ARCHITECTURE | 49 ### ÉCOLE ÉLÉMENTAIRE KANATA-STITTSVILLE SCHOOL 755 COPE DRIVE, STITTSVILLE, ON SERVICING AND STORMWATER MANAGEMENT REPORT **APRIL 6, 2022** ÉCOLE ÉLÉMENTAIRE KANATA-STITTSVILLE SCHOOL 755 COPE DRIVE, STITTSVILLE, ON SERVICING AND STORMWATER MANAGEMENT REPORT ARCHITECTURE | 49 SITE PLAN APPLICATION PROJECT NO.: 219-00014-00 DATE: APRIL 2022 WSP CANADA INC. 2611 QUEESVIEW DRIVE, SUITE 300 OTTAWA, ON, CANADA, K2B 8K2 TEL:: +1 613-829-2800 WSP.COM #### SIGNATURES PREPARED AND REVIEWED BY Ding Bang (Winston) Yang, P.Eng Project Engineer This report was prepared by WSP Canada Inc. for the account of Architecture | 49, in accordance with the professional services agreement. The disclosure of any information contained in this report is the sole responsibility of the intended recipient. The material in it reflects WSP Canada Inc.'s best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. WSP Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This limitations statement is considered part of this report. The original of the technology-based document sent herewith has been authenticated and will be retained by WSP for a minimum of ten years. Since the file transmitted is now out of WSP's control and its integrity can no longer be ensured, no guarantee may be given with regards to any modifications made to this document. # TABLE OF CONTENTS | 1 | GENERAL1 | |------|---| | 1.1 | Executive summary1 | | 1.2 | Date and Revision Number2 | | 1.3 | Location Map and Plan2 | | 1.4 | Adherence to zoning and related requirements3 | | 1.5 | Pre-Consultation meetings3 | | 1.6 | Higher level studies3 | | 1.7 | Statement of objectives and servicing criteria4 | | 1.8 | Available existing and proposed infrastructure4 | | 1.9 | Environmentally significant areas, watercourses and municipal drains5 | | 1.10 | Concept level master grading plan5 | | 1.11 | Impacts on private services5 | | 1.12 | Development phasing | | 1.13 | Geotechnical sutdy5 | | 1.14 | Drawing requirement 5 | | 2 | WATER DISTRIBUTION6 | | 2.1 | Consistency with master servicing study and availability of public infrastructure | | 2.2 | System constraints and boundary conditions 6 | | 2.3 | Confirmation of adequate domestic supply and pressure? | | 2.4 | Confirmation of adequate fire flow protection8 | | 2.5 | Check of high pressure | | 2.6 | Phasing constraints8 | | 2.7 | Reliability requirements8 | | 2.8 | Need for pressure zone boundaRy modification9 | | 2.9 | Capability of major infrastructure to supply sufficient water9 | |------|--| | 2.10 | Description of proposed water distribution network 9 | | 2.11 | Off-site requirements9 | | 2.12 | Calculation of water demands9 | | 2.13 | Model Schematic9 | | 3 | WASTEWATER DISPOSAL10 | | 3.1 | Design Criteria10 | | 3.2 | Consistency with master servicing study10 | | 3.3 | Review of Soil conditions10 | | 3.4 | Description of existing sanitary sewer10 | | 3.5 | Verification of available capacity in downstream sewer10 | | 3.6 | Calculations for New sanitary sewEr11 | | 3.7 | Description of proposed sewer network11 | | 3.8 | Environmental constraints11 | | 3.9 | Pumping requirements11 | | 3.10 | Force-mains11 | | 3.11 | Emergency overflows from sanitary pumping stations11 | | 3.12 | Special considerations11 | | 4 | SITE STORM SERVICING12 | | 4.1 | Existing condition12 | | 4.2 | Analysis of availabLe capacity in public infrastructure .12 | | 4.3 | Drainage drawing12 | | 4.4 | Water quantity control objective12 | | 4.5 | Water quality control objective13 | | 4.6 | Design criteria 13 | | 4.7 | Proposed minor system | 13 | |------------|--|----| | 4.8 | Stormwater management | 13 | | 4.9 | Inlet Controls | 14 | | 4.10 | On-site detention | 14 | | 4.11 | Watercourses | 15 | | 4.12 | Pre and Post development peak flow rates | 16 | | 4.13 | Diversion of drainage catchment areas | 16 | | 4.14 | Downstream capacity where quanTity control is not proposed | 16 | | 4.15 | Impacts to receiving watercourses | 16 | | 4.16 | Municipal drains and related approvals | 16 | | 4.17 | Means of conveyance and storage capacity | 16 | | 4.18 | Hydraulic analysis | 16 | | 4.19 | Identification of floodplains | 16 | | 4.20 | Fill constraints | 16 | | 5 | SEDIMENT AND EROSION CONTROL | 17 | | 5.1 | General | 17 | | 6 | APPROVAL AND PERMIT REQUIREMENTS | 18 | | 6.1 | General | 18 | | 7 | CONCLUSION CHECKLIST | 19 | | 7.1 | Conclusions and recommendations | 19 | | 7.2 | Comments received from review agencies | 19 | | TABL | .ES | | |-------|--------------------|--| | TABLE | 2-1: | BOUNDARY CONDITIONS (IBI DESIGN | | TABLE | : ₂₋₂ , | BRIEF)6 IBI HYDRAULIC MODELLING RESULTS6 | | TABLE | | BOUNDARY CONDITIONS (NEW)7 | | TABLE | 4-1: | ON-SITE STORAGE REQUIREMENTS15 | | TABLE | 4-2: | ICD TYPE15 | | | | | | FIGU | RES | | | FIGUR | E 1-1 SITE | E LOCATION3 | | | | | | 4.555 | | | | | ENDICE | S | | Α | | | | • | PRE-CC | DNSULTATION MEETING NOTES | | • | DESIGN | BRIEF BY IBI GROUP (EXCERPTS ATTACHED) | | В | | | | • | FIRE UN | NDERWRITERS SURVEY - FIRE FLOW CALCULATION | | FOR B | UILDING | i | | • | FIRE U | NDERWRITERS SURVEY - FIRE FLOW CALCULATION | | FOR P | ORTABL | E CLASSROOM | | • | WATER | DEMAND CALCULATION | | • | UPDAT | ED BOUNDARY CONDITION | | С | | | | • | STORM | SEWER DESIGN SHEET | | • | STORM | DRAINAGE AREA PLAN CO5 | | • | STORM | DRAINAGE AREA PLAN ROOF C06 | | • | FLOW (| CONTROL ROOF DRAINAGE DECLARATION (TO BE | | CONF | IRMED) | | | • | STORM | WATER MANAGEMENT CALCULATIONS | - DWG C03 GRADING PLAN - DWG C04 SERVICING PLAN D EROSION AND SEDIMENTATION CONTROL PLAN C07 Ε SUBMISSION CHECK LIST #### 1 GENERAL #### 1.1 EXECUTIVE SUMMARY WSP was retained by Architecture | 49 to provide servicing, grading and stormwater management design services for the proposed new Stittsville Ecole Elementarie School on a 2.89 ha site located at the northeast corner of Dagenham Street and Cope Drive, in the proposed CRT Lands Phase 1 subdivision development within the Fernbank Community. The construction of services and base course asphalt is complete on Cope Drive and Dagenham Street, on which the school property will front. All services for the school site will be available from Dagenham Street. The subjected development is bounded by the Phase 1 of the subdivision development. The future Phase 2 subdivision development is proposed south and west sides of the school site, and this is currently under construction. This report outlines findings and calculations pertaining to the servicing of the proposed building with a gross building area of 3,803 square metres. The proposed school building is a combination of one and two storey school building with gross floor area of 4,781 square metre and maximum building height will not be higher than 18 metres which is located at the southwest corner of the subjected site, northeast corner of the Cope Drive and Dagenham Street intersection. To the north of the proposed school building, there will be outdoor parking area. Once the school is going to expand, some of the green space will be converted for the future parking to the east. East of the school, there will be basketball court and portable classrooms. North of the school and basketball courts, there will be playground and practise football/soccer field. Since the proposed school and portable classrooms are located close to the Cope Drive and Dagenham Street R.O.W. These streets will be used as the fire route to service the school building and portable classrooms area. The future additional parking lot to the east of the proposed parking areas will be constructed at a later time. The current grading and servicing design have been provided to allow for the future site plan changes with minimal changes to grading and servicing modifications only within the areas that will be impacted by the future development. The surrounding neighbourhood is being developed by CRT Development Inc. with the IBI Group providing engineering design services. Information regarding the proposed municipal services was provided by IBI, as described in Design Brief – CRT Lands Phase 1 Fernbank Community, Project: 27970-5.2.2, Revised July 2017. Excerpts from the Design Brief are provided in Appendix A of this report. Currently the land proposed for the building abuts the collector road Cope Drive which is located to the south of the subject site. The natural topography of the property in the vicinity of the collector road slopes from east to west towards the Angel Heights. Currently the land is vacant and primarily grass covered. The total study area was considered to be 2.89 ha in size. It is part of blocks 313 and 314, Geographic City of Ottawa. Based on the topographic survey, the site is sloping from the northeast corner to the southwest corner and will be draining toward Cope Drive and Dagenham Street Intersection. The existing piped stormwater system within CRT phase 1 subdivision development conveys drainage to Stormwater Pond 5 then discharges to the existing Flewellyn Drain south of Fernbank Road. As per the CRT Land Phase 1 Design Brief by IBI Group, the following criteria apply: runoff from all storm events up to and including the 1:100 year event must be restricted to a calculated rate based on an imperviousness ratio of 0.50, 5 year simulated flow of 582 l/s and the ICD restriction flow of 801.37579.45 l/s. The subject site must provide sufficient storage to accommodate runoff from the 1:100 year event. Stormwater quality control
is not required for this site. Design of a drainage and stormwater management system in this development must be prepared in accordance with the following documents: - Sewer Design Guidelines, City of Ottawa, October 2012; - Stormwater Management Planning and Design Manual, Ministry of the Environment, March 2003; and - Stormwater Management Facility Design Guidelines, City of Ottawa, April 2012 This report was prepared utilizing servicing design criteria obtained from the City of Ottawa and outlines the design for water, sanitary wastewater, and stormwater facilities, including stormwater management. The format of this report matches that of the servicing study checklist found in Section 4 of the City of Ottawa's Servicing Study Guidelines for Development Applications, November 2009. The following municipal services are available at the north property line as recorded from drawings received from IBI Group: Cope Drive: - 1800 mm storm sewer, 250mm sanitary sewer and 203mm watermain. #### Dagenham Street: - 900 mm storm sewer stub, 200mm sanitary sewer stub and 203mm watermain stub (Designed and prepared for the subject site). - 975 mm storm sewer, 200mm sanitary sewer and 203mm watermain. #### It is proposed that: - On-site stormwater management systems, employing surface storage and roof storage will be provided to attenuate flow rates leaving the school site. Existing drainage patterns, previously established controlled flow rates and storm sewers will be maintained. #### 1.2 DATE AND REVISION NUMBER This version of the report is the initial issue, dated February 18, 2022. #### 1.3 LOCATION MAP AND PLAN The proposed institutional development is located at 700 Cope Drive, Stittsville, Ontario at the location shown in Figure 1-1 below. **Figure 1-1 Site Location** #### 1.4 ADHERENCE TO ZONING AND RELATED REQUIREMENTS The proposed property use will be in conformance with zoning and related requirements prior to approval and construction and is understood to be in conformance with current zoning. #### 1.5 PRE-CONSULTATION MEETINGS A pre-consultation meeting was held with the City of Ottawa on August 27, 2021. Notes from this meeting are provided in Appendix A. #### 1.6 HIGHER LEVEL STUDIES The review for servicing has been undertaken in conformance with, and utilizing information from, the following documents: - Ottawa Sewer Design Guidelines, Second Edition, Document SDG002, October 2012, City of Ottawa including: - Technical Bulletin ISDTB-2012-4 (20 June 2012) - Technical Bulletin ISDTB-2014-01 (05 February 2014) - Technical Bulletin PIEDTB-2016-01 (September 6, 2018) - Technical Bulletin ISDTB-2018-01 (21 March 2018) - Technical Bulletin ISDTB-2018-04 (27 June 2018) - Ottawa Design Guidelines Water Distribution, July 2010 (WDG001), including: - Technical Bulletin ISDTB-2014-02 (May 27, 2014) - Technical Bulletin ISTB-2018-02 (21 March 2018) - Stormwater Management Planning and Design Manual, Ontario Ministry of the Environment and Climate Change, March 2003 (SMPDM). - Design Brief CRT Land Phase 1 Fernbank Community, IBI Group, Project 27970-5.2.2, Revised July 2017. (Includes water, sanitary and storm servicing.) - Design Guidelines for Drinking-Water Systems, Ontario Ministry of the Environment and Climate Change, 2008 (GDWS). - Fire Underwriters Survey, Water Supply for Public Fire Protection (FUS), 1999. #### 1.7 STATEMENT OF OBJECTIVES AND SERVICING CRITERIA The objective of the site servicing is to meet the requirements for the proposed modification of the site while adhering to the stipulations of the applicable higher-level studies and City of Ottawa servicing design guidelines. #### 1.8 AVAILABLE EXISTING AND PROPOSED INFRASTRUCTURE Existing sanitary and storm sewers, and a watermain stubs have been provided from Dagenham Street to the west of frontage of the site. The sanitary sewer will extend from the existing stub to the proposed Elementary School. The storm sewer will be connected to the existing 900 mm stub, and flows from north to south. Water, sanitary and storm sewer stubs have already been provided to the property boundary during the time of construction of Dagenham Street. The works provided by the subdivision developer have already included the water valve and box at the property line, and all work within the right of way, excluding the driveway entrances. However, the water entry room is located at the back of the building not fronting to neither of Cope Drive or Dagenham Street, water service will be routed to the existing 203mm watermain along Cope Drive from the water entry room. Ultimately, the storm flows from Dagenham Street (servicing the school site) to the Cope Drive storm sewer are intended to be directed to a permanent stormwater management pond 5 that will provide quality and quantity treatment for some of the remaining undeveloped phases of the CRT subdivision, and including the school site. Quality control is not required on the school site, but quantity control is required to restrict the discharge for all events up to a 100 year event to the 5 year flow rate provided by IBI. Site access for vehicles will be provided from Dagenham Street. The driveways being provided are two-way entrances at the west end. ## 1.9 ENVIRONMENTALLY SIGNIFICANT AREAS, WATERCOURSES AND MUNICIPAL DRAINS There are no watercourses, municipal drains or environmentally significant areas on the site, but currently there are areas of environment significance on adjacent properties. The status of these areas will be changing as the area is developed. The building program proposed for the site is not subject to any restrictions associated with the surrounding lands. #### 1.10 CONCEPT LEVEL MASTER GRADING PLAN The existing and proposed grading are shown on Drawings C03 - Grading Plan. Existing grading was identified in a topographic survey and is noted in the background of Drawings C03. The proposed grading will be reviewed by the geotechnical engineer. The geotechnical investigation was completed in November 18, 2013 by Paterson Group. The grading along the site boundaries bordering CRT lands have been coordinated with CRT's engineering consultant. The site topographic survey, provides evidence of direction of overland flow of the site. Minor grade changes will be made to grades at the development perimeter for the proposed bus drop off lay-by location. #### 1.11 IMPACTS ON PRIVATE SERVICES There are no existing domestic private services (septic system and well) located on the site. There are no neighbouring properties using private services. #### 1.12 DEVELOPMENT PHASING No development phasing has been detailed for the site. The site plan does indicate possible future development of additional parking lots. The impervious area associated with the future development has been taken into account in the stormwater management calculations. The future hard surfaces take up a bit of the green space than the current condition, and therefore were conservatively used in the calculation of runoff. #### 1.13 GEOTECHNICAL SUTDY A geotechnical investigation report has been prepared by Paterson Group. (Report PG3093-1, November 18, 2013), and its recommendations has been taken into account in developing the engineering specifications. #### 1.14 DRAWING REQUIREMENT The engineering plans submitted for site plan approval will be in compliance with City requirements. #### 2 WATER DISTRIBUTION ## 2.1 CONSISTENCY WITH MASTER SERVICING STUDY AND AVAILABILITY OF PUBLIC INFRASTRUCTURE There is an existing 203mm diameter municipal watermain along Cope Drive and Dagenham Street providing water to the property. The new elementary school will be protected with a supervised automatic fire protection sprinkler system and will require a 203mm diameter water service. The fire department connection is located at the east of the 1 storey building fronting to Dagenham Street. It is 45m away from the existing municipal FH on Dagenham Street. No changes are required to the existing City water distribution system to allow servicing for this property. Two connections and an isolation valve in between will be made to the existing 203 diameter municipal watermain on Cope Drive from the proposed development site. The Dual 203mm diameter private watermain services connecting the existing 200mm municipal watermain will provide redundancy for the school building. The dual 203mm dia. water services will be extended to the building mechanical room. #### 2.2 SYSTEM CONSTRAINTS AND BOUNDARY CONDITIONS Boundary conditions have been provided by the City of Ottawa at two locations along the Trans Canada Trail 400mm watermain during the development of the CRT land subdivision. A fire flow of 225 l/s (13,500 l/min) was estimated for this institutional development from the hydraulic model provided by IBI Group. The IBI hydraulic modelling indicated the hydraulic pressure for different scenario conditions were shown below, based on fire flows and domestic demands estimated by IBI Group for the proposed institutional land. Table 2-1: Boundary Conditions (IBI Design Brief) | BOUNDARY CONDITIONS | | | | | | | |---------------------------|-------------------------|-------------------------|--|--|--|--| | SCENARIO | Head (m) @ Connection 1 | Head (m) @ Connection 2 | | | | | | Basic Day (MAX HGL) | 161.1 | 161.4 | | | | | | Peak Hour (MIN HGL) | 154.7 | 154.8 | | | | | | Max Day + Fire Flow (ICI) | 150.6 | 150.9 | | | | | Table 2-2: IBI Hydraulic Modelling Results | Hydraulic Modelling Results @ CLA-36 | | | | | | |--------------------------------------|--------------------------|--|--|--|--| | SCENARIO | Hydraulic Pressure (kPa) | | | | | | Basic Day (MAX HGL) | 525.7 | | | | | | Peak Hour (MIN HGL) | 458.8 | | | | | | Max Day + Fire Flow (ICI) | 280.8 | | | | | An updated boundary condition has also been provided by the City of Ottawa at the connection location along Cope Drive. A revised fire flow of 117 l/s (7,000 l/min) was estimated for the proposed
school with using the FUS calculation method. #### Table 2-3: Boundary Conditions (New) | BOUNDARY CONDITIONS AT COPE DRIVE | | | | | | |-----------------------------------|-------------------------|--|--|--|--| | SCENARIO | Head (m) @ Connection 1 | | | | | | Basic Day (MAX HGL) | 161.2 | | | | | | Peak Hour (MIN HGL) | 156.5 | | | | | | Max Day + Fire Flow (ICI) | 151.9 | | | | | #### 2.3 CONFIRMATION OF ADEQUATE DOMESTIC SUPPLY AND PRESSURE Water demands are based on Table 4.2 of the Ottawa Design Guidelines – Water Distribution. As previously noted, the development is considered as institutional development, consisting of classroom, gymnasium and kitchen. A water demand calculation sheet is included in Appendix B, and the total water demands are summarized as follows: | | WSP (2018 Bulletin) | IBI Group | |-------------|---------------------|-----------| | Average Day | 0.94 l/s | 1.67 l/s | | Maximum Day | 1.40 l/s | 2.50 l/s | | Peak Hour | 2.53 l/s | 4.50 l/s | The 2010 City of Ottawa Water Distribution Guidelines stated that the preferred practice for design of a new distribution system is to have normal operating pressures range between 345 kPa (50 psi) and 552 kPa (80 psi) under maximum daily flow conditions. Other pressure criteria identified in the guidelines are as follows: Minimum Pressure Minimum system pressure under peak hour demand conditions shall not be less than 276 kPa (40 psi) Fire Flow During the period of maximum day demand, the system pressure shall not be less than 140 kPa (20 psi) during a fire flow event. Maximum Pressure Maximum pressure at any point the distribution system shall not exceed 689 kPa (100 psi). In accordance with the Ontario Building/Plumbing Code, the maximum pressure should not exceed $552\,$ kPa (80 psi). Pressure reduction controls may be required for buildings where it is not possible/feasible to maintain the system pressure below 552 kPa. Water pressure at municipal connection check: Min. HGL @ Connection 1 - Pavement elevation = 156.5m - 104.40m = 52.10m = 510.80 kPa Water pressure at building connection (at average day) check: Max. HGL @ Connection 1 - Finished floor elevation = 161.2m - 107.78 = 53.42m = 523.74 kPa Water pressure at building connection (at max. hour demand) check: Min. HGL @ Connection 1 – Finished floor elevation = 156.5m-107.78m = 47.72m = 477.66 kPa Water pressure at building connection (at max. day + fire demand): (Max Day + Fire) HGL @ Connection 1 - Finished floor elevation = 151.9m-107.78m = 44.12m = 432.56 kPa The minimum water pressure inside the building at the connection is determined with the minimum HGL condition, resulting in a pressure of 477.66 kPa which exceed the minimum requirement of 276 kPa per the guidelines. #### 2.4 CONFIRMATION OF ADEQUATE FIRE FLOW PROTECTION The fire flow rate has been calculated using the Fire Underwriters Survey (FUS) method. The method takes into account the type of building construction, the building occupancy, the use of sprinklers and the exposures to adjacent structures. Assuming fire resistive construction and a fully supervised sprinkler system, a fire flow demand of 7,000 l/min for the new elementary school has been calculated. The fire flow rate of 4,000 l/min (67 l/s) is calculated for the future portable classrooms. Copy of the FUS calculations are included in Appendix B. The demand of 7,000 l/min can be delivered through two existing municipal fire hydrants. The existing two public hydrants are located at the west of the proposed building on Dagenham Street and south of the proposed building on Cope Drive. The one on Cope Drive is within 85 m of the FDC and is rated at 3800 l/min each. The one on Dagenham Street is within 45 m of the building FDC, and is rated at 5700 l/min. The two hydrants have a combined total of 9,500 l/min. The demand of 4,000 l/min from the portable classrooms can also be met through the combination of two existing public hydrants on Cope Drive. The two hydrants have a combined total of 9,500 l/min. The proposed building on site will be serviced by dual 203 mm services off the existing 203 mm watermain from Cope Drive. The services will run into the water entry room. The proposed building will be fully sprinklered and fire protection will be provided with the fire department Siamese connection within 45 m of the existing public fire hydrant from Dagenham Street. The Siamese connection is located on the west side of the building. The boundary condition for Maximum Day and Fire Flow results in a pressure of 432.56 kPa at the ground floor level. In the guidelines, a minimum residual pressure of 140 kPa must be maintained in the distribution system for a fire flow and maximum day event. As a pressure of 432.56 kPa is achieved, the fire flow requirement is exceeded. #### 2.5 CHECK OF HIGH PRESSURE High pressure is not a concern. The maximum water pressure inside the building at the connection is determined with the maximum HGL condition, resulting in a pressure of 523.74 kPa which is less than the 552 kPa threshold in the guideline in which pressure control is required. Based on this result, pressure control is not required for this building. #### 2.6 PHASING CONSTRAINTS No development phasing has been detailed for the site. The site plan does indicate possible future development of additional parking lots. The projected occupancy load has been taken into account in the fire demand and water demand calculations. No phasing constraints exist. #### 2.7 RELIABILITY REQUIREMENTS Two shut off valves are provided for the private watermain at the study boundary from Cope Drive. And two shut off valves are provided for the services connection before connecting to the building internal water system. Water can be supplied both sides of the Cope Drive, west and east and can be isolated. #### 2.8 NEED FOR PRESSURE ZONE BOUNDARY MODIFICATION There is no need for a pressure zone boundary modification. #### 2.9 CAPABILITY OF MAJOR INFRASTRUCTURE TO SUPPLY SUFFICIENT WATER The current infrastructure is capable of meeting the domestic demand based on City requirements and fire demand as determined by FUS requirements for the proposed building. #### 2.10 DESCRIPTION OF PROPOSED WATER DISTRIBUTION NETWORK A 203 mm private watermain looping is proposed to be provided into the proposed elementary school. The two 203 mm private water services will be merge inside the building before connecting to the water meter. No private hydrant is required for this site. #### 2.11 OFF-SITE REQUIREMENTS No off-site improvements to watermains, feedermains, pumping stations, or other water infrastructure are required to maintain existing conditions and service the adjacent developments. #### 2.12 CALCULATION OF WATER DEMANDS Water demands were calculated as described in Sections 2.3 and 2.4 above. #### 2.13 MODEL SCHEMATIC The water works consist dual building services, a model schematic is not required for this development. #### **3 WASTEWATER DISPOSAL** #### 3.1 DESIGN CRITERIA In accordance with the City of Ottawa's Sewer Design Guidelines, the following design criteria have been utilized in order to predict wastewater flows generated by the subject site and complete the sewer design; | • | Minimum Velocity | 0.6 m/s | |---|---------------------------------------|---------| | • | Maximum Velocity | 3.0 m/s | | • | Manning Roughness Coefficient | 0.013 | | • | Total est. hectares institutional use | 2.89 | Average sanitary flow for institutional use 28,000 L/Ha/day • Commercial/Institutional Peaking Factor 1.5 Infiltration Allowance (Total) Minimum Sewer Slopes – 200 mm diameter 0.33 L/Ha/s 0.32% The area of 2.89 ha represents the lot area of the new building and immediate surrounding area to the sides of the new building. This is the sanitary collection area that is being considered to contribute to the new 200mm sanitary service extending from the existing 200mm sanitary sewer stub provided at the east side of the Dagenham Street to the new building. #### 3.2 CONSISTENCY WITH MASTER SERVICING STUDY The outlet for the sanitary service from the proposed building is the 200 mm diameter municipal sewer on Dagenham Street. The Ottawa Sewer Design Guidelines provide estimates of sewage flows based on institutional development. The criteria to determine anticipated actual peak flow based on site used as described in Ottawa Sewer Design Guidelines Appendix 4-A are as follows; - Institutional 28000 L/Ha/day = 0.324 L/Ha/s - Peak flow = (0.324 L/Ha/s x 2.89 ha x 1.5 peaking factor) + 0.33 l/Ha/s x 2.89 ha = 2.36 L/s The on-site sanitary sewer network has been designed in accordance with 2.36 L/s as described above. #### 3.3 REVIEW OF SOIL CONDITIONS There are no specific local subsurface conditions that suggest the need for a higher extraneous flow allowance. #### 3.4 DESCRIPTION OF EXISTING SANITARY SEWER The outlet sanitary sewer is the existing 200 mm diameter sewer on Dagenham Street. This local sewer will outlet to a 1500 mm diameter sanitary trunk sewer located in Abbott Street and the Trans Canada Trails, then discharge to the Hazeldean Pump Station. #### 3.5 VERIFICATION OF AVAILABLE CAPACITY IN DOWNSTREAM SEWER The capacity of the downstream 200 mm diameter sewer at 0.35% slope is 19.42 l/s, which is adequate for the flow assumptions from the proposed site as noted above. This existing sewer was designed by IBI Group to service the proposed 2.89 ha of institutional land. #### 3.6 CALCULATIONS FOR NEW SANITARY SEWER The 200 mm diameter sanitary service from the sanitary monitoring manhole 101 to the building will have a slope of $1.0 \,\%$, and a capacity of $32.80 \,$ l/s, with a velocity of $1.04 \,$ m/s. The 200 mm diameter sanitary service from the sanitary monitoring manhole 101 to the existing sanitary manhole on Dagenham Street have a slope of 0.35%, and a capacity of $19.42 \,$ l/s with a velocity of $0.62 \,$ m/s. The servicing pipe capacity exceeds the estimated peak sanitary flow rate of
$2.36 \,$ L/s for the proposed development site. Please refer to sanitary sewer design sheet in Appendix C. #### 3.7 DESCRIPTION OF PROPOSED SEWER NETWORK The proposed sanitary sewer network on site will consist of a 200 mm diameter building service, and one new 1200 mm diameter manholes. #### 3.8 ENVIRONMENTAL CONSTRAINTS There are no previously identified environmental constraints that impact the sanitary servicing design in order to preserve the physical condition of watercourses, vegetation, or soil cover, or to manage water quantity or quality. #### 3.9 PUMPING REQUIREMENTS The proposed development will have no impact on existing pumping stations and will not require new pumping facilities. #### 3.10 FORCE-MAINS No force-mains are required specifically for this development. #### 3.11 EMERGENCY OVERFLOWS FROM SANITARY PUMPING STATIONS No pumping stations are required for this site, except as required internally for the plumbing design to service the lower area of the building. #### 3.12 SPECIAL CONSIDERATIONS There is no known need for special considerations for sanitary sewer design related to existing site conditions. #### 4 SITE STORM SERVICING #### 4.1 EXISTING CONDITION The subjected property is located within the Fernbank Community Development area east of Dagenham Street and north of Cope Drive. Most runoff from the institutional land is ultimately directed to a 1500 mm diameter trunk storm sewer which runs east to west along Cope Drive. The 1500 mm diameter storm sewer ultimately outlets to the stormwater management facility Pond 5. The available drainage outlet from the school site is the existing 900 mm diameter concrete storm sewer, located in the west side of the Dagenham Street, north of Cope Drive and Dagenham Street intersection. Based on the IBI Design Brief, drainage released from the site to the City storm sewer is limited to 579.45 l/s. Flow exceeding this amount up to the 100-year storm have to be retained on the site. Drainage in excess of the minor system capacity currently flows overland to the Cope Drive and Dagenham Street intersection. #### 4.2 ANALYSIS OF AVAILABLE CAPACITY IN PUBLIC INFRASTRUCTURE Using the Rational Method, with coefficient of 0.25 for pervious areas, 0.40 for playground, 0.75 for gravel areas and 0.9 for impervious areas, and a 10-minute time of concentration, results in an estimated 2-year flow of 124.69 l/s from this area. The receiving 900 mm diameter storm sewer has been designed with the capacity to accept 124.69 l/s from the school site. Capacity in the minor system is not a concern. #### 4.3 DRAINAGE DRAWING Drawing C04 shows the detail site sewer network. Drawings C03 provides proposed grading and drainage, and include existing grading information. Drawing C05 and C06 provides a post-construction drainage sub-area plan, including both site and roof information. Site sub-area information is also provided on the storm sewer design sheet attached in Appendix C. An overall grading plan and Servicing plan have also been attached to Appendix C for reference. #### 4.4 WATER QUANTITY CONTROL OBJECTIVE The water quantity objective for the site is to limit the flow release to 579.45 l/s. Excess flows above this limit for the school site up to those generated by the 100 year storm event from drainage on the school site are temporarily stored on site. No provision is required on the school's site to accommodate any flow from the adjacent lands. All flows exceeding the defined minor system capacity and on-site storage capability will enter the major system, with overflow to the City right of way, on the west and south boundaries of the site. The maximum overland runoff spill elevation for this site is 107.30, and two 240 and 290 mm dia. circular plate ICDs are proposed to be used on the outlet inside CBMH111 and CBMH117 to restrict the flow rate leaving the site to 495.38 l/s at 2.8 m head, based on the maximum spill elevation of 107.30. In theory, the runoff water will be detained on site up to the 100-yr rainfall event, and for those scenarios exceeding 100-yr rainfall event, the runoff water will be discharged offsite once all the available storage areas have reached their maximum capacities. The school site can provide a total of 143.95 m³ of surface storage volume, but the required storage for 100-yr will be only 126.03 m³. The ponded water will not reach the spill elevation under 100 year and lesser events. The site has more storage capacity than required as a result of the grading design. This will allow extra detention of water on the site during extreme events, and will reduce stress on the downstream stormwater management pond. If rain falls at a rate higher than the soccer field soil can absorb, then there will be surface ponding at the designated locations shown on the drawings. If the soccer field and landscaped areas allow for infiltration, the available surface storage volume will be further increased. In theory, the use of lower runoff coefficients for landscaped surfaces already accounts for a certain degree of absorption in these areas. #### 4.5 WATER QUALITY CONTROL OBJECTIVE The site is not required to achieve water quality objectives. Water quality objectives are achieved through downstream works as noted in the IBI Design Brief. #### 4.6 DESIGN CRITERIA The stormwater system was designed following the principles of dual drainage, making accommodation for both major and minor flow. Some of the key criteria include the following: Design Storm (minor system) 1:2 year return (Ottawa) Rational Method Sewer Sizing Initial Time of Concentration 10 minutes Runoff Coefficients Landscaped AreasC = 0.25Playground Mulch AreasC = 0.40Gravel AreasC = 0.75Asphalt/ConcreteC = 0.90Traditional RoofC = 0.90 Pipe VelocitiesMinimum Pipe Size250 mm diameter (200 mm CB Leads and service pipes) #### 4.7 PROPOSED MINOR SYSTEM The detailed design for this site will maintain the existing storm sewer network to Dagenham Street and Cope Drive intersection of the development site. The drainage system consists of a series of manholes, catchbasins and storm sewers leading to the outlet manhole STMH118 at the west of the site. All drainage areas on the site are collected in the site piped drainage system. It is also customary for larger buildings to be provided with piped storm services for roof drainage. There are no downspouts proposed. Separate outlet pipes are provided for foundation drains and roof drains, and therefore roof drainage will not negatively impact the foundation. The storm services are connected to the storm sewer downstream of CBMH111 and CBMH117 which is downstream of the controlled flow point, ensuring an unobstructed flow for these areas. Using the above noted criteria, the existing on-site storm sewers were sized accordingly. A detailed storm sewer design sheet and the associated post development storm sewer drainage area plan are included in Appendix C. #### 4.8 STORMWATER MANAGEMENT The subject site will be limited to a release rate of 579.45 l/s established by IBI Group, this will be achieved through the inlet control devices at the downstream of CBMH111 and CBMH117. Flows generated that are in excess of the site's allowable release rate will be stored on site in surface storage areas or by the use of roof top storage and gradually released into the minor system so as not to exceed the site's allocation. The maximum surface retention depth of the developed areas will be limited to 250mm during a 1:100 year event. Maximum ponding levels are 250mm prior to spill over. The maximum ponding elevation is 107.30m, which is well below the building ground floor level of 107.78m. No surface ponding will occur during a 2 year event, and only minimal ponding will occur during a 5 year event. Overland flow routes will be provided in the grading to permit emergency overland flow from the site. The overflow routes will eliminate any increase in ponding depth for events exceeding 100 years. At certain locations within the site, the opportunity to store runoff is limited due to grading constraints and building geometry. These locations are located at the perimeter of the site where it is necessary to tie into public boulevards, and it is not always feasible to capture or store stormwater runoff. The site grading and ponding has been designed to control water generated during the 1:100-year event, with no overflow leaving the site at this control level. Please refer to the SWM Calculations in Appendix C. #### 4.9 INLET CONTROLS According the IBI Design Brief, the maximum allowable release rate for the 2.89 Ha site is 579.45 L/s. As noted in Section 4.8, a small portion of the site will be left to discharge to the right of way at an uncontrolled rate. ``` Q (uncontrolled) = 2.78 \times C \times I_{100yr} \times A where: C = 0.32 (Weighted average post-development C) I_{100yr} = Intensity of 100-year storm event (mm/hr) = 1735.688/((Tc+6.014)^{\Lambda}(0.82)); where T_c = 10 minutes A = Area = 0.049 Ha ``` Therefore, the uncontrolled release to the right of way can be determined as: ``` = 9.29 L/s ``` The maximum allowable release rate from the remainder of the site can then be determined as: ``` Q (max allowable) = Q (total allowable) - Q (uncontrolled) = 579.45\ L/s - 9.29\ L/s = 570.16\ L/s ``` Based on the flow allowance at the outlet location, CBMH111 and CBMH117, inlet control devices (ICD) were chosen in the design. The design of the inlet control device is unique to the associated drainage areas and is determined based on a number of factors, including hydraulic head and allowable release rate. The inlet control device will be designed according to the manufacturer's design charts. The restrictions will cause the on-site catchbasins and manholes to surcharge, generating surface ponding in the parking and landscaped areas. Ponding locations and elevations are summarized on the drainage areas plan C05. #### 4.10 ON-SITE DETENTION Any excess storm water up to the
100-year event is to be stored on-site in order to not surcharge the downstream municipal storm sewer system. Detention will be provided in parking and landscape areas and building rooftops, where feasible. As previously noted, the volume of storage is dependent on the characteristics of each individual drainage area. It should be noted that greater than 0.30 m of vertical separation has been provided from all maximum ponding elevations to lowest building openings. The following Table summarizes the on site storage requirements during the 1:100-year events. Table 4-1: On-Site Storage Requirements | Total | Location | Controlled/ | Runoff Co | oefficient | Outlet | Total | 100-Year C | ontrolled | |--------------|------------------|--------------|---------------|------------|----------|-----------------------------|--------------------------|-----------------------------| | Area
(Ha) | | Uncontrolled | 2 & 5
Year | 100 Year | Location | Storage
Provided
(m³) | Restricted
Flow (L/s) | Required
Storage
(m³) | | 1.271 | Surface | Controlled | 0.51 | 0.63 | CBMH111 | 67.61 | 293.48 | 62.40 | | 1.193 | Surface | Controlled | 0.45 | 0.52 | CBMH117 | 76.34 | 201.90 | 63.63 | | 0.375 | Building
Roof | Controlled | 0.90 | 0.99 | STMH118 | 140.69 | 23.94 | 128.68 | | 0.018 | Swale | Uncontrolled | 0.29 | 0.35 | DICB106 | 0.26 | 3.13 | 0 | | 0.031 | Swale | Uncontrolled | 0.33 | 0.40 | DICB112 | 1.28 | 6.16 | 0 | | TOTAL | | | | | | 284.64 | 528.61 | 254.70 | In all instances the required storage is met with surface ponds which retain the stormwater and discharge at the restricted flow rate to the sewer system. Refer to the grading plan for storage information. The following Table summarizes the inlet control devices to be utilized on the site. ICD pre-set flow curves can be found in Appendix C. Table 4-2: ICD Type | Structure | PROPOSED ICD | | | | | | |-----------|--------------|------------|--------------------------|-------------------|--|--| | ID | 100-YR Head | Flow (L/s) | Туре | OUTLET DIA. | | | | СВМН111 | 2.80 | 293.48 | 290 mm Dia. Circular ICD | 450 mm Dia. CONC. | | | | CBMH117 | 2.82 | 201.90 | 240 mm Dia. Circular ICD | 375 mm Dia. PVC | | | As demonstrated above, the site uses new inlet control deviceS to restrict the 100 year storm event to the criteria approved by the City of Ottawa. Restricted stormwater will be contained onsite by utilizing surface ponding storage. In the 100 year event, there will be no overflow off-site from restricted areas. The sum of restrictions on the site is 528.61 L/s, which is less than the maximum allowable release of 579.45 L/s noted in Section 4.9. #### 4.11 WATERCOURSES The minor flow will be directed to Pond 5 and ultimately directed to the Flewellyn Drain, south of Fernbank Road. #### 4.12 PRE AND POST DEVELOPMENT PEAK FLOW RATES Pre and post development peak flow rates for the impacted areas of the site have been noted in storm sewer design sheet. #### 4.13 DIVERSION OF DRAINAGE CATCHMENT AREAS There will be no diversion of existing drainage catchment areas arising from the proposed work described in this report. #### 4.14 DOWNSTREAM CAPACITY WHERE QUANTITY CONTROL IS NOT PROPOSED This checklist item is not applicable to this development as quantity control is provided. #### 4.15 IMPACTS TO RECEIVING WATERCOURSES No significant negative impact is anticipated to downstream receiving watercourses due to proposed quantity and quality control measures, the separation of the site from the eventual receiving watercourse as a result of discharge through City owned sewers, and the planned stormwater management pond 5 on the north side of Fernbank Road. #### 4.16 MUNICIPAL DRAINS AND RELATED APPROVALS There are no municipal drains on the site or associated with the drainage from the site. #### 4.17 MEANS OF CONVEYANCE AND STORAGE CAPACITY The means of flow conveyance and storage capacity are described in Sections 4.7, 4.8, 4.9 and 4.10 above. #### 4.18 HYDRAULIC ANALYSIS Hydraulic calculations for the site storm sewers are provided in the storm sewer design sheet. #### 4.19 IDENTIFICATION OF FLOODPLAINS There are no designated floodplains on the site of this development. #### 4.20 FILL CONSTRAINTS There are no known fill constraints applicable to this site related to any floodplain. The site is generally being raised higher relative to existing conditions. No fill constraints related to soil conditions are anticipated, as confirmed in the geotechnical report. #### 5 SEDIMENT AND EROSION CONTROL #### 5.1 GENERAL During construction, existing storm sewer system can be exposed to sediment loadings. A number of construction techniques designed to reduce unnecessary construction sediment loadings will be used including; - Filter cloths will remain on open surface structures such as manholes and catchbasins until these structures are commissioned and put into use; - Installation of silt fence, where applicable, around the perimeter of the proposed work area. - The installation of straw bales within existing drainage features surround the site; - Bulkhead barriers will be installed in the outlet pipes; During construction of the services, any trench dewatering using pumps will be fitted with a "filter sock." Thus, any pumped groundwater will be filtered prior to release to the existing surface runoff. The contractor will inspect and maintain the filter sock as needed including sediment removal and disposal. All catchbasins, and to a lesser degree, manholes, convey surface water to sewers. Consequently, until the surrounding surface has been completed, these structures will be covered to prevent sediment from entering the minor storm sewer system. These measures will stay in place and be maintained during construction and build-out until it is appropriate to remove them. During construction of any development both imported and native soils are placed in stockpiles. Mitigative measures and proper management to prevent these materials entering the sewer system are needed. During construction of the deeper watermains and sewers, imported granular bedding materials are temporarily stockpiled on site. These materials are however quickly used up and generally placed before any catchbasins are installed. Refer to the Erosion and Sedimentation Control Plan C12 provided in Appendix D. #### **6 APPROVAL AND PERMIT REQUIREMENTS** #### 6.1 GENERAL The proposed development is subject to site plan approval and building permit approval. No approvals related to municipal drains are required. No permits or approvals are anticipated to be required from the Ontario Ministry of Transportation, National Capital Commission, Parks Canada, Public Works and Government Services Canada, or any other provincial or federal regulatory agency. #### 7 CONCLUSION CHECKLIST #### 7.1 CONCLUSIONS AND RECOMMENDATIONS It is concluded that the proposed development can meet all provided servicing constraints and associated requirements. It is recommended that this report be submitted to the City of Ottawa in support of the application for site plan approval. #### 7.2 COMMENTS RECEIVED FROM REVIEW AGENCIES This is a first submission, no comment is available. ## **APPENDIX** # A - PRE-CONSULTATION MEETING NOTES - DESIGN BRIEF BY IBI GROUP (EXCERPTS ATTACHED) August 27, 2021 #### **Pre-Consultation Meeting Notes** Site Address: 755 Cope Drive Location: Virtual - Microsoft Teams Meeting Date: August 27, 2021 Attendees: Colette Gorni - Planner, City of Ottawa Mark Young - Planner (Urban Design), City of Ottawa Jessica Valic – Project Manager (Infrastructure), City of Ottawa Matthew Hayley – Planner (Environmental), City of Ottawa Adrian Van Wyk – Planner (Heritage), City of Ottawa Jeffrey Ren – Co-op Student, City of Ottawa Claire Lee – Co-op Student, City of Ottawa Justyna Garbos – WSP Jill MacDonald – WSP Winston Yang – WSP Jie Chen – Architecture49 Marc Henri Gauthier - Architecture 49 Marc-André Hogue - CEPEO Regrets: Kersten Nitsche – Planner (Parks), City of Ottawa Molly Smith - Planner, City of Ottawa Mark Richardson – Planning Forester, City of Ottawa Josiane Gervais – Project Manager (Transportation), City of Ottawa Eric Lalande – RVCA #### Applicant Comments: 1. The applicant is proposing to construct a two-storey Conseil des écoles publiques de l'Est de l'Ontario (CEPEO) elementary school and daycare - The school is an 'L' shape with a height of two storeys along Cope Drive and one storey along Dagenham Street; the main entrance is located on Dagenham Street. - 3. Lay-bys are proposed along both frontages and 61 parking spaces are proposed in a parking lot off of Dagenham Street; both Drive lay-bys will serve school buses and minibuses while a small section of the Dagenham Street lay-by will serve the parents who are dropping off children at the daycare - 4. A gated access is proposed off of Cope Drive to access the garbage enclosure; fencing will surround the entire property - 5. The initial pre-application consultation submission showed fewer details; new details added to the site plan presented include additional paved areas and August 27, 2021 pathways, the garbage enclosure has been moved, and the lay-by along Dagenham Street was elongated #### Policies & Designations - 1. The site is designation 'General Urban Area' on Schedule B of the Official Plan. - 2. The site is zoned I1B/R1Z (Minor Institutional, Subzone B / First Density Residential, Subzone Z) - a. 'School' is a permitted use of the I1 Zone. - b. I1B Subzone sets out the performance standards for the site in Table 107B. - 3. Parking is to be provided at the rates specified for Area C on Schedule 1A: - a. School, other 1.5 spaces per classroom (includes portables) - b. Daycare 2 per 100 m² of gross floor area - 4. Bicycle parking is to be provided at the rates specified in Table 111A of the Zoning By-law: - a. 1 per 100 m² of gross floor area - 5. Dagengham Street is considered the front lot line. - 6. Please ensure that the
submission takes into account appropriate Official Plan policies that are applicable at the time of the submission of the application - a. If a complete application is received by no later than the day before the new Official Plan is adopted (October 2021), it will be processed on the basis of existing Official Plan policy provided it is consistent with the 2020 Provincial Policy Statement - b. Applications received after the day before the new Official Plan is adopted (October 2021), will be reviewed and evaluated on the basis of the policies of the new Official Plan, which is consistent with the 2020 Provincial Policy Statement #### Planning - The proposed development is subject to Site Plan Control, and will require Complex (Manager Approval, Public Consultation) application. Application form, timeline and fees can be found here. - 2. Please explore further opportunities for tree planting throughout the site. - 3. Refer to Section 110(c) of the Zoning By-law for provisions related to outdoor refuse collection and loading areas. August 27, 2021 4. Provide more information on how snow storage will be handled. If being stored on site, please show snow storage areas on the plan. - 5. For your reference, a similar school site along Cope Drive, the OCDSB elementary school located at 480 Cope Drive, was recently approved; approved plans and studies can be found here. - 6. Please ensure that all land uses are considered when calculating parking requirements. It does not appear that the proposed daycare use was included in the calculations. - 7. Pursuant to Section 14(f) of Parkland Dedication By-law 2009-95, as amended, the proposed development at 755 Cope Drive is not required to convey parkland or money in-lieu of parkland. - 8. Instructions for application submission during COVID-19 can be found here. - 9. You are encouraged to contact the Ward Councillor, Councillor Glen Gower, at <u>Glen.Gower@ottawa.ca</u> about the proposal. Please contact Colette Gorni, Planner (File Lead), at Colette.Gorni@ottawa.ca if you have any questions or require additional information relating to the comments above. #### Urban Design - 1. A design brief is required. Please see attached terms of reference. - 2. The lay-bys need to be designed to work with the planned cross sections for both the local and collector roadways. The sidewalks should remain within the right of way. Consideration should be given to placing the more significant lay-by on Cope Drive. - 3. Tree planting should be provided along all four sides of the site. - 4. Landscape buffering should be provided between any parking areas and the public realm and residential land uses. - 5. Re-orientation of the soccer field should be considered. - 6. There is a public walkway block located in the north east corner of the site. A pathway connection from the school to this block should be provided. Please contact Mark Young, Planner (Urban Design), at Mark.Young@ottawa.ca if you have any questions or require additional information relating to the comments above. #### **Engineering** #### General - 1. This development falls under the requirements set out in the **Fernbank Master Servicing Study**/Community Design Plan. - 2. This parcel was identified as Block 649 of the Phase 1 CRT Lands. August 27, 2021 #### Infrastructure #### Water: - Available Watermain Existing 203mm (PVC) stubs are available on Cope Dr and Dagenham St (please use one of these existing stubs for water service connection). - 4. Boundary Condition Request prior to first submission. Contact assigned City Infrastructure Project Manager with the following information: - a. Location of service(s) - b. Type of development - c. Fire flow (per FUS method include FUS calculation sheet with boundary condition request – boundary conditions will not be requested without fire flow calculations) - d. Average Daily Demand (I/s) - e. Maximum Hourly Demand (I/s) - f. Maximum Daily Demand (I/s) #### Sanitary: 5. Available Sanitary Sewer – Existing 200mm (PVC) stubs are available on Cope Dr and Dagenham St (please use one of these existing stubs for sanitary service connection). #### Storm: - 6. Available Storm Sewer Existing stubs are available on Cope Dr and Dagenham St (please use one of these existing stubs for sanitary service) connection: - a. Cope Dr stub 900mm (Conc) - b. Dagenham St stub Size unknown Connects to 525mm (Conc) storm main - 7. Stormwater Management - a. Quantity Control: - i. Refer to Fernbank MSS for Stormwater Management measures applicable to this site - ii. Control to the 5-year storm event - iii. If underground/inline stormwater storage is proposed, an average release rate equal to 50% of the determined peak allowable rate August 27, 2021 must be used. Otherwise, disregard the underground/inline storage as available storage or provide modeling to support the proposed design. The reasoning for this restriction is that the discharge rate at full storage is not representative of the discharge rate for more frequent storm events. Halving the discharge rate compensates for the inaccuracies of the modified rational method when underground storage is used. - iv. Please note that the minimum orifice dia. for a plug style ICD is 83mm and the minimum flow rate from a vortex ICD is 6 L/s in order to reduce the likelihood of plugging. - v. Provide both pre and post development stormwater management plans, showing individual drainage areas and their respective coefficient. - vi. If roof storage is proposed, please provide a roof drainage plan showing the 5- and 100-year storm ponding levels. Include the roof drain type, opening settings, and flow rate. - vii. Per Technical Bulletin PIEDTB-2016-01 section 8.3.11.1 there shall be no surface ponding on private parking areas during the 2-year storm rainfall event. - viii. Provide any SW modelling files with the first submission. - Quality Control: Please consult with the Rideau Valley Conservation Authority (RVCA) regarding water quality control restrictions for the subject site. Include correspondence in servicing report. - c. Ministry of Environment, Conservation, and Parks (MECP): Designer to determine if approval for sewage works under Section 53 of OWRA is required and to determine the type of application required. Reviews will be done through Transfer of Review or Direct Submission. #### Phase 1 & 2 Environmental Site Assessments - 8. Phase I ESA is a requirement; Phase II ESA requirement will be dependent on the result of the Phase I ESA. - 9. As per the Ministry of the Environment, Guide for Completing Phase One Environmental Site Assessments under Ontario Regulation 153/04, dated June 2011, the date the last work was done on the records review, interviews and site reconnaissance for a Phase I Environmental Site Assessment (ESA) can be no more than 18 months old or an update is required. - 10. Phase I ESA must include Ecolog ERIS Report. August 27, 2021 11. Phase I ESAs and Phase II ESAs must conform to clause 4.8.4 of the Official Plan that requires that development applications conform to Ontario Regulation 153/04. #### **Geotechnical Investigation** - 12. Geotechnical Report is required for development proposal. - 13. The Geotechnical Report shall also speak to any proposed underground stormwater storage and provide confirmation that the site subsurface characteristics (groundwater table elevation, soil type) are appropriate. Of note, the high groundwater table must be 1.0m above the bottom of any proposed storage system per MECP requirements. #### **Exterior Lighting** 14. If exterior light fixtures are proposed, provide a plan showing the location of all exterior fixtures and include a table providing fixture details (make, model, mounting heights). All external light fixtures must meet the criteria for full cut-off classification as recognized by the Illuminating Engineering Society of North America (IESNA or IES), resulting in minimal light spillage onto adjacent properties (as a guideline, 0.5 fc is normally the maximum allowable spillage). Provide certification letter from a relevant Professional Engineer. #### **General Information** - 15. The Servicing Study Guidelines for Development Applications are available at the following address: https://ottawa.ca/en/city-hall/planning-and-development/information-developers/development-application-review-process/development-application-submission/guide-preparing-studies-and-plans#servicing-study-guidelines-development-applications - 16. Servicing and site works shall be in accordance with the following documents: - a. Ottawa Sewer Design Guidelines (October 2012) (including subsequent Technical Bulletins) - b. Ottawa Design Guidelines Water Distribution (2010) (including subsequent Technical Bulletins) - c. Geotechnical Investigation and Reporting Guidelines for Development Applications in the City of Ottawa (2007) - d. Ottawa Standard Tender Documents (latest version) - 17. Record drawings and utility plans are also available for purchase from the City (Contact the City's Information Centre by email at lnformationCentre@ottawa.ca or by phone at (613) 580-2424 x.44455). August 27, 2021 18. Any proposed work in utility easements requires written consent of easement owner. - 19. All submitted report and plan pdf documents to be flattened and unsecured to allow for editing and ease of use. - 20. All documents prepared by Engineers shall be signed and dated on the seal. Please contact Jessica Valic, Infrastructure Project Manager, at Jessica.Valic@ottawa.ca if you have any questions or require additional information relating to the comments above. #### **Environmental Planning** - 1. Bird-safe Design: Given the scale of the proposal (mid to high rise) the proposal will need to review and incorporate bird safe design elements. Some of the risk factors include glass and related design traps such as corner glass and flythrough conditions, ventilation grates and open pipes, landscaping, light pollution. More guidance and solutions are available in the guidelines which can be found here: <a href="https://ottawa.ca/en/planning-development-and-construction/developing-property/development-application-review-process/development-application-submission/guide-preparing-studies-and-plans - 2. Landscaping: The OP Section 4.9 has some policies addressing energy conservation through design in particular for this site, I would recommend considering shading of outdoor space to combat urban heat island and to provide some opportunities for shaded outdoor amenities like outdoor classrooms and limiting the use of black asphalt. Try to maximize tree planting to provide shade. - 3. Street trees are also important and should be provided. - 4. Location of the playgrounds adjacent to drop-offs is not ideal due to vehicle idling and air pollution. Please look at this and find options to either increase separation between the two or mitigate. More information available from Birgit Isernhagen birgit.isernhagen@ottawa.ca Please contact Matthew Hayley, Environmental Planner, at Matthew.Hayley@ottawa.ca if you have any questions or require additional information relating to the comments above. #### Transportation - 1. Follow Traffic Impact Assessment Guidelines - As per Screening Form, a TIA is required. Please submit the Scoping Report at your earliest convenience to <u>Josiane.Gervais@ottawa.ca</u> File Number: PC2021-0292 August 27, 2021 Start this process asap. The application will not be deemed complete until the submission of the draft step 1-4, including the functional draft RMA package and/or monitoring report (if applicable). - The lay-by areas proposed would be reviewed along with the TIA. Note that the lay-bys would trigger an RMA, as such request base mapping as soon as possible. Contact Engineering Services (https://ottawa.ca/en/city-hall/planning-and-development/engineering-services). - 2. Corner clearances should follow minimum distances set out within TAC Figure 8.8.2. - 3. Sidewalks are to be provided along property frontage on Dagenham St and Cope Dr and shown on the site plan. #### 4. On site plan: - Show all details of the roads abutting the site up to and including the opposite curb; include such items as pavement markings, accesses and/or sidewalks. - Turning movement diagrams required for all accesses showing the largest vehicle to access/egress the site. - Turning movement diagrams required for internal movements (loading areas, garbage). - Show all curb radii measurements; ensure that all curb radii are reduced as much as possible - Show dimensions for site elements (i.e. lane/aisle widths, access width and throat length, parking stalls, sidewalks, pedestrian pathways, etc.) - Provide dedicated pedestrian pathways from the parking areas to the building. - Sidewalk is to be continuous across access as per City Specification 7.1. - Ensure all crosswalks located internally on the site provide a TWSI at the depressed curb, per requirements of the Integrated Accessibility Standards Regulation under the AODA. - Grey out any area that will not be impacted by this application. - 5. As the proposed site is institutional and for general public use, AODA legislation applies. Consider using the City's Accessibility Design Standards as a reference for AODA requirements. - 6. Noise Impact Studies required for the following: - Road - Stationary, if there will be any exposed mechanical equipment due to the proximity to neighboring noise sensitive land uses. File Number: PC2021-0292 August 27, 2021 Please contact Josiane Gervais, Transportation Project Manager, at Josiane.Gervais@ottawa.ca if you have any questions or require additional information relating to the comments above. #### <u>Forestry</u> A Tree Conservation Report (TCR) is required if there any trees greater than 10cm in diameter located on the site. If so, please refer the below requirements. #### **TCR Requirements** - 1. A Tree Conservation Report (TCR) must be supplied for review along with the suite of other plans/reports required by the City - a. An approved TCR is a requirement of Site Plan approval. - b. The TCR may be combined with eh LP provided all information is supplied - 2. As of January 1 2021, any removal of privately-owned trees 10cm or larger in diameter, or publicly (City) owned trees of any diameter requires a tree permit issued under the Tree Protection Bylaw (Bylaw 2020 340); the permit will be based on an approved TCR and made available at or near plan approval. - 3. The Planning Forester from Planning and Growth Management as well as foresters from Forestry Services will review the submitted TCR - a. If tree removal is required, both municipal and privately-owned trees will be addressed in a single permit issued through the Planning Forester - b. Compensation may be required for city owned trees if so, it will need to be paid prior to the release of the tree permit - 4. The TCR must list all trees on site, as well as off-site trees if the CRZ extends into the developed area, by species, diameter and health condition - 5. Please identify trees by ownership private onsite, private on adjoining site, city owned, co-owned (trees on a property line) - 6. The TCR must list all trees on adjacent sites if they have a critical root zone that extends onto the development site - 7. If trees are to be removed, the TCR must clearly show where they are, and document the reason they cannot be retained - 8. All retained trees must be shown and all retained trees within the area impacted by the development process must be protected as per City guidelines available at Tree Protection Specification or by searching Ottawa.ca - a. The location of tree protection fencing must be shown on a plan File Number: PC2021-0292 August 27, 2021 b. Show the critical root zone of the retained trees - c. If excavation will occur within the critical root zone, please show the limits of excavation - The City encourages the retention of healthy trees; if possible, please seek opportunities for retention of trees that will contribute to the design/function of the site. For more information on the process or help with tree retention options, contact Mark Richardson mark.richardson@ottawa.ca or on City of Ottawa #### **RVCA** The RVCA has no concerns. The only comment is as part of the stormwater report provide confirmation that the site will tie into the downstream stormwater facility and will achieve water quality protection through downstream facilities prior to outletting to a natural watercourse. #### Next Steps Please refer to the links to <u>Guide to preparing studies and plans</u> and <u>fees</u> for further information. Additional information is available related to <u>building permits</u>, <u>development charges</u>, and the <u>Accessibility Design Standards</u>. Be aware that other fees and permits may be required, outside of the development review process. You may obtain background drawings by contacting <u>informationcentre@ottawa.ca</u>. These pre-con comments are valid for one year. If you submit a development application(s) after this time, you may be required to meet for another pre-consultation meeting and/or the submission requirements may change. You are as well encouraged to contact us for a follow-up meeting if the plan/concept will be further refined. Please do not hesitate to Colette Gorni, at Colette.Gorni@ottawa.ca, if you have any questions. REPORT PROJECT: 27970-5.2.2 ## DESIGN BRIEF CRT LANDS PHASE 1 FERNBANK COMMUNITY | | | | | | | | | 5 YEAR | | |----------------|--------------|----------------|----------------|--------------|---------------|--------------|-----------------------------|---|---| | AREA ID | AREA
(HA) | МН | D/S
SEGMENT | IMP
RATIO | LENGTH
(M) | WIDTH
(M) | AVAIL.
STORAGE
(CU-M) | SIMULATED
FLOW (L/S)
07-PH1-
5CH.OUT & | ICD
RESTRICTION
(L/S) | | | | | | | | | (00) | 07-PH1A- | (20) | | S177 | 0.14 | MH177 | RG | 0.79 | 49 | 98 | N/A | <i>5CH.OUT</i> 29 | 9.4 ⁽¹⁾ | | S177 | 0.14 | MH176 | S175 | 0.79 | 96 | 96 | N/A | 29 | 7.62 ⁽¹⁾ | | INST2 | 6.57 | MH176 | S175 | 0.79 | 739 | 1478 | 618 ⁽²⁾ | 822 | 801.37 | | S175 | 0.42 | MH175 | S174 | 0.79 | 109 | 218 | 9.23 | 82 | 118.66 ⁽⁴⁾ | | S174 | 0.25 | MH174 | S173 | 0.79 | 68 | 136 | 14.44 | 51 | 57.18 ⁽⁴⁾ | | S173 | 0.75 | MH173 | S172 | 0.79 | 80 | 160 | 14.78 | 140 | 156.12 ⁽⁴⁾ | | INST1 | 2.88 | MH172 | S172 | 0.86 | 324 | 648 | 326(2) | 582 | 579.45 | | S172 | 0.23 | MH172 | PH2 | 0.79 | 65 | 130 | 18.32 | 47 | 52.88 ⁽⁴⁾ | | S135A | 0.14 | MH135 | S135B | 0.79 | 75 | 75 | N/A | 29 | 16.77 ⁽¹⁾ | | S135B | 0.12 | MH135 | S134A | 0.79 | 81 | 81 | $0.95^{(6)}$ | 23 | 46.36(4) | | S134C | 0.06 | MH134 | S134A | 0.79 | 60 | 60 | N/A | 13 | 9.26 ⁽¹⁾ | | S136A | 0.11 | MH136A | S134B | 0.79 | 82 | 82 | N/A | 23 | 14.42 ⁽¹⁾ | | S134B | 0.14 | MH134 | S134A | 0.79 | 77 | 77 | N/A | 27 | 22.21 ⁽¹⁾ | | R151A | 0.18 | MH151A | R134 | 0.50 | 48 | 96 | N/A | 24.17 | 24.17 | | R134 | 0.21 | MH134 | S134A | 0.50 | 56 | 112 | N/A | 28.2 | 28.2 | | S134A | 0.19 | MH134 | S140 | 0.79 | 58 | 116 | 5.87 | 35 | 75.86
⁽⁴⁾ | | S151A
S150A | 0.1 | MH151A | S150A | 0.79 | 80 | 80 | N/A | 21 | 13.53 ⁽¹⁾ | | | 0.28 | MH150
MH150 | S140
S140 | 0.79
0.79 | 74
22 | 148
22 | N/A
0.40 ⁽⁶⁾ | 54
8 | 35.75 ⁽¹⁾
9.17 ⁽⁴⁾ | | S150B
R125B | 0.04 | MH125 | R140 | 0.79 | 47 | 94 | 0.40(°) | 25.39 | 25.39 | | R140 | 0.19 | MH140 | S140 | 0.50 | 50 | 100 | N/A
N/A | 25.39 | 25.39 | | S140 | 0.21 | MH140 | S140
S124 | 0.30 | 78 | 156 | 17.74 | 50 | 104.9 ⁽⁴⁾ | | S140
S125 | 0.23 | MH125 | S124
S124 | 0.79 | 103 | 206 | 19.83 | 80 | 88.89 ⁽⁴⁾ | | R131 | 0.39 | MH131 | R130A | 0.79 | 51 | 102 | N/A | 26.78 | 26.78 | | R130A | 0.16 | MH130 | R130B | 0.50 | 39 | 78 | N/A | 21.36 | 21.36 | | R130B | 0.17 | MH130 | S130 | 0.50 | 38 | 76 | N/A | 22.55 | 22.55 | | S124 | 0.26 | MH124 | S180A | 0.79 | 69 | 138 | 15.52 | 53 | 59.47 ⁽⁴⁾ | | S130 | 0.35 | MH130 | S180A | 0.79 | 100 | 200 | 15.27 | 72 | 80.28 ⁽⁴⁾ | | R125A | 0.16 | MH125 | R124B | 0.50 | 78 | 78 | N/A | 21.33 | 21.33 | | R124B | 0.16 | MH124 | S180A | 0.50 | 86 | 86 | N/A | 21.47 | 21.47 | | R180A | 0.09 | MH180 | R181 | 0.50 | 43 | 43 | N/A | 12 | 12 | | S180A | 0.19 | MH180 | S180B | 0.79 | 65 | 65 | 9.97 | 37 | 103.71 ⁽³⁾ | | R181 | 0.09 | MH181 | S181 | 0.50 | 43 | 43 | N/A | 12 | 12 | | S180B | 0.18 | MH180 | S181 | 0.79 | 65 | 65 | 10.67 | 36 | 101.83 ⁽³⁾ | | S181 | 0.14 | MH181 | PH2 | 0.79 | 69 | 138 | 30.43 | 30 | 93.49 ⁽³⁾ | | S170A | 0.27 | MH170 | S171 | 0.79 | 75 | 150 | 17.58 | 55 | 61.9 ⁽³⁾ | | RES3A | 3.26 | MH170 | S171 | 0.66 | 367 | 734 | 81.50 ⁽⁷⁾ | 522 | 583 | | S171 | 0.26 | MH171 | PH2 | 0.79 | 74 | 148 | 29.26 | 54 | 259.83 ⁽³⁾ | | PARK1 | 1.27 | MH132 | S132 | 0.00 | 143 | 286 | N/A | 29.66 | 29.66 | | R112A | 0.12 | MH112 | R112B | 0.50 | 62 | 62 | N/A | 16.07 | 16.07 | | R112B | 0.06 | MH112 | S132 | 0.50 | 28 | 28 | N/A | 7.99 | 7.99
116.8 ⁽³⁾ | | S132 | 0.24 | MH132 | S113 | 0.79 | 32.5 | 65 | 44.45 | 54
55 | 61.57 ⁽⁴⁾ | | S112
S113 | 0.27 | MH112
MH113 | S113
S114 | 0.79
0.79 | 70
70 | 140
140 | 10.79
4.29 | 55
55 | 61.57 ⁽⁴⁾ | | S113
S114 | 0.27 | MH113
MH114 | S114
S120 | 0.79 | 70 | 140 | 19.69 | 55 | 55.33 ⁽⁴⁾ | | R114A | 0.24 | MH114 | R114B | 0.79 | 65 | 130 | N/A | 42.14 | 42.14 | | R114A | 0.32 | MH114 | S114 | 0.50 | 30 | 60 | N/A | 23.33 | 23.33 | | S122 | 0.10 | MH122 | S114
S120 | 0.79 | 82 | 164 | 34.71 | 63 | 70.84 ⁽⁴⁾ | | R102 | 0.21 | MH102 | R103B | 0.50 | 56 | 112 | N/A | 28.2 | 28.2 | | R103B | 0.16 | MH103 | R104B | 0.50 | 36 | 72 | N/A | 21.24 | 21.24 | | R104B | 0.19 | MH104 | R104C | 0.50 | 38 | 76 | N/A | 24.99 | 24.99 | | R104C | 0.17 | MH104 | S104 | 0.50 | 39 | 78 | N/A | 21.36 | 21.36 | | S120 | 0.28 | MH120 | S105A | 0.79 | 85 | 170 | 41.25 | 58 | 111.71 ⁽³⁾ | | S110 | 0.09 | MH110C | S103 | 0.79 | 80 | 80 | 2.96 | 19 | 19 ⁽¹⁾ | | S102 | 0.09 | MH102 | S103 | 0.79 | 80 | 80 | 3.02 | 19 | 21.31 ⁽⁴⁾ | JULY 2017 22 #### WATERMAIN DEMAND CALCULATION SHEET PROJ LOCA DEVE | | | FILE: | 27970.5.7 | |-----------|----------------------|---------|-----------| | OJECT : | CRT LANDS | DATE: | 2/9/2017 | | CATION: | CITY OF OTTAWA | DESIGN: | LME | | VELOPER : | CRT DEVELOPMENT INC. | PAGE : | 1 OF 2 | | | | | | | | F | RESIDENTIA | Ľ | NOI | N-RESIDEN | TIAL | Α\ | /ERAGE DAI | LY | MA | AXIMUM DA | LY | MA | XIMUM HOU | RLY | FIRE | |---------|-----|------------|-------|------|-----------|------|------|-------------|-------|------|------------|-------|------|------------|-------|--------| | NODE | UN | IITS | | COM | IND | INS | | DEMAND (I/s | s) | | DEMAND (I/ | s) | | DEMAND (I/ | s) | DEMAND | | NODE | SF | TH | POP'N | (Ha) | (Ha) | (Ha) | Res. | Non-res. | Total | Res. | Non-res. | Total | Res. | Non-res. | Total | (l/s) | | CLA-02 | 15 | | 51 | | | | 0.21 | | 0.21 | 0.52 | | 0.52 | 1.14 | | 1.14 | 166.7 | | CLA-03 | 14 | | 48 | | | | 0.19 | | 0.19 | 0.48 | | 0.48 | 1.06 | | 1.06 | 166.7 | | CLA-04 | 9 | | 31 | | | | 0.12 | | 0.12 | 0.31 | | 0.31 | 0.68 | | 0.68 | 166.7 | | CLA-05 | 8 | | 27 | | | | 0.11 | | 0.11 | 0.28 | | 0.28 | 0.61 | | 0.61 | 166.7 | | CLA-06 | | 17 | 46 | | | | 0.19 | | 0.19 | 0.46 | | 0.46 | 1.02 | | 1.02 | 166.7 | | CLA-07 | 2 | 15 | 47 | | | | 0.19 | | 0.19 | 0.48 | | 0.48 | 1.05 | | 1.05 | 166.7 | | CLA-08 | 17 | | 58 | | | | 0.23 | | 0.23 | 0.59 | | 0.59 | 1.29 | | 1.29 | 166.7 | | CLA-09 | 9 | | 31 | | | | 0.12 | | 0.12 | 0.31 | | 0.31 | 0.68 | | 0.68 | 166.7 | | CLA-10 | 17 | | 58 | | | | 0.23 | | 0.23 | 0.59 | | 0.59 | 1.29 | | 1.29 | 166.7 | | CLA-11 | 16 | | 54 | | | | 0.22 | | 0.22 | 0.55 | | 0.55 | 1.21 | | 1.21 | 166.7 | | CLA-12 | 11 | | 37 | | | | 0.15 | | 0.15 | 0.38 | | 0.38 | 0.83 | | 0.83 | 166.7 | | CLA-13 | 20 | | 68 | | | | 0.28 | | 0.28 | 0.69 | | 0.69 | 1.52 | | 1.52 | 166.7 | | CLA-14 | | 28 | 76 | | | | 0.31 | | 0.31 | 0.77 | | 0.77 | 1.68 | | 1.68 | 166.7 | | CLA-15 | | 30 | 81 | | | | 0.33 | | 0.33 | 0.82 | | 0.82 | 1.80 | | 1.80 | 166.7 | | CLA-16 | | | 170 | | | | 0.69 | | 0.69 | 1.72 | | 1.72 | 3.79 | | 3.79 | 166.7 | | CLA-20 | | 24 | 65 | | | | 0.26 | | 0.26 | 0.66 | | 0.66 | 1.44 | | 1.44 | 166.7 | | CLA-21 | | 13 | 35 | | | | 0.14 | | 0.14 | 0.36 | | 0.36 | 0.78 | | 0.78 | 166.7 | | CLA-22 | 14 | | 48 | | | | 0.19 | | 0.19 | 0.48 | | 0.48 | 1.06 | | 1.06 | 166.7 | | CLA-23 | | 9 | 24 | | | | 0.10 | | 0.10 | 0.25 | | 0.25 | 0.54 | | 0.54 | 166.7 | | CLA-24 | 13 | | 44 | | | | 0.18 | | 0.18 | 0.45 | | 0.45 | 0.98 | | 0.98 | 166.7 | | CLA-25 | 6 | | 20 | | | | 0.08 | | 0.08 | 0.21 | | 0.21 | 0.45 | | 0.45 | 166.7 | | CLA-26 | | | 109 | | | | 0.44 | | 0.44 | 1.10 | | 1.10 | 2.43 | | 2.43 | 166.7 | | CLA-27 | 9 | | 31 | | | | 0.12 | | 0.12 | 0.31 | | 0.31 | 0.68 | | 0.68 | 166.7 | | CLA-28 | 18 | | 61 | | | | 0.25 | | 0.25 | 0.62 | | 0.62 | 1.36 | | 1.36 | 166.7 | | CLA-28A | | | 68 | | | | 0.28 | | 0.28 | 0.69 | | 0.69 | 1.52 | | 1.52 | | | CLA-29 | 7 | | 24 | | | | 0.10 | | 0.10 | 0.24 | | 0.24 | 0.53 | | 0.53 | 166.7 | | CLA-30 | 10 | | 34 | | | | 0.14 | | 0.14 | 0.34 | | 0.34 | 0.76 | | 0.76 | 166.7 | | CLA-31 | 12 | | 41 | | | | 0.17 | | 0.17 | 0.41 | | 0.41 | 0.91 | | 0.91 | 166.7 | | CLA-32 | 15 | | 51 | | | | 0.21 | | 0.21 | 0.52 | | 0.52 | 1.14 | | 1.14 | 166.7 | | CLA-32A | | | 68 | | | | 0.28 | | 0.28 | 0.69 | | 0.69 | 1.52 | | 1.52 | | | CLA-33 | 12 | | 41 | | | | 0.17 | | 0.17 | 0.41 | | 0.41 | 0.91 | | 0.91 | 166.7 | | CLA-34 | 16 | | 54 | | | | 0.22 | | 0.22 | 0.55 | | 0.55 | 1.21 | | 1.21 | 166.7 | | CLA-35 | 5 | | 17 | | | | 0.07 | | 0.07 | 0.17 | | 0.17 | 0.38 | | 0.38 | 166.7 | | CLA-36 | 13 | | 44 | | | 2.88 | 0.18 | 1.67 | 1.85 | 0.45 | 2.50 | 2.95 | 0.98 | 4.50 | 5.48 | 225.0 | | CLA-37 | 16 | | 54 | | | | 0.22 | | 0.22 | 0.55 | | 0.55 | 1.21 | | 1.21 | 166.7 | | CLA-38 | 8 | | 27 | | | 6.53 | 0.11 | 3.78 | 3.89 | 0.28 | 5.67 | 5.94 | 0.61 | 10.20 | 10.81 | 225.0 | | CLA-54 | 11 | | 37 | | | | 0.15 | igsquare | 0.15 | 0.38 | | 0.38 | 0.83 | | 0.83 | 166.7 | | CLA-55 | | 30 | 81 | | | | 0.33 | <u> </u> | 0.33 | 0.82 | | 0.82 | 1.80 | | 1.80 | 166.7 | | TOTALS | 323 | 166 | 1962 | | | 9.41 | | | 13.39 | | | 28.04 | | | 58.41 | | | | | | | AS | SUMPTIONS | | | | | |--------------------------------|---------------------------------------|---|--|---|--|---|---|-----------------------|----------------------------------| | RESIDENTIA | DENSITIES | AVERAGE DAII | Y DEMAND | MAXIMUM DAI | LY DEMAND | MAXIMUM HO | URLY DEMAND | FIRE DEMANDS | | | - SF
- TH
- High Density | 3.4 p/p/u
2.7 p/p/u
90.0 p/p/ha | ResidentialCommercialIndustrialInstitutional | 350 l/cap/day
30,000 l/ha/day
35,000 l/ha/day
50,000 l/ha/day | ResidentialCommercialIndustrialInstitutional | 875 l/cap/day
45,000 l/ha/day
52,500 l/ha/day
75,000 l/ha/day | ResidentialCommercialIndustrialInstitutional | 1,925 l/cap/day
81,000 l/ha/day
94,500 l/ha/day
135,000 l/ha/day | - SF
- TH
- ICI | 166.7 Vs
166.7 Vs
225.0 Vs | ### Phase 1 Node ID's Basic Day (Max HGL) - Junction Report | | ID | Demand
(L/s) | Elevation (m) | Head
(m) | Pressure
(kPa) | |------|----------|-----------------|---------------|-------------|-------------------| | 1 | CLA-01 | 0.00 | 107.60 | 161.10 | 524.26 | | 2 | CLA-02 | 0.21 | 107.70 | 161.10 | 523.30 | | 3 | ■ CLA-03 | 0.19 | 107.80 | 161.10 | 522.34 | | 4 | ■ CLA-04 | 0.12 | 107.70 | 161.10 | 523.32 | | 5 | CLA-05 | 0.11 | 108.10 | 161.10 | 519.38 | | 6 | CLA-06 | 0.19 | 107.00 | 161.11 | 530.24 | | 7 | ■ CLA-07 | 0.19 | 108.55 | 161.11 | 515.05 | | 8 | ☐ CLA-08 | 0.23 | 108.30 | 161.11 | 517.50 | | 9 | CLA-09 | 0.12 | 108.10 | 161.10 | 519.40 | | 10 | CLA-10 | 0.23 | 108.05 | 161.11 | 519.91 | | 11 | CLA-11 | 0.22 | 108.15 | 161.11 | 518.97 | | 12 | ☐ CLA-12 | 0.15 | 108.35 | 161.11 | 517.05 | | 13 | CLA-13 | 0.28 | 109.20 | 161.11 | 508.70 | | 14 | ■ CLA-14 | 0.31 | 109.20 | 161.11 | 508.69 | | 15 | ■ CLA-15 | 0.33 | 105.90 | 161.11 | 541.03 | | 16 | CLA-16 | 0.69 | 105.55 | 161.11 | 544.46 | | 17 | CLA-20 | 0.26 | 108.50 | 161.11 | 515.55 | | 18 | CLA-21 | 0.14 | 108.25 | 161.11 | 518.03 | | 19 | CLA-22 | 0.19 | 109.10 | 161.12 | 509.72 | | 20 | ☐ CLA-23 | 0.10 | 109.00 | 161.11 | 510.67 | | 21 | CLA-24 | 0.18 | 108.75 | 161.12 | 513.17 | | 22 | ☐ CLA-25 | 0.08 | 108.80 | 161.12 | 512.74 | | 23 | CLA-26 | 0.44 | 109.00 | 161.14 | 510.95 | | 24 | ■ CLA-27 | 0.12 | 108.00 | 161.10 | 520.37 | | 25 | CLA-28 | 0.25 | 108.60 | 161.12 | 514.62 | |
26 | CLA-28A | 0.28 | 108.60 | 161.12 | 514.62 | | 27 | CLA-29 | 0.10 | 107.50 | 161.10 | 525.27 | | 28 | CLA-30 | 0.14 | 107.95 | 161.11 | 520.89 | | 29 | CLA-31 | 0.17 | 108.05 | 161.11 | 519.92 | | 30 | ■ CLA-32 | 0.21 | 108.15 | 161.11 | 518.94 | | 31 | CLA-32A | 0.28 | 108.15 | 161.11 | 518.94 | | 32 | CLA-33 | 0.17 | 108.00 | 161.11 | 520.43 | | 33 | CLA-34 | 0.22 | 108.00 | 161.11 | 520.45 | | 34 | CLA-35 | 0.07 | 107.40 | 161.10 | 526.24 | | (35) | CLA-36 | 1.85 | 107.45 | 161.10 | 525.72 | | 36 | CLA-37 | 0.22 | 107.85 | 161.10 | 521.81 | | 37 | CLA-38 | 3.89 | 108.30 | 161.10 | 517.38 | | 38 | CLA-54 | 0.15 | 107.90 | 161.10 | 521.33 | | 39 | CLA-55 | 0.33 | 106.60 | 161.11 | 534.17 | | 40 | TF-02 | 0.00 | 108.00 | 161.40 | 523.27 | Date: Thursday, February 09, 2017, Page 1 **Peak Hour - Junction Report** | | ID | Demand
(L/s) | Elevation
(m) | Head
(m) | Pressure
(kPa) | |---------------------|---------|-----------------|------------------|-------------|-------------------| | 1 | CLA-01 | 0.00 | 107.60 | 154.70 | 461.54 | | 2 | CLA-02 | 1.14 | 107.70 | 154.41 | 457.73 | | 3 | CLA-03 | 1.06 | 107.80 | 154.37 | 456.39 | | 4 | CLA-04 | 0.68 | 107.70 | 154.38 | 457.38 | | 5 | CLA-05 | 0.61 | 108.10 | 154.46 | 454.25 | | 6 | CLA-06 | 1.02 | 107.00 | 154.24 | 462.93 | | 7 | CLA-07 | 1.05 | 108.55 | 154.25 | 447.82 | | 8 | CLA-08 | 1.29 | 108.30 | 154.27 | 450.45 | | 9 | CLA-09 | 0.68 | 108.10 | 154.35 | 453.20 | | 10 | CLA-10 | 1.29 | 108.05 | 154.33 | 453.53 | | 11 | CLA-11 | 1.21 | 108.15 | 154.30 | 452.27 | | 12 | CLA-12 | 0.83 | 108.35 | 154.29 | 450.21 | | 13 | CLA-13 | 1.52 | 109.20 | 154.26 | 441.56 | | 14 | CLA-14 | 1.68 | 109.20 | 154.24 | 441.38 | | 15 | CLA-15 | 1.80 | 105.90 | 154.24 | 473.65 | | 16 | CLA-16 | 3.79 | 105.55 | 154.24 | 477.08 | | 17 | CLA-20 | 1.44 | 108.50 | 154.24 | 448.21 | | 18 | CLA-21 | 0.78 | 108.25 | 154.25 | 450.74 | | 19 | CLA-22 | 1.06 | 109.10 | 154.26 | 442.54 | | 20 | CLA-23 | 0.54 | 109.00 | 154.24 | 443.36 | | 21 | CLA-24 | 0.98 | 108.75 | 154.29 | 446.28 | | 22 | CLA-25 | 0.45 | 108.80 | 154.29 | 445.80 | | 23 | CLA-26 | 2.43 | 109.00 | 154.32 | 444.12 | | 24 | CLA-27 | 0.68 | 108.00 | 154.38 | 454.49 | | 25 | CLA-28 | 1.36 | 108.60 | 154.25 | 447.33 | | 26 | CLA-28A | 1.52 | 108.60 | 154.25 | 447.31 | | 27 | CLA-29 | 0.53 | 107.50 | 154.30 | 458.61 | | 28 | CLA-30 | 0.76 | 107.95 | 154.23 | 453.47 | | 29 | CLA-31 | 0.91 | 108.05 | 154.23 | 452.48 | | 30 | CLA-32 | 1.14 | 108.15 | 154.21 | 451.37 | | 31 | CLA-32A | 1.52 | 108.15 | 154.21 | 451.36 | | 32 | CLA-33 | 0.91 | 108.00 | 154.25 | 453.20 | | 33 | CLA-34 | 1.21 | 108.00 | 154.25 | 453.17 | | 34 | CLA-35 | 0.38 | 107.40 | 154.39 | 460.42 | | (<mark>35</mark>) | CLA-36 | 5.48 | 107.45 | 154.27 | 458.83 | | 36 | CLA-37 | 1.21 | 107.85 | 154.22 | 454.38 | | 37 | CLA-38 | 10.81 | 108.30 | 154.18 | 449.60 | | 38 | CLA-54 | 0.83 | 107.90 | 154.55 | 457.11 | | 39 | CLA-55 | 1.80 | 106.60 | 154.24 | 466.80 | | 40 | TF-02 | 0.00 | 108.00 | 154.80 | 458.60 | Date: Thursday, February 09, 2017, Time: 16:12:53, Page 1 Max Day + Fire - Fireflow Design Report | | ID | Total Demand (L/s) | Critical Node 1 ID | Critical Node 1
Pressure
(kPa) | Critical Node 1 Head (m) | Adjusted Fire-Flow (L/s) | Available Flow
@Hydrant
(L/s) | Critical Node 2 ID | Critical Node 2
Pressure
(kPa) | Critcal Node 2 Head (m) | Adjusted Available
Flow
(L/s) | Design Flow
(L/s) | |----|--------|--------------------|--------------------|--------------------------------------|--------------------------|--------------------------|-------------------------------------|--------------------|--------------------------------------|-------------------------|-------------------------------------|----------------------| | 1 | CLA-02 | 167.19 | CLA-14 | 396.31 | 148.14 | 630.98 | 586.28 | CLA-02 | 139.97 | 121.98 | 586.28 | 586.28 | | 2 | CLA-03 | 167.15 | CLA-14 | 392.70 | 147.87 | 586.75 | 541.31 | CLA-03 | 139.97 | 122.08 | 541.31 | 541.31 | | 3 | CLA-04 | 166.98 | CLA-04 | 263.96 | 134.64 | 223.39 | 223.39 | CLA-04 | 139.96 | 121.98 | 223.39 | 223.39 | | 4 | CLA-05 | 166.95 | CLA-05 | 229.91 | 131.56 | 203.20 | 203.20 | CLA-05 | 139.96 | 122.38 | 203.20 | 203.20 | | 5 | CLA-06 | 167.13 | CLA-06 | 306.72 | 138.30 | 258.66 | 258.68 | CLA-06 | 139.96 | 121.28 | 258.69 | 258.66 | | 6 | CLA-07 | 167.15 | CLA-07 | 320.91 | 141.30 | 287.47 | 287.47 | CLA-07 | 139.96 | 122.83 | 287.47 | 287.47 | | 7 | CLA-08 | 167.26 | CLA-08 | 349.21 | 143.94 | 336.17 | 336.17 | CLA-08 | 139.96 | 122.58 | 336.17 | 336.17 | | 8 | CLA-09 | 166.98 | CLA-09 | 190.07 | 127.50 | 184.72 | 184.72 | CLA-09 | 139.96 | 122.38 | 184.72 | 184.72 | | 9 | CLA-10 | 167.26 | CLA-14 | 387.92 | 147.64 | 541.97 | 514.93 | CLA-10 | 139.96 | 122.33 | 514.94 | 514.94 | | 10 | CLA-11 | 167.22 | CLA-14 | 382.73 | 147.21 | 500.77 | 490.29 | CLA-11 | 139.96 | 122.43 | 490.29 | 490.29 | | 11 | CLA-12 | 167.05 | CLA-13 | 381.53 | 147.28 | 491.15 | 470.51 | CLA-12 | 139.96 | 122.63 | 470.52 | 470.52 | | 12 | CLA-13 | 167.36 | CLA-13 | 316.09 | 141.46 | 285.92 | 285.92 | CLA-13 | 139.96 | 123.48 | 285.92 | 285.92 | | 13 | CLA-14 | 167.44 | CLA-14 | 294.92 | 139.30 | 259.10 | 259.13 | CLA-14 | 139.96 | 123.48 | 259.13 | 259.10 | | 14 | CLA-15 | 167.49 | CLA-15 | 327.60 | 139.33 | 275.89 | 275.89 | CLA-15 | 139.96 | 120.18 | 275.89 | 275.89 | | 15 | CLA-16 | 168.39 | CLA-16 | 324.52 | 138.67 | 270.80 | 270.83 | CLA-16 | 139.96 | 119.83 | 270.83 | 270.80 | | 16 | CLA-20 | 167.33 | CLA-20 | 263.36 | 135.38 | 226.86 | 226.86 | CLA-20 | 139.96 | 122.78 | 226.87 | 226.86 | | 17 | CLA-21 | 167.03 | CLA-21 | 325.97 | 141.51 | 292.36 | 292.36 | CLA-21 | 139.96 | 122.53 | 292.36 | 292.36 | | 18 | CLA-22 | 167.15 | CLA-22 | 340.75 | 143.87 | 330.26 | 330.26 | CLA-22 | 139.96 | 123.38 | 330.26 | 330.26 | | 19 | CLA-23 | 166.92 | CLA-23 | 311.50 | 140.79 | 278.00 | 278.00 | CLA-23 | 139.96 | 123.28 | 278.00 | 278.00 | | 20 | CLA-24 | 167.12 | CLA-24 | 381.05 | 147.64 | 462.70 | 462.70 | CLA-24 | 139.96 | 123.03 | 462.71 | 462.70 | | 21 | CLA-25 | 166.88 | CLA-22 | 380.75 | 147.65 | 480.81 | 470.21 | CLA-25 | 139.96 | 123.08 | 470.21 | 470.21 | | 22 | CLA-26 | 167.77 | CLA-26 | 378.99 | 147.68 | 459.94 | 459.94 | CLA-26 | 139.96 | 123.28 | 459.95 | 459.94 | | 23 | CLA-27 | 166.98 | CLA-27 | 275.17 | 136.08 | 232.57 | 232.57 | CLA-27 | 139.96 | 122.28 | 232.57 | 232.57 | | 24 | CLA-28 | 167.29 | CLA-28 | 340.36 | 143.33 | 322.37 | 322.37 | CLA-28 | 139.96 | 122.88 | 322.37 | 322.37 | | 25 | CLA-29 | 166.91 | CLA-29 | 209.30 | 128.86 | 192.54 | 192.54 | CLA-29 | 139.96 | 121.78 | 192.54 | 192.54 | | 26 | CLA-30 | 167.01 | CLA-30 | 281.56 | 136.68 | 239.14 | 239.15 | CLA-30 | 139.96 | 122.23 | 239.15 | 239.14 | | 27 | CLA-31 | 167.08 | CLA-31 | 282.20 | 136.85 | 240.23 | 240.24 | CLA-31 | 139.96 | 122.33 | 240.24 | 240.23 | | 28 | CLA-32 | 167.19 | CLA-32 | 324.59 | 141.27 | 290.82 | 290.82 | CLA-32 | 139.96 | 122.43 | 290.82 | 290.82 | | 29 | CLA-33 | 167.08 | CLA-33 | 221.78 | 130.63 | 199.47 | 199.47 | CLA-33 | 139.96 | 122.28 | 199.47 | 199.47 | | 30 | CLA-34 | 167.22 | CLA-34 | 211.63 | 129.60 | 194.61 | 194.61 | CLA-34 | 139.96 | 122.28 | 194.61 | 194.61 | | 31 | CLA-35 | 166.84 | CLA-35 | 375.23 | 145.69 | 384.66 | 384.65 | CLA-35 | 139.96 | 121.68 | 384.66 | 384.66 | | 32 | CLA-36 | 227.95 | CLA-36 | 249.80 | 132.94 | 292.31 | 292.31 | CLA-36 | 139.96 | 121.73 | 292.32 | 292.31 | | 33 | CLA-37 | 225.55 | CLA-37 | 224.01 | 130.71 | 271.34 | 271.34 | CLA-37 | 139.96 | 122.13 | 271.34 | 271.34 | | 34 | CLA-38 | 230.94 | CLA-38 | 186.04 | 127.29 | 253.61 | 253.61 | CLA-38 | 139.96 | 122.58 | 253.61 | 253.61 | | 35 | CLA-54 | 167.05 | CLA-14 | 408.38 | 149.57 | 855.64 | 780.75 | CLA-54 | 139.97 | 122.18 | 780.76 | 780.76 | | 36 | CLA-55 | 167.49 | CLA-55 | 319.77 | 139.23 | 271.31 | 271.31 | CLA-55 | 139.96 | 120.88 | 271.31 | 271.31 | #### Max Day + Fire ICI Lands - Fireflow Design Report | | ID | Total Demand
(L/s) | Critical Node 1 ID | Critical Node 1
Pressure
(kPa) | Critical Node 1 Head
(m) | Adjusted Fire-Flow (L/s) | Available Flow
@Hydrant
(L/s) | Critical Node 2 ID | Critical Node 2
Pressure
(kPa) | Critcal Node 2 Head (m) | Adjusted Available
Flow
(L/s) | Design Flow
(L/s) | |---|--------|-----------------------|--------------------|--------------------------------------|-----------------------------|--------------------------|-------------------------------------|--------------------|--------------------------------------|-------------------------|-------------------------------------|----------------------| | 1 | CLA-36 | 227.95 | CLA-36 | 228.55 | 130.77 | 280.83 | 280.83 | CLA-36 | 139.96 | 121.73 | 280.83 | 280.83 | | 2 | CLA-37 | 225.55 | CLA-37 | 202.79 | 128.54 | 260.40 | 260.41 | CLA-37 | 139.96 | 122.13 | 260.41 | 260.40 | | 3 | CLA-38 | 230.94 | CLA-38 | 164.84 | 125.12 | 243.39 | 243.39 | CLA-38 | 139.96 | 122.58 | 243.39 | 243.39 | IBI Group 400-333 Preston Street Ottawa, Ontario K1S 5N4 PROJECT: CRT DEVELOPMENT LOCATION: CITY OF OTTAWA CLIENT: CRT DEVELOPMENT INC. | | | | | 1 | | | RESIDENTIA | i | | | | 1 | | | ICI AREAS | | | | INFILT | RATION ALLO | WANCE | TOTAL | | | PROP | OSED SEWER I | DESIGN | | | |----------------------------------|------------------|--------------|--------------------|----------------------|---------------------------------|-------------------------|--------------|--------------|------------------|--------------|----------------|-------------|---------------|-----|-----------|----------------|-------------|---------------|--------------|------------------------------------|----------------|----------------|----------------|------------------|------------|--|--------------------------|----------------|----------------| | | LOCATION | | r | | UNIT | TYPES | AREA | | LATION | PEAK | PEAK | | | | A (Ha) | 1 | | PEAK | | A (Ha) | FLOW | FLOW |
CAPACITY | LENGTH | DIA | SLOPE | VELOCITY | | ILABLE | | STREET | AREA ID | FROM
MH | TO
MH | SF | SD | TH APT | (Ha) | IND | сим | FACTOR | FLOW
(L/s) | INSTIT | CUM | IND | CUM | INDUST | RIAL
CUM | FLOW
(L/s) | IND | сим | (L/s) | (L/s) | (L/s) | (m) | (mm) | (%) | (full)
(m/s) | L/s | PACITY (%) | <u> </u> | ` ' ' | | | | EMBANKMENT STREET | 128AB | 128A | 188A | 16 | | | 0.74 | 52.8 | 52.8 | 4.00 | 0.86 | | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.74 | 0.74 | 0.21 | 1.06 | 27.59 | 98.00 | 200 | 0.65 | 0.851 | 26.52 | 96.15 | | EMBANKMENT STREET | 188A | 188A | 189A | 11 | | | 0.52 | 36.3 | 89.1 | 4.00 | 1.44 | | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.52 | 1.26 | 0.35 | 1.80 | 27.59 | 74.80 | 200 | 0.65 | 0.851 | 25.79 | 93.49 | | BLOCK 344 | RES.3 | 192A | 189A | | | | 1.52 | 136.8 | 136.8 | 4.00 | 2.22 | | 0.00 | | 0.00 | | 0.00 | 0.00 | 1.52 | 1.52 | 0.43 | 2.64 | 20.24 | 40.00 | 200 | 0.35 | 0.624 | 17.60 | 86.95 | | EMBANKMENT STREET | 189A | 189A | 190A | 14 | | | 0.69 | 46.2 | 272.1 | 4.00 | 4.41 | | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.69 | 3.47 | 0.97 | 5.38 | 20.24 | 92.53 | 200 | 0.35 | 0.624 | 14.86 | 73.42 | | EMBANKMENT STREET | 105A | 190A | 176A | 0 | | | 0.00 | 0.0 | 272.1 | 4.00 | 4.41 | | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.00 | 3.47 | 0.97 | 5.38 | 20.24 | 10.78 | 200 | 0.35 | 0.624 | 14.86 | 73.42 | | BLOCK 345 | INST.2 | BULKHEAD | 176A | 0 | | | 0.00 | 0.0 | 0.0 | 4.00 | 0.00 | 6.53 | 6.53 | | 0.00 | | 0.00 | 5.67 | 6.53 | 6.53 | 1.83 | 7.50 | 20.24 | 21.00 | 200 | 0.35 | 0.624 | 12.75 | 62.97 | | DIOCKO IO | | 56211112112 | 27071 | | | | | 0.0 | | | | 0.55 | | | | | 0.00 | | | | 1.00 | | 20.21 | 22.00 | | | | | | | COPE DRIVE
COPE DRIVE | 176A
175A | 176A
175A | 175A
174A | 3
5 | | | 0.63
0.46 | 9.9
16.5 | 282.0
298.5 | 4.00
4.00 | 4.57
4.84 | | 6.53
6.53 | | 0.00 | | 0.00 | 5.67
5.67 | 0.63
0.46 | 10.63
11.09 | 2.98
3.11 | 13.21
13.61 | 20.24 | 76.03
84.94 | 200 | 0.35
0.35 | 0.624
0.624 | 7.03
6.63 | 34.72
32.76 | BELSIZE WAY BELSIZE WAY | 127AB
185A | 127A
185A | 185A
186A | 11
13 | | | 0.53 | 36.3
42.9 | 36.3
79.2 | 4.00
4.00 | 0.59
1.28 | | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.53
0.59 | 0.53
1.12 | 0.15
0.31 | 0.74
1.60 | 27.59
27.59 | 88.50
83.61 | 200
200 | 0.65
0.65 | 0.851
0.851 | 26.85
25.99 | 97.33
94.21 | | PINNER ROAD | 191A | 191A | 186A | 3 | | | 0.24 | 9.9 | 9.9 | 4.00 | 0.16 | | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.24 | 0.24 | 0.07 | 0.23 | 27.59 | 43.00 | 200 | 0.65 | 0.851 | 27.36 | 99.17 | | FINNER ROAD | 191A | 131A | 1804 | 3 | | | 0.24 | 3.3 | 5.5 | 4.00 | 0.10 | | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.24 | 0.24 | 0.07 | 0.23 | 27.33 | 43.00 | 200 | 0.03 | 0.831 | 27.30 | 99.17 | | PINNER ROAD PINNER ROAD | 186A | 186A
187A | 187A
183A | 5
0 | | | 0.35 | 16.5
0.0 | 105.6
105.6 | 4.00
4.00 | 1.71
1.71 | | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.35
0.00 | 1.71
1.71 | 0.48
0.48 | 2.19
2.19 | 20.24
20.24 | 70.39
9.00 | 200
200 | 0.35
0.35 | 0.624
0.624 | 18.05
18.05 | 89.18
89.18 | FINSBURY AVENUE | 182A | 182A | 183A | 16 | - | | 0.97 | 52.8 | 52.8 | 4.00 | 0.86 | - | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.97 | 0.97 | 0.27 | 1.13 | 32.46 | 117.13 | 200 | 0.90 | 1.001 | 31.33 | 96.53 | | FINSBURY AVENUE | 183A | 183A | 184A | 4 | | | 0.33 | 13.2 | 171.6 | 4.00 | 2.78 | | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.33 | 3.01 | 0.84 | 3.62 | 20.24 | 65.71 | 200 | 0.35 | 0.624 | 16.62 | 82.10 | | FINSBURY AVENUE | | 184A | 174A | 0 | | | 0.00 | 0.0 | 171.6 | 4.00 | 2.78 | | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.00 | 3.01 | 0.84 | 3.62 | 20.24 | 17.89 | 200 | 0.35 | 0.624 | 16.62 | 82.10 | | COPE DRIVE
COPE DRIVE | 174A
173A | 174A
173A | 173A
172A | 7 | | | 0.47
0.41 | 23.1
19.8 | 493.2
513.0 | 3.98
3.97 | 7.95
8.25 | | 6.53
6.53 | | 0.00 | | 0.00 | 5.67
5.67 | 0.47
0.41 | 14.57
14.98 | 4.08
4.19 | 17.69
18.11 | 31.02
31.02 | 82.90
76.02 | 250
250 | 0.25
0.25 | 0.612
0.612 | 13.33
12.91 | 42.96
41.62 | | COPE DRIVE | 175A | 1/3A | 172A | 0 | | | 0.41 | 15.6 | 313.0 | 3.57 | 6.23 | | 0.33 | | 0.00 | | 0.00 | 3.07 | 0.41 | 14.56 | 4.15 | 10.11 | 31.02 | 70.02 | 230 | 0.23 | 0.012 | 12.91 | 41.02 | | BLOCK 313 | INST.1 | BULKHEAD | 172A | 0 | | | 0.00 | 0.0 | 0.0 | 4.00 | 0.00 | 2.88 | 2.88 | | 0.00 | | 0.00 | 2.50 | 2.88 | 2.88 | 0.81 | 3.31 | 20.24 | 16.00 | 200 | 0.35 | 0.624 | 16.94 | 83.67 | | COPE DRIVE | 172A | 172A | 171B | 3 | | | 0.23 | 9.9 | 522.9 | 3.96 | 8.40 | | 9.41 | | 0.00 | | 0.00 | 8.17 | 0.23 | 18.09 | 5.07 | 21.63 | 31.02 | 36.96 | 250 | 0.25 | 0.612 | 9.39 | 30.27 | | COPE DRIVE | 171B | 171B | 171A | 2 | | | 0.22 | 6.6 | 529.5 | 3.96 | 8.50 | | 9.41 | | 0.00 | | 0.00 | 8.17 | 0.22 | 18.31 | 5.13 | 21.79 | 31.02 | 41.21 | 250 | 0.25 | 0.612 | 9.23 | 29.75 | | DAGENHAM STREET | 180A | 180A | 181A | 7 | | | 0.50 | 23.1 | 23.1 | 4.00 | 0.37 | | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.50 | 0.50 | 0.14 | 0.51 | 20.24 | 90.00 | 200 | 0.35 | 0.624 | 19.73 | 97.46 | | DAGENHAM STREET | 181A | 181A | 171A | 0 | | | 0.11 | 0.0 | 23.1 | 4.00 | 0.37 | | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.11 | 0.61 | 0.17 | 0.55 | 20.24 | 67.50 | 200 | 0.35 | 0.624 | 19.70 | 97.31 | | COPE DRIVE COPE DRIVE | 171A
170B | 171A
170B | 170B
170A | 3 | | | 0.17
0.25 | 3.3
9.9 | 555.9
565.8 | 3.95
3.95 | 8.90
9.04 | | 9.41
9.41 | | 0.00 | | 0.00 | 8.17
8.17 | 0.17
0.25 | 19.09
19.34 | 5.35
5.42 | 22.41
22.63 | 45.12
45.12 | 37.91
43.98 | 300
300 | 0.20
0.20 | 0.618
0.618 | 22.71
22.49 | 50.33
49.84 | | COFE DRIVE | 1708 | 1705 | 170A | 3 | | | 0.23 | 3.3 | 303.8 | 3.33 | 3.04 | | 3.41 | | 0.00 | | 0.00 | 8.17 | 0.23 | 15.54 | 3.42 | 22.03 | 43.12 | 43.36 | 300 | 0.20 | 0.018 | 22.43 | 45.64 | | BLOCK 312 | RES.3A | BULKHEAD | sewer | 0 | | | 3.26 | 195.6 | 195.6 | 4.00 | 3.17 | | 0.00 | | 0.00 | | 0.00 | 0.00 | 3.26 | 3.26 | 0.91 | 4.08 | 20.24 | 16.22 | 200 | 0.35 | 0.624 | 16.16 | 79.83 | | COPE DRIVE | 170A | 170A | 110A | 6 | | | 0.62 | 19.8 | 781.2 | 3.87 | 12.24 | | 9.41 | | 0.00 | | 0.00 | 8.17 | 0.62 | 23.22 | 6.50 | 26.91 | 45.12 | 120.00 | 300 | 0.20 | 0.618 | 18.21 | 40.36 | | | | + | | GOLDHAWK DRIVE | 306A | SOUTH | 303A | 31 | | | 1.83 | 102.3 | 102.3 | 4.00 | 1.66 | | 0.00 | | 0.00 | | 0.00 | 0.00 | 1.83 | 1.83 | 0.51 | 2.17 | | | | | | | 1 | | STREET NO. 26 | 304A | WEST | 303A | 14 | | | 0.69 | 46.2 | 46.2 | 4.00 | 0.75 | | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.69 | 0.69 | 0.19 | 0.94 | | | | | | | | | GOLDHAWK DRIVE | 303A | 303A | 302A | 10 | | | 0.62 | 33.0 | 181.5 | 4.00 | 2.94 | | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.62 | 3.14 | 0.88 | 3.82 | 20.24 | 94.58 | 200 | 0.35 | 0.624 | 16.42 | 81.13 | Future Street | RES.5, 5A, Park3 | EAST | 302A | | | | 23.97 | 1421.4 | 1421.4 | 3.70 | 21.28 | | 0.00 | | 0.00 | | 0.00 | 0.00 | 23.97 | 23.97 | 6.71 | 28.00 | + | | | | | <u> </u> | + | | GOLDHAWK DRIVE | 302A | 302A | 301A | 10 | | | 0.56 | 33.0 | 1635.9 | 3.65 | 24.20 | | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.56 | 27.67 | 7.75 | 31.95 | 50.44 | 70.68 | 300 | 0.25 | 0.691 | 18.49 | 36.66 | | GOLDHAWK DRIVE | 301A | 301A | 207A | 6 | | | 0.37 | 19.8 | 1655.7 | 3.65 | 24.47 | | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.37 | 28.04 | 7.85 | 32.32 | 50.44 | 70.00 | 300 | 0.25 | 0.691 | 18.12 | 35.93 | | STREET NO. 2 | RES.4 | EAST | 207A | | | | 13.88 | 832.8 | 832.8 | 3.85 | 12.99 | | 0.00 | | 0.00 | | 0.00 | 0.00 | 13.88 | 13.88 | 3.89 | 16.87 | 1 | | | <u> </u> | | | \vdash | | GOLDHAWK DRIVE | 207A | 207A | 206A | 17 | | | 0.86 | 56.1 | 2544.6 | 3.50 | 36.10 | | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.86 | 42.78 | 11.98 | 48.08 | 70.84 | 107.19 | 375 | 0.15 | 0.621 | 22.76 | 32.13 | | GOLDHAWK DRIVE
GOLDHAWK DRIVE | 206A
205A | 206A
205A | 205A
110A | 12
5 | | | 0.69 | 39.6
16.5 | 2584.2
2600.7 | 3.50
3.49 | 36.60
36.81 | | 0.00 | | 0.00 | | 0.00 | 0.00 | 0.69
0.44 | 43.47
43.91 | 12.17
12.29 | 48.78
49.11 | 70.84
70.84 | 106.61
100.61 | 375
375 | 0.15
0.15 | 0.621
0.621 | 22.07
21.73 | 31.15
30.68 | | | 2007 | | | | | | J | | | | | | 2.00 | | | | 5.50 | 2.00 | 1 | | | .5.11 | 1,3104 | 100.01 | 3,3 | | | | | | Design Parameters: | | | | Notes:
1. Manning | s coefficient (| (n) = | 0.013 | | | Designed: | | J.I.M. | | | No.
1. | | | | Submis | Revision
sion No. 1 to C | ity of Ottawa | | | | | | Date
2013-08-29 | | | | Residential | | ICI Areas | | 2. Demand | (per capita): | 35 | 0 L/day | | | | | | | | 2. | | | | Submis | sion No. 2 to C | ity of Ottawa | | | | | | 2014-01-22 | | | | SF 3.3 p/p/u
TH/SD 2.5 p/p/u | INST 50,00 | 00 L/Ha/day | Peak Factor
1.5 | | on allowance:
ial Peaking Fa | | 8 L/s/Ha | | | Checked: | | P.K. | | | 3.
4. | | | | | sion No. 3 to C
sion No. 4 to C | • | | | | | | 2014-08-22
2015-06-15 | | | | APT 1.8 p/p/u | COM 50,00 | 00 L/Ha/day | 1.5 | | Harmon For | mula = 1+(14/(4+P^0.5)) | | | | | | | . =0.1 | | 5. | | | | Submis | sion No. 5 to C | ity of Ottawa | | | | | | 2016-11-10 | | | | Low 60 p/p/Ha
Med 75 p/p/Ha | IND 35,00 | 00 L/Ha/day | MOE Chart | | where P = po | opulation in thousands | | | | Dwg. Refere | ence: | 2/970 - 501 | 1, 501A, 501B | | 6.
7. | | | | | nission for MO
mission for M | | | | | | | 2017-02-10
2017-07-14 | | | | High 90 p/p/Ha | | | | | | | | | | | | | | | | ile Reference: | | | | | Date: | | | | | | Sheet No: | | | | | | | | | | | | | | <u> </u> | | | | | | 27970.5.7.1 | | | | | 2017-07-14 | | | | | | 3 of 4 | | | ## **APPENDIX** # B - FIRE UNDERWRITERS
SURVEY FIRE FLOW CALCULATION FOR BUILDING - FIRE UNDERWRITERS SURVEY FIRE FLOW CALCULATION FOR PORTABLE CLASSROOM - WATER DEMAND CALCULATION - UPDATED BOUNDARY CONDITION Fire Flow Design Sheet (FUS) **New Stittsville Ecole Elementary School** 730 Cope Drive Stittsville, ON WSP Project No. 219-00014-00 Date: 18-Feb-22 #### **New Ecole Elementary School** Fire Flow Requirements Based on Fire Underwriters Survey (FUS) 1999 - 1. An estimate of the Fire Flow required for a given fire area may be estimated by: $F = 220 \text{ C}_{1}$ - F = required fire flow in litres per minute - C = coefficient related to the type of construction - 1.5 for wood construction (structure essentially combustible) - 1.0 for ordinary construction (brick or other masonry walls, combustible floor and interior) - 0.8 for noncombustible construction (unprotected metal structural components, masonry or metal walls) - 0.6 for fire-resistive construction (fully protected frame, floors, roof) - A = total floor area in square metres (including all storeys, but excluding basements at least 50% below grade) 4781 m² A = C = 0.8 12169.5 L/min 12,000 L/min (min value of 2000 L/min) rounded off to 2. The value obtained in 1. may be reduced by as much as 25% for occupancies having a low contents fire hazard. Non-combustible -25% Limited Combustible -15% Combustible 0% Free Burning 15% Rapid Burning 25% Reduction due to low occupancy hazard $-15\% \times 12,000 =$ 3. The value obtained in 2. may be reduced by as much as 50% for buildings equipped with automatic sprinkler protection. Adequate Sprinkler confirms to NFPA13 -30% Water supply common for sprinklers & fire hoses -10% Fully supervised system -10% No Automatic Sprinkler System 0% Reduction due to Sprinkler System -40% x 10,200 = -4,080 L/min 4. The value obtained in 2. is increased for structures exposed within 45 metres by the fire area under consideration. | Separation | Charge | |-------------------|--------| | 0 to 3 m | 25% | | 3.1 to 10 m | 20% | | 10.1 to 20 m | 15% | | 20.1 to 30 m | 10% | | 30.1 to 45 m | 5% | Side 1 0% north side 65 Side 2 0% east side 98 Side 3 5% south side 43 Side 4 5% west side 32 10% (Total shall not exceed 75%) Increase due to separation $10\% \times 10,200 =$ 1,020 L/min 5. The flow requirement is the value obtained in 2., minus the reduction in 3., plus the addition in 4. The fire flow requirement is 7.000 L/min (Rounded to nearest 1000 L/min) 117 L/sec or 1,849 gpm (us) 1,540 gpm (uk) Based on method described in: Fire Flow Design Sheet (FUS) New Stittsville Ecole Elementary School 730 Cope Drive Stittsville, ON WSP Project No. 219-00014-00 Date: 18-Feb-22 ## (Future Portable Classrooms 3 in a row) Fire Flow Requirements Based on Fire Underwriters Survey (FUS) 1999 - 1. An estimate of the Fire Flow required for a given fire area may be estimated by: $F = 220 \text{ C} \sqrt{A}$ - F = required fire flow in litres per minute - C = coefficient related to the type of construction - 1.5 for wood construction (structure essentially combustible) - 1.0 for ordinary construction (brick or other masonry walls, combustible floor and interior) - 0.8 for noncombustible construction (unprotected metal structural components, masonry or metal walls) - 0.6 for fire-resistive construction (fully protected frame, floors, roof) - A = total floor area in square metres (including all storeys, but excluding basements at least 50% below grade) $A = 215 \text{ m}^2$ C = 1.0 F = 3225.8 L/min rounded off to 3,000 L/min (min value of 2000 L/min) 2. The value obtained in 1. may be reduced by as much as 25% for occupancies having a low contents fire hazard. Non-combustible -25% Limited Combustible -15% Combustible 0% Free Burning 15% Rapid Burning 25% Reduction due to low occupancy hazard -15% x 3,000 = 2,550 L/min 3. The value obtained in 2. may be reduced by as much as 50% for buildings equipped with automatic sprinkler protection. Adequate Sprinkler confirms to NFPA13 -30% Water supply common for sprinklers & fire hoses -10% Fully supervised system -10% No Automatic Sprinkler System 0% Reduction due to Sprinkler System 0% x 2,550 = 0 L/min 4. The value obtained in 2. is increased for structures exposed within 45 metres by the fire area under consideration. | <u>Separation</u> | <u>Charge</u> | |-------------------|---------------| | 0 to 3 m | 25% | | 3.1 to 10 m | 20% | | 10.1 to 20 m | 15% | | 20.1 to 30 m | 10% | | 30.1 to 45 m | 5% | Side 1 125 0% north side Side 2 20 15% east side Side 3 25% south side Side 4 28 10% west side 50% (Total shall not exceed 75%) Increase due to separation 50% x 2,550 = 1,275 L/min 5. The flow requirement is the value obtained in 2., minus the reduction in 3., plus the addition in 4. The fire flow requirement is or 67 L/sec or 1,057 gpm (us) (Rounded to nearest 1000 L/min) or 880 gpm (uk) **Water Demand Calculation Sheet** Project: New Stittsville Ecole Elementary School Location: 730 Cope Drive, Stittsville, ON WSP Project No. 219-00014-00 Date: 2022-02-18 Design: D.B.Y Page: 1 of 1 | | | Resi | idential | | | Non-Resident | ail | Ave | rage Daily | | ľ | Maximum Dail | у | Ma | ximum Hou | rly | Fire | |--------------------|----|-------|----------|------|------------|---------------|------------|------|------------|-------|------|--------------|-------|------|-------------|-------|---------| | Proposed Buildings | | Units | | Beds | Industrial | Institutional | Commercial | Den | nand (l/s) | | | Demand (I/s) | | | emand (I/s) | | Demand | | | SF | APT | ST | Beus | (ha) | (ha) | (ha) | Res. | Non-Res. | Total | Res. | Non-Res. | Total | Res. | Non-Res. | Total | (l/min) | | New Stittsville HS | | | | | | 2.89 | | | 0.94 | 0.94 | | 1.40 | 1.40 | | 2.53 | 2.53 | 7,000 | | Population Densities | | |----------------------|-----------------| | Single Family | 3.4 person/unit | | Semi-Detached | 2.7 person/unit | | Duplex | 2.3 person/unit | | Townhome (Row) | 2.7 person/unit | | Bachelor Apartment | 1.4 person/unit | | 1 Bedroom Apartment | 1.4 person/unit | | 2 Bedroom Apartment | 2.1 person/unit | | 3 Bedroom Apartment | 3.1 person/unit | | 4 Bedroom Apartment | 4.1 person/unit | | Avg. Apartment | 1.8 person/unit | | Average Daily I | Demand | Maximum Daily Do | emand | Maximum Hour | Maximum Hourly Demand | | | |-----------------|----------------|------------------|----------------|---------------|------------------------------|--|--| | Residentail | 280 l/cap/day | Residential | 2.5 x avg. day | Residential | 2.2 x max. day | | | | Industrial | 35000 l/ha/day | Industrial | 1.5 x avg. day | Industrial | 1.8 x max. day | | | | Institutional | 28000 l/ha/day | Institutional | 1.5 x avg. day | Institutional | 1.8 x max. day | | | | Commercial | 28000 I/ha/day | Commercial | 1.5 x avg. day | Commercial | 1.8 x max. day | | | #### Boundary Conditions 755 Cope Dr #### **Provided Information** | Cooperie | Demand | | | | | |----------------------|--------|--------|--|--|--| | Scenario | L/min | L/s | | | | | Average Daily Demand | 56 | 0.94 | | | | | Maximum Daily Demand | 84 | 1.40 | | | | | Peak Hour | 152 | 2.53 | | | | | Fire Flow Demand #1 | 6,000 | 100.00 | | | | #### **Location** #### **Results** #### Connection 1 – Cope Dr. | Demand Scenario | Head (m) | Pressure ¹ (psi) | |---------------------|----------|-----------------------------| | Maximum HGL | 161.2 | 77.5 | | Peak Hour | 156.5 | 70.8 | | Max Day plus Fire 1 | 151.9 | 64.3 | Ground Elevation = 106.7 m #### Notes 1. A second connection to the watermain, separated by an isolation valve, is required to decrease vulnerability of the water system in case of breaks. #### Disclaimer The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account. ## **APPENDIX** # C - STORM SEWER DESIGN SHEET - STORM DRAINAGE AREA PLAN C05 - STORM DRAINAGE AREA PLAN ROOF C06 - FLOW CONTROL ROOF DRAINAGE DECLARATION (TO BE CONFIRMED) - STORMWATER MANAGEMENT CALCULATIONS - DWG C03 GRADING PLAN - DWG C04 SERVICING PLAN #### STORM SEWER DESIGN SHEET New Stittsville Ecole Elementary School 730 Cope Drive, Stittsville, ON Project: 219-00014-00 Date: February, 2022 | | | LOCATION | | | AREA (Ha) | | | | | | | PATIONAL | . DESIGN FLOW | , | | | | | | | PPOP | SOED SEWER | 2 DATA | | | |---|-------------------|-------------|------------------|--------------------|--------------------|------------|--------------|---|---------|------------------|------------------|-------------|---------------|------------|------------|-----------------------------|------------------------|--------------|--------------|------------------------|-------|---------------|----------|-----------------|------------------------------| | STREET | AREA ID | FROM | то | C= C=
0.25 0.35 | C= C=
0.40 0.60 | C=
0.75 | C=
0.90 | IND | | i (2)
(mm/hr) | i (5)
(mm/hr) | i (100) | BLDG | 2yr PEAK | | 100yr PEAK FIXED | DESIGN
) FLOW (L/s) | MATERIAL | SIZE
(mm) | SLOPE
(%) | | CAPACITY | VELOCITY | TIME
IN PIPE | AVAIL CAP (2yr)
(L/s) (%) | | | | | | 0.25 0.35 | 0.40 0.60 | 0.75 | 0.90 | 2.78AC 2.78 AC (min) | (min) | | | (mm/hr) | FLOW (L/S) | FLOW (L/s) | FLOW (L/s) | FLOW (L/s) FLOW (L/s |) FLOW (L/S) | PIPE | (mm) | (%)
| (m) | (I/S) | (m/s) | IN PIPE | (L/s) (%) | | | | | | | | | | | | Ţ | o Cope Drive | е | | | | <u> </u> | | | | | | | | | | | Stittsville ES | S-101 | CB101 | CBMH101 | 0.111 | | | 0.007 | 0.095 0.095 10.00 | 10.47 | 76.81 | 104.19 | 178.56 | | 7.27 | | | 7.27 | PVC DR-35 | | | | 32.83 | 1.04 | 0.47 | 25.56 77.86% | | Stittsville ES | S-102 | CBMH101 | CBMH102 | 0.061 | | | 0.007 | 0.060 0.155 10.47 | 10.95 | 75.06 | 101.79 | 174.41 | | 11.60 | | | 11.60 | PVC DR-35 | 250.0 | 0.50 | 25.05 | 42.09 | 0.86 | 0.49 | 30.49 72.44% | | Stittsville ES | S-103 | CBMH102 | CBMH103 | 0.067 | | | | 0.047 0.201 10.95 | 11.62 | 73.33 | 99.41 | 170.29 | | 14.75 | | | 14.75 | PVC DR-35 | 300.0 | 0.40 | 34.55 | 61.22 | 0.87 | 0.67 | 46.47 75.91% | | Stittsville ES | S-104 | CBMH103 | CBMH106 | 0.018 | | | 0.079 | 0.210 0.411 11.62 | 12.10 | 71.10 | 96.35 | 165.00 | | 29.24 | | | 29.24 | PVC DR-35 | 300.0 | 0.40 | 25.20 | 61.22 | 0.87 | 0.49 | 31.98 52.23% | | Stittsville ES | S-105 | CB102 | CBMH104 | 0.117 | | | 0.002 | 0.086 0.086 10.00 | 10.63 | 76.81 | 104.19 | 178.56 | | 6.63 | | | 6.63 | PVC DR-35 | 200.0 | 1.00 | 39.45 | 32.83 | 1.04 | 0.63 | 26.20 79.81% | | Stittsville ES | S-106 | CBMH104 | CBMH105 | 0.119 | | | 0.010 | | | 74.47 | 100.98 | 173.00 | | 14.45 | | | 14.45 | PVC DR-35 | | | | 42.09 | 0.86 | 0.63 | 27.64 65.67% | | Stittsville ES | S-107 | CBMH105 | CBMH106 | 0.110 | | | 0.053 | 0.133 0.327 11.26 | | 72.29 | 97.99 | 167.83 | | 23.61 | | | 23.61 | PVC DR-35 | | | | 42.09 | 0.86 | 0.37 | 18.48 43.90% | | Guitavine EG | 0 107 | OBMITTOO | CENTITIO | | | | 0.000 | 0.100 0.027 11.20 | 11.00 | 72.20 | 37.00 | 107.00 | | 20.01 | | | 20.01 | 1 40 211 00 | 200.0 | 0.00 | 10.00 | 42.00 | 0.00 | 0.07 | 10.40 40.0070 | | Stittsville ES | S-108 | CBMH106 | CBMH107 | | | | 0.049 | 0.123 0.861 12.10 | 12.71 | 69.57 | 94.25 | 161.37 | | 59.87 | | | 59.87 | PVC DR-35 | 375.0 | 0.30 | 31.85 | 96.13 | 0.87 | 0.61 | 36.26 37.72% | | Stittsville ES | S-109 | CB103 | CBMH107 | 0.030 | | | 0.044 | 0.131 0.131 10.00 | 10.24 | 76.81 | 104.19 | 178.56 | | 10.06 | | | 10.06 | PVC DR-35 | 200.0 | 1.00 | 14.85 | 32.83 | 1.04 | 0.24 | 22.77 69.37% | Stittsville ES | S-111 | CB104 | CBMH108 | 0.076 | 0.026 | | | 0.154 0.154 10.00 | | | 104.19 | | | 11.85 | | | 11.85 | PVC DR-35 | | | | | 1.21 | 0.45 | 47.68 80.09% | | Stittsville ES | S-112 | CB105 | CBMH108 | 0.005 | 0.025 | | 0.083 | 0.239 0.239 10.00 | 10.54 | 76.81 | 104.19 | 178.56 | | 18.35 | | | 18.35 | PVC DR-35 | | | | | 1.21 | 0.54 | 41.18 69.17% | | Stittsville ES | S-113 | CBMH108 | CBMH109 | 0.008 | 0.033 | | 0.032 | 0.122 0.516 10.54 | 10.89 | 74.79 | 101.42 | 173.77 | | 38.56 | | | 38.56 | PVC DR-35 | 300.0 | 0.40 | 18.10 | 61.22 | 0.87 | 0.35 | 22.66 37.02% | | Stittsville ES | S-110 | CBMH107 | CBMH110 | 0.030 | | | 0.033 | 0.103 1.095 12.71 | 13.03 | 67.75 | 91.75 | 157.04 | | 74.17 | | | 74.17 | PVC DR-35 | 375.0 | 0.30 | 16.25 | 96.13 | 0.87 | 0.31 | 21.95 22.84% | | Stittsville ES | S-114 | CBMH109 | CBMH110 | 0.009 | 0.002 | | 0.033 | 0.091 0.607 10.89 | 11.19 | 73.55 | 99.72 | 170.82 | | 44.62 | | | 44.62 | PVC DR-35 | 375.0 | 0.30 | 15.75 | 96.13 | 0.87 | 0.30 | 51.51 53.59% | | Stittsville ES | S-115 | CBMH110 | CBMH111 | 0.014 | 0.038 | | 0.021 | 0.105 1.806 13.03 | | 66.86 | 90.53 | 154.93 | | 120.74 | | | 120.74 | CONC CL-100E | | | 17.30 | 180.50 | 1.13 | 0.25 | 59.76 33.11% | | Stittsville ES | S-116 | DICB106 | CBMH111-STMH118 | 0.017 | | | 0.001 | 0.014 0.014 10.00 | | 76.81 | 104.19 | 178.56 | | 1.10 | | | 1.10 | PVC DR-35 | | | | 32.83 | 1.04 | 0.01 | 31.73 96.65% | | Cuttovino EC | 0 110 | CBMH111 | STMH118 | 0.017 | | | 0.001 | 0.000 1.820 13.28 | | 66.15 | 89.56 | 153.25 | | 120.41 | | | 120.41 | CONC CL-100E | | | | 180.50 | 1.13 | 0.73 | 60.09 33.29% | | Stittsville ES | S-117 | RYCB107 | CBMH112 | 0.480 | | | | 0.334 0.334 10.00 | 10.33 | 76.81 | 104.19 | 178.56 | | 25.62 | | | 25.62 | PVC DR-35 | | | | 61.22 | 0.87 | 0.73 | 35.60 58.15% | | | | | | | | | 0.000 | Stittsville ES | S-118 | CB108 | CBMH112 | 0.031 | | | 0.068 | | | 76.81 | 104.19 | 178.56 | | 14.72 | | | 14.72 | PVC DR-35 | | | | 32.83 | 1.04 | 0.33 | 18.11 55.16% | | Stittsville ES | | CBMH112 | CBMH113 | | | | | 0.000 0.525 10.33 | | 75.55 | 102.47 | 175.57 | | 39.68 | | | 39.68 | PVC DR-35 | | | | 61.22 | 0.87 | 0.38 | 21.54 35.18% | | Stittsville ES | S-119 | CBMH113 | CBMH114 | 0.005 | | | 0.248 | | | 74.16 | 100.55 | 172.26 | | 85.22 | | | 85.22 | PVC DR-35 | | | | 111.00 | 1.00 | 0.45 | 25.78 23.22% | | Stittsville ES | S-120 | DICB109 | CBMH114 | 0.102 | | | | 0.071 0.071 30.00 | 30.44 | 40.04 | 53.93 | 91.87 | | 2.84 | | | 2.84 | PVC DR-35 | 200.0 | 1.00 | 27.80 | 32.83 | 1.04 | 0.44 | 29.99 91.35% | | Stittsville ES | S-121 | CBMH114 | STMH115 | 0.100 | | | 0.043 | 0.177 1.397 30.44 | 30.84 | 39.65 | 53.39 | 90.95 | | 55.40 | | + | 55.40 | PVC DR-35 | 375.0 | 0.30 | 20.70 | 96.13 | 0.87 | 0.40 | 40.73 42.37% | | Stittsville ES | S-122 | DICB110 | STMH115-CBMH116 | 0.058 | | | 0.002 | | | 76.81 | 104.19 | 178.56 | | 3.48 | | | 3.48 | PVC DR-35 | 200.0 | 1.00 | 1.49 | 32.83 | 1.04 | 0.02 | 29.35 89.40% | | Stittsville ES | | STMH115 | CBMH116 | | | | | 0.000 1.443 30.84 | 32.37 | 39.31 | 52.93 | 90.15 | | 56.70 | | | 56.70 | PVC DR-35 | 375.0 | 0.30 | 79.95 | 96.13 | 0.87 | 1.53 | 39.43 41.02% | | Stittsville ES | S-123 | CB111 | CBMH116-CBMH117 | 0.043 | | | 0.013 | 0.062 0.062 10.00 | 10.06 | 76.81 | 104.19 | 178.56 | | 4.79 | | | 4.79 | PVC DR-35 | 200.0 | 1.00 | 3.50 | 32.83 | 1.04 | 0.06 | 28.04 85.40% | | Stittsville ES | | CBMH116 | CBMH117 | | | | | 0.000 1.505 32.37 | 32.73 | 38.04 | 51.20 | 87.18 | | 57.24 | | | 57.24 | PVC DR-35 | 375.0 | 0.30 | 18.40 | 96.13 | 0.87 | 0.35 | 38.89 40.45% | | Stittsville ES | S-124 | DICB112 | CBMH117-STMH118 | 0.027 | | | 0.004 | 0.029 0.029 20.00 | 20.01 | 52.03 | 70.25 | 119.95 | | 1.50 | | | 1.50 | PVC DR-35 | 200.0 | 1.00 | 0.70 | 32.83 | 1.04 | 0.01 | 31.33 95.44% | | Stittsville ES | | CBMH117 | STMH118 | | | | | 0.000 1.534 32.73 | 33.48 | 37.76 | 50.82 | 86.53 | | 57.91 | | | 57.91 | PVC DR-35 | 375.0 | 0.30 | 39.20 | 96.13 | 0.87 | 0.75 | 38.22 39.76% | | Stittsville ES | | STMH118 | Ex. STMH | | | | | 0.000 3.354 33.48 | 33.68 | 37.18 | 50.03 | 85.18 | | 124.69 | | | 124.69 | CONC CL-100E | 900.0 | 0.16 | 13.92 | 724.86 | 1.14 | 0.20 | 600.16 82.80% | \Rightarrow | | | | | Definition: | | | | Notes: | | | | | | | | Designed: | | D.B.Y. | | No. | | Revi | | I | | | | Date | | | Q=2.78CiA, where:
Q = Peak Flow in Litre: | | s) | | Mannings coeffice | cient (n) = 0.013 | | FAA Equation | oncentration in the Swale on: $t (min) = 3.258 [(1.1 - C) L^0.$ | | | | | | | | 1. | | City Submi | ssion No. | 1 | | | | 2022-02 | <u>:-18</u> | | A = Area in Hectares (
i = Rainfall Intensity in | millimeters per h | our (mm/hr) | | | | | Where: Lo | ngest Watercourse Length, L (m). Runoff Coef.C = | | npervious | | Checked: | | D.B.Y. | | | | | | | | <u> </u> | | | | | i = 732.951/(TC+6.
i = 1174.184/(TC+6 | | | 2 Year
5 Year | | | | | No. L (m) S % 1 26 1.50 |] | | ŀ | Dwg. Refere | nce: | CXX | | | | | | | | | | | | | i = 1735.688/(TC+6 | | | 100 Year | | | | | | 10.00 m | nin | | | | | | File Referen
219-00014-0 | | | | Date: 022-02-18 | | | | Sheet I | | | I. | 101 | | ### **New Stittsville Ecole Elementary School** 755 Cope Drive, Stittsville, ON Project: 219-00014-00 Date: February, 2022 #### **Stormwater Management Summary** | Drainage Area I.D. | Location | Sub Area
(ha) | Avg.
Composite
'C' 5 yr | Avg.
Composite
'C' 100 yr | Outlet Location | 5 Year
Uncontrolled/
Controlled
Release (L/s) | 5 year
Storage
Required
(m³) | 100 Year
Uncontrolled/
Controlled
Release (L/s) | 100 year
Storage
Required (m³) | Total Storage
Provided (m³) | |--------------------|----------|------------------|-------------------------------|---------------------------------|------------------------|--|---------------------------------------|--|--------------------------------------|--------------------------------| | | | | | | | | | | | | | | | | Total Allowa | ble Release I | Rate (IBI GROUP, 2017) | 1 | | 579.45 | ı | ı | | CONTROLLED | | | | | | | | | | | | S101-S115 | CBMH111 | 1.271 | 0.51 | 0.63 | DAGEHAM STREET | 277.28 | 0.00 | 293.48 | 62.40 | 67.61 | | S117-S123 | STMH115 | 1.193 | 0.45 | 0.52 | DAGEHAM STREET | 190.86 | 0.00 | 201.90 | 63.63 | 76.34 | | S-BLDG | ROOF | 0.375 | 0.90 | 0.99 | DAGEHAM STREET | 23.94 | 50.37 | 23.94 | 128.68 | 140.69 | | UNCONTROLLED | | | | | | | | | | | | S116 | DICB106 | 0.018 | 0.29 | 0.35 | DAGEHAM STREET | 1.51 | | 3.13 | | | | S124 | DICB112 | 0.031 | 0.330 | 0.40 | DAGEHAM STREET | 2.96 | | 6.16 | | | | | | | I | Maximum Re | lease Rate (WSP, 2022) | | | 528.61 | | | | Total | | 2.888 | | | | 496.55 | 50.37 | 528.61 | 254.70 | 284.64 | ## New Stittsville Ecole Elementary School 755 Cope Drive, Stittsville, ON Project: 219-00014-00 Date: February, 2022 ## Pre-Deleveopment (IBI Group, 2017) Table 1a - Allowable Release Rate (Pre-Development) #### **Runoff Coefficient Equation** $C = (A_{hard} \times 0.9 + A_{soft} \times 0.25)/A_{tot}$ #### 5 Year Event | | C | Intensity | Area | |----------|--------|-----------|-------| | | | | | | 5 Year | 0.50 | 104.19 | 2.890 | | 2.78CIA= | 418.55 | | | | | 418.55 | L/s | | *Use a 10.00 minute time of concentration for 5 year #### DDSWMM Parameters (IBI Group, 2017) | Area ID | Area
(HA) | МН | D/S
Segment | IMP
Ratio | Length
(m) | Width
(m) | Avail.
Storage
(m³) | 5 Year
Simulated
Flow (L/s) | ICD
Restriction
(L/s) | |---------|--------------|-------|----------------
--------------|---------------|--------------|---------------------------|-----------------------------------|-----------------------------| | | | | | | | | | | | | INST1 | 2.88 | MH172 | S172 | 0.86 | 324 | 648 | 326 | 582 | 579.45 | Note: *Assumed ponding volume. Assumes that on-site storage will be provided up to the 100 year 3 hour Chicago event #### **Equations:** Flow Equation Q = 2.78 x C x I x A Where: C is the runoff coefficient I is the intensity of rainfall, City of Ottawa IDF Rainfall Intensity = 998.071/(T+6.053)^-0.814 T= time in minutes A is the total drainage area #### New Stittsville Ecole Elementary School 755 Cope Drive, Stittsville, ON Project: 219-00014-00 Date: February, 2022 #### TABLE 2a - Storage Required for New Stittsville Ecole Elementary School (CBMH111) Maximum Allowable Release Rate to Pond 5: 579.45 l/s #### Post Dev run-off Coefficient "C" | | | | 2 & 5 | Year Event | 100 Year Event | | | | |-------|------------|-------|-------|------------------|----------------|----------------------|--|--| | Area | Surface | Ha | "C" | C _{avg} | "C" x 1.25 | C _{100 avg} | | | | Total | Asphalt | 0.482 | 0.90 | 0.51 | 0.99 | 0.63 | | | | 1.271 | Playground | 0.124 | 0.40 | | 0.94 | | | | | | Grass | 0.665 | 0.25 | | 0.31 | | | | ^{*}Areas are approximate based on Architectural site plan and Storm Draiange Area Plan #### **QUANTITY STORAGE REQUIREMENTS - 5 Year** 1.271 = Area(ha) 0.51 = C 579.5 I/s = max allowable release rate | Return
Period | Time
(min) | Intensity
(mm/hr) | Flow
Q (L/s) | Controlled
Runoff (L/s) | Net Runoff To
Be Stored (L/s) | Storage
Req'd m ³ | Storage
Avail m ³ | |------------------|---------------|----------------------|-----------------|----------------------------|----------------------------------|---------------------------------|---------------------------------| | | 10 | 104.19 | 187.76 | 277.28 | -89.52 | -53.71 | 67.61 | | | 20 | 70.25 | 126.59 | 277.28 | -150.69 | -180.83 | 67.61 | | | 30 | 53.93 | 97.18 | 277.28 | -180.10 | -324.19 | 67.61 | | 5 YEAR | 40 | 44.18 | 79.62 | 277.28 | -197.66 | -474.39 | 67.61 | | | 50 | 37.65 | 67.85 | 277.28 | -209.43 | -628.29 | 67.61 | | | 60 | 32.94 | 59.36 | 277.28 | -217.92 | -784.50 | 67.61 | | | | | | | | | | #### **QUANTITY STORAGE REQUIREMENTS - 100 Year** 1.271 = Area(ha) 0.63 = *C 579.5 l/s = max allowable release rate | Return
Period | Time
(min) | Intensity
(mm/hr) | Flow
Q (L/s) | Controlled
Runoff (L/s) | Net Runoff To
Be Stored (L/s) | Storage
Req'd m ³ | Storage
Avail m ³ | |------------------|---------------|----------------------|-----------------|----------------------------|----------------------------------|---------------------------------|---------------------------------| | | | | | | | | | | | 10 | 178.56 | 397.48 | 293.48 | 104.00 | 62.40 | 67.61 | | | 20 | 119.95 | 267.01 | 293.48 | -26.47 | -31.76 | 67.61 | | 100 YEAR | 30 | 91.87 | 204.50 | 293.48 | -88.98 | -160.16 | 67.61 | | | 40 | 75.15 | 167.28 | 293.48 | -126.20 | -302.89 | 67.61 | | | 50 | 63.95 | 142.36 | 293.48 | -151.12 | -453.35 | 67.61 | | | 60 | 55.89 | 124.42 | 293.48 | -169.06 | -608.60 | 67.61 | | | 70 | 49.79 | 110.83 | 293.48 | -182.65 | -767.11 | 67.61 | | | | | | | | | | #### Equations: Flow Equation Q = 2.78 x C x I x A Where: C is the runoff coefficient I is the intensity of rainfall, City of Ottawa IDF A is the total drainage area #### Runoff Coefficient Equation $C = (A_{hard} \times 0.9 + A_{soft} \times 0.2)/A_{tot}$ $*C = (A_{hard} \times 1.0 + A_{soft} \times 0.25)/A_{tot}$ *Runoff coefficients increased by 25% up to a maximum value of 0.99 for the 100- #### Orifice #1 Sizing #### CBMH111 | | | | ORIFICE | SQUARE | CIRC | |----------|------------|----------|-----------------------|-------------|-------| | Event | Flow (L/s) | Head (m) | AREA(m ²) | (1-side mm) | (mmØ) | | 5 Year | 277.28 | 2.50 | 0.066 | 257 | 290 | | 100 Year | 293.48 | 2.80 | 0.066 | 257 | 290 | #### Orifice Control Sizing $Q = 0.6 \times A \times (2gh)1/2$ Where: Q is the release rate in m³/s A is the orifice area in m² g is the acceleration due to gravity, 9.81m/s^2 h is the head of water above the orifice centre in m d is the diameter of the orifice in m Orifice Invert = 104.360 m Ponding Elevation @ 100 year= 107.300 m Ponding Elevation @ 5 year= 107.000 m Note: Orifice #1 is located on the downstream invert of CBMH111 ### New Stittsville Ecole Elementary School 755 Cope Drive, Stittsville, ON Project: 219-00014-00 Date: February, 2022 #### TABLE 2b - Storage Required for New Stittsville Ecole Elementary School (CBMH117) Maximum Allowable Release Rate to Pond 5: 579.45 l/s #### Post Dev run-off Coefficient "C" | | | | 2 & 5 | Year Event | 100 Year E | ent | |-------|---------|-------|-------|------------------|------------|----------------------| | Area | Surface | Ha | "C" | C _{avg} | "C" x 1.25 | C _{100 avg} | | Total | Asphalt | 0.374 | 0.90 | 0.45 | 0.99 | 0.52 | | 1.193 | Gravel | 0.000 | 0.75 | | 0.94 | | | | Grass | 0.819 | 0.25 | | 0.31 | | ^{*}Areas are approximate based on Architectural site plan and Storm Draiange Area Plan #### **QUANTITY STORAGE REQUIREMENTS - 5 Year** 1.193 = Area(ha) 0.45 = C 579.5 I/s = max allowable release rate | Return
Period | Time
(min) | Intensity
(mm/hr) | Flow
Q (L/s) | Controlled
Runoff (L/s) | Net Runoff To
Be Stored (L/s) | Storage
Req'd m ³ | Storage
Avail m ³ | |------------------|---------------|----------------------|-----------------|----------------------------|----------------------------------|---------------------------------|---------------------------------| | | | | | | | | | | | 10 | 104.19 | 155.50 | 190.86 | -35.36 | -21.21 | 76.34 | | | 20 | 70.25 | 104.85 | 190.86 | -86.01 | -103.22 | 76.34 | | | 30 | 53.93 | 80.48 | 190.86 | -110.38 | -198.68 | 76.34 | | 5 YEAR | 40 | 44.18 | 65.94 | 190.86 | -124.92 | -299.80 | 76.34 | | | 50 | 37.65 | 56.20 | 190.86 | -134.66 | -403.99 | 76.34 | | | 60 | 32.94 | 49.17 | 190.86 | -141.69 | -510.10 | 76.34 | | | | | | | | | | #### **QUANTITY STORAGE REQUIREMENTS - 100 Year** 1.193 = Area(ha) 0.52 = *C 579.5 l/s = max allowable release rate | Return
Period | Time
(min) | Intensity
(mm/hr) | Flow
Q (L/s) | Controlled
Runoff (L/s) | Net Runoff To
Be Stored (L/s) | Storage
Req'd m ³ | Storage
Avail m ³ | |------------------|---------------|----------------------|-----------------|----------------------------|----------------------------------|---------------------------------|---------------------------------| | | | , | | , , | , , | | | | | 10 | 178.56 | 307.94 | 201.90 | 106.04 | 63.63 | 76.34 | | | 20 | 119.95 | 206.87 | 201.90 | 4.97 | 5.96 | 76.34 | | 100 YEAR | 30 | 91.87 | 158.44 | 201.90 | -43.46 | -78.24 | 76.34 | | | 40 | 75.15 | 129.60 | 201.90 | -72.30 | -173.53 | 76.34 | | | 50 | 63.95 | 110.30 | 201.90 | -91.61 | -274.82 | 76.34 | | | 60 | 55.89 | 96.40 | 201.90 | -105.50 | -379.82 | 76.34 | | | 70 | 49.79 | 85.87 | 201.90 | -116.03 | -487.34 | 76.34 | | | | | | | | | | #### Equations: Flow Equation Q = 2.78 x C x I x A Where: C is the runoff coefficient I is the intensity of rainfall, City of Ottawa IDF A is the total drainage area #### Runoff Coefficient Equation C = (A_{hard} x 0.9 + A_{soft} x 0.2)/A_{tot} $*C = (A_{hard} \times 1.0 + A_{soft} \times 0.25)/A_{tot}$ *Runoff coefficients increased by 25% up to a maximum value of 0.99 for the 100-Year event $\,$ #### Orifice #2 Sizing CBMH117 | Event | Flow (L/s) | Head (m) | ORIFICE
AREA(m ²) | SQUARE
(1-side mm) | CIRC
(mmØ) | |----------|------------|----------|----------------------------------|-----------------------|---------------| | 5 Year | 190.86 | 2.52 | 0.045 | 213 | 240 | | 100 Year | 201.90 | 2.82 | 0.045 | 213 | 240 | #### Orifice Control Sizing $Q = 0.6 \times A \times (2gh)1/2$ Where: Q is the release rate in m³/s A is the orifice area in m2 g is the acceleration due to gravity, 9.81m/s^2 \boldsymbol{h} is the head of water above the orifice centre in \boldsymbol{m} $\mbox{\bf d}$ is the diameter of the orifice in $\mbox{\bf m}$ Orifice Invert = 104.360 m Ponding Elevation @ 100 year= 107.300 m Ponding Elevation @ 5 year= 107.000 m Note: Orifice #2 is located on the downstream invert of CBMH117 ## New Stittsville Ecole Elementary School 755 Cope Drive, Stittsville, ON Project: 219-00014-00 Date: February, 2022 #### TABLE 3 - Proposed Roof Drains #### Allowable Release Rate $\begin{array}{cccc} Total \, Roof \, Area = & 0.375 & Ha \\ Total \, Roof \, Ponding \, Area = & 2813.783 & m^2 \\ Ponding \, Depth = & 0.07 \, {}^{\sim} \, 0.15 & m \end{array}$ The flow rate through each Roof Drain will be = $5 \sim 25.0$ gpm 0.32 ~ 1.58 L/s Number of Roof Drains = 19.00 Total flow rate = 23.94 TABLE 1. Adjustable Accutrol Flow Rate Settings | W-i- Oi | 1" | 2" | 3" | 4" | 5" | 6" | | | |-------------------------|--------------------------------|----|-------|------|-------|----|--|--| | Weir Opening
Exposed | Flow Rate (gallons per minute) | | | | | | | | | Fully Exposed | 5 | 10 | 15 | 20 | 25 | 30 | | | | 3/4 | 5 | 10 | 13.75 | 17.5 | 21.25 | 25 | | | | 1/2 | 5 | 10 | 12.5 | 15 | 17.5 | 20 | | | | 1/4 | 5 | 10 | 11.25 | 12.5 | 13.75 | 15 | | | | Closed | 5 | 5 | 5 | 5 | 5 | 5 | | | #### Post Dev run-off Coefficient "C" | | | | 2 & 5 | Year Event | 100 Year | Event | |-------|---------|-------|-------|------------|------------|----------------------| | Area | Surface | Ha | "C" | C_{avg} | "C" x 1.25 | C _{100 avg} | | Total | Asphalt | | 0.90 | 0.90 | 0.99 | 0.99 | | 0.375 | Roof | 0.375 | 0.90 | | 0.99 | | | | Grass | | 0.25 | | 0.31 | | ^{*}Areas are approximate based on Architectural site plan #### Runoff Coefficient Equation $C = (A_{hard} \times 0.9 + A_{soft} \times 0.2)/A_{tot}$ *C = (A_{hard} \times 1.0 + A_{soft} \times 0.25)/A_{tot} *Runoff coefficients increased by 25% up to a maximum value of 0.99 for the 100-Year event ####
QUANTITY STORAGE REQUIREMENTS - 5 Year 0.375 = Area(ha) 0.90 = C | Return
Period | Time
(min) | Intensity
(mm/hr) | Flow
Q (L/s) | Allowable
Runoff (L/s) | Net Runoff To
Be Stored (L/s) | Storage
Req'd (m ³) | Storage
Available* (m³) | |------------------|---------------|----------------------|-----------------|---------------------------|----------------------------------|------------------------------------|----------------------------| | | | | | | | | | | | 10 | 104.19 | 97.76 | 23.94 | 73.82 | 44.29 | 140.69 | | | 20 | 70.25 | 65.91 | 23.94 | 41.97 | 50.37 | 140.69 | | 5 YEAR | 30 | 53.93 | 50.60 | 23.94 | 26.66 | 47.98 | 140.69 | | | 40 | 44.18 | 41.46 | 23.94 | 17.52 | 42.04 | 140.69 | | | 50 | 37.65 | 35.33 | 23.94 | 11.39 | 34.16 | 140.69 | | | | | | | | | | #### **QUANTITY STORAGE REQUIREMENTS - 100 Year** 0.375 = Area(ha) 0.99 = *C | Return | Time | Intensity | Flow | Allowable | Net Runoff To | Storage | Storage | |----------|-------|-----------|---------|--------------|-----------------|-------------------------|-----------------------------| | Period | (min) | (mm/hr) | Q (L/s) | Runoff (L/s) | Be Stored (L/s) | Req'd (m ³) | Available (m ³) | | | | | | | | | | | | 10 | 178.56 | 184.29 | 23.94 | 160.35 | 96.21 | 140.69 | | | 20 | 119.95 | 123.80 | 23.94 | 99.86 | 119.83 | 140.69 | | 100 YEAR | 30 | 91.87 | 94.81 | 23.94 | 70.87 | 127.57 | 140.69 | | | 40 | 75.15 | 77.56 | 23.94 | 53.62 | 128.68 | 140.69 | | | 50 | 63.95 | 66.01 | 23.94 | 42.07 | 126.20 | 140.69 | | | 60 | 55.89 | 57.69 | 23.94 | 33.75 | 121.49 | 140.69 | | | 70 | 49.79 | 51.39 | 23.94 | 27.45 | 115.28 | 140.69 | | | | | | | | | | ^{*}Storage available is calculated using roof ponding area mulitplied by the maximum ponding depth, and divided by 3 for a conical pond. #### Equations: Flow Equation Q = 2.78 x C x I x A Where: C is the runoff coefficient I is the intensity of rainfall, City of Ottawa IDF A is the total drainage area ^{**}Refer to roof drains area and storage volume table on DWG C13 for details ## **APPENDIX** # D EROSION AND SEDIMENTATION CONTROL PLAN C07 ## **APPENDIX** # Ε SUBMISSION CHECK LIST ### **4.1** General Content | Executive Sur | mmary (for larger reports only). | |-----------------------------|---| | Comments: | | | Date and revi | sion number of the report. | | Comments: | | | Location map | o and plan showing municipal address, boundary, and layout of relopment. | | Comments: | | | Plan showing | the site and location of all existing services. | | Comments: | | | reference to a | statistics, land use, density, adherence to zoning and official plan, and pplicable subwatershed and watershed plans that provide context to dual developments must adhere. | | Comments: | | | Summary of 1 | Pre-consultation Meetings with City and other approval agencies. | | Comments: | | | Servicing Stu case where it | d confirm conformance to higher level studies and reports (Master dies, Environmental Assessments, Community Design Plans), or in the is not in conformance, the proponent must provide justification and fendable design criteria. | | Comments: | | | Statement of | objectives and servicing criteria. | | Comments: | | | Identification area. | of existing and proposed infrastructure available in the immediate | | Comments: | | 1 | Drains pot | on of Environmentally Significant Areas, watercourses and Municipal entially impacted by the proposed development (Reference can be made tral Heritage Studies, if available). | |--|---| | Comments: | | | developme
manageme
neighbouri | vel master grading plan to confirm existing and proposed grades in the nt. This is required to confirm the feasibility of proposed stormwater nt and drainage, soil removal and fill constraints, and potential impacts to ng properties. This is also required to confirm that the proposed grading pede existing major system flow paths. | | Comments: | | | | on of potential impacts of proposed piped services on private services ells and septic fields on adjacent lands) and mitigation required to address npacts. | | Comments: | | | Proposed p | hasing of the development, if applicable. | | Comments: | | | Reference t | o geotechnical studies and recommendations concerning servicing. | | Comments: | | | All prelimi | nary and formal site plan submissions should have the following | | ☐ Key pla ☐ Name a ☐ Propert ☐ Existing ☐ Easeme | rrow (including construction North) | | Comments: | | #### Development Servicing Report: Water 4.2 | Confirm consistency with Master Servicing Study, if available | |---| | Comments: | | Availability of public infrastructure to service proposed development | | Comments: | | Identification of system constraints | | Comments: | | Identify boundary conditions | | Comments: | | Confirmation of adequate domestic supply and pressure | | Comments: | | Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development. | | Comments: | | Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves. | | Comments: | | Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design | | Comments: | | Address reliability requirements such as appropriate location of shut-off valves | | Comments: | | Check on the necessity of a pressure zone boundary modification. | | Comments: | | delivering s
that the exp | o water supply analysis to show that major infrastructure is capable of sufficient water for the proposed land use. This includes data that shows pected demands under average day, peak hour and fire flow conditions ter within the required pressure range | |------------------------------|---| | Comments: | | | proposed c | of the proposed water distribution network, including locations of connections to the existing system, provisions for necessary looping, and aces (valves, pressure reducing valves, valve chambers, and fire hydrants) pecial metering provisions. | | Comments: | | | water infra | of off-site required feedermains, booster pumping stations, and other structure that will be ultimately required to service proposed nt, including financing, interim facilities, and timing of implementation. | | Comments: | | | Confirmation Guidelines. | on that water demands are calculated based on the City of Ottawa Design | | Comments: | | | | of a model schematic showing the boundary conditions locations, streets, d building locations for reference. | | Comments: | | | | delivering sethat the exprovide was comments: Description proposed compurtenarincluding second comments: Description water infra developme comments: Confirmati Guidelines Comments: Provision coparcels, and | ## 4.3 Development Servicing Report: Wastewater | | Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for | |---|---| | | proposed infrastructure). | | | Comments: | | | Confirm consistency with Master Servicing Study and/or justifications for deviations. | | | Comments: | | | Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers. | | | Comments: | | | Description of existing sanitary sewer available for discharge of wastewater from proposed development. | | | Comments: | | Verify available capacity in downstream sanitary sewer and/or ide upgrades necessary to service the proposed development. (Reference capreviously completed Master Servicing Study if applicable) | | | | Comments: | | | Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding. | | | Comments: | | | Special considerations such as contamination, corrosive environment etc. | | | Comments: | ## **4.4** Development Servicing Report: Stormwater | Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property) | | | |
--|--|--|--| | Comments: | | | | | Analysis of available capacity in existing public infrastructure. | | | | | Comments: | | | | | A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern. | | | | | Comments: | | | | | Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects. | | | | | Comments: | | | | | Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements. | | | | | Comments: | | | | | Description of the stormwater management concept with facility locations and descriptions with references and supporting information. | | | | | Comments: | | | | | Set-back from private sewage disposal systems. | | | | | Comments: | | | | | Watercourse and hazard lands setbacks. | | | | | Comments: | | | | | Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed. | | | | | Comments: | | | | | Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists. | | | |---|--|--| | Comments: | | | | Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period). | | | | Comments: | | | | Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals. | | | | Comments: | | | | Calculate pre and post development peak flow rates including a description o existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions. | | | | Comments: | | | | Any proposed diversion of drainage catchment areas from one outlet to another. | | | | Comments: | | | | Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities. | | | | Comments: | | | | If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100-year return period storm event. | | | | Comments: | | | | Identification of potential impacts to receiving watercourses | | | | Comments: | | | | Identification of municipal drains and related approval requirements. | | | | Comments: | | | | Description developmen | s of how the conveyance and storage capacity will be achieved for the nt. | | |--|--|--| | Comments: | | | | 100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading. | | | | Comments: | | | | Inclusion of | hydraulic analysis including hydraulic grade line elevations. | | | Comments: | | | | - | of approach to erosion and sediment control during construction for the of receiving watercourse or drainage corridors. | | | Comments: | | | | from the ap
delineate fl | on of floodplains - proponent to obtain relevant floodplain information oppropriate Conservation Authority. The proponent may be required to codplain elevations to the satisfaction of the Conservation Authority if nation is not available or if information does not match current | | | Comments: | | | | Identification | on of fill constraints related to floodplain and geotechnical investigation. | | | Comments: | | | | | | | ## 4.5 Approval and Permit Requirements: Checklist The Servicing Study shall provide a list of applicable permits and regulatory approvals necessary for the proposed development as well as the relevant issues affecting each approval. The approval and permitting shall include but not be limited to the following: | | floodplain,
watercours
Act. The Co
Rivers Imp
place, appr | on Authority as the designated approval agency for modification of potential impact on fish habitat, proposed works in or adjacent to a e, cut/fill permits and Approval under Lakes and Rivers Improvement onservation Authority is not the approval authority for the Lakes and provement Act. Where there are Conservation Authority regulations in eval under the Lakes and Rivers Improvement Act is not required, except dams as defined in the Act. | | | |---|---|--|--|--| | | Comments: | | | | | Application for Certificate of Approval (CofA) under the Ontario Water Act. | | | | | | | Comments: | | | | | | Changes to | Municipal Drains. | | | | | Comments: | | | | | | Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.) | | | | | | Comments: | | | | | 4.6 | Conc | lusion Checklist | | | | | Clearly stat | ted conclusions and recommendations | | | | | Comments: | | | | | | information | received from review agencies including the City of Ottawa and on how the comments were addressed. Final sign-off from the reviewing agency. | | | | | Comments: | | | | | | All draft ar registered i | nd final reports shall be signed and stamped by a professional Engineer in Ontario | | | | | Comments: | | | |