , ] (mm/hr), EMD=-1         00650>       [ 0.790 > ADD HYD       IDsum=[ 2 ], NHYD=[*HIPO3"], DT=[2.5] (min, AREA=[17] (ha),         00650>       [ 0.660>       RAINFALL=[, , , ] (mm/hr), EMD=-1         00660>       RAINFALL=[, , ] (mm/hr), EMD=-1         00661>       RAINFALL=[, , , ] (mm/hr), SLP2=[1.	0642> 0643>	( 0.147, 1.3705 ) ( 0.280, 1.6444 )	00777> **************	awinoing industilal Park
00646>       [ 0.337, 2.500 ]         00647>       [ 1.262, 2.7981 ]         00648>       [ 1.404, 3.1009 ]         00648>       [ 1.404, 3.1009 ]         00649>       [ 1.532, 3.0366 ]         00649>       [ 1.532, 3.0366 ]         00649>       [ 1.650, 3.7240 ]         00649>       [ 1.650, 3.7240 ]         00650>       [ 1.650, 3.7240 ]         00651>       [ 2.4009, 4.0442 ]         00652>       [ 1.9, MYD=["WIP01"], DT=[2.5] (min, MEL=[0.6] (min, MIP=[0.01], CMP=[0.1], MYD=[0.21], SCP=[1.5] (%), CMP=[0.20] (min), SDP=[1.5]	0644> 0645>	[ 0.472, 1.9242 ] [ 0.724, 2.2097 ]	00779> * SUB-AREA No.1	
00648>       [ 1.404, 3.1009 ]       00783>       SCS curve number CN=[81],         00649>       [ 1.532, 3.0366 ]       00784>       Pervious surfaces: IAper[4.67](ma), SLPPe[1.5](4),         00650>       [ 1.650, 3.7240 ]       00785>       Impervious surfaces: IAper[4.67](ma), SLPPe[1.5](4),         00651>       [ 2.409, 4.3702 ]       00785>       Impervious surfaces: IAper[4.67](ma), SLPPe[1.6](4),         00652>       [ 1.669, 4.3702 ]       00785>       Impervious surfaces: IAper[4.67](ma), SLPPe[1.6](4),         00653>       [ -1 , , -1 ]       (max twenty pts)       00785>       Impervious surfaces: IAper[4.67](ma), SLPPe[1.6](4),         00655>       [ -1 , , -1 ]       (max twenty pts)       00785>       maxtematical stress in the stre	0646> 0647>	[ 0.937, 2.5010 ] [ 1.262, 2.7981 ]	00781> CALIB STANDHYD	<pre>ID=[ 1 ], NHYD=["HIP01"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2].</pre>
00650>       [ 1.650, 3.7240 ]       00785>       Impervious surfaces: lAimpel.157[mn], MNT=[0.23], SCF=[0.00]         00651>       [ 2.405, 4.0442 ]       00785>       Impervious surfaces: lAimpel.157[mn], SNT=[0.26], SCF=[0.00]         00652>       [ 2.405, 4.0442 ]       00785>       Impervious surfaces: lAimpel.157[mn], SNT=[0.26], SCF=[0.00]         00653>       [ 2.405, 4.0442 ]       00785>       Impervious surfaces: lAimpel.157[mn], SNT=[0.26], SCF=[0.0]         00654>       [ 2.1, -1 ]       (max twenty pts)       00785>       RAINFALL=[, , , , ]       (mm/hr), EMD=-1         00655>       *       00790> ADD HYD       IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1]       00792> *         00665>       00795>       RAINFALL=[, , , ]       (mm, AREA=[17] (ha),       00795>         00665>       NMTP=[0.10](cms], CKC=[76], TP=[0.40]firs,       00795>       SCS curve number CM=[61],         00665>       *	0649>	[ 1.404, 3.1009 ] [ 1.532, 3.4096 ]	00783> 00784>	SCS curve number CN=[81], Pervious surfaces: IAper=[4,67](mm), SLPP=[1.5](%).
00522       [ 3.609, 4.3/02 ]       LCT=[500] (m, NT=[0.03], SCT=[0.0]         00535       [ -1, , -1 ]       (max twenty pts)       00785       RAINFALL=[, , , , ]       [mm/h1], EMD1         00555       *5UB-AREA No. 6       00790 ADD HYD       IDsum=[ 2 ], NHYD=["HIP02"], IDs to add=[10+1]       00792 *         00650 / 00650 / 00660 / 00660 / 00660 / 00660 / 00660 / 00660 / 00660 / 00660 / 00660 / 00660 / 00660 / 00792 / 100 - 00790 ADD HYD       ID=[ 3 ], NHYD=["HIP02"], IDs to add=[10+1]         00655 *       *	0651>	[ 1.650, 3.7240 ] [ 2.409, 4.0442 ]	00785> 00786>	LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.6] (%),
00545>       00780>       AP         00555>       00780>       AP         00565>       DWF=(0](cms), CNC=(76), TP=(0.80]trs, DWF=(0](cms), CNC=(76), TP=(0.80]trs, DWF=(0.10](cms), CNC=(76), TP=(0.80]trs, DWF=(0.20], MHYD=("HIP03"), DT=(2.5](min), AREA=[17](ha), DWF=(0.20], TMP=(0.71], DWF=(0.01](cms), LOSS=[2], DWF=(0.20], TMP=(0.71], DWF=(0.01](cms), LOSS=[2],         00652>       TMP=(0.10](cms), CNC=(10,1), MHYD=("HIP04"], DT=(2.5](min), SLP=[1.5](%), DWF=(0.71), DWF=(0.01], MHYD=("HIP04"], DT=(2.5](min), SLP=[1.5](%), DWF=(0.71), DWF=(0.01], MHY=(0.01], DWF=(0.01](cms), LOSS=[2],         00655>       *1000000000000000000000000000000000000	0653>	[ 3.689, 4.3702 ]	00788>	LGI=[580] (m), MNI=[0.03], SCI=[0.0] (min
00657 *SUB-AREA No. 6       00792 *SUB-AREA No. 6         00658>       007930 *SUB-AREA No. 2         00660>       DWF=[0], NHYD=["A3"], DT=[2.5]min, AREA=[2.7](ha), D0795> *CALLE STANDHYD       ID=[3], NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha), D0795> *CALLE STANDHYD         00661>       RAINFALL=[, , , , ](mm/hr], END=-1       00795> *CALLE STANDHYD       ID=[3], NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha), D0795> *CALLE STANDHYD         00662> **       IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1]       00795> *CALLE STANDHYD       ID=[4, 5](mm), SLDF=[1.5](h), LCDF=[10.0](cms), SLDF=[1.5](k), LCDF=[10.0](n), SLDF=[1.5](k), RCDF=[10.0](n), SLDF=[1.5](k), RC	D655> *&	1	00790> ADD HYD	
006559 DESIGN NASHYD         DD = [1], NHYD=["A3"], DT=[2.5]min, APEA=[2.7] (ha), DWF=[0] (Cms), CMC=[75], TP=[0.60]trs, 00665 NF         00755 NHP=[0.50], THP=[0.7], DT=[2.5] (min), AREA=[17] (ha), NHP=[0.50], THP=[0.7], DT=[2.5] (min), AREA=[17] (ha), NHP=[0.50], THP=[0.7], DT=[2.5] (min), AREA=[17] (ha), NHP=[0.50], THP=[0.7], DT=[2.5] (min), SLP=[1.5] (ha), D0755 SC CALLE STANDHYD         TD=[3], NHYD=["HIP03"], DT=[2.5] (min), SLP=[1.5] (ha), NHP=[0.50], THP=[0.7], DT=[2.5] (min), SLP=[1.5] (ha), D0755 SC CALLE STANDHYD         TD=[3], NHYD=["HIP03"], DT=[2.5] (min), SLP=[1.5] (ha), D0755 SC CALLE STANDHYD           00662 Normalized State         IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1]         00755 SC CALLE STANDHYD         ID=[3], NHYD=["MIP2[0.7]], DT=[2.5] (min), SLP=[1.5] (ha), D0757 SC CALLE STANDHYD           006645 Normalized State         IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1]         00755 SC CALE STANDHYD         ID=[3], NHYD=["MIP2[0.7]], DT=[2.5] (min), SLP=[0.25] (SC CALE STANDHYD           00665 Normalized State         Impervious surfaces: IAimpolice State         Impervious surfaces: IAimpolice State         Impervious surfaces: IAimpolice State           00665 Normalized State         00805 * * SUB-AREA No.3         00805 * SUB-AREA No.3         00805 * SUB-AREA No.3           00674 State         ID=[4], NHYD=["HIP04"], DT=[2.5] (min), AREA=[15.6] (ha)         008075 * SUB-AREA No.3         008075 * SUB-AREA No.3           00674 State         ID=[4], NHYD=[(-1.5]], THP=[0.0] (cms), LOSS=[15.6] (ha)         008075 * SUB-AREA NO.3         008075 * SUB-AREA NO.3	0657> *SUB-AREA No. 6		00792> *	
00661>         PAINFALL=[, , , , , , ] (mm/hr), END=-1         007652         Status 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	0659> DESIGN NASHYD	$ID = \{1\}, NHYD=["A3"], DT=[2.5]min, AREA=[2.7](ha), DF=[7.6], TD=[0.80]has$	00794>	
00663>         00795         Sc5 UlfVe Humber Chr[1];         Sc5 UlfVe Humber Chr[1];           00664> ADD HYD         IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1]         00795         Pervious surface: IAper=[4.67] (mm), SLPP=[1.5](%), U0795           00665>         "	0661>	RAINFALL=[,,,,](mm/hr), END=-1	00796>	XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2].
00665> **	0663>	· · ·	00798>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),
00667>*********************************	0665> *%	(c), max-( creater), 155 to add=[10+1]	00800>	<pre>Impervious surfaces: IAimp=[1.57](nm), SLPI=[0.65](%),</pre>
006695 ***********************************	<b>1667&gt; **************</b>		00802>	LGI=[450] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , , , ] (mm/hr) , END=-1
00671> \$TART T2ERO-[0.0], METOUT=[2], NSTORM=[0], NRUN-[0] 00805> 008712 *4 00872> *4 00872> *4 00873> *4 00873> *4 00873> *4 00874> CLIS STANDRYD ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[15.6](ha 00809> CLIS STANDRYD ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[15.6](ha 00809> CLIS STANDRYD ID=[4], NHYD=[0.1], DT=[2.5](min), AREA=[15.6](ha 00809> CLIS STANDRYD ID=[4], NHYD=[0.1], DT=[2.5](min), AREA=[15.6](ha 00809> CLIS STANDRYD ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[15.6](ha 00809> CLIS STANDRYD ID=[1.5](ha 00809> CLI	)669> ******************		00804> *	
00673> **	D671> START	TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN≈[0] [ ] <storm filename,="" for="" line="" nstorm="" one="" per="" td="" time<=""><td>00806&gt;</td><td></td></storm>	00806>	
00675> ICASEcs=[1], 00810> Pervious surfaces: LAper=[4.67] (mm), SLPP=[1.5] (%),	0673> *% 0674> CHICAGO STORM	IUNITS=[2], TD=[3.0] (hrs), TPRAT=[0.333], CSDT=[10.0] (min)	00808>	XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],
		ICASEcs=[1],		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%),

J. L. Richards & Associates Limited

(max twenty pts)

LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimpe[1.57] (mm), SLPI=[0.5] (%), LGD=[600] (m), MNT=[0.03], SCI=[0.0] (min RAINFALL=[, , , ] (mm/hr), END=-1 00811> 00946> Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.93] (%), LGI=[164.82] (m), MNI=[0.03], SCI=[0.0] ( RAINFALL=[ , , , ] (mm/hr), END=-1 00811> 00812> 00813> 00814> 00815> 009472 00949> * 8-00950> * 00951> * SUB-AREA No.5 00952> 00953> CALIE STANDHYD 00815> ADD HYD 00817> *%-----00818> ADD HYD 00819> *%-----00820> * IDsum=[ 5 ], NHYD=["HIP05"], IDs to add=[3+4] * SUB-AREA No.5 ID=[ 7 ], NHYD=["070"], DT=[2.5] (min), AREA=[2.66] (ha), XIHP=[0.97], TIMP=[0.97], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[20.0] (m), MNN=[0.25], SCP=[0.0] (m), Impervious surfaces: IAimpe[1.57] (mm), SLPI=[0.61] (%), LGI=[207.25] (m), MNI=[0.03], SCI=[0.0] ( RAINFALL=[, , , ] (mm/hr), END=-1 IDswm=[ 6 ], NHYD=["HIP06"], IDs to add=[5+2] 00954 00955> 00956> 00821> * SUB-AREA No.4 00822> 00823> CALIB STANDHYD 00957> 00958> 00959> ID=[7], NHYD=["HIPO7"], DT=[2.5](min), AREA=[12.2](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SIPP=[1.5](%), Impervious surfaces: IAper=[4.67](mm), SIPP=[0.25], SCD=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SIPI=[0.7](%), LGT=[200](m), MMI=[0.03], SCI=[0.0](min RAINFALL=[, , , , ](mm/hr), END=-1 00824> 00825> 00826> 00960> 00961> *%-----00962> ADD HYD 00963> *%-----00964> ADD HYD 00965> *%-----IDsum=[8], NHYD=[ "080"], IDs to add=(6+7) 00827> 00828> [Dsum=[9], NHYD=[ "090"], IDs to add=[5+8] 00829> 00830> 00966: 00832> **----IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min), TABLE of ( OUTFLOW-STORAGE ) values 00967> ROUTE RESERVOIR 00833> * 00834> *SUB-AREA No.5 00835> 00836> DESIGN NASHYD 00837> 00833> 00968> 00969> 00970> (cms) -0.000, 0.008, 0.017, (ha-m) , 0.0000] , 0.0656] , 0.1311] , 0.2831] ID=[ 8 ], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[ 0 ](cms), CN/C=[ 85 ], TP=[0.17]hrs, RAINFALL=[ , , , , ](mm/hr), END=-1 00971> 00972> 00838> 00973> 00974> 00975> 00839> 0.093, 0.093, 0.2831 0.233, 0.3971 0.337, 0.4731 0.531, 0.5471 0.553, 0.65421 0.553, 0.6631 0.654, 0.6631 0.797, 0.7391 1.304, 0.9157 1.880, 1.0040 2.577, 1.0923 -1, -1 ] 00841> ADD HYD 00842> *%------00843> 00840> IDsum=[ 9 ], NHYD=["HIP08"], IDs to add=[6+7+8] 00976> 00977> 00978> 00979> 00980> 00981> 00982> IDout=[ 10 ], NHYD=("HIP-POND"], IDin=[ 9 ], RDT=[1.0](min), TABLE of ( OUTFLOW-STORAGE ) values 00844> ROUTE RESERVOIR 00845> 00846> 00847> 00848> UUTELOW-STORAGE 3) (cms) - (ha-m) (0.048; 0.0574 0.064; 0.0574 0.054; 0.2434 0.059; 0.5834 0.062; 0.8404 0.062; 0.8404 0.064; 1.1024 0.147; 1.3705 0.280; 1.6444 0.472; 1.9242 0.724; 2.2097 0.937, 2.5010 1.262; 2.7981 1.404; 3.1009 1.532; 3.4096 1.550; 3.7240 00983> 00984> 00985> 00986> 00986> 00987> 008495 00849> 00850> 00851> 00852> 00853> 00854> 00855> 00855> 00856> 00858> 00859> 00988> ********** 00989: * Remaining Hawthorne Industrial Park U0993> 00994> CALIB STANDHYD 00995> 00996> 00997> 00998> 00993> ID=[1], NHYD=["HIP01"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), LCP=[10.01](m), MNP=[0.25], SCD=[0.0](m) Impervious surfaces: IAimpe[1.57](mm), SLPI=[0.6](%), LoI=[580](m), MNI=[0.3], SCI=[0.0](min RAINFALL=[, , , ](mm/hr), END=-1 00860> 00861> 00862 2.409, 4.0442 ] 3.689, 4.3702 ] -1 , -1 ] 00863> 00864> 00865> 009993 (max twenty pts) 00866> 01001> *8--IDsum=[ 2 ], NHYD=["HIP02"], IDs to add=[10+1] 00863/ * 00869> *SUB-AREA No. 00870> 00871> DESIGN NASHYD ADD HYD *8-----* SUB-AREA No.2 *SUB-AREA No. 6 01004> ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7](ha), DWF=[0](cms), CNC=[76], TP=[0.80]hrs, RAINFALL=[,,,,](mm/hr), END=-1 01006> 00872 01007> 01008> CALIB STANDHYD 01009> ID=[3], NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), IGD=[10.00](m), MNP=[0.25], SCF=[0.0](m Impervious surfaces: IAimpe[1.57](mm), SLPI=[0.65](%), IGD=[450](M), MNT=[0.3], SCI=[0.0](min RAINFALL=[, , , ](mm/hr), END=-1 00873> 00874> *% 01010> IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1] 01011> 01012> 01013> 01014> 008705 008705 008705 008805 008805 * CALCULATION OF 3HR - 1:25 YEAR STORM EVENT * 01015 *%-----* * SUB-AREA No.3 01016> 01017> 00883> 01018> * SUB-AREA No.3 01019> 01020> CALIB STANDHYD 00884> START TZERO=[0.0], METOUT=[2], NSTORM≃[0], NRUN=[0]
[ ] <--storm filename, one per line for NSTORM time</pre> 00885> *% 00886> *%------00887> CHICAGO STORM ID=[ 4 ], NHYD=["HIP04"], DT=[2.5] (min), AREA=[15.6] (ha), XIMP=[0.50], TIMP=[0.71], DWT=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LOP=(100.0] (m), MNP=[0.25], SCS=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=(0.5] (%), LOI=[500] (m), MNT=[0.03], SCI=[0.0] (min RAINFALL=[, , , ] (mm/hr), END=-1 IUNITS=[2], TD=[3.0] (hrs), TPRAT=[0.333], CSDT=[10.0] (min) ICASEc=[1], 01021> 01022> 01023> 01023> 01024> 01025> 00888> 00880> 00890> *8------00891> DEFAULT VALUES 00892> CASECs=[1],A=[1402.884], B=[6.018], and C=[0.819],ICASEdef=(1), read and print values DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"] 01026> 01027> 01028> *%-----01029> ADD HYD 01030> *%-----01031> ADD HYD 01032> *%-----IDsum=[ 5 ], NHYD=["HIP05"], IDs to add=[3+4] 00894> IDsum=[ 6 ], NHYD=["HIPO6"], IDs to add=[5+2] 01033> * 01034> * SUB-AREA NO.4 01035> 01036> CALIE STANDHYD 01037> * SUB-AREA No.4 ID=(1 ], NHYD=("010"], DT=[2.5] (min), AREA=[2.07] (ha), XIMP=[0.64], TIMP=(0.64], DWT=(0.0] (cns), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (nm), SLPP=[1.0] (%), LGD=[20] (m), MMP=[0.52], SCD=[0.0] (mi Impervious surfaces: IAimp=(1.57] (nm), SLPI=[0.52] (%), LGD=[20] (mi, SLPI=[0.03], SCI=[0.0] RAINFALL=[, , , ] (mm/hr), END=-1 ID=[7], NHYD=["HIP07"], DT=[2.5](min), AREA=[12.2](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), LOP=[10.01](m), NMP=[0.25], SCD=[0.0](m) Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.7](%), LGI=[210](mn, NMN=[0.03], SCI=[0.0](min RAINFALL=[, , , , ](mm/hr), END=-1 01038> 01039> 01040> 01041> 01042> 01043> 01044> 01044-01045> *%-----01046> * 01047> *SUB-AREA No.5 00910> 00911> * SUB-AREA No.2 00912> 00912> 00933> CALIB STANDHYD 00914> 00915> 00915> ID=[ 2 ], NHYD=["020"], DT=[2.5](min), AREA=[ 1.54 ](ha), XIME=[0.92], TIM==[0.92], DME=[0.0](cms), LOSS=[2], SCS curve number CN=[8], Pervious surfaces: IAper[4.67](nm), SLPP=[1.0](8), 01048> 01049> DESIGN NASHYD ID=[ 8 ], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0] (ha), DWF=[ 0 ] (cms), CN/C=[ 85 ], TP=[0.17]hrs, RAINFALL=[ , , , , ] (mm/hr), END=-1 
 SCS curve number CN=[81],

 Pervious
 surfaces: IAper=[4.67] (nm), SLPP=[1.0] (%),

 LGP=[5] (m), MMP=[0.03], SCP=[0.0] (%),

 Impervious surfaces:
 IAimp=[1.57] (nm), SLP1=[0.50] (%),

 LGL=[244.34] (m), MNI=[0.03], SCI=[0.0]

 RAINFALL=[, , , ] (nm/hr), END=-1
 01050> 00917> 00918> 00919> 00920> 00921> *&-----00922> * 00922> * 00923> * SUB-AREA No.3 01054> ADD HYD 01055> *%-----IDsum=[ 9 ], NHYD=["HIP08"], IDs to add=[6+7+8] 01056> 01057> 01058> 01060> 01061> 01062> 01063> 01064> 01065> 01066> 01066> IDout=[ 10 ], RDT=[1.0](min), TABLE of ROUTE RESERVOIR NHYD=["HIP-POND"], IDin=[ 9 ]. 00925> CALIB STANDHYD 00926> 00927> ( OUTFLOW-STORAGE ) values (cms) - (ha-m) 0.0, 0.0 ] 0.048, 0.0574 ] 00927> 00928> 00929> 00930> 00931> 00932> 00933> *%--0.048, 0.0574 0.054, 0.2434 0.059, 0.5834 0.062, 0.8400 0.064, 1.1024 0.147, 1.3705 0.280, 1.6444 01067> 01068> 01069> 01070> 01071> 01072> IDsum=[4], NHYD=[ "040"], IDs to add=[1+2] 0.280, 1.6444 0.472, 1.9242 0.724, 2.2097 0.937, 2.5010 1.262, 2.7981 1.404, 3.1009 1.532, 3.4096 1.650, 3.7240 2.409, 4.0442 3.689, 4.3702 -1 , -1 00934> ADD HYD 00935> *%-----00936> ADD HYD IDsum=[5], NHYD=[ "050"], IDs to add=[3+4] 00937> *%-----00938> * 00939> * SUB-AREA No.4 01073 01074> 01074> 01075> 01076> 01077> 00940> 00941> CALIB STANDHYD 00942> 00943> 00944> 00945> ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.69](ha), XIMP=[0.97], TIMP=[0.97], DMP=[0.0](cms), LOSS=[2], SCS curve number CM=[4]; [4.67](mm), SLPP=[0.7](8), Pervious surfaces: IAper=[4.67](mm), SLPP=[0.25], SCP=[0.0](min) 01078: 01079>
01080>

J. L. Richards & Associates Limited

Page 3

(max twenty pts)

)

1081> *	- -		1 01 21 6	> *8	
	SUB-AREA No. 6		01217	> *	
1084> D	ESIGN NASHYD	<pre>ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7](ha),</pre>	01219		
1085>		DWF=[0](cms), CNC=[76], TP=[0.80]hrs, RAINFALL=[,,,,](mm/hr), END=-1	01220	> CALIB STANDHYD >	ID=[ 3 ], NHYD=["HIP03"], DT=[2.5] (min), AREA=[17] (ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2],
1087> *	8	· [ ]	01222		SCS curve number $CN=[81]$ , Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%),
1089> A	DD HYD 8	<pre>IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1]</pre>	01224	>	LGP=(100.0](m), MNP=[0.25], SCP=[0.0](r
1091>	*****	1	01225	>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.65] (%), LGI=[450] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[ , , , ] (mm/hr) , END=-1
1093> *	CALCULATIC	N OF 3HR - 1:50 YEAR STORM EVENT *	01227	> *&	RAINFALL=[,,,,](mma/hr), END=-1
1094> * 1095>		***************************************	01229	> * > * SUB-AREA No.3	
1096> S 1097> *		<pre>TZERO=(0.0], METOUT=[2], NSTORM=[0], NRUN=[0] [ ] <storm filename,="" for="" line="" nstorm="" one="" per="" pre="" time<=""></storm></pre>	01231	> > CALIB STANDHYD	
1098> *	% HICAGO STORM	IUNITS=[2], TD=[3.0] (hrs), TPRAT=[0.333], CSDT=[10.0] (min)	01233:	>	<pre>ID=[ 4 ], NHYD=["HIP04"], DT=[2.5] (min), AREA=[15.6] (ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2],</pre>
1100>	indigo biolaí	CASEcs=[1], B=[6.014], and C=[0.820], CSDI=[10.0](min)	01234:	>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%),
	8		01236: 01237:	>	LGP=[100.0](m), MNP=[0.25], SCP=[0.0](r Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.5](%),
1104>		ICASEdef=[1], read and print values DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]	01238: 01239:	>	LGI=[600] (m), MNI=[0.03], SCI=[0.0] (mir RAINFALL={ , , , } (mm/hr) , END=-1
1105> * 1106>	8			> *% > ADD HYD	<pre>IDsum=[ 5 ], NHYD=["HIP05"], IDs to add=[3+4]</pre>
1108> *	**************************************	D FILE *	01242;	> *8 > ADD HYD	
1109> * 1110> *	*************	**********	01244:	> *8	IDsum=[ 6 ], NHYD=["HIP06"], IDs to add=[5+2]
1111> *	SUB-AREA No.1		01245:	> * SUB-AREA No.4	
	ALIB STANDHYD	ID=[ 1 ], NHYD=["010"], DT=[2.5](min), AREA=[ 2.07 ](ha),	01247:	> CALIB STANDHYD	ID=[ 7 ], NHYD=["HIP07"], DT=[2.5] (min), AREA=[12.2] (ha),
1114> 1115>		<pre>XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>	01249:	>	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81],</pre>
1116> 1117>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[20] (m), MNP=[ 0.25 ], SCP=[0.0] (mi	01251:	>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%),
1118> 1119>		<pre>Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.52] (%),</pre>	01253;	>	LGP=[100.0](m), $MNP=[0.25]$ , $SCP=[0.0](m)Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.7](%),$
1120>	_	LGI=[204.72] (m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , , , ] (mm/hr), END=-1	012542	>	LGI=[210] (m), MNI=[0.03], SCI=[0.0] (mir RAINFALL=[, , , ] (mm/hr) , END=-1
1121> *: 1122> *		[	01256	> > *&	[
	SUB-AREA No.2		01258>		
	ALIB STANDHYD	<pre>ID=[ 2 ], NHYD=["020"], DT=[2.5](min), AREA=[ 1.54 ](ha), XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2],</pre>	01260>	•	
1127>		SCS curve number CN=[81],	01262>		<pre>ID=[ 8 ], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[ 0 ](cms), CN/C=[ 85 ], TP=[0.17]hrs,</pre>
1128> 1129>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%), LGP=[5] (m), MMP=[0.03], SCP=[0.0] (min),		*8	RAINFALL=[, , , ](mm/hr), END=-1
1130> 1131>		Impervious surfaces: IAimp=[1.57] (mm), SUF=[0.50] (%), LGI=[244.34] (m), MNI=[0.03], SCI=[0.0]	01265>	ADD HYD	IDsum=[ 9 ], NHYD=["HIP08"], IDs to add=[6+7+8]
1132> 1133> **	*	RAINFALL=[, , , , ](mm/hr), END=~1		*8	
1134> *	SUB-AREA No.3		01269>	ROUTE RESERVOIR	<pre>IDout=[ 10 ], NHYD=["HIP-POND"], IDin=[ 9 ],</pre>
1136>			01270>	•	RDT=[1.0](min), TABLE of ( OUTFLOW-STORAGE ) values
1137> C 1138>	ALIB STANDHYD	<pre>ID=[ 3 ], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],</pre>	01272>		(cms) - (ha-m)
1139> 1140>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%),	01274>	•	[ 0.0 , 0.0 ] [ 0.048, 0.0574 ]
1141> 1142>		LGP=[5](m), $MNP=[0.03]$ , $SCP=[0.0](min)$ ,	01276>	•	[ 0.054, 0.2434 ] [ 0.059, 0.5834 ] [ 0.052, 0.8400 ]
1143>		Impervious surfaces: IAimp=[1.57] (mm), SLPI=[ 0.51 ](%), IGI=[ 225.63 ](m), MNI=[0.03], SCI=[0.0	01277>	•	[ 0.062, 0.8400 } [ 0.064, 1.1024 ]
	}	RAINFALL=[ , , , ] (mm/hr) , END=-1	01279>		[ 0.147, 1.3705 ] [ 0.280, 1.6444 ]
1146> AI 1147> *1		IDsum=[4], NHYD=[ "040"], IDs to add=[1+2]	01281>		[ 0.472, 1.9242 ]
1148> AI	DD HYD	IDsum=[5], NHYD=[ "050"], IDs to add=[3+4]	01283>	•	[ 0.724, 2.2097 ] [ 0.937, 2.5010 ]
1150> *	•		01284>	•	[ 1.262, 2.7981 ] [ 1.404, 3.1009 ]
1152>	SUB-AREA No.4		01286>		[ 1.532, 3.4096 ] [ 1.650, 3.7240 ]
153> C2 154>	ALIB STANDHYD	ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],	01288>		[ 2.409, 4.0442 ] [ 3.689, 4.3702 ]
155>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[0.7](%),	01290>		[-1, -1] (max twenty pts)
1157>		LGP=[40](m), $MNP=[0.25]$ , $SCP=[0.0](min)$	01292>	*8	
159>		Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.93] (%), LGI=[164.82] (m), MNI=[0.03], SCI=[0.0] (		*SUB-AREA No. 6	
1160> 1161> *4	8	RAINFALL ² [, , , ] (mm/hr) , END=-1	01295>	DESIGN NASHYD	ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7](ha),
.162> * .163> *	SUB-AREA No.5		01297>		DWF=[0](cms), CNC≈[76], TP=[0.80]hrs, RAINFALL=[, , , , ](nm/hr), END=-1
164>	ALIB STANDHYD	ID=[ 7 ], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha),	01299>		
166>		XIMP = [0.97], $TIMP = [0.97]$ , $DWF = [0.0]$ (cms), $LOSS = [2]$ .	01301>	ADD HYD	IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1]
168>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%),	01303>		
169> 170>		LGP=[20.0] (m), MNP=[0.25], SCP=[0.0] (mi Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.61] (%),	01304>	* CALCULATION	OF 3HR - 1:100 YEAR STORM EVENT *
171> 172>		LGI=[207.25] (m), MNI=[0.03], SCI=[0.0] ( RAINFALL=[, , , ] (mm/hr), END=-1	01306> 01307>	*****	C2 SIAC 11100 IAAC SOAN SENT
173> *8		IDsum=[8], NHYD={ "080"}, IDs to add=[6+7]	01308>	START	TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN≂[0]
174> AI 175> *8				**	[ ] <storm filename,="" for="" line="" nstorm="" one="" per="" td="" time<=""></storm>
176> AI 177> *8	8	IDsum=[9], NHYD=[ "090"], IDs to add=[5+8]	01312>		<pre>IUNITS=[2], TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0](min) ICASEcs=[1],</pre>
	DUTE RESERVOIR	<pre>IDout=[10], NHYD=["POND"], IDin=[9],</pre>	01313>	*8	A=[1735.688], B=[6.014], and C=[0.820],
180> 181>		RDT=[1.0] (min), TABLE of ( OUTFLOW-STORAGE ) values		DEFAULT VALUES	ICASEdef=[1], read and print values DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]
182>		(cms) - (ha-m)	01317>	*8/	DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]
184>		[ 0.000, 0.0000] [ 0.008, 0.0656]	01318> 01319>	*******	**********
185> 186>		[ 0.017, 0.1311] [ 0.093, 0.2831]	01320> 01321>	* ORGAWORLD	) FILE *
187> 186>		[ 0.233, 0.3971] [ 0.337, 0.4731]	01322>	* * SUB-AREA No.1	
189> 190>		[ 0.465, 0.5491]	01324>		
191>		[ 0.531, 0.5871] [ 0.593, 0.6251]	01326>		<pre>ID=[ 1 ], NHYD=["010"], DT=[2.5](min), AREA=[ 2.07 ](ha), XIMD=[0.84], TIMD=[0.84], DWF=[0.0](cms), LOSS=[2],</pre>
192> 193>		{ 0.654, 0.6631] [ 0.797, 0.7391]	01327> 01328>		SCS curve number CN=[81], Pervious surfaces: JAper=[4,67](mm), SLPP=[7,0](%)
194> 195>		[ 0.950, 0.8274] [ 1.304, 0.9157]	01329>		LGP=[20](m), MNP=[0.25], SCP=[0.0](m) IGP=[20](m), MNP=[0.25], SCP=[0.0](m) Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.52](%),
196> 197>		[ 1.880, 1.0040] [ 2.577, 1.0923]	01331>		LGI=[204.72](m), MNI=[0.03], SCI=[0.0]
198>		$\begin{bmatrix} 2.577, 1.0923 \end{bmatrix}$ $\begin{bmatrix} -1, -1 \end{bmatrix}$ (max twenty pts)		*8!	RAINFALL=[ , , , , ] (mm/hr) , END=-1
		*********		* SUB-AREA No.2	
201> * 202> **	Remaining Hawt	chorne Industrial Park *	01336>		TD=[ 2 ] NHYD=["020"] DT=[2 E]/min _ DDD=_ 1 E4
203> *	SUB-AREA No.1		01338>		<pre>ID=[ 2 ], NHYD=["020"], DT=[2.5](min), AREA=[ 1.54 ](ha), XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], CONTENT OF CONTENT OF CONTENT.</pre>
204~ *			01339> 01340>		<pre>SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%),</pre>
205>	LIB STANDHYD	<pre>ID=[ 1 ], NHYD=["HIP01"], DT=[2.5] (min), AREA=[19.9] (ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2],</pre>	01341> 01342>		LGP=[5] (m), MMP=[0.03], SCP=[0.0] (min), Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.50] (%),
205> 206> CA 207>			01343>		LGI=[244.34] (m), MNI=[0.03], SCI=[0.0]
205> 206> CA 207> 208>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%),			RAINFALLEI ) (mm/br) Dara 3
205> 206> CA 207> 208> 209> 210>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%), LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m	01344> 01345>	*8	RAINFALL=[,,,,)(mm/hr), END=-1
.205> .206> CA .207> .208> .209> .210> .211> .212>		Pervious surfaces: IAper=[4.67](mm), SLP≥=[1.5](%), LGP=[100.0](m), MNIP=[0.25], SCP=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.6](%), LGI=[580](m), MNI=[0.03], SCI=[0.0](min	01344> 01345> 01346> 01347>	*8	RAINFALL=[, , , ](mm/hr), END=-1
.205> .206> CA .207> .208> .209> .209> .210> .211>	1	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%), LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m	01344> 01345> 01346> 01347> 01347>	*8  * * SUB-AREA No.3	RAINFALL=[, , , ](mm/hr), END=-1

52> 53> 55> 55> 55> *% 56> ADD HYD	Pervious surfaces: IApe=(1.67)(mm), SLPP=(1.0)(%), LGP=(5)(m), NMP=(0.03), SCP=(0.0)(min), Impervious surfaces: IAimpe[1.57](mm), SLPI=(0.51)(%), LGI=(225.63)(m), NNI=[0.03], SCI=[0.0 RAINFALL=[, , , ](mm/hr), END=-1	01486> 01487> 01488> 01499> 01490> 01491> 01491> 01492>	$\left[\begin{array}{c} 0.048, \ 0.0574 \\ 1 \\ 0.054, \ 0.2434 \\ 1 \\ 0.059, \ 0.5834 \\ 1 \\ 0.052, \ 0.38400 \\ 1 \\ 0.064, \ 1.1024 \\ 1 \\ 0.147, \ 1.3705 \\ 1 \\ 0.280, \ 1.6444 \\ 1 \\ \end{array}\right]$
59> *8 59> *8 50> ADD HYD	IDsum=[4], NHYD=[ "040"], IDs to add=[1+2]	01493> 01494>	[ 0.472, 1.9242 ] [ 0.724, 2.2097 ]
50> ADD HYD 51> *& 52> *	IDsum=[5], NHYD=[ "050"], IDs to add=[3+4]	01495> 01496> 01497>	[ 0.937, 2.5010 ] [ 1.262, 2.7981 ]
53> * SUB-AREA No.4		01497> 01498>	[ 1.404, 3.1009 ] [ 1.532, 3.4096 ]
5> CALIB STANDHYD 56>	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	01499> 01500> 01501>	[ 1.650, 3.7240 ] [ 2.409, 4.0442 ]
57> 58>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (nm), SLPP=[0.7] (%),	01502> 01503>	[ 3.689, 4.3702 ] [ -1 , -1 ] (max twenty pts)
9> /0>	LGP=[40](m), $MNP=[0,25]$ , $SCP=[0,0](min)$	01504> *%	
/1> /2>	<pre>Impervious surfaces: IAimp=(1.57)(mm), SLPI=[0.93](%), LGI=[164.82](m), MNI=[0.03], SCI=[0.0]( RAINFALL=[, , , ](mm/hr), END=-1</pre>	01506> *SUB-AREA No. 6 01507>	
'3> *8 '4> *		01508> DESIGN NASHYD 01509>	<pre>ID = [1], NHYD=["A3"}, DT=[2.5]min, AREA=[2.7](ha), DWF=[0](cms), CNC=[76], TP=[0.80]hrs,</pre>
5> * SUB-AREA No.5 6>		01510> 01511> *8	RAINFALL=[, , , , ] (nm/hr), END=-1
7> CALIB STANDHYD 8>	ID={ 7 }, NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],	01512> 01513> ADD HYD	IDsum={2], NHYD=["Ultimate"], IDs to add=[10+1]
9>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),	01514> *%	(c), into ( contact // 120 co data (c), c)
1> 2>	LGP=[20.0](m), MNP=[0.25], SCP=[0.0](mi Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.61](%),	01516> 01517>	
3> 4>	LGI=[207.25] (m), MNI=[0.03], SCI=[0.0] ( RAINFALL=[, , , ] (mm/hr), END=-1	01518> 01519> FINISH	
5> *8 6> ADD HYD	IDsum=[8], NHYD=[ "080"], IDs to add=[6+7]		
7> *% 8> ADD HYD 9> **	IDsum=[9], NHYD=[ "090"], IDs to add=[5+8]		
9> *% 0> 1> ROUTE RESERVOIR	Theut-(10) NERP-((DOND))		
1> ROUTE RESERVOIR 2> 3>	<pre>IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min), TDEFF of ( ONTER ON STORE ) are long</pre>		
4> 5>	TABLE of ( OUTFLOW-STORAGE ) values (cms) - (ha-m) [ 0.000 0.0000]		
5> 6> 7>	[ 0.000, 0.0000] [ 0.008, 0.0556] [ 0.017, 0.1311]		
/> B> 9>	[ 0.017, 0.1311] [ 0.093, 0.2831] [ 0.233, 0.3971]		
0> 1>	$\begin{bmatrix} 0.233, 0.3911 \end{bmatrix}$ $\begin{bmatrix} 0.337, 0.4731 \end{bmatrix}$ $\begin{bmatrix} 0.465, 0.5491 \end{bmatrix}$		
2> 3>	[ 0.531, 0.5871] [ 0.593, 0.6251]		
4> 5>	[ 0.654, 0.6631] [ 0.797, 0.7391]		
6> 7>	[ 0.950, 0.8274] [ 1.304, 0.9157]		
8> 9>	[ 1.880, 1.0040] [ 2.577, 1.0923]		
0> 1>	i - 1, $-1$ $j$ (max twenty pts)		
5> * 6> * SUB-AREA No.1 7>	***************************************		
4> *********************** 5> * 6> * SUB-AREA No.1	<pre>ID=[ 1 ], NHYD=("HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[01], Pervious surfaces: DATE=[10.0](h), SLTP=[1.5](8), Pervious surfaces: DATE=[10.0](h), SNTP=[0.3], SCT=[0.0](m Impervious surfaces: DATE=[10.0](h), SNTP=[0.3], SCT=[0.0](m), LGT=[580](h), LNTP=[0.3], SCT=[0.0](h), NTP=[0.3], SCT=[0.0](m)</pre>		
42 ************************** 55 * * 65 * SUB-AREA No.1 75 85 CALIB STANDHYD 90 90 90 90 90 90 90 90 90 90	<pre>ID=[ 1 ], NHYD=("HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CN=[8], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), LGP=[10.01(m), MNP=[0.25], SCP=[0.0](m)</pre>		
42 ************************************	<pre>ID=[ 1 ], NHYDe["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CN=[01], Pervious surfaces: TApper=[4.67](mm), SLPP=[1.5](%), LGP=[100.0](m), SMP=[0.25], SCP=[0.0](m Impervious surfaces: TAimp=[1.57](mm), SLPI=[0.6](%), LGE=[50](m), MNT=[0.03], SCI=[0.0](min</pre>		
42 ************************************	<pre>ID=[ 1 ], NHYD=("HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[01], Pervious Surfaces: DAE=[100.0](h), NND=[0.25], SCP=[0.0](m Impervious surfaces: DAE=[0.0](h), NNT=[0.03], SCI=[0.0](m) RAINFALL=[, , , , ](mm/hr), END=-1</pre>		
42 ************************************	<pre>ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CN=[81], LGP=[100.0](m), NNP=[0.25], SCP=[0.0](m Impervious surfaces: TAimp=[1.57](mm), SLPP=[1.5](%), LGP=[280](m), MNT=[0.03], SCI=[0.0](min RAINFALL=[, , , , ] (mm/hr), END=-1 ] IDsum=[ 2 ], NHYD=["HIPO2"], IDs to add=[10+1] ] ID=[ 3 ], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha].</pre>		
42 ************************************	<pre>ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CN=[81], ID=[100.0](m), NNP=[0.25], SCP=[0.0](m) Impervious surfaces: Thimp=[1.57](mm), SLPP=[1.5](%), ICD=[100.0](m), NNT=[0.03], SCI=[0.0](m) RAINFALL=[ , , , , ] (mm/hr), END=-1   ID=[ 2 ], NHYD=["HIPO2"], IDs to adde[10+1] ID=[ 3 ], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[81].</pre>		
42 ************************************	<pre>ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[81], ID=[100.0](m), MNP=[0.25], SCP=[0.0](m) Impervious surfaces: TAimp=[1.57](mm), SLPP=[1.5](%), LGP=[280](m), MNT=[0.03], SCI=[0.0](min RAINFALL=[, , , , ] (mm/hr), END=-1 IDsum=[ 2 ], NHYD=["HIPO2"], IDs to add=[10+1] ID=[ 3 ], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha], XIMP=[0.50], TIMP=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: TAppr=[4.67](mm), SLPP=[1.5](%), LGP=[100.0](m), MNP=[0.5], SCP=[0.0](m</pre>		
42 ************************************	<pre>ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[21], SCS curve number CN=[81], ID=[100.0](m), NNT=[0.25], SCF=[0.0](m) IMPervious surfaces: IAimp=[1.57](mm), SLPF=[1.5](%), IG=[580](m), NNT=[0.03], SCI=[0.0](min RAINFALL=[ , , , ] (mm/hr), END=-1 ID=[ 3 ], NHYD=["HIPO2"], IDs to add=[10+1] ID=[ 3 ], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAimp=[1.57](mn), SLP=[1.5](%), Impervious surfaces: IAimp=[1.57](mn), SLP=[1.5](%), Impervious surfaces: IAimp=[1.57](mn), SLP=[1.6](%), Impervious surfaces: IAimp=[1.57](mn), Impervious], SC=[1.0](mn), Imper</pre>		
42 ************************************	<pre>ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.7]], DWP=[0.0](cms), LoSs=[2], SCS curve number CN=[81],</pre>		
42 ************************************	<pre>ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMD=[0.50], TIMD=[0.71], DWT=[0.0](cms], LOSS=[2], SCS curve number CN=[81], ID=[100,0](m), MNN=[0.25], SCP=[0.0](m) Impervious surfaces: IAimpel[357](mm), SLPP=[1.5](%), LGD=[360](m), MNT=[0.03], SCI=[0.0](m) RAINPALL=[, , , , ](mm/hr), SMD=-1 ID=un=[2], NHYD=["HIPO2"], ID= to add=[10+1] ID=[3], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMD=[0.50], TIMD=[0.71], DWT=[0.0](cms], LOSE=[2], SCS curve number CN=[81], Pervious surfaces: IAimpel[37](mm), SLP=[1.5](%), LGD=[100](m), MNT=[0.25], SCD=[0.0](m) RAINPALL=[, , , ](mm/hr), END=-1 ] RAINPALL=[, , , ](mm/hr), END=-1</pre>		
42 ************************************	<pre>ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[81], Impervious surfaces: IAimper[1.57](mm), SLPP=[1.5](%), LGP=[100.0](m), MNT=[0.03], SCI=[0.0](m) RAINPALL=[, , , ] (mm/hc), SND=-1 ID=un=[2], NHYD=["HIPO2"], ID= to add=[10+1] ID=un=[2], NHYD=["HIPO2"], ID= to add=[10+1] ID=[3], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms], LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAimper[1.57](mm), SLPI=[1.5](%), LGF=[100.0](m), MNT=[0.25], SCI=[0.0](m) RAINFALL=[, , , ](mm/hr), END=-1 ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.71], DF=[0.0](cms), LOSS=[1.5](ha),</pre>		
42 ************************************	<pre>ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[81], ID=[10.0](m), MNP=[0.25], SCP=[0.0](m) Impervious surfaces: IAimp=[1.57](mm), SLPP=[1.5](%), LGP=[360](m), MNT=[0.03], SCI=[0.0](m) RAINPALL=[, , , , ] (mm/hc), SMD=-1 ] ID=um=[ 2 ], NHYD=["HIPO2"], IDs to add=[10+1] ID=um=[ 2 ], NHYD=["HIPO2"], IDs to add=[10+1] ID=um=[ 2 ], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Parvious surfaces: IAimp=[1.57](mm), SLPP=[1.5](%), LGP=[1000](m), MNT=[0.25], SCI=[0.0](m) RAINPALL=[, , , ](mm/hc), END=-1 ID=[ 4 ], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.7]], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.7], DT=[2.5](min), SLP=[1.5](%), SCS curve number CN=[81], Parvious surfaces: IAimp=[1.57](mn), SLP=[1.5](%), ID=[ 4 ], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.7]], DT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Parvious surfaces: IAimp=[1.57](mn), SLP=[1.5](%), ID=[ 4 ], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.7]], DT=[0.0](ms), SLP=[1.5](%), SCS curve number CN=[81], Parvious surfaces: IAimp=[4.57](mn), SLP=[1.5](%),</pre>		
42 ************************************	<pre>ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[81], ID=[100,0](m), MNT=[0.03], SCI=[0.0](m) IMPEVIOUS SUFfaces: ILimp=[1.57](mm), SLIP=[1.5](%), LGF=[360](m), MNT=[0.03], SCI=[0.0](m) RAINPALL=[, , , , ] (mm/hc), RMT=[0.03], SCI=[0.0](m) ID=ums[2 ], NHYD=["HIPO2"], ID= to add=[10+1] ID=ums[2 ], NHYD=["HIPO2"], ID= to add=[10+1] ID=ums[2 ], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWT=[0.0](cms], LOSS=[2], SCS curve number CN=[81], Parvious surfaces: IAppr=[4.57](mn), SLP=[1.5](%), LGF=[100.0](m), MNT=[0.25], SCD=[0.0](m) RAINPALL=[, , , ](mm/hc), END=-1 ID=[4 ], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.71], DT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Parvious surfaces: IAppr=[4.57](mn), SLP=[1.5](%), LGP=[100.0](m), MNT=[0.0]SLP=[1.5](%), LGP=[100.0](m), MNT=[0.25], SCD=[0.0](m) RAINPALL=[, , , ](mm/hc), END=-1 ID=[4 ], NHYD=["HIPO4"], DT=[2.5](min), SLP=[1.5](%), LGP=[100.0](m), MNT=[0.25], SCP=[0.0](m) Ref[1, SUFfaces: IAppr=[4.57](mn), SLP=[1.5](%), LGP=[100.0](m), MNT=[0.25], SCP=[0.0](m) REF[1, SUFfaces: IAppr=[4.57](mn), SLP=[1.5](%), LGP=[100.0](m), MNT=[0.25], SCP=[0.0](m) REF[1, SUFfaces: IAppr=[4.57](mn), SLP=[1.5](%), LGP=[100.0](m), MNT=[0.25], SCP=[0.0](m)</pre>		
42 ************************************	<pre>LD=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[21], SCS curve number CN=[81], Impervious surfaces: IAimpe[1.57](mm), SLPP=[1.5](%), LGP=[260](m), MNT=[0.03], SCI=[0.0](mi RAINFALL=[ , , , ] (mm/hr), END=-1 ] IDaume[ 2 ], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAimpe[1.57](mn), SLPP=[1.5](%), IDD=[1.57](mn), SLPP=[1.5](min), RIP=[1.5](%), RAINFALL=[ , , , ] (mm/hr), END=-1 ] ID=[ 4 ], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAimpe[1.57](mn), SLP=[1.5](%), RAINFALL=[ , , ] (mm/hr), END=-1 ] ID=[ 4 ], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAimpe[1.67](mn), SLP=[1.5](%), LGP=[10.0](m), MSL=[0.25], SCP=[0.0](min RAINFALL=[ , , ] (EM/hr), SLP=[1.5](%), SCS curve number CM=[81], Pervious surfaces: IAimpe[0.71], DWT=[0.0](cms), LOSS=[1, 5](%), LGP=[10.0](m), MSL=[0.25], SCP=[0.0](m</pre>		
42 ************************************	<pre>LD=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Impervious surfaces: IAimpe[1.57](mm), SLPP=[1.5](%), LGP=[260](m), MNT=[0.03], SCI=[0.0](mi RAINFALL=[ , , , ] (mm/hr), END=-1 ] IDatme[ 2 ], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAimpe[1.57](mn), SLP=[1.5](%), Impervious surfaces: IAimpe[1.57](mn), SLP=[1.5](%), Impervious surfaces: IAimpe[1.57](mn), SLP=[1.5](%), RAINFALL=[ , , , ] (mm/hr), END=-1 ] ID=[ 4 ], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], RAINFALL=[ , , ] (mm/hr), END=-1 ] ID=[ 4 ], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAimpe[1.57](mn), SLP=[1.5](%), LGP=[4.0](m), MNI=[0.25], SCP=[0.0](mi Impervious surfaces: IAimpe[1.57](mn), SLP=[1.5](%), LGP=[10.0](m), MNI=[0.25], SCP=[0.0](mi Impervious surfaces: IAimpe[1.57](mn), SLP=[1.5](%), LGP=[10.0](m), MNI=[0.25], SCP=[0.0](mi Impervious surfaces: IAimpe[1.57](mn), SLP=[1.5](%), LGP=[10.0](m), MNI=[0.03], SCI=[0.0](mi Impervious surfaces: IAimpe[1.57](mn), SLP=[1.5](%), LGT=[500](m), MNI=[0.03], SCI=[0.0](mi Impervious surfaces: IAimpe[1.57](mn), SLP=[0.5](0.2], SCP=[0.0](mi Impervious surfaces: IAimpe[1.57](mn), SLP=[0.2], SCP=[0.0](mi Impervious surfaces: IAimpe[1.57](mn), SLP=[0.5](%), LGT=[500](m), MNI=[0.03], SCI=[0.0](mi Impervious surfaces: IAimpe[1.57](mn), SLP=[0.5](%), LGT=[500](m), MNI=[0.0](0.3], SCI=[0.0](mi Impervious surfaces: IAimpe[1.57](mn), SLP=[0.0](mi Impervious surfaces: IAimpe[1.57](mn), SLP=[0.0](mi Impervious surfaces: IAimpe[1.57](mn), SLP=[0.0](mi Impervious surfaces: IAimpe[1.57](mn), SLP=[0.0](0.0](mi Impervious surfaces: IAimpe[1.57](mn), SLP=[0.0](0.0](mi Impervious surfaces: IAimpe[1.57](mn), SLP=[0.0](0.0](mi Impervious surfaces: IAimpe[1.</pre>		
42 ************************************	<pre>ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIM#=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[01], Impervious surfaces: IAper[4.57](nm), SNPP=[1.5](8), Pervious surfaces: IAper[4.57](nm), SNPP=[0.25], SCP=[0.0](m) Impervious surfaces: IAper[4.57](m), SNN=[0.25], SCP=[0.0](m) RAINFALL=[, , , ](mm/hc), END=-1 ID=un=[2], NHYD=["HIP02"], ID= to add=[10+1] ID=[3], NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha), XIM#=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[01], Impervious surfaces: IAper[100.0](m), MND=[0.25], SCD=[0.0](m) RAINFALL=[, , , ](mm/hc), END=-1 ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[15.6](ha), XIM#=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[10], Impervious surfaces: IAper[450](m), SND=[0.25], SCD=[0.0](min RAINFALL=[, , , ](mm/hc), END=-1 ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[15.6](ha), XIM#=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[31], Impervious surfaces: IAper[4.67](mn), SLPP=[1.5](8), EGT=[100.0](m), MND=[0.25], SCD=[0.0](min RAINFALL=[, , , ](mm/hc), EDD=-1 ID=[4], SURFace: IAper[4.67](mn), SLPP=[1.5](8), IMP=IO.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[31], IMP=IO.50], SCD=[1.00](m), MND=[0.25], SCD=[0.0](min RAINFALL=[, , , ](mm/hc), EDD=-1.5](8), Impervious surfaces: IAper[4.67](mn), SLPP=[1.5](8), IMP=IO.50], TIMP=[0.71], DWF=[0.7], IMP=[0.25], SCD=[0.0](min RAINFALL=[, , , ](mm/hc), EDD=-1.5](8), IMP=IO.50], SCD=[1.5](8), IMP=IO.50], TIMP=[0.71], DWF=[0.7], IMP=[0.5](8), IMP=IO.50], SCD=[1.5](8), IMP=IO.50], TIMP=[0.71], DWF=[0.7], IMP=[0.5](8), IMP=IO.50], TIMP=[0.71], IMP=[0.7], IMP=[0.5](8), IMP=IO.50], TIMP=[0.71], IMP=[0.7], IMP=[0.5](8), IMP=IO.50], TIMP=[0.71], IMP=[0.7](7), IMP=[0.5](8), IMP=IO.50], TIMP=[0.7], IMP=[0.7](7), IMP=[0.5](8),</pre>		
42 ************************************	<pre>ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIM#=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CN=[01], Impervious surfaces: IAperfel0.10(m), SIP2=[1.5](8), Pervious surfaces: IAperfel0.0], SND=[0.25], SCD=[0.0](m) Impervious surfaces: IAperfel0.0], SND=[0.03], SCI=[0.0](m) RAINFALL=[, , , ](mm/hc), END=-1 ID=un=[2], NHYD=["HIPO2"], ID= to add=[10+1] ID=un=[2], NHYD=["HIPO2"], ID= to add=[10+1] ID=un=[2], NHYD=["HIPO2"], ID= to add=[10+1] ID=un=[2], NHYD=["HIPO2"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CN=[01], Impervious surfaces: IdP=[10.0](m), MNI=[0.25], SCI=[0.0](m) RAINFALL=[, , , ](mm/hc), END=-1 ID=[1], SCI=[450](m), MNI=[0.03], SCI=[0.0](m) RAINFALL=[, , ], ](mm/hc), END=-1 ID=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CN=[81], ID=[4], MHYD=["HIPO4"], DT=[2.5](min), SLPE=[1.5](8), IMPE7UOUS surfaces: IdP=[1](6][mn), SLPE=[1.5](8), IMPE7UOUS surfaces: IdP=[1](6][mn], SLPE=[1](6][mn], SCI=[0.0][mn] RAINFPLL=[, , , ](mm/hc], END=[1](6][mn], SCI=[1](6][mn], IND=[1](5][mn], SCI=[1](6][mn], SCI=[1](</pre>		
42 ************************************	<pre>ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[81], ID=[10.0](m), MNT=[0.03], SCI=[0.0](m) IMPEVIOUS SUFfaces: TAimp=[1.57](mm), SLPP=[1.5](8), ICGT=[580](m), MNT=[0.03], SCI=[0.0](min RAINFALL=[ , , , , ] (mm/hr), END=-1 IDsum=[ 2 ], NHYD=["HIPO2"], IDs to add=[10+1] ID=[ 3 ], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: TAimp=[1.57](mm), SLPP=[1.5](8), ICGT=[450](m), MNT=[0.03], SCI=[0.0](min RAINFALL=[ , , , ](mm/hr), END=-1 ID=[ 4 ], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: TAimp=[1.57](mn), SLPF=[1.5](8), ICGT=[450](m), MNT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IApp=[1.57](mn), SLPF=[1.5](8), ICGT=[450](m), MNT=[0.25], SCP=[0.0](min RAINFALL=[ , , , ](mm/hr), END=-1 ID=[ 4 ], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.71], DWT=[0.0](m), SLPP=[1.5](8), ICGT=[450](m), MSI=[0.2], SCP=[0.0](min RAINFALL=[ , , , ](mm/hr), END=-1 ID=[ 4 ], NHYD=["HIPO4"], DT=[2.5](min), SLPF=[1.5](8), ICGT=[450](m), MSI=[0.2], SCP=[0.0](min RAINFALL=[ , , , ](mm/hr), END=-1 ID=[ 4 ], NHYD=["HIPO4"], DT=[2.5](min), SLPF=[1.5](8), ICGT=[40](min, MSI=[0.2], SCP=[0.0](min RAINFALL=[ , , , ](mm/hr), END=-1 ID=[ 4 ], NHYD=["HIPO4"], DT=[2.5](min), SLPF=[1.5](8), ICGT=[40](min, MSI=[0.2], SCP=[0.0](min RAINFALL=[ , , , ](mm/hr), END=-1 ID=[ 4 ], NHYD=["HIPO4"], DT=[4.57](mn), SLPF=[1.5](8), ID=[ 4 ], NHYD=[[4.57](mn), SL</pre>		
42 ************************************	<pre>ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMT=[0.50], TIMP=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[01], Pervious Surfaces: DAPE=[100.01(m), SLPP=[1.5](8), Impervious Surfaces: DAPE=[100.01(m), SLPI=[0.63], SCI=[0.0](min RAINFALL=[, , , , ](mm/hc), END=-1 ID=un=[2], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMT=[0.50], TIMP=[0.71], DT=[2.5](min), AREA=[15.6](ha), XIMT=[0.50], TIMP=[0.71], DT=[2.5](min), AREA=[15.6](ha), XIMT=[0.50], TIMP=[0.71], DT=[2.5](min), SLP=[1.5](s), DF=[100.01(m), MNT=[0.21], SCF=[0.0](min), ARAINFALL=[, , , , ](mm/hc], END=-1 ] ID=[ 4 ], NHYD=["HIP04"], DT=[2.5](min), AREA=[15.6](ha), XIMT=[0.50], TIMP=[0.71], DT=[2.5](min), SLP=[1.5](s), DF=[100.01(m), MNT=[0.23], SCF=[0.0](min), ARAINFALL=[, , , ](mm/hc], END=-1 ] ID=[ 5 ], NHYD=["HIP05"], ID to add=[344] ID=[ 6 ], NHYD=["HIP05"], ID to add=[344] ID=[ 7 ], NHYD=["HIP05"], DT=[2.5](min), AREA=[12.2](ha), XIMT=[0.50], TIMT=[0.71], DT=[0.0](min), LOSS=[2], ID=[ 7 ], NHYD=["HIP05"], DT=[2.5](min), AREA=[12.2](ha), XIMT=[0.50], TIMT=[0.71], DT=[0.0](min), LOSS=[2], ID=[ 7 ], NHYD=["HIP05"], DT=[2.5](min), AREA=[12.2](ha), XIMT=[0.50], TIMT=[0.71], DT=[0.71], DT=[0.71], AREA=[12.2](ha], XIMT=[0.50], TIMT=[0.71], DT=[0.71], DT=[0.71], AREA=[12.2](ha], XIMT=[0.50], TIMT=[0.71], DT=[0.71], DT=[0.71], AREA=[12.2](ha], XIMT=[0.50], TIMT=[0.71], DT=[0.71], DT=[0.71], DS=[12.2](ha], XIMT=[0.50], TIMT=[0.71], DT=[0.71], DT=[0.71], DS=[12.2](ha], XIMT=[0.50], TIMT=[0.71], DT=[0.71], DT=[0.71], DS=[12.2](ha], XIMT=[0.50], TIMT=[0.71], DT=[0.71], DT=[0.71], DS=[12.2](ha], XIMT=[0.50], TIMT=[0.71], DT=[0.71], DT=[12.5](m), A</pre>		
4) ************************************	<pre>ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMT=[0.50], TIMP=[0.71], DWR=[0.0](cms], LOSS=[2], SCS curve number CN=[01], Pervious surfaces: IAE=[100.01(m), SLPP=[1.5](8), Impervious surfaces: IAE=[100.01(m), SLPI=[0.6], SCI=[0.0](min RAINFALL=[, , , , ](mm/hr), END=-1 IDsum=[ 2 ], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMT=[0.50], TIMP=[0.71], DWR=[0.0](cms], LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAinper[4.67](mn), SLP=[1.5](8), Impervious surfaces: IAinper[4.67](mn), SLP=[1.5](8), ICGT=[450](m], NNI=[0.03], SCI=[0.0](min RAINFALL=[, , , ](mm/hr), END=-1 ID=[ 4 ], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMT=[0.50], TIMP=[0.71], DT=[2.5](min), AREA=[15.6](ha), XIMT=[0.50], TIMP=[0.71], DT=[2.5](min), SLP=[1.5](8), ICGT=[400](m), NNI=[0.03], SCI=[0.0](min RAINFALL=[, , , ](mm/hr), END=-1 ID=[ 4 ], NHYD=["HIPO4"], DT=[2.5](min), SLP=[1.5](8), ICGT=[100](m), NNI=[0.2], SCI=[0.0](min RAINFALL=[, , , ](mm/hr), END=-1 ID=[ 4 ], NHYD=["HIPO4"], DT=[2.5](min), SLP=[1.5](8), ICGT=[100](m), NNI=[0.2], SCI=[0.0](min RAINFALL=[, , , ](mm/hr), END=-1 ID=[ 1 ], NHYD=["HIPO5"], ID to add=[3+4] ID=[ 1 ], NHYD=["HIPO5"], ID to add=[3+4] ID=[ 1 ], NHYD=["HIPO5"], DT=[2.5](min), AREA=[12.2](ha), XIMT=[0.50], TIMT=[0.71], DT=[2.5](min), SLP=[1.5](8), CS curve number CN=[81], SS curve numbe</pre>		
<pre>49 ************************************</pre>	<pre>ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIM#=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CN=[01], Impervious surfaces: IDaes[10(10], NNN=[0.25], SCF=[0.0](m] Impervious surfaces: IDaes[10(10], NNN=[0.3], SCI=[0.0](m] RAINFALL=[, , , , ](mm/hc), END=-1 ID=un=[2], NHYD=["HIPO2"], ID= to add=[10+1] ID=un=[2], NHYD=["HIPO2"], ID= to add=[10+1] ID=un=[2], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CM=[10, ID=[100], SCI=[100](m], NNI=[0.10], SCI=[0.0](m] RAINFALL=[, , , , ](mm/hc], END=-1.5](8), Pervious surfaces: IDimper[0.0](cms), LOSS=[2], SCS curve number CM=[10, ID=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15,6](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CM=[11, ID=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15,6](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CM=[81], ID=[4], NHYD=["HIPO4"], DT=[2.5](min), SLP=[1.5](8), Pervious surfaces: IDAE[15,6](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CM=[81], ID=[5], NHYD=["HIPO5"], ID to add=[344] ID=un=[5], NHYD=["HIPO5"], ID to add=[344] ID=un=[5], NHYD=["HIPO7"], DT=[2.5](min), AREA=[12.2](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CM=[81], ID=un=[5], NHYD=["HIPO5"], ID to add=[344] ID=un=[5], NHYD=["HIPO7"], DT=[2.5](min), SLP=[1.5](8), ID=[7], NHYD=["HIPO7"], DT=[2.5](min), AREA=[12.2](ha), XIMD=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CM=[81], ID=Un=[0.50], TIMP=[0.71], DWP=[0.51], SCD=[0.0](m] ID=Un=[100], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CM=[81], ID=Un=[0.50], TIMP=[0.71], DWP=[0.51], SCD=[0.0](m] ID=Un=[0.50], TIMP=[0.71], DWP=[0.51], SLP=[1.5](8), ID=[100](0](m), NNT=[0.25], SCD=[0.0](m] ID=Un=[100](m], NNT=[0.25], SCD=[0.0](m] ID=Un=[100](m], NNT=[0.25], SCD=[0.0](m] ID=Un=[100](m], NNT=[0.25], SCD=[0.0](m] ID=Un=[100](m], NNT=[0.25], SCD=[0.0](m], SLP=[1.5](8), ICF=[100](m], NNT=[0.2</pre>		
<pre>49 ************************************</pre>	<pre>ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[81], ID=[10,0](m), MNP=[0.2], SCT=[0.0](m) Impervious surfaces: IAimpel[3.57](mm), SLIP=[1.5](%), LGP=[360](m), MNT=[0.03], SCI=[0.0](m) RAINPALL=[, , , , ] (mm/hL), RMT=[0.03], SCI=[0.0](m) ID=[10,0](m), IMT=[0.0](m), RMT=[0.0](m) ID=[10,0](m), IMT=[0.0](m), RMT=[0.0](m) XIMP=[0.50], TIMP=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Parvious surfaces: IAimpel[3.57](mm), SLIP=[1.5](%), LGP=[100.0](m), MNT=[0.25], SCD=[0.0](m) Impervious surfaces: IAimpel[3.57](mm), SLIP=[1.5](%), LGT=[450](m), MNT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Parvious surfaces: IAimpel[3.57](mm), SLIP=[1.5](%), LGT=[450](m), MNT=[0.0], SLIP=[0.0](m), RAINPALL=[, , , ](mm/hL), END=-1 ] ID=[ 4 ], NHYD=["HIP04"], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Parvious surfaces: IAimpel[3.57](mm), SLIP=[1.5](%), LGT=[100.0](m), MNT=[0.03], SCI=[0.0](mi RAINPALL=[, , , ](mm/hL), END=-1 ] ID=[ 4 ], NHYD=["HIP04"], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Parvious surfaces: IAimpel[3.7](mm), SLIP=[1.5](%), LGT=[100.0](m), MNT=[0.03], SCI=[0.0](mi RAINPALL=[, , , ](mm/hL), END=-1 ] ID=[ 7 ], NHYD=["HIP05"], DT=[2.5](min), AREA=[12.2](ha), XIMP=[0.50], TIMP=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Parvious surfaces: IAimpel[3.5](m), SLIP=[1.5](%), LGP=[100.0](m), MNT=[0.25], SCP=[0.0](m), XIMP=[0.50], TIMP=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Parvious surfaces: IApper=[4.57](mn), SLIP=[1.5](%), LGP=[100.0](m), MNT=[0.25], SCP=[0.0](m), XIMP=[0.50], TIMP=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Parvious surfaces: IApper=[4.57](mn), SLIP=[0.5](%), LGP=[0.0](m), MNT=[0.25], SCS=[0.0](m), XIMP=[0.50], TIMP=[0.71], DWT=[0.0](m), SLIP=[1.5](%), LGP=[0.0](m), MNT=[0.25], SCS=[0.0](m), XIMP=[0.50], TIMP=[</pre>		
<pre>49 ************************************</pre>	<pre>ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMD=[0.50], TIMD=[0.71], DWT=[0.0](cms], LOSS=[2], SCS curve number CN=[81], Impervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), LGF=[100.0](m), MNT=[0.03], SCI=[0.0](m) RAINPALL=[, , , , ] (mm/hc], RNT=[0.03], SCI=[0.0](m) ID=[ 3 ], NHYD=["HIPO2"], ID= to add=[10+1] ID=un=[ 2 ], NHYD=["HIPO2"], ID= to add=[10+1] ID=[ 3 ], NHYD=["HIPO2"], ID= to add=[10+1] ID=[ 4 ], NHYD=["HIPO2"], DT=[2.5](min), AREA=[17](ha), XIMD=[0.50], TIMD=[0.71], DWT=[0.0](cms], LOSS=[2], SCS curve number CN=[81], Parvious surfaces: IAper=[4.67](mm), SLP=[1.5](%), LGT=[450](m), MNI=[0.03], SCI=[0.0](m) RAINPALL=[ , , , ](mm/hr) , END=-1 ID=[ 4 ], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMD=[0.50], TIMD=[0.71], DWT=[0.0](cms], LOSS=[2], SCI=[0.0](m) RAINPALL=[ , , , ](mm/hr) , END=-1 ID=[ 4 ], NHYD=["HIPO4"], DT=[2.5](min), SLP=[1.5](%), LGT=[100.0](m), NNI=[0.03], SCI=[0.0](min RAINPALL=[ , , , ](mm/hr) , END=-1 ID=[ 7 ], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMD=[0.50], TIMD=[0.71], DWT=[0.0](cms], LOSS=[2], SCS curve number CN=[81], RAINPALL=[ , , , ](mm/hr) , END=-1 ID=[ 7 ], NHYD=["HIPO6"], DT=[2.5](min), AREA=[12.2](ha), XIMD=[0.50], TIMD=[0.71], DWT=[0.0](cms], LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mn), SLP=[1.5](%), LGT=[100](m), MNI=[0.25], SCP=[0.0](min XIMD=[0.50], TIMD=[0.71], DWT=[0.0](cms], LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mn), SLP=[1.5](%), LGT=[100](m), MNI=[0.25], SCP=[0.0](min XIMD=[0.50], TIMD=[0.71], DWT=[0.7](mn), SLP=[0.5](%), LGT=[210](m), MNI=[0.23], SCT=[0.0](min XIMD=[0.50], TIMD=[0.7], DWT=[0.7](m), SLD=[0.7](%), LGT=[210](m), MNI=[0.23], SCT=[0.0](min XIMD=[0.50], TIMD=[0.7], DT=[2.5](min), SLP=[0.5](%), LGT=[210](m), MNI=[0.23], SCT=[0.0](min XIMD=[0.50], TIMD=[0.7], DT=[2.5](m</pre>		
<pre>49 ************************************</pre>	<pre>ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMD=[0.50], TIMD=[0.71], DWT=[0.0](cms], LOSS=[2], SCS curve number CN=[81], Impervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), LGF=[100.0](m), MNT=[0.03], SCI=[0.0](m) RAINPALL=[, , , , ] (mm/hc], RNT=[0.03], SCI=[0.0](m) ID=[ 3 ], NHYD=["HIPO2"], ID= to add=[10+1] ID=un=[ 2 ], NHYD=["HIPO2"], ID= to add=[10+1] ID=[ 3 ], NHYD=["HIPO2"], ID= to add=[10+1] ID=[ 4 ], NHYD=["HIPO2"], DT=[2.5](min), AREA=[17](ha), XIMD=[0.50], TIMD=[0.71], DWT=[0.0](cms], LOSS=[2], SCS curve number CN=[81], Parvious surfaces: IAper=[4.67](mm), SLP=[1.5](%), LGT=[450](m), MNI=[0.03], SCI=[0.0](m) RAINPALL=[ , , , ](mm/hr) , END=-1 ID=[ 4 ], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMD=[0.50], TIMD=[0.71], DWT=[0.0](cms], LOSS=[2], SCI=[0.0](m) RAINPALL=[ , , , ](mm/hr) , END=-1 ID=[ 4 ], NHYD=["HIPO4"], DT=[2.5](min), SLP=[1.5](%), LGT=[100.0](m), NNI=[0.03], SCI=[0.0](min RAINPALL=[ , , , ](mm/hr) , END=-1 ID=[ 7 ], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMD=[0.50], TIMD=[0.71], DWT=[0.0](cms], LOSS=[2], SCS curve number CN=[81], RAINPALL=[ , , , ](mm/hr) , END=-1 ID=[ 7 ], NHYD=["HIPO6"], DT=[2.5](min), AREA=[12.2](ha), XIMD=[0.50], TIMD=[0.71], DWT=[0.0](cms], LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mn), SLP=[1.5](%), LGT=[100](m), MNI=[0.25], SCP=[0.0](min XIMD=[0.50], TIMD=[0.71], DWT=[0.0](cms], LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mn), SLP=[1.5](%), LGT=[100](m), MNI=[0.25], SCP=[0.0](min XIMD=[0.50], TIMD=[0.71], DWT=[0.7](mn), SLP=[0.5](%), LGT=[210](m), MNI=[0.23], SCT=[0.0](min XIMD=[0.50], TIMD=[0.7], DWT=[0.7](m), SLD=[0.7](%), LGT=[210](m), MNI=[0.23], SCT=[0.0](min XIMD=[0.50], TIMD=[0.7], DT=[2.5](min), SLP=[0.5](%), LGT=[210](m), MNI=[0.23], SCT=[0.0](min XIMD=[0.50], TIMD=[0.7], DT=[2.5](m</pre>		
<pre>4 ************************************</pre>	<pre>ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMD=[0.50], TIMD=[0.71], DWT=[0.0](cms], LOSS=[2], SCS curve number CN=[81], Impervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), LGF=[100.0](m), MNT=[0.03], SCI=[0.0](m) RAINPALL=[, , , , ] (mm/hc], RNT=[0.03], SCI=[0.0](m) ID=[ 3 ], NHYD=["HIPO2"], ID= to add=[10+1] ID=un=[ 2 ], NHYD=["HIPO2"], ID= to add=[10+1] ID=[ 3 ], NHYD=["HIPO2"], ID= to add=[10+1] ID=[ 4 ], NHYD=["HIPO2"], DT=[2.5](min), AREA=[17](ha), XIMD=[0.50], TIMD=[0.71], DWT=[0.0](cms], LOSS=[2], SCS curve number CN=[81], Parvious surfaces: IAper=[4.67](mm), SLP=[1.5](%), LGT=[450](m), MNI=[0.03], SCI=[0.0](m) RAINPALL=[ , , , ](mm/hr) , END=-1 ID=[ 4 ], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMD=[0.50], TIMD=[0.71], DWT=[0.0](cms], LOSS=[2], SCI=[0.0](m) RAINPALL=[ , , , ](mm/hr) , END=-1 ID=[ 4 ], NHYD=["HIPO4"], DT=[2.5](min), SLP=[1.5](%), LGT=[100.0](m), NNI=[0.03], SCI=[0.0](min RAINPALL=[ , , , ](mm/hr) , END=-1 ID=[ 7 ], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMD=[0.50], TIMD=[0.71], DWT=[0.0](cms], LOSS=[2], SCS curve number CN=[81], RAINPALL=[ , , , ](mm/hr) , END=-1 ID=[ 7 ], NHYD=["HIPO6"], DT=[2.5](min), AREA=[12.2](ha), XIMD=[0.50], TIMD=[0.71], DWT=[0.0](cms], LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mn), SLP=[1.5](%), LGT=[100](m), MNI=[0.25], SCP=[0.0](m) XIMD=[0.50], TIMD=[0.71], DWT=[0.0](cms], LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mn), SLP=[1.5](%), LGT=[100](m), MNI=[0.25], SCP=[0.0](m) XIMD=[0.50], TIMD=[0.71], DWT=[0.7](m), SLP=[0.5](%), LGT=[100](m), MNI=[0.23], SCT=[0.0](min XIMD=[0.50], TIMD=[0.7], DT=[2.5](min), SLP=[0.5](%), LGT=[210](m), MNI=[0.23], SCT=[0.0](min XIMD=[0.50], TIMD=[0.7], DT=[2.5](min), SLP=[0.5](%), LGT=[210](m), MNI=[0.23], SCT=[0.0](min XIMD=[0.50], TIMD=[0.7], DT=[2.5](min</pre>		
<pre>45 ************************************</pre>	<pre>ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMW=[0.50], TIMP=[0.71], DWF=[0.0](cms], LOSS=[2], SCS curve number CN=[81], Impervious surfaces: IAtmore[1.57](mm), SLPP=[1.5](8), Impervious surfaces: IAtmore[1.57](mm), SLPI=[0.6](8), Impervious surfaces: IAtmore[1.57](mm), SLPI=[0.6](8), ID=[ 2 ], NHYD=["HIPO2"], ID= to add=[10+1] ID=[ 3 ], NHYD=["HIPO2"], ID= to add=[10+1] ID=[ 4 ], NHYD=["HIPO2"], ID= (0.0](cms], LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAppr=[1.57](mm), SLP=[1.5](6), Impervious surfaces: IAmpr=[1.57](mm), SLP=[1.5](6), ILD=[ 4 ], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMM=[0.50], TIMP=[0.71], DMT=[0.0](cms], LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAppr=[4.67](mm), SLP=[1.5](6), ICGP=[100.0](m), NMI=[0.03], SCI=[0.0](min RAINFALL=[ , , , ] [umA/hr], END=-1 ID=[ 4 ], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMM=[0.50], TIMP=[0.71], DMT=[0.0](cms], LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAppr=[4.67](mm), SLP=[1.5](6), Impervious surfaces: IAppr=[4.67](mm), SLP=[0.5](6), Impervious surfaces: IAppr=[4.67](mm), SLP=[0.5](6), Impervious surfaces: IAppr=[4.67](mm), SLP=[0.5](6), Impervious surfaces: IAppr=[4.67](mm), SLP=[0.5](6), Impervious surfaces: IAppr=[1.5](mm), SLP=[0.5](6), Impervious surfaces: IAppr=[4.67](mm), SLP=[0.5](6), Impervious surfaces: IAppr=[4.67](mm), SLP=[0.</pre>		
<pre>49 ************************************</pre>	<pre>ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIM#=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CN=[01], Impervious surfaces: IAper[4.0](m), NNI=[0.25], SCF=[0.0](m) Impervious surfaces: IAper[4.0](m), NNI=[0.3], SCI=[0.0](m) RAINFALL=[, , , , ](mm/hc), END=-1 ID=un=[ 2 ], NHYD=["HIPO2"], IDs to add=[10+1] ID=un=[ 2 ], NHYD=["HIPO2"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[10, IGS=[100.0](m), MNI=[0.03], SCI=[0.0](m) RAINFALL=[ , , , ](mm/hc], END=-1 ID=[ 4 ], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], ICS=[450](m), MNI=[0.03], SCI=[0.0](m) RAINFALL=[ , , , ](mm/hc], END=-1 ID=[ 4 ], NHYD=["HIPO4"], DT=[2.5](min), SLP=[1.5](8), Pervious surfaces: IAimp=[1.57](mn), SLP=[1.5](8), IMPErvious surfaces: IAimp=[1.57](mn), SLP=[1.5](8), ID=[ 1 ], NHYD=["HIPO7"], DT=[2.5](min), AREA=[12.2](ha), XIMP=[0.50], TIMP=[0.71], NWT=(0.0](cms), LOSS=[2], SCS curve number CN=[81], ID=[ 7 ], NHYD=["HIPO7"], DT=[2.5](min), AREA=[12.2](ha), XIMP=[0.50], TIMP=[0.71], NWT=(0.0](ms), LOSS=[2], SCS curve number CN=[81], ID=[ 6 ], NHYD=["BOND=R], DT=[2.5](min), AREA=[4.0](min, RAINFFALL=[ , , , ](mm/hr), END=-1 ID=[ 6 ], NHYD=["BOND=R], DT=[2.5](min), AREA=[4.0](min, RAINFFALL=[ , , , ](mm/hr), END=-1 ID=[ 6 ], NHYD=["HIPO8"], IDs to add=[6+7+8] ID=[ 6 ], NHYD=["HIPO8"], IDs to add=[6+7+8] ID=[ 6 ], NHYD=["HIPO8"], IDs to add=[6+7+8] ID=[ 0 ], NHYD=["HIPO</pre>		
<pre>4 ************************************</pre>	<pre>ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMW=[0.50], TIMP=[0.71], DWF=[0.0](cms], LOSS=[2], SCS curve number CN=[81], Impervious surfaces: IAtmore[1.57](mm), SLPP=[1.5](8), Impervious surfaces: IAtmore[1.57](mm), SLPI=[0.6](8), Impervious surfaces: IAtmore[1.57](mm), SLPI=[0.6](8), ID=[ 2 ], NHYD=["HIPO2"], ID= to add=[10+1] ID=[ 3 ], NHYD=["HIPO2"], ID= to add=[10+1] ID=[ 4 ], NHYD=["HIPO2"], ID= (0.0](cms], LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAppr=[1.57](mm), SLP=[1.5](6), Impervious surfaces: IAmpr=[1.57](mm), SLP=[1.5](6), ILD=[ 4 ], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMM=[0.50], TIMP=[0.71], DMT=[0.0](cms], LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAppr=[4.67](mm), SLP=[1.5](6), ICGP=[100.0](m), NMI=[0.03], SCI=[0.0](min RAINFALL=[ , , , ] [umA/hr], END=-1 ID=[ 4 ], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMM=[0.50], TIMP=[0.71], DMT=[0.0](cms], LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAppr=[4.67](mm), SLP=[1.5](6), Impervious surfaces: IAppr=[4.67](mm), SLP=[0.5](6), Impervious surfaces: IAppr=[4.67](mm), SLP=[0.5](6), Impervious surfaces: IAppr=[4.67](mm), SLP=[0.5](6), Impervious surfaces: IAppr=[4.67](mm), SLP=[0.5](6), Impervious surfaces: IAppr=[1.5](mm), SLP=[0.5](6), Impervious surfaces: IAppr=[4.67](mm), SLP=[0.5](6), Impervious surfaces: IAppr=[4.67](mm), SLP=[0.</pre>		

J. L. Richards & Associates Limited

00136> 10.00 10.80 (ii) 10.00 .11 30.00 29.27 (ii) 30.00 .04 over (min) over (min) Storage Coeff. (min)= Unit Hyd, Tpeak (min)= Unit Hyd. peak (cms)= 00138> 00137> 00138> 00139> 00140> 00141> *TOTALS* .158 (iii) 1.292 20.508 24.999 .820 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .16 1.29 23.43 25.00 .94 .00 1.75 5.17 00142> 00143> 00144> 00145> 00146> 00146> 00147> 00148> 00149> 00150> 00151> 00151> 00152> 00153> 25.00 

 Stolmwater Hangement Hirfologic Model
 999
 999
 999

 *******
 A single event and continuous hydrologic simulation model
 ******

 *******
 based on the principles of HYMO and its successors
 ******

 ******
 OTHHXNO-83 and OTTHYMO-89.
 ******

 *******
 Distributed by:
 J.F. Sabourin and Associates Inc.
 ******

 *******
 Gatineau, Outbec:
 (613) 727-5199
 ******

 ******
 E-Mail: swhymo@ifsa.Com
 ******

 00010> 00011> 00012> 00013> 00014> 00015> 00016> 00017> 00018> 00019> 00020> 00022> .21 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 81.0 I a = Dep. Storage (Above)
 TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00153> -----00154> 001:0005-----00155> * SUB-AREA No.2 00157> -----+++++++ Licensed user: J. L. Richards & Associates Limited ++++++ +++++++ Licensed user: J. D. Richards & Associates Limited ++++++ ++++++ Ottawa SERIAL*4419403 +++++++ 00022: 00023> 00024> 00025> 00025> 0015/5 - (ALIB STANDHYD | Area (ha)= 1.54 001595 - (2:020 DT= 2.50 | Total Imp(%)= 92.00 Dir. Conn.(%)= 92.00 Surface Area (ha) = Dep. Storage (nm) = Average Slope (%) = Length (m) = Mannings n = IMPERVIOUS PERVIOUS (i) 00026> 00027> 00028> 00029> 00030> 00031> 00032> 00033> 00161> 00162> 00163> 00164> 00165> .12 4.67 1.00 5.00 .030 ************ 1.42 1.57 .50 
 ++++++
 PROGRAM ARRAY DIMENSIONS ++++++

 Maximum value for ID numbers : 10

 Max. number of rainfall points: 15000

 Max. number of flow points : 15000
 244.34 00165> 00166> 00167> 00168> 00169> 00170> .030 45.63 22.50 12.15 (ii) 12.50 .09 .12 1.33 23.43 25.00 .99 .99 
 000325
 HAX. HUMDER OF FLOW POINTS : 15000

 000335
 DETAILED OUTPUT

 00035
 DETAILED OUTPUT

 00035
 DATE: 2009-05-15

 00035
 TIME: 08:45:21

 00035
 Input filename: V:\2008.DULENC\FINALS-1\SWMHYM-1\SWM-ALL.out

 00041>
 Output filename: V:\2008.DULENC\FINALS-1\SWMHYM-1\SWM-ALL.sum

 00042
 Summary filename: V:\2008.DULENC\FINALS-1\SWMHYM-1\SWM-ALL.sum

 00043
 1:

 00045
 Suer comments:

 00045
 3:

 00045
 3:
 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 15.00 14.15 (ii) 15.00 00170> 00171> 00172> 00173> 00173> 00174> 00175> 00176> 00177> 00178> 00179> 00180> 00181> .08 *TOTALS* .121 (iii) 1.333 21.969 24.999 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (num)= TOTAL RAINFALL (num)= RUNOFF COEFFICIENT = .00 1.46 5.17 25.00 .21 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) iii) TIME STEP (DT) SNOULD BE SMALLER OR BOULL THAN THE STORAGE COEFFICIENT. (iii) PERK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00182> 000445 000485 00050 001:0001 00050 001:0001 00050 * # Project Name : Hawthorne Industrial Park Project Number: [20983]* 00050 * # Partiest Name : Hawthorne Industrial Park Project Number: [20983]* 00050 * # Developed by : Mark Buchanan, E.I.T. 00055 * # Revised by : Guy Forget, P.Eng. 00055 * # Company : J.L. Richards & Associates Limited 00059 * # License # : 4418403 00050 * 00060 * 00060 * 00062 * # FILENAME: V:\20983.DU\ENG\SWMMMO\20983PST.DAT 00065 * # FILENAME: V:\20983.DU\ENG\SWMMMO\20983PST.DAT 00065 * 00065 * # FILE DEVELOPED FOR SITE FLAN APPLICATION AND DETAILED DESIGN * 00065 * 00065 * _____ CALLE STANDHYD | Area (ha)= 1.40 03:030 DT=2.50 | Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 00193> 00193> 00194> 00195> 00196> 00197> 00198> Surface Area (ha) = Dep. Storage (mm) = Average Slope (%) = Length (m) = Mannings n = IMPERVIOUS PERVIOUS (i) 1.36 1.57 .51 225.63 .030 .04 4.67 1.00 5.00 00199> 00200> 00201> 00202> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 45.63 7.97 12.50 12.50 11.52 (ii) 13.44 (ii) 12.50 12.50 .10 .09 00203> 00204> 00205> 00206> 00207> 00208> 00209> 00210> 00211> 00212> 00213> 00214> 00215> *TOTALS* .118 (iii) 1.333 22.661 24.999 .915 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nm) = TOTAL RAINFALL (nm) = RUNOFF COEFFICIENT = .12 1.33 23.43 25.00 .94 .00 1.42 5.17 25.00 .21 00077> POST-DEVELOPMENT UNCONTROLLED CONDITIONS 00079> CALCULATION OF 4 HR 25 MM STORM EVENT 00081> CALCULATION OF 4 HR 25 MM STORM EVENT (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (1) IN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 (2) IN PERVIOUS LOSSES:
 (11) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORES COEFFICIENT.
 (111) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00083> 00084> 00085> 00086> 00087> TZERO = .00 hrs on METOUT= 2 (output = METRIC) NRUN = 001 NSTORM= 0 00088> SUM 04:040 3.61 .278 1.33 21.13 000 00228> 00229> 00230> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00231> 00239> SUR US:030 00240> 00241> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = .86 1.57 .93 .03 4.67 .70 00253> 00254> 00255> 164.82 40.00 00256> 00257> 00258> 00259> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 45.63 7.50 7.97 (ii) 7.50 .14 4.42 4.42 42.50 41.62 (ii) 42.50 00259> 00260> 00261> 00262> 00263> 00264> 00265> 00265> 00266> .03 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = *TOTALS* .089 (iii) 1.250 22.882 .09 1.25 23.43 25.00 .00 2.00 5.17 25.00 00268> 00268> 00268> 00269> 00270> 24.999 .94 .21 00135> Max.eff.Inten.(mm/hr)= 45.63 5.37 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. Surface Area (ha) = Dep. Storage (mm) = Average Slope (%) = Length (m) = Mannings n = IMPERVIOUS 2.58 1.57 .61 207.25 .030 PERVIOUS (1) .08 4.67 1.50 40.81 12.73 17.50 47.50 16.94 (ii) 47.35 (ii) 17.50 47.50 .07 .02 .60 .10 1.42 2.00 23.43 8.74 25.00 25.00 .94 .35 00287> 00288> 00289> 00290> 20.00 
 Max.eff.Inten.(mm/hr)=
 45.63
 5.66

 Over (min)
 10.37 (ii)
 26.38 (ii)

 Storage Coeff. (min)=
 10.37 (ii)
 26.38 (ii)

 Unit Hyd. Tpeak (min)=
 10.00
 27.50

 Unit Hyd. peak (cms)=
 .11
 .04

 PEAK FLON
 (cms)=
 .24
 .00

 THME TO PEAK (hrs)=
 1.29
 1.67

 RUMOFF VOLUMEN (mm)=
 23.43
 5.17

 TOTAL RAINFRAL (mm)=
 2.94
 .21
 00291> *TOTALS* .625 (iii) 1.458 16.085 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 00293> 00294> 00295> 00428> 00429> 00430> 00431> 00432> 00433> 00434> 00435> 00436> 00436> 00437> 00438> *TOTALS* .238 (iii) 1.292 22.882 00296> .00 1.67 5.17 25.00 .21 24.999 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Tap Day Statements 00298> 00299> 00300> 00301> 00302> (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 81.0 Ia ~ Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 24.999 .915 (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 00302> 00303> 00304> 00305> 00306> 00307> (I) CN FROLENGE SELECTED FOR FERVIOUS LOSSES:
 (CN* = 81.0 I a = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00308> 003185 
 003185
 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANI.

 003205
 003205

 003228
 001:0012

 003229
 001:0012

 003229
 001:0012

 003229
 001:0012

 003229
 001:0012

 003229
 (ha) (cms) (hrs) (hm) (cms) (cms)

 003226
 ID1 05:050
 5.01
 .396
 1.33
 21.62
 .000

 003225
 ID1 05:050
 5.5
 .27
 1.29
 22.14
 .000

 34.39
 11.54

 22.50
 55.00

 23.33
 (ii)

 55.00
 55.00

 .05
 .02
 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 004552 00458> 00458> 00458> 00459> 00460> (ha) 1D1 05:050 5.01 +ID2 08:080 3.55 SUM 09:090 8.56 *TOTALS* .484 (iii) 1.542 16.085 PEAK FLOW (Cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .45 .08 1.50 2.17 23.43 8.74 25.00 25.00 .94 .35 00326> 00327> 00328> 00329> 00461> 00462> 00462> 00463> 00464> 00465> 00466> 00466> .716 1.29 22.14 .000 00330> 00331> NOTE: 00332> 00333> 00334> 001:0013--NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: · 00468> 00469> 00470> 00471> 00472> (1) CN FROEDORS SELECTED FOR FERVIOUS LOSSES;
 CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00334> 001:0013------00335> | ROUTE RESERVOIR | 00337> | IN>09:(090 ) | 00338> | OUT<10:(POND ) | 00339> ------Requested routing time step = 1.0 min. 00340> 00341> 00342> 00343> 00344> 00345> 00346> 00347> 00347> 00348> 00349> 00350> 00351> 00352> 00483> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00484> R.V. (rum) 22.143 22.141 00353> 00353> 00354> 00355> 00356> PEAK FLOW REDUCTION [Qout/Qin](%)= 4.470 TIME SHIFT OF PEAK FLOW (min)= 155.00 MAXIMUM STORAGE USED (ha.m.)=.1611E+00 (cms) .000 .000 00357> 00358> .000 004945 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00495> 004965 004975 ------004985 001:0020-----004995 * 005905 * SUB-AREA No.4 * Remaining Hawthorne Industrial Park * 00363> 00364> * * SUB-AREA No.1 00365> 00365> 00366> 00367> 00368> 
 005500. * SUB-AREA No.4

 005502. | CALIE STANDHYD | Area (ha)= 12.20

 005503. | 07:HIPOT DT= 2.50 | Total Imp(8)= 71.00 Dir. Conn.(%)= 50.00

 005505. | 07:HIPOT DT= 2.50 | Total Imp(8)= 71.00 Dir. Conn.(%)= 50.00

 005505. | 07:HIPOT DT= 2.50 | Total Imp(8)= 71.00 Dir. Conn.(%)= 50.00

 005505. | 07:HIPOT DT= 2.50 | Total Imp(8)= 71.00 Dir. Conn.(%)= 50.00

 005505. | 005505. | 005505. | 005505. | 005105. | 005005. | 005105. | 005005. | 005105. | 005005. | 005105. | 005005. | 005105. | 005005. | 005105. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 005005. | 00500 | CALIB STANDHYD | Area (ha)= 19.90 | 01:HIPO1 D7= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 
 IMPERVIOUS
 PERVIOUS
 Dir. Conn. (%)=
 50.00

 Surface Area
 (ha)=
 14.13
 5.77
 Jack
 00369 00370> 00371> 00372> 00373> 5.77 4.67 1.50 100.00 .250 00507> 00508> 00510> 00510> 00512> 00512> 00513> 00514> 00515> 00516> 00517> 00373> 00374> 00375> 00375> 00376> 00377> 00378> 00379> 00380> .usu .250 34.39 11.90 22.50 52.50 21.64 (ii) 52.80 (ii) 22.50 52.50 .05 .02 .660 .11 1.50 2.13 23.43 8.74 25.00 25.00 .94 .35 .250 45.63 14.15 10.00 40.00 10.03 (ii) 39.18 (ii) 10.00 40.00 .11 .03 .57 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= *TOTALS* .642 (iii) 1.542 16.085 24.999 .643 00381> 00382> *TOTALS* .585 (iii) 1.292 16.085 24.999 .643 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 
 .57
 .08

 1.29
 1.88

 23.43
 8.74

 25.00
 25.00

 .94
 .35
 00517> 00518> 00519> 00520> 00521> 00522> 00522> 00383> 00384> 00385> 00386> 00388> 00389> 00390> 00391> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 00524> CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SWALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00525> 00526> 00527> 00528> (i) IN FROCEDURE SELECTED FOR FERVIOUS DUSESS:
 CN* = 81.0 I a = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFTCIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00392> 005295 00530> 00531> 001:0021------00532> *5UB-AREA No.5 00532> *SUB-AREA No.5 00534> -THE CONTROL AND A 00405> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

	U. D. RICHARDS & ASSOCIATES LIMIT
00541> PEAK FLOW (cmms)= 077 (i) 00542> TIME TO PEAK (hrs)= 1.375	00676>   01:010 DT= 2.50   Total Imp(%)≈ 84.00 Dir. Conn.(%)= 84.00
00543> RUNOFF VOLUME (nm) = 6.343 00544> TOTAL RAINFALL (nm) = 24.999	$\begin{array}{ccc} 00678 > & IMPERVIOUS & PERVIOUS (i) \\ 00679 > & Surface Area & (ha) = & 1.74 & .33 \end{array}$
00546> 00547> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	00580> Dep.Storage (mm) = 1.57 4.67 00581> Average Slope (%) = .52 1.00 00582> Length (m) = 204.72 20.00
00548> 00549>0050> 00550> 001:0022	00683> Mannings n = .030 .250 00684>
00551>	00685>         Max.eff.Inten.(mm/hr)=         76.81         11.88           00686>         over (min)         10.00         22.50           00687>         Storage Coeff. (min)=         8.77 (ii)         22.21 (ii)
00553> (ha) (cms) (hrs) (mm) (cms) 00554> ID1 06:HIP06 61.06 1.740 1.50 16.93 .000 00555> +ID2 07:HIP07 12.20 .585 1.29 16.09 .000	00688> Unit Hyd. Tpeak (min)= 10.00 22.50 00689> Unit Hyd. peak (cms)= .12 .05
00556> +ID3 08:Pond-B 4.00 .077 1.38 6.34 .000 00557>	00690> *TOTALS* 00691> PEAK FLOW (cms)= .24 .01 .245 (iii) 00692> TIME TO PEAK (hrs)= 1.08 1.38 1.083
00558> SUM 09:HIP08 77.26 2.227 1.46 16.25 .000 00559> 00560> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	00693> RUNOFF VOLUME (mm)= 30.29 8.52 26.807 00694> TOTAL RAINFALL (mm)= 31.86 31.86 31.860
00561> 00562>	00696> 00697> (i) CN PROCEDURE SELECTED FOR PREVIOUS LOSSES.
00563> 101:0023 00564> 005654 ROUTE RESERVOIR   Requested routing time step = 1.0 min.	00698> CN* = 81.0 Ia ≈ Dep. Storage (Above) 00699> (ii) THE STEP (DT) SHOULD BE SWALLER OR EQUAL 00700> THAN THE STORAGE COEFFICIENT.
00566>   IN>09:(HIPO8 )   00567>   OUT<10:(HIP-PO)   ======== OUTLFOW STORAGE TABLE ========	00701> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00702>
00569> (cms) (ha.m.) (cms) (ha.m.) 00570> .000 .0000E+00   .724 .2210E+01	00703>
00571> .048 .5740E-01   .937 .2501E+01 00572> .054 .2434E+00   1.262 .2798E+01	00706> * SUB-AREA No.2 00707>
00574>         .062         .8400E+00         1.532         .3410E+01           00575>         .064         .1102E+01         1.650         .3724E+01	00708>   CALIB STANDHYD   Area (ha)= 1.54 00708>   02:020 DT= 2.50   Total Imp(%)= 92.00 Dir. Conn.(%)= 92.00 00710>
00576>         .147         .1370E+01                   2.409         .4048+01           00577>         .280         .1644E+01                   3.689         .4370E+01           00578>         .472         .12924E+01         .000         .0000E+00	00711> IMPERVIOUS PERVIOUS (i) 00712> Surface Area (ha)= 1.42 .12 00713> Dep. Storace (mm)= 1.57 4.67
00579> 00580> ROUTING RESULTS AREA QPEAK TPEAK R.V.	00713> Dep. Storage (mm) = 1.57 4.67 00714> Average Slope (%) = .50 1.00 00715> Length (m) = 244.34 5.00
00581>          (ha)         (crus)         (hrs)         (mm)           00582>         INFLOW >09:         (HIP08)         77.26         2.227         1.450         16.251           00583>         OUTFLOW-(10:         (HIP-PO)         77.26         .063         5.431         16.251	00716> Mannings n = .030 .030 00717>
005845 005855 PEAK FLOW REDUCTION (Qout/Qin)(%)= 2.639 005865 TIME SHIFT OF PEAK FLOW (min)= 238.33 005875	00719> over (min) 10.00 12.50 00720> Storage Coeff. (min)= 9.87 (ii) 11.36 (ii)
00588> /// ///////////////////////////////	00721> Unit Hyd. Tpeak (min)= 10.00 12.50 00722> Unit Hyd, peak (cms)= .11 .10 00723> *TOTALS*
00589> 00590> 001:0024 00591> *	00724> PEAK FLOW (cms) = .19 .00 .192 (iii)
00592> *SUB-AREA NO. 6	00725> RUNDEY VOLVEE (MLS)= 1.08 1.17 1.033 00725> RUNDEY VOLVEE (ML)= 30.29 8.52 28.548 00727> TOTAL RAINFALL (ML)= 31.86 31.86 31.860 00728> RUNDEY COFFFICIENT = .95 .27 .896
00394>   DESIGN NASHYD   Area (ha)= 2.70 Curve Number (CN)=76.00 00394>   D1:A3 DT=2.50   Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 00595>	00729> 00730> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
00597> Unit Hyd Qpeak (cms) = .129 00599>	00732> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 00733> THAN THE STORAGE COEFFICIENT.
00600> PEAK FLOW (cms) = .013 (i)	00734> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00735>
006017 TINE TO PEAK (hrs)= 2.292 06602> RUNOFF VOLTME (mm)= 4.110 00603> TOTAL RAINFALL (mm)= 24.999 06604> RUNOFF COEFFICIENT = 1.64	00737> 001:0006
00605> 00606> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	00739> * SUB-AREA No.3 00740>
00607> 00608>	00742>   03:030 DT= 2.50   Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 00743>
00610>	00745> Surface Area (ha)= 1.36 .04 00746> Dep. Storage (mm)= 1.57 4.67
00613> ID1 10:HIP-PO 77.26 .063 5.43 16.25 .000 00614> +ID2 01:A3 2.70 .013 2.29 4.11 .000	00747>         Average Slope         (%) =         .51         1.00           00748>         Length         (m) =         225.63         5.00           00749>         Mannings n         =         .030         .030
00615> CHARLEN CONTRACTOR CONTRAC	00750> 00751> Max.eff.Inten.(mm/hr)= 76.81 16.59
00618> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00619> 06620>	00753> Storage Coeff. (min)= 9.35 (ii) 10.79 (ii) 00754> Unit Hyd. Tpeak (min)= 10.00 10.00
00621> 001:0026	00755> Unit Hyd. peak (cms)= .12 .11 00756> *TOTALS* 00757> PEAK FLOW (cms)= .18 .00 .186 (iii)
00623> * CALCULATION OF 3HR - 1:2 YEAR STORM EVENT * 006225	00758> TIME TO PEAK (hrs)= 1.08 1.13 1.083 00759> RUNOFF VOLUME (mm)= 30.29 8.52 29.637
00626>   START   Project dir.: V:\20983.DU\ENG\FINALS-1\SWMHYM-1\	00761> RUNOFF COEFFICIENT = .95 .27 .930 00762>
00628> TZERO = .00 hrs on 0 00628> METODT= 2 (output = METRIC) 00629 MRVDT= 2 (output = METRIC)	00763> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 00764> CN* = 01.0 Ia = Dep. Storage (Above) 00755> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
06331> NSTORM= 0 00632>	00766> THAN THE STORAGE COEFFICIENT. 00767> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
00634> 00635>   CHICAGO STORM   IDF curve parameters: A= 732.951	00768> 00769>
00636>   Ptotal= 31.86 mm   B= 6.199 00637> C= 810 00638> used in: INTENSITY = A / (t + B)^C	00771> 00772>   ADD HYD (040)   ID: NHYD AREA QPEAK TPEAK R.V. DWF 00773>
00639>	00774> ID1 01:010 2.07 .245 1.08 28.81 .000 00775> +ID2 02:020 1.54 .192 1.08 28.55 .000
00640>         Duration of storm = 3.00 hrs           00641>         Storm time step = 10.00 min           00642>         Time to peak ratio = .33	00776> ===================================
00644>         TIME         RAIN         TIME         <	00779> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00780>
00647>         .33         3.498         1.17         24.079         2.00         4.291         2.83         2.463           00648>         .50         4.687         1.33         12.364         2.17         3.718         3.00         2.279	00781>
00649> .67 7.305   1.50 8.324   2.33 3.288   00650> .83 16.209   1.67 6.303   2.50 2.953   00551>	00784>   ADD HYD (050 )   ID: NHYD AREA OPEAK TPEAK R.V. DWF 00785> (ha) (cms) (hrs) (mm) (cms)
00652>	00786> IDI 03:030 1.40 .186 1.08 29.64 .000 00787> +ID2 04:040 3.61 .436 1.08 27.55 .000 00788>
00654> 00655>   DEFAULT VALUES   Filename: V:\20983.DU\ENG\FINALS-1\SWHYM-1\ORGA.VAL 00656>	00799> SUM 05:050 5.01 .623 1.09 28.13 .000 00790> 00791> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
00555> ICASEQV = 1 (read and print data) 00557> FileTila= BIRNETER VALUES MUST & END THE NEXT ONE 00558> PARAMETER VALUES MUST & ENTERD AFTER COLUMN 60D 00559> Horton's infiltration equation parameters:	00792> 00793>
00660> [Fo= 50.00 mm/hr] [Fc= 7.50 mm/hr] [DCAY= 2.00 /hr] [F= .00 mm] 00661> Parameters for PERVIOUS surfaces in STANDHYD:	00794> 001:0009 00795> * 00796> * SUB-AREA No.4
00662> [IAper= 4.67 mm] [LGP=40.00 m] [MNP= .250] 00663> Parameters for IMPERVIOUS surfaces in STANDHYD:	007795
00665> Parameters used in NASHYD: 00666> [Ia= 4.67 mm] [N= 3.00]	00800> IMPERVIOUS PERVIOUS (1)
00667> 00668> 001:0004 00669>	00802> Surface Area (ha)= .86 .03 00803> Dep. Storage (mm)= 1.57 4.67
00670> * ORGAWORLD FILE * 00671> ************************************	09804> Average Slope (%)= 93 .70 00805> Length (m)= 164.82 40.00 00806> Manningsn = .030 .250
00672> * 00673> * SUB-AREA No.1 00674>	00807> 00808> Max.eff.Inten.(mm/hr)= 76.81 10.24
00675>   CALIB STANDHYD   Area (ha)= 2.07	00809> over (min) 7.50 30.00 00810> Storage Coeff. (min)= 6.47 (ii) 30.53 (ii)

		U. D. KICHAIGS & ASSOCIATES LIMIT
00811> 00812>	Unit Hyd. Tpeak (min) = 7.50 30.00 Unit Hyd. peak (cms) ≈ .16 .04	00946> 001:0015
00813>	*TOTALS*	09947>
00815> 00816>	TIME TO PEAK (hrs) = 1.04 1.54 1.042 RUNOFF VOLUME (mm) = 30.29 8.52 29.637	00959>         (ha)         (cms)         (hrs)         (cms)           00950>         ID1 10:POND         8.56         .056         3.00         28.75         .000           00951>         +ID2 01:HIP01         19.90         1.025         21.81         .000
00817> 00818>	RUNOFF COEFFICIENT = .95 .27 .930	00952> SUM 02:HIP02 28.46 1.039 1.25 23.90 .000
00819> 00820> 00821>	(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	00954> 00955> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
00822>	CM* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.	00956> 00957>
00824>	(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	0956> 001:0016 00959> * 00560> * SUB-AREA No.2
	001:0010	00961> 00962>   CALIE STANDHYD   Area (ha)= 17.00
	* SUB-AREA No.5	00963>   03:HIP03 DT= 2.50   Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 00964>
. 00830> 00831>	CALIB STANDHYD   Area (ha)= 2.66   07:070 D2∞ 2.50   Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00	00965> IMPERVIOUS PERVIOUS (1) 00966> Surface Area (ha)= 12.07 4.93
00833>		00967> Dep. Storage (mm)= 1.57 4.67 00968> Average Slope (%)= .65 1.50
00835>	Surface Area (ha)= 2.58 .08 Dep. Storage (mm)= 1.57 4.67	00969> Length (m)= 450.00 100.00 00970> Mannings n = .030 .250 00971>
00837> 00838>	Average Slope (%)= .61 1.50 Length (m)= 207.25 20.00	00972> Max.eff.Inten.(mm/hr)= 59.23 25.04 00973> over (min) 15.00 37.50
00839>	Mannings n = .030 .250	00974> Storage Coeff. (min)= 14.60 (ii) 37.80 (ii) 00975> Unit Hyd. Tpeak (min)= 15.00 37.50
00841> 00842> 00843>	<pre>Max.eff.Inten.(mm/hr)= 76.81 12.71</pre>	00976> Unit Hyd. peak (cms)= .08 .03 00977> *TOTALS*
00844>	Unit Hyd. Tpeak (min)= 7.50 20.00 Unit Hyd. peak (min)= .14 .06	00978> PEAK FLOW (cms)= .91 .19 .976 (iii) 00979> TIME TO PEAK (hrs)= 1.17 1.63 1.167 00980> RUNOFF VOLUME (mm)= 30.29 13.34 21.814
00846> 00847>	*TOTALS* PEAK FLOW (cms)= .38 .00 .379 (iii)	00980> RUNOFF VOLUME [mm]= 30.29 13.34 21.814 00981> TOTAL RAINFALL [mm]= 31.86 31.86 31.860 00982> RUNOFF COFFICIENT = .95 .42 .685
00848>	TIME TO PEAK (hrs)= 1.04 1.33 1.042 RUNOFF VOLUME (mm)= 30.29 8.52 29.637	00983> 00984> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
00850> 00851> 00852>	TOTAL RAINFALL (mm) = 31.86 31.86 31.860 RUNOFF COEFFICIENT = .95 .27 .930	00985> CN* = 01.0 Ia = Dep. Storage (Above) 00986> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
00853>	<pre>(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)</pre>	00987> THAN THE STORAGE COEFFICIENT. 00988> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00989>
00855> 00856>	(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.	00990>
00857> 00858>	(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	00992> * 00993> * SUB-AREA No.3
	001:0011	00994>
00862>	ADD HYD (080 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF	003377
00864>	(ha) (cms) (hrs) (rms) (ccs) ID1 06:060 .89 .139 1.04 29.64 .000 +ID2 07:070 2.66 .379 1.04 29.64 .000	00998>         IMPERVIOUS         PERVIOUS (1)           00999>         Surface Area         (ha)=         11.08         4.52           01000>         Dep. Storage         (mm)=         1.57         4.67
00866> 00867>	SUM 08:080 3.55 .518 1.04 29.64 .000	01000> Dep. Storage (mm)= 1.57 4.67 01001> Average Stope (%)= .50 1.50 01002> Length (m)= 600.00 100.00
00868> 00869>	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	01003> Mannings n = .030 .250 01004>
00870>	001:0012	01005> Max.eff.Inten.(mm/hr)= 50.44 22.17 01006> over (min) 20.00 45.00
00873>	ADD HYD (090 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF	01007> Storage Coeff. (min)= 20.01 (ii) 44.37 (ii) 01008> Unit Hyd. Tpeak (min)= 20.00 45.00 01009> Unit Hyd. peak (mms)= .06 .03
00875> 00876>	(ha) (cms) (hrs) (mm) (cms) ID1 05:050 5.01 .623 1.08 28.13 .000	01009>         Unit Hyd. peak         (cms)=         .06         .03           01010>         *TOTALS*         1011>         PEAK FLOW         (cms)=         .69         .16         .753 (iii)
00877> 00878>	+ID2 08:080 3.55 .528 1.04 29.64 .000	01012> TIME TO PEAK (hrs)= 1.25 1.79 1.292 01013> RUNOFF VOLUME (mma)= 30.29 13.34 21.814
00879> 00880> 00881>	SUM 09:090 8.56 1.118 1.08 28.76 .000	01014> TOTAL RAINFALL (mm)= 31.86 31.86 31.860 01015> RUNOFF COEFFICIENT = .95 .42 .685
00882>	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	01016> 01017> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 01018> CN* = 01.0 Ia = Dep. Storage (Above)
00885>	001:0013	01018> CN* = 81.0 Ia = Dep. Storage (Above) 01019> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 01020> THAN THE STORAGE COEFFICIENT.
00886> 00887>	IN>09:(090 )	01021> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01022>
00888> 00889> 00890>	OUTFLOW STORAGE   OUTFLOW STORAGE	01023>
00891>	(cms) (ha.m.)   (cms) (ha.m.) .000 .0000E+00   .593 .6251E+00 .008 .6560E-01   .654 .6631E+00	01025> 01025>   ADD HYD (HIP05)   ID: NHYD AREA QPEAK TPEAK R.V. DWF 01027> (ha) (cms) (hrs) (num) (cms)
00893> 00894>	.017 .1311E+00   .797 .7391E+00 .093 .2831E+00   .950 .8274E+00	(1027>         (ha)         (cmus)         (hfrs)         (ma)         (cmus)           01028>         ID1 03:HIP03         17.00         .978         1.17         21.81         .000           01029>         +ID2 04:HIP04         15.60         .753         1.29         21.81         .000
00895> 00896>	.233 .3971E+00   1.304 .9157E+00 .337 .4731E+00   1.880 .1004E+01	01030> 5UM 05:HIP05 32.60 1.698 1.21 21.81 .000
00897> 00898> 00899>	.465 .5491E+00   2.577 .1092E+01 .531 .5871E+00   .000 .0000E+00	01032> 01033> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
00900>	ROUTING RESULTS AREA OPEAK TPEAK R.V. (ha) (cms) (hrs) (num)	01034> 01035>
00902> 00903>	INFLOW >09: (090 ) 8.56 1.118 1.083 28.757 OUTFLOW<10: (POND ) 8.56 .056 3.000 28.754	010375 010385   ADD HYD (HIP06 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF
00904>	PEAK FLOW REDUCTION [Oout/Dip](8) = 5.030	01039> (ha) (cms) (hms) (cms) 01040> ID1 05:HIP05 32.60 1.698 1.21 21.81 .000
00906> 00907> 00908>	TIME SHIFT OF PEAK FLOW (min)= 115.00 MAXIMUM STORAGE USED (ha.m.)=.2095E+00	01041> +ID2 02:HIP02 28.46 1.039 1.25 23.90 .000 01042>
00909>	001:0014	01043> SUM 06:HIP06 61.06 2.733 1.21 22.79 .000 01044> 01045> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
00911> 00912>	**************************************	01046> 01047>
00914>	***************************************	01048> 001:0020
00916>	SUB-AREA NO.1     CALIB STANDRYD   Area (ha)= 19.90	01050> * SUB-AREA No.4 01051>
00918>	CALIB STANDHYD   Area (ha)= 19.90   01:HIP01 DT= 2.50   Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00	01052>   CALIE STANDHYD   Area (ha)= 12.20 01053>   07:HIPO7 DT= 2.50   Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 01054>
00920>	IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 14.13 5.77	01054> 01055> IMPERVIOUS PERVIOUS (i) 01055> Surface Area (ha)= 8.66 3.54
00922> 00923>	Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= .60 1.50	01057> Dep. Storage (mm)= 1.57 4.67 01058> Average Slope (%)= .70 1.50
00924>	Length (m) = 580.00 100.00 Mannings n = .030 .250	01059> Length (m) = 210.00 100.00 01060> Mannings n = .030 .250
00926> 00927> 00928>	Max.eff.Inten.(mm/hr) = 54.21 23.06 over (min) 17.50 42.50	01061> 01062> Max.eff.Inten.(mm/hr)= 76.81 29.02
00928> 00929> 00930>	over (min) 17.50 42.50 Storage Coeff. (min)= 18.04 (ii) 42.02 (ii) Unit Hyd. Tpeak (min)= 17.50 42.50	01063>         over (min)         7.50         30.00           01064>         Storage Coeff. (min)=         8.15 (ii)         30.01 (ii)           01065>         Unit Hyd. Tpeak (min)=         7.50         30.00
00931> 00932>	Unit Hyd. peak (cms)= .06 .03 *TOTALS*	01065> Unit Hyd. Tpeak (min)= 7.50 30.00 01066> Unit Hyd. peak (cms)= .14 .04 01067> *TOTALS*
00933> 00934>	PEAK FLOW (cms)= .95 .21 1.020 (iii) TIME TO PEAK (hrs)= 1.21 1.71 1.250	01068> PEAK FLOW (cms)≈ .91 .16 .941 (iii) 01069> TIME TO PEAK (hrs)≈ 1.04 1.50 1.042
00935>	RUNOFF VOLUME (mm)= 30.29 13.34 21.814 TOTAL RAINFALL (mm)= 31.86 31.86 31.860	01070> RUNOFF VOLUME (mm)= 30.29 13.34 21.814 01071> TOTAL RAINFALL (mm)= 31.86 31.86 31.860
00937> 00938> 00939>	RUNOFF COEFFICIENT = .95 .42 .685 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	01072> RUNOFF COEFFICIENT = .95 .42 .685 01073>
00940> 00941>	$CN^* = 81.0$ Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL	01074>     (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:       01075>     CN* = 81.0       01076>     (ii) THE STEP (DT) SHOULD BE SMALLER OR RQUAL
00942> 00943>	THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	01075 THAN THE STORAGE COEFFICIENT. 01078> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
00944>		01079> 01080>
00945>		

01081> 001:0021-----[Ia= 4.67 mm] [N= 3.00] 010825 01082> * 01083> *SUB-AREA No.5 01084> 01085> 01085> 01086> 01087> | DBSIGN NASHYD | Area (ha)= 4.00 Curve Number (CN)=85.00 | 08:Pond-5 DT= 2.50 | Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 ------ U.H. Tp(hrs)= .170 01220> * ORGAWORLD FILE * 01221> * 01222> * 01225 * 01225 > 01225 > 01225 > 01225 > 01225 | 01:010 DT= 2.50 | Total Imp(%) = 84.00 Dir. Conn.(%) = 84.00 01275 | 01:010 DT= 2.50 | Total Imp(%) = 84.00 Dir. Conn.(%) = 84.00 01275 -IMPERVIOUS PERVIOUS (1) 01276 -01226 | 01:010 DT= 2.50 | Total Imp(%) = 84.00 Dir. Conn.(%) = 84.00 01277 -01226 | 01:010 DT= 2.50 | Total Imp(%) = 84.00 Dir. Conn.(%) = 84.00 01277 -01230 Dir. Conn.(%) = 84.00 Dir. Conn.(%) = 84.00 01275 - 200 Dir. Conn.(%) = 84.00 Dir. Conn.(%) = 84.00 01275 - 200 Dir. Conn.(%) = 84.00 Dir. Conn.(%) = 84.00 01275 - 200 Dir. Conn.(%) = 84.00 Dir. Conn.(%) = 84.00 01275 - 200 Dir. Conn.(%) = 84.00 Dir. Conn.(%) = 84.00 01275 - 200 Dir. Conn.(%) = 84.00 D 01088> Unit Hyd Qpeak (cms)= .899 01089; 
 PEAK FLOW
 (cms) =
 .145
 (i)

 TIME TO PEAK
 (hrs) =
 1.167
 1.167

 RUNOFF VOLUME
 (mm) =
 10.266
 10.266

 TOTAL RAINFALL
 (mm) =
 31.860
 31.860

 RUNOFF COEFFICIENT
 =
 .322
 Surface Area (ha) = Dep. Storage (mm) = Average Slope (%) = Length (m) = Mannings n = 01093> 01093> 01094> 01095> 01095> 01096> 01097> 01098> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01232> 01233> 01234> 01235> 01236> 204.72 20.00 .250 Max.eff.Inten.(nm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 104.19 7.50 7.76 (ii) 7.50 .15 24.26 17.50 17.86 (ii) 17.50 01237> 01238> .06 01239> 01240> 01241> 01242> PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = *TOTALS* .362 (iii) 1.042 36.745 42.514 .36 1.04 40.94 42.51 .96 .01 1.25 14.70 42.51 .35 01243> 01243> 01244> 01245> 01246> 01246> 01247> 01248> 01110> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 01112-01113> 001:0023---01114> -----01115> ; ROUTE RESERVOIR 01115> ; IN>09:(HIP08) 01117> ; OUT<10:(HIP-P0) | Requested routing time step = 1.0 min. OUTLIOW STORAGE TABLE ------STORAGE (ha.m.) .0000E+00 .5740E-01 .2434E+00 STORAGE STORAGE (ha.m.) .2210E+01 .2501E+01 .3101E+01 .3101E+01 .3724E+01 .4044E+01 .4370E+01 .0000E+00 (cms) .000 .048 .054 (cms) .724 .937 1.262 1.404 1.532 01119> 01120> 01121> 
 .000
 .0000±+00
 .7.4

 .048
 .5740E-01
 .937

 .054
 .5740E
 .912

 .055
 .5834E+00
 1.262

 .059
 .5834E+00
 1.404

 .062
 .8400E+00
 1.532

 .064
 .102E+01
 1.650

 .147
 .1370E+01
 2.409

 .280
 .1644E+01
 3.689

 .472
 .1924E+01
 .000
 01122 01122> 01123> 01124> 01125> 01125> Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS PERVIOUS (i) 01261> 01262> 01263> 01264> 01265> 011272 .12 4.67 1.00 5.00 .030 1.42 1.57 .50 01128> 01129> 01130> 01131> 01132> ROUTING RESULTS 
 ROUTING RESULTS
 AREA
 OPEAK
 TPEAK

 (ha)
 (cms)
 (hrs)
 (hrs)

 INFLOW >09:
 (HIPO8)
 77.26
 3.542
 1.208

 OUTFLOW<10:</td>
 (HIP-PO)
 77.26
 .148
 4.014
 R.V. 244.34 (mm) 21.985 21.985 01266> 01267> 01269> 01270> 01271> 01272> 01273> 01274> 01275> 01275> 01275> 01276> 01277> 01278> 01278> 01278> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 01133> 01134> 104.19 31.02 7.50 10.00 8.73 (ii) 9.85 (ii) 7.50 10.00 PEAK FLOW REDUCTION [Qout/Qin](%)= 4.179 TIME SHIFT OF PEAK FLOW (min)= 168.33 MAXIMUM STORAGE USED (ha.m.)=.1373E+01 01135> 01136> 01137> ,.50 .14 .11 *TOTALS* .283 (iii) 1.042 38.845 42.514 .914 01138: PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .28 1.04 40.94 42.51 .96 .01 1.13 14.70 42.51 .35 | DESIGN NASHYD | Area (ha)= 2.70 Curve Number (CN)=76.00 | 01:A3 DT= 2.50 | Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 ------ U.H. Tp(hrs)= .800 01143> 01144> 01145> 01146> 01146> 01147> 01148> 01148> 01149> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) iii) THME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFICOW IF ANY. 01281> 01281> 01282> 01283> 01284> 01285> 01286> Unit Hyd Opeak (cms) = .129 PEAK FLOW (cms) = .024 (i) TIME TO PEAK (hrs) = 2.083 RUNOFF VOLUME (nm) = 6.883 TOTAL RAINFALL (nm) = 31.860 RUNOFF COEFFICIENT = .216 01150> 01150> 01151> 01152> 01153> 01154> 01155> 01287> 001:0006-----01288> * * SUB-AREA No.3 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01156> 01157> 01158> -----01159> 001:0025---01160> -----025-----Surface Area (ha) ≈ Dep. Storage (mm) ≈ Average Slope (%) = Length (m) = Mannings n = 01294> 01295> 01296> 01297> 1.36 1.57 .51 225.63 .030 .04 4.67 1.00 5.00 01298> 01298> 01299> 01300> 01301> 01302> 01303> .156 .030 
 104.19
 31.02

 7.50
 10.00

 8.28
 (ii)

 7.50
 10.00

 .14
 .12

 .27
 .00
 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 01165-01167-011685 NOTE: PEAK FLOWS DO NOT INCLUDE BASELISSON 01169-01170-01170-01172-CALCULATION OF 3HR - 1:5 YEAR STORM EVENT CALCULATION OF 3HR - 1:5 YEAR STORM EVENT ------01304> 01305> 01305> 01307> 01309> 01310> 01312> 01312> 01312> 01314> 01315> 01314> 01315> 01316> 01316> 01317> 01318> PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = *TOTALS* .274 (iii) 1.042 40.157 42.514 .27 1.04 40.94 42.51 .96 .00 1.13 14.70 42.51 .35 .944 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia ~ Dep. Storage (Above) (ii) THM STBP (DT) SHOULD BE SANLER OR SQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFICOW IF ANY. 
 AREA
 QPEAK
 TPEAK
 R.V.
 DWF

 (ha)
 (cms)
 (hrs)
 (mm)
 (cms)

 2.07
 .362
 1.04
 36.75
 .000

 1.54
 .283
 1.04
 36.84
 .000
 01100> 01109> 01190> 01191> 01192> 01193> 01194> Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = .33 .645 1.04 37.64 .000 
 TIME
 RAIN
 <th 01329> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01330> TIME RAIN hrs mm/hr 2.67 3.510 2.83 3.220 3.00 2.978 01195> 01196> 01197> 01198> 01199> 01200> 01201> 01201> 01202> 01203> 01204> 01204> 01205> 10264> 10265 10266> 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 10266 1 SUM 05:050 5.01 .918 1.04 38.34 01330> 5UM 05:050 5.01 .918 1. 01340> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01342> .000 01208> 01207> 01208> 01209> 01210> 01211> 01212> Horton's infiltration equation parameters: [Fo= 50.00 mm/hc] [Fo= 7.50 mm/hc] [DCAY 2.00 /hc] [F= .00 mm] Parameters for PERVIOUS surfaces in STANDHYD: [IAper = 4.67 nm] [LCEP=4.0.0 m] [MNP=.250] Parameters for INDERVIOUS surfaces in STANDHYD: [IAimpe ].57 nm] [CLI=1.50] [MNI=.035] Parameters used in NASHYD: 01343> 01213> 01214> 01215>

IMPERVIOUS PERVIOUS (i) 01486> 01487> 01488> 01409> 01490> 01491> 01491> 01492> 01493> 01494> 013515 TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 01351> 01352> 01353> 01354> 01355> 01355> 01356> 01357> (ha) = (mm) = (%) = (m) = = 42.51 .96 42.51 42.514 Surface Area Surface Area Dep. Storage Average Slope Length Mannings n 4.67 1.57 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 (i) CN* = B1.0 Ia = Dep. Storage (Above)
 (ii) TIME STEPE (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 1.37 .93 164.82 .030 40.00 104.19 20.32 5.00 25.00 5.72 (ii) 24.02 (ii) 5.00 25.00 .20 .05 01358> Max.eff.Inten.(mm/hr)= 104.19 01359> 01360> 01361> 01362> over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= *TOTALS* .205 (iii) 1.000 40.157 42.514 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 01363> .rEAK R.V. (hrs) (mm) 2.63 39.09 1.21 31.13 .20 . 00 01364> 01365> 01366> 01367> 01368> 1.00 40.94 42.51 .96 1.38 14.70 42.51 .35 .000 01503> 01504> 01505> 01505> .000 01369> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES; CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01370> 01371> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01507> -----01508> 001:0016------01509> * 01510> * SUB-AREA No.2 01511> -----01372> 01373> 01374> 01375> 01375> 01376> -----01377> 001:0010------01378> * 01379> * SUB-AREA No.5 01511> ------01512> [ CALIE STRNDHYD | Area (ha)= 17.00 01513> | 03:HIF03 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 01514> ------IMPERVIOUS PERVIOUS (i) 01513> 01514> 01515> 01516> 01516> 01517> 01518> 
 IMPERVIOUS

 Surface Area
 (ha)=
 12.07

 Dep. Storage (mm)=
 1.57

 Average Slope (8)=
 450.00

 Mannings n
 =
 .030
 013805 | CALIB STANDHYD | Area (ha)= 2.66 | 07:070 DT= 2.50 | Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 01381> 01382> 12.07 1.57 .65 450.00 .030 4.93 4.67 1.50 01383> 01384> 01385> 
 MPERVIOUS
 PERVICUS (1)

 Surface Area
 (ha) =
 2.58
 .08

 Dep. Storage (mm) =
 1.57
 4.67

 Average Slope (%) =
 .61
 1.50

 Length (m) =
 207.25
 20.00

 Mannings n
 .030
 .250
 01519> 01520> 01521> 01522> 01522> 01523> 100.00 .250 01386> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 
 89.76
 47.48

 12.50
 30.00

 12.36 (i1)
 30.32 (i1)

 12.50
 30.00

 .09
 .04
 01387> 01388> 01389> 01390> 01391> 01392> 01524> 01525> 104.19 24.26 7.50 17.50 7.45 (ii) 16.40 (ii) 7.50 17.50 .15 .07 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 01526> 01527> 01528> *TOTALS* 1.504 (iii) 1.167 31.126 42.514 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .37 1.46 21.31 42.51 .50 01393> 01394> 01395> 01395> 01396> 01397> 1.36 1.13 40.94 42.51 .96 01528> 01529> 01530> 01531> 01532> 01533> 01534> 01535> 01536> 01537> 01538> *TOTALS* .538 (iii) 1.042 40.157 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .54 1.04 40.94 42.51 .96 .00 1.25 14.70 42.51 .35 01398> 01398> 01399> 01400> 01401> 01402> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 (ii) CN* = 81.0 Ia = Dep. Storage (Above)
 (iii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 42.514 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 (ii) TIME STEP (DT) IA = Dep. Storage (Above)
 (iii) TIME STEP (DT) SHOULD EE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01403> 01404> 01405> 01405> 01406> 01407> Surface Area (ha) = Dep. Storage (mm) = Average Slope (%) = Length (m) = Mannings n = 11.08 1.57 .50 01415> 01415> 01416> 01417> 01418> 01419> 4.52 4.67 1.50 SUM 08:080 3.55 .733 1.04 40.16 01551> .000 01552> 01553> 01554> 01555> 600.00 100.00 .030 
 NOTE:
 Fast

 01413b
 NOTE:
 Fast

 01422b
 001:0012
 Image: Strain S NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 
 73.27
 42.65

 17.50
 35.00

 17.24
 (ii)

 17.50
 35.00

 .07
 .03
 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 01556> 01558> 01558> 01559> 01560> 01561> *TOTALS* 1.176 (iii) 1.250 31.126 42.514 .732 PEAK FLOW (Cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (nm)= TOTAL RAINFALL (nm)= RUNOFF COEFFICIENT = .30 1.54 21.31 42.51 .50 1.03 1.21 40.94 42.51 _96 01562> 01563> 01564> 01565> 01566> 01430> 01431> NOTE: 01432> 01433> ------01434> 001:0013-01435> ------ (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 (ii) CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01567> 
 Olision
 CN* = bl.

 01568>
 (11) TIME STEP (DT) SHOULD BE SMALLER on the strand of the strand 01568> Requested routing time step = 1.0 min. 
 OUTLFOW
 Storage
 Tito

 OUTFLOW
 STORAGE
 ABLE

 OUTFLOW
 STORAGE
 OUTFLOW

 STORAGE
 OUTFLOW
 STORAGE

 (ms)
 (ha.m.)
 (cms)
 (ha.m.)

 .000
 00008+00
 .593
 .52318+00

 .017
 .31128+00
 .797
 .793128+00

 .023
 .397128+00
 1.304
 .91578+00

 .465
 .59128+00
 2.577
 .10928+01

 .531
 .587126+00
 2.000
 .00002+00
 01441> 01442> 01443> 01444> 01445> 01445> 01446> 01447> 01448> 01449> 01452> (cms) .000 .000 UISEI> SUM USINIFOS UISE2> DISE2> DO NOT INCLUDE BASEFLOWS IF ANY. .000 
 AREA
 QPEAK
 TPEAK

 (ha)
 (cms)
 (hrs)

 8.56
 1.651
 1.042

 8.56
 .089
 2.625
 ROUTING RESULTS R.V. (mm) 39.096 39.093 INFLOW >09: (090 ) OUTFLOW<10: (POND ) 01453> 01453> 01454> 01455> 01456> 01456> 
 PEAK
 FLOW
 REDUCTION
 [Qout/Qin] (%)=
 5.413

 TIME
 SHIPT OF PEAK
 FLOW
 (min)=
 95.00

 MAXIMUM
 STORAGE
 USED
 (ha.m.)=.2758E+00
 01458> 01459: IMPERVIOUS PERVIOUS (1) Surface Area (ha) = Dep. Storage (mm) = Average Slope (%) = Length (m) = Mannings n = 01470> 01471> 01471> 01472> 01473> 01474> 01475> 01476> 01477> 01477> 01477> 01478> 01478> 01478> 01480> 01481> 01482> Surface Area (ha) = (mm) = (%) = (m) = = 14.13 5.77 4.67 01606> 01607> 01608> 01609> 01610> 01611> 01612> 8.66 1.57 .70 210.00 .030 3.54 4.67 1.50 Dep. Storage Average Slope Length Mannings n .60 580.00 .030 1.50 100.00 .250 100.00 .250 80.14 15.00 15.43 (ii) 15.00 .07 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 104.19 7.50 7.21 (ii) 7.50 .15 Max, eff. Inten. (mm/hr) = 42.65 52.96 25.00 24.40 (ii) 25.00 over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = 42.65 35.00 34.18 (ii) 35.00 .03 01613> 01614> 01615> .05 01616> 01617> 01618> *TOTALS* 1.572 (iii) 1.208 31.126 *TOTALS* 1.375 (iii) 1.042 31.126 PEAK FLOW TIME TO PEAK RUNOFF VOLUME PEAK FLOW TIME TO PEAK RUNOFF VOLUME (cms)= (hrs)= (mm)= 1.41 01483: (cms) = .40 1.28 .31 01484> 01485> (hrs) = (mm) = 1.17 40.94 1.54 21.31 01619> 40.94 21.31

J. L. Richards & Associates Limited

J. L. Richards & Associates Limited

01621> TOTAL RAINFALL (mma) = 42.51 RUNOFF COEFFICIENT = .96 42.51 42.514 01621> 01622> 01623> 01624> 01625> 01625> 01625> 01627> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SWALLER OR EQUAL THAN THE STORAGE COEFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01628> 01629> 01630> -----01631> 001:0021-----01632> * 01633> *SUB-AREA No.5 01635> | DESIGN NASHYD | Area (ha]= 4.00 Curve Number (CN)=85.00 01635> | 08:Pond-B DT= 2.50 | Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 01637> ----- U.H. Tp(hrs)= .170 01634> Urnit Hyd Qpeak (cms)= .899 01639> 01640> 01641> 01642> 01643> 
 PEAK FLOW
 (cms) =
 .260 (1)

 TIME TO PEAK
 (hrs) =
 1.167

 RUNOFF VOLUME
 (mm) =
 17.325

 TOTAL RAINFALL
 (mm) =
 42.514

 RUNOFF COEFFICIENT
 -408
 01643> 01644> 01645> 01645> 01646> 01647> 01648> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01781> 01782> 01783> 01783> 01785> 01785> 01786> 01787> 122.14 34.69 7.50 15.00 7.28 (ii) 16.04 (ii) 7.50 15.00 .15 .07 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 

 01760-01780-01780-01780-01780-01780-01780-01780-01790-01790-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01791-01655> 01656> 01657> 01658> 01659> 01660> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01661> 01662> UTLFOW STORAGE | (cms) (h.a.m.) | (cms) 01667> 01668> 01669> 01670> 01671> 01672> 01673> 01674> 01675> 01677> 01677> 01677> 01678> 01679> 01680> 01681> 01682> 
 ROUTING RESULTS
 AREA
 OPEAK
 TPEAK

 INFLOW >09:
 (HIP08)
 77.26
 5.545
 1.167

 OUTFLOW<10:</td>
 (HIP-PO)
 77.26
 .435
 3.389
 ROUTING RESULTS R.V. (mm) 31.292 31.292 01816> 01817> 01818> 01829> 01820> 01822> 01822> 01823> 01824> 01825> 01826> 01826> 01826> 01828> 01828> 01828> 01828> 01830> 01831> 122.14 42.32 7.50 10.00 8.20 (ii) 9.18 (ii) 7.50 10.00 .14 .12 Max.eff.Inten.(mm/hr)= 01683> 016833 01684> 01685> 01686> 01687> over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= PEAK FLOW REDUCTION [Qout/Qin](%)= 7.850 TIME SHIFT OF PEAK FLOW (min)= 133.33 MAXIMUM STORAGE USED (ha.m.)=.1871E+01 01688> *TOTALS* .341 (iii) 1.042 45.640 49.505 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = .33 1.04 47.93 49.50 .97 .01 1.13 19.25 49.50 
 IDESIGN NASHYD
 Area
 (ha)=
 2.70
 Curve Number
 (CN)=76.00

 | 01:A3
 DT=
 2.50
 Ia
 (mm)=
 4.670
 # of Linear Res.(N)= 3.00

 ----- U.H. Tp(hrs)=
 .800
 .800
 .39 01694> 01695> 01695> 01696> 01697> 01698> 01699> 01700> 01701> 01702> 01704> 01704> 01705> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) Timk STEP (DT) SHOULD BS SWALLER OR REQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. Unit Hyd Qpeak (cms)= .129 
 DEAK FLOW
 (cms) =
 .044
 (1)

 TIME TO PEAK
 (hrs) =
 2.042

 RUNOFF VOLUME
 (nm) =
 12.131

 TOTAL RAINFALL
 (nm) =
 42.514

 RUNOFF COEFFICIENT
 =
 .205
 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01706>
01707> 001:0025-----01708> 01709> 01710> 01849> 01850> 01851> 01852> 01852> 01853> 122.14 48.18 7.50 7.50 7.77 (ii) 8.70 (ii) 7.50 7.50 .15 .14 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01718> 01853> 01854> 01855> 01856> 01856> 01857> 01857> 01858> 01859> 01710> 01719> 01720> 01721> 01722> 01719-01720-01721-01722-01722-01722-01722-01722-01725-01725-01725-01725-01725-01725-01725-01725-01725-01725-01725-01725-01725-01725-01725-01725-01725-01725-01725-01725-01725-01725-01725-01730-01720-01720-01720-01720-01720-01720-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-01730-. ______ .33 1.04 47.93 49.50 .97 *TOTALS* .329 (iii) 1.042 47.074 49.505 .951 PEAK FLOW {cms} = TIME TO PEAK {hrs} = RUNOFF VOLUME {mm} = TOTAL RAINFALL {mm} = RUNOFF COEFFICIENT = .00 1.08 19.25 49.50 .39 01860> 01860> 01861> 01862> 01863> 01864> 01865> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01866> 01867> 01737> 01738> 01739> 01740> 01741> 01742> 01743> 01743> 01745> 01745> 01745> 01746> 01747> 01746> 01747> 01745> 01751> 01751> 01752> DWF (cms) .000 .000 DWF Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = .33 .000 
 TIME
 RAIN
 TIME
 RAIN
 TIME
 RAIN
 TIME
 RAIN
 I
 TIME
 RAIN
 TIME</th TIME RAIN hrs mm/hr 2.67 4.049 2.83 3.714 3.00 3.434 01879> NOTE: PEAK 01880> 01881> ------01882> 001:0008-----····· 01883-01884 | ADD HYD (050 ) | ID: NHYD ; 01885-01885-01885 | DD 03:030 01887-1D 03:030 01887-1D 03:0400 
 AREA
 QPEAK
 TPEAK
 R.V.

 (ha)
 (cms)
 (hrs)
 (mm)

 1.40
 .329
 1.04
 47.07

 3.61
 .778
 1.04
 44.32
 DWF DWr (cms) .000 .000 01753> 001:0003------1.107 SUM 05:050 01754> ------01755> | DEFAULT VALUES | Filename: V:\20983.DU\ENG\FINALS~1\SWMHYM~1\ORGA.VAL 5.01 1.04 45.09 .000 01889> 01890>

#### J. L. Richards & Associates Limited

02296> 02297> 02298> 02299> 02300> 02301> 02302> 
 .17
 4.934
 1.00
 144.693
 1.83
 9.014
 2.67
 4.701

 .33
 6.152
 1.17
 43.904
 2.00
 7.571
 2.83
 4.310

 .50
 8.262
 1.33
 22.224
 2.17
 6.544
 3.000
 3.983

 .67
 13.006
 1.50
 14.952
 2.33
 5.776
 1.83
 33.041
 1.50
 14.952
 2.254
 2.50
 5.179
 1.93
 1.50
 14.952
 2.254
 5.776
 1.83
 3.014
 1.67
 1.192
 2.50
 5.179
 1.93
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 1.50
 <td Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 
 122.14
 72.53

 7.50
 22.50

 6.77
 (ii)
 21.93

 7.50
 22.50

 .16
 .05
 02162> 02163> 02163> 02164> 02165> 02165> 02166> 02168> 02169> *TOTALS* 1.687 (iii) 1.042 37.426 49.505 .756 

 023013

 023023

 023023

 023033

 02304

 02305

 1

 02305

 1

 02305

 1

 02305

 1

 02305

 1

 02305

 1

 02306

 1

 02307

 1

 02308

 1

 02309

 1

 1

 02309

 1

 1

 1

 02309

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 <td PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 1.54 1.04 47.93 49.50 .97 .42 1.33 26.92 49.50 02170> 02171> 02172> 02173> 02174> 02175> .54 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) iii TIME STEP (DT) SHOULD BE SUMLLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PERK FLOW DOE NOT INCLUDE RESEFICOW IF ANY. 02176> 02178> 02178> 02178> 02179> 02180> 02181> 001:0021-----02189> 02190> 02191> 02192> 
 PEAK FLOW
 (cms) =
 .345 (i)

 TIME TO PEAK (hrs) =
 1.167

 RUNOFF VOLUME (mm) =
 22.420

 TOTAL RAINFALL (mm) =
 95.505

 RUNOFF COEFFICIENT =
 .453
 Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = 02193> 02194> 02195> 02195> 02196> 02197> 1.74 1.57 .52 .33 4.67 1.00 20.00 02331> 02332> 02333> 02334> 02335> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 204.. .030 144.65 4.. 7.50 15.00 6.81 (ii) 14.56 (ii) 15.00 .16 .00 .52 .03 1.04 1.21 5.66 25.35 23 58.23 .44 .525. 204.72 02198> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 
 02201>
 01:0022

 02201>
 (ha)
 (cms)
 (hrs)
 (mm)
 (cms)

 02202>
 (ha)
 (cms)
 (hrs)
 (mm)
 (cms)

 02204>
 IDI
 06:HIP06
 61.06
 5.358
 1.17
 38.61
 .000

 02205>
 +ID2
 07:HIP07
 12.20
 1.68
 1.17
 38.61
 .000

 02205>
 +ID2
 06:FUP07
 4.00
 .345
 1.17
 22.42
 .000

 02205>
 +ID3
 06:Fond-B
 4.00
 .345
 1.17
 22.42
 .000

 02205>
 +ID3
 06:Fond-B
 77.26
 7.016
 1.17
 37.59
 .000

 02205>
 SUM
 09:HIP08
 77.26
 7.016
 1.17
 37.59
 .000
 02335> 02336> 02337> 02338> 02339> 02340> 02341> PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = *TOTALS* .532 (iii) 1.042 51.647 58.226 023422 02343> 02344> 02345> 02345> 02346> 02347> 022093 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02210> 02212> 02213> 02214> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 001:0023-02348> 02349> 02350> 02351> 02352> 02214> -----02215> | ROUTE RESERVOIR 02216> | IN>09: (HIPOB ) . NOUTE RESERVOIR 02216> | IN>09:(HIP08) 02217> | OUT<10:(HIP-PO) 02218> 02219> Requested routing time step = 1.0 min. OUTFLOW STORAGE | OUTFLOW STORAGE 
 DUTLFOW STORAGE TABLE

 FTLOW STORAGE (Cans)
 (cms)

 (ha.m.)
 (cms)

 (ha.m.)
 (cms)

 (ha.m.)
 (cms)

 (black
 (cms)

 (cms)
 (cms)

 (ha.m.) .2210E+01 .2501E+01 .2798E+01 02219> 02220> 02221> 02222> 02223> 02224> 02225> 02226> 02226> 02227> (cms) .000 .048 Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = 1.42 1.57 .50 .12 4.67 1.00 02228> 02229> 02230> 02363> 02363> 02364> 02365> 02366> 02367> 02368> AREA QPEAK TPEAK (ha) (cms) (hrs) 77.26 7.016 1.167 77.26 .696 3.208 ROUTING RESULTS R.V. 244.34 5.00 02231> 02232> 02233> 02234> 02235> 02236> 02237> 02238> 02238> 02239> 02239> 02240> (mm.) 37.588 37.588 INFLOW >09: (HIP08) OUTFLOW<10: (HIP-PO) Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 
 ----- 65.19

 7.50
 7.50

 7.66
 (ii)

 8.49
 (ii)

 7.50
 7.50

 .15
 .14

 .40
 ^ 144.69 65.19 02368> 02369> 02370> 02371> 02372> 02373> 02374> 02376> 02376> 02376> 02378> 02378> 02379> 02380> PEAK FLOW REDUCTION [Qout/Qin](%)= 9.919 TIME SHIFT OF PEAK FLOW (min)= 122.50 MAXIMUM STORAGE USED (ha.m.)=.2178E+01 .01 1.08 25.35 58.23 .44 
 PEAK FLOW
 (cms) =
 .40

 TIME TO PEAK
 (hrs) =
 1.04

 RUNOFF VOLUME
 (mm) =
 56.66

 TOTAL RAINFALL
 (mm) =
 58.23

 RUNOFF COEFFICIENT =
 .97
 *TOTALS* .418 (iii) 1.042 54.152 58.226 ----001:0024----02241> * 02242> *SUB-AREA No. 6 02243> -----| DESIGN NASHYD | Area (ha)= 2.70 Curve Number (CN)=76.00 | 01:A3 DT= 2.50 | Ia (mm)= 4.670 \$ of Linear Res.(N)= 3.00 | U.H. Tp(hrs)= .800 02244> 02245> 02245> 02246> 02247> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR RQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02380> 02381> 02382> 02383> 02384> 02385> Unit Hyd Qpeak (cms)= .129 02248> 02249> 02250> 02251> 02252> 02253> 02253> 02254> 
 PERK FLOW
 (cms)=
 .059 (i)

 TIME TO PEAK (hrs)≈
 2.000

 RUNOFF VOLUME (mm)=
 16.075

 TOTAL RAINFALL (mm)=
 49.505

 RUNOFF COEFFICIENT =
 .325
 02385> 02386> 02386> 02386> * SUB-AREA No.3 02380> * SUB-AREA No.3 02390> .04 4.67 1.00 5.00 .030 DWF 02398> 02398> 02399> 02400> 02401> 02402> .030 .030 144.69 65.19 7.50 7.50 7.26 (ii) 8.09 (ii) 7.50 7.50 .15 .14 .40 .00 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 02267> 02268> 02269> 02270> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02403> 02403> 02404> 02405> 02406> 02407> 02408> *TOTALS* .400 (iii) 1.042 55.717 58.226 .957 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .40 1.04 56.66 58.23 .97 .00 1.08 25.35 58.23 02409> 02410> 02411> 02412> 02412> 02413> 02414> 02415> .44 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CM* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR BOULL THAN THE STORAGE COEFFICIENT. (iii) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 

 02282 
 01:002

 02283 
 01:002

 02285 
 CHICAGO STORM | IDF curve parameters: A=1402.884

 02285 | CHICAGO STORM | IDF curve parameters: A=1402.884

 02285 | Ptotal = 56.23 mm | B = 6.018

 02280 | Dtotal = 56.23 mm | B = 6.018

 02280 | Dtotal = 56.23 mm | Loss in INTENSITY = A / (t + B) ^C

 02280 | Dtotal = 0.00 hrs

 02280 | Dtotal = 0.00 hrs

 02290 | Dtotal = 0.00 hrs

 02291 | Storm time step = 10.00 min

 02292 | Time to pak ratio = .33

 02288> 02289> 02290> 02291> 02292> 02293> 02294> 02295> 02428> 02429> 02430> TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

432> 001:0008		02566> 02567>   CALIB STANDHYD   Area (ha)= 19.90
433> 434>   ADD HYD (050 )   ID: NHYD AREA OPEAK TPEAK R.1		02567>   CALIB STANDHYD   Area (ha)= 19.90 02568>   01:HIP01 DT= 2.50   Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 02569>
435> (ha) (cms) (hrs) (mr 436>	m) (cms)	02570> IMPERVIOUS PERVIOUS (i) 02571> Surface Area (ha)= 14.13 5.77 02572> Dep. Storage (mm)= 1.57 4.67
437> +ID2 04:040 3.61 .950 1.04 52.7 438>	72 .000	02572>         Dep. Storage (mm) =         1.57         4.67           02573>         Average Slope (%) =         .60         1.50
439> SUM 05:050 5.01 1.350 1.04 53.5 440>		02574> Length (m) = 580.00 100.00
441> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 442>		02576>
443>		02578> over (min) 12.50 27.50
445> * SUB-AREA NO.4		02579> Storage Coeff. (min)= 12.93 (ii) 27.37 (ii) 02580> Unit Hyd. Tpeak (min)= 12.50 27.50
		02561> 0nit Hyd. peak (cms)= .09 .04 *TOTALS*
465>   CALIE STANDHYD   Area (ha)= .89 449>   06:060 DT= 2.50   Total Imp(%)= 97.00 Dir. Conn.(%) 450>	)= 97.00	02583>         PEAK FLOW         (cms)=         2.16         .77         2.568 (iii)           02504>         TIME TO PEAK (hrs)=         1.13         1.42         1.167           02505>         RUNOFF VOLUME (mm)=         56.66         34.22         45.437           02505>         TOTAL PAILPEAL (inm)=         58.23         58.23         58.226
451> IMPERVIOUS PERVIOUS (i)		02584>         TIME TO PEAK         (hrs)=         1.13         1.42         1.157           02585>         RUNGPY VOLIME         (mm)=         56.66         34.22         45.437           02586>         TOTAL PAINFALL         (mm)=         58.23         58.22         58.22           02586>         FUNDEPC COEFFICIENT         58.23         58.22         58.22         58.22
452> Surface Area (ha)= .86 .03 453> Dep. Storage (mm)= 1.57 4.67		02587> RUNDFF COEFFICIENT = .97 .59 .780
453> Dep. Storage (mm) = 1.57 4.67 454> Average Slope (%) = .93 .70 455> Length (m) = 164.82 40.00 455> Maximum (m) = 164.82 40.00		02589>     (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:       02590>     CN* = 81.0     Ia = Dep. Storage (Above)       02591>     (ii) THME STEP (DT) SHOULD BE SMALLER OR EQUAL
457> Mainings n = .030 .230		U2592> THAN THE STORAGE COEFFICIENT.
458> Max.eff.Inten.(mm/hr)= 144.69 44.12 459> over (min) 5.00 17.50		02593> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02594>
46> Storage Coeff. (min) = 5.02 (ii) 18.44 (ii) 46> Unit Hyd. Tpeak (min) = 5.00 17.50		02595>
462> Unit Hyd. peak (cms) = .22 .06 463> *TC	DTALS*	02597> 02599>   ADD HYD (HIP02 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF
464> PEAK FLOW (cms)= .30 .00 465> TIME TO PEAK (hrs)= 1.00 1.25 1	.296 (iii) 1.000	02599> (ha) (cms) (hrs) (nm) (cms) 02600> ID1 10:POND 8.56 .189 2.06 54 45 000
467> TOTAL RAINFALL (mm) = 58.23 58.23 58	5.717 8.226	02601> +ID2 01:HIP01 19.90 2.548 1.17 45.44 .000 02602>
469>	.957	02603> SUM 02:HIP02 28.46 2.622 1.17 48.15 .000 02604>
470>     (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:       471>     CN* = 81.0       472>     (11) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL		02605> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02606>
4/3> THAN THE STORAGE COEFFICIENT.	÷	02607>
474> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 475>		02609> * 02610> * SUB-AREA No.2
476>		00(11)
478> * 479> * SUB-AREA NO.5		026112 - CALLE STANDHYD   Area (ha)= 17.00 026123   CALLE STANDHYD   Area (ha)= 17.00 02613   03:HIP03 DT= 2.50   Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 026145
460>		02615> IMPERVIOUS PERVIOUS (5)
483>	= 97.00	02617> Dep. Storage (mm)= 1.57 4.67 02618> Average Slope (%)= .65 1.50
184>         IMPERVIOUS         PERVIOUS (i)           485>         Surface Area         (ha)=         2.58         .08           486>         Den. Storace         (mm)=         1.57         4.67		02619> Length (m) = 450.00 100.00 02620> Mannings n = .030 .250
487> Average Slope (3) = 61 1 50		02622> Max.eff.Inten.(mm/hr)= 144.69 87.13
488> Length (m)= 207.25 20.00 489> Mannings n = .030 .250		02523> mor (min) 10.00 25.00
190> 191> Max.eff.Inten.(mm/hr)= 144.69 51.33		026345         Storage Coeff. (min) = 10.21 (ii) 24.30 (ii)           026255         Unit Hyd. Tpeak (min)= 10.00 25.00           026256         Unit Hyd. peak (min)= 10.00
192> over (min) 7.50 12.50 193> Storage Coeff. (min)= 6.54 (ii) 13.16 (ii)		02527> *TOTALS*
194> Unit Hyd. Tpeak (min)= 7.50 12.50 195> Unit Hyd. peak (cms)= .16 .09		D2629>         TIME TO PEAK         (Lus)=         2.10         ./1         2.998         (Lus)=           D2629>         TIME TO PEAK         (hrs)=         1.08         1.38         1.125           D2630>         RUNOFF VOLUME         (mn)=         56.66         34.22         45.437           D2630>         TOTAL RAINFRLL         (mm)=         56.23         58.226         58.226
496> *TO	DTALS* .783 (iii)	02631> TOTAL RAINFAL (mm)= 58.23 58.23 58.226 02632> RUNOFF COEFFICIENT = .97 .59 .780
498> TIME TO PEAK (hrs)= 1.04 1.17 1 499> RUNOFF VOLUME (mma)= 56.66 25.35 55		02633> 02634> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
JUIN RUNDEF COEFFICIENT = .97 .44	.957	02635> (1) CN # ROLEDDRE SELECTED FOR PERVIOUS LOSSES: 02635> CN* = 81.0 Ia = Dep. Storage (Above) 02636> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
025		02637> THAN THE STORAGE COEFFICIENT. 02638> (iii) PEAK FLOW DOES NOT INCLUDE BASEPLOW IF ANY.
055 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 045 CN* = 81.0 Ia = Dep. Storage (Above) 055 (ii) TIME STEP [CD] SHOULD BE SWALLER OR EQUAL		02639> 02640>
505> THAN THE STORAGE COEFFICIENT. 507> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.		02641> 001:0017
08> 09>		02643> * SUB-AREA No.3 02644>
10> 001:0011		02645> ( CALIB STANDHYD   Area (ha)= 15.60 02646> ( 04:HIP04 DT= 2.50   Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00
12>   ADD HYD (080 )   ID: NHYD AREA QPEAK TPEAK R.V 13> (ha) (cms) (hrs) (mma	a) (cms)	02648> TMPERVIOUS PERVIOUS (i)
14> ID1 06:060 .89 .296 1.00 55.7 15> +ID2 07:070 2.66 .783 1.04 55.7	2 .000	02649> Surface Area (ha) = 11.08 4.52
16> ====================================	=========	02650>         Dep. Storage         (mm) =         1.57         4.67           02651>         Average Slope         (%) =         .50         1.50           02652>         Length         (m) =         600.00         100.00
18> 19> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.		026554> Mainings n .050 .250
20> 21>		02655> Max.eff.Inten.(mm/hr)≈ 111.10 77.71 02656> over (min) 15.00 30.00
22> 001:0012		02657> Storage Coeff. (min)= 14.59 (ii) 29.34 (ii) 02658> Unit Hyd. Tpeak (min)= 15.00 30.00
24>   ADD HYD (090 )   ID: NHYD AREA QPEAK TPEAK R.V. 25> (ha) (cms) (hrs) (mm)	(cms)	02655> Unit Hyd. 1984 (min)= 15:00 50:00 02655> Unit Hyd. peak (cms)= .08 .04 02660> *TOTALS*
26> ID1.05:050 5.01 1.350 1.04 53.55 27> +ID2.08:080 3.55 1.060 1.04 55.72	5 .000 2 .000	02661> PEAK FLOW (cms)= 1.57 57 1.879 (jiji)
28> SUM 09:090 8.56 2.410 1.04 54.45		02663> RUNOFF VOLUME (mm) = 56.66 34.22 45.437 02664> TOTAL RAINFALL (mm) = 58.23 58.23 58.226
30	5 .000	02665> RUNOFF COEFFICIENT = .97 .59 .780
31> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	5 .000	02665> RUNOFF COEFFICIENT = .97 .59 .780 02666>
81> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 82> 33>		02665> 02667> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 02668> CN* = 81.0 Ta = Dep. Storage (Above)
31>         NOTE:         PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.           32>		02665 02667 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 02668 CN* = 81.0 Ia = Dep. Storage (Above) 026599 (ii) TIME STEP (DT) SNOULD BE SMALLER OR EQUAL 02670 THAN THE STORAGE COEFFICIENT.
31>         NOTE:         PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.           32>		02665 02667 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 02668 CN* = 81.0 Ia = Dep. Storage (Above) 02669 (ii) THME STEP (DT) SHOULD BE SMALLER OR EQUAL 02670 THAN THE STORAGE COEFFICIENT. 026712 (iii) PERK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
31>         NOTE:         PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.           32>	n.	02665 02667 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 02668 CN* = 81.0 Ia = Dep. Storage (Above) 026599 (ii) TIME STEP (DT) SNOULD BE SMALLER OR EQUAL 02670 THAN THE STORAGE COEFFICIENT.
NOTE:         PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.           2>	n. ====================================	026665 026675 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 026685 CN* = 81.0 Ia = Dep. Storage (Above) 026695 (ii) THAS TRE (DT) SHOULD BE SMALLER OR EQUAL 0267105 THAN THE STORAGE COEFFICIENT. 026712 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 026725 026735
31>         NOTE:         PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.           33>	n. 98AGE a.m.) 12+00 12+00	02665- 02667- 02667- 02667- 02669- 02669- 02669- 02669- 02669- 02669- 02670- 02670- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671- 02671
NOTE:         PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.           23>	n. memore ORACE a.m.) 1E+00 1E+00 1E+00 2E+00 2E+00	02665- 02667- 02667- 02669- CN* = 81.0 Ia = Dep. Storage (Above) 02669- 02670- 02670- 02670- 02671- 02671- 02671- 02671- 02673- 02673- 02673- 02673- 02673- 02675- 1ADD HDD (HTPO5) ID: NHYD AREA OPEAK TPEAK R.V. DWF 02675- 02675- 02675- 02675- 1ADD HDD (HTPO5) ID: NHYD AREA OPEAK TPEAK R.V. DWF 02679- 02679- 1D1 03:HTP03 17.00 2.398 1.13 45.44 .000 02679- 1D2 04:HTP04 15.60 1.179 1.21 45.44 .000
31>         NOTE:         PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.           32>	DRAGE ORAGE JEAO 1800 18+00 18+00 18+00 28+00 78+00 48+01 10 10 10 10 10 10 10 10 10	02665- 02665- 02667- 02667- 02669- 02669- 02669- 02669- 02670- 02670- 02671- 02671- 02672- 02673- 02673- 02673- 02675- 01:0018 02675- 02675- 02675- 02675- 02675- 02675- 02675- 01:0018
31>         NOTE:         PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.           32>	n. RRACE A.m.) 18+00 18+00 18+00 72+00 48+00 72+01 28+01 28+01	02665- 02667- 02667- 02668- 02669- 02669- 02669- 02669- 02670- 02670- 02671- 02671- 02673- 02673- 02673- 02673- 02673- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02679- 02682- 02682- 02681- 02682- 02682- 02682- 02683- 0075: 02675- 02675- 02682- 02683- 02682- 02683- 02682- 02683- 0075: 02675- 02682- 02683- 0075: 02675- 02682- 02683- 0075: 02675- 02682- 0075: 02675- 02682- 0075: 02675- 02682- 0075: 02682- 0075: 02682- 0075: 02683- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02682- 0075: 02692- 0075: 02692- 0075: 02692- 0075: 02692- 0075: 02692- 0075: 02692- 0075: 02692- 02682- 0075: 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 02692- 0269
31>         NOTE:         PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.           32>	n. 3.m. 3.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.m. 1.	02665- 02667- 02667- 02667- 02669- 02669- 02669- 02669- 02670- 02670- 02671- 02671- 02672- 02673- 02673- 02673- 02675- 01:0018 02675- 02675- 01:0018 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675- 02675-
31>         NOTE:         PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.           32>	n. maxmem ORACE a.m.) DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+01 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+00 DE+0	026665       (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:         026675       (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:         026678       CN* = 81.0       Ia = Dep. Storage (Above)         026705       THAN THE STORAGE COEFFICIENT.         026775       THAN THE STORAGE COEFFICIENT.         026774       Oli:018
31>         NOTE:         PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.           33>         001:0013	n. ====================================	02665- 02667- 02667- 02669       (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 02669- 02669- 02669- 02670- 02670- 02671- 02671- 02671- 02673- 02673- 02673- 02675- 02675- 02675- 02675- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026775- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 026875- 0268
32>         33>         34>         35>         36>         37>         38>         38>         38>         38>         38>         38>         38>         38>         38>         38>         38>         38>         38>         38>         38>         38>         39>         39>         39>         39>         39>         39>         39>         39>         39>         39>         39>         39>         39>         39>         39>         39>         39>         39>         39>         39>         39>         39>         39>         39>         39>         39>         39>         39>         39>         39>         39>         3	n. SHRDER SHRDER A.m.) 12+00 12+00 12+00 12+00 12+01 12+01 12+01 02+01 02+01 02+01 8.4 4.451 4.459 8.38 0.83	02665- 02667- 02667- 02668- 02669- 02669- 02669- 02669- 02669- 02670- 02670- 02671- 02671- 02673- 02673- 02673- 02673- 02673- 02673- 02673- 02673- 02673- 02673- 02675- 02673- 02675- 02675- 02675- 02675- 02678- 02678- 02678- 02678- 02678- 02678- 02678- 02678- 02680- 02680- 02680- 02681- 02681- 02681- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02690- 10105:HIP05 32.60     0.000 02690- 010     0.0000 02690- 010     0.000 02690- 010
31>         NOTE:         PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.           32>	n. ====================================	02665- 026657         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 026659
31>         NOTE:         PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.           32>	n. manne ORAGE a ma) 12+00 12+00 12+00 12+00 02+00 02+00 02+00 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+0	02665- 026657         (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 026659
31>         NOTE:         PEAK         FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.           32>	n. manne ORAGE a ma) 12+00 12+00 12+00 12+00 02+00 02+00 02+00 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+0	02665- 02665- 02665- 02665- 02665- 02665- 02665- 02665- 02665- 02665- 02670- 02671- 02671- 02671- 02671- 02672- 02673- 001:0018 02673- 001:0018 02673- 02673- 011:0018
NOTE:         PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.           22>	n. manne ORAGE a ma) 12+00 12+00 12+00 12+00 02+00 02+00 02+00 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+01 02+0	02665- 02665- 02665- 02665- 02665- 02665- 02665- 02665- 02665- 02665- 02667- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02677- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02690- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02680- 02690- 02690- 02690- 02690- 02690- 02690- 02690- 02690- 02690- 02690- 02690- 02690- 02690- 02690- 02690

J. L. Richards & Associates Limited

Ĺ,

l_,

Ł

J. L. Richards & Associates Limited

02836> | Ptotal= 64.81 mm | 02837> -----02838> 02839> 02701> 6.014 C= .820 used in: INTENSITY = A / (t + B)^C Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = .33 02840> 02841> 02842> 02843> Surface Area Dep. Storage Average Slope Length Mannings n (ha) = {mm) = (%) = (m) = = 3.54 4.67 1.50 8.66 1.57 02707: 1.57 .70 210.00 .030 027083 
 TIME
 RAIN
 <th 02843> 02844> 02845> 02845> 02846> 02847> 02848> 02849> 02709> 02711> 02712> 02712> 02713> 02714> 02715> 02716> 02717> 02719> 02720> 02722> 02722> 02722> 02722> 02722> 02725> 02726> 02725> 02726> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 02727> 100.00 TIME hrs 2.67 2.83 3.00 RAIN nm/hr 5.209 4.774 4.412 144.69 101.36 7.50 20.00 6.32 (ii) 19.58 (ii) 7.50 20.00 .17 .06 Max, eff. Inten. (mm/br)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 02850> .59 1.29 34.22 58.23 .59 *TOTALS* 2.109 (iii) 1.042 45.437 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 1.86 1.04 56.66 58.23 .97 58.226 .780 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (1) IN FROEDORS SELECTED FOR FRAVIOUS LOSSES:
 (N* = 81.0 IL = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 001:0021-----02738> 02739> 02740> 02741> 02742> 
 PEAK FLOW (cms) = .459 (1)

 TIME TO PEAK (hrs) = 1.167

 RUNOFF VOLUME (mm) = 29.155

 TOTAL FAINFALL (mm) = 58.226

 RUNOFF COEFFICIENT = .501

 Imp(%) =
 84.00
 Dir. Con

 IMPERVIOUS
 PERVIOUS (1)

 Surface Area (ha) =
 1.74
 .33

 Dep. Storage (han) =
 1.57
 4.67

 Average Slope (%) =
 .52
 1.00

 Length (m) =
 204.72
 20.00

 Mannings n
 =
 .030
 02742> 02743> 02744> 02745> 02745> 02878> 02880> 02881> 02882> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02747> (i) PEAK FLOW DOE 02748> 02749> ------02750> 001:0022------02751> -----02883> 022-----02884> 161.47 62.27 7.50 12.50 6.51 (ii) 13.44 (ii) 7.50 12.50 .16 .09 02884> 02885> 02886> 02887> 02888> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= DWE (cms) .000 .000 .000 *TOTALS* .609 (iii) 1.042 57.952 64.806 .894 PEAK FLOW (cms) = TIME TO PEAK {hrs} = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .59 1.04 63.24 64.81 .98 .03 1.17 30.21 64.81 .47 SUM 09:HIP08 77.26 8.998 1.13 45.59 02758> .000 02759> 02760> 02761> 02762> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 02762> -----02763> 001:0023-----02764> -----02765> | ROUTE RESER 02766> | IN>09:(HIP 02767> | OUT<10:(HIP 02768> ----- CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. | ROUTE RESERVOIR | | IN>09: (HIP08 ) | OUT<10: (HIP-P0) | Requested routing time step = 1.0 min. 
 OUTLFOW STORAGE TABLE

 OUTFLOW
 STORAGE

 (cms)
 (ha.m.)

 (000
 (ha.m.)

 (000
 (1000

 000
 (0000

 000
 (2012

 000
 (2012

 000
 (1000

 000
 (2012

 000
 (2012

 001
 (2012

 002
 (2012

 003
 (2012

 004
 (2012

 054
 (2434

 059
 (5834

 059
 (4002

 052
 (34002

 052
 (34002

 052
 (34002
 0005-----STORAGE UTFLOW STORAGE (cms) (ha.m.) | .000 .0000E+00 .048 .5740E-01 ] .054 .2434E+00 ] .059 .5634E+00 ] .064 .1102E+01 .064 .1102E+01 .147 .1370E+01 .472 .1924E+01 ] 02768> 02769> 02770> 02771> 02772> 02773> 02773> 02774> 02775> (cms) .724 .937 1.262 1.404 1.532 1.650 (ha.m.) .2210E+01 02904 001:0005------02905 * SUB-AREA No.2 02907-029095 | CALIB STANDHYD | Area (ha)= 1.54 029095 | 02:020 DF 2.50 | Total Imp(%)= 92.00 Dir. Conn.(%)= 92.00 029105 | IMPERVIOUS PERVIOUS (1) 029125 Surface Area (ha)= 1.42 .12 029135 Dep. Storage (mn)= 1.57 4.67 029145 Average Slope (%)= .50 1.00 029155 Length (m)= 244.34 5.00 029155 Mannings n = .030 .030 02917-.2501E+01 .2798E+01 .3101E+01 .3410E+01 .3724E+01 
 102775
 .064
 .1022F01
 1.552

 027765
 .064
 .1022F01
 1.552

 027775
 .147
 .13702F01
 1.209

 027785
 .280
 .1542F01
 3.689

 027785
 .472
 .1924F01
 3.689

 027785
 .472
 .1924Er01
 .000

 027805
 .472
 .1924Er01
 .000

 027815
 .001TING RESULTS
 AREA
 QPEAK
 TPEAK

 027825
 INFLOW >09: (HIP08)
 77.26
 8.998
 1.125

 027825
 OUTFLOM<(10: (HIP-P0)</td>
 77.26
 1.004
 3.083

 027825
 PEAK FLOW REDUCTION [Qout/Qin] (\$)=
 .02785
 .004
 3.083

 027825
 PEAK FLOW REDUCTION [Qout/Qin] (\$)=
 .02785
 .02785
 .004
 .0281

 027885
 .011:0024
 .02791
 .010024
 .02791
 .02792

 027925
 *SUB-AREA NO. 6
 .02793
 .011:0024
 .02793
 2.409 .4044E+01 3.689 .4370E+01 .000 .0000E+00 TPEAK R.V. (hrs) 1.125 3.083 (mm) 45.591 45.591 161.47 78.73 7.50 7.50 7.33 (ii) 8.10 (ii) 7.50 7.50 .15 .14 02918> 02929> 02920> 02922> 02922> 02923> 02924> 02925> 02926> 02926> 02926> 02926> 02927> 02928> 02930> 02930> 02931> 02932> 02932> 02932> over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = PEAK FLOW REDUCTION [Qout/Qin]{%}= 11.160 TIME SHIFT OF PEAK FLOW (min]= 117.50 MAXIMUM STORAGE USED (ha.m.)=.2562E+01 *TOTALS* .475 (iii) 1.042 60.594 64.806 .935 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .46 1.04 63.24 64.81 .98 .02 1.08 30.21 64.81 .47 127925 *5UB-AREA No. 6 127935 - -------02794 | DESIGN NASHYD | Area (ha]= 2.70 Curve Number (CN)=76.00 127955 | 01:A3 DT= 2.50 | Ia (mma)= 4.670 # of Linear Res.(N)=3.00 127955 | 01:A3 DT= 2.50 | Ja (mma)= 4.670 # of Linear Res.(N)=3.00 127975 | 01:A3 DT= 2.50 | Ia (mma)= 4.670 # of Linear Res.(N)=3.00 127975 | 01:A3 DT= 2.50 | Ia (mma)= 4.670 # of Linear Res.(N)=3.00 127975 | 01:A3 DT= 2.50 | Ia (mma)= 4.670 # of Linear Res.(N)=3.00 127975 | 01:A3 DT= 2.50 | Ia (mma)= 4.670 # of Linear Res.(N)=3.00 127975 | 01:A3 DT= 2.50 | Ia (mma)= 1.29 12795 | 01:A3 DT= 0.79 (i) 12795 | 01:A3 DT= 0.79 (i) 12705 | 01:A3 DT= 0.70 | 01:A3 DT= 0.79 (i) 12805 | 01:A3 DT= 0.70 | 01:A3 DT= (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (I) The FROMOVAR SERVICE DEPARTMENT (CONTROL OF STATES)
 (II) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (III) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02934> (111) 02935> 02936> -----02937> 001:0006--02938> * _____ 02808> 02809> 001:0025----- 
 ID:
 ID:
 NHYD
 AREA
 OPEAK
 TPEAK
 R.V.
 DWF

 ---- (ba)
 (cms)
 (hrs)
 (mm)
 (cms)

 ID1
 10:HITP-PO
 77.26
 1.004
 3.08
 45.59
 .000

 +ID2
 01:A3
 2.70
 .079
 2.00
 21.44
 .000

 SUM
 02:Ultima
 79.96
 1.051
 3.01
 44.78
 .000
 161.47 78 7.50 7 6.95 (11) 7 7.50 7 .16 Max.eff.Inten.(mm/hr)= 78.73 7.50 7.72 (ii) 7.50 02951> 02952> over [min] Storage Coeff. [min] Unit Hyd. Tpeak (min] = Unit Hyd. peak (cms] = NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02953> 02954> 02955> 02955> 02956> 02950> 02960> 02960> 02960> 02962> 02965> 02965> 02965> 02965> 02966> 02965> 02966> 02965> 02966> ------02820> .15 .45 1.04 63.24 64.81 .98 .01 1.08 30.21 64.81 .47 *TOTALS* .454 (iii) 1.042 62.245 64.806 
 PEAK FLOW
 (cms) =

 TIME TO PEAK
 (hrs) =

 RUNOFF VOLUME
 (nun) =

 TOTAL RAINFALL
 (nun) =

 RUNOFF COEFFICIENT
 =
 (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (I) THE RECEDENCE SELECTED FOR PERVICUS LOSSES:
 (II) THE STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02834> ------02835> | CHICAGO STORM | IDF curve parameters: A=1569.580

. (Smi-AllOut)	J. L. Richards & Associates Lin
1> 2>   ADD HYD (040 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF 3> (ha) (CHS) (hrs) (mm) (cHS) 4> ID1 01:010 2.07 .639 1.04 57.95 .000	03106>         TIME SHIFT OF PEAK FLOW         (min)=         54.17           03107>         MAXIMUM STORAGE USED         (ha.m.)=.3967E+00           03108>
4>         ID1 01:010         2.07         .609         1.04         57.95         .000           5>         +ID2 02:020         1.54         .475         1.04         60.59         .000           6>	03109>
7> SUM 04:040 3.61 1.084 1.04 59.08 .000	03112> * Remaining Hawthorne Industrial Park * 03123> ************************************
9> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 0>	03114> * 03115> * SUB-AREA No.1
1> 2> 001:0008	03116> 03117> ( CALIE STANDHYD   Area (ba)= 19.90
3> 4>   ADD HYD (050 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF	03118>   01:HIP01 DT= 2.50   Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 03119>
5> (ha) (cms) (hrs) (mm) (cms) 6> ID1 03:030 1.40 .454 1.04 62.25 .000 7> +ID2 04:040 3.61 1.084 1.04 59.08 .000	03120> IMPERVIOUS PERVIOUS (i) 03121> Surface Area (ha)= 14.13 5.77
	03122> Dep. Storage (mm)= 1.57 4.67 03123> Average Slope (%)= .60 1.50
9> SUM 05:050 5.01 1.538 1.04 59.96 .000 0> 1> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	03124> Length (m)= 580.00 100.00 03125> Mannings n = .030 .250
2> 3>	03126> 03127> Max.eff.Inten.(mm/hr)= 138.95 102.13
> 001:0009	03128>         over (min)         12.50         25.00           03129>         Storage Coeff. (min)=         12.38 (ii)         25.60 (ii)           03130>         Unit Hyd. Tpeak (min)=         12.50         25.00
5> * SUB-AREA No.4	03130>         Unit Hyd. Tpeak (min)=         12.50         25.00           03131>         Unit Hyd. peak (cms)=         .09         .04           0312>         *TOTALS*
>   CALIE STANDHYD   Area (ha)= .89 >   06:060 DT= 2.50   Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00	03133> PEAK FLOW (cms) = 2.46 .95 3.001 (iii)
I> IMPERVIOUS PERVIOUS (i)	03135> RUNOFF VOLUME (num)= 63.24 39.90 51.565 03136> TOTAL RAINFALL (num)= 64.81 64.81 64.806
2> Surface Area (ha)= .86 .03 3> Dep. Storage (mm)= 1.57 4.67	03137> RUNOFF COEFFICIENT = .96 .62 .796 03138>
1> Average Slope (%)= 93 .70 5> Length (m)= 164.82 40.00 5> Mannings n = .030 .250	03139>(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:03140>CN* = 81.0Ia = Dep. Storage (Above)
5> Mannings n = .030 .250 7> 5> Max.eff.Inten.(mm/hr)= 161.47 53.28	03141> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 03142> THAN THE STORAGE COEFFICIENT.
<ul> <li>National (main) 101.47 53.28</li> <li>over (main) 5.00 17.50</li> <li>Storage Coeff. (min) = 4.80 (ii) 17.24 (ii)</li> </ul>	03143> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03144> 03145>
1.5 Unit Hyd. Tpeak (min)= 5.00 17.50 25 Unit Hyd. peak (cms)= .23 .07	03145>
3> *TOTALS* 3> PEAK FLOW (cms)= .33 .00 .335 (iii)	O3148>         ADD HYD (NIP02)         ID: NHYD         AREA         QPEAK         TPEAK         R.V.         DWF           03149>         (ha)         (cms)         (ms)         (cms)         (cms)           03150>         ID1 10: POND         8,56         (.23,31,1.94, 60,.91         .000
5> TIME TO PEAK (hrs) = 1.00 1.25 1.000 5> RUNOFF VOLUME (mm) = 63.24 30.21 62.245	O3150>         ID1 10:POND         8.56         .233         1.94         60.91         .000           03151>         +ID2 01:HIP01         19.90         3.001         1.17         51.57         .000
7> TOTAL RAINFALL (mm) = 64.81 64.81 64.806 3> RUNOFF COEFFICIENT = .98 .47 .960	03152> 03153> SUM 02:HIP02 28.46 3.092 1.17 54.37 .000
>> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	03154> 03155> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
<ul> <li>CN* = 81.0 IA = Dep. Storage (Above)</li> <li>(ii) THE STEP (DT) SHOULD BE SMALLER OR EQUAL</li> </ul>	03156> 03157>
THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	03158> 001:0016
>	03160> * SUB-AREA No.2 03161>
> * > * SUB-AREA No.5	03162>   CALIE STANDHYD   Area (ha)= 17.00 03163>   03:HIP03 DT=2.50   Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 03164>
>	03165> IMPERVIOUS PERVIOUS (i)
>   07:070 DT= 2.50   Total Imp(%) = 97.00 Dir. Conn.(%) = 97.00	03167> Dep. Storage (mm) = 1.57 4.67
<pre>IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 2.58 .08</pre>	03168> Average Slope (%)∞ .65 1.50 03169> Length (m)= 450.00 100.00 03170> Mannings n = .030 .250
Dep. Storage (mm) = 1.57 4.67 > Average Slope (%) = .61 1.50	03171> 03172> Max.eff.Inten.(mm/hr) = 161.47 109.61
Length         (m) =         207.25         20.00           >>         Mannings n         =         .030         .250	03173> over (min) 10.00 22.50 03174> Storage Coeff. (min)⇒ 9.77 (ii) 22.63 (ii)
>> Max.eff.Inten.(mm/hr) = 161.47 62.27	03175> Unit Hyd. Tpeak (min)= 10.00 22.50 03176> Unit Hyd. peak (cms)= .11 .05
> over (min) 7.50 12.50 > Storage Coeff. (min)= 6.26 (ii) 12.39 (ii) > Unit Hyd. Tpeak (min)= 7.50 12.50	03177> *TOTALS* 03178> PEAK FLOW (cms)= 2.38 .88 2.819 (iii)
> Unit Hyd. peak (cms)= .17 .09 > toTALS*	03179>         TIME TO PEAK         (hrs)=         1.08         1.33         1.125           03180>         RUNOFF VOLUME         (mm)=         63.24         39.90         51.556           03181>         TOTAL RAINFALL         (mm)=         64.81         64.81         64.86
PEAK FLOW         (cms)=         .88         .01         .886         (iii)           >         TIME TO PEAK         (hrs)=         1.04         1.17         1.042	03181> TOTAL RAINFALL (mm)= 64.81 64.81 64.806 03182> RUNOFF COEFFICIENT = .98 .62 .796 03183>
> RUNOFF VOLUME (mm) = 63.24 30.21 62.245 > TOTAL RAINFALL (mm) = 64.81 64.81 64.806	03164> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 03165> CN* = 81.0 Ia = Dep. Storage (Above)
> RUNOFF COEFFICIENT = .98 .47 .960	03186> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 03187> THAN THE STORAGE COEFFICIENT.
<pre>&gt; (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: &gt; CN* = 81.0 Ia = Dep. Storage (Above)</pre>	03188> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03189>
<ul> <li>&gt; (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL</li> <li>&gt; THAN THE STORAGE COEFFICIENT.</li> <li>&gt; (ii) PEAK FLOW DOES NOT INCLUDE RASSELOW TP NAV</li> </ul>	03190>
> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IP ANY. >	03192> * 03193> * SUB-AREA No.3 03194>
> 001:0011	03195>   CALIB STANDHYD   Area (ha)= 15.60
>   ADD HYD (080 )   ID: NHYD AREA QPEAK TPEAK R.V. DWF > (ha) (cms) (hrs) (mm) (cms)	03196>   04:HIP04 DT= 2.50   Total Imp(%) = 71.00 Dir. Conn.(%) = 50.00 03197>
> ID1 06:060 .89 .335 1.00 62.25 .000 > +ID2 07:070 2.66 .886 1.04 62.25 .000	03198>         IMPERVIOUS         PERVIOUS (i)           03199>         Surface Area (ha)=         11.08         4.52           03200>         Dep. Storage (mm)=         1.57         4.67
> SUM 08:080 3.55 1.197 1.04 62.25 .000	03201> Average Slope (%) = .50 1.50 03202> Length (m) = 600.00 100.00
> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	03204>
> >	03205> Max.eff.Inten.(mm/hr)= 138.95 96.02 03206> over (min) 12.50 27.50
> 001:0012	03208> Unit Hyd. Tpeak (min)= 12.50 27.50
>   ADD HYD (090)   ID: NHYD AREA QPEAK TPEAK R.V. DWF >	03209> Unit Hyd. peak (cms)= .09 .04
> ID1 05:050 5.01 1.538 1.04 59.96 .000 > +ID2 08:080 3.55 1.197 1.04 62.25 .000 >	0321D         PEAK FLOW         (cms)=         1.86         .72         2.237         (iii)           03212>         TIME TO PEAK         (hrs)=         1.31         1.42         1.167           03213         FUNDER VOLUME         Cold         0.02         1.167
> SUM 09:090 8.56 2.735 1.04 60.91 .000	03212>         PEAK FLOW         (cms) =         1.86         .72         2.237         (iii)           03212>         TIME TO PEAK (hrs) =         1.13         1.42         1.167           03213>         RUNOFF VOLUME (mm) =         63.24         39.90         51.566           03214>         TOTAL RAINFALL (mm) =         64.81         64.80         64.80           03215>         RUNOFF COEFFICIENT =         .98         .62         .796
> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	U3215> RUNOFF COEFFICIENT = .98 .62 .796 U3216> U3217> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
>	03218> (1) CN * ROCEDUCE SELECTED FOR PERVIOUS LOSSES: 03218> CN* = 81.0 Ia = Dep. Storage (Above) 03219> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
>	03220> THAN THE STORAGE COFFICIENT. 03221> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
	03222>
>   IN>09: (090 )	
>   INDO9:(090 )   ==================================	03224> 001:0018
>   IND09:(090 )   ==================================	032255
>   IND09:(090 )   ==================================	03225>         ADD HYD (HIP05)         ID: NHYD         AREA         QPEAK         TPEAK         R.V.         DWF           03225>
>   IN>09: (090 )   ==================================	03225>         ADD HYD (HIP05)   ID: NHYD         AREA         OPEAK         TPEAK         R.V.         DWF           03225>
>   IND09:(090 )	03225>         ADD HYD (HIP05 )         ID: NHYD         AREA         OPEAK         TPEAK         R.V.         DMF           03225>
>   IND09: (090 )   	03225>
>   IND09:(090 )   ==================================	032255   ADD HYD (HTPO5 )   ID: NHYD AREA OPEAK TPEAK R.V. DWF 032275   ADD HYD (HTPO5 )   ID: NHYD AREA OPEAK TPEAK R.V. DWF 032285   IDI 03:HIP03 17.00 2.819 1.13 51.57 000 032295 + 1DI 03:HIP04 15.60 2.237 1.17 51.57 000 032305

J. L. Richards & Associates Limited

+ID2 02:HIP02 28.46 3.092 1.17 54.37 .000 SUM 06:HIP06 61.06 8.054 1.13 52.87 .000 03241> 03242> 03243> 03244> 03245> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 032462 03246> 03247> 03247> 03249> * 03249> * SUB-AREA NO.4 03383> 001:0002-----03384> -----03385> | CHICAGO STORM | 03385> | Ptotal= 71.66 mm | 03387> -----03388> 03389> 03389> IDF curve parameters: A=1735.688 B= 6.014 C= .820 used in: INTENSITY = A / (t + B)^C 
 SUB-AREA NO.4

 | CALIB STANDHYD | Area (ha)= 12.20

 | O7.HIFO7 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00

 IMPERVIOUS PERVIOUS (i)

 Surface Area (ha)= 8.66 3.54

 Dep. Storage (mm)= 1.57 4.67

 Average Slope (%)= .70 1.50

 Length (m)= 210.00 100.00

 Mannings n = .030 .250
 03251> 03251> 03252> 03253> 03254> 03255> 03256> 03256> 03258> 03258> 03258> 03258> 03258> 03258> 03258> 03259> 03261> 03261> Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = .33 03389> 03390> 03391> 03392> 03393> 03394> 03395> 03396> 03396> 03397> 03398> 03399> 
 TIME
 RAIN
 TIME
 RAIN
 TIME
 RAIN
 I

 hrs
 mm/hr
 hrs
 hrs hrs 2.67 2.83 3.00 mm/hr 5.760 5.280 4.879 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 
 161.47
 126.32

 5.00
 17.50

 6.05
 (ii)

 18.19
 (ii)

 5.00
 17.50

 .20
 .06
 03262> 03263> 03265> 03265> 03266> 03267> 03268> 03269> 03270> 03271> 03272> 03272> 03400 
 031005

 034025

 034025

 034025

 034025

 034025

 034025

 034025

 034025

 034035

 034045

 03405

 03405

 03405

 03405

 03405

 03405

 03405

 034065

 03407

 03408

 03409

 03409

 034010

 034010

 03402

 103403

 034045

 03405

 1057

 03408

 1057

 105412

 105412

 105412

 105412

 105412

 105412

 105412

 105412

 105412

 105412

 105412

 105412

 105412

 105412

 105412

 105412
 </tr 03401> *TOTALS* 2.470 (iiii) 1.042 51.566 64.806 .796 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (nmm)= TOTAL RAINFALL (nmm)= RUNOFF COEFFICIENT = 2.19 1.00 63.24 64.81 .98 .73 1.25 1.25 39.90 64.81 .62 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL TAM THE STOREG COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 03274> 03274> 03275> 03276> 03277> 03278> 03279> 03280> -----03281> 001:0021-----03282> * 03282> *SUB-AREA No.5 03284> ----------03285> | DESIGN NASHYD | Area (ha)= 4.00 Curve Number (CN)=85.00 032865 | DESIGN NASHYD | Area (ha)= 4.670 # of Linear Res.(N)= 3.00 03287> ----- U.H. Tp(hrs)= .170 03287> 03288> 03289> 03290> Unit Hyd Qpeak (cms)= .899 
 PEAK FLOW
 (cms)=
 .551 (i)

 TIME TO PEAK
 (hrs)=
 1.125

 RUNOFF VOLUME
 (mm)=
 34.455

 TOTAL RAINFALL
 (mm)=
 54.806

 RUNOFF COEFFICIENT =
 .532
 03291> 03292> 03293> 03294> 03295> 03434> 03435> 03435> 03436> 03437> 03438> 03438> Max.eff.Inten.(mm/hr)= 178.56 74.05 7.50 12.50 6.26 (ii) 12.72 (ii) 7.50 12.50 .17 .09 over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= THUR (cms) .000 .000 .000 03440> 03441> 03442> 03442> 03443> 03444> *TOTALS* .685 (iii) 1.042 64.553 71.665 .901 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .66 1.04 70.09 71.66 .98 .04 1.17 35.46 71.66 .49 SUM 09:HIP08 77.26 10.570 1.13 51.71 03308> 03309> 03310> 03311> 03312> .000 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03313> 001:0023------03314> -----03314> ------03315> | ROUTE RESERVOIR | 03316> | IN>09:(HIP08) | 03317> | OUT<10:(HIP-P0) | 03318> ------Requested routing time step = 1.0 min. 
 Requested formal time stop
 Image formal time stop
 Image formal time stop

 OUTFLOW
 STORAGE
 OUTFLOW
 STORAGE

 (cms)
 (ha.m.)
 (cms)
 (ha.m.)

 .000
 0000E+00
 .724
 .2210E+01

 .048
 .5740E=01
 .937
 .2501E+01

 .054
 .2434E+00
 1
 .262
 .2798E+01

 .055
 .5834E+00
 1
 .402
 .3410E+01

 .062
 .4400E+00
 1
 .522
 .3410E+01

 .064
 .1102E+01
 1
 .650
 .3724E+01

 .147
 .1370E+01
 1
 .650
 .324E+01
 03317> 03318> 03319> 03320> 03321> 03322> 03322> 03323> 
 OTIFION
 STORAGE

 (mms)
 (ha.m.)

 (ms)
 (ha.m.)
 03324> 03325> 03325> 03326> 03327> 03328> 03329> 03330> 03331> 03332> 03333> 03334> 03335> 1.650 .3724E+01 2.409 .4044E+01 3.689 .4370E+01 .000 .0000E+00 AREA QPEAK (ba) (cms) 77.26 10.570 77.26 1.280 TPEAK (hrs) 1.125 2.917 R.V. (mma) 51.714 51.714 ROUTING RESULTS INFLOW >09: (HIP08 ) OUTFLOW<10: (HIP-PO) 03466> 03467> 03468> 03469> 03470> 03471> 03472> 176.56 53.23 7.50 7.50 7.04 (ii) 7.76 (ii) 7.50 7.50 .16 .15 over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= PEAK FLOW REDUCTION [Qout/Qin] (%)= 12.106 TIME SHIFT OF PEAK FLOW (min)= 107.50 MAXIMUM STORAGE USED (ha.m.)=.2836E+01 03472> 03473> 03474> 03475> 03475> 03476> 03477> 03477> *TOTALS* .534 (iii) 1.042 67.324 71.665 .939 PEAK FLOW {cms} = TIME TO PEAK {hrs} = RUNOFF VOLUME {mm} = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .51 1.04 70.09 71.66 .98 .02 1.08 35.46 71.66 .49 03340> 00110024------03341> * 03342> *SUB-AREA No. 6 03343> ------03344> | DESIGN NASHYD | Area (ha]= 2.70 Curve Number (CN)=76.00 03345> | 01:A3 DT= 2.50 | Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 03345> UlitA3 DT= 2.50 | Ja (mm)= 4.670 # of Linear Res.(N)= 3.00 03345> 0.123 DT= 2.50 | Ja (mm)= 4.670 # of Linear Res.(N)= 3.00 03345> 0.123 DT= 2.50 | Ja (mm)= 4.670 # of Linear Res.(N)= 3.00 03345> 0.123 DT= 2.50 | Ja (mm)= 4.670 # of Linear Res.(N)= 3.00 03345> 0.124 DT= 2.50 | Ja (mm)= 4.670 # of Linear Res.(N)= 3.00 0345> 0.124 DT= 2.50 | Ja (mm)= 4.670 # of Linear Res.(N)= 3.00 0345> 0.124 DT= 2.50 | Ja (mm)= 4.670 # of Linear Res.(N)= 3.00 0345> 0.124 DT= 2.50 | Ja (mm)= 4.670 # of Linear Res.(N)= 3.00 0346> 0.124 DT= 2.50 | Ja (mm)= 4.670 # of Linear Res.(N)= 3.00 0346> 0.124 DT= 2.50 | Ja (mm)= 4.670 # of Linear Res.(N)= 3.00 0346> 0.124 DT= 2.50 | Ja (mm)= 4.670 # of Linear Res.(N)= 3.00 0346> 0.124 DT= 2.50 | Ja (mm)= 4.670 # of Linear Res.(N)= 3.00 0346> 0.124 DT= 2.50 | Ja (mm)= 4.670 # of Linear Res.(N)= 3.00 0346> 0.124 DT= 2.50 | Ja (mm)= 4.670 # of Linear Res.(N)= 3.00 0347> 0.124 DT= 2.50 | Ja (mm)= 4.670 # of Linear Res.(N)= 3.00 0347> 0.026 (Ja) 03479> 03480> 03481> 03482> 03483> (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (1) IN FROMOVAS SUBJECT DE TWA FIRMULOS DESDE:
 (2) CIN = 81.0 II.a = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STOREG COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03349> 03350> 03351> 03352> 03353> 03354> 03355> 03355> 03356> 03357> 
 PEAK FLOW
 (cms) =
 .096 (i)

 TIME TO PEAK
 (hrs) =
 1.958

 RUNOFF VOLUME
 (nm) =
 25.767

 TOTAL RAINFALL
 (mm) =
 64.806

 RUNOFF COEFFICIENT
 =
 398
 03464> 03485> 03465 -----03465 -----034885 * 034895 * SUB-AREA No.3 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03358> 03359> 001:0025----- 
 heat
 ID: NHYD
 AREA
 OPEAK
 TPEAK
 R.V.

 101
 10:HIP-PO
 77.26
 1.280
 2.92
 51.71

 +ID2
 01:A3
 2.70
 .096
 1.96
 25.77
 (cms) .000 .000 +ID2 01:A3 2.70 .096 1.96 25.77 SUM 02:Ultima 79.96 1.348 2.63 50.84 .000 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03371> 001:0026------03372> ********* PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= .50 1.04 70.09 71.66 03509> 03510> 35.46 71.66 71.665

J. L. Richards & Associates Limited

RUNOFF COEFFICIENT = .337 .4731E+00 | .465 .5491E+00 | .531 .5871E+00 | .98 .49 .964 03646> 1.880 .1004E+01 2.577 .1092E+01 .000 .0000E+00 03648> 03648> 03648> 03649> 03650> 03651> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN⁺ = 81.0 Ia = Dep. Storage (Above) (ii) THE STEP (CP) SHOULD BE SMALLER OR EQUAL TRAN THE STORAGE COEFFICIENT. (iii) PERK FLOW DOES NOT INCLOUE BASEFLOW IF ANY. 03512> 03514> 03515> TPEAK R.V. 03516> 03517> 03518> (hrs) 1.042 1.861 (mm) 67.655 67.653 03652> 03653> 03654> 03655> 03519> PEAK FLOW REDUCTION [Qout/Qin](%)= 9.214 TIME SHIFT OF PEAK FLOW (min)= 49.17 MAXIMUM STORAGE USED (ha.m.)=.4333E+00 03656> 03657> 03658; 03525> SUM 04:040 3.61 1.220 1.04 65.74 .000 03527> 03528> 03529> * Remaining Hawthorne Industrial Park * 3663> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03530> 03670> 03671> 03672> 03673> Surface Area(ha) =Dep. Storage(mm) =Average Slope(%) =Length(m) =Mannings n= 14.13 1.57 .60 580.00 5.77 4.67 1.50 03538> 03538> 03539> 03540> 03541> SUM 05:050 5.01 1.729 1.04 66.66 . 000 03674> 03675> 03675> 03676> 03677> 03678> 03679> .030 .250 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 153.66 117.89 12.50 25.00 11.89 (ii) 24.37 (ii) 12.50 25.00 .09 .05 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 03680> * SUB-AREA No.4 03681> 03682> 03683> 03684> 035402 *TOTALS* 3.419 (iii) 1.167 58.015 71.665 .810 | CALIE STANDHYD | Area {ha}= .89 | 06:060 DT= 2.50 | Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nmn) = TOTAL RAINFALL (nmn) = RUNOFF COEFFICIENT = 03548> 2.77 1.13 03548> 03549> 03550> 03551> 03552> 03553> 03555> 03555> 03556> 03556> 03558> 1.13 70.09 71.66 .98 1.38 45.94 71.66 .64 Surface Area (ha) = Dep. Storage (mm) = Average Slope (%) = Length (m) = Mannings n = 03685> IMPERVIOUS PERVIOUS (i) 03686> .86 1.57 .93 164.82 .030 03688> 03688> 03688> 03689> 03690> .03 4.67 .70 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 81.0 I a = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEPTICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 40.00 03691> 
 178.56
 67.61

 5.00
 15.00

 4.62 (ii)
 15.92 (ii)

 5.00
 15.00

 .24
 .07

 .37
 .00

 1.00
 1.21

 70.09
 35.46

 71.66
 71.66

 .98
 .49
 03692> 03693> 03694> 03695> -Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 67.61 15.00 15.92 (ii) 15.00 03559> 03560> 03561> 03562> 03563> 03564> 03696> 001:0015-----*TOTALS* .374 (1111) 1.000 69.056 71.665 .964 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 03565> 03565> 03566> 03567> 03568> .000 03703> 03704> 03705> 03706> 03707> .000 035692 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN⁺ = 81.0 IA = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SHALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03570; 03571> 03572> 03573> 03574> 03579> 03580> 03581> 03582> 2ERV10 12.07 1.57 .65 450.00 .030 CALLE STANDHYD | Area (ha)= 2.66 | 07:070 DT= 2.50 | Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 03583> 03584> 03585> 03586> 
 Improvement
 Improvement
 Improvement

 IMPERVIOUS
 PERVIOUS
 (i)

 Surface Area
 (ha) =
 2.58
 .09

 Dep. Storage
 (mm) =
 1.57
 4.67

 Average 50pe
 (b) =
 207.25
 20.00

 Mannings n
 =
 .030
 .250
 03720> 03721> 03722> 03723> 03588> 03588> 03588> 03589> 03590> 03591> 03724> 178.56 74 5.00 12 6.01 (ii) 11 5.00 12 .20 03725> 03725> 03726> 03727> 03728> 03729> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 74.05 12.50 11.73 (ii) 12.50 .09 03592> 03593> *TOTALS* 3.203 (iii) 1.125 58.015 71.665 PEAK FLOW (CRS) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 2.68 1.08 70.09 71.66 .98 1.05 1.33 45.94 71.66 03593> 03594> 03595> 03596> 03597> 03598> 03599> 03600> 03601> 03602> 03729> 03730> 03731> 03732> 03733> 03734> 03735> 1.03 1.00 70.09 71.66 .98 *TOTALS* 1.034 (iii) 1.000 69.056 71.665 .964 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .01 .64 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN *= 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 35.46 71.66 03736> 03737> 03738> 03739> .49 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES; CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STRP (07) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT;
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03603> 03603> 03604> 03605> 03606> 03607> 0017-----03740> 037405 037415 037425 * 037425 * 037425 * 037425 * 03745 | CALLE STANDHYD | Area (ha)= 15.60 037455 | O4:HLP04 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 037475 | O4:HLP04 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 037475 | D4:HLP04 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 037475 | D4:HLP04 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 03755 | D4:HLP04 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 03755 | Length (m)= 1.57 | 4.52 03755 | Length (m)= 600.00 100.00 03753 | Mannings n = .030 .250 03608> 03615> 03616> 03617> 03618> 03619> 03620> 03621> SUM 08:080 3.55 1.408 1.00 69.06 .000 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03753> 03754> 03755> 03755> 03756> 03758> 03758> 03760> 03761> 03762> 03763> 03764> 
 153.66
 117.89

 12.50
 25.00

 12.82
 (ii)

 12.50
 25.00

 .09
 .04
 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= _____ 
 03621>
 03622> 001:0012

 03622> 001:0012
 001:0012

 03623> 01:0012
 01:0012

 03624> | ADD HYD (090 ) | ID: NHYD AREA QPEAK TPEAK R.V. DWF

 03625> (ha) (cms) (hrs) (mm) (cms)

 03625> IDI 05:050 5.01 1.729 1.04 66.66 .000

 03627> + 1D2 08:080 3.55 1.408 1.00 69.05 .000

 03628> (INF 9):090 8.56 3.057 1.04 67.66 .000
 *TOTALS* PEAK FLOW {cms} = TIME TO PEAK {hrs} = RUNOFF VOLUME {mm} = TOTAL RAINFALL {mm} = RUNOFF COEFFICIENT = 
 2.10
 .87

 1.13
 1.38

 70.09
 45.94

 71.66
 71.66

 .98
 .64
 -10TALS* 2.612 (iii) 1.167 58.015 71.665 .810 SUM 09:090 8.56 3.067 1.04 67.66 .000 03629> 03630> 03631> 03632> 03764> 03765> 03765> 03766> 03767> 03768> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (i) TIME STEP (DT) SHOULD BE SNALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (ii) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 03168>
 (1) CH* ** 51.04 SELICIP TON FEW DOLS LOSSES:

 03168>
 (1) THE TEP OF IN HOULD ES SOLATER OR EQUAL

 03170>
 (11) THE TEP OF TORAGE OCFFTICTENT:

 03171>
 (11) THE TEP OF TORAGE OFFTICTENT:

 03172>
 (11) THE TEP OF TORAGE OFFTICTENT:

 03171>
 (11) THE TEP OF TORAGE OFFTICTENT:

 03171>
 (11) THE TEP OF TORAGE OFFTICTENT:

 03171>
 (11) THE TEP OF TORAGE OFFTICTENT:

 03172>
 (11) THE TEP OF TORAGE OFFTICTENT:

 03174>
 (11) THE TEP OF TORAGE OFFTICTENT:

 03175>
 (11) THE TEP OF TORAGE OFFTICTENT:

 03176>
 (11) THE TEP OF TORAGE OFFTICTENT:

 03177>
 (11) THE TEP OF THE TE 
 OUTLEOW STORAGE TABLE

 OUTFLOW
 STORAGE
 OUTFLOW
 STORAGE

 (cms)
 (ha.m.)
 (ms)
 (ha.m.)

 000
 .00000E+00
 593
 .6251E+00

 .001
 .6560E+01
 .584
 .6531E+00

 .017
 .1311E+00
 .797
 .7391E+00

 .033
 .2831E+00
 .950
 .8274E+00

 .233
 .3971E+00
 1
 .304
 .9157E+00
 03640> 03641> 03642> 03643> 03644> .000 03645>

03781>

03791> 03792> 03793> 03794> 03795> 03795> 03796> 03797>

03810> 03811> 03812> 03813> 03814> 03815>

03815> 03816> 03817> 03818> 03819> 03820> 03822> 03822> 03822> 03823> 03824> 03825>

03826>

03839> 03840> 03841> 03842>

03843> 03844> 03844> 03845> 03846> 03846>

03848>

03859>

03872> 03873> 03874> 03875> 03875> 03876> 03878> 03879> 03880> 03881>

03682> 03883> 03884> 03885> 03885> 03886> 03887> 03888>

03900> 03901> 03902> 03903> 03904> 03905>

03906>

03914> 03915>

03907> 03908> ------03909> 001:0025----03910> -----

## SUM 05:HIP05 32.60 5.767 1.13 58.02 .000 03917> 03918> 03919> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. _____ 03920> 03785> 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 0110019 <th 03922> 03923> 03924> 03925> 03926> 03927> 03928> 03929> 03930> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03798> 001:0020---- Average Stype ... Length in = 210.00 100.00 Mannings n = .030 .250 Max.eff.Inten.(mm/hr) 176.56 146.17 over (min) 5.00 17.50 Storage Coeff.(min) = 5.00 17.50 Unit Hyd. Tpeak (min) = 5.00 17.50 Unit Hyd. peak (cms) = .20 .07 PEAK FLOW (cms) = .26 .87 TIME TO PEAK (hrs) = 1.00 1.25 RUNOFF VOLME (mm) = 71.66 71.66 RUNOFF COEPFICIENT = .98 .64 *TOTALS* 2.793 (iii) 1.042 58.015 71.665 .810 CN PROCEDURE SELECTED FOR PERVIOUS LOSSES; CN* = 81.0 Ia = Dep. Storage (Above) ITHE STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. ISAN FLOW DOES NOT INCLUDE RASEFLOW IF ANY. Unit Hyd Qpeak (cms)≏ .899 PEAK FLOW (cms) = .649 (i) TIME TO PEAK (hrs) = 1.125 RUNOFF VOLUME (mm) = 40.139 TOTAL RAINFALL (mm) = 71.665 RUNOFF COEFFICIENT 560 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03860> NOTE: PEAH 03861> 03862> ------03863> 001:0023-----03864> ------NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 3-----

TPEAK

R.V. (mm) 58.156 58.156

SUM 02:Ultima 79.96 1.515 2.57 57.22 000

J. L. Richards & Associates Limited

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03921> 001:0026-----03922> FINISH 03923> -----****

WARNINGS / ERRORS / NOTES Simulation ended on 2009-05-15 at 08:45:24

J. L. Richards & Associates Limited

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 PEAK FLOW
 (cms)=
 .119

 PEAK FLOW
 (cms)=
 .111

 TIME TO PEAK
 (hrs)=
 1.958

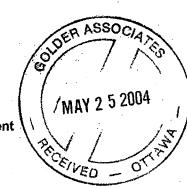
 RUNOFF VOLUME
 (mm)=
 30.490

 TOTAL RAINFALL
 (mm)=
 71.665

 RUNOFF COEPFICIENT
 =
 .425

PEAK FLOW REDUCTION [Qout/Qin](%)= 11.826 TIME SHIFT OF PEAK FLOW (min)= 105.83 MAXIMUM STORAGE USED (ha.m.)=.3168E+01

.114 (i) 1.958


03835>------03845> | DESIGN NASHYD | Area (ha)= 2.70 Curve Number (CN)=76.00 03845> | 01.A3 D7= 2.50 | Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 03885> ------ U.H. Tp(hrs)= .800 03887> Unit Hyd Opeak (cms)= .129 03889> Unit Hyd Opeak (cms)= .129

# APPENDIX'I'

## MINISTRY OF THE ENVIRONMENT CERTIFICATE OF APPROVAL EXISTING SETTLING PONDS



Ministry Ministère of the de Environment l'Environnement



CERTIFICATE OF APPROVAL INDUSTRIAL SEWAGE WORKS NUMBER 6924-5YWQ3U

R. W. Tomlinson Limited 5597 Power Road, R.R. No. 6 Gloucester, Ontario K1G 3N4

Site Location: Tomlinson Property, east side of Hawthorne Road Lot 26 & 27, Concession VI Ottawa City

You have applied in accordance with Section 53 of the Ontario Water Resources Act for approval of:

the establishment of sewage works for the collection, transmission, treatment and disposal of excess wash plant wash water, consisting of the following:

410 millimeter pipeline extending from the wash plant, located on the Rideau Road Quarry #1 site, to the settling ponds;

three (3) settling ponds, in series, Cell #1 having an effective volume of 3,275 cubic metres (and an operating freeboard of 0.6 metres), Cell #2 having an effective volume of 2,347 cubic metres (and an operating freeboard of 0.6 metres) and Cell #3 having an effective volume of 1,154 cubic metres (and an operating freeboard of 0.6 metres), including temporary floating pumping station in Cell #1, floating recycle pumping station in Cell #2, baffle in Cell #2 and mixing manhole between Cell #2 and Cell #3 (if required), with an overflow discharge from Cell #3 to the roadside ditch along Hawthorne Road;

all other controls, electrical equipment, instrumentation, piping, pumps, valves and appurtenances essential for the proper operation of the aforementioned sewage works;

all in accordance with the following submitted supporting documents:

1. <u>Application for Approval of Industrial Sewage Works</u> submitted by Ronald Tomlinson of R. W. Tomlinson Limited dated March 8, 2004;

 Report on Application for Industrial Sewage Works Approval under Section 53 of the Ontario Water Resources Act, R.W. Tomlinson Limited, Aggregate Wash Water Management Associated with Rideau Road Quarry No. 1, Geographic City of Gloucester, City of Ottawa, Ontario prepared by Golder Associates, dated March 2004; and 3. Letter and attachments dated May 11, 2004 from Nural Kuyucak and K. Marentette of Golder Associates to Randy Chin of the Ministry of the Environment.

For the purpose of this Certificate of Approval and the terms and conditions specified below, the following definitions apply:

"Certificate" means this entire certificate of approval document, issued in accordance with Section 53 of the *Ontario Water Resources Act*, and includes any schedules;

"Director" means any Ministry employee appointed by the Minister pursuant to section 5 of the Ontario Water Resources Act;

"District Manager" means the District Manager of the Ottawa District Office of the Ministry;

"Ministry" means the Ontario Ministry of the Environment;

"Owner" means R. W. Tomlinson Limited and includes its successors and assignees; and

"works" means the sewage works described in the Owner's application, this certificate and in the supporting documentation referred to herein, to the extent approved by this certificate.

You are hereby notified that this approval is issued to you subject to the terms and conditions outlined below:

#### TERMS AND CONDITIONS

### 1. <u>GENERAL CONDITION</u>

(1) Except as otherwise provided by these Conditions, the Owner shall design, build, install, operate and maintain the works in accordance with the description given in this Certificate, the application for approval of the works and the submitted supporting documents and plans and specifications as listed in this Certificate.

(2) Where there is a conflict between a provision of any submitted document referred to in this Certificate and the Conditions of this Certificate, the Conditions in this Certificate shall take precedence, and where there is a conflict between the listed submitted documents, the document bearing the most recent date shall prevail.

#### 2. CHANGE OF OWNER

(1) The Owner shall notify the District Manager and the Director, in writing, of any of the following changes within 30 days of the change occurring:

(a) change of Owner or operating authority, or both;

(b) change of address of Owner or operating authority or address of new owner or operating

authority;

(c) change of partners where the Owner or operating authority is or at any time becomes a partnership, and a copy of the most recent declaration filed under the *Partnerships Registration Act*; and

(d) change of name of the corporation where the Owner or operator is or at any time becomes a corporation, and a copy of the most current "Initial Notice or Notice of Change" (Form 1, 2 or 3 of O. Reg. 189, R.R.O. 1980, as amended from time to time), filed under the *Corporations Informations Act* shall be included in the notification to the District Manager.

(2) In the event of any change in ownership of the works, the Owner shall notify in writing the succeeding owner of the existence of this certificate, and a copy of such notice shall be forwarded to the District Manager.

(3) The Owner shall ensure that all communications made pursuant to this condition will refer to this certificate's number.

## **OPERATIONS MANUAL**

(1) The Owner shall prepare an operations manual prior to the commencement of operation of the sewage works, that includes, but not necessarily limited to, the following information:

(a) operating procedures for routine operation of the works;

(b) inspection programs, including frequency of inspection, for the works and the methods or tests employed to detect when maintenance is necessary;

(c) repair and maintenance programs, including the frequency of repair and maintenance for the works;

(d) contingency plans and procedures for dealing with potential spill, bypasses and any other abnormal situations and for notifying the District Manager; and

(e) complaint procedures for receiving and responding to public complaints.

(2) The Owner shall maintain the operations manual up to date through revisions undertaken from time to time and retain a copy at the location of the sewage works. Upon request, the Owner shall make the manual available for inspection and copying by Ministry personnel.

## CLOSED LOOP OPERATION

4.

(1) The Owner shall ensure that the works are normally operated as a closed loop system with treated water being recycled back to the wash plant.

(2) In the event that excess accumulation of water occurs and a discharge is necessary, the Owner shall undertake the monitoring outlined in Condition 6 and shall adhere to the effluent limits in Condition 5.

### **EFFLUENT LIMITS**

5.

(1) The Owner shall design, construct and operate the works such that the concentration of Total Suspended Solids does not exceed 25 milligrams per litre in the effluent from the works.

(2) For the purposes of determining compliance with and enforcing subsection (1), non-compliance with respect to the Total Suspended Solids concentration limit is deemed to have occurred when any single sample (along with a follow-up confirmation sample collected within 7 days of the receipt of the original sample result that indicated that an exceedance had occurred) analyzed for Total Suspended Solids is greater than the corresponding maximum concentration set out in subsection (1).

## EFFLUENT MONITORING AND RECORDING

The Owner shall, upon commencement of operation of the sewage works, carry out the following monitoring program:

(1) All samples and measurements taken for the purposes of this certificate are to be taken at a time and in a location characteristic of the quality and quantity of the effluent stream over the time period being monitored.

(2) Samples shall be collected of the discharge from Cell #3 to the Hawthorne Road ditch and analyzed, at the sampling frequencies and using the sample type specified for each parameter listed:

	Table 1 - Effluent Monitoring							
Brequency	Frequency Once each Month During Periods of Effluent Discharge							
Sample Lype	Grab	· ·						
Parameters	Total Suspen	ded Solids		•				

(3) The methods and protocols for sampling, analysis, and recording shall conform, in order of precedence, to the methods and protocols specified in the following:

(a) the Ministry's publication "Protocol for the Sampling and Analysis of Industrial/Municipal Wastewater" (August 1994), ISBN 0-7778-1880-9, as amended from time to time by more recently published editions; and

(b) the publication "Standard Methods for the Examination of Water and Wastewater" (17th edition) as amended from time to time by more recently published editions.

(4) The Owner shall measure, record and calculate the flowrate from Cell #3 to the Hawthorne Road ditch daily (during periods of discharge), within an accuracy of plus or minus 15 per cent of the actual flowrate.

(5) The Owner shall retain for a minimum of three (3) years from the date of their creation, all records and information related to or resulting from the monitoring activities required by this certificate.

### 7. <u>REPORTING</u>

1.

2.

3.

4.

5.

6.

(1) The Owner shall report to the District Manager or designate, of any exceedence of any parameter specified in Conditions 5 orally, as soon as reasonably possible, and in writing within seven (7) days of the exceedence.

## The reasons for the imposition of these terms and conditions are as follows:

Condition 1 is imposed to ensure that the works are built and operated in the manner in which they were described for review and upon which approval was granted. This condition is also included to emphasize the precedence of Conditions in the Certificate and the practice that the Approval is based on the most current document, if several conflicting documents are submitted for review.

Condition 2 is included to ensure that the Ministry records are kept accurate and current with respect to approved works and to ensure that subsequent owners of the works are made aware of the certificate and continue to operate the works in compliance with it.

Condition 3 is included to ensure that a comprehensive operations manual governing all significant areas of operation, maintenance and repair is prepared, implemented and kept up-to-date by the owner and made available to the Ministry. Such a manual is an integral part of the operation of the works. Its compilation and use should assist the owner in staff training, in proper plant operation and in identifying and planning for contingencies during possible abnormal conditions. The manual will also act as a benchmark for Ministry staff when reviewing the owner's operation of the work.

Condition 4 is included to ensure that the works are operated as designed.

Condition 5 is imposed to ensure that the effluent discharged from the works meets the Ministry's effluent quality requirements thus minimizing environmental impact on the receiver.

Conditions 6 and 7 are included to require the owner to demonstrate on a continual basis that the quality of the effluent from the approved works is consistent with the effluent limits specified in the certificate and that the approved works does not cause any impairment to the receiving watercourse.

In accordance with Section 100 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, Chapter 0.40, as amended, you may by written notice served upon me and the Environmental Review Tribunal and in accordance with Section 47 of the <u>Environmental Bill of Rights</u>, S.O. 1993, Chapter 28, the Environmental Commissioner, within 15 days after receipt of this Notice, require a hearing by the Tribunal. The Environmental Commissioner will place notice of your appeal on the Environmental Registry. Section 101 of the <u>Ontario</u> <u>Water Resources Act</u>, R.S.O. 1990, Chapter 0.40, provides that the Notice requiring the hearing shall state:

The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;
 The grounds on which you intend to rely at the hearing in relation to <u>each</u> portion appealed.

### The Notice should also include:

The name of the appellant;

4.

- The address of the appellant;
- The Certificate of Approval number;
   The date of the Certificate of Approval;
  - The date of the Certificate of Apploy
- 7. The name of the Director;
  - The municipality within which the works are located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary* Environmental Review Tribunal 2300 Yonge St., 12th Floor P.O. Box 2382 Toronto, Ontario M4P 1E4	AND	The Environmental Commissioner 1075 Bay Street, 6th Floor Suite 605 Toronto, Ontario M5S 2B1	AND	The Director Section 53, <i>Ontario Water Resources Act</i> Ministry of the Environment 2 St. Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5
-------------------------------------------------------------------------------------------------------------------------------	-----	----------------------------------------------------------------------------------------------------------	-----	--------------------------------------------------------------------------------------------------------------------------------------------------------------------

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

This instrument is subject to Section 38 of the <u>Environmental Bill of Rights</u>, that allows residents of Ontario to seek leave to appeal the decision on this instrument. Residents of Ontario may seek leave to appeal within 15 days from the date this decision is placed on the Environmental Registry. By accessing the Environmental Registry at www.ene.gov.on.ca, you can determine when the leave to appeal period ends.

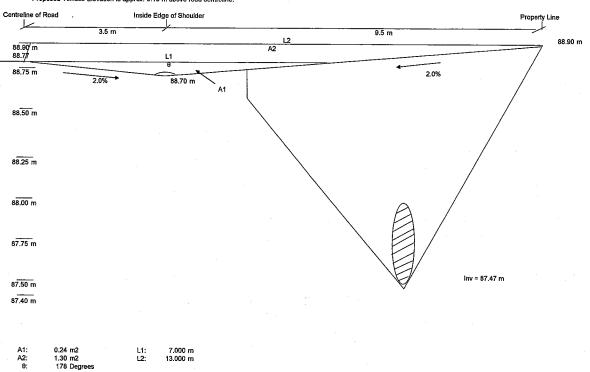
The above noted sewage works are approved under Section 53 of the Ontario Water Resources Act.

DATED AT TORONTO this 19th day of May, 2004



#### RC/

c: District Manager, MOE Ottawa
 Nural Kuyucak, Golder Associates Ltd. √


Mohamed Dhalla, P.Eng. Director Section 53, Ontario Water Resources Act

Page 6 - NUMBER 6924-5YWQ3U

## APPENDIX'J'

## ASSESSMENT OF CULVERT CROSSING DURING AN EXTREME STORM EVENT

#### ENTRANCE TO POND ACCESS ROAD - OPEN DITCH/CULVERT CONFIGURATION



Typical open ditch/culvert configuration: 1390x970mm CSPA culvert, invert approx. 1.43 m below elevation at property line. Proposed Terrace Elevation is approx. 0.13 m above road centreline.

FLOW ABOVE CULVERT THRU A1:		FLOW ABOVE CULVERT THRU A2:			
Since 0 is equal to appro	k. 180 degrees				
Use the Rectangular Weir Equation to Estimate the Flow Thru A1:		Using the Rectangular Weir Equation to Estimate the Flow Thru A2:			
Q=CxLx	H ^ 1.5	$Q = C \times L \times H^{1.5}$			
C = 1.84		C = 1.84			
L' = L1 - (0.	1 x n x h) , where n= no. of end contractions	L' = L3 - (0.1 x n x h)	, where n= no. of end contractions		
use h = 88.	77 - 88.7 ≐ 0.07 m	use h = 88.9 - 88.77	= 0.13 m		
h =	0.07 m	h =	0.13 m		
		L3 = (L1 + L2) / 2 = 1	Om (Avg. Length)		
L' =	6.99 m	L'=`´´	9.97 m		
Q _{A1} =	0.24 m3/s	Q _{A2} =	0.86 m3/s		

1:100 year Peak Flow Rate of 3.0 m³/s (From Storm Design Sheet : 100 Year Flow 27B-27C)

Flow through the 1390 x 970 mm CSPA Culvert under inlet Control Conditions = 1.9 m³/s (From Culvert Sizing Nomograph 27B-27C) Total flow above culvert =  $Q_{A1} + Q_{A2} = 0.24$  m³/s + 0.86 m³/s = 1.10 m³/s Therefore, Total Flow =  $1.9 \text{ m}^3/\text{s} + 1.1 \text{ m}^3/\text{s}$ =  $3.0 \text{ m}^3/\text{s}$ =1:100 year Peak Flow Rate

# APPENDIX'K'

## SWMHYMO INPUT AND OUTPUT FILES (July 1, 1979 Historical Storm Event)

## (V:\...July1979.dat)

003> *# Project Name			
002> *#***********************************	:5	00136> *	
0032 -# Project Name	************************	00137> * SUB-AREA No.1	
004> *# Date	: January, 2009 *	00138> 00139> CALIE STANDHYD	7D=[ 1 ]. NHYD=["HTP01"] DT=[2 5](min) apra=[19 9](ba)
005> *# Revised	: N/A * : Mark Buchanan, E.I.T. *	00140>	<pre>ID=[ 1 ], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha) XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], </pre>
007> *# Reviewed by	: Guy Forget, P.Eng. *	00141> 00142>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),
008> *# Company	: J.L. Richards & Associates Limited + : 4418403 *	00143>	LGP=[100.0](m), MNP=[0.25], SCP=[0.
010> *#**************	***************************************	00144> 00145>	Impervious surfaces: IAimp=[1,57](mm), SLPI=[0,6](%),
011> * 012> *		00146>	LGI=[580] (m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , , ] (mm/hr) , END=-1
013> *#*************	*************	00147> *% 00148> ADD HYD	IDsum=[ 2 ], NHYD=["HIP02"], IDs to add=[10+1]
<pre>J14&gt; *# FILENAME: V: 015&gt; *# FILE DEVELOPE</pre>	\20983.DU\ENG\SWMHYMO\20983PST.DAT * ED FOR SITE PLAN APPLICATION AND DETAILED DESIGN *	00149> *8	
U16> *# OF A FACILIT	Y ASSOCIATED WITH THE OTTAWA COMPOSTING SITE *	00150> * 00151> * SUB-AREA No.2	
017> *#***********************************	***************************************	00152>	
019> *****************	*****************	00153> CALIB STANDHYD 00154>	ID=[ 3 ], NHYD=["HIP03"], DT=[2.5](min), AREA=[17)(ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],
020> * SWMHYMO	FILE DEVELOPED TO INVESTIGATE FLOOD FLOWS OF THE	00155>	SCS curve number CN=[81].
J21> * PROPOSED COMP 122> *******************	OSTING SITE UNDER POST-DEVELOPMENT UNCONTROLLED CONDITIONS *	00156> 00157>	<pre>Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),</pre>
023>		00158>	LGP=[100.0] (m), MNP=[0.25], SCP=[0. Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.65] (%),
124> ************************************	**************************************	00159>	LGI=[450] (m), MNI=[0.03], SCI=[0.0] RAINFALL=[,,,,] (mm/hr), END=-1
126> * FOR DESIGN STOR	MS OF 1:2, 5, 10, 25, 50, AND 100 YR *	00160> 00161> *%	RAINFALL=[, , , , ](nm/hr), END=-1
)27> ************************************	***************************************	00162> *	
29> * CALCUL	ATTON OF JULY 1st 1979 STORM EVENT *	00163> * SUB-AREA No.3 00164>	
)30> ************************************	***************************************	00165> CALIB STANDHYD	<pre>ID=[ 4 ], NHYD=["HIP04"], DT=[2.5] (min), AREA=[15.6] (ha) XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2],</pre>
)32> START	TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]	00166> 00167>	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
)33> *%	[] <storm filename,="" for="" line="" nstorm="" one="" p="" per="" time<=""></storm>	00168>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%),
)34> READ STORM )35> *&	STORM_FILENAME={"JUL_1_79.STM"}	00169> 00170>	LGP = [100,0] (m), $MNP = [0,25]$ , $SCP = [0,25]$
36> DEFAULT VALUES	<pre>ICASEdef=[1], read and print values DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]</pre>	00171>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.5] (%), LGI=[600] (m), MNI=[0.03], SCI=[0.0]
37>	DEFVAL_FILENAME= (V: \22973.DU\ENG\SWMHYMO\"ORGA.VAL"]	00172>	RAINFALL=[, , , , ](mm/hr), END=-1
39>	•	00173> *% 00174> ADD HYD	<pre>IDsum=[ 5 ], NHYD=["HIP05"], IDs to add=[3+4]</pre>
40> ************************************	***************************************	00175> *&	
42> *****************	***************************************	00176> ADD HYD 00177> *8	IDsum=[ 6 ], NHYD=["HIP06"], IDs to add=[5+2]
43> *		00178> *	,
44> * SUB-AREA No.1 45>		00179> * SUB-AREA No.4 00180>	
46> CALIB STANDHYD	ID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha), XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2],	00181> CALIB STANDHYD	ID=[7], NHYD=["HIP07"], DT=[2.5](min), AREA=[12.2](ha)
47> 48>	XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],	00182>	$x_{112} = \{0, 30\}, x_{112} = \{0, 11\}, Dw_{1} = \{0, 0\} (CW_{2}), DOS_{2} = \{2\},$
49>	SCS Curve number CN=[81],	00183>	SCS curve number CN=[81],
50> 51>	Pervious surfaces: IAper=[4.67] (nm), SLPP=[1.0] (%), LGP=[20] (m), MNP=[ 0.25 ], SCP=[0.0] (mi	00185>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%), LGP=[100.0] (m), MMP=[0.25], SCP=[0.
52>	Impervious surfaces: $IAImp=[1.57] (mm)$ , $SLPI=[0.52] (%)$ , LGI=[204.72] (m), $MNI=[0.03]$ , $SCT=[0.0]$	00186> 00187>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.7](%), LGI=[210] (m), MNI=[0.03], SCI=[0.0]
53> 54> *8	RAINFALL=[, , , , } (mg/hr) , END=-1	00188>	RAINFALL=[, , , , ](mm/hr), END=-1
55> *		00189> 00190> *%	-
56> * SUB-AREA No.2 57>		00191> *	
58> CALIB STANDHYD	<pre>ID=[ 2 ], NHYD=["020"], DT=[2.5](min), AREA=[ 1.54 ](ha),</pre>	00192> *SUB-AREA No.5 00193>	
59>	$XIMP \simeq [0, 92], TIMP \simeq [0, 92], DWF = [0, 0] (cms), LOSS = [2],$	00194> DESIGN NASHYD	<pre>ID=[ 8 ], NHYD={"Pond-Block"], DT={2.5]min, AREA=[4.0](h</pre>
60> 61>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%),	00195>	DWF=[0](cms), CN/C=[85], TP=[0, 17]hrs.
62>	LGP=[5] (m), MNP=[0.03], SCP=[0.01 (min).	00196> 00197> *%	RAINFALL=[ , , , ] (mm/hr), END=-1
63> 64>	LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min), Impervious surfaces: IAimpe[1.57] (mm), SLPI=[0.50] (%),	00198>	
65>	LGI=[244.34] (m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , , , ](mm/hr), END=-1	00199> ADD HYD 00200> **	IDsum=[ 9 ], NHYD=["HIP08"], IDs to add=[6+7+8]
66> ** 67> *		00201>	
68> * SUB-AREA No.3		00202> ROUTE RESERVOIR 00203>	<pre>IDout=[ 10 ], NHYD=["HIP-POND"], IDin=[ 9 ], RDT=[1.0] (min),</pre>
69> 70> CALIB STANDHYD	ID=[ 3 ], NHYD=["030"], DT=[2.5] (min), AREA=[1.4] (ha),	00204>	TABLE of ( OUTFLOW-STORAGE ) values
71>	<pre>ID=[ 3 ], NAID=[ 030 ], DI=[2.5] (min), ARGA=[1.4] (ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0] (cms), LOSS=[2],</pre>	00205> 00206>	(cms) - (ha-m) [ 0.0 , 0.0 ]
72> 73>	SCS curve number CN=1811.	00207>	[ 0.048, 0.0574 ] [ 0.054, 0.2434 ]
74>	Pervious surfaces: $IAper=[4.67] \{mm\}, SLPP=[1.0] \{\$\}, LGP=[5] \{m\}, MMP=[0.03], SCP=[0.0] \{mn\}, MMP=[0.03], SCP=[0.0] \{mn\}, MMP=[0.03], SCP=[0.0] \{mn\}, SCP=[$	00208> 00209>	[ 0.054, 0.2434 ] [ 0.059, 0.5834 ]
75>	LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min), Impervious surfaces: IAimp=[1.57] (mm), SLPI=[ 0.51 ](%),	00210>	[ 0.062, 0.8400 ]
76> 77>	LGI=[ 225.63 ](m), MNI=[0.03], SCI=[0.0 RAINFALL=[, , , , ](mm/hr), END=-1	00211> 00212>	[ 0.064, 1.1024 ]
78> *8		00213>	[ 0.147, 1.3705 ] [ 0.280, 1.6444 ]
79> ADD HYD 30> *%	IDsum=[4], NHYD=[ "040"], IDs to add=[1+2]	00214> 00215>	[ 0.472, 1.9242 ]
31> ADD HYD	IDsum=[5], NHYD=[ "050"], IDs to add=[3+4]	00216>	[ 0.724, 2.2097 ] [ 0.937, 2.5010 ]
		00217>	[ 1.262, 2.7981 ]
2> *8		000101	
32> *\$ 33> * 34> * SUB-AREA No.4	[	00218>	[ 1.404, 3.1009 ] [ 1.532, 3.4096 ]
32> *8 33> * 34> * SUB-AREA No.4 35>		00218> 00219> 00220>	1.532, 3.4096 1
32> *% 33> * 34> * SUB-AREA No.4 35> 36> CALIB STANDHYD 37>	ID=[6], NHYD=["060"], DT=[2,5](min), REEA=[0.89](ba).	00218> 00219> 00220> 00221>	[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ]
22> *% 33> * 45> SUB-AREA No.4 55> 65> CALIB STANDHYD 75> 85>	<pre>ID={6}, NHYD=["060"], DT={2.5}(min), AREA=[0.89](ha), XIMP={0.97}, TIMP={0.97}, DWF={0.0}(cms), LOSS={2}, SCS curve number CN={81}.</pre>	00218> 00219> 00220> 00221> 00222> 00222> 00222>	1.532, 3.4096 1
22> * % 33> * 35> * 55> 56> CALIB STANDHYD 17> 18>	<pre>ID={6}, NHYD=["060"], DT={2.5}(min), AREA=[0.89](ha), XIMP={0.97}, TIMP={0.97}, DWF={0.0}(cms), LOSS={2}, SCS curve number CN={81}.</pre>	00218> 00229> 00220> 00222> 00222> 00222> 00223>	[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.689, 4.3702 ]
22 * % 33 * 45 * SUE-AREA No.4 55 66 CALIB STANDHYD 172 182 195 105 105 105 105 105 105 105 10	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.7](%), LOP=[40](m), MNP=[0.25], SCP=[0.0](min) Impervious surfaces: IAimpe[1.57](mm), SLPI=[0.93](%),</pre>	00218> 00219> 00220> 00222> 00222> 00222> 00223> 00224> 00225> *% 00226> *	[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.689, 4.3702 ]
22 * %	LD=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ba), XIMD=[0.97], THM2=[0.97], DWP=[0.0](cms), LOSS=[2], SCS curve number Cn=[81] Pervious surfaces: JApter[4.67](mn), SLPP=[0.7](8), LGP=[40](m), MNP=[0.25], SCP=[0.0](min), Impervious surfaces: LAimp=[1.57](mn), SLPI=[0.03], (8), LGI=[164.82](m), MNI=[0.03], SCI=[0.0], (SI=[0.0],	00218> 00220> 00220> 00222> 00222> 00223> 00223> 00225> *\$	[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.689, 4.3702 ]
22 * * 33 * 35 * 35 * 36 CALIE STANDHYD 38 > 38 > 39 > 30 > 31 > 32 > 32 > 33 > 34 + * 34 - *	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.7](%), LOP=[40](m), MNP=[0.25], SCP=[0.0](min) Impervious surfaces: IAimpe[1.57](mm), SLPI=[0.93](%),</pre>	00218> 00220> 00220> 00222> 00222> 00223> 00225> *\$ 00225> *\$ 00225> *UD-AREA No. 6 00228> 00228> DESIGN NASHYD	[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.689, 4.3702 ] [ -1 , -1 ] (max twenty pts)
22 * * 33 * * 35 * 35 * 36 CALIE STANDHYD 37 38 39 39 30 30 32 32 34 45 * 45 * 4	LD=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ba), XIMD=[0.97], THM2=[0.97], DWP=[0.0](cms), LOSS=[2], SCS curve number Cn=[81] Pervious surfaces: JApter[4.67](mn), SLPP=[0.7](8), LGP=[40](m), MNP=[0.25], SCP=[0.0](min), Impervious surfaces: LAimp=[1.57](mn), SLPI=[0.03], (8), LGI=[164.82](m), MNI=[0.03], SCI=[0.0], (SI=[0.0],	00218> 00229> 00220> 00222> 00222> 00222> 00224> 00224> 00225> *00227> *\$UB-AREA No. 6 002229> 00229> DESIGN NASHYD 00229>	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.689, 4.3702 ] [ -1 , -1 ] (max twenty pts) ] ] [ -1 , -1 ] (max twenty nts) ] [</pre>
22 * * 23 * 23 * 25 * 25 * 25 * 26 * CALIE STANDHYD 27 * 28 * 29 * 20 * 20 * 20 * 20 * 20 * 20 * 21 * 22 * 23 * 24 * 25 * 25 * 26 * 27 * 27 * 28 * 29 * 20 * 2	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.7](%), LGP=[40](m), MVF=[0.25], SCP=[0.0](min), Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.93], (%), LGI=[164.82](m), MNI=[0.03], SCI=[0.0]( RAINFALL=[, , , , ](mm/hr), END=-1</pre>	00218> 00220> 00220> 00222> 00222> 00223> 00225> *\$ 00225> *\$ 00225> *UD-AREA No. 6 00228> 00228> DESIGN NASHYD	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) - </pre>
2> *\$ 3> * 4> * SUB-AREA NO.4 5- 6> CALIB STANDHYD 7- 8> 9- 0- 2> 3- 4> * 5- 5 * 50- 5- 5 * 5- 5- 5- 5- 5- 5- 5- 5- 5- 5-	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], LGP=[40](m), NMP=[0.25], SCP=[0.0](min) Impervious surfaces: IxImper[1.57](mm), SLPP=[0.7](%), LGP=[40](m), NMP=[0.25], SCP=[0.0](min) Impervious surfaces: IxImper[1.57](mm), SLPP=[0.03], SCI=[0.0](min) LGI=[164.02](m), MNT=[0.03], SCI=[0.0]( RAINFALL=[, , , , ](mm/hr), EMD=-1</pre>	00218> 00229> 00220> 00221> 00222> 00223> 00225> *%	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre>
22 * *	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.7](%), LOP=[40](m), MNF=[0.25], SCP=[0.0](min), Impervious surfaces: IAimper[1.57](mm), SLPI=[0.03], SCI=[0.0]( RAINFALL=[, , , , ](mm/hr), END=-1 ] ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2].</pre>	00218> 00229> 00220> 00222> 00222> 00224> 00224> 00225> *\$ 00226> *SUB-AREA No. 6 00228> 00228> DESIGN NASHYD 00231> 00223> *\$ 00223> 00223> *	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.689, 4.3702 ] [ -1 , -1 ] (max twenty pts) ] ] [ -1 , -1 ] (max twenty nts) ] [</pre>
22 * *	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.7](%), LOP=[40](m), MNF=[0.25], SCP=[0.0](min), Impervious surfaces: IAimper[1.57](mm), SLPJ=[0.93](%), LOI=[164.82](m), MNI=[0.03], SCI=[0.0]( RAINFALL=[, , , , ](mm/hr), END=-1 ] ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%).</pre>	00218> 00229> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00235 0023 0023 0023 0023 0023 0023 002	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre>
2> **	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Impervious surfaces: IAper[4.67](mm), SLPP=[0.7](%), Impervious surfaces: IAimper[1.57](mn), SLPT=[0.53](%), LOF=[164.62](m), MNT=[0.03], SCI=[0.0](min) RAINFALL=[, , , , ](mm/hr), EMD=-1 [] ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mn), SLPP=[1.5](%), LOF=[20.0](m), MMP=[0.25], SCP=[0.0](min)</pre>	00218> 00220> 00222> 00222> 00222> 00223> 00225> *%	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre>
22 * *	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Impervious surfaces: IAper[4.67](mm), SLPP=[0.7](%), Impervious surfaces: IAimpe[1.57](mn), SLPT=[0.53](%), LOF=[164.62](m), MNT=[0.03], SCI=[0.0](min) INFALL=[, , , , ](mm/hr), EMD=-1 ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper[4.67](mn), SLPP=[1.5](%), LOF=[20.0](m), MNP=[0.25], SCP=[0.0](min) Impervious surfaces: IAimp=[1.57](mn), SLPT=[0.61](%), LOI=[20.25](m), MNT=[0.03], SCI=[0.0](min), Impervious surfaces: IAimp=[1.57](mn), SLPT=[0.61](%), LOI=[20.25](m), MNT=[0.03], SCI=[0.0](min), Impervious surfaces: IAimp=[1.57](mn), SLPT=[0.61](%), LOI=[20.25](m), MNT=[0.03], SCI=[0.0](min), Impervious surfaces: IAimp=[1.57](mn), SLPT=[0.61](%), LOI=[20.25](mn), MNT=[0.03], SCI=[0.0](min), Impervious surfaces: IAimp=[1.57](mn), SLPT=[0.61](%), IOI=[20.25](mn), MNT=[0.03], SCI=[0.0](min), IOI=[20.25](mn), MNT=[0.03], SCI=[0.0](min), IOI=[20.25](mn),</pre>	00218> 00229> 00220> 00222> 00222> 00222> 00225> *%	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre>
22 * *	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.7](%), LGP=[40](m), MNF=[0.25], SCP=[0.0](min), Impervious surfaces: IAimper[1.57](mm), SLPI=[0.93](%), LGI=[164.82](m), MNI=[0.03], SCI=[0.0]( RAINFALL=[, , , , ](mm/hr), END=-1 ] ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAimper[4.67](mm), SLPP=[1.5](%), LGP=[20.0](m), MNP=[0.25], SCP=[0.0](mi) Impervious surfaces: IAimper[1.57](mm), SLPI=[0.61](%),</pre>	00218> 00229> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00222> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223> 00223>	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre>
22 * *	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number (N=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.7](%), LOP=[40](m), MNP=[0.25], SCP=[0.0](min), Impervious surfaces: IAimper[1.57](mm), SLPI=[0.93](%), LOI=[164.82](m), MNT=[0.03], SCI=[0.0]( RAINPALL=[, , , , ](mm/hr), END=-1 ] ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number (N=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), LOI=[207.25](m), SCI=[0.0](m], RAINPEALL=[, , , ](mm/hr), END=-1 ]</pre>	00218> 00229> 00220> 00222> 00222> 00222> 00225> *%	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre>
22 * *	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Impervious surfaces: IAper[4.67](mm), SLPP=[0.7](%), LGP=[40](m), MNF=[0.25], SCP=[0.0](min) Impervious surfaces: IAimper[1.57](mm), SLPI=[0.53](%), LGI=[164.02](m), MNI=[0.03], SCI=[0.0]( RAINFALL=[, , , , ](mm/hr), END=-1 ] ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DHF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAimper[4.67](mm), SLPI=[1.5](%), LGP=[20.0](m), MNF=[0.25], SCP=[0.0](mi Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.25], SCI=[0.0](mi Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.3], SCI=[0.0](mi Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.51], SCI=[0.0](mi Impervious surfaces: IAimpervious sumf=[1.57](mm), SLPI=[0.51], SCI=[0.0](mi Impervious sumf=[1.57](mm),</pre>	00218> 00229> 00220> 00222> 00222> 00222> 00223> 00225> *%	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre>
22 * *	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number (N=[81], Impervious surfaces: IAimper[1.67](mm), SLPP=[0.7](%), LOF=[40](m), NNF=[0.25], SCP=[0.0](min) Impervious surfaces: IAimper[1.57](mm), SLPI=[0.93](%), LOI=[164.02](m), MNI=[0.03], SCI=[0.0]( RAINFALL=[, , , , ](mm/hr), END=-1</pre>	00218> 00229> 00220> 00222> 00222> 00222> 00223> 00225> *%	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre>
22 * * 23 * 43 * SUB-AREA NO.4 55 55 65 65 CALIB STANDHYD 77 85 95 95 95 95 95 95 95 95 95 9	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SC5 curve number CN=[81], Pervious surfaces: IAPper[0.167](min), SLP=[0.7](%), Impervious surfaces: IAPmer[1.57](min), SLPI=[0.25](s), LOI=[164.02](m), MNT=[0.03], SCI=[0.0](%), RAINPALL=[, , , , ](mm/hr), END=-1 ] ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SC5 curve number CN=[81], Pervious surfaces: IApmer[4.67](mm), SLPI=[1.5](%), IAP=[0.0](m), MMF=[0.25], SCD=[0.0](mi Impervious surfaces: IApmer[4.67](mm), SLPI=[0.61](%), LGI=[20.25](mi, MMT=[0.03], SCI=[0.0](mi Impervious surfaces: IAmmer[1.57](mn), SLPI=[0.61](%), LGI=[20.25](mi, MMT=[0.03], SCI=[0.0](mi Impervious surfaces: IAmmer[1.57](mn), SLPI=[0.61](%), LGI=[20.25](mi, MMT=[0.03], SCI=[0.0](mi Immer[8], NHYD=["090"], IDs to add=[5+8] ]</pre>	00218> 00229> 00220> 00222> 00222> 00222> 00223> 00225> *%	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre>
2>       **         2>       **         4>       * SUB-AREA No. 4         5>       5>         6>       CALIB STANDHYD         7>       AD         8>       **         9>       0>         10>       **         12>       **         13>       **         14>       **         15>       **         12>       **         13>       **         14>       **         15>       **         15>       **         15>       **         15>       **         12>       **         12>       **         12>       **         13>       **         14>       **         15>       **         16       **         17       **         18       **         19       **         10       **         10       **         12       *         13>       **         140       **         15       **	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[01], JGP=[00](m), MNF=[0.25], SCP=[0.0](h), Impervious surfaces: IAper[4.67](mm), SLP=[0.5](h), IMP=[0.0](h), MNF=[0.10](h), RAINPALL=[, , , , ](mm/hr], EMD=[1.5](h), ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper[4.67](mm), SLP=[1.5](h), IAD=[2.0](m), MSP=[0.25], SCD=[0.0](mi Impervious surfaces: IAper[4.67](mm), SLPI=[0.61](h), RAINPALL=[, , , , ](mm/hr], EMD=1 ID=[7], NHYD=["080"], IDs to add=[6+7] IDamm=[6], NHYD=["090"], IDs to add=[5+8] ID=[10], NHYD=["POND"], ID=[9], RDT=[1.0](min].</pre>	00218> 00229> 00220> 00222> 00222> 00222> 00223> 00225> *%	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre>
22 * *	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Impervious surfaces: IAper[4.67](mm), SLPP=[0.7](%), LGP=[40](m), MNF=[0.25], SCP=[0.0](min) Impervious surfaces: IAimpe[1.57](mm), SLPI=[0.53](%), LGI=[164.82](mi, MNT=[0.03], SCI=[0.0]( RAINFALL=[, , , ](mm/hr), END=-1]</pre>	00218> 00229> 00220> 00222> 00222> 00222> 00223> 00225> *%	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre>
22 * *	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Impervious surfaces: IAper[4.67](mm), SLPP=[0.7](%), Impervious surfaces: IAper[4.67](mm), SLPP=[0.0](%), RATNFALL=[, , , ](mm/hI], END=-1 ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper[4.67](mm), SLPP=[1.5](%), IAD=[2.01(m), MNFD=[0.25], SCD=[0.0](mi Impervious surfaces: IAper[4.67](mm), SLPI=[0.61](%), LAD=[20.01(m), MNFD=[0.25], SCD=[0.0](mi Impervious surfaces: IAmp=[1.57](mm), SLPI=[0.61](%), LAD=[20.01(m), MNFD=[0.00], SCI=[0.0](mi Impervious surfaces: IAmp=[1.57](mm), SLPI=[0.61](%), ID=[1.52](min), MIT=[0.03], SCI=[0.0](mi ID=mn=[6], NHYD=["080"], IDs to add=[6+7] ID=mn=[9], NHYD=["090"], IDs to add=[5+8] IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values (cms) = (h=m)</pre>	00218> 00229> 00220> 00222> 00222> 00222> 00223> 00225> *%	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre>
22 * *	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper[4.67](mm), SLPP=[0.7](%), Impervious surfaces: IAper[4.67](mm), SLPP=[0.0](%), LOI=[164.02](m), MUT=[0.03], SCI=[0.0](%), RAINPALL=[, , , ](mm/hI], END=1 ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper[4.67](mm), SLPP=[1.5](%), ILGP=[20.0](m), MMF=[0.25], SCD=[0.0](mi Impervious surfaces: IAper[4.67](mm), SLPI=[0.61](%), LGP=[20.0](m), MMF=[0.25], SCD=[0.0](mi Impervious surfaces: IAmer[1.57](mm), SLPI=[0.61](%), LGP=[20.0](m), MMF=[0.25], SCD=[0.0](mi Impervious surfaces: IAmer[1.57](mm), SLPI=[0.61](%), LGP=[20.02](m), MMF=[0.25], SCD=[0.0](mi Impervious surfaces: IAmer[1.57](mm), SLPI=[0.61](%), LGI=[20.72](mi), MIT=[0.03], SCI=[0.0]( IDum=[8], NHYD=["000"], IDs to add=[5+8] IDout=[10], NHYD=["00D"], IDin=[9], RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values (CMS) = (h=m) [ 0.0000, 0.0000] [ 0.0000, 0.0000]</pre>	00218> 00229> 00220> 00222> 00222> 00222> 00223> 00225> *%	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre>
22 * *	<pre>LID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMD=[0.97], THYD=[0.97], DWP=[0.0](cms), LOSS=[2], SCS curve number Crel[81] Pervious surfaces: JAppr=[4.67](mn), SLPP=[0.7](%), LGP=[40](m), MMP=[0.25], SCP=[0.0](min) Impervious surfaces: IAimp=[1.57](mn), SLPI=[0.3](%), LGP=[40](m), MMP=[0.25], SCP=[0.0](min), RITMPALL=[, , , , ](mm/hr), END=-1 ] LD=[7], NHYD=[0.70"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.7], SIMD=[0.57], DWP=[0.0](cms), LOSS=[2], SCS curve number CN=[81], DWP=[0.0](cms), LOSS=[2], SCS curve number CN=[81], DWP=[0.0](cms), LOSS=[2], SCS curve number CN=[81], DWP=[0.0](mi, AREA=[2.66](ha), XIMP=[0.7], SIMD=[0.77], DWP=[0.0](mi, SLPD=[1.5](%), LGP=[20.725](m), MNT=[0.03], SCI=[0.0](mi, Impervious surfaces: IAimper[1.57](mm), SLPI=[0.51](%), LGP=[20.725](m), MNT=[0.03], SCI=[0.0](mi, IDsum=[8], NHYD=["900"], IDs to add=[5+7] </pre>	00218> 00229> 00220> 00222> 00222> 00222> 00223> 00225> *%	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre>
22 * *	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], JGP=[40](m), MNF=[0.25], SCP=[0.0](m), Impervious surfaces: IAper[4.67](mm), SLPP=[0.7](8), JGP=[1.62](m), MNT=[0.03], SCI=[0.0](min), JGP=[1.62](m), MNT=[0.03], SCI=[0.0](min), ARINFALL=[, , , ](mm/hr), EMD=-1 ] ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper[4.67](mm), SLPP=[1.5](8), IGP=[20.0](m), MNF=[0.25], SCI=[0.0](mi Impervious surfaces: IAper[4.67](mm), SLPI=[0.61](6), IGP=[20.0](m), MNF=[0.25], SCI=[0.0](mi Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.61](6), IImpervious surfaces: IAimp=[1.57](mm), SLPI=[1.5](6), IImpervious surfaces: IAimpervious s</pre>	00218> 00229> 00220> 00222> 00222> 00222> 00223> 00225> *%	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre>
<pre>22 * *</pre>	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Dervious surfaces: IAper[4.67](mm), SLPP=[0.7](%), LOP=[40](m), MNF=[0.25], SCP=[0.0](min) Impervious surfaces: IAper[4.67](mm), NET=[0.53](%), DOT=[1.02](m), MNT=[0.03], SCI=[0.0](min), ARINFALL=[, , , ](mm/hr), EMD=-1 ] ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper[4.67](mm), SLPP=[1.5](%), LOP=[20.0](m), MNF=[0.25], SCI=[0.0](mi Impervious surfaces: IAper[4.67](mm), SLPI=[0.61](%), LOP=[20.0](m), MNF=[0.25], SCI=[0.0](mi Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.61](%), LOP=[20.0](m), MNF=[0.25], SCI=[0.0](mi Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.61](%), LOP=[20.0](m), MNF=[0.25], SCI=[0.0](mi Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.61](%), LOI=[20.72](mi), MNT=[0.03], SCI=[0.0](mi IDoum=[3], NHYD=["90N"], IDs to add=[6+7] IDoum=[3], NHYD=["90ND"], IDin=[9], RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values [0.0000, 0.0000] [0.0000, 0.0000] [0.00000, 0.0000] [0.00000, 0.0000] [0.00000, 0.0000]</pre>	00218> 00229> 00220> 00222> 00222> 00222> 00223> 00225> *%	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre>
82> *8 82> *8	<pre>LiD=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMF=[0.97], TIMF=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[0], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[0], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[0], DGF=[0](0], NHT=[0.25], SCP=[0.0](min) Impervious surfaces: IAP=[40](m), NHT=[0.02], SCS=[0.0](min) Impervious surfaces: IAP=[40](m), NHT=[0.03], SCI=[0.0]( RINFALL=[, , , , ] (mm/hr), END=-1 </pre>	00218> 00229> 00220> 00222> 00222> 00222> 00223> 00225> *%	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre>
22 *4         22 *5         23 *         24 * SUB-AREA NO.4         25          26 > CALIE STANDHYD         27         28 > 000         20 > 010         21 > 020         22 > 020         23 > 020         24 > *1         25 > *10 - AREA NO.5         26 > 450 - *10 - AREA NO.5         27 > 000         28 > 000         29 > 010 - 11         20 > 010 - 11         20 > 010 - 11         21 > 010 - 11         21 > 010 + 110         21 > 010 + 110         21 > 010 + 110         22 > 010 + 110         23 > 010 + 110         24 > 010 + 110         25 > 010 + 110         26 > 010 + 110         27 > 010 + 110         28 > 010 + 110         29 > 010 + 110         21 > 010 + 110         22 > 010 + 110         23 > 010 + 110         23 > 010 + 110         23 + 110 + 110         23 + 110 + 110         24 + 110         25 + 110 + 110         26 + 110 + 110         27 + 110 + 110         28 + 110 + 110	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWP=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Impervious surfaces: LATmp=[1.57](mn), SLFP=[0.7](%), Impervious surfaces: LATmp=[1.57](mn), SLFP=[0.7](%), RAINPALL=[, , , , ](mm/hr), END=-1 ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWP=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: LATmp=[1.5](%), Impervious surfaces: LATmp=[1.5](%), Impervious surfaces: LATmp=[1.5](%), Impervious surfaces: LATm=[20.722](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWP=[0.0](mi), SLPP=[1.5](%), Impervious surfaces: LATmp=[2.722](min), SLPT=[0.61](%), Impervious surfaces: LATmp=[2.722](min), SLPT=[0.61](%), Intervious surfaces: LATmp=[2.722](min), SLTT=[0.61](%), IDsum=[8], NHYD=["080"], IDs to add=[6+7] IDsum=[9], NHYD=["080"], IDs to add=[5+8] IDout=[10], NHYD=["00NP], IDs to add=[5+8] IDout=[10], NHYD=["PONP], IDs to add=[5+8] (0.000, 0.00060] [0.0000, 0.00000] [0.0000, 0.00000] [0.00000, 0.00000] [0.00000, 0.00000] [0.00000, 0.00000] [0.0</pre>	00218> 00229> 00220> 00222> 00222> 00222> 00223> 00225> *%	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre>
<pre>22 * **</pre>	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), X1MP=[0.97], T1MP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Impervious surfaces: IAper[4.67](mm), SLPP=[0.7](%), Impervious surfaces: IAper[4.67](mm), SLPP=[0.7](%), COT=[164.62](m), MNT=[0.03], SCI=[0.0](min) NATEPILE[[, , , ] (mm/hr), EMD=-1 ]</pre>	00218> 00229> 00220> 00222> 00222> 00222> 00223> 00225> *%	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre>
22 * *	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWP=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Impervious surfaces: LATmp=[1.57](mn), SLFP=[0.7](%), Impervious surfaces: LATmp=[1.57](mn), SLFP=[0.7](%), RAINPALL=[, , , , ](mm/hr), END=-1 ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWP=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: LATmp=[1.5](%), Impervious surfaces: LATmp=[1.5](%), Impervious surfaces: LATmp=[1.5](%), Impervious surfaces: LATm=[20.722](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWP=[0.0](mi), SLPP=[1.5](%), Impervious surfaces: LATmp=[2.722](min), SLPT=[0.61](%), Impervious surfaces: LATmp=[2.722](min), SLPT=[0.61](%), Intervious surfaces: LATmp=[2.722](min), SLTT=[0.61](%), IDsum=[8], NHYD=["080"], IDs to add=[6+7] IDsum=[9], NHYD=["080"], IDs to add=[5+8] IDout=[10], NHYD=["00NP], IDs to add=[5+8] IDout=[10], NHYD=["PONP], IDs to add=[5+8] (0.000, 0.00060] [0.0000, 0.00000] [0.0000, 0.00000] [0.00000, 0.00000] [0.00000, 0.00000] [0.00000, 0.00000] [0.0</pre>	00218> 00229> 00220> 00222> 00222> 00222> 00223> 00225> *%	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre>
22 * *	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWP=[0.0](cms), LOSS=[2], SC5 curve number CN=[81], Pervious surfaces: IAPper[0.6](min), SDP=[0.7](8), Impervious surfaces: IAPper[0.82](m), SDP=[0.25], SC1=[0.0](min) Impervious surfaces: IAPper[0.82](m), NNT=[0.03], SC1=[0.0](min), RAINPALL=[, , , , ](mm/hr), END=-1 ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWP=[0.0](cms), LOSS=[2], SC5 curve number CN=[81], Pervious surfaces: IApper[4.67](mm), SLPP=[1.5](%), ILGP=[20.0](m), MMP=[0.25], SCP=[0.0](mi Impervious surfaces: IApper[4.67](mm), SLPT=[0.61](%), LGP=[20.0](m), MMP=[0.25], SCP=[0.0](mi Impervious surfaces: IAmper[1.57](mm), SLPT=[0.61](%), LGP=[20.0](m), MMP=[1.52](m], MIN=[0.03], SCI=[0.0]( ID=um=[8], NHYD=["090"], IDs to add=[540] IDoum=[9], NHYD=["090"], IDs to add=[540] IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values (cms) - (fn=m) [ 0.003, 0.0200] [ 0.003, 0.0201] [ 0.033, 0.0371] [ 0.</pre>	00218> 00229> 00220> 00222> 00222> 00222> 00223> 00225> *%	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre>
22 * *	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Impervious surfaces: IAper[4.67](mm), SLPP=[0.7](%), LGP=[40](m), NMF=[0.25], SCP=[0.0](min) Impervious surfaces: IAinper[1.57](mn), SLPI=[0.53](8), LGP=[164.62](m), MNI=[0.03], SCI=[0.0](m), NHYPALL=[, , , , ](mm/hr), EMD=-1 [] ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](ms), LOSS=[2], SCS curve number CN=[81]. Pervious surfaces: IAinper[4.67](mn), SLPI=[0.161](8), LGP=[20.0](m), MNP=[0.25], SCI=[0.0](m) Impervious surfaces: IAimpe[1.57](mn), SLPI=[0.61](8), LGP=[20.0](m), MNP=[0.25], SCI=[0.0](m) IMPEAL=[, , , ](mm/hr), END=-1 [] IDsum=[8], NHYD=["080"], IDs to add=[5+8] [] IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min), TABLE of (OUTPLOW=STORAGE ) values (Cms) - (ha-m) [] 0.033, 0.2331] [] 0.233, 0.2331] [] 0.233, 0.2331] [] 0.233, 0.2331] [] 0.233, 0.2331] [] 0.533, 0.6531] [] 0.534, 0.5371] [] 0.557, 0.6251] [] 0.55</pre>	00218> 00229> 00220> 00222> 00222> 00222> 00223> 00225> *%	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre>
22       *4         22       *4         33       *         445       * SUB-AREA No. 4         555       STANDHYD         77       SUB-AREA No. 5         78       SUB-AREA No. 5         79       SUB-AREA No. 5         78       CALIB STANDHYD         79       SUB-AREA No. 5         78       CALIB STANDHYD         79       NDD HYD         70       ADD HYD         70       ADD HYD         70       RESERVOIR         75       SOUTE RESERVOIR <t< td=""><td><pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWP=[0.0](cms), LOSS=[2], SC5 curve number CN=[81], Pervious surfaces: IAPper[0.6](min), SDP=[0.7](8), Impervious surfaces: IAPper[0.82](m), SDP=[0.25], SC1=[0.0](min) Impervious surfaces: IAPper[0.82](m), NNT=[0.03], SC1=[0.0](min), RAINPALL=[, , , , ](mm/hr), END=-1 ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWP=[0.0](cms), LOSS=[2], SC5 curve number CN=[81], Pervious surfaces: IApper[4.67](mm), SLPP=[1.5](%), ILGP=[20.0](m), MMP=[0.25], SCP=[0.0](mi Impervious surfaces: IApper[4.67](mm), SLPT=[0.61](%), LGP=[20.0](m), MMP=[0.25], SCP=[0.0](mi Impervious surfaces: IAmper[1.57](mm), SLPT=[0.61](%), LGP=[20.0](m), MMP=[1.52](m], MIN=[0.03], SCI=[0.0]( ID=um=[8], NHYD=["090"], IDs to add=[540] IDoum=[9], NHYD=["090"], IDs to add=[540] IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values (cms) - (fn=m) [ 0.003, 0.0200] [ 0.003, 0.0201] [ 0.033, 0.0371] [ 0.</pre></td><th>00218&gt; 00229&gt; 00220&gt; 00222&gt; 00222&gt; 00222&gt; 00223&gt; 00225&gt; *%</th><td><pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre></td></t<>	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWP=[0.0](cms), LOSS=[2], SC5 curve number CN=[81], Pervious surfaces: IAPper[0.6](min), SDP=[0.7](8), Impervious surfaces: IAPper[0.82](m), SDP=[0.25], SC1=[0.0](min) Impervious surfaces: IAPper[0.82](m), NNT=[0.03], SC1=[0.0](min), RAINPALL=[, , , , ](mm/hr), END=-1 ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWP=[0.0](cms), LOSS=[2], SC5 curve number CN=[81], Pervious surfaces: IApper[4.67](mm), SLPP=[1.5](%), ILGP=[20.0](m), MMP=[0.25], SCP=[0.0](mi Impervious surfaces: IApper[4.67](mm), SLPT=[0.61](%), LGP=[20.0](m), MMP=[0.25], SCP=[0.0](mi Impervious surfaces: IAmper[1.57](mm), SLPT=[0.61](%), LGP=[20.0](m), MMP=[1.52](m], MIN=[0.03], SCI=[0.0]( ID=um=[8], NHYD=["090"], IDs to add=[540] IDoum=[9], NHYD=["090"], IDs to add=[540] IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values (cms) - (fn=m) [ 0.003, 0.0200] [ 0.003, 0.0201] [ 0.033, 0.0371] [ 0.</pre>	00218> 00229> 00220> 00222> 00222> 00222> 00223> 00225> *%	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre>
22       *4         22       *4         33       *         445       * SUB-AREA No. 4         555       STANDHYD         77       STANDHYD         78       Stanthyd         79       Stanthyd         71       Stanthyd         72       Stanthyd         73       Stanthyd         74       Stanthyd         75       Stanthyd         70       Stanthyd         73       Stanthyd         74       Stanthyd         75       Stanthyd         76       Stanthyd         77       ADD HYD         78       Stanthyd         79       ADD HYD         70       NOUTE RESERVOIR         75       Stanthyd         75       Stanthyd         75       Stanthyd         75       Stanthyd         75       Stanthyd         76       Stanthyd         77       Stanthyd         78       Stanthyd         79       Stanthyd         70       Stanthyd         70       Stanthyd         70 <td><pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SC5 curve number CN=[81], Pervious surfaces: IAbper[4.67](mn), SLPP=[0.7](%), Impervious surfaces: IAbmp=[1.57](mn), SLPP=[0.03](%), RAINPALL=[, , , , ](mm/hr), END=-1 ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SC5 curve number CN=[81], Pervious surfaces: IApper[4.67](mn), SLPP=[1.5](%), Impervious surfaces: IApper[4.67](mn), SLPP=[1.5](%), Impervious surfaces: IApmp=[1.57](mn), SLPP=[1.5](%), Impervious surfaces: IApmp=[1.57](mn), SLPP=[0.0](mi Impervious surfaces: IAmmp=[1.57](mn), SLPP=[0.61](%), LGP=[20.0](m), MMP=[0.25], SCD=[0.0](mi Impervious surfaces: IAmmp=[1.57](mn), SLPT=[0.61](%), LGP=[20.0](m), MMP=[1.00], SCD=[0.0](%), ID=um=[8], NHYD=["000"], IDs to add=[6+7] ID=um=[8], NHYD=["000"], IDs to add=[5+8] IDout=[10], NHYD=["00NP"], IDin=[9], RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE ) values ( 0.000, 0.0000) [ 0.000, 0.0000] [ 0.023, 0.03701] [ 0.233, 0.3971] [ 0.233, 0.4371] [ 0.465, 0.4631] [ 0.531, 0.4651] [ 0.531, 0.4631] [ 0.532, 0.4274] [ 1.860, 1.0040] [ 1.860, 1.0040] [ 1.860, 1.0040]</pre></td> <th>00218&gt; 00229&gt; 00220&gt; 00222&gt; 00222&gt; 00222&gt; 00223&gt; 00225&gt; *%</th> <td><pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre></td>	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SC5 curve number CN=[81], Pervious surfaces: IAbper[4.67](mn), SLPP=[0.7](%), Impervious surfaces: IAbmp=[1.57](mn), SLPP=[0.03](%), RAINPALL=[, , , , ](mm/hr), END=-1 ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SC5 curve number CN=[81], Pervious surfaces: IApper[4.67](mn), SLPP=[1.5](%), Impervious surfaces: IApper[4.67](mn), SLPP=[1.5](%), Impervious surfaces: IApmp=[1.57](mn), SLPP=[1.5](%), Impervious surfaces: IApmp=[1.57](mn), SLPP=[0.0](mi Impervious surfaces: IAmmp=[1.57](mn), SLPP=[0.61](%), LGP=[20.0](m), MMP=[0.25], SCD=[0.0](mi Impervious surfaces: IAmmp=[1.57](mn), SLPT=[0.61](%), LGP=[20.0](m), MMP=[1.00], SCD=[0.0](%), ID=um=[8], NHYD=["000"], IDs to add=[6+7] ID=um=[8], NHYD=["000"], IDs to add=[5+8] IDout=[10], NHYD=["00NP"], IDin=[9], RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE ) values ( 0.000, 0.0000) [ 0.000, 0.0000] [ 0.023, 0.03701] [ 0.233, 0.3971] [ 0.233, 0.4371] [ 0.465, 0.4631] [ 0.531, 0.4651] [ 0.531, 0.4631] [ 0.532, 0.4274] [ 1.860, 1.0040] [ 1.860, 1.0040] [ 1.860, 1.0040]</pre>	00218> 00229> 00220> 00222> 00222> 00222> 00223> 00225> *%	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre>
#2> **       #2> *       #4> *       #5>       #5>       #5>       #6>       #6>       #6>       #6>       #6>       #6>       #6>       #6>       #6>       #6>       #6>       #6>       #6>       #6>       #6>       #6>       #6>       #6>       #6>       #6>       #6>       #6>       #6>       #6>       #100       #6>       #100       #100       #100       #100       #100       #100       #100       #100       #100       #100       #100       #100       #100       #100       #100       #100       #100       #100       #100       #100       #100       #100       #100       #100       #100       #100       #100       #100       #100       #100       #100 <td><pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SC5 curve number CN=[81], Pervious surfaces: IAbper[4.67](mn), SLPP=[0.7](%), Impervious surfaces: IAbmp=[1.57](mn), SLPP=[0.03](%), RAINPALL=[, , , , ](mm/hr), END=-1 ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SC5 curve number CN=[81], Pervious surfaces: IApper[4.67](mn), SLPP=[1.5](%), Impervious surfaces: IApper[4.67](mn), SLPP=[1.5](%), Impervious surfaces: IApmp=[1.57](mn), SLPP=[1.5](%), Impervious surfaces: IApmp=[1.57](mn), SLPP=[0.0](mi Impervious surfaces: IAmmp=[1.57](mn), SLPP=[0.61](%), LGP=[20.0](m), MMP=[0.25], SCD=[0.0](mi Impervious surfaces: IAmmp=[1.57](mn), SLPT=[0.61](%), LGP=[20.0](m), MMP=[1.00], SCD=[0.0](%), ID=um=[8], NHYD=["000"], IDs to add=[6+7] ID=um=[8], NHYD=["000"], IDs to add=[5+8] IDout=[10], NHYD=["00NP"], IDin=[9], RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE ) values ( 0.000, 0.0000) [ 0.000, 0.0000] [ 0.023, 0.03701] [ 0.233, 0.3971] [ 0.233, 0.4371] [ 0.465, 0.4631] [ 0.531, 0.4651] [ 0.531, 0.4631] [ 0.532, 0.4274] [ 1.860, 1.0040] [ 1.860, 1.0040] [ 1.860, 1.0040]</pre></td> <th>00218&gt; 00229&gt; 00220&gt; 00222&gt; 00222&gt; 00222&gt; 00223&gt; 00225&gt; *%</th> <td><pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre></td>	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SC5 curve number CN=[81], Pervious surfaces: IAbper[4.67](mn), SLPP=[0.7](%), Impervious surfaces: IAbmp=[1.57](mn), SLPP=[0.03](%), RAINPALL=[, , , , ](mm/hr), END=-1 ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SC5 curve number CN=[81], Pervious surfaces: IApper[4.67](mn), SLPP=[1.5](%), Impervious surfaces: IApper[4.67](mn), SLPP=[1.5](%), Impervious surfaces: IApmp=[1.57](mn), SLPP=[1.5](%), Impervious surfaces: IApmp=[1.57](mn), SLPP=[0.0](mi Impervious surfaces: IAmmp=[1.57](mn), SLPP=[0.61](%), LGP=[20.0](m), MMP=[0.25], SCD=[0.0](mi Impervious surfaces: IAmmp=[1.57](mn), SLPT=[0.61](%), LGP=[20.0](m), MMP=[1.00], SCD=[0.0](%), ID=um=[8], NHYD=["000"], IDs to add=[6+7] ID=um=[8], NHYD=["000"], IDs to add=[5+8] IDout=[10], NHYD=["00NP"], IDin=[9], RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE ) values ( 0.000, 0.0000) [ 0.000, 0.0000] [ 0.023, 0.03701] [ 0.233, 0.3971] [ 0.233, 0.4371] [ 0.465, 0.4631] [ 0.531, 0.4651] [ 0.531, 0.4631] [ 0.532, 0.4274] [ 1.860, 1.0040] [ 1.860, 1.0040] [ 1.860, 1.0040]</pre>	00218> 00229> 00220> 00222> 00222> 00222> 00223> 00225> *%	<pre>[ 1.532, 3.4096 ] [ 1.650, 3.7240 ] [ 2.409, 4.0442 ] [ 3.669, 4.3702 ] [ -1 , -1 ] (max twenty pts) -1</pre>

J. L. Richards & Associates Limited

00049:

00011> 00012> 00013> 00014> 00015> 00016> 00018> 00017> 00018> 00019> 00020> 00020> 00021> 00022> 00023> 00024> 00025> 00025> +++++++ ++++++++ Licensed user: J. L. Richards & Associates Limitod +++++++ Ottawa SERIAL#:4418403 ++++++ 

 00155>
 SUB-AREA No.2

 00155>
 SUB-AREA No.2

 00165>
 CAXIB STANDBYD
 Area (ha)=
 1.54

 00165>
 02:020
 DF= 2.50
 Total Imp(8)=
 92.00
 Dir. Conn. (%)=
 92.00

 0162>
 DIF= 2.50
 Total Imp(8)=
 92.00
 Dir. Conn. (%)=
 92.00

 0162>
 IMPERVIOUS
 PERVIOUS (i)
 0162>
 0165
 Daps. Storage (ma)=
 1.42
 .12

 00165>
 Dups. Storage (ma)=
 1.57
 4.67
 00165
 Length (m)=
 2.44.34
 5.00

 00165>
 Mannings n
 .030
 030
 030
 030

 00028> 00027> 00028> 00029> 00030> 00031> 00032> ***** 
 *******
 ++++++
 PROGRAM ARRAY DIMENSIONS ++++++

 *******
 Maximum value for ID numbers : 10
 ******

 Max. number of rainfall points: 15000
 *******

 Max. number of flow points : 15000
 *******
 00164> 00165> 00166> 00167> 00168> 00169> 00170> 00171> 00172> 00173> 00174> 00175> 00033> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 106.70 74.64 7.50 10.00 8.65 (ii) 9.44 (ii) 7.50 10.00 .14 .12 00037>
DETAILEDOUTPUT
DETAILEDOUTPUT
DATE: 2009-05-15
TIME: 09:03:53
RUN COUNTER: 000200
O0040>
TINPUT filename: V:\2098.DUVENC\FINALS-1\SUNGHYM-1\July1979.out
O0041>
User comments:
User comments:
User comments:
O0045
In:
D0045
I:
D0045
I:
D0045
I:
D0045
II:
D0045
I *TOTALS* .367 (iii) 1.542 84.248 88.857 00175> 00176> 00177> 00178> 00179> 00180> 00181> 00182> PEAK FLOW (cms) = TIME TO PEAK {hrs} = RUNOFF VOLUME (mm) = TOTAL RAINFAL (mm) = RUNOFF COEFFICIENT = .35 1.54 87.29 88.86 .98 .02 1.63 49.30 88.86 .55 .948 (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 00182> 00183> 00184> 00185> 00185> 00186> 00187> (i) IN PROLEDURE SELECTED FOR PERVIOUS LOSSES:
 CN*= 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEPTCIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE EASEFLOW IF ANY. 00048> 00048> 00050 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0001-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000-00550 * 001:0000 
 Oligo
 Non-Active No.3

 O0129
 CALEB STANDHYD |
 Area (ha)= 1.40

 O0139> | CALEB STANDHYD |
 Total Imp(%)= 97.00
 Dir. Conn.(%)= 97.00

 D0139> ------ IMPERVIOUS PERVIOUS (i)
 Dir. Conn.(%)= 97.00

 D0139> ----- IMPERVIOUS PERVIOUS (i)
 Dir. Conn.(%)= 97.00

 D0139> ----- IMPERVIOUS PERVIOUS (i)
 Dir. Conn.(%)= 97.00

 D0139> Dep. Storage (mm)= 1.57
 4.67
 00199>

 O0200> Length (m)= 225.63
 5.00
 00200>

 D0202> Mannings n = .030
 .030
 0200
 00198> 00200> 00201> 00202> 00202> 00203> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 106.70 74.64 7.50 10.00 8.20 (ii) 8.98 (ii) 7.50 10.00 .14 .12 00204> 00205> 00206> 00207> 00208> .01 1.63 49.30 88.86 .55 *TOTALS* .344 (iii) 1.542 86.147 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nmn) = TOTAL RAINFALL (nmm) = RUNOFF COEFFICIENT = .34 1.54 87.29 88.86 .98 00209> 00210> 00076> 00211> 00212> 00213> 00214> 00215> 86.147 88.857 * CALCULATION OF JULY 1st 1979 STORM EVENT * (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 00216> 00217> 00217> 00218> 00219> (i) CN FROCEDURE SELECTED FOR FERVIOUS LOSSES:
 (CN * 810.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00220> 
 00065
 001:0002 

 000685
 001:0002 

 000685
 Pilename: V:\20983.DU\ENG\FINALS-1\SWMMYM-1\JUL_1

 000685
 001:0002 

 000685
 Comments: HISTORICAL STORM - JULY 1, 1979

 00092>
 TIME

 00092>
 TIME

 00092>
 TIME

 00093>
 hrs

 000945
 .00

 000945
 .01

 000945
 .02

 00095
 .03

 00095
 .03

 00097
 .33

 00097
 .35

 0001
 1.63

 00097
 .35

 00097
 .35

 0001
 1.26

 00097
 .35

 .60
 1.25

 .60
 1.25

 .60
 1.26

 .60
 2.00

 .63
 38.100

 .63
 38.100

 .63
 38.100

 .63
 38.100

 .63
 38.100

 .63
 00226> 00227> 00228> 00229> 00230> RAIN RAIN mm/hr 3.800 3.800 3.800 3.800 3.800 3.800 3.800 3.800 00231> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 
 AREA
 QPEAK
 TPEAK
 R.V.

 (ha)
 (cms)
 (hrs)
 (mm)
 (

 1.40
 .344
 1.54
 86.15
 3.61
 .344
 1.54
 82.50

 5.01
 1.188
 1.54
 83.52
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .352
 .35 800 3.800 00102> 00103> 00104> (cms) .000 .000 00238> 00239> 00240> 00241> 00242> _____ 
 00104>
 00104>

 00105>
 0010003 

 00105>
 1028204

 00105>
 1028204

 00105>
 1028204

 00105>
 1028204

 00105>
 1028204

 00105>
 Filefitle=

 102820
 Filefitle=

 10105>
 Filefitle=

 00110>
 Horton's infiltration equation Mar BE BNZEND AFTER COLUMN 60 ----D

 00112>
 Horton's infiltration equation must be BNZEND AFTER COLUMN 60 ----D

 00112
 (For 5.00 mm/hr] (DCA* 2.00 /hr] (F= .00 mm)

 00113>
 Parameters for PERVIOUS surfaces in STANDHTD:

 00114>
 [IAper= 4.67 mm] (LGP=40.00 m) (NMT= .0250]

 00115>
 Parameters used in NASHTD:

 00116>
 [IAimp= 1.57 mm] (CLI= 1.50) (NNI= .035)

 00117>
 Parameters used in NASHTD:

 00118>
 [Ia= 4.67 mm] (M= 3.00]
 00105> 001:0003-----_____ SUM 05:050 5.01 1.188 1.54 83.52 .000 00243> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. -----00245> -----00246> 001:0009---00247> * 0024/> * 00248> * SUB-AREA No.4 Surface Area (ha) = Dep. Storage (mm) = Average Slope (%) = Length (m) = Mannings n = IMPERVIOUS PERVIOUS (1) 00254> .86 1.57 .03 4.67 .70 00255> 1.57 .93 164.82 .030 00256> 00257> 00258> 00259> 00260> 00260> 00262> 00263> 00265> 00265> 00265> 00266> 00267> 001225 * 001225 * 001225 * 001225 * 5UB-AREA No.1 001226 * 5UB-AREA No.1 001225 * SUB-AREA No.1 001225 / CALIE STANDHYD ( Area (ha)= 2.07 001225 / CALIE STANDHYD ( Area (ha)= 84.00 Dir. Conn.(%)= 84.00 00128 + 0.01 Dir. Conn.(%)= 84.00 00129 / CALIE STANDHYD ( Area (ha)= 1.74 (ha)= 1.7 40.00 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 106.70 5.00 5.67 (ii) 5.00 .21 65.89 17.50 17.10 (ii) 17.50 00128> 00129> 00130> 00131> 00132> 00133> 00134> 00135>  $\begin{array}{c} \text{IMPERVIOUS PERVIOUS (i)}\\ \text{Surface Area} & (ha) = & 1.74 & .33\\ \text{Dep. Storage (num)} = & 1.57 & 4.67\\ \text{Average Slope (6) = } & .52 & 1.00\\ \text{Length} & (m) = & 204.72 & 20.00\\ \text{Mannings n} & = & .030 & .250\\ \end{array}$ .07 *TOTALS* .235 (iii) 1.500 86.147 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (nm) = RUNOFF COEFFICIENT = .33 4.67 1.00 20.00 .250 .23 1.50 .00 1.75 00268> 00269> 00270> .30 87.29 88.86 88.86 88.857 . 98 .55 .970

J. L. Richards & Associates Limited

Page 0

#### (V:\...July1979.out)

00406> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (IT) SHOLLD BE SWALLER OR EQUAL THAN THE STGRAGE COEFFICIENT.
 (iii) PERK FLOW DES NOT INCLUDE BASEFLOW IF ANY. 00408> 00408> 00408> 00409> 00410> 00411> 00272> 00273> 00274> 00275> 00276> 00276> 00277> 00278> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY _____ 001:0016--00411> 00412> 00413> 00414> 00414> 00415> 00416> 00416> * SUB-AREA No.2 ------ 
 CALTE STANDHYD
 Area (ha)=
 17.00

 | 03:HIP03 DT=2.50
 Total Imp(%)=
 71.00 Dir. Conn.(%)=
 50.00
 002795 001:0010-----002805 * 002815 * SUB-AREA No.5 002825 ------00283 | CALIE STANDHYD | Area (ha)= 2.66 Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = CALLE STANDHYD | Area (ha)= 2.66 07:070 DT=2.50 | Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 IMPERVIOUS PERVIOUS (i) MPERVIOUS 12.07 1.57 .65 450.00 .030 00418> 00419> 00420> 00421> 00422> 4.93 4.67 1.50 00283> 00284> 00285> 00286> Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS PERVIOUS (1) 1.50 100.00 .250 .08 4.67 1.50 20.00 .250 2.58 1.57 .61 207.25 .030 00287> 00288> 00289> 00423> 00424> 00426> 00426> 00427> 00428> 00427> 00430> 00431> 00431> 00433> 00433> 00434> 00435> 00435> 00436> 00437> 00438> 100.60 125.35 12.50 25.00 11.81 (ii) 23.99 (ii) 12.50 25.00 .09 .05 Max.eff.Inten.(mm/hr)= 00289> 00290> 00291> 00292> 00293> 00293> 00294> 00295> over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = Max.eff.Inten.(mm/hr) = 106.70 70.39 7.50 12.50 7.38 (ii) 13.23 (ii) 7.50 12.50 .15 .09 *TOTALS* 2.923 (iii) 1.667 74.386 88.857 .837 PEAK FLOW (cms) = TIME TO PEAK (hrs) = TUNDEF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNDFF COEFFICIENT = 1.92 1.20 00296> 00297> 1.92 1.63 87.29 88.86 .98 1.20 1.88 61.48 88.86 .69 00298>
00299>
00300> .65 1.54 87.29 88.86 .98 *TOTALS* .01 1.67 49.30 88.86 .55 .665 (iii) 1.542 86.147 88.857 .970 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00301> 00303> 00304> 00304> 00305> 00306> 00307> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: ON* = 81.0 Ia = Dep. Storage (Above) iii) TIME STRP (DT) SHOULD BE SNALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) FERK FLOW DOES NOT INCLUDE RASEFICON IF ANY.
 00440> 00441> 00442> 00442> 00443> 001:0017 00443> -----00308> 00444> * 00445> * SUB-AREA No.3 00320> 00321> NOTE: PEAK F 00322> 00323> -----00324> 001:0012-----NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00456> Max.eff.Inten.(mm/hr)= 00457> 96.53 119.96 15.00 27.50 15.44 (ii) 27.83 (ii) 15.00 ... .07 ... .04 1.64 1.03 1.67 1.92 87.29 61.48 88.86 88.86 .98 .69 96.53 119.96 2----over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 00458> 00459> 00460> 00461> 00461> 00462> 00463> 00464> 00465> 00465> 00466> 00467> *TOTALS* 2.519 (iii) 1.750 74.386 88.857 .837 PEAK FLOW {cms} = TIME TO PEAK {hrs} = RUNOFF VOLUME {mm} = TOTAL RAINFALL {mm} = RUNOFF COEFFICIENT = 00330> 00331> 00332> 00333> 00333> SUM 09:090 8.56 2.084 1.54 84.61 . 000 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00467> 00468> 00469> 00470> 00470> 00471> 00472> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. UU972 O0473> (ill) FLORE. O04745 O04755 O04755 O04765 O04765 O04705 O04705 O04705 IDD NTD (HIP04 IDD 03:HIP03 IDD 03:HIP03 IDD 03:HIP03 IDD 02:923 I.67 74.39 O04825 IDD 03:HIP05 IDD 0.5.60 IDD 1.5.00 IDD 1.5.00 IDD 1.5.00 IDD 1.77 I 00473> E TABLE ------UTFLOW STORAGE (cms) (ha.m.) .593 .6251E+00 UTFLOW STORAGE ( OUTFLOW STORAGE (mms) (ha.m.) ( (cms) (ha.m.) 0000 0000E+00 ( 593 (6511E+00 0017 01311E+00 ( 593 (6511E+00 017 1311E+00 ( 797 7731E+00 023 2831E+00 ( 396 0874E+00 233 3971E+00 ( 1.304 9157E+00 337 4731E+00 ( 1.304 9157E+00 331 455 5491E+00 ( 2.577 1092E+01 531 5871E+00 ( 000 0000E+00 -----00341> 00342> 00343> 00344> 00345> 00346> (cms) .000 .000 00348> 00347> 00348> 00349> 00350> 00351> TPEAK R.V. 
 ROUTING RESULTS
 AREA
 QPEAK
 TPEAK

 INFLOW >09:
 (090)
 8.56
 2.084
 1.542

 OUTFLOW<10:</td>
 (FOND)
 8.56
 .496
 2.125
 00352> 00353> 00354> 00355> 00356> ROUTING RESULTS 84.611 84.607 PEAK FLOW REDUCTION [Qout/Qin](%)= 23.815 TIME SHIFT OP PEAK FLOW (min)= 35.00 MAXIMUM STORAGE USED (ha.m.)=.5671E+00 00357> 00359> 00496> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00368> ------00369> | CALIB STANDRYD | Area (ha)= 19.90 00370> | OliHIPDO DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 00371> ------00372> IMPERVIOUS DEFINITION (%)= 50.00 00372> Surface Area Surface Area (ha)= Dep. Storage. (mm)= Average Slope (%)= Length (m)= Mannings n = Surface Area (ha) = Dep. Storage (mm) = Average Slope (%) = Length (m) = Mannings n = 8.66 1.57 .70 210.00 .030 5.77 4.67 1.50 00373> 00374> 00375> 00376> 00377> 00378> 00379> 00380> 14.13 .60 580.00 .030 100.00 100.00 .200 56.53 119.96 15.00 27.50 14.32 (ii) 26.72 (ii) 15.00 27.50 .08 .04 00512> 00512> 00513> 00514> 00515> 00516> 00517> .035 106.70 131.04 7.50 20.00 7.14 (ii) 19.11 (ii) 7.50 20.00 1.5 .06 1.56 .95 1.54 1.79 87.29 61.48 88.66 88.86 -98 .69 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 00380> 00381> 00382> 00383> 00384> 00385> 00386> 00517> 00518> 00519> 00520> 00521> 00522> 00522> *TOTALS* 3.264 (iii) 1.708 74.386 88.857 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nmn) = TOTAL RAINPALL (mm) = RUNOFF COEFFICIENT = *TOTALS* PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = RUNOFF COEFFICIENT = -TOTALS* 2.287 (iii) 1.583 74.386 88.857 .837 2.14 1.33 00386> 00387> 00388> 00389> 00390> 00391> 00392> 00392> 1,67 87.29 88.86 .98 1.92 61.48 88.86 .69 00523> 00524> 00525> 00526> 00527> 00528> .837 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STOREG COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) THM STEP (T) SNOULD ES NULLER OR EQUAL THAN THE STORAGE COEFTCIENT. (iii) PEAR FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00529> 00530> 00531> 00532> -----00533> 001:0021-----00534> * 00535> *SUB-AREA No.5 DWF (cms) .000 .000 00404>00405> SUM 02:HIP02 28.46 3.642 1.75 77.46 000

J. L. Richards & Associates Limited

#### (V:\...July1979.out)

541>	Unit Hyd Qpeak (cms)= .899
1542>	
1543>	PEAK FLOW (cms) = .721 (i) TIME TO DEBK (brs) = $1.667$
545>	TIME TO PEAK (hrs)= 1.667 RUNOFF VOLUME (mm)= 54.937
546>	TOTAL RAINFALL (mm) = 88,857
547>	PEAK FLOW (cms) 721 (i) TIME TO PEAK (hrs) 1.667 RUNOFF VOLUME (mm) 54.937 TOTAL RAINFALL (mm) 88.857 RUNOFF COEFFICIENT = .618
548>	
549>	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
550>	
552>	001:0022
553>	
554>	ADD HYD (HIP08 )   ID: NHYD AREA QPEAK TPEAK R.V. DWP (ha) (cms) (br.s) (mm) (cms) 1D1 06:HIP06 61.06 9.050 1.74 75.62 .000 +ID2 07:HIP07 12.20 2.287 1.58 74.39 .000 +ID3 08:Pond-B 4.00 .721 1.67 54.94 .000
1555>	
556>	ID1 06:HIP06 61.06 9.050 1.74 75.82 000 +ID2 07:HIP07 12.20 2.287 1.58 74.39 000 +ID3 08:Pond-B 4.00 721 1.67 54.94 000
558>	+1D2 0/:HIP0/ 12.20 2.287 1.58 74.39 .000
559>	
560>	SUM 09:HIP08 77.26 11.944 1.71 74.51 .000
561>	
562> 563>	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
564>	
565>	001:0023
566>	
567>	ROUTE RESERVOIR   Requested routing time step = 1.0 min.
568>	ROUTE RESERVOIR   Requested routing time step = 1.0 min.   IN>09:(HIP08)     OUT<10:(HIP-P0)   ===================================
570>	UUT<10: (HIP-PO)   OUTLFOW STORAGE TABLE ====================================
571>	(ome) $(bam)$ $(come)$ $(bam)$
572>	(cms) (ha.m.) (cms) (ha.m.) .000 .0000E+00   .724 .2210E+01
573> 574>	.048 .5740E-01 .937 .2501E+01
575>	.054 .2434E+00   1.262 .2798E+01 .059 .5034E+00   1.404 .3101E+01
576>	.062 .8400E+00 / 1.532 .3410E+01
577>	.064 $.1102E+01$ 1 1 550 $.3724E+02$
578> 579>	147 1370E+01   2,409 .4044E+01
580>	.147 .1370E+01   2.409 .4044+01 .280 .1644E+01   3.669 .4370E+01 .472 .1924E+01   .000 .00006+00
581>	
582>	ROUTING RESULTS AREA OPEAK TPEAK R.V.
583>	(ha) (cms) (hrs) (mm)
584>	INFLOW >09: (HIPOR) 77.26 11.944 1.708 74.508
584> 585> 586>	ROUTING RESULTS         AREA         QPEAK         TPEAK         R.V.           INFLOW >09:         (HIP08)         (Ans)         (hrs)         (mm)           OUTFLOW<>10:         (HIP-PO)         77.26         11.944         1.708         74.508           OUTFLOW<10:         (HIP-PO)         77.26         2.6666         2.625         74.508
585> 586> 587>	
585> 586> 587> 588>	PEAK FLOW REDUCTION [Qout/Qin] {%}= 22.321 TIME SHIFT OF PEAK FLOW (min)= 55.00
585> 586> 587> 588> 588> 589>	
585> 586> 587> 588> 588> 589> 590> 591>	PEAK FLOW REDUCTION [Qout/Qin] (%)= 22.321 TIME SHIFF OF PEAK FLOW (min)= 55.00 MAXIMUM STORAGE USED (ha.m.)=.4110E+01
585> 586> 587> 588> 588> 589> 590> 591> 591>	PEAK         FLOW         REDUCTION         [Qout/Qin](%)=         2.321           TIME SHIPT OF PEAK FLOW         (min)=         55.00           MAXIMUM         STORAGE         USED         (ha.m.)=.41102+01
585> 586> 587> 588> 589> 590> 590> 591> 592> 593>	PEAK         FLOW         REDUCTION         Qout/Qin} {%} =         22.321           TIME SHIFT OF PEAK FLOW         (min)=         55.00           MAXIMUM         STORAGE         USED         (ha.m.)=         4110E+01           001:0024
585> 586> 587> 588> 589> 590> 591> 591> 592> 592> 593> 593>	PEAK FLOW REDUCTION [Qout/Qin] {%}= 22.321 TIME SHIFT OF PEAK FLOW (min)= 55.00 MAXIMUM STORAGE USED (ha.m.)=.4110E+01 001:0024
585> 586> 586> 588> 590> 591> 592> 593> 593> 594> 595> 596>	PEAK FLOW REDUCTION [Qout/Qin] {%}= 22.321 TIME SHIFT OF PEAK FLOW (min)= 55.00 MAXIMUM STORAGE USED (ha.m.)=.4110E+01 001:0024
585> 586> 586> 587> 588> 590> 591> 592> 593> 594> 595> 596> 596>	PEAK FLOW REDUCTION [Qout/Qin] {%}= 22.321 TIME SHIFT OF PEAK FLOW (min)= 55.00 MAXIMUM STORAGE USED (ha.m.)=.4110E+01 001:0024
585> 586> 588> 588> 590> 591> 592> 592> 594> 595> 596> 596> 598>	PEAK FLOW REDUCTION [Qout/Qin](%)= 22.321 TIME SHIFT OF PEAK FLOW (min)= 55.00 MWAINUM STORAGE USED (ha.m.)=.4110E+01 
585> 586> 586> 588> 590> 5991> 5992> 5992> 5994> 5994> 5994> 5996> 5997> 5997> 5998>	PEAK         FLOW         REDUCTION         [Qout/Qin] (%)=         22.321           TIME SHIFT OF PEAK FLOW         (min)=         55.00           MAXINUM STORAGE         USED         (ha.m.)=         41102+01           001:0024
585> 586> 586> 588> 598> 5992> 5992> 5992> 5994> 5996> 5996> 5998> 5990> 5990>	PEAK FLOW REDUCTION [Qout/Qin] {%}= 22.321 TIME SHIFT OF PEAK FLOW (min)= 55.00 MAXIMUM STORAGE USED (ha.m.)=.4110E+01 001:0024
585> 586> 586> 5889> 5991> 5992> 5992> 5992> 5994> 5996> 5996> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5990> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5900> 5000> 5000> 5000 5000	PEAK         FLOW         REDUCTION         [Qout/Qin] (%)=         22.321           TIME SHIFT OF PEAK FLOW         (min)=         55.00           MAXIMUM STORAGE USED         (ha.m.)=.4110E+01           001:0024
585>>> 586>>> 586>>> 5887>>> 5887>>> 5887>>> 5887>>> 5887>>> 5887>>> 5887>>> 5887>>> 5887>>> 5887>>> 5887>>> 5887>>> 5887>>> 5887>>> 5887>>> 5887>>> 5887>>> 5991>>> 5992>>> 5994>>> 599601>>> 5998>>> 5998>>> 5998>>>> 5998>>>> 5998>>>> 5998>>>> 5998>>>> 5998>>>> 5998>>>> 5998>>>> 5998>>>>> 5998>>>>> 5998>>>>> 5998>>>>>>>>> 5998>>>>>>>>>>	PEAK         FLOW         REDUCTION         [Qout/Qin] (%)=         22.321           TIME SHIFT OF PEAK FLOW         (min)=         55.00           MAXIMUM STORAGE USED         (ha.m.)=.4110E+01           001:0024
585>>> 586>>> 586>>> 5887>>> 5887>>> 5887>>> 5887>>> 5887>>> 5887>>> 5887>>> 5887>>> 5887>>> 5887>>> 5887>>> 5887>>> 5887>>> 5887>>> 5887>>> 5991>>> 5991>>> 5994>>> 5992>>> 599601>>> 5998>>> 59901>>>> 599601>>>> 59901>>>> 599601>>>> 599601>>>> 599601>>>> 599601>>>>	PEAK         FLOW         REDUCTION         [Qout/Qin] (%)=         22.321           TIME SHIFT OF PEAK FLOW         (min)=         55.00           MAXIMUM STORAGE USED         (ha.m.)=.4110E+01           001:0024
585>>> 5886 5887 5889 55889 5599 5599 5599 5599 559	PEAK         FLOW         REDUCTION         [Qout/Qin](%]         22.321           TIME SHIFT OF PEAK FLOW         (min) = 25.00         (min) = 55.00           MAXIMUM         STORAGE         USED         (ha.m.) = 41102+01           001:0024
585>>>> 5586>>>> 55889>>>> 55934>>>> 559999>>>> 5599999 5599999 5599999 5599999 559999 559999 559999 559999 559999 559999 559999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 55999 559990 55999 55999 5599900 55990 55990 55990	PEAK         FLOW         REDUCTION         [Qout/Qin] (%)=         22.321           TIME SHIFT OF PEAK FLOW         (min)=         55.00           MAXIMUM STORAGE USED         (ha.m.)=.4110E+01           001:0024
5885>>>> 55867>>>>> 5588901>>>>> 5599234>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	PEAK         FLOW         REDUCTION         [Qout/Qin](%]         22.321           TIME SHIFT OF PEAK FLOW         (min) = 25.00         (min) = 55.00           MAXIMUM         STORAGE         USED         (ha.m.) = 41102+01           001:0024
585>> 5586>> 5587> 5593> 5593> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 55955> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595	PEAK FLOW REDUCTION [Qout/Qin](%)= 22.321 TIME SHIPT OF PEAK FLOW (min)= 25.00 MAXIMUM STORAGE USED (ha.m.)=.41102+01 
585>> 586>> 588>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 590>> 500> 500	PEAK         FLOW         REDUCTION         [Qout/Qin] (%)=         22.321           TIME SHIFT OF PEAK FLOW         (min)=         55.00           MAXINUM         STORAGE         USED         (ha.m.)=.41102+01           001:0024
585>> 586>> 588>> 588> 588> 599> 599> 599> 599> 5	PEAK         FLOW         REDUCTION         [Qout/Qin](\$] = 25.321           TIME SHIPT OF PEAK FLOM         (min] = 55.00           MAXIMUM         STORAGE         USED           001:0024
585>> 5863> 5883> 5883> 5583> 5583> 5593> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 55955> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595	PEAK         FLOW         REDUCTION         [Qout/Qin](\$] = 25.321           TIME SHIPT OF PEAK FLOM         (min] = 55.00           MAXIMUM         STORAGE         USED           001:0024
585>> 5863> 5883> 5883> 5883> 5893> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5993> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913> 5913 5913 5913> 5913 5913> 5913> 5913> 5913> 5913> 5913> 5913> 591	PEAK         FLOW         REDUCTION         [Qout/Qin](\$] = 25.321           TIME SHIPT OF PEAK FLOM         (min] = 55.00           MAXIMUM         STORAGE         USED           001:0024
585>> 5863> 5883> 5883> 590> 591>> 5923> 593> 59555 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 595959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959> 5959 5959 5959 5959 5959 5959 5959 595959 5959 5959 595959 5959 595959 5	PEAK         FLOW         REDUCTION         [Qout/Qin](\$] = 25.321           TIME SHIPT OF PEAK FLOM         (min] = 55.00           MAXIMUM         STORAGE         USED           001:0024
585>>>586>>586>>588>>588>>588>>588>>588	PEAK         FLOW         REDUCTION         [Qout/Qin] (%) =         22.321           TIME SHIFT OF PEAK FLOW         (min) =         55.00           MAXIMUM         STORAGE         USED         (ha.m.) =         41102401           001:0024
585>>>586>>586>>588>>588>>588>>588>>588	PEAK         FLOW         REDUCTION         [Qout/Qin](%] = 22.321 (min] = 25.00 (max.hum           MAXIMUM         STORAGE         USED         (max.] = 4.1102+01           001:0024
585>> 5887>> 55887> 55889>> 55889> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 5593> 55933> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 55935> 559555 55955 55955 559555 559555 559555 559555 559555555	PEAK         FLOW         REDUCTION         [Qout/Qin] (%) = 22.321           THE SHIFT OF PEAK FLOW         (min) = 55.00           MAXIMUM         STORAGE         USED         (ha.m.) = .41105401           001:0024
585>>>595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595>>5595	PEAK         FLOW         REDUCTION         [Qout/Qin] (%) =         22.321           TIME SHIFT OF PEAK FLOW         (min) =         55.00           MAXIMUM         STORAGE         USED         (ha.m.) =         41102401           001:0024
585>>588>>588>>588>>5588>>5588>>5598>>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>5595>55955>55955>559555555	PEAK         FLOW         REDUCTION         [Qout/Qin](6)         22.321           MAXIMUM         STORAGE         USED         (min)         55.00           MAXIMUM         STORAGE         USED         (ha.m.)41102+01           001:0024
5856>> 5585>> 5588>> 5590>> 5590>> 5590>> 5590>> 5590>> 5590>> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 559522> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952> 55952 55952> 55952 55952> 55952 55952> 55952 55952> 55952 55952 55952 55952 55952 55952 55952 55952 55952 55952 55952 55952 5	PEAK         FLOW         REDUCTION         [Qout/Qin] (%) = 22.321           TIME SHIFT OF PEAK FLOW         (min) = 55.00           MAXIMUM         STORAGE         USED         (ha.m.) = .4110E+01           001:0024
58555555555555555555555555555555555555	PEAK         FLOW         REDUCTION         [Qout/Qin](%]         22.321 (min]         25.00 (ha.m.)           001:0024
5856>>>559555555555555555555555555555555	PEAK         FLOW         REDUCTION         [Qout/Qin](\$] = 2.221 (min] = 55.00 (max.hum           MAXIMUM         STORAGE         USED         (ma.) = 41102+01           001:0024
5856>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5595>>> 5525>>> 5595>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>> 5525>>>	PEAK         FLOW         REDUCTION         [Qout/Qin] (%) = 22.321 (min) = 55.00 (man) = 55.00 (man) = 55.00 (man) = 55.00 (man) = 4.100+01           001:0024
5867>>> 5985>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995>> 5995> 5995> 5995> 5995> 5995> 5995 5995> 5995> 5995> 5995> 5995>	PEAK         FLOW         REDUCTION         [Qout/Qin] (%) = 22.321           MAXIMUM         STORAGE         USED         (hn.n.) = .41102+01           001:0024
58565555555555555555555555555555555555	PEAK         FLOW         REDUCTION         [Qout/Qin](\$) = 22.321 (min] = 25.00 (max.block           001:0024
5855 5585> 5585> 5588> 5588> 5591> 5592> 5592> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595> 5595 5595> 5595 5595> 5595 5595> 5595 5595 5595 5595 5595> 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 5595 557	PEAK         FLOW         REDUCTION         [Qout/Qin](\$) = 22.321 (min] = 25.00 (max.block           001:0024

J. L. Richards & Associates Limited



# Appendix A-2 MOE Certificate of Approval Hawthorne Industrial Park





Ministry of the Environment Ministère de l'Environnement



# CERTIFICATE OF APPROVAL MUNICIPAL AND PRIVATE SEWAGE WORKS NUMBER 4660-7UNPRJ Issue Date: November 9, 2009

Tomlinson Development Corporation 5597 Power Rd Ottawa, Ontario K1G 3N4

Site Location: Hawthorne Industrial Park (HIP) - Phase 1 Lot 26 and 27, Concession 6 (R.F.) City of Ottawa, Ontario

# You have applied in accordance with Section 53 of the Ontario Water Resources Act for approval of:

the establishment of sewage works for the collection, transmission, treatment and disposal of stormwater runoff from a catchment area of approximately 70 hectares, servicing the Hawthorne Industrial Park, located immediately southeast of the Hawthorne Road/Rideau Road intersection in the City of Ottawa, to provide partial water quality protection (Normal Protection Level) and to attenuate post-development peak flows to pre-development levels, discharging to Findlay Creek, which is a tributary to the North Castor River, for all storm events up to and including the 100 year return storm, consisting of the following stormwater works:

# Stormwater Management System

# Outlet No. 1, HIP to a dry pond facility (Service area of 69.81 ha):

- A dry pond facility to provide quantity control by attenuating post development peak flows to pre-development levels for all storm events up to and including the 100 year return storm, having a design minimum liquid retention volume of approximately 37,240 m³ at elevation 86.15 m (0.23 m above 100-year surface pond elevation), with side slopes of 4:1, and servicing approximately 69.81 hectares, which includes Orgaworld Canada Ltd's stormwater treated effluent (10.14 ha). The SWM pond is designed to provide a controlled maximum discharge flow rate of 1,531 L/s for the 100-year storm event, discharging to Findlay Creek; and equipped with:
  - An outlet structure consisting of a 150 mm diameter orifice within a 200 mm diameter polyvinyl chloride (PVC) pipe at an invert elevation of 82.90 m, which serves as outlet to the facility;
  - Two (2) 600 mm diameter corrugated steel pipe (CSP) culvert placed at an invert elevation of 84.80 m, which also serves as an outlet to the facility; and
  - An emergency spillway of 0.35 m deep with a 6.0 m wide base to convey surface flow toward the

receiving channel during extreme storm events.

Storm Events (catchment for Outlet #1 – 70 ha)	2-year	5-year	25-year	100-year
Existing flows, pre-development (m ³ /s.)	0.467	0.826	1.468	2.093
Post-development flows (m ³ /s)	3.077	4.812	7.772	10.662
Post-development attenuated flows (m ³ /s)	0.194	0.359	0.939	1.531

• The simulated modelling estimate and drainage pattern draining to Outlet No.1 is as follows:

- A new roadside ditch system draining to the dry pond facility, equipped with CSP culverts and approximately 1,755 m of 200 mm diameter HDPE perforated pipe sub-drains and clear stone bedding wrapped in geotextile located at the base of the ditches to meet a Normal water quality Protection Level (70% Total Suspended Solids removal) for the contributing catchment area of 1.58 ha which includes the paved portion of the industrial park road network located within the subdivision right-of-way as per the SWM Report (J.L.Richards, 2009).
- The requirement for quality protection for the remaining 68.23 ha is provided by the individual industrial lots within HIP as per the following Certificates of Approval (this list will be amended as future CofAs for other lots within HIP are developed, as per Condition 7 of this Certificate):
  - CofA # 9465-7NVRWT, issued on September 16, 2009, providing Normal water quality Protection Level for 10.14 ha.

# Outlet No.2, to Findlay Creek (Service area of 39.16 ha):

• A new roadside ditch system draining to Findlay Creek via an existing roadside ditch located adjacent to Rideau Road, servicing a catchment area along the Hawthorne Road extension and includes the Tomlinson Quarry, as per the SWM Report (J.L.Richards, 2009). This service area is not part of the HIP site.

All including erosion/sedimentation control measures during construction and all other controls and appurtenances essential for the proper operation of the aforementioned *Works*;

all in accordance with the following supporting documents:

- 1. <u>Application for Approval of Industrial Sewage Works</u> submitted by Domenic Idone, P.Eng., Planning Engineer of Tomlinson Development Corporation, dated March 12, 2009, and received on June 8, 2009;
- 2. Stormwater Management Report Hawthorne Industrial Park, dated February 2009 (revised May 2009), and prepared by J.L Richards & Associates Limited.
- 3. Geotechnical Study Subdivision Plan Hawthorne Industrial Park, Lots 26 and 27, Concession 6, Southeast of Hawthorne and Rideau Roads, Ottawa, dated May 4, 2009, and prepared by

Inspec-Sol Inc.

- 4. Certificate of Approval 6924-5YWQ3U, issued on May 19, 2004, for R.W. Tomlinson Limited for a lagoon system to treat sewage from the Tomlinson Quarry.
- 5. s.53 OWRA Certificate of Approval, Orgaworld Canada Ltd. (9465-7NVRWT, issued on September 16, 2009).
- 6. Revised Fish Habitat Ehnacement Strategy Hawthorne Industrial Park Stormwater Management Pond, prepared by Stantec (Jacques Whitford Stantec Limited), dated May 13, 2009.
- 7. Clearance Letter from the South Nation Conservation dated May 26, 2009, issued to the City of Ottawa for the Tomlinson / Hawthorne Industrial Park Subdivision.
- 8. Emails from Derrick P. Upton, P.Eng., of J.L. Richards & Associates Limited to Edgardo Tovilla, P.Eng., of the MOE, dated August 7 & 11, 2009, with additional information requested.
- 9. Letter from Derrick P. Upton, P.Eng., of J.L. Richards & Associates Limited to Edgardo Tovilla, P.Eng., of the MOE, dated August 31, 2009, with additional information requested.
- 10. Email from Tim Chadder of J.L. Richards & Associates Limited to Edgardo Tovilla, P.Eng., of the MOE, dated October 9, 2009, with final comments to the CofA.

For the purpose of this Certificate of Approval and the terms and conditions specified below, the following definitions apply:

"*Certificate* " means this entire certificate of approval document, issued in accordance with Section 53 of the <u>Ontario Water Resources Act</u>, and includes any schedules;

"*Director* " means any *Ministry* employee appointed by the Minister pursuant to section 5 of the <u>Ontario</u> Water Resources Act;

"District Manager " means the District Manager of the Ottawa District Office of the Ministry ;

"Ministry " means the Ontario Ministry of the Environment;

"Owner " means Tomlinson Development Corporation and includes its successors and assignees; and

"*Works* " means the sewage works described in the *Owner* 's application, this *Certificate* and in the supporting documentation referred to herein, to the extent approved by this *Certificate*.

You are hereby notified that this approval is issued to you subject to the terms and conditions outlined below:

# **TERMS AND CONDITIONS**

# 1. <u>GENERAL PROVISIONS</u>

(1) Except as otherwise provided by these Conditions, the *Owner* shall design, build, install, operate and maintain the *Works* in accordance with the description given in this *Certificate*, the application for approval of the works and the submitted supporting documents and plans and specifications as listed in this *Certificate*.

(2) Where there is a conflict between a provision of any submitted document referred to in this *Certificate* and the Conditions of this *Certificate*, the Conditions in this *Certificate* shall take precedence, and where there is a conflict between the listed submitted documents, the document bearing the most recent date shall prevail.

(3) Where there is a conflict between the listed submitted documents, and the application, the application shall take precedence unless it is clear that the purpose of the document was to amend the application.

# 2. EXPIRY OF APPROVAL

The approval issued by this *Certificate* will cease to apply to those parts of the *Works* which have not been constructed within five (5) years of the date of this *Certificate*.

# 3. CHANGE OF OWNER

The *Owner* shall notify the *District Manager* and the *Director*, in writing, of any of the following changes within thirty (30) days of the change occurring:

- (a) change of Owner;
- (b) change of address of the Owner;

(c) change of partners where the *Owner* is or at any time becomes a partnership, and a copy of the most recent declaration filed under the <u>Business Names Act</u>, R.S.O. 1990, c.B17 shall be included in the notification to the *District Manager*; and

(d) change of name of the corporation where the *Owner* is or at any time becomes a corporation, and a copy of the most current information filed under the <u>Corporations Information Act</u>, R.S.O. 1990, c. C39 shall be included in the notification to the *District Manager*.

# 4. <u>OPERATION AND MAINTENANCE</u>.

(1) The *Owner* shall ensure that the design minimum liquid retention volume(s) is maintained at all times.

(2) The Owner shall inspect the Works at least once a year and, if necessary, clean and maintain the

Works to prevent the excessive build-up of sediments and/or vegetation.

(3) The *Owner* shall maintain a logbook to record the results of these inspections and any cleaning and maintenance operations undertaken, and shall keep the logbook at the Owner's office for inspection by the *Ministry*. The logbook shall include the following:

(a) the name of the *Works*;

(b) the date and results of each inspection, maintenance, monitoring reports and cleaning, including an estimate of the quantity of any materials removed; and

(c) the date of each spill within the catchment area, including follow-up actions / remedial measures undertaken.

(4) The *Owner* shall operate the *Works* with an objective of achieving Normal water quality Protection Level (70% long-term Total Suspended Solids removal) for the portion of the land being treated with the proposed Works.

# 5. MONITORING AND RECORDING

The *Owner* shall, upon commencement of operation of the *Works*, carry out the following monitoring program:

(1) All samples and measurements taken for the purposes of this *Certificate* are to be taken at a time and in a location characteristic of the quality and quantity of the effluent stream over the time period being monitored.

(2) For the purposes of this condition, Semi-annually means once twice per year;

(3) Samples shall be collected at the following sampling points, at the frequency specified, by means of the specified sample type and analyzed for each parameter listed and all results recorded:

	Table 1 - Surface Water Monitoring
Sample location: a	at the inlet of the dry pond facility
Frequency	Semi-annually; at least once being for the snowmelt freshets and another being 72 hours after the fall of precipitation of more than 25 mm.
Sample Type	Grab
Parameters	<i>CBOD5</i> , Total Suspended Solids, Total Phosphorus, <i>E. Coli</i> , pH, Temperature, Acute Lethality.

(4) The methods and protocols for sampling, analysis and recording shall conform, in order of precedence, to the methods and protocols specified in the following:

(a) the Ministry's Procedure F-10-1, "Procedures for Sampling and Analysis Requirements for Municipal and Private Sewage Treatment Works (Liquid Waste Streams Only), as amended from

time to time by more recently published editions;

(b) the Ministry's publication "Protocol for the Sampling and Analysis of Industrial/Municipal Wastewater" (January 1999), ISBN 0-7778-1880-9, as amended from time to time by more recently published editions;

(c) the publication "Standard Methods for the Examination of Water and Wastewater" (21st edition), as amended from time to time by more recently published editions;

(d) the Environment Canada publications "Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to Rainbow Trout" (July 1990) and "Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to <u>Daphnia magna</u>" (July 1990), as amended from time to time by more recently published editions; and,

(6) The measurement frequencies and the overall monitoring program specified in subsection (3) are minimum requirements which may, after three (3) years of monitoring in accordance with this Condition or after a minimum 75% build-up of the site, whichever occurs first, be modified by the *District Manager* in writing from time to time.

(7) The *Owner* shall retain for a minimum of three (3) years from the date of their creation, all records and information related to or resulting from the monitoring activities required by this *Certificate*.

(8) The *Owner* shall enter into an agreement with the owner of the composting facility located within HIP, located at Part of Lot 27, Concession 6, 5123 Hawthorne Road, for the long-term acess to private wells for its operation, maintenance and testing to ensure that the provisions of a groundwater monitoring program can be administered. A copy of such Agreement shall be provided to the *District Manager* prior to the commencement of operation of the *Works*.

# 6. <u>RECORD KEEPING</u>

The *Owner* shall retain for a minimum of five (5) years from the date of their creation, all records and information related to or resulting from the operation and maintenance and activities required by this *Certificate*.

# 7. SPECIAL CONDITION

(1) The *Owner* shall ensure through the Site Plan Approval process that individual lots developed within the industrial park will obtain a approval, in accordance with section 53 of the OWRA, before discharging into the roadside ditches and ultimately to the dry pond facility.

(2) The *Owner* shall not approve any additional flow from storm sewers, catchbasin leads, and storm service drains to the individual industrial plots to connect with the dry pond <u>unless this Certificate of Approval is amended</u> with adequate quality treatment proposed via provision of additional sewage treatment works, best management practices and hydraulic capacity servicing them has been designed and reviewed by the Ministry concluding that the additional quality of stormwater will not overload the

downstream collection system, pond and/or alter the stormwater quality of effluent discharged to the receiver of this *Certificate*.

# The reasons for the imposition of these terms and conditions are as follows:

- 1. Condition 1 is imposed to ensure that the *Works* are built and operated in the manner in which they were described for review and upon which approval was granted. This condition is also included to emphasize the precedence of Conditions in the *Certificate* and the practice that the Approval is based on the most current document, if several conflicting documents are submitted for review.
- 2. Condition 2 is included to ensure that the *Works* are constructed in a timely manner so that standards applicable at the time of Approval of the *Works* are still applicable at the time of construction, to ensure the ongoing protection of the environment
- 3. Condition 3 is included to ensure that the *Ministry* records are kept accurate and current with respect to approved works and to ensure that subsequent owners of the works are made aware of the certificate and continue to operate the works in compliance with it.
- 4. Condition 4 is included to require that the *Works* be properly operated and maintained such that the environment is protected.
- 5. Conditions 5 and 7 are included to enable the *Owner* to evaluate and demonstrate the performance of the *Works*, on a continual basis, so that the *Works* are properly operated and maintained at a level which is consistent with the design objectives specified in the *Certificate* and that the *Works* does not cause any impairment to the receiving watercourse.
- 6. Condition 6 is included to require that all records are retained for a sufficient time period to adequately evaluate the long-term operation and maintenance of the *Works*.

In accordance with Section 100 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, Chapter 0.40, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 101 of the <u>Ontario Water Resources Act</u> , R.S.O. 1990, Chapter 0.40, provides that the Notice requiring the hearing shall state:

- 1. The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to <u>eachportion</u> appealed.

# The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The Certificate of Approval number;
- 6. The date of the Certificate of Approval;
- 7. The name of the Director;
- 8. The municipality within which the works are located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

 The Secretary*
 The Director

 Environmental Review Tribunal
 Section 53, Ontario Water Resources Act

 655 Bay Street, 15th Floor
 Ministry of the Environment

 Toronto, Ontario
 AND

 M5G 1E5
 Toronto, Ontario

 M4V 1L5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted sewage works are approved under Section 53 of the Ontario Water Resources Act.

DATED AT TORONTO this 9th day of November, 2009

ONNO	551	1			
Contract Property and Aller	VI		9,	200	9
		_	20		
	(5	Signe	d)	UK ADAMA SALT INTERNATION TO A DATA SALT IN A DATA	14080-cm

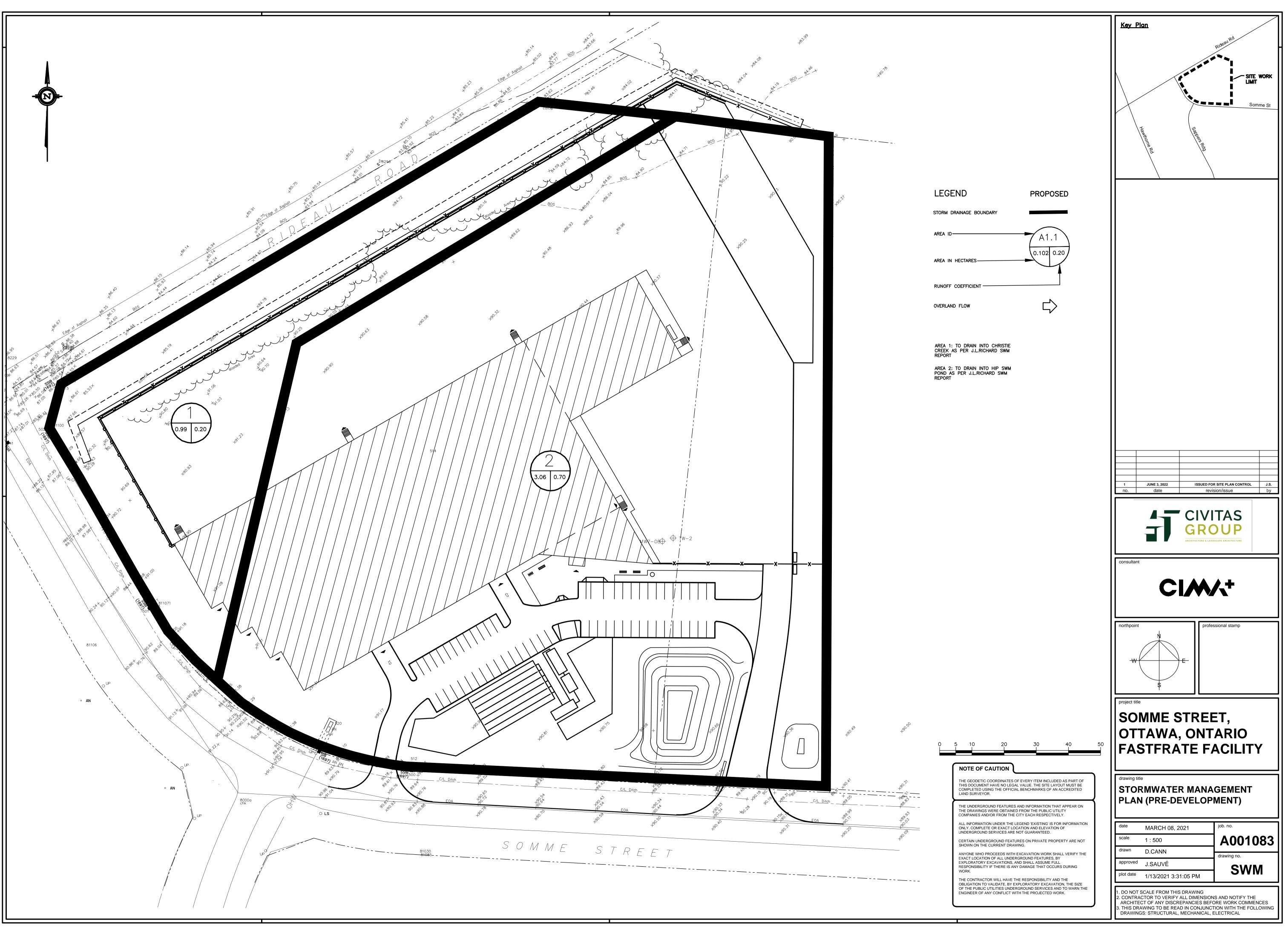
auror

Mansoor Mahmood, P.Eng. Director Section 53, *Ontario Water Resources Act* 

ET/

c: District Manager, MOE Ottawa District Office Derrick Upton, P.Eng., J.L. Richards & Associates Limited √



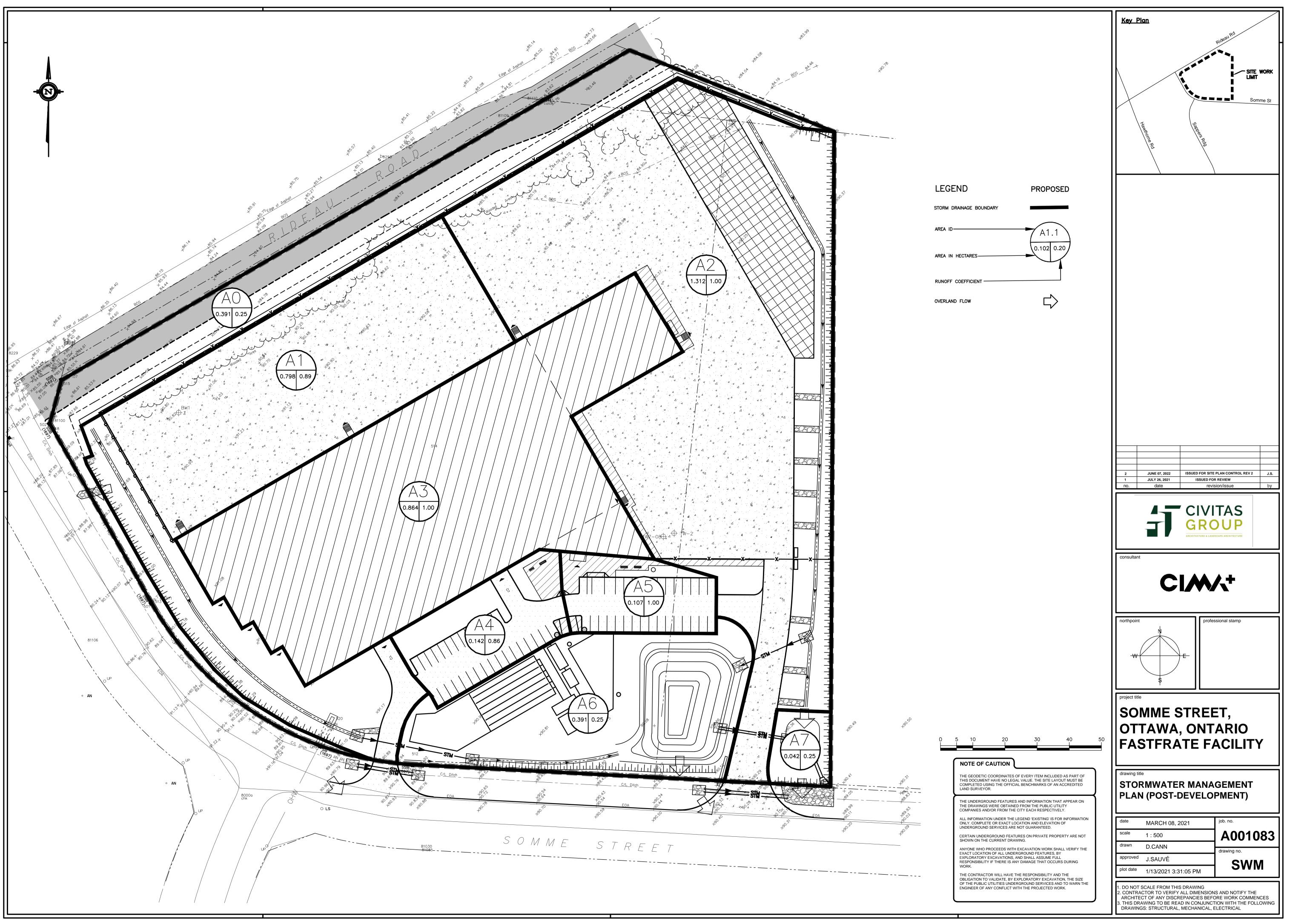

J.L. Richards & Associates Limited OTTAWA OFFICE



# Appendix B-1 SWM DRAWING PRE-DEVELOPMENT





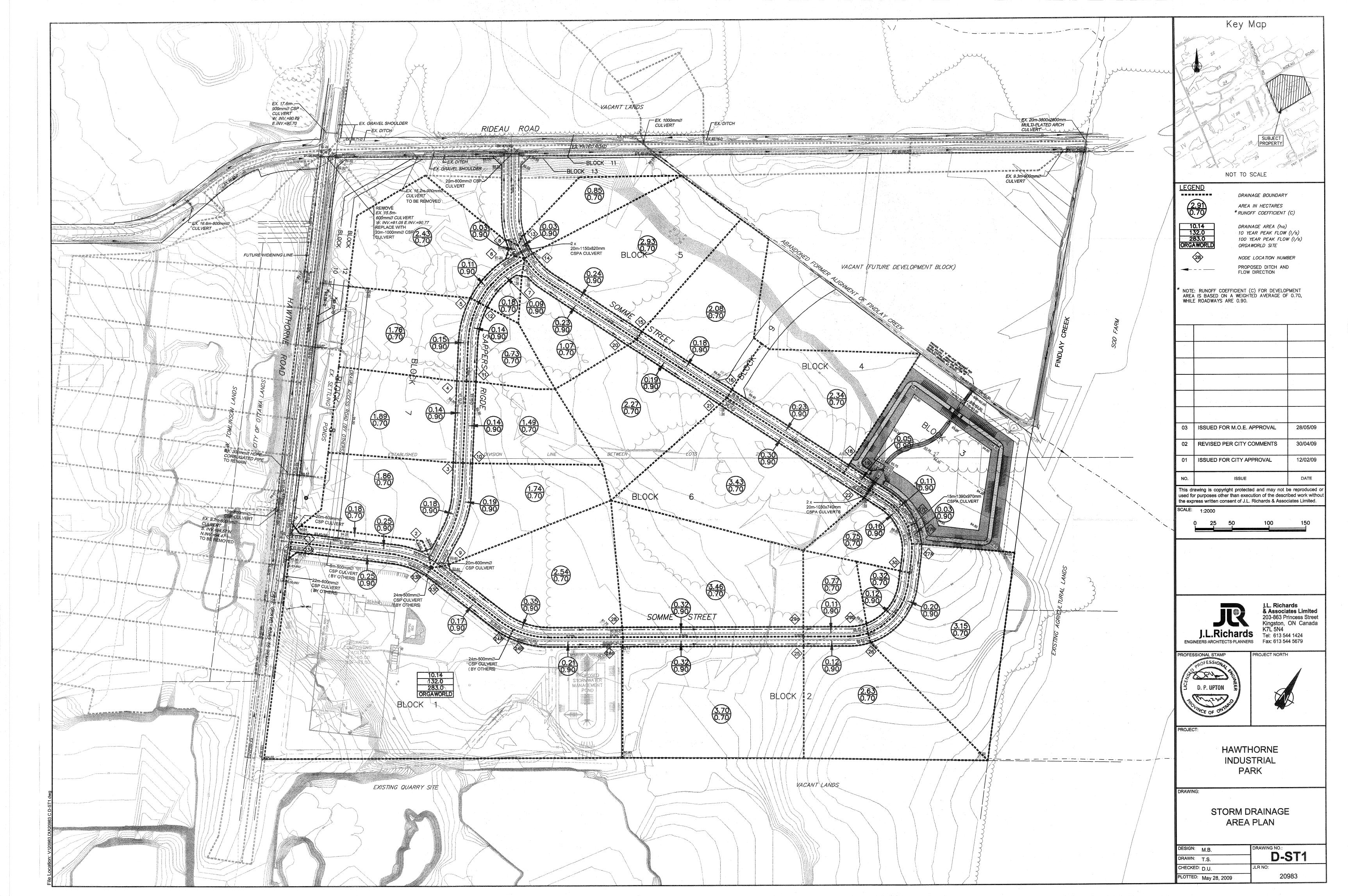


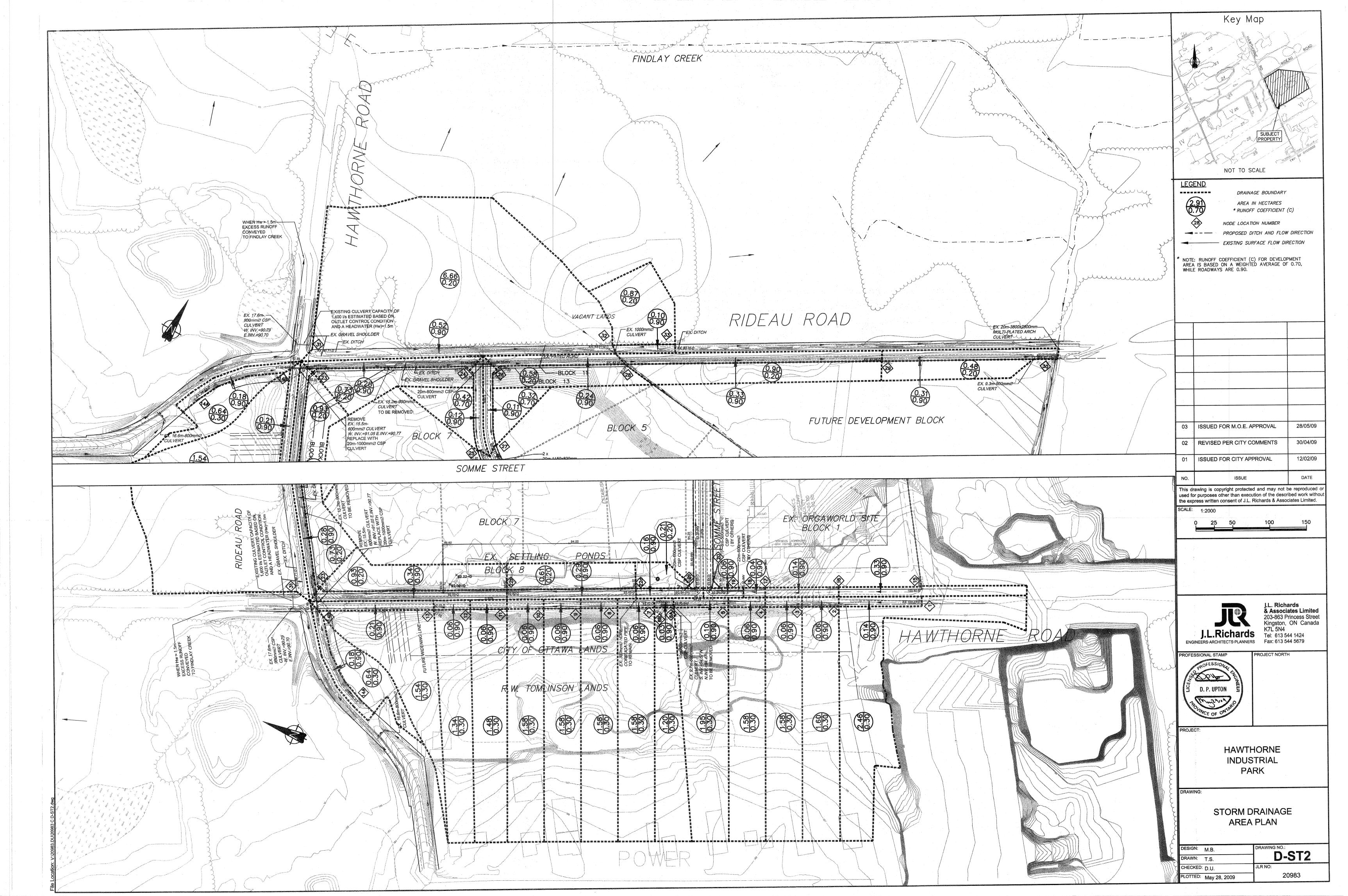



# Appendix B-2 SWM DRAWING POST-DEVELOPMENT








# Appendix B-3 STORM AREA DRAINAGE PLAN FOR HIP FROM J.L. RICHARDS











# Appendix B-4 IDENTIFICATION OF SOURCE DATA FROM HIP SWM REPORT BY J.L. RICHARDS





IDENTIFICATION OF SOURCE DATA FROM HIP SWM REPORT Project: Fastfrate Warehouse Development – CIMA+ Ref: A001083 Prepared by : Guillaume LeBlond, M.A.Sc., EIT Date : 2022-06-01

### Hawthorne Industrial Park

City of Ottawa

Legend:

Source Data Identification

# 1:10 year Ottawa International Airport IDF Curve

JLR 20983 February 2009 (Revised April 2009)

	Increas	e Runoff	Coefficie	nt by	0.0%																					. <u> </u>				
	NO	DES			DRAINAG	SE AREA			PEAK F	LOW GEI	NERATIO	N				OPEN	DITCH/SV	VALE DAT	A			CULV	ERTS SIZ	ZED UNDER	1:10 YEAF	STORM E	/ENT	FLOW	U/S	D/
DETAILS			Area	at C of				2.78AR	2.78AR	TIME	INTENS.	PEAK FL.	BW	D _{10yr}	D _{max}	SS	SLOPE	Q _{10yr}	Q _{100yr}	VEL.	LENGTH	No. of	DIA	BxD	INLET	OUTLET	НW	TIME	Inv	In
	FROM	ТО	0.70	0.90	SUM(A)	SUM(A*C)	TOTAL		СЛМ	min.	mm/hr	l/s	m	m	m	X:1	%	l/s	1/s	m/s	m	Barrels			· · · ·	CONTROL	1 1	(min)	(m)	(m
	1.1.0		(ha)	(ha)		. ,	A*C							• •••		7.1						Barrolo	(mm)	(m)			(m)		(11)	
NORTHERN CATCHMENT AREA																														
WEST SIDE SAPPERS RIDGE	2	3	1.86	0.18	2.04	1.46	1.46	4.07	4.07	15.00	97.85	398.2	0.00	0.42	1.20	3.00	0.50	424.2	6973.0	0.80	136.80			ļ	<b> </b>			2.84	92.50	01
WEST SIDE SAPPERS RIDGE	3	4	1.80	0.18	2.04	1.40	2.92	4.07	8.11	17.84	88.22	715.4	0.00	0.42	1.20	3.00	0.80	904.2	8856.1	1.16	111.00	·						1.60	92.50	
WEST SIDE SAPPERS RIDGE	4	5	1.76	0.15	1.91	1.36	4.28	3.79	11.90	19.44		995.9	0.00	0.58	1.20	3.00	0.51	1011.3	7029.1	1.00	112.85			1				1.88	90.93	
WEST SIDE SAPPERS RIDGE	5	6	2.43	0.11	2.54	1.80	6.08	5.00	16.90	21.32		1334.4	0.00	0.65	1.20	3.00	0.62	1513.4	7762.6	1.19	82.79		<u> </u>					1.16	90.36	
										22.47																			00.00	
TH ENTRANCE TO SOMME STREET	8	6		0.03	0.03	0.03	0.03	0.08	0.08	15.00	97.85	7.3	0.00	0.20	1 20	3.00	1 30	94.9	11276.7	0.79	10.00							0.21	89.98	80
				0.00	0.00	0.00	0.00	0.00	0.00	15.21	97.00	1.5	0.00	0.20	1.20	0.00	1.00	34.3	11210.1	0.13	10.00			•				0.21	03.30	09.0
	6	14		0.00	0.00	0.00	6.11	0.00	16.07	22.47	76.24	1205.8	······				0.50				20.00	2		1 15 x 0 90	NO	VEe	0.75	0.20	00.05	-
CULVERT CROSSING	6	14		0.00	0.00	0.00	6.11	0.00	16.97	22.47 22.85	76.34	1295.8	·····	· · · · · · · · ·			0.50				20.00			1.15 x 0.82	NO	YES	0.75	0.38	89.85	89.
																		070.0												
ORTH PORTION SOMME STREET	13	14	0.85	0.03	0.88	0.62	0.62	1.73	1.73	15.00 15.12	97.85	169.2	0.00	0.30	1.20	3.00	2.30	372.0	14999.4	1.38	10.00					<u> </u>		0.12	89.98	89
	· · ·									10.12			· · · · · · · · · · · · · · · · · · ·																	
ORTH PORTION SOMME STREET	14	15	2.93	0.24	3.17	2.27	8.99	6.30	25.00	22.85		1888.2	0.00	0.74	1.20	3.00	0.50	1926.6		1.17	184.04							2.62	89.75	
ORTH PORTION SOMME STREET		16		0.18	2.26	1.62	10.61	4.50		25.47		2075.4			1.20				7480.8		145.08		-					1.88	88.83	
ORTH PORTION SOMME STREET	16	18	2.34	0.23	2.57	1.85	12.46	5.13	34.63	27.35		2323.9	0.00	0.80	1.20	3.00	0.51	2399.6		1.25	185.66							2.48	88.00	
ORTH PORTION SOMME STREET	18	19	0.00	0.05	0.05	0.05	12.50	0.13	34.75	30.31	63.30	2199.9	0.00	0.76	1.20	3.00	0.72	2476.8	8372.8	1.43	41.86							0.49	87.05	86
· · · · · · · · · · · · · · · · · · ·													·····																	
EAST SIDE SAPPERS RIDGE	9	10	1.74	0.19	1.93	1.39	1.39	3.86	3.86	15.00		378.0	0.00	0.41	1.20	3.00	0.50	399.2	6996.6	0.79	147.87				L			3.11	92.40	
EAST SIDE SAPPERS RIDGE	10	11	1.49	0.14	1.63	1.17	2.56	3.25	7.11	18.11		622.0	0.00	0.49	1.20	3.00	0.66	735.9	8019.2	1.02	111.04		<u> </u>					1.81	91.66	
EAST SIDE SAPPERS RIDGE	11	12	0.73	0.14	0.87	0.64	3.20	1.77	8.88	19.92	82.40	732.0	0.00	0.52	1.20	3.00	0.55	785.5	7304.8	0.97	104.49							1.80	90.93	
EAST SIDE SAPPERS RIDGE	12 7	7 20	0.18 1.07	0.09	0.27	0.21	3.40 4.36	0.58	9.46 12.12	21.72	78.02	738.2 916.9	0.00	0.49 0.57	1.20	3.00 3.00	0.81	818.5 956.8	8919.0 6966.1	<u>1.14</u> 0.98	72.55							1.06	90.36	
ORTH PORTION SOMME STREET	20	20	2.27	0.23	2.46	1.76	6.12	4.89	17.01	25.80	69.76	1186.8	0.00	0.62	1.20	3.00	0.50	1200.1	6981.9	1.04	147.49							2.36	89.77 88.89	
ORTH PORTION SOMME STREET	20	21	3.43	0.19	3.73	2.67	8.79	7.43	24.44		65.80	1608.1	0.00	0.02	1.20	3.00	0.56	1759.0	7404.4	1.20	232.84			<u> </u>				3.24	88.16	
	21		0.40	0.50	3.73	2.07	0.79		24.44	31.40	00.00	1000.1	0.00	0.70	1.20	5.00	0.50	1753.0	7404.4	1.20	202.04							3.24	00.10	•
SOUTHERN CATCHMENT AREA																														F
SUUTRENN CATORMENTAKEA																		· ·					1							-
OUTH PORTION SOMME STREET	23Å	23B	0.00	0.25	0.25	0.23	0.23	0.63	0.63	15.00	97.85	61.2	0.00	0.20	1.20	3.00	0.64	66.3	7883.5	0.55	181.00					1		5.46	93.65	92
CULVERT CROSSING	23B	23C		0.00	0.00	0.00	0.23	0.00	0.63	20.46	81.05	50.7					0.42				24.00	1	500		NO	YES	0.33	1.55	92.50	
OUTH PORTION SOMME STREET	23C	24A	0.00	0.17	0.17	0.15	0.38	0.43	1.05	22.00	77.38	81.3	0.00	0.22	1.20	3.00	0.82	97.0	8946.1	0.67	110.00							2.74	92.40	
CULVERT CROSSING	24A	24B		0.00	0.00	0.00	0.38	0.00	1.05	24.75		75.3					0.42				24.00	1	500		NO	YES	0.34	1.04	91.50	
OUTH PORTION SOMME STREET	24B	24C	0.00	0.21	0.21	0.19	0.57	0.53	1.58	25.79	69.78	110.0	0.00	0.25	1.20	3.00	0.70	126.0	8258.2	0.67	142.00							3.52	91.40	90
ORGAWORLD - SITE	U/S	24C	1:10 year p	eak flow = 1	32 L/s, see Ta	able 4 of Orgaworld	Stormwater Si	te Managem	ent Plan, Se	ept. 2008		132.0			<u>.</u>															
OUTH PORTION SOMME STREET	240		2 70	0.00	- 4 00	0.00	2.44	0.00	0.50	00.04	04.05	745.0	0.00	0.50		0.00	0.54	700.0	7000 5	0.07	044.04							4.00	00.11	Ē
OUTH PORTION SOMME STREET	240			0.32		2.88	3.44 5.39	8.00			64.05 58.41		0.00			3.00	0.54		7289.5 7041.5	0.97	244.84	· · · · · ·	1					4.22		
OUTH PORTION SOMME STREET			2.63		3.35	1.95 2.39	7.78				56.65		0.00			3.00	0.51				90.75				· · · · · ·			1.51		
OUTH PORTION SOMME STREET			0.00		0.03	0.03	7.81				54.29		0.00		1.20	3.00 3.00	0.65 0.65		7970.4 7973.8	<u>1.19</u> 1.18	157.06 20.00		<u> </u>						88.62	
CULVERT CROSSING		27B 27C	0.00	0.03	0.03	0.03	7.81				54.29		0.00	0.01	1.20	3.00	0.65	1312.4	1913.0	1.10	15.00	1		1.39 X 0.97	YES	NO	0.87	0.28	87.60 87.47	
CORNER OF POND	27B		0.00		0.00	0.00	7.88				53.79		0.00	0.65	1 20	3.00	0.73	1622 9	8324.0	1 28	72.00			1.33 × 0.97	123		0.07		87.36	
	210	15	0.00	0.11		0.10	1.00	0.20	21.00	38.67	33.13	1014.2	0.00	0.00	1.20	5.00	<u> </u>	1022.9	0024.0	1.20	12.00		· · · · · · · · · · · · · · · · · · ·					0.34	01.00	
				····					<u> </u>	00.01			L								[	······			···	L				<u> </u>

#### DATE : 5/27/2009

#### **OPEN DITCH/CULVERT DESIGN SHEET**

#### Prepared by: M. Buchanan, E.I.T.

IDENTIFICATION OF SOURCE DATA FROM HIP SWM REPORT Project: Fastfrate Warehouse Development – CIMA+ Ref: A001083 Prepared by : Guillaume LeBlond, M.A.Sc., EIT Date : 2022-06-01

1:10 year Ottawa International Airport IDF Curve

#### Hawthorne Industrial Park

City of Ottawa

Legend:

Source Data Identification

# JLR 20983

February 2009 (Revised April 2009)

	Increase	e Runoff	Coefficien	it by	0.0%																									
	NO	DES			DRAINAG	SE AREA			PEAK F	LOW GE	NERATIO	N				OPEN	DITCH/SW	ALE DAT	4			CUL	VERTS SI	ZED UNDER	1:10 YEAF	STORM EV	/ENT	FLOW	U/S	D/S
DETAILS	1		Area a	at C of			TOTAL	2.78AR	2.78AR	TIME	INTENS	. PEAK FL.	BW	D _{10yr}	D _{max}	SS	SLOPE	Q _{10yr}	Q _{100yr}	VEL.	LENGTH	No. of	DIA	BxD	INLET	OUTLET	НW	TIME	Inv	Inv
	FROM	то	0.70	0.90	SUM(A)	SUM(A*C)	A*C		СОМ	min.	mm/hr	l/s	m	m	m.	X:1	%	l/s	l/s	m/s	m	Barrels			CONTRO	CONTROL	. 1:10	(min)	(m)	(m)
			(ha)	(ha)																			(mm)	(m)			(m)			
SW ENTRANCE TO SOMME STREET	1	2	0.18	0.25	0.43	0.35	0.35	0.97	0.97	15.00	97.85	94.6	0.00	0.32	1.20	3.00	0.61	226.9	7702.7	0.74	189.60								93.65	
CULVERT CROSSING	2	9		0.00	0.00	0.00	0.35	0.00	0.97	19.28	84.12	81.3					0.50				20.00	1	600		NO	YES	0.52	1.16	92.50	92.4
SOUTH PORTION SOMME STREET	9	28	2.54	0.35	2.89	2.10	2.44	5.83	6.80	20.44	81.10	551.2		0.47	1.20	3.00	0.73	694.0	8450.7	1.05	272.58					l			92.40	
SOUTH PORTION SOMME STREET	28	29A	3.46	0.32	3.78	2.71	5.15	7.53	14.33	24.77	71.65		0.00	0.61	1.20	3.00	0.54	1198.8	7283.5	1.07	245.24								90.41	
SOUTH PORTION SOMME STREET	29A	29B	0.77	0.11	0.88	0.64	5.79	1.78	16.11	28.58			0.00	0.62	1.20	3.00	0.53	1239.6		1.07	86.51								89.08	_
SOUTH PORTION SOMME STREET	29B	30	0.32	0.12	0.44	0.33	6.13	0.92	17.03	29.92		1075.8	0.00	0.58	1.20	3.00	0.70	1191.6	8282.1	1.18	94.12					L			88.62	
SOUTH PORTION SOMME STREET	30	22	0.75	0.16	0.91	0.67	6.80	1.86	18.89	31.25	61.31	1158.5	0.00	0.58	1.20	3.00	0.97	1402.6	9748.4	1.39	124.55					ļ		1.49	87.96	86.75
										32.74	ļ											L			 					
CULVERT CROSSING	22	19		0.00	0.00	0.00	15.59	0.00	43.33	32.74	59.38	2573.1					0.50		· · · · · · · · · · · · · · · · · · ·		20.00	2		1.03 X 0.74	YES	NO	1.30	0.08	86.85	86.7/
COLVERT CROSSING	- 22	15		0.00	0.00	0.00	10.09	0.00	40.00	32.82	09.00	2010.1					0.00				20.00	<u> </u>		1.00 X 0.14			1.00	0.00	00.00	00.70
A																										1				
POND INLET	19	POND		0.00	0.00	0.00	35.97	0.00	100.06	38.67	52.87	5422.6	3.09	0.38	1.20	3.00	5.68	5629.1	13135.2	3.50	22.00							0.10	86.75	85.50
POND OUTLET DITCH	POND	DITCH	1:10 year co	ntrolled po	st developme	ent peak flow = 696  /	/s, see SWMH	YMO output	of this Repo	 ort		696.0	1.00	0.27	0.38	3.00	2.08	750.9	1506.6	1.54	24.00					l		0.26	82.50	82.00
											1										1			· · · · ·						

Note: Conveyance Capacitites for the Open Ditch/Swale were calculated based on a Manning's Roughness Coefficient (n) of 0.030

DATE : 5/27/2009

#### **OPEN DITCH/CULVERT DESIGN SHEET**

#### Prepared by: M. Buchanan, E.I.T.

Increase Runoff Coefficient by

25.0%

IDENTIFICATION OF SOURCE DATA FROM HIP SWM REPORT Project: Fastfrate Warehouse Development – CIMA+ Ref: A001083 Prepared by : Guillaume LeBlond, M.A.Sc., EIT Date : 2022-06-01

#### 1:100 year Ottawa International Airport IDF Curve

## Hawthorne Industrial Park

City of Ottawa

Legend:

Source Data Identification

JLR 20983

# February 2009 (Revised April 2009)

					25.0%										ODENO	TOULOW									FLOW		D/O
DETAILO	NO	DES			DRAINAC	1		0.704.5			NERATIO										-				4 1	U/S	D/S
DETAILS				at C of		SUM(A*1.25*C)	TOTAL	2.78AR	2.78AR	I .	INTENS.		BW	D	SS	SLOPE	CAPAC.	VEL.	LENGTH	No. of	DIA	BxD	INLET	OUTLET	TIME	Inv	Inv
	FROM	10	0.70	0.90	SUM(A)	25% increase	A*C		СОМ	min.	mm/hr	l/s	m	m	X:1	%	l/s	m/s	m	Barrels	(		CONTROL	CONTROL	(min)	(m)	(m)
	┣───	<u></u>	(ha)	(ha)	ļ	in C factor															(mm)	(m)				ــــــــــــــــــــــــــــــــــــــ	<u> </u>
	<b></b>																									<u>اا</u>	L
NORTHERN CATCHMENT AREA	1 .																									<u> </u>	
· · · · · · · · · · · · · · · · · · ·	· ·							1																			
WEST SIDE SAPPERS RIDGE	2	3	1.86	0.18	2.04	1.81	1.81	5.02	5.02	15.00	142.89	718.0	0.00	1.20	3.00	0.50	6973.0	1.61	136.80		· .				1.41	92.50	91.82
WEST SIDE SAPPERS RIDGE	3	4	1.89	0.14	2.03	1.80	3.61	5.00	10.02	16.41	135.47	1357.9	0.00	1.20	3.00	0.80	8856.1	2.05	111.00						0.90	91.82	90.93
WEST SIDE SAPPERS RIDGE	4	5	1.76	0.15	1.91	1.69	5.29	4.69	14.71	17.31	131.16	1929.7	0.00	1.20	3.00	0.51	7029.1	1.63	112.85						1.16	90.93	90.36
WEST SIDE SAPPERS RIDGE	5	6	2.43	0.11	2.54	2.23	7.53	6.21	20.92	18.47	126.06	2637.5	0.00	1.20	3.00	0.62	7762.6	1.80	82.79						0.77	90.36	89.85
										19.24																	
NORTH ENTRANCE TO SOMME STREET	8	6		0.03	0.03	0.03	0.03	0.08	0.08	15.00	142.89	11.9	0.00	1.20	3.00	1.30	11276.7	2.61	10.00						0.06	89.98	89.85
		Ţ								15.06																1	
																											I
CULVERT CROSSING	6	14		0.00	0.00	0.00	7.56	0.00	21.01	19.24	122.91	2581.8				0.50			20.00	2		1.15 x 0.82	NO	YES	0.19	89.85	89.75
										19.43																	l
																											L
NORTH PORTION SOMME STREET	13	14	0.85	0.03	0.88	0.77	0.77	2.15	2.15	15.00	142.89	307.4	0.00	1.20	3.00	2.30	14999.4	3.47	10.00						0.05	89.98	89.75
										15.05																I	l
																									L		
NORTH PORTION SOMME STREET		15	2.93	0.24	3.17	2.80	11.13	7.79	30.95		122.15	3780.5	0.00		3.00	0.50	6992.8	1.62								89.75	
NORTH PORTION SOMME STREET	15		2.08	0.18	2.26	2.00	13.13	5.56	36.51	21.32		4204.4	0.00	1.20	3.00	0.57	7480.8	1.73	145.08							88.83	
NORTH PORTION SOMME STREET	16		2.34	0.23	2.57	2.28	15.41	6.33	42.84		110.55	4736.0	0.00	1.20	3.00	0.51	7074.8	1.64	185.66						· · · · · · · · · · · · · · · · · · ·	88.00	
NORTH PORTION SOMME STREET	18	19	0.00	0.05	0.05	0.05	15.46	0.14	42.98	24.61	104.93	4509.7	0.00	1.20	3.00	0.72	8372.8	1.94	41.86						0.36	87.05	86.75
· · · · · · · · · · · · · · · · · · ·	┢────									24.97																	<u>اا</u>
		10	4.74	0.40	4 00	4.74	4 74	4.70	4 70	45.00	4 4 9 . 9 9	000.4	0.00	4.00		0.50	0000.0	4.00	447.07						1.50	00.40	01.00
EAST SIDE SAPPERS RIDGE	9	10	1.74	0.19	1.93	1.71	1.71	4.76	4.76	15.00		680.4	0.00	1.20	3.00	0.50	6996.6	1.62	147.87			· · · · · ·			1.52	92.40	
EAST SIDE SAPPERS RIDGE	10		1.49	0.14	1.63	1.44	3.16	4.02	8.78	16.52		1184.3	0.00	1.20	3.00	0.66	8019.2	1.86	111.04						1.00	91.66	
EAST SIDE SAPPERS RIDGE EAST SIDE SAPPERS RIDGE	11	12	0.73 0.18	0.14	0.87	0.78 0.25	3.94	2.16	10.94	17.52 18.55	130.23 125.73	1424.7 1462.2	0.00	1.20 1.20	3.00 3.00	0.55	7304.8 8919.0	1.69 2.06	104.49 72.55						1.03 0.59	90.93 90.36	
NORTH PORTION SOMME STREET	12	20	1.07	0.09	1.30	1.17	4.18 5.35	0.69 3.24	<u>11.63</u> 14.87	19.13	123.33	1834.1	0.00	1.20	3.00	0.50	6966.1	1.61	177.39						1.83	90.30 89.77	
NORTH PORTION SOMME STREET	20	20	2.27	0.23	2.46	2.18	7.53	6.05	20.92	20.97	125.33	2435.6	0.00	1.20	3.00	0.50	6981.9	1.62	147.49			1			1.83	88.89	
NORTH PORTION SOMME STREET	20	22	3.43	0.19	3.73	3.30	10.83	9.18	30.10		111.29	3350.0	0.00	1.20	3.00	0.56	7404.4	1.71	232.84						· · · · · · · · · · · · · · · · · · ·	88.16	
NORTH FORTION SOMME STREET	<u> </u>	- 22	0.40	0.50	5.75	-5.50	10.05	9.10	30.10	24.75	111.23	0000.0	0.00	1.20	0.00	0.50	7-0	1.71	202.04	· · · · ·					2.20	00.10	00.00
	<b> </b>									-24.10															r	/	
SOUTHERN CATCHMENT AREA	L												-		1					· · · · · ·					ł		
SOUTHERN OATONMEN AREA	L	-																									
SOUTH PORTION SOMME STREET	23A	23B	0.00	0.25	0.25	0.25	0.25	0.70	0.70	15.00	142.89	99.3	0.00	1.20	3.00	0.64	7883.5	1.82	181.00			+			1.65	93.65	92 50
CULVERT CROSSING	23B	23C	0.00	0.20	0.00	0.20	0.25	0.00	0.70	16.65	134.29	93.3			+	0.42			24.00	1	500		NO	YES	0.84		92.40
SOUTH PORTION SOMME STREET	23C	24A	0.00	0.00	0.00	0.17	0.42	0.00	1.17		130.34	152.2	0.00	1.20	3.00	0.82	8946.1	2.07	110.00	· · ·	<u>-</u>					92.40	
CULVERT CROSSING		24B		0.00	0.00	0.00	0.42	0.00			126.45					0.42			24.00	1	500		NO	YES	0.53		
SOUTH PORTION SOMME STREET		24C	0.00	0.21	0.00	0.21	0.63	0.58			124.24		0.00	1.20	3.00	0.70	8258.2	1.91	142.00			1			1.24	91.40	90.41
ORGAWORLD - SITE	U/S	24C	1:100 year r	beak flow = 2	283 I/s, see T	able 4 of Orgaworld S	Stormwater S	ite Managen	nent Plan, So	ept. 2008		283.0							1.			1					
										ľ			<b> </b>		1				1						·1		
SOUTH PORTION SOMME STREET	24C	25	3.70	0.32	4.02	3.56	4.19	9.89	11.64	20.15	119.40	1672.8	0.00	1.20	3.00	0.54	7289.5	1.69	244.84	····		1			2.42	90.41	89.08
SOUTH PORTION SOMME STREET	25		2.63		2.75	2.42	6.61	6.73					0.00	1.20	3.00	0.51	7041.5	1.63	90.75							89.08	
SOUTH PORTION SOMME STREET	26	27A	3.15		3.35	2.96	9.57	8.22			108.17		0.00	1.20	3.00	0.65	7970.4	1.84	157.06							88.62	
SOUTH PORTION SOMME STREET		27B	0.00	0.03	0.03	0.03	9.60	0.08			104.09	3059.5	0.00	1.20	3.00	0.65	7973.8	1.85	20.00							87.60	
CULVERT CROSSING		27C		0.00	0.00	0.00	9.60	0.00	26.67		103.59	3046.2				0.73			15.00	1		1.39 X 0.97	YES	NO		87.47	
CORNER OF POND	27C		0.00	0.11	0.11	0.11	9.71	0.31			103.36	3071.7	0.00	1.20	3.00	0.71	8324.0	1.93	72.00							87.36	86.85
										25.80																	
		•																	•				L		<b>L</b>		

### **OPEN DITCH/CULVERT DESIGN SHEET**

# Prepared by: M. Buchanan, E.I.T.

IDENTIFICATION OF SOURCE DATA FROM HIP SWM REPORT Project: Fastfrate Warehouse Development – CIMA+ Ref: A001083 Prepared by : Guillaume LeBlond, M.A.Sc., EIT Date : 2022-06-01

## Hawthorne Industrial Park

City of Ottawa

Legend:

Source Data Identification

## 1:100 year Ottawa International Airport IDF Curve

# JLR 20983

#### February 2009 (Revised April 2009)

	Increas	e Runof	f Coefficie	nt by	25.0%																						
	NO	DES			DRAINAC	GE AREA			PEAK F	LOW GE	NERATIO	N			OPEN I	DITCH/SW	ALE DATA	4		CULVER	TS SIZED	UNDER 1:1	0 YEAR STO	ORM EVENT	FLOW	U/S	D/S
DETAILS		· · · ·	Area a	at C of	1	SUM(A*1.25*C)	TOTAL	2.78AR	2.78AR	TIME	INTENS.	PEAK FL.	BW	D	SS	SLOPE	CAPAC.	VEL.	LENGTH	No. of	DIA	BxD	INLET	OUTLET	TIME	Inv	Inv
	FROM	TO	0.70	0.90	SUM(A)	25% increase	A*C		CUM	min.	mm/hr	l/s	m	m	X:1	%	l/s	m/s	m	Barrels			CONTROL	CONTROL	(min)	(m)	(m)
			(ha)	(ha)		in C factor	70														(mm)	(m)					
SW ENTRANCE TO SOMME STREET	1	2	0.18	0.25	0.43	0.40	0.40	1.12	1.12	15.00	142.89	160.5	0.00	1.20	3.00	0.61	7702.7	1.78	189.60						1.77	93.65	
CULVERT CROSSING	2	9		0.00	0.00	0.00	0.40	0.00	1.12	16.77	133.71	150.2			·	0.50			20.00	1	600		NO	YES	0.63	92.50	92.40
SOUTH PORTION SOMME STREET	9	28	2.54	0.35	2.89	2.58	2.98	7.16	8.29	17.40	130.77	1083.6	0.00	1.20	3.00	0.73	8450.7	1.96	272.58						2.32	92.40	
SOUTH PORTION SOMME STREET	28	29A	3.46	0.32	3.78	3.35	6.33	9.31	17.59	19.72	121.01	2128.9	0.00	1.20	3.00	0.54	7283.5	1.69	245.24							90.41	
SOUTH PORTION SOMME STREET	_29A	29B	0.77	0.11	0.88	0.79	7.11	2.19	19.78	22.15	112.40	2223.0	0.00	1.20	3.00	0.53	7212.0	1.67	86.51							89.08	
SOUTH PORTION SOMME STREET	29B	30	0.32	0.12	0.44	0.40	7.51	1.11	20.89	23.01	109.65	2290.7	0.00	1.20	3.00	0.70	8282.1	1.92	94.12						0.82	88.62	
SOUTH PORTION SOMME STREET	30	22	0.75	0.16	0.91	0.82	8.33	2.27	23.16	23.83	107.18	2482.3	0.00	1.20	3.00	0.97	9748.4	2.26	124.55						0.92	87.96	86.75
	<u> </u>									24.75										·						!	
																										<u> </u>	
CULVERT CROSSING	22	19		0.00	0.00	0.00	19.16	0.00	53.26		104.53	5567.5			1	0.50			20.00	2		1.03 X 0.74	YES	NO	0.04	86.85	86.75
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				<u> </u>					24.79	· · · · · · · · · · · · · · · · · · ·					<u> </u>				·		·				<b> </b> '	
		DOND			0.00				400.00	05.00	101.00	40040.0		0.55	5.00	5.00	40405.0	4.00	00.00		<u>_</u>				0.00	00.75	05.50
POND INLET	19	POND		0.00	0.00	0.00	44.32	0.00	123.22	25.80	101.69	12813.8	3.09	0.55	5.00	5.68	13135.2	4.09	22.00						0.09	86.75	85.50
POND OUTLET DITCH	POND		1-100 year o	ontrolled n	ost developr	nent peak flow = 1,432	lie soo SWI		ut of this P	enort	I	1432.0	1.00	0.38	3.00	2.08	1506.6	1.85	24.00						0.22	82.50	82.00
FORD COTLET DITCH	1 OND		1. Too year t	sona olled p		lient peak now = 1,432	. 113, 328 3991				1	1432.0	1.00	0.50	0.00	2.00	1000.0	1.00	24.00						0.22	02.30	02.00
					Law a				1	L	<u> </u>			l	I	1	I <u>, , , , , , , , , , , , , , , , , , , </u>	l	1			1				<b></b> /	

Note: Conveyance Capacitites for the Open Ditch/Swale were calculated based on a Manning's Roughness Coefficient (n) of 0.030

DATE : 5/27/2009

# **OPEN DITCH/CULVERT DESIGN SHEET**

### Prepared by: M. Buchanan, E.I.T.

IDENTIFICATION OF SOURCE DATA FROM HIP SWM REPORT Project: Fastfrate Warehouse Development – CIMA+ Ref: A001083 Prepared by : Guillaume LeBlond, M.A.Sc., EIT Date : 2022-06-01

# Hawthorne Road & Rideau Road

City of Ottawa

Legend:

Source Data Identification

# 0 year Ottawa International Airport IDF Curve

Increase Runoff Coefficient by 0.0% up C = 1.0

### JLR 20983 February 2009

		e Runoff	Coenicie	ent by	0.0%	up C = 1		Δ		<b>I</b>		LOW GEI	FRATIO	N				OPEN	DITCH/SV	VALE DAT	Δ			CULV	VERTS		R 1:10 YEAR	STORM FV	FNT	FLOW	U/S	D/S
DETAILS		DES		AREA	A) at C of				1	2 78AR	2.78AR			PEAK FL.	BW	D _{10yr}	D _{max}	SS	SLOPE		Q _{100yr}	VEL.	LENGTH		DIA	BxD	I INLET	OUTLET	HW	TIME	Inv	Inv
	FROM	то	0.20 (ha)	0.30 (ha)	0.70 (ha)		SUM(A)	SUM(A*C)	TOTAL A*C	2.70743	CUM	min.	mm/hr	l/s	m	m	m	X:1	%	1/s	l/s	m/s	m	Barrels	(mm)	(m)		CONTROL		(min)	(m)	(m)
	Í					··· · · · · ·			1										· ·													_
WEST CATCHMENT AREA																		· · · · · · · ·														
and a second	I														·																	
EST SIDE HAWTHORNE ROAD	1	2	· · ·	2.46		0.14	2.60	0.86	0.86	2.40	2.40	15.00	97,85	235.0	0.00	0.41	0.50	3.00	0.20	250.1	424.5	0.50	112.00							3.76	103.22	103.00
WEST SIDE HAWTHORNE ROAD	2	3		1.60	i i	0.06	1.66	0.53	1.40	1.48	3.89	18.76	85.54	332.5	0.00	0.25	0.50	3.00	5.00	337.3	2141.9	1.80	50.00							0.46	103.00	100.50
WEST SIDE HAWTHORNE ROAD	3	4		1.58		0.06	1.64	0.53	1.93	1.47	5.35	19.23	84.26	451.1	0.00	0.27	0.50	3.00	7.00	490.1	2534.3	2.24	50.00							0.37	100.50	
EST SIDE HAWTHORNE ROAD	4	5		1.58		0.06	1.64	0.53	2.45	1.47	6.82	19.60	83.26	568.0	0.00	0.34	0.50	3.00	5.00	765.9	2141.9	2.21	50.00			<b></b>				0.38	97.00	
IEST SIDE HAWTHORNE ROAD	5	6a		1.95		0.10	2.05	0.68	3.13	1.88	8.70	19.98	82.27	715.6	0.00	0.45	0.65	3.00	1.07	747.0	1991.5	1.23	75.00				VER	NO	0.94	1.02	94.50	
	<u>6a</u>	6b		4.00	<b>├</b> ──-∔	0.00	0.00	0.00	3.13	0.00	8.70	20.99	79.73	693.6 776.5	0.00	0.53	1.15	3.00	1.00 0.53	817.1	6447.9	0.97	10.00 15.00	1	800		YES	NO	0.84	0.12		93.60 93.52
WEST SIDE HAWTHORNE ROAD	6b 7	8		1.20	┣━━─┤	0.03	1.23	0.39	3.52	1.08 1.47	9.77 11.24	21.11	79.45	886.3	0.00	0.55	1.15	3.00	0.53	916.3	6243.2	0.97	50.00					~		0.26		93.52
'EST SIDE HAWTHORNE ROAD		9		1.58		0.06	1.64	0.53	4.57	1.47	12.71	22.23	76.88	977.2	0.00	0.58	1.15	3.00	0.50	1006.2	6243.2	1.00	50.00	:	1	· · · ·	-			0.84	93.27	
WEST SIDE HAWTHORNE ROAD	9	10		1.58	<u>├</u>	0.06	1.64	0.53	5.10	1.47	14.18	23.06	75.07	1064.4	0.00	0.60	1.15	3.00	0.50	1101.4	6243.2	1.02	50.00		1	1				0.82	93.02	
WEST SIDE HAWTHORNE ROAD	10	11	l	1.58	11	0.06	1.64	0.53	5.63	1.47	15.65	23.88	73.39	1148.3	0.00	0.62	1.15	3.00	0.50	1202.1	6243.2	1.04	50.00							0.80	92.77	92.52
EST SIDE HAWTHORNE ROAD	11	12		1.48		0.06	1.54	0.50	6.13	1.38	17.03	24.68	71.83	1223.3	0.00	0.63	1.15	3.00	0.50	1254.5	6243.2	1.05	50.00							0.79		92.27
EST SIDE HAWTHORNE ROAD	12	13		1.34		0.06	1.40	0.46	6.58	1.27	18.30	25.47	70.35	1287.3	0.00	0.64	1.15	3.00	0.50	1308.3	6243.2	1.06	50.00	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19						0.78		92.02
JEST SIDE HAWTHORNE ROAD	13	14b		1.54	l	0.21	1.75	0.65	7.23	1.81	20.11	26.25	68.96	1386.6	0.00	0.64	1.15	3.00	0.61	1449.7	6918.0	1.18	158.00	<u> </u>		ļ				2.23	92.02	91.05
				ļ							<u> </u>	28.49																				
	140	146		0.64		0.10	0.00	0.25	0.25	0.00	0.00	15.00	97.85	96.3	0.00	0.20	1.30	3.00	4.06	167.6	24661.5	1.40	140.00			· ·				1.67	96.73	91.05
SW RIDEAU & HAWTHORNE	14a	14b		0.64		0.10	0.82	0.35	0.35	0.98	0.98	16.67	97.05	90.3	0.00	0.20	1.50	3.00	4.00	107.0	24001.0	1.40	140.00							1.07	30.75	31.05
a		+								· · ·		10.07											······································			· · ·						
CULVERT CROSSING	14b	23	•	<u> </u>		0.00	0.00	0.00	7.59	0.00	21.09	28.49	65.29	1377.2					1.40				20.00	1	1000		YES	NO	1.14	0.19	91.05	90.77
									1			28.68																				
										×.,																						
EAST CATCHMENT AREA																																
																															100.00	
AST SIDE HAWTHORNE ROAD	15	16		ļ		0.33	0.33	0.30	0.30	0.83	0.83	15.00	97.85	80.8	0.00	0.25	0.30	3.00	0.45	101.7	165.4	0.54	110.00	· · · · · · · · · · · · · · · · · · ·						3.38	103.80	
AST SIDE HAWTHORNE ROAD	16	17				0.14	0.14	0.13	0.42	0.35	1.18	18.38	86.64	101.9	0.00	0.16	0.30	3.00	6.20	114.3	610.8	1.49 1.51	100.00 33.00							<u>1.12</u> 0.36	103.30 97.10	97.10
CULVERT CROSSING	17 18	18 19		h		0.04	0.04	0.04	0.46	0.10	1.28	19.50 19.86	83.52 82.56	106.6 105.3	0.00	0.16	1.20	3.00	6.36 1.77	115.8	24949.6	1.51	22.00	1	600		YES	NO	0.30	0.38		94.61
FAST SIDE HAWTHORNE ROAD	19	20		<u> </u>		0.00	0.00	0.05	0.48	0.00	1.43	20.85	80.08	114.2	0.00	0.21	0.70	3.00	2.79	158.3	3925.7	1.20	24.00							0.33	94.61	93.94
CULVERT CROSSING	20	21			<u>├</u> ───┼	0.00	0.00	0.00	0.51	0.00	1.43	21.18	79.28	113.1		0.27	0.70		0.50		0020.7		20.00	1	600		NO	YES	0.37	0.83	93.94	93.84
AST SIDE HAWTHORNE ROAD	21	22a	0.21			0.16	0.37	0.19	0.70	0.52	1.94	22.02	77.35	150.3	0.00	0.29	0.80	3.00	0.50	158.5	2372.0	0.63	82.00							2.18	93.84	93.43
EAST SIDE HAWTHORNE ROAD	22a	22b	0.61			0.29	0.90	0.38	1.08	1.06	3.01	24.19	72.77	218.9	0.00	0.33	1.17	3.00	0.52	228.1	6666.4	0.70	175.00							4.18		92.52
EAST SIDE HAWTHORNE ROAD	22b	23	0.93			0.34	1.27	0.49	1.57	1.37	4.38	28.37	65.47	286.5	0.00	0.35	1.17	3.00	0.70	309.6	7734.6	0.84	260.00							5.14	92.59	90.77
					· ·				ļ			33.51																				
					·																-											
SOUTH CATCHMENT AREA	ļ			ļ									·		J				I				·	<b> </b>								
	- 22		0.70	·	<b>├</b> ─── <mark>├</mark>	0.00	1.04	0.40	0.50	1 4 4	26 57	33 51	59.42	1552.9	0.00	0.51	1 74	3.00	2.65	1642.9	43339.8	2.11	235.00	l						1.86	90.77	84 55
SOUTH SIDE RIDEAU ROAD	23	24	0.73			0.28	1.01	0.40	9.56	1.11	26.57	33.51 35.37	58.43	1552.8	0.00	0.51	1.74	3.00	2.00	1042.9	43339.8	4.11	293.00		+					1.00	50.11	04.00
					├──┤		·					00.01			}								-				-					
WEST SIDE SOMME STREET	25	24		1	0.42	0.12	0.54	0.40	0.40	1,12	1.12	15.00	97.85	109.4	0.00	0.18	1.20	3.00	2.80	105.1	16548.0	1.08	125.74	1		1				1.94	89.98	86.46
		1										16.94	1						1													
CULVERT CROSSING	24	26				0.00	0.00	0.00	9.96	0.00	27.69	35.37	56.28	1558.5					1.00				20.00	1	800		NO	YES	2.31	0.11	84.55	84.35
												35.48									ļ			L								
				ļ					1			45.00				0.17	1.00	0.00		00.0	10510.5		405.74	ļ	ļ	l				- 0.04	00.00	06.40
EAST SIDE SOMME STREET	* 27	26		ļ	0.32	0.11	0.43	0.32	0.32	0.90	0.90		97.85	87.9	. 0.00	0.17	1.20	3.00	2.80	90.3	16548.0	1.04	125.74		<u> </u>					2.01	89.98	86,46
·								<b> </b>				17.01		<u> </u>												+						
SOUTH SIDE RIDEAU ROAD	26	28	0.58			0.24	0.82	0.33	10.62	0 02	29.51	35.48	56 16	1657.5	0.00	0.66	2.20	3.00	0.71	1695.7	42043.4	130	183.76	<b> </b>						2.36	84 35	83.04
SOUTH SIDE RIDEAU ROAD	20	20	0.00			0.24	0.02	0.33	10.02	0.92	23.01	37.84		1001.0	0.00	0.00	2.20	0.00	+	1035.1	72040.4		100.70			1				2.00	0-1.00	50.04
	•			L	Li			<b>.</b>				01.04	L							I	1				<u></u>		1					

DATE : 4/28/2009

# **OPEN DITCH/CULVERT DESIGN SHEET**

#### Prepared by: M. Buchanan, E.I.T.

#### Checked by: G. Forget, P.Eng.

V:\20983.DU\ENG\3rd Submission to City\Ditch Sizing_Rev5.xis

IDENTIFICATION OF SOURCE DATA FROM HIP SWM REPORT Project: Fastfrate Warehouse Development – CIMA+ Ref: A001083 Prepared by: Guillaume LeBiond, M.A.S.C., EIT       Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: Lagend: La	J.L. RICHARDS AND ASS	OCIATES	S LIMITE	ED, Cons	sulting Er	ngineers	, Archite	cts and Pla	nners																
City of Ottawa         Date : 2022-06-01       Surce Data Identification         J O gear Ottawa International Airport IDF Curve       Surce Data Identification         J O gear Ottawa International Airport IDF Curve       Surce Data Identification         J O gear Ottawa International Airport IDF Curve       Surce Data Identification         J Oreases Runoff Coefficient by:       Orea       OPENIALGE AREA       PEAK FLOW GENERATION       Surce Data Identification         DETAILS       OPENIALGE AREA       PEAK FLOW GENERATION         NORTH CATCHMENT AREA       AREA (A) atC of (ha)       (ha)       SUM(A)       SUM(A'C)       TOTAL A'C       AREA (SUM TO E)       SUM TO E)       SUME       SUME       SUME       SUME       SUM       SUM TO E)         NORTH ICATCHMENT AREA       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A												Ha	wthor	ne Roa	ad & Rio	deau Ro	ad	Lege	nd:						
Journame Control Control       Subject 2000       Spectral 2000         Journame Control Contentere Contentere Control Control Control Control Cont	Prepared by : Guillaume Let						1000							•		l				So	urce Dat	a Identific	ation		
DETAILS         NOREs         DRAINAGE AREA         PEAK FLOW GENERATION         OPEN DITCH/SWALE DATA           MORTH SIDE RIDEAU ROAD         10         0.20         0.30         0.70         0.90         SUM(A*C)         TOTAL A*C         2.78AR         1/WE         INTENS. PEAK FL         BW         Dioyr         Mm         X1         %         Y5         Y5 <th>10 year Ottawa International A</th> <th>•</th> <th></th>	10 year Ottawa International A	•																							
DETAILS         XREA (A) at C of FROM         XREA (A) at C of 0.20         XREA (A) at C of 0.30         XREA (A) at C of 0.30         XREA (A) at C of 0.30         XREA (A) at C of 0.40         XREA (A)	<u></u>			f Coeffici	ent by	0.0%																			_
FROM         TO         0.20         0.30         0.70         0.90         SUM(A*C)         TOTAL A*C         CUM         min.         mm/hr         l/s         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m <td></td> <td>NO</td> <td>DES</td> <td></td> <td></td> <td></td> <td></td> <td>IAGE ARE</td> <td>A</td> <td></td> <td>L</td>		NO	DES					IAGE ARE	A																L
NORTH CATCHMENT AREA         (ha)         (ha)<	DETAILS	FROM	то	0.20	<u> </u>			SUM(A)	SUM(A*C)		2.78AR								1			1 1			
NORTH SIDE RIDEAU ROAD       31       32       6.66       0.52       7.18       1.80       1.80       5.00       5.00       20.00       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26				(ha)	(ha)	(ha)	(ha)			AC											ļ				L
NORTH SIDE RIDEAU ROAD       31       32       6.66       0.52       7.18       1.80       1.80       5.00       20.00       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26       97.26	NORTH CATCHMENT AREA													1											L
Image: South Side Rideau Road       Image: Side Rideau Road						n dia. cul									1400.0						<u> </u>	!			L
Image: South side ride and side ride ride ride ride ride ride ride r	NORTH SIDE RIDEAU ROAD	31	32	6.66			0.52	7.18	1.80	1.80	5.00	5.00		97.26		0.00	0.58	1.50	3.00	1.93	1974.3	24880.1	1.96	400.00	L
Image: South side rideau road       28       29       0.90       0.33       1.23       0.48       13.16       1.33       36.58       37.84       53.68       3363.5       0.00       1.17       2.20       3.00       0.14       3437.1       18513.7       0.84       347.24				·	[	<u> </u>				<u> </u>			23.41						·		'	لـــــا	<b>⊢</b> ′		L
Image: South side rideau road       28       29       0.90       0.33       1.23       0.48       13.16       1.33       36.58       37.84       53.68       3363.5       0.00       1.17       2.20       3.00       0.14       3437.1       18513.7       0.84       347.24		22	22	0.97	,	<u> </u>	0.10	0.07	0.00	0.00	0.72	0.72	15.00	115 02		0.00	0.40	1 50	3.00	0.16	212.2	7240.9	0.44	02.00	┢
XISTING CULVERT CROSSING       32       28       0.00       0.00       0.00       2.06       0.00       5.74       23.41       87.93       50075       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       3       36.58       37.84       53.68       3363.5       0.00       1.17       2.20       3.00       0.14       3437.1       18513.7       0.84       347.24		- 33	32	0.07	- ·		0.10	0.97	0.20	0.20	0.75	0.73		115.65		0.00	0.40	1.50	3.00	0.10		7240.0	0.44	92.00	┢
SOUTH CATCHMENTAREA       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C <thc< th="">       C       <thc< th=""></thc<></thc<>					+			+					10.40								·	┟─────┦	┟────┦		┢
SOUTH CATCHMENT AREA       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C <thc< th="">       C       <thc< th=""></thc<></thc<>	XISTING CULVERT CROSSING	32°	28		1		0.00	0.00	0.00	2.06	0.00	5.74	23.41	87.93			1			-0.15			<b>!</b>	20.00	F
SOUTH SIDE RIDEAU ROAD         28         29         0.90         0.33         1.23         0.48         13.16         1.33         36.58         37.84         53.68         3363.5         0.00         1.17         2.20         3.00         0.14         3437.1         18513.7         0.84         347.24													23.55				· ·								F
	SOUTH CATCHMENT AREA																				í The second sec				Г
																									Ē
SOUTH SIDE RIDEAU ROAD 29 30 0.48 0.31 0.79 0.38 13.53 1.04 37.62 44.76 47.64 3192.1 0.00 0.90 2.20 3.00 0.51 3287.0 35640.2 1.35 236.20		*																							Ĺ
	SOUTH SIDE RIDEAU ROAD	29	30	0.48			0.31	0.79	0.38	13.53	1.04	37.62	44.76	47.64	3192.1	0.00	0.90	2.20	3.00	0.51	3287.0	35640.2	1.35	236.20	Ĺ

ote: Conveyance Capacitites for the Open Ditch/Swale were calculated based on a Manning's Roughness Coefficient (n) of 0.030

#### DATE : 4/28/2009

# **OPEN DITCH/CULVERT DESIGN SHEET**

### Prepared by: M. Buchanan, E.I.T.

# Checked by: G. Forget, P.Eng.

CUL	ERTS SIZ	ZED UNDER	1:10 YEAR	STORM EV	ENT	FLOW	U/S	D/S
No. of	DIA	BxD	INLET	OUTLET	HW	TIME	Inv	Inv
Barrels			CONTROL	CONTROL	1:10	(min)	(m)	(m)
	(mm)	(m)			(m)			
1								
						3.41	90.71	83.01
		·					· · · · · · · · · · · · · · · · · · ·	
						3.45	83.16	83.01
						0.40	00.10	03.01
1	1000					0.14	83.01	83.04
							-	
						6.91	83.04	82.56
			l			2.91	82.56	81.35

V:\20983.DU\ENG\3rd Submission to City\Ditch Sizing_Rev5.xls

IDENTIFICATION OF SOURCE DATA FROM HIP SWM REPORT Project: Fastfrate Warehouse Development - CIMA+ Ref: A001083 Prepared by : Guillaume LeBlond, M.A.Sc., EIT Date : 2022-06-01

1:100 year Ottawa International Airport IDF Curve

# Hawthorne Road & Rideau Road Legend:

City of Ottawa

Source Data Identification

JI R 20983

JLR 203	100
February	2009

	NO	DES				DRAIN	AGE ARE	A		T	PEAK F	LOW GE	NERATIO	N			OPEN D	DITCH/SW	ALE DATA			CULVERT	<b>IS SIZED</b>	UNDER 1:10	YEAR STO	ORM EVENT	FLOW	U/S	D/S
DETAILS	FROM	то	0.20	AREA (/ 0.30	A) at C o		SUM(A)	SUM(A*1.25*C)	TOTAL	2.78AR	2.78AR CUM		INTENS		BW m	D m	SS X:1	SLOPE %	CAPAC.	VEL. m/s	LENGTH m	No. of Barrels	DIA	BxD		OUTLET	TIME (min)	lnv (m)	lnv (m)
	FROIV		0.20 (ha)	0.30 (ha)	(ha)	(ha)	301VI(A)	in C factor	A*C		COM	171111.		1/5			7.1	. 70	1/5	1183		Daireis	(mm)	(m)			((1111))	(11)	(m)
																						· · · · · · · · · · · · · · · · · · ·							
WEST CATCHMENT AREA					ļ		· · · · ·			<u> </u>		<u> </u>										1						<b> </b>	<b> </b>
WEST SIDE HAWTHORNE ROAD	1	2		2.46		0.14	2.60	1.06	1.06	2.95	2.95	15.00	142.89	422.1	0.00	0.50	3.00	0.20	424.5	0.57	112.00						3.30	103.22	103 (
WEST SIDE HAWTHORNE ROAD	2	2		1.60	<u> </u>	0.06	1.66	0.66	1.72	1.83	4.79	18.30		607.2	0.00	0.50	3.00	5.00	2141.9	2.86	50.00			-			0.29	103.00	_
WEST SIDE HAWTHORNE ROAD	3	4		1.58	1	0.06	1.64	0.65	2.38	1.81	6.60	18.59	125.56	829.0	0.00	0.50	3.00	7.00	2534.3	3.38	50.00	1					0.25	100.50	
WEST SIDE HAWTHORNE ROAD	4	5		1.58		0.06	1.64	0.65	3.03	1.81	8.42	18.84	124.54	1048.2	0.00	0.50	3.00	5.00	2141.9	2.86	50.00						0.29	97.00	
WEST SIDE HAWTHORNE ROAD	_ 5	6A		1.95		0.10	2.05	0.83	3.86	2.31	10.73	-		1323.2	0.00	0.65	3.00	1.07	1991.5	1.57	75.00					-	0.80	94.50	
	6A	6B	-	4.00		0.00	0.00	0.00	3.86	0.00	10.73	19.92	120.24	1289.9	0.00	1.15		1.00	6447.0	1.00	10.00	1	800		YES	NO	0.06	93.70	
WEST SIDE HAWTHORNE ROAD	6B 7	8	· · · · ·	1.20 1.58		0.03	1.23 1.64	0.48	4.34	1.33	12.06	19.99 20.14	119.99	1447.3 1657.0	0.00	1.15	3.00	0.53	6447.9 6243.2	1.63 1.57	15.00 50.00						0.15	93.60 93.52	
VEST SIDE HAWTHORNE ROAD	8	9		1.58		0.06	1.64	0.65	4.99 5.64	1.81	15.69	20.14	117.47	1843.0	0.00	1.15	3.00	0.50	6243.2	1.57	50.00						0.53	93.27	
WEST SIDE HAWTHORNE ROAD	9	10		1.58	1	0.06	1.64	0.65	6.30	1.81	17.50	21.20	115.59	2023.3	0.00	1.15	3.00	0.50	6243.2	1.57	50.00						0.53	93.02	
WEST SIDE HAWTHORNE ROAD	10	11		1.58		0.06	1.64	0.65	6.95	1.81	19.32	21.73	113.78	2197.9	0.00	1.15	3.00	0.50	6243.2	1.57	50.00						0.53	92.77	
VEST SIDE HAWTHORNE ROAD	11	12		1.48		0.06	1.54	0.62	7.56	1.71	21.03	22.26	112.03	2355.6	0.00	1.15	3.00	0.50	6243.2	1.57	50.00				· · · · ·		0.53	92.52	
VEST SIDE HAWTHORNE ROAD	12	13		1.34		0.06	1.40	0.56	8.13	1.56	22.59	22.79	110.34	2492.6	0.00	1.15	3.00	0.50	6243.2	1.57	50.00	·				<u> </u>	0.53	92.27	92.0
VEST SIDE HAWTHORNE ROAD	13	14B		1.54		0.21	1.75	0.79	8.91	2.19	24.78	23.32 24.83	108.70	2693.6	0.00	1.15	3.00	0.61	6918.0	1.74	158.00		· · · · · · · · · · · · · · · · · · ·	<b> </b>			1.51	92.02	91.0
											+	21.00																	<u>├</u>
SW RIDEAU & HAWTHORNE	14A	14B		0.64		0.18	0.82	0.42	0.42	1.17	1.17	15.00	142.89	166.8	0.00	1.30	3.00	4.06	24661.5	4.86	140.00						0.48	96.73	91.0
												15.48																	
CULVERT CROSSING	14B	23				0.00	0.00	0.00	9.33	0.00	25.95	24.83	104 32	2706.8				1.40			20.00	1	1000		YES	NO	0.10	91.05	00.7
COLVERTOROSSING						0.00	0.00	0.00	9.00	0.00	20.90	24.93	104.52	2700.0				1.40			20.00		1000		120		0.10	31.00	30.77
EAST CATCHMENT AREA												<u> </u>										· · · · · · · · · · · · · · · · · · ·		<u> </u>					┣──
EAST SIDE HAWTHORNE ROAD	15	16				0.33	0.33	0.33	0.33	0.92	0.92	15.00	142.89	131.1	0.00	0.30	3.00	0.45	165.4	0.61	110.00					1	2.99	103.80	103.3
EAST SIDE HAWTHORNE ROAD	16	17				0.14	0.14	0.14	0.47	0.39	1.31	17.99	128.11	167.4	0.00	0.30	3.00	6.20	610.8	2.26	100.00						0.74	103.30	97.1
EAST SIDE HAWTHORNE ROAD	17	18				0.04	0.04	0.04	0.51	0.11	1,42	18.73	124.98	177.2	0.00	1.20	3.00	6.36	24949.6	5.78	33.00						0.10	97.10	
CULVERT CROSSING	18	19				0.00	0.00	0.00	0.51	0.00	1.42	18.82	124.58	176.6	0.00	0.70	0.00	1.77	0005.7	0.07	22.00	1	600		YES	NO	0.59	95.00	
EAST SIDE HAWTHORNE ROAD CULVERT CROSSING	19 20	20 21				0.06	0.06	0.06	0.57	0.17	<u>1.58</u> 1.58	19.41 19.56	122.22	193.7 192.7	0.00	0.70	3.00	2.79	3925.7	2.67	24.00	1	600		NO	YES	0.15	94.61 93.94	
EAST SIDE HAWTHORNE ROAD	20	21 22A	0.21			0.00	0.00	0.00	0.57	0.59	2.18	20.05	119.76	260.5	0.00	0.80	3.00	0.50	2372.0	1.24	82.00		000			120	1.11	93.84	
EAST SIDE HAWTHORNE ROAD	22A	22B	0.61			0.29	0.90	0.44	1.23	1.23	3.41	21.16	115.75	394.2	0.00	1.17	3.00	0.52	6666.4	1.62	175.00	1			1		1.80	93.43	92.52
EAST SIDE HAWTHORNE ROAD	22B	23	0.93			0.34	1.27	0.57	1.80	1.59	5.00	22.95	109.83	548.8	0.00	1.17	3.00	0.70	7734.6	1.88	260.00						2.30	92.59	90.7
											· · · · ·	25.25	· · · · ·													ļ.		<u> </u>	┣
SOUTH CATCHMENT AREA														ļ.,															┢───
SOUTHCATCHMENTAREA																						· · · · · · · · · · · · · · · · · · ·							
SOUTH SIDE RIDEAU ROAD	23	24	0.73			0.28	1.01	0.46	11.59	1.29	32.23	25.25	103.15	3324.7	0.00	1.74	3.00	2.65	43339.8	4.77	235.00						0.82	90.77	84.5
												26.08																	$\square$
WEST SIDE SOMME STREET	25				0.40	0.40	0.54	0.40	0.40	4.00	1.00	15.00	142.89	193.7	0.00	1.20	3.00	2.80	16548.0	3.83	125.74						0.55	89.98	064
WEST SIDE SOMME STREET	25	24			0.42	0.12	0.54	0.49	0.49	1.36	1.36	15.55	142.89	193.7	0.00	1.20	3.00	2.00	10046.0	3.63	125.74					· ·	0.55	09.90	00.40
												1																	
CULVERT CROSSING	24	26				0.00	0.00	0.00	12.08	0.00	33.59		100.99	3391.7				1.00			20.00	1	800		NO	YES	0.05	84.55	84.3
											<u> </u>	26.12	<b> </b>													-		<u> </u>	┣—
EAST SIDE SOMME STREET	27	26			0.32	0.11	0.43	0.39	0.39	1.08	1.08	15.00	142.89	154.9	0.00	1.20	3.00	2.80	16548.0	3.83	125.74		l				0.55	89.98	86.4
					0.02		0.10	0.00	0.00			15.55	1.2.00							2.00								1	
												:																	
SOUTH SIDE RIDEAU ROAD	26	28	0.58			0.24	0.82	0.39	12.86	1.07	35 74	26.12	100.96	3604.7	0.00	2 20	3.00	0.71	42043.4	2 00	183 76			1	1		1.06	84.35	83.0

DATE : 4/28/2009

#### **OPEN DITCH/CULVERT DESIGN SHEET**

# Prepared by: M. Buchanan, E.I.T.

J.L. RICHARDS AND ASSOCIAT	TES LIMI	TED, Co	onsulting	Enginee	rs, Archit	ects and	Planners															
IDENTIFICATION OF SOUR Project: Fastfrate Warehouse	-										Hawt	horne	Road &	& Rideau	ı Road	Lege	nd:					
Prepared by : Guillaume LeE Date : 2022-06-01												С	ity of O					So	urce Data	Identific	ation	
1:100 year Ottawa International	Airport I	DF Cui	rve									F	ebruary									
	-		f Coefficie	ent by	25.0%	up C = ·	1.0					•										
	NO		1			•	AGE ARE	A		1	PEAK F	LOW GEI	NERATIO	N			OPEN D	DITCH/SW	ALE DATA			С
DETAILS	FROM				A) at Co		0.11.4.5	SUM(A*1.25*C)	TOTAL	2.78AR	2.78AR	TIME		PEAK FL.	BW	D	SS	SLOPE	1	VEL.	LENGTH	
	FROM	то	0.20 (ha)	0.30 (ha)	0.70 (ha)	0.90 (ha)	SUM(A)	25% increase in C factor	A*C		CUM	min.	mm/hr	l/s	m	m	X:1	%	l/s	m/s	m	
NORTH CATCHMENT AREA																						
			Existing	900 mm	n dia. Cul	vert Cap	acity befo	re ditch flows to F	indlay Cre	ek				1400.0								
NORTH SIDE RIDEAU ROAD	31	32	6.66			0.52	7.18	2.19	2.19	6.07	6.07	20.00	119.95	2128.6	0.00	1.50	3.00	1.93	24880.1	3.69	400.00	
												21.81					<u> </u>					
NORTH SIDE RIDEAU ROAD	33	32	0.87	1		0.10	0.97	0.32	0.32	0.88	0.88	15.00	142.89	126.1	0.00	1.50	3.00	0.16	7240.8	1.07	92.00	⊢
												16.43										
· · · · · · · · · · · · · · · · · · ·																						
EXISTING CULVERT CROSSING	32	28	<b>.</b>			0.00	0.00	0.00	2.50	0.00	6.96	21.81	113.52	2189.7				-0.15			20.00	L
	·		<b>.</b>									21.93	<u> </u>									
SOUTH CATCHMENT AREA		· · .	<b>_</b>	· · · · · · · · · · · · · · · · · · ·									<b> </b>					<u> </u>				
SOUTH SIDE RIDEAU ROAD	28	29	0.90		. · ·	0.33	1.23	0.56	15.91	1.54	44.24	27.18	98.22	5745.1	0.00	2.20	3.00	0.14	18513.7	1.28	347.24	⊢
SOUTH SIDE RIDEAU ROAD	29	30	0.30		+	0.31	0.79	0.30	16.34	1.20	45.44	31.72	88.42	5417.3	0.00	2.20	3.00	0.51	35640.2	2.45	236.20	<u> </u>
					1	,	1 0.10	0.10	10.01		10.11		1 000.14	<u> </u>								<u> </u>

Note: Conveyance Capacitites for the Open Ditch/Swale were calculated based on a Manning's Roughness Coefficient (n) of 0.030

DATE : 4/28/2009

# OPEN DITCH/CULVERT DESIGN SHEET

# Prepared by: M. Buchanan, E.I.T.

JLVERT	'S SIZED I	JNDER 1:10	YEAR STO	RM EVENT	FLOW	U/S	D/S
No. of	DIA	BxD	INLET	OUTLET	TIME	Inv	Inv
Barrels			CONTROL	CONTROL	(min)	(m)	(m)
	(mm)	(m)					
,							
					1.81	90.71	83.01
		:					
					1.43	83.16	83.01
1	1000				0.12	83.01	83.04
					4.54	83.04	82.56
					1.60	82.56	81.35

### J. L. Richards Associates Limited

IDENTIFICATION OF SOURCE DATA FROM HIP SWM REPORT Project: Fastfrate Warehouse Development – CIMA+ Ref: A001083 Prepared by : Guillaume LeBlond, M.A.Sc., EIT Date : 2022-06-01

#### 1:10 YEAR ROADSIDE CULVERT DESIGN

# HAWTHORNE INDUSTRIAL PARK

Legend:

Source Data Identification

CONVENTIONAL CULVERT DESIGN

				DESIGN DAT	A					CULVERT	DATA			INL	ET CONTRO	L				OUTLET C	ONTROL			0	GOVERNING	VEL
Station	Q	d	d _e	AHW	Skew	L	S	Description		Dor	N	Q/N	A	Q/NB	HW/D	HW	K _e	н	dç	(d _c + D)/2	TW	h,	LS	HW	HW	V.
	(m ³ /s)	(m)	(m)	(m)	No.	(m)	(m/m)		B (m)	H (m)		(m³/s)	(each) (m ² )	(m³/s/m)		(m)		(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m/
1	2	3	4	5	6	7	8	9	10a	10b	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
I			<u>.</u>	L																<u> </u>	į					
6 to 14	1.296	0.67	0.05	1.1	0	20.0	0.005	CSPA 6	1.15	0.82	2	0.648	0.74		0.73	0.60	0.9	0.13	0.33	0.58	0.72	0.72	0.10	0.75	0.75	
3 to 23C	0.051	0.22	0.05	1.15	0	24.0	0.004	CSP 500	N/A	0.5	1	0.051	0.20		0.50	0.25	0.9	0.1	0.15	0.33	0.27	0.33	0.10	0.33	0.33	
A to 24B	0.075	0.25	0.05	1.15	0	24.0	0.004	CSP 500	N/A	0.5	1	0.075	0.20		0.54	0.27	0.9	0.1	0.18	0.34	0.30	0.34	0.10	0.34	0.34	
2 to 9	0.081	0.47	0.05	1.15	0	20.0	0.005	CSP 600	N/A	0.6	1	0.081	0.28		0.50	0.30	0.9	0.1	0.19	0.40	0.52	0.52	0.10	0.52	0.52	
3 to 27C	1.304	0.61	0.05	1.23	0	15.0	0.007	CSPA 7	1.39	0.97	1	1.304	1.06		0.90	0.87	0.9	0.22	0.45	0.71	0.66	0.71	0.11	0.82	0.87	
to 19	2.573	0.38	0.05	1.35	0	20.0	0.005	CSPA 5	1.03	0.74	2	1.287	0.61		1.75	1.30	0.9	0.74	0.51	0.63	0.43	0.63	0.10	1.27	1.30	÷
3	From Form Flood Deptl	ı			10a/b	Culvert Slo D (circular) Number of	or B x H (	arch)		16 H		1A to C and 5 x D (col.			22 H	Col. 3 + col H _o = larger $c$ Col. 7 x col	of cols. 20	and 21		26	Outlet velo	city if requir	ed (Subsec	tion 3.2.3)		

2 From Form PH-D-533, col. 12 3 Flood Depth	8 Culvert Slope 10a/b D (circular) or B x H (arch)	15 Charts D5-1A to C and E to J 16 HW = col. 15 x D (col. 10)	21 Col. 3 + col. 4 22 H _o = larger of cols. 20 and 21	26
4 Embedment below channel invert	11 Number of Barrels	17 Chart D5-8	23 Col. 7 x col. 8	
5 Col. 3 + col. 4 + allowable backwater	13 Area per barrel	18 Charts D5-2A to G	24 HW = col. 18 + col. 22 - col. 23	
7 Allowance for skew if applicable	14 For box only	19 Charts D5-3A to F: $(d_c > D)$	25 Larger of cols 16 and 24	

Prepared by: Mark Buchanan, E.I.T.
Reviewed by: Guy Forget, P.Eng.
Date: February 2009



# Appendix B-5 STORM RUNOFF COEFFICIENT





#### **EVALUATION OF RUNOFF COEFFICIENTS**

Client:Fastfrate (Ottawa) Holdings Inc.Project:Fastfrate Warehouse DevelopmentLocation:Ottawa, OntarioProject #:A001083Project Status:Revision - 3 for S.P.A.

Area	Total Area (m²)	Grassed Area (m²)	Runoff Coefficient	Gravel Area (m²)	Runoff Coefficient	Hard Surface Area (m²)	Runoff Coefficient	Runoff Coefficient (10-year event)	Runoff Coefficient (100-year)
A0	3907	3907	0.20	0	0.50	0	0.90	0.20	0.25
TOTAL - Christie Creek	3907	3907		0		0		0.20	0.25
A1	7979	2165	0.20	0	0.50	5814	0.90	0.71	0.89
A2	13124	682	0.20	1798	0.50	10644	0.90	0.81	1.00
A3	8636	0	0.20	0	0.50	8636	0.90	0.90	1.00
A4	1425	429	0.20	0	0.50	996	0.90	0.69	0.86
A5	1067	79	0.20	0	0.50	988	0.90	0.85	1.00
A6	3906	3906	0.20	0	0.50	0	0.90	0.20	0.25
A7	426	426	0.20	0	0.50	0	0.90	0.20	0.25
TOTAL - Somme Street SWMF	36563	7687		1798		27078		0.73	0.92

Impervious Area Calcula	tion - Quality C	Control
Impervious Area	27057	m²
TOTAL - Somme Street SWMF	36563	m²
% Impervious	0.74001039	-

Prepared by: PEO No.: Guillaume LeBlond, M.A.Sc., EIT 100530467

Verified by: PEO No.: Christian Lavoie-Lebel, P.Eng. 100067842 Date: 2022-05-30

Date: 2022-05-30

\\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civil\01-SWM\220527_SWM redesign\01_Runoff C\[220527_Storm Runoff Coefficients.xlsx]TABLEAU







Appendix B-6 STORM POST-DEV 10 & 100-YEAR UNCONTROLLED





CIMA+ PROJECT NUMBER: CLIENT: PROJECT STATUS: Fastfrate Warehouse Development Industrial/Commercial Development A001083 Fastfrate Detailed Design

# STORM POST-DEVELOPMENT FLOW (UNCONTROLLED) Proposed Stormwater Management

#### DESCRIPTION

This calculation reflects the proposed stormwater management for the subject site areas discharging to the HIP SWMF. This calculation serves to determine the uncontrolled release rate as proposed.

### APPLICABLE DESIGN GUIDELINES:

1. City of Ottawa Sewer Design Guidelines, 2012

# PRE-DEVELOPMENT FLOW DETERMINATION: DESIGN CRITERIA:

Design Storm (year):	10	
IDF Regression Constants: (a) (b) (c)	1174.184 6.014 0.816	
IDF Curve Equation (mm/hr):	I = a / (Time	e in min + b)°
Rational Formula (L/s):	Q = 2.78C*I*A	where: Q = Flow (L/s) C = Runoff Coefficient I = Rainfall Intensity (mm/hr) A = Area

#### ALLOWABLE RELEASE RATE - SUMMARY:

Catchment ID	Area (A) _{ha}	Runoff Coefficient (C)	Time of Concentration (tc) ^{min}	Intensity (I) ^{mm/hr}	Release Rate	Release Flow Per Unit Area (Q/ha) L/s/ha
A1	0.80	0.71	22.85	75.52	118.86	148.96
A2	1.31	0.81	22.85	75.52	222.69	169.68
A3	0.86	0.90	22.85	75.52	163.06	188.81
A4	0.14	0.69	22.85	75.52	20.61	144.60
A5	0.11	0.85	22.85	75.52	18.99	177.94
A6	0.39	0.20	22.85	75.52	16.39	41.96
A7	0.04	0.20	22.85	75.52	1.79	41.96
Total	3.66				562.373	153.81

#### NOTES:

1. Time of concentration taken from SWM report (JL Richards, 2009). It is assumed that the resulting time of concentration is identical to JL Richards SWM report.

2. IDF Parameters per City of Ottawa Sewer Design Guidelines, 2012 (Macdonald-Cartier International Airport)

Prepared by: Guillaume LeBlond, M.A.Sc., El7 PEO No.: 100530467 Date: May 27, 2022

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842 Date: May 27, 2022

\lcima.plus\cima.c10iOtt_Projects\A\A001000-A001499IA001083_Fastfrate Warehouse Development\300360_Civil01-SWM220527_SWM redesign\02_Storm Post-Dev Flow - Uncontrolled(\220527_Storm Post-Development Uncontrolled Flow.xlsx)100y



CIMA+ PROJECT NUMBER: CLIENT: PROJECT STATUS: Fastfrate Warehouse Development Industrial/Commercial Development A001083 Fastfrate Detailed Design

# STORM POST-DEVELOPMENT FLOW (UNCONTROLLED) Per Master Stormwater Management Report (J.L. Richards, 2009)

#### DESCRIPTION

This calculation reflects the stormwater management for the subject site areas discharging to the HIP SWMF - per the HIP SWM report. This calculation demonstrates the allowable release rate for the proposed SWM to match the HIP SWM report.

#### APPLICABLE DESIGN GUIDELINES:

1. City of Ottawa Sewer Design Guidelines, 2012

#### PRE-DEVELOPMENT FLOW DETERMINATION: DESIGN CRITERIA:

DEGION ONTENA.			
Design Storm (year):	10		
IDF Regression Constants: (a)	1174.184		
(b)	6.014		
(c)	0.816		
IDF Curve Equation (mm/hr):	I = a / (Tin	ne in min + b) ^c	
		where:	Q = Flow (L/s)
			C = Runoff Coefficient
Rational Formula (L/s):	Q = 2.78C*I*A		I = Rainfall Intensity (mm/hr)
			A = Area

#### ALLOWABLE RELEASE RATE - SUMMARY:

Catchment ID	Total Area (A) _{ha}	Runoff Coefficient (C)	Time of Concentration (tc) ^{min}	Intensity (I) ^{mm/hr}	Allowable Release Rate (Q) ^{L/s}	Allowable Release Flow Per Unit Area (Q/ha) L/s/ha
Total Site Area Draining to SWMF per JLR 2009 SWM	3.05	0.70	22.85	75.52	448.57	146.85
Total - JLR 2009 SWM	3.05				448.567	146.85
Proposed SWM	3.66				448.567	122.68

#### NOTES:

1. Time of concentration taken from SWM report (JL Richards, 2009).

2. Runoff coefficients taken from SWM report (JL Richards, 2009).

3. IDF Parameters per City of Ottawa Sewer Design Guidelines, 2012 (Macdonald-Cartier International Airport)

Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467 Date: May 27, 2022

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842 Date: May 27, 2022

\\cima.plus\cima.C10\Ct_Projects\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civil\01-SWM220527_SWM redesign\02_Storm Post-Dev Flow - Uncontrolled\[220527_Storm Post-Development Uncontrolled Flow.xtx]100y controlled JLR



CIMA+ PROJECT NUMBER: CLIENT: PROJECT STATUS: Fastfrate Warehouse Development Industrial/Commercial Development A001083 Fastfrate Detailed Design

# STORM POST-DEVELOPMENT FLOW (UNCONTROLLED) Proposed Stormwater Management

#### DESCRIPTION

This calculation reflects the proposed stormwater management for the subject site areas discharging to the HIP SWMF. This calculation serves to determine the uncontrolled release rate as proposed.

### APPLICABLE DESIGN GUIDELINES:

1. City of Ottawa Sewer Design Guidelines, 2012

# PRE-DEVELOPMENT FLOW DETERMINATION: DESIGN CRITERIA:

Design Storm (year):	100		
IDF Regression Constants: (a)	1735.688		
(b)	6.014		
(c)	0.820		
IDF Curve Equation (mm/hr):	I = a / (Time	in min + b) ^c	
Rational Formula (L/s):	Q = 2.78C*I*A	where: Q =	Flow (L/s)
		C =	Runoff Coefficient
		=	Rainfall Intensity (mm/hr)
		A =	Area

# ALLOWABLE RELEASE RATE - SUMMARY:

Catchment ID	Area (A) _{ha}	Runoff Coefficient (C) (factored)	Time of Concentration (tc) ^{min}	Intensity (I) ^{mm/hr}	Release Rate (Q) _{L/s}	Release Flow Per Unit Area (Q/ha) L/s/ha
A1	0.80	0.89	19.43	122.15	240.295	301.16
A2	1.31	1.00	19.43	122.15	445.303	339.30
A3	0.86	1.00	19.43	122.15	293.023	339.30
A4	0.14	0.86	19.43	122.15	41.658	292.34
A5	0.11	1.00	19.43	122.15	36.204	339.30
A6	0.39	0.25	19.43	122.15	33.133	84.83
A7	0.04	0.25	19.43	122.15	3.614	84.83
Total	3.66				1093.229	299.00

#### NOTES:

1. Time of concentration taken from SWM report (JL Richards, 2009). It is assumed that the resulting time of concentration is identical to JL Richards SWM report.

2. IDF Parameters per City of Ottawa Sewer Design Guidelines, 2012 (Macdonald-Cartier International Airport)

3. Runoff coefficients are increased by 25% for the 100y storm per City of Ottawa Sewer Design Guidelines.

Prepared by: Guillaume LeBlond, M.A.Sc., EI PEO No.: 100530467 Date: May 27, 2022

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842 Date: May 27, 2022

\lcima.plus\cima.cluo\cima.cluo\cit_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civil01-SWM(220527_SWM redesign\02_Storm Post-Dev Flow - Uncontrolled(\220527_Storm Post-Development Uncontrolled Flow.skx)100y



CIMA+ PROJECT NUMBER: CLIENT: PROJECT STATUS: Fastfrate Warehouse Development Industrial/Commercial Development A001083 Fastfrate Detailed Design

# STORM POST-DEVELOPMENT FLOW (UNCONTROLLED) Per Master Stormwater Management Report (J.L. Richards, 2009)

#### DESCRIPTION

This calculation reflects the stormwater management for the subject site areas discharging to the HIP SWMF - per the HIP SWM report. This calculation demonstrates the allowable release rate for the proposed SWM to match HIP SWM report.

#### APPLICABLE DESIGN GUIDELINES:

1. City of Ottawa Sewer Design Guidelines, 2012

# PRE-DEVELOPMENT FLOW DETERMINATION: DESIGN CRITERIA:

Design Storm (year):	100	
IDF Regression Constants: (a) (b) (c)	1735.688 6.014 0.820	
IDF Curve Equation (mm/hr):	I = a / (Time	e in min + b) ^c
Rational Formula (L/s):	Q = 2.78C*I*A	where: Q = Flow (L/s) C = Runoff Coefficient I = Rainfall Intensity (mm/hr) A = Area

### ALLOWABLE RELEASE RATE - SUMMARY:

Catchment ID	Area (A) ^{ha}	Runoff Coefficient (C) _(factored)	Time of Concentration (tc) ^{min}	Intensity (I) ^{mm/hr}	Allowable Release Rate (Q) ^{L/s}	Allowable Release Flow Per Unit Area (Q/ha) ^{⊥/s/ha}
Total Site Area Draining to SWMF per JLR 2009 SWM	3.05	0.70	19.43	122.15	906.87	296.89
Total - JLR 2009 SWM	3.05				906.867	296.89
Proposed SWM	3.66				906.867	248.03

# NOTES:

1. Time of concentration taken from SWM report (JL Richards, 2009).

2. Runoff coefficients taken from SWM report (JL Richards, 2009).

3. IDF Parameters per City of Ottawa Sewer Design Guidelines, 2012 (Macdonald-Cartier International Airport)

4. Runoff coefficients are increased by 25% for the 100y storm per City of Ottawa Sewer Design Guidelines.

Prepared by: Guillaume LeBlond, M.A.Sc., EI PEO No.: 100530467 Date: May 27, 2022

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842 Date: May 27, 2022

\lcima.plus\cimalCimac10l0Citt_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_CivilI01-SWM/220527_SWM redesign\02_Storm Post-Dev Flow - Uncontrolled(220527_Storm Post-Development Uncontrolled Flow.xlsx)100y



PROJECT NAME:

CIMA+ PROJECT NUMBER: CLIENT: PROJECT STATUS: Fastfrate Warehouse Development Industrial/Commercial Development A001083 Fastfrate Detailed Design

## STORM POST-DEVELOPMENT FLOW (UNCONTROLLED) SWM Comparison of Areas Draining to Christie Creek

#### DESCRIPTION

This calculation compares the HIP SWM and Proposed SWM for the subject site areas discharging to Christie Creek. This calculation demonstrates the allowable release rate for the proposed SWM for it to match the HIP SWM report.

#### APPLICABLE DESIGN GUIDELINES:

1. City of Ottawa Sewer Design Guidelines, 2012

# PRE-DEVELOPMENT FLOW DETERMINATION: DESIGN CRITERIA:

Design Storm (year):	100	
IDF Regression Constants: (a) (b) (c)	1735.688 6.014 0.820	
IDF Curve Equation (mm/hr):	I = a / (Time	e in min + b) ^c
Rational Formula (L/s):	Q = 2.78C*I*A	where: Q = Flow (L/s) C = Runoff Coefficient I = Rainfall Intensity (mm/hr) A = Area

## ALLOWABLE RELEASE RATE - SUMMARY:

Catchment ID	Area (A) _{ha}	Runoff Coefficient (C) (factored)	Time of Concentration (tc) ^{min}	Intensity (I) ^{mm/hr}	Allowable Release Rate (Q) ^{L/s}	Release Flow Per Unit Area (Q/ha) L/s/ha
East Side Somme Street	0.32	0.88	15.00	142.89	111.140	347.31
South Side Rideau Road	0.58	0.25	26.12	100.87	40.628	70.05
East Side Somme Street (Revised	0.00	0.88	15.00	142.89	0.000	-
South Side Rideau Road (Revised	0.26	0.25	26.12	100.87	18.072	70.05
Total - JLR 2009 SWM	0.90				151.768	168.63
Proposed SWM	0.26	Actual Release Rate: Residual Release Rate:				70.05

#### NOTES:

1. Time of concentration taken from SWM report (JL Richards, 2009).

2. Runoff coefficients taken from SWM report (JL Richards, 2009).

3. IDF Parameters per City of Ottawa Sewer Design Guidelines, 2012 (Macdonald-Cartier International Airport)

4. Runoff coefficients are increased by 25% for the 100y storm per City of Ottawa Sewer Design Guidelines.

Prepared by: Guillaume LeBlond, M.A.Sc., EI PEO No.: 100530467 Date: May 27, 2022

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842



# Appendix B-7 STORM WATER MANAGEMENT – STORAGE AND DRAWDOWN FULL RELEASE RATE







## Fastfrate Warehouse Development Industrial/Commercial Development A001083 (360)

## STORM WATER MANAGEMENT - SUMMARY - FULL RELEASE RATE

Rainfall event		100 ye	ears									
Sub-Area	Total Area	Capacity Area	$\mathbf{Y}_{\max}$	V _{max}	$V_{rain}$	Difference	V _{acc}	Y _{rain}	A _{rain}	Q _{ave}	Drawdown Time	Comments
	(m ² )	(m ² )	(m)	(m ³ )	(m ³ )	(m ³ )	(m ³ )	(m)	(m ² )	(L/s)	(min)	
A1	7979	2394	0.00	0.00	95.85	-95.85	0.00	0.00	0	191.429	0	NC
A2	13124	3937	0.00	0.00	201.60	-201.60	0.00	0.00	0	314.866	0	NC
A3 - Building	8636	8636	0.05	143.93	115.00	28.93	115.00	0.04	7719	234.988	8	
A4	1425	428	0.00	0.00	16.06	-16.06	0.00	0.00	0	34.188	0	NC
A5	1067	320	0.00	0.00	16.39	-16.39	0.00	0.00	0	25.599	0	NC
A6	3906	1172	0.00	0.00	0.00	0.00	0.00	0.00	0	93.711	0	NC
A7	426	128	0.00	0.00	0.00	0.00	0.00	0.00	0	10.220	0	NC
Total	36563	17014		143.93	444.90	-300.97	115.00					

\\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civil\01-SWM\220527_SWM redesign\03_Storm Release Rates\[220525_Storm Water Management - Storage and Drawdown_full RR.xlsx]Sommaire

Legend:							
NC	= Non-controlled areas (no storage available)						
Capacity Area	= Area of water accumulated in sub-area at Max. Elev.		1) Maximum Allowable Total Release Rate = 248.03 L/s/ha				
Catchbasin Elev.	<ul> <li>Elevation of catchbasin inlet (top of grate).</li> </ul>		2) Pipe size for 10 years				
Max. Elev.	- Maximum elevation of water that may be accumulated within sub-area. 3) Rainfall event of 100 years						
Y _{max}	= Maximum depth of water that may be accumulated within the sub-area.	4) Pre-development flow (5 year) = L/s (or L/s/ha)					
V _{max}	= Maximum volume of water (capacity) that may be accumulated within the sub-area.						
V _{rain}	= Volume of water generated by rainfall.						
Difference	= Difference between V _{max} and V _{rain} (remaining capacity of sub-area)						
V _{acc}	= Total volume of water accumulated within the sub-area in the event of a specific rainfall.						
Y _{rain}	= Depth of water generated by rainfall.	Prepared by:	Guillaume LeBlond, M.A.Sc., EIT	Date: <u>May 27, 2022</u>			
Elev _{rain}	= Elevation of water generated by rainfall.	PEO No.:	100530467				
A _{rain}	= Area of water generated by rainfall.						
Q _{ave}	= Average flow (for drawndown time calculation).	Verified by:	Christian Lavoie-Lebel, P.Eng.	Date: <u>May 27, 2022</u>			
Dramaonni inno	= Time required for the total volume of water accumulated within sub-area to evacuate (following rainfall event).	PEO No.:	100067842				

2022-05-30

Date:



#### STORM WATER MANAGEMENT - AVERAGE FLOW CALCULATION FOR RELEASE RATES

Catchment ID	Release Rate	Specified Flow rate	Calculated area	
	L/s/ha	L/s	(mm ² )	
A1	239.98	191.48	52255	
A2	239.98	314.95	85950	
A3 - Building	274.06	236.68	63773	
A4	239.98	34.20	9332	
A5	239.98	25.61	6988	
A6	239.98	93.74	25581	
A7	239.98	10.22	2790	
	Total	906.87		
	Allowable	906.87		
	Difference	0.00		

\\cima.plus\cima\Clima\Clima\Clima\ClinOtt_Projects\A\A001000-A001499IA001083_Fastfrate Warehouse Development\3001360_Civil\01-SWM220527_SWM redesign\03_Storm Release Rates\[220525_Storm Water Management - Storage and Drawdown_full RR.xlsx]Temps de vidange

Préparé par: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467 Date: May 27, 2022

Vérifié par: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842

Date: May 27, 2022

Date: 2022-05-30



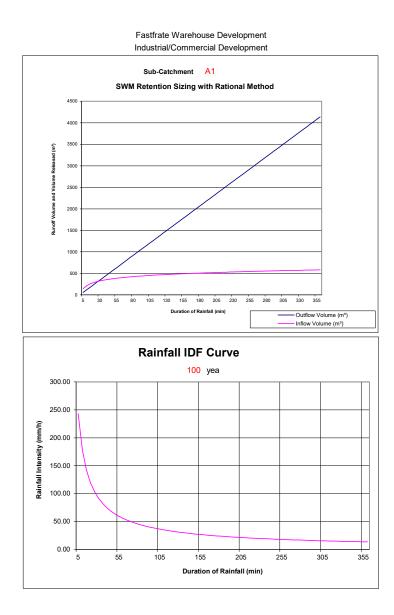
Project:	Fastfrate Warehouse Development
	Industrial/Commercial Development
Project #:	A001083 (360)
Station	OTTAWA SEWER DESIGN GUIDELINES
Date:	2022-05-30 14:00

 File
 \\\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse

 Location:
 Developmenti3001360_Civil\01-SWM1220527_SWM redesign\03_Storm Release Rates\[220525_Storm Water

Description: Storage volume calculations with the rational method

Specified Release Rate:	239.9793771 L/s/ha
Area : A1	0.7979 ha
Runoff Coefficient C (unfactored	0.71
C_runoff factor:	1.25
Runoff Coefficient C :	0.8875
Rainfall Event :	100 year
Discharge Flow Q :	0.191479545 m ³ /s
Discharge Factor K :	1


Design Volume: 95.85 m³

Rainfall	2 year		5 y	/ear	10 year		
IDF Curve	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	
Coefficients							
A	732.951	732.951	998.071	998.071	1174.184	1174.184	
В	6.199	6.199	6.053	6.053	6.014	6.014	
С	0.810	0.810	0.814	0.814	0.816	0.816	
Rainfall	25 y	/ear	50 year		100 year		
IDF Curve	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	
Coefficients							
A	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688	
В	6.018	6.018	6.014	6.014	6.014	6.014	
С	0.819	0.819	0.820	0.820	0.820	0.820	

#### Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Date: May 27, 2022

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842



Rainfall Duration	Rainfall Intensity	Runoff Volume	Output Volume	Retention Volume
(min)	(mm/h)	(m ³ )	(m ³ )	(m ³ )
T	1	CIAT	kQT	(4)-(5)
(1)	(2)	(4)	(5)	(6)
5.0	242.70	143.22	57.4438635	85.78
10.0	178.56	210.74	114.887727	95.85
15.0	142.89	252.97	172.33159	80.64
20.0	119.95	283.14	229.775454	53.36
25.0	103.85	306.41	287.219317	19.19
30.0	91.87	325.28	344.663181	-19.39
35.0	82.58	341.12	402.107044	-60.99
40.0	75.15	354.75	459.550908	-104.80
45.0	69.05	366.73	516.994771	-150.27
50.0	63.95	377.40	574.438635	-197.04
55.0	59.62	387.03	631.882498	-244.85
60.0	55.89	395.81	689.326362	-293.52
65.0	52.65	403.88	746.770225	-342.89
70.0	49.79	411.34	804.214089	-392.87
75.0	47.26	418.29	861.657952	-443.37
80.0	44.99	424.80	919.101816 976.545679	-494.31
85.0	42.95 41.11	430.91 436.68	1033.98954	-545.63 -597.31
90.0 95.0	39.43	430.08	1033.98954	-597.31
100.0	39.43	442.15	1148.87727	-049.29
105.0	36.50	447.34	1206.32113	-754.03
110.0	35.20	452.29	1263.765	-806.75
115.0	34.01	461.54	1321.20886	-859.67
120.0	32.89	465.88	1378.65272	-912.77
125.0	31.86	470.05	1436.09659	-966.04
130.0	30.90	474.07	1493.54045	-1019.47
135.0	30.00	477.94	1550.98431	-1073.04
140.0	29.15	481.68	1608.42818	-1126.74
145.0	28.36	485.30	1665.87204	-1180.57
150.0	27.61	488.80	1723.3159	-1234.51
155.0	26.91	492.20	1780.75977	-1288.56
160.0	26.24	495.49	1838.20363	-1342.71
165.0	25.61	498.70	1895.6475	-1396.95
170.0	25.01	501.81	1953.09136	-1451.28
175.0	24.44	504.84	2010.53522	-1505.70
180.0	23.90	507.79	2067.97909	-1560.19
185.0	23.39	510.66	2125.42295	-1614.76
190.0	22.90	513.47	2182.86681	-1669.40
195.0	22.43	516.21	2240.31068	-1724.10
200.0	21.98	518.89	2297.75454	-1778.87
205.0	21.55	521.50	2355.1984 2412.64227	-1833.70
210.0 215.0	21.14 20.75	524.06 526.56	2470.08613	-1888.58 -1943.52
215.0	20.75	520.00	2527.52999	-1943.52
220.0	20.01	531.42	2584.97386	-2053.56
230.0	19.66	533.77	2642.41772	-2003.00
230.0	19.33	536.08	2699.86158	-2163.78
235.0	19.01	538.35	2757.30545	-22103.76
240.0	18.69	540.57	2814.74931	-2274.18
250.0	18.39	542.75	2872.19317	-2329.44
255.0	18.11	544.90	2929.63704	-2384.74
260.0	17.83	547.00	2987.0809	-2440.08
265.0	17.56	549.07	3044.52476	-2495.45
270.0	17.29	551.11	3101.96863	-2550.86
275.0	17.04	553.11	3159.41249	-2606.30
280.0	16.80	555.08	3216.85636	-2661.77
285.0	16.56	557.02	3274.30022	-2717.28
290.0	16.33	558.93	3331.74408	-2772.81
295.0	16.11	560.81	3389.18795	-2828.37
300.0	15.89	562.67	3446.63181	-2883.97
305.0	15.68	564.49	3504.07567	-2939.58
310.0	15.48	566.29	3561.51954	-2995.23
315.0	15.28	568.07	3618.9634	-3050.90
320.0	15.09	569.81	3676.40726	-3106.59
325.0	14.90	571.54	3733.85113	-3162.31
330.0	14.72	573.24	3791.29499	-3218.05
335.0	14.54	574.92	3848.73885	-3273.82
340.0	14.37	576.58	3906.18272	-3329.60
345.0	14.20	578.22	3963.62658	-3385.41
350.0	14.04	579.83	4021.07044	-3441.24
355.0	13.88	581.43	4078.51431	-3497.09
360.0	13.72	583.00	4135.95817	-3552.95
lax Volume (V				95.85



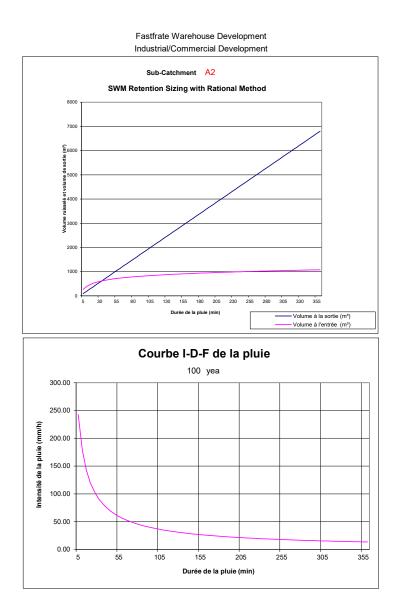
Project:	Fastfrate Warehouse Development
	Industrial/Commercial Development
Project #:	A001083 (360)
Station	OTTAWA SEWER DESIGN GUIDELINES
Date:	2022-05-30 14:00
File	\\cima_plus\cima\Cima-C10\Ott_Projects\4\4001000-4001499\4001

 File
 \\cima.plus\cima\Cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse

 Location:
 Development/300/360_Civi/I01-SWM/220527_SWM redesign\03_Storm Release Rates\[220525_Storm Water

Description: Storage volume calculations with the rational method

Specified Release Rate:	239.9793771 L/s/ha
Area : A2	1.3124 ha
Runoff Coefficient C (unfactore	0.81
C_runoff factor:	1.25
Runoff Coefficient C :	1
Rainfall Event :	100 year
Discharge Flow Q :	0.314948934 m ³ /s
Discharge Factor K :	1


Design Volume: 201.60 m³

Rainfall	2 year		5	/ear	10 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	732.951	732.951	998.071	998.071	1174.184	1174.184
В	6.199	6.199	6.053	6.053	6.014	6.014
C	0.81	0.81	0.814	0.814	0.816	0.816
Rainfall	25 y	/ear	50 year		100 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688
В	6.018	6.018	6.014	6.014	6.014	6.014
С	0.819	0.819	0.82	0.82	0.82	0.82

Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Date: May 27, 2022

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842



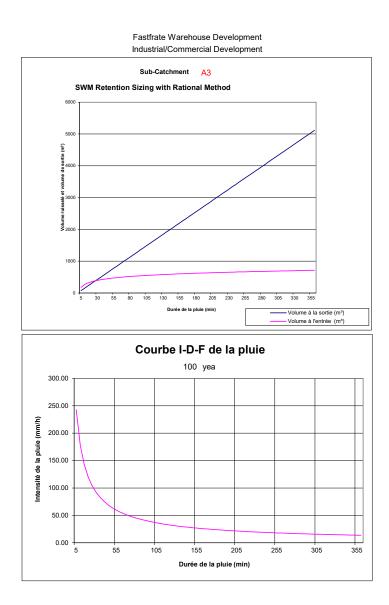
Rainfall	Rainfall	Runoff	Output	Retention
Duration (min)	Intensity	Volume	Volume	Volume
(min) T	(mm/h) /	(m³) CIAT	(m³) <i>kQT</i>	(m³) (4)-(5)
(1)	(2)	(4)	(5)	(6)
5.0	242.70	265.44	94.4846803	170.95
10.0	178.56	390.57	188.969361	201.60
15.0	142.89	468.84	283.454041	185.38
20.0	119.95	524.74	377.938721	146.80
25.0	103.85	567.87	472.423402	95.45
30.0	91.87	602.84	566.908082	35.93
35.0	82.58	632.19	661.392762	-29.20
40.0	75.15	657.47	755.877443	-98.41
45.0 50.0	69.05 63.95	679.66 699.44	850.362123 944.846803	-170.70 -245.40
55.0	59.62	717.29	1039.33148	-322.04
60.0	55.89	733.56	1133.81616	-400.26
65.0	52.65	748.51	1228.30084	-479.79
70.0	49.79	762.35	1322.78552	-560.44
75.0	47.26	775.23	1417.27021	-642.04
80.0	44.99	787.28	1511.75489	-724.47
85.0	42.95	798.61	1606.23957	-807.63
90.0	41.11	809.31	1700.72425	-891.41
95.0 100.0	39.43 37.90	819.44 829.07	1795.20893 1889.69361	-975.77
100.0	36.50	838.24	1984.17829	-1060.63
110.0	35.20	846.99	2078.66297	-1145.94
115.0	34.01	855.38	2173.14765	-1317.77
120.0	32.89	863.42	2267.63233	-1404.21
125.0	31.86	871.16	2362.11701	-1490.96
130.0	30.90	878.60	2456.60169	-1578.00
135.0	30.00	885.78	2551.08637	-1665.31
140.0	29.15	892.71	2645.57105 2740.05573	-1752.86
145.0 150.0	28.36 27.61	899.42 905.91	2834.54041	-1840.64 -1928.63
155.0	26.91	912.20	2929.02509	-2016.82
160.0	26.24	918.31	3023.50977	-2105.20
165.0	25.61	924.24	3117.99445	-2193.75
170.0	25.01	930.01	3212.47913	-2282.47
175.0	24.44	935.62	3306.96381	-2371.34
180.0	23.90	941.09	3401.44849	-2460.36
185.0	23.39	946.42	3495.93317	-2549.51
190.0	22.90	951.62	3590.41785	-2638.80
195.0 200.0	22.43 21.98	956.70 961.66	3684.90253 3779.38721	-2728.20 -2817.73
205.0	21.55	966.51	3873.87189	-2907.36
210.0	21.14	971.25	3968.35657	-2997.11
215.0	20.75	975.89	4062.84125	-3086.95
220.0	20.37	980.43	4157.32593	-3176.89
225.0	20.01	984.89	4251.81062	-3266.93
230.0	19.66	989.25	4346.2953	-3357.05
235.0	19.33	993.53	4440.77998	-3447.25
240.0 245.0	19.01 18.69	997.72	4535.26466 4629.74934	-3537.54 -3627.90
245.0	18.69	1001.84	4629.74934 4724.23402	-3627.90
255.0	18.11	1005.89	4818.7187	-3808.86
260.0	17.83	1013.77	4913.20338	-3899.44
265.0	17.56	1017.61	5007.68806	-3990.08
270.0	17.29	1021.38	5102.17274	-4080.79
275.0	17.04	1025.09	5196.65742	-4171.57
280.0	16.80	1028.74	5291.1421	-4262.40
285.0	16.56	1032.34	5385.62678	-4353.29
290.0 295.0	16.33 16.11	1035.88 1039.36	5480.11146 5574.59614	-4444.23 -4535.23
300.0	15.89	1042.80	5669.08082	-4626.28
305.0	15.68	1042.00	5763.5655	-4717.38
310.0	15.48	1049.52	5858.05018	-4808.53
315.0	15.28	1052.80	5952.53486	-4899.73
320.0	15.09	1056.05	6047.01954	-4990.97
325.0	14.90	1059.24	6141.50422	-5082.26
330.0	14.72	1062.40	6235.9889	-5173.59
335.0	14.54	1065.51	6330.47358	-5264.96
340.0	14.37	1068.58	6424.95826	-5356.37
345.0 350.0	14.20 14.04	1071.62	6519.44294 6613.92762	-5447.83
355.0	13.88	1074.61	6708.4123	-5539.32
360.0	13.72	1080.49	6802.89698	-5722.41
Max Volume (V	1			201.60



Project:	Fastfrate Warehouse Development
Project #:	Industrial/Commercial Development A001083 (360)
Station	OTTAWA SEWER DESIGN GUIDELINES
Date:	2022-05-30 14:00
File	\\cima.plus\cima\Cima\C10\Ott_Projects\A\001000-A001499\A001083_Fastfrate Warehouse
Location:	Development\300\360_Civil01-SWM0220527_SWM redesign\03_Storm Release Rates\{220525_Storm Water

Description: Storage volume calculations with the rational method

6 ha 9 5 1 0 year 4 m³/s


Design Volume: 115.00 m³

Rainfall	2 yea	5 )	year 10 year			
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	732.951	732.951	998.071	998.071	1174.184	1174.184
В	6.199	6.199	6.053	6.053	6.014	6.014
C	0.81	0.81	0.814	0.814	0.816	0.816
Rainfall	25 yea	ar	50 year		100 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688
В	6.018	6.018	6.014	6.014	6.014	6.014
С	0.819	0.819	0.82	0.82	0.82	0.82

Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Date: <u>May 27, 2022</u>

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842



Rainfall	Rainfall	Runoff	Output	Retention
Duration	Intensity	Volume	Volume	Volume
(min)	(mm/h)	(m ³ )	(m ³ )	(m ³ )
T	1	CIAT	kQT	(4)-(5)
(1)	(2)	(4)	(5)	(6)
5.0 10.0	242.70 178.56	257.01	71.0029781 142.005956	103.66
15.0	142.89	308.51	213.008934	95.50
20.0	119.95	345.30	284.011912	61.29
25.0	103.85	373.68	355.01489	18.66
30.0	91.87	396.69	426.017869	-29.33
35.0	82.58	416.00	497.020847	-81.02
40.0	75.15	432.64	568.023825	-135.39
45.0	69.05	447.24	639.026803	-191.79
50.0	63.95	460.26	710.029781	-249.77
55.0	59.62	472.00	781.032759	-309.03
60.0	55.89	482.71	852.035737	-369.33
65.0	52.65	492.54	923.038715	-430.50
70.0	49.79	501.65	994.041693	-492.39
75.0	47.26	510.12	1065.04467	-554.92
80.0	44.99	518.06	1136.04765 1207.05063	-617.99 -681.54
85.0 90.0	42.95 41.11	525.51 532.55	1207.05063	-081.54
95.0	39.43	539.22	1349.05658	-745.50
100.0	37.90	545.55	1420.05956	-874.51
105.0	36.50	551.59	1491.06254	-939.48
110.0	35.20	557.35	1562.06552	-1004.72
115.0	34.01	562.87	1633.0685	-1070.20
120.0	32.89	568.16	1704.07147	-1135.91
125.0	31.86	573.25	1775.07445	-1201.83
130.0	30.90	578.15	1846.07743	-1267.93
135.0	30.00	582.87	1917.08041	-1334.21
140.0	29.15	587.43	1988.08339	-1400.65
145.0	28.36	591.84	2059.08636	-1467.24
150.0	27.61	596.12	2130.08934	-1533.97
155.0	26.91	600.26	2201.09232	-1600.84
160.0	26.24	604.27	2272.0953	-1667.82
165.0 170.0	25.61 25.01	608.18	2343.09828 2414.10126	-1734.92 -1802.13
175.0	24.44	611.97 615.67	2485.10423	-1869.44
180.0	23.90	619.27	2556.10721	-1936.84
185.0	23.39	622.78	2627.11019	-2004.33
190.0	22.90	626.20	2698.11317	-2071.92
195.0	22.43	629.54	2769.11615	-2139.58
200.0	21.98	632.80	2840.11912	-2207.32
205.0	21.55	635.99	2911.1221	-2275.13
210.0	21.14	639.11	2982.12508	-2343.01
215.0	20.75	642.17	3053.12806	-2410.96
220.0	20.37	645.16	3124.13104	-2478.98
225.0	20.01	648.09	3195.13401	-2547.05
230.0	19.66	650.96	3266.13699	-2615.18
235.0	19.33	653.77	3337.13997	-2683.37
240.0	19.01	656.53	3408.14295	-2751.61
245.0 250.0	18.69 18.39	659.24 661.91	3479.14593 3550.1489	-2819.90 -2888.24
255.0	18.11	664.52	3621.15188	-2000.24
260.0	17.83	667.09	3692.15486	-3025.06
265.0	17.56	669.62	3763.15784	-3093.54
270.0	17.29	672.10	3834.16082	-3162.06
275.0	17.04	674.54	3905.1638	-3230.62
280.0	16.80	676.95	3976.16677	-3299.22
285.0	16.56	679.31	4047.16975	-3367.86
290.0	16.33	681.64	4118.17273	-3436.53
295.0	16.11	683.93	4189.17571	-3505.24
300.0	15.89	686.19	4260.17869	-3573.99
305.0	15.68	688.42	4331.18166	-3642.76
310.0	15.48	690.61	4402.18464	-3711.57
315.0	15.28	692.78	4473.18762	-3780.41
320.0 325.0	15.09 14.90	694.91 697.02	4544.1906 4615.19358	-3849.28 -3918.18
325.0	14.90	699.09	4615.19358	-3918.18
335.0	14.72	701.14	4757.19953	-3987.11
340.0	14.34	701.14	4828.20251	-4030.00
345.0	14.20	705.16	4899.20549	-4194.05
350.0	14.04	707.13	4970.20847	-4263.08
355.0	13.88	709.07	5041.21144	-4332.14
360.0	13.72	711.00	5112.21442	-4401.22
Max Volume (V i	nax):			115.00



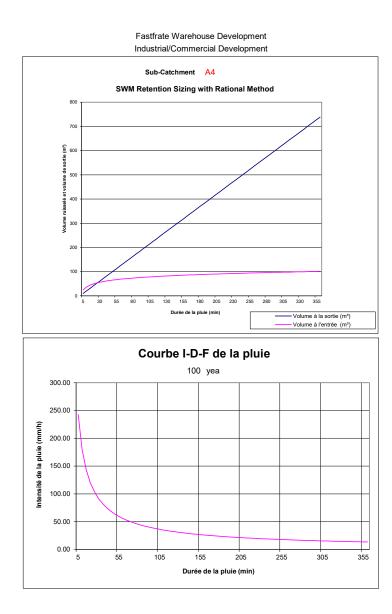
Project:	Fastfrate Warehouse Development
	Industrial/Commercial Development
Project #:	A001083 (360)
Station	OTTAWA SEWER DESIGN GUIDELINES
Date:	2022-05-30 14:00

 File
 \\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse

 Location:
 Development\300360_Civil\01-SWM\220527_SWM redesign\03_Storm Release Rates\220525_Storm Water

Description: Storage volume calculations with the rational method

Specified Release Rate:	239.9793771 L/s/ha
Area : A4	0.1425 ha
Runoff Coefficient C (unfactored	0.69
C_runoff factor:	1.25
Runoff Coefficient C :	0.8625
Rainfall Event :	100 year
Discharge Flow Q :	0.034197061 m ³ /s
Discharge Factor K :	1


Design Volume: 16.06 m³

Rainfall	2 year		5	<i>y</i> ear	10 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	732.951	732.951	998.071	998.071	1174.184	1174.184
В	6.199	6.199	6.053	6.053	6.014	6.014
C	0.81	0.81	0.814	0.814	0.816	0.816
Rainfall	25 y	<i>y</i> ear	50 year		100 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688
В	6.018	6.018	6.014	6.014	6.014	6.014
С	0.819	0.819	0.82	0.82	0.82	0.82

Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Date: May 27, 2022

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842



Rainfall Duration	Rainfall Intensity	Runoff Volume	Output Volume	Retention Volume
(min)	(mm/h)	(m ³ )	(m ³ )	(m ³ )
T	1	CIAT	kQT	(4)-(5)
(1)	(2)	(4)	(5)	(6)
5.0	242.70	24.86	10.2591184	14.60
10.0	178.56	36.58	20.5182367	16.06
15.0	142.89	43.91	30.7773551	13.13
20.0	119.95	49.14	41.0364735	8.11
25.0	103.85	53.18	51.2955918	1.89
30.0	91.87	56.46 59.20	61.5547102	-5.10
35.0 40.0	82.58 75.15	59.20 61.57	71.8138286 82.072947	-12.61 -20.50
40.0	69.05	63.65	92.3320653	-20.50
50.0	63.95	65.50	102.591184	-37.09
55.0	59.62	67.17	112.850302	-45.68
60.0	55.89	68.70	123.10942	-54.41
65.0	52.65	70.10	133.368539	-63.27
70.0	49.79	71.39	143.627657	-72.23
75.0	47.26	72.60	153.886776	-81.29
80.0	44.99	73.73	164.145894	-90.42
85.0	42.95	74.79	174.405012	-99.61
90.0	41.11	75.79	184.664131	-108.87
95.0	39.43	76.74	194.923249	-118.18
100.0	37.90	77.64	205.182367	-127.54
105.0	36.50	78.50	215.441486	-136.94
110.0	35.20	79.32	225.700604	-146.38
115.0	34.01	80.11	235.959723	-155.85
120.0	32.89	80.86	246.218841	-165.36
125.0	31.86	81.58	256.477959	-174.89
130.0	30.90	82.28 82.95	266.737078	-184.46
135.0 140.0	30.00 29.15	83.60	276.996196 287.255314	-194.04 -203.65
140.0	28.36	84.23	297.514433	-203.05
145.0	27.61	84.84	307.773551	-222.94
155.0	26.91	85.43	318.032669	-232.61
160.0	26.24	86.00	328.291788	-242.29
165.0	25.61	86.56	338.550906	-252.00
170.0	25.01	87.10	348.810025	-261.71
175.0	24.44	87.62	359.069143	-271.45
180.0	23.90	88.13	369.328261	-281.20
185.0	23.39	88.63	379.58738	-290.95
190.0	22.90	89.12	389.846498	-300.73
195.0	22.43	89.59	400.105616	-310.51
200.0	21.98	90.06	410.364735	-320.31
205.0	21.55	90.51	420.623853	-330.11
210.0	21.14	90.96	430.882972	-339.93
215.0	20.75	91.39	441.14209	-349.75
220.0	20.37	91.82	451.401208	-359.58
225.0	20.01	92.23	461.660327	-369.43
230.0 235.0	19.66 19.33	92.64 93.04	471.919445 482.178563	-379.28 -389.13
235.0	19.33	93.04	482.178563	-389.13
240.0	18.69	93.82	502.6968	-408.87
245.0	18.39	93.82	512.955918	-408.87
255.0	18.11	94.57	523.215037	-428.64
260.0	17.83	94.94	533.474155	-438.53
265.0	17.56	95.30	543.733274	-448.43
270.0	17.29	95.65	553.992392	-458.34
275.0	17.04	96.00	564.25151	-468.25
280.0	16.80	96.34	574.510629	-478.17
285.0	16.56	96.68	584.769747	-488.09
290.0	16.33	97.01	595.028865	-498.02
295.0	16.11	97.34	605.287984	-507.95
300.0	15.89	97.66	615.547102	-517.89
305.0	15.68	97.97	625.806221	-527.83
310.0	15.48	98.29	636.065339	-537.78
315.0	15.28	98.60	646.324457	-547.73
320.0	15.09	98.90	656.583576	-557.68
325.0	14.90	99.20	666.842694	-567.64
330.0	14.72	99.49	677.101812	-577.61
335.0 340.0	14.54 14.37	99.79 100.07	687.360931 697.620049	-587.58 -597.55
340.0	14.37	100.07	707.879168	-597.55
345.0	14.20	100.56	718.138286	-617.50
355.0	13.88	100.84	718.138286	-617.50
360.0	13.72	100.91	738.656523	-627.46
			100.000020	551.41
ax Volume (V	(max).			16.06



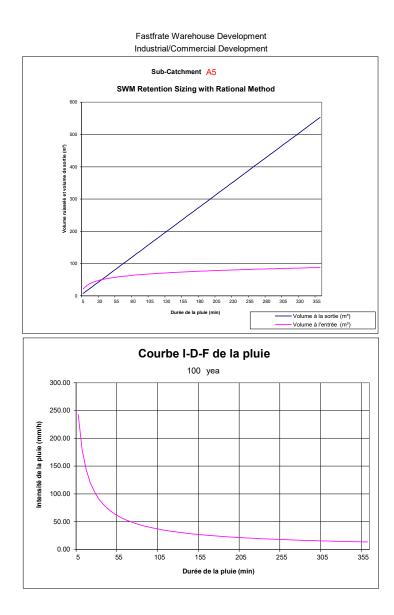
Project:	Fastfrate Warehouse Development
	Industrial/Commercial Development
Project #:	A001083 (360)
Station	OTTAWA SEWER DESIGN GUIDELINES
Date:	2022-05-30 14:00

 File
 \\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A00149\A001083_Fastfrate Warehouse

 Location:
 Development\300\360_Civil\01-SWM\220527_SWM redesign\03_Storm Release Rates\[220525_Storm Water

Description: Storage volume calculations with the rational method

Specified Release Rate:	239.9793771 L/s/ha		
Area : A5	0.1067 ha		
Runoff Coefficient C (unfactored	0.85		
C_runoff factor:	1.25		
Runoff Coefficient C :	1		
Rainfall Event :	100 year		
Discharge Flow Q :	0.0256058 m ³ /s		
Discharge Factor K :	1		


Design Volume: 16.39 m³

Rainfall	2 year		5	/ear	10 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	732.951	732.951	998.071	998.071	1174.184	1174.184
В	6.199	6.199	6.053	6.053	6.014	6.014
C	0.81	0.81	0.814	0.814	0.816	0.816
Rainfall	25	year	50 year		100 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688
В	6.018	6.018	6.014	6.014	6.014	6.014
С	0.819	0.819	0.82	0.82	0.82	0.82

Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Date: May 27, 2022

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842



Rainfall Duration	Rainfall Intensity	Runoff Volume	Output Volume	Retention Volume
(min)	(mm/h)	(m ³ )	(m ³ )	(m ³ )
T	1	CIAT	kQT	(4)-(5)
(1)	(2)	(4)	(5)	(6)
5.0	242.70	21.58	7.68173986	13.90
10.0	178.56	31.75	15.3634797	16.39
15.0	142.89	38.12	23.0452196	15.07
20.0	119.95	42.66	30.7269594	11.94
25.0	103.85	46.17	38.4086993	7.76
30.0 35.0	91.87	49.01	46.0904392	2.92
40.0	82.58 75.15	51.40 53.45	53.772179 61.4539189	-2.37 -8.00
40.0	69.05	55.26	69.1356587	-13.88
50.0	63.95	56.87	76.8173986	-19.95
55.0	59.62	58.32	84.4991385	-26.18
60.0	55.89	59.64	92,1808783	-32.54
65.0	52.65	60.85	99.8626182	-39.01
70.0	49.79	61.98	107.544358	-45.56
75.0	47.26	63.03	115.226098	-52.20
80.0	44.99	64.01	122.907838	-58.90
85.0	42.95	64.93	130.589578	-65.66
90.0	41.11	65.80	138.271317	-72.47
95.0	39.43	66.62	145.953057	-79.33
100.0	37.90	67.40	153.634797	-86.23
105.0	36.50	68.15	161.316537	-93.17
110.0	35.20	68.86	168.998277	-100.14
115.0	34.01	69.54	176.680017	-107.14
120.0	32.89	70.20	184.361757	-114.16
125.0 130.0	31.86 30.90	70.83	192.043497	-121.22
130.0	30.90	71.43	199.725236	-128.29
135.0	29.15	72.58	207.406976 215.088716	-135.39
140.0	28.36	73.12	222.770456	-149.65
150.0	27.61	73.65	230.452196	-156.80
155.0	26.91	74.16	238.133936	-163.97
160.0	26.24	74.66	245.815676	-171.16
165.0	25.61	75.14	253.497415	-178.36
170.0	25.01	75.61	261.179155	-185.57
175.0	24.44	76.07	268.860895	-192.79
180.0	23.90	76.51	276.542635	-200.03
185.0	23.39	76.95	284.224375	-207.28
190.0	22.90	77.37	291.906115	-214.54
195.0	22.43	77.78	299.587855	-221.81
200.0	21.98	78.18	307.269594	-229.09
205.0	21.55	78.58	314.951334	-236.37
210.0 215.0	21.14 20.75	78.96 79.34	322.633074 330.314814	-243.67 -250.97
215.0	20.75	79.34	337.996554	-250.97
225.0	20.01	80.07	345.678294	-265.61
230.0	19.66	80.43	353.360034	-272.93
235.0	19.33	80.78	361.041773	-280.27
240.0	19.01	81.12	368.723513	-287.61
245.0	18.69	81.45	376.405253	-294.95
250.0	18.39	81.78	384.086993	-302.31
255.0	18.11	82.10	391.768733	-309.67
260.0	17.83	82.42	399.450473	-317.03
265.0	17.56	82.73	407.132213	-324.40
270.0	17.29	83.04	414.813952	-331.77
275.0	17.04	83.34	422.495692	-339.15
280.0	16.80	83.64	430.177432	-346.54
285.0	16.56	83.93	437.859172	-353.93
290.0	16.33	84.22	445.540912	-361.32
295.0	16.11	84.50	453.222652	-368.72
300.0 305.0	15.89 15.68	84.78 85.06	460.904392 468.586131	-376.12 -383.53
310.0	15.66	85.33	476.267871	-303.55
315.0	15.28	85.59	470.207071	-390.94
320.0	15.09	85.86	491.631351	-405.77
325.0	14.90	86.12	499.313091	-413.20
330.0	14.72	86.37	506.994831	-420.62
335.0	14.54	86.63	514.676571	-428.05
340.0	14.37	86.88	522.35831	-435.48
345.0	14.20	87.12	530.04005	-442.92
350.0	14.04	87.37	537.72179	-450.35
355.0	13.88	87.61	545.40353	-457.80
333.0				
360.0	13.72	87.85	553.08527	-465.24



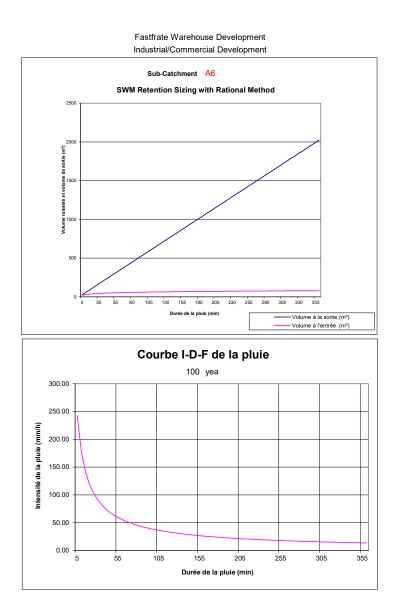
Project:	Fastfrate Warehouse Development
	Industrial/Commercial Development
Project #:	A001083 (360)
Station	OTTAWA SEWER DESIGN GUIDELINES
Date:	2022-05-30 14:00

 File
 \\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse

 Location:
 Development/300/360_Civi/101-SWM/220527_SWM redesign\03_Storm Release Rates\/220525_Storm Water

Description: Storage volume calculations with the rational method

Specified Release Rate:	239.9793771 L/s/ha
Area : A6	0.3906 ha
Runoff Coefficient C (unfactore	0.2
C_runoff factor:	1.25
Runoff Coefficient C :	0.25
Rainfall Event :	100 year
Discharge Flow Q :	0.093735945 m ³ /s
Discharge Factor K :	1


Design Volume: 0.00 m³

Rainfall	2 y	ear	5	/ear	10 year		
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	
Coefficients							
A	732.951	732.951	998.071	998.071	1174.184	1174.184	
В	6.199	6.199	6.053	6.053	6.014	6.014	
C	0.81	0.81	0.814	0.814	0.816	0.816	
Rainfall	25 y	/ear	50	year	100	year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	
Coefficients							
A	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688	
В	6.018	6.018	6.014	6.014	6.014	6.014	
С	0.819	0.819	0.82	0.82	0.82	0.82	

Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Date: May 27, 2022

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842



Rainfall Duration	Rainfall Intensity	Runoff Volume	Output Volume	Retention Volume
(min)	(mm/h)	(m ³ )	(m ³ )	(m ³ )
T	1	CIAT	kQT	(4)-(5)
(1)	(2)	(4)	(5)	(6)
5.0	242.70	19.75	28.1207834	-8.37
10.0	178.56	29.06	56.2415668	-27.18
15.0	142.89	34.88	84.3623502	-49.48
20.0	119.95	39.04	112.483134	-73.44
25.0	103.85	42.25	140.603917	-98.35
30.0	91.87	44.85	168.7247	-123.87
35.0	82.58	47.04	196.845484	-149.81
40.0	75.15	48.92	224.966267	-176.05
45.0	69.05	50.57	253.087051	-202.52
50.0	63.95	52.04	281.207834	-229.17
55.0	59.62	53.37	309.328617	-255.96
60.0	55.89	54.58	337.449401	-282.87
65.0	52.65	55.69	365.570184	-309.88
70.0	49.79	56.72	393.690968	-336.97
75.0	47.26	57.68	421.811751	-364.13
80.0	44.99	58.58	449.932534	-391.35
85.0	42.95	59.42	478.053318	-418.63
90.0	41.11	60.22	506.174101	-445.96
95.0	39.43	60.97	534.294885	-473.32
100.0	37.90	61.69	562.415668	-500.73
105.0	36.50	62.37	590.536452	-528.17
110.0	35.20	63.02	618.657235	-555.64
115.0	34.01	63.65 64.24	646.778018	-583.13
120.0 125.0	32.89 31.86	64.24	674.898802 703.019585	-610.66 -638.20
125.0	31.86	65.37	703.019585	-638.20
135.0	30.00	65.91	759.261152	-693.35
140.0	29.15	66.42	787.381935	-720.96
145.0	28.36	66.92	815.502719	-748.58
150.0	27.61	67.40	843.623502	-776.22
155.0	26.91	67.87	871.744286	-803.87
160.0	26.24	68.33	899.865069	-831.54
165.0	25.61	68.77	927.985852	-859.22
170.0	25.01	69.20	956.106636	-886.91
175.0	24.44	69.62	984.227419	-914.61
180.0	23.90	70.02	1012.3482	-942.33
185.0	23.39	70.42	1040.46899	-970.05
190.0	22.90	70.81	1068.58977	-997.78
195.0	22.43	71.18	1096.71055	-1025.53
200.0	21.98	71.55	1124.83134	-1053.28
205.0	21.55	71.91	1152.95212	-1081.04
210.0	21.14	72.27	1181.0729	-1108.81
215.0	20.75	72.61	1209.19369	-1136.58
220.0	20.37	72.95	1237.31447	-1164.36
225.0	20.01	73.28	1265.43525	-1192.15
230.0	19.66	73.61	1293.55604	-1219.95
235.0	19.33	73.92	1321.67682	-1247.75
240.0	19.01	74.24	1349.7976	-1275.56
245.0	18.69	74.54	1377.91839	-1303.38
250.0	18.39	74.84	1406.03917	-1331.20
255.0	18.11	75.14	1434.15995	-1359.02
260.0	17.83	75.43	1462.28074	-1386.85
265.0	17.56	75.72	1490.40152	-1414.69
270.0	17.29	76.00	1518.5223	-1442.53
275.0	17.04	76.27	1546.64309	-1470.37
280.0	16.80	76.54	1574.76387	-1498.22
285.0	16.56 16.33	76.81	1602.88465	-1526.07 -1553.93
290.0	16.33	77.08 77.33	1631.00544	
295.0 300.0	16.11 15.89	77.59	1659.12622 1687.247	-1581.79 -1609.66
300.0	15.68	77.84	1715.36779	-1609.66
305.0	15.48	78.09	1743.48857	-1665.40
310.0	15.48	78.09	1743.48857	-1693.27
315.0	15.28	78.58	1799.73014	-1721.15
325.0	14.90	78.81	1827.85092	-1721.15
325.0	14.90	79.05	1855.9717	-1749.04
335.0	14.72	79.05	1884.09249	-1804.81
340.0	14.34	79.20	1912.21327	-1832.70
340.0	14.37	79.73	1940.33405	-1860.60
345.0	14.20	79.96	1968.45484	-1888.50
355.0	13.88	80.18	1996.57562	-1916.40
360.0	13.72	80.39	2024.69641	-1944.30
	· - · · -		. =	2
lax Volume (V	(max):			-8.37



Project:	Fastfrate Warehouse Development
	Industrial/Commercial Development
Project #:	A001083 (360)
Station	OTTAWA SEWER DESIGN GUIDELINES
Date:	2022-05-30 14:00
File	\\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fai

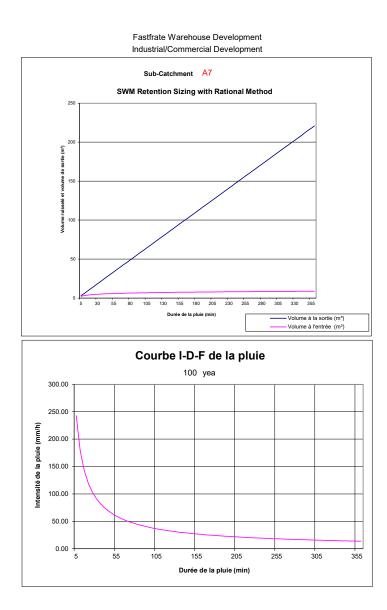
 FIIe
 \\cima.plus\cima\Cima\Cima\Cima\Cind\Ctt_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse

 Location:
 Development\300\360_Civi\01-SWM\220527_SWM redesign\03_Storm Release Rates\{220525_Storm Water Management - Storage and Drawdown_full RR.xlsx]A7

Description: Storage volume calculations with the rational method

Specified Release Rate:	239.9793771 L/s/ha
Area : A7 Runoff Coefficient C (unfactored	0.0426 ha
C_runoff factor:	1.25
Runoff Coefficient C :	0.25
Rainfall Event :	100 year
Discharge Flow Q :	0.010223121 m³/s
Discharge Factor K :	1

#### Design Volume: 0.00 m³


Rainfall	2 y	ear	5	year	10 year		
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	
Coefficients							
A	732.951	732.951	998.071	998.071	1174.184	1174.184	
В	6.199	6.199	6.053	6.053	6.014	6.014	
C	0.81	0.81	0.814	0.814	0.816	0.816	
Rainfall	25 y	/ear	50	year	100	year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	
Coefficients							
A	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688	
В	6.018	6.018	6.014	6.014	6.014	6.014	
С	0.819	0.819	0.82	0.82	0.82	0.82	

Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Date: <u>May 27, 2022</u>

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842

Date: <u>May 27, 2022</u>



Rainfall Duration	Rainfall Intensity	Runoff Volume	Output Volume	Retention Volume
(min)	(mm/h)	(m ³ )	(m ³ )	(m ³ )
T (1)	1	CIAT	kQT (5)	(4)-(5)
	(2)	(4)		(6)
5.0 10.0	242.70 178.56	2.15 3.17	3.06693644 6.13387288	-0.91 -2.96
15.0	142.89	3.80	9.20080932	-5.40
20.0	119.95	4.26	12.2677458	-8.01
25.0	103.85	4.61	15.3346822	-10.73
30.0	91.87	4.89	18.4016186	-13.51
35.0	82.58	5.13	21.4685551	-16.34
40.0	75.15	5.34	24.5354915	-19.20
45.0	69.05	5.52	27.602428	-22.09
50.0	63.95	5.68	30.6693644	-24.99
55.0	59.62	5.82	33.7363008	-27.92
60.0	55.89	5.95	36.8032373	-30.85
65.0	52.65	6.07	39.8701737	-33.80
70.0	49.79	6.19	42.9371101	-36.75
75.0	47.26	6.29	46.0040466	-39.71
80.0	44.99	6.39	49.070983	-42.68
85.0	42.95	6.48	52.1379195	-45.66
90.0	41.11	6.57	55.2048559	-48.64
95.0	39.43	6.65	58.2717923	-51.62
100.0	37.90	6.73	61.3387288	-54.61
105.0	36.50	6.80	64.4056652	-57.60
110.0	35.20	6.87	67.4726017	-60.60
115.0 120.0	34.01 32.89	6.94	70.5395381 73.6064745	-63.60
120.0	32.89	7.01	76.673411	-69.60
130.0	30.90	7.13	79.7403474	-72.61
135.0	30.00	7.19	82.8072839	-75.62
140.0	29.15	7.24	85.8742203	-78.63
145.0	28.36	7.30	88.9411567	-81.64
150.0	27.61	7.35	92.0080932	-84.66
155.0	26.91	7.40	95.0750296	-87.67
160.0	26.24	7.45	98.141966	-90.69
165.0	25.61	7.50	101.208902	-93.71
170.0	25.01	7.55	104.275839	-96.73
175.0	24.44	7.59	107.342775	-99.75
180.0	23.90	7.64	110.409712	-102.77
185.0	23.39	7.68	113.476648	-105.80
190.0	22.90	7.72	116.543585	-108.82
195.0	22.43	7.76	119.610521	-111.85
200.0	21.98	7.80	122.677458	-114.87
205.0	21.55	7.84	125.744394	-117.90
210.0	21.14	7.88	128.81133	-120.93
215.0	20.75	7.92	131.878267	-123.96
220.0	20.37	7.96	134.945203	-126.99
225.0	20.01	7.99	138.01214	-130.02
230.0	19.66	8.03	141.079076	-133.05
235.0	19.33	8.06	144.146013	-136.08
240.0	19.01	8.10	147.212949	-139.12
245.0	18.69	8.13	150.279886	-142.15
250.0	18.39	8.16	153.346822	-145.18
255.0	18.11	8.19	156.413758	-148.22
260.0	17.83	8.23	159.480695	-151.25
265.0	17.56	8.26	162.547631	-154.29
270.0	17.29	8.29	165.614568	-157.33 -160.36
275.0 280.0	17.04 16.80	8.32 8.35	168.681504 171.748441	-160.36
280.0	16.56	8.38	174.815377	-165.40
205.0	16.33	8.41	177.882313	-169.44
290.0	16.11	8.43	180.94925	-172.51
300.0	15.89	8.46	184.016186	-172.51
305.0	15.68	8.49	187.083123	-178.59
310.0	15.48	8.52	190.150059	-181.63
315.0	15.28	8.54	193.216996	-184.67
320.0	15.09	8.57	196.283932	-187.71
325.0	14.90	8.60	199.350869	-190.76
330.0	14.72	8.62	202.417805	-193.80
335.0	14.54	8.65	205.484741	-196.84
340.0	14.37	8.67	208.551678	-199.88
345.0	14.20	8.70	211.618614	-202.92
350.0	14.04	8.72	214.685551	-205.97
355.0	13.88	8.74	217.752487	-209.01
360.0	13.72	8.77	220.819424	-212.05
ax Volume (V	' max):			-0.91



# Appendix B-8 STORM WATER MANAGEMENT – STORAGE AND DRAWDOWN HALF RELEASE RATE







## Fastfrate Warehouse Development Industrial/Commercial Development A001083 (360)

## STORM WATER MANAGEMENT - SUMMARY - HALF RELEASE RATE

Rainfall event		100 ye	ears									
Sub-Area	Total Area	Capacity Area	Y _{max}	V _{max}	V _{rain}	Difference	$V_{acc}$	Y _{rain}	A _{rain}	Q _{ave}	Drawdown Time	Comments
	(m ² )	(m ² )	(m)	(m ³ )	(m ³ )	(m ³ )	(m ³ )	(m)	(m²)	(L/s)	(min)	
A1	7979	2394	0.00	0.00	213.80	-213.80	0.00	0.00	0	61.913	0	NC
A2	13124	3937	0.00	0.00	419.49	-419.49	0.00	0.00	0	101.836	0	NC
A3 - Building	8636	8636	0.05	143.93	115.00	28.93	115.00	0.04	7719	234.988	8	
A4	1425	428	0.00	0.00	36.59	-36.59	0.00	0.00	0	11.057	0	NC
A5	1067	320	0.00	0.00	34.10	-34.10	0.00	0.00	0	8.279	0	NC
A6	3906	1172	0.00	0.00	10.87	-10.87	0.00	0.00	0	30.309	0	NC
A7	426	128	0.00	0.00	1.19	-1.19	0.00	0.00	0	3.306	0	NC
Total	36563	17014		143.93	831.04	-687.11	115.00					

\\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civil\01-SWM\220527_SWM redesign\03_Storm Release Rates & Storage - Half RR\[220530_Storm Water Management - Storage and Drawdown_Half RR.xlsx]Sommaire

Legend:						
NC	= Non-controlled areas (no storage available)		Design Criteria:			
Capacity Area	= Area of water accumulated in sub-area at Max. Elev.	1) Maximum Allowable Total Release Rate = 248.03 L/s/ha				
Catchbasin Elev.	v Elevation of catchbasin inlet (top of grate).					
Max. Elev.	w. = Maximum elevation of water that may be accumulated within sub-area. 3) Rainfall event of 100 years					
Y _{max}	= Maximum depth of water that may be accumulated within the sub-area.		4) Pre-development flow (5 year) = L/s (or L/s/ha	<del>)</del>		
V _{max}	= Maximum volume of water (capacity) that may be accumulated within the sub-area.					
V _{rain}	= Volume of water generated by rainfall.					
Difference	= Difference between V _{max} and V _{rain} (remaining capacity of sub-area)					
V _{acc}	= Total volume of water accumulated within the sub-area in the event of a specific rainfall.					
Y _{rain}	= Depth of water generated by rainfall.	Prepared by:	Guillaume LeBlond, M.A.Sc., EIT	Date: May 30, 2022		
Elev _{rain}	= Elevation of water generated by rainfall.	PEO No.:	100530467			
A _{rain}	= Area of water generated by rainfall.					
Q _{ave}	= Average flow (for drawndown time calculation).	Verified by:	Christian Lavoie-Lebel, P.Eng.	Date: <u>May 30, 2022</u>		
Drawdown Time	= Time required for the total volume of water accumulated within sub-area to evacuate (following rainfall event).	PEO No.:	100067842			

2022-05-30

Date:

Date: 2022-05-30



#### STORM WATER MANAGEMENT - AVERAGE FLOW CALCULATION FOR RELEASE RATES - HALF RELEASE RATE

Catchment ID	Release Rate	Specified Flow rate	Calculated area
	L/s/ha	L/s	(mm ² )
A1	77.62	61.93	16901
A2	77.62	101.86	27799
A3 - Building	274.06	236.68	63773
A4	77.62	11.06	3018
A5	77.62	8.28	2260
A6	77.62	30.32	8273
A7	77.62	3.31	902
	Total	453.43	
	Allowable	453.43	
	Difference	0.00	

\\cima.plus\cima\Clima-C10\0tt_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development(300\360_Civil\01-SWM220527_SWM redesign\03_Storm Release Rates & Storage - Half RR[220530_Storm Water Management - Storage and Drawdown_Half RR.xlsx]Temps de vidange

Préparé par: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467 Date: May 30, 2022

Vérifié par: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842



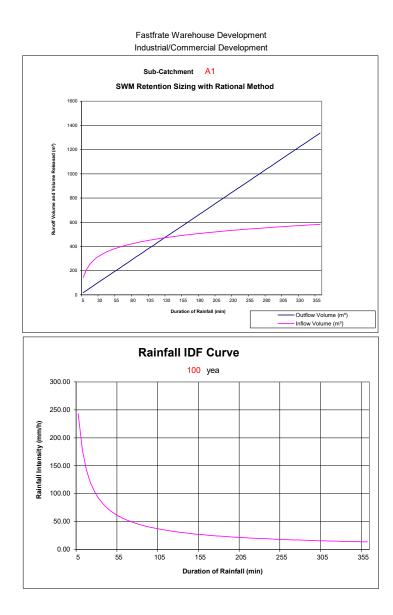
Project:	Fastfrate Warehouse Development
	Industrial/Commercial Development
Project #:	A001083 (360)
Station	OTTAWA SEWER DESIGN GUIDELINES
Date:	2022-05-30 14:06

 File
 \\cima.plus\cima\Cima\C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse

 Location:
 Development3001360_civi/I01-SWM\220527_SWM redesign\03_Storm Release Rates & Storage - Half

Description: Storage volume calculations with the rational method

Specified Release Rate:		77.61553563	L/s/ha	
Area	:	A1	0.7979	ha
Runoff Coeffic	ient C	(unfactored	0.71	
C_runoff facto	r:		1.25	
Runoff Coeffic	ient C	:	0.8875	
Rainfall Event	:		100	year
Discharge Flor	wQ:		0.061929436	m³/s
Discharge Fac	tor K :		1	


Design Volume: 213.80 m³

Rainfall	2 year		5 year		10 year	
IDF Curve	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	732.951	732.951	998.071	998.071	1174.184	1174.184
В	6.199	6.199	6.053	6.053	6.014	6.014
С	0.810	0.810	0.814	0.814	0.816	0.816
Rainfall	25 y	/ear	50 year		100 year	
IDF Curve	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688
В	6.018	6.018	6.014	6.014	6.014	6.014
С	0.819	0.819	0.820	0.820	0.820	0.820

## Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Date: May 30, 2022

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842



Rainfall Duration	Rainfall Intensity	Runoff Volume	Output Volume	Retention Volume
(min)	(mm/h)	(m ³ )	(m ³ )	(m ³ )
T	1	CIAT	kQT	(4)-(5)
(1)	(2)	(4)	(5)	(6)
5.0	242.70	143.22	18.5788308	124.64
10.0	178.56	210.74	37.1576615	173.58
15.0	142.89	252.97	55.7364923	197.23
20.0	119.95	283.14	74.3153231	208.82
25.0	103.85	306.41	92.8941538	213.51
30.0	91.87	325.28	111.472985	213.80
35.0	82.58	341.12	130.051815	211.06
40.0	75.15	354.75	148.630646	206.12
45.0	69.05	366.73	167.209477	199.52
50.0	63.95	377.40	185.788308	191.61
55.0	59.62	387.03	204.367138	182.67
60.0	55.89	395.81 403.88	222.945969 241.5248	172.86
65.0 70.0	52.65 49.79	403.88	260.103631	151.24
70.0	49.79	411.34	278.682461	139.61
80.0	44.99	418.29	297.261292	127.53
85.0	44.99	430.91	315.840123	127.55
90.0	42.95	436.68	334.418954	102.26
95.0	39.43	430.00	352.997784	89.15
100.0	37.90	447.34	371.576615	75.77
105.0	36.50	452.29	390.155446	62.13
110.0	35.20	457.02	408.734277	48.28
115.0	34.01	461.54	427.313108	34.23
120.0	32.89	465.88	445.891938	19.99
125.0	31.86	470.05	464.470769	5.58
130.0	30.90	474.07	483.0496	-8.98
135.0	30.00	477.94	501.628431	-23.69
140.0	29.15	481.68	520.207261	-38.52
145.0	28.36	485.30	538.786092	-53.49
150.0	27.61	488.80	557.364923	-68.56
155.0	26.91	492.20	575.943754	-83.74
160.0	26.24	495.49	594.522584	-99.03
165.0	25.61	498.70	613.101415	-114.41
170.0	25.01	501.81	631.680246	-129.87
175.0	24.44	504.84	650.259077	-145.42
180.0	23.90	507.79	668.837907	-161.05
185.0	23.39	510.66	687.416738	-176.75
190.0	22.90	513.47	705.995569	-192.53
195.0	22.43	516.21	724.5744	-208.36
200.0	21.98	518.89	743.153231	-224.27
205.0 210.0	21.55 21.14	521.50 524.06	761.732061 780.310892	-240.23 -256.25
210.0	20.75	526.56	798.889723	-272.33
220.0	20.73	529.02	817.468554	-288.45
225.0	20.01	531.42	836.047384	-304.63
230.0	19.66	533.77	854.626215	-320.85
235.0	19.33	536.08	873.205046	-337.12
240.0	19.01	538.35	891.783877	-353.44
245.0	18.69	540.57	910.362707	-369.79
250.0	18.39	542.75	928.941538	-386.19
255.0	18.11	544.90	947.520369	-402.63
260.0	17.83	547.00	966.0992	-419.10
265.0	17.56	549.07	984.67803	-435.61
270.0	17.29	551.11	1003.25686	-452.15
275.0	17.04	553.11	1021.83569	-468.72
280.0	16.80	555.08	1040.41452	-485.33
285.0	16.56	557.02	1058.99335	-501.97
290.0	16.33	558.93	1077.57218	-518.64
295.0	16.11	560.81	1096.15102	-535.34
300.0	15.89	562.67	1114.72985	-552.06
305.0	15.68	564.49	1133.30868	-568.82
310.0	15.48	566.29	1151.88751	-585.60
315.0	15.28	568.07	1170.46634	-602.40
320.0	15.09	569.81	1189.04517	-619.23
325.0	14.90	571.54	1207.624	-636.08
330.0	14.72	573.24	1226.20283	-652.96
335.0	14.54	574.92	1244.78166	-669.86
340.0	14.37	576.58	1263.36049	-686.78
345.0	14.20	578.22	1281.93932	-703.72
350.0	14.04	579.83	1300.51815	-720.69
355.0	13.88	581.43	1319.09698	-737.67
360.0	13.72	583.00	1337.67581	-754.67
lax Volume (V	1			213.80



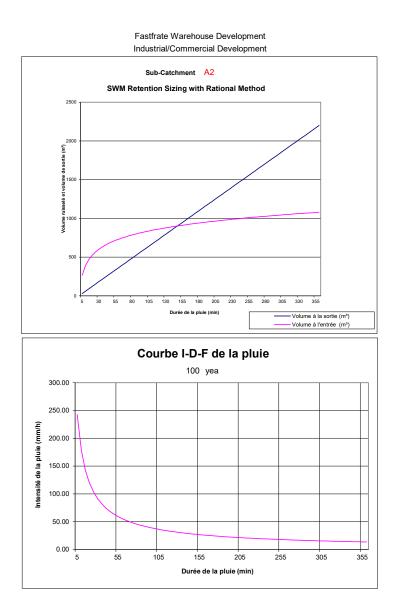
Project:	Fastfrate Warehouse Development
	Industrial/Commercial Development
Project #:	A001083 (360)
Station	OTTAWA SEWER DESIGN GUIDELINES
Date:	2022-05-30 14:06
	Name studies (Cime C40) Off President ALA004000 A004400

 File
 \\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse

 Location:
 Development\300\360_Civil\01-SWM\220527_SWM redesign\03_Storm Release Rates & Storage - Half

Description: Storage volume calculations with the rational method

Specified Release Rate:	77.61553563 L/s/ha
Area : A2	1.3124 ha
Runoff Coefficient C (unfactore	0.81
C_runoff factor:	1.25
Runoff Coefficient C :	1
Rainfall Event :	100 year
Discharge Flow Q :	0.101862629 m ³ /s
Discharge Factor K :	1


Design Volume: 419.49 m³

Rainfall	2 year		5 year		10 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	732.951	732.951	998.071	998.071	1174.184	1174.184
В	6.199	6.199	6.053	6.053	6.014	6.014
C	0.81	0.81	0.814	0.814	0.816	0.816
Rainfall	25 year		50 year		100 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688
В	6.018	6.018	6.014	6.014	6.014	6.014
С	0.819	0.819	0.82	0.82	0.82	0.82

Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Date: May 30, 2022

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842

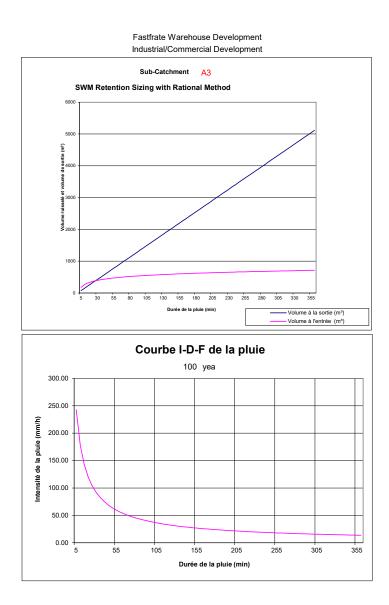


Rainfall	Rainfall	Runoff	Output	Retention
Duration	Intensity	Volume	Volume	Volume
(min)	(mm/h)	(m ³ )	(m ³ )	(m ³ )
<i>T</i> (1)	/ (2)	CIAT (4)	kQT (5)	(4)-(5) (6)
5.0	242.70	265.44	30.5587887	234.88
10.0	178.56	390.57	61.1175774	329.45
15.0	142.89	468.84	91.6763661	377.16
20.0	119.95	524.74	122.235155	402.51
25.0	103.85	567.87	152.793943	415.08
30.0	91.87	602.84	183.352732	419.49
35.0	82.58	632.19	213.911521	418.28
40.0	75.15	657.47	244.470309	413.00
45.0	69.05	679.66	275.029098	404.63
50.0 55.0	63.95 59.62	699.44 717.29	305.587887 336.146676	393.86 381.15
60.0	55.89	733.56	366.705464	366.86
65.0	52.65	748.51	397.264253	351.25
70.0	49.79	762.35	427.823042	334.52
75.0	47.26	775.23	458.38183	316.84
80.0	44.99	787.28	488.940619	298.34
85.0	42.95	798.61	519.499408	279.11
90.0	41.11	809.31	550.058196	259.25
95.0	39.43	819.44	580.616985	238.82
100.0 105.0	37.90 36.50	829.07 838.24	611.175774 641.734562	217.89
110.0	35.20	846.99	672.293351	174.70
115.0	34.01	855.38	702.85214	152.53
120.0	32.89	863.42	733.410928	130.01
125.0	31.86	871.16	763.969717	107.19
130.0	30.90	878.60	794.528506	84.07
135.0	30.00	885.78	825.087295	60.69
140.0	29.15	892.71	855.646083	37.07
145.0	28.36 27.61	899.42 905.91	886.204872 916.763661	13.21
150.0 155.0	26.91	905.91	916.763661 947.322449	-10.86 -35.12
160.0	26.24	918.31	977.881238	-59.57
165.0	25.61	924.24	1008.44003	-84.20
170.0	25.01	930.01	1038.99882	-108.99
175.0	24.44	935.62	1069.5576	-133.94
180.0	23.90	941.09	1100.11639	-159.03
185.0	23.39	946.42	1130.67518	-184.25
190.0	22.90	951.62	1161.23397	-209.61
195.0	22.43	956.70	1191.79276	-235.09
200.0 205.0	21.98 21.55	961.66 966.51	1222.35155 1252.91034	-260.69 -286.40
210.0	21.14	971.25	1283.46912	-312.22
215.0	20.75	975.89	1314.02791	-338.14
220.0	20.37	980.43	1344.5867	-364.15
225.0	20.01	984.89	1375.14549	-390.26
230.0	19.66	989.25	1405.70428	-416.46
235.0	19.33	993.53	1436.26307	-442.74
240.0	19.01	997.72	1466.82186	-469.10
245.0	18.69	1001.84	1497.38065	-495.54
250.0 255.0	18.39 18.11	1005.89 1009.86	1527.93943 1558.49822	-522.05 -548.64
255.0	17.83	1013.77	1589.05701	-546.64
265.0	17.56	1013.77	1619.6158	-602.01
270.0	17.29	1021.38	1650.17459	-628.80
275.0	17.04	1025.09	1680.73338	-655.64
280.0	16.80	1028.74	1711.29217	-682.55
285.0	16.56	1032.34	1741.85096	-709.51
290.0	16.33	1035.88	1772.40974	-736.53
295.0	16.11	1039.36	1802.96853	-763.60 -790.73
300.0 305.0	15.89 15.68	1042.80 1046.18	1833.52732 1864.08611	-790.73
310.0	15.48	1040.18	1894.6449	-845.13
315.0	15.28	1043.32	1925.20369	-872.40
320.0	15.09	1056.05	1955.76248	-899.72
325.0	14.90	1059.24	1986.32126	-927.08
330.0	14.72	1062.40	2016.88005	-954.48
335.0	14.54	1065.51	2047.43884	-981.93
340.0	14.37	1068.58	2077.99763	-1009.41
345.0	14.20	1071.62	2108.55642	-1036.94
350.0 355.0	14.04 13.88	1074.61 1077.57	2139.11521 2169.674	-1064.50 -1092.10
360.0	13.72	1080.49	2200.23279	-1119.74
	=			
Max Volume (V	( max):			419.49



Project:	Fastfrate Warehouse Development
	Industrial/Commercial Development
Project #:	A001083 (360)
Station	OTTAWA SEWER DESIGN GUIDELINES
Date:	2022-05-30 14:06
File Location:	\\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civi101-SWM\220527_SWM redesign\03_Storm Release Rates & Storage - Half
Description:	Storage volume calculations with the rational method

Specified Release Rate:	274.0581214 L/s/ha
Area : A3 - Building	0.8636 ha
Runoff Coefficient C (unfactored):	0.9
C_runoff factor:	1.25
Runoff Coefficient C :	1
Rainfall Event :	100 year
Discharge Flow Q :	0.236676594 m³/s
Discharge Factor K :	1


Design Volume: 115.00 m³

Rainfall	2 yea	5 )	/ear	10 year		
Pluviometry Coefficients	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
A	732.951	732.951	998.071	998.071	1174.184	1174.184
В	6.199	6.199	6.053	6.053	6.014	6.014
C	0.81	0.81	0.814	0.814	0.816	0.816
Rainfall	25 yea	ar	50 year		100 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688
В	6.018	6.018	6.014	6.014	6.014	6.014
C	0.819	0.819	0.82	0.82	0.82	0.82

Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Date: May 30, 2022

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842



Rainfall	Rainfall	Runoff	Output	Retention
Duration	Intensity	Volume	Volume	Volume
(min)	(mm/h)	(m ³ )	(m ³ )	(m ³ )
T	1	CIAT	kQT	(4)-(5)
(1)	(2)	(4)	(5)	(6)
5.0 10.0	242.70 178.56	257.01	71.0029781 142.005956	103.66
15.0	142.89	308.51	213.008934	95.50
20.0	119.95	345.30	284.011912	61.29
25.0	103.85	373.68	355.01489	18.66
30.0	91.87	396.69	426.017869	-29.33
35.0	82.58	416.00	497.020847	-81.02
40.0	75.15	432.64	568.023825	-135.39
45.0	69.05	447.24	639.026803	-191.79
50.0	63.95	460.26	710.029781	-249.77
55.0	59.62	472.00	781.032759	-309.03
60.0	55.89	482.71	852.035737	-369.33
65.0	52.65	492.54	923.038715	-430.50
70.0	49.79	501.65	994.041693	-492.39
75.0	47.26	510.12	1065.04467	-554.92
80.0	44.99	518.06	1136.04765 1207.05063	-617.99 -681.54
85.0 90.0	42.95 41.11	525.51 532.55	1207.05063	-081.54
95.0	39.43	539.22	1349.05658	-745.50
100.0	37.90	545.55	1420.05956	-874.51
105.0	36.50	551.59	1491.06254	-939.48
110.0	35.20	557.35	1562.06552	-1004.72
115.0	34.01	562.87	1633.0685	-1070.20
120.0	32.89	568.16	1704.07147	-1135.91
125.0	31.86	573.25	1775.07445	-1201.83
130.0	30.90	578.15	1846.07743	-1267.93
135.0	30.00	582.87	1917.08041	-1334.21
140.0	29.15	587.43	1988.08339	-1400.65
145.0	28.36	591.84	2059.08636	-1467.24
150.0	27.61	596.12	2130.08934	-1533.97
155.0	26.91	600.26	2201.09232	-1600.84
160.0	26.24	604.27	2272.0953	-1667.82
165.0 170.0	25.61 25.01	608.18	2343.09828 2414.10126	-1734.92 -1802.13
175.0	24.44	611.97 615.67	2485.10423	-1869.44
180.0	23.90	619.27	2556.10721	-1936.84
185.0	23.39	622.78	2627.11019	-2004.33
190.0	22.90	626.20	2698.11317	-2071.92
195.0	22.43	629.54	2769.11615	-2139.58
200.0	21.98	632.80	2840.11912	-2207.32
205.0	21.55	635.99	2911.1221	-2275.13
210.0	21.14	639.11	2982.12508	-2343.01
215.0	20.75	642.17	3053.12806	-2410.96
220.0	20.37	645.16	3124.13104	-2478.98
225.0	20.01	648.09	3195.13401	-2547.05
230.0	19.66	650.96	3266.13699	-2615.18
235.0	19.33	653.77	3337.13997	-2683.37
240.0	19.01	656.53	3408.14295	-2751.61
245.0 250.0	18.69 18.39	659.24 661.91	3479.14593 3550.1489	-2819.90 -2888.24
255.0	18.11	664.52	3621.15188	-2000.24
260.0	17.83	667.09	3692.15486	-3025.06
265.0	17.56	669.62	3763.15784	-3093.54
270.0	17.29	672.10	3834.16082	-3162.06
275.0	17.04	674.54	3905.1638	-3230.62
280.0	16.80	676.95	3976.16677	-3299.22
285.0	16.56	679.31	4047.16975	-3367.86
290.0	16.33	681.64	4118.17273	-3436.53
295.0	16.11	683.93	4189.17571	-3505.24
300.0	15.89	686.19	4260.17869	-3573.99
305.0	15.68	688.42	4331.18166	-3642.76
310.0	15.48	690.61	4402.18464	-3711.57
315.0	15.28	692.78	4473.18762	-3780.41
320.0 325.0	15.09 14.90	694.91 697.02	4544.1906 4615.19358	-3849.28 -3918.18
325.0	14.90	699.09	4615.19358	-3918.18
335.0	14.72	701.14	4757.19953	-3987.11
340.0	14.34	701.14	4828.20251	-4030.00
345.0	14.20	705.16	4899.20549	-4194.05
350.0	14.04	707.13	4970.20847	-4263.08
355.0	13.88	709.07	5041.21144	-4332.14
360.0	13.72	711.00	5112.21442	-4401.22
Max Volume (V i	nax):			115.00



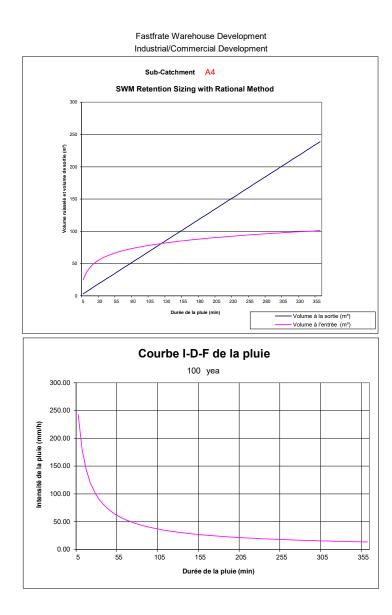
Project:	Fastfrate Warehouse Development
Project #:	Industrial/Commercial Development A001083 (360)
Station Date:	OTTAWA SEWER DESIGN GUIDELINES 2022-05-30 14:06

 File
 \\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse

 Location:
 Development\3001360_Civil\01-SWM\220527_SWM redesign\03_Storm Release Rates & Storage - Half

Description: Storage volume calculations with the rational method

Specified Release Rate:	77.61553563 L/s/ha
Area : A4	0.1425 ha
Runoff Coefficient C (unfactored	0.69
C_runoff factor:	1.25
Runoff Coefficient C :	0.8625
Rainfall Event :	100 year
Discharge Flow Q :	0.011060214 m ³ /s
Discharge Factor K :	1


Design Volume: 36.59 m³

Rainfall	2 year		5 year		10 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	732.951	732.951	998.071	998.071	1174.184	1174.184
В	6.199	6.199	6.053	6.053	6.014	6.014
C	0.81	0.81	0.814	0.814	0.816	0.816
Rainfall	25 y	<i>y</i> ear	50 year		100 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688
В	6.018	6.018	6.014	6.014	6.014	6.014
С	0.819	0.819	0.82	0.82	0.82	0.82

Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Date: May 30, 2022

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842



Rainfall Duration	Rainfall Intensity	Runoff Volume	Output Volume	Retention Volume
(min)	(mm/h)	(m ³ )	(m ³ )	(m³)
τ		ĊIAŤ	kQŤ	(4)-(5)
(1)	(2)	(4)	(5)	(6)
5.0	242.70	24.86	3.31806415	21.54
10.0	178.56	36.58	6.6361283	29.94
15.0	142.89	43.91	9.95419244	33.95
20.0	119.95	49.14	13.2722566	35.87
25.0	103.85	53.18	16.5903207	36.59
30.0	91.87	56.46	19.9083849	36.55
35.0	82.58	59.20	23.226449	35.98
40.0	75.15	61.57	26.5445132	35.03
45.0	69.05	63.65	29.8625773	33.79
50.0	63.95	65.50	33.1806415	32.32
55.0	59.62	67.17	36.4987056	30.68
60.0	55.89	68.70	39.8167698	28.88
65.0	52.65	70.10	43.1348339	26.96
70.0	49.79	71.39	46.4528981	24.94
75.0	47.26	72.60	49.7709622	22.83
80.0	44.99	73.73	53.0890264	20.64
85.0	42.95	74.79	56.4070905	18.38
90.0	41.11	75.79	59.7251547	16.07
95.0	39.43	76.74	63.0432188	13.70
100.0 105.0	37.90 36.50	77.64 78.50	66.361283 69.6793471	11.28 8.82
105.0	35.20	78.50	72.9974113	6.32
115.0	35.20	80.11	76.3154754	3.79
120.0	32.89	80.86	79.6335396	1.23
125.0	31.86	81.58	82.9516037	-1.37
130.0	30.90	82.28	86.2696678	-3.99
135.0	30.00	82.95	89.587732	-6.63
140.0	29.15	83.60	92.9057961	-9.30
145.0	28.36	84.23	96.2238603	-11.99
150.0	27.61	84.84	99.5419244	-14.70
155.0	26.91	85.43	102.859989	-17.43
160.0	26.24	86.00	106,178053	-20.18
165.0	25.61	86.56	109.496117	-22.94
170.0	25.01	87.10	112.814181	-25.72
175.0	24.44	87.62	116.132245	-28.51
180.0	23.90	88.13	119.450309	-31.32
185.0	23.39	88.63	122.768373	-34.14
190.0	22.90	89.12	126.086438	-36.97
195.0	22.43	89.59	129.404502	-39.81
200.0	21.98	90.06	132.722566	-42.66
205.0	21.55	90.51	136.04063	-45.53
210.0	21.14	90.96	139.358694	-48.40
215.0	20.75	91.39	142.676758	-51.28
220.0	20.37	91.82	145.994823	-54.18
225.0	20.01	92.23	149.312887	-57.08
230.0	19.66	92.64	152.630951	-59.99
235.0	19.33	93.04	155.949015	-62.91
240.0	19.01	93.44	159.267079	-65.83
245.0	18.69	93.82	162.585143	-68.76
250.0	18.39	94.20	165.903207	-71.70
255.0	18.11	94.57	169.221272	-74.65
260.0	17.83	94.94	172.539336	-77.60
265.0	17.56	95.30	175.8574	-80.56
270.0	17.29	95.65	179.175464	-83.52
275.0	17.04	96.00	182.493528	-86.49
280.0	16.80	96.34	185.811592	-89.47
285.0	16.56	96.68	189.129656	-92.45
290.0	16.33 16.11	97.01 97.34	192.447721 195.765785	-95.44 -98.43
295.0 300.0	15.89	97.66	195.765785	-98.43
300.0	15.68	97.00	202.401913	-101.43
305.0	15.68	97.97	202.401913	-104.43
310.0	15.48	98.29	205.719977 209.038041	-107.43
320.0	15.28	98.90	212.356105	-113.46
325.0	14.90	99.20	212.356105	-115.46
325.0	14.90	99.20	215.67417 218.992234	-116.48
	14.72			-119.50
335.0		99.79	222.310298	
340.0	14.37	100.07	225.628362	-125.56
345.0	14.20	100.36	228.946426	-128.59
350.0	14.04	100.64	232.26449	-131.63
355.0	13.88 13.72	100.91 101.19	235.582555	-134.67 -137.71
360.0	13.12	101.19	238.900619	
ax Volume (V	(			36.59



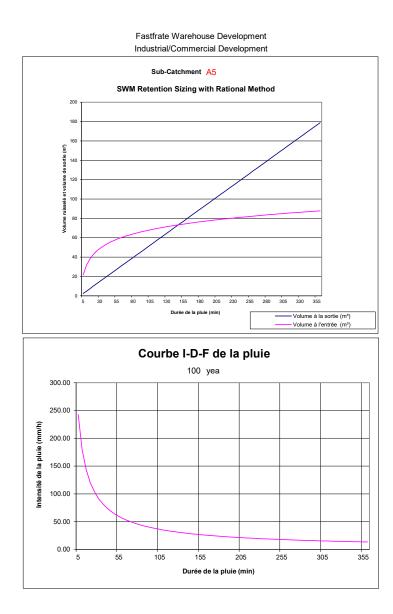
Project:	Fastfrate Warehouse Development
	Industrial/Commercial Development
Project #:	A001083 (360)
Station	OTTAWA SEWER DESIGN GUIDELINES
Date:	2022-05-30 14:06

 File
 \\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse

 Location:
 Development\3001360_Civil\01-SWM\220527_SWM redesign\03_Storm Release Rates & Storage - Half

Description: Storage volume calculations with the rational method

Specified Release Rate:	77.61553563 L/s/ha
Area : A5	0.1067 ha
Runoff Coefficient C (unfactored	0.85
C_runoff factor:	1.25
Runoff Coefficient C :	1
Rainfall Event :	100 year
Discharge Flow Q :	0.008281578 m ³ /s
Discharge Factor K :	1


Design Volume: 34.10 m³

Rainfall	2 year		5 year		10 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	732.951	732.951	998.071	998.071	1174.184	1174.184
В	6.199	6.199	6.053	6.053	6.014	6.014
C	0.81	0.81	0.814	0.814	0.816	0.816
Rainfall	25	<i>y</i> ear	50 year		100 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688
В	6.018	6.018	6.014	6.014	6.014	6.014
С	0.819	0.819	0.82	0.82	0.82	0.82

Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Date: May 30, 2022

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842



Rainfall Duration	Rainfall Intensity	Runoff Volume	Output Volume	Retention Volume
(min)	(mm/h)	(m ³ )	(m ³ )	(m³)
τ	λ, μ'	ĊIAŤ	kQŤ	(4)-(5)
(1)	(2)	(4)	(5)	(6)
5.0	242.70	21.58	2.4844733	19.10
10.0	178.56	31.75	4.96894659	26.78
15.0	142.89	38.12	7.45341989	30.66
20.0	119.95	42.66	9.93789318	32.72
25.0	103.85	46.17	12.4223665	33.75
30.0	91.87	49.01	14.9068398	34.10
35.0	82.58	51.40	17.3913131	34.01
40.0	75.15	53.45	19.8757864	33.58
45.0	69.05	55.26	22.3602597	32.90
50.0	63.95	56.87	24.844733	32.02
55.0	59.62	58.32	27.3292062	30.99
60.0	55.89	59.64	29.8136795	29.83
65.0	52.65	60.85	32.2981528	28.56
70.0	49.79	61.98	34.7826261	27.20
75.0 80.0	47.26 44.99	63.03 64.01	37.2670994 39.7515727	25.76 24.26
85.0	44.99	64.93	42.236046	24.20
90.0	42.95	65.80	44.7205193	22.09
90.0	39.43	66.62	47.203193	19.42
100.0	37.90	67.40	49.6894659	19.42
100.0	36.50	68.15	52.1739392	15.98
110.0	35.20	68.86	54.6584125	14.20
115.0	34.01	69.54	57.1428858	12.40
120.0	32.89	70.20	59.6273591	10.57
125.0	31.86	70.83	62.1118324	8.71
130.0	30.90	71.43	64.5963057	6.84
135.0	30.00	72.02	67.080779	4.93
140.0	29.15	72.58	69.5652523	3.01
145.0	28.36	73.12	72.0497256	1.07
150.0	27.61	73.65	74.5341989	-0.88
155.0	26.91	74.16	77.0186722	-2.86
160.0	26.24	74.66	79.5031455	-4.84
165.0	25.61	75.14	81.9876187	-6.85
170.0	25.01	75.61	84.472092	-8.86
175.0	24.44	76.07	86.9565653	-10.89
180.0	23.90	76.51	89.4410386	-12.93
185.0	23.39	76.95	91.9255119	-14.98
190.0	22.90	77.37	94.4099852	-17.04
195.0	22.43	77.78	96.8944585	-19.11
200.0	21.98	78.18	99.3789318	-21.19
205.0	21.55	78.58	101.863405	-23.28
210.0 215.0	21.14 20.75	78.96 79.34	104.347878 106.832352	-25.38
215.0	20.75	79.34	109.316825	-27.49 -29.61
225.0	20.01	80.07	111.801298	-29.01
230.0	19.66	80.43	114.285772	-33.86
230.0	19.88	80.78	116.770245	-35.00
235.0	19.01	81.12	119.254718	-38.14
240.0	18.69	81.45	121.739191	-40.29
250.0	18.39	81.78	124.223665	-40.23
255.0	18.11	82.10	126.708138	-44.60
260.0	17.83	82.42	129.192611	-46.77
265.0	17.56	82.73	131.677085	-48.94
270.0	17.29	83.04	134.161558	-51.12
275.0	17.04	83.34	136.646031	-53.30
280.0	16.80	83.64	139.130505	-55.49
285.0	16.56	83.93	141.614978	-57.68
290.0	16.33	84.22	144.099451	-59.88
295.0	16.11	84.50	146.583924	-62.08
300.0	15.89	84.78	149.068398	-64.29
305.0	15.68	85.06	151.552871	-66.50
310.0	15.48	85.33	154.037344	-68.71
315.0	15.28	85.59	156.521818	-70.93
320.0	15.09	85.86	159.006291	-73.15
325.0	14.90	86.12	161.490764	-75.37
330.0	14.72	86.37	163.975237	-77.60
335.0	14.54	86.63	166.459711	-79.83
340.0	14.37	86.88	168.944184	-82.07
345.0	14.20	87.12	171.428657	-84.30
350.0	14.04	87.37	173.913131	-86.55
355.0	13.88	87.61	176.397604	-88.79
360.0	13.72	87.85	178.882077	-91.04
ax Volume (V				34.10



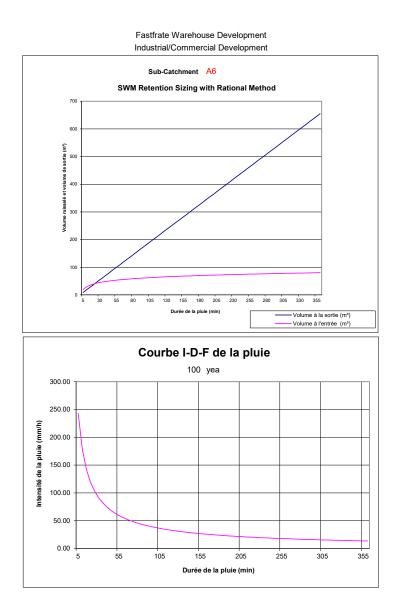
Project:	Fastfrate Warehouse Development
	Industrial/Commercial Development
Project #:	A001083 (360)
Station	OTTAWA SEWER DESIGN GUIDELINES
Date:	2022-05-30 14:06

 File
 \\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse

 Location:
 Development/3001360_Civil/01-SWM/220527_SWM redesign\03_Storm Release Rates & Storage - Half

Description: Storage volume calculations with the rational method

Specified Release Rate:	77.61553563 L/s/ha
Area : A6	0.3906 ha
Runoff Coefficient C (unfactore	e 0.2
C_runoff factor:	1.25
Runoff Coefficient C :	0.25
Rainfall Event :	100 year
Discharge Flow Q :	0.030316628 m³/s
Discharge Factor K :	1


Design Volume: 10.87 m³

Rainfall	2 year		5 year		10 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	732.951	732.951	998.071	998.071	1174.184	1174.184
В	6.199	6.199	6.053	6.053	6.014	6.014
C	0.81	0.81	0.814	0.814	0.816	0.816
Rainfall	25 y	/ear	50 year		100 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688
В	6.018	6.018	6.014	6.014	6.014	6.014
С	0.819	0.819	0.82	0.82	0.82	0.82

Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Date: May 30, 2022

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842



Duration (min) 7         Image: Constraint of the system 10.0           5.0         10.0           15.0         20.0           25.0         30.0           35.0         40.0           45.0         50.0           55.0         60.0           65.0         70.0           75.0         80.0           85.0         90.0           95.0         100.0           105.0         110.0           115.0         120.0           125.0         130.0           135.0         140.0           145.0         155.0           160.0         165.0           170.0         175.0           180.0         185.0           190.0         195.0           200.0         205.0	Intensity (mm/h) / (2) 242.70 178.56 142.89 119.95 103.85 91.87 82.58 91.87 82.58 975.15 69.05 63.95 55.69 52.65 59.62 55.89 52.65 49.79 47.26 44.99 42.95 41.11 39.43 37.90	Volume (m ³ ) CIAT (4) 19.75 29.06 34.88 39.04 42.25 44.85 47.04 48.92 50.57 52.04 53.37 54.58 55.69 56.72 57.68 58.58 58.58	Volume (m ³ ) kQT (5) 9.09498846 18.1899769 27.2849654 36.3799539 45.4749423 54.5699308 63.6649193 72.7599077 81.8548962 90.9498846 100.044873 109.139862 118.23485 127.329839	Volume (m ³ ) (4)-(5) (6) 10.66 10.87 7.60 2.66 -3.22 -9.72 -16.63 -3.22 -9.72 -16.63 -3.284 -31.28 -38.91 -46.67 -54.56 -62.54 -70.61
T         (1)           5.0         10.0           15.0         20.0           25.0         30.0           35.0         40.0           45.0         50.0           55.0         60.0           65.0         70.0           75.0         80.0           85.0         90.0           95.0         100.0           105.0         115.0           120.0         125.0           130.0         135.0           140.0         145.0           155.0         160.0           165.0         170.0           175.0         180.0           185.0         190.0           195.0         200.0	/ (2) 242.70 178.56 142.89 119.95 103.85 91.87 82.58 75.15 69.05 63.95 59.62 55.89 52.65 49.79 47.26 44.99 42.95 41.11 39.43 37.90	CIAT (4) 19.75 29.06 34.88 39.04 42.25 44.85 47.04 48.92 50.57 52.04 53.37 54.58 55.69 56.72 57.68 58.58	kQT           (5)           9.09498846           18.1899769           27.2849654           36.3799539           45.4749423           54.5699308           63.6649193           72.7599077           81.8548962           90.9498846           100.044873           109.139862           118.23485           127.329839	(4)-(5) (6) 10.66 10.87 7.60 2.66 -3.22 -9.72 -16.63 -23.84 -31.28 -38.91 -46.67 -54.56 -62.54
5.0           10.0           15.0           20.0           25.0           30.0           35.0           40.0           45.0           50.0           60.0           65.0           70.0           75.0           80.0           85.0           90.0           95.0           100.0           105.0           125.0           130.0           135.0           140.0           145.0           155.0           160.0           165.0           175.0           180.0           185.0           190.0           195.0           200.0	242.70 178.56 142.89 119.95 103.85 91.87 82.58 75.15 69.05 63.95 59.62 55.89 52.65 52.65 49.79 47.26 44.99 42.95 41.11 39.43 37.90	19.75 29.06 34.88 39.04 42.25 44.85 47.04 48.92 50.57 52.04 53.37 54.58 55.69 56.72 57.68 58.58	9.09498846 18.1899769 27.2849654 36.3799539 45.4749423 54.5699308 63.6649193 72.7599077 81.8548962 90.9498846 100.044873 109.139862 118.23485 127.329839	(6) 10.66 10.87 7.60 2.66 -3.22 -9.72 -16.63 -23.84 -31.28 -38.91 -46.67 -54.56 -62.54
10.0         15.0         20.0         25.0         30.0         35.0         40.0         45.0         50.0         55.0         60.0         65.0         70.0         75.0         80.0         85.0         90.0         95.0         100.0         115.0         120.0         135.0         140.0         145.0         155.0         160.0         165.0         170.0         175.0         180.0         185.0         190.0         195.0         200.0	178.56 142.89 119.95 103.85 91.87 82.58 75.15 69.05 63.95 59.62 55.89 52.65 49.79 47.26 44.99 42.95 41.11 39.43 37.90	29.06 34.88 39.04 42.25 44.85 47.04 48.92 50.57 52.04 53.37 54.58 55.69 56.72 57.68 58.58	18.1899769 27.2849654 36.3799539 45.4749423 54.5699308 63.6649193 72.7599077 81.8548962 90.9498846 100.044873 109.139862 118.23485 127.329839	10.87 7.60 2.66 -3.22 -9.72 -16.63 -23.84 -31.28 -31.28 -38.91 -46.67 -54.56 -62.54
15.0         20.0         25.0         30.0         35.0         40.0         45.0         50.0         55.0         60.0         65.0         70.0         75.0         80.0         85.0         90.0         95.0         100.0         105.0         115.0         120.0         125.0         135.0         140.0         145.0         155.0         160.0         165.0         170.0         175.0         180.0         185.0         190.0         195.0         200.0	142.89 119.95 103.85 91.87 82.58 75.15 69.05 63.95 59.62 55.89 52.65 49.79 47.26 44.99 42.95 41.11 39.43 37.90	34.88 39.04 42.25 44.85 47.04 48.92 50.57 52.04 53.37 54.58 55.69 56.72 57.68 58.58	27.2849654 36.3799539 45.4749423 54.5699308 63.6649193 72.7599077 81.8548962 90.9498846 100.044873 109.139862 118.23485 127.329839	7.60 2.66 -3.22 -9.72 -16.63 -23.84 -31.28 -38.91 -46.67 -54.56 -62.54
20.0           25.0           30.0           35.0           40.0           45.0           50.0           55.0           60.0           65.0           70.0           75.0           80.0           85.0           90.0           95.0           100.0           105.0           115.0           120.0           125.0           130.0           135.0           140.0           145.0           155.0           160.0           165.0           170.0           175.0           180.0           185.0           190.0           195.0           200.0	119.95 103.85 91.87 82.58 75.15 69.05 63.95 59.62 55.89 52.65 49.79 47.26 44.99 42.95 41.11 39.43 37.90	39.04 42.25 44.85 47.04 48.92 50.57 52.04 53.37 54.58 55.69 56.72 57.68 58.58	36.3799539 45.4749423 54.5699308 63.6649193 72.7599077 81.8548962 90.9498846 100.044873 109.139862 118.23485 127.329839	2.66 -3.22 -9.72 -16.63 -23.84 -31.28 -38.91 -46.67 -54.56 -62.54
25.0           30.0           35.0           40.0           45.0           50.0           55.0           60.0           65.0           70.0           75.0           80.0           85.0           90.0           95.0           100.0           105.0           110.0           115.0           120.0           125.0           130.0           145.0           155.0           160.0           165.0           177.0           175.0           180.0           185.0           190.0           195.0           200.0	103.85 91.87 82.58 75.15 69.05 63.95 55.62 55.69 52.65 49.79 47.26 44.99 42.95 41.11 39.43 37.90	42.25 44.85 47.04 48.92 50.57 52.04 53.37 54.58 55.69 56.72 57.68 58.58	45.4749423 54.5699308 63.6649193 72.7599077 81.8548962 90.9498846 100.044873 109.139862 118.23485 127.329839	-3.22 -9.72 -16.63 -23.84 -31.28 -38.91 -46.67 -54.56 -62.54
30.0         35.0         40.0         45.0         50.0         55.0         60.0         65.0         70.0         75.0         80.0         85.0         90.0         95.0         100.0         105.0         110.0         115.0         120.0         125.0         130.0         135.0         140.0         145.0         150.0         155.0         160.0         165.0         170.0         175.0         180.0         185.0         190.0         195.0         200.0	91.87 82.58 75.15 69.05 63.95 59.62 55.89 52.65 49.79 47.26 44.99 42.95 41.11 39.43 37.90	44.85 47.04 48.92 50.57 52.04 53.37 54.58 55.69 56.72 57.68 58.58	54.5699308 63.6649193 72.7599077 81.8548962 90.94988462 100.044873 109.139862 118.23485 127.329839	-9.72 -16.63 -23.84 -31.28 -38.91 -46.67 -54.56 -62.54
35.0         40.0         45.0         50.0         55.0         60.0         65.0         70.0         77.0         80.0         85.0         90.0         95.0         100.0         105.0         110.0         115.0         120.0         125.0         130.0         135.0         140.0         145.0         155.0         160.0         165.0         170.0         175.0         180.0         185.0         190.0         195.0         200.0	82.58 75.15 69.05 63.95 55.62 55.89 52.65 49.79 47.26 44.99 42.95 41.11 39.43 37.90	47.04 48.92 50.57 52.04 53.37 54.58 55.69 56.72 57.68 58.58	63.6649193 72.7599077 81.8548962 90.9498846 100.044873 109.139862 118.23485 127.329839	-16.63 -23.84 -31.28 -38.91 -46.67 -54.56 -62.54
40.0         45.0         50.0         55.0         60.0         65.0         70.0         75.0         80.0         85.0         90.0         95.0         100.0         105.0         110.0         115.0         120.0         125.0         130.0         135.0         140.0         145.0         155.0         160.0         165.0         170.0         175.0         180.0         185.0         190.0         195.0         200.0	75.15 69.05 63.95 59.62 55.89 52.65 49.79 47.26 44.99 42.95 41.11 39.43 37.90	48.92 50.57 52.04 53.37 54.58 55.69 56.72 57.68 58.58	72.7599077 81.8548962 90.9498846 100.044873 109.139862 118.23485 127.329839	-23.84 -31.28 -38.91 -46.67 -54.56 -62.54
45.0         50.0         55.0         60.0         65.0         70.0         75.0         80.0         85.0         90.0         95.0         100.0         105.0         110.0         125.0         130.0         135.0         140.0         145.0         155.0         160.0         165.0         177.0         175.0         180.0         185.0         190.0         195.0         200.0	69.05 63.95 59.62 52.65 49.79 47.26 44.99 42.95 41.11 39.43 37.90	50.57 52.04 53.37 54.58 55.69 56.72 57.68 58.58	81.8548962 90.9498846 100.044873 109.139862 118.23485 127.329839	-31.28 -38.91 -46.67 -54.56 -62.54
50.0           55.0           60.0           65.0           70.0           75.0           80.0           85.0           90.0           95.0           100.0           105.0           110.0           115.0           120.0           125.0           130.0           135.0           140.0           155.0           160.0           165.0           170.0           175.0           180.0           185.0           190.0           195.0           200.0	63.95 59.62 55.89 52.65 49.79 47.26 44.99 42.95 41.11 39.43 37.90	52.04 53.37 54.58 55.69 56.72 57.68 58.58	90.9498846 100.044873 109.139862 118.23485 127.329839	-38.91 -46.67 -54.56 -62.54
55.0           60.0           65.0           770.0           775.0           80.0           85.0           90.0           95.0           100.0           105.0           110.0           115.0           120.0           125.0           130.0           135.0           140.0           145.0           155.0           160.0           165.0           170.0           175.0           180.0           185.0           190.0           195.0           200.0	59.62 55.89 52.65 49.79 47.26 44.99 42.95 41.11 39.43 37.90	53.37 54.58 55.69 56.72 57.68 58.58	100.044873 109.139862 118.23485 127.329839	-46.67 -54.56 -62.54
60.0           65.0           70.0           75.0           80.0           85.0           90.0           95.0           100.0           105.0           110.0           115.0           120.0           125.0           130.0           135.0           140.0           145.0           155.0           160.0           165.0           170.0           175.0           180.0           185.0           190.0           195.0           200.0	55.89 52.65 49.79 47.26 44.99 42.95 41.11 39.43 37.90	54.58 55.69 56.72 57.68 58.58	109.139862 118.23485 127.329839	-54.56 -62.54
65.0           70.0           75.0           80.0           85.0           90.0           95.0           100.0           105.0           110.0           115.0           120.0           125.0           130.0           135.0           140.0           145.0           155.0           160.0           165.0           175.0           180.0           185.0           190.0           195.0           200.0	52.65 49.79 47.26 44.99 42.95 41.11 39.43 37.90	55.69 56.72 57.68 58.58	118.23485 127.329839	-62.54
70.0         75.0         80.0         85.0         90.0         95.0         100.0         105.0         110.0         115.0         120.0         125.0         130.0         135.0         140.0         155.0         160.0         165.0         170.0         175.0         180.0         185.0         190.0         195.0         200.0	49.79 47.26 44.99 42.95 41.11 39.43 37.90	56.72 57.68 58.58	127.329839	
75.0         80.0         85.0         90.0         95.0         100.0         105.0         110.0         115.0         120.0         125.0         130.0         135.0         140.0         145.0         155.0         160.0         165.0         170.0         175.0         180.0         185.0         190.0         195.0         200.0	47.26 44.99 42.95 41.11 39.43 37.90	57.68 58.58		
85.0           90.0           95.0           100.0           1105.0           110.0           115.0           125.0           130.0           135.0           140.0           145.0           155.0           160.0           165.0           175.0           177.0           185.0           190.0           195.0           200.0	42.95 41.11 39.43 37.90		136.424827	-78.74
90.0           95.0           100.0           110.0           115.0           120.0           125.0           130.0           135.0           140.0           145.0           155.0           160.0           165.0           175.0           176.0           175.0           185.0           190.0           195.0           200.0	41.11 39.43 37.90	59.42	145.519815	-86.94
95.0           100.0           105.0           110.0           115.0           120.0           125.0           130.0           135.0           140.0           145.0           150.0           155.0           160.0           165.0           170.0           175.0           185.0           190.0           195.0           200.0	39.43 37.90		154.614804	-95.19
100.0           105.0           110.0           115.0           120.0           125.0           135.0           140.0           145.0           155.0           160.0           165.0           170.0           175.0           180.0           185.0           190.0           195.0           200.0	37.90	60.22	163.709792	-103.49
105.0           110.0           115.0           120.0           125.0           130.0           135.0           145.0           150.0           155.0           160.0           165.0           175.0           170.0           175.0           180.0           185.0           190.0           195.0           200.0		60.97	172.804781	-111.83
110.0         115.0         120.0         125.0         130.0         135.0         140.0         145.0         150.0         155.0         160.0         165.0         175.0         180.0         185.0         190.0         195.0         200.0		61.69	181.899769	-120.21
115.0         120.0         125.0         135.0         140.0         145.0         150.0         155.0         160.0         165.0         170.0         175.0         188.0         190.0         195.0         200.0	36.50	62.37	190.994758	-128.63
120.0           125.0           130.0           135.0           140.0           145.0           155.0           160.0           165.0           170.0           175.0           180.0           185.0           190.0           195.0           200.0	35.20	63.02	200.089746	-137.07
125.0         130.0         135.0         140.0         145.0         155.0         165.0         165.0         170.0         175.0         180.0         185.0         190.0         195.0         200.0	34.01	63.65	209.184735	-145.54
130.0           135.0           140.0           145.0           150.0           155.0           160.0           165.0           170.0           175.0           180.0           185.0           190.0           195.0           200.0	32.89	64.24	218.279723	-154.04
135.0         140.0         145.0         155.0         160.0         165.0         170.0         175.0         180.0         185.0         190.0         195.0         200.0	31.86	64.82	227.374712 236.4697	-162.56
140.0 145.0 150.0 155.0 160.0 165.0 170.0 175.0 180.0 185.0 190.0 195.0 200.0	30.90 30.00	65.37		-171.10
145.0           150.0           155.0           160.0           165.0           170.0           175.0           180.0           185.0           190.0           195.0           200.0	29.15	65.91 66.42	245.564689 254.659677	-179.00
150.0 155.0 160.0 165.0 170.0 175.0 180.0 185.0 190.0 195.0 200.0	28.36	66.92	263.754665	-196.83
155.0 160.0 165.0 170.0 175.0 180.0 185.0 190.0 195.0 200.0	27.61	67.40	272.849654	-205.45
160.0           165.0           170.0           175.0           180.0           185.0           195.0           200.0	26.91	67.87	281.944642	-214.07
165.0         170.0         175.0         180.0         185.0         190.0         195.0         200.0	26.24	68.33	291.039631	-222.71
175.0 180.0 185.0 190.0 195.0 200.0	25.61	68.77	300.134619	-231.37
180.0         185.0         190.0         195.0         200.0	25.01	69.20	309.229608	-240.03
185.0 190.0 195.0 200.0	24.44	69.62	318.324596	-248.71
190.0 195.0 200.0	23.90	70.02	327.419585	-257.40
195.0 200.0	23.39	70.42	336.514573	-266.10
200.0	22.90	70.81	345.609562	-274.80
	22.43	71.18	354.70455	-283.52
205.0	21.98	71.55	363.799539	-292.25
010.0	21.55	71.91	372.894527	-300.98
210.0	21.14	72.27	381.989516	-309.72
215.0 220.0	20.75 20.37	72.61 72.95	391.084504 400.179492	-318.47 -327.23
225.0	20.37	73.28	400.179492	-327.23
230.0	19.66	73.61	418.369469	-335.99
230.0	19.66	73.92	418.369469	-344.76
233.0	19.33	74.24	436.559446	-362.32
245.0	18.69	74.54	445.654435	-371.11
250.0	18.39	74.84	454.749423	-379.91
255.0	18.11	75.14	463.844412	-388.70
260.0	17.83	75.43	472.9394	-397.51
265.0	17.56	75.72	482.034389	-406.32
270.0	17.29	76.00	491.129377	-415.13
275.0	17.04	76.27	500.224366	-423.95
280.0	16.80	76.54	509.319354	-432.78
285.0	16.56	76.81	518.414342	-441.60
290.0	16.33	77.08	527.509331	-450.43
295.0	16.11	77.33	536.604319	-459.27
300.0	15.89	77.59	545.699308	-468.11
305.0	15.68	77.84	554.794296	-476.95
310.0 315.0	15.48	78.09	563.889285	-485.80
315.0	15.28 15.09	78.33 78.58	572.984273 582.079262	-494.65 -503.50
325.0	14.90	78.81	591.17425	-503.50
330.0	14.90	79.05	600.269239	-512.30
335.0	14.72	79.05	609.364227	-521.22
340.0	14.37	79.51	618.459216	-538.95
345.0	14.20	79.73	627.554204	-547.82
350.0	14.04	79.96	636.649193	-556.69
355.0	13.88	80.18	645.744181	-565.57
360.0		80.39	654.839169	-574.44
lax Volume (V ma	13.72			10.87



Project:	Fastfrate Warehouse Development
	Industrial/Commercial Development
Project #:	A001083 (360)
Station	OTTAWA SEWER DESIGN GUIDELINES
Date:	2022-05-30 14:06
File	\\cima.plus\cima\Cima-C10\Ott_Projects\A\001000-A001499\A001083_Fastfra Development3001360_Civi001_SWM220527_SWM redesign03_Storm Release

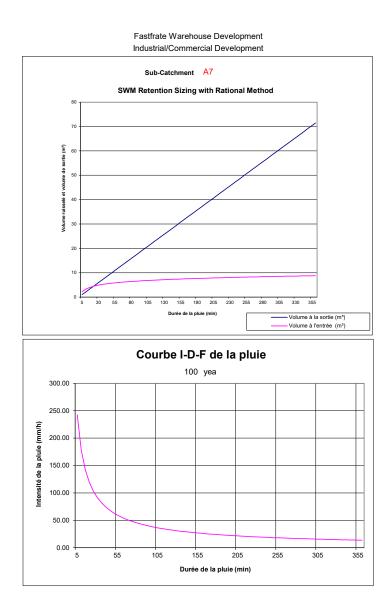
 File
 \\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse

 Location:
 Development\300360_Civil\01-SWM\220527_SWM redesign\03_Storm Release Rates & Storage - Half

 RR\{220530_Storm Water Management - Storage and Drawdown_Half RR.xlsx\A7

Description: Storage volume calculations with the rational method

Specified R	elease F	Rate:	77.61553563 L/s/ha	a
Area	:	A7	0.0426 ha	
Runoff Coet	fficient (	C (unfactored	0.2	
C_runoff fac	ctor:		1.25	
Runoff Coet	fficient (	C :	0.25	
Rainfall Eve	nt :		100 year	
Discharge F	low Q :		0.003306422 m ³ /s	
Discharge F	actor K	:	1	


#### Design Volume: 1.19 m³

Rainfall	2 y	ear	5 y	/ear	10 )	/ear
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	732.951	732.951	998.071	998.071	1174.184	1174.184
В	6.199	6.199	6.053	6.053	6.014	6.014
C	0.81	0.81	0.814	0.814	0.816	0.816
Rainfall	25 y	/ear	50	year	100	year
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688
В	6.018	6.018	6.014	6.014 6.014		6.014
С	0.819	0.819	0.82	0.82	0.82	0.82

Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Date: May 30, 2022

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842



Rainfall Duration	Rainfall Intensity	Runoff Volume	Output Volume	Retention Volume
(min)	(mm/h)	(m ³ )	(m ³ )	(m ³ )
T	1	CIAT	kQT	(4)-(5)
(1)	(2)	(4)	(5)	(6)
5.0	242.70	2.15	0.99192655	1.16
10.0	178.56	3.17 3.80	1.98385309	1.19 0.83
15.0 20.0	142.89 119.95	4.26	2.97577964 3.96770618	0.83
20.0	103.85	4.20	4.95963273	-0.35
30.0	91.87	4.89	5.95155927	-1.06
35.0	82.58	5.13	6.94348582	-1.81
40.0	75.15	5.34	7.93541236	-2.60
45.0	69.05	5.52	8.92733891	-3.41
50.0	63.95	5.68	9.91926545	-4.24
55.0	59.62	5.82	10.911192	-5.09
60.0	55.89	5.95	11.9031185	-5.95
65.0	52.65	6.07	12.8950451	-6.82
70.0	49.79	6.19	13.8869716	-7.70
75.0	47.26	6.29	14.8788982	-8.59
80.0	44.99	6.39	15.8708247	-9.48
85.0	42.95	6.48	16.8627513	-10.38
90.0	41.11	6.57	17.8546778	-11.29
95.0	39.43	6.65	18.8466044	-12.20
100.0	37.90	6.73	19.8385309	-13.11
105.0	36.50	6.80	20.8304575	-14.03
110.0	35.20	6.87	21.822384	-14.95
115.0	34.01	6.94	22.8143105	-15.87
120.0	32.89	7.01	23.8062371	-16.80
125.0	31.86	7.07	24.7981636	-17.73
130.0	30.90	7.13	25.7900902	-18.66
135.0	30.00	7.19	26.7820167	-19.59
140.0	29.15	7.24	27.7739433	-20.53
145.0	28.36	7.30	28.7658698	-21.47
150.0	27.61	7.35	29.7577964	-22.41
155.0	26.91	7.40	30.7497229	-23.35
160.0	26.24	7.45	31.7416494	-24.29
165.0	25.61	7.50	32.733576	-25.23
170.0	25.01	7.55	33.7255025	-26.18
175.0	24.44	7.59	34.7174291	-27.12
180.0	23.90	7.64	35.7093556	-28.07
185.0	23.39	7.68	36.7012822	-29.02
190.0	22.90	7.72	37.6932087	-29.97
195.0	22.43	7.76	38.6851353	-30.92
200.0 205.0	21.98 21.55	7.80	39.6770618 40.6689884	-31.87 -32.83
203.0	21.33	7.88	41.6609149	-32.63
210.0	21.14	7.92	42.6528414	-33.78
213.0	20.75	7.96	43.644768	-34.73
220.0	20.01	7.99	44.6366945	-36.64
230.0	19.66	8.03	45.6286211	-37.60
230.0	19.33	8.06	46.6205476	-37.00
233.0	19.01	8.10	47.6124742	-39.52
240.0	18.69	8.13	48.6044007	-40.47
250.0	18.39	8.16	49.5963273	-41.43
255.0	18.11	8.19	50.5882538	-42.39
260.0	17.83	8.23	51.5801804	-43.35
265.0	17.56	8.26	52.5721069	-44.31
270.0	17.29	8.29	53.5640334	-45.28
275.0	17.04	8.32	54.55596	-46.24
280.0	16.80	8.35	55.5478865	-47.20
285.0	16.56	8.38	56.5398131	-48.16
290.0	16.33	8.41	57.5317396	-49.13
295.0	16.11	8.43	58.5236662	-50.09
300.0	15.89	8.46	59.5155927	-51.05
305.0	15.68	8.49	60.5075193	-52.02
310.0	15.48	8.52	61.4994458	-52.98
315.0	15.28	8.54	62.4913724	-53.95
320.0	15.09	8.57	63.4832989	-54.91
325.0	14.90	8.60	64.4752254	-55.88
330.0	14.72	8.62	65.467152	-56.85
335.0	14.54	8.65	66.4590785	-57.81
340.0	14.37	8.67	67.4510051	-58.78
345.0	14.20	8.70	68.4429316	-59.75
350.0	14.04	8.72	69.4348582	-60.71
355.0	13.88	8.74	70.4267847	-61.68
	13.72	8.77	71.4187113	-62.65
360.0 ax Volume (V		0.11		1.19



# Appendix B-9 SOMME STREET DITCH ELEVATION (100-YEAR)







### FASTFRATE

### A001083 (360)

### CHANNEL CHECK AT DITCH ON SOMME STREET (100-YEAR)

Bed Length (I)	m	0.000				
Side Slopes (H:V)	H/V	3.0000	1.0000			
Slope (S)	m/m	0.0050	%	0.50		
Roughness Coefficient	n	0.0300				
Flow (Q)	m³/s	3.857	l/s	3,857		
Velocity (V)	m/s	1.395	cm/s	140		
Hydraulic Radius (R _h )	m	0.455				
Wetted Area	m ²	2.765		•		
Wetted Perimeter	m	6.072		h V		
Height of water (h)	m	0.960		4	, 1	•

**Notes:** The ditch on Somme street at which our site is connecting will have a headwater height of 0.96m during the 100-year storm event. The bottom of the ditch at that location is 89.110 which means the hydraulic grade line within the ditch will be at 90.07.

Prepared by: Julien Sauvé, P.Eng 100200100 Date: July 20, 2021

Verified by: Julien Sauvé, P.Eng PEO No.: 100200100 Date: July 20, 2021



# Appendix B-10 STORM HYDRAULIC GRADE LINE





#### Piezometric line calculation Calculation sheet

Project Title: Project Num Designed by: /erified by:	ber: :	A001083 Guillaum Christian	e LeBlond	l, M.A.Sc	Date:	2022-06-			Location Road: Initial wa Initial ve Manning	ater level locity (m,	n.a. (m): /s):	89.2 1.4 0.013	1.4 Initial HGL (m): 013			Erase		Graphic	_	
Manhole	D	Q	S	L	v	у	Α	Уc	$V^2/2g$	S _f	$\mathbf{h}_{\mathrm{f}}$	EGL _s	K	$K(V^2/2g)$	EGL _e	HGL _e	Cur. Elev.	Surface Elev.	Flow	Surface Elev LG
Num.	(mm)	$(m^3/s)$	(m/m)	(m)	(m/s)	<u>(m)</u>	(m ² )	(m)	(m)	(m/m)	(m)	(m)		(m)	(m)	(m)	<u>(m)</u>	(m)	Туре	(m)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)
Outlet	900	0.907			1.4				0.100			90.107			90.128	90.007	90.18	91	super-critical	
STM 900	900	0.907	0.0022	6.1	1.537	0.788	0.5903	0.555	0.120	0.002	0.013	90.141	0.5	0.060	90.201	90.081	90.19342	91	sub-critical	0.919
Comment:			11		I	1			1	1		1	I			<u> </u>		1		-

\\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civil\01-SWM/220527_SWM redesign\05_Effluent Storm to Ditch Hydraulic Grade Line\[220606_Storm Hydraulic Grade Line - Freeflow.xlsm]Piézo



#### Piezometric line calculation Calculation sheet

Project Title Project Num Designed by Verified by:	ber:	Fastfrate A001083 Guillaum Christian	(360) e LeBlond	l, M.A.Sc	Date:	2021-07			Location Road: Initial wa Initial ve Manning	ater level locity (m	n.a. (m): /s):	90.07 1.4 0.013	rged Condition Eras			Initial EGL _s (m):			Graphic	]
Manhole	D	Q	S	L	v	у	A	y _c	$V^2/2g$	S _f	$\mathbf{h}_{\mathbf{f}}$	EGL _s	K	$K(V^2/2g)$	EGL _e	HGL _e	Cur. Elev.	Surface Elev.	Flow	Surface Elev LGH
Num.	(mm)	$(m^3/s)$	(m/m)	(m)	(m/s)	(m)	(m ² )	(m)	(m)	(m/m)	(m)	(m)		(m)	(m)	(m)	(m)	(m)	Туре	(m)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)
Outlet	900	0.907			1.4				0.100			90.170			90.190	90.070	90.18	91	super-critical	
STM 900	900	0.907	0.0022	6.1	1.537	0.788	0.5903	0.555	0.120	0.002	0.013	90.204	0.5	0.060	90.264	90.144	90.19342	91	sub-critical	0.856
Comment:		1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		1		1	<u> </u>	1	<u> </u>	1	1	1		1

\\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civil\01-SWM220527_SWM redesign\05_Effluent Storm to Ditch Hydraulic Grade Line\[220606_Storm Hydraulic Grade Line - Surcharged.xlsm]Piézo





# Appendix B-11 SWM POND CONTROL SIZING





	•	PROJECT NAME: CIMA+ PROJECT NUMBER: CLIENT: PROJECT STATUS:	Fastfrate (Ottawa) Warehouse Developme A001083 Fastfrate (Ottawa) Holdings Inc. 90 % Design (Site plan Approval)	nt					
Numerical Analysis; Orifice sizing			PEO No.: <u>Guillaume LeBlond, M.A.Sc., EIT</u> 100530467			Date	: <u>May 31, 2022</u>		
Extended Detention Control			erified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842			Date	: <u>May 31, 2022</u>		
Extended Detention Orifice Control Type Elevation Range (m) Base elevation (m) Initial head over Orifice Orifice Diameter (mm) No. of orifices	Circular Orifice plate 89.3 to 89.5	Weir Equation Compariso 89.3 Weir Elevation (m) 0 Head over weir, H_w (m) 80 Weir Discharge Coeff., C_w 1 Weir Length, L_w (m):		<u>Values</u> 89.3 0.20 0.61 0.1	<u>Notes</u>				
Gravitational Acceleration, g (m/s ² ) Discharge Coefficient, C_d		9.81 0.63							
Water Elevation (m)	Head over Orifice, hf (m)	Head differential, dh (m)	Pond Area "A" (m2)	Orifice Area "a" (m2)		Orifice <u>Q=a*C*sqrt(2*g*hf) (m3/s)</u>	<u>Q=2/3*C_w*L_w*sqrt(2*g)</u> Q		Time differential, dt (s)
	89.30 89.31	0.00 0.01	0 0.01	846.29 849.30	5.03E-03 5.03E-03			0.00E+00 1.80E-04	0.00E+00 4.71E+04
	89.32	0.02	0.01	852.32	5.03E-03	1.98E-0		5.09E-04	1.67E+04
	89.33	0.03	0.01	855.34	5.03E-03			9.36E-04	9.14E+03
	89.34	0.04	0.01	858.37	5.03E-03	2.81E-0		1.44E-03	5.96E+03
	89.35	0.05	0.01	861.40	5.03E-03	3.14E-0		2.01E-03	4.28E+03
	89.36 89.37	0.06 0.07	0.01 0.01	864.44 867.48	5.03E-03 5.03E-03	3.44E-0 3.71E-0		2.65E-03 3.34E-03	3.27E+03 2.60E+03
	89.38	0.08	0.01	867.48	5.03E-03 5.03E-03	3.71E-0. 3.97E-0.		3.34E-03 3.97E-03	2.60E+03 2.19E+03
	89.39	0.09	0.01	873.59	5.03E-03			4.21E-03	2.19E+03 2.08E+03
	89.40	0.10	0.01	876.65	5.03E-03			4.44E-03	1.98E+03
	89.41	0.11	0.01	879.71	5.03E-03	4.65E-0		4.65E-03	1.89E+03
	89.42	0.12	0.01	882.78	5.03E-03	4.86E-0		4.86E-03	1.82E+03
:	89.43	0.13	0.01	885.86	5.03E-03	5.06E-0	8 8.44E-03	5.06E-03	1.75E+03
:	89.44	0.14	0.01	888.94	5.03E-03	5.25E-0	9.44E-03	5.25E-03	1.69E+03
:	89.45	0.15	0.01	892.03	5.03E-03	5.43E-0	3 1.05E-02	5.43E-03	1.64E+03
	89.46	0.16	0.01	895.12	5.03E-03			5.61E-03	1.60E+03
	89.47	0.17	0.01	898.22	5.03E-03	5.78E-0		5.78E-03	1.55E+03
	89.48	0.18	0.01	901.32	5.03E-03	5.95E-0		5.95E-03	1.51E+03
	89.49	0.19	0.01	904.43	5.03E-03			6.11E-03	1.48E+03
	89.50	0.20	0.01	907.55	5.03E-03	6.27E-0	3 1.61E-02	6.27E-03	1.45E+03
Numerical Results:									
	Parameter	Value	Units						
	Peak Flowrate (L/s)		6.27 L/s 4.12 L/s						
	Average Flowrate (L/s)								
	Water Quality Volume (m ³ )		175.65 m ³ 31.0 h						
	Drawdown Time (h) 90% Drawdown Time (h)		17.9 h						
	90% brawdown nine (ii)		17.9 11						
MOE Equation 4.10 Results:									
	Parameter	Value	Units						
	Area of Pond		876.75 m2						
	Orifice Discharge Coeff. C		0.63 unls.						
	Orifice Area, A ₀		5.03E-03 m2						
	g		9.81 m/s^2						
	h1		0.2 m						
	h2		0.0 m						
	Drawdown Time, t		5.6E+04 s						
	Drawdown Time, t		15.5 h						

				Guillaume LeBlond, M 100530467	A.Sc., EIT	Date:	May 31, 2022		
Retention Control - Freeflow condition				Christian Lavoie-Lebel	, P.Eng.	Date:	May 31, 2022		
Retention Control Orifice Control Type Elevation Range (m) Base elevation (m) Initial head over Orifice Orifice Depth (mm) Orifice Width (mm) No. of orifices Gravitational Acceleration, g (m/s ² )	Rectangul 89.5- 89.8			<u>Values</u> 89.5 0.61 0.83	Notes				
Orifice Discharge Coeff., C_d		0.63				Orifice	Weir Flow all condi	tions	
Water Elevation (m)	Head over 89.50	<u>Orifice, hf (m)</u> <u>Head differential, dh (m</u> 0.00	<u>)</u> o				<u>Q=2/3*C_w*L_w*sqrt(2*g)*h_v_Q (m3/s)</u> 0.00	<u>Time dif</u> 0.00	<u>ferential, dt (s)</u> 0.00
	89.51	0.01	0.01	910.67	3.74E-01	0.10	0.00	0.00	6091.08
	89.52 89.53	0.02 0.03	0.01 0.01	913.79 916.93	3.74E-01 3.74E-01	0.15 0.18	0.00 0.01	0.00 0.01	4321.83 3540.85
	89.54	0.04	0.01	920.06	3.74E-01 3.74E-01	0.18	0.01	0.01	3076.96
	89.55	0.05	0.01	923.21	3.74E-01	0.23	0.02	0.02	2761.51
	89.56	0.06	0.01	926.35	3.74E-01	0.26	0.02	0.02	2529.50
	89.57 89.58	0.07 0.08	0.01	929.51 932.67	3.74E-01 3.74E-01	0.28 0.29	0.03 0.03	0.03 0.03	2349.83 2205.54
	89.59	0.09	0.01	932.67 935.83	3.74E-01 3.74E-01	0.29	0.03	0.03	2205.54 2086.46
	89.60	0.10	0.01	939.00	3.74E-01	0.33	0.05	0.05	1986.09
	89.61	0.11	0.01	942.18	3.74E-01	0.35	0.05	0.05	1900.07
	89.62	0.12	0.01	945.36	3.74E-01	0.36	0.06	0.06	1825.32
	89.63 89.64	0.13 0.14	0.01 0.01	948.54 951.73	3.74E-01 3.74E-01	0.38 0.39	0.07 0.08	0.07 0.08	1759.62 1701.32
	89.65	0.15	0.01	954.93	3.74E-01	0.40	0.09	0.09	1649.15
	89.66	0.16	0.01	958.13	3.74E-01	0.42	0.10	0.10	1602.14
	89.67	0.17	0.01	961.34	3.74E-01	0.43	0.10	0.10	1559.51
	89.68 89.69	0.18 0.19	0.01	964.56 967.78	3.74E-01 3.74E-01	0.44 0.45	0.11 0.12	0.11 0.12	1520.64 1485.02
	89.70	0.20	0.01	971.00	3.74E-01	0.45	0.12	0.12	1452.24
	89.71	0.21	0.01	974.23	3.74E-01	0.48	0.14	0.14	1421.96
	89.72	0.22	0.01	977.47	3.74E-01	0.49	0.15	0.15	1393.88
	89.73 89.74	0.23 0.24	0.01 0.01	980.71 983.95	3.74E-01 3.74E-01	0.50 0.51	0.16 0.18	0.16 0.18	1367.76 1343.39
	89.75	0.25	0.01	987.21	3.74E-01	0.51	0.19	0.10	1320.60
	89.76	0.26	0.01	990.46	3.74E-01	0.53	0.20	0.20	1299.23
	89.77	0.27	0.01	993.73	3.74E-01	0.54	0.21	0.21	1279.14
	89.78	0.28	0.01	997.00	3.74E-01	0.55	0.22	0.22	1260.23
	89.79 89.80	0.29 0.30	0.01 0.01	1000.27 1003.55	3.74E-01 3.74E-01	0.56 0.57	0.23 0.25	0.23 0.25	1242.37 1225.50
	89.81	0.31	0.01	1006.84	3.74E-01	0.58	0.26	0.26	1209.52
	89.82	0.32	0.01	1010.13	3.74E-01	0.59	0.27	0.27	1194.36
	89.83	0.33	0.01	1013.42	3.74E-01	0.60	0.28	0.28	1179.96
	89.84	0.34	0.01	1016.72	3.74E-01	0.61	0.30	0.30	1166.27
	89.85 89.86	0.35 0.36	0.01 0.01	1020.03 1023.34	3.74E-01 3.74E-01	0.62 0.63	0.31 0.32	0.31 0.32	1153.22 1140.79
	89.87	0.37	0.01	1025.54	3.74E-01	0.63	0.34	0.34	1128.91
	89.88	0.38	0.01	1029.99	3.74E-01	0.64	0.35	0.35	1117.57
	89.89	0.39	0.01	1033.32	3.74E-01	0.65	0.36	0.36	1106.71
	89.90 89.91	0.40 0.41	0.01 0.01	1036.65 1039.99	3.74E-01 3.74E-01	0.66 0.67	0.38 0.39	0.38 0.39	1096.32 1086.35
	89.92	0.42	0.01	1043.34	3.74E-01	0.68	0.41	0.41	1076.80
	89.93	0.43	0.01	1046.69	3.74E-01	0.68	0.42	0.42	1067.62
	89.94 89.95	0.44 0.45	0.01		3.74E-01	0.69 0.70	0.44 0.45	0.44 0.70	1058.80
	89.96	0.45	0.01 0.01	1053.41 1056.77	3.74E-01 3.74E-01	0.70	0.45	0.70	677.99 687.67
	89.97	0.47	0.01		3.74E-01	0.71	0.48	0.71	697.32
	89.98	0.48	0.01	1063.53	3.74E-01	0.72	0.50	0.72	706.95
	89.99	0.49	0.01		3.74E-01	0.73	0.51	0.73	716.55
	90.00 90.01	0.50 0.51	0.01 0.01		3.74E-01 3.74E-01	0.74	0.53 0.54	0.74 0.74	726.12 735.67
	90.02	0.52	0.01		3.74E-01 3.74E-01	0.74	0.56	0.74	745.20
	90.03	0.53	0.01	1080.50	3.74E-01	0.76	0.58	0.76	754.71
	90.04	0.54	0.01		3.74E-01	0.77	0.59	0.77	764.21
	90.05 90.06	0.55 0.56	0.01 0.01		3.74E-01 3.74E-01	0.77 0.78	0.61 0.63	0.77 0.78	773.68 783.14
	90.07	0.50	0.01	1090.75	3.74E-01 3.74E-01	0.78	0.65	0.79	792.59
	90.08	0.58	0.01	1097.62	3.74E-01	0.79	0.66	0.79	802.02
	90.09	0.59	0.01	1101.05	3.74E-01	0.80	0.68	0.80	811.44

#### Numerical Results:

Maximum Flowrate - Quantity Control Orifice 1	800.6 L/s	
Maximum Flowrate - Quantity Control Orifice 2	93.6 L/s	
Maximum Flowrate - Extended Detention Orifice	12.5 L/s	
Total Maximum Flowrate	906.6 L/s	
Allowable Flowrate	906.9 L/s	

			Prepared by: Guillau PEO No.: 100530	me LeBlond, M.A.Sc., I 0467	EIT	Date: May 31, 2022			
Retention Control - Freeflow condition				an Lavoie-Lebel, P.Eng		Date: <u>May 31, 2022</u>			
Retention Control Orifice 2			PEO No.: 10006	7842					
Control Type Elevation Range (m) Base elevation (m) Initial net head over Orifice Orifice Depth (mm) Orifice Width (mm) No. of orifices	Rectangular ( 90.07-90.15	89.5 Weir Equa 89.5 Weir Eleval 0 Weir Disch 200 Weir Lengt 775 1	ion (m) arge Coeff., C_w	<u>Values</u> 89.925 0.61 0.775	<u>Notes</u>				
Gravitational Acceleration, g (m/s ² ) Discharge Coefficient, C_d		9.81 0.63							
Water Elevation (m)	Head over Ori 89.50	ifice, hf (m) <u>Head differ</u> -0.42	<u>ential, dh (m)</u> <u>Pond A</u> 0	rea "A" (m2) Orifice A 907.55	Orifice . <u>rea "a" (m2) Q=a*C*sqr</u> 0.155	Weir t(2*g*hf) (m3/s) <u>Q=2/3*C_w*L_w*</u> 0.00		w all conditions ( <u>m3/s)</u> <u>Time differential, dt (s)</u> 0.00	0.00
	89.51	-0.41	0.01	910.67	0.155	0.00	0.00	0.00	0.00
	89.52 89.53	-0.40 -0.39	0.01 0.01	913.79 916.93	0.155 0.155	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
	89.54	-0.39	0.01	920.06	0.155	0.00	0.00	0.00	0.00
	89.55	-0.37	0.01	923.21	0.155	0.00	0.00	0.00	0.00
	89.56 89.57	-0.36	0.01 0.01	926.35	0.155	0.00	0.00	0.00	0.00
	89.57 89.58	-0.35 -0.34	0.01	929.51 932.67	0.155 0.155	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
	89.59	-0.33	0.01	935.83	0.155	0.00	0.00	0.00	0.00
	89.60	-0.32	0.01	939.00	0.155	0.00	0.00	0.00	0.00
	89.61	-0.31	0.01	942.18	0.155	0.00	0.00	0.00	0.00
	89.62 89.63	-0.30 -0.29	0.01 0.01	945.36 948.54	0.155 0.155	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
	89.64	-0.28	0.01	951.73	0.155	0.00	0.00	0.00	0.00
	89.65	-0.27	0.01	954.93	0.155	0.00	0.00	0.00	0.00
	89.66 89.67	-0.26 -0.25	0.01 0.01	958.13 961.34	0.155 0.155	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
	89.68	-0.24	0.01	964.56	0.155	0.00	0.00	0.00	0.00
	89.69	-0.23	0.01	967.78	0.155	0.00	0.00	0.00	0.00
	89.70	-0.22	0.01	971.00	0.155	0.00	0.00	0.00	0.00
	89.71 89.72	-0.21 -0.20	0.01 0.01	974.23 977.47	0.155 0.155	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
	89.73	-0.19	0.01	980.71	0.155	0.00	0.00	0.00	0.00
	89.74	-0.18	0.01	983.95	0.155	0.00	0.00	0.00	0.00
	89.75	-0.17	0.01	987.21	0.155	0.00	0.00	0.00	0.00
	89.76 89.77	-0.16 -0.15	0.01 0.01	990.46 993.73	0.155 0.155	0.00 0.00	0.00	0.00 0.00	0.00 0.00
	89.78	-0.13	0.01	997.00	0.155	0.00	0.00	0.00	0.00
	89.79	-0.13	0.01	1000.27	0.155	0.00	0.00	0.00	0.00
	89.80	-0.12	0.01	1003.55	0.155	0.00	0.00	0.00	0.00
	89.81 89.82	-0.11 -0.10	0.01 0.01	1006.84 1010.13	0.155 0.155	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
	89.83	-0.09	0.01	1013.42	0.155	0.00	0.00	0.00	0.00
	89.84	-0.08	0.01	1016.72	0.155	0.00	0.00	0.00	0.00
	89.85	-0.07	0.01	1020.03	0.155	0.00	0.00	0.00	0.00
	89.86	-0.06	0.01	1023.34	0.155	0.00	0.00	0.00	0.00
	89.87 89.88	-0.05 -0.04	0.01 0.01	1026.66 1029.99	0.155 0.155	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
	89.89	-0.03	0.01	1033.32	0.155	0.00	0.00	0.00	0.00
	89.90	-0.02	0.01	1036.65	0.155	0.00	0.00	0.00	0.00
	89.91	-0.01	0.01	1039.99	0.155	0.00	0.00	0.00	0.00
	89.92 89.93	0.00 0.01	0.01 0.01	1043.34 1046.69	0.155 0.155	0.00 0.03	0.00 0.00	0.00 0.00	0.00 21206.67
	89.94	0.02	0.01	1050.04	0.155	0.05	0.00	0.00	4094.31
	89.95	0.03	0.01	1053.41	0.155	0.07	0.01	0.01	1908.96
	89.96 89.97	0.04 0.05	0.01 0.01	1056.77 1060.15	0.155 0.155	0.08 0.09	0.01 0.01	0.01 0.01	1156.09 795.53
	89.98	0.06	0.01	1063.53	0.155	0.10	0.01	0.02	590.63
	89.99	0.07	0.01	1066.91	0.155	0.11	0.02	0.02	461.18
	90.00	0.08	0.01	1070.30	0.155	0.12	0.03	0.03	373.27
	90.01 90.02	0.09 0.10	0.01 0.01	1073.70 1077.10	0.155 0.155	0.13 0.13	0.03 0.04	0.03 0.04	310.36 263.50
	90.02	0.10	0.01	1080.50	0.155	0.13	0.04	0.05	203.50 227.48
	90.04	0.12	0.01	1083.91	0.155	0.15	0.05	0.05	199.09
	90.05	0.13	0.01	1087.33	0.155	0.15	0.06	0.06	176.24
	90.06 90.07	0.14 0.15	0.01 0.01	1090.75 1094.18	0.155 0.155	0.16 0.16	0.07 0.08	0.07 0.08	157.52 141.95
	90.07	0.15	0.01	1094.18	0.155	0.16	0.08	0.09	141.95

Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842 _____

____

Date: May 31, 2022

Date: May 31, 2022

Retention Control - Freeflow condition

Extended Detention Ori	
Control Type	Circular Orifice plate
Elevation Range (m)	89.5-89.85
Base elevation (m)	89.5
Initial head over Orifice	0.2
Orifice Diameter (mm)	80
No. of orifices	1
Gravitational Acceleration	on, g ( 9.81
Discharge Coefficient, C	_d 0.63

Water Elevation (m)		Hoad over Orifica hf /m	Head differential, dh (m)	Pond Aroa "A" (m2)	Orifice Area "a" (m2)	Q=a*C*sqrt(2*g*hf) (m3/s)	Time differential, dt (s)
	89.50	0.20	0	907.55	5.03E-03	1.00E-06	0.00
	89.51	0.20	0.01	910.67	5.03E-03	6.43E-03	1416.74
	89.52	0.22	0.01	913.79	5.03E-03	6.58E-03	1388.92
	89.53	0.22	0.01	916.93	5.03E-03	6.73E-03	1363.05
	89.54	0.24	0.01	920.06	5.03E-03	6.87E-03	1338.91
	89.55	0.24	0.01	923.21	5.03E-03	7.01E-03	1316.34
	89.56	0.25	0.01	926.35	5.03E-03	7.15E-03	1295.18
	89.57	0.27	0.01	929.51	5.03E-03	7.29E-03	1275.30
	89.58	0.28	0.01	932.67	5.03E-03	7.42E-03	1256.57
	89.59	0.29	0.01	935.83	5.03E-03	7.55E-03	1238.90
	89.60	0.30	0.01	939.00	5.03E-03	7.68E-03	1222.21
	89.61	0.31	0.01	942.18	5.03E-03	7.81E-03	1206.40
	89.62	0.32	0.01	945.36	5.03E-03	7.93E-03	1191.41
	89.63	0.33	0.01	948.54	5.03E-03	8.06E-03	1177.17
	89.64	0.34	0.01	951.73	5.03E-03	8.18E-03	1163.63
	89.65	0.35	0.01	954.93	5.03E-03	8.30E-03	1150.74
	89.66	0.36	0.01	958.13	5.03E-03	8.42E-03	1138.45
	89.67	0.37	0.01	961.34	5.03E-03	8.53E-03	1126.72
	89.68	0.38	0.01	964.56	5.03E-03	8.65E-03	1115.52
	89.69	0.39	0.01	967.78	5.03E-03	8.76E-03	1104.80
	89.70	0.40	0.01	971.00	5.03E-03	8.87E-03	1094.53
	89.71	0.41	0.01	974.23	5.03E-03	8.98E-03	1084.70
	89.72	0.42	0.01	977.47	5.03E-03	9.09E-03	1075.27
	89.73	0.43	0.01	980.71	5.03E-03	9.20E-03	1066.22
	89.74	0.44	0.01	983.95	5.03E-03	9.30E-03	1057.52
	89.75	0.45	0.01	987.21	5.03E-03	9.41E-03	1049.16
	89.76	0.46	0.01	990.46	5.03E-03	9.51E-03	1041.12
	89.77	0.47	0.01	993.73	5.03E-03	9.62E-03	1033.38
	89.78	0.48	0.01	997.00	5.03E-03	9.72E-03	1025.92
	89.79	0.49	0.01	1000.27	5.03E-03	9.82E-03	1018.73
	89.80	0.50	0.01	1003.55	5.03E-03	9.92E-03	1011.80
	89.81	0.51	0.01	1006.84	5.03E-03	1.00E-02	1005.11
	89.82	0.52	0.01	1010.13	5.03E-03	1.01E-02	998.65
	89.83	0.53	0.01	1013.42	5.03E-03	1.02E-02	992.41
	89.84	0.54	0.01	1016.72	5.03E-03	1.03E-02	986.39
	89.85	0.55	0.01	1020.03	5.03E-03	1.04E-02	980.56
	89.86	0.56	0.01	1023.34	5.03E-03	1.05E-02	974.92
	89.87	0.57	0.01	1026.66	5.03E-03	1.06E-02	969.46
	89.88	0.58	0.01	1029.99	5.03E-03	1.07E-02	964.18
	89.89	0.59	0.01	1033.32	5.03E-03	1.08E-02	959.06
	89.90	0.60	0.01	1036.65	5.03E-03	1.09E-02	954.11
	89.91	0.61	0.01	1039.99	5.03E-03	1.10E-02	949.30
	89.92	0.62	0.01	1043.34	5.03E-03	1.10E-02	944.65
	89.93	0.63	0.01	1046.69	5.03E-03	1.11E-02	940.13
	89.94	0.64	0.01	1050.04	5.03E-03	1.12E-02	935.75
	89.95	0.65	0.01	1053.41	5.03E-03	1.13E-02	931.49
	89.96	0.66	0.01	1056.77	5.03E-03	1.14E-02	927.36
	89.97	0.67	0.01	1060.15	5.03E-03	1.15E-02	923.36
	89.98	0.68	0.01	1063.53	5.03E-03	1.16E-02	919.46
	89.99	0.69	0.01	1066.91	5.03E-03	1.17E-02	915.68
	90.00	0.70	0.01	1070.30	5.03E-03	1.17E-02	912.00
	90.01	0.71	0.01	1073.70	5.03E-03	1.18E-02	908.43
	90.02	0.72	0.01	1077.10	5.03E-03	1.19E-02	904.96
	90.03	0.73	0.01	1080.50	5.03E-03	1.20E-02	901.58
	90.04	0.74	0.01	1083.91	5.03E-03	1.21E-02	898.29
	90.05	0.75	0.01	1087.33	5.03E-03	1.21E-02	895.10
	90.06	0.76	0.01	1090.75	5.03E-03	1.22E-02	891.99
	90.07	0.77	0.01	1094.18	5.03E-03	1.23E-02	888.96
	90.08	0.78	0.01	1097.62	5.03E-03	1.24E-02	886.02
	90.09	0.79	0.01	1101.05	5.03E-03	1.25E-02	883.15

				Guillaume LeBlond, M 100530467	I.A.Sc., EIT	Date:	May 31, 2022		
Retention Control - Surcharged condition				Christian Lavoie-Lebe	I, P.Eng.	Date:	May 31, 2022		
Retention Control Orifice Control Type Elevation Range (m) Base elevation (m) Initial net head over Orifice Orifice Depth (mm) Orifice Width (mm) No. of orifices	Rectangular Orifice 90.07-90.15	90.07 W 0 V	Veir Equation Veir Elevation (m) Veir Discharge Coeff., C_w Veir Length, L_w (m):	<u>Values</u> 89.5 0.61 0.83					
Gravitational Acceleration, g (m/s ² ) Discharge Coefficient, C_d		9.81 0.63							
Water Elevation (m)	Head over Orifice, h		lead differential, dh (m)		Orifice Area "a" (m2)	Orifice <u>Q=a*C*sqrt(2*g*hf) (m3/s)</u>	Q=2/3*C_w*L_w*sqrt(2*g)*h_v		lime differential, dt (s)
	90.07	0.00	0			0.00		0.00	0.00
	90.08	0.01	0.01			0.10		0.10	105.31
	90.09	0.02	0.01			0.15		0.15	74.70
	90.10	0.03	0.01			0.18		0.18	61.18
	90.11	0.04	0.01			0.21		0.21	53.15
	90.12	0.05	0.01			0.23		0.23	47.69
	90.13	0.06	0.01		0.374	0.26		0.26	43.67
	90.14	0.07	0.01			0.28		0.28	40.55
	90.15	0.08	0.01			0.29		0.29	38.05
	90.16	0.09	0.01			0.31		0.31	35.99
	90.17	0.10	0.01	1128.76	0.374	0.33	0.05	0.33	34.25
Numerical Results:									
Maximum Flowrate - Quantity Control Orifice 1		329.60 L	/s						
Maximum Flowrate - Quantity Control Orifice 2		136.78 L							
Maximum Flowrate - Extended Detention Orifice		4.44 L							
Total Flowrate		470.8 L							
Half of Allowable Flowrate		453.43 L							
		.55.15 L	-	-					

			Prepared by: Guill PEO No.: 1005		A.Sc., EIT	Date:	May 31, 2022		
Retention Control - Surcharged conditio	n		Verified by: Chris PEO No.: 1000	stian Lavoie-Lebel, 067842	P.Eng.	Date: <u>May 31, 2022</u>			
Retention Control Orifice									
Control Type	Rectangular Or	rifice							
Elevation Range (m)	90.07-90.15	Weir Ec	uation	Values	Notes				
Base elevation (m)		90.07 Weir Elev	vation (m)	89.925					
Initial net head over Orifice		0 Weir Dis	charge Coeff., C_w	0.61					
Orifice Depth (mm)		200 Weir Len	gth, L_w (m):	0.775					
Orifice Width (mm)		775							
No. of orifices		1							
Gravitational Acceleration, g (m/s ² )		9.81							
Discharge Coefficient, C_d		0.63							
								low all conc	
Water Elevation (m)	Head over Orifi						Q=2/3*C_w*L_w*sqrt(2*g) Q		ime differential, dt (s)
	90.07	0.00	0	1094.18	0.155	0.00	0.00	0.00	0.00
	90.08	0.01	0.01	1097.62	0.155	0.04	0.00	0.00	7862.49
	90.09	0.02	0.01	1101.05	0.155	0.06	0.00	0.00	2788.52
	90.10	0.03	0.01	1104.50	0.155	0.07	0.01	0.01	1522.63
	90.11	0.04	0.01	1107.95	0.155	0.09	0.01	0.01	992.06
	90.12	0.05	0.01	1111.40	0.155	0.10	0.02	0.02	712.08
	90.13	0.06	0.01	1114.87	0.155	0.11	0.02	0.11	105.23
	90.14	0.07	0.01	1118.33	0.155	0.11	0.03	0.11	97.72
	90.15	0.08	0.01	1121.80	0.155	0.12	0.03	0.12	91.70
	90.16	0.09	0.01	1125.28	0.155	0.13	0.04	0.13	86.72
	90.17	0.10	0.01	1128.76	0.155	0.14	0.04	0.14	82.52

Prepared by:	Guillaume LeBlond, M.A.Sc., EIT	
PEO No.:	1E+08	

				_avoie-Lebel, P.Eng.	. Date:	May 31, 2022
		PEO No.:	1E+08			
Extended Det						
Control Typ Ci						
Elevation R 90		5				
Base elevat	90.07					
nitial net h	0					
Orifice Diai	80					
No. of orifi	1					
Gravitatior	9.81					
Discharge (	0.63					
				Orifice Area "a" (m2)	Q=a*C*sqrt(2*g*hf) (m3/s)	Time differential, dt (s)
90.07	0.00	0	1094.18	5.03E-03	1.00E-06	
90.07 90.08	0.00 0.01	0 0.01	1094.18 1097.62	5.03E-03 5.03E-03	1.00E-06 1.40E-03	782
90.07	0.00	0	1094.18	5.03E-03	1.00E-06	782
90.07 90.08 90.09	0.00 0.01 0.02	0 0.01 0.01	1094.18 1097.62 1101.05	5.03E-03 5.03E-03 5.03E-03	1.00E-06 1.40E-03 1.98E-03	782
90.07 90.08 90.09 90.10	0.00 0.01 0.02 0.03	0 0.01 0.01 0.01	1094.18 1097.62 1101.05 1104.50	5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03	1.00E-06 1.40E-03 1.98E-03 2.43E-03	782 555 454 394
90.07 90.08 90.09 90.10 90.11	0.00 0.01 0.02 0.03 0.04	0 0.01 0.01 0.01 0.01	1094.18 1097.62 1101.05 1104.50 1107.95	5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03	1.00E-06 1.40E-03 1.98E-03 2.43E-03 2.81E-03	782 555 454 394 354
90.07 90.08 90.09 90.10 90.11 90.12	0.00 0.01 0.02 0.03 0.04 0.05	0 0.01 0.01 0.01 0.01 0.01	1094.18 1097.62 1101.05 1104.50 1107.95 1111.40	5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03	1.00E-06 1.40E-03 1.98E-03 2.43E-03 2.81E-03 3.14E-03	782 555 454 394 354 324
90.07 90.08 90.09 90.10 90.11 90.12 90.13	0.00 0.01 0.02 0.03 0.04 0.05 0.06	0 0.01 0.01 0.01 0.01 0.01 0.01	1094.18 1097.62 1101.05 1104.50 1107.95 1111.40 1114.87	5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03	1.00E-06 1.40E-03 1.98E-03 2.43E-03 2.81E-03 3.14E-03 3.44E-03	782 555 454 394 354 324 324 324
90.07 90.08 90.09 90.10 90.11 90.12 90.13 90.14	0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07	0 0.01 0.01 0.01 0.01 0.01 0.01 0.01	1094.18 1097.62 1101.05 1104.50 1107.95 1111.40 1114.87 1118.33	5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03	1.00E-06 1.40E-03 1.98E-03 2.43E-03 2.81E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03 3.44E-03	782 555 454 394 354 354 324 301 282



# Appendix B-12 STORM SERVICE CONNECTION SIZING







PROJECT NAME: CIMA+ PROJECT NUMBER: CLIENT: PROJECT STATUS: Warehouse Development A001083 Fastfrate (Ottawa) Holdings Inc. Issued for Site Plan Approval

#### HYDRAULIC CALCULATIONS FOR STORM SEWERS

APPLICABLE DESIGN GUIDELINES:

1. City of Ottawa Sewer Design Guidelines, 2012

2. City of Ottawa Technical Bulletins up to and including ISTB-2018-01

### **DESIGN BASIS:**

Manning Coefficient :	0.013
Maximum permitted velocity :	3.00 m/s
Minimum permitted velocity :	0.80 m/s

Section	Dia.	Length	Slope	Invert	Invert	Capacity	Velocity	Flow	Velocity	% Full
				upstream	downstream	(full)	(full)		(actual)	
	mm	m	%	m	m	m³/s	m/s	m³/s	m/s	
Building Service Connection> STM #1	600	22.4	1.00%	89.750	89.525	0.614	2.17	0.213	1.96	35%
STM #1> STM #2	600	27.9	0.50%	89.515	89.375	0.435	1.54	0.283	1.64	65%
STM #2> Outlet (Wet Pond)	600	9.0	0.50%	89.345	89.300	0.435	1.54	0.283	1.64	65%

### <u>Remarks</u>

The data in green has been calculated or modified by the designer

The data in blue has been calculated using formulas inserted by the designer

### Notes :

1. Storm Sewer Peak Flow Determined per Roof Restricted flow of 213 L/s; and uncontrolled flow from Catchements A4 of 35.792 L/s and from Catchment A5 of 34.458 L/s.

Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467 Date: 2021-07-25

Date: 2021-10-06

Updated by: Joseph Lolli, P.Eng. PEO No.: 100505343

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842 Date: 2021-10-06

## October 6, 2021





# Appendix B-13-1 ROAD CULVERT CALCULATION REPORTS



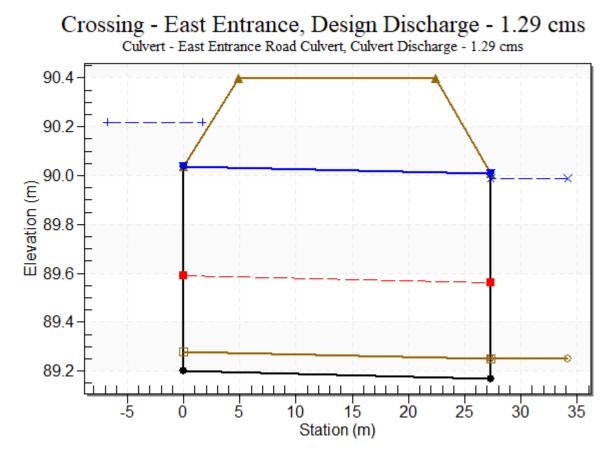


# HY-8 Culvert Analysis Report

## **Project Notes**

Project Title: Designer: Project Date:Wednesday, July 7, 2021 Notes:

Total Discharge (cms)	Culvert Discharge (cms)	Headwater Elevation (m)	Inlet Control Depth (m)	Outlet Control Depth (m)	Flow Type	Normal Depth (m)	Critical Depth (m)	Outlet Depth (m)	Tailwater Depth (m)	Outlet Velocity (m/s)	Tailwater Velocity (m/s)
0.00	0.00	89.99	0.000	0.710	0-NF	0.000	0.000	0.740	0.740	0.000	0.000
0.13	0.13	89.99	0.118	0.712	6-FFt	0.199	0.070	0.740	0.740	0.084	0.000
0.26	0.26	90.00	0.185	0.719	6-FFt	0.308	0.110	0.740	0.740	0.169	0.000
0.39	0.39	90.01	0.240	0.730	6-FFt	0.406	0.143	0.740	0.740	0.253	0.000
0.52	0.52	90.02	0.289	0.743	6-FFt	0.507	0.173	0.740	0.740	0.337	0.000
0.65	0.65	90.04	0.334	0.760	6-FFt	0.636	0.200	0.740	0.740	0.422	0.000
0.78	0.78	90.07	0.376	0.795	6-FFt	0.758	0.224	0.740	0.740	0.506	0.000
0.91	0.91	90.10	0.419	0.824	6-FFt	0.758	0.247	0.740	0.740	0.590	0.000
1.04	1.04	90.14	0.463	0.858	6-FFt	0.758	0.269	0.740	0.740	0.674	0.000
1.17	1.17	90.17	0.507	0.895	6-FFt	0.758	0.290	0.740	0.740	0.759	0.000
1.29	1.29	90.22	0.550	0.936	6-FFt	0.758	0.310	0.740	0.740	0.843	0.000


 Table 1 - Culvert Summary Table: East Entrance Road Culvert

#### 

Straight Culvert

Inlet Elevation (invert): 89.28 m, Outlet Elevation (invert): 89.25 m Culvert Length: 27.30 m, Culvert Slope: 0.0011

### Water Surface Profile Plot for Culvert: East Entrance Road Culvert



### **Culvert Data Summary - East Entrance Road Culvert**

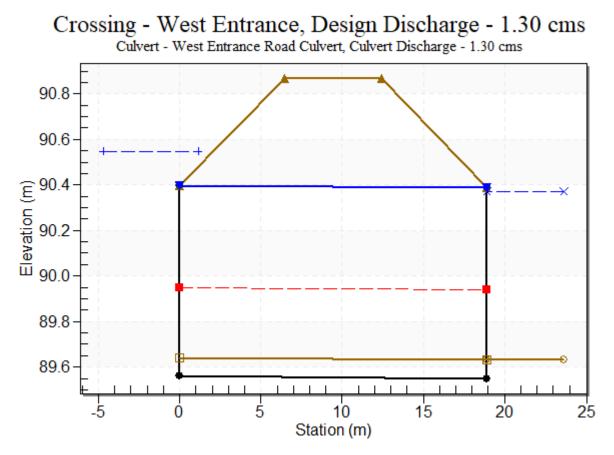
Barrel Shape: Pipe Arch Barrel Span: 1244.60 mm Barrel Rise: 838.20 mm Barrel Material: Steel or Aluminum Embedment: 80.00 mm Barrel Manning's n: 0.0240 (top and sides) Manning's n: 0.0350 (bottom) Culvert Type: Straight Inlet Configuration: Projecting Inlet Depression: None

# HY-8 Culvert Analysis Report

## **Project Notes**

Project Title: Designer: Project Date:Wednesday, July 7, 2021 Notes:

Total Discharge (cms)	Culvert Discharge (cms)	Headwater Elevation (m)	Inlet Control Depth (m)	Outlet Control Depth (m)	Flow Type	Normal Depth (m)	Critical Depth (m)	Outlet Depth (m)	Tailwater Depth (m)	Outlet Velocity (m/s)	Tailwater Velocity (m/s)
0.00	0.00	90.37	0.000	0.730	0-NF	0.000	0.000	0.740	0.740	0.000	0.000
0.13	0.13	90.37	0.118	0.732	6-FFt	0.250	0.070	0.740	0.740	0.084	0.000
0.26	0.26	90.38	0.185	0.737	6-FFt	0.395	0.110	0.740	0.740	0.169	0.000
0.39	0.39	90.38	0.240	0.745	6-FFt	0.544	0.144	0.740	0.740	0.253	0.000
0.52	0.52	90.40	0.289	0.760	6-FFt	0.758	0.173	0.740	0.740	0.338	0.000
0.65	0.65	90.42	0.334	0.776	6-FFt	0.758	0.200	0.740	0.740	0.422	0.000
0.78	0.78	90.44	0.376	0.796	6-FFt	0.758	0.224	0.740	0.740	0.506	0.000
0.91	0.91	90.46	0.420	0.819	6-FFt	0.758	0.247	0.740	0.740	0.591	0.000
1.04	1.04	90.49	0.463	0.846	6-FFt	0.758	0.269	0.740	0.740	0.675	0.000
1.17	1.17	90.52	0.507	0.875	6-FFt	0.758	0.290	0.740	0.740	0.759	0.000
1.30	1.30	90.55	0.551	0.908	6-FFt	0.758	0.310	0.740	0.740	0.844	0.000


 Table 1 - Culvert Summary Table: West Entrance Road Culvert

#### 

Straight Culvert

Inlet Elevation (invert): 89.64 m, Outlet Elevation (invert): 89.63 m Culvert Length: 18.90 m, Culvert Slope: 0.0005





### **Culvert Data Summary - West Entrance Road Culvert**

Barrel Shape: Pipe Arch Barrel Span: 1244.60 mm Barrel Rise: 838.20 mm Barrel Material: Steel or Aluminum Embedment: 80.00 mm Barrel Manning's n: 0.0240 (top and sides) Manning's n: 0.0350 (bottom) Culvert Type: Straight Inlet Configuration: Projecting Inlet Depression: None



## Appendix B-13-2 SITE CULVERT CALCULATION REPORTS FREEFLOW OUTLET COND<u>ITION</u>



## **Project Notes**

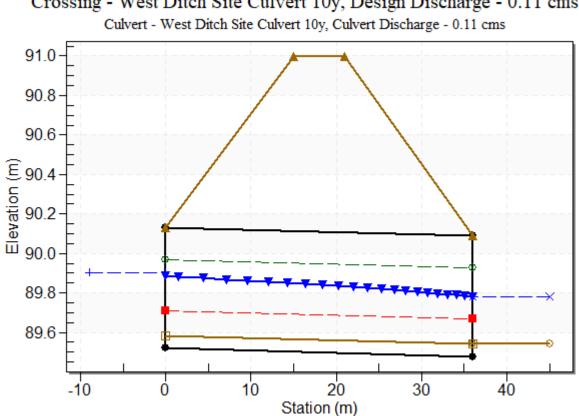

Total Discharge (cms)	Culvert Discharge (cms)	Headwater Elevation (m)	Inlet Control Depth (m)	Outlet Control Depth (m)	Flow Type	Normal Depth (m)	Critical Depth (m)	Outlet Depth (m)	Tailwater Depth (m)	Outlet Velocity (m/s)	Tailwater Velocity (m/s)
0.00	0.00	89.78	0.000	0.195	0-NF	0.000	0.000	0.236	0.240	0.000	0.000
0.02	0.02	89.79	0.075	0.204	3-M1t	0.129	0.044	0.236	0.240	0.114	0.000
0.05	0.05	89.81	0.119	0.227	3-M1t	0.199	0.069	0.236	0.240	0.228	0.000
0.07	0.07	89.84	0.154	0.256	3-M2t	0.261	0.090	0.236	0.240	0.341	0.000
0.09	0.09	89.87	0.186	0.287	3-M2t	0.321	0.109	0.236	0.240	0.455	0.000
0.11	0.11	89.90	0.213	0.317	3-M2t	0.382	0.125	0.236	0.240	0.561	0.000
0.14	0.14	89.94	0.242	0.351	3-M2t	0.480	0.141	0.236	0.240	0.683	0.000
0.16	0.16	89.97	0.267	0.382	3-M2t	0.545	0.156	0.236	0.240	0.796	0.000
0.18	0.18	90.00	0.290	0.414	3-M2t	0.545	0.170	0.236	0.240	0.910	0.000
0.21	0.21	90.03	0.311	0.445	3-M2t	0.545	0.183	0.236	0.240	1.024	0.000
0.23	0.23	90.06	0.333	0.477	3-M2t	0.545	0.196	0.236	0.240	1.138	0.000

 Table 1 - Culvert Summary Table: West Ditch Site Culvert 10y

Straight Culvert

Inlet Elevation (invert): 89.58 m, Outlet Elevation (invert): 89.54 m Culvert Length: 36.00 m, Culvert Slope: 0.0011

## Water Surface Profile Plot for Culvert: West Ditch Site Culvert 10y



Crossing - West Ditch Site Culvert 10y, Design Discharge - 0.11 cms

## Culvert Data Summary - West Ditch Site Culvert 10y

Barrel Shape: Pipe Arch Barrel Span: 889.00 mm Barrel Rise: 609.60 mm Barrel Material: Steel or Aluminum Embedment: 65.00 mm Barrel Manning's n: 0.0250 (top and sides) Manning's n: 0.0350 (bottom) Culvert Type: Straight Inlet Configuration: Mitered Inlet Depression: None

## **Project Notes**

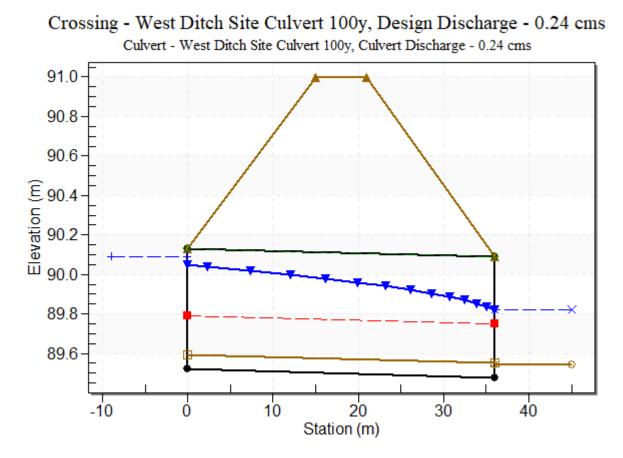

Total Discharge (cms)	Culvert Discharge (cms)	Headwater Elevation (m)	Inlet Control Depth (m)	Outlet Control Depth (m)	Flow Type	Normal Depth (m)	Critical Depth (m)	Outlet Depth (m)	Tailwater Depth (m)	Outlet Velocity (m/s)	Tailwater Velocity (m/s)
0.00	0.00	89.82	0.000	0.227	0-NF	0.000	0.000	0.268	0.280	0.000	0.000
0.02	0.02	89.83	0.078	0.234	3-M1t	0.132	0.045	0.268	0.280	0.105	0.000
0.05	0.05	89.84	0.122	0.252	3-M1t	0.204	0.071	0.268	0.280	0.209	0.000
0.07	0.07	89.87	0.159	0.277	3-M2t	0.268	0.093	0.268	0.280	0.314	0.000
0.10	0.10	89.90	0.191	0.305	3-M2t	0.333	0.112	0.268	0.280	0.419	0.000
0.12	0.12	89.93	0.221	0.336	3-M2t	0.406	0.129	0.268	0.280	0.523	0.000
0.14	0.14	89.96	0.248	0.367	3-M2t	0.537	0.145	0.268	0.280	0.628	0.000
0.17	0.17	89.99	0.274	0.398	3-M2t	0.537	0.160	0.268	0.280	0.733	0.000
0.19	0.19	90.02	0.297	0.430	3-M2t	0.537	0.174	0.268	0.280	0.837	0.000
0.22	0.22	90.06	0.320	0.462	3-M2t	0.537	0.187	0.268	0.280	0.942	0.000
0.24	0.24	90.09	0.343	0.496	3-M2t	0.537	0.200	0.268	0.280	1.047	0.000

 Table 1 - Culvert Summary Table: West Ditch Site Culvert 100y

Straight Culvert

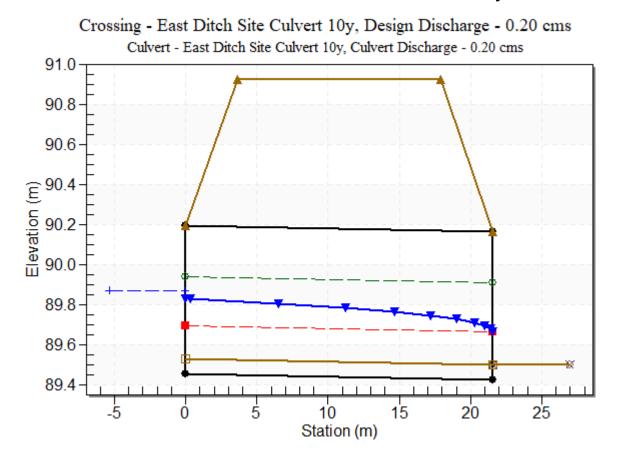
Inlet Elevation (invert): 89.59 m, Outlet Elevation (invert): 89.55 m Culvert Length: 36.00 m, Culvert Slope: 0.0011

## Water Surface Profile Plot for Culvert: West Ditch Site Culvert 100y



## Culvert Data Summary - West Ditch Site Culvert 100y

Barrel Shape: Pipe Arch Barrel Span: 889.00 mm Barrel Rise: 609.60 mm Barrel Material: Steel or Aluminum Embedment: 73.00 mm Barrel Manning's n: 0.0250 (top and sides) Manning's n: 0.0350 (bottom) Culvert Type: Straight Inlet Configuration: Mitered Inlet Depression: None


## **Project Notes**

Total Discharge (cms)	Culvert Discharge (cms)	Headwater Elevation (m)	Inlet Control Depth (m)	Outlet Control Depth (m)	Flow Type	Normal Depth (m)	Critical Depth (m)	Outlet Depth (m)	Tailwater Depth (m)	Outlet Velocity (m/s)	Tailwater Velocity (m/s)
0.00	0.00	89.53	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
0.04	0.04	89.66	0.096	0.132	2-M2c	0.137	0.056	0.056	0.000	0.732	0.000
0.08	0.08	89.73	0.151	0.196	2-M2c	0.213	0.089	0.089	0.000	0.914	0.000
0.12	0.12	89.78	0.196	0.247	2-M2c	0.278	0.115	0.115	0.000	1.040	0.000
0.16	0.16	89.82	0.237	0.293	2-M2c	0.340	0.139	0.139	0.000	1.140	0.000
0.20	0.20	89.87	0.274	0.336	2-M2c	0.405	0.161	0.161	0.000	1.228	0.000
0.24	0.24	89.90	0.308	0.373	2-M2c	0.474	0.180	0.180	0.000	1.303	0.000
0.28	0.28	89.94	0.339	0.410	2-M2c	0.575	0.199	0.199	0.000	1.373	0.000
0.32	0.32	89.98	0.368	0.446	2-M2c	0.662	0.216	0.216	0.000	1.437	0.000
0.36	0.36	90.01	0.396	0.481	2-M2c	0.662	0.233	0.233	0.000	1.498	0.000
0.40	0.40	90.04	0.425	0.515	2-M2c	0.662	0.249	0.249	0.000	1.554	0.000

 Table 1 - Culvert Summary Table: East Ditch Site Culvert 10y

Straight Culvert

Inlet Elevation (invert): 89.53 m, Outlet Elevation (invert): 89.50 m Culvert Length: 21.55 m, Culvert Slope: 0.0014



## Water Surface Profile Plot for Culvert: East Ditch Site Culvert 10y

### Culvert Data Summary - East Ditch Site Culvert 10y

Barrel Shape: Pipe Arch Barrel Span: 1066.80 mm Barrel Rise: 736.60 mm Barrel Material: Steel or Aluminum Embedment: 75.00 mm Barrel Manning's n: 0.0250 (top and sides) Manning's n: 0.0300 (bottom) Culvert Type: Straight Inlet Configuration: Mitered Inlet Depression: None

## **Project Notes**

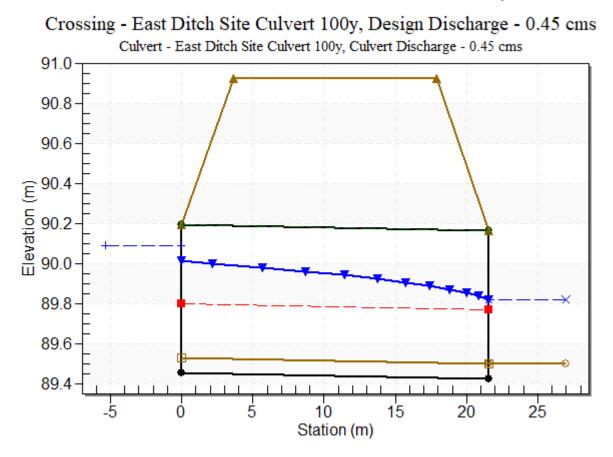

Total Discharge (cms)	Culvert Discharge (cms)	Headwater Elevation (m)	Inlet Control Depth (m)	Outlet Control Depth (m)	Flow Type	Normal Depth (m)	Critical Depth (m)	Outlet Depth (m)	Tailwater Depth (m)	Outlet Velocity (m/s)	Tailwater Velocity (m/s)
0.00	0.00	89.82	0.000	0.290	0-NF	0.000	0.000	0.320	0.320	0.000	0.000
0.04	0.04	89.82	0.103	0.295	3-M1t	0.147	0.060	0.320	0.320	0.135	0.000
0.09	0.09	89.84	0.162	0.309	3-M1t	0.228	0.095	0.320	0.320	0.270	0.000
0.13	0.13	89.86	0.211	0.330	3-M1t	0.299	0.124	0.320	0.320	0.405	0.000
0.18	0.18	89.89	0.254	0.356	3-M2t	0.369	0.149	0.320	0.320	0.540	0.000
0.22	0.22	89.92	0.293	0.386	3-M2t	0.443	0.172	0.320	0.320	0.675	0.000
0.27	0.27	89.95	0.330	0.418	3-M2t	0.536	0.193	0.320	0.320	0.811	0.000
0.31	0.31	89.98	0.362	0.452	3-M2t	0.662	0.213	0.320	0.320	0.946	0.000
0.36	0.36	90.02	0.394	0.486	3-M2t	0.662	0.232	0.320	0.320	1.081	0.000
0.40	0.40	90.05	0.426	0.521	3-M2t	0.662	0.250	0.320	0.320	1.216	0.000
0.45	0.45	90.09	0.457	0.556	3-M2t	0.662	0.267	0.320	0.320	1.351	0.000

 Table 1 - Culvert Summary Table: East Ditch Site Culvert 100y

Straight Culvert

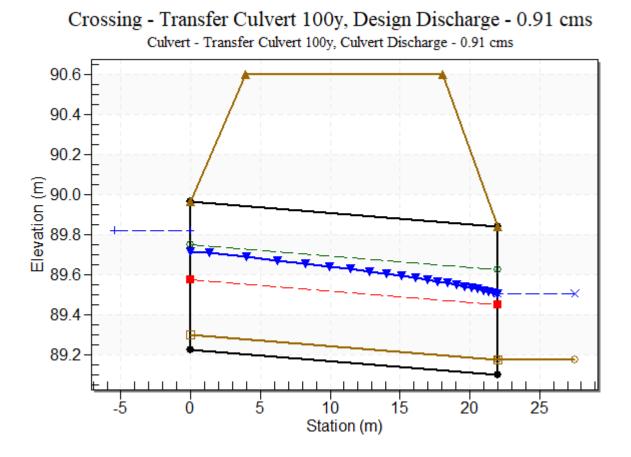
Inlet Elevation (invert): 89.53 m, Outlet Elevation (invert): 89.50 m Culvert Length: 21.55 m, Culvert Slope: 0.0014





### Culvert Data Summary - East Ditch Site Culvert 100y

Barrel Shape: Pipe Arch Barrel Span: 1066.80 mm Barrel Rise: 736.60 mm Barrel Material: Steel or Aluminum Embedment: 75.00 mm Barrel Manning's n: 0.0250 (top and sides) Manning's n: 0.0300 (bottom) Culvert Type: Straight Inlet Configuration: Mitered Inlet Depression: None


## **Project Notes**

Total Discharge (cms)	Culvert Discharge (cms)	Headwater Elevation (m)	Inlet Control Depth (m)	Outlet Control Depth (m)	Flow Type	Normal Depth (m)	Critical Depth (m)	Outlet Depth (m)	Tailwater Depth (m)	Outlet Velocity (m/s)	Tailwater Velocity (m/s)
0.00	0.00	89.50	0.000	0.200	0-NF	0.000	0.000	0.325	0.325	0.000	0.000
0.09	0.09	89.51	0.105	0.208	3-M1t	0.096	0.061	0.325	0.325	0.135	0.000
0.18	0.18	89.53	0.165	0.231	3-M1t	0.148	0.096	0.325	0.325	0.271	0.000
0.27	0.27	89.56	0.214	0.262	3-M1t	0.191	0.125	0.325	0.325	0.406	0.000
0.36	0.36	89.60	0.258	0.297	3-M1t	0.229	0.151	0.325	0.325	0.541	0.000
0.45	0.45	89.63	0.298	0.334	3-M1t	0.266	0.174	0.325	0.325	0.676	0.000
0.54	0.54	89.67	0.336	0.371	3-M1t	0.301	0.195	0.325	0.325	0.812	0.000
0.63	0.63	89.71	0.368	0.407	3-M2t	0.336	0.215	0.325	0.325	0.947	0.000
0.73	0.73	89.74	0.400	0.444	3-M2t	0.371	0.234	0.325	0.325	1.082	0.000
0.82	0.82	89.78	0.432	0.479	3-M2t	0.407	0.253	0.325	0.325	1.218	0.000
0.91	0.91	89.82	0.465	0.515	3-M2t	0.446	0.270	0.325	0.325	1.353	0.000

 Table 1 - Culvert Summary Table: Transfer Culvert 100y

Straight Culvert

Inlet Elevation (invert): 89.30 m, Outlet Elevation (invert): 89.18 m Culvert Length: 22.00 m, Culvert Slope: 0.0057



### Water Surface Profile Plot for Culvert: Transfer Culvert 100y

### Culvert Data Summary - Transfer Culvert 100y

Barrel Shape: Pipe Arch Barrel Span: 1066.80 mm Barrel Rise: 736.60 mm Barrel Material: Steel or Aluminum Embedment: 75.00 mm Barrel Manning's n: 0.0250 (top and sides) Manning's n: 0.0300 (bottom) Culvert Type: Straight Inlet Configuration: Mitered Inlet Depression: None



## Appendix B-13-3 SITE CULVERT CALCULATION REPORTS SUBMERGED OUTLET CONDITION



## **Project Notes**

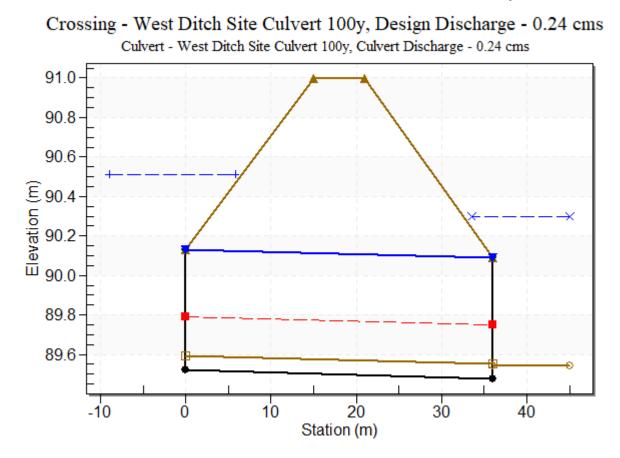

Total Discharge (cms)	Culvert Discharge (cms)	Headwater Elevation (m)	Inlet Control Depth (m)	Outlet Control Depth (m)	Flow Type	Normal Depth (m)	Critical Depth (m)	Outlet Depth (m)	Tailwater Depth (m)	Outlet Velocity (m/s)	Tailwater Velocity (m/s)
0.00	0.00	90.30	0.000	0.707	0-NF	0.000	0.000	0.537	0.760	0.000	0.000
0.02	0.02	90.30	0.078	0.709	4-FFf	0.132	0.045	0.537	0.760	0.062	0.000
0.05	0.05	90.31	0.122	0.716	4-FFf	0.204	0.071	0.537	0.760	0.124	0.000
0.07	0.07	90.32	0.159	0.725	4-FFf	0.268	0.093	0.537	0.760	0.186	0.000
0.10	0.10	90.33	0.191	0.738	4-FFf	0.333	0.112	0.537	0.760	0.248	0.000
0.12	0.12	90.35	0.221	0.754	4-FFf	0.406	0.129	0.537	0.760	0.310	0.000
0.14	0.14	90.38	0.248	0.787	4-FFf	0.537	0.145	0.537	0.760	0.371	0.000
0.17	0.17	90.41	0.274	0.815	4-FFf	0.537	0.160	0.537	0.760	0.433	0.000
0.19	0.19	90.44	0.297	0.846	4-FFf	0.537	0.174	0.537	0.760	0.495	0.000
0.22	0.22	90.47	0.320	0.881	4-FFf	0.537	0.187	0.537	0.760	0.557	0.000
0.24	0.24	90.51	0.343	0.920	4-FFf	0.537	0.200	0.537	0.760	0.619	0.000

 Table 1 - Culvert Summary Table: West Ditch Site Culvert 100y

Straight Culvert

Inlet Elevation (invert): 89.59 m, Outlet Elevation (invert): 89.55 m Culvert Length: 36.00 m, Culvert Slope: 0.0011

## Water Surface Profile Plot for Culvert: West Ditch Site Culvert 100y



## Culvert Data Summary - West Ditch Site Culvert 100y

Barrel Shape: Pipe Arch Barrel Span: 889.00 mm Barrel Rise: 609.60 mm Barrel Material: Steel or Aluminum Embedment: 73.00 mm Barrel Manning's n: 0.0250 (top and sides) Manning's n: 0.0350 (bottom) Culvert Type: Straight Inlet Configuration: Mitered Inlet Depression: None

## **Project Notes**

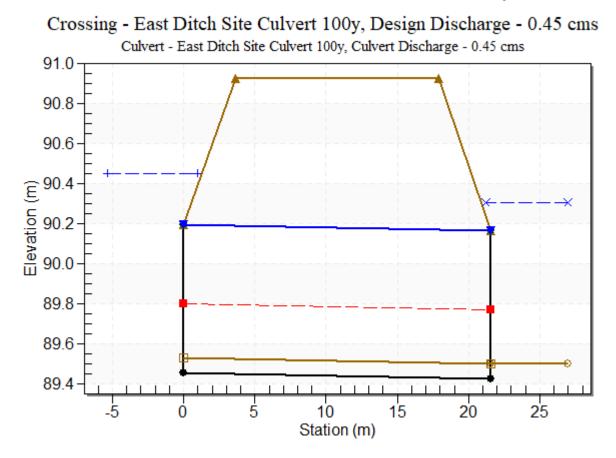

Total Discharge (cms)	Culvert Discharge (cms)	Headwater Elevation (m)	Inlet Control Depth (m)	Outlet Control Depth (m)	Flow Type	Normal Depth (m)	Critical Depth (m)	Outlet Depth (m)	Tailwater Depth (m)	Outlet Velocity (m/s)	Tailwater Velocity (m/s)
0.00	0.00	90.30	0.000	0.770	0-NF	0.000	0.000	0.662	0.800	0.000	0.000
0.04	0.04	90.30	0.103	0.772	4-FFf	0.147	0.060	0.662	0.800	0.077	0.000
0.09	0.09	90.31	0.162	0.776	4-FFf	0.228	0.095	0.662	0.800	0.154	0.000
0.13	0.13	90.31	0.211	0.783	4-FFf	0.299	0.124	0.662	0.800	0.231	0.000
0.18	0.18	90.32	0.254	0.793	4-FFf	0.369	0.149	0.662	0.800	0.308	0.000
0.22	0.22	90.34	0.293	0.805	4-FFf	0.443	0.172	0.662	0.800	0.385	0.000
0.27	0.27	90.35	0.330	0.820	4-FFf	0.536	0.193	0.662	0.800	0.462	0.000
0.31	0.31	90.37	0.362	0.843	4-FFf	0.662	0.213	0.662	0.800	0.539	0.000
0.36	0.36	90.39	0.394	0.865	4-FFf	0.662	0.232	0.662	0.800	0.616	0.000
0.40	0.40	90.42	0.426	0.889	4-FFf	0.662	0.250	0.662	0.800	0.694	0.000
0.45	0.45	90.45	0.457	0.917	4-FFf	0.662	0.267	0.662	0.800	0.771	0.000

 Table 1 - Culvert Summary Table: East Ditch Site Culvert 100y

Straight Culvert

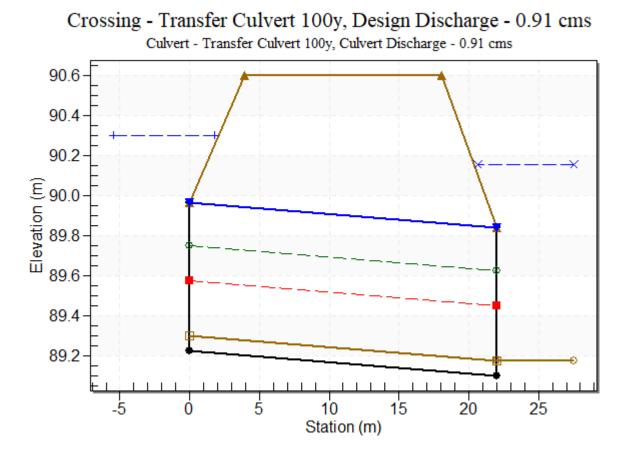
Inlet Elevation (invert): 89.53 m, Outlet Elevation (invert): 89.50 m Culvert Length: 21.55 m, Culvert Slope: 0.0014





### Culvert Data Summary - East Ditch Site Culvert 100y

Barrel Shape: Pipe Arch Barrel Span: 1066.80 mm Barrel Rise: 736.60 mm Barrel Material: Steel or Aluminum Embedment: 75.00 mm Barrel Manning's n: 0.0250 (top and sides) Manning's n: 0.0300 (bottom) Culvert Type: Straight Inlet Configuration: Mitered Inlet Depression: None


## **Project Notes**

Total Discharge (cms)	Culvert Discharge (cms)	Headwater Elevation (m)	Inlet Control Depth (m)	Outlet Control Depth (m)	Flow Type	Normal Depth (m)	Critical Depth (m)	Outlet Depth (m)	Tailwater Depth (m)	Outlet Velocity (m/s)	Tailwater Velocity (m/s)
0.00	0.00	90.15	0.000	0.850	0-NF	0.000	0.000	0.662	0.975	0.000	0.000
0.09	0.09	90.15	0.105	0.852	4-FFf	0.096	0.061	0.662	0.975	0.078	0.000
0.18	0.18	90.16	0.165	0.856	4-FFf	0.148	0.096	0.662	0.975	0.157	0.000
0.27	0.27	90.16	0.214	0.864	4-FFf	0.191	0.125	0.662	0.975	0.235	0.000
0.36	0.36	90.17	0.258	0.875	4-FFf	0.229	0.151	0.662	0.975	0.313	0.000
0.45	0.45	90.19	0.298	0.888	4-FFf	0.266	0.174	0.662	0.975	0.392	0.000
0.54	0.54	90.20	0.336	0.905	4-FFf	0.301	0.195	0.662	0.975	0.470	0.000
0.63	0.63	90.22	0.368	0.924	4-FFf	0.336	0.215	0.662	0.975	0.548	0.000
0.73	0.73	90.25	0.400	0.946	4-FFf	0.371	0.234	0.662	0.975	0.627	0.000
0.82	0.82	90.27	0.432	0.971	4-FFf	0.407	0.253	0.662	0.975	0.705	0.000
0.91	0.91	90.30	0.465	0.997	4-FFf	0.446	0.270	0.662	0.975	0.784	0.000

 Table 1 - Culvert Summary Table: Transfer Culvert 100y

Straight Culvert

Inlet Elevation (invert): 89.30 m, Outlet Elevation (invert): 89.18 m Culvert Length: 22.00 m, Culvert Slope: 0.0057



### Water Surface Profile Plot for Culvert: Transfer Culvert 100y

### Culvert Data Summary - Transfer Culvert 100y

Barrel Shape: Pipe Arch Barrel Span: 1066.80 mm Barrel Rise: 736.60 mm Barrel Material: Steel or Aluminum Embedment: 75.00 mm Barrel Manning's n: 0.0250 (top and sides) Manning's n: 0.0300 (bottom) Culvert Type: Straight Inlet Configuration: Mitered Inlet Depression: None



## Appendix B-13-4 CULVERT FLOW PROFILE TYPES





Fastfrate Site Servicing Report Appendix B-13-4 - Summary of flow types.

## **USGS Flow Types**

Flow Type Outlet Flow Outlet Flow Length ~ Control Full Profiles Depth TW>D TW<D HW>D HW<D Inlet none 5 1 JS1 t Jump, S1, TW Inlet 5 1 M3, S3, H3, A3 t Tailwater none 5 1 H3J, A3J t H3, Jump, TW Inlet none 5 f Full Inlet 1 S1 part f Inlet 5 1 S1 Full part Inlet 5 1 JS1 f Jump, S1, Full part f Inlet 5 1 H3J, A3J H3, Jump, Full part 2 Outlet M2, H2, A2 Critical none С 3 t Tailwater Outlet M2, H2, A2 none Outlet 3 Μ1 t Tailwater none f Outlet 3 Μ1 Full part f Outlet all 4 FF Full Outlet 6 FF t Tailwater most FF Outlet 6 Critical most С 7 t Tailwater Outlet Μ1 part 7 Tailwater Outlet part M2, H2, A2 t Outlet 7 M2, H2, A2 Critical part С

~

 $\times$ 

Close



## Appendix B-14 DITCH CALCULATION REPORTS





## Hydraulic Analysis Report

## **Project Data**

Project Title: A001183 - Fastfrate Swales

Designer:

Project Date: Wednesday, June 6, 2022

Project Units: SI Units (Metric)

Notes:

## Channel Analysis: Channel West_100y

Notes:

## Input Parameters

Channel Type: Trapezoidal

Side Slope 1 (Z1): 4.5000 m/m

Side Slope 2 (Z2): 3.0000 m/m

Channel Width 1.00 m

Longitudinal Slope: 0.0010 m/m

Manning's n: 0.0300

Flow 0.2310 cms

## **Result Parameters**

Depth 0.3050 m

Area of Flow 0.6539 m²

Wetted Perimeter 3.3707 m

Hydraulic Radius 0.1940 m

Average Velocity 0.3533 m/s

Top Width 3.2877 m

Froude Number: 0.2528

Critical Depth 0.1455 m Critical Velocity 1.0273 m/s Critical Slope: 0.0190 m/m Critical Top Width 2.09 m Calculated Max Shear Stress 2.9899 N/m^2 Calculated Avg Shear Stress 1.9017 N/m^2

## Channel Analysis: Channel West_10y

Notes:

## **Input Parameters**

Channel Type: Trapezoidal Side Slope 1 (Z1): 4.5000 m/m Side Slope 2 (Z2): 3.0000 m/m Channel Width 1.00 m Longitudinal Slope: 0.0010 m/m Manning's n: 0.0300 Flow 0.1140 cms **Result Parameters** Depth 0.2158 m Area of Flow 0.3903 m² Wetted Perimeter 2.6769 m Hydraulic Radius 0.1458 m Average Velocity 0.2921 m/s Top Width 2.6182 m Froude Number: 0.2415 Critical Depth 0.0967 m Critical Velocity 0.8656 m/s

Critical Slope: 0.0212 m/m Critical Top Width 1.72 m Calculated Max Shear Stress 2.1149 N/m² Calculated Avg Shear Stress 1.4293 N/m²

## Channel Analysis: Channel East_100y

Notes:

## **Input Parameters** Channel Type: Trapezoidal Side Slope 1 (Z1): 3.0000 m/m Side Slope 2 (Z2): 3.0000 m/m Channel Width 1.00 m Longitudinal Slope: 0.0010 m/m Manning's n: 0.0300 Flow 0.4453 cms **Result Parameters** Depth 0.4381 m Area of Flow 1.0139 m² Wetted Perimeter 3.7708 m Hydraulic Radius 0.2689 m Average Velocity 0.4392 m/s Top Width 3.6286 m Froude Number: 0.2652 Critical Depth 0.2177 m Critical Velocity 1.2374 m/s Critical Slope: 0.0171 m/m

Critical Top Width 2.31 m

Calculated Max Shear Stress 4.2944 N/m²

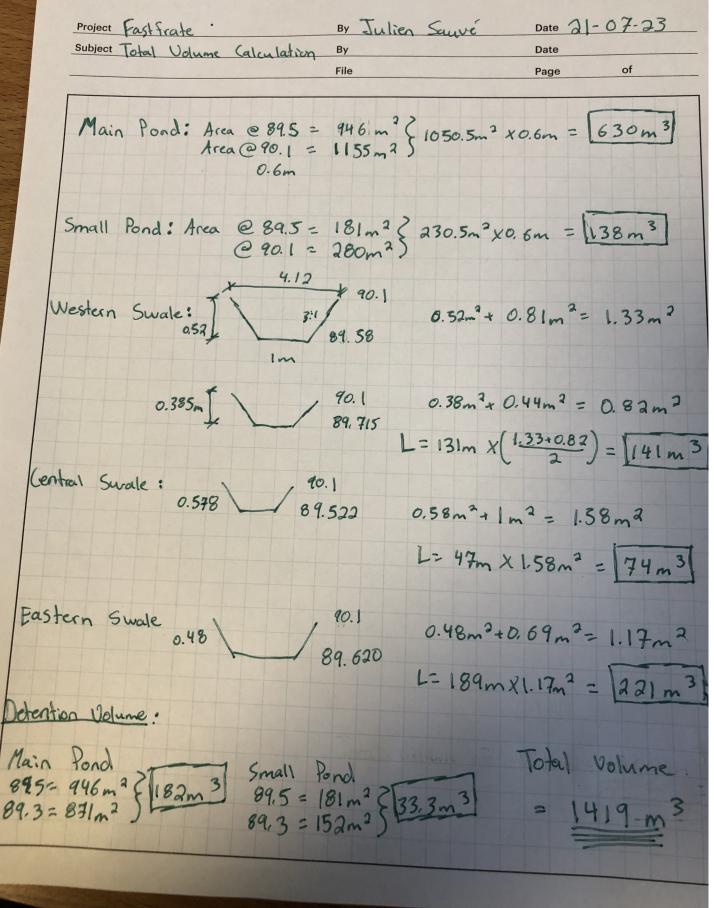
Calculated Avg Shear Stress 2.6357 N/m²

## **Channel Analysis: Channel East_10y**

Notes:

### **Input Parameters**

Channel Type: Trapezoidal Side Slope 1 (Z1): 3.0000 m/m Side Slope 2 (Z2): 3.0000 m/m Channel Width 1.00 m Longitudinal Slope: 0.0010 m/m Manning's n: 0.0300 Flow 0.2226 cms **Result Parameters** Depth 0.3138 m Area of Flow 0.6092 m² Wetted Perimeter 2.9846 m Hydraulic Radius 0.2041 m Average Velocity 0.3654 m/s Top Width 2.8827 m Froude Number: 0.2537 Critical Depth 0.1470 m Critical Velocity 1.0509 m/s Critical Slope: 0.0189 m/m Critical Top Width 1.88 m Calculated Max Shear Stress 3.0758 N/m² Calculated Avg Shear Stress 2.0007 N/m²




## Appendix B-15 SITE STORAGE VOLUME CALCULATIONS





# 







## Appendix B-16 CULVERT ENDS (ROADSIDE SAFETY ASSESSMENT)



Input - Printable			Project Name:	Fastfrate Warehouse Developm	ent - E	East Entrance	
			Name of Analyst:	Jaymeson Adams, P.Eng.			
Unadjusted Obstacle's Offset I	from the Travelled Lane	4.95 m	Location of Obstacle		Sho	oulder	
Design Speed of the Road		60 km/h	Width of Obstacle			3.03	m
Encroachment Rate		0.00045 enc/km/yr/vpd	Length of Obstacle			2.92	m
Initial Year		2022	Swath Width of Vehicle			3.6	m
Project Life		50 yr	Grade			0.4	%
Discount Rate		5.0 %	Radius of Curvature			0	m
			Shoulder Width			0	m
			Distance Between Edge	of Shoulder and Beginning of Slope		0	m
Choose one of:	Initial Year AADT	400 vpd	Slope 1			-0.02	
	Design Year AADT	0_vpd		for a horizontal distance of		2.48	m
			Distance Between Base	Slope 1 and Edge Slope 2		0	m
Which Costing System is to be	e used?	MTO 2011	Slope 2			0.4	
				for a horizontal distance of		2.47	m
Traffic Growth Rate		3.0 %	Distance Between Base	Slope 2 and Edge Slope 3		0	m
One-Way Highway or Two-Wa	ay Highway	Two-Way Highway	Slope 3			0	
Divided or Undivided		Undivided		for a horizontal distance of		0	m
Number of Lanes		2	Distance Between End o	f Slope and Obstacle		0	m
Lane Width		3.6 m					_
Directional Split (Adjacent)		50 %	*Average Damage Repai	ir Cost of Feature after collision for:			
				upstream side	\$	30,000.00	
Severity Index of Upstream Sid		2.5		upstream corner	\$	30,000.00	
Severity Index of Upstream Co	orner of Obstacle	2.6		face	\$	30,000.00	/collisio
Severity Index of Face of Obst		2.5		downstream side	\$	30,000.00	/collisio
Severity Index of Downstream	Side of Obstacle	0		downstream corner	\$	30,000.00	/collisio
Severity Index of Downstream	Corner of Obstacle	0					

#### **OPTION 1**

Method of Improvement	Install S	BGB	-
*Obstacle's Offset from the Travelled Lane	install C	2.48	m
*Width of Obstacle		2.40	
*Length of Obstacle		5.9	
Grade		0.4	
Badius of Curvature			/o m
*Shoulder Width		-	m
Distance Between Edge of Shoulder and Beginning of Slope			m
Slope 1		0	
For a horizontal distance of		-	m
Distance Between Base Slope 1 and Edge Slope 2			m
Slope 2		0	
For a horizontal distance of		-	m
Distance Between Base Slope 2 and Edge Slope 3			m
Slope 3		0	
For a horizontal distance of		-	m
Distance Between End of Slope and Obstacle			m
Distance between End of Slope and Obstacle		0	
*Severity Index of Upstream Side of Obstacle		2.3	
*Severity Index of Upstream Corner		2.3	
*Severity Index of Face of Obstacle		2.3	
*Severity Index of Downstream Side of Obstacle		2.3	
*Severity Index of Downstream Corner of Obstacle		2.3	
			-
*Installation Cost	\$	800.00	-
*Average Damage Repair Cost of improvement option after col			
upstream side	\$		/collision
upstream corner	\$		/collision
face	\$		/collision
downstream side	\$		/collision
downstream corner	\$		/collision
Annual Maintenance Cost	\$	80.00	/yr
Salvage Value of Studied Feature	\$	-	

0	РΤ	101	J

Method of Improvement		0	J
*Obstacle's Offset from the Tra	velled Lane	0	m
*Width of Obstacle		0	m
*Length of Obstacle		0	m
Grade		0.0	%
Radius of Curvature		0	m
Shoulder Width		0	m
Distance Between Edge of Sho	oulder and Beginning of Slope	0	m
Slope 1		0	1
For a horizontal distance of		0	m
Distance Between Base Slope	1 and Edge Slope 2	0	m
Slope 2		0	1
For a horizontal distance of		0	m
Distance Between Base Slope	2 and Edge Slope 3	0	m
Slope 3		0	1
For a horizontal distance of			m
Distance Between End of Slop	e and Obstacle	0	m
			_
*Severity Index of Upstream Si		0	
*Severity Index of Upstream C		0	1
*Severity Index of Face of Obs		0	1
*Severity Index of Downstream		0	1
*Severity Index of Downstream	Corner of Obstacle	0	1
			_
*Installation Cost		\$ -	_
*Average Damage Repair Cos	t of improvement option after collisi		
	upstream side	\$ -	/collision
	upstream corner	\$ -	/collision
	face	\$ -	/collision
	downstream side	\$ -	/collision
	downstream corner	\$ -	/collision
Annual Maintenance Cost		\$ -	/yr
Salvage Value of Studied Feat	ure	\$ -	

Output (Separated) - Printable		
BASE CASE	Do Nothing	
For the Direction Being Considered		
Initial AADT is:	200	vpd
Initial Encroachment Rate is :	0.09	enc/yr/km
		-
The number of impacts with the upstream side is:		impacts/yr
The number of impacts with the upstream corner is:	0.00007	impacts/yr
The number of impacts with the face from adjacent traffic is:		impacts/yr
The number of impacts with the downstream side is:		impacts/yr
The number of impacts with the downstream corner is:		impacts/yr
The number of impacts with the face due to opposing traffic is:	0.00001	impacts/yr
		-
CFTA	0.00012	
CFTO	0.00003	
Initial Collision Frequency:	0.00015	
Expected Impacts over Project Life:	0.01685	
Project Life:	50	
Option 1 Install SBGR		
For the Direction Being Considered		
Initial AADT is:	200	vpd
Initial Encroachment Rate is :	0.09	enc/yr/km
The number of impacts with the upstream side is:		impacts/yr
The number of impacts with the upstream corner is:		impacts/yr
The number of impacts with the face from adjacent traffic is:		impacts/yr
The number of impacts with the downstream side is:		impacts/yr
The number of impacts with the downstream corner is:		impacts/yr
The number of impacts with the face due to opposing traffic is:	0.00006	impacts/yr

CFTA	0.00052
CFTO	0.00017
Initial Collision Frequency:	0.00069
Expected Impacts over Project Life:	0.07760
Project Life:	50

#### Option

#### 0 For the Direction Being Considered

Initial AADT is:	200 vpd
Initial Encroachment Rate is :	0.09 enc/yr/km
The number of impacts with the upstream side is:	0.00018 impacts/yr
The number of impacts with the upstream corner is:	0.00073 impacts/yr
The number of impacts with the face from adjacent traffic is:	0.00000 impacts/yr
The number of impacts with the downstream side is:	0.00000 impacts/yr
The number of impacts with the downstream corner is:	0.00022 impacts/yr
The number of impacts with the face due to opposing traffic is:	0.00000 impacts/yr
CFTA	0.00090
CFTO	0.00022

Initial Collision Frequency:	0.00113
Expected Impacts over Project Life:	0.12714
Project Life:	50

#### Summary of Benefits and Costs

Option 1 Install SBGR			
Net Costs	\$	800.00	
Total Benefits	-\$	1,783.68	
Net Present Value	-\$	2,583.68	
Benefit/Cost Ratio		-2.23	
Change in Total Impacts		0.06	

Project Name:	Fastfrate Warehouse Development - East Entrance
Name of Analyst	Javmeson Adams, P Eng

#### Average Cost per Impact

\$	25,047.48
\$	27,603.08
\$	25,047.48
-\$	1,697.90
-\$	1,697.90
	\$

#### Cost Analysis

	Total		Annual	
Total Present Worth :	\$	124.49	\$	6.82
Accident Costs :	\$	101.27	\$	5.55
Installation Cost :	\$	-	\$	-
Accident Repair Costs :	\$	23.22	\$	1.27
Annual Maintenance Cost :	\$	-	\$	-
Salvage Value :	\$	-	\$	-

#### Average Cost per Impact

Cost Analysis	Total		Annual
downstream corner:	\$	20,555.13	
downstream side:	\$	20,555.13	
face:	\$	20,555.13	
upstream corner :	\$	20,555.13	
upstream side:	\$	20,555.13	

iotai		Annuar	
\$	2,708.17	\$	148.34
\$	447.18	\$	24.49
\$	800.00	\$	43.82
\$	0.52	\$	0.03
\$	1,460.47	\$	80.00
\$	-	\$	-
	\$ \$ \$ \$ \$ \$ \$	\$ 2,708.17 \$ 447.18 \$ 800.00 \$ 0.52	\$ 2,708.17 \$ \$ 447.18 \$ \$ 800.00 \$ \$ 0.52 \$

#### Average Cost per Impact

Average obst per impact		
upstream side:	-\$	1,697.90
upstream corner :	-\$	1,697.90
face:	-\$	1,697.90
downstream side:	-\$	1,697.90
downstream corner:	-\$	1,697.90

#### Cost Analysis

	Total	Ann	ual
Total Present Worth :	-\$	60.52 -\$	3.32
Accident Costs :	-\$	60.52 -\$	3.32
Installation Cost :	\$	- \$	-
Accident Repair Costs :	\$	- \$	-
Annual Maintenance Cost :	\$	- \$	-
Salvage Value :	\$	- \$	-

Option 0		
Net Costs	\$	-
Total Benefits	\$	185.01
Net Present Value	\$	185.01
Benefit/Cost Ratio	#	#DIV/0!
Change in Total Impacts		0.11

Output (Comparison) - Printable					Project	Name:	Fastfrate V	Varehouse De	evelopmen	it - East Entrand	ce	
					Name of Analyst: Jaymeson Adams, P.Eng.							
	Do Not	hing			OPTIO				OPTIO	N		
The Number of impacts with		3			Install S	BGR				0		
the upstream side is:		0.00002	impacts/yr			0.00001	impacts/yr			0.00018 i	mpacts/yr	
the upstream corner is:		0.00007	impacts/yr			0.00032	2 impacts/yr			0.00073 i	mpacts/yr	
the face from adjacent traffic is:		0.00002	impacts/yr				impacts/yr			0.00000 i	mpacts/yr	
the downstream side is:		0.00000	impacts/yr			0.00000	) impacts/yr			0.00000 i	mpacts/yr	
the downstream corner is:		0.00002	impacts/yr			0.00011	impacts/yr			0.00022 impacts/yr		
the face due to opposing traffic is:		0.00001	impacts/yr			0.00006	impacts/yr			0.00000 i	mpacts/yr	
Cost Analysis	Total		Annual		Tetel		Annual		Tatal		Annual	
Total Present Worth :	\$	124.49		6.82	Total \$	2,708.17		148.34	Total -\$	60.52 -		3.32
Total Present Worth :	Φ	124.49	Φ	0.02	Φ	2,700.17	Φ	140.34	- <b>⊅</b>	60.52 -	φ	3.32
Accident Costs :	\$	101.27	\$	5.55	\$	447.18	\$	24.49	-\$	60.52 -	\$	3.32
Installation Cost :	\$	-	\$	-	\$ \$	800.00	\$	43.82	-\$ \$	-	\$	-
Accident Repair Costs :	\$	23.22	\$	1.27	\$	0.52	\$	0.03	\$	-	\$	-
Annual Maintenance Cost :	\$	-	\$	-	\$	1,460.47	\$	80.00	\$	-	\$	-
Salvage Value :	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
CFTA		0.00012	-			0.00052	0			0.00090		
CFTO		0.000012				0.00032				0.00030		
CFIO		0.00003				0.00017	·		_	0.00022		
Initial Collision Frequency:		0.00015	-			0.00069	)			0.00113		
Expected Impacts over Project Life:		0.01685				0.07760	)			0.12714		
Project Life:		50				50	)			50		
			_				_					
For the Direction Being Considered			-				<u>.</u>					
Initial AADT is (vpd):		200				200				200		
Initial Encroachment Rate is (enc/yr/km):		0.09	-			0.09	1			0.09		
Average Cost per Impact	\$	05 0 47 40	-		٠	00 555 40	-		•	4 007 00		
upstream side:	ъ \$	25,047.48 27,603.08			\$ \$	20,555.13 20,555.13			-\$ -\$	1,697.90 1,697.90		
upstream corner : face:	э \$	25,047.48			ъ \$	20,555.13				1,697.90		
		· ·							-\$	1,697.90		
downstream side:	-\$	1,697.90			\$	20,555.13			-\$			
downstream corner:	-\$	1,697.90	-		\$	20,555.13	-		-\$	1,697.90		
Summary of Benefits and Costs												
Net Costs	\$	-			\$	800.00	-		\$	-		
Total Benefits	\$	-			-\$	1,783.68			\$	185.01		
Net Present Value		0.00				-2583.68			\$	185.01		
Benefit/Cost Ratio		0.00				-2.23	3			#DIV/0!		
Change in Total Impacts		0.00				0.06				0.11		
<u> </u>			-				-					

Prepared by: Jaymeson Adams, P.Eng.
PEO#: 100519478
Date: 2022-06-09
Deviewed has been Aderes D Free

Reviewed by: Jaymeson Adams, P.Eng.

PEO#: 100519478

Date: 2022-06-09



PROJECT NAME:

Fastfrate Warehouse Development

CIMA+ PROJECT NUMBER: A001083 CLIENT: **PROJECT STATUS:** 

Fastfrate TENDER

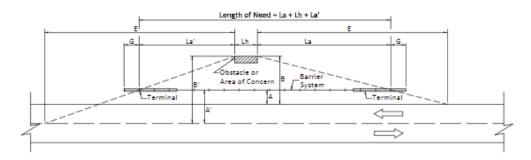
#### **STEEL BEAM GUIDERAIL – LENGTH AND COST**

#### **APPLICABLE DESIGN GUIDELINES:**

1. MTO Roadside Design Manual, December 2017

2. MTO Roadside Evaluation Manual, July 2018

#### STEEL BEAM GUIDERAIL - LENGTH OF NEED CALCULATION: **ROADWAY INFORMATION:**


Road Name:
Direction Considered:
Design Speed:
Construction year AADT (est'd):
Linear Growth Rate:

Fastfrate East Entrance (Somme St) East side 60 km/h 400 vpd

%

3.00

*Initial Year AADT as described on Roadside.xlsx



#### LENGTH OF NEED - APPROACHING TRAFFIC:

A value (from CAD): B value (from CAD): Desirable Clear Zone (Table 2-2 RDM): E value (Table 2-15 RDM):	2.7 7.1 3.0 30.0	m m m
Approach Length (La):	3.0	m
Length of Hazard (Lh):	2.9	m

#### **LENGTH OF NEED – OPPOSING TRAFFIC:**

Approach Length for Opposing Traffic (La'):	0.0	m
A' value (from CAD): B' value (from CAD): Desirable Clear Zone (Table 2-2 RDM): E value (Table 2-15 RDM):	0.0 0.0 3.0 30.0	m m m

#### LENGTH OF NEED:



120.00

5.9

m

\$/m

m

#### **STEEL BEAM GUIDERAIL - COST CALCULATION:**

Cost of new Steel Beam Guiderail:	
Length of Need:	

#### **COST FOR NEW SBGR:**

800.00	\$
000.00	φ

La = E (1 - A/B) where: La = Approach Length of Barrier for Approaching Traffic

- A = Distance from Edge of Travel Way to Face of Barrier.
- B = Distance from Edge of Travel Way to Back of Obstacle or
  - Area of Concern. B should not exceed Desirable Clear Zone according to Table 2-2
- G = Gating length of terminal
- E = Runout Length according to Table 2-15

#### *Outside span to outside span of proposed culvert

#### La' = E(1 - A'/B') where: La, Lh and G according to above example

- La' = Approach Length of Barrier for Opposing Traffic
- A'= Distance from Centreline to Face of Barrier
- B' = Distance from Centreline to Back of Obstacle or Area of Concern. B' should not exceed Desirable Clear Zone according to Table 2-2
- E = Runout Length according to Table 2-15

(Rounded to nearest \$100)



PROJECT NAME:

Fastfrate Warehouse Development

CIMA+ PROJECT NUMBER: A001083 CLIENT: PROJECT STATUS:

Fastfrate TENDER

### **STEEL BEAM GUIDERAIL – LENGTH AND COST**

### **APPLICABLE DESIGN GUIDELINES:**

- 1. MTO Roadside Design Manual, December 2017
- 2. MTO Roadside Evaluation Manual, July 2018

#### NOTES:

- 1. Culvert ends are the only roadside hazards considered in these calculations.
- 2. Somme St undivided highway, 1 lane per direction of travel.

Prepared by:	Jaymeson Adams, P.Eng. PEO # 100519478	Date:	2022-06-09
Verified by:	Jaymeson Adams, P.Eng. PEO # 100519478	Date:	2022-06-09

Z:\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civil\10-Culvert Safety\220608_East Entrance Culvert\[220608_SBGR Length and Cost east.xlsx]Sheet1

Input - Printable			Project Name:	Fastfrate Warehouse Developm	ent - V	Vest Entranc	е
			Name of Analyst:	Jaymeson Adams, P.Eng.			
Unadjusted Obstacle's O	ffset from the Travelled Lane	5.46 m	Location of Obstacle		Sho	oulder	-
Design Speed of the Roa	d	60 km/h	Width of Obstacle			3.03	3 m
Encroachment Rate		0.00045 enc/km/yr/vpc	Length of Obstacle			3.49	) n
Initial Year		2022	Swath Width of Vehicle			3.6	3 m
Project Life		50 yr	Grade			0.4	4 %
Discount Rate		5.0 %	Radius of Curvature			197.97	7 m
			Shoulder Width			(	) m
			Distance Between Edge	of Shoulder and Beginning of Slope		(	) m
Choose one of:	Initial Year AADT	400 vpd	Slope 1			-0.03	3
	Design Year AADT	0 vpd		for a horizontal distance of		2.36	3 m
			Distance Between Base	Slope 1 and Edge Slope 2		(	) m
Which Costing System is	to be used?	MTO 2011	Slope 2			0.4	1
				for a horizontal distance of		3.1	l m
Traffic Growth Rate		3.0 %	Distance Between Base	Slope 2 and Edge Slope 3		(	) m
One-Way Highway or Tw	o-Way Highway	Two-Way Highway	Slope 3			(	C
Divided or Undivided		Undivided		for a horizontal distance of		(	) m
Number of Lanes		2	Distance Between End c	of Slope and Obstacle		(	) m
Lane Width		3.6 m					_
Directional Split (Adjacen	t)	50 %	*Average Damage Repa	air Cost of Feature after collision for:			-
				upstream side	\$	30,000.00	/c
Severity Index of Upstrea	m Side of Obstacle	2.5		upstream corner	\$	30,000.00	/c
Severity Index of Upstrea	m Corner of Obstacle	2.6		face	\$	30,000.00	/c
Severity Index of Face of	Obstacle	2.5		downstream side	\$	30,000.00	/c
Severity Index of Downsti	ream Side of Obstacle	0		downstream corner	\$	30,000.00	/c
Severity Index of Downst	ream Corner of Obstacle	0					-

· · · · · · · · · · · · · · · · · · ·				-
Location of Obstacle		Shou		
Width of Obstacle			3.03	
Length of Obstacle			3.49	m
Swath Width of Vehicle			3.6	m
Grade			0.4	%
Radius of Curvature			197.97	m
Shoulder Width			0	m
Distance Between Edge of Shoulder and	d Beginning of Slope		0	m
Slope 1	0 0 1		-0.03	
for a ho	rizontal distance of		2.36	m
Distance Between Base Slope 1 and Ed	ge Slope 2		0	m
Slope 2	31		0.41	
, for a ho	rizontal distance of		3.11	m
Distance Between Base Slope 2 and Ed	ge Slope 3		0	m
Slope 3			0	
for a ho	rizontal distance of		0	m
Distance Between End of Slope and Ob	stacle		0	m
				-
*Average Damage Repair Cost of Featu	re after collision for:			-
· · ·	upstream side	\$	30,000.00	/collisio
	upstream corner	\$	30,000.00	/collisio
	face	\$	30,000.00	/collisio
	downstream side	\$	30,000.00	/collisio
	downstream corner	ŝ	30,000.00	

#### **OPTION 1**

Method of Improvement	Insta	II SBGR	
*Obstacle's Offset from the Travelled Lane		0	m
*Width of Obstacle		0.2	m
*Length of Obstacle		10.2	m
Grade		0.4	%
Radius of Curvature		197.97	m
*Shoulder Width		0	m
Distance Between Edge of Shoulder and Beginning of Slope		0	m
Slope 1		0	
For a horizontal distance of		0	m
Distance Between Base Slope 1 and Edge Slope 2		0	m
Slope 2		0	
For a horizontal distance of		0	m
Distance Between Base Slope 2 and Edge Slope 3		0	m
Slope 3		0	
For a horizontal distance of		0	m
Distance Between End of Slope and Obstacle		0	m
*Severity Index of Upstream Side of Obstacle		2.3	
*Severity Index of Upstream Corner		2.3	
*Severity Index of Face of Obstacle		2.3	
*Severity Index of Downstream Side of Obstacle		2.3	
*Severity Index of Downstream Corner of Obstacle		2.3	
•			
*Installation Cost	\$	1,300.00	
*Average Damage Repair Cost of improvement option after co	llision	for:	
upstream side	\$	650.00	/collision
upstream corner	\$	650.00	/collisior
face	\$	1,300.00	/collision
downstream side	\$	650.00	/collisior
downstream corner	\$	650.00	/collisior
Annual Maintenance Cost	\$	130.00	/yr
Salvage Value of Studied Feature	\$		

#### OPTION

				_
Method of Improvement			(	
*Obstacle's Offset from the	e Travelled Lane		(	) m
*Width of Obstacle			(	) m
*Length of Obstacle				) m
Grade			0.0	) %
Radius of Curvature			(	) m
Shoulder Width			(	) m
Distance Between Edge of	Shoulder and Beginning of Slope		(	) m
Slope 1			(	0
For a horizontal distance of	f		(	) m
Distance Between Base SI	ope 1 and Edge Slope 2		(	) m
Slope 2			(	0
For a horizontal distance o	f		(	) m
Distance Between Base Sl	ope 2 and Edge Slope 3		(	) m
Slope 3			(	)
For a horizontal distance o	f		(	) m
Distance Between End of S	Slope and Obstacle		(	) m
	·			-
*Severity Index of Upstream	m Side of Obstacle		(	)
*Severity Index of Upstream	m Corner		(	)
*Severity Index of Face of			(	D
*Severity Index of Downstr	eam Side of Obstacle		(	)
*Severity Index of Downstr			(	)
				_
*Installation Cost		\$	-	-
*Average Damage Repair	Cost of improvement option after collis	sion for:		-
	upstream side	\$	-	/collision
	upstream corner	\$	-	/collision
	face	\$	-	/collision
	downstream side	\$	-	/collision
	downstream corner		-	/collision
Annual Maintenance Cost	er en er		-	/vr
	eature	\$	-	
Annual Maintenance Cost Salvage Value of Studied F	downstream corner	\$ \$		-'

Output (Separated) - Printable	
BASE CASE	Do Nothing
For the Direction Being Considered	
Initial AADT is:	200 vpd
Initial Encroachment Rate is :	0.18 enc/yr/km
The number of impacts with the upstream side is:	0.00003 impacts/yr
The number of impacts with the upstream corner is:	0.00010 impacts/yr
The number of impacts with the face from adjacent traffic is:	0.00004 impacts/yr
The number of impacts with the downstream side is:	0.00001 impacts/yr
The number of impacts with the downstream corner is:	0.00006 impacts/yr
The number of impacts with the face due to opposing traffic is:	0.00002 impacts/yr
CFTA	0.00016
CFTO	0.00009
Initial Collision Frequency:	0.00025
Expected Impacts over Project Life:	0.02852
Project Life:	50
Option 1 Install SBGR	
Fundha Disastian Daisa Osmaidanad	
For the Direction Being Considered Initial AADT is:	000
Initial AADT Is: Initial Encroachment Rate is :	200 vpd 0.18 enc/yr/km
	0.18 enc/yi/kiii
The number of impacts with the upstream side is:	0.00005 impacts/yr
The number of impacts with the upstream corner is:	0.00145 impacts/yr
The number of impacts with the face from adjacent traffic is:	0.00184 impacts/yr
The number of impacts with the downstream side is:	0.00003 impacts/yr
The number of impacts with the downstream corner is:	0.00089 impacts/yr
The number of impacts with the face due to opposing traffic is:	0.00091 impacts/yr
CFTA	0.00334
CFTO	
	0.00183
Initial Collision Frequency:	0.00517
Expected Impacts over Project Life:	0.58262
Project Life:	50

#### Average Cost per Impact upstream side:

Accident Repair Costs : Annual Maintenance Cost :

Project Name:

upstream corner : face:

downstream side:

Cost Analysis

downstream corner:

Total Present Worth :

Accident Costs :

Installation Cost

Salvage Value :

Average Cost per Impact upstream side:

Name of Analyst: Jaymeson Adams, P.Eng.

\$	20,555.13		
\$	20,555.13		
\$	20,555.13		
\$	20,555.13		
\$	20,555.13		
Total		Annual	
\$	7,036.88	\$	385.46
\$	3,357.50	\$	183.91
\$	1 300 00	¢	71.21
Ψ	1,000.00	Ψ	
\$	6.11	\$	0.33
	,		
	\$ \$ \$ Total \$	\$ 20,555.13 \$ 20,555.13 \$ 20,555.13 \$ 20,555.13 \$ 20,555.13 <b>Total</b> \$ 7,036.88 \$ 3,357.50	\$       20,555.13         \$       20,555.13         \$       20,555.13         \$       20,555.13         \$       20,555.13         \$       20,555.13         \$       20,555.13         \$       20,556.13         \$       70,056.88

Fastfrate Warehouse Development - West Entrance

\$

\$

-\$

-\$

Total

\$

\$

\$

\$

\$

25,047.48

27,603.08 25,047.48

1,697.90

1,697.90

182.35 \$

150.55 \$

31.80

Annual

9.99 8.25

1.74

#### Option

#### 0 For the Direction Being Considered

200 vpd
0.18 enc/yr/km
0.00001 impacts/yr
0.00073 impacts/yr
0.00000 impacts/yr
0.00000 impacts/yr
0.00022 impacts/yr
0.00000 impacts/yr
0.00073
0.00022

Initial Collision Frequency:	0.00096
Expected Impacts over Project Life:	0.10780
Project Life:	50

#### Summary of Benefits and Costs

Option 1 Install SBGR		
Net Costs	\$	1,300.00
Total Benefits	-\$	5,554.53
Net Present Value	-\$	6,854.53
Benefit/Cost Ratio		-4.27
Change in Total Impacts		0.55

#### Average Cost per Impact

riterage eest per impaet		
upstream side:	-\$	1,697.90
upstream corner :	-\$	1,697.90
face:	-\$	1,697.90
downstream side:	-\$	1,697.90
downstream corner:	-\$	1.697.90

#### **Cost Analysis**

f

0

(

	Total		Annual	
Total Present Worth :	-\$	51.31	-\$	2.81
Accident Costs :	-\$	51.31	-\$	2.81
Installation Cost :	\$	-	\$	-
Accident Repair Costs :	\$	-	\$	-
Annual Maintenance Cost :	\$	-	\$	-
Salvage Value :	\$	-	\$	-

Option 0	
Net Costs	\$ -
Total Benefits	\$ 233.66
Net Present Value	\$ 233.66
Benefit/Cost Ratio	#DIV/0!
Change in Total Impacts	0.08

Output (Comparison) - Printable					Project	Name:	Fastfrate	Warehouse D	evelopment	- West Entrance	)
					Name o	of Analyst:	Javmeson	Adams, P.E.	na.		
	Do Noth	ing			OPTIO			,	OPTION		
The Number of impacts with		0			Install S	BGR				0	
the upstream side is:		0.00003	impacts/yr			0.00005	5 impacts/yr			0.00001 imp	pacts/yr
the upstream corner is:		0.00010	impacts/yr			0.0014	5 impacts/yr			0.00073 im	pacts/yr
the face from adjacent traffic is:		0.00004	impacts/yr			0.00184	4 impacts/yr			0.00000 imp	bacts/yr
the downstream side is:		0.00001	impacts/yr			0.00003	3 impacts/yr			0.00000 imp	bacts/yr
the downstream corner is:			impacts/yr				9 impacts/yr			0.00022 imp	
the face due to opposing traffic is:			impacts/yr				1 impacts/yr			0.00000 imp	
Cost Analysis											
	Total		Annual		Total		Annual		Total		nual
Total Present Worth :	\$	182.35	\$	9.99	\$	7,036.88	\$	385.46	-\$	51.31 -\$	2.81
Accident Costs :	\$	150.55	\$	8.25	\$	3,357.50	\$	183.91	-\$	51.31 -\$	2.81
Installation Cost :	\$	-	\$	-	\$	1,300.00	\$	71.21	\$	- \$	-
Accident Repair Costs :	\$	31.80	\$	1.74	\$	6.11	\$	0.33	\$	- \$	-
Annual Maintenance Cost :	\$	-	\$	-	\$	2,373.27	\$	130.00	\$	- \$	-
Salvage Value :	\$	-	\$	-	\$	-	\$	-	\$	- \$	-
CFTA		0.00016				0.00334	4			0.00073	
CFTO		0.00009				0.00183	3			0.00022	
Initial Collision Frequency:		0.00025				0.0051	7			0.00096	
Expected Impacts over Project Life:		0.02852				0.58262	2			0.10780	
Project Life:		50				50	D			50	
For the Direction Being Considered											
Initial AADT is (vpd):		200				200	D			200	
Initial Encroachment Rate is (enc/yr/km):		0.18				0.18	В			0.18	
Average Cost per Impact			_								
upstream side:	\$	25,047.48			\$	20,555.13	1		-\$	1,697.90	
upstream corner :	\$	27,603.08			\$	20,555.13			-\$	1,697.90	
face:	\$	25,047.48			\$	20,555.13			-\$	1,697.90	
downstream side:	-\$	1,697.90			\$	20,555.13			-\$	1,697.90	
downstream corner:	-\$	1,697.90			\$	20,555.13	1		-\$	1,697.90	
							_			_	
Summary of Benefits and Costs											
Net Costs	\$	-			\$	1,300.00	-		\$	-	
Total Benefits	\$	-			-\$	5,554.53			\$	233.66	
Net Present Value	•	0.00			*	-6854.53			\$	233.66	
Benefit/Cost Ratio		0.00				-4.27				DIV/0!	
Change in Total Impacts		0.00				0.55			#1	0.08	
enange in rota impaoto		0.00				0.00	<u> </u>		_	0.00	

Prepared by: Jaymeson Adams, P.Eng.	
PEO#: 100519478	
Date: 2022-06-09	
Reviewed by: Jaymeson Adams, P.Eng.	
PEO#: 100519478	

Date: 2022-06-09



PROJECT NAME:

3.00

Fastfrate Warehouse Development

CIMA+ PROJECT NUMBER: A001083 CLIENT: **PROJECT STATUS:** 

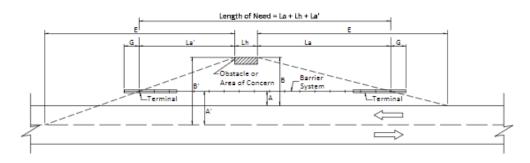
%

Fastfrate TENDER

#### **STEEL BEAM GUIDERAIL – LENGTH AND COST**

#### **APPLICABLE DESIGN GUIDELINES:**

1. MTO Roadside Design Manual, December 2017


2. MTO Roadside Evaluation Manual, July 2018

#### STEEL BEAM GUIDERAIL - LENGTH OF NEED CALCULATION: **ROADWAY INFORMATION:**

Road Name:
Direction Considered:
Design Speed:
Construction year AADT (est'd):
Linear Growth Rate:

Fastfrate West Entrance (Somme St) East side 60 km/h 400 vpd

*Initial Year AADT as described on Roadside.xlsx



#### LENGTH OF NEED - APPROACHING TRAFFIC:

A value (from CAD): B value (from CAD): Desirable Clear Zone (Table 2-2 RDM): E value (Table 2-15 RDM):	2.4 7.7 3.0 30.0	m m m
Approach Length (La):	6.0	m
Length of Hazard (Lh):	4.2	m

#### **LENGTH OF NEED – OPPOSING TRAFFIC:**

Approach Length for Opposing Traffic (La'):	0.0	m
A' value (from CAD): B' value (from CAD): Desirable Clear Zone (Table 2-2 RDM): E value (Table 2-15 RDM):	0.0 0.0 3.0 30.0	m m m

#### LENGTH OF NEED:

10.2

m

\$/m

m

#### **STEEL BEAM GUIDERAIL - COST CALCULATION:**

Cost of new Steel Beam Guiderail:	120.00
Length of Need:	10.2

**COST FOR NEW SBGR:** 



La = E (1 - A/B) where: La = Approach Length of Barrier for Approaching Traffic A = Distance from Edge of Travel Way to Face of Barrier.

- B = Distance from Edge of Travel Way to Back of Obstacle or
  - Area of Concern. B should not exceed Desirable Clear Zone according to Table 2-2
- G = Gating length of terminal
- E = Runout Length according to Table 2-15

#### *Outside span to outside span of proposed culvert

La' = E(1 - A'/B') where: La, Lh and G according to above example

- La' = Approach Length of Barrier for Opposing Traffic
- A'= Distance from Centreline to Face of Barrier
- B' = Distance from Centreline to Back of Obstacle or Area of Concern. B' should not exceed Desirable Clear Zone according to Table 2-2
- E = Runout Length according to Table 2-15

(Rounded to nearest \$100)



PROJECT NAME:

Fastfrate Warehouse Development

CIMA+ PROJECT NUMBER: A001083 CLIENT: PROJECT STATUS:

Fastfrate TENDER

### **STEEL BEAM GUIDERAIL – LENGTH AND COST**

### **APPLICABLE DESIGN GUIDELINES:**

- 1. MTO Roadside Design Manual, December 2017
- 2. MTO Roadside Evaluation Manual, July 2018

#### NOTES:

- 1. Culvert ends are the only roadside hazards considered in these calculations.
- 2. Somme St undivided highway, 1 lane per direction of travel.

Prepared by:	Jaymeson Adams, P.Eng.	Date:	2022-06-09
	PEO # 100519478		
Verified by:	Jaymeson Adams, P.Eng. PEO # 100519478	Date:	2022-06-09

Z:\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civil.10-Culvert Safety\220609_West Entrance Culvert\[220609_SBGR Length and Cost east.xlsx]Sheet1



## Appendix C-1 WATER SUPPLY







PROJECT NAME:

Fastfrate Warehouse Development

CIMA+ PROJECT NUMBER:A001083CLIENT:FastfratePROJECT STATUS:90 % Des

A001083 Fastfrate (Ottawa) Holdings Inc. 90 % Design (Site Plan Approval)

### WATER CONSUMPTION CALCULATIONS

## APPLICABLE DESIGN GUIDELINES:

1. Ottawa Design Guidelines - Water Distribution (2010)

2. City of Ottawa Technical Bulletin ISTB-2021-03, ISTB-2018-02, ISDTB-2014-02 and ISD-2010-02

3. MOE Design Guidelines for Drinking-Water Systems

## COMMERCIAL WATER DEMANDS:

CO	MMI	ERC	JAL	DESIGN CRITERIA:	
-			-		

Contributing Commercial Area:	0.860	gross ha (Building Area)
Commercial Average Day Demand:	28,000	L/gross ha/d
Maximum Day Peaking Factor:	1.5	x Average Daily Demand
Maximum (Peak Hour) Peaking Factor:	1.8	x Maximum Daily Demand

#### WATER DEMANDS:

Demand Type	Average Daily Demand (L/s)	Maximum Daily Demand (L/s)	Maximum (Peak) Hour Demand (L/s)
Commercial	0.28	0.42	0.75
Total	0.28	0.42	0.75

### NOTES:

1. Maximum Day and Maximum Hour residential peaking factors determined from City of Ottawa Water Design Guidelines 2010 - as ammended by all technical bulletins.

Prepared by: Guillaume LeBlond, M.A.Sc., E PEO# 100530467 Date: 2022/06/01

Verified by: <u>Christian Lavoie-Lebel, P.Eng.</u> PEO# 100173201 Date: 2022/06/01

Z:\Cima-C10\Ott_Projects\\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civil\03-Watermain\220601_SPA Comments Redesign\220531_Water Supply & Fire Flow.xtsx}Fire Flow



Appendix C-2 FIRE FLOW







3900 COTE VERTU SUITE 200 ST-LAURENT (QUÉBEC) H4R 1V4

August 18, 2022

**Civitas Group** 203-6 Hamilton Avenue North Ottawa, Ontario K1Y 4R1

Attention: Douglas Rancier, Architect

## Subject: **CBRE – Fastfrate Warehouse – Required Fire Flow Proposal Ottawa, Ontario** O/Ref.: 2206-09A

Dear Sir,

To determine the water demand for fire protection based on the Fire Underwriters Survey, a document has been prepared by the Opta Information Intelligence Corp (formerly Insurance Advisory Organization). Part 2 of the document, contains a guide ("Guide for Determination of Required Fire Flows for Public Fire Protection in Canada), from here on referred to as the "Guide".

The subsection entitled "Risk Quantification with Required Fire Flows" states the following:

"The Guide to calculate required fire flows is made available to municipal officials, consulting engineers and other interested stakeholders as an aid in estimating water supply requirements for public fire protection. This document is a <u>guide and requires specialized knowledge and experience</u> in public fire protection engineering for its effective application."

The guide provides the following formula for estimating the fire flow required for a given area:

RFF=220 CA^{0.5}

where RFF = Required Fire Flow C = coefficient related to the type of construction A is the total floor area of the building in m²

This formula only takes into consideration the building construction and the building area. The use of this formula provides a reasonable estimation for a building that does not have an adequate sprinkler system or that has a control mode density-area sprinkler system. The firefighting is based on a fire involving a majority of the building and the main objective is to limit the fire from spreading to other buildings and if possible extinguish the fire.



The modern-day sprinkler systems are designed to limit the fire to a relatively small area (by using Quick response sprinklers) and some are actually designed to extinguish the fire by using "Early Suppression Fast Response" sprinkler technology, as is the case in our situation. Since the proposed sprinkler design is based on the specific combustible loading of the building's occupancy content, the actual storage configuration, the actual height of the building and the clearances of the sprinklers with respect to the combustibles, it would be almost impossible to create a simple equation to estimate the fire flow. As a number of sprinkler systems for speculative buildings are not designed for the actual combustible contents nor do they necessarily use ESFR sprinkler technology, the Guide uses a very conservative credit for sprinklered buildings.

The following examples will demonstrate the typical exceptions where the Guide would provide unreasonable flows (at times under-estimated and at times over-estimated) and where fire protection knowledge is required to determine the reasonable fire flows.

## Example 1

We have a 1000  $\text{m}^2$  building of non-combustible construction. The building is used for storage of Class 1B flammable liquids in relieving-type metal drums 25 ft high on racks. The building is fully sprinklered. There is no required exposure protection.

In this example, the estimated fire flow would be:

220 x 0.8 x 10000.5 = 5,565 L/min

If we increase the flow by 25% for rapid burning fire, we get 6,957 L/min.

Assuming that we have a fully supervised sprinkler system, we can reduce the flow up to 50% yielding thus a RFF of 3,478 L/min or 920 usgpm.

The sprinkler system design for such an occupancy would require a density of 0.60 gpm/sq ft over an area of 3000 sq ft (flow of 1,800 gpm) plus in-rack sprinklers flowing 18 sprinklers at 30 gpm (flow of 540 gpm) and 500 gpm for hose streams yielding a total demand flow of 2840 usgpm or 10,750 L/min.

As we can see in this example, the real fire flow required to control the fire is approximately 3 times the flow calculated as per the Guide.

## Example 2

We have a 150,000  $m^2$  building of non-combustible construction. The building is used for storage of car parts. The building is fully sprinklered. There is no required exposure protection.



In this case the required flow is:

220 x 0.8 x 150,0000.5 = 68,164 L/min

We did not increase the flow for medium hazard.

Assuming that we have a fully supervised sprinkler system, we can reduce the flow up to 50% and we obtain 34,082 L/min or 9,005 usgpm.

Giving a 50% credit for sprinklers is not reasonable. The sprinkler system is typically designed to control the fire within an area of 140 m². If the fire is not extinguished or controlled within the sprinkler design area, the fire will probably spread to the entire building and the credit for 50% would not work as the fire would behave as if the sprinkler system would not be present.

To protect this warehouse, there is almost no municipal water system that can provide these flows based on the Guide's estimation equation. These large warehouses are installed in industrial parks and the typical fire flows required to extinguish the fire are in the range of 5,000 L/min to 10,000 L/min (1320 usgpm – 2640 usgpm).

In this case, the calculations based on the guide require over 4 times more the water flow that is actually required to extinguish the fire.

These examples show why the experience in fire protection engineering is required to correctly determine the actual fire flows required to extinguish a fire.

## **Fastfrate Fire Flow Calculations**

As the sprinkler system at Fastfrate warehouse will be designed to extinguish the fire within a very limited area by using ESFR sprinkler technology, the use of the Guide's empirical formula to estimate the fire flow yields unrealistic results since it does not give sufficient credit for using ESFR sprinklers.

The Fastfrate warehouse's sprinkler design criteria is based on site specific conditions that go far beyond the parameters of the Guide and include features such as building height, height of storage, type of combustibles, type of sprinkler system, etc. Calculations to determine the required fire flow are based on a single fire incident at a time. This is also the case for the Guide.

The design of the sprinkler protection for the warehouse high piled storage section is based on using K16.8 ESFR sprinklers with a very large orifice size at a minimum end head pressure of 52 psi. In most cases, only 4 such sprinklers are expected to flow in a fire scenario. NFPA requires an additional safety margin whereby the design criteria is based on 12 sprinklers flowing at a minimum end head pressure of 52 psi. Although the sprinkler flow would only be expected to be in the range of 500 gpm (1893 L/min), the actual required NFPA design criteria is based on a sprinkler flow rate of 1500 usgpm (5677 L/min). In addition, it is expected that the fire department will require to use



fire hoses to fully extinguish the fire. NFPA requires 250 gpm (946 L/min) to be reserved for outside hoses when using an ESFR sprinkler design approach. The calculated total water flow is 1750 usgpm (6,624 L/min).

Calculations based on the FUS Guide yield a required fire flow of 10,000 L/min (2642 usgpm) (see attached calculations). We recommend to apply an additional reduction due to the ESFR sprinkler system which is actually designed to extinguish the fire. With this additional reduction the required fire flow would be 1982 usgpm (7500 L/min).

We have also compared the recommended flow with the required sprinkler flow based on the NFPA requirements. The NFPA water flow, including hose streams for the fire department, is 1750 usgpm (6624 L/min) as discussed above. For sprinkler designs that are based on a control mode density-area approach (ie. conventional sprinklers), the required hose stream allowance would be 500 usgpm (1892 L/min). By considering 500 usgpm (1892 L/min) for outside hose streams rather than the 250 usgpm required for an ESFR design approach, the resulting total fire flow would be approximately 2000 usgpm (7570 L/min). This is consistent with our assessment above.

## **Fire Duration**

With ESFR sprinklers, the required fire duration is expected to be 60 minutes. We recommend adding a 50% safety factor yielding thus a duration of 90 minutes. The overall volume of water required would therefore be 1982 GPM x 90 MINUTES = 178,380 US GALLONS or 675 cu. m.

## **Discussion on High One Storey Buildings**

Although FUS has special considerations for tall one storey buildings, for which the guide recommends to treat as a 3 storey building and to consider the potential of fire spreading to all three floors, our alternative objective based design already takes into consideration the higher combustible loading within an uncompartmentalized building as described below.

The water demand calculations in this report have been based on an uncompartmentalized building that contains a relatively high combustible loading in a single fire area for the full height of the building (37.5 ft). When comparing this scenario to a building that is vertically compartmentalized (ie multi-storey building), the fire demand and fire hazard for the latter are significantly decreased. To demonstrate this point, we will compare the NFPA 13 sprinkler demand requirement for a 3-storey building of the same total height versus the sprinkler demand requirement for the subject building.

If the building were deemed to be equivalent to a 3-storey building with a height of 12.5 ft per floor, the sprinkler demand as per NFPA 13 would be 600 us gpm based on the same commodity classification that the subject building will contain. The subject building has a proposed sprinkler demand of 1482 gpm (based on an ESFR sprinkler design). In the case of a 3 storey building, the vertically compartmentalized areas would significantly reduce the fire severity as demonstrated by



Fastfrate, Ottawa, Ontario

the much lower sprinkler demand. Furthermore, a 3-storey building of this size would be required to have fire separations between floors (as per OBC) which would limit fire spread.

Consequently, the alternative solution (using an ESFR suppression-based design) presented in this report would still be valid and provide an equivalent level of protection to the FUS recommended practice.

The attached Fire Flow Calculation Sheet represents the probable flows based on experience and fire protection engineering knowledge.

If you require any additional information, please do not hesitate to contact us.

Sincerely Yours,

Civelec Consultants Inc.

faul Hoby

Paul Lhotsky, PhD, P. Eng., P. E.





Project: Fastfrate Warehouse O/Ref.: 2206-09A

Client: Fastfrate (Ottawa) Holdings Inc.

#### FIRE FLOW ASSESSMENT

#### Applicable design guidelines:

- 1. Fire Underwriters Survey (FUS) Water Supply for Public Fire Protection, 2020
- 2. Ottawa Design Guidelines Water Distribution (2010) ISTB-2018-02
- 3. Technical Bulletin ISTB-2021-03

#### STEP A - Determine the type of construction

Type of construction	Coefficient (C)	Value selected (C)
Fire-resistive construction (> 3 hours)	0.6	
Non-combustible construction	0.8	1.0
Ordinary construction	1.0	1.0
Wood frame construction	1.5	

#### **STEP B - Determine the floor area**

Floor / Level	Floor area per level (sq. ft.)	Floor area per level (m ² )
Gross floor area (GFA) ground level	92,376	8582
Total floor area (A)	92,376	8582

#### **STEP C - Determine the height in storeys**

Floor / Level	Number of storeys	Percent of floor area considered
Ground level	1	100%
Height in storeys	1	

STEP D - Determine base fire flow (round to nearest 1,000 L/min)

$$F = 220C\sqrt{A}$$

Where:

F is the required fire flow in L/min

C is the coefficient related to the type of construction, and;

A is the total floor area of the building in  $m^2$ 

Coefficient related to type of construction (C) = Floor area considered (A) =	1.0 8582 m ²	-
REQUIRED (BASE) FIRE FLOW (F) =	20,000	L/min (rounded to nearest 1,000 L/min)



**Civelec Consultant Inc.** 

Project: Fastfrate Warehouse

O/Ref.: 2206-09A

Client: Fastfrate (Ottawa) Holdings Inc.

### FIRE FLOW ASSESSMENT

#### STEP E = Determine the increase or decrease for occupancy and apply to Step D (Step D x Step E, do not round)

Occupancy Class	Occupancy factor	Value selected (C)
Non-combustible	0.75	
Limited combustible	0.85	
Combustible	1.00	1.0
Free burning	1.15	
Rapid burning	1.25	

#### **REQUIRED (BASE) FIRE FLOW (F) =**

20,000 L/min (not rounded)

#### STEP F - Determine the decrease, if any, for automatic sprinkler protection and apply to value in Step D above (do not round)

10,000

Sprinkler system design	Sprinkler design charge	Value selected (C)	Total charge
Automatic sprinkler system conforming to NFPA standards	-30%	Yes	-30%
Standard water supply	-10%	Yes	-10%
Fully supervised system	-10%	Yes	-10%
Total charge for sprinkler system			-50%

#### **DECREASE FOR SPRINKLER PROTECTION =**

L/min (not rounded)

#### STEP G - Determine the total increase for exposures and apply to value in Step D above (do not round)

Façade	Separation distance (m)	Length-height factor of exposed wall (m-storeys)	Assumed construction of exposed wall of adjacent	Total charge
North façade	> 45	N/A	N/A	0%
East façade (fire/party wall)	> 45	N/A	N/A	0%
South façade	> 45	N/A	N/A	0%
West façade	> 45	N/A	N/A	0%
Total charge for exposures				0%

**INCREASE FOR EXPOSURES =** 

L/min (not rounded)

STEP H - Determine fire flow including all increases and reductions (Step E + Step F + Step G, round to nearest 1,000 L/min)

0

TOTAL REQUIRED FIRE FLOW (RFF) = 10,000 L/min

 10,000
 L/min (rounded to nearest 1,000 L/min)

 166.6
 L/s

 2642
 USGPM

**Civelec Consultant Inc.** 

Project:Fastfrate WarehouseO/Ref.:2206-09AClient:Fastfrate (Ottawa) Holdings Inc.

### FIRE FLOW ASSESSMENT

STEP I - Additional adjustemnt for engineering judgement. Justification: Reduction for ESFR sprinkler: 25%

#### TOTAL REQUIRED FIRE FLOW (RFF) =

 7,500
 L/min (rounded to nearest 1,000 L/min)

 125
 L/s

 1982
 USGPM

Prepared by: Paul Lhotsky

Date: July 14, 2022





## Appendix C-3 GRAVITY WATERMAIN FOR FIRE PROTECTION







 PROJECT NAME:
 Warehouse Development

 CIMA+ PROJECT NUMBER:
 A001083

 CLIENT:
 Fastfrate (Ottawa) Holdings Inc.

 PROJECT STATUS:
 Site Plan Control

HYDRAULIC CALCULATIONS FOR GRAVITY FIRE PROTECTION WATERMAIN

APPLICABLE DESIGN GUIDELINES:

NFPA 13

DESIGN BASIS:	
Manning Coefficient :	0.013
Maximum permitted velocity :	3.00 m/s
Minimum permitted velocity :	0.60 m/s

Section	Dia.	Length	Slope	Invert upstream	Invert downstream	Capacity (full)	Velocity (full)	Required Flow	Velocity (actual)	% Full	F.S.
	mm	m	%	m	m	m³/s	m/s	m³/s	m/s		
Fire Protection WM	450	60.1	0.20%	87.100	86.985	0.127	0.80	0.110000	0.90	87%	1.15

#### <u>Remarks</u>

The data in green has been calculated or modified by the designer

The data in blue has been calculated using formulas inserted by the designer

#### Notes :

1. Slope of 3.00% has been assumed for all building connections.

Prepared by: Guillaume LeBlond, M.A.Sc., EIT

PEO No.: 100530467

Verified by: Julien Sauvé, P.Eng. PEO No.: 100200100 Date: 10/3/2021

Date: 10/3/2021



## Appendix C-4 ICE THICKNESS CALCULATION







PROJECT NAME: NUMBER: CLIENT: PROJECT STATUS:

Fastfrate (Ottawa) Warehouse Development A001083 Fastfrate (Ottawa) Holdings Inc. : 90 % Design (Site Plan Approval)

$$AFDD = \sum_{day=1}^{n} FDD_{day}$$

AFDD 785 °C.day

Thickness (cm) =  $\alpha \sqrt{AFDD}$ 

α	2.4
T (cm)	67.24 cm
T (ft)	2.21 ft
T (ft <i>,</i> in)	2'3"
α	1.7
T (cm)	47.63 cm
T (ft)	1.56 ft
T (ft, in)	1'7"
α	2.7
T (cm)	75.65 cm
T (ft)	2.48 ft
T (ft, in)	2'6"
Only temp	peratures from

 Ice Cover Condition

 Windy lake, no snow

 Average lake with snow

 Average river with snow

 Sheltered small river

 Prepared b
 Jaymeson Adams, EIT

 Date:
 2020-11-25

winter (Dec 21 – March 21) are used for calculation.

Verified by Christian Lavoie-Lebel, P.Eng. Date:

2020-11-25

α 2.7

1.7-2.4

0.4-0.5

0.7-1.4

Freezing Degree Days (FDD) are

computed with this simple

AFDD is the sum of daily FDD

- used to estimate river ice thickness Thickness (cm) =  $\alpha \sqrt{AFDD}$ 

 $FDD = 0^{\circ}C - T_{(daily mean)}$ 

over the season

formula:



## Appendix D-1 SANITARY SEWER FLOW







PROJECT NAME: CIMA+ PROJECT CLIENT: **PROJECT STATUS:**  Fastfrate (Ottawa) A001083 Fastfrate (Ottawa) Holdings Inc. 90 % Design (Site plan Approval)

WASTEWATER PEAK FLOW DETERMINATION - COMMERCIAL & INSTITUTIONAL

## APPLICABLE DESIGN GUIDELINES:

1. City of Ottawa Sewer Design Guidelines, 2012

2. City of Ottawa Technical Bulletin ISTB-2018-01

### DOMESTIC CONTRIBUTIONS:

COMMERCIAL & INSTITUTIONAL DESIGN CRITERIA:

Base Flow:	2.8 L/m ² /d
Peaking factor:	1.5 unitless
Extreneous Flows + Infiltration:	0.33 L/s/ha
OBC Baseflow:	12800 L/d
	0.148 L/s

Commercial Peak fa Institutional Peak fa

Industrial Peak Fac

## **AVERAGE FLOW - DOMESTIC:**

Buildings	Building Area	Building Area	Proportional Area	Average Base Flow	Peaking Factor	Peak Flow	Extraneous Flow	Maximun Flow
	ft ²	m ²	ha	(L/s)		(L/s)	(L/s)	(L/s)
Warehouse - Ottawa Sewer Desgin Guidelines	76503	7107	0.250	0.23	1.50	0.35	0.08	0.43
conservative. -The Area used for the Extra	aneous flow is	s the entire f	ront parking lot					
Total	76503	7107				Qmax ·	- Total (L/s) =	0.43

Prepared by: Guillaume LeBlond, M.A.Sc., EIT. PEO No.: 100530467

Date: June 06 2022

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842

Date: June 06 2022

Z:\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civil\02-Sanitary Sewer\220601_Redesign for Comments\[220606_CIMA+ Sanitary Sewer Flow - Commercial.xlsx]SANITARY FLOWS

Co	mmercial and Institutional Average Design Flow = 28,000 L/gross ha/day
factor:	1.5 if commercial contribution >20%, otherwise use 1.0
factor:	1.5 if institutional contribution >20%, otherwise use 1.0
ctor:	Per Figure in Appendix 4-B

m	

¹ If the commercial or institutional area is less than 20% of the total area, then a factor of 1.0 can be used.

Ottawa	

Sewer Design Guidelines

Second Edition, October 2012 SDG002



# Appendix D-2 SANITARY SEWER SIZING







PROJECT NAME: CIMA+ PROJECT NUMBER: CLIENT: PROJECT STATUS: Warehouse Development A001083 Fastfrate (Ottawa) Holdings Inc. 90 % Design (Site Plan Approval)

	HYDRAULIC CALCULATIONS FOR SANITARY SEWERS
APPLICABLE DESIGN GUIDELINES:	
1. City of Ottawa Sewer Design Guidelines, 2012	

2. City of Ottawa Technical Bulletin ISTB-2018-01

DESIGN BASIS:	
Manning Coefficient :	0.013
Maximum permitted velocity :	3.00 m/s
Minimum permitted velocity :	0.60 m/s

Section	Dia.	Length	Slope	Invert	Invert	Capacity	Velocity	Flow	Velocity	% Full
				upstream	downstream	(full)	(full)		(actual)	
	mm	m	%	m	m	m³/s	m/s	m³/s	m/s	
Building to SAN #1	200	12.2	2.00%	89.850	89.605	0.046	1.48	0.000430	0.46	1%
SAN #1 to Septic tank	200	14.7	2.00%	89.595	89.300	0.046	1.48	0.000430	0.46	1%
Outlet				89.300						

#### **Remarks**

The data in green has been calculated or modified by the designer

The data in blue has been calculated using formulas inserted by the designer

#### Notes :

1. Slope of 2.00% has been assumed for all building connections.

Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Date: June 06 2022

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842 Date: June 06 2022







## Appendix E -Septic System Detailed Calculations

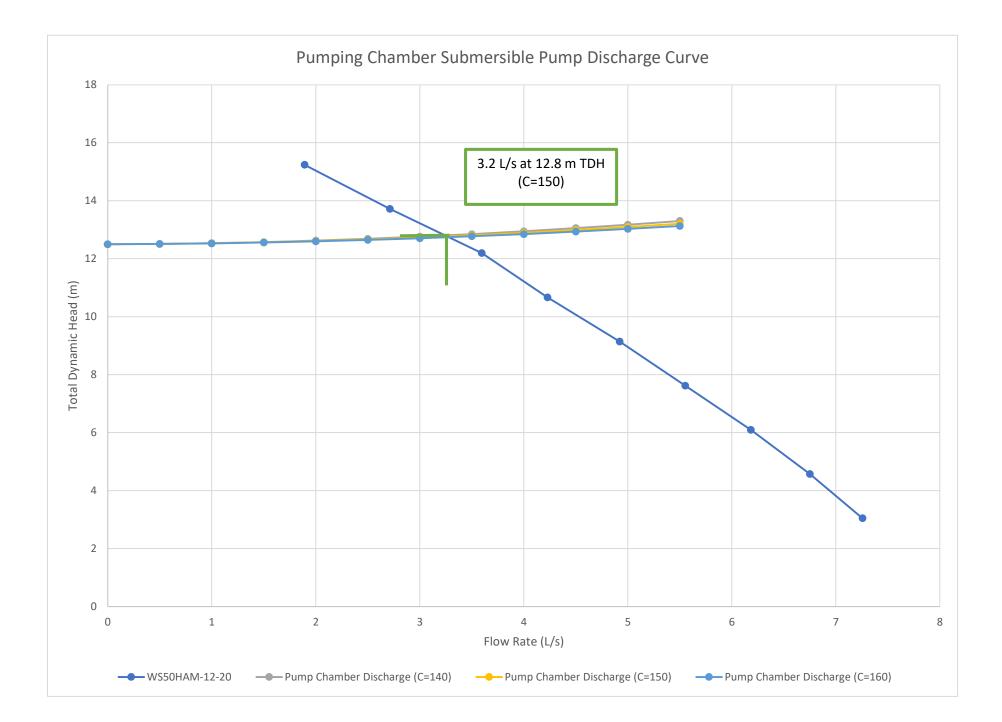


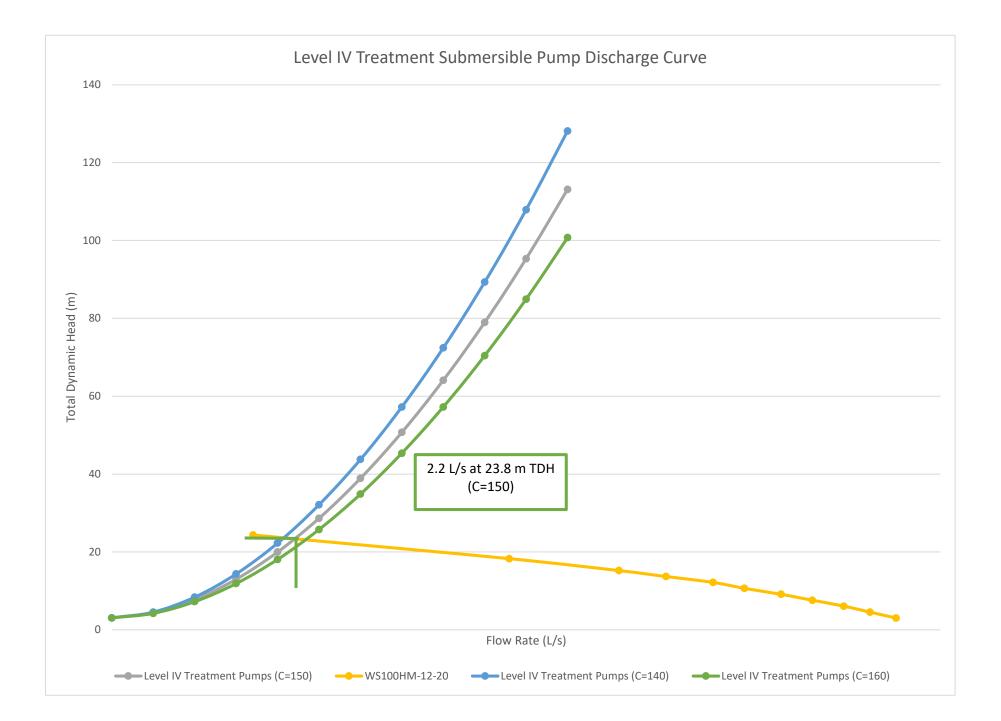


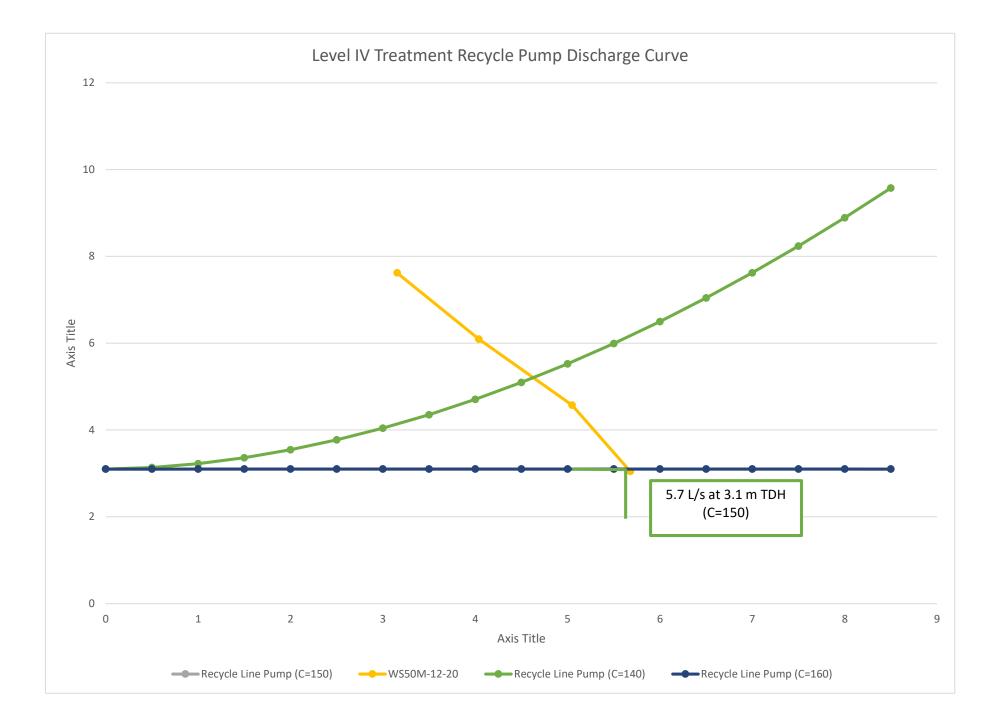
Project:	Fastfrate Warehouse
Task:	Saniatry Sewage Flows per OBC
Project Number:	A001083
Created By:	Kayla Schmidt, P.Eng.
PEO No.	100524348
Date:	19-Jul-21
Reviewed By:	Kayla Schmidt, P.Eng.
PEO No.	100524348
Date:	19-Jul-21

Hazen Williams was used to calculate the TDH. There are 6 pumps total (2 for the Pumping Chamber, 2 for the Level IV treatment, and 1 for the recycle line).

Notes:


Table 1: Dosing Criteria								
Parameter	Value	Unit						
Daily Design Flow Rate	12,800	L/d						
Required Dosing per day	24	times						
Time for each dosing	15	minutes						
Hourly Design Flow Rate	533.3333333	L/hr						
Design Flow Rate	8.88888889	L/min						
Design Flow Rate	0.148148148	L/s						
Assumed Pump Chamber Volume	17578	L						
Where a pump or siphon is required, the pump or siphon shall be designed to discharge a dose of at least 75% of the internal volume of the <i>distribution pipe</i> within a time period not exceeding fifteen minutes.								


Table 2: Dosing Requirements									
Parameter	Value	Unit	Notes						
Length of Each Distibution Pipe	25	m							
Number of Distribution Pi	7								
Total Length	175	m							
Diameter	0.025	m							
Cross Sectional Area	0.000491	m2							
Total Volume of Distribution Pipe	0.086	m3							
Total Volume of Distribution Pipe	85.90	L							
75% of Volume of Distibution Pipe	64.43	L							
Max time	15.0	minutes							
Flow Rate Required	4.30	L/min							
Flow Rate Required	0.071586	L/s							
Daily Volume for Flow Rate	2061.67	L/d	below the daily flow rate						
Minimum Required Flow Rate per hour	533.33	L/hr							
Flow Rate require for 15 minute time frame	35.56	L/min (per 15 minutes)							
Flow Rate require for 15 minute time frame	0.59	L/s (per 15 minutes)							
Check	12800	L/d							
Pump Design Flow Rate	1	L/s							
Daily Flow Rate	21600	L/d							


	Pumping Chamber Pumps (to Waterloo Biofilter)																	
Parameter	Value	Unit	Notes		Flow		Flow		Velocity	Fitting Loss (K*V^2/2*g )		pe Friction Losses on Coefficient (C) in	m	Static Head	Pressure to be dosed	Total Dyna	mic Head Lo	oss (m)
Low Water Level	86.712				L/s	m3/s	m/s	m	140	150	160	m	m	140	150	160		
Top of Pipe	89.212				0	0	0	0	0.00	0.00	0.00	2.5	10	12.50	12.50	12.50		
Static Head	2.5	m			0.5	0.0005	9.8E-07	2.579E-13	0.01	0.01	0.01	2.5	10	12.51	12.51	12.51		
Pipe Diameter	0.05	m			1	0.0010	2E-06	1.032E-12	0.03	0.03	0.03	2.5	10	12.53	12.53	12.53		
Pipe Area	0.001963495	m2			1.5	0.0015	2.9E-06	2.321E-12	0.07	0.06	0.06	2.5	10	12.57	12.56	12.56		
Pipe Length	5	m			2	0.0020	3.9E-06	4.126E-12	0.12	0.11	0.10	2.5	10	12.62	12.61	12.60		
Pressure at end	10	m			2.5	0.0025	4.9E-06	6.448E-12	0.19	0.16	0.15	2.5	10	12.69	12.66	12.65		
					3	0.0030	5.9E-06	9.285E-12	0.26	0.23	0.20	2.5	10	12.76	12.73	12.70		
Fittings	K Value	Qty	Total		3.5	0.0035	6.9E-06	1.264E-11	0.35	0.31	0.27	2.5	10	12.85	12.81	12.77		
90 degree elbows	0.81	3	3 2.43		4	0.0040	7.9E-06	1.651E-11	0.45	0.39	0.35	2.5	10	12.95	12.89	12.85		
Tees	1.62	1	1.62		4.5	0.0045	8.8E-06	2.089E-11	0.55	0.49	0.43	2.5	10	13.05	12.99	12.93		
	Subtotal 4.05				5	0.0050	9.8E-06	2.579E-11	0.67	0.59	0.53	2.5	10	13.17	13.09	13.03		
	Safety Factor 1.2				5.5	0.0055	1.1E-05	3.121E-11	0.80	0.71	0.63	2.5	10	13.30	13.21	13.13		
		Tota	I 5.25						-									

					Le	evel IV Trea	tment Unit D	ischarge Pumps	to SBT Leaching B	ed)								
Parameter	Value	Unit	Notes		Flow	Velocity	Fitting Loss (K*V^2/2*g )	Pi Frictio 50 mm	pe Friction Losses on Coefficient (C) in Forcemain & Mani		Frict	ipe Friction Loss ion Coefficient ( n Forcemain & M	C) in m	Static Head	Pressure to be dosed	Total Dyn	amic Head	Loss (m)
Low Water Level				L/s	m3/s	m/s	m	140	150	160	140	150	160	m	m	140	150	160
Top of Pipe				0	0	0	0	0	0	0	0	0	0	2.5	0.6	3.1	3.1	3.1
Static Head	2.5	m		0.5	0.0005	9.8E-07	7.934E-13	0.03	0.03	0.03	1.44	1.27	1.12	2.5	0.6	4.57	4.40	4.25
Pipe Diameter	0.05	m		1	0.0010	2E-06	3.173E-12	0.12	0.11	0.10	5.20	4.57	4.06	2.5	0.6	8.42	7.78	7.25
Pipe Area	0.00196	m2		1.5	0.0015	2.9E-06	7.14E-12	0.26	0.23	0.20	11.01	9.69	8.60	2.5	0.6	14.37	13.02	11.90
Pipe Length	18	m		2	0.0020	3.9E-06	1.269E-11	0.44	0.39	0.35	18.76	16.51	14.65	2.5	0.6	22.31	20.00	18.10
				2.5	0.0025	4.9E-06	1.983E-11	0.67	0.59	0.52	28.36	24.96	22.15	2.5	0.6	32.13	28.65	25.77
Pipe Diameter	0.025	m		3	0.0030	5.9E-06	2.856E-11	0.94	0.83	0.73	39.75	34.99	31.04	2.5	0.6	43.80	38.91	34.88
Pipe Area	0.000491	m2		3.5	0.0035	6.9E-06	3.887E-11	1.25	1.10	0.98	52.89	46.55	41.30	2.5	0.6	57.24	50.75	45.38
Pipe Length	26	m		4	0.0040	7.9E-06	5.078E-11	1.60	1.41	1.25	67.73	59.61	52.89	2.5	0.6	72.43	64.12	57.24
Pressure at end	0.6	m	per OOWA best practices	4.5	0.0045	8.8E-06	6.426E-11	1.99	1.76	1.56	84.24	74.13	65.78	2.5	0.6	89.33	78.99	70.44
				5	0.0050	9.8E-06	7.934E-11	2.42	2.13	1.89	102.39	90.11	79.96	2.5	0.6	107.91	95.34	84.95
Fittings	K Value	Qty	Total	5.5	0.0055	1.1E-05	9.6E-11	2.89	2.55	2.26	122.16	107.50	95.39	2.5	0.6	128.15	113.15	100.75
90 degree elbows	0.81	3	2.43															
Tees	1.62	1	1.62															
Reducer (50 to 25 mm)	0.02	1	0.02															
Check Valve	10.8	1	10.8															
Ball Valve	0.08	1	0.08															
		Subtotal	14.95															
		Safety Factor	1.2															
		Total	16.15															

				Recy	le Line Pump (fror	n Level IV '	Treatment to	OUpstream of the	Septic System)						
Parameter	Value	Unit	Notes		Flow	Velocity	Fitting Loss (K*V^2/2* g)		pe Friction Losses on Coefficient (C) in	m	Static Head	Pressure to be dosed	Total Dyn	amic Head Lo	ss (m)
Low Water Level				L/s	m3/s	m/s	m	140	150	160	m	m	140	150	160
Top of Pipe					0	0	0	0	0	0	2.5	0.6	3.1	3.1	3.1
Static Head	2.	5 m		#######	0.0005	9.8E-07	7.128E-13	0.03	0.00	0.00	2.5	0.6	3.13	3.10	3.10
Pipe Diameter	0.0	5 m			0.0010	2E-06	2.851E-12	0.12	0.00	0.00	2.5	0.6	3.22	3.10	3.10
Pipe Area	0.0019	6 m2		#######	0.0015	2.9E-06	6.415E-12	0.26	0.00	0.00	2.5	0.6	3.36	3.10	3.10
Pipe Length	e Length 18 m			0.0020	3.9E-06	1.14E-11	0.44	0.00	0.00	2.5	0.6	3.54	3.10	3.10	
Pressure at end	0.0	6 m		#######	0.0025	4.9E-06	1.782E-11	0.67	0.00	0.00	2.5	0.6	3.77	3.10	3.10
					0.0030	5.9E-06	2.566E-11	0.94	0.00	0.00	2.5	0.6	4.04	3.10	3.10
Fittings	K Value	Qty	Total	#######	0.0035	6.9E-06	3.493E-11	1.25	0.00	0.00	2.5	0.6	4.35	3.10	3.10
90 degree elbows	0.81	3	2.43		0.0040	7.9E-06	4.562E-11	1.60	0.00	0.00	2.5	0.6	4.70	3.10	3.10
Check Valve	10.8	1	10.8	#######	0.0045	8.8E-06	5.774E-11	1.99	0.00	0.00	2.5	0.6	5.09	3.10	3.10
Ball Valve	0.08	1	0.08		0.0050	9.8E-06	7.128E-11	2.42	0.00	0.00	2.5	0.6	5.52	3.10	3.10
		Subtotal	13.31	#######	0.0055	1.1E-05	8.625E-11	2.89	0.00	0.00	2.5	0.6	5.99	3.10	3.10
	Sa	afety Factor	1.2		0.0060	1.2E-05	1.026E-10	3.40	0.00	0.00	2.5	0.6	6.50	3.10	3.10
		Total	14.51	#######	0.0065	1.3E-05	1.205E-10	3.94	0.00	0.00	2.5	0.6	7.04	3.10	3.10
			0.0070	1.4E-05	1.397E-10	4.52	0.00	0.00	2.5	0.6	7.62	3.10	3.10		
		#######	0.0075	1.5E-05	1.604E-10	5.14	0.00	0.00	2.5	0.6	8.24	3.10	3.10		
					0.0080	1.6E-05	1.825E-10	5.79	0.00	0.00	2.5	0.6	8.89	3.10	3.10
				#######	0.0085	1.7E-05	2.06E-10	6.48	0.00	0.00	2.5	0.6	9.58	3.10	3.10







## Appendix F -Correspondence





#### Julien Sauvé

From:	James Holland <jholland@nation.on.ca></jholland@nation.on.ca>
Sent:	Tuesday, May 4, 2021 11:35 AM
To:	Julien Sauvé
Subject:	FW: Fastfrate Site Water Quality Requirements
Attachments:	FW_ South Nation Conservation Property Inquiry Letters _ (Roll_ 061460008029995.msg;
Follow Up Flag: Flag Status:	200608 2009 05 Hawthorne Industrial Park-SWM REPORT FEB09.pdf Follow up Flagged

#### EXTERNAL EMAIL

Hi Julien,

Thanks for confirming with the Conservation Authority; this question has come up for every property in the subdivision. The current standard is 80% TSS removal.

The pre-constitution for the site plan focussed on the adjacent watercourse and encroachment into the 30m setback. Our review will look to confirm that the stormwater management design implements the recommendations of an environmental impact statement that addresses this issue. We have not received a study so I cannot provide any additional information.

Feel free to contact me if there are any other questions about the site plan application. Regards,

James

From: Julien Sauvé <Julien.Sauve@cima.ca>
Sent: May 3, 2021 3:33 PM
To: Laura Crites <<u>lcrites@nation.on.ca</u>>
Cc: Christian Lavoie-Lebel <<u>Christian.Lavoie-Lebel@cima.ca</u>>; Douglas Rancier <<u>drancier@civitasgroup.ca</u>>
Subject: Fastfrate Site Water Quality Requirements

**External email** - if you don't know or can't confirm the identity of the sender, please exercise caution and do not open links or attachments.

Hi Laura,

My name is Julien and I am working with Fastfrate to help design their new facility at the intersection of Rideau road and Somme Street. Refer to attached email for previous correspondence about the subject site.



The reason we are contacting you is to get confirmation on the water quality requirements. The attached SWM report 2009 for the Hawthorne Industrial site (see attached) states that individual site will need to fulfil the normal level of protection (TSS 70% removal). Can you confirm if this requirement is still valid? Refer to section 5 p. 14 of 30.

Please advise us on the water quality requirement and let us know if you have any questions.

Regards,

**JULIEN SAUVÉ**, P.Eng. Engineer / Infrastructure Ingénieur / Infrastructure

**T** 613-860-2462 ext. 6623 **M** 613-668-1298 **F** 613-860-1870 110–240 Catherine Street, Ottawa, ON K2P 2G8 CANADA





Do you really need to print this email? Let's protect the environment! Devez-vous vraiment imprimer ce courriel? Pensons à l'environnement!

CONFIDENTIALITY WARNING This e-mail is confidential. If you are not the intended recipient, please notify the sender immediately and delete it in its entirety.

AVERTISSEMENT CONCERNANT LA CONFIDENTIALITÉ Ce message est confidentiel. S'il ne vous est pas destiné, veuillez en informer l'émetteur immédiatement et le détruire intégralement.

From:	Uzoechina Ukeje <uukeje@gwal.com></uukeje@gwal.com>
Sent:	July 8, 2021 1:23 PM
То:	Guillaume LeBlond
Cc:	Christian Lavoie-Lebel; Peter Chan; Tim Kennedy; Julien Sauvé
Subject:	RE: [EXTERNAL]RE: A001083 - CBRE Fastfrate - Building Stormwater
	Management

#### EXTERNAL EMAIL

Hi Guillaume,

The architectural drawings we have on hand do not show any roof drain positions. However, <u>if we are to assume a horizontal roof with no adjacent walls</u>, the **tota**l release rate will be **173.45L/s.** 

- 1) With a 6in capacity Rain Water Leader, a total of 13 Roof drains will be required (each having a release rate of 14L/s)
- 2) With an 8in capacity Rain Water Leader, a total of 6 Roof drains will be required (each having a release rate of 30L/s)

Let me know if you have further questions.

Thank you

From: Guillaume LeBlond <<u>Guillaume.LeBlond@cima.ca</u>>
Sent: July-08-21 11:53 AM
To: Uzoechina Ukeje <<u>uukeje@gwal.com</u>>
Cc: Christian Lavoie-Lebel <<u>Christian.Lavoie-Lebel@cima.ca</u>>; Peter Chan <<u>pchan@gwal.com</u>>; Tim
Kennedy <<u>Tim.Kennedy@cima.ca</u>>; Julien Sauvé <<u>Julien.Sauve@cima.ca</u>>
Subject: [EXTERNAL]RE: A001083 - CBRE Fastfrate - Building Stormwater Management

Hi Uzo,

Just to clarify what I need from my last email: I need the number of roof drains as well as the flowrate per drain . Hope this clears up any confusion.

Thanks,

**GUILLAUME LEBLOND,** M.A.Sc., EIT EIT / Infrastructures EIT / Infrastructure



**T** 613-860-2462 ext. 6667 **C** 613 868-5747 **F** 613-860-1870 110–240 Catherine Street, Ottawa, ON K2P 2G8 CANADA

Avis pour nos clients sur la COVID-19



L'humain au centre de l'ingénierie



KINCENTRIC> Employeur

From: Guillaume LeBlond
Sent: July 8, 2021 10:44 AM
To: Uzoechina Ukeje <<u>uukeje@gwal.com</u>>
Cc: Christian Lavoie-Lebel <<u>Christian.Lavoie-Lebel@cima.ca</u>>; pchan@gwal.com; Tim Kennedy
<<u>Tim.Kennedy@cima.ca</u>>; Julien Sauvé <<u>Julien.Sauve@cima.ca</u>>
Subject: A001083 - CBRE Fastfrate - Building Stormwater Management

Good morning Uzo,

I work with Julien Sauvé and Christian Lavoie-Lebel on the Fastfrate project and we are currently finalizing the stormwater management design for the site. Could you please provide us with the release rates of the building roof drains? We are looking for both the 10 year and 100 year rainfall.

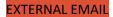
Thank you,

**GUILLAUME LEBLOND,** M.A.Sc., EIT EIT / Infrastructures EIT / Infrastructure



# **T** 613-860-2462 ext. 6667 **C** 613 868-5747 **F** 613-860-1870 110–240 Catherine Street, Ottawa, ON K2P 2G8 CANADA

#### Avis pour nos clients sur la COVID-19




L'humain au centre de l'ingénierie





This message and the documents attached thereto, is intended only for the addressee, and may contain privileged, confidential information and/or be exempt for disclosure under applicable law. If you are not the intended recipient, or responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender immediately by e- mail and delete the original message and its attachments. The sender does not accept liability for any errors, omissions, corruption or viruses in the contents of this message or any attachments that arise as a result of e-mail transmission. Thank you. By submitting your or another individual's information to Goodkey Weedmark and Associates Limited, you agree, and confirm your authority from such other individual, to our collection, use and disclosure of such information for such purposes as are reasonably connected with this communication.



#### Jaymeson

Answers below in red font for ease of reference.

Arthur Gordon

Castleglenn Consultants Inc. 2460 Lancaster Road Ottawa, Ontario K1B 4S5 (T) (613) 731-4052 / (F) (613) 731-0253 agordon@castleglenn.ca



Castleglenn Consultants Engineers, Project Managers & Planners

From: Jaymeson Adams <<u>Jaymeson.Adams@cima.ca</u>>
Sent: June 7, 2022 4:13 PM
To: agordoncastleglenn@gmail.com; Douglas Rancier <<u>drancier@civitasgroup.ca</u>>; Julien Sauvé
<<u>Julien.Sauve@cima.ca</u>>; 'Courteau, Pierre @ CBRE GCS Canada' <<u>Pierre.Courteau@cbre.com</u>>
Cc: Christian Lavoie-Lebel <<u>Christian.Lavoie-Lebel@cima.ca</u>>; 'Primett, Keefe @ Ottawa' <<u>keefe.primett@cbre.com</u>>; 'Nadia Toulaimat' <<u>ntoulaimat@civitasgroup.ca</u>>
Subject: RE: A001083 Fastfrate: Culvert Safety analysis

A001083

Hi Arthur,

I am responsible for the culvert safety analysis calculations on the CIMA+ team.

I was wondering if you could provide the following information:

- + The AADT (or projected AADT) of Somme Street at the site entrance: To the best of my knowledge, our TIA estimated a build-out year for this development to be 2022. Exhibit 6-1 estimated the 2-way traffic on Somme in front of the development to be about 40 vph at the entrance in 2022. Translating this to AADT would imply 400 vpd 2-way AADT, once again in 2022. However, the culvert safety review should really examine buildout of the entire sub-division along Somme to determine the required flows. This was not done for our TIA as you can see that several exemptions (See Section 3.0) were granted given the size and the estimated traffic generation of the individual development.
- Confirm that a traffic growth rate of 3% is reasonable, as mentioned in the traffic study for the area. This we leave to you. The 3% figure was agreed to with the City of Ottawa in preparation of the TIA and was adopted. There is no rationale that the figure was based upon other than agreement with City staff.

I would also like to confirm whether the 3% traffic growth is linear or compounded. Unlike population growth, I have yet to ever see anyone apply compound growth to motor-vehicle travel, especially for long term horizons. I suggest using lowing formula.

$$\begin{split} TV_{future} &= TV_{existing} \left[ 1 + \left( n \times \frac{\%}{100} \right) \right] \\ TV &= traffic \ volume \\ n &= number \ of \ years \end{split}$$

If you'd like to discuss, feel free to give me a call when you get a chance (343-204-5387).

Thanks,

JAYMESON ADAMS, P.Eng. Engineer / Infrastructure Ingénieur / Infrastructures



M 343 204-5387 Contact me on Teams / Contactez-moi sur Teams 110–240 Catherine Street, Ottawa, ON K2P 2G8 CANADA

Notice to our customers on the COVID-19







KINCENTRIC> Best Employer

Do you really need to print this email? Let's protect the environment! Devez-vous vraiment imprimer ce courriel? Pensons à l'environnement!

CONFIDENTIALITY WARNING This email is confidential. If you are not the intended recipient, please notify the sender immediately and delete it in its entirety.

AVERTISSEMENT CONCERNANT LA CONFIDENTIALITÉ Ce message est confidentiel. S'il ne vous est pas destiné, veuillez en informer l'émetteur immédiatement et le détruire intégralement.

From: agordoncastleglenn@gmail.com <a href="mailto:agordoncastleglenn@gmail.com">agordoncastleglenn@gmail.com</a>

Sent: June 7, 2022 2:32 PM

**To:** Douglas Rancier <<u>drancier@civitasgroup.ca</u>>; Julien Sauvé <<u>Julien.Sauve@cima.ca</u>>; 'Courteau, Pierre @ CBRE GCS Canada' <<u>Pierre.Courteau@cbre.com</u>>

**Cc:** Christian Lavoie-Lebel <<u>Christian.Lavoie-Lebel@cima.ca</u>>; Jaymeson Adams <<u>Jaymeson.Adams@cima.ca</u>>; 'Primett, Keefe @ Ottawa' <<u>keefe.primett@cbre.com</u>>; 'Nadia Toulaimat' <<u>ntoulaimat@civitasgroup.ca</u>> **Subject:** RE: A001083 Fastfrate: Culvert Safety analysis



#### Hi Douglas

We left a message for Julien Sauvé over at CIMA to give us a call. We'll be happy to provide what ever information he requires.

Arthur Gordon

Castleglenn Consultants Inc. 2460 Lancaster Road Ottawa, Ontario K1B 4S5 (T) (613) 731-4052 / (F) (613) 731-0253 agordon@castleglenn.ca



From: Douglas Rancier <<u>DRancier@civitasgroup.ca</u>>
Sent: June 7, 2022 9:33 AM
To: Julien Sauvé <<u>Julien.Sauve@cima.ca</u>>; Courteau, Pierre @ CBRE GCS Canada <<u>Pierre.Courteau@cbre.com</u>>;
agordoncastleglenn@gmail.com
Cc: Christian Lavoie-Lebel <<u>Christian.Lavoie-Lebel@cima.ca</u>>; Jaymeson Adams <<u>Jaymeson.Adams@cima.ca</u>>; Primett, Keefe @ Ottawa <<u>keefe.primett@cbre.com</u>>; Nadia Toulaimat <<u>ntoulaimat@civitasgroup.ca</u>>
Subject: RE: A001083 Fastfrate: Culvert Safety analysis
Importance: High

Good Morning Julien,

By way of this email we forwarding your question to Castleglenn for their verification as soon as possible.

Regards,



#### DOUGLAS RANCIER

PRINCIPAL, DESIGN ARCHITECT B.ARCH., DIPL.ARCH.TECH. OAA, MRAIC, LEED® AP Office: 613.742.7482 Ext. 101 Mobile: 613.447.2550 203-6 Hamilton Avenue N Ottawa, Ontario K1Y 4R1

From: Julien Sauvé <<u>Julien.Sauve@cima.ca</u>>

Sent: June 7, 2022 9:29 AM

To: Douglas Rancier <<u>DRancier@civitasgroup.ca</u>>; Courteau, Pierre @ CBRE GCS Canada <<u>Pierre.Courteau@cbre.com</u>> Cc: Christian Lavoie-Lebel <<u>Christian.Lavoie-Lebel@cima.ca</u>>; Jaymeson Adams <<u>Jaymeson.Adams@cima.ca</u>> Subject: FW: A001083 Fastfrate: Culvert Safety analysis

Hi Doug / Pierre,

We are in the process of completing the Culvert Safety Analysis as per requirement from the City of Ottawa comments. In order to perform this task, we need to have the AADT (Average Annual Daily Traffic) value. The traffic study done by Castleglenn Consultants Inc does not provide this value. Could you reach out to them to obtain this value? Since the current site does not have any traffic at the current moment, they will most likely need to assume a certain value for future traffic.

Would it also be possible to confirm with the traffic team that a traffic growth rate of 3% is accurate at this location, and whether the 3% would be linear or compounded growth rate?

Regards,,

JULIEN SAUVÉ, P.Eng. Engineer / Infrastructure Ingénieur / Infrastructure

**T** 613-860-2462 ext. 6623 **M** 613-668-1298 **F** 613-860-1870 110–240 Catherine Street, Ottawa, ON K2P 2G8 CANADA





Do you really need to print this email? Let's protect the environment! Devez-vous vraiment imprimer ce courriel? Pensons à l'environnement!

CONFIDENTIALITY WARNING This e-mail is confidential. If you are not the intended recipient, please notify the sender immediately and delete it in its entirety.

AVERTISSEMENT CONCERNANT LA CONFIDENTIALITÉ Ce message est confidentiel. S'il ne vous est pas destiné, veuillez en informer l'émetteur immédiatement et le détruire intégralement.

From: Jaymeson Adams <<u>Jaymeson.Adams@cima.ca</u>>
Sent: Tuesday, June 7, 2022 9:15 AM
To: Julien Sauvé <<u>Julien.Sauve@cima.ca</u>>
Subject: RE: A001083 Fastfrate: Culvert Security

A001083

Good morning Julien,

After reviewing the Traffic Study, there is no mention of an AADT (Average Annual Daily Traffic) to use or assume for Somme Street. I will require this number to do the culvert safety analysis as required per City comments.

Could you please check if there is an AADT available for Somme at the Fastfrate location?

Also, could you please confirm with the Traffic group that a traffic growth rate of 3% is accurate at this location, and whether the 3% would be linear or compounded growth rate?

Thanks,

JAYMESON ADAMS, P.Eng. Engineer / Infrastructure Ingénieur / Infrastructures



M 343 204-5387 Contact me on Teams / Contactez-moi sur Teams 110–240 Catherine Street, Ottawa, ON K2P 2G8 CANADA

Notice to our customers on the COVID-19



Engineering for **people** 





Do you really need to print this email? Let's protect the environment! Devez-vous vraiment imprimer ce courriel? Pensons à l'environnement!

CONFIDENTIALITY WARNING This email is confidential. If you are not the intended recipient, please notify the sender immediately and delete it in its entirety.

AVERTISSEMENT CONCERNANT LA CONFIDENTIALITÉ Ce message est confidentiel. S'il ne vous est pas destiné, veuillez en informer l'émetteur immédiatement et le détruire intégralement.

From: Julien Sauvé <<u>Julien.Sauve@cima.ca</u>> Sent: June 7, 2022 8:00 AM To: Jaymeson Adams <<u>Jaymeson.Adams@cima.ca</u>> Subject: A001083 Fastfrate: Culvert Security

Hi Jaymeson,

For the Culvert transportation review safety please put all your documents in the link below:

<u>Z:\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civil\10-Culvert</u> <u>Safety</u>

The CAD drawing are located in the 400 file. Grading is C006 and Servicing C007. Please make yourself a copy because I Simon needs to work in those drawings this morning.

Let me know if you need anything else.

Regards,

JULIEN SAUVÉ, P.Eng. Engineer / Infrastructure Ingénieur / Infrastructure

**T** 613-860-2462 ext. 6623 **M** 613-668-1298 **F** 613-860-1870 110–240 Catherine Street, Ottawa, ON K2P 2G8 CANADA





Do you really need to print this email? Let's protect the environment! Devez-vous vraiment imprimer ce courriel? Pensons à l'environnement!

CONFIDENTIALITY WARNING This e-mail is confidential. If you are not the intended recipient, please notify the sender immediately and delete it in its entirety.

AVERTISSEMENT CONCERNANT LA CONFIDENTIALITÉ Ce message est confidentiel. S'il ne vous est pas destiné, veuillez en informer l'émetteur immédiatement et le détruire intégralement.

# **T** 613-860-2462 ext. 6667 **C** 613 868-5747 **F** 613-860-1870 110–240 Catherine Street, Ottawa, ON K2P 2G8 CANADA

#### Avis pour nos clients sur la COVID-19



L'humain au centre de l'ingénierie





This message and the documents attached thereto, is intended only for the addressee, and may contain privileged, confidential information and/or be exempt for disclosure under applicable law. If you are not the intended recipient, or responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender immediately by e- mail and delete the original message and its attachments. The sender does not accept liability for any errors, omissions, corruption or viruses in the contents of this message or any attachments that arise as a result of e-mail transmission. Thank you. By submitting your or another individual's information to Goodkey Weedmark and Associates Limited, you agree, and confirm your authority from such other individual, to our collection, use and disclosure of such information for such purposes as are reasonably connected with this communication.





## Appendix F-2 DEVELOPMENT SERVICING STUDY CHECKLIST



	Servicing Study Guidelines for Development Applications	
4. Develop	ment Servicing Study Checklist	
4.1 Genera	l Content	
<b>Required Co</b>	ntent	Reference Location
	Executive Summary (for larger reports only).	N/A
1	Date and revision number of the report.	Cover Sheet
1	Location map and plan showing municipal address, boundary, and layout of proposed development.	Report Figures, Appendix
~	Plan showing the site and location of all existing services.	Project Drawings - Under separate cover
1	Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.	Section 1.1
1	Summary of Pre-consultation Meetings with City and other approval agencies.	Section 1.4, Appendix L
<b>v</b>	Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.	Section 1.3 & 4.3.2
<u>√</u>	Statement of objectives and servicing criteria.	Section 1 , 2.2.1, 3.2 & 4.2
1	Identification of existing and proposed infrastructure available in the immediate area.	Section 1.2 & Appendix B
	Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).	Section 1.1
	Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.	Project Drawings - Under separate cover
	Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.	Geotechnical, Hydrogeological, and septic assessment - Under separate cover
	Proposed phasing of the development, if applicable.	N/A
	Reference to geotechnical studies and recommendations concerning servicing.	Section 7. References
	<ul> <li>All preliminary and formal site plan submissions should have the following information: <ul> <li>Metric scale;</li> <li>North Arrow (including construction North);</li> <li>Key Plan;</li> <li>Name and contact information of applicant and property owner;</li> <li>Property limits including bearings and dimensions;</li> <li>Existing and proposed structures and parking areas;</li> <li>Easements, road widening and rights-of-way;</li> <li>Adjacent street names.</li> </ul></li></ul>	Project Drawings - Under separate cover
4.2 Develo	pment Servicing Report: Water	
<b>Required Co</b>		<b>Reference Location</b>
	Confirm consistency with Master Servicing Study, if available	N/A
	Availability of public infrastructure to service proposed development	Section 1.2 & 3.1
	Identification of system constraints	
	Identify boundary conditions	Geotechnical, Hydrogeological, and septic assessment - Under separate cover
✓	Confirmation of adequate domestic supply and pressure	Section 3.2 & 3.3
<b>V</b>	Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.	Section 3.2.2
	Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.	N/A
	Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design	N/A
~	Address reliability requirements such as appropriate location of shut-off valves	Project Drawings - Under separate cover

	Servicing Study Guidelines for Development Applications	N1 / A
	Check on the necessity of a pressure zone boundary modification.	N/A
<ul> <li>✓</li> </ul>	Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range	Section 3.3 & Geotechnica Hydrogeological, and septi assessment - Under separate cover
	Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.	N/A
	Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.	N/A
$\checkmark$	Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.	Section 3.2, Appendix D
	Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.	N/A
4.3 Develo	opment Servicing Report: Wastewater	
Required C	ontent	<b>Reference Location</b>
~	Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).	Section 2.2
	Confirm consistency with Master Servicing Study and/or justifications for deviations.	N/A
	Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers.	N/A
$\checkmark$	Description of existing sanitary sewer available for discharge of wastewater from proposed development	N/A
✓	Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)	N/A
7	Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.	Section 2.2 & Appendix F
$\checkmark$	Description of proposed sewer network including sewers, pumping stations, and forcemains.	Section 2.2
	Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality).	N/A
	Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.	N/A
	Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.	N/A
	Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.	N/A
	Special considerations such as contamination, corrosive environment etc.	N/A
4.4 Devel	opment Servicing Report: Stormwater Checklist	
Required C	ontent	<b>Reference Location</b>
$\checkmark$	Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property)	Section 4.1
$\checkmark$	Analysis of available capacity in existing public infrastructure.	Section 4.1, 4.3
✓	A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern.	Appendix A, B
	Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects.	Section 4.2
~	Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.	Section 4.2
~	Description of the stormwater management concept with facility locations and descriptions with references and supporting information.	Section 4.3, 4.4 & Appendi C
	Set-back from private sewage disposal systems.	Project Drawings - Under separate cover

	Watercourse and hazard lands setbacks.	Project Drawings - Unde
		separate cover
$\checkmark$	Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.	Section 1.4 & Appendix
	Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists.	Section 4
~	Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period).	Section 4.3 & Project Drawings - Under separa cover
	Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals.	Section 4
~	Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.	Section 4.1 & 4.3
	Any proposed diversion of drainage catchment areas from one outlet to another.	Section 4.2, Appendix E
	Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities.	Project Drawings - Unde separate cover
	If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100 year return period storm event.	N/A
	Identification of potential impacts to receiving watercourses	Section 1.3.4
	Identification of municipal drains and related approval requirements.	N/A
	Descriptions of how the conveyance and storage capacity will be achieved for the development.	Section 4.3 and 4.4
	100 year flood levels and major flow routing to protect proposed development from flooding for establishing	Project Drawings - Und
	minimum building elevations (MBE) and overall grading.	separate cover
	Inclusion of hydraulic analysis including hydraulic grade line elevations.	Appendix C
	Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.	Section 5
	Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.	N/A
	Identification of fill constraints related to floodplain and geotechnical investigation.	N/A
5 Annro	val and Permit Requirements: Checklist	
equired C		Reference Location
	Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act.	N/A
	Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.	N/A
	Changes to Municipal Drains.	N/A
	Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.)	N/A
.6 Concl	ision Checklist	
equired C		Reference Location
	Clearly stated conclusions and recommendations	Section 6
	Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.	
	All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario	

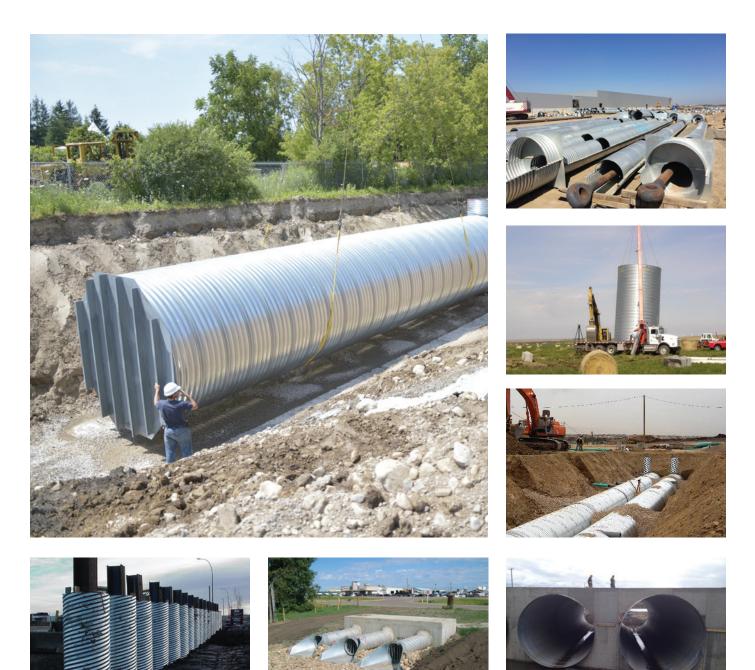


## Appendix G-1 ARMTECH CORRUGATED STEEL PIPE








A division of **WGI** Westman Group Inc.

# **CSP** Pipe

Superior structural strength in a durable and lightweight product.

**APPLICATIONS INCLUDE:** 

Culverts | Storm Sewers | Storm Water Detention Tanks | Utilidors | More!





From culverts to pole cribs, no other product works harder than **CSP**.

## CORRUGATED STEEL PIPE (CSP) AND RELATED PRODUCTS

Corrugated steel pipe has been successfully used in infrastructure across North America and around the world since the late 1890s. It is a trusted material that combines strength, light weight, flexibility and adaptability. The economy of CSP is second to none. No other material can beat its low up-front and total life cycle costs. Combine this with a service life of up to 100 years, and the choice is clear!

Armtec CSP is manufactured in Canada to the highest standard of quality and performance. With a variety of shapes, sizes, coating and material options, Armtec CSP products will meet the demands of your most challenging drainage projects.



#### **NESTABLE PIPE**

Versatile half-round segments of corrugated steel in flange or notch type configuration for ease of transportation.



#### STEELCOR

Galvanized CSP formed with helical corrugations and a continuous lock-seam combines flexibility with high compressive strength.

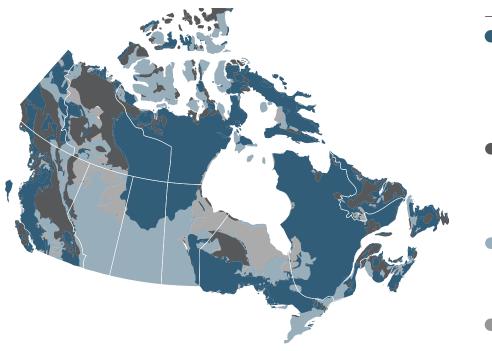


ARMTEC IS A MEMBER OF THE CORRUGATED STEEL PIPE INSTITUTE (CSPI)



#### **ULTRA-FLO**

Large diameter storm sewer pipe delivering superior hydraulic performance.




#### **CSP END SECTIONS**

Lightweight end sections for improved hydraulic performance and erosion control.

# **ARMTEC** CSP can tackle any condition Canada can throw at it.

### Steel Pipe Coatings to Match the Environment



# Surface Water Sensitivity to Atmospheric Pollutants

- Highly sensitive to acidification (i.e. low pH, elevated chloride and sulphate levels, low calcium carbonate levels [soft water]).
   Polymer laminated coating may be required.
- Moderately sensitive to acidification (i.e. moderate pH, medium to low calcium carbonate levels). Aluminized Type 2 coating may be required.
- Unlikely to be negatively influenced by atmospheric pollutants. Galvanized steel should be sufficient.

Unrated

**BACKED BY SCIENCE** – Armtec can provide industry technical bulletins (for pH, chlorides, hardness and resisitivity) to help you specify the right coating for your required service life.

#### OPTIMUM OPERATING RANGE OF VARIOUS PIPE COATINGS

pН									
Polymer Laminated									
Aluminized Type 2									
					alvaniz				
3	4	5	6	7	8	9	10	11	12
Chi	a status								

#### Chlorides (Cl)

Polymer Laminated						
	Aluminize	d Type 2				
	Galvanize	d				
0	75	150	193	262	348	608 ppm

NOTE: BASED ON CSPI TECHNICAL BULLETIN ISSUE 1

#### Hardness CaCO₃

Polymer Laminated						
	Aluminized Type 2					
			Galvanized			
0	25	50	120	250	>425ppm	

#### Resistivity Ohm - cm

Polymer Laminated						
		Aluminized Type 2				
		Galvanized				
100	1,000	10,000	100,000			

## CSP COATINGS AND DESIGN SERVICE LIFE





#### **GALVANIZED STEEL**

Galvanized steel is the standard finish for corrugated steel pipe. It performs well in low abrasion applications and in site conditions with a relatively neutral environment. Galvanized steel has a proven service life of 50 years minimum in non-aggressive (or ideal) site conditions. This is extended in hard water environments when the zinc coating reacts with the calcium carbonate (CaCO₃) in the water to form an additional protective mineral scale.

#### ALUMINIZED STEEL TYPE 2

Aluminized Steel Type 2 pipe combines the corrosion resistant properties of aluminum with the strength and durability of CSP. It is fabricated from steel coils, and hot-dip coated with a uniform thickness on both sides. It tolerates soft water and slightly more acidic and saline conditions than galvanized steel. With a 75 year service life in its optimal operating range, it is an economical alternative to concrete pipe.

#### **POLYMER-LAMINATE**

Polymer-Laminate coating such as Trenchcoat can extend the service life of CSP to 100 years. The strong adhesion characteristics of the polyolefin laminate with the galvanized sheet makes it the most durable coating available today. This rugged laminate creates a protective barrier against corrosive and abrasive conditions, and maintains its service life across a broad pH spectrum.

100

YEARS

## Find out more about the durability of CSP at www.cspi.ca

## STEELCOR CORRUGATED STEEL PIPE

Since 1934, SteelCor pipe has proven its effectiveness and durability in countless installations under diverse conditions. Its helical corrugations and continuous lock-seam provide high compressive strength in a lightweight, thin-walled structure. SteelCor is available in a wide variety of sizes and various coating options. For ground water drainage, perforated SteelCor offers exceptional performance in low-lying areas, especially where high strength and hydraulic capacity are required.

#### **TYPICAL APPLICATIONS**

- Culverts
- Storm sewers
- Stormwater detention tanks
- Stream enclosures
- Underpasses
- Pipeline intakes
- Pipeline outfalls
- Storage relief tanks
- Caissons
- Cooling water lines
- Fish baffles

# AND STRENGTH

Helical corrugation combines strength and flexibility in a thin walled structure

#### HUGGER BAND

Hugger band couplers provide superior pull apart resistance, critical in soft soils



Variety of sizes, corrugation profiles and coating options



Lightweight and available in long lengths, minimizing installation time

## COST-EFFECTIVE

- Low installed cost
- Nestable pieces for economical shipping

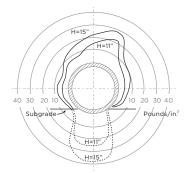


**STEELCOR** IS AVAILABLE IN LONG LENGTHS, MINIMIZING INSTALLATION TIME



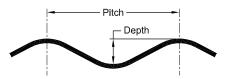
#### FLEXIBILITY AND HIGH COMPRESSIVE STRENGTH

CSP is categorized as a flexible pipe. The corrugated profile of the pipe wall provides a high degree of relative stiffness which, when combined with a properly-installed engineered backfill, provides for high circumferential strength in a thin-walled structure. The compacted fill acts together with the pipe wall to form a composite soil-steel structure.

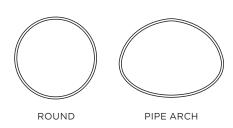

#### **RING COMPRESSION THEORY**

The compressive thrust in the pipe wall is equal to the radial pressure acting on the wall multiplied by the wall radius. In other words, pressure distribution around a flexible pipe is more uniform and load is more evenly distributed in the flexible pipe vs. the rigid pipe (i.e. concrete). Pipe wall thickness can be reduced and less bedding material is required for flexible CSP to achieve the same buried strength as a rigid pipe system.

#### Table 1: Available Corrugation Profiles & Diameters of CSP Pipe


Corrugation	Pitch	Depth	Inside Diameter
(mm x mm)	(mm)	(mm)	(mm)
38 x 6.5	38	6.5	150, 200, 250
68 x 13	68	13	300 - 2,000
125 x 25	125	25	1,200 - 3,600

#### Load Distribution - Rigid Pipe




#### Load Distribution - Flexible Pipe





#### **SteelCor Shapes**





STEELCOR CSP IS AVAILABLE IN LARGE DIAMETERS UP TO 3,600MM



CSP PIPE ARCH

## **PIPE ARCHING** is available for projects where headroom is limited.

## COUPLERS

SteelCor pipe features universal annular corrugated ends, so a variety of couplings may be used for the pipe and pipe-arch. Annular corrugated couplers are standard for municipal and highway drainage. Hugger Band couplers are standard for storm sewer applications and Dimpled couplers are often used in forestry.

# Three types of couplers are available:

- Annular corrugated standard bolt and angle coupler
- Dimpled coupling band
- Hugger Band



#### STANDARD ANNULAR CORRUGATED COUPLER

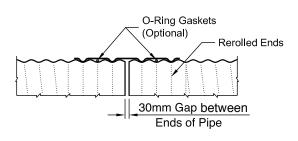
The standard annular corrugated coupler, fitted with bolt and angle attachments, seats snugly onto the pipe-end corrugations, and is suitable for most general-purpose applications. It comes in one, two or three piece configurations depending on the pipe diameter.

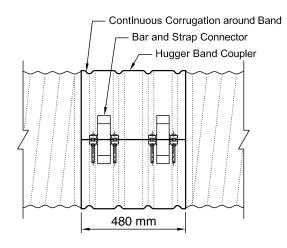


DIMPLED COUPLING BAND

This coupler is used where helical and/or annular corrugated pipe ends are to be coupled. Dimpled couplers are available with steel angles or with wedge connectors as shown.




**HUGGER BAND** 


Armtec offers a highly effective Hugger Band joint. These 500mm wide bands are recommended for storm sewers and other installations where low leakage rates and resistance to longitudinal disjointing are prime requirements. When used with O-ring gaskets, the Hugger Band provides an extremely tight joint with low infiltration and exfiltration rates.

#### Hugger Band Couplers for CSP joints are comprised of the following components:

- Semi-corrugated coupler sheet to accommodate placing elastomeric O-rings at both re-corrugated pipe ends
- Bolted bar and strap connector at coupler sheet lap(s) to maximize joint pull-apart strength
- O-rings in combination with neoprene gasket at coupler sheet lap(s) to minimize joint leakage and/or joint infiltration

#### H-500 HUGGER BAND (DOUBLE BOLT, BAR AND STRAP)



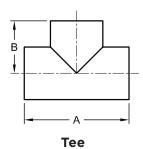


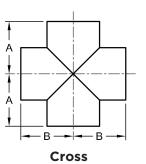
## Fittings

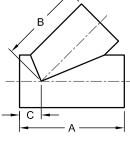
Standard fittings such as tees, wyes and elbows are available. Special fittings such as saddle branches, manholes and catch-basins can be custom-fabricated to suit individual requirements.



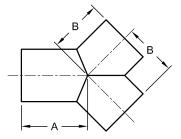
CSP CAN BE FABRICATED TO SUIT A MULTITUDE OF CONFIGURATIONS



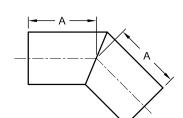


CUSTOM FITTINGS AVAILABLE



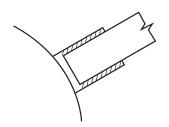

GALVANIZED CSP FIREWATER TANK SYSTEM


## **Typical Fittings**

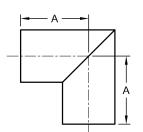




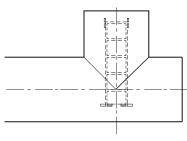




45° Lateral

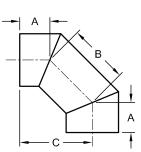



45° Wye




2 Piece Elbow 5° to 45°

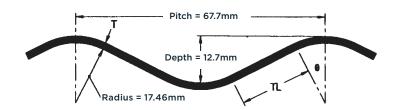



Saddle Branch



2 Piece Elbow 46° to 90°




**Catch Basin with Manhole** 



3 Piece Elbow 46° to 90°

## STEELCOR PIPE AND PIPE-ARCH TECHNICAL SPECIFICATIONS

68mm x 13mm Corrugations



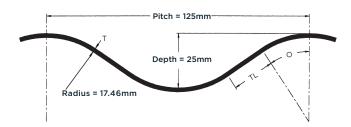
#### Table 2: Section Properties of 68mm x 13mm Corrugated CSP

Coated Thickness	Design Thickness	Area of Section	Moment of Inertia	Section Modulus	Radius of Gyration	Tangent Length	Tangent Angle	Developed Width Factor ¹
mm	mm	mm²/mm	mm⁴/mm	mm³/mm	mm	mm	^° degrees	
1.6	1.42	1.512	28.367	4.024	4.332	19.578	26.734	1.080
2.0	1.82	1.966	37.108	5.111	4.345	19.304	26.867	1.080
2.8	2.64	2.852	54.565	7.114	4.374	18.765	27.136	1.080
3.5	3.35	3.621	70.159	8.743	4.402	18.269	27.381	1.081
4.2	4.08	4.411	86.706	10.334	4.433	17.755	27.643	1.081

#### NOTE:

¹ DEVELOPED WIDTH FACTOR IS THE AMOUNT BY WHICH THE STEEL COIL OR SHEET IS REDUCED IN COVERING WIDTH DUE TO CORRUGATING

#### Table 3: Handling Weight and End Area of 68mm x 13mm Corrugated CSP


Pipe Diameter	End Area		Handling Weight - Galvanized (kg/m) for the Following Specified Wall Thickness (mm)					
mm	m²	1.3mm	1.6mm	2.0mm	2.8mm	3.5mm	4.2mm	
150 ¹	0.018	5.9	7.2	-	-	-	-	
2001	0.031	7.7	9.5	-	-	-	-	
2501	0.049	9.6	12	-	-	-	-	
300	0.071	-	14	18	-	-	-	
400	0.126	-	19	24	-	-	-	
500	0.196	-	24	30	-	-	-	
600	0.283	-	28	35	49	-	-	
700	0.385	-	33	41	57	-	-	
800	0.503	-	37	47	65	-	-	
900	0.636	-	42	53	73	90	-	
1,000	0.785	-	-	58	81	100	-	
1,200	1.131	-	-	70	97	120	-	
1,400	1.539	-	-	-	113	140	168	
1,600	2.011	-	-	-	130	160	192	
1,800	2.545	-	-	-	-	179	215	
2,000	3.142	-	-	-	-	-	239	

#### NOTE:

1. 150MM TO 250MM PIPE DIAMETER FABRICATED WITH 38 X 6.5 CORRUGATION PROFILE

## STEELCOR PIPE AND PIPE-ARCH TECHNICAL SPECIFICATIONS

125mm x 25mm Corrugations



#### Table 4: Section Properties of 125mm x 25mm Corrugated CSP

Coated Thickness	Design Thickness	Area of Section	Moment of Inertia	Section Modulus	Radius of Gyration	Tangent Length	Tangent Angle	Developed Width Factor ¹
mm	mm	mm²/mm	mm⁴/mm	mm³/mm	mm	mm	∆° degrees	
1.6	1.40	1.549	133.300	9.730	9.277	18.568	35.564	1.106
2.0	1.82	2.014	173.720	12.489	9.287	17.970	35.811	1.107
2.8	2.64	2.923	253.237	17.684	9.308	16.742	36.330	1.107
3.5	3.35	3.711	322.743	21.993	9.326	15.600	36.826	1.108

#### NOTE:

1. DEVELOPED WIDTH FACTOR IS THE AMOUNT BY WHICH THE STEEL COIL OR SHEET IS REDUCED IN COVERING WIDTH DUE TO CORRUGATING

#### Table 5: Handling Weight and End Area of 125mm x 25mm Corrugated CSP

Pipe Diameter	End Area	Handling Weight - Galvanized (kg/m) for the Following Specified Wall Thickness (mm)					
mm	m²	1.6mm	2.0mm	2.8mm	3.5mm		
1,200	1.131	57	71	100	124		
1,400	1.539	_	83	116	14.4		
1,600	2.011	_	95	132	165		
1,800	2.545	_	106	148	185		
2,000	3.142	_	118	165	205		
2,200	3.801	_	129	181	225		
2,400	4.524	_	141	197	245		
2,700	5.726	_	159	222	276		
3,000	7.069	_	-	246	306		
3,300	8.553	_	-	270	336		
3,600	10.179	-	-	-	367		

## STEELCOR PIPE HEIGHT OF COVER LIMITS

#### CL-625 and AREMA Cooper E-80 Live Loading

#### Table 6: 68mm x 13mm Corrugations

Minimum Cover (mm)						ight of Cover (m) cified Wall Thickness (mm)			
Diameter	Highway	Railway	1.6mm	2.0mm	2.8mm	3.5mm	4.2mm		
mm	CL-625	E-80							
300	300	300	70	91	-	-	-		
400	300	300	53	68	-	-	-		
500	300	300	42	54	-	-	-		
600	300	300	35	45	66	-	-		
700	300	300	30	39	57	-	-		
800	300	300	26	34	50	-	-		
900	300	300	23	30	44	56	70		
1,000	300	300	21	27	40	50	63		
1,200	300	300	-	23	33	42	52		
1,400	300	500	-	-	27	35	43		
1,600	300	500	-	-	22	28	35		
1,800	500	500	-	-	-	22	27		
2,000	500	500	-	-	-	-	22		

#### Table 7: 125mm x 25mm Corrugations

Minimum Cover (mm)			Maximum Height of Cover (m) for the Following Specified Wall Thickness (mm)				
Diameter	Highway Railway		1.6mm	2.0mm	2.8mm	3.5mm	
mm	CL-625	E-80					
1,200	300	500	18	23	34	-	
1,400	300	500	15	20	29	35	
1,600	300	500	13	18	25	31	
1,800	300	500	12	16	22	28	
2,000	300	500	11	14	20	25	
2,200	300	700	10	12	18	23	
2,400	500	700	-	11	17	21	
2,700	500	700	-	-	15	18	
3,000	500	1,000	-	-	13	16	
3,300	500	1,000	-	-	-	14	
3,600*	700	1,000	-	-	-	12*	

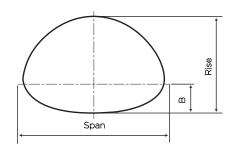
#### NOTES:

* FLEXIBILITY LIMIT EXCEEDED - FOR SPECIFIED USE ONLY

1. DEAD LOAD IS BASED ON A UNIT WEIGHT OF BACKFILL OF 19  $\rm KN/M^3$ 

2. WHERE HEIGHT OF COVER EXCEEDS THE DIAMETER, A REDUCTION LOAD FACTOR OF 0.86 HAS BEEN USED

3. LIVE LOAD INCLUDES IMPACT


4. MINIMUM COVER IS TAKEN FROM TOP OF PIPE TO PROFILE GRADE OR TO THE TOP OF THE FINISHED GRANULAR BASE

5. SPECIAL CARE MUST BE TAKEN WITH TRUCK LOADS DURING CONSTRUCTION

6. FOUNDATION INVESTIGATION IS RECOMMENDED PRACTICE

7. THE ABOVE HEIGHT OF COVER TABLES ARE INDUSTRY STANDARDS. LOCAL, PROVINCIAL OR FEDERAL STANDARDS MAY DIFFER

### STEELCOR PIPE-ARCH DETAILS



#### Table 8a: 68mm x 13mm Corrugations

Diameter of Pipe of Equal Periphery	Span	Rise	В	Waterway Area
mm	mm	mm	mm	m²
400	450	340	130	O.11
500	560	420	165	0.19
600	680	500	190	0.27
700	800	580	220	0.37
800	910	660	255	0.48
900	1,030	740	265	0.61
1,000	1,150	820	310	0.74
1,200	1,390	970	375	1.06
1,400	1,630	1,120	430	1.44
1,600	1,880	1,260	500	1.87
1,800	2,130	1,400	560	2.36

## Table 8b: 125mm x 25mm Corrugations (where available)

Diameter of Pipe of Equal Periphery	Span	Rise	В	Waterway Area
mm	mm	mm	mm	m²
1,600	1,780	1,360	635	1.93
1,800	2,010	1,530	650	2.44
2,000	2,230	1,700	660	2.97
2,200	2,500	1,830	750	3.44
2,400	2,800	1,950	805	4.27
2,700	3,300	2,080	905	5.39
3,000	3,650	2,280	1,005	6.60
3,300	3,890	2,690	1,090	8.29
3,600	4,370	2,890	1,195	9.76

#### NOTES:

FOR WEIGHTS OF PIPE-ARCHES WITH THE 68 X 13 CORRUGATION REFER TO THE WEIGHT OF THE CIRCULAR PIPE WITH THE EQUIVALENT PERIPHERY. NOT ALL SIZES ARE AVAILABLE IN ALL LOCATIONS. PLEASE CONTACT AN ARMTEC REPRESENTATIVE FOR FURTHER DETAILS

## Table 9a: Height of Cover Limits for 68mm x 13mmCorrugated Steel Pipe-Arch CL-625 Live Load

Span	Rise	Mininum Cover	Maximum Height of Cover (m) for Corner Bearing Pressure Limited to 200 kPa and the Following Specified Wall thickness				
mm	mm	mm	1.6mm	2.0mm	2.8mm	3.5mm	4.2mm
560	420	300		4.1			
680	500	300		4.2			
800	580	300		4.1			
910	660	300		4.1			
1030	740	300		4	.0		
1150	820	300			4	.0	
1390	970	300			3	.9	
1630	1120	300	3.9				
1880	1260	350			3	.8	
2130	1400	400				3	.7

#### Table 9b: Height of Cover Limits for 125mm x 25mm Corrugated Steel Pipe-Arch CL-625 Live Load

Span	Rise	Mininum Cover	Maximum Height of Cover (m) for Corner Bearing Pressure Limited to 200 kPa and the Following Specified Wall thickness				
mm	mm	mm	1.6mm	2.0mm	2.8mm	3.5mm	4.2mm
1780	1360	300				4.4	
2010	1530	350			4.3		
2230	1700	400			4.6		
2500	1830	450			4.5		
2800	1950	500				4.4	
3300	2080	550				4.3	
3650	2280	650			4.2		
3890	2690	650			3.5		.5
4370	2870	750				3.04	3.0

#### NOTES:

1. FILL HEIGHTS BASED ON AISI DESIGN METHOD

2. CL-625 LIVE LOAD

4. EXCEEDS FLEXIBILITY, SPECIAL ATTENTION REQUIRED FOR BACKFILL MATERIAL AND CONSTRUCTION PROCESS

^{3.} MAXIMUM APPLIED CORNER BEARING PRESSURE 200 KPA

## PERFORATED STEELCOR PIPE FOR GROUND WATER CONTROL

Perforated SteelCor is widely accepted as a practical, durable and economical means of controlling unwanted ground water. It is an efficient solution and costs less than repeated surface repairs, virtually eliminating maintenance concerns. Perforated SteelCor pipe is available in plain galvanized and suitable for most applications, however it is strongly recommended that consideration be given to using either Aluminized Steel Type 2 or Polymer Coated in particularly aggressive environments.

#### **Pipe Size Selection**

For normal subdrainage, the infiltration of ground water is very slow. Therefore, approximately 150 metres of 150mm diameter pipe may be used as an interceptor before any increase in pipe diameter is required. Where extremely pervious material is being drained or where springs are encountered, larger sizes may be required.

#### **Pipe Outlets**

Perforated pipe's cantilever strength makes it ideal for use as a projecting pipe outlet.

Free outlets are important, and the failure of subdrains to properly function can often be attributed to plugged, damaged or improper outlets. Outlet pipes should be protected from damage by maintenance equipment. A suitable barrier such as a hinged rodent trap should be used to keep out wildlife whose nests could cause clogging.

#### **Spacing of Laterals**

Draining large, comparatively flat areas usually requires a parallel or herringbone system of drainage pipe. The spacing used on highways and railways is controlled by the location of the water-bearing strata.

#### **Recommended Backfill**

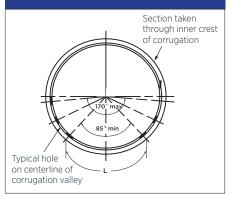
The trench should be excavated with approximately 100mm of clearance at the sides of the pipe so that pervious backfill can surround the pipe. For the filter backfill, concrete sand or other commonly available coarse sandgravel mixtures perform satisfactorily for perforated pipe in most soils.

#### Filter Sock and Geotextiles

Geotextile is widely used in perforated pipe applications, particularly where graded filter material is not available. More critical installations call for a high quality non-woven geotextile to separate the trenchfill from the native material. Armtec can also provide a low-cost knitted polyester sock to encase the pipe. This polyester sock is available custom sewn around the pipe.

#### **Placing of Perforations**

Armtec recommends that the pipe be placed with the perforations down. This hinders solids from entering the pipe and keeps the water table lower.


#### Table 10: Dimensions, Thicknesses and Spacing of Perforations*

Nominal Internal Diameter	Corrugation Profile	Specified		Minimum Width Unperforated Segment	Distance Between Holes Along the Longitudinal Axis	Perforated Area
mm	mm	mm		mm	mm	cm²/m
150	38 x 6.5	1.6	4	125	38	74.61
200	38 x 6.5	1.6	4	160	38	74.61
250	38 x 6.5	1.6	4	195	38	74.61
300	68 x 13	1.6	6	235	136	31.27
400	68 x 13	1.6	6	310	136	31.27

#### NOTE:

* ALL PERFORATIONS ARE A NOMINAL 9.5MM DIAMETER

#### INVERT PERFORATING DETAIL



#### NOTE :

* RANDOM HOLE SPACING AROUND THE CIRCUMFERENCE IS AVAILABLE ON REQUEST

### STEELCOR CSP INSTALLATION

#### **Bedding and Backfilling**

Well graded, free draining backfill is recommended for good compaction. The designer may wish to refer to the gradation and backfill specifications of the appropriate provincial highway standard. Stumps, rocks, frozen lumps and other debris should be removed from the bedding site.

Round pipe can be installed on a flat sand cushion with rodding and tamping of the backfill around the haunches. Alternatively, the pipe can be installed on a pre-shaped granular base.

The pipe-arch bottom arc must be erected on a pre-shaped sand cushion. The support under the bottom arc should be relatively yielding but under the corner haunches the supporting ground must be highly stable. Special attention should be given to compacting the backfill around the corner arcs where the highest soil pressures develop.

Backfill should be spread in 150mm to 200mm lifts alternating from one side of the pipe to the other, and should extend above the pipe to a minimum height of 300mm or one sixth the span, whichever is greater.

Compaction using suitable mechanical equipment should be carried out to achieve the specified backfill density. Care must be taken to ensure that the pipe or pipe-arch is not damaged by heavy equipment traffic during construction.



STEELCOR'S LIGHTWEIGHT SECTIONS ALLOW INSTALLATION WITHOUT THE NEED FOR HEAVY EQUIPMENT



HELICAL CORRUGATIONS AND CONTINUOUS LOCK-SEAM PROVIDE STRENGTH IN A LIGHTWEIGHT STRUCTURE

## ULTRA FLO CORRUGATED STEEL PIPE

Ultra Flo is a durable storm sewer pipe with a unique external rib corrugation and smooth pipe interior that provides superior hydraulic performance at an economical price. It is available in round or pipe arch shapes for restricted headroom applications. Materials include Galvanized Steel, Aluminized Steel Type 2 and Polymer-Laminate.

Ultra Flo pipe is produced by a continuous spiral seam method. Stiffness is provided by 19mm x 19mm x 190mm continuous external box-shaped rib corrugations. Ultra Flo performs as a flexible compression ring under load, redistributing pressure radially into the surrounding high-density soil. The unit pressure at the pipe invert can be as little as one-third of the unit pressure under a concrete pipe in identical loading conditions.

#### **TYPICAL APPLICATIONS**

- Municipal storm sewers, in large diameter
- Highway median drainage
- Industrial storm sewers
- Large diameter culverts
- Slip-lines
- Stormwater detention tanks



ULTRA FLO'S EXTERIOR BOX RIBS AND SMOOTH INTERIOR COMBINES STRENGTH WITH SUPERIOR HYDRAULIC PERFORMANCE

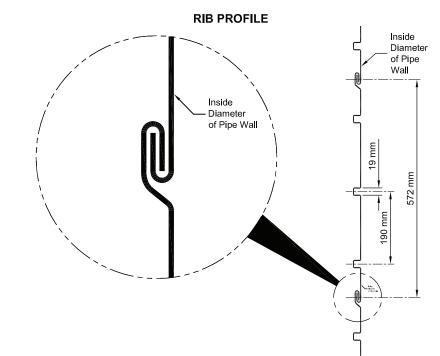
## DURABLE

Available in a wide variety of coatings to suit environmental conditions

## EFFICIENT HYDRAULICS

Ultra Flo's low "n" factor is equivalent to or less than the standard 0.013 usually used in storm sewer design

### NESTABLE


Efficient shipping for remote locations

## 

Lightweight and available in long lengths with minimal joints

## S ECONOMICAL

Lowest installed cost compared to large-diameter concrete storm sewers



#### PIPE SIZES

Round (mm)	450, 525, 600, 750, 900, 1050, 1200, 1350, 1500, 1650, 1800, 2100, 2400
Arch, span x rise (mm)	500 x 410, 580 x 490, 680 x 540, 830 x 660, 1010 x 790, 1160 x 920, 1340 x 1050, 1520 x 1200, 1670 x 1300, 1850 x 1400

#### FOR DETAILED PRODUCT INFORMATION, SEE ULTRA FLO PRODUCT GUIDE

#### Table 11: Height of Cover Table for Ultra Flo Round Pipe

			Maximum Height of Fill (m) for Metal Thickness (mm)				
Diameter	Area	Minimum Height of Fill	1.6mm	2.0mm	2.8mm		
mm	m²	mm					
450	0.16	300	22.7	22.7			
525	0.22	300	19.4	28.8	50.6		
600	0.28	300	17.O	25.2	44.3		
750	0.44	300	13.6	20.2	35.4		
900	0.64	300	11.3	16.8	29.5		
1,050	0.87	300	9.7	14.4	25.3		
1,200	1.13	300	8.5*	12.6	22.1		
1,350	1.43	340	7.5*	11.2	19.7		
1,500	1.77	380	6.8*	10.1*	17.7		
1,650	2.14	410		9.1*	16.1		
1,800	2.54	450		8.4*	14.7		
2,100	3.46	530			12.6*		
2,400	4.52	600			11.O*		
2,600	5.31	650			9.0*		

#### NOTES:

1. ALLOWABLE MINIMUM COVER IS MEASURED FROM THE TOP OF PIPE TO THE BOTTOM OF A FLEXIBLE PAVEMENT OR TOP OF A RIGID PAVEMENT. MINIMUM COVER IN UNPAVED AREAS MUST BE MAINTAINED. BACKFILL IS ASSUMED TO BE COMPACTED TO A MINIMUM OF 95% STANDARD PROCTOR DRY DENSITY. 2. ALL HEIGHTS OF COVER ARE BASED ON INSTALLATION IN A TRENCH. IF EMBANKMENT CONDITIONS EXIST, THERE MAY BE RESTRICTIONS ON GAUGES FOR LARGE DIAMETERS. YOUR ARMTEC REGION ENGINEER CAN PROVIDE YOU WITH FURTHER GUIDANCE.

3. TABLES ARE FOR CL-625 LOADING ONLY. FOR HEAVY CONSTRUCTION LOADS, HIGHER MINIMUM COVERS MAY BE REQUIRED. YOUR ARMTEC REGION ENGINEER CAN PROVIDE YOU WITH FURTHER GUIDANCE.

ENGINEER CAN PROVIDE YOU WITH FURTHER GUIDANCE. * THESE SIZES AND GAUGES REQUIRE SPECIAL ATTENTION TO BACKFILL MATERIAL AND CONSTRUCTION METHODS.

#### Table 12: Height of Cover Table for Ultra Flo Arch Pipe

					Maximum Height of Fill (m) to Limit Corner Bearing Pressure to a Maximum of 200 kPa for Metal Thickness (mm)			
Span	Rise	Equivalent Diameter	Area	Minimum Height of Fill	1.6mm	2.0mm	2.8mm	
mm	mm	mm	m²	mm				
500	410	450	0.15	300	4.0	4.0		
580	490	525	0.21	300	5.2	5.2	5.2	
680	540	600	0.27	300	5.2	5.2	5.2	
830	660	750	0.43	300	5.2	5.2	5.2	
1,010	790	900	0.62	300	4.4	4.4	4.4	
1,160	920	1,050	0.85	300	5.1	5.1	5.1	
1,340	1,050	1,200	1.12	300		4.4	4.4	
1,520	1,200	1,350	1.44	340		5.3*	5.3	
1,670	1,300	1,500	1.79	380		5.1*	5.1	
1,850	1,400	1,650	2.15	410		4.7*	4.7	

#### NOTES:

1. ALLOWABLE MINIMUM COVER IS MEASURED FROM THE TOP OF PIPE TO THE BOTTOM OF A FLEXIBLE PAVEMENT OR TOP OF A RIGID PAVEMENT. MINIMUM COVER IN UNPAVED AREAS MUST BE MAINTAINED. BACKFILL IS ASSUMED TO BE COMPACTED TO A MINIMUM OF 95% STANDARD PROCTOR DRY DENSITY. 2. ALL HEIGHTS OF COVER ARE BASED ON INSTALLATION IN A TRENCH. IF EMBANKMENT CONDITIONS EXIST, THERE MAY BE RESTRICTIONS ON GAUGES FOR LARGE DIAMETERS. YOUR ARMTEC REGION ENGINEER CAN PROVIDE YOU WITH FURTHER GUIDANCE.

3. TABLES ARE FOR CL-625 LOADING ONLY. FOR HEAVY CONSTRUCTION LOADS, HIGHER MINIMUM COVERS MAY BE REQUIRED. YOUR ARMTEC REGION ENGINEER CAN PROVIDE YOU WITH FURTHER GUIDANCE.

* THESE SIZES AND GAUGES REQUIRE SPECIAL ATTENTION TO BACKFILL MATERIAL AND CONSTRUCTION METHODS.

## END TREATMENTS

### **CSP END SECTIONS**

Armtec supplies durable, lightweight end sections for improved hydraulic efficiency and erosion control. These sections help reduce scour at inlets, undermining at outlets, and provide an attractive and economical means of blending culvert ends with a sloping embankment.

The end sections clamp onto the culvert and are positioned with light equipment. In the case of the smaller available sections, no equipment is required to position the end sections. Earth is tamped around the sloping ends to complete the installation.

Standard end sections suit corrugated steel pipes up to 2,400mm diameter and pipe arches up to 2,130mm span x 1,400mm rise. They are available as twins, triplets and quads for multiple-pipe installations. Safety-slope end sections are also available with parallel cross bars and are built-in 4:1 or 6:1 slope.



CSP END SECTION WITH FUNCTIONAL GRATE



CSP END SECTION WITH OPTIONAL TOE PLATE EXTENSION

### ^ SLOPE RETENTION

Designed to support and retain slope grade and material

ECONOMICAL

Culvert repairs are reduced with the reduction of scour at the inlet and undermining at the outlet

ATTRACTIVE SOLUTION

End sections blend culvert ends with the slope embankment

#### HEADWALLS

Headwalls can be constructed of concrete, stone, rip rap stone or steel sheeting.

Pro-Eco-Lite headwalls are engineered from a composite reinforced polymer concrete. They combine the lightweight characteristics of plastic with the strength of concrete. Flow control accessories such as pre-fabricated trash racks, security grids and handrails, bolt-on scour aprons, pre-fabricated weir boards and frames, and pre-installed flap gates and slide gates can be added to enhance performance without affecting appearance.

For large SteelCor pipe, headwalls constructed of Armtec sheeting combined with wing walls constructed from Armtec Bin-Wall provide an economic solution.

### **CUT-OFFS**

Armtec steel sheeting can be used as cut-offs under the SteelCor pipe inlet and outlet. Depth of cut-off is usually 1m to 1.5m below the invert. Steel sheeting can often be used as a partial headwall with clay or other materials used to further seal the embankment.

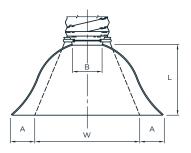


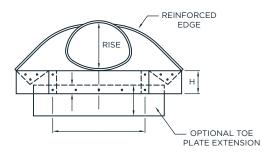
PRO ECO-LITE HEADWALL

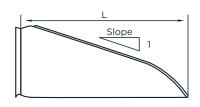


SHEETING HEADWALL

### SPECIFICATIONS


#### Table 13: End Sections for Pipe-Arch Shapes


Span x Rise	Equiv. Round	Thickness	А	В	н	L	w	Approx. Slope	Weight
mm	mm		mm	mm	mm	mm	mm		kg
560 x 420	450	1.6	180	255	150	585	915	2-1/2	19
680 x 500	600	1.6	230	355	150	810	1,220	2-1/2	24
910 x 660	800	2.0	255	405	200	990	1,525	2-1/2	42
1,030 x 740	900	2.0	305	455	230	1,170	1,905	2-1/2	73
1,150 x 820	1,000	2.8	330	535	230	1,345	2,160	2-1/2	105
1,390 x 970	1,200	2.8	455	660	305	1,600	2,285	2-1/2	143
1,630 x 1,120	1,400	2.8/3.5	455	840	305	1,955	2,895	1-1/2	217
1,880 x 1,260	1,600	2.8/3.5	455	915	305	1,955	3,200	1-1/2	284
2,130 x 1,400	1,800	2.8/3.5	455	990	305	1,955	3,505	1-1/2	304


PLAN

ELEVATION

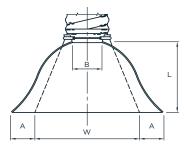
### **TYPICAL CROSS SECTION**

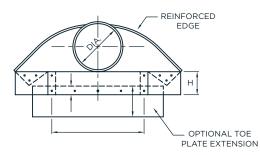


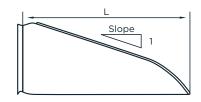




## SPECIFICATIONS


#### Table 14: End Sections for Round Pipe Shapes


Pipe Diameter	Thickness	А	в	н	L	w	Approx. Slope	Weight
mm		mm	mm	mm	mm	mm		kg
300	1.6	150	150	150	530	610	2-1/2	11
400	1.6	175	200	150	660	760	2-1/2	15
450	1.6	200	255	150	785	915	2-1/2	19
500	1.6	230	300	150	915	1,065	2-1/2	22
600	1.6	255	330	150	1,040	1,220	2-1/2	30
800	2.0	305	405	200	1,295	1,525	2-1/2	55
900	2.0	355	480	230	1,525	1,830	2-1/2	61
1,000	2.8	405	560	280	1,750	2,135	2-1/2	145
1,200	2.8	460	685	305	1,980	2,285	2-1/4	170
1,400	2.8	460	760	305	2,135	2,590	2-1/4	200
1,600	2.8/3.5	460	915	305	2,210	3,050	2	316
1,800	2.8/3.5	460	990	305	2,210	3,200	2	327
2,000	2.8/3.5	460	1,065	305	2,210	3,350	1-1/2	367
2,200	2.8/3.5	460	1,145	305	2,210	3,505	1-1/2	386
2,400	2.8/3.5	635	890	305	2,210	3,810	1-1/2	447


PLAN

ELEVATION

#### **TYPICAL CROSS SECTION**







## **NESTABLE PIPE**

Nestable corrugated steel pipe is available as flange-type and notch-type. Flange-type nestable CSP consists of half-round 610mm long sections with side flanges that can be easily bolted together to form a circular corrugated steel pipe. Notch-type nestable CSP consists of matching half-round segments of corrugated steel, assembled using stitch type or hook and eye bolts to become lengths of full-round corrugated steel pipe. Nestable pipe is typically galvanized and therefore highly durable under normal conditions. Aluminized Steel Type 2 is also available for added durability.

Nestable pipe sections are shipped nested and bundled together to save space during shipping. This is ideal for remote locations and overseas projects where shipping of factory-made pipe would be uneconomical. Both flange-type and notch-type products are useful where a casing is to be installed around an existing utility without disrupting its operation.

#### **TYPICAL APPLICATIONS**

- Culverts
- Storm Sewers
- Drains
- Casings
- Utilidors



HOOK AND EYE BOLTS PROVIDE A SECURE SOIL-TIGHT CONNECTION

## ECONOMICAL

## DURABLE

Sections are nested and bundled together for economical shipping

Available in Aluminized Steel Type 2 for added protection and extended service life Suitable for a wide range of applications

VERSATILE

### FLANGE-TYPE NESTABLE PIPE

#### Assembly

Flanged Nestable Pipe is easily assembled and no special instructions are necessary. Simple tools such as spud or socket wrenches are all that are required.

Five corrugation long pieces are used on the top at both ends to introduce a circumferential seam stagger. The 50mm wide flanges have slotted holes spaced at 68mm centre to centre on both sides and are bolted together using galvanized 10mm diameter bolts and nuts. All circumferential laps should be assembled in the direction of fluid flow.

FLANGE-TYPE NESTABLE PIPE REQUIRES ONLY SIMPLE TOOLS FOR ASSEMBLY



### Assembly

There are three standard methods used in attaching the half-round pipe segments together. The method used is dictated by the pipe diameter. The stitch type method (using #1 or #2 type stitches) is used up to 800mm in pipe diameter and the hook and eye bolt method is used for pipe diameters 900mm and over.

When assembling Armtec Nestable Pipe, the bottom ten corrugation sections are placed into position with each succeeding section overlapping the previous one by one



NESTABLE PIPE IS IDEAL FOR MINING APPLICATIONS

corrugation. The top ten corrugation sections are staggered by using five corrugation sections at the ends.

All laps should be assembled in the direction of fluid flow. The half sections will be drawn together at the notched seams with a bending bar and the appropriate fastener inserted through the matching holes. There are two fasteners every 600mm on each side.



NESTED SECTIONS ARE BUNDLED FOR ECONOMICAL TRANSPORTATION

#### Table 15: Flange-Type Pipe Height of Cover Table - Live Load - AASHTO H-25 and CS-625

Diameter	Area	Minimun Cover	Maximum Height of Cover (m) for Following Specified Wall Thickness				
mm	mm ²	mm	1.6mm	2.0mm	2.8mm		
300	0.17	300	9.0	-	-		
400	O.13	300	9.0	-	-		
450	0.16	300	6.0	9.0	-		
500	0.20	300	6.0	9.0	-		
600	0.28	300	4.5	9.0	-		
700	0.38	300	-	7.5	9.0		
800	0.50	300	-	6.0	9.0		
900	0.64	300	-	6.0	9.0		
1,000	0.79	300	-	4.5	9.0		
1,200	1.13	300	-	-	7.5		
1,400	1.51	500	-	-	6.0		
1,600	2.01	500	-	-	4.5		

#### NOTES:

STRUCTURES SHOULD BE BACKFILLED WITH WELL COMPACTED GRANULAR BACKFILL TO A MINIMUM OF 95% STANDARD PROCTOR DENSITY. E-80 LOADING CAN ALSO BE MET. PLEASE CONTACT AN ARMTEC REPRESENTATIVE FOR FURTHER DETAILS.

#### Table 16: Flange-Type Pipe Approximate Weights (kg/m)

Diameter	f	Approximate Weight (kg/m) for Following Specified Wall Thickness						
mm	1.6mm	2.0mm	2.8mm					
300	18	22	-					
400	22	28	-					
450	24	31	43					
500	27	34	48					
600	31	39	54					
700	36	45	62					
800	41	51	70					
900	45	56	77					
1,000	48	61	83					
1,200	59	74	102					
1,400	68	85	118					
1,600	78	97	134					

#### SPECIFICATIONS

Half round sections are manufactured from 68mm x 13mm corrugated steel:

- Corrugations and steel thickness per ASTM A 760A, CSA G401, AASHTO M 36
- Galvanized and Aluminized Type 2 per ASTM A 929A, AASHTO M 218-87
- Zinc coating mass will not be less than 610 g/m² per AASHTO M 218
- Milling sampling and marking per ASTM A924 A 924M
- Minimum aluminum coating thickness of 47µm
- Installation per ASTM A798
- Hardware is zinc plated

Diameter	Area	Minimun Cover	Maximum Height of Cover (m) for Following Specified Wall Thickness					
mm	mm ²	mm	1.6mm	2.0mm	2.8mm	3.5mm		
300	0.07	300	9.2	13.17	-	-		
400	O.13	300	6.1	12.2	13.7	-		
450	0.16	300	6.1	12.2	13.7	-		
500	0.20	300	6.1	10.7	13.7	-		
600	0.28	300	4.6	9.2	13.7	-		
700	0.38	300	-	7.6	13.7	-		
800	0.50	300	-	7.6	13.7	-		
900	0.64	300	-	6.1	10.7	-		
1,000	0.79	300	-	4.6	9.2	-		
1,200	1.13	300	-	-	7.6	9.0		
1,400	1.54	500	-	-	6.1	9.0		
1,600	2.01	500	-	-	-	9.0		
1,800	2.54	500	-	-	-	-		
2,000	3.14	500	_	-	-	_		

#### NOTES:

STRUCTURES SHOULD BE BACKFILLED WITH WELL COMPACTED GRANULAR BACKFILL TO A MINIMUM OF 95% STANDARD PROCTOR DENSITY. E-80 LOADING CAN ALSO BE MET. PLEASE CONTACT AN ARMTEC REPRESENTATIVE FOR FURTHER DETAILS.

#### Table 18: Notch-Type Pipe Approximate Weights (kg/m)

Diameter	Approximate Weight (kg/m) for Following Specified Wall Thickness								
mm	1.6mm	2.0mm	2.8mm	3.5mm	4.2mm				
300	15	19	26	-	-				
400	20	25	34	-	-				
450	23	29	38	47	-				
500	25	32	43	53	-				
600	29	37	51	63	-				
700	34	43	59	73	-				
800	39	49	68	84	-				
900	44	56	77	95	113				
1,000	49	61	85	105	126				
1,200	59	74	102	126	151				
1,400	69	85	119	147	176				
1,600	78	98	137	168	202				
1,800	88	110	153	188	226				
2,000	98	122	170	210	252				

#### **SPECIFICATIONS**

Half round sections are manufactured from 68mm x 13mm corrugated steel:

- Corrugations and steel thickness per ASTM A 760A, CSA G401, AASHTO M 36
- Galvanized and Aluminized Type 2 per ASTM A 929A, AASHTO M 218-87
- Zinc coating mass will not be less than 610 g/m² per AASHTO M 218
- Milling sampling and marking per ASTM A924 A 924M
- $\bullet$  Minimum aluminum coating thickness of  $47 \mu m$
- Installation per ASTM A798
- Hardware is zinc plated

Armtec is environmentally conscious by supporting limited paper usage.

### ATLANTIC

Shediac, NB Sackville, NB Truro, NS Bishop's Falls, NL St. John's, NL

### CENTRAL

Cambridge, ON Comber, ON Forest, ON Guelph, ON Orangeville, ON Peterborough, ON Sudbury, ON Thunder Bay, ON Walkerton, ON Woodstock, ON St-Augustin, QC St-Clet, QC

#### PRAIRIES

Calgary, AB Edmonton, AB Grande Prairie, AB Ponoka, AB Redwater, AB Winnipeg, MB Regina, SK Saskatoon, SK

### WEST COAST

Dawson Creek, BC Genelle, BC Langley, BC Nanaimo, BC Prince George, BC





Find out how **CSP** pipe can be used on your next project. Call **1-800-565-1152** or visit **armtec.com** 



## Appendix G-2 FT SOLMAX – GEOMEMBRANE HDPE 1.0mm BLACK TECHNICAL DATA SHEET







## **TECHNICAL DATA SHEET**

## HDPE 1.00 mm Black Smooth

PROPERTY(1)	TEST METHOD	FREQUENCY	UNIT Metric	1047812
SPECIFICATIONS				
Thickness (min. avg.) Thickness (min.)	ASTM D5199 ASTM D5199	Every roll Every roll	mm mm	1.00 0.90
Resin Density Melt Index - 190/2.16 (max.)	ASTM D1505 ASTM D1238	1/Batch 1/Batch	g/cc g/10 min	> 0.932 1.0
Sheet Density Carbon Black Content Carbon Black Dispersion OIT - standard (avg.)	ASTM D792 ASTM D4218 ASTM D5596 ASTM D3895	Every 10 rolls Every 2 rolls Every 10 rolls 1/Batch	g/cc % Category min	≥ 0.940 2.0 - 3.0 Cat. 1 / Cat. 2 100
Tensile Properties (min. avg) (2) Strength at Yield Elongation at Yield Strength at Break Elongation at Break	ASTM D6693	Every 2 rolls	kN/m % kN/m %	15 13 28 700
Tear Resistance (min. avg.) Puncture Resistance (min. avg.)	ASTM D1004 ASTM D4833	Every 5 rolls Every 5 rolls	N N	125 356
Dimensional Stability Stress Crack Resistance (SP-NCTL) Oven Aging - % retained after 90 days	ASTM D1204 ASTM D5397 ASTM D5721	Certified 1/Batch Per formulation	% hr	± 2 500
HP OIT (min. avg.) UV Res % retained after 1600 hr	ASTM D5885 ASTM D7238	Per formulation	%	80
HP-OIT (min. avg.) Low Temperature Brittleness	ASTM D5885 ASTM D746	Certified	% °C	50 - 77
SUPPLY SPECIFICATIONS(Roll dime	nsions may vary ±1%)			
Roll Dimension - Width	-		m	6.80
Roll Dimension - Length	-		m	237.7
Area (Surface/Roll)	-		m²	1616.36

## NOTES

1. Testing frequency based on standard roll dimensions and one batch is approximately180,000 lbs (or one railcar).

* All values are nominal test results, except when specified as minimum or maximum.

* The information contained herein is provided for reference purposes only and is not intended as a warranty of guarantee. Final determination of suitability for use contemplated is the sole responsibility of the user. SOLMAX assumes no liability in connection with the use of this information.

Solmax is not a design professional and has not performed any design services to determine if Solmax's goods comply with any project plans or specifications, or with the application or use of Solmax's goods to any particular system, project, purpose, installation or specification.



## Appendix G-3 BACKFLOW PREVENTER – CHECKMATE BROCHURE







## CheckMate®Inline Check Valve



United States Patent # 5,769,125



Red Valve Company, Inc.



## CheckMate[®]: Your Final Move to Eliminate Backflow!

## **Dependable Backflow Prevention**

The CheckMate® Inline Check Valve is the valve of choice for both municipal and industrial applications - including stormwater, wastewater, highway run-off, CSO, SSO and flood control. CheckMate® Valves prevent unwanted backflow that can cause surcharging and flooding.

CheckMate® Inline Check Valves have become the specified solution for residential and commercial areas where complete, dependable backflow prevention is necessary. The CheckMate® is not simply a molded part. Rather it is hand-fabricated, utilizing various natural and synthetic elastomers and fabric ply reinforcement to create a unibody construction. There are no mechanical parts or fasteners to catch debris, corrode, or fail, making the CheckMate® maintenance-free. With seven elastomers to select from, the CheckMate[®] can be custom engineered to resist chemicals, grease and oils typically found in stormwater, wastewater and industrial applications.

The CheckMate® Valve boasts extremely low headloss, allowing for near 100% flow capacity. Its inherent design makes it the most user-friendly inline check valve on the market today. From the upstream or downstream end of the pipe, simply insert the valve into position and clamp it into place. Typically no modification to the pipe or structure is required to install the CheckMate®. Because the CheckMate® is recessed inside of the pipe, additional permitting is not required. The result is savings in both installation time and operational cost.



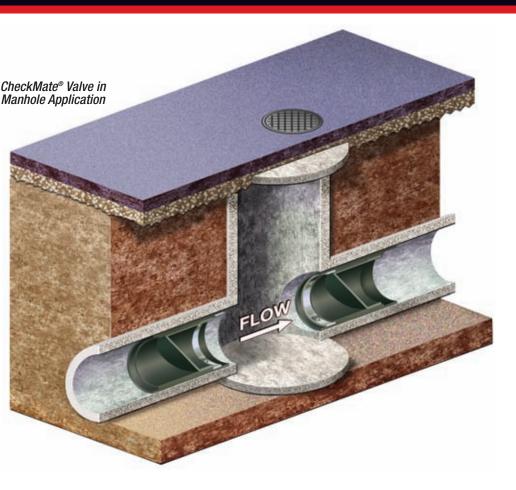
The valve can successfully withstand severe winter freezes, typhoons, hurricanes and flooding. The CheckMate® also minimizes damage to wetlands, beaches and residential areas, eliminates hydraulic surges to wastewater treatment plants and saves municipalities millions of dollars in maintenance and treatment costs.

## Benefits and Features of CheckMate®:

- Extremely Low Headloss
- No Moving Mechanical Parts to Corrode, Catch Debris or Fail
- Heavy Duty Elastomer Unibody Construction
- Quick and Easy Installation
- Seals Around Debris



For an animated demonstration of the CheckMate[®] in operation, please visit: http://www.tideflex.com/checkmate.




**FULLY OPEN** 



**FLOWING** 

## CHECKMATE® VALVE **Designed for Inline Service**



- Operates on Differential Pressure, Totally Passive
- Virtually No Maintenance
- Self-draining, 1" of Cracking Pressure
- Silent, Non-slamming
- Available in Sizes 3" (75 mm) to 78" (1950 mm)
- Extensive Independent Hydraulic Testing



**FULLY CLOSED** 



# CheckMate[®] Applications: Simply Versatile!



48" CheckMate[®] installed in a storm sewer drain to stop backflow from flooding a residential area.

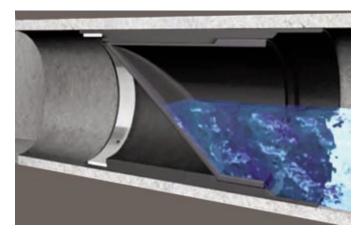
#### **Residential and Municipal Sewers**

CheckMate[®] Inline Check Valves have become a frequently specified solution for residential and municipal areas where complete, dependable backflow prevention is necessary. The CheckMate[®] Valve's maintenance-free, passive operation provides years of trouble-free service.

### **CSO, SSO and Outfalls**

CheckMate[®] Valves are used for interceptor, manhole and outfall pipelines because they maximize pipeline storage and capacity while preventing water from backflowing into a sewage treatment plant. The CheckMate[®] Valve's innovative inline design allows it to be easily installed without modifications to structures.

## Stormwater, MS4, Highway Run-off and Site Drainage


CheckMate[®] Inline Check Valves are the valve of choice for both municipalities and commercial property owners to prevent costly flood damage and to maximize system storage. The CheckMate's[®] low cracking pressure and headloss provide rapid drainage.

## Flow Equalization Basins, Pump Stations and Effluent Discharge

CheckMate[®] Valves provide backflow prevention in between basins and also protect pumps and capital equipment. The CheckMate's[®] low headloss characteristics maximize flow efficiency.



24" CheckMate® is easily installed in a municipal sewer.



The CheckMate's[®] rugged unibody construction prevents backflow.



48" CheckMate[®] installed at the Freedom Tower for stormwater drainage.



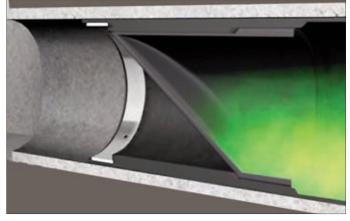
48" CheckMate[®] Valve replacing a faulty flapgate in a CSO application.

### **Odor Control**

CheckMate[®] Inline Check Valves prevent sewer systems' offending odors from escaping, while still allowing water to discharge when needed. The CheckMate[®] Valve is designed to eliminate the backflow of unwanted methane and hydrogen sulfide gases that typically result in complaints about odor from the general public.

### Levees, Marinas and Wetlands

In low lying areas where headloss is at a premium, CheckMate[®] Valves efficiently drain with the added benefit of providing absolute backflow prevention.


## **Independent Hydraulic Testing**

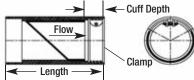
CheckMate[®] Inline Check Valves are independently tested to determine their hydraulic characteristics in both free and submerged discharge applications. Red Valve's published hydraulic data is validated through this independent testing.

## **CHECKMATE® VALVE** Designed for Inline Service

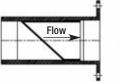


The CheckMate® is also easily installed by hand.



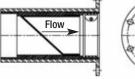

The CheckMate® provides odor control.





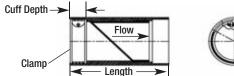

# CheckMate[®] Configurations and Custom Designs

**Downstream Clamp** 

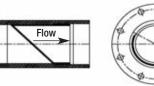



## **Downstream Flanged**

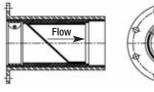





## **Downstream Flanged Thimble Insert**




CheckMates® can be made for any pipe I.D. Built to fit in sizes from 3" to 78".


## **Upstream Clamp**



## **Upstream Flanged**



## **Upstream Flanged Thimble Insert**



Flange shape and bolt pattern can be customized. Flangeless thimble inserts are available.

	NOI PIPE	NOMINAL OVERALL PIPE SIZE I.D. LENGTH*		NUMBER			BACK P Rat	Ressure TNG**	WEIGHT		
	Inches	Millimeters	Inches	Millimeters	OF CLAMPS	Inches	Millimeters	Feet	Meters	lbs	Kg
Pressure	3 4	75 100	5.1 7.9	130 201	1	1.5 1.5	38 38	5 5	1.5 1.5	1.5 1.5	0.7 0.7
	3 4 5 6 7 8 9 10 12 14	75 100 125 150 175 200 225 250 300 350	5.1 7.9 9.5 11.0 12.8 15.2 15.4 16.1 19.8 25.8	130 201 241 279 325 386 391 409 503 655	1 1 1 1 1 1 1 1 1 1	1.5 1.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 4.0	38 38 38 51 51 51 51 51 51 51 102	85 85 83 83 79 79 75 71 68 64	26.0 26.0 25.3 25.3 24.1 24.1 22.9 21.6 20.1 20.0	3 3 4 9 11 13 17 20 37 110	1.4 1.5 2 4 5 6 8 10 17 50
Standard Pressure	16 18 20 24 30 36 42 48 54 60 72 78	400 450 500 600 750 900 1050 1200 1350 1500 1800 1950	28.6 31.0 42.1 47.5 54.9 62.3 70.6 79.0 86.4 96.8 119.0 119.0	726 787 1069 1207 1395 1582 1793 2007 2195 2459 3023 3023	1 2 2 2 2 2 2 2 2 2 2 2 3 3 3	4.0 4.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 9.0 12.0 12.0	102 102 203 203 203 203 203 203 203 203 203 2	60 56 53 45 38 30 26 23 17 15 13 13	18.3 17.1 16.2 13.7 11.6 9.1 7.9 7.0 5.2 4.6 4.0 4.0	133 143 223 304 500 828 1423 1801 2700 3315 6100 7000	52 65 102 137 227 376 646 817 1225 1504 2767 3176

*Shorter lengths available.

**Back pressure measured from pipe invert. Higher back pressure ratings available. Consult factory.



Elliptical Pipe CheckMate®

## **Elliptical, Arch and Rectangular Pipes**

Elliptical, arch and rectangular pipes for drainage and flood prevention projects have become popular, particularly in high water table areas with shallow surface gradients. CheckMate® Inline Check Valves are the perfect solution for backflow prevention in elliptical, arch and rectangular pipes.

## **Rubber Flanged**

Rubber Flanged CheckMate® Valves can be manufactured with an integral rubber upstream or downstream flange. The flanged CheckMate® gets inserted into the host pipe then can be bolted to a mating flange or anchored to a concrete headwall. The flange can be circular with standard drilling; or circular, square or rectangular with custom flange drilling. The valve is supplied with retaining rings for mounting.

## **Thimble Inserts**

A CheckMate® Thimble Insert is a CheckMate® Valve that is factoryinstalled, clamped, and pinned into flanged or plain end pipe. The thimble insert assembly can either be inserted into the I.D. of the host pipe, or can be mounted to a mating flange or concrete headwall and extend beyond the pipe. Plain end thimble inserts are inserted into the host pipe and non-shrink grout is placed between the thimble insert 0.D. and host pipe I.D. to form the seal.



## CHECKMATE® VALVE **Designed for Inline Service**

Arch Pipe CheckMate®

Rectangular Pipe CheckMate®



Upstream Flanged CheckMate®



CheckMate® Thimble Insert



In addition to the Checkmate® Inline Check Valve, Tideflex® Technologies offers a complete line of check valves.

## **TF-1 CHECK VALVES**

The Tideflex® TF-1 Curved Bill Check Valve is designed with enhanced sealing to improve headloss. The improved TF-1 design allows the valve to handle long-term water weight while maintaining structural integrity. The spine is at a greater vertical angle, making it able to withstand the cantilever effect when water is flowing through the valve. The TF-1 is constructed of rubber, making it immune to rust, corrosion and weathering.





The flat-bottom Series 35-1 features an integral rubber flange, allowing them to be mounted to flanged outfall pipes or directly to headwalls where the pipe is flush. The flange size drilling conforms to ANSI B16.10, Class 150#, or can be constructed with DIN, 2632 and other

standards. The Series 35-1 Check Valve is furnished complete with steel or stainless steel backup rings for installation.





## **SERIES 39 CHECK VALVES**

The Tideflex® Series 39 Inline Check Valve features a fabric-reinforced elastomer check sleeve housed in a cast iron body with ANSI 125/150 flanges, allowing for easy installation into any piping system. The valve's operation is silent, nonslamming and maintenance free. Sliding, rotating, swinging

and plunging parts are completely eliminated. The body is equipped with flush ports and a clean-out port and can be epoxy coated.





600 N. Bell Ave. Carnegie, PA 15106

PHONE: 412/279-0044 FAX: 412/279-7878

### www.tideflex.com

The information presented in this catalog is provided in good faith. Red Valve Company, Inc. and Tideflex® Technologies reserves the right to modify or improve its design specifications without notice and does not imply any guarantee or warranty for any of its products from reliance upon the information contained herein. All orders are subject to Red Valve Company, Inc. and Tideflex® Technologies' standard terms and warranty and are subject to final acceptance by Red Valve Company, Inc. and Tideflex⁴ Technologies.

Viton is a registered trademark of DuPont Dow Elastomers. Hypalon is a registered trademark of DuPont Performance Elastomers. Tideflex, Red Valve, and the Red Valve "rv" logo are registered trademarks of the Red Valve Company, Inc.

© 2009 Red Valve Company. All rights reserved.

