

Supplementary Geotechnical Investigation

Proposed Industrial Development -Intersection of Rideau Street and Somme Street Ottawa, Ontario

Consolidated FastFrate (Ottawa) Holdings Inc.

January 24, 2022

GHD

347 Pido Road, Unit 29 Peterborough, Ontario K9J 6X7, Canada T +1 705 749 3317 | F +1 705 749 9248 | ghd.com

Hassan Gilani, P. Eng.

Alex Fiorilli, P. Eng. (Qc)

Approved :

Leandro Ramos, P. Eng.

Document status

pordo

Status	Revision	Author	Reviewer		Approved for issue			
Code			Name	Signature	Name	Signature	Date	
S3	00	Leandro Ramos, P. Eng.	Oliver Galvier		Hassan Gilani, M.Sc., P. Eng.		2021Dec22	
S4	01	David Rizk, P. Eng. (Qc)	Hassan Gilani, P. Eng.	Rani	Leandro Ramos, P. Eng.	Georde James	2022Jan24	
			Alex Fiorilli, P. Eng. (Qc)	Aler till				

© GHD 2022

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorized use of this document in any form whatsoever is prohibited.

Contents

1.	Introd	luction	1
2.	Previo	ous investigations and analyses	1
3.	Site a	nd project description	2
4.	Metho	odology	3
	4.1	Safety planning and utility clearances	3
	4.2	Field investigation	3
	4.3	Surveying	4
	4.4	Laboratory testing	4
5.	Subsu	urface conditions	4
		5.1.1 Topsoil	6
		5.1.2 Fill	6
		5.1.3 Silty sand and sandy silt	6
		5.1.4 Sandy clay	6
		5.1.5 Silty clay	6
		5.1.0 Bedrock 5.1.7 DCPT results	7
	52	Geotechnical laboratory testing results	7
	53	, 8	
	5.4	Corrosivity testing results	9
6.	Discu	ssion and recommendations	9
•.	6 1	Site preparation and grading	10
	011	6.1.1 Building footprints (Foundations and Slabs)	10
		6.1.2 Exterior pavement and underground servicing	11
	6.2	Excavation and dewatering	12
	6.3	Foundation	12
		6.3.1 Shallow foundation	12
	6.4	Seismic site classification	13
	6.5	Frost protection	13
	6.6	Interior floor slabs	13
	6.7	Exterior slabs	13
	6.8	Pavement recommendations	14
	6.9	Underground service trenches	15
	6.10	Permanent drainage	16
		6.10.1 Underfloor drainage slab-on-grade – No basement	16
		6.10.2 Perimeter drainage	16
	6.11	Corrosion potential of soils	16
	6.12	Slope stability	17
	6.13	Backfill	17
		6.13.1 Engineered fill	17

7.	Limitat	tions of the investigation	18
	6.14	Construction field review	18
		6.13.2 Existing foundation wall backfill	17

Table index

Table 1	Laboratory Testing Completed	4
Table 2	Subsoil Stratigraphy Depth and Elevation (m)	5
Table 3	Summary of the Particle Size Distribution Tests	7
Table 4	Summary of Atterberg Limit Tests	8
Table 5	Summary of Uniaxial Compressive Strength of Intact Rock Core	
	Specimens	8
Table 6	Groundwater Readings	8
Table 7	Corrosion Parameter Results	9
Table 8	Preliminary Pavement Design (Flexible Pavement Structure)	14
Table 9	Preliminary Pavement Design (Rigid Pavement Structure)	15
Table 10	Classes of Exposure	16

Figure index

Figure 1	Site Location Plan	20
Figure 2	Borehole Location Plan	21

Appendices

Appendix A	
Appendix A1	Boreholes Logs
Appendix A2	Geotechnical Laboratory Results
Appendix A3	Analytical Laboratory Results
Appendix B	Dynamic Compaction Condition (DCC) Slope Stability
Appendix C	Final Slope Stability
Appendix D	
Appendix D1	Geotechnical Investigation Report dated October 27, 2020
Appendix D2	Geotechnical Study Report dated May 4th, 2009

1. Introduction

GHD Limited (GHD) has been retained by Consolidated FastFrate (Ottawa) Holdings Inc. (FastFrate), representative Mr. Pierre Courteau of CBRE Limited, to undertake a supplementary geotechnical investigation for a new warehouse and office building located southeast of the intersection of Rideau Street and Somme Street in Ottawa, Ontario, hereafter referred to as the 'Site'.

The Site location map is provided as Figure 1 at the end of this report.

The supplementary investigation was carried out in accordance with GHD's offer of professional services no. 11228236, dated July 20, 2021, and addressed to Mr. Pierre Courteau and Mr. Keefe Primett.

The purpose of this supplementary geotechnical investigation was to further define the subsurface soil and groundwater conditions within the site development footprint, not previously covered by GHD in previous investigations, following modifications to the proposed building footprint location. This supplementally geotechnical report provides recommendations with respect to the new proposed development footprint, including but not limited to:

- Foundation design option and general recommendations with respect to deep dynamic compaction, as this is understood to be the client's preferred construction and soil improvement method.
- Subgrade preparation for proposed building slabs and exterior pavement areas, including exterior pavement design.
- General excavation recommendations.
- Site seismic classification in accordance with the National Building Code of Canada (NBCC).
- Control of groundwater.
- General Construction recommendations.

In addition, this report is accompanied by a series of four appendices:

_	Appendix A	A1 Borehole Logs
		A2 Geotechnical Lab Results
		A3 Analytical Lab Results
_	Appendix B	Dynamic Compaction Condition Slope Stability
_	Appendix C	Final Slope Stability
_	Appendix D	D1 Geotechnical Investigation Report dated October 27, 2021
		D2 Geotechnical Study Report dated May 4 th , 2009.

The factual data, interpretations, and recommendations contained in this report pertain to a specific project as described in the report and are not applicable to any other project or site location. This report should be read in conjunction with the Statement of Limitations appended to this report. The reader's attention is specifically drawn to this information, as it is essential for the proper use and interpretation of this report.

2. Previous investigations and analyses

GHD previously completed two geotechnical investigations on this site and surrounding areas.

The first, titled "Geotechnical Study Subdivision Plan Hawthorne Industrial Park Lots 26 and 27, Concession 6 Southeast of Hawthorne and Rideau Roads", was completed by heritage GHD (InspecSol) and dated May 4th, 2009. This study, which also incorporates previous CRA (2008) and Golder Reports (1993), covered a larger area and was not specific to the present development footprint but did include a limited number of soundings on the currently investigated site. The second, a geotechnical investigation carried out specifically for this project in 2020. This report, titled "Geotechnical Investigation – Warehouse and Offices, Intersection of Rideau Street and Somme Street", was prepared by GHD and submitted on October 27th, 2021. At the time of that investigation, the proposed building footprint was different from the one considered today. Regardless, both reports are presented as attachments in Appendix D of this report. Relevant information provided within these former investigations was considered during the preparation of the present investigative report.

Further to geotechnical investigations, GHD also provided a Hydrogeological Assessment Report, dated January 19th, 2021, and a Septic Assessment and Percolation Rate Evaluation on April 12th, 2021, for this site.

Finally, following the latest update to the proposed development plan, FastFrate approached GHD to evaluate the stability of the Site slopes during eventual dynamic compaction work and following the final grading plan. These evaluations, completed as a separate mandate to the current supplementary investigation, are presented as individual letter reports and are amended to Appendices B and C of this report.

3. Site and project description

At the time of the investigation, the Site was vacant and overgrown with vegetation. Evidence of fill (gravel, concrete, and asphalt) could be observed on the ground surface. The surrounding blocks in the area were in a similar condition. There was also a tree line along the north perimeter of the Site where a steep slope was also observed leading from the Site down to the ditch directly to the south of Rideau Street.

GHD observed three existing groundwater monitoring wells and one hydrogeological testing well on the Site. One of these wells was confirmed as MW7-08 installed by GHD (heritage CRA) in 2008. Based on the position of the hydrogeological testing well adjacent to MW7-08, GHD believes this is TW-2 installed by Capital Water Supply Ltd. in 1993, as discussed in Golder's Hydrogeological report for the Site. It appeared that minimal to no fill placement has occurred around these well locations since 2008. The details of the remaining two existing wells on Site could not be confirmed.

The Site topography is relatively flat with various small mounds of fill material sloping down to the surrounding streets. The surrounding topography slopes up from south to north by approximately 3.5 meters (m) from Rideau Street to the section of Somme Street south of the Site. The Site elevation is higher compared to the surrounding streets varying from approximately 0.2 m higher on the south side (Somme Street) to 4.0 m higher on the north side (Rideau Street). There was also a ditch along the south, west, and north perimeters of the Site.

The historic fill placement at the Site has created sloping of approximately 2:1 (H:V) around the south, west, and north perimeters of the Site.

GHD's understanding of the proposed building, is based on a sketch provided by the FastFrate illustrated on the Borehole Location Plan provided in **Figure** 2.

It is our understanding that the proposed new building will consist of an approximately 50,000 square feet (sf) warehouse on the eastern portion of the Site, connected to an approximately 20,000 sf cross dock on the western portion, with approximately 1,500 sf of associated office space.

The location of the Site is shown on the Site Location Plan attached as Figure 1.

4. Methodology

The field investigation and geotechnical laboratory testing protocols and methodologies for this investigation are presented in the following sections.

4.1 Safety planning and utility clearances

Upon project initiation, a Site-specific Health and Safety Plan (HASP) was prepared for implementation during the field investigation program. The HASP presented the visually observed Site conditions and identified potential physical hazards to field personnel. Required personal protective equipment was also listed in the HASP. The HASP was reviewed by GHD's field personnel prior to undertaking field activities and a copy of the HASP was maintained at the Site for the duration of the investigative work. Health and Safety requirements in the HASP were implemented during the field investigation program.

Prior to initiating the subsurface investigation activities, GHD requested public utilities to be marked by utility operators in accordance with the Ontario One Call damage prevention laws. All applicable utility companies (gas, hydro, bell, network cables, pipeline, municipal sewers, etc.) were contacted. In addition, GHD also retained private utility locating companies (Utility Marx) to locate any underground private utilities that could potentially be present at the Site. The proposed boreholes were positioned at appropriate locations to avoid existing service lines.

4.2 Field investigation

The drilling program associated with the current (2021) supplementary geotechnical investigation was conducted between July 26 and 28, 2021, and consisted of advancing a total of five exploratory boreholes denoted as BH1-21 to BH5-21. Three of the boreholes were located within the proposed building footprints and extended to 9.1 to 18.9 metres below ground surface (mbgs), and two of the boreholes were located in the proposed retaining wall footprint and extended to 8.0 to 12.0 mbgs.

Drilling for the previous (2020) geotechnical investigation was conducted between August 6 and 7, 2020, and consisted of advancing an initial total of four exploratory boreholes and one dynamic cone penetration test denoted as BH1 to BH4 and DCPT5. The exploratory boreholes were advanced to depths ranging between 11.1 and 14.9 mbgs, and the dynamic cone penetration test was terminated at 5.9 mbgs.

The drilling work was carried out by a track-mounted power auger drilling rig, supplied, and operated by George Downing Estate Drilling Ltd., under the full-time supervision of a GHD experienced technical representative.

The boreholes were advanced using hollow stem augers, and soil samples were collected every 0.75 m intervals to the termination depth of the boreholes. All samplings were conducted using a 50 millimetre (mm) outside diameter split spoon sampler in general accordance with the specifications of the Standard Penetration Test Method (ASTM D1587-8). In addition, at each borehole location, the relative density or consistency of the subsurface soil layers was measured using the Standard Penetration Test (SPT) method, by counting the number of blows ('N') required to drive a conventional split-barrel soil sampler 0.30 m depth. Soil samples were retrieved from each borehole location to verify strata boundaries and soil properties.

The GHD technical representatives logged the overburden material encountered in the boreholes and examined the samples as they were obtained. The recovered samples were sealed in clean, airtight containers and transferred to the GHD laboratory, where they were reviewed by a senior geotechnical engineer. The detailed results of the individual boreholes are recorded on the accompanying borehole logs presented in Appendix A1 for boreholes advanced in the most recent 2021 supplementary investigation completed and in Appendix D1 for borehole advanced in 2020.

Groundwater level observations and measurements were made in the boreholes as drilling proceeded and upon completion of drilling. As part of the preliminary geotechnical investigation and to measure the more stabilized

groundwater table in the area, a nominal 19 mm outside diameter monitoring well (schedule 40 PVC screen and riser pipe) was installed in BH1 at appropriate horizons to obtain information on groundwater conditions. The screen length used for the monitoring well was 3.0 m, and a silica sand pack was placed at the tip of the monitoring well and extended at least 0.3 m above the screen. The well was backfilled using sand around and beyond the screen interval, bentonite 0.6 m above the sand, and cuttings to the ground surface. Details of the monitoring well construction are presented on the attached borehole logs.

The boreholes, in which monitoring wells were not installed, were backfilled upon completion and sealed in accordance with Ontario Regulation 903 (O. Reg. 903). Excess soil cuttings were distributed evenly on the ground surface in the area of the location of the boreholes.

4.3 Surveying

Geodetic ground surface elevations were collected by GHD field staff with a Leica 1200+ Real-Time-Kinematic (RTK) GPS survey system. The elevations of the boreholes are for use within the context of this report only.

4.4 Laboratory testing

The following laboratory testing on recovered soil samples and rock core samples were completed:

Laboratory test	2021 investigation (current)	2020 investigation (previous)
Hydrometer grain size analyses	7	4
Atterberg limit tests	5	1
Moisture content determination	79 (on all collected samples)	48 (on all collected samples)
Unconfined compressive strength test (UCS)	1	1

Table 1 Laboratory Testing Completed

The results of water content tests on the extracted soil samples are reported at the corresponding borehole logs presented in Appendix A1 D of this report. The results of the grain size analysis (sieve and hydrometer testing), Atterberg limit tests, and UCS testing are discussed in more detail in section 5.2, and a copy of the laboratory results are presented in Appendix A3 for the 2021 boreholes and in Appendix D for the previously completed boreholes in 2020.

Analytical testing was also carried out on one soil sample collected during the previous 2020 investigation to determine the corrosion potential of the subsurface soils at the Site. The certificates of analysis of the corrosion testing are provided in Appendix A3 and summarized in section 5.4.

5. Subsurface conditions

Table 2 presents a summary of the depth (elevation) or thickness of each subsoil stratum encountered at the borehole locations completed by GHD. The corresponding borehole logs are presented in Appendices A1 and D of this report. The subsections below briefly summarize the encountered stratigraphy.

It should be noted that the subsurface conditions are confirmed at the borehole locations only and may vary at other locations (between and beyond the borehole locations). The boundaries between the various strata, as shown on the

borehole logs, are based on non-continuous sampling. These boundaries represent an inferred transition between the various strata, rather than a precise plane of geological change.

The general stratigraphy at the Site consists of topsoil overlying a thick layer of fill material, underlain by native silty sand to sandy silt followed by a glacial till. Limestone bedrock with interbedded sandstone was encountered at depths ranging from 8.2 mbgs (BH1) to 14.8 mbgs (BH2-21). A brief description of each soil stratum is summarized in **Table 2** and in the sections below.

Borehole no. (Surface elevation)	Topsoil thickness (m)	Fill Thickness (m)	Silty sand and sandy silt depth (Elevation)	Sandy clay depth (Elevation)	Silty clay depth (Elevation)	Bedrock depth (Elevation)	End of borehole depth (Elevation)
2021 Investigation	n (present)						
BH1-21 (91.07)	0.075	4.50	4.58 (86.49)			9.86 (81.21)	13.82 (77.25)
BH2-21 (90.79)	0.075	5.26 ⁽¹⁾	5.34 (85.45)		11.56 (79.23)	14.78 (76.01)	18.87 (71.92)
BH3-21 (90.55)	0.075	3.33 ⁽¹⁾	3.81 (86.74)				9.14 ⁽²⁾ (81.11)
BH4-21 (90.23)	0.075	6.48 ⁽¹⁾	6.55 (83.68)		11.43 (78.80)		12.04 ⁽²⁾ (78.19)
BH5-21 (90.39)	0.075	4.50	4.57 (85.82)				8.00 ⁽²⁾ (82.39)
2020 Investigation	า						
BH1 (90.21)	0.075	5.84	5.91 (84.30)			8.21 (82.00)	11.30 (78.91)
BH2 (89.80)	0.075	6.03	6.10 (83.70)			9.30 (80.50)	12.20 (77.60)
BH3 (90.88)	0.125	5.96	6.08 (84.80)			11.88 (79.00)	14.90 (75.98)
BH4 (90.44)	0.125	6.02 ⁽¹⁾	6.14 (84.30)				11.14 ⁽²⁾ (79.30)
2008 Study							
B5-1 (90.48)		5.33 ⁽⁽¹⁾	5.33 (85.15)	6.86 (83.62)	7.32 (83.16)		10.03 ⁽²⁾ 80.45
B5-2 (90.78)		4.57 ⁽¹⁾			4.57 (86.21)		6.71 (84.07)
B5-3 (90.51)		6.10 ⁽¹⁾			6.10 (84.41)		7.62 (82.89)
MW7-08 (93.81)		5.49	5.49 (88.32)				3.92 (89.83)

 Table 2
 Subsoil Stratigraphy Depth and Elevation (m)

Notes:

^{(1):} Some organic materials encountered in the fill

^{(2):} Borehole terminated on auger refusal

--: Not encountered

5.1.1 Topsoil

A surficial layer of topsoil with rootlets and organic matter was encountered at the ground surface of all 2021 and 2020 boreholes drilled at the Site. The thickness of the topsoil layer ranged from 75 mm to 125 mm at the borehole locations. It should be noted that the thickness of topsoil may vary between borehole locations. Classification of this material was based solely on visual and textural evidence.

5.1.2 Fill

Fill was encountered below the ground cover in all boreholes. The fill materials generally extended to approximate depths ranging between 3.0 to 6.0 mbgs. The fill composition is in general heterogeneous, consisting of a mixture of sand, silt, clay, and gravel. Cobbles and possible boulders were encountered in the boreholes at varying depths. Traces amount of organic matter and/or rootlets were also observed within the fill in boreholes BH2-21 through BH4-21, BH4 and B5-1 through B5-3. Fragments of buried asphalt were noted in boreholes BH3, BH4, BH3-21, B5-1, B5-2, B5-3 and MW7-08.

Standard Penetration (SPT) 'N' values obtained within the fill layer varied between 2 to 46 blows per 300 mm, indicating a soft to stiff consistency of the fine-grained fill materials or very loose to dense relative density of the granular fill. One shear vane test was performed within the clay fill material at the BH2 location that recorded a shear strength of 50 kilopascals (kPa).

Samples of this material were visually described to be in a generally moist condition transitioning to wet at around 3 to 4 mbgs depth. The measured moisture content of the fill samples extracted from the borings generally ranged between 10 and 20 percent by weight. Occasionally elevated moisture content values obtained from the fill material indicate the presence of organics matter.

5.1.3 Silty sand and sandy silt

The predominant native soil at the Site consists of granular deposits of silty sand or sandy silt that were encountered beneath the earth fill layer in all the drilled boreholes. The granular soils contained varying amounts of gravel and clay. Cobbles and possible boulders are expected within this deposit becoming more frequent with depth.

SPT 'N' values within the silty sand or sandy silt stratum varied between 5/300 mm and greater than 100/300 mm, indicating a loose to very dense relative density. The deposits were generally in a compact to very dense condition except in BH3-21, where the silty sand soils were locally observed to be loose (4.8 to 5.2 mbgs).

Water content measurements obtained from extracted samples of the granular soils varied between 7 and 30 percent indicating a moist to wet condition.

5.1.4 Sandy clay

A deposit of sandy clay was encountered below the native sandy silt at the historical B5-1 location. The material was very soft and in a moist condition. This material was not encountered within the new borehole locations as part of this investigation.

5.1.5 Silty clay

Below the fill material and the native sandy clay (in the historic borehole B5-1) was a native silty clay deposit. The deposit was encountered at depths ranging from 4.6 (B5-2) to 11.4 (BH4-21 and BH2-21) mbgs. Auger refusal was encountered within this material at previous studies and depth of about 14.3 mbgs in borehole BH2-21.

SPT 'N' values within the sandy clay stratum generally varied between 8/300 mm and in excess of 100 blows/300 mm penetration, indicating firm to hard consistency.

Water content measurements obtained from extracted samples of the fine-grained soils varied between 11 and 14 percent, indicating a moist condition.

5.1.6 Bedrock

Limestone bedrock with interbedded sandstone was encountered at depths of 8.2 mbgs (BH1), 9.3 mbgs (BH2), 11.9 m (BH3), 9.9 mbgs (BH1-21), and 14.8 mbgs (BH2-21). Boreholes BH4, BH3-21 to BH5-21 and B5-1 were terminated upon refusal at depths ranging from 8.0 to 12.0 mbgs in inferred bedrock or boulders. The bedrock quality varied with depth and location; the recorded rock quality designation (RQD) ranged between 37 to 95 percent.

5.1.7 DCPT results

The results of the DCPT test show the upper 5.9 m of the material is in loose to compact condition based on blow counts of less than 10 up to 20/300 mm.

5.2 Geotechnical laboratory testing results

Prior to the geotechnical laboratory testing, the soil samples extracted from the Site were subjected to tactile examination by an experienced GHD geotechnical engineer who confirmed the field descriptions and selected representative samples for detailed testing. Geotechnical laboratory testing included moisture content determination on all the recovered samples. Soil classification has been conducted in accordance with the Unified Soil Classification System (ASTM D2487).

In addition, a total of 11 particle size distribution tests (gradation analysis) using sieve analysis (ASTM D6913) and hydrometer testing (MTO LS-702) were completed. The results of the grain size analysis (sieve and hydrometer) are summarized in **Table 3** and the grain-size distribution curves are presented in Appendix A2 for the current 2021 (present) investigation and in Appendix D for the previous 2020 report (initial).

Borehole ID	Sample number	Depth (mbgs)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Fines Silt and Clay (%)
BH1	SS3	1.5 – 2.1	51	43	5	1	6
BH2	SS4	2.3 - 3.0	1	2	36	61	97
BH2	SS7	4.5 - 6.1	25	38	29	8	37
BH3	SS10	6.9 - 7.5	8	47	37	8	45
BH1-21	SS2B	0.9 - 1.4	17	60	19	4	23
BH1-21	SS13	9.1 – 9.8	16	32	36	16	52
BH2-21	SS12	8.4 - 9.0	20	38	33	9	42
BH2-21	SS18	13.0 – 13.6	6	29	42	23	65
BH3-21	SS8	5.3 - 5.9	19	49	26	6	32
BH5-21	SS3	1.5 – 2.1	25	38	29	8	37
BH5-21	SS7	4.6 - 5.2	10	38	41	11	52

Table 3 Summary of the Particle Size Distribution Tests

Atterberg limits tests (ASTM D4318) were also conducted on 6 representative samples containing fine-grained soils. The results are reported on the soil plasticity charts provided in Appendix A2 for the current supplementary 2021 investigation and in Appendix D for the previous 2020 investigation. A summary of the obtained results is tabulated in **Table 4**.

Table 1	Summary	of Attorborg	Limit	Tosts
I able 4	Summary	of Allerberg	LIIIII	16212

Borehole ID	Sample Number	Depth (mbgs)	WL (%)	WP (%)	IP (%)	W (%)
BH2	SS4	2.3 - 3.0	69	21	48	56.0
BH1-21	SS13	9.1 – 9.8	26	18	8	8.0
BH2-21	SS12	8.4 - 9.0	25	17	8	8.9
BH2-21	SS18	13.0 – 13.6	28	14	14	11.9
BH3-21	SS8	5.3 - 5.9	17	13	4	9.7
BH5-21	SS7	4.6 - 5.2	20	13	7	15.0

Notes: W – Natural Water Content WL – Liquid Limit

WP – Plastic Limit

IP – Plasticity Index

Table 6

Uniaxial Compressive Strength of Intact Rock Core Specimens tests (ASTM D7012 – Method C) were conducted on two representative rock core samples. The results are presented in Appendix A2 for the 2021current supplementary 2021 investigation and in Appendix D for the 2020 report investigation. A summary of the obtained results is tabulated in **Table 5**.

Table 5 Summary of Uniaxial Compressive Strength of Intact Rock Core Specimens

Borehole ID	Rock type	Depth (mbgs)	Compressive strength (MPa)
BH2	Limestone	9.4 - 9.6	125.2
BH2-21	Limestone	15.7 – 15.8	139.1

Based on the results of the unconfined compressive strength test, the tested rock core samples may be generally classified in accordance with ISRM (International Society of Rock Mechanics) guidelines as very strong.

5.3 Groundwater conditions

Groundwater Readings

Three existing groundwater monitoring wells were present on site. One well was confirmed as MW7-08. The details of the other two wells are unknown.

One additional monitoring well was installed as part of the scope of work for this investigation. Groundwater levels were measured on August 18, 2020, at the monitoring wells. The following **Table 6** shows measured water levels.

Monitoring well ID	Installation date	Ground surface elevation ⁽²⁾ (m)	Well installation depth (mbgs)	Water level readings depths mbgs ⁽¹⁾ /Elev. (m) ⁽²⁾ August 18, 2020						
BH1 (GHD)	August 6, 2020	90.2	7.1	4.0/86.2						
MW7 (CRA)	2008	90.8	6.0	3.3/87.5						
Northwest Well	Unknown	90.9	5.3	3.3/87.6						
Northeast Well	Unknown	90.3	5.4	3.5/86.8						
Notes: ⁽¹⁾ metres below ground surface ⁽²⁾ metres above mean sea level										

The measured groundwater levels in the installed monitoring wells ranged between 3.3 and 4.0 mbgs, at elevations ranging between 86.2 and 87.6 m. These levels indicated the water is within the fill material. It should be noted that the groundwater table is subject to seasonal fluctuations and in response to precipitation and snowmelt events. Also, it would be expected that water may be perched within the fill materials, especially during and following periods of precipitation and in the spring and fall or other wet seasonal periods.

5.4 Corrosivity testing results

One soil sample was previously submitted for analysis of parameters used to assess the potential corrosivity of the site soils to steel and concrete during the 2020 investigation. The Certificates of Analysis are provided in Appendix D and summarized in **Table 7**.

Table 7	Corrosion	Parameter	Results

Sample ID	BH3 SS3
рН	8.66
Resistivity (ohm-cm)	1920
Sulphate (%)	0.08
Chloride (%)	0.008
REDOX Potential (mV)	205
Sulphide (ug/g)	<0.20

6. Discussion and recommendations

The recommendations in this report are based on GHD's understanding of the most recent (updated) proposed development, which is outlined below:

- An approximate 50,000 sf warehouse on the west portion of the Site.
- An approximate 20,000 sf cross-dock connected to the east face of the warehouse.
- Approximately 1,500 sf of office space connected to the south face of the cross-dock.
- No underground levels are planned for the proposed structure.

Note that the proposed finish grade for the new building was not known at the time the report was prepared. Furthermore, structural details, specifically column loads were not known at the time the report was prepared.

Finally, GHD understands that the Client has selected Deep Dynamic Compaction as the preferred construction and soil improvement method in order to densify the existing fills and render the site acceptable to accommodate the use of conventional shallow foundation, slab-on-grades and possibly paved areas.

Based on the proposed development, the subsurface conditions encountered in the boreholes, and assuming the boreholes to be representative of the subsurface conditions across the Site, the following recommendations are provided for the design of the proposed building:

Fill material | An approximate 3.5 m to 6.0 m thick layer of fill is present throughout the Site. The composition of the fill material is not consistent with depth or from borehole to borehole. Buried asphalt was also noted in the fill material at various locations. Traces of organic matters and layers up to 3.51 m bgs were also locally encountered in the fill material. It is our understanding that FastFrate has selected deep dynamic compaction as the preferred ground improvement method to render the existing fill suitable to support the shallow foundation for the proposed structure. Although the deep dynamic compaction is generally considered suitable for deep loose low plasticity mineral fills, it is not effective in adequately compact

high organic layers. It is therefore recommended that prior to commencing the deep dynamic compaction detailed design, the specialty soil improvement contractor should conduct a supplementary test pit investigation to determine the nature and extent of organics within the fill layer or at the fill/native deposit interface to confirm that the deep dynamic compaction method is the most viable and feasible soil improvement method for this project. Over excavation of organics/clayey lens and addition of sand and gravel layer during the compacting process could be locally required. Alternatively, other soil improvement techniques such as the installation of rigid inclusions may be considered or deep foundations such as steel piles driven to refusal could be used to support both the building structure and slabs may be considered. GHD can provide recommendations for other foundation support systems (including other soil improvement techniques) at FastFrate's request, and if required.

- Presence of cobbles and boulders | Obstructions to SPT were encountered within the fill material as well as within the native deposit overlying the bedrock. The obstructions are assumed to be possible cobbles or boulders. The specialty soil improvement contractor should review the presence of cobbles and boulders in the fill and native deposits and determine if their presence would affect the preferred methodology and its effectiveness. During detailed design, it is recommended that an additional investigation by means of test pits be completed to further determine the nature of the obstructions should piles eventually be deemed the preferred option.
- Dewatering | If excavations will extend below the measured groundwater level of approximately 3.3 mbgs, groundwater infiltration into the excavations is expected. The water quantities expected to enter open excavations during construction will depend on the seasonal conditions, depth of excavations, and the duration that excavations are left open. Hydrogeological assessment to estimate the extent of dewatering activities and determine whether a Permit to take water (PTTW) or submission on the Ontario Environmental Activity and Site Registry (EASR) are discussed in the Hydrogeological Assessment Report no 11220832-01 issued by GHD on January 19th, 2021.
- Slope stability | The historic fill placement at the Site has created sloping of approximately 2:1 (H:V) around the south, west, and north perimeters of the Site. Based on the preliminary slope stability analysis completed within the previous geotechnical investigation report, depending on the composition and compactness state of the fill material, the factor of safety for the slope may be equal or slightly below (i.e., 1.4 under static condition and 1.0 under pseudo-static condition) the recommend values of 1.5 for static condition and 1.1 for pseudo-static. Since this analysis was completed, FastFrate has provided GHD with updated survey and development plans. GHD has prepared a complete slope stability analysis for the construction sequence under dynamic compaction conditions and the geometry of the final slopes. The analysis is attached to this report in Appendix B and Appendix C.

Once detailed design advanced, we recommend that the comments and recommendations presented herein be reviewed and updated or adjusted accordingly.

6.1 Site preparation and grading

6.1.1 Building footprints (Foundations and Slabs)

Site preparation within the building footprint will depend on design finish grade and preferred foundation option. Furthermore, the site in its current state, as a result of the presence of a 3.5 m to 6.0 m thick layer is not suitable to accept conventional shallow foundations and slab-on-grades.

If shallow foundations and slab-on grades are preferred, as is currently understood, the existing site conditions would need to be improved in order to accommodate such structures founded directly on the subgrade.

Based on the anticipated subsoil stratigraphy encountered across the site, two soil improvement techniques could potentially be feasible for this site. The first is deep dynamic compaction in order to adequately densify the existing fill material across the building footprint. The second is the installation of rigid inclusions in order to transfer the loads induced by both the building foundations and slabs to deeper more competent layers.

As previously stated, GHD understands that the Client has selected Deep Dynamic Compaction as the preferred construction and soil improvement method. Such soil improvement works must be completed and certified by a contractor specialized in this field.

As mentioned in the introductory section 6, the feasibility of deep dynamic compaction, as a result of identification of organics within the uncontrolled fill during the completion of the current supplementary, should be confirmed by a test pit investigation completed by the retained soil improvement contractor prior to the start of any soil improvement activities.

This method would compact the existing fill material using a crane that repeatedly drops a weight in a closely spaced grid pattern across the site, creating a uniformly compacted subgrade.

This would result in consolidation and thus lower the existing grades. Additional fill could be required to achieve the design grades.

Prior to Site grading activity, the exposed dynamically compacted subgrade soils should be visually inspected and probed. Any soft, organic, or unacceptable areas should be removed as directed by the Geotechnical Engineer and replaced with suitable engineered materials.

The fill required to achieve the design grades must comprise clean granular materials free of organics, frozen soils, construction debris, particle sizes larger than 100 mm, and any other deleterious materials. This material, approved by the geotechnical engineer, should be placed in loose lifts to 200 mm thick and compacted to 98% SPMDD in the building footprint.

Fill in the building footprint must be placed under full-time geotechnical supervision to be certified as engineered fill.

6.1.2 Exterior pavement and underground servicing

Similarly, as stated above the presence of a 3.5 m to 6.0 m thick layer of uncontrolled fill would require site soil improvement for the pavement and servicing subgrade.

Ideally, this improvement would involve similar dynamic compaction methods as discussed in the building subgrade preparation section above.

Should these operations not be economically justified, the client must be aware that deflections and cracking and potential movement of underground servicing should be anticipated where parking areas and underground services are constructed over the existing fill. A pavement and servicing maintenance program should be considered for this development.

Should the client forgo dynamic compaction within the pavement and exterior servicing areas, alternate less significant improvement methods would involve additional compaction of the subgrade as well as placement of thicker base and subbase layers.

Prior to Site grading activity, the exposed subgrade soils should be visually inspected, compacted, and proof rolled using large axially loaded equipment. Any soft, organic, or unacceptable areas should be removed as directed by the Geotechnical Engineer and replaced with suitable engineered materials.

The fill required to achieve the design grades must comprise clean granular material, free of organics, frozen soils, construction debris, particle sizes larger than 100 mm, and any other deleterious materials. The material approved by the geotechnical engineer should be placed in loose lifts up to 200 mm thick and compacted to 98% SPMDD in the pavement footprint areas and 92% SPMDD in the proposed landscaped areas. The pavement subbase and base layers must be compacted to 100% SPMDD.

Perimeter drainage must be designed so as to prevent lateral infiltration beneath the asphalt surfaces from adjacent grassed or landscaped areas.

Sanitary sewer and watermain bedding should comply with the City of Ottawa Standard S6 and S7, and W17, respectively Class B bedding consisting of OPSS Granular "A" 300 mm thick below the invert of the pipe and extending to 300 mm above the crown of the pipe. The bedding material should be compacted to 95% SPMDD.

6.2 Excavation and dewatering

The following are general comments regarding the excavations and dewatering requirements, as the depth of the excavations and dewatering requirements are dependent on final grades and the foundation option selected.

Roadway construction debris, including concrete and asphalt, are expected within the fill material. This debris was also observed on the surface at the time of GHD's Site visit. For excavations, less than two (2) m of depth, the walls of the excavations must be sloped at a minimum of 1H:1V as per the Occupational Health and Safety Act (OHSA) requirements for Type 3 soils (fill) or supported by temporary shoring. For excavations, more than two (2) m deep, the walls of the excavation must be sloped at a minimum of 2H: 1V.

Unsupported side slopes should be adjusted depending on the true subsoil and groundwater conditions encountered during excavation work and flatter side slopes than those mentioned above may be required locally.

During the excavation, no excavated material should be piled, nor machinery or equipment placed, closer than the distance equivalent to the depth of the excavations. Furthermore, no vertical un-braced excavations should be performed in the soil. In addition, the exposed subsoils should be protected against erosion from water runoff or rain.

The stability and safety of unsupported excavation slopes remain the responsibility of the contractor at all times.

It is recommended that the FastFrate's design team include in the specification package, requirements for the successful contractor to submit written Plans for Excavation as well as Soil and Groundwater Management for review by the FastFrate design team.

A hydrogeological assessment of this Site was not part of the scope of work for this investigation. If excavations will extend below the measured groundwater level of approximately 3.5 mbgs, groundwater infiltration into the excavations is expected. The water quantities expected to enter the open excavations during construction will depend on seasonal conditions, depth of excavations, and duration that excavations are left open. Hydrogeological assessment to estimate the extent of dewatering activities and determine whether a PTTW or submission on the Ontario EASR are discussed in the Hydrogeological Assessment Report no 11220832-01 issued by GHD on January 19th, 2021.

6.3 Foundation

The foundation options for the proposed building depend upon the proposed final grade elevations for the structure and design loadings. The suggested options and preliminary recommendations for the foundations for the proposed warehouse are provided in the following sections. Note that recommendations and comments are solely provided for the dynamic compaction solution as this is the Client's preferred construction and soil improvement method at the moment. Recommendations for other suitable foundations and slab options, such as rigid inclusion systems or deep foundations, can be provided upon request.

6.3.1 Shallow foundation

Once the building footprint is prepared as discussed in section 6.1.1 and certified by the soil improvement contractor, the site would be suitable to support conventional shallow foundations.

The soil improvement works must be completed by a contractor specialized in this field. As the resulting serviceability and ultimate bearing capacity values are an integral part of the eventual foundation design, these values must be determined and confirmed by the soil improvement designer. Generally, the degree of densification must be monitored and confirmed by in-situ testing by the specialty soil improvement contractor during and following the dynamic compaction operations. The dynamic compaction work and pad preparation must be certified by the soil improvement contractor prior to construction of the proposed building.

For preliminary footings design, footings placed on at least 1 m thick engineered fill underlain by improved ground can be sized for Serviceability Limit State (SLS) soil bearing resistance of 150 kPa and factored (Φ =0.5) Ultimate Limit State soil bearing resistance of 225 kPa. As previously mentioned, the bearing capacity design values must be confirmed by the soil improvement designer following the completion of the soil improvement works.

6.4 Seismic site classification

The 2012 Ontario Building Code (OBC) requires the assignment of a Seismic Site Class for calculations of earthquake design forces and the structural design based on a two percent probability of exceedance in 50 years. According to the 2012 OBC, the Seismic Site Class is a function of soil profile and is based on the average properties of the subsoil strata to a depth of 30 m below the ground surface. The 2012 OBC provides the following three methods to obtain the average properties for the top 30 m of the subsoil strata:

- Average shear wave velocity
- Average Standard Penetration Test (SPT) values (uncorrected for overburden); or
- Average undrained shear strength.

During the preliminary geotechnical investigation, the depths of boreholes extended to a maximum depth of approximately 14 m bgs, and the subsurface profile below this depth is inferred. Based on the borehole information for the Site, and using site classification criteria provided in Table 4.1.8.4.A, of the 2012 OBC a Seismic Site Class 'D' can be used for preliminary design purposes if the proposed building is supported on certified improved ground.

A Seismic Site Class 'C' may potentially be obtained following the soil improvement work should shear wave velocity testing confirm this improved classification.

6.5 Frost protection

All of the exterior building foundations (footings, etc.) for heated structures should be placed at least 1.5 m beneath the final exterior grade in order to provide adequate frost protection.

Building foundations for unheated structures or isolated exterior foundations (retaining walls, signs, lamp posts, etc.) should be placed at least 1.8 m beneath the final exterior grade in order to provide adequate frost protection.

Note that exterior building foundation sections (even for a heated structure) with exposed foundation walls, such as foundation walls at dock areas must be considered unheated for frost protection design purposes.

Should construction take place during winter, the exposed surfaces to support foundations must be protected by Contractors against freezing assuming unheated conditions.

6.6 Interior floor slabs

Once the building footprint is prepared as discussed in section 6.1.1 and certified by the soil improvement contractor, the site would be suitable to support conventional slab-on-grades.

The slab-on-grade foundation should incorporate a final granular base layer consisting of at least 300 mm of Granular 'A' material as per Ontario Provincial Standard Specifications (OPSS form 1010), compacted to at least 100% of the material's SPMDD. Depending on the final floor's finish, the architect may require the use of a vapour barrier to be installed to limit vapour emission through the concrete slab.

The slab-on-grade must be set at least 200 mm above the exterior grades, which should be sloping away from the building footprint at 5% in landscaped areas and 2% in paved areas.

The specialty contractor should be providing the modulus of subgrade reaction for design of the slab-on-grade if required.

6.7 Exterior slabs

Once the building footprint is prepared as discussed in section 6.1.1 and certified by the soil improvement contractor, the site would be suitable to support conventional slab-on-grades.

In order to avoid the potentially detrimental effects of freeze-thaw cycles on the good behaviour of exterior concrete slabs around the proposed building, we recommend that a non-frost susceptible base layer, such as a Granular 'A' as per Ontario Provincial Standard Specifications (OPSS Form 1010), be used under the exterior slabs down to a depth of 1.8 m below the top of the slabs.

This base layer should be placed in thin lifts not exceeding 300 mm and compacted to a minimum of 98 percent SPMDD.

The base layer should also be properly drained by means of a French drain in order to prevent water accumulation under the slabs. Note that this requirement also applies to the exterior concrete aprons.

Transition slopes of 3.0 H / 1.0 V should be provided at the edges of the various slabs between the non-frost susceptible granular foundation and the surrounding soils (silty clay/clayey silt deposit), over the entire frost depth of 1.8 m.

A possible alternative to the placement of non-frost susceptible base material to a depth of 1.8 m below exterior slabs grades could include the use of sufficient insulation material under the slab to replace the equivalent amount of granular base backfill omitted to frost depth. As a general rule of thumb, one inch 25 mm of insulation is equivalent to 300 mm of non-frost susceptible material.

In any case, the slabs should incorporate a granular base layer consisting of at least 300 mm of OPSS Granular 'A' compacted to at least 100% of the material's SPMDD.

6.8 Pavement recommendations

Once the exterior pavement footprint is adequately prepared, as discussed in section 6.1.2, the following preliminary pavement structures are suggested.

Note that the final pavement design will be a function of traffic and loading conditions and should be confirmed by the client prior to the beginning of construction.

Pavement structure		Layer thickness (mm)								
element	Compaction requirement	Light duty	Heavy duty							
Surface course OPSS 1150 HL1 Hot Mix, PG70-34	OPSS 310, Table 8	40	40							
Base course OPSS 1150 HL8 HS Hot Mix Asphalt, PG64-34	OPSS 310, Table 8	50	100 (in two lifts)							
Granular A base (19 mm crusher run limestone)	100 % SPMDD	300	300							
Granular B Type II subbase (50 mm crusher run limestone)	100 % SPMDD	400	500							

Table 8	Preliminary Pavemer	nt Desian (Flexible	Pavement Structure)

Table 9 Preliminary Pavement Design (Rigid Pavement Structure)

Pavement structure element	Compaction requirement	Layer thickness (mm)
Rolled compacted concrete	N/A	180
Base course: Granular A (19 mm crusher run limestone)	100 percent of SPMDD ASTM D698	300
Granular B Type II subbase (50 mm crusher run limestone)	100 percent of SPMDD ASTM D698	300

The pavement contractor is responsible for ensuring adequate compaction of the asphalt and base layers as per OPSS.

It is noted that the pavement granular base and subbase layers can consist of gravel or crushed limestone, as specified above. The material gradation and durability requirements of the selected granular courses should meet OPSS 1010 specifications.

The pavement design considers that construction will be carried out during dry periods of the year and that the subgrade is competent as discussed in section 6.1.2 of this report. If the subgrade becomes excessively wet or rutted during construction activities, additional subbase material may be required. The need for additional subbase material is best determined during construction.

Joint design and construction should be carried out in accordance with the OPSS/OPSD requirements.

The installation of a geotextile membrane at the subgrade level is required to prevent contamination of the sub-base layers with fines particles.

To maintain the integrity of the pavement at the Site, subdrains should be installed at all catch basins and along the perimeter of the parking lot.

Grading adjacent to pavement areas should be designed so that water is not allowed to pond adjacent to the outside edges of the pavement.

6.9 Underground service trenches

Underground service lines, if any, should be founded on a prepared fill subgrade as discussed in section 6.1.2. The suitability of the foundation soils to provide adequate support for buried services must be verified and confirmed on the Site at the time of construction/installation by qualified geotechnical personnel experienced in such work. For subgrade consisting of the existing uncontrolled fill, which is outside the projected footprint of the soil amelioration work, some settlements may occur, and a servicing maintenance program should be considered.

The frost penetration depth for the region of Ottawa is considered as 1.8 m in accordance with Ontario Provincial Standard Drawing (OPSD) 3090.101. Accordingly, underground services should be located below the depth of frost penetration and in accordance with City of Ottawa specifications.

Note that the City of Ottawa specifies that watermains and sewer require respective minimum soil cover above of 2.4 and 2.0 m. Where the available cover is less than required, thermal rigid insulation should be used as specified in the City of Ottawa specifications.

The bedding and sand cover materials should be adequately compacted to provide support and protection to the service pipes. Provided the base area of the underground service line is free of all soft/loose and deleterious materials, the pipe bedding should comply with a Class B bedding configuration as per the requirements of OPSD 802.031 and OPSD 802.032 (rigid pipe) and/or OPSD 802.010 (flexible pipe). Where disturbance of the trench base has occurred, because of surface water or groundwater seepage and the like, the disturbed soils should be sub-excavated and replaced with suitably compacted granular fill.

Backfilling of trenches can be accomplished by reusing the excavated soils or similar fill material or imported granular soil, provided the moisture content of the material is maintained within $\pm 2\%$ of optimum and the fill is free of topsoil, organics, and any deleterious material. The fill placed in excavated trenches should be in loose lifts not exceeding 200 mm thick and compacted to not less than 95% of its SPMDD.

Due to the relatively low permeability of the existing fill and depth of excavation, no major groundwater problems are foreseen at this time for such excavations. Infiltration into the excavations should be readily handled with ordinary sumps and pumps.

6.10 Permanent drainage

6.10.1 Underfloor drainage slab-on-grade - No basement

Under-floor drains are not considered necessary for a structure without a basement and a floor slab set above the surrounding grades. However, the drainage requirements must be re-evaluated once final design grades and proximity to the water table are determined.

6.10.2 Perimeter drainage

For the proposed building with no basement or underground level and based on the Site subsurface condition, perimeter drainage around the exterior of the walls of the proposed building is not considered necessary. However, the drainage requirements must be re-evaluated once final design grades and proximity to the water table are determined.

6.11 Corrosion potential of soils

Analytical testing was carried out on a soil sample collected (BH3 SS3) to determine the corrosion potential of the subsurface soils at the Site. The certificates of analysis for the sample tested are presented in Appendix A-3 and are summarized in **Table 7**.

The American Water Works Association (AWWA) publication 'Polyethylene Encasement for Ductile-Iron Pipe Systems' ANSI/AWWA C105/A21.5-10 dated October 1, 2010, assigns points based on the results of the above tests. Soil that has a total point score of 10 or more is considered to be potentially corrosive to ductile iron pipe. A score of less than 10 was obtained for the soil sample submitted.

Table 10 of the Canadian Standards Association (CSA) document A23.1-04/A23.2-04 'Concrete Materials and Methods of Concrete Construction/Methods of Test and Standard Practices for Concrete' divides the degree of exposure into the following three classes:

able to Classes of Exposure	
Degrees (Class) of Exposure	Water Soluble (SO4) in Soil Samples (%)
Very Severe (S-1)	>2.0
Severe (S-2)	0.20 – 2.0
Moderate (S-3)	0 10 - 0 20

Table 10Classes of Exposure

A review of the analytical test results shows the sulphate content in the tested samples was found to be less than 0.08 percent.

Although both test samples suggest a low degree of corrosivity, we recommend that further tests be carried out through the entire site in order to obtain a broader representation of corrosivity potential as a result of the variability and uncontrolled nature of the existing fill on site.

6.12 Slope stability

The historic fill placement at the Site has created sloping of approximately 2:1 (H:V) around the south, west, and north perimeters of the Site.

A slope stability assessment was performed for the existing slope along the north perimeter of the Site. GHD's understanding of the existing slope conditions is based on Site observations and field measurement. In the 2020 geotechnical investigation, analysis was performed on the existing slope under static condition and pseudo-static (i.e., seismic) conditions considering drained soil conditions with the results shown in Appendix D-1. FastFrate has provided GHD with updated survey and development plans with modified slopes geometry for the construction and final state. GHD has completed a slope stability analysis for each condition, and the results are presented in the attached Appendix B and C of this report.

6.13 Backfill

The placement and compaction of the materials that will support pavement, floor slab, or footings must be treated as engineered fill.

6.13.1 Engineered fill

The fill operations for Engineered Fill must satisfy the following criteria:

- Engineered fill must be placed under the continuous supervision of the geotechnical engineer.
- Prior to placing any engineered fill, all unsuitable fill materials must be removed, and the subgrade proof rolled and approved. Any deficient areas should be repaired.
- Prior to the placement of engineered fill, the source or borrow areas for the engineered fill must be evaluated for their suitability. Samples of proposed fill material must be provided to the geotechnical engineer and tested in the geotechnical laboratory for standard proctor maximum dry density (SPMDD) and grain size prior to approval of the material for use as engineered fill. The engineered fill must consist of environmentally suitable soils (as per industry standard procedures of federal or provincial guidelines/regulations), free of organics and other deleterious material (building debris such as wood, bricks, metal, and the like), compactable, and of suitable moisture content so that it is within -2 percent to +0.5 percent of the optimum moisture as determined by the standard proctor test. Imported granular soils meeting the requirements of Granular 'A', or Type II OPSS 1010 criteria would be suitable.
- The engineered fill must be placed in maximum loose lift thicknesses of 0.2 m. Each lift of engineered fill must be compacted with a heavy roller to 100 percent SPMDD.
- Field density tests must be taken by the geotechnical engineer, on each lift of engineered fill. Any engineered fill, which is tested and found to not meet the specifications, shall be either removed or re-compacted and retested.

6.13.2 Existing foundation wall backfill

Where applicable and/or if necessary, any backfill placed against the foundation walls should be free draining granular materials meeting the grading requirements of OPSS 1010 for Granular 'B' Type I specifications up to within 0.3 m of the ground surface. The upper 0.3 m should be a low permeable soil to reduce surface water infiltration. Foundation backfill should be placed and compacted as outlined below:

- Free-draining granular backfill should be used for the foundation wall.
- Backfill should not be placed in a frozen condition or placed on a frozen subgrade.
- Backfill should be placed and compacted in uniform lift thickness compatible with the selected construction equipment, but not thicker than 0.2 m. Backfill should be placed uniformly on both sides of the foundation walls to avoid build-up of unbalanced lateral pressures.

- At exterior flush door openings, the underside of sidewalks should be insulated, or the sidewalk should be placed on frost walls to prevent heaving. Granular backfill should be used and extended laterally beneath the entire area of the entrance slab. The entrance slab should slope away from the building.
- For backfill that would underlie paved areas, sidewalks, or exterior slabs-on-grade each lift should be uniformly compacted to at least 98 percent of its SPMDD.
- For backfill for the building exterior that would underlie landscaped areas each lift should be uniformly compacted to at least 95 percent of its SPMDD.
- In areas on the building exterior where an asphalt or concrete pavement will not be present adjacent to the foundation wall, the upper 0.3 m of the exterior foundation wall backfill should be a low permeable soil to reduce surface water infiltration.
- Exterior grades should be sloped away from the foundation wall, and roof drainage downspouts should be placed so that water flows away from the foundation wall.

6.14 Construction field review

The recommendations provided in this report are based on an adequate level of construction monitoring being conducted during the construction phase of the proposed building. GHD requests to be retained to review the drawings and specifications, once complete, to verify that the recommendations within this report have been adhered to, and to look for other geotechnical problems. Due to the nature of the proposed development, an adequate level of construction monitoring is considered to be as follows:

- Prior to the construction of footings, the exposed foundation subgrade should be examined by a geotechnical engineer (GE) or a qualified technologist, acting under the supervision of a GE, to assess whether the subgrade conditions correspond to those encountered in the boreholes and test pits, and the recommendations provided in this report have been implemented.
- A qualified technologist, acting under the supervision of a GE, should monitor the placement of engineered fill underlying floor slabs.
- Backfilling operations should be conducted in the presence of a qualified technologist, on a part-time basis, to
 ensure that proper material is employed, and specified compaction is achieved.
- Placement of concrete should be periodically tested to ensure that job specifications are being achieved.

7. Limitations of the investigation

This report is intended solely for Consolidated FastFrate (Ottawa) Holdings Inc. and its designers and is prohibited from use by others without GHD's prior written consent. This report is considered GHD's professional work product and shall remain the sole property of GHD. Any unauthorized reuse, redistribution of or reliance on the report shall be at the FastFrate and recipient's sole risk, without liability to GHD. No portion of this report may be used as a separate entity; it is to be read in its entirety and shall include all supporting drawings and appendices.

The recommendations made in this report are in accordance with our present understanding of the project, the current site use, ground surface elevation and conditions, and are based on the work scope approved by the FastFrate and described in the report. The services were performed in a manner consistent with that level of care and skill ordinarily exercised by members of geotechnical engineering professions currently practicing under similar conditions in the same locality. No other representations, and no warranties or representations of any kind, either expressed or implied, are made. Any use, which a third party makes of this report, or any reliance on, or decisions to be made based on it, are the responsibility of such third parties.

All details of design and construction are rarely known at the time of completion of a geotechnical study. The recommendations and comments made in the study report are based on our subsurface investigation and resulting

understanding of the project, as defined at the time of the study. We should be retained to review our recommendations when the drawings and specifications are complete. Without this review, GHD will not be liable for any misunderstanding of our recommendations or their application and adaptation into the final design.

By issuing this report, GHD is the geotechnical engineer of record. It is recommended that GHD be retained, during the construction of all foundations and during earthwork operations, to confirm the conditions of the subsoil are actually similar to those observed during GHD's study. The intent of this requirement is to verify that conditions encountered during construction are consistent with the findings in the report and that inherent knowledge developed as part of the study is correctly carried forward to the construction phases.

It is important to emphasize that a soil investigation is, in fact, a random sampling of a site and the comments included in this report are based on the results obtained at the test locations only. The subsurface conditions confirmed at the test locations may vary at other locations. The subsurface conditions can also be significantly modified by the construction activities on-site (e.g., excavation, dewatering and drainage, blasting, pile driving, etc.). These conditions can also be modified by exposure of soils or bedrock to humidity, dry periods, or frost. Soil and groundwater conditions between and beyond the test locations may differ both horizontally and vertically from those encountered at the test locations and conditions may become apparent during construction, which could not be detected or anticipated at the time of our investigation. Should any conditions at the site be encountered, which differ from those found at the test locations, we request that we be notified immediately in order to permit a reassessment of our recommendations. If changed conditions are identified during construction, no matter how minor, the recommendations in this report shall be considered invalid until sufficient review and written assessment of said conditions by GHD are completed.

Q:lgis2/GISIPROJECTS/11231000s/11231101Layouts/202109_RPT001/11231101_202109_RPT001_GIS001 - Site Location Plan.mxd Print date: 03 Sep 2021 - 13:55

FIGURE 1 Imagery source: © City of Ottawa, 2019

Metres Map Projection: Transverse Mercator Horizontal Datum: Noth American 1983 Grid: NAD 1983 UTM Zone 18N

CONSOLIDATED FASTRATE RIDEAU ROAD & SOMME STREET, OTTAWA, ON PT LOT 26, CON 6 FROM RIDEAU RIVER GEOGRAPHIC TOWNSHIP OF GLOUCESTER CITY OF OTTAWA

GEOTECHNICAL INVESTIGATION

BOREHOLE LOCATION PLAN

Revision No. Date Sep 3, 2021

FIGURE 2

Q:lgis2/GISIPROJECTS\11231000s\11231101Layouts\202109_RPT001\11231101_202109_RPT001_GIS002 - Borehole Location Plan.mxd Print date: 03 Sep 2021 - 13:52 Imagery source: © City of Ottawa, 2019; CAD Data: 1128236a1-dessin1.dw

Appendices

Appendix A

Appendix A1

Boreholes Logs

REFERENCE No.: 11231101 ENCLOSURE No.:																		
		Č		BOREHOLE No.:	BH1-	21		-			во	RE	HC	DLE	E L(OG		_
		×		ELEVATION:	91.07	m		-			Pa	ge:	1	0	f	2		
CLII	ENT: Co	onsolio	lated Fastfrate (Ottawa) I	loldings Ltd.								L	EG	END)			
PRO	DJECT:	ConFa	astfrate, New Warehouse	& Offices						⊠ s	s spi T Shi	it Spo elby T	on ube					
LOC	CATION:	Som	me Street, Ottawa, ON							🔟 R								
DES	SCRIBED	BY:	J. Scott	CHECKED BY:		Leandro	Ram	OS		Water Level								
DA1	TE (STAR	T): _	26 July 2021		⊷ • N	Atte	erberg	j limit ion In	s (%) dex b	ased	on							
sc	ALE		STR	ATIGRAPHY		SAN	/PLE	DATA		• N	Spl Per	it Spo	on sa	ample lex ba	sed o	n		
Depth BGS	Elevation (m)	Stratigraphy	DES SOIL	SCRIPTION OF AND BEDROCK	State	Type and Number	Recovery	Blows per 6 in. / 15 cm	Penetration Index / RQD %	△ C □ C S	u Shi u Shi Sei Shi Poi	ear St ear St nsitivit ear St cket P	rengt rengt ty Val rengt Penetr	⇒ sample th based on Field Vane th based on Lab Vane ilue of Soil th based on trometer				
metres	91.07		GRO	OUND SURFACE			%		Ν	10	SCA 50kPa 20	LE FO 100 30 4	DR TI kPa 0 5	EST R 150k 0 60	≀ESU Pa) 70	LTS 200kf 80	^р а 90	
-	90.99			an around trans alou dark aro	<u> </u>	SS1	96	7-15-10-9	25	0						\square		
			moist, compact	ice gravel, trace clay, dark gre	y,	0001	74		20		+	-			\rightarrow	+	_	
g − 1.0	90.20	XX	FILL - SAND, trace silt,	trace gravel, brown, moist,	×	SS2A SS2B	71	9-6-3-4	9	0						+	_	
	89.54		Gravel - 17%, Sand - 6 FILL - SILTY SAND, wit moist, dense cobble encountered at	0%, Silt - 19%, Clay - 4% th clay, trace gravel, dark grey 1.83 mbgs	, - <u> </u>	SS3	71	7-13-33-40	46	-0			•					
					X	SS4	42	5-2-3-50/76	5	••					+	_	\pm	
3.0						SS5A	67	mm 8-8-5-3	13	C●					_	_		
		\bigotimes	with organics and wood	I fragments	X	SS5B									-	-	-	>>(
					-	SS6	0	50/51 mm	50/51									
			augers grinding at 3.96 construction debri	mbgs, inferred boulders or					mm							—		
	86.49	Ĩ	SILTY SAND - trace gra dense to very dense	avel, trace clay, brown, moist,	X	SS7	83	10-21-37 -50/127 mm	58	-0				•	+	+	+	
					X	SS8A	100	43-31-36-47	67	0					•	_	-	
6.0	85.27		grey, very moist, augers boulder	s grinding at 9.85 mbgs, inferr		SS8B				0					_	\pm		
					X	SS9	83	24-23-18-26	41	-0-			•		\pm	\pm	\pm	
			cobble encoutered at 6	.86 mbgs	X	SS10	75	13-11-15-12	26	0	•				\pm	_	_	
						5511	71	6-4-12-23	16						_	_		
					\land			0-4-12-20	10		-					+		
					Ν	SS12	67	50-15-15-18	30	0		•				+	_	
9.0						7									_	\square	_	
			Gravel - 16%, Sand - 3	2%, Silt - 36%, Clay - 16%	X	SS13	67	13-17-19-17	36	-0	+++	•				_		
10.0	81.21		LIMESTONE - interbedo excellent quality based	ded sandstone, grey, poor to on RQD											_	+		
≝⊢ ⊌⊢			- highly weatherd from	9.86 mbgs to 9.93 mbgs		RU1	58	38	30						+	+	+	
5+ 			silty sand seam at 10.9	2 mbgs	Ì										\dashv	4	\mp	
	 S:						1					1						
mbgs: RQD:	meters b Rock Qua	elow g ality De	round surface esignation															

REFERENCE No.: 11231101 ENCLOSURE No.:																		
		G	HD	BOREHOLE No.:	BH1-	21		-		BOREHOLE LOG								
				ELEVATION:	91.07	m		-			Pa	ge:	2	_ c	of _	2		
CLI	ENT: <u>Co</u>	onsolid	lated Fastfrate (Ottawa) I	loldings Ltd.								L	EG	ENC	<u>)</u>			
PR	DJECT:	ConFa	astfrate, New Warehouse	& Offices						⊠ si ⊠ si	s spi F She	elby T	ube					
LOC	CATION:	Som	me Street, Ottawa, ON								C Roo	ck Co	re					
DE	SCRIBED	BY:	J. Scott	CHECKED BY:		Leandro	Ram	os		¥	Wa	ater Le	evel	(0/.)				
DA	TE (STAR	T):	26 July 2021	DATE (FINISH):		27 Jul	y 202	1										
s	CALE		STF	ATIGRAPHY		SA	MPLE	DATA		• N • N	Per Spl Per	netrati lit Spo netratio	ion in oon sa on inc	idex b ample lex ba	iased ised c	on		
Depth BGS	Elevation (m)	Stratigraphy	DES SOIL	SCRIPTION OF AND BEDROCK	State	Type and Number	Recovery	Blows per 6 in. / 15 cm	Penetration Index / RQD %	Image: Second Light Microson Construction Dynamic Cone sample Image: Dynamic Cone sample Dynamic Cone sample Image:				ed or ed or Soil ed or ed or er	∍ d on Field Vane d on Lab Vane Soil :d on r			
metres	91.07		GRO	OUND SURFACE			%		Ν	5 10	0kPa 20 3	100 100 30 4	JRI IkPa 105	ESTF 150k 0 60	KESU (Pa) 7(200k	Pa) <u>90</u>	
						RC2	98	95	95									
			vertical fracture at 11.5	8 mbgs														
											+					_		
[- 						PC2	05	50	50								-	
						1105	35	50	50									
14.0	77.25		Borehole terminated at	13.82 mbgs							_						_	
			Note:								-						_	
			Borehole Coordinate - UTM Zone 18														_	
15.0			- Northing: 5017223.9															
i F			- Easing: 456467.2														-	
, ⊢ , ⊢																		
16.0																		
											_						_	
2 = 17.0 -																	-	
																	-	
											_						_	
F											+	-					_	
- 19.0											+	+				-	+	
it.											+	\square					+	
20.0											\perp						\perp	
Ē											+	-					\rightarrow	
ļ.											-	-				-		
21.0											+	-				\rightarrow	+	
È											1					\neg	+	
22.0																		
	2.																	
mbgs: RQD:	neters be Rock Qua	elow g Ility De	round surface signation															

,	REFERENCE No.: 11231101 ENCLOSURE No.:																					
					BOREHOLE No.:	BH2	2-21			-			E	30	RE	нс	DLE	EL	OG	ì		
			9		ELEVATION:	90.7	<u>′9 n</u>	1		-				Pag	je:	1	c	of _	2			
	CLIE	ENT: C	onsolio	dated Fastfrate (Ottawa) H	loldinas Ltd.										L	EG	ENC	<u>)</u>				
	PRC	JECT:	ConF	astfrate, New Warehouse	& Offices								SS ST	Split Shel	t Spo Ibv Ti	on ube						
	LOC	ATION:	Som	me Street, Ottawa, ON									RC	Roc	k Cor	re						
_	DES	CRIBED	BY:	J. Scott	CHECKED BY:		Le	andro I	Ram	os		Ţ		Wat	er Le	vel	(0/)					
710171	DAT	E (STAF	RT): _	27 July 2021	DATE (FINISH):			27 July	202	1			-	Atte	rberg	limit	(%) s (%)					
Date:	SC	ALE		STR	ATIGRAPHY			SAM	IPLE	DATA			N	Split Pene	etration t Spo etration	on in on sa on Ind	ample ex ba	ased sed c	n			
	Depth BGS	Elevation (m)	Stratigraphy	DES SOIL	SCRIPTION OF AND BEDROCK		State	Type and Number	Recovery	Blows per 6 in. / 15 cm	Penetration Index / RQD %	∆ □ S	Cu Cu	Dyna Shea Shea Sena Shea Pocl	amic (ar Str ar Str sitivit ar Str ket P	Cone rengtl rengtl y Val rengtl enetr	samp h bas h bas ue of h bas omet	mple based on Field Vane based on Lab Vane c of Soil based on neter				
	metres	90.79		GRO	OUND SURFACE				%		Ν	1	50k 0 2	SCAL (Pa 0 3)	1004 0 4	DR 11 kPa 0 50	150k	(Pa) 7(200k	Pa 90		
Ý.L.	-	90.71			ce clav trace bricks trace			SS1A	92	3-12-11-15	23	0		•					_			
eport	_	90.33		asphalt, brown to black	, moist, compact	/	×	SS1B											_			
י א פרם פרם	- 1.0	90.03		FILL - SAND AND GRA ∖compact	VEL, trace silt, brown, moist,	/	M	SS2	88	6-14-17-15	31	0		•	₽							
	-			FILL - SILTY SAND, wit grey, moist, dense	th gravel, trace clay, brown to)		SS3A	46	7-9-6-6	15											
2	- 20			with clay at 1.65 mbgs			\square	SS3B		-			-						_			
ן קר	- 2.0			trace alow at 2.00 mbra			\square															
ם. הו פח	_			trace clay at 2.09 mbgs			Х	SS4	67	28-13-12-38	25	0		•								
12311	- 3.0						Ħ												_			
LIE	_			asphalt at 3.35 mbgs			Ж	SS5	63	8-7-5-12	12		•									
prary	- 10						X	SS6A	67	3-1-1-1	2	• (0									
	-	86.93		FILL - SILTY SAND, tra	ce gravel, trace clay, brown,	/	X	SS6B SS6C		-				0					_			
5.05	_	86.88		wet, loose with topsoil at 4.57 mbg	js		X	SS7A	88	2-3-7-8	10		• 0						-			
	- 5.0			with clay, bricks fragme	nts at 4.72 mbgs		Х	SS7B					0									
11231	_	85.45		SILTY SAND - with clay	, trace gravel, brown, moist to	2 C	\square	558	83	8-19-22-40	41		0						_			
5. CC:	- 60			wei, compact to dense			Д	550	05	0-13-22-40	41								+			
ישוא	_			grey at 6.10 mbgs			\square	SS9	54	9-14-12-13	26		_	•								
	-						\square												_			
SHAR	- 7.0						M	SS10	79	5-3-5-6	8	•	p									
	-																				-	
10112	- - 8.0						X	SS11	75	5-7-8-10	15	—e	•						-			
21.1/20	-						\square															
				Gravel - 20%, Sand - 3	8%, Silt - 33%, Clay - 9%		Х	SS12	63	6-10-11-17	21	C	ŀ	н					-	-		
האכונים	- 9.0			wet at 9.14 mbgs			\square	0040							_							
1900	-						Å	5513	/1	11-18-18-21	36)		-							
אסמא	- 10.0 -			augers grinding at 10.0	8 mbgs, inferred boulder		\boxtimes	SS14	71	19-50/25 mm	50/25 mm		>						-			
	-				u .																	
	- 11.0						М	SS15	25	11-14-15-21	29		0	-					-			
	NOTES	:										L										
אפור	mbgs: RQD: I	meters b Rock Qu	elow g ality D	round surface esignation																		
- IIG																						

1 GHD GEOTECH

REFERENCE No.: 11231101 ENCLOSURE No.:																						
		6	H)	BOREHOLE No.: _	BH2-2	21 m		-			BC	RE	HC	DLE	LC	DG						
					90.79	[]]		-			Pa	ge:	2	0	t	2						
CLI	ENT: <u>Co</u>	nsolida	ated Fastfrate (Ottawa) Ho	ldings Ltd.						🕅 ss	S Spl	L it Spo	_EG	END	-							
PRO	DJECT: _	ConFa	stfrate, New Warehouse &	Offices						ST	- She	elby Tu	ube									
LOC	CATION:	Somn	ne Street, Ottawa, ON								Ro	ck Cor	e									
DES	SCRIBED	BY: _	J. Scott	CHECKED BY: _		L. Rar	mos		Water Level Water content (%)													
DAT	TE (STAR	T):	27 July 2021	DATE (FINISH):		27 July	/ 202	1	Atterberg limits (%) ● N Penetration Index based on													
so	CALE		STRATIGRAPHY SAMPLE DATA										• N Penetration Index based on Split Spoon sample • N Penetration Index based on Dynamic Cone cample									
Depth BGS	Elevation (m)	Stratigraphy	DES SOIL	SCRIPTION OF AND BEDROCK	State	Type and Number	Recovery	Blows per 6 in. / 15 cm	Penetration Index / RQD ⁶	C A Cu Shear Strength based on Fi C Cu Shear Strength based on L Cu Shear Strength based on L S Sensitivity Value of Soil A Shear Strength based on Pocket Penetrometer						-ield Vane .ab Vane						
metres	90.79		GR	OUND SURFACE			%		Ν	5 10	SC 0kPa 20	ALE F 100 30 4	OR TI kPa 0 5	EST R 150kl 0 60	ESUL Pa 70	TS 200kl 80	² a 90					
	70.00		¬ SAND - trace silt. grev.	wet. dense		SS16A	92	11-15-18-31	23													
24/1	79.36		SILTY CLAY - with san	d, trace gravel reddish brown,	$ \mathbb{N}$	SS16B		-		0	_					_						
	79.23		moist, hard		E						_				_	_						
					X	SS17	0	21-31-31-40	62		-			-	►	-						
≝- ♀13.0											+					+	_					
					X	SS18	100	9-21-38-	59	-	+-1	I		•								
101 B								50/127 mm														
14.0					Ν	SS19	100	17-26-48-	59		_			-•	_	_						
								50/127 mm			_				_	_						
L Rep											+					+						
- 15.0	76.01		LIMESTONE - interbedd based on RQD	ed sandstone, grey, good quali	ty	RC1	100	78	78		+					-						
2 																						
			UCS = 139.1 MPa			-																
ug – 16.0											_				_	_						
						RC2	98	76	76		_					_						
											+				-	+						
≈=17.0 ∓+											+				+	1						
£ 18.0																_						
						RC3	100	89	89		_					_						
PG												+			+	+	_					
⁸ - 19.0	71.92		Borehole terminated at 1	8.87 mbgs		1									+	+						
2007 - 000			Note:																			
			Borehole Coordinates																			
20.0			- Northing: 5017221.2													_						
			- Easting: 456581.5								_					_						
															+	+						
ģ⊢21.0 ≝⊢												-			+	+						
															_	_						
	 }·																					
m bgs RQD:	: meters b Rock Qua	elow g lity De	round surface signation																			
											_	_										

REFERENCE No.: 11231101													ENCLOSURE No.:											
		ć	HD	BOREHOLE No.: <u>BH3-21</u>							BOREHOLE LOG													
		×		ELEVATION:90.55 m							Page: <u>1</u> of <u>1</u>													
CLIE	ENT: <u>Co</u>	onsolida	ated Fastfrate (Ottawa) Ho	bldings Ltd.																				
PRO	DJECT: _	ConFa	stfrate, New Warehouse &					⊠ s	s spi T She	it Spo elby Ti	on be													
LOC	CATION:	Somn	ne Street, Ottawa, ON							R	C Ro	ck Cor	e											
DES	CRIBED	BY: _	J. Scott	CHECKED BY:		L. Rar	nos			⊻ ∘	Wa Wa	ater Le ater co	vel ntent (%)										
DAT	E (STAR	T):	26 July 2021	DATE (FINISH):		26 July	2021	1		• N	Atte	erberg	limits	(%) ex base	n he									
SCALE			STF	ATIGRAPHY		SAMPLE DATA						it Spo	on sar	nple ex base	d on									
Depth BGS	Elevation (m)	Stratigraphy	DES SOIL	SCRIPTION OF AND BEDROCK	Type and Number	Recovery	Blows per 6 in. / 15 cm	Penetration Index / RQD %	∆ C □ C S	u She u She Ser She Poo	namic cone sample near Strength based on Fiel near Strength based on Lab ansitivity Value of Soil near Strength based on pocket Penetrometer					eld Vane ıb Vane								
metres	90.55		GR	OUND SURFACE			%		Ν	10	SC 50kPa <u>20</u>	ALE F 100 <u>30 4</u>	OR IE kPa <u>0 50</u>	STRE 150kPa	SULTS 1 20/ 70	0kPa 80 9	<u> 90</u>							
	90.48			h aroual trace alou brown me		SS1	71	2-6-4-10	10		,				\square									
			compact	n gravel, trace clay, brown, mo		6624	42	55714	10			-			+	-								
	89.64		with presence of organic	s/topsoil		SS2B	42	-	12		0				\pm									
												-			+	-								
5 – 2.0					Х	SS3	33	5-5-6-15	11		+				+		+							
ă_ 2_		\bigotimes																						
			with to trace clay at 2.5	n bgs	X	SS4	42	7-6-4-3	10	•		-			_	-								
u – 3.0		\bigotimes	grey at 3.0 m bgs			SS5	86	2-2-8-27	10			+			+		+							
≝- 9-	87.20		ASPHALT		-/																			
<u>-</u> - 4.0	87.15		FILL - SANDY GRAVEL	., dark grey, wet, compact	<u> </u>						_				_									
	86.74		SILTY SAND - trace gra compact	vel, some clay, brown, moist,	Á	SS6	46	12-12-5-7	17		•	-				-								
			loose at 4.75 m bgs		X	SS7	0	3-2-3-4	5	•					\square		_							
5.0 5-			Ū								_				+									
			compact to very dense a	t 5.5 m bgs	X	SS8	73	10-16-21-46	37	٩	4	•			\pm									
6.0			Gravel - 19%, Sand - 49	%, Silt - 26%, Clay - 6%											+									
	WL6.2 2021-07	-26			X	SS9	100	13-26-27-41	53	-0				•	-									
						SS10A	100	9-11-11-15	22	o	•													
	83.54		with clay, trace gravel, tr	ace cobbles, grey, moist, comp	bact	SS10B		-		<u> </u>					_									
3-															+	-	+							
8.0					X	SS11	71	8-13-20-28	33	-0		•												
						0040									_									
<u>1</u> 9.0					\square	5512	/9	5-10-16-36	20	0					+									
2 - z -			wet at 9.14 m bgs			SS13	80	18-50/102	100+	0														
	81.11		Borehole terminated due Bedrock or boulder infer	e to auger refusal at 9.45 mbgs red	-						_				+	-								
¦ 			Noted [.]												+	-	+							
			Borehole Location								+		\vdash	+	+		+							
			- Northing: 5017286.1												\perp									
			- Easung: 456612.6																					
m bgs:	meters b	elow gi	ound surface																					
j RQD:∣ ∎	Rock Qua	lity Des	signation																					

REFERENCE No.: 11231101 ENCLOSURE No.:																						
				BOREHOLE No.: BH4-21							BOREHOLE LOG											
				ELEVATION: 90.23 m							Page: <u>1</u> of <u>2</u>											
CLIENT: Consolidated Eastfrate (Ottawa) Holdings Ltd													LE	GEN	D							
PRC	JECT:	ConFa	stfrate, New Warehouse &	k Offices							SS ST	Split S Shelby	poon Tube									
LOC	CATION:	Somr	ne Street, Ottawa, ON								RC	Rock (Core									
DES	CRIBED	BY: _	J. Scott	CHECKED BY:		L. Rai	nos			▼ 0		Water Water	Level conter	nt (%)								
DAT	E (STAR	T):	8 July 2021	DATE (FINISH):		28 July	202	1		•	i N	Atterbe Penetr	erg lim ation l	its (%) ndex b) based (on						
SCALE STR			STF	ATIGRAPHY		SAM	MPLE	DATA		•	N	Split S Penetr	poon s ation l	sample ndex b	e ased (on						
Depth BGS	Elevation (m)	Stratigraphy	DES SOIL	SCRIPTION OF and a state of the			Recovery	Blows per 6 in. / 15 cm	Penetration Index / RQD %	Dynamic Cone sample △ Cu Shear Strength based on F □ Cu Shear Strength based on L S Sensitivity Value of Soil ▲ Shear Strength based on Pocket Penetrometer					Field Vane Lab Vane							
metres	90.23		GR	OUND SURFACE			%		Ν	10	50kl	$\frac{SCALE}{2a}$: FOR 100kPa 40	1EST 50	RESU 0kPa 60 7	2001 2001 0 80	.Pa) <u>90</u>					
	90.16		<u> TOPSOIL</u> (75 mm) FILL - SII TY SAND wit	h clay trace rootlets brown to		SS1	43	1-2-7-4	9	-			_	_	-							
			grey, moist, stiff		É																	
1.0			asphalt at 0.8 m bgs cobble at 0.9 m bgs			SS2	54	7-8-4-9	12		•0											
i L			apple at 1.5 m bas																			
20			cobble at 1.5 m bgs			SS3	21	9-10-7-5	17	-0	•											
					F																	
					X	SS4	0	4-2-1-2	3	•												
3.0	07 10	\bigotimes	FILL - verv loose fill mix	ed with organics/top soil and w	ood																	
	07.19		fragments - dark brown,	moist	X	SS5	67	2-1-1-4	2	•		•										
						7																
					Z	SS6	13	5-1-0-1	1				_				-					
					L.																	
5.0					Ľ	557		2-1-1-2	2													
						822	12	2-1-2-2	3				_	_	-							
- - ▼ 6.0					Ľ					-		-		_								
	WL6.1 2021-0					SS9A	83	1-3-2-3	5	•		>										
	83.68	XXX	SILTY SAND - with clay	, trace rootlets, brown, moist		SS9B		-				<u> </u>										
, - 7.0			wet at 6.86 mbgs trace gravel, rootlets sto	pped at 7.01 mbgs	$\mathbf{\lambda}$	SS10	42	4-11-11-15	22		0	•										
			_																			
8.0			brown with grey mottling	, moist at 7.62 m bgs		SS11	83	5-10-12-11	22			►					-+					
			wet at 8.69 mbgs		X	SS12	100	21-27-31-30	58	C	>											
9.0 -			0											_								
					X	SS13	0	22-22-19-36	41				•	_								
10.0																						
					X	SS14	71	8-21-20-31	41	¢	>	_	•									
						7																
- 11.0			moist at 10.82 mbgs		/	SS15	67	20-16-25-25	41								\pm					
NOTES m bgs: RQD:	: meters b Rock Qua	elow g lity De	round surface signation																			

REFE	REFERENCE No.: 11231101 E													ENCLOSURE No.:										
				BOREHOLE No.:BH4-21							BOREHOLE LOG Page: 2													
		9		ELEVATION:90.23 m																				
СІ	IENT [.] C	onsolid	lated Fastfrate (Ottawa) F						_		ļ	EG	EN	2										
PR	OJECT:	ConFa	astfrate, New Warehouse	& Offices							⊠s	s s∣ ⊺ s∣	plit Spo helby T	oon ube										
LO	CATION:	Som	me Street, Ottawa, ON								R	CR	ock Co	re										
	SCRIBED	BY:	J. Scott	CHECKED BY:		L	eandro	Ram	os		¥	W	/ater Le	evel	(0/)									
DA	TE (STAR	CT):	8 July 2021	DATE (FINISH):			28 July	202	1		Ĥ	A	tterber	g limit	(%) ts (%))								
S	SCALE STR4			ATIGRAPHY			SAN	/IPLE	DATA		• N	S P	plit Spo enetrati	on Inc	ample iex ba	e e esed o	on							
Depth BGS	Elevation (m)	Stratigraphy	DES SOIL	SCRIPTION OF . AND BEDROCK			State Type and Number Recovery Blows per 6 in. / 15 cm Penetration Index / RQD %				△ C □ C S	u Si u Si Si Pi	Shear Strength based on Field V Shear Strength based on Lab V Sensitivity Value of Soil Shear Strength based on Pocket Penetrometer					d Vane Vane						
metres	90.23		GRO	OUND SURFACE				%		Ν	10	SC 50kPa 20	ALE F 100 30 4	OR TI lkPa 10 5	EST I 150 0 6	RESU kPa 0 7	JLTS 200k 200k	Pa 90						
	78.80		SILTY CLAY - with sand moist, hard	d, trace gravel, reddish brown	l,	X	SS16	100	13-24-26-22	50	0				•									
	78.19		Borehole terminated du Bedrock or boulder infe	ie to auger refusal at 12.04 m prred	bgs.																			
5 			Note: Borehole Coordinate - UTM 18 Zone																					
			- Northing: 5017343.6 - Easting: 456673.6																					
≦																								
15.0																								
16 C												_	_					_						
																		_						
]_ 18.0																								
5- - 19.0																								
													_					+						
21-20.0 2-												-					\rightarrow	+						
5 - 21.0																	\neg	-						
22.0																								
	 S:																							
mbgs RQD:	meters b Rock Qua	elow g ality De	round surface esignation																					

REFER	REFERENCE No.:11231101													ENCLOSURE No.:										
		Ģ	HD	BOREHOLE No.:	BOREHOLE No.: <u>BH5-21</u>						BOREHOLE LOG													
				ELEVATION:	90.39	m		-	Page: <u>1</u> of <u>1</u>															
CLI	ENT: <u>Co</u>	onsolid	ated Fastfrate (Ottawa) F	loldings Ltd.								L Jit Soc	EG	END	<u>)</u>									
PRO	PROJECT: ConFastfrate, New Warehouse & Offices									⊠ s [.]	s sp T Sh	ielby T	ube											
LOC	CATION:	Som	me Street, Ottawa, ON							R	C Ro	ock Co	re											
DES	SCRIBED	BY:	J. Scott	CHECKED BY:		Leandro	Ram	os		Ţ ₽	W	ater Le	evel	(%)										
DA	TE (STAR	T):	26 July 2021	DATE (FINISH):		26 Jul	y 202	1		н н	At	terberg	g limit	s (%)										
s	SCALE STR/			ATIGRAPHY		SA	MPLE	DATA		• N	Sp	olit Spo	ion in ion sa ion Ind	ample ample	e e e e e d o	n								
Depth BGS	Elevation (m)	Stratigraphy	DES SOIL	SCRIPTION OF att S CRIPTION OF AND BEDROCK				Blows per 6 in. / 15 cm	Penetration Index / RQD %	A Centerlaudin index based on Dynamic Cone sample A Cu B Cu Cu Shear Strength based on Lai S Sensitivity Value of Soil X Shear Strength based on Lai B Shear Strength based on Lai B Shear Strength based on Pocket Penetrometer								е						
metres	90.39		GRO	OUND SURFACE			%		Ν	10	SC/ 50kPa 20	ALE F(100 30 4	DR TE kPa 0 5	EST F 150k 0 60	RESU (Pa) 70	LTS 200k	:Pa) 90							
-	90.32		TOPSOIL (75 mm)			661	24																	
			FILL - SILTY CLAY, tra	ce sand, grey, moist, very sof	t A	331		1-0-0-1	0			μ_					_							
	00.40		FILL - SANDY SILT. tra			SS2A	24	2-5-6-7	11	•	0				_		_							
	89.48		brown, moist, compact		Ľ	SS2B					0													
			loose at 1.52 mbgs			663	24	10 5 4 6																
2.0			Gravel - 25%, Sand - 3	8%, Silt - 29%, Clay - 8%	\square	555	24	12-3-4-0	9															
			with clay, some gravel a	at 2.29 mbgs	T.	7						_												
					V	SS4	24	5-4-2-5-6	6	•0					_		_							
3.0															-		-							
i -			shale cobble at 3.2 mb	js	X	SS5	24	4-3-6-7	9	-••														
		\bigotimes																						
1 4.0					X	SS6	24	4-3-3-5	6	•														
			SILTY SAND trace de	v trace gravel brown moist											_		_							
$\frac{3}{1}$ = 5.0	85.82		compact to very dense		X	SS7	24	3-5-8-9	13	÷	→				-	_	-							
			wet at 5.03 mbgs	8%, Silt - 41%, Clay - 11%	É																			
			moist, containing cobbl	es at 5.33 mbgs		SS8	24	14-20-42-42	2 62	0					•									
6.0					Ĺ																			
			grey at 6.1 mbgs		Ν	SS9	24	8-16-20-20	36			•												
					Ľ						_				_									
- 7.0			wet, with clay at 6.86 m	bgs		SS10	16	15-34-	84/254	0					_									
					ŕ			50/102 mm	mm															
			moist at 7.62			SS11A	15	23-40-50/76	90/229	0														
8.0	82.52	्यत्वः	SANDY SILT - trace cla Borebole terminated du	y, grey, moist, very loose le to auger refusal at 8.0 mbg		SS11B		mm 	mm															
	82.39		Bedrock or boulder infe	rred	0.							_					_							
			Note:												-	_	-							
			Borehole Coordinate - UTM 18 Zone																					
			- Northing: 5017293.2																					
5 			- Lasting. 400002.1																					
														[[
												-												
11.0											+						+							
NOTES	S:		round ourfere		I_	1	1	1	1			-1												
RQD:	Rock Qua	elow g ality De	esignation																					
Appendix A2

Geotechnical Laboratory Results

Particle-Size Analysis of Soils (Geotechnical) (USCS) (ASTM D422)

Client:		Consolidat	ed Fastfrate	(Ottawa) H	oldings Inc.	La	b No.:		SS-21-66	
Project/Site:		New Warehou	se and Office	es / Somme	street, Otta	wa_ Pr	oject No.:		11231101	
Boreho Depth:	ole no.: :	BH1-21 0.9 to 1.4m				Sa En	mple no.:		SS2B	
100 90 80 70 60 40 40 30 20 10 10									0 10 20 30 40 50 50 50 70 80 90 100	
0.001	1	0.01		Diam	eter (mm)	1		10		100
		Clay & Silt		Fine	Sand	edium	Coarse	Gra	avel Coarse	-
			U	nified Soil C	lassification	System]
		Soil Desc	ription		Gravel (%))	Sand (%)	Cl	ay & Silt (%)	
		Silty sand with	gravel (SM)		17		60		23	
	Cla	Silt-size part y-size particles	icles (%): (%) (<0.002m	ım):			1! 4	9		
Remarks:	:									
Performe	ed by:		Jade G	Gorman			Date:	Aug	gust 10, 2021	
Verified b	by:	Joe Sullivan	\sim	J-5	Sulla-		Date:	Auç	gust 11, 2021	

Particle-Size Analysis of Soils (Geotechnical) (USCS) (ASTM D422)

Client:		Consolidated Fastfrate (Ottaw	a) Holdings Inc.	Lab No.:	SS-2	1-66	
Proj	ect/Site:	New Warehouse and Offices / So	mme Street, Ottawa	Project No.:	1123	1101	
	Borehole no.:	BH1-21		Sample no.:	SS13		
	Depth:	9.1 to 9.8m		Enclosure:	-		_
Percent Passing	100 90 80 70 60 50 40 30 20 10 0.001		Diameter (mm)				- 0 - 10 - 20 - 30 - 40 - 20 - 30 - 40 - 20 - 20 - 30 - 50 - 50 - 60 - 70 - 80 - 90 - 100 - 0
			Sand		Gravel		
			Fine Mediu	um Coarse	Fine C	oarse	
		Unified S	ioil Classification Syst	em	1		_
		Soil Description	Gravel (%)	Sand (%)	Clay &	Silt (%)	
		Sandy lean clay with gravel (CL)	16	32	5	2	
		Silt-size particles (%):		36	<u>.</u>		
	Clay-size particles (%) (<0.002mm):			16			
Rem	narks: 						
Perf	ormed by:	Jade Gorman		Date:	August 2	10, 2021	
Veri	fied by:	Joe Sullivan	Sulla	Date:	August 2	11, 2021	_

Liquid Limit, Plastic Limit and Plasticity Index of Soils (ASTM D4318)

Client:		Consolidated	I Fastfrate (Ottav	wa) Holdings Ir	nc.	Lab no.:	SS-21-66
Project/Site:	Nev	New Warehouse and Offices / Somme Street			Ottawa	Project no.:	11231101
Borehole no.:	BH1-21		Sample no.:	5	SS13	Depth:	9.1 to 9.8m
Soil Description:		L	ean Clay (CL)			Date sampled:	
Apparatus: Liquid limit device no.: Sieve no.:	Hand 1	Crank a	Balance no.: Oven no.: Glass plate no.:	B33	10 3-02667 1	Porcelain bowl no.: Spatula no.:	<u>1</u> 1
	Liquid Limit (LL):		Soil Preparation	on:		
	Test No. 1	Test No. 2	Test No. 3	-	Cohesive <425 µm	ı J	Dry preparation
Number of blows	32	23	15		Cohesive >425 µm		Wet preparation
	Water Conte	nt:			Non-cohesive		
Tare no.	1	8	43A			Results	
Wet soil+tare, g	26.69	30.76	28.34	28.0			
Dry soil+tare, g	25.62	28.79	26.84				
Mass of water, g	1.07	1.97	1.50	(%)			
Tare, g	21.32	21.19	21.22	ntent			
Mass of soil, g	4.30	7.60	5.62	0 26.0			
Water content %	24.9%	25.9%	26.7%	Wat			
Plastic Limit (P	L) - Water Conte	ent:					
Tare no.	20	22					
Wet soil+tare, g	28.02	27.70		24.0			
Dry soil+tare, g	26.99	26.75			12 14 16 1	8 20 22 24 2 Nb Blows	26 28 30 32 34
Mass of water, g	1.03	0.95		70	Soil	Plasticity Chart AST	M D2487
Tare, g	21.36	21.56		/º _		LL 50	
Mass of soil, g	5.63	5.19		60 	Lean clay (CL)	Fat clay (CH)
Water content %	18.3%	18.3%		<u>-</u> 50		Organic d	
Average water content %	18.3	3%		لم فق 40			
Natural Wate	er Content (W ⁿ)	:		ti 30	Orga	Inic clay (OL)	
Tare no.	N7			20 Si	ilty clay CL ML	7	lastic silt MH
Wet soil+tare, g	203.55			10		Org	ganic silt (OH)
Dry soil+tare, g	191.76					Organic silt	
Mass of water, g	11.79			0 +	10 20 3	0 40 50 60	70 80 90 100
Tare, g	45.09			Linuid Linuit	Γ	Liquid Limit LL	1
Mass of soil, g	146.67			Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ
Water content %	8.0%			26	18	8	8.0
Remarks:							
Performed by:		Josh	Sullivan		Date:	Au	gust 10, 2021
Verified by	Joe Sullivan	<	Je Sue		Date:	Δ	aust 11 2021
Verified by:	Joe Sullivan	<)		Date:	Au	gust 11, 2021

Particle-Size Analysis of Soils (Geotechnical) (USCS) (ASTM D422)

Client:		Consolidated Fastfrate (C	Ottawa) Ho	oldings Inc.	Lab No.:	S	S-21-66	
Proj	ect/Site:	New Warehouse and Offices	/ Somme	Street, Ottawa	Project No.:	1	1231101	
	Borehole no.:	BH2-21			Sample no.:	S	S12	
	Depth:	8.4 to 9.0r	n		Enclosure:		-	
Percent Passing	00 90 80 70 60 50 40 30 10 0.001	0.01	0.1 Diame	eter (mm)		10		0 10 20 30 40 50 50 60 60 70 80 90 100
				Sand		Grav	/el	
		Clay & Silt	Fine	Mediu	im Coarse	Fine	Coarse	
				assincation Syst				
		Soil Description		Gravel (%)	Sand (%)	Cla	y & Silt (%)	
		Sandy lean clay with gravel (CL)		20	38		42	
	Silt-size particles (%):		0:		33	3		
			<u>, </u>					
Rem	arks:							
Perf	ormed by:	Jade Gor	rman		Date:	Augu	ust 10, 2021	
Veri	ied by:	Joe Sullivan)cS	ulla	Date:	Augu	ust 11, 2021	

Liquid Limit, Plastic Limit and Plasticity Index of Soils (ASTM D4318)

Client:		Consolidated	l Fastfrate (Ottav	wa) Holdings I	nc.	Lab no.:	SS-21-66
Project/Site:	New Warehouse and Offices / Somme Street,			Ottawa	Project no.:	11231101	
Borehole no.:	BH2-21 Sample no.:				SS12	Depth:	8.4 to 9.0m
Soil Description:		L	ean Clay (CL)			Date sampled:	
Apparatus: Liquid limit device no.: Sieve no.:	Hand	Crank 1 /a	Balance no.: Oven no.: Glass plate no.:	B3	10 3-02667 1	Porcelain bowl no.: Spatula no.:	<u> 1 </u>
	Liquid Limit (LL):		Soil Preparat	ion:		
	Test No. 1	Test No. 2	Test No. 3		Cohesive <425 µm	n 🗸	Dry preparation
Number of blows	27	21	15		Cohesive >425 µm	۰ D	Wet preparation
	Water Conte	ent:	L		Non-cohesive		
Tare no.	1	8	43A			Results	
Wet soil+tare, g	29.51	29.53	29.71	29.0			
Dry soil+tare, g	27.86	27.82	27.93				
Mass of water, g	1.65	1.71	1.78	(%)			
Tare, g	21.30	21.26	21.32	itent (
Mass of soil, g	6.56	6.56	6.61	ບັບ ບັບ 27.0			
Water content %	25.2%	26.1%	26.9%	Wat			
Plastic Limit (P	L) - Water Cont	ent:					
Tare no.	20	22					
Wet soil+tare, g	28.59	28.68		25.0			
Dry soil+tare, g	27.57	27.62			12 14 16	18 20 22 Nb Blows	24 26 28
Mass of water, g	1.02	1.06		70	Soil	Plasticity Chart ASTI	M D2487
Tare, g	21.57	21.36		⁷⁰ T		LL 50	
Mass of soil, g	6.00	6.26		60 -	Lean clay (CL)	Fat clay (CH)
Water content %	17.0%	16.9%		<u>ل</u> 1 50 –		Organic c	
Average water content %	17.	0%		^교 40 -			
Natural Wate	er Content (W ⁿ):		<u>i</u> 130 – 00	Orga	anic clay (OL)	
Tare no.	Z57				Silty clay CL ML	7	lastic silt (MH)
Wet soil+tare, g	194.57			10		Org	ganic silt (OH)
Dry soil+tare, g	182.50					Organic silt	
Mass of water, g	12.07			0 +	10 20 3	0 40 50 60	70 80 90 100
Tare, g	47.10				1	Liquid Limit LL	1
Mass of soil, g	135.40			Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ
Water content %	8.9%			25	17	8	8.9
Remarks:							
Performed by:		Josh	Sullivan		Date:	Au	gust 10, 2021
Varified by:		~	Je Sun		- Doto:	 	quet 11, 2021
verifiea by:	Joe Sullivan		/		Date:	Au	gust 11, 2021

Particle-Size Analysis of Soils (Geotechnical) (USCS) (ASTM D422)

Client	:	Consolidated Fastfrate (Ottawa) Hol	ldings Inc.	Lab No.:	;	SS-21-66	
Proje	ct/Site:	New Warehouse and Offices	s / Somme S	Street, Ottawa	Project No.:		11231101	
Во	prehole no.:	BH2-21			Sample no.:	9	SS18	
De	epth:	13.0 to 13.	6m		Enclosure:		-	
100 90 80 70 60 90 80 70 60 90 90 90 90 90 90 90 90 90 90 90 90 90		0.01	0.1 Diameter (mm)					0 10 20 30 40 Period 50 50 50 50 50 50 50 50 50 50
		Clav & Silt		Sand		Gra	ivel	
		Uni	Fine fied Soil Cla	Mediu	m Coarse	Fine	Coarse	
		Soil Description Sandy lean clay (CL)		Gravel (%) 6	Sand (%) 29 42	Cla	ay & Silt (%) 65	
	Cla	ay-size particles (%) (<0.002mm	ו):		23	3		
Rema	rks:							
Perfo	rmed by:	Josh Su	llivan		Date:	Septe	ember 9, 2021	<u> </u>
Verifie	ed by:	Joe Sullivan)~S.	Mar <u></u>	Date:	Septe	mber 13, 202	1

Liquid Limit, Plastic Limit and Plasticity Index of Soils (ASTM D4318)

Client:		Consolidated	d Fastfrate (Ottav	wa) Holdings Ir	nc.	Lab no.:	SS-21-66
Project/Site:	New	v Warehouse	and Offices / Sc	omme Street, (Ottawa	Project no.:	11231101
Borehole no.:	BH2		Sample no.:		SS18	Depth:	13.0 to 13.6m
Soil Description:		I	Lean Clay (CL)			Date sampled:	
Apparatus:	Hand C	Crank	Balance no.:		10	Porcelain bowl no.:	
Liquid limit device no.: Sieve no :	1	9	Oven no.: Glass plate no ·	B33	3-02667 1	Spatula no.:	1
	Liquid Limit (I	1.).		Soil Proparati	-		
		-L):	Teet No. 2	Soli Preparati	Cobosivo <425 um	_	Dryproporation
Number of blows	24	22	15		Cohesive >425 µm		
	Water Conter	23	15		Non-cohesive		
Tare no	116	117	118			Poculto	
Wet soil+tare. g	30.86	30.40	29.04	30.0	1	Results	
Dry soil+tare, g	28.88	28.46	27.37				
Mass of water, g	1.98	1.94	1.67				
Tare, g	21.48	21.50	21.60	ent (%			
Mass of soil, g	7.40	6.96	5.77	28.0			
Water content %	26.8%	27.9%	28.9%	Water			
Plastic Limit (P	L) - Water Conte	nt:					
Tare no.	20	21					
Wet soil+tare, g	27.84	27.84		26.0			
Dry soil+tare, g	27.06	27.09			13 15 17 1	9 21 23 25 2 Nb Blows	27 29 31 33 35
Mass of water, g	0.78	0.75			Soil I	Plasticity Chart AST	M D2487
Tare, g	21.41	21.54		70		LL 50	
Mass of soil, g	5.65	5.55		60 —	Lean clay (CL)	Fat clay (СН
Water content %	13.8%	13.5%		H- 50 –			
Average water content %	13.7	%		≣ ≚ ¥ 40 —			
Natural Wate	r Content (W ⁿ):			2 is 10 is 1	Orga		
Tare no.	S19			20 Si	ilty clay CL ML	7	lastic silt (MH)
Wet soil+tare, g	167.57		-	10		Org	ganic silt (OH)
Dry soil+tare, g	154.66		-			Organic silt	
Mass of water, g	12.91		-	0 +	10 20 30	0 40 50 60	70 80 90 100
Tare, g	45.95		-	Liquid Limit			1
Mass of soil, g	108.71		-	(LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ
Water content %	11.9%			28	14	14	11.9
Remarks:							
	<u> </u>						
Performed by:		Josh	Sullivan		Date:	Sept	ember 10, 2021
Verified by:		Joe	Sullivan		Date:	Sept	ember 13, 2021

Particle-Size Analysis of Soils (Geotechnical) (USCS) (ASTM D422)

Client:	Consolidated Fastfrate (Ottawa) H	oldings Inc.	Lab No.:	SS-21-	-66	
Project/Site:	New Warehouse and Offices / Somme	e Street, Ottawa	Project No.:	11231 ⁻	101	
Borehole no.	:BH3-21		Sample no.:	SS8		
Depth:	5.3 to 5.911		Enclosure:	-		
100 90 80 70 60 50 40 30 20 10 0 0 0 0 0					0 10 20 30 40 50 60 70 80 90 100	Percent Retained
	Diam	neter (mm)				
	Clay & Silt	Sand Modiu	um Coarso	Gravel	2150	
	Unified Soil C	lassification Syst	em	Fille Co.		
	Soil Description	Gravel (%)	Sand (%)	Clay & Si	it (%)	
	Sandy silty clay with gravel (CL-ML)	19	49	32		
	Silt-size particles (%):		26	3		
	Clay-size particles (%) (<0.002mm):		6			
Remarks:						
Performed by:	Jade Gorman		Date:	August 10	, 2021	
Verified by:	Joe Sullivan	ull and	Date:	August 11	, 2021	

Liquid Limit, Plastic Limit and Plasticity Index of Soils (ASTM D4318)

Client:		Consolidated	l Fastfrate (Otta	wa) Holdings Inc.		Lab no.:	SS-21-66
Project/Site:	Ne	New Warehouse and Offices / Somme Stree			a	Project no.:	11231101
Borehole no.:	BH3-21		Sample no.:	SS8		Depth:	5.3 to 5.9m
Soil Description:		Si	lty Clay (CL-ML)			Date sampled:	
Apparatus:	Hand	Crank	Balance no.:	10	67	Porcelain bowl no.:	
Sieve no.:	n	/a	Glass plate no.:		07	Spatula no	I
	Liquid Limit (LL):		Soil Preparation:		-	
	Test No. 1	, Test No. 2	Test No. 3	Cohe	sive <425 µm	ري ا	Dry preparation
Number of blows	25	21	15	 Cohe	sive >425 µm	,	Wet preparation
	Water Conte	ent:	I	 □ Non-o	cohesive		
Tare no.	116	9	7			Results	
Wet soil+tare, g	32.73	31.64	30.02	19.0			
Dry soil+tare, g	31.13	30.20	28.77	1			
Mass of water, g	1.60	1.44	1.25	(%)			
Tare, g	21.46	21.75	21.67	itent (-		
Mass of soil, g	9.67	8.45	7.10	ບິ ພິ 17.0 -			
Water content %	16.5%	17.0%	17.6%	Wat			
Plastic Limit (P	L) - Water Cont	ent:					
Tare no.	100	117					
Wet soil+tare, g	27.92	28.13		15.0			
Dry soil+tare, g	27.17	27.33		12	14 16	Nb Blows	.2 24 26 28
Mass of water, g	0.75	0.80		70	Soil I	Plasticity Chart ASTI	M D2487
Tare, g	21.53	21.48		/0		LL 50	
Mass of soil, g	5.64	5.85		60 Lea	n clay CL	Fat clay (СН
Water content %	13.3%	13.7%				Organic c	нау ОН)
Average water content %	13.	5%		≅ 40			
Natural Wate	er Content (W ⁿ):		igi 30	Orga	anic clay (oL)	
Tare no.	Т3			20 Silty clay		7	lastic silt (MH)
Wet soil+tare, g	313.52			10		Org	Janic silt
Dry soil+tare, g	289.92				Silt		
Mass of water, g	23.60			0 10	20 3	0 40 50 60	70 80 90 100
Tare, g	46.54			Liquid Limit			
Mass of soil, g	243.38			(LL)	ic Limit (PL)	Plasticity Index (PI)	Natural Water Content W"
Water content %	9.7%			17	13	4	9.7
Remarks:							
Performed by:		Josh	Sullivan		Date:	Au	gust 10, 2021
Verified by:	Joe Sullivan	<	Je Sun	· · · · · · · · · · · · · · · · · · ·	Date:	Au	igust 11, 2021

Particle-Size Analysis of Soils (Geotechnical) (USCS) (ASTM D422)

Client:		Consolidated Fastfrate (Ottawa) F	loldings Inc.	Lab No.:	SS-21	-66	-
Pro	ject/Site:	New Warehouse and Offices / Somm	e Street, Ottawa	Project No.:	11231	101	-
	Borehole no.:	BH5-21		Sample no.:	SS3		_
	Depth:	1.5 to 2.1m		Enclosure:	-		_
Percent Passing	100 90 80 70 60 50 40 30 20 10					• • • • • 0 1 2 3 4 5 6 7 8 9	0 0 0 0 0 0 0 0 Percent Retained
	0.001	0.01 0.1 Diar	neter (mm)		10	1 100	00
		Clay & Silt	Sand		Gravel		
		Fin	e Mediu	um Coarse	Fine Co	arse	
		Soil Description	Gravel (%)	Sand (%)	Clay & S	ilt (%)	
		Silty sand with gravel (SM)	25	38	37		
	Silt-size particles (%):			29			-
	CI	ay-size particles (%) (<0.002mm):		8			
Rer	narks:						
Per	formed by:	Jade Gorman		Date:	August 10), 2021	-
Ver	ified by:	Joe Sullivan	Sulla	Date:	August 11	l, 2021	-

Particle-Size Analysis of Soils (Geotechnical) (USCS) (ASTM D422)

Client:	Consolidated Fastfrate (Ottawa) H	loldings Inc.	Lab No.:	SS	6-21-66	
Project/Site:	New Warehouse and Offices / Somme	e Street, Ottawa	Project No.:	112	231101	
Borehole no.: Depth:	BH5-21 4.6 to 5.2m		Sample no.:	SS	67	
Deptil.						0 10 20 30 40 50 50 - 30 - 40 - 50 - 50 - 60 - 70 - 80 - 90 - 100 - 100
	Clay & Silt	Sand Modiu	um Coarso	Grave	Coarso	
	Unified Soil (e Medit Classification Syst	em	Fine	Coarse	
	Soil Description	Gravel (%)	Sand (%)	Clay	& Silt (%)	
s	andy silty clay with gravel (CL-ML)	10	38		52	
Cla	Silt-size particles (%): ay-size particles (%) (<0.002mm):		41 11			
Remarks:						
Performed by:	Jade Gorman		Date:	Augus	st 10, 2021]
Verified by:	Joe Sullivan	Sulla	Date:	Augus	st 11, 2021	

Liquid Limit, Plastic Limit and Plasticity Index of Soils (ASTM D4318)

Client:		Consolidated	I Fastfrate (Ottav	wa) Holdings In	IC.	Lab no.:	SS-21-66
Project/Site:	New Warehouse and Offices / Somme Street,			omme Street, C	Ottawa	Project no.:	11231101
Borehole no.:	BH5-21		Sample no.:		SS7	Depth:	4.6 to 5.2m
Soil Description:		Si	ty Clay (CL-ML)			Date sampled:	
Apparatus: Liquid limit device no.: Sieve no.:	Hand	Crank 1 /a	Balance no.: Oven no.: Glass plate no.:	B33	10 3-02667 1	Porcelain bowl no.: Spatula no.:	<u>1</u> 1
	Liquid Limit ((LL):		Soil Preparatio	on:		
	Test No. 1	Test No. 2	Test No. 3	-	Cohesive <425 µm		Dry preparation
Number of blows	25	20	15		Cohesive >425 µm	· _	Wet preparation
	Water Conte	ent:			Non-cohesive		
Tare no.	2	5	142			Results	
Wet soil+tare, g	28.96	28.31	27.50	23.0			
Dry soil+tare, g	27.69	27.09	26.38				
Mass of water, g	1.27	1.22	1.12	(%)			
Tare, g	21.44	21.39	21.40	ntent (
Mass of soil, g	6.25	5.70	4.98	ບັບ 21.0			
Water content %	20.3%	21.4%	22.5%	Wat			
Plastic Limit (P	L) - Water Cont	ent:					
Tare no.	19	21					
Wet soil+tare, g	28.76	28.58		19.0			
Dry soil+tare, g	27.93	27.75			12 14 16	18 20 2 Nb Blows	2 24 26 28
Mass of water, g	0.83	0.83		70	Soil I	Plasticity Chart AST	/I D2487
Tare, g	21.58	21.39		/0		LL 50	
Mass of soil, g	6.35	6.36		60 	Lean clay CL	Fat clay (СН
Water content %	13.1%	13.1%		- 		Organic cl	
Average water content %	13.	1%		≅ 40 —			
Natural Wate	er Content (W ⁿ)):		드 20	Orga	nic clay (OL)	
Tare no.	N30				Ity clay CL ML	7	astic silt (MH)
Wet soil+tare, g	240.14			10		Org	Janic silt
Dry soil+tare, g	214.80			10	Silt	Organic silt	
Mass of water, g	25.34			0	10 20 3	0 40 50 60	70 80 90 100
Tare, g	46.40			Liquid Limit			Ι
Mass of soil, g	168.40			(LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ
Water content %	15.0%			20	13	7	15.0
Remarks:							
Performed by:		Josh	Sullivan		Date:	Au	gust 10, 2021
Verified by:	Joe Sullivan	<	Je Sun	*	Date:	Au	gust 11, 2021

Uniaxial Compressive Strength of Intact Rock Core Specimens (ASTM D7012 - Method C)

Client:		Consolidate	d Fastfrate (Ottaw	a) Holdings Inc	Lab No.:	SS-21-66
Project/Site:	-	Nev S	v Warehouse and Somme Street, Ott	Offices awa	Project No.:	11231101
Borehole No.:	-	E	3H2-21	Sampled ID:	Run #	2
Depth:		51'5" - 51'8"	(1570 to 1579.4cm)	Date Sampled:	n/a	
Lithological De	escrip	tion:	Limestone			
г				_		
			Initial Specime	n Parameters		
	Diame	ter, mm			47.0	
	Height	t, mm			94.0	
	Height	t-to-Diameter F	Ratio		2.0	
	Volum	e, cm ³		1	63.1	
	Mass,	g		4	66.5	
	Bulk D	ensity, kg/m ³		2	2860	
	Moistu	re Condition		As F	Received	
	Moistu	ire Content, %				
r				1		
	Maxim	um Applied Lo	oad, kN	2	241.3	
	Comp	ressive Streng	th, MPa	1	39.1	
REMARKS:	-					
PERFORMED	BY:		Jesse Carreau	DATE:	August 3,	2021
VERIFIED BY:		Joe Sullivan	Je Dutte	DATE:	August 5,	2021

Client:	Consolidated Fastfrate (Ottawa) Holdings Inc.				C.	Lab No.: SS-21-66			1-66	
Project/Site:	New Wareh	ouse and Of	fices / Som	me Street, C	ottawa	Project No.	:	1123	1101	
		Oven No.:	B33-(02932	Scale No.:	1	0	-		
BH No.:		BH1	BH1	BH1	BH1	BH1	BH1	BH1	BH1	
		SS1	SS2A	SS2B	SS3	SS4	SS5A	SS5B	SS6	
		3"-2'	2.5-2'10"	2'10"-4.5'	5-7'	7.5-9.5'	10-10'8"	10'8"-12'		
Container no.		N25	S40	N18	N20	N23	N15	N13		
Mass of container +	wet soil (g)	233.32	166.90	185.70	290.57	265.60	180.34	126.64		
Mass of container +	dry soil (g)	220.09	156.92	176.04	276.32	246.39	169.56	85.39	/ERY	
Mass of container (g	1)	45.78	45.80	45.25	46.05	46.17	46.15	45.12	ECO	
Mass of dry soil (g)		174.3	111.1	130.8	230.3	200.2	123.4	40.3	JO RI	
Mass of water (g)		13.2	10.0	9.7	14.3	19.2	10.8	41.3	2	
Moisture content (%)	7.6	9.0	7.4	6.2	9.6	8.7	102.4		
BH No.:		BH1	BH1	BH1	BH1	BH1	BH1	BH1	BH1	
		SS7	SS8A	SS8B	SS9	SS10	SS11	SS12	SS13	
		15-17'	17.5-19'	19-19.5'	20-22'	22.5-24.5'	25-27'	27.5-29.5'	30-32'	
Container no.		N1	N4	N10	N17	N8	N9	N16	N7	
Mass of container +	wet soil (g)	278.30	213.70	240.62	252.25	238.93	201.02	246.61	203.55	
Mass of container +	dry soil (g)	262.26	200.59	226.34	236.87	228.08	189.49	231.05	191.76	
Mass of container (g	1)	45.80	46.34	45.40	45.80	45.62	45.75	46.75	45.08	
Mass of dry soil (g)		216.5	154.3	180.9	191.1	182.5	143.7	184.3	146.7	
Mass of water (g)		16.0	13.1	14.3	15.4	10.9	11.5	15.6	11.8	
Moisture content (%)	7.4	8.5	7.9	8.0	5.9	8.0	8.4	8.0	
Remarks:										
Performed By:		Jade G	orman		Date:		August	10, 2021		
Verified by :	Joe Sullivan	<	Jac Sum	· · · · ·	Date:		August	11, 2021		

Client:	Consolidated Fastfrate (Ottawa) Holdings Inc.					Project no.:		21-66	
Project/Site: New	Warehouse and O	fices / Somme	Street, Otta	awa	Lab No.:		11231101		
	Oven No.:	B33-02	2932	Scale No.:	1	0	-		
BH No.:	BH2	BH2	BH2	BH2	BH2	BH2	BH2	BH2	
	SS1A	SS1B	SS2	SS3A	SS3B	SS4	SS5	SS6A	
	3"-1.5'	1.5-2'	2.5-4.5'	5-5'5"	5'5"-7'	7.5-9.5'	10-12'	12.5'-12'8"	
Container no.	N14	N12	N21	N19	N5	Т6	Z48	T2	
Mass of container + wet soil (g)	174.43	177.11	281.71	266.40	269.35	207.95	199.66	151.70	
Mass of container + dry soil (g)	169.52	165.71	267.18	246.46	249.63	199.32	184.55	142.47	
Mass of container (g)	45.42	47.01	45.23	45.24	46.36	45.90	45.46	46.27	
Mass of dry soil (g)	124.1	118.7	222.0	201.2	203.3	153.4	139.1	96.2	
Mass of water (g)	4.9	11.4	14.5	19.9	19.7	8.6	15.1	9.2	
Moisture content (%)	4.0	9.6	6.5	9.9	9.7	5.6	10.9	9.6	
BH No.:	BH2	BH2	BH2	BH2	BH2	BH2	BH2	BH2	
	SS6B	SS6C	SS7A	SS7B	SS8	SS9	SS10	SS11	
	12'8"-12'10"	12'10"-14.5'	15-15.5'	15.5'-17'	17.5-19.5'	20-22'	22.5-24.5'	25-27'	
Container no.	S18	S39	N6	S37	Z47	S20	Z60	N11	
Mass of container + wet soil (g)	119.33	171.21	217.62	216.49	207.82	292.03	245.95	186.74	
Mass of container + dry soil (g)	110.90	147.07	191.26	194.79	188.53	268.92	226.39	175.42	
Mass of container (g)	46.62	46.88	44.84	46.95	45.88	45.81	46.79	46.06	
Mass of dry soil (g)	64.3	100.2	146.4	147.8	142.7	223.1	179.6	129.4	
Mass of water (g)	8.4	24.1	26.4	21.7	19.3	23.1	19.6	11.3	
Moisture content (%)	13.1	24.1	18.0	14.7	13.5	10.4	10.9	8.8	
Remarks:									
Performed By:	Jade G	orman		Date:		August	10, 2021		
Verified by : Joe Sul	livan A	- Sulla		Date:		August	11, 2021		

Client: Consol	Consolidated Fastfrate (Ottawa) Holdings Inc.			C.	Project no.	10.: SS-21-66		21-66
Project/Site: New Ware	nouse and Of	fices / Som	me Street, C	Ottawa	Lab No.:		1123	51101
	Oven No.:	B33-(02932	Scale No.:	1	10		
BH No.:	BH2	BH2	BH2	BH2	BH2	BH2	BH2	BH2
	SS12	SS13	SS14	SS15	SS16A	SS16B	SS17	SS18
	25.5-27.5'	30-32'	32.5-33'1"	35-37.5'	37.5-37'11"	37'11"-39.5'		42.5-44.5'
Container no.	Z57	S42	S32	S14	N24	N2		S19
Mass of container + wet soil (g)	194.57	243.64	324.30	153.82	193.01	177.26		167.57
Mass of container + dry soil (g)	182.50	225.66	298.54	140.73	169.48	162.64	/ER)	154.66
Mass of container (g)	47.10	46.28	46.23	45.69	46.17	45.34	ECO	45.95
Mass of dry soil (g)	135.4	179.4	252.3	95.0	123.3	117.3	JO RI	108.7
Mass of water (g)	12.1	18.0	25.8	13.1	23.5	14.6	2	12.9
Moisture content (%)	8.9	10.0	10.2	13.8	19.1	12.5		11.9
BH No.:	BH2	BH3	BH3	BH3	BH3	BH3	BH3	BH3
	SS19	SS1	SS2A	SS2B	SS3	SS4	SS5	SS6
	45-47'	3"2'	2.5-3'	3-4.5'	5-7'	7.5-9.5'	11-12'	12.5-14.5'
Container no.	Z10	T15	S21	N27	N26	N3	S12	Z35
Mass of container + wet soil (g)	280.41	152.86	168.64	127.67	189.62	218.13	237.71	267.69
Mass of container + dry soil (g)	257.18	138.71	156.14	111.54	178.16	207.09	223.83	245.63
Mass of container (g)	45.63	46.45	45.80	46.20	46.18	45.73	46.68	45.80
Mass of dry soil (g)	211.6	92.3	110.3	65.3	132.0	161.4	177.2	199.8
Mass of water (g)	23.2	14.2	12.5	16.1	11.5	11.0	13.9	22.1
Moisture content (%)	11.0	15.3	11.3	24.7	8.7	6.8	7.8	11.0
Remarks:								
Porformod By:	lada C	orman		Dato:			1 2021	
Verified by : Joe Sullivar) Jaue G	Jes	- se -	Date:		August 1	1, 2021	

Client:	Consolidated Fastfrate (Ottawa) Holdings Inc.				с.	Project no.: SS-21-66			
Project/Site:	New Wareh	nouse and C	offices / Somn	ne Street, C	ttawa	Lab No.:	No.: 11231101		
		Oven No.:	B33-0	2932	Scale No.:	1	0		
BH No.:		BH3	BH3	BH3	BH3	BH3	BH3	BH3	BH3
		SS7	SS8	SS9	SS10A	SS10B	SS11	SS12	SS13
			17.5-19.5'	20-22'	22.5-23'	23-24.5'	25-27'	27.5-29.5'	30-30'10"
Container no.			Т3	Z59	S34	S36	Z42	Z37	S28
Mass of container +	wet soil (g)		313.52	205.80	266.00	231.33	241.74	209.23	215.78
Mass of container +	dry soil (g)	VERY	289.92	195.39	248.34	213.60	228.08	197.56	201.01
Mass of container (g	1)		46.54	47.06	45.98	47.55	46.42	45.91	46.34
Mass of dry soil (g)		NO R	243.4	148.3	202.4	166.1	181.7	151.7	154.7
Mass of water (g)			23.6	10.4	17.7	17.7	13.7	11.7	14.8
Moisture content (%)		9.7	7.0	8.7	10.7	7.5	7.7	9.5
BH No.:		BH4	BH4	BH4	BH4	BH4	BH4	BH4	BH4
		SS1	SS2	SS3	SS4	SS5	SS6	SS7	SS8
		3"-2'	2.5-4.5'	5-7'		10-12'	12.5-14.5'	15-17'	15.5-17.5'
Container no.		S26	Z29	S17		S27	Z50	T14	Т8
Mass of container +	wet soil (g)	223.60	225.82	263.66		222.97	116.87	151.70	224.79
Mass of container +	dry soil (g)	194.94	201.43	250.71	VER	188.87	83.71	133.21	192.23
Mass of container (g	1)	46.01	46.15	45.21	ECO	46.16	47.05	45.34	46.06
Mass of dry soil (g)		148.9	155.3	205.5	NO R	142.7	36.7	87.9	146.2
Mass of water (g)		28.7	24.4	13.0	~	34.1	33.2	18.5	32.6
Moisture content (%)	19.2	15.7	6.3		23.9	90.5	21.0	22.3
Remarks:									
Performed By:		Jade (Gorman		Date:		August	10, 2021	
Verified by :	Joe Sullivan	<	Joe Suit		Date:		August	11, 2021	

Client:		Con			Project no.:		SS-21-66	
Project/Site: New Ware	arehouse and Offices / Somme Street, O			ttawa	Lab No.:		11231101	
	Oven No.:	B33-	02932	Scale No.:	1()		
BH No.:	BH4	BH4	BH4	BH4	BH4	BH4	BH4	BH4
	SS9A	SS9B	SS10	SS11	SS12	SS13	SS14	SS15
	20-21.5'	21.5-22'	22.5-24.5'	25-27'	27.5-29.5'		32.5-34.5'	35-37'
Container no.	Z31	T1	N22	S30	S29		S45	Т9
Mass of container + wet soil (g)	197.83	262.26	335.05	205.12	240.22		242.41	271.90
Mass of container + dry soil (g)	171.06	223.24	300.88	168.62	221.98	VERY	224.01	254.61
Mass of container (g)	45.87	45.83	45.42	45.70	45.78	EC O	46.07	45.78
Mass of dry soil (g)	125.2	177.4	255.5	122.9	176.2	NO R	177.9	208.8
Mass of water (g)	26.8	39.0	34.2	36.5	18.2	~	18.4	17.3
Moisture content (%)	21.4	22.0	13.4	29.7	10.4		10.3	8.3
BH No.:	BH4	BH5	BH5	BH5	BH5	BH5	BH5	BH5
	SS16	SS1	SS2A	SS2B	SS3	SS4	SS5	SS6
	37.5-39.5'	3"-2'	2.5-3'	3-4.5'		7.5-9.5'	10-12'	
Container no.	N32	N28	Z5	N29	Ľ	N34	N36	
Mass of container + wet soil (g)	171.49	204.87	277.76	199.82	IETEI	184.69	171.27	
Mass of container + dry soil (g)	156.21	166.78	240.15	176.72	ROM	171.19	157.43	VERY
Mass of container (g)	45.50	45.93	45.70	45.71	НУР	46.67	45.36	ECO
Mass of dry soil (g)	110.7	120.9	194.5	131.0	FOR	124.5	112.1	IO RI
Mass of water (g)	15.3	38.1	37.6	23.1	SED	13.5	13.8	~
Moisture content (%)	13.8	31.5	19.3	17.6		10.8	12.3	I
Remarks:								
Performed By:	Jade G	orman		Date:		August	10, 2021	
Verified by : Joe Sullivan	\supset	er Sus	l'um	Date:		August ?	11, 2021	

Client:	Consolidated Fastfrate (Ottawa) Holdings Inc.			с.	Project no.:		SS-2	21-66	
Project/Site:	New Wareh	nouse and O	ffices / Somr	ne Street, C	Ottawa	Lab No.:		1123	1101
		Oven No.:	B33-0	2932	Scale No.:		10		
BH No.:		BH5	BH5	BH5	BH5	BH5	BH5		
		SS7	SS8	SS9	SS10	SS11A	SS11B		
		15-17'	17.5-19.5'	20-22'	22.5-24.5'	25-25'10"	25'10"-26'3"		
Container no.		N30	N35	N33	S44	S13	T13		
Mass of container + we	et soil (g)	240.14	211.88	229.19	230.05	189.96	186.46		
Mass of container + dry	/ soil (g)	214.80	197.53	214.27	211.44	180.54	166.64		
Mass of container (g)		46.40	46.08	47.12	46.44	46.30	46.88		
Mass of dry soil (g)		168.4	151.5	167.2	165.0	134.2	119.8		
Mass of water (g)		25.3	14.4	14.9	18.6	9.4	19.8		
Moisture content (%)		15.0	9.5	8.9	11.3	7.0	16.5		
BH No.:									
Container no.									
Mass of container + we	t soil (g)								
Mass of container + dry	/ soil (g)								
Mass of container (g)									
Mass of dry soil (g)									
Mass of water (g)									
Moisture content (%)									
Remarks:									
Performed By:		Jade G	Borman	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Date:		August 1	0, 2021	
Verified by :	Joe Sullivan			Date:	August 11, 2021				

Appendix A3

Analytical Laboratory Results

Certificate of Analysis

Environment Testing

Client: Attention:	GHD Limited (Ottawa) 400-179 Colonnade Rd. Ottawa, ON K2E 7J4 Mr. Ryan Vanden Tillaart 72520576		Report Number: Date Submitted: Date Reported: Project: COC #:	1936331 2020-08-11 2020-08-25 11215612-A2 210163
Invoice to:	GHD Limited (Ottawa)	Page 1 of 4		

Dear Ryan Vanden Tillaart:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-5692).

Report Comments:

🛟 eurofins

APPROVAL:

Addrine Thomas, Inorganics Supervisor

All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise indicated.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accreditation. The scope is available at: <u>http://www.cala.ca/scopes/2602.pdf</u>.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is licensed by the Ontario Ministry of the Environment, Conservation, and Parks (MECP) for specific tests in drinking water (license #2318). A copy of the license is available upon request.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by the Ontario Ministry of Agriculture, Food, and Rural Affairs for specific tests in agricultural soils.

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official provincial or federal guideline as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.

Environment Testing

Client:	GHD Limited (Ottawa)
	400-179 Colonnade Rd.
	Ottawa, ON
	K2E 7J4
Attention:	Mr. Ryan Vanden Tillaart
PO#:	73520576
Invoice to:	GHD Limited (Ottawa)

🛟 eurofins

Report Number:	1936331
Date Submitted:	2020-08-11
Date Reported:	2020-08-25
Project:	11215612-A2
COC #:	210163

				Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D.	1509594 Soil 2020-08-11 BH3-SS3
Group	Analyte	MRL	Units	Guideline	
Anions	Cl	0.002	%		0.008
	SO4	0.01	%		0.08
General Chemistry	Electrical Conductivity	0.05	mS/cm		0.52
	рН	2.00			8.66
	Resistivity	1	ohm-cm		1920
Redox Potential	REDOX Potential		mV		205
Subcontract	Moisture-Humidite	0.25	%		8.54
	S2-	0.2	ug/g		<0.20

Guideline =

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Certificate of Analysis

Environment Testing

Client:	GHD Limited (Ottawa)
	400-179 Colonnade Rd.
	Ottawa, ON
	K2E 7J4
Attention:	Mr. Ryan Vanden Tillaart
PO#:	73520576
Invoice to:	GHD Limited (Ottawa)

🛟 eurofins

1936331
2020-08-11
2020-08-25
11215612-A2
210163

QC Summary

Analyte	Blank	QC % Rec	QC Limits
Run No 387642 Analysis/Extraction Date 20	20-08-13 Ana	lyst AET	
Method C CSA A23.2-4B			
Chloride		98	90-110
Run No 387870 Analysis/Extraction Date 20 Method SUBCONTRACT-A	20-08-14 Ana	lyst AET	
Moisture-Humidite	<0.25 %	101	
S2-	<0.20 ug/g	98	
Run No 387916 Analysis/Extraction Date 20	20-08-18 Ana	lyst SG	
Method Cond-Soil			
Electrical Conductivity	<0.05 mS/cm	97	90-110
рH	5.63	100	90-110
Resistivity			
Run No 388007 Analysis/Extraction Date 20 Method AG SOIL 20 <td>20-08-19 Ana</td> <th>lyst SKH</th> <td></td>	20-08-19 Ana	lyst SKH	
SO4	<0.01 %	96	70-130
Run No 388317 Analysis/Extraction Date 20 Method C SM2580B	20-08-25 Ana	lyst AET	
REDOX Potential	258 mV	101	

Guideline =

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request. MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

Environment Testing

Client:	GHD Limited (Ottawa)	Report Number:	1936331
	400-179 Colonnade Rd.	Date Submitted:	2020-08-11
	Ottawa, ON	Date Reported:	2020-08-25
	K2E 7J4	Project:	11215612-A2
Attention:	Mr. Ryan Vanden Tillaart	COC #:	210163
PO#:	73520576		
Invoice to:	GHD Limited (Ottawa)		

Guideline =

🛟 eurofins

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. Methods references and/or additional QA/QC information available on request.

Appendix B

Dynamic Compaction Condition (DCC) Slope Stability 179 Colonnade Road South, Suite 400 Ottawa, Ontario K2E 7J4 Canada www.ghd.com

Our ref: 11228236

January 20, 2022

Mr. Pierre Courteau Consolidated Fastfrate (Ottawa) Holdings Inc. 55 Commerce Valley Drive West Suite 220 Thornhill, ON L3T 7V9

Slope Stability Assessment for Dynamic Compaction, Warehouse and Offices, Ottawa, ON - Issued for site plan application

Dear Mr. Courteau

1. Introduction

Consolidated Fastfrate (Ottawa) Holdings Inc. (Fastfrate) has requested GHD Limited (GHD) to perform a slope stability assessment for the slopes along Rideau Road and Somme Street (Site) in preparation for the dynamic compaction works. The location of the Site is shown on the site layout in Figure 1.

The Site is located at the intersection of Rideau Road to the north and Somme Street to the west and is relatively flat and is covered with approximately 6 metres (m) thick fill, reportedly brought in from construction sites, which gives the Site its present flat surface albeit slightly hummocky look, sloping down to the surrounding streets. The surrounding topography slopes up at approximately two-horizontal to one-vertical (2H:1V) from south to north by approximately 3.5 m from Rideau Road to the section of Somme Street south of the Site. The Site elevation is higher compared to the surrounding streets varying from approximately 0.2 m higher on the south side (Somme Street) to 4 m higher on the north side (Rideau Street). There is also a ditch along the south, west, and north perimeters of the Site.

Fastfrate is proposing to develop an approximately 8,630 square meters (m²) warehouse on the western portion of the Site. It is GHD's understanding that Fastfrate intends to use dynamic compaction method of ground improvement to densify the randomly placed fill materials within the building footprint only prior to the proposed development.

The stability assessment has been completed in alignment with the cross-sections received by GHD from CIVITAS on July 28, 2021, and July 22, 2021, for the north and west slopes respectively. The locations of the cross-sections are shown on the site plan provided in Figure 1 and the cross-sections are attached to the present letter.

GHD understands that the Client will elect a contractor to undertake the dynamic compaction works at the Site. As such, it is recommended that additional information, including the type of equipment, expected peak particle velocity (PPV), expected frequency and method of works be provided to GHD once confirmed. Additional information on the influence of the above inputs is explained in Section 3.2.

→ The Power of Commitment

Figure 1 Site Layout showing the location of the analysed cross sections and the proposed building footprint

The following is attached to this letter:

- Attachment 1: West slope cross-section and global stability analysis results
- Attachment 2: North slope cross-section and global stability analysis results

2. Review of pre-construction geotechnical information

GHD has reviewed the following geotechnical investigations while preparing this letter:

- Geotechnical Study Subdivision Plan, Hawthorne Industrial Park, report ref. no. T020556-A1, by Inspec-Sol, dated May 4, 2009.
- Geotechnical Investigation, Warehouse and Offices Intersection of Rideau Street, report ref. no. 11215612-A1, by GHD, dated October 27, 2021.
- Supplementary Geotechnical Investigation, Warehouse and Offices Intersection of Rideau Street, report ref. no. 11231101-RPT-1, by GHD, dated January 20, 2022

GHD has also reviewed the following documents provided by the client as part of the assessment:

- Grade Control and Drainage Plan, Somme St, Ontario, Fastfrate facility, Job No. A001083-C006, by CIMA+, dated March 8, 2021.
- Draft Floor Plan, New Warehouse & Cross-Dock Facility, Fastfrate Ottawa, Somme Street, Ottawa, Ontario, Job No. 2001-A1, by CIVITAS, dated April 28, 2021.
- West slope cross-section, 2001-FastFrat-Civil Section-July 21, 2021_comm_GHD, by CIVITAS, received July 26, 2021.
- North slope cross-section, C006B_Grading, by CIMA+, received July 28, 2021.

3. Slope stability assessment

3.1 Subsurface conditions

As per the documentation reviewed and listed in Section 2, in general, soils encountered at the borehole locations consisted of a thick layer of fill material overlying native silty sand to sandy silt deposit. Limestone bedrock with interbedded sandstone was encountered at depths ranging from 8.2 (BH1) to 14.8 mbgs (BH2-21).

General descriptions of the subsurface conditions are summarized as follow:

- 1. Fill | Consisting of a mixture of sand, silt, clay, and gravel. The fill material contains traces to some asphalt, concrete, wood and brick fragments, topsoil, and pieces of reinforcing steel. The composition of fill varied with depth and borehole location. Cobbles and possible boulders were encountered in the boreholes at varying depths. The thickness of the fill at the borehole locations was approximately 6 m.
- 2. Native sandy silt | Below the fill material a native deposit of sandy silt to silty sand with varying amounts of clay and gravel was encountered. Cobbles and possible boulders are expected within this deposit becoming more frequent with depth. The deposit extended to depths ranging from 8.2 to 11.9 m below ground surface (mbgs).
- 3. Bedrock | Limestone bedrock with interbedded sandstone was encountered below the native sandy silt.
- 4. Groundwater | Groundwater levels were measured on August 18, 2020, groundwater elevation of 87 m was encountered at the monitoring wells.

The selected geotechnical parameters for the Site soils used in the analysis are summarized in Table 1.

Table 1 Geotechnical parameters

Material	Unit weight (kN.m ³)	Cohesion (kPa)	Internal friction angle (°)
Existing fill	18	4	25
Native sandy silt	17	2	34
Bedrock	N/A (considered impenetrable	9)	

3.2 Vibration analyses

Dynamic compaction is comprised of repeatedly dropping a 5 to 40 tons mass freely from a height of 10 to 40 m on a grid pattern. Dynamic compaction can densify suitable materials up to 10 m thick. Suitable materials are saturated free-draining soils, low moisture content poorly draining soils (moisture content lower than plastic limit) and silts with a plasticity index of less than eight. Due to the dropping of the heavy mass vibration is generated from the dynamic compaction works to the surrounding soil. Vibration then propagates through the surrounding soil until the vibration wave attenuates completely. If the vibrations exceed certain threshold limits for level or sloping ground conditions, ground displacements may occur. In addition, vibrations can cause a reduction in the shear strength of soils. As such, construction vibrations such as dynamic compaction need to be considered in the stability analyses.

Vibrations are a function of the amount of energy that gets dissipated with increase in distance from the source of energy. The established energy versus distance relationship is exponential in nature, meaning that an exponential reduction in vibration is realized with increasing distances. The energy measured as a function of Peak Particle Velocity (PPV) although meeting the specified criterion at the specified locations was exponentially higher when travelling through the slope at shorter distances from the source of vibration.

As indicated earlier, vibration (measured as PPV) energy gets dissipated with time as soil conditions have a damping effect on vibration. PPV follows a reverse log curve on an exponential scale, therefore, values begin very high near the source of vibrations and drop off rapidly farther from the source. A slope can experience movements if ground acceleration 'a' due to gravity exceeds yield acceleration (Ky) values¹.

Ground acceleration 'a' is related to PPV through the frequency of motion 'F', assuming sinusoidal motion, using the following equation:

a = $2^{*}\pi^{*}PPV^{*}F$ Eq. (1)

Where:

- PPV = Peak Particle Velocity in mm/sec
- F = Frequency in Hz

For the west wall with a platform extended 4 m from the building footprint, the PPV was estimated to be 0.5 inches per second as shown in Figure 2 for a two-ton drop ball with a 40-foot drop.

¹ Matasovic' N., (1991): Selection of Method for Seismic Slope Stability Analysis. Proceedings: Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, March 11-15, 1991, St. Louis, Missouri, Paper No. 7.20

Figure 2 Dynamic compaction PPV estimation for west wall

Due to the lack of information available at this stage of the design, it was also assumed that a maximum frequency of motion for the machinery of 10 Hz for construction operations².

As such the ground acceleration for the slope stability analysis for the west wall is estimated to be:

a = 2*3.14159*0.5*10 = 31.4 in/sec

a = 0.08 g

For the north wall with the slope crest located 35 m from the building footprint, the PPV was estimated to be 0.02 in/sec as shown in Figure 2 for a 2 Ton drop ball with a 40-foot drop. As such the ground acceleration for the slope stability analysis for the west wall is estimated to be:

a = 0.003 g

→ The Power of Commitment

² OSM Blasting Performance Standards 30 Code of Federal Regulations

However, the graph is based on a two-ton drop ball, the dynamic compaction methodology is not available at this stage of the design and will be the responsibility of the ground improvement contractor. As such, the dynamic compaction may involve drop mass ranging from 5 to 40 tons, therefore, the following conservative acceleration values were used for the preliminary analyses:

West wall: a = 4 x 0.08 g = 0.32 g

North wall $a = 4 \times 0.003 \text{ g} = 0.12 \text{ g}$

The above values should be reviewed by the ground improvement contractor and if required, GHD should be requested to revise the slope stability analyses.

3.2.1 Vibration limits

The vibrations limits within habited areas are set to avoid disturbance to inhabitants and to avoid damage to the structures. The criteria in Table 2 are, typically, set for a construction site.

Table 2	Prohibited	construction	vibrations
	FIOIDILEU	construction	vibrations

Frequency of vibration (Hz)	Vibration PPV (mm/sec)
Less than 4	8
4 to 10	15
More than 10	25

3.3 Western slope

It is understood that before the start of the dynamic compaction work, the western slope will be reprofiled in order to build a pad extending a minimum of 4 m from the projected building limit and with a 5.7H:1V slope. A slope stability assessment was performed for the reprofiled slope along the west perimeter of the Site. GHD's understanding of this slope conditions is based on the cross-sections provided by CIVITAS. Analysis was performed on the reprofiled slope under static condition and pseudo-static (i.e., construction vibrations) conditions using effective soil parameters.

The slope stability analysis was carried out using the SLOPE/W 2019 software package produced by GEO-SLOPE International Ltd. Each trial was modelled using the Morgenstern-Price method, and the optimized critical slip surface was selected. In general, this approach calculates a factor of safety that represents the ratio of forces resisting a failure (i.e., shear strength, friction, etc.) to those favouring failure (weight, external loading, etc.). Theoretically, a factor of safety of 1.0 would represent an equilibrium condition (i.e., a marginally stable slope). However, the City of Ottawa recommends a minimum factor of safety of 1.5 under static conditions and 1.1 under pseudo-static conditions to account for uncertainty in soil parameters used and slope geometry.

Due to the lack of information at this stage of the design, a distributed load of 200 kPa approximately 3 m away from the building edge was assumed to represent the crane used during dynamic compaction. The 200 kPa was determined based on GHD's experience and assumed to be spread over two tracks of three meters in length. The three meters offset was assumed to model a conservative reach of the machinery and is assumed based on GHD's experience. Additionally, it was assumed that a swale at the base of the slope will be constructed to direct the runoff away from the pad.

A summary of the analyses is shown in Table 3, with the graphical output for the analysis for each condition provided in Attachment 1.

Table 3 Slope stability results

	Factor of safety
Static	1.8
Pseudo static	1.1

Based on the preliminary slope stability analysis, depending on the composition and compactness state of the fill material, the factor of safety for the slope is above or equal to (i.e., 1.6 under static condition and 1.1 under pseudo-static condition) the recommend values of 1.5 for static condition and 1.1 for pseudo-static condition. Some sloughing and bulging-type movements at the west slope could be expected during the dynamic compaction. The slope will need to be restored to its design grades under-engineered controls after dynamic compaction is complete and before the proposed building is constructed.

The ground improvement contractor must review the vibration assumptions made during the above analyses and provide his input.

3.4 Northern wall

A slope stability assessment was performed for the existing slope along the north perimeter of the Site. GHD's understanding of the existing slope conditions is based on the cross-section provided by CIMA+. Analysis was performed on the existing slope under static conditions and pseudo-static (i.e., seismic) conditions considering drained soil conditions.

The slope stability analysis was carried out using the SLOPE/W 2019 software package produced by GEO-SLOPE International Ltd. Each trial was modelled using the Morgenstern-Price method, and the optimized critical slip surface was selected. In general, this approach calculates a factor of safety that represents the ratio of forces resisting a failure (i.e., shear strength, friction, etc.) to those favouring failure (weight, external loading, etc.). Theoretically, a factor of safety of 1.0 would represent a stable slope. However, the City of Ottawa recommends a minimum factor of safety of 1.5 under static conditions and 1.1 under pseudo-static conditions. The selected geotechnical parameters for the Site soils used in the analysis are summarized in Table 3.

A summary of the analyses is shown in Table 4 with the analysis for each condition provided in Attachment 2.

	Factor of safety
Static	2.1
Pseudo static	1.4

Based on the preliminary slope stability analysis, depending on the composition and compactness state of the fill material, the factor of safety for the slope is above (i.e., 2.1 under static condition and 1.4 under pseudo-static condition) the recommend values of 1.5 for static condition and 1.1 for pseudo-static condition. It is noted that in this case the dynamic compaction works being 35 m from the slope's crest has a negligible impact on the slope stability. Additionally, the condition of the slope must be monitored during site preparation and building construction.

4. Vibration monitoring and contingency plans

GHD understands that dynamic compaction will be undertaken on the building footprint only as shown on Figure 2. Additionally, as mentioned in Section 3.2, the dynamic compaction methodology is not known at this

stage of the design and remains the responsibility of the ground improvement contractor. Nevertheless, during the dynamic compaction vibration works, monitoring must be carried out using approved seismographs/accelerometers. Continuous readings must be recorded for one week prior to the start of construction. Continuous readings comprised of PPV and construction frequency in all directions then must be recorded throughout construction at Site boundaries and any nearby structures. Readings must be checked at least once per day to ensure that the vibration levels are not exceeding the specified limits.

Should the recorded vibrations exceed the allowable limits recommended in Section 3.2.2 above, the ground improvement contractor together with GHD should review and modify the ground improvement methodology. The modifications may include reductions in the drop weight, drop height, or both, while increasing the number of drops per impact point. These assumptions are based on the empirical formula used to estimate the depth of improvement using the dynamic compaction method as given below:

$$D_i = n_c (W_t H_d)^{0.5}$$

Where:

Di = Depth of improvement

n_c = Constant, depending on soil type, degree of saturation, and speed of drop [nc values range from [0.35 (clays) to 0.5 (gravelly soils)]

Wt = Weight of hammer (tons)

 H_d = Height of drop (m)

The fill soils at the Site extend to a depth of 6 m. For the silty clayey soils, a n_c value of 0.4 can be used for a preliminary design, resulting in a WtH_d = 225. Assuming a drop of 15 m, a 15 ton weight will be required to be dropped to compact the soils to a depth of 6 m. As already discussed, vibrations reduce exponentially as distance form the source of vibrations increases until these are within tolerable limits before damping out completely. Before commencing the dynamic compaction operations, theoretical distance at which the vibration will reduce to allowable limits (Safe Distance) will be calculated using the parameters provided by the ground improvement contractor. It will be ensured that no sensitive structure is located within the Safe Distance. Alternatively, the dynamic parameters would be revised, and the Safe Distance recalculated. The theoretical Safe Distance will be confirmed through actual measurements and the dynamic compaction procedure modified if the vibrations are found to exceed the allowable limits at Safe Distances/boundaries.

5. Conclusion

- The west and north slope are stable under static and pseudo-static conditions under the described assumptions.
- The west slope could experience some minor instability during dynamic compaction, which will require restoration works post dynamic compaction.
- GHD considered that before dynamic compaction work is done near the west slope, a pad extending a
 minimum distance of 4 m and a 5.7H:1V slope will be built. It should be noted that this distance should be
 updated once the dynamic compaction construction method has been detailed (i.e., compaction weight
 and height, equipment, expected frequency).
- The north and west slope should remain stable during the dynamic compaction process using the described assumptions.
- GHD has carried out the analysis using assumed dynamic parameters. The ground improvement contractor should review the dynamic compaction parameters assumed in this study. GHD should revise the study based on the comments from the ground improvement contractor.

 Before commencing the dynamic compaction operations, theoretical distance at which the vibration will reduce to allowable limits (Safe Distance) should be calculated using the parameters provided by the ground improvement contractor. It will be ensured that no sensitive structure is located within the Safe Distance.

Regards,

Oliver Galvier, M. Eng., P. Eng. (NS) Engineer

+1 902 334-1833 oliver.galvier@ghd.com

OG/HG/mc/mhp/1

Copy to: David Rizk, GHD

Encl.

Hassan Gilani, M.Sc., P. Eng. Geotechnical Engineer

+1 519 503-3705 hassan.gilani@ghd.com

→ The Power of Commitment

Attachments
West slope cross-section and global stability analysis results

				· · ·
		(02)		(05)
90.16	90.80	90.76	90.62	
				904

—

—

- 04 EXISTING SWALE.
- 05 PROPERTY LINE.
- 06 NEW GRADES AS PER CIVIL ENGINEER DRAWINGS.07 NEW GRASS AS PER LANDSCAPE ENGINEER DRAWINGS.
- 08 NEW SWALE AS PER CIVIL ENGINEER DRAWINGS.
- 09 NEW WAREHOUSE WALL FINISH AS PER ARCHITECTURAL
- WORKING DRAWINGS. 10. NEW BAY DOORS C/W FLOOR LEVELERS.
- 11. NEW LINE OF FINISHED ROLLED COMPACTED CONCRETE
- SLAB. 12. NEW DOOR AND WINDOW AS PER ARCHITECTURAL
- WORKING DRAWINGS.
- 13. NEW STEEL COLUMNS AND FOUNDATION AS PER STRUCTURAL ENGINEER DRAWINGS.

PROFESSIONAL STAMP:

PROFESSIONAL STAMP:

NEW WA	REHOUSE ,	/ OFFICE
BUILDING	2	
PROJEC	T TITI F I INF	: 3
OTTAWA, ON. PROJECT ADD	RESS LINE 2	
DRAWING TITLE:	DETAILS CO	 ONT'D
of other		
•		
•		
•		
DRAWN BY:	D.R.	DRAWING NUMBER:
DRAWN BY: DATE:	D.R. YY.MM.DD	DRAWING NUMBER:
DRAWN BY: DATE: REVIEWED BY: APPROVED BY:	D.R. YY.MM.DD D.RANCIER D.RANCIER	DRAWING NUMBER:
DRAWN BY: DATE: REVIEWED BY: APPROVED BY: PRINT DATE:	D.R. YY.MM.DD D.RANCIER D.RANCIER	DRAWING NUMBER:
DRAWN BY: DATE: REVIEWED BY: APPROVED BY: PRINT DATE: ISSUED DATE:	D.R. YY.MM.DD D.RANCIER D.RANCIER ISSUED DATE	DRAWING NUMBER:

DO NOT SCALE THIS DRAWING. USE FIGURE DIMENSIONS ONLY. THE CONTRACTOR IS RESPONSIBLE FOR VERIFYING ALL DIMENSIONS AND NOTIFYING THE ARCHITECT OF ANY DISCREPANCIES BEFORE CONSTRUCTION COMMENCES. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL STRUCTURAL, MECHANICAL, ELECTRICAL, CIVIL, AND OTHER CONSULTANT DRAWINGS. THIS DRAWING SHALL NOT BE USED FOR CONSTRUCTION PURPOSES UNLESS SIGNED BY THE ARCHITECT. COPYRIGHT RESERVED. ALL PARTS OF THIS DRAWING ARE THE EXCLUSIVE PROPERTY OF THE ARCHITECT AND SHALL NOT BE USED WITHOUT THE EXPRESSED PERMISSION FROM THE ARCHITECT.

North slope cross-section and global stability analysis results

CLIENT LOGO:

BUILDING

ROPESSIONAL STAMP:

PROJECT TITLE: -FASTFRATE FACILITY

SCALE: 1:500

ROFESSIONAL STAMP:

SOMME ST. OTTAWA, ON

DRAMING TITLE:

DRAWN BY: DATE:	D.CANN DRA	NNG NUMBER:
REVIEWED BY: APPROVED BY:	J.SAUVE	C006
PRINT DATE:	REV	
ISSUED DATE:	JULY 23, 2021	
Client project 🛊	PR0.	A001083
DO NOT SCALE THIS D IS REPONSIBLE FOR V	RANNA, USE FOURE DMEN ENFINO ALL DMENSIONS A	NONS CHLY. THE CONTRACTOR ND MOTIFYING THE ARCHITECT
RE READ IN CONJUNCT	ION WITH ALL STRUCTURAL,	MECHANICAL, ELECTRICAL, CIVIL
AND OTHER CONJULTA CONSTRUCTION PURPOR	NT DRAWINGE. THIS DRAWIN IES UNLESS SIGNED BY THE OF THIS DRAWING ARE THE	D SHALL NOT BE USED FOR ARCHITECT. COPYRIGHT EXCLUSIVE PROPERTY OF THE

NOTE OF CAUTION

WORK.

THE GEODETIC COORDINATES OF EVERY ITEM INCLUDED AS PART OF THIS DOCUMENT HAVE NO LEGAL VALUE. THE SITE LAYOUT MUST BE COMPLETED USING THE OFFICIAL BENCHMARKS OF AN ACCREDITED LAND SURVEYOR.

THE UNDERGROUND FEATURES AND INFORMATION THAT APPEAR ON THE DRAWINGS WERE OBTAINED FROM THE PUBLIC UTILITY COMPANIES AND/OR FROM THE CITY EACH RESPECTIVELY. ALL INFORMATION UNDER THE LEGEND 'EXISTING' IS FOR INFORMATION ONLY. COMPLETE OR EXACT LOCATION AND ELEVATION OF UNDERGROUND SERVICES ARE NOT GUARANTEED.

CERTAIN UNDERGROUND FEATURES ON PRIVATE PROPERTY ARE NOT SHOWN ON THE CURRENT DRAWING. ANYONE WHO PROCEEDS WITH EXCAVATION WORK SHALL VERIFY THE EXACT LOCATION OF ALL UNDERGROUND FEATURES, BY EXPLORATORY EXCAVATIONS, AND SHALL ASSUME FULL RESPONSIBILITY IF THERE IS ANY DAMAGE THAT OCCURS DURING

THE CONTRACTOR WILL HAVE THE RESPONSIBILITY AND THE OBLIGATION TO VALIDATE, BY EXPLORATORY EXCAVATION, THE SIZE OF THE PUBLIC UTILITIES UNDERGROUND SERVICES AND TO WARN THE ENGINEER OF ANY CONFLICT WITH THE PROJECTED WORK.

Appendix C Final Slope Stability

179 Colonnade Road South, Suite 400 Ottawa, Ontario K2E 7J4 Canada www.ghd.com

Our ref: 11228236

January 20, 2022

Mr. Pierre Courteau Consolidated Fastfrate (Ottawa) Holdings Inc. 55 Commerce Valley Drive West Suite 220 Thornhill, ON L3T 7V9

Slope stability assessment for final slopes, Warehouse and Offices, Ottawa, ON - Issued for site plan application

Dear Mr. Courteau

1. Introduction

Consolidated Fastfrate (Ottawa) Holdings Inc. (Fastfrate) has requested GHD Limited (GHD) to perform a slope stability assessment of the final slopes, along Rideau Road and Somme Street (Site), in preparation for the dynamic compaction works. The location of the Site is shown on the site layout in Figure 1.

The Site is located at the intersection of Rideau Road to the north and Somme Street to the west and is relatively flat and is covered with approximately 6 metres (m) thick fill, reportedly brought in from construction sites, which gives the Site its present flat surface albeit slightly hummocky look, sloping down to the surrounding streets. The surrounding topography slopes up at approximately two-horizontal to one-vertical (2H:1V) from south to north by approximately 3.5 m from Rideau Road to the section of Somme Street south of the Site. The Site elevation is higher compared to the surrounding streets varying from approximately 0.2 m higher on the south side (Somme Street) to 4 m higher on the north side (Rideau Street). There is also a ditch along the south, west, and north perimeter of the Site.

Fastfrate is proposing to develop an approximately 8,630 square metres (m²) warehouse on the western portion of the Site. It is GHD's understanding that Fastfrate intends to use dynamic compaction method of ground improvement to densify the randomly placed fill materials within the projected building footprint prior to the proposed development.

The stability assessment of the final north slopes has been completed in alignment with the cross-sections received by GHD from Maccaferi which are presented in the wall drawings attached to this letter. The stability assessment of the final west slope has been completed in alignment with the cross-section provided by CIVITAS on July 22, 2021 which is attached to slope stability analysis of this letter. The locations of the cross-sections are shown on the site plan provided in Figure 1 Site layout.

→ The Power of Commitment

GHD understands that the Client will select a contractor to undertake the dynamic compaction works at the Site. As such, it is recommended that additional information, including the type of equipment, expected peak particle velocity (PPV), expected frequency, and method of works be provided to GHD once confirmed. Additional changes to the geometry of the final slopes should also be provided to GHD once confirmed.

Site layout showing the location of the analyzed cross-sections and the proposed building footprint

The following are attached to this letter:

- Attachment 1: West slope crosse-section and global stability analysis results
- Attachment 2: Maccaferri's retaining wall drawings
- Attachment 3: Geogrid technical data sheet

→ The Power of Commitment

- Attachment 4: North wall slope stability analysis results

2. Review of pre-construction geotechnical information

GHD has reviewed the following geotechnical investigations while preparing this letter:

- Geotechnical Study Subdivision Plan, Hawthorne Industrial Park, report ref. no. T020556-A1, by Inspec-Sol, dated May 4, 2009.
- Geotechnical Investigation, Warehouse and Offices Intersection of Rideau Street, report ref. no. 11215612-A1, by GHD, dated October 27, 2021.
- Supplementary Geotechnical Investigation, Warehouse and Offices Intersection of Rideau Street, report ref. no. 11231101-RTP-1, by GHD, submitted on December 22, 2021.

GHD has also reviewed the following documents provided by the client as part of the assessment:

- Grade Control and Drainage Plan, Somme St, Ontario, Fastfrate facility, Job No. A001083-C006, by CIMA+, dated March 8, 2021.
- Draft Floor Plan, New Warehouse & Cross-Dock Facility, Fastfrate Ottawa, Somme Street, Ottawa, Ontario, Job No. 2001-A1, by CIVITAS, dated April 28, 2021.
- West slope cross-section, 2001-FastFrat-Civil Section-July 21, 2021_comm_GHD, by CIVITAS, received July 26, 2021.
- North slope cross-section, C006B_Grading, by CIMA+, received July 28, 2021.

3. Slope stability assessment

3.1 Subsurface conditions

As per the documentation reviewed and listed in section 2, in general, soils encountered at the borehole locations consisted of a thick layer of fill material overlying native silty sand to sandy silt deposit. Limestone bedrock with interbedded sandstone was encountered at depths ranging from 8.2 (BH1) to 14.8 mbgs (BH2-21).

General descriptions of the subsurface conditions are summarized as follow:

- 1. Fill | Consisting of a mixture of sand, silt, clay, and gravel. The fill material contains traces to some asphalt, concrete, wood and brick fragments, topsoil, and pieces of reinforcing steel. The composition of fill varied with depth and borehole location. Cobbles and possible boulders were encountered in the boreholes at varying depths. The thickness of the fill at the borehole locations was approximately 6 m.
- 2. Native sandy silt | Below the fill material a native deposit of sandy silt to silty sand with varying amounts of clay and gravel was encountered. Cobbles and possible boulders are expected within this deposit becoming more frequent with depth. The deposit extended to depths ranging from 8.2 to 11.9 mbgs.
- 3. Bedrock | Limestone bedrock with interbedded sandstone was encountered below the native sandy silt.
- 4. Groundwater | Groundwater levels were measured on August 18, 2020, groundwater elevation of 87 m was encountered at the monitoring wells.

Additionally, the Mechanically Stabilized Earth (MSE) retaining wall and its foundation and backfill would comprise of the following materials:

- 1. Fill | Consisting of a mixture of sand, silt, clay, and gravel. Mineral materials only should be used as backfill.
- 2. Dynamic compacted fill | The dynamic compaction technical parameters are not available at this stage of the design and will be available once the subcontractor has been selected.
- 3. Reinforced fill | It is understood that the existing on-Site excavated fill will be reused for the construction of the MSE wall.

As such, GHD has assumed the material parameters presented in Table 1 based on the available information of the existing fill, the impact of the assumed compaction process, and GHD's experience.

Material	Unit weight (kN.m ³)	Cohesion (kPa)	Internal friction angle (°)	
Existing fill	18	4	25	
Reinforced fill	18	4	25	
Soil pocket	18	4	25	
Native sandy silt	17	2	34	
Bedrock	N/A (considered impenetrable)			

Table 1Geotechnical parameters

3.2 Seismic considerations

The earthquake Peak Ground Acceleration (PGA) with a 2 percent probability of exceedance in 50 years is 0.308 g, where 'g' is the acceleration due to gravity. The PGA occurs only for a fraction of a second in a given earthquake. A use of PGA may therefore result in a very conservative design. Hynes-Griffin and Franklin¹ concluded that slopes and embankments with a yield acceleration equal to half the peak ground acceleration would experience permanent seismic deformations of less than 1 m in any earthquake, even for embankments where amplification of acceleration by a factor of three occurs. In the absence of amplification, or if amplification is taken into account in determining the peak accelerations less than or equal to one-half the peak acceleration. In this case, the amplification is only by a factor of 1.05, therefore an earthquake-induced deformation of less than 0.3 m is expected. Therefore, the seismic coefficient used in the pseudo-static analyses was 50 percent of the PGA value of 0.308, i.e., 0.154.

3.3 Western wall

A slope stability assessment was performed for the proposed final slope along the west perimeter of the Site. GHD's understanding of this slope conditions is based on the cross-sections provided by CIVITAS. Analysis was performed on the slope under static condition and pseudo-static (i.e., construction vibrations) conditions using effective soil parameters.

The slope stability analysis was carried out using the SLOPE/W 2019 software package produced by GEO-SLOPE International Ltd. Each trial was modelled using the Morgenstern-Price method, and the optimized critical slip surface was selected. In general, this approach calculates a factor of safety that represents the ratio of forces resisting a failure (i.e., shear strength, friction, etc.) to those favouring failure (weight, external loading, etc.). Theoretically, a factor of safety of 1.0 would represent an equilibrium condition (i.e., a marginally stable slope). However, the City of Ottawa recommends a minimum factor of safety of 1.5 under static conditions and 1.1 under pseudo-static conditions to account for uncertainty in soil parameters used and slope geometry.

¹ Hynes-Griffin, M.E., Franklin A.G., (1984): Rationalizing the Seismic Coefficient Method, Miscellaneous Paper GL-84-13, Corps of Engineers

It should be noted that prior to the dynamic compaction work, it is planned to reprofile the slope in order to build a pad extending a minimum of 4 m from the projected building limit and with a 5H:1V slope. Following the dynamic compaction work, the slope will be reprofiled to its final geometry. This final slope geometry was analyzed based on the cross section provided by Civitas on July 22 2021. final grading plans provided by CIMA+ dated October 18, 2021.

A summary of the slope stability analyses result for the final west slope geometry is shown in Table 2, with the graphical output for the analysis for each condition provided in Attachment 1.

Table 2 Slope stability results – Final slope geometry as provided by CIVITAS

	Factor of safety
Static	3.34
Pseudo static	2.17

Based on the preliminary slope stability analysis, depending on the composition and compactness state of the fill material, the factor of safety for the slope is above or equal to (i.e., 2.84 under static condition and 1.85 under pseudo-static condition) the recommend values of 1.5 for static condition and 1.1 for pseudo-static condition.

3.4 North MSE retaining wall

GHD understands that due to the required facility footprint, a Mechanically Reinforced Earth (MSE) retaining wall, up to approximately 6.49 m in height and a face slope of 45 to 60 degrees from the vertical, will be constructed along the Site's north boundary due to vehicle circulation constraints and to redirect the stormwater drainage to the south. Shop drawings provided by Maccaferri showing plan view, cross sections and elevation views are shown in Attachment 2. At this stage of the design, the intent is to use an MSE wall using the fill available on Site from the Site excavations. It is GHD's opinion that the on-site material can be reused to raise the pad before dynamic compaction work or for the retaining wall construction as long as it is comprised of mineral soils only. Note that some organic materials have been noted within the fill. Also, buried asphalt was observed in some boreholes during the field investigation. Please note that this recommendation does not consider environmental considerations if any.

Literature-based parameters for the existing fill are provided in Table 3 for the design of the mechanically reinforced earth (MSE) retaining wall.

Parameter	Value
Cv - coefficient of consolidation (m ² /year)	1 to 10 m²/year
K - permeability (cm/sec)	10 ⁻⁴ to 10 ⁻⁷ cm/sec
Mv - coefficient of volume compressibility (m²/MN)	0.05 to 0.2 /MPa
Cc - compressibility index	- 0.2
Unit weight (kN/m³)	19
Friction angle (degrees)	28 - 34
Cohesion (kPa)	0 - 2

 Table 3
 North slope retaining wall parameters

The other following recommendations are provided:

 It is recommended that compaction of the fill be completed using layers with a thickness of 200 millimetres (mm) to achieve a 95 percent proctor.

 For the capping prior to dynamic compaction, an initial 300 mm can be OPSS Granular 'B' Type 1 material. The final surface 300 mm capping material must be either OPSS Granular 'A' or well-graded 19 mm or 50 mm crusher run limestone meeting Granular A or Granular B gradation requirements, compacted to 100 percent standard Proctor maximum dry density.

MSE wall is a generic term that includes reinforced soil when multiple layers of metallic or synthetic geogrid act as reinforcement in soils placed as fill. MSE walls are cost-effective alternatives for most applications where the Right-of-Way (ROW) is restricted such that an embankment or excavation with stable side slopes cannot be constructed. MSE walls are particularly suited to economical construction in steep-sided terrain, in-ground subject to slope instability, or in areas where foundation soils are poor.

A slope stability assessment was performed for the MSE wall along the north perimeter of the Site. GHD's understanding of the MSE wall is based on the cross-section provided by Maccaferri that are shown in Attachment 2. Analysis was performed on the MSE wall under static conditions and pseudo-static (i.e., seismic) conditions considering drained soil conditions.

GHD understands that Maccaferri Geogrid ParaDrain[™] 80 is proposed to be used as mechanical reinforcement. The Geogrid ParaDrain[™] 80 technical data sheet is shown in Attachment 3.

The design factor, which governs the design is the allowable tensile capacity (T_{allow}) of a geogrid. The ultimate tensile strength given by the manufacturer for a ParaDrain[™] 80 geogrid at 10 percent elongation is 80 kilonewton per metre (kN/m). For long term design, which include reduction factors for installation damage, durability and creep, the manufacturer recommends the use of an allowable tensile capacity of 53.7 kN/m. This value was used in the global stability analysis completed by GHD.

The slope stability analysis was carried out using the SLOPE/W 2019 software package produced by GEO-SLOPE International Ltd. Each trial was modelled using the Morgenstern-Price method, and the optimized critical slip surface was selected. In general, this approach calculates a factor of safety that represents the ratio of forces resisting a failure (i.e., shear strength, friction, etc.) to those favouring failure (weight, external loading, etc.). Theoretically, a factor of safety of 1.0 would represent a stable slope. However, the City of Ottawa recommends a minimum factor of safety of 1.5 under static conditions and 1.1 under pseudo-static conditions. The selected geotechnical parameters for the Site soils used in the analysis are summarized in Table 3.

The analysis were completed on three different cross sections each under static and pseudo-static conditions. The geometry of each cross section is based on the drawings provided by Maccaferri and attached in Attachment 2.

A summary of the slope stability analyses is shown in Table 4, with the graphical output for each analysis provided in Attachment 4.

	Factor of safety			
	Static condition	Pseud-static condition		
Cross section A	1.75	1.29		
Cross section B	1.60	1.19		
Cross section C	1.64	1.24		

 Table 4
 Slope stability results

Based on the preliminary slope stability analysis, depending on the composition and compactness state of the fill material, the factors of safety for the slope with the retaining wall is above the recommend values of 1.5 for static condition and 1.1 for pseudo-static condition.

It should be noted that due to the presence of a stream at the base of the MSE wall, erosion potential should be evaluated and erosion protection measures such as biodegradable erosion control blankets should be used, if required and suitable, until the vegetative cover on the MSE wall gets established.

4. Conclusion

- The west slope meets the factors of safety under static and pseudo-static conditions.
- The north slope meets the factors of safety under static and pseudo-static conditions under the described assumptions.

Regards,

Oliver Galvier, M. Eng., P. Eng. (NS) Engineer

+1 902 334-1833 oliver.galvier@ghd.com

OG/HG/vl/2

Encl.

Hassan Gilani, M.Sc., P. Eng. Geotechnical Engineer

+1 519 503-3705 hassan.gilani@ghd.com

West Slope cross-section and Global Stability Analysis Results

			· ·
	01	(02)	05
90.76	90.80	90.16 90.62	
			90.9 0A
			89.2

—

04 EXISTING SWALE.

- 05 PROPERTY LINE.
- 06 NEW GRADES AS PER CIVIL ENGINEER DRAWINGS.07 NEW GRASS AS PER LANDSCAPE ENGINEER DRAWINGS.
- 08 NEW SWALE AS PER CIVIL ENGINEER DRAWINGS.
- 09 NEW WAREHOUSE WALL FINISH AS PER ARCHITECTURAL
- WORKING DRAWINGS. 10. NEW BAY DOORS C/W FLOOR LEVELERS.
- 11. NEW LINE OF FINISHED ROLLED COMPACTED CONCRETE
- SLAB.
- NEW DOOR AND WINDOW AS PER ARCHITECTURAL WORKING DRAWINGS.
- NEW STEEL COLUMNS AND FOUNDATION AS PER STRUCTURAL ENGINEER DRAWINGS.

PROFESSIONAL STAMP:

PROFESSIONAL STAMP:

—

NT'D
NT'D
DRAWING NUMBER:
AG11
PROJECT #: PROJ

Maccaferri Retaining Wall Drawings

PROJECT: SOMME STREET OTTAWA, ON FASTFRATE FACILITY

MACCAFERRI GREEN TERRAMESH SYSTEM

DRAWINGS:

- CA21023_1 CA21023_2,3 CA21023_4 CA21023_5 CA21023_6 CA21023_7 CA21023_8
 - 3_1 * Plan View
 - * Elevation \/i
 - * Elevation View
 - * Cross Section A
 - * Cross Section B
 - * Cross Section C
 - * Construction Notes
 - * Installation Guide

2	Issued for Construction	JN	20/12/21
1	Issued to Client for review	JN	15/12/21
0	Issued to Client for review	JN	20/07/21
Rev:	Issue / Revision:	By:	Date:
Rev:	Issue / Revision:	Ву:	Date

Maccaferri Canada Ltd. 400 Collier MacMillan Drive, Unit B Cambridge, ON CANADA N1R 7H7 Ph. (519) 623-9990 Fax (519) 623-1309 This drawing is stored in file:Maccaferri_WDC/Canada_Maccaferri/CA06001 statements stored in fietMacaferri WDC/USA MaccaferriEest ConstOce1023

	NOTES	<u>3:</u>					
	1.0 DE	SIGN PARAMET	ERS				
	1.1	THE DESIGN P FOUNDATION LOADINGS ST	RESENTED H CONDITIONS ATED IN SEC	EREIN IS 6, GROUNI TION 1.2.	BASED ON 1 DWATER CC	THE SOIL PARA	METERS,
MacDrain	1.2	THE DESIGN O IS BASED ON GEOTECHNIC	F THE GREEN THE FOLLOW AL INVESTIG/	N TERRAM /ING SOIL ATION/112 I	IESH SYSTE PARAMETE 15612/RPT- FRICTION	EM STRUCTURE RS PROVIDED 1 AND EMAIL D EFFECTIVE	E BY GHD ATED 12/16/2021 MOIST.
					ANGLE (°)	COHESION (kPa)	UNIT WT. (kN/m3)
		SELECTED EXIS	STING FILL		25 34	4 2	18 17
	1.3	FACTORS OF S	- AFETY		25	4	18
		MINIMUM FACT	OR OF INTER	RNAL STAI	LIDING = 1.5 BILITY = 1.5((STATIC) 1.1(STATIC) 1.1(S	EISMIC)
	1 /	1.3.2 GLOBAL		THE RESP	PONSIBLITY	OF GHD	
		HORIZONTAL A	CCELERATIO	N COEFF	CIENT = 0.1	5g (50% of 0.3g)
	1.5		B DESIGN USI	NG 180kN			A.T.
	1.6	GROUNDWATE	RUCTURE IS ER IS AT ELEV	ATION 86	20N THE AS	SUMPTION TH	AI
	2.0 RE NO PF	EAD DETAIL IN C DTES FOR MACC ROVIDED WITH T	ONJUNCTION CAFERRI GRE THIS DRAWING	I WITH ST. EN TERR/ G.	ANDARD CC AMESH SYS	NSTRUCTION TEM	
	3.0 DE SI	ESIGN TO BE RE JITABILITY OF S	VIEWED BY P	ROJECT I O SITE CO	ENGINEER T	O DETERMINE	
	4.0 FC EN	OUNDATION IS T	O BE REVIEW	/ED BY TH	E PROJECT	GEOTECHNIC	AL.
	5.0 OI Al IN RE CL	NCE REINFORCE JGURING OR EX TO REINFORCE EINFORCEMENT EINFORCEMENT EANLY THROUG	ED SLOPE SYS CAVATION US D SOIL ZONE. IS REQUIRED AND CUT AN GH THE GEOG	STEM HAS SING EXC IF PENET D , EXPOS OPENING GRID REIN	BEEN CON AVATOR SH RATION IN E INDIVIDUA WITH SHAF FORCEMEN	ISTRUCTED, NO ALL BE ALLOW THE SOIL AL LAYERS OF RP INSTRUMEN T.	D IED T
	6.0 TH BI O T(HE SOIL DESIGN E VERIFIED BY T F CONSTRUCTIC D THE ENGINEE	PARAMETER HE CONTRAC DN. ANY DISC R IMMEDIATE	RS STATEI CTOR PRIC REPANCII CLY.	D IN NOTE 1. DR TO COMI ES MUST BE	2 SHALL BE MENCEMENT REPORTED	
	GI	REEN TE	DET RRAME SCALE: N	AIL SH U	NIT FA	CING	
Maccaferri G	reen	Terrames	h				
accaferri Aat 10.4	\searrow						
ated Cover by Others)	$\left\{ \right.$			< <u>0</u>	<u>3m</u>	РА • • • • • • • •	
Pocket thick)	1 And In						
araDrain Geog	rids -				4		
		Μ	AC	C	AF	ER	RI
GHD)		۸ 400 C	Maccafe	erri Cana acMillan	da Ltd. Drive Unit	B
			Cambri	idge. O	N CANAI	DA N1R 7H	7
			Ph. (519)	623-99	990 Fax (519) 623-1	309

Maccaferri Canada Ltd. 400 Collier MacMillan Drive, Unit B Cambridge, ON CANADA N1R 7H7 Ph. (519) 623-9990 Fax (519) 623-1309

NOTES:

1.0 DESIGN PARAMETERS

- 1.1 THE DESIGN PRESENTED HEREIN IS BASED ON THE SOIL PARAMETERS, FOUNDATION CONDITIONS, GROUNDWATER CONDITIONS AND LOADINGS STATED IN SECTION 1.2
- 1.2 THE DESIGN OF THE GREEN TERRAMESH SYSTEM STRUCTURE IS BASED ON THE FOLLOWING SOIL PARAMETERS PROVIDED BY GHD GEOTECHNICAL INVESTIGATION/11215612/RPT-1 AND EMAIL DATED 12/16/202 FRICTION EFFECTIVE MOIST.

	ANGLE	COHESION		
	(*)	(KPa)	(KN/m3)	
SELECTED EXISTING FILL	25	4	18	
FOUNDATION SOIL	34	2	17	
RETAINED SOIL	25	4	18	
FACTORS OF SAFETY				

MINIMUM FACTOR OF SAFETY FOR SLIDING = 1.5(STATIC) 1.1(SEISMIC) MINIMUM FACTOR OF INTERNAL STABILITY = 1.5(STATIC) 1.1(SEISMIC)

1.3.2 GLOBAL STABILITY IS THE RESPONSIBLITY OF GHD

- 1.4 SEISMIC DESIGN HORIZONTAL ACCELERATION COEFFICIENT = 0.15g (50% of 0.3g)
- 1.5 STRUCTURE IS DESIGN USING 180kN AXLE LOAD
- 1.6 DESIGN OF STRUCTURE IS BASED UPON THE ASSUMPTION THAT **GROUNDWATER IS AT ELEVATION 86.9m**
- 2.0 READ DETAIL IN CONJUNCTION WITH STANDARD CONSTRUCTION NOTES FOR MACCAFERRI GREEN TERRAMESH SYSTEM PROVIDED WITH THIS DRAWING.
- 3.0 DESIGN TO BE REVIEWED BY PROJECT ENGINEER TO DETERMINE SUITABILITY OF STRUCTURE TO SITE CONDITIONS
- 4.0 FOUNDATION IS TO BE REVIEWED BY THE PROJECT GEOTECHNICAL ENGINEER.
- 5.0 ONCE REINFORCED SLOPE SYSTEM HAS BEEN CONSTRUCTED, NO AUGURING OR EXCAVATION USING EXCAVATOR SHALL BE ALLOWED INTO REINFORCED SOIL ZONE. IF PENETRATION IN THE SOIL REINFORCEMENT IS REQUIRED, EXPOSE INDIVIDUAL LAYERS OF REINFORCEMENT AND CUT AN OPENING WITH SHARP INSTRUMENT CLEANLY THROUGH THE GEOGRID REINFORCEMENT.
- 6.0 THE SOIL DESIGN PARAMETERS STATED IN NOTE 1.2 SHALL BE BE VERIFIED BY THE CONTRACTOR PRIOR TO COMMENCEMENT OF CONSTRUCTION ANY DISCREPANCIES MUST BE REPORTED TO THE ENGINEER IMMEDIATELY.

MACCAFERRI

Maccaferri Canada Ltd. 400 Collier MacMillan Drive, Unit B Cambridge, ON CANADA N1R 7H7 Ph. (519) 623-9990 Fax (519) 623-1309

CONSTRUCTION NOTES FOR MACCAFERRI GREEN TERRAMESH SYSTEM

MATERIALS

GREEN TERRAMESH SHALL BE GALVANIZED WITH POLIMAC COATING 8x10 HEXAGONAL DOUBLE TWIST WIRE MESH TYPE AS PER ASTM A975.

- 1.2 REINFORCED BACKFILL SHALL BE SELECTED EXISTING FILL AND HAVE THE REOUIRED SOIL PARAMETERS AS DEFINED ON THE CROSS SECTIONS PROVIDED.
- 1.3 REINFORCED BACKFILL MATERIAL SHALL BE SELECTED EXISTING FILL AND MUST BE APPROVED BY THE GEOTECHNICAL ENGINEER BEFORE USE.
- 1.5 REINFORCED BACKFILL MATERIAL SHALL BE FREE OF EXCESS MOISTURE, MUCK, SOD, SNOW, FROZEN LUMPS, ORGANICS, OR DELETERIOUS MATERIALS. NO STONE SIZES GREATER THAN 100mm SHALL BE PLACED DIRECTLY AGAINST THE REINFORCEMENT.

2.0 DRAINAGE

- 2.1 PERMANENT SURFACE WATER DIVERSIONS SHALL BE REQUIRED AND CONSTRUCTED IN ACCORDANCE WITH THE GRADING DESIGN DRAWINGS.
- 2.2 THIS DESIGN IS BASED ON THE ASSUMPTION THAT THE REINFORCED REINFORCED BACKFILL MATERIAL SHALL BE FREE OF SUBSURFACE MOISTURE/WATER. IT IS THE RESPONSIBILITY OF THE CONSTRUCTOR CONSTRUCTOR TO ENSURE THAT PROPER SUBSURFACE IS PROVIDED.
- 2.3 AT THE END OF EACH WORKDAY, BACKFILL SURFACE SHALL BE GRADED A MINIMUM OF 2% AWAY FROM THE WALL FACE AND COMPACTED WITH A SMOOTH WHEEL ROLLER TO MINIMIZE PONDING.
- 2.4 THE ENGINEERING, ANALYSIS, DESIGN AND MITIGATION OF SURFACE DRAINAGE AND SEEPAGE OF GROUND WATER IS THE RESPONSIBILITY OF THE CONSTRUCTOR.
- 3.0 TECHNICAL REQUIREMENTS
- 3.1 PRIOR TO CONSTRUCTION THE CONTRACTOR SHALL CLEAR AND GRADE THE REINFORCED BACKFILL AREA, REMOVING TOP SOIL, BRUSH, SOD AND OTHER ORGANIC DELETERIOUS MATERIALS. ANY UNSUITABLE SOILS SHALL BE OVER EXCAVATED AND REPLACED AND COMPACTED WITH REINFORCED BACKFILL MATERIAL TO PROJECT SPECIFICATIONS OR AS OTHERWISE DIRECTED BY THE GEOTECHNICAL ENGINEER.
- 3.2 GREEN TERRAMESH SHALL BE INSTALLED ACCORDING TO MACCAFERRI CANADA LTD.'S SPECIFICATIONS.
- 3.3 GREEN TERRAMESH SHALL BE INSTALLED USING THE CORRECT BATTER ANGLE AS SHOWN ON THE DRAWING(S).

- 3.4 FILL SHALL BE PLACED IN HORIZONTAL LAYERS NOT EXCEEDING 200mm IN UNCOMPACTED THICKNESS FOR HEAVY COMPACTION EQUIPMENT. FOR ZONES WHERE COMPACTION IS ACHIEVED WITH HAND OPERATED EQUIPMENT FILL SHALL BE PLACED IN LIFTS NOT EXCEEDING 150mm IN UNCOMPACTED THICKNESS. ONLY HAND OPERATED EQUIPMENT SHALL BE ALLOWED WITHIN ONE METRE OF THE FRONT FACE.
- 3.5 FILL BEYOND ONE METRE FROM THE FRONT FACING SHALL BE COMPACTED AS REQUIRED BY PROJECT SPECIFICATIONS OR TO A MINIMUM OF 95% OF THE STANDARD PROCTOR MAXIMUM DRY DENSITY (SPMDD) AS DETERMINED IN ACCORDANCE WITH ASTM D698 AT A MOISTURE CONTENT OF -1/+2% POINT FROM OPTIUM.
- 3.6 THE FACING ELEMENT OF THE GREEN TERRMESH SHALL BE MONITORED DURING BACKFILL PLACEMENT AND COMPACTION. MODIFICATIONS TO THE COMPACTION EOUIPMENT AND PROCEDURES MAY BE NECESSARY TO PREVENT EXCESSIVE DEFORMATION OF THE FACING.
- 3.7 FOUNDATION SHALL BE PROOF ROLLED USING A SMOOTH DRUM ROLLER TO 98% SPMDD OR PER PROJECT SPECIFICATIONS. IT IS THE RESPONSIBILITY OF THE CONSTRUCTOR TO CONFIRM THAT THE SITE IS ADEQUATELY PREPARED.
- 3.8 VERIFICATION OF MATERIAL SPECIFICATIONS, TESTING METHODS AND FREQUENCY AND COMPACTION ARE THE RESPONSIBILITY OF THE ENGINEER.
- 4.0 SPECIAL PROVISIONS
- 4.1 MACCAFERRI CANADA LTD. ASSUMES NO LIABILITY FOR INTERPRETATION OR VERIFICATION OF SUBSURFACE CONDITIONS, SUITABILITY OF THE ASSUMED SOIL DESIGN PARAMETERS, SHOWN ON THE CROSS SECTION, AND INTERPRETATION OF GROUNDWATER CONDITIONS
- 4.2 IT IS THE RESPONSIBILITY OF THE CONSTRUCTOR TO VERIFY THAT THE ACTUAL SITE CONDITIONS ARE AS DESCRIBED ON THE CROSS SECTION. ANY DISCREPANCIES SHALL BE REPORTED TO MACCAFERRI AND THE GEOTECHNICAL ENGINEER.
- 4.3 THE SOIL DESIGN PARAMETERS STATED ON THE CROSS SECTION SHALL BE VERIFIED BY THE CONSTRUCTOR PRIOR TO COMMENCEMENT OF CONSTRUCTION. ANY DISCREPANCIES MUST BE REPORTED TO THE ENGINEER IMMEDIATELY.
- 4.4 THE BEARING CAPACITY OF THE FOUNDATION SOIL MUST BE APPROVED BY THE ENGINEER
- 4.5 ANY REVISIONS TO THE DESIGN PARAMETERS STATED ON THE CROSS SECTION OR STRUCTURE GEOMETRY SHALL REQUIRE DESIGN MODIFICATIONS PRIOR TO CONSTRUCTION. THE CONTRACTOR SHALL CHECK AND VERIFY ALL DIMENSIONS ON THE STRUCTURAL DRAWINGS WITH SITE DRAWINGS PRIOR TO COMMENCEMENT OF CONSTRUCTION AND NOTIFY MACCAFERRI AND THE ENGINEER IMMEDIATELY OF ANY DISCREPANCIES

4.6	THE ACCOMPANYING DRAW
	CONJUNCTION WITH ALL O

- 4.7 THESE CONSTRUCTION NOTES MUST BE READ IN CONJUNCTION FOR THE GREEN TERRAMESH SYSTEM.
- SYSTEM AS SHOWN HEREIN.
- ENGINEER.

				Project Title: SOMME S	TREET		Designed:	Date:	Drawing Title:
							5		
				UTAW/	A, ON		5	. .	
				FASTFRATE	FACILITY		Drawn:	Date:	
				Project No: Client:			JN	20/07/21	GREEN TERRAIVIESTI STSTEIVI
				CA21023			Checked [.]	Date:	
2	Issued for Construction	JN	20/12/21	07/21023			onconcu.	Duto.	
1	Issued to Client for review	JN	15/12/21	Drawing No:	Scale:	Rev:			
0	Issued to Client for review	JN	20/07/21	CA21023 7	NTS	2	Approved:	Date:	
Rev:	Issue / Revision:	Drawn:	App: Date:			2			

ING(S) SHALL BE READ IN THER CONTRACT DOCUMENTS.

WITH PRODUCT SPECIFICATIONS AND PRODUCT INSTALLATION GUIDE

4.8 THIS DESIGN IS VALID ONLY FOR THE PROPOSED GREEN TERRAMESH

4.9 THE DESIGN PROVIDED HEREIN IS PRELIMINARY IN NATURE AND MUST BE VERIFIED BY A CONSULTING ENGINEER PRIOR TO COMMENCEMENT OF CONSTRUCTION. MACCAFERRI CANADA LTD. ASSUMES NO RESPONSIBILITY OR LIABILITY IF CONSTRUCTION IS COMMENCED WITHOUT SUCH VERIFICATION BY A CONSULTING

4.10 REINFORCED SLOPES SUCH AS GREEN TERRAMESH MUST BE VEGETATED AFTER CONSTRUCTION TO MINIMIZE OR PREVENT EROSION FROM RAINFALL AND RUNOFF ON THE FACE. IT IS THE RESPONSIBILITY OWNER OR THE OWNER'S REPRESENTATIVE TO SEEK THE SERVICES OF A COMPETENT HORTICULTURAL/ LANDSCAPE SPECIALIST, IN ORDER TO RECOMMEND THE MOST APPROPRIATE RECOMMEND THE MOST APROPIATE PLANT SPECIES. PLANT DENSITY AND MACCAFERRI LTD. ASSUMES NO RESPONSIBILTY OR LIABILITY FOR THE CHOICE CHOICE OF THE VEGETATION METHOD SELECTED FOR THE GREEN TERRAMESH FACING.

Maccaferri Canada I td 400 Collier MacMillan Drive, Unit B Cambridge, ON CANADA N1R 7H7 Ph. (519) 623-9990 Fax (519) 623-1309

Maccaferri Canada Ltd. 400 Collier MacMillan Drive, Unit B Cambridge, ON CANADA N1R 7H7 Ph. (519) 623-9990 Fax (519) 623-1309

FOLDING OF THE EXTERNAL T.M. FACE ALONG THE UPPER REINFORCING WIRE. PLACEMENT OF THE GEOGRID, FOLLOWED BY THE PLACEMENT OF THE NEXT T.M. UNIT AND LACING BY STAINLESS STEEL RINGS TO THE UNIT

CUTTING OF THE GEOGRID USING THE CUTTER PLACE THE GEOGRIDS IN HORIZONTAL LAYERS PERPENDICULAR TO THE FACE

BACK FILLING UP TO THE DESIRED LEVEL

EDGE OF THE EROSION CONTROL MAT TO BE OVERLAPPED TO THE ADJACENT UNIT

TO SIMPLIFY PLACEMENT IN THE STRUCTURE, WITH STEEL REINFORCING BARS, WELDED MESH PANEL AND REINFORCING STEEL BRACKET

MACCAFERRI

Geogrid Technical Data Sheet

MACCAFERRI

TECHNICAL DATA SHEET

Rev: 03, Issue Date 13.04.2018

PARADRAIN[™] 80

STRIP BONDED DRAINING GEOGRIDS WITH HIGH TENACITY POLYESTER CORE

ParaDrain™ 80 is manufactured from high tenacity, multifilament polyester yarns aligned and co-extruded with polyethylene (LLDPE) to form polymeric strips. The longitudinal strips has a channel shape and are covered by a geotextile to provide draining capacity in this direction. These strips are laid flat in the machine direction with a secondary strip laid and welded across the full width in the cross direction. **ParaDrain™ 80** is ideal for applications of reinforcement of cohesive soils with low permeability and high moisture content. In term of mechanical properties and installation damage factor the Paradrain products are equivalent to their correspondent Paragrid grade.

PROPERTY	TEST METHOD	VALUES	NOTES
		Metric	
Mechanical			
Tensile Strength (ultimate) Elongation @ Ultimate strength Creep Reduced Strength Long Term Design Strength (LTDS)	ASTM D6637 ASTM D6638	80.0 kN/m 10 % 58.4 kN/m 53.7 kN/m	1 2 1,3 1,4
Hydraulic Properties			
In plane flow at 100 kPa; i=1.0 In plane flow at 100 kPa; i=0.5 In plane flow at 100 kPa; i=0.1		3.8 l/mxh 1.9 l/mxh 0.9 l/mxh	5 5 5
Permeability normal to the plane	ASTM D4491	90 l/m ² sec	5
Filter's geotextile AOS ₉₀	ASTM D4751	100 micron	5
Polymeric (core)			
Carboxyl End Group (CEG Max.) Molecular Weight (# average)	GRI-GG7 GRI-GG8	<30 mmol/kg >25000 M _w	
Physical			
Grid aperture size (MD) Grid aperture size (XMD) Mass/Unit Area	ASTM D5261	201 mm 51 mm 450 g/m ²	5,6 5,6 5
Roll Dimension Roll Area Roll Weight	Width Length	3.9 m 50 m 195 m ² 99 kg	7 7 7 5

1. Minimum average roll values (MARV) are calculated as typical minus two standard deviations. Statistically, it yields a 97.7% degree of confidence that any samples taken from quality assurance testing will exceed the value reported.

2. The value reported is the typical value at the Tultimate; such strain can vary with a <u>+1</u> tolerance

3. Creep is calculated for a 75 years design life at 20°C; on request available data at 5, 50, 60, 100 & 120 years design life at 15 and 30°C

4. LTDS calculated for a standard temperature of 20°C, 4≤ph≤9.5 in concrete sand soil D₉₀≤4.0 mm; D₅₀<1 mm; installation damage factors for other soils and LTDS strength at different design life and temperature (see point 3) are available on request</p>

5. Typical value; a tolerance of 10% on the reported value is admitted.

- 6. The indicates measure is from edge pitch to edge pitch (opening mesh size); 5% tolerance on the reported value is admitted
- 7. Width and length values per roll are nominal a tolerance of 5% on the reported value is admitted. Roll area is estimated and rounded up to the closest square yard

Maccaferri Canada Ltd. can engineer specific solutions in any of our products; please contact us if you may need a specific solution for your project.

Maccaferri reserves the right to amend product specifications without notice and specifiers are requested to check as to the validity of the specifications they are using.

400 Collier MacMillan Drive, Unit B Cambridge, ON N1R 7H7 Tel: 519-623-9990 Fax: 519-623-1309

MACCAFERRI CANADA LTD.

email: info@maccaferri.ca website: <u>www.maccaferri.com/ca</u>

North Slope Global Stability Analysis Results

Appendix D

Appendix D1

Geotechnical Investigation Report dated October 27, 2020

Geotechnical Investigation

Warehouse and Offices, Intersection of Rideau Street and Somme Street, Ottawa, Ontario

Consolidated Fastrate (Ottawa) Holdings Inc.

October 27, 2021

GHD Limited

179 Colonnade Road South, Suite 400 Ottawa, Ontario K2E 7J4, Canada T +1 613 727 0510 | F +1 613 727 0704 | E info-northamerica@ghd.com | ghd.com

OFESSION Reviewer : S. SOLEMANI POVINCE OF OT

Sahar Soleimani, Ph.D., Eng.

Approved :

David Beauseigle, M.A.Sc., P. Eng.

Document status

Status	Revision	Revision Author	Reviewer		Approved for issue		
Code			Name	Signature	Name	Signature	Date
S4	01	Bahareh Vazhbakht, P. Eng.	Sahar Soleimani, Ph.D., Eng.	Jak.	David Beauseigle, M.A.Sc., P. Eng.	YS	October 27, 2021

© GHD 2021

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Contents

1.	Introd	luction	1
2.	Site a	nd Project Description	1
3.	Field	Investigation	2
	3.1	Borehole Drilling	2
	3.2	Surveying	2
	3.3	Laboratory testing	3
4.	Subsu	urface Conditions	3
	4.1	Fill	3
	4.2	Sandy Silt/Silty Sand	4
	4.3	Sandy Clay	4
	4.4	Silty Clay	4
	4.5	Bedrock	4
	4.6	DCPT Results	4
5.	Grour	ndwater	4
6.	Discu	ssion and Recommendations	5
	6.1	Site Preparation	6
		6.1.1 Building Footprints	6
		6.1.2 Heavy Duty Road	6
		6.1.3 Underground Services	6
	6.2	Excavation and Dewatering	6
	6.3	Foundations	7
		6.3.1 Shallow Foundation- Soil Improvement	7
		6.3.2 Deep Foundations 6.3.2 1 Drilled Deep Foundation	8
	64	Seismic Site Classification	q
	6.5	Floor Slabs	q
	6.6	Frost Protection	q
	6.7	Permanent Drainage	q
	0.7	6.7.1 Underfloor Drainage-Slab-on-Grade – No Basement	9
		6.7.2 Perimeter drainage	9
	6.8	Corrosion Potential of Soils	10
	6.9	Slope Stability	10
	6.10	Backfill	11
	-	6.10.1 Engineered Fill	11
		6.10.2 Exterior Foundation Wall Backfill	12
	6.11	Construction Field Review	12
7.	Limita	ation of the Investigation	13

Table index

Table 1	Grain Size Analysis Results - Native	3
Table 2	Atterberg Limit Test Results - Native	3
Table 3	Grain Size Analysis Results - Native	4
Table 4	Groundwater Observations	5
Table 5	Corrosion Parameter Results	10
Table 6	Classes of Exposure	10
Table 7	Geotechnical Parameters - Existing Slope	11
Table 8	Summary of Analyses	11

Figure index

Figure 1	Site Location Map
Figure 2	Borehole Location Plan

Appendices

- Appendix A Borehole and Test Pit Logs and Notes on Boreholes
- Appendix B Laboratory Testing Results
- Appendix C Slope Stability Analysis Results

ii

1. Introduction

GHD was retained by Consolidated Fastfrate (Ottawa) Holdings Inc. representative Mr. Pierre Courteau of CBRE Limited to undertake a geotechnical investigation for a new warehouse and office building located southeast of the intersection of Rideau Street and Somme Street in Ottawa, Ontario (Site).

GHD (formerly Inspec Sol/CRA) completed a Geotechnical Investigation and Phase II Environmental Site Assessment for the Site in 2008 and 2009 respectively.

GHD has reviewed the following documents provided by the client as part of the investigation:

- Phase II Environmental Site Assessment and Hydrogeological Assessment, Report Ref. No. 045804 (12), by Conestoga-Rovers & Associates, dated September 2008.
- Hydrogeological Investigation, Terrain Analysis and Impact Assessment, Proposed Industrial Subdivision, Report Ref. No. 08-1122-0215, by Golder Associates, dated December 2008.
- Geotechnical Study Subdivision Plan, Hawthorne Industrial Park, Report Ref. No. T020556-A1, by Inspec-Sol, dated May 4, 2009.
- Stormwater Management Report. Hawthorne Industrial Park, Report Ref. No. JLR 20983, by J.L. Richards & Associates Limited, dated February 2009 (Revised May 2009).

This Geotechnical Investigation Report (Report) has been prepared with the understanding that the design will be as described in Section 2 and will be carried out in accordance with all applicable codes and standards. Any changes to the project described herein will require that GHD be retained to assess the impact of the changes on the report recommendations provided herein.

The purpose of the geotechnical investigation was to complete an evaluation of the subsurface stratigraphy on the Site and based upon the data, provide recommendations concerning foundation type and associated design bearing pressures, groundwater conditions as well as provide comments on excavation, backfill, pavement design and other geotechnical aspects of the development.

The scope of work for GHD consisted of the following activities:

- Underground Service Clearances.
- Fieldwork | The scope included the advancement of a total of four boreholes and one Dynamic Cone Penetration Test (DCPT). One of the boreholes was equipped with a monitoring well to measure ground water level along with the three existing wells on site.
- Lab Testing | Four hydrometer grain size analysis, two Atterberg limit tests, moisture contents on all collected samples, and corrosion testing on one collected sample. One collected rock core sample were selected for Unconfined Compressive Strength (UCS) testing.
- Reporting | Preparation of this Geotechnical Report which summarizes the findings of the fieldwork programs and presents recommendations for the design and construction of the structure and pavement areas.

2. Site and Project Description

At the time of the investigation, the Site was vacant and overgrown with vegetation. Evidence of fill (gravel, concrete, asphalt) could be observed on the ground surface. The surrounding blocks in the area were in a similar condition. There was also tree line along the north perimeter of the Site where a steep slope was also observed leading from the site down to the ditch directly to the south of Rideau Street.

GHD observed three existing groundwater monitoring wells and one hydrogeological testing well on the Site. One of these wells was confirmed as MW7-08 installed by CRA in 2008. Based on the position of the hydrogeological testing

well adjacent to MW7-08, GHD believes this is TW-2 installed by Capital Water Supply Ltd. in 1993 as discussed in Golder's Hydrogeological report for the Site. It appeared that minimal to no fill placement has occurred around these well locations since 2008. The details of the remaining two existing wells on Site could not be confirmed.

The Site topography is relatively flat with various small mounds of fill material, sloping down to the surrounding streets. The surrounding topography slopes up from south to north by approximately 3.5 meters from Rideau Street to the section of Somme Street south of the Site. The Site elevation is higher compared to the surrounding streets varying from approximately 0.2 metres (m) higher on the south side (Somme Street) to 4.0 m higher on the north side (Rideau Street). There was also a ditch along the south, west, and north perimeters of the Site.

The historic fill placement at the Site has created sloping of approximately 2:1 (H:V) around the south, west, and north perimeters of the Site.

GHD's understanding of the proposed building is based on a sketch provided by the client shown on the Borehole Location Plan provided in Figure 2.

It is our understanding that the proposed new building will consist of an approximately 50,000 square feet (sf) warehouse on the eastern portion of the Site, connected to an approximately 20,000 sf cross dock on the western portion with approximately 1,500 sf of associated office space.

The location of the Site is shown on the Site Location Plan attached as Figure 1

3. Field Investigation

3.1 Borehole Drilling

The drilling component of this Geotechnical Investigation consisted of the advancement of four boreholes and one Dynamic Cone Penetration Test (DCPT), denoted as BH1 to BH4 and DCPT5. Boreholes were advanced to depths ranging from 11.1 to 14.9 meters below ground surface (mbgs). The DCPT test was advanced to refusal encountered at 5.9 mbgs. Borehole BH1 was outfitted with a monitoring well to monitor the groundwater level. The location of the boreholes is shown in the Borehole Location Plan attached as Figure 2 at the end of this report.

The borehole drilling fieldwork program was undertaken on August 6 and August 7, 2020, with a track mounted drill rig, under the supervision of GHD field staff. Boreholes were advanced into the overburden using Standard Penetration Tests (SPTs) at regular intervals using a 50 millimetres (mm) diameter split-spoon sampler and a 63.5 kilogram (kg) hammer, free falling from a distance of 760 mm, to collect soil samples. The number of drops required to drive the sampler 0.3 m is corrected for a hammer weight of 63.5 kg and recorded on the borehole logs as "N" value. Boreholes were backfilled with combination of sand, bentonite, and auger cuttings.

Dynamic Cone Penetration Test was completed in one location to record continues penetration test within the fill layer.

General descriptions of the subsurface conditions are summarized in the following sections, with a graphical representation of each borehole on the Borehole Logs. Notes on Boreholes are provided in Appendix A, at the end of this Report.

3.2 Surveying

Geodetic ground surface elevations were collected by GHD field staff with a Leica 1200+ Real-Time-Kinematic (RTK) GPS survey system. The elevations of the boreholes are for use within the context of this report only.

3.3 Laboratory testing

Laboratory testing on recovered soil samples included four hydrometer grain size analysis, two Atterberg limit tests, and moisture contents on all collected samples. One collected rock core sample were selected for Unconfined Compressive Strength (UCS) testing. The results from the testing assisted in the subsoil descriptions provided below in Section 4 and on the borehole logs. The laboratory test results are also provided in Appendix B, at the end of this report.

Analytical testing was also carried out on a soil sample collected to determine corrosion potential of the subsurface soils at each site. The results of the corrosion testing are provided in Section 6.8.

4. Subsurface Conditions

In general, soils encountered at the borehole locations consisted of thick layer of fill material overlying a native silty sand to sandy silt deposit followed by a glacial till. Limestone bedrock with interbedded sandstone was encountered at depths ranging from 8.2 (BH1) to 11.9 mbgs (BH3).

General descriptions of the subsurface conditions are summarized in the following sections, with a graphical representation of each borehole on the Borehole Logs. Notes on Boreholes are provided in Appendix A, at the end of this Report.

4.1 Fill

The fill material encountered at the site consisted of a mixture of sand, silt, clay, and gravel. The composition of the fill material varied with depth and borehole location. The upper 3.0 m of the fill material ranged from a silty sand to gravel to silty clay. Cobbles and possible boulders were encountered in the boreholes at varying depths. Buried asphalt was also noted at the BH3 and BH4 locations.

The thickness of the fill at the borehole locations was approximately 6.0 m. The fill material was found to be loose to compact in compactness state and was recovered in a damp condition becoming moist to saturated with depth. Blow counts within the fill material ranged from weight of hammer within the clay material encountered at the BH2 location to greater than 50 in sand and gravel granular material.

One shear vane test was performed within the clay fill material at the BH2 location with a recorded shear strength of 50 kilopascal (kPa).

The results of the grain size analysis and Atterberg Limits completed on selected fill samples are summarized in Tables 1 and 2, respectively.

Borehole/Sample Identification	Depth (mbgs)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
BH1/SS3	1.5 – 2.1	51	43	5	1
BH2/SS4	2.3 - 3.0	1	2	36	61
BH2/SS7	4.6 - 6.1	25	38	29	8

Table 1 Grain Size Analysis Results - Native

Table 2 Atterberg Limit Test Results - Native

Borehole/Sample	Depth (mbgs)	Liquid Limit	Plastic Limit	Plasticity	Natural Water	Liquidity
Identification		(%)	(%)	Index (%)	Content (%)	Index
BH2/SS4	2.3 – 3.0	69	21	48	56	0.73

The laboratory test results are also provided in Appendix B, at the end of this report.

4.2 Sandy Silt/Silty Sand

Below the fill material a native deposit of sandy silt to silty sand with varying amounts of clay and gravel was encountered. Cobbles and possible boulders are expected within this deposit becoming more frequent with depth. The deposit was found in a compact state and recovered in a moist condition becoming saturated below the groundwater table. The deposit extended to depths ranging from 8.2 (BH1) to 11.9 mbgs (BH3). Recorded N values within this deposit ranged from 12 to greater than 50.

The result of the grain size analysis completed on one selected sample from the native deposit is provided in the Table 3. The laboratory test results are also provided in Appendix B, at the end of this report.

Table 3 Grain Size Analysis Results - Native

Borehole/Sample Identification	Depth (mbgs)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
BH3/SS10	6.9 – 7.5	8	47	37	8

4.3 Sandy Clay

A deposit of sandy clay was encountered below the native sandy silt at the historical B5-1 location. The material was very soft and in a moist condition. This material was not encountered within the new borehole locations as part of this investigation.

4.4 Silty Clay

Below the fill material and the native sandy clay (B5-1) was a native silty clay deposit. The deposit was encountered at depths ranging from 4.6 (B5-2) to 7.3 (B5-1) mbgs (2009). The deposit was firm becoming very stiff with depth and was recovered in a moist to wet condition. This material was not encountered within the new borehole locations as part of this investigation. Refusal was encountered within this deposit in the previous studies.

4.5 Bedrock

Limestone bedrock with interbedded sandstone was encountered at depths of 8.2 m (BH1), 9.3 m (BH2), and 11.9 m (BH3). Borehole BH4 was terminated upon refusal at a depth of 11.1 m on inferred bedrock. The bedrock quality varied with depth and location; the recorded Rock Quality Designation (RQD) ranged between 37 percent to 90 percent. The unconfined Compressive Strength (UCS) test results completed on a selected rock core sample (BH2-RC1) shows a compressive strength of 125.2 megapascal (MPa). The lab test results are provided in Appendix B of this report.

4.6 DCPT Results

The results of the DCPT test show the upper 5.9 m of the material is in loose to compact condition based on blow counts of less than 10 up to 20.

5. Groundwater

Three existing groundwater monitoring wells were present on site. One well was confirmed as MW7-08. The details of the other two wells are unknown.

One additional monitoring well was installed as part of the scope of work for this investigation. Groundwater levels were measured on August 18, 2020, at the monitoring wells. The following Table 4 shows the measured water levels.

 Table 4
 Groundwater Observations

Borehole ID (Year of Install)	Depth of Water (mbgs)	Groundwater Elevation (m)	
BH1 (GHD 2020)	4.0	86.9	
MW7 (CRA 2008)	3.3	87.5	
Northwest well (Unknown)	3.3	87.6	
Northeast well (Unknown)	3.5	86.8	

These levels indicated the water is within the fill material. It should be noted that the groundwater table is subject to seasonal fluctuations and in response to precipitation and snowmelt events. Also, it would be expected that water may be perched within the fill materials, especially during and following periods of precipitation and in the spring and fall or other wet seasonal periods.

6. Discussion and Recommendations

The recommendations in this report are based on GHD's understanding of the proposed development, which is outlined as follows:

- A new approximately 50,000 sf warehouse on the west portion of the Site.
- An approximately 20,000 sf cross dock connected to the east face of the warehouse.
- Approximately 1,500 sf of office space connected to the south face of the cross dock.
- No underground levels are planned for the proposed structure.
- Structure will be slab-on grade construction.
- No information is available regarding the proposed finish grade for the new building.

Based on our understanding of the proposed development, the subsurface conditions encountered in the boreholes, and assuming them to be representative of the subsurface conditions across the Site, the following recommendations are provided. The most important geotechnical considerations for the design of the proposed building are the following:

- Fill Material | An approximately 6.0 m thick layer of fill is present throughout the Site. The composition of the fill
 material varies with depth borehole location. Buried asphalt was also noted in the fill material at various locations.
 The fill material in its current state is not suitable to support shallow foundations for the proposed structure. Soil
 improvement techniques may be an option; however, consultation with specially soil improvement contractors will
 be required. Refer to Section 6.3.1 of the Report for preliminary comments for soil improvement.
- Presence of Cobbles and Boulders | Obstructions to SPT were encountered within the fill material as well as within the native deposit overlying the bedrock. The obstructions are assumed to be possible cobbles or boulders. The presence of cobbles and boulder could make driving piles difficult; contractors should account for this if a deep foundation option is preferred. It is recommended that during the detailed design additional investigation by means of test pit excavation be carried out to further determine the nature of the obstructions.
- Dewatering | GHD has not been provided the proposed final grade of the new warehouse structure. If excavations will extend below the measured groundwater level of approximately 3.5 mbgs, groundwater infiltration into the excavations is expected. The water quantities expected to enter open excavations during construction will depend on seasonal conditions, depth of excavations, and the duration that excavations are left open. Hydrogeological assessment to estimate the extent of dewatering activities and determine whether a

Permit to take water (PTTW) or submission on the Ontario Environmental Activity and Site Registry (EASR) may be required.

Slope Stability | The historic fill placement at the Site has created sloping of approximately 2:1 (H:V) around the south, west, and north perimeters of the Site. Based on the preliminary slope stability analysis, depending on the composition and compactness state of the fill material, the factor of safety for the slope may be equal or slightly below (i.e., 1.4 under static condition and 1.0 under pseudo-static condition) the recommend values of 1.5 for static condition and 1.1 for pseudo-static. GHD must be provided a topographic survey plan for the existing slope and the proposed finish grade at the detailed design stage to determine the design setback allowance for the building. It is noted that the condition of the slope must be monitored during site preparation and building construction.

6.1 Site Preparation

6.1.1 Building Footprints

Site preparation within the building footprint will depend on design finish grade and preferred foundation option. If shallow foundations are preferred, the existing fill within the building footprint will need to be improved using site specific ground improvement techniques. Refer to Section 6.3.1 of this Report for preliminary comments regarding ground improvement of the existing fill material.

If deep foundations are selected, excavations for the pile caps will need to extend below frost depth below finish grade of 1.5 m if the building is heated and 1.8 m for unheated or isolated structures. A suitable compact soil subgrade is required for pile cap construction. Pile caps should not be constructed on disturbed or loose subgrade. The exposed subgrade should be examined by Geotechnical personnel prior to pile cap installation. Any loose or disturbed material should be removed and replaced with suitable fill material meeting the requirements of Engineered Fill as per Section 6.10 of this report.

6.1.2 Heavy Duty Road

GHD anticipates the Site will require heavy duty roads for the heavy truck traffic to and from the warehouse. Due to the presence of the uncontrolled fill material, improvement of the road subgrade may be required. Improvement methods may include:

- Additional compaction of the subgrade soils.
- Soil improvement methods such as Dynamic Compaction discussed in Section 6.3.1
- Placement of a thicker road base and/or subbase.
- Strengthening the subgrade using geosynthetic materials like TriAx or Biaxial geogrides.
- Or a combination of these options may be implemented depending on the design requirements for the access roads.

6.1.3 Underground Services

Depending on the final site grades subgrade improvement may also be required for underground services. Improvement methods may be similar to the options provided for the heavy-duty roads above.

6.2 Excavation and Dewatering

The following are general comments regarding the excavations and dewatering requirements, as the depth of the excavations and dewatering requirements are dependent on final grades and foundation option selected.

Roadway construction debris including concrete, and asphalt is expected within the fill material. This debris was also observed on the surface at the time of GHD's Site visit. The walls of the excavations must also be sloped at a

minimum of 1H:1V as per the Occupational Health and Safety Act (OHSA) requirements for Type 3 soils (fill) or supported by temporary shoring.

Unsupported side slopes should be adjusted depending on the true subsoil and groundwater conditions encountered during excavation work and flatter side slopes than those mentioned above may be required locally.

During the excavation, no excavated material should be piled, nor machinery or equipment placed, closer than the distance equivalent to the depth of the excavations. Furthermore, no vertical un-braced excavations should be performed in the soil. In addition, the exposed subsoils should be protected against erosion from water run-off or rain.

The stability and safety of unsupported excavation slopes remain the responsibility of the contractor at all times.

It is recommended that the client's design team include in the specification package, requirements for the successful contractor to submit written Plans for Excavation as well as Soil and Groundwater Management for review by the client design team.

A hydrogeological assessment of this Site was not part of the scope of work for this investigation. If excavations will extend below the measured groundwater level of approximately 3.5 mbgs, groundwater infiltration into the excavations is expected. The water quantities expected to enter open excavations during construction will depend on seasonal conditions, depth of excavations, and the duration that excavations are left open. Hydrogeological assessment to estimate the extent of dewatering activities and determine whether a Permit to take water (PTTW) or submission on the Ontario Environmental Activity and Site Registry (EASR) may be required.

6.3 Foundations

The foundation options for the proposed building depend upon proposed final grade elevations for the structure and design loadings. The suggested options and preliminary recommendation for the foundations for the warehouse are provided in the following sections.

6.3.1 Shallow Foundation- Soil Improvement

Deep fill layers were encountered in all boreholes drilled on site. Fill thickness, composition and compactness/consistency varies with depth and location; therefore, soil improvement is required to allow for the use of shallow foundations for this project.

The recommended soil improvement method at this time is Dynamic Compaction performed by specialty contractors. This method of soil improvement and use of shallow foundations may be a cost-effective alternative to deep foundation. It is however noted that the suitability of this method for the site condition should be evaluated by the specialty contractors.

This method will compact the existing fill material using a crane that repeatedly drops a 15 to 20 ton weight in a closely spaced grid pattern across the site, creating a uniformly compacted subgrade. In the areas with softer cohesive soils, the addition and compaction of imported granular material may be required to further strengthen the soil.

Following completion of the compaction, the contractor will perform on site pressure meter tests in the compacted areas to confirm that the design bearing capacity has been achieved or whether additional compaction is required.

Further discussion and field investigations with the specialty contractors will be required to evaluate this improvement option for this Site and to provide the estimated cost to complete the work and provide the achievable design bearing capacity.

GHD also recommends the structural engineer for the project be consulted to provide the design loadings for the structure.

6.3.2 Deep Foundations

Drilled piles (Micro piles) or drilled cast-in-place concrete piles (caissons) are feasible options to support the proposed warehouse. In both cases, the piles should be designed relying on shaft friction only due to presence of groundwater and inability to provide a clean base end bearing piles are not recommended.

Due to presence of obstructions identified as possible cobbles and boulders within the fill material and within the native soils driven piles such as H-Piles are not considered suitable for this site. The nature of the obstructions can be further investigated by excavating test pits at the time of detailed design to decide whether driven piles can be an option.

6.3.2.1 Drilled Deep Foundation

Depending on the required bearing capacities drilled piles supported within the native soils or bedrock can be an option to support the proposed structure; it is noted that to evaluate the suitability of the piles supported on or within the native soils, discussion with structural engineer will be require. Therefore, this option can be further reviewed once the design loads are provided.

Caissons supported on bedrock surface can be designed using a recommended bearing capacity of 1,000 kPa under Ultimate Limit State (ULS). Due to the presence of groundwater and cohesionless soils, a permanent steel casing set into the bedrock will be required for the cast-in-place piles. The total loads for the caissons must have the Resistance Factor of 0.4 applied to the value to provide the factored ULS value as per Table 8.1 of CFEM.

Caissons or micro-piles socketed into bedrock will provide some increased bearing capacity, however as mentioned above due to anticipated groundwater infiltration and the inability to provide a 'clean' pile base, the recommended design approach is to rely on shaft friction only using methods outlined in CFEM Section 18.6.4.

For caissons/micro-pile designed as friction piles deriving frictional forces from bedrock the method outlined in Section 18.6.4.2 and formula 18.44 of CFEM is recommended which is:

- Q_s = π B_sL_sq_s

Equation 18.4.3 (CFEM)

where:

- B_s = diameter of the socket
- L_s = length of socket

And

- $q_s/P_a = b(q_u / P_a)^{0.5}$ Equation 18.44 (CFEM)

where:

- q_s = socket shear, kPa
- q_u –unconfined compressive strength of bedrock where UCS is less than f'_c or q_a = 0.05f'c, where UCS is higher than f'_c in kPa
- f'c = concrete compressive strength, kPa
- b = empirical factor, assume as 1.41 for Limit State design approach
- P_a = atmospheric pressure, assume 101.5 kPa

The unconfined compressive strength of the bedrock from the UCS test performed on the core sample from BH2/RC1 location was 125.2 MPa.

For this Site, values of shaft adhesion will be limited by concrete compressive strength. Therefore, the formula $q_a=0.05f_c$ must be used in the above equation. As an example, a design concrete strength of 30 megapascal (MPa) would result in a design shaft resistance of 550 kPa.

Designers can select economical socket length for the caisson based upon the formulas. The total loads for the caissons must have the Resistance Factor of 0.4 applied to the value to provide the factored ULS value as per Table 8.1 of CFEM.

Frictional forces derived from the existing fill and native soils are likely to be minimal, accordingly these have been neglected.

6.4 Seismic Site Classification

GHD understands that the proposed building will be governed by Part 4 of the Ontario Building Code (OBC-2012), and therefore will require a site classification for seismic site response.

Based upon the borehole information for the Site, a Site Classification 'D', with respect to Table 4.1.8.4.A of the National Building Code of Canada 2015 is recommended if deep foundations are used with pile caps placed on the existing unimproved fill.

A higher Site Classification 'C' may be achievable if the existing fill material is improved.

6.5 Floor Slabs

As discussed in Section 4 of this letter, approximately 6 m of fill material was encountered in boreholes drilled as part of this investigation.

The uncontrolled fill material may not be suitable to support a slab-on-grade construction and therefore following options are suggested regarding the floor slab design and construction:

- The use of a structural slab can be considered.
- Soil improvement methods may allow construction of slab on grade however this would require detailed discussion with soil improvement contractors.

6.6 Frost Protection

All exterior footings associated with the heated buildings must be provided with at least 1.5 m of soil cover or its equivalent in insulation, in order to provide adequate protection against detrimental frost action. This cover depth requirement must be increased to 1.8 m for footings for unheated or isolated structures such as signs, entrance canopy, or piers.

Should construction take place during winter, the exposed surfaces to support foundations must be protected by Contractors against freezing.

6.7 Permanent Drainage

6.7.1 Underfloor Drainage-Slab-on-Grade – No Basement

Under floor drains are not considered necessary for a structure without basement and a floor slab set above the groundwater table. However, the drainage requirements must be re-evaluated once final design grades and proximity to the water table are determined.

6.7.2 Perimeter drainage

For the proposed building with no basement or underground level and based on the Site subsurface condition, perimeter drainage around the exterior of the walls of the proposed building is not considered necessary. However, the drainage requirements must be re-evaluated once final design grades and proximity to the water table are determined.

6.8 Corrosion Potential of Soils

Analytical testing was carried out on a soil sample collected to determine corrosion potential of the subsurface soils at each site. The selected soil sample was tested for pH, resistivity, chlorides, and sulphides, sulphates, and redox potential. The test results are summarized in the following table.

Table 5	Corrosion	Parameter	Results
	0011001011	i urumeter	neouno

Sample ID	MW4
рН	8.66
Resistivity (ohm-cm)	1920
Sulphate (%)	0.08
Chloride (%)	0.008
REDOX Potential (mV)	205
Sulphide (µg/g)	<0.20

The American Water Works Association (AWWA) publication 'Polyethylene Encasement for Ductile-Iron Pipe Systems' ANSI/AWWA C105/A21.5-10 dated October 1, 2010, assigns points based on the results of the above tests. Soil that has a total point score of 10 or more is considered to be potentially corrosive to ductile iron pipe. Based on the results obtained for the sample submitted, the Site soils are not considered to be potentially corrosive to cast iron pipe.

Table 3 of the Canadian Standards Association (CSA) document A23.1-04/A23.2-04 'Concrete Materials and Methods of Concrete Construction/Methods of Test and Standard Practices for Concrete' divides the degree of exposure into the following three classes:

 Table 6
 Classes of Exposure

Degree (Class) of Exposure	Water Soluble (SO ₄) in Soil Sample (%)	
Very Severe (S-1)	>2.0	
Severe (S-2)	0.20 - 2.0	
Moderate (S-3)	0.10 - 0.20	

A review of the analytical test results shows the sulphate content in the tested samples was found to be less than 0.08 percent. Based upon the test results, the degree of exposure of the subsurface concrete structures to sulphate attack is low. Therefore, normal General Use (GU) hydraulic cement can be used for the below grade concrete structures.

6.9 Slope Stability

The historic fill placement at the Site has created sloping of approximately 2:1 (H:V) around the south, west, and north perimeters of the Site.

A slope stability assessment was performed for the existing slope along the north perimeter of the Site. GHD's understanding of the existing slope conditions is based on Site observations and field measurement. Analysis was performed on the existing slope under static condition and pseudo-static (i.e., seismic) conditions considering drained soil conditions.

The slope stability analysis was carried out using the SLOPE/W 2019 software package produced by GEO-SLOPE International Ltd. Each trial was modeled using the Morgenstern-Price method, and the optimized critical slip-surface was selected. In general, this approach calculates a factor of safety that represents the ratio of forces resisting a failure (i.e., shear strength, friction, etc.) to those favouring failure (weight, external loading, etc.). Theoretically, a

factor of safety of 1.0 would represent a stable slope. However, the City of Ottawa recommends a minimum factor of safety of 1.5 under static condition and 1.1 under pseudo-static conditions.

The selected geotechnical parameters for the Site soils used in the analysis is summarized in Table 7 below.

Table 7 Geotechnical Parameters - Existing Slope

Material	Unit Weight (kN/m ³)	Cohesion (kPa)	Internal Friction Angle (°)	
Existing Fill – Clayey Silty Sand	19	3	30	
Existing Fill- Sand	19	0	30	
Existing Fill- Clay	17	3	25	
Native Silty Sand/Sandy Silt	20	0	30	
Bedrock	N/A (Considered Impenetrable)			

A summary of the analyses is shown in Table 8 below, with the analysis for each condition provided in Appendix C at the end of this report.

Table 8 Summary of Analyses

Borehole Location	Condition (Drained)	Factor of Safety
BH1	Static	1.3
	Pseudo Static	0.9
BH2	Static	1.6
	Pseudo Static	1.1

Based on the preliminary slope stability analysis, depending on the composition and compactness state of the fill material, the factor of safety for the slope may be equal or slightly below (i.e., 1.3 under static condition and 0.9 under pseudo-static condition) the recommend values of 1.5 for static condition and 1.1 for pseudo-static condition. If the existing slopes are to remain on the Site, some slope remediation or adjustment may be required depending on the proposed structure location and distance from the slope. GHD must be provided a topographic survey plan for the existing slope and the proposed finish grade at the detailed design stage to determine the design setback allowance for the building and revise or confirm analysis. It is noted that the condition of the slope must be monitored during site preparation and building construction.

6.10 Backfill

The placement and compaction of the materials that will support pavement, floor slab, or footings must be treated as Engineered Fill.

6.10.1 Engineered Fill

The fill operations for Engineered Fill must satisfy the following criteria:

- Engineered Fill must be placed under the continuous supervision of the Geotechnical Engineer.
- Prior to placing any Engineered Fill, all unsuitable fill materials must be removed, and the subgrade proof rolled, and approved. Any deficient areas should be repaired.
- Prior to the placement of Engineered Fill, the source or borrow areas for the Engineered Fill must be evaluated for its suitability. Samples of proposed fill material must be provided to the Geotechnical Engineer and tested in the geotechnical laboratory for Standard Proctor Maximum Dry Density (SPMDD) and grain size, prior to approval of the material for use as Engineered Fill. The Engineered Fill must consist of environmentally suitable soils (as per industry standard procedures of federal or provincial guidelines/regulations), free of organics and other

deleterious material (building debris such as wood, bricks, metal, and the like), compactable, and of suitable moisture content so that it is within -2 percent to +0.5 percent of the Optimum Moisture as determined by the Standard Proctor test. Imported granular soils meeting the requirements of Granular 'A', or Type II OPSS 1010 criteria would be suitable.

- The Engineered Fill must be placed in maximum loose lift thicknesses of 0.2 m. Each lift of Engineered Fill must be compacted with a heavy roller to 100 percent SPMDD.
- Field density tests must be taken by the Geotechnical Engineer, on each lift of Engineered Fill. Any Engineered Fill, which is tested and found to not meet the specifications, shall be either removed or re-compacted and retested.

6.10.2 Exterior Foundation Wall Backfill

Where applicable and/or if necessary, any backfill placed against the foundation walls should be free draining granular materials meeting the grading requirements of OPSS 1010 for Granular 'B' Type I specifications up to within 0.3 m of the ground surface. The upper 0.3 m should be a low permeable soil to reduce surface water infiltration. Foundation backfill should be placed and compacted as outlined below.

- Free-draining granular backfill should be used for the foundation wall.
- Backfill should not be placed in a frozen condition or placed on a frozen subgrade.
- Backfill should be placed and compacted in uniform lift thickness compatible with the selected construction equipment, but not thicker than 0.2 m. Backfill should be placed uniformly on both sides of the foundation walls to avoid build-up of unbalanced lateral pressures.
- At exterior flush door openings, the underside of sidewalks should be insulated, or the sidewalk should be placed on frost walls to prevent heaving. Granular backfill should be used and extended laterally beneath the entire area of the entrance slab. The entrance slab should slope away from the building.
- For backfill that would underlie paved areas, sidewalks or exterior slabs-on-grade, each lift should be uniformly compacted to at least 98 percent of its SPMDD.
- For backfill on the building exterior that would underlie landscaped areas, each lift should be uniformly compacted to at least 95 percent of its SPMDD.
- In areas on the building exterior where an asphalt or concrete pavement will not be present adjacent to the foundation wall, the upper 0.3 m of the exterior foundation wall backfill should be a low permeable soil to reduce surface water infiltration.
- Exterior grades should be sloped away from the foundation wall, and roof drainage downspouts should be placed so that water flows away from the foundation wall.

6.11 Construction Field Review

The recommendations provided in this report are based on an adequate level of construction monitoring being conducted during construction phase of the proposed building. GHD requests to be retained to review the drawings and specifications, once complete, to verify that the recommendations within this report have been adhered to, and to look for other geotechnical problems. Due to the nature of the proposed development, an adequate level of construction monitoring is considered to be as follows:

- Prior to construction of footings, the exposed foundation subgrade should be examined by a Geotechnical Engineer (GE) or a qualified Technologist acting under the supervision of a GE, to assess whether the subgrade conditions correspond to those encountered in the boreholes and test pits, and the recommendations provided in this report have been implemented.
- A qualified Technologist acting under the supervision of a GE should monitor placement of Engineered Fill underlying floor slabs.

- Backfilling operations should be conducted in the presence of a qualified Technologist on a part-time basis, to
 ensure that proper material is employed, and specified compaction is achieved.
- Placement of concrete should be periodically tested to ensure that job specifications are being achieved.
- Piling operations should be monitored on a full-time basis by a qualified Technologist to verify pile installation and socket into bedrock and verticality.

7. Limitation of the Investigation

This Report is intended solely for Consolidated Fastfrate (Ottawa) Holdings Inc and other party explicitly identified in the report and is prohibited for use by others without GHD's prior written consent. This Report is considered GHD's professional work product and shall remain the sole property of GHD. Any unauthorized reuse, redistribution of or reliance on the report shall be at the Client and recipient's sole risk, without liability to GHD. The Client shall defend, indemnify, and hold GHD harmless from any liability arising from or related to Client's unauthorized distribution of the report. No portion of this report may be used as a separate entity; it is to be read in its entirety and shall include all supporting drawings and appendices.

The recommendations made in this Report are in accordance with our present understanding of the project, the current Site use, ground surface elevations and conditions, and are based on the work scope approved by the Client and described in the report. The services were performed in a manner consistent with that level of care and skill ordinarily exercised by members of GE professions currently practicing under similar conditions in the same locality. No other representations, and no warranties or representations of any kind, either expressed or implied, are made. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

All details of design and construction are rarely known at the time of completion of a geotechnical study. The recommendations and comments made in the study report are based on our subsurface investigation and resulting understanding of the project, as defined at the time of the study. We should be retained to review our recommendations when the drawings and specifications are complete. Without this review, GHD will not be liable for any misunderstanding of our recommendations or their application and adaptation into the final design.

By issuing this report, GHD is the GE of record. It is recommended that GHD be retained during construction of all foundations and during earthwork operations to confirm the conditions of the subsoil are actually similar to those observed during our study. The intent of this requirement is to verify that conditions encountered during construction are consistent with the findings in the report and that inherent knowledge developed as part of our study is correctly carried forward to the construction phases.

It is important to emphasize that a soil investigation is, in fact, a random sampling of a site and the comments included in this report are based on the results obtained at the test hole locations only. The subsurface conditions confirmed at these test locations may vary at other locations. Soil and groundwater conditions between and beyond the test locations may differ both horizontally and vertically from those encountered at the test locations and conditions may become apparent during construction, which could not be detected or anticipated at the time of our investigation. Should any conditions at the Site be encountered which differ from those found at the test locations, we request that we be notified immediately in order to permit a reassessment of our recommendations. If changed conditions are identified during construction, no matter how minor, the recommendations in this report shall be considered invalid until sufficient review and written assessment of said conditions by GHD is completed.

Legend

- Approximate Unidentified Well Locations
- Historic Borehole Locations (Inspec Sol 2008)
- Historic Test Well Location (Capital Water Supply Ltd (1993)
- Historic Well Location (CRA 2008) \bigcirc
- Temporary Benchmark 0
- Borheole Location
- Dynamic Cone Penetration Test Location \diamond
- Monitoring Well
- Approximate Warehouse Location

CONSOLIDATED FASTRATE HOLDINGS INC. NEW WAREHOUSE INTERSECTION OF RIDEAU STREET AND SOMME STREET GEOTECHNICAL INVESTIGATION

Project No. **11215612** Revision No. -Date **Aug 21, 2020**

BOREHOLE LOCATION PLAN

Appendices

Appendix A

Borehole and Test Pit Logs and Notes on Boreholes

REFER	ENCE N	0.:	11215612-A2									ENCL	JSUF	RE NO	.:		1	
		G		BOR	EHOLE No.:	В	H1						в	ORE	НО	LE	LO	G
		9		ELEV	ATION:	90	.21	m					Pag	ge:	1	of _	2	
CLIF	NT: Co	onsolid	lated Fastrate (Ottawa) F	loldinas Lta	1.							_		L	EGE	ND.		
PRC	JECT:	New V	Varehouse										s Spli S Aud	it Spoo per San	n nole			
LOC	ATION:	Som	me Street, Ottawa, ON									⊠ sī	r She	elby Tul	be			
DES	CRIBED	BY:	RVT		CHECKED BY:			B١	/			Ţ	Wat Wat	ter Lev	el ent (%)			
DAT	E (STAR	T):	6 August 2020)	DATE (FINISH):			6 Augu	st 20	20		• N	Atte	erberg I	imits (%	6) hase	d on	ſ
SC	ALE		STRATIGRAPHY		MONITOR WELL			SAM	IPLE C	DATA		• N	Spli	it Spool	n samp Index	le based	on	
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDF	I OF Rock	1.01-	Ţ	State	Type and Number	Recovery	OVC	Penetration Index / RQD	≙ Cu ⊡ Cu Տ	J She J She Ser She Poc	ear Strees sitivity ear Strees sket Pe	ngth bangth bang	ased of ased of of Soil ased of eter	in Fiel in Lab in	d Vane) Vane
meters	90.21		GROUND SURF	ACE					%	ppm	Ν	10 S	SC/ 50kPa 20 3	ALE FC 100kF 30 40	R TES a 15 <u>50</u>	TRES 0kPa 60 7	3ULTS 200k 0 80	3 Pa) <u>90</u>
0.5	90.1		TOPSOIL (75 mm thick FILL - Silty sand, trace loose, brown, damp	ness) gravel,	_		M	SS1	50		5	•						
1.0	89.4		FILL - Gravel, trace sat possible cobble/boulde compact to dense, grey	nd, r, /, damp			M	SS2	50		47				•			
- 1.5	88.7		FILL - Silty sand, some trace gravel, compact, and grey, damp	e clay, brown	Riser		X	SS3	42		20		•					
2.5					Cuttings		X	SS4	58		19		•					
- 3.0 	87.2		FILL - Silty clay, some trace gravel, very stiff, and grey, damp	sand, brown			X	SS5	33		10	•						
4.0 	86.3		becoming sandy at 3.8 FILL - Clayey silty sand compact, grey and brow	mbgs 1, wn, moist	WL 3.99 -	Y	X	SS6	58		14	•						
4.5					4.57 Bentonite		V	SS7	21		14							
5.5					5.18- 5.49-		Ň	SS8	46		12	•						
	84.3	***	SILTY SAND- some cla trace to some gravel, c brown and grey, moist	ay, ompact,	Sand —		V	SS9	54		12							
NOTES	meters b	elow g	round surface					_										
RQD: F	Rock Qua	ality De	esignation															

REFER	ENCE N	0.:	11215612-A2	_							ENCLO	DSUF	RE No	D.: _		1		
				BOR	EHOLE No.:	BH	1					B		ΞНС				
		G	HD	ELE)	ATION:	90.2	1 m					Pac	1e.	2	of	2		
													,	ECE				
CLIE	ENT: <u>Co</u>	onsolio	lated Fastrate (Ottawa) H	Ioldings Lte	d.						⊠ ss	S Spli	t Spoo	n				
PRO	JECT:	New \	Narehouse								CS GS	S Aug	jer Sai	nple				
LOC	CATION:	Som	me Street, Ottawa, ON								⊠ ST	She Wat	elby Tu	ibe rel				
DES		BY: _	RVI	<u> </u>			B\	/	20		•	Wat	er con	tent (%	b)			
DAT	E (STAR	(1)	6 August 2020	J	_ DATE (FINISH).		6 Augu	St 20	20		• N	Atte Per	erberg etratio	limits (Inde	%) x base	ed on		
SC	ALE		STRATIGRAPHY		MONITOR WELL		SAM	PLE [DATA		• N	Spli Pen	t Spoo	n sam n Inde	ple x base	d on		
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BED	I OF Rock		State	Type and Number	Recovery	OVC	Penetration Index / RQD	△ Cu □ Cu S	She She Ser She Poc	ar Stro ar Stro isitivity ar Stro ket Pe	ength I ength I Value ength I ength I	based based based of So based neter	on Fie on Lal il on	eld Va b Var	ane ne
meters	90.21		GROUND SUR	FACE				%	ppm	Ν	50 10	SCA 0kPa 20 3	ALE FO 100k 30 40	DR TE Pa 1 50	ST RE 50kPa 60	SULT 200 70 8	′S kPa 0 9∣)
_			Refusal encountered a	t 7.2	7.01	X	SS10	/1		50+				•				
			Cobbles and boulders			Т								-	-	\square		
- 7.5			encountered from 7.3 t	o 8.2											_			
F			mbgo				RC1	49										
- 8.0																\square		
	82.0	32323	LIMESTONE- interbed	ded	-							-		_	_	$\left \right $		
- 8.5			sandstone, grey, fair be good quality with depth	ecoming i based														
F			on RQD				DCO	04		70								
F _							RCZ	94		13		+		+	+	$\left \right $		
- 9.0												_		_	_			
E																		
9.5																		
												+		+	+	$\left \right $		
- 10.0							RC3	100		82								
E																		
L 10 5																		
-												-		_	_	$\left \right $		
È.																		
- 11.0							RC4	100		90								
E	78.9		Borehole terminated at	11.3	-							+		+	+	$\left \right $		
- 11.5			mbgs									-			_	\square		
- 12.0																\square		
												+	$\left - \right $	+	+	+		
- - 12 5																		
- 2.0																		
												+	\vdash	+	+	[
≓ 13.0												-		_	_	$\left \right $		
E																		
_ 13.5																		
												+	\vdash	+	+	+		
NOTES mbgs:	i: meters b	elow g	round surface															
RQD:	Rock Qua	ality D	esignation															
3																		

REFER	ENCE N	0.:	11215612-A2							ENCI	OSI	JRE N	lo .:			2	
			J	BOREHOLE No.:	BH2	2					F	SOR	FH		FI	00	•
		G		ELEVATION:	89.80	0 m					P	age:	1	0	f 2		-
													LEG	EN			
CLIE	ENT: <u>Co</u>	onsolid	lated Fastrate (Ottawa) F	loldings Ltd.						\boxtimes	ss s	plit Sp	oon		-		
		Som	varenouse								GS A	uger S belby 1	ample Tube	•			
DES	CRIBED	BY [.]	RVT	CHECKED BY		B	/			v ₹	v v	/ater L	evel				
DAT	E (STAR	T):	6 August 2020	DATE (FINISH):		6 Augu	• ist 202	20		°	N A	/ater co tterber	ontent a limit	(%) s (%)			
80		· _	et p			SVI				• 1	N P S	enetra plit Sp	tion In	dex b	ased o	n	
30		≥	316			SAN				• 1	N P D	enetrat ynamio	ion In Cone	dex ba samp	ased o	л	
Depth BGS	Elevation (m)	Stratigraph	DE SOII	SCRIPTION OF AND BEDROCK	State	Type and Number	Recovery	ovc	Penetration Index / RQD	∆ (□ (S	Cu S Cu S S P	hear S hear S ensitivi hear S ocket f	trengt trengt ity Val trengt Penetr	h bas h bas lue of h bas romete	ed on ed on Soil ed on er	Field \ Lab Va	Vane ane
meters	89.80		GF	ROUND SURFACE			%	ppm	Ν	10	50kPa 20	CALE 100	FOR 1 DkPa	150k	RESU Pa 2	LTS 200kPa 80	90
E	89.7		TOPSOIL(75 mm thick	ness) ctiff grov moiot	_//						Ĩ	Ť			ľ	Ť	
		\bigotimes	FILL - Silly clay, IIm to	sun, grey, moist	X	SS1	58		2	•	-	+		-		+	+
- 0.5		\bigotimes					_				_						
E		\bigotimes															
_ 1.0		\bigotimes			X	SS2	100		2	•							
		\bigotimes			M											+	+
- 1.5		\bigotimes									_	_		_		+	
E		\bigotimes			M	662	100		1								
- 2.0		\bigotimes			Λ	333	100										
-		\bigotimes			\square						-					+	
25		\bigotimes			M						_	_				—	
_		\bigotimes			Ň	SS4	100		WH								
F .		\bigotimes			\square												
- 3.0		\bigotimes			А						+	+		-		+	+
		\bigotimes				FV5					-	_		_		+	
- 3.5		\bigotimes			Ш												
	86.0	\bigotimes	FILL - Clavey sand so	me gravel organics loose gre	v M												
- 4.0		\bigotimes	and brown, moist	5 , 5 , ,5	Í	SS6	75		5	•						+	
-		\bigotimes			Λ						-					+	+-
4.5	85.2	\bigotimes		ilt composite very dealer								_					
9/20		\bigotimes	brown and grey, satura	ted	M	007	0.2		22								
₹ _ 5.0		\bigotimes			Λ	331	03		33			-					
		\bigotimes			4											+	+
<u> </u>		\bigotimes			M							_				_	
		\bigotimes			X	SS8	63		70						•		
60		\bigotimes			\square												
	83.7	Ŷ	SILTY SAND- some gr	avel, compact to very dense,												+	+
			grey, moist to saturated	1	X	SS9	100		27		_	•				_	
0.5					\square												
NOTES		1999999	and a set of			<u> </u>											
RQD: I	meters b Rock Qua	elow g ality De	round sufface esignation														
NO ^R																	

REFER	ENCE N	0.:	11215612-A2	_						ENCLO	SURE	No.:		2	2	
				BOREHOLE No.:	BH2	2					BO	RFI		ΕI	OG	
		G	HD	ELEVATION:	89.80) m					Page	2		of 2	00	
											J		GEN	D		_
CLIE	ENT: <u>Co</u>	onsolid	lated Fastrate (Ottawa) H	loldings Ltd.						⊠ss	Split S	poon				
PRC	JECT:	New V	Varehouse							GS	Auger	Samp	le			
DES		Som				B)	,			∑ T	Water	Level				
DAT	E (STAR	ы т).	6 August 2020	CHECKED DT		6 Augu	v ist 20	20		0	Water	conten	it (%)	`		
		··/	07 kugust 2020			o / lugu	51 20			• N	Penet	ration I	ndex) based o	n	
SC	ALE		STR	ATIGRAPHY		SAM		ΔΑΤΑ		• N	Penet	ation li	ndex b	ased or	i -	
Depth BGS	Elevation (m)	Stratigraphy	DE SOII	SCRIPTION OF AND BEDROCK	State	Type and Number	Recovery	OVC	Penetration Index / RQD	A Cu □ Cu S A	Shear Shear Sensit Shear Pocke	Streng Streng ivity Va Streng t Pene	oth bas oth bas alue o oth bas trome	sed on I sed on I f Soil sed on ter	-ïeld Va Lab Va	ane ne
meters	89.80		GF	ROUND SURFACE			%	ppm	Ν	50 10	SCALI 1kPa 20 30	= FOR 100kPa 40	150 150	RESU kPa 2 0 70	_1S D0kPa _ <u>80_9</u>	0
					Μ	SS10	83		57				•			
					Δ											
					\square							_			+	
					X	SS11	91		70							
- 8.0					Μ											
E																
- 8.5			Cobbles and boulders	encountered from 8.4 to 9.3 mb	gs 🛛	SS12	100		50+				•			
- 9.0																
E	80 5		Refusal encountered a	t 9.3 mbgs	×	SS13	100		50+				•			
- 95			good quality based on	ded sandstone, grey, fair to RQD								_			_	
-						RC1	100		85							
F 10.0																
															+	
E															_	
- 10.5																
E						RC2	100		83							
_ 11.0																
															_	
- 11.5																
₽ 		FI				RC3	100		52		++	+			+	
	77.6		Danahala tamainata dat	40.0 mb m											_	
			Dorenole terminated at	12.2 mbgs												
12.5																
											++	+			+	
§⊢ 13.0 }															+	
<u>-</u> 13.5																
											$\left \right $	+				
	·-															
mbgs:	neters b	elow g	round surface													
RQD: I	KOCK QUE	anty De	esignation													
ó																

REFER	ENCE N	0.:	11215612-A2	-						ENCLO	SUR	E No.:		3		_
				BOREHOLE No.:	BH	3					BC	RE		EL	OG	
		G		ELEVATION:	90.8	8 m					Page	e: <u>1</u>		of <u>3</u>	_	
CLIE		nsolid	ated Eastrate (Ottawa) H	oldings I td								LE	GEN	D		-
PRC	JECT:	New V	Varehouse								Split	Spoon				
LOC	ATION:	Somr	me Street, Ottawa, ON								Shell	by Tube	C			
DES	CRIBED	BY:	RVT	CHECKED BY:		В	V			Ţ	Wate	r Level				
DAT	E (STAR	T):	7 August 2020	DATE (FINISH)):	7 Augu	ıst 20	20		Ĥ	Atter	r conten berg lim	t (%) its (%)			
SC	ALE		STR	ATIGRAPHY		SAM	IPLE [DATA		• N • N	Pene Split Pene	tration I Spoon s tration I	ndex b sample ndex b	ased or ased on	1	
Depth BGS	Elevation (m)	Stratigraphy	DE SOII	SCRIPTION OF AND BEDROCK	State	Type and Number	Recovery	ovc	Penetration Index / RQD	A Cu □ Cu S	Shea Shea Sens Shea Pock	r Streng ir Streng itivity Va ir Streng et Pene	ith bas off bas alue of off bas tromet	pie ied on F ied on L Soil ied on ier	ïeld Vane ab Vane	5
meters	90.88		GF	ROUND SURFACE			%	ppm	Ν	50 10	SCAL DkPa 20 30	E FOR 100kPa 40	TEST 150	RESUL (Pa 20) 70	TS 10kPa 80 90	
_	90.8	7 <u>17</u> 7	TOPSOIL (125 mm thic	kness)	poot /	/					T				TT	
0.5		\bigotimes	brown and grey, damp	, trace to some graver, com		SS1	63		11							_
- - 1.0 -	90.0	\bigotimes	FILL - Crushed limesto black, damp	ne, asphalt, compact, grey a	and	SS2	58		42			•				_
_ _ 1.5 _	89.4		FILL - Sand, trace grav compact, grey and blac	el, clay pockets, asphalt, k, damp to moist												_
2.0	99.6	\bigotimes			4	SS3	38		15							_
2.5	00.0	\bigotimes	FILL - Silty sand, some cobbles/boulders, comp	gravel, trace clay, possible bact , grey, moist		SS4	33		54				•			_
3.0 3.5	87.8		FILL - Clayey sand, asp and brown, moist	phalt, loose to compact, grey	y	SS5	33		22		•					
4.0						SS6	4		8	•						
4.5	86.3		FILL - Silty sand, trace dense to very dense, b possible cobbles/bould	gravel, trace to some clay, rown and grey, damp to moi ers	ist,	SS7	50		54				•			
					X	SS8	33		44			•				_
V:601 H4-74-710617	84.8	××	SANDY SILT- some gr grey, damp	avel, compact to very dense	ə,	SS9	83		31							-
NOTES mbgs: RQD: F	: meters b Rock Qua	elow g ality De	round surface esignation													

)	T1215612-A2	-						ENCLO	SUR	E N0.:			3	
				BOREHOLE No.:	BH3	}					вс	DRE	HOI	LE	LO	G
		g		ELEVATION:	90.88	3 m					Pag	e: 2		of	3	-
		ncolic	lated Eastrate (Ottowa) h	oldings Ltd								LE	GEN	D		
PRC	JECT [.]	New \	Varehouse							⊠ ss	Split	Spoon	1			
LOC		Som	me Street, Ottawa, ON							∏ GS ⊠ ST	She	er Samp Iby Tube	e e			
DES	CRIBED	BY:	RVT	CHECKED BY:		B١	/			Ţ	Wat	er Level				
DAT	E (STAR	T): _	7 August 2020	DATE (FINISH):		7 Augu	ist 20	20		ů	Wate Atte	er conte rberg lin	nt (%) nits (%)		
SC	ALE		STR	ATIGRAPHY		SAM	IPLE [DATA		• N • N	Pen Split Pene	etration Spoon etration	Index sampl ndex b	based e based	d on on	
Depth BGS	Elevation (m)	Stratigraphy	DE SOII	SCRIPTION OF - AND BEDROCK	State	Type and Number	Recovery	OVC	Penetration Index / RQD	A Cu □ Cu S	Dyna Shea Shea Sena Shea Pocl	amic Co ar Stren ar Stren sitivity V ar Stren ket Pene	ne san gth ba gth ba alue o gth ba etrome	nple ised o ised o of Soil ised o eter	n Fiel n Lab	d Vane Vane
meters	90.88	aese	GF	ROUND SURFACE			%	ppm	N	10 10	0kPa 20 3	100kPa	150 50 6	kPa 30 7	200k	Pa 90
-			· ·		Μ	SS10	83		28		•					
- 7.5			· ·													
-			Possible cobbles/bould						+							
			mbgs		24		•					_				
- 0.0			· ·													
F			· ·													
- 8.5					80											
					Μ						$\left \right $		+			_
- 9.0																_
E					M	6642	100		42							
- 9.5					Λ	3313	100		42							
			Refusal encountered a	10 mbgs	H											
- 10.0			Cobbles and boulders	encountered from 10.0 to 11.9							$\left \right $		+		_	_
			mbgo													_
_ 10.5																
-						5.04										
- 11.0						RC1	32						-		_	
-											$\left \right $		-			_
- 11.5																
	70.0															
12.0	79.0		LIMESTONE- interbed	ded sandstone, grey, poor to												
													+			
															-	
						RC2	100		57							
§ 																
															1	
13.5			Rock core mechanical	breaks during coring from 13.4 t	o						$\left \right $	-			+	
			14.9 mbgs										-		-	
2																
MOTES mbgs: RQD: I	: meters be Rock Qua	elow g Ility De	round surface esignation													

REFER	ENCE No	D.:	11215612-A2	_						ENCL	OSL	JRE N	lo .:			3	
			J	BOREHOLE No.:	BH	3					F		EH		EI	06	
		G	HD	ELEVATION:	90.8	8 m		-			P	ade.	3		of 3	.00	
								-				g	LEG	EN	<u> </u>	_	
CLIE	ENT: <u>Co</u>	nsolid	lated Fastrate (Ottawa) H	loldings Ltd.						×	ss s	plit Spo	oon				
PRC		New V	Varehouse								GS A	uger S	ample	e			
DES		Somi BV:				B					515 W	later Le	evel				
DAT	E (STAR	ы. – ту	7 August 2020	DATE (FINISH)			v ist 20	20		0	N	/ater co	ontent	(%)			
	2 (01/11)	·/· _	17/dgd5t 2020			1 / tage	5120	20		•		enetrat	tion Ir	idex b	ased o	n	
SC	ALE	~	STR	ATIGRAPHY		SAN				• •	N P	enetrat	ion In	dex b	, ased or	n	
Depth BGS	Elevation (m)	Stratigraphy	DE SOII	SCRIPTION OF AND BEDROCK	State	Type and Number	Recovery	OVC	Penetration Index / RQD	∆ (□ (S	Cu S Cu S S S P	hear S hear S ensitivi hear S ocket F	treng treng ty Va treng Penet	th bas th bas lue of th bas romet	ed on ed on Soil ed on er	Field V Lab Va	ane ine
meters	90.88		GF	ROUND SURFACE			%	ppm	Ν	10	50kPa 20	CALE 100 30 4	FOR)kPa 40 5	TEST 1504 0 60	RESU	LTS 200kPa 80 9	90
						RC3	92		37	Ĩ	T				Ĭ		
F.J										\vdash	+		\square			+	
- 14.5											_	_				_	
E	75.0																
_ 15.0	75.9		Borehole terminated at	14.9 mbgs													
-											+	+				+	
- 15.5											_	_				_	
- 16.0																	
-																	
- 16 5											_	_				_	
- 17.0											+	+				+	
																_	
_ 17.5																	
-																	
- 18.0											-	_				_	
_																	
- 18.5																	
,																1	
																+	
19.5 -										\vdash		+			+	+	
										\vdash	_	_				+	
20.0																	
20.5										\vdash						+	
3										\vdash	_	_				+	
NOTES mbas:	: meters be	elow a	round surface														
RQD: I	Rock Qua	lity De	esignation														
3																	

REFER	RENCE N	0.:	11215612-A2							ENCLO	SUF	RE No	.:		4	
		6		BOREHOLE No.:	BH4	Ļ					B	ORE	НО	LE	LO	G
		G		ELEVATION:	90.44	4 m					Pag	je:	1	of	2	
СШ	ENT: Co	onsolid	ated Fastrate (Ottawa) H	loldings Ltd								L	EGE	D		
PRO	DJECT:	New V	Varehouse	olango Eta.						SS C	Spli	t Spoo er San	n nole			
LOC	CATION:	Somr	ne Street, Ottawa, ON							I∎ SS I ST	She	lby Tu	be			
DES	SCRIBED	BY:	RVT	CHECKED BY:		B	V			Ţ	Wat	er Lev	el			
DAT	E (STAR	T):	7 August 2020	DATE (FINISH):		7 Augu	ıst 20	20		ні ні	Atte	rberg I	imits (%)	6) (baco	d on	
SC	ALE		STR	ATIGRAPHY		SAN	IPLE [DATA		• N	Spli Pen Dyn	etratio t Spoo etration	n Index n samp n Index	base le based	d on I on	
Depth BGS	Elevation (m)	Stratigraph	DE SOII	SCRIPTION OF AND BEDROCK	State	Type and Number	Recovery	OVC	Penetration Index / RQD	A Cu □ Cu S A	She She Sen She Poc	ar Stre ar Stre sitivity ar Stre ket Pe	ength ba ength ba Value ength ba netrom	ased (ased (of Soi ased (eter	on Fie on Lat I on	ld Vane Vane
meters	90.44		GF	ROUND SURFACE			%	ppm	Ν	50 1,0	SC/ kPa 203	LE FC 100kF 0 40	OR TES Pa 15 50	TRE 0kPa <u>60 7</u>	SULT 2001 0 80	S (Pa) <u>90</u>
_	90.3	$\frac{1}{2}$	TOPSOIL(125 mm thic	kness)	(
F		\bigotimes		Shipaci, grey, damp	Ň	SS1	63		33			•				
_ 0.5		\bigotimes			\square											
	89.7		FILL - Sand and gravel	, compact, grey, damp	M											
- 1.0		\bigotimes			X	SS2	50		17	•						
E		\bigotimes			Δ											
- 1.5		\bigotimes	Asphalt encountered at	1.5 mbgs												
		\bigotimes			X	SS3	54		27		•					
2.0		\bigotimes			M											
-		\bigotimes														
2.5		\bigotimes			V	<u>SS4</u>	58		28					+		
F		\bigotimes			Λ				20							
- 3.0	87.4	\bigotimes				0.05	400		50.							
		\bigotimes	FILL - Silty sand, trace possible cobbles/bould	clay, trace to some gravel, ers, brown and grey, damp to		885	100		50+				Ī			
- 3.5		\bigotimes	moist													
F		\bigotimes												+		
4.0		\bigotimes	Wood encountered at 3	3.8 mbgs	M									-		
-		\bigotimes			X	SS6	17		19							
		\bigotimes			\square											
a – ^{−.5}		\bigotimes			∇											
- 50		\bigotimes			X	SS7	0		4	•						
5.0		\bigotimes			Δ											
		\bigotimes														
5.5 5.5		\bigotimes			X	SS8	75		29			,				
		\bigotimes			\square											
80 6.0	84.3	\bigotimes	SILTY SAND- trace to	some gravel, trace clav										-		
H8-2			compact to dense, grey	and brown, moist	V	SS9	79		49				_			
6.5					Λ				-							
121																
	S:				X											
mbgs:	meters b	elow g	round surface													
BOR																

REFER	ENCE N	D.:	11215612-A2	-						ENCLO	SURE	: No.:			4			
				BOREHOLE No.:	BH4	1					BO	REI		LEL	OG			
		G		ELEVATION:	90.4	4 m					Page	: 2		of _2				
CLIE		nsolid	lated Fastrate (Ottawa) H	loldings I td								LE	GEN	D				
PRO	JECT:	New V	Warehouse							SS I	Split S	samn	le					
LOC	- Ation:	Som	me Street, Ottawa, ON							∎ 03 ⊠ ST	Shelb	y Tube	:					
DES	CRIBED	BY:	RVT	CHECKED BY:		B١	/			Ţ	Water	Level	st (%)					
DAT	E (STAR	T) :	7 August 2020	DATE (FINISH):		7 Augu	st 20	20		н н	Atterb	erg lin	nits (%)) bacod (00			
SC/	ALE		STR	ATIGRAPHY		SAM	IPLE I	DATA		• N	Split S Penet	poon ation I	sampl ndex b	e pased o	n			
Depth BGS	Elevation (m)	Stratigraphy	DE SOII	SCRIPTION OF AND BEDROCK	State	Type and Number	Recovery	OVC	Penetration Index / RQD	∆ Cu □ Cu S	Dynan Shear Shear Sensit Shear Pocke	Stren Stren ivity V Stren t Pene	ne san gth ba gth ba alue o gth ba etrome	sed on sed on f Soil sed on ter	Field V Lab Va	/ane ane		
meters	90.44		G	ROUND SURFACE			%	ppm	Ν	50 10 2	SCAL	E FOR 100kPa 40	TEST 150 50 6	RESU kPa 2 0 70	LTS 200kPa 80	90		
-					Ν	SS10	4		32		•							
- 7.5					Δ													
					V							+			-			
8.0					X	SS11	58		18	•		-						
E					(_		\vdash				
8.5					V							_		\vdash				
					X	SS12	58		44			•						
9.0					(
					V													
9.5					X	SS13	67		50				•					
E												-		\vdash				
_ 10.0												_		\vdash				
															_			
_ 10.5																		
					V	SS14	88		50+				•					
_ 11.0	79.3				Δ								T					
			Borenole terminated at	reiusai at 11.1 mbgs								+						
- 11.5												_		\vdash				
												_		\square				
- 12.0																		
12.5															1			
															+			
												+		\vdash	+	\vdash		
13 5												_		\vdash	—			
														\square	_			
NOTES mbgs: i	: meters b	elow g	pround surface		I								<u> </u>			·		
REFER	ENCE No	0.:	11215612-A2	-							ENC	CLO	SUR	E No	.:		5	
--------------	------------------	-----------------	---------------------------	-----------------------------------	-----	-------	--------------------	----------	------	----------------------------	---	----------	-----------------------	---	------------------------------	---------------------	---------------	------------------
			1	BOREHOLE No.:	DC	PT	5						BC	RF	ЮН	IF	10	G
		G	HD	ELEVATION:	90.	76	m						Pag	e:	1	of	1	Ŭ
															EGEN			
	NI: <u>Co</u>	nsolid Now V	lated Fastrate (Ottawa) F	loldings Ltd.							\boxtimes	SS	Split	Spoo	n	_		
		Som	me Street Ottawa ON									GS ST	Auge	er San bv Tul	nple be			
DES	CRIBED	BY:	RVT	CHECKED BY:			B٧	/					Wate	er Lev	el			
DAT	E (STAR	T): _	7 August 2020	DATE (FINISH):			7 Augu	st 20	20		Ļ	4	Wate Atter	er cont berg l	ent (%) imits (%	6)		
SC	ALE		STR	ATIGRAPHY			SAM	PLE [DATA		•	N N	Pene Split Pene	etratio Spoo etratior	n Index n samp n Index	base le based	d on I on	
Depth BGS	Elevation (m)	Stratigraphy	DE SOII	SCRIPTION OF AND BEDROCK		State	Type and Number	Recovery	OVC	Penetration Index / RQD	DOC △ Cu Shear □ Cu Shear ○ S Sensit S Sensit ■ Cu Shear Pocke			hear Strength based on Field Vane hear Strength based on Lab Vane ensitivity Value of Soil hear Strength based on locket Penetrometer				
meters	90.76		GF	ROUND SURFACE				%	ppm	Ν	1	50	SCA kPa	LE FC 100kF	R TES	TRE OkPa 60 7	SULT: 2004	S :Pa) 90
_			Dynamic Cone Penetra	ation test from surface to refusa	I								ľĨ			Ĩ		
				30								1		-				
- 0.5												Ł		_	_			
E I																		
- 1.0																		
												t						
- 1.5												+		_	_	-		
												Ļ						
- 2.0												/						
												-						
- 2.5											+			_				
-																		
E 30																		
											1							
F											\vdash			-				_
- 3.5																		
- 4.0											1							
E														-				
_ 4.5												-		_				
E																		
5.0													[
												t		+	+			+
- 5.5												ł		_				
E																		
6.0	84.8																	
F														+				+
E													$\left - \right $	_				_
E													\square					
E																		
NOTES	: meters br		round surface										·					1
moga.		Jow y																

Notes on Borehole and Test Pit Reports

Soil description :

Each subsurface stratum is described using the following terminology. The relative density of granular soils is determined by the Standard Penetration Index ("N" value), while the consistency of clayey sols is measured by the value of undrained shear strength (Cu).

	Classification	(Unified sys	stem)		Terminology						
Clay	< 0.002 mm										
Silt	0.002 to 0.075 mm										
Const	0.075 to 1.75 mm	£	0.075 to 4.05 mm		"tra	ce" mo"	1-10%				
Sand	0.075 to 4.75 mm	tine	0.075 to 4.25 mm		SO	me	10-20%				
		meaium	0.425 to 2.0 mm		adje	ective (slity, sandy	() 20-35%				
		coarse	2.0 to 4.75 mm		an	a	35-50%				
Gravel	4.75 to 75 mm	fine coarse	4.75 to 19 mm 19 to 75 mm								
Cobbles Boulders	75 to 300 mm >300 mm										
Relati gra	ve density of nular soils	Standa ind	ard penetration ex "N" value		Cons cohe	istency of sive soils	Undraine strengt	ed shear h (Cu)			
		(BLO	WS/ft – 300 mm)				(P.S.F)	(kPa)			
					Ve	ery soft	<250	<12			
V	ery loose		0-4			Soft	250-500	12-25			
	Loose		4-10			Firm	500-1000	25-50			
	Compact		10-30			Stiff	1000-2000	50-100			
	Dense		30-50		Ve	ery stiff	2000-4000	100-200			
Ve	ery dense		>50			Hard	>4000	>200			
	Dook suglitu	decianatio				STRATICRADU					
"POI		uesignatio				STRATIGRAPH	IC LEGEND				
RQL	J (%) value		Quality			00	•				
	<20		very poor			0	•••				
	25-50		Poor		Sand	Gravel (Cobbles& boulders	Bedrock			
	50-75		Fair								
	75-90		Good				$\sim \sim$				
	>90		Excellent								
					Silt	Clay	Organic soil	Fill			
Samples: Type and Numl The type of sam SS: Split spoon SSE, GSE, AGE	ber Iple recovered is shown o E: Environmental sampling	n the log by f	the abbreviation listed he ST: S PS: F	ereafter. The nun Shelby tube Piston sample (Os	nbering of samples is terberg)	sequential for each AC RC GS	type of sample. 5: Auger 2: Rock core 5: Grab sample				
Recovery The recovery, sl	hown as a percentage, is	the ratio of le	ength of the sample obta	ined to the distan	ce the sampler was o	driven/pushed into th	ie soil				
RQD											
The "Rock Qual the run.	ity Designation" or "RQD'	value, expre	essed as percentage, is t	the ratio of the tot	al length of all core fi	ragments of 4 inches	s (10 cm) or more to th	ne total length o			
IN-SITU TEST	rs:										
N: Standard per	netration index			N _c : Dynamic	cone penetration in	dex	k: Permeat	oility			
R: Refusal to pe	enetration			Cu: Undı Pr:	ained shear strength Pressure meter	1	ABS: Absorption (F	Packer test)			
LABORATOR	RY TESTS:										
								O.V.: Organic			
Ip: Plasticity inde	ex	H: Hy	drometer analysis	A: Atterbe	g limits	C: Consolidatio	on	vapor			
Wi: Liquid limit GSA: Grain size analysis w:		w: Water content CS: Swedish fal		all cone							
Wp: Plastic limit Y: U			γ: Unit wei	γ: Unit weight CHEM: Chemical analysis							

GHD PS-020.01-IA- Notes on Borehole and Test Pit Reports - Rev. 0 - 07/01/2015

Appendix B Laboratory Testing Results

Liquid Limit, Plastic Limit and Plasticity Index of Soils (ASTM D4318)

Client:		Consolidate	d Fastrate (Ottav	wa) Holdings Itd	Itd Lab no.:		G-20-13	
Project/Site:		New wareho	ouse, Somme Str	reet, Ottawa, On		Project no.:	11215612-A2	
Borehole no.:	2		Sample no.:	4	1	Depth:	2.3 - 3.0m	
Soil description:						Date sampled:	7-Aug-20	
Apparatus:	Hand Crank/	Motor Driven	Balance no.:	1	1	Porcelain bowl no.:	1	
Liquid limit device no.:		1	Oven no.:	1	1	Spatula no.:	1	
Sieve no.:		1	Glass plate no.:	1				
	Liquid Limit ((LL):		Soil Preparation	:			
	Test No. 1	Test No. 2	Test No. 3	⊽ Co	ohesive <425 µm		Dry preparation	
Number of blows	30	27	20		ohesive >425 µm		Wet preparation	
	Water Conte	ent:			on-cohesive			
Tare no.	S15	S16	S29			Results		
Wet soil+tare, g	43.61	38.30	40.40] F				
Dry soil+tare, g	34.97	31.57	32.70	71.0 -				
Mass of water, g	8.64	6.73	7.70	(%)				
Tare, g	22.02	21.72	21.82	itent (
Mass of soil, g	12.95	9.85	10.88					
Water content %	66.7%	68.3%	70.8%	Wate				
Plastic Limit (Pl	_) - Water Cont	ent:		67.0 -				
Tare no.	S14	S20		-				
Wet soil+tare, g	27.14	27.75		65.0 -				
Dry soil+tare, g	26.20	26.85		15	5 17 19	21 23 25 27 Nb Blows	29 31 33 35	
Mass of water, g	0.94	0.90			Soil	Plasticity Chart		
Tare, g	21.84	22.53		70		LL 5D		
Mass of soil, g	4.36	4.32		60 Lo	ow plasticity	High plastic	sity	
Water content %	21.6%	20.8%			organic clay	CI		
Average water content %	21.	2%		[#] 40 −				
Natural Water	r Content (W ⁿ):		A Inde	(CL)			
Tare no.	S8				ow compressibilty		(MH) and (CH)	
Wet soil+tare, g	44.50			¹¹ 20 lin	porganic silt	- High inor	i compressibility ganic silt	
Dry soil+tare, g	33.60			10		- Inbrg - Medium co norganid si	ganic qiay mpres\$ibility It	
Mass of water, g	10.90			0		$\stackrel{\text{ML}}{\longrightarrow}_{\text{and}} \stackrel{\text{OL}}{\longrightarrow} - \stackrel{\text{Organic}}{\longrightarrow} \stackrel{\text{OL}}{\longrightarrow} $	<u>1y </u> 70 80 90 100	
Tare, g	14.30			Ū		Liquid Limit LL		
Mass of soil, g	19.30			Liquid Limit	lastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ	
Water content %	56.5%			69	21	48	56	
Remarks:	1	1						
Destaura di								
Performed by:	Z. Mathurin				Date: August 27, 2020		gust 27, 2020	
Verified by:	2120				Date: September 4, 2020			

GHD FO-930.105-Plastic and liquid limit - Rev. 0 - 07/01/2015

Client:	Consolidated Fastrate (Ottawa) Hold	ings Ltd			Lab No.:G-20-13			
Project:	New Warehouse, Somm	ne Street, Ot	awa, On			Project N	lo.:	112156	12
Location:	Ottawa, On								
Apparatus Used	for Testing	Oven no.:	1		Scale no.:	1			
Sample No.		BH1SS1	BH1SS2	BH1SS3	BH1SS4	BH1SS6	BH1SS7	BH1SS8	BH1SS9
Container no.		S18	S21	Bowl	S16	S15	S29	S43	S34
Mass of container + wet soil (g)		70.9	78.5	350.4	83.1	92.1	95.5	91.5	87.1
Mass of container + dry soil (g)		65.2	75.7	335.8	77.9	86.7	88.1	76.9	72.9
Mass of container	(g)	22.7	21.8	0.0	21.8	22.1	21.8	22.1	14.6
Mass of dry soil (g))	42.5	53.9	335.8	56.1	64.6	66.3	54.8	58.3
Mass of water (g)		5.7	2.8	14.6	5.2	5.4	7.4	14.6	14.2
Moisture content (%)	13.4	5.2	4.3	9.3	8.4	11.2	26.6	24.4
Sample No.		BH1SS10	BH2SS1	BH2SS2	BH2SS2	BH2SS4	BH2SS4	BH2SS6	BH2SS6
Container no.		S5	S28	S41	S41	S8	S8	S9	S9
Mass of container	+ wet soil (g)	89.8	76.8	75.9	75.9	44.5	44.5	100.3	100.3
Mass of container	+ dry soil (g)	84.6	64.2	58.4	58.4	33.6	33.6	89.4	89.4
Mass of container	(g)	22.2	21.9	22.9	22.9	14.3	14.3	21.7	21.7
Mass of dry soil (g))	62.4	42.3	35.5	35.5	19.3	19.3	67.7	67.7
Mass of water (g)		5.2	12.6	17.5	17.5	10.9	10.9	10.9	10.9
Moisture content (%)	8.3	29.8	49.3	49.3	56.5	56.5	16.1	16.1
Remarks:									
Performed by:	Z. Mathurin				Date:	August 2	27, 2020		
Verified by :	E/2 a				Date:	Septemb	oer 4, 2020		

Client:	Consolidated Fastrate (Ottawa) Hold	ings Ltd		Lab No.:G-20-13				3
Project:	New Warehouse, Somn	ne Street, Ot	awa, On			Project N	o.:	112156	12-A2
Location:	Ottawa, On								
Apparatus Used	for Testing	Oven no.:	1		Scale no.:	1			
Sample No.		BH2SS7	BH2SS8	BH2SS9	BH2SS10	BH2SS11	BH2SS12	BH2SS13	BH2SS14
Container no.		S11	S31	S38	S26	S36	S39	S35	S10
Mass of container + wet soil (g)		90.6	75.1	79.5	99.9	83.8	101.3	55.7	73.1
Mass of container + dry soil (g)		84.1	66.7	74.3	93.7	79.0	92.5	55.6	55.5
Mass of container	(g)	21.5	21.6	21.5	21.6	22.1	22.0	14.5	22.0
Mass of dry soil (g))	62.6	45.1	52.8	72.1	56.9	70.5	41.1	33.5
Mass of water (g)		6.5	8.4	5.2	6.2	4.8	8.8	0.1	17.6
Moisture content (%)	10.4	18.6	9.8	8.6	8.4	12.5	0.2	52.5
Sample No.		BH3SS1	BH3SS2	BH3SS3	BH3SS4	BH3SS5	BH3SS6	BH3SS7	BH3SS8
Container no.		S37	S25	S22	S20	S14	S7	S17	S2
Mass of container	+ wet soil (g)	87.3	73.4	76.6	102.3	66.7	57.8	89.6	102.2
Mass of container	+ dry soil (g)	78.7	71.6	72.4	97.8	64.3	56.4	83.5	96.5
Mass of container	(g)	22.0	21.8	22.2	22.5	21.8	21.7	21.5	21.8
Mass of dry soil (g))	56.7	49.8	50.2	75.3	42.5	34.7	62.0	74.7
Mass of water (g)		8.6	1.8	4.2	4.5	2.4	1.4	6.1	5.7
Moisture content (%)	15.2	3.6	8.4	6.0	5.6	4.0	9.8	7.6
Remarks:									
Performed by:	Z. Mathurin				Date:	August 2	7, 2020		
Verified by :	2120				Date:	Septemb	er 4, 2020		

Client:	Consolidated Fastrate (Ottawa) Hold	Ottawa) Holdings Ltd			Lab No.:		G-20-13		
Project:	New Warehouse, Somr	ne Street, Ott	awa, On		•	Project N	No.: 11215612-A2			
Location:	Ottawa, On					-				
Apparatus Use	d for Testing	Oven no.:	1		Scale no.:	1	-			
Sample No.		BH3SS9	BH3SS10	BH3SS11	BH3SS12	BH3SS13	BH4SS1	BH4SS2	BH4SS3	
Container no.		S12	S32	S13	S4	S120	S6	S23	S40	
Mass of container	88.7	84.4	88.7	77.6	85.2	93.5	76.9	96.9		
Mass of container	84.0	79.9	84.5	75.9	79.6	85.7	73.6	93.1		
Mass of container	r (g)	21.6	21.7	24.1	21.8	21.9	21.9	22.3	22.3	
Mass of dry soil (g)	62.4	58.2	60.4	54.1	57.7	63.8	51.3	70.8	
Mass of water (g)		4.7	4.5	4.2	1.7	5.6	7.8	3.3	3.8	
Moisture content	(%)	7.5	7.7	7.0	3.1	9.7	12.2	6.4	5.4	
Sample No.		BH4SS4	BH4SS5	BH4SS6	BH4SS8	BH4SS9	BH4SS11			
Container no.		S19	S1	S130	S42	S110	88			
Mass of container	r + wet soil (g)	105.4	92.9	44.1	101.8	98.5	73.0			
Mass of container	r + dry soil (g)	101.9	86.7	41.8	94.3	92.8	66.5			
Mass of container	r (g)	21.9	22.0	22.1	21.8	21.7	1.5			
Mass of dry soil (g)	80.0	64.7	19.7	72.5	71.1	65.0			
Mass of water (g)		3.5	6.2	2.3	7.5	5.7	6.5			
Moisture content	(%)	4.4	9.6	11.7	10.3	8.0	10.0			
Remarks:										
Performed by:	Z. Mathurin				Date:	August 2	27, 2020			
Verified by :	2/20				Date:	Septemb	per 4, 2020			

Client:	Consolidated Fastra	ate (Ottawa) Hold	ings Ltd			Lab No.:	G-20-13		
Project:	New Warehouse, S	omme Street, Ott	awa, On			Project No.:	11215612-A2		
Location:	Ottawa, On					-			
Apparatus Use	d for Testing	Oven no.:	1		Scale no.	:1			
Sample No.		BH4SS12	BH4SS13	BH4SS14					
Container no.		70	42	44					
Mass of containe	r + wet soil (g)	60.0	67.4	72.1					
Mass of containe	r + dry soil (g)	54.0	61.2	64.6					
Mass of containe	r (g)	1.5	1.4	1.4					
Mass of dry soil ((g)	52.5	59.8	63.2					
Mass of water (g))	6.0	6.2	7.5					
Moisture content	(%)	11.4	10.4	11.9					
Sample No.									
Container no.									
Mass of containe	r + wet soil (g)								
Mass of containe	r + dry soil (g)								
Mass of containe	r (g)								
Mass of dry soil ((g)								
Mass of water (g))								
Moisture content	(%)								
Remarks:									
Performed by:	Z. Mathurin				Date:	August 27, 2020			
Verified by :	2/20	-			Date:	September 4, 20	20		

Client:	Consolidated Fastrate (Ottawa) Hole	ings Ltd. La	b No.:	G-20-13			
Project, Site:	New Warehouse, Somme Street, Ot	awa, ON Pro	oject No.:	11215612			
Borehole N Depth:	No.: 1 1.5 - 2.1m	Sar	Sample No.: 3 Enclosure: -				
100 90 80 70 60 60 50 40 40 30					0 10 20 30 40 50 50 60 70		
					90 100		
0.001	0.01 0.1 Dia	neter (mm) ¹		10	100		
	Clay & Silt Fi Particle-Size Limits	Sand ne Medium as per USCS (ASTM D-2	Coarse 2487)	Gravel Fine Coarse			
	Soil Description	Gravel (%)	Sand (%)	Clay & Silt (%)			
	Gravel and Sand, trace Silt, trace Clay	51	43	6			
				1 %			
Remarks:							
Performed by	Z. Mathurin		Date:	August 27, 2020			
Verified by:	2/20		Date:	September 4, 2020	0		

Client:		Consolidate	ed Fastrate	(Ottawa) Hold	ings Ltd.		Lab No.:	G-20-13		
Project,	, Site:	New Wareh	iouse, Som	me Street, Ott	awa, ON		Project No.:	11215612		_
Bore Dep	ehole No.: oth:		2.3	2 - 3.0m			Sample No.: Enclosure:	-		
100 - 90 - 80 - 70 - 70 - 60 - 50 - 40 - 30 - 20 - 10 - 0 - 0.0		0.01		0.1 Dia						- 0 - 10 - 20 - 30 - 40 - 50 - 50 - 50 - 60 - 70 - 80 - 90 - 100 - 00
0.0		0.01		Dia	meter (mm)					
		Clay & Silt	Par	Fin ticle-Size Limits	S ne as per USC	and Mediu S (ASTM	ım Coarse	Gravel Fine Co	barse	
	Soil Description			Gravel	(%)	Sand (%)	Clay & S	iilt (%)		
	Clay and Silt, trace Sand, trace Gravel		Gravel	1		2	97			
		Clay-size parti	cles (<0.002	mm):				61 9	%	
Remark	(S:									
Perform	ned by:	Z. Mathurin					Date:	August 27	7, 2020	
Verified	l by:		Ź	20			Date:	e: September 4, 2020		

Clie	nt:	Consolidated Fastrate (Ottawa) Holdi	ngs Ltd.	Lab No.:	G-20-13		
Proj	ject, Site:	New Warehouse, Somme Street, Otta	awa, ON	Project No.:	11215612		
	Borehole No.:	2		Sample No.:	7		
	Depth:	4.5 - 6.1m		Enclosure:	-		
Percent Passing	100 90 80 70 60 50 40					0 10 20 30 40 50 50 60	
						70 80 90 100	
	0.001	Diam	eter (mm)		10		
		Clay & Silt Fin Particle-Size Limits	Sand e Mediu as per USCS (ASTM	ım Coarse	Gravel Fine Coarse	-	
		Soil Description	Gravel (%)	Sand (%)	Clay & Silt (%)		
		Gravelly, Silty, Sand, trace Clay	25	38	37		
		Clay-size particles (<0.002 mm):			8 %		
Ren	narks:						
Per	formed by:	Z. Mathurin		Date: August 27, 2020			
Veri	fied by:	2120		Date:	September 4, 2020		

Client:	Consolidated Fastrate (Ottawa) Hold	ngs Ltd.	Lab No.:	G-20-13	
Project, Site:	New Warehouse, Somme Street, Ott	awa, ON	Project No.:	11215612	
Borehole No.: Depth:	3 6.9 - 7.5m		Sample No.: Enclosure:	-	
100 90 80 70 60 50 40 40 30 20 10 0 0001					0 10 20 30 40 50 50 50 50 50 70 80 90 100
0.001	0.01 0.1 Dian	neter (mm)		10	100
	Clay & Silt Fin Particle-Size Limits	Sand e Mediu as per USCS (ASTM	ım Coarse D-2487)	Gravel Fine Coars	;e
	Soil Description	Gravel (%)	Sand (%)	Clay & Silt	(%)
s	and and Silt, trace Gravel, trace Clay	8	47	45	
Remarks:	Ciay-size particles (<0.002 mm):			8 %	
Performed by:	Z. Mathurin		Date:	August 27, 2	2020
Verified by:	2120		Date: September 4, 202		

Unconfined Compressive Strength of Intact Rock Core Specimen ASTM D 7012, ASTM D 4543

Client : Consolidated Fastrate (Ottawa) Holdings Itd					Project Nº : <u>G-20-13</u>				
Project :	New Warehous	e, Somme Stre	eet, Ottawa, O			Sam	ple Nº : <u>BH2</u>	2-RC1	
							Depth : <u>30'1</u>	1"- 31'5"	
						Sampling	g Date . Aug	ust 7, 2020	
Testing Appara	<u>tus Used :</u>			Loading o	device Nº	1	C	aliper Nº1	
			Technical Data					View of Specimen	
					Average	7	Befo	re Test :	
Diameter :		47	46.9	47	47.0	(mm)			
Length :		95	94.9	95.2	95.0	(mm)		E N P	
Straightness (0.5mm ma	aximum) (S1) :	0.3	0.3	0.3	0.3	(mm)			
Flatness (25µm maximu	m) (FP2) :	Ok	Ok	Ok	Ok			SIE	
Parallelism (0.25 ° maxir	mum) (FP2) :	0.15	0.2	0.2	0.15	(°)		SIIs"	
Mass :	43	5.4	_(g) Volume:	16	4644	(mm ³)			
Density :			264	14	_(kg/m ³)				
Moisture Conditions :			Dr	у					
Loading Rate (0.5 to 1	I.0 MPa / sec) :		0.8	8	- (MPa/sec)		Afte	r Test :	
Type of Fracture :			3						
Test Duration (2-15 M	inutes) :		3		- (minutes)			Real	
Maximum Applied Loa	ad :		216.	.97	✓ kN	lbs			
Compressive Strer	ngth :		125	5.2	_ (MPa)				
Remarks :									
Analysed by :			Z. Mathurin			_	Date :	September 4, 2020	
Verified by :			220			_	Date :	September 4, 2020	

GHD FO-930.112 - Unconfined Compressive Strength of Intact Rock Core Specimen - Rev.0 - 07/01/2015

Appendix C Slope Stability Analysis Results

ghd.com

Appendix D2

Geotechnical Study Report dated May 4th, 2009

GEOTECHNICAL STUDY SUBDIVISION PLAN HAWTHORNE INDUSTRIAL PARK LOTS 26 AND 27, CONCESSION 6 SOUTHEAST OF HAWTHORNE AND RIDEAU ROADS OTTAWA, ONTARIO

Date: May 4th, 2009

Reference: T020556-A1

INSPEC-SOL INC. 179 Colonnade Rd., Suite 400, Nepean, Ontario K2E 7J4 • Tel.: (613) 727-0895 • Fax: (613) 727-0581

Reference No. T020556-A1 (revised)

Ottawa, May 4, 2009

Mr. Jim Blake Business Development Division R. W. Tomlinson Limited 5597 Power Road Ottawa, Ontario K1G 3N4

> Re: Geotechnical Study Subdivision Plan Hawthorne Industrial Park Lots 26 & 27, Concession 6 Southeast of Hawthorne and Rideau Roads Ottawa, Ontario

Dear Mr. Blake:

Inspec-Sol Inc. (Inspec-Sol) has completed the geotechnical study for the subdivision plan for the above captioned project.

The report has been modified to align with the new drawings received by **Inspec-Sol** from J.L. Richards and Associates on May 1, 2009, which outlined a new Block number system for legal identification.Otherwise, the content in the report remains unchanged.

We trust that this information meets with your approval. Please do not hesitate to contact us should any questions arise.

Yours very truly,

INSPEC-SOL INC.

When Beverilge

William S. Beveridge, B.Eng. Project Manager

Abende

Joseph B. Bennett, P.Eng. Vice-President

JBB/WSB/vl

Enclosures

Dist: Mr. Jim Blake – Mail (1)

c.c Mr. Tim Chadder- J.L. Richards and Assoc.,-email-(<u>TChadder@jlrichards.ca</u>) Mail (5)

TABLE OF CONTENTS

1.0	INTRODUCTION			
2.0	0 FIELDWORK			
	2.1 Soil and l	Permeability Exploration Programs		
	2.2 Roadway	Investigation Boreholes		
	2.3 Block Inv	vestigation Boreholes and Test Pits		
	2.4 Slug Test	s and Groundwater Investigations		
	2.5 Locations	and Elevations		
3.0	SITE AND SUB	SOIL CONDITIONS6		
	3.1 General			
	3.2 Lot Cond	itions		
	3.2.1	Site Description for Proposed Block 17		
	3.2.1.1	Block 1 Overview7		
	3.2.1.2	Soil Permeability and Monitoring Well Information, Block 19		
	3.2.2	Site Description for Proposed Block 7 10		
	3.2.2.1	Block 7 Overview10		
	3.2.2.2	Soil Permeability and Monitoring Well Information, Block 711		
	3.2.3	Site Description of Proposed Block 612		
	3.2.3.1	Block 6 Overview12		
	3.2.3.2	Soil Permeability and Monitoring Well Information, Block 613		
	3.2.4	Site Description for Proposed Block 2		
	3.2.4.1	Block 2 Overview15		
	3.2.4.2	Soil Permeability and Monitoring Well Information, Block 216		
	3.2.5	Site Description for Proposed Block 3		
	3.2.5.1	Block 3 Overview17		
	3.2.5.2	Soil Permeability and Monitoring Well Information, Block 318		
	3.2.6	Site Description for Proposed Block 4		
	3.2.6.1	Block 4 Overview		
	3.2.6.2	Soil Permeability and Monitoring Well Information, Block 420		
	3.2.7	Site Description for Proposed Block 5		
	3.2.7.1	Block 5 Overview		
	3.2.7.2	Soil Permeability and Monitoring Well Information, Block 523		

	3.2.8 Site Description for Hawthorne Road Realignment	24
	3.2.8.1 Hawthorne Road Realignment Overview	24
4.0	GEOTECHNICAL COMMENTS AND RECOMMENDATIONS	25
	4.1 General	25
	4.2 Building Foundations and Floor Slabs	25
	4.2.1 Block 1	25
	4.2.2 Remaining Blocks 2, 3, 4, 5, 6, and 7	25
	4.3 Seismic Classification	
	4.3.1 Block 1	
	4.3.2 Remaining Blocks 2, 3, 4, 5, 6, and 7	27
5 0		20
5.0	EXCAVATION AND TEMPORARY DEWATERING	28
	5.1 General (All Lots)	
	5.2 Fill	
	5.3 Native Soils	
6.0	BACKFILL AND PERMANENT DRAINAGE	29
	6.1 General (All Lots)	
	6.2 Engineered Fill	
- 0		• 1
7.0	SERVICES	
	7.1 Service Trench Backfill (All Lots)	
8.0	ROADWAYS	
	8.1 Internal Access Road	32
	8.1.1 Existing Conditions	
	8.1.2 Recommendations	
	8.2 Hawthorne Road Realignment	
	8.2.1 Existing Conditions	
	8.2.2 Recommendations	
	0.2.2 Recommendations	

TABLES

Table 1	Roadway Investigation Boreholes	Pg. 3
Table 2	Block Investigation Boreholes and Test Pits	Pg. 4
Table 3	Monitoring Well Locations	Pg. 5
Table 4	Representative Test Pit Log Results Summary, Block 1	Pg. 8
Table 5	K (Conductivity) Predictors, Block 1	Pg. 9
Table 6A	Borehole and Test Pit Log Results Summary, Block 7	Pg. 10
Table 6B	Borehole and Test Pit Log Results Summary, Block 7	Pg. 11
Table 7	K (Conductivity) Results, Block 7	Pg. 11
Table 8	Borehole and Test Pit Log Results Summary, Block 6	Pg. 13
Table 9	K (Conductivity) Results, Block 6	Pg. 14
Table 10A	Borehole and Test Pit Log Results Summary, Block 2	Pg. 15
Table 10B	Borehole and Test Pit Log Results Summary, Block 2	Pg. 16
Table 11	K (Conductivity) Results, Block 2	Pg. 16
Table 12	Borehole and Test Pit Log Results Summary, Block 3	Pg. 18
Table 13	K (Conductivity) Results, Block 3	Pg. 19
Table 14	Borehole and Test Pit Log Results Summary, Block 4	Pg. 20
Table 15	K (Conductivity) Results, Block 4	Pg. 21
Table 16	Borehole and Test Pit Log Results Summary, Block 5	Pg. 22
Table 17	K (Conductivity) Results, Block 5	Pg. 23
Table 18	Borehole and Test Pit Log Results Summary,	
	Hawthorne Road Realignment	Pg. 24
Table 19	Recommended Pavement Sections – Internal Access Road	Pg. 33
Table 20	Recommended Pavement Sections – Hawthorne Road	Pg. 36

DRAWINGS

SITE LOCATION PLANDwg. No. T020556-A1-1SITE PLANDwg. No. T020556-A1-2BOREHOLE AND TEST PIT LOCATION PLANDwg. No. T020556-A1-3TEST PIT LOCATION PLAN (BLOCK 1)Dwg. No. T020556-A1-4TEST PIT LOCATION PLAN (1994)Dwg. No: T020556-A1-5

ENCLOSURES

BOREHOLE AND MONITORING WELL LOGS ROADWAY BOREHOLE LOGS TEST PIT LOGS Enclosures No: 01 - 18 Enclosures No: 19 - 30 Enclosures No: 31 - 42

APPENDICES

APPENDIX A

TEST PIT LOGS AND MONITORING WELL LOGS (BLOCK 1/ORGAWORLD)

APPENDIX B

TEST PIT LOGS (GOLDER, REPORT No. 931-2820, MARCH, 1994)

APPENDIX C

SOIL GRADATION DATA

APPENDIX D

NOTES ON BOREHOLE LOGS

1.0 INTRODUCTION

Inspec-Sol Inc. (**Inspec-Sol**) was authorized to conduct a geotechnical study (Study) of Lots 26 and 27 of Concession No. 6, (Site), "Hawthorne Industrial Park", located approximately southeast of the intersection of Rideau and Hawthorne Roads, in the City of Ottawa, Ontario. The purpose of the Study is to determine the current soil matrix and permeability conditions for the development of the site into an Industrial Park, as outlined in **Inspec-Sol** Proposal K2008-2A. This Study was authorized by Mr. Jim Blake, on behalf of R.W. Tomlinson Limited for **Inspec-Sol** to complete the work. It is understood by **Inspec-Sol** that this report will be submitted as part of a land development application by J. L. Richards and Associates to the City of Ottawa. The Site is currently zoned as a Rural Heavy Industrial Area. The location of the Site within the City of Ottawa is shown on Dwg. No. T020556-A1.

The Site is approximately 72 hectares (178 acres) and rectangular in shape. The Site has been subdivided into several blocks (Blocks 1 - 9 and the Hawthorne Road Realignment, (Block 10). One (1) block, "Future Development Block", is located along the approximate north-east boundary of the site, is pending further investigation. A proposed internal roadway system will provide vehicle access to each Development Block. The Site is currently outside of the City of Ottawa's municipal water and sewage network. For an overview of the Site Plan, Refer to Dwg. No. T020556-A1-2

This geotechnical study was conducted to determine the current soil material and permeability characteristics of the native and non-native soil matrix. The soil material information obtained will be used as input data supporting the preliminary designs, recommendations and caveats as applied to building foundations, grade raise restrictions, underground service layouts and access road construction. Information from the permeability studies are to be submitted for the calculation of the water balance requirements for the proposed site storm water management facility.

2.0 FIELDWORK

2.1 Soil and Permeability Exploration Programs

The Soil Explorations Program was planned and applied to determine the current soil material and permeability characteristics of the native and non-native soil matrix. Borehole and test pit depths varied for and within each block, primarily due to the placement of non-native fill

2

materials in Blocks 1, 6, 7 parts of 2, 4 and 5 and the presence of undulating bedrock in 2 and 3. Test pits were used to verify the soil stratum, and water table elevations at locations that were either uneconomical or inaccessible for drilling. Only test pits were dug for Block 1, either due to the bedrock elevations proximate to the surface elevation within the Block and/or observations of fill material extending to elevation of bedrock. The Future Development Block could not be drilled due to inaccessible site conditions. It was determined, at time of drilling; that the presence of a high water table combined with soft, organic material at the proposed drilling locations would not support either the drilling or the excavation equipment.

All boreholes were carried out by means of a track mounted drill rig adapted for soil sampling and/or rock coring, as applicable. The boreholes were advanced with a continuous flight auger or casing for rock core sampling, as required. Representative samples of the various soils were recovered at regular intervals with a split spoon sampler driven with an approximate energy of 470 kilojoules (kJ). The number of drops with the falling weight to drive the sampler 0.3 m is recorded and shown on the borehole logs as SPT or "N" value. Casing and coring equipment for rock cores were advanced to using diamond tip drilling equipment obtain one to two runs (1.5 m - 3.0 m) of rock. All boreholes were drilled by George Downing Estate Drilling, Ltd., at various times within the period of October – November 2008. All test pits were excavated using a track mounted excavator, supplied by R.W. Tomlinson Limited, during early November 2008. Representative samples of the various soils were recovered at the different stratums. Soil samples were collected and returned to the **Inspec-Sol** Ottawa laboratory for further examination and classification. The Borehole and Test Pit Logs are attached in Enclosures 1 to 42. The Soil Gradation Data is attached in Appendix C.

The Permeability Explorations Program was planned and applied to determine the hydrological soil groups and infiltration rates of both in-situ and graded soils. A series of monitoring wells were installed at previously drilled select borehole locations in areas that were assumed to provide best surface water capture and representative soil permeability for the respective block. The Monitoring wells for Block 1 and the Future Development Block were installed by George Downing Estate Drilling, Ltd., during mid-July 2008 for Conestoga-Rovers and Associates as part of CRA-Project No. 045804(12). The Monitoring wells for Blocks 2, 3, 4, 5, 6 and 7 for the **Inspec-Sol** Permeability Explorations Program were installed by George Downing Estate Drilling, Ltd. during early November, 2008.

2.2 Roadway Investigation Boreholes

A summary of the roadway investigation boreholes is given in Table 1.

TABLE 1
ROADWAY INVESTIGATION BOREHOLES

Block Number	Roadway Borehole ¹	Past Report Depths, (m)	Planned Max. Depth, (m)	Actual Depth (m)	Comments
1	R	logs are d 7			
2	RB2-01 - RB2-02	0.5 - 3.0	3.0	3.4 - 5.4	Past Report Depths Obtained from Report No. 931-2820, published by
3	RB3-01	2.0 - 2.9	3.0	1.9	Golder and Associates, March, 1994.
4	RB4-01	1.35 - 1.37	3.0	10.0	
5	RB5-01 - RB5-02	2.0 - 7.0	4.5	2.6-9.7	See Attachment T020556- A1-5 for an approximate
7	RB7-01 - RB7-03	1.0 -7.6	4.5	2.9 - 9.1	and Appendix B for Test
Hawthorne Road Realignment	RB10-01 - RB10-03	N/A	4.5	3.6-6.7	The Logs.

Note 1: WX-Y, where: W: RB: "Roadway Borehole", X: Block Number (Block Location), and Y: Sequence Number.

2.3 Block Investigation Boreholes and Test Pits

A summary of the block investigation boreholes and test pits are given in Table 2:

TABLE 2BLOCK INVESTIGATION BOREHOLES AND TEST PITS

Block Number	Borehole & Test Pit ^{1,2}	Past Report Depths (m)	Planned Max. Depth (m)	Actual Depth Range (m)	Comments			
1	Not Drilled	0.0-2.0	1.0	Not Drilled				
	TP01-08 – TP46-08			0.0 - 5.5				
2	B2-01 – B2-03	1.3	3.0	1.2 - 2.4				
-	TP2-01			0.2				
3	SWM3-10- SWM3-2R	2.0	3.0	3.3 – 4.6	Past Report depths obtained from			
-	TP5-01			0.6	Report No. 931-2820, published by			
,	B4-01	1.4	2.0	9.1	Golder and Associates, March 1994.			
4	TP4-01 – TP4-03	1.4	5.0	3.0 - 4.5	Co. Attachment T02055(A1 5 fer			
5	B5-01 – B5-03	2.0	3.0	6.7 - 10.0	an reproduced approximate location			
-	TP5-01			3.0	plan and Appendix B for the Test Pit			
6	B6-01 – B6-04	2.5	2.0	1.8 - 6.3	Logs.			
U	TP6-01 – TP6-02	5.5	5.0	4.2 – 5.1				
_	B7-01 – B7-03	. 1	2.1	2.1	2.0	21 20	2.4 - 6.1	
7	TP7-01 – TP7-02	2.1	3.0	1.7 - 4.0				
Hawthorne	RB10-01 - RB10-03	None	4.5	3.6-6.7				
Realignment	TP10-01 - TP10-02	None	4.5	1.2 – 1.9				

Note 1: WX-Y, where: W: B: "Borehole", SWM: "Storm Water Management" and TP: "Test Pit", X: Block Number (Block Location), and Y: Sequence Number.

Note 2: Boreholes B2-2, B3-3, B4-3, SWM5-1O, SWM5-1R, SWM5-2O, SWM5-2R, B6-1 and B9-1 had monitoring wells installed during backfilling. The monitoring wells are labelled B/MW2-2, B/MW3-3, B/MW4-3, SWM5-1O, SWM5-1R, SWM5-2O, SWM5-2R, B/MW6-1 and B/MW9-1.

Note 3: A representative set of Test Pits are included in this Study for Block 1. To review the all of the Test Pit Logs for Block 1, refer to CRA-Project No. 045804(12). A copy of the test pits are attached in Appendix A.

2.4 Slug Tests and Groundwater Investigations

Groundwater was present in all the monitoring wells. Slug tests were conducted in the monitoring wells located in blocks 2, 3, 4, 5, 6, and 7. Representative soil samples were taken in the soil stratums located between the perforated screen elevations then sent to the **Inspec-Sol** Ottawa Laboratory for analysis, as applicable. A summary of the monitoring well locations is given in Table 3.

Block Number	Monitoring Well / SWM Well	Screen Elevations Range (<i>Fill/</i> Soil)	Screen Elevations Range (<i>Soil and Bedrock/</i> Bedrock)	Comments	
1	MW1-08, MW2-08, MW4-08, MW5-08 ¹	90.3–88.8 Not Applicable Not Applicable 91.7 – 90.2	Not Applicable 92.6 – 90.3 93.6 – 92.3 Not Applicable	For Block 1 , monitoring well screens were installed in non-native fill (MW1-08, MW5- 08) pative soil and	
2	B/MW2-03	Not Applicable	82.3 – 80.5	bedrock (MW4-08), and	
3	3 SWM3-10 80.3 – 78. SWM3-1R, Not Applica SWM3-2O, 81.3 – 79. SWM3-2R Not Applica		Not Applicable 78.2 – 76.4 Not Applicable 77.8 – 76.3	bedrock (MW2-08). For Block No. 4, 5, 6, and 7 , the monitoring	
4	B/MW4-01	82.9 - 79.9	Not Applicable	well screen was	
5	B/MW5-01	83.2-81.7	Not Applicable	installed in the native	
6	B/MW6-03	86.9 - 84.8	Not Applicable	soil only.	
7	B/MW7-02 ²	88.6 – 87.1	Not Applicable	For Block 4 , the monitoring well screen was installed in the bedrock only. For Block 5 , the Storm Water Management "SWM" Borehole Nest screens were installed in the native soil "overburden" (O) and rock (R), respectively.	

TABLE 3MONITORING WELL LOCATIONS

Note 1: Monitoring Well: MWA – B, where: MW: "Monitoring Well", A: Sequence number, B: Last two digits of year, 2008. All MW series Monitoring Wells are in Block 1.

Note 2: Boreholes B2-2, B3-3, B4-3, SWM5-1O, SWM5-1R, SWM5-2O, SWM5-2R, B6-1 and B9-1 had monitoring wells installed during backfilling. The monitoring wells are labelled B/MW2-2, B/MW3-3, B/MW4-3, SWM5-1O, SWM5-1R, SWM5-2O, SWM5-2R, B/MW6-1 and B/MW9-1.

2.5 Locations and Elevations

The completed boreholes, test pits and monitoring wells had ground surface elevations recorded relative to a series of benchmarks. The benchmarks were previously located on site by the R.W. Tomlinson Limited. The locations and elevations of the benchmarks, boreholes, monitoring wells (as available) and test pits (as available) for Blocks 2, 3, 4, 5, 6 and 7 are enclosed on Drawing No. T020556-A1-3. The locations and elevations (as available) of the test pits for Block 1 are reproduced from the **Inspec-Sol** Report No. 45804-29 and enclosed on Dwg. No. T020556-A1-4.

3.0 SITE AND SUBSOIL CONDITIONS

3.1 General

Published geological maps of the area indicate that the native soils are shallow and variable, composed of organic soils underlain by silty clays, clays or silty sands. The underlying bedrock is either limestone, sandstone, dolomite, inter-bedding of sandstone and dolomite or interbedding of limestone and sandstone, depending on location. The site is located near the Gloucester Fault and near an intersection of the Nepean, Oxford and March Formations.

Most of the borehole and test pit logs show a non-native heterogeneous fill material, in which the soil component usually approximates a silty clay. The heterogeneous fill material also contains trace to some asphalt, concrete, brick, reinforcing steel, topsoil, and wood fragments. Some boreholes beneath the fill show a thin layer of topsoil/root mat with organics which overlies what is presumably the native soil. The native soil comprises of either sand, silty sand to silty clay/clayey silt and clayey gravel. Limestone interbedded with sandstone was encountered, as applicable, below the native soils. Groundwater or groundwater seepage was present in most of the drilled boreholes, excavated test pits and all of the monitoring wells.

The following sections, 3.2.1 to 3.2.8, presents more detailed descriptions of the field and laboratory findings.

3.2 Lot Conditions

3.2.1 Site Description for Proposed Block 1

3.2.1.1 Block 1 Overview

Block 1 is an approximately rectangular shaped property, located at the southwest corner of the site. The topography of the block slopes downward from southwest to northeast. The south western quadrant area consists mainly of a rock knoll, with its elevation gently sloping downward in a north to north easterly direction. The remaining quadrants consist of mainly fill material over bedrock or a thin layer of glacial till overlying bedrock. The northeast quadrant has a low-lying wet area with water observed at the surface. At practical test pit refusal, there was evidence of limestone interbedded with sandstone in the excavator. Table 4 provides the summary of soil conditions shown by representative test pits of Block 1. The representative test pits in Table 4 were listed with the first taken at the southwest quadrant, proceeding in a north easterly direction ending with the last at the northeast quadrant.

All test pit and monitoring wells for Block 1 have been reproduced from **Inspec-Sol** Report No. 45804-29 and are attached in Appendix A.

TABLE 4 **REPRESENTATIVE TEST PIT LOG SUMMARY RESULTS BLOCK 1**

Borehole/	Grade		Summary	Practical Auger/ Shovel	Water Table/				
Test Pit No. ¹	Elev. (m) ²	Fill Depth (m)	Silty Sand Depth (m)	Sandy Silt Depth (m)	Silt Depth (m)	Bedrock (m) ³	Refusal Depth, (m) [Elev.]	Depth (m) [Elev.]	
TP01-08	N/A	0.0 - 0.2	None	None	None	0.2	0.2 [N/A]	None	
TP13-08	N/A	0.0 - 0.3	None	None	None	0.3	0.3 [N/A]	None	
TP32-08	93.3	0.0 - 0.2	None	None	None	0.2	0.2 [93.1]	None	
TP38-08	91.4	0.0 - 1.2	None	None	None	1.2	1.2 [90.5]	1.2 [90.5]	
TP04-08	TP04-08 96.0 0.0 - 0.9 0.9 - 2.6		None	None	2.6	2.6 [93.43]	2.4 [93.4]		
TP15-08	TP15-08 N/A 0.0 - 0.3 None 0.3 - 2.1		None	2.1	2.1 [N/A]	2.1 [N/A]			
TP28-08	91.7	0.0 - 2.4	2.4 - 3.4	None	None	3.4	3.4 [88.3]	2.3 [89.4]	
TP05-08	94.8	0.0 - 1.8	None	None	None	1.8	1.8 [93.0]	1.2 [93.6]	
TP18A-08	93.1	0.0 - 3.4	None	None	3.4 - 5.5	N/E ⁴	N/E	1.5 [91.6]	
TP19A-08	92.8	0.0 - 2.4	None	None	2.4 - 5.2	N/E	N/E	1.2 [91.5]	

Note 1: CD-E: where C: TP: "Test Pit", D: Sequence Number, and E: Year Excavated (2008). Note 2: N/A: No elevation survey for specific Test Pit.

Note 3: Field Identified as Limestone

Note 4: N/E: Not encountered within depth of investigation.

3.2.1.2 Soil Permeability and Monitoring Well Information, Block 1

Four (4) monitoring wells were installed to determine general water levels and estimate the insitu soil permeability for Block 1. The available permeability data is summarized in Table 5. Well description information can be found in MW1-08, MW2-08, MW4-08 and MW5-08.

Blk. No.	Well No.	Non- Native Soil Screen Range BGS ¹ (m)	Native Soil Screen Range BGS (m)	Hydro- logic Soil Group (MOE)	Lab Test Results (USCS)	Estimated Laboratory K (cm/ sec)	Field K (Conductivity) AQT – Hvorslev Mean (cm / sec)	Estimated Percolation Time (min/cm)
	MW1 -08	Fill (1.5+\ 2.9 +\-)	N/A	CD	No Lab Test	No Lab Test	No Slug Test	20-50
1	MW2 -08	N/A ²	Bedrock (0.6+/ 2.8 +/-)	D	No Lab Test	No Lab Test	No Slug Test	50+
	MW4 -08	N/A	Silty Sand & Limestone (1.6 +\ 2.8 +\-)	С	No Lab Test	No Lab Test	No Slug Test	20-50
	MW5 -08	Fill (1.2+/- – 2.8+/-)	N/A	CD	No Lab Test	No Lab Test	No Slug Test	20-50

TABLE 5
K (CONDUCTIVITY) RESULTS BLOCK 1

Note 1: BGS: Below Ground Surface Note 2: N/A: Not applicable.

The values for the Hydrologic Soil Group and Estimated Percolation Time in Table 5 were estimated based on field and laboratory test data observations from other monitoring wells located in the site. The soil component of the heterogeneous fill material approximately exhibits the characteristics of a silty clay. The varying composition and density of the asphalt, concrete, brick, reinforcing steel, topsoil and wood fragments will affect the compaction ability of this heterogeneous fill and its permeability in indeterminate and localized areas.

3.2.2 Site Description for Proposed Block 7

3.2.2.1 Block 7 Overview

Block 7 is an approximately rectangular shaped property, located along the northwest corner area of the site. The Block topography is sloping downward from south to north. There is an operating sediment pond near the southwest area of the Block, delineated as Block 8 within Block 7. For the purposes of this discussion, Block 7 will include Block 8. Refer to Dwg No. T020556-A1-2 for location of Block 7. The western property line borders the proposed Hawthorne Road Realignment area. The Block 7 area is mainly graded with heterogeneous fill material overlying native soil and bedrock, except for along the western boundary, where a low lying wet area is acting as both a drainage ditch for the existing Hawthorne Road and the sediment pond. The bedrock appears to be increasing in elevation from south to north, but falling from west to east. At practical auger refusal, there was evidence of limestone interbedded with sandstone in the split spoon sampler. Tables 6A and 6B provide the summary of soil conditions for Block 7. The Borehole and Test Pit Logs for Block 7 are attached in Enclosures 1 to 3, 19 to 21, & 31 to 32.

Borehole/	Grade		Summary	e	Practical Auger/ Shovel	Water Table/		
Test Pit No.	Elev. (m)	Fill Depth (m)	Silty Clay Depth (m)	Sandy Clay Depth (m)	Silty Sand Depth (m)	Bedrock (m)	Refusal Depth, (m) [Elev.]	Depth (m) [Elev.]
B7-1	93.7	1.5	1.5- 6.1	None	None	6.1	6.1 [87.6]	3.0 [90.7]
B7-2	92.6	3.2	3.2 - 5.5	None	None	5.5	5.5 [87.0]	2.3 [90.34]
B7-3	90.6	2.1	None	2.1 – 2.4	None	2.4	2.4 [88.2]	None
RB7-1	93.8	2.9	None	None	None	2.9	2.9 [90.8]	2.8 [90.9]
RB7-2	93.0	3.3	3.3 - 9.2	None	None	N/E ¹	N/E	4.6 [88.4]
RB7-3	91.1	3.1	None	None	3.1 – 4.7	4.7	4.7 [86.4]	2.6 [88.5]

TABLE 6ABOREHOLE LOG SUMMARY BLOCK 7

Note 1: N/E: Not encountered within depth of investigation.

Borehole/	Grade		Summary	of Subsurf	ace Profil	e	Practical Auger/ Shovel	Water Table/
Test Pit No.	Elev. (m)	Fill Depth (m)	Silty Clay Depth (m)	SiltySandySiltyClayClaySandDepthDepthDepth(m)(m)(m)		Bedrock (m) ¹	Refusal Depth, (m) [Elev.]	Depth (m) [Elev.]
TP7-01	94.45	0.7	0.7 – 1.7	None	None	1.7	1.7 [92.7]	0.6
TP7-02	93.24	3.5	3.5 - 4.0	None	None	N/E ²	No Refusal	3.6

TABLE 6BTEST PIT LOG SUMMARY BLOCK 7

Note 1: Field Identified as Limestone interbedded with Sandstone.

Note 2: N/E: Not encountered within depth of investigation.

3.2.2.2 Soil Permeability and Monitoring Well Information, Block 7

One monitoring well was installed to determine general water levels and field soil permeability for Block 7. The predictive, lab and field data are summarized in Table 7. Well description information for B/MW7-02 can be found in Borehole Log B7-02.

TABLE 7K (CONDUCTIVITY) RESULTS BLOCK 7

Blk. No.	Well/ Location	Non- Native Soil	Native Soil Screen Range BGS (m)	Hydro- logic Soil Group (MOE)	Lab Test Results (USCS)	Estimated Laboratory K (cm/ sec)	Field K (Conductivity) AQT – Hvorslev Mean (cm / sec)	Estimated Percolation Time (min/cm)
	B/MW7- 02	N/A	Silty Clay (4.0+/ 5.5+/-)	CD	ML	10 ⁻⁵ - 10 ⁻⁶	1.41 x E -03	20-50
7	South 80%+/- Land Area	Fill	N/A	С	No Lab Test	No Lab Test	No Slug Test	20-50
	North 20%+/- Land Area	Fill	N/A	D	No Lab est	No Lab Test	No Slug Test	50+

The monitoring well B/MW7-02 field test results showed a higher conductivity 'K' value insitu than the 'K' value determined from the laboratory testing of a representative soil sample obtained from the soil stratum located between the screen elevations.

Samples extracted from the soil during drilling and test pit excavation showed slight to moderate intermixing of soil material(s) and disturbed subgrade immediately above and below the native soil elevation. The re-compaction and disturbances of the non-native fill and native soil matrix during the earthmoving activities in the Block over time may have created voids and other fissures within the soil, creating increased soil permeability in localized areas. As the new soil matrix settles and compacts over time, the permeability within the soil should decrease to the estimated laboratory values. The rate of compaction is dependent on the localized soil mix, which is considerably variable throughout the Block.

The soil component of the heterogeneous fill material approximately exhibits the characteristics of a silty clay. The varying composition and density of the asphalt, concrete, brick, reinforcing steel, topsoil and wood fragments may affect the compaction ability of the heterogeneous fill and its permeability in indeterminate and localized areas.

3.2.3 Site Description of Proposed Block 6

3.2.3.1 Block 6 Overview

Block 6 is an approximately triangular shaped property located within the centre area of the site and is planned to be surrounded by the proposed access road. The Block topography is sloping downward from west to east and northeast. The entire Block has been graded with heterogeneous fill material, except for a partial area located approximately southeast, which was observed to be an undisturbed low lying wet area. A drainage trench was excavated to drain the low lying wet area. The drainage ditch outlet is located at approximately the southwest corner of Block 3. There is a built up granular pad at approximately the southeast corner just southwest of the undisturbed low lying wet area. The majority of the Block area is comprised of a layer of heterogeneous fill material which lies over a native soil layer of either sandy silt, silty sand, sandy clay or silty clay, depending on location. The elevation of bedrock appears to be undulating. At practical auger refusal for applicable boreholes, there is evidence of either limestone or sandstone in the split spoon sampler. Table 8 provides the summary of soil conditions for Block 6. The Borehole and Test Pit Logs for Block 6 are attached in enclosures 4 to 7 and 33 to 34.

Borehole/	Grade		Sumn	Practical Auger/ Shovel	Water Table/				
Test Pit No.	Elev. (m)	Lev. (m)Fill FillSandy SiltSilty ClaySandy ClaySilty Bedrock (m)Depth (m)Depth (m)Depth (m)Depth (m)Depth (m)Depth (m)Depth (m)		Bedrock (m) ¹	Refusal Depth, (m) [Elev.]	Depth (m) [Elev.]			
B6-1	91.3	3.8	3.8-4.6	None	4.6 - 5.4	None	5.4	5.4 [85.8]	3.0 [88.3]
B6-2	90.5	3.2	4.6 - 6.1	3.2 - 4.6	6.1 - 6.3	None	6.3	6.3 [84.2]	3.2 [87.3]
B6-3	91.8	3.4	4.4 - 6.1	3.4 - 4.4	3.4 - 6.2	None	6.2	6.2 [85.6]	1.9 [89.8]
B6-4	89.1	None	0.0 - 1.5	1.5 – 1.8	None	None	1.8	1.8 [87.2]	None
TP6-01	90.7	4.5	4.7 – 5.0	4.5 - 4.7	None	5.0 - 5.1	N/E ²	No Refusal	4.5 [86.2]

TABLE 8BOREHOLE AND TEST PIT LOG SUMMARY BLOCK 6

Note 1: Field Identified as Limestone interbedded with Sandstone.

Note 2: N/E: Not encountered within depth of investigation.

3.2.3.2 Soil Permeability and Monitoring Well Information, Block 6

One monitoring well was installed to determine general water levels and soil permeability for Block 6. The predictive, lab and field data are summarized in Table 9. Well description information for B/MW6-03 can be found in Borehole Log B6-03.

Blk. No.	Location	Non- Native Soil	Native Soil Screen Range BGS (m)	Hydro- logic Soil Group (MOE)	Lab Test Results (USCS)	Estimated Laboratory K (cm/ sec)	Field K (Conductivity) AQT – Hvorslev Mean (cm / sec)	Estimated Percolation Time (min/cm)
	B/MW6 -03	N/A ¹	Silty Sand (5.2 +/- – 7.0 +/-)	В	SM	10 ⁻³ - 10 ⁻⁵	1.51 x E – 03	12-50
6	West 80%+/- Land Area	Fill	N/A	С	No Lab Test	No Lab Test	No Slug Test	12-50
	East 20%+/- Land Area	Fill	N/A	D	No Lab Test	No Lab Test	No Slug Test	50+

TABLE 9K (CONDUCTIVITY) RESULTS BLOCK 6

Note 1: N/A: Not applicable.

The monitoring well B/MW6-03 field test results showed a higher conductivity 'K' value insitu than the 'K' value determined from the laboratory testing of a representative soil sample obtained from the soil stratum located between the screen elevations.

Samples extracted from the soil during drilling and test pit excavation showed slight to moderate intermixing of soil material(s) and disturbed subgrade immediately above and below the native soil elevation. The re-compaction and disturbances of the non-native fill and native soil matrix during the earthmoving activities in the Block over time may have created voids and other fissures within the soil, creating increased soil permeability in localized areas. As the new soil matrix settles and compacts over time, the permeability within the soil should decrease to the estimated laboratory values. The rate of compaction is dependent on the localized soil mix, which is considerably variable throughout the Block.

The soil component of the fill material approximately exhibits the characteristics of silty clay. The varying composition and density of the asphalt, concrete, brick, reinforcing steel, topsoil and wood fragments may affect the compaction ability of the heterogeneous fill and its permeability in indeterminate and localized areas.

3.2.4 Site Description for Proposed Block 2

3.2.4.1 Block 2 Overview

Block 2 is an approximately rectangular shaped property, located at the southeast corner of the site. The Block topography is sloping downward from west to east. The approximate western half of the Block has been graded with heterogeneous fill material mostly over bedrock, and the approximate eastern half is a cleared but un-grubbed area of a relatively shallow native topsoil soil layer over bedrock. At practical auger refusal for boreholes B2-1, B2-2, RB2-01 and RB2-02, there were traces of sandstone and limestone in the split spoon sampler and at B2-3 there were traces of only sandstone. Table 10A provides the summary of soil conditions for Block 2. The Borehole and Test Pit Logs for Block 2 are attached in enclosures 8 to 10, 22 to 23 and 35.

Borehole/	Grade		Sumn	Practical Auger/ Shovel	Water Table/				
Test Pit No.	Elev. (m)	Fill Depth (m)	Topsoil Depth (m)	Silty Clay Depth (m)	Sandy Clay Depth (m)	Silty Clay Depth (m)	Bedrock (m) ¹	Refusal Depth, (m) [Elev.]	Depth (m) [Elev.]
B2-1	90.4	1.2	None	None	None	None	1.2	1.2 [89.2]	None
B2-2	88.6	1.4	None	None	None	None	1.4	1.4 [87.2]	None
B2-3	82.9	None	0.0-0.9	None	None	None	0.9	0.9 [82.1]	0.5 [82.4]
RB2-1	91.6	3.1	None	3.1 - 5.4	None	None	5.4	5.4 [87.2]	3.2 [88.4]
RB2-2	88.7	2.3	None	None	None	None	2.3	2.3 [86.6]	2.2 [86.5]

TABLE 10ABOREHOLE LOG SUMMARY BLOCK 2

Note 1: Field Identified as Limestone interbedded with Sandstone.

Borehole/	Grade		Sumn		Practical Auger/ Shovel	Water Table/			
Test Pit No.	Elev. (m)	Fill Depth (m)	Topsoil Depth (m)	Silty Sand Depth (m)	Sandy Clay Depth (m)	Silty Clay Depth (m)	Bedrock (m) ¹	Refusal Depth, (m) [Elev.]	Depth (m) [Elev.]
TP2-01	90.6	2.9	None	2.9 - 4.2	None	4.2	N/E	No Refusal	2.9 [87.7]
TP2-02	86.9	None	None	None	None	0.0-0.2	0.2	0.2 [86.7]	0.1 [86.8]

TABLE 10BTEST PIT LOG SUMMARY BLOCK 2

Note 1: Field Identified as Limestone interbedded with Sandstone.

Note 2: N/E: Not encountered within depth of investigation.

3.2.4.2 Soil Permeability and Monitoring Well Information, Block 2

One monitoring well was installed to determine general water levels and soil permeability for Block 2. The predictive, lab and field data are summarized in Table 11. Well information is summarized in Borehole Log B2-3.

TABLE 11K (CONDUCTIVITY) RESULTS BLOCK 2

Blk. No.	Location	Non- Native Soil	Native Soil/ [Rock] Screen Range BGS (m)	Hydro- logic Soil Group (MOE)	Lab Test Results (USCS)	Estimated Laboratory K (cm/ sec)	Field K (Conductivity) AQT – Hvorslev Mean (cm / sec)	Estimated Percolation Time (min/cm)
2	B/MW2- 03	N/A	[Sand Stone] (0.6+/ 2.4 + /-)	N/A	No Lab Test	No Lab Test	5.90 x E -03	50 +
2	West 50% (Fill Area)	Fill	N/A	D	No Lab Test	No Lab Test	No Slug Test	50+

Note 1: N/A: Not applicable.

In approximately the east 50% of Block 2, there exists native soil over bedrock. The monitoring well B/MW2-3 showed a higher conductivity 'K' value in-situ than what would be

predicted for solid rock. Seams were present in the rock cores which may account for a local conductivity, at the core site, but this should not be considered as an indicator of permeability for the Block.

The soil component of the heterogeneous fill material in the west 50% of Block 2 approximately exhibits the characteristics of silty clay. The varying composition and density of the asphalt, concrete, brick, reinforcing steel, topsoil and wood fragments may affect the compaction ability of the heterogeneous fill and its permeability in indeterminate and localized areas. It appears that the majority of this area is comprised of heterogeneous fill material directly overlying bedrock.

3.2.5 Site Description for Proposed Block 3

3.2.5.1 Block 3 Overview

Block 3 is an approximately square shaped property, located at the eastern boundary of the site. The south end of the Block is comprised of a rock knoll; located approximately 50 m south of the SWM3-2 (O and R) monitoring well nest. The knoll then drops abruptly from an estimated elevation of 88.0 m to 83.1 m. The low lying wet area is a cleared but un-grubbed area of relatively shallow native topsoil and soil layer of native silty clay over bedrock. At auger refusal, there were traces of sandstone and limestone in the split spoon sampler. At boreholes SWM3-1R and SWM3-2R, two 1.5 m runs each of limestone interbedded with sandstone were recovered. Table 12 provides the summary of soil conditions for Block 3. The Borehole and Test Pit Logs for Block 3 are attached in enclosures 11 to 14, 24 and 36.

Borehole/	Grade -		Sum		Practical Auger/ Shovel	Water Table/			
Test Pit No. ¹	Elev. (m)	Fill Depth (m)	Topsoil Depth (m)	Silty Clay Depth (m)	Sandy Clay Depth (m)	Silty Clay Depth (m)	Bedrock (m) ²	Refusal Depth, (m) [Elev.]	Depth (m) [Elev.]
SWM3-10	83.1	None	None	0.0-4.6	None	None	4.6	4.6 [78.5]	0.0 [83.1]
SWM3-1R	83.1	None	None	Bedrock Only	Bedrock Only	Bedrock Only	4.4	4.4 [78.7]	0.0 [83.1]
SWM3-20	83.1	None	None	0.0 - 3.4	None	None	3.4	3.4 [79.7]	0.0 [83.1
SWM3-2R	83.1	None	None	Bedrock Only	Bedrock Only	Bedrock Only	3.5	3.5 [79.7]	0.0 [83.1]
RB3-1	87.9	1.8	None	1.8 - 1.9	None	None	1.9	1.9 [86.1]	None
TP3-01	88.0	None	None	0.0 - 0.8	None	None	0.8	0.8 [87.23]	None

TABLE 12BOREHOLE AND TEST PIT LOG SUMMARY BLOCK 3

Note 1: O: Overburden and R: Rock.

Note 2: Field Identified as Limestone interbedded with Sandstone.

3.2.5.2 Soil Permeability and Monitoring Well Information, Block 3

Two monitoring well nests were installed to determine general water levels and soil permeability for Block 3 proposed storm water management facilities. The predictive, lab and field data are summarized in Table 13. Information for the monitoring well nests is summarized in borehole logs SWM 3-1R, SWM 3-1O, SWM 3-2R and SWM 3-2O.

Blk. No.	Location	Soil Type/ [Rock Type] Screen Range (m)	Hydro- Logic Soil Group (MOE)	Lab Test Results (USCS)	Estimated Laboratory K (cm/ sec)	Field K (Conductivity) AQT – Hvorslev Mean (cm / sec)	Estimated Percolation Time (min/cm)
	SWM 3- 1R	[Lime- stone/ Sand- Stone] (4.9 +/ 6.4 +/-)	N/A ¹	No Lab Test	No Lab Test	< 10 ⁻⁷	50+
2	SWM 3- 10	Silty Clay (2.7 +/ 4.5 +/-)	D	ML	$10^{-5} - 10^{-6}$	8.79 x E - 06	20-50
3	SWM 3- 2R	[Lime- stone/ Sand- Stone] (5.3 +/ 6.8 +/-)	N/A	No Lab Test	No Lab Test	7.64 x E - 06	50+
	SWM 3- 20	Silty Clay (1.8 +/- – 3.6 +/-)	D	No Lab Test	No Lab Test	9.26 x E - 07	20-50

TABLE 13K (CONDUCTIVITY) RESULTS BLOCK 3

Note 1: N/A: Not applicable.

The monitoring wells SWM3-1R and SWM3-2R showed a higher conductivity 'K' value insitu than what would be predicted for rock. The little permeability shown in the two rock wells may be from localized fracturing in the rock due to drilling. The monitoring wells SWM3-1O and SWM3-2O appear fairly consistent with predictive values for silty clay.

3.2.6 Site Description for Proposed Block 4

3.2.6.1 Block 4 Overview

Block 4 is an approximately square shaped property, located at the north-central (east) area of the site. There is a reserved area allocated for a roadway section labelled as Block 9, adjacent to the west side of Block 4. For the purposes of this discussion, Block 9 will be included as part of Block 4. The Block topography is sloping downward from southwest to northeast. Immediately north and east of the Block is an approximately six (6) to seven (7) metre drop to

a low lying wet area, settling at an elevation of 83.1 m (east) and 82.3 m (north). The Block elevation has been graded with a large layer of heterogeneous fill material over native soil overlying bedrock. The bedrock appears to be decreasing in elevation from the south to the north. At practical auger refusal, there were traces of limestone and sandstone fragments in the split spoon sampler. Table 14 provides the summary of soil conditions for Block 4. The borehole and test pit logs for Block 4 are attached in enclosures 15, 25 and 37 to 39.

TABLE 14BOREHOLE AND TEST PIT LOG SUMMARY BLOCK 4

Borehole/	Grade		Sum		Practical Auger/ Shovel	Water Table/			
Test Pit No.	Elev. (m)	Fill Depth (m)	Topsoil Depth (m)	Silty Clay Depth (m)	Silty Sand Depth (m)	Silty Clay Depth (m)	Bedrock (m) ¹	Refusal Depth, (m) [Elev.]	Seepage Depth (m) [Elev.]
B4-1	87.9	4.7	None	4.7 – 7.8	7.8 - 8.5	8.5 – 9.2	9.2	9.2 [78.8]	3.5 [84.4]
RB4-1	89.6	6.6	None	6.6 – 10.1	None	None	10.1	10.1 [79.6]	6.4 [83.2]
TP4-01	89.3	4.5	None	None	None	None	N/E ²	No Refusal	None
TP4-02	88.7	3.0	None	None	None	None	N/E	No Refusal	3.0 [85.7]
TP4-03	82.7	None	None	None	0.0-0.2	0.2 –3.5	N/E	No Refusal	0.0 [82.7]

Note 1: Field Identified as Limestone interbedded with Sandstone.

Note 2: N/E: Not encountered within depth of investigation.

3.2.6.2 Soil Permeability and Monitoring Well Information, Block 4

One monitoring well was installed to determine general water levels and soil permeability for Block 4. The predictive, lab and field data are summarized in Tables 15. The monitoring well information for B/MW4-01 is summarized in borehole log B4-01.

Blk. No.	Location	Non- Native Soil	Native Soil Screen Range (m)	Hydro- logic Soil Group (MOE)	Lab Test Results (USCS)	Estimated Laboratory K (cm/ sec)	Field K (Conductivity) AQT – Hvorslev Mean (cm / sec)	Estimated Percolation Time (min/cm)
4	B/MW4- 01	N/A	Silty Sand (5.0 +/ 8.1+/-)	С	ML	$10^{-5} - 10^{-6}$	3.47 x E - 03	10-30
	All	Fill	N/A ¹	D	No Lab Test	No Lab Test	No Slug Test	50+

TABLE 15K (CONDUCTIVITY) RESULTS BLOCK 4

Note 1: N/A: Not applicable.

The monitoring well B/MW 4-01 field test results showed a higher conductivity 'K' value insitu than the 'K' value determined from the laboratory testing of a representative soil sample obtained from the soil stratum located between the screen elevations.

Samples extracted from the soil during drilling and test pit excavation showed slight to moderate intermixing of soil material(s) and disturbed subgrade immediately above and below the native soil elevation. The re-compaction and disturbances of the non-native fill and native soil matrix during the earthmoving activities in the Block over time may have created voids and other fissures within the soil, creating increased soil permeability in localized areas. As the new soil matrix settles and compacts over time, the permeability within the soil should decrease to the estimated laboratory values. The rate of compaction is dependent on the localized soil mix, which is considerably variable throughout the Block.

The soil component of the fill material approximately exhibits the characteristics of silty clay. The varying composition and density of the asphalt, concrete, brick, reinforcing steel, topsoil and wood fragments may affect the compaction ability of the heterogeneous fill and its permeability in indeterminate and localized areas.

3.2.7 Site Description for Proposed Block 5

3.2.7.1 Block 5 Overview

Block 5 is an approximately square shaped property, located at the north-central (west) area of the site. The area has a fairly constant elevation within the property lines. North of the site is a 6 m - 7 m drop to a low-lying wet area. The block area has been graded with a large layer of heterogeneous material placed over native soil overlying the bedrock. At practical auger refusal, there were traces of limestone fragments in the split spoon sampler. Table 16 provides the summary of soil conditions for Block 5. The Borehole and Test Pit Logs for Block 5 are attached in enclosures 16 to 18, 26 to 26, and 40 to 41.

TABLE 16BOREHOLE AND TEST PIT LOG SUMMARY BLOCK 5

Borehole/	Grade Elev. (m)		Sum	Practical Auger/ Shovel	Water Table/				
Test Pit No.		Fill Depth (m)	Topsoil Depth (m)	Silty Clay Depth (m)	Sandy Clay Depth (m)	Silty Clay Depth (m)	Bedrock (m) ¹	Refusal Depth, (m) [Elev.]	Seepage Depth (m) [Elev.]
B5-1	90.5	5.3	None	5.3 - 6.1	6.1 – 7.3	7.3 –10.0	10.0	10.0 [80.5]	7.6 [82.9]
В5-2	90.8	4.6	None	4.6 - 6.7	None	None	N/E ²	No Refusal	None
В5-3	90.5	6.1	None	6.1 – 7.6	None	None	N/E	No Refusal	7.6 [82.9]
RB5-1	90.1	2.6	None	None	None	None	2.6	2.6 [87.5]	None
RB5-2	91.5	6.1	None	6.1 - 10.4	None	None	10.4	10.4 [81.1]	5.3 [86.2]
TP5-01	91.08	3.0 m	None	None	N/A ³	N/A	N/E	No Refusal	2.5 [88.6]

Note 1: Field Identified as Limestone interbedded with Sandstone.

Note 2: N/E: Not encountered within depth of investigation.

Note 3: N/A: Not applicable.

3.2.7.2 Soil Permeability and Monitoring Well Information, Block 5

One monitoring well was installed to determine general water levels and soil permeability for Block 5. The predictive, lab and field data are summarized in Table 17. Monitoring Well information for B/MW5-1 is summarized in borehole log B5-1.

TABLE 17				
K (CONDUCTIVITY) RESULTS BLOCK 5				

Blk. No.	Location	Non- Native Soil	Native Soil Screen Range (m)	Hydro- logic Soil Group (MOE)	Lab Test Results (USCS)	Estimated Laboratory K (cm/ sec)	Field K (Conductivity) AQT – Hvorslev Mean (cm / sec)	Estimated Percolation Time (min/cm)
5	B/MW5- 01	N/A	Silty Clay (7.3+/- 8.8+/-)	D	SM	10 ⁻⁵ – 10 ⁻⁶	9.75 x E - 03	30-50
5	All	Fill	N/A ¹	D	No Lab Test	No Lab Test	No Slug Test	50+

Note 1: N/A: Not applicable.

The monitoring well B/MW 5-1 field test results showed a higher conductivity 'K' value insitu than the 'K' value determined from the laboratory testing of a representative soil sample obtained from the soil stratum located between the screen elevations.

Samples extracted from the soil during drilling and test pit excavation showed slight to moderate intermixing of soil material(s) and disturbed subgrade immediately above and below the native soil elevation. The re-compaction and disturbances of the non-native fill and native soil matrix during the earthmoving activities in the Block over time may have created voids and other fissures within the soil, creating increased soil permeability in localized areas. As the new soil matrix settles and compacts over time, the permeability within the soil should decrease to the estimated laboratory values. The rate of compaction is dependent on the localized soil mix, which is considerably variable throughout the Block.

The soil component of the fill material approximately exhibits the characteristics of silty clay. The varying composition and density of the asphalt, concrete, brick, reinforcing steel, topsoil and wood fragments may affect the compaction ability of the heterogeneous fill and its permeability in indeterminate and localized areas.

3.2.8 Site Description for Hawthorne Road Realignment

3.2.8.1 Hawthorne Road Realignment Overview (Block 10)

The roadway area for the proposed Hawthorne Road Re-alignment has a north-south orientation and is adjacent along the western boundary of Block 7 from Rideau Road to the Site entrance. Widenings for the remaining Block 10 area along Rideau Road southeast of Hawthorne Road will be addressed in a separate report. The area is being currently used as the east drainage ditch for the existing Hawthorne Road and as a drainage area for the sediment pond located within Block 7. At auger refusal, there were traces of limestone and sandstone fragments in the split spoon sampler. Table 18 provides the summary of soil conditions for Hawthorne Road Realignment right-of-way. The Borehole and Test Pit Logs for the Hawthorne Road Realignment are attached in enclosures 28 to 30 and 41 to 42.

TABLE 18

BOREHOLE AND TEST PIT LOG SUMMARY HAWTHORNE RD REALIGNMENT

Borehole/ Test Pit No.	Grade Elev. (m)	Fill Depth (m)	Peat Depth (m)	Silty Clay Depth (m)	Silty Sand Depth (m)	Clay Depth (m)	Silty Clay Depth (m)	Bedrock (m) ¹	Practical Refusal Depth, (m) [Elev.]	Water Table/ Seepage Depth (m) [Elev.]
RB10-1	93.7	1.1	None	1.1 – 1.7	1.7 – 2.4	None	2.4 - 6.7	N/E ²	No Refusal	1.67 [92.0]
RB10-2	91.7	3.1	None	None	3.1 – 3.7	None	None	3.7	3.7 [88.05]	None
RB10-3	89.3	2.5	2.5 - 2.6	2.6-3.6	None	None	None	3.6	3.6 [85.7]	2.0 [87.3]
TP10-01	87.1	None	None	None	None	0.0 - 0.3	0.0 - 1.9	N/E	No Refusal	0.0 [87.1]
TP10-02	87.0	None	None	None	None	None	0.0 - 1.2	1.2	1.2 [85.8]	0.0 [87.0]

Note 1: Field Identified as Limestone interbedded with Sandstone.

Note 2: N/E: Not encountered within depth of investigation.

4.0 GEOTECHNICAL COMMENTS AND RECOMMENDATIONS

4.1 General

It is understood that the proposed structures to be built within Hawthorne Industrial Park will consist of low level (One (1) to Two (2) storey) Industrial Buildings. It is assumed that based on this Site not having access to the City of Ottawa water and sanitary sewer system, the water and sewer services for these buildings will be provided by independent wells and septic beds for each proposed block.

Each designated block was investigated using a combination of borehole, test pit and monitoring well investigation programs. Based on the findings, the following comments and recommendations for each block in turn are offered.

Further geotechnical studies should be conducted on any (or all) individual blocks to establish and provide parameters for specific planning or preliminary designs of any particular building. However, based upon the findings to date, there appears to be no major issue(s) that would preclude the development of this proposed Industrial Park site.

4.2 Building Foundations and Floor Slabs

4.2.1 Block 1

The Building Site Pad for the proposed Orgaworld building has been placed on engineered fill, which in turn was placed either directly on mostly bedrock or competent soils. There is no basement or sub-level beneath the Orgaworld building. The decision to use engineered fill for the foundation for the Orgaworld building was based on a specific building and site geotechnical investigation. Results of this investigation can be referenced in **Inspec-Sol** Report No. 45804-29.

4.2.2 Remaining Blocks 2, 3, 4, 5, 6, and 7

The subgrade building support options depend on, as applicable, which Block, building size and/or type, proposed final grade elevations and basement / non-basement options the designer/builder considers. The current topography, soil (subsoil) thickness, composition and relative bedrock elevation(s) vary considerably from Block to Block, and in many cases, within the specified block itself.

Any proposed building footprint location should consider the geotechnical characteristics of the soil matrix beneath it using a separate and specific geotechnical investigation mandated for the actual type, size and location parameters of the proposed structure(s).

The majority of the geotechnical field data presented in this report shows fill material directly over either bedrock or mostly competent native soils. Some competent native soil layers are separated from the fill materials by thin layer(s) of weaker soils. Approximately 15% to 20% of the Site has not been graded with heterogeneous fill. These areas comprise of relatively soft soils (including organics) of varying stratum thicknesses overlying bedrock. Local anomalies, including man-made features such as sediment ponds, drainage channels and drainage areas (low lying wet areas), also exist in some blocks. These anomalies should be addressed in the individual block areas with separate geotechnical investigations and recommendations.

Suggested options, as applicable, to address the foundation requirements of the remaining Blocks vary from:

- Complete excavation of the fill material and weak native soils (as applicable) and backfill excavated areas with engineered fill;
- Deepened spread or strip footings placed on competent subsoil (or engineered fill placed over competent subsoil;
- Excavated or drilled piers and grades with or without a structural slab;
- Driven pile foundations with or without a structural slab; and
- A global Block (or site) soil improvement program using Dynamic Consolidation Methods.

It is recommended, for each Block, that a cost/benefit analysis be conducted for the local vs. global (entire Block) application of each proposed geotechnical remedial action.

4.3 Seismic Classification

4.3.1 Block 1

A Multi Channel Analysis of Surface Waves (MASW) Analysis was performed on Block 1 to determine its seismic classification. The purpose of the MASW Analysis was to evaluate the seismic site class by measuring the average shear wave velocity within the upper 30 m of the soil/rock profile. In accordance to the Ontario Building Code (2006), the seismic site class

determined was based on the measured shear wave velocities and previously obtained Test Pit data. The relevant Building Code (NBCC and OBC) excerpts, apparatus and methodology governing the work and complete findings can be referenced in the **Inspec-Sol** Report No. 45804-29.

The survey was carried out along two survey lines, one over the rock knoll (exposed bedrock) and the other over an area where the fill material was placed directly over the bedrock. A summary of findings indicates that the shear wave velocities for Line 1 (rock knoll) is 1871 m/s, and for Line 2, 1255 m/s. According to Table 4.1.8.4.A of the National Building Code of Canada NBCC (2005) and based on the lesser of the measured average shear wave velocities, (Line 2), the site was classified as **Class B** for seismic load calculations for this particular building and its design.

It is noted that according to the above mentioned codes Site Class B may be used provided that the footing are founded such that there is less than 3 m of soil or Engineered Fill material between the base of footing and top of bedrock.

This analysis and recommendation is valid for Block 1 only and is included here only as a reference. It is recommended that the remaining Blocks be individually evaluated for MASW testing requirements, as applicable.

4.3.2 Remaining Blocks 2, 3, 4, 5, 6, and 7

Any proposed building or structure should be designed to resist a minimum earthquake force in accordance to the latest release of the National Building Code of Canada (NBCC) and Ontario Building Code (OBC).

The seismic class is mostly based upon the location and elevation of the foundation elements (ex. strip footings, spread footings, or pile caps), and soil and rock types present in the study area.

Based on drilled or excavated findings within the remaining Blocks, with the possible exception of Block 5 and the Future Development Block (which share approximately the same soil / bedrock / moisture characteristics), it is not expected that the remaining Blocks will satisfy the criteria for Site Classes E or F. Block 5 and the adjoining similar low lying wet area (Future Development Block) may satisfy the Class E requirements. The remaining Blocks will

28

likely satisfy the Class D or C requirements. It is advisable that a block and/or building footprint specific seismic investigation be undertaken once pertinent information is available from building designers.

5.0 EXCAVATION AND TEMPORARY DEWATERING

5.1 General (All Lots)

All excavations should be completed and maintained in accordance with the Occupational Health and Safety Act (OHSA) requirements. The following recommendations for excavations should be considered to be a supplement to, not a replacement of, the OHSA requirements.

5.2 *Fill*

Groundwater seepage is expected at varying depths of excavation. Seepage was observed through heterogeneous fill areas, sandy silt areas, silty clay areas and on top of bedrock during excavation. Seepage conditions may vary (increase) during wet seasonal periods from isolated water perches or rainwater infiltration. The anticipated groundwater seepage volume should be minimal and readily controlled by means of conventional construction dewatering techniques.

The heterogeneous fill materials encountered should be considered as OSHA Type 3 or 4 soils, depending on elevation of the water table.

5.3 Native Soils

Excavation to competent subgrade soils is expected to be below the water table. Suitable temporary groundwater dewatering systems should be constructed as required. Proposed dewatering programs may require Permits to Take Water and water discharge control measures. The native soils below the water table would be considered as OSHA Type 4 soils.

Excavations into the bedrock will very likely require the use of blasting programs. Pre-blast surveys are recommended, as applicable, subject to the location, depth and extent of the rock removal required. Hydraulic excavation methods may be sufficient for smaller areas, depending on its cost effectiveness. The bedrock would be considered as an OSHA Type 1 soil.

6.0 BACKFILL AND PERMANENT DRAINAGE

6.1 General (All Lots)

Foundation wall backfill and drainage should be in accordance with the most recent release of Ontario Building Code (OBC) requirements and should include free draining backfill.

Exterior and underflow drainage systems are anticipated in most buildings. Conventional perimeter foundation drain schemes are considered adequate, subject to proper installation which may consist of a perforated tile surrounded by clear stone and wrapped with geofabric. The drainage system should be connected to a frost-free outlet. If the proposed slab is below the exterior grades then the use of under-floor drains is recommended.

The backfill placed against foundation walls should be of free draining materials, such as the OPSS Granular 'B' specifications up to within 0.3 metres (m) of the ground surface. The upper 0.3 m should be a low permeable soil to reduce surface water infiltration. The native clayey silt soils at the site would be suitable for use as low permeable soil.

Foundation backfill should be placed and compacted as outlined below:

- Free-draining backfill should be used for both sides of the foundation wall;
- Backfill should be placed and compacted in uniform lift thickness compatible with the selected construction equipment, but not thicker than 200 millimetres (mm). Backfill should be placed uniformly on both sides of the foundation walls to avoid build-up of unbalanced lateral pressures;
- Backfill should not be placed in a frozen condition, or placed on a frozen subgrade;
- For backfill that would underlie paved areas, sidewalks or slabs-on-grade, each lift should be uniformly compacted to at least 98% Standard Proctor Maximum Dry Density (SPMDD);
- The underside of sidewalks at flush door openings should be insulated, or the sidewalk should be placed on frost walls to prevent heaving;
- For backfill on the building exterior that would underlie landscaped areas, each lift should be uniformly compacted to at least 95% of SPMDD;
- In areas on the building exterior where an asphalt or concrete pavement will not be present adjacent to the foundation wall, the upper 0.3 m of the exterior foundation wall should be

backfilled and compacted with a low permeable soil to reduce surface water infiltration; and;

• Exterior grades should be sloped away from the foundation wall, and roof drainage downspouts should be placed so that water flows away from the foundation wall.

Backfill should be placed and compacted in uniform lift thicknesses compatible with the selected construction equipment, but not thicker than 200 mm, and each lift should be uniformly placed and compacted.

6.2 Engineered Fill

Any fill used to raise the grade beneath floor slabs, foundations, roadways or parking areas foundations shall be considered to be engineered fill. To be considered engineered fill, the fill material requirements and placement operations are recommended to satisfy the following criteria listed below:

- Engineered fill must be placed under continuous supervision of the Geotechnical Engineer.
 Prior to placing any engineered fill, all unsuitable fill materials must be removed, the subgrade must be investigated for old buried fill or deleterious material, the subgrade must be proof-rolled, and the subgrade elevations must be surveyed;
- Prior to the placement of engineered fill, the source or borrow areas for the engineered fill must be evaluated for its suitability. Samples of proposed fill material must be provided to the Geotechnical Engineer and tested in the geotechnical laboratory for SPMDD and grain size prior to approval of the material for use as an engineered fill. The engineered fill must consist of environmentally suitable, free of organics and other deleterious material (building debris such as wood, bricks, metal, and the like), well graded and compactable, of suitable moisture content so that it is within -2 % to + 0.5% of the Optimum Moisture Content (OMC), as determined from the SPMDD. Granular soils meeting the requirements of Granular B Type I OPSS 1010 criteria would be considered suitable;
- The engineered fill must be placed in maximum loose lift thicknesses of 0.2 m. Each lift of engineered fill must be compacted with a heavy roller to 100% SPMDD; and;
- Field density tests must be taken by the Geotechnical Engineer, on each lift of engineered fill. Any engineered fill, which is tested and found to not meet the specifications, shall be either removed or reworked and retested.

7.0 SERVICES

7.1 Service Trench Backfill (All Lots)

The sides of the trench excavation should be tapered for soils that may be exposed to freezing (to a depth of 1.5 m below surface grade or limit of depth of frost penetration), to minimize the effects of differential frost heave. A taper ranging from 5 to 10 horizontal to 1 vertical is recommended.

Bedding for service pipes should conform to type and dimension with local municipal requirements and Ontario Provincial Standard Specifications (OPSS) and Ontario Provincial Standard Drawings (OPSD). Clear stone is not recommended as a bedding material. Sand cover is recommended to be placed on top of pipes with a minimum cover of 150 mm.

The heterogeneous fill and native materials may be used to over service trenches provided the following conditions are met. The fill and native materials will require a material separation (at the material source) of organic (wood, topsoil, peat etc.), non-compactable (steel, concrete, asphalt or other large fragments), high-moisture content (clays and other soils with a high plasticity) or other deleterious materials. Blast rock may be used provided that it is 150 mm minus diameter, well graded and free of clayey, organic or otherwise deleterious material.

Fill material to be placed in service trenches under the roadway/pavement sections should be placed and compacted to 300 mm lifts, placed and compacted to a minimum of 95% SPMDD, with the upper 300 mm below the pavement sub grade surface compacted to 100% SPMDD. Service trenches should be backfilled with free draining materials to prevent or minimize frost action if drainage of the material can be designed. The sides of the trench within the frost affected zone should have frost tapers incorporated into the backslope, as per OPSS requirements, i.e. should be sloped at 10H:1V. If not, two suggested alternatives are the use of non-shrink fill or backfilling above the pipe cover material with soils similar in texture to the trench sides.

8.0 ROADWAYS

8.1 Internal Access Road

8.1.1 Existing Conditions

There is a low lying wet area at the east – northeast area of Block 6. It was unknown when this study was conducted, if the proposed Internal Access Road roadway alignment crosses over this low lying wet area. An individual geotechnical assessment and construction recommendations may be required for this roadway section.

8.1.2 Recommendations

Within the proposed roadway alignment and area, excavation of the sediment and native soil materials to competent subgrade (likely bedrock) will be required for this and possibly for any other low lying wet area(s) encountered during the construction of the Internal Access Road.

The heterogeneous fill and native materials may possibly be used for embankment construction within the Hawthorne Industrial Park Site. The fill and native materials will require a material separation (at the material source) of organic (wood, topsoil, peat, etc.), non-compactable (steel, concrete, asphalt or other large fragments), high-moisture content (clays and other soils with a high plasticity) or other deleterious materials. Blast rock may also be used provided that it is a maximum of 150 mm minus diameter, well graded and free of clayey, organic or otherwise deleterious material. Placement of frozen backfill, or backfill on frozen grade, is not recommended.

As applicable, exposed cut areas of the existing roadway will require proof-rolling using a triaxial truck fully loaded with granular materials to verify subgrade strength prior to placement of the roadway section. Multiple truck passes over the exposed cut areas are recommended due to the heterogeneous composition of the subgrade. Poor subgrade strength areas are to be sub-excavated to a competent bearing fill or soil material, then backfilled with either a suitable similar graded soil or a 19 mm minus well graded granular material in 150 mm layers and again proof-rolled to ensure sufficient and reasonable bearing capacity.

As applicable, no cut/no fill areas (proposed grade elevation areas requiring an undercut to existing grade to accommodate a partial to total depth of the proposed roadway section) should be excavated 560 mm to accommodate the proposed roadway section as required.

Exposed cut areas in no cut/no fill roadway sections are to be addressed in the same manner as exposed cut areas to ensure sufficient and reasonable bearing capacity.

As applicable, prior to placing fill material for embankment construction, the existing grade should be stripped a minimum 150 mm to ensure good soil material friction within the proposed embankment footprint. As applicable, embankment slopes should be set at 3H:1V.

Positive drainage of the pavement surface course is required. The subgrade surface should be graded at a minimum 2% cross-fall and each subsequent layer of the pavement section (subbase, base, binder and surface courses) should be graded at the same cross-fall percentage to ensure consistent off the surface layer. Assuming a closed drainage system, surface runoff should be directed to an adequate amount of storm water collection points at proper locations that will facilitate a rapid collection and drainage of the design storm water volume at the minimum.

All base course and sub-base materials shall be compacted to 100% SPMDD, and all pavement structure materials should meet the specification requirements of OPSS Division 10.

PAVEMENT LAYER (Ministry of Transportation of Ontario)	PAVEMENT LAYER (Superpave) ¹					
1 lift of 50 mm of HL3 Asphalt PG 58-34 (Surface Course)	1 lift x 50 mm HMA Superpave 12.5 mm for Surface PG 58-34 Level 2 (0.3 - <3.0 Million ESALs)					
1 lift of 75 mm HL8 Asphalt PG 58-34 (Binder Course)	1 lift x 75 mm HMA Superpave 19.0 mm for Binder PG 58-34 Level 2 (0.3 - <3.0 Million ESALs)					
1 lift of 150 mm OPSS Granular A (Base Course)	1 lift x 150 mm OPSS Granular A for Base					
2 lifts of 150 mm OPSS Granular B Type II (Sub-Base Course)	2 lifts x 150 mm OPSS Granular B Type II for Subbase					

TABLE 19 RECOMMENDED PAVEMENT SECTIONS INTERNAL ACCESS ROAD

Note 1: Superpave recommendations assume min. subgrade strength of CBR = 3 or $M_r = 4500$ psi.

Sufficient field-testing should be carried out during construction to assess the compaction level of each lift of the pavement layers. This should be accompanied by laboratory testing of the granular and asphalt materials.

Annual or regular maintenance will be required to achieve maximum life expectancy of the roadway section. Routine pavement maintenance generally involves crack sealing and repairs of local distresses.

8.2 Hawthorne Road Realignment

8.2.1 Existing Conditions

It is understood that the existing Hawthorne Road south of Rideau Road will be realigned to the east of the existing roadway alignment.

The existing Hawthorne Road alignment, between Rideau Road and the current entrance to the Hawthorne Industrial Park, is a fill section for its entire length. The height of the embankment increases to traverse a rock knoll comprised of fractured interbedded limestone and sandstone that crosses the roadway at approximately ¹/₄ of the length between Rideau Road and the current entrance to the Hawthorne Industrial Park. The embankment of the existing roadway was constructed of non-native backfill directly placed over the native soil.

The right shoulder embankment (looking northwards) of the existing roadway between Rideau Road and the rock knoll has experience a slope base failures in localized areas into the adjoining soft clay and topsoil. It is recommended that this embankment area be delineated to approximately ¹/₂ the width of the northbound lane in affected areas, excavated to competent subgrade, and reconstructed with competent materials prior to placement of the new adjoining embankment and roadway section.

The proposed roadway alignment and area is located parallel and immediately east of existing Hawthorne Road and parallel and immediately west of Block 7. The proposed roadway alignment area is currently being used as a drainage ditch for the existing Hawthorne Road and for the runoff of an operating sediment pond, located at the approximately southwest quadrant of Block 7. Prior to construction, diversion of the active water and sediment drainage away from the proposed alignment area is recommended.

8.2.2 Recommendations

Within the proposed roadway alignment area, excavation of the sediment and native soil materials to competent subgrade (likely bedrock) will be required for approximately the northern half of the proposed roadway length. South of the rock knoll, competent native soil subgrade should become accessible at a relatively shallow excavation depth.

The heterogeneous fill material excavated in the Industrial Park may not be used as backfill for new or remedial (existing Hawthorne Road) embankment construction. Blast rock may be used provided that it is 150 mm minus diameter well graded, and free of clayey, organic or otherwise deleterious material. It is to be placed from competent subgrade in maximum 150 mm lift increments to an elevation of 560 mm below final roadway pavement grade elevation. The embankment slopes should be set at 3H:1V. Placement of frozen backfill, or backfill on frozen grade, is not recommended.

If the existing roadway embankment is to be tied in and partially used as part of the new roadway alignment, the affected existing slope areas should be examined and corrected for slope failures prior to construction (or tie-in) of the new embankment.

To avoid a slip joint in the existing Hawthorne Road embankment, while constructing the widened area, bench as appropriate using a 2H:1V cut into the embankment to top of subgrade. The height of the embankment will determine the amount of benching required. The existing roadway slope should be cleared and grubbed of all organic and deleterious material prior to benching.

As applicable, exposed cut areas of the existing roadway will require proof-rolling using a triaxial truck fully loaded with granular materials to verify subgrade strength prior to placement of the roadway section. Multiple truck passes over the exposed cut areas are recommended due to the heterogeneous composition of the existing embankment. Poor subgrade strength areas are to be sub-excavated to a competent bearing fill or soil material, then backfilled with either a suitable similar graded soil or a 19 mm minus well graded granular material in 150 mm layers and again proof-rolled to ensure a sufficient and reasonable bearing capacity.

As applicable, no cut/no fill areas (proposed grade elevation areas requiring an undercut to existing grade accommodate a partial to total depth of the proposed roadway section) should be

36

excavated 560 mm to accommodate the proposed roadway section. Exposed cut areas in no cut/no fill areas are to be addressed in the same manner as exposed cut areas.

As applicable, proposed grade raises (or embankments) over the existing Hawthorne Road may be constructed provided that the existing roadway surface is stripped a minimum 150 mm deep prior to construction within the affected proposed embankment subgrade area. Exposed proposed weak embankment subgrade areas (after 150 mm stripping) are to be addressed in the same manner as exposed cut areas. Subsequent grade raise (or embankment) construction should proceed in the same manner and layers as the adjoining new embankment, as applicable. The finished embankment slopes should be set at 3H:1V.

Drainage of the pavement surface course is required. The subgrade surface should be graded at a minimum 2% cross-fall and each subsequent layer of the pavement section (sub-base, base, binder and surface courses) should be graded at the same cross-fall percentage to ensure consistent off the surface layer. As applicable, using a closed drainage system, surface runoff should be directed to an adequate amount of storm water collection points at proper locations that will facilitate a rapid collection and drainage of the design storm water volume at minimum. As applicable, using an open drainage system surface runoff should be directed to side ditches that produce positive drainage away from road surface and toe of slope (as applicable) areas.

PAVEMENT LAYER (Ministry of Transportation of Ontario)	PAVEMENT LAYER (Superpave) ¹
1 lift of 50 mm of HL3 Asphalt PG 58-34 (Surface Course)	1 lift x 50 mm HMA Superpave 12.5 mm for Surface PG 58-34 Level 3 (3.0 - <10.0 Million ESALs)
1 lift of 100 mm HL8 Asphalt PG 58-34 (Binder Course)	1 lift x 100 mm HMA Superpave 19.0 mm for Binder PG 58-34 Level 3 (3.0 - <10.0 Million ESALs)
1 lift of 150 mm OPSS Granular A (Base Course)	1 lift x 150 mm OPSS Granular A for Base
2 lifts of 150 mm OPSS Granular B Type II (Sub-Base Course)	2 lifts x 150 mm OPSS Granular B Type II for Subbase

TABLE 20

RECOMMENDED PAVEMENT SECTIONS HAWTHORNE ROAD

Note 1: Superpave recommendations assume min. subgrade strength of CBR = 3 or $M_r = 4500$ psi.

All base course and sub-base materials shall be compacted to 100 percent SPMDD, and all pavement structure materials should meet the specification requirements of OPSS Division 10.

Sufficient field-testing should be carried out during construction to assess compaction of each lift of the pavement layers. This should be accompanied by laboratory testing of the granular and asphalt materials.

Annual or regular maintenance will be required to achieve maximum life expectancy of the roadway section. Generally, routine asphalt pavement maintenance will involve crack sealing and repairs of local distresses.

9.0 LIMITATIONS OF THE INVESTIGATION

This report is intended solely for the Client named. The material in it reflects our best judgment in light of the information available to **Inspec-Sol** at the time of preparation. No portion of this report may be used as a separate entity, it is written to be read in its entirety. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Although every effort has been made to ensure that the values obtained from boreholes, test pits or monitoring wells represented in the Tables and Figures (as applicable) in this report are accurate, if there is a discrepancy, the values in the Enclosures shall be considered as correct.

The recommendations made in this report are in accordance with our present understanding of the project. We request that we be permitted to review our recommendations when the drawings and specifications are complete, or if the proposed construction should differ from that mentioned in this report.

It is also important to emphasize that a soil investigation is, in fact, a random sampling of a site and the comments are based on the results obtained at the test locations only. It is, therefore, assumed that these results are representative of the subsoil conditions across the site. Should any conditions at the site be encountered which differ from those found at the test locations, we request that we be notified immediately in order to permit a reassessment of our recommendations.

We trust that this report meets with your present requirements. Please do not hesitate to contact us should any questions arise.

INSPEC-SOL INC.

Mu Berevilge

William S. Beveridge, B.A., B.Eng. Project Manager

JBB/WSB/vl

Abend

Joseph B. Bennett, P. Eng. Vice President

Enclosures

Dist: Mr. Tim Chadder- J.L. Richards and Associates,-email-(TChadder@jlrichards.ca)

DRAWINGS

SITE LOCATION PLAN SITE PLAN BOREHOLE AND TEST PIT LOCATION PLAN TEST PIT LOCATION PLAN (BLOCK 1) TEST PIT LOCATION PLAN (1994)

T020556-A1(001)GN-OT001 JAN 27/2009

T020556-A1(001)GN-OT003 MAY 04/2009

T020556-A1(001)GN-OT006 MAY 04/2009

T020556-A1(001)GN-OT005 MAY 04/2009

ENCLOSURES

BOREHOLE AND MONITORING WELL LOGS ROADWAY BOREHOLE LOGS TEST PIT LOGS
REFER	ENCE N	o.:	T020556-A1								ENC	LOS	URE	No	.:		1		
	\wedge			BOREHOLE No.:	B7-	-1						P				EI	00	2	
(i	JSPI	EC *	SOL	ELEVATION:	93.73	3 m							Page	\ _ I	1	of	1	2	
	2			<i>6</i>									- ugu	<u> </u>	GE				
CLI	ENT: <u>R</u>	W.Tor	nlinson Ltd.	1 - Hug ta						·	\boxtimes	SS	Split \$	Spoo	n				
	JECT:	Geote	chnical Investigation	NH Q(ST	Shelb	y Tul	De				
		LOT 2	b and 27, concession b, C				Depe					RC	Rock Wate	Core r Leve	el				
		ы. т.	October 22, 200			Octo	ber 22	20	08		0		Water	cont	ent (%)			
								., 20			•	N	Atterd Penet	tration	n Inde	%) x base	d on		
sc	ALE		STR	ATIGRAPHY			SAMP				•	N	Penet	ration	Index	pie based	on		
Depth BGS	Elevation (m)	Stratigraphy	DES SOIL	CRIPTION OF AND BEDROCK	State		Number	Recovery	Organic Vapou ppm or %LEL	Penetration Index / RQD	∆ □ S ▲	Cu Cu	Shear Shear Sensi Shear Pocke	r Stre Stre tivity r Stre et Per	ngth t ngth t Value ngth t netron	ased of solution o	on Fie on Lat il on	ld Va Van	ne e
meters	93.73		GRO	OUND SURFACE				%	ppm	Ν	10	50kF 20	CALE	FOF 100kP 40	R TES 2a 1 50	T RES 50kPa 60	ULTS 200 70 8	kPa 0_9	0
		\bigotimes	FILL- asphalt and conce sand silt clay very der	rete fragments, some gravel,								_							
-			sana, ent, enay, rery aer		L.	7						-+							
- 1.0						(s	S1 !	50		50+		_			•			A	
F	92.21	H	SILTY CLAY- some gra	vel, organics, trace oxidation,						-						+			
- 2.0			stiff, brown / black, dry		Ľ	S	iS2	9		к		1	-	_		_			
	91.44	III	SILTY CLAY, some gra	vel, sand, firm, brown / black,		/ s	isa 4	46		12				+			-	-	
₹3.0	90.68		moist																
	00.00		SILTY CLAY - some gra brownish grey, wet	avel, trace organics, very soft,	\geq	s	S4	13		19	•								
- 4.0					L L	s	55	25		1			-	_		_			
-	89.46 89.31		TOPSOIL, some organi	cs, very soft, black, brown, we	et /					•						-			
E50	89.16	RH.	SILTY CLAY- some org	anics, stiff, black / grey, wet	$\frac{1}{1}$	(s	S6 !	59		20				_	-				
			SILTI CLAT- liace oxic	ation, organics, grey brown, v												+			
-					\rangle	(s	S7	13		4 5					•	-			
- 6.0	87.63	paa	En	d of Borehole											-				
			Ai	uger Refusal umed Bedrock															
- 7.0												-		-		_			
																-			
- 8.0														_					
-																			
å E a a												_							
												_		_					
%⊢10.0												+	+			+			
												_							
<u>-</u>													-	+		-			
-08).																			
∑ - 12.0																			
																	 		
													-				-		
13.0																			
	o:																		
X L L																			
m																			

REFER	ENCE N	o.:	T020556-A1									ENCLO	SUF	RE No	D.:		2	
				BOR	HOLE No.:	В	7-2			-			во	RE	HOL	Εl	00	;
i ì	JSPI	EC*	SOL	ELEV	ATION:	92.6	64	m					Pag	je: _	1	of .	1	
CLIE	ENT: R.	W.Tor	nlinson Ltd.	, , ,										L	EGÈN	ID		
PRC	JECT:	Geote	chnical Investigation									SS 🕅 ST	Spli	lby Tu	n be			
LOC	ATION:	Lot 2	6 and 27, concession 6, 0	Ottawa, On	tario								Roc	k Core	9			
DES	CRIBED	BY: _	B.Beveridge		CHECKED B	Y:		J.Ben	nett	<u>.</u>		¥ ∘	Wat Wat	ier Lev er cont	vel ent (%)			
DAT	E (STAR	T):	October 31, 2008	3	DATE (FINIS	H):		ctober (31, 20	008		⊢1 ● N	Atte Pen	rberg etratio	limits (9 n Index	%) c base	d on	
sc	ALE		STRATIGRAPHY		MONITO	DR	 	SAN				• N	Spli Pen	t Spoo etration	n samp n Index	le based	on	
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION (SOIL AND BEDRO	DF DCK	93.86 — 93.76 —	F	State	Type and Number	Recovery	Organic Vapou ppm or %LEL	Penetration Index / RQD	∆ Cu □ Cu S	She She Sen She Poc	ar Stre ar Stre sitivity ar Stre ket Pe	ength bangth ban	ased of ased of of Soi ased of eter	on Fiel on Lab I on	ld Vane ⊨Vane
meters	92.64		GROUND SURFA	CE					%	ppm	Ν	50 10	SCAL 0kPa 20 3	E FOI 100kF 040	R TEST Pa 15 50	RES 0kPa 60	ULTS 2001 70 8	<pa 0 90</pa
- 1.0			FILL- silty clay, some sa gravel, asphalt and con fragments, trace organi black, grey, brown, moi petroleum odour	and, crete cs, stiff, st,	0.00-		X	SS1	71		60					•		
2.0			-some trace gravel and	asphalt			X	SS2	50		11					-		
3.0	89.44		-becoming very stiff to v trace oxidation	very soft,			A	SS3	21		3	•				-		
- 4.0	88.83		SILTY CLAY- trace san oxidation stiff, greenish moist	d, brown, /	3.66 — WL 3.96 —	⊥	Å	SS4	100		4 4	•				<u> </u>		
	97.76		oxidation, stiff, green, b red, moist	rown,	4.01*			222	16		12							
- 5.0 - -	87.10		SILTY CLAY- some gra sand, trace organics, st _black/grey, wet	iff,	5.54 —			SS7	18		R							
6.0			End of Borehol Auger Refusal Assumed Bedro	e ck														
7.0																+		_
- 0.0																<u> </u>		
- 9.0 -																		
- 10.0																		
													-					
_ 11.0																		
																+	$\left - \right $	
- 12.0																_		
																-	\square	
- 13.0																_		
-																_	\square	
NOTES	S:																	

			102000771					<u></u>			0001					
				BOREHOLE No.:	B7-3	3					BO	RE	HOI	EI	.00	;
i h	ISPE	C *2	SOL	ELEVATION:	90.62	m					Pa	ge: _	1	of	1	
CLIF	NT: R	W.Tor	mlinson Ltd.									Ľ	EGE	ND		
PRC	JECT:	Geote	chnical Investigation	;		1.00				⊠ s	S Spl T Sh	it Spor	on			
LOC	ATION:	Lot 2	6 and 27, concession 6, C	Ottawa, Ontario						R	C Ro	ck Cor	e			
DES	CRIBED	BY:	B.Beveridge	CHECKED BY:		J.Ber	nnett			¥	Wa	ter Le	vel	`		
DAT	E (STAR	T):	October 22, 2008	DATE (FINISH):	(October	22, 20	800		H-1	Atte	erberg	limits	(%)		
SC	ALE		STR	ATIGRAPHY		SA	MPLE	DATA		• N	Spl	it Spo	on Inde on sam	x base ple	aon	
Depth BGS	Elevation (m)	Stratigraphy	DES SOIL /	CRIPTION OF AND BEDROCK	State	Type and Number	Recovery	Organic Vapour ppm or %LEL	Penetration Index / RQD		Dyr Dyr u She u She She Poo	amic (ear Str ear Str sitivity ear Str cket Pe	Cone sa Cone sa rength l rength l rength l rength l rength l	ample based based based of So based based oneter	on on Fie on Lab il on	d Vane Vane
meters	90.62		GRC	UND SURFACE			%	ppm	N	10	SCA 50kPa			T RES		(Pa
-		\otimes	FILL- sand and gravel, s	some clay, compact, brown, m	noist								<u> </u>			<u>} 90</u>
E		\bigotimes													$\left - \right $	
- 1.0		\bigotimes			X	SS1	42		26		•					
						1							_		-	
- 2.0	88.54		-becoming compact to v	ery dense	X	SS2	46		R							
	88.21 ⁻		SILTY SAND - some gra	d of Borehole	×	SS3	0		R	_			_		$\left - \right $	
- 3.0			Αι	iger Refusal												
-											+	$\left \right $	_	-	$\left \right $	
E																
															$\left \right $	
5.0										_		\square	-	_		
-																
6.0																
-																
- 7.0													_	_		
E													-			
- 80											_		-			
F											_					
- 9.0													-			
⊢ 10.0											+					
-											_		_			
- 11.0											+					
- 12.0													-			
, 													_			
E 12 0															$\left \right $	
- 13.0																
									L							
NOTES).															

REFER	ENCE N	o.:	T020556-A1	·						ENCI	_OSU	RE N	lo.:			4	
				BOREHOLE No.:	B6-1						BC	ORE	HC	DLE	LC	G	
	1241	C*	SOL	ELEVATION:	91.25	<u>m</u>					Pa	ige:	1	0	f _1		
CLIE	ENT: R.	W.Tor	nlinson Ltd.									Ī	EG	END	2		
PRC	JECT:	Geote	chnical Investigation								SS Sp ST Sh	ilit Spo ielby T	oon ube				
LOC	ATION:	Lot 2	6 and 27, concession 6, 0	Ottawa, Ontario							RC Ro	ock Co	re				
DES	CRIBED	BY:	B.Beveridge	CHECKED BY:		J.Ber	nett			Ţ	W	ater Le	evel	/0/ \			
DAT	E (STAR	T):	October 23, 2008	DATE (FINISH):	(October	23, 20	800		щ	Att	erberg	g limit	(%) s (%)			
SC	ALE		STR	ATIGRAPHY		SA	MPLE	DATA		• •	N Pe Sp N Pe	netrati lit Spo netrati	ion In oon sa on Ind	dex b ample lex ba	ased on	n	
Depth BGS	Elevation (m)	Stratigraphy	DES SOIL	CRIPTION OF AND BEDROCK	State	Type and Number	Recovery	Organic Vapou ppm or %LEL	Penetration Index / RQD	∆ (□ (S	Cu Sh Cu Sh Se Sh Po	namic lear St lear St nsitivit lear St lear St leket P	rengtl rengtl ty Val rengtl enetr	samp h base h base ue of h base omete	ed on ed on Soil ed on er	Field Lab V	Vane 'ane
meters	91.25		GRO	OUND SURFACE			%	ppm	Ν	10	SCA 50kPa	ALE FO		EST R 150k	ESUL Pa 70	.TS 200kPa	3 90
-			FILL- silty clay, some gr	avel, asphalt fragments and								<u> </u>	ĬĬ				-
- 1.0				ery sun, greyish brown, moist	X	SS1	67		17		•						
2.0	89.73		FILL- silty clay, some gr and oxidation, hard, gre	avel and sand, trace organics yish brown, moist	X	SS2	67		14		•	-					
T 30			-some trace of gravel to stiff less organics	sand, becoming hard to very	X	SS3	67		6	•						_	
-	87 44		-trace to some sand, m	bist to wet	X	SS4	63		4	•	-						
_ 4.0	86.68		SANDY SILT- some gra wet	vel, very loose, brownish grey,	X	SS 5	75		3	•	4						
5.0	85.92		SANDY CLAY- some givery stiff, greenish grey	avel, trace organics, oxidation, moist	X	SS6 SS7	75 0		10 R	•		•				_	
6.0	85.89		brownish grey, wet	d of Borehole													
			A Pres	uger Refusal umed Bedrock												+	
- 7.0 -													_				
- 8.0																	
9.0																	
- 11.0																	
12.0																	
E 12 O												-	-				
NOTES	:	I								·							

REFER	ENCE N	o.:	T020556-A1							ENC	LOSL	IREN	lo.:			5	
1				BOREHOLE No.:	36-2	2					в	DRE	EHC	DLE	ELO	C	
i N	ISPE	C•	SOL	ELEVATION: 90	.50	m					Pa	age:	1		of _	1	
CLIE	NT: R.	W.Ton	nlinson Ltd.	<i>h</i>								<u></u>	EG	EN	2		
PRC	JECT:	Geote	chnical Investigation								SS SI ST SI	olit Spo nelby T	oon Tube				
LOC	ATION:	Lot 2	6 and 27, concession 6, (Ottawa, Ontario						Ĩ	RC R	ock Co	ore				
DES	CRIBED	BY: _	B.Beveridge	CHECKED BY:		J.Ben	nett			¥ ∘	W	ater Lo ater co	evel ntent	(%)			
DAT	E (STAR	T):	October 27, 200	B DATE (FINISH):	(October 2	27, 20	008		•	I At	terber	g limit	s (%)) Dasod	0.0	
SC	ALE		STR	ATIGRAPHY		SAN		DATA		•	Si N Pe	olit Spo	on Ind	ample lex ba	e ased o	n	
Depth BGS	Elevation (m)	Stratigraphy	DES SOIL	SCRIPTION OF AND BEDROCK	State	Type and Number	Recovery	Organic Vapou ppm or %LEL	Penetration Index / RQD	∆ S ▲	Cu Si Cu Si Si Si Po	near Si near Si ensitivi near Si ocket F	trengt trengt ty Val trengt Penetr	h bas h bas ue of h bas omet	sed on ed on Soil sed on er	Field Lab	l Vane Vane
meters	90.50		GRO	DUND SURFACE			%	ppm	Ν	10	SC 50kPa 20	ALE F 100 30	OR TE IkPa 10 51	EST 150 060	RESU ^{KPa} 0 70	LTS 200kl 80	Pa 90
-		\bigotimes	FILL- silty clay, some groups or ganics, hard, brown,	ravel and asphalt fragments, trace grev, moist											_	_	
			5														
- 1.0					X	SS1	67		23		•	_				_	
			-becomes hard to very	stiff	∇	552	21		P								
- 2.0		\bigotimes	becomes hard to very	5011	\square	002	21				_	7					_
					X	SS3	13		15		•						
3.0	87.40	×														_	
-			stiff, grey, brown moist	nd and gravel, trace organics, very	X	SS4	50		17		•	•					
- 4.0	86.69		SANDY SILT- some sa	nd and gravel, trace oxidation,		885	24		11			-					
-	05.00		stiff, grey, brown, moist		Δ	335	54										
Eso	65.95		SANDY SILT- some gra moist	avel and organics, compact, grey,	X	SS6	50		12	-							
È a			-becomes compact to c	ense	X	SS7	0		R								
E 6.0	84.40 84.22	ZZ_4	SANDY CLAY- some g	ravel, very stiff, brownish grey,	,×	SS8	25		R			4					
			\moist En	d of borehole	/										-		_
- 7.0			A	uger Refusal										_			
-			110.								_		-				
8.0																	
											_			-	_		
9.0														_			
												+					
2- 10.0											_						
															\rightarrow	-+	
												-					
2-																	
12.0													$\left - \right $			_	
															_		
ĕ⊢ 13.0																-	+
NOTES	:																
KEH																	
б. <u>.</u>																	

REFER	ENCE N	o.:	T020556-A1									ENCL	OSU	RE N	lo.:			6		
	-			BOR	HOLE No.:	В	6-3						BC		нс) F	= (00	<u>`</u>	
i	JSP	C*	SOL	ELEV	ATION:	91.	84	m					Pa	ae:	1	ر	⊑ ∟v	1	,	
														L	EG	ENE	<u> </u>			
CLIE	ENT: <u>R</u> .	W.Tor	nlinson Ltd.								—		S Sp	lit Spo	oon		-			
PRC		Geote	chnical Investigation	Ottown 07	taria								T Sh	elby T	ube					
			B Reveridae	Ottawa, Oh		/.		1 Bon	nott			_∐.⊧ 	Wa	ck Co ater Le	re evel					
	E (STAR	ы. т.	October 31 200	8	DATE (FINISH	-1)-)ctober 3	31 20	008		0	Wa	iter co	ntent	(%)				
		·/· _	00000017200									• •	I Pe	netrati	ion In	dex b	ased	on		
SC	ALE		STRATIGRAPHY		WELL			SAM	1PLE (• ١	I Pe	netratio	on Ind	imple iex ba	ised c	'n		
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDR	OF DCK	93.06— 92.96—	F	State	Type and Number	Recovery	Organic Vapou ppm or %LEL	Penetration Index / RQD	∆ (□ (S ▲	Cu Sh Cu Sh Se Sh Po	ear St ear St nsitivil ear St cket P	rengti rengti ty Val rengti enetr	n bas n bas ue of h bas omet	ed or ed or Soil ed or ed or	n Fiel n Lab	d Va Van	ine ie
meters	91.84		GROUND SURF	ACE					%	ppm	Ν	10	SCA 50kPa 20	LE FO 100 30 4	OR TE kPa 0 50	2ST F 150k 0 60	RESU Pa 07	LTS 200k	(Pa) 9/	0
_		\otimes	FILL- silty clay and san	d, trace	0.00												_	\square	\square	
-		\bigotimes	organics, very stiff, bro	wnish	0.00-		\mathbb{H}											+		
- 1.0		\bigotimes	grey, moist			$\otimes \otimes$	М	SS1			26		•	•			_			
-	90.32		FILL- silty clay, some s	and and		38	\square	000										+		
2.0	00 FF	\bigotimes	asphalt fragments, trac oxidation, green brown	e arev.		88	Д	552			55									
-	89.55	Ŵ	\moist			\otimes	Μ	SS3			R			-			-	+		
- 3.0	88.79	\boxtimes	FILL- silty clay, some g trace organics, grey bro	ravel, own, _r		\otimes	Н													
	88.49	i i i i i i i i i i i i i i i i i i i					X	SS4			7	•	+-			\rightarrow	-+	+		
			gravel, grey, moist	and trace		\otimes	Ħ													
			SILTY CLAY- trace gra	vel and	4.27 —	$\boxtimes_{\mathbf{V}} \boxtimes$	М	SS5			5	• 4					\rightarrow	-	_	
	87.27 87.19		red / black, moist	Æ	WL 4.40 ⁹		М	556			7									
5.0	87.06		SANDY SILT- loose, bl	ackish	5.18-		Д	000			'	-				\rightarrow		\rightarrow		
-			grey, wet	nd			М	SS7			7	•								
6.0	85.74		greenish brown, wet	па, г			Ħ													
			SILTY SAND- , trace cl	ay, /	0.74		М	SS8			10	•		-				\rightarrow	-	
- 7.0			SILTY SAND- loose bla	ackish	6.71— 7.01—															
-	84.52		grey, wet SANDY SILT- some or	avel.													-	-+	-	
-	00.04		trace clay, very dense,	grey, wet	0.00		X	SS9			R									
	83.81		End of Borehol	e	8.03-											\rightarrow	\rightarrow	-	\neg	
			Presumed Bedro	ock									1							
§⊢ 9.0																$ \rightarrow $		_		-
<u>_</u> 10.0																			_	
≝ 211.0																				
													-	+			\neg	+		\vdash
2 – 12.0 2 –													+						_	
														-						
13.0																				
2-																				
NOTES	S:																			
2											-									

		J	1020330-A1							ENC	1050		10.:			1	
				BOREHOLE No.:	<u>B6-4</u>						в	ORE	ЕНС	JLE	E LC	G	
l i l	JSPE	C*	SOL	ELEVATION: 8	9.06	m					P	age:	1	_ C	of _1		
CLIE	INT: R.	W.Tor	nlinson Ltd.								<u> </u>	-14.0-	LEG	ENE	2		
PRC	JECT:	Geote	chnical Investigation								ST S	helby 1	Fube				
LOC	ATION:	Lot 2	6 and 27, concession 6, 0	Ottawa, Ontario							RC R	ock Co	ore				
DES	CRIBED	BY: _	B.Beveridge	CHECKED BY:		J.Ben	nett			⊥ 0	N N	/ater L /ater co	evel ontent	(%)			
	E (STAR	T):	October 27, 2008	B DATE (FINISH):		October	27, 20	008		•	N P	tterber enetra	g limit tion In	is (%) Idex b	ased (חט	
SC	ALE		STR	ATIGRAPHY	_	SAN			1	•	N P	plit Spe enetrati	ion Inc	ample Jex ba	ised or	J	
Depth BGS	Elevation (m)	Stratigraphy	DES SOIL /	CRIPTION OF AND BEDROCK	State	Type and Number	Recovery	Organic Vapou ppm or %LEL	Penetration Index / RQD	∆ □ S	Cu S Cu S S P	hear S hear S ensitivi hear S ocket F	trengt trengt ity Va trengt Penet	h bas h bas lue of h bas romet	ed on ed on Soil ed on er	Field Lab V	Vane 'ane
meters	89.06	-191513	GRC	OUND SURFACE			%	ppm	N	10	50kPa 20	ALE F 100	OR 11 0kPa 40 5	=STF 150k	(ESUL (Pa) 70	200kPa 80	<u>90</u>
			SANDY SILT- some org greenish grey, moist	anics, trace gravel, very loose,	Х	SS1	58		7			-		-		+	
- 1.0																_	
-	07.25					552	17		6	-				\square		_	
- 2.0	87.23		SILTY CLAY- some san	d, gravel and organics, trace	ĥ	002										1	
			En	d of Borehole	_							+	-			+	_
- 3.0			Assi	umed Bedrock							_				#	1	-
-											-					+	+
Ean															~	_	
												+			+		
															_	_	
- 5.0															-+	-	
															_	_	
- 6.0																	
-															\rightarrow	+	
- 7.0								-			_						
-											_		-		\rightarrow		
8.0																	
F													-		+		
- 9.0																\mp	_
																+	
- 10.0												-		\square		—	1
-																	_
- 11.0														\square			_
-																	
-														\vdash		+	
- 13.0																	
	•.																
NOTES) .																
									-								

		J	102030-A1								-					0	
		_		BOREHOLE No.:	B2-	1		-			E	BOF	REH	OL	EL	OC	;
1	JSPI	:C*:	SOL	ELEVATION:	90.43	m		-				Page	e: _1		of _	1	
CLIF	NT: R	W.Tor	mlinson Ltd.			<u> </u>							LE	GEN	D		
PRO	JECT:	Geote	chnical Investigation								SS ST	Split Sholk	Spoon	_			
LOC	ATION:	Lot 2	6 and 27, concession 6, 0	Ottawa, Ontario							RC	Rock	Core	5			
DES	CRIBED	BY:	B.Beveridge	CHECKED BY:		J.Be	nnett			Ţ		Wate	r Leve				
DAT	E (STAR	T):	October 27, 2008	B DATE (FINISH):		October	27, 2	008				Attert	conte perg lir	nt (%) nits (%	5)		
sc	ALE		STR	ATIGRAPHY		SA	MPLE	DATA		•	N	Pene Split	tration Spoon	Index sampl	based e	ion	
		È						E ur	c 0	•	N	Penel Dynai	ration nic Co	ndex b ne sarr	ased ple	on	
Depth	m)	grap	DES	CRIPTION OF	ate	e and mber	Clave	c Vap r %LI	/ RC		Cu Cu	Shea	r Stren Stren	gth ba gth ba	sed o	n Fiel n Lab	d Vane Vane
BGS		trati	SOIL	AND BEDROCK	S	dy ^T	Rec	rganic ppm o	Pene	_ ▲		Sens	r Stren	gth ba	sed o	n	
motore	00.43	0)	CP(0/	0 4			501	CALE	FOR	TEST	RESI	JLTS	
	50.45		FILL- sandy silt, some o	ravel and organics, compact.			70	ppin		10	2(30	40	50 0	50 7	0 80	<u>90</u>
-		\bigotimes	brown, moist	,									-				
- 1.0		\bigotimes			X	SS1	58		14		•					\vdash	
F	89.24		En	d of Borehole	f												
E			Ass	umed Bedrock							_						_
- 2.0																	
											_						
- 3.0										-							
F																	
- 4.0											-			+			_
-																	
- 5.0															-		_
-																	
E														+			_
- 0.0														_			
														+	-		
- 7.0 -											_			_			
E											-			-	-	\square	
8.0																	
-																	
9.0																	
										+			_			\square	
10.0																	
											_						
10.0															-	$ \rightarrow$	
											_						
12.0																	
13.0											-	-					
	6:																
2																	

			1020330-A1			·										
2.	ICD	:C.	501	BUREHULE NO .:	B2-2	2					B	ORE	EHC	DLE	LO	G
	NJPI	: '	JOL	ELEVATION:	88.57	m		-			P	age:	1	0	f _ 1	
CLIE	ENT: <u>R</u> .	W.Tor	mlinson Ltd.								20 0	nlit So	LEG	END		
PRO	DJECT:	Geote	echnical Investigation								ST S	helby ⁻	Tube			
LOC	CATION:	Lot 2	6 and 27, concession 6, 0	Ottawa, Ontario							RC F	ock Co	ore			
DES	SCRIBED	BY:	B.Beveridge	CHECKED BY:	<u> </u>	J.Ber	nnett			▼ 0	v v	/ater L /ater co	evel Intent	(%)		
DAT	E (STAR	T): _	October 28, 2008	B DATE (FINISH):	(October	28, 20	800		•	A N P	tterber enetra	g limit tion In	s (%) dex ba	ased o	h
SC	ALE		STR	ATIGRAPHY		SA	MPLE	DATA		• •	S N P	plit Spe enetrat	oon sa	ample lex bas	sed on	
Depth BGS	Elevation (m)	Stratigraphy	DES SOIL	CRIPTION OF AND BEDROCK	State	Type and Number	Recovery	Organic Vapour ppm or %LEL	Penetration Index / RQD	∆ () □ () S	Cu S Cu S Su S P	ynamic hear S hear S ensitiv hear S ocket F	Cone trengt trengt ty Val trengt Penetr	sampl h base h base ue of t h base omete	e ed on F ed on L Soil ed on er	ield Vane ab Vane
meters	88.57		GRO	OUND SURFACE			%	ppm	Ν	10	50kPa 20	ALE F	OR 11)kPa <u>10 5</u>	=STR 150kF 0 60	ESUL Pa 2 70	S 00kPa <u>80 90</u>
E		\bigotimes	FILL- sand, some grave brown, moist	l, organics, loose, blackish							_	_				
- 1.0 -	07.45	\bigotimes			Т	SS1	38		8	•	_	_				
E	87.15		En	d of Borehole											~	
2.0			Ass	umed Bedrock							_					
- 3.0										_						
E															_	++
4.0																
														-+		
F_																
														+	_	++
-											-				_	
6.0															-	
E																
- 7.0											+				+	
-																
- 8.0															-	
Ē																
9.0												+-				
											_			-		
																+
2 - 11.0																
00-12										-						
12.0															_	
													-		_	
§ 																
																++-
NOTES	S:	.1	I				- I		I.,	<u> </u>			-h			
EHOL E																
BOR																

	<u>A</u>		1020000 / 11										.030		10			0	
				BORE	EHOLE No.:	B	2-3						BC	DRE	HC	DLE	LC	G	
I P	1261	EC*:	SOL	ELEV	ATION:	82.9	92	m					Pa	ige:	1	0	f <u>1</u>	_	
CLIE	NT: R	.W.Tor	mlinson Ltd.	-										<u> </u>	EG	END			
PRC	JECT:	Geote	chnical Investigation										SS SP ST SH	nelby T	oon ube				
LOC	ATION:	Lot 2	6 and 27, concession 6, C	Ottawa, On	tario								RC RO	ock Co	re				
DES	CRIBED	BY:	B.Beveridge		CHECKED BY:			J.Ben	nett			¥ ○	W	ater Lo	evel ntent i	(9/_)			
DAT	E (STAR	RT):	October 28, 2008	3	DATE (FINISH):		C	ctober 2	28, 20	008	_	H I	At	terber	g limit	s (%)		_	
SC	ALE		STRATIGRAPHY		MONITOR WELL			SAN	APLE [DATA		• 1	N Pe Sp	olit Spo	ion in on sa	ample	ised or	л	
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION C SOIL AND BEDRO	DF DCK	84.14 84.04	Ţ	State	Type and Number	Recovery	Organic Vapour ppm or %LEL	Penetration Index / ROD	∆ (□ (S ▲	Cu Sh Cu Sh Cu Sh Sh Po	namic lear Si lear Si lear Si lear Si lear Si	Cone rengti rengti ty Val rengti enetr	sampl base base ue of base omete	e ed on F ed on L Soil ed on er	ield Va .ab Va	ane ne
meters	82.92		GROUND SURFA	CE					%	ppm	Ν	10	SCA 50kPa 20	ALE F(100 30 4	DR TE	ST R 150k	ESUL 70	IS 00kPa 80	90
		<u>x1/</u> x	TOPSOIL- organics, ver	ry soft,															Ĭ
	82.06	1/ <u>1/</u>	black, moist		WL 0.46 - 0.56	-						+					+	+	
- 1.0	02.00		SANDSTONE- Nepean	vseams										1			1		
-			fine grained salicious, s	lightly				RC1	85		81			+		-+	+		
- 2.0			2 open separations,	parungs,												-			
E	80.53		1/2"(12.5mm) sand fillin End of Borehole	ig a	2.39 —		H												
- 30				0															
																	_		
													_	-				_	
- 4.0																		1	
E													+	-			+		
_ 5.0																_		1	
														-			+	+	$\left - \right $
F 6.0																			
-													_						
																		+	
													-						
														-			+	+	$\left \right $
8.0																			
-														-			+	+	
9.0																			
- 10.0																_			
																-			
													_						
E 11.0																			
																	-	+	+
12.0																		_	
																_		+	$\left \right $
13.0																			
																			\square
NOTES	:														L				1

BOREHOLE No: SWM3-10 	REFER	ENCE N	o.:	T020556-A1						_	_		ENC	CLOS	URE	No.:			11	
INSPEC:SOL LEVATION: 33.11m Page:1.0fl CUENT: RWLIDEIMSedentiation Bit Steen Bit Steen LOCATION: Lol 26 and 27, concession 6, Ottawa, Ontario Bit Steen Bit Steen Description Beeverage CHECKED BY: Learner Beeverage SCALE STRATGARAPHY Weitige Status November 3, 2008 SCALE STRATGARAPHY Weitige Status November 3, 2008 Bots Bescription Discontrainer Status November 3, 2008 Bots Bescription Discontrainer Status Status November 3, 2008 Bots Bescription Discontrainer Status		A A			BORE	EHOLE No.:	SWN	13-	10					В	OR	EH	DLE	E L(C	
CLENT: Revitation CLESCED PROJUCT: Centechnick Investigation Image: Set Bitson LOCATION: Leg Set Bitson Image: Set Bitson DATE (START): Movember 3, 2008 DATE (FINSH): November 3, 2008 SCALE STRATGAGENY Movember 3, 2008 DATE (FINSH): November 3, 2008 SCALE STRATGAGENY Movember 3, 2008 DATE (FINSH): November 3, 2008 SCALE STRATGAGENY Movember 3, 2008 State Bitson and on the Visit Set Set Set Set Set Set Set Set Set Se	i h	ISPE	C∗!	SOL	ELEV	ation:	83.	11	m					ļ	Page:	_1	_ (of	1	
PROUCT: Ceodedrivate Investigation CMS = Bridgeton LOCATION: Lo2 26 and 27, concession CMS = Bridgeton DESCRIEED PY: B.Bevenidge CHECKED BY: LBernet! DATE (START): November 3, 2008 DATE (FINISH): November 3, 2008 November 3, 2008 SCALE STRATGRAPHY Movember 3, 2008 SIMPLE DATA Provide the based on	CLIE	NT: R.	W.Tor	mlinson Ltd.										00	0.111.0	LEG	ENI	2		
LOCATION: Lol 28 and 27, concession 5, Ollawa, Ontario Wein Line Wein	PRC	JECT:	Geote	echnical Investigation										SS ST	Split S Shelby	poon Tube				
DESCREPTORY Elseveráge CHE (CRED PY. LISUTE (START) JUSTE (START) November 3,2008 November 3,2008 <t< td=""><td>LOC</td><td>ATION:</td><td>Lot 2</td><td>6 and 27, concession 6, 0</td><td>Ottawa, On</td><td>tario</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>RC</td><td>Rock (</td><td>Core</td><td></td><td></td><td></td><td></td></t<>	LOC	ATION:	Lot 2	6 and 27, concession 6, 0	Ottawa, On	tario								RC	Rock (Core				
Depth Totol relations Constructions Constructions<	DES		BY: _	B.Beveridge	0	CHECKED B	Y:		J.Ben	nett	000		v ₽		water Water (Levei content	(%)			
SCALE STRATIGRAPHY WELL SAMPLE DATA N <th<< td=""><td></td><td></td><td>·)</td><td>November 3, 200</td><td>0</td><td></td><td>DR</td><td></td><td>overnbe</td><td>13,2</td><td>008</td><td></td><td>•</td><td>N</td><td>Atterbe Penetr</td><td>ation li</td><td>its (%) ndex t</td><td>based</td><td>on</td><td></td></th<<>			·)	November 3, 200	0		DR		overnbe	13,2	008		•	N	Atterbe Penetr	ation li	its (%) ndex t	based	on	
Depth State Description of Solit Descrit Descrit	sc	ALE	~	STRATIGRAPHY		WELL	·	$\left \right $	SAN	APLE (- 0	•	N	Penetra Dynam	ation In	dex ba e same	, ised or ple	n	
meters 83.11 GROUND SURFACE 1.0 St. TOPSOL- with organics, very sort, bick, very so	Depth BGS	Elevation (π)	Stratigraph	DESCRIPTION (SOIL AND BEDRO	DF DCK	84.33— 84.23—	F	State	Type and Number	Recovery	Organic Vapo ppm or %LEI	Penetration Index / RQD	∆ □ S	Cu Cu	Shear Shear Sensiti Shear Pocket	Streng Streng vity Va Streng Penel	th bas th bas lue of th bas romet	ied on ied on Soil sed on ter	Field Lab V	Vane Vane
1.0 1	meters	83.11		GROUND SURFA	CE					%	ppm	Ν	1(S 50kF) 20	CALE Pa 1 30	FOR T 00kPa 40	EST 150	RESU KPa 0 70	LTS 200kF 80	'a 90
1.0 82.55 BUTY CLAY-some organics, stiff, red / brown / black, wet SS1 100 9 •	-		11 14 1	TOPSOIL- with organic soft, black, grey, wet	s, very	WL 0.00-									_				-	
1.0 100 9 4 2.0 552 100 2 3.0 553 100 1 4.0 554 47 1 78.54 End of Borehole 457- 556 0 6.0 Auger Refusal 457- 556 0 4 9.0 10.0 10.0 10.0 10.0 10.0 10.0 11.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 11.0 10	E ₁₀	82.55		SILTY CLAY- some org	anics, tiff_red /	0.00		Н												
2.0 3.0 3.0 3.0 3.52 100 2 1				brown / black, wet	un, rou /			Å	551	100		9	-	-					-	
2.44 3.53 100 1	E20							\square	SS2	100		2	•						-	
3.0 2.74- 3.53 100 1 1 4.0 78.54 End of Borehole 3.55 0 4 1 5.0 Auger Refusal Assumed Bedrock 4.57- SS5 0 4 1 6.0 Auger Refusal Assumed Bedrock 4.57- SS5 0 4 1 1 7.0 8.0 9.0 10.0 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.44—</td> <td></td> <td>Ħ</td> <td></td>						2.44—		Ħ												
4.0 78.54 End of Borehole 4.57- SS5 0 4 0	- 30					2.74 —		Å	SS3	100		1	•	_					_	
4.0 78.54 End of Borehole 4.57- SS5 0 4 0								M	SS4	47		1	•	-	_				_	
78.54 End of Borehole Auger Refusal Assumed Bedrock 4.57- SS5 0 4	E							Ħ											\pm	
10.0 10.0		70 54						Й	SS5	0		4	•	_				_	+	
6.0 Assumed Bedrock 6.0 9.0 9.0 9.0 11.0 9.0 12.0 9.0 13.0 9.0		78.54		End of Borehol	e	4.57-												_	_	
6.0 7.0 8.0 9.0 10.0 11.0 12.0 NOTES:				Assumed Bedro	ck									_						
7.0 8.0 9.0 10.0 11.0 12.0 13.0	Eeo													_	_	-			+	
7.0 8.0 9.0 10.0 11.0 12.0 13.0														-					_	
8.0 9.0 11.0 12.0 13.0																-			_	
8.0 9.0 10.0 11.0 12.0 NOTES:														_				_	+	
9.0 9.0 10.0 11.0 12.0 NOTES:	Eao																	_	4	
9.0 10.0 11.0 12.0 NOTES:	- 0.0															-				
10.0 11.0 12.0 NOTES:														_		-		+	-+	
10.0 11.0 12.0 NOTES:																				
11.0 12.0 13.0 NOTES:																			_	
- 11.0 - 12.0 - 13.0 NOTES:																				
12.0 13.0 NOTES:																		_	_	
-12.0 -13.0 NOTES:																-			-	
13.0 NOTES:																			_	
- 13.0 - NOTES:																				_
	13.0															-		-		
NOTES:																		_		
	NOTES	:		l				Ц												

REFER	ENCE No).:	T020556-A1									ENCL	osui	RE N	0.:		1	2	
				BOR	EHOLE No.:	SWI	/13	-R					BO		но		= 1 C	G	
ib	JSPE	C•	SOL	ELEV	ATION:	83.1	1	m		-			Pa	ae:	1		- L O	0	
				5										L	EGE)		
	ENT: <u>R.M</u>	N.Tor	nlinson Ltd.					····				⊠s	S Spl	lit Spc	ion		•		
		L of 2	6 and 27, concession 6	Ottown On	torio							⊠ s	T She	elby T	ube				
		BY:	B Beveridge	Jilawa, Oli				l Bon	nett			uu ⊼ ⊻	Wa	ater Le	evel				
DAT	E (STAR	D1	November 3, 200	8	DATE (FINISH):		N	ovembe	r 3. 2	008	-	0	Wa	ter co	ntent (°	%)			
					MONITOR							• N	Per	netrati it Spo	on Ind	ex b	ased o	n	
SC	ALE	~ >	STRATIGRAPHY		WELL			SAN				• N	Per	netratio	on Inde	x ba	sed on		
Depth BGS	Elevation (m)	Stratigraph	DESCRIPTION SOIL AND BEDR	OF DCK	84.33— 84.23—	Ţ	State	Type and Number	Recovery	Organic Vapor ppm or %LEL	Penetration Index / RQD	∆ C □ C S	u She U She Ser She	ear St ear St nsitivit ear St cket P	rength rength y Valu rength enetro	base base base base mete	ed on F ed on L Soil ed on er	ield V ab Va	ane ne
meters	83.11		GROUND SURF	ACE					%	ppm	N	10	SCA i0kPa 20	LE FO 100 30 4	DR TE kPa 0 50	ST F 150k 60	Resul [*] Pa 2 70	ĩS 00kPa 80	90
			No soil samples taken. SWM5-10	Refer to	WL 0.00											_			
					0.00-	$\overline{\mathbb{X}}$										-	-+-		
- 1.0						\otimes									_			_	
F						\otimes								<u> </u>		-			
- 2.0						\otimes													
						\bigotimes							+					+	$\left - \right $
- 3.0						\otimes												_	
-						\otimes							-			-+	_	+	
Ean						\otimes													
	78.71				4.40 -	\bigotimes	-						_	-		_		+	
			trace sandstone, interb	edding,	4.57 ~ 4.88 -											_			
5.0			calcarious, grey, tan, sl weathered, hard, medi	ightly Im									-			-+		+	
			partings					RC1	82		72							+	
6.0													-			-+		+-	$\left \right $
-	76.38				6.40 -													\square	
- 7.0	10.00															_			
																		1	
- 8.0														$\left \right $		+		+	-
-																			
Ean																_			
													_			+			
																_			$\left \right $
11.0																			
													_				+		
E 12.0																			
5 - 13.0																			
NOTES	6:								1					1					

REFER	ENCE N	0.:	T020556-A1									ENC	LOS	URE	۱o.:			13	
				BOR	EHOLE No.:	SWN	13-	20									= 1 /	00	
(i)	JSPI	EC • S	SOL	ELEV	ATION:	83.1	11	m							בחע 1	יירנ	ELU	1	
																FN			
CLIE	ENT: <u>R</u> .	W.Ton	nlinson Ltd.									\boxtimes	SS	Split Sp	oon		2		
PRC	JECT:	Geote	chnical Investigation										ST	Shelby [·]	Tube				
LOC	ATION:	Lot 2	6 and 27, concession 6,	Ottawa, Or	ntario						_	Ш	RC	Rock Co	ore				
DES	CRIBED	BY: _	B.Beveridge		_ CHECKED BY	:		J.Ben	nett			¥. 0	,	Water L	evei ontent	(%)			
DAT	E (STAR	T):	October 28, 200	8	_ DATE (FINISH):	C	ctober 2	28, 20	800		•	N I	Atterber Penetra	g limit tion In	ts (%) idex t) based	on	
sc	ALE		STRATIGRAPHY		MONITOR	२		SAN	NPLE	DATA			N	Split Sp Penetrat	oon si ion Inc	ample lex ba	esed o	n	
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION SOIL AND BEDR	OF OCK	84.33 <i>—</i> 84.23 <i>—</i>	F	State	Type and Number	Recovery	Organic Vapour ppm or %LEL	Penetration Index / RQD	∆ S ▲	Cu Cu	Dynamic Shear S Shear S Sensitiv Shear S Pocket I	Cone trengt trengt ity Va trengt Penet	h bas h bas h bas lue of h bas romet	ble sed on sed on f Soil sed on ter	ı Field ı Lab '	l Vane Vane
meters	83.11		GROUND SURF	ACE					%	ppm	Ν	10	50kF	CALE F	OR TI 0kPa 40 5	EST 150	RESU	LTS 200kF	°a 90
		<u>x1/</u> x	TOPSOIL- organics, ve	ery soft,	WL 0.007		M	SS1	9		20			-					
	82.35	<u>~~~</u>			0.00 🛱		Ĥ								-		-	-+	_
- 1.0			SILTY CLAY- some or trace sand, gravel, stiff	janics, , green /			X	SS2	5		11								
		11	brown / red / white, we	t			Ħ						_					-	
2.0	00.00				1.78-		М	SS3	71		5	•	-		-			+	
E	80.98		SILTY CLAY- some gra	avel,			A												
-			trace organics, stin, gre	ey, wet			Å	SS4	/1		56				-	•		+	
- 3.0																		+	
F	79.50	1111	End of Boreho	0	3.61 —												_		
- 4.0			Auger Refusa	l .														-+-	
E I			Assumed Bedro	CK															
E 50																-		_	
																-		-	
-																			
6.0																	-	+	
- 7.0																			
-												\rightarrow					-+	+	
F																			
- 0.0												_						-	
E																-		+	
- 9.0																	_		
E																	-+		
L 10.0																			
E															-				
-																		+	
- 11.0																		_	
F																			
- 12.0															-		-		
F																		\square	
E																		+	
E ^{13.0}																			
NOTES	:																		

REFER	ENCE No	o.:	T020556-A1									ENCL	osu	REN	o.:		14		
	A			BOR	EHOLE No.:	SWI	ИЗ-	2R					BC		но	IF	1.00	2	
ib	JSPE	C*S	SOL	ELEV	ATION:	83.	11	m					Pa	ige:	1	of	1	5	
					,									L	EGE	ND			-
	=N1: <u>R.'</u>	W.lon	ninson Ltd.									🛛 s	S Sp	lit Spo	ion				
		Geote	conical investigation		torio								T Sh	elby T	ube				
			B Reveridge	Jitawa, On		v.		I Bon	nott	-,		uur ▼	Wi Wi	ater Le	evel				
	E (STAR	ы т.	October 28, 200	3	DATE (FINISI	н. 	0	October 2	28.20	08		ō	Wa	ater co	ntent (°	%) (%)			
		·/·							20, 20			• 1	I Pe	enetrati	ion Ind	ex ba	sed on		
SC	ALE		STRATIGRAPHY		WELL		\downarrow	SAN	/PLE [• •	I Pe	netratio	on Inde	npie ex base	ed on		
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION (SOIL AND BEDRO	DF DCK	84.32— 84.23—	F	State	Type and Number	Recovery	Organic Vapou ppm or %LEL	Penetration Index / RQD	∆ () □ () S	Su Sh Su Sh Se Po	lear St lear St ensitivit lear St locket P	rength rength y Valu rength	base base base base meter	d on Fie d on La Joil d on	eld Vane b Vane	Ð
meters	83.11		GROUND SURFA	CE					%	ppm	N	10	SCA 50kPa 20	ALE FO 100 30 4	DR TE ^{kPa} 0 50	ST RE 150kP	ESULTS a 200 70	S 0kPa 80 90	
		<u>x¹1₁ x</u> 1 ₁ x ¹ 1 ₁	TOPSOIL - some organ soft, black, wet	iics, very	WL 0.00 0.00														_
- 1.0	82.35		SILTY CLAY- some gra trace organics and oxid	ivel, ation,			\square	SS1	67		48			-	•		_ _		_
- 20			stiff to very stiff, brownis green, wet	sh				S S2	84		17		•						
							X	SS3	17		36		•	•					_
3.0	80.06		SILTY CLAY AND GRA	VEL-	2.45			SS4	25		R		•						_
- - - 4.0	79.00		LIMESTONE- Nepean formation, some sands	/	0.40												+-		_
			inter bedding, calcariou tan, slightly weathered, medium partings	is, grey / hard,															_
- 5.0 -			modium parango		4.98			RC5	98		78								
6.0														-					
E																			
- 7.0	76.30		End of Borehol	e	6.81-	9993 - 9 993				-				_	-	-			
														+		-	+	+	_
F .																			
- 8.0 -													_			_			
Ē																			
9.0															$\left \right $		+		_
F																	_		_
F 10.0																			
													+			+			
E110													-				\mp		
															$\left - \right $				_
12.0																			
i –																			
F 13.0																	—		
												\vdash	-		$\left \right $				
NOTES	S:				I						J			L			~~	<u>I</u>	-

REFER	ENCE N	o.:	T020556-A1									ENC	LOS	URE	No.:			15		
				BOR	EHOLE No.:	В	4-1						R		ΞНС	ם ור	= 1	00		
i ii	JSPI	EC •	SOL	FLEV	ATION:	87	93	m		-			L I		-1		- L	1	ſ	
	- 27													uge.				<u> </u>		
CLIE	ENT: <u>R</u> .	W.Tor	nlinson Ltd.					····				\boxtimes	ss	Split Sp	oon		2			
PRC	JECT:	Geote	chnical Investigation										ST	Shelby [·]	Гube					
LOC	ATION:	Lot 2	6 and 27, concession 6,	Ottawa, On	tario								RC I	Rock Co	ore					
DES	CRIBED	BY:	B.Beveridge		CHECKED B	IY:		J.Ben	nett	····		▼ ○	,	Water L Water co	evei ontent	(%)				
DAT	E (STAR	T):	October 29, 200	8	DATE (FINIS	SH):		October 2	29, 20	008		, <u> </u>	i , N I	Atterber Penetra	g limit tion In	ts (%) dex b) Dased	lon		
sc	ALE		STRATIGRAPHY		MONIT WELI	OR -		SAN	I PLE	DATA			NI	Split Sp Penetrat	oon sa	ample lex ba	esed o	n		
Depth BGS	Elevation (m)	Stratigraphy	DESCRIPTION (SOIL AND BEDRO	DF DCK	89.05— 89.15—	F	State	Type and Number	Recovery	Organic Vapour ppm or %LEL	Penetration Index / RQD	∆ □ S	Cu Cu	Dynamic Shear S Shear S Sensitiv Shear S Pocket I	Cone trengt trengt ity Val trengt Penetr	h bas h bas h bas lue of h bas romet	ole sed or sed or Soil sed or ser	ו Fieli Lab	d Var Vane	ne e
meters	87.93		GROUND SURFA	ACE					%	ppm	N	10	50kP	CALE F a 10 30	OR TI ^{DkPa} 40 5	EST F 150k 0 60	RESL (Pa 0 7(1LTS 200k	.Pa) 90	,
		\otimes	FILL- silty clay, some signature organics	and and	0.00		M	SS1	33		50/5'				П			1	1	
		\bigotimes	oxidation, stiff, grey, bro	own,	0.00-		H											-+	+	_
- 1.0		\bigotimes	- trace asphalt				Х	SS2	83		10	•								
E		\otimes					Ħ										_		_	
- 2.0		\bigotimes					М	SS3	75		36			-				\rightarrow		
		\otimes																		
E 20		\otimes															-	-+	-+-	-
		\otimes					\square	SS4	42		16		•							
	84.12						\square						_					-	\rightarrow	
4.0	0	\bigotimes	FILL-silty clay, some sa gravel, trace oxidation	and and and	4.11-		М	SS5	50		1	₽	4				-			-
-	02.04	\bigotimes	organics, firm, brown, n	noist			Ħ						-				_			
- 5.0	03.21		SILTY CLAY- trace org	anics	5.03		М	SS6	63		7	•	-+		-					-
F			greenish brown, moist	,			Ħ													
- 							Å	SS7	92		17		•						-+	
- 0.0							\square	558	71		13									
							Д	000	, ' I		10						-			_
7.0													-				-	+		
		HH.																		
- 8.0	80.16		SILTY SAND- trace org	janics,	WL 7.78— 8.08—		$\overline{\mathbf{N}}$	SS9	83		27			•					-+	
-	79 39		compact, black / grey, v	vet	8.38		В										_			
E	10.00		SILTY CLAY- some sar gravel, dark grev, wet	nd and			M	SS10	8		15		•						-	
9.0	78.79	משא	End of Borehol	e	9.14—		H													
			Auger Refusal Assumed Bedro	ck										-					_	
- 10.0													-				_		-+	-
																		_		
F11.0														-					_	
																			-	
E																		_		
- 12.0																		\rightarrow		
																			_	
13.0													_							
NOTES	:	l																		

REFER		0.:	T020556-A1									ENCLO	SUR	E No	.:		16	
				BOR	EHOLE No.:	В	5-1						BOI	REł	HOL	E L	.00	;
i)	JSPE	C*S	5OL	ELEV	ATION:	90.4	48	m					Pag	e:	1	of	1	
CUE	NT R	W Ton	alinson I td										14	LE	GEN	ND		
PRO	DJECT:	Geote	chnical Investigation								—	SS 🖾 ST	Split Shel	Spoo	n			
LOC	CATION:	Lot 2	6 and 27, concession 6, (Ottawa, On	itario								Rock	k Core	9			
DES	CRIBED	BY:	B.Beveridge		CHECKED BY:			J.Ben	nett			¥	Wate	er Lev	el			
DAT	E (STAR	T):	October 30, 2008	3	DATE (FINISH):		C	October 3	30, 20	800			Atter	berg l	imits (%)		
SC	ALE		STRATIGRAPHY		MONITOR WELL			SAM	/PLE I	DATA		• N • N	Pene Split Pene	etration Spoor etration	n Inde) n sam n Index	k base ple based	a on on	
Depth BGS	Elevation (m)	Stratigraph	DESCRIPTION (SOIL AND BEDRO	DF DCK	91.70 — 91.60 —	F	State	Type and Number	Recovery	Organic Vapo ppm or %LEI	Penetration Index / RQD	∆ Cu □ Cu S	Shea Shea Sens Shea Poc l	ar Stre ar Stre sitivity ar Stre ket Per	ength b ength b Value ength b netrom	ased of ased of of Soil ased of eter	on Fiel on Lab I on	d Vane Vane
meters	90.48		GROUND SURFA	CE					%	ppm	N	10 50	SCAL	E FOF	R TES	T RES		(Pa
		\otimes	FILL - silty clay, some s	and, It and			M	SS1	46		6	•		-				
_ 1.0			organics, loose to dens green/brown/grey, mois	e, st				SS2	25		10							
								553	50		4	•		_				
- 2.0 -								664	EO									_
- 3.0							Å	554	50		9							
-							Å	SS5	75		50+							_
- 4.0 - -							Å	SS6	59		10	•						
- 5.0	05.45						Д	SS7	67		50+				+	_		
	00.10		SANDY SILT- some sa gravel, trace oxidation, stiff_greenish_brown_m	nd, very poist			М	SS8	25		50+			•	•	-		_
			aun, greenan brown, m				\square	SS9	42		50+4		-		•			
7.0	83.62 83.16	$\langle \rangle$	SANDY CLAY- some g	ravel, ft, red /	6.98 — 7.29 —		M	SS10	0		R			_				
8.0			\green / grey, moist SILTY CLAY- some gra stiff, gray, moist	ivel, very	WL 7.63-		X	SS11	50		R							
			sun, grey, moist		0.04		M	SS12	46		R		4		_			
9.0					0.01-			SS13	17		R							
	80.45				10.03-		Р											
- -	00.40		End of Borehol Auger Refusa	e I	10.00								+			+		
E 11.0			Assumed Bedro	ck														
F																		
- 12.0 -																		
-																		
⊢13.0																-		
È																		
NOTES	S:																	
L																		

BOREHOLE No.: B5-2 BOR INSPEC+SOL ELEVATION: 90.78 m Page CLIENT: R.W.Tomlinson Ltd. SS Split S PROJECT: Geotechnical Investigation Image LOCATION: Lot 26 and 27, concession 6, Ottawa, Ontario Image DESCRIBED BY: B.Beveridge CHECKED BY: J.Bennett OATE (START): October 23, 2008 DATE (FINISH): October 23, 2008	EHOL <u>LEGEN</u> Spoon yy Tube Core r Level 'content (%)	E LOG of _1
INSPEC*SOL ELEVATION:90.78 m Page CLIENT: R.W.Tomlinson Ltd.	e: 1 LEGEN Spoon by Tube Core r Level 'content (%)	of <u>1</u> ID
CLIENT: R.W.Tomlinson Ltd. PROJECT: Geotechnical Investigation LOCATION: Lot 26 and 27, concession 6, Ottawa, Ontario DESCRIBED BY: B.Beveridge CHECKED BY: J.Bennett OATE (START): October 23, 2008 DATE (FINISH): October 23, 2008	LEGEN Spoon by Tube Core r Level * content (%)	<u>ID</u>
PROJECT: Geotechnical Investigation LOCATION: Lot 26 and 27, concession 6, Ottawa, Ontario DESCRIBED BY: B.Beveridge CHECKED BY: J.Bennett Vater • Water • N Penetr • N Penetr • N Penetr • N Penetr	Spoon by Tube Core r Level content (%)	
LOCATION: Lot 26 and 27, concession 6, Ottawa, Ontario DESCRIBED BY: B.Beveridge CHECKED BY: J.Bennett DATE (START): October 23, 2008 DATE (FINISH): October 23, 2008	Core r Level r content (%)	
DESCRIBED BY: B.Beveridge CHECKED BY: J.Bennett Vater DATE (START): October 23, 2008 DATE (FINISH): October 23, 2008 Vater OCUSE OCUSE OCUSE OCUSE OCUSE N Penetro	r Level content (%)	
DATE (START): October 23, 2008 DATE (FINISH): October 23, 2008 • Water • Atterburger • N Penetr Split S	r content (%)	
N Penetr Splits	Jerg innus (7	%)
	tration Index Spoon samp	based on
N Penetr Dynarr	ration Index b	based on mple
Debtp Partingram Partingram	r Strength ba r Strength ba itivity Value o r Strength ba et Penetrome	ased on Field Van ased on Lab Vane of Soil ased on eter
meters 90.78 GROUND SURFACE % ppm N SCALE	FOR TEST	RESULTS
FILL - silty clay, some asphalt, sand and gravel, trace	40 50	
	•	
2.0 X SS2 55 12		
4.0 SS5 71 32	,	
5.0 SILTY CLAY - some gravel, trace oxidation, firm to stiff, SS6 38 2		
NOTES:		

DORCHOLE No: B53 Description DORCHOLE No: B53 DORCHOLE LOS CLENT: With Indiana B0.51 m Point Image: State	REFER	ENCE N	o.:	1020556-A1								ENCL	USU	IRE N	0.:			18	
INSPECTSOL LLEVATION: 90.51.m Page: 1 1 CUENT: Revention Bit Bit Son Bit Bit Son Bit Bit Son DCATION: Lu28 and 27. concension 6, Ottawa, Ontario Description Bit Bit Son Bit Bit Son Description Lu28 and 27. concension 6, Ottawa, Ontario Description Bit Bit Son With Son Concentration (%) Description Description Chicker 23, 2008 Description Bit Bit Son With Son Concentration (%) Scale State (SINHT) Concluser 23, 2008 State (SINHT) Description (%) Network Bit Bit Son BGS Bit Son Sole AND BEDROCK Bit Bit Son Bit Son Bit Son BGS Bit Son Description (%) Sole AND BEDROCK Bit Son	r.				BOREHOLE No.:	B5-	-3						BC	ORE	нс	DLE	EL	ЭG	
CLENT: R.W. Tominson Lud. Statushina Investigation Statushina Investigation COCATION: Less device Account Investigation Statushina Investigation Statushina Investigation DATE (START): Outlober 23, 2008 DATE (FINSH): Outlober 23, 2008 Value toward SCALE StrattGavenv SAME DATA Nate comment (b) Address match (b) SCALE StrattGavenv SAME DATA Note toward (b) Address match (b) Dest B DESCRIPTION OF SOUL AND BEDROCK Status Comment (b) Note toward (b) Note toward (b) Dest FILL- concrete and apphall fragments, some sand, trace Value of the comment (b) Note toward (b) Note toward (b) 10 87.5 FILL- sing value, some gravel, trace outdation, stiff, brown, most SS1 SS2 S8 S9 10 87.7 FILL- sing value, some gravel, trace outdation, stiff, brown, most SS2 SS8 S9 SS4 S54 S55 S7 S58 S2 S8 S9 S55 S7 S58 S7 S58 S5 S7 S58 S5 S7 S58 S5 S7 S58	l ik	ISPE	EC*S	5OL	ELEVATION:	90.5 ⁻	1 n	n					Pa	age:	1	_ (of _	1	
PROJECT: Solutional Investigation Solution Solut	CLIE	NT: R.	W.Ton	nlinson Ltd.										Ī	EG	END)		
LDCLTON: Lut 25 and 27. concession 6, 0flawe, Ontario JBarrent Water training DESCRIBED DY:	PRO	JECT:	Geote	chnical Investigation									IS SI	olit Spo nelby T	on ube				
DATE (START): Description DATE (FNISH): J Bennelt. View of the Mit Weil SCALE STRATIGRAP-Y SAMPLE DATA SAMPLE DATA No extension of the Strategies of th	LOC	ATION:	Lot 2	6 and 27, concession 6, 0	Ottawa, Ontario							F	C R	ock Co	re				
DATE (START): Ocidener 23, 2008 DATE (FINISH): Ocidener 23, 2008 Market Base on Statute Sta	DES	CRIBED	BY:	B.Beveridge	CHECKED BY:			J.Ben	nett			Ţ	W	ater Le	evel	(0/)			
SCALE STRATIGRAPHY SAMPLE DATA N N Personant fields in data based on personant fields on data based on personant fields on data based or particular statute and the same of personant field based on personant field based or particular statute and field or particular statute and field based or particular statute and field	DAT	E (STAR	T):	October 23, 2008	DATE (FINISH):		00	ctober 2	23, 20	008			A	ater co terberg	ntent 3 limit	(%) s (%)			
Depth Soli DESCRIPTION OF SOLI AND BENCK B Soli AND BENCK B <th< td=""><td>SC</td><td>ALE</td><td></td><td>STR</td><td>ATIGRAPHY</td><td></td><td></td><td>SAN</td><td>IPLE [</td><td>DATA</td><td></td><td>• •</td><td>l P S</td><td>enetrati olit Spo</td><td>ion In ion sa</td><td>dex b ample</td><td>ased</td><td>on</td><td></td></th<>	SC	ALE		STR	ATIGRAPHY			SAN	IPLE [DATA		• •	l P S	enetrati olit Spo	ion In ion sa	dex b ample	ased	on	
Depth DESCRIPTION OF SOIL AND BEDROCK B Description of the second second second se			2				Τ			EL CL	<u> </u>	• •	I Pe	enetrati /namic	on Inc Cone	lex ba samp	ised o ole	n	
meter 90.51 CROUND SURFACE % ppm N ppm <th< td=""><td>Depth BGS</td><td>Elevatior (m)</td><td>Stratigrap</td><td>DES</td><td>CRIPTION OF AND BEDROCK</td><td>ł</td><td>State</td><td>Type and Number</td><td>Recovery</td><td>Organic Vap ppm or %LF</td><td>Penetratio Index / RQ</td><td>∆ (□ (\$ ▲</td><td>iu SI iu SI SI SI Pi</td><td>near St near St ensitivi near St ocket P</td><td>rengt rengt ty Val rengt 'eneti</td><td>h bas h bas lue of h bas romet</td><td>ed or ed or Soil ed or er</td><td>i Field Lab</td><td>d Vane Vane</td></th<>	Depth BGS	Elevatior (m)	Stratigrap	DES	CRIPTION OF AND BEDROCK	ł	State	Type and Number	Recovery	Organic Vap ppm or %LF	Penetratio Index / RQ	∆ (□ (\$ ▲	iu SI iu SI SI SI Pi	near St near St ensitivi near St ocket P	rengt rengt ty Val rengt 'eneti	h bas h bas lue of h bas romet	ed or ed or Soil ed or er	i Field Lab	d Vane Vane
89.75 Fill-concrete and asphalt fragments, some sand, trace 551 42 60 4 6 6 6 2.0 88.22 Fill-sing day, some gravel, trace day, organics, very stiff SS1 42 50 4 6 6 6 3.0 86.70 Fill-sing day, some asphalt, gravel and sand, trace organics, nord and sand, trace organics, nord at an and trace organics, soldation, gravel, sand, trace organics, nord at an and trace organics, nord at an and trace organics, soldation, gravel, sand, trace organics, nord at an and trace organics, soldation, gravel, sand, trace organics, trace orga	meters	90.51		GRO	UND SURFACE				%	ppm	N		SC 50kPa	ALE FO	DR T kPa	EST 1	RESU	LTS 200k	Pa
1.0 89.75 0rgancs <	-			FILL- concrete and asp	halt fragments, some sand, tr	race	-					10	20	30 4	0 5	0 6	, 70	80	90
1.0 09.73 FILL-sity clay, some gravel, trace clay, organics, very stiff, brown, moist SS1 42 2.0 88.92 FILL-sity clay, some asphalt, gravel and sand, trace organics, very stiff, brown, moist SS2 58 3.0 86.70 FILL-sity clay, trace organics, oxidation, gravel, sand, hard, brown, moist SS5 51 4.0 86.70 FILL-sity clay, trace organics, oxidation, gravel, sand, hard, moist SS5 52 5.0 -becoming trace to some gravel SS6 84 6.0 84.41 -becoming more asphalt fragments, hard to very stiff SS7 71 6.0 84.41 S10 S10 S10 S10 7.0 S2.89 End of Borehole S58 59 9.0 S1.8 S1 S10 S10 S10 11.0 S117 CLA S10 S10 S10 11.0 End of Borehole S10 S10 S10 S10 11.0 S10 S10 S10 S10 S10 S10 11.0 S10 S10 S10 S10 S10 S10 S10	-	00.75	\bigotimes	organics										_				_	
88.99 FILL- sindy allt, some gravel, trace clay, organics, very SS2 58 3.0 88.22 FILL- sindy allt, some gravel, trace clay, organics, very SS2 58 3.0 86.70 FILL- sindy clay, some asphalt, gravel and sand, trace SS3 50 4.0 86.70 FILL- sindy clay, trace organics, oxidation, gravel, sand, hard, brown, moist SS4 59 5.0	- 1.0	89.75		FILL- silty clay, some gr	avel, trace oxidation, stiff, bro	own,	\mathbf{X}	SS1	42		50+			+-		•			
2.0 88.22 FILL-sandy still, some gravel, and sand, trace organics, hard, brown, moist SS3 50 15 •	E	88.99	\bigotimes																
88.22 FILL-silty clay, some asphalt, gravel and sand, trace SS3 50 38 <t< td=""><td>E_{20}</td><td></td><td>\bigotimes</td><td>FILL- sandy silt, some g stiff, brownish green, m</td><td>ravel, trace clay, organics, ve oist</td><td>ery</td><td>X</td><td>SS2</td><td>58</td><td></td><td>15</td><td></td><td>∙┼</td><td>•</td><td></td><td></td><td>-</td><td></td><td></td></t<>	E_{20}		\bigotimes	FILL- sandy silt, some g stiff, brownish green, m	ravel, trace clay, organics, ve oist	ery	X	SS2	58		15		∙┼	•			-		
3.0 3.0 3.0 3.5 3.5 3.5 3.6 3.8 4.4 4	- 2.0	88.22	XX	FILL- silty clay, some as	sphalt, gravel and sand, trace	,	7							_				4	
3.0 86.70 FILL silty clay, trace organics, oxidation, gravel, sand, hard, most 556 84 32 4.0 4.1	È .		\bigotimes	organics, hard, brown, i	noist	Z	Ň	SS3	50		38							-+	_
4.0 86.70 FILL- silty clay, trace organics, oxidation, gravel, sand, moist SS5 21 17 • <td>- 3.0</td> <td></td> <td>\bigotimes</td> <td></td> <td></td> <td></td> <td>$\overline{\mathbf{A}}$</td> <td>SS4</td> <td>59</td> <td></td> <td>13</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	- 3.0		\bigotimes				$\overline{\mathbf{A}}$	SS4	59		13								
4.0 50.70 FILL-sity clay, trace organics, oxidation, gravel, sand, hard, moist SS5 21 17 32 32 4.0 32 4.0 </td <td>E</td> <td>86 70</td> <td></td> <td></td> <td></td> <td>4</td> <td>Δ</td> <td>001</td> <td></td> <td></td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td>_</td>	E	86 70				4	Δ	001			10						_	_	_
5.0 -becoming trace to some gravel SS6 84 32	- 4.0	00.70	\otimes	FILL- silty clay, trace or bard moist	ganics, oxidation, gravel, san	id,	Х	SS5	21		17		•				_		
5.0 -becoming trace to some gravel NS6 84 32			\bigotimes	nard, moist		K													
ebecoming more asphalt fragments, hard to very stiff SS7 71 22 •••• •••• •••	- 5.0		\bigotimes	-becoming trace to som	e gravel		X	SS6	84		32		+	- • •			-	-+	_
6.0 84.41 -becoming more aspnalt fragments, firm, grey. SS7 71 22	-							007	74		~						_		
0.0 84.41 SLTY CLAY- some sand, trace organics, firm, grey. SS8 25 7 - </td <td>E</td> <td></td> <td></td> <td>-becoming more aspha</td> <td>It fragments, hard to very stiff</td> <td></td> <td>Å</td> <td>557</td> <td>/1</td> <td></td> <td>22</td> <td></td> <td>-</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>	E			-becoming more aspha	It fragments, hard to very stiff		Å	557	/1		22		-	1					
7.0 82.89 End of Borehole SS9 59 39 Image: Construction of the second of th		84.41	ЙЙ	SILTY CLAY- some sar	nd, trace organics, firm, grey,		$\overline{\mathbf{A}}$	SS8	25		7	•						-	
7.0 82.89 End of Borehole SS9 59 39 Image: Control of C	-			moist		ľ	Δ							-					_
82.89 End of Borehole Image: Control of Borehole Image: Control of Borehole 9.0 Image: Control of Borehole Image: Control of Borehole Image: Control of Borehole 10.0 Image: Control of Borehole Image: Control of Borehole Image: Control of Borehole Image: Control of Borehole 11.0 Image: Control of Borehole Image: Control of Borehole Image: Control of Borehole Image: Control of Borehole 11.0 Image: Control of Borehole Image: Control of Borehole Image: Control of Borehole Image: Control of Borehole 13.0 Image: Control of	- 7.0			-becoming very stiff			Х	SS9	59		39						•		
8.0 9	Ţ	82.89	122	E_	d of Porcholo	ť												-	
9.0 10.0 11.0 13.0 NOTES:	- 8.0			EII															
9.0 10.0 11.0 12.0 13.0 NOTES:	E																		
3.3 10.0 11.0	Ean														-			+	
10.0 11.0 12.0 13.0 NOTES:																			
10.0 -11.0 -12.0 NOTES:																	_		
11.0 12.0 13.0 NOTES:	2 – 10.0 5 –												_			_			
-11.0 -12.0 -13.0 NOTES:																			
12.0 13.0 NOTES:	E 11.0																		
12.0 13.0 NOTES:	1 1												_						
-13.0 NOTES:	12.0																		
13.0 NOTES:																			
NOTES:														+-	-				
NOTES:																			
NUTES:																			
		5.																	
	Х П П П																		
	й																		

	<u>A</u>																
				BOREHOLE No.:	RB7	-0	1					BC	RE	но	LE	LOC	G
1	1241		SOL		93.76	6 r	n					Pa	ge:	1	of	1	
CLI	ENT: R.	W.Tor	nlinson Ltd.										Ľ	EGE	ND		
PRO	JECT:	Geote	chnical Investigation									S Spl	it Spo alby Ti	on ube			
LOC	ATION:	Lot 2	6 and 27, concession 6, C	Ottawa, Ontario								C Ro	ck Cor	e			
DES	CRIBED	BY:	B.Beveridge	CHECKED BY:			J.Ben	nett			Ţ	Wa	ter Le	vel			
DAT	E (STAR	T):	October 22, 2008	DATE (FINISH):		0	ctober 2	2 <u>2,</u> 20	08		⊢	Atte	er cor erberg	limits	%) (%)		
sc	ALE		STR	ATIGRAPHY		_	SAN	IPLE	DATA		• N	Pei Spl	it Spo	on Ind on sar	ex bas nple	ed on	
		2				Т			EL	c 0	• N	Per Dyr	netration namic (n Inde Cone s	x base ample	d on	
Depth	atior n)	grap	DES	CRIPTION OF		ate	e and nber	overy	: Vap	/ RQ		i Shi Shi	ear Str ear Str	ength	based	on Fie on La	eld Vane b Vane
BGS	Elev (T	trati	SOIL	AND BEDROCK	5	5	Nur	Rec	rganic pm o	Pene ndex	\$	Sei	ear Str	y Valu ength	e of So based	on	
	02.70	S				+		0/	<u> </u>			SCA	LEFC		STRE	SULTS	6
meters	93.76		FILL - gravel and sand t	race clay, very dense, grevist		+		70	ppm		10	20	30 40	0 <u>50</u>	60	70 8	30 <u>90</u>
		\bigotimes	black, dry	add diay, fory denot, groyid,	.										_		
- 10		\bigotimes					801	0				-				_	
		\bigotimes			Ľ	Δ	331	9								+	
-	92.08	XX	FILL- silty sand, some g	ravel, asphalt and concrete		$\overline{\mathbf{X}}$	SS2	9		R		-		-	-		
2.0		\bigotimes	fragments, trace clay, ve	ery dense, brownish yellow, d	ry 🖡							+					\vdash
-						X	SS3	13		R							
3.0	90.81	\sim	En	d of Borehole	r												
			Αι	iger Refusal							-						
- 4.0																_	
F												+			_		
F																	
E 5.0																	
E	2																
6.0															-		
F																	
- 7.0															_		
E																	
L 8.0														\rightarrow		_	
9.0												-		-	-	-	
E																	
- 10.0												+		\rightarrow	+		
-11.0												-			-	+	
E 120												+					
L 12.0																	
												-				-	
												-					
NOTES	S:																
3																	

REFER	ENCE N	o.:	T020556-A1							ENC	LOSU	RE N	lo.:		20	
	\land			BOREHOLE No.:	RB7	-02		_			BC		но	IE		3
i	JSPI	EC •	SOL	ELEVATION:	93.01	m					Pa	aae:	1	of	1	•
				4								<u> </u>	EGE	ND		
	=NI: <u>R</u>	W.lor	nlinson Ltd.							\boxtimes	SS Sp	lit Spo	on			
		Geote	conical investigation								ST Sh	elby T	ube			
			B Reveridee			I Do					KC RC Wi	ock Co ater Le	re evel			
	E (STAR	т). т).	October 22, 200	B DATE (EINISH)		October	22 2	008		ō	Wa	ater co	ntent (%	6) (0()		
			000000.22,200			000000	<u>, _</u>			•	N Pe	netrati	on Inde	(%) ex bas	ed on	
sc	ALE		STF	ATIGRAPHY		SA	MPLE		1	•	N Pe	netratio	on san	npie x base	d on	
Depth BGS	Elevation (m)	Stratigraphy	DES SOIL	SCRIPTION OF AND BEDROCK	Ctate	Type and Number	Recovery	Organic Vapou ppm or %LEL	Penetration Index / RQD	∆ (□ (S	Cu Sh Cu Sh Se Sh Po	ear St ear St nsitivi ear St cket P	rength rength ly Value rength enetro	based based e of So based meter	on Fie on Lab oil on	Id Vane b Vane
meters	93.01		GR	OUND SURFACE			%	ppm	Ν	10	SCA 50kPa 20	ALE FO 100 30 4	DR TES	ST RE 150kPa 60	SULTS 200 70 8	kPa 80 90
-		\otimes	FILL- asphalt and grave	el fragments, compact, black,											Ĩ.	
E		\bigotimes	moist											+	+	
- 1.0		\bigotimes				SS1	42		16		•4					
E		\otimes				7									-	
- 2.0		\bigotimes	-trace sand and clay		\rangle	SS2	13		R		_					
-		\bigotimes	-becoming dense to ve	ry dense	k	662	21		10			-		_		
E 30		\bigotimes	-trace to some sand		Ľ		21		10		-				-	
- 5.0	89.76	a a a a a a a a a a a a a a a a a a a	SILTY CLAY- trace org	anics, trace topsoil, brownish	<u> </u>	SS4	84		22							
-			green		Ľ										-	
- 4.0						SS5	50		9	•						
Ţ	88.44		SILTY CLAY- trace oxid	dation, organics, sand, stiff,								-			-	
- 5.0			greenish black, wet	adden, erganice, cana, ean,	2	SS6	50		5	•	-		-			
-	87.68		SILTY CLAY- trace org	anics oxidation, firm, green, w	et	597	17		10							
- 6.0	96.04				4	33/	''		10	Ī		-			-	
-	00.91	RH1	SILTY CLAY- some gra	avel, trace oxidation and organ	iics,	SS8	55		12	_						
			still, groy, wot		ŕ	¥					_				-	
E '.0																
					k				_							
8.0	84.78	12			/	SS9	9		50+					1		
E	• • • •		Er	nd of Borehole							_					
9.0																
															-	
												_				
												-				
2 – 11.0														-		
12.0																
													-			
13.0																
);											L,				
CLE																

		J	1020550-A1							ENC	.051		0.:	_	21		
				BOREHOLE No.:	RB7-	03					B	ORE	но	LE	LO	G	
l it	JSPE	C*	SOL	ELEVATION:	91.14	m					Ρ	age:	1	of	_1_		
CLIE	NT: R	W.Ton	nlinson I td	<u>n</u>								Ī	EGE	ND			
PRC	JECT:	Geote	chnical Investigation								SS S	Split Spo Shelby T	on				
LOC	ATION:	Lot 2	6 and 27, concession 6, 0	Ottawa, Ontario							RCF	Rock Co	re				
DES	CRIBED	BY: _	B.Beveridge	CHECKED BY:		J.Ber	nnett			Ţ ₽	V	Vater Le	evel	()			
DAT	E (STAR	T):	October 22, 2008	DATE (FINISH):	(October	22, 20	008			A	tterberg	limits	(%) (%)	od on		
SC	ALE		STR	ATIGRAPHY		SA	MPLE	DATA		•	S S	enetrati enetrati	on san on Inde	nple x base	ed on		
Depth BGS	Elevation (m)	Stratigraphy	DES SOIL	CRIPTION OF AND BEDROCK	State	Type and Number	Recovery	Organic Vapou ppm or %LEL	Penetration Index / RQD	∆ (□ (S ▲	Cu S Cu S Su S P	Shear St Shear St Shear St Sensitivi Shear St Pocket P	Cone s rength rength y Valu rength enetro	ample based based e of S based meter	l on Fie I on La oil I on	eld Va b Var	ine ie
meters	91.14		GRO	OUND SURFACE			%	ppm	Ν	10	SC 50kPa 20	CALE FO 100 30 4	DR TES kPa 0 <u>50</u>	ST RE 150kPa 60	SULTS 200 70	S 0kPa 809	0
		\bigotimes	FILL- asphalt and concr sand, dense, brown bla	ete fragments, some gravel a ck, dry	ind						_	_					
È,		\otimes															
					X	SS1	55		39		+					-	
2.0					X	SS2	30		8	•							
Ţ			-seepage at 2.60m dop	h	X	SS3	42		15		•						
3.0	88.09		SILTY SAND- trace gra	vel, organics, clay, very loose	, X	SS4	38		2	•	_						
F 10			0.01		E												
- 4.0					Х	SS5	0		50+		+		•		+	-	
	86.45		En	d of Borehole	×	SS6	50		R		_				1-		
E 5.0			Aı Ass	iger Refusal umed Bedrock											+-	_	
											_				1		
- 6.0											╧			-	-		_
E											-				—		
7.0											-						
F														_	+		
8.0																	
-											-			-	+-	_	
9.0																	
											+						
- 10.0																_	
											+				+	-	
												_					-
															+		
											-				1	-	
- 12.0																	
13.0																	
	5.																

		0	1020536-AT							ENCL	.030		10.1			<u> </u>	
				BOREHOLE No.:	RB2-0)1	-				BC	RE	HC	DLE	LC	G	
	126	EC*	SOL	ELEVATION:	91.60	m					Pa	ge:	_1	0	f _1		
CLIE	ENT: R	W.Tor	nlinson Ltd.									L	EG	END	2		
PRO	JECT:	Geote	chnical Investigation								SS Sp ST Sh	lit Spo elby T	on ube				
LOC	ATION:	Lot 2	6 and 27, concession 6, C	Ottawa, Ontario							RC Ro	ck Co	re				
DES	CRIBED	BY:	B.Beveridge	CHECKED BY:		J.Ber	nett			Ţ	Wa	ater Le	evel				
DAT	E (STAR	T): _	October 22, 2008	DATE (FINISH):	(October	22, 20	800		°	Wa Att	ater co erberg	ntent (g limit	(%) s (%)			
sc	ALE		STR	ATIGRAPHY		SA	MPLE	DATA		1 •	l Pe Spl	netrat lit Spo	ion In oon sa	dex b ample	ased o	n	
-		È					Τ.	ה ני	_ O	• •	l Per Dyr	netrati namic	on Ind Cone	ex ba samp	sed on le		
Depth BGS	Elevatior (m)	Stratigrap	DES SOIL /	CRIPTION OF AND BEDROCK	State	Type and Number	Recovery	Organic Vap ppm or %LE	Penetratio Index / RQ	∆ () □ () S	Cu Shi Cu Shi Sei Shi Poi	ear St ear St nsitivi ear St cket F	rengt rengt ty Val rengt ?enetr	h basi h basi ue of h basi omete	ed on l ed on l Soil ed on er	⁻ield V _ab Va	ane ine
meters	91.60		GRC	UND SURFACE			%	ppm	Ν	10	SCA 50kPa	LE F(EST F	RESUL Pa 70	TS 200kPa	90
-		\otimes	FILL- sandy clay and gr	avel, very stiff, brownish grey,								J					30
-		\otimes	moist							_							+
- 1.0		\otimes			X	SS1	50		20		•						
	90.08		Ell L clayov sand and c	ravel some apphalt fragments										_			
- 2.0			dense, brownish grey, n	noist	' X	SS2	34		33			•				+-	
F		\bigotimes				000									_	—	
E	00 FF	\otimes			Д	555	30		8							+	
_ 3.0	88.55	M	SILTY CLAY- trace san	d, hard, grey, brown traces, we	t 🛛	SS4	55		8	•					_	1	
-											+					+-	+
- 4.0		TH			X	SS5	67		12	•							
F			-becoming stiff to very s	tiff	Ĥ							-				+-	+
- 5.0			becoming our to very e		X	SS6	59		13	-					-		
E	86.24	paa	becoming very stiff to h	ard	/=	SS7	4		R								
- 6.0			Au	iger Refusal													+
			Ass	Imed Bedrock												_	
																-	
- 7.0 -															_		
E																+	+
- 8.0																	
-											+				+	-	+
9.0																	
												-				+	
2⊢11.0																	
																+-	
5 - 12.0												1				1	
														-			-
}_ - 13.0																1	
<u>}</u>												-				+	
	S:							1									
201																	
·																	

REFER	ENCEN	o.:	1020556-A1	-						ENC	_05		NO.:		2	3	
				BOREHOLE No.:	RB2-	02					В	ORE	EHC)LE		G	
i)	JSPI	EC*	SOL	ELEVATION:	88.76	m					F	age:	_1		of _1		
CLIE	ENT: R	W.Tor	mlinson Ltd.	r,									LEG	ENI	2		
PRC	JECT:	Geote	chnical Investigation								SS S	Split Sp	oon Tube				
LOC	ATION:	Lot 2	6 and 27, concession 6, 0	Ottawa, Ontario							RC F	Rock Co	ore				
DES	CRIBED	BY:	B.Beveridge	CHECKED BY:		J.Ber	nett			Ţ	N	Vater L	evel				
DAT	E (STAR	T): _	October 21, 2008	B DATE (FINISH):		October	21, 20	008		。 [[]	V A	Vater co Atterber	g limit	(%) s (%)			
SC	ALE		STR	ATIGRAPHY		SAI	MPLE	DATA		•	N F	Penetra Split Sp Penetrat	tion In oon sa ion Ind	dex b imple	ased o	n	
	E	hy					~	Pour	58			ynamic Shoar S	Cone	samp	ble ble	Field \	ano
Depth BGS	vatic (m)	igraț	DES	CRIPTION OF	otate	ne an Imbe	cover	ic Va or %L	etrati x / R(D S	Cu S	Shear S Sensitiv	trengti itv Val	h bas ue of	ed on I Soil	_ab Va	ine
	Шe	Strat	COL	AND DEDITOOR	0	Ĕź	Re	Drgan	Pen Inde		F	Shear S Pocket I	trengt Penetr	h bas omet	ed on er		
meters	88.76		GRO	OUND SURFACE			%	ppm	N		S0 50kP	CALE F	OR TE	EST F 150	RESUL	TS 200kPa	
-		\otimes	FILL- silty clay, some or	ganics, asphalt and rock			-			10		30	40 50	0 60	<u>} 70</u>	80	90
-			fragments, compact, bro	own, moist													
- 1.0					X	SS1	13		20		•	A				+	
-		\bigotimes										_		_			
2.0					Х	SS2	17		6	•					-	-	
- <u>+</u>	86.47		FILL- sandy clay, some	organics, asphalt, concrete	— - -	662	62		7								
Ean	05 74		fragments, trace silt, loo	ose, greenish grey, wet	Δ	333	03		<i>'</i>		_						
	85.41	\boxtimes	FILL- silty sand, some of	organics, asphalt, concrete	Ă,	SS4	21		R						_		
			En	d of Borehole	/						+						
- 4.0			Ai Ass	uger Refusal umed Bedrock							_						
E																	
- 5.0																	
											+	-	$\left \right $	_		+	
- 6.0																	
												+	+				
- 7.0																_	
-														-		+	
E																	
											+	-				+	
											_					_	
9.0 -													$\left \right $	-	-+-		
											_				_		
§⊢ 10.0															-		
11.0											-						
																\square	
2-12.0																	-
																-	
																1	
															· · · · · ·		

			1020330-A1								ENC	,105	URE	NO				_	
		-		BOREHOLE No.:	RB:	3-0	1		-		ĺ	В	OR	EH	OLI	E L	00	Ì	
1	JSPI	:C*	SOL	ELEVATION:	87.9	6	m					F	Page:	_1	_ (of _	1		
CLIE	ENT: R.	W.To	mlinson Ltd.											LEC	ENI	D			
PRC	JECT:	Geote	chnical Investigation									SS S	Split Sp Shelbv	ooon Tube					
LOC	ATION:	Lot 2	6 and 27, concession 6, 0	Ottawa, Ontario		~~~						RC F	Rock C	ore					
DES	CRIBED	BY:	B.Beveridge	CHECKED BY:			J.Ben	nett			¥	1	Water I	evel	(9/.)				
DAT	E (STAR	T):	October 22, 2008	DATE (FINISH):		С	ctober 2	22, 20	800		Ē	4 A	Atterbe	rg lim	its (%)	d		
SC	ALE		STR	ATIGRAPHY			SAN	IPLE I	DATA				Split Sp	tion in tion in	ample ample	based B	Ion		
Depth BGS	Elevation (m)	Stratigraphy	DES SOIL :	CRIPTION OF AND BEDROCK		State	Type and Number	Recovery	Organic Vapour ppm or %LEL	Penetration Index / RQD	∆ □ S	Cu S Cu S Cu S F	Dynami Shear S Shear S Sensitiv Shear S Pocket	c Con Streng Streng vity Va Streng Pene	th bas th bas alue of th bas trome	ple sed o sed o f Soil sed o ter	n Fiel n Lab n	d Var Vane	ie !
meters	87.96		GRO	UND SURFACE				%	ppm	N	1(50kP 20	CALE I a 10 	-OR 1 00kPa 40	EST 150 50 6	RESU kPa 0 7	JLTS 200k 0 8(Pa) <u>90</u>	
		\bigotimes	FILL- silty clay and grav brownish green grey, m	el, some asphalt and sand, s oist	stiff,									-				_	
													-						
- 1.0						Х	SS1	46		31		-	•						
E	86.41	ŤŬŬ	SILTY CLAY- some org	anics and gravel, stiff, browni	sh	V	SS2	5		R				+					_
2.0	85.98	YYY	green, grey, moist	d of Borehole							_								
-			Au	iger Refusal										+				+	-
- 3.0			ASS	lmea Bearock										_				_	-
E											_			-				+	
- 4.0																			
													+	+	-			-	
Ē													_	_				_	_
												+						+	
												_							
- 6.0												-+-	+	+				-	_
F																_			
- 7.0																	\rightarrow	+	
														1				_	
- 8.0																	-+		_
-																			
Egol												_	_	_				_	
																			_
														+				_	
- 10.0 -																			
E																			
- 11.0																		-	
												_					-		
E 12.0																			_
E													_	+			-	-	
L 13.0																			_
È														_					
NOTES	:														1				
·																			

			1020000-71		RR/	01									20		
	JSPI	C*	SOL		80.62			-			RC	RE	HOL	EL.	.00	ć	
			- - -		09.02						Pa	ye:	FOE		1		
CLIE	ENT: <u>R</u> .	W.Tor	nlinson Ltd.							⊠s	S Sp	لے lit Spo	on				
PRC	JECT:	Geote	chnical Investigation	· · · · · · · · · · · · · · · · · · ·						⊠ s	T Sh	elby Tu	ube				
LOC	ATION:	Lot 2	6 and 27, concession 6, (Ottawa, Ontario					—		C Ro	ck Cor	e				
DES	CRIBED	BY: _	B.Beveridge	CHECKED BY:		J.Ber	nett			⊻ 0	Wa	iter cor	itent (%)				
	E (STAR	T):	October 22, 2008	B DATE (FINISH):		October	22, 20	800		⊢1 ● N	Att Pe	erberg netratio	limits (° on Index	%) (base	d on		
SC	ALE		STR	ATIGRAPHY		SA	MPLE	DATA		• N	Sp Per	lit Spor	on sam n Index	ole based	on		
Depth BGS	Elevation (m)	Stratigraphy	DES SOIL	CRIPTION OF AND BEDROCK	State	Type and Number	Recovery	Organic Vapour ppm or %LEL	Penetration Index / RQD		Dyi u Shi u Shi Se Shi Po	namic (ear Str ear Str nsitivity ear Str cket Pe	Cone sa ength b ength b y Value ength b enetrom	mple ased o ased o of Soi ased o eter	on Fie on Lat I on	ld Var Vane	ne e
meters	89.62		GRO	OUND SURFACE			%	ppm	N	10	SCA 50kPa 20	LE FC	R TES	F RES	ULTS 200	kPa n or	0
-			FILL- silty sand, some of	lay, trace gravel, loose, brow	nish									1			<u>. </u>
_			green, moist									$\left \right $	-	+	+	\vdash	
- 1.0		\bigotimes			λ	SS1	50		9	•				-			
-	88.10		Fill - cond and group	race clay and organica, com	hact h	k k							_				
- 2.0			black, moist	race clay and organics, comp	pact, λ	SS2	34		27	-	+•	┝──┤		+			
	87.33		FILL- silty clay and aspl	nalt fragments, some gravel, t	trace				_								
-	00.00	\otimes	sand and organics, firm	, brownish black, moist	Ľ	553	34		к	1						\vdash	
- 3.0	86.62		FILL- sandy clay, and a	sphalt, some gravel and orga	inics,	554	34		5	•							
E		\bigotimes	very still, brownish blac	k, moist	Ľ				U		_			_		\vdash	
_ 4.0		\otimes			\square	SS5	25		37		4	•					
	85.05		Fill also and and	and all a sure around firm		Ż											
- 5.0		\otimes	FILL- clayey sand and a brownish black, moist	asphait, some gravel, firm,	X	SS6	55		16		┣┼──				\square		
-					E	Ż											
F _					Z	SS7	55		16			$\left \right $			┼	\vdash	
- 6.0 -	83.52		FILL- sand and gravel,	some asphalt, trace organics,	, t		67		E0.					+			
Ē	83.07	H	very dense, black, mois	t d. organics, firm, vollow, grov,	/L	330	07		50+					_		\square	
- 7.0	82.61		\green, wet	u, organics, intri, yenow grey							+	+		+			
		HH.	SILTY CLAY- trace org	anics, gravel, stiff to very stiff,	· L									1			-
- 8.0		H	groy, wet			SS9	100		5	•		-		+	+	\vdash	
È					ŕ	4						-					
F .														_			
E 9.0															$\left \right $		
E					Ľ	5510	55		15								
10.0	79.56	All	Fn	d of Borehole											$\left \right $	\vdash	
			A	uger Refusal													
E11.0			Ass	nwea Realock													
																\vdash	
F											1						
F 12.0															\vdash	\vdash	
E																	
- 13.0															\vdash	\square	
E															\square		
NOTES	S:				I												

		0	1020550-A1							ENC	_05	URE	NO.:			26	
	\land			BOREHOLE No.:	<u>RB5-</u>	01		_			В	OR	EHO	OLI	ELO	ЭG	
(i	JSPI	EC*	SOL	ELEVATION:	90.13	m		_			F	Page:	_1	_ (of	1	
	NT· R	W Tor	mlinson Ltd	ь.									LEC	EN	2	_	
PRC	JECT:	Geote	chnical Investigation								SS :	Split Sp	oon				
LOC	ATION:	Lot 2	6 and 27, concession 6, 0	Ottawa, Ontario							RC I	Sneiby Rock C	ore				
DES	CRIBED	BY:	B.Beveridge	CHECKED BY:		J.Ber	nnett			Ţ	1	Water l	evel				
DAT	E (STAR	T):	October 23, 2008	B DATE (FINISH):	(October	23, 20	008		Р)	Water c Atterbe	ontent rg limi	(%) its (%)		
sc	ALE		STR	ATIGRAPHY		SA	MPLE	DATA		•		Penetra Split Sp	tion li oon s	ndex t ample	ased e	on	
		È		,		_		EL	<u> </u>	• •		Penetra Dynami	tion In Con	dex ba e sam	ased o ble	1	
Depth BGS	Elevatio (m)	Stratigrap	DES SOIL	CRIPTION OF AND BEDROCK	State	Type and Number	Recovery	Organic Vap ppm or %LI	Penetratic Index / RO	∆ □ S	Cu S Cu S S S	Shear S Shear S Sensitiv Shear S Pocket	Streng Streng vity Va Streng Penel	th bas th bas alue of th bas frome	sed on ed on Soil sed on er	Field Lab ∖	Vane /ane
meters	90.13		GRO	OUND SURFACE			%	ppm	N	40	S 50kP		OR T	EST 150	RESU	TS 200kP	a
-		\otimes	FILL- silty sand, some g	ravel, concrete and asphalt			-			10	20	30	40 :	50 6		80	- 90
			brownish black, dry	cs, slity clay, very dense,							_	_	+			_	
_ 1.0		\bigotimes			X	SS1	17		R								
		\bigotimes									_				_	_	
- 2.0			-becoming very dense t	o dense	Х	SS2	17		35			•	-				
_	87.84 87 54		FILL- silty clay, some as	sphalt, gravel, trace oxidation,		SS3	17		50/5'			_				_	
- 3.0	07.04		hard, green grey brown	, moist d of Borehole	/												
			Au	uger Refusal									_		_	_	
- 4.0											_						
											-	-					
- 5.0													-				
-																-	
6.0																_	
											+					-	
- 7.0											_						
E											+					+	
8.0																	
-													-				
F																_	
- 9.0										-							
																_	
- 11.0																	
È																_	
- 12.0																_	
E																_	
L 13.0																-	
F																_	
NOTES	:		- <u></u>				1	L									

REFER	ENCE N	o.:	T020556-A1	-						ENCL	osul	RE N	o.:			27	
	A.			BOREHOLE No.:	RB5-	02		-			BO	RF	НО		: 1 ()G	
i)	JSPI	EC *	SOL	ELEVATION:	91.49	m		_			Pa	ge:	1	0	f f	1	
			mlingon I tel	I								L	EGI	END)		
PRC	ын. <u>к.</u> Энст	Geote	chnical Investigation	a the second	<u>,</u>						SS Spl	lit Spo	on		-		
LOC	ATION:	Lot 2	6 and 27, concession 6, (Ottawa, Ontario							SI She RC Ro	elby T ck Coi	ube re				
DES	CRIBED	BY:	B.Beveridge	CHECKED BY:		J.Ber	nett			Ţ.	Wa	ater Le	vel				
DAT	E (STAR	- T):	October 22, 200	B DATE (FINISH):		October	22, 20	008		。 ⊢⊣	Wa Atte	ter cor erberc	ntent (i limits	%) s (%)			
sc	ALE		STR	ATIGRAPHY		SAI	MPLE	DATA		4 •	N Per Spl	netrati it Spo	on Inc on sa	dex ba	ased (n	
Depth BGS	Elevation (m)	Stratigraphy	DES SOIL	SCRIPTION OF AND BEDROCK	State	Type and Number	Recovery	Organic Vapour ppm or %LEL	Penetration Index / RQD	∆ (□ (S ▲	Dyr Cu She Cu She Ser She Poo	namic ear Str ear Str nsitivit ear Str cket P	Cone rength rength y Valu rength enetro	samp base base ue of base omete	ed on ed on Soil ed on ed on	Field V Lab V	Vane ane
meters	91.49		GRO	OUND SURFACE			%	ppm	N	10	SCA 50kPa	LE FC		ST R 150k	ESUL Pa	.TS 200kPa	60
- - - 1.0			FILL-silty clay, some gr greensih grey, moist	avel, trace organics, very stiff	f,	SS1	25		8								
	89.97		FILL- silty clay, some or	ganics, very soft, brownish b	lack,	SS2	5		3	•					_		
- 2.0 - -	89.20		FILL- silty clay, trace or	ganics, sand, gravel, firm, bro	own,	SS3	9		8		-		_			_	
- 3.0	88.44		FILL-silty clay, some gi	avel, trace organics, oxidatio	n, V	554	55		7								
- 4.0			firm, brownish green, n	noist		885	55		,		_			_		+	
	86.92		FILL- silty clay some as	phalt and gravel, hard, browr	<u>۸</u> , ۱,	555	26		3				_				
_ ⊈ 5.0	86.16		black, moist FILL- silty clay, some sa	and, trace oxidation, firm,		550	50		4				-				
6.0	85.39		brownish green, moist	cs, trace sand, very soft, blac	∆ sk ∠V	557	59		3					_	_	-	
7.0	03.24		wet SILTY CLAY- trace san stiff, greyish green, moi	d, oxidation and organics, ve st	/ 🖄	558	75		9						_		
- - 8.0					X	SS9	100		7	•			-				
9.0	82.60		SILTY CLAY AND GRA	VEL- very stiff, grey, wet		SS10	63		63								
10.0	81.13		En	d of Borehole													
- - - - - - -			Ai Ass	uger Refusal umed Bedrock													
12.0																+	
13.0														-		+	
																	-
NOTES	:																

	A				DD40	01											
-	JCD	: ^ .(RB10-	U1		-			BC	DRE	HC	DLE	LO	G	
	NJPI		SOL	ELEVATION:	93.73	<u>m</u>					Pa	ige:	_1	of	_1	-	
CLI	ENT: <u>R</u>	W.Tor	nlinson Ltd.	100									EG	END			
PRO	DJECT:	Geote	chnical Investigation								ST St	nelby T	ube				
LOC	CATION:	Lot 2	6 and 27, concession 6, 0	Ottawa, Ontario						Ĩ	RC R	ock Co	re				
DES	SCRIBED	BY:	B.Beveridge	CHECKED BY: _		J.Ber	nett			Ţ	W	ater Le	evel	0/)			
DAT	TE (STAR	T): _	November 13, 200	DATE (FINISH):	N	ovember	r 13, 2	2008		щ	At	terberg	g limit	(%) s (%)			
SC	CALE		STR	ATIGRAPHY		SA	MPLE	DATA		•	N P€ Sp	enetrat olit Spo	ion In oon sa	dex ba Imple	sed on		
	_	2					Τ	L G	c 0	• 1	N Pe Dy	netrati namic	on Ind Cone	ex bas sample	ed on e		
Depth BGS	Elevatior (m)	Stratigrap	DES SOIL	CRIPTION OF AND BEDROCK	State	Type and Number	Recovery	Drganic Vap ppm or %LE	Penetratio Index / RQ	∆ □ S	Cu Sh Cu Sh Se Sh Po	iear St iear St insitivi iear St icket F	trengt trengt ty Val trengt Penetr	h base h base ue of S h base omete	d on Fi d on La Soil d on r	eld Va ib Var	ine 1e
meters	93.73		GRO	OUND SURFACE			%	ppm	N		SC/ 50kPa	ALE FO	OR TE ^{)kPa}	ST R 150kP	ESULT	S 0kPa	
-		\otimes	FILL- sand and gravel,	compact, brown, dry	M	881	55		14	10		30 4	0 5	<u>) 60</u>		80_9	0
F					Δ	331	55		14							-	
- 1.0	92.66	\otimes			$- \overline{\Lambda}$	SS2	71		14							-	
F.			SILTY CLAY- trace san green, moist	d and organics, stiff, greyish	H										_	1	
2.0	92.05		SILTY SAND- compact,	greenish brown, wet	X	SS3	50		13	-					+		
F	91.29 91.14		SILTY CLAY- stiff, brow	n, wet		SS4	75		28			•					
- 3.0			SILTY CLAY- some gra	vel, trace sand, very stiff, grey,	, A												
F			wet		X	SS5	67		24		-+•						
E		H.			Ð												
E 4.0					M	SS6	92		38			•				+	
F						887	02		10						_		
5.0		HH			Δ	337	05		10		-	_			-		
		H			Μ	SS8	42		35			•		+		+	\vdash
6.0	87.63	14			<u> </u>												
F			SILTY CLAY- some gra	vel, trace sand, hard, grey, we	t X	SS9	75		36			+•			-		<u> </u>
Eza	87.02	ИЛИ	En	d of Borehole													
E '																	
F										-+	_	+		+			\vdash
8.0												_					
F															_	+	
- 9.0																	
-																	-
F 10.0															+	\vdash	
E 10.0																	
-																-	-
- 11.0																	
													-				
12.0												-				+	-
-																	
F												-				+	
E 13.0												1					
INOTES	5:																

REFER	ENCE N	o.:	T020556-A1	-						ENCLO	SUR	RE N	o.: _			29	
	\wedge			BOREHOLE No.:	RB10-	-02						DE	uЛ			20	
	JSPE	C*	SOL		91 71	m		-			Pag		1		. с	1	
								-			i ay						
CLIE	ENT: <u>R</u> .	W.Tor	nlinson Ltd.							🛛 ss	Spli	t Spor	on		-		
PRC	JECT:	Geote	chnical Investigation							ST	She	lby Tu	ube				
LOC	ATION:	Lot 2	6 and 27, concession 6,	Ottawa, Ontario				,			Roc	k Cor	e .				
DES	CRIBED	BY: _	B.Beveridge	CHECKED BY:		J.Ber	nett			¥_ o	Wat Wate	er Le er con	vel itent (9	%)			
DAT	E (STAR	T):	November 13, 20	08 DATE (FINISH):	N	ovembei	r 13, 2	2008		⊢–-1 ● N	Atte Pen	rberg etratic	limits	(%) ex ba	ased	on	
SC	ALE		STF	RATIGRAPHY		SA	MPLE			• N	Split Pene	t Spor	on sar n Inde	nple x bas	sed or	זיי	
Depth BGS	Elevation (m)	Stratigraphy	DES SOIL	SCRIPTION OF AND BEDROCK	State	Type and Number	Recovery	Organic Vapou ppm or %LEL	Penetration Index / RQD	Δ Cu □ Cu S	She She Sen She Poc	ar Str ar Str sitivity ar Str ket Pe	ength ength y Valu ength ength	base base base base mete	ed on ed on Soil ed on er	Field Lab	l Vane Vane
meters	91.71		GR	OUND SURFACE			%	ppm	Ν	10	SCAL)kPa <u>20 3</u>	LE FC 100k 0 40	PR TE Pa <u>50</u>	ST R 150ki 60	ESUL Pa	200kF 200kF 80	,a 90
-		\bigotimes	FILL- sand and gravel,	compact, brown, dry	X	SS1	67		29			_		_			_
E	90.95	\bigotimes			<u>/</u>										+		+-
- 1.0		\bigotimes	Auger refusal at 0.76m 0.76m and resumed sa	. Moved 0.91m ahead, drilled mpling		SS2	8		R								
	90.03	\otimes				4											_
- 2.0	00.00	\bigotimes	FILL - sand and gravel	compact, brown, gray	X	SS3	33		23		•						
E I		\bigotimes				004				-				-	_		
F		\otimes			Δ	004			4	•	-		_		+	+	
E 3.0	88.66		FILL- silty sand, some	organics, dense, multicolorm	trace 🛛	SS5	83		45				•	_		_	
	88.05	KXX4	gravel, dry Er	d of Borehole	/\	4							-+				_
- 4.0			A	uger Refusal													
			Ass	sumed Bedrock									_	-+	+		
5.0														+		+	
-															_		
F													+		+		
E 0.0																	
E													_	-	+		
- 7.0											+		+	-+	+		
- 8.0													-	-+	+		
-													_				
											+		-+	-+			
0.6																	
GDT														_		-	
ឆ្លុំ – 10.0											+			_		-	-+
I I																	
≊⊢ ⊒⊢11.0														-	+	_	
08).G																	
														_			
																-	
															_		
iš – 13.0														_	+	-+	
0 5																-	
	6:																
EHOI																	
BOB																	

REFERENCE N	No.:	T020556-A1	-						ENC	LOS	URE	No.:		_	30	
			BOREHOLE No.:	RB10-	-03		_			В	OR	=н(= 1	00	
insp	EC*	SOL	ELEVATION:	89.34	m		-			F	Page:	1		of	1	
		mlingon I to	r,									LEG	ENI	<u>D</u>		
	Geote	chnical Investigation								SS S	Split Sp	oon				
LOCATION:	Lot 2	6 and 27, concession 6, 0	Ottawa, Ontario							RC 6	Shelby Rock Ci	ore				
DESCRIBE	DBY:	B.Beveridge	CHECKED BY:		J.Ber	nnett			Ţ	١	Vater L	evel				
DATE (STA	RT): _	November 14, 200	08 DATE (FINISH):	N	ovembe	r 14, 2	2008		° F		Vater co Atterbei	ontent rg limi	(%) ts (%)		
SCALE		STR	ATIGRAPHY		SA	MPLE	DATA		•	NF S	Penetra Split Sp Penetra	tion Ir oon s tion In	idex l ample dex ba	based e ased o	on on	
Elevation (m)	Stratigraphy	DES SOIL	CRIPTION OF AND BEDROCK	State	Type and Number	Recovery	Organic Vapour ppm or %LEL	Penetration Index / RQD	∆ □ S	Cu S Cu S Cu S F	Dynamik Shear S Shear S Sensitiv Shear S Pocket	c Cone Streng Streng ity Va Streng Penet	e sam th bas th bas lue o th bas rome	ple sed or sed or f Soil sed or ter	n Fiel n Lab n	d Vane Vane
meters 89.34		GRO	OUND SURFACE			%	ppm	N	10	50kP	CALE F a 10	OR T	EST 150	RESU	JLTS 200k	:Pa
		FILL- sand and gravel,	dense, brown, dry	X	SS1	59		32		1						
										+					-+	
- 1.0				Х	SS2	9		13		•						
T 20				X	SS3	5		5	•							
- 86.88																
86.83		TOPSOIL- trace sand, s	soft, black, wet	/]X	SS4	46		11	╞──┦							
- 3.0 80.44		SILTY CLAY- trace orga	anics, sand, very stiff, greyish	/ 🛛	SS5	5		R								
85.76	ИХИ	_ green, moist	d of Borehole	^							_					
- 4.0		A	uger Refusal													
		ASS	umea Bearock									-				
- 5.0																
															_	
- 6.0																
												<u> </u>				
										-					-+	
- 7.0																
										-+-						
- 8.0										_	_				\square	
-										_		+				
9.0															\square	
									+			-				
- 10.0																
									-	-		-				
												-				
												-			_	
12.0															_	
13.0									\mid		_					
NOTES:			and area and a second													
2																
ā																

A P P E N D I C E S

APPENDIX A

TEST PIT LOGS AND MONITORING WELL LOGS (BLOCK 1/ORGAWORLD)

	No.:T02055	56-A1		ENCLOS	URE No.:	3	3
Ŵ	INSPEC-SOL	TEST PIT No.: TP6-01 ELEVATION: 302.56 ft		TEST	PIT R	EPOF	RT
REFERENCE I CLIENT:	No.: <u>T02055</u> INSPEC-SOL R.W.Tomlinsor Geotechnical Ir Lot 26 and 27, Y: <u>B.Beveridge</u> J.Bennett Elevation $\overline{19}$ Solution	TEST PIT No.:	LEGE GS Cu CHEM OVC INF ¥	ENCLOS TEST - GRAB S - GRAB S - GRAB S - GRAB S - CHEMIC - ORGAN - INFILTR - WATER Sample Type & Number	URE No.: PIT R AMPLE (¢ AMPLE (¢ TEST AL ANAL IC VAPOF ATION LEVEL OVC ppm	3 REPOF environmer geotechnic YSIS CONCER Tests Type	3 RT ntal) al) NTRATION INF
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 287.81 287.06 286.23 285.89	SILTY CLAY -trace organics, brownish green, wet -Water infiltration was observed at 4.6m BGS SILTY SAND- trace cobbles, trace organics, greyish black, w SILTY CLAY- trace cobbles, grey, wet End of Test Pit	et				

REFERENCE No.: T020556-A1			ENCLOS	URE No.:	3	4			
INSPEC-SOL	TEST PIT No.: TP6-02 ELEVATION: 297.11 ft		TEST	PIT F	REPOF	RT			
CLIENT: R.W.Tomlinson Ltd.		LEGE	ND						
PROJECT: Geotechnical Investigat	tion	GSE GS	- GRAB S	AMPLE (environme reotechnic	ntal) al)			
LOCATION: Lot 26 and 27, concess	sion 6, Ottawa, Ontario	CUEN	- SHEAR	TEST					
DESCRIBED BY: B.Beveridge	DATE:November 10, 2008	OVC	- ORGAN	IC VAPOR	R CONCEI	NTRATION			
CHECKED BY: J.Bennett	DATE:	INF ¥	- INFILTR - WATER	ATION LEVEL					
Depth Elevation 8		····	Sample	OVC	Tests	¥ /			
Feet Metres 297.11	STRATIGRAPHY		Type & Number	ppm	Туре	INF			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DL-some organics, black, moist infiltration observed at 2.90m BGS SAND- some organics, blackish grey, wet CLAY- some sand, trace organics, brownish grey, wet End of Test Pit	nents,							
REFERENCE	No.:T0205	56-A1				ENCLOS	URE No.:	3	5
-------------	----------------------	-------------	-------------------------------	--------------------------------	-------------------	------------	----------	------------------	----------
Ŵ	INSPEC-SOL	L	TEST PIT No.: _ ELEVATION:	TP2-01 284.97 ft		TEST	PIT F	REPOR	रा
CLIENT:	R.W.Tomlinso	n Ltd.			LEG	<u>END</u>			
PROJECT:	Geotechnical I	nvestigatio	on		GSE	- GRAB S	AMPLE (environme	ntal)
LOCATION:	Lot 26 and 27,	concessio	on 6, Ottawa, Ontario		Cu	- SHEAR	TEST		
DESCRIBED B	Y: B.Beveridae		DATE: Nov	ember 10, 2008	OVC	- ORGAN	IC VAPOF	YSIS R CONCEI	NTRATION
CHECKED BY	J.Bennett		DATE:		INF ▼	- INFILTE	ATION		
Depth	Elevation		07043			Sample	OVC	Tests	¥ /
Feet Metres	(ft) දි 284.97 ග්		STRAT	IGRAPHY		Number	ppm	Туре	INF
0.3	284.64	TOPSOIL	some organics and roo e	otmat, black, moist, w	ater infiltration	-			
		SILTY CL	AY-trace organics, brow	wnish grey, wet of Test Pit					
2 - 0.5			Shove Assum	el Refusal ed Bedrock					
3 —									
5 1.5	5								
6									
2.0									
8 2.5	5								
9									
							-		
	5								
12									
	5								
19									
6.0									

REFERENCE No.: T020556-A1			ENCLOS	URE No.:	3	86
INSPEC-SOL	TEST PIT No.: TP3-01 ELEVATION: 288.81 ft	-	TEST	PIT R	EPO	रा
CLIENT: R.W.Tomlinson Ltd.		LEGE	END			
PROJECT: Geotechnical Investiga	ation	- GSE GS	- GRAB S - GRAB S	AMPLE (e AMPI E (c	environme eotechnic	ntal) al)
LOCATION: Lot 26 and 27, conces	sion 6, Ottawa, Ontario		- SHEAR		vele	
DESCRIBED BY: B.Beveridge	DATE:November 10, 2008		- ORGAN		R CONCE	NTRATION
CHECKED BY: <u>J.Bennett</u>	DATE:		- WATER	LEVEL		
Depth Elevation Feet Metres con of (ft)	STRATIGRAPHY		Sample Type & Number	OVC	Tests	⊻ INF
	CLAY- some organics,brown, moist	·····	Tumber		туре	
	End of Test Di		-			
	Shovel Refusal Assumed Bedrock					
5 1.5						
6 —						
9 —						
					1	

REFERENCE No.:	0556-A1						ENCLOS	URE No.:	3	7
INSPEC-S	OL	TEST PIT	「No.: ON:	TP4-(293.0 ⁴	01 1 ft		TEST	PIT R	EPOF	RT
CLIENT: R.W.Tomlin PROJECT: Geotechnic LOCATION: Lot 26 and 2 DESCRIBED BY: B.Beveridge CHECKED BY: J.Bennett	son Ltd. al Investigat 27, concess	tion ion 6, Ottawa, C DATE: DATE:	Ontario	<u>mber 10, 200</u>)8	LEGE GSE GS Cu CHEM OVC INF ¥	- GRAB S - GRAB S - SHEAR 1- CHEMIC - ORGAN - INFILTR - WATER	AMPLE (¢ AMPLE (g TEST CAL ANAL IC VAPOF ATION LEVEL	environmer leotechnic YSIS & CONCEN	ntal) al) JTRATION
Depth Elevation &			STRATI	GRAPHY			Sample Type &	OVC	Tests	⊥ INI⊤
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FILL- si fragmer	Ity clay, some as	End of	Test Pit	ced steel and wo	nod	Number	ppm	Type	

REFERENCE No.:			ENCLOS	URE No.:	3	8
INSPEC-SOL	TEST PIT No.: TP4-02 ELEVATION: 291.24 ft		TEST	PIT F	REPOR	RT
CLIENT: R.W.Tomlinson Ltd		LEGE	END			
PROJECT: Geotechnical Invest	igation	GSE GS	- GRAB S	AMPLE (environme	ntal) al)
LOCATION:Lot 26 and 27, cond	ession 6, Ottawa, Ontario	CU	- SHEAR		Veic	
DESCRIBED BY: B.Beveridge	DATE:November 10, 2008	OVC	- ORGAN	IC VAPOR	R CONCEI	NTRATION
CHECKED BY: J.Bennett	DATE:	INF ▼	- INFILTR - WATER	LEVEL		
Depth Elevation	STRATIC DADUN		Sample	OVC	Tests	Ţ
Feet Metres (ft) දි. 291.24 ග්	STRATIGRAPHY		Number	ppm	Туре	INF
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- silty clay, some asphalt, brick, concrete, gravel, wood, nish black, moist					

REFERENCE	No.: <u>T020</u> 5	556-A1						ENCLOS	URE No.:	4	0
Ŵ	INSPEC-SO	L	TEST PIT	Г No.: _ ЮN:	TP5-0 298.82	1 ! ft		TEST	PIT R	EPOF	RT
CLIENT:	R W Tomlinso	on I td					LEGE	ND			
PROJECT:	Geotechnical	Investiga	tion				GSE	- GRAB S	AMPLE (e		ntal)
LOCATION:	Lot 26 and 27	, concess	sion 6, Ottawa, C	Ontario			Cu	- SHEAR	TEST	jeotechnic	ai)
DESCRIBED E	BY: B.Beveridge		DATE:	Nove	ember 10, 200	8	OVC	- CHEMIC - ORGAN	IC VAPOF	YSIS R CONCE <mark>I</mark>	TRATION
CHECKED BY	: J.Bennett		DATE:				INF ¥	- INFILTR - WATER	ATION LEVEL		
Depth	Elevation 2			STRAT				Sample	OVC	Tests	Ţ
Feet Metres	s (ft) 5 298.82 S			51RA1	GRAPHI			Number	ppm	Туре	INF
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-Water	infiltration obser	ck, asphal k, moist	m BGS f Test Pit	avel, cobbles, tr	ace				

REFERENCE No.: T020556-A1			ENCLOS	URE No.:	4	1
INSPEC-SOL	TEST PIT No.: TP10-01 ELEVATION: 285.76 ft		TEST	PIT R	EPOF	RT
CLIENT: R.W.Tomlinson Ltd.		LEGE	ND			
PROJECT: Geotechnical Investigat	ion	GSE GS	- GRAB S - GRAB S	AMPLE (e AMPLE (c	nvironmei eotechnic	ntal) al)
LOCATION:Lot 26 and 27, concess	on 6, Ottawa, Ontario	CUEM	- SHEAR	TEST		
DESCRIBED BY: B.Beveridge	DATE:November 10, 2008	OVC	- ORGAN		CONCE	NTRATION
CHECKED BY: J.Bennett	DATE:	INF ¥	- WATER	LEVEL		
Depth Elevation	STRATICDADUX	- 1.1	Sample	OVC	Tests	Ţ
Feet Metres (ft) 5	STRATIGRAPHY		Number	ppm	Туре	INF
0.3 285.43 TOPSO infiltratio	L-some organics, trace silt and sand, black, wet, water n at surface					
284.76 CLAY-b SILTY C	lackish grey, wet, some organics					
2 - 0.5						
3						
5 1.5						
6.2 279.59						
	End of Test Pit					
9 —						
10 3.0						
3.5						
4.5						
						I

APPENDIX B

TEST PIT LOGS (GOLDER, REPORT No. 931-2820, MARCH, 1994)

PROJECT NAME: Orgaworld

PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP1-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH		SAMP	LE
m BGS		m BGS	MBER	INTERVAL	
			NN		
F	TOPSOIL - fine silty sand with some organic material, loose, dark brown, moist	0.15			
-					
-0.5	End of Test Pit on Bedrock				
-					
-					
1.0 -					
F					
-					
-					
2.0					
- -					
F					
- -					
3.0					
-					
-3.5					
- -					
90 - 4.0					
100-					
HOL A F					
4.5 HO					
GPJ -					
5.0					
8)TP-(
Y-200					
10-5.5					
5804-(1 1					
4 DO					
	NUTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION	NIABLE			
TESI					

Page 1 of 1

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP2-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH		SAMPLE			
		m BGS	BER				
				INTERVAL			
	TOPSOIL - fine silty sand with some organic material, loose, dark brown, moist $\frac{d^2k}{dk}$						
		0.20					
-	END OF TEST PIT @ 0.30m BGS	0.30					
20.0	End of Test Pit on Bedrock						
F							
-1.0							
F							
- 1.5 -							
-							
- 2.0							
-							
-							
-2.5 -							
-							
-							
-							
- 3.5							
-							
<u>5</u>							
5 							
21-5.0							
5-5.5							
r)00-+							
4580							
3	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION	I TABLE					
<u>й</u>							

PROJECT NAME: Orgaworld

PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP3-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH		SAMP	LE
11 BGS		m BGS	MBER	INTERVAL	
		0.00	Z		
-	Bedrock at Surface	0.00			
- 0.5					
- 0.5					
-					
- 1.0					
-					
-1.5					
-					
- 2.0					
-					
-					
- 2.5					
-					
-3.0					
-					
- 3.5					
-					
- 4.0					
-					
- 45					
-					
-					
-5.0					
- 5.5					
-					
-					
N	UIES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVAT	ION TABLE			

Page 1 of 1

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd. LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario HOLE DESIGNATION: TP4-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.		SAMPI	E
	GROUND SURFACE	m 96.02	NUMBER	INTERVAL	PID (ppm)
- - - - 0.5	TOPSOIL - fine silty sand with some organic material, loose, dark brown, moist I I<td>95.71</td><td></td><td></td><td></td>	95.71			
- 	SM - TILL, silty sand with some gravel, compact to dense, brown, moist	95.10			
- - 1.5 - - - 2.0 -				G 1.83 - 2.44	2.9
- 2,5 	- water infiltration at 2.44m BGS END OF TEST PIT @ 2.59m BGS	93.43			
- 3.0 	End of Test Pit on Bedrock				
- 3.5 					
- <u>1</u>					
4.5					
1 - 5.0					
45804-00(JULY-2(1 1 1 1 1 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7	·				
	I <u>NOTES:</u> MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION	I TABLE	I	I	

Page 1 of 1

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804 CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP5-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

	DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.		SAMPL	E
-		GROUND SURFACE	m 94.78	NUMBER	INTERVAL	PID (ppm)
	0.5	FILL - asphalt with trace of sand, gravel, dense, dark grey to black, moist				
	-1.0	FILL - sand and gravel with trace of wood, concrete, compact to loose, dark brown, moist	94.17		G 0.00 - 1.22	9.3
	- 1.5	- water infiltration at 1.22m BGS			G 1.22 - 1.83	11.0
-	-20	END OF TEST PIT @ 1.83m BGS	92.95			
	-2.0	End of Test Pit on Bedrock				
-	-2.5					
	-3.0					
	- 3.5					
3DT 1/30/09	- 4.0					
J CRA_CORP.(-4.5					
TP-OT004.GP	-5.0					
-00(JULY-2008	- 5.5					
45804-						
TEST PIT LOG		NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION	NTABLE		I	

PROJECT NAME: Orgaworld

PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP6-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.		SAMP	_E
	GROUND SURFACE	94.84	NUMBER	INTERVAL	PID (ppm)
	TOPSOIL - fine silty sand with some organic material, loose, dark brown, moist				
.	FILL - SAND AND GRAVEL with trace wood and asphalt, dark brown, loose to compact and moist	94.69			
-0.5		84.03		G 0.61 - 0.81	7.2
	END OF TEST PIT @ 0.81m BGS	94.03			
- 1.0	End of Test Pit on Bedrock				
- 1.5					
-2.0					
- 2 .5					
-3.0					
- 3.5					
-4.0					
- 					
- 5.0					
- - 					
-					
N	OTES: MEASURING POINT ELEVATIONS MAY CHANGE: REFER TO CURRENT ELEVATION	TABLE			

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP7-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.		SAMPI	E
mBGS	GROUND SURFACE	m 94.15	NUMBER	INTERVAL	PID (ppm)
	FILL - sand and gravel with trace of concrete, compact to loose, dark brown, moist				
- - 1.5 -	- water infiltration at 1.52m BGS	00.00		G 1.22 - 1.83	3.4
2.0	END OF TEST PIT @ 1.83m BGS End of Test Pit on Assumed Boulder	92.32			
- 2.5 					
- 3.5 -					
60/0E/1 1/30/06					
- 4.5					
100000-010-010-010-010-010-010-010-010-					
804-00(JULY-2008) 					
1					
TEST PIT					

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP8-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.		SAMPI	.E
mBGS	GROUND SURFACE	m 94.03	IUMBER	INTERVAL	PID (ppm)
-	FILL - sand and gravel with trace of concrete, trace wood, compact to loose, dark brown, moist		z		
- 0.5 					
- - -					
- 1.5 	- water infiltration at 1.52m BGS	93.20		G 1.22 - 1.83	5.5
- 2.0 		92.20		G 1.83 - 2.44	2.5
- 2.5	END OF TEST PIT @ 2.44m BGS				
Ē	End of Test Pit on Bedrock				
- 3.0 					
- 3.5 -					
4.0 					
0.4HOJ COHEO					
5.0 5.0 5.0					
5.5 5807-00/70T-7-20					
+ - -	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE: REFER TO CURRENT ELEVATION				
ST PIT					
۳L					

PROJECT NAME: Orgaworld

PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP9-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH		SAMPI	E
m BGS		m BGS	E		
			NUMB	INTERVAL	PID (ppm)
- 0.5 	FILL - sand and gravel with trace of concrete, trace plastics, trace steel, trace asphalt, compact to loose, dark brown, moist		E	G 1.22 - 1.83	5.0
- 	SM - TILL - silty sand with some gravel, compact to dense, brown, moist	2.13			
- 3.0				G 3.05 - 3.66	7.7
- - - - -	- cobbles and boulders at 3.66m BGS				
4.0	END OF TEST PIT @ 3.96m BGS	3.96			
109-100-100-100-100-100-100-100-100-100-	End of Test Pit on Bedrock				
19:0000-41(80)					
45804-00(JULY-2C					
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATIO	I N TABLE	L		I
<u> </u>					

TEST PIT STRATIGRAPHIC LOG

Page 1 of 1

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804 CLIENT: Orgaworld Canada Real Estate Ltd. LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario HOLE DESIGNATION: TP10-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH m BGS	œ	SAMP	LE.
			NUMBE	INTERVAL	
	END OF TEST PIT @ 0.00m BGS	0.00			
	Bedrock at Surface				
0.5					
1.0					
1.5					
2.0					
2.5					
				т. 	
3.0					
3.5					
4.0					
4.5					
5.0					
5.5					
N	DTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVA	TION TABLE			

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804 CLIENT: Orgaworld Canada Real Estate Ltd. LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP11-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

SAMPLE DEPTH DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS m BGS m BGS NUMBER INTERVAL TOPSOIL - fine silty sand with some organic material, loose, dark brown, moist 114 11. 31 0.30 END OF TEST PIT @ 0.30m BGS 0.5 End of Test Pit on Bedrock -1.0 -1.5 2.0 -2.5 - 3.0 -3.5 PIT LOG NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE TEST

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804 CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP12-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH		SAMP	LE
		m BGS	BER		
			MUN	INTERVAL	
-	TOPSOIL - fine silty sand with some organic material, loose, dark brown, moist				
-	END OF TEST PIT @ 0.30m BGS	0.30			
- 0.5	End of Test Pit on Bedrock				
Ē					
- 1.5					
-					
2.0					
2.5					
-					
-3.0					
- 3.5					
60/0 <u>6</u> 4.0					
GDT 1					
dHOO 4.5					
U CRA					
5.0					
8)TP-0					
1-00(JU					
G 4580					
PIT LO	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION	TABLE			
TEST					

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP13-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH m BG\$	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH m BGS		SAMP	LE
			NUMBEF	INTERVAL	
-	TOPSOIL - fine silty sand with some organic material, loose, dark brown, moist				
	END OF TEST PIT @ 0.30m BGS	0.30			
- 0.5	End of Test Pit on Bedrock				
-					
-1.0					
-					
- 1.5					
-					
-2.0					
-2.5					
-3.0					
-3.5					
- 4.0					
-					
-4.5					
			-		
-5.0					
5.5					
<u> </u>	IOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION	N TABLE	1		

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804 CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP14-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH		SAMP	LE
		m BGS	ABER	INTERVAL	
		0.00	NN		
-	END OF TEST PTI @ 0.00m BGS	0.00			
-05					
-					
-					
-					
-2.0					
-					
-2.5					
-					
3.0 					
-					
60/					
ORP.G					
0 - 4.5 					
004.GPJ					
5.0 10-1-1					
-X-2008					
INC)00-1					
3 4580					
PIT LOC	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION	N TABLE			
TEST					

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP15-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH		SAMPI	E
mBGS		m BGS	NUMBER	INTERVAL	PID (ppm)
-	TOPSOIL - fine silty sand with some organic material, loose, dark brown, moist				
- 	ML - SANDY SILT, dense brown, moist	0.30			
- - - - - - - - - - - - - - - - - - -				G 1.52 - 2.13	7.2
- 2.0	- water infiltration at 2.13m BGS	2.13			
- - 2.5 -	END OF TEST PIT @ 2.13m BGS End of Test Pit on Bedrock				
- 3.0 					
- 					
60/02/1 100/0 60/02/1 100/0					
0.0010-01000 					
1 1 1 1 20					
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION	TABLE	L	L	<u> </u>
⊢L					

Page 1 of 1

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP16-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH		SAMPL	E
III BGS		m BGS	ËR		
			IUME	INTERVAL	PID (ppm)
	FILL - sand and gravel with trace of concrete trace plastics, trace steel, trace	ļ	Z		
	asphalt, compact to loose, dark brown, moist				
-0.5					
Ę					
1.0					
-					
L					
- 1.5				G 1.22 - 1.83	6.8
F					
-				\vdash	
-2.0					
-					
-	rest mat at 8 44m BOC				
- 2.5					
F		2.74			
-	ML - SILT WITH TRACE OF SAND, trace of clay, soft to firm, wet, brown				
3.0				G 2.74 - 3.35	5.5
-					
F	END OF TEST PIT @ 3.35m BGS	3.35			
- 3.5 -					
F					
60					
g 4.0 					
4.5 ⊈-					
001					
2 - 5.0 0 -					
T 1					
5.5 C					
804-0					
G 45					
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATIO	N TABLE			
STP					
۳L					

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804 CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP18-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.		SAMPI	E
	GROUND SURFACE	m 93.21	NUMBER	INTERVAL	PID (ppm)
- 0.5	FILL - sand and gravel with trace of concrete, trace asphalt, compact to loose, dark brown with black streaks, moist - water infiltration at 1.63m BGS END OF TEST PIT @ 1.68m BGS End of Test Pit on Bedrock	91.53	Z	G 1.22 - 1.68	16.3
- - - - - - - - - - - - - - - - - - -					
10 45804-00/ULY-2009(5PJ CRA, CORP. GD1 /13 4					
TEST PIT LO	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION	TABLE			

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804 CLIENT: Orgaworld Canada Real Estate Ltd. LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP18A-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.		SAMPL	E
in bao	GROUND SURFACE	93.14	NUMBER	INTERVAL	PID (ppm)
	FILL - sand and gravel with trace of concrete, trace plastics, trace steel, trace asphalt, compact to loose, dark brown, moist				
- 	- water infiltration at 1.52m BGS			G 1.22 - 1.83	19.9
- 2.0 - - - - - 2.5					
- 	ML - SILT with trace of sand, trace clay, soft to firm, grey, wet	89.79			
- 4.0 					
4.5 5.0					
- - - - 5.5	END OF TEST PIT @ 5.49m BGS	87.65		G 5.18 - 5.49	6.3
-	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION				

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804 CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP19-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH		SAMP	_E
		11 665	NUMBER	INTERVAL	PID (ppm)
- 0.5 - 1.0 - 1.5 - 2.0 - 2.5 - 3.0	FILL - sand and gravel with trace of concrete, compact to loose, dark brown, moist				
- 3.5	- water infiltration at 3.35m BGS ML - SILT WITH TRACE OF SAND, trace of clay, firm to stiff, grey, wet END OF TEST PIT @ 3.66m BGS	3.35 3.66		G 3.35 - 3.66	5.9
- 4.0	End of Test Pit on Bedrock				
- 4.5					
- 5.0					
-5.5					
			1		

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804 CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP19A-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH		ELEV.		SAMPI	LE
m BGS	GROUND SURFACE	m 92.75	NUMBER	INTERVAL	PID (ppm)
	FILL - sand and gravel with trace of concrete, trace asphalt, trace of cobbles and boulders, compact to loose, dark brown, moist - 300mm clay seam, tan, wet at 0.91m BGS - water infiltration at 1.22m BGS			G 0.61 - 1.22	14.8
- 1.5		90.32			
- 2.5 	ML - SILT with trace sand, trace clay, firm, grey, wet				
0.001.001.001.001.001.001.001.001.001.0				G 4.57 - 5.18	21.2
G 45804-00(JULY-2008)TP- 	END OF TEST PIT @ 5.18m BGS Testpit terminated due to undermining.	87.57			
TEST PIT LO	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION	I TABLE			

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804 CLIENT: Orgaworld Canada Real Estate Ltd. LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP20-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH		SAMP	LE
			NUMBER	INTERVAL	PID (ppm)
	TOPSOIL - fine silty sand with some organic material, loose, dark brown, moist				
- 1.0	SM - SILTY SAND TILL, with some gravel, trace clay, compact to dense, brown, moist - water infiltration at 0.76m BGS	0.61		G 0.61 - 1.22	22.1
	END OF TEST PIT @ 1.22m BGS	1.22			
- 	End of Test Pit on Bedrock				
- 2.0					
- - 2.5					
- - - 					
- - - - 4.0					
- - - - 45					
-					
- 					
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION	N TABLE			

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804 CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP21-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH n BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH m BGS		SAMP	LE
			NUMBER	INTERVAL	
	TOPSOIL - fine silty sand with some organic material, loose, dark brown, saturated $\frac{24}{2}$				
).5					
	END OF TEST PIT @ 0.61m BGS	0.61			
.0	End of Test Pit on Bedrock				
5					
.0					
2.0					
2.5					
3.0					
3.5					
I.O					
1.5					
5.0					
5.5					
1 N	OTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATIO	N TABLE		L	

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804 CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP22-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH		SAMPI	E
m BGS		m BGS	BER		
			NUME	INTERVAL	PID (ppm)
	TOPSOIL - fine silty sand with some organic material, loose, dark brown, moist				
F					
-	ML - SANDY SILT with trace of clay, very stiff, brown, moist	0.30		7	
- 0.5				G 0.30 - 0.91	12.7
-					
- 1.0	END OF TEST PIT @ 0.91m BGS	0.91			
-	End of Test Pit on Bedrock				
- -					
- 1.5					
È.					
- 2.0					
F					
2.5					
-					
-3.0					
L					
-3.5					
-					-
er − 4.0					
4.5					
04:GF					
21-5.0 01-					
1 1					
5.5					
1 1					
1 1					
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION	TABLE	I	1	L
Id ISI					
۳ ــــــ					

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804 CLIENT: Orgaworld Canada Real Estate Ltd. LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP23-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPT	H STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.		SAMPI	E
mBG	GROUND SURFACE	M 93.49	NUMBER	INTERVAL	PID (ppm)
- 	TOPSOIL - fine silty sand with some gravel, some organic material, loose, dark			G 0.61 - 1.22	6.5
- - 1.5 -	END OF TEST PIT @ 1.22m BGS End of Test Pit on Bedrock	92.27			
- 2.0					
- 2.5					
- 3.0					
- 3.5 - - - - - - - - - - - - - - - - - - -					
2.5					
P-01004.GPJ CF					
5. 5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					
TEST PIT LOG 45	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION	TABLE			

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804 CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP24-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH		SAMP	LE
11 000		m BGS	UMBER	INTERVAL	
- - - - 0.5	TOPSOIL - fine silty sand with some gravel, some organic material, loose, dark		Z		
	END OF TEST PIT @ 1.22m BGS	1.22			
	End of Test Pit on Bedrock				
- 				-	
- 2.5 					
- 					
- 3.5 					
- 					
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION	N TABLE			

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804 CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP25-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

SAMPLE DEPTH DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS m BGS m BGS NUMBER INTERVAL PID (ppm) TOPSOIL - fine silty sand with some organic material, loose, dark brown, moist 314 11.21 0.30 SM - SILTY SAND with some gravel, compact, brown, moist -0.5 G 0.30 - 0.91 14.0 0.91 END OF TEST PIT @ 0.91m BGS - 1.0 End of Test Pit on Bedrock 1.5 2.0 2.5 -3.0 3.5 4500-00/JULY-2008)TP-OT004.GPJ CRA_CORP.GDT 1/30/09 TEST PIT LOG MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE NOTES:

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804 CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP27-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH		SAMP	LE
m BGS		m BGS	NUMBER	INTERVAL	PID (ppm)
	FILL - sand and gravel with trace clay, trace wood, cobbles and boulders			G 0.61 - 1.22	10
- 1.0	- organic layer, dark brown to black at 1.22m BGS				
1.5	END OF TEST PIT @ 1.52m BGS	1.52			
2.0 2.0	End of Test Pit on Bedrock				
- 2.5 					
- 3.0 					
- 					
- 4.0					
4.5					
1 1 5.0					
5.5					
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION	TABLE			

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804 CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP27A-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS		ELEV.		SAMP	E
m BGS	GROUND SUI	RFACE	m 92.29	NUMBER	INTERVAL	PID (ppn
	TOPSOIL - fine silty sand with some organic material, loose, dark brown, moist	<u>2114</u> <u>1</u> 2 <u>211</u>				
0.5	FILL - sand and gravel with trace of concrete, trace asphalt, trace wood, trace bricks, compact to loose, dark brown, moist		91.83			
1.0	- water infiltration at 0.91m BGS				G 0.61 - 1.22	5.6
1.5						
2.0	- root mat at 2.44m BGS		00.70			
3.0	SM - SANDY SILT, trace clay, trace gravel, grey to brown, layered, oxidized, wet		89.70			
3.5 4.0						
4.5	- cobbles/boulders at 4.57m BGS END OF TEST PIT @ 4.57m BGS					
5.0			87.11		G 4.88 - 5.18	9.0
5.5						
- 5.5 - - - - - <u>N(</u>	OTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELE	VATIO	N TABLE			

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd. LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP28-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel

FIELD PERSONNEL: T. Saunders

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.		SAMP	LE
m BGS	GROUND SURFACE	m 91.69	NUMBER	INTERVAL	PID (ppm)
-	FILL - sand and gravel with trace of concrete, trace asphalt, trace wood, trace cobbles/boulders, compact to loose, dark brown, moist		2		
- 0.5 					
- 1.0 - -				G 0.61 - 1.22	2.1
- 1.5 - -					
-2.0	- root mat at 2.13m BGS				
-	- water infiltration at 2.29m BGS				
-2.5	SM - SILTY SAND TILL, trace clay, trace gravel, cobbles/boulders, loose to compact, grey to brown, wet	89.25			
- 	END OF TEST PIT @ 3.35m BGS	88.33			
-	End of Test Pit on Bedrock				
4.0 4.0					
4.5					
0.40 0.5 0.5 0.5					
4580					
00 01	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION	N TABLE	1		I
EST PIT					
FL					

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804 CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP30-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.		SAMPI	E
m BGS		m 02.20	1BER		PID (nom)
		53.35	NUN		n ib (ppiii)
-	TOPSOIL - fine silty sand with some organic material, loose, dark brown, moist $\frac{2^{\frac{1}{2}}}{ l_{\ell} ^{\frac{1}{2}}}$				
- 0.5 	SM - SILTY SAND with trace clay, grey/brown	93.09			
- 	SM - SILTY SAND TILL with gravel and cobbles/boulders, trace clay, oxidized, dense, wet	92.48			
- 1.5 - -				G 1.22 - 1.83	3.4
	END OF TEST PIT @ 1.83m BGS	91.56			
- 2.0	End of Test Pit on Bedrock				
- - 2.5					
-					
- 3.0 -					
- - - 3.5 -					
4.0					
CRA_CORP.GI					
LD-1010-GL					
1.1.1.1.5.5					
45804-0					
90 1	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION	N TABLE	<u> </u>		
EST PI					

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804 CLIENT: Orgaworld Canada Real Estate Ltd. LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP31-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. m	~	SAMPI	LE
	GROUND SURFACE	93.03	NUMBEF	INTERVAL	
	TOPSOIL - fine silty sand with some organic material, loose, dark brown, moist				
	END OF TEST PIT @ 0.15m BGS	92.88			
5	End of Test Pit on Bedrock				
D					
5					
-					
D					
5					
0			1		
-					
5					
1					
0					
5					
].	
0	·		1		
5					
NC	TTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION	ITABLE			

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd. LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP32-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH SAMPLE ELEV. STRATIGRAPHIC DESCRIPTION & REMARKS m BGS m NUMBER INTERVAL GROUND SURFACE 93.30 TOPSOIL - fine silty sand with some organic material, loose, dark brown, moist 93.14 END OF TEST PIT @ 0.15m BGS End of Test Pit on Bedrock -0.5 -1.0 -1.5 2.0 -2.5 -3.0 -3.5 TEST PIT LOG 45804-00(JULY-2008)TP-OT004.GPJ CRA_CORP.GDT 1/30/09 -4.0 -4.5 -5.0 - 5.5 NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP33-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

[DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH		SAMP	LE
-			m BGS	ШШ		
					INTERVAL	
-		TOPSOIL - fine silty sand with some organic material, loose, dark brown, moist	0.15			
-		END OF TEST PIT @ 0.15m BGS	0.15			
F	0.5	End of Test Pit on Bedrock				
F						
E	1.0					
E	1.0					
F						
╞	1.5					
F						
F	2.0					
F						
E	25					
F	2.0					
F						
-	3.0	·				
F						
F	3.5					
Ē						
<u>8</u>	4.0					
	-1.0					
ORP.G						
0	4.5					
GPJ						
01004	5.0					
-d1(80						
1-7-20	5.5					
1-00(J	5.0					
4580						
		NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATIONS	ON TABLE	I	1	L
ESTP						

HOLE DESIGNATION: TP34A-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

J

CLIENT: Orgaworld Canada Real Estate Ltd.

PROJECT NUMBER: 45804

FIELD PERSONNEL: T. Saunders

	DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.		SAMP	E
	m BGS		m	œ		
		GROUND SURFACE	91.75	UMBE	INTERVAL	PID (ppm)
╞		Ell L cond and aroual trace controlt trace brief, trace class trace word		<u> </u>		
	- - - 0.5	FILL - sand and graver, trace aspnan, trace block, trace glass, trace wood				
	- 	- water infiltration at 0.91m BGS			G 0.61 - 1.22	13.7
	- - - 1.5 -					
	-	- root mat at 1.83m BGS				1
	-2.0	- sand seam at 2.13m BGS				
	-	XX	89.31	1		
	- 2.5 - - - -	SM - SILTY SAND TILL, trace clay, trace gravel, loose to compact, grey, wet			G 2.44 - 3.05	6.4
	- 3.0 - -		88.40			
		END OF TEST PIT @ 3.35m BGS End of Test Pit on Bedrock				
SDT 1/30/09	- 					
PJ CRA_CORP.(- - 4.5 					
08)TP-OT004.GI	- 					
45804-00(JULY-20	- 5.5 			-		
LOG		NOTES: MEASURING POINT ELEVATIONS MAY CHANGE: REFER TO CURRENT ELEVATION		I		
TEST PIT I		NOTES. MEASURING FOINT ELEVATIONS MAT CHANGE, REFER TO CORRENT ELEVATION	TADLE			
-1						

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP35A-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

	DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH		SAMPI	E
	m BGS		m BGS	Ш		
				UMB	INTERVAL	PID (ppm)
ł		FILL - sand and gravel, trace asphalt, trace concrete, cobbles/boulders, trace		z		· · · · · · · · · · · · · · · · · · ·
	-	wood, grey to dark brown, loose to compact, moist				
ļ	 -					
	0.5 					0.4
	-				G 0.00 - 1.22	2.4
-	-					
	- 1.0 -					
	-					
ł	- 15					
ł	-					
F	-					
F	-2.0					
ļ	-				h	
ļ	-				G 2.13 - 2.59	2.3
	-2.5		2 50			
	-	SM - SILTY SAND TILL, trace clay, trace gravel, cobbles/boulders, loose to compact, grey to brown, wet	2.00			
F	-	- water infiltration at 2.74m BGS				
ļ	3.0 -		•		G 2.59 - 3.51	1.3
ļ	-					
ł	- 35		3.51		2.51	10
	-	END OF TEST PIT @ 3.51m BGS	0.01		- 0.01	1.2
ļ	. .	End of Test Pit on Bedrock				
/30/08	- 4.0					
E E	-					
RP.G	-					
V V	- 4.5					
L CH	-					
04.GF	-					
010	5.0 -					
11(80)	-					
LY-20	- 55					
nr) 00	-					
5804-	-					
0G 4	-					
PITL		NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATIO	N TABLE			
TEST						

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804 CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP37-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.		SAMP	E
mBGS			ШШ		
	GROUND SURFACE	93.37	IUME	INTERVAL	
	TOPSOIL - fine silty sand with some organic material, loose, dark brown, moist		2		
F	14				
	END OF TEST PIT @ 0.30m BGS	93.06			
- 0.5	End of Test Pit on Bedrock				
-					
+					
F 1.0					
F					
-1.5					
E					
-2.0					
-					
Ę					
2.5					
F					
-					
- 3.0					
F					
- 3.5					
-					
- -					
000 - 4.0					
ORP.(
⁰ ⊢4.5 ⊈⊢					
004.6					
10-L -					
T 1 1					
²					
1)00-1					
45804					
8					
ТЫ					
LES					

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804 CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP38-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.		SAMP	E
	GROUND SURFACE	m 91.69	NUMBER	INTERVAL	PID (ppm)
- 0.5	TOPSOIL - fine silty sand with some organic material, loose, dark brown, moist	90.47		G 0.61 - 1.22	6.3
- - 2.0 -					
- 2.5 -					
- 3.0 - -					
- 3.5 -					
60/0£/1 4.0					
08)TP-07004.G					
45804-00(JULY-20 1 1 1 1 1 1 5 6					
TEST PIT LOG	I <u>NOTES:</u> MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION	TABLE	L		

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804 CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP40A-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

	DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH		SAMPI	E
	m BGS		m BGS	NUMBER	INTERVAL	PID (ppm)
		FILL - sand and gravel with trace of concrete, trace asphalt, trace brick, trace wood, trace cobbles/boulders, compact to loose, dark brown, moist			G 0.30 - 1.52	1.3
		SM - SILTY SAND TILL, with gravel, trace clay, trace organics, cobbles/boulders, loose to compact, grey to brown, moist to wet	1.83		G 1.83 - 2.90	1.4
	- 3.0	END OF TEST PIT @ 2.90m BGS End of Test Pit on Bedrock	2.90			
-	- 3.5 -					
9.GDT 1/30/09	- 					
GPJ CRA_CORF	- 4.5 					
2008)TP-OT004.	- 5.0 - - -					
G 45804-00(JULY-2	- 					
TEST PIT LO		NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION	NTABLE			

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804 CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP41-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.		SAMP	E
		m	BER		
	GROUND SURFACE	121.00	MUM	INTERVAL	
-	TOPSOIL - fine silty sand with some organic material, loose, dark brown, moist				
-					
0.5	END OF TEST PIT @ 0.46m BGS	120.55			
	End of Test Pit on Bedrock				
F					
- 1.5 -					
-					
-					
2.5					
_					
-3.0					
-					
F					
s — 4.0 _ −					
4.5					
5[
5.0					
8002-					
5.5					
0-1-1-					
5 					
	NOTES. WEASURING FOINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION	IABLE			

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP41A-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel FIELD PERSONNEL: T. Saunders

DEPT	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.		SAMPI	E
m BGS	GROUND SURFACE	m 91.66	NUMBER	INTERVAL	PID (ppm)
	FILL - sand and gravel with trace of concrete, trace asphalt, trace brick, trace rebar, trace wood, trace cobbles/boulders, compact to loose, dark brown, moist			G 0.00 - 0.61	2.5
- 1.0 					
	END OF TEST PIT @ 1.98m BGS	89.68		G 1.83 - 1.98	1.9
- - 2.5	End of Test Pit on Bedrock				
- - 3.0					
- 3.5 					
4.0 4.0					
5-1 CHA_CORP.C					
10710-01004.0					
6.5 5.5					
TEST PIT LOG 45	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION	N TABLE]	

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804 CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorn and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: TP46A-08 DATE COMPLETED: June 17, 2008 TEST PIT METHOD: Hydraulic Shovel

FIELD PERSONNEL: T. Saunders

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.		E	
m BGS		m	E.		
	GROUND SURFACE	91.45	MBE	INTERVAL	PID (ppm)
			NU		
-	FILL - sand and gravel with trace of concrete, trace asphalt, trace organics,				
F	trace cobbles/boulders, compact to loose, dark brown, moist				
F					
-0.5					
Ē	· · · · · · · · · · · · · · · · · · ·				
F					
-1.0					
E					
F					
-					
-					
F					
-				G 1.52 - 2.13	1.8
- 2.0					
-		90.17			
F	END OF TEST PIT @ 2.29m BGS	03.17			
-2.5	End of Test Pit on Bedrock				
F					
-					
-3.0					
F					
E					
- 3.5					
È					
-					
8 2 2 2 2 2 2 4.0					
¥					
09-					
AH H					
2					
04.G					
₽ <u></u> -5.0					
1 1					
7-200					
5.5					
1-00					
458(1 T					
LOG	NOTES' MEASUBING POINT ELEVATIONS MAY CHANGE: REFER TO CURRENT ELEVATION				
П		, MOLL			
IESI					

Page 1 of 1

PROJECT NAME: Orgaworld

PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorne and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: MW1-08 DATE COMPLETED: July 7, 2008 DRILLING METHOD: HSA FIELD PERSONNEL: T. Saunders

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS		MONITOR INSTALLATION		SAMPLE				
		m		BER	IVAL	(%)	LUE	(mq	
	TOP OF RISER GROUND SURFACE	92.93 91.76		NUM	INTEF	REC	'N' VA	pid (p	
-1	TOP OF RISER GROUND SURFACE OVERBURDEN - organic mat FILL - sand and gravel with trace asphalt, trace concrete, trace brick, compact to dense, dark grey to dense, moist END OF BOREHOLE @ 2.97m BGS Auger Refusal On Assumed Bedrock	92.93 91.76 91.61 88.79	WELL DETAILS Well Screen Well Screen Well Screen Well Screen Well Screen Screened interval: 90.32 to 88.79m 1.45 to 2.97m BGS Length: Diameter: 51to 51ze: 91.61 to 90.62m 0.15 to 1.14m BGS Material: 90.62 to 88.79m 1.14 to 2.97m BGS Material: Silica Sand	NUMBER		(%) 35 27	IN. VALUE	(wdd) (DI d	
9									
- 10 									
- 11									
3-									
[l	I			
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; RE STATIC WATER LI	EVEL ¥	July 17, 2008		-				

.

Page 1 of 2

PROJECT NAME: Orgaworld

PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorne and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: MW2-08 DATE COMPLETED: July 8, 2008 DRILLING METHOD: HQ CORING FIELD PERSONNEL: F. Laforge

In cost TOP OF PASE BROUND SUFFICE 33.06 TOP OF PASE BROUND SUFFICE 33.06 OVERBURDEN - organic mat END OF OVERBURDEN HOLE @ 0.18m BGS ID2 - ID2 - ID2 - -1 END OF OVERBURDEN HOLE @ 0.18m BGS ID2 - ID2 - ID2 - -2 -3 -4 -4 ID2 - ID2 - -4 -4 -4 -4 ID2 - ID2 - -6 -5 -5 -6 ID2 - ID2 - -7 -7 -7 ID2 - ID2 - ID2 - -9 -9 -10 ID2 - ID2 - ID2 - ID2 - 11 ID2 - MEASURING POINT ELEVATIONS MAY CHANGE: REFER TO CURRENT ELEVATION TABLE STATIC WATER LEVEL \$\$\$ July 17, 2008 ID2 -	DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS ELEV. MONITOR INSTALLATION		SAM					
OVERBURDEN - organie met END OF OVERBURDEN HOLE ® 0.18m BOIS END OF OVERBURDEN HOLE			m		3ER	VAL	(%)	LUE	
OVERBURDEN - organic mit LVL: END OF OVERBURDEN HOLE @ 0.18m BGS Image: Comparison of the compariso		TOP OF RISER GROUND SURFACE	93.99 93.06	ª¶ ⊓ ₽	NUME	REC		N' VA	
END OF OVERBURDEN HOLE @ 0.18m BGS	-	OVERBURDEN - organic mat				-			
Image: Notes: Measuring Point Elevations May change; REFER To CURRENT Elevation Table	F	END OF OVERBURDEN HOLE @ 0.18m BGS		v					
NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE STATIC WATER LEVEL \$ July 17, 2008	-1								
2	F.								
A A A A A A A A A A A A A A	F								
A A	-2								
3	F								
3	F								
A A A A A A A A A A A A A A A A A A A	-3								
4	-								
	F.								
6 6 7 7 8 9 9 10 11 NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE STATIC WATER LEVEL ¥ July 17, 2008	-4								
-5 -6 -6 -7 -8 -9 -9 -10 -11 -11 NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE STATIC WATER LEVEL July 17, 2008	F								
-6 -7 -8 -9 -10 -11 NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE STATIC WATER LEVEL ¥ July 17, 2008	5								
	F								
-6 -7 -8 -9 -10 -11 NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE STATIC WATER LEVEL ¥ July 17, 2008	E								
-7 -8 -9 -10 -11 NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE STATIC WATER LEVEL \$ July 17, 2008	6								
-7 -8 -9 -10 -11 NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE STATIC WATER LEVEL I July 17, 2008	-								
NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE STATIC WATER LEVEL J July 17, 2008	F_								
	F								
NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE STATIC WATER LEVEL I July 17, 2008	- -								
NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE STATIC WATER LEVEL July 17, 2008	.⊢ 1−8								
-9 -10 -11 NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE STATIC WATER LEVEL ¥ July 17, 2008									
-9 -10 -11 NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE STATIC WATER LEVEL ¥ July 17, 2008									
- 10 - 10 - 11 - 11 NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE STATIC WATER LEVEL ▼ July 17, 2008	9								
- 10 - 10 - 11 <	F								
NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE STATIC WATER LEVEL ¥ July 17, 2008	F								
- 11 - 11 - 11 NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE STATIC WATER LEVEL ¥ July 17, 2008	- 10 -								
- 11 - 11 NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE STATIC WATER LEVEL ¥ July 17, 2008	i - i -								
NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE STATIC WATER LEVEL ¥ July 17, 2008	- - 11								
NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE STATIC WATER LEVEL T July 17, 2008									
NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE STATIC WATER LEVEL TUIL July 17, 2008									
STATIC WATER LEVEL T July 17, 2008			FERTOC						
		STATIC WATER LE	EVEL I	July 17, 2008					

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 2 of 2

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorne and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: MW2-08 DATE COMPLETED: July 8, 2008 DRILLING METHOD: HQ CORING FIELD PERSONNEL: F. Laforge

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. m	MONITOR INSTALLATION	RUN MBER	ORE DVERY %	2D %	
				Ξ.	RECO	ŭ	
- - - 0	OVERBURDEN - organic mat	92 89					
- - - - - 1 -	BEDROCK - fractured limestone, becoming sound at 0.6m BGS	52.03	Bentonite Hole Plug Filter Sand	RC1	94	75	
- 2		00.00	Veil Screen	RC2	100	93	
4 45804-00(JULY-2008)MM-OT003.GPJ CRA_CORP.GDT 1/30(09	END OF BOREHOLE @ 2.77m BGS Note: The top of the risor at MW2-08 was cut on July 29, 2008 to permit the installation of the steel protective casing. The new top of risor Elevation is 93.696m	90.29	WELL DETAILS Screened interval: 92.43 to 90.29m 0.63 to 2.77m BGS Length: 2.13m Diameter: 51mm Slot Size: 10 Material: PVC Seal: 92.91 to 92.61m 0.15 to 0.46m BGS Material: Bentonite Sand Pack: 92.61 to 90.29m 0.46 to 2.77m BGS Material: Silica Sand				
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; RE	FER TO C	URRENT ELEVATION TABLE				
BEDRO	STATIC WATER LI	EVEL ¥	July 17, 2008				

Page 1 of 3

PROJECT NAME: Orgaworld

PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorne and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: MW3-08 DATE COMPLETED: July 9, 2008 DRILLING METHOD: Tamroc D-1 FIELD PERSONNEL: F. Laforge

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS				SAMPLE			
m BGS		m		ЯËВ	VAL	(%)	ПU	
	TOP OF RISER GROUND SURFACE	104.11 103.44	- 11 A M	NUME	INTER	REC	'N' VA	
-	OVERBURDEN - organic mat					-		
-	END OF OVERBURDEN HOLE @ 0.30m BGS							
-								
-								
-2								
-								
-								
-								
- 4								
					,			
5								
F								
-								
6 								
-								
-8								
F								
,⊢9 ⊢								
-								
- 10								
-								
-11								
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; RE	FER TO C	URRENT ELEVATION TABLE	I				
1	STATIC WATER LE	EVEL 🛛	July 17, 2008					
;								

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 2 of 3

PROJECT NAME: Orgaworld PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorne and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: MW3-08 DATE COMPLETED: July 9, 2008 DRILLING METHOD: Tamroc D-1 FIELD PERSONNEL: F. Laforge

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. m	MONITOR INSTALLATION	RUN NUMBER	CORE RECOVERY %	RQD %	
- 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 6 - 7 - 8 - 9 - 10 - 9	OVERBURDEN - organic mat BEDROCK - fractured limestone		Bentonite Hole Plug				
	STATIC WATER	LEVEL I	Juły 17, 2008				

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 3 of 3

PROJECT NAME: Orgaworld

PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorne and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: MW3-08 DATE COMPLETED: July 9, 2008 DRILLING METHOD: Tamroc D-1 FIELD PERSONNEL: F. Laforge

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. m	MONITOR INSTALLATION	RUN NUMBER	CORE COVERY %	RQD %	
	END OF BOREHOLE @ 17.37m BGS Borehole advanced with a Tamroc D-1 Paultera 900	86.07	WELL DETAILS Screened interval: 101.31 to 86.07m 2.13 to 17.37m BGS Length: 15.24m Diameter: 51mm Slot Size: 103.14 to 102.22m 0.30 to 1.22m BGS Material: Bentonite Sand Pack: 102.22 to 86.07m 1.22 to 17.37m BGS Material: Silica Sand				
BEDROCK	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; RI STATIC WATER L	EFER TO C	July 17, 2008				

Page 1 of 2

PROJECT NAME: Orgaworld

PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorne and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: MW4-08 DATE COMPLETED: July 8, 2008 DRILLING METHOD: HQ CORING FIELD PERSONNEL: F. Laforge

DEPTH m BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. m	MONITOR INSTALLATION	~		SAM	PLE	
	TOP OF RISER GROUND SURFACE	96.35 95.18	4 [[]]]	NUMBER	INTERVA	REC (%)	N' VALUE	
	FILL - sand and silt with some concrete and gravel, loose, brown and moist			SS1		40	9	
-1	- becoming wet at 0.91m BGS	93.96	Bentonite Hole Plug	SS2	\mathbf{X}		7	
	SILTY SAND TILL, with gravel, dense, brown, moist - becoming very dense at 1.68m BGS				<u> </u>			
-2	END OF OVERBURDEN HOLE @ 1.78m BGS		v					
-3								
-4								
-5								
-6								
-7								
-8								
-9								
-10		-						
-11								
-								
N	OTES: MEASURING POINT ELEVATIONS MAY CHANGE; RE STATIC WATER LE	FER TO C	URRENT ELEVATION TABLE July 17, 2008					

STRATIGRAPHIC AND INSTRUMENTATION LOG (BEDROCK)

Page 2 of 2

PROJECT NAME: Orgaworld

PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorne and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: MW4-08 DATE COMPLETED: July 8, 2008 DRILLING METHOD: HQ CORING FIELD PERSONNEL: F. Laforge

Page 1 of 1

PROJECT NAME: Orgaworld

PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorne and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: MW5-08 DATE COMPLETED: July 7, 2008 DRILLING METHOD: HSA FIELD PERSONNEL: T. Saunders

Page 1 of 1

PROJECT NAME: Orgaworld

PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorne and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: MW6-08 DATE COMPLETED: July 14, 2008 DRILLING METHOD: HSA FIELD PERSONNEL: T. Saunders

	DEPTH				SAMPLE						
-	TOP OF RISER 94.9 GROUND SURFACE 93.8		m 94.98 93.83		NUMBER	ITERVAL	REC (%)	1' VALUE	(mqq) []		
	m BGS	TOP OF RISER GROUND SURFACE FILL - (dredged sediment from adjacent settling pond), very fine sand and silt, dense, grey to brown, moist FILL - very fine sand and silt, trace clay, trace gravels, trace asphalt, trace concrete, trace organics, dense, slightly green in upper levels, brown to dark brown, black organic layer at 4.6m, moist SM - SAND with silt, very fine grained, compact, oxidized, grey to brown, moist to wet SM - TILL - silty sand with some gravel, medium grained, well graded, brown, moist to wet	m 94.98 93.83 93.07 89.26 87.89	Bentonite Hole Plug Filter Sand Well Screen	SS1 SS2 SS3 SS5 SS6 SS6 SS7 SS8	XXXXX XX XX INTERVAL	(%) OH 83 86 75 33 17 100 83 57	ЭЛТРА , <mark>N</mark> , 43 29 16 7 20 26	(ind) ind ind ind ind ind ind ind ind		
RBURDEN LOG 45804-00(JULY-2008) MW-OT003.GPJ CRA_CORP.GDT 1/30/09		END OF BOREHOLE @ 7.62m BGS	86.21 FER TO C	WELL DETAILS Screened interval: 90.78 to 87.73m 3.05 to 6.10m BGS Length: 3.05m Diameter: 51mm Slot Size: 10 Material: PVC Seal: 93.22 to 91.39m 0.61 to 2.44m BGS Material: Bentonite Sand Pack: 91.39 to 87.58m 2.44 to 6.25m BGS Material: Silica Sand							
о И Ш		CHEMICAL ANALYSIS	*	,							

Page 1 of 1

PROJECT NAME: Orgaworld

PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorne and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: MW7-08 DATE COMPLETED: July 14, 2008 DRILLING METHOD: HSA FIELD PERSONNEL: T. Saunders

			ELEV.						
	m BGS	GS TOP OF RISER 94. GROUND SURFACE 93.		-TIFT	NUMBER	NTERVAL	REC (%)	N' VALUE	(mqq) Cle
	- 1	FILL - silty sand with some gravel, trace asphalt, trace concrete, trace clay, compact to dense, grey to brown, moist		Bentonite	SS1 SS2		50 35	38	0.0
	-2 -3	- becoming wet at 3.65m BGS			553 (54)		50 25	13 15	0.0 4.3
	- 4	- becoming wet at 0.00m bd/s	99.22	Filter Sand Well Screen	SS5 SS6		100 42	54	0.0
	-6	SM - TILL - silty sand with some gravel, brown, moist to wet	88.32		SS7 SS8		50 100	15	0.0
8)MW-OT003.GPJ CRA_CORP.GDT 1/30/09	- 7 - 8 - 9 - 10	END OF BOREHOLE @ 6.98m BGS	86.83	WELL DETAILS Screened interval: 90.76 to 87.72m 3.05 to 6.10m BGS Length: 3.05m Diameter: 51mm Slot Size: 10 Material: PVC Seal: 93.20 to 91.37m 0.61 to 2.44m BGS Material: Bentonite Sand Pack: 91.37 to 87.72m 2.44 to 6.10m BGS	007				0.0
3DEN LOG 45804-00(JULY-200	-11	NOTES: MEASUBING POINT FLEVATIONS MAY CHANGE: BE	FEB TO C						
OVERBUF		CHEMICAL ANALYSIS	EVEL ¥	July 17, 2008					

Page 1 of 1

PROJECT NAME: Orgaworld

PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorne and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: MW8-08 DATE COMPLETED: July 15, 2008 DRILLING METHOD: HSA FIELD PERSONNEL: T. Saunders

Page 1 of 1

PROJECT NAME: Orgaworld

PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorne and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: MW9-08 DATE COMPLETED: July 15, 2008 DRILLING METHOD: HSA FIELD PERSONNEL: T. Saunders

Page 1 of 1

PROJECT NAME: Orgaworld

PROJECT NUMBER: 45804

CLIENT: Orgaworld Canada Real Estate Ltd.

LOCATION: Hawthorne and Rideau Road, Ottawa, Ontario

HOLE DESIGNATION: MW10-08 DATE COMPLETED: July 15, 2008 DRILLING METHOD: HSA FIELD PERSONNEL: T. Saunders

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.				SAMF	PLE	
m BGS		m		ËB	VAL	(%)	LUE	(md
	TOP OF RISER GROUND SURFACE	84.00 83.10		NUME	INTER	REC	'N' VAI	d) (IId
-	TOPSOIL SM - SILTY SAND, fine to medium grained,	82.95						
-	grey, compact, moist		Bentonite		-7			
1 -				SS1	X	83	15	0.0
-		R1 42						
- 2	ML - SAND AND SILT, very fine grained, compact, grey, wet	UTTE	Filter Sand	SS2	Х	50	25	0.0
-	- becoming saturated at 1.98m BGS		Well Screen		$\overline{7}$			
-		80.20		SS3	\boxtimes	100	27	0.0
3 	END OF BOREHOLE @ 2.90m BGS	00.20	WELL DETAILS					
			81.73 to 80.20m					
-4			Length: 1.52m					
-			Siot Size: 10 Material: PVC					
- -			Seal: 82.79 to 82.03m					
			0.30 to 1.07m BGS Material: Bentonite					
F			Sand Pack: 82.03 to 80.20m					
-6			1.07 to 2.90m BGS Material: Silica Sand					
-								
				ļ				
8								
- 10								
- 								
	I <u>NOTES:</u> MEASURING POINT ELEVATIONS MAY CHANGE; RE	FER TO C	URRENT ELEVATION TABLE	I	1		L	
		EVEL I	July 17, 2008					

8.ª

:

• •

..-

:

--

•

-

APPENDIX A

RECORD OF TEST PITS

Test Pit	Depth	
Number	(metres)	Soil Description
TP1	0.00 - 0.15	TOPSOIL
	0.15 - 0.91	Brown fine to medium SAND, trace to some gravel, trace clay
	0.91 - 1.82 1.82 - 2.13	Brown SILTY SAND and GRAVEL, some cobbles Grey CLAYEY SILT, trace to some sand, gravel, cobbles, occasional boulder
		End of test pit Water seepage at 1.25 metre depth
TP2	0.00 - 0.15	TOPSOIL
	0.15 - 0.76	Brown fine SAND, trace gravel and clay
	0.76 - 1.98	Brown fine SILTY SAND and GRAVEL, some cobbles
	1.98 - 2.13	Grey SILTY SAND, trace to some gravel, cobbles,
	2.13	BEDROCK
		End of test pit
		Refusal on bedrock surface Water seepage at 1.89 metre depth
702	0.00 0.15	TODSOIL
125	0.00 - 0.15 0.15 - 0.76	Grey brown SILTY SAND some clay trace to some
	0.15 0.70	gravel, cobbles, occasional boulder
	0.76	BEDROCK
		End of test pit
		Refusal on bedrock surface
		Test pit dry
TP4	0.00 - 0.27	PEAT TOPSOIL
	0.27 - 0.37	Grey brown SILTY SAND
	0.37 - 1.98	Grey brown SILTY CLAY
		End of test pit
		Surface water flowing into test pit

Golder Associates

February 1994

17

9

5

.

1

×

7

APPENDIX A (continued)

RECORD OF TEST PITS

Test Pit <u>Number</u>	Depth (metres)	Soil Description
TP5	0.00 - 0.30 0.30 - 0.76 0.76 - 1.52 1.52	PEAT TOPSOIL Grey brown SILTY SAND Grey brown SILTY CLAY BEDROCK End of test pit Refusal on bedrock surface Surface water flowing into test pit
		Surface water nowing into test pit
TP6	0.00 - 0.21 0.21 - 1.31 1.31 - 1.37 1.37	TOPSOIL Brown fine to medium SAND, trace to some gravel, cobbles, some clay and silt Grey brown SILTY SAND with gravel and cobbles BEDROCK
		End of test pit Refusal on bedrock surface Test pit dry
TP7	0.00 - 1.83 1.83 - 2.44	Sand, gravel, clay, asphalt, wood, concrete, boulders (FILL) Grey brown SILTY CLAY, trace gravel
		End of test pit Water seepage at 2.13 metre depth
TP8	0.00 - 2.59 2.59 - 2.74 2.74 - 3.29 3.29 - 3.51	Clay, sand, gravel, cobbles, wood (FILL) PEAT TOPSOIL Brown SILTY SAND Brown SILTY SAND and grey SAND
		End of test pit Surface water flowing into test pit Water seepage at 2.59 metre depth

Bolder Acconinter

: `

• ·

::

.

.*

:-

25

X

:

24.00

•

APPENDIX A (continued)

RECORD OF TEST PITS

Test Pit Number	Depth (metres)	Soil Description
TP9	0.00 - 0.09	PEAT TOPSOIL
	0.09 - 1.37	Brown SILTY SAND, trace to some clay
	1.37 - 1.98	Grey brown fine SAND, trace silt
		End of Test Pit
		Surface water flowing into test pit
TP10	0.00 - 0.06	TOPSOIL
	0.06 - 1.68	Brown SILTY SAND with gravel, cobbles, occasional boulder
	1.68 - 2.13	Grey SILTY SAND with gravel, cobbles
		End of Test Pit
		Water at 1.98 metre depth
	0.00 0.00	
TPII	0.00 - 0.30	PEAT TOPSOIL
	0.30 - 1.22	and boulder
	1.22 - 1.98	Brown SILTY SAND, trace gravel
	1.98	BEDROCK
		End of Test Pit
		Refusal on bedrock surface
		Water seepage at 1.22 to 1.37 metre depth
Sec. C		
TP12	0.00 - 2.70	Asphalt, wood, sand, gravel, concrete (FILL) PEAT TOPSOIL
	2.70 - 3.00	Brown SILTY SAND
	3.00 - 3.20	Possibly Bedrock
		End of Test Pit
		Refusal
		Surface water flowing into test pit

February 1994

-

г · ;

20

7

ŧ

12.5

•. "

14

1

• •

x

APPENDIX A (continued)

RECORD OF TEST PITS

Test Pit Number	Depth (metres)	Soil Description
TP13	0.00 - 0.98 0.98 - 1.07 1.07 - 1.22 1.22	Asphalt, wood, rock, concrete (FILL) PEAT TOPSOIL Brown SILTY SAND BEDROCK
		End of Test Pit Refusal on bedrock surface Surface water flowing into test pit
TP14	0.00 - 0.34 0.34 - 1.34 1.34 - 2.13 2.13	PEAT TOPSOIL Grey brown SILTY SAND and GRAVEL, trace clay Grey SILTY SAND and GRAVEL, some silt, trace clay, cobbles BEDROCK
		End of Test Pit Refusal on bedrock surface Surface water flowing into test pit
TP15	0.00 - 0.24 0.24 - 1.52 1.52 - 2.13	PEAT TOPSOIL Brown fine SAND some gravel, becoming brown SAND and GRAVEL between 1.3 and 1.5 metre depth Grey SAND and GRAVEL
		End of Test Pit Water inflow at 1.5 metre depth
TP16	0.00 - 0.34 0.34 - 0.67 0.67 - 0.98 0.98	PEAT TOPSOIL Brown SILT, some sand, trace clay Brown SILTY SAND, trace to some gravel, trace clay BEDROCK
		End of Test Pit Refusal on bedrock surface Water inflow at 0.8 metre depth

APPENDIX A (continued)

RECORD OF TEST PITS

Test Pit <u>Number</u>	Depth (metres)	Soil Description
TP17	0.00 - 0.30	PEAT TOPSOIL
	0.30 - 1.10	Brown SILTY SAND
	1.10 - 1.31	Brown SILTY SAND, trace to some gravel, trace clay
	1.31	BEDROCK
		End of Test Pit
		Refusal on bedrock surface
		Water inflow at 1.2 metre depth
TD18	0.00 - 0.24	DEAT TOPSOIL
1110	0.24 - 0.49	Red brown SILTY SAND
	0.49 - 0.76	Grev brown CLAYEY SUT
	0.76 - 1.98	Grey brown SILTY CLAY
	1.98 - 2.44	Grey SILTY SAND/SANDY SILT
		End of Test Pit
		Surface water flowing into test pit
7010	0.00 0.24	DE LE TODOU
1919	0.00 - 0.24	PEAT TUPSULL
	0.24 - 0.70	Greek brown SILTY CLAY
	1.92 1.02	Grow SH TY SAND/SANDY SH T
	1.05 - 1.92	Grey SILT I SANDISAND I SILT

End of Test Pit

Golder Associates

.

-.

12

•

1... u e

.

APPENDIX C

SOIL GRADATION DATA

APPENDIX D

NOTES ON BOREHOLE LOGS

SOIL DESCRIPTION:

Each subsoil stratum is described using the following terminology. The relative density of granular soils is determined by the standard penetration index ("N" value), while the consistency of clayey soils is measured by the value of the undrained shear strength (Cu).

CLASS	IFICATION	(UNI	(UNIFIED SYSTEM)		
Clay Silt Sand	< 0,00 0,002 to 0,00 0,075 to 4,7	02mm 75mm 75mm	fine medium coarse	0,075 to 0,425mm 0,425mm to 2,0mm 2,0 to 4,75mm	
Gravel	4,75 to 7	75mm	fine coarse	4,75mm to 19mm 19 to 75mm	
Cobbles Boulders	s 75 to 30 s > 30	00mm 00mm			

RELATIVE DENSITY OF GRANULAR SOILS	STANDARD PENETRATION INDEX "N" VALUE (BLOWS/ft - 300mm)
Very loose	0 - 4
Loose	4 - 10
Compact	10 - 30
Dense	30 - 50
Very dense	> 50

ROCK QUALITY DESIGNATION

QUALIFICATIVE

very poor

poor

fair

good

excellent

TERMINO	LOGY
"traces"	1 - 10%
"some"	10 - 20%
adjective (silty, sandy)	20 - 35%
"and"	35 - 50%

CONSISTANCY OF COHESIVE SOILS	UNDRAINED SHEAR STRENGTH (Cu)	
	(P.S.F.)	(kPa)
Very soft	< 250	< 12
Soft	250 - 500	12 - 25
Medium	500 - 1000	25 - 50
Stiff	1000 - 2000	50 - 100
Very stiff	2000 - 4000	100 - 200
Hard	> 4000	> 200

SAMPLES:

TYPE AND NUMBER

The type of sample recovered is shown on the log by the abbreviation listed hereafter. The numbering of samples is sequential for each type of sample.

SS: Split spoon SSE, GSE, AGE: Environnemental sampling

"RQD" (%) VALUE

< 25

25 - 50

50 - 75

75 - 90

> 90

ST: Shelby tube PS: Piston sample (Osterberg) AG: Auger RC: Rock core GS: Grab sample

RECOVERY

The recovery, shown as a percentage, is the ratio of length of the sample obtained to the distance the sampler was driven/pushed into the soil.

RQD

The "Rock Quality Designation" or "RQD" value, expressed as a percentage, is the ratio of the total length of all core fragments of 4 inches (10cm) or more to the total length of the run.

IN-SITU TESTS:

N: Standard penetration index R: Refusal to penetration	N _C : Dynamic cone penetration index Cu: Undrained shear strength Pr: Pressuremeter	k: Permeability ABS: Absorption (Packer test)
--	--	--

LABORATORY TESTS:

- Ip: Plasticity index Wr: Liquid limit Wp: Plastic limit
- H: Hydrometer analysis GSA: Grain size analysis
- A: Atterberg limits w: Water content
 - g: Unit weight
- C: Consolidation CS: Swedish fall cone CHEM: Chemical analysis

O.V.: Organic vapor

ghd.com

ightarrow The Power of Commitment