
Fastfrate

Site Servicing and Stormwater Management Report

Fastfrate Ottawa Warehouse and Distribution Facility

Client Project Number : GA18-0631-01

CIMA+ file number: A001083 August 13, 2021 – Revision 0

Fastfrate

Site Servicing and Stormwater Management Report

Fastfrate Ottawa Warehouse and Distribution Facility

Julin Sais

Julien Sauvé, P.Eng. PEO membership number: 100200100


Prepared by:

Prepared by:

Guillaume LeBlond, M.A.Sc., EIT PEO membership number: 100530467

Verified by:

Christian Lavoie-Lebel, P.Eng. PEO membership number: 100067842

240 Catherine Street, Suite 110, Ottawa, Ontario Canada K2P 2G8

> CIMA+ file number: A001083 August 13, 2021 – Revision 0

Executive Summary

This Site Servicing and Stormwater Management Report presents the proposed potable water, sanitary and storm servicing for the Fastfrate Ottawa Warehouse and Distribution Facility. This report will be used in support of the Site Plan Approval process.

Sanitary servicing of the site will be achieved with an on-site wastewater treatment system. This system consists of a sewer, septic tank, pumping chamber, Level IV treatment unit, shallow-buried trench system and mantle. It is anticipated that and Environmental Compliance Approval (ECA) from the MECP will be required, as the system will treat over 10,000 L/d of sanitary sewage.

Potable water will be supplied to the site by a new drinking water well, with sufficient capacity to service the intended development. Since the site is not serviced by municipal watermains, and since the proposed drinking water well will not have the capacity required to provide fire protection, the fire protection volumes will be provided from the permanent pool of the proposed stormwater management wet pond. The fire protection system consists of two (2) dry hydrants, a Siamese connection, and a building sprinkler system.

The stormwater management (SWM) for the Fastfrate site is subject to the overall SWM of the Hawthorne Industrial Park, as presented in the Hawthorne Industrial Park Stormwater Management Report (HIP SWM report), prepared by J.L. Richards & Associates, and dated May 2009. This report also demonstrates how the proposed SWM strategy conforms to the requirements of the HIP SWM report and of the regulatory authorities. Overall, the SWM strategy will be achieved with a system of ditches, culverts, and a wet pond which will provide stormwater quality and quantity control for the site.

Confidentiality and Ownership

Unless CIMA+ Canada Inc. and its client have agreed otherwise, the intellectual property rights and all documents delivered by CIMA+, whether in hard or electronic copy, are the property of CIMA+, which reserves copyright therein. It is strictly prohibited to use or reproduce such proprietary rights on any support, even in part, without the authorization of CIMA+.

Notice to the Reader

This document was prepared by CIMA+ for:

Fastfrate - Ottawa

The material included in this document reflects the opinion of CIMA+. Any use of this document, reference to it, or decision based on it by someone else will be their own responsibility. CIMA+ will not take any responsibility for damages resulting in decisions or actions taken by someone else based on this document.

Table of involved resources

In addition to the signatories of this report, the following individuals have also been involved in the study and writing of the report as technical experts within the project team:

Name	Discipline
Kayla Schmidt, M.A.Sc., P.Eng. – (CIMA+)	Septic System Design
Uzoechina Ukeje – (GWAL)	Building Fire Protection / Mechanical
Robert Neck, M.Eng., P.Geo. (Limited) – (GHD)	Hydrogeology

Table of Contents

1.	Introduction	.1
1.1 1.2 1.3	Site Description and Proposed Development Existing Infrastructure Summary of Applicable Background Documents	.2
1.3.1 Assoc 1.3.2 1.3.3	STORMWATER MANAGEMENT REPORT, HAWTHORNE INDUSTRIAL PARK BY J.L. RICHARDS & IATES LIMITED – MAY 2009. HYDROGEOLOGICAL ASSESSMENT REPORT BY GHD 2021. SEPTIC ASSESSMENT REPORT BY GHD 2021.	.2
1.3.4 1.4	ENVIRONMENTAL IMPACT STUDY BY GHD 2021 Consultation and Permits	
2.	Sanitary Servicing	.4
2.1 2.2 2.3 2.3.1 2.3.2 2.4	Existing Conditions. Sanitary Sewer. Onsite Wastewater Disposal System. Daily Design Sewage Flow System Design. Sanitary Servicing Summary and Conclusions	4 5 5
3.	Potable Water Servicing	14
3.1 3.2 3.2.1 3.2.2 3.3 3.3.1 3.3.2 3.4	Existing Conditions. Building Water Demands (Domestic and Fire Protection) Potable Water Quantity Requirements. Fire Protection Quantity Requirements Proposed Water Supply Well Well Quality Well Quantity. Conclusion – Potable Water Servicing.	14 14 15 16 16
4.	Storm Water Management	
4.2 4.2.1 4.2.2 4.3 4.4 4.4.1 4.4.2 4.4.3 4.4.3 4.4.4 4.4.5 4.4.6 4.5 4.6 4.6 4.6.1	Stormwater Management Strategy Deviations from the HIP SWM Report & Drainage Plan Allowable Post Development Flow Rates Design Criteria and Assumptions Proposed Storm Servicing Stormwater Quality Control Stormwater Quantity Control Stormwater Quantity Control Municipal Ditch and Culverts Site Ditches and Culverts Building Service Connection Deviations from the Sewer Design Guidelines – Swale Minimum Slope Proposed SWM Pond Sizing Calculations Sediment Accumulation Volume	17 18 19 19 20 21 22 22 22 23 24
4.6.2 4.7	Pond Controls	24

5.	Sediment and Erosion Control	.26
6.	Conclusion	.27
7.	References	.27

List of Tables

Table 2-1: Sanitary Peak Flow Determination Design Criteria	4
Table 2-2: Peak Sanitary Flows – Sanitary Sewer Sizing	4
Table 2-3: Daily Design Sewage Flow Rate and Septic Tank Volume	5
Table 2-4: Minimum Clearances for Treatment Units	7
Table 2-5: Minimum Clearances for Distribution Piping and Leaching Chambers	8
Table 2-6: Theoretical Pumping Flow Rates	9
Table 2-7: OBC Treatment Unit Levels and Required Effluent Concentrations	9
Table 3-1 Potable Water Design Flows	14
Table 3-2 Potable Water Design Flows – City of Ottawa Design Guidelines	14
Table 4-1: Post-development Allowable 100-year Release Flows – HIP SWM Facility	18
Table 4-2: Post-development Allowable 100-year Release Rates – HIP SWM Facility	19
Table 4-3: Wet Pond Volume Calculations – 70% Impervious; 80% TSS Removal	20
Table 4-4: Post-development Flowrate and Storage Summary	20
Table 4-5: Culvert Sizing Summary	21
Table 4-6: Summary of Required SWM Pond Volumes	23
Table 4-7: Summary of Provided SWM Pond Volumes	23
Table 4-8 Resulting Release Flow with Proposed Controls	25

List of Appendices

- Appendix A Legal Survey Fastfrate Warehouse Development
- Appendix B JL Richards Storm Water Management Plan
- Appendix C Hydrogeological Assessment
- Appendix D Septic Assessment and Percolation Rate Evaluation
- Appendix E Geotechnical Report
- Appendix F Drawings
- Appendix G Stormwater Management Plan
- Appendix H Stormwater Management and Storm Sewer Design Calculations
- Appendix I Potable Water & Fire Protection Calculations.
- Appendix J Septic System Detailed Calculations
- Appendix K Sanitary Servicing Calculations
- Appendix L Correspondence

1. Introduction

CIMA+ was retained by CIVITAS & Fastfrate to prepare a Site Servicing and Stormwater Management Report for the proposed construction of a warehouse containing cross-docks and office building, at 301 Somme Street in Ottawa, Ontario.

The purpose of this assessment is to confirm that the proposed development will be serviced adequately by the proposed water supply well, septic system and stormwater management. This assessment shall be used in support of the application for Site Plan Approval.

The detailed design of sediment and erosion control measures, site servicing (storm, sanitary, water) and grading, as well as measures for the control of stormwater runoff, are considered in this report, in general accordance with the Ottawa Sewer Design Guidelines (2012), the Ottawa Design Guidelines – Water Distribution (2010) and associated Technical Bulletins.

1.1 Site Description and Proposed Development

The Site is located near the intersection of Rideau Road and Somme Street. The subject site is currently vacant and measures approximately 4.05 ha. The site is bounded by Somme Street to the south and west, by Rideau Road and Christie Creek to the north and by vacant land to the east. The proposed development is a 76,505 sq. ft. warehouse building with associated loading dock areas and employee parking stalls. Refer to **Appendix F** for the site plan of the proposed development (prepared by CIVITAS).

Figure 1-1 : Site Location & Key Plan

The objective of this study is to assess current site servicing conditions through the review of available background documents and to present detailed concepts, calculations, and results to provide adequate site servicing for the new building and associated parking lot.

1.2 Existing Infrastructure

The proposed site is part of the Hawthorne Industrial Park (HIP) which is currently serviced by roads and an existing open ditch system and SWM facility that convey stormwater and provide SWM quantity control for the entire HIP. The site is not serviced by municipal sewers or municipal watermains.

1.3 Summary of Applicable Background Documents

- + MOE SWM Manual (2003)
- + 2012 Ottawa Sewer Design Guidelines, as amended by technical bulletins
- + 2010 Ottawa Design Guidelines for Water Supply, as amended by technical bulletins
- + Existing Master SWM Report (prepared by J.L. Richards Associates Ltd., May 2009)
- + Hydrogeological Assessment Report (prepared by GHD, 2021)
- + Septic Assessment Report (prepared by GHD, 2021)
- + Environmental Impact Study (prepared by GHD, 2021)
- 1.3.1 STORMWATER MANAGEMENT REPORT, HAWTHORNE INDUSTRIAL PARK BY J.L. RICHARDS & ASSOCIATES LIMITED MAY 2009.

This report addresses stormwater management within the Hawthorne Industrial Park (**Appendix B – JL Richards SWM Plan**). The contents of this report are discussed in more detail in **Section 4**.

1.3.2 HYDROGEOLOGICAL ASSESSMENT REPORT BY GHD 2021.

This report addresses the hydrogeological characteristics of the site and assessing the capacity of the on-site well (Refer to **Appendix C – GHD Hydrogeological Assessment Report 2021**).

1.3.3 SEPTIC ASSESSMENT REPORT BY GHD 2021.

This report addresses the percolation rate of the site and assessing the capacity of the on-site septic system. (Refer to **Appendix D – GHD Septic Assessment Report 2021**).

1.3.4 ENVIRONMENTAL IMPACT STUDY BY GHD 2021.

A scoped environmental impact study was prepared for this project. This report summarised the investigations of potential environmental impacts and required mitigation measures, & setbacks to be respected during construction of this project.

1.4 Consultation and Permits

In response to the pre-consultation requirements defined in the City's Development Servicing Study Checklist, the following agencies were consulted in support of the preparation of this report. The Development Servicing Study Checklist as well as all relevant correspondence with the consulted agencies can be found in **Appendix L**.

City of Ottawa

A Pre-Application Consultation meeting was done with the City of Ottawa. The meeting discussions revolved around planning, engineering, and transportation requirements. Details of this consultation are included in **Appendix L**.

CIMA+ had a second meeting with Harry Alvey from the City of Ottawa on May 18, 2021. The discussion was mostly about SWM strategies and fire protection. Details of this consultation are included in **Appendix L.**

South Nation Conservation Authority (SNCA)

The subject site falls under the jurisdiction of the South Nation Conservation Authority (SNCA). CIMA+ contacted James Holland from the SNCA to identify the any Natural Heritage/Hazards features that may impact the development as well as any Storm Water Management Criteria for the site and required approvals/permits. Correspondence with James Holland has been included in **Appendix L**.

Ministry of the Environment, Conservation and Parks (MECP)

CIMA+ expects that the proposed development will require an Environmental Compliance Approval (ECA) as the development requires an on-site wastewater treatment system treating over 10,000 L/d.

It is expected that the application can be submitted directly to the MECP, and not through the City of Ottawa's Transfer of Review (ToR) Program. The correspondence with the City project manager has been provided in **Appendix L**.

2. Sanitary Servicing

2.1 Existing Conditions

The HIP and the subject site are not serviced by municipal sanitary sewers.

2.2 Sanitary Sewer

Design Criteria

The design criteria for determining the sanitary peak flow rates for the proposed development follow the parameters outlined in the City of Ottawa Sewer Design Guidelines, 2012 as amended by all applicable Technical Bulletins. Namely, the following parameters have been used in determining the peak sanitary flow rates:

Design Criterion	Commercial Areas	
Base Flow	2.80 L/m ² /day	
Peaking Factor	1.5	
Total Infiltration Allowance	0.33 L/s/effective gross hectare (for all areas)	

Proposed Sanitary Peak Flows for Sanitary Sewer Sizing

The estimated peak flows from the proposed development based on the design criteria listed in **Table 2-1** are outlined in the following Table.

Table 2-2: Peak Sanitary Flows – Sanitary Sewer Sizing

Flow Type	Total Flow Rate (L/s)
Average Dry Weather Flow Rate	0.23
Peak Dry Weather Flow Rate	0.35
Peak Wet Weather Flow Rate	0.35

Detailed calculations for peak sanitary flows for sanitary sewer sizing are presented in **Appendix K**.

Sanitary Sewer Sizing

The flows indicated above will be directed from the building to the onsite wastewater disposal system through a new 200mm diameter PVC sanitary sewer. This sewer sizing is acceptable per the calculations and sewer design sheets (refer to **Appendix K**).

2.3 Onsite Wastewater Disposal System

2.3.1 Daily Design Sewage Flow

Onsite wastewater treatment systems are regulated under the Ontario Regulation 332/12, the Building Code Act (1992) (OBC), Part 8 of Division B provides the information required the design, construction, installation, operation, and maintenance of these system. The Fastfrate warehouse facility requires a Class 4 system to accept both greywater and human waste.

The proposed Fastfrate facility will be developed with a maximum of 41 loading bays and will be provided with a total of 7 water closets. The daily design sewage flow for the Fastfrate facility was calculated to be 12,800 L/d in accordance with Table 8.2.1.3.3.B of the OBC. For non-residential occupancies, the septic tank working capacity shall be three times the daily design sanitary sewage flow. Therefore, the septic tank must have a minimum working volume of 38,400 L. A summary of the daily sewage design flow calculations are provided in **Table 2-3** below.

Parameter as per OBC	per OBC Volume (L) as per OBC Fastfrate		Flow (L/d) ⁽¹⁾	
Warehouse				
a) Per water closet, and 950 7 6,650				
b) Per loading bay 150 41 6,15				
	12,800			
Minimum Septic Tank Volume (3x the Daily Design Flow) (L)			38,400	
Notes:				
1. Column 2 x Column 3 = Column 4 (e.g., 950 L x 7 = 6,650 L/d)				

Table 2-3: Daily Design Sewage Flow Rate and Septic Tank Volume

2.3.2 System Design

A Class 4 septic system typically consists of a septic tank and leaching bed. Depending on the system, a pumping chamber to dose the leaching bed and/or a level IV treatment unit may be required. The design of the septic system is based on the following two factors:

- + Daily sewage design flowrate
- + Percolation Time of the native soil (T-Time)

The percolation time (T-Time) of the native soil is defined as the amount of time it takes for water to travel 1 cm. Typical T-times of soils ranges from 1 to 50 minutes, with some soils up to 125 minutes. GHD limited (GHD) was retained to excavate test pits to help determine soil stratigraphy and the T-time. Five test pits were advanced to depths ranging from 2.4 to 3.4 m within the proposed septic system area and SWM pond. The soil stratigraphy consisted of fill at each location and described as gravelly sand with silt trace clay to a silty sand with gravel and clay. Fill was observed to the bottom of each test pit. Refer to **Appendix D** for GHD's report and more information. Groundwater seepage was encountered at each test pit and was observed between 1.8 and 2.4 m below ground surface. GHD estimated the T-time to have an average value of 12 to 20 min/cm, based upon gradation test results only. As a conservative approach, a Design T-time of 20 min/cm was selected for sizing the leaching bed for this site.

There are 5 types of leaching beds regulated in Ontario under the OBC:

- 1. Conventional Leaching Bed
- 2. Sand Filter Bed
- 3. Shallow Buried Trench (SBT)
- 4. Type A Dispersal Bed
- 5. Type B Dispersal Bed

For the Fastfrate site, a raised SBT leaching bed was selected as it would meet all space and site constraints. The footprint of the SBT system is smaller than a conventional absorption trench system such as a conventional leaching or sand filter bed because the soil is not relied upon for any significant portion of the treatment.

A SBT is an alternative to a conventional leaching bed and are always used in conjunction with a treatment unit capable of consistently providing effluent with 10 mg/L five-day carbonaceous biochemical oxygen demand (cBOD₅) and 10 mg/L suspended solids (SS). A SBT leaching bed is a pressurized distribution system which delivers regular timed doses of effluent to small diameter laterals (typically 25 mm PVC pipe) supported inside of a plastic chamber. The laterals are perforated at regular intervals on the top of the pipe with an adequate number of orifices on the bottom to provide self-drainage to prevent freezing during cold weather. When the dosing pump starts, effluent is forced along the entire length of the lateral and sprayed upwards where it hits the chamber and trickles down into the soil. The pump is sized to account for friction losses, static losses, and a residual pressure head of at least 600 mm at the furthest point from the pump. This ensures the entire footprint of the leaching bed is utilized and provides a more efficient distribution and use of the soil absorption system. For soils with T-times of up to 50 min/cm, hourly dosing is generally sufficient to allow the ponded water in the trench to infiltrate into the soil.

Septic Tank, Pumping Chamber & Level IV Treatment Unit Clearances

As per Section 8.2.1.6.(1), the septic tank, level IV treatment unit and the pumping chamber will meet the minimum clearances for treatment unit listed in the OBC Table 8.2.1.6.A. In addition, as per 8.7.4.0.(11), the distances set out in column 2 of Table 8.2.1.6.B. shall be increased by twice the height that the leaching bed is raised above the original grade. The current grade at the site where the septic system will be installed is 90.950 meters above sea level (m ASL). The SBT will be raised with a sand mantle below the SBT. The top of grade of the SBT at the highest elevation is 91.6 m. Therefore, the minimum clearances must be increased by 1.3m. A summary of the clearances required for the treatment units (septic system, pumping chamber, and level IV treatment unit) and the SBT leaching bed at the Fastfrate facility septic system is given in Table 2-4 and Table 2-5 below, respectively.

It is noted that there will be a SWM facility located east of the septic system, which will be considered as a pond for establishing minimum separation requirements.

Object ⁽¹⁾	Treatment Units Minimum Clearance, m	Additional Clearance required for the Treatment Units at Fastfrate, m ⁽²⁾	Total Clearance required for the Treatment Units at Fastfrate, m ⁽³⁾
Structure	1.5	1.3	2.8
Well	15	1.3	16.3
Lake	15	1.3	16.3
Pond	15	1.3	16.3
Reservoir	15	1.3	16.3
River	15	1.3	16.3
Spring	15	1.3	16.3
Stream	15	1.3	16.3
Property Line	3	1.3	4.3

1. Columns 1 and 2 are taken from OBC Table 8.2.4.6.A

2. [SBT Top of Grade (91.6 m) - Original ground elevation (90.95 m)] x 2 = 1.3 m

3. Total Clearances required for the Treatment Units for the Fastfrate facility

Table 2-5: Minimum Clearances for Distribution Piping and Leaching Chambers				
Object ⁽¹⁾	Distribution Piping and Leaching Chambers Minimum Clearance, m ⁽¹⁾	Additional Clearance required for the SBT leaching bed at Fastfrate, m ⁽²⁾	Total Clearance required for the SBT leaching bed at Fastfrate ⁽³⁾	
Structure	5	1.3	6.3	
Well with a watertight casing to a depth of at least 6 m	15	1.3	16.3	
Any other well	30	1.3	31.3	
Lake	15	1.3	16.3	
Pond	15	1.3	16.3	
Reservoir	15	1.3	16.3	
River	15	1.3	16.3	
Spring not used as a source of potable water	15	1.3	16.3	
Stream	15	1.3	16.3	
Property Line	3	1.3	4.3	
Notes:				

1. Columns 1 and 2 is taken from OBC Table 8.2.4.6.B

2. [SBT Top of Grade (91.6 m) - Original ground elevation (90.95 m)] x 2 = 1.3 m

Total Clearances required for the Treatment Units for the Fastfrate facility 3.

Pumping Chamber

In accordance with sentence 8.7.6.1(3) of the OBC, the pump chamber should have a volume between 50% and 75% of the daily design capacity is recommended. Therefore, it is recommended the pump chamber have a minimum working capacity of 19,200 L.

Submersible Pumps

Wastewater will flow by gravity to the septic tank, and then by gravity to the pumping chamber. The discharge from the pumping chamber and the rest of the system will be pressurized and require submersible pumps. Submersible, readily available and replaceable pumps are wired and rated for an effluent with 3 mm to 20 mm solids handling capacity. An alternating duplex pump configuration is recommended to allow time for service in the event of a pump failure. The specified pump must have a capacity equal to or greater than the calculated maximum pressure requirement as per the SBT design at the design flow. Five submersible pumps will be required:

- + Two pumps for the pumping chamber discharge which will operate in a duty / standby configuration with rotation on stop, time, and failure
- + Two pumps for the level IV treatment discharge which will operate in a duty / standby configuration with rotation on stop, time, and failure
- One pump for the level IV treatment discharge that will recycle effluent upstream of the septic + tank.

The submersible pumps will be provided by the level IV treatment unit supplier, Waterloo Biofilter. Waterloo Biofilter typically specifies Little Giant WS Effluent Series submersible pumps. As per item 8.6.1.3.(4), when a pump or siphon is required the pump or siphon shall be designed to discharge a dose of at least 75% of the internal volume of the distribution pipe within a time period not exceeding fifteen minutes. Therefore, the volume required to dose 75% of 175 m of 50 mm diameter schedule 40 PVC pipe is approximately 64.5 L within 15 minutes, or a required pump flow rate of 4.30 L/min (0.07 L/s). Sentence 8.7.6.1.(2) requires residual pressure (minimum 600 mm as per sentence 8.7.6.1.(2) at the furthest lateral) to ensure the entire bed is dosed.

The Little Giant WS Effluent Series provides include submersible pumps capable of dosing 1.70 L/s to 9.5 L/s, depending on the model. With a minimum flow rate of 0.07 L/s, the Little Giant submersible pumps will provide more than the minimum required dosing flowrate. There are several Little Giant WS Effluent Series submersible pump models. The Hazen William formula was used to calculate the theoretical total dynamic head (TDH) in meters of each of the three pumping scenarios and plotted against the different Little Giant submersible pump curves to find the theoretical operating flowrate. A summary of the results in listed in Table 2-6 below. Refer to **Appendix J** for the pump system curves and calculations.

System	Recommended Pump Model	Theoretical Operating Point
Pumping Chamber Discharge	WS50HM-12-20	3.2 L/s at 12.8 m TDH
Level IV Treatment Discharge to SBT	WS100HM-12-20	2.2 L/s at 23.8 m TDH
Level IV Treatment Discharge Recycle Line	WS50M-20	5.7 L/s at 3.1 m TDH

Tabla	26.	Theoretical	Dumping	Elow Dotoo
IaDIE	Z-0.	THEOTELICA	Fumping	Flow Rates

Level IV Treatment Unit

A Level IV Treatment is required for SBT type leaching beds. The Waterloo Biofilter level IV treatment unit will be designed to meet the level IV treatment effluent requirements of 10 mg/L for both SS and cBOD₅, as listed in Table 2-7 (adapted from OBC Table 8.6.2.2.).

Item	Column 1 Classification of Treatment Unit ⁽¹⁾	Column 2 Suspended Solids ⁽²⁾	Column 3 CBOD5 ⁽²⁾		
1.	Level II	30	25		
2.	Level III	15	15		
3.	Level IV	10	10		
Notes: 1. The classifications of <i>treatment units</i> specified in Column 1 correspond to the levels of treatment described in					
CAN/BNQ 3680-600, "Onsite Residential Wastewater Treatment Technologies".					
2. Maximum concentration in n	ng/L based on a 30-day avera	ige.			

The level IV treatment unit must be certified to CAN/BNQ 3680-600 "Onsite Residential Water Treatment Technologies". The treatment units installed in Ontario typically either use aeration or a filter media to provide treatment. Aeration treatment units have higher operation and maintenance costs and effort as blowers are required in addition to pumps. Filter media type treatment units do not require blowers and require the filter media to be replaced approximately every 10+ years or to the manufacturer's recommendation. A filter media type level IV treatment unit such as a Waterloo Biofilter is recommended for this application. The sanitary waste from the warehouse will flow by gravity to the septic tank, where settling will occur, and the effluent will flow by gravity to a pumping chamber. The pumping chamber will consist of 2 pumps (duty/ standby configuration with frequent rotation via an alternating timer), which will pump the effluent to the level IV treatment unit to evenly dose the filter media. The filtered water will then be either pumped to the shallow buried trench by one of two pumps (duty / standby configuration with frequenting rotation on an alternating timer) or recycled to the inlet of the septic tank by a third dedicated pump. All pumps will be controlled and monitored by a common control panel for remote monitoring, control, and data logging over a stable cellular network to Waterloo Biofilter who will contact personnel from the Fastfrate facility. Alarms include high water, float failure and pump failure from the Waterloo Smart Panel. A flow schematic of the system is given in Figure 2-1 below.

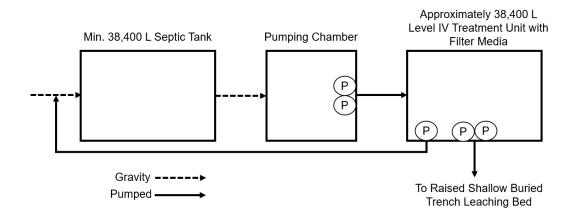


Figure 2-1: Septic System Process Flow Schematic

Shallow Buried Trench Leaching Bed

Due to the shallow groundwater seepage observed at 1.8 to 2.4 m below the surface and the requirement that the bottom of the leaching bed must be a minimum of 900 mm above the top of the high ground water table, the leaching bed must be raised. Due to the size constraint of the system, a SBT with a sand mantle is recommended. The sand mantle will be approximately 15 m in total length with the last 3 meters of the mantle changing direction slightly more north-west than the first 12 m of the mantle. Even with the irregular shape of the mantle, effluent will flow through the mantle as the T-time of the sand mantle will be imported sand fill with a percolation rate of 6 to 10 minutes/cm and have a maximum 5% if fines passing through a No. 200 sieve.

The length of the SBT distribution pipe laterals is calculated based on the T-time and the Table 8.7.3.1 in the OBC. The percolation tests of the native soil in the area of the proposed septic bed yield 12 to 20 minutes/cm according the GHD report. As per Table 8.7.3.1 in the OBC, a percolation between 1 to 20 minutes/cm corresponds to the following formula to calculate the length of distribution pipe required:

$$L = \frac{Q}{75}$$

Where:

L = The length of distribution pipe in m

Q = Total Daily Design Flow Rate (12,800 L/d for the Fastfrate Facility)

Therefore, the SBT must have a minimum distribution pipe length of 171 m (rounded up to the nearest meter). The OBC stipulates the maximum length of a SBT distribution run is 30 m as specified in clause 8.7.3.2(2)(a). To accommodate the clearances for the SWM pond and property line, 7 distribution pipe runs of 25 m (175 m total) is recommended.

Each lateral shall include a test port at the end of each line. Each test port will have a long radium sweep bend at the end, equipped with a normally closed ball valve and a removal plug with a drilled orifice the same diameter as the lateral spray orifices. The test ports are intended to allow individual line squirt testing and testing of all lines at once. The plugs will be removable to allow line flushing and cleaning as necessary.

The spray orifice size is important in the flow/pressure calculation, and it is recommended that 3 mm sizing be used as a default. OOWA best practices recommends orifices are spaced between 0.6 to 1.2 m along the lateral for even distribution of effluent. The orifices for the Fastfrate facility are specified to be spaced 0.6 m apart.

In addition to the spray orifices, drain orifices are recommended to be evenly spaced, facing downward, on each lateral to allow for drain-out and prevent freezing between pump cycles. It is recommended to have a drain orifice every 2 to 4 spray orifices, offset from the spray orifices and having orifice shields installed to prevent erosion of the trench base. The drain orifices will be spaced every 3 m apart and will be offset from the spray orifices.

OOWA Best Practices recommends the manifold should be at least one trade size larger than the laterals, typically between 32 mm (1.25" nominal) and 50 mm (2" nominal). The distribution laterals will be 25 mm diameter Schedule 40 PVC, and the manifold will be 50 mm diameter Schedule 40 PVC. Each lateral will include a ball valve for isolation and a 50 mm to 25 mm reducer. The components of the SBT leaching bed are given in the section below.

Fill will be required for the raised SBT system. The contact area at the base of the fill system was carefully considered. The contact area between the fill and the native receiving soils is important in order to safely transition treated effluent from the fill to the native soils without causing environmental risks. Due to inconsistent native soil type at the site and as a precaution, a sand mantle is recommended.

The mantle for the Fastfrate septic system was designed according to Option 2 of the Ontario Onsite Wastewater Association (OOWA) Best Practices: Shallow Buried Trench Guidance Document:

The contact area between the native soils and the fill material is which the SBT bed and mantle area should be at least equal to the following formula:

$$A = \frac{Q \times T}{850}$$

Where:

 $A = \text{Contact Area} (m^2)$

T = The T-time of the receiving soils (a conservative T-time of 20 minutes/cm was used)

Q = Total Daily Design Flow Rate (12,800 L/d for the Fastfrate facility)

Therefore, the minimum recommended mantle area is 302 m². The total mantle surface area provided (extended and beneath the SBT) has an approximate contact surface area of 660 m² and is over double the minimum surface area as calculated by the OOWA Best Practices.

Each lateral shall include a test port at the end of each line this may be an individual access port at the end of each lateral. Each test port will have a long radium sweep bend at each test port equipped with a normal closed ball valve and a removal plug with a drilled orifice the same diameter as the lateral spray orifices. The test ports are intended to allow individual line squirt testing and testing of all lines at once. The plugs will be removable to allow line flushing and cleaning as necessary.

The orifice size is important in the flow/pressure calculation, and it is recommended that 3 mm sizing be used as a default. OOWA Best Practices recommends orifices are spaced between 0.6 to 1.2 me along the later for even distribution of effluent. The orifices for the Fastfrate facility septic system are specified to be spaced 0.6 m apart.

The drain orifices are evenly spaced, facing downward, on each lateral to allow for drain-out and prevent freezing during pump cycles. It is recommended to have a drain orifice every 2 to 4 spray orifices, offset from the spray orifices and having orifice shields installed to prevent erosion of the trench base. The drain orifices will be spaced every 3 m apart and will be offset from the spray orifices.

OOWA Best Practices recommends the manifold should be at least one trade size larger than the laterals, typically between 32 mm (1.25" nominal) and 50 mm (2" nominal). The distribution laterals will be 25 mm diameter Schedule 40 PVC pipe, and the manifold will be 50 mm diameter Schedule 40 PVC pipe. Each lateral will include a ball valve for isolation and a 50 mm to 25 mm reducer. To summarize, the components of the SBT system for the Fastfrate facility include:

- + Treatment Unit certified to Level IV CAN/BNQ 3680-600 "Onsite Residential Wastewater Treatment Technologies"
- + Dosing pump chamber and pumps equipped with timer controls.
- + Forcemain from dosing chamber to distribution manifold which typically is PVC schedule 40
- + Manifold (header) assembly, consisting of 50 mm (2") pressure pipe (PVC Schedule 40)
- + Laterals in the leaching bed consisting of 25 mm (1") pressure pipe (PVC Schedule 40) with 3 mm orifice holes spaced evenly along the top of the pipe and 3 mm drain holes on the bottom
- + Pipe support to keep the lateral off the bottom of the trench
- + Leaching chamber covering the laterals. Large diameter pipe cut in half is not acceptable, as the footprint of the sidewalls is not sufficient to prevent settling of the chambers over time. Chambers with a wide resting foot are preferred.
- + Filter cloth over the chambers
- + "Sweep 90' fitting extending within 10 cm of the finished grade at the end of each lateral. The vertical piece may be equipped with a ball valve if desired, and terminate with a threaded cap.

Ground Water Elevation and Native Fill

The septic, pump chamber, and level IV treatment unit tanks will require to be wrapped in a waterproof material to prevent groundwater infiltration. Due to the inconsistency of the fill material observed and the shallow groundwater seepage encountered by GHD, the leaching bed will be required to be raised. The 100-year flood elevation is 90.1 m ASL, therefore the SBT leaching bed and sand mantle have been designed to be above this elevation as not to flood out the septic system during a 100-year storm event. It is recommended prior to placement of the imported fill that any surficial organics are to be removed from the tile bed and mantle area. Additionally, the existing fill material is recommended to be compacted to ensure uneven settlement does not occur.

2.4 Sanitary Servicing Summary and Conclusions

The sanitary servicing design for the proposed development conforms to the requirements of the City of Ottawa Sewer Design Guidelines, 2012, as amended by all applicable Technical Bulletins.

The on-site wastewater disposal system (Septic Tank, Level IV treatment unit and shallow-buried trench system) conform to the requirements of the Ontario Building Code part 8. However, due to the Total Daily Design Sewage Flow being >10,000L, and ECA from the MECP will be required for this system.

3. Potable Water Servicing

3.1 Existing Conditions

The site is currently undeveloped and is not serviced by municipal watermains. As such potable water for this site will be provided by a groundwater supply well. Refer to the Hydrogeological Assessment in **Appendix C** for more information.

3.2 Building Water Demands (Domestic and Fire Protection)

3.2.1 Potable Water Quantity Requirements

Based on design flows from the OBC, the average daily water use for the facility is **8.9 L/min** (**Table 3-1**). Considering a peak demand of 35.6 L/min (average demand * 4), the well discharge of 60 L/min in the Hydrogeological Report will sufficiently meet the water demand requirements of the facility.

Parameter as per OBC	Volume (L) as per OBC	Design Basis for Fastfrate	Flow (L/d) ⁽¹⁾		
Warehouse					
a) Per water closet, and	950	7	6,650		
b) Per loading bay	150	41	6,150		
Total Daily Design Flow 12,800					
Notes:					
1. Column 2 x Column 3 = Column 4 (e.g., 950 L x 7 = 6,650 L/d)					

Water demands were also determined per the City of Ottawa Design Guidelines for comparison purposes. The peak water demand obtained using this method is **0.62 L/s (37.2 L/min).** This value is also within well discharge capacity. (**Table 3-2**).

Table 3-2 Potable Water Design Flows – City of Ottawa Design Guidelines

Demand Type	Average Daily Demand (L/s)	Maximum Daily Demand (L/s)	Maximum (Peak) Hour Demand (L/s)
Residential	0.00	0.00	0.00
Commercial	0.23	0.35	0.62
Total	0.23	0.35	0.62

3.2.2 Fire Protection Quantity Requirements

The facility is not connected to a municipal water supply and will therefore require other means of fire protection. The fire protection volumes to be provided and a description of the proposed fire protection system are presented in this section.

3.2.2.1 Fire Protection Volume – Building Mechanical Fire Protection Requirements

The required volume of water available for fire protection shall be calculated based on NFPA13 requirements:

$$\left[\left(0.2 \frac{\text{gpm}}{\text{ft}^2} \right) * (1500 \text{ ft}^2) + 250 \text{ gpm} \right] * 60 \text{min} = 33,000 \text{ US Gal.} = \sim 123.9 \text{m}^3$$

Where:

250gpm = Hose Allowance Requirement (NFPA13) 60min = Duration Requirement (NFPA13)

3.2.2.2 Fire Protection Volume – FUS requirements

The FUS method was used to determine the Fire Protection Volume required for this site.

The resulting fire protection volume required is of 480 m³, for 1 hr of fire protection @ 8000 L/min (**Appendix I**).

3.2.2.3 Fire Protection System

The proposed SWM wet pond shall be used for storing water for fire protection. Refer to **Section 4.5** for more information on the design of the proposed SWM pond.

A fire pump located in a 2-hour fire rated mechanical room in the building shall serve the Fire Protection system. The fire pump inlet shall be connected to an 8m deep sump, to be hydraulically connected to the pond via an intake pipe at the base of Pond.

To ensure that the fire protection volumes are adequate during winter conditions, the maximum ice thickness on the permanent pool of the SWM wet pond was determined based the Annual Freezing Degree Days method. Based on an Ice cover condition coefficient of 2.4 and the Annual Freezing Degree Days value 785 °C-day for 2019, the ice thickness of 67.24 cm was obtained. Based on this calculation, the design ice thickness used is of 69 cm. Detailed calculations are presented in Appendix I

In the permanent pool of the proposed SWM pond, fire protection volumes of 520.3 m³ and 987.9 m³ with and without ice cover respectively. These volumes satisfy the FUS and NFPA 13 requirements, and will supply the building fire protection intake, and two (2) dry hydrants.

A free-standing Siamese connection will be located outside the front entrance and would be used to supply the sprinkler system if the pump within the shaft were unable to draw water from the fire protection pond (refer to drawings, **Appendix F**).

The large volume provided in the permanent pool is required to satisfy the minimum depth of water above the building fire protection and dry hydrant intakes, per City of Ottawa detail W53.

To prevent exfiltration and maintain the water level of the permanent pool, the SWM pond will be constructed with a liner. In the event the water level in the sump & pond drops below the minimum level, makeup water will be provided to the sump and pond from the well to mitigate losses due to infiltration and evaporation. Alarm indicators will monitor the levels in the sump & pond, and will control the supply of makeup water to the pond and sump from the well.

The building fire protection system requires 250 US gal. per minute (15.8 L/s) per NFPA 13. As such, the building fire protection intake was sized as a 300mm pipe, slopes at 0.1% with a capacity of 33 L/s under gravity free flow conditions (Factor of safety = 1.90). An intake screen capacity of 64 L/s is also specified for the building fire protection intake (Factor of safety = 4.05).

3.3 **Proposed Water Supply Well**

3.3.1 Well Quality

Samples tested from an existing water supply well confirmed that there were no health-related parameters in exceedance of the Ontario Drinking Water Standards (ODWS). There were several parameters that exceeded their respective ODWS for aesthetic objectives including hardness, total dissolved solids, turbidity, manganese, and iron. These parameters will require commercially available treatment equipment (for example a water softener for treatment of hardness). The treatment systems will be determined later in the design process. A detailed breakdown of test results is presented in **Appendix C**.

As a proactive measure, it is recommended that bacteriological treatment (i.e., ultraviolet treatment) be used at a minimum. It is anticipated that the well system will be regulated and will require treatment to meet appropriate standards to ensure potable water is available to employees and visitors. A water treatment specialist should be retained for treatment and a qualified engineer should review the final treatment system before use.

3.3.2 Well Quantity

The water supply well referred to as TW-2 in the Hydrogeological Assessment (**Appendix C**) is capable of providing long-term quantities of groundwater at a pumping rate of 60 L/min based upon the pumping test completed. After 6 hours of pumping, the well drawdown was 1.15 m with 23.9 m of available drawdown remaining. A total of 21,600 L was pumped from the well during the testing.

Based upon the septic total daily design values of 12,800 L/day, the well exceeds the daily design quantities estimated. The actual water volume required for the development on a daily basis is expected to be much less than 10,000 L/day. The water supply well and the aquifer that it is drilled into can safely provide the long-term quantities required for this development based upon the testing completed without significant interference to future and existing neighbouring wells.

3.4 Conclusion – Potable Water Servicing

The proposed well will provide sufficient potable water supply for the development, while the proposed SWM pond permanent pool will provide sufficient fire protection volume for the development.

4. Storm Water Management

4.1 Background

As previously mentioned, the subject site is currently vacant and is part of the Hawthorne Industrial Park (HIP). The site is generally flat and slopes towards the North-East corner before it reaches the 6m tall embankment and reaches Christie Creek on Rideau Road. There is a fill layer of approx. 6m thick across most of the site.

The HIP sector and the Fastfrate site are subject to the HIP Stormwater Management Report and associated drawings (**Appendix B**), developed by J.L. Richards and dated May 2009. This report established the Stormwater Management design for the HIP, which was then used as the design basis for the roads, open ditch system, and HIP SWM facility (refer to Drawings issued for MOE Approval; **Appendix B**).

The HIP SWM facility, located east of the industrial site, only provides stormwater quantity control for the HIP sector. The HIP SWM facility controls storm events up to the 2 - year post-development peak flow to 50% of the 2-year pre-development peak flow; and controls post-development peak flows to pre-development levels for storm events ranging from the 2-year to the 100-year recurrence. The HIP SWM report specifies that individual parcels of the HIP must provide stormwater quality control.

4.2 Stormwater Management Strategy

4.2.1 Deviations from the HIP SWM Report & Drainage Plan

The proposed SWM strategy for this site deviates from that of the HIP SWM report.

The drainage plan for the HIP divides the drainage of the Fastfrate site between two outlets. Part of the site drains to Christie Creek while the remainder drains to the HIP SWM facility via the open ditch system along Somme Street. (**Figure** 4-1).

To simplify the SWM strategy the drainage distribution between both outlets has been altered from what was presented in the HIP SWM report, redirecting more runoff towards the HIP SWM facility (**Figure 4-1**). This simplifies the site grading and allows all quality control measures to be in a single location. Therefore, the proposed conditions require quantity control (through on-site retention) to respect the allowable release flowrates up to the 100-year storm stipulated in the HIP SWM report.

Figure 4-1 SWM Drainage Area from HIP SWM (left), and from Proposed SWM (right)

The original drainage plans and sewer design sheets for the HIP sector, as well as the proposed SWM plan for the Fastfrate site are provided in **Appendix G**.

4.2.2 Allowable Post Development Flow Rates

The allowable release rate was determined based on parameters of the HIP SWM report, Sewer Design sheets and SWM plans as summarized in **Table 4-1**.

Catchment ID	Catchment area (ha)	Runoff Coefficient (factored)	Time of Concentration (minutes)	Rainfall Intensity (mm/hr)	Release Rate (L/s)
Fastfrate Site – HIP SWM Report	3.06	0.88	19.43	122.15	906.87

Table 4-1: Post-development Allowable 100-year Release Flows – HIP SWM Facility

Based on this calculation, the storm runoff under post-development conditions for the site area draining to the HIP SWM facility must be controlled to the allowable release rate of **906.9 L/s**, up to and including the 100-year storm event.

Using this allowable release rate, the resulting unit release rates (as L/s/ha) were determined for the Fastfrate site, assuming an identical time of concentration for the proposed Site SWM (Table *4-2*; **Appendix H, pages 2-4**).

Table 4-2: Post-development Allowable 100-year Release Rates – HIP SWM Facility						
Catchment ID	Catchment area (ha)	Runoff Coefficient (factored)	Allowable Release Flow – 100-year (L/s)	Allowable Release Rate – 100-year (L/s/ha)		
Fastfrate Site – HIP SWM Report	3.06	0.88	906.9*	296.89		
Fastfrate Site – Proposed SWM	3.66	0.88	906.9	247.78		

4.3 **Design Criteria and Assumptions**

- Quality control requirements: 80% TSS Removal must be provided for our site as required by the South Nation Conservation Authority (SNCA).
- Per the HIP SWM report, the existing open ditch system is designed to the 100-year event, and the existing culverts are designed to the 10-year event.
- + The current site plan deviates from the HIP SWM report. To conform with the original SWM, the 100-year allowable release rate to the SWM facility must remain at 906.9 L/s (refer to Section 4.2.2).

4.4 Proposed Storm Servicing

All detailed SWM calculations are presented in Appendix H.

4.4.1 Stormwater Quality Control

As specified in the HIP SWM report, the HIP SWM facility was not designed to provide quality control. It was anticipated that each individual parcel was to provide its own quality control and achieve the normal level of protection (70% TSS Removal).

Through consultation with the South Nation Conservation Authority (SNCA, refer to Appendix A) the quality control requirements for the HIP parcels have been revised to the enhanced level of protection (80% TSS removal).

The portion of the site that naturally drains into Christie Creek will not require quality treatment since this area will remain undeveloped and vegetated. Therefore, only the developed portion of the site draining towards the Somme Street ditches and to the existing HIP SWM facility will be treated for quality.

The quality control requirements will be achieved using a combination of grassed swales and a wet pond, operating as a "treatment train". The grassed swales, which are sloped to promote infiltration and low channel velocities (<0.5 m/s) will provide the required pre-treatment for the wet pond.

The wet pond was designed based on the volumetric water quality criteria, as presented in Table 3.2 of the MECP SWM guidelines (2003). The wet pond requires a total water Quality Storage of 824m³. In the pond dimensioning, at least 677 m³ will be provided in the permanent pool and at least 146m³ will be provided as extended detention (**Table 4-3**).

For this facility, the extended detention volume will be retained for a period of 12 hours, as per the MECP SWM Guidelines on wet ponds with < 8 ha of drainage area.

Control Area	Storage Volume (m³/ha)	Catchment Area (ha)	Required Storage Volume (m ³)
Permanent Pool	185		677.1
Extended Detention	40	3.66	146.4
Total	225	3.66	823.5

Table 4-3: Wet Pond Volume Calculations – 70% Impervious; 80% TSS Removal

4.4.2 Stormwater Quantity Control

The anticipated post-development flow rates and required storage when controlled to the allowable post-development release rate are summarized in the table below.

Control Area	100-year Release Rate (L/s)	Available Storage Volume (m³)	100-year Storage Volume (m³)
Roof Areas	212.6	137.4	115.1
SWM Pond	906.9	729.2	280.51
Total	906.9	866.6	395.61

 Table 4-4: Post-development Flowrate and Storage Summary

For the warehouse and office building, the proposed release rate for roof runoff is **212.6 L/s.** This release rate generates **115** m^3 of roof storage. This value is conservative with respect to the maximum available (**Table 4-4**).

To restrict stormwater discharge to the allowable release rate of **906.9** L/s, a storage volume of **281** m^3 is proposed in the SWM pond and a storage volume of **115** m^3 is proposed on roofs for a total of **396** m^3 (**Table 4-4**). These volumes do not account for surface storage within swales, storm sewers, and culvert sections. Refer to **Appendix H** for detailed stormwater storage calculations.

The proposed SWM system will be equipped with a backflow preventer and enough storage capacity on site to ensure the site SWM is not overwhelmed in the event of prolonged surcharging of the receiving open ditch system during the 100-year event.

4.4.3 Municipal Ditch and Culverts

The two entrances to the site cross the existing open ditch system and require installation of culverts. The sizing of the culverts was determined with consideration of the upstream municipal culverts since the SWM system outlet for stormwater is situated downstream of these culverts. Culvert sizing suitability calculations can be found in **Appendix H**.

4.4.4 Site Ditches and Culverts

The site's swales and culverts were sized based on capacity to convey the 100-year peak flow under free flow conditions of the site's storm outlet. Culverts were sized using a constant tailwater elevation.

Culvert	Size		HW/D	HW elevation	TW elevation
East Ditch	1x CSPA 910x660	405	1.13	90.160	89.800
West Ditch	1x CSPA 910x660	231	0.93	90.09	89.800
STM Pond Transfer Culvert	2x CSPA 1030x740	907	0.81	89.820	89.510

Table	$4 - 5^{\cdot}$	Culvert	Sizina	Summary
rabic	$\tau \circ$.	Curvert	OIZING	Guilling

Detailed calculations supporting the culvert sizing are available under Appendix H.

4.4.5 Building Service Connection

A 600 mm storm sewer service connection will be provided on the south side of the proposed building and will be directed towards the SWM pond. The storm sewer will convey controlled runoff from the roof and uncontrolled runoff from catchments A4 and A5 (refer to **Appendix G – SWM plan**).

4.4.6 Deviations from the Sewer Design Guidelines – Swale Minimum Slope

The slope of the swales conveying stormwater for this site are inferior to the minimum slope specified in section 6.4.1 of the Sewer Design guidelines.

The grassed swales are intended to contribute to runoff quality control, operating with the proposed wet pond as a "treatment train". The reduced slope of grassed swales promotes infiltration and low channel velocities (<0.5 m/s). This improves the effectiveness of grassed swales for runoff quality control (LID SWM Planning and Design Manual).

Based on the interpretation from percolation tests for this site, the soil infiltration rate can be estimated to range between 30 to 50mm/hr. With dry swales, an underdrain is typically recommended if the soil infiltration rate is <15 mm/hr.

As such, the risk of prolonged ponding of water in the ditches is mitigated by the soil infiltration rate and presence of on-site existing fill and well draining soil.

4.5 Proposed SWM Pond Sizing

A summary of the required volumes to be provided in the Wet Pond is presented in the table below.

Parameter	Required Volume (m ³)	Source
Retention Volume	280.51	Table 4-4
Extended Detention	146.4	Table 4-3
Fire Protection Volume	480	Section 3.2.2.2
Permanent Pool for Quality Control	677.1	Table 4-3
Sediment Accumulation Volume (25 years)	208	Section 4.6.1

Table 4-6: Summary of Required SWM Pond Volumes

A summary table of the pond volumes is presented below (Table 4-7).

Table 4-7: Summary of Provided SWM Pond Volumes

Control Volumes		Bottom Elevation (m ASL)	Top Elevation (m ASL)	Depth (m)	Provided Volume (m³)	Required Volume (m³)	
Freeboard to Overflow		90.100	90.150	0.050	50.2	-	
Retention Volume		89.500	90.100	0.60	560.10	280.51	
Extended Detention		89.300	89.500	0.200	169.1	146.4	
Permanent Pool (PP)	Fire Protection Volume	With Ice Cover	87.700	88.610	0.690	520.3	480
		Normal	87.700	89.300	1.60	987.9	
	Depth of Fire Protection Intake		87.100	87.700	0.600	243.4	-
	Sediment Accumulation Volume		86.100	87.100	1.0	229.9	205
	Total PP Volume		86.100	89.300	3.2	1510	677.1

4.6 Calculations

4.6.1 Sediment Accumulation Volume

Based on the MECP SWM planning and design guidelines, a conservative estimate of the sediment accumulation volume required for a duration of 25 years is 205 m3 assuming an annual TSS loading of 2.84 m³/ha/year and a removal efficiency of 80%.

4.6.2 Pond Controls

As defined in the City of Ottawa Sewer Design Guidelines (2012), the Rational Method is a valid approach to determination of peak flows and pipe capacity for drainage areas of less than 40 ha in size. Thus, the Rational Method has been used in the determination of required storage volumes to store the 100-year storm events to the pre-determined allowable release rates.

4.6.2.1 Extended Detention Control (Quality)

The wet pond will use a 200mm reverse pipe with **one 80 mm dia. orifice plate** to control the detention time to the minimum detention time of 12h, per MOE Guidelines for drainage areas less than 8 ha.

Using equation 4.10 from the MECP SWM guidelines resulted in a drawdown time of 15.53 hours.

$$t = \frac{2 A_{p}}{C A_{o} (2g)^{0.5}} \left(h_{1}^{0.5} - h_{2}^{0.5} \right)$$

Equation 4.10: Drawdown Time

Where:

t = drawdown time in seconds

 A_p = surface area of pond (m²)

C = discharge coefficient

 A_0 = cross-sectional area of the orifice (m²)

g = gravitational acceleration constant

 h_1 = starting water elevation above the orifice (m)

 h_2 = ending water elevation above the orifice (m)

$$t = \frac{2A_p}{CA_0(2g)^{0.5}} (h_1^{0.5} - h_2^{0.5})$$
$$t = \frac{2(876.75)}{(0.63)(0.005)(2*9.81)^{0.5}} (0.2^{0.5} - 0^{0.5})$$
$$t = 55906 \, s = 15.53 \ hours$$

4.6.2.2 Release Rate Control (Quantity)

The release rate control, under free flow conditions, will be achieved by **one 600x1040mm rectangular orifice** set at an invert elevation of 89.500 m ASL. Under free flow conditions, this opening will act as a weir, and will control the 100-year release rate to 904.6 L/s on average.

Release Rate Control Flow condition	Average Release Flow (L/s)	Max. Water Surface Elevation at pond outlet (m ASL)
Free Flow Condition	904.6	9.100

Table 4-8 Resulting Release Flow with Proposed Controls

4.7 SWM Conclusions

The storm servicing design for the proposed development generally conforms to the requirements of the City of Ottawa Sewer Design Guidelines, 2012, as amended by all applicable Technical Bulletins. The storm servicing design also conforms to the HIP SWM report (J.L. Richards ,2009). Justifications have been provided where deviations were proposed by the SWM strategy.

The allowable release rate for the site post-development was calculated to be **906.9 L/s**. It is expected that this can be achieved via roof storage and the proposed SWM wet pond.

A Roof Flow Control Declaration will be provided upon completion of the Mechanical and Structural design.

5. Sediment and Erosion Control

Appropriate measures must be taken to control erosion and sedimentation during the construction process for the proposed development. Sediment will be trapped on site, implementing the Ontario Ministry of Natural Resources and Forestry's (MNRF) "Guidelines on Erosion and Sediment Control for Urban Construction Sites," to assure proper control measures are upheld. Furthermore, the following measures must be considered:

- Supply and install silt fences (as per OPSD 219.110) along the perimeter of the impacted lands, including borrow and stockpile areas resulting from topsoil stripping or excavating activities; locations determined during field grading operations;
- + Catch basin inserts must be used within the limits of the project and must remain in place until project completion. The inserts must also be inspected regularly and corrected as deemed necessary;
- + A dewatering system, such as a sedimentation basin or approved equivalent, shall be implemented to filter sediments from an excavated trench should dewatering and pumping operations become necessary, all in accordance with the City of Ottawa Sewer Use By-Law 2003-514.

All control measures will be carried out in accordance with the following documents:

- + "Guidelines on Erosion and Sediment Control for Urban Construction Sites" published by Ontario Ministries of Natural Resources, Environment, Municipal Affairs and Housing, and Transportation and Communication, Association of Construction Authorities of Ontario, and Urban Development Institute, Ontario, May 1987.
- + "Erosion and Sediment Control" Training Manual by Ministry of the Environment, Spring 1998.
- + Applicable Regulations and Guidelines of the Ministry of Natural Resources and Forestry.

Refer to **Appendix K**, Sediment and Erosion Control Plan (C004) and Notes Plans (C005 and C006) for additional information.

6. Conclusion

The current study demonstrates how the proposed servicing of the site will be achieved, in that the proposed SWM strategy conforms to the existing SWM plan and that the proposed Potable Water, Fire Protection and Sanitary Servicing works will be sufficient to service the proposed development.

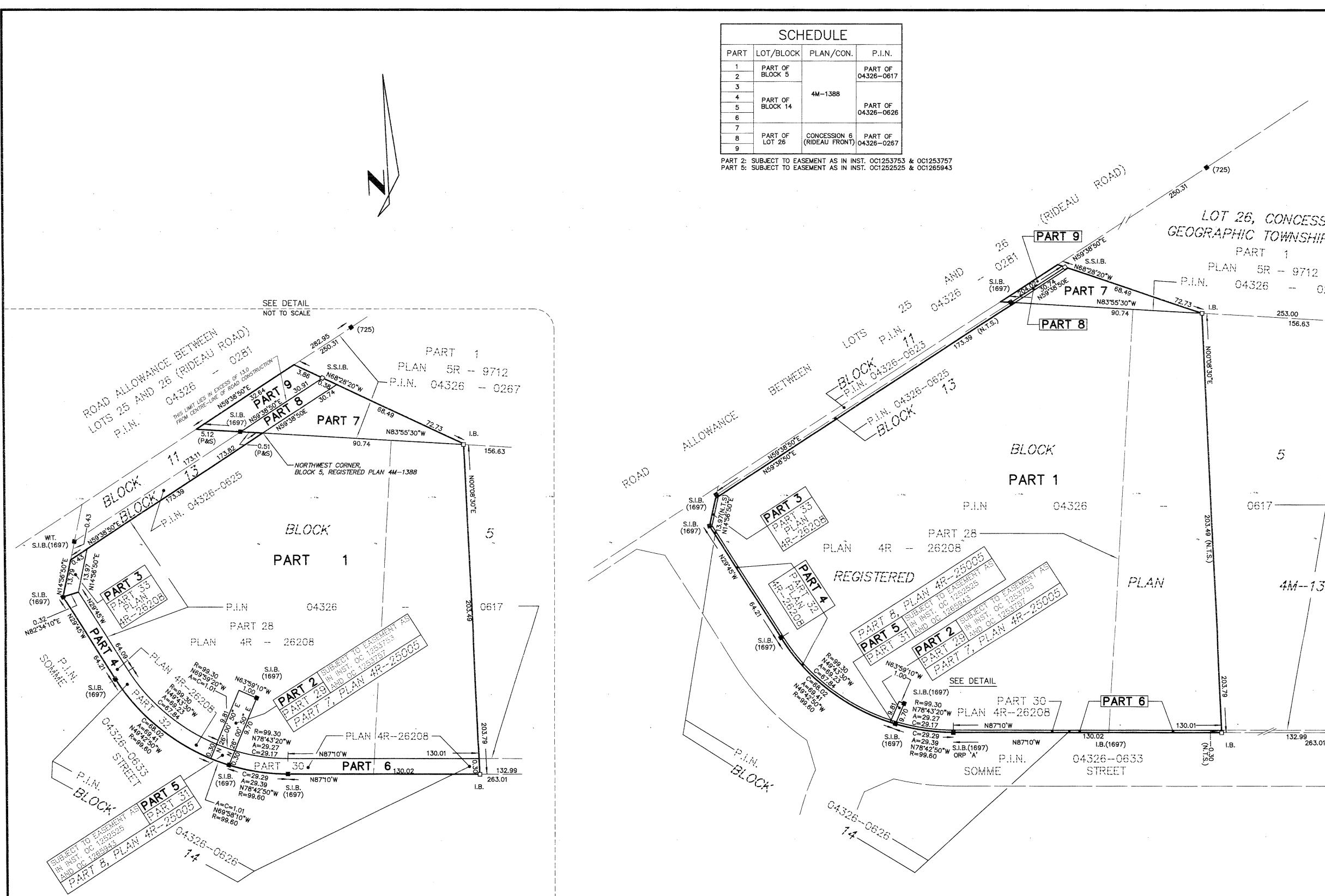
Within the site, all services have been designed in keeping with the City of Ottawa design requirements and the requirements of the HIP SWM Report.

We trust this site servicing and stormwater management report is to your satisfaction. If you have any questions regarding this report, please do not hesitate to contact the undersigned.

7. References

- City of Ottawa. 2012, 2020. "Sewer Design Guidelines as ammended by Technical Bulletins." Ottawa.
- City of Ottawa. 2010, 2020. "Water Design Guidelines as ammended by Technical Bulletins." Ottawa.
- GHD. 2020. Geotechnical Investigation Warehouse and Offices Intersection of Rideau Street and Somme Street, Ottawa, Ontario. Ottawa, September 10.
- GHD. 2021. Hydrogeological Assessment Report Proposed Commercial Development Rideau Road and Somme Street Gloucester Con 6 from Rideau River, Lot 26 Ottawa, Ontario . Ottawa, January 19.
- GHD. 2021. Septic Assessment and Percolation Rate Evaluation Proposed Commercial Development Rideau Road and Somme Street Gloucester Con 6 from Rideau River, Lot 26 Ottawa, Ontario. Ottawa, April 12.
- J.L. RIchards & Associates Ltd. 2009. *Stormwater Management Report Hawthorne Industrial Park.* Ottawa, May.
- Ministry of the Environment. 2003. "Stormwater Management Planning and Design Manual." Toronto.
- 2017. "Ontario Building Code, O Reg. 332/12."

CIMA: Engineering for People



Appendix A -Legal Survey – Fastfrate Warehouse Development

ŀ

ŧ

۴

£

ŧ

¥.

I REQUIRE THIS PLAN TO BE DEPOSITED UNDER THE LAND TITLES ACT. PLAN 4R-33406 RECEIVED AND DEPOSITED DATE _ Dec. 22 / 2020 DATE SEPTEMBER 16, 2020 Chit on ----SHIPMAN REPRESENTATIVE FOR LAND REGISTRAR FOR THE LAND TITLES DIVISION OF OTTAWA-CARLETON (No.4) PLAN OF SURVEY OF PART OF LOT 26 CONCESSION 6 (RIDEAU FRONT) GEOGRAPHIC TOWNSHIP OF GLOUCESTER and PART OF BLOCKS 5 AND 14 LOT 26, CONCESSION 6 (R.F.) REGISTERED PLAN 4M-1388 GEOGRAPHIC TOWNSHIP OF GLOUCESTER CITY OF OTTAWA SCALE 1:1000 0 10 20 30 40 50 - 0267 METRES METRIC 253.00 DISTANCES AND COORDINATES SHOWN ON THIS PLAN ARE IN 156.63 METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048 S.I.B.(1697) NOTES BEARINGS HEREON ARE GRID BEARINGS, DERIVED FROM ISCM 019871768 (N 5016745.786, E 379008.599) AND ISCM 019871769 (N 5016468.145, E 378560.015) AND ARE REFERRED TO THE CENTRAL MERIDIAN 76" 30'W LONGITUDE OF THE 3" M.T.M. ONTARIO CO-ORDINATE SYSTEM (NAD 83). DISTANCES SHOWN ON THIS PLAN ARE HORIZONTAL GROUND DISTANCES AND CAN BE CONVERTED TO GRID DISTANCES BY MULTIPLYING BY THE COMBINED SCALE FACTOR OF 0.999955 BEARINGS AND DISTANCES SHOWN ON THIS PLAN AGREE WITH UNDERLYING AND ABUTTING PLANS UNLESS OTHERWISE NOTED. 5 DENOTES 0.025 SQ., 1.2 LONG, STANDARD IRON BAR DENOTES 0.025 SQ., 0.6 LONG, SHORT STANDARD IRON BAR S.I.B. S.S.I.B. DENOTES 0.016 SQ., 0.6 LONG, IRON BAR I.B. DENOTES SURVEY MONUMENT FOUND DENOTES SURVEY MONUMENT PLANTED 22 . (Da U WIT. 1697 DENOTES WITNESS O_{Σ} DENOTES J.P. SHIPMAN, O.L.S. 725 DENOTES R.W. ARNETT, O.L.S. DENOTES UTILITIES POLE LINE DENOTES NOT TO SCALE U.P.L. N.T.S. DENOTES PLAN 4M-1388 0 ß 4M--1388 OBSERVED REFERENCE POINTS (ORP): MTM ZONE 9, NAD 83 (ORIGINAL) POINT IDENTIFICATION NORTHING EASTING ORP A ORP B 018947. 78970. 5018934.5 379233.: COORDINATES SHOWN TO RURAL ACCURACY IN ACCORDANCE WITH O.REG 216/10. SECTIONS 14, AND 31 TO 35 (BOTH INCLUSIVE). COORDINATES CANNOT, IN THEMSELVES, BE USED TO RE-ESTABLISH CORNERS OR BOUNDARIES SHOWN ON THIS PLAN 132.99 SURVEYOR'S CERTIFICATE 263.01 S.I.B. (1697) I CERTIFY THAT: ORP 'B' (1) THIS SURVEY AND PLAN ARE CORRECT AND IN ACCORDANCE WITH THE SURVEYS ACT, THE SURVEYORS ACT AND THE LAND TITLES ACT AND THE REGULATIONS MADE UNDER THEM; (2) THE SURVEY WAS COMPLETED ON THE 10th DAY OF DECEMBER, 2020. DECEMBER 14, 2020 DATE P. SHIPMAN ONTARIO LAND SURVEYOR H.A.KEN SHIPMAN SURVEYING LTD. REF No. : GL.-502 P.O. BOX 53, NORTH GOWER, ONT. KOA 2TO FILE No. : 19-11756 ţ. t

٢

۴

ţ

ŧ

ŧ

Appendix B -JL Richards Storm Water Management Plan

STORMWATER MANAGEMENT REPORT

HAWTHORNE INDUSTRIAL PARK

February 2009 (Revised April 2009) (Revised May 2009)

Prepared for:

R.W. TOMLINSON LIMITED

5597 Power Road Ottawa, Ontario K1G 3N4

Prepared by:

J.L. RICHARDS & ASSOCIATES LIMITED Consulting Engineers, Architects & Planners

864 Lady Ellen Place Ottawa, Ontario K1Z 5M2

JLR 20983

STORMWATER MANAGEMENT REPORT

HAWTHORNE INDUSTRIAL PARK

- TABLE OF CONTENTS -

			<u>PA</u>	GE
1.0	INTR(1.1 1.2 1.3	DDUCTION	•••	. 1
2.0	STOR 2.1 2.2	M DRAINAGE		. 3
3.0	STOR 3.1 3.2	M SERVICING General Description of Conveyance Systems and Design Basis 3.2.1 Open Ditch System 3.2.2 Culvert System	••••	.5 .5 .6
4.0	WATE	R BALANCE		. 9
5.0	WATE 5.1 5.2	R QUALITY General Water Quality Requirement		10
6.0	HYDR 6.1 6.2 6.3 6.4 6.5 6.6	OLOGICAL ANALYSIS General Synthetic Design Storm Simulation and Hydrological Parameters Simulation of Pre- and Post-Development (Uncontrolled) Conditions Simulation of Phase-1 Post-Development (Controlled) Conditions Simulation of Phase-2 Post-Development (Controlled) Conditions Simulation of Phase-2 Post-Development (Controlled) Conditions Simulation of July 1, 1979 Historical Storm Event and Flood Potential 6.6.1 Simulation of July 1, 1979 Historical Storm Event	· · · ·	11 12 14 15 17 18 18
7.0	EROSI	ON AND SEDIMENT CONTROL MEASURES DURING CONSTRUCTION .	2	20
8.0		ARY AND CONCLUSION		

- LIST OF FIGURES -

Figure 1	Key Plan
Figure 2	Pre-Development Storm Drainage Area Plan
Figure 3 Figure 4	Post-Development - Phase 1 Storm Drainage Area Plan Post-Development - Phase 2 Storm Drainage Area Plan

R.W. Tomlinson Limited

- LIST OF TABLES -

Table 1	Summary of Peak Flow Rates	3
Table 2	Typical Potential Land Use Breakdown	6
Table 3	Water Quality Infiltration Requirements1	1
Table 4	SWMHYMO Simulation Results 18	5
Table 5	SWMHYMO Simulation Results	-
	(Post-Development - Phase 1 Controlled Conditions)	7
Table 6	SWMHYMO Simulation Results	
	(Post-Development - Phase 2 Controlled Conditions) 18	8
		-

- LIST OF DRAWINGS -

Site Servicing & Grading Plan	SG
Storm Drainage Area Plans	D-ST1 and D-ST2
Plan and Profiles	01, 02 and 03
Stormwater Management Facility	SWM1
Erosion and Sedimentation Control Plan	ESC
Details	DT
Stormwater Management Facility Erosion and Sedimentation Control Plan	SWM1 ESC

- LIST OF APPENDICES -

JLR 20983		J.L. Richards & Associates L
APPENDIX 'K'	-	SWMHYMO INPUT AND OUTPUT FILES (July 1, 1979 Historical Storm Event)
APPENDIX 'J'	-	ASSESSMENT OF CULVERT CROSSING DURING AN EXTREME STORM EVENT
APPENDIX 'I'	-	CERTIFICATE OF APPROVAL - EXISTING SETTLING PONDS
APPENDIX 'H'	-	SWMHYMO INPUT AND OUTPUT FILES (Post-Development Phase 2 Controlled Conditions)
APPENDIX 'G'	-	SWMHYMO INPUT AND OUTPUT FILES (Post-Development Phase 1 Controlled Conditions)
APPENDIX 'F'	-	STAGE-STORAGE-DISCHARGE TABLE
APPENDIX 'E'	-	SWMHYMO INPUT AND OUTPUT FILES (Pre - and Uncontrolled Post-Development Conditions)
APPENDIX 'D'	-	HYDROLOGICAL PARAMETERS (CN _{pre} , Imperviousness Calculation, Time to Peak Calculation)
APPENDIX 'C"	-	WATER QUALITY - INFILTRATION CALCULATION
APPENDIX 'B'	-	CONVENTIONAL CULVERT DESIGN SHEET
APPENDIX 'A'	-	RATIONAL METHOD DESIGN SHEETS (1:10 Year and 1:100 Year Design Sheets)

Limited

STORMWATER MANAGEMENT REPORT

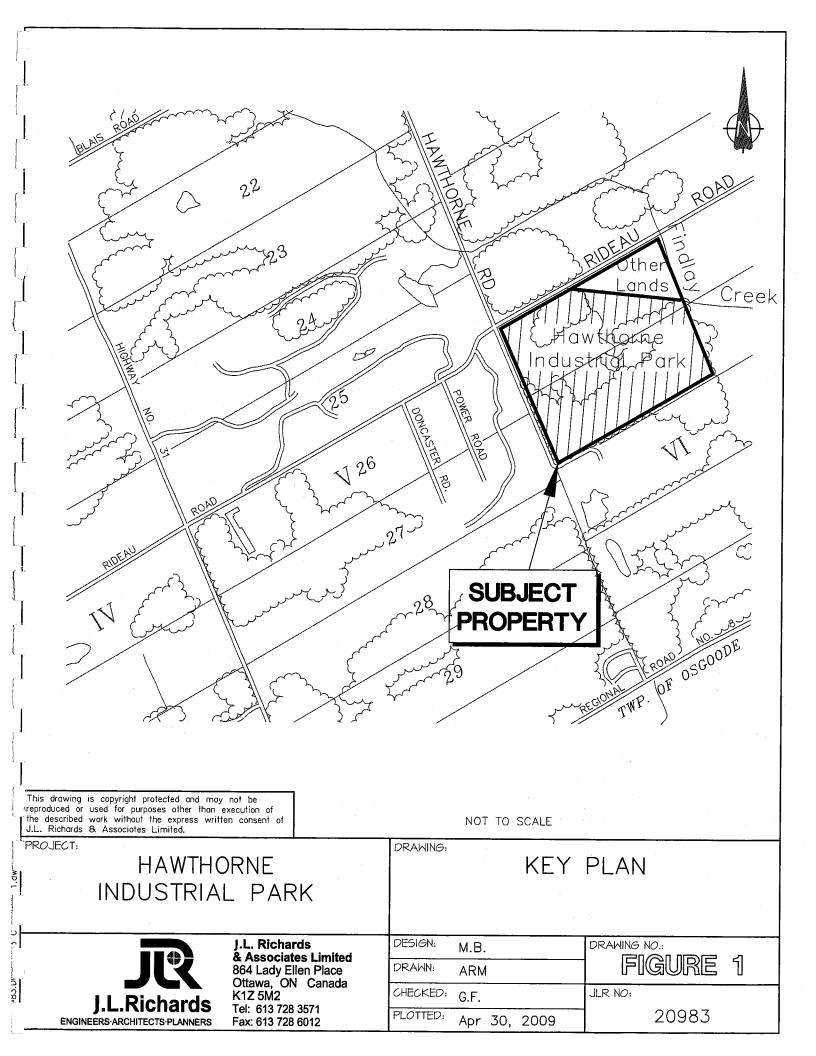
HAWTHORNE INDUSTRIAL PARK

1.0 INTRODUCTION

1.1 Background

In 1999, J.L. Richards & Associates Limited (JLR) completed a Stormwater Management Study, on behalf of Beaver Road Builders Ltd., for the development of a proposed area previously referred to as the Hawthorne Road Industrial Subdivision. The main objective of the1999 Study was to develop a conceptual storm servicing alternative (including stormwater management) that would support the proposed development without adversely affecting the hydrological regimes of receiving streams. The 1999 Study provided a conceptual design of the conveyance system and on-site storage requirements for the proposed development in order to satisfy the regulatory agencies of the time, namely the Region of Ottawa-Carleton, the City of Gloucester and the South Nation Conservation Authority (SNC).

The current landowner, R.W. Tomlinson Limited (Tomlinson), now wishes to complete the development of the subject land, herein referred to as the Hawthorne Industrial Park (HIP).


1.2 General

The proposed 70 hectare (ha) site is located immediately southeast of the Hawthorne Road/ Rideau Road intersection (refer to Figure 1) in the City of Ottawa (formerly in the City of Gloucester) and is expected to service future industrial operations varying in size. Over the past decade, the site has been used to dispose of fill materials resulting from Tomlinson's construction activities. The fill material has been placed in areas where fill was required for the construction of the proposed HIP.

Currently, Orgaworld Canada Ltd. (Orgaworld), has leased approximately 10 ha within HIP, which will house the source separated organics program being implemented by the City of Ottawa in 2009. The Orgaworld site includes a Stormwater Management Facility with a capacity of 15,994 m³ providing on-site water quantity and quality control.

In addition, a permanent facility within the above subject lands is a total suspended solids (TSS) treatment facility. Consisting of three (3) ponds, this facility was designed

-1-

to provide aggregate wash water management to Tomlinson's existing quarry operations on the west side of Hawthorne Road (refer to Appendix 'l' for a copy of the Ministry of the Environment (MOE) Certificate of Approval (C of A) related to these works). In addition to the existing aggregate wash treatment facility, it is proposed to construct separate stormwater management facilities to service water quantity and quality requirements for the HIP.

1.3 Objectives

This Stormwater Managment Report (SWMR) was prepared to demonstrate that the subject lands can be developed as an Industrial Park Subdivision in compliance with the current surface water objectives of the watershed. Since the subject lands drain to Findlay Creek, which is tributary to the North Castor River, storm runoff criteria for this development must be in accordance with the recommendations of the document entitled "Shield's Creek Subwatershed Study, Totten Sims Hubicki Associates, June, 2004", referred throughout this Report as SCSS. More specifically, the above Report provided the following design criteria with regard to stormwater:

Water Quantity

<u>Peak Flow</u> Post-development peak flows must be controlled to pre-development levels for storm events ranging from a 1:2 year to a 1:100 year recurrence.

Infiltration Section 5.5 of the SCSS recommends that the quantity and quality of groundwater infiltration be maintained to pre-development rates.

<u>Erosion</u> The stormwater management strategy for the proposed HIP must be developed to maintain the erosion potential to current levels.

Water Quality

The proposed stormwater management strategy for HIP must be developed to meet a Normal Level of Protection (as per the MOE's publication entitled "Stormwater Management Planning and Design Manual, March, 2003", referred throughout this Report as SWMPDM, which corresponds to a standard approach used in urban development to obtain a targeted total suspended solids (TSS) removal rate of 70%.

2.0 STORM DRAINAGE

2.1 General

Storm servicing for the HIP was designed using the dual drainage concept, also known as the minor/major drainage system. The minor drainage system is mainly comprised of an on-site open ditch and culvert system. The minor system was designed to capture and convey runoff during frequent storm events up to a 1:10 year recurrence. The major system formed by swales/ditches, streets, etc. was sized to accommodate runoff during storm events exceeding 1:10 year up to the 1:100 year recurrence.

The open ditches, culverts and swales were sized using the Rational Method. An inlet time of 15 minutes and runoff coefficients (C-factors) ranging from 0.20 to 0.90 were used in the sizing of the conveyance systems. It should be noted, however, that C-factors used were increased by 10% for the 1:25 year peak flow calculations and by 25% for the 1:100 year recurrence, as per Section 5.4.5.2.1 of the City of Ottawa's Sewer Design Guidelines (November 2004). Rainfall intensities (i.e., Intensity-Duration-Frequency curves (IDF)) required by the Rational Method were also extracted from the City of Ottawa's Sewer Design Guidelines. Peak flow rates for the HIP and Hawthorne Road and Rideau Road are summarized in Table 1 (refer to Appendix 'A' for copies of the Rational Method Design Sheets for the 1:10 year and 1:100 year storm events).

Description	Peak Flows (L/s)	
	10 Year	100 Year
Hawthorne Industrial Park (HIP)	5,422	12,814
Hawthorne Road / Rideau Road	3,192	5,417

Table 1 - Summary of Peak Flow Rates

2.2 Design Criteria

The municipal infrastructure associated with the HIP was designed using the following criteria:

- The <u>HIP open ditch system</u> was sized with sufficient capacity to convey, under free-flowing conditions, the <u>1:100 year peak flow rate</u>, as calculated by the Rational Method (refer to Appendix 'A' for a copy of the 1:100 year Design Sheet).
- The <u>Hawthorne Road open ditch system</u> was sized with sufficient capacity to convey, under free-flowing conditions, the <u>1:100 year peak flow rate</u>, as calculated by the Rational Method (refer to Appendix 'A' for a copy of the 1:100 year Design Sheet).
- The existing downstream ditch system along <u>Rideau Road</u> was evaluated to ensure sufficient capacity to convey, under free-flowing conditions, <u>the 1:100 year</u> <u>peak flow rate</u>, as calculated by the Rational Method (refer to Appendix 'A' for a copy of the 1:100 year Design Sheet).
- The <u>culverts</u> included in the HIP and along Hawthorne Road/Rideau Road were sized with sufficient capacity to convey the <u>1:10 year peak flow rate</u> without overtopping the roadway embankment (refer to Appendix 'A' for a copy of the 1:10 year Design Sheet).
- Given that the receiving watercourse was found to shelter fisheries, the SCSS recommended that a <u>"normal" level of protection</u> be achieved for quality control. To fulfill this requirement, industrial sites must direct runoff to an appropriately sized oil/grit separator unit before stormwater can be conveyed off site to the open roadside ditch/culvert system. To achieve quality control for the internal roads, it is proposed to provide infiltration storage volume in the roadside open ditch system, as per the requirements presented in Table 3.2 of the SWMPDM.
- The SCSS recommended that the erosion potential be maintained to current levels for the receiving water course. To fulfill the above requirement, the two year post-development peak flow will be controlled to 50% of the pre-development peak flow rate.
 - Storage volume is to be implemented for the control of the post-development peak flows to pre-development levels for storm events ranging from a 1:2 year to a 1:100 year recurrence to comply with the recommendations of the SCSS.

This Stormwater Management Report (SWMR) has been written to demonstrate that the subject land could be developed in compliance with the above surface water criteria and also prepared in accordance with the SWMPDM. The proposed stormwater management strategy for the HIP was developed to meet a "normal" level of protection, which corresponds to a standard approach used in land development to obtain a targeted TSS removal rate of 70%.

3.0 STORM SERVICING

3.1 General

Peak flow estimation is an important task that is carried out for any proposed development. There are several reasons that explain why flood flow rates are computed as part of site development. The main purpose of these calculations, however, is to allow for the proper configuration and sizing of the proposed conveyance systems to minimize the risk of flooding.

Drainage works are designed for a real or hypothetical storm event that may or may not happen during the lifetime of the facilities. At the onset of the design process, design criteria are adopted that may vary with the type of project, in recognition of the impacts of failure. For this particular project, the level of protection adopted (storm events up to a 1:100 year recurrence) was based on design storm characteristics of an infrequent storm event having a low probability to occur.

3.2 Description of Conveyance Systems and Design Basis

Flowing water can be conveyed to an outlet by either open-channel flow or pipe flow. Storm runoff generated by the subject lands is to be collected and conveyed by a roadside ditch/culvert system before discharging to Findlay Creek via an end-of-pipe stormwater management facility (SWMF).

Sizing of the conveyance systems was carried out using various levels of service. The open ditch system was sized with sufficient capacity to convey, under free-flowing conditions, storm runoff up to the 1:100 year recurrence, while roadway culverts were sized to provide conveyance of the 1:10 year peak flow rates without overtopping the roadway embankments.

As part of this sizing exercise, Storm Drainage Area Plans were prepared and included in this Report (refer to Drawing D-ST1 for the HIP and Drawing D-ST2 for Hawthorne and Rideau Road) that show the delineated area for each of the conveyance segments (i.e., from node location to node location), along with its assigned runoff coefficient (C-factor) based on the type of surface. Since the final development of Hawthorne Industrial Park is unknown at this time, a conservative on-site runoff coefficient (C-factor) of 0.70 was used. Table 2 illustrates the breakdown of a typical site that would generate a weighted runoff coefficient of 0.70.

Type of Surface	Area (%)	C-Factor
Building	10	1.0
Asphalt Parking	35	0.90
Gravel	35	0.70
Grass	20	0.20
Overall	100	0.70

Table 2 - Typical Potential Land Use Breakdown

It should be noted that the C-factors shown on the Storm Drainage Area Plans denote those associated with 1:10 year peak flow calculations. As recommended in Section 5.4.5.2.1 of the City of Ottawa's Sewer Design Guidelines, C-factors shown on drawings were increased by 10% and 25% for the 1:25 year and 1:100 year peak flow calculations, respectively (refer to Appendix 'A' for copies of the Rational Method Design Sheets).

3.2.1 Open Ditch System

An open ditch channel is a conduit used to convey flowing water from one location to another, with a free surface. A channel can be classified as either artificial (i.e., manmade) or natural. Artificial channels are those constructed or developed as a result of human activity. This type of conveyance system is usually implemented as a long and mild-sloped channel built in the ground, which provides conveyance of water between two points, with sections of regular geometry and shape. An open ditch system is generally designed to follow site topography and the vertical profile of the adjacent roadway. The most commonly used shapes for open channel ditches are trapezoidal and triangular, with the latter shape utilized mainly for ditches servicing small drainage areas. The open ditches associated with the HIP and Hawthorne Road were sized with sufficient capacity to convey 1:100 year peak flow rates. As previously noted, the Rational Method Design Sheets (refer to Appendix 'A' for copy of the 1:100 year design sheet) were used to quantify the 1:100 year peak flow rates. The open ditch configuration was carried out utilizing Manning's relationship, along with the proposed geometry and slope of the channel. Two Storm Drainage Area Plans were prepared (refer to Drawings D-ST1 and D-ST2) showing proposed ditch inverts that match those shown on the Rational Method Design Sheets. Based on the ditch sizing exercise, it was determined that triangular shape ditches with 3:1 side slopes and variable depths provided the necessary conveyance of the 1:100 year peak flow rate. The Site Servicing and Grading Plan (refer to Drawing SG) was developed to provide the configuration of open ditch segments.

The existing open ditches along Rideau Road were also evaluated to ensure sufficient capacity was able to convey the 1:100 year peak flow rates resulting from upstream construction works (i.e., construction of Hawthorne Road). The Rational Method Design Sheets (refer to Appendix 'A' for copy of the 1:100 year design sheet) were used to quantify the 1:100 year peak flow rates. An existing 900 mm diameter culvert crossing under Hawthorne Road conveys flow along the north side of Rideau Road (refer to Drawing D-ST2). The capacity of this existing culvert was estimated at 1,400 L/s under a 1.5 m headwater (refer to Appendix 'B' for Culvert Design Summary Table). Upon the review of existing topography, any headwater depths greater than 1.5 m resulted in runoff being directed northerly along Hawthorne Road towards Findlay Creek. In light of the above, the existing open ditches along Rideau Road were evaluated using a conservative plug flow of 1,400 L/s in addition to surface runoff generated by the contributing areas.

3.2.2 Culvert System

The principal function of a culvert is to convey water through an embankment while, at the same time, supporting the weight of the overlying fill and vehicular movement. Culverts can be made of many different materials; steel, polyvinylchloride (PVC), high density polyethylene (HDPE) and concrete. Culverts selected for the HIP and Hawthorne Road are made of corrugated steel, in either round or arch shape. Field observations have shown that there are two major types of culvert flow conditions: inlet control and outlet control.

1. Flow Under Inlet Control

Flow with inlet control means that the discharge capacity of a culvert is controlled at the culvert entrance by the depth of headwater and by the entrance geometry, including the barrel shape, cross sectional area and the type of inlet edge. The roughness and length of the culvert barrel, and the outlet conditions are not factors in determining the culvert capacity. The longitudinal slope reduces headwater only to a small degree and can normally be neglected for conventional culverts flowing in inlet control.

2. Flow Under Outlet Control

Flow with outlet control means that the discharge capacity of a culvert is controlled by the depth of tailwater, including the velocity head within the barrel, the entrance and friction losses. The roughness, length of the culvert barrel, and slope are factors in determining the culvert capacity; the inlet geometry is of lesser importance.

To avoid having to conduct detailed hydraulic computations that would determine the type of flow under which a culvert will probably operate, the procedure recommended by the MTO (refer to MTO's Drainage Management Manual) was utilized. This methodology, referred to as the Conventional Culvert Design procedure, requires that MTO's Design Charts and Design Nomographs be used for both inlet and outlet control conditions. The higher headwater depth that is calculated from those two operating conditions would indicate the type of control and would provide the governing headwater depth. This methodology was utilized to size each culvert crossing, along with the 1:10 year peak flow rates calculated by the Rational Method Design Sheets (refer to Appendix 'A') for each of the conveyance segments. Furthermore, this calculation sheet also provides proposed culvert sizes, along with the type of control and governing depth found when using the conventional culvert design procedure. A summary of the various parameters estimated using MTO's nomographs at each of the culverts has been tabulated using MTO's Form D4-I (refer to Appendix 'B' for Conventional Culvert Design Sheet). This analysis shows that the proposed culvert crossings within the HIP and along Hawthorne Road are capable of conveying the 1:10 year peak flow rates as a minimum, without overtopping any of the roadway embankments. The hydraulic calculations were carried out assuming a roughness coefficient of 0.024 for any of the CSP and CSPA culverts. The Site Servicing and Grading Plan (Drawing SG) shows proposed culvert sizes, lengths and invert elevations at each of the crossings.

The proposed 1030 x 740 mm CSPA culvert crossing under the entrance of the pond access road was of concern due to the high flow rate during the 1:100 year storm event.

There was a possibility that the excess flow overtopping this culvert could short circuit into SWMF via the pond access road. Therefore, an analysis of the flow overtopping the proposed entrance culvert was conducted and the results confirmed that the residual flow would indeed be contained within the right-of-way corridor (refer to Appendix 'J' for desktop calculation).

4.0 WATER BALANCE

Water balance analyses are typically carried out to assess any changes in infiltration to subsurface water-bearing zones as a result of the urbanization (i.e., increase of hard surfaces) of land. The SCSS has identified the need to maintain a necessary level of quantity and quality groundwater recharge via infiltration. Groundwater recharge is required to maintain subsurface base flow to streams and wetlands in addition to maintaining groundwater levels for private and municipal wells. The Hydrogeological Study completed by Golder Associates Limited in 2008 for the HIP identified the site as being underlain by a shallow and deep aquifer separated by an impermeable rock layer. The upper aquifer provided subsurface groundwater flow to streams, while the lower aquifer was the main source for well water supply. Therefore, groundwater recharge for this site was intended to provide subsurface base flow into the receiving Findlay Creek.

Construction fill operations have been active for the HIP since 1994. The results of the geotechnical field investigation conducted by Inspec-Sol Incorporated in 2008 indicates that as much as 5.5 m of fill material (MW7-08) has been placed on parts of the site. The non-native heterogenous fill material is comprised mainly of silty clay and contains trace amounts of road and construction materials. Although the soil component of the fill material exhibits the characteristics of silty clay, the varying composition and density of the remaining portion of the fill affects its permeability in localized areas. Given the above existing conditions, it is difficult to determine how groundwater recharge will behave as subsurface flow in the existing fill matrix, particularly from individual sites within the HIP. The MOE expressed concerns about the use of infiltration strategies on the individual sites given the past history as a construction fill site. Furthermore, the MOE SWMPDM does not endorse the use of infiltration basins on lands zoned for industrial use as there is an increased risk of groundwater contamination should a spill occur on site.

An option was considered to provide infiltration for the entire site at the base of the endof-pipe Dry Pond facility. Upon further investigation, the geotechnical report indicated that there was a high groundwater table at the proposed pond location. In addition, insitu soils in the area exhibited poor drainage properties which would have resulted in long retention times at the base of the pond, making it difficult to meet the water balance deficit requirements for the entire site while attempting to mimic the pre-development hydrological cycle.

Representatives from the City and SNC were consulted, and it was concluded that the SCSS groundwater balance targets for this site would be difficult to meet. It was also recognized that on-site infiltration strategies for this industrial subdivision could have a detrimental effect on groundwater quality and jeopardize the natural ecological integrity of receiving waters. In light of the above, it was decided by the approval authorities that the requirement for the water balance would be waived for the HIP development.

5.0 WATER QUALITY

5.1 General

Urbanization has been found to modify the hydrological regime of a receiving stream if inadequate stormwater management measures are implemented. The potential impacts associated with runoff arise primarily from the amount of urban area that is impervious to rain and snowmelt water. These impervious surfaces increase the amount of direct surface runoff that is generated and is conveyed more efficiently to the receiving stream. As part of the SCSS, fisheries resources have been inventoried along this watercourse, along with its associated tributaries. Given that the receiving watercourses were found to shelter fisheries, the approved document recommended that a "normal" level of protection be achieved. To fulfil this requirement, it is proposed that each individual site provide an oil/grit separator and infiltration storage be provided within the roadside open ditch system, as per the requirements presented in the SWMPDM.

5.2 Water Quality Requirement

Stormwater servicing for the HIP has been developed in accordance with the water quality recommendations of the SCSS (70% TSS removal). To fulfil this requirement, individual sites will be required to provide an oil/grit separator be installed to provide quality treatment (i.e., 70% TSS removal) of surface runoff before entering the roadside open ditch/culvert system. In addition, the oil/grit separator will be able to capture and contain hydrocarbons in the event of an on-site accidental spill.

To fulfill the water quality objectives for the paved portion of the HIP internal roads, it is proposed to provide infiltration within the open roadside ditch system to meet the storage volume requirements presented in Table 3.2 of the SWMPDM. Based on the normal level of service required and an imperviousness of 100% for the internal roads, Table 3.2 yields an extrapolated storage volume requirement of 35 m³/ha. To achieve this storage volume, a clear stone envelope complete with a 200 mm diameter perforated pipe will be installed at the base of the roadside ditches to meet the required storage volume (Refer to Appendix C for calculations).

The following table presents the calculated infiltration volume required for water quality control and those provided by the roadside open ditch system to meet the recommended MOE Design Guidelines.

Phase	Area (ha)	Infiltration Volume Requirement (m ³)	Infiltration Method	Length of 200 mm diameter Perf. Pipe (m)	Infiltration Volume Provided (m ³)
1	1.58	55.1	Open Ditch	1760	55.3
2	0.21	7.4	Open Ditch	240	7.5
Total	1.79	62.5	Open Ditch	2000	62.8

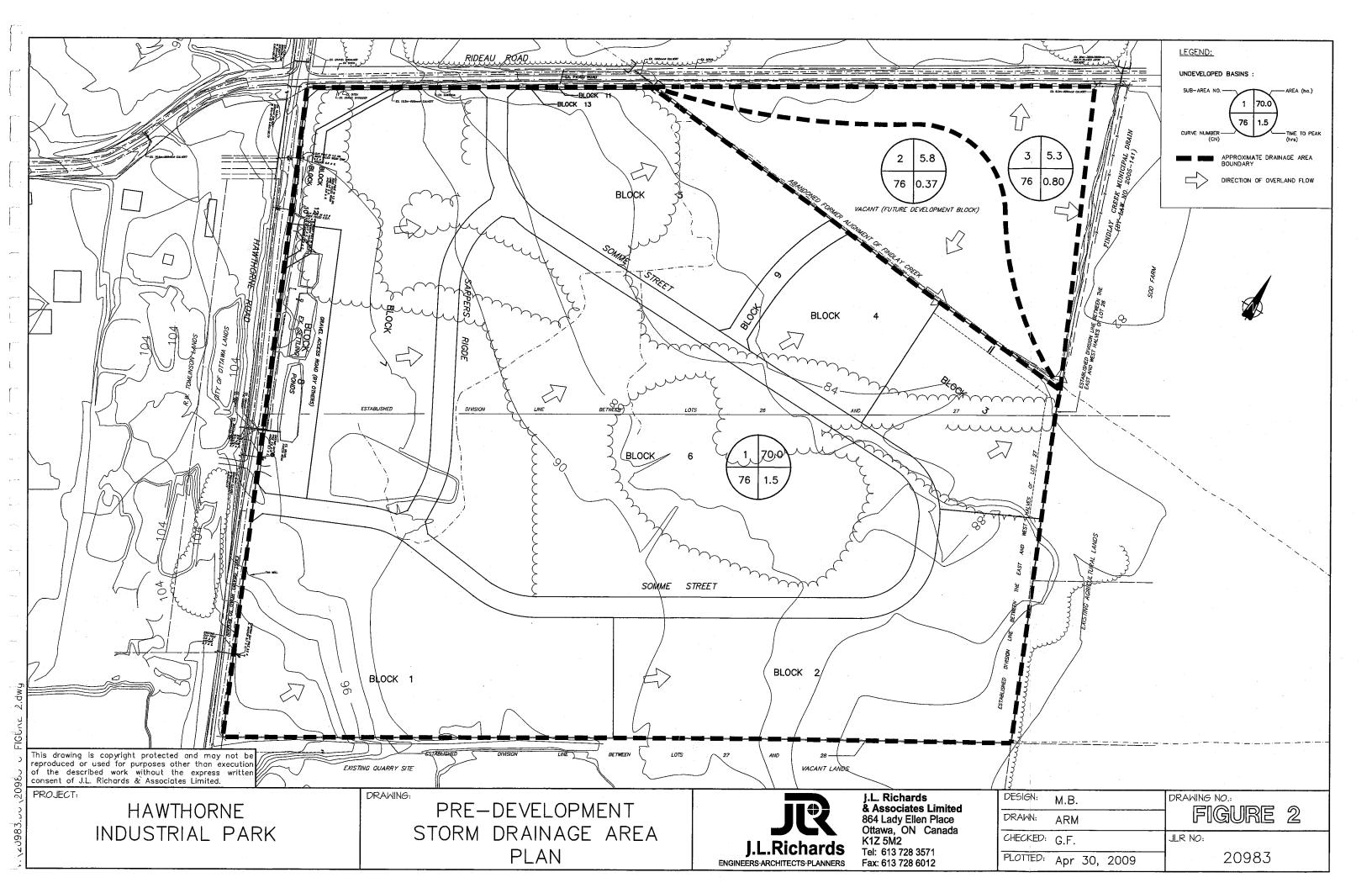
Table 3 - Water Quality Infiltration Requirements

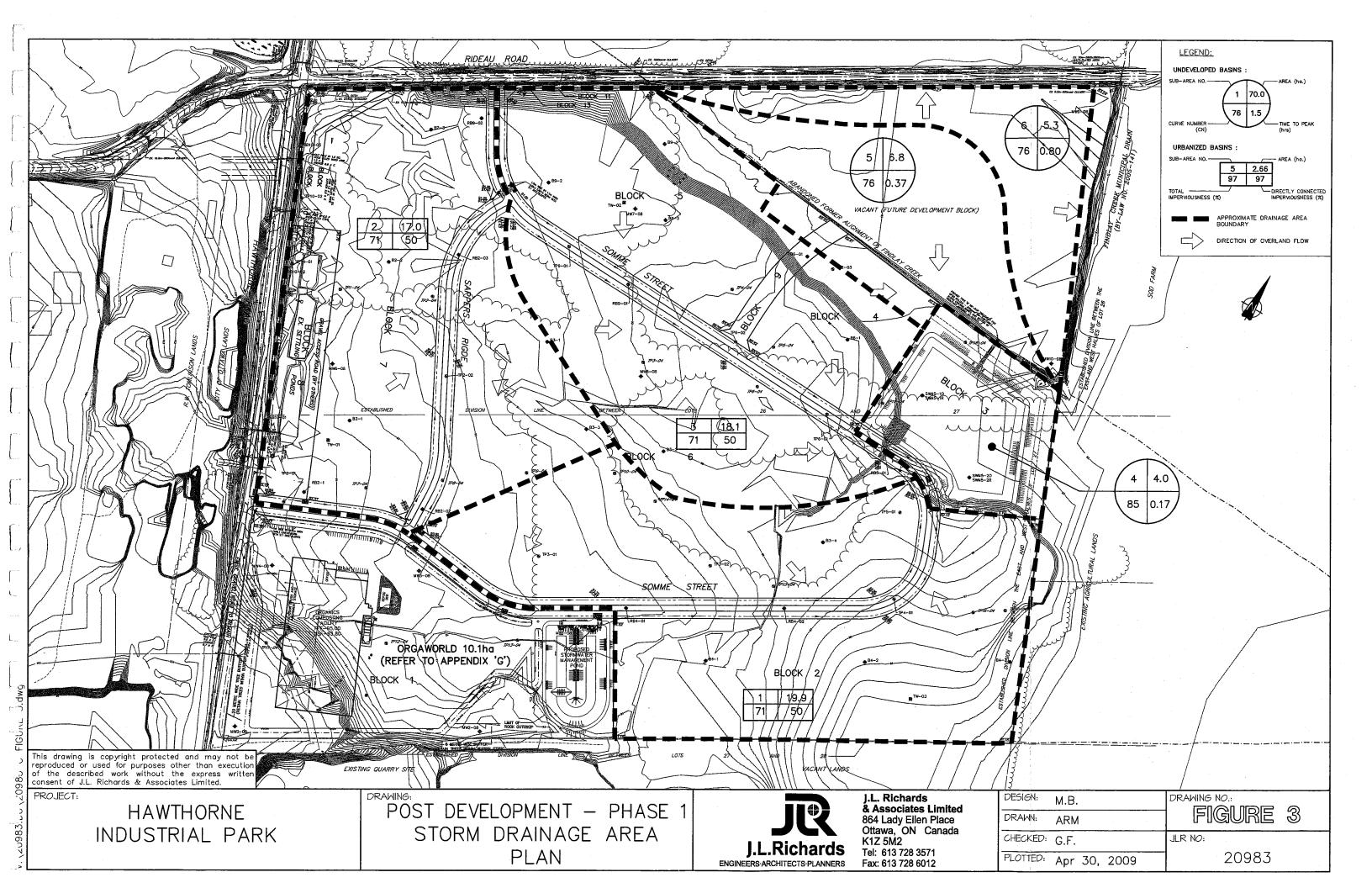
As shown in the above Table, the infiltration volume provided by the proposed open roadside ditch network (62.8 m³) exceeds that obtained from Table 3.2 (62.5 m³) of the SWMPDM. It should be noted that additional storage within the void space of the clear stone envelope was not accounted for and would increase the actual infiltration storage volume shown in Table 3.

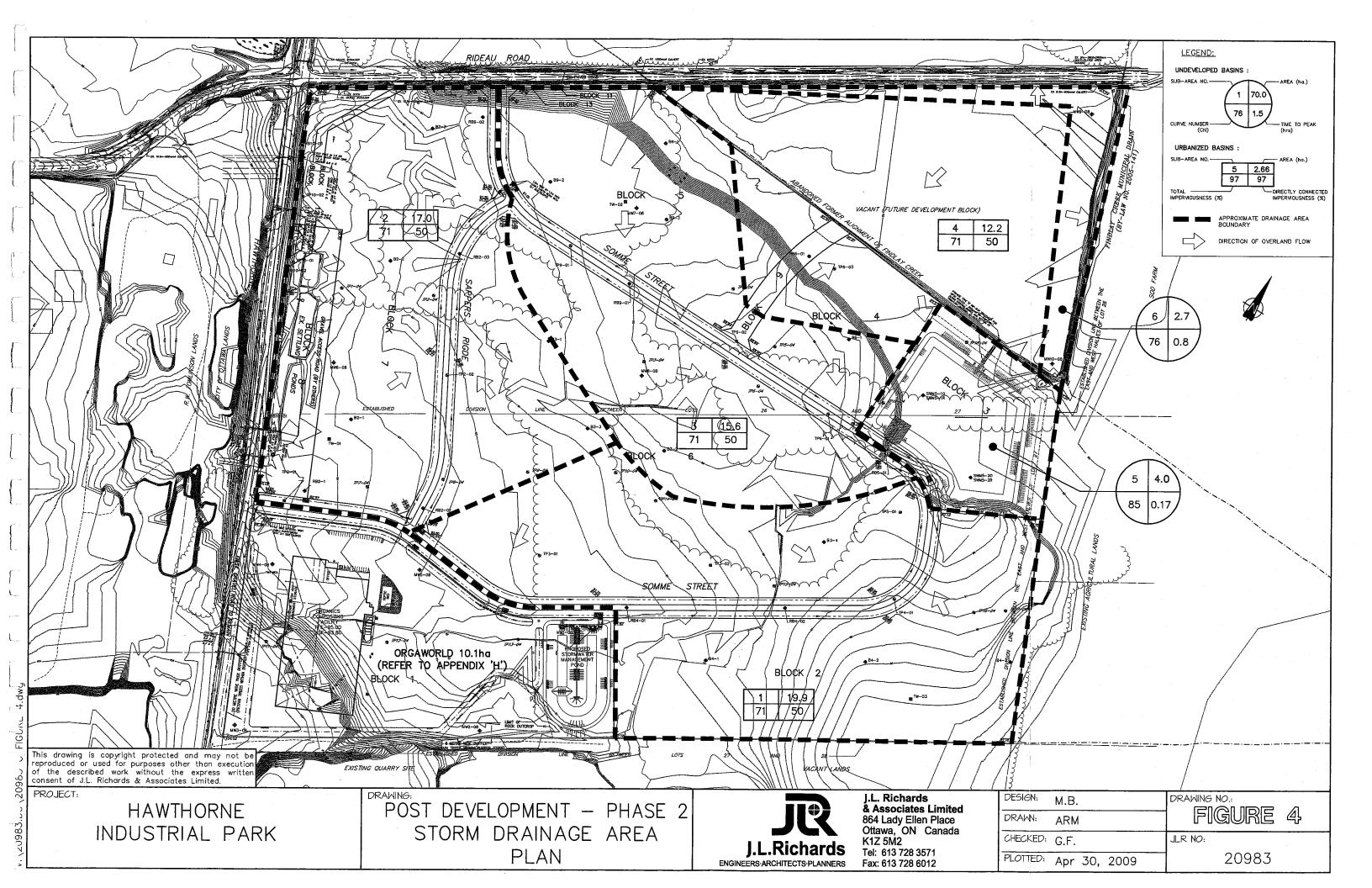
6.0 HYDROLOGICAL ANALYSIS

6.1 General

To satisfy the surface water objectives presented in Subsections 1.3 and 2.2, a hydrological analysis was carried out to quantify peak flow rate variations resulting from the development of the proposed HIP. To quantify this variation, the SWMHYMO Stormwater Management Hydrological Model (Version 4.02, July, 1999) was utilized to calculate peak flows during severe storm events.


To carry out the hydrological analysis, three storm drainage plans were developed; one representing the pre-development drainage conditions, one representing the post-development conditions for the current study area, Phase 1, and the other for the post-development drainage conditions, including future development, Phase 2. For each of these plans, subwatershed boundaries were delineated based on existing topography of the site and the proposed overland flow direction following development of the site (refer to Figures 2, 3 and 4 for details).


6.2 Synthetic Design Storm Simulation and Hydrological Parameters


Peak runoff rates were calculated for both pre- and post-development conditions using synthetic design storm event modelling. Peak flow rates were estimated using the 3-hour Chicago Design Storm Event, as this synthetic storm event has been recognized as the most critical event for urban runoff applications (refer to Section 5.4.3.1 of the City of Ottawa's Sewer Design Guidelines). The design storm analysis was completed using volumes derived from the Intensity-Duration-Frequency (IDF) curve equation shown in Section 5.4.2 of the City of Ottawa Sewer Design Guidelines compiled using data from 1967 to 1997.

A SWMHYMO data file was developed to represent both pre- and post-development conditions of the subject area. Simulation of surficial runoff generated from undeveloped subwatersheds was carried out using the "DESIGN NASHYD" command along with the SCS procedure to compute rainfall losses. The SCS procedure uses the Curve Number (CN) method to compute rainfall losses and the Nash unit hydrograph to simulate the hydrological response from undeveloped watersheds. To simulate surface runoff from urban subwatersheds, the "CALIB STANDHYD" command was utilized. Hydrological parameter selection and methodology is described below:

Curve Number (CN)

soils ranging from silty sand in Blocks 4 and 5, to silty clay in Blocks 3, 5, 7 and 8, to sandstone and limestone in parts of Blocks 2 and 3. These soils have been classified by Inspec-Sol as being associated with hydrologic soil groups (HSG), ranging from "B" to "D" for silty sand to silty clay, respectively. Areas where rock was encountered (i.e., Sandstone and Limestone) were classified as "Rockland." Based on this information and current land usage, as interpreted from aerial photography, a pre-development Curve Number (CN) of 76 has been calculated using the Ministry of Transportation of Ontario (MTO) Chart H2-8. Detailed calculations for the HIP have been included in Appendix 'D'.

Under post-development conditions, it is proposed to provide sufficient grade differential to allow for positive drainage to meet City of Ottawa Design Standards. As the subject lands are to be developed as an Industrial Park with a significant increase in hard surfaces (i.e., buildings, asphalt and gravel), the post-development conditions were, therefore, analysed taking into consideration the low potential of these surfaces to infiltrate storm runoff.

Imperviousness

Surface runoff under post-development conditions is greatly impacted by the imperviousness of its tributary area. Since the final development of the HIP is unknown, a conservative assumption for typical surfaces encountered in similar industrial parks was developed, as illustrated in Table 2. To determine the imperviousness based on the assumed breakdown presented in Table 2, an imperviousness calculation was carried out and is presented in Appendix 'D'. The imperviousness calculation was based on the following assumptions:

- an imperviousness of 100% was assigned for building footprints;
- an imperviousness of 100% was assigned for all asphalt parking surfaces.
- an imperviousness of 70% was assigned for all gravel surfaces; and
- it was assumed that 50% of the total imperviousness (TIMP) 50 % was modelled as directly connected imperviousness (XIMP).

Based on the above, a total imperviousness of 70% was calculated, which is equivalent to a runoff coefficient of 0.7. The hydrological analysis was, therefore, carried out using

a total imperviousness of 70%, consistent with the runoff coefficient used for sizing the open ditch/culvert system.

Time to Peak (T,)

Time to peak calculations were carried out under pre-development conditions. Time of concentration was first estimated using the Uplands Method Chart based on the various flow paths. Once calculated, the times to peak were set to 67% (i.e., 2/3) of the time of concentration (T_e). Under pre-development conditions, a 90 minute time to peak was calculated (refer to Appendix 'D' for calculations). When modelling post-development conditions, the "CALIB STANDHYD" command was used to calculate the time to peak associated with the proposed site surfaces and grades (refer to Appendix 'E' for SWMHYMO outputs).

6.3 Simulation of Pre- and Post-Development (Uncontrolled) Conditions

The hydrological analysis was carried over the entire HIP under both the pre- and post-development conditions. As stated in Section 6.1, two post-development conditions were investigated, namely, Phase 1 and Phase 2. Phase 1 evaluates servicing for the current Study area, while Phase 2 includes the current Study area along with servicing of an additional 11.2 ha of land to the north east, shown on drawings as "Future Development Block."

Peak flow rates were computed with SWMHYMO using the procedure and parameters described in Subsection 6.2. Table 4 presents the simulated peak runoff rates under a 3 hour Chicago design storm event for both the pre- and post- (uncontrolled) development conditions for the HIP (refer to Appendix 'E' for SWMHYMO data input and output files), along with those under a 4 hour - 25 mm storm.

	Peak Flow Rates (L/s)			
Return Period or Storm Depth	Pre-Development	Phase 1 Post-Development (Uncontrolled)	Phase 2 Post-Development (Uncontrolled)	
25 mm	252	1,941	2,231	
2	467	3,077	3,548	
5	826	4,812	5,554	
10	1,097	6,135	7,029	
25	1,468	7,772	9,013	
50	1,767	9,240	10,588	
100	2,093	10,662	12,132	

Table 4 - SWMHYMO Simulation Results

Simulation results presented in the above table show that uncontrolled post-development peak flows substantially exceed those obtained under pre-development conditions. Based on the design criterion for water quantity (refer to Subsections 1.3 and 2.2 for details), post-development peak flows should be maintained to their pre-development levels for storm events ranging from a 1:5 year to a 1:100 year recurrence. In addition, the 2-year post-development peak flow should be controlled to 50% of the 2-year pre-development peak flow to satisfy the erosion criterion. Water quantity control measures were, therefore, found to be necessary for the development of this site. Details and stormwater servicing approaches proposed to fulfil the design criteria listed in Subsections 1.3 and 2.2 are presented in the following Subsections.

6.4 Simulation of Phase 1 Post-Development (Controlled) Conditions

Development of the subject lands (i.e., 70 ha, as illustrated on Figure 3) will increase the imperviousness of the subject area. To achieve the surface water objectives listed in Subsections 1.3 and 2.2, it is proposed that an end-of-pipe facility be constructed that would provide storage volume for retention of runoff.

The stormwater management criteria for the development of the HIP consist of maintaining erosion potential and peak flow rates at the pre-development levels. Storm servicing of the Subdivision was, therefore, developed such that all of these requirements were fulfilled, along with the achievement of a "normal" protection level. It

is proposed to implement the following stormwater management servicing approach for the development of the HIP:

End-of-Pipe SWMF (Block 3)

Based on the proposed grading, the end-of-pipe facility was found to generate a volume of 37,240 m³ (3.25 m depth). A low flow ditch sized for 2 year storm events was also included in the bottom of the end-of-pipe facility to convey flows to the outlet structure. The configuration of the outlet structure would be as follows:

- 1 x 150 mm diameter orifice within a 200 mm diameter Polyvinyl Chloride (PVC) pipe at elevation 82.90 m, which serves as outlet to the facility;
- 2 x 600 mm diameter Corrugated Steel Pipe culvert at elevation 84.80 m, which also serves as outlet to the facility;
- One (1) emergency overflow spillway (6.0 m wide) at elevation 86.15 m, which serves as outlet to the facility during a storm event greater than 1:100 year.

The above configuration was used to develop a Stage-Storage-Discharge relationship that relates the storativity and outlet capabilities of the proposed facility at various geodetic elevations (refer to Appendix 'F' for copy of this Table). This data (storage-discharge table) was then used as input to the SWMHYMO's ROUTE RESERVOIR command.

A SWMHYMO file, representing the post-development controlled conditions of the HIP, was developed incorporating the storage volume and the outflow capability of the proposed end-of-pipe facility. The following table presents the simulated peak runoff rates for the three (3) hour Chicago design storm under the post-development controlled conditions (refer to Appendix 'G' for SWMHYMO data input and output files), along with those under the four (4) hour - 25 mm storm.

Return Period	Peak Flow Rates (L/s)		
or Storm Depth	Pre-Development	Phase 1 Post-Development (Controlled) ⁽¹⁾	
25 mm	252	127	
2 year	467	194 ⁽²⁾	
5 year	826	359	
10 year	1,097	589	
25 year	1,468	939	
50 year	1,767	1,191	
100 year	2,093	1,531	

Table 5 - SWMHYMO Simulation Results (Post-Development - Phase 1 Controlled Conditions)

Note:

(1) Post-development flow is the sum of flows from the end-of-pipe facility and two uncontrolled Sub-Areas totalling 12.1 ha.

(2) 2 year post-development peak flow less than half the 2-year predevelopment peak flow (233 L/s).

Simulation results presented in Table 5 show that the Phase 1 post-development controlled peak flows will be maintained below pre-development levels for the HIP. Consequently, the water quantity objective defined in Subsections 1.3 and 2.2 will be met under Phase 1.

6.5 Simulation of Phase 2 Post-Development (Controlled) Conditions

Development of Phase 2, as depicted on Figure 4, includes the Future Development Block located in the northeast corner of the HIP. This additional land could be serviced by the previously proposed end-of-pipe, without any modifications to facility size or outlet structure. However, a second inlet would be required in the northeast corner of the facility, which could be designed during the detailed design stage of the Future Development Block.

A SWMHYMO file, representing the Phase 2 post-development controlled conditions of the HIP, was developed incorporating the storage volume and the outflow capability of the proposed end-of-pipe facility. The following table presents the simulated peak runoff rates for the three (3) hour Chicago design storm under the Phase 2 post-development controlled conditions (refer to Appendix 'H' for SWMHYMO data input and output files), along with those under the four (4) hour - 25 mm storm.

Deturn Devied	Peak Flow Rates (L/s)			
Return Period or Storm Depth	Pre-Development	Phase 2 Post-Development (Controlled) ⁽¹⁾		
25 mm	252	73		
2 year	467	156 ⁽²⁾		
5 year	826	457		
10 year	1,097	729		
25 year	1,468	1,051		
50 year	1,767	1,348		
100 year	2,093	1,515		

Table 6 - SWMHYMO Simulation Results (Post-Development - Phase 2 Controlled Conditions)

Note: (1) Post-development flow is the sum of flows from the end-of-pipe facility and one uncontrolled Sub-Area totalling 2.7 ha.

(2) 2-year post-development peak flow less than half the 2 year predevelopment peak flow (233 L/s).

Simulation results presented in Table 6 show that the Phase 2 post-development controlled peak flows will be maintained below pre-development levels for the HIP. Consequently, the water quantity objective defined in Subsections 1.3 and 2.2 will also be met under Phase 2.

6.6 Simulation of the July 1, 1979 Historical Storm Event and Flood Potential

6.6.1 Simulation of the July 1, 1979 Historical Storm Event

In addition to designing the major drainage system to convey the 1:100 year storm event, the performance of both the open ditch system and SWMF was also assessed under the July 1, 1979 historical storm event. This historical storm event is defined as a high volume / low intensity storm event (when compared to the 1:100 year event) which occurred mostly over a three hour period (refer to Table 5.6 in the Ottawa Sewer Design Gúidelines). As shown in Table 5.6, the maximum intensity of 106.7 mm/hr only occurred for a 10 minute period (i.e, between the 85 to 95 minute time interval). The 1:100 year storm event intensities used to size the open ditch system were found to exceed the highest intensity of 106.7 mm/hr (refer to Appendix 'A' for 1:100 year Rational Method Sheet) with the exception of the most downstream ditch section (i.e., from Node 19 to Pond) where an intensity of 101.69 mm/hr was rather utilized. If an intensity of 106.7 mm/hr was used, the overall peak flow would increase from 12,814 L/s to 13,430 L/s substantially less than the free-flowing capacity of 52,735 L/s for the proposed ditch configuration. Consequently, the proposed open ditch system has the ability to convey flows generated by the July 1, 1979 storm event.

To supplement the above open ditch analysis, a hydrological analysis was also conducted to assess the performance of the SWMF under the July 1, 1979 storm event. A SWMHYMO file was, therefore, developed for the controlled Phase 2 post-development conditions of the HIP. Simulation results show that the Phase 2 post-development runoff during the July 1, 1979 storm event will be contained within the SWMF with all three of the outlet culverts flowing full in addition to approximately 210 mm of flow depth over the emergency overflow channel (refer to Appendix 'K' for SWMHYMO data input and output files). Therefore, the outlet of the SWMF has sufficient capacity to convey the July 1, 1979 historical storm event via the designated overland flow route without overtopping the banks.

6.6.2 Flood Potential

Draft approval Condition 12 of the draft subdivision conditions by the former Region of Ottawa-Carleton requires that "The owner shall complete a study indicating the extent of potential flooding on the property from Findlay Creek. The study including all models and assumptions shall be to the satisfaction of the South Nation River Conservation Authority." This condition was included as part of the original February 10, 1998 draft conditions (Gloucester File: S-RU-94-03).

Many changes have occurred on-site and adjacent to the site since Condition 12 was included in the draft approval for this site. Improvements to the roadside ditch were made along Rideau Road, immediately adjacent to the site. Surface runoff generated by the lands north of Rideau Road and conveyed to the small tributary located within the HIP site has now been re-directed toward the northeast corner of the site where the existing 3.8 m wide x 2.8 m high multi plate arch culvert crosses Rideau Road. A

municipal drainage report was prepared by Stantec Consulting in 2004 for this section of Findlay Creek which assessed the overall geomorphological conditions and provided recommendations for future maintenance. In addition, the SCSS conducted a flood hazard analysis. The 100 year flows from the Stantec model were plotted along the creeks modelled. Floodlines were shown in Figure 6.2.3 of the report. No floodlines were indicated for the section of Findlay Creek adjacent to the HIP site.

As indicated previously in the Section 4 of this Report, as much as 5.5 m of construction fill has been added to the site since 1994. The placed fill material on the site has eliminated the natural low lying areas and raised the site grade approximately 4.5 m above the top of creek bank. The current site grades will be maintained as a minimum for the development of the HIP subdivision. Therefore, we have no concerns about flooding on the property from Findlay Creek given the above changes to the site and improvements to the adjacent drainage network. Consequently, Condition 12 of the draft approval should be considered as being satisfied on the basis that this condition is out of date based on the current site conditions.

7.0 EROSION AND SEDIMENT CONTROL MEASURES DURING CONSTRUCTION

During construction of the roadway, the collection systems (i.e., ditches, culverts, sewers, etc.) and end-of-pipe facility, appropriate erosion and sediment control measures, as outlined in MNR's "Guidelines on Erosion and Sediment Control for Urban Construction Sites," will be implemented to trap sediment on site. To ensure proper implementation, the proposed measures have been incorporated onto Drawing ESC (Drawing entitled "Erosion and Sedimentation Control Plan"). The measures shown on this Drawing were developed based on topography and site constraints. As a minimum, the following measures will be implemented during construction:

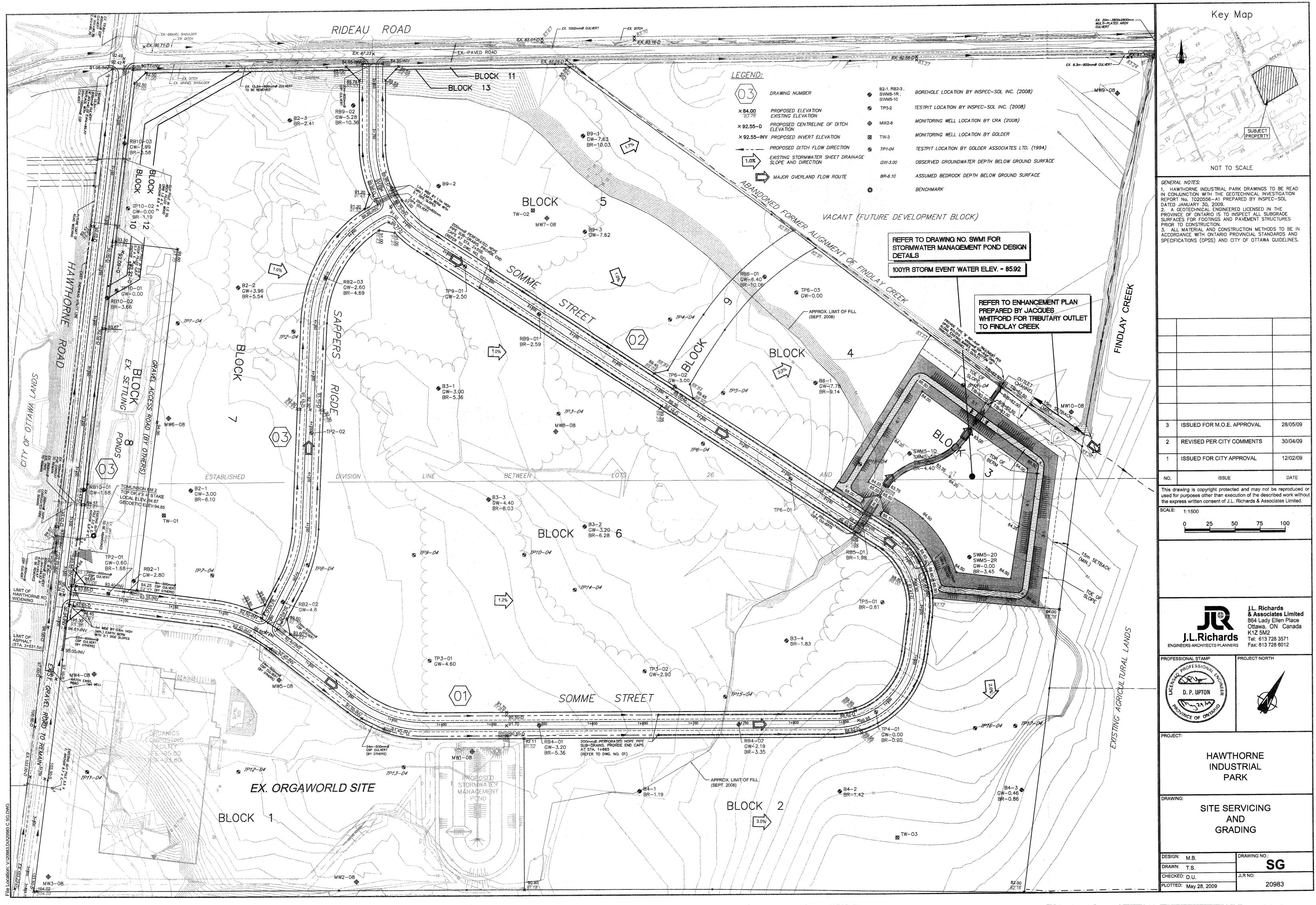
- Supply and installation of straw bale flow check dams (as per OPSD 219.180) at the upstream end of each culvert. Proposed locations of straw bale barriers are indicated on Drawing ESC.
- Supply and installation of topsoil and hydroseed along the entire open ditch system once grading has been completed for a section. Mulching will be carried out immediately after hydroseeding. This will allow for immediate bank stabilization of the system and will prevent sediment ladden from occurring from exposed ditch surfaces.

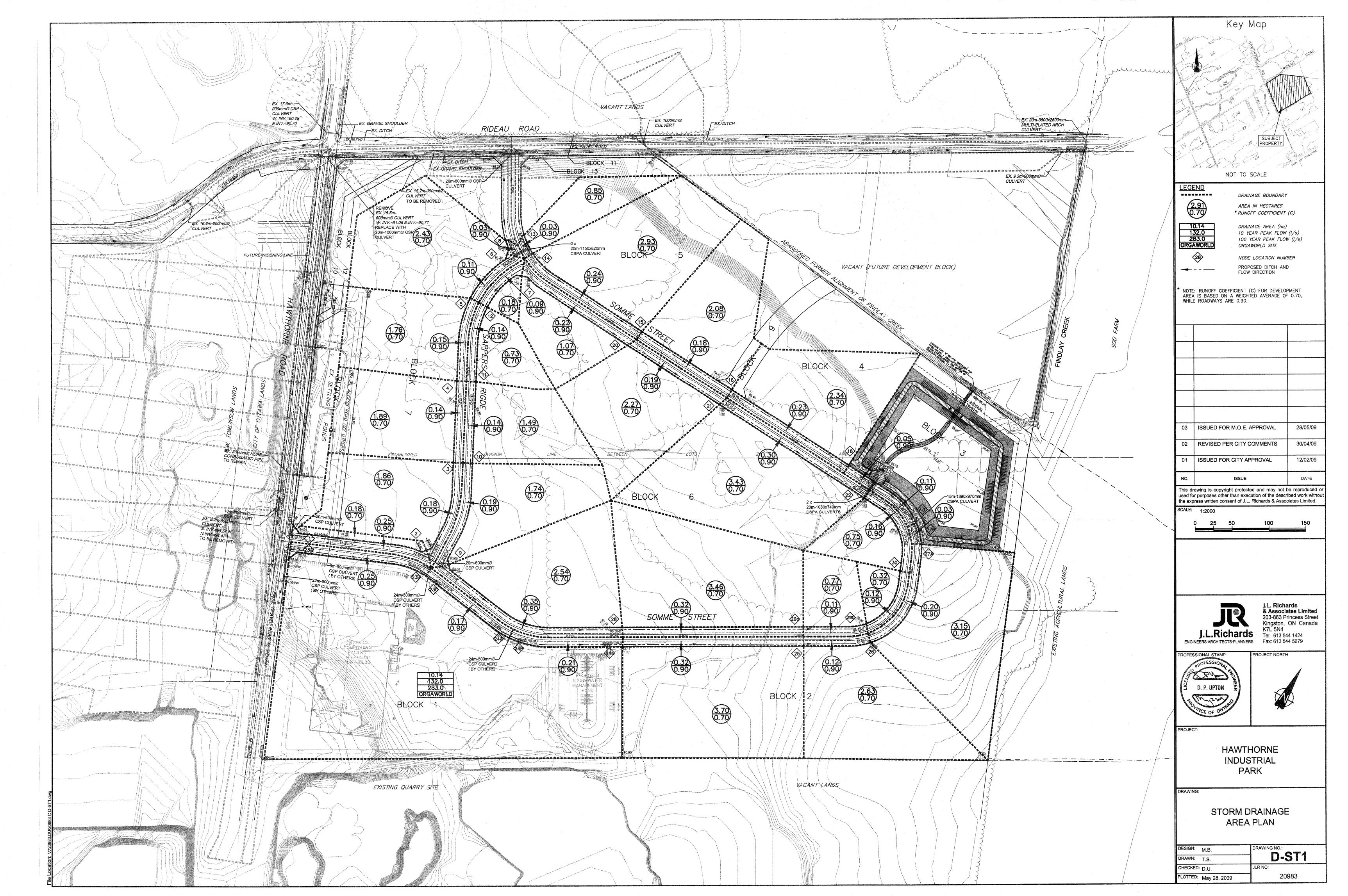
-20-

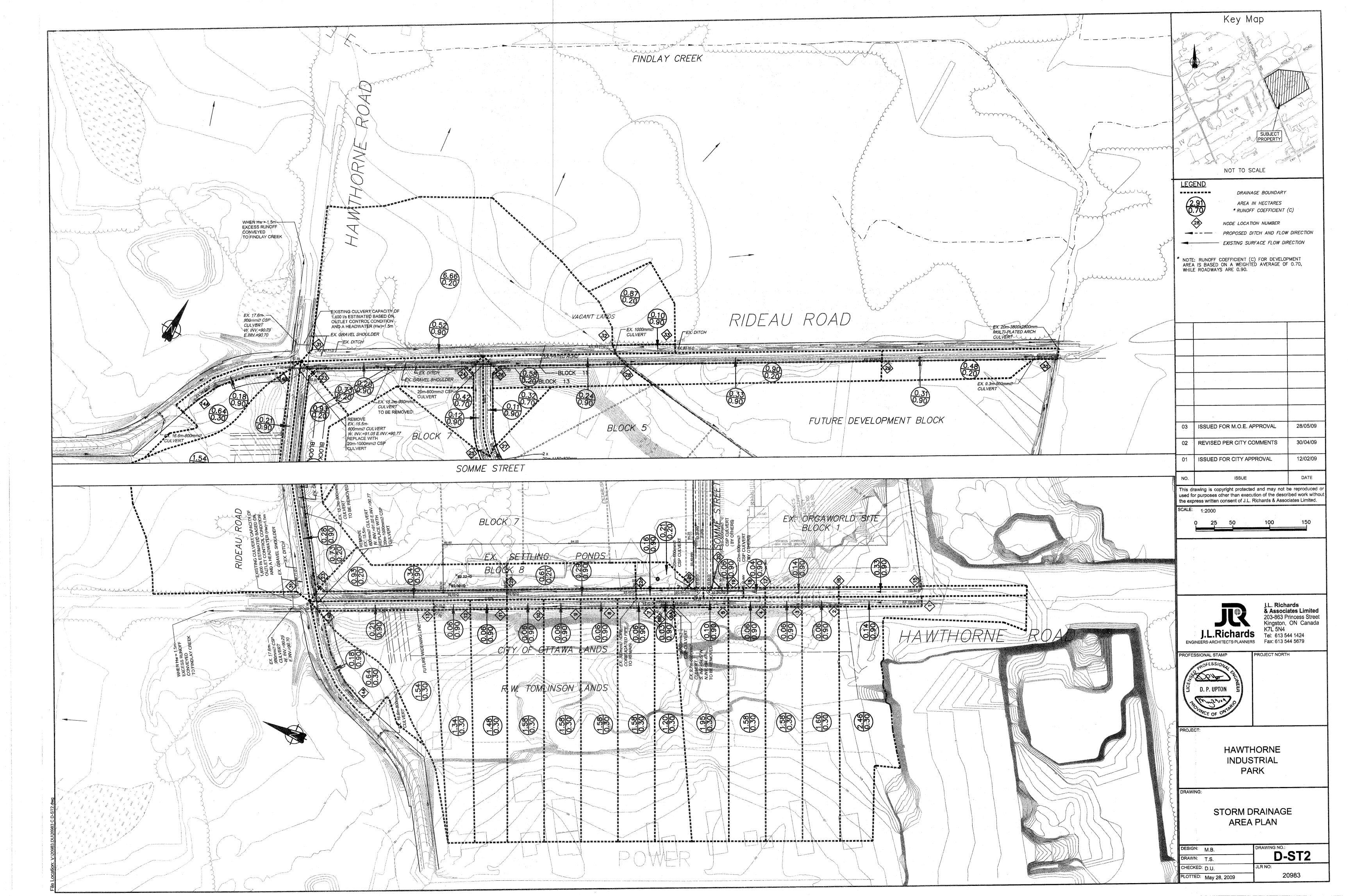
- Supply and installation of light duty silt fences (as per OPSD 219.110) at the toe of slope surrounding the proposed stormwater management pond (refer to Drawing ESC for details). It is recommended that silt fences also be used to enclose borrow and stockpile areas resulting from topsoil stripping activities or any excavating activities; locations to be determined in the field during grading operations.
- If dewatering and pumping operations become necessary, filtration is proposed using sediment dewatering bags prior to discharge off-site.

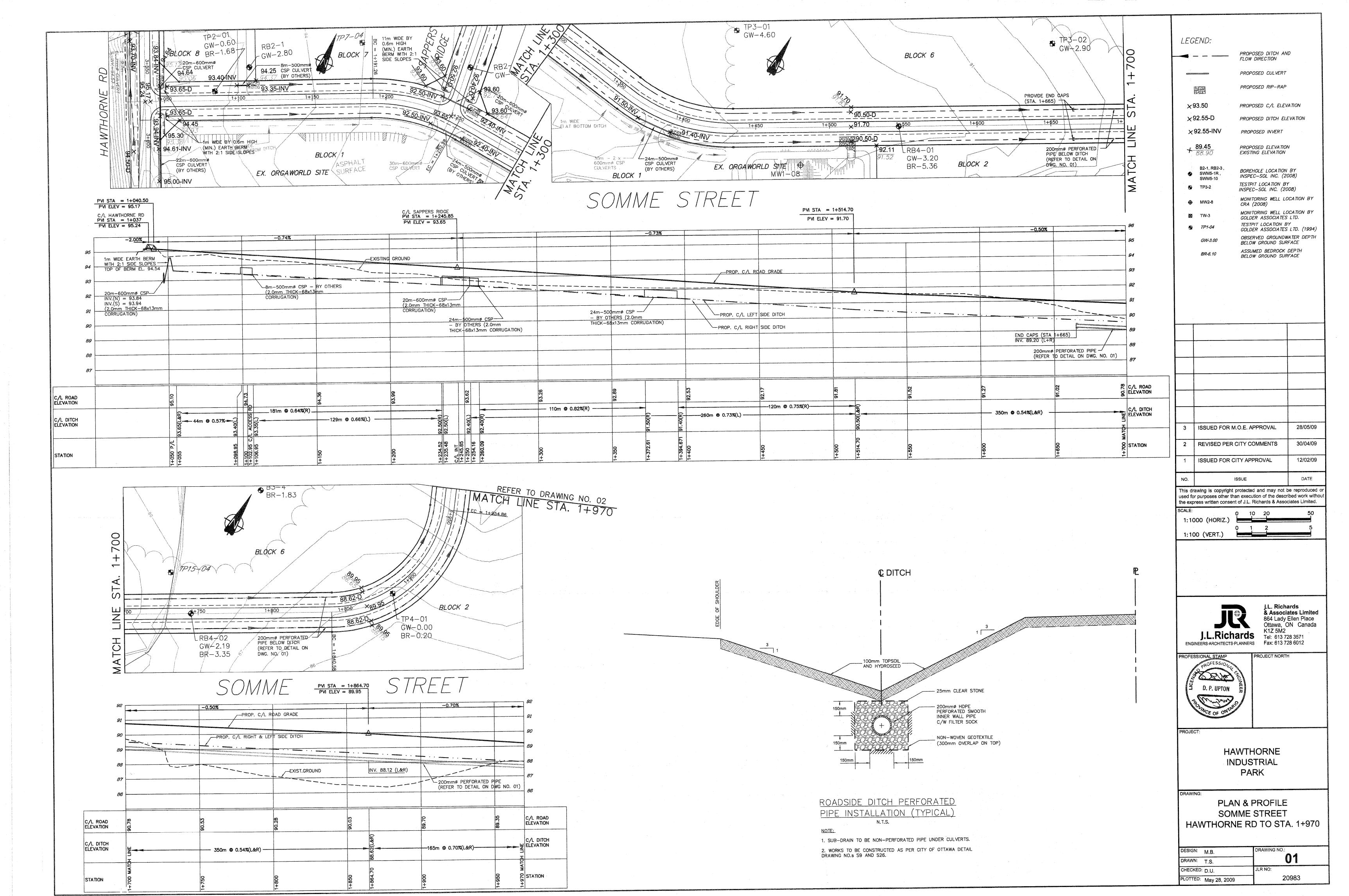
All control measures will be carried out in accordance with the following documents:

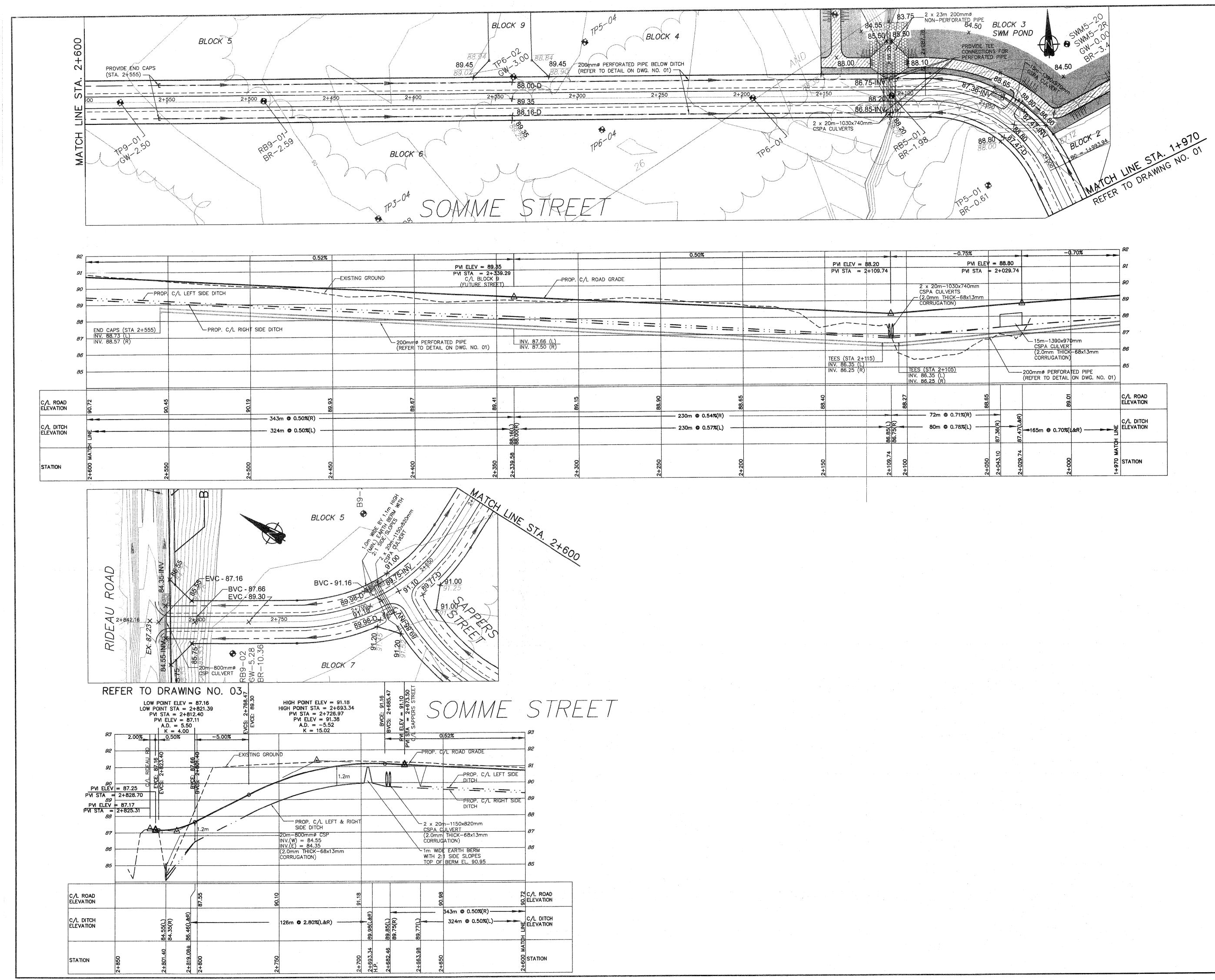
- "Guidelines on Erosion and Sediment Control for Urban Construction Sites" published by Ontario Ministries of Natural Resources, Environment, Municipal Affairs and Housing, and Transportation and Communication, Association of Construction Authorities of Ontario, and Urban Development Institute, Ontario, May 1987.
- ii) "Erosion and Sediment Control" Training Manual by Ministry of Environment, Spring 1998.
- iii) Applicable Regulations and Guidelines of the Ministry of Natural Resources. As a minimum, during the construction of the conveyance systems, the following Stormwater Management Practices will be used:

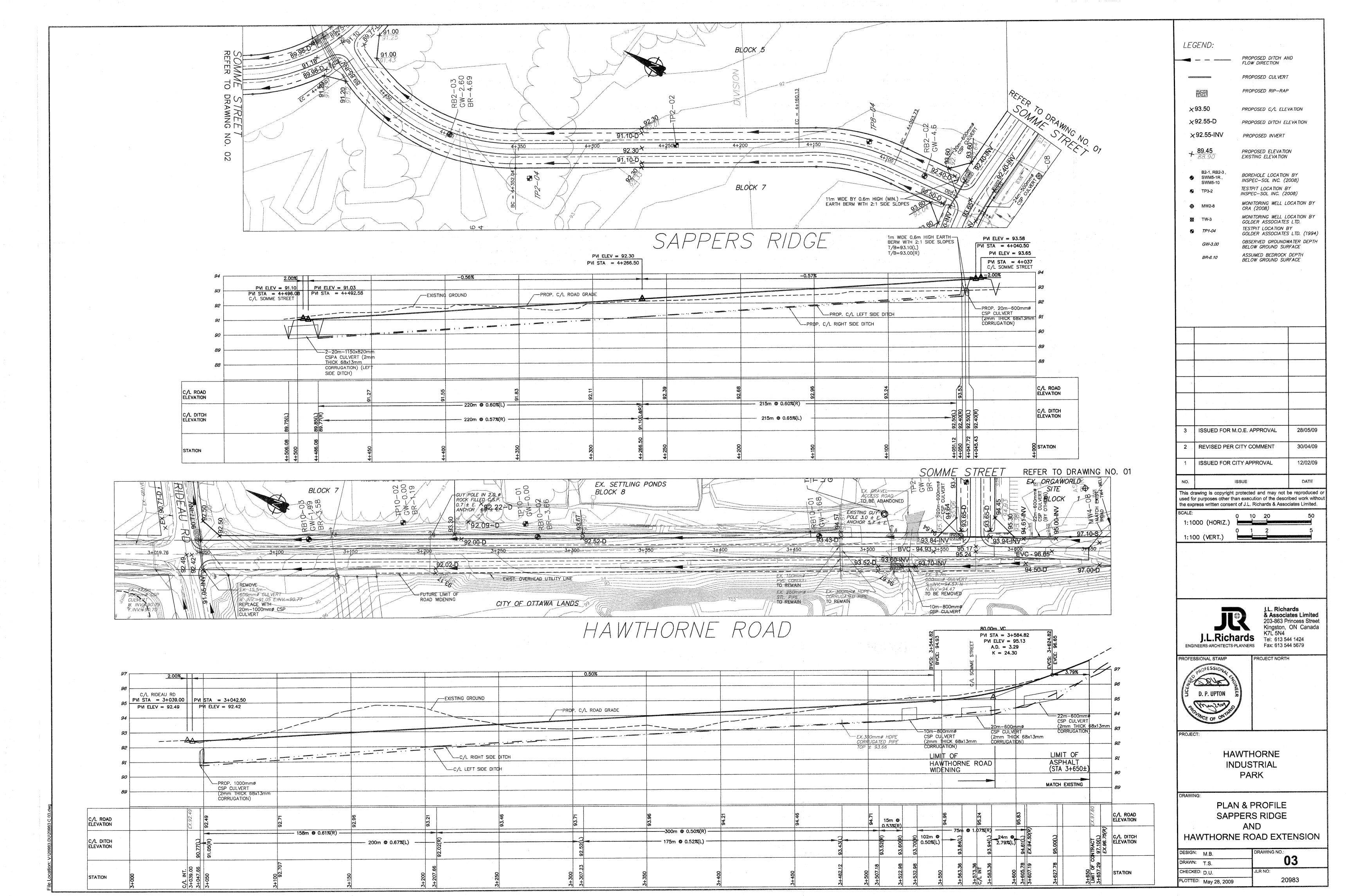

Any stockpiled material will be kept on flat areas during construction, well away from any natural flow paths. In the event that the stockpile is placed in other areas where potential washoff to the conveyance system is expected, silt fences will be installed to enclose the materials and prevent any washoff to the conveyance system.

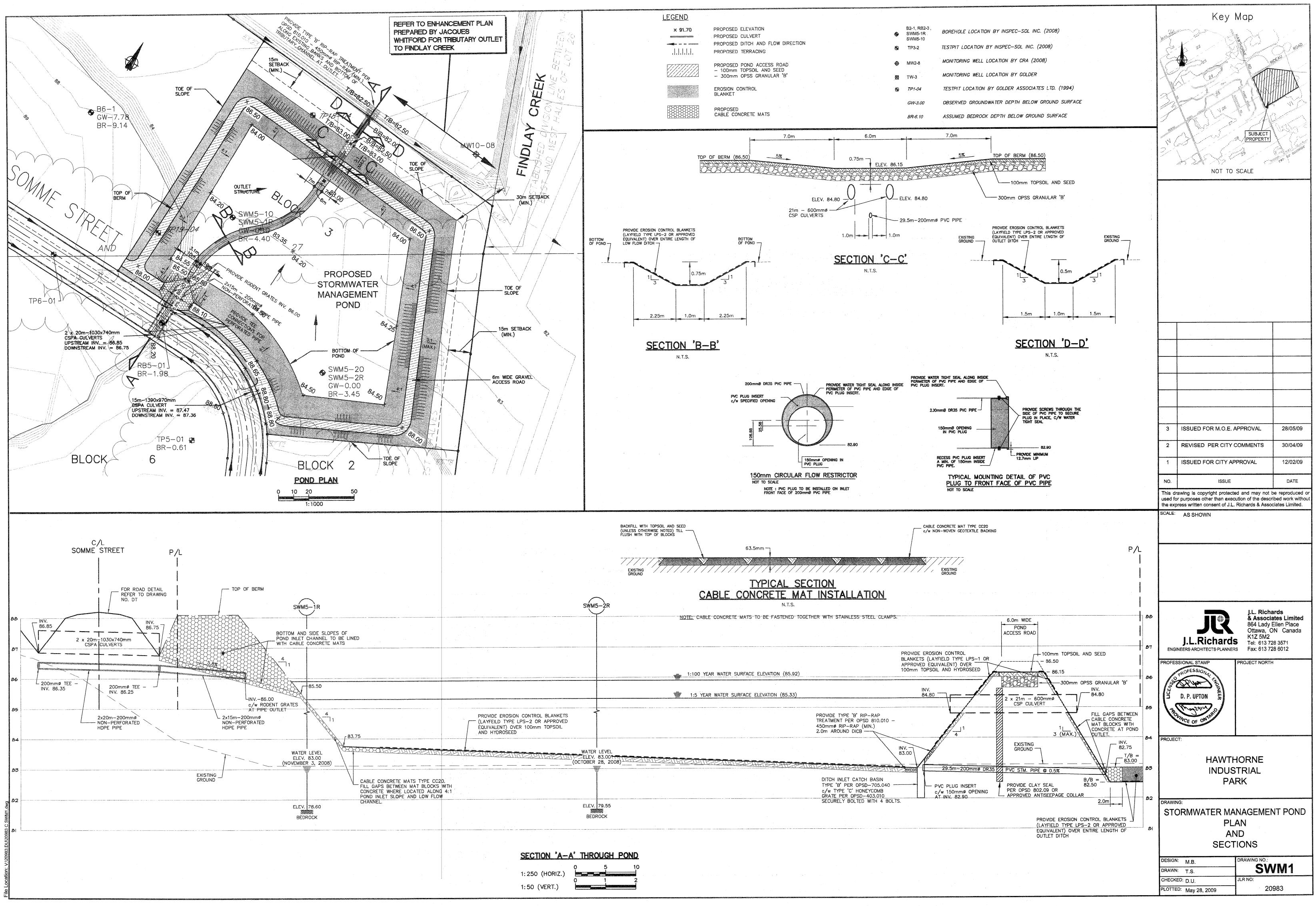

8.0 SUMMARY AND CONCLUSION

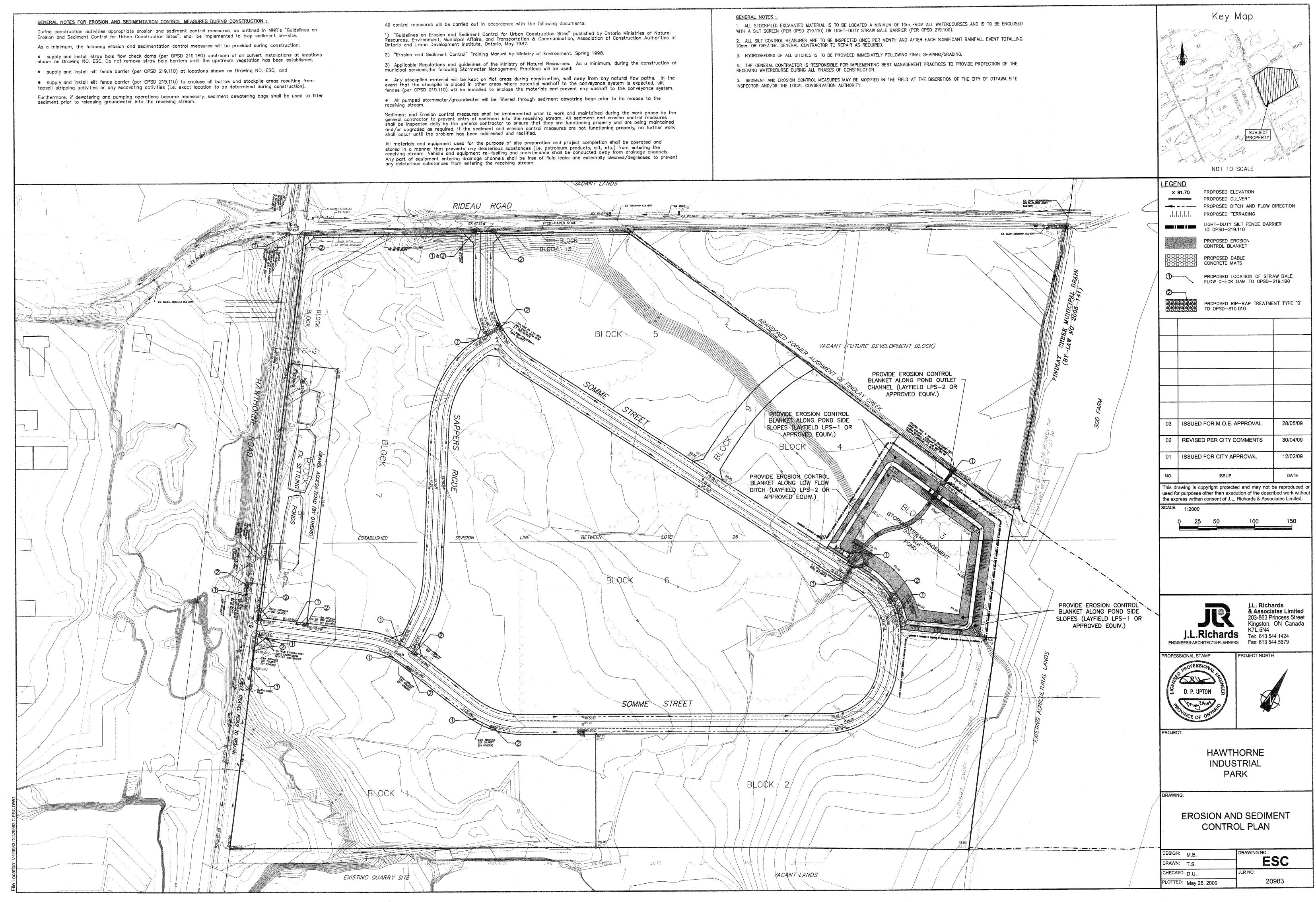

- 1. This Stormwater Management Report has been prepared to present a complete approach in achieving the stormwater criteria developed as part of the approved document entitled "Shields Creek Subwatershed Study."
- 2. Stormwater servicing for the proposed HIP has been designed using the dual drainage concept. Storm servicing will be carried out with the use of an open ditch/culvert system. The open ditch system has been designed to convey the 1:00 year peak flow rates. Similarly, the culverts have been sized to convey the 1:10 year flow without any overtopping.
- 3. To fulfil the design criteria associated with water quality (as per the SCSS), it is proposed to provide both on-site oil/grit separators and infiltration storage volume within the roadside open ditch system. As per the requirements set out in Table 3.2 of the MOE SWMPDM, a total infiltration volume of 62.5 m³ is required under Phase 2 to achieve a "normal" level of protection (i.e., TSS removal of 70%).
- 4. Water balance and infiltration requirements were not implemented due to existing site conditions and proposed industrial use development.
- 5. The 2-year post-development peak flow will be controlled to 50% of the 2-year pre-development peak flow. Therefore, meeting the SCSS recommendations associated with erosion potential.
- 6. Simulation results presented in Tables 5 and 6 show that proposed infrastructure will maintain peak flows below pre-development levels for both Phase 1 and Phase 2 of the HIP. Consequently, this design criterion (peak flow control) will be fulfilled.
- 7. A detailed Erosion and Sedimentation Control Plan has been prepared to reduce the impact of construction activities on Findlay Creek.

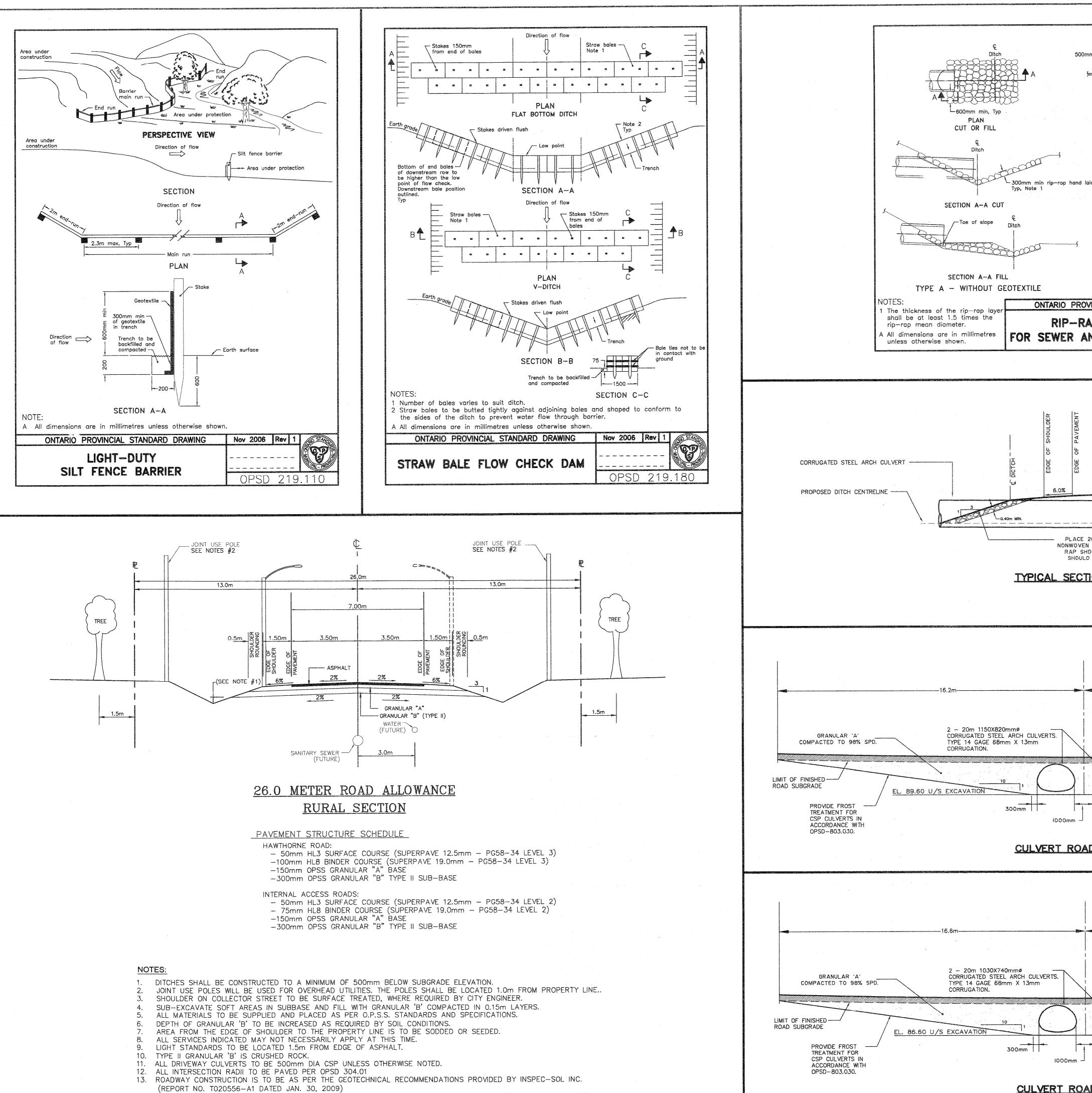

R.W. Tomlinson Limited

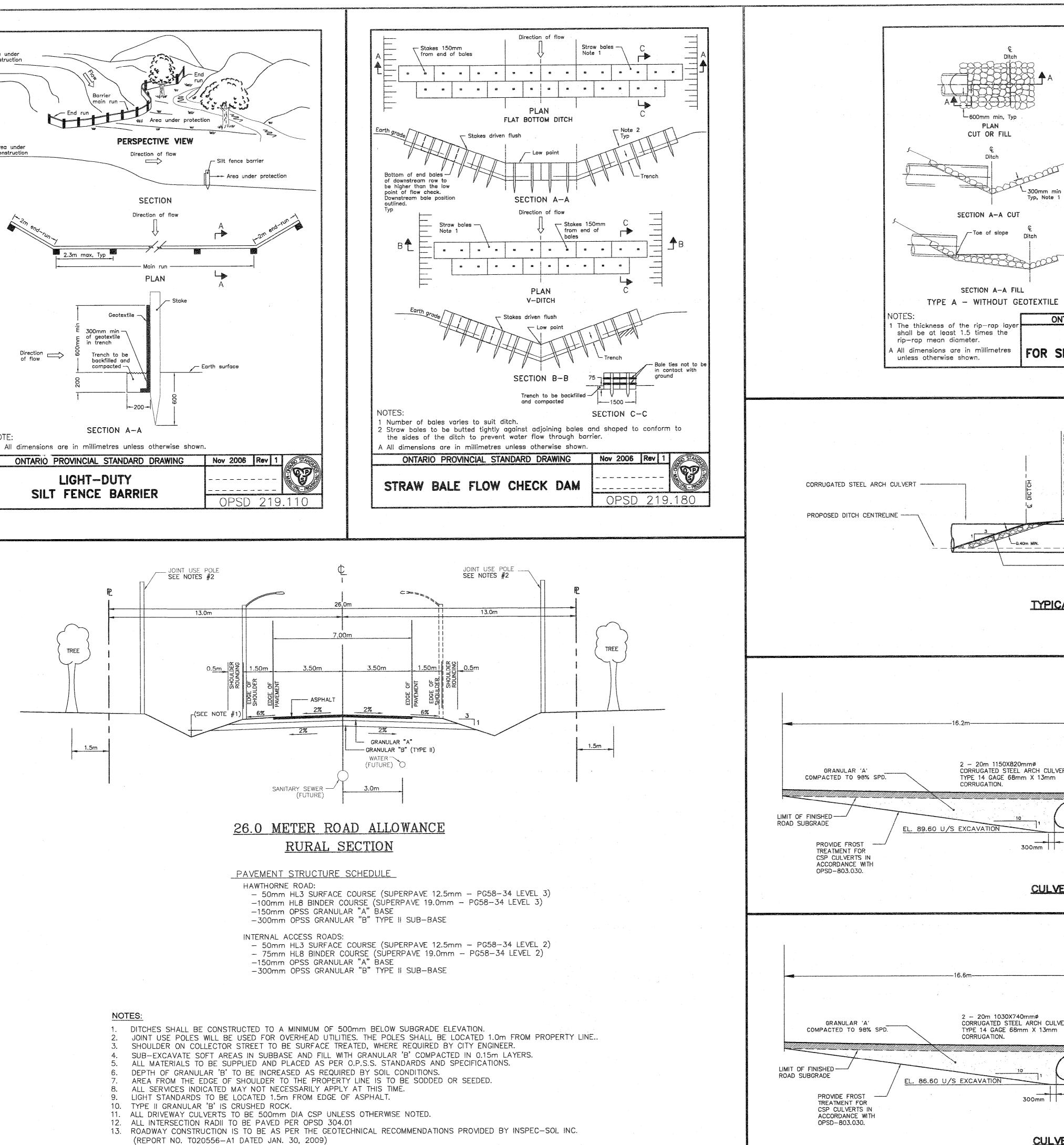

Prepared by: Mark Buchanan, E.I.T. OFESSIONAL WW. PROFESSIONA LICENSE NGINEER ENGINEER Ma D. P. UPTON J. S. G. FORGET OVINCE OF ON ONTARIO POUI Reviewed by: Reviewed by: J.S. Guy Forget, P.Eng. Derrick Upton, P.Eng.

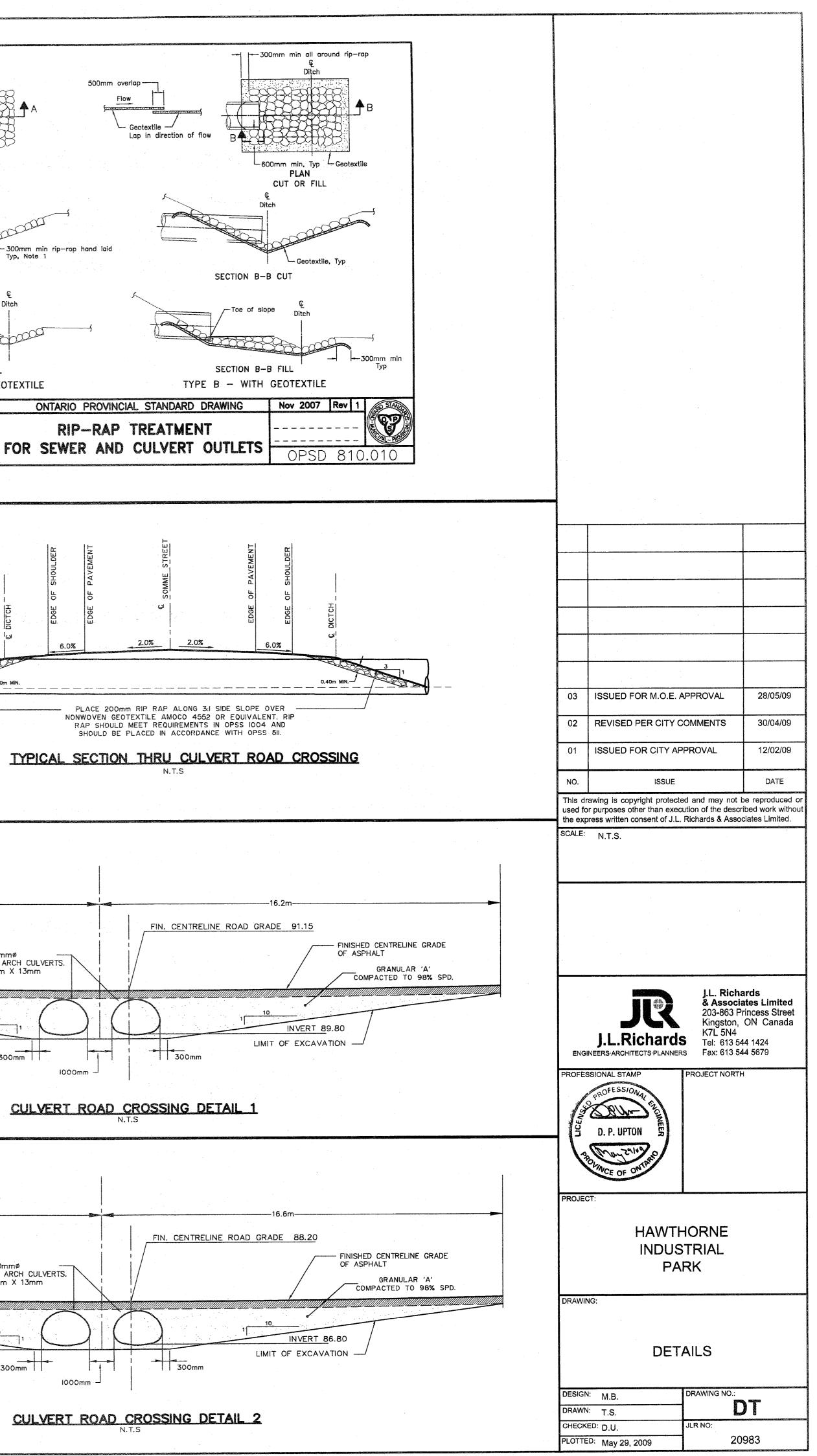







		.70%	92
		.70%	
88.80	and the second sec		01
-029.74		·	91
,			90
			89
	And the second s		09
			88
		A CONTRACTOR OF A CONT	
and a second second second	A CONTRACTOR OF A CONT	nen men en e	87
HECHER BERNER HER HER HER HER HER	A DESCRIPTION OF A		DT
	- 15m-1390x970	mm	
	CSPA CULVER (2.0mm THICK	-68v13mm	86
N	CORRUGATION)	ODATOI	
$\sum_{i=1}^{n}$			85
	200mmø PERFORA		00
	(REFER TO DETAIL	ON DWG. NO. 01)	
	5		C/L ROAD
	89.01		ELEVATION
દિ			a (
		l la l	C/L DITCH ELEVATION
47(L&R)	-165m @ 0.70%(I	&R)	ELEVATION
87.4			
<u>a</u>		+970 MATCH	
4		A A	
9.7			
020	ŏ	576	STATION
2+029.74	2+000	Ť	
		L	L.,


LE	GEND:			
		PROPOSED DITCH AN FLOW DIRECTION	D	
		PROPOSED CULVERT	PROPOSED CULVERT	
		PROPOSED RIP-RAP		
×	93.50	PROPOSED C/L ELEVATION		
×	92.55-D	PROPOSED DITCH ELI	EVATION	
×	92.55-INV	PROPOSED INVERT	PROPOSED INVERT	
+	89.45 88.90	PROPOSED ELEVATION EXISTING ELEVATION	V	
•	SWM5-10	INSPEC-SOL INC. (20 TESTPIT LOCATION B	BOREHOLE LOCATION BY INSPEC-SOL INC. (2008) TESTPIT LOCATION BY	
- -		MONITORING WELL LO	INSPEC-SOL INC. (2008) MONITORING WELL LOCATION BY	
⊕ ∞		MONITORING WELL LC	CRA (2008) MONITORING WELL LOCATION BY	
		GOLDER ASSOCIATES TESTPIT LOCATION B GOLDER ASSOCIATES	Y	
	GW-3.00	OBSERVED GROUNDW BELOW GROUND SUR	ATER DEPTH	
	BR-6.10	ASSUMED BEDROCK BELOW GROUND SUR	DEPTH	
	· · · · · · · · · · · · · · · · · · ·			
		·		
3	ISSUED FOR N	M.O.E. APPROVAL	28/05/09	
2	REVISED PER	CITY COMMENTS	30/04/09	
1	ISSUED FOR (CITY APPROVAL	12/02/09	
NO,		ISSUE	DATE	
This d		protected and may not b	e reproduced or	
the exp		nan execution of the descri nt of J.L. Richards & Assoc		
SCALE: 1:1(DOO (HORIZ.)	0 10 20	50	
1			5	
a 1.1V	00 (VERT.)			
	00 (VERT.)			
	00 (VERT.)			
	00 (VERT.)			
1.11	00 (VERT.)			
	00 (VERT.)		rde	
	DO (VERT.)		tes Limited	
	JU	& Associa 864 Lady E Ottawa, O K17 5M2	t es Limited Ellen Place N Canada	
	DO (VERT.)	& Associa 864 Lady E Ottawa, O K1Z 5M2 Tel: 613 72	t tes Limited Ellen Place N Canada 8 3571	
ENG	J.L.Rich INEERS ARCHITECTS	& Associa 864 Lady E Ottawa, O K1Z 5M2 Tel: 613 72 PLANNERS Fax: 613 72 PROJECT NORTH	t es Limited Ellen Place N Canada 8 3571 8 6012	
ENG	J.L.Rich INEERS ARCHITECTS	& Associa 864 Lady E Ottawa, O K1Z 5M2 Tel: 613 72 PLANNERS Fax: 613 72 PROJECT NORTH	t es Limited Ellen Place N Canada 8 3571 8 6012	
ENG	J.L.Rich INEERS ARCHITECTS	& Associa 864 Lady E Ottawa, O K1Z 5M2 Tel: 613 72 PLANNERS Fax: 613 72 PROJECT NORTH	t es Limited Ellen Place N Canada 8 3571 8 6012	
ENG	J.L.Rich INEERS ARCHITECTS SSIONAL STAMP PROFESSIONAL PROFESSIONAL D. P. UPTON	Associa 864 Lady E Ottawa, O K1Z 5M2 Tel: 613 72 PLANNERS Fax: 613 72 PROJECT NORTH	t es Limited Ellen Place N Canada 8 3571 8 6012	
ENG	J.L.Rich INEERS ARCHITECTS	Associa 864 Lady E Ottawa, O K1Z 5M2 Tel: 613 72 PLANNERS Fax: 613 72 PROJECT NORTH	t es Limited Ellen Place N Canada 8 3571 8 6012	
ENG	J.L.Rich J.L.Rich INEERS ARCHITECTS SSIONAL STAMP D. P. UPTON D. P. UPTON	Associa 864 Lady E Ottawa, O K1Z 5M2 Tel: 613 72 PLANNERS Fax: 613 72 PROJECT NORTH	t es Limited Ellen Place N Canada 8 3571 8 6012	
ENG PROFE	J.L.Rich INEERS ARCHITECTS SSIONAL STAMP PROFESSIONAL PROFESSIONAL D. P. UPTON D. P. UPTON	Associa 864 Lady E Ottawa, O K1Z 5M2 Tel: 613 72 Fax: 613 72 PROJECT NORTH	t es Limited Ellen Place N Canada 8 3571 8 6012	
ENG PROFE	J.L.Rich INEERS ARCHITECTS SSIONAL STAMP PROFESSIONAL PROFESSIONAL D. P. UPTON D. P. UPTON	Associa 864 Lady E Ottawa, O K1Z 5M2 Tel: 613 72 Fax: 613 72 PROJECT NORTH	t es Limited Ellen Place N Canada 8 3571 8 6012	
ENG PROFE	J.L.Rich INEERS ARCHITECTS SSIONAL STAMP PROFESSIONAL PROFESSIONAL D. P. UPTON D. P. UPTON	Associa 864 Lady E Ottawa, O K1Z 5M2 Tel: 613 72 Fax: 613 72 PROJECT NORTH ROJECT NORTH ROJECT NORTH ROJECT NORTH	t es Limited Ellen Place N Canada 8 3571 8 6012	
ENG PROFE	J.L.Rich INEERS ARCHITECTS SSIONAL STAMP PROFESSIONAL PROFESSIONAL D. P. UPTON D. P. UPTON	Associa 864 Lady E Ottawa, O K1Z 5M2 Tel: 613 72 Fax: 613 72 PROJECT NORTH	t es Limited Ellen Place N Canada 8 3571 8 6012	
ENG PROFE	J.L.Rich INEERS ARCHITECTS SSIONAL STAMP D. P. UPTON D. P. UPTON D. P. UPTON D. P. UPTON	AWTHORNE WTHORNE AWTHORNE PLANNERS	t es Limited Ellen Place N Canada 8 3571 8 6012	
ENG PROFE	J.L.Rich INEERS ARCHITECTS SSIONAL STAMP D. P. UPTON D. P. UPTON D. P. UPTON D. P. UPTON D. P. UPTON D. P. UPTON	AWTHORNE WTHORNE BUUSTRIAL PARK	t es Limited Ellen Place N Canada 8 3571 8 6012	
ENG PROFE	J.L.Rich INEERS ARCHITECTS SSIONAL STAMP D. P. UPTON D. P. UPTON	AWTHORNE WTHORNE AWTHORNE PLANNERS	t tes Limited Ellen Place N Canada 8 3571 8 6012	
ENG PROFE	J.L.Rich INEERS ARCHITECTS SSIONAL STAMP D. P. UPTON D. P. UPTON	ARK A Associa 864 Lady E Ottawa, O K1Z 5M2 Tel: 613 72 Fax: 613 72 PROJECT NORTH WTHORNE IDUSTRIAL PARK N & PROFILE IME STREET	t tes Limited Ellen Place N Canada 8 3571 8 6012	
ENG PROFE PROJEC	J.L.Rich INEERS ARCHITECTS SSIONAL STAMP D. P. UPTON D. P. UPTON	ASSOCIA 864 Lady E Ottawa, O K1Z 5M2 Tel: 613 72 Fax: 613 72 PROJECT NORTH NORTHORNE IDUSTRIAL PARK N & PROFILE MAE STREET D TO RIDEAU	tes Limited Ellen Place N Canada 8 3571 8 6012	
ENG PROFE PROJEC	J.L.Rich J.L.Rich INEERS ARCHITECTS SSIONAL STAMP D. P. UPTON D. P. UPTON D. P. UPTON D. P. UPTON D. P. UPTON CT: HA IN NG: PLA SON STA. 1+970	ASSOCIA 864 Lady E Ottawa, O K1Z 5M2 Tel: 613 72 Fax: 613 72 PROJECT NORTH NORTHORNE IDUSTRIAL PARK N & PROFILE MAE STREET D TO RIDEAU	t tes Limited Ellen Place N Canada 8 3571 8 6012	
	J.L.Rich INEERS ARCHITECTS SSIONAL STAMP D. P. UPTON D. P. UPTON	Associa 864 Lady E Ottawa, O K1Z 5M2 Tel: 613 72 Fax: 613 72 PROJECT NORTH WTHORNE IDUSTRIAL PARK N & PROFILE MME STREET D TO RIDEAU DRAWING NO.:	tes Limited Ellen Place N Canada 8 3571 8 6012	



CULVERT ROAD CROSSING DETAIL 2 N.T.S

1000mm

1000mm

APPENDIX 'A'

RATIONAL METHOD DESIGN SHEETS (1:10 year and 1:100 year Design Sheets)

Hawthorne Industrial Park

City of Ottawa

JLR 20983 February 2009 (Revised April 2009)

	Increas	e Runoπ	Coefficie		0.0%																		1							
	NO	DES			DRAINAG	E AREA			PĒAK F	LOW GEN	VERATIO	N				OPEN I	DITCH/SV	VALE DAT	A			CULV	ERTS SIZ	ZED UNDER	1:10 YEAF	STORM E	VENT	FLOW	U/S	D/S
DETAILS			Area	at C of				2.78AR	2.78AR	TIME	INTENS.	PEAK FL.	BW	D _{10yr}	D _{max}	SS	SLOPE	Q _{10yr}	Q _{100yr}	VEL.	LENGTH	No. of	DIA	BxD	INLET	OUTLET	l hw	TIME	Inv	In
	FROM	ТО	0.70	0.90	SUM(A)	SUM(A*C)	TOTAL		СЛМ	min.	mm/hr	l/s	m	m	m	X:1	%	l/s	l/s	m/s	m	Barrels				CONTROL		(min)	(m)	(m
	1.1.0		(ha)	(ha)		, , , , , , , , , , , , , , , , , , ,	A*C									7.1	~					Darreio	(mm)	(m)			(m)	()	(11)	
NORTHERN CATCHMENT AREA																									_					<u> </u>
WEST SIDE SAPPERS RIDGE	2	3	1.86	0.18	2.04	1.46	1.46	4.07	4.07	15.00	97.85	398.2	0.00	0.42	1.20	3.00	0.50	424.2	6973.0	0.80	136.80			ļ	<u> </u>			2.84	92.50	01 0
WEST SIDE SAPPERS RIDGE	3	4	1.80	0.18	2.04	1.40	2.92	4.07	8.11	17.84	88.22	715.4	0.00	0.42	1.20	3.00	0.80	904.2	8856.1	1.16	111.00							2.64	92.50	
WEST SIDE SAPPERS RIDGE	4	5	1.76	0.14	1.91	1.36	4.28	3.79	11.90	19.44	83.68	995.9	0.00	0.58	1.20	3.00	0.51	1011.3		1.00	112.85		<u> </u>					1.88	90.93	
WEST SIDE SAPPERS RIDGE	5	6	2.43	0.11	2.54	1.80	6.08	5.00	16.90	21.32	78.96	1334.4	0.00	0.65	1.20	3.00	0.62	1513.4		1.19	82.79		<u> </u>					1.16	90.36	
										22.47																	-			
TH ENTRANCE TO SOMME STREET	8	6	ļ	0.03	0.03	0.03	0.03	0.08	0.08	15.00	97.85	7.3	0.00	0.20	1 20	3.00	1.30	94.9	11276.7	0.79	10.00							0.21	89.98	80.9
				0.00	0.00	0.00	0.00	0.00	0.00	15.21	01.00	1.5	0.00	0.20	1.20	0.00	1.00	34.3	112/0./	0.73	10.00			•				0.21	03.30	05.0
	6	14		0.00	0.00	0.00	6.44	0.00	16.07	22.47	76.24	1005.9					0.50				20.00	2		1 15 - 0 00	NO	VEe	0.75	0.00	00.05	
CULVERT CROSSING	6	14		0.00	0.00	0.00	6.11	0.00	16.97	22.47 22.85	10.34	1295.8		· · · . · ·		<u> </u>	0.50				20.00	2		1.15 x 0.82	NO	YES	0.75	0.38	89.85	89.7
							ļ																							
ORTH PORTION SOMME STREET	13	14	0.85	0.03	0.88	0.62	0.62	1.73	1.73	15.00 15.12	97.85	169.2	0.00	0.30	1.20	3.00	2.30	372.0	14999.4	1.38	10.00			· · ·	<u> </u>	<u> </u>		0.12	89.98	89.7
					- 1 				h	10.12															· · ·					
ORTH PORTION SOMME STREET	14	15	2.93	0.24	3.17	2.27	8.99	6.30	25.00	22.85	75.52	1888.2	0.00	0.74	1.20	3.00	0.50	1926.6	6992.8	1.17	184.04							2.62	89.75	3.88
ORTH PORTION SOMME STREET	15	16	2.08	0.18	2.26	1.62	10.61	4.50	29.50	25.47	70.36	2075.4	0.00	0.77	1.20	3.00	0.57	2291.4	7480.8	1.29	145.08							1.88	88.83	
ORTH PORTION SOMME STREET	16	18	2.34	0.23	2.57	1.85	12.46	5.13	34.63	27.35		2323.9	0.00	0.80	1.20	3.00	0.51	2399.6		1.25	185.66							2.48	88.00	
ORTH PORTION SOMME STREET	18	19	0.00	0.05	0.05	0.05	12.50	0.13	34.75	29.82 30.31	63.30	2199.9	0.00	0.76	1.20	3.00	0.72	2476.8	8372.8	1.43	41.86							0.49	87.05	86.7
· · · · · · · · · · · · · · · · · · ·								5.		00.01																				
EAST SIDE SAPPERS RIDGE	9	10	1.74	0.19	1.93	1.39	1.39	3.86		15.00	97.85	378.0	0.00	0.41		3.00	0.50	399.2		0.79	147.87							3.11	92.40	
EAST SIDE SAPPERS RIDGE	10	11	1.49	0.14	1.63	1.17	2.56	3.25	7.11	18.11	87.42	622.0	0.00	0.49	1.20	3.00	0.66	735.9	8019.2	1.02	111.04	· · · ·			ļ			1.81	91.66	
EAST SIDE SAPPERS RIDGE	11		0.73	0.14	0.87	0.64	3.20	1.77	8.88	19.92	82.40	732.0	0.00	0.52	1.20	3.00	0.55	785.5	7304.8	0.97	104.49		·····		<u>.</u>			1.80	90.93	
	12	7	0.18	0.09	0.27	0.21	3.40	0.58	9.46	21.72 22.79	78.02	738.2	0.00	0.49	1.20	3.00	0.81	818.5	8919.0	1.14	72.55		ļ.,					1.06	90.36	
ORTH PORTION SOMME STREET	7 20	20 21	1.07 2.27	0.23	1.30 2.46	1.76	4.36 6.12	4.89	12.12 17.01	22.79	75.66 69.76	916.9 1186.8	0.00	0.57 0.62	1.20	3.00 3.00	0.50	956.8 1200.1	6966.1 6981.9	0.98	177.39							3.01	89.77	
ORTH PORTION SOMME STREET	20	21	3.43	0.19	3.73	2.67	8.79	7.43	24.44	25.80		1608.1	0.00	0.62	1.20 1.20	3.00	0.50	1759.0	7404.4	1.04	232.84							2.36	88.89 88.16	
DRIN FORTION SOMME STREET	21	- 22	5.45	0.30	3.73	2.07	0.79	1.43	24.44	31.40	05.60	1000.1	0.00	0.70	1.20	3.00	0.50	1759.0	7404.4	1.20	232.04							J.24	00.10	00.0
																													_	
SOUTHERN CATCHMENT AREA																									 					<u> </u>
OUTH PORTION SOMME STREET	23Å	23B	0.00	0.25	0.25	0.23	0.23	0.63	0.63	15.00	97.85	61.2	0.00	0.20	1.20	3.00	0.64	66.3	7883.5	0.55	181.00							5.46	93.65	92.5
CULVERT CROSSING	23B	23C		0.00	0.00	0.00	0.23	0.00	0.63	20.46	81.05	50.7					0.42				24.00	1	500		NO	YES	0.33	1.55	92.50	
OUTH PORTION SOMME STREET	23C	24A	0.00	0.17	0.17	0.15	0.38	0.43	1.05	22.00	77.38	81.3	0.00	0.22	1.20	3.00	0.82	97.0	8946.1	0.67	110.00							2.74	92.40	
CULVERT CROSSING	24A	24B		0.00	0.00	0.00	0.38	0.00	1.05	24.75	71.70	75.3					0.42				24.00	1	500		NO	YES	0.34	1.04	91.50	91.4
OUTH PORTION SOMME STREET	24B	24C	0.00	0.21	0.21	0.19	0.57	0.53	1.58	25.79	69.78	110.0	0.00	0.25	1.20	3.00	0.70	126.0	8258.2	0.67	142.00							3.52	91.40	90.4
ORGAWORLD - SITE	U/S	24C	1:10 year p	eak flow = 13	32 L/s, see Ta	able 4 of Orgaworld	Stormwater Si	te Managem	l Ient Plan, Se	pt. 2008		132.0		·											· · · · ·					<u> </u>
				0.32		2.88	3.44	8.00			64.05	745.3		0.52		3.00	0.54	783.8		0.97	244.84								90.41	
	25		2.63			1.95	5.39				58.41		0.00			3.00	0.51		7041.5		90.75						ļ		89.08	
			3.15		3.35	2.39	7.78				56.65		0.00			3.00	0.65		7970.4		157.06		L		<u> </u>				88.62	
DUTH PORTION SOMME STREET CULVERT CROSSING		27B	0.00		0.03	0.03	7.81				54.29		0.00	U.61	1.20	3.00	0.65	1312.4	7973.8	1.18	20.00	· · · · · ·		1 20 1 0 07	VER			0.28	87.60	
CORNER OF POND		27C	0.00	0.00	0.00	0.00	7.81				54.00		0.00	0.65	1.00	2.00	0.73	1600.0	0004.0	1.00	15.00	1		1.39 X 0.97	YES	NO	0.87	0.20	87.47	
CORNER OF POND	27C	19	0.00	0.11	0.11	0.10	7.88	0.28	21.98	37.73	53.79	1314.2	0.00	0.65	1.20	3.00	0.71	1622.9	8324.0	1.28	72.00	· · · ·	<u> </u>					0.94	87.36	86.8
				t			1		<u> </u>	00.01											 				·					

1:10 year Ottawa International Airport IDF Curve

DATE : 5/27/2009

OPEN DITCH/CULVERT DESIGN SHEET

Prepared by: M. Buchanan, E.I.T.

J.L. RICHARDS AND ASSOCIATES LIMITED, Consulting Engineers, Architects and Planners

1:10 year Ottawa International Airport IDF Curve

Hawthorne Industrial Park

City of Ottawa

JLR 20983 February 2009 (Revised April 2009)

			Coefficier	-	DDAINA				DEAKE			N				ODENU			A			<u></u>	EDTE OF		4.40 VEAD	O STODM EL		ELOW(11/0	D/8
	NOI	JES			DRAINAG	E AKEA			PEAKE	LOW GE	NERATIO	^V N				OPENI		VALE DAT	A			CUL	VERISSI	ZED UNDER	1	SIGRMEN		FLOW	0/5	
DETAILS]		Area a	at C of			TOTAL	2.78AR	2.78AR	TIME	INTENS	. PEAK FL.	BW	D _{10yr}	D _{max}	SS	SLOPE	Q _{10yr}	Q _{100yr}	VEL.	LENGTH	No. of	DIA	BxD	INLET	OUTLET	HW	TIME	Inv	Inv
	FROM	TO	0.70	0.90	SUM(A)	SUM(A*C)	A*C		CUM	min.	mm/hr	l/s	m	m	m	X:1	%	l/s	l/s	m/s	m	Barrels			CONTRO	CONTROL	. 1:10	(min)	(m)	(m)
			(ha)	(ha)																			(mm)	(m)			(m)			
W ENTRANCE TO SOMME STREET	1	2	0.18	0.25	0.43	0.35	0.35	0.97	0.97	15.00	97.85	94.6	0.00	0.32	1.20	3.00	0.61	226.9	7702.7	0.74	189.60							4.28	93.65	92.5
CULVERT CROSSING	2	9		0.00	0.00	0.00	0.35	0.00	0.97	19.28	84.12	81.3					0.50				20.00	1	600		NO	YES	0.52	1.16	92.50	92.4
OUTH PORTION SOMME STREET	9	28	2.54	0.35	2.89	2.10	2.44	5.83	6.80	20.44	81.10	551.2	0.00	0.47	1.20	3.00	0.73	694.0	8450.7	1.05	272.58								92.40	
OUTH PORTION SOMME STREET	28	29A	3.46	0.32	3.78	2.71	5.15	7.53	14.33	24.77	71.65	1026.7	0.00	0.61	1.20	3.00	0.54	1198.8	7283.5	1.07	245.24							3.81	90.41	
SOUTH PORTION SOMME STREET	29A	29B	0.77	0.11	0.88	0.64	5.79	1.78	16.11	28.58	65.15	1049.5	0.00	0.62	1.20	3.00	0.53	1239.6	7212.0	1.07	86.51								89.08	
OUTH PORTION SOMME STREET	29B	30	0.32	0.12	0.44	0.33	6.13	0.92	17.03	29.92	63.16	1075.8	0.00	0.58	1.20	3.00	0.70	1191.6	8282.1	1.18	94.12								88.62	
OUTH PORTION SOMME STREET	30	22	0.75	0.16	0.91	0.67	6.80	1.86	18.89	31.25	61.31	1158.5	0.00	0.58	1.20	3.00	0.97	1402.6	9748.4	1.39	124.55							1.49	87.96	86.7
			· · · ·							32.74																				
									1.1.1.1																					
CULVERT CROSSING	22	19		0.00	0.00	0.00	15.59	0.00	43.33		59.38	2573.1					0.50				20.00	2		1.03 X 0.74	YES	NO	1.30	0.08	86.85	86.7
-										32.82																			_	
																														-
POND INLET	19	POND		0.00	0.00	0.00	35.97	0.00	100.06	38.67	52.87	5422.6	3.09	0.38	1.20	3.00	5.68	5629.1	13135.2	3.50	22.00							0.10	86.75	85.5
POND OUTLET DITCH		DITCH	4.42			ent peak flow = 696						696.0	1.00	0.27	0.38	3.00	2.08	750.9	1506.6	1.54	24.00							0.26	82.50	1 00 (
FOND OUTLET DITCH	FUND		1:10 year co	ntroned po	st developme	ant peak now = 696	/s, see SWMH	T MO OUTPU	t of this Rep	оп Т	┣───	030.0	1.00	0.27	0.30	3.00	2.00	100.9	1506.6	1.04				1		+		0.20	02.00	02.0

Note: Conveyance Capacitites for the Open Ditch/Swale were calculated based on a Manning's Roughness Coefficient (n) of 0.030

DATE : 5/27/2009

OPEN DITCH/CULVERT DESIGN SHEET

Prepared by: M. Buchanan, E.I.T.

Hawthorne Industrial Park

City of Ottawa

JLR 20983

.

1:100 year Ottawa International Airpo			ff Coefficie	ent by	25.0%						•	ised Apri	2009)											Checked	_	orget,	P.Eng.
	NO	DES			DRAINAC	GE AREA			PEAK FI	OW GE	NERATIO	N			OPEN [VALE DATA	1		CULVER	TS SIZED	UNDER 1:1	0 YEAR ST	ORM EVENT	FLOW	U/S	D/S
DETAILS	FROM	то	Area 0.70 (ha)	at C of 0.90 (ha)	SUM(A)	SUM(A*1.25*C) 25% increase in C factor	TOTAL A*C	2.78AR	2.78AR CUM	TIME min.	INTENS. mm/hr	PEAK FL. I/s	BW m	D m	SS X:1	SLOPE %	CAPAC. I/s	VEL. m/s	LENGTH m	No. of Barrels	DIA (mm)	B x D (m)	INLET CONTROL	OUTLET CONTROL	TIME (min)	Inv (m)	Inv (m)
NORTHERN CATCHMENT AREA						· · · · · · · · · · · · · · · · · · ·																					
WEST SIDE SAPPERS RIDGE	2	3	1.86	0.18	2.04	1.81	1.81	5.02	5.02		142.89		0.00	1.20	3.00	0.50	6973.0	1.61	136.80						1.41		91.82
WEST SIDE SAPPERS RIDGE	3	4	1.89	0.14	2.03	1.80	3.61	5.00	10.02		135.47	1357.9	0.00	1.20	3.00	0.80	8856.1	2.05	111.00						0.90		90.93
WEST SIDE SAPPERS RIDGE	4	5	1.76	0.15	1.91	1.69	5.29	4.69	14.71	17.31	131.16		0.00	1.20	3.00	0.51	7029.1	1.63	112.85	·		-			1.16		90.36
WEST SIDE SAPPERS RIDGE	- 5	6	2.43	0.11	2.54	2.23	7.53	6.21	20.92	18.47 19.2 4	126.06	2637.5	0.00	1.20	3.00	0.62	7762.6	1.80	82.79						0.77	90.36	89.85
NORTH ENTRANCE TO SOMME STREET	8	6		0.03	0.03	0.03	0.03	0.08	0.08	15.00	142.89	11.9	0.00	1.20	3.00	1.30	11276.7	2.61	10.00						0.06	89.98	89.85
										15. 0 6											_						
CULVERT CROSSING	6	14		0.00	0.00	0.00	7.56	0.00	21.01	19.24 19.43	122.91	2581.8				0.50			20.00	2		1.15 x 0.82	NO	YES	0.19	89.85	89.75
		<u> </u>					· · · ·			10.40												-					
NORTH PORTION SOMME STREET	13	14	0.85	0.03	0.88	0.77	0.77	2.15	2.15	15.00 15.05	142.89	307.4	0.00	1.20	3.00	2.30	14999.4	3.47	10.00						0.05	89.98	89.75
	14	45	2.93	0.04	0.47	0.00	44.40	7 70	00.05		400.45	3780.5		1.20	3.00	0.50	6992.8	1.62	184.04						4.00	89.75	80.00
NORTH PORTION SOMME STREET NORTH PORTION SOMME STREET	14	15	2.93	0.24	3.17 2.26	2.80 2.00	<u>11.13</u> 13.13	7.79 5.56	30.95 36.51		122.15	4204.4	0.00	1.20	3.00	0.50	7480.8	1.62	145.08						1.89 1.40	88.83	
NORTH PORTION SOMME STREET	16	18	2.00	0.18	2.20	2.00	15.41	6.33	42.84		110.55		0.00	1.20	3.00	0.51	7074.8	1.64	185.66						1.89		87.05
NORTH PORTION SOMME STREET	18	19	0.00	0.05	0.05	0.05	15.46	0.14	42.98		104.93		0.00	1.20	3.00	0.72	8372.8	1.94	41.86						0.36		86.75
										24.97																	
EAST SIDE SAPPERS RIDGE	9	10	1.74	0.19	1.93	1.71	1.71	4.76	4.76		142.89	680.4	0.00	1.20	3.00	0.50	6996.6	1.62	147.87			· · · · · · · · · · · · · · · · · · ·			1.52		91.66
EAST SIDE SAPPERS RIDGE	10	11	1.49	0.14	1.63	1.44	3.16	4.02	8.78		134.93	1184.3	0.00	1.20	3.00	0.66	8019.2	1.86	111.04						1.00	91.66	
EAST SIDE SAPPERS RIDGE	11	12	0.73	0.14	0.87	0.78	3.94	2.16	10.94		130.23	1424.7	0.00	1.20	3.00	0.55	7304.8	1.69	104.49						1.03		90.36
EAST SIDE SAPPERS RIDGE	12	7	0.18	0.09	0.27	0.25	4.18	0.69	11.63		125.73	1462.2	0.00	1.20	3.00	0.81	8919.0	2.06	72.55						0.59	90.36	
NORTH PORTION SOMME STREET	20	20	1.07 2.27	0.23	1.30 2.46	1.17 2.18	5.35 7.53	3.24 6.05	14.87 20.92		123.33 116.41	1834.1 2435.6	0.00	<u>1.20</u> 1.20	3.00	0.50	6966.1 6981.9	1.61 1.62	177.39 147.49						1.83 1.52		88.89 88.16
NORTH PORTION SOMME STREET	20	21	3.43	0.19	3.73	3.30	10.83	9.18	30.10	22.49	111.29		0.00	1.20	3.00	0.56	7404.4	1.02	232.84						2.26		86.85
		1								24.75						<u></u>											i
SOUTHERN CATCHMENT AREA														-													
SOUTH PORTION SOMME STREET	23A	23B	0.00	0.25	0.25	0.25	0.25	0,70	0.70	15.00	142.89	99.3	0.00	1.20	3.00	0.64	7883.5	1.82	181.00			+			1.65	93.65	92.50
CULVERT CROSSING		23C	1	0.00	0.00	0.00	0.25	0.00	0.70		134.29					0.42	μ.		24.00	1	500		NO	YES		92.50	
SOUTH PORTION SOMME STREET		24A	0.00		0.17	0.17	0.42	0.47	1.17		130.34		0.00	1.20	3.00	0.82	8946.1	2.07	110.00							92.40	
CULVERT CROSSING	24A	24B		0.00	0.00	0.00	0.42	0.00	1.17		126.45					0.42			24.00	1	500		NO	YES		91.50	
SOUTH PORTION SOMME STREET	24B	24C	0.00	0.21	0.21	0.21	0.63	0.58	1.75	18.91	124.24	217.6	0.00	1.20	3.00	0.70	8258.2	1.91	142.00						1.24	91.40	90.41
ORGAWORLD - SITE	U/S	24C	1:100 year	peak flow =	283 I/s, see T	able 4 of Orgaworld S	Stormwater S	ite Managen	ient Plan, Se	pt. 2008	 	283.0				 			<u></u>		<u> </u>						
SOUTH PORTION SOMME STREET	24C	25	3.70	0.32	4.02	3.56	4.19	9.89			119.40		0.00	1.20	3.00	0.54	7289.5	1.69	244.84							90.41	
SOUTH PORTION SOMME STREET	25	26	2.63	0.12	2.75	2.42	6.61	6.73			111.05		0.00	1.20	3.00	0.51	7041.5	1.63	90.75							89.08	
SOUTH PORTION SOMME STREET	26	27A	3.15	0.20	3.35	2.96	9.57	8.22	26.59		108.17		0.00	1.20	3.00	0.65	7970.4	1.84	157.06						1.42		
SOUTH PORTION SOMME STREET	27A	27B	0.00	0.03	0.03	0.03	9.60	0.08	26.67		104.09		0.00	1.20	3.00	0.65	7973.8	1.85	20.00							87.60	
	27B	27C	0.00	0.00	0.00	0.00	9.60	0.00	26.67		103.59			4.00	2.00	0.73	0004.0	4.00	15.00	1		1.39 X 0.97	YES	NO	0.09	87.47	
CORNER OF POND	27C	19	0.00	0.11	0.11	0.11	9.71	0.31	26.98	25.18	103.36	30/1./	0.00	1.20	3.00	0.71	8324.0	1.93	72.00						0.62	87.36	00.05

DATE : 5/27/2009

OPEN DITCH/CULVERT DESIGN SHEET

Prepared by: M. Buchanan, E.I.T.

Hawthorne Industrial Park

City of Ottawa

JLR 20983

February 2009 (Revised April 2009)

		DES	Coefficie		25.0% DRAINAG	E AREA			PEAK F	LOW GEI	NERATIO	v			OPEN I	DITCH/SW	ALE DATA	4		CULVER	IS SIZED	UNDER 1:1	0 YEAR STO		FLOW	U/S	D/S
DETAILS			Area	at C of		SUM(A*1.25*C)	TOTAL	2.78AR	2.78AR	TIME	INTENS.	PEAK FL.	BW	D	SS	SLOPE	CAPAC.	VEL.	LENGTH	No, of	DIA	BxD	INLET	OUTLET	TIME	Inv	Inv
	FROM	то	0.70 (ha)	0.90 (ha)	SUM(A)	25% increase in C factor	A*C		CUM	min.	mm/hr	l/s	m	m	X:1	%	l/s	m/s	m	Barrels	(mm)	(m)	CONTROL	CONTROL	(min)	(m)	(m)
SW ENTRANCE TO SOMME STREET	1	2	0.18	0.25	0.43	0.40	0.40	1.12	1.12	15.00	142.89	160.5	0.00	1.20	3.00	0.61	7702.7	1.78	189.60						1.77	93.65	92.50
CULVERT CROSSING	2	9		0.00	0.00	0.00	0.40	0.00	1.12	16.77	133.71	150.2				0.50			20.00	1	600		NO	YES	0.63	92.50	92.40
SOUTH PORTION SOMME STREET	9	28	2.54	0.35	2.89	2.58	2.98	7.16	8.29	17.40	130.77	1083.6	0.00	1.20	3.00	0.73	8450.7	1.96	272.58				·		2.32	92.40	90.41
SOUTH PORTION SOMME STREET	28	29A	3.46	0.32	3.78	3.35	6.33	9.31	17.59	19.72	121.01	2128.9	0.00	1.20	3.00	0.54	7283.5	1.69	245.24		_				2.42	90.41	
SOUTH PORTION SOMME STREET	29A	29B	0.77	0.11	0.88	0.79	7.11	2.19	19.78	22.15	112.40	2223.0	0.00	1.20	3.00	0.53	7212.0	1.67	86.51						0.86	89.08	
SOUTH PORTION SOMME STREET	29B	30	0.32	0.12	0.44	0.40	7.51	1.11	20.89	23.01	1 09.6 5	2290.7	0.00	1.20	3.00	0.70	8282.1	1.92	94.12						0.82	88.62	
SOUTH PORTION SOMME STREET	30	22	0.75	0.16	0.91	0.82	8.33	2.27	23.16	23.83	107.18	2482.3	0.00	1.20	3.00	0.97	9748.4	2.26	124.55			L			0.92	87.96	86.75
										24.75	ļ							 									
CULVERT CROSSING	22	19		0.00	0.00	0.00	19.16	0.00	53.26	24.75	104.53	5567.5				0.50			20.00	2		1.03 X 0.74	YES	NO	0.04	86.85	86.7
										24.79																	\square
POND INLET	19	POND		0.00	0.00	0.00	44.32	0.00	123.22	25.80	101.69	12813.8	3.09	0.55	5.00	5.68	13135.2	4.09	22.00						0.09	86.75	85.50
POND OUTLET DITCH	POND	DITCH	1:100 year c	ontrolled p	ost developm	nent peak flow = 1,432	l/s, see SWI	MHYMO outp	out of this R	eport		1432.0	1.00	0.38	3.00	2.08	1506.6	1.85	24.00		· ·				0.22	82.50	82.0(
					·																						

Note: Conveyance Capacitites for the Open Ditch/Swale were calculated based on a Manning's Roughness Coefficient (n) of 0.030

OPEN DITCH/CULVERT DESIGN SHEET

Prepared by: M. Buchanan, E.I.T.

J.L. RICHARDS AND ASSOCIATES LIMITED, Consulting Engineers, Architects and Planners

Hawthorne Road & Rideau Road

City of Ottawa

JLR 20983 February 2009

			f Coeffici	ent by	0.0%	• up C = '									_																	
	NO	DES					AGE ARE	A					NERATIO			T-D				WALE DAT			LIENOTI	Survey of the local division of the local di				R STORM E		FLOW	U/S	D/S
DETAILS	FROM	ТО	0.20	AREA ((A) at C o	of 0.90	SUM(A)	SUM(A*C)	TOTAL	2.78AR	2.78AR CUM	min.	mm/hr	. PEAK FL. I/s	BW	D _{10yr} m	D _{max} m	SS X:1	SLOPE	Q _{10yr} I/s	Q _{100yr} I/s	VEL. m/s	LENGTH m	No. of Barrels	DIA	BxD			HW 1:10	TIME (min)	lnv (m)	Inv (m)
	11101		(ha)	(ha)	(ha)	(ha)			A*C		001														(mm)	(m)			(m)	()	(,	(,
WEST CATCHMENT AREA																																
			· · ·								0.40	15.00		005.0		0.44	0.50	0.00	0.00	050.4	404.5	0.50	440.00							0.76	402.00	400.00
L. JEST SIDE HAWTHORNE ROAD	-	2		2.46		0.14	2.60	0.86	0.86	2.40 1.48		15.00 18.76	97.85 85.54	235.0 332.5	0.00	0.41	0.50	3.00 3.00	0.20	250.1 337.3	424.5 2141.9	0.50	112.00 50.00	·		·			<u> </u>	<u>3.76</u> 0.46		103.00 100.50
WEST SIDE HAWTHORNE ROAD	-	4		1.58		0.00	1.64	0.53	1.93	1.40		19.23	84.26	451.1	0.00	0.27	0.50	3.00	7.00	490.1	2534.3	2.24	50.00		1	<u> </u>				0.37		97.00
EST SIDE HAWTHORNE ROAD	_	5		1.58		0.06	1.64	0.53	2.45	1.47		19.60	83.26		0.00	0.34	0.50	3.00	5.00	765.9	2141.9	2.21	50.00							0.38		94.50
EST SIDE HAWTHORNE ROAD		6a	_	1.95		0.10	2.05	0.68	3.13	1.88	-	19.98	82.27	715.6	0.00	0.45	0.65	3.00	1.07	747.0	1991.5	1.23	75.00			ļ				1.02		93.70
	<u>6a</u>	6b		4.00		0.00	0.00	0.00	3.13	0.00		20.99	79.73	693.6 776.5		0.53	1.15	3.00	1.00 0.53	817.1	6447.9	0.97	10.00	1	800		YES	NO	0.84	0.12		93.60 93.52
WEST SIDE HAWTHORNE ROAD		8		1.20		0.03	1.23	0.39	3.52	1.08 1.47	9.77 11.24	21.11	79.45	886.3	0.00	0.55	1.15	3.00	0.53	916.3	6243.2	0.97	50.00							0.26		
EST SIDE HAWTHORNE ROAD		9		1.58		0.06	1.64	0.53	4.57	1.47		22.23	76.88	977.2	0.00	0.58	1.15	3.00	0.50	1006.2	6243.2	1.00	50.00					1		0.84		
WEST SIDE HAWTHORNE ROAD		10		1.58		0.06	1.64	0.53	5.10	1.47	14.18	23.06	75.07	1064.4	0.00	0.60	1.15	3.00	0.50	1101.4	6243.2	1.02	50.00							0.82		_
WEST SIDE HAWTHORNE ROAD		11		1.58		0.06	1.64	0.53	5.63		15.65	23.88	73.39	1148.3	0.00	0.62	1.15	3.00	0.50	1202.1	6243.2	1.04	50.00			L			ļ	0.80		
EST SIDE HAWTHORNE ROAD		12		1.48		0.06	1.54	0.50	6.13	1.38 1.27		24.68 25.47	71.83	1223.3 1287.3	0.00	0.63	1.15 1.15	3.00 3.00	0.50	1254.5	6243.2 6243.2	1.05	50.00							0.79 0.78		
IEST SIDE HAWTHORNE ROAD		14b		1.54		0.08	1.40 1.75	0.46	6.58 7.23	1.27	20.11	26.25	68.96		0.00	0.64	1.15	3.00	0.50	1449.7	6918.0	1.18	158.00							2.23		91.02
	1	<u> </u>		+				0.00	·····			28.49	00.00	1		+	· · · · · · · · ·		1			<u> </u>										
																								· · · ·								
SW RIDEAU & HAWTHORNE	14a	14b	·	0.64	•	0.18	0.82	0.35	0.35	0.98	0.98		97.85	96.3	0.00	0.20	1.30	3.00	4.06	167.6	24661.5	1.40	140.00					-		1.67	96.73	91.05
- 									· · · · · · · · · · · · · · · · · · ·			16.67																				<u> </u>
CULVERT CROSSING	14b	23				0.00	0.00	0.00	7.59	0.00	21.09	28.49	65 29	1377.2					1.40				20.00	1	1000		YES	NO	1.14	0.19	91.05	90.77
							0.00	0.00				28.68																				
										14 .													ļ									L
EAST CATCHMENT AREA	ž.							· · · · · · · · · · · · · · · · · · ·				-										ļ										┣───
AST SIDE HAWTHORNE ROAD	15	16				0.33	0.33	0.30	0.30	0.83	0.83	15.00	97.85	80.8	0.00	0.25	0.30	3.00	0.45	101.7	165.4	0.54	110.00							3.38	103.80	103.30
AST SIDE HAWTHORNE ROAD	16	17				0.14	0.00	0.13	0.42	0.35	1.18	18.38	86.64	101.9	0.00	0.16	0.30	3.00	6.20	114.3	610.8	1,49	100.00							1.12		
AST SIDE HAWTHORNE ROAD	17	18			l	0.04	0.04	0.04	0.46	0.10	1.28	19.50	83.52	106.6	0.00	0.16	1.20	3.00	6.36	115.8	24949.6	1.51	33.00							0.36		95.00
CULVERT CROSSING	18	19		ļ		0.00	0.00	0.00	0.46	0.00	1.28	19.86	82.56	105.3					1.77	150.0		1.00	22.00	1	600		YES	NO	0.30	0.98		
FAST SIDE HAWTHORNE ROAD CULVERT CROSSING	19 20	20 21		ļ		0.06	0.06	0.05	0.51	0.15	1.43	20.85 21.18	80.08 79.28	114.2 113.1	0.00	0.21	0.70	3.00	2.79 0.50	158.3	3925.7	1.20	24.00	1	600		NO	YES	0.37	0.33 0.83		93.94 93.84
AST SIDE HAWTHORNE ROAD	20	21 22a	0.21			0.00	0.00	0.00	0.51	0.00	-	21.18	79.20	150.3	0.00	0.29	0.80	3.00	0.50	158.5	2372.0	0.63	82.00	<u> </u>	000			120	0.07	2.18		93.43
EAST SIDE HAWTHORNE ROAD		22b	0.61			0.29	0.90	0.38	1.08	1.06		24.19	72.77	218.9	0.00	0.33	1.17	3.00	0.52	228.1	6666.4	0.70	175.00							4.18		92.52
EAST SIDE HAWTHORNE ROAD	22b	23	0.93			0.34	1.27	0.49	1.57	1.37	4.38	28.37	65.47	286.5	0.00	0.35	1.17	3.00	0.70	309.6	7734.6	0.84	260.00							5.14	92.59	90.77
		· · ·		ļ					<u> </u>			33.51			i						ļ											┢───
SOUTH CATCHMENT AREA														+				1														┢────
SOUTH CATCHMENT AREA																									-		+					
SOUTH SIDE RIDEAU ROAD	23	24	0.73			0.28	1.01	0.40	9.56	1.11	26.57	33.51	58.43	1552.8	0.00	0.51	1.74	3.00	2.65	1642.9	43339.8	2.11	235.00							1.86	90.77	84.55
												35.37															1					
	05				0.40	0.40	0.54		0.10	1.10	1 10	45.00	07.05	100.4	0.00	0.40	1.00	2.00	2.00	105.4	10540.0	1.00	105.74	· · · · · ·						1.94	80.08	96.46
WEST SIDE SOMME STREET	25	24	 		<u> </u>	0.12	0.54	0.40	0.40	1.12	1.12	15.00	97.85	109.4	0.00	0.18	1.20	3.00	2.80	105.1	16548.0	1.08	125.74			<u> </u>			 	1.94	09.90	00.40
	1	1	 	· · · ·	+			<u> </u>	1	1	1	10.04				1			1	1	1				1	<u>†</u>						
CULVERT CROSSING	-24	26				0.00	0.00	0.00	9.96	0.00	27.69		56.28	1558.5					1.00				20.00	1	800		NO	YES	2.31	0.11	84.55	84.35
	· ·											35.48									ļ											L
	07		 		0.00	0.44			0.00	0.00		15.00	07.05	- 07 0	0.00	0.17	1.00	3.00	200	00.2	16549.0	1.04	125.74	l		<u> </u>			<u> </u>	2.01	80.00	86.46
EAST SIDE SOMME STREET	21	26			0.32	0.11	0.43	0.32	0.32	0.90	0.90	15.00	97.85	01.9	0.00	0.17	1.20	3.00	2.80	90.3	16548.0	1.04	125.74							2.01	09.98	00.40
. <u> </u>	†	i			+				1	l	1		+	1		+		<u> </u>		1	1		1	<u> </u>		<u> </u>	+	1				
SOUTH SIDE RIDEAU ROAD	26	28	0.58			0.24	0.82	0.33	10.62	0.92	29.51			1657.5	0.00	0.66	2.20	3.00	0.71	1695.7	42043.4	1.30	183.76							2.36	84.35	83.04
		1				1					1	37.84						1			1				1							1 7

10 year Ottawa International Airport IDF Curve Increase Runoff Coefficient by 0.0% up C = 1.0

l

DATE : 4/28/2009

OPEN DITCH/CULVERT DESIGN SHEET

Prepared by: M. Buchanan, E.I.T.

J.L. RICHARDS AND ASSOCIATES LIMITED, Consulting Engineers, Architects and Planners

Hawthorne Road & Rideau Road

City of Ottawa

JLR 20983 February 2009

10 year Ottawa International Airport IDF Curve Increase Runoff Coefficient by

	NO	DES				DRAIN	AGE ARE	4			PEAK F	LOW GEI	NERATIO	N						NALE DAT	A			CUL	VERTS SIZ	ZED UNDER	R 1:10 YEAR	R STORM EV	ENT	FLOW	U/S
DETAILS				AREA (A) at C o	f .			TOTAL	2.78AR	2.78AR	TIME	INTENS.	PEAK FL.	BW	D _{10yr}	D _{max}	SS	SLOPE	Q _{10yr}	Q _{100yr}	VEL.	LENGTH	No. of	DIA	BxD	INLET	OUTLET	HW	TIME	Inv
	FROM	то	0.20 (ha)	0.30 (ha)	0.70 (ha)	0.90 (ha)	SUM(A)	SUM(A*C)	A*C		CUM	min.	mm/hr	l/s	m	m	m	X:1	%	l/s	l/s	m/s	m	Barrels	(mm)	(m)	CONTROL	CONTROL	1:10 (m)	(min)	(m)
IORTH CATCHMENT AREA																								1							
			Existing	<u>900 m</u>	n dia. cul	vert capa	city before	ditch flows to	Findlay Cree	ek				1400.0										1							í
ORTH SIDE RIDEAU ROAD	31	32	6.66			0.52	7.18	1.80	1.80	5.00	5.00	20.00	97.26		0.00	0.58	1.50	3.00	1.93	1974.3	24880.1	1.96	400.00			-				3.41	90.71
												23.41																			<u> </u>
· · · · · · · · · · · · · · · · · · ·			0.07			0.40	0.07			0.70	0.70	45.00	445.00		0.00	0.40	4.50	2.00	0.40	010.0	7040.0	0.44	02.00					<u> </u>	<u> </u>	- 2.45	00.40
	33	32	0.87			0.10	0.97	0.26	0.26	0.73	0.73	15.00 18.45			0.00	0.40	1.50	3.00	0.16	213.3	7240.8	0.44	92.00	· · ·				<u> </u>		3.45	83.16
							-		1.			10.45			- <u>·</u>													├ ───┤			r
TING CULVERT CROSSING	32 [,]	28		<u> </u>		0.00	0.00	0.00	2.06	0.00	5.74	23.41	87.93	1					-0.15				20.00	1	1000			1		0.14	83.01
												23.55				1													1.1		· · · · ·
UTH CATCHMENT AREA							1																								
										1.0																		· · ·			
UTH SIDE RIDEAU ROAD	28	29 [.]	0.90			0.33	1.23	0.48	13.16	1.33	36.58		53.68			1.17	2.20	3.00	0.14				347.24							6.91	83.04
DUTH SIDE RIDEAU ROAD	29	30	0.48			0.31	0.79	0.38	13.53	1.04	37.62	44.76	47.64	3192.1	0.00	0.90	2.20	3.00	0.51	3287.0	35640.2	1.35	236.20					1		2.91	82.56

ote: Conveyance Capacitites for the Open Ditch/Swale were calculated based on a Manning's Roughness Coefficient (n) of 0.030

DATE : 4/28/2009

OPEN DITCH/CULVERT DESIGN SHEET

Prepared by: M. Buchanan, E.I.T.

1:100 year Ottawa International Airport IDF Curve

City of Ottawa

JLR 20983 February 2009

		DES	Coeffici				AGE ARE	ΞΔ		1		OWGE	VERATIO				OPEN I	UTCH/SW	ALE DATA						0 YEAR STO	ORM EVENT	FLOW	U/S	D/S
DETAILS		DEG			A) at C o			SUM(A*1.25*C)		2.78AR		TIME		PEAK FL.	BW	D	SS	SLOPE		VEL.	LENGTH	No. of	DIA	BxD	INLET		TIME	Inv	Inv
DETAILS	FROM	то	0.20 (ha)	0.30 (ha)	0.70 (ha)		SUM(A)	· · ·	TOTAL A*C	2.7041	CUM	min.	mm/hr	I/s	m	m	X:1	%	UAFAO. I/s	m/s	m	Barrels	(mm)	(m)				(m)	(m)
WEST CATCHMENT AREA																										·			\vdash
WEST SIDE HAWTHORNE ROAD	1	2		2.46	ļ	0.14	2.60	1.06	1.06	2.95	2.95	15.00			0.00	0.50	3.00	0.20	424.5	0.57	112.00						3.30	103.22	
	2	3		1.60		0.06	1.66	0.66	1.72	1.83	4.79	18.30	126.80	607.2	0.00	0.50	3.00	5.00	2141.9 2534.3	2.86	50.00					· · · · · ·	0.29	103.00	
WEST SIDE HAWTHORNE ROAD	3	4 5		1.58 1.58		0.06	1.64	0.65	2.38	<u>1.81</u> 1.81	6.60 8.42	18.59 18.84	125.56	829.0 1048.2	0.00	0.50	3.00 3.00	7.00	2534.3	3.38 2.86	50.00 50.00						0.25	100.50 97.00	
WEST SIDE HAWTHORNE ROAD	5	6A	—	1.95		0.00	2.05	0.83	3.86	2.31	10.73	19.13		1323.2	0.00	0.65	3.00	1.07	1991.5	1.57	75.00						0.29	94.50	
CULVERT CROSSING	6A	6B		1.00		0.00	0.00	0.00	3.86	0.00	10.73	19.92		1289.9	0.00	0.00	- 0.00	1.00			10.00	1	800		YES	NO	0.06	93.70	
WEST SIDE HAWTHORNE ROAD	6B	7		1.20		0.03	1.23	0.48	4.34	1.33	12.06	19.99	119.99	1447.3	0.00	1.15	3.00	0.53	6447.9	1.63	15.00					·	0.15	93.60	93.5
WEST SIDE HAWTHORNE ROAD	7	8		1.58		0.06	1.64	0.65	4.99	1.81	13.88	20.14	119.42	1657.0	0.00	1.15	3.00	0.50	6243.2	1.57	50.00						0.53	93.52	
WEST SIDE HAWTHORNE ROAD	8	9		1.58		0.06	1.64	0.65	5.64	1.81	15.69	20.67	117.47	1843.0	0.00	1.15	3.00	0.50	6243.2	1.57	50.00						0.53	93.27	93.0
WEST SIDE HAWTHORNE ROAD	9	10		1.58	ļ	0.06	1.64	0.65	6.30	1.81	17.50	21.20			0.00	1.15	3.00	0.50	6243.2	1.57	50.00	:					0.53	93.02	92.7
WEST SIDE HAWTHORNE ROAD	10	11		1.58		0.06	1.64	0.65	6.95	1.81	19.32	21.73			0.00	1.15	3.00	0.50	6243.2	1.57	50.00						0.53	92.77	
WEST SIDE HAWTHORNE ROAD	11 12	12 13		1.48	<u> </u>	0.06	<u>1.54</u> 1.40	0.62	7.56 8.13	1.71 1.56	21.03 22.59	22.26	112.03		0.00	1.15 1.15	3.00	0.50	6243.2 6243.2	1.57 1.57	50.00 50.00				·		0.53	92.52 92.27	92.2 92.0
WEST SIDE HAWTHORNE ROAD	12	14B		1.54		0.08	1.40	0.56	8.91	2.19			108.70		0.00		3.00	0.61	6918.0	1.74		·			_		1.51	92.02	
	10			1.04		1 0.21	1.75	0.13	0.91	2.13	27.70	24.83	100.70	2000.0	0.00	1.70	0.00	0.01	0010.0		100.00		•			1	1.01	02.02	
······································											1				-	· · · · ·													
SW RIDEAU & HAWTHORNE	14A	14B		0.64		0.18	0.82	0.42	0.42	1.17	1.17	15.00	142.89	166.8	0.00	1.30	3.00	4.06	24661.5	4.86	140.00						0.48	96.73	91.0
												15.48				·	-												
CULVERT CROSSING	14B	23				0.00	0.00	0.00	9.33	0.00	25.95	24.83	104.32	2706.8				1.40			20.00	1	1000		YES	NO	0.10	91.05	90.7
		· ·										24.93																	┣──
EAST CATCHMENT AREA															_							· · · · · · · · · · · · · · · · · · ·							
EAST SIDE HAWTHORNE ROAD	15	16				0.33	0.33	0.33	0.33	0.92	0.92	15.00	142.89	131.1	0.00	0.30	3.00	0.45	165.4	0.61	110.00						2.99	103.80	103 3
EAST SIDE HAWTHORNE ROAD	16	17				0.14	0.14	0.14	0.47	0.32	1.31	17.99	128.11	167.4	0.00	0.30	3.00	6.20	610.8	2.26	100.00						0.74	103.30	
EAST SIDE HAWTHORNE ROAD	17	18				0.04	0.04	0.04	0.51	0.11	1,42	18.73		177.2	0.00	1.20	3.00	6.36	24949.6	5.78	33.00					1	0.10	97.10	95.0
CULVERT CROSSING	18	19				0.00	0.00	0.00	0.51	0.00	1.42	18.82	124.58	176.6				1.77			22.00	1	600		YES	NO	0.59	95.00	94.6
EAST SIDE HAWTHORNE ROAD	19	20				0.06	0.06	0.06	0.57	0.17	1.58	19.41	122.22	193.7	0.00	0.70	3.00	2.79	3925.7	2.67	24.00						0.15	94.61	
CULVERT CROSSING	20	21				0.00	0.00	0.00	0.57	0.00	1.58	19.56		192.7				0.50			20.00	1	600		NO	YES	0.49	93.94	
EAST SIDE HAWTHORNE ROAD	21	22A	0.21			0.16	0.37	0.21	0.78	0.59	2.18	20.05		260.5	0.00	0.80	3.00	0.50	2372.0	1.24	82.00						1.11	93.84	93.4
EAST SIDE HAWTHORNE ROAD	22A 22B	22B 23	0.61			0.29	0.90	0.44	1.23	1.23	3.41	21.16 22.95	115.75	394.2 548.8	0.00	<u>1.17</u> 1.17	3.00	0.52	6666.4 7734.6	1.62 1.88	175.00						1.80 2.30	93.43 92.59	92.5 90.7
	220	23	0.93			0.34	1.27	0.57	1.80	1.59	5.00	25.25	109.83	040.0	0.00	1.17	3.00	0.70	1134.0	1.00	200.00						2.30	92.59	90.7
SOUTH CATCHMENT AREA												-																	<u> </u>
SOUTH SIDE RIDEAU ROAD	23	24	0.73			0.28	1.01	0.46	11.59	1.29	32.23	25.25 26.08	103.15	3324.7	0.00	1.74	3.00	2.65	43339.8	4.77	235.00					·	0.82	90.77	84.5
· · · · · · · · · · · · · · · · · · ·																													
WEST SIDE SOMME STREET	25	24			0.42	0.12	0.54	0.49	0.49	1.36	1.36	15.00 15.55	142.89	193.7	0.00	1.20	3.00	2.80	16548.0	3.83	125.74						0.55	89.98	86.4
																									1				
CULVERT CROSSING	24	26				0.00	0.00	0.00	12.08	0.00	33.59	26.08 26.12		3391.7		· · ·		1.00			20.00	1	800		NO	YES	0.05	84.55	84.3
EAST SIDE SOMME STREET	27	26			0.32	0.11	0.43	0.39	0.39	1.08	1.08	15.00	142.89	154.9	0.00	1.20	3.00	2.80	16548.0	3.83	125.74						0.55	89.98	86.4
					0.02		0.70	0.00	0.00	1.00		15.55								0.00									
	26	20	0.50	<u> </u>		0.24	0.00	0.00	10.00	1.07	25.74	26.40	100.00	26047	0.00	2.00	2 00	0.74	42042.4	2.00	102.76		 				1.06	94.95	02.0
SOUTH SIDE RIDEAU ROAD	26	28	0.58	L	ļ	0.24	0.82	0.39	12.86	1.07	35.74	26.12	100.86	3004./	0.00	2.20	3.00	0.71	42043.4	2.90	183.76		l				1.06	84.35	03.04

DATE : 4/28/2009

OPEN DITCH/CULVERT DESIGN SHEET

Prepared by: M. Buchanan, E.I.T.

Hawthorne Road & Rideau Road

City of Ottawa

JLR 20983 February 2009

1:100 year Ottawa International	Airport	IDF Cur	ve									F	ebruary	2009												Checked	d by:G.∣	Forget,	, P.Eng
	Increase	e Runoff	Coefficie	ent by	25.0%	up C = 1	1.0																						
	NO	DES				DRAIN	AGE ARE	EA			PEAK FI	LOW GEI	NERATION	1			OPEN I	DITCH/SW	ALE DATA			CULVER	TS SIZED	UNDER 1:1	0 YEAR ST	ORM EVENT	FLOW	U/S	D/S
DETAILS				AREA (A	A) at C of			SUM(A*1.25*C)	TOTAL	2.78AR	2.78AR	TIME	INTENS.	PEAK FL.	BW	D	SS	SLOPE	CAPAC.	VEL.	LENGTH	No. of	DIA	BxD	INLET	OUTLET	TIME	Inv	Inv
	FROM	то	0.20 (ha)	0.30 (ha)	0.70 (ha)	0.90 (ha)	SUM(A)	25% increase in C factor	A*C		СЛМ	min.	mm/hr	l/s	m	m	X:1	%	l/s	m/s	m	Barrels	(mm)	(m)	CONTRO	LCONTROL	<u>(</u> min)	(m)	(m)
NORTH CATCHMENT AREA																													
			Existing	900 mm	n dia. Cul	vert Cap	acity befo	re ditch flows to F	indlay Cre	ek				1400.0															
NORTH SIDE RIDEAU ROAD	31	32	6.66			0.52	7.18	2.19	2.19	6.07	6.07	20.00	119.95	2128.6	0.00	1.50	3.00	1.93	24880.1	3.69	400.00						1.81	90.71	83.01
	<u> </u>											21.81						-											<u> </u>
NORTH SIDE RIDEAU ROAD	33	32	0.87			0.10	0.97	0.32	0.32	0.88	0.88	15.00	142.89	126.1	0.00	1.50	3.00	0.16	7240.8	1.07	92.00		1	· · ·			1.43	83.16	83.01
												16.43			1											-			
EXISTING CULVERT CROSSING	32	28				0.00	0.00	0.00	2.50	0,00	6.96	21.81	113.52	2189.7	-			-0.15			20.00	1	1000				0.12	83.01	83.04
	·											21.93																	
SOUTH CATCHMENT AREA																													\square
SOUTH SIDE RIDEAU ROAD	28	29	0.90			0.33	1.23	0.56	15.91	1.54	44.24	27.18	98.22	5745.1	0.00	2.20	3.00	0.14	18513.7	1.28	347.24		<u> </u>				4.54	83.04	82.56
SOUTH SIDE RIDEAU ROAD	29	30	0.48		1	0.31	0.79	0.43	16.34	1.20	45.44	31.72			0.00	2.20	3.00	0.51	35640.2		236.20	!	1	· · · · · · · · · · · · · · · · · · ·	1				81.35

Note: Conveyance Capacitites for the Open Ditch/Swale were calculated based on a Manning's Roughness Coefficient (n) of 0.030

DATE : 4/28/2009

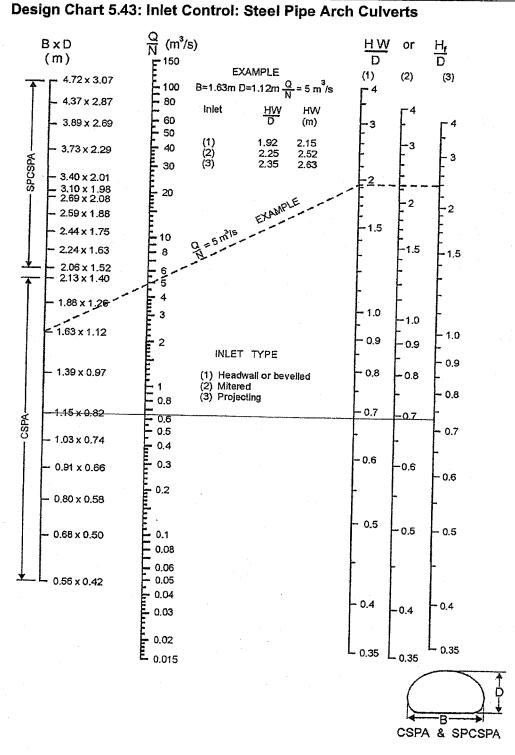
OPEN DITCH/CULVERT DESIGN SHEET

Prepared by: M. Buchanan, E.I.T.

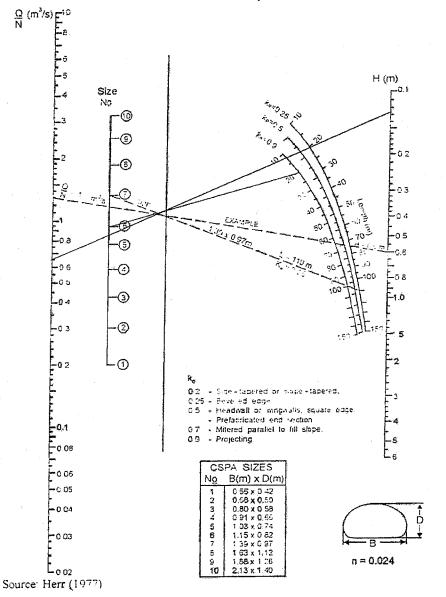
HAWTHORNE INDUSTRIAL PARK

1:10 YEAR ROADSIDE CULVERT DESIGN

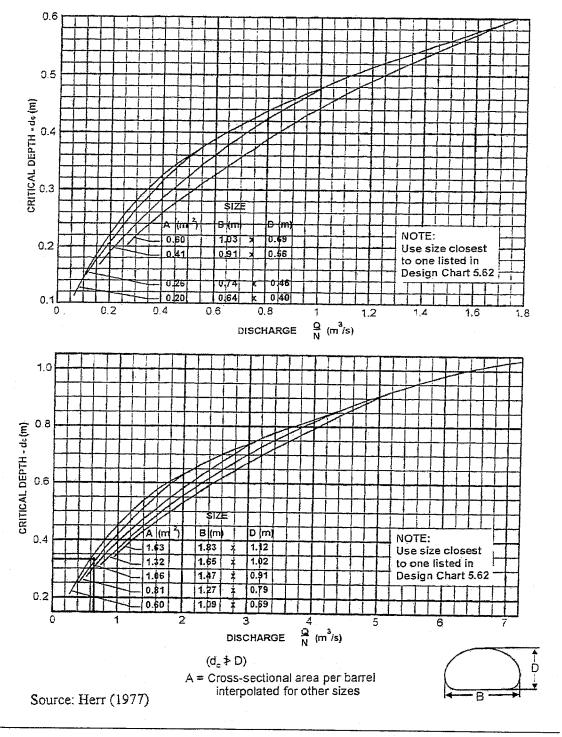
CONVENTIONAL CULVERT DESIGN


		,			DESIGN DAT	A					CULVERT	DATA			INL	ET CONTRO	L	_			OUTLET (ONTROL				GOVERNING	
Station	Q		d	d _e	AHW	Skew No.	L	S	Description	в	D or H	N	Q/N	A (each)	Q/NB	HW/D	HW	K	Ĥ	d _c	(d _c + D)/2	TW	h。	LS	HW	HW	V.
	(m³/s)		(m)	(m)	(m)		(m)	(m/m)		(m)	(m)		(m³/s)	(m ²)	(m³/s/m)		(m)		(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m/s)
1	2	_	3	4	5	6	7	8	9	10a	10b	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
	I		l.		<u> </u>		-		I												<u> </u>						
6 to 14	1.29	96	0.67	0.05	1.1	0	20.0	0.005	CSPA 6	1.15	0.82	2	0.648	0.74	*****	0.73	0.60	0.9	0.13	0.33	0.58	0.72	0.72	0.10	0.75	0.75	
23B to 23C	0.05	51	0.22	0.05	1.15	0	24.0	0.004	CSP 500	N/A	0.5	1	0.051	0.20		0.50	0.25	0.9	0.1	0.15	0.33	0.27	0.33	0.10	0.33	0.33	
24A to 24B	0.07	75	0.25	0.05	1.15	0	24.0	0.004	CSP 500	N/A	0.5	1	0.075	0.20		0.54	0.27	0.9	0.1	0.18	0.34	0.30	0.34	0.10	0.34	0.34	
2 to 9	0.08	81	0.47	0.05	1.15	0	20.0	0.005	CSP 600	N/A	0.6	1	0.081	0.28		0.50	0.30	0.9	0.1	0.19	0.40	0.52	0.52	0.10	0.52	0.52	
27B to 27C	1.30	04	0.61	0.05	1.23	0	15.0	0.007	CSPA 7	1.39	0.97	1	1.304	1.06		0.90	0.87	0.9	0.22	0.45	0.71	0.66	0.71	0.11	0.82	0.87	
22 to 19	2.57	73	0.38	0.05	1.35	0	20.0	0.005	CSPA 5	1.03	0.74	2	1.287	0.61		1.75	1.30	0.9	0.74	0.51	0.63	0.43	0.63	0.10	1.27	1.30	
3 4 5	Col. 3 +	epth nent be col. 4	elow cha + allowa	col. 12 annel inve ible backw applicable		10a/b 11 13	Culvert Slo D (circular Number of Area per b For box on	or B x H (Barreis arrel	arch)		16 I 17 (18 (HW = col. Chart D5-8 Charts D5-		10)	<u> </u>	22 F 23 C 24 F	Col. 3 + col. I_0 = larger of Col. 7 x col. IW = col. 1 .arger of co	of cols. 20 . 8 8 + col. 22	2 - col. 23	<u>.</u>	26	Outlet velo	city if requir	ed (Subsec	ction 3.2.3))	

Prepared by: Mark Buchanan, E.I.T. Reviewed by: Guy Forget, P.Eng. Date: February 2009

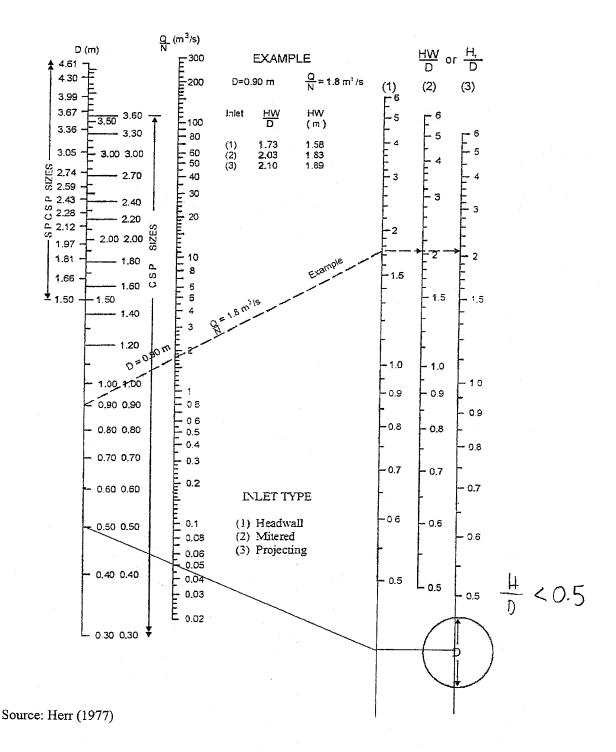

Culverts

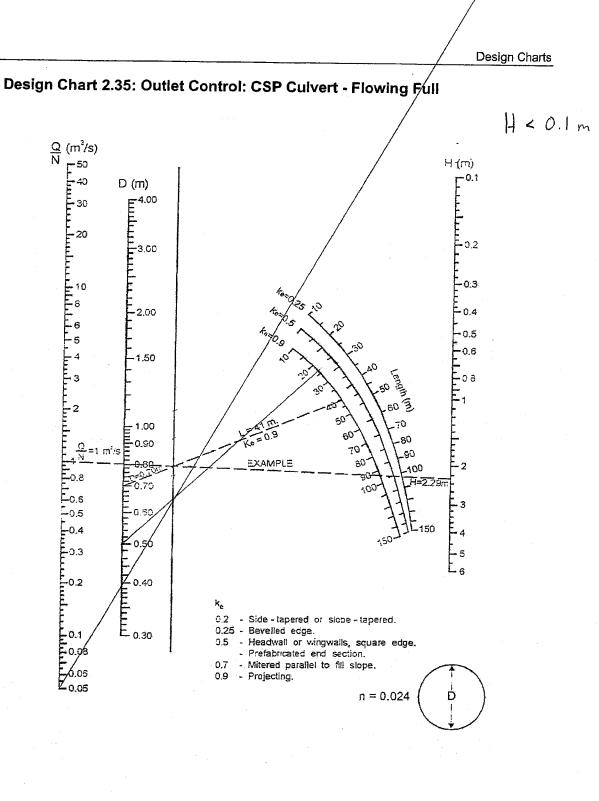
Culvert Crossing &- (14) 2x1.15m x 0.82m


MTO Drainage Management Manual

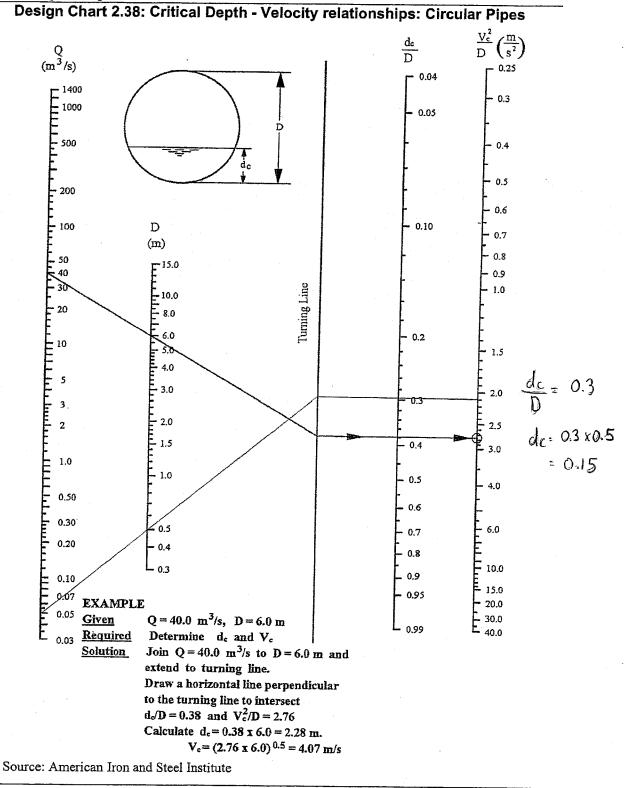
Source: Herr (1977)

Design Chart 5.47: Outlet Control: Pipe Arch CSP Culvert - Flowing Full



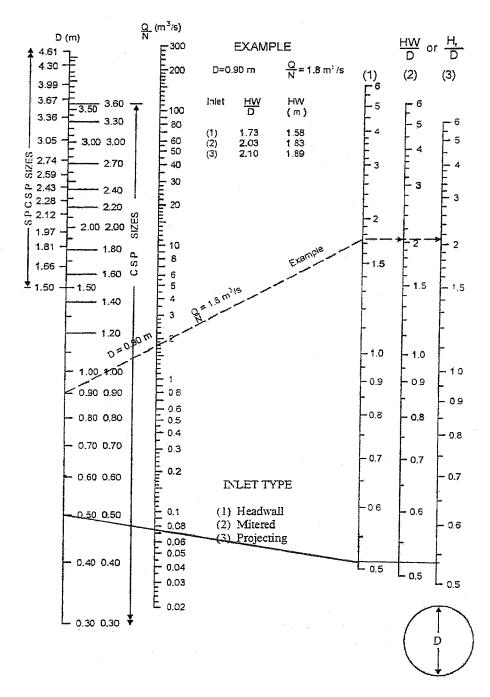

Design Chart 5.53: CSP Pipe Arch Culverts

Culvert Crossing MTO Drainage Management Manual

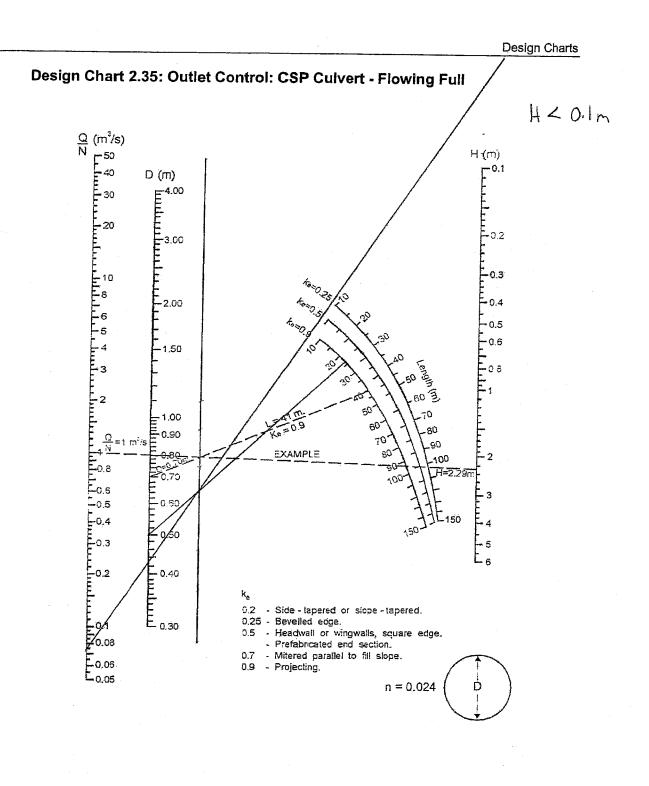

Design Chart 2.32: Inlet Control: Circular CSP and SPCSP Culverts

(23b) +, (23) 500 mm @

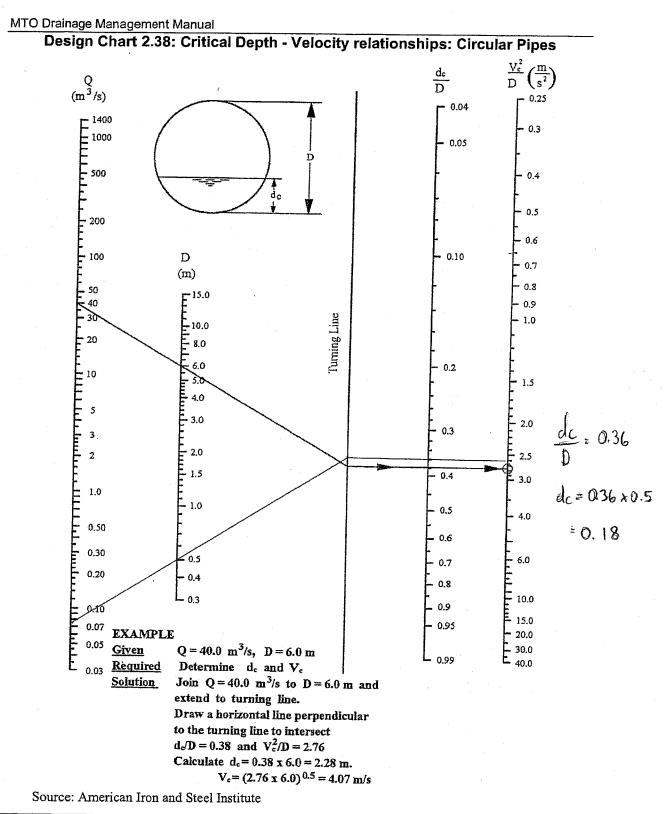
Source: Herr (1977)



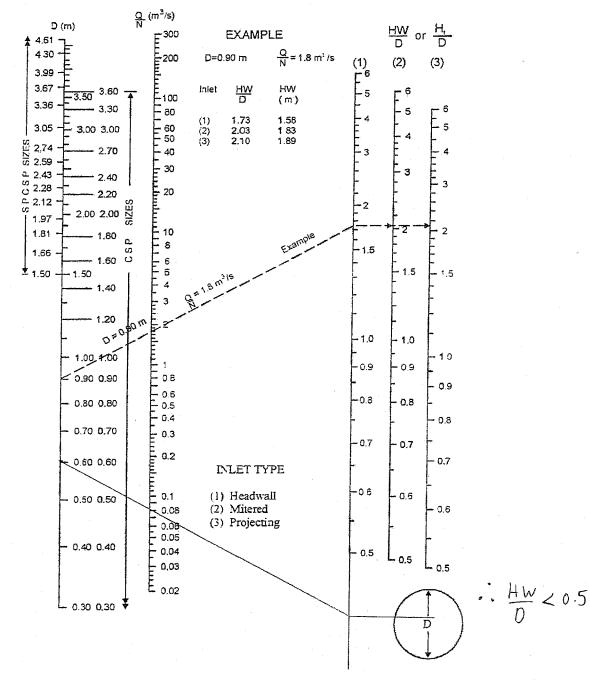
Culvert Crossing (24a to (24b)

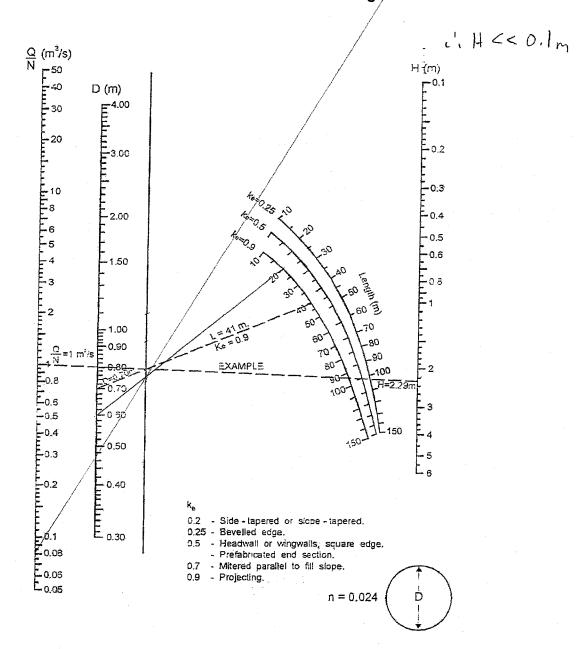

500 mm &

MTO Drainage Management Manual


Design Chart 2.32: Inlet Control: Circular CSP and SPCSP Culverts

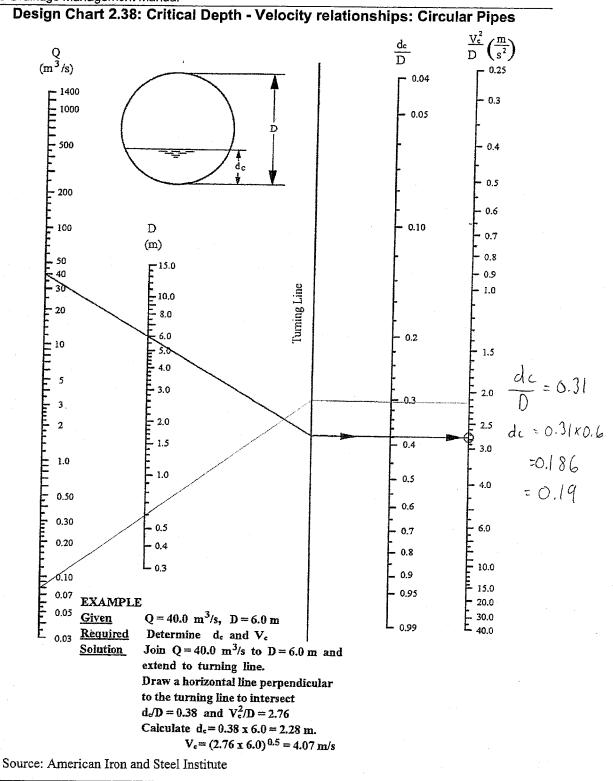
Source: Herr (1977)


Source: Herr (1977)


Culvert Crossing 2 - (9) 600 mm &

MTO Drainage Management Manual

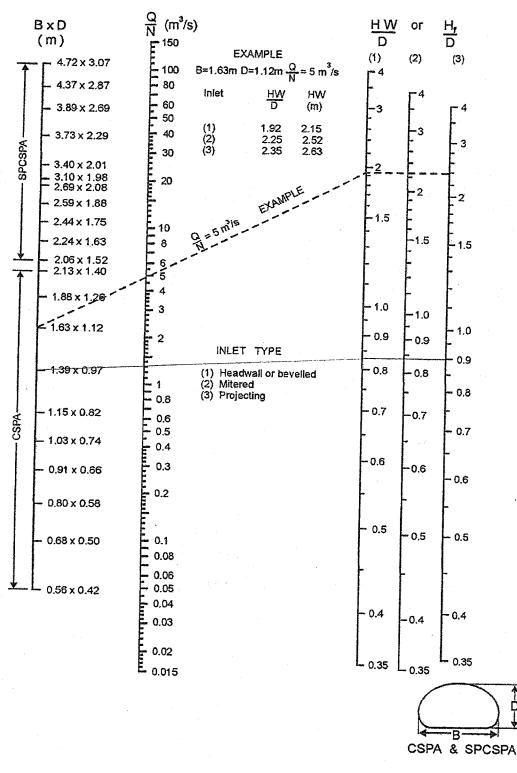
Design Chart 2.32: Inlet Control: Circular CSP and SPCSP Culverts



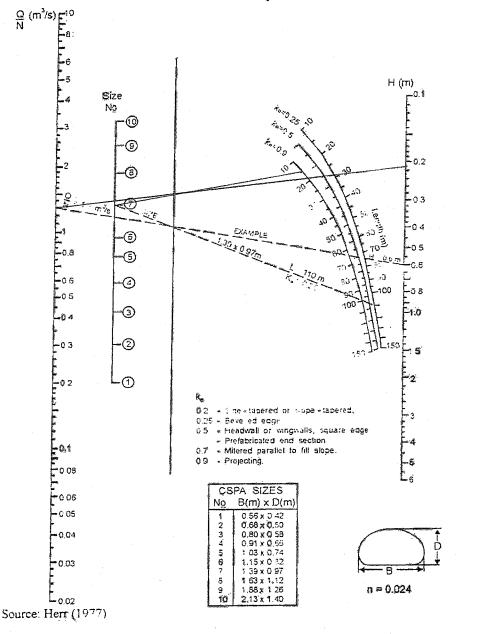
Source: Herr (1977)

Design Chart 2.35: Outlet Control: CSP Culvert - Flowing Full

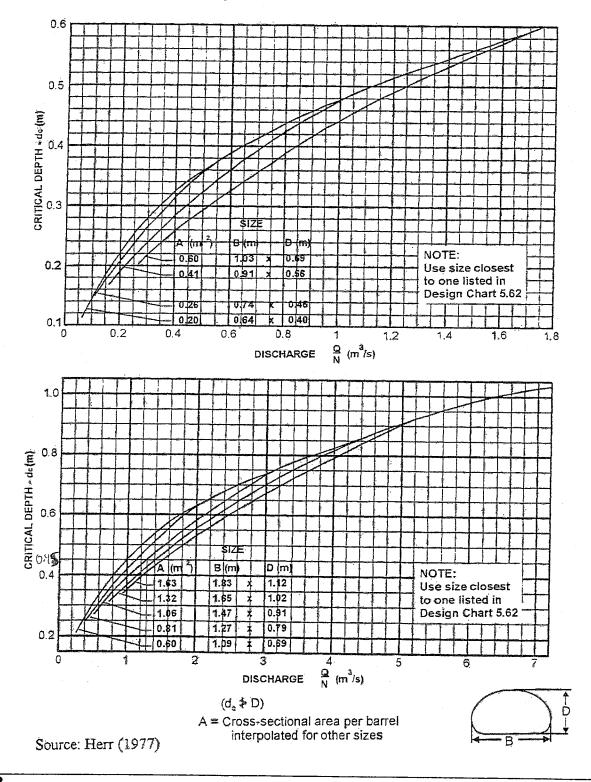
Source: Herr (1977)



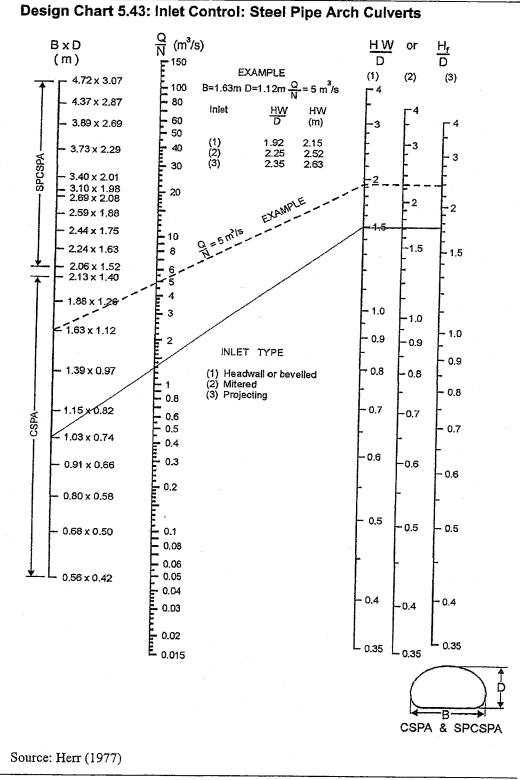
Culvert Crossing 270 10 270 1.39 × 0.97 m

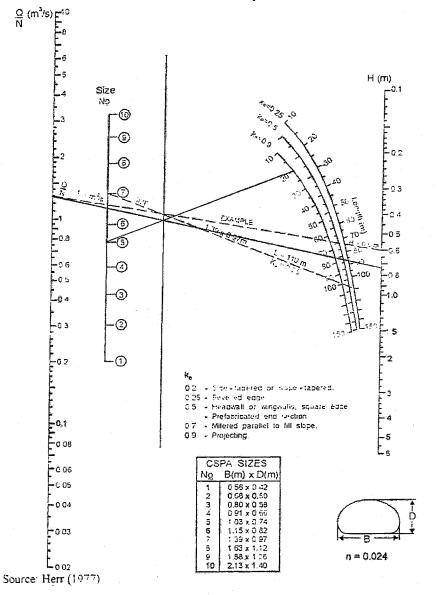

Ď

MTO Drainage Management Manual

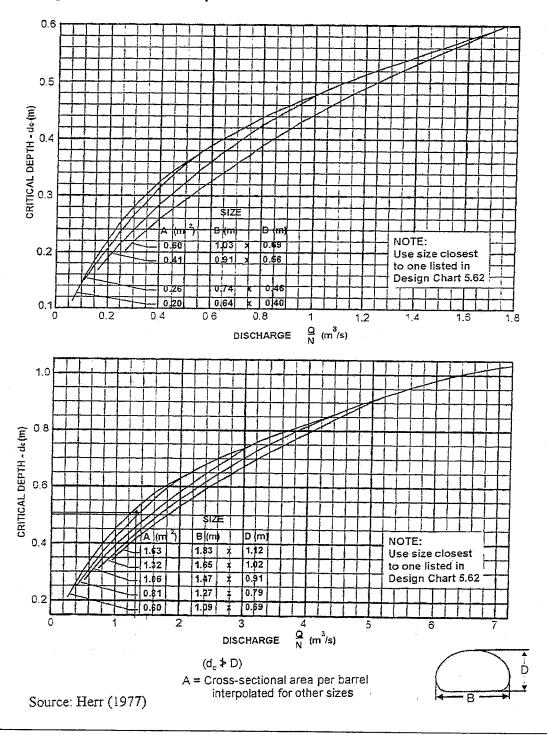

Design Chart 5.43: Inlet Control: Steel Pipe Arch Culverts

Source: Herr (1977)


Design Chart 5.47: Outlet Control: Pipe Arch CSP Culvert - Flowing Full


Design Chart 5.53: CSP Pipe Arch Culverts

Culvert Crossing 22-19 2 × 1.03m × 0.74m


MTO Drainage Management Manual

148

Design Chart 5.47: Outlet Control: Pipe Arch CSP Culvert - Flowing Full

Design Chart 5.53: CSP Pipe Arch Culverts

APPENDIX 'B'

CONVENTIONAL CULVERT DESIGN SHEET

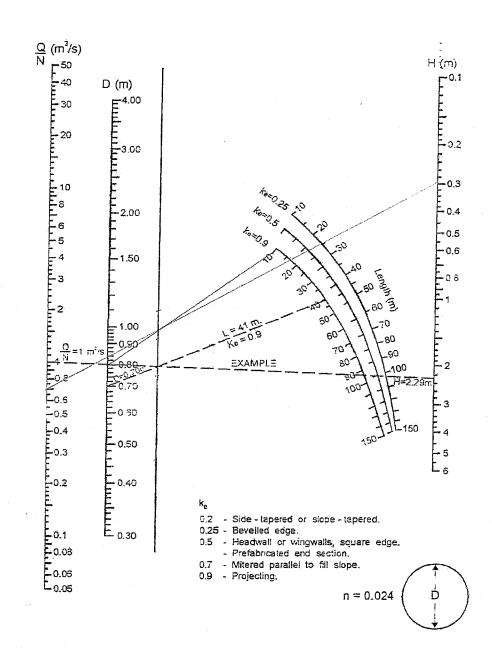
[]

11

112

11.

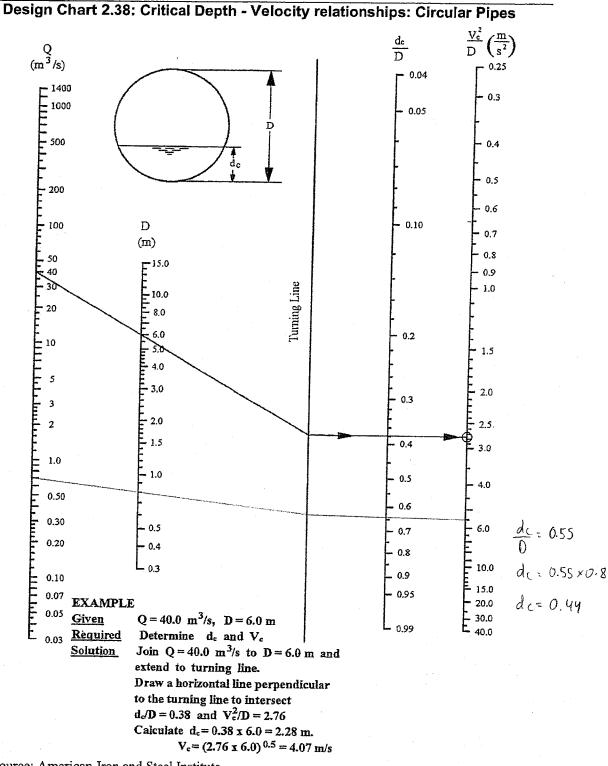
HAWTHORNE ROAD & RIDEAU ROAD


1:10 YEAR ROADSIDE CULVERT DESIGN

CONVENTIONAL CULVERT DESIGN

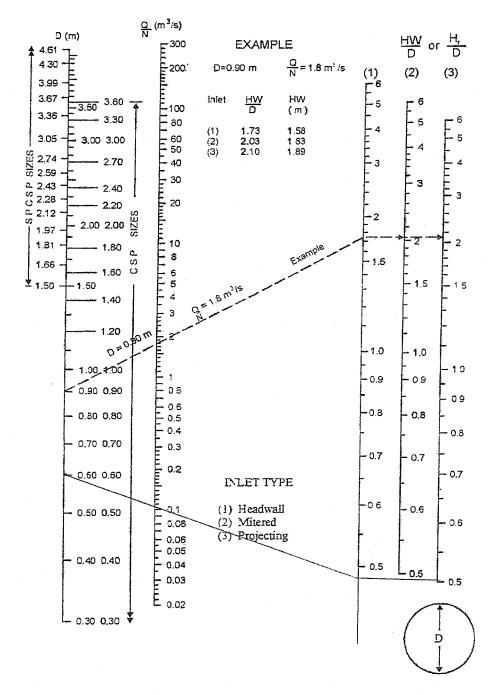
				DESIGN DAT	A				CI	ULVERT DAT	A		IN	LET CONTRO)L				OUTLET C	ONTROL				GOVERNING	VEL
Station	Q	d	d_{e}	AHW	Skew No.	L	S	Description	Dor BxD	N	Q/N	A (each)	Q/NB	HW/D	HW	Ke	Н	d°	(d _c + D)/2	TW	h _o	LS	HW	HW	Vo
	(m³/s)	(m)	<u>(m)</u>	(m)		(m)	(m/m)		(m)		(m³/s)	(m²)	(m³/s/m)		(m)		(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m/s)
1	2	33	4	5	6	7.	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
		1			· · · · · · · · · · · · · · · · · · ·		l			I									<u></u>						
6A to 6B	0.694	0.53	0.05	5 1.13	0	10.0	0.010	CSP 800	0.8	1	0.694	0.50		1.05	0.84	0.9	0.30	0.44	0.62	0.58	0.62	0.10	0.82	0.84	
18 to 19	0.105	0.21	0.05	5 1.34	0	22.0	0.018	CSP 600	0.6	1	0.105	0.28		0.50	0.30	0.9	0.04	0.22	0.41	0.26	0.41	0.39	0.06	0.30	
20 to 21	0.113	0.29	0.05	0.81	0	20.0	0.005	CSP 600	0.6	1	0.113	0.28		0.52	0.31	0.9	0.05	0.26	0.43	0.34	0.43	0.10	0.37	0.37	
4B to 23	1.377	0.51	0.05	5 1.53	0	20.0	0.014	CSP 1000	1.0	1	1.377	0.79		1.14	1.14	0.9	0.55	0.68	0.84	0.56	0.84	0.28	1.11	1.14	
24 to 26	1.559	0.66	0.05	2.42	0	20.0	0.010	CSP 800	0.8	1	1.559	0.50		2.55	2.04	0.9	1.75	0.72	0.76	0.71	0.76	0.20	2.31	2.31	
																			`	T					
																						· .			<u> </u>
		÷																							
3 4 5	Flood Dept Embedmer Col. 3 + col	PH-D-533, h ht below cha l. 4 + allowa for skew if a	nnel inve ble backv		10 11 13	Culvert Slo D (circular Number of Area per b For box on) or B x D (Barrels arrel	other)	16 17 18	Charts D5- HW = col. ⁻ Chart D5-8 Charts D5- Charts D5-	15 x D (col. 2A to G	10)		22 23 24	Col. 7 x col HW = coi. 1	of cols. 20 a	col. 23		26 (Dutlet veloc	ity if requir	ed (Subsec	tion 3.2.3)		

Prepared by: Mark Buchanan, E.I.T. Reviewed by: Guy Forget, P.Eng. Date: February 2009

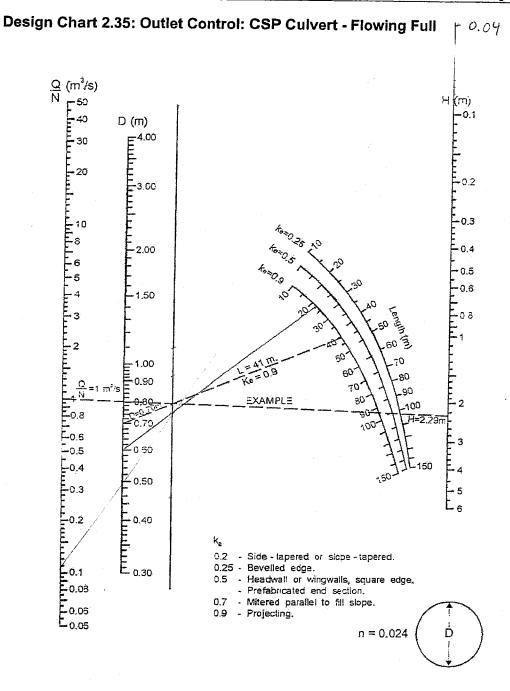

Culverts Hawt Rd

Design Chart 2.35: Outlet Control: CSP Culvert - Flowing Full

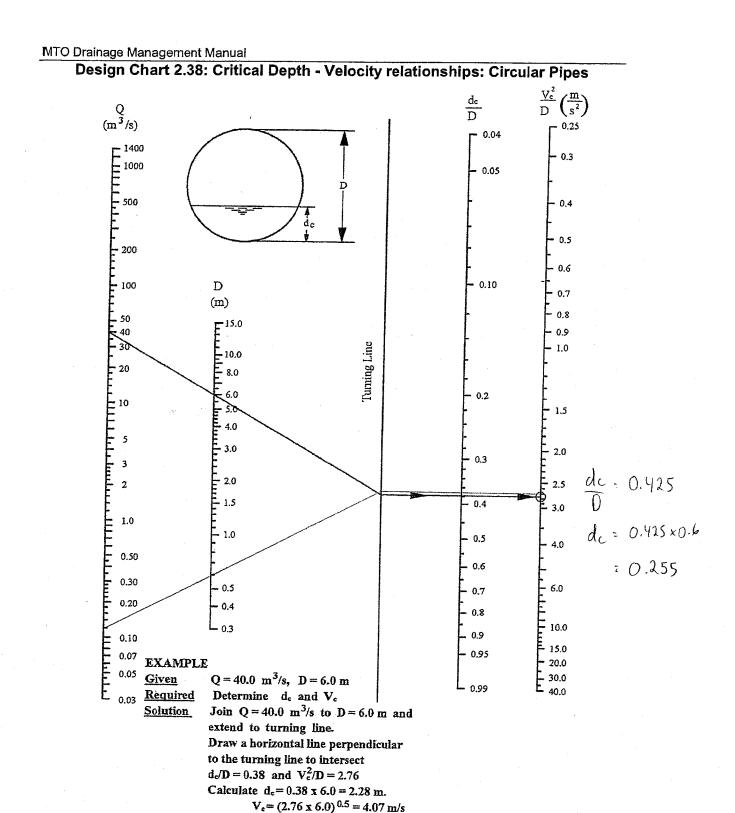
Source: Herr (1977)



Source: American Iron and Steel Institute

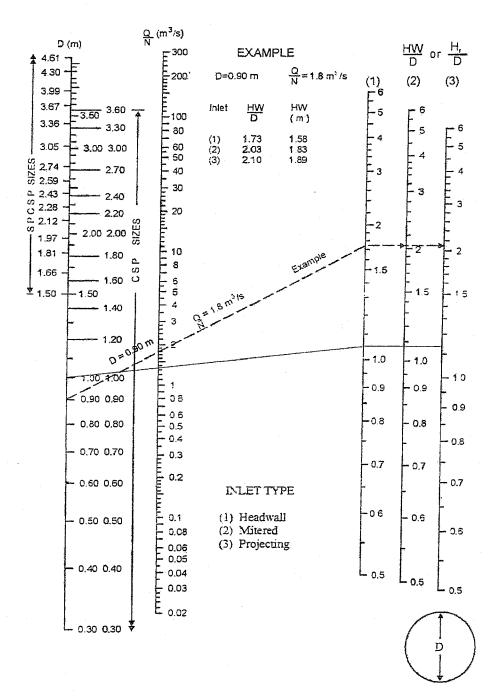

Culvert Crossing (18) to (19) 600mm &

MTO Drainage Management Manual


Design Chart 2.32: Inlet Control: Circular CSP and SPCSP Culverts

Source: Herr (1977)

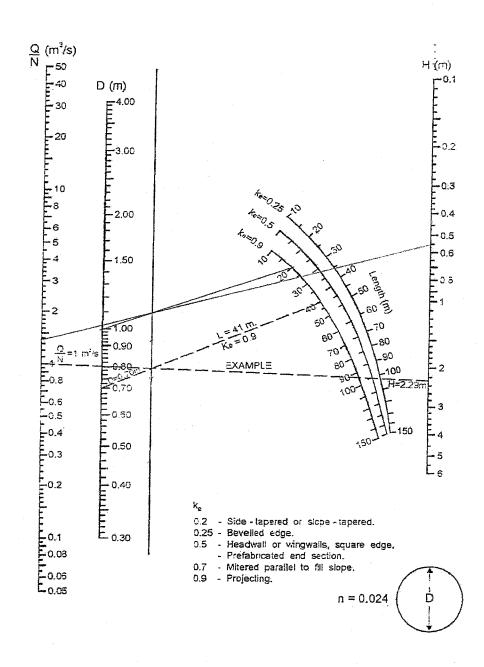
Source: Herr (1977)



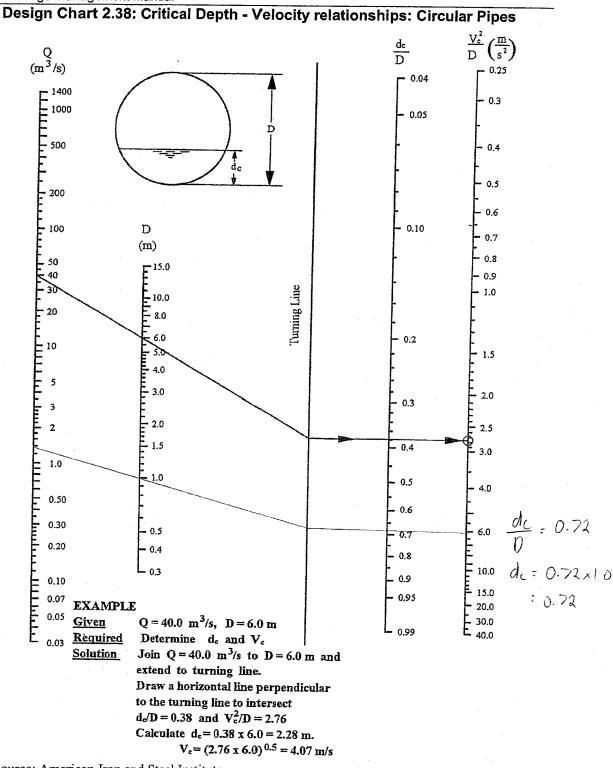
Source: American Iron and Steel Institute

Culvent Crossing [14] to [23] 1000mm @

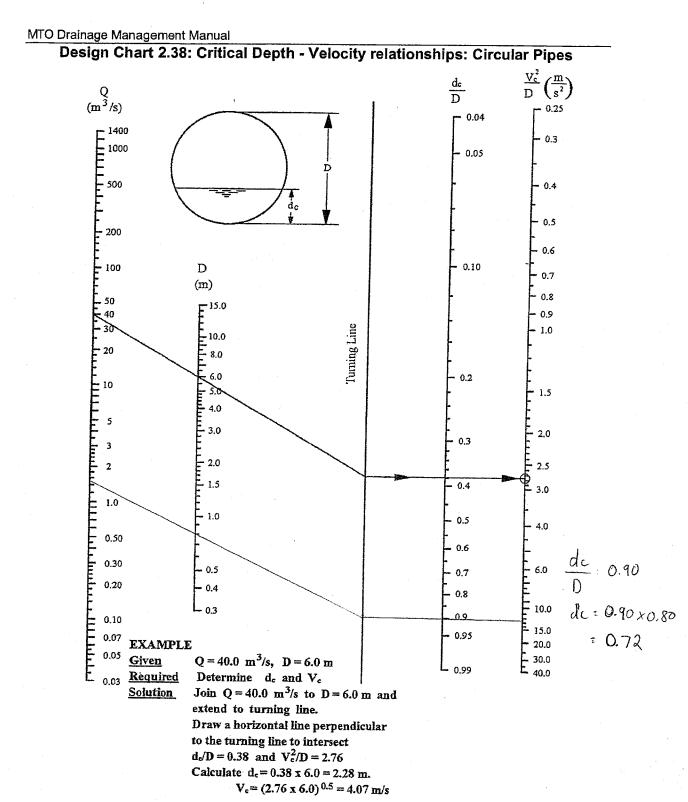
MTO Drainage Management Manual


Design Chart 2.32: Inlet Control: Circular CSP and SPCSP Culverts

Source: Herr (1977)


68

k. . .



Design Chart 2.35: Outlet Control: CSP Culvert - Flowing Full

Source: Herr (1977)

Source: American Iron and Steel Institute

Source: American Iron and Steel Institute

APPENDIX 'C'

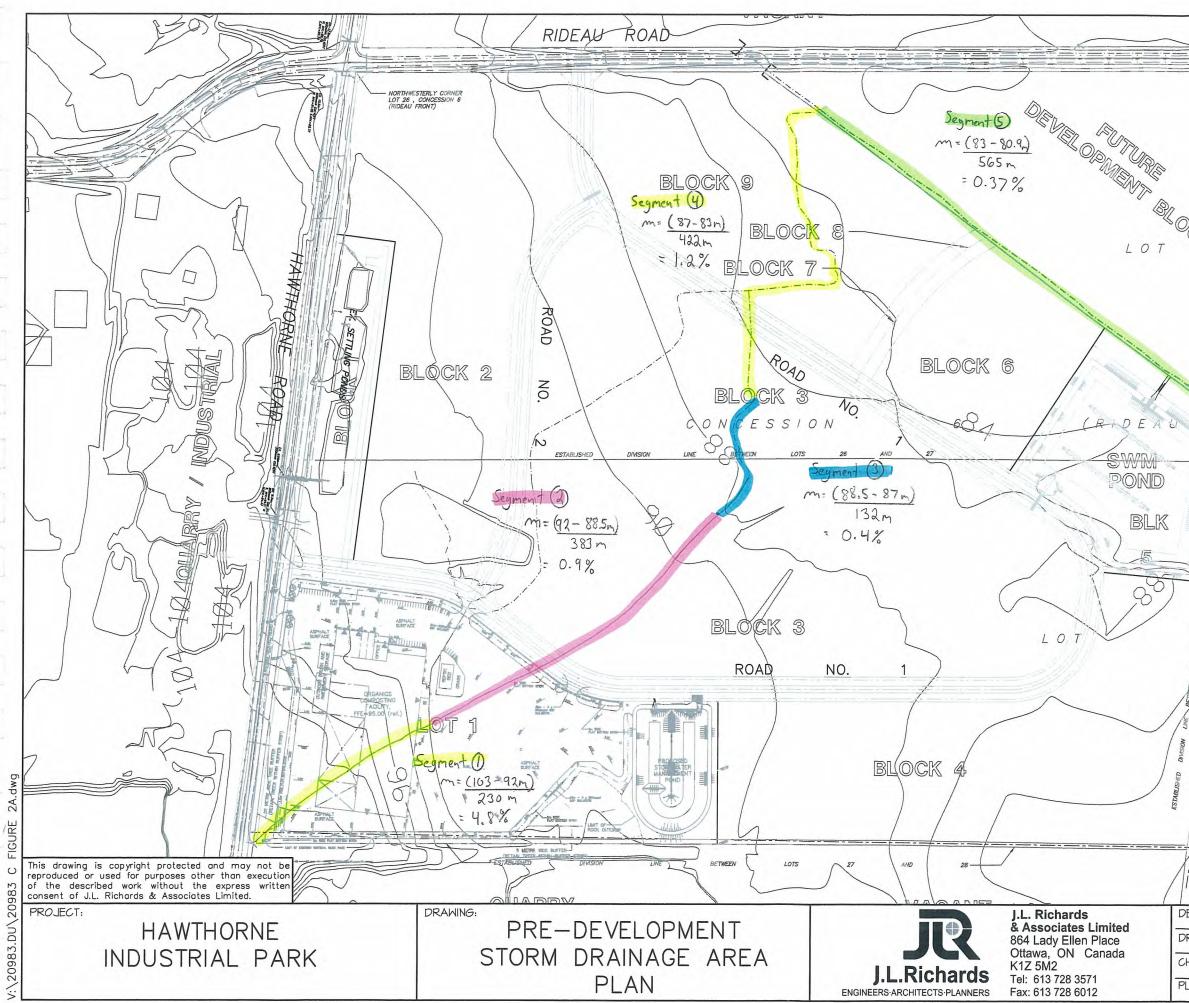
WATER QUALITY - INFILTRATION CALCULATION

1

JOB NO. 20983 PROJECT Hawthorne Industrial lark Length of Perforated Pipe in Ditches BY______ DATE_____ Apr 14/09

Level of Service Normal 70% TSS removal Imperviousness 100% for internal roads Extrapolating from Table 3.2 SWMPDM | water quality infiltration requirement = 35m3/ha Area of Asphalt Phase 1 Phase 2 Length = 2250 mwidth = 7m
15750 m² 300 m 7 m 2100 m Required Storage = 1.575 ba x 35m3 = 0.21 ha x 35 m³ = 55.1 m³ = 7.35 m³ Required Length of 200mm & Perforated Pipe $Length = \frac{55.1m^3}{77(0.1)^2m^2}$ $= \frac{7.35}{7} \frac{1000}{1000}$ = 1755 m= 234 m

APPENDIX 'D'


HYDROLOGICAL PARAMETERS (CN_{pre}, Imperviousness Calculation, Time to Peak Calculation)

JOB NO. 2098) PROJECT Hanthorne Industrial Park % Impenvious Culculation BY _____ B___ DATE __ Jan 22/69 Typical Site Development with C=0.7 Building Footprint 10% Asphalt Parking 35% Gravel 35% Grass 20% 100% Building Foot print = 100% Impenvious

Asphalt Parking = 100% Impervious Gravel = 70% Impervious Grass = 0% Impervious

% Imp. = 10% × 1 + 35% × 1 + 35% × 0.7 + 20% × 0 = 70%

	LEGEND:
CA Strand	SUB-AREA NO. 1 70.0 76 1.5 CURVE NUMBER APPROXIMATE DRAINAGE AREA BOUNDARY DIRECTION OF OVERLAND FLOW
HE REAL STATES	;)
BLOCK	10
AGRICUL TO AND	
DESIGN: M.B. DRAWN: ARM	DRAWING NO.: FIGURE 2
CHECKED: G.F.	JLR NO:
PLOTTED: Jan 21, 2009	20983

JOB NO. 20983
PROJECT Hawthorne Industrial Park
Time of Concentration - Pre-development
BY MB DATE Jan 22/09
Segment (D)
slope =
$$(103 - 92)m$$

 $= 4.8\%$
Uplands Method Curve B - Woodland
Velocity = 0.32 m/s
Time = $\frac{230 m}{0.32 m/s}$
 $= 719 sec$
Segment (B)
slope = $(92 - 88.5)m$
 $= 0.9\%$
Uplands Method Curve C - Pasture
Velocity = 0.21 m/s
Time = $\frac{383 m}{0.21 m/s}$
 $= 1824 sec$

SHEET____OF__

JOB NO. ________20983 PROJECT Hawthorne Industrial Park Time of Concentration - Pre-development BY______ DATE _____ Jan_ 22/09 ENGINEERS ARC Segment 3 $| Slope = \frac{(88.5 - 87)m}{132m}$ = 0.4% Uplands Method Curve A - Forest (heavy litter) Velocity = 0.05 m/s $Time = \frac{132 m}{0.05 m/s}$ = 2640 sec. Segment (9) $1 slope = \frac{(87 - 83)m}{422m}$ = 1.2% Uplands Method Curve F - Grassed waterway Velocity = 0.47 m/s $Time = \frac{422}{0.47} m/c$ = 898 sec

JOB NO. 20983
PROJECT Hawthorne Industrial Park
Time of Concentration - Pre-Development
BY MB DATE Jan 22/09
Segment (S)
Slope =
$$(33-80.9)$$
 m
= 0.37%
Uplands Method Curve F - Grassed Waterway
Velocity = 0.28 n/s
Time = $\frac{565}{0.28}$ m
= 2018 sec
Total Time = $0 + (3 + (3) + (9) + (5))$
= 719 + 1824 + 2640 + 898 + 2018
= 8099 sec
Time to Peak = $\frac{2}{3}$ x 8099 sec
= 5399 sec
= 90 min

[.

APPENDIX 'E'

SWMHYMO INPUT AND OUTPUT FILES (Pre - and Uncontrolled Post-Development Conditions)

(V:\...PSTPH1.dat)

					U. D. Michaids & Associates Limit
00001> 2	Mestric units	*******	00136		[-1 , -1] (max twenty pts)
00003> *# Pr	ojject Name :	Hawthorne Industrial Park Project Number: [20983] *		> ********	*********
00005> *# Re	vs≨sed :	April, 2009 *		> ************	<pre>/thorne Industrial Park * ***********************************</pre>
00007> *# Re	vincewed by :	Mark Buchanan, E.I.T. * Guy Forget, P.Eng. *	00141 00142	> * > * SUB-AREA No.1	
00009> *# Li	cense# :	J.L. Richards & Associates Limited * 4418403 *	00143	> > CALIB STANDHYD	ID=[1], NHYD=["HIP01"], DT=[2.5](min), AREA=[19.9](ha),
00011> *	* * *********	***************************************	00145		XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81],
		************	00147	>	Pervious surfaces: [Appr=[4.67] (mm), SLPP=[1.5] (%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m
00014> *# FI 00015> *# FI	LEENAME: V:\2 LEE DEVELOPED	* * FOR SITE PLAN APPLICATION AND DETAILED DESIGN *	00149	>	Impervious surfaces: IAimpel.573 (mm), MNI=[0.25], SCF=[0.0] (m Intervious surfaces: IAimpel.573 (mm), SLF=[0.6] (%), LGI=[580] (m), MNI=[0.03], SCI=[0.0] (min
00016> *# 0 00017> *#****	F A FACILITY	ASSOCIATED WITH THE OTTAWA COMPOSTING SITE *	00151	>	LGI=[580] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , , ,](mm/hr), END=-1
00018> *		*****	00153	> *8 > ADD HYD	IDsum={ 2 }, NHYD=["HIP02"], IDs to add=[10+1]
00020> *	SWMHYMO FI	LE DEVELOPED TO INVESTIGATE FLOOD FLOWS OF THE *	00155:		
00022> ******	** ***********	TING SITE UNDER POST-DEVELOPMENT UNCONTROLLED CONDITIONS *	00156	> * SUB-AREA No.2 >	
00023> 00024> *****	* ** ******	********	00158: 00159:	> CALIB STANDHYD	ID=[3 }, NHYD=["HIF03"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],
00026> * FOR	DESIGN STORMS	YSIS UNDER A 4 HR-25 MM STORM AND * OF 1:2, 5, 10, 25, 50, AND 100 YR *	00160:	>	SCS curve number CN=[8], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%),
00027> ****** 00028>	* * *********	**************************************	00162:	>	LGP=[10.0](mm), SLP=[1.5](%), LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.65](%),
00029> ****** 00030> *		**************************************	00164	>	LGI = [450] (m), $MNI = [0.03]$, $SCI = [0.0] (min)$
00031> ******	* * ********	***************************************	00166:	> *&	RAINFALL=[, , , ,] (mm/hr) , END=-1
00033> ******		*****	00167: 00168:	* SUB-AREA No.3	
00035> ******	**********	ION OF 4 HR 25 MM STORM EVENT *	00169:	CALIE STANDHYD	ID=[4], NHYD=["HIP04"], DT=[2.5] (min), AREA=[18.1] (ha),
00036> 00037> START		TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]	00171:		XIMP=[0.50], $TIMP=[0.71]$, $DWF=[0.0]$ (cms), $LOSS=[2]$, SCS curve number CN=[8]].
00038> *% 00039> READ S	TORM	[] <storm filename,="" for="" line="" nstorm="" one="" per="" time<br="">STORM_FILENAME=["4HR25-15.STM"]</storm>	00173:		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%),
00040> *% 00041> DEFAUL		ICASEdef=[1], read and print values	001752	>	LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.5] (%), LGT_500(0, N)F(0.23) (0.5) (%),
00042>		DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]	00177>	>	LGI=[600] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , , ,](nm/hr), END=-1
00044>	** *********		00179>	> *8 > ADD HYD	IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4]
00046> *	ORGAWORL) FILE *	00181>	> *8]
00048>			00183>		
00049> * SUB-2 00050>			00185>		<pre>ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cms), CN/C=[85], TP=[0.17]hrs,</pre>
00051> CALIB : 00052>	S T.ANDHYD	<pre>ID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha), XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2],</pre>	00186>		RAINFALL=[,,,,](mm/hr), END=-1
00053> 00054>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%),	00188>		
00055> 00056>		LGP=[20](m), MNP=[0.25], SCP=[0.0](mi Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.52](%),		ADD HYD	IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6]
00057> 00058>		LGI=[204.72](m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , ,](mm/hr), END=-1	00192>	•	
00059> *%			00194>		<u>.</u>
00061> * SUB-3 00062>	AREA No.2		00196>		ID = [10], NHYD=["A2"), DT=[2.5]min, AREA=[6.8](ha), DWF=[0](cms), CNC=[76], TP=[0.37]hrs,
00063> CALIB 5	TANDHYD	ID=[2], NHYD=["020"], DT=[2.5](min), AREA=[1.54](ha),	00197>	*8	RAINFALL=(, , ,) (mm/hr), END=-1
00064> 00065>		<pre>XIMP=[0.92], TIMP=(0.92), DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>	00199>	* SUB-AREA NO 4	
00066> 00067>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min),	00201>	· DESIGN NASHYD	ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[5.3](ha),
00068> 00069>		Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.50](%), LGI=[244.34](m), MNI=[0.03], SCI=[0.0]	00203>		DWF=[0](cms), CNC=[76], TP=[0.804]hrs,
00070> 00071> *%		RAINFALL=[, , , ,] (mm/hr) , END=-1	00205>	*8 ADD HYD	RAINFALL=[, , , ,](mm/hr), END=-1
00072> * 00073> * SUB-J	REA No.3	· · · · · · · · · · · · · · · · · · ·	00208>	*8	IDsum=[2], NHYD=["0020"], IDs to add=[7+10+1]
00074> 00075> CALIB S		ID=[3], NHYD=["030"], DT=[2.5] (min), AREA=[1.4] (ha),	00209>	*******	*******
00076>		XIMP = [0.97], $TIMP = [0.97]$, $DWF = [0.0]$ (cms), $LOSS = [2]$,		. ***************	N OF 3HR - 1:2 YEAR STORM EVENT *
00078>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.0](%),	00212>	START	TZERO=[0,0], METOUT=[2], NSTORM=[0], NRUN=[0]
00079> 00080>		LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min), Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.51](%),	00214>	* *	[] <storm filename,="" for="" line="" nstorm="" one="" per="" td="" time<=""></storm>
00081> 00082>		LGI=[225.63] (m), MNI=[0.03], SCI=[0.0 RAINFALL=[, , ,] (mm/hr) , END=-1	00216>	CHICAGO STORM	<pre>IUNITS=[2], TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0](min) ICASEcs=[1],</pre>
00083> *8 00084> ADD HYE))	IDsum=[4], NHYD=["040"], IDs to add=[1+2]	00218>	*8	A=[732.951], B=[6.199], and C=[0.810],
00085> *% 00086> ADD HYD)	IDsum=[5], NHYD=["050"], IDs to add=[3+4]	00220>	DEFAULT VALUES	ICASEdef=[1], read and print values DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]
00087> *%			00222>	*8	
00089> * 5UB-F 00090>			00224>	**************************************	
00091> CALIB S 00092>		<pre>ID=[6], NHYD=["060"], DT=[2.5](min}, AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],</pre>		*************	************
00093> 00094>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[0.7](%),	00228>	* SUB-AREA No.1	
00095> 00096>		LGPE[40](m), MNP=[0.25], SCP=[0.0](m), Impervious surfaces: IAimpe[1.57](mm), SLPI=[0.93](%),	00229>	CALIB STANDHYD	ID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha),
00097> 00098>		LGI = [164.82] (m), $MNI = [0.03]$, $SCI = [0.0]$ (00231>		XIMP=[0.84], $TIMP=[0.84]$, $DWF=[0.0](cms)$, $LOSS=[2]$, SCS curve number CN=[81],
00099> *% 00100> *		RAINFALL=[, , , ,] (mm/hr) , END=-1	00233> 00234>		$\begin{array}{llllllllllllllllllllllllllllllllllll$
00101> * SUB-A	REA No.5		00235>		LGI=[204.72](m), MNI=[0.03], SCI=[0.0]
00102> 00103> CALIB S	TANDHYD	ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWE=[0.0](cms), LOSS=[2],		*&	RAINFALL={ , , ,] (mm/hr) , END=-1
00104> 00105>		SCS curve number CN=[81],	00239>	* SUB-AREA No.2	
00106> 00107>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%),	00241>	CALIB STANDHYD	ID=[2], NHYD=["020"], DT=[2.5](min), AREA=[1.54](ha),
00108> 00109>		Impervious surfaces: IAimp=[1.57](mn), SUP=[0.61](%), LGI=[207.25](m), MNI=[0.03], SCI=[0.0](00243>		XIMP=[0,92], TIMP=[0,92], DWF=[0,0](cms), LOSS=[2].
00110>	······································	RAINFALL=[, , ,] (mm/hr) , END=-1	00244>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](8),
00112> ADD HYD 00113> *#		IDsum=[8], NHYD=["080"], IDs to add=[6+7]	00247>		LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min), Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.50] (%),
00114> ADD HYD 00115> *#		IDsum=[9], NHYD=["090"], IDs to add=[5+8]	00248>		LGI=[244.34] (m), MNI=[0.03], SCI=[0.0] RAINFALL=[,,,,](mm/hr), END=-1
00116>			00251>	**	
00117> ROUTE R 00118>		IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1_0](min),	00253>		
00119> 00120>		TABLE of (OUTFLOW-STORAGE) values (cms) - (ha-m)		CALIB STANDHYD	<pre>ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],</pre>
00121> 00122>		[0.000, 0.0000] [0.008, 0.0656]	00256>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%),
00123> 00124>		[0.017, 0.1311] [0.093, 0.2831]	00258>		$LGP=[5](m), MNP=[0.03], SCP\simeq[0.0](min),$
00125> 00126>		[0.233, 0.3971] [0.337, 0.4731]	00260>		Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.51] (%), LGI=[225.63] (m), MNI=[0.03], SCI=[0.0
00127> 00128>		[0.465, 0.5491]		*8	RAINFALL=[, , , ,](mm/hr) , END=-1
00129>		[0.531, 0.5871] [0.593, 0.6251]	00264>	**!	IDsum=[4], NHYD=["040"], IDs to add=[1+2]
00130> 00131>		[0.654, 0.6631] [0.797, 0.7391]	00266>	*8	IDsum=[5], NHYD=["050"], IDs to add=[3+4]
00132> 00133>		(0.950, 0.8274) [1.304, 0.9157]	00267>	* * SUB-AREA No.4	·
00134> 00135>		[1.880, 1.0040] [2.577, 1.0923]	00269>		ID=[6], NHYD={"060"], DT=[2.5](min), AREA=[0.89](ha),
			1		
	-				

J. L. Richards & Associates Limited

Page 0

(V:\...P*STPH1.dat)

			D. E. RICHAIGS & ASSOCIATES LIMIT
00271>	XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],	00406> *****************	*****
00272> 00273>	SCS curve number CN=[81], Pervious surfaces: $IAper = [4.67] (mm)$, $SLPP = [0.7] (%)$,	00407> 00408> * SUB-AREA No.1	
00274> 00275> 00276>	LGP=[40] (m), MNP=[0.25], SCP=[0.0] (min) Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.93] (%),	00409> 00410> CALIB STANDHYD	ID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha),
00277>	LGI=[164.82] {m}, MNI=[0.03], SCI=[0.0] (RAINFALL=[, , , ,] (mm/hr) , END=-1	00411> 00412>	<pre>XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81].</pre>
00278> *8		00413> 00414>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%), LGP=[20](m), MNP=[0.25], SCP=[0.0](mi
00280> * SUB-A_REA No.5 00281>		00415> 00416>	LGP=[20](m), MNP=[0.25], SCP=[0.0](mi) Impervious surfaces: IAimp=[1.57](mm), SLPT=[0.52](%), LGT=[204.72](m), NNT=[0.03], SCT=[0.0]
00282> CALIB S TANDHYD 00283>	ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],	00417> 00418> *%	RAINFALL=[, , ,](mm/hr), END=-1
00284> 00285>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),	00419> * 00420> * SUB-AREA No.2	
00286> 00287>	LGP=[20.0](m), MNP=[0.25], SCP=[0.0)(mi Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.61](%),	00421> 00422> CALIB STANDHYD	<pre>ID=[2], NHYD=["020"], DT=[2.5](min), AREA=[1.54](ha),</pre>
00288> 00289>	LGI=[207.25] (m), MNI=[0.03], SCI=[0.0] (RAINFALL=[,,,,] (mm/hr), END=-1	00423> 00424>	XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81].
00290> *8 00291> ADD HYD	IDsum=[8], NHYD=["080"], IDs to add=[6+7]	00425> 00426>	Pervious surfaces: $IAper=[4.67]$ (mm), $SLPP=[1.0]$ (%), LGP=[5] (m), $MNP=[0.03]$, $SCP=(0.01)$ (min).
00292> *% 00293> ADD HYD	IDsum=[9], NHYD=["090"], IDs to add=[5+8]	00427> 00428>	Impervious surfaces: IAimp={1.57](mm), SLPI=[0.50](%), LGI=[244.34](m), MNI=[0.03], SCI=[0.0]
00294> *8		00429> 00430> *8	RAINFALL=[, , ,](mm/hr), END=-1
00296> ROUTE RESERVOIR 00297>	IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min),	00431> * 00432> * SUB-AREA No.3	
00298> 00299>	TABLE of (OUTFLOW-STORAGE) values (cms) - (ha-m)	00433> 00434> CALIB STANDHYD	<pre>ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],</pre>
00300> 00301>	[0.000, 0.0000] { 0.008, 0.0656]	00435> 00436>	XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],
00302> 00303>	[0.017, 0.1311] [0.093, 0.2831]	00437>	<pre>Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min).</pre>
00304>	[0.233, 0.3971] [0.337, 0.4731]	00439> 00440>	Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.51 }(%), LGI=[225.63](m), MNI=[0.03], SCI=[0.0
00306> 00307>	[0.465, 0.5491] [0.531, 0.5871]	00441> 00442> +8	RAINFALL=[, , , ,] (mm/hr) , END=-1
00308> 00309>	(0.593, 0.6251) [0.654, 0.6631]	00443> ADD HYD 00444> *%	IDsum=[4], NHYD=["040"], IDs to add=[1+2]
00310>	[0.797, 0.7391] [0.950, 0.8274]	00445> ADD HYD 00446> *8	IDsum=[5], NHYD=["050"], IDs to add=[3+4]
00312> 00313>	[1.304, 0.9157] [1.880, 1.0040]	00447> * 00448> * SUB-AREA No.4	
00314> 00315>	$\begin{bmatrix} 2.577, 1.0923 \end{bmatrix}$ $\begin{bmatrix} -1, -1 \end{bmatrix}$ (max twenty pts)	00449> 00450> CALIB STANDHYD	ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha),
00316> 00317> ************************************	*******	00451> 00452>	XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81]
00319> ***************	Nawthorne Industrial Park *	00453> 00454>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[0.7] (%), LGP=[40] (m), MNP=[0.25], SCP=[0.0] (min)
00320> * 00321> * SUB-AREA No.1		00455> 00456>	LGP=[40](m), MMP=[0.25], SCP=[0.0](min) Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.93](%), LGT=[164.82](m), MNN=[0.03], SCT=[0.0](
00322> 00323> CALIB STANDHYD	<pre>ID=[1], NHYD=["HIP01"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],</pre>	00457>	RAINFALL=[, , , ,](mm/hr), END=-1
00324> 00325> 00326>	SCS curve number CN=[81].	00459> * 00460> * SUB-AREA No.5	
00327> 00328>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m	00461> 00462> CALIB STANDHYD	ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha),
00329>	<pre>Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.6](%), LGI=[500](m), MNI=[0.03], SCI=[0.0](min RAINFALL=[, , ,](mm/hr), END=-1</pre>	00463> 00464>	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
00331> *% 00332> ADD HYD		00465>	Pervious surfaces: IAper=[4.67] (mn), SLPP=[1.5] (%), LGP=[20.0] (m), MNP=[0.25], SCP=[0.0] (mi
00333> **	IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1]	00467> 00468>	Imperious surfaces: Limper[1:27] (ml), ENPICO.3], SCPE(0:0] (ml LGI=[207.25] (m), MNI=[0.03], SCI=[0.0] (
00335> * SUB-AREA No.2 00336>		00469> 00470> *8	RAINFALL=[, , , , } (mm/hr) , END=-1
00337> CALIB STANDHYD 00338>	ID = [3], NHYD=["HIP03"], $DT = [2.5]$ (min), AREA=[17] (ha),	00471> ADD HYD 00472> *8	IDsum=[8], NHYD=["080"], IDs to add=[6+7]
00339>	XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Provide the set of	00473> ADD HYD 00474> *8	IDsum=[9], NHYD=["090"}, IDs to add=[5+8]
00341> 00342>	<pre>Pervious surfaces: IApper=[4.67](mm), SLPP=[1.5](%), LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.65](%),</pre>	00475> 00476> ROUTE RESERVOIR 00477>	<pre>IDout=[10], NHYD=["POND"], IDin=[9],</pre>
00343> 00344>	<pre>Inforvatus Surfaces: Informer[1:57](mm), Surface[0:53](%),</pre>	00478> 00479>	RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values
00345> *8		00460>	(cms) - (ha-m) [0.000, 0.0000] [0.000 cc551
00347> * SUB-AREA No.3 00348>		00482>	[0.008, 0.0656] [0.017, 0.1311] [0.093, 0.2831]
00349> CALIB STANDHYD 00350>	ID=[4], NHYD=["HIF04"], DT=[2.5](min), AREA=[18.1](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],	00484>	[0.233, 0.3971] [0.337, 0.4731]
00351> 00352>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mum), SLPP=[1.5] (%),	00486>	[0.465, 0.5491] [0.531, 0.5871]
00353> 00354>	LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.5] (%),	00488> 00489>	[0.593, 0.6251] [0.654, 0.6631]
00355> 00356>	LGI=[600] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[,,,,](mm/hr), END=-1	00490> 00491>	[0.797, 0.7391] [0.950, 0.8274]
00357> *% 00358> ADD HYD	IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4]	00492>	[1.304, 0.9157] [1.880, 1.0040]
00359> *& 00360> *		00494> 00495>	[2.577, 1.0923] [-1 , -1] (max twenty pts)
00361> *SUB-AREA No.4 00362>		00496> 00497> **********************	******
00363> DESIGN NASHYD 00364>	ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cms), CN/C=[85], TP=[0.17]hrs,	00498> * Remaining Ha 00499> ******************	wthorne Industrial Park *
00365> 00366> *%	RAINFALL=[, , , ,] (mm/hr), END=-1	00500> * 00501> * SUB-AREA No.1	
00367> 00368>		00502> 00503> CALIB STANDHYD	ID=[1 }, NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha),
00369> ADD HYD 00370> *%	IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6]	00504> 00505>	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
00371> 00372> * SUB-AREA NO. 5		00506> 00507>	<pre>Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), LGP=[100.0](m), MNP=[0.25], SCP=[0.0)(m Impervious surfaces: IAimpe[1.57](mm), SLPI=[0.6](%),</pre>
00373> 00374> DESIGN NASHYD 00375>	ID = [10], NHYD=["A2"], DT=[2.5]min, AREA=[6.8](ha), NHYD=[0](area) = [22], DT=[2.5]min, AREA=[6.8](ha), AREA=[6.8](ha), AREA=[6.8](ha), AREA=[6.8](ha), AREA=[00508> 00509>	LGI = [580] (m), $MNI = [0, 03]$, $SCI = [0, 0] (min)$
00375> 00376> 00377> *&	DWF=[0](cms), CNC=[76], TP=[0.37]hrs, RAINFALL=[, , , ,](mm/hr), END=-1	00510> 00511> *%	RAINFALL=[,,,,](mm/hr), END=-1
00377> ** 00376> 00379> * SUB-AREA NO 4		00512> ADD HYD 00513> *%	IDsum=[2], NHYD=("HIPO2"], IDs to add=[10+1]
003795 * SOB-AREA NO 4 003805 003815 DESIGN NASHYD	TD = [1] $NUVD = [2522]$ $DD = [0, 5] = 2 = 2D = 2$	00514> * 00515> * SUB-AREA No.2 00516>	
00382> 00383>	<pre>ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[5.3](ha), DWF=[0](cms), CNC=[76], TP=[0.804]hrs, DTYDET_C</pre>	00517> CALIB STANDHYD	ID=[3], NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha),
00383> 00384> *%	RAINFALL=[, , , ,] (mm/hr), END=-1	00518> 00519> 00520>	XIMD=[0.50], TIMD=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],
00386> *%		00521>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%), LGP=[100.0](m), MN№ [0.25], SCP=[0.0](m
00388>	*********	00522> 00523> 00524>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.65] (%), LGI=[450] (m), MNI=[0.03], SCI=[0.0] (min
00390> * CALCULATI	ION OF 3HR - 1:5 YEAR STORM EVENT	00525> *%	RAINFALL=[, , , ,) (mm/hr) , END=-1
00392> 00393> START	T2ERO=[0.0], METOUT=[2], NSTORM∞[0], NRUN≈[0]	00526> * 00527> * SUB-AREA No.3	
00394> *% 00395> *%	[] <storm filename,="" for="" line="" nstorm="" one="" per="" td="" time<=""><th>00528> 00529> CALIB STANDHYD 00530></th><td>ID=[4], NHYD=["HIP04"], DT=[2.5] (min), AREA=[18,1] (ha),</td></storm>	00528> 00529> CALIB STANDHYD 00530>	ID=[4], NHYD=["HIP04"], DT=[2.5] (min), AREA=[18,1] (ha),
00396> CHICAGO STORM 00397>	IUNITS=[2], TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0](min) ICASEcs=[1],	00530> 00531> 00532>	XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Participant of the second sec
00398> 00399> *%	$A = \{998.071\}, B = \{6.053\}, and C = \{0.814\},$	00532> 00533> 00534>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%), LGP=[100.0](m), MMP=[0.25], SCP=[0.0](m
003333 Ft	ICASEdef=[1], read and print values DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]	00535> 00536>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.5] (%), LGI=[600] (m), MNI=[0.03], SCI=[0.0] (min
00402> *8		00536> 00537> *%	RAINFALL=[, , , ,](mm/hr), END=-1 -
00404> ****************	**************************************	00538> ADD HYD 00539> *% 00540> *	IDsum={ 5], NHYD=["HIP05"], IDs to add=[3+4]

J. L. Richards & Associates Limited

1.

L.

(V:\...PSTPH1.dat)

00544> 00545>	DESIGN INASHYD	<pre>ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cms), CN/C=[85], TP=[0.17]hrs, RAINFALL=[, , , ,](mm/hr), END=-1</pre>	00678>	* Rema *********** * * SUB-AREA
00546> 00547>	*8		00681>	CALIB STAN
00548>	ADD HYD	IDsum= (7) , NHYD= $("HIP06")$, The to add= $(2+5+6)$	00683>	
00550>	*8	IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] 	00685>	
	* SUB-ADREA NO. 5		00686>	
	DESIGN INASHYD	ID = [10], NHYD=["A2"], DT=[2.5]min, AREA=[6.8](ha),	00688>	
00555> 00556>		<pre>LD = [10], NHYD=["A2"], DT=[2.5]min, AREA=[6.8](ha), DWF=[0](cms), CNC=[76], TP=[0.37]hrs, RAINFALL=[, , ,](mm/hr), END=-1</pre>	00690>	*% ADD HYD
00557>	*8		00692>	*8
	* SUB-AFREA NO 4		00694>	* SUB-AREA
00561>	DESIGN NASHYD	ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[5.3] (ha),	00695> 00696>	CALIB STAN
00562> 00563>		DWF=[0](cms), CNC=[76], TP=[0.804]hrs, RAINFALL=[, , , ,](mm/hr), END=-1	00697>	
	*8ADD HYD		00699>	
	*8		00701>	
	*******	***************************************	00702>	**
00570>		ION OF 3HR - 1:10 YEAR STORM EVENT *	00704>	•
00571> 00572>	START	TZERC=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]	00706>	* SUB-ARE
00573> 00574>	*8	[] <storm filename,="" for="" line="" nstorm="" one="" per="" td="" time<=""><td></td><td>CALIB STAN</td></storm>		CALIB STAN
	CHICAGO STORM	<pre>IUNITS=[2], TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0](min) ICASEcs=[1],</pre>	00710>	
00577>	*0	A=[1174.184], B=[6.014], and C=[0.816],	00711> 00712>	
00579>	*8 DEFAULT VALUES	ICASEdef=[1], read and print values	00713>	
00580> 00581>		DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]	00715>	*9
00582>			00717>	ADD HYD
00584>		RLD FILE *	00718>	*
00586>			00721>	*SUB-AREA
00588>	* SUB-AREA No.1		00722>	DESIGN NAS
00589> 00590>	CALIB STANDHYD	ID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha), XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2],	00724>	*\$
00591> 00592>		SCS curve number CN=[81],	00726>	· ·
00593>		$LGP = \{201, (m), MOR = \{0, 25, 1, SCR = \{0, 0\}, (m)\}$	00727> 00728>	ADD HYD
00595>		Impervious surfaces: IAimp=[1.57] (mm), SLP=[0.52] (%), LGI=[204.72] (m), MMV=[0.03], SCI=[0.0]	00730>	*8
00596> 00597>	*8	RAINFALL=[, , , ,] (mm/hr) , END=-1		* SUB-AREA
00598> 00599>	* * SUB-AREA No.2	· · · · · · · · · · · · · · · · · · ·		DESIGN NAS
00600>	CALIB STANDHYD	The[2] NHVD=["020"] DT=[25] (min) SEE. (54) ()	00735>	+0
00602>	COLO SI MONIO	<pre>ID=[2], NHYD=["020"], DT=[2.5](min), AREA=[1.54](ha), XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2],</pre>	00736> 00737>	
00603> 00604>		SCS curve number CN=[81], Pervious surfaces: IAper=(4.67](mm), SLPP=(1.0](%).	00739>	* SUB-AREA
00605> 00606>		LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min), Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.50] (%),	00740>	DESIGN NAS
00607>		LGI=[244.34] (m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , ,] (mm/hr), END=-1	00742>	**
00609>	*8		00744>	ADD HYD
00611>	* SUB-AREA No.3		00745> 00746>	
	CALIB STANDHYD	ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha),	00748>	
00614> 00615>		XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number (Na(81)	00749>	
00616> 00617>		Pervious surfaces: IApere[4, 67] (nm), SLPP=[1.0](%), Lage=[5](m), NNP=[0.03], SCP=[0.0](min), Impervious surfaces: IAImp=[1.57](nm), SLPI=[0.51](%),	00751>	START
00618>		Impervious surfaces: $IAImp=[1.57]$ (mm), $SLPI=[0.51]$ (%), $IAImp=[1.57]$ (mm), $SLPI=[0.51]$ (%),	00752>	*8
00620>	+=	LGI=[225.63] (m), MNI=[0.03], SCI=[0.0 RAINFALL=[, , , ,] (mm/hr) , END=-1	00755>	CHICAGO ST
00621>	ADD HYD	IDsum=[4], NHYD=["040"], IDs to add=[1+2]		•=
00624>	*8 ADD HYD	IDsum=[5], NHYD=["050"], IDs to add=[3+4]	00758>	DEFAULT VA
	*8		00760>	*8
	* SUB-AREA No.4		00762>	
00629>	CALIB STANDHYD	ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha),	00763> 00764>	* **********
00630> 00631>		<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>	00765>	* SUB-AREA
00632> 00633>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[0.7] (%),	00767>	CALIB STAN
00634>		LGP=[40](m), MNP=[0.25], SCP=[0.0](min) Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.93](%), LGI=[164.82](m), MNH=[0.03], SCI=[0.0](00769>	JIAN
00636>	**	LGI=[104.02] (m), HMI=[0.03], SCI=[0.0] (RAINFALL=[, , ,] (mu/hr) , END=-1	00771>	
00638>	*	-	00772> 00773>	
00640>	* SUB-AREA No.5		00774>	
	CALIB STANDHYD	ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],	00776>	
00643>		SCS curve number CN=[81],	00778>	* * SUB-ARBA
0645>		Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), IGP=[20.0](m), MNP=[0.25], SCP=[0.0](mi Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.61](%),	00779> 00780>	CALIB STAN
00646> 00647>		LGI=[207.25] (m), MNI=[0.03], SCI=[0.0] (00781>	
	*8	RAINFALL=[, , , ,](mm/hr), END=-1	00783>	
00650> 3 00651>	ADD HYD *%	IDsum=[0], NHYD=["000"], IDs to add=[6+7]	00785>	
0652>	ADD HYD *8	IDsum=[9], NHYD=["090"], IDs to add=[5+8]	00787>	
0654>		•	00788>	•
0655> : 0656>	ROUTE RESERVOIR	IDout={10}, NHYD=("POND"), IDin={9}, RDT=[1.0](min),	00790>	* SUB-AREA
0657>		TABLE of (OUTFLOW-STORAGE) values (cms) - (ha-m)		CALIB STAND
0659>		[0.000. 0.0000]	00794>	
0660>		[0.008, 0.0656] [0.017, 0.1311]	00795>	
)0662>)0663>		[0.093, 0.2831] [0.233, 0.3971]	00797>	
0664>		[0.337, 0.4731] [0.465, 0.5491]	00799>	+8
0666>		[0,531, 0,5871]	00801> 3	ADD HYD
0668>		(0.593, 0.6251) [0.654, 0.6631]	00803> 3	ADD HYD
0669>		[0.797, 0.7391] [0.950, 0.8274]	00804>	*****************
0671>		[1.304, 0.9157] [1.880, 1.0040]		SUB-AREA
0673>		[2.577, 1.0923]	00808> 0	CALIB STANE
		[-1 , -1] {max twenty pts}	<00809>	

		J. L.	Rich	ards	æ	Associates	Limite
0676	. ****************	********	********	******			
0677:	* Remaining Hav ************************************	thorne Indus	trial Par	k *			
0679:	* SUB-AREA No.1						
0681:	CALIB STANDHYD	ID=[1], N	HYD=["HIP	01"). DT	=[2.	5](min), AREA=[19.9	(ha),
0683:		XIMP=[0.50] SCS curve n	, TIMP=[0	1.71], DW.	F=[0	.0](cms), LOSS=[2],	
0685:	•	Down and arrest	F		4.67](nm), SLPP=[1.5](% (m), MNP=[0.25], SC), P=[0.0](m
0687: 0688:		Impervious	surfaces:	1Aimp=[LGI=[58	1.57 D1 (m](mm), SLPI=[0.6](%), MNI=[0.03], SCI=), (0.07(min
0689) 0690)	, *8	RAINFALL=[<u> </u>	,](mm/h	r),	<pre>j (mm), SLPP=[1.5] (% (m), MNP=[0.25], SC] (mm), SLPI=[0.6] (%), MNI=[0.03], SCI= END=-1</pre>	
0691> 0692>	ADD HYD	IDsum=[2]	, NHYD=["	HIP02"],	IDs	to add=[10+1]	1
0693; 0694;	• •						
0695: 0696:	CALIB STANDHYD	ID=[3], N	HYD=["HIP	03"], DT:	=[2.	5](min), AREA=[17](ha),
0697> 0698>		SCS curve n	umber CN≂	:(811.		5](min), AREA=[17](.0](cms), LOSS=[2],	
0699> 0700>		Pervious	surfaces:	IAper=[4 LGP=[100	1.67 0.0]	<pre>[(rem), SLPP=[1.5](% (m), MNP=[0.25], SC [(nun), SLPI=[0.65](') , MNI=[0.03], SCI=</pre>), P=[0.0](m
0701> 0702>		Impervious	surfaces:	IAimp=[] LGI=[450	1.57))1 (m)	(mm), SLPI=[0.65](, MNI=[0.03], SCI=	%), [0.0](min
0703> 0704>	*8	RAINFALL=[· · · ·	,] (mm/h)	r) ,	END=-1	
0705> 0706>	* SUB-AREA No.3						
0707> 0708>	CALIB STANDHYD	ID=[4], N	HYD=["HIP	04"], DT=	{2.5	5](min), AREA=[18.1]](ha),
0709> 0710>						5](min), AREA=[18.1] .0](cms), LOSS=[2],	
0711> 0712>		Pervious	surfaces:	IAper=[4 LGP=[100	0.0]	(msn), SLPP=[1.5](%) (m), MNP=[0.25], SC), P=[0.0](m
0713> 0714>		Impervious					
0715> 0716>	*9	RAINFALL=[, MNI=[0.03], SCI= END=-1	1
718>	ADD HYD	IDsum=[5]	, NHYD≃["	HIPO5"},	IDS	to add=[3+4]	1
0719> 0720>							
0721> 0722>	DESIGN NASHYD	ID=[6], NI	iYD=["Pone	d-Block"]	, DI	=[2.5]min, AREA=[4.	.0](ha),
)723>)724>		DWF=[0](cr RAINFALL=[as), CN/C	=[85], ,](mm/hr	ΤΡ=(), E	T=[2.5]min, AREA=[4. [0.17]hrs, ND=-1	
)725>)726>	+8						1
)727>)728>	ADD HYD	IDsum=[7]	NHYD=["	HIP06"],	IDs	to add=[2+5+6]	
)729>)730>							
)731>)732>	* SUB-AREA NO. 5						
734>	DESIGN NASHYD	$ID \simeq [10], I$ DWF = [0] (cms)	HYD=["A2" , CNC=[7	"], DT=[2 6], TP=[0	.5]π .37]	nin, AREA=[6.8](ha), hrs, ND=~1	
)735>)736>	*&	RAINFALL=[,		,] (mm/hr), E	ND=-1	
)737>)738>)739>	* SUB-AREA NO 4						
	DESIGN NASHYD	ID = [1], NI	YD=["A3"]], DT=[2.	5]mi	n, AREA=[5.3](ha),	
1742> 1743>	*8	DWF=[0](cms) RAINFALL=[,	, CNC=[/	5], TP⇒[0 ,](mm/hr	.804), E]hrs, ND=-1	
	ADD HYD	IDsum≂[2], N	HYD=["002	20"], IDs	to	add=[7+10+1]	
746>	******	, ,************	*******	*******	****	•••••	,
748>	 CALCULATION 	OF 3HR - 1.	25 VEAD	TOPM FUE	ATT	*****	
750>	START						
752>	*\$ *8					=[0], NRUN=[0] line for NSTORM tim	
754> 755>	CHICAGO STORM	IUNITS=[2], ICASEcs=[1],	TD=[3.0]	(hrs), T	PRAT	=[0.333], CSDT=[10	0.0] (min)
756> 757>	*=	A=[1402.884]	, B=[6.0	18], and			
759>	DEFAULT VALUES	ICASEdef=[1] DEFVAL FILEN	, read a AME=[V:\2	and print	val ENG\	ues SWMHYMO\"ORGA.VAL"]	
760> 761>							
763>	* ORGAWORLI	FILE	*				
764> 765>	******************	*******	****				
766>	* SUB-AREA No.1						
769>	CALIB STANDHYD	ID=[1], N XIMP=[0.84],	HYD=["010 TIMP=[0.	0"], DT=[84], DWF	2.5] =[0.	(min), AREA=[2.07 0](cms), LOSS=[2],] (ha),
770>							
772> 773> 774>		Impervious s	urfaces:	LGP=[20] IAimp=[1	(m), .57]	(mm), SLPP={1.0](%) MNP=[0.25], SCP= (mm), SLPI=[0.52](% (m), MNI=[0.03], S	[U.0] (mi),
774> 775> 776>		MINEADD-[/		LGI=[204] (mm/hr	, 72]) ,	(m), MNI=[0.03], s END=-1	
777> 778>	*					· `	[
779>		TD-(2) N	WD- 18030	11 bm_1			
781>		XIMP=[0.92], SCS curve nu	TIMP=[0.	92], DWF	=[0.	(min), AREA=[1.54 0](cms), LOSS=[2],	j(na),
783> 784>		Pervious s	urfaces.	Idport [4	673	(mm) SLBD-[1 0](8)	
785>		Impervious s	urfaces:	IAimp=[1.	.57]	(MM)P=[0.03], SCP=[0. (MM), SLPI=[0.50](% (m), MNI=[0.03], SCP), (IIII),
787>	*8	RAINFALL= ,] (mm/hr)	·	(m), MNI=[0.03], S END=-1	
789>	* SUB-AREA No.3						-1
791>		ID=[3] אייע	YD=("030"], DT=12	51 /-	nin), APEL=[1 /1/1	۱.
793> 794>						min), AREA=[1.4](ha D](cms), LOSS=[2],	
795>							
797>		Impervious s	urfaces:	IAimp=[1.	57]	(mma), SLPI=[0.51]	(%), (%), SCT=(0,0
799>	*8	RAINFALL=(,	· · · · ·] (mm/hr)	,	(mm), SLPP=[1.0](%) MNP=[0.03], SCP=[0.1 (mma), SLPI=[0.51]](m), MNI=[0.03], S END=-1	
801>	ADD HYD *8i	IDsum=[4], N	HYD=["04	0"], IDs	to a	add=[1+2]	1
803>	ADD HYD	IDsum=[5], N	IYD=["05	0"], IDs	to a	add=[3+4]	
805>							
307>				DT-[2 5]	(mi *		

ID=[6], NHYD=["060"], DT=[2.5] (min), AREA=[0.89] (ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81],

38> I 39>	*9 DEFAULT VALUES	ICASEdef=[1], read and print values DEFVAL_FILENAME=[V:\22973.DU\ENG\SWHYMO\"ORGA.VAL"]	01073> 01074>		LGI=[600] (m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , ,](mm/hr), END=-1
36> 37> *					
		A=[1569.580], B=[6.014], and C=[0.620],	01071>		LGP=[10.0](m), SLP=[1.3](#), LGP=[100.0](m), MNP=[0.25], SCP=[0.0 Impervious surfaces: IAimp={1.57}(mm), SLPI=[0.5](%),
34> 0		IUNITS=[2], TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0](min) ICASEcs=[1],	01069>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%),
	* §	[] <storm filename,="" for="" line="" nstorm="" one="" per="" td="" time<=""><td>01068></td><td>CALIB STANDHYD</td><td>ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[18.1](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0)(cms), LOSS=[2],</td></storm>	01068>	CALIB STANDHYD	ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[18.1](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0)(cms), LOSS=[2],
	START	TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]	01065>	* SUB-AREA No.3	
29> 1	CALCULATION	N OF 3HR - 1:50 YEAR STORM EVENT *	01063>	•	
26> 27> 1	******	***************************************	01061> 01062>		LGI=[450] (m), MMI=[0.03], SCI=[0.0] RAINFALL=[,,,,](mm/hr), END=-1
25>	*8		01059>		LGP=[100.0](m), MNP=[0.25], SCP=[0.(Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.65](%),
23>)	ADD HYD	IDsum=[2], NHYD=["0020"], IDs to add=[7+10+1]	01057> 01056>		SCS curve number CN=[81], Pervious surfaces: IAper=[4,67](mm), SLPP=[1,5](%).
20> 21>	• •	DWF=[0](cms), CNC=[76], TP=[0.804]hrs, RAINFALL=[, , , ,](mm/hr), END=-1	01056>		ID=[3 }, NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],
19> 1	DESIGN NASHYD	ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[5.3] (ha), NT=[0](m=1), $OT=[22]$, $TT=0(m=1)$	01054>		
	* SUB-AREA NO 4		01052>	+	•
15> 16>	-		01050>	ADD HYD	IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1]
13> 14>		DWF=[0](ms), CNC=[76], TP=[0.37]hrs, RAINFALL=(,,,,](mm/hr), END=-1	01048>	*8	LGI=[580] (m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , ,] (mm/hr), EMD=-1
11> 12> 1	DESIGN NASHYD	<pre>ID = [10], NHYD=["A2"}, DT=[2.5]min, AREA=[6.8](ha),</pre>	01046>		LGP=[100.0](m), MNP=[0.25], SCP=[0. Impervious surfaces: IAimp=[1.57](nm), SLPI=[0.6](%), LGF=[580](m), MNT=[0.03], SCT=[0.03]
09> 10>	* SUB-AREA NO. 5		01044>		Pervious surfaces: IAper=[4,67] (mm), SLPP=[1,5](%).
08>	ADD HYD *&	IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6]	01042>		XIM2=[0.50], TIM2=[0.71], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81],
05> 06>			01040>	CALIB STANDHYD	ID=[1], NHYD=["HIP01"], DT=[2.5](min), AREA=[19.9](ha)
04> '	*8	RAINFALL=[, , , ,] (mm/hr), END=-1		* SUB-AREA No.1	
01> 1 02> 03>	SSIGN MASHID	<pre>ID=[6 }, NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cms), CN/C=[85], TP=[0.17]hrs, DAINEDL=[</pre>	01036>	***************	<pre>wthorne Industrial Park * ***********************************</pre>
00>	DESIGN NASHYD		01034>	**************	****
98>		•	01033>		<pre>{ 2.577, 1.0923] [-1 , -1 } (max twenty pts)</pre>
96> 2 97>	ADD HYD *%	IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4]	01030>	•	[1.304, 0.9157] [1.680, 1.0040] [2.577]
94> 95>	*8	RAINFALL≃[,,,,](mm/hr), END=-1	01029>		[0.797, 0.7391] [0.950, 0.8274]
)2>)3>		Impervious surfaces: Limp=[1.57] (nm), SLPI=[0.5] (%), LGI=[600] (m), MNI=[0.03], SCI=[0.0] (min	01027>	•	[0.654, 0.6631]
90> 91>		Pervious surfaces: LAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m	01025>	•	[0.531, 0.5871]
38> 39>		XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],	01023>	•	(0.337, 0.4731)
36> 37>	CALIB STANDHYD	<pre>iD=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[18.1](ha), VTM=[0.50], mrm [0.71], DT=[2.5](min), AREA=[18.1](ha),</pre>	01021>	•	[0.093, 0.2831] [0.233, 0.3971]
85>	* SUB-AREA No.3		01019>	•	[0.008, 0.0656] [0.017, 0.1311]
	*8		01018>	•	(cms) - (ha-m) [0.000, 0.0000]
81> 82>		LGI=[450] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , ,](mm/hr), END=-1	01016>	•	TABLE of (OUTFLOW-STORAGE) values
79> 30>		LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.65] (3),	01014>	ROUTE RESERVOIR	IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min),
77> 78>		SCS curve number CN=[81], Pervious surfaces: IAper=[4,67](mm), SLPP=[1,5](%),	01012>	, * 8	
76>	CALIB STANDHYD	ID=[3], NHYD=["HIPO3"], DT=[2.5] (min), AREA=[17] (ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2],	01011>	> **	IDsum=[9], NHYD=["090"], IDs to add=[5+8]
74>			01009:	> *& > ADD HYD	IDsum=[8], NHYD=["080"], IDs to add=[6+7]
72>		, ·····	01006	>	LGI=[207.25] (m), MNI=[0.03], SCI=[0 RAINFALL=[, , ,](mm/hr), END=-1
70>	ADD HYD	IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1]	01005:	>	LGP=[20.0](m), MMP=[0.25], SCP=[0.0] Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.61](%), LGT=[207.25](m), MNI=[0.03], SCT=[0]
	*8	RAINFALL=[, , ,] (mm/hr), END=-1	01003	>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%),
66> 67>		Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.6](%), LGI=[580](m), MNI=[0.03], SCI=[0.0}(min	01001:	>	<pre>XIMP=(0.97), TIMP=(0.97), DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
64> 65>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m	009993	> > CALIB STANDHYD	ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha),
63>		SCS curve number CN=[81],		> * SUB-AREA No.5	
	CALIB STANDHYD	ID=[1], NHYD=["HIP01"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],	00995	> *8	RAINFALL=(, , , ,)(nm/hr) , END=-1
59>	* SUB-AREA No.1		00993	>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.93] (%), LGI=[164.82] (m), MNI=[0.03], SCI=[0
57> 58>	********	**************************************	00992:	>	Pervious surfaces: IAper=[4.67] (nm), SLPP=[0.7] (%), LGP=[40] (m), MNP=[0.25], SCP=[0.0].
56>	* Remaining Haw	**************************************	00990	>	SCS curve number CN=[81],
353> 354>		[-1 , -1] (max twenty pts)		> CALIB STANDHYD	<pre>ID=[6], NHYD=["060"], DT=[2.5] (min), AREA=[0.89] (ha), XIMP=[0.97], TIMP=[0.97], DWF=(0.0] (cms), LOSS=[2],</pre>
151> 152>		[1.880, 1.0040] [2.577, 1.0923]	00986	> * SUB-AREA No.4 >	
150>		[0.950, 0.8274] [1.304, 0.9157]	00985	> *8	-1
148>		[0.654, 0.6631] [0.797, 0.7391] [0.950, 0.9734]	00983	> *8 > ADD HYD	IDsum=[5], NHYD=["050"], IDs to add=[3+4]
46>		(0.593, 0.6251)	00981	> *8 > ADD HYD	IDsum=[4], NHYD=["040"], IDs to add=[1+2]
44>		[0.337, 0.4731] [0.465, 0.5491] [0.531, 0.5671]	00978	>	LGI=[225.63] (m), MNI=[0.03], SCI RAINFALL=[, , , ,] (mm/hr) , END=-1
42>		[0.233, 0.3971]	00976	>	LGP=[5](m), MNP=[0.03], SCP=[0.0](Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.51](%) LGI=[225.63](m), MNI=[0.03], SCI
40> 41>		(0.017, 0.1311) [0.093, 0.2831]	00975	>	SCS curve number CN=[61], Pervious surfaces: LAper=[4.67] (mm), SLPP=[1.0] (%), LCP=[5] (m), MNP=[0.03], SCP=[0.0] (
38> 39>		[0.000, 0.0000] [0.008, 0.0656]	00972	>	<pre>ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS = the set of the</pre>
36> 37>		TABLE of (OUTFLOW-STORAGE) values (cms) - (ha-m)	00971	> CALIB STANDHYD	
34> 35>	ROUTE RESERVOIR	IDout=[10], MHYD=["POND"], IDin=[9], RDT=[1.0](min),	00969		
32> 33>	*8		00967		LGI=[244.34] (m), MNI=[0.03], SCI= RAINFALL=(,,,,)(mm/hr), END=-1
30> 31>	*8 ADD HYD	<pre>IDsum=[9], NHYD=["090"], IDs to add=[5+8]</pre>	00965	>	LGP=[5] (m), MNP=[0.03], SCP=[0.0] (Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.50] (%), [CTF=[24,24] (m), SLPI=[0.52] (%),
328> 329>	*8ADD HYD	 IDsum=[8], NHYD=["080"], IDs to add=[6+7]	00962 00963 00964	>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.0](%), CD=[5](m), NND=[0.03] cor=[0.03]
826> 827>		LGI=[207.25](m), MNI=[0.03], SCI=[0.0](RAINFALL=[,,,,](mm/hr), END=-1	00961	>	<pre>ID=[2], NHYD=["020"], DT=[2.5](min), AREA=[1.54](h XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve purper purper (%)]</pre>
824> 825>		LGP=[20.0] (m), MNP=[0.25], SCP=[0.0] (mi Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.61] (%),	00959	> CALIB STANDHYD	
822> 823>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),	00957	> * > * SUB-AREA No.2	
821>	CALIB STANDHYD	<pre>ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],</pre>	00955		RAINFALL=[, , , ,](mm/hr), END=-1
819>	* SUB-AFRA No.5		00953	>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.52] (%), IGI=[204.72] (m), MNI=[0.03], SCI=
817>		-	00951		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%), LGP=[20](m), MNP=[0.25], SCP=[0.
316>		LGI=[164.82] (m), MNI=[0.03], SCI=[0.0] (RAINFALL=[, , ,] (mm/hr), END=-1	00949		<pre>XIMP=(0.84], TIMP=[0.84], DWF=(0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
14> 15> 16>		Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.93] (%),		> CALIB STANDHYD	ID=[1], NHYD=["010"], DT=[2.5] (min), AREA=[2.07](h

J. L. Richards & Associates Limited

i.....

(V:\...PSTPH1.dat)

01081> DESIGN NAASHYD 01082> 01083>	<pre>ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cms), CN/C=[85], TP=[0.17]hrs, RAINFALL=[, , ,](tmm/h), END=-1</pre>	01216> *********************************** 01217> * 01218> * SUB-AREA No.1	
01084> ** 01085>		01219> 01220> CALIB STANDHYD	ID=[1], NHYD=["HIP01"], DT=[2.5](min), AREA=[19.9](ha),
01086> 01087> ADD HYD	<pre>IDsum=[7], NHYD={"HIP06"], IDs to add=[2+5+6]</pre>	01221> 01222>	XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81],
01088> *&		01223> 01224>	<pre>Fervious surfaces: IAper=[4.67] (nm), SLPP=[1.5] (%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m)</pre>
01090> * SUB-AREA NO. 5 01091>		01225> 01226>	Impervious surfaces: IAimpe[157](mm), SLPI=[0.6](%), LGI=[580](m), MMI=[0.03], SCI=[0.0](min
01092> DESIGN NUASHYD 01093>	ID = [10], NHYD=["A2"], DT=[2.5]min, AREA=[6.8](ha), DWF=[0](cms), CNC=[76], TP=[0.37]hrs,	01227> 01228> *%	RAINFALL=(, , , ,) (mm/hr) , END=-1
01094> 01095> *%	RAINFALL=[, , , ,] (nm/hr), END=-1	01229> ADD HYD 01230> *8	IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1]
01096> 01097> * SUB-AREA NO 4		01231> * 01232> * SUB-AREA No.2	
01098> 01099> DESIGN NASHYD	ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[5.3](ha),	01233> 01234> CALIB STANDHYD	
01100> 01101>	DWF=(0](cms), CNC=[76], TP=[0.804]hrs, RAINFALL=[, , , ,](mm/hr), END=-1	01235> 01236>	<pre>ID=[3], MHYD=["HIP03"], DT=[2.5] (min), AREA=[17] (ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0] (cms), LOSS=[2], SCS curve number CN=[81],</pre>
01102> *8	IDsum=[2], NHYD=["0020"], IDs to add=[7+10+1]	01237> 01238>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%),
01104> *%		01239>	LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.65] (%),
01106> ******* ****************************	**************************************	01241>	LGI=[450] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , ,] (mm/hr), END=-1
	**************************************	01242> *% 01243> * 01244> * SUB-AREA No.3	
01110> START 01111> *%	<pre>TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0] [] <storm filename,="" for="" line="" nstorm="" one="" per="" pre="" time<=""></storm></pre>	01245>	
01112> *8 STORM		01246> CALIB STANDHYD 01247>	<pre>ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[19.1](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],</pre>
01114> 01115>	ICASEcs=[1],	01248> 01249>	<pre>SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%),</pre>
)1116> *8	<pre>R=[1735.688], B=[6.014], and C=[0.820], </pre>	01250> 01251>	LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.5](%),
)1118>)1119> *8	DEFVAL_FILENAME = {V: \22973.DU\ENG\SWMHYMO\"ORGA.VAL"]	01252> 01253>	LGI=[600](m), MNI=[0.03], SCI=[0.0](min RAINFALL=[, , , ,](mm/hr), END=-1
)1120>)1121> ******** *************************	······································	01254> *8 01255> ADD HYD	IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4]
	RLD FILE *	01256> *%	
01124>	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	01258> *SUB-AREA No.4 01259>	
)1125> * SUB-AREA No.1)1126>		01260> DESIGN NASHYD 01261>	<pre>ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cms), CN/C=[85], TP=[0.17]hrs,</pre>
01127> CALIB STANDHYD 01128>	ID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07 }(ha), XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2],	01262> 01263> *%	RAINFALL=[, , , ,](mm/hr), END=-1
01129> 01130>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.0](%),	01264> 01265>	
01131> 01132>	LGP=[20] (m), MNP=[0.25], SCP=[0.0] (mi Impervious surfaces: IAimp=[1.57] (mum), SLPI=[0.52] (%),	01266> ADD HYD 01267> *%	IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6]
01133> 01134>	LGI=[204.72] (m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , ,](mm/hr), END=-1	01268> 01269> * SUB-AREA NO. 5	
01135> *&		01270> 01271> DESIGN NASHYD	ID = [10], NHYD=["A2"], DT=[2.5]min, AREA=[6.8](ha),
01137> * SUB-AREA No.2 01138>		01272> 01273>	DWF=[0](cms), CNC=[76], TP=[0.37]hrs, RAINFALL=[, , , ,](mm/hr), END=-1
)1139> CALIB STANDHYD)1140>	<pre>ID=[2], NHYD=["020"], DT=[2.5](min), AREA=[1.54](ha), XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2],</pre>	01274> *8	
)1141>)1142>	SCS Curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.0](%).	01276> * SUB-AREA NO 4 01277>	
01143> 01144>	LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min), Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.50] (%),	01278> DESIGN NASHYD 01279>	ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[5.3](ha), DWF=[0](cms), CNC=[76], TP=[0.804]hrs,
)1145>)1146>	LGI=[244.34] (m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , ,](mm/hr), END=-1	01280> 01281> *8	RAINFALL= { , , , , } (mm/hr), END=-1
)1147> *8)1148> *		01282> ADD HYD 01283> *8	IDsum=[2], NHYD=["0020"], IDs to add=[7+10+1]
)1149> * SUB-AREA No.3)1150>		01284> 01285> FINISH	•
)1151> CALIB STANDHYD)1152>	ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],	01286>	.87 ha x 1.4 m deep***********************************
1153>	SCS curve number CN=[61], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.0](%),	01288>	TABLE of (OUTFLOW-STORAGE) values (cms) - (ha-m)
01155> 01156>	LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min), Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.51](%),	01290> 01291>	[0.0 , 0.0] [0.10, 0.374]
01157> 01158>	LGI=[225.63](m), MNI=[0.03], SCI=[0.0 RAINFALL=[, , ,](mm/hr), END=-1	01292> 01293>	[0.25, 0.748] [0.50, 1.122]
01159> *& 01160> ADD HYD	IDsum=[4], NHYD=["040"], IDs to add=[1+2]	01294> 01295>	[0.85, 1.496] [1.20, 1.870]
1161> **	IDsum=[5], NHYD=["050"], IDs to add=[3+4]	01296> 01297>	(1.30, 2.244] (1.50, 2.618]
1163> **		01298> 01299>	[-1 , -1]
01165> * SUB-AREA No.4 01166>		01300> 01301> *****Rough Pond 1	50x150 x 1.4 m deep****************
1167> CALIB STANDHYD 1168>	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],</pre>	01302> 01303>	(cms) ~ (ba−m) [0.0,0.0]
1169> 1170>	SCS curve number CN=[61], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.7](%),	01304> 01305>	[0.16, 0.45] [0.31, 0.900]
1171> 1172>	LGP=[40](m), MNP=[0.25], SCP=[0.0](min) Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.93](%),	01306> 01307>	[0.60, 1.350] [0.95, 1.800]
1173> 1174>	LGI=[164.82] (m), MNI=[0.03], SCI=[0.0] (RAINFALL=[, , ,](mm/hr), END=-1	01308> 01309>	[1.40, 2.25] [1.45, 2.700]
1175> ** 1176> *		01310> 01311>	[1.50, 3.150] [-1 , -1] (max twenty pts)
1177> * SUB-AREA No.5 1178>		01312> 01313>	· · · · · · · · · · · · · · · · · · ·
1179> CALIB STANDHYD 1180>	ID=[7], NHYD=["070"], DT=[2.5] (min), AREA=[2.66] (ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0] (cms), LOSS=[2],	01314> 01315>	
1181> 1182>	SCS curve number CN=[81], Pervious surfaces: IAper≃[4.67](mm), SLPP=[1.5](%),	01316> 01317>	
1183> 1184>	LGP=[20.0] (m), MNP=[0.25], SCP=[0.0] (mi Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.61] (%),	01310> 01319>	
1185> 1186>	LGI=[207.25](m), MNI=[0.03], SCI=[0.0](RAINFALL={ , , ,](mm/hr), END=-1	01320> 01321>	
1187> *% 1188> ADD HYD	<pre>IDsum=[8], NHYD=["080"], IDs to add=[6+7]</pre>	01322>	
1189> *% 1190> ADD HYD	-[] IDsum=[9], NHYD=["090"], IDs to add=[5+8]	01324> 01325>	
1191> ** 1192>		01326> 01327>	
1193> ROUTE RESERVOIR 1194>	<pre>IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min),</pre>	01328> 01329>	
1195> 1196>	TABLE of (OUTFLOW-STORAGE) values (cms) - (ha-m)	01330> 01331>	
1197> 1198>	[0.000, 0.0000] [0.008, 0.0656]	01332> 01333>	
1199> 1200>	[0.017, 0.1311] [0.093, 0.2831]	01334> 01335>	
1201> 1202>	[0.233, 0.3971] [0.337, 0.4731]	01336>	
1203> 1204>	[0.465, 0.5491] [0.531, 0.5671]	01338> 01339>	
1205> 1206>	(0.553, 0.6251) [0.654, 0.6631]	01339> 01340> 01341>	
1208> 1207> 1208>	[0.734, 0.7391] [0.750, 0.7391] [0.950, 0.8274]	01342>	
1208> 1209> 1210>	[0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040]	01343>	
1210> 1211> 1212>	[2.577, 1.0923]	01345>	
1213>	[-1 , -1] (max twenty pts)	01347> 01348>	
	wthorne Industrial Park *	01349> 01350>	
		1	

00001

00001> 00002> 00003> 00004> 00005> 00006>

00007>

00026>

00027> 00028> 00029>

00029> 00030> 00031> 00032> 00033> 00034> 00035>

00048>

00098> 00098> 00098> 00099> 00100> 00101>

00127:

00128> 00129> 00130> 00131>

00132> 00133> 00133> 00134> 00135>

Storage Coeff. (min)= Unit Hyd. Tpeak (min)≈ Unit Hyd. peak (cms)= 29.27 (ii) 30.00 .04 00136> 10.60 (ii) 10.00 00137> 00138> 00139> 00140> 00142> 00142> 00143> 00144> 00145> 00145> 00146> 00147> 00148> 00147> 00148> 00149> 00150> *TOTALS* .158 (iii) 1.292 20.508 24.999 .820 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = .00 1.75 5.17 25.00 .21 .16 1.29 23.43 25.00 .94

 00005
 StornWater Management HYdrologic Model
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 1
 1
 1
 1< (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (i) AN FACEBORG SELECTED FOR FORVIOUS LOSSES: CN *= 81.0 Ia = Dep. Storage (Above)

 (ii) TIME STEF (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 00151>
 CALLE STANDHYD
 |
 Area (ha]=
 1.54

 | 02:020
 DT=
 2.50
 |
 Total Imp(%)=
 92.00
 Dir. Conn.(%)=
 92.00
 ++++++ Licensed user: J. L. Richards & Associates Limited ++++++ +++++++ Otawa SERLAL#:4418403 ++++++ 00158> 00159> 00160> 00161> 00162> IMPERVIOUS PERVIOUS (1) Surface Area Dep. Storage Average Slope Length Mannings n (ha) = (mm) = (%) = (m) = = 1.42 1.57 .50 244.34 .030 .12 4.67 1.00 ******
 Hittit PROGRAM ARRAY DIMENSIONS +++++

 Maximum value for ID numbers : 10

 Max. number of rainfall points: 15000

 Max. number of flow points : 15000
 00163> 00164> 00165> 00165> 00165> 00167> 00172> 00172> 00174> 00175> 00174> 00175> 00174> 00175> 00174> 00175> 00174> 00174> 00175> 00174> 00175> 00174> 00175> 00174> 00175> 00174> 00175> 001815> 00185 00185> 00185 000185> 00185 000185 000185 0 5.00 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 45.63 12.50 12.15 (ii) 12.50 .09 7.24 15.00 14.15 (ii) 15.00 .08 *TOTALS* .121 (iii) 1.333 21.969 24.999 .12 1.33 23.43 25.00 .94 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .00 1.46 5.17 25.00 .21 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (1) CN PROCLEDERS SELECTED FOR PERVIOUS LOSSES;
 (N* = 81.0 I a = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00185> 00185> 00186> 00187> 00188> 00189> 001:0006-----SUB-AREA No.3 | CALIE STANDHYD | Area (ha)= 1.40 | 03:030 DT= 2.50 | Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 00190) 00191> 00192> 00193> 00194> 00195> 00196> 00196> 00196> 00201> 00200> 00201> 00204> 00205> 00206> 00205> 00206> 00205> 00206> 00201> 00211> 00211> 00215> 00215> 00215> IMPERVIOUS Surface Area(ha)=Dep. Storage(mm)=Average Slope(%)=Length(m)=Mannings n= PERVIOUS (i) 1.36 1.57 .51 225.63 .030 .04 4.67 1.00 5.00 .030 45.63 12.50 11.52 (ii) 12.50 .10 7.97 12.50 13.44 (ii) 12.50 .09 *TOTALS* .110 (iii) 1.333 22.881 .12 1.33 23.43 25.00 .94 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = .00 1.42 5.17 25.00 .21 .915 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (1) AN PROCLIMMEND FOR PERVIOUS LOSSES:
 CN*= 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00080> * CALCULATION OF 4 HR 25 MM STORM EVENT * 00084> ----- k
00085> TZERG = .00 hrs o
00085> TZERG = .00 hrs o
00086> METCUT= 2 (output
00087> NRUN = 001
00088> NSTORM= 0
00089> 001:002-----00090> 001:002------AREA QPEAK (ha) (cms) 2.07 .158 1.54 .121 TPEAK R.V. (hrs) (mm) 1.29 20.51 1.33 21.97 (cms) .000 .000 002223> 00223> 00224> 00225> 00226> 00227> ID1 01:010 +ID2 02:020 3.61 SUM 04:040 .278 1.33 21.13 .000 00228> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00102> -----001:0003-----

J. L. Richards & Associates Limited

(ha) = (nun) = (%) = (m) = =

IMPERVIOUS

1.74 1.57 .52 204.72 .030

45.63 10.00

PERVIOUS (i)

.33 4.67 1.00 20.00 .250

Surface Area Dep. Storage Average Slope Length Mannings n

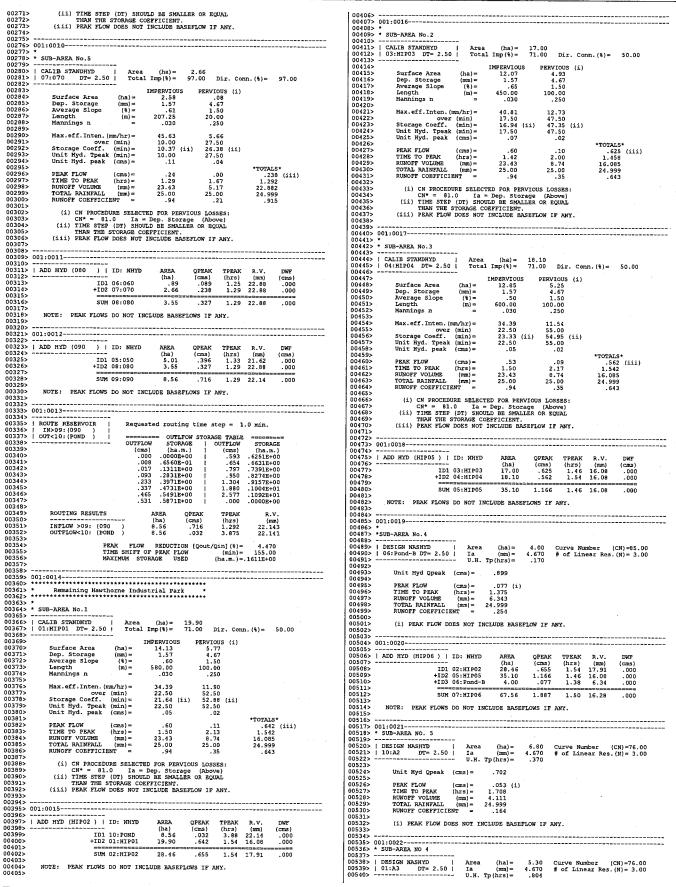
Max.eff.Inten. (mm/hr) = over (min)

J. L. Richards & Associates Limited

Page 0

TOTALS .089 (iii) 1.250 22.882 24.999 .915

.09 1.25 23.43 25.00 .94


(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)

.00 5.17 25.00

.21

PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT =

00262> 00263> 00264> 00265> 00266> 00267> 00268> 00268> 00269> 00269>

J. L. Richards & Associates Limited

Page 1

00541> 00542>		00676> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 00677> THAN THE STORAGE COEFFICIENT.
00543> 00544> 00545>	PEAK FLOW $(cms) = .025$ (i)	00678> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00679>
00545> 00546> 00547>	RUNOFF VOLUME (mm) = 4.110	00680>
00548>	RUNOFF COEFFICIENT = .164	00683> * SUB-AREA No.3
00550>	PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	00685> CALIE STANDHYD Area (ha)= 1.40 00685> 03:030 DT≃2.50 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00
00552> 00553>	001:0023	00687>
00555>	ADD HYD (0020) ID: NHYD AREA QPEAK TPEAK R.V. DWF	00689> Surface Area (ha)= 1.36 .04 00690> Dep. Storage (mm)= 1.57 4.67
00556> 00557> 00558>	(ha) (cms) (hrs) (mm) (cms) ID1 07:HIP06 67.56 1.887 1.50 16.28 .000	00691> Average Slope (%)= .51 1.00 00692> Length (m)= 225.63 5.00
00559>	+ID3 01:A3 5.30 .025 2.33 4.11 .000	00693> Mannings n = .030 .030 00694> 00695> Max.eff.Inten.(mm/hr)= 76.81 16.59
00561>	SUM 02:0020 79.66 1.941 1.50 14.43 .000	00695> Max.eff.Inten.(mm/hr)= 76.81 16.59 00696> over (min) 10.00 10.00 00697> Storage Coeff. (min)= 9.35 (ii) 10.79 (ii)
00563>	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	00699> Unit Hyd. Tpeak (min)= 10.00 10.00 00699> Unit Hyd. peak (cms)= .12 .11
00565> 00566>	001:0024	00700> *TOTALS*
00568>	* CALCULATION OF 3HR - 1:2 YEAR STORM EVENT *	00702> TIME TO PEAK (hrs)= 1.08 1.13 1.003 00703> RUNOFF VOLUME (mma)= 30.29 8.52 29.637
00570>		100/05> RUNOFF COEFFICIENT = .95 .27 .930
00572>	START Project dir.: V:\20983.DU\ENG\3RDSUB-1\SWMMYMO\ Rainfall dir.: V:\20983.DU\ENG\3RDSUB-1\SWMYYMO\	00706> 00707> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
00574>	$METOUT= 2 (output \simeq METRIC)$	00708> CN* = 81.0 Ia = Dep. Storage (Above) 00709> (ii) TIME STEF (DT) SHOULD BE SMALLER OR EQUAL 00710> THAN THE STORAGE COEFFICIENT.
00576>	NSTORM= 0	00712> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
00578>	001:0002	00713>
	CHICAGO STORM IDF curve parameters: A= 732.951 Ptotal= 31.86 mm B= 6.199 C= .810	00715>
00583>	$C = \frac{C}{1000} =$	00717> (ha) (cms) (hrs) (mm) (cms) 00718> IDI 01:010 2.07 .245 1.08 26.81 .000
00584>		
00586> 00587> 00588>	Storm time step = 10.00 min Time to peak ratio = .33	00721> SUM 04:040 3.61 .436 1.08 27.55 .000 00722>
00589>	TIME RAIN TIME RAIN TIME RAIN TIME RAIN hrs man/hr hrs mm/hr hrs mm/hr hrs mm/hr .17 2.015 1.00 76.005 1.83 5.095 2.67 2.684	00723> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00724> 00725>
00591>		00726> 001:0008
00593> 00594>	.50 3.498 1.1.7 24.079 2.000 4.291 2.83 2.485 .50 4.687 1.1.3 12.364 2.17 3.718 3.00 2.279 .67 7.305 1.50 8.324 2.33 3.288 4 .63 18.209 1.67 6.303 2.50 2.953 4	00728> ADD HYD (050) ID: NHYD AREA QPEAK TPEAK R.V. DWF
00595> 00596>		00729> (ha) (cms) (hrs) (mm) (cass) 00730> ID1 03:030 1.40 .186 1.08 29.64 .000 00731> + ID2 04:040 3.61 .436 1.08 27.55 .000
00597>	001:0003	00732> SUM 05:050 5.01 .623 1.08 28.13 .000
00600>	DEFAULT VALUES Filename: V:\20983.DU\ENG\3RDSUB-1\SWMMYMO\ORGA.VAL ICASEdv = 1 (read and print data)	00734> 00735> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
00602>	FileTitle= ENTER YOUR COMMENTS ON THIS LINE AND THE NEXT ONE	00736> 00737>
00604>	Horton's infiltration equation parameters: [Fo= 50.00 mm/hr] [Fc= 7.50 mm/hr] [DCAY= 2.00 /hr] [F= .00 mm]	00735 * * 005-005-007-007-007-007-007-007-007-007-
00606> 00607>	Parameters for PERVIOUS surfaces in STANDHYD: [IAper= 4.67 mm] [LGP=40.00 m] [MNP= .250]	
00608> 00609>	Parameters for IMPERVIOUS surfaces in STANDHYD: [IAimp= 1.57 mm] [CLI= 1.50] (MNI= .035]	00742> CALIB STANDHYD Area (ha)= .89 00743> 06:060 pT=2.50 Total Imp(%)= 97.00 Dir. Cohn.(%)= 97.00 00744>
00610> 00611>	[Ia = 4.67 mm] [N = 3.00]	00745> IMPERVIOUS PERVIOUS (i) 00746> Surface Area (ha)= .86 .03
00612>	001:0004	00747> Dep.Storage (mm.)= 1.57 4.67 00748> Average Slope (%)= .93 .70 00749> Length (m)= 164.82 40.00
006155	* ORGAWORLD FILE *	00749> Length (m)= 164.82 40.00 00750> Mannings n = .030 .250 00751>
00617>	* SUB-AREA NO.1	00752> Max.eff.Inten.(mm/hr)= 76.81 10.24 00753> over (min) 7.50 30.00
00619> 00620>	CALIB STANDHYD Area (ha)= 2.07 01:010 DT= 2.50 Total Imp(%)= 84.00 Dir. Conn.(%)= 84.00	00754> Storage Coeff. (min)= 6.47 (ii) 30.53 (ii) 00755> Unit Hyd. Tpeak (min)= 7.50 30.00
00621>	IMPERVIOUS PERVIOUS (i)	00756> Unit Hyd. peak (cms)= .16 .04 00757> *ToTALS*
00623>	Surface Area (ha) = 1.74 .33 Dep. Storage (mm) = 1.57 4.67	00758> PEAK FLOW (cms)= .14 .00 .139 (iii) 00759> TIME TO PEAK (hrs)= 1.04 1.54 1.042
00625> 00626> 00627>	Dep. Storage (mm) = 1.57 4.67 Average Slope (%) = .52 1.00 Length (m) = 204.72 20.00 Mannings = .030 .250	00760> RUNOFF VOLUME (mm)= 30.29 8.52 29.637 00761> TOTAL RAINFALL (mm)= 31.86 31.86 31.86 00762> RUNOFF COFFICIENT = 95 .77 930
00628>	Mannings n = .030 .250 Max.eff.Inten.(nmm/hr)≈ 76.81 11.88	00762> RUNOFP COEFFICIENT = .95 .27 .930 00763> 00764> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
00630> 00631>	over (min) 10.00 22.50 Storage Coeff. (min)= 8.77 (ii) 22.21 (ii)	00765> CN* = 81.0 Ia = bep. Storage (Above) 00766> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
00632> 00633>	Unit Hyd. Tpeak (min)= 10.00 22.50 Unit Hyd. peak (cms)= .12 .05	00767> THAN THE STORAGE COEFFICIENT. 00768> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
00634> 00635>	*TOTALS* PEAK FLOW (cms)= .24 .01 .245 (iii)	00769> 00770>
00636>	TIME TO PEAK (hrs)= 1.08 1.38 RUNOFF VOLUME (mm)= 30.29 8.52 26.807 TOTAL RAINFALL (mm)= 31.86 31.86 31.86	00771> 001:0010
00638> 00639> 00640>	TOTAL RAINFALL (mm) = 31.86 31.86 31.860 RUNOFF COEFFICIENT = .95 .27 .841	00773> * SUB-AREA NO.5 00774>
00641>	(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	00775> CALIE STANDHYD Area (ha)= 2.66 00775> CALIE STANDHYD Area (ha)= 2.66 00776> 07:070 DT=2.50 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00
00643>	<pre>(i) CN* = 81.0 I a = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.</pre>	007778> IMPERVIOUS PERVIOUS (1) 00779> Surface Area (ha)= 2.58 .08
00645>	(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	00780> Dep. Storage (mm)= 1.57 4.67 00781> Average Slope (%)= .61 1.50
	001:0005	00782> Length (m)= 207.25 20.00 00783> Mannings n = .030 .250
	* SUB-AREA No.2	00784> 00785> Max.eff.Inten.(mm/hr)= 76.81 12.71
00651>	CALIB STANDHYD Area (ha)= 1.54 02:020 DT= 2.50 Total Imp(%)= 92.00 Dir. Conn.(%)= 92.00	00786> over (min) 7.50 20.00 00787> Storage Coeff. (min)= 8.42 (ii) 20.00 (ii)
00654>		00788> Unit Hyd. Tpeak (min)= 7.50 20.00 00789> Unit Hyd. peak (cms)= .14 .06
00655> 00656> 00657>	IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 1.42 .12 Dep. Storage (mm)= 1.57 4.67	00790> *TOTALS* 00791> PEAK FLOW (cmms)= .36 .00 .379 (iii) 00792> TIME TO PEAK (hrs)= 1.04 1.33 1.042
00658>	Dep: Storage (mm)= 1.57 4.67 Average Slope ($(*)$)= .50 1.00 Length (m)= 244.34 5.00	00793> RUNOFF VOLUME (mm) = 30.29 8.52 29.637
00660> 00661>	Mannings n = .030 .030	00794> TOTAL RAINFALL (mm)= 31.86 31.96 31.860 00795> RUNOFF COEFFICIENT = .95 .27 .930 00796>
00662> 00663>	Max.eff.Inten.(mm/hr)= 76.81 15.07 over (min) 10.00 12.50	00797> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 00798> $CN^* = 81.0$ Ia = Dep. Storage (Above)
00664> 00665>	Storage Coeff. (min)= 9.87 (ii) 11.36 (ii) Unit Hyd. Tpeak (min)= 10.00 12.50	00799> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 00800> THAN THE STORAGE COEFFICIENT.
00666>	Unit Hyd. peak (cms)= .11 .10 *TOTALS*	00801> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00802>
00668> 00669> 00670>	PEAK FLOW (cms)= .19 .00 .192 (iii) TIME TO PEAK (hrs)= 1.08 1.17 1.083 PUNDEN VOLTMEN (cms)= .20 9.52 28.540	00803>
00670> 00671> 00672>	RUNOFF VOLUME (mm)= 30.29 9.52 28.540 TOTAL RAINFALL (mm)= 31.86 31.86 RUNOFF COEFFICIENT = .95 .27 .896	00805>
00673>	RUNOFF COEFFICIENT = .95 .27 .896 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	00807> (mma) (mmb) (mmb) <t< td=""></t<>
00675>	CN* = 81.0 Ia = Dep. Storage (Above)	00800> +102 0/:0/0 2.56 .3/9 1.04 29.64 .000 00810> ====================================

J. L. Richards & Associates Limited

Page 2

SUM 08:080 3.55 .518 1.04 29.64 .000 00946> Length Mannings n (m) = 600.00 100.00 00948> 00948> 00949> 00950> 00813> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 50.44
 22.17

 20.00
 45.00

 20.01 (ii)
 44.37 (ii)

 20.00
 45.00

 .06
 .03
 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)≃ 00951> 00952> 00953> 00954> 00955> 00956> 00956> 00956> 00961> 00962> 00964> 00964> 00964> 00965> 00966> Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = *TOTALS* .874 (iii) 1.292 21.814 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COSFFICIENT = .80 1.25 30.29 31.86 .95 .18 1.79 13.34 31.86 .42 31.860 . 685 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 013-----00827> -----00828> 001:0013 00829> -----Requested routing time step = 1.0 min. | ROUTE RESERVOIR 00830> 00830> 00831> 00832> 00833> 00834> 00835> | IN>09: (090) | OUT<10: (POND) 00967> -----00836> 00838> 00839> 00840> 00841> 00842 00843> 00844> 00845> 00845> 00846> ROUTING RESULTS R.V. (mm) 28.757 28.754 00847> 00983> -----00985> | DESIGN NASNYD | Area (ha)= 4.00 Curve Number (CN)=85.00 0985> | 06:Pond-B Dr 2.50 | Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 00986> Unit Hyd Qpeak (cms)= .170 00989> Unit Hyd Qpeak (cms)= .899 00848> PEAK FLOW REDUCTION [Qout/Qin](%)= 5.030 TIME SHIFT OF PEAK FLOW (min)= 115.00 MAXIMUM STORAGE USED (ha.m.)=.2095E+00 00849> 00850> 00851> 00852> 00853> PEAK FLOW (cms) = .145 (i) TIME TO PEAK (hrs) = 1.167 RUNOFF VOLUME (nms) = 10.266 TOTAL RAINFALL (mms) = 31.860 RUNOFF COEFFICIENT = .322 00990> 00990> 00991> 00992> 00993> 00994> 00995> 00858> * SUB-AREA No.1 00859>
 Closest
 Constraint

 00995>
 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 00995>
 001002

 00995>
 001002

 010005
 (ii) PEAK TYPEAK R.V. DWF

 010005
 (iii) Carses

 010005
 (iii) Carses

 010005
 (iiii) Carses

 010005
 +1D2 05:HIP02 28.46 1.039 1.25 23.90 .000

 010005
 +1D2 05:HIP05 35.10 1.81 4.1 21.81 .000

 010055
 +1D3 06:Pond-B 4.00 .145 1.17 10.27 .000

 010065
 SUM 07:HIP06 67.55 2.992 1.21 22.01 .000

 01007 SUM 07:HIP06 67.55 2.992 1.21 22.01 .000
 (CALIE STANDHYD | Area (ha)= 19.90 | 01:HIP01 DT= 2.50 | Total Imp(%)= 71:00 Dir. Conn.(%)= 50.00 00860> 00861> 00862> 00863> Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = PERVIOUS (i) 00864> 00865> 00865> 00866> 00867> 00868> 5.77 4.67 1.50 100.00 .250 14.13 1.57 .60 580.00 .030 00869> 00870> 00871> 00872> 00872> 00873> 00874> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms)≈ 01007 SUM 07:HIP06 67.56 2.992 1.2 01009 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 010102 00875> 00875> 00876> 00877> 00878> 00878> PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (nm)= TOTAL RAINFALL (nm)= RUNOFF COEFFICIENT = *TOTALS* 1.020 (iii) 1.250 21.814 31.860 .685 00880> 00881> 00882> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN⁴ = 01.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DI) SHOULD BE SMALLER OR RQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00883> 00884> 01019> 01020> 01021> 01022> 00885>
 PEAK FLOW
 (cms)=
 .102 (i)

 TIME TO PEAK (hrs)=
 1.458

 RUNOFF VOLUME (mm)=
 6.883

 TOTAL FAINFALL (mm)=
 31.860

 RUNOFF COEFFICIENT =
 .216
 01022> 01023> 01024> 01025> 01025> 01026> 01027> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01028> 01028> 01029> 01032 01032> 01032 0100 01032 0100 01032 0100 01032 01000 01000 0100 0100 01000 01000 01000 01000 01000 010 00897> 00898> 00898> 00900> 00901> 00902> SUM 02:HIP02 28.46 1.039 1.25 23.90 . 000 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 001:0016-----00903> 00904> * * SUB-AREA No.2
 PEAK FLOW
 (cms)=
 .048 (i)

 TIME TO PEAK
 (hrs)=
 2.083

 RUNOFF VOLUME
 (mm)=
 6.883

 TOTAL RAINFALL
 (mm)=
 31.860

 RUNOFF COEFFICIENT
 =
 .216
 01039> 01039> 01040> 01041> 01042> 01043> 01044> 00905> 4.93 4.67 1.50 100.00 .250 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01045> 00914> 00914> 00915> 00916> 00917> 00918> -- .250 59.23 25.04 15.00 37.50 14.60 (ii) 37.80 (ii) 15.00 37.50 .08 .03 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 00918> 00919> 00920> 00921> 00922> 00922> 00923> 00924> 00925> *TOTALS* .978 (iii) 1.167 21.814 31.860 PEAK FLOW (Cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .91 .19 1.17 1.63 30.29 13.34 31.86 31.86 .95 .42 01055> SUM 02:0020 /9.66 3.0// 1.21 01057> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01059> 00926> 00927> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN[#] = 01.0 Ia = Dep. Scorage (Above) (ii) TIME STEP (D7) SHOULD BE SHALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PERK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00927> 00928> (i 00929> (i) 00931> 00932> (iii) 00933> 00934> ------00936> * cmp.pp: * SUB-AREA No.3 00937> 00938> | CALIE STANDHYD | Area (ha)= 10.10 | 04:HIPO4 DT= 2.50 | Total Imp(6)= 71.00 Dir. Conn.(%)= 50.00 | IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 12.65 5.25 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= .50 1.50 00939> 00940> 00941> 00942> 00943> 00944> 01079> Duration of storm = 3.00 hrs

> Storm time step = 10.00 min > Time to peak ratio = .33	01216> 5UM 04:040 3.61 .645 1.04 37.64 .000 01217>
> TIME RAIN TIME RAIN TIME RAIN TIME RAIN > hrs.mm/hr hrs.mm/hr hrs.mm/hr hrs.mm/hr	01218> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01219>
> .17 3.682 1.00 104.193 1.83 6.689 2.67 3.510	01220>
.33 4.582 1.17 32.037 2.00 5.628 2.83 3.220 .50 6.151 1.33 16.337 2.17 4.872 3.00 2.978	01222>
.67 9.614 1.50 10.965 2.33 4.305	01224> (ha) (cms) (hrs) (mm) (cms)
.83 24.170 1.67 8.287 2.50 3.864	01225> ID1 03:030 1.40 .274 1.04 40.16 .000 01226> +ID2 04:040 3.61 .645 1.04 37.64 .000
00 1:0003	01227> SUM 05:050 5.01 .918 1.04 38.34 .000
DEFAULT VALUES Filename: V:\20983.DU\ENG\3RDSUB-1\SWMHYMO\ORGA.VAL ICASEdv = 1 (read and print data)	01229> 01230> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
	01230>
PARAMETER VALUES MUST BE ENTERD AFTER COLUMN 60	01233> 001:0009
[Fo= 50.00 mm/hr] $[Fc= 7.50 mm/hr]$ $[DCAY= 2.00 /hr]$ $[F= .00 mm]$	01234> * 01235> * SUB-AREA NO.4
[LAper= 4.67 nm] [LGP=40.00 m] [MNP= .250]	01236> 01237> CALIB STANDHYD Area (ha)= .89
Parameters for INDEDVIOUS curfaces in SEDNDAVD.	01238> 06:060 DT= 2.50 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 01239>
[IAimp= 1.57 mm] (CLT 1.50] (MNI= .035] Parameters used in NASHD: [Ia= 4.67 mm] [N= 3.00]	01240> IMPERVIOUS PERVIOUS (i)
001:0004	01241> Surface Area (ha)= .86 .03 01242> Dep. Storage (mm)= 1.57 4.67
** ****************************	01243> Average Slope (%)= .93 .70 01244> Length (m)= 164.82 40.00
* ORGAWORLD FILE *	01245> Mannings n = .030 .250
* SFUB-AREA No.1	01247> Max.eff.Inten.(mm/hr)= 104.19 20.32
) CALIB STANDHYD Area (ha)= 2.07 Clicllo DT= 2.50 Total Imp(%)= 84.00 Dir. Comm.(%)= 84.00	01248> over (min) 5.00 25.00 01249> Storage Coeff. (min)= 5.72 (ii) 24.02 (ii)
C/1:010 DT= 2.50 Total Imp(%)= 84.00 Dir. Conn.(%)= 84.00	01250> Unit Hyd. Tpeak (min)= 5.00 25.00 01251> Unit Hyd. peak (cms)= .20 .05
IMPERVIOUS PERVIOUS (i) Surface Area (ba) = 1.74 .33	01252> *TOTALS*
Dep. Storage (mm) = 1.57 4.67	01253> PEAK FLOW (cms)= .20 .00 .205 (iii) 01254> TIME TO PEAK (hrs)= 1.00 1.38 1.000
Average Slope (%)= .52 1.00 Length (m)= 204.72 20.00	01255> RUNOFF VOLUME (mm) = 40.94 14.70 40.157 01256> TOTAL RAINFALL (mm) = 42.51 42.51 42.514
Mannings n = .030 .250	01257> RUNOFF COEFFICIENT = .96 .35 .945
Max.eff.Inten.(mm/hr) = 104.19 24.26	01258> 01259> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
over (min) 7.50 17.50 Storage Coeff. (min)= 7.76 (ii) 17.86 (ii)	01260> CN* = 81.0 Ia = Dep. Storage (Above) 01261> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
Unit Hyd. Tpeak (min)= 7.50 17.50 Unit Hyd. peak (cms)= .15 .06	01262> THAN THE STORAGE COEFFICIENT. 01263> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
PERK FLOW (makes 24 Classical States)	01264>
PEAK FLOW (cms)= .36 .01 .362 (iii) TIME TO PEAK (hrs)= 1.04 1.25 1.042	01265>
RUNOFF VOLUME (mm)= 40.94 14.70 36.745 TOTAL RAINFALL (mm)= 42.51 42.51 42.514	01267> * 01268> * SUB-AREA No.5
RUNOFF COEFFICIENT = .96 .35 .864	
(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	01270> CALIB STANDHYD Area (ha)= 2.66 01271> 07:070 pT= 2.50 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 01272>
CN* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL	01273> IMPERVIOUS PERVIOUS (i)
THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	01274> Surface Area (ha)= 2.58 .08
	01276> Average Slope (%)= .61 1.50
001:0005	01277> Length (m) = 207.25 20.00 01278> Mannings n = .030 .250
* * SUB-AREA NO.2	01279> 01280> Max.eff.Inten.(mm/hr) = 104.19 24.26
CALIB STANDHYD Area (ha) = 1.54	01281> over (min) 7.50 17.50
CALIB STANDHYD Area (ha)= 1.54 O2:020 DT= 2.50 Total Imp(%)= 92.00 Dir. Conn.(%)= 92.00	01283> Unit Hyd. Tpeak (min) = 7.50 17.50
IMPERVIOUS PERVIOUS (1)	01284> Unit Hyd. peak (cms)= .15 .07 01285> *TOTALS*
Surface Area (ha) = 1.42 .12 Dep. Storage (mm) = 1.57 4.67	01286> PEAK FLOW (cms) = .54 .00 .538 (iii) 01287> TIME TO PEAK (hrs) = 1.04 1.25 1.042
Average Slope (%)= .50 1.00 Length (m)= 244.34 5.00	01288> RUNOFF VOLUME (num) = 40.94 14.70 40.157
Mannings n = .030 .030	01290> RUNOFF COEFFICIENT = .96 .35 .945
Max.eff.Inten.(mm/hr) ≈ 104.19 31.02	01291> 01292> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
over (min) 7.50 10.00 Storage Coeff. (min)≈ 8.73 (ii) 9.85 (ii)	01293> CN* = 81.0 Ia = Dep. Storage (Above) 01294> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
Unit Hyd. Tpe≥k (min)= 7.50 10.00 Unit Hyd. peak (cms)≃ .14 .11	01295> THAN THE STORAGE COEFFICIENT.
TOTALS	01297>
TIME TO PEAK (hrs) = 1.04 1.13 1.042	01298>
RUNOFF VOLUME (mm) = 40.94 14.70 38.845 TOTAL RAINFALL (mm) = 42.51 42.51 42.514	01300>
RUNOFF COEFFICIENT = .96 .35 .914	01301> ADD HYD (060) ID: NHYD AREA QPEAK TPEAK R.V. DWF 01302> (ha) (cms) (hrs) (mm) (cms)
(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	01302>
CN* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL	01305> 01306> SUM 08:080 3.55 .733 1.04 40.16 .000
THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	01307> 01308> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
	01309>
001:0006	01310>
* * SUB-AREA NO.3	073125
CALIB STANDHYD Area (ha)= 1.40	01314> (ha) (cms) (hrs) (nm) (cms)
US:030 DT= 2.50 Total Imp(4)= 97.00 Dir. Conn.(8)= 97.00	01316> +ID2 08:080 3.55 .733 1.04 40.16 .000
	01317> 01318> SUM 09:090 8.56 1.651 1.04 39.10 .000
Surface Area (ba) = 1.36 .04	01319>
Dep. Storage (mm) = 1.57 4.67 Average Slope (%) = .51 1.00	01320> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01321>
Average Slope (%)= .51 1.00 Length (m)= 225.63 5.00 Mannings n = .030 .030	01322>
	01324>
over (min) 7.50 10.00	01325> ROUTE RESERVOIR Requested routing time step = 1.0 min. 01326> IN>09:(090)
Storage Coeff. (min) ≈ 8.28 (ii) 9.39 (ii) Unit Hyd. Tpeak (min) = 7.50 10.00	01327> OUT<10: (POND) =========== OUTLFOW STORAGE TABLE ====================================
Unit Hyd. peak (cms) = .14 .12 *TOTALS*	
	01329> (cms) (ha.m.) (cms) (ha.m.) 01330> .000 .00002+00 .593 .62512+00 01331> .008 .65602-01 .554 .65312+00 01332> .017 .13312+00 .797 .73912+00
PEAK FLOW (cms)= .27 .00 .274 (iii) TIME TO PEAK (hrs)= 1.04 1.13 1.042 RUNOFY VOLUME (mm)= 40.94 14.70 40.157 TOTAL RAINFALL (mm)= 42.51 42.51 42.514	01332> .017 .1311E+00 .797 .7391E+00 01333> .093 .2831E+00 .950 .87747+00
TOTAL RAINFALL (mm) = 42.51 42.51 42.51 RUNOFF COEFFICIENT = .96 .35 .945	01334> .233 .39718+00 1 1.304 91578+00
RONOFF COEFFICIENT = .96 .35 .945	01335> .337 .4731E+00 1.880 .1004E+01
(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 81.0$ Ia = Dep. Storage (Above)	01336> .465 .54918+00 [2.577 .10928+01 01337> .531 .58718+00 [.000 .00008+00 01338>
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.	
INAN IND SIGRAGE COEFFICIENT.	01340> (ha) (cms) (hrs) (nm) 01341> INFLOW >09: (090) 8.56 1.651 1.042 39.096
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	01342> OUTFLOW<10: (POND) 8.56 .089 2.625 39.093
01:0007	01344> PERK FLOW PROJUCTION (Oppt (gip) (8) - 5 413
01:0007	013435 013445 PEAK FLOW REDUCTION [Qout/Qin] (%)= 5.413 013455 TIME SHIFT OF PEAK FLOW (min)= 95.00
001:0007	013435 013445 PEAK FLOW REDUCTION [Qout/Qin] (%)= 5.413 013455 TIME SHIFT OF PEAK FLOW (min)= 95.00

1.21 28.40

.000

TIME hrs 2.67 2.83 3.00

RAIN mm/hr 4.049 3.714 3.434

DWF (cm.s) .000 .000 .000

. 000

TIME TO PEAK (hrs)= 1.167 RUNOFF VOLUME (mm)= 17.325 TOTAL RAINFALL (mm)= 42.514 RUNOFF COEFFICIENT = .408 01486> 01488> 01488> 01489> 01490> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01491> IMPERVIOUS Surface Area (ha) = 14.13 PERVIOUS (i) 5.77 4.67 01359> 01360> 01361> 01362> 01363> 01364> (mm) = (%) = (m) = 1.57 Dep. Storage Average Slope Length Mannings n .60 580.00 .030 .50 100.00 01365> 42.65 35.00 34.18 (ii) 35.00 .03 01365> 01366> 01367> 01368> 01369> 01370> 01371> 01372> 01372> 01374> 01375> 80.14 15.00 15.43 (ii) 15.00 .07 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 1.41 1.17 40.94 42.51 .96 .40 1.572 (iii) 1.208 31.126 42.514 .732 1.54 21.31 42.51 .50 01376> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR BULL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01378> 01379> 01380> 01381> 01513> 01514> 01515> 01516> 01517> 01517> 01518>
 PEAK FLOW
 (cms) =
 .187 (i)

 TIME TO PEAK
 (hrs) =
 1.458

 RUNOFF VOLUME
 (mm) =
 12.131

 TOTAL RAINFALL
 (mm) =
 42.514

 RUNOFF COEFFICIENT
 _285
 01382> 01518-01519-01520- RUNOFF COEFFIC--01522-01523-0152-01523-SUM 02:HIP02 28.46 1.615 1.21 33.52 01392> .000 01393> 01393> 01394> 01395> 01396> 01397> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 001:0016-----01398> * SUB-AREA No.2 01399> CALIE STANDHYD (Area (ha)= 17.00 03:H1P03 DT= 2.50 [Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 01400> 01401> 01402> 01403> 01536> 01537> 01538> 01539> 01540> Surface Area (ha) = Dep. Storage (mm) = Average Slope (8) = Length (m) = Mannings n = 01403> 01404> 01405> 01406> 01407> 01408> PERVIOUS (i) 4.93 4.67 1.50 12.07 1.57 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01541> .65 450.00 .030 100.00 01409> 01410> 01411> 01412> 01413> 01414> 01414> 01414> 01416> 01417> 01418> 01418> 01419> 01420> 89.76 47.48 12.50 30.00 12.36 (ii) 30.32 (ii) 12.50 30.00 .09 .04 Max.eff.Inten.(mm/hr) = over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= SUM 02:0020 79.66 4.812 01551> PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 1.36 1.13 40.94 42.51 .96 .37 1.46 21.31 42.51 .50 *TOTALS* 1.504 (iii) 1.167 31.126 42.514 .732 01552> 01421> 01422> 01423> 01423> 01424> 01425> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (ii) PERK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01426> 01428> 01428> 01428> 01429> 01430> 01431> -----001:0017-------* SUB-AREA No.3 01432> 01433> 01433> 01434> 01435> 01436> | CALIE STANDHYD | Area (ha)= 18.10 | 04:HIP04 DT= 2.50 | Total Imp(8)= 71.00 Dir. Conn.(8)= 50.00 Surface Area (ha) = Dep. Storage (mm) = Average Slope (%) = Length (m) = Mannings n = B= 6.014 C= .816 used in: INTENSITY = A / (t + B)^C IMPERVIOUS 01437> 01438> 01439> 01440> 01441> 01442> 01442> 01443> 01443> 01445> 01445> 01445> 01445> 01445> 01451> 01451> 01452> PERVIOUS (i) 12.85 1.57 .50 600.00 .030 5.25 4.67 01574> 01574> 01575> 01576> 01577> 01578> 01579> Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = .33 .50 73.27 42.65 17.50 35.00 17.24 (ii) 35.98 (ii) 17.50 35.00 .07 .03 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=
 TIME
 RAIN |
 TIME
 RAIN |
 TIME
 RAIN |
 TIME
 RAIN |
 transmuch
 mathematical
 mathematical
 mathematical
 no
 <thno</th>
 no
 no
 no< 01580> 01581> 01582> 01583> 01583> 01584> *TOTALS* PEAK FLOW {cms} = TIME TO PEAK {hrs} = RUNOFF VOLUME {mm} = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 1.19 1.21 40.94 42.51 .96 . 35 1.364 (iii) 1.250 31.126 42.514 .732 1.54 21.31 42.51 .50 01454> 01455> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 IA = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01456> 01457> 01458> 014595 01460> 01461: 01462> 01463> 01464> 001:0018-----DWF (cms) .000 .000 01468> 01468> 01469> 01470> SUM 05:HIP05 35.10 2.800 1.17 31.13 .000 01471> 01472> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01473> 01474> 01475> 01475> 001:0019---01477> *SUB-AREA No.4 01478> | DESIGN NASHYD | Area (ha)= 4.00 Curve Number (CN)=85.00 | 06:Pond-B DT= 2.50 | Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 ------ U.H. Tp(hrs)= .170 01479> 01480> 01481> 01482> 01616> 01617> 01618> 01619> 01620> Unit Hyd Opeak (cms)= .899 01483> 01484> 01485> Max.eff.Inten.(mm/hr)= over (min) 122.14 34.69 PEAK FLOW (cms)= .260 (i)

J. L. Richards & Associates Limited

Page 5

7.28 (ii) 16.04 (i: 7.50 15.00 .15 .07 .43 .02 1.04 1.21 47.93 19.25 49.50 49.50 .97 .39 Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 01621> 16.04 (ii) 15.00 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01756> 01623> 01623> 01624> 01625> 01625> 01626> 01627> *TOTALS* .437 (iii) 1.042 43.345 49.505 .876 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 01628> 01629> 01630> 01631> 01632> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 IA = Dep. Storage (Above) 11 TIME STEP (DF) SHOULD BE SURALER OR EQUAL THAN THE STORAGE COEFFICIENT. (ii) PEAK FLOW DOES NOT INCLUDE BASEFICOW IF ANY. 01633> 01634> 01635> 01636> 01637> 01638> 001:0005-----01639> *

 CALIE STANDHYD
 Area (ha)= 1.54

 CALIE STANDHYD
 Total Imp(%)= 92.00

 Dir. Conn. (%)= 92.00

 Surface Area (ha)=
 1.42

 Dep. Storage (mm)=
 1.57

 Acta all (ha)=
 1.42

 Dep. Storage (mm)=
 1.57

 Acta all (ha)=
 1.42

 Dep. Storage (ma)=
 1.57

 Acta all (ha)=
 1.42

 Dep. Storage (ma)=
 1.57

 Acta all (ha)=
 1.42

 Mannings n
 = 0.030

 Nota all (ha)=
 0.030

 TOTAL5 .645 (iii) 1.042 47.074 49.505 .951 01645> PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .64 1.04 47.93 49.50 .97 01646> 01647> 01648> 01649> 01650> 01651> .00 1.21 19.25 49.50 01782> 01783> 01784> 01785> 01785> 01786> 01787> . 39 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (i) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 01651> 01652> 01653> 01654> 01655> 01656> 01657> 01658> 01659> 01660> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)≃ Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 01788> 01788> 01789> 01790> 01791> 01792> 01793> *TOTALS* .341 (iii) 1.042 45.640 49.505 .922 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .33 1.04 47.93 49.50 .97 .01 1.13 19.25 49.50 .39 01660> 01661> 01662> 01663> 01664> 01665> 01665> 01666> (hrs) (nm) 1.00 47.07 1.04 47.07 (cms) .000 .000 (i) CN FROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = \$1.0 IA = Dep. Storage (Above)
 IIME STEP (07) SHOULD BE SMILLER OR REQUAL
 THAN THE STORAGE COEFFICIENT.
 (iii) PEAR FLOW DOES NOT INCLUDE RASEFLOW IF ANY. 01800> 01801> SUM 08:080 3.55 .876 1.04 47.07 .000 01668> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. (iii) P 01669> 01670> -----01671> 001:0006----01672> * 01804; 1805; 01806> 001:0012-----YD (090) | ID: NHYD AREA OPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) HD 05:050 5.0 1.07 1.04 45:09 +ID2 08:080 5.55 1.964 1.04 47:07 SUM 09:090 8.56 1.984 1.04 45:51 01807> -----01808> | ADD HYD (090) | ID: NHYD 01809> -----01673> 01674> 01675> 01675> 01676> 01677> * SUB-AREA No.3

 SUB-REL NO.3

 | CALIE STANDHYD | Area (ha)= 1.40

 | 03:030 DT= 2.50 | Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00

 IMPERVIOUS PERVIOUS (i)

 Surface Area (ha)= 1.36 0.4

 Dep. Storage (mm)= 1.57 4.67

 Average Slope (%)= 5.1 1.00

 Length (m) = 225.63 5.00

 Mannings n = 0.300 .030

 -----(cms) .000 .000 01810> 01811> 01812> 01813> 01813> 01814> 01815> 01678> .000 01679> 01680> 01681> 01682> 01683> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01683> 01684> 01685> 01686> 01687> 01688> Max.eff.Inten.(mm/hr)= 122.14 48.18 Requested routing time step = 1.0 min. over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 7.50 7.50 7.77 (ii) 8.70 (ii) 7.50 7.50 15 .14 OUTFLOW STORAGE TABLE ==== OUTFLOW STORAGE | OUTFLOW STOR
 Instrume
 OUTLEOW STORAGE

 (Cmms)
 (ha.m.)

 (1000
 00002+000

 .000
 .00002+000

 .000
 .5602-01

 .017
 .13112+000

 .033
 .28312+000

 .233
 .39712+000

 .337
 .47312+000

 .455
 .54912+000

 .531
 .58712+000
 STORAGE 01823> 01824> 01825> 01688> 01689> 01690> 01691> 01692> 01693> OUTELOW STORAGE (cms) (ha.m.) .593 .6251E+00 .797 .7391E+00 .950 .8274E+00 1.304 .9157E+00 1.880 .1004E+01 2.577 .1092E+01 .000 .000UE+00 *TOTALS* PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nmn) = TOTAL RAINFALL (mn) = RUNOFF COEFFICIENT = .33 1.04 47.93 49.50 .97 .00 1.08 19.25 49.50 .39 .329 (iii) 1.042 47.074 49.505 .951 01826> 01828> 01829> 01830> 01693> 01694> 01695> 01695> 01696> 01697> 01698> 01699> 01831> 01832> CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) il THE STEP (T) SHOULD BE SMALLER OR REQUAL THAN THE STORAGE COEFFICIENT. (ii) PEAR FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 01833> 01833> 01834> 01835> 01835> 01836> 01837> ROUTING RESULTS
 ROUTING RESULTS
 AREA
 QPEAK

 (ha)
 (cmas)

 INFLOW >09:
 (090)
 8.56
 1.984

 OUTFLOW<10:</td>
 (POND)
 8.56
 .132
 TPEAK R.V. (hrs) 1.042 2.278 (mm) 45.914 45.912 01701> 01837> 01838> 01839> 01840> 01841> 01841> PEAK FLOW REDUCTION [Qout/Qin](%)= TIME SHIPT OF PEAK FLOW (min)= MAXIMUM STORAGE USED (ha.m.)=.31 /Qin](%)= 6.640 (min)= 74.17 (ha.m.)=.3146E+00 01843> 011705 00110005 011705 1 ADD HYD (050) | ID: NHYD AREA 011705 1 ADD HYD (050) | ID: 03:030 (ba) 017205 1D1 03:030 1.40 017215 4102 04:040 3.61 QPEAK TPEAK R.V. (cms) (hrs) (nam) .329 1.04 47.07 .778 1.04 44.32 DWF 01719> 01720> 01721> 01722> (cms) .000 .000 SUM 05:050 5.01 1.107 1.04 45.09 01723> 01724> .000 01859> 01860> 01861> 01862> 01863> 01863> 01864> 01865> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01725> 01726> 01727> 93.86 15.00 14.48 (ii) 15.00 .08 over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 30.00 30.78 (ii) 30.00 .04 01727> 01728> 01729> 01730> 01731> 01732> 01733> 01734> 001:0009-----* SUB-AREA No.4
 SUB-AREA NO.4

 | CALIE STANDHYD |
 Area (ha)= .89

 1 06:060 DT=2.50 |
 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00

 IMPERVIOUS PERVIOUS (i)

 Surface Area (ha)= .66 .03

 Dep. Storage (mm)= 1.57 4.67

 Average Slope (%)= .93 .70

 Length (m)= 164.82 40.00

 Mannings n = .030 .250
 1.70 1.17 47.93 49.50 .97 01866> PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = ******* .55 1.46 01868> 01868> 01868> 01869> 01870> 01871> 1.983 (iii) 1.208 37.426 49.505 .756 26.92 49.50 .54 01735> 01736> 01737> 01739> 01740> 01740> 01742> 01742> 01742> 01745> 01745> 01746> 01745> 01746> 01745> 01745> 01745> 01755> .86 1.57 .93 164.82 .030 01871> 01872> 01873> 01874> 01875> 01876> 01876> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 81.0 Ia - Dep. Storage (Above)
 Ithe STEP (DT) SNOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (ii) PEAR FLOW DOES NOT INCLUDE BASEFLOW IF ANY. Max.eff.Inten.(mm/hr)= 122.14 31.19 over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 5.00 5.37 (ii) 5.00 .21 20.00 20.78 (ii) 20.00 .06 01878> 01878> 01879> 01879> 01879> 01879> 01880> 01880> 01880> 1D1 10: POND & 5.6 .132 2.28 (5.91 .000 01885> +ID2 01: HIPO 1 9.90 1.993 1.21 37.43 .000 *TOTALS* .245 (iii) 1.000 47.074 49.505 .951 PEAK FLOW (CRS) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mmn) = TOTAL RAINFALL (mmn) = RUNOFF COEFFICIENT = .24 1.00 47.93 49.50 .97 .00 1.29 19.25 49.50 .39 01884> 01885> 01885> 01886> 01887> 01888> SUM 02:HIP02 28.46 2.044 1.21 39.98 .000 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) 01889> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

01892>

01896> 01897> 01898> 01898> 01899>

01900> 01900> 01902> 01903> 01903> 01904> 01905>

01905> 01906> 01907> 01908> 01909> 01910> 01911> 01912>

01912> 01913> 01914> 01915> 01915> 01916> 01917>

01918> 01919> 01920> 01921> 01922>

01923:

01929>

01929> 01930> 01931> 01932> 01933> 01934> 01935> 01936> 01936> 01937> 01938> 01939>

01939> 01940> 01941> 01942> 01943> 01943> 01945> 01945> 01945> 01946> 01947> 01948> 01949> 01950> 01950>

01950> 01951> 01952> 01953> 01954> 01955>

01956> 01957>

01963> 01964> 01965> 01965>

01972> 01973> 01974> 01975> 01976> 01977> 01978> 01978> 01980> 01981> 01982> 01983> 01984>

01984>

01985> 01985> 01986> 01987> 01988>

01994> 01995> 01996> 01997> 01998> 01999> 02000>

02006>

02007> 02008> 02009> 02010> 02011> 02012> 02012> 02013>

02013> 02014> 02015> 02016> 02017> 02018>

02026> 001:0016-----02027> Unit Hyd Qpeak (cms)= . 252 01893> * 01894> * SUB-AREA No.2
 PEAK FLOW
 (cms)=
 .115 (i)

 TIME TO PEAK
 (hrs)=
 2.000

 RUNOFF VOLUME
 (mm)=
 16.075

 TOTAL RAINFALL
 (mm)=
 49.505

 RUNOFF COEFFICIENT =
 .325
 02029> 02030> 02031> 02032> 02033> CALIE STANDHYD [Area (ha)= 17.00 03:HIP03 DT=2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 Surface Area (ha) = Dep. Storage (mm) = Average Slope (%) = Length (m) = Mannings n = PERVIOUS (i) 4.93 4.67 1.50 100.00 .250 IMPERVIOUS 12.07 1.57 .65 450.00 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=
 105.17
 63.81

 12.50
 27.50

 11.60 (ii)
 27.56 (ii)

 12.50
 27.50

 .09
 .04
 (cm.s) .000 .000 .000 .04 TOTALS* 1.865 (iii) 1.167 37.426 202046> 5DM 02:0020 79.66 6.135 1.1 02047> 02047> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02049> 02050> ------PEAK FLOW {cms}= TIME TO PEAK {hrs}= RUNOFF VOLUME {mm}= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 1.63 1.13 47.93 49.50 .97 .000 .51 1.42 26.92 49.50 .54 49.505 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 81.0 Ia = Dep. Storage (Above)
 IIHE STEP (IT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (ii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 12055 | SIAKT
 1 Project dir.: V: (20983.D0VENC\3RDSUB-1\SWMHYMO\

 22057 | TZERO = .00 hrs on 0
 0

 22058 | METOT = 2 (output = METRIC)
 0

 22060 | NSTON = 001
 0

 22065 | NSTON = 001
 0

 22065 | NSTON = 0
 0

 22065 | Lotol = 58.23 km | LDF curve parameters: A=1402.884

 22065 | Ptotal = 58.23 km | LDF curve parameters: A=1402.884

 22065 | Lotol = 58.23 km | LDF curve parameters: A=1402.884

 22065 | Lotol = 58.23 km | LDF curve parameters: A=1402.884

 22065 | Lotol = 58.23 km | LDF curve parameters: A=1402.884

 22065 | Lotol = 58.23 km | LDF curve parameters: A=1402.884

 22065 | Lotol = 58.23 km | LDF curve parameters: A=1402.884

 22065 | Lotol = 58.23 km | LDF curve parameters: A=1402.884

 22065 | Lotol = 58.23 km | LDF curve parameters: A=1402.884

 22065 | Lotol = 58.23 km | LDF curve parameters: A=1402.884

 22065 | Lotol = 58.23 km | LDF curve parameters: A=1402.884

 22065 | Lotol = 58.23 km | LDF curve parameters: A=1402.884

 22065 | Lotol = 58.23 km | LDF curve parameters: A=1402.884

 22065 | Lotol = 58.23 km | LDF curve parameters: A=1402.884

 22065 | LDF curve parameters: A=1402.884

 22065 | LDF curve parameters: A=1402.884

 22065 | LDF curve parameters: A=1402.884
 | CALIB STANDHYD | Area (ha)= 18.10 | 04:HIP04 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 IMPERVIOUS PERVIOUS (i) 12.85 5.25 1.57 4.67 .50 1.50 Surface Area (ha) = Dep. Storage (mm) = Average Slope (%) = Length (m) = Mannings n = 02068> 02069> 02070> 02071> 02072> Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = .33 600.00 100.00 02072> 02073> 02074> 02075> 02075> 02076> 02077> 93.86 57.19 15.00 32.50 15.61 (ii) 32.28 (ii) 15.00 32.50 .07 .03 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=
 TIME
 RAIN
 <th RAIN mm/hr 4.701 4.310 3.983 02078> 02079> *TOTALS* 1.723 (iii) 1.208 37.426 49.505 1.49 1.17 47.93 49.50 .97 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = .48 1.50 02080> 02081> 02082> 1.50 26.92 49.50 .54 02083> 001:0003-----.756 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (1) CN PROLEDORE SELECTED FOR PERVIOUS LOSSES:
 CN = 81.0 I a = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01957>
01950>
01:0018
01:0018
01:0018
01:0018
01:0018
01:0018
01:0018
01:0018
01:0018
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001
01:001 SUM 05:HIP05 35.10 3.572 1.17 37.43 .000 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS 1F ANY. Surface Area (ha) =Dep. Storage (mm) =Average Slope (t) =Length (m) =Mannings n = | DESIGN NASHYD | Area (ba)= 4.00 Curve Number (CN)=85.00 0 65:Pond-B DT= 2.50 | Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= .170 1.74 1.57 .52 204.72 .030 .33 4.67 1.00 20.00 .250 02111> 02112> 02112> 02113> 02114> 02115> Unit Hyd Qpeak (cms)= .699 Max.eff.Inten.(mu/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=
 144.69
 47.07

 7.50
 15.00

 6.81 (ii)
 14.56 (ii)

 7.50
 15.00

 .16
 .08

 PEAK FLOW
 (cms) =
 .345 (i)

 TIME TO PEAK
 (hrs) =
 1.167

 RUNOFF VOLUME
 (mm) =
 22.420

 TOTAL RATURALL
 (mm) =
 49.505

 RUNOFF COEFFICIENT =
 .453
 02115> 02116> 02117> 02116> 02119> 02120> .08 .52 1.04 56.66 58.23 .97 *TOTALS* .532 (iii) 1.042 51.647 58.226 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .03 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02121> 02122> 02123> 02124> 02125> 02126> 02126> 02127> 02126> 02127> 02128> 02128> 02129> 02130> 02131> 02132> 1.21 25.35 58.23 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 81.0$ Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. DWF SUM 07:HZP06 67.56 5.939 1.17 37.61 .000 02133> 001:0005-------NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02000> 02001> 02002> 001:0021-02003> * SUB-ARI 02004> 02005> | DESIGN ------Unit Hyd Qpeak (cms)= .702 02144> 02145> 02146> 02147> 02148> 02149> 02150>
 PEAK FLOW
 (cms) =
 .252 (i)

 TIME TO PEAK
 (hrs) =
 1.417

 RUNOFF VOLUME
 (mm) =
 16.075

 TOTAL RAINFALL
 (mm) =
 49.505

 RUNOFF COEFFICIENT
 =
 325
 Hax.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 7.50 7.66 (ii) 7.50 .15 7.50 6.49 (ii) 7.50 .14

02151> 02152>

02153> 02154> 02155> 02155> 02156>

02158> 02157> 02158> 02159> 02160>

J. L. Richards & Associates Limited

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW 1F ANY.

02022> ------02023> | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (CN)=76.00 02024> | 01:A3 DT= 2.50 | Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 02025> ----- U.H. Tp(hrs)= .804

Page 7

*TOTALS

.418 (iii) 1.042 54.152 58.226 .930

.01

1.08 25.35 58.23

.15 .40 1.04 56.66 58.23 .97

(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 01.0$ Ia = Dep. Storage (Above)

PEAK FLOW (cms) = TIME TO PEAK {hrs} = RUNOFF VOLUME (num) = TOTAL RAINFALL (num) = RUNOFF COEFFICIENT =

<u>(V:</u>	\PSTPH1.out)	J. L. Richards & Associates Limit
02161 02162 02163 02164	> THAN THE STORAGE COEFFICIENT. > (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. >	02296> SUM 08:080 3.55 1.060 1.04 55.72 .000 02297> 02298> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02299>
02166	>> 001:0006	02300>
02167	> * > * SUB-AREA No.3	02302>
02169	>	02304> (ha) (cms) (hrs) (nm) (cms)
02170	> CALIE STANDHYD Area (ha)= 1.40 > 03:030 DT= 2.50 Total Imp(%)= 97.00 Dir. Conn.(%)≈ 97.00	02305> ID1 05:050 5.01 1.350 1.04 53.55 .000 02306> +ID2 08:080 3.55 1.060 1.04 55.72 .000
02172 02173	>	
02174	> Surface Area {ha}= 1.36 .04	02309>
02175 02176		02310> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02311>
02177 02178	> Length (m) = 225.63 5.00	02312>
02179	>	02314>
02180 02181		02315> ROUTE RESERVOIR Requested routing time step = 1.0 min.
02182 02183	> Storage Coeff. (min)= 7.26 (ii) 8.09 (ii)	02316> IN>09: (090) 02317> OUTL10: (PORD) 02318>
02184	> Unit Hyd. peak (cms)= .15 .14	02319> (cms) (ha.m.) (ccms) (ha.m.)
02185 02186	> PEAK FLOW (cms) = .40 .00 .400 (iii)	02320> .000 .0000E+00 .593 .6251E+00 02321> .008 .6560E-01 .654 .6631E+00
02187 02188	> TIME TO PEAK (hrs) = 1.04 1.08 1.042	02322> .017 .1311E+00 .797 .7391E+00
02189	> TOTAL RAINFALL (mm) = 58.23 58.23 58.226	02324> .233 .3971E+00 1.304 .9157E+00
02190 02191		02325> .337 .4732E+00 1.880 .1004E+01 02326> .465 .5491E+00 2.577 .1092E+01
02192 02193		02327> .531 .5071E+00 .000 .0000E+00 02328>
02194	(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL	02329> ROUTING RESULTS AREA OPEAK TPEAK R.V.
02195: 02196:		02330> (ha) (cms) (hrs) (nm) 02331> INFLOW >09: (090) 8.56 2.410 1.042 54.451
02197	>	02332> OUTFLOW<10: (POND) 8.56 .189 2.056 54.449
02199	> 001:0007	02333> 02334> PEAK FLOW REDUCTION [Qout/Qin](%)= 7.838
02201	> (ADD HYD (040) ID: NHYD AREA QPEAK TPEAK R.V. DWF	02334> PEAK FLOW REDUCTION [Qout/m1](%)= 7.338 02335> TIME SHIFT OF PEAK FLOW (min)= 60.83 02336> MAXIMUM STORAGE USED (ha.m.)= 3612E+00
	(nn) (cms) (mn) (cms)	02337> 02338>
02204:	+ID2 02:020 1.54 .418 1.04 54.15 .000	02339> 001:0014
02205: 02206:		02340> ************************************
02207:		02341> * Remaining Hawthorne Industrial Park * 02342> ************************************
02209:	>	02344> * SUB-AREA No.1
	> 001:0008	02345> 02346> CALIB STANDHYD Area (ha) = 19.90
	ADD HYD (050) ID: NHYD AREA QPEAK TPEAK R.V. DWF	02345> CALIE STANDHYD Area (ha)= 19.90 02347> O1:HIPO1 DT= 2.50 Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 02348>
02214:	> (ha) (cms) (hrs) (hm) (cms)	02349> IMPERVIOUS PERVIOUS (i)
02215:		02350> Surface Area (ha)= 14.13 5.77 02351> Dep. Storage (nm)= 1.57 4.67
02217:		02352> Average Slope (%)= .60 1.50
02219:	•	02354> Mannings n = .030 .250
02220:		02355> 02356> Max.eff.Inten.(mm/hr)= 124.54 81.98
	001:0009	02357> over (min) 12.50 27.50
02224:	• *	02358> Storage Coeff. (min)= 12.93 (ii) 27.37 (ii) 02359> Unit Hyd. Tpeak (min)= 12.50 27.50
02226:	* SUB-AREA No.4	02360> Unit Hyd. peak (cms)= .09 .04 02361> *TOTALS*
02227	\rightarrow CALIB STANDHYD Area (ha)= .89	02362> PEAK FLOW (cms)= 2.16 .77 2.548 (iii)
022293		02363> TIME TO PEAK (hrs)= 1.13 1.42 1.167 02364> RUNOFF VOLUME (mm)= 56.66 34.22 45.437 02365> TOTAL RAINFALL (mm)= 58.23 58.23 58.23 02365> TOTAL RAINFALL (mm)= 58.23 58.23 58.26
02230:		02365> TOTAL RAINFALL (mm) = 58.23 58.23 58.226 02366> RUNOFF COEFFICIENT = .97 .59 .780
022322	Dep. Storage (mm) = 1.57 4.67	02367>
022342	Length (m) = 164.82 40.00	02368> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 02369> CN* = 81.0 Ia = Dep. Storage (Above)
02235:		02370> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 02371> THAN THE STORAGE COEFFICIENT.
02237:		02372> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02373>
022392	Storage Coeff. (min) = 5.02 (ii) 18.44 (ii)	02374>
02240:	Unit Hyd. peak (cms) = .22 .06	02375> 001:0015
022422	*TOTALS*	02377> ADD HYD (HIP02) ID: NHYD AREA QPEAK TPEAK R.V. DWF 02378> (ha) (cma) (brs) (mm) (cma)
022443	TIME TO PEAK (hrs) = 1.00 1.25 1.000	02379> ID1 10: POND 8.56 .189 2.06 54.45 .000
022462	TOTAL RAINFALL (mm) = 58.23 58.23 58.226	02380> +ID2 01:HIP01 19.90 2.548 1.17 45.44 .000 02381>
022472	RUNOFF COEFFICIENT = .97 .44 .957	02382> SUM 02:HIP02 28.46 2.622 1.17 48.15 .000 02383>
02249	(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	02384> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
02251>	(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL	02385> 02386>
02252>	 THAN THE STORAGE COEFFICIENT. 	02387> 001:0016
02254>		02389> * SUB-AREA No.2
02256>	001:0010	02390> 02391> { CALIB STANDHYD { Area {ha}= 17.00
02257>	* SUB-AREA NO.5	02391> CALIB STANDHYD Area (ha)= 17.00 02392> 03:H1P03 DT= 2.50 Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 02393>
022595		02394> IMPERVIOUS PERVIOUS (1)
02260>	CALIB STANDHYD Area (ha)= 2.66 07:070 DT= 2.50 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00	02395> Surface Area (ha) = 12.07 4.93 02396> Dep. Storage (mm) = 1.57 4.67
02262>		02397> Average Slope (%)= .65 1.50
02264>	Surface Area (ha)= 2.58 .08	02399> Mannings n = .030 .250
02265>	Dep. Storage $(mm) = 1.57$ 4.67 Average Slope $(\frac{1}{2}) = .61$ 1.50	02400> 02401> Max.eff.Inten.(mm/hr)= 144.69 87.13
02267>	Length (m) = 207.25 20.00	02402> over (min) 10,00 25.00
02269>		02404> Unit Hyd. Tpeak (min)= 10.00 25.00
02270>	over (min) 7.50 12.50	02405> Unit Hyd. peak (cms)= .11 .05 02406> *TOTALS*
02272>	Storage Coeff. (min) = 6.54 (ii) 13.16 (ii)	02407> PEAK FLOW (cms)= 2.10 .71 2.398 (iii)
02274>	Unit Hyd. peak (cms) = .16 .09	02408> TIME TO PEAK (hrs)≈ 1.08 1.38 1.125 02409> RUNOFF VOLUME (mm)= 56.66 34.22 45.437 02410> TOTAL RAINFALL (mm)= 58.23 58.23 58.226
02275>	*TOTALS*	
02277>		. 02412>
02279>	TIME TO PEAK (hrs) = 1.04 1.17 1.042 RUNDFF VOLUME (mm) = 56.66 25.35 55.717 TOTAL RAINFALL (mm) = 58.23 59.23 59.226 RUNDFF COEFFICIENT = .97 44 .957	02413> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 02414> CN* = 81.0 Ia = Dep. Storage (Above)
02280>	RUNDIF CODIFICIENT = .9/ .44 .95/	02415> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
02282>	(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	02417> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
02284>	(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL	02418> 02419>
02285>	THAN THE STORAGE COEFFICIENT.	02420> 001:0017
02287>		02422> * SUB-AREA NO.3
02289>	001:0011	02423> 02424> CALIE STANDHYD Area (ha)= 18.10
02290>		02425> 04:HIP04 DT= 2.50 } Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00
02292>	(ha) (cms) (hrs) (mm) (cms)	02426> IMPERVIOUS PERVIOUS (1)
02293>	ID1 06:060 .89 .296 1.00 55.72 .000 +ID2 07:070 2.66 .783 1.04 55.72 .000	02428> Surface Area (ha) = 12.85 5.25 02429> Dep. Storage (mm) = 1.57 4.67
02295>		02430 > Average Slope (\Re)= .50 1.50

024315 Length Mannings n 600.00 100.00 02566> 02567> 02568> Storm time step = 10.00 min Time to peak ratio = .33 02432 02432> 02433> 02434> 02435> 02435> 02436> 02437> 02438> 111.10 77.71 15.00 30.00 14.59 (ii) 29.34 (ii) 15.00 30.00 .08 .04 Max.eff.Inten.(mm/hr)=
 TIME
 RAIN
 TIME
 RAIN
 TIME
 RAIN
 HIE
 HIE
 RAIN
 HIE
 HIE
 RAIN
 HIE
 HIE
 RAIN
 HIE
 RAIN
 HIE
 RAIN
 HIE
 HIE
 RAIN
 HIE
 HIE
 HIE
 HIE
 RAIN
 HIE
 RAIN
 HIE
 RAIN
 HIE
 RAIN
 HIE
 HIE
 HIE
 RAIN
 HIE
 HIE
 HIE
 HIE
 HIE
 HIE
 HIE
 HIE</th 025692 TIME hrs 2.67 2.83 3.00 RAIN mm/hr 5.209 4.774 4.412 over (min) Storage Coeff. (min)= Unit Flyd. Tpeak (min)= Unit Flyd. peak (cms)= 02570> 02571> 02572> 02573> 02573> 02439> 02439> 02440> 02441> 02442> 02442> 02443> 02444> *TOTALS* PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 1.82 1.17 56.66 58.23 .97 .67 2.180 (iii) 1.208 45.437 58.226 .780 02575> 02444> 02445> 02446> 02447> 02448> 02448> 02449> 02450> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 DWF (cms) .000 .000 .000 02461> 02462> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

 02597
 * SUB-AREA No.1

 02599
 CALIB STANDHYD
 Area (ha)=
 2.07

 02599
 CALIB STANDHYD
 Total Imp(%)=
 84.00
 Dir. Conn.(%)=
 84.00

 02501
 [01:010] DT=2.50
 Total Imp(%)=
 84.00
 Dir. Conn.(%)=
 84.00

 02602>
 [01:010] DT=2.50
 TMERNTOUS
 FERVIOUS (i)

 02602>
 Surface Area (ha)=
 1.77
 4.37

 02603>
 Surface Area (ha)=
 1.57
 4.67

 02604>
 Dep. Storage (ma)=
 1.57
 4.67

 02605>
 Average Slope (%)=
 .52
 1.00

 02605>
 Length
 (m)=
 204.77
 20.00

 02605>
 Mannings n
 =
 .030
 .250

 02605>
 Image Area (ma)=
 161.47
 62.27

 02463> 02464> 02465> 001:0019-----
 161.47
 62.27

 7.50
 12.50

 6.51
 (ii)

 13.44
 (ii)

 7.50
 12.50

 6.51
 (i)

 13.44
 (ii)

 7.6
 .09

 50
 .03
 02609> over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = 02611> 02612> 02613> 02613> 02614> 02615> *TOTALS* .609 (iii) 1.042 57.952 64.806 .894 .59 .03 1.04 1.17 63.24 30.21 64.81 64.81 .98 .47 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 02615> 02616> 02617> 02618> 02619> 02620> 02622> 02622> 02622> 02622> 02622> 02622> 02622> 02625> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) iii THE STEP (JT) SHOULD BE SMALLER OR BUDAL THAN THE STORAGE COEFFICIENT. (iii) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02488> 02489> 02490> 02491> 02492> 02492> 02493> 02625> (11., -02626> 02627> -02627> -02628> 001:0005------02628> * 02630> * SUB-AREA No.2 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02494> 02495> 02502> 02503> 02504> 02505> Unit Hyd Opeak (cms)= .702
 PEAK FLOW
 (cms)=
 .343 (i)

 TIME TO PEAK
 (hrs)=
 1.417

 RUNOFF VOLUME
 (mm)=
 21.442

 TOTAL RALIFALL
 (mm)=
 58.226

 RUNOFF COEFFICIENT =
 .368
 02506> 02507> 02507> 02508> 02509> 02510> 161.47 78.73 7.50 7.50 7.33 (ii) 8.10 (ii) 7.50 7.50 .15 .14 02511> *TOTALS* .475 (iii) 1.042 60.594 64.806 .935 02647> 02648> PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .46 1.04 63.24 64.81 .98 .02 1.08 30.21 64.81 .47 02649> 02650> 02651> 02652> 02653> 02654> 02655> 02656> 02657> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 02521> 02522> 02523> 02524> 02525> 02525> 02526> 02527>
 PEAK FLOW
 (cms) = .155 (i)

 TIME TO PEAK (hr.s) = 2.000
 RUNOFF VOLUME (mm) = 21.442

 TOTAL RAINFALL (mm) = 58.226
 RUNOFF COEFFICIENT = .368
 02658> 02528> 02529> 02530> 02531> 02532> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02532> 02533> 001:0023 02535> | ADD HYD (0020) | ID: NHYD AREA QPEAK TPEAK R.V. DWP 02535> | ADD HYD (0020) | ID: NHYD AREA QPEAK TPEAK R.V. DWP 02535> | ADD HYD (0020) | ID: NHYD AREA QPEAK TPEAK R.V. DWP 02537> IDI 07:HIP06 67.56 7.499 1.17 45.61 .000 02539> +ID2 10:A2 6.80 .343 1.42 21.44 .000 02539> +ID2 10:A2 6.80 .35 .20 21.44 .000 02542> SUM 02:0020 79.66 7.772 1.17 41.94 .000 225405 TELS 01745 5.50 155 2.00 225415 SUM 02:0020 79.66 7.772 1.17 225425 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 025435 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 02579>
 UTLL Hy-...

 02580>
 PEAK FLOW
 (Cms)=
 .45
 .01

 02580>
 TIME TO PEAK (hrs)=
 1.04
 1.08
 1.042

 02580>
 TIME TO PEAK (hrs)=
 1.04
 1.08
 1.042

 02580>
 RUMOFF VOLUME (mm)=
 63.24
 30.21
 62.245

 02681>
 TOTAL RAINFALL (mm)=
 64.81
 64.81
 64.81

 02685>
 RUMOFF COEFFICIENT =
 .98
 .47
 .960

 02685>
 CN* =
 81.0
 1.a = Dep. Storage (Abeve)
 .02685

 02685>
 CN* =
 81.0
 1.a = Dep. Storage (Abeve)
 .02685

 02685
 CN* =
 81.0
 1.a = Dep. Storage (Abeve)
 .02685

 02685
 CN* =
 81.0
 1.a = Dep. Storage (Abeve)
 .02685

 02685
 CN* =
 81.0
 1.a = Dep. Storage (Abeve)
 .02685

 02685
 CN* =
 81.0
 I.a = Dep. Storage (Abeve)
 .02685

 02695
 (i11) FEAK FLOW DOES NOT INCLUBE ENSELTENT.
 .02695
 .000

 TOTALS .454 (iii) 1.042 62.245 64.806 .960 _____ 02545 22546> 001:0024 22547 22548> CALCULATION OF 3HR - 1:50 YEAR STORM EVENT 22549 22549 -------

 025405
 CALCULATION OF SHR - 1:50 TEAR STORM EVENT

 025405
 Froject dir.: V:\20983.DU\ENG\3RDSUB-1\SWMGHYMO\

 02551>
 START

 1
 Project dir.: V:\20983.DU\ENG\3RDSUB-1\SWMGHYMO\

 02552>
 TZERO = .00 hrs on 0

 02555>
 TZERO = .00 hrs on 0

 02555>
 NEND = 0

 02555>
 NSTORM = 0

 02555>
 001:0002

 02555>
 IDD F curve parameters: h=1569.580

 02561>
 [CHCLAGO STORM | IDF curve parameters: h=1569.580

 02562
 C= .820

 02563>
 Used in: INTENSITY = A / (t + B) ^C

 02563>
 Duration of storm = 3.00 hrs

 02563> 02564> 02565> Duration of storm = 3.00 hrs

3.61 1.084 1.04 59.08 .000 02701 SUM 04:040 02703> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02705> 02706> 02707> -----001:0008 ------Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = 14.13 1.57 .60 5.77 4.67 1.50 02846> 1.04 59.96 02847> 02848> 580.00 100. 02714> 02849> 02850> 02851> 02852> 02853> .250 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 138.95
 102.13

 12.50
 25.00

 12.38
 (ii)

 25.60
 (ii)

 12.50
 25.00

 .09
 .04
 001:0009-----Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 02716> 02717> -----02718> 001:0009-----02719> * 02720> * SUB-AREA No.4 02854> 02855> 02855> 02855> 02857> .04 02720> 02721> 02722> 02723> 02723>

 SUB-AREM NU.4
 Area (ha)= .69

 CALIB STANDHYD / Area (ha)= .69
 Dir. Conn.(%)= 97.00

 D6:060 DM= 2.50 | Total Imp(%)= 97.00
 Dir. Conn.(%)= 97.00

 Surface Area (ha)= .66
 .03

 Dep. Storage (mm)= 1.57
 4.67

 Average Slope (%)= .93
 .70

 Length (m)= 1.64.82
 40.00

 Mannings n
 = .030

 -----PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (nm) = RUNOFF COEFFICIENT = 2.46 1.13 63.24 64.81 .98 *TOTALS .95 1.38 39.90 64.81 3.001 (iii) 1.167 51.566 64.806 .796 02858> 02858> 02859> 02860> 02861> 02862> 02863> 02726> 02727> 02727> 02728> 02729> 02729> . 62 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) THE STEP (DT) SHOULD BE SHALLER OR ROUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUME BASEFICOW IF ANY. 02863> 02865> 02865> 02866> 02867> 02868> 02731> Max.eff.Inten.(mm/hr)= 161.47 53.28 5.00 17.50 4.80 (ii) 17.24 (ii) 5.00 17.50 .23 .07 .33 02732> 02732> 02733> 02734> 02735> 02736> 02736> 02737> 02738> 02739> 02740> 02741> 02742> 02742> over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= *TOTALS* .335 (iii) 1.000 62.245 64.806 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLVME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .33 1.00 63.24 64.81 .98 .00 1.25 (cms) .000 .000 30.21 64.81 .47 028/5> 028/75> 028/77> SUM 02:HIF02 28.46 3.092 1.17 028/75> 028/75> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. SUM 02:HIP02 28.46 3.092 1.17 54.37 . 000 02742> 02743> 02744> 02745> 02746> 02746> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CM* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02748> 02749> 02750> ------02751> 001:0010--02752> * 02753> * SUB-AREA * SUB-AREA No.5 02888> 02889> 02890>

 ICALIB STANDHYD |
 Area (ha)= 2.66

 |07:070 DT=2.50 |
 Total Imp(k)= 97.00 Dir. Conn.(%)= 97.00

 IMPERVIOUS PERVIOUS (i)
 IMPERVIOUS PERVIOUS (i)

 Surface Area (ha)= 2.58 .08
 .08

 Dep. Storage (mm)= 1.57 4.67
 Average Slope (%)= .61 1.50

 Length (m)= 207.25 20.00
 Mannings n = .030 .250

 02754> Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS PERVIOUS (1) 02755> 02755> 02756> 02757> 02758> 12.07 1.57 .65 450.00 .030 4.93 4.67 1.50 02891> 02891> 02892> 02893> 02894> 02895> 100.00 02759> 02760:
 161.47
 109.61

 10.00
 22.50

 9.77
 (ii)

 10.00
 22.50

 .11
 .05

 2.36
 88
 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 02761> 02762> 02763> 02764> 02765> 02896> 02897> 02898> 02898> 02900> 02900> 02901> 02902> 02902> 02904> 02905> 02905> 02905> 02906> 02907> 02908> 02909> 02910> 02911> 02911> 161.47 7.50 6.26 (ii) 7.50 .17 62.27 12.50 12.39 (ii) 12.50 .09 Max.eff.Inten.(mm/hr)= 02765> 02766> 02767> 02768> 02769> 02770> 02771> 02771> over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=
 2.38
 .88

 1.08
 1.33

 63.24
 39.90

 64.81
 64.81

 .99
 .62
 TOTALS 2.819 (iii) 1.125 51.566 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .88 1.33 *TOTALS* .886 (iii) 1.042 62.245 64.806 .960 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (nmm) = RUNOFF COEFFICIENT = .88 1.04 63.24 64.81 .98 .01 1.17 64.806 02772> 02773> 02773> 02774> 02775> 30.21 64.81 .47 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (i) IN FACTIONS SOLVED FOR FARVIOS DOSS:
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORE (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02775> 02776> 02777> 02778> 02779> 02780> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (i) CN *= 81.0 Ia = Dep. Storage (Above)
 (ii) THE STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEPTICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02913> 02915> 02915> 001:0017------02915> 01:0017------02915> * SUB-AREA No.3 02917> * SUB-AREA No.3 02781> 02782> 02782> 02783> 02784> 02785> 02785> 02785> 02786> 1 DD WYD (080) (ID: NHYD AREA OPEAK TPEAK R.V. DWP (ha) (cms) (hrs) (mm) (cms) 02787> 100 62.25 .000 02789> 102 07:070 2.66 .886 1.04 62.25 .000 3.55 1.197 1.04 62.25 .000 ------Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS 12.85 1.57 .50 5.25 4.67 1.50 02924> 02925> 02925> 02926> 02927> 02928> 02930> 02931> 02932> 02933> 02934> 02934> 02935> 02935> 600.00 .030 100.00
 138.95
 96.02

 12.50
 27.50

 13.34
 (ii)
 26.90

 12.50
 27.50

 .09
 .04
 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= *TOTALS* 2.596 (iii) 1.167 51.566 64.806 .796 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 2.16 1.13 63.24 64.81 .98 .83 1.42 39.90 64.81 .62 02935> 02936> 02937> 02938> 02939> 02940> 02940> 02804> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02805> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STRF (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 02806>
02807>
02808>
001:0013-----02942> 02943> 02944> 02945> 02945> 02946> Requested routing time step = 1.0 min. 02947> 02948> 001:0018-----02814> 02815> 02816> 02817> 02817> 02818> 02819> 02820> .000 .6560E-01 | .017 .1311E+00 | .093 .2831E+00 | .233 .3971E+00 | .337 .4731E+00 | .465 .5491E+00 | .531 .5871E+00 | . /9/ .7391E+00 .950 .8274E+00 1.304 .9157E+00 1.880 .1004E+01 2.577 .1092E+01 .000 .0000E+00 02954> 02955> 02956> 02957> SUM 05:HIP05 35.10 5.372 1.13 51.57 . 000 02821> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02823> 02824> 02825> 02825> 02826> ROUTING RESULTS

 02565
 Incluing the term of the term of t 02958>
 ROUTING RESULTS
 AREA
 OPEAK

 INFLOW >09: (090)
 8.56
 2.735

 OUTFLOW<10: (POND)</td>
 8.56
 .233
 TPEAK R.V. (hrs) 1.042 1.944 (mm) 60.910 60.908 02827> 02828> PEAK FLOW REDUCTION [Qout/Qin](%)= 8.503 TIME SHIFT OF PEAK FLOW (min)= 54.17 MAXIMUM STORAGE USED (ha.m.)=.3967E+00 02829> 02830> 02831> 02832> 02833> _____ PEAK FLOW (cms) = .551 (i)

(V. (ESIENI.OUL)	J. L. Richards & Associates Limi
02971> TIME TO PEAK (hrs)= 1.125 02972> RUNOFF VOLUME (mm)= 34.455 02973> TOTAL RAINFALL (mm)= 64.606 02974> RUNOFF COFFICIENT = .532	03106> Storage Coeff. (min)= 6.26 (ii) 12.72 (ii) 03107> Unit Hyd. Tpeak (min)= 7.50 12.50 03108> Unit Hyd. peak (cms)= .17 .09 03109> *TOTALS*
02975> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02977>	03110> PEAK FLOW (cms)= .65 .04 .665 (iii) 03111> TIME TO PEAK (hrs)= 1.04 1.17 1.042 03112> RUNOFF VOLUME (mm)= 70.09 35.46 64.553 03113> TOTAL RAINFALL (mm)= 71.65 71.66 71.665 03114> RUNOFF COEFFICIENT = .98 .49 .901
029905	03115> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 03116> (i) CN * = 01.0 Ia = Dep. Storage (Above) 03118> (ii) THE STEP [OT] SHOULD BE SWALLER OR EQUAL 03119> THAN THE STORAGE COFFICIENT. 03120> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03121> 03122>
02980> 02989> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02990>	03123> 001:0005 03124> * 03124> * SUB-AREA No.2
02991>	031265
029945	O31305 IMPERVIOUS PERVIOUS (i) O31315 Surface Area (ha)= 1.42 .12 O31325 Dep. Storage (mm)= 1.57 4.67 O31335 Average Slope (%)= .50 1.00 O31345 Length (m)= 244.34 5.00
03001> PEAK FLOW (cms) = .417 (i) 03001> TIME TO PEAK (hrs) = 1.417 03002> TIME TO PEAK (hrs) = 1.417 03003> TOTAL RAINFALL (mm) = 25.767 03004> TOTAL RAINFALL (mm) = 64.806 03005> TOTAL RAINFALL (mm) = 64.806	031365 031375 Max.eff.Inten.(mm/hr)= 178.56 93.23 031385 over (min) 7.50 7.50 031395 Storage Coeff. (min)= 7.04 (ii) 7.76 (ii)
030057 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 030075 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	03141> Unit Hyd. rpeak (mn.)= 7.50 7.50 03141> Unit Hyd. peak (cms)= .16 .15 03142> *TOTALS*
03009	03143> PEAK FLOW (cmms) = .51 .02 .53 (lii) 03144> TIME TO PEAK (hrs) = 1.04 1.08 1.042 03145> RUNOFF VOLUME (mm) = 70.09 35.46 67.324 03145> TOTOLI RAINFALL (mm) = 71.66 71.665 71.665 03147> RUNOFF COEFFICIENT = .98 .49 .939
03013> DESIGN NASHYD Area (ha)= 5.30 Curve Number (CN)=76.00 03013> 01:A3 DT= 2.50 Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 03015> U.H. Tp(hrs)= .804 03015> Unit Hyd Qpeak (cms)= .252 03019> DEAK FLOW (cms)= .188 (i)	03149> (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSESS: 03150> CN = 01.0 03151> (11) TIME STEP (DT) SHOULD BE SHALLER OR EQUAL 03152> THAN THE STORAGE COEFFICIENT. 03153> (11) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
03020> TIME TO PEAK (hrs)= 2.000 03021> RUNOFF VOLUME (mm)= 25.767 03022> TOTAL PAINFALL (mm)= 64.805	03155>
03023> RUNOFF COEFFICIENT = .398	03157> * 03158> * SUB-AREA NO.3 03159>
03025> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03026> 03027>	03160> CALIB STANDHYD Area (ha)= 1.40 03161> 03:030 DT= 2.50 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 03162>
03028> 001:0023	03163> IMPERVIOUS PERVIOUS (1) 03164> Surface Area (ha)= 1.36 04 03165> Dep. Storage (mm)= 1.57 4.67 03166> Average Slope (%)= .51 1.00 03167> Length (m)= 225.63 5.00
03034> +1D3 01:A3 5.30 .188 2.00 25.77 .000 03035>	031665 Manningsn = ,030 ,030 031695 Max.eff.Inten.(mm/hr)= 176.56 93.23 031705 Max.eff.Inten.(mm/n) 7.50 7.50 031715 over (min) 7.50 7.50 031725 Storage Coeff. (min)= 6.67 (ii) 7.39 (ii) 031735 Unit Hyd. Tpeak (min)= 7.50 7.50
03039> 03040>	03174> Unit Hyd. peak (cms)= .16 .15 03175> PEAK FLOW (cms)= .50 .01 .509 (iii) 03175 TIME TO PEAK (hrs)= 1.04 1.06 1.042 03175 RUNOFF VOLUME (mm)= 70.09 35.46 69.056
03045> START Project dir.: V:\20983.DU\ENG\3RDSUB-1\SWMHYMO\ 03045> START I Project dir.: V:\20983.DU\ENG\3RDSUB-1\SWMHYMO\ 03045> TZERO = .00 hrs on 0 0 03045> METOUT= 2 (output = METRIC) METOUT= 2 (output = METRIC)	03180> RUNOFF COEFFICIENT = .98 .49 .964 03181> 03182> 03182> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 03183> CN* = 81.0 I a = Dep. Storage (Above) 03184> (i) TIME STEP (DT) SHOULD BE SWALLER OR EQUAL 03185> THAN THE STORAGE COEFFICIENT.
030512	03186> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03187> 03188>
03054> 03055> CHICAGO STORM IDF curve parameters: A=1735.688 03055> Ptotal= 71.66 mm. E= 6.014 03057>	03189> 001:0007
03060> Duration of storm = 3.00 hrs 03061> Storm time stop = 1.00 min 03062> Time to peak ratio = .33 03063> INME 03065> TIME 03065> INME 03065> INME 03065> INME 03065> INME 03065> Inme month	03195> SUN 04:040 3.61 1.220 1.04 65.74 .000 03197> 03198> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03199>
03066> .17 6.046 1.00 178.559 1.83 11.059 2.67 5.760 03067> .33 7.542 1.17 54.049 2.00 9.285 2.83 5.280	03200>
03069> .67 15.969 1.50 16.240 2.33 7.080 03070> .83 40.655 1.67 13.737 2.50 6.347 03071>	03203> ADD HYD (050) ID: NHYD AREA QPEAK TPEAK R.V. DWF 03204>
03073> 001:0003 03074>	03208> SUM 05:050 5.01 1.729 1.04 66.66 .000 03209> 03210> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
03076>	03211> 03212>
03079> Horton's infiltration equation parameters: 03080> [Po= 50.00 mm/hr] [Pc= 7.50 mm/hr] [DCAY= 2.00 /hr] [P= .00 mm] 03081> Parameters for FERVIOUS surfaces in STAMDHYD:	03214> * 03215> * SUB-AREA No.4
03001> Parameters for PERVIOUS SUFFACES in STANDHYD: 03002> [IAper= 4.67 mm] [LGF=4.0.00] [MNF=_2.50] 03003> Parameters for IMPERVIOUS suffaces in STANDHYD: 03004> [IAimp= 1.57 mm] [CLI= 1.50] 03005> Parameters used in NASHYD: 03006> [Ia= 4.67 mm] [H= 3.00]	03217> ICALTE STANDHYD i Area (ha)= .89 03217> I O6:060 DT= 2.50 Total Imp(%)= 97.00 Dir. Conn. (%)= 97.00 03220> IMPERVIOUS PERVIOUS (i) 03221> Surface Area (ha)= .86 .03
02087>	03221> Surface Area (ha)= .86 .03 03222> Dep. Storage (mm)= 1.57 4.67 03223> Average Slope (%)= .93 .70 03225> Length (m)= 1.64.82 40.00 03225> Mannings n = .030 .250
03092> * SUB-AREA No.1 03093> 03094> CALIE STANDHYD Area (ha)= 2.07 03055> 01:010 DT=2.50 Total Imp(%)= 84.00 Dir. Conn.(%)= 84.00 03056>	03227> Max.eff.Inten.(mm/hr)= 178.56 67.61 03228> over (min) 5.00 15.00 03229> Storage Coeff. (min)= 4.62 (ii) 15.92 (ii) 03230> Unit Hyd. Tpeak (min)= 5.00 15.00 03231> Unit Hyd. peak (mes)= 24 .07
03097> IMPERVIOUS PERVIOUS (1) 03098> Surface Area (ha)= 1.74 .33 03099> Dep. storage (mm)= 1.57 4.67 03100> Average Slope (%)= 5.2 1.00 03100> Length (m)= 204.72 20.00	03232> *TOTALS* 03233> PEAK FLOW (cms)= .37 .00 .374 (iii) 03234> TIME TO PEAK (hrs)= 1.00 1.21 1.000 03235> RUNOFF VOLUME (mm)= 70.09 35.46 69.056 03235> TOTAL FAINPALL (mm)= 71.66 71.665
03102> Mannings n = .030 .250 03103> Max.eff.Inten.(mm/hr)= 178.56 74.05 03105> over (min) 7.50 12.50	03237> RUNOFF COEFFICIENT = .98 .49 .964 03238> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 03240> CN* = 81.0 Ia = Dep. Storage (Above)
T T Diebonda C Jacobistos Timitad	

J. L. Richards & Associates Limited

J

{.

Ì.

Page 11

511>							
512>	Unit Hyd Op	eak (cms))= .252	:			
513>							
514>	PEAK FLOW TIME TO PEA	(cms))= .223	(i)			
15>	TIME TO PEA	K (hrs	= 1.958				
516>	RUNOFF VOLU	ME (mm)	= 30.490)			
517>	TOTAL RAINE	ALL (mm)	= 71.665				
10>	RUNOFF CORF.	FICIENT	= .425				
19>							
20>	(i) PEAK FL	OW DOES NO	OT INCLUDE	BASEFLOW I	F ANY.		
21>							
	001:0023						
25>	1 ADD HYD (0020) ID: 3				R.V.	
			(E	a) (cm	s) (hrs)	(mm)	(cms)
27>		ID1 07:H		.56 10.2			
28>		+ID2 10:A2		.80 .4			
29>		+ID3 01:A		.30 .2		30.49	
30>							
31>		SUM 02:00	020 79	.66 10.6	62 1.17	53.97	-000
32>							
33>	NOTE: PEAK F	LOWS DO NO	OT INCLUDE	BASEFLOWS	IF ANY.		
34>							
35>	001:0024						
375	FTNISH						
	F.T.NT2H						

40>	WARNINGS / 1			*********	*********	*******	********
	WALKININGS / 1		OTES				
	Simulation end		0 04 21	at 10:30	. 1 7		
						exsessme	
13>							

(V:\...PSTPH2.dat)

ł

00001> 2 Metricuni	ts *****	00136>		[-1 , -1] (max twenty pts)
00003> *# Project Name	: Hawthorne Industrial Park Project Number: [20983] *	00137>	******	***
00004> *# Date	: January, 2009 *	00139> *	Remaining Hav	thorne Industrial Park *
00006> *# Developed by	: Mark Buchanan, E.I.T. *	00141> *		*****
00007> *# Reviewed by 00006> *# Company	: Guy Forget, P.Eng. * : J.L. Richards & Associates Limited *	00142> * SU 00143>	B-AREA No.1	
00009> *# License #	: 4418403 *	00144> CALI	B STANDHYD	ID=[1], NHYD=["HIP01"], DT=[2.5](min), AREA=[19.9](ha),
00011> *		00145> 00146>		<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
00012> * 00013> *#*********************	**********	00147> 00148>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%),
00014> *# FILENAME: V	* 20983.DU\ENG\SWMHYMO\20983PST.DAT	00149>		LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.6](%),
00015> *# FILE DEVELOP 00016> *# OF A FACILI	ED FOR SITE PLAN APPLICATION AND DETAILED DESIGN * TY ASSOCIATED WITH THE OTTAWA COMPOSTING SITE *	00150>		LGI=[580] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , , ,] (mm/hr) , END=-1
00017> *#***********************************	***************	00152> *8		
00019> ******* *******	****************	00153> ADD 1 00154> *%		<pre>IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1]</pre>
00020> * SWMHYMO 00021> * PROPOSED COM	FILE DEVELOPED TO INVESTIGATE FLOOD FLOWS OF THE * POSTING SITE UNDER POST-DEVELOPMENT UNCONTROLLED CONDITIONS *	00155> *		·
00022> ***********	**************************************	00156> * SU 00157>	B-AREA NO.2	
00023>	*********	00158> CALIN 00159>	B STANDHYD	ID=[3], NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],
00025> * HYDROLOGICAL AN	00160> 00161>		SCS curve number CN=[81].	
000265 * FOR DESIGN STOP	00026> * FOR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR * 00027> ********			Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m
00028>	00162> 00163> 00164>		<pre>Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.65](%),</pre>	
00030> * POST-DEVE				LGI=[450](m), MNI=[0.03], SCI=[0.0](min RAINFALL=[, , , ,](mm/hr), END=-1
00031> ************************************	*********************	00165> 00166> *8		
00033> **********	*****************	00167> * 00168> * SUE	B-AREA No.3	 A state of the sta
00034> * CALCUI 00035> ************	ATION OF 4 HR 25 MM STORM EVENT	00169> 00170> CALIE	B CEANDRYD	
00036>		00171>	B STANDHID	ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],
00037> START 00038> *%	<pre>TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0] [] <storm filename,="" for="" line="" nstorm="" one="" per="" pre="" time<=""></storm></pre>	00172> 00173>		SCS curve number CN=[81],
00039> READ STORM	STORM FILENAME=["4HR25-15.STM"]	00174>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%), LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m
00040> *%	ICASEdef={1}, read and print values	00175> 00176>		Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.5] (%), LGI=[600] (m), MNI=[0.03], SCI=[0.0] (min
00042> 00043> *%	DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]	00177>		RAINFALL=[, , , ,](mm/hr) , END=-1
00044>		00178> *% 00179> ADD H	HYD	IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4]
00045> **************	**************************************	00180> *%		
00047> ****************	R1D F1LE *	00181> ADD H 00182> *%	a1D	IDsum=[6], NHYD=["HIPO6"], IDs to add=[5+2]
00046> 00049> * SUB-AREA No.1		00163> * 00164> * SUE		
00050>		00185>		
00051> CALIE STANDHYD 00052>	<pre>ID=[1], NHYD=["010"], DT=[2.5](min), AREA≈[2.07](ha), XIMP=[0.64], TIMP=[0.34], DWF=[0.0](cms), LOSS=[2],</pre>	00186> CALIE 00187>	B STANDHYD	ID=[7], NHYD=["HIP07"], DT=[2.5](min), AREA=[12.2](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],
00053>	SCS curve number CN=[81],	00188>		SCS curve number CN=[81],
00054> 00055>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[20] (m), MNP=[0.25], SCP=[0.0] (mi	00189>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), IGP=[100 0] (m) MMD=[0.25] SCP=[0 0] (m
00056> 00057>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.52] (%),	00191>		LGP=[100.0](m), MNP=[0.25], SCP=[0.0)(m Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.7)(%),
00058>	LGI=[204.72](m), MNI=[0.03], SCI=[0.0] RAINFALL=[,,,,](mm/hr), END=-1	00192> 00193>		LGI=[210] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , , ,] (mm/hr) , END=-1
00059> *%		00194> 00195> *%		
00061> * SUB-AREA No.2		00196> *		
00062> 00063> CALIB STANDHYD	<pre>ID=[2], NHYD=["020"], DT=[2.5](min), AREA=[1.54](ha),</pre>	00197> *SUB- 00198>	AREA No.5	
00064>	XIMP = [0, 92], TIMP = [0, 92], DWF = [0, 0] (cms), LOSS = [2].	00199> DESIG	GN NASHYD	ID=[8], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha),
00065> 00066>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mma), SLPP=[1.0](%),	00200>		DWF=[0](cms), CN/C=[85], TP=[0.17]hrs, RAINFALL=[, , ,](mm/hr), END=-1
00067>	LGP=[5](m), $MNP=[0.03]$, $SCP=[0.0](min)$,	00202> *8		
00069>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.50] (%), LGI=[244.34] (m), MNI=[0.03], SCI=[0.0]	00203>		
00070> 00071> *8	RAINFALL=[, , , ,] (mm/hr) , END=-1	00205> ADD H		IDsum=[9], NHYD=["HIP06"], IDs to add=[6+7+6]
00072> *		00206> *8		
00073> * SUB-AREA No.3 00074>		00208> *SUB- 00209> *	AREA No. 6	
00075> CALIB STANDHYD 00076>	ID=[3], NHYD=["030"], DT=[2.5] (min), AREA=[1.4] (ha),	00210> DESIG	SN NASHYD	<pre>ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7](ha),</pre>
00077>	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>	00211> 00212>		DWF=[0](cms), CNC=[76], TP=[0.80]hrs, RAINFALL=[, , ,](mm/hr), END=-1
00078>	Pervious surfaces: $IAper=[4.67]$ (mm), $SLPP=[1.0]$ (%), IGP=[5] (mm), $SLPP=[1.0]$ (%),	00213> *%		[
00080>	LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min), Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.51] (%),	00215> ADD H		<pre>IDsum=[2], NHYD=("Ultimate"], IDs to add=[9+1]</pre>
00081>	LGI=[225.63](m), MNI=[0.03], SCI=[0.0 RAINFALL=[, , , ,](mm/hr), END=-1	00216> *% 00217>		
00083> *8		00218>		
00084> ADD HYD 00085> *%	IDsum=[4], NHYD=["040"], IDs to add=[1+2]	00219> ***** 00220> *		**************************************
00086> ADD HYD 00087> *%	IDsum=[5], NHYD=["050"], IDs to add=[3+4]	00221> *****	*********	***************************************
00088> *		00222> 00223> START		TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]
00089> * SUB-AREA No.4 00090>		00224> *%		[] <storm filename,="" for="" line="" nstorm="" one="" p="" per="" time<=""></storm>
00091> CALIB STANDHYD	ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha),	00226> CHICA		IUNITS=[2], TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0](min)
00092>	XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81].	00227> 00228>		ICASEcs=[1],
00094>	Pervious surfaces: IAper=[4.67] (nm), SLPP=[0.7](%),	00229> *%		A=[732.951], B=[6.199], and C=[0.810],
00095> 00096>	LGP=[40](m), MNP=[0.25], SCP=[0.0](min) Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.93](%),	00230> DEFAU 00231>	ULT VALUES	ICASEdef=[1], read and print values DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]
00097>	LGI = [164.82] (m), MNI = [0.03], SCI = [0.0] (m)	00232> +8		
00098> 00099> *%	RAINFALL=[,,,,](mm/hr), END=-1	00233> 00234> *****	********	**********
00100> * 00101> * SUB-AREA No.5		00235> *	ORGAWORLI) FILE *
00102>		00237>		*******
00103> CALIB STANDHYD 00104>	<pre>ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],</pre>	00238> * SUB 00239>	AREA No.1	
00105>	SCS curve number CN=[81],	00240> CALIB	STANDHYD	<pre>ID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha).</pre>
00106> 00107>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[20.0] (m), MNP=[0.25], SCP=[0.0] (mi	00241>		<pre>ID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha), XIMP=[0.84], IMP=[0.84], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81]</pre>
00108>	Impervious surfaces: IAimp=[1,57] (mm), SLPI=[0,61] (%),	00243>		Pervious surfaces: IAper=[4,67] (mm), SLPP=[1,0] (%).
00109> 00110>	LGI=[207.25](m), MNI=[0.03], SCI=[0.0](RAINFALL=[, , ,](mm/hr), END=-1	00244>		LGP=[20] (m), MNP=[0.25], SCP=[0.0] (mi Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.52] (%),
00111> *8		00246>		LGI=[204.72](m), MNI=[0.03], SCI=[0.0]
00112> ADD HYD 00113> *%	IDsum=[8], NHYD=["060"], IDs to add=[6+7]	00247>		RAINFALL=[,,,,}(mma/hr), END=-1
00114> ADD HYD 00115> *8	IDsum=[9], NHYD=["090"], IDs to add=[5+8]	00249> *		
00116>		00250> * SUB- 00251>		
00117> ROUTE RESERVOIR 00118>	IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min),	00252> CALIB 00253>		ID=[2], NHYD=["020"], DT=[2.5] (min), AREA=[1.54] (ha),
00119>	TABLE of (OUTFLOW-STORAGE) values	00254>		<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
00120> 00121>	(cms) - (ha-m) [0.000, 0.0000]	00255>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%),
00122>	[0.008, 0.0656] [0.017, 0.1311]	00257>		LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min), Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.50] (%),
00123> 00124>	[0.017, 0.1311] [0.093, 0.2831]	00258> 00259>		Impervious surfaces: IAimpe[1.57](mm), SLPI=[0.50](%),
00125>	[0.233, 0.3971]	00260> *8		RAINFALL=[, , , ,] (mm/hr) , END=-1
00126> 00127>	[0.337, 0.4731] [0.465, 0.5491]	00261> * 00262> * 5UB-	-AREA No.3	
0012B> 00129>	[0.531, 0.5871]	00263>		
00130>	[0.593, 0.6251] [0.654, 0.6631]	00264> CALIB 00265>	STANDHYD	ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],
00131> 00132>	(0.797, 0.7391] (0.950, 0.8274]	00266>		SCS curve number CN≃[81],
00133>	[1.304, 0.9157]	00267> 00268>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min),
00134> 00135>	[1.680, 1.0040] [2.577, 1.0923]	00269>		LGP=[5](m), MNP=[0.03], SCP=[0.0](min), Impervious surfaces: IAimp=[1.57](mn), SLPI=[0.51](%), IGT=[225,63](m), SLPI=[0.51](%), IGT=[225,63](m), SLPI=[0.051](%),
	[2.077, 2.0360]	002103		LGI=[225.63](m), MNI=[0.03], SCI=[0.0

(V:\...PSTPH2.dat)

ł

ц Ц. ...

ł

00271>	RAINFALL=[, , , ,] (mm/hr) , END=-1	1 00406>	
00272> *8 00273> ADD HYD	IDsum=[4], NHYD=["040"], IDs to add=[1+2]	00407> ************************************	NION OF 3HR ~ 1:5 YEAR STORM EVENT *
00274> *% 00275> ADD HYD	IDsum=[5], NHYD=["050"], IDs to add=[3+4]	00409> ******************	***************************************
00276> *8 00277> *		00411> START 00412> *%	<pre>T2ERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0] [] <storm filename,="" for="" line="" nstorm="" one="" per="" pre="" time<=""></storm></pre>
00278> * SUB-AFREA No.4 00279>		00413> *8 00414> CHICAGO STORM	IUNITS=[2], TD=[3.0] (hrs), TPRAT=[0.333], CSDT=[10.0] (min)
00280> CALIB STANDHYD 00281>	ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],	00415> 00416>	ICASEcs=[1], A=[998.071], B=[6.053], and C=[0.814],
00282> 00283>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.7](%),	00417> *%	ICASEdef=[1], read and print values
00284> 00285>	LGP=[40] (m), MNP=[0.25], SCP=[0.0] (min) Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.93] (%),	00419> 00420> *8	DEFVAL_FILENAME=[V:\2293.DU\ENG\SWHYMO\"ORGA.VAL"]
00286> 00287>	LGI=[164.82] (m), MNI=[0.03], SCI=[0.0] (RAINFALL=[, , ,] (mm/hr), END=-1	00421>	*********
00288> **	[RLD FILE *
00290> * SUB-AREA No.5 00291>		00425> 00426> * SUB-AREA No.1	
00292> CALIB STANDHYD 00293>	<pre>ID=[7), NHYD~["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP~[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],</pre>	00427> 00428> CALIB STANDHYD	ID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha),
00294> 00295>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),	00429> 00430>	<pre>XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
00296> 00297>	LGP=[20.0] (m), MNP=[0.25], SCP=[0.0] (mi Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.61] (%),	00431> 00432>	Pervious surfaces: IAper=[4.67] (mm) SLPP=[1.0](%).
00298> 00299>	LGI=[207.25](m), MNI=[0.03], SCI=[0.0](RAINFALL=[, , , ,](mm/hr), END=-1	00433> 00434>	LGP=[20](m), MNP=[0.25], SCP=[0.0](mi Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.52](%), LGI=[204.72](m), MNI=[0.03], ScI=[0.0]
00300> *8 00301> ADD HYD	IDsum=[8], NHYD={ "080"], IDs to add=[6+7]	00435> 00436> *%	RAINFALL=[, , , , } (mm/hr) , END=-1
00302> *8 00303> ADD HYD	IDsum=[9], NHYD=["090"], IDs to add=[5+8]	00437> * 00438> * SUB-AREA No.2	
00304> *%		00439> 00440> CALIB STANDHYD	ID=[2], NHYD=["020"], DT=[2.5](min), AREA=[1.54](ha),
00306> ROUTE RESERVOIR 00307>	IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min),	00441> 00442>	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81].</pre>
00308>	TABLE of (OUTFLOW-STORAGE) values (cms) - (ha-m)	00443> 00444>	Pervious surfaces: IAper=[4.67] (mma), SLPP=[1.0] (%), LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min),
00310> 00311>	[0.000, 0.0000) [0.008, 0.0656]	00445> 00446>	Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.50](%), LGI=[244.34](m), MNI=[0.03], SCI=[0.0]
00312> 00313>	[0.017, 0.1311] [0.093, 0.2831]	00447> 00448> *%	RAINFALL=[, , , ,](mm/hr), BND=~1
00314> 00315>	[0.233, 0.3971] [0.337, 0.4731]	00449> * 00450> * SUB-AREA No.3	
00316> 00317> 00318>	(0.465, 0.5491) [0.531, 0.5871] [0.532]	00451> 00452> CALIB STANDHYD	ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha),
00319> 00320>	{ 0.593, 0.6251] [0.654, 0.6631] [0.6524	00453> 00454>	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
00321> 00322>	[0.797, 0.7391] [0.950, 0.8279]	00455> 00456>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min),
00323> 00324>	[1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923]	00457> 00458> 00459>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.51](%), LGI=[225.63](m), MNI=[0.03], SCI=[0.0
00325> 00326>	[-1, -1] (max twenty pts)	00460> *8	RAINFALL=[, , , ,](mm/hr), END=-1
00327> ******************	**************************************	00461> ADD HYD 00462> *% 00463> ADD HYD	IDsum=[4], NHYD=["040"], IDs to add=[1+2]
00329> ************************************	**************************************	00463> ADD HID 00464> *8 00465> *	IDsum=[5], NHYD=["050"], IDs to add=[3+4]
00331> * SUB-AREA No.1 00332>		00465> * SUB-AREA No.4 00467>	
00333> CALIB STANDHYD 00334>	<pre>ID=[1], NHYD=["HIP01"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],</pre>	00468> CALIB STANDHYD 00469>	<pre>ID=[6], NHYD=["060"], DT=[2.5] (min), AREA=[0.89] (ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0] (cms), LOSS=[2],</pre>
00335> 00336>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),	00470>	SCS curve number CN=[81], Pervious surfaces: lAper=[4.67] (xm), SLPP=[0.7] (%),
00337> 00338>	LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.6] (%),	00472>	LGP=[40](m), MNP=[0.25], SCP=(0.0)(min) Impervious surfaces: IAimp=[1.57](mun), SLPI=[0.93](%),
00339> 00340>	LGI=[580] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , ,] (mm/hr) , END=-1	00474>	LGI=[164.82](m), MNI=[0.03], SCI=[0.0](RAINFALL=[, , ,](mm/hr), END=-1
00341> *%	IDsum=[2], NHYD=["HIF02"], IDs to add=[10+1]	00476> *%	
00343> *8	· } ·	00478> * SUB-AREA No.5 00479>	
00345> * SUB-AREA No.2 00346> 00347> CALIB STANDHYD		00480> CALIB STANDHYD 00481>	ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMD=[0.97], TIMD=[0.97], DWF=[0.0](cms), LOSS=[2],
00348> 00349>	<pre>ID=[3], NHYD=("HIP03"], DT=[2.5] (min), AREA=[17] (ha), XIMP=[0.50], TIMP=[0.71], DWT=[0.0] (cms), LOSS=[2], SCS curve number CN=[81],</pre>	00482> 00483> 00484>	SCS curve number CN=[01], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),
00350>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%), LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m	00485>	LGP=[20.0] (m), MNP=[0.25], SCP=[0.0] (mi Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.61] (%), LGI=[207.25] (m), MNI=[0.63], SCI=[0.0] (
00352> 00353>	Impervious surfaces: IAimp=[1.57] (mm), SIPI=[0.65] (%), IGI=[450] (m), MNI=[0.03], SCI=[0.0] (min	00487>	RAINFALL=[, , , ,](mm/hr), END=-1
00354> 00355> *%	RAINFALL=[, , ,] (mm/hr) , END=-1	00489> ADD HYD 00490> *8	IDsum=[6], NHYD=["080"], IDs to add=[6+7]
00356> * 00357> * SUB-AREA No.3		00491> ADD HYD 00492> *8	IDsum=[9], NHYD=["090"], IDs to add=[5+8]
00358> 00359> CALIB STANDHYD	ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[15.6](ha),	00493> 00494> ROUTE RESERVOIR	<pre>IDout=(10], NHYD=["POND"], IDin=[9],</pre>
00360> .	XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],	00495> 00496>	RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values
00362> 00363>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m	00497> 00498>	(cms) - (ha-m) [0.000, 0.0000]
00364> 00365>	<pre>Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.5] (%), LGI=[600] (m), MNI=[0.03], SCI=[0.0] (min</pre>	00499> 00500>	[0.008, 0.0656] [0.017, 0.1311]
00366> 00367> *8	RAINFALL=[, , , ,] (mm/hr) , END=-1	00501> 00502>	[0.093, 0.2831] [0.233, 0.3971]
00368> ADD HYD 00369> *8	IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4]	00503> 00504>	[0.337, 0.4731] [0.465, 0.5491]
00370> ADD HYD 00371> *%	IDsum=[6], NHYD=["HIP06"], IDs to add=[5+2]	00505> 00506>	[0.531, 0.5871] [0.593, 0.6251]
00372> * 00373> * SUB-AREA No.4		00507> 00508>	[0.654, 0.6631] [0.797, 0.7391]
00374> 00375> CALIB STANDHYD	<pre>ID=[7], NHYD=["HIP07"], DT=[2.5](min), AREA=[12.2](ha),</pre>	00509> 00510>	[0.950, 0.8274] [1.304, 0.9157]
00376> 00377> 00378>	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>	00511> 00512>	[1.880, 1.0040] [2.577, 1.0923]
00379>	Pervious surfaces: TAper≈[4.67] (mm), SLPP=[1.5] (%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: TAimp=[1.57] (mm), SLPT=[0.7] (%),	00513> 00514>	<pre>[-1 , -1] (max twenty pts)</pre>
00380> 00381> 00382>	LGI=[210](m), MNI=[0.03], SCI=[0.0](min	00516> * Remaining Ha	wthorne Industrial Park *
00382> 00383> 00384> *8	RAINFALL={ , , , } (mm/hr) , END=-1	00518> *	***************************************
00385> * 00385> * 00386> *SUB-AREA No.5		00519> * SUB-AREA No.1 00520> 00521> CALIB STANDHYD	Tn=[]] MUVn=("UTn01") n=="0 #3/
00387> 00388> DESIGN NASHYD	ID=[8], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha),	00522> 00523>	<pre>ID=[1], NHYD=["HIP01"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS_CULTUR_DIMPACT_CN=[0]</pre>
003895	DWF = [0] (cms), $CN/C = [85] TP = [0] 17 brs$	00523> 00524> 00525>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%), CD=[100.01(c), PDT=[0.25], SCD=[0.01(c), PDT=[0.25], SCD=[0.25], SCD=[0.25]
00391> *%	RAINFALL=[, , ,] (mm/hr), END=-1	00525> 00526> 00527>	LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.6] (%),
00393> 00394> ADD HYD	IDsum=[9], NHYD=["HIP08"], IDs to add=[6+7+8]	00528> 00529> *8	LGI=[500] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , , ,] (mm/hr) , EMD=-1
00395> *% 00396> *	-	00530> ADD HYD 00531> *%	IDsum=[2], NHYD=["HIPO2"], IDs to add=[10+1]
00397> *SUB-AREA No. 6 00398> *		00532> * 00533> * SUB-AREA No.2	
00399> DESIGN NASHYD 00400>	<pre>ID = [1], NHYD={"A3"}, DT={2.5}min, AREA={2.7}(ha), DWF=[0](cms), CNC=[76], TP={0.80]hrs,</pre>	00534> 00535> CALIB STANDHYD	ID=[3], NHYD={ ⁶ HIP03"], DT=[2.5](min), AREA=[17](ha)
00401> 00402> *%	RAINFALL=[, , , ,] (mm/hr), END=-1	00536> 00537>	<pre>ID=[3], NHYD=[⁶HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50), TIMP=(0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
00403> 00404> ADD HYD	IDsum=[2], NHYD=["Ultimate"], IDs to add=[9+1]	00538> 00539>	<pre>Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%), LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m)</pre>
00405> *8	-	00540>	<pre>Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.65](%),</pre>

J. L. Richards & Associates Limited

Page 1

(V:\...PSTPH2.dat)

J. L. Richards & Associates Limited

LGI={450] (m), MNI=[0.03], SCI=[0.0] (min] (mm/hr), END=-1 RAINFALL=[, , , ,] (mm/hr) 00542> 00543> 00544> *8-----* SUB-AJREA No.3 00545> 00546> 00546> 00547> 00548> 00549> 00680 ID=[4], NHYD=["HIP04"], DT=[2.5] (min), AREA=[15.6] (ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0] (cms), LOSS=[2), SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LOP=[10.00] (m), MNP=[0.25], SCD=[0.0] (m Impervious surfaces: IAimpe[1.57] (mm), SLPT=[0.5] (%), LOT=[600] (m), NMT=[0.03], SCI=[0.0] (min PAINPALL=[, , ,] (mm/hr), EMD=-1 CALIB STANDHYD 00683> 00684> 00685> 00686> 00687> 00688> 00689> 00689> 00690> 00691> 00691> 00692> 00693> 00550> 00551> 00552> 00553> 00554> 00555> **-IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4] 00555> *&-----00556> ADD HYD 00557> *&-----00558> ADD HYD 00559> *&-----00560> * IDsum=[6], NHYD=["HIP06"], IDs to add=[5+2] 00693> 00694> 00695> 00696> 00697> 00698> 00561> * SUB-AREA No.4 00561> 'SOB-AREA W.4 00562> 00563> CALIB STANDHYD 00564> 00565> ID=[7], NHYD=["HIP07"], DT=[2.5] (min), AREA=[12.2] (ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[63], Pervious surfaces: IAper=[4.67] (mm), SILP=[1.5] (%), LOF=[10.0] (m,) MOPI=[0.25], SCD=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SILPI=[0.7] (%), LOE=[210] (m,) MOPI=[0.03], SCI=[0.0] (min RAINFALL=[, , , ,] (mm/hr), END=-1 00566> 00567> 00568> 00569> 00570> 00571> 00572> *%----00573> * 00574> *SUB-AREA No.5 00575> 00576> DESIGN NASHYD 00577> 00578> ID=[8], NHYD=["Pond-Block"], DT={2.5}min, AREA=[4.0](ha), DWF=[0](cms), CN/C=[85], TP=[0.17]hrs, RAINFALL=[, , ,] (mm/hr), END=-1 00711> 00712> 00713> 00714> 00715> 00716> IDsum=[9 }, NHYD=["HIP08"], IDs to add=[6+7+8] 00583/ * 00585/ *SUB-AREA NO. 6 00586/ * 00587/ DESIGN NASHYD 00588/ ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7](ha), DWF=[0](cms), CNC=[76], TP={0.80}hrs, RAINFALL=[, , , ,](mm/hr), END=-1 |------00589> 00590> IDsum=[2], NHYD=["Ultimate"], IDs to add=[9+1] 00727> 00728> 00729: TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]
[] <--storm filename, one per line for NSTORM time</pre> 00600> IUNITS=[2], TD=[3.0] (hrs), TPRAT=[0.333], CSDT=[10.0] (min) ICASEcs=[1], ICASECS=[1], A=[1174.184], B=[6.014], and C=[0.816], 00603> 00604> 00605> *%-----00738> ICASEdef=[1], read and print values DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"] 00606> DEFAULT VALUES 00607> 00611> * ORGAWORLD FILE * 00612> ****** 00613> 00614> * SUB-AREA No.1 00615> 00749> ID=[1], NHYD=["010"], DT=[2.5] (min), AREA=[2.07] (ha), XIMP=[0.84], TIMP=[0.84], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[03], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LOP=[20] (m), MMP=[0.25], SCE=[0.0] (mi Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.52] (%), LGE=[204.72] (m), MNF=[0.03], SCI=[0.0] RAINFALL=[, , ,] (mm/hr), END=-1 00616> CALIB STANDHYD 00618> 00618> 00618> 00619> 00620> 00621> 00755> 00755> 00756> 00757> 00758> 006223 00623: 00624> *&-----00625> * 00626> * SUB-AREA No.2 00627> 007595 00760> ID=[2], NHVD=["020"], DT=[2.5](min), AREA=[1.54](ha), XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPE=[1.0](%), LO2=[5](m), NNF=[0.03], SCP=[0.0](min), Impervious surfaces: IAimpe[1.57](mn), SLPI=[0.50](%), LOI=[244.34](m), MNT=[0.03], SCI=[0.0] RAINFALL=[, , ,](mm/hr), END=-1 00628> CALIB STANDHYD 00629> 00630> 00631> 00632> 00633: 00634> 00635> 00635> 00636> *%-----00637> * 00638> * SUB-AREA No.3 00639> 00639> 00640> CALIB STANDHYD 00641> 00642> 00643> 00644> 00644> ID=[3], NHYD=["030"], DT=[2.5](min}, AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: IApere[4.67](mm), SLPP=[1.0](%), LOP=[5](m), NNP=[0.03], SCP=[0.0](min), Impervious surfaces: IAimpe[1.57](mm), SLPI=[0.51](%), LOE=[25.63](m), NNT=[0.03], SCI=[0.0] RAINPALL=[, , ,](mm/hr), END=-1 00777> 00778> 00645> 00646> U0645> 00647> *0 00649> *0 00649> ADD HYD 00650> *0 00651> ADD HYD 00650> *0 00652> *0 00653> * 00653> * 00655> * 00655> IDsum=[4], NHYD=["040"], IDs to add=[1+2] IDsum=[5], NHYD=["050"], IDs to add=[3+4] 00789> ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.7](%), LGP=[40](m), MNP=[0.25], SCP=[0.0](min), Impervious surfaces: IApm=[1.57](mm), SLPI=[0.93](%), LGI=[164.82](m), MNI=[0.03], SCI=[0.0](RAINFALL=[, , ,](mm/hr), END=-1 00656> CALTE STANDHYD 00791> 00792> 00657: 00658: 00659> 00660> 00661> 00662> 00663: 00664> 00665> * 00666> * SUB-AREA No.5 00667> ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number Ch=[81], Pervious surfaces: IAper=[4.67](mm), SLPE=[1.5](%), LOF=[20.0](m), MNF=[0.25], SCP=[0.0](mi) Impervious surfaces: IAinp=[1.57](mm), SLPI=[0.61](%), LOF=[20.0](m, MNF=[0.03], SCI=[0.0](RAINFALL=[, , , ,](mtn/hr), END=-1 00668> CALIB STANDHYD 006693 00670> 00671> 00672> 00673> 00806> 00807> 00808> 00809> 00810> 00674>

00676> *8-----00677> ADD HYD 00678> *8-----00679> ADD HYD 00680> *8-----IDsum=[8], NHYD=["080"], IDs to add=[6+7] IDsum=[9], NHYD=["090"], IDs to add=[5+8] IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min), TABLE of (OUTFLCW-STORAGE) values 00682> ROUTE RESERVOIR DUTFLOW-STORAGE) ((cms) - (ha-m) 0.000, 0.0000] 0.0008, 0.00565 0.017, 0.1311] 0.033, 0.2831 0.233, 0.2971] 0.233, 0.2971] 0.337, 0.4731] 0.531, 0.5491] 0.5451, 0.5491] 0.5530, 0.6251] 0.654, 0.6631] 0.5550, 0.62747] 1.860, 1.00401 1.3047, 0.7391] 2.5777, 1.0923] -1 , -1] 00699> [1.304; 00699> [1.880; 00700> [2.577; 00701> [-1 , 00702> * Remaining Hawthorne Industrial Park * (max twenty pts) 00704> * Remaining Hawthorne Industrial Park * 00705> ****** 00706> * 00707> * SUB-AREA No.1 ID=[1], NHYD=["HIP01"], DT=[2.5] (min), AREA=[19.9] (ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LCP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimpe[1.57] (mm), SLPI=[10.6] (%), LCI=[580] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , ,] (mm/hr), END=1 00708> 00709> CALIB STANDHYD 00710> IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1] 00718> ADD HYD 00718> **-----00720> * 00721> * SUB-AREA No.2 00722> 00722> 00723> CALIB STANDHYD 00724> 00725> 00726> LD=[3], NHYD=["HIP03"], DT=[2.5] (min), AREA=[17] (ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: IAper=[4.57] (mm), SLPP=[1.5] (%), LGO=[100.0] (m), NNP=[0.25], SCD=[0.0] (m Impervious surfaces: IAimpe[1.57] (mm), SLPI=[0.65] (%), LGD=[10.0] (m), NNT=[0.03], SCI=[0.0] (min RAINFALE=[, , ,] (mm/hr), END=1 00730> 00731> *&-----00732> * 00733> * SUB-AREA No.3 ID=[4], NHYD=("HIP04"], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.7]], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](\$), LGP=[10.0.0](m), NNP=[0.25], SCS=[0.0](m Impervious surfaces: IAinp=[1.57](rm), SLPT=[0.5](\$), LGT=[600](m), MNT=[0.3], SCI=[0.0](min RAINFALL=[, , ,](mm/hr), END=-1 00739> 00740> 00741> 00742> 00743> *%----00743> ADD HYD 00745> *%-----00746> ADD HYD 00747> *%-----00748> * IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4] IDsum=[6], NHYD=["HIP06"], IDs to add=[5+2] * SUB-AREA No.4 00750> 00751> CALIB STANDHYD 00752> 00753> 00754> ID=[7], NHYD=["HIP07"], DT=[2.5](min), AREA=[12.2](ha), XIMP=[0.50], TIMP=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), LOP=[10.0.0](m), MNP=[0.25], SCD=[0.0](m Impervious surfaces: IAimpe[1.57](mm), SLPI=[0.7](%), LOI=[210](mn), MNI=[0.03], SCI=[0.0](min RAINPALL=[, , ,](mm/hr), END=-1 *8---00761> * 00762> *SUB-AREA No.5 00763> 00764> DESIGN NASHYD 00765> *SUB-AREA No.5 ID=[8], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cms), CN/C=[85], TP=[0.17]hrs, RAINFALL=[, , , ,](mm/hr), END=-1 00765> 00766> 00766> 00768> 00768> 00768> 00770> ADD HYD 00771> **-----IDsum=[9], NHYD=["HIP08"], IDs to add=[6+7+8] 00772> * 00773> *SUB-AREA NO. 00774> * 00775> DESIGN NASHYD 00776> * *SUB-AREA No. 6 ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7](ha), DWF=[0](cms), CNC=[76], TP=[0.80]hrs, RAINFALL=[, , , ,](ππ/hr), END=-1 00779> 00780> ADD HYD 00781> *8-----IDsum=[2], NHYD={"Ultimate"}, IDs to add=[9+1] 00783> **** 00784> * CALCULATION OF 3HR - 1:25 YEAR STORM EVENT 00785> 00785> 00786> TZERO=[0.0], METOUT=[2], NSTORM=[0], NRU 00780> *\$ [] <-storm filename, one per line for N TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]
[] <--storm filename, one per line for NSTORM time</pre> [] <--scorm literiame, one per fine term in terms [] IUNITS=[2], TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0](min) ICASEcs=[1], A=[1402.884], B=[6.018], and C=[0.819], ICASEdef=[1], read and print values DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"] 00790> CHICAGO STORM 00794> DEFAILT VALUES 00/95> 00796> *8------00801> 00802> * SUB-AREA No.1 00803> 00803> 00804> CALIB STANDHYD 00805> LGP=[20] (m), MMP=[0.25], SCP=[0.0] (m) Impervious surfaces: LAImp=[1.57] (mm), SLPI=[0.52] (%), LGI=[204.72] (m), MNI=[0.03], SCI=[0.0]

(V:\...PSTPH2.dat)

J. L. Richards & Associates Limited

PR-ARMA N.1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1 PR-ARMA N.1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1 PR-ARMA N.1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1 PR-ARMA N.1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1 PR-ARMA N.1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1 PR-ARMA N.1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1 PR-ARMA N.1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1 Prot Armson Section 1	00811>	RAINFALL=[, , , ,)(mm/hr) , END=-1	00946>	RAINFALL≈[, , , ,](mm/hr) , END=-1
All Andra, M Standard, M Carlos, S. Markel, J. J. Markel, Markel, J. B C. J. School, M J	00813> *		00947> 00948> *%	
<pre>Set 0 Mark Set 0</pre>	00815>		00950> *SUB-AREA No.5	
Particle	00617>	XIMP = [0.92], TIMP = [0.92], DWF = [0.0] (cms), LOSS = [2].	00952> DESIGN NASHYD	ID=[8], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha),
<pre>Part Aux has a proving a start is import of the part and part of the part</pre>	00819>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%),	00954>	DWF=[0](cms), CN/C=[85], TP=[0.17]hrs, RAINFALL=[, , , ,](mm/hr), END=-1
AMERGEN AMERGEN Image: 1, Ima	00821>	Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.50](%),	00956>	
<pre></pre>	00823>	RAINFALL=[, , , ,] (mm/hr) , END=-1	00958> ADD HYD	IDsum=[9], NHYD=["HIP08"], IDs to add=[6+7+8]
Section stratement The section stratement	00825> *	,	00960> *	
<pre></pre>	00827>	ID=[3], $NHYD=["030"]$, $DT=[2,5]$ (min), $AREA = [1,4]$ (ha).	00962> *	TD = [1] NHVD=["33"] DT=(2.51min 2023c(2.71/ba)
State Pre-form State State State State State State State State State State State State State State <td>00829></td> <td>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],</td> <td>00964></td> <td>DWF = [0] (cms), CNC = [76], TP = [0.80] hrs,</td>	00829>	XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],	00964>	DWF = [0] (cms), CNC = [76], TP = [0.80] hrs,
<pre>Memory in the intervent interve</pre>	00832>	Pervious surfaces: LAper=[4.67] (mm), SLPP=[1.0](%), LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min),		
<pre> the number is a second if is a second if</pre>	00834>	LGI=[225.63](m), MNI=[0.03], SCI=[0.0	00969> *8	IDsum=[2], NHYD=["Ultimate"], IDs to add=[9+1]
No. Lame(-1), with(-1/1407); mit is add(-1/1); mit add(-1/1); Lame(-1), with(-1/1407); mit is add(-1/1); mit add(-1/1); No. The ALESA is a Construction of the Construction of	00836> *8		00971> ****************	
 The AndA B4 Calla STANDO The AndA B5 The AndA B5	00838> *8		00973> ****************	
 Aller Frankensen Guine Frankensen	00840> *%		00975> START	T2ERO=[0.0], METOUT≠[2], NSTORM=[0], NRUN=[0] [] <storm filename,="" for="" line="" nstorm="" one="" per="" td="" time<=""></storm>
Colls Frome: Colls From: Colls From: Colls From: Colls From: Colls From: Colls From: Colls From: <	00842> * SUB-AIREA No.4 00843>		00977> **	
Provide Number 10, 1, 1, 10, 10, 10, 10, 10, 10, 10, 1	00845>	XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],	00979> 00980>	ICASEcs=[1], A=[1569.580], B=[6.014], and C=[0.820], B=[6.014], and C=[0.820], B=[6.014], and C=[0.820], B=[6.014], B=[
Image: contract is approximation of the sector is approximate in the sector is a	00847>	SCS curve number CN=[61], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.7}(%),	00982> DEFAULT VALUES	ICASEdef=[1], read and print values
<pre> </pre>	00849>	Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.93](%).	00984> **	DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]
 	00851>	LGI=[164.82](m), MNI=[0.03], SCI=[0.0](RAINFALL=[, , , ,](mm/hr), END=-1	00986> ************	
ALLS BYRNOND Int - 1, NUME-1997, Har-1 (100), NUME-1 (200), NUME-1 (00853> *		00988> ***************	
1000000000000000000000000000000000000	00855>	ID=[7], NHYD=["070"], DT=[2.51(min), AREA=[2.66](ba)	00990> * SUB-AREA No.1	
Decision Partial sufficient Decision (1, 2) (w), Exercic(3, 1), (w), (w) Description (1, 2) (w), Exercic(3, 1), (w), (w) Description sufficient Decision (1, 2) (w), Exercic(3, 1), (w), (w) Description (1, 2) (w), Exercic(3, 1), (w), (w) Description (1, 2) (w), Exercic(3, 1), (w), (w) Description (1, 2) (w), Exercic(3, 1), (w), (w) Description (1, 2) (w), Exercic(3, 1), (w), (w) Description (1, 2) (w), (w) Description (1, 2) (w), (w) Description (1, 2)	00857> 00858>	XIMP = [0.97], TIMP = [0.97], DWF = [0.0] (cms), LOSS = [2],	00992> CALIB STANDHYD	XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2].
Alexandor Series (1) Control (1) Contro (1) Control (1) <thcontrol (1)<="" td="" th<=""><td>00860></td><td>Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%), LGP=[20.0](m), MNP=[0.25], SCP=[0.0](mi</td><td>00994> 00995></td><td>SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%),</td></thcontrol>	00860>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%), LGP=[20.0](m), MNP=[0.25], SCP=[0.0](mi	00994> 00995>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%),
MARKALP Jumh J Second 1 August Markalphane Jumh J Second 1 Jump J Jum J	00862>	Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.61](%), LGI=[207.25](m), MNI=[0.03], SCI=[0.0](00996> 00997>	LGP=[20](m), MNP=[0.25], SCP=[0.0](mi Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.52](%),
000000000000000000000000000000000000	00864> **		00999>	LGI=[204.72](m), MNI=[0.03], SCI=[0.0] RAINFALL=[,,,,](mm/hr), END=-1
00000 00000	00866> **		01001> *	
00070 Dimet (10) Dimet (10) </td <td>00868> **</td> <td></td> <td>01003></td> <td>TD-[2] NUMD-(#020#3 DM-(2 E1/-) SDDS-(1 E4 3/)-)</td>	00868> **		01003>	TD-[2] NUMD-(#020#3 DM-(2 E1/-) SDDS-(1 E4 3/)-)
Description TABLE of Control of Contrel of Control of Control of Contrel of Control of Contr	00870> ROUTE RESERVOIR 00871>	RDT = [1,0] (min),	01005>	XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2],
00000 00000 00000 00000 00000 00000 0000	00873>	TABLE of (OUTFLOW-STORAGE) values (cms) - (ha-m)	01007>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%), LGP=[5](m), MNP=[0.03], SCP=[0.0](min),
0.00075 0.0007	00875>	[0.000, 0.0000] [0.008, 0.0656]	01010>	Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.50](%), LGI=[244.34](m), MNI=[0.03], SCI=[0.0]
0.8375 0.837 0.4731 0.8375 (0.837 0.4731 0.8375 (0.837 0.4731 0.8375 (0.837 0.4731 0.8375 (0.837 0.4731 0.8375 (0.837 0.4731 0.837 (0.837 0.4731 0.837 (0.837 0.4731 0.837 (0.837 0.4731 0.837 (0.837 0.4731 0.837 (0.837 0.4731 0.837 (0.837 0.4731 0.837 (0.837 0.4371 0.837 (0.837 0.4371 0.837 (0.837 0.4371 0.837 (0.837 0.4371 0.837 (0.837 0.4371 0.837 (0.837 0.4371 0.837 (0.837 0.4371 0.837 (0.837 0.4371 0.837 (0.837 0.4371 0.837 (0.837 0.4371 0.837 (0.837	00877>	[0.093, 0.2831]	01012> *8	RAINFALL=[, , , ,] (mm/hr) , END=-1
0.882. (0.821, 0.8	00879>	[0.337, 0.4731]	01014> * SUB-AREA No.3	
000000 000000 000000 000000 000000 00000	00881>	(0.531, 0.5871)	01016> CALIB STANDHYD	ID=[3], NHYD=["030"), DT=[2.5] (min), AREA=[1.4] (ha),
0000000 0000000 000000000000000000000	00883>	[0.654, 0.6631]	01018>	SCS curve number CN=[81],
1 1	00886>	[0.950, 0.8274] [1.304, 0.9157]	01020>	LGP=[5](m), MNP=[0.03], SCP=[0.0](min), Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.51](%).
0000000	00888>	[2.577, 1.0923]	01023>	LG1=[225.63](m), MNI=[0.03], SCI=[0.0]
0.08825 * .	00890>		01025> ADD HYD	IDsum=[4], NHYD=["040"}, IDs to add=[1+2]
00335 * 00-AREA No.1 00335 * 00-AREA No.2	00892> * Remaining Ha		01027> ADD HYD	IDsum=[5], NHYD=["050"], IDs to add=[3+4]
000000000000000000000000000000000000	00894> *		01029> *	-
0889> Sc5 curve number CM=[81], Pervious surfaces: LAimpel[1,57] (mm, SL2Pel[1,1] [%], D09032 01034> Sc5 curve number CM=[81], Pervious surfaces: LAimpel[1,57] (mm, SL2Pel[0,2]) (%), D09032 099032 Impervious surfaces: LAimpel[1,57] (mm, SL2Pel[0,2]) (%), LAITE(200 (mm, MT=[0,33], SCF=[0,0]) (%), D09032 Impervious surfaces: LAimpel[1,57] (mm, SL2Pel[0,2]) (%), D09032 Impervious surfaces: LAimpel[1,57] (mm, SL2Pel[0,2]) (%), D09032 009035 ALMFALL-[, , ,] (mm/hr) (% BND=-1 01035 Impervious surfaces: LAimpel[1,57] (mm, SL2Pel[0,0]) (%), D09032 009035 ALMFALL-[, , ,] (mm/hr) (% BND=-1 01037 Impervious surfaces: LAimpel[0,0], (%), D09056 009035 MATHALL-[, , ,] (mm/hr) (% BND=-1 01037 Impervious surfaces: LAimpel[0,0], (%), D09057 009056 Thepervious surfaces: LAimpel[1,57] (mm, SL2Pel[1,0], D09057 The[1], MPTD=["WIP03"], DT=[2,5] (min), AREA=[12], D09051 Sc5 curve number CM=[81], D000515 Thepervious surfaces: LAimpel[1,57] (mm, SL2Pel[0,0] (min), DSS=[1,0], D000515 Thepervious surfaces: LAimpel[1,57] (mm, SL2Pel[0,0] (min), DSS=[1,0], D000515 Thepervious surfaces: LAimpel[1,57] (mn), SL2Pel[0,0] (min), DSS=[1,0], D000515 Thepervious surfaces: LAimpel[1,57] (mn), SL2Pel[0,0] (min), DSS=[1,0], D000515 Thepervious surfaces: LAimpel[1,57] (mn), SL2Pel[0,0] (min), DSS=[1,0], D00051 Thepervious surfaces: LAimpel[1,57] (mn), SL2Pel[0,0] (min), DSS=[1,0], D00052 Thepervious surfaces: LAimpel[1,57] (mn), SL2	00896>	ID=[1], NHYD=["HIP01"], DT=[2.5](min), AREA=[19.9](ha),	01031>	ID=[6], $NHYD=["060"]$, $DT=[2.5]$ (min), $AREA=[0.69]$ (ba).
009912 IDS=[100.0] (m), MNP=[0.25], SCP=(0.0] (m) 01335 Interest (DS=[100.0], MNP=[0.25], SCP=(0.0] (m) 009922 PAINPALL=[, , ,] SDP=[15] (m], SDP=[0.0] (m) 01335 Interest (DS=[100.0], MNP=[0.25], SCP=(0.0] (m) 009925 MAINPALL=[, ,] (DS=[100.0] (m), MNP=[0.25], SCP=(0.0] (m) 01335 Interest (DS=[100.0] (m), SDP=[0.0] (m) 009925 MAINPALL=[,] (J (MNP=["MIP02"], IDS to add=[10+1] 01335 Interest (DS=[100.0] (m), MNP=[0.25], SCP=(0.0] (m) 009925 MAINPALL=[,] (J (MNP=["MIP02"], DT=[2.5] (min), ABEA=[17] (h), OSS=[2], OSS 01335 Interest (DS=[10.0] (m), MNP=[0.25], SCP=(0.0] (m) 009925 SUB-AREA No.2 SCS curve mumber CK[31], MPR=["0.0] (man, LDS=[12], OSS=[2], O	00899>	SCS curve number CN=[81],	01033> 01034>	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
Unservice Impervices Interperise	00901>	LGP=[100.0] (m), MNP=[0.25], SCP=[0.0) (m	01036>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[0.7] (%), LGP=[40] (m), MNP={0.25], SCP=[0.0] (min)
009855 *** ************************************	00903>	LGI=[580] (m), MNI=[0.03], SCI=[0.0] (min	01038>	<pre>Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.93](%), LGI=[164.82](m), MNI=[0.03], SCI=[0.0](</pre>
005977 **	00905> *%		01040> *%	ארגאראבשב=נ , , , j(mm/hr) , END=-1
005905 * SUB-AREA No.2 0059105 0059115 1D=[7] INFD=["0.50], TIM=[0.01[cms], LOSS=[2], 001015 009115 009115 009115 009115 009115 009115 009115 009115 009115 009115 009115 009115 009115 009115 009115 009115 009115 009115 009115 1D=[7] 1D=[7] 1D=[7] 009115 1D=[1, 1] 1D=[7]	00907> *%		01042> * SUB-AREA No.5	
009312 CALB STANDHYD ID=[3], MKTD=["MEPO3"], DT=[2.5](min), AREA=[17](na), DIOS=[2],	00909> * SUB-AREA No.2 00910>		01044> CALIB STANDHYD 01045>	XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],
00913> SCS curve number CN=[01], Pervious surfaces: LAper=[4.67] (nn), SLPP=[1.5](%), U0915> 1048> LGP=[20.0] (n), MNP=[0.25], SCP=[0.0] (n) U1649> 00915> Impervious surfaces: LAper=[4.67] (nn), SLPP=[0.65](%), U0915> Impervious surfaces: LAper=[4.67] (nn), SLPP=[0.0] (n) U1651> U1649> Impervious surfaces: LAper=[4.67] (nn), SLPP=[0.63](%), U1652> U1649> Impervious surfaces: LAper=[4.67] (nn), SLPP=[0.63](%), U1652> U1649> Impervious surfaces: LAper=[4.67] (nn), SLPP=[1.5](%), U1652> U1649>	00912>	XIMP = [0.50], $TIMP = [0.71]$, $DWF = [0.0]$ (cms), $LOSS = [2]$,	01046> 01047>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),
000155 000175 000175 000175 000175 000175 000175 000175 000175 000175 000175 000175 Impervious surfaces: IMPERCID: 0, 0, 1, meter (0, 0, 1, mete	00914>	SCS curve number CN=[61], Pervious surfaces: IAber=(4.67)(mm), SLPP=(1.5](%),	01049>	LGP=[20.0] (m), MNP=[0.25], SCP=[0.0] (mi Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.61] (%),
00919> RAIMFALL=[, , , ,] (mm/hz). END=-1 01053 ADD HYD IDsum=[8], NRYD=["080"], IDs to add=[6+7] 00920> * 00923> 01053 ADD HYD IDsum=[8], NRYD=["080"], IDs to add=[6+7] 00922> SUB-AREA No.3 01054 *6	00916>	LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.65](%),	01051>	LGI = [207.25] (m), $MNI = [0.03]$, $SCI = [0.0]$
00920 * (0)21> * SUB_AREA No.3 01055 ADD HYD IDsum=[9], NHYD=["090"], IDs to add=[5+8] 00922> CALIE STANDHYD ID=[4], NHYD=["HIP04"], DT=[2.5] (min), AREA=[15.6] (ha), 01055 ADD HYD IDsum=[9], NHYD=["090"], IDs to add=[5+8] 00922> CALIE STANDHYD ID=[4], NHYD=["HIP04"], DT=[2.5] (min), AREA=[15.6] (ha), 01055 * IDout=[10], NHYD=["000"], IDin=[9], 00922> CALIE STANDHYD ID=[4], NHYD=["NHP04"], DT=[2.5] (min), SLEP=[1.5] (ha), 01055 * IDout=[10], NHYD=["000"], IDin=[9], 00922> CALIE STANDHYD ID=[4], NHYD=["NHP04"], DT=[2.5] (min), SLEP=[0.0] (min) 01055 * IDout=[10], NHYD=["000"], IDin=[9], 00922> D0922> Impervious surfaces: IAmp=[1.57] (min), SLEP=[0.0] (min) 01061 (min), 01062 (min), 00922> D0923> RAINFALL=[, , , ,] (mm/hz), RED=-1 01065 * [0.000, 0.000] 00932> ADD HYD IDsum=[5], NHYD=["HIP05"], ID to add=[3+4] 01065 * [0.233, 0.2331] 00933> *4 IDsum=[6], NHYD=["HIP06"], ID to add=[5+2] 01065 * [0.333, 0.4731] 00934> * IDsum=[6, 5], NHYD=["HIP07"], DT=[2.5] (min), AREA=[12.2] (ha), 01072 [0.554, 0.6331] 01072 [0.554, 0.6331] 00935> * SUB-AREA No.4 [0.000, 0.555] [0.000, 0.555] [0.000, 0.555] 00934> SUB-AREA	00918>	RAINFALL=[, , , ,](mm/hr), END=-1	01053> ADD HYD	IDsum=[8], NHYD=["080"], IDs to add=[6+7]
00922> 01057> 00922> ID=[4], NHYD=("HIP04"], DT=[2.5](min), AREA=[15.6](ha), 00924> 01057> 00925> SCS curve number CM=[61], 00927> 01058> ROTE RESERVOIR 01058> IDout=[10], NHYD=["POND"], IDI=[9], RDT=[1.0](min), 01058> 00922> SCS curve number CM=[61], 00927> 01057> IDout=[10], NHYD=["POND"], IDI=[9], RDT=[1.0](min), 01058> 00927> LGP=[10.0](m), SLPP=[1.5](%), 01058> 01058> TABLE 0 (OUTFLOW-STORAGE) values 00927> LGP=[10.0](m), SLPT=[0.0], SLP=[0.0](min) 01062> [0.000, 0.000] 00928> Impervious surfaces: IAmp=[1.57](mm), SLPT=[0.0](min) SLP=[0.0](min) 01063> [0.000, 0.000] 00921> ALINFALL=[, , ,] (mm/ht), RED=-1 01065> [0.000, 0.003] [0.000, 0.0655] 00931> *4	00920> *	· · · · · · · · · · · · · · · · · · ·	01055> ADD HYD	
00924> XHDP=[0.50], THMP=[0.71], DWF=[0.0] (cms], LOSS=[2], SCE_CUVE NUMBER CN=[6]], SLEPE[1.5](8), SLEPE[1.5]	00922> 00923> CALIB STANDHYD	ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[15.6](ha).	01057>	· · ·
00922> Pervious suffaces: LAPE=[16, 5](4), 01061> (cms) - (ha-m) 00927> LGP=[100.0](m), MNP=[0.5], SCP=[0.0](m) 01062> [0.000, 0.000] 00928> Impervious surfaces: LAImP=[0.03], SCI=[0.0](m) 01062> [0.000, 0.000] 00928> LGT=[600](m), MNT, IC=[0.03], SCI=[0.0](m) 01063> [0.000, 0.000] 00929> RAINFALL=[, , ,] (mm/h;] END=1 01064> [0.000, 0.000] 00931> *4	00924>	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>	01059> 01060>	RDT=[1.0](min),
00928> Impervious sutfaces: Limp=[1.57] (mm), SLPI=[0.03], SCI=[0.0] (min) 01063> [0.008, 0.0656] 00928> RAINFALL=[, , , ,] (mm/k1 , END=1 01064> [0.008, 0.0656] 00930> RAINFALL=[, , , ,] (mm/k1 , END=-1 01064> [0.008, 0.0656] 00931> *1 Ibsum=[5], NHYD=["HIPOS"], IDs to add=[3+4] 01065> [0.233, 0.3971] 00932> ADD HYD Ibsum=[6], NHYD=["HIPOS"], IDs to add=[3+4] 01067> [0.337, 0.4731] 00932> *4 Ibsum=[6], NHYD=["HIPOS"], IDs to add=[5+2] 01068> [0.351, 0.5671] 00933> *4 Ibsum=[6], NHYD=["HIPOS"], IDs to add=[5+2] 01068> [0.531, 0.5671] 00933> *4 Ibsum=[6], NHYD=["HIPOS"], IDs to add=[5+2] 01068> [0.531, 0.5671] 00933> *5 Ibsum=[6], NHYD=["HIPOS"], IDs to add=[5+2] 01068> [0.531, 0.5671] 00933> *5 Ibsum=[6], NHYD=["HIPOS"], IDs to add=[5+2] 01068> [0.531, 0.5671] 00933> *5 Ibsum=[6], NHYD=["HIPOS"], IDs to add=[5+2] 01075> [0.531, 0.5671] 00933> *010 Ibsum=[6], NHYD=["HIPOS"], IDS to add=[5+2] 01075> [0.534, 0.6631] 00933> Ibsum	00926> 00927>	Pervious surfaces: $IAper=[4.67] (mm)$, $SLPP=[1.5] (%)$, I.GP=[100.0] (m) MNP=[0.25] SCP=[0.0] (m)	01062>	(cms) - (ha-m)
00932> ADD HYD IDsum=[5], NHYD=["HIPOS"], IDs to add=[3+4] 01065 [0.233, 0.3971] 00932> ADD HYD IDsum=[6], NHYD=["HIPOS"], IDs to add=[3+4] 01067 [0.337, 0.4731] 00932> ADD HYD IDsum=[6], NHYD=["HIPOS"], IDs to add=[5+2] 01068> [0.465, 0.5491] 00933> *4	00929>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.5] (%), LGI=[600] (m), MNI=[0.03], SCI=[0.0] (min	01064>	[0.008, 0.0656] { 0.017, 0.1311]
009333 *%	00931> *%		01066>	1 0.093, 0.28311
00935> *%(000000000000000000000000000000	00933> **		01068>	[0.465, 0.5491]
009379 * SUB-AREA No.4 01072> [0.775] 0.7391 00938> D1073> [0.757] 0.7391 00939> D1073> [0.757] 0.7391 00939> D1073> [0.757] 0.950, 00939> STANDHYD D10[7], DHT=[2.5] (min), AREA=[12.2] (ha), 01074> [1.304, 0.9157] 00940> XIMP=[0.50], TIMP=[0.0] (ms), LOSS=[2], 01075> [1.880, 1.0040] 00941> SCS curve number CN=[61], 01076> [2.577, 1.0923] 00942> Pervious surfaces: IApper[4.67] (mm), SLPP=[1.5] (%), 01076> [2.77, 1.0923] 00943> L6Per[100.0] (m), MNP=[0.25], SCP=[0.0] (m) 01078> (max twenty pts) 09944> Impervious surfaces: IAipper[1.57] (ms), SLP=[0.7] (%), 01078> (max twenty pts)	00935> **		01070>	[0.593, 0.6251]
00939> CALIB STANDHYD ID=(7), NH7D=["HIPO7"], DT=[2.5] (min), AREA=[1.2] (ha), 01074> 1.334, 0.9157] 00940> XHW9=[0.50], THF0=[0.71], DWF=[0.2] (min), AREA=[1.2] (ha), 01075> [1.304, 0.9157] 00941> SCS curve number CN=[61], 01075> [2.577, 1.0923] 00942> Pervious surfaces: IApper=[4.67] (mm), SLPP=[1.5] (%), 01075> [2.577, 1.0923] 00942> L6Per[100.0] (m), MNP=[0.25], SCP=[0.0] [m] 01075> [2.577, 1.0923] 00943> L6Per[100.0] (m), SLP=[0.7] (%), 01075> [2.577, 1.0923] 09945> Impervious surfaces: IAipper[1.57] (ms), SLP=[0.7] (%), 01075> [0.1075>	00937> * SUB-AREA No.4		01072>	[0.797, 0.7391]
00941> SCS curve number CN=[61], 01076> [2.577, 1.0923] 00942> Pervious surfaces: IApper[4.67](mm), SLPP=[1.5](%), 01077> [-1, -1] (max twenty pts) 00943> L6Per[10.0](m), MNP=[0.25], SCP=[0.0](m) 01078> [-1, -1] (max twenty pts) 00944> Impervious surfaces: IAipper[1.57](ms), SLPT=[0.7](%), 01078> [-1, -1] (max twenty pts)	00939> CALIB STANDHYD 00940>	XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],	01074> 01075>	[1.304, 0.9157] [1.880, 1.0040]
00944 impervious surfaces: IAImpe(1.5/) (mm), SLPI= $\{0.7\}$ (01079) ************************************	00941> 00942>	SCS curve number CN=[81],	01076> 01077>	[2.577, 1.0923]
LGI=[210](m), MNI=[0.03], SCI=[0.0](min 01080> * Remaining Hawthorne Industrial Park *	00943> 00944>	impervious surfaces: IAimpe(1.5/](mm), SLPI=[0./](%),	01078> 01079> **********************	************************
1	00342>	LGI=[210](m), MNI={0.03}, SCI=[0.0}(min	U1080> * Remaining Ha	wthorne Industrial Park *

J. L. Richards & Associates Limited

1

]___

.....

×...

Page 3

(V:\...PSTPH2.dat)

81> 82> * 83> * SUB-APEA No.1	***************************************	01217> *	SUB-AREA No.4	-
84> 85> CALIB STRANDHYD	ID=[1], NHYD=["HIP01"], DT=[2.5](min), AREA=[19.9](ha),	01219>	ALIB STANDHYD	ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha),
86> 87>	XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],	01221> 01222>		IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
68> 69>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m	01223>		Pervious surfaces: IAper=[4,67](mm), SLPP=[0,7](%).
90> 91>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0,6](%),	01225>		LGP=[40](m), MNP=[0.25], SCP=[0.0](Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.93](%),
92> 93> *8	LGI=[580] (m), MNI=[0.03], SCI=[0.0] {min RAINFALL=[, , , ,] (mm/hr) , END=-1	01226> 01227>		LGI=[164.82](m), MNI=[0.03], SCI=[0 RAINFALL=[, , ,](mm/hr), END=-1
94> ADD HYD	<pre>IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1]</pre>	01228> **	8	-
95> *% 96> *	[]	01230> *	SUB-AREA No.5	
97> * SUB-AREA No.2 98>		01232> CA	ALIB STANDHYD	ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha),
99> CALIB STANDHYD	<pre>ID=[3], NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha),</pre>	01233> 01234>		<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
00> D1>	XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],	01235>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[20.0] (m), MNP=[0.25], SCP=[0.0
D2> D3>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m	01237> 01238>		<pre>Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.61)(%), LGI=[207.25] (m), MNI=[0.03], SCI=[0]</pre>
D4> D5>	<pre>Impervious surfaces: IAimp=[1.57] (nm), SLPI=[0.65] (%),</pre>	01239>		RAINFALL=[, , , ,] (mm/hr) , END=-1
06> 07> *8	LGI=[450] (m), MNI=[0.03), SCI=[0.0] (min RAINFALL=[, , , ,] (mm/hr), END=-1	01240> ** 01241> AI	DD HYD	IDsum=[8], NHYD=["080"], IDs to add=[6+7]
08> *		01242> *9 01243> AE		IDsum=[9], NHYD=["090"], IDs to add=[5+8]
19> * SUB-AFREA No.3 LO>		01244> *9 01245>	8	-
1> CALIB STANDHYD	ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.71], DWF=(0.0](cms), LOSS=[2],		OUTE RESERVOIR	<pre>IDout=[10], NHYD=["POND"], IDin=[9],</pre>
.3> .4>	SCS curve number CN=[81],	01248>		RDT=[1.0](min), TABLE of { OUTFLOW-STORAGE) values
.5>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m	01249> 01250>		(cm=s) – (ha=m) [0.000, 0.0000]
6> 7>	<pre>Impervious surfaces: IAimp=[1.57] (num), SLPI=[0.5] (%), LGI=[600] (m), MNI=[0.03], SCI=[0.0] (min</pre>	01251> 01252>		[0.008, 0.0656]
.8> .9> *&	RAINFALL=[, , , ,] (mm/hr) , END=-1	01253>		[0.093, 0.2831]
0> ADD HYD	IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4]	01254> 01255>		[0.233, 0.3971] [0.337, 0.4731]
1> *8 2> ADD HYD	IDsum=[6], NHYD=["HIP06"], IDs to add=[5+2]	01256> 01257>		[0.465, 0.5491] [0.531, 0.5871]
3> *8 4> *		01258>		[0.593, 0.6251]
5> * SUB-AREA No.4 6>		01260>		[0.654, 0.6631] [0.797, 0.7391]
7> CALIB STANDHYD	ID=[7], NHYD=["HIP07"], DT=[2.5] (min), AREA=[12.2] (ha),	01261> 01262>		[0.950, 0.8274] [1.304, 0.9157]
8> 9>	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>	01263> 01264>	•	[1.880, 1.0040] [2.577, 1.0923]
0> 1>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m	01265>		$\begin{bmatrix} 2.577, 1.0923 \end{bmatrix}$ $\begin{bmatrix} -1, -1 \end{bmatrix}$ (max twenty pts)
2>	<pre>Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.7](%),</pre>	01266> 01267> **		************
3> 4>	LGI=[21D] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , , ,] (mm/hr), END=-1			Wthorne Industrial Park *
5> 6> *8		01270> *	SUB-AREA No.1	
7> * 8> *SUB-AREA No.5	· ·	01272>		
9>		01274>	LIB STANDHYD	<pre>ID=[1], NHYD=["HIP01"], DT=[2.5](min), AREA=[19.9](ha) XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],</pre>
0> DESIGN NASHYD 1>	<pre>ID=[8], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cms), CN/C=[85], TP=[0.17]hrs,</pre>	01275> 01276>		SCS curve number CN≃[81], Pervious surfaces: IAper=[4.57](mm), SLPP=[1.5](%),
2> 3> *8	RAINFALL=[, , , ,] (mm/hr), END=-1	01277>		LGP=[100.0](m), MNP=[0.25], SCP=[0.
4>		01279>		Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.6](%), LGI=[580](m), MNI=[0.03], SCI=[0.0]
5> 6> ADD HYD	IDsum=[9], NHYD=["HIP06"], IDs to add=[6+7+8]	01280> 01281> *%	·	LGI=[580](m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , , ,](mm/hr), END=-1
7> *8 8> *		01282> AD 01283> *8	D HYD	IDsum=[2], NHYD=["HIPO2"], IDs to add=[10+1]
9> *SUB-AREA No. 6 0> *		01284> *		
1> DESIGN NASHYD	ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7](ha),	01286>	SUB-AREA No.2	
2> 3>	DWF=[0](cms), CNC=[76], TP=[0.80]hrs, RAINFALL=[, , , ,](mm/hr), END=-1	01287> CA 01288>	LIB STANDHYD	<pre>ID={ 3], NHYD=["HIP03"], DT={2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],</pre>
4> *% 5>		01289> 01290>		SCS curve number CN=[81].
6> ADD HYD 7> *8	IDsum=[2], NHYD=["Ultimate"], IDs to add=[9+1]	01291>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%), LGP=(100.0](m), MNP=[0.25], SCP=[0.1
8>	······································	01292> 01293>		Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.65](%), LGI=[450](m), MNI=[0.03], SCI=[0.0]
0> * CALCULATION	OF 3HR - 1:100 YEAR STORM EVENT *	01294> 01295> *%		RAINFALL=[,,,,](mm/hr), END=-1
1> ************************************	*********	01296> *	SUB-AREA No.3	
3> START 4> *%	TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]	01298>		
5> *&	[] <storm filename,="" for="" line="" nstorm="" one="" per="" td="" time<=""><td>01300></td><td>LIB STANDHYD</td><td>ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[15.6](ha) XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],</td></storm>	01300>	LIB STANDHYD	ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[15.6](ha) XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],
7>	<pre>IUNITS=[2], TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0](min) ICASEcs=[1],</pre>	01301> 01302>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%),
8> 9> *8	A=[1735.600], B=[6.014], and C=[0.820],	01303>		LGP=[100.0](m), MNP=[0.25], SCP=[0.1]
0> DEFAULT VALUES	ICASEdef=[1], read and print values	01304> 01305>		Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.5](%), LGI=[600](m), MNI=[0.03], SCI=[0.0]
1> 2> *8	DEFVAL_FILENAME={V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"}	01306> 01307> **		RAINFALL=[, , ,](mm/hr), END=-1
3> 4> ********		01308> AD 01309> *8-	D HYD	IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4]
5> * ORGAWORLI 5> ***************************	FILE *	01310> AD	D HYD	<pre>IDsum=[6], NHYD=["HIP06"], IDs to add=[5+2]</pre>
7>		01311> *% 01312> *		
<pre>B> * SUB-AREA No.1 B></pre>		01314>	SUB-AREA No.4	
0> CALIB STANDHYD 1>	<pre>ID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha), XIMD=[0.84], TIMD=[0.84], DWF=[0.0](cms), LOSS=[2],</pre>	01315> CAI 01316>	LIB STANDHYD	ID=[7], $NHYD=["HIPO7"]$, $DT=(2.5]$ (min), $AREA=[12.2]$ (ha), XIMP=[0, 50] $TIMP=[0, 71]$, $DMP=[0, 0]$ (mr), $LOSS=[2]$
		01317>		SCS curve number CN=[81],
3> 4>	Sci Curve Inumber Cwe[5], Pervious surfaces: lAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[20] (m), MMP=[0.25], SCP=[0.0] (mi Impervious surfaces: latime [1.57] (m), StDI-(0.52) (%)	01318> 01319>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.1
5> 5>	<pre>Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.52] (%), LGI=[204.72] (m), MNI=[0.03], SCI=[0.0]</pre>	01320> 01321>		Impervious surfaces: IAimpe[1.57](m), SLPI=[0.7](%), LGI=[210](m), MNI=[0.03], SCI=[0.0]
7> 8> *8	RAINFALL=[, , , ,](mm/hr), END=-1	01322>		RAINFALL=[,,,,](mm/hr), END=-1
ə> *				
<pre>D> * SUB-AREA No.2 L></pre>		01325> * 01326> *SU	UB-AREA No.5	
<pre>2> CALIB STANDHYD 3></pre>	<pre>ID=[2], NHYD=["020"], DT=[2.5](min), AREA=[1.54](ha), XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], CCC = DVP=[DV=[DV=[020], DWF=[0.0](cms), LOSS=[2],</pre>	01327>	SIGN NASHYD	<pre>ID=[8], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](heta)</pre>
4> 5>	scs curve number cn=[81],	01329>		$DWF \approx [0](cms), CN/C \approx [85], TP = [0, 17]hrs.$
	Pervious surfaces: IAper=(1.67) (nm), SLPE=[1.0](%), LGP=[5](m), MNP=[0.03], SCP=[0.0](min), Impervious surfaces: IAimp=[1.57](nm), SLPI=[0.50](%),			RAINFALL=[, , , ,](mm/hr), END=-1
		01332> 01333>		
// /> /> *8	RAINFALL=[, , ,](mm/hr), BND=-1	01334> ADD	DHYD	<pre>IDsum=[9], NHYD={"HIP08"], IDs to add=[6+7+8]</pre>
1> *		01336> *		
2> * SUB-AREA No.3 3>		01337> *SU 01338> *	UB-AREA No. 6	
4> CALIB STANDHYD	ID=[3], $NHYD=["030"]$, $DT=[2.5]$ (min), $AREA=[1.4]$ (ha), $YIMD=[0, 97]$, $TIMD=[0, 97]$, $DTT=[2, 5]$ (ha), $TAREA=[1.4]$ (ha),	01339> DES	SIGN NASHYD	ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7](ha),
6>	<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>	01340> 01341>		DWF=[0](cms), CNC=[76], TP=(0.80)hrs, RAINFALL=[, , ,](mm/hr), END=-1
5>	<pre>Pervious surfaces: IAper=[4.67] (mum), SLPP=[1.0](%),</pre>	01342> *%- 01343>		
	Impervious surfaces: IAimp=[1.57] (mn), SLPI=[0.51] (%), IGI=[225.63] (m), MNI=[0.03], SCI=[0.0	01344> ADD		IDsum=[2], NHYD=["Ultimate"], IDs to add=[9+1]
1>	LGI=[225.63] (m), MNI=[0.03], SCI=[0.0 RAINFALL=[, , , ,](mm/hr), END=-1	01346>		
		01347> FIN	NISH	
	IDsum=[4], NHYDe("040"), IDs to add=[1+2]			
2> *%	IDsum=[4], NHYD=["040"], IDs to add=[1+2]	01348>		

29.27 (ii) 30.00 .04 Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 10.80 (ii) 10.00 .11 00001> 001365 00136> 00137> 00138> 00139> 00140> 00141> 00142> *TOTALS* .158 (iii) 1.292 20.508 24.999 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = .16 .00 1.75 5.17 25.00 .21 1.29 23.43 25.00 .94 00142> 00143> 00144> 00145> 00145> 00146> 00147> 00148> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (i) TIME STEP (JT) SHOULD BE SUBLER OR FQUAL THAN THE STORAGE COEFFICIENT. (ii) PEAK FLOW DOES NOT INCLIDE BASEFICON IF ANY. A single event and continuous hydrologic simulation model based on the principles of HYMO and its successors oTHYMO-83 and OTHYMO-99. Distributed by: J.F. Sabourin and Associates Inc. Ottawa, Ontaric: (613) 727-5199 Gatineau, Quebec: (819) 243-6858 B-Mail: sumhymolifs.Com 00012> 00013> 00014> 00015> 00016> . 00018> 00153> 001.0003 00154> * 00155> * SUB-AREA No.2 00019> 00020> 00021> 00022> 00156> -00157> | 00158> | CALIE STANDHYD (Area (ha)= 1.54 02:020 DT=2.50 | Total Imp(%)= 92.00 Dir. Conn.(%)= 92.00 ++++++ Licensed user: J. L. Richards & Associatos Limited ++++++ -+++++ Licensed user: J. L. Richards & Associatos Limited ++++++ -+++++ Ottawa SERIAL#:4418403 ++++++ 00022> 00023> 00024> 00025> 00025> 00026> 00027> 00159> 00160> 00161> 00162> 00163> 00164> 00165> 00166> 00166> 00167> 00168> 00169> 00169> 00170> Surface Area (ha) = Dep. Storage (mm) = Average Slope (%) = Length (m) = Mannings n = IMPERVIOUS PERVIOUS (1) 1.42 1.57 .50 244.34 .030 .12 ****** * ******************** 00028> 1.00 5.00 .030
 ++++++
 PROGRAM ARRAY DIMENSIONS ++++++

 Maximum value for ID numbers : 10

 Max. number of rainfall points: 15000

 Max. number of flow points : 15000
 00030>
00031>
00032>
 00031>
 Max. number of rainfall points: 15000

 00032>
 Max. number of flow points : 15000

 00033>
 Max. number of flow points : 15000

 00033>
 Max. number of flow points : 15000

 00034
 DETAILED OUTPUT

 00035
 DETAILED OUTPUT

 00035
 DATE: 2009-02-09
 TIME: 14:59:31
 RUN COUNTER: 000154

 00036
 Input filename: V:\20983.DU\ENG\SWHEYMO\PSTPH2.dat
 00041

 00042>
 Summary filename: V:\20983.DU\ENG\SWHEYMO\PSTPH2.sum
 00045

 11
 00045
 11

 00045
 11
 00045

 00045
 21
 00045

 00045
 01:0001
 00045
 45.63 12.50 12.15 (ii) 12.50 .09 Max.eff.Inten.(mm/hr)= 7.24 over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 15.00 14.15 (11) 15.00 .08 00171> 00172> 00173> 00174> 00175> .12 1.33 23.43 25.00 .94 *TOTALS* PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nm) = TOTAL RAINFALL (nm) = RUNOFF COEFFICIENT = .121 (iii) 1.333 21.969 24.999 .879 . 00 1.46 5.17 25.00 .21 00175> 00176> 00177> 00178> 00178> 00179> 00180> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) THE STEP (DT) SHOULD BE SHALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) FEAK FLOW DOES NOT INCLUDE BASEFICOW IF ANY. 00181> 00182> 000*C_____* 00187> * 00188> * SUB-AREA No.3 00169>-----00169> -----00190> | CALIE STANDHYD | Area (ha)= 1.40 00191> | 03:030 DT= 2.50 | Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 0152> -----Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = 00192> 00193> 00194> 00195> 00195> 00196> 00197> IMPERVIOUS PERVIOUS (1) 1.36 1.57 .04 4.67 .51 225.63 .030 1.00 5.00 .030 00198> 00198> 00199> 00200> 00201> 00202> 00203> 00204> 00205> 00206> 00206> 00207> 00208> 45.63 12.50 11.52 (11) 12.50 .10 Max.eff.Inten.(mm/hr) = 7.97 over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 12.50 13.44 (ii) 12.50 .09 .50 .10 .12 1.33 23.43 25.00 .94 .7 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = *TOTALS* 00071>
00072>
00072>
00074>
FOR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075>
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
00075
000 .00 .118 (iii) 1.333 22.881 24.999 .915 1.42 5.17 25.00 .21 00208> 00209> 00210> 00211> 00212> 00213> 00214> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 01.0 Ia = Dep. Storage (Above) (ii) THM STEP (D7) SHOULD BE SUALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) EERK FLOW DOES NOT INCLUDE BASETION IF ANY. 00215>
 QPEAK
 TPEAK
 R.V.

 (cms)
 (hrs)
 (mm)

 .156
 1.29
 20.51

 .121
 1.33
 21.97
 (cms) .000 .000 SUM 04:040 3.61 00226> .278 1.33 21.13 . 000 00227> 00228> 00229> 00230> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00093> 00094> 00095> 00096> 00097> 00098>
 THME
 RAIN
 TIME
 RAIN
 <th 00099> 00100> 00101> 00100-00102> 00102> 00102> 001002> 001002> 001005> [DEFNULT VALUES | Filename: V:\20983.DULENC\SUMHYNO\ORGA.VAL 00105> [DEFNULT VALUES | I fread and print data] 00107> FileTitle=----- ENTER YOUR COMENTS ON THIS LINE AND THE NEXT ONE -----00108> 00107> FileTitle= PARAMETER VALUES MUST BE ENTERD AFTER COLUMN 60 -----00109> Horton's infiltration equation parameters: 00110> [FO= 50.00 mm/hc] [FC= 7.50 mm/hc] [DCAV= 2.00 /hc] [F= .00 mm] 00112> Parameters for PERVIOUS surfaces in STANDHYD: 00113> Parameters for IMPERVIOUS surfaces in STANDHYD: 00114> [IAlmps 1.57 mm] (CLI= 1.50] [MNI= .035] 00115> Parameters used in NABHYD: 00115> [Ia= 4.67 mm] (H= 3.00] 00117> [Ia= 4.67 mm] (H= 3.00] Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS 00250> 00251> 00252> 00253> PERVIOUS (1) .86 1.57 .93 164.82 .030 .03 4.67 .70 40.00 .250 00254> 00255> 00255> 00257> 00258> 002259> 00260> 00261> 00262> 00263> 00263> 00264> 00265> 00265> 00265> 00265> 00265> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 45.63 7.50 7.97 (ii) 7.50 .14 4.42 42.50 41.62 (11) 42.50 .03
 IMPERVIOUS

 Surface Area
 (ha) =
 1.74

 Dep, Storage (mm) =
 1.57

 Average Slope (%) =
 524.72

 Mannings n
 =
 .030
 TOTALS (cms) = (hrs) = (mm) = (mm) = ENT = .09 1.25 23.43 25.00 .94 PEAK FLOW (CF TIME TO PEAK (h) RUNOFF VOLUME (h TOTAL RAINFALL (h RUNOFF COEFFICIENT .089 (iii) 1.250 22.882 24.999 .00 .33 4.67 1.00 00128> 00129> 00130> 00131> 00132> 00133> 00134> 00135> 2.00 20.00 00268> 00269> 00270> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) Max.eff.Inten.(mm/hr)= over (min) 45.63 10.00 5.37

(ji) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) FRAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00271> 00406> -----00407> 001:0016-----00408> * 00271> 00272> 00273> 00274> 00275> 00276> 00277> 00408> * 00409> * SUB-AREA No.2 UU910> 00411> | CALIE STANDHYD | Area (ha)= 17.00 00412> | 03:KIE03 DT=2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 00413> IMPERVIOUS PERVIOUS (i) 00415> Surface Area (ha)= 12.00 001:001C)-----00278> * SUB-AFREA No.5 00279> 00280> 00281> 00282> IMPERVIOUS 12.07 1.57 PERVIOUS (i) 4.93 4.67 1.50 | CALIB STANDHYD | Area (ha)= 2.66 | 07:07C DT= 2.50 | Total Imp(\$)≏ 97.00 Dir. Conn.(\$)= 97.00 00416> 00417> 00418> 00419> 00420> Surface Area (na) =Dep. Storage (nm) =Average Slope $(\mathfrak{H}) =$ Length (m) =Mannings n =
 IMPERVIOUS
 97,00
 Dir. Conn

 Surface Area
 (ha)=
 2.56
 .08

 Degp. Storage
 (mm)=
 1.57
 4.67

 Avecrage Slope
 (%)=
 .61
 1.50

 Leragth
 (m)=
 207.25
 20.00

 Maranings n
 =
 .030
 250
 .65 450.00 .030 00283> 100.00 00284> 00285> 00286> 00287> 00288> 00420> 00421> 00422> 00423> 00423> 00424> 00425> 00425> Max.eff.Inten.(mm/hr)= 40.81 17.50 12.73
 over (min)
 17.50
 42.73

 Storage Coeff. (min)=
 16.94 (ii)
 47.50 (ii)

 Unit Hyd. Tpeak (min)=
 17.50 (47.50 (ii))

 Unit Hyd. peak (cma)=
 .07 .02

 PEAK FLOW (cma)=
 .07 .02

 RUNOFF VOLUME (mn)=
 1.42 2.00

 RUNOF VOLUME (mn)=
 23.43 8.74

 TOTAL RAINFALL (mn)=
 25.00 25.00

 RUNOFF COEFFICIENT =
 .94 .35
 Max.err.inten.(mm/hf)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 00288> 00289> 00290> 00291> 00292> 00293> 00293> 00293> 00295> 00295> 00295> 00295> 00297> 00298> 00299> Max.eff.Inten.(mm/hr)= 45.63 5.66 over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = 10.00 27.50 10.37 (ii) 26.38 (ii) 10.00 27.50 .11 .04 *TOTALS* .625 (iii) 1.458 16.085 24.999 .643 00427> 00428> 00429> 00429> 00430> 00431> 00432> *TOTALS* .238 (iii) 1.292 22.882 .24 .00 1.29 1.67 23.43 5.17 25.00 25.00 .94 .21 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNJOFF VOLUME (mm) = TOTTAL RAINFALL (nm) = RUNJOFF COEFFICIENT = (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) THEN STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE RASEFLOW IF ANY. 00433> 00433> 00434> 00435> 00435> 00436> 00437> 24.999 .915 00300> 00301> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 00302> 00303> 00304> CN* = 81.0 IA = Dep. Storage (Above)
 (i.i) THE STEP (DT) SHOULD BE SMALLER OR EQUAL TRAN THE STORAGE COEFFICIENT.
 (i.i.i) FRAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00438> .
 Display
 THEN THE STORAGE COEFFICIENT.

 003065
 (iii) FRAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 00307
 (iii) FRAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 003085
 001:0011

 00307
 (iii) FRAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 003085
 001:0011

 003105
 (iiii) FRAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 003105
 (iiii) FRAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 003105
 (iiii) FRAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 003105
 (iiii) FRAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 003105
 (iiii) FRAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 003105
 (iiii) FRAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 003105
 (iiii) FRAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 003105
 (iiii) FRAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 003107
 (iiii) FRAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 00305> 00441> ------00444> | CALIE STANDHVD | Area (ha)= 15.60 00445> | 04:HIP04 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 00447> IMPERVIOUS PERVIOUS (i) 00447> Surface Area (ha)= 1 0.0 DWF (cms) .000 .000 Surface Area (ha)= Dep. Storage (nm)= Average Slope (%)= Length (m)= Mannings n = 11.08 1.57 .50 4.52 4.67 1.50 00449> 00450> 00451> 00452> 00452> 00453> 00454> .000 600.00 100.00 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. Max.eff.Inten. (mm/hr) = over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = 34.39 22.50 11.54 55.00 00455> 00455> 00456> 00457> 00458> 00459>
 37.30
 15.36

 23.33
 (ii)
 54.95

 23.33
 (ii)
 54.95

 23.50
 55.00
 .02

 .45
 .00
 .17

 23.43
 8.74
 25.00
 .25.00

 .94
 .35
 .35
 NWF *TOTALS* .484 (iii) 1.542 16.085 24.999 .643 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (nun)= TOTAL RAINFALL (nun)= RUNOFF COEFFICIENT = 00459> 00460> 00461> 00462> 00463> 00463> 00464> 00465> .3. NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00465> 00465> 00467> 00468> 00469> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (i) AN FROEDORE SELECTED FOR FERVIOUS DUSSES;
 (ii) THE STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOBS NOT INCLUDE EASEFLOW IF ANY. 003345 | ROITS RESERVOIR | 003355 | ROITS RESERVOIR | 003365 | RIN-09 (006) | 003375 | OUT<10 (PORD) | 003385 | OUT<10 (PORD) | 00385 | OUT<10 (PORD) | 00000 | OUT<10 (PORD) | 00000 | OUT<10 (PORD) | 0000 | OUT Requested routing time step = 1.0 min. 00470> 00471>
 OUTFLOW
 STORAGE
 CONTLOW
 STORAGE
 CABLE

 OUTFLOW
 STORAGE
 OUTFLOW
 STORAGE

 OUTFLOW
 STORAGE
 OUTFLOW
 STORAGE

 (mas)
 (ha.m.)
 (cms)
 (ha.m.)

 .000
 0.0002+00
 .593
 .52512+00

 .017
 .3112+00
 .950
 .62512+00

 .023
 .39712+00
 .550
 .2742+00

 .233
 .39712+00
 1.304
 .91572+00

 .465
 .5912E+00
 2.577
 .1092E+01

 .531
 .5871E+00
 .000
 .0000E+00
 00340> 00341> 00342> 00342> 00343> 00344> SUM 05:HIP05 32.60 1.091 1.46 16.08 00345> 00345> 00346> 00347> 00348> 00349> .000 00481>
 ROUTING RESULTS
 AREA
 OPEAX
 TPEAK

 INFLOW:09: (090)
 8.56
 .716
 1.292

 OUTFLOW:10: (POND)
 8.56
 .032
 3.875
 R.V. (mm) 22.143 22.141 ROUTING RESULTS 00350> 00351> 00352> 00353> 00353> PEAK FLOW REDUCTION [Qout/Qin] (%) = 4.470 TIME SHIFT OF PEAK FLOW (min) = 155.00 MAXIMUM STORAGE USED (ha.m.)=.1611E+00 00355> SUM 06:HIP06 61.06 1.740 1.50 16.93 00495.-00495.-00495.-00495.-00495.-00495.-00495.-00505.-005 00504> 00505> 00505> 00507> 00508> 00510> 00511> 00511> 00513> 00514> 00515> 00516> 00516> 00519> 00519> 00520> 00372> 00373> 00374> 00375> 00376> 00376> 00377> 00379> 00380> 00380> 00381> 00382> 00383> 34.39 11.90 22.50 52.50 21.64 (ii) 52.68 (ii) 22.50 52.50 .05 .02 45.63 14.15 10.00 40.00 10.03 (ii) 30.18 (ii) 10.00 40.00 .11 .03 Max.eff.Inten.(mm/hr) = over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= *TOTALS* .585 (iii) 1.292 16.085 24.999 .643 *TOTALS* PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nm) = TOTAL RAINFALL (nm) = RUNOFF COEFFICIENT = .60 .11 1.50 2.13 23.43 8.74 25.00 25.00 .94 .35 *TOTALS* .642 (iii) 1.542 16.085 24.999 .643 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nun) = TOTAL RAINFALL (nun) = RUNOFF COEFFICIENT = .57 .08 1.29 1.88 23.43 8.74 25.00 25.00 .94 .35 .08 00384> 00385> 00386> 00386> 00387> 00388> 00388> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES; CN* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR RQUAL THAN THE STORAGE COEFFICIENT. (iii) FERK FLOW DOES NOT INCLUDE EASEFLOW IF ANY. 00390> 00391> _____
 QPEAK
 TPEAK
 R.V.

 (cms)
 (hrs)
 (mm)

 .032
 3.88
 22.14

 .642
 1.54
 16.08
 DWF (cms) .000 .000 00400> 00401> 00402> 00403> 00403> 00404> 00405> SUM 02:HIP02 28.46 .655 1.54 17.91 000 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00539> PEAK FLOW (cms) = .077 (i)

TIPME TO PEAK (hrs) = 1.375 RUTNOFF VOLUME (mm) = 6.343 TOTTAL RAINFALL (mm) = 24.999 RUTNOFF COEFFICIENT = .254 0676> 001:0005-----00677> * 00678> * SUB-AREA No.2 00679> | CALIB STANDHYD | Area (ha)= 1.54 | 02:020 DT= 2.50 | Total Imp(%)= 92.00 Dir. Conn.(%)= 92.00 00680> 00681> 00682> 00683> Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS PERVIOUS (i) 1.42 .12 1.57 4.67 .50 1.00 00684> 00685> 00686> 244.34 .030 00687>
00688>
00689> 5.00
 76.81
 15.07

 10.00
 12.50

 9.87 (ii)
 11.36 (ii)

 10.00
 12.50

 .11
 .20
 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff.(min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 00690> 00691> 00692> 00693> 00694> 00695> 00559> 00560> 00561> 00562> 00563> *TOTALS* .192 (iii) 1.083 28.548 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mma) = TOTAL RAINFALL (mma) = RUNOFF COEFFICIENT = .19 1.08 30.29 31.86 .95 .00 1.17 8.52 31.86 .27 00696> 00696> 00697> 00698> 00700> 00701> 00702> 00703> 00704> 00705> 00706> 007070> 00564> *SUB-AREA No. 6 00565> * 31.860 005655 * 00565 / 00565 / 00565 / 00565 / 00565 / 00565 / 00565 / 0057 / DESIGN WASHYD / Area (ha)= 2.70 Curve Number (CN)=76.00 00565 / 01:33 UT 2.50 | Ia (mm)= 4.670 # of Linear Res. (N)= 3.00 00565 / 00.133 UT 2.50 | Ia (mm)= 4.670 # of Linear Res. (N)= 3.00 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00569> 00570> 00571> 00572> 00573> 00574> 00575> Unit Hyd Qpeak (cms)= .129
 PEJAK FLOW
 (cms)=
 .013 (i)

 TIME TO PEAK
 (hrs)=
 2.292

 RUNTOFF VOLUME
 (mm)=
 4.110

 TOTAL RINFALL
 (mm)=
 24.999

 RUNTOFF COEFFICIENT
 .164
 00576> 00576> 00577> 00578> 00579> 00580> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = 1.36 1.57 .51 225.63 .030 .04 4.67 1.00 00719> 00720> 00721> 00722> 00722> 5.00 0056/2 005885 5UM 02:Ultima 79.95 005905 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 76.81
 16.59

 10.00
 10.00

 9.35 (ii)
 10.79 (ii)

 10.00
 10.00

 .12
 .11

 .18
 .00

 1.08
 1.0

 30.29
 8.52

 31.86
 31.66

 .95
 .27
 Max.eff.Inten.(mm/hr)= over {min} Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 00724> 00725> 00726> 00727> 00729> 00730> 00731> 00732> 00733> 00734> 00735> 00736> 00736> 00737> 00738> *TOTALS* .186 (i1i) 1.083 29.637 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nms) = TOTAL RAINFALL (nms) = RUNOFF COEFFICIENT =

 005565 *
 CALCULATION OF Jam

 005575 *
 *

 005585 *
 *

 005585 *
 Rainfall dir.: V:\20983.DU\ENG\SWMHYMO\

 005605 *
 TZERO = .00 hrs on 0

 006012 *
 TZERO = .00 hrs on 0

 00602 *
 METOUT* 2 (output = METRIC)

 00603 *
 NSTO RM* 0

 00605 *
 001:0002

 00605 *
 001:0002

 00605 *
 001:0002

 00605 *
 001:0002

 00605 *
 001:0002

 00605 *
 001:0002

 00605 *
 001:0002

 00605 *
 001:0002

 00605 *
 001:0002

 00605 *
 001:0002

 00605 *
 001:0002

 00605 *
 001:0002

 00605 *
 001:0002

 00605 *
 001:0002

 00605 *
 001:0002

 00605 *
 001:0002

 00605 *
 001:0002

 00610 *
 *

 00612 *
 *

 00612 *
 *

 31.860 .930 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00739> (111) PEAK FLOW DOES NUT INCLUDE ANDERLOW I 00610> 00611> 00612> 00612> 00613> 00614> Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = .33 00615> 00615> 00616> 00617> 00618> 00619>
 TIME
 RAIN
 TIME
 RAIN
 TIME
 RAIN
 TIME

 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs

 17
 2.815
 1.00
 76.805
 1.83
 5.095
 2.67

 .33
 3.498
 1.17
 24.079
 2.00
 4.291
 2.43

 .67
 4.681
 1.33
 12.364
 2.17
 3.718
 3
 0

 .63
 18.209
 1.67
 6.324
 2.23
 3.288
 1
 0
 0
 1
 0
 0
 1
 2.403
 1
 0
 0
 0
 0
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 RAIN mm/hr 2.684 2.463 2.279 00621> 00622> 00623> 00624> 00772> 00773> 00774> 00775> 00776> 00776> 00777> 00778> 00778> 00780> 00780> 00781> 00782> 00783> 00783> 00783>
 76.81
 10.24

 7.50
 30.00

 6.47
 (ii)

 7.50
 30.00

 .16
 .04

 .14
 .00

 1.04
 1.54

 30.29
 B.52

 31.86
 31.86

 .95
 .27
 over (min) Storage Coeff. (min) Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= *TOTALS* .139 (iii) 1.042 29.637 31.860 .930 00785> PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 00786> 00786> 00787> 00788> 00789> 00790> 006533 00654> 00655> 00656> 00657> 00658> 00790> 00791> 00792> 00793> 00794> 00795> 00796> 00797> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff.(min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=
 76.81
 11.88

 10.00
 22.50

 8.77
 (ii)

 10.00
 22.21

 10.00
 22.50

 .12
 .05
 (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (11) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (11) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00659> 00660> 00661> 00662> 00663> 00664> PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEPFICIENT = .24 .01 1.08 1.38 30.29 8.52 31.86 31.86 .95 .27 *TOTALS *TOTALS* .245 (iii) 1.083 26.807 31.860 006655 0666> 006667> 00668> 00669> 00669> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: C** = 81.0 Ia = Dep. Storage (Above) (i) THM STEP (V7) SHOULD BE SUBLER OR EQUAL THAN THE STORAGE COEFFICIENT. (ii) PEAK FLOW DOES NOT INCLUDE BASEFICON IF ANY.
 IMPERVIOUS
 PERVIOUS (i)

 Surface Area
 (ha)=
 2.58
 .08

 Dep. Storage (mm)=
 1.57
 4.67

 Average Slope (%)=
 .61
 1.50

 Length (m)=
 207.25
 20.00
 00671> 00672> 00673> 00809>

14.60 (ii) 37.80 (ii) 15.00 37.50 .08 .03 .91 .19 1.17 1.63 30.29 13.34 31.86 31.86 .95 .42 00811> Marinings n .030 .250 Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 00946> 00948> 00948> 00949> 00950>
 76.81
 12.71

 7.50
 20.00

 8.42
 (ii)
 20.00

 7.50
 20.00
 (ii)

 7.50
 20.00
 .14
 Mage.eff.Inten.(mm/hr)= 00813> 00814> over (min) Stourage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= *TOTALS* .978 (iii) 1.167 21.814 31.860 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 00815> 00816> 00817> 00818> 00950> 00951> 00952> 00953> 00954> 00955> 00956> *TOTALS* .379 (111) 1.042 29.637 31.860 .930 .38 1.04 30.29 31.86 .95 PE24k FLOW (cms) = TIPHE TO PEAK (hrs) = RUTNOFF VOLUME (mm) = TOTCAL RAINFALL (mm) = RUTNOFF COEFFICIENT = 00810> 00820> 00820> 00821> 00822> 00823> .00 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 31.86 .27 00957> 00958> 00823> 00824> 00825> 00826> 00827> 00827> 00828> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00959> 00960> 00961> 00829> 00964> * 00965> * SUB-AREA No.3 00966> ------00966> --00967> | 00968> | 00969> --00970> 00971> 00972> 00973> CALLE STANDHYD | Area (ha)= 15.60 04:HIPD4 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00
 NDD HYZD (080)
 ID: NHYD
 AREA
 QPEAK
 TPEAK
 R.V.
 PMF

 ID1 05:060
 (ha)
 (cms)
 (hrs)
 (mm)
 (cms)

 HD2 07:070
 2.66
 .379
 1.04
 29.64
 .000
 00834> 00835> 00836> 00837> 00838> 00839> 00840> Surface Area (ha)= Dep. Storage (nmm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS PERVIOUS (i) 11.08 1.57 .50 600.00 .030 4.52 4.67 1.50 100.00 SUM 08:060 3.55 .518 1.04 29.64 . 000 00973> 00974> 00975> 00976> 00977> 00978> 00979>
 CORACT
 Core
 < .250
 100
 122.17

 50.44
 22.17

 20.00
 45.00

 20.01
 41.37

 20.00
 45.00

 .06
 .03

 .69
 1.6

 1.25
 1.79

 30.29
 13.34

 31.86
 .95
 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 00980> 00981> 00982> 00983> 00984> 00985> *TOTALS* .753 (iii) 1.292 21.814 31.860 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mms)= TOTAL RAINFALL (mms)= RUNOFF COEFFICIENT = 00851> SUM 09: 00852> NOTE: PEAK FLOWS DO 00853> NOTE: PEAK FLOWS DO 00853> 00854> 00855> ------00857> 001:0013 ------00857> 001:0013 ------00850> (DVCTE RESERVOIR | 00850> (DVC310 : (D90) 00860> (DVC310 : (D90) 00860> (DVC310 : (D90) 00860> (00860> 00 00986> 00987> 00988> 00988> 00989> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SWALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 _____ 00990> 00991> 00992> 00993> 00994> 00995> Requested routing time step = 1.0 min.
 Requested fouring time step = 1.0 kml.

 ==========
 0111FLOW STORAGE TABLE

 000FLOW STORAGE (000FFLOW STORAGE (0ms) (ha.m.)
 000FLOW STORAGE (ha.m.)

 1000 0000E+00 i
 .593 c6231E+00

 000 .0000E+00 i
 .593 c6231E+00

 001 .3311E+00 i
 .550 .2724E+00

 .233 .3971E+00 i
 1.304 .9157E+00

 .337 .4731E+00 i
 1.880 .1004E+01

 .465 .591E+00 i
 2.577 .1092E+01

 .531 .5871E+00 i
 0.000 .0000E+00
 00863> 00864> 00865> 00866> 00867> 00868> 00868> 00869> 00870> 00871> 00872> 00873> 00873> 00875> 00875> 00876> 00877> 00878> ROUTING RESULTS R.V. (mm) 20.757 28.754
 PEAK
 FLOW
 REDUCTION
 Qout/Qin}(%)=
 5.030

 TIME SHIFT OF
 PEAK
 FLOW
 (min)=
 115.00

 MAXIMUM
 STORAGE
 USED
 (ha.m.)=.20952+00
 008795 00880> 01015> 01016> 01017> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 IMPERVIOUS
 (i)
 Dir. Conn. (\$)=

 Surface Area
 (ha) =
 14.13
 5.77

 Dep. Storage
 (mm) =
 1.57
 4.67

 Length
 (m) =
 50.00
 100.00

 Mannings n
 =
 .030
 .250
 5.77 4.67 1.50 100.00 .250 00896> 00897> 00898> 00899> 00900> 00901> 00902> 00904> 00904> 00905> 00906> 00906> 00906> 00906> 00909> 00910> 00910> 00910>
 54.21
 23.06

 17.50
 42.50

 18.04
 (ii)

 42.02
 (ij)

 17.50
 42.50

 .06
 .03

 .95
 .21

 1.21
 1.71

 30.29
 13.34

 31.86
 31.86

 .95
 .42

 76.61
 29.02

 76.63
 30.00

 8.15
 (ii)

 9.15
 (ii)

 1.16
 .04

 .91
 .16

 1.04
 1.50

 30.29
 13.34

 30.29
 .3.4

 .95
 .42
 Max.eff.Inten.(mm/hr)= Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= *TOTALS* 1.020 (iii) 1.250 21.814 31.860 .685 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNCFF VOLUME (rm) = TOTAL RAINFALL (rm) = RUNCFF COEFFICIENT = .21 1.71 13.34 31.86 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = *TOTALS* .941 (iii) 1.042 21.814 31.860 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES; CN* = 81.0 Ia = Dep. Storage (Above)
 ITME STEP (DT) SHOULD BE SMALLER OR REQUAL TRAN THE STORAGE COEFFICIENT.
 (ii) PEAK FLOW DOES NOT INCLUDE RASEFLOW IF ANY. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (1) IN PROJUGE SELECTED FOR PRAVIOUS DUSSES;
 (2) R = 81.0 I a = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 01051>

 01052>

 01052>

 01052>

 01052>

 01053>

 01051>

 01052>

 01052>

 01055>

 01055>

 01055>

 01055>

 01055>

 01055>

 01055>

 01055>

 01055>

 01055>

 01055>

 01055>

 01055>

 01055>

 01055>

 01055>

 01055>

 01055>

 01055>

 01055>

 01055>

 01055>

 01055>

 01055>

 01055>

 01055>

 01055>

 01055

 01055

 01055

 01055

 01055

 01055

 01055

 01055

 01055

 01055

 01055

 01055

 01055

 01055
 </tr 00913>
 009189
 001:0015
 Description

 00920>
 ADD HYD (HIP02) | ID: NHYD
 AREA
 QPEAK TPEAK R.V. DWF

 00921>
 ----- (ha)
 (cms)
 (hrs)
 (mm)
 (cms)

 00922>
 ID1 10: FOND
 8.56
 .056
 3.00
 28.75
 .000

 00923>
 +1D2 01: HIP01
 19.90
 1.020
 1.25
 21.81
 .000

 00924>
 ----- DUM 02: HIP02
 28.46
 1.039
 1.25
 23.90
 .000
 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 OTOG25
 PEAK FLM.

 010635
 TIDE TO PEAK (un.;

 010655
 RUNOFF VOLMME (mm) = 10....

 010656
 TOTAL RAINFALL (mm) = 31.660

 010657
 RUNOFF COEFFICIENT = .322

 010665
 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 010705
 (1) OTO52

 010705
 (1) DO22

 010705
 (1) DO22

 010705
 (1) DO1:0022

 010705
 (1) DO1:0022

 010705
 (1) DO1:0022

 010705
 (1) DO:HIPO6

 010765
 ID) DO:HIPO6

 010765
 ID) O0:HIPO6

 010775
 HDD 00:HIPO7

 010765
 ID) 00:HIPO7

 010775
 HDD 00:HIPO7

 010775
 HDD 00:HIPO7

 010775
 SUM 09:HIPO8

 SUM 09:HIPO8
 77.26

 01075
 0.000

 PEAK FLOW
 (cms)=
 .145
 (i)

 TIME TO PEAK
 (hrs)=
 1.167

 RUNOFF VOLUME
 (mm)=
 10.266

 TOTAL RAINFALL
 (rma)=
 31.060

 RUNOFF COEFFICIENT
 .322
 -----00931> * SUB-AREA No.2 00932> * 00933> --00934> | 00935> |
 CALLE STANDAYD
 Area
 (ha)=
 17.00

 03:HIP 03 DT=2.50
 Total Imp(%)=
 71.00 Dir. Conn.(%)=
 50.00
 00936> 00938> 00939> 00940> 00941> 00942> 00943> 59.23 15.00 00944> 00945> 25.04 37.50

01081> 01082> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	01216> Unit Hyd. Tpeak (min)= 7.50 10.00
01002> 01012 FER 12003 DO NOT INCLODE DASEFILOUS IF ART. 01083> 01084>	01217> Unit Hyd. peak (cms) = .14 .11 01218> *TOTALS*
01085> 001:00233	01219> PEAK FLOW (cms)= .28 .01 .283 (iii) 01220> TIME TO PEAK (hrs)= 1.04 1.13 1.042
01087> *SUB-AREA No. 6	01220> TIME TO PEAK (hrs)= 1.04 1.13 1.042 01221> RUNOFF VOLUME (mm)= 40.94 14.70 38.845 01222> TOTAL RAINFALL (mm)= 42.51 42.51 42.514
01088> * 01089>	01223> RUNOFF COEFFICIENT = .96 .35 .914 01224>
01005/ DESIGNT NASHYD Area (ha)= 2.70 Curve Number (CN)=76.00 01091> 01:A3 DT= 2.50 Ia (mm)= 4.670 # of Linear Res.(N)= 3.00	01225> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 01226> CN* = 81.0 Ia = Dep. Storage (Above)
01092> U.H. Tp(hrs) = .600 01093>	01227> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 01228> THAN THE STORAGE COEFFICIENT.
01094> Unit Hyd Opeak (cms)= .129 01095>	01229> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01230>
	01231>
010975 TIME TO FRAK (hrs)= 2.063 010988 RUNFOFF VOLUME (mm)= 6.883 010989 TOTAL RUNFALL (mm)= 31.660	01232> 001:0006
01100> RUNJOFF COEFFICIENT = .216 01201>	01234> * SUB-AREA NO.3 01235>
01102> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	01236> CALIE STANDHYD Area (ha)= 1.40 01237> 03:030 DT= 2.50 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00
01103>	01239> IMPERVIOUS PERVIOUS (1)
01105> 001:0024	01240> Surface Area (ha)= 1.36 .04 01241> Dep. Storage (mm)= 1.57 4.67
01107> ADD HYTD (Ultima) ID: NHYD AREA QPEAK TPEAK R.V. DWF 01108> (ha) (cms) (hrs) (mm) (cms)	01242> Average Slope (%)= .51 1.00 01243> Length (m)= 225.63 5.00
01109> ID1 09:H1P08 77.26 3.542 1.21 21.98 .000 01110> +ID2 01:A3 2.70 .024 2.08 6.88 .000	01244> Mannings n = .030 .030 01245>
01111> SUM 02:Ultima 79.96 3.548 1.21 21.47 .000	01246> Max.eff.Inten.(mm/hr)= 104.19 31.02 01247> over (min) 7.50 10.00
01113> 01114> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	01248> Storage Coeff. (min)= 8.28 (ii) 9.39 (ii) 01249> Unit Hyd. Tpeak (min)= 7.50 10.00
01115>	01250> Unit Hyd. peak (cms) = .14 .12 01251> *TOTALS*
01117> 001:0025	
01118> * CALCULATION OF 3HR - 1:5 YEAR STORM EVENT * 01129 - CALCULATION OF 3HR - 1:5 YEAR STORM EVENT *	01254> RUNOFF VOLUME (mm) = 40.94 14.70 40.157
01121>	01255> TOTAL RAINFALL (mm)= 42.51 42.51 42.51 01256> RUNOFF COEFFICIENT = .96 .35 .945 01257>
01122> START Project dir.: V:\20983.DU\ENG\SWMMYMO\ 01122>	01258> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
01124> TZERO = .00 hrs on 0 01125> METOUT = 2 (Output = METRIC) 01126> NRUN = 001	01259> CN* = 81.0 Ta = Dep. Storage (Above) 01260> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
01126> NSTORM= 00 01127> NSTORM= 0 01128>	01261> THAN THE STORAGE COEFFICIENT. 01262> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
01129> 001:0002	01263> 01264>
01130>	01265> 001:0007
01132> Ptotal = 42.51 mm B= 6.053 01133> Cm .814	01267> ADD HYD (040) ID: NHYD AREA QPEAK TPEAK R.V. DWF 01268> (ha) (cms) (hrs) (mm) (cms)
01134> used in: INTENSITY = A / (t + B)^C 01135>	01269> (ha) (cms) (ms) (cms) 01269> ID1 01:010 2.07 .362 1.04 36.75 .000 01270> +ID2 02:020 1.54 .283 1.04 38.48 .000 01271>
01136> Duration of storm = 3.00 hrs 01137> Storm time step = 10.00 min	01271> 01272> SUM 04:040 3.61 .645 1.04 37.64 .000
01138> Time to peak ratio = .33 01139>	01273> 01274> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
01140> TIME RAIN TIME RAIN TIME RAIN TIME RAIN TIME RAIN 01141> hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr	01275>
01142> .17 3.682 1.00 104.193 1.83 6.689 2.67 3.510 01143> .33 4.582 1.17 32.037 2.00 5.628 2.83 3.220	01277> 001:0008
01144> .50 6.151 1 1.33 16.337 2.17 4.872 3.00 2.978	01279> ADD HYD (050) ID: NHYD AREA QPEAK TPEAK R.V. DWF
01145> .67 9.614 1.50 10.965 2.33 4.305 01146> .83 24.170 1.67 8.287 2.50 3.864 01147>	01281> IDI 03:030 1.40 274 1.04 40 16 000
01148>	
01150	01284> SUM 05:050 5.01 .918 1.04 38.34 .000 01285>
01150/ DEFAULT VALUES Filename: V:\20983.DU\ENG\SWMHYMO\ORGA.VAL 01151> - ICASEdv = 1 (read and print data) 01153> FileTitle= ENTER YOUR COMMENTS ON THIS LINE AND THE NEXT ONE	01287>
01153> FileTitle= ENTER YOUR COMMENTS ON THIS LINE AND THE NEXT ONE 01154> PARAMETER VALUES MUST BE ENTERD AFTER COLUMN 60 01155> Horton's infiltration equation parameters:	01289> 001:0009
01156> [F \odot = 50.00 mm/hr] [F \subset = 7.50 mm/hr] [DCAY= 2.00 /hr] [F \simeq .00 mm] 01157> Parameters for PERVIOUS surfaces in STANDHYD;	01293> * SUB-AREA No.4 01292>
01156> [IAper= 4.67 mm] [LGP=40.00 m] [MNP= .250] 01159> Parameters for IMPERVIOUS surfaces in STRADBYD:	01293> CALIB STANDHYD Area (ha)= .89 01294> 06:060 DT= 2.50 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00
01160> [LALing= 1.57 mm] (CLI= 1.50] [MNT= .035] 01161> Parameters used in NASHYD:	01295>
01162> [Ia= 4.67 mm] [N= 3.00]	01296> IMPERVIOUS PERVIOUS (i) 01297> Surface Area (ha)= .86 .03
01165> ******* * **************************	01298> Dep. Storage (nmm)= 1.57 4.67 01299> Average Slope (%)= .93 .70
01166> * ORGAWORLD FILE * 01167> *******	01300> Length (m)= 164.82 40.00 01301> Mannings n = .030 .250
01168> * SUB-AREA No.1	01302> 01303> Max.eff.Inten.(mm/hr)= 104.19 20.32
01169> 01170> CALIB STANDHYD Area (ha)= 2.07 01171> 01:010 pT= 2.50 Total Imp(%)= 84.00 Dir. Conn.(%)= 84.00	01304> over (min) 5.00 25.00 01305> Storage Coeff. (min)= 5.72 (ii) 24.02 (ii) 01306> Unit Hund means (min)= 5.72 (ii) 0.05 (iii)
011/22	01306> Unit Hyd. Tpeak (min)≈ 5.00 25.00 01307> Unit Hyd. peak (cms)≈ .20 .05
01173> IMPERVIOUS PERVIOUS (i) 01174> Surface Area (ha)= 1.74 .33	01308> *TOTALS* 01309> PEAK FLOW (cms)= .20 .00 .205 (iii)
01175> Dep. Storage (mm)= 1.57 4.67 01176> Average Slope (%)= .52 1.00	01310> TIME TO PEAK (hrs)= 1.00 1.38 1.000 01311> RUNOFF VOLUME (mm)= 40.94 14.70 40.157
01177> Length (m)= 204.72 20.00 01178> Mannings n = .030 .250	01312> TOTAL RAINFALL (mm)= 42.51 42.51 42.514 01313> RUNOFF COEFFICIENT = .96 .35 .945
01179> 01180> Max.eff.Inten.(mm/hr)≈ 104.19 24.26	01314> 01315> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES;
01181> over (min) 7.50 17.50 01182> Storage Coeff. (min)= 7.76 (ii) 17.86 (ii)	01316> CN* = 01.0 Ia = Dep. Storage (Above) 01317> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
01183> Unit Hyd. Tpeak (min)= 7.50 17.50 01184> Unit Hyd. peak (cms)= .15 .06	01318> THAN THE STORAGE COEFFICIENT. 01319> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
01185> *TOTALS* 01186> PEAK FLOW (cms)= .36 .01 .362 (iii)	01320> 01321>
01187> TIME TO PEAK (hrs) = 1.04 1.25 1.042 01188> RUNOFF VOLUME (mm) = 40.94 14 70 36 745	01322> 001:0010
01185> TOTAL RAINFALL (nm)= 42.51 42.51 42.514 01190> RUNOFF COEFFICIENT = .96 .35 .864	01324> * SUB-AREA NO.5 01325>
01191> 01192> (i) ON PROCEDURE SELECTED FOR REPUTOUS LOSSES	01325 CALIB STANDHYD Area (ha)= 2.66 01327 07:070 DT= 2.50 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00
01193> CN* = 81.0 IA = Dep. Storage (Above) 01194> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL	01328>
01195> THAN THE STORAGE COEFFICIENT. 01196> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	01330> Surface Area (ha)= 2.58 .08
01197> 01197>	01332> Average Slope (%)= .61 1.50
01199> 001:0005	01333> Length (m)= 207.25 20.00 01334> Mannings n = .030 .250
01200> * 01201> * SUB-AREA No.2	01335> 01336> Max.eff.Inten.(mm/hr)= 104.19 24.26
01202> 01203> CALIB STANDHYD Area (ha) = 1.54	01337> over (min) 7.50 17.50 01338> Storage Coeff. (min)= 7.45 (ii) 16.40 (ii)
01204> 02:020 DT= 2.50 Total Imp(%)= 92.00 Dir. Conn.(%)= 92.00 01205>	01339> Unit Hyd. Tpeak (min)= 7.50 17.50 01340> Unit Hyd. peak (cms)= .15 .07
01206> IMPERVIOUS PERVIOUS (1) 01207> Surface Area (ha)= 1.42 .12	01341> *TOTALS* 01342> PEAK FLOW (cms)= .54 .00 .538 (iii)
01208> Dep. Storage (mmm)= 1.57 4.67 01209> Average Slope (%)= .50 1.00	01343> TIME TO PEAK (hrs)= 1.04 1.25 1.042 01344> RUNOFF VOLUME (mm)= 40.94 14.70 40.157
01210> Length (m)= 244.34 5.00 01211> Mannings n = .030 .030	01345> TOTAL RAINFALL (mm)= 42.51 42.51 42.51 01346> RUNOFF COEFFICIENT = .96 .35 .945
01212> 01213> Max.eff.Inten.(mm/hr)= 104.19 31.02	01347> 01348> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
01214> over (min) 7.50 10.00 01215> Storage Coeff. (min)= 8.73 (ii) 9.85 (ii)	01340> (1) CN * 81.0 IA = Dep. Storage (Above) 01350> (11) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
	(III) ING ONE (DI) DESCHADER OR EQUAL
T T Dichards C Accessions Timited	

J. L. Richards & Associates Limited

Page 4

01406> 001:0017-----01351> THAN THE STORAGE COEFFICIENT. (1 1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01353> 01354> ------01355> 001:001 1------01355> ------* SUB-AREA No.3 01468> · · · 01489> QPEAK TPEAK R.V. (cms) (hrs) (num) (1.00 40.16 01490> 01491> 01492> 01493> 01493> CALIB STANDHYD | Area (ha)= 15.60 04:HIP04 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00) | ID: NHYD AREA (ha) ID1 06:060 .89 +ID2 07:070 2.66 01357> | ADD H'YD (080) | ID: NHYD 01358> -----IMPERVIOUS 11.08 1.57 .50 600.00 .030 (cms) .205 .538 (hrs) (mm) 1.00 40.16 1.04 40.16 (CIINS) .000 .000 PERVIOUS (i) 4.52 4.67 Surface Area(ha) =Dep. Storage(mm) =Average Slope(%) =Length(m) =Mannings n= 01359> 01360> 01361> 01494> 01495> 01495> 01497> 01498> 01500> 01500> 01502> 01502> 01503> 01504> 01505> 01505> 01506> 01507> SUM 08:080 3.55 .50 013622 .733 1.04 40.16 .000 100.00 .250 73.27 42.65 17.50 35.00 17.24 (ii) 35.98 (ii) 17.50 35.00 .07 .03 Max.eff.Inten.(mm/hr)= Max.eif.inten.(mm/hf)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= ------01360> | ADD HYD (090) | ID: NHYD AREA QPEAK TPEAK R.V. DWF 01360> | ADD HYD (090) | ID: NHYD (ha) (cms) (hrs) (mm) (cms) 01371> IDI 05:050 5.01 .518 1.04 36.34 .000 01372> + ID2 06:060 5.05 .55 .733 1.04 40.16 .000 01374> SUM 09:090 6.56 1.651 1.04 39.10 .000 *TOTALS* 1.176 (iii) 1.250 31.126 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 1.03 1.21 40.94 42.51 .96 .30 1.54 01508> 01507> 01508> 01509> 01510> 01511> 21.31 42.51 .50 31.126 42.514 .732 01374> 01375> 01375> 01376> 01377> 01378> NOTE : PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01512> 01513> -----01379> 001:001.3-----01514> 01515> 01516> 01517>
 01380
 01380

 01380
 Routz RESERVOIR

 01380
 Requested routing time step = 1.0 min.

 01382
 007-10.(FOMD)

 01382
 007-10.(FOMD)

 01384
 OUTFLOW STORAGE | OUTFLOW STORAGE

 Requested couting time step = 1.0 min.

 courses
 OUTFLOW STORAGE TABLE

 courses
 OUTFLOW STORAGE (min)

 (cms)
 OUTFLOW STORAGE (min)

 .000 .00002+00
 .553 .2512+00

 .001 .00022+00
 .553 .2512+00

 .001 .3112+00
 .797 .73912+00

 .233 .39712+00
 .550 .2742+00

 .337 .47312+00
 1.304 .91572+00

 .531 .59712+00
 2.00002+00
 01364>
01365> 01385> 01386> 01387> 01388> 01389> 01390> 01391> 01392> 01392> 01394> 01395> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01528> 015255 015305 015305 015305 015305 015305 015305 015305 015305 015305 015305 015305 015305 015305 015315 015305 015315 01529:
 ROUTING RESULTS
 AREA
 OPEAK
 TPEAK

 INFLOW >09:
 (090)
 8.56
 1.651
 1.042

 OUTFLOW:10:
 (POND)
 8.56
 .089
 2.625
 R.V. (mm) 39.096 39.093 ROUTING RESULTS 01395> 01396> 01397> 01398> 01399> 01400> PEAK FLOW REDUCTION [Qout/Qin] (%)= 5.413 TIME SHIFT OF PEAK FLOW (min)= 95.00 MAXIMUM STORAGE USED (ha.m.)=.2758E+00 01401> 015392 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY 01540> 01541> 01542> -----01543> 001:0020--01544> * * Remaining Hawthorne Industrial Park * 01407> 01407> * Remaining Hawthorme Industrial Park * 01409> * 01409> * 01410> * 01410> * 01412> | CALIE STANDHYD | Area (ha)= 19.90 01413> | 01:HIP01 D7=2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 01413> | 01:HIP01 D7=2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 01415> | IMPERVIOUS PERVIOUS (i) 01415> | IMPERVIOUS PERVIOUS (i) 01415> | Dir. Storage (ha)= 14.13 5.77 01417> Dep: Storage (ha)= 14.15 4.67
 IMPERVIOUS

 Surface Area
 (ha) =
 0.66

 Dep. Storage
 (mm)
 1.57

 Average Slope
 (\$) =
 .70

 Length
 (m) =
 210.00

 Mannings n
 .030
 PERVIOUS (i) 3.54 4.67 Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = 8.66 1.57 .70 210.00 .030 14.13 1.57 .60 5.77 4.67 1.50 01552> 01553> 01554> 01556> 01557> 01558> 01558> 01561> 01561> 01562> 01565> 01565> 01565> 01565> 01566> 015659> 01569> 01570> 01417> 01418> 01419> 01420> 01421> 01422> 01422> 01423> 580.00 100.00 100.00 .250 60.14 42.65 15.00 35.00 15.43 (11) 34.18 (11) 15.00 35.00 .07 .03 1.41 Max.eff.Inten.(mm/hr) = over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=
 104.19
 52.96

 7.50
 25.00

 7.21 (ii)
 24.40 (ii)

 7.50
 25.00

 .15
 .05
 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 01423> 01424> 01425> 01425> 01426> 01427> 01428> *TOTALS* 1.572 (iii) 1.208 31.126 42.514 .732 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = *TOTAL5* 1.375 (iii) 1.042 31.126 42.514 .732 1.28 1.04 40.94 42.51 .96 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nm) = TOTAL RAINFALL (nm) = RUNOFF COEFFICIENT = 1.41 .40 1.54 .31 01428> 01429> 01430> 01431> 01432> 01432> 1.38 21.31 42.51 .50 40.94 42.51 .96 21.31 42.51 .50 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STRE (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (i) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (ii) PEAK FLOW DOES NOT INCLUDE BASEFICOW IF ANY.
 01434> 01436> 01437> 01437> 01438> 01439> 01440> 015795 015805 | DESIGN NASHYD | Area (ha)= 4.00 Curve Number (CN)=85.00 015805 | 08:Bond-B DT= 2.50 | Ia (mm)= 4.570 # of Linear Res.(N)= 3.00 01592 ------ U.H. Tp(hrs)= .170 01446> 01446> 01447> 01448> 01449> 01450> 01451> SUM 02:HIP02 28.46 1.615 1.21 33.52 01582> 01583> 01584> 01585> 01586> 01587> 01588> ,000 Unit Hyd Qpeak (cms)= .899 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 PEAK FLOW
 (cms)=
 .260 (1)

 TIME TO PEAK (hrs)=
 1.167

 RUNOFF VOLUME (mm)=
 17.325

 TOTAL RAINFALL (mm)=
 42.514

 RUNOFF COFFICIENT =
 .408
 01588> 01589> 01590> 01591> 01592> 01593>
 ICALIE STANDHYD
 Area
 (ha)=
 17.00

 ICALIE STANDHYD
 I Area
 (ha)=
 17.00
 Dir. Conn.(%)=
 50.00

 IMPERVIOUS
 ITOTal Imp(%)=
 71.00
 Dir. Conn.(%)=
 50.00

 Surface Area
 (ha)=
 12.07
 4.93

 Dep. Storage
 (mm)=
 1.57
 4.67

 Average Slope
 (%)=
 .65
 1.50

 Length
 (m)=
 450.00
 100.00

 Mannings n
 =
 .030
 .250
 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01458> 01593> 01594> -----01595> 001:0022------01458> 01459> 01460> 01461> 01462> 01463> DWF (כתאיב) .000 .000 .000 01463> 01465> 01465> 01466> 01467> 01468> Max.eff.Inten.(mm/hr)=
 over (min)
Storage Coeff. (min)=
Unit Hyd.Tpeak (min)=
Unit Hyd.peak (cms)= +ID3 08:Pong-5 7.00 ----SUM 09:HIP08 77.26 5.545 1.17 31.29 .000 01469> 01469> 01470> 01471> 01472> 01472> 01473> 01606> 01607> 01608> 001:0023-------01609> *SUB-AREA No. 6 01611> * 01612> --------PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 1.36 1.13 40.94 42.51 .96 *TOTALS* .37 1.46 21.31 42.51 .50 *TOTALS* 1.504 (iii) 1.167 31.126 42.514 01475> 01475> 01476> 01477> 01478> 01478> 01479> 01480> 01481> 01481> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) THE STEP (07) SHOULD BE SHALLER OR BQUAL THAN THE STORAGE COEFFICIENT.
 (iii) FEAK FLOW DES NOT INCLUDE BASEFLOW IF ANY. 01402> (11) THE STORY (01) SHOULD BE SMALLER OR EQUAL 01402> THAN THE STORYEC COEFFICIENT. 01403> (111) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01404> Unit Hyd Opeak (cms)= .129 01618> PEAK FLOW (cms)= .044 (i) TIME TO PEAK (hrs)= 2.042 01619> 01620>

J. L. Richards & Associates Limited

Page 5

21> 22>	TO TAL RAINFALL (mm) = 42.514	01756> * 01757> * SUB-Area No.3
23> 24> 25>	RUNOFF COEFFICIENT = .285	01759>
26>		01760> 03:030 DT= 2.50 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 01761> 01762> IMPERVIOUS PERVIOUS (i)
29> -	001:002 4	01763> Surface Area (ha)= 1.36 .04 01764> Dep. Storage (mm)= 1.57 4.67
31> -	(ha) (cms) (hrs) (mm) (cms)	01765> Average Slope (%)= .51 1.00 01766> Length (m)= 225.63 5.00
32> 33> 34>	+ID2 01:A3 2.70 .044 2.04 12.13 .000	01767> Mannings n = .030 .030 01768>
35> 36>	SUM 02:Ultima 79.96 5.554 1.17 30.65 .000	01769> Max.eff.Inten.(mm/hc)= 122.14 48.18 01770> over (min) 7.50 7.50 01771> Storage Coeff. (min)= 7.77 (ii) 8.70 (ii)
37> 38>	NOTE : PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	01772 Unit Hyd. peak (cms) = .15 .14
39> - 40> (101:002 5	01774> *TOTALS*
41> 4 42> 4 42> 4	CALCULATION OF 3HR - 1:10 YEAR STORM EVENT *	01776> TIME TO PEAK (hrs) = 1.04 1.08 1.042 01777> RUNOFF VOLUME (mm) = 47.93 19.25 47.074
44 -		01778> TOTAL RAINFALL (mm)= 49.50 49.50 49.505 01779> RUNOFF COEFFICIENT = .97 .39 .951 01780>
46> - 47>	Rainfall dir.: V:\20983.DU\ENG\SWMHYMO\	01781> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
19/		01783> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 01784> THAN THE STORAGE COEFFICIENT.
0> 1> -		01785> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01786>
		01787>
6> -	B= 6.014 C= .816	01790> ADD HYD (040) ID: NHYD AREA QPEAK TPEAK R.V. DWF
7> 8>	used in: INTENSITY = $A / (t + B)^{C}$	01792> ID1 01:010 2.07 .437 1.04 43.35 .000 01793> +ID2 02:020 1.54 .341 1.04 45.64 .000
9> 0> 1>	Storm time step = 10.00 min	01794> SUM 04:040 3.61 .778 1.04 44.32 .000
!> !>		01796> 01797> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01798>
>	hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr	01799>01800> 001:0008
>	.50 7.108 1.33 18.954 2.17 5.625 3.00 3.434	01801>
>	.63 28.100 1.67 9.588 2.50 4.458	01803> (ha) (cms) (hrs) (rm) (cms) 01804> ID103:030 1.40 .329 1.04 47.07 .000 01805> +ID2 04:040 3.61 .778 1.04 44.32 .000
> - > 0	01:0003	01806>
i	DEFAULT VALUES Filename: V:\20983.DU\ENG\SWMHYMO\ORGA.VAL	01808> 01809> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
> - > >	Fightless BARAMETER YOUR COMMENTS ON THIS LINE AND THE NEXT ONE	01810> 01611> 01812> 001:0009
	<pre>Horton's infiltration equation parameters: [Fo= 50.00 mm/hr] [Fc= 7.50 mm/hr] [DCAY= 2.00 /hr] [F= .00 mm]</pre>	01813> * 01814> * SUB-AREA No.4
>	Parameters for PERVIOUS surfaces in STANDHYD: [IAper= 4.67 mm] [LGP=40.00 m] [MNP= .250]	01815> RO
	LA1mp= 1.5/mm (CLI= 1.50) (MNI= .035)	01817> 06:060 DT= 2.50 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 01818>
: _	[Ia = 4.67 mm] [N = 3.00]	01819> IMPERVIOUS PERVIOUS (i) 01820> Surface Area (ha)= .86 .03 01821> Dep. Storage (mm)= 1.57 4.67
> 0 > *	01:0004	01822> Average Slope (%)≈ .93 .70 01823> Length (m)≈ 164.82 40.00
• *	*****	018249 Mannings n = .030 .250
	CALIB STANDHYD Area (ha)= 2.07	01826> Max.eff.Inten.(mm/hr)= 122.14 31.19 01827> over (min) 5.00 20.00 01828> Storage Coeff. (min)= 5.37 (ii) 20.78 (ii)
	01:010 Dr= 2.50 Total Imp(%)= 84.00 Dir. Conn.(%)= 84.00	01829> Unit Hyd. Tpeak (min)= 5.00 20.00 01830> Unit Hyd. peak (cms)= .21 .06
>	Surface Area (ha)= 1.74 .33	01831> *TOTALS* 01832> PEAK FLOW (cms)= .24 .00 .245 (iii)
>	Average Slope $(a) =$.52 1.00 0 Length (m) = 204.72 20.00 0	01833> TIME TO PEAK (hrs)= 1.00 1.29 1.000 01834> RUNOFF VOLUME (mm)= 47.93 19.25 47.074 01835> TOTAL RAINFALL (mm)= 49.50 49.50 49.50 55
	Mannings n = .030 .250	01836> RUNOFF COEFFICIENT = .97 .39 .951 01837>
	Max.eff.Inten.(mm/hr)= 122.14 34.69 over (min) 7.50 15.00	01838> (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 01839> CN* = 81.0 Ia = Dep. Storage (Above)
•	Unit Hyd. Tpeak (min) = 7.50 15.00	01840> (ii) TIME STEP (DT) SHOULD BE SMALLËR OR EQUAL 01841> THAN THE STORAGE COEFFICIENT. 01842> (iii) PERK FLOW DOES NOT INCLUDE DASELOW IF ANY.
\$	PEAK FLOW (cms) = .43 02 437 (jij) (jij)	01843>
	TIME TO PEAK (hrs) = 1.04 1.21 1.042 (RUNOFF VOLUME (mm) = 47.93 19.25 43.345 (01845> 001:0010
> > >	RUNOFF COEFFICIENT = .97 .39 .876	01847> * SUB-AREA No.5 01848> 01849> CALIE STANDHYD Area (ha)= 2.66
	(1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)	01850> 07:070 DT= 2.50 { Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 01851>
> >	THAN THE STORAGE COEFFICIENT.	01852> IMPERVIOUS PERVIOUS (i) 01853> Surface Area (ha)= 2.58 .08
_		01854> Dep. Storage (mm)= 1.57 4.67 01855> Average Slope (%)= .61 1.50
0 *	01:0005	01856> Length (m)= 207.25 20.00 01857> Mannings n = .030 .250 01858>
	SUB-AREA No.2	01859> Max.eff.Inten.(wm/hr)= 122.14 34.69 01860> over (min) 7.50 15.00
	CALIB STANDHYD Area (ha)= 1.54 02:020 DT= 2.50 Total Imp(%)= 92.00 Dir. Conn.(%)= 92.00	01861> Storage Coeff. (min)= 7.00 (ii) 14.75 (ii) 01862> Unit Hyd. Tpeak (min)= 7.50 15.00
-	IMPERVIOUS PERVIOUS (i)	01863> Unit Hyd. peak (cms)= .16 .08 01864> *TOTALS* 01865> PEAK FLOW (cms)= .64 .00 .645 (iii)
	Dep. Storage (mm) = 1.57 4.67 Average Slope (%) = .50 1.00	01866> TIME TO PEAK (hrs) = 1.04 1.21 1.042
•	Length (m)= 244.34 5.00 (0 Mannings n = .030 .030 (0	01368> TOTAL RAINFALL (mm)= 49.50 49.50 49.505 01869> RUNOFF COEFFICIENT = .97 .39 .951
	Max.eff.Inten.(mm/hr)= 122.14 42.32	01870> 01871> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
>	Storage Coeff. (min) = 8.20 (ii) 9.18 (ii)	01872> CN* = 81.0 Ia = Dep. Storage (Above) 01873> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 01874> THAN THE STORAGE COEFFICIENT.
	Unit Hyd. peak (cms)= .14 .12 *TOTALS*	018/4> THAN THE STORAGE COEFFICIENT. 01875> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01876>
	PEAK FLOW (cms)= .33 .01 .341 (iii) 0 TIME TO PEAK (hrs)= 1.04 1.13 1.042	01877>
>	RUNOFF VOLUME (mm) = 47.93 19.25 45.640 0	01879> 01880> ID: NHYD AREA QPEAK TPEAK R.V. DWF
	TOTAL RAINFALL (nm) = 49.50 49.50 49.50 0	
> > > > > > > > > > > > > > > > > > >	RUNOFF COEFFICIENT = .97 .39 .922	01881> (ha) (cms) (hrs) (mm) (cms) 01882> ID1 06:060 .89 .245 1.00 47.07 .000
> > >	RUNOFF COMPETCIENT - - - - - - - 0 - 0	01882> ID1 06:060 .89 .245 1.00 47.07 .000 01883> +1D2 07:070 2.66 .645 1.04 47.07 .000 1884>
	RUNOFF CORFECTENT - .97 .39 .922 0 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 0 (a) CN = 01.0 Ia = Dep. Storage (Above) (i.1) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL (HAN THE STORAGE COEFFICIENT.	01882> ID1 06:060 .89 .245 1.00 47.07 .000 01883> +ID2 07:070 2.66 .645 1.04 47.07 .000

02026> Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 15.00 32.50 AREA (ha) 5.01 3.55 QPEAK ((cms) 1.107 .876 TPEAK R.V. DWF (hrs) (rmm) (cms) 1.04 45.09 .000 1.04 47.07 .000 02026> 02027> 02028> 02029> 02030> 02031> 02031> 02032> .42 1.50 26.92 49.50 .54 *TOTALS* 1.485 (iii) 1.208 37.426 49.505 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 1.29 1.17 47.93 49.50 .97 01893> 01894> 01895> 01895> 01896> 01897> SUM 09:090 8.56 1.984 1.04 45.91 .000 01898> 01899> NOTE : PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 01899>
 NOTE : FDA Lower

 01900>
 01900>

 01901>

 01902>
 Ol:0013

 01903>

 01904>
 ROUTE RESERVOIR |

 01905>
 INNO D: (00)

 01905>
 OUTELOW STORAGE TABLE MCCHANNER

 01905>
 OUTELOW STORAGE | OUTELOW STORAGE | OUTELOW STORAGE | OUTELOW STORAGE | Const (ha.m.)

 (cms)
 (ha.m.) | (cms)

 (cms)
 (ha.m.) | (cms)
 01908> 01908> 01908> 01909> 01910> 01911> 01912> 01912> 01913> 01914> 01915> 01916> ROUTING RESULTS 01917> 01918> 02053> 02053> 02055> 02055> 02055> 02055> 02055> 02055> 02055> 1DD 55:HIP05 02055> 1DD 05:HIP05 02055> 1DD 05:HIP02 02055> 1DD 05:HIP02 02055 02055> 1DD 05:HIP02 02055 02055 02055 1DD 05:HIP02 02055 02050 02055 02055 02050 02055 02050 020
 ROUTING RESULTS
 AREA
 OPEAK
 TPEAK

 INFLOW >09: (090)
 8.56
 1.944
 1.042

 OUTFLOW-10: (POND)
 8.56
 .132
 2.276
 R.V. (mm) 45.914 45.912 01919> 01920> 01921> 01922> PEAK FLOW REDUCTION [Qout/Qin](%)= 6.640 TIME SHIFT OF PEAK FLOW (min)= 74.17 MAXIMUM STORAGE USED (ha.m.)=.3146E+00 01923> 01924> 01925> 01926> 01926> 01927> +ID2 02:HIP02 28.46 2.044 1.21 39.98 SUM 06:HIP06 61.06 5.358 1.17 38.61 01928> 001:001 4-----01929> 01930> 01931> 01932> * Remaining Hawthorne Industrial Park * 01932> * SUB-AREA No.1 01943> 01944> 01945> 01946> 01946> 01947> 01948> 01949> 93.86 60.56 15.00 30.00 14.48 (ii) 30.78 (ii) 15.00 30.00 .08 .04 *TOTALS*
 Max.eff.Inten.(mm/hr)=
 122.14
 72.53

 over (min)
 5.00
 22.50

 storage Coeff.(min)=
 6.77 (ii)
 21.93 (ii)

 Unit Hyd. Tpeak (min)=
 7.50
 22.50

 Unit Hyd. peak (min)=
 7.50
 22.50

 PEAK FLOW (cmm)=
 .16
 .05

 PEAK FLOW (cmm)=
 1.54
 .42

 TIME TO PEAK (hrs)=
 1.04
 1.33

 RUMOFF VOLUME (mm)=
 47.93
 26.92

 TOTAL RAINFALL (mm)=
 49.50
 49.50

 RUNOFF COEFFICIENT =
 .97
 .54
 Mam.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 02080> 02081> 02082> 02083> 02083> 02084> 02085> 01950> 01951> 01952> 01953> 01953> 01954> *TOTALS* 1.983 (iii) 1.208 37.426 49.505 .756 *TOTALS* 1.687 (1ii) 1.042 37.426 49.505 .756 .42 1.33 26.92 49.50 .54 PEALK FLOW (Cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nmn) = TOTAL RAINFALL (nmn) = RUNOFF COEFFICIENT = 1.70 1.17 47.93 49.50 .97 .55 1.46 26.92 49.50 .54 02085> 02086> 02087> 02088> 02089> 02090> 02090> 02091> 02092> 02093> 02094> 02095> 02095> 02096> 01954> 01955> 01956> 01957> 01958> 01959> 01960> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) Time STEP (DT) SHOULD BE SWALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. (i) CN FOCLEDER SEDELED FOR PORTIOUS LOSSES: CN = 81.0 I a = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 01961> 01961> (111 01962> 01963> ------01964> 001:0015-01965> ------· -----Unit Hyd Opeak (cms)= .899 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01973> 01973> 01974> 01975> 01976> 01977> 02108>
 PEAK FLOW
 (cms)=
 .345
 (i)

 TIME TO PEAK (hrs)=
 1.167
 RUNOFF VOLUME (mm)=
 22.420

 TOTAL RAINFALL (mm)=
 49.505
 RUNOFF COEFFICIENT =
 .453
 02108> 02109> 02110> 02111> 02112> 02112> ------001:0016-----019775 * SUB-AREA No.2 * SUB-AREA No.2 | CALIB STANDHYD | Area (ha)= 17.00 103:HIP 03 DF 2.50 | Total Imp(%)= 71.00 Dir. Conn. (%)= 50.00 | IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 12.07 4.93 Dop. Storage (m)= 12.07 4.93 Dop. Storage SLOPE (%)= .65 1.50 Length (%)= .65 1.50 Length (m)= 450.00 100.00 Mainings n = .030 .250 01979> 01960> 01961> 01962> 01962> 01983> 02114> 02115> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01984> 01985> 01985> 01987> 01989> 01999> 01999> 01991> 01992> 01994> 01994> 01995> 01994> 01995> 01996> 01997> 01998> (cms) .000 .000 .000 205.17 63.1 12.50 27.50 11.60 (ii) 27.56 (ii) 12.55 27.50 .09 .04 1.63 -02125/ 02125/ 02127/ 02127/ 02127/ 02128/ NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02129/ 02130/ .000 *TOTALS* 1.865 (iii) 1.167 37.426 49.505 .756
 PEAK FLOW
 (cms) =
 1.63

 TIME TO FEAK
 (hrs) =
 1.13

 RUNOFF VOLUME
 (mm) =
 47.93

 TOTAL RAINFALL
 (mm) =
 49.50

 RUNOFF COEFFICIENT
 .97
 .51 1.42 26.92 49.50 .54 02131> 001:0023-----02132> * 01999> 02000> 02001> 02002> 02003> 02004> 02004> 02005> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (i) CH = 81.0 IA = DEP. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02006>
 IMPERVIOUS
 PERVIOUS
 (i)

 Surface Area
 (ha)=
 11.08
 9ERVIOUS
 (i)

 Dep. storage
 (ma)=
 1.57
 4.67
 4.67

 Rverage Slope
 (%)=
 .50
 1.50
 1.50

 Length
 (m)=
 600.00
 100.00
 Mannings n
 02018> 02019> 02020> 02155> 02156> 02157> 02158> 02158> 02021> 02022> 02023> 93.86 57.19 15.00 32.50 15.61 (ii) 32.28 (ii) 93.86 Max-eff.Inten.(mm/hr)= SUM 02:Ultima 79.96 7.029 1.17 36.86 .000 02024> 02025> over (min) Storage Coeff. (min)= 02159> 02160> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

(V: '	۱.	•	.P	STPH2.	out)
-------	----	---	----	--------	------

		02296> Unit Hyd. peak (cms)= .15 .14
Image: Internet in the second secon	02163> 001+002 5	02297> *TOTALS* 02298> PEAK FLOW (cms)= 40 00 400 (jiji)
000000000000000000000000000000000000	02165> * CAJCULATION OF 3HR - 1:25 YEAR STORM EVENT *	02299> TIME TO PEAK (hrs)= 1.04 1.08 1.042 02300> BUNNEF VOLUME (mm)= 56.66 25.35 55.317
	02166> ******* #***************************	02301> TOTAL RAINFALL (mm) = 58.23 58.23 58.226
 	02168> START Project dir.: V:\20983.DU\ENG\SWMHYMO\	02302> RUNOFF COEFFICIENT = .97 .44 .957 02303>
Northow Northow <t< td=""><td>02169> Rainfall dir.: V:\20983.DU\ENG\SWMHYMO\ 02170> T2ER0 = .00 hrs on 0</td><td>02304> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 02305> CNt = 81.0 In C Par Storrey (Above)</td></t<>	02169> Rainfall dir.: V:\20983.DU\ENG\SWMHYMO\ 02170> T2ER0 = .00 hrs on 0	02304> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 02305> CNt = 81.0 In C Par Storrey (Above)
Distance	02171> MBTCUT= 2 (output = METRIC)	02306> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
Interest	02172> NKON = 001 02173> NSTORM= 0	02307> THAN THE STORAGE COEFFICIENT. 02308> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
No. No. No. No. No. No.		02309>
Image: Product All and Product Products Image: Product Product Products Image: Products	02176>	02311> 001:0007
Dist Interaction Desk in interaction Disk Disk <thdisk< th=""> Disk Disk <thd< td=""><td>0217/> CHICAGEO STORM IDF curve parameters: A=1402.884 02178> Ptotal= 58.23 mm B= 6.018</td><td>02312></td></thd<></thdisk<>	0217/> CHICAGEO STORM IDF curve parameters: A=1402.884 02178> Ptotal= 58.23 mm B= 6.018	02312>
Partial of Josephane J. B. Mark Partial of Josephane J. B. Mark Partial of Josephane Parial of Josephane Partial of Josephane	02179> C= .819	02314> (ha) (cms) (hrs) (mm) (cms)
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	02181>	02315> ID1 01:010 2.07 .532 1.04 51.65 .000 02316> +ID2 02:020 1.54 .418 1.04 54.15 .000
Unit to produce the set of the s		
Inter and the state into a provide the state into a provide the state into a state into state into state into a state into a state state into a state i	02184> Time to peak ratio = .33	02319>
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	02185> 02186> TIME RAIN TIME RAIN TIME RAIN TIME RAIN	02320> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02321>
33 33 4.33 4.34 1.34 4.34 1.43 4.34 1.43 1.54 1.54 1.55 <td< td=""><td>02187> hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr</td><td>02322></td></td<>	02187> hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr	02322>
1111 0.4 144 1.44 <td>02189> .33 6.152 1.17 43.904 2.00 7.571 2.83 4.310</td> <td>02324></td>	02189> .33 6.152 1.17 43.904 2.00 7.571 2.83 4.310	02324>
1111 0.4 144 1.44 <td>02190> .50 8.282 1.33 22.224 2.17 6.544 3.00 3.983 02191> .67 13.006 1.50 14.852 2.33 5.776 </td> <td>02325> ADD HYD (050) ID: NHYD AREA QPEAK TPEAK R.V. DWF</td>	02190> .50 8.282 1.33 22.224 2.17 6.544 3.00 3.983 02191> .67 13.006 1.50 14.852 2.33 5.776	02325> ADD HYD (050) ID: NHYD AREA QPEAK TPEAK R.V. DWF
1111 0.4 144 1.44 <td>02192> .83 33.041 (1.67 11.192 2.50 5.179)</td> <td>02327> IDI 03:030 1.40 .400 1.04 55.72 .000</td>	02192> .83 33.041 (1.67 11.192 2.50 5.179)	02327> IDI 03:030 1.40 .400 1.04 55.72 .000
Biology Control	02193>	02328> +ID2 04:040 3.61 .950 1.04 52.72 .000
Displand Fundamental Vision And Control and Contro	02195> 001:0003	02330> SUM 05:050 5.01 1.350 1.04 53.55 .000
14.30114	02197> DEFAULT VALUES Filename: V:\20983.DU\ENG\SWMHYMD\ORGA.VAL	
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>		02333>
Delso Tester, indication, wetting hermitters, so And Proc. 65 mg Proc. 1, indication, repairs a first metters, so And Proc. 65 mg Proc. 1, indication, repairs a first metters, so And Proc. 65 mg Proc. 1, indication, repairs a first metters, so And Proc. 65 mg Proc. 1, indication, repairs a first metters, so And Proc. 65 mg Proc. 1, indication, repairs a first metters, so And Proc. 65 mg Proc. 1, indication, repairs a first metters, so And Proc. 65 mg Proc. 1, indication, repairs a first metters, so And Proc. 65 mg Proc. 1, indication, repairs a first metters, so And Proc. 65 mg Proc. 1, indication, repairs a first metters, so And Proc. 65 mg Proc. 1, indication, repairs a first metters, so And Proc. 65 mg Proc. 1, indication, repairs a first metters, so And Proc. 65 mg Proc. 1, indication, repairs a first metters, so And Proc. 65 mg Proc. 1, indication, repairs a first metters, so And Proc. 65 mg Proc. 1, indication, repairs a first metters, so And Proc. 65 mg Proc. 1, indication, repairs a first metters, so And Proc. 1, indication, repairs a first metters, so And Proc. 1, indication, repairs a first metters, so And Proc. 1, indication, repairs a first metters, so And Proc. 1, indication, repairs a first metters, repairs, repairs a first metters, repairs a first metters,	02200> PARAMETER VALUES MUST BE ENTERD AFTER COLUMN 60O	02335> 001:0009
000000 12.200000000000000000000000000000000000	<pre>U2201> HOrton's infiltration equation parameters: 02202> [Fo= 50.00 mm/hr] [Fc= 7.50 mm/hr] [DCAY= 2.00 /hr1 [F= .00 mm]</pre>	02336> * 02337> * SUB-AREA No.4
Discrept Line (mp) Line (mp) Discretion Discretion<	02203> Parameters for PERVIOUS surfaces in STANDHYD:	02338
Discrept Line (mp) Line (mp) Discretion Discretion<	02205> Parameters for IMPERVIOUS surfaces in STANDHYD:	الطباب (ha)= .89 02340> 06:060 DT= 2.50 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00
$ [2 = 4.6 \text{ m} [3 = 3.60] \\ \hline matrix = 1.6 \text{ m} [3 = 3.60] \\ \hline matrix $	U2206> [IAimp≏ 1.57 mm] [CLI= 1.50] [MNI= .035] 02207> Parameters used in NASHYD:	02341>
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	02208 > [Ia = 4.67 mm] [N = 3.00]	02343> Surface Area (ha)= .86 .03
Design Dis- section Dis- section <thdis- section <thdis- section</thdis- </thdis- 	02210> 001:0004	02344> Dep. Storage (mm) = 1.57 4.67
Number of the state o	02212> * 02/25/00/00 51/2 *	02346> Length (m)= 164.82 40.00
Distle Could Provide P	02213> ******* * **************************	02346>
Constant		
Display Description PERCIPTION PERCIPTIO	02216> CALIB STANDHYD Area (ha)= 2.07	02351> Storage Coeff. (min) = 5.02 (ii) 18.44 (ii)
Display Description PERCIPTION PERCIPTIO	$J_{2217} \neq 01:010$ Dr 2.50 Total Imp(%) = 84.00 Dir. Conn.(%) = 84.00 $J_{2218} =$	02352> Unit Hyd. Tpeak (min)= 5.00 17.50 02353> Unit Hyd. peak (cms)= .22 .06
002233 00223	02219> IMPERVIOUS PERVIOUS (i)	02354> *TOTALS*
Control Control <t< td=""><td>D2221> Dep. Storage (mm) = 1.57 4.67</td><td>02356> TIME TO PEAK (hrs)= 1.00 1.25 1.000</td></t<>	D2221> Dep. Storage (mm) = 1.57 4.67	02356> TIME TO PEAK (hrs)= 1.00 1.25 1.000
Control Control <t< td=""><td>$\begin{array}{llllllllllllllllllllllllllllllllllll$</td><td>02357> RUNOFF VOLUME (mm) = 56.66 25.35 55.717 02358> TOTAL BAINFALL (mm) = 58.23 58.23 58.226</td></t<>	$\begin{array}{llllllllllllllllllllllllllllllllllll$	02357> RUNOFF VOLUME (mm) = 56.66 25.35 55.717 02358> TOTAL BAINFALL (mm) = 58.23 58.23 58.226
32225 Nax. eff.inten.mor/hoj- 14:0:0 47.07 32225 Starge (seff.inten.mor/hoj- 14:0:0 13:0:0 32225 Starge (seff.inten.mor/hoj- 14:0:0 13:0:0 32225 Starge (seff.inten.mor/hoj- 14:0:0 13:0:0 32225 Starge (seff.inten.mor/hoj- 14:0:0 10:0:000 32225 Starge (seff.inten.mor/hoj- 14:0:0 10:0:000 32225 Starge (seff.inten.mor/hoj- 14:0:0 10:0:000 32225 Starge (seff.inten.mor/hoj- 14:0:0 10:0:000 10:0:0000 32225 Starge (seff.inten.mor/hoj- 14:0:0 10:0:000 10:0:0000 10:0:0000 32225 Starge (seff.inten.mor/hoj- 14:0:0 10:0:0:000 10:0:0:000 10:0:0:000 10:0:0:000 32226 Starge (seff.inten.mor/hoj- 14:0:0 10:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:	02224> Mannings n = .030 .250	CZSSS RONOFF CONFFICIENT = .97 .44 .957
Dist S pr. pask (mail = 7.30 1.00 TOTALF Dist S pr. pask (mail = 7.30 1.00 TOTALF Dist S pr. pask (mail = 7.30 Dist S pr. pask (mail = 7.30 1.01 1.02 TOTALF Dist S pr. pask (mail = 7.30 1.03 1.03 1.03 Dist S pr. pask (mail = 7.30 1.03 1.03 1.03 Dist S pr. pask (mail = 7.30 1.03 1.03 1.03 Dist S pr. pask (mail = 7.30 1.04 1.03 1.03 Dist S pr. pask (mail = 7.30 1.04 1.03 1.03 Dist S pr. pask (mail = 7.30 1.04 1.04 1.04 1.04 Dist S pr. pask (mail = 7.30 1.04 1.04 1.04 1.04 1.04 Dist S pr. pask (mail = 7.30 1.03 1.03 1.03 1.03 1.03 Dist S pr. pask (mail = 7.30 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	02226> Max.eff.Inten.(mm/hr)= 144.69 47.07	02361> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
Dist S pr. pask (mail = 7.30 1.00 TOTALF Dist S pr. pask (mail = 7.30 1.00 TOTALF Dist S pr. pask (mail = 7.30 Dist S pr. pask (mail = 7.30 1.01 1.02 TOTALF Dist S pr. pask (mail = 7.30 1.03 1.03 1.03 Dist S pr. pask (mail = 7.30 1.03 1.03 1.03 Dist S pr. pask (mail = 7.30 1.03 1.03 1.03 Dist S pr. pask (mail = 7.30 1.04 1.03 1.03 Dist S pr. pask (mail = 7.30 1.04 1.03 1.03 Dist S pr. pask (mail = 7.30 1.04 1.04 1.04 1.04 Dist S pr. pask (mail = 7.30 1.04 1.04 1.04 1.04 1.04 Dist S pr. pask (mail = 7.30 1.03 1.03 1.03 1.03 1.03 Dist S pr. pask (mail = 7.30 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	<pre>J2227> over (min) 7.50 15.00 U2228> Storage Coeff. (min)= 6.81 (ii) 14.56 (ii)</pre>	02362> CN* = 81.0 Ia = Dep. Storage (Above) $02363> (ii) TIME STEP (DT) SHOULD BE SMALLED OF FOUNT$
PERK YEAK (ma) 12 (ma) ************************************	02229> Unit Hyd. Tpeak (min)= 7.50 15.00	02364> THAN THE STORAGE COEFFICIENT.
20235 TITLE TO FERME (has) = 1.04 1.11 1.03 1.04 20235 PUNOPT FOLLOW (number 56.45 22.33 51.45 20235 PUNOPT FOLLOW (number 56.45 22.33 51.45 20235 PUNOPT CONFERCIENT	02231> *TOTALS*	02365> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02366>
22235 TOTAL PLINERL [mm] = 59.23 59.23 <td< td=""><td>02233 TIME TO BEAK (broke 1 04 1 21 1 042</td><td>02367></td></td<>	02233 TIME TO BEAK (broke 1 04 1 21 1 042	02367>
20225 A.G. (B) A.G. (B) <t< td=""><td>D2234> RUNOFF VOLUME (mm) = 56.66 25.35 51.647</td><td>02369> *</td></t<>	D2234> RUNOFF VOLUME (mm) = 56.66 25.35 51.647	02369> *
22335 (1) CI NECKDORE SELECTED FOR FERENCIOS LOSSES: 02335 (2) CI NECKDORE SELECTED FOR FERENCIOS LOSSES: 22340 (1) CI NECKDORE SELECTED FOR FERENCIOS LOSSES: 02335 (2) CI NECKDORE CONFICIENT 02335 22340 (1) CI NECKDORE CONFICIENT Networks Conficient 02335 (1) CI NECKDORE CONFICIENT 02335 22340 (1) LI NEW TOW DORE NOT INCLUSE SAMPLIES ON EQUAL 02335 Surface Area (ha) = 0.54 02335 Surface Area (ha) = 0.54 02335 Networks Sign (h) = 0.13 0.3335 Surface Area (ha) = 0.54 0.3335 Networks Sign (h) = 0.13 0.3355 0.3335 Networks Sign	J2235> TOTAL RAINFALL (mm) = 58.23 58.23 58.226 J2236> RUNOFF COEFFICIENT = .97 .44 .887	02371
222250 (1.3) THE THE TOP INFORME CEFTCLENT. DEPENDENCE FOR PERVICUS (1) 22234.5 (1.3.1) THEAT HE STREARE CEFTCLENT. C2236.5 22247.5 (1.3.1) THEAT HE STREARE CEFTCLENT. C2236.5 22248.5 (1.3.1) THEAT HE STREARE CEFTCLENT. C2336.5 22248.5 (1.5.1) THEAT HE STREARE CEFTCLENT. C2336.5 22248.5 (1.5.1) THEAT HE STREARE CEFTCLENT. C2336.5 22248.5	02237>	02372> CALIE STANDHYD Area (ha)= 2.66
022415 11 FBAN FILE STGRAGE COEFFICIENT. 02345 02405	02239> CN* = 81.0 Ta = Dep. Storage (Above)	023743
02249	J2240> (11) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL J2241> THAN THE STORAGE COEFFICIENT.	02375> IMPERVIOUS PERVIOUS (i) 02376> Surface Area (ba)= 2.58 08
022475 - SUB-AREA No.2 02245 - SUB-AREA No.2 022484 - SUB-AREA No.2 02245 - SUB-AREA No.2 022485 - Calls STAMPTO Area (ha)= 1.54 022485 - SUB-AREA No.2 - SUB-AREA No.2 02255 - SUB-AREA No.3 - SUB-AREA No.3 02255	02242> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	02377> Dep. Storage (mm) = 1.57 4.67
02249	D2244>	02378> Average Slope (*)= .61 1.50 02379> Length (m)= 207.25 20.00
022475 * SUB-AREA N-2 022475 * SUB-AREA N-2 022485 * SUB-AREA N-2 022455 Surface Area (ma) = 1.57 022456 * SUB-AREA N-2 022455 Awerage Slope (h) = .50)2245> 001:0005	02380> Mannings n = .030 .250
02249 CALIB STANHUTO Area (ha) = 1.54 1.54 13.16 (i) 6.54 (ii) 13.16 (ii) 02240 C220 Tr = 2.10 Tr = 2.10 Tr = 2.10 13.16 (ii) 13.16 (ii) 02250 C220 Tr = 2.10 Tr = 2.10 1.42 12.12 13.16 (iii) 13.16 (iii) 02255 C2255 Dep. Storage (ha) = 1.57 1.67 1.00 02285 Dep. Storage (ha) = 7.50 1.23.16 (iii) 1.04 1.17 1.042 02255 Dep. Storage (ha) = 1.57 1.61 000 02285 Dep. Storage (caff, ha) = 7.50 1.23.16 (iii) 1.04 1.17 1.042 02255 Dep. Storage (ha) = 1.42 1.00 02285 Dep. Storage (caff, ha) = 7.50 1.23.16 (iii) 02285 Dep. Storage (caff, ha) = 7.50 1.23.16 (iii) 1.06 1.17 1.062 02255 Dep. Storage (ha) = 1.42 1.00 02285 Dep. Storage (caff, ha) = 7.50 1.23.16 (iii) 02285 Dep. Storage (ha) = 7.50 1.23.16 (iii) 02285 Dep. Storage (ha) = 7.50 1.23.16 (iii) 02285 Dep. Storage (ha) = 1.15 1.06 Dep. Storage (ha) = 0.10 1.17 1.062 02285 TIMB TO PEAK (ha) = 1.41 1.50 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	02247> * SUB-AREA No.2	02382> Max.eff.Inten.(mm/hr)= 144.69 51.33
Display Desk flow Cash 1.6 0.9 22235 Surface Area (ha) 1.42 1.2385 Cash 7.6 0.1 7.38 11.11 22255 Average Slope (i) = 2.44.3 5.00 022895 TICE TO PEAK (hrs) = 1.04 1.17 1.042 22255 Average Slope (iii) = 2.44.3 5.00 022895 TOTAL RAINFALL (mm) = 56.66 2.5.5.717 022650 Over (min) 7.50 7.50 02395 TOTAL RAINFALL (mm) = 58.23 58.23 58.226 022650 Over (min) 7.50 7.50 02395 Cix * # 81.0 1.42 02395 022650 Out Hyd, peak (mn) = 1.44 0.01 4.18 001 002395 TINK TEG TO PEAK TEN THE STORAGE COEFTIENT Solution 022655 Desk (thr) = 1.04 1.04 1.04 0.01 4.18 001 022655 TIME TO PEAK TIME TO PEAK TEN THE STORAGE COEFTIENT TEN THE STORAGE COEFTIENT <td< td=""><td>)2249> CALIE STANDHYD Area (ha)= 1.54</td><td>02384> Storage Coeff. (min)= 6.54 (ii) 13.16 (ii)</td></td<>)2249> CALIE STANDHYD Area (ha)= 1.54	02384> Storage Coeff. (min)= 6.54 (ii) 13.16 (ii)
D22535 Surface Area IMPERVIOUS PERVIOUS (1) PERVIOUS PERVIOUS (1) PERVIOUS PERVI)2250> 02:020 DT= 2.50 Total Imp(%)= 92.00 Dir. Conn.(%)= 92.00	02385> Unit Hyd. Tpeak (min)= 7.50 12.50
02255 Dep. Storage (m) = 1.57 4.57 (2285 02255 Length (n) = 244.34 5.00 (2290 02255 Length (n) = 244.34 5.00 (2290 02255 Length (n) = 244.34 5.00 (2290 02255 Length (n) = 56.66 22.35 55.717 02255 Max.eff.Inten.(mm/hr) = 144.69 65.19 (2290 KUNOFY COLFUENT CIENT = .97 .44 .957 02260 ore (min) 7.50 7.50 7.50 (1) HMC FORTICIENT = .97 .44 .957 02260 ore (min) 7.50 7.50 7.50 (2295 KINOFY COLFUENT CIENT = .97 .44 .957 022625 DEXA FLOW (ms) = .40 .1.61 .486 (1) 02395 (1) THE STEP (DT) SHOULD E SHALLER OR EQUAL 022655 TIME TO PEAK (Ints) = .1.04 1.08 1.042 (2295 (1) THE STEP (DT) SHOULD E SHALLER OR EQUAL (2295 022655 TOTAL RAINFALL (ms) = .5.6.66 25.35 54.152 (2205 (2205 (1) THE STEP (DT) SHOULD E SHALLER OR EQUAL (2205 (2005 (1) De101 (2205 (2005 (1) De101 (2005 (1) De101	D2252> - IMPERVIOUS PERVIOUS (1)	02387> *TOTALS*
02255> Average slope (h) = 5.0 1.00 02255> Length (m) = 24.34 5.00 02257> Mannings n = 0.30 0.30 02257> Mannings n = 0.30 0.30 02257> Mannings n = 0.30 0.30 02258> Dever(min) 144.69 65.19 0.2395 02261> Storage Coeff. (min) 7.60 7.50 0.2395 022623> Unit Hyd. Tpeak (min) 7.50 7.50 0.2395 02263> Unit Hyd. Tpeak (min) 7.50 7.50 0.2395 022645 TUMO FF VOLUME (mm) 56.66 25.35 54.132 022735 (i) CH PACCEPTCIENT 97 44 930 02274	02254> Dep. Storage (mm)= 1.57 4.67	U2388> PEAK FLOW (cms)= .78 .01 .783 (iii) 02389> TIME TO PEAK (hrs)= 1.04 1.17 1.042
222352 WAINTINGS N = .030 .030 222355 WAINTINGS N = .030 .030 222355 WAINTINGS N = .030 .030 222355 Waintings N = .030 .030 222615 Storage Coeff (min) 7.50 7.50 .040 222625 Unit Hyd, Tpeak (min) 7.50 7.50 .040 .033 222626 Unit Hyd, Tpeak (min) 7.50 7.50 .041 .030 .02395 (ii) FRACE COEFFICIENT .02395 (iii) FRACE TOORE STRUETCE TOR PREAVLING RADUED REASTLICE TOR PRE	02255> Average slope (%)= .50 1.00	02390> RUNOFF VOLUME (mma) = 56.66 25.35 55.717
022895 022805 02805 02805 02805 02805 028		02392> RUNOFF COEFFICIENT = .97 .44 .957
02260> over (min) 7.50 7.50 7.50 02261> Storage Codeff. (min) = 7.50 7.50 7.50 02262> Unit Hyd. Tpeak (min) = 7.50 7.50 7.50 02263> Unit Hyd. Tpeak (min) = 7.50 7.50 7.50 02263> Unit Hyd. Tpeak (min) = 7.50 7.50 7.50 02265> FIND FF (DEW) (ms) = .15 .14 02265> FIND FF (DEW) (ms) = .40 .1.64 (11) 02265> FIND FF VDUMES (ms) = .40 .1.64 (2395) 02266> FUND FF VDUMES (ms) = .56.23 56.26 53.25 56.26 02267> CN* = 81.0 T EDE TO FEW FLOW (ms) = .65.72 .000 02271> (1) CN PROCEDURE SELECTED FOR PERVICUS LOSSES: .02405 .100 66:06 .69 .25 .000 02274> THAN THE STORAGE COFFICIENT .04 .55.72 .000 02274> THAN THE STORAGE COFFICIENT .04 .55.72 .000 02274> THAN THE STORAGE COFFICIENT .04 .55.72 .000 02274> THAN THE STORAGE C	02257> Mannings n = .030 .030	02394> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
02262> Unit Hyd. Tpeak (min) = 7.50 7.50 02263> Unit Hyd. Tpeak (min) = 1.5 14 02263> Unit Hyd. Tpeak (min) = 1.0 1.0 02263> FIME TO PEAK FLOW (min) = 4.0 4.18 02265> TIME TO PEAK (min) = 56.66 25.35 54.132 02265> TOTAL RAINFLL (ma) = 56.66 25.35 54.132 02265> TOTAL RAINFLL (ma) = 56.66 25.35 54.132 022620> CUMPE (ma) = 56.66 25.35 54.132 022620> CUMPE (ma) = 56.66 25.03 58.23 02271> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 02404>	D2257> Mannings n = .030 .030 D2258> D2259> Max.eff.Inten.(num/hr)= 144.69 65.19	
02263> Unit Hyd. peak (cms)= .15 .14 "TOTALS" "TOTALS" 02265> PEAK FLOW (cms)= .40 .01 .418 (iii) 02265> TIME TO PEAK (hrs)= .10 .02 .032 02265> TIME TO PEAK (hrs)= .10 .01 .418 (iii) 02265> TIME TO PEAK (hrs)= .00 .01 .418 (iii) 02267> RUNOFF VOLUME (mm)= 56.66 25.35 54.152 02267> RUNOFF COEFFICIENT = .97 .44 .930 02271> (i) CM PECEDURE SELECTED FOR PERVIOUS LOSSES: .02405 IDI 06:060 .89 .296 .00 .226 .00 .02405 .100 65.72 .000 02271> (ii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. .02405 .010 60:060 .89 .296 .001 55.72 .000 02271> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. .02405 .001 001	22257> Mannings n = .030 .030 22258> Max.eff.Inten.(mm/hr)= 144.69 65.19 22260> Cover (min) 7.50 7.50	02395 ($M = 81.0$ $Ia = Dep. Storage (Above)$
02265> PEAK FLOW (cms) = .40 .01 .418 (iii) 024005 02266> TIME TO FPAK (hrs) = 1.04 1.08 1.042 024005 02268> COTAL RAINFALL (ma) = 56.26 6 25.35 54.152 02269> RUNOFF COEFFICIENT = .97 .44 .930 02402 02271> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 02405 02272> (iii) PEAK FLOW 3005 NOT INCLUDE BASEFLOW IF ANY. 02405 02275> (iii) PEAK FLOW 1002S NOT INCLUDE BASEFLOW IF ANY. 024005 02275> (iii) PEAK FLOW 1002S NOT INCLUDE BASEFLOW IF ANY. 024010 02275> (iii) PEAK FLOW 1002S NOT INCLUDE BASEFLOW IF ANY. 024110 02275> (iii) PEAK FLOW 1002S NOT INCLUDE BASEFLOW IF ANY. 024110 02275> (iii) PEAK FLOW 1002S NOT INCLUDE BASEFLOW IF ANY. 024110 02275> (iii) PEAK FLOW 1002S NOT INCLUDE BASEFLOW IF ANY. 024110 02275> (iii) PEAK FLOW 1002 PERVIOUS (ii) 02412> 02281> (iii) PEAK FLOW 100 PERVIOUS (ii) 02412> 022825 (iii) PERVIOUS PERVIOUS (ii) 02412> 022825 IMPERVIOUS PERVIOUS (ii) 02412> 022825 IMPERVIOUS PERVIOUS (ii) 02412> <	22257> Mannings n = .030 22258> Max.eff.inten.(mm/hr) = 144.69 65.19 22260> over (min) 7.50 7.50 22261> Storage Coeff. (min) = 7.66 (ii) 8.49 (ii) 22262> Unit Hyd. Tpeak (min) = 7.50 7.50	02397> THAN THE STORAGE COEFFICIENT.
22263> RUNOFF COEFFICIENT = .97 .44 .930 02404>	D2257> Mannings n = .030 D2258> D2259> Max.eff.Inten.(mm/hr)= 144.69 65.19 D2260> over (min) 7.50 7.50 D2261> Storage Coeff. (min)= 7.66 (ii) 8.49 (ii) D2262> Unit Hyd. Tpeak (min)= 7.50 7.50 D2263> Unit Hyd. ppeak (cms)= .15 1.4	02397> THAN THE STORAGE COEFFICIENT. 02398> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
D22263> RUMORF COEFFICIENT = .97 .44 .930 D2271> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (ii) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (iii) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (iii) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (iii) PEAK STE STORAGE CADE DE SMALLER OR EQUAL (2405> 110 66:06 .89 .296 1.00 55:72 .000 D2275> (iii) PEAK STE STORAGE CODE DE SMALLER OR EQUAL (2405> SUM 08:080 3.55 1.06 55.72 .000 D2275> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. (2405> SUM 08:080 3.55 1.06 55.72 .000 D2275> (2405> SUM 08:080 3.55 1.06 55.72 .000 D2275> (2405> SUM 08:080 3.55 1.06 55.72 .000 D2275> (2405> SUM 08:080 3.55 1.060 1.04 55.72 .000 D2275> (2405> SUM 08:080 3.55 1.060 1.04 55.72 .000 D2275> (2415>	22257> Mannings n = .030 22258> Max.eff.inten.(mm/hr)= 144.69 65.19 22260> over (min) 7.50 7.50 22261> Storage Coeff. (min)= 7.66 (ii) 8.49 (ii) 22262> Unit Hyd. Tpeak (min)= 7.50 7.50 22263> Unit Hyd. Tpeak (min)= 7.50 7.50 22263> Unit Hyd. peak (cms)= .15 .14 *TOTALS* .19 .14.9 .11	02397> THAN THE STORAGE COEFFICIENT. 02398> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02399> 02400>
22270> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 02405> ID1 06:060 .89 .296 1.00 55.72 000 22272> CN* = 81.0 IA = Dep. Storage (Above) 02405> ID1 06:060 .89 .296 1.00 55.72 000 22272> CN* = 81.0 IA = Dep. Storage (Above) 02405> HD1 06:060 .89 .296 .00 55.72 000 22727> CN* = 81.0 IA = Dep. Storage (Above) 02405> SUM 08:080 3.55 1.04 55.72 .000 22775 THAN THE STORAGE COEFFICIENT. 02405> SUM 08:080 3.55 1.04 55.72 .000 22775 THAN THE STORAGE COEFFICIENT. 02405> SUM 08:080 3.55 1.04 55.72 .000 22775 THAN THE STORAGE COEFFICIENT. 02405> SUM 08:080 3.55 1.04 57.72 .000 22775 TO 10005 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02405> 02405> 02415> 02405> 02415> 02415> 02415> 02415> 02415> 02415> 02415> 02415> 024	22257> Mannings n = .030 22258> Max.eff.inten.(mm/hr)= 144.69 65.19 22260> over (min) 7.50 7.50 22261> Storage Coeff. (min)= 7.66 (ii) 8.49 (ii) 22262> Unit Hyd. Tpeak (min)= 7.50 7.50 22263> Unit Hyd. Tpeak (min)= 7.50 7.50 22263> Unit Hyd. peak (cms)= .15 .14 *TOTALS* .19 .14.9 .11	02397> THAN THE STORAGE COEFFICIENT. 02398> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02399> 02400>
22273> (i) TDME STEP (DT) SHOULD BE SMALLER OR EQUAL 024005 22274> THAN THE STORAGE COEFFICIENT. 024005 22275> (ii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 024005 22276> 001:0016 001:0016 22275> • 001:0016 22276> • 01:0016 222775 • 01:0016 22278> 001:0016 024105 22280> SUB-AREA No.3 024105 22281> • 01:0012 22282 CALLE STANDHYD Area (ha)= 1.40 22284> 03:030 DT= 2.50 TOTAL Imp(%)= 97.00 22284> IMPERVIOUS PERVIOUS (i) 024115 1.040 1.04 55.72 .000 22845 IMPERVIOUS PERVIOUS (i) 024115 1.01 0012 .01 0012 .01 0012 .01 0012 .01 0012 .02 0016 .02 0016 .02 0016 .01 0015 05.00 .01 1.04 55.72 .000 22845 IMPERVIOUS PERVIOUS (i) 02 001 INDE 0000 3.55 1.060 .02 0100.2 .02 0100.2 .02 0100.2 .02 0100.2<	22257> Mannings n = .030 22258> Max.eff.inten.(mm/hr)= 144.69 65.19 22260> over (min) 7.50 7.50 22261> Storage Coeff. (min)= 7.66 (ii) 8.49 (ii) 22262> Unit Hyd. Peak (min)= 7.60 (ii) 7.60 (ii) 22262> Unit Hyd. Peak (cms)= .15 .14 22263> Unit Hyd. peak (cms)= .40 .01 .418 (iii) 22264> "TOTALS" 22265> FEAK FLOW (cms)= .40 .04 .04 22265> TIME TO FEAK (hr.s)= 1.04 .04 .104 22267> RUNOFF VOLUME (mm)= 56.66 25.35 54.152 22268> TOTAL RINFAUL (mm)= 56.23 59.23 59.23	02397> THAN THE STORAGE COEFFICIENT. 02398> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02399> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02400>
22273> (i) TDME STEP (DT) SHOULD BE SMALLER OR EQUAL 024005 22274> THAN THE STORAGE COEFFICIENT. 024005 22275> (ii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 024005 22276> 001:0016 001:0016 22275> • 001:0016 22276> • 01:0016 222775 • 01:0016 22278> 001:0016 024105 22280> SUB-AREA No.3 024105 22281> • 01:0012 22282 CALLE STANDHYD Area (ha)= 1.40 22284> 03:030 DT= 2.50 TOTAL Imp(%)= 97.00 22284> IMPERVIOUS PERVIOUS (i) 024115 1.040 1.04 55.72 .000 22845 IMPERVIOUS PERVIOUS (i) 024115 1.01 0012 .01 0012 .01 0012 .01 0012 .01 0012 .02 0016 .02 0016 .02 0016 .01 0015 05.00 .01 1.04 55.72 .000 22845 IMPERVIOUS PERVIOUS (i) 02 001 INDE 0000 3.55 1.060 .02 0100.2 .02 0100.2 .02 0100.2 .02 0100.2<	22257> Mannings n = .030 .030 22258> Max.eff.Inten.(nm/hr)= 144.69 65.19 22260> over (min) 7.50 7.50 22261> Storage Coeff. (min)= 7.66 (ii) 8.49 (ii) 22262> unit Hyd. Peak (min)= 7.66 (ii) 8.49 (ii) 22263> Unit Hyd. Peak (cms)= .15 .14 22264> "TOTALS" .12 22265> PEAK FLOW (cms)= .40 .01 .418 (iii) 22265> TIME TO FEAK (hrs)= 1.04 1.08 1.042 22267> RUNOFF VOLUME (mm)= 55.66 25.35 54.152 22269> RUNOFF COEFFICIENT = .97 .44 .930	02397> THAN THE STORAGE COEFFICIENT. 02398> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02399> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02400>
22274> THAN THE STORAGE COEFFICIENT. 22275> (ii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 22275> (2410> 22275> (2410> 22275> (2410> 22275> (2410> 22275> (2410> 22275> (2410> 22275> (2410> 22275> (2410> 22275> (2410> 22275> (2410> 22275> (2410> 22285> (2410> (2410> (2410> (2410> (2410> (2411> (2411> (2412> (2413) (2413) (2413) (2413) (2413) (2413) (2413) (2413) (2413) (2413) (2413) (2413) (2413) (2413) (100) (2284) (3100) (2413) (2284) (210) (210) (2284) (210) (210) (2284) (210) (210) (2284) (210) <td< td=""><td>22257> Mannings n = .030 .030 22258> Max.eff.Inten.(nm/hr) = 144.69 65.19 22260> over (min) 7.50 7.50 22261> Storage Coeff. (min) = 7.66 (ii) 8.49 (ii) 22262> unit Hyd. Peak (min) = 7.66 (ii) 8.49 (ii) 22263> unit Hyd. Peak (min) = 7.50 7.50 22262> Unit Hyd. Peak (min) = 7.50 7.50 22263> Unit Hyd. Peak (min) = 1.5 1.4 22264> .15 .14 22265> PEAK FLOW (cms) = .40 .01 .418 (iii) 22264> .108 1.042 .022 22265> TIME TO FEAK (hrs) = 1.04 1.08 1.042 22268> TOTAL RAINFALL (mm) = 56.66 25.35 54.152 22269> RUNOFF COEFFICIENT = .97 .44 .930 2271> (i) CN PROCEDURE SELECTED FOR PERVIDUS LOSSES: .910 1.28 PER STORAGE 22727> CN* = 81.0 1.28 PER STORAGE .910 <!--</td--><td>02397> THAN THE STORAGE COEFFICIENT. 02398> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02399> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02400></td></td></td<>	22257> Mannings n = .030 .030 22258> Max.eff.Inten.(nm/hr) = 144.69 65.19 22260> over (min) 7.50 7.50 22261> Storage Coeff. (min) = 7.66 (ii) 8.49 (ii) 22262> unit Hyd. Peak (min) = 7.66 (ii) 8.49 (ii) 22263> unit Hyd. Peak (min) = 7.50 7.50 22262> Unit Hyd. Peak (min) = 7.50 7.50 22263> Unit Hyd. Peak (min) = 1.5 1.4 22264> .15 .14 22265> PEAK FLOW (cms) = .40 .01 .418 (iii) 22264> .108 1.042 .022 22265> TIME TO FEAK (hrs) = 1.04 1.08 1.042 22268> TOTAL RAINFALL (mm) = 56.66 25.35 54.152 22269> RUNOFF COEFFICIENT = .97 .44 .930 2271> (i) CN PROCEDURE SELECTED FOR PERVIDUS LOSSES: .910 1.28 PER STORAGE 22727> CN* = 81.0 1.28 PER STORAGE .910 </td <td>02397> THAN THE STORAGE COEFFICIENT. 02398> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02399> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02400></td>	02397> THAN THE STORAGE COEFFICIENT. 02398> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02399> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02400>
22275- 001:0006	22257> Manings n = .030 22258> Max.eff.Inten.(mm/hr) = 144.69 65.19 22260> over (min) 7.50 7.50 22261> Storage Coeff. (min) = 7.66 (ii) 8.49 (ii) 22262> Unit Hyd. Peak (min) = 7.50 7.50 22263> Unit Hyd. Peak (cms) = .15 .14 22264> TOTALS* .00	02397> THAN THE STORAGE COEFFICIENT. 02398> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02400>
22278 001:0016	22257> Manings n = .030 22258> Max.eff.Inten.(mm/hr) = 144.69 65.19 22260> over (min) 7.50 7.50 22261> Storage Coeff. (min) = 7.66 (ii) 8.49 (ii) 22262 Unit Hyd. Peak (min) = 7.65 (ii) 8.49 (ii) 22263 Unit Hyd. Peak (ms) = 1.5 14 22264> TOTALS* *TOTALS* 22265 PEAK FLOW (cms) = 1.0 .01 .418 (iii) 22265 TOTAL RAINFALL (mm) = 56.65 52.35 54.152 22265 TOTAL RAINFALL (mm) = 56.65 52.23 54.152 22265 TOTAL RAINFALL (mm) = 56.55 52.23 54.152 22265 TOTAL RAINFALL (mm) = 56.55 52.23 54.152 22265 TOTAL RAINFALL (mm) = 56.55 52.23 54.152 22265 TOTAL RAINFALL (mm) = 56.75 54.24 6.226 22705 RUNOFF COEFFICIENT = 97.50 4.300 320 22712 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSES5: 3272 3	02397> THAN THE STORAGE COEFFICIENT. 02398- 024005 (11) PEAK FLOW DOES NOT INCLUE BASEFLOW IF ANY. 024005
12279 * 02279 * 12280 * SUB-AREA No.3 024145	22257> Manings n = .030 22258> Max.eff.Inten.(mm/hr) = 144.69 65.19 22260> over (min) 7.50 7.50 22261> Storage Coeff. (min) = 7.66 (ii) 8.49 (ii) 22262> unit Hyd. Peak (min) = 7.66 (ii) 8.49 (ii) 22263> unit Hyd. Peak (min) = 7.50 7.50 22263> unit Hyd.peak (cms) = .15 .14 22264> "THE TO PEAK (hrs) = 1.04 1.08 1.042 22265> PEAK FLOW (cms) = .40 .01 .418 (iii) 22264> "THE TO PEAK (hrs) = 1.04 1.06 1.042 22265> RUNOFF VOLUME (mm) = 56.66 25.35 54.152 22264> RUNOFF COEFFICIENT = .97 .44 .930 22710> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: .2271> .2272 .2274> .11 mE STORAGE COEFFICIENT. 22714> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL .2274> .2274> .44 .930 22715 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. .2274>	02397> THAN THE STORAGE COEFFICIENT. 02398- 02400> (11) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02400>
022812	222575 Manings n = .030 .030 222585 Max.eff.Inten.(mm/hr) = 144.69 65.19 222600 over (min) 7.50 7.50 222612 Storage Coeff. (min) = 7.66 (ii) 8.49 (ii) 222620 unit Hyd.peak (min) = 7.65 (7.50 7.50 22263 unit Hyd.peak (min) = 7.50 (7.50 7.50 222640 "TOTALS" .15 .14 222640 (mm) = 5.6.50 (7.50 .16 222645 TIME TO PEAK (hrs) = 1.04 .06 1.042 222650 TIME TO PEAK (hrs) = 1.04 (106 1.042 .042 222645 TOTAL RAINFALL (mm) = 58.23 (58.23 (58.23 (58.26) .22269 222650 RUNOFF COEFFICIENT = .97 (44 .930) .930 22715 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: .2273 .1273 .11 THE STORAGE COEFFICIENT. 22714 THAN THE STORAGE COEFFICIENT. .2274 .1274 .13 PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 22756	02397> THAN THE STORAGE COEFFICIENT. 02398> (111) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02400>
02283 03:030 DT* 2.50 Total Imp(%)= 97.00 Dir. Conn. (%)= 97.00 02418> +1D2 08:080 3.55 1.060 1.04 55.72 000 02285> IMPERVIOUS PERVIOUS (1) 02418>	22257> Mannings n - .030 22258> Max.eff.fnten.(mm/hr) = 144.69 65.19 22250> over (min) 7.50 7.50 22261> Storage Coeff. (min) = 7.66 (ii) 8.49 (ii) 22262> unit Hyd.peak (min) = 7.50 7.50 22262> unit Hyd.peak (min) = 7.50 7.50 22262> unit Hyd.peak (ms) = .15 .14 22263> Unit Hyd.peak (ms) = .40 .01 .418 (iii) 22265> PEAK FLOW (cms) = .40 .04 .042 22267> RUNOFF VOLUME (rm) = 56.66 25.35 54.152 22268> RUNOFF COEFFICIENT = .97 .44 .930 22770> (i) CN RACCEDURE SELECTED FOR PERVIOUS LOSSES: .2273 .2273 22771> (i) CN RACCEDURE SELECTED FOR PERVIOUS LOSSES: .2274 .11 PEAK FLOW DOES NOT INCLUE BASEFLOW IF ANY. 22774> (ii) PEAK FLOW DOES NOT INCLUE BASEFLOW IF ANY. .2274 .2275 22775 (iii) PEAK FLOW DOES NOT INCLUE BASEFLOW IF ANY. .2275 22775 .001:0006	02397> THAN THE STORAGE COEFFICIENT. 02398> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02400>
02249> 02419> 02285> IMPERVIOUS PERVIOUS (1) 02420> SUM 09:090 8.56 2.410 1.04 54.45 .000 02285> Dep. Storage (ma) = 1.57 4.67 02422> 02423> 02423> 02423> 02424> 02424> 02424> 02424> 02424> 02424> 02424> 02424> 02424> 02424> 02424> 02424> 02426> 02424> 02426> 02424> 02426> 02425> 010013	22257> Mannings n - .030 22258> Max.eff.fnten.(mm/hr) = 144.69 65.19 22259> Over (min) 7.50 7.50 22261> Storage Coeff. (min) = 7.66 (ii) 8.49 (ii) 22262 Unit Hyd.peak (min) = 7.50 7.50 22262 Unit Hyd.peak (min) = 7.50 7.50 22262 Unit Hyd.peak (ms) = .15 .14 22262 Unit Hyd.peak (ms) = .40 .01 .418 (iii) 22265> PEAK FLOW (cms) = .40 .01 .418 (iii) 22265> TLME TO FREAK (hrs) = 1.04 .08 1.042 22267> RUNOFF VOLUME (rm) = 58.23 58.226 .2275 2275> (i) CN RACCEDURE SELECTED FOR PERVIOUS LOSSES: .2275 .2275 2271> (i) CN RACCEDURE OF INCLIDE BASELLOW IF ANY. .2275 22725> (iii) FEAK FLOW DOES NOT INCLUDE BASELOW IF ANY. .2275 2273> .001:0006	02397> THAN THE STORAGE COEFFICIENT. 02398> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02400>
02285> Surface Area (ha)= 1.35 .04 02421> 02287> Dep. Storage (ma)= 1.57 4.67 02422> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02289> Average Slope (%)= .51 1.00 02423> 02289> Length (m)= 225.63 5.00 02423> 0229> Mannings n .030 .030 02425> 0229> Max.eff.Inten.(mm/hr)= 144.69 65.19 02426> 02293> over (min) 7.50 7.50 02428> IN>09: (190) 1 02294> Storage Coeff. (min)= 7.26 (ii) 8.09 (ii) 02428> IN>09: (100) 1	22257> Manings n - .030 22258> Max.eff.fnten.(mm/hr) = 144.69 65.19 22259> Over (min) 7.50 7.50 22261> Storage Coaff. (min) = 7.66 (ii) 8.49 (ii) 22262> Unit Hyd.peak (min) = 7.50 7.50 22262> Unit Hyd.peak (cms) = .15 .14 22263> Unit Hyd.peak (cms) = .40 .01 .418 (iii) 22265> FEAK FLOW (cms) = .40 .01 .418 (iii) 22265> TLME TO FEAK (hrs) = 1.04 .06 1.042 22267> RUNOFF VOLUME (rm) = 56.66 25.35 54.152 22263> RUNOFF COEFFICIENT = .97 .44 .930 2275> (i) CH ROCEDURE SELECTED FOR FERVIOUS LOSSES: .2273 .10 THE TO FOLDE DE Schale (Above) 22715 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. .2275 .2275 22715 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. .2275 .2275 22715 .001:0006	02397> THAN THE STORAGE COEFFICIENT. 02398> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02400>
02288> Average Slope (%)= .51 1.00 02423> 02289> Length (m) = 225.63 5.00 02424> 02290> Mannings - .030 .030 02425> 02291> 02292> 022425 001:0013	222575 Manings n = .030 .030 222585 Max.eff.inten.(mm/hr) = 144.69 65.19 22260- over (min) 7.50 7.50 22261 Storage Coeff. (min) = 7.66 (ii) 8.49 (ii) 22262 Unit Hyd.peak (min) = 7.65 (ii) 8.49 (ii) 22263 Unit Hyd.peak (ms) = .15 .14 222643 FEAK FLOW (cms) = .104 1.08 .418 (iii) 22265 TIME TO PEAK (hrs) = 1.04 1.08 .418 (iii) 222665 TIME TO PEAK (hrs) = 56.65 25.35 54.152 222650 TOTAL RAINFALL (mm) = 56.66 25.35 54.26 222645 TOTAL RAINFALL (mm) = 57.66 25.35 54.26 222705 CONFOR COEFFICIENT = .97 .44 .930 222713 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: .2273 .13 THE STEP (DT) SHOLDE B SMALLER OR EQUAL 22715 (iii) FEAK FLOW BOUES NOT INCLUDE BASEFLOW IF ANY. .2275	02397> THAN THE STORAGE CORFFICIENT. 02398> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02400>
D2289> Length (m) = 222.5.63 5.00 02424>	22257> Manings n = .030 .030 22258> Max.eff.inten.(mm/hr) = 144.69 65.19 22260> over (min) 7.50 7.50 22261> Storage Coeff. (min) = 7.66 (ii) 8.49 (ii) 22262 Unit Hyd.peak (min) = 7.50 7.50 22263> Unit Hyd.peak (cms) = .15 .14 22264> FDAK FLOW (cms) = .104 .031 .418 (iii) 22264> TIME TO PEAK (ms) = .104 .031 .418 (iii) 22265> TIME TO PEAK (ms) = .104 .031 .418 (iii) 22267> RUNOFF COEFFICIENT = .97 .64 .930 22275> CIN PROCEDURE SELECTED FOR PERVIOUS LOSSES: .2273 (i) CIN PROCEDURE SELECTED FOR PERVIOUS LOSSES: .2273 .1272 .01 = = Dep. Storage (Above) .2273 22275> CI) THAN THE STORAGE COEFFICIENT. .2274	02397> THAN THE STORAGE COEFFICIENT. 02399> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02400>
02291> 024265 02292> Max.eff.Inten.(mm/hr)= 144.69 65.19 024275 ROUTE RESERVOR Requested routing time step = 1.0 min. 02293> over (min) 7.50 022942> Storage Coeff. (min)= 7.26 (ii) 09 (iii) 024275 ROUTE (1000)	22257> Manings n = .030 .030 22258> Max.eff.inten.(mm/hr) = 144.69 65.19 22260> over (min) 7.50 7.50 22261> Storage Coeff. (min) = 7.66 (ii) 8.49 (ii) 22262> Unit Hyd.peak (min) = 7.50 7.50 22263> Unit Hyd.peak (cms) = .15 .14 22263> Unit Hyd.peak (cms) = .10 .03 .418 (iii) 22264> FDEAK FLOW (cms) = .10 .03 .418 (iii) 22263> DINI Hyd.peak (cms) = .10 .03 .418 (iii) 22264> FDEAK FLOW (cms) = .10 .03 .418 (iii) 22265> FEAK FLOW (cms) = .56 .23 .53 .54 .52 .52 22665> FONDFF COEFFICIENT = .97 .64 .930 .52 22715 (i) CN ROCEDURE SELECTED FOR PERVIOUS LOSES5: .2273 .11 THE STORAGE COEFFICIENT. 22775 (ii) THEAT FLOW DOLD BE SANLER OR EQUAL .12275 .12275 22775 .10 DALES ANALER OR EQUAL .2275 22775 .10 DALES ANALER OR EQUAL </td <td>02397> THAN THE STORAGE COEFFICIENT. 02398> (111) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02400> </td>	02397> THAN THE STORAGE COEFFICIENT. 02398> (111) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02400>
02293> over (min) 7.50 7.50 (022428> IN>09:(190) 02294> Storage Coeff. (min) = 7.26 (1i) 8.09 (1i) (02428> OTLO:(DOND) **********************************	222575 Manings n = .030 .030 222585 Max.eff.Inten.(mm/hr) = 144.69 65.19 222605 over (min) 7.50 7.50 22262 Storage Coeff. (min) = 7.66 (ii) 8.49 (ii) 22262 unit Hyd.peak (min) = 7.50 7.50 22262 unit Hyd.peak (min) = 7.50 7.50 22263 Unit Hyd.peak (min) = 7.50 7.50 22264 "TOTALS" .15 .14 22265 PEAK FLOW (cms) = .40 .01 .418 (ii) 222665 TIME TO FRAK (hrs) = 1.04 1.08 1.042 222675 RUNOFF VOLVME (rm) = 56.66 25.35 54.152 222685 RUNOFF COEFFICIENT = .97 .44 .930 22775 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	02397> THAN THE STORAGE COEFFICIENT. 02398> (111) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 024005
02294> Storage Coeff. (min)= 7.26 (ii) 8.09 (ii) 02429> (OUT210: [POND) ************************************	222575 Manings n = .030 .030 222585 Max.eff.Inten.(mm/hr) = 144.69 65.19 222605 over (min) 7.50 7.50 22262 Unit Hyd.peak (min) = 7.66 (ii) 8.49 (ii) 22262 Unit Hyd.peak (min) = 7.50 7.50 22262 Unit Hyd.peak (ms) = .15 .14 22263 Unit Hyd.peak (ms) = .40 .01 .418 (ii) 222645 TIME TO PEAK (hrs) = 1.04 1.08 1.042 222655 PEAK FLOW (cms) = .56.66 25.35 54.152 222668 TOTAL RAINCAL (mm) = 56.66 25.35 54.152 222698 RUNOFF COEFFICIENT = .97 .44 .930 227104 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	02397> THAN THE STORAGE COEFFICIENT. 02398> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 024005
02230> UILL RYG. 1PERK (MLR)= /.5U /.5U 02430> OUTFLOW STORAGE ! OUTFLOW STORAGE	222575 Manings n = .030 .030 222585 Max.eff.Inten.(mm/hr) = 144.69 65.19 22260- over (min) 7.50 7.50 22261 Storage Coeff. (min) = 7.66 (ii) 8.49 (ii) 22262 Unit Hyd.peak (min) = 7.66 (ii) 8.49 (ii) 22263 Unit Hyd.peak (ms) = 1.5 1.4 222643 FEAK FLOW (cms) = 1.04 1.08 418 (iii) 22265 TIME TO PEAK (hrs) = 1.04 1.08 418 (iii) 222675 RINDFF VOLUBE (mn) = 56.65 25.35 54.152 222685 TOTAL RAINFALL (mm) = 58.23 58.23 58.23 22273 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 22273 CN* = 81.0 I = Dep. Storage (Above) 2273 (i) THE STEP [DT] SHOLLBE SARDLER OR EQUAL THAN THE STORAGE COEFTICIENT 22745 OU:0006	02397> THAN THE STORAGE COEFFICIENT. 02399> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02400>
1	22257> Manings n = .030 .030 22258> Max.eff.Inten.(mm/hr)= 144.69 65.19 22260> over (min) 7.50 7.50 22261> Storage Coeff. (min)= 7.66 (ii) 8.49 (ii) 22262 Unit Hyd.peak (min)= 7.50 7.50 22263 Unit Hyd.peak (ms)= .15 .14 22264> THE TO F2AK (hs)= .40 .01 .418 (iii) 22265> FEAK FLOW (cms)= .40 .01 .418 (iii) 22265> THE TO F2AK (hs)= 1.04 1.06 1.042 22267> RONOFF VOLDME (rm)= 58.23 58.226 58.226 2271> CINAL RATERALL (rm)= .57 .44 .530 22727> CINA FEEP (DT) SHOLDE BE SHOLLER OF EQUAL .522 .227 2273 CINA FEEP (DT) SHOLLER OF REVIOUS LOSSES: .227 .2275 2274 THAN THE STORAGE COEFFICIENT. .2275 .11 .5200 22775 * SUB-AREA No.3 .2275 .12275 22805 IOALE STADMEND Area (ha)= 1.40 .22	02397> THAN THE STORAGE COEFFICIENT. 02399> (ii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02400>

31> (cms) (ha.m.) (cms) (ha.m.) 32> .000 .0000E+00 .593 .6251E+00	02566>
3> .008 .6560E-01 .654 .6631E+00 4> .017 .1311E+00 .797 .7391E+00	02568>
35> .093 .2831E+00 .950 .8274E+00 36> .233 .3971E+00 1.304 .9157E+00	02570> +ID2 04:HIP04 15.60 1.879 1.21 45.44 .000 02571>
37> .337 .4731E+00 1.880 .1004E+01	02572> SUM 05:HIP05 32.60 4.157 1.13 45.44 .000
88> .465 .5491E+00 } 2.577 .1092E+01 99> .531 .5871E+00 .000 .0000E+00 0>	02573> 02574> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
	02575> 02576>
3> INFLOW >09: (090) 8.56 2.410 1.042 54.451	02577> 001:0019
5>	02579> i ADD HYD (HIPO6) ID: NHYD AREA QPEAK TPEAK R.V. DWF 02580> (ha) (cms) (hrs) (mm) (cms)
16> PEAK FLOW REDUCTION [Qout/Qin] %)= 7.838 7> TIME SHIFT OF PEAK FLOW (min)= 60.83 18> NUMINUM SPONDER USE (min)= 260.93	02501> ID1 05:HIP05 32.60 4.157 1.13 45.44 .000 02502> +ID2 02:HIP02 20.46 2.622 1.17 48.15 .000
<pre>8> MAXIMUM STORAGE USED (ha.m.)=.3612E+00 9></pre>	
0>	02585>
1> 001:0014	02587>
3> * Remaining Hawthorne Industrial Park * 4> *******	02588>
5> * 6> * SUB-AREA No.1	02590> * 02591> * SUB-AREA No.4
7> 8> CALIB STANDHYD Area (ha)= 19.90	02592> 02593> CALIB STANDHYD Area (ha)= 12.20
5 CALIE STANDHYD Area (ha)= 19.90 5 01:HIP01 DT= 2.50 Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 0	02594> 07:HIP07 DT= 2.50 Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 02595>
1> IMPERVIOUS PERVIOUS (i) 2> Surface Area (ha)= 14.13 5.77	02596> IMPERVIOUS PERVIOUS (i)
3> Dep. Storage (mm) = 1.57 4.67	025085 255 255 255 255 255 255 255 255 255 2
<pre>4> Average Slope (%)* .60 1.50 5> Lerigth (m)* 580.00 200.00 </pre>	02599> Dep. Storage (mm)= 1.57 4.67 02599> Average Slope (%)= .70 1.50 02600> Length (m)= 210.00 100.00
7>	02601> Mannings n = .030 .250
3> Max.eff.Inten.(mm/hr)= 124.54 81.98 3> over (min) 12.50 27.50	02603> Max.eff.Inten.(mm/hr)= 144.69 101.36 02604> over (min) 7.50 20.00
0> Storage Coeff. (min)= 12.93 (ii) 27.37 (ii) 1> Unit Hyd. Tpeak (min)= 12.50 27.50	02605> Storage Coeff. (min)= 6.32 (ii) 19.58 (ii) 02605> Unit Hyd. Tpeak (min)= 7.50 20.00
Unit Hyd. peak (cms)= .09 .04 b	02607> Unit Hyd. peak (cms)= .17 .06
PEAK FLOW (cms)= 2.16 .77 2.548 (iii) TIME TO PEAK (hrs)= 1.13 1.42 1.167	
> RUNOFF VOLUME (mm) = 56.66 34.22 45.437	02610 TIME TO PEAR (hrs) = 1.04 1.29 1.042 02611 RUNOFF VOLUME (mm) = 56.66 34.22 45.437
	02613> RUNOFF COEFFICIENT = .97 .59 .780
> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES.	02614> 02615> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
> CN* = 01.0 Ia = Dep. Storage (Above) > (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL	02616> CN* = 81.0 IA = Dep. Storage (Above) 02617> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 	02618> THAN THE STORAGE COEFFICIENT. 02618> (iii) PEAK FLOW DOBS NOT INCLUDE BASEFLOW IF ANY.
>	02620>
> 001:0015	
> ADD HYD (HIP02) ID: NHYD AREA QPEAK TPEAK R.V. DWF	02623> * 02624> *SUB-AREA No.5
> (ha) (cms) (hrs) (mm) (cms) > ID1 10:POND 8.56 .189 2.06 54.45 .000	02625> 02625> 02625> 02626> 1 DESIGN NASHYD 1 Area (ha)= 4.00 Curve Number (CN)=85.00
> +1D2 01:HIP01 19.90 2.548 1.17 45.44 .000	02625 / DESIGN NASHYD Area (ha)= 4.00 Curve Number (CN)=85.00 02627 / 08:Pond-B DT= 2.50 Ia (mm) = 4.670 # of Linear Res.(N)= 3.00 02628
> SUM 02:HIP02 28.46 2.622 1.17 48.15 .000	02629> 0.1. TP(hrs)= .1/0
> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	02630> Unit Hyd Qpeak (cms) = .899 02631>
> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	02530> Unit Hyd Opeak (cms)= .899 02631> 02532> PEAK FLOW (cms)= .459 (i) 02533> TIME TO PEAK (hrs)= 1.167
> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. > 001:0016	02630> Unit Hyd Qpeak (cma)= .899 02631> 02632> PEAK FLOW (cma)= .459 (i) 02632> TIME TO PEAK (hrs)= 1.167 02634> RUMOFF VOLUME (nma)= 29.155 02635> TOTAL RAINFALL (nma)= 58.226
> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. > 001:0016	02530> Unit Hyd Qpeak (cma)= .899 02532> 02532> PEAK FLOW (cma)= .459 (i) 02532> PEAK FLOW (cma)= .167 02533> TIME TO PEAK (hrs)= .1.167 02534> RUNOFF VOLUME (ma)= .29.155 02635> TOTAL RAINFALL (ma)= .50.226 02635> RUNOFF COEFFICIENT = .501 02637>
<pre>> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. ></pre>	02630> Unit Hyd Qpeak (cms)= .899 02632> PEAK FLOW (cms)= .459 (i) 02632> PEAK FLOW (cms)= .459 (i) 02634> RUNOFP VOLUME (nms)= 2.9.155 02634> RUNOFP VOLUME (nms)= 2.9.155 02635> TOTAL RAINFALL (nms) = 58.226 02636> RUNOFP COEFFICIENT = .501 02636> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02639> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
<pre>> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. > 001:0016</pre>	02630> Unit Hyd Qpeak (cms)= .899 02632> PEAK FLOW (cms)= .459 (i) 02632> PEAK FLOW (cms)= .459 (i) 02634> RUNOFF VOLUME (nms)= 2.9.155 02634> RUNOFF VOLUME (nms)= .50.226 02635> TOTAL RAINFALL (nms) = .50.226 02636> RUNOFF COEFFICIENT = .501 02639> 02639> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02640>
> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. > 001:0016	02630> Unit Hyd Qpeak (cms)= .899 02632> PEAK FLOW (cms)= .459 (i) 02632> PEAK FLOW (cms)= .459 (i) 02634> RUNOFF VOLUME (nms)= 2.9.155 02634> RUNOFF VOLUME (nms)= 2.9.155 02635> TOTAL RAINFALL (nms) = 58.226 02636> RUNOFF COEFFICIENT = .501 02639> 02639> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02639> 02640>
<pre>> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. ></pre>	025305 Unit Hyd Qpeak (cma)= .899 025312 025325 PEAK FLOW (cma)= .459 (i) 025325 PEAK (hrs)= .1.167 025335 TIME TO PEAK (hrs)= .1.167 025355 TOTAL RAINFAL (mm)= .29.155 025355 RUNOFF COEFFICIENT = .501 025365 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025365 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025365 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025375 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025385 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025395 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025395 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025395 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025395 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025395 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025395 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025395 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025395 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025395 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025395 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025395 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025395 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025395 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025395 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025395 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025435 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025435 (i) PEAK FLOW DOES INT INCLUDE BASEFLOW IF ANY. 025435 (i) PEAK FLOW DOES INT INCLUDE BASEFLOW IF ANY. 025435 (i) PEAK FLOW DOES INT INCLUDE BASEFLOW IF ANY. 025435 (i) PEAK FLOW DOES INT INCLUDE BASEFLOW IF ANY. 025435 (i) PEAK FLOW DOES INT INCLUDE BASEFLOW IF ANY. 025435 (i) PEAK FLOW DOES INT INCLUDE BASEFLOW IF ANY. 025435 (i) PEAK FLOW DOES INT INCLUDE BASEFLOW IF ANY. 025435 (i) PEAK FLOW DOES INT INCLUDE BASEFLOW IF ANY. 1000000000000000000000000000000000000
<pre>> NOTE: PEAK FLOWS DO NOT INCLUDE BASEPLOWS IF ANY. ></pre>	02630> Unit Hyd Qpeak (cms)= .899 02632> PEAK FLOW (cms)= .459 (i) 02632> PEAK FLOW (cms)= .459 (i) 02633> TIME TO PEAK (hrs)= 1.167 02634> RUNOFF VOLUME (nms)= 29.155 02635> TOTAL RAINFALL (nms) = 58.226 02636> RUNOFF COEFFICIENT = .501 02639> 02639> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02639> 02640>
<pre>> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. > 001:0016</pre>	025305 Unit Hyd Opeak (cms)= .899 025312 025325 PEAK FLOW (cms)= .459 (i) 025328 PEAK FLOW (cms)= .459 (i) 025335 TIME TO PEAK (hrs)= .1.167 025345 TOTAL RAINFAL (mm)= .29.155 025355 TOTAL RAINFAL (mm)= .58.226 025355 TOTAL RAINFAL (mm)= .58.226 025356 RUNOFF COEFFICIENT = .501 025375 025385 025385 025385 025385 025435 02545 025455 02555
<pre>> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. ></pre>	025305 Unit Hyd Opeak (cms) = .899 025312 025325 PEAK FLOW (cms) = .459 (i) 025324 PEAK FLOW (cms) = .459 (i) 025335 TIME TO PEAK (hrs) = 1.167 025345 TOTAL RAINFAL (mm) = .29.155 025355 TOTAL RAINFAL (mm) = .58.226 025356 RUNOFF COEFFICIENT = .501 025375 025385 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025385 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025385 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025385 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025385 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025385 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025435 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025445 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025445 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025445 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025445 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025445 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02545 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW
<pre>> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. ></pre>	02530 Unit Hyd Opeak (cms) = .899 02532 PEAK FLOW (cms) = .459 (i) 02632 PEAK FLOW (cms) = .459 (i) 02633 TIME TO PEAK (hrs) = 1.167 02634 RUNOFF VOLUME (nm) = 29.155 02635 TOTAL RAINFAL (mm) = 58.226 02635 RUNOFF COEFFICIENT = .501 02633 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02633 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02643 ADD HYD (HIP08) ID: NHYD AAEA OPEAK TFEAK R.V. DWF 02643 ADD HYD (HIP08) ID: NHYD AAEA OPEAK TFEAK R.V. DWF 02643
<pre>> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. > 001:0016</pre>	025305 Unit Hyd Opeak (cms) = .899 025325 PEAK FLOW (cms) = .459 (i) 025325 PEAK FLOW (cms) = .459 (i) 025335 TIME TO PEAK (hrs) = 1.167 02534 RUNOFF VOLUME (nm) = 29.155 025355 TOTAL RAINFAL (mm) = .58.226 025355 TOTAL RAINFAL (mm) = .50.1 025375 025385 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025395 TOTAL RAINFAL (mm) = 025425
<pre>> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. > 001:0016</pre>	025305 Unit Hyd Qpeak (cms)= .899 02532 PEAK FLOW (cms)= .459 (i) 02532 PEAK FLOW (cms)= .459 (i) 02535 TIME TO PEAK (hrs)= 1.167 02535 TOTAL RAINFAL (mm)= 29.155 02535 RUNOFF COEFFICIENT = .501 02536 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02539 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02539 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02539 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02539 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02539 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025432 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025432 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025432 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025432 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025452 (i) NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 025532 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 025532 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 025532 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 025532 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 025532 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 025532 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 025532 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 025532 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 025532 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 025532 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 025532 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 025532 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 025532 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 025532 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 025532 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 025532 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 025532 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 025534 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 025534 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 025534 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 025534 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 025534 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY
<pre>> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. ></pre>	025305 Unit Hyd Qpeak (cms)= .899 02532 PEAK FLOW (cms)= .459 (i) 02532 PEAK FLOW (cms)= .459 (i) 02533 TIME TO PEAK (hrs)= 1.167 02534 RUNOFF VOLUME (nm)= .29.155 02535 TOTAL RAINFAL (mm) = .58.226 02536 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02538 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02539 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02543 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02543 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02543 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02543 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02543 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02545 (i) OUI:0022
<pre>> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 001:0016</pre>	025305 Unit Hyd Qpeak (cms)= .899 02532 PEAK FLOW (cms)= .459 (i) 02532 PEAK FLOW (cms)= .459 (i) 02533 TIME TO PEAK (hrs)= 1.167 02534 RUNOFF VOLUME (nm)= .29.155 02535 TOTAL RAINFAL (mm) = .58.226 02536 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02538 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02539 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02543 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02543 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02543 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02543 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02543 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02545 (i) OUI:0022
<pre>NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 001:0016 * 5UB-AREA No.2 * SUB-AREA No.2 * CALIE STANMAYD Area (ha)= 17.00 CALIE STANMAYD Area (ha)= 17.00 Dir. Conn. (\$)= 50.00 * SUB-AREA No.2 * COMPAREA No.2 * COMPAREA No.2 * COMPAREA No.2 * COMPAREA No.2 * SUB-AREA NO</pre>	02530 Unit Hyd Opeak (cms) = .899 02532 PEAK FLOW (cms) = .459 (i) 02532 PEAK FLOW (cms) = .459 (i) 02533 TIME TO PEAK (hrs) = 1.167 02534 RUNOFF VOLUME (rms) = 29.155 02535 TOTAL RAINTAL (mm) = .58.226 02535 TOTAL RAINTAL (mm) = .58.226 02535 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02539 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02539 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02540
<pre>NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 001:0016</pre>	02630> Unit Hyd Qpeak (cms) = .899 02632> PEAK FLOW (cms) = .459 (i) 02632> TIME TO PEAK (hrs) = .1167 02633> TIME TO PEAK (hrs) = .899 02634> RUNOFF VOLUME (mm) = 29.155 02635> TO'AL RAINFALL (mm) = 29.155 02635> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02640>
<pre>NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 001:0016</pre>	025305 Unit Hyd Qpeak (cms) = .899 025325 PEAK FLOW (cms) = .459 (i) 025325 PEAK FLOW (cms) = .1167 02535 TO7AL RAINFALL (mm) = 29.155 02535 TO7AL RAINFALL (mm) = .501 02535 TO7AL RAINFALL (mm) = .501 02536 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02539 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025439 (i) PEAK FLOW DOES NOT INCLUDE COMPARENT (inclusion) 025439 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025439 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 025449 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02550 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02553 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02553 (i) PESIGN NASHITD (i) Area (ha) = 2.70 Curve Number (CN)=76.00 02655 (i) DESIGN NASHITD (i) Area (ha) = 2.70 Kurve Number (CN)=76.00 02655 (i) DESIGN NASHITD (i) Area (ha) = 2.70 Kurve Number (CN)=76.00 02655 (i) DESIGN NASHITD (i) Area (ha) = 2.70 Kurve Number (CN)=76.00 02655 (i) DESIGN NASHITD (i) Area (ha) = 2.70 Kurve Number (CN)=76.00 02655 (i) DESIGN NASHITD (i) Area (ha) = 2.70 Kurve Number (CN)=76.00 02655 (i) DESIGN NASHITD (i) Area (ha) = 2.70 Kurve Number (CN)=76.00 02655 (i) DESIGN NASHITD (i) Area (ha) = 2.70 Kurve Number (CN)=76.00 02655 (i) DESIGN NASHITD (i) Area (ha) = 0.70 (ii)
<pre>NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 001:0016</pre>	026305 026325 026325 026325 026335 026335 026335 026335 026345 02635 02635 02635 02635 02635 02635 02635 026405 026405 026405 026405 026405 026405 026455 02655 02655 001 02655 0265
<pre>NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 001:0016</pre>	026305 026325 026325 026325 026335 026335 026335 026335 026345 026345 02635 02635 02635 02635 02635 02645 02665 001:0023 02645 02645 0265 02655 0265
<pre>NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 001:0016</pre>	025305 02535 02545 02545 02545 02545 02545 02545 02545 02545 02545 02545 02545 02545 02545 02545 02545 02545 02545 02545 02555 0
NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 001:0016	025305 Unit Hyd Opeak (cms)= .899 02532 PEAK FLOW (cms)= .459 (i) 02532 PEAK FLOW (cms)= .459 (i) 02535 TIME TO PEAK (hrs)= .1.167 02535 TOTAL RAINFALL (mm)= .58.226 02535 RUNOFF COEFFICIENT = .501 02535 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02539 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02539 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025435 ID1 06:HIP06 1 ID: MNYD AREA OPEAK TPEAK R.V. DWF 025435 ID1 06:HIP06 51.06 6.741 1.17 46.70 .000 025455 ID1 06:HIP07 12.20 2.109 1.04 45.44 .000 025455 ID1 06:HIP07 12.20 2.109 1.04 45.44 .000 025455 ID1 06:HIP07 12.20 2.109 1.04 45.44 .000 025455 ID1 06:HIP07 17.26 8.998 1.13 45.59 .000 02555 ID1 023 02555 ID1 06:HIP08 77.26 8.998 1.13 45.59 .000 02555 *ID2 OF INCLUDE BASEFLOWS IF ANY. 02555 *ID5EAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02555 *
NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 001:0016	025305 Unit Hyd Opeak (cms) = .899 02532 PEAK FLOW (cms) = .459 (i) 02532 PEAK FLOW (cms) = .459 (i) 02535 TIME TO PEAK (hrs) = 2.155 02535 TOTAL RAINFALL (mm) = 25.226 02535 RUNOFF COEFFICIENT = .501 02535 02535 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02539 02539 02539 02539 02539 025405 025435 ID1 06:HIP06 51.06 6.741 1.17 46.70 .000 025455 ID1 06:HIP07 12.20 2.109 1.04 45.44 .000 025455 ID1 06:HIP07 12.20 2.109 1.04 45.44 .000 025455 ID1 06:HIP07 T7.26 8.998 1.13 45.59 .000 025455 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02555 * SUB-AREA NO. 6 02555 * SUB-AREA NO. 6 02555 * SUB-AREA NO. 6 02555 * SUB-AREA NO. 6 02555 * IDESIGN NASHYD Area (ha) = 2.70 Curve Number (CN)=76.00 025655 * SUB-AREA NO. 6 02555 * SUB-AREA NO. 6 02555 * IDESIGN NASHYD Area (ha) = 2.70 Curve Number (CN)=76.00 02665 IDESIGN NASHYD Area (ha) = 2.70 Curve Number (CN)=76.00 026655 * SUB-AREA NO. 6 02555 * IDESIGN NASHYD Area (ha) = 2.70 Curve Number (CN)=76.00 02665 IDESIGN NASHYD Area (ha) = 2.70 Curve Number (CN)=76.00 02665 IDESIGN NASHYD Area (ha) = 2.70 Curve Number (CN)=76.00 02665 * SUB-AREA NO. 6 025655 * IDESIGN NASHYD Area (ha) = 2.70 Curve Number (CN)=76.00 02665 PEAK FLOW (cms) = .129 02665 PEAK FLOW (cms) = .129 02665 PEAK FLOW (cms) = .129 02665 PEAK FLOW (cms) = .360 02670 (1) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02670 (1) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02670 (1) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02670 (1) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02670 (2670 (1) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02670 (2670 (1) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02670 (2670 (1) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02670 (2670 (1) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02670 (2670 (1) 024-
<pre>> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. > 001:0016</pre>	02530 Unit Hyd Opeak (cms) = .899 02532 PEAK FLOW (cms) = .459 (i) 02532 PEAK FLOW (cms) = .1.167 02633 TIME TO PEAK (hrs) = 29.155 02635 TOTAL RAINTAL (mm) = 29.155 02635 TOTAL RAINTAL (mm) = 58.226 02635 TOTAL RAINTAL (mm) = .2000 IF ANY. 02639 02645 ID1 06:HIP06 I ID: MIYD AREA OPEAK TPEAK R.V. DWF 02643 IDD HYD (HIP06) ID: MIYD AREA OPEAK TPEAK R.V. DWF 02645 ID1 06:HIP06 1 AD (mm) (cma) (cms) (hrs) (mm) (cms) 02645 ID1 06:HIP07 12.20 2.109 1.04 45.44 .000 02645 ID1 06:HIP07 12.20 2.109 1.04 45.44 .000 026465 ID1 06:HIP07 T7.26 8.998 1.13 45.59 .000 026465 SUM 09:HIP08 T7.26 8.998 1.13 45.59 .000 02655 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02655
NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 001:0016	02530 Unit Hyd Opeak (cms)= .899 02532 PEAK FLOW (cms)= .459 (i) 02532 PEAK FLOW (cms)= .1167 02533 TIME TO PEAK (hrs)= 21.55 02535 TOTAL RAINFALL (mm)= 25.226 02535 TOTAL RAINFOR COEFFICIENT = .501 02537 02539 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025430 (hrs) (mm) (cms) 025430 (hrs) (hrs) (mm) (cms) 025430 (hrs) (hrs) (hrs) (hrs) (hrs) (hrs) (cms) 025430 (hrs) (hrs) (hrs) (hrs) (cms) 025430 (hrs) (hrs) (hrs) (cms) 025430 (hrs)
NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 001:0016	02530 Unit Hyd Qpeak (cms) = .899 02532 PEAK FLOW (cms) = .459 (i) 02532 PEAK FLOW (cms) = .1.167 02533 TIME TO PEAK (hrs) = .29.155 02535 TOTAL RAINFALL (mm) = .58.226 02536 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02538 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02543 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02543 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02543 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02543 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02543 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02543 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02543 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02545 (i) DOI:0023- 02555 (i) NOTE: FEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02555 * 02555 *
<pre>NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 001:0016 * SUB-AREA No.2 / CALTB STANDAYD Area (ha)= 17.00 / 03:RIP03 DP -2.50 TOTAL Imp(%)= 71.00 Dir. Conn.(%)= 50.00 / Dep. Storage (mm)= 1.57 4.67 / Avarage Slope (%)=55 1.50 / Avarage Slope (%)=57 1.50 / Avarage Slope (%)=57 1.50 / Max.eff.Inten.(mm/hr)= 144.69 87.13</pre>	02530 Unit Hyd Opeak (cms) = .899 02532 PEAK FLOW (cms) = .459 (i) 02532 PEAK FLOW (cms) = .1.67 02535 TIME TO PEAK (hrs) = .58.226 02535 TIME TO PEAK (hrs) = .58.226 02535 RUNOFF COEFFICIENT = .501 02538 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02539 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02543 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02543 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02543 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02543 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02543 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02544 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02545 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02555 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOW IF ANY. 02555 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOW IF ANY. 02555 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOW IF ANY. 02555 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOW IF ANY. 02555 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOW IF ANY. 02555 (i) PEAK FLOWS DO NOT INCLUDE BASEFLOW IF ANY. 02555 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02555 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02555 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02555 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02555 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02565 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02565 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02565 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02565 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02565 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02565 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02570 (i) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02573 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02573 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02573 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02573 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02573 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02573 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02573 (i) PEAK FLOW DOES NOT INC
<pre>> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. > 001:0016</pre>	02530 Unit Hyd Opeak (cms) = .999 02532 PEAK FLOW (cms) = .459 (i) 02532 PEAK FLOW (cms) = .1.67 02535 TIME TO PEAK (hrs) = 29.155 02535 TIME TO PEAK (hrs) = .501 02535 TOTAL RAINFALL (mm) = .50.256 02536 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02539 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02539 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025400 (hrs) (mm) (cms) 025430 (hrs) (hrs) (mm) (cms) 025440 (hrs)
<pre>>> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	02530 Unit Hyd Opeak (cms) = .999 02532 PEAK FLOW (cms) = .459 (i) 02533 TIME TO PEAK (hrs) = 1.167 02633 RUNOFF VOLUME (rms) = 29.155 02635 RUNOFF COEFFICIENT = .501 02636 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02637 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02640
<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	02530 Unit Hyd Opeak (cms) = .899 02532 PEAK FLOW (cms) = .459 (i) 02532 PEAK FLOW (cms) = .1.67 02533 RUNOFF VOLUME (rms) = 25.155 02535 RUNOFF COEFFICENT = .501 02535 RUNOFF COEFFICENT = .501 02545 ILDI 05:HIP05 RUNOF RALE OPEAK TFEAK R.V. DWF 02545 ILDI 05:HIP05 RUNOF RUNOF RUNOF RUNOF RUNOFF RUNOF
<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	02530 Unit Hyd Opeak (cms) = .899 02532 PEAK FLOW (cms) = .459 (i) 02533 TIME TO PEAK (hrs) = 1.157 02633 TIME TO PEAK (hrs) = 58.226 02635 TOTAL RAINFALL (mm) = 58.226 02635 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02643 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02640
<pre>>> NOTE: PEAK FLGWS DO NOT INCLUDE BASEFLGWS IF ANY. >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	025305 Unit Hyd Qpeak (cms) = .899 025325 PEAK FLOW (cms) = .459 (i) 025325 PEAK FLOW (cms) = .1.67 025335 TUNK TO PEAK (hrs) = .1.67 025345 RUNKOF VOLUME (mm) = 29.155 02535 TOTAL RAINFALL (mm) = .50.12 02535 001:0022 02539 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025435 001:0022 02545 1 ADD HYD (HIP06) ID: MYD AREA QPEAK TFEAK R.V. DWF 02545 IDD 06:HIP06 61.06 6.741 1.17 45.40 .000 02545 1 DD 06:HIP06 7 12.20 2.103 1.13 45.59 .000 02545 1.17 29.15 .000 02555 * IDD 06:HIP06 77.26 8.5998 1.13 45.59 .000 02555 * 001:0023 02555 * 001:0023 02555 * 001:0023 02555 * 001:0023 02555 * 010023 02555 * 001:0023 02555 * 001:0023 02555 * 010:0023 02555 * 02555 * 001:0023 02555 * 010:0023 02555 * 010:0023 02555 * 010:0023 02555 * 02555 * 010:0023 02555 * 02555 * 010:0023 02555 * 02555 * 010:0023 02555 * 02555 * 02556 NOT INCLUDE BASEFLOWS IF ANY. 02555 * 02555 * 010:0023 02555 * 02555 * 010:0023 02555 * 02555 * 02556 NOT INCLUDE BASEFLOWS IF ANY. 02555 * 02556 PEAK FLOWS (cms) = .129 025655 * 010:0023 025655 PEAK FLOW (cms) = .129 025655 PEAK FLOW (cms) = .129 025655 PEAK FLOW (cms) = .129 025655 PEAK FLOW (cms) = .079 (i) 025655 PEAK FLOW (cms) = .079 (i) 025655 PEAK FLOW 025F NOT INCLUDE BASEFLOW IF ANY. 025655 PEAK FLOW (cms) = .079 (i) 025655 PEAK FLOW 025F NOT INCLUDE BASEFLOW IF ANY. 025655 PEAK FLOW 025F NOT INCLUDE BASEFLOW IF ANY. 025655 PEAK FLOW 025F NOT INCLUDE BASEFLOW IF ANY. 025655 PEAK FLOW 025F NOT INCLUDE BASEFLOW IF ANY. 026655 PEAK FLOW 025F NOT INCLUDE BASEFLOW IF ANY. 026655 PEAK FLOW DOESF NOT INCLUDE BASEFLOW IF ANY. 026755 ID1 09:HIP08 77.26 8.998 1.13 44.78 .000 026655 PEAK FLOW DOESF NOT INCLUDE BASEFLOWS IF ANY. 026655 P
<pre>>> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	025305 Unit Hyd Qpeak (cms)= .899 025325 PEAK FLOW (cms)= .167 02535 TRUMOFF VOLUME (mm)= .29.155 02535 TRUMOFF VOLUME (mm)= .29.155 02535 TRUMOFF VOLUME (mm)= .29.155 02535 TRUMOFF VOLUME (mm)= .50.226 02535 TRUMOFF COEFFICIENT = .501 025435 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 025435 1 ADD HYD (NIPO8) ID: MNYD AREA QPEAK TYEAK R.V. DWF 025445
<pre>> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	025305 Unit Hyd Qpeak (cms)= .899 025325 PEAK FLOW (cms)= .459 (i) 025325 PEAK FLOW (cms)= .157 02535 TOTAL RAINERAL (mc)= 29.155 02535 TOTAL RAINERAL (mc)= .28.226 02535 TOTAL RAINERAL (mc)= .28.226 02535 TOTAL RAINERAL (mc)= .58.226 02535 TOTAL RAINERAL (mc)= .58.226 02535 TOTAL RAINERAL (mc)= .58.226 025405
<pre>>> NOTE: PEAK FLGWS DO NOT INCLUDE BASEFLGWS IF ANY. >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	025305 02532 02532 02535 02545 02555 007 007 007 007 007 007 007
<pre>>> NOTE: PEAK FLGWS DO NOT INCLUDE BASEFLGWS IF ANY. >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	025305 Unit Hyd Qpeak (cms) = .899 025325 PEAK FLOW (cms) = .459 (i) 025325 PEAK FLOW (cms) = .157 02535 FLOW FOULDER (ms) = .29.135 02535 HUNGF YOULDER (ms) = .301 02535 HUNGF YOULDER (ms) = .301 02535 HUNGF FOORFFICIENT = .301 02535 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02535 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02545 HUNGF YOULDER (ms) = .010 (cms) (hrs) (ms) (cms) 02545 HUNGF YOULDER (ms) = .010 (cms) (hrs) (ms) (cms) 02545 HUNGF YOULDER (ms) = .010 (cms) (hrs) (ms) (cms) 02545 HUNGF YOULDER (hrs) = .000 02545 HUNGF YOULDER (hrs) = .000 02555 HEAK FLOW (cms) = .007 (i) 02555 HEAK FLOW (cms) = .007 (i) 02555 HUNGF YOULDER (hrs) = .000 02555 HEAK FLOW (cms) = .000 02555 HEAK FLOW (cms) = .000 02555 HEAK FLOW (cms) = .000 02555 HEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02575 KUNGF YOULDER (hrs) = .000 02565 HUNGF YOULDER (hrs) = .000 02565 HUNGF YOULDER (hrs) = .000 02565 HINGF YOULDER HARTER (hrs) = .000 02565 HINGF YOULDER (hrs) = .000 HINGF YOULDER (hrs) HINGF

J. L. Richards & Associates Limited
 02836> | ADD HYD (040) | ID: NHYD

 02837> -----

 02838> IDI 01:010

 02839> +ID2 02:020

 02840> ------ B= 6.014 C= .820 used in: INTENSITY = A / (t + B)^C AREA ODEAK TPEAK (ha) 2.07 1.54 (cms) .609 .475 (hrs) (mm) 1.04 57.95 1.04 60.59 (cms) .000 .000 ID1 01:010 +ID2 02:020 Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = .33 02841> SUM 04:040 3.61 1.084 1.04 59.08 .000 02842> 02843> 02844> 02845> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 TIME
 RAIN
 TIME
 RAIN
 TIME
 RAIN
 <th TIME hrs 2.67 2.83 3.00 RAIN mm/hr 5.209 4.774 4.412 02710> 02711> 02712> 02712> 02713> 02714> 02846> 001:0008-----
 AREA
 QPEAK
 TPEAK
 R.V.

 (ha)
 (cms)
 (hrs)
 (mm)

 1.40
 .454
 1.04
 62.25

 3.61
 1.084
 1.04
 59.08
 AREA 6.403 | 5.740 | (cms) 000 .000 ID1 03:030 +ID2 04:040 02715> 02852> SUM 05:050 02853> 02853> 02854> 02855> 02856> 02857> 5.01 1.538 1.04 59.96 . 000 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02859> * 02860> * SUB-AREA No. 4 02661> * 02862> | CALIB STANDHYD | 02863> | O6:060 DT= 2.50 | 02864> -----02724> 02725> 02726> 02727> 02728> 02729> 02730> 02731> CALLE STANDHYD | Area (ha)= .89 06:060 DT=2.50 | Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00
 IMPERVIOUS
 PERVIOUS
 0.11
 Con

 Surface Area
 (ha) =
 .86
 .03

 Dep. Storage
 (mm) =
 .1.57
 4.67

 Average Slope
 (#) =
 .33
 .70

 Length
 (mm) =
 164.82
 40.00

 Mannings n
 =
 .030
 .250
 02865> .03 4.67 .70 40.00 .250 02866> 02867> 02868> 02869> 02869> 02870> 02871> 02872> 02873> 02874> 02875> 02876> 02876> 02877> 02878> 02879>
 161.47
 53.28

 5.00
 17.50

 4.80
 (ii)

 5.00
 17.24

 5.00
 17.50

 .23
 .07
 Max.eff.Inten.(mm/hr) = over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = IMPERVIOUS PERVIOUS (i))= 1.74 .33)= 1.57 4.67 *TOTALS* .335 (iii) 1.000 62.245 64.806 Surface Area(ha)=Dep. Storage(mm)=Average Slope(%)=Length(m)=Mannings n= PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .33 1.00 63.24 64.81 .98 .00 1.25 30.21 64.81 .47 02743> 02744> 02745> 02746> 02747> 02747> 02748> 02749> 02750> 02751> 02752> 02752> 02753> 02754> .33 .52 204.72 .030 1.00 20.00 .250 02880> _____250 161.47 62.27 7.50 12.50 6.51 (ii) 13.44 (ii) 7.50 12.50 .16 .09 ______ Max.eff.Inten.(mm/br)= over (min) Storage Coeff. (min) Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=
 DTALE CHYM. PERA (LMRS) ...

 PERAK FLOW (Cms)=
 .59

 TIME TO PERA (hrs)=
 1.04

 RUNOFF VOLUME (mm)=
 63.24

 TOTTAL RAINFALL (mm)=
 64.81

 RUNOFF COEFFICIENT =
 .98
 TOTALS 02754> 02755> 02756> 02757> 02758> 02758> .03 1.17 30.21 64.81 .47 *TOTALS* .609 (iii) 1.042 57.952 64.806 .894 02760> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 02761> 02762> 02763> 02763> CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 Surface Area
 (ha) =

 Dep. Storage
 (mm) =

 Average Slope
 (%) =

 Length
 (m) =

 Mannings n
 =
 02898> 02899> 02900> 02901> IMPERVIOUS PERVIOUS (1) 2.58 1.57 .61 207.25 .08 4.67 1.50 20.00 02765> 02766 02901> 02902> 02903> 02904> 02905> 02906> 02906> 02907> 02908> 02909> 02910> 02912> .030 .250 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=
 161.47
 62.27

 7.50
 12.50

 6.26 (ii)
 12.39 (ii)

 7.50
 12.50

 .17
 .09
 TOTALS .886 (iii) 1.042 62.245 64.806 .960 02910. 02912. TIME TO . 02913. RUNOFF VOLUME 02914. TOTAL RAINFALL [mm,. 02915. RUNOFF COEFFICIENT = 02916. 02917. (i) CN PROCEDURE SELECTED FOR PERVIOUS _ 02918. CN* = 81.0 Is a Dep. Storage (Above, 02918. CN* = 81.0 Is a Dep. Storage (Above, 02918. CN* = 81.0 Is a Dep. Storage (Above, 02918. CN* = 81.0 Is a Dep. Storage (Above, 02918. CN* = 81.0 Is a Dep. Storage (Above, 02918. CN* = 81.0 Is a Dep. Storage (Above, 02918. CN* = 81.0 Is a Dep. Storage (Above, 02918. CN* = 81.0 Is a Dep. Storage (Above, 02918. CN* = 81.0 Is a Dep. Storage (Above, 02918. CN* = 81.0 Is a Dep. Storage (Above, 02918. CN* = 81.0 Is a Dep. Storage (Above, 02918. CN* = 81.0 Is a Dep. Storage (Above, 02928. CN* = 81.0 Is a Dep. Storage (Above, 02928. CN* = 81.0 Is a Dep. Storage (Above, 02928. CN* = 81.0 Is a Dep. Storage (Above, 02928. CN* = 81.0 Is a Dep. Storage (Above, 02929. CN* = 81.0 Is a Dep. Storage (Above, 02929. CN* = 81.0 Is a Dep. Storage (Above, 02929. CN* = 81.0 Is a Dep. Storage (Above, 02929. CN* = 81.0 Is a Dep. Storage (Above, 02929. CN* = 81.0 Is a Dep. Storage (Above, 02929. CN* = 81.0 Is a Dep. Storage (Above, 02929. CN* = 81.0 Is a Dep. Storage (Above, 02929. CN* = 81.0 Is a Dep. Storage (Above, 02929. CN* = 81.0 Is a Dep. Storage (Above, 02929. CN* = 81.0 Is a Dep. Storage (Above, 02929. CN* = 81.0 Is a Dep. Storage (Above, 02929. CN* = 81.0 Is a Dep. Storage (Above, 02929. CN* = 81.0 Is a Dep. Storage (Above, 02929. CN* = 81.0 Is a Dep. Storage (Above, 02929. CN* = 81.0 Is a Dep. Storage (Above, 02929. CN* = 81.0 Is a Dep. Storage (Above, 02929. CN* = 81.0 Is a Dep. Storage (Above, 02929. CN* = 100.0 Is a Dep. Storage (Above, 02929. CN* = 100.0 Is a Dep. Storage (Above, 02929. CN* = 100.0 Is a Dep. Storage (Above, 02920. CN* = 100.0 Is a Dep. Storage (Above, 02920. CN* = 100.0 Is a Dep. Storage (Above, 02920. CN* = 100.0 Is a Dep. Storage (Above, 02920. CN* = 100.0 Is a Dep. Storage (Above, 02920. CN* = 100.0 Is a Dep. Storage (Above, 02920. CN* = 100.0 Is a Dep. S PEAK FLOW (Cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .88 1.04 63.24 64.81 .98 .01 1.17 30.21 161.47 78.73 7.50 7.50 7.33 (ii) 8.10 (ii) 7.50 7.50 .15 .14 .46 02781> 02782> 02783> 02784> 02785> 02786> 02786> 02786> 02787> 02788> 02789> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= .46 1.04 63.24 64.81 .98 *TOTALS* .475 (iii) 1.042 60.594 64.806 .935 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .02 1.08 02789> 02790> 02791> 02792> 02793> 02794> 02795> 02796> 02796> 02797> 02796> 02799> 02801> 30.21 64.81 .47 DWF (cms) .000 .000 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (i) CH = 81.0 JL = Dep. Storage (Above)
 (ii) THE STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STOREC COFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. .000

 02934
 Inter laws for for include brain and in and include brain and includ 02800> -----02801> 001:0006-----02802> * 02803> * SUB-AREA No.3 02804> -----
 IMPERVIOUS
 PERVIOUS (i)

 1.36
 .04

 1.57
 4.67

 .51
 1.00

 225.63
 5.00

 .030
 .030
 Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = .04 4.67 1.00 5.00 .030 02811>
 123440
 001:0013

 123450
 INDOTE RESERVOIR

 12351>
 INDOTE NOT STORAGE TABLE

 12351>
 COTELON STORAGE I OUTELON 02813> 02814> 02815> 161.47 7.50 6.95 (ii) 7.50 .16 78.73 7.50 7.72 (ii) 7.50 .15 02816> 02817> 02817> 02818> 02819> 02820> 02821> STORAGE OUTFLOW STORAGE (cms) (ha.m.) .593 .6251E+00 .654 .6631E+00 .797 .7391E+00 .950 .8274E+00 1.304 .9157E+00 1.880 .1004E+01 2.577 .1092E+01 00000E+00 *TOTALS* .454 (iii) 1.042 62.245 64.806 .45 1.04 63.24 64.81 .98 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .01 1.08 02821> 02822> 02823> 02824> 02825> 02825> 02826> 02827> 1.08 30.21 64.81 .47 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CM* = 01.0 Ia = Dep. Storage (Above) (ii) THE STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) FEAK FLOW DOES NOT INCLOUE BASEFLOW IF ANY. .0000E+00 02828> TPEAK (hrs) 1.042 1.944 R.V. (mm) 60.910 60.908 02829> 02830> 02964> 02965> 02966> 02967> 02968> 02968> 02969> 02970> 02831> 02832> 02833 ______ PEAK FLOW REDUCTION [Qout/Qin](%)= TIME SHIFT OF PEAK FLOW (min)= 02834> 001:0007------02835> ------8.503 54.17

029715 MAXIMUM STORAGE USED (ha.m.)=.3967E+00 03106> 03107> 03108> 03109> SUM 06:HIP06 61.06 8.054 1.13 52.87 .000 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02978> * * SUB-AFREA No.1
 INPERVIOUS

 Suiface Area
 IMPERVIOUS

 Deps. Storage
 14.13

 Aveskage Slope
 (%) = 1.57

 Aveskage Slope
 (%) = 560.00

 Marxnings n
 = 0.30
 02984> PERVIOUS (i) 02985> 02985> 02986> 02987> 02988> 02988> 5.77 4.67 1.50 03122> 03123> 03124> 03124> 03125> 03126> 03128> 03128> 03130> 03131> 03132> 03133> 03134> 03135> 03135> 03136> 03137> 100.00 138.95 102.13 12.50 25.00 12.36 (ii) 25.60 (ii) 12.50 25.00 .09 .04 161.47 126.32 5.00 17.50 6.05 (ii) 18.19 (ii) 5.00 17.50 .20 .06 .73 02990> 02991> 02992> 02993> 02994> 02995> 02995> 02995> 02997> 02998> 02999> 02999> 03000> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= Mam.eff.Inten. (mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 2.19 1.00 63.24 64.81 .98 *TOTALS* *TOTALS* 2.470 (iiii) 1.042 51.566 PE74K FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nm) = TOTAL RAINFALL (nm) = RUNOFF COEFFICIENT = 3.001 (iii) 1.167 51.566 64.806 .796 2.46 .95 .73 1.13 63.24 64.81 .98 .95 1.38 39.90 64.81 .62 1.25 39.90 64.81 .62 64.806 .796 03002> 03003> 03004> 03005> 03006> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFTCIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE EASEFLOW IF ANY. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03138> 03139> 03140> 03141> 03142> 03143> 03007> 03008> 03009> 03010> 03011> 001:0015-------
 I ADD HXD (HIP02) |
 ID: NHYD
 AREA
 OPEAK
 TPEAK
 R.V.
 DK

 (ha)
 (cms)
 (hrs)
 (mm)
 (cms)
 (hrs)
 (mm)
 (cms)

 1D1
 10:POND
 8.56
 233
 1.94
 60.91
 0.

 +ID2
 01:HIP01
 19.90
 3.001
 1.17
 51.57
 0

 SUM
 02:HIP02
 28.46
 3.092
 1.17
 54.37
 0
 DWF (cans) .000 .000 03012> 03013> 03013> 03014> 03015> 03016> 03017> 03149>
03150> . 000 03151> 03151> 03152> 03153> 03154> 03155> 03156> 03156> 03157> 03158> 03159> 03150> 03160> 03017> 03018> 03019> 03020> 03021> 03022> Unit Hyd Qpeak (cms)= .899 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 PEAK FLOW
 (cms)=
 .551

 TIME TO PEAK
 (hrs)=
 1.125

 RUNOFF VOLUME
 (mm)=
 34.455

 TOTAL RAINFALL
 (mm)=
 54.455

 TOTAL RAINFALL
 (mm)=
 54.55

 TOTAL SAINFALL
 (mm)=
 54.55
 .551 (i) 1.125 001:0016-----03023> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 Imp(%)
 71.00
 Dir. Conn. (%)
 50.00

 Surface Area
 IMPERVIOUS
 PERVIOUS (i)
 1

 Dep. Storage (mm)=
 1.57
 4.67

 Ave rage Slope
 (%)=
 .65
 1.50

 Length
 (m)=
 450.00
 100.00

 Mannings n
 =
 .030
 .250
 12.07 12.07 1.57 .65 450.00 .030 03034> 03035> 03036> 03037> 03038> 03039> Max.eff.Inten.(mm/hr) = over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 161.47 109.61 10.00 22.50 9.77 (ii) 22.63 (ii) 10.00 22.50 .11 .05 .05 03040> 03041> 03042> 03042> 03043> 03044> *TOTALS* 2.819 (iii) 1.125 51.566 64.806 .796 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUMAE (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 2.38 1.08 63.24 64.81 .98 .88 1.33 39.90 64.81 .62 03045> 03046> 03047> 03048> 03049> 03050> 03051> 03181>-----03182> | DESIGN NASHYD | Area (ha)= 2.70 Curve Number (CN)=76.00 03183> | 01:A3 DT= 2.50 | Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 03184>------ U.H. Tp(hrs)= .800 03186> Unit Hyd Qpeak (cms)= .129 03187 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (i) THM STEP (DT) SHOULD BE SMALLER OR EQUAL TRAM THE STORAGE COEFFICIENT.
 (ii) FEAK FICH DOES NOT INCLUDE RASEFLOW IF ANY.
 03052> (iii) 03053> 03054> -----03055> 001:0017---03056> * PEAK FLOW (cms)= .096 TIME TO PEAK (hrs)= .1950 RUNOFF VOLUME (mm)= 25.767 TOTAL RAINFALL (mm)= 64.806 RUNOFF COEFFICIENT = .396 .096 (i) 03188> 03169> 03190> 03191> 03192> 03193>
 03055 *

 03057 *

 03058 *

 03058 *

 03058 *

 03058 *

 03058 *

 03058 *

 03059 *

 03059 *

 03059 *

 03059 *

 03050 *

 03050 *

 03050 *

 03051 *

 03052 *

 03062 *

 03063 *

 USPERVIOUS

 03063 *

 Surface Area

 (ha) =

 1.57

 4.57

 1.50

 700 nn
 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03194> 11.08 1.57 .50 600.00 .030 4.52 4.67 1.50 100.00 .250 Dep. Storage Average Slope Length Mannings n (mu) = (mu) = (8) = (8) = (m) = = (m) = = (m) = (m).000 03066> 03067> 03068> 03069> 138.95 12.50 13.34 (ii) 12.50 .09 Max.eff.Inten.(mm/hr)= 96.02 27.50
 02203
 SUM 02:Ultima 79.96 10.588 1.13 50.84 .000

 02204
 SUM 02:Ultima 79.96 10.588 1.13 50.84 .000

 02205
 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

 02209
 SUM 02:Ultima 79.96 10.588 1.13 50.84 .000

 02210
 SUM 02:Ultima 79.96 10.588 1.13 50.84 .000

 02215
 SUM 02:Ultima 1 Project dir.: V:\20983.DU\EMG\SWMMYMO\

 02215
 REDOT = 0.00 hrs on 0

 02215
 NETON = 001

 02218
 NRTON = 001

 02209
 STORM = 0

 02210
 STORM = 0

 02210
 STORM = 0

 02210
 STORM = 0

 02210
 STORM = 0
 .000 03070> 03071> 03072> 03073> 03074> 03075> 03076> 03076> 03077> 03078> over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 27.50 26.90 (ii) 27.50 .04 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (nm)= RUNOFF COEFFICIENT = 1.86 1.13 63.24 64.81 .98 -TOTALS* 2.237 (iii) 1.167 51.566 64.806 .796 . 72 ./2 1.42 39.90 64.81 .62 03078> 03079> 03080> 03081> 03082> 03083> 03084> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE RASEFLOW IF ANY. 03085> 03086> ------03091> 03092> 03093> 03094> 03095> Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = .33 03229> 03230> 03231> 03232> 03232> 03233> SUM 05:HIP05 32.60 5.019 1.13 51.57 .000 030965
 TIME
 RAIN
 <th NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03097> TIME hrs 2.67 2.83 3.00 mm/hr 5.760 5.280 4.879 03233> 03234> 03235> 03236> 03237> 03238> 03239> 03240>

242>	001:000 3	03376> SUM 05:050 5.01 1.729 1.04 66.66 .000
	DEFAULT VALUES Filename: V:\20983.DU\ENG\SWMHYMO\ORGA.VAL	03377> 03378> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
245>	DEFAULI VALUES Filename: V:\2093.DU\ENG\SWMHYMO\ORGA.VAL ICASEdv = 1 (read and print data) FileTitle= ENTER YOUR COMMENTS ON THIS LINE AND THE NEXT ONE	03379> 03380>
246>	PARAMETER VALUES MUST BE ENTERD AFTER COLUMN 60	03381> 001:0009
248> 249>	[Fo= 50.00 mm/hr] [Fc= 7.50 mm/hr] [DCAY= 2.00 /hr] [F= .00 mm] Parameters for PERVIOUS surfaces in STANDHYD:	03383> * SUB-AREA No.4 03384>
250> 251>		03385> CALIE STANDHYD Area (ha)~ .89 03386> 06:060 DT= 2.50 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00
252> 253>	[TAimp= 1.57 mm] [CLI= 1.50] [MNI= .035] Parameters used in NASHYD:	03387>
254> 255>	[LADET 4.6 fmm] [L62=40.00 m] [MN2= .250] Patameters for LMPERVIOUS surfaces in STNDRYD: [LXimp= 1.57 mm] [CLI= 1.50] [MNI= .035] Patameters used in NASHYD: [La= 4.67 mm] [N= 3.00] D01:0004	03389> Surface Area (ha) = .86 .03
56>	101:0004	U3391> Average Slope (%)= .93 .70
58>	ORGAWORLD FILE *	1000000 Hallings II000 .200
260> 1	SUB-AREA No.1	03394> 03395> Max.eff.Inten.(mm/hr)= 178.56 67.61
262>	CALLE STANDHYD Area (ha)= 2.07 01:010 DT=2.50 Total Imp(%)= 84.00 Dir. Conn.(%)= 84.00	03396> over (min) 5.00 15.00 03397> Storage Coeff. (min)= 4.62 (ii) 15.92 (ii) 03398> Unit Hyd. Tpeak (min)= 5.00 15.00
264> -		(03399> Unit Hyd. peak (cms)= .24 .07
265>	IMPERVIOUS PERVIOUS (i) Surrface Area (ha)= 1.74 .33	03400> *TOTAL5* 03401> PEAK FLOW (cms)= .37 .00 .374 (iii)
67> 68>	Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= .52 1.00 Lergth (m)= 204.72 20.00	03402> TIME TO PEAK (hrs)= 1.00 1.21 1.000 03403> RUNOFF VOLUME (mm)= 70.09 35.46 69.056
69> 70>	Average Slope (%)= .52 1.00 Leragth (m)= 204.72 20.00 Maruningsn = .030 .250	
71> 72>	Max.eff.Inten.(mm/hr) = 178.56 74.05	03406> 03407> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
273>	over (min) 7.50 12.50 Storage Coeff. (min) = 6.26 (ii) 12.72 (ii)	034075 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 034085 $CN^* = 01.0$ I a = Dep. Storage (Above) 034085 (ii) THE STEP (DE) SHOULD BE SMALLER OR EQUAL
75> 76>	Storage Coeff. (min) = 5.26 (ii) 12.72 (ii) Unit Hyd. Popak (min) = 7.50 12.50 Unit Hyd. peak (cms) = .17 .09	03410> THAN THE STORAGE COEFFICIENT. 03411> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
77> 76>	*TOTALS*	03412>
79> 80>	PEAR FLOW (cmms)= .66 .04 .685 (iii) TIME TO PEAR (hrs)= 1.04 1.17 1.042 RUNOFF VOLVME (mm)= 70.09 35.46 64.553 TOTAL FAILFALL (mm)= 71.66 71.665	03414> 001:0010
81> 62>	TOTAL RAINFALL (mm) ≈ 71.66 71.66 71.665 RUNOFF COEFFICIENT ≈ .98 .49 .901	03416> * SUB-AREA No.5
63> 64>	(1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES.	03418> CALIE STANDHYD Area (ha)= 2.66 03419> 07:070 DT= 2.50 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00
85> 86>	CN* = 61.0 IA = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL	
87> 88>	THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	03422 Surface Area (ha) = 2.58 .08 03423 Dep. Storage (mm) = 1.57 4.67
89> 90> -		03424> Average Slope (%)= .61 1.50
91> (92> *	001:0005	03425> Length (m)= 207.25 20.00 03426> Mannings n = .030 .250 03427>
93> * 94> -	SUB-ARBA No.2	03428> Max.eff.Inten.(mm/hr)= 178.56 74.05
05 1		03429> over (min) 5.00 12.50 03430> Storage Coeff. (min) = 6.01 (ii) 11.73 (ii) 02432> Under Under Theorem (iii) = 7.00 (iii) 10.00
962 972 - 982	CALLS STANDILS XLea (18) - 1.94 02:020 DT=2.50 Total Imp(\$) = 92.00 Dir. Conn. (\$) = 92.00 IMPERVIOUS PERVIOUS (i)	034305 Storage Coeff. (min)= 6.01 (ii) 11.73 (ii) 034315 Unit Hyd. Tpaek (min)= 5.00 12.50 034325 Unit Hyd. peak (cms)= 20 .09 034335 Unit Hyd. peak (cms)= 20 .09
99> 00>		U3433> *TOTALS*
01>	Average Slope (%)= .50 1.00	03434> PEAK FLOW (cms)= 1.03 0.1 1.034 (iii) 03435> TIME TO FEAK (hrs)= 1.00 1.00 034365 (s000 F VOLUME) (mm)= 70.09 35.46 69.056 03637 71.66 71.665
02> 03>	Length (m) = 244.34 5.00 Mannings n = .030 .030	03437> TOTAL RAINFALL (mm) = 71.66 71.66 71.665 03438> RUNOFF COEFFICIENT = 98 .49 .964
D4> D5>	Max.eff.Inten.(mm/hr) = 178.56 93.23	03439> (i) (N PROCEDURE SELECTED FOR DEPUTORS LOSSES.
06> 07>	over (min) 7.50 7.50 Storage Coeff. (min)= 7.04 (ii) 7.76 (ii)	03441> CN* = 81.0 IA = Dep. Storage (Above) 03442> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
08> 09>	Unit Hyd. Tpeak (min) = 7.50 7.50 Unit Hyd. peak (cms) = .16 .15	03443> THAN THE STORAGE COEFFICIENT. 03444> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
10> 11>	*TOTALS* PEAK FLOW (cms)= .51 .02 .534 (iii)	03445> 03446>
12>	TIME TO PEAK (hrs) 1.04 1.08 1.042 RUNOPF VOLUME (mm) 70.09 35.46 67.324 TO TAL RAINFALL (mm) 71.66 71.66 5	03447> 001:0011
14>	TOTAL RAINFALL (NTR) = 71.66 71.66 71.665 RUNOFF COEFFICIENT = .98 .49 .939	03449> ADD HYD (080) ID: NHYD AREA QPEAK TPEAK R.V. DWF 03450> (ha) (cms) (hrs) (mm) (cms)
16> 17>	(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	03450> (ha) (cmms) (hrs) (mm) (cms) 03451> 1D1 06:060 .89 .374 1.00 69.06 .000 03452> +1D2 07:070 2.66 1.034 1.00 69.06 .000
18> 19>	$CN^* = 61.0$ Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR FOURT.	03453> 03454> SUM 08:080 3.55 1.408 1.00 69.06 .000
20> 21>	THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	03455> 03456> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
22>		03457>
22> 23> - 24> 0 25> *	01:0006	03458>
22> 23> - 24> 0 25> * 26> *	01:0006	03459>
22> 23> - 24> 0 25> * 26> *	01:0006	03459>
22> 23> - 24> 0 25> * 26> * 27> - 28> 29> 30> -	01:0006	03459> 001:0012
22> 23> - 24> 0 25> * 26> * 26> * 28> 29> 30> - 31> 32>	01:0006	03459> 001:0012
22> 23> - 24> 0 25> * 26> * 26> * 27> - 28> 29> 30> - 31> 32> 33>	01:0006	03455> 011:0012
22> - 23> - 24> 0 25> * 225> * 225> * 225> + 225> +	01:0006	03459>
22> - 22> -	01:0006	03455>
22>> - 0 22>> - 0 23>> - 0 23> - 0 23 23 23> - 0 23 23 23 23> - 0 23 23 23 23 23 24 24> - 0 24 24> - 0 24> - 0	01:0006	03459> 03459> 03459> 03459> 03460> 03451> 03452> (ha) (ma) 03452> (ha) (ma) 03452> (ha) (ma) (ha)
22>> - 0 23> - 0 25> - 2 26> - 2 278> - 2 278> - 2 278> - 2 278> - 2 31> - 3 32 32 32 33 35> - 3 37 378> - 3 378> - 3 378> - 3 378> - 3 378> - 3 378> - 2 378> - 2 378 378> - 2 378> - 2 378 378> - 2 378 378> - 2 378> - 2 378> - 2	01:0006	03459> 03459> 03459> 03459> 03450> 03451> 03452> (ha) (ma) 03452> (ha) (ma) 03452> (ha) (ma) 03452> (ha) (ma) (ma) (ha) (ma) (ma) </td
223> -0 223> -0 225> * -2 225> * -2 225> * -2 227> -0 229> -2 2331> -2 3332> -2 332> -2 335> -2 339> -2 349> -	01:0006	03458> 001:0012
22>> - 0 223> - 0 223> + 0 225> + 225> + 225> + 225 225> + 1 225> + 1 225> + 225 225> + 1 225> + 2 225> + 2	01:0006	03459> 03459> 03459> 03459> 03450> 03451> 03452> (ha) (ma) (ma) (ma) (ha) (ma)
223> - 0 223> - 0 223> - 0 225> +	01:0006	03458> 001:0012
223> - 0 223> - 2 225> - 2 225> - 2 225> - 2 225> - 1 225> - 2 228> - 2 228	01:0006	03459> 03459> 03459> 03459> 03460> 03461> 03462> (ha) (cms) 03462> (ha) (cms) 03463> ID1 05:050 03463> SDH 05:050 03463> SDH 05:050 03465> SDH 05:050 03465> SDH 05:050 03465> SDH 05:050 03467> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03467> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03473> INOUTE RESERVOIR Requested routing time step = 1.0 min. 03473> INOUTE RESERVOIR Requested routing time step = 1.0 min. 03473> INOUTE RESERVOIR 03475> OUTELOW STORAGE TABLE 034763 OUTELOW STORAGE TABLE 034775 (Cms) (ha.m.) 034785 OUTELOW STORAGE TABLE 034785 </td
22>> - 0 + 22>> - 22> - 22>> -	01:0006	03458> 001:0012
223>> 2225>> 2225>> 2225 2225 2225 2225	01:0006	03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455> 03465> 03465> 03465> 03465> 03465> 03465> 03465> 03465> 03465> 03465> 03465> 03465> 03465> 03465> 03465> 03465> 03465> 03465> 03465> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 001:0013
2223>> - 0 * * - 1 223>> - 2 225> - 2 225> 2225>> - 2 225> - 2 225> - 2 225> 2225> - 2 225> - 2 225> - 2 225> 2225> - 2 225> 2225> - 2 225> - 2 225> 2225> - 2 225> - 2 225> 2225> - 2 225> - 2 225> 2225> - 2 225> - 2 225> - 2 225> 2225> - 2 225> - 2 225> - 2 225> - 2 225> - 2 225> - 2 225> - 2 225> - 2 225> - 2 225> - 2 225> - 2 225> - 2 255> - 2	01:0006	03459> 03459> 03450> 03450> 03450> 03450> 03450> 03450> 03450> 03451> 14DD HYD (090) ID: NHYD AREA QPEAK TPEAK R.V. DWF 03452> 03452> 03453> 11D 05:050 03465> 03465> 03465> 03465> 03465> 03465> 03465> 03465> 03465> 03465> 03466> 03465> 03465> 03465> 03465> 03465> 03465> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 001:0013
22>> - C + 22>> - 22> - 22> - 22> - 22> - 22>> - 22> - 22> - 22> - 22> - 22> - 22> - 22> - 22> - 22> - 22> - 22> -	01:0006	03455> 001:0012
223>> 2222 223>> 2222 225> 2222 225> 2222 2222 2222 22	01:0006	03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455 03455 03455 03455 03455 03455 03455 03455 03455 03455 03455 03455 03455 03455 03457 03457 03457 03457 03475 03475 03475 03475 03475 03475 03475 03475 03475 03475 03475 03475 03475 03475 03475 03475 <td< td=""></td<>
.22>> 42+2223>> 42+2223>> 42+2223>> 42+2223>> 42+2223>> 42+2223>> 42+2223>> 42+2223>> 42+2223>> 42+2223>> 42+2223>> 42+2223>> 42+2223>> 42+223>> 42	01:0006	03458> 03458> 03450> 03450> 03460> 03461> 03462> 03463> 1010012
22>>> 0 • • · · · · · · · · · · · · · · · · ·	01:0006	03459> 03459> 03450> 03460> 03460> 03461> 03462> 1400 03462> 151 03462> 152 153 15462> 151 153 15463> 151 153 15463> 151 152 153 153 154 155 156 156 156 156 156 156 156 156 157 158 159 150 151 151 151 151 151 151 151 151 151 151 151 151 151 151 15
22245505505033335567539901255555555555555555555555555555555555	01:0006	03458> 03458> 03450> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470>
2223 22245 2245 2257 2257	01:0006	03459> 03459> 03450> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470>
222452507529222233333333333252575252555555555555	01:0006	03455> 00110012
122>> (22>> (22>) (22>) (22>) (22>) (22>) (22>) (22) (22) (22) (22) (22) (22	01:0006	03459> 03459> 03450> 03460> 03460> 03460> 03460> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470> 03470>
22245577787822232333333333333333333333333333	01:0006	03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455> 03455 03455 03455 03455 03455 03455 03455 03455 03455 03455 03455 03455 03455 03455 03455 03455 03455 03455 03475> 00110013 03475 00110013 03475 00110013 03475 00110013 03475 00110013 03475 00110013 03475 00110013 03475 00110014

580.00 03646> 03647> 03648> 03649> 03511> Lerigth Marinings n 100.00 Length Mannings n (m) = 210.00 100.00 03512> 03513> 03514> 03515> 03516> 03516> Max.eff.Inten.(mm/hr) = over (min) Stc-rage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = 153.66 117.89 12.50 25.00 11.89 (ii) 24.37 (ii) 12.50 25.00 .09 .05 178.56 146.17 5.00 17.50 5.81 (ii) 17.27 (ii) 5.00 17.50 .20 .07 Max.eff.Inten.(mm/hr)= 03650> 03651> 03652> 03653> 03653> vver (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 03517> 03518> 03520> 03522> 03522> 03522> 03523> 03524> 03525> 03526> 03527> PE24K FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (men) = TOTAL RAINFALL (men) = RUNOFF COEFFICIENT = *TOTALS* 3.419 (iii) 1.167 *TOTALS* 2.793 (iii) 1.042 58.015 2.77 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nm) = TOTAL RAINFALL (nm) = RUNOFF COEFFICIENT = 2.46 1.00 70.09 71.66 .98 1.13 03655> 03655> 03656> 03657> 03658> 03658> .67 1.25 1.38 45.94 71.66 1.13 70.09 71.66 .98 45.94 71.66 .64 71.665 03659> 03660> 03661> 03662> 03663> 03664> 03665> (i) CN FROCEDURE SELECTED FOR PERVIOUS LOSSES: CN⁺ = 81.0 Ia = Dep. Storage (Above)
 (i.1) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 TRAN THE STORAGE COEFFICIENT.
 (i.1) FRAK FLOW DOES NOT INCLUDE BASEFICOW IF ANY.
 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03528> 03666>
 Display="block-space-spac (cms) .000 .000 | DESIGN NASHYD | Area (ha)= 4.00 Curve Number (CN)=85.00 | 08:Pond-B DT= 2.50 | Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= .170 03671> 03672> 03673> 03674> 03675> 03676> 03677> Unit Hyd Opeak (cms)= .899
 PEAK FLOW (cms)=
 .649

 TIME TO PEAK (hrs)=
 1.125

 RUNOFF VOLUME (mm)=
 40.139

 TOTAL RALINPALL (mm)=
 71.665

 RUNOFF COEPFICIENT =
 .560
 03678> .649 (i) 03679> 03680> 03681> 03682> 03683> 03683> (i) PEAK FLO 03685> 03686> -----03687> 001:0022------03688> -----(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 IMPERVIOUS

 Surface Area
 (ha) = 12.07

 Dep. Storage
 (mm) = 1.57

 Average Slope
 (%) = .65

 Length
 (m) = 450.00

 Mannings
 .030
 03552> 03553> 03554> 03555> 03555> 03555> 03550> 03560> 03560> 03562> 03562> 03563> 03564> 03565> 03565> 03565> 03565> 4250.00 12.07 1.57 .65 450.00 .030 4.93 4.67 1.50 100.00 .250 Max.eff.Inten.(mm/hr) = over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = 178.56 126.60
 Closes
 TLD 081PORC-B
 4.00
 .649
 1.

 03684>
 03695>
 SUM 09:HIP08
 77.26
 12.109
 1.

 03695>
 SUM 09:HIP08
 77.26
 12.109
 1.

 03695>
 NOTE:
 PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 03699>
 SUM 09:HIP08 77.26 12.109 1.13 58.16
 10.00
 22.50

 9.39 (ii)
 21.52 (ii)

 10.00
 22.50

 .12
 .05
 .000 *TOTALS* 3.203 (iii) 1.125 58.015 71.665 .810 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (nm)= TOTAL RAINFALL (nm)= RUNOFF COEFFICIENT = 2.68 1.08 70.09 71.66 .98 1.05 1.33 45.94 71.66 .64 03568> 03569> 03570> 03571> 03572> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN^a = 81.0 Ia = Dep. Storage (Above) (i.1) THME STRP (DT) SHOULD BE SMALLER OR EQUAL TRAN THE STORAGE COEFFICIENT. (i.1) FEAK FLOW DOES NOT INCLUDE BASEFICON IF ANY. 03573> 03576> 03576> 03576> 03577> Unit Hyd Opeak (cms)= .129
 PEAK FLOW
 (cms) =
 .114

 TIME TO PEAK
 (hrs) =
 1.958

 RUNOFF VOLUME
 (mm) =
 30.490

 TOTAL RAINFALL
 (mm) =
 71.665

 RUNOFF COEFFICIENT =
 .425
 03710> 03578> 001:0017-----03579> * CALLE STANDHYD | Area (ha)= 15.60 04:HIP04 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 03582> | 03583> | 03583> | 03585> 03585> 03586> 03588> 03589> 03590> 03591> 03593> 03593> 03593> Surface Area (ha)= Dep. Storage (nm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS PERVIOUS (i) 4.52 4.67 1.50 100.00 11.08 1.57 .50 600.00 .030 Dep. Storage (Average Slope Length Mannings n 100.00 .000 153.66 117.85 12.50 25.00 12.82 (ii) 25.30 (ii) 12.50 25.00 .09 .04 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= . 000 03595> 03596> 03597> 03598> 03599> 03600> 03600> 03602> 03603> 03604> 03605> PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COBFFICIENT = *TOTALS* 2.10 1.13 70.09 71.66 .98 .87 1.38 45.94 71.66 .64 2.612 (iii) 1.167 58.015 71.665 .810 Simulation ended on 2009-02-09 (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 01.0 Ia = Dep. Storage (Above) (1) TIME STEP (DT) SHOULD BE SMALLER OR SQUAL THAN THE STORAGE COEFFICIENT. (11) FERK FLOW DOES NOT INCLUDE BASEFICON IF ANY. 03739> 03740> 03741> 03742> 03606> 03614> 03615> 03615> 03616> 03617> (cms) .000 .000 SUM 05:HIP05 32.60 5.767 1.13 58.02 03618> 000 03619> 03619> 03629> 03621> 03621> 03622> 03622> 03622> 016019-016019-03623 001:0019-03624 001:0019-QPEAK TPEAK R.V. (cms) (hrs) (mm) 5.767 1.13 58.02 3.554 1.17 60.91 (cms) .000 .000 03630> 03631> 03632> 03633> 03633> SUM 06:HIP06 61.06 9.239 1.13 59.36 .000 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 001:0020-----03635> 03636> * SUB-AREA No.4 03637> 03637> * SUB-AKLA NO.-03638> - CALIE STANDRYD | Area (ha)= 12.20 03640> | O'.HTPO7 DF 2.50 | Total Imp(t)= 71.00 Dir. Conn.(t)= 50.00 03641> ------03642> MPERVIOUS PERVIOUS (1) 03643> Surface Area (ha)= 8.66 3.54 03644> Dep. Storage (mm)= 1.57 4.67 03645> Average Slope (t)= .70 1.50

APPENDIX'F'

STAGE-STORAGE-DISCHARGE TABLE

PRINTED ON: 5/15/2009 AT 1:38 PM

J.L. RICHARDS & ASSOCIATES LIMITED

Hawthorne Industrial Park Configuration of Storage Facility

4.0442 4.3702 0.8400 .3705 .9242 2.5010 0.0574 0.2434 0.5834 .1024 .6444 3.1009 3.4096 3.7240 0.0000 2.2097 2.7981 VOLUME ha-m Storage Cell Configuration SWMHYMO DATA 0 25010 27981 31009 574 11024 16444 19242 22097 34096 37240 40442 VOLUME 2434 5834 8400 43702 ື່ມ AREA 16913 19613 6666 20384 20770 17299 17684 18070 18456 18456 21156 1192 19227 21541 3093 21927 m2 0 48 54 59 62 147 280 472 724 937 1404 1532 1650 64 1262 2409 3689 OUTFLOW TOTAL (L/S) 0 0 0 0 0 0 0.0 0.0 648.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1825.2 DISCH. WEIR FLOW (L/S) 86.15 6000 1.87 (L/S) ~ RESTRICTOR FLOW DISCH. 860.0 1183.3 1323.0 673.5 1449.3 565.4 1775.0 (ILS) (L/S) 210.0 400.0 650.0 84.80 600 80.0 0.61 0.0 0.0 0.0 0.0 0.0 0.0 2 RESTRICTOR FLOW DISCH. (L/S) 82.90 (Γ/S) 53.9 59.0 61.8 78.8 150 0.61 48.3 64.5 67.1 69.6 72.0 74.3 76.6 80.9 83.0 0.0 85.1 87.1 89.0 **~** Discharge Coeff. (C_d): # of restrictors/weirs: Invert Elevation (m) Dia. or Width (mm); 84.800 84.950 85.100 85.250 84.650 86.000 86.150 86.300 86.450 84.500 85.400 85.550 85.700 85.850 ELEV. 82.900 84.000 84.250 Ê

Note: Restrictor flows estimated by MTO Design Chart 2.32: Inlet Control for elevations ≤ 85.55 for double 600 mm culverts.

SHEET 150 mm & 2 x 600 mm

V:\20983.DU\ENG\Final Submission to City\SVMHYMO with Low Flow Ditch\stage-outflow-volume_Rev5.xls

APPENDIX'G'

SWMHYMO INPUT AND OUTPUT FILES (Post-Development Controlled Phase 1 Conditions)

					C. E. KICHALOS & ASSOCIACES LIMIC
00001> 2	Metric units		00136:		$\begin{bmatrix} -1 & , -1 \end{bmatrix}$ (max twenty pts)
00003> *4	# Project Name :	Hawthorne Industrial Park Project Number: [20983] *	00137: 00138:		*****************************
00004> *	# Date : # Revised :	January, 2009 *	00139	* Remaining Ha	awthorne Industrial Park *
00006> *	# Developed by :	Mark Buchanan, E.I.T. * Guy Forget, P.Eng. *	00141:		
00008> *	# Company :	J.L. Richards & Associates Limited + 418403 +	00143:		
00010> *	# LICEMSE # :	***************************************	00144:	CALIB STANDHYD	ID=[1], NHYD=["HIPO1"}, DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],
00011> * 00012> *			00146:		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%),
		**************************************	00148:		LGP = [100, 0] (m), $MNP = [0, 25]$, $SCP = [0, 0] (m)$
00015> *4	<pre># FILE DEVELOPED</pre>	FOR SITE PLAN APPLICATION AND DETAILED DESIGN * ASSOCIATED WITH THE OTTAWA COMPOSTING SITE *	00149:		Impervious surfaces: IAimpe[1.57] (mm), SLPI=[0.6] (%), LGI=[580] (m), MNI=[0.03], SCI=[0.0] (min
00017> *#	#*************************************	ASSOCIATED WITH THE OTTAWA COMPOSITING SITE *	001513	*8	RAINFALL=[, , , ,] (mm/hr) , END=-1
00019> **		***********	00153	ADD HYD	IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1]
00020> * 00021> *	SWMHYMO FI PROPOSED COMPOS	LE DEVELOPED TO INVESTIGATE FLOOD FLOWS OF THE * TING SITE UNDER POST-DEVELOPMENT UNCONTROLLED CONDITIONS *	00155>		
00022> **	******	***********	00157>		
		YSIS UNDER A 4 HR-25 MM STORM AND *	00159>		<pre>ID=[3], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],</pre>
00026> *	FOR DESIGN STORMS	1515 UNDER A 4 HR-25 MM STORM AND * 0 F1:2, 5, 10, 25, 50, AND 100 YR *	00160>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),
00027> **	******	**********************	00162>		LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.65] (%),
00029> ** 00030> *		PMENT UNCONTROLLED CONDITIONS	00164>		LGI = [450] (m), $MNI = [0.03]$, $SCI = [0.0] (min)$
00031> **		***************************************	00166>	*8	RAINFALL=(, , , ,] (mm/hr) , END=-1
00033> **		**********	00167>	* * SUB-AREA No.3	
		ION OF 4 HR 25 MM STORM EVENT *	00169>	CALIB STANDHYD	ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[18.1](ha),
00036> 00037> SI	ART	TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]	00171>		XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],
00038> *8	AD STORM	[] <storm filename,="" for="" line="" nstorm="" one="" per="" time<br="">STORM_FILENAME=["4HR25-15.STM"]</storm>	00173>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),
00040> **	J=		00174>		LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.5](%),
00042>	FAULT VALUES	ICASEdef=[1], read and print values DEFVAL_FILENAME={V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]	00176>		LGI=[600] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , , ,](mm/hr), END=-1
00043> *% 00044>			00178>	*8	
00045> ** 00046> *		***************************************	00180>	ADD HYD *8	IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4]
00047> **	UKGAWURG	**************************************	00181>	* *SUB-AREA No.4	
00048> * 00049> *	SUB-AREA No.1		00183>	DESIGN NASHYD	
00050>	LIB STANDHYD	<pre>ID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha),</pre>	00185>		<pre>ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cms), CN/C=[85], TP=[0.17]hrs, DWF=[0](cms), CN/C=[85], TP=[0.17]hrs,</pre>
00052>		XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2],	00187>	*8	RAINFALL=[, , , ,](mm/hr), END=-1
00054>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.0](%),	00188>		
00055> 00056>		LGP=[20] (m), MNP≈[0.25], SCP≈[0.0] (mi Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.52] (%).	00190>	ADD HYD	IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6]
00057> 00058>		LGI=[204.72] (m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , ,](mm/hr), END=-1	00192>	ROUTE RESERVOIR	
00059> *% 00060> *		[]	00194>	KOUIE RESERVOIR	IDout=[8], NHYD=["HIP-POND"], IDin=[7], RDT=[1.0](min),
00061> *	SUB-AREA No.2		00195>		TABLE of (OUTFLOW-STORAGE) values (cms) - (ha-m)
00062> 00063> CA	LIB STANDHYD	ID=[2], NHYD=["020"], DT=[2.5] (min), AREA=[1.54](ha),	00197>		[0.0 , 0.0] [0.048, 0.0574]
00064>		<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>	00199>		[0.054, 0.2434]
00066>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%),	00200>		[0.059, 0.5834] [0.062, 0.8400]
00068>		LGP=[5](m), MNP=[0.03], SCP=[0.0](min), Impervious surfaces: IAimpe[1.57](mm), SEPE=[0.50](%),	00202>		[0.064, 1.1024] [0.147, 1.3705]
00069> 00070>		LGI=[244.34] (m), MNI≈[0.03], SCI≈[0.0] RAINFALL=[, , , ,](mm/hr), END=-1	00204>		[0.280, 1.6444]
00071> *%			00206>		[0.472, 1.9242] [0.724, 2.2097]
	SUB-AREA No.3		00208>		[0.937, 2.5010] [1.262, 2.7981]
00075> CA	LIB STANDHYD	ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha),	00209>		[1.404, 3.1009] [1.532, 3.4096]
00076> 00077>		XIMF=[0.9/], TIMP=[0.9/], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81].	00211>		[1.650, 3.7240] [2.409, 4.0442]
00078> 00079>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%), LGP=[5](m), MNP=[0.03], SCP=[0.0](min),	00213> 00214>		[3.689, 4.3702]
00080> 00081>		<pre>Impervious surfaces: IAimp#[1.57] (mm), SLPI#[0.51] (%),</pre>	00215>		<pre>[-1 , -1] (max twenty pts)</pre>
00082>		LGI=[225.63] (m), MNI=[0.03], SCI=[0.0 RAINFALL=[, , , ,] (mm/hr) , END=-1	00216>		
00083> *% 00084> AD	D HYD	IDsum=[4], NHYD=["040"], IDs to add=[1+2]	00218>	* *SUB-AREA No. 5	
00085> *% 00086> AD		IDsum=[5], NHYD=["050"], IDs to add=[3+4]	00220>	* DESIGN NASHYD	ID = {9}, NHYD=["A2"], DT=[2.5]min, AREA=[6.8](ha),
00087> *% 00088> *			00222>	DEDIGN MODILID	DWF = [0] (cms), CNC = [76], TP = [0, 37] hrs.
	SUB-AREA No.4		00223>	*8	RAINFALL=[,,,,](mm/hr), END=-1
00091> CA	LIB STANDHYD	ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha),	00225>	* *SUB-ARÉA No. 6	
00092> 00093>		<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81].</pre>	00227>	* DESIGN NASHYD	$T_{D} = [201] MWD = [222] Dm = (2.51 - 3.000 (5.00)) (1.5)$
00094>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[0.7] (%), LGP=[40] (m), MNP=(0.25], SCP=[0.0] (min)	00229>		ID = [10], NHYD=["A3"], DT=[2.5]min, AREA=[5.3](ha), DWF=[0](cms), CNC=[76], TP=[0.804]hrs,
00096>		<pre>Impervious surfaces: IAimp=[1,57] (mm), SLPI=[0,93] (%),</pre>	00231>		RAINFALL=[, , , ,](mm/hr), END=-1
00098>		LGI=[164.82](m), MNI=[0.03], SCI=[0.0}(RAINFALL=[, , ,](mm/hr), END=-1	00233>	ADD HYD *%	IDsum=[1], NHYD=["Interim"], IDs to add=[8+9+10]
00099> *8-00100> *	[00234>		
00102>	SUB-AREA No.5		00236>	***************************************	DN OF 3HR ~ 1:2 YEAR STORM EVENT *
	LIB STANDHYD	ID=[7), NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],	00238>	*************	JN OF JHR ~ 1:2 YEAR STORM EVENT *
00105>		SCS curve number CN=[81],	00239>	START	T2ERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]
00106> 00107>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[20.0] (m), MNP=[0.25], SCP=[0.0] (mi	00241>	*8 *8	[] <storm filename,="" for="" line="" nstorm="" one="" per="" td="" time<=""></storm>
00108> 00109>		LGP=[20.0] (m), MVP=[0.25], SCP=[0.0] (mi Impervious surfaces: IAImp=[1.57] (mm), SLPI=[0.61] (%), LGI=[207.25] (m), MVI=[0.03], SCI=[0.0] (00243>	CHICAGO STORM	<pre>IUNITS=[2], TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0](min) ICASEcs=[1],</pre>
00110>		RAINFALL=[, , , ,] (mm/hr) , END=-1	00245>		A = [732, 951], $B = [6, 199]$, and $C = [0, 810]$.
00112> ADI	D HYD	IDsum=[0], NHYD=["080"], IDs to add=[6+7]	00247>	*& DEFAULT VALUES	ICASEdef=[1], read and print values
00113> *%- 00114> ADI	D HYD .	IDsum=[9], NHYD=["090"], IDs to add=[5+8]	00248>		DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]
00115> *%-00116>			00250>	******	
	UTE RESERVOIR	<pre>IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min),</pre>	00252>		D FTLF *
00119>		TABLE of (OUTFLOW-STORAGE) values	00254>	***************************************	************
00120> 00121>		(cms) - (ha-m)	00255>	* SUB-AREA No.1	
00122> 00123>		[0.000, 0.0000] [0.008, 0.0656]	00257>	CALIB STANDHYD	<pre>ID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha), XIMP=[0.84], TIMP=[0.84], DWP=[0.0](cms), LOSS=[2],</pre>
00124>		[0.017, 0.1311] [0.093, 0.2831]	00258>		SUS CUIVE NUMBER CN=[81],
00125> 00126>		[0.233, 0.3971] [0.337, 0.4731]	00260>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[20] (m), MNP=[0.25], SCP=[0.0] (mi
00127> 00128>		[0.465, 0.5491] [0.531, 0.5671]	00262>		Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.52](%),
00129>		[0.593, 0.6251]	00264>		LGI=[204.72](m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , , ,](mm/hr), END=-1
00130> 00131>		(0.654, 0.6631) (0.797, 0.7391)	00266>	*8 *	······································
00132> 00133>		[0.950, 0.8274] [1.304, 0.9157]	00267>	* SUB-AREA No.2	
00134> 00135>		[1.880, 1.0040] [2.577, 1.0923]	00269>	CALIB STANDHYD	ID=[2], NHYD=["020"], DT=[2.5](min), AREA=[1.54](ha),
		[2.3/7, 1.0323]	00270>		XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2],

1

L

ί.,.

00271>	SCS curve number CN=[81],	00406>	[0.059, 0.5834]
00272> 00273>	Pervious surfaces: IAper=[4.67] (nm), SLPP=[1.0] (%),	00407> 00408>	[0.062, 0.8400]
00274>	LGP=151(m), ShF=(1.0)(%), LGP=151(m), NAP=[0.03], SCP=[0.0](min), Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.50](%),	00409>	{ 0.064, 1.1024 j [0.147, 1.3705]
00275> 00276>		00410>	[0.280, 1.6444]
00277> *8	RAINFALL±[, , ,](mm/hr), END=-1	00412>	[0.472, 1.9242] [0.724, 2.2097]
00278> * 00279> * SUB-AREA No.3		00413> 00414>	[0.937, 2.5010]
00280>		00415>	[1.262, 2.7981] [1.404, 3.1009]
00281> CALIB STANDHYD 00282>	ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],	00416>	[1.532, 3.4096]
00283>	SCS curve number CN=[61],	00417> 00416>	[1.650, 3.7240] [2.409, 4.0442]
00284>	<pre>Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min),</pre>	00419>	[3.689, 4.3702]
00286>	<pre>Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.51](%).</pre>	00420>	<pre>[-1 , -1] (max twenty pts)</pre>
00287> 00288>	LGI=[225.63](m), MNI=[0.03], SCI=[0.0	00422> *8	
00289> *8		00423> * 00424> *SUB-AREA No. 5	
00290> ADD HYD 00291> *8	IDsum=[4], NHYD=["040"], IDs to add=[1+2]	00425> *	
00292> ADD HYD	IDsum=[5], NHYD=["050"], IDs to add=[3+4]	00426> DESIGN NASHYD 00427>	<pre>ID = [9], NHYD={"A2"}, DT=[2.5]min, AREA=[6.8](ha), DWT=[0](cms), CNC=[76], TP=[0.37]hrs,</pre>
00293> ** 00294> *		00428>	RAINFALL=[,,,,](mm/hr), END=-1
00295> * SUB-AREA No.4		00429> **	
00296> 00297> CALIB STANDHYD		00431> *SUB-AREA No. 6	
00298>	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMD=[0.97], TIMD=[0.97], DWF=[0.0](cms), LOSS=[2],</pre>	00432> * 00433> DESIGN NASHYD	<pre>ID = [10], NHYD=["A3"], DT=[2.5]min, AREA=[5.3](ha),</pre>
00299> 00300>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.7](%),	00434>	DWF=[0](cms), CNC=[76], TP=[0.804]hrs,
00301>	LGP=[40] (m), MNP=[0.25], SCP=[0.0] (min)	00435> 00436> **	RAINFALL=[,,,,](mm/hr), END=-1
00302> 00303>	LGP=[40] (m), MNP=[0.25], SCP=[0.0] (min) Impervious surfaces: IAimp=[1.57] (mn), SLPI=[0.93] (%),	00437> ADD HYD	IDsum=[1], NHYD=["Interim"], IDs to add=[8+9+10]
00304>	LGI=[164.82](m), MNI=[0.03], SCI=[0.0](RAINFALL=[, , , ,](mm/hr), END=-1	00438> *8	
00305> *8		00440>	· · · · · · · · · · · · · · · · · · ·
00307> * SUB-AREA No.5		00442> * CALCULAT	**************************************
00308> 00309> CALIB STANDHYD		00443> ****************	***************************************
00310>	<pre>ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],</pre>	00444> 00445> START	TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]
00311> 00312>	SCS curve number CN=[81],	00446> *%	[] <storm filename,="" for="" line="" nstorm="" one="" per="" td="" time<=""></storm>
00313>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[20.0] (m), MNP=[0.25], SCP=[0.0] (mi	00447> **	IUNITS=[2], TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0](min)
00314> 00315>	Impervious surfaces: IAimp=(1.57)(mm), SIPI=(0.61)(%)	00449>	ICASECs=[1],
00316>	LGI=[207.25] (m), MNI=[0.03], SCI=[0.0] (RAINFALL=[, , ,](mm/hr), END=-1	00450> 00451> *8	A=[998.071], $B=[6.053]$, and $C=[0.814]$,
00317> *%		00452> DEFAULT VALUES	ICASEdef=[1], read and print values
00319> *8	IDsum=[8], NHYD=["080"}, IDs to add=[6+7]	00453> 00454> *8	DEFVAL FILENAME= [V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]
00320> ADD HYD 00321> *8	IDsum=[9], NHYD=["090"], IDs to add=[5+6]	00455>	,
00322>		00456> ************************************	*************
00323> ROUTE RESERVOIR 00324>	<pre>IDout=[10], NHYD=["POND"], IDin=[9],</pre>	00458> ****************	
00324>	RDT=[1.0] (min), TABLE of (OUTFLOW-STORAGE) values	00459> * 00460> * SUB-AREA No.1	
00326>	(cms) - (ha-m)	00461>	
00327> 00328>	[0.000, 0.0000] [0.008, 0.0656]	00462> CALIB STANDHYD 00463>	ID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha),
00329>	[0.017, 0.1311]	00464>	<pre>XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
00330> 00331>	[0.093, 0.2831] [0.233, 0.3971]	00465>	Pervious surfaces: IAper=[4.67] (num), SLPP=[1.0] (%), LGP=[20] (m), MMP=[0.25], SCP=[0.0] (mi
00332>	[0.337, 0.4731]	00466> 00467>	LGP=[20](m), MNP=[0.25], SCP=[0.0](mi Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.52](%),
00333> 00334>	[0.465, 0.5491]	00468>	LGI = [204.72] (m), MNI = [0.03], SCI = [0.0]
00335>	[0.531, 0.5871] [0.593, 0.6251]	00469> 00470> *8	RAINFALL=[, , , ,](mm/hr) , END=-1
00336>	[0.654, 0.6631]		
		00471> *	
00337> 00338>	[0.797, 0.7391]	00472> * SUB-AREA No.2	
00337> 00338> 00339>	[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157]	00472> * SUB-AREA No.2 00473>	ID=[2], NHYD=("020"], DT=[2,5](min), appa=[] 54](ha)
00337> 00338> 00339> 00340>	[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040]	00472> * SUB-AREA NO.2 00473> 00474> CALIE STANDHYD 00475>	<pre>ID=[2], NHYD=["020"], DT=[2.5](min), AREA=[1.54](ha), XIM2=[0.92], TIMF=[0.92], DWF=[0.0](cms), LOS5=[2],</pre>
00337> 00338> 00339> 00340> 00341> 00342>	[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923]	00472> * SUB-AREA No.2 00473> 00474> CALIB STANDHYD 00475> 00476>	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
00337> 00338> 00339> 00340> 00341> 00342> 00343>	[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923]	00472> * SUB-AREA No.2 00473> 00474> CALIE STANDHYD 00475> 00476> 00477> 004778>	XIMP=[0.92], TIMP=[0.92], DMF=[0.0] (cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](6), Transfer Laboratory Constraints (action) (
00337> 00338> 00339> 00340> 00341> 00342> 00342> 00344> ***********************************	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1 , -1] (max twenty pts)</pre>	00472> * SUB-AREA No.2 00473> CALIE STANDHYD 00475> CALIE STANDHYD 00476> 004775 00478> 00478>	XIMP=[0.92], TIMP=[0.92], DMF=[0.0] (cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](6), Transfer Laboratory Constraints (action) (
00337> 00338> 00339> 00340> 00341> 00342> 00343> 00345 * Remaining H 00345> * * ********************************	[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923]	00472> * SUB-AREA No.2 00473> 00473> 00474> CALIB STANDHYD 00476> 00476> 00477> 00478> 00478> 00478> 00478> 00480> 00481>	<pre>XIME=[0.92], TIME=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number Ch=[61], Pervious surfaces: IAperc[4.67](rms), SLPF=[1.0](%), LGP=[5](m), MMF=[0.03], SCF=[0.0](min), Impervious surfaces: IAimpe[1.57](rms), SLPI=[0.03](%), CLE=[244.34](m), MMI=[0.03]. SCT=[0.01]</pre>
00337> 00338> 00339> 00340> 00340> 00342> 00343> 00345 * Remaining H 00345> * Remaining H 00347> * 00347> * SUB-AREA No.1	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, -1] (max twenty pts) ************************************</pre>	00472> * SUB-AREA No.2 00473> 00474> CALIE STANDHYD 00475> 00475> 00477> 00478> 00478> 00478> 00480> 00480> 00481> 00481> 00482> *	XIMP=[0.92], TIMP=[0.92], DMF=[0.0] (cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](6), Transfer Laboratory Constraints (action) (
00337> 00338> 00340> 00340> 00341> 00342> 00342> 00345> ************************************	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, -1] (max twenty pts) awthorne Industrial Park *</pre>	00472> * SUB-AREA No.2 00473> 00473> 00474> CALIB STANDHYD 00476> 00476> 00476> 00478> 00478> 00480> 00480> 00480> 00482> * 00483> * 00483 * SUB-AREA No.3	<pre>XIME=[0.92], TIME=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number Ch=[61], Pervious surfaces: IAperc[4.67](rms), SLPF=[1.0](%), LGP=[5](m), MMF=[0.03], SCF=[0.0](min), Impervious surfaces: IAimpe[1.57](rms), SLPI=[0.03](%), CLE=[244.34](m), MMI=[0.03]. SCT=[0.01]</pre>
00337> 00338> 00339> 00340> 00341> 00342> 00342> 00343> 00345> * Remaining H 00346> * SUB-AREA No.1 00346> * SUB-AREA No.1 00346> * CALIB STANDHYD 00350> CALIB STANDHYD 00350>	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1 , -1] (max twenty pts) ************************************</pre>	00472> * SUB-AREA No.2 00473> 00474> CALIB STANDHYD 00475> 00476> 00477> 00477> 00478> 00478> 00478> 00480> 00482> 00482> 00482> 00482> 00482> 00484> 00484> 00484> 00484> 00485>	<pre>XIME=[0.92], TIME=[0.92], DWF=[0.0](cms), LOSS=[2], SOS curve number CA=[81], Pervious surfaces: IAper=[4.67](rms), SLPP=[0.0](%), Impervious surfaces: IAimp=[1.57](rms), SLPI=[0.03], SCF=[0.0](%), ICI=[244.34](m), MMT=[0.03], SCI=[0.0] RAINFALL=[, , , ,](mm/hr), EMD=-1</pre>
00337> 00338> 00338> 00340> 00341> 00342> 00343> 00345 * Remaining H 00345> * Remaining H 00345> * SUB-AREA No.1 00349> 00351> CALIB STANDHYD 00351> 00352>	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1 , -1] (max twenty pts) ###thorne Industrial Park * ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TMP=[0.73], DMF=[0.0](cms), LOSS=[2], SCS curve number Cn=[81],</pre>	00472> * SUB-AREA No.2 00473> 00473> 00474> CALIB STANDHYD 00475> 00476> 00477> 00477> 00478> 00480> 00481> 00482> * 00482> * 00482> * 00483> * 00484> * SUB-AREA No.3 00485> 00486> CALIB STANDHYD 00487>	<pre>XIME=[0.92], TIME=[0.92], DWF=[0.0](cms), LOSS=[2], SOS curve number CA=[81], Pervious surfaces: IAper=[4.67](rms), SLPP=[0.0](%), LOP=[5](m), MNY=[0.03], SCF=[0.0](min), Impervious surfaces: IAimp=[1.57](rms), SLPI=[0.0](%), LOT=[244.34](m), MMT=[0.03], SCI=[0.0] RAINFALL=[, , ,](mm/hr), END=-1 [] ID=[3], NHYD=["030"], DT=[2.5](rmin), AREA=[1.4](ha), XIME=[0.97], TIME=[0.97], DWF=[0.9](cms), LOSS=[2].</pre>
00337> 00338> 00339> 00340> 00341> 00342> 00342> 00343> 00345> * Remaining H 00346> * SUB-AREA No.1 00346> * SUB-AREA No.1 00346> * CALIB STANDHYD 00350> CALIB STANDHYD 00350>	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts)</pre>	00472> * SUB-AREA No.2 00473> 00473> 00474> CALIB STANDHYD 00476> 00476> 00477> 00477> 00478> 00478> 00482> 00482> 00482> 00482> 00485> 00485> 00485> 00485> 00485> 00485> 00485> 00485> 00485>	<pre>XIME=[0.92], TIME=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CA=[81], Pervious surfaces: IAper=[4.67](nmn), SLPF=[1.0](%),</pre>
00337> 00338> 00338> 00340> 00340> 00341> 00342> 00343> 00345> * Remaining H 00365> * SUB-AREA No.1 00365> 00350> CALIB STANDHYD 00351> 00352> 00352>	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts)</pre>	00472> * SUB-ARRA No.2 00473> 00473> 00474> CALIB STANDHYD 00476> 00476> 00477> 00478> 00478> 00480> 00480> 00481> 00482> * 00482> * 00485> 00485 005 005 005 005 005 005 005 005 005 0	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAperc[4.67](rms), SLPP=[1.0](%), Impervious surfaces: IAinpe[1.57](rms), SLPI=[0.03], SCF=[0.0](min), LDE=[244.34](m), MMT=[0.03], SCI=[0.0] RAINFALL=[, , ,](mm/hr], EMD=-1 ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAperc[4.67](rms), SLPF=[1.0](%)</pre>
00337> 00338> 00338> 00340> 00340> 00342> 00343> 00345 * Remaining H 00345> * Remaining H 00345> * SUB-AREA No.1 00349> 00351> 00351> 00352> 00352> 00353>	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, -1] (max twenty pts)</pre>	00472> * SUB-AREA No.2 00473> 00474> CALIB STANDHYD 00475> 004775 004775 004775 00478> 00478> 00482> 00482> 00482> 00482> 00482> 00482> 00484> 00484> 00484> 00484> 00485 00486> 00485 00485 00485 00485 00489> 00490> 00490> 00490>	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SOS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.0](%), LOP=[5](m), MNP=[0.03], SCF=[0.0](min), Impervious surfaces: IAimpe[1.57](mm), SLP1=[0.03], SCI=[0.0] RAINFALL=[, , ,](mm/hr), END=-1 ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPF=[1.0](%), LOFP=[5](m), MNP=[0.03], SCF=[0.0](min), Impervious surfaces: IAimpe[1.57](mm), SLPF=[1.0](%),</pre>
00337> 00338> 00338> 00340> 00341> 00342> 00343> 00345 * Remaining H 00345 * SUB-AREA No.1 00349> 00351> 00350 CALIB STANDHYD 00351> 00352> 00352> 00355> 00355> 00355> *	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts) ####################################</pre>	00472> * SUB-AREA No.2 00473> 00474> CALIB STANDHYD 00476> 004775 004775 00478> 00478> 00480> 00481> 00482> * 00482> * 00482> * 00484> * SUB-AREA No.3 00485> 00486> CALIB STANDHYD 00486> 00486> 00485> 00486> 00489> 00489> 00489> 00489> 00489> 00489> 00489> 00490> 00490> 00492> 00492>	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CA=[81], Pervious surfaces: IAper=[4.67](nm), SLPP=[1.0](%), LOF=[5](m), NMF9=[0.03], SCF=[0.0](min), LOE=[234.34](m), MMT=[0.03], SCI=[0.0] RAINFALL=[, , , ,](mm/hr), END=-1 ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CA=[81], Pervious surfaces: IAper=[4.67](mm), SLPI=[1.0](%), LOF=[5](m), MNF=[0.03], SCF=[0.0](min), Impervious surfaces: IAinpe=[1.57](mm), SLPI=(0.03], SCI=[0.0] LOF=[5](m), SLPI=[0.53](%), LOF=[5](m), SLPI=[0.53](%), LOF=[5](m), SLPI=[0.53](%), LOF=[2.55](mn), SLPI=[0.03], SCI=[0.0]</pre>
00337> 00338> 00338> 00340> 00341> 00342> 00343> 00345> * Remaining H 00345> * SUB-AREA No.1 00347> * SUB-AREA No.1 00350> CALIB STANDHYD 00351> 00352> 00353> 00354> 00354> 00355> 00355> 00355> 00355> 00355>	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts)</pre>	00472> * SUB-AREA No.2 00473> 00474> CALIB STANDHYD 00475> 004775> 004775> 004775> 00478> 00478> 00482> 00482> 00482> 00482> 00482> 00482> 00482> 00485> 00585 00585 00585 00585 00585 00585 00585 00585 00585 00585 005655	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](nm), SLPP=[1.0](%),</pre>
00337> 00338> 00338> 00340> 00341> 00342> 00342> 00345 * Remaining H 00346> * SUB-AREA No.1 00348> * SUB-AREA No.1 00348> * SUB-AREA No.1 00349> 00350> CALIB STANDHYD 00350> 00352> 00355> 00355> 00355> 00355> 00356> * 00356> *	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts) ####################################</pre>	00472> * SUB-AREA No.2 00473> 00473> 00477> 00477> 00477> 00477> 00477> 00477> 00477> 00478> 00482> 00482> 00482> 00482> 00482> 00482> 00482> 00482> 00482> 00482> 00482> 00482> 00482> 00485> 00485> 00485> 00485> 00485> 00485> 00485> 00485> 00492> 00493> 00495> ADD HVD 00495> ADD HVD 0045 ADD HVD 0045 ADD HVD 0045 ADD H	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.0](%), Impervious surfaces: IAinp=[1.57](mm), SLPI=[0.03], SCP=[0.0](min), Impervious surfaces: IAinp=[1.57](mm), SLPI=[0.03], SCI=[0.0] RAINFALL=[, , ,](mm/h1), EMD=-1 </pre>
00337> 00338> 00338> 00340> 00341> 00342> 00343> 00345 * Remaining H 00346> *SUB-AREA No.1 00348> *SUB-AREA No.1 00348> *SUB-AREA No.2 00356> 00355> 00356> 00356> * 00356>	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts) ####################################</pre>	00472> * SUB-AREA No.2 00473> 00473> 00474> CALIB STANDHYD 00476> 004775> 004775> 00480> 00480> 00481> 00482> * 00482> * 00483 * 00483 * 00485>	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOS=[2], SCS curve number CM=[81], Pervious surfaces: IAperc[4.67](nm), SLPP=[1.0](%), LDP=[5](m), MNF=[0.03], SCF=[0.0](min), Impervious surfaces: IAinp=[1.57](nm), SLPI=[0.50](%), LDE=[244.34](m), MMT=[0.03], SCI=[0.0] RAINFALL=[, , , ,](mm/hr), END=-1] ID=[3], MHYD=['030"], DT=[2.5](min), AREA=[1.4](ha), XIMD=[0.57], TIMF=[0.97], DWF=[0.0](cms), LOSS=[2], SC curve number CM=[81], Pervious surfaces: IAinp=[1.67](ma), SLPI=[1.6](%), Impervious surfaces: IAinp=[1.67](ma), SLPI=[1.6](%), Impervious surfaces: IAinp=[1.57](ma), SCI=[0.0](min), Impervious surfaces: IAinp=[1.57](ma), DMT=[0.03], SCT=[0.0 RAINFALL=[, , ,](mm/hr), END=-1 [] RAINFALL=[, , ,](mm/hr), END=-1 [] IDsum=[4], NHYD=['050"], IDs to add=[1+2] [] IDsum=[5], MHYD=['050"], IDs to add=[3+4]</pre>
00337> 00338> 00338> 00340> 00341> 00342> 00343> 00345> 00345> 00345> 00345> 00345> 00345> 00345> 00350> 00350> 00350> 00350> 00355>	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts) ***********************************</pre>	00472> * SUB-AREA No.2 00472> CALIB STANDHYD 00475> 004775 004775 004775 004775 00478 00482> 00481> 00482> * 00482> * 00482> * 00485 00495 00	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOS=[2], SCS curve number CM=[81], Pervious surfaces: IAperc[4.67](nm), SLPP=[1.0](%), LDP=[5](m), MNF=[0.03], SCF=[0.0](min), Impervious surfaces: IAinp=[1.57](nm), SLPI=[0.50](%), LDE=[244.34](m), MMT=[0.03], SCI=[0.0] RAINFALL=[, , , ,](mm/hr), END=-1] ID=[3], MHYD=['030"], DT=[2.5](min), AREA=[1.4](ha), XIMD=[0.57], TIMF=[0.97], DWF=[0.0](cms), LOSS=[2], SC curve number CM=[81], Pervious surfaces: IAinp=[1.67](ma), SLPI=[1.6](%), Impervious surfaces: IAinp=[1.67](ma), SLPI=[1.6](%), Impervious surfaces: IAinp=[1.57](ma), SCI=[0.0](min), Impervious surfaces: IAinp=[1.57](ma), DMT=[0.03], SCT=[0.0 RAINFALL=[, , ,](mm/hr), END=-1 [] RAINFALL=[, , ,](mm/hr), END=-1 [] IDsum=[4], NHYD=['050"], IDs to add=[1+2] [] IDsum=[5], MHYD=['050"], IDs to add=[3+4]</pre>
00337> 00338> 00339> 00340> 00340> 00342> 00343> 00345 * Remaining H 00346> ************************************	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts) </pre>	00472> * SUB-AREA No.2 00472> * SUB-AREA No.2 00473> 00474> CALIB STANDHYD 00475> 00477> 00477> 00477> 00478> 00480> 00481> * 00481> * 00481> * 00481> * 00481> * 00481> * 00482> * 00482> 00492> 00492> 00492> 00492> 00492> 00495> 4 00500 4 00500 0 0 0 0 0 0 0 0 0 0 0 0	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOS=[2], SCS curve number CM=[81], Pervious surfaces: IAperc[4.67](nm), SLPP=[1.0](%), LDP=[5](m), MNF=[0.03], SCF=[0.0](min), Impervious surfaces: IAinp=[1.57](nm), SLPI=[0.50](%), LDE=[244.34](m), MMT=[0.03], SCI=[0.0] RAINFALL=[, , , ,](mm/hr), END=-1] ID=[3], MHYD=['030"], DT=[2.5](min), AREA=[1.4](ha), XIMD=[0.57], TIMF=[0.97], DWF=[0.0](cms), LOSS=[2], SC curve number CM=[81], Pervious surfaces: IAinp=[1.67](ma), SLPI=[1.6](%), Impervious surfaces: IAinp=[1.67](ma), SLPI=[1.6](%), Impervious surfaces: IAinp=[1.57](ma), SCI=[0.0](min), Impervious surfaces: IAinp=[1.57](ma), DMT=[0.03], SCT=[0.0 RAINFALL=[, , ,](mm/hr), END=-1 [] RAINFALL=[, , ,](mm/hr), END=-1 [] IDsum=[4], NHYD=['050"], IDs to add=[1+2] [] IDsum=[5], MHYD=['050"], IDs to add=[3+4]</pre>
00337> 00338> 00338> 00340> 00341> 00342> 00343> 00345 * Remaining H 00346> ************************************	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts)</pre>	00472> * SUB-AREA No.2 00472> * SUB-AREA No.2 00473> 00474> CALIB STANDHYD 00475> 00477> 00477> 00478> 00478> 00480> 00482> * 00482> *	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.0](%, Impervious surfaces: IAper=[1.57](mm), SLP1=[0.03], SCF=[0.0](min), Impervious surfaces: IAimp=[1.57](mm), SLP1=[0.03], SCI=[0.0] RAINFALL=[, , ,](mm/hr), EMD=-1 ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMF=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](rms), SLPP=[1.0](%), Impervious surfaces: IAper=[4.67](rms), SLPP=[1.0](%), Inpervious surfaces: IAper=[4.67](rms), SLPP=[0.0](min), RAINFALL=[, , , ,](mm/hr], EMD=-1 ID=[4], NHYD=["040"], IDS to add=[142] ID=[4], NHYD=["050"], LDS to add=[3+4] ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.59](ha),</pre>
00337> 00338> 00338> 00340> 00341> 00342> 00343> 00345> * Remaining H 00345> * Remaining H 00345> * SUB-AREA No.1 00345> * SUB-AREA No.1 00350> CALIB STANDHYD 00351> 00352> 00354> 00354> 00355> 00355> 00355> 00355> 00356> 00351> * 00362 * SUB-AREA No.2 00365> 00365> 00365>	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts) ***********************************</pre>	00472> * SUB-AREA No.2 00473> 00473> 00473> 00474> 00476> 00476> 00476> 00478> 00478> 00483> 00483> 00483> 00483> 00483> 00485> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505>	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CA=[81], Pervious surfaces: IAper=[4.67](nm), SLPP=[1.0](%), Impervious surfaces: IAper=[4.67](nm), SLPT=[0.50](%), ID=[244.34](m), MMT=[0.03], SCT=[0.0] RAINFALL=[, , ,](mn/hr), END=-1] ID=[3], MHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIND=[0.97], TIMP=[0.97], DWF=[0.01](cms), LOSS=[2], SCS curve number CA=[81], Pervious surfaces: IAper=[1.67](nm), SLPT=[1.0](%), Impervious surfaces: IAper=[1.67](nm), SLPT=[1.0](%), Impervious surfaces: IAper=[1.67](nm), SLPT=[1.0](%), Impervious surfaces: IAper=[1.67](nm), SLPT=[1.0](%), Impervious surfaces: IAper=[1.67](nm), SLPT=[1.0](%), Intervious surfaces: IAper=[1.67](nm), SLPT=[1.0](%), ID=[1.6], NHYD=["050"], IDs to add=[1+2] [] ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), INTMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],</pre>
00337> 00338> 00338> 00340> 00341> 00344> 00344> 00345> 00345> 00345> 00345> 00350>	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, -1] (max twenty pts) ***********************************</pre>	00472> * SUB-AREA No.2 00472> * SUB-AREA No.2 00473> 00475> 004775 004775 004775 00478> 00478> 00482> * 00482> * 00482> * 00482> * 00485 00485 00485 00486> 0	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper[4.67](rms), SLPP=[1.0](%), Impervious surfaces: IAper[4.67](rms), SLP1=[0.50](%), Intervious surfaces: IAimpe[1.57](rms), SLP1=[0.50](%), Intervious surfaces: IAimpe[1.57](rms), SLP1=[0.53], SCI=[0.0] RAIMPALL=[, , , ,](mm/hr), END=-1 ID=[3], NHYD=["030"], DT=[2.5](rmin), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper[4.67](rms), SLPP=[1.0](%), Intervious surfaces: IAper[4.67](rms), SLP=[0.0](rmin), Intervious surfaces: IAper[4.67](rms), SLP=[0.0](rmin), Intervious surfaces: IAper[4.67](rms), SLP=[0.0](s), Intervious surfaces: IAper[4.67](rms), SLP=[0.0](s), Intervious surfaces: IAper[4.67](rms), SLP=[0.51](%), Intervious surfaces: IAper[4.67](rms), IAPEA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](rms), LOSS=[2], SCS curve number CM=[81],</pre>
00337> 00338> 00338> 00340> 00341> 00342> 00343> 00345 * Remaining H 00346> ************************************	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1 , -1] (max twenty pts)</pre>	00472> * SUB-AREA No.2 00473> 00473> 00474> CALIB STANDHYD 00476> 00476> 00476> 00476> 00478> 00480> 00480> 00480> 00482> * 00483 * 00483 * 00484> * 00484> * 00486>	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](rms), SLPP=[1.0](%), Impervious surfaces: IAinp=[1.57](rms), SLP1=[0.50](%), ID=[244.34](m), MMT=[0.03], SCF=[0.0](min), ID=[244.34](m), MMT=[0.03], SCI=[0.0] RAINFALL=[, , ,](mm/hr), END=-1 ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMF=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](rms), SLPF=[1.0](%), ID=[0.03], SCI=[0.0](min), RAINFALL=[, , ,](mm/hr), END=-1 IDsum=[4], MRYD=["050"], LDS to add=[142] IDsum=[4], MRYD=["050"], LDS to add=[142] ID=[6], NHYD=["050"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](rms), SLPF=[0.7](%), ID=[0.97], SLP=[4.67](rms), SLP=[0.7](%), ID=[0.97], SCF=[0.0](cms), LDS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](rms), SLP=[0.0](min), ID=[0.07], SCF=[0.0](min), SLP=[0.0](min), ID=[0.07], SCF=[0.0](min), ID=[0.07], SCF=[0.0](min), SLP=[0.0](min), ID=[0.07], SCF=[0.0](min), ID=[0.07], SCF=[0.07](min), SLP=[0.0](min), ID=[0.07], SCF=[0.0](min), ID=[0.07], SCF=[0.07](min), SLP=[0.07](min), SLP=[0.07](min), ID=[0.07](min), ID=[0.07], SCF=[0.07](min), ID=[0.07](min), ID=[0.07](m</pre>
00337> 00338> 00339> 00340> 00341> 00342> 00343> 00345> 00346> 00346> 00346> 00346> 00346> 00350> CALIB STANDHYD 00350> CALIB STANDHYD 00350> 00355> 00355> 00355> 00356> 00356> 00355> 00356> 00355> 00356> 00357> 00356> 00357> 00377 00377 00377 0	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1 , -1] (max twenty pts)</pre>	00472> * SUB-AREA No.2 00473> 00473> 00474> CALIB STANDHYD 00476> 004775> 004775> 00476> 00483> 00480> 00481> 00482> *4	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAperc[4.67](rms), SLPP=[1.0](%), Impervious surfaces: IAinpe[1.57](rms), SLP1=[0.50](%), LD=[244.34](m), MMT=[0.03], SCT=[0.0](%), ID=[1.3], NHYD=["0.30"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.57], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAperc[4.67](rms), SLP2=(1.0](%), LGP=[5](m), MNP=[0.03], SCF=[0.0](min), Impervious surfaces: IAperc[4.67](rms), SLP2=(1.0](%), LGP=[5](m), MNP=[0.03], SCF=[0.0](min), Inpervious surfaces: IAperc[4.67](rms), SLP=[1.0](%), LGP=[5](m), MNP=[0.03], SCT=[0.0](min), Insurfaces: IAperc[4.67](rms), SLP=[0.7](%), Insurfaces: IAperc[4.67](rms), SLP=[0.7](%), ID=[6], NHYD=["050"], DS to add=[142] ID=[6], NHYD=["050"], DT=[2.5](min), AREA=[0.89](ha), XIMD=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[8], Pervious surfaces: IAperc[4.67](rms), SLP=[0.0]((min), Impervious surfaces: IAperc[4.63](ma), SLP=[0.0]((min), Impervious surfaces: IAperc[4.67](rms), SLP=[0.0](s), LCP=[1054.82](ma), MNT=[0.03], SCT=[0.0]((min), LCP=[1054.82](ma), MNT=[0.03], SCT=[0.0]((min), Impervious surfaces: IAperc[4.67](rms), SLP=[0.0](s), LCP=[1054.82](ma), MNT=[0.03], SCT=[0.0]((min)), Impervious surfaces: IAperc[4.67](rma), SLP=[0.0](s), LCP=[1054.82](ma), MNT=[0.03], SCT=[0.0]((min)), IAP=[1.57](rma), SLP=[0.03], SCT=[0.0]((min)), IAP=[1.57](rma), SLP=[0.03], (s)](s), LCP=[1054.82](ma), MNT=[0.03], SCT=[0.0]((min)), IAP=[1.57](rma), SLP=[0.03], SCT=[0.0]((min)), IAP=[1.57](rma), SLP=[0.3](s), (s), (s), (s), (s), (s), (s), (s),</pre>
00337> 00338> 00338> 00340> 00341> 00342> 00343> 00345 * Remaining H 00345 * SUB-AREA No.1 00350> CALIB STANDHYD 00350> 00352> 00355> 003	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts) ***********************************</pre>	00472> * SUB-AREA No.2 00472> * SUB-AREA No.2 00473> 00474> CALIB STANDHYD 00475> 00476> 00476> 00478> 00482> * 00482> * 00482> * 00482> * 00485> * SUB-AREA No.3 00485> 00486> 00486> 00486> 00486> 00489> 00492> 00492> 00493> 00495> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505 0	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](rms), SLPP=[1.0](%), Impervious surfaces: IAinp=[1.57](rms), SLP1=[0.50](%), ID=[244.34](m), MMT=[0.03], SCF=[0.0](min), ID=[244.34](m), MMT=[0.03], SCI=[0.0] RAINFALL=[, , ,](mm/hr), END=-1 ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMF=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](rms), SLPF=[1.0](%), ID=[0.03], SCI=[0.0](min), RAINFALL=[, , ,](mm/hr), END=-1 IDsum=[4], MRYD=["050"], LDS to add=[142] IDsum=[4], MRYD=["050"], LDS to add=[142] ID=[6], NHYD=["050"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](rms), SLPF=[0.7](%), ID=[0.97], SLP=[4.67](rms), SLP=[0.7](%), ID=[0.97], SCF=[0.0](cms), LDS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](rms), SLP=[0.0](min), ID=[0.07], SCF=[0.0](min), SLP=[0.0](min), ID=[0.07], SCF=[0.0](min), ID=[0.07], SCF=[0.0](min), SLP=[0.0](min), ID=[0.07], SCF=[0.0](min), ID=[0.07], SCF=[0.07](min), SLP=[0.0](min), ID=[0.07], SCF=[0.0](min), ID=[0.07], SCF=[0.07](min), SLP=[0.07](min), SLP=[0.07](min), ID=[0.07](min), ID=[0.07], SCF=[0.07](min), ID=[0.07](min), ID=[0.07](m</pre>
00337> 00338> 00338> 00339> 00340> 00341> 00342> 00343> 00345 * Remaining H 00345 * SUB-AREA No.1 00346> * SUB-AREA No.1 00350> CALIB STANDHYD 00350> 00355> 00375> 00375> 00375> 00375> CALIB STANDHYD 00375> 00375> 00375> CALIB STANDHYD	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1 , -1] (max twenty pts) ***********************************</pre>	00472> * SUB-AREA No.2 00472> * SUB-AREA No.2 00473> 00474> CALIB STANDHYD 00475> 00477> 00477> 00478> 00478> 00482> 00482> * 00482> * 00482> * 00485> 00485> 00485> 00485> 00485> 00485> 00485> 00485> 00485> 00495> 00505> 00505> 00505> 00510> 00505> 00510> 00505> 00510> 00505> 00510> 00505> 00510> 00505> 00510> 00505> 00510> 00505> 00510> 00505> 00510> 00505> 00510> 00505> 00510> 00505> 00510> 00505> 00510> 005050 00505> 0050505 005050 00505> 005050 005050 00505 0	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAperc[4.67](rms), SLPP=[1.0](%), Impervious surfaces: IAinpe[1.57](rms), SLP1=[0.50](%), LD=[244.34](m), MMT=[0.03], SCT=[0.0](%), ID=[1.3], NHYD=["0.30"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.57], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAperc[4.67](rms), SLP2=(1.0](%), LGP=[5](m), MNP=[0.03], SCF=[0.0](min), Impervious surfaces: IAperc[4.67](rms), SLP2=(1.0](%), LGP=[5](m), MNP=[0.03], SCF=[0.0](min), Inpervious surfaces: IAperc[4.67](rms), SLP=[1.0](%), LGP=[5](m), MNP=[0.03], SCT=[0.0](min), Insurfaces: IAperc[4.67](rms), SLP=[0.7](%), Insurfaces: IAperc[4.67](rms), SLP=[0.7](%), ID=[6], NHYD=["050"], DS to add=[142] ID=[6], NHYD=["050"], DT=[2.5](min), AREA=[0.89](ha), XIMD=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[8], Pervious surfaces: IAperc[4.67](rms), SLP=[0.0]((min), Impervious surfaces: IAperc[4.63](ma), SLP=[0.0]((min), Impervious surfaces: IAperc[4.67](rms), SLP=[0.0](s), LCP=[1054.82](ma), MNT=[0.03], SCT=[0.0]((min), LCP=[1054.82](ma), MNT=[0.03], SCT=[0.0]((min), Impervious surfaces: IAperc[4.67](rms), SLP=[0.0](s), LCP=[1054.82](ma), MNT=[0.03], SCT=[0.0]((min)), Impervious surfaces: IAperc[4.67](rma), SLP=[0.0](s), LCP=[1054.82](ma), MNT=[0.03], SCT=[0.0]((min)), IAP=[1.57](rma), SLP=[0.03], SCT=[0.0]((min)), IAP=[1.57](rma), SLP=[0.03], (s)](s), LCP=[1054.82](ma), MNT=[0.03], SCT=[0.0]((min)), IAP=[1.57](rma), SLP=[0.03], SCT=[0.0]((min)), IAP=[1.57](rma), SLP=[0.3](s), (s), (s), (s), (s), (s), (s), (s),</pre>
00337> 00338> 00339> 00340> 00341> 00342> 00345> * Remaining H 00345> * Remaining H 00345> * Remaining H 00345> * SUB-AREA No.1 00350> CALIB STANDHYD 00350> CALIB STANDHYD 00350> CALIB STANDHYD 00351> 00355> 00375> *5 00375> *5 00375> *5 00375> *5 00375> *5 00375> *5 00375> *5 00375> *5 00375> *5 00375> *5 00375> *5 00375> *5 00375> *5 00375> *5 00375> *5	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts) ***********************************</pre>	00472> * SUB-AREA No.2 00472> CALIB STANDHYD 00475> 004775> 004775> 004775> 004775> 00482> 00482> 00482> 00482> 00482> 00483> 00482> 00483> 004845> 004845 004845 00485> 004865 004865 004865 004865 004865 004865 004875 004875 004875 004865 004865 004865 004865 004865 004875 004975 005075 00	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAperc[4.67](rms), SLPP=[1.0](%), Impervious surfaces: IAinpe[1.57](rms), SLP1=[0.50](%), LD=[244.34](m), MMT=[0.03], SCT=[0.0](%), ID=[1.3], NHYD=["0.30"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.57], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAperc[4.67](rms), SLP2=(1.0](%), LGP=[5](m), MNP=[0.03], SCF=[0.0](min), Impervious surfaces: IAperc[4.67](rms), SLP2=(1.0](%), LGP=[5](m), MNP=[0.03], SCF=[0.0](min), Inpervious surfaces: IAperc[4.67](rms), SLP=[1.0](%), LGP=[5](m), MNP=[0.03], SCT=[0.0](min), Insurfaces: IAperc[4.67](rms), SLP=[0.7](%), Insurfaces: IAperc[4.67](rms), SLP=[0.7](%), ID=[6], NHYD=["050"], DS to add=[142] ID=[6], NHYD=["050"], DT=[2.5](min), AREA=[0.89](ha), XIMD=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[8], Pervious surfaces: IAperc[4.67](rms), SLP=[0.0]((min), Impervious surfaces: IAperc[4.63](ma), SLP=[0.0]((min), Impervious surfaces: IAperc[4.67](rms), SLP=[0.0](s), LCP=[1054.82](ma), MNT=[0.03], SCT=[0.0]((min), LCP=[1054.82](ma), MNT=[0.03], SCT=[0.0]((min), Impervious surfaces: IAperc[4.67](rms), SLP=[0.0](s), LCP=[1054.82](ma), MNT=[0.03], SCT=[0.0]((min)), Impervious surfaces: IAperc[4.67](rma), SLP=[0.0](s), LCP=[1054.82](ma), MNT=[0.03], SCT=[0.0]((min)), IAP=[1.57](rma), SLP=[0.03], SCT=[0.0]((min)), IAP=[1.57](rma), SLP=[0.03], (s)](s), LCP=[1054.82](ma), MNT=[0.03], SCT=[0.0]((min)), IAP=[1.57](rma), SLP=[0.03], SCT=[0.0]((min)), IAP=[1.57](rma), SLP=[0.3](s), (s), (s), (s), (s), (s), (s), (s),</pre>
00337> 00338> 00338> 00339> 00340> 00341> 00342> 00343> 00345> * Remaining H 00345> * Remaining H 00345> * SUB-AREA No.1 00345> * SUB-AREA No.1 00350> CALIB STANDHYD 00351> * 00355> 00357> 00357> 00375> * 00375> CALIB STANDHYD 00375> 00375>	<pre>[0.797, 0.7391] [0.956, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts) ************************************</pre>	00472> * SUB-AREA No.2 00472> * SUB-AREA No.2 00473> 00474> CALIB STANDHYD 00475> 00477> 00477> 00477> 00482> 00481> 00481> 00482> *4 00483> * 00483> * 00484> 00484> * SUB-AREA No.3 00486> 004	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.0](%), Impervious surfaces: IAper=[1.57](mm), SLP1=[0.50](%), RAINFALL=[, , ,](mm/hr), EMD=-1 ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMF=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLP2=[1.0](%), LOP=[5](m), MNF=[0.03], SCF=[0.0](min), RAINFALL=[, , ,](mm/hr), EMD=-1 ID=[4], NHYD=["040"], IDS to add=[14:2] ID=[4], NHYD=["050"], IDS to add=[14:2] ID=[6], NHYD=["050"], DT=[2.5](min), AREA=[0.59](ha), XIMP=[0.97], TIMF=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](min), SLP2=[0.0](min), ID=um=[4], NHYD=["050"], IDS to add=[14:2] ID=um=[5], NHYD=["050"], DT=[2.5](min), AREA=[0.59](ha), XIMP=[0.97], TIMF=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](mm), SLP2=[0.7](%), LOP=[40](m), MH=[0.03], SCI=[0.0](min), Impervious surfaces: IAper=[4.57](mm), SLP=[0.3](%), IC=1=[164:32[mm, MH=[0.03], SCI=[0.0](min)], Impervious surfaces: IAper=[4.57](mm), SLP=[0.0](sm), Impervious surfaces: IAper=[4.57](mm), SLP=[0.0](sm), Impervious surfaces: IAper=[4.57](mm), SLP=[0.0](sm), Impervious surfaces: IAper=[4.57](mm), SLP=[0.03](%), ILD=[40](m), MH=[0.03], SCI=[0.0](min)], Impervious surfaces: IAper=[4.57](mm), SLP=[0.03](%), ILD=[40](m), MH=[0.03], SCI=[0.0](min)], Impervious surfaces: IAper=[4.57](mm), SLP=[0.03](%), ILD=[40](m), MH=[0.03], SCI=[0.0](min)], Impervious surfaces: IAper=[4.57](mm), SLP=[0.03](%), ILD=[40](m), MH=[0.03], SCI=[0.0](%), ILD=[40](m), MH=[0.03], SCI=[0.0](%), ILD=[40](m)</pre>
00337> 00338> 00338> 00339> 00340> 00341> 00342> 00343> 00343> 00345 * Remaining H 00346> * SUB-AREA No.1 00348> * SUB-AREA No.1 00359> 00350> 00351> 00355> 00375> 0	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts) </pre>	00472> * SUB-AREA No.2 00472> * SUB-AREA No.2 00473> 00473> 00475> 00476> 00477> 00477> 00478> 00478> 00478> 00482> 00482> 00482> 00482> 00482> 00485> 00505> 00505> 00510> * SUB-AREA No.5 00512> * SUB-AREA No.5 00514> 00514> CALIB STANDHYD 00515> 00514> CALIB STANDHYD	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IApere[4.67](mm), SLPP=[1.0](%), Impervious surfaces: IApere[4.67](mm), SLP1=[0.50](%), CDT=[244.34](m), MMT=[0.03], SCT=[0.0](m1), RAINFALL=[, , ,](mm/hr), EMD=-1 ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMF=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IApere[4.67](mm), SLP2=[1.0](%), LCP=[5](m), MNY=[0.03], SCF=[0.0](min), Impervious surfaces: IApere[4.67](mm), SLP2=[1.0](%), LCP=[5](m), MNY=[0.03], SCF=[0.0](min), RAINFALL=[, , ,](mm/hr), END=-1 IDsume[4], NNYD=["040"], IDS to add=[1+2] IDsume[4], NNYD=["050"], DT=[2.5](min), AREA=[0.59](ha), XIMP=[0.97], TIMF=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IApere[4.67](mn), SLP=[0.7](%), LCD=[4](M), NNF=[0.57], CSS=[2], SCS curve number CM=[81], Pervious surfaces: IApere[4.67](mn), SLP=[0.7](%), LCD=[4](M), NNF=[0.57], CSS=[2], SCI=[0.0](min), Tmpervious surfaces: IApere[4.67](mn), SLP=[0.7](%), LCD=[4](M), NNF=[0.57], CSI=[0.0](min), Impervious surfaces: IApere[4.67](mn), SLP=[0.7](%), LCD=[4](M), SLP=[0.7], SCI=[0.0](min) Impervious surfaces: IApere[4.67](mn), SLP=[0.3](%), RAINFALL=[, , ,](mm/hr), END=-1 ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMF=[0.97], DT=[0.0](cms), LOSS=[2], SCI=[0.01](min) Impervious surfaces: IApere[4.67](mn), SLP=[2.65](ha), XIMP=[0.97], TIMF=[0.77], DT=[0.0](cms), LOSS=[2], SCI=[0.01](min) ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMF=[0.77], DT=[0.01](cms), LOSS=[2], SCI=[0.01](m1), SLP=[2.6](ha), XIMP=[0.97], TIMF=[0.77], DT=[0.01](cms), LOSS=[2], SCI=[0.01](m1), SLP=[2.6](ha), XIMP=[0.97], TIMF=[0.77], DT=[0.01](cms), LOSS=[2], SCI=[1.60](m2), SCI=[2.6](ha), XIMP=[0.97], TIMF=[0.77], DT=[0.01](cms), LOSS=[2], XIMP=[0.97], TIMF=[0.77], DT=[0.01](cms), LOSS=[2], XIMP=[0.97], TIMF=[0.77], DT=[0.01](cms), LOSS=[2], XIMP=[0.97], TIMF=[0.77], DT=[0.01](cms), LOSS=[2], XIMP=[0.97], T</pre>
00337> 00338> 00338> 00339> 00340> 00341> 00342> 00343> 00344> ***********************************	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, -1] (max twenty pts)</pre>	00472> * SUB-AREA No.2 00473> 00473> 00473> 00474> 00475> 00476> 00477> 00477> 00478> 00483> 00481> 00482> 00482> 00483> 00483> 00483> 00483> 00484> 00484> 00484> 00484> 00484> 00484> 00485> 00486> 00486> 00486> 00486> 00486> 00486> 00489> 00489> 00489> 00493> 00495> 00505> 00505> 00515>	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](rms), SLPP=[1.0](%), Impervious surfaces: IAper=[4.67](rms), SLP=[0.0](min), Impervious surfaces: IAinpe=[1.57](rms), SLP=[0.03], SCI=[0.0] RAINFALL=[, , , ,](mm/hr], END=-1 ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](rms), SLPF=[1.0](%), LGP=[5](m), MNP=[0.03], SCF=[0.0](min), Impervious surfaces: IAper=[4.67](rms), SLP=[1.0](%), LGP=[5](m), MNP=[0.03], SCF=[0.0](min), Impervious surfaces: IAper=[4.67](rms), SLP=[1.0](%), LGP=[5](m), MNP=[0.53](m), SLP=[0.7](%), RAINFALL=[, , , ,](mm/hr), END=-1 IDsum=[4], NHYD=["050"], DSt co add=[1+2] ID=[6], NHYD=["050"], DT=[2.5](min), AREA=[0.89](ha), XIMF=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[31], Pervious surfaces: IAinpe=[1.57](rms), SLP=[0.7](%), Pervious surfaces: IAinpe=[1.57](rms), SLP=[0.0](min), Impervious surfaces: IAinpe=[1.57](rms), SLP=[0.0](min), Impervious surfaces: IAinpe=[1.57](rms), SLP=[0.0](%), Impervious surfaces: IAinpe=[1.57](rms), SLP=[0.0](%), Impervious surfaces: IAinpe=[1.57](rms), SLP=[0.0](%), IMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMF=[0.97], IMF=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81],</pre>
00337> 00338> 00339> 00340> 00341> 00341> 00342> 00343> 00345> * Remaining H 00345> * Remaining H 00345> * SUB-AREA No.1 00345> * SUB-AREA No.1 00350> CALIB STANDHYD 00351> 00352> 00352> 00354> 00355> 00355> 00355> 00355> 00355> 00355> 00356> 00355> 00356> 00355> 00356> 00355> 00356> 00356> 00356> 00356> 00356> 00356> 00356> 00356> 00356> 00356> 00356> 00356> 00356> 00356> 00356> 00356> 00356> 00356> 00357> 00357> 00357> 00377> 003	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts) ************************************</pre>	00472> * SUB-AREA No.2 00473> 00473> 00473> 00474> 00475> 00476> 00476> 00476> 00482> 00481> 00482> 00482> 00482> 00482> 00482> 00483> 00484> 00484> 00484> 00484> 00484> 00485> 00486> 00486> 00486> 00486> 00486> 00486> 00486> 00486> 00486> 00486> 00486> 00486> 00486> 00486> 00486> 00486> 00486> 00486> 00486> 00489> 00493> 00493> 00493> 00493> 00495> 00505> 00505> 00515>	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[8], Pervious surfaces: IAper=[4.67](rms), SLPP=[1.0](%), Impervious surfaces: IAper=[4.67](rms), SLP=[0.0](min), Impervious surfaces: IAinpe[1.57](rms), SLP=[0.03], SCI=[0.0] RAINFALL=[, , ,](mm/hr], END=-1 ID=[3], NHYD=["030"], DTF=[0.0](cms), LOSS=[2], SCS curve number CM=[8]], Pervious surfaces: IAper=[4.67](rms), SLPF=[1.0](%), IAPerVious surfaces: IAper=[4.67](rms), SLPF=[1.0](%), IAPerVious surfaces: IAper=[4.67](rms), SLPF=[1.0](%), IAPerVious surfaces: IAper=[4.67](rms), SLPF=[1.0](%), IAPerVious surfaces: IAper=[4.67](rms), SLPF=[0.0](min), IAPerVious surfaces: IAper=[4.67](rms), SLPF=[0.0](min), IDsum=[4], NHYD=["050"], DSt to add=[1+2] IDsum=[4], NHYD=["050"], DSt to add=[1+2] IDsum=[5], NHYD=["050"], DSt to add=[1+2] ID=[6], NHYD=["050"], DT=[2.5](min), AREA=[0.89](ha), XIMF=[0.97], TIMF=[0.97], DWF=[0.0](rms), LDF=[0.3](%), IGF=[164.32](rm), SLPF=[0.3](%), IGF=[164.32](rm), SLPF=[0.3](%), IGF=[164.32](rm), SLP=[0.3](%), ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMF=[0.97], IMF=[0.97], DWF=[0.0](rms), LDF=[0.3](%), ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMF=[0.97], IMF=[0.97], DWF=[0.0](rms), LDF=[0.3](%), ID=[7], NHYD=["070"], DT=[2.5](min), SLP=[0.5](%), ID=[7], NHYD=["070"], DT=[2.5](min), SLP=[1.5](%), ID=[7], NHYD=["070"], DT=[2.5](min), NHP=[0.5], SCP=[0.0](min), ID=[7], NHYD=["070"], DT=[2.5](min), IAPE=[1.5](%), ID=[7], NHYD=["070"], DT=[2.5](min), IAPE=[1.5](%), ID=[7], SLP=[0.0](min), SLP=[1.5](%), ID=[7], SLP=[0.0](min), SLP=[1.5](%), ID=[7], SLP=[0.0](min), SLP=[1.5](%), ID=[7], SLP=[1.5](%), ID=[1.5](%), ID=[7], SLP=[1.5](%),</pre>
00337> 00338> 00339> 00340> 00341> 00341> 00341> 00342> 00343> 00350>	<pre>[0.797, 0.7391] [0.956, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts) authorne Industrial Park *</pre>	00472> * SUB-AREA No.2 00473> 00473> 00474> 00474> 00474> 00476> 00476> 00476> 00476> 00478> 00483> 00483> 00483> 00483> 00483> 00484> 00484> 00484> 00484> 00484> 00484> 00492> 00495> 00495> 00495> 00495> 00495> 00485> 00505>	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](rmn), SLPP=[1.0](%), Impervious surfaces: IAper=[1.57](rmn), SLP1=[0.50](%), Intervious surfaces: IAper=[1.57](rmn), SLP1=[0.50](%), Intervious surfaces: IAper=[4.67](rmn), SLP1=[0.51](%), Intervious surfaces: IAper=[4.67](rmn), SLP2=[1.0](%), Intervious surfaces: IAper=[4.67](rmn), SLP2=[0.0](rm1), IDsum=[4], NHYD=["050"], IDs to add=[1+2] IDsum=[5], NHYD=["050"], IDs to add=[1+2] IDsum=[5], NHYD=["050"], IDs to add=[1+2] IDsum=[5], NHYD=["050"], IDs to add=[3+4] IDsum=[5], NHYD=["050"], IDs to add=[3+3] IDsum=[5], NHYD=["050"], IDs to add=[3+3] IDsum=[1.57](rmn), SLP2=[0.3](%), Intervious surfaces: IAper=[4.67](rmn), SLP3, SCT=[0.0](rm1), Impervious surfaces: IAper=[4.67](rmn), SLP=[0.3](%), Intervious surfaces: IAper=[4.67](rmn), SLP=[0.3](%), IDsum=[1.57](rmn), SLP=[0.3](%), IDsum=[1.57](rmn), SLP=[0.3](%), IDsum=[0.97], ITMP=[0.97], DVF=[0.0](rm1), IASEA=[2.65](ha), XIMP=[0.97], ITMP=[0.97], DVF=[0.0](rm2), IASEA=[2.65](ha), XIMP=[0.97], ITMP=[0.97], DVF=[0.0](rm2), IASEA=[2.65](ha</pre>
00337> 00338> 00339> 00340> 00341> 00341> 00342> 00343> 00345> 00346> 00346> 00346> 00346> 00346> 00350> CALIB STANDHYD 00350> CALIB STANDHYD 00350> 00355> 00375>	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts) ************************************</pre>	00472> * SUB-AREA No.2 00473> 00473> 00474> 004775 004775 004775 004775 004775 004775 00483> 00483> 00480> 00481> 00482> 00483 * 00483 * 00485 00505 00	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[8], Pervious surfaces: IAper=[4.67](rms), SLPP=[1.0](%), Impervious surfaces: IAper=[4.67](rms), SLP=[0.0](min), Impervious surfaces: IAinpe[1.57](rms), SLP=[0.03], SCI=[0.0] RAINFALL=[, , ,](mm/hr], END=-1 ID=[3], NHYD=["030"], DTF=[0.0](cms), LOSS=[2], SCS curve number CM=[8]], Pervious surfaces: IAper=[4.67](rms), SLPF=[1.0](%), IAPerVious surfaces: IAper=[4.67](rms), SLPF=[1.0](%), IAPerVious surfaces: IAper=[4.67](rms), SLPF=[1.0](%), IAPerVious surfaces: IAper=[4.67](rms), SLPF=[0.0](min), IAPerVious surfaces: IAper=[4.67](rms), SLPF=[0.0](min), IAPerVious surfaces: IAper=[4.67](rms), SLPF=[0.0](min), IDsum=[4], NHYD=["050"], DSt to add=[1+2] IDsum=[4], NHYD=["050"], DSt to add=[1+2] IDsum=[5], NHYD=["050"], DSt to add=[1+2] ID=[6], NHYD=["050"], DT=[2.5](min), AREA=[0.89](ha), XIMF=[0.97], TIMF=[0.97], DWF=[0.0](rms), SLP=[0.0](min), IMPerVious surfaces: IAper=[4.67](rms), SLP=[0.3](%), IDF=[1.0](m), SLP=[0.3](%), IDF=[1.0](m), SLP=[0.3](%), IDF=[1.0](m), SLP=[0.3](%), IDF=[1.0](m), IMT=[0.3], SCI=[0.0](min), IMPerVious surfaces: IAper=[4.67](rms), SLP=[0.3](%), IDF=[1.0](m), SLP=[0.3](%), IDF=[1.0](m), SLP=[0.3](%), IDF=[1.0](m), IMT=[0.3], SCI=[0.0](min), IMTP=[0.97], IMTP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[8]], Pervious surfaces: IAper=[4.67](rms), SLP=[1.5](%), IDF=[1.5](%), IDF=[2.5](min), NEP=[1.5](%), IDF=[2.0.0](m), NEP=[0.5], SCP=[0.0](min), IMTP=[0.97], IMTP=[0.97], IMT=[0.0](min), SLP=[1.5](%), IDF=[20.0](m), NEP=[0.0](m), NEP=[0.5], SCP=[0.0](min), IDF=[20.0](m), NEP=[0.0](min), SLP=[1.5](%), IDF=[20.0](min), NEP=[0.5], SCP=[0.0](min), IDF=[20.0](min), NEP=[0.5], SCP=[0.0](min), IDF=[20.0](min), NEP=[0.5], SCP=[0.0](min), IDF=[20.0](min), NEP=[0.5], SCP=[0.0](min), IDF=[20.0](min), NEP=[0.0](min), IDF=[2.5](min), IDF=[</pre>
00337> 00338> 00339> 00340> 00341> 00341> 00342> 00343> 00345 * SUB-AREA No.1 00346> * SUB-AREA No.1 00350> 00360> 00360> 00360> 00360> 00360> 00360> 00360> 00360> 00360> 00360> 00360> 00360> 00370>	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts) ***********************************</pre>	00472> * SUB-AREA No.2 00473> 00473> 00474> CALIB STANDHYD 00475> 00476> 00477> 00477> 00478> 00483> * 00483> * SUB-AREA No.3 00483> * SUB-AREA No.3 00485> 00495> 00495> 00495> 00495> 00495> 00495> 00495> 00495> 00495> 00495> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00515	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOS=[2], SCS curve number CM=[81], Pervious surfaces: IAper[4.67](mm), SLPP=[1.0](%), Impervious surfaces: IAper[4.67](mm), SLP1=[0.03], SCT=[0.0](m1), Impervious surfaces: IAimp=[1.57](mm), SLP1=[0.03], SCT=[0.0] RAIMFALL=[, , ,](mm/hr), EMP=1 </pre>
00337> 00338> 00339> 00340> 00341> 00341> 00341> 00342> 00343> 00345 * SUB-AREA No.1 00346> * SUB-AREA No.1 00350> 00360> 00360> 00360> 00360> 00360> 00360> 00360> 00360> 00360> 00360> 00360> 00370> 00380> *0 *0 *0 *0 *0 *0 *0 *0 *0 *0	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts) ***********************************</pre>	00472> * SUB-AREA No.2 00473> 00473> 00474> CALIB STANDHYD 00475> 00476> 00477> 00477> 00478> 00482> 00482> 00482> 00482> 00482> 00482> 00482> 00485> 00495> 00495> 00495> 00505> 00515>	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IApere[4.67](nm), SLPP=[1.0](%), Impervious surfaces: IApere[4.67](nm), SLP1=[0.03], SCI=[0.0](min), Impervious surfaces: IAinpe[1.57](nm), SLP1=[0.03], SCI=[0.0] RAINFALL=[, , ,](amArb:), EMD=-1 </pre>
00337> 00338> 00339> 00340> 00341> 00341> 00342> 00345> * Remaining H 00346> * SUB-AREA No.1 00346> * SUB-AREA No.2 00350> 00360> 00370>	<pre>[0.797, 0.7391] [0.956, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts) ***********************************</pre>	00472> * SUB-AREA No.2 00473> 00473> 00474> 004775 004775 004775 004775 004775 004775 00483> 00481> 00481> 00482> 00482> 00482> 00483 00483 00485 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00495 00505	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](rms), SLPP=[1.0](%), Impervious surfaces: IAper=[4.67](rms), SLP1=[0.50](%), Interview surfaces: IAper=[4.67](rms), SLP1=[0.50](%), Interview surfaces: IAper=[4.67](rms), SLP1=[0.51](%), IMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](rms), SLPP=[1.0](%), Impervious surfaces: IAper=[4.67](rms), SLPP=[1.0](%), Interview surfaces: IAper=[4.67](rms), SLPP=[1.0](%), Interview surfaces: IAper=[4.67](rms), SLPP=[1.0](%), Interview surfaces: IAper=[4.67](rms), SLPP=[1.0](%), Interview surfaces: IAper=[4.67](rms), SLPP=[0.0](rmi), SCS curve number CM=[81], Perview surfaces: IAper=[4.67](rms), SLPP=[0.7](%), Interview surfaces: IAper=[4.67](rms), SLPP=[0.7](%), Interview surfaces: IAper=[4.67](rms), SLPP=[0.7](%), Interview surfaces: IAper=[4.67](rms), SLP=[0.0](min), Imperview surfaces: IAper=[4.67](rms), SLP=[0.0](%), Interview surfaces: IAper=[4.67](rms), SLP=[1.5](%), Interview surfaces: IAper=[4.67](rms), SLP=[1.5](%), Interview surfaces: IAper=[4.67](rms), SLP=[1.5](%), Imperview surfaces: IAper=[4.67](rms), SLP=[1.6](%), Imperview surfaces: IAper=[4.67](rms), S</pre>
00337> 00338> 00338> 00339> 00340> 00341> 00342> 00343> 00344> 00345> Remaining H 00346> CALIB STANDHYD 00350> CALIB STANDHYD 00350> 00355> 00357> 00375> 0	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts) ***********************************</pre>	00472> * SUB-AREA No.2 00473> 00473> 00474> 00475> 004775 004775 004775 004775 004775 00482> 00481> 00482> 00482> 00482> 00482> 00483> 00483> 00484> 00484> 00485 00486> 00485 00486> 00485 00486> 00485 00505	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IApere[4.67](nm), SLPP=[1.0](%), Impervious surfaces: IApere[4.67](nm), SLP1=[0.03], SCI=[0.0](min), Impervious surfaces: IAinpe[1.57](nm), SLP1=[0.03], SCI=[0.0] RAINFALL=[, , ,](amArb:), EMD=-1 </pre>
00337> 00338> 00338> 00339> 00340> 00341> 00341> 00342> 00343> 00343> 00345> * Remaining H 00345> * SUB-AREA No.1 00350> CALIB STANDHYD 00350> CALIB STANDHYD 00350> CALIB STANDHYD 00352> 00353> 00355> 00375> 003	<pre>[0.797, 0.7391] [0.956, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts) ***********************************</pre>	00472> * SUB-AREA No.2 00473> 00473> 00474> CALIB STANDHYD 00476> 00476> 00477> 00478> 00478> 00483> 00483> 00482> 00482> 00482> 00484> 00485> 00485> 00486> 00493> 00493> 00493> 00493> 00495> ADD HYD 00495> 40	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SGS curve number CM=[81], Pervious surfaces: IApere[4.67](mm), SLPP=[1.0](%), Impervious surfaces: IApere[4.67](mm), SLP1=[0.03], SGT=[0.0](min), Impervious surfaces: IAinpe[1.57](mm), SLP1=[0.03], SGT=[0.0] NIMPELL=[, , ,](mm/hr), EMD=-1 ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SGS curve number CM=[81], Pervious surfaces: IApere[4.67](mm), SLPP=[1.0](%), Impervious surfaces: IApere[4.67](mm), SLPP=[1.0](%), Impervious surfaces: IApere[4.67](mm), SLPP=[1.0](%), IMPELL=[, , ,](mm/hr), EMD=-1 IDsum=[4], NHYD=["040"], IDs to add=[1+2] IDsum=[4], NHYD=["050"], IDs to add=[3+4] IDsum=[5], NHYD=["050"], IDs to add=[3+4] IDsum=[1.57](mm), SLP=[0.3](%), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](mm), SLP=[0.7](%), IGP=[10, SLP=[1.57](mm), SLP=[0.7](%), IGP=[10, SLP=[1.57](mm), SLP=[0.3](%), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SGS curve number CM=[81], Pervious surfaces: IApere[4.67](mm), SLP=[0.3](%), IMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SGS curve number CM=[81], Pervious surfaces: IApere[4.67](mm), SLP=[0.3](%), IGP=[10.03], SCI=[0.0](min), IMPErvious surfaces: IApere[4.67](mm), SLP=[0.3](%), IGP=[20.0](m), MMT=[0.25], SCD=[0.0](min) Impervious surfaces: IApere[4.67](mm), SLP=[1.5](%), IGP=[20.0](m), MMT=[0.25], SCD=[0.0](min) Impervious surfaces: IApere[4.67](mm), SLP=[1.6](%), IGP=[20.0](m), MMT=[0.25], SCD=[0.0](min) Impervious surfaces: IApere[4.67](mm), SLP=[1.5](%), IGP=[20.0](m), MMT=[0.25], SCD=[0.0](min) Impervious surfaces: IApere[4.67](mm), SLP=[1.5](%), IGP=[20.0](m), MMT=[0.03], SCI=[0.0](min) Impervious surfaces: IApere[4.67](mm), SLP=[1.5](%), IGP=[20.25](m), MMT=[0.03], SCI=</pre>
00337> 00338> 00338> 00339> 00340> 00341> 00341> 00342> 00343> 00343> 00345> * Remaining H 00345> * SUB-AREA No.1 00346> * SUB-AREA No.1 00350> CALIB STANDHYD 00350> CALIB STANDHYD 00351> 00352> 00355> 00365> 00365> 00365> 00365> 00365> 00375> 00	<pre>[0.797, 0.7391] [0.950, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, -1] (max twenty pts) ***********************************</pre>	00472> * SUB-AREA No.2 00473> 00473> 00474> 00475> 004775 004775 004775 004775 004775 00482> 00481> 00482> 00482> 00482> 00482> 00483> 00483> 00484> 00484> 00485 00486> 00485 00486> 00485 00486> 00485 00505	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SOS curve number CM=[81], Pervious surfaces: IAper=[4.67](rms), SLPP=[1.0](%), Impervious surfaces: IAper=[1.57](rms), SLP=[0.03], SCT=[0.0](min), Introduction in the state of the st</pre>
00337> 00338> 00339> 00340> 00341> 00341> 00342> 00343> 00345 * Remaining H 00345 * SUB-AREA No.1 00345 * SUB-AREA No.1 00350> 00350> CALIB STANDHYD 00351> 00352> 00354> 00355> 00355> 00355> 00356> 00357> 00356> 00357> 00357> 00356> 00357> 00356> 00367> 00356> 00367> 00357> 00356> 00357> 00357> 00356> 00367> 00356> 00367> 00356> 00367> 00356> 00367> 00356> 00367> 00356> 00368> 0036	<pre>[0.797, 0.7391] [0.956, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts) ***********************************</pre>	00472> * SUB-AREA No.2 00473> 00473> 00474> CALIB STANDHYD 00475> 00477> 00477> 00477> 00478> 00483> 00481> 00482> *4 00483> * SUB-AREA No.3 004845 * SUB-AREA No.3 00486> 00486> 00486> 00486> 00487> 00486> 00489> 00489> 00492> *4 00495> *4 00495> *4 00495> *4 00495> *4 00495> *4 00495> *4 00495> *4 00495> *5 00495> *5 00495> *5 00495> *5 00495> *5 00495> *5 00495> *5 00495> *5 00495> *5 00495> *5 00495> *5 00495> *5 0050> 0050> 0050> 0050> 0050> 0050> 0050> 0050> 0050> 00512> *5 00512>	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SOS curve number CM=[81], Pervious surfaces: IApers[4.67](rms), SLPP=[1.0](%), Impervious surfaces: IApers[4.67](rms), SLP1=[0.50](%), ILD=[244.34](m), MMT=[0.03], SCT=[0.0](min), RAINFALL=[, , , ,](mm/hr], END=-1 ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.57], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IApers[4.67](rms), SLPP=(1.0](%), ILGP=[5](m), MNY=[0.03], SCP=[0.0](min), RAINFALL=[, , , ,](mm/hr], END=-1 ID=[6], NHYD=["050"], DST=[2.5](min), MNI=[0.03], SCT=[0.0] RAINFALL=[, , , ,](mm/hr], END=-1 ID=[6], NHYD=["050"], DSt to add=[142] ID=[6], NHYD=["050"], DSt to add=[344] ID=[6], NHYD=["050"], DSt to add=[344] ID=[1.5], SCI=[0.0](min), SLP=[0.7](%), ICD=[1.5](mn), SLP=[0.0](min), SCI=[0.0](min), IMPERVIOUS surfaces: IApers[4.67](rms), SLP=[0.0](min), INPERVIOUS surfaces: IApers[4.67](rms), SLP=[0.0](min), INPERVIOUS surfaces: IApers[4.67](rms), SLP=[0.0](min), IMPERVIOUS surfaces: IApers[4.67](rms), SLP=[0.0](min), IMPERVIOUS surfaces: IApers[4.67](rms), SLP=[0.0](min), INPERVIOUS surfaces: IApers[4.67](rms), SLP=[0.0](min), IMPERVIOUS surfaces: IAPERS[1.5](min), AREA=[2.66](ha), XIMM=[0.97], TIME=[0.97], DT=[2.5](min), AREA=[2.66](ha), XIMM=[0.97], SIMM=[0.97], DT=[2.5](min), SLP=[0.0](min), IMPERVIOUS surfaces: IApers[[1.57](rms), SLP=[1.5]](%), ID=[1.5](min), MMT=[0.03], SCI=[0.0](min), IMPERVIOUS surfaces: IApers[[1.57](rms), SLP=[1.5]](%), ID=[1.5], NHTD=["000"], ID to add=[5+0] ID=[1.5], NHTD=["000"], ID to</pre>
00337> 00338> 00339> 00340> 00341> 00341> 00342> 00343> 00343> 00345 * Remaining H 00345 * SUB-AREA No.1 00345 00350 00350 00350 00350 00350 00355 003	<pre>[0.797, 0.7391] [0.956, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts) ***********************************</pre>	00472> * SUB-AREA No.2 00473> 00473> 00474> 00474> 00475> 00476> 00476> 00476> 00478> 00483> 00483> 00483> 00483> 00483> 00484> 00484> 00484> 00484> 00484> 00484> 00485> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00515> 00515> 00515> 00515> 00515> 00515> 00515> 00515> 00515> 00515> 00515> 00515> 00515> 00515> 00515> 00516> 00522> 4 	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOS=[2], SCS curve number CM=[81], Pervious surfaces: IAper[4.67](rmn), SLPP=[1.0](%), Impervious surfaces: IAper[1.57](rmn), SLP1=[0.50](%), Intervious surfaces: IAper[1.57](rmn), SLP1=[0.50](%), Intervious surfaces: IAper[4.67](rmn), SLP1=[0.51](%), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper[4.67](rmn), SLP2=[1.0](%), Intervious surfaces: IAper[4.67](rmn), SLP2=[1.0](%), Intervious surfaces: IAper[4.67](rmn), SLP2=[1.0](%), Intervious surfaces: IAper[4.67](rmn), SLP2=[1.0](%), Intervious surfaces: IAper[4.67](rmn), SLP2=[0.0](min), NAINFALL=[, ,] (mm/hr], EMD=-1 IDsume[4], NNYD=["040"], IDs to add=[1+2] IDsume[4], NNYD=["040"], IDs to add=[1+2] IDsume[5], NHYD=["050"], IDs to add=[3+4] IDsume[5], NHYD=["070"], DT=[2.5](min), SLP3[0, SCT=[0.0](min), Impervious surfaces: IAper[4.67](rmn), SLP3[0, SCT=[0.0](min)] Impervious surfaces: IAper[4.67](mm), SLP3[0, SCT=[0.0](min)] IMPE[0.97], IIMF=[0.97], DWT=[0.0](cms), LOSS=[2], SCS curve number CM=[8], IDsum=[6], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMF=[0.97], IIMF=[0.97], DWT=[0.0](cms), LOSS=[2], SCS curve number CM=[8], IDsum=[6], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMF=[0.97], IIMF=[0.97], DWT=[0.0](cms), LOSS=[2], SCS curve number CM=[8], IDsum=[6], NHYD=["070"], DT=[2.5](min), SLP=[1.5](6], IDsum=[6], NHYD=["060"], IDs to add=[6+7] IDsum=[6], NHYD=["060"], IDs to add=[6+7] IDsum=[6], NHYD=["060"], IDs to add=[5+6] IDsum=[6], NHYD=["060"], IDs to add=[5+6] IDsum=[9], NHYD=["060"], IDs to add=[5+6] IDsum=[9], NHYD=["060"], IDs to add=[5+6] IDsum=[</pre>
00337> 00338> 00339> 00340> 00341> 00342> 00343> 00345> 00346> 00346> 00346> 00346> 00346> 00346> 00346> 00350> 00360> 00360> 00370> 00380>	<pre>[0.797, 0.7391] [0.956, 0.2874] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts) ************************************</pre>	00472> * SUB-AREA No.2 00473> 00473> 00474> 00475> 004775> 004775> 00476> 00476> 00483> 00483> 00483> 00483> 00483> 00483> 00484> 00484> 00484> 00484> 00485> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00516> 00515> 00516> 00516> 00520> 00522> 00522> 00522> 00522> 00522> 00522> 00522> 00523> ADD HYD 00525> 00516> 00520> 005	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOS=[2], SCS curve number CM=[81], Pervious surfaces: IAper[4.67](nm), SLPP=[1.0](%), Impervious surfaces: IAper[4.67](nm), SLP1=[0.03], SCT=[0.0](min), Impervious surfaces: IAper[1.57](nm), SLP1=[0.03], SCT=[0.0] RAINFALL=[, , , ,](mm/h1), EMD=-1 </pre>
00337> 00338> 00339> 00340> 00341> 00341> 00342> 00343> 00343> 00345 * Remaining H 00345 * SUB-AREA No.1 00345 00350 00350 00350 00350 00350 00355 003	<pre>[0.797, 0.7391] [0.956, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts) ***********************************</pre>	00472> * SUB-AREA No.2 00473> 00473> 00474> CALIB STANDHYD 00476> 00476> 00477> 00477> 00478> 00483> 00483> 00483> * SUB-AREA No.3 004845 004845 00485> 004865 00497 00507 00517 00512 00517	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOS=[2], SCS curve number CM=[81], Pervious surfaces: IAper[4.67](nm), SLPP=[1.0](%), Impervious surfaces: IAper[4.67](nm), SLP1=[0.03], SCT=[0.0](min), Impervious surfaces: IAper[1.57](nm), SLP1=[0.03], SCT=[0.0] RAINFALL=[, , , ,](mm/hr), EMD=-1 </pre>
00337> 00338> 00339> 00341> 00341> 00341> 00341> 00342> 00343> 00343> 00343> 00345> 00345> 00345> 00345> 00345> 00350>	<pre>[0.797, 0.7391] [0.956, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts) ***********************************</pre>	00472> * SUB-AREA No.2 00473> 00473> 00474> 00475> 004775> 004775> 00476> 00476> 00483> 00483> 00483> 00483> 00483> 00483> 00484> 00484> 00484> 00484> 00485> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00505> 00516> 00515> 00516> 00516> 00520> 00522> 00522> 00522> 00522> 00522> 00522> 00522> 00523> 00513> 00535 005555 005555 00555 00555 005555 005555 005555 005555	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.67](rms), SLPT=[1.0](%), Impervious surfaces: IAper=[1.57](rms), SLPT=[0.0](min), RAINFALL=[, , , ,](mm/hr), EMD=-1 </pre>
00337> 00338> 00339> 00340> 00341> 00341> 00342> 00343> 00343> 00345> 00346> 00346> 00346> 00346> 00350> 00360> 00360> 00370> 00380>	<pre>[0.797, 0.7391] [0.956, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts) ***********************************</pre>	00472> * SUB-AREA No.2 00473> 00473> 00474> CALIB STANDHYD 00476> 004775 004775 004775 00483> 00483> 00481> 00481> 00482> *4	<pre>XIMP=[0.92], TIMP=[0.92], DWP=[0.0](cms), LOS=[2], SCS curve number CM=[81], Pervious surfaces: IApere[4.67](rms), SLPT=[0.0](min), Impervious surfaces: IApere[1.57](rms), SLPT=[0.0](min), RAINPALL=[, , ,](mn/hr), EMD=-1 </pre>
00337> 00338> 00339> 00341> 00341> 00341> 00341> 00342> 00343> 00343> 00343> 00345> 00345> 00345> 00345> 00345> 00350>	<pre>[0.797, 0.7391] [0.956, 0.8274] [1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923] [-1, , -1] (max twenty pts) ***********************************</pre>	00472> * SUB-AREA No.2 00473> 00473> 00475> 00476> 00476> 00476> 00478> 00478> 00483> 00483> 00483> 00483> 00483> 00483> 00485> 00485> 00485> 00485> 00486> 00485> 00486> 00485> 00486> 00485> 00486> 00485> 00486> 00485> 00486> 00485> 00486> 00485> 00495> 00505> 00505> 00505> 00505> 00505> 00505> 00515>	<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOS=[2], SCS curve number CM=[81], Pervious surfaces: IAper[4.67](nm), SLPP=[1.0](%), Impervious surfaces: IAper[4.67](nm), SLP1=[0.03], SCI=[0.0](nin), Impervious surfaces: IAper[4.57](nm), SLP1=[0.03], SCI=[0.0] RAIMFALL=[, , ,](amArb:), EMD=-1 </pre>

00541		[0.654, 0.6631]	0067	6> * SUB-AREA No.2	
00542		[0.797, 0.7391] [0.950, 0.8274]	0067	7>	
00544	>	[1.304, 0.9157]	0067	8> CALIB STANDHYD 9>	ID=[2], NHYD=["020"], DT=[2.5](min), AREA=[1.54](ha), XIMD=[0.92], TIMD=[0.92], DWF=[0.0](cms), LOSS=[2],
00545		{ 1.880, 1.0040]	0068	0>	SCS curve number CN=[81],
00547	>	[2.577, 1.0923] [-1 , -1] (max twenty pts)	0068		Pervious surfaces: IAper=[4,67](mm), SLPP=[1,0](%).
00548		· · · · · · · · · · · · · · · · · · ·	0068		LGP=[5](m), $MNP=[0.03]$, $SCP=[0.0](min)$, Impervious surfaces; $IAimp=[1,57](mm)$, $SLPI=(0.50)(3)$.
		wthorne Industrial Park *	0068		Impervious surfaces: IAimpe[1.57](mm), SLPI=[0.50](%), LGI=[244.34](m), MNI=[0.03], SCI=[0.0]
00551	> ****************	********	0068	6> *8	RAINFALL=[, , , ,](mm/hr) , END=-1
00552	> * SUB-AREA No.1		0068	7> *	
00554	>		0068	8> * SUB-AREA No.3 9>	
00555	> CALIB STANDHYD	ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha),	0069	> CALIB STANDHYD	ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha),
00557		XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],	00693		XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],
00558		Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),	0069		SCS curve number CN=[81], Pervious surfaces: lAper=[4,67] (mm), SLPP=[1,0](%)
00559		LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.6] (%),	0069	1>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min),
00561	>	LGI = [580] (m), $MNI = [0,03]$, $SCI = [0,0] (min)$	0069		Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.51](%), LGI=[225.63](m), MNI=[0.03], SCI=[0.0
00562	> > *8	RAINFALL=[, , ,] (mm/hr) , END=-1	00697	7>	RAINFALL=[, , ,](mm/hr), END=-1
00564	> ADD HYD	IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1]		9> ** 9> ADD HYD	IDsum=[4], NHYD=["040"], IDs to add=[1+2]
00565	> *8	-	00700)> *8	
00567	> * SUB-AREA No.2		00701	L> ADD HYD 2> *%	IDsum=[5], NHYD=["050"], IDs to add=[3+4]
00568	>		00703	3> *	
00569	> CALIB STANDHYD >	ID=[3], NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],	00704	I> * SUB-AREA No.4	
00571	>	SCS curve number CN=[81],	00706	> CALIB STANDHYD	ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha),
00572 00573		Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m	00705		XIMP=[0,97], TIMP=[0,97], DWF=[0,0](cms), TOSS=[2],
00574	>	Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.65](%).	00709		SCS curve number CN=(81), Pervious surfaces: IAper=(4.67)(mm), SLPP=[0.7](%),
00575 00576		LGI = [450] (m), $MNI = [0.03]$, $SCI = [0.0] (min)$	00710	>	LGP=[40](m), MNP=[0.25], SCP=[0.0](min)
00577:	> *8	RAINFALL=[,,,,](mm/hr), END=-1	00711	.> :>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.93] (%), LGI=[164.82] (m), MNI=[0.03], SCI=[0.0] (
00578	> * > * SUB-AREA No.3		00713	>	RAINFALL=[,,,,](mm/hr), END=-1
00580	>		00714	> *8 > *	
	> CALIB STANDHYD	<pre>ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[18.1](ha),</pre>	00716	> * SUB-AREA No.5	
00582		XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],	00717	>	
00584	>	<pre>Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),</pre>	00719		ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],
00585: 00586:		LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.5] (%),	00720	>`	SCS curve number CN=[81],
00587:	> ·	LGI = [600] (m), $MNT = [0, 03]$, $SCT = [0, 0] (min)$	00721		Pervious surfaces: IAper=[4,67](mm), ST.PP=[1,5](%)
00588: 00589:		RAINFALL=[, , , ,](mm/hr), END=-1	00723	>	LGP=[20.0] (m), MNP=[0.25], SCP=[0.0] (mi Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.51] (%),
00590	> ADD HYD	IDsum={ 5 }, NHYD={"HIPO5"}, IDs to add=(3+4]	00724		LG1=[207.25](m), MNI=[0.03], SCI=[0.0](
	> *8		00726	> *8	
	> *SUB-AREA No.4			> ADD HYD > *%	IDsum=[8], NHYD=["080"], IDs to add=[6+7]
00594:			00729	> ADD HYD	IDsum=[9], NHYD=["090"], IDs to add=[5+8]
00595	> DESIGN NASHYD	<pre>ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWT=[0](cms), CN/C=[85], TP=[0.17]hrs,</pre>		> *8	
00597:	>	RAINFALL=[, , , ,](mn/hr), END=-1	00731	> > ROUTE RESERVOIR	<pre>IDout=[10], NHYD=["POND"], IDin=[9],</pre>
00598: 00599:	> *8		00733	>	RDT=[1.0](min),
00600:	>		00734	>	TABLE of (OUTFLOW-STORAGE) values (cms) - (ha-m)
00601:	> ADD HYD > *&	IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6]	00736	>	[0.000, 0.0000]
00603:	>		00737		[0.008, 0.0656]
00604:	> ROUTE RESERVOIR	<pre>IDout=[8], NHYD=["HIP-POND"], IDin=[7],</pre>	00739	>	[0.017, 0.1311] [0.093, 0.2831]
00605:		RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values	00740		(0.233, 0.3971)
00607;	> '	(cms) - (ha-m)	00742		[0.337, 0.4731] [0.465, 0.5491]
00608;		[0.0 , 0.0] [0.048, 0.0574]	00743		[0.531, 0.5871]
00610;	>	[0.054, 0.2434]	00744	>	[0.593, 0.6251] [0.654, 0.6631]
006112		[0.059, 0.5834] [0.062, 0.8400]	00746	>	[0.797, 0.7391]
00613;	>	[0.064, 1.1024]	00747		[0.950, 0.8274] [1.304, 0.9157]
00614>		[0.147, 1.3705] [0.280, 1.6444]	00749	>	[1.880, 1.0040]
00616>	•	[0.280, 1.5444] [0.472, 1.9242]	00750	>	<pre>[2.577, 1.0923] [-1 , -1] (max twenty pts)</pre>
00617> 00618>		[0.724, 2.2097]	00752	>	
00619>	>	[0.937, 2.5010] [1.262, 2.7981]			**************************************
00620>		[1.404, 3.1009]	00755:	> *************	************************
00622>	•	[1.532, 3.4096] [1.650, 3.7240]	00756	> * > * SUB-AREA No.1	
00623>		[2.409, 4.0442]	00758:	>	
00624>		<pre>[3.689, 4.3702] [-1 , -1] (max twenty pts)</pre>	00759:	> CALIB STANDHYD	ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha),
00626>			00761:	>	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
00627>	• *\		00762:	>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m
00629>	*SUB-AREA No. 5		00764	·	LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.6](%),
00630>	· * DESIGN NASHYD	ID = [9], NHYD=["A2"], DT=[2.5]min, AREA=[6.8](ha),	00765:	>	LGI=[580] (m), MNI=[0.03], SCI=[0.0] (min
00632>	•	DWF = [0] (cms), CNC = [76], TP = [0.37] hrs.	00766	> > *ŧ	RAINFALL=[, , , ,] (mm/hr) , END=-1
00633> 00634>		RAINFALL=[, , , ,] (mm/hr), END=-1	00768:	> ADD HYD	IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1]
00635>			00769:	> * .	
00636>	*SUB-AREA No. 6		00771:	* SUB-AREA No.2	
00638>	DESIGN NASHYD	ID = [10], NHYD=["A3"], DT=[2.5]min, AREA=[5.3](ha),	00772:	> CALIE STANDHYD	<pre>ID=[3], NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha),</pre>
00639>			00774:	•	XIMP = [0.50], TIMP = [0.71], DWF = [0.0] (cms), LOSS = [2].
	*8	RAINFALL={ , , , ,] (mm/hr), END=-1	00775:	•	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),
00642>	ADD HYD	IDsum=[1], NHYD=["Interim"], IDs to add=[8+9+10]	00777;	•	LGP = [100, 0] (m), $MNP = [0, 25]$, $SCP = [0, 0] (m)$
00644>			00778:		Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.65](%),
00645>	*************	****	00780;		LGI=[450](m), MNI=[0.03], SCI=[0.0](min RAINFALL=[, , , ,](mm/hr), END=-1
00646> 00647>		N OF 3HR - 1:10 YEAR STORM EVENT *	00781:	*8	-1
00648>			00783>	* SUB-AREA No.3	
00649>	START	<pre>TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0] [] <storm filename,="" for="" line="" nstorm="" one="" per="" pre="" time<=""></storm></pre>	00784>	•	
00651>	*8		00785>	CALIB STANDHYD	ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[18.1](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],
00652> 00653>	CHICAGO STORM	IUNITS=[2], TD=[3.0] (hrs), TPRAT=[0.333], CSDT=[10.0] (min) ICASEcs=[1],	00787>	•	SCS curve number CN=[81],
00654>		<pre>ICASECs=[1], A=[1174.184], B=[6.014], and C=[0.816],</pre>	00788>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%),
00655>	*8		00790>	•	LGP = [100.0] (m), $HNP = [0.25]$, $SCP = [0.0] (m)Impervious surfaces: IAimp = [1.57] (mm), SLPI = [0.5] (9),$
00656>	DEFAULT VALUES	ICASEdef=[1], read and print values DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]	00791>		LGI = [600] (m), $MNT = [0,03]$, $SCT = [0,0] (min)$
00658>	*8		00793>	**	RAINFALL=[, , , ,](mm/hr), END=-1
00659>	*******	********		ADD HYD	IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4]
00661>	* ORGAWORLI	FILE *	00795>	· *8	
00662>	**************	**********	00797>	*SUB-AREA No.4	
00663> 00664>	* SUB-AREA No.1		00798>	DESIGN NASHYD	
00665>			00800>		<pre>ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cms), CN/C=[85], TP=[0.17]hrs,</pre>
00666>	CALIB STANDHYD	ID=[1], NHYD=["010"], DT=[2.5] (min), AREA=[2.07](ha), XIMP=[0.84], TIMP=[0.84], DWF=[0.0] (cms), LOSS=[2],	00801>		RAINFALL=[, , , ,](mm/hr), END=-1
00668>		SCS curve number CN=[81],	00802>		
00669> 00670>		Pervious surfaces: IAper=[4,67] (mm), SLPP=[1,0](%).	00804>		
00671>		LGP=[20](m), MNP=[0.25], SCP=[0.0](mi Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.52](%),	00805>	ADD HYD	IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6]
00672>		$L_{GT} = [204, 721 (m), MNT = [0, 03, 1]$ SCT = [0, 0]	00807>		
00673> 00674>	*8	RAINFALL={ , , ,] (mm/hr) , END=-1	00808>	ROUTE RESERVOIR	<pre>IDout=[8], NHYD=["HIP-POND"], IDin=[7], NDT=[0] (m/m)</pre>
00675>			00809>		RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values
			I		(

J. L. Richards & Associates Limited

L.,

				· · · · · · · · · · · · · · · · · · ·	
00811	>	(cms) - (ha-m)	1 0094	6>	[0.465, 0.5491]
00812		[0.0 , 0.0] [0.048, 0.0574]	0094	7>	[0.531, 0.5871]
00814	>	[0.054, 0.2434]	0094		[0.593, 0.6251] [0.654, 0.6631]
00815		[0.059, 0.5834] [0.062, 0.8400]	0095		[0.797, 0.7391]
00817:	>	[0.064, 1.1024]	0095		[0.950, 0.8274] [1.304, 0.9157]
00818: 00819:		[0.147, 1.3705] [0.280, 1.6444]	0095	3>	[1.880, 1.0040] [2.577, 1.0923]
00820:	>	[0.472, 1.9242]	0095		[2.577, 1.0923] [-1 , -1] (max twenty pts)
00821	>	[0.724, 2.2097]	0095	6>	***************************************
00823:	>	[0.937, 2.5010] [1.262, 2.7981]	0095	8> * Remaining Hay	wthorne Industrial Park *
00824:	>	[1.404, 3.1009]	0095	9> ************************************	*******************
00826:	>	[1.532, 3.4096] [1.650, 3.7240]		<pre>>> * 1> * SUB-AREA No.1</pre>	
00827:		[2.409, 4.0442] [3.689, 4.3702]	0096	2>	
008293	>	[-1, -1] (max twenty pts)	0096	3> CALIB STANDHYD 4>	ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA={19.9](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],
00830:			0096	5>	SCS curve number CN=[81].
00832:	> *		0096		Pervious surfaces: IAper=[4.67] (mun), SLPP=[1.5] (%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m
008333	> *SUB-AREA No. 5		00966	3>	Impervious surfaces: IAimp=(1,57](mm), SLPI=(0,6)(%).
00834:	> DESIGN NASHYD	ID = [9], NHYD=["A2"], DT=[2.5]min, AREA=[6.8](ha),	00969		LGI=[580] (m), MVI=[0.03], SCI=[0.0] (min RAINFALL=[, , ,] (mm/hr), END=-1
00836;	>	DWF=[0](cms), CNC=[76], TP=[0.37]hrs,	0097	l> *&	
00837:		RAINFALL=[,,,,](ma/hr), END=-1	00972	2> ADD HYD 3> *%	IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1]
00839:	s *	· · · · · · · · · · · · · · · · · · ·	00974	\$> *	
00840:	> *SUB-AREA No. 6		00975	5> * SUB-AREA No.2	
008423	> DESIGN NASHYD	ID = [10], NHYD=["A3"], DT=[2.5]min, AREA=[5.3](ha),	00977	> CALIB STANDHYD	ID=[3], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha),
008432	> >	DWF=[0](cms), CNC=[76], TP=[0.804]hrs, RAINFALL=[, , , ,](mm/hr), END=-1	00978		<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
008452	·		00980)>	Pervious surfaces: IAper=[4.67] (mm), SLPP≈[1.5] (%),
008462	> ADD HYD > *&	<pre>IDsum=[1], NHYD=["Interim"], IDs to add=[8+9+10]</pre>	00981		Pervious surfaces: IAper=[4.67] (nom), SLPP=[1.5] (%), LGP=(100.0) (m), MMP=[0.25], SCP=[0.0] (m) Therefore: This are [1.57] (nom), SLPP=[0.61] (%),
00848;	>	•	00983	\$>	Impervious surfaces: $IAImp=[1.57]$ (mun), $SLPI=[0.65]$ (%), LGI=[450] (m), $MNI=[0.03]$, $SCI=[0.0]$ (min)
00850;	* CALCULATIO	**************************************	00984	> ;> *8	RAINFALL=[, , , ,] (mm/hr) , END=-1
00851>	**************	**************************************	00986	i> *	
00852>	START	$TZERO= \{0,0\}, METOUT= [2], NSTORM= [0], NRUN= [0]$	00987	> * SUB-AREA No.3	
00854>	**	[] <storm filename,="" for="" line="" nstorm="" one="" p="" per="" time<=""></storm>	00989	> CALIB STANDHYD	ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[18.1](ha),
00855>	*8		00990	>	$XIMP = [0, 50]$, $TIMP = \{0, 71\}$, $DWF = [0, 0]$ (cms), $LOSS = [2]$.
008272	, ,	IUNITS=[2], TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0](min) ICASEcs=[1],	00991		SCS curve number CN=[01], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),
00858>	**	A=[1402.884], B=[6.018], and C=[0.819],	00993	>	LGP = [100 0] (m) $MOIP = [0.25] SCP = [0.01 (m)$
00860>	DEFAULT VALUES	ICASEdef=[1], read and print values	00994		<pre>Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.5](%),</pre>
			00996	>	RAINFALL=[, , ,] (nm/hr) , END=-1
00863>				> *8 > ADD HYD	IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4]
00864>	***************	*********	00999	> *8	1530x-(5), MAD-(ATPOS), IDS to add-(344)
00865>	• ORGAWORL	D FILE *	01000	> * > *SUB-AREA No.4	
00867>			01002	>	
00868>	* SUB-AREA No.1		01003	> DESIGN NASHYD	ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha),
00870>	CALIB STANDHYD	<pre>ID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha), XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2],</pre>	01005	>	DWF=[0] (cms), CN/C=[85], TP=[0.17]hrs, RAINFALL=[, , , ,] (mm/hr), END=-1
00871>		<pre>XIMP=[0.84], TIMP={0.84], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>	01006	> *8	
00873>	•	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%),	01008	>	•
00874>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[20] (m), MMP=[0.25], SCP=[0.0] (mi		> ADD HYD	IDsum={ 7 }, NHYD=["HIP06"], IDs to add=[2+5+6]
00876>		Impervious surfaces: IAimp=[1.57] (nm), SLPI=[0.52] (%), LGI=[204.72] (m), MNI=[0.03], SCI=[0.0]	01010	> * 8	
00877>		RAINFALL=[,,,,](mm/hr), END=-1	01012	> ROUTE RESERVOIR	<pre>IDout=[8], NHYD=["HIP-POND"], IDin=[7],</pre>
00879>	• •		01013		RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values
00880>	* SUB-AREA No.2		01015	>	(cms) - (ha-m) [0.0 , 0.0] [0.044, 0.0574]
	CALIB STANDHYD	ID=[2], NHYD=["020"], DT=[2.5](min), AREA=[1.54](ha),	01016		[0.0 , 0.0] [0.048, 0.0574]
00883>		<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>	01018	>	[0.054, 0.2434]
00885>		Pervious surfaces: IAper=[4,67](mm), SLPP=[1,0](%).	01019 01020		[0.059, 0.5834] [0.062, 0.8400]
00886>		LGP=[5](m), MNP=[0.03], SCP=[0.0](min), Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.50](%),	01021		[0.064, 1.1024] [0.147, 1.3705]
00888>		$LGI = [244.34] \{m\}, MNI = [0.03], SCI = [0.0]$	01022	>	[0.147, 1.3705] [0.280, 1.6444]
00889>	*&	RAINFALL=[, , , ,] (mm/hr) , END=-1	01024		[0.280, 1.6444] [0.472, 1.9242]
00891>	• • ·		01025	>	[0.724, 2.2097] [0.937, 2.5010]
00892>	* SUB-AREA No.3		01027	>	[0.937, 2.5010] [1.262, 2.7981]
00894>	CALIB STANDHYD	<pre>ID=[3], NHYD=["030"], DT=[2.5] (min), AREA=[1.4] (ha),</pre>	01028		[1.404, 3.1009] [1.532, 3.4096]
00895>		<pre>XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>	01030		[1.650, 3.7240]
00897>		Pervious surfaces: Threr=[4 67] (mm) SLDD=[1 0] (%)	01031		[2.409, 4.0442] [3.689, 4.3702]
00898>		LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min),	01033	>	[-1 , -1] (max twenty pts)
00900>		LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min), Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.51] (%), LGI=[225.63] (m), MNI=[0.03], SCI=[0.0]		· > *8	
00901>	*8!	RAINFALL=[, , , ,] {mm/hr} , END=-1	01036	> *	
00903>	ADD HYD	IDsum=[4], NHYD=["040"], IDs to add=[1+2]	01038		
	*8 ADD HYD	IDsum=[5], NHYD=["050"}, IDs to add=[3+4]		> DESIGN NASHYD	ID = [9], NHYD=["A2"], DT=[2.5]min, AREA=[6.8] (ha), DVT=[0](cma) = OVC=[76] = DT=[0, 27] h=0
00906>	*8	IDSum=[3], NHID=["050"], IDS to add=[3+4]	01041	>	DWF=[0](cms), CNC=[76], TP=[0.37]hrs, RAINFALL=[, , , ,](mm/hr), END=-1
00907>	* SUB-AREA No.4		01042	> *8	
00909>			01044	> *SUB-AREA No. 6	
00910>	CALIB STANDHYD	ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],	01045	> * > DESIGN NASHYD	TD = [10] MUND-[8338] Dm. [0 PA
00912>		SCS curve number CN=[81]	01046		ID = [10], NHYD=["A3"], DT=[2.5]min, AREA=(5.3) (ha), DWF=[0] (cms), CNC=[76], TP=[0.804]hrs,
00913> 00914>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[0.7] (%), LGP=[40] (m), MNP=[0.25], SCP=[0.0] (min)	01048	>	RAINFALL=[, , , ,](mm/hr), END=-1
00915>		Impervious surfaces: IAImp=[1.57](Mm), SLPI=[0.93](%),	01050	> *8 > ADD HYD	<pre>[[IDsum=[1], NHYD=["Interim"], IDs to add=[8+9+10]</pre>
00916> 00917>		LGI=[164.82] (m), MNI=[0.03], SCI=[0.0] (RAINFALL=[, , ,] (mm/hr), END=-1		> *8	
00918>	*&		01053	> ***********************	***********
00919>	* * SUB-AREA No.5		01054	CALCULATIO	N OF 3HR - 1:50 YEAR STORM EVENT *
00921>		· · · ·	01056:	>	
00922> 00923>	CALIB STANDHYD	ID=[7], NHYD=["070"], DT=[2.5] (min), AREA=[2.66] (ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0] (cms), LOSS=[2],	01057:	> START	TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]
00924>		SCS curve number CN=[81],	01058	**	[] <storm filename,="" for="" line="" nstorm="" one="" per="" td="" time<=""></storm>
00925> 00926>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[20.0] (m), MNP=[0.25], SCP=[0.0] (mi	01060:	> CHICAGO STORM	IUNITS=[2], TD=[3.0] (hrs), TPRAT=[0.333], CSDT=[10.0] (min)
00927>		<pre>Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.61] (%),</pre>	01061:		ICASEcs=[1], A=[1569.580], B=[6.014], and C=[0.820],
00928>		LGI = [207.25] (m), $MNI = [0.03]$, $SCI = [0.0]$ (*8	
00930>	*8	RAINFALL=[,,,,](mm/hr), END=-1	01065:	>	ICASEdef=[1], read and print values DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]
	ADD HYD *8	IDsum=[8], NHYD=["080"], IDs to add=[6+7]		*8	
00933>	ADD HYD	IDsum=[9], NHYD=["090"], IDs to add=[5+8]			******
00934>			010693	* ORGAWORLI	FILE *
00935> 00936>	ROUTE RESERVOIR	<pre>IDout=[10], NHYD=["POND"], IDin=[9],</pre>	01070:	· ************************************	***********
00937>		RDT=[1.0] (min),	01072:	* SUB-AREA No.1	
00938>		TABLE of (OUTFLOW-STORAGE) values (cms) - (ha-m)	01073>	CALIB STANDHYD	
00940>		[0.000, 0.00001	01075;	•	<pre>ID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha), XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2],</pre>
00941> 00942>		(0.008, 0.0656) [0.017, 0.1311]	01076	•	SCS curve number CN=[81],
00943>		[0.093, 0.2831]	01077:	•	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[20] (m), MNP=[0.25], SCP=[0.0] (mi
00944> 00945>		(0.233, 0.3971) [0.337, 0.4731]	01079>	•	<pre>Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.52](%),</pre>
107		,	1		LGI=[204.72](m), MNI=[0.03), SCI=[0.0]

J. L. Richards & Associates Limited

į.

01081>		RAINFALL=[, , , ,](mm/hr) , END=-1	01216> ROUTE RESERVOIR	<pre>IDout=[8], NHYD=["HIP-POND"], IDin=[7],</pre>
01082> **	*		01217> 01218>	RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values
	SUB-AREA No.2		01219>	(cms) - (ha-m)
01086> CF	ALIB STANDHYD	ID=[2], NHYD=["020"], DT=[2.5](min), AREA=[1.54](ha),	01220> 01221>	(cms) - (ha-m) { 0.0 , 0.0] [0.048, 0.0574]
01087> 01088>		<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>	01222> 01223>	[0.054, 0.2434]
01089>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%),	01224>	[0.059, 0.5834] [0.062, 0.8400]
01090> 01091>		LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min), Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.50] (%),	01225> 01226>	[0.064, 1.1024] [0.147, 1.3705]
01092> 01093>		IGI = [244.34] (m), $MNI = [0.03]$, $SCI = [0.0]$	01227>	[0.280, 1.6444]
01094> *8	} 	RAINFALL=[, , , ,] (mm/hr) , END=-1	01228> 01229>	[0.472, 1.9242] [0.724, 2.2097]
01095> * 01096> *	SUB-AREA No.3		01230>	[0.937, 2.5010]
01097>			01231> 01232>	[1.262, 2.7981] [1.404, 3.1009]
01098> CF 01099>	ALIB STANDHYD	ID=[3 }, NHYD=["030"], DT=[2.5] {min}, AREA=[1.4] (ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0] (cms), LOSS=[2],	01233> 01234>	[1.532, 3.4096]
01100>			01235>	[1.650, 3.7240] [2.409, 4.0442]
01101> 01102>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LCP=[5] (m), MMP=[0.03], SCP=[0.0] (min), Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.51] (%),	01236> 01237>	[3.689, 4.3702]
01103> 01104>		<pre>Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.51](%),</pre>	01238>	<pre>[-1 , -1] (max twenty pts)</pre>
01105>		LGI=[225.63](m), MNI=[0.03], SCI=[0.0 RAINFALL=[, , ,](mm/hr), END=-1	01239> *8 01240> *	
01106> ** 01107> AD		IDsum=[4], NHYD=["040"], IDs to add=[1+2]	01241> *SUB-AREA No. 5	
01108> **	} 	-	01242> * 01243> DESIGN NASHYD	ID = [9], NHYD=["A2"], DT=[2.5]min, AREA=[6.8](ha),
01109> AE 01110> *%		IDsum=[5], NHYD=["050"], IDs to add=[3+4]	01244>	DWF=[0](cms), CNC=[76], TP=[0.37]hrs, RAINFALL=[, , , ,](mm/hr), END=-1
01111> *	SUB-AREA No.4		01246> *8	
01113>			01247> * 01248> *SUB-AREA No. 6	
01114> CA 01115>	LIB STANDHYD	ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],	01249> *	
01116>		SCS curve number CN=[61].	01250> DESIGN NASHYD 01251>	<pre>ID = [10], NHYD=["A3"], DT=[2.5]min, AREA=[5.3](ha), DWF=[0](cms), CNC=[76], TP=[0.804]hrs,</pre>
01117> 01118>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[0.7] (%), LGP=[40] (m), MNP=[0.25], SCP=[0.0] (min)	01252> 01253> *%	RAINFALL=[, , , ,](mm/hr), END=-1
01119> 01120>		<pre>Impervious surfaces: IAimp=[1.57] (mon), SLPI=[0.93] (%),</pre>	01254> ADD HYD	<pre>IDsum=[1], NHYD=["Interim"], IDs to add=[8+9+10]</pre>
01121>		Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.93] (%), LGI=[164.822 (m), MNI=[0.03], SCI=[0.0] (RAINFALL=[, , ,] (mm/hr), EMD=-1	01255> *%	
01122> *% 01123> *		•	01257> ***************	ON OF JHR - 1:100 YEAR STORM EVENT *
	SUB-AREA No.5		01259> ***************	UN OF 3HR - 1:100 YEAR STORM EVENT *
01126> CA	LIB STANDHYD	ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha),	01260> 01261> START	TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]
01127> 01128>		XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],	01262> *% 01263> *%	[] <storm filename,="" for="" line="" nstorm="" one="" p="" per="" time<=""></storm>
01129>		Pervious surfaces: IAper=[4,67](mm), SLPP=[1,5](%).	01264> CHICAGO STORM	IUNITS=[2], TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0](min)
01130> 01131>		LGP=[20.0] (m), MNP=[0.25], SCP=[0.0] (mi Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.61] (%),	01265> 01266>	ICASEcs=[1], A=[1735.688], B=[6.014], and C=[0.820], B=[6.014], A=[1735.688], B=[6.014], A=[0.820], B=[0.820], A=[0.820], A=[0.820
01132> 01133>		LGI=[207.25](m), MNI=[0.03], SCI=[0.0](01267> *8	
01134> *%		RAINFALL=[, , , ,] (mm/hr) , END=-1	01268> DEFAULT VALUES 01269>	ICASEdef=[1], read and print values DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]
01135> AD 01136> *%		IDsum=[8], NHYD=["060"], IDs to add=[6+7]		
01137> AD	D HYD	IDsum=[9], NHYD=["090"], IDs to add=[5+8]	01271> 01272> ******************	**********
01136> *% 01139>		•	01273> * ORGAWO 01274> ****************	RLD FILE *
01140> RO 01141>	UTE RESERVOIR	IDout=[10], NHYD=["POND"}, IDin=[9], RDT=[1.0](min),	01275> *	
01142>		TABLE of (OUTFLOW-STORAGE) values	01276> * SUB-AREA No.1 01277>	
01143> 01144>		(cms) - (ha-m)	01278> CALIB STANDHYD 01279>	ID=[1], $NHYD=["010"]$, $DT=[2.5](min)$, $AREA=[2.07](ha)$, $YIMD=[0, 94]$ mIND=[0, 94] $DIT=[0, 94]$
01145>		[0.000, 0.0000] [0.008, 0.0656]	01280>	SCS curve number $CN \approx [81]$.
01146> 01147>		[0.017, 0.1311] [0.093, 0.2831]	01281> 01282>	Pervious surfaces: IAper=[4.67] (num), SLPP=[1.0] (%), LGP=[20] (m), MNP=[0.25], SCP=[0.0] (mi
01148> 01149>		[0.233, 0.3971]	01283>	impervious surfaces: IAImp=[1.57](mm), SLPI=[0.52({%}),
01150>		(0.337, 0.4731) (0.465, 0.5491)	01284>	LGI=[204.72] (m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , ,](mm/hr), END=-1
01151> 01152>		[0.531, 0.5871] [0.593, 0.6251]	01286> *%	
01153> 01154>		[0.654, 0.6631]	01288> * SUB-AREA No.2	
01155>		[0.797, 0.7391] [0.950, 0.8274]	01289> 01290> CALIB STANDHYD	ID=[2], NHYD=["020"], DT=[2.5](min), AREA=[1.54](ha),
01156> 01157>		[1.304, 0.9157]	01291>	XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2],
01158>		[1.880, 1.0040] [2.577, 1.0923]	01292> 01293>	SCS curve number CN=[61], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.0](%),
01159> 01160>		<pre>[-1 , -1] (max twenty pts)</pre>	01294> 01295>	LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min), Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.50] (%),
01161> ***		**************************************	01296>	LGI = [244.34] (m), $MNI = [0.03]$, $SCI = [0.0]$
01163> **		***************************************	01297> 01298> **	RAINFALL=[, , , ,] (rom/hr) , END=-1
01164> * 01165> * ;	SUB-AREA No.1		01299> * 01300> * SUB-AREA No.3	
01166>	LIB STANDHYD		01301>	
01168>	DIB STANDATD	ID=[1], MHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=(0.71], DWF=[0.0](cms), LOSS=[2], SCS currer pumber (N=[92])	01302> CALIB STANDHYD 01303>	ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],
01169> 01170>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%),	01304> 01305>	SCS curve number CN=[81],
01171>		LGP=[100.0] (m), $MNP=[0.25]$, $SCP=[0.0] (m)$	01306>	Pervious surfaces: LAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min), Impervious surfaces: LAimp=[1.57] (mm), SLPI=[0.51] (%),
01172>		Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.6] (%), LGI=[580] (m), MNI=[0.03], SCI=[0.0] (min	01307> 01308>	LGI = [225, 63] (m), MNI = [0, 03], SCI = [0, 0]
01174> 01175> *%·		RAINFALL=[, , , ,](mm/hr), END=-1	01309>	RAINFALL=[, , , ,] (mm/hr) , END=-1
01176> AD	D HYD	IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1]	01311> ADD HYD	IDsum=[4], NHYD=["040"], IDs to add=[1+2]
01177> ** 01178> *			01312> *% 01313> ADD HYD	IDsum={5}, NHYD=["050"], IDs to add=[3+4]
	SUB-AREA No.2		01314> **	
01181> CA	LIB STANDHYD	ID=(3], NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha),	01316> * SUB-AREA No.4	
01182> 01183>		<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>	01317> 01318> CALIB STANDHYD	ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha),
01184> 01185>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%),	01319>	XIMP=[0.9/], TIMP=[0.9/], DWF=[0.0](cms), LOSS=[2],
01186>		LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.65] (%),	01320> 01321>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.7](%).
01187>		LGI=[450] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[,,,,](num/hr), END=-1	01322> 01323>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[0.7] (%), LGP=[40] (m), MNP=[0.25], SCP=[0.0] (min)
01189> *%-			01324>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.93] (%), LGI=[164.82] (m), MNI=[0.03], SCI=[0.0] (
	SUB-AREA No.3		01325> 01326> **	RAINFALL=[, , ,] (mm/hr) , END=-1
01192>	LIB STANDHYD	ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[18.1](ha),	01327> *	· · · · · · · · · · · · · · · · · · ·
01194>		XIMP = [0, 50], TIMP = [0, 71], DWP = [0, 0] (cms), LOSS = [2].	01328> * SUB-AREA No.5 01329>	
01195> 01196>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%),	01330> CALIB STANDHYD 01331>	ID=[7], $NHYD=["070"]$, $DT=[2.5]$ (min), $AREA=[2.66]$ (ha), XIMP=[0.97], $TIMP=[0.97]$, $DMP=[0.01/cmc)$, $IOSE=[7]$
01197>		1 CP = [100 0] (m) $MOID = [0.25] CCD = [0.01 (m)$	01332>	XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],
01198> 01199>		Impervious surfaces: IAimpe[1.57] (mm,), 521=[0.5] (%), LGI=[600] (m), MNI=[0.53], SCI=[0.0] (min	01333> 01334>	Pervious surfaces: $IAper=[4.67] (mm)$, $SLPP=[1.5] (%)$, IGP=[20, 0] (m), $SUP=[0, 25]$, $SGP=[0, 0] (m)$
01200> 01201> *%-		RAINFALL=[, , , ,] (mm/hr) , END=-1	01335>	<pre>Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.61](%);</pre>
01202> ADI	D HYD	IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4]	01336> 01337>	LGI=[207.25] (m), MNI=[0.03], SCI=[0.0] (RAINFALL=[, , ,] (mm/hr), END=-1
01203> *%- 01204> *			01338> *% 01339> ADD HYD	-
01205> *st	JB-AREA No.4		01340> **	IDsum=[8], NHYD=["080"], IDs to add=[6+7]
01206> 01207> DES	SIGN NASHYD	<pre>ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha),</pre>	01341> ADD HYD 01342> *%	IDsum=[9], NHYD=["090"], IDs to add=[5+8]
01208> 01209>		DWF=[0](cms), CN/C=[85], TP=[0.17]hrs,	01343>	
01210> *%-		RAINFALL=[, , , ,] (mm/hr), END=-1	01344> ROUTE RESERVOIR 01345>	IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min),
01211> 01212>			01346> 01347>	TABLE of (OUTFLOW-STORAGE) values
01213> ADI	D HYD	IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6]	01348>	(cms) - (ha-m) [0.000, 0.0000]
01214> *%- 01215>			01349> 01350>	[0.008, 0.0656] [0.017, 0.1311]
			1	(
		C lacosistas Timitad		

52> 53>	[0.233, 0.3971] [0.337, 0.4731]
54> 55>	[0.465, 0.5491]
56>	f 0.593, 0.62511
57> 58>	[0.654, 0.6631] [0.797, 0.7391]
59>	[0.950, 0.8274]
60> 61>	[1.304, 0.9157] [1.880, 1.0040]
62> 63>	[2.577, 1.0923]
64>	<pre>[-1 , -1] (max twenty pts)</pre>
66> * Remaining Ha	**************************************
67> **************	WTHOINE INGUSTIAL FAIX -
68> * 69> * SUB-AREA No.1	
70> 71> CALIB STANDHYD	
72>	ID=[1], NHYD=["HIP01"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],
73> 74>	SCS curve number CN=[81], Pervious surfaces: IAber=[4,67](mm), SLPP=[1,5](%),
75> 76>	$I_{GP} = [100, 0]_{m}$, $MNP = [0, 25]_{SCP} = [0, 0]_{m}$
77>	Impervious surfaces: IAimpe[1.57] (mm), SLPI=[0.6] (%), IGI=[580] (m), MNI=[0.03], SCI=[0.0] (m)
78> 79> *%	$\operatorname{Ref}_{\operatorname{ALD}}$
0> ADD HYD	
01> * % 82> *	
B3> * SUB-AREA No.2	
34> 35> CALIB STANDHYD	ID=[3], MHYD=["HIP03"], DT=[2.5] (min), AREA=[17] (ha), MIND=[0.50] TIND=[0.71] DNT=[0.0] (ma) LOSS=[2]
36> 17>	
18>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mma), SLPP=[1.5](%),
19> 90>	LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.65] (%),
91>	LGI=[450] (m), MNI=[0.03], SCI=[0.0] (m)
	LGI=[450] (m), MMI=[0.03], SCI=[0.0] (mi RAINFALL=[, , , ,] (mm/hr), END=-1
94> *	-1
95> * SUB-AREA No.3 96>	
7> CALIE STANDHYD	$ID \approx [4]$, $NHYD = ["HIP04"]$, $DT = [2.5]$ (min), $AREA = [10.1]$ (ha), $XIMP = [0.50]$, $TIMP = [0.71]$, $DWF = [0.0]$ (cms), $LOSS = [2]$.
99>	<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0]{cms}, LOSS=[2], SCS curve number CN=[01],</pre>
)0>)1>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](8), IGP=[100.0](m), MNP=[0.25], SCP=[0.0] Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.5](8),
	These from a first time. Friendling and friendling
2>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.5](%),
)2>)3>)4>	RAINFALL=[,,,,](mm/hr), END=-1
02> 03> 04> 05> *&	RAINFALL=[, , , ,](mm/hr), END=-1
02> 03> 04> 05> *% 06> ADD HYD 07> *%	RAINFALL=[,,,,](mm/hr), END=-1
12> 13> 14> 15> *& 16> ADD HYD 17> *& 18> * SUB-AREA No.4	RAINFALL=[, , , ,](mm/hr), END=-1
12> 13> 14> 15> *& 16> ADD HYD 17> *& 18> * 19> *SUB-AREA No.4 .0>	RAINFALL=[, , , ,](mu/hr), END=-1
12> 13> 14> 15> *& 16> ADD HYD 17> *& 16> * 10> 10> 12> DESIGN NASHYD 12>	RAINFALL=[, , , ,](mu/hr), END=-1
12> 13> 14> 15> * 4 15> * 4 15> * 5 15> *	RAINFALL=[, , , ,](mm/hr), END=-1
12> 13> 14> 15> *6	RAINFALL=[, , ,](mu/hr), EKD=-1
12> 13> 14> 15> *6 15> *6 15> *5 19> *5UB-AREA No. 4 10> 11> DESIGN NASHYD 12> 13> 14> *6 15> 15> 15> 15>	RAINFALL=[, , , ,](mu/hr), EKD=-1 Josum=[5], NHYD=["HIPOS"], IDs to add=[3+4] Josum=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cna), CM/C=[85], TP=[0.17]hrs, RAINFALL=[, , ,](mu/hr), END=-1
12> 13> 14> 15> *6	RAINFALL=[, , ,] (mm/hr), END=-1 [] [] [] [] [] [] [] [] [] []
12> 13> 14> 15> *6	RAINFALL=[, , , ,](mu/hr), EKD=-1
12> 13> 14> 15> *6	<pre>RAINFALL=[, , , ,](mm/hr), END=1 IDsum=[5], NHYD=["HIPOS"], IDs to add=[3+4] ID=[6], NHYD=["HIPOS"], IDs to add=[3+4] ID=[6], NHYD=["HIPOS"], IDs to add=[3+4] ID=[6], NHYD=["HIPOS"], IDs to add=[2+5+6] IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] IDsum=[1.0](mdn], RDT=[1.0](mdn], RDT=[1.0](mdn]</pre>
12> 13> 14> 15> *6 15> *6D HTD 17> *6 18> *5UB-AREA NO. 4 19> *5UB-AREA NO. 4 10> 10> DESIGN NASHYD 22> 13> 42> *6 15> 15> 15> 15> 15> 15> 15> 15>	<pre>RAINFALL=[, , , ,](mm/hr), END=1 IDsum=[5], NHYD=["HIPOS"], IDs to add=[3+4] ID=[6], NHYD=["HIPOS"], IDs to add=[3+4] ID=[6], NHYD=["HIPOS"], IDs to add=[3+4] ID=[6], NHYD=["HIPOS"], IDs to add=[2+5+6] IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] IDsum=[1.0](mdn], RDT=[1.0](mdn], RDT=[1.0](mdn]</pre>
12> 13> 14> 15> *6	<pre>RAINFALL=[, , , ,](mm/hr), END=1 IDsum=[5], NHYD=["HIPOS"], IDs to add=[3+4] ID=[6], NHYD=["HIPOS"], IDs to add=[3+4] ID=[6], NHYD=["HIPOS"], IDs to add=[3+4] ID=[6], NHYD=["HIPOS"], IDs to add=[2+5+6] IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] IDsum=[1.0](mdn], RDT=[1.0](mdn], RDT=[1.0](mdn]</pre>
12> 13> 14> 14> 15> *6	<pre>RAINFALL=[, , , ,](mm/hr), END=1 IDsum=[5], NHYD=["HIPOS"], IDs to add=[3+4] ID=[6], NHYD=["HIPOS"], IDs to add=[3+4] ID=[6], NHYD=["HIPOS"], IDs to add=[3+4] ID=[6], NHYD=["HIPOS"], IDs to add=[2+5+6] IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] IDsum=[1.0](mdn], RDT=[1.0](mdn], RDT=[1.0](mdn]</pre>
12> 13> 14> 14> 15> *6	RAINFALL=[, , , , ,] (mm/hr), END=1 IDsum=[5], NHYD=["HIPOS"], IDs to add=[3+4] ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0] (ha), DMF=[0] (cms), CM/C=[85], TP=[0.17]hrs, RAINFALL=[, , ,] (mm/hr), END=-1 IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] IDsum=[7], NHYD=["HIP-FOND"], IDin=[7], RDT=[1.0] (mdn), TABLE of (OUTFLOW-STORAGE) values [0.048, 0.0574] [0.0546, 0.0574] [0.0546, 0.0574] [0.0550, 0.5834]
12> 12> 14> 14> 14> 15> *# 16> ADD HYD 15> *UB-AREA No. 4 15> 15> 15> 16> *UB-AREA No. 4 15> DESIGN NASHYD 15> 16> *UB-AREA No. 4 15> 16> *UB-AREA NO. 4 15> *UB-ARE	RAINFALL=[, , , ,] (mm/hr], END=1
12> 12> 13> 14> 14> 15> *#	RAINFALL=[, , , ,] (mm/hr), END=1
12> 12> 14> 14> 15> *#	RAINFALL=[, , , ,] (um/hr), END=1 - IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4] ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0] (ha), DMF=[0] (cns), CN/C=[85], TP=[0.17]hrs, RAINFALL=[, , ,] (um/hr), END=-1 - IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] - - IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] - - IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] - - IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] -
12> 13> 14> 14> 15> *6 16> ADD HYD 17> *6 19> *5UB-AREA NO.4 10> DESIGN NASHYD 12> 14> *8 15 15 15 15 15 15 15 15 15 15	RAINFALL=[, , , ,] (um/hr), END=1 - IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4] ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0] (ha), DMF=[0] (cns), CN/C=[85], TP=[0.17]hrs, RAINFALL=[, , ,] (um/hr), END=-1 - IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] - - IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] - - IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] - - IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] -
12> 13> 14> 14> 15> *6 16> ADD HYD 17> *6 18> * 19 DESIGN NASHYD 2> 19 DESIGN NASHYD 2> 10 DESIGN NASHYD 2>	RAINFALL=[, , , ,] (um/hr), END=1 - IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4] ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0] (ha), DMF=[0] (cns), CN/C=[85], TP=[0.17]hrs, RAINFALL=[, , ,] (um/hr), END=-1 - IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] - - IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] - - IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] - - IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] -
12> 13> 14> 14> 15> *6	RAINFALL=[, , , ,] (um/hr), END=1 - IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4] ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0] (ha), DMF=[0] (cns), CN/C=[85], TP=[0.17]hrs, RAINFALL=[, , ,] (um/hr), END=-1 - IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] - - IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] - - IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] - - IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] -
02> 03> 04> 05> nD HTD 05> ADD HTD 05> ADD HTD 05> re	RAINFALL=[, , , ,] (um/hr), END=1 - IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4] ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0] (ha), DMF=[0] (cns), CN/C=[85], TP=[0.17]hrs, RAINFALL=[, , ,] (um/hr), END=-1 - IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] - - IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] - - IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] - - IDsum=[7], NHYD=["HIP06"], IDs to add=[2+5+6] -
12> 12> 14> 14> 14> 14> 14> 14> 14> 14	RAINFALL=[, , , ,] (mm/hr), END=1
12> 12> 14> 14> 14> 15> *# 16> ADD HTD 17> *# 18> * 19> *SUB-AREA No. 4 11> DESIGN NASHYD 12> 13> 14> ** 14> ** 15> 15> 16> * 15> 16> * 15> 16> * 15> 16> 15> 16> 15> 15> 15> 15> 15> 15> 15> 15	BAINFALL=[, , , , ,] (mm/h); END=1 - IDsum=[5], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cma), CM/C=[85], TP=[0.17]hra, RAINFALL[, , , ,] (mm/hr], END=1 IDsum=[7], NHYD=["HIPO5"], IDs to add=[2+5+6] - IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] - IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] - IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] - IDsum=[7], NHYD=["HIP-FOND"], IDin=[7], RDT=[1.0](min], TABLE of (OUTFLOW-STORAGE) values (cms) - (ha-m) [0.048, 0.0574] [0.054, 0.2343] [0.0654, 0.2343] [0.0654, 0.1243] [0.0724, 2.2097] [0.724, 2.2097] [0.724, 2.2097] [1.262, 2.7981] [1.404, 3.1009] [1.522, 3.4096] [1.653, 3.7240] [2.405, 4.03702] [2.405, 4.0372] [2.405, 4.0372] [2.405, 4.0372]
12> 13> 14> 14> 15> *#	RAINFALL=[, , , ,] (mm/hr), END=1
2> 3> 42 43 45 45 46 47 47 48 49 40 40 40 40 40 40 40 40 40 40	BAINFALL=[, , , ,] (mm/r), END=1 - IDsum=[5], NHYD=["HIPOS"], IDs to add=[3+4] ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0] (ha), DWF=[0](cms), CM/C=[85], TP=[0.17]hrs, RAINFALL=[, , ,] (mm/hr), END=-1 IDsum=[7], NHYD=["HIPOS"], IDs to add=[2+5+6] IDsum=[7], NHYD=["HIPOSTORAGE) values (cms) - (ha-m) 0.0 (sg, 0.5633) [0.046, 0.0574] [0.046, 0.0574] [0.046, 0.0574] [0.046, 0.0574] [0.047, 1.3705] [0.724, 2.2097] [0.724, 2.2097] [0.724, 2.2097] [1.632, 3.4096] [1.632, 3.4096] [1.632, 3.4096] [1.632, 3.4096] [1.632, 4.3702]
12> 12> 14> 15> *6 16> ADD HTD 17> *6 18> * 19> *5UB-AREA No. 4 19 19 19 10 DESIGN NASHYD 10 10 10 10 10 10 10 10 10 10	<pre>BAINFALL=[, , , ,] (mm/br), END=1 Josum=[5], NHYD=["HIPO5"], IDs to add=[3+4] Josum=[5], NHYD=["HIPO5"], IDs to add=[3+4] Josum=[5], NHYD=["HIPO5"], IDs to add=[3+4] DeF[0](cma), CM/C=[05], TP=[0.17]hrs, RAINFALL=[, , , ,] (mm/hr), END=-1 - Josume[7], NHYD=["HIPO6"], IDs to add=[2+5+6] Josume[7], NHYD=["HIP-POND"], IDin=[7], RDT=[1.0](min),</pre>
2> 3> 42 43 45 45 47 47 47 47 47 47 47 47 47 47	<pre>BAINFALL=[, , , ,] (mm/br], END=[0.03], SC=[0.0](m) BAINFALL=[, , , ,] (mm/br], END=-1] IDsum=[5], NHYD=["HIPOS"], IDs to add=[3+4] ID=[6], NHYD=["HIPOS"], IDs to add=[3+4] DWF=[0](cms), CM/C=[85], TP=[0.17]hrs, RAINFALL=[, , ,] (mm/hr], END=-1] IDsum=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] [100ut=[8], NHYD=["HIP-POND"], IDin=[7], RDT=[1.0](min], TABLE of (OUTFLOW-STORAGE) values</pre>
12> 12> 14> 14> 15> 14> 15> 15> 15> 15> 15> 15> 15> 15	RAINFALL=[, , , ,] (um/hr], END=-1
12> 12> 14> 14> 15> 15> 16> ADD HTD 17> **	RAINFALL=[, , , ,] (um/hr], END=1
12> 12> 14> 14> 14> 14> 14> 15> 150 150 150 150 150 150 150 150	RAINFALL=[, , , ,] (um/hr], END=1
12> 13> 14> 14> 14> 15> *#	<pre>BAINFALL=[, , , ,] (mm/hr), END=1 Journe[5], NHYD=("HIPOS"], IDs to add=[3+4] ID=[6], NHYD=("HIPOS"], IDs to add=[3+4] ID=[6], NHYD=("HIPOS"], IDs to add=[3+4] ID=[6], NHYD=("HIPOS"], IDs to add=[2+54] RAINFALL=[, , , ,] (mm/hr), END=-1 ID=Um=[7], NHYD=("HIPO6"], IDs to add=[2+5+6] ID=Um=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] ID=Um=[7], ID=[2+5]min, AREA=[6,8] (ha), DSFF=[0] (cma) , CMC=[76], TP=[0.57]hra, RAINFALL=[, , , ,] (mm/hr), END=1 ID==[10], NHYD=["A2"], DT=[2.5]min, AREA=[5.3] (ha), MEF=[0] (cma) , CMC=[76], TP=[0.57]hra, RAINFALL=[, , ,] (mm/hr), END=1 ID==[10], NHYD=["A2"], DT=[2.5]min, AREA=[5.3] (ha), MEF=[0] (cma) , CMC=[76], TP=[0.57]hra, RAINFALL=[, , ,] (mm/hr), END=1 ID==[10], NHYD=["A2"], DT=[2.5]min, AREA=[5.3] (ha), MEF=[0] (cma) , CMC=[76], TP=[0.57]hra, RAINFALL=[, , ,] (mm/hr), END=1 ID==[10], NHYD=["A2"], DT=[2.5]min, AREA=[5.3] (ha), MEF=[0] (cma) , CMC=[76], TP=[0.57]hra, RAINFALL=[, , ,] (mm/hr), END=1 ID==[10], NHYD=["A2"], DT=[2.5]min, AREA=[5.3] (ha), MEF=[0] (cma) , CMC=[76], TP=[0] (cma) , CMC=[76], TP=[0]</pre>
2> 3> 42 43 45 45 47 47 47 47 47 47 47 47 47 47	<pre>BAINFALL=[, , , ,] (mm/hr), END=1 Journe[5], NHYD=("HIPOS"], IDs to add=[3+4] ID=[6], NHYD=("HIPOS"], IDs to add=[3+4] ID=[6], NHYD=("HIPOS"], IDs to add=[3+4] ID=[6], NHYD=("HIPOS"], IDs to add=[2+54] RAINFALL=[, , , ,] (mm/hr), END=-1 ID=Um=[7], NHYD=("HIPO6"], IDs to add=[2+5+6] ID=Um=[7], NHYD=["HIPO6"], IDs to add=[2+5+6] ID=Um=[7], ID=[2+5]min, AREA=[6,8] (ha), DSFF=[0] (cma) , CMC=[76], TP=[0.57]hra, RAINFALL=[, , , ,] (mm/hr), END=1 ID==[10], NHYD=["A2"], DT=[2.5]min, AREA=[5.3] (ha), MEF=[0] (cma) , CMC=[76], TP=[0.57]hra, RAINFALL=[, , ,] (mm/hr), END=1 ID==[10], NHYD=["A2"], DT=[2.5]min, AREA=[5.3] (ha), MEF=[0] (cma) , CMC=[76], TP=[0.57]hra, RAINFALL=[, , ,] (mm/hr), END=1 ID==[10], NHYD=["A2"], DT=[2.5]min, AREA=[5.3] (ha), MEF=[0] (cma) , CMC=[76], TP=[0.57]hra, RAINFALL=[, , ,] (mm/hr), END=1 ID==[10], NHYD=["A2"], DT=[2.5]min, AREA=[5.3] (ha), MEF=[0] (cma) , CMC=[76], TP=[0.57]hra, RAINFALL=[, , ,] (mm/hr), END=1 ID==[10], NHYD=["A2"], DT=[2.5]min, AREA=[5.3] (ha), MEF=[0] (cma) , CMC=[76], TP=[0] (cma) , CMC=[76], TP=[0]</pre>
2> 3> 42 43 45 45 47 47 47 47 47 47 47 47 47 47	<pre>BAINFALL=[, , , ,] (mm/br), END=1 Josum=[5], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cma), CM/C=[85], TP=[0.17]hrs, RAINFALL=[, , , ,] (mm/hr), END=-1 </pre>

00001> over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 001365 00002> 00003> 00004> 00005> 00136> 00137> 00138> 00139> 00140> 00141> 00142> 00142> 10.00 10.80 (ii) 10.00 .11 30.00 29.27 (ii) 30.00
 SSSSS
 W
 M
 M
 H
 Y
 Y
 M
 OOD
 999
 999
 999

 S
 W
 W
 M
 H
 Y
 YM
 M
 O
 9
 9
 9
 9
 9
 9
 9
 9
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 .04 *TOTALS* .158 (iii) 1.292 20.508 24.999 .820 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .16 1.29 23.43 25.00 .94 00006> 00007> .00 1.75 5.17 00008> StormWater Management HYdrologic Model 00143> 00144> 00145> 00145> 00146> 00147> 00147> 25.00 00010>

 00011>
 sWMHYMO-99 Ver/4.02

 00012>
 A single event and continuous hydrologic simulation model

 00013>
 based on the principles of HYMO and its successors

 00015>
 OTTHYMO-83 and OTTHYMO-89.

 00016>
 OTTHYMO-83 and Associates Inc.

 00017>
 Distributed by:
 J.F. Sabourin and Associates Inc.

 00018>
 Ottawa, Ontaric: (613) 727-5199

 00012>
 E-Mail: swmhymodjfsa.Com

 00021>
 E-Mail: swmhymodjfsa.Com

 00011> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. _____ 00021> 00022> 00023> 00024> 00025> 00026> 00027> ++++++ Licensed user: J. L. Richards & Associates Limited ++++++ ++++++ Ottawa SERIAL#:4418403 +++++++ ***************** 00028> 00029> 00030> 00031> 00032> 00033>
 ++++++
 PROGRAM ARRAY DIMENSIONS ++++++

 Maximum value for ID numbers : 10

 Max. number of rainfall points: 15000

 Max. number of flow points : 15000
 45.63 12.50 12.15 (11) 12.50 .09 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 000333 000345 000355 000355 000375 DETAILED OUTPUT 000375 DATE: 2009-05-15 TIME: 00:57:02 RUN COUNTER: D00199 000395 COUNTER: D00199 COUNTER: D0199 COUNTER: D019 00171> 00172> 00173> 00174> 00175> 00176> 00176> 00177> 00178> 00179> 00180> 00181> .08 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = *TOTALS* .12 1.33 23.43 25.00 .121 (iii) 1.333 21.969 24.999 .879 .00 1.46 5.17 25.00 00039> ** 00040> * 00041> * 00042> * 00043> * 00043> * 00044> * 00045> * Input filehame: V:\20983.DU\ENG\FINALS-1\SWMFIM-1\SWM-INT.dat Output filehame: V:\20983.DU\ENG\FINALS-1\SWMFIM-1\SWM-INT.out Summary filehame: V:\20983.DU\ENG\FINALS-1\SWMFIM-1\SWM-INT.sum User comments: 1. .94 .21 1:_____ 00045 * 1:______* 00045 * 3:______* 00047 * 3:______* 00047 * (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (i) TIME STRP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (ii) PERK FLOW DES NOT INCLUDE BASEFLOW IF ANY. 00182> 00183> 00183> 00184> 00185> 00185> ····· 00187> 001:0006-----.030 45.63 7.97 12.50 12.50 11.52 (ii) 13.44 (ii) 12.50 12.50 .10 .09 00201> 00202> 00203> 00204> 00205> 00206> 00207> 00208> 00209> 00210> 00211> 00212> 00214> 00214> 00215> *TOTALS* .118 (iii) 1.333 22.881 24.999 .915 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .12 1.33 23.43 25.00 .94 .00 1.42 5.17 25.00 .21 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOS NOT INCLUDE BASEFICOW IF ANY. CALCULATION OF 4 HR 25 MM STORM EVENT *
00082>
00082>
00083>
CREADED TO COMPARE THE STORM STORMS 00216> 00216> 00217> 00218> 00219> 00220> 001:0007-----QPEAK TPEAK R.V. (cms) (hrs) (mm) .158 1.29 20.51 .121 1.33 21.97 (cm/s) .000 .000
 00225>
 112 02:020
 1.54
 121 1.3

 00225>
 SUM 04:040
 3.61
 278
 1.3

 00225>
 SUM 04:040
 3.61
 278
 1.3

 00225>
 NOTE:
 PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

 00220>
 NOTE:
 PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 3.61 .278 1.33 21.13 .000
 TIME
 RAIN
 <th 00094> 00095> 00096> 00097> 00098> 00239> SUM 05:050 5.01 .396 1. 00240> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00242> 00118> 001:0004 00119> 001:0004 00120> * ORGAWORLD FILE * 00122> * 45.63 7.50 7.97 (ii) 7.50 .14 4.42 42.50 41.62 (ii) 42.50 00123> * SUB-AREA No.1 00259> 00260> 00262> 00263> 00264> 00264> 00266> 00266> 00266> 00269> 00269> 00269> 00270> .03 *TOTALS*
 PEAK FLOW
 {cms} =

 TIME TO PEAK
 {hrs} =

 RUNOFF VOLUME
 (mm) ≈

 TOTAL RAINFALL
 (mm) =

 RUNOFF COEFFICIENT
 =
 .09 1.25 23.43 25.00 .00 2.00 5.17 25.00 *TOTALS* .089 (iii) 1.250 22.882 24.999 .915 00132> 00133> 00134> 00135> .94 .21 Max.eff.Inten.(mm/hr)= 45.63 5.37 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

CN* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEPFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 004065 00272> 00273> 00274> 00275> 00276> ------00277> 001:0010----00278> * 00279> * SUB-AREA No CALIE STANDHYD | Area (ha)= 17.00 | 03:H1F03 DT=2.50 | Total Imp(6)= 71.00 Dir. Conn.(5)= 50.00 00412> 1 00413> 00413> 00414> 00415> 00415> 00416> Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS 12.07 1.57 .65 PERVIOUS (i) 4.93 4.67 1.50 00418> 00410> 00420> 00420> 00421> 00422> 00422> Surface Area(ha) =Dep. Storage(mm) =Average Slope(%) =Length(m) =Mannings n= 450.00 100.00 .08 4.67 1.50 00285> 00286> 00287> 00288> 00289> 00290> 00290> 2.58 .250 .61 207.25 .030
 40.81
 12.73

 17.50
 47.50

 16.94
 (ii)
 47.35

 17.50
 47.50

 10.94
 (ii)
 47.35

 10.97
 07
 .02
 20.00 .030 45.63 10.00 10.37 (ii) 10.00 .11 .24 1.29 23.43 23.43 25.00 .94 .94 .50 .35 (ii) 00424> 00425> 00425> 00426> 00427> 00427> 00428> 5.66 27.50 26.38 (ii) 27.50 .04 Max.eff.Inten.(mm/br)= Max.err.inten.(mm)/nf)s over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 00292> 00293> 00294> 00295> 00296> 00297> 00298> 00300> 00301> 00301> 003023> 00304> 00305> 00306> 00306> *TOTALS* .625 (iii) 1.458 16.085 24.999 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = -60 1.42 23.43 25.00 .94 .10 2.00 8.74 25.00 .35 004295 00430> 00431> 00432> 00433> 00433> *TOTALS* .238 (iii) 1.292 22.882 24.999 .915 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .00 1.67 5.17 25.00 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COFFICIENT.
 (ii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00435> 00436> 00437> 00438> 00439> 00440> -.21 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (a) FRO-EDUCE SELECTED FOR FRONTONS DESIGN
 (c) N* = 81.0
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. _____ 003085 00448> 00448> 00449> 00450> 00451> (cms) .000 .000 Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = 12.85 1.57 .50 5.25 4.67 1.50 00315> 00316> 00316> 00317> 00318> SUM 08:080 3.55 .327 1.29 .000 22.88 00451> 00452> 00453> 00454> 00455> 00456> 600.00 .030 100.00 00319> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 34.39 11.54 22.50 55.00 23.33 (ii) 54.95 (ii) 22.50 55.00 .05 .02 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 00320> ------00457> 00457> 00458> 00459> 00460> 00461>
 AREA
 QPEAK
 TPEAK
 R.V.

 (ha)
 (cms)
 (hrs)
 (nm)

 5.01
 .396
 1.33
 21.62

 3.55
 .327
 1.29
 22.88
 DWF (cms) .000 .000 *TOTALS* .562 (iii) 1.542 16.085 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (nm) = RUNOFF COEFFICIENT = .09 2.17 8.74 25.00 .53 00461> 00462> 00463> 00464> 00465> 00465> 00466> .716 1.29 22.14 1.50 23.43 25.00 .94 8.56 .000 24.999 .35 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 31.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) FEAK FLOW DOES NOT INCLUDE BRASEIOW IF ANY. 00467> 00468> 00469> 00470> 00471> 00472> 00335> -----00336> [ROUTE RESERVOIR | 00337> [IN>09:(090) | 00338> [OUT<10:(POND) | 00339> -----00340> Requested routing time step = 1.0 min.
 OUTLFOW
 STORAGE
 ABLE
 ABLE

 OUTFLOW
 STORAGE
 OUTFLOW
 STORAGE

 (cms)
 (ha.m.)
 (cms)
 (ha.m.)

 .000
 .0000E+00
 (.593
 .6231E+00
 00472> 00473> 00473> 00473> 00473> 00473> 00475> 00475> 00475> 00475> 00475> 1D2 NHYD AREA QPEAK TPEAK R.V. DWF (ha) (cms) (hrs) (mm) (cms) 00477> 1D3:HIP03 17.00 00475> 110 3:HIP03 17.00 00475 110 3:HIP03 17.00 00485 000 00485 000 00485 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 AGE TABLE
 STORAGE

 OUTFLOW
 STORAGE

 (cms)
 (ha.m.)

 .593
 .6251E+00

 .654
 .6631E+00

 .950
 .6274E+00

 .90
 .304
 .9157E+00

 1.304
 .9157E+00
 .1004E+01

 2.577
 .1092E+01
 .0000E+00
 STORAGE (ha.m.) .0000E+00 .6560E-01 .1311E+00 00340> 00341> 00342> 00343> 00344> 00345> 00346> .008 .093 .2831E+00 | .233 .3971E+00 | .337 .4731E+00 | .465 .5491E+00 | .531 .5871E+00 | 00346> 00347> 00348> 00349> 00350> 00351> ROUTING RESULTS 00484> R.V. (mm) 22.143 22.141 TPEAK 00403-00485-004865 001:0019------00487> * 00487 * SUB-AREA No.4 (hrs) 1.292 3.875 00352> 00353> 00354> 00355> 00356> 00356>
 PEAK
 FLOW
 REDUCTION {Qout/Qin} (%)=
 4.470

 TIME SHIFT OF PEAK
 FLOW
 (min)=
 155.00

 MAXIMUM
 STORAGE
 USED
 (ha.m.)=.1611E+00
 4.470 00358> * Remaining Hawthorne Industrial Park * Surface Area(ha)=Dep. Storage(mm)=Average Slope(%)=Length(m)=Mannings n= 5.77 4.67 1.50 100.00 .250 14.13 1.57 .60 580.00 .030
 OD5050
 AREA

 005055
 ADD HYD (HIP06) | ID: NHYD
 AREA

 005079
 IADD HYD (HIP06) | ID: NHYD
 AREA

 005089
 IDI 02:HIP02
 28.46

 005100
 +ID2 05:HIP05
 55.10

 00511>
 +ID3 06:Pond-B
 4.00
 00506>
 QPEAK
 TPEAK
 R.V.
 DWF

 (cms)
 (hrs)
 (mm)
 (cms)

 .655
 1.54
 17.91
 .000

 1.166
 1.46
 16.08
 .000

 .077
 1.38
 6.34
 .000
 00374> 00375> 00376> 00377> 00378> 00378> 00379> 00380> 00381> 34.39 22.50 21.64 (ii) 22.50 .05 11.90 52.50 52.88 (ii) 52.50 .02 Max.eff.Inten.(mm/hr)= 00512> SUM 07:HIP06 67.56 1.887 1.50 16.28 over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 00513> .000 *TOTALS* ..642 (iii) 1.542 16.085 24.999 ..643 00382> 00382> 00383> 00384> 00385> PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .60 . 11 1.50 23.43 25.00 .94 2.13 8.74 25.00 .35 Requested routing time step = 1.0 min. 00386 00386> 00387> 00388> 00389> 00390> 00391> 00392> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 003932 00529> 00530> 00531> 00532> 00533> 00534> 00536> 00536> 00536> 00537> 00538> 00539> 00539> 00395> 00396> 00397> 001:0015-----AREA (ha) 8.56 19.90
 QPEAK
 TPEAK
 R.V.
 DWF

 (cms)
 (hrs)
 (nmm)
 (cms)

 .032
 3.88
 22.14
 .000

 .642
 1.54
 16.08
 .000
 00398> | ADD HYD (HIP02) | ID: NHYD 00399: ID1 10:POND +ID2 01:HIP01 TPEAK 00400> ROUTING RESULTS AREA OPEAK R.V. (hrs) 1.500 5.417 00401> 00402> 00403> (cms) 1.887 .062 INFLOW >07: (HIP06) OUTFLOW<08: (HIP-PO) (mm) 16.275 16.275 . 655 67.56 67.56 SUM 02:HIP02 28.46 1.54 17.91 .000 00404> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. PEAK FLOW REDUCTION [gout/gin] (%)= 3.289

J. L. Richards & Associates Limited

Page 1

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. TIME SHIFT OF PEAK FLOW (min) = 235.00 MAXIMUM STORAGE USED (ha.m.) = .8484E+00 00676> 00678> 00678> 00679> 00680> 00681> 001:0005----------Unit Hyd Qpeak (cms)= .702 00555> 00555> 00556> 00557> 00558> 00559>
 PEAK FLOW
 (cms) = .053 (i)

 TIME TO PEAK
 (hrs) = 1.708

 RUNOFF VOLUME
 (mm) = 4.111

 TOTAL RAINFALL
 (mm) = 24.999

 RUNOFF COEFFICIENT = .164
 00692> 00693> 00694> 00695> 00696> 00696> 00698> 00700> 00701> 00702> 00703> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 76.01 10.00 9.07 (ii) 10.00 .11 00560> 15.07 12.50 11.36 (ii) 12.50 00561> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00562> 00563> 00564> 00565> 00566> 001:0023-----.10 *TOTALS* .192 (iii) 2.083 20.548 31.860 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .19 1.08 30.29 31.86 .00 1.17 8.52 31.86 .27 00567> *SUB-AREA No. 6 00568> 00569> 00570> 00571> 00703> 00704> 00705> 00706> 00707> 00708> 00709>
 DESIGN NASHYD
 | Area
 (ha)=
 5.30
 Curve Number
 (CN)=76.00

 | 10:A3
 DT=
 2.50
 ! Ia
 (mm)=
 4.670
 # of Linear Res.(N)=
 3.00

 ----- U.H. Tp (hrs)=
 .804
 .95 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SNALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PERK FLOW DOES NOT INCLUDE BASEFICOW IF ANY. 00572> 00573> Unit Hyd Opeak (cms)= .252 00574> 00575> 00576> 00577>
 PEAK FLOW
 (cms) =
 .025 (i)

 TIME TO PEAK
 (hrs) =
 2.333

 RUNOFF VOLUME
 (mm) =
 4.110

 TOTAL RAINFALL
 (mm) =
 24.999

 RUNOFF COEFFICIENT
 =
 164
 00710; 00577> 00578> 00579> 00580> 00581> 00582> 00583> (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 00583>

 00584>

 00585

 00585

 00586>

 00587

 ADD HYD (Interi) | ID: NHYD

 AREA
 QPEAK
 TPEAK

 NUB

 00589>
 ID1 08:HIP-PO
 G7.56

 0059>
 ID1 08:HIP-PO
 G7.56

 0059>
 HD3 08:HIP-PO
 G7.56

 0059>
 HD3 10:A2
 5.30

 00592>
 HD3 10:A2
 5.30

 00592>
 SUM 01:Interi
 79.66

 00594>
 SUM 01:Interi
 79.66

 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 00731> 00731> 00732> 00733> 00734> 00735> 00736> 00736> 00737> 001:0025-----*TOTALS* .186 (iiii) 1.083 29.637 31.860 .930 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (nm)= RUNOFF COEFFICIENT = .18 .00 1.08 1.13 30.29 8.52 31.86 31.86 .95 .27
 CLUCULATION OF SHR - 1:2 YEAR STORM EVENT *

 005015

 005015

 005016

 005017

 005018

 005019

 005019

 005015

 005016

 005016

 005017

 005018

 005019

 005019

 005019

 005010

 005010

 005010

 005120

 005120

 005120

 005120

 005120

 005120

 005120

 005120

 005120

 005120

 005120

 005120

 005120

 005120

 005120

 005120

 005120

 005120

 005120

 005120

 005120

 005120

 005120

 005120

 005120

 005120

 005120

 005120</ 00738> 00739> 00740> 00741> 00742> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STBP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 AREA
 QPEAK
 TPEAK
 R.V.

 (ha)
 (cms)
 (hrs)
 (mm)

 2.07
 .245
 1.08
 26.81

 1.54
 .192
 1.08
 28.55
 (cms) .000 .000 Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = .33 00617> 00618> 00752> 00753> 00754> 00755> 00756> 00756> 00757> 00758> 00619> 00620> 00621> .000
 TIME
 RAIN
 TIME
 RAIN
 TIME
 RAIN
 TIME
 RAIN

 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr

 .17
 2.615
 1.00
 76.805
 1.63
 5.095
 2.67
 2.664

 .33
 .3498
 1.17
 24.079
 2.00
 4.291
 2.283
 2.463

 .60
 4.687
 1.33
 12.364
 2.17
 3.718
 3.00
 2.279

 .67
 7.305
 1.50
 6.303
 2.50
 2.953
 |
 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00622> ------00624> 00759> 001:0008-----00627> 00766>
00767>
00768> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00769> 00780> 00781> 00782> 00783> 00783> 00784> 00785> 00786> . .250 76.81 10.24 7.50 30.00 6.47 (ii) 30.53 (ii) 7.50 30.00 .16 .04 00650> * SUB-AREA No.1 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=
 00631>
 - SUB-AKEA No.1

 00651>
 - SUB-AKEA No.1

 00652>
 | CALIB STANDHYD | Area (ha) = 2.07

 00652>
 | Collol D Dr = 2.50]

 00655
 Intpe(\$) = 84.00 Dir. Conn.(\$) = 84.00

 00655>
 IMPERVIOUS PERVIOUS (i)

 00655>
 Surface Area (ha) = 1.74 .33

 00655>
 Dep. Storage (mm) = 1.57 4.67

 00655>
 Average Slope (\$) = .52 1.00

 00655>
 Length (m) = 204.72 20.00

 00656>
 Mannings n = .030 .250
 ----00651> 00787> 00788> *TOTALS* .139 (iii) 1.042 29.637 31.860 .930 00655> 00656> 00657> 00658> 00659> 00660> 00661> PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nm) = TOTAL RAINFALL (nm) = RUNOFF COEFFICIENT = .14 .00 1.04 1.54 30.29 8.52 31.86 31.86 .95 .27 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) TINE STEP (DT) SHOULD BE SHALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (ii) PEAN FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00661> 00662> 00663> 00664> 00665> 00666> 00666> Max.eff.Inten.(mm/hr)= 76.81 11.88
 76.81
 11.88

 10.00
 22.50

 8.77
 (ii)

 22.21
 (ii)

 10.02
 25.50

 .12
 .05

 .24
 .01

 1.09
 1.38

 30.29
 8.52

 31.86
 31.86

 .95
 .27
 over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= *TOTALS* .245 (iii) 1.083 26.807 31.860 .841 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nun) = TOTAL RAINFALL (nun) = RUNOFF COEFFICIENT = 00668> 00669> 00670> 00671> 00672> 00673> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) 00674> 00675>

IMPERVIOUS PERVIOUS (i) 00946> Length Mannings n (m) = 450.00 100.00 Surfæce Area Dep. Storage Averæge Slope Lengtsh Mannings n (ha) = (mm) = (%) = (m) = = 2.58 1.57 .61 207.25 .030 00947> 00948> 00950> 00950> 00952> 00952> 00954> 00956> 00956> 00956> 00958> 00956> 00959> 00959> 00812> 00813> 00814> .08 4.67 1.50 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 59.23 15.00 14.60 (ii) 15.00 .08 25.04 37.50 37.80 (ii) 37.50 00815> 00816> 00816> 00817> 00818> 00818> 20 00 . 250 Max.e=ff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 76.81 7.50 8.42 (ii) 7.50 .14 12.71 20.00 20.00 (ii) 20.00 .03 *TOTALS* .978 (iii) 1.167 21.814 31.860 .91 1.17 30.29 31.86 .95 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = .19 1.63 13.34 31.86 00820> 00821> 00822> 00823> 00824> .06 *TOTALS* .379 (iii) 1.042 29.637 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = RUNOFF COEFFICIENT = .38 1.04 30.29 31.86 .95 .00 1.33 8.52 31.86 . 42 00825 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SKALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAR FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00826; 00828> 00827> 00828> 00829> 00830> 00831> 00961> 00962> 00963> 00964> 00965> 00965> 31.860 .27 .930 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN⁺ = 81.0 Ia = Dep. Storage (Above)
 (ii) THE STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) FEAK FLOW DOES NOT INCLUDE BASEFICOW IF ANY. 00832> 00833> 00834> 00835> 00836> -----00974> 00975> 00975> 00976> 00977> 00978> 00979> DWF (cms) .000 .000 00841> 00842> 00843> 00844> 00845> 00845> 00846> 00846> 00847> 00848> .000 00980> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00981> 00982> 00983> 00984> 00985> 00986> 00986> 00987> 00988> 00988>
 50.44
 22.17

 20.00
 45.00

 20.01 (ii)
 44.37 (ii)

 20.00
 45.00

 .06
 .03
 Max.eff.Inten.(num/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 45.00 44.37 (ii) 45.00 *TOTALS* .874 (iii) 1.292 21.814 31.860
 (ha)
 (cms)
 (hrs)
 (mn)

 ID1 05:050
 5.01
 .623
 1.08
 28.13

 +ID2 08:080
 3.55
 .518
 1.04
 29.64

 SUM 09:090
 8.56
 1.118
 1.08
 28.76
 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .80 1.25 30.29 31.86 .95 .18 1.79 13.34 31.86 00853> 00854> 00855> 00856> 00857> 00858> 00990> .000 00991> 00992> 00993> 00994> 00995> . 42 000-00858> 00859> 00860>-----00861> 001:0013-----00862> -----00863> | ROUTE RESERVOIR | 00864> | IN>09:(050) | 00865> | OUT<10:(PFOND) | 00865> | OUT<10:(PFOND) | 685 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (i) TIME STEP (UT) SHOULD BE SMALLER OR ROUAL THAN THE STORAGE COEFFICIENT. (ii) PEAK FLOW DOES NOT INCLUDE BASELOW IF ANY. 00996> 00997> 00998> 00998> 00999> 01000> Requested routing time step = 1.0 min. OUTFLOW STORAGE | OUTFLOW STORAGE RAGE TABLE OUTFLOW STORAGE OUTFLOW STORAGE (ha.m.) .533 .6251E+00 .654 .6631E+00 .737 .7391E+00 .350 .8274E+00 1.304 .9157E+00 1.380 .1004Z+01 2.577 .1092E+01 .000 .0000E+00 (cms) .000 .008 .017 (ha.m.) .0000E+00 .6560E-01 .1311E+00 .008 .6560E-01 | .017 .1311E+00 | .093 .2831E+00 { .233 .3971E+00 { .337 .4731E+00 | .465 .5491E+00 | .531 .5871E+00 | 00869> 00870> 00871> 00872> 00873> 00873> 00875> 00875> 00876> 00877> 00878> 00879> 00880> 01005> 01006> 01007> 01008> 01009> 01010> SUM 05:HIP05 35.10 1.814 1.21 21.81 .000 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01011> ROUTING RESULTS
 ROUTING RESULTS
 AREA
 OPEAK
 TPEAK

 INFLOW >00:
 (090)
 8.56
 1.118
 1.083

 OUTFLCW(10:
 (POND)
 8.56
 .056
 3.003
 R.V. 01012 01012 01012 01013 01019 01015 *50B-AREA NO.4 01015 *50B-AREA NO.4 (mm.) 28.757 28.754 00880> 00881> 00882> 00883> 00884> 00885> PEAK FLOW REDUCTION [Qout/Qin](%)= 5.030 TIME SHIFT OF PEAK FLOW (min]= 115.00 MAXIMUM STORAGE USED (ha.m.)=.2095E+00 01020> 01021> 01022> 01023> 00886> Unit Hyd Opeak (cms)= .899
 PEAK FLOW
 (cms) =
 .145

 TIME TO PEAK
 (hrs) =
 1.167

 RUNOFF VOLUME
 (mm) =
 10.266

 TOTAL RAINFALL
 (mm) =
 31.860

 RUNOFF COEFFICIENT =
 .322
 .145 (i) 01023> 01024> 01025> 01026> 01026> 01027> 01028> 00891> 00892> 00893> * SUB-AREA No.1 CALIE STANDHYD | Area (ha)= 19.90 01:HTP01 DT=2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 00894> | 00895> | 00896> -01029> (i) P 01030> 01031> ------01032> 001:0020--01033> ------(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 20-----Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS PERVIOUS (1) 00896> 00897> 00898> 00899> 00900> 00901> 00901> 5.77 4.67 1.50
 01022
 01:0020

 01033
 (haD HYD (HIP66) | ID: NHYD AREA (PEAK TPEAK R.V.)

 01034
 (ADD HYD (HIP66) | ID: 02:HIP02 (ha) (ma) (hrs) (ma) (hrs) (ma) (1035

 01035
 IDI 02:HIP02 (26.46 1.039 1.25 2.3.90 (hrs) (12.21 2.1.61 + 10.27 1.1.7 10 14.13 DWF .60 580.00 .030 (cms) 100.00 .000 54.21 23.06 17.50 42.50 18.04 (ii) 42.02 (ii) 17.50 42.50 .06 .03 00903> 00903> 00904> 00905> 00906> 00907> 00908> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = 000 /. .06 .95 1.21 30.29 31.86 .95 00908> 00909> 00910> 00911> 00912> 00913> 00914> 00915> 00916> 00916> 00917> 00918> *TOTALS* PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 1.020 (iii) 1.250 21.814 31.860 .685 .21 1.71 13.34 31.86 .42 01046> ------01047> | ROUTE RESERVOIR | 01047> | ROUTE RESERVOIR | 01048> | IN>07: (HIP06) | 01049> | OUT<08: (HIP-PO) | 0150> ------Requested routing time step = 1.0 min.
 Requested routing time step = 1.0 kml.

 OUTPICW
 STORAGE TABLE

 OUTPICW
 STORAGE 1

 (cms)
 (ha.m.)

 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES; CN* = 81.0 Ia = Dep. Storage (Above) (ii) Time STRP (07) SHOULD BE SHALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK ELOW DOES NOT INCLUDE BASEFLOW IF ANY. 01051> 01053> 01054> 01055> 01056> 00920> 00921: 01056> 01057> 01058> 01059> 01060> 01061> 01062> 01063> ROUTING RESULTS INFLOW >07: (HIPO OUTFLOW COP
 ROUTING RESULTS
 AREA
 OPEAK

 INFLOW >07: (H1F06)
 67.56
 2.992

 OUTFLOW<08: (HIP-PO)</td>
 67.56
 .093
 TPEAK R.V. TPEAK (hrs) 1.208 4.444 01063> 01064> 01065> 01066> 01066> 01067> 01068> 00929> 00930> 00931> 22.009 SUM 02:HIP02 28.46 1.039 1.25 23.90 .000 PEAK FLOW REDUCTION [Qout/Qin](%)= 3.122 TIME SHIFT OF PEAK FLOW (min)= 194.17 MAXIMUM STORAGE USED (ha.m.)=.1197E+01 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01069> 01070> 01071> -----01072> 001:0022----01073> * 01074> *SUB-AREA No. 5 01075> * 010755 * 010765 -010775 | DESIGN NASHYD (Area (ha)= 6.80 Curve Number (CN)=76.00 01078 | 09:A2 DT 2.50 | Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 010795 ----- U.H. Tp(hrs)= .370

Surface Area Dep. Storage Average Slope Length Mannings n 01081> Unit Hvd Opeak (cms)= .702 01216> 01217> 1.42 1.57 .50 244.34 .030 01081> 01082> 01083> 01084> 01085> .12 4.67 1.00 5.00 .030
 PEAK FLOW
 (cms) =
 .102 (i)

 TIME TO PEAK
 (hrs) =
 1.458

 RUNOFF VOLUME
 (mm) =
 5.883

 TOTAL RAINFALL
 (mm) =
 31.860

 RUNOFF COEFFICIENT
 .216
 (mm) = (8) = (m) = (m) = = = = (m) = (m)01218> 01220> 01221> 01222> 01223> 01223> 01224> 01086> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 104.19 7.50 8.73 (ii) 7.50 .14 01086> 01087> 01088> 01089> 01090> 31.02 10.00 9.85 (ii) 10.00 .11 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01225> 01225> 01226> 01227> 01228> 01229> 01091> 01092> 001:0023-----PEAK FLOW (cms) = PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = RUNOFF COEFFICIENT = *TOTALS* .283 (iii) 1.042 38.845 .28 1.04 40.94 42.51 .96 01093> * 01093> * 01094> *SUB-AREA No. 6 01095> * 01096> ------.01 1.13 14.70 42.51 01230> 01231> 01232> 01233> 01233> 01234> 01235> 42.514 .35 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 81.0 IA = Dep. Storage (Above)
 INE STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (ii) PEAR FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01100> 01101> 01102> Unit Hyd Qpeak (cms)= .252 01236> 01237> 01238> 01239> 01240>
 PEAK FLOW
 (cms) =
 .048
 (i)

 TIME TO FEAK
 (hrs) =
 2.083
 RUNOFF VOLUME
 (mm) =
 6.883

 TOTAL RATURALL
 (mm) =
 31.860
 RUNOFF COEFFICIENT =
 .216
 011022 01103> 01104> 01105> 01106> 01106> 01107> 01108> _____ 01241> 001:0006-----(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01109> CALLE STANDHYD | Area (ha)= 1.40 03:030 DT=2.50 | Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00
 01110 01112
 001:0024-----

 011112
 001:0024------ (mas)
 (ha)
 (mas)

 01113
 (mas)
 (ha)
 (mas)
 (has)
 (mas)

 011145
 (ADD HYD (Interi) | ID: NHYD
 AREA
 OPEAK TPEAK R.V. DWF
 (mas)

 01115
 (ha)
 (cms)
 (hrs)
 (mm)
 (cms)

 01115
 TD1 00:HIP-PO
 67.56
 .093
 4.44
 22.01
 .000

 01117
 +ID2 05:A2
 6.80
 .102
 1.46
 6.88
 .000

 01118
 +ID3 10:A3
 5.30
 .048
 2.08
 6.88
 .000

 01120
 SUM 01:Interi
 79.66
 .194
 1.58
 19.71
 .000
 01110>
 IMPERVICE
 97.00
 DIF. Cont

 Surface Area
 (ha)
 IMPERVICE
 (i)

 Surface Area
 (ha)
 1.36
 .04

 Dep. Storage
 (mm)
 1.57
 4.67

 Length
 25.63
 5.00
 Mannings n
 01253> 01254> 01255> 01256> 01256> 01257> 104.19 31.02 7.50 10.00 8.28 (ii) 9.39 (ii) 7.50 10.00 .14 .12 Max.eff.Inten.(mma/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 01122> NOTE: PEAK FLOWS DU NUI INCLID 01122> 01124> 01125> 001:0025------01125> 01:0025-------01125> CALCULATION OF 3NR - 1:5 YEAR STORM EVENT 01258> 01250> 01259> 01260> 01261> 01262> *TOTALS* .274 (iii) 1.042 40.157 .42.514 .945 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (num) = TOTAL RAINFALL (num) = RUNOFF COEFFICIENT = .27 1.04 40.94 42.51 .96 .00 1.13 14.70 42.51 .35 01263> 01263> 01264> 01265> 01266> 01267> 01268> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) iii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE EASEFLOW IF ANY. 01269> 01270> 01143> 01144> 01144> 01145> 01146> 01146> 01147> Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = .33 01280> 01281> SUM 04:040 3.61 .645 1.04 37.64 . 000
 TIME
 RAIN
 TIME
 RAIN
 TIME
 RAIN
 TIME

 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 rdw/hr
 hrs

 .17
 3.662
 1.00
 104.193
 1.63
 6.669
 2.67

 .33
 4.582
 1.17
 32.037
 2.00
 5.628
 2.83

 .50
 6.151
 1.33
 16.337
 2.17
 4.672
 3.00

 .67
 9.614
 1.50
 10.965
 2.33
 4.305
 3.00

 .83
 24.170
 1.67
 8.287
 2.30
 3.664
 3.06
 01282> 01283> 01284> 01148> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01149> 01150> 01151> 01152> RAIN mm/hr 3.510 3.220 2.978 ____ 01285> 01285> 01286> 01286> 01286> 01286> 01280> 01280> 01280> 01280> 01280> 01280> 01280> 101 00100 110 03:030 1.40 0.740 1.04 0.16 0.00 01290> 110 03:030 1.645 1.04 37.64 0.00 01292> 01292> 01292 01292 01292 01292 01292 01292 01200 01000 01000 0000 0000 0000 0000 0000 0000 0000 0000 0 01265> 01153> 01154> 01155> 01156> ------01157> 001:0003-----01158> ------01293> SUM 05:090 01294> OI295> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 IMPERVIOUS
 PERVIOUS
 (i)

 Surface Area
 (ha) =
 .86
 .03

 Dep. Storage (ma) =
 1.57
 4.67

 Average Slope
 (h) =
 .93
 .70

 Length
 164.82
 40.00
 Mannings n
 =
 .030
 .250
 01307> 01308> 01309> 01310> 01311> 01312>
 104.19
 20.32

 5.00
 25.00

 5.72
 (ii)

 24.02
 (ii)

 5.00
 25.00

 .20
 .05
 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff.(min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 01312> 01313> 01314> 01315> 01315> 01316> 01317> 01318> Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS PERVIOUS (i) 01181> 01182> 01183> 01184> 01185> 01186> *TOTALS* .205 (iii) 1.000 40.157 42.514 .945 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .33 4.67 1.00 20.00 .250 .20 1.00 40.94 42.51 .96 .00 1.38 14.70 42.51 .35 1.74 1.57 .52 204.72 .030 01318> 01319> 01320> 01321> 01322> 01322> 01187> 01188> 01189> 01190> 01191> 01192> 104.19 7.50 7.76 (ii) 7.50 .15 24.26 17.50 17.86 (ii) 17.50 .06 01323> 01324> 01325> 01326> 01327> 01328> 01329> Max.eff.Inten.(mm/hr)= (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = (i) IN PROLEDURE SELECTED FOR PERVIOUS LUSSES:
 CN*= 81.0 I a = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEPICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01192> 01193> 01194> 01195> 01195> 01196> 01197> 01198> .15 .36 1.04 40.94 42.51 .96 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINPALL (mm) = RUNOFF COEFFICIENT = *TOTALS* -TOTALS* .362 (iii) 1.042 36.745 42.514 .864 .01 1.25 14.70 42.51 .35 01199> 01200> 01201> 01202> 01202> 01203> 01204> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOLLD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = 2.58 1.57 .61 207.25 .030 .08 4.67 1.50 20.00 .250 01341> 01342> 01343> 01344> 01345> 01346> 01346> 01347> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 24.26 17.50 16.40 (ii) 17.50 .07 104.19 7.50 7.45 (ii) 7.50 .15 01348> 01349> 01350> *TOTALS*

01351>	PEAK FLOW (cms)= .54 .00 .538 (iii)	
01352> 01353>	TIME TO PEAK (hrs)= 1.04 1.25 1.042 RUNOFF VOLUME (mm)= 40.94 14.70 40.157	01486> RUNOFF COEFFICIENT = .96 .50 .732 01487> 01486> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
01354> 01355>	TOTAL RAINFALL (mm) = 42.51 42.51 42.514 RUNOFF COEFFICIENT = .96 .35 .945	01489> CN* = 81.0 Ia = Dep. Storage (Above) 01490> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
01356> 01357> 01358>	(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	01491> THAN THE STORAGE COEFFICIENT. 01492> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
01359> 01360>	$CN^{*} = 81.0$ Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.	01493> 01494>
01361> 01362>	(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	01495> 001:001/
	001:0011	014985
01366>	ADD HYD (080) ID: NHYD AREA QPEAK TPEAK R.V. DWF (Da) (cma) (hrs) (mm) (cma)	01501>
01368> 01369>	(ha) (cms) (hrs) (mm) (cms) ID1 06:060 .89 .205 1.00 40.16 .000 +ID2 07:070 2.66 .538 1.04 40.16 .000	01502> IMPERVIOUS PERVIOUS (i) 01503> Surface Area (ha)= 12.85 5.25
01370> 01371>	SUM 08:080 3.55 .733 1.04 40.16 .000	015045 Dep. Storage (mm)= 1.57 4.67 015055 Average Slope (%)= .50 1.50 015055 Length (m)= 600.00 100.00
01372> 01373>	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	01507> Mannings n = .030 .250 01508>
01374> 01375> -		01509> Max.eff.Inten.(mun/hr)= 73.27 42.65 01510> over (min) 17.50 35.00
01377> -	ADD HYD (090) ID: NHYD AREA QPEAK TPEAK R.V. DWF	01511> Storage Coeff. (min)= 17.24 (ii) 35.98 (ii) 01512> Unit Hyd. Tpeak (min)= 17.50 35.00
01379> - 01380>	(ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha)	01513> Unit Hyd. peak (cms)= .07 .03 *TOTALS* 01514> *TOTALS* 01515> PEAK FLOW (cms)= 1.19 .35 1.364 (iii)
)1381>)1382>	+ID2 08:080 3.55 .733 1.04 40.16 .000	01515> PEAK FLOW (cms)= 1.19 .35 1.364 (iii) 01516> TIME TO PEAK (hrs)= 1.21 1.54 1.250 01517> RUNOFF VOLUME (mm)= 40.94 21.31 31.126 01518> TOTAL MAINFALL (mm)= 42.51 42.51 42.514
1383>	SUM 09:090 8.56 1.651 1.04 39.10 .000	01519> RUNOFF COEFFICIENT = .96 .50 .732
1385> 1386>	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	01520> 01521> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
1388> 0	01:0013	01522> CN* = 81.0 Ia = Dep. Storage (Above) 01523> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 01524> THAN THE STORAGE COEFFICIENT OR
1391> i	ROUTE RESERVOIR Requested routing time step = 1.0 min. IN>09:(090)	01524> THAN THE STORAGE COEFFICIENT. 01525> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01526>
1393> -	OUT<10: (POND)	01527>
1394> 1395> 1396>	(cms) (ha.m.) (cms) (ha.m.) .000 .0000E+00 .593 .6251E+00	01529>
1397> 1398>	.017 .1311E+00 .797 .7391E+00	01531> (has) (cms) (cms) 01532> ID1 03:HIP03 17.00 1.504 1.17 31.13 .000 01533> +ID2 04:HIP04 18.10 1.364 1.25 31.13 .000
1399> 1400>	.233 .3971E+00 1.304 .9157E+00 .337 .4731E+00 1.880 .1004E+01	01533> 50M 05:HIP05 35.10 2.800 1.17 31.13 .000
1401>	.465 .5491E+00 2.577 .1092E+01 .531 .5871E+00 .000 .0000E+00	01536> 01537> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
1403> 1404> 1405>	ROUTING RESULTS AREA OPEAK TPEAK R.V. (ha) (cms) (hrs) (mm)	01538> 01539>
1406> 1407>	INFLOW XO9: (090) 8.56 1.651 1.042 39.096 OUTFLOW XO10: (POND) 8.56 0.89 2.625 39.093	01540> 001:0019 01541> * 01542> *SUB-AREA No.4
1408> 1409>		01540
1410> 1411>	PEAK FLOW REDUCTION [Qout/Qin] (%)= 5.413 TIME SHIFT OF PEAK FLOW $(min)=$ 95.00 MAXIMUM STORAGE USED $(ha.m.)=-2.758E+00$	01545> 06:Pond-B DT= 2.50 Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 01546> U.H. Tp(hrs)= .170
1412> 1413> - 1414> 0	01:0014	01548> Unit Hyd Opeak (cms)= .899
1/16~ *	Remaining Hawthorne Industrial Park *	01549> 01550> PEAK FLOW (cms)= .260 (i) 01551> TIME TO PEAK (hrs)= 1.167
1418> *		01552> RUNGF VOLUME (mn) = 17.325 01553> TOTAL RAINFALL (mn) = 42.514
1420 > -	SUB-AREA NO.1	01554> RUNOFF COEFFICIENT = .408 01555>
1422>	CALIE STANDHYD Area (ha)= 19.90 01:HIP01 D7=2.50 Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00	01556> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01557> 01558>
1424> 1425>	IMPERVIOUS PERVIOUS (i)	01555> 001:0020
1426> 1427>	Dep. Storage (num)≅ 1.57 4.67 Average Slope (%)≡ .60 1.50	01561> ADD HYD (HIP06) ID: NHYD AREA OPEAK TPEAK R.V. DWF 01562> (ha) (cms) (hrs) (mm) (cms)
1428> 1429> 1430>	Length (m)= 580.00 100.00 Mannings n = .030 .250	01563> ID1 02:HIP02 28.46 1.615 1.21 33.52 .000 01564> +ID2 05:HIP05 35.10 2.800 1.17 31.13 .000
1431> 1432>	Max.eff.Inten.(mm/hr)= 80.14 42.65 over (min) 15.00 35.00	01565> +ID3 06:Pond-B 4.00 .260 1.17 17.32 .000 01566> 500 01567> 500 07:HIP06 67.56 4.661 1.17 31.32 .000
1433> 1434>	Storage Coeff. (min)= 15.43 (ii) 34.18 (ii) Unit Hyd. Tpeak (min)= 15.00 35.00	01569> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
L435> L436> L437>	Unit Hyd. peak (cms) = .07 .03 *TOTALS* PEAK FLOW (cms) = 1.41 .40 1.572 (jij)	01570> 01571>
1438> 1439>	PERK FLOW (cmms)= 1.41 .40 1.572 (iii) TIME TO PEAK (hrs)= 1.17 1.54 1.200 RUNOFF VOLUME mm)= 40.94 21.31 31.126	01572> 001:0021 01573> 01574> ROUTE RESERVOIR Requested routing time step = 1.0 min.
L440> L441>	TOTAL RAINFALL (mm) = 42.51 42.51 42.514 RUNOFF COEFFICIENT = .96 .50 .732	01575 INDOI STORE (HIPO) 015765 OUT<08: (HIP-FO) ========= OUTLFOW STORAGE TABLE =========
1442> 1443>	(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	01577> OUTFLOW STORAGE OUTFLOW STORAGE 01578> (cms) (ha.m.) (cms) (ha.m.)
1444> 1445> 1446>	CN* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.	01579> .000 .0000E+00 .724 .2210E+01 01580> .048 .5740E-01 .937 .2501E+01
1447> 1448>	(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	01581> .054 .24342+00 1.262 .27982+01 01582> .059 .58342+00 1.404 .31012+01 01583> .062 .64002+00 1.532 .34102+01
L449> L450> 0	01:0015	01584>
452>	ADD HYD (HIPO2) ID: NHYD AREA QPEAK TPEAK R.V. DWF (ha) (cms) (hrs) (ma) (cms)	01586> .280 .1644E+01 3.669 .4370E+01 01587> .472 .1924E+01 .000 .0000E+00
1453> 1454> 1455>	(ha) (cms) (hrs) (ma) (cms) ID1 10: FOND 8.56 .089 2.63 39.09 .000 +ID2 01: HIP01 19.90 1.572 1.21 31.13 .000	01588> 01589> ROUTING RESULTS AREA QPEAK TPEAK R.V.
456>	SUM 02:HIP02 28.46 1.615 1.21 33.52 .000	01590> (ha) (cms) (hrs) (mm) 01591> INFLOW >07: (HIP06) 67.56 4.661 1.167 31.317 01592> OUTFLOW <08: (HIP-PO)
.458> .459>	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	01593>
	01:0016	01595> TIME SHIFT OF PEAK FLOW (min)= 145.83 01596> MAXIMUM STORAGE USED (ha.m.)=.1656E+01
463> *	01:0016	01597> 01598>
465		015095 * 001:0022016005 * 016005 * 016005 * 01605 * 01605 * 01605 * 01605 * 01605 * 01605 * 01605 * 01605 * 01605 * 01605 * 01605 * 01605
.4002	CALIB STANDHYD Area (ha)= 17.00 03:HIP03 pT= 2.50 Total Imp(%)= 71.00 pir. Conn.(%)= 50.00	01602> *
L469> L470> L471>	IMPERVIOUS PERVIOUS (1) Surface Area (ha)= 12.07 4.93 Den Storage (mm)= 1.57 4.67	01604> DESIGN NASHYD Area (ba)= 6.80 Curve Number (CN)=76.00 01605> 09:A2 DT≃ 2.50 Ta (mm)= 4.670 # of Linear Res (N)= 3.00
472>	Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= .65 1.50 Length (m)= 450.00 100.00	01606> U.H. Tp(hrs)= .370 01607>
1473>		01608> Unit Hyd Qpeak (cms)= .702 01609> 01610> PEAK FLOW (cms)= .187 (i)
L474>	Mannings n = .030 .250	
L474> L475> L476> L477>	Max.eff.Inten.(mm/hr) = 09.76 47.48 over (min) 12.50 30.00	01611> TIME TO PEAK (hrs) = 1.458 01612> RUNOFF VOLUME (mm) = 12.131
1474> 1475> 1476> 1477> 1478> 1478> 1479>	<pre>Max.eff.Inten.(nm/hr)= 89.76 47.48</pre>	01612> RUNOFF VOLUME (mm) = 12.131 01613> TOTAL RAINFALL (mm) = 42.514 01614> RUNOFF COEFFICIENT = 2.285
1473> 1474> 1475> 1476> 1476> 1477> 1478> 1479> 1479> 1480> 1481> 1482>	Max.eff.Inten.(nm/hr)= 09.76 47.48 over (min) 12.50 30.00 Storate Coeff. (min)= 12.36 (ii) 30.32 (ii) Unit Hyd. Tpeak (min)= 12.50 30.00 Unit Hyd. peak (cms)= .09 .04 *TOTALS*	01612> RUNOFF VOLUME (mm) = 12.131 01613> TOTAL RAINFALL (mm) = 42.514 01614> RUNOFF COEFFICIENT = .285 .285 01615> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
1474> 1475> 1476> 1477> 1478> 1478> 1479> 1480>	Max.eff.Inten.(mm/hr)= 89.76 47.48 over (min) 12.50 30.00 Storage Coeff. (min)= 12.36 (ii) 30.32 (ii) Unit Hyd. Tpeak (min)= 12.50 30.00 Unit Hyd. peak (cms)= .09 .04	01612> RUNOFF VOLUME (mm) = 12.131 01613> TOTAL RAINPALL (mm) = 42.514 01614> RUNOFF COEFFICIENT = .285 01615>

J. L. Richards & Associates Limited

11

01621> *SUB-AREA No. 6 TIME TO PEAK (hrs)= RUNOFF VOLUME (num)= TOTAL RAINFALL (num)= RUNOFF COEFFICIENT = 017565 1.13 19.25 49.50 1.04 47.93 49.50 .97 017575 01759> 01759> 01760> 01761> 01762> .39 CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (i) TIME STEP (IT) SHOULD ES SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (ii) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 01627> 01628> 01629> 01630> Unit Hyd Qpeak (cms)= .252 01763> 01763> 01764> 01765> 01766> 01767>
 PEAK FLOW
 (cms) =
 .086 (i)

 TIME TO PEAK
 (hrs) =
 2.042

 RUNOFF VOLUME
 (mm) =
 12.131

 TOTAL RAINFALL
 (am) =
 42.514

 RUNOFF COEFFICIENT =
 .285
 01631> 01632> 01633>
01634>
01635> 01768> 001:0006-----01769> * SUB-AREA No.3 01636> (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. CALIE STANDHYD [Area (ha)= 1.40 03:030 DT= 2.50 [Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 01637> 01638> 01638> 01648> 01648> 01649 01640 01642 01643 1000 11642 10100 11642 10100 11642 10100 11642 10100 11642 10100 11642 10100 11642 10100 11642 10100 11642 10100 11642 10100 11 ______ Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS PERVIOUS (1) .04 4.67 1.00 5.00 .030 1.36 1.57 (cms) .000 .000 .51 225.63 .030
 122.14
 48.18

 7.50
 7.50

 7.77
 111
 8.70

 1.50
 7.50

 1.51
 1.4

 .33
 .00

 1.04
 1.08

 47.93
 19.25

 49.50
 .97
 .000 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= *TOTALS* .329 (iii) 1.042 47.074 49.505 .951 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = * CALCULATION OF 3HR - 1:10 YEAR STORM EVENT * (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01643> 001:0002------01665> -------01665> | CHICAGO STORM | IDF curve parameters: A=1174.184 01667> | Ptotal= 49.50 mm | B= 6.014 01669> ----- 816 01669> ------ 816 01669> used in: INTENSITY = A / (t + B)^C 01670> Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = .33 01671> 01672> 01673> 01674> 01675> 018075 018085 018095 018105 018115 018125 -
 TIME
 RAIN
 TIME
 RAIN
 TIME
 RAIN
 TIME

 hrs
 mm/hr
 hrs
 mm/hr
 hrs
 mm/hr
 hrs

 174
 4.246
 1.00 122.142
 1.83
 7.733
 2.67

 33
 5.290
 1.17
 37.285
 2.00
 6.502
 2.67

 .50
 7.108
 1.33
 18.954
 2.17
 5.625
 3.00

 .67
 11.130
 1.50
 12.700
 2.33
 4.969
 (

 .83
 28.100
 1.67
 9.588
 2.50
 4.458
 (
 RAIN mm/hr 4.049 3.714 3.434 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01675> 01676> 01677> 01678> 01679> 01680> 01811> 01812> -----01813> 001:0008------
 AREA
 OPEAK
 TPEAK
 R.V.
 DWF

 (ha)
 (cms)
 (hmm)
 (cms)

 1.40
 .329
 1.04
 47.07
 .000

 3.61
 .778
 1.04
 44.32
 .000
 01681> _____ 1.04 45.09 01820/ 01820/ 01821> 01821> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01822> 01824> 01824> 01824> 01824> 01824> 01824> 01824> 01824> 01824> 01824> 01824> 01824> 01824> 01824> 01824 01825 018555 018555 018555 018555 018555 018555 018555 018555 0 . 000 Surface Area (ba)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS PERVIOUS (1) 01832> 01833> 01834> .86 1.57 .93 .03 4.67 .70 018355 01035> 01836> 01837> 01838> 01839> 01840> 01841> 01841> 01843> 01844> 01845> 164.82 40.00 01703 * 01705 * 01705 * 01705 * 01705 * 01705 * 01705 * 01705 * 01707 * 01707 * 01700 * 01700 * 01700 * 01700 * 101701 * 01 01703> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 122.14 31.19 5.00 20.00 5.37 (ii) 20.78 (ii) 5.00 20.00 .21 .06 *TOTALS* .245 (iii) 1.000 47.074 49.505 .951 01709> 01710> 01711> 01712> 01713> 01713> 01714> 01715> 01716> 01717> 01718> 01717> 01720> 01722> 01722> 01722> 01722> 01722> 01723> PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (nm)= TOTAL RAINFALL (nm)= RUNOFF COEFFICIENT = .24 .00 1.00 1.29 47.93 19.25 49.50 49.50 .97 .39 01846> 01847> 01848> 01849> 01850> 01851> 01852> 01853> 01854> 01855> 01856> 01857> 01857> 01847>

 Max.eff.Inten.(mm/hr)=
 122.14
 34.69

 Storage Coeff.(min)
 7.50
 15.00

 Unit Hyd. Tpeak (min)=
 7.50
 15.00

 Unit Hyd. Tpeak (min)=
 7.50
 15.00

 Unit Hyd. Tpeak (min)=
 7.50
 15.00

 TIME TO PEAK (hr.s)=
 .07

 PEAK FLOW
 (cms)=
 .43
 .02

 TIME TO PEAK (hr.s)=
 1.04
 1.21

 RUNOFF VOLUMES (mm)=
 47.93
 19.25

 RUNOFF COEFFICIENT
 .97
 .39

 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP [UT] SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) FEAK FLOW DOES NOT INCLUDE BASEFICOW IF ANY. 4 J0 .07 1.21 19.25 49.50 .39 \$\$ *TOTALS* .437 (iii) 1.042 43.345 49.505 .876 01726> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
 (iii) PEAK PLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 01727> 01728> (i) CN PR 01728> CN* = 01730> (ii) THM 01732> (iii) FEAK 01731> THAN 01732> (iii) PEAK 01733> 01:0005------01735> 01:0005------01735> -------01735> -------01869> 01870> 01871> 01872> 01873> 01873> 01874> 01875> 01876> 01877> 01878> 01879> 01880> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 122.14 34.69 7.50 15.00 7.00 (ii) 14.75 (ii) 7.50 15.00 .16 .08 .00 1.21 19.25 49.50 .39 *TOTALS* PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nm) = TOTAL RAINFALL (nm) = RUNOFF COEFFICIENT = .64 1.04 47.93 49.50 .97 .645 (iii) 1.042 47.074 49.505 .951 01881> 01882> 01883> 01884> 01885> 01885> 01886> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 01.0 Ia = Dep. Storage (Above) i1 TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (ii) PEAK FLOW DES NOT INCLUDE BASEFICOW IF ANY. 01887> 01887> 01888> 01809> 01890> ---

J. L. Richards & Associates Limited

Page 6

J. L. Richards & Associates Limited

91> 001:0011-02026> | CALIB STANDHYD | Area (ha)= 18.10 04:HIP04 DT=2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 01892> -----01893> | ADD HYD (080) | ID: NHYD 01894> -----01895> ID1 06:060 01895> ID1 06:060 01895> +ID2 07:070 02027> 02028> 02029> 02030> 02031> 02032> 02034> 02035> 02036> 02036> 02037> 02038> 02038> 02039> 02040> 02041> 02042> 02042>
 AREA
 OPEAK
 TPEAK
 R.V.
 DWF

 (ha)
 (cms)
 (hrs)
 (mm)
 (cms)

 .89
 .245
 1.00
 47.07
 .000

 2.65
 .645
 1.04
 47.07
 .000
 IMPERVIOUS PERVIOUS (i) Surface Area Dep. Storage Average Slope Length 01895> 01895> 01896> 01897> 01898> (ha) = (mm) = (%) = (m) = = 12.85 1.57 .50 600.00 .030 5.25 4.67 1.50 100.00 SUM 08:080 3.55 .876 1.04 47.07 .000 01898> 01899> 01900> 01901> Mannings n .250 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 93.86 57 15.00 32 15.61 (ii) 32 15.00 32 .07 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 57.19 32.50 32.28 (ii) 32.50 .03
 AREA
 OPERK
 TPEAK
 R.V.
 DWF

 (ha)
 (cms)
 (hrs)
 (mm)
 (cms)

 5.01
 1.107
 1.04
 45.09
 .000

 3.55
 .876
 1.04
 47.07
 .000
 PEAK FLOW (Cms) = TIME TO PEAK {hrs} = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 1.49 1.17 47.93 49.50 .97 *TOTALS* .48 1.50 26.92 49.50 .54 TOTALS* 1.723 (iii) 1.208 37.426 49.505 .756
 120435
 TIME FOOPENK (Lampie 1.99

 120445
 TOTAL PROJECT (Lampie 1.17

 120445
 TOTAL PRIMERL (Lampie 47.83

 120445
 TOTAL PRIMERL (Lampie 47.83

 120445
 TOTAL PRIMERL (Lampie 47.83

 120455
 TOTAL PRIMERL (Lampie 47.83

 120465
 TOTAL PRIMERL (Lampie 47.83

 120475
 RUNOFF COEFFICIENT = .97

 120485
 (Li) CHE STEP (D') SHOULD BE SM

 120495
 (Li) THE STEP (D') SHOULD BE SM

 120551
 THAN THE STORACE COEFFICIEN

 120552
 01:018-------

 120555
 00:01:018-------- SUM 09:090 8.56 1.984 1.04 45.91 .000 01911> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) Title STEP (DT SHOULD BE SNALER OR EQUAL THAN THE STORAGE COEFFICIENT. (ii) PEAK FLOW IDES NOT INCLUBE BASEFLOW IF ANY.
 01920> 01921> 01922>
 02055
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01:0018
 01923> 01924> 01925> 01926> 01927> 01928> 01928> 01929> 01930> 01931> 01932> ROUTING RESULTS R.V. 02066> (nun) 45.914 45.912 01933> 02068> * 02069> *5UB-AREA No.4 02070> -----01934>

 102083

 02069

 02069

 020712
 105:Pond-B DT= 2.50

 1
 1

 02072
 105:Pond-B DT= 2.50

 1
 1

 02073
 105:Pond-B DT= 2.50

 1
 1

 02075
 Unit Hyd Qpeak (cms)=

 02075
 PEAK FLOW (cms)=

 02075
 PEAK FLOW (cms)=

 02075
 PEAK FLOW (cms)=

 02076
 RUNOFF VOLME (mm)=

 02078
 RUNOFF COEFFICIENT =

 020805

 020805

 020805

 020805

 020805

 020805

 020805

 020805

 020805

 020805

 020805

 020805

 020805

 020805

 020805

 020805

 020805

 020905
 -01935> 01936> 01937> 01938> PEAK FLOW REDUCTION [Qout/Qin](%)= 6.640 TIME SHIFT OF PEAK FLOW (min)= 74.17 MAXIMUM STORAGE USED (ha.m.)=.3146E+00 | CALIB STANDHYD | Area (ha)= 19.90 | 01:HIPO1 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 01950> 01951> 01952> 01953> 01954> 01955> 01956> 01956> 01958> 01958> 01959> 01960> 02088> 02089> 02090> 02091> 02092> 02093> 02093> 02094> 02095> 02096> 02097> 02098> Max.eff.Inten.(nm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 93.86 60.56 15.00 30.00 14.48 (ii) 30.78 (ii) 15.00 30.00 .08 .04 01961> 01962> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. *TOTALS* 1.983 (iii) 1.208 37.426 49.505 .756 01963> 01964> 01965> PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 1.70 1.17 47.93 49.50 .97 .55 02099> 001:0021-----1.46 26.92 49.50 .54 01965> 01966> 01967> 01968> 01969> 01970> 01971> 01972> 01973> 01974> 01975>
 Requested routing time step = 1.0 min.

 00TFLOW STORAGE TABLE

 00TFLOW STORAGE TABLE

 (con)
 00TFLOW STORAGE

 (con)
 0001600

 (con)
 00017100

 0001
 0002710

 0001
 000272

 0001
 000272

 0001
 000272

 0002
 00028400

 054
 .24348400

 055
 .53484400

 0564
 .35018401

 .0564
 .44008400

 .0564
 .1028401

 .0564
 .1028401

 .0564
 .1028401

 .0564
 .1028401

 .0564
 .14044

 .137028401
 .2409

 .4472
 .19248401

 .000
 .00008400
 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 IA = Dep. Storage (Above)
 (ii) TIME STEP (JT) SHOULD BE SHALLER OR BUJAL
 THAN THE STORAGE COEFFICIENT.
 (iii) PERK FLOW DOES NOT INCLUDE RASEFICOM IF ANY.
 02103> 02106> 02107> 02108> 02109> 02110> 02110> 02111> 02112> 02113> 02114> 02115>
 ROUTING RESULTS
 AREA
 OPEAK

 INFLOW >07:
 (HIP06)
 67.56
 5.939

 OUTFLOW<08:</td>
 (HIP-PO)
 67.56
 .487
 02115> 02116> 02117> 02118> 02119> 02120> TPEAK (hrs) 1.167 3.361 R.V. (mm) 37.611 37.611 01985> 01985> 01986> 01987> 01988> PEAK FLOW REDUCTION [Qout/Qin] (%)= 8.200 TIME SHIFT OF PEAK FLOW (min)= 131.67 MAXIMUM STORAGE USED (ha.m.)=.1941E+01 02120> 02121> 02122> 02123> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 8.200 019892 001:0016-----02124> 02125> -----02126> 001:0022------02127> * 01990> 01991> * SUB-AREA No.2
 Sup-Anar No.2

 [CALIE STANDHYD | Area (ha)= 17.00

 103:HIP03 DT= 2.50

 Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00

 IMPERVIOUS PERVIOUS (i)

 Surface Area (ha)= 12.07 4.93

 Dep. Storage (mm)= 1.57 4.67

 Average Slope (%)= .65 1.50

 Length (m)= 450.00

 Mannings n

 .030
 D2125 U01:U022-----02127> *UUB-AREA No. 5 02129> + 02130> -----02130> ------02130> D2:31> D2:510N NASHYD | Area (ha)= 6.80 Curve Number (CN)=76.00 02132> | 09:A2 DT=2.50 | Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 02133> U.H. Tp(hrs)= .370 02134> U.H. Tp(hrs)= .702 02135> Unit Hyd Opeak (cms)= .702 01992> 01993> 01994> 01995> IMPERVIOUS PERVIOUS (1) 12.07 4.93 1.57 4.67 01996> 01997> 01997> 01998> 01999> 02000> 02134> 02135> 02135> 02136> 02137> 02138> 02001>
 PEAK FLOW
 (cms) =
 .252 (i)

 TIME TO PEAK
 (hrs) =
 1.417

 RUNOFF VOLUME
 (mm) =
 16.075

 TOTAL RAINFALL
 (mm) =
 49.505

 RUNOFF COEFFICIENT
 3.25
 02003> 02004> 02005> 02005> 02006> 02007> Max.eff.Inten.(mm/hr)= 105.17 63.81 over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = 02139> 02140> 02141> 02142> 02142> 02143> 02144> .04 .51 1.42 *TOTALS* 1.865 (iii) 1.167 37.426 49.505 .756 02008> 02009> 02010> 02011> 02012> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 02145> ------02146> 001:0023-----02147> *01:0023-----02148> *SUB-AREA NO. 6 02149> * 02013> 02014> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 01.0 Ia - Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR SQUAL THAN THE STORAGE COEFFICIENT.
 (iii) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02015> 02016> 02016> 02017> 02018> 02019> 02020> 02156> 02156> 02021> -----02022> 001:0017-----02023> *
 PEAK FLOW
 (cms) =
 .115 (i)

 TIME TO PEAK
 (hrs) =
 2.000

 RUNOFF VOLUME
 (mm) =
 16.075

 TOTAL RAINFALL
 (mm) =
 49.505
 02158> 02024> * SUB-AREA No.3 02025> ------

	1.	(SMT 1N1.00C)	J. L. Richards & Associates Limi
	00161		
	02162	>	02297> * SUB-AREA NO.3
			02298>
	02165	>	02300> 03:030 DT= 2.50 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00
	02167	>	U2301>
No.ex No.ex <th< td=""><td>02168</td><td></td><td>02303> Surface Area (ha) == 1.36 .04</td></th<>	02168		02303> Surface Area (ha) == 1.36 .04
Image: 1 Image: 2	02170	> ID1 08:HIP-PO 67.56 .487 3.36 37.61 000	02305> Average Slope (%)= .51 1.00
Image: Instant No. f. Instant Provide statute if you No. f. Instant No. f. Instant Provide statute if you No. f. Instant Provide statute if you Provide statute if you No. f. Instant Provide statute if you Provide statute if you Instant Provide statute if you Provide statute if you Instant Provide statute if you Provide statute if you Instant Provide statute if you Provide statute if you Instant Provide statute if you Provide statute if you Instant Provide statute if you Provide statute if you Instant Provide statute if you Provide statute if you Instant Provide statute if you Provide statute if you Instant Provide statute if you Provide statute if you Instant Provide statute if you Provide statute if you Instant Provide statute if you Provide statute if you Instant Provide statute if you Provide statute if you Instant Provide statute if you Provide statute if you Instatif you <		> +ID2 09:A2 6.80 .252 1.42 16.08 .000 > +ID3 10:A3 5.30 .115 2.00 16.08 .000	02306> Length (m) = 225.63 5.00
	02173		02308>
Note: Law is not use is a manual method with the first	02175	>	02310> over (min) 7.50 7.50
Bit State I STATE			02311> Storage Coeff. (min)= 7.26 (ii) 8.09 (ii)
			02313> Unit Hyd. peak (cms)= .15 .14
Alter and a second a s	02180	· *************	
How we have a matched in a set of the set of th	02181 02182	> * CALCULATION OF 3HR - 1:25 YEAR STORM EVENT *	02316> TIME TO PEAK (hrs)= 1.04 1.08 1.042
How we have a matched in a set of the set of th	02183		02318> TOTAL RAINFALL (mm) = 58.23 58.23 58.226
11/100/100/100/100/100/100/100/100/100/	02185	> Rainfall dir.: V:\20983.DU\ENG\FINALS~1\SWMHYM~1\	02319> RUNOFF COEFFICIENT = .97 .44 .957 02320>
101 102 103 103 104 105 <td>02100</td> <td>> TZERO = .00 AIS ON 0 > METOINE 2 (output = METEIC)</td> <td>02321> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:</td>	02100	> TZERO = .00 AIS ON 0 > METOINE 2 (output = METEIC)	02321> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 		> NRUN = 001	02323> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
I HEARDS NUMBER Information and the second sec	02190		102324> THAN THE STORAGE COEFFICIENT.
1000000000000000000000000000000000000	02102		02326>
Mark Mar. Difference 1: 20 Description of the proof frame 1: 20 <thdescription 1:="" 20<="" frame="" of="" proof="" td="" the=""><td>02193</td><td>> CHICAGO STORM IDF curve parameters: A=1402.884</td><td>02328> 001:0007</td></thdescription>	02193	> CHICAGO STORM IDF curve parameters: A=1402.884	02328> 001:0007
Mark Mar. Difference 1: 20 Description of the proof frame 1: 20 <thdescription 1:="" 20<="" frame="" of="" proof="" td="" the=""><td>02195:</td><td>C= .819</td><td>02329></td></thdescription>	02195:	C= .819	02329>
Name in a for an and a for a boot of a boot		> used in: INTENSITY = A / (t + B)^C	02331> (ha) (cms) (hrs) (nm) (cms)
The set pair fails = -1.3 None			02333> +ID2 02:020 1.54 .418 1.04 54.15 .000
THE ADD THE <td>02200</td> <td>Time to peak ratio = .33</td> <td></td>	02200	Time to peak ratio = .33	
130 130 120 1			02336>
Bits of the set of th	02203:	hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr	02338>
Bits of the set of th	02205		02339>
Number Number<		> .50 8.282 1.33 22.224 2.17 6.544 3.00 3.983 	02341>
10120041 10120040	02208:	.83 33.041 1.67 11.192 2.50 5.179	02342> ADD HID (050) 1D: NHID AREA QPEAK TPEAK R.V. DWF 02343>
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	02210		02344> ID1 03:030 1.40 .400 1.04 55.72 .000 02345> +ID2 04:040 3.61 950 1.04 52.72 000
Constraint Different Fillement <	02212-	·	
Display Display <thdisplay< th=""> <th< td=""><td>02213</td><td>DEFAULT VALUES Filename: V:\20983.DU\ENG\FINALS-1\SWMHYM-1\ORGA.VAL</td><td>02348></td></th<></thdisplay<>	02213	DEFAULT VALUES Filename: V:\20983.DU\ENG\FINALS-1\SWMHYM-1\ORGA.VAL	02348>
000000 000000 00000000000000000000000	022143	FileTitle= ICASEdv = 1 (read and print data) FileTitle= ENTER YOUR COMMENTS ON THIS LINE AND THE NEXT ONE	
100000 1000000000000000000000000000000000000		Horton's infiltration parameter values MUST BE ENTERD AFTER COLUMN 60	02351>
Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction	02218:	$(F_{0} = 50.00 \text{ mm/hr})$ (Fc= 7.50 mm/hr] [DCAY= 2.00 /hr] [F= .00 mm]	02353> *
02223 02230		Parameters for PERVIOUS surfaces in STANDHYD:	022555
District Line Acts District District 000000000000000000000000000000000000		Parameters for IMPERVIOUS surfaces in STANDAYD.	02356> CALIE STANDHYD Area (ha)= .89
11200 1120 1.11 1.12 1.13 1.14 1.14 1.15 <th1.15< th=""> 1.15 1.15 <th< td=""><td>022233</td><td>Parameters used in NASHYD:</td><td></td></th<></th1.15<>	022233	Parameters used in NASHYD:	
002220 +		(12 = 4.67 mm) (N= 3.00)	02359> IMPERVIOUS PERVIOUS (i)
002200	02226	001:0004	02361> Dep. Storage (mm) = 1.57 4.67
1000000000000000000000000000000000000	02228>	* ORGAWORLD FILE *	U2362> Average Slope (%)= .93 .70 02363> Length (m)= 164.82 40.00
02233 *105-205 Area (ba) 2.0 02335 TOAL BO(h) 84.00 2.0 02335 TOAL BO(h) 7.0 2.0 2.0 02335 TOAL BO(h) 7.0 2.00 2.0 02335 TOAL BO(h) 7.0 2.0 2.0 <td>02230></td> <td>•</td> <td>1 02364> Mannings n = .030 .250</td>	02230>	•	1 02364> Mannings n = .030 .250
02333 0 (ALB STANSTOP) (ALB STA	02231>	* SUE-AREA No.1	02366> Max.eff.Inten.(mm/hr)= 144.69 44.12
0.02350 10:100 <i>DP</i> =2.10 10:000 <i>DP</i> =2.10 10:000 2.00 17.50 0.02350 During to park image 1.12 1.21 1.21 1.21 1.21 0.02350 During to park image 1.12 1.21 1.21 1.21 1.22 1.22 1.23 0.02350 During to park image 1.12 1.21 1.21 1.22 1.23 1	02233>	CALIB STANDHYD Area (ba)= 2.07	02367> over (min) 5.00 17.50 02368> Storage Coeff. (min)= 5.02 (ii) 18.44 (ii)
02223 02233 02233 02333 <th< td=""><td>02234></td><td>I 01:010 DT= 2.50 Total Imp(%)= 84.00 Dir. Conn.(%)= 84.00</td><td>02369> Unit Hyd. Tpeak (min) = 5.00 17.50</td></th<>	02234>	I 01:010 DT= 2.50 Total Imp(%)= 84.00 Dir. Conn.(%)= 84.00	02369> Unit Hyd. Tpeak (min) = 5.00 17.50
022230 Average 5.0pc (1) <td>02236></td> <td>IMPERVIOUS PERVIOUS (i)</td> <td>02371> *TOTALS*</td>	02236>	IMPERVIOUS PERVIOUS (i)	02371> *TOTALS*
022230 Average 5.0pc (1) <td>022375</td> <td>Surface Area (ha)= 1.74 .33 Dep. Storage (mm) = 1.57 4.67</td> <td>02372> PEAK FLOW (cms)= .30 .00 .296 (iii) 02373> TIME TO PEAK (brs)= 1.00 1.25 1.000</td>	022375	Surface Area (ha)= 1.74 .33 Dep. Storage (mm) = 1.57 4.67	02372> PEAK FLOW (cms)= .30 .00 .296 (iii) 02373> TIME TO PEAK (brs)= 1.00 1.25 1.000
Control Control <t< td=""><td></td><td>Average Slope (%) = .52 1.00 Length $(m) = 204.72 = 20.00$</td><td>02374> RUNOFF VOLUME (mm) = 56.66 25.35 55.717</td></t<>		Average Slope (%) = .52 1.00 Length $(m) = 204.72 = 20.00$	02374> RUNOFF VOLUME (mm) = 56.66 25.35 55.717
02223 Max.eff.Inten.(mm/hc) = 144.69 47.07 02223 Max.eff.Inten.(mm/hc) = 144.69 47.07 02235 Max.eff.Inten.(mm/hc) = 15.01 15.00 02235 Max.eff.Inten.(mm/hc) = 15.01 15.00 02235 FEAK FLOW (Cm) = 58.13 10.047 02235 Max.eff.Inten.(mm/hc) = 16.01 10.047 02235 Max.eff.Inten.(mm/hc) = 16.01 10.01 02235 Max.eff.Inten.(mm/hc) = 16.01 10.01 02235 Max.eff.Inten.(mm/hc) = 16.01 10.01 02235 Max.eff.Inten.(mm/hc) = 144.69 10.01	02241>	Mannings n = .030 .250	02376> RUNOFF COEFFICIENT = .97 .44 .957
02249		Max off Inton (mm/hr)= 144.69 47.07	02378> (i) CN PROCEDURE SELECTED FOR REPUTOUS LOSSES.
022245 UDIE Hyd. Tysek (tki)= 7.50 15.00 022245 UDIE Hyd. Tysek (tki)= 7.50 15.00 022245 UDIE Hyd. Tysek (tki)= 7.52 1.62 022250 TIME TO FEAK (tki)= 1.64 1.21 1.042 022250 TIME TO FEAK (tki)= 5.6.3 25.33 51.67 022250 TIME TO FEAK (tki)= 5.6.3 25.43 51.67 022250 TIME TO FEAK (tki)= 5.6.3 25.63 10.62 022250 TIME TO FEAK (tki)= 5.6.3 25.63 10.02 022250 TIME TO FEAK (tki)= 5.6.3 25.61 20.33 022250 TIME TO FEAK (tki)= 1.4.62 1.62 20.33 022250 TIME TO FEAK (tki)= 1.4.62 1.62 1.62 022250 TIME TO FEAK (tki)= 1.4.62 1.51 1.62 022250 TIME TO FEAK (tki)= 1.4.62 1.51 1.51 022250 TIME TO FEAK (tki)= 1.4.62 1.51 1.52 022251<		over (min) 7.50 15.00	02379 CN* = 81.0 Ia = Dep. Storage (Bboye)
00111 Byte Peak (LOW) 1.36 .00 *TOPALs* 0022850 FEAK FLOW (LOSS Peak (DW) 1.04 1.04 1.04 0022850 THE TO FEAK FLOW (LTS) = 1.04 1.21 1.042 0022850 THE TO FEAK FLOW (LTS) = 1.04 1.21 1.042 0022850 THE TO FEAK FLOW (LTS) = 1.04 1.21 1.042 0022850 THE TO FEAK FLOW (LTS) = 1.04 1.21 1.042 0022850 THE TO FEAK FLOW (LTS) = 1.04 1.21 1.042 0022850 THE TO FEAK FLOW (LTS) = 1.04 1.21 1.042 0022850 THE TO FEAK FLOW (LTS) = 1.04 1.04 1.042 0022850 THE TO FEAK FLOW (LTS) = 1.04 1.04 1.042 0022850 THE TO FEAK FLOW (LTS) = 1.04 1.04 1.04 0022850 THE TO FEAK FLOW (LTS) = 1.04 1.04 1.04 0022850 THE TO FEAK FLOW (LTS) = 1.04 1.04 1.04 0022850 THE TO FEAK FLOW (LTS) = 1.04 1.04 1.04 0022850 THE TO FEAK FLOW (LTS) = 1.04 1.04 1.04 0022850 THE TO FEAK FLOW (LTS) = 1.04 1.04 1.04 </td <td>02246></td> <td>Unit Hyd. Tpeak (min) = 7,50 15,00</td> <td>02381> THAN THE STORAGE COEFFICIENT.</td>	02246>	Unit Hyd. Tpeak (min) = 7,50 15,00	02381> THAN THE STORAGE COEFFICIENT.
022250 FRAM FLOW (mm) = .52 .63 .532 (iii) 022355 FRAM FLOW (mm) = .546 .533 .1047 022355 FRAM FLOW (mm) = .557 .44 .887 022357 (ii) CD PACEDURG SLECTED FOR PERVICUS LOSSES: COULD STADDUTD Name Name 022357 (iii) FEAK FLOW FLOW DOES NOT INCLUGE BASELOW IF AWX. COULD STADDUTD Name Name Name .151 .161 .150 022357 (iii) FEAK FLOW DOES NOT INCLUE BASELOW IF AWX. COULD STADDUTD Name .151 .161 .150 022357 (iii) FEAK FLOW DOES NOT INCLUE BASELOW IF AWX. COULD STADDUTD Name .161 .150 022454 * SUD-AREA No.5 COULD STADDUTD Name .161 .150 022557 (iii) FEAK FLOW DOES NOT INCLUE BASELOW IF AWX. Note Stadd S	02247>	tmomth at	02382> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02383>
02215) FUNOTY OLUME [mai] 5.6.64 25.35 51.647 02225 FORMAR BAINFRAL [mai] 5.6.64 25.35 51.647 02225 FORMAR BAINFRAL		• PEAK FLOW (cms)= .52 .03 .532 (iii)	02384>
022335 02235 022355	02251>	RUNOFF VOLUME (mm) = 56.66 25.35 51.647	02386> *
02255- 02255- 011 CM PROCEDURE SELECTED FOR PERVICUS LOSSES: 02255- 011 CM PROCEDURE SELECTED FOR PERVICUS LOSSES: 02255- 011 CM PROCEDURE SELECTED FOR PERVICUS LOSSES: 02265- 010707 DUE 1 Area [ha] = 2.66 02265- 010707 DUE 1 Origot DUE		TUTAL KAINFALL (MMA) = 58.23 58.23 58.226 RUNOFF COEFFICIENT = .97 .44 .887	02387> * SUB-AREA No.5 02388>
02255> CM * = 81.0 Ia = Dep. Storage (Above) 02257> (ii) TIME STORAGE COEFFICIENT 02333 02265> (iii) PLAN THE STORAGE COEFFICIENT 02335 02265> (iiii) PLAN THE STORAGE COEFFICIENT 0230 022675 102405 THEENTONS PERVIOUS (i) 022725 Nurface Area (ha) = 1.54 020 022725 Nurface Area (ha) = 1.47 1.26 022725 Nurface Area (ha) = 1.47 1.27 022725 Nurface Area (ha) = 1.47 1.26 022725 Nurface Area (ha) = 1.47 1.20 022727 Nureras torage (ha) = 1.54 020 <td>02254></td> <td></td> <td>02389> CALIB STANDHYD Area (ba)= 2,66</td>	02254>		02389> CALIB STANDHYD Area (ba)= 2,66
02257> (11) THE STEP (DT) SHOULD BE SHALLER OR BOURL THAN THE STORAGE COEFFICIENT. 02392- (11) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02392- (11) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02261> (11) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02392- (11) COPACIENT (COPACIENT) 02392- (11) COPACIENT) 02392- (11) COPACIENT) 02392- (12)	02256>	$CN^* = 81.0$ Ta = Den Storage (Bhove)	02391>
02259> 02259> 02250 02250> 02250 02250 02250 02250> 02250 0225		THAN THE STORAGE COEFFICIENT.	
022615	02259>	(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	02394> Dep. Storage (mm)= 1.57 4.67
02225 001:0005 02375 Mannings n = .030 .250 02263 * 5UB-AREA No.2 02395 * SUB-AREA No.2 02395 Max.eff.Inten.(mm/hr)= 144.69 51.33 02265 * SUB-AREA No.2 02395 Out I Synowy (mn) 1.47 1.20 02395 02265 * SUE-AREA No.2 IMEERVIOUS PERVIOUS (i) 02405 Storage (mm) 6.54 (ii) 13.16 (ii) 02265 * CLIB STANDAYD (mm) 1.57 4.67 02404 024045 1.64 1.17 1.042 02270 > Surface Area (ha) = 1.57 4.67 02405 PEAK FLOW (ms) = 1.64 1.17 1.042 02272 > Average Storage (mm) = .50 1.00 02406 TIME TO PEAK (hrs) = 1.04 1.17 1.042 02277 > Over (min) 7.50 0.30 030 02405 TOTAL RAINFALL (mm) = 58.23 58.	02261>		02396> Length (m) = 207.25 20.00
02263> *SUB-AREA NO.2 02265> CALIB STANDBYD 1 Area (ha)= 1.54 02265> CALIB STANDBYD 1 Area (ha)= 1.54 02265> Over (min) 7.50 12.50 02267> 02200 Drev 2.50 Total Imp(He)= 92.00 Dir. Comn.(%)= 92.00 02401> Storage Coeff. (min)= 6.54 (ii) 13.56 (ii) 02267> 02272> Surface Area (ma)= 1.67 1.00 02403> Unit Hyd. ppeak (min)= 7.60 12.50 02272> Length (m)= 244.34 5.00 02403> Unit Hyd. ppeak (min)= 7.60 1.01 .783 1.04 02272> Length (m)= 244.34 5.00 02403> RUNOFF COEFFICIENT = 9.97 .44 .957 02275> Max.eff.Inten.(mm/hr)= 144.69 65.19 02403> RUNOFF COEFFICIENT = .97 .44 .957 02275> Max.eff.Inten.(mm/hr)= 144.69 65.19 02410> 02410> (10) RUNOFF COEFFICIENT = .97 .44 .957 <td< td=""><td>02262></td><td>001:0005</td><td>02397> Mannings n = .030 .250</td></td<>	02262>	001:0005	02397> Mannings n = .030 .250
02266> (CALDE STANDENTO Area (ha)= 1.54 1.54 1.54 1.51 1.51 02267> (C2120 DT=2.50 Total Imp(h)= 92.00 Dir. Conn. (h)= 92.00 02405 507405 Coeff. (min)= 7.50 12.50 02269> (C2209) Surface Area (ha)= 1.42 .12 02405 02405 02405 02405 02271> Dep. Storage (ma)= 1.57 4.67 02405 02405 PEAK FLOW (cms)= .78 01 .783 (11) 02272> Average Slope (h)= 244.34 5.00 02405 TUMER TO FEAK (hrs) = 1.04 1.71 1.042 02275> Max.eff.Inten.(mm/r) = 144.69 65.19 02405 TWALE STRUCT ENT 58.23	02264>	* SUE-AREA NO.2	02399> Max.eff.Inten.(mm/hr)= 144.69 51.33
02269> D1 = 2.50 Total Imp(%) = 92.00 Dir. Conn.(%) = 92.00 D1 = 1.50 Total Imp(%) = 92.00 Dir. Conn.(%) = 92.00 D1 = 1.50 Total Imp(%) = 92.00 Dir. Conn.(%) = 92.00 02269> IMPERVIOUS PERVIOUS (i) .03 .03 .03 .03 02272> Average Stope (%) = .50 1.00 .04020 D24035 Unit Hyd. peak (ms) = .16 .09 02272> Average Stope (%) = .50 1.00 D2405 FERK FLOW (ms) = .16 .01 .13 1.04 1.17 1.042 02275> Max.eff.Inten.(mm/hr) = 144.69 65.19 02405 TIME TO PEAK (hrs) = 1.04 1.01 1.04 .957 02277> over (min) = 7.66 (ii) 8.49 (ii) 02405 NUNOFY COLURE (mm) = 56.63 25.35 55.717 02276> Max.eff.Inten.(mm/hr) = 144.69 65.19 02412> CA* = 81.0 I = Dep. Storage (Above) 02277> over (min) = 7.66 (ii) 8.49 (ii) 02412> CA* = 81.0 I = Dep. Storage (Above) 02280> Unit Hyd. Tpeak (min) = 7.50 7.50 02412> CA* = 81.0 I = Dep. Storage (Above) 02281> TIME TO PEAK FLOW (cms) = .04 .04 1.042 .041 .041 .04212> CA* = 81.0 I = De	02266>	CALIB STANDHYD Area (ha)= 1.54	02401> Storage Coeff. (min) = 6.54 (ii) 13.16 (ii)
02269> IMPERVIOUS PERVIOUS (1) 02405 02405 014149 015 016	02267>	02:020 DT= 2.50 Total Imp(%)= 92.00 Dir. Conn.(%)= 92.00	02402> Unit Hyd. Tpeak (min)= 7.50 12.50
022713 SUFFAGE ATGAG (hA) = 1.42 .12 020273 Dep. Storage (tan) = 1.42 .12 020273 022712 Average Slope (t) = .50 1.00 02005 FIRE TO PEAK (hr.s) = 1.04 1.17 1.042 02272 Average Slope (t) = .030 .030 02005 FIRE TO PEAK (hr.s) = .1.04 1.17 1.042 02273 Max.eff. Inten. (mm/h) = 144.69 65.19 02005 FRUNOFF VOLUME (mm) = .57 .44 .957 022705 Max.eff. Inten. (mm/h) = .7.50 7.50 .66 .13 .44 .957 022705 Unit Hyd. Tpeak (min) = .7.50 7.50 .14 .024135 (ii) CH FOCEDURE SELECTED FOR PERVIOUS LOSSES: 022825 PEAK FLOW (cms) = .40 .01 .418 (iii) .024135 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 022825 PEAK FLOW (cms) = .40 .01 .418 (iii) .024135 .011.0012.0012.005551 022825 PEAK FLOW (cms) = .40 .01 .418 (iii) .024135 .011.0012.0012.005551 022825 FILME TO PEAK .01 .418 (iii) .024135 .011.0012.002.0055.72 .000 022825 (i)	02269>	IMPERVIOUS PERVIOUS (1)	02404> *TOTALS*
02272> Average slope (*) = .50 1.00 02273> Length (m) = 244.34 5.00 02274> Mannings n = .030 .030 02275> Max.eff.Inten.(mm/hr) = 144.69 65.19 02276> Max.eff.Inten.(mm/hr) = 144.69 65.19 02277> Cover (min) 7.50 7.50 02412> 02278> Storage Coeff. (min) = 7.50 7.50 02282 Unit Hyd. peak (cms) = .15 .14 *TOTAL RAINEST (DDME (cms) = 02282 TIME TO PEAK (cms) = .1.04 1.08 1.041 02282 TOTAL RAINFALL (mm) = 58.23 58.23 58.23 02282 TTME TO PEAK (cms) = .1.04 1.08 1.042 02282 TOTAL RAINFALL (mm) = 58.23 58.23 58.256 02285 TOTAL RAINFALL (mm) = 58.23 58.25 54.152 02285 TOTAL RAINFALL (mm) = 58.23 58.226 02413> 022865 TOTAL RAINFALL (mm) = 58.23 58.226 02423> 022875 (1)	02271>	Dep. Storage (mm) = 1.57 4.67	02405> PEAK FLOW (cms)≈ .78 .01 .783 (iii)
1022 105 1022 715 2027 75 2027 85 2027 85 2027 85 2027 85 2027 85 2027 85 2027 85 2028 25 2028	02272>	Average Slope $(2) = .50$ 1.00	02407> RUNOFF VOLUME (mm) = 56.66 25.35 55.717
022755 024105 024105 024105 022775 over (min) 7.50 7.50 024115 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 022775 over (min) 7.50 7.50 024115 (ii) TIME STEP (DT) SHOLD BE SMALLER OR DUAL 022785 Unit Hyd. Tpeak (min) 7.50 7.50 024115 (ii) TIME STEP (DT) SHOLD BE SMALLER OR DUAL 022805 Unit Hyd. peak (min) 7.50 7.50 (iii) TIME STEP (DT) SHOLD BE SMALLER OR DUAL 022815 ''''OTALS* ''''''''''''''''''''''''''''''''''''	02274>	Mannings n = .030 .030	02409> RUNOFF COEFFICIENT = .97 .44 .957
02277> Over [min] 7.50 7.50 02278> Storage coeff. (min) 7.66 (ii) 6.49 (ii) 02412> CN* = 81.0 IA = Dep. Storage (Above) 02278> Unit Hyd. Tpeak (min) = 7.50 7.50 7.50 02413> (ii) TIME STEP [DT) SHOLD BE SHALLER OR EQUAL 02280> Unit Hyd. peak (min) = 7.50 7.50 7.50 7.50 02413> (ii) TIME STEP [DT) SHOLD BE SHALLER OR EQUAL 02280> Unit Hyd. peak (min) = 7.50 7.50 7.50 7.50 7.50 02280> Unit Hyd. peak (min) = 7.50 7.50 7.50 7.50 02280> PEAK FLOW (cms) = .40 .01 .418 (iii) 02413> C1415 02413> 02280> RUNOFF VOLME (mm) = 56.66 25.35 54.152 02413> 02413> 02413> 02413> 02280> RUNOFF VOLME (mm) = 58.23 58.23 58.226 02421> 02421> (iii) TIME STRE [DT) NHE TO REAK R.V. DWF 02280> (i CN PROCEDURE SELECTED FOR PENVIOUS LOSSEs: 02422> ID 6:060 .89 .296 1.00 55.72 .000 02280> (i TI TIME STRE [DT) IA DEP STORAGE COEFFICIENT. 02422> ID 6:060 .8	02276>	Max.eff.Inten.(mm/hr) = 144.69 65.19	02410>
022:02 Storage Coeff. (min) = 7.50 7.50 10 02:03 Unit Hyd. peak (cms) = 7.50 7.50 14 *TOTALS* 02:15 (ii) PEAK (iii) PEAK (cms) = 7.50 13 02:02:02 Unit Hyd. peak (cms) = 7.50 7.50 7.50 02:03 Unit Hyd. peak (cms) = 7.50 7.50 7.50 02:02 Unit Hyd. peak (cms) = 7.50 7.50 7.50 02:02 III PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02:15 02:02:02 TIME TO PEAK (cms) = 1.04 1.03 1.04 02:02:02 TOTAL RAINFALL (mm) = 56.62 25.55 54.152 02:02:02 TOTAL RAINFALL (mm) = 58.23 58.23 58.226 02:02:02 TOTAL RAINFALL (mm) = 55.72 .000 02:02:05 C14 TAD HYD (090) 1 ID: NHYD AREA QFEAK PPEAK R.V. DWF 02:02:05 C14 TAD HYD (090) .000 .000 02:02:05 C10 FOR PENVIOUS LOSSES: 02:02:02 .001 6:050 .09 .296 1.00 55.72 .000 02:02:05 C14 THE STR DCR JON INCLUDE BASEFLOW IF ANY. 02:02:02 .002:02:02 .000 .02:02:02 <td< td=""><td>02277></td><td>over (min) 7.50 7.50</td><td>02412> CN[*] = 81.0 Ia = Dep. Storage (Above)</td></td<>	02277>	over (min) 7.50 7.50	02412> CN [*] = 81.0 Ia = Dep. Storage (Above)
02280> Unit Hyd. peak (cms)= .15 .14 02415> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF AMY. 02281> FEAK FLOW (cms)= .40 .01 .416 .02415> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF AMY. 02282> FEAK FLOW (cms)= .40 .01 .041 .02415> .02415> 02283> TIME TO FAK (hr.s)= 1.04 .04 .02416> .021001- 02284> RUNOFF VOLUME (mm)= 56.66 25.35 54.152 .02410> .001:0011- 02285> RUNOFF COEFFICIENT = .97 .44 .930 .02420> .010 HYD (080) 1D: NHYD AREA QEEAK TPEAK R.V. DWF 02285> CH* = 81.0 Ia = Dep. Storage (Above) .02423> .100 (50.66 .95.72 .000 02285> CH* = 81.0 Ia = Dep. Storage (Above) .02423> .104 55.72 .000 02285> CH* = 81.0 Ia = Dep. Storage (Above) .02425> SUM 08:080 3.55 1.060 1.04 55.72 .000 02285> CH* = 81.0 Ia = Dep. Storage (Above) .02425> SUM 08:080 3.55 1.060 1.04 55.72 .000	02279>	Unit Hyd. Theak (min) = 7.50 7.50	02413> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 02414> THAN THE STORAGE COEFFICIENT.
02282> FEAK FLOW (cms)= .40 .01 .418 (iii) 02213> 02282> TIME TO FEAK (hrs)= 1.04 .04 .04 .04 02283> TIME TO FEAK (hrs)= 1.04 .04 .04 .04 02284> RUNOFF VOLUME (mm)= 56.66 25.35 54.152 02413> 001:001		Unit Hyd. peak (cms)= .15 .14	02415> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
02284> RUNOFF VOLUME (mm) = 56.66 25.35 54.152 02413>	02282>	PEAK FLOW (cms)= .40 .01 .418 (iii)	02417>
022865 RUNOFF COEFFICIENT = .97 .44 .930 02421>	02284>	RUNOFF VOLUME (mm) = 56.66 25.35 54.152	
02287> 02242> IDI 06:060 .99 .296 1.00 5.72 .000 02289> CN* = 81.0 IA = Dep. Storage (Above) 02423> +ID2 07:070 2.66 .783 1.04 55.72 .000 02290> (ii) TIME STEP (D7) SHOULD BE SMALLER OR EQUAL 02423> -000 02424> -000 02424> -000 02424> -000 02424> -000 02424> -000 02424> -000 02425 -000 02425 -000 02425 -000 02425 000 02424> -000 02425 000 02425 000 02425 000 02425 000 02425 000 02425 000 02425 02425 000 02425	02285>	TOTAL RAINFALL (mm) = 58.23 58.23 58.226	02420> ADD HYD (080) ID: NHYD AREA QPEAK TPEAK R.V. DWF
02289> (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 02423> +1D2 07:070 2.66 .783 1.04 55.72 .000 02289> CN = 81.0 1 a = Dep. Storage (LADVa) 02424> 02424> 02425> SUM 08:080 3.55 1.060 1.04 55.72 .000 0229> (ii) TIME STREP (DT) SHOULD BE SKALLER OR EQUAL 02425> SUM 08:080 3.55 1.060 1.04 55.72 .000 0229> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02425> SUM 08:080 3.55 1.060 1.04 55.72 .000 02293> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02425><	02287>		02422> ID1 06:060 .89 .296 1.00 55.72 .000
02290> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 02425> SUM 08:080 3.55 1.060 1.04 55.72 .000 02291> THAN THE STOREG COEFFICIENT. 02426> 02	02289>	$CN^{*} = 81.0$ Ia \simeq Dep. Storage (Above)	02423> +ID2 07:070 2.66 .783 1.04 55.72 .000
02291> THAN THE STORAGE COEFFICIENT. 02425> 02292> (ii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02427> 02293> 02428> 02428> 02295> 001:0006	02290>	(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL	02425> SUM 08:080 3.55 1.060 1.04 55.72 .000
02293> 02295> 001:0006	02292>		02426>
02295> 001:0006			02428>

02566> Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 02566> 02567> 02569> 02570> 02571> 02572> 02572> *TOTALS* 2.180 (iii) 1.208 45.437 59.226 .780 1.82 1.17 56.66 58.23 .97 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .67 1.46 02435> 02436> 02437> 02438> 02439> 02439> SUM 09:090 8.56 2.410 1.04 54.45 34.22 58.23 .59 .000 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02575> 02575> 02576> 02577> 02577> 02578> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 02412> 02402> 02442> 02443> 02444> | ROUTE RESERVOIR | Requested routing time step = 1.0 min. 02445> | NN>99:(090) ! (a) TROUBURG SELECTED FOR FERVIOUS (ASSS);
 (c) * = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFTCIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. | ROUTE RESERVOIR | | IN>09:(090) | | OUT<10:(POND) | 02579> 02580> 025805 025815 025825 025825 025825 025845 1 ADD HYD (HIP05) | ID: NHYD AREA OPEAK TYPEAK R.V. DWF 025845 1025855 1025855 1025855 1025857 1D1 03:HIP03 17.00 2.398 1.13 45.44 .000 025877 +ID2 04:HIP04 19.10 2.180 1.21 45.44 .000 02446> 02447> 02448> 02448> 02450> 02451> 02452> 02452> 02453> 02454> 02455> 02456> 02590-02591> NOTE: 02592> 02593> -----02594> 001:0019--NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY 02457> R.V. (mm) 54.451 54.449 02458> 02459> ROUTING RESULTS 11.0010----02460> 02461> 02462> 02595> * 02596> *SUB-AREA No.4 02597> -----PEAK FLOW REDUCTION [Qout/Qin] (%)= 7.838 TIME SHIFT OP PEAK FLOW (min)≃ 60.83 MAXIMUM STORAGE USED (ha.m.)=.3612E+00 02597> -----02598> | DESIGN WASHYD | Area (ha)= 4.00 Curve Number (CN)=65.00 02599> | Of:Pond-B DT= 2.50 | Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 02600> -----U.H. Tp(hrs)= .170 02463> 02464> 02601> 02602> 02603> 02604> 02605> 02605> 02606> 02607> 02608> 02609> 02610> 02611> Unit Hyd Opeak (cms)= .899
 PEAK FLOW
 (cms) =
 .459 (i)

 TIME TO PEAK
 (hrs) =
 1.167

 RUNOFF VOLUME
 (mm) =
 29.155

 TOTAL RAINFALL
 (mm) =
 58.226

 RUNOFF COEFFICIENT =
 .501
 024705 • Remaining Hawthorne Industrial Park • 024715 • 024725 • 024735 • SUB-AREA No.1 024735 • SUB-AREA No.1 02474> ------02475> | CALIB STANDHYD | Area (ha)= 19.90 02476> | 01:HIP01 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 02477> ------(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 025115
 026125

 026125
 001:0020

 025135
 001:0020

 025135
 ADD HYD (HIF06) | ID: NHYD

 025135
 ADD HYD (HIF06) | ID: NHYD

 025135
 (Cms)

 025135
 (Dm)

 025205
 (Dm)

 025225
 SUM 07: HIP06

 025225
 (Dm)
 02477> 02478> 02479>
 IMPERVIOUS
 PERVIOUS
 (i)

 Surface Area
 (ha)=
 14.13
 5.77

 Dep. Storage (mm)=
 1.57
 4.67

 Average Slope
 (%)=
 -60
 1.50

 Length
 (m)=
 580.00
 100.00

 Mannings n
 =
 .030
 .250
 14.13 1.57 .60 580.00 .030 02480> 02481: 02481> 02482> 02483> 02484> 02485> 02485> 02485> 02486> 02488> 02488> 02489> 02489> 02491> 02491> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 124.54 81.98 12.50 27.50 12.93 (ii) 27.37 (ii) 12.50 27.50 .09 .04 02622> 02623> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. *TOTALS* 2.548 (iii) 1.167 45.437 56.226 .780 02624> U2543 U2525 U2525 U2525 U2525 U2527 U2 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 2.16 1.13 .77 1.42 02491> 02492> 02493> 02494> 02495> 56.66 58.23 .97 34.22 58.23 .59 02496> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (i) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 Contract
 STORAGE
 TABLE

 UTFLOW
 STORAGE
 OUTFLOW
 STORAGE

 (cms)
 (ha.m.)
 (cms)
 (ha.m.)

 0.000
 00000E+00
 .724
 .22108+01

 0.53
 .2434E+00
 1.252
 .2708E+01

 0.54
 .5434E+00
 1.464
 .31012+01

 0.64
 .5102E+01
 1.553
 .5708H0

 .644
 .1002E+01
 1.553
 .5708H0

 .147
 .1370E+01
 1.262
 .4370E+01

 .437
 .1370E+01
 2.409
 .4048H0

 .437
 .1324E+01
 0.000
 .00000E+00
 02498> 02498> 02498> 02499> 02500> 02501> 02634> 02635> 02635> 02636> 02637> 02638> 02639> 025025
 O2505>
 O2505>
 Chap
 OPEN
 02640> 02641> 02641> 02642> 02643> 02643> TPEAK R.V. (hrs) 1.167 3.181 (mm) 45.613 45.613 PEAK FLOW REDUCTION {Qout/Qin] (%)= 10.306 TIME SHIFT OF PEAK FLOW (min)= 120.83 MAXIMUM STORAGE USED (ha.m.)=.2276E+01 02513> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02513> Monthead States (Constraint) 02514> (Constraint) 02515> (Constraint) 02515> (Constraint) 02518> * SUB-AREA No.2 02518> * SUB-AREA No.2 001:0016-----------Surface Area (ha) = Dep. Storage (mm) = Average Slope (%) = Length (m) = Mannings n = 02524> 02525> 02526> 02528> 02530> 02531> 02533> 02534> 02535> 02535> 02536> 02537> 02538> 02538> 02538> 02539> 02538> 02540> 4.93 4.67 1.50 100.00 .250 450.00 .030 144.69 67.13 10.00 25.00 10.21 (ii) 24.30 (ii) 10.00 .11 .05 2.10 71 1.08 1.38 56.66 34.22 58.23 58.23 .97 .59 --- 259VTOUS LOSSES:
 PEAK
 FLOW
 (cms) =
 .343 (i)

 TIME
 TO PEAK
 (hrs) =
 1.417

 RUNOFF
 VOLUME
 (rm) =
 21.442

 TOTAL
 RAINFALL
 (rm) =
 56.226

 RUNOFF
 COEFFICIENT
 =
 .368
 02664> 02665> 02666> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 02667> 02669) ROBOLT CONFILENT = .366 02670) (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 026712-02672-001:0023-------*TOTALS* 2.398 (iii) 1.125 45.437 58.226 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 026733 001:0023-----026703 * 5UB-AREA No. 6 026705 * 5UB-AREA No. 6 026705 * ------026707 --------026709 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (CN)=76.00 026709 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (CN)=76.00 026709 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (CN)=76.00 026709 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (CN)=76.00 026709 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (CN)=76.00 026709 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (CN)=76.00 026709 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (CN)=76.00 026709 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (CN)=76.00 026709 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (CN)=76.00 026709 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (CN)=76.00 026709 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (CN)=76.00 026709 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (CN)=76.00 026709 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (CN)=76.00 026709 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (CN)=76.00 026709 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (CN)=76.00 026709 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (CN)=76.00 026709 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (CN)=76.00 026709 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (CN)=76.00 026709 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (CN)=76.00 026709 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (N)=76.00 026709 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (N)=76.00 026709 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (N)=76.00 02670 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (N)=76.00 02670 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (N)=76.00 02670 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (N)=76.00 02670 | DESIGN NASHYD | Area (ha)= 5.30 Curve Number (ha)= 02680> 02681> 02682> 02683> 02683> 02684> 02685> 02686> 02686> 02688> 02689> 02689> 02690>
 PERK FLOW
 (cms) =
 .155
 (i)

 TIME TO PEAK
 (hrs) =
 2.000
 RUNOFF VOLUME
 (mm) =
 21.442

 TOTAL RAINFALL
 (mm) =
 58.226
 RUNOFF COEFFICIENT =
 .368
 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02556> 02557> 02558> 02558> Surface Area{ha}=Dep. Storage(mm)=Average Slope(%)=Length(m)=Mannings n= 02691> 02691> 02692> 02693> 001:0024------02695> (ADD HYD (Interi) | ID: NHYD AREA QPEAK TPEAK R.V. DWF 02695> ------ (ha) (cmas) (hrs) (mm) (cmas) 02695> ------ (Da) (cmas) (hrs) (mm) (cmas) 02695> IDI 08:HIP-P0 67.56 .773 3.18 45.61 .000 02699> +ID2 09:A2 6.80 .343 1.42 21.44 .000 02699> +ID3 10:A3 5.30 .155 2.00 21.44 .000 02700> 12.85 1.57 .50 600.00 5.25 4.67 1.50 100.00 02560> 02561> 02562> 02563> 02564> 02565> .030 .250 111.10 77.71 15.00 30.00 14.59 (ii) 29.34 (ii) Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)=

TOTALS .454 (iii) 1.042 62.245 64.806

(cms) .000 .000

. 000

TOTALS .335 (iii) 1.000 62.245 64.806

TOTALS .886 (iii) 1.042 62.245 64.806

.030 161.47 62.27 7.50 12.50 6.26 (ii) 12.39 (ii) 7.50 12.50 .17 .09 .88 .01 1.04 1.17 63.24 30.21 64.81 .98 .47 .98 .47 .98 .47

 AREA
 OPEAK
 TPEAK
 R.V.
 DWF

 (ha)
 (cms)
 (hrs)
 (mm)
 (cms)

 5.01
 1.538
 1.04
 59.96
 000

 3.55
 1.197
 1.04
 62.25
 .000

1.04 60.91

.000

 161.47
 78.73

 7.50
 7.50

 6.95
 (ii)
 7.72

 7.50
 7.50

 1.6
 .15

.01

1.08 30.21 64.81 .47

.45 1.04 63.24 64.81 .98

SUM 01:Interi 79.66 .939 2.60 41.94 .000 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 02836> 02702> 02703> 02704> 02837> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02837> 02838> 02839> 02840> 02841> 02842> 02842> 02843> 02705: PEAK FLOW (CRs) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 02843> 02844> 02845> 02846> 02847> 02848> 02849> 02850> 02851> 02852> 02853> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STER (DT) SHOULD BE SMALLER OR EQUAL THAN THE STOREG COEFFICIENT.
 (iii) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02723> 02723> 02724> 02725> 02726> 02727> 02858> 02859> 02860> 02861> 02862> 02863> 02863> 02864> 02865>
 List Int:
 Intensiti = X / (t + B)*C

 Duration of storm = 3.00 hrs

 Storm time step = 10.00 min

 Time to peak ratio = .33

 TIME
 RAIN | TIME RAIN | TIME RAIN | TIME RAIN | hrs mm/hr

 hrs
 mm/hr | hrs mm/hr | hrs mm/hr

 .33
 6.601 | 1.17 48.876 | 2.00 8.397 | 2.67 5.209

 .33
 6.820 | 1.17 48.876 | 2.00 8.397 | 2.63 4.774

 .50
 9.187 | 1.33 24.704 | 2.17 7.256 | 3.00 4.412

 .67 14.441 | 1.50 16.495 | 2.33 6.403 |

 .83 36.764 | 1.67 12.422 | 2.50 5.740 |
 02728> 02729> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 Image: Construction of the second s 02730> 02731> 02732> _____ 02733> 02734> 02735> ------Surface Area (ha) = Dep. Storage (mm) = Average Slope (%) = Length (m) = Mannings n =
 IMPERVIJUS
 DEPENVIJUS
 (i)

 Surface Area (hap
 65
 0.03

 Dep. Storage (mm) =
 1.57
 4.67

 Average Slope (%) 9.3
 .70

 Length (m) =
 164.82
 40.00

 Mannings n
 .030
 .250

 Max.eff.Inten.(mm/hr) =
 161.47
 53.28

 over (min)
 5.00
 17.50

 Storage Coeff. (min) =
 4.60 (ii) 17.24 (ii)

 Unit Hyd. Tpeak (min) =
 .23
 .07

 PERK FLOW (cms) =
 .33
 .00

 TIME TO PERK (hrs) =
 1.00
 1.25

 RUNOFF VOLMES (mm) =
 64.81
 64.81

 RUNOFF COEFFICIENT
 .98
 .47

 (i) CN PROCEDURE SELECTED FOR DEPUTATE
 .47
 02887> 02888> 02889> 02890> 02890> 02891> 02892> 02893> 02894> 02895> 02895> 02896> 02897> 02898> 02899> 02900> 02901> 02902> 02903> 02904> 02904> 02905> 02906> 02906> 02907> 02908> 02909> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (i) CH PROCEDURE SELECTED FOR PROVIDE DESIGN
 (ii) THE STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. *TOTALS* .609 (iii) 1.042 57.952 64.806 .894 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 02777> 02778> 02779> 02780> 02781> 02782> 02782> 02783> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^4 = 81.0$ Ia = Dep. Storage (Above) (ii) TIME STRF (DT) SHOULD BE SMALLER OR ROUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02784> 02704> (ii) TIME 3 02705> THAN T 02706> (iii) PEAK F 02709> ------02709> -------02709> * SUE-AREA No.2 02792> ------02792> -------02793> (CALIB STANDHYD 02794> | 02:020 DT=2 _____ 02923> 02924> 02925> 001:0005-----Max.eff.Inten.(mm/hr)= 02926> 02927> ----ver (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= CALIB STANDHYD | Area (ha)= 1.54 | 02:020 DT= 2.50 | Total Imp(%)= 92.00 Dir. Conn.(%)= 92.00 02928> 02929> 02930> 02931> 02932> 02934> 02934> 02935> 02936> 02937> 02936> 02937> 02938> 02939> 02939> 02940> 02941> 02942> 02794> 02795> 02796> 02797> 02797> 02798> 02799> 02800>
 IMPERVIOUS
 PERVIOUS (i)

 Surface Area (ha)=
 1.42
 .12

 Dep. Storage (mm)=
 1.57
 4.67

 Average Slope (%)=
 .50
 1.00

 Length (m)=
 2.44.34
 5.00
 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 02801> 02802> 02803> 02803> 02804> 02805> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Den Statement (i) CN PROCEDURE SENTEDE FUX PERVIOUS LUSSES:
 (CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02806> 02807> *TOTALS* .475 (iii) 1.042 60.594 64.806 .935 02808> 02809> 02810> 02943> 02811> 02812> 02814> 02815> 02816> 02816> 02817> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 01.0 Ia = Dep. Storage (Above) (ii) THE STEP (DT) SHOULD ES NALLER OR FOUND. THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 029515 2500 2500 2500 10 02952> SUM 00:080 3.55 1.197 1.0 02952> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02955> 02818>
 Oligo
 Construction
 <thConstruction</th>
 Construction

 Sub-Anar No.5
 Area
 (ha)=
 1.40

 CALIB STANDHYD
 |
 Area
 (ha)=
 1.40

 03:030
 Dpr=2.50
 |
 Total Imp(%)=
 97.00
 Dir. Conn.(%)=
 97.00

 IMPERVIOUS
 PERVIOUS
 PERVIOUS
 1)

 Dep. Storage
 (mm)=
 1.57
 4.67

 Average Slope
 (%)=
 .51
 1.00

 Length
 (m)=
 225.63
 5.00

 Mannings n
 =
 .030
 .030
 02825> 02826> 02827> 02827> 02829> 02830> 02831> 02832> 02833> 02833> 02834> 02835> 02966> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02967> 02968>

971	I IN>09:10	OND)	2060		PON STORN	GE TABLE			
973> 974>	ROUTE RES IN>09:(0 OUT<10:(P		- OUTF	LOW STOR	AGE I	OUTELOW	STOR		
975> 976>			(c	LOW STOR ms) (ha. 000 .00002 000 .65602 017 .13112 093 .28312 233 .39712 337 .47312 465 .54912 531 .58712	m.)	(cms)	STOR (ha.)	m.)	
977>			:	008 .6560E	-01	. 593	.6251E	+00 +00	
978>			:	017 .1311E 093 .2831E	+00	.797	.7391E	+00	
980>				233 .3971E	+00	1.304	.9157E	+00	
982>			:	465 .5491E	+00	2.577	.1004E	+01 +01	
983> 984>			•	531 .5871E	+00	.000	.0000E-	+00	
985> 986>	ROUTIN	G RESULTS	5	AREA (ha) 8.56 8.56	OPEAK	TPEAK	R	.v.	
987>	INFLOW	>09: (09))	(na) 8.56	(cm.9) 2.735	(hrs) 1.042	60.9	mm) 910	
988> 989>	OUTFLO	W<10: (PC							
990> 991>		I	EAK FLO	W REDUCTI OF PEAK FL FORAGE US	ON [Qout/	2in](%)=	8.50	03	
992>		נ	TME SMIFT	OF PEAK FL FORAGE US	OW BD	(min)= (ha.m.)=	54.3 3967E+0	17 30	
993> 994>									
995>	001:0014								
997>	**************************************	ning Hawt	horne Ind	strial Par	k *				
999>	***********		*******	*********	******				
	* SUB-AREA I								
02>	CALIB STAL	VDHYD] Area	(ha)=	19.90				
004>	CALIB STAN 01:HIP01	DI= 2.50	Tota.	L imp(e)=	11.00 1	Jir. Con	an. (*)=	50.00	
)05>)06>	Surface	a Area	(ha) =	IMPERVIOUS 14.13	PERVIC	DUS (i)			
007>	Dep. St	corage	(mm) =	IMPERVIOUS 14.13 1.57 .60 580.00 .030	4.0	57			
09>	Length	, arope	(∀)= (m)=	580.00	100.0	00			
10> 11>	Manning	is n	-	.030	. 25	50			
12> 13>	Max.eff	.Inten.(ram/hr) =	138.95 12.50 12.38 (: 12.50 .09	102.1	13			
14>	Storage	Coeff.	(min) =	12.30 (:	25.0 (i) 25.6	50 (ii)			
15> 16>	Unit Hy Unit Hy	/d. Tpeak /d. peak	(mi.n) = (cms) =	12.50	25.0)0)4			
17> 18>							*TOTAL	S*	
19>	TIME TO	PEAK	(hrs) =	2.46 1.13 63.24 64.81 .98	.9 1.3 39.9 64.6	8		1 (111) 7	
20> 21>	RUNOFF TOTAL F	VOLUME	(mm) = (mm) =	63.24 64.81	39.9 64.6	10	51.56	6	
22>	RUNOFF	COEFFICI	ENT =	. 98	.6	2	.79	6	
24> 25>	(i) (i)	N PROCED	URE SELECT	ED FOR PERV	TOUS LOSS	ES:			
26>	(ii) T	IME STEP	(DT) SHOU	ED FOR PERV Dep. Stora LD BE SMALL EFFICIENT.	LER OR EQU	AL			
27> 28>		HAN THE	STORAGE CC DOES NOT	EFFICIENT. INCLUDE BAS	BFLOW IF	ANY.			
29> 30>									
31>									
	001:0015								
32> 33>			ID: NHYD	AREA	QPEAK	TPEAK	R.V.	DWF	
32> 33> 34> 35>			ID: NHYD 10:POND	AREA (ha) 8.56	QPEAK (cms) .233	TPEAK (hrs) 1.94	R.V. (mm) 60.91	DWF (cms)	
33> 34> 35> 36>		IIP02) ID1 +ID2	ID: NHYD 10:POND 01:HIP01	AREA (ha) 8.56 19.90	QPEAK (cms) .233 3.001	TPEAK (hrs) 1.94 1.17	R.V. (mm) 60.91 51.57	DWF (cms) .000 .000	
)33>)34>)35>)36>)36>)37>)38>		IP02) ID1 +ID2	ID: NHYD 10:POND 01:HIP01 02:HIP02		QPEAK (cms) .233 3.001 3.092	COSEREE:		*****	
33> 34> 35> 36> 37> 38> 38> 39> 40>	ADD HYD (H	IIPO2) ID1 +ID2 SUM	02:HIP02		3.092	1.17		*****	
)33>)34>)35>)36>)37>)38>)39>)40>)41>)42>	ADD HYD (H	IIPO2) ID1 +ID2 SUM AK FLOWS	02:HIP02	28.46	3.092	1.17		*****	
33> 34> 35> 36> 37> 38> 39> 40> 41> 42> 43> 44>	ADD HYD (H NOTE: PE 001:0016	IIP02) ID1 +ID2 SUM	02:HIP02	28.46	3.092	1.17		*****	
33> 34> 35> 36> 37> 38> 40> 41> 42> 44> 44>	ADD HYD (H NOTE: PE 001:0016 * SUB-AREA N	IIP02) ID1 +ID2 SUM PAK FLOWS	02:HIP02 DO NOT IN	28.46 CLUDE BASEF	3.092 PLOWS IF A	1.17 NY.	54.37	.000	
33> 34> 35> 36> 37> 39> 12> 39> 12> 34> 35> 35> 35> 35> 35> 35> 35> 35> 35> 35	ADD HYD (H NOTE: PE 001:0016 * SUB-AREA N	IIP02) ID1 +ID2 SUM PAK FLOWS	02:HIP02 DO NOT IN	28.46 CLUDE BASEF	3.092 PLOWS IF A	1.17 NY.	54.37	.000	
33>> 34>> 35>> 36>> 37>> 37>> 37>> 37>> 37>> 37>> 37	ADD HYD (H NOTE: PE 001:0016 * SUB-AREA N ; CALIB STAN ; 03:HIP03	IIP02) ID1 +ID2 SUM AK FLOWS 0.2 DHYD DT= 2.50	02:HIP02 DO NOT IN	28.46 CLUDE BASEF (ha)= Imp(%)=	3.092 LOWS IF A 	1.17 NY.	54.37	.000	
33>> 33>> 35>> 36 37 38 39 30 37 38 39 30 37 38 39 30 37 38 39 30 37 37 38 39 37 37 37 37 37 37 37 37 37 37 37 37 37	ADD HYD (H NOTE: PE 001:0016 * SUB-AREA N ; CALIB STAN ; 03:HIP03	IIP02) ID1 +ID2 SUM AK FLOWS 0.2 DHYD DT= 2.50	02:HIP02 DO NOT IN	28.46 CLUDE BASEF (ha)= Imp(%)=	3.092 LOWS IF A 	1.17 NY. 	54.37	.000	
33>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	ADD HYD (H NOTE: PE 001:0016 * SUB-AREA N ; CALIB STAN ; 03:HIP03	IIP02) ID1 +ID2 SUM AK FLOWS 0.2 DHYD DT= 2.50	02:HIP02 DO NOT IN	28.46 CLUDE BASEF (ha)= Imp(%)=	3.092 LOWS IF A 	1.17 NY. 	54.37	.000	
334>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	ADD HYD (H NOTE: PE 001:0016 * SUB-AREA N ; CALIB STAN ; 03:HIP03	IIP02) ID1 +ID2 SUM AK FLOWS 0.2 DHYD DT= 2.50	02:HIP02 DO NOT IN	28.46 CLUDE BASEF (ha)= Imp(%)=	3.092 LOWS IF A 	1.17 NY. 	54.37	.000	
334>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	ADD HYD (H NOTE: PE 001:0016 * SUB-AREA N CALIE STAN 03:HIP03 Sufface Suffa	IIPO2) ID1 +ID2 SUM ALK FLOWS 	02:HIP02 DO NOT IN Area Total (ha)= (mm)= (%)= (m)= =	28.46 CLUDE BASEF (ha) = Imp (%) = IMPERVIOUS 12.07 1.57 .65 450.00 .030	3.092 PLOWS IF A 17.00 71.00 D PERVIO 4.9 4.6 1.5 100.0 .25	1.17 NY. ir. Com US (i) 3 7 0 0 0	54.37	.000	
334>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	ADD HYD (H NOTE: PE 001:0016 * SUB-AREA N CALIE STAN 03:HIP03 Sufface Suffa	IIPO2) ID1 +ID2 SUM ALK FLOWS 	02:HIP02 DO NOT IN Area Total (ha)= (mm)= (%)= (m)= =	28.46 CLUDE BASEF (ha) = Imp (%) = IMPERVIOUS 12.07 1.57 .65 450.00 .030	3.092 PLOWS IF A 17.00 71.00 D PERVIO 4.9 4.6 1.5 100.0 .25	1.17 NY. ir. Com US (i) 3 7 0 0 0	54.37	.000	
333333333333333333333333333333333333333	ADD HYD (H NOTE: PE 001:0016 * SUB-AREA N CALIE STAN 03:HIP03 Sufface Suffa	IIPO2) ID1 +ID2 SUM ALK FLOWS 	02:HIP02 DO NOT IN Area Total total (ha)= (mm)= (%)= (m)= =	28.46 CLUDE BASEF (ha) = Imp (%) = IMPERVIOUS 12.07 1.57 .65 450.00 .030	3.092 PLOWS IF A 17.00 71.00 D PERVIO 4.9 4.6 1.5 100.0 .25	1.17 NY. ir. Com US (i) 3 7 0 0 0	54.37	.000	
3343567890123456789012345678901	ADD HYD (H NOTE: PE 001:0016 * SUB-AREA N CALIE STAN 03:HIP03 Sufface Sufface Sufface Sufface Sufface Sufface Length Manning Max.eff Storage Unit Hy	IIP02) ID1 +ID2 SUM SUM AK FLOWS 	02:HIP02 D0 NOT IN 	28.46 CLUDE BASEF 	3.092 PLOWS IF A 17.00 71.00 D PERVIO 4.9 4.6 1.5 100.0 .25	1.17 NY. ir. Com US (i) 3 7 0 0 0 0 1 0 3 (ii) 0 0	54.37	.000	
334>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	ADD HYD (H NOTE: PE 001:0016 * SUB-AREA N CALIB STAN O3:HIP03 Surface Surface Surface Length Manning Max.eff Storage Unit Hy Unit Hy	IIP02) ID1 +ID2 SUM SUM Co.2 DHYD DT= 2.50 DT= 2.50 Area Slope S n .Inten.(n over Coeff. d. Tpeak d. peak	02:HIP02 D0 NOT IN Area Total (ma) = (ms) = (ms) = (ms) = (min) = (min) = (min) = (min) = (min) =	22.46 (ha)= Imp(%)= Imp(%)= IMPERVIOUS 12.07 .57 .65 450.00 .030 161.47 10.00 .77 (1 10.00 .11	3.092 CLOWS IF A 17.00 71.00 PERVIO 4.6 1.5 109.6 22.5 109.6 22.5 .0 .0	1.17 NY. 	54.37	50.00	
3345577890123456789012345678901234	ADD HYD (H NOTE: PE 001:0016 * SUB-AREA N CALLE STAN CALLE STAN CALLE STAN O3:HIP03 Surface Dep. St Average Length Manning Max.eff Storage Unit Hy Unit Hy PEAK FL	IIPO2) IID1 +ID2 SUM AK FLOWS 0.2 DHYD DT= 2.50 DT= 2.50 DT= 2.50 Area orage S In .Inten.(r Cover Cover Cover d. peak OW Support	02:HIP02 DO NOT IN Area Area Total 	28.46 CLUDE BASEF Imp(%)≈ Imp(%)≈ IMPERVIOUS 12.07 1.57 .67 .65 .65 .65 .65 .65 .030 0.10 10.00 .11 2.38 1.08	3.092 LOWS IF A 	1.17 NY. ir. Com US (i) 3 7 0 0 0 1 0 3 (ii) 5 8 3	54.37 	50.00	
3456789012345678901234567890123456	<pre>NOTE: PE NOTE: PE 001:0016 * SUB-AREA N I CALLE STAN I CALLE STAN I CALLE STAN Surface Dep. St Average Length Manning Max.eff Storage Unit Hy Unit Hy PERK FL</pre>	IIPO2) IID1 +ID2 SUM AK FLOWS 	02:HIP02 DO NOT IN 	22.46 CLUDE BASEF (ha) = Imp (%) = IMPERVIOUS 12.07 .65 450.00 .030 .030 .030 .01 12.38 1.08 63.24	3.092 *LOWS IF A *LOWS IF A *LOW IC *LOW	1.17 NY. 	54.37 (%)= *TOTAL: 2.81: 1.12: 51.56.	50.00 50.00	
33455678900123456789012345678901234567	<pre>NOTE: PE NOTE: PE O01:0016 * * CALIE STAN CALIE STAN CALIE STAN CALIE STAN 03:HIP03 Surface Surface Surface Unit Hy Unit Hy PEAK FL TIME TO RUNOFF TOTAL R</pre>	IIPO2) IID1 +ID2 SUM AK FLOWS 	02:HIP02 DO NOT IN 	28.46 CLUDE BASEF Imp(%)≈ Imp(%)≈ IMPERVIOUS 12.07 1.57 .67 .65 .65 .65 .65 .65 .030 0.10 10.00 .11 2.38 1.08	3.092 LOWS IF A 	1.17 NY. 	54.37 	50.00 50.00	
3345567899012345678901234567890123456789	<pre>NOTE: PE NOTE: P</pre>	IIPO2) IID1 +ID2 SUM SUM SUM FLOWS 	02:HIP02 DO NOT IN 	23.46 CLUDE BASEH (ha)= Imp(%)= Imp(%)= Imp(%)= 12.07 1.55 450:00 .030 161.47 10.00 .030 161.47 10.00 .11 2.36 1.08 2.36 2.36 1.09 2.46 64.63 .99 ED FOR EPER	3.092 'LOWS IF A 	1.17 NY- ir. Comr US (i) 3 7 0 0 0 1 0 3 3 (ii) 5 5 8 3 3 0 1 2 2	54.37 *TOTAL: 2.81: 1.12: 51.56: 64.80	50.00 50.00	
334556789301123445678902234567890122345678902	<pre>NOTE: PE O01:0016 * SUB-AREA N ' CALLB STAN '' CALLB STAN</pre>	IIPO2) IID1 +ID2 	02:HIP02 DO NOT IN 	23.46 CLUDE BASEF Imp(%) = 1 Imp(%) = 1	3.092 'LOWS IF A 	1.17 NY- ir. Comr US (i) 3 7 0 0 0 1 0 3 3 (ii) 5 5 8 3 3 0 1 2 2	54.37 *TOTAL: 2.81: 1.12: 51.56: 64.80	50.00 50.00	
3345567890123456789012345678901234567890123	NOTE: PE NOTE: PE 001:0016 * SUB-AREA N I CALIB STAN I CALIB STAN I CALIB STAN I CALIB STAN I CALIB STAN I CALIB STAN Manning Max.eff Storage Unit Hy PEAK FL TIME TO RUNOFF TOTAL E RUNOFF (i) CI (i) CI CI T	IIPO2) IID1 +ID2 	02:HIP02 DO NOT IN 	23.46 CLUDE BASEF Imp (%)= Imp (%)= IMPERVIOUS 12.07 1.57 .65 450.00 .030 161.47 10.00 110.00 9.77 (1 10.00 111 2.38 1.08 3.24 6.324 6.324 1.09 ED FOR FERV Dep. Stora FER	3.092 *LOWS IF A *LOWS IF A 17.00 D PRVIO 4.6 1.5 100.0 .25 109.6 22.5 109.6 22.5 .0 .0 .0 .0 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	1.17 NY. 	54.37 *TOTAL: 2.81: 1.12: 51.56: 64.80	50.00 50.00	
334536378830011231415667889001233455678901234556789012234	NOTE: PE NOTE: PE 001:0016 * SUB-AREA N I CALIB STAN I CALIB STAN I CALIB STAN I CALIB STAN I CALIB STAN I CALIB STAN Manning Max.eff Storage Unit Hy PEAK FL TIME TO RUNOFF TOTAL E RUNOFF (i) CI (i) CI CI T	IIPO2) IID1 +ID2 	02:HIP02 D0 NOT IN 	23.46 CLUDE BASEF Imp (%) ≈ Imp (%) ≈ IMPERVIOUS 12.07 1.57 .65 450.00 .030 161.47 10.00 110.00 111 2.38 1.08 63.24 64.81 .96 ED FOR FERV Dep. Store FERV DD FFICIENT. INCLUDE BASE	3.092 *LOWS IF A *LOWS IF A	1.17 NY. 	54.37 *TOTAL: 2.81: 1.12: 51.56: 64.80	50.00 50.00	
334556789001234556789012345678901234567890123456	<pre>NOTE: PE 001:0016 * SUB-AREA N i CALIB STAN i CALIB STAN i CALIB STAN i CALIB STAN i CALIB STAN i CALIB STAN i CALIB STAN Manning Max.eff Storage Unit Hy Unit Hy PRAK FL TIME TO RUNOFF ' (i) CI (ii) CI (iii) PI 001:0017</pre>	IIPO2) IID1 +ID2 	02:HIP02 DO NOT IN Area Total (ma) = (ma) = (m) = (min)	23.46 CLUDE BASEF Imp(%)= Imp(%)= Imp(%)= IMPERVIOUS 12.07 1.57 6450.00 .030 10.00 9.77 (1 0.00 10.00 10.00 10.00 1.00 1.00 63.24 64.81 .98 ED FOR PERV STORE FOR PERV DED FOR	3.092 LOWS IF A 17.00 D PRVIO 4.9 4.6 1.5 100.0 22.5 109.6 25.5 109.6 25.5 109.6 25.5 109.6 10	1.17 NY. 	<pre>54.37 *TOTAL 2.81 1.12 53.56 64.57 794</pre>	50.00 50.00	
334556789011234567890123456789012345678901234567	NOTE: PE 001:0016 * SUB-AREA N CALLE STAN CALLE STAN CALLE STAN 03:HIP03 Sufface Dep. St Average Length Manning Max.eff Storage Unit Hy Unit Hy PEAK FL TIME TO RUNOFF ((i) CI (ii) T (iii) P 001:0017	IIP02) IID1 +ID2 	02:HIP02 DO NOT IN Area Total (ma) = (ma) = (m) = (min)	23.46 CLUDE BASEF Imp(%)= Imp(%)= Imp(%)= IMPERVIOUS 12.07 1.57 6450.00 .030 10.00 9.77 (1 0.00 10.00 10.00 10.00 1.00 1.00 63.24 64.81 .98 ED FOR PERV STORE FOR PERV DED FOR	3.092 LOWS IF A 17.00 D PRVIO 4.9 4.6 1.5 100.0 22.5 109.6 25.5 109.6 25.5 109.6 25.5 109.6 10	1.17 NY. 	<pre>54.37 *TOTAL 2.81 1.12 53.56 64.57 794</pre>	50.00 50.00	
34556789011234567890123456789012345678901234567890123456789	<pre>ADD HYD (H NOTE: PE 001:0016 * SUB-AREA N I CALIB STAN I CALIB STAN Manning Max.eff Storage Unit Hy Unit Hy PEAK FLL TIME TO RUNOFF (i) CI (ii) T (iii) P 001:0017</pre>	IIPO2) IID1 +ID2 SUM AK FLOWS 	02:HIP02 DO NOT IN 	23.46 CLUDE BASEF Imp(%)≈ IMPERVIOUS 1.57 .65 450.00 .030 161.47 10.00 .01 10.00 .11 2.38 1.08 4.24 64.81 .98 ED FOR FERV Dep. Stora Dep. Stora ED FOR FERV Dep. Stora Dep. Stora ED FOR FERV Dep. Stora Dep. Stora SMALL	3.092 LOWS IF A 17.00 D PRVIO 4.6 1.5 100.0 22.5 109.6 24.5 109.6 24.5 109.6 24.5 109.6 10.5 109.6 10.5 109.6 10.5 109.6 10.5 109.6 10.5 109.6 10.5 109.6 10.5 109.6 10.5 109.6 10.5 109.6 10.5 109.6 10.5 109.6 10.5 109.6 10.5 109.6 10.5 109.6 10.5 10	1.17 NY. 	<pre>54.37 *TOTAL 2.81 1.12 53.56 64.57 794</pre>	50.00 50.00	
33453678900123456789012345678901234567890123456789012345678901	<pre>ADD HYD (H NOTE: PE 001:0016 * * SUB-AREA N I CALIB STAN I O3:HIPSTAN I O3:HIPSTAN I O3:HIPSTAN Manning Max.eff Storage Unit Hy PEAK FL FUNOFF ((i) CI (ii) T (iii) P 001:0017 * SUB-AREA N SUB-AREA N</pre>	IIPO2) IID1 IID2 ID1 +ID2 SUM SUM AK FLOWS 0.2 DHYD DHYD DT 2.50 Arsa orage Slope S n .Inten.(n over Coeff. d. peak VOLUME AINFALL COEFFICIE OWE DEAM VOLUME AINFALL COEFFICIE SLANFAL SLANFAL COEFFICIE SLANFAL COEFFICIE SLANFAL COEFFICIE SLANFAL COEFFICIE SLANFAL COEFFICIE SLANFAL COEFFICIE SLANFAL COEFFICIE SLANFAL COEFFICIE SLANFAL SLANFAL COEFFICIE SLANFAL SLANF	02:HIP02 DO NOT IN 	23.46 CLUDE BASEF Imp(%)≈ IMPERVIOUS 1.57 .65 450.00 .030 161.47 10.00 .01 10.00 .11 2.38 1.08 4.24 64.81 .98 ED FOR FERV Dep. Stora Dep. Stora ED FOR FERV Dep. Stora Dep. Stora ED FOR FERV Dep. Stora Dep. Stora SMALL	3.092 LOWS IF A 17.00 D PRVIO 4.6 1.5 100.0 22.5 109.6 24.5 109.6 24.5 109.6 24.5 109.6 10.5 109.6 10.5 109.6 10.5 109.6 10.5 109.6 10.5 109.6 10.5 109.6 10.5 109.6 10.5 109.6 10.5 109.6 10.5 109.6 10.5 109.6 10.5 109.6 10.5 109.6 10.5 109.6 10.5 10	<pre>i.l.17 i.r. Conu ir. Conu</pre>	<pre>54.37 *TOTAL 2.81 1.12 53.56 64.53 794</pre>	50.00 50.00	
3345578901234567890123456789012345678901234567890123456789012	<pre>ADD HYD (H NOTE: PE 001:0016 * SUB-AREA N I CALIB STAN I CALIB STAN Manning Max.eff Storage Unit Hy Unit Hy PEAK FLL TIME TO RUNOFF (i) CI (ii) T (iii) P 001:0017</pre>	IIPO2) IID1 +ID2 SUM AK FLOWS 	02:HIP02 DO NOT IN 	23.46 CLUDE BASEF Imp(%)= IMPERVIOUS 12.07 1.57 .65 450.00 .030 161.47 10.00 .11 2.38 1.08 63.24 64.81 .98 ED FOR FERV Dep. Stora FERV DD FLTERTE. INCLUDE BASE (ha)= Imp(%)=	3.092 LOWS IF A 17.00 D PERVIO 4.9 4.9 4.9 1.5 100.0 22.5 100.0 22.5 102.0 22.5 1.3 3.9.9 64.8 6.6 IOUS LOSS: Ge (Abov. EF OR EQU EFICW IF 1 18.10 71.00 D	ir. Conn ir. Conn ir. Conn ir. Conn ir. Conn ir. Conn ir. Conn ir. Conn	*TOTALL 2.91 1.12 5.1.56 6.4.80 .790	50.00 50.00	· · · · · · · · · · · · · · · · · · ·
3345567890123456789012345678901234567890123456789012345678901234	<pre>NOTE: PE O01:0016 * SUB-AREA N i CALIB STAN Manning Max.eff Lengt Manning Max.eff Storage Unit Hy Unit Hy Unit Hy Unit Hy Control (i) Cl (ii) Cl (iii) T T (iii) P SUB-AREA N i CALIB STANN CALIB STANN </pre>	IIPO2) IID1 +ID2 SUM AK FLOWS 	02:HIP02 DO NOT IN 	23.46 CLUDE BASEH (ha) = Imp(%) = Imp(%) = IMPERVIOUS 12.07 1.55 6450.00 .030 161.47 10.00 .030 161.07 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 2.38 1.08 2.38 1.09 BD FOR PERV Dep Stora Dep Stora Dep Stora INCLUDE BASE (ha) = Imp(%) = I	3.092 LOWS IF A 17.00 PERVIO 4.9 4.5 100.0 22.5 100.2 100.0 22.5 102.0 .0 .0 .0 .0 .0 .0 .0 .0 .0	<pre>i.l17 ir. Conu ir. Conu iir. Conu iii. iii. iii. iii. iii. iii. iii. ii</pre>	*TOTALL 2.91 1.12 5.1.56 6.4.80 .790	50.00 50.00	
3333337839011213415678901223456789012234567890122345678901223456	<pre>NOTE: PE O01:0016</pre>	IIPO2) IID1 +ID2 SUM AK FLOWS 	02:HIP02 DO NOT IN 	23.46 CLUDE BASEF (ha)= Imp(%)= IMPERVIOUS 12.07 1.55 450.00 .030 161.47 10.00 .030 161.47 10.00 .11 2.38 1.09 .03 .03 .03 .03 .03 .03 .03 .03	3.092 LOWS IF A T.00 PRVIO 4.9 4.6 100.5 100.6 22.5 109.6 22.5 100.5 22.5 100.5 22.5 100.5 22.5 100.5 22.5 100.5 22.5 100.5 22.5 100.5 22.5 100.5 22.5 100.5 22.5 100.5 22.5 100.5 22.5 100.5 22.5 100.5 22.5 100.5 25.5	<pre>1.17 ir. Cony ir</pre>	*TOTALL 2.91 1.12 5.1.56 6.4.80 .790	50.00 50.00	
334356783901123145678901223456789012345678901223456789001223456789001223456789001223456789001223456789001223456789000000000000000000000000000000000000	<pre>NOTE: PE OOL:0016 * SUB-AREA N OL:0016 * SUB-AREA N I CALIB STAN I CALIB STAN Manning Max.eff Storage Unit Hy PEAK FL TIME TO RUNOFF CIAL (i) CI (i) CI (i) CI (ii) P OO1:0017 * SUB-AREA N OL:0017 * SUB-AREA N OL:0017 * SUFAREA N OL:0017</pre>	IIPO2) IID1 +ID2 	02:HIP02 DO NOT IN 	23.46 CLUDE BASEF 	3.092 LOWS IF A T.00 D PRVIO 4.6 1.5 100.0 22.5 109.6 22.5 109.6 22.5 109.6 .0 22.5 109.6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	<pre>1.17 ir. Conv US (i) 7 0 0 0 1 0 3 (ii) 5 8 3 0 1 2 ES: e) ALY. ir. Conun rs (i) 5 7 0 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0</pre>	*TOTALL 2.91 1.12 5.1.56 6.4.80 .790	50.00 50.00	· · · ·
33353738344144344444444444444444444444444444	<pre>NOTE: PE NOTE: PE O01:0016 * SUB-AREA N ' ' Surface Dep. St Average Length Manning Max.eff Storage Unit Hy PEAK FL TIME TO RUNOFF' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '</pre>	IIPO2) IID1 + ID2 	02:HIP02 DO NOT IN 	23.46 CLUDE BASEF 	3.092 LOWS IF A T.OO D PRVIO 4.6 1.5 100.0 22.5 109.6 22.5 109.6 22.5 109.6 .0 25.5 109.6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	<pre>1.17 NY</pre>	*TOTALL 2.91 1.12 5.1.56 6.4.80 .790	50.00 50.00 50.00	
33333333444444444444444901223455555556666666566676777777777777777777	<pre>NOTE: PE NOTE: PE O01:0016 * SUB-AREA N ' ' Surface Dep. St Average Length Manning Max.eff Storage Unit Hy PEAK FL TIME TO RUNOFF' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '</pre>	IIPO2) ID1 + ID2 	02:HIP02 DO NOT IN Area Total (ma) = (mm)	23.46 CLUDE BASEH (ha) = Imp(%) = Imp(%) = IMPERVIOUS 12.07 1.57 450.00 .030 10.00 .030 10.00 .030 10.00 10.00 10.00 10.00 .06 3.21 64.21 64.21 64.21 64.21 Dep Stora Dep Stora Dep Stora Invite Participation (ha) = Imp(%) = Imp	3.092 LOWS IF A TI.00 D PREVIO 4.9 4.6 1.5 100.6 22.5 109.6 22.5 109.6 22.5 109.6 22.5 109.6 22.5 100.6 22.5 100.6 22.5 100.6 22.5 100.6 22.5 100.6 22.5 100.6 22.5 100.6 22.5 100.6 22.5 100.6 22.5 100.6 1.5 100.6 1.5 100.6 1.5 100.6 1.5 100.6 1.5 100.6 1.5 100.6 1.5 100.6 1.5 100.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	<pre>1.17 i.17 ir. Con US (i) 7 0 0 1 0 0 3 (ii) 5 8 3 1 2 ES: = 1 1 2 E:. Con i, 5 1 3 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3</pre>	*TOTALL 2.91 1.12 5.1.56 6.4.80 .790	50.00 50.00 50.00	
333533333944444444444445555555555555555	<pre>NOTE: PE OOL:0016 * SUB-AREA N OLID STAN I CALIB STAN Manning Max.eff Storage Unit Hy PEAK FLL RUNOFF / (i) CI (ii) T (iii) F OOL:0017 * SUB-AREA M I CALIB STAN I CALIB STAN Surface Dep. Stc Average Length Manning Max.eff Storage</pre>	IIPO2) IIDO2) IIDO2) IIDO2) IIDO2) IIOO2 I	02:HIP02 DO NOT IN 	23.46 CLUDE BASEH (ha)= Imp(*)= Imp(*)= Imp(*)= 12.07 1.57 6.30 .045 .030 .030 .030 .030 .030 .030 .030 .030 .045 .030 .030 .030 .030 .045 .030 .045 .030 .045 .030 .045 .030 .045 .045 .057 .057	3.092 LOWS IF A TIONS IF A	<pre>i.l.17 i.l.17 ir. Cony ir</pre>	*TOTALL 2.91 1.12 5.1.56 6.4.80 .790	50.00 50.00 50.00	
333333334444444445675255555555555555666666666666	<pre>NOTE: PE O01:0016 * SUB-AREA N OULID SURFACE SURFACE SURFACE SURFACE SURFACE OULID SURFACE (103:HIDS) (103:HIDS)</pre>	IIPO2) IID1 +ID2 	02:HIP02 DO NOT IN (ma) = (mm) = (23.46 CLUDE BASEF 	3.092 LOWS IF A LOWS IF A 17.00 D PERVIO 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9	<pre>i.l.17 i.l.17 ir. Connu ir. Con</pre>	<pre>54.37 *TOTAL 2.81 1.12 51.56 0.794(%)=</pre>	50.00 50.00 50.00	
33456>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	<pre>NOTE: PE O01:0016 * SUB-AREA N OUT: 03HIPOTO I CALIB STANI Surface Dep. St Average Length Manning Max.eff Storage Unit Hy Unit Hy C(ii) C(ii) T (iii) P O01:0017 * SUB-AREA N I CALIB STANI I CALIB STA</pre>	IIPO2) ID1 +ID2 	02:HIP02 DO NOT IN (ha) = (mm) = (hrs) = (mm) = (hrs) = (hrs) = (hrs) = (hrs) = (hrs) = (mm) = (mm) = (hrs) = (hrs) = (mm) = (mm) = (hrs) = (h	22.46 CLUDE BASEF 	3.092 17.00 D 71.00 D PERVIO 4.9 4.9 4.5 100.0 22.5 100.0 22.5 10.0 22.5 10.0 22.5 10.0 22.5 10.0 22.5 10.0 22.5 10.0 22.5 10.0 22.5 10.0 22.5 10.0 22.5 10.0 22.5 10.0 22.5 10.0 22.5 10.0 22.5 10.0 22.5 10.0 22.5 10.0 22.5 10.0 20.5 10.0 20.5 10.0 20.5 10.0 20.5 10.0	<pre>i.l17 i.l17 ir. Conu us (i) 0 0 0 1 0 0 0 3 (ii) 5 8 3 0 1 2 ES: e) L EX: Conu i.i. Conu i.i. i.i. </pre>	<pre>54.37(%)=</pre>	50.00 50.00 50.00 50.00	
334556789941424444446678555555555555555555555555555555	<pre>NOTE: PE NOTE: P</pre>	IIPO2) ID1 + ID2 	02:HIP02 DO NOT IN 	23.46 CLUDE BASEF 	3.092 LOWS IF A 	<pre>i.l17 i.l17 ir. Conu us (i) 0 0 0 1 0 0 0 1 0 0 0 1 0 0 2 ES: 0 1 ES: 0 1 2 ES: 0 1 ES: 0 ES: 0 1 ES: 0 1</pre>	<pre>54.37(%)=</pre>	50.00 50.00 50.00	
334 5 5 6 7 8 5 9 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5	<pre>NOTE: PE OUT:016 SUB-AREA N OUT:016 I CALIB STANI I CALIB S</pre>	IIPO2) ID1 +ID2 	02:HIP02 DO NOT IN 	23.46 CLUDE BASEH (ha)= Imp(%)= Imp(%)= IMPERVIOUS 12.07 1.57 6.30 .030 ID.07 10.00 .030 10.00 .030 .045 .005 .057 .057 .057 .030 .030 .030 .030 .045 .057 .045 .057	3.092 LOWS IF A T. 00 D PRVIO 4.9 4.6 1.5 100.0 22.5 109.6 22.5 109.6 22.5 109.6 22.5 100.0 .22 100.0 .22 100.0 .22 100.0 .22 .0 .22 .0 .22 .2 .2 .2 .2 .2 .2 .2 .2	<pre>i7 i7 i</pre>	<pre>54.37 *TOTAL: 2.81 1.12 53.56 64.50(%)= *TOTAL: 2.596 1.167 51.566</pre>	50.00 50.00 50.00	
3345336778859077878787878787878787878787878787878787	<pre>NOTE: PE OUT:016 SUB-AREA N OUT:016 I CALIB STANI I CALIB S</pre>	IIPO2) ID1 + ID2 	02:HIP02 DO NOT IN 	23.46 CLUDE BASEF (ha) = Imp(%) = Imp(%) = IMPERVIOUS 12.07 1.57 .57 .57 .57 .57 .57 .57 .57	3.092 LOWS IF A 	<pre>i.l17 i.l17 ir. Conu us (i) us (i) 0 0 0 1 0 0 3 (ii) 5 8 3 0 1 2 Es: e) L Ex. Conu i.i. i.i. i.i. i.i. i.i. i.i. i.i. i.</pre>	<pre>54.37(%)=</pre>	.000 50.00 50.00 50.00	
334 5 5 6 7 8 5 9 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5 7 8 5	<pre>NOTE: PE NOTE: PE NOTE: PE NOTE: PE NOTE: PE NOTE: PE NOTE: PE SUB-AREA N SURFACE Surface Dep. St Average Length Manning Max.eff Storage Unit Hy PEAK FL TIME TO NUTH Y PEAK FL TIME TO SUB-AREA N C(i) C(i) C(i) C(i) T T(ii) P NOTE: SUB-AREA N C(iii) P NOTE: SUFACE N C(iii) P SUFACE N SUFACE N SUFACE N SUFACE N N NAX.eff Storage Unit Hy PAK FL Storage Unit Hy N NAX.eff Storage Unit Hy N SUFACE N N N N N N N N N N N N N N N N N N N</pre>	IIPO2) IID1 +ID2 	02:HIP02 DO NOT IN 	23.46 CLUDE BASEF 	3.092 *LOWS IF A *LOWS IS A	<pre>i.l.17 ir. Conv US (i) 7 00 0 1 0 3 (ii) 5 8 8 3 0 1 2 ES: 8 8 3 0 1 2 ES: 6 1 1 5 6 1 1 5 5 8 8 3 1 1 2 2 2 5 5 8 8 8 1 1 2 2 2 5 5 8 8 8 8 1 1 2 8 8 8 8 8 8 8 8 8 8 8 8 8</pre>	<pre>54.37</pre>	.000 50.00 50.00 50.00	

J. L. Richards & Associates Limited

J. L. Richards & Associates Limited

031065 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 AREA
 QPEAK
 TPEAK
 R.V.

 (ha)
 (cms)
 (hrs)
 (mm)

 17.00
 2.819
 1.13
 51.57

 18.10
 2.596
 1.17
 51.57
 DWF (cms) .000 .000 03113> ID1 03:HIP03 +ID2 04:HIP04 03114> 03115> 03115> 03116> 03117> 03118> SUM 05:HIP05 35.10 5.372 1.13 51.57 . 000 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03119:
 DESIGN NASHYD
 Area
 (ha)=
 4.00
 Curve Number
 (CN)=85.00

 0 65:Pond-B DT=2.50
 Ia
 (mm)=
 4.670
 # of Linear Res. (N)= 3.00

 U.K. Tp(hrs)=
 .10
 03125> 03125> 03126> 03127> 03128> 03129> 03130> 03131> 03132> 03133> 03134> 03135> Unit Hyd Qpeak (cms) = .899
 PEAX FLOW
 (cms)=
 .551

 TIME TO PEAK
 (hrs)=
 1.125

 RUNOFF VOLUME
 (mm)=
 34.455

 TOTAL RAINFALL
 (mm)=
 64.806

 RUNOFF COEFFICIENT =
 .532
 .551 (i) 1.125 03136> 03137> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 Clip Find Flow Does not include baseflow if ANI.

 03139>

 03139>

 03140>

 03140>

 03140>

 031403
 00110020

 031413
 (ha)

 031424
 (ha)

 031435
 (ha)

 031445
 (b)

 03145
 (b)

 03146
 (b)

 03146
 (b)

 03146
 (b)

 03146
 (b)

 03146
 (b)

 03150
 (b)

 QPEAK
 TPEAK
 R.V.
 DWF

 (cms)
 (hrs)
 (mm)
 (cms)

 3.092
 1.17
 54.37
 .000

 5.372
 1.13
 51.57
 .000

 .551
 1.13
 34.45
 .000
 SUM 07:HIP06 67.56 8.958 1.13 51.73 .000 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. -----| ROUTE RESERVOIR | | IN>07: (HIP06) | | OUT<08: (HIP-P0) | Requested routing time step = 1.0 min.
 Requested Fouring time step = 1.0 kin.

 OUTFLOW
 STORAGE TABLE = =======

 OUTFLOW
 STORAGE i OUTFLOW
 STORAGE i Note

 (cms)
 (ha.m.)
 (mas)
 (ha.m.)

 (cms)
 (ha.m.)
 (mas)
 (ha.m.)

 (cms)
 (ba.m.)
 (mas)
 (ha.m.)

 048
 5740E-01
 .937
 2501E+01

 054
 .2434E+00
 1
 .262
 .2798E+01

 055
 .5534E+00
 1
 .301E+01
 .301E+01

 .064
 .102E+01
 1
 .650
 .3724E+01

 .064
 .102E+01
 1
 .650
 .4370E+01

 .280
 .1644E+01
 3
 .6370E+01
 .4370E+01

 .472
 .1924E+01
 3
 .000
 .0000E+00
 03158> 03159> 03160> 03161> 03162> 03163> 03165> 03166> 03167> 03168> 03168> 03169> 03170> 03171> 03172> 03172> 03174> 03174> 03176> 03176> 03177> 03178> 03179> 03179> AREA QPEAK (ha) (cms) 67.56 8.958 67.56 .973 ROUTING RESULTS TPEAK (hrs) 1.125 3.097 R.V. (mm) 51.735 51.735 (ha) 67.56 67.56 INFLOW >07: (HIP06) OUTFLOW<08: (HIP-PO) PEAK FLOW REDUCTION [Qout/Qin](%)= 10.864 TIME SHIFT OF PEAK FLOW (min)= 118.33 MAXIMUM STORAGE USED (ha.m.)=.2534E+01 03180 001:0022-----03181 * 03182 * SUB-AREA NO. 5 03183 * 03184 ------* DESIGN NASHYD | Area (ha)= 6.80 Curve Number (CN)=76.00 | 09:A2 DT= 2.50 | Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 ------ U.H. Tp(hrs)= .370 03185>
 PEAK FLOW
 (cms) =
 .188 (i)

 TIME TO PEAK
 (hrs) =
 2.000

 RUNOFF VOLUME
 (mm) =
 25.767

 TOTAL RAINFALL
 (mm) =
 64.806

 RUNOFF COEFFICIENT
 398
)3214>)3215>)3216>)3216>)3217>)3218>)3219> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 3220> 001:0024------
 OPEAK
 TPEAK
 R.V.

 (cms)
 (hrs)
 (mm)

 .973
 3.10
 51.73

 .417
 1.42
 25.77

 .188
 2.00
 25.77
 DWF (cms) .000 .000 .000 SUM 01:Interi 79.66 1.191 2.31 47.79 . 000

Page 11

(V. (, SHM-IN1. OUL)	J. L. Richards & Associates Limit
03241> METOUT= 2 (output = METRIC) 03242> NRUN = 001 03243> NSTORM= 0 03244>	03376> CN* = 81.0 Ia = Dep. Storage (Above) 03377> (ii) TIME STEP (DT) SHOULD BE SNALLER OR EQUAL 03378> THAN THE STORAGE COEFFICIENT. 03378> (iii) PEAR FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
03245> 001:0002 03246>	03380> 03381>
03247> CHICAGO STORM IDF curve parameters: A=1735.688 03248> Ptotal= 71.66 mm B= 6.014 03249>	03382> 001:0007
03249> C= .820 03250> used in: INTENSITY = A / (t + B)^C	03384> ADD HYD (040) ID: NHYD AREA QPEAK TPEAK R.V. DWF
03251>	(13386) (1) (1) (1) (10) (11) (11) (11) (11) (1
03253> Storm time step = 10.00 min	03387> +ID2 02:020 1.54 .534 1.04 67.32 .000 03388>
03254> Time to peak ratio = .33 03255>	03389> SUM 04:040 3.61 1.220 1.04 65.74 .000 03390>
03256> TIME RAIN TIME RAIN TIME RAIN TIME RAIN 03257> hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr	03391> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03392>
03258> .17 6.046 1.00 178.559 1.83 11.059 2.67 5.760 03259> .33 7.542 1.17 54.049 2.00 9.285 2.83 5.280	03393>
03260> .50 10.159 1.33 27.319 2.17 8.024 3.00 4.879	03395>
	03396> ADD HYD (050) ID: NHYD AREA QPEAK TPEAK R.V. DWF 03397> (ha) (cms) (hrs) (mm) (cms)
03263> 03264>	03398> ID1 03:030 1.40 .509 1.04 69.06 .000 03399> +ID2 04:040 3.61 1.220 1.04 65.74 .000
03265> 001:0003	03400> 03401> SUM 05:050 5.01 1.729 1.04 66.66 .000
03267> DEFAULT VALUES Filename: V:\20983.DU\ENG\FINALS-1\SWMHYM~1\ORGA.VAL 03268>	03402> DOL OF
03269> FileTitle= ENTER YOUR COMMENTS ON THIS LINE AND THE NEXT ONE 03270> PARAMETER VALUES MUST BE ENTERD AFTER COLUMN 60	03404>
 Horton's infiltration equation parameters: 03272> [For 50.00 mm/hr] [Fc= 7.50 mm/hr] [DCAY= 2.00 /hr] [F= .00 mm] 03273> Parameters for PERVIOUS surfaces in STADHEV: 	03405>
	03407> * 03408> * SUB-AREA No.4
03274> [IAper= 4.67 mm] [IGP=40.00 m] [MNP= .250] 03275> Parameters for IMPERVIOUS surfaces in STANDHYD;	03409> 03410> CALIB STANDHYD Area (ha)= .89
03275> Parameters for IMPERVIOUS surfaces in STANDHYD; 03276> [IAimp= 1.57 mm] (CLI= 1.50] (MNI= .035] 03277> Parameters used in NASHYD;	03411> 06:060 DT= 2.50 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 03412>
02277> Parameters used in NASHYD: 03278> [Ia= 4.67 mm] [N=3.00] 03279>	03413> IMPERVIOUS PERVIOUS (i)
03280> 001:00040004	03414> Surface Area (ha)= .86 .03 03415> Dep. Storage (mm)= 1.57 4.67
03282> * ORGAWORLD FILE *	03416> Average Slope (%)= .93 .70 03417> Length (m)= 164.82 40.00
03283> ************************************	03418> Mannings n = .030 .250 03419>
03285> * SUB-AREA No.1 03286>	03420> Max.eff.Inten.(mm/hr) = 178.56 67.61
03287> CALIB STANDHYD Area (ha)= 2.07 03288> 01:010 DT= 2.50 Total Imp(%)= 84.00 Dir. Conn.(%)= 84.00	03422> Storage Coeff. (min)= 4.62 (ii) 15.92 (ii)
032899	03423> Unit Hyd. Tpeak (min)= 5.00 15.00 03424> Unit Hyd. peak (cms)= .24 .07
03290> IMPERVIOUS PERVIOUS (i) 03291> Surface Area (ha)= 1.74 .33	03425> *TOTALS* 03426> PEAK FLOW (cms)= .37 .00 .374 (iii)
03292> Dep. Storage (mm) = 1.57 4.67 03293> Average Slope (%) = .52 1.00 03294> Length (m) = 204.72 20.00	03427> TIME TO PEAK (hrs) = 1.00 1.21 1.000
03294> Length (m) = 204.72 20.00 03295> Mannings n = .030 .250	03429> TOTAL RAINFALL (mm) = 71.66 71.66 71.665
03296> 03297> Max.eff.Inten.(mm/hr)= 179.56 74.05	03431>
03298> over (min) 7.50 12.50	03432> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 03433> CN* = 01.0 Ia = Dep. Storage (Above)
03299> Storage Coeff. [min] = 6.26 (ii) 12.72 (ii) 03300> Unit Hyd. Tpeak (min] = 7.50 12.50 03301> Unit Hyd. peak (cms] = .17 .09	03434> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 03435> THAN THE STORAGE COEFFICIENT.
03301> Unit Hyd. peak (cms) = .17 .09 03302> *ToTALS*	03436> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03437>
03303> PEAK FLOW (cms)= .66 .04 .685 (iii) 03304> TIME TO PEAK (hrs)= 1.04 1.17 1.042	03438>
03305> RUNOFF VOLUME (num)= 70.09 35.46 64.553	03439> 001:0010
03307> RUNOFF COEFFICIENT = .98 .49 .901	03441> * SUB-AREA No.5 03442>
03308> 03309> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES;	03443> CALIE STANDHYD Area (ha)= 2.66 03444> 07:070 DT= 2.50 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00
0331> CN* = 81.0 IA DEP. Storage (Above) 03311> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL	03445>
03312> THAN THE STORAGE COEFFICIENT. 03313> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	03447> Surface Area (ha) = 2.58 .08
03314>	03449> Average Slope (%)= .61 1.50
03316> 001:0005	03450> Length (m) = 207.25 20.00 03451> Mannings n = .030 .250
03317> * 03318> * SUB-AREA No.2	03452> 03453> Max.eff.Inten.(mm/hr)= 178.56 74.05
03319>	03454> over (min) 5.00 12.50 03455> Storage Coeff. (min)= 6.01 (ii) 11.73 (ii)
03321> 02:020 DT= 2.50 Total Imp(%)= 92.00 Dir. Conn.(%)= 92.00 03322>	03456> Unit Hyd. Tpeak (min)= 5.00 12.50
03323> IMPERVIOUS PERVIOUS (i)	U345B> *TOTALS*
03325> Dep. Storage (mm)= 1.57 4.67	03459> PEAK FLOW (cms)= 1.03 .01 1.034 (iii) 03460> TIME TO PEAK (hrs)= 1.00 1.17 1.000
03326> Average Slope (%)= .50 1.00 03327> Length (m)= 244.34 5.00	03461> RUNOFF VOLUME (mm) = 70.09 35.46 69.056 03462> TOTAL RAINFALL (mm) = 71.66 71.66 71.665
03328> Mannings n = .030 .030 03329>	03463> RUNOFF COEFFICIENT = .98 .49 .964 03464>
03330> Max.eff.Inten.(mm/hr) = 178.56 93.23 03331> over (min) 7.50 7.50	03465> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
03332> Storage Coeff. (min)= 7.04 (ii) 7.76 (ii)	03466> CN* = 81.0 Ia = Dep. Storage (Above) 03467> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
03334> Unit Hyd. peak (cms) = .16 .15	03468> THAN THE STORAGE COEFFICIENT. 03469> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
03335> *TOTALS* 03336> PEAK FLOW (cms)= .51 .02 .534 (iii)	03470> 03471>
03337> TIME TO PEAK (hrs)= 1.04 1.08 1.042 03338> RUNOFF VOLUME (mm)= 70.09 35.46 67.324	03472> 001:0011
03339> TOTAL RAINFALL (mm) = 71.66 71.66 71.665 03340> RUNOFF COEFFICIENT = .98 .49 .939	03474> ADD HYD (080) ID: NHYD AREA QPEAK TPEAK R.V. DWF
03342> (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	03476> ID1 06:060 .89 .374 1.00 69.06 .000
03343> CN* = 81.0 Ia = Dep. Storage (Above)	03477> +ID2 07:070 2.66 1.034 1.00 69.06 .000 03478>
03345> THAN THE STORAGE COEFFICIENT.	03479> SUM 08:080 3.55 1.408 1.00 69.06 .000 03480>
03346> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03347>	03481> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
03348>	03482> 03483>
03349> 001:00060	03484> 001:0012
03351> * SUB-AREA No.3 03352>	03486> ADD HYD (090) ID: NHYD AREA QPEAK TPEAK R.V. DWF
03353> CALIB STANDHYD Area (ha)= 1.40 03354> 03:030 DT= 2.50 Total Imp(%)= 97:00 Dir. Conn.(%)= 97.00	03488> ID1 05:050 5.01 1.729 1.04 66.66 .000
033352	
13357> Surface Area (ba) = 1.36 04	03491> SUM 09:090 8.56 3.067 1.04 67.66 .000 03492>
03358> Dep. Storage (mm) = 1.57 4.67	03493> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03494>
03359> Average Slope (%)= .51 1.00 03360> Length (m)= 225.63 5.00 03361> Mannings n = .030 .030	03495>
03362>	03496> 001:0013
03363> Max.eff.Inten.(mm/hr)= 178.56 93.23 03364> over (min) 7.50 7.50 03355> Storage Coeff. (min)= 6.67 (ii) 7.39 (ii)	03498> ROUTE RESERVOIR Requested routing time step = 1.0 min. 03499> IN>09:(090) 03500> OUTC10:(POND) ==================================
U3366> Unit Hvd. Tpeak (min)= 7.50 7.50	03500> OUT<10: (FOND) OUTLEOW STORAGE TABLE NOTAGE 03501>
03367> Unit Hyd. peak (cms)= .16 .15 03368> *TOTALS*	03502> (cms) (ha.m.) (cms) (ha.m.)
	03503> .000 .0000E+00 .593 .6251E+00 03504> .008 .6560E-01 .654 .6631E+00
033712 ROMOFF VOLDME (mm)- 70.09 35.46 69.056	03505> .017 .1311E+00 .797 .7391E+00 03506> .093 .2831E+00 .950 .8274E+00
03372> TOTAL RAINFALL (mm)= 71.66 71.66 71.665 03373> RUNOFF COEFFICIENT = .98 .49 .964	03507> .233 .3971E+00 1 1.304 .9157E+00
03374> 03375> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	03509> .465 .5491E+00 2.577 .1092E+01
(1, the inclusion of reprinting models:	03510> .531 .5871E+00 .000 .0000E+00

03511> 03512> 03646> QPEAK (cms) 3.067 .283 TPEAK (hrs) 1.042 1.861 03647> -----03648> 001:0019------03649> * 03650> *SUB-AREA No.4 03513> 03514> 03515> 03516> 03516> (mm) 67.655 67.653 * SUB-AREA No.4 PEAK FLOW REDUCTION [Qout/Qin](%)= 9.214 TIME SHIFT OF PEAK FLOW (min)= 49.17 MAXIMUM STORAGE USED (ha.m.)=.4332E+00 03518> 03519> Unit Hyd Qpeak (cms)= .899 03656> 03657>
 PEAK FLOW (cms)=
 .649 (i)

 TIME TO PEAK (hrs)=
 1.125

 RUNOFF VOLUME (mm)=
 40.139

 TOTAL RATURALL (mm)=
 71.665

 RUNOFF COEFFICIENT =
 .560
 03659> 03659> 03660> 03661> * Remaining Hawthorne Industrial Park 03524> 03525> 03661> 03662> 03663> 03664> 03665> 03665> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03537> 03538> 03539> 03540> 03541> 03542> 03543> 03543> 03544> 03545> - .250 153.66 117.89 12.50 25.00 11.89 (ii) 24.37 (ii) 12.50 25.00 .09 .05 03675> 03675> 03675> 03676> 03677> 03678> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03678> 03679> 03680> 03681> ------03682> | ROUTE RESERVOIR | Requested routing time step = 1.0 min. 03682> | N>07: (HIPO6) | 03684> | OUTC05: (HIP-PO) | 03685> ------OUTLFOW STORAGE TABLE -------OUTLFOW STORAGE | OUTFLOW STORAGE (An) | (An) | *TOTALS* 3.419 (iii) 1.167 58.015 71.665 .810 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 2.77 1.13 70.09 71.66 .98 *TOTALS* 1.13 1.38 45.94 71.66 03546> 03547> 03548> 03548> 03549> 03550>
 Neuroscienci Induiting Line Step 2
 1.0 mili.

 OUTPLOW STORAGE TABLE
 STORAGE INDUITION STORAGE TABLE

 OUTPLOW STORAGE INDUITION (na.m.)
 (cms)

 (cms)
 (na.m.)
 (cms)

 0.00008+00
 .724
 .22108

 0.048
 57408-01
 .325

 0.53
 .5348+00
 1.262
 .27988

 0.64
 .1028+01
 1.30128
 .310128

 0.64
 .01028+01
 1.532
 .341084

 .064
 .1028+01
 1.3649
 .437284

 .240
 .4048401
 3.689
 .437084

 .240
 .1028+01
 1.3608
 .437084

 .472
 .1924E+01
 .000
 .000084
 .64 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03550> 03551> 03552> 03553> 03554> 03555> 03556> 03557> 03562> 03563> 03564> 03565> 03566> 03567> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03568> 03569> ------03570> 001:0016------03571> * 03572> * SUB-AREA No.2 03573> ------. .
 | CALIB STANDHYD
 |
 Area
 (ha)=
 17.00

 | 03:HIP03 DT=2.50
 |
 Total Imp(%)=
 71.00
 Dir. Conn.(%)=
 50.00

 IMPERVIOUS

 IMPERVIOUS
 03574> 03575> 03576> 03577> 03577> Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS PERVIOUS (i) 12.07 1.57 .65 450.00 .030 4.93 4.67 1.50 03579> 03581> 03582> 03583> 03584> 03584> 03585> 100.00 .250 .250 178.56 126.60 10.00 22.50 9.39 (ii) 21.52 (ii) 10.00 22.50 .12 .05 03585> 03586> 03587> 03589> 03590> 03591> 03592> 03593> 03594> 03595> *TOTALS* 3.203 (iii) 1.125 58.015 71.665 .810 037232 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 03724> (i) PEAK FLOW 03725> 03726> -----03727> 001:0023------03728> * 1.05 1.33 45.94 71.66 .64 2.68 1.08 _____ 70.09 71.66 .98 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 01.0 Ia = Dep. Storage (Above) (ii) THME STEP (DT) SHOULD BE SMALLER OR EQUAL ... THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03596> 03598> 03599> 03600> 036015 03602: 03602> 001:0017-----03604> * 03605> * SUB-AREA No.3 03606> -----03738> 03739> 03740> 03741> 03742> 03742> 03743> 03743> 03744> 03744> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. IMPERVIOUS PERVIOUS (i) Surface Area(ha) =Dep. Storage(mm) =Average Slope(%) =Length(m) =Mannings n= 03610> 03611> 03612> 5.25 4.67 1.50 100.00 12.85 1.57 .50 03613> 03614> 03615> 03615> 03616> 03617> 03618> 600.00 .030 .250 153.66 117.89 12.50 25.00 12.82 (ii) 25.30 (ii) 12.50 25.00 . .09 .04 Max.eff.Inten.(mm/hr) = over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min) ~ Unit Hyd. peak (cms)= 03619> 03620> 03622> 03622> 03623> 03624> 037555 SUM 01:Interi 79.66 1.531 2.3 037555 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 037575 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. *TOTALS* 3.031 (iii) 1.167 58.015 71.665 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nm) = TOTAL RAINFALL (nm) = RUNOFF COEFFICIENT = 2.43 1.13 70.09 71.66 1.01 1.38 45.94 71.66 03624> 03625> 03626> 03627> 03620> 03629> 03629> 03630> . 98 . 64 ***** 03762> --03763> ** 03764> 03765> 03766> 03767> == (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (i) TIME STEP (07) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (ii) PEAK FLOW DOES NOT INCLUDE BASEFICM IF ANY. WARNINGS / ERRORS / NOTES Simulation ended on 2009-05-15 at 08:57:05 03631> 03632> 03768> 03639> 03640> 03641> 03642> 03643> SUM 05:HIP05 35.10 6.178 1.13 58.02 .000 03644> 03645> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

APPENDIX 'H'

SWMHYMO INPUT AND OUTPUT FILES (Post-Development Controlled Phase 2 Conditions)

(V:\...SWM-ALL.dat)

	M11 7100,				J. L. RICHAIDS & Associates Limite
00001> 2 M	etric units		00136		
00002> *#*****		Hawthorne Industrial Park Project Number: [20983] *	00137	>	[-1 , -1] (max twenty pts)
00004> *# Date	e :	January, 2009 *	00138	> ************************************	**************************************
00005> *# Rev: 00006> *# Deve	eloped by :	N/A * Mark Buchanan, E.I.T. *	00140)> *********************	*********
00007> *# Revi 00008> *# Comp	iewed by :	Guy Forget, P.Eng. * J.L. Richards & Associates Limited *	00142	> * SUB-AREA No.1	
00009> *# Lice 00010> *#*****	ense # :	4418403 *		> CALIB STANDHYD	<pre>ID=[1], NHYD=("HIP01"], DT=[2.5](min), AREA=[19.9](ha),</pre>
00011> *		***************************************	00145		<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>
00012> * 00013> *#*****	***********	*******	00147	>	Pervious surfaces Three=(4 671 (mm) STDP=(1 51(8)
00014> *# FILE	ENAME: V:\2	0983.DU\ENG\SWMHYMO\20983PST.DAT *	00149	>	LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.6](%),
00016> *# OF	A FACILITY	FOR SITE PLAN APPLICATION AND DETAILED DESIGN * ASSOCIATED WITH THE OTTAWA COMPOSTING SITE *	00150		LGI=[580](m), MNI=[0.03], SCI=[0.0](min RAINFALL=[, , , ,](mm/hr), END=-1
00017> *#****** 00018> *	**********	***************************************	00152	> *8 > ADD HYD	IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1]
00019> ******** 00020> *	**************************************	LE DEVELOPED TO INVESTIGATE FLOOD FLOWS OF THE *	00154	> *8	
00021> * PROE	POSED COMPOS	TING SITE UNDER POST-DEVELOPMENT UNCONTROLLED CONDITIONS *	00155	> * > * SUB-AREA No.2	
00023>		***************************************	00157	> > CALIB STANDHYD	<pre>ID=[3], NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha),</pre>
		YSIS UNDER A 4 HR-25 MM STORM AND *	00159	>	XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],
00026> * FOR DF	ESIGN STORMS	G OF 1:2, 5, 10, 25, 50, AND 100 YR *	00160	>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),
00028>			00162		LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m) Impervious surfaces: TAimp=[1.57] (mm), SLPT=[0.65] (A)
00030> *	POST-DEVELO	PMENT UNCONTROLLED CONDITIONS *	00164	>	<pre>Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.65](%),</pre>
00031> *********	*********	***************************************		> *8	
00033> *******		********	00168	> * SUB-AREA No.3	
00034> * 00035> *******	CALCULAT	10N OF 4 HR 25 MM STORM EVENT *	00169	> > CALIB STANDHYD	TD=[4], NHYD=["HTD04"] DT=[2 5](min) DT=[35 6](ha)
00036> 00037> START		TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]	00171	>	<pre>ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.7], DWF=[0.0](cms), LOSS=[2], CONTRACT OF CONTRACT OF CONTRACT.</pre>
00038> *% 00039> READ STC		[] <storm filename,="" for="" line="" nstorm="" one="" p="" per="" time<=""></storm>	00173	>	SCS curve number CM=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%), LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m
00040> *%		STORM_FILENAME=["4HR25-15.STM"]	00174		LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.5] (%),
00041> DEFAULT 00042>	VALUES	ICASEdef=[1], read and print values DEFVAL FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]	00176		LGI=[600](m), MNI=[0.03], SCI=[0.0](min RAINFALL=[, , , ,](mm/hr), END=-1
00043> *%		11	00178	· > *8	
00045> *******		*****	00180	> ADD HYD > *&	IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4]
00047> ********	ORGAWORL	D FILE * ******		> ADD HYD > *%	IDsum=[6], NHYD=["HIPO6"], IDs to add=[5+2]
00048> * 00049> * SUB-AR	RA No. 1		00183	> *	· · · · · · · · · · · · · · · · · · ·
00050>			00185		
00051> CALIB ST 00052>	ANURIU	ID=[1], NHYD=["010"], DT=[2.5] (min), AREA=[2.07] (ha), XIMP=[0.64], TIMP=[0.64], DWF=[0.0] (cms), LOSS=[2],	00187		<pre>ID=[7], NHYD=["HIP07"], DT=[2.5](min), AREA=[12.2](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],</pre>
00053> 00054>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.0](%),	00188:	> .	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPF=[1.5](%),
00055>		LGP = [20] (m), $MNP = [0, 25]$, $SCP = [0, 0] (m)$	00190:	>	LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m
00057>		Impervious surfaces: IAimp=[1.57] (nmm), SLPI=[0.52] (%), LGT=[204.72] (m), MNI=[0.03], SCI=[0.0]	00191		<pre>Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.7](%), LGI=[210](m), MNI=[0.03], SCI=[0.0](min</pre>
00058> 00059> *%		RAINFALL=[, , , ,](mm/hr), END=-1	00193: 00194:	>	RAINFALL=[, , , ,] (mm/hr) , END=-1
00060> * 00061> * SUB-AR	EA No.2		00195	> *8	
00062>			00197:	> *SUB-AREA No.5	
00063> CALIB ST 00064>	ANDHYD	ID=[2], NHYD=["020"], DT=[2.5] (min), AREA=[1.54] (ha), XIMP=[0.92], TIMP=[0.92], DWF=[0.0] (cms), LOSS=[2],	00198:	> > Design Nashyd	ID=[8], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0] (ha),
00065>		SCS curve number CN=[01], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%),	00200	> · <	DWF = [0] (cms), CN/C = [85], TP = [0.17] hrs,
00067>		LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min), Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.50] (%),	00202:	> *\$	RAINFALL=[, , , ,](mm/hr), END=-1
00069>		LGI = [244.34] (m), $MNI = [0.03]$, $SCI = [0.0]$	00203:	> > ADD HYD	IDsum=[9], NHYD=["HIP08"], IDs to add=[6+7+8]
00070> 00071> *%		RAINFALL=[, , , ,] (mm/hr) , END=-1	002052	> *8	
00072> * 00073> * SUB-AR	EL NO 3		00207:	> ROUTE RESERVOIR	<pre>IDout=[10], MHYD=["HIP-POND"], IDin=[9],</pre>
00074> 00075> CALIB ST			00208:	>	RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values
00076>	ANDAID	<pre>ID=[3], NHYD=("030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF={0.0](cms), LOSS=[2],</pre>	00210	>	(cms) - (ba-m) [0.0 , 0.0]
00077> 00078>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%),	00212:		[0.048, 0.0574]
00079>		LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min), Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.51](%),	00214:	>	[0.054, 0.2434] [0.059, 0.5834]
00081> 00082>		LGI=[225.63] (m), MNI=[0.03], SCI=[0.0	00216:	>	[0.062, 0.8400] [0.064, 1.1024]
00083> *%		RAINFALL={ , , , ,] (mm/hr) , END=-1	00217:	>	[0.147, 1.3705] [0.280, 1.6444]
00084> ADD HYD 00085> *%		IDsum=[4], NHYD=["040"], IDs to add=[1+2]	00219:		(0.472, 1.9242) (0.724, 2.2097)
00086> ADD HYD 00087> *%		IDsum=[5], NHYD=["050"], IDs to add=[3+4]	002212	>	[0.937, 2.5010]
00088> * 00089> * SUB-AR	FR No. 4		00223:	>	[1.262, 2.7981] [1.404, 3.1009]
00090>			002243	>	[1.532, 3.4096] [1.650, 3.7240]
00091> CALIB ST 00092>	ANDHYD	ID=[6], NHYD={"060"}, DT={2.5}(min), AREA={0.89}(ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0}(cms), LOSS=[2],	002263		[2.409, 4.0442] [3.689, 4.3702]
00093> 00094>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[0.7] (%),	00228>	>	[-1 , -1) (max twenty pts)
00095>		LGP=[40](m), $MNP=[0,25]$, $SCP=[0,0](min)$	00230>	*8	· · · · · · · · · · · · · · ·
00097>		Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.93] (%), LGI=[164.82] (m), MNI=[0.03), SCI=[0.0] (*SUB-AREA No. 6	
00098> ********		RAINFALL=[, , , ,] (mm/hr) , END=-1	00233>		<pre>ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7](ha),</pre>
00100> * 00101> * SUB-AR	EA No.5	• •	002355		DWF = [0] (cms) CNC = [76] TD = [0.80] hms
00102> 00103> CALIB ST			00237>	*8	RAINFALL=[, , ,](mm/hr), END=-1
00104>	UNDIT	ID=[7], NHYD=["070"], DT=[2.5] (min), AREA=[2.66] (ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0] (cms), LOSS=[2],		ADD HYD	IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1]
00105> 00106>		SCS curve number CN=[81], Pervious surfaces: IAper=[4,67](mm), SLPP=[1,5](%).		* * *	-
00107> 00108>		LGP=[20.0] (m), MNP=[0.25], SCP=[0.0] (mi Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.61] (%),	00242>		
00109>		LGI = [207, 25] (m), $MNI = [0, 03]$, $SCI = [0, 0]$	00244>	* CALCULATI	ON OF 3HR - 1:2 YEAR STORM EVENT *
00110> 00111> *8		RAINFALL=[, , , ,] (mm/hr) , END=-1	00246>	•	***********
00112> ADD HYD 00113> *%		IDsum=[8], NHYD=["080"], IDs to add=[6+7]	00247>	START	TZERO∞[0.0], METOUT=[2], NSTORM=[0], NRUN=[0] [] <storm filename,="" for="" line="" nstorm="" one="" per="" td="" time<=""></storm>
00114> ADD HYD 00115> *8		IDsum=[9], NHYD=["090"], IDs to add=[5+8]	00249>	*8	
00116>			00251>	•	<pre>IUNITS={2}, TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0](min) ICASEcs=[1],</pre>
00117> ROUTE RES 00118>		<pre>IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min),</pre>	00252>	• *&	A=[732.951], B=[6.199], and C=[0.810],
00119> 00120>		TABLE of (OUTFLOW-STORAGE) values (cms) - (ha-m)	00254>	DEFAULT VALUES	ICASEdef=[1], read and print values
00121> 00122>		[0.000, 0.0000]	00256>	*8	DEFVAL_PILENAME={V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"}
00123>		[0.008, 0.0656] [0.017, 0.1311] [0.093, 0.2831]	00257>	************	*****
00124> 00125>		[0.093, 0.2831] [0.233, 0.3971]	1 002595	* ORGAWOR	
00126> 00127>		[0.233, 0.397]] [0.337, 0.4731] [0.637, 0.4731]	00261>		
00128>		[0.465, 0.5491] [0.531, 0.5871]	00263>		
00129> 00130>		[0.593, 0.6251] [0.654, 0.6631]	00264>	CALIB STANDHYD	<pre>ID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha), XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2],</pre>
00131> 00132>		[0.797, 0.7391] [0.950, 0.8274]	00265>		SCS curve number CN=[81],
00133>		[1.304, 0.9157]	00268>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%), LGP=[20](m), MNP=[0.25], SCP=[0.0](mi
00134> 00135>		[1.880, 1.0040] [2.577, 1.0923]	00269>		Impervious surfaces: Thimp=[1.57] (mm), SLPI=[0.52] (%), LGI=[204.72] (m), MNI=[0.03], SCI=[0.0]
			1		

J. L. Richards & Associates Limited

Page 0

(V:\...SWM-ALL.dat)

J. L. Richards & Associates Limited

002/1> 00272> *%-----00273> * 00274> * SUB-AREA No.2 00275> RAINFALL=[, , , ,] (mm/hr) , END=-1 00406> RAINFALL=[, , , ,](mm/hr) , END=-1 *8-----00408> 00410> *SUB-AREA No.5 ID=[2], NHYD=["020"], DT=[2.5] (min), AREA=[1.54] (ha), XIMP=(0.52], TIMP=(0.92], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LOP=[5] (m), NNF=[0.03], SCP=[0.0] (min), Impervious surfaces: IAimpe[1.57] (mm), SLPI=(0.50) (%), LOE=[24(.434] (m), MNT=[0.03], SCI=[0.0] RAINFALL=[, , ,] (mm/hr), END=-1 00276> CALIB STANDHYD 00411> 00412> DESIGN NASHYD ID=[0], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cms), CN/C=[85], TP=[0.17]hrs, RAINFALL=[, , , ,](nm/hr), END=-1 00277: 00278>
00279>
00280> 004135 00413> 00415> *\$-----00415> *00415> 00417> ADD HYD 00418> *\$-----00281> 00282> IDsum=[9], NHYD=["HIP08"], IDs to add=[6+7+8] 00283> 00418> *%-----00419> 00420> ROUTE RESERVOIR 00421> 00422> 00422> 00423> 00284> *8-----00285> * 00286> * SUB-AREA No.3 IDout=[10 }, NHYD=["HIF-POND"], IDin=[9 }, RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values (OUTFLOW-STORAGE) values DUTFLOW-STORAGE) (cms) - (ha-m) (cms) - (ha-m) (cms) - (ha-m) (cms) - (ba-m) (ba-m) (cms) - (ba-m) ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.57], TIMP=[0.57], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](man), SLP=[1.0](%), LGP=[5](m), NNF=[0.03], SCF=[0.0](min), Impervious surfaces: IAimp=[1.57](man), SLPI=[0.51](%), LGI=[225.63](m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , ,](man/hr), END=-1 00288> CALIE STANDHYD 00289: 00290> 00291> 00292> 00293> 004252 00426> 00427> 00428> 00429> 00430> 00431> 00294> 00296> *%-----00297> ADD HYD 00298> *%-----IDsum=[4], NHYD=["040"], IDs to add=[1+2] 00431> 00432> 00433> 00434> 00435> 00436> IDsum=[5], NHYD=["050"], IDs to add=[3+4] 00299> ADD HYD 00300> *8-----00301> * 00302> * SUB-AREA No.4 00303> 00438> 00437> 00438> 00439> 00440> 00440> 00304> CALIB STANDHYD 409 689, 00306> 00307> 00308> 00309> (max twenty pts) . 00442> *8-----_____ 00443> 00444> * 00445> *SUB-AREA No. 6 00310 00445> *SUB-AREA No. 6 00446> 00447> DESIGN NASHYD 00311> 00312> 00312> *%-----00313> * 00314> * SUB-AREA No.5 00315> ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7](ha), DMF=[0](cms), CNC=[76], TP=[0.80]hrs, RAINFALL=[, , , ,](mm/hr), END=-1 00448; 00449> 00441 00450> **--00451> 00452> ADD HYD 22453> **-----00316> CALIB STANDHYD 00317> ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SIPP=[1.5](%), Cob=[20.0](m), MNF=[0.25], SCD=[0.0](mi Impervious surfaces: IAimpe[1.57](mm), SIPI=[0.61](%), Cob=[20.0](m), MNT=[0.03], SCI=[0.0](RAINFALL=[, , ,](mm/h-), END=-1 IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1] 00318> 00433) 00435 00435 00455 00455 00457 00457 00457 00320: 00321; 003223 RAINFALL=[, , , ,] (mm/hr) , 00322> 00324> *&-----00325> ADD HYD 00326> *&-----00327> ADD HYD 00328> *&-----IDsum=[8], NHYD=["080"], IDs to add=[6+7] START T2ERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0]
[] <--storm filename, one per line for NSTORM time</pre> 00459> UD460> *8 00461> *8 00462> CHICAGO STORM 00463> LINITS=[2], TD=[3.0] (hrs), TPRAT=[0.333], CSDT=[10.0] (min) ICASESC=[1], A=[998.071], B=[6.053], and C=[0.814], IDsum=[9], NHYD=["090"], IDs to add={5+8} 00329> 00330> ROUTE RESERVOIR 00331> 00464> IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values 'corr) = (ha-m) 00465> *&-----00466> DEFAULT VALUES 00467> 00468> *&-----CCASEdef=[1], read and print values DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"] 003322 STORAGE) ((ha-m) (0.0000] (0.0556] (0.1311] (0.2831] (0.3971] (0.5491] (0.5491] (0.6631] (0.6631] (0.7391] (0.8274] (0.9157] (1.0040] (0.4010) (0.4010) (0.9157] (0.4010) (0.9157) (0.4010) (0.9157) (0.4010) (0.9157) (0.4010) (0.9157) (0.4010) (0.9157) (0.4010) (0.9157) (00333> 00334> 00335> 00335> 00336> 00337> 0.000, 0.008, 0.017, 0.093, 0.233, 0.337, 0.465, 0.531, 0.593, 0.593, 0.654, 0.797, 0.950, 1.304, 00469: ********** 00338> 00339> 00340> 00341> 00342> 00475> SUB-AREA NG.1 00475> CALIB STANDHYD 00477> 00478> 00478> ID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha), XIMP=[0.84], TIMP=[0.84], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.0](%), LOP=[20](M), MMP=[0.25], SCD=[0.0](mi Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.52](%), LGI=[204.72](m), MMT=[0.03], SCI=[0.0] RAINFALL=[, , ,](mm/hr), END=-1 00343> 00344> 00345> 00346> 00346> 00347> 00480> 00481> 1.880, 1.0040] 2.577, 1.0923) -1 , -1) 00482: 00347> 00348> 00349> 00350> 00351> 00352> 00483> 00484> *%------00485> * 00486> * SUB-AREA No.2 (max twenty pts) ****** * Remaining Hawthorne Industrial Park * 00488> CALIB STANDHYD 00488> CALIB STANDHYD 00489> 00490> 00491> ID=[2], NHYD=["020"], DT=[2.5] (min), AREA=[1.54] (ha), XIMP=[0.92], TIMP=[0.92], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], Pervious suffaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGF=[5] (m), NNP=[0.03], SCP=[0.0] (min), Impervious suffaces: IAinp=[1.57] (ma), SLPI=[0.50] (%), LGI=[244.34] (m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , ,) (mm/hr), END=-1 00353> 00354> 00355> * SUB-AREA No.1 00356> 00357> CALIB STANDHYD 00358> 00359> ID=[1], NHYD=["HIFO1"], DT=[2.5] (min), AREA=[19.9] (ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], SCS curve number CN=[81], ID=F100.01 (m), MNYP=[0.52], SCS=[0.0] (m Inpervious surfaces: IAimp=[1.57] (mm), SLPF=[0.6] (%), LoF=[10.01], NNT=[0.03], SCI=[0.0] (min RAINFALL=[, ,] (mm/hr), END=-1 00492> 00493> 00493> 00494> 00495> 00360> 00360> 00361> 00362> 00363> 00364> 00496> *8-----00497> 00497> * 00498> * SUB-AREA No.3 00499> 005500> CALIE STANDHYD 00501> 00502> 00503> 00503> 00505> 00505> 00505> * 00505> * 00505> * * SUB-AREA No.3 00364> 00365> *%------00366> ADD HYD 00367> *%-----ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: IApere[4.67](mm), SLPP=[1.0](%), LOF=[5](m), NNF=[0.03], SCF=[0.0](min), Tuppervious surfaces: IAimpe[1.57](mm), SLPI=[0.51](%), LOF=[5](m), SLPI=[0.51](%), CIG=[22:6.3](m), MNI=[0.03], SCI=[0.0] RAINFALL=[, , ,](mm/hr), END=-1 IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1] 00368> * 00369> * SUB-AREA No.2 00370> ID=[3], NHYD=["HIPO3"], DT=[2.5] (min), AREA=[17] (ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[01], Pervious surfaces: TAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[10.01] (mm), MNP=[0.65] (%), Impervious surfaces: TAimp=[1.57] (mm), SLPI=[0.65] (%), LGT=[450] (mn), MNT=[0.03], SCI=[0.0] (min RAINFALL=[, , ,] (mm/hr), END=1 00371> CALIB STANDHYD 00372> 00373> 00373> 00374> 00375> 00376> 00509> ADD HYD 00510> *%-----00511> ADD HYD 00512> *%-----00513> * IDsum=[4], NHYD=["040"], IDs to add=[1+2] IDsum=[5], NHYD=("050"], IDs to add=[3+4] 00377> 00378> 00379> *&-----00380> * 00381> * SUB-AREA No.3 00382> 00514> * SUB-AREA No.4 00514> * SUB-AREA No.4 00515> 00516> CALIB STANDHYD 00517> 00518> 00519> 00520> ID=[6], NHYD=["060"], DT=[2.5] (min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[0.7](%), LCP=[40](m), MON=[0.25], SCP=[0.0](min) Impervious surfaces: IAmp=[1.57](mm), SLF=[0.93](%), RAINFALL=[, , , ,](mm/hr), END=-1 ID=[4], NHYD=("HIP04"], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN+[81], Pervious surfaces: IAper=[4.67](nm), SLPP=[1.5](%), ISD=[10.0](m), NNP=[0.25], SCP=[0.0](m Impervious surfaces: IAimp=[1.57](mn), SLPT=[0.5](%), IGT=[600](m), NNT=[0.3], SCI=[0.0](min RAINFALL=[, , ,](mm/hr), EXD=-1 00383> CALIB STANDHYD 00384> 00385> 00386> 00387> 00521> 00522> 00523> 00524> *&-----00525> * 00526> * SUB-AREA No.5 003885 00389> RAINFALL=[,,,,](mm/hr), END=-1 IDsum=[5], NHYD=["HIPO5"], IDs to add=[3+4] 00390; 00391> *\$-----00392> ADD HYD 00393> *\$-----00394> ADD HYD 00395> *\$-----00526> * SUB-AREA No.5 00527> 00528> CALIE STANDHYD 00529> 00530> 00531> 00532> ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), LoP=[20.0](m), MNF=[0.25], SCF=[0.0](mi Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.61](%), LoF=[20.0](T, MIN), SLPI=[0.61](%), LoF=[20.0](T, MIN), SLPI=[0.61](%), LoF=[20.0](T, MIN), SLPI=[0.61](%), CANIPALL=[, , ,](mm/hr), END=-1 IDsum=[6], NHYD=["HIP06"], IDs to add=[5+2] 00395> 00396> 00396> * 00397> * SUB-AREA No.4 00398> 00399> CALIB STANDHYD 00532> 00533> 00534> 00535> 00536> *%------00537> ADD HYD 00538> *%------ID=[7], NHYD=["HIPO7"], DT=[2.5](min), RREA=[12.2](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[0], SCS curve number CN=[0], Pervious surfaces: IApper=[4.67](mm), SLPP=[1.5](6), Impervious surfaces: IAimpe-[1.57](mm), SLPT=[0.7](6), Impervious surfaces: IAimpe-[1.57](mm), SLPT=[0.7](6), 00400 00400> 00401> 00402> 00403> 00404> 00405> IDsum=[8], NHYD=["080"], IDs to add=[6+7] ____ IDsum=[9], NHYD=["090"], IDs to add=[5+8] 00539> ADD HYD 00540> *%---------1

(V:\...SWM-ALL.dat)

J. L. Richards & Associates Limited

541> 542> ROUTE RESERVOIR		00676>	A=[1174.184], B=[6.014], and C=[0.816],
543> 544>	IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values	00677> *% 00678> DEFAULT VALUES 00679>	 ICASEdef=[1], read and print values DEFVAL FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]
545> 546>	(cms) - (ha-m) [0.000, 0.0000]	00680> *8	
547> 548>	[0.008, 0.0656] [0.017, 0.1311]	00683> * OPGAW	**************************************
549> 550> 551>	[0.093, 0.2831] [0.233, 0.3971] [0.337, 0.4731]	00684> ************************************	**********
552> 553>	[0.337, 0.4731] [0.465, 0.5491] [0.531, 0.5871]	00686> * SUB-AREA No.1 00687>	· · · · · · · · · · · · · · · · · · ·
554> 555>	[0.593, 0.6251] [0.654, 0.6631]	00688> CALIB STANDHYD 00689> 00690>	<pre>ID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha), XIMP=[0.04], TIMP=[0.04], DWF=[0.0](cms), LOSS=[2],</pre>
556> 557>	(0.797, 0.7391) (0.950, 0.8274)	00691>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (nm), SLPP=[1.0](%), LGP=[20](m), MMP=[0.25], SCP=[0.0](m)
558> 559>	[1.304, 0.9157] [1.880, 1.0040]	00693>	Impervious surfaces: IAimpe[1.57] (mm), SLPI=[0.52](%), IGI=[204.72] (m), MNI=[0.03], SCI=[0.0
560> 561>	<pre>[2.577, 1.0923] [-1 , -1] (max twenty pts)</pre>	00695> 00696> *&	RAINFALL=[, , , ,](mm/hr), END=-1
	***************************************	00697> * 00698> * SUB-AREA No.2	
564> * Remaining Ha 565> ***********************************	Wthorne Industrial Park *	00699> 00700> CALIB STANDHYD	ID=[2], NHYD=["020"], DT=[2.5](min), AREA=[1.54](ha),
565> * SUB-AREA No.1 568>		00701> 00702>	XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81].
569> CALIB STANDHYD . 570>	<pre>ID=[1], NHYD=("HIPO1"), DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50), TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],</pre>	00703> 00704> 00705>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min)
571> 572>	SCS curve number CN=[61], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5)(%),	00706>	Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.50] (%), LGI=[244.34] (m), MNI=[0.03], SCI=[0.0
573> 574>	LGP=[10.0](m), MNP=[0.25], SCP=[0.0](m) Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.6](%),	00708> *8	RAINFALL=[, , , ,](mm/hr) , END=-1
575> 576>	LGI=[580] (m), MNI=[0.03], SCI=[0.0] (min RAINFALL=[, , ,] (mm/hr), END=-1	00710> * SUB-AREA No.3 00711>	
577> *8 578> ADD HYD	IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1]	00712> CALIB STANDHYD 00713>	<pre>ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=(2],</pre>
579> *% 680> *		00714> 00715>	SCS curve number CN=[01], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.0](%),
191> * SUB-AREA No.2	TR-(7 1 MININ (MITRAON) - pm (* *** * * * ***	00716> 00717>	LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min) Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.51](%).
83> CALIB STANDHYD 84> 85>	<pre>ID=[3], NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS = [ust = purple of CWF[0]]</pre>	00718>	LGI={ 225.63](m}, MNI=[0.03], SCI=[0. RAINFALL=[,,,,](mm/hr), END=-1
86> 87>	SCS curve number CN=[01], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m	00720> *8 00721> ADD HYD 00722> *8	IDsum=[4], NHYD=["040"], IDs to add=[1+2]
88> 89>	Impervious surfaces: IAimp=[1.57] (nm), SLPI=[0.65] (%), LGI=[450] (m), MNI=[0.03], SCI=[0.0] (min	00723> ADD HYD	IDsum=[5], NHYD=["050"], IDs to add=[3+4]
90> 91> *%	RAINFALL=[, , ,] (mm/hr) , END=-1	00724> *8 00725> * 00726> * SUB-AREA No.4	· · · · · · · · · · · · · · · · · · ·
92> * 93> * SVB-AREA No.3		00727> 00728> CALIB STANDHYD	ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha),
94> 95> CALIB STANDHYD	<pre>ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[15.6](ha),</pre>	00729> 00730>	XIMP=(0.97), TIMP=(0.97), DWF=[0.0](crus), LOSS=[2], SCS curve number CN=[81],
596> 597> 598>	XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],	00731> 00732>	Pervious surfaces: IAper=(4.67)(mm), SLPP=(0.7)(%), IGP=[40](m), MNP=[0.25], SCP=[0.0)(min Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.93](%),
599> 500>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (m	00733> 00734>	LGI = [164.82] (m), MNI = [0.03], SCI = [0.0]
501> 502>	<pre>Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.5] (%),</pre>	00735> 00736> *%	RAINFALLe[, , , ,] (mm/hr) , END=-1
03> *8 04> ADD HYD	<pre>IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4]</pre>	00738> * SUB-AREA No.5 00739>	
05> **	IDsum=(6], NHYD=["HIP06"], IDs to add=[5+2]	00740> CALIE STANDHYD 00741>	<pre>ID={ 7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],</pre>
07> ** 08> *	-	00742> 00743>	SCS curve number $CN=[81]$, Pervious surfaces: 1Aper=[4.67] (mm), SLPP=[1.5](%),
09> * SUB-AREA No.4 10>		00744> 00745>	LCP=[20.0] (m), MNP=[0.25], SCP=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.61] (%),
11> CALIB STANDHYD 12>	ID=[7], NHYD=("HIP07"], DT=[2.5](min), AREA=[12.2](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],	00746> 00747>	LGI=[207.25](m), MNI=[0.03], SCI=[0.0] RAINFALL=[,,,,](mm/hr), END=-1
13> 14> 15>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%),	00748> *8 00749> ADD HYD	IDsum=[0], NHYD=["080"], IDs to add=[6+7]
516> 517>	LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.7](%), LGI=[210](m), MNI=[0.03], SCI=[0.0](min	00750> *% 00751> ADD HYD 00752> *%	IDsum=[9], NHYD=["090"], IDs to add=[5+8]
18> 19>	RAINFALL=[, , , ,](mm/hr), END=-1	00753> 00754> ROUTE RESERVOIR	<pre>IDout=[10], NHYD=["POND"], IDin=[9],</pre>
20> *& 21> *		00755>	RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values
22> *SUB-AREA No.5 23>		00757> 00758>	(cmas) → (ha−m) [0.000. 0.00001
24> DESIGN NASHYD 25>	<pre>ID=[8], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cms), CN/C=[85], TP=[0.17]hrs,</pre>	00759> 00760>	[0.008, 0.0656] [0.017, 0.1311]
26> 27> *8 28>	RAINFALL=[, , , ,] (mm/hr), END=-1	00761>	[0.093, 0.2831] [0.233, 0.3971]
29> ADD HYD 30> *8	IDsum=[9], NHYD=["HIPO8"], IDs to add=[6+7+8]	00763> 00764> 00765>	[0.337, 0.4731] [0.465, 0.5491]
31> 32> ROUTE RESERVOIR	<pre>IDout=[10], NHYD=["HIP-POND"], IDin=[9],</pre>	00765>	[0.531, 0.5871] [0.593, 0.6251] [0.564, 0.6631]
3>	RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values	00768>	[0.854, 0.8631] [0.797, 0.7391] [0.950, 0.8274]
5> 6>	(cms) - (ha-m) [0.0 , 0.0] [0.048, 0.0574]	00770> 00771>	[1.304, 0.9157] [1.880, 1.0040]
17> 18>	[0.054, 0.2434]	00772> 00773>	$\{2.577, 1.0923\}$ $\{-1, -1\}$ (max twenty pts)
9> 0> 1>	[0.059, 0.5834] [0.062, 0.8400]	00774> 00775> ***************	****
2> 3>	[0.064, 1.1024] [0.147, 1.3705] [0.280, 1.6444]	00777> ***************	awthorne Industrial Park *
4>	[0.472, 1.9242] [0.724, 2.2097]	00778> * 00779> * SUB-AREA No.1 00780>	
6> 7>	[0.337, 2.5010] [1.262, 2.7981]	00781> CALIB STANDHYD 00782>	ID=[1], NHYD=["HIPO1"], DT=[2.5] (min), AREA=[19.9] (ha),
18> 19>	[1.404, 3.1009] [1.532, 3.4096]	00783>	<pre>XIMP=(0.50], TIMP=(0.71], DWF={0.0}(cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),</pre>
50> 51>	[1.650, 3.7240] [2.409, 4.0442]	00785>	LGF=[10.0] (m), MNF=[1.3](*), LGF=[10.0](m), MNF=[0.25], SCP=[0.0] (r Impervious surfaces: IAimp=[1.57](mm), SLFI=[0.6](%),
52> 53>	<pre>[3.609, 4.3702] [-1 , -1] (max twenty pts)</pre>	00787>	RAINFALL=[, , ,] (mm/hr) , END=-1
54> 55> *8	-1	00789> *8 00790> ADD HYD	IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1]
6> * 7> *SUB-AREA No. 6		00791> *% 00792> *	
8> 9> DESIGN NASHYD 50>	$ID = \{1\}, NHYD=["A3"], DT=[2.5]min, AREA=[2.7](ha), DT=[0.0][min], CM=[2.5][min], CM=[2.5][min$	00793> * SUB-AREA No.2 00794>	
0> il> i2> *#	DWF≈[0](cms), CNC=[76], TP=[0.80]hrs, RAINFALL=[, , , ,](mm/hr), END=-1	00795> CALIB STANDHYD 00796> 00787>	ID=[3], NHYD=["HIP03"], DT=[2.5] (min), AREA=[17] (ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2],
53> 54> ADD HYD	IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1]	00797> 00798> 00799>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),
65> *8 65>	lbsum=[2], NHID=["Ultimate"], lbs to add=[10+1]	00799> 00800> 00801>	LGP=[100.0] (m), MNP=[0.25], SCP=[0.0] (n Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.65] (b), ICT=[460] (m), SLPI=[0.62] (m), SCT=[0.01
57> ************************************	N OF 3HR - 1:10 YEAR STORM EVENT *	00802> 00803> *%	LGI=[450] (m), MNI=[0.03], SCI=[0.0] (mir RAINFALL=[, , ,] (mm/hr) , END=-1
59> ************************************	***************************************	00803> * 00804> * 00805> * SUB-AREA No.3	
1> START 2> *%	TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0] [] <storm filename,="" for="" line="" nstorm="" one="" per="" td="" time<=""><td>00806> 00807> CALIB STANDHYD</td><td>ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[15.6](ha),</td></storm>	00806> 00807> CALIB STANDHYD	ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[15.6](ha),
3> ** 4> CHICAGO STORM 5>	IUNITS=[2], TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0](min)	00808> 00809>	XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],
	ICASEcs=[1],	00810>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%),

J. L. Richards & Associates Limited

LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m Impervious surfaces: IAimpe[1.57](mm), SLPI=[0.5](%), GDI=[50](m), MNT=[0.3], SCI=[0.0](min RAINFALL=[, , ,](mm/hr), END=-1 00811> 00946> 00811> 00812> 00813> 00814> 00815> 009472 00949> 00815> ADD HYD 00817> *\$-----00818> ADD HYD 00819> *\$-----00820> * IDsum=[5], NHYD=["HIPO5"], IDs to add=[3+4] IDsum=[6], NHYD=["HIP06"], IDs to add=[5+2] 009542 00955> 00956> 00821> * SUB-AREA No.4 008223 00957; 00958; 00959; 00823> CALIB STANDHYD ID=[7], NHYD=["HIPO7"], DT=[2.5](min), AREA=[12.2](ha), XIMP=[0.50], TIMP=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[8]], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), LGP=[10.0](m), MMT=[0.25], SCD=[0.0](m) Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.7](%), LGI=[220](m), MMI=[0.03], SCI=[0.0](min RAINFALL=[, , , ,](mm/hr), END=-1 00824> 00825> 00826> 00960> 00827> 00828; 00829> 00830> 00831> 00832> *%-----00966: 00833> * 00834> *SUB-AREA No.5 00835> 00836> DESIGN NASHYD 00837> 00833> 00968> 00969> 00970> ID=[8], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cns), CN/C=[85], TP=[0.17]hrs, RAINFALL=[,,,,](mm/hr), END=-1 00971> 00838> 00973> 00974> 00975> 00975> 00976> 00977> 00839> 00841> ADD HYD 00842> *%-----00843> 00840> IDsum=[9], NHYD=["HIP08"], IDs to add=[6+7+8] 00978> 00979> 00980> 00981> 00982> IDout=[10], NHYD=("HIF-POND"], IDin=[9], RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values 00844> ROUTE RESERVOIR 00845> 00846> 00847> 00848> UUTFLOW-STORAGE (cms) - (ha-m) 0.0 , 0.0 0.048, 0.05574 0.059, 0.5834 0.062, 0.8400 0.064, 1.1024 0.147, 1.3705 0.280, 1.6444 0.472, 1.9242 0.724, 2.2097 0.937, 2.5010 00983> 00984> 00985> 00985> 00986> 00987> 00849> 00849> 00850> 00851> 00852> 00853> 00854> 00855> 00988> 00856> 00857> 00858> 00858> 0.724, 2.2097 0.937, 2.5010 1.262, 2.7981 1.404, 3.1009 1.532, 3.4096 1.650, 3.7240 00993> 00860> 00861> 00862: 2.409, 4.0442] 3.689, 4.3702] -1 , -1] 00863> 00864> 00865> 00998> 009993 (max twenty pts) 00866 01001> 00867> *8--00869> * 00869> *SUB-AREA No. 00870> 00871> DESIGN NASHYD *SUB-AREA No. 6 01004> ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7](ha), DWF=[0](cms), CNC=[76], TP=[0.80]hrs, RAINFALL=[,,,,](mm/hr), END=-1 01006> 00672 00872> 00873> 00874> 00875> 00875> 00876> 01010> IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1] ADD HYD 01010> 01011> 01012> 01013> 01014> 00878: 01015: 00883> 00884> START TZERO=[0.0], METOUT=[2], NSTORM≃[0], NRUN=[0]
[] <--storm filename, one per line for NSTORM time</pre> 00885> *% 00886> *%-----00887> CHICAGO STORM [UNITS=[2], TD=[3.0] (hrs), TPRAT=[0.333], CSDT=[10.0] (min) [CABECs=[1], A=[1402.804], B=[6.018], and C=[0.819], 01020> 01021> 01022> 01023> 01024> 01025> 00888> 00880> 00890> *%------00891> DEFAULT VALUES 00892> ICASEdef=(1), read and print values DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"] 01026> 01027> 01027> 01028> *%-----01029> ADD HYD 01030> *%-----01031> ADD HYD 01032> *%-----00894; 00900> 00901> CALIB STANDHYD ID=(1], NHYD=("010"], DT=[2.5] (min), AREA=[2.07] (ha), XIMP=[0.84], TIMP=[0.84], DWT=[0.0] (cns), LOSS=[2], SCS curve number CN=[01], Pervious surfaces: IAper=[4.67] (nm), SLP=[1.0] (%), LOP=[20] (m), MMP=[0.25], SCP=[0.0] (mi Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.52] (%), LOT=[204.72] (m), MMT=[0.03], SCI=[0.0] RAINFALL=[, , ,] (mm/hr), END=-1 00902: 00903: 00904: 01038> 01039> 00905> 01040> 01041> 01042> 00906> 00907> 00908> 00908> 00909> 01043> 01044> 00910> 00911> * SUB-AREA No.2 00912> 00912> 00913> CALIB STANDHYD 00914> 00915> 00915> ID=[2], NHYD=["020"], DT=[2.5] (min), AREA=[1.54] (ha), XIMP=[0.92], TIMP=[0.92], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPF=[0.0] (%), LOP=[5] (m), NMF=[0.03], SCP=[0.0] (%), Impervious surfaces: IAinp=[1.57] (mm), SLPI=[0.50] (%), CLD=[244.34] (m), MMT=[0.03], SCI=[0.0] RAINFALL=[, , ,] (mm/hr), END=-1 01050> 01051> 01052> *%-01053> 00917> 00918> 00919> 00920> 00921> *&------00922> * 00922> * 00923> * SUB-AREA No.3 01054> ADD HYD 01055> *%-----00925> CALIB STANDHYD 00926> 00927> ID=[3], NHYD=["030"], DT=[2.5](min), REEA=[1.4](ha), XIMP=[0.57], TIMP=[0.57], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: IAper=[4.67](nm), SLPP=[1.0](%), IGDP=[5](m), NMF=[0.03], SCP=[0.0](min), Impervious surfaces: IAimp=[1.57](mm), SLPT=[0.51](%), IGT=[225.63](m), MMT=[0.03], SCI=[0.0] RAINPALL=[, , ,](mm/hr), END=-1 01061> 01062> 01063> 01064> 01065> 01066> 01066> 01066> 01066> 01070> 01071> 01072> 00927> 00928> 00929> 00930> 00931> 00932> 00933> *&--IDsum=[4], NHYD=["040"], IDs to add=[1+2] 00934> ADD HYD 00935> *%-----IDsum=[5], NHYD=["050"], IDs to add=[3+4] 00936> ADD HYD 00937> +%-----00938> + 00939> * SUB-AREA No.4 01073> 01074> 00940> ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: RAper=[4.67](mm), SLPP=[0.7](%). 01075> 01076> 01077> 00941> CALIB STANDHYD 00942> 00943> 00944> 00945> 01078> surfaces: IAper=[4.67] (mn), SLPP=[0.7] (%), LGP=[40] (m), MNP=[0.25], SCP=[0.0] (min) 01079>

00950> * 00951> * SUB-AREA No.5 00952> 00953> CALIB STANDHYD ID=[7], NHYD=["070"], DT=[2.5] (min), AREA=[2.66] (ha), XIHP=[0.97], TIMP=[0.97], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LOP=[20.0] (m), MNN=[0.25], SCP=[0.0] (m), Impervious surfaces: IAmpen[1.57] (mm), SLPI=[0.61] (%), LGI=[207.25] (m), MNI=[0.03], SCI=[0.0] (RAINPALL=[, , ,] (mm/hr), END=-1 00961> *%-----00962> ADD HYD 00963> *%-----00964> ADD HYD 00965> *%-----IDsum=[8], NHYD=["080"], IDs to add=[6+7] [Dsum=[9], NHYD=["090"], IDs to add=[5+8] IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values 00967> ROUTE RESERVOIR (cms) - (ha-m) 0.000, 0.0000] 0.008, 0.0656] 0.017, 0.1311] 0.093, 0.2831] 0.093, 0.2831 0.233, 0.3971 0.337, 0.4731 0.531, 0.5642 0.5531, 0.5671 0.593, 0.6251 0.797, 0.7391 1.304, 0.9157 1.860, 1.00400 2.577, 1.0923 -1, -1] (max twenty pts) ***** 00993> 00994> CALIB STANDHYD 00995> 00996> 00997> ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: IAper=[4.67](mm), SLPE=[1.5](%), IGD=[10.01](m), MNT=[0.25], SCD=[0.0](m Impervious surfaces: IAimpe[1.57](mm), SLPI=[0.6](%), Clo=[500](m), MNT=[0.03], SCI=[0.0](min RAINFALL=[, , ,](mm/hr), END=-1 IDsum=[2], NHYD=["HIF02"], IDs to add=[10+1] 01007> 01008> CALIB STANDHYD 01009> ID=[3], NHYD=["HIE03"], DT=[2.5] (min), AREA=[17] (ha), XIMP=[0.50], TIMP=[0.7], DWT=[0.0] (cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LOP=[10.00] (m), MMP=[0.25], SCT=[0.0] (m Impervious surfaces: IAimpe[1.57] (mm), SLPI=[0.65] (%), LOI=[450] (M), MMT=[0.03], SCI=[0.0] (min RAINFALL=[, , ,] (mm/hr), END=-1 01015> *8-----01017> * 01017> * 01018> * SUB-AREA No.3 01019> 01020> CALIB STANDHYD *&----* * SUB-AREA No.3 ID=[4], NHYD=["HIP04"], DT=[2.5] (min), AREA=[15.6] (ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LOP=(100.0] (m), MNP=[0.25], SCS=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.5] (%), LOI=(500] (m), NNT=[0.03], SCI=[0.0] (min RAINFALL=[, , ,] (mm/hr), END=-1 IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4] IDsum=[6], NHYD=["HIPO6"], IDs to add=[5+2] 01032> * 01034> * SUB-AREA No.4 01035> 01036> CALIE STANDHYD 01037> ID=[7], NHYD=["HIP07"], DT=[2.5](min), AREA=[12.2](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLP=[1.5](%), LOF=[10.01(m), MNY=[0.25], SCD=[0.0](m) Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.7](%), LoI=(210)(m), MNY=[0.03], SCI=[0.0](min RAINFALL=[, , , ,](mm/hr), END=-1 01044-01045> *&----01046> * 01047> *SUB-AREA No.5 01048> 01049> DESIGN NASHYD ID=[8], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cms), CN/C=[85], TP=[0.17]hrs, RAINFALL=[, , , ,](mm/hr), END=-1 IDsum=[9], NHYD=["HIPO8"], IDs to add=[6+7+8] 01056> 01057> ROUTE RESERVOIR 01058> 01059> 01060> IDout=[10], NHYD=["HIP-POND"], IDin= RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values (cme) = (ha-m) NHYD=["HIP-POND"], IDin=[9], (cms) - (ha-m) 0.0, 0.0] 0.048, 0.0574] 0.048, 0.0574 0.054, 0.2434 0.059, 0.5834 0.062, 0.8400 0.064, 1.1024 0.147, 1.3705 0.280, 1.6444 0.280, 1.6444 0.472, 1.9242 0.724, 2.2097 0.937, 2.5010 1.262, 2.7981 1.404, 3.1009 1.532, 3.4096 1.650, 3.7240 2.409, 4.0442 3.689, 4.3702 -1, -1] (max twenty pts))

83>	B-AREA No. 6			*8	
84> DES 85> 86> 87> *%-			01217>	•	
86> 87> *%-	IGN NASHYD	<pre>ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7](ha),</pre>	01218>	* SUB-AREA No.2	
87> *8-		DWF=[0](cms), CNC=[76), TP=[0.80]hrs, RAINFALL=[, , , } (mm/hr), END=-1		CALIB STANDHYD	ID=[3], NHYD=["HIP03"], DT=[2.5] (min), AREA=[17] (ha),
			01221> 01222>		<pre>XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[61],</pre>
89> ADD	HYD	IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1]	01223>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%),
90> *8-		-	01225>		LGP=[100.0](m), MNP=[0.25], SCP=[0.0] Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.65](%),
91> 92> ***	*****	******	01226>		LGI=[450] (m), $MNI=[0.03]$, $SCI=[0.0]$ (m
93> * 94> ***	CALCULATI	ON OF 3HR - 1:50 YEAR STORM EVENT *	01228>	*8	RAINFALL=[, , , ,](mm/hr) , END=-1
95>			01229>	* SUB-AREA NO.3	
96> STA 97> *%		TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0] [] <storm filename,="" for="" line="" nstorm="" one="" per="" td="" time<=""><td>01231></td><td>CALIB STANDHYD</td><td></td></storm>	01231>	CALIB STANDHYD	
98> *%-			01233>	CALIB STANDHID	<pre>ID=[4], NHYD=["HIP04"], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2],</pre>
99> CHI 00>	CAGO STORM	<pre>IUNITS=[2], TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0](min) ICASEcs=[1],</pre>	01234>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),
01>		A=[1569.580], B=[6.014], and C=[0.820],	01236>		LGP=[100.0] (m), $MNP=[0.25]$, $SCP=[0.0]$
	AULT VALUES	ICASEdef=[1], read and print values	01237>		Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.5](%),
04> 05> *%~·		DEFVAL_FILENAME=[V:\22973.DU\ENG\SWMHYMO\"ORGA.VAL"]	01239>		LGI=[600] (m), MNI=[0.03], SCI=[0.0] (m RAINFALL=[, , ,](mm/hr), END=-1
06>			01240> 01241>	ADD HYD	<pre>IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4]</pre>
08> *	ORGAWOR	***************************************		*8	<pre>IDsum=[6], NHYD=["HIP06"], IDs to add=[5+2]</pre>
09> ***	**********	**********	01244>	*8	-]
10> * 11> * si	UB-AREA No.1		01245>	* * SUB-AREA NO.4	
12>	IB STANDHYD		01247>		
14>	ID SIMONID	<pre>ID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha), XIMD=[0.84], TIMD=[0.84], DWF=[0.0](cms), LOSS=[2],</pre>	01248>	CALIB STANDHYD	<pre>ID=[7], NHYD=["HIP07"], DT=[2.5] (min), AREA=[12.2] (ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0] (cms), LOSS=[2],</pre>
15> 16>		SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%),	01250> 01251>		SCS curve number CN=[81],
17>		LGP=[20] (m), MNP=[0.25], SCP=[0.0] (mi Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.52] (%),	01252>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5](%), LGP=[100.0] (m), MNP=[0.25], SCP=[0.0]
18> 19>		LGI = [204, 72](m), $MNT = [0, 03]$, $SCT = [0, 0]$	01253> 01254>		Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.71(%).
20>		RAINFALL=[, , , ,](mm/hr) , END=-1	01255>		LGI=[210] (m), MNI=[0.03], SCI=[0.0] (m RAINFALL=[, , ,] (mm/hr) , END=-1
22> *		· · · · · · · · · · · · · · · · · · ·		*8	
3> * 51 4>	UB-AREA No.2		01258>	*	
5> CAL:	IB STANDHYD	ID=[2], NHYD=["020"], DT=[2.5](min), AREA=[1.54](ha),	01260>	*SUB-AREA No.5	
26>		<pre>XIMP=[0.92], TIMP=[0.92], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81],</pre>	01261>	DESIGN NASHYD	ID=[8], NHYD=["Pond-Block"], DT=(2.5]min, AREA=[4.0] (ha)
28>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0](%),	01263>		DWF=[0](cms), CN/C=[85], TP=[0.17]hrs, RAINFALL=[, , , ,](mm/hr), END=-1
29> 30>		$ LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min), \\ Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.50] (%), \\ \end{cases} $	01264>	***********	- [
1>		LGI = [244.34] (m), MNI = [0.03], SCI = [0.0]	01266>	ADD HYD	IDsum=[9], NHYD=["HIP08"], IDs to add=[6+7+8]
13> *8		RAINFALL=[, , ,] (mm/hr) , END=-1	01268>	*8	
4> * 5> * st	UB-AREA No.3		01269> 01270>	ROUTE RESERVOIR	<pre>IDout=[10], NHYD=["HIP-POND"], IDin=[9], RDT=[1.0](min),</pre>
36>			01271>		TABLE of (OUTFLOW-STORAGE) values
37> CALI 38>	IB STANDHYD	ID=[3], NHYD=["030"], DT=[2.5](min), AREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2],	01272>		(canus) - (ha-m) [0.0 , 0.0]
89> 80>		SCS curve number CN=[01],	01274>		[0.048, 0.0574]
11>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[5] (m), MNP=[0.03], SCP=[0.0] (min),	01275> 01276>		[0.054, 0.2434] [0.059, 0.5834]
12> . 13>		Impervious surfaces: IAimp=[1.57](mm), SLP1=[0.51](%), IGI=[225.63](m), MN1=[0.03], SCI=[0.0	01277>		[0.062, 0.8400]
4>		RAINFALL=[,,,,](mm/hr), END=-1	01278>		[0.064, 1.1024] [0.147, 1.3705]
15> *% 16> ADD		IDsum=[4], NHYD=["040"], IDs to add=[1+2]	01280> 01281>		[0.280, 1.6444]
17> *8			01282>		[0.472, 1.9242] [0.724, 2.2097]
18> ADD 19> *8	HYD	IDsum=[5], NHYD=["050"], IDs to add=[3+4]	01283> 01284>		[0.937, 2.5010]
i0> *			01285>		[1.262, 2.7981] [1.404, 3.1009]
i2> - 50	UB-AREA No.4		01286>		[1.532, 3.4096] [1.650, 3.7240]
i3> CALI i4>	IB STANDHYD	ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMD=[0.97], TIMD=[0.97], DWF=[0.0](cms), LOSS=[2],	01288>		[2.409, 4.0442]
5>		SCS curve number CN=[61],	01289> 01290>		<pre>[3.689, 4.3702] [-1 , -1] (max twenty pts)</pre>
6> 7>		Pervious surfaces: IAper=[4.67] (mm), SLPP=[0.7](%), LGP=[40](m), MNP=[0.25], SCP=[0.0](min)	01291>	*8	
8>		LGP=[40] (m), MNP=(0.25), SCP=[0.0] (min) Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.93] (%),	01293>		
0					
9> 50>		LGI=[164.82](m), MNI=[0.03], SCI=[0.0](RAINFALL=[, , ,](mm/hr), END=-1	01294>	*SUB-AREA No. 6	
0> 1> *%		LGI=[164.82](m), MMI=[0.03], SCI=[0.0](RAINFALL=[, , ,](mm/hr), END=-1 	01294> 01295> 01296>		ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7](ha),
0> 1> *8 2> * 3> * su	JB-AREA No.5	LGI=[164.82](m), MNI=[0.03], SCI=[0.0](RAINFALL={, , ,](mm/hr), END=-1	01294> 01295> 01296> 01297> 01297> 01298>	*SUB-AREA No. 6 DESIGN NASHYD	DWF = [01(cms), CNC = [76], TP = [0, B0]hrs.
i0> i1> *% i2> * i3> * su i4>	JB-AREA No.5	RAINFALL={ , , ,](nm/hr) , END=-1	01294> 01295> 01296> 01297> 01298> 01298> 01299>	*SUB-AREA No. 6 DESIGN NASHYD	ID = [1], NHYD=["A3"}, DT=[2.5]min, AREA=[2.7](ha), DWT=[0](cns), CNC=[76], TP=[0.60]hrs, RAINFALL=[, , ,][nm/hr), END=-1
50> 51> *8 52> * 53> * SU 54> 55> CALI 56>		RAINFALL={, , ,] (nm/hr), END=-1 	01294> 01295> 01296> 01297> 01298> 01299> 01299> 01300> 01301>	*SUB-AREA No. 6 Design Nashyd *& Add Hyd	DWF=[0](cns), CNC=[76], TP=[0.80]hrs, RAINFALL=[, , , ,](nm/hr), END=-1
50> 51> *8 52> * 53> * SU 54> 55> CALI 55> CALI 56> 57> 58>	JB-AREA No.5	RAINFALL={, , ,] (nm/hr) , END=-1 '	01294> 01295> 01296> 01297> 01298> 01299> 01299> 01300> 01301>	*SUB-AREA No. 6 Design Nashyd *§	DWF=[0](cms), CNC=[76], TP=[0.80]hrs, RAINFALL=[,,,,](mm/hr), END=-1
50> 51> *8 52> * 53> * SU 54> 55> CALI 56> 57> 58> 59>	JB-AREA No.5	RAINFALL=[, , ,] (nm/hr), END=-1 	01294> 01295> 01296> 01297> 01298> 01299> 01300> 01301> 01301> 01302> 01303> 01304>	*SUB-AREA NO. 6 DESIGN NASHYD *8 ADD HYD *8	DWF=[0](cms), CNC=[78], TP=[0.80]hrs, RAINFALL=[, , , ,](nmv/hr), END=-1
0> 1> *8 2> * 3> * SU 4> CALI 6> 7> 8> 9> 0> 1>	JB-AREA No.5	RAINFALL=[, , ,] (nm/hr), END=-1 	01294> 01295> 01296> 01297> 01298> 01299> 01300> 01301> 01302> 01303> 01304> 01305> 01306>	*SUB-AREA NO. 6 DESIGN NASHYD *8 ADD HYD *8	DWF=[0](cms), CNC=[76], TP=[0.80]hrs, RAINFALL=[, , ,] (nmv/hr), END=-1
0> 1> *% 2> * 3> * SU 4> 5> CALI 6> 7> 8> 9> 0> 1> 2>	UB-AREA NO.5 IB STANDHYD	RAINFALL=[, , ,] (nm/hr) , END=-1 	01294> 01295> 01295> 01297> 01298> 01300> 01301> 01302> 01303> 01304> 01305> 01306> 01305> 01306>	*SUB-AREA NO. 6 DESIGN NASHYD *% ADD HYD *%	DWF=[0](cns), CNC=[76], TP=[0.80]hrs, RAINFALL=[, , , ,](nnv/hr), END=-1 [] [] [] [] [] [] [] [] [] [] [] [] []
0> 1> *% 2> * 3> * SU 4> 5> CALI 6> 7> 68> 9> 0> 1> 2> 4> ADD	JB-AREA NO.5 IB STANDHYD	RAINFALL=[, , ,] (nm/hc) , END=-1 	01294> 01295> 01296> 01297> 01298> 01300> 01301> 01302> 01303> 01304> 01305> 01306> 01307> 01306> 01307> 01308>	*SUB-AREA No. 6 DESIGN NASHYD *\$ ADD HYD *\$ CALCULATION START *\$	DWF=[0](cns), CNC=[76], TP=[0.80]hrs, RAINFALL=[, , , ,](nnv/hr), END=-1 [] [] [] [] [] [] [] [] [] [] [] [] []
0> *& 2> * & 3> * SU 4> 5> CALI 6> T 8> 9> 0> 1> 2> *& 4> ADD 5> *&	UB-AREA NO.5 IB STANDHYD HYD HYD	RAINFALL=[, , ,] (nm/hr), END=-1 ID=[7], NHYD=["070"], DT=[2.5] (min), AREA=[2.66] (ha), XIMF=[0.97], TIMF=[0.97], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: IApper=[4.67] (mm), SLPE=[1.5] (%), LGF=[20.0] (m), SLPE=[0.6]] (%), LGF=[20.0] (m), SLPE=[0.6]] (%), CGF=[20.0] (m), SLPE=[0.6]] (%), CGF=[20.0] (m), SLPE=[0.6]] (%), RAINFALL=[, , ,] (mm/hr), END=-1	01294> 01295> 01296> 01297> 01299> 01300> 01301> 01302> 01303> 01304> 01305> 01305> 01306> 01305> 01306> 01306> 01309> 01310>	*SUB-AREA No. 6 DESIGN NASHYD *\$ ADD HYD *\$ CALCULATION START *\$	DWF=[0](cms), CNC=[76], TP=[0.80]hrs, RAINFALL=[, , , ,](nmv/hr), RND=-1
0> 1> *& 2> * 3> * SU 4> CALI 6> 7> 8> 9> 0> 1> 2> *& 4> ADD 5> *& 7> *& 7> *& 7> *& 7> *& 7> *	UB-AREA NO.5 IB STANDHYD HYD HYD	RAINFALL=[, , , ,] (nm/hr) , END=-1 ID=[7], NHYD=["070"], DT=[2.5] (min), AREA=[2.66] (ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (nm), SLP=[1.5] (%), LGP=[20.0] (m), MHYP=[0.25], SCP=[0.0] (mi Impervious surfaces: IAinp=[1.57] (mm), SLPI=[0.61] (%), LGP=[20.0] (m), MHYP=[0.03], SCI=[0.0] (mi RAINFALL=[, , ,] (nm/hr) , 2ND=-1 ID=nn=[6], NHYD=["060"], IDs to add=[647]	01294> 01295> 01295> 01296> 01297> 01298> 01300> 01301> 01302> 01303> 01305> 01305> 01305> 01306> 01306> 01308> 01309> 01310> 01311>	*SUB-AREA No. 6 DESIGN NASHYD *\$	DWF=[0](cms), CNC=[76], TP=[0.80]hrs, RAINFALL=[, , , ,](nmv/hr), END=-1
0> 1> *8 2> * 3> * SU 4> 5> CALI 6> 7> 8> 9> 0> 1> 2> *8 6> ADD 7> *8 8> 8> 9> ROUT	UB-AREA NO.5 IB STANDHYD HYD HYD	RAINFALL=[, , , ,] (nm/hr) , END=-1 ID=[7], NHYD=["070"], DT=[2.5] (min), AREA=[2.66] (ha), XIMF=[0.97], TIMF=[0.97], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLP=[1.5] (%), LGP=[20.0] (m), MNF=[0.23], SCP=[0.0] (mi Impervious surfaces: IAinp=[1.57] (mm), SLPI=[0.53], SCI=[0.0] (mi Impervious surfaces: IAinp=[1.57] (mm), SLPI=[0.03], SCI=[0.0] (mi IDoum=[0], NHYD=["090"], IDs to add=[647] IDoum=[1], NHYD=["090"], IDs to add=[540] IDoum=[1], NHYD=["090"], IDs to add=[540] IDoum=[1], NHYD=["090"], IDin=[9],	01294> 01295> 01295> 01296> 01297> 01301> 01301> 01302> 01303> 01303> 01305> 01305> 01305> 01306> 01306> 01309> 01310> 01312> 01312> 01314>	*SUB-AREA NO. 6 DESIGN NASHYD *\$	DWF=[0](cms), CNC=[78], TP=[0.80]hrs, RAINFALL=[, , , ,](nmv/hr), END=-1 IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1]
0> *\$ 1> *\$ 2> * 3> * SU 4> 5> CALI 65 7> 8> 9> 0> *8 6> ADD 7> *8 8> ADD 7> *8 8- 8- 8- 8- 8- 8- 8- 8- 8-	UB-AREA NO.5 IB STANDHYD HYD HYD	<pre>RAINFALL=[, , , ,] (nm/hr) , END=-1 ID=[7], NHYD=["070"], DT=[2.5] (min), AREA=[2.66] (ha), XIFM=[0.97], TIMP=[0.7], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[31], Pervious surfaces: IDper=[4.67] (nm), SLPP=[1.5](8), Impervious surfaces: IDAtmpe1[.57] (nm), SLPP=[0.61] (8), RAINFALL=[, , , ,] (nm/hr) , ZND=-1 IDaum=[8], NHYD=["080"], IDs to add=[647] IDaum=[9], NHYD=["090"], IDs to add=[546] IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0] (min),</pre>	012945 012955 012965 012995 012995 013005 013005 013005 013005 013005 013065 013065 013065 013095 013105 013125	*SUB-AREA No. 6 DESIGN NASHYD *\$ ADD HYD *\$ CALCULATION START *\$_ *\$_ *\$_ *\$_ *\$_ *\$_ *\$_ *\$_ *\$_ *\$_	DWF=[0](cms), CNC=[78], TP=[0.80]hrs, RAINFALL=[, , , ,](mm/hr), RDD=-1 [Joum=[2], NHYD=["Ultimate"], IDs to add=[10+1]
0> 1> *& 2> * 3> * SU 4> 5> CALI 6> 7> 8> 9> 0> 1> 2> *& 6> ADD 7> *& 8> 9> ROUT 0> 1> 2>	UB-AREA NO.5 IB STANDHYD HYD HYD	<pre>RAINFALL=[, , , ,] (nm/hc) , END=-1 ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], TMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[31], Pervious surfaces: TApper[4.67](nm), SLPP=[1.5](%), Impervious surfaces: TAinp=[1.57](nm), SLPP=[0.6](8), PAINFALL=[, , ,] [Lm/hc], SMD=-1 IDaum=[6], NHYD=["080"], IDs to add=[6+7] IDaum=[6], NHYD=["080"], IDs to add=[5+6] IDaum=[9], NHYD=["090N"], IDin=[9], RDT=[1.0] (MIT)= ("POND"), IDin=[9], TABLE of (OUTFIOW-STORAGE) values</pre>	01295> 01295> 01295> 01296> 01297> 01298> 01299> 01300> 01301> 01302> 01303> 01304> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01315> 01315> 01315> 01315> 01315>	*SUB-AREA NO. 6 DESIGN NASHYD *\$	DWF=[0](cms), CNC=[78], TP=[0.80]hrs, RAINFALL=[, , , ,](nmv/hr), END=-1 IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1]
0> 1> *& 2> * 3> * SU 4> CALI 6> 7> 8> 0> 1> 2> *& 6> ADD 7> 8> ROJ 0> 12> 2> 8> 00 12> 22> 12> 22> 12> 12> 12> 12>	UB-AREA NO.5 IB STANDHYD HYD HYD	<pre>RAINFALL=[, , , ,] (nm/hc) , END=-1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '</pre>	01295> 01295> 01285> 01285> 01285> 01295> 013005 013005 013025 013025 013030 01303 013045 01305 01305 01305 01305 01305 01305 01305 01315 01315 01315 01315 01315 01315	*SUB-AREA NO. 6 DESIGN NASHYD *§ADD HYD *©ADD HYD *CALCULATION START *§ADD HYD START *§ADD HYD *§ADD HYD *§	DWF=[0](cms), CNC=[78], TP=[0.80]hrs, RAINFALL=[, , , ,](mm/hr), END=-1 []
0> 1> *8 2> * 3> * SU 4> CALI 6> 7> 8> 0> 1> 2> *8 8> 8> ROUT 0> 1> 2> *8 8> ROUT 12> 3> *5 8> 8 8 8 8 8 8 8	UB-AREA NO.5 IB STANDHYD HYD HYD	<pre>RAINFALL=[, , , ,] (nm/hc) , END=-1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '</pre>	012945 012955 012955 012975 012995 012095 012095 013005 013015 013055 013065 013065 013065 013065 013065 013065 013065 013105 013115 013115 013115 013115 013115 013115 013115 013115	*SUB-AREA NO. 6 DESIGN NASHYD *\$ADD HYD *CALCULATION START *\$ CALCULATION START *\$ * * * * * * * * * * * * * * * * * *	DWF=[0](cms), CNC=[78], TP=(0.80]hrs, RAINFALL=[, , , ,](mm/hr), END=-1 IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1]
0> 1> *8 2> * 3> * SU 4> 5> CALI 6> 7> 8> 8> 8> 8> 4> ADD 5> *8 6> ADD 7> *8 6> ADD 7> *8- 1> 2> 5> 8 1> 2> 5> 8 12 2> 5> 8 12 2> 12 2> 12 2> 12 2> 12 2> 12 2> 12 2> 12 2> 12 2> 12 2> 12 2> 12 2> 12 2> 12 2> 12 2> 12 2> 2> 12 2> 12 2> 12 2> 12 2> 25 12 12 12 12 12 12 12 12 12 12	UB-AREA NO.5 IB STANDHYD HYD HYD	<pre>RAINFALL=[, , , ,] (nm/hc) , END=-1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '</pre>	012945 012955 012955 012975 012995 012095 012095 013005 013015 013055 013065 013065 013065 013065 013065 013065 013065 013105 013115 013115 013115 013115 013115 013115 013115 013115	*SUB-AREA NO. 6 DESIGN NASHYD *\$	DWF=[0](cms), CNC=[78], TP=[0.80]hrs, RAINFALL=[, , , ,](mm/hr), END=-1 IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1]
0> *\$ 1> *\$ 1> *\$- 1> *\$- 1> *\$- 1> *\$- 1> *\$- 1> *\$ 1> * 1>	UB-AREA NO.5 IB STANDHYD HYD HYD	<pre>RAINFALL=[, , , ,] (nm/hc) , END=-1 il=</pre>	012945 012955 012965 012975 012985 012075 012095 013015 013005 013005 013005 013065 013065 013065 013065 013065 013065 013075 013075 013075 013075 013075 013155 013155 013155 013155 013155 013155 013155 013205 01205 01205 01205 01205 01205 01205 01205 01205 01205 01205 0000000000	*SUB-AREA NO. 6 DESIGN NASHYD *\$	DWF=[0](cms), CNC=[78], TP=[0.80]hrs, RAINFALL=[, , , ,](mm/hr), END=-1 IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1]
0> 1> * % 1> * %- 1> * SU 1> * SU 14> 5> CALI 6> 1> 2> * %- 6> ADD 7> * %- 8> 9> ROUT 0> 1> 2> 4> 4> 5> 6> 7> * 8- 9> 80 0> 1> 2> 4> 5 8 8 9 8 8 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 9 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1	UB-AREA NO.5 IB STANDHYD HYD HYD	<pre>RAINFALL=[, , , ,] (nm/hc) , END=-1 ' ' ID=[7], NHYD=["070"], DT=[2.5](min), AREA=[2.66](ha), XIMP=[0.97], IMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IARimp=[1.57](mm), SLP=[1.5](%), LG2=[20.02](m), NMP=[0.03], SCI=[0.0](mi Impervious surfaces: IARimp=[1.57](mm), SLP=[0.61](%), RAINFALL=[, , ,] (um/hc) , END=-1 ' IDsum=[6], NHYD=["080"], IDs to add=[6+7] ' IDsum=[9], NHYD=["POND"], IDin=[9], RD7=[1.0](min), TABLE of (OUTFIGW-STORAGE) values (cms) - (ha-m) [0.000, 0.0000] [0.0004, 0.0656] [0.037, 0.4731] [0.465, 0.5491] [0.465, 0.5491] [0.531, 0.5671]</pre>	01295> 01295> 01295> 01295> 01295> 01295> 01200> 01301> 01302> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01315> 01315> 01315> 013205> 013205> 013205> 013205 013205 013215 013225 013224> 013245	*SUB-AREA NO. 6 DESIGN NASHYD * ADD HYD * CALCULATION START * * CALCULATION START * * * * * * * * * * * * * * * * * * *	DWF=[0](cms), CNC=[76], TP=[0.80]hrs, RAINFALL=[, , , ,](mm/hr), END=-1 IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1]
0> 1> * * 1> * *- 1> * * 1> * * 1> * * 1> * * 1> *	UB-AREA NO.5 IB STANDHYD HYD HYD	<pre>RAINFALL=[, , , ,] (nm/hc) , END=-1 id=</pre>	122945 012955 012965 012975 012995 013005 013015 013025 013055 013065 013065 013065 013065 013065 013065 013065 013065 013105 013115 013115 013115 013115 013115 013115 013125 013225 013225	*SUB-AREA NO. 6 DESIGN NASHYD * ADD HYD CALCULATION START * CALCULATION START * * CALCULATION START * * * * * * * * * * * * * * * * * * *	DWF=[0](cms), CMC=[76], TP=[0.80]hrs, RAINFALL=[, , , ,](mm/hr), END=-1 IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1] TZERG=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0] [] (
0> ** 1> ** 1> ** 1> * * 1> ** 1> ** 2> **	UB-AREA NO.5 IB STANDHYD HYD HYD	<pre>RAINFALL=[, , , ,] (nm/hc) , END=-1 '</pre>	012945 012955 012965 012975 012995 013005 013015 013025 013055 013065 013065 013065 013065 013065 013065 013065 013065 013105 013105 013115 013115 013115 013115 013115 013115 013115 013125 013215 013225 013225 013225 013225 013225 013225 013225 013225 013225 013225 013225 013225 013225 013225 013225 01315 01325 0135 0135 0000000000000000000000000000	*SUB-AREA NO. 6 DESIGN NASHYD * ADD HYD CALCULATION START * CALCULATION START * * CALCULATION START * * * * * * * * * * * * * * * * * * *	DWF=[0](cms), CMC=[78], TP=[0.80]hrs, RAINFALL=[, , , ,](mm/hr), END=-1 IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1] TZERG=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0] [] (
0> 10> * % 12> * 5 12> * 5 12> * 5 12> * 5 13> * 5 10> 7 10>	UB-AREA NO.5 IB STANDHYD HYD HYD	<pre>RAINFALL=[, , , ,] (nm/hc) , END=-1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '</pre>	012955 012955 012965 012975 012985 013005 013015 013025 013015 013035 013035 013035 013035 013035 013035 013035 013035 013125 013125 013125 013125 013245 01325 0135 015000000000000000000000000000000	*SUB-AREA NO. 6 DESIGN NASHYD * ADD HYD CALCULATION START * CALCULATION START * * CALCULATION START * * * * * * * * * * * * * * * * * * *	DWF=[0](cms), CNC=[76], TP=[0.80]hrs, RAINFALL=[, , , ,](mm/hr), END=-1 IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1] IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1] ITERO=[0.0], METOUT=[2], NSTORM EVENT IDSUM=[0], METOUT=[2], NSTORM=[0], NRUN=[0] I I I Casede=[1], TD=[3.0](hrs), TPRAT=[0.333], CSDT=[10.0](mi) ICASEGES=[1], TD=[6.014], and C=[0.820], ICASEGES=[1], TD=[6.014], and C=[0.820], ICASEGES=[1], TD=[1.0]UENC\SWMETYNO\"ORGA.VAL"] ID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha), XIMP=[0.84], TMF=[0.64], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: IAper=[4.67](am), SLPP=[1.0](s), L6P=[20](M), NHP=[0.51], SLP=[0.0](s),
00> 10> 122> 123> 125> 155> 15	UB-AREA NO.5 IB STANDHYD HYD HYD	<pre>RAINFALL=[, , , ,] (nm/hc) , END=-1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '</pre>	01295> 01295> 01295> 01295> 01295> 01295> 01301> 01301> 01302> 01303> 01304> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01312> 01325> 01326> 01	*SUB-AREA NO. 6 DESIGN NASHYD * ADD HYD CALCULATION START * CALCULATION START * * CALCULATION START * * * * * * * * * * * * * * * * * * *	DWF=[0](cms), CMC=[76], TP=[0.80]hrs, RAINFALL=[, , , ,](mm/hr), END=-1 I
50> 50> 50> 50> 50> 50> 50> 50>	UB-AREA NO.5 IB STANDHYD HYD HYD	<pre>RAINFALL=[, , , ,] (nm/hc) , END=-1 '</pre>	01295> 01295> 01295> 01295> 01295> 01295> 01200> 01301> 01303> 01303> 01303> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01315> 01315> 01315> 01315> 01315> 01316> 01315> 01322> 01322> 01325> 01325> 01325> 01325> 01325> 01331> 01331>	*SUB-AREA NO. 6 DESIGN NASHYD * ADD HYD CALCULATION START * CALCULATION START * * CALCULATION START * * * * * * * * * * * * * * * * * * *	DWF=[0](cms), CNC=[78], TP=[0.80]hrs, RAINFALL=[, , , ,](mm/hr), END=-1 IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1] ITERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0] [] <
50> 50> 50> 50> 50> 50> 50> 50>	VB-AREA No.5 IE STANDHYD HYD HYD TE RESERVOIR	<pre>RAINFALL=[, , , ,] (nm/hc) , END=-1 id=</pre>	01295> 01295> 01295> 01296> 01296> 01297> 01298> 01300> 01300> 01300> 01300> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01307> 01306> 01305> 01306> 01305> 01306> 01305> 01305> 01305> 01305> 01305> 01315> 01320> 01320> 01320> 01320> 01320> 01322> 01320> 01322> 01332> 01322> 01332> 01322> 01322> 01322> 01322> 01322> 01322> 01322> 01322> 01322> 01	*SUB-AREA NO. 6 DESIGN NASHYD *\$	DWF=[0](cms), CMC=[76], TP=[0.80]hrs, RAINFALL=[, , , ,](mm/hr), END=-1 I
00> 10> 12> * 10 12> * 10 12> * 10 12> * 10 12> * 10 12> 12> 12> 12> 12> 12> 12> 12>	UB-AREA NO.5 IE STANDHYD HYD HYD FE RESERVOIR Remaining Haw	<pre>RAINFALL=[, , , ,] (nm/hc) , END=-1 '</pre>	01295> 01295> 01295> 01296> 01296> 01297> 01298> 01300> 01300> 01300> 01300> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01306> 01307> 01306> 01305> 01306> 01305> 01306> 01305> 01305> 01305> 01305> 01305> 01315> 01320> 01320> 01320> 01320> 01320> 01322> 01320> 01322> 01332> 01322> 01332> 01322> 01322> 01322> 01322> 01322> 01322> 01322> 01322> 01322> 01	*SUB-AREA NO. 6 DESIGN NASHYD *\$ADD HYD *\$ADD HYD *\$ADD HYD *\$ADD HYD *\$ADD HYD ************************************	DWF=[0](cms), CMC=[76], TP=(0.80]hrs, RAINFALL=[, , , ,] (mm/hr), END=-1 I
505 505 507 512 512 512 512 512 512 512 512	UB-AREA NO.5 IE STANDHYD HYD HYD FE RESERVOIR Remaining Haw	<pre>RAINFALL=[, , , ,] (nm/hc) , END=-1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '</pre>	012955 012955 012965 012975 012985 013005 013015 013025 013025 013055 013055 013055 013055 013055 013055 013055 013055 013155 013155 013155 013155 013155 013155 013155 013155 013255 01355 01355 01355 01355 01355 01355 01355 01355 01355 01355 01355 01355 01355 01550 01550 015	*SUB-AREA NO. 6 DESIGN NASHYD *\$	DWF=[0](cms), CMC=[78], TP=[0.80]hrs, RAINFALL=[, , , ,](mm/hr), RDD=-1 IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1] ITERGE[2], TD=[3:0](hrs), TPFRAT=[0.333], CSDT=[10.0](mi) ICASEdes[1], Read and print values DEFVAL_FILENAME=[V: \2293.DULEAG/SMMATMAO\"ORGA.VAL"] ITERGE[2], TIMP=[0.04], DMT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], CGP=[2.0](mi), AREA=[2.07] (ha), XIMP=[0.84], TIMP=[0.84], DMT=[0.25], SCP=[0.0](cms), LOS=[2], SCS curve number CN=[81], CGP=[2.0](mi), SLPP=[1.0](s), LGP=[2.0](mi), SLP=[1.0](s), LGP=[2.0](mi), SLP=[1.0](s), SCP=[0.0](cms), LGP=[2.0](mi), SLP=[1.0](s), SCP=[0.0](cms), LGP=[2.0](mi), SLP=[1.0](s), SCP=[0.0](cms), LGP=[2.2](mi), NMI=[0.23], SCI=[0.0](cms), LGP=[2.2](mi), RAINFALL=[, , ,](mm/hr), SND=-1 ID=[2], NHYD=["020"], DT=[2.5](min), AREA=[1.54] (ha],
505 505 507 512 512 512 512 512 512 512 512	UB-AREA NO.5 IE STANDHYD HYD HYD FE RESERVOIR Remaining Haw	<pre>RAINFALL=[, , , ,] (nm/hc) , END=-1 '</pre>	012955 012955 012965 012975 012995 013005 013015 013025 013025 013035 013045 013055 013065 013065 013065 013065 013075 013155 013155 013155 013155 013155 013155 013155 013155 013215 01325 013355 01355 01355 01355 01355 01355 01355 01355 01355 01355 01355 01355	*SUB-AREA NO. 6 DESIGN NASHYD *\$	<pre>DWF=[0](cms), CMC=[76], TP=[0.80]hrs, RAINFALL=[, , , ,](mm/hr), END=-1] TZERO=[0.0], METOUT=[2], NSTORM=[0], NRUN=[0] [] (</pre>
505 505 506 507 507 507 507 507 507 507 507	VB-AREA No.5 IE STANDHYD HYD HYD FE RESERVOIR Remaining Haw 78-AREA No.1	<pre>RAINFALL=[, , , ,] (nm/hc) , END=-1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '</pre>	01295> 01295> 01295> 01295> 01295> 01295> 01207> 01295> 01300> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01315> 01320> 01	*SUB-AREA NO. 6 DESIGN NASHYD *\$	<pre>DWF=[0](cms), CMC=[76], TP=[0.80]hrs, RAINFALL=[, , , ,](mm/hr), END=-1 [] [] [] [] [] [] [] [] [] [</pre>
010	VB-AREA No.5 IB STANDHYD HYD HYD TE RESERVOIR Remaining Haw	<pre>RAINFALL=[, , , ,] (nm/hc) , END=-1 '</pre>	01295> 01295> 01295> 01295> 01295> 01295> 01200> 01301> 01302> 01303> 01303> 01303> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01315> 01315> 01315> 01315> 01315> 01315> 01315> 01315> 01325> 01325> 01326> 01327> 01328> 01331> 01331> 01331> 01331> 01331> 01331> 01331> 01331> 01331> 01331> 01	*SUB-AREA NO. 6 DESIGN NASHYD *\$	<pre>DWF=[0](cms), CMC=[76], TP=[0.80]hrs, RAINFALL=[, , , ,](mm/hr), RND=-1 [] [] [] [] [] [] [] [] [] [</pre>
010> 110+ 112>	VB-AREA No.5 IE STANDHYD HYD HYD FE RESERVOIR Remaining Haw 78-AREA No.1	<pre>RAINFALL=[, , , ,] (nm/hc) , END=-1 '</pre>	01295> 01295> 01295> 01295> 01295> 01295> 01295> 01300> 01301> 01302> 01303> 01305> 01305> 01305> 01315> 01315> 01315> 01315> 01315> 01312> 01312> 01312> 01312> 01312> 01312> 01312> 01312> 01312> 01312> 01312> 01312> 01312> 01312> 01322> 01332> 01334> 01334> 01334> 01334> 01334> 01334> 01334> 01334> 01334> 01334> 01341> 0134142> 0134142>	*SUB-AREA NO. 6 DESIGN NASHYD *\$	<pre>DWF=[0](cms), CMC=[76], TP=[0.60]hrs, RAINFALL=[, , , ,](mm/hr), RND=-1] TZERO=[0.0], MHYD=["Ultimate"], IDs to add=[10+1] TZERO=[0.0], MHYD=["2], NNTORM=[0], NRUN=[0] []</pre>
010> 110 110	VB-AREA No.5 IE STANDHYD HYD HYD FE RESERVOIR Remaining Haw 78-AREA No.1	<pre>RAINFALL=[, , , ,] (nm/hc) , END=-1 '</pre>	01295> 01295> 01295> 01295> 01295> 01295> 01200> 01301> 01303> 01303> 01303> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01315> 01315> 01320> 01315> 01325> 01325> 01325> 01325> 01325> 01325> 01335> 01335> 01335> 01335> 01335> 01345> 01345> 01345> 01345> 01345> 01345> 01345> 01345>	*SUB-AREA NO. 6 DESIGN NASHYD *\$ADD HYD CALCULATION START *\$ CALCULATION START *\$ CALCULATION START *\$ CALCULATION START *\$ START *\$ START *\$ SUB-AREA NO.1 CALLB STANDHYD SUB-AREA NO.2 CALLB STANDHYD	<pre>DWF=101(cms), CMC=[76], TP=(0.80]hrs, RAINFALL=[, , , ,](mm/hr), RND=-1 lDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1] </pre>
00> 10> 12> * 4 12> * 5 12> * 5 12> * 5 12> * 5 12> * 5 12> 12> * 5 12> 12> 12> 12> 12> 12> 12> 12>	VB-AREA No.5 IE STANDHYD HYD HYD FE RESERVOIR Remaining Haw 78-AREA No.1	<pre>RAINFALL=[, , , ,] (nm/hc) , END=-1 '</pre>	01295> 01295> 01295> 01295> 01295> 01295> 01200- 01301- 01302- 01303- 01305- 01305- 01305- 01305- 01305- 01305- 01305- 01305- 01305- 01305- 01305- 01305- 01312- 01312- 01312- 01312- 01312- 01322- 01322- 01322- 01322- 01322- 01322- 01323- 01325- 01325- 01325- 01325- 01325- 01325- 01325- 01325- 01325- 01325- 01325- 01345- 01345- 01	*SUB-AREA NO. 6 DESIGN NASHYD *\$	<pre>DWF=101(cms), CMC=[76], TP=(0.60)hrs, RAINFALL=[, , , ,](mm/h), NPD=-1] TZERO=[0.0], MHYD=["Ultimate"], IDs to add=[10+1] [TZERO=[0.0], MHYD=["Ultimate"], IDs to add=[10+1] [TZERO=[0.0], MHYD=["Ultimate"], IDs to add=[10+1] [TZERO=[0.0], MHYD=["Ultimate"], IDs to add=[10+1] [TZERO=[0.0], MHYD=["Ultimate"], IDs to add=[10+1] [[TZERO=[0.0], MHYD=["Ultimate"], IDS to add=[10+1] [TZERO=[0.0], MHYD=[2], NNTORM=[0], CSDT=[10.0](min ICASECs=[1], Read and print values DEFVAL FILENAME=[V: \22973.DULENG\SMMITHO\"ORGA.VAL"] TID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha), XIMP=[0.64], TIMP=[0.64], DMF=[0.0](mm, SLP=[1.0](%), IGP=[20](m), MMT=[0.52](%), IGP=[20](m), MMT=[0.52](%), IGT=[204.72](mm], SLP=[1.0](%), IGSCS curve number CM=[0],</pre>
50> 50> 50> 52> * 5 52> * 5 50> 50> 50> 50> 50> 50> 50> 50	/B-AREA No.5 IE STANDHYD HYD HYD FE RESERVOIR FE RESERVOIR Remaining Haw FE-AREA No.1 IE STANDHYD	<pre>RAINFALL=[, , , ,] (nm/hc) , END=-1 '</pre>	01295> 01295> 01295> 01295> 01295> 01295> 01295> 01300> 01301> 01302> 01303> 01304> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01305> 01312> 01312> 01312> 01325> 01326> 01326> 01326> 01326> 01326> 01327> 01328> 013310> 01332> 01332> 01332> 01332> 01332> 01332> 01332> 01332> 01332> 01345> 01345> 01345> 01345> 01345> 01345> 0	*SUB-AREA NO. 6 DESIGN NASHYD *\$ADD HYD CALCULATION START *\$ CALCULATION START *\$ CALCULATION START *\$ CALCULATION START *\$ START *\$ START *\$ SUB-AREA NO.1 CALLB STANDHYD SUB-AREA NO.2 CALLB STANDHYD	<pre>DWF=101(cms), CMC=[76], TP=(0.60)hrs, RAINFALL=[, , , ,](mm/h), NPD=-1] TZERO=[0.0], MHYD=["Ultimate"], IDs to add=[10+1] [TZERO=[0.0], MHYD=["Ultimate"], IDs to add=[10+1] [TZERO=[0.0], MHYD=["Ultimate"], IDs to add=[10+1] [TZERO=[0.0], MHYD=["Ultimate"], IDs to add=[10+1] [TZERO=[0.0], MHYD=["Ultimate"], IDs to add=[10+1] [[TZERO=[0.0], MHYD=["Ultimate"], IDS to add=[10+1] [TZERO=[0.0], MHYD=[2], NNTORM=[0], CSDT=[10.0](min ICASECs=[1], Read and print values DEFVAL FILENAME=[V: \22973.DULENG\SMMITHO\"ORGA.VAL"] TID=[1], NHYD=["010"], DT=[2.5](min), AREA=[2.07](ha), XIMP=[0.64], TIMP=[0.64], DMF=[0.0](mm, SLP=[1.0](%), IGP=[20](m), MMT=[0.52](%), IGP=[20](m), MMT=[0.52](%), IGT=[204.72](mm], SLP=[1.0](%), IGSCS curve number CM=[0],</pre>

J. L. Richards & Associates Limited

Page 4

52> 53> 54> 55> 56> 57> *&	SCS curve number CN=[81], Pervious surfaces: LAper=(4.67] (nnm), SLEP=[1.0] (%), LGP=(5] (n), MNP=[0.03], SCP=[0.0] (nin), Impervious surfaces: IAimp=(1.57] (nnm), SLPI=[0.51] (%), LGI=[225.63] (n), MNT=[0.03], SCI=[0.0 RAINFALL=[, , ,] (nnm/hr), END=-1	01486> 01487> 01488> 01489> 01490> 01491> 01492>	[0.048, 0.0574] [0.054, 0.2343] [0.059, 0.5834] [0.062, 0.8400] [0.064, 1.1024] [0.147, 1.3705] [0.280, 1.6444]
8> ADD HYD 9> *8	IDsum=[4], NHYD=["040"], IDs to add=[1+2]	01493> 01494>	[0.472, 1.9242] [0.724, 2.2097]
0> ADD HYD 1> *% 2> *	IDsum=[5], NHYD=["050"], IDs to add=[3+4]	01495> 01496>	[0.937, 2.5010] [1.262, 2.7981]
3> * SUB-AREA No.4		01497> 01498>	[1.404, 3.1009] [1.532, 3.4096]
5> CALIB STANDHYD 56>	<pre>ID=[6], NHYD=["060"], DT=[2.5](min), AREA=[0.89](ha), XIMD=[0.97], TIMD=[0.97], DWF=[0.0](cms), LOSS=[2], COLUMN CONTRACT (CONTRACT)</pre>	01499> 01500> 01501>	[1.650, 3.7240] [2.409, 4.0442]
57> 58>	SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (nm), SLPP=[0.7] (%),	01502> 01503>	[3.689, 4.3702] [-1 , -1] (max twenty pts)
59> 70>	LGP=[40] (m), MNP=(0.25), SCP=[0.0] (min) Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.93] (%), LGF=[164.82] (m), MNT=[0.03], SCI=[0.0] (01504> +%	
71> 72>	LGI=[164.82](m), MNI=[0.03], SCI=[0.0](RAINFALL=[, , ,](non/hr), END=-1	01506> *SUB-AREA No. 6 01507>	·
73> *& 74> *		01508> DESIGN NASHYD 01509>	<pre>ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7](ha), DWF=[0](cms), CNC=[76], TP=[0.80]hrs,</pre>
75> * SUB-AREA No.5 76> 77> CALIB STANDHYD		01510> 01511> *%	RAINFALL=[, , , ,) (mm/hr), END=-1
78> 79>	<pre>ID=[7], NHYD=["070"], DT=[2.5] (min), AREA=[2.66] (ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81],</pre>	01512> 01513> ADD HYD 01514> *%	IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1]
30> 31>	Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.5] (%), LGP=[20.0] (m), MNP=[0.25], SCP=[0.0] (mi	01515> 01516>	
32>	<pre>Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.61](%), LGI=[207.25](m), MNI=[0.03], SCI=[0.0](</pre>	01517> 01518>	
34> 35> *8	RAINFALL={ , , , , }(mm/hr) , END=-1	01519> FINISH	
36> ADD HYD 37> *8	IDsum=[8], NHYD=["080"], IDs to add=[6+7]		
8> ADD HYD 9> *%	IDsum=[9], NHYD=["090"], IDs to add=[5+8] 		
0> 1> ROUTE RESERVOIR 2>	<pre>IDout=[10], NHYD=["POND"], IDin=[9], PDT=[1,0](vi=)</pre>		
2> 3> 4>	RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values		
5> 6>	(cms) - (ha-m) [0.000, 0.0000] [0.008, 0.06561		
17> 18>	[0.017, 0.1311] [0.093, 0.2831]		
99> 90>	[0.233, 0.3971] [0.337, 0.4731]		
12>	(0.465, 0.5491] [0.531, 0.5871]		
13> 14>	[0.593, 0.6251] [0.654, 0.6631]		
15> 16> 17>	[0.797, 0.7391] [0.950, 0.8274] [1.204 0.957]	·	
/> 8> 9>	[. 1.304, 0.9157] [1.880, 1.0040] [2.577, 1.0923]		
0> 1>	$\begin{bmatrix} 2.577, 1.0923 \end{bmatrix}$ $\begin{bmatrix} -1, -1 \end{bmatrix}$ (max twenty pts)		
2> **************	**************************************		
4> ************************************	**************************************		
4> ************************************	***************************************		
4> ******************* 5> * 6> * SUB-AREA No.1 7> 8> CALIB STANDHYD 9>	ID=[1], NHYD=("HIPO1"], DT=(2.5](min), AREA=[19.9](ha), XHDP=[0.50], THDP=[0.71], DWP=[0.0](cms), Logs=[2].		
4> ************************************	ID=[1], NHYD=("HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XHMP=[0.50], THMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%),		
4> ************************************	<pre>ID=[1], NHYD=("HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XHYD=[0.50], THYD=[0.71], DWP=[0.0](cms), LoSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPP=[1.5](%), LGP=[100.0](m), MNP=[0.25], SCP=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SLPP=[0.6](%),</pre>		
45 ************************************	<pre>ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IApper=[4.67](mm), SLPP=[1.5](%), LGP=[10.0](m), MNP=[0.25], SCP=[0.0](m)</pre>		
4> ************************************	<pre>ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[01], Pervious surfaces: IApper=[4.67](mun), SLPP=[1.5](%), IGP=[100.0](m), MNT=[0.25], SCP=[0.0](m) Impervious surfaces: IAimp=[1.57](mun), SLPI=[0.6)(%), IGT=[580](m), MNT=[0.03], SCI=[0.0](min</pre>		
4> ************************************	ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[0]], Pervious surfaces: GDP=[10.0](n), MDI=[0.25], SCP=[0.0](m Impervious surfaces: IAimp=[1.57](mn), SLPI=[0.6], SCP=[0.0](m RAINFRLL=[, , ,](mm/hr), END=-1		
4> ************************************	<pre>ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMD=[0.50], TIMD=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[01], Fervious surfaces: IAppr=[4.67](mm), SLPP=[1.5](%), IGB=[100.0](m), MNI=[0.25], SCP=[0.0](m) Impervious surfaces: IAimpr[1.57](mm), SLIP=[0.6](%), IGI=[560](m), MNI=[0.03], SCI=[0.0](%), RAIMFALL=[, , ,] (mm/h), SMD=-1] IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1]] ID=[3], NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha),</pre>		
4> ************************************	<pre>ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMD=[0.50], TIMD=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[81], IGP=[100.0](m), MNP=[0.25], SCP=[0.0](m Impervious surfaces: IAimp=[1.57](mm), SLPP=[1.5](%), LGT=[580](m), MNT=[0.03], SCI=[0.0](min RAINFALL=[, ,] (mm/hr), END=-1 IDsum=[2], NHYD=["HIPO2"], IDs to add=[10+1] IDsum=[2], NHYD=["HIPO2"], IDs to add=[10+1] ID=[3], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIND=[0.50], TIMD=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[61].</pre>		
4) ************************************	<pre>ID=[1], NHYD=("HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XHMP=[0.50], THMP=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[81], IGP=[100.0](m), MNP=[0.25], SCP=[0.0](m) Impervious surfaces: IAimp=[1.57](mm), SLPP=[1.5](%), IGP=[580](m), MNT=[0.03], SC1=[0.0](m] RAIMFALL=[, , , ,] (mm/hr), RMD=-1 </pre>		
4) ************************************	<pre>ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMD=[0.50], TIMD=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[81], Impervious surfaces: IAimpe[1.57](mm), SLPP=[1.5](%), IGP=[100.0](m), MNT=[0.03], SCI=[0.0](m) RAINFALI=[, , , ,](mm/hr), END=-1 IDsum=[2], NHYD=["HIPO2"], IDS to add=[10+1] ID=[3], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMD=[0.50], TIMD=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.57](mm), SLP=[1.5](%), IGP=[100.0](m), MNT=[0.2], SCD=[0.0](m Impervious surfaces: IAper=[4.57](mn), SLP=[1.5](%), IGT=[450](m), MNT=[0.2], SCD=[0.0](m)</pre>		
4> ************************************	<pre>ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMD=[0.50], TIMD=[0.71], DWP=[0.0](cms], LOSS=[2], SCS Curve number CN=[0,par=(4.67](mn), SLPP=[1.5](*), Pervious surfaces: LGS=[10.01(m), NN]=[0.25], SCR=[0.0](m Impervious surfaces: IAimp=[1.57](mn), SLT=[0.6](*), RAINFALL=[, , ,](mm/hr), END=-1 ID=um=[2], NHYD=["HIPO2"], IDs to add=[10+1] ID=um=[2], NHYD=["HIPO2"], DT=[2.5](min), AREA=[17](ha), XIMD=[0.50], TIMD=[0.71], DWT=[2.5](min), AREA=[17](ha), XIMD=[0.50], TIMD=[0.71], DWT=[2.5](min), SLSP=[1.5](*), CSC curve number CN=[81], IGP=[100.0](m), NN]=[0.25], SCP=[0.0](m Impervious surfaces: IAimp=[1.57](mn), SLP=[1.5](*), Impervious surfaces: IAimp=[1.57](mn), SLP=[1.5](*), Impervious surfaces: IAimp=[1.57](mn), SLP=[0.6](*),</pre>		
4> ************************************	<pre>ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIDD=[0.50], TIMD=[0.71], DWF=[0.0](cms], LOSS=[2], SCS curve number CN=[01], Fervious surfaces: IAppr=[4.67](mm), SLPP=[1.5](%), IMPEVIOUS surfaces: IAPpr=[157](mm), SLIP=[0.6](%), IMPEVIOUS surfaces: IAPPr=[157](mm), SLIP=[0.6](%), IMPEVIOUS surfaces: IAPPr=[1.5](%), ID=[3], NHYD=["HIPO2"], ID= to add=[10+1] </pre>		
4> ************************************	<pre>ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIDD=[0.50], TIMD=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[01], Fervious surfaces: IAppr=[4.67](mm), SLPP=[1.5](%), Impervious surfaces: IAppr=[4.67](mm), SLIP=[0.6](%), Impervious surfaces: IAppr=[4.67](mm), SLIP=[0.6](%), RAINFALL=[, , , IGT=F050](m), SUIT=[0.6](%), ID=[0.2](%), SCI=[0.0](%), SCI=[0.0](%), ID=[0.2](%), SCI=[0.0](%), SCI=[0.0](%), ID=[0.2](%), SCI=[0.0](%), SCI=[0.0](%), SCI=[0.0](%), SCI=[0.0](%), SCI=[0.0](%), ID=[0.2](%), SCI=[0.0](%), SCI=[0.0](%), SCS curve number CM=[61], Pervious surfaces: IAppr=[4.67](mm), SLIP=[1.5](%), IGE=[100.0](%), SNIP=[0.2](%), SCI=[0.0](%), RAINFALL=[, , ,](%), SCI=[0.0](%), SCI=[0.0](%), RAINFALL=[, , ,](%), SCI=[0.0](%), SCI=[0.0](%), Impervious surfaces: IAppr=[4.57](%), SCI=[0.0](%), RAINFALL=[, , ,](%), DT=[2.5](%), AREA=[15.6](%), ID=[4], NHYD=["HIP04"], DT=[2.5](%), AREA=[15.6](%), XHMP=[0.50], TIMP=[0.71], DT=[2.5](%), AREA=[15.6](%), XHMP=[0.50], TIMP=[0.71], DT=[0.0](Cms), AREA=[15.6](%), SCI=[0.0](%), TIMP=[0.71], DT=[0.0](Cms), AREA=[15.6](%), XHMP=[0.50], TIMP=[0.71], DT=[0.0](Cms), AREA=[15.6](%), SCI=[0.0](%), TIMP=[0.71], DT=[0.0](Cms), AREA=[15.6](%), SCI=[0.0](%), TIMP=[0.71], DT=[0.0](Cms), AREA=[15.6](%), SCI=[0.0](%), TIMP=[0.71], DT=[0.0](%), SCI=[0.0](%), SCI=[0.0](%), SCI=[0.0](%), TIMP=[0.71], DT=[0.0](%), SCI=[0.0](%), SCI=[0.0](%),</pre>		
4) ************************************	<pre>ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIDD=[0.50], TIMD=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[01], IGB=[100.0](m), MND=[0.25], SCT=[0.0](m) Impervious surfaces: IAimpe[1.57](mm), SLDP=[1.5](%), IGB=[56](m), MNT=[0.03], SCI=[0.0](m) RAIMPFALL=[, , ,] [mm/hT], SND=-1] ID=[3], NHYD=["HIPO2"], ID= to add=[10+1] </pre>		
4> ************************************	<pre>ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIDD=[0.50], TIHD=[0.71], DWF=[0.0](cms], LOSS=[2], SCS curve number CN=[01], IGP=[100.0](m), MND=[0.25], SCT=[0.0](m) Impervious surfaces: IAimpe[1.57](mm), SLDP=[1.5](%), ICD=[0.0](m), MND=[0.03], SCI=[0.0](m) RAIMFALL=[, , ,] (mm/hr], SND=1 ID=[3], NHYD=["HIPO2"], ID= to add=[10+1] </pre>		
4) ************************************	<pre>ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMD=[0.50], TIMD=[0.71], DWT=[0.0](cms], LOSS=[2], SCS curve number CN=[0], Pervious Surfaces: GD=[100.0](m), SLDP=[1.5](8), Impervious surfaces: IDA:mp=[1.57](mn), SLDT=[0.6](8), RAINFALL=[, , , ,](mm/hr), END=-1 </pre>		
4) ************************************	<pre>ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CN=[01], Impervious surfaces: GD=[100.0](m), SLTP=[1.5](%), Impervious surfaces: IDA:mp=[1.57](mn), SLTP=[0.6](s), SCI=[0.0](min RAINFALL=[, , , ,](mm/hr), END=-1 ID=um=[2], NHYD=["HIPO2"], DT=[2.5](min), AREA=[17](ha), XIMD=[0.50], TIMP=[0.71], DWT=(0.0](cms), LOSS=[2], SC curve number CM=[01], DWT=(0.0], LOS=[2], SC curve number CM=[01], DWT=[0.2], SCI=[0.0](min Impervious surfaces: TAimpe1[.57](mn), AREA=[17](ha), XIMD=[0.50], TIMP=[0.71], DWT=(0.0](cms), LOSS=[2], SC curve number CM=[01], DWT=(0.0](m), NMT=[0.25], SCD=[0.0](min RAINFALL=[, , ,](um/hr), EMD=-1 Impervious surfaces: TAimpe1[.57](mn), SLD=[1.5](%), Intervious surfaces: [Aimpe1[.57](mn), SLD=[1.5](%), ICGI=[450](m), MNT=[0.03], SCI=[0.0](min RAINFALL=[, , ,](um/hr), EMD=-1 Impervious surfaces: [Aimpe1[.57](mn), SLD=[1.5](%), SC curve number CM=[01], DWT=[0.0](cms), LOSS=[2], SC surve number CM=[01], DWT=[0.0](cms), LOSS=[2], SC surve number CM=[01], DWT=[0.0](cms),</pre>		
4) ************************************	<pre>ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[01], Pervious surfaces: GD=[100(01(m), SNEP=[1.5](8), Impervious surfaces: GD=[100(01(m), SNEP=[0.6]), SCI=[0.0](min RAIMPFALT=[, , ,](mm/hr), END=-1] ID=um=[2], NHYD=["HIPO2"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWT=(0.0](cms], LOSS=[2], SCI = Surfaces: TAimpe1[1.57](mn), SLID=[1.5](8), Impervious surfaces: TAimpe1[1.57](mn), SLID=[0.63], SCI=[0.0](min RAIMPALL=[, , ,](mm/hr], END=-1]] ID=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.71], DWT=[0.0](cms], LOSS=[2], SCS curve number CM=[81], NIMP=[0.51], TIMP=[0.71], DWT=[0.0](cms], LOSS=[2], SCS curve number CM=[81], Impervious surfaces: GD=[0.0](min), SLP=[1.5](8), Pervious surfaces: GD=[0.0](m), SLP=[1.5](8), SCS curve number CM=[81], Impervious surfaces: IAimpe1[1.57](mn), SLP=[1.5](8), Impervious surfaces: IAimpe1[1.57](mn), SLP=[1.5](8), Impervious surfaces: IAimpe1[1.57](mn), SLD=[0.2], SCS=[0.0](min RAIMFALL=[, , ,](mm/hr), END=-1]]]]]]]]]]]]]]]]]]]</pre>		
4) ************************************	<pre>ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XHMB=[0.50], THMP=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[81], IGB=[100.0](m), MNN=[0.25], SCP=[0.0](m) Impervious surfaces: IAimpe[1.57](mm), SLPP=[1.5](%), IGB=[580](m), MNN=[0.03], SCI=[0.0](m) RAIMFALL=[, , , ,] (mm/hr), SMD=-1] ID=[3], NHYD=["HIPO2"], IDs to add=[10+1]] ID=[3], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLP=[1.5)(%), IG=[400](m), MNN=[0.03], SCI=[0.0](m) RAIMFALL=[, , ,] (um/hr) , END=-1] ID=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms], LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAimpe[1.57](mm), SLP=[1.5)(%), IG=[400](m), MNN=[0.03], SCI=[0.0](min RAIMFALL=[, , ,] (um/hr) , END=-1] ID=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms], LOSS=[2], SC curve number CN=[81], Pervious surfaces: IAper=[4.67](mn), SLP=[1.5](%), IGP=[100.0](m), MNN=[0.23], SCI=[0.0](m) Inpervious surfaces: IAimpe[1.57](mn), SLD=[1.5](%), IGP=[100.0](m), MNN=[0.23], SCI=[0.0](m) IAIMFALL=[, , ,] (um/hr), END=-1] ID=[5], NHYD=["HIPO4"], IDS to add=[344] ID=[6], NHYD=["HIPO5"], IDS to add=[542]</pre>		
4) ************************************	<pre>ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMD=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CN=[0], Pervious surfaces: GD=[100.0](m), SLPP=[1.5](8), Impervious surfaces: GD=[100.0](m), NNI=[0.6], SCI=[0.0](min RAINFALL=[, , ,](mm/hr], END=-1]] ID=um=[2], NHYD=["HIPO2"], DT=[2.5](min), AREA=[17](ha), XIMD=[0.50], TIMD=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[0], Impervious surfaces: IAper=[4.57](mm), SLP=[1.5](8), IGF=[100.0](m), NNI=[0.03], SCI=[0.0](min RAINFALL=[, , ,](mm/hr], END=-1]] ID=[1], NHYD=["HIPO2"], DT=[2.5](min), AREA=[17](ha), XIMD=[0.50], TIMD=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Impervious surfaces: IAper=[4.57](mm), SLP=[1.5](8), IGF=[100.0](m), NNI=[0.03], SCI=[0.0](min RAINFALL=[, , ,](mm/hr], END=-1]] ID=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMD=[0.50], TIMD=[0.71], DWT=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Pervious surfaces: IAper=[4.57](mn), SLP=[1.5](8), IGF=[100.0](m), NNI=[0.25], SCF=[0.0](min RAINFALL=[, , ,](mm/hr], END=-1]] ID=[4], NHYD=["HIPO4"], DT=[2.5](min), SLP=[1.5](8), IGF=[100.0](m), MNI=[0.25], SCF=[0.0](min RAINFALL=[, , ,](mm/hr], ZND=-1]] ID=um=[5], NHYD=["HIPO5"], IDS to add=[3+4]]] ID=um=[6], NHYD=["HIPO5"], IDS to add=[5+2]]] ID=um=[6], NHYD=["HIPO5"], IDS to add=[5+2]]] ID=um=[6], NHYD=["HIPO5"], IDS to add=[5+2]]] ID=um=[6], NHYD=["HIPO5"], IDS to add=[5+2]]]] ID=um=[6], NHYD=["HIPO5"], IDS to add=[5+2]]] ID=um=[6], NHYD=["HIPO5"], IDS to add=[5+2]]]]]]]]]]]]]]]]]]]</pre>		
4) ************************************	<pre>ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMD=[0.50], TIMD=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[01], Impervious surfaces: IAppr=[4.67](mm), SLPP=[1.5](8), IG=[100.0](m), MNI=[0.25], SCT=[0.0](m] RAIMFPLL=[, , ,] [mm/hr], SND=-1] ID=[3], NHYD=["HIPO2"], ID= to add=[10+1] </pre>		
4) ************************************	<pre>ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMD=[0.50], TIMD=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[01], Impervious surfaces: IAppr=[4.67](mm), SLPP=[1.5](%), Impervious surfaces: IAppr=[4.67](mm), SLPD=[1.5](%), Content of the state of the s</pre>		
4) ************************************	<pre>ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMD=[0.50], TIMD=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[01], Impervious surfaces: IAppr=[4.67](mm), SLPP=[1.5](8), IImpervious surfaces: IAppr=[4.67](mn), SLP=[1.5](8), IImpervious surfaces: IAppr=[4.67](mn), SLP=[1.5](8), III = [1.50](m), MNI=[0.03], SCI=[0.0](min RAINFPLL=[, , ,] [mm/hr], SDD=1 ID=[3], NHYD=["HIPO2"], ID= to add=[10+1] </pre>		
4) ************************************	<pre>ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMD=[0.50], TIMD=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[01], Impervious surfaces: IAppr=[4.67](mm), SLPP=[1.5](8), IGM=[100.0](m), MNI=[0.25], SCF=[0.0](m] Impervious surfaces: IAppr=[4.67](mn), SLPP=[1.5](8), IGM=[560](m), MNI=[0.03], SCI=[0.0](m] RAINFPLL=[, , , ,](mm/hr), SDD=-1] ID=[3], NHYD=["HIPO2"], DT=[2.5](min), AREA=[17](ha), XIMD=[0.50], TIMD=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAppr=[4.67](mn), SLPP=[1.5](8), IGF=[100.0](m), MNI=[0.25], SCD=[0.0](m] RAIMFPLL=[, , ,](mm/hr) , END=-1] ID=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMD=[0.50], TIMD=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAppr=[4.67](mn), SLPP=[1.5](8), IGF=[400](m), MNI=[0.23], SCI=[0.0](min RAIMFPLL=[, , ,](mm/hr) , END=-1] ID=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMD=[0.50], TIMD=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAppr=[4.67](mn), SLPP=[1.5](8), IGF=[100.0](m), MNI=[0.23], SCI=[0.0](min RAIMFPLL=[, , ,](mm/hr), END=-1] ID=[7], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMD=[0.50], TIMD=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAppr=[4.67](mn), SLP=[1.5](8), IGF=[100.0](m), MNI=[0.23], SCI=[0.0](min RAIMFFLL=[, , ,](mm/hr), END=-1] ID=[7], NHYD=["HIPO5"], DT=[2.5](min), AREA=[12.2](ha), XIMD=[0.50], TIMD=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAppr=[4.67](mn), SLP=[1.5](8), ID=[7], NHYD=["HIPO5"], DT=[2.5](min), AREA=[12.2](ha), XIMD=[0.50], TIMD=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAppr=[4.67](mn), SLP=[0.5](8), IGF=[10.0](m), MNI=[0.2], SCI=[0.0](min RAIMFALL=[, , ,](mm/hr), END=-1]</pre>		
4) ************************************	<pre>ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMD=[0.50], TIMD=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[01], Impervious surfaces: IAppr=[4.67](mm), SLPP=[1.5](8), IImpervious surfaces: IAppr=[4.67](mn), SLP=[1.5](8), IImpervious surfaces: IAppr=[4.67](mn), SLP=[1.5](8), III = [1.50](m), MNI=[0.03], SCI=[0.0](min RAINFPLL=[, , ,] [mm/hr], SDD=1 ID=[3], NHYD=["HIPO2"], ID= to add=[10+1] </pre>		
4) ************************************	<pre>ID=[1], NHYD=["HIPO1"], DT=[2.5](nin), AREA=[19.9](ha), XIMD=[0.50], TIMP=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CM=[0], inservious surfaces: IDA:mp=[1.57](mm), SLP=[1.5](8), Impervious surfaces: IDA:mp=[1.57](mm), SLP=[0.6](6)(5), Impervious surfaces: IDA:mp=[1.57](mm), SLP=[0.6](6)(6), Impervious surfaces: IDA:mp=[1.57](mm), SLP=[0.6](6)(6), Impervious surfaces: IDA:mp=[1.57](mm), SLP=[1.5](8), ID=[3], NHYD=["HIPO3"], DT=[2.5](min), AREA=[17](ha), XIMD=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Impervious surfaces: IDA:mp=[1.57](mm), SLP=[1.5](8), IGF=[100.0](m), NNT=[0.03], SCI=[0.0](m) RAINFALI=[, , ,](mm/hr], END=-1 Impervious surfaces: IDA:mp=[1.57](mm), SLP=[1.5](8), IGF=[100.0](m), NNT=[0.03], SCI=[0.0](m) RAINFALI=[, , ,](mm/hr], END=-1 Impervious surfaces: IDA:mp=[1.57](mm), SLP=[1.5](8), IGF=[100.0](m), NNT=[0.2], SCS=[0.0](m) RAINFALI=[, , ,](mm/hr], END=-1 Impervious surfaces: IDA:mp=[1.57](mm), SLP=[1.5](8), IGF=[100.0](m), MNT=[0.2], SCI=[0.0](m) RAINFALI=[, , ,](mm/hr], RND=-1 Impervious surfaces: IDA:mp=[1.57](mm), SLP=[1.5](8), IGF=[100.0](m), MNT=[0.2], SCI=[0.0](m) RAINFALI=[, , ,](mm/hr], RND=-1 Impervious surfaces: IDA:mp=[1.57](mm), SLP=[1.5](8), IGF=[100.0](m), MNT=[0.0], SI:=[0.0](m) RAINFALI=[, , ,](mm/hr], RND=-1 IDA:mm=[6], NHYD=("HIPO5"], IDS to add=[3+4] Impervious surfaces: IDA:mp=[1.57](mm), SLP=[1.5](8), IGF=[100.0](m), MNT=[0.03], SCI=[0.0](m) RAINFALI=[, , ,](mm/hr], RND=-1 IDA:mm=[6], NHYD=[0.7], DT=[2.5](mn), AREA=[12.2](ha), XHME=[0.50], THMP=[0.7], DT=[2.5](mn), SLP=[0.7](8), IGF=[100.0](m], MNT=[0.03], SCI=[0.0](m] RAINFALI=[, , ,](mm/hr], RND=[1.5](6), IGF=[100.0](m], MNT=[0.03], SCI=[0.0](m] RAINFALI=[, , ,](mm/hr], RND=-1 IDA:mm=[RAINFALI=[, , ,](mm/hr], RND=[0.7]], RND=[0.7](16), IMTH=[0.50], THMP=[0.7], DMT=[0.0](m], SLP=[1.5](6), IGF=[100.0](m], MNT=[0.0]], SCI=[0.0](m] RAINFALI=[, , ,](mm/hr], RND=[0.7]], SCI=[0.0](m] RAINFALI=[, , ,](mm/hr], RND=[0.7]], SCI=[0.0](m] RAINFALI=[,</pre>		
4) ************************************	<pre>ID=[1], NHYD=["HIPO1"], DT=[2.5](nin), AREA=[19.9](ha), XIMD=[0.50], TIMP=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CM=[0], impervious surfaces: IDA:mp=[1.57](mm), SLP=[1.5](8), Impervious surfaces: IDA:mp=[1.57](mm), SLP=[0.6](6)(6), Impervious surfaces: IDA:mp=[1.57](mm), SLP=[0.6](6)(6), Impervious surfaces: IDA:mp=[1.57](mm), SLP=[0.6](6)(6), Impervious surfaces: IDA:mp=[1.57](mm), SLP=[1.5](8), ID=[3], NHYD=["HIPO3"], DT=[2.5](nin), AREA=[17](ha), XIMD=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Impervious surfaces: IDA:mp=[1.57](mm), SLP=[1.5](8), IGF=[100.0](m), NNT=[0.03], SCI=[0.0](m) RAINFALI=[, , ,](mm/hr], END=-1] Impervious surfaces: IDA:mp=[1.57](mm), SLP=[1.5](8), IGF=[100.0](m), NNT=[0.03], SCI=[0.0](m) RAINFALI=[, , ,](mm/hr], END=-1] Impervious surfaces: IDA:mp=[1.57](mm), SLP=[1.5](8), IGF=[100.0](m), NNT=[0.2], SCS=[0.0](m) RAINFALI=[, , ,](mm/hr], END=-1] Impervious surfaces: IDA:mp=[1.57](mm), SLP=[1.5](8), IGF=[100.0](m), MNT=[0.2], SCS=[0.0](m) RAINFALI=[, , ,](mm/hr], END=-1] Impervious surfaces: IDA:mp=[1.57](mm), SLP=[1.5](8), IGF=[100.0](m), MNT=[0.2], SCS=[0.0](m) RAINFALI=[, , ,](mm/hr], END=-1] Impervious surfaces: IDA:mp=[1.57](mm), SLP=[1.5](8), IGF=[100.0](m), MNT=[0.0], SIS=[0.0](m) RAINFALI=[, , ,](mm/hr], END=-1] IDA:mm=[6], NHYD=["HIPO5"], DT=[2.5](min), AREA=[12.2](ha), XIME=[0.50], TIMP=[0.71], DT=[2.5](min), AREA=[12.2](ha], XIME=[0.50], TIMP=[0.71], DT=[2.5](min), AREA=[12.2](ha], XIME=[0.50], TIMP=[0.71], DT=[2.5](min), AREA=[10.0](min RAINFALL=[, , ,](mm/hr), END=-1] ID=[8], NHYD=["POnd=Block"], DT=[2.5](min, AREA=[4.0](ha], DWF=[0](cms), CN/C=[8], TE=[0.7](hr], SLP=[1.5](ha], XIME=[0.0](min), MN=[0.03], SCI=[0.0](min RAINFALL=[, , ,](mm/hr), END=-1] ID=[8], NH</pre>		
4) ************************************	<pre>ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), NIM=[0.50], TIM=[0.71], DWF=[0.0](cms], LOSS=[2], SCS curve number CN=[01], Impervious surfaces: IApe[16:0](m), NNE=[0.25], SCF=[0.0](m] Impervious surfaces: IApe[16:0](m], NNE=[0.0]; SCI=[0.0](m] RAIMFALL=[, , ,](mm/hz), END=-1 </pre>		
4) ************************************	<pre>ID=[1], NHYD=["HIPO1"], DT=[2.5](nin), AREA=[19.9](ha), XIMD=[0.50], TIMP=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CM=[0], impervious surfaces: IDA:mp=[1.57](mm), SLP=[1.5](8), Impervious surfaces: IDA:mp=[1.57](mm), SLP=[0.6](6)(6), Impervious surfaces: IDA:mp=[1.57](mm), SLP=[0.6](6)(6), Impervious surfaces: IDA:mp=[1.57](mm), SLP=[0.6](6)(6), Impervious surfaces: IDA:mp=[1.57](mm), SLP=[1.5](8), ID=[3], NHYD=["HIPO3"], DT=[2.5](nin), AREA=[17](ha), XIMD=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CM=[81], Impervious surfaces: IDA:mp=[1.57](mm), SLP=[1.5](8), IGF=[100.0](m), NNT=[0.03], SCI=[0.0](m) RAINFALI=[, , ,](mm/hr], END=-1] Impervious surfaces: IDA:mp=[1.57](mm), SLP=[1.5](8), IGF=[100.0](m), NNT=[0.03], SCI=[0.0](m) RAINFALI=[, , ,](mm/hr], END=-1] Impervious surfaces: IDA:mp=[1.57](mm), SLP=[1.5](8), IGF=[100.0](m), NNT=[0.2], SCS=[0.0](m) RAINFALI=[, , ,](mm/hr], END=-1] Impervious surfaces: IDA:mp=[1.57](mm), SLP=[1.5](8), IGF=[100.0](m), MNT=[0.2], SCS=[0.0](m) RAINFALI=[, , ,](mm/hr], END=-1] Impervious surfaces: IDA:mp=[1.57](mm), SLP=[1.5](8), IGF=[100.0](m), MNT=[0.2], SCS=[0.0](m) RAINFALI=[, , ,](mm/hr], END=-1] Impervious surfaces: IDA:mp=[1.57](mm), SLP=[1.5](8), IGF=[100.0](m), MNT=[0.0], SIS=[0.0](m) RAINFALI=[, , ,](mm/hr], END=-1] IDA:mm=[6], NHYD=["HIPO5"], DT=[2.5](min), AREA=[12.2](ha), XIME=[0.50], TIMP=[0.71], DT=[2.5](min), AREA=[12.2](ha], XIME=[0.50], TIMP=[0.71], DT=[2.5](min), AREA=[12.2](ha], XIME=[0.50], TIMP=[0.71], DT=[2.5](min), AREA=[10.0](min RAINFALL=[, , ,](mm/hr), END=-1] ID=[8], NHYD=["POnd=Block"], DT=[2.5](min, AREA=[4.0](ha], DWF=[0](cms), CN/C=[8], TE=[0.7](hr], SLP=[1.5](ha], XIME=[0.0](min), MN=[0.03], SCI=[0.0](min RAINFALL=[, , ,](mm/hr), END=-1] ID=[8], NH</pre>		
4) ************************************	<pre>ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms], LOSS=[2], SCS curve number CN=[01], Impervious surfaces: ICA:Imp=[1.57](mm), SLTP=[1.5](8), Impervious surfaces: ICA:Imp=[1.57](mm), SLTP=[0.6](5, 5(-5(-6, 0))(min RAIMPFALL=[, , , ,](mm/hr), END=-1 ID=um=[2], NHYD=["HIPO2"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CM=[45], IMPETVIOUS surfaces: IGP=[100.0](m), MNI=[0.03], SCI=[0.0](min RAIMPFALL=[, , , ,](mm/hr], END=-1 ID=[4], NHYD=["HIPO4"], DT=[2.5](min), AREA=[15.6](ha), XIMP=[0.50], TIMP=[0.71], DWP=[0.0](cms), LOSS=[2], SCS curve number CM=[81], SCS curve number CM=[81], Impervious surfaces: ICAP=[1.57](mn), SLTP=[1.5](6), Pervious surfaces: ICAP=[1.57](mn), MIC=[0.23], SCI=[0.0](min RAIMPFALL=[, , ,](mm/hr], END=-1 ID=[5], NHYD=["HIPO5"], IDs to add=[344] ID=[7], NHYD=["HIPO5"], IDs to add=[344] ID=[7], NHYD=["HIPO5"], IDs to add=[542] ID=[7], NHYD=["HIPO5"], IDs to add=[542] ID=[7], NHYD=["HIPO5"], IDs to add=[542] ID=[6], NHYD=["Pond=Block"], DT=[2.5](min, AREA=[12.2](ha), MIMF=[0.50], TIMP=[0.7], DMP=[0.0](ms), SCI=[0.0](min RAIMFFALL=[, , ,](mm/hr), END=-1 ID=IM=[6], NHYD=["Pond=Block"], DT=[2.5](min, AREA=[12.2](ha), MIMF=[0.50], TIMP=[0.7], DMP=[0.0](ms], SCI=[0.0](min RAIMFFALL=[, ,](mm/hr), END=-1 ID=[6], NHYD=["Pond=Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](Cms), CN/C=[6 5], TF=[0.17]hrs, RAIMFFALL=[, , ,](mm/hr), END=-1 ID=IM=[0], NHYD=["HIPO5"], IDs to add=[6+748] ID=IM=[0], NHYD=["</pre>		
4) ************************************	<pre>ID=[1], NHYD=["HIPO1"], DT=[2.5](min), AREA=[19.9](ha), XIMM=[0.50], TIMP=[0.71], DWP=[0.0](CRS), LOSS=[2], SCS curve number CN=[01], Impervious surfaces: IAppr=[1.67](mn), SLPP=[1.5](8), Impervious surfaces: IAppr=[1.00.3](n, NNI=[0.03], SCI=[0.0](min RAIMFALL=[, , ,](mn/hr), END=-1 </pre>		

J. L. Richards & Associates Limited

Page 5

over (min) Storage Coeff. (min)= Unit Hyd, Tpeak (min)= Unit Hyd. peak (cms)= 10.00 10.80 (ii) 10.00 .11 30.00 29.27 (ii) 30.00 .04 00136> 00138> 00137> 00138> 00139> 00140> 00141> *TOTALS* .158 (iii) 1.292 20.508 24.999 .820 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (nms)= TOTAL RAINFALL (nms)= RUNOFF COEFFICIENT = .16 1.29 .00 1.75 5.17 00142> 00143> 00144> 00145> 00146> 00146> 00147> 00148> 00149> 00149> 00150> 00151> 00151> 00152> 00153> 1.29 23.43 25.00 .94 25.00

 Stoffwater Hangement Hilfoldgic Pool
 999
 999
 999

 SWMHIMO-99 Ver/4.02
 Standard Continuous hydrologic simulation model

 based on the principles of HYMO and its successors
 offHYMO-83 and OffHYMO-89.

 ****** Distributed by: J.F. Sabourin and Associates Inc.

 Gatineau, Outpacie (613) 727-5199

 E-Mail: swnhymo@ifsa.com

 00010> 00011> 00012> 00013> 00014> 00015> 00016> 00016> 00017> 00018> 00019> 00020> 00022> .21 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN*= 81.0 I a = Dep. Storage (Above)
 TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00153> ------00155> * SUB-AREA No.2 00155> -----00022> 00023> 00024> 00025> 00026> +++++++ Licensed user: J. L. Richards & Associates Limited +++++++ Sensed user: J. L. Richards & Associates Limited ++++++ ++++++ Sensed user: J. L. Richards & Associates Limited SERIAL&:4418403 ++++++ Surface Area (ha)= Dep. Storage (nm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS PERVIOUS (i) 00161> 00162> 00163> 00164> 00165> .12 4.67 1.00 5.00 .030 1.42 1.57 .50 244.34 00166> 00167> 00168> 00170> 00170> 00172> 00172> 00173> 00174> 00175> 00176> 00177> 00178> 00178> 00178> 00180> 00181> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 45.63 12.50 12.15 (ii) 12.50 .09 .12 1.33 23.43 25.00 .94 45.63 7.24 15.00 14.15 (ii) 15.00 .08 *TOTALS* .121 (iii) 1.333 21.969 24.999 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .00 1.46 5.17 25.00 .21 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) THE STEP (DT) SHOULD BE SMALLER OR ROUAL THAN THE STORAGE COEFFICIENT.
 (iii) PERK FLOW DOS NOT INCLUDE BASEFLOW IF ANY. 00182> 000485 000485 00055 • 001:0001 00055 • 001:0001 00055 • 0 Parte : Hawthorne Industrial Park Project Number: [20963] • 00057 • 4 Revised : January, 2009 00057 • 4 Revised : Wuchanan, E.I.T. 00055 • 4 Revised by : Bark Nuchanan, E.I.T. 00055 • 4 Revised by : Guy Forget, P.Eng. 00057 • 4 Revised by : Guy Forget, P.Eng. 00057 • 4 License # : 4418403 00059 • 4 License # : 4418403 00060 • 00061 • 00062 • 4 FILEBAAME: V:\20983.DU\ENG\SWMMYMO\20983PST.DAT • 00065 • 4 FILE DEVELOPED FOR SITE FLAN APPLCATION AND DETAILED DESIGN • 00065 • 4 FILE DEVELOPED FOR SITE FLAN APPLCATION AND DETAILED DESIGN • 00065 • 4 FILE DEVELOPED FOR SITE FLAN APPLCATION AND DETAILED DESIGN • 00065 • 4 _____ CALIE STANDHYD ! Area (ha)= 1.40 03:030 D7=2.50 ! Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 00192> | 00193> 00193> 00194> 00195> 00195> 00196> 00197> Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS PERVIOUS (i) 1.36 1.57 .51 225.63 .030 .04 4.67 1.00 00198> 5.00 00199> 00200> 00201> 00202> 00202> .030 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 45.63 7.97 12.50 12.50 11.52 (ii) 13.44 (ii) 12.50 12.50 .10 .09 00203> 00204> 00205> 00206> 00207> 00208> *TOTALS* .118 (iii) 1.333 22.881 24.999 .915 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = .12 1.33 23.43 25.00 .94 .00 1.42 5.17 00208> 00209> 00210> 00211> 00212> 00213> 00214> 25.00 00075 POST-DEVELOPMENT UNCONTROLLED CONDITIONS 000795 CALCULATION OF 4 HR 25 MM STORM EVENT 000815 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (1) CN PROCEDURG SELECTED FOR PERVIOUS LOSSES:
 (2) CN *= 81.0
 (11) TIME STEP (DT) SHOULD BE SHALLER OR EQUAL THAN THE STORES COFFICIENT.
 (111) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00084> 00085> 00086> 00087> TZERO = .00 hrs on 0 METOUT= 2 (output = METRIC) NRUN = 001 NSTORM= 0 00088> SUM 04:040 3.61 .278 1.33 21.13 .000 00228> 00229> 00230> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00100> 00101> 00102> ------00103> 001:0003----00104> ------0023/> 00239> SUM 05:050 5.01 .396 1.. 00240> 00241> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = 164.82 40.00 00256> 00257> 00258> 00258> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 45.63 7.50 7.97 (ii) 7.50 .14 4.42 4.42 42.50 41.62 (ii) 42.50 00259> 00260> 00261> 00262> 00263> 00264> 00265> 00266> 00265> 00266> 00267> 00268> 00269> 00269> 00270> .03 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = *TOTALS* .089 (iii) 1.250 22.882 24.999 .09 1.25 23.43 25.00 .00 2.00 5.17 25.00 .94 .21 00135> Max.eff.Inten.(mm/hr)= 45.63 5.37 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

004065 004075 004095 004095 004095 004105 004105 004105 004125 | CALLB STANDRYD | Area (ha)= 17.00 004125 | CALLB STANDRYD | Area (ha)= 71.00 Dir. Conn.(%)= 50.00 004134 004155 Surface Area (ha)= 12.07 4.93 004155 Surface Area (ha)= 12.07 4.93 004157 HDEP.Storage (m)= 1.57 4.67 004185 Average Slope (%)= .65 1.50 004185 Average Slope (%)= .65 1.50 004185 Average Slope (%)= .65 1.50 004195 Average Slope (%)= .65 1.50 004195 Average Slope (%)= .65 1.50 004205 Max.eff.Inten.(mm/hr)= 40.81 12.73 004225 Max.eff.Inten.(mm/hr)= 16.94 (ii) 47.55 (ii) 004225 Unit Hyd. peak (cms)= .07 .02 *TOTALS* 004225 TIME TO FEAK (hrs)= 1.42 2.00 1.455 CN* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00279> * SUB-AREA No.5
 Imperiod
 Imperiod
 Imperiod

 Surface Area
 (ha) =
 2.59

 Pep. Storag
 (m) =
 1.57

 Average Slope
 (%) =
 .61

 Length
 (m) =
 207.25

 Mannings n
 =
 .030
 PERVIOUS (i) .08 4.67 1.50 40.81 12.73 17.50 47.50 16.94 (ii) 47.35 (ii) 17.50 47.50 .07 .02 .60 .10 1.42 2.00 23.43 8.74 25.00 25.00 .94 .35 00287> 00288> 00289> 00289> 20.00
 Max.eff.Inten.(mm/hr)=
 45.63
 5.66

 over(min)
 10.00
 27.50

 Storage Coeff.(min)=
 10.37 (ii)
 26.38 (ij)

 Unit Hyd. Fpeak (min)=
 10.37 (ii)
 26.38 (ij)

 Unit Hyd. peak (min)=
 11
 .04

 PEAK FLOW (cms)=
 .24
 .00

 THME TO FEAK (hrs)=
 1.25
 1.67

 RUMOFF VOLUME (mm)=
 23.43
 5.17

 TOTAL RAINFALL (mm)=
 25.00
 25.00

 RUMOFF COEFFICIENT =
 .94
 .21
 00291> 00292> *TOTALS* .625 (iii) 1.458 16.085 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 00293> 00294> 00295> 00428> 00429> 00430> 00431> 00432> 00433> 00433> 00435> 00435> 00436> 00437> 00436> *TOTALS* .238 (iii) 1.292 22.882 00296> 24.999 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 TA D Day Structure Losses 00298> 00299> 00300> 00301> 00302> (1) (A) PROCEDURE SELECTED FOR PERVIOUS LOSSES: (N* = 81.0 Ia ~ De. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THEM THE STORAGE COEFFICIENT,

 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 24.999 .915 (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 00303> 00304> 00305> 00306> (1) CN PROCEDURE SELECTED FOR PERVICUS LOSSES: $CN^* = 81.0$ [Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 00307>
 (iii) PEAK FLOW DOES NOT INCLUDE HASEFLOW IF ANI.

 00308>
 00308>

 00310>
 001:0011

 00312> I ADD HYD (080) | ID: NHYD AREA OPEAK TPEAK R.V. DWF

 00313>
 (ha) (cms) (hrs) (mm) (cms)

 00314>
 IDI 06:060 .89 .089 1.25 22.88 .000

 00315>
 +ID2 07:070 2.66 .238 1.29 22.88 .000

 00317>
 SUM 08:080 3.55 .327 1.29 22.66 .000
 00307> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00319 00319> NOTE: PEAK FLAMS DO NOI INCLUDE DEDLACED T
 34.39
 11.54

 22.50
 55.00

 23.33
 (ii)

 54.95
 (ii)

 22.50
 55.00

 .05
 .02
 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 00456> 00456> 00457> 00459> 00460> 00461> 00461> 00462> 00463> 00464> 00465> 00465> 00466> 00466> (ha) TD1 05:050 5.01 +ID2 08:080 3.55 SUM 09:090 8.56 *TOTALS* .484 (iii) 1.542 16.085 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .45 .08 1.50 2.17 23.43 8.74 25.00 25.00 .94 .35 00326> 00327> 00328> 00328> .716 1.29 22.14 .000 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 1.0012 (ROUTE RESERVOIR | | IN>09:(090) | | OUT<10:(POND) | 00335> Requested routing time step = 1.0 min. 00336> [ROUTE RESERVOIR 00337> 00338> 00339> 00340> 00341> 00342> 00343> 00344> 00345> 00346> 00347> 00348> 00349> 00350> 00351> 00352> 00483> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 Odd45
 North Files Fi
 ROUTING RESULTS
 AREA
 OPEAK
 TPEAK
 R.V.

 (ha)
 (cms)
 (hrs)
 (mm)

 INFLOW >09: (050)
 8.56
 .716
 1.292
 22.143

 OUTFLOW<10: (FOND)</td>
 8.56
 .032
 3.875
 22.143
 00484> 00353> 00354> 00355> 00355> PEAK FLOW REDUCTION [Qout/Qin](%)= 4.470 TIME SHIFT OF PEAK FLOW (min)= 155.00 MAXIMUM STORAGE USED (ha.m.)=.1611E+00 (cms) .000 .000 00357> 00358> .000 00494> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00495> 00363> 00364> * * SUB-AREA No.1

 005500 * SUB-AREA No.4

 005502 | CALLE STANDHYD | Area (ha)= 12.20

 005503 | 07:HIPO7 DT= 2.50 | Total Imp(8)= 71.00 Dir. Conn.(8)= 50.00

 005505 | 07:HIPO7 DT= 2.50 | Total Imp(8)= 71.00 Dir. Conn.(8)= 50.00

 005505 | 07:HIPO7 DT= 2.50 | Total Imp(8)= 71.00 Dir. Conn.(8)= 50.00

 005505 | 07:HIPO7 DT= 2.50 | Total Imp(8)= 71.00 Dir. Conn.(8)= 50.00

 005505 | 005505 | Dep. Storage (mm) = 1.57 4.60

 005505 | Length (m) = 210.00 100.00

 005505 | Length (m) = .030 .250

 00510 | Mannings n = .030 .250

 00511 | (7.45) | (7.45) | 45.63 14.15

 IMPERVIOUS
 PERVIOUS
 Dir. Conn. (%)=
 50.00

 Surface Area
 (ha)=
 14.13
 5.77
 Jack
 00370> 00371> 00372> 00373> 00374> 00375> 00376> 00376> 00377> 00378> 00378> 00379> 00380> 5.77 4.67 1.50 100.00 .250 00508> 00509> 00510> 00511> 00512> 45.63 14.15 10.00 40.00 10.03 (ii) 39.18 (ii) 10.00 40.00 .11 .03 34.39 11.90 22.50 52.50 21.64 (ii) 52.88 (ii) 22.50 52.50 .05 .02 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 00512> 00513> 00514> 00515> 00516> 00517> over (min) Storage Coeff. (min) Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 00381> 00382> *TOTALS* .642 (iii) 1.542 16.085 24.999 .643 *TOTALS* .585 (iii) 1.292 16.085 24.999 .643 PEAK FLOW (cms) = TIME TO FEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT =
 .57
 .08

 1.29
 1.88

 23.43
 8.74

 25.00
 25.00

 .94
 .35
 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .50 .11 1.50 2.13 23.43 8.74 25.00 25.00 .94 .35 00517> 00518> 00519> 00520> 00521> 00522> 00522> 00383> 00384> 00385> 00386> 00386> 00387> 00388> 00389> 00390> 00390> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 00523> 00524> 00525> 00526> 00527> 00528> CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SWALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. (i) IN FROCEDURE SELECTED FOR FERVIOUS DOSESS:
 CN* = 81.0 I a = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFTCIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00392> 00394> 00395> 00395> 00396> 00397> 005285 -----00530> 001:0015--00531> 001:0021-----00398> 00400> 00401> 00402> 00403> SUM 02:HIP02 28.46 . 655 1.54 17.91 .000 00405> NOTE: PEAK FLOWS DO NOT INCLUDE BASEPLOWS IF ANY.

(//////////////////////////////////////	J. L. RICHAIDS & ASSOCIATES LIMIT
00541> PEAK FLOW (cms)= .077 (i) 00542> TIME TO PEAK (hrs)= 1.375	00676> 01:010 DT= 2.50 Total Imp(%)= 84.00 Dir. Conn.(%)= 84.00
00543> RUNOFF VOLUME (mm) = 6.343 00544> TOTAL RAINFALL (mm) = 24.999	00678> IMPERVIOUS PERVIOUS (i) 00679> Surface Area (ha)= 1.74 .33
00545> RUNOFF COEFFICIENT = .254 00545> 00547> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	00680> Dep. Storage (mm)= 1.57 4.67 00681> Average Slope (%)= .52 1.00
00548> 00549>	00662> Length (m) = 204.72 20.00 00663> Mannings n = .030 .250 00664>
	00685> Max.eff.Inten.(mm/hr)= 76.81 11.88 00686> over (min) 10.00 22.50
00552> ADD HYD (HIP08) ID: NHYD AREA OPEAK TPEAK R.V. DWF 00553>	00687> Storage Coeff. (min)= 8.77 (ii) 22.21 (ii) 00688> Unit Hyd. Tpeak (min)= 10.00 22.50 00689> Unit Hyd. peak (min)= 12 05
00555> +ID2 07:HIP07 12.20 .585 1.29 16.08 .000 00556> +ID3 08:Pond-B 4.00 .077 1.38 6.34 .000	00689> Unit Hyd. peak (cms)= .12 .05 00691> FEAK FLOW (cms)= .24 .01 .245 (iii)
00557> ===================================	00692> TIME TO PEAK (hrs)= 1.08 1.38 1.083 00693> RUNOFF VOLUME (mm)= 30.29 8.52 26.807
00559> 00560> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00561>	00694> TOTAL RAINFALL (mm) = 31.86 31.86 31.860 00695> RUNOFF COEFFICIENT = .95 .27 .841 00696>
00562>	00697> (i) CN PROCEDURE SELECTED FOR PREVIOUS LOSSES
00564>	00699> CN* = 81.0 Ia = Dep. Storage (Above) 00699> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 00700> THAN THE STORAGE COEFFICIENT.
00565> TN>09:(HIP08) ======== 00567> OUT<10:(HIP-PO) =========== 00568>	00701> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00702> 00703>
00569> (cms) (ha.m.) (cms) (ha.m.) 00570>	00704> 001:0005 00705> *
00571> .048 .5740E-01 .937 .2501E+01 00572> .054 .2434E+00 1.262 .2798E+01	00706> * SUB-AREA NO.2 00707>
00573> .059 .58348+00 1.404 .31018+01 00574> .062 .84008+00 1.532 .34108+01 00575> .064 .11028+01 1.650 .37248+01	00708> CALIE STANDHYD Area (ha)= 1.54 00709> 02:020 DT= 2.50 Total Imp(%)= 92.00 Dir. Conn.(%)= 92.00 00710>
00576> .147 .1370E+01 2.409 .4044E+01 00577> .280 .1644E+01 3.689 .4370E+01	00711> IMPERVIOUS PERVIOUS (i) 00712> Surface Area (ha)= 1.42 .12
00578> .472 .1924E+01 .000 .0000E+00 00579> 00580> ROUTING RESULTS AREA QPEAK TPEAK R.V.	00/13> Dep. Storage (mm)= 1.57 4.67 00714> Average Slope (%)= .50 1.00
00581> (ha) (cms) (hrs) (mm) 00582> INFLOW >09: (HIP08) 77.26 2.227 1.458 16.251	00715> Length (m)= 244.34 5.00 00716> Mannings n = .030 .030 00717>
00583> OUTFLOW<10: (HIP-PO) 77.26 .063 5.431 16.251 00584>	00718> Max.eff.Inten.(mm/hr)= 76.81 15.07 00719> over (min) 10.00 12.50
00585> PEAK FLOW REDUCTION (Qout/Qin)(%) = 2.839 00586> TIME SHIFT OF PEAK FLOW (min) = 2.88.33 00587> MAXIMUM STORAGE USED (ha.m.) = 1.001E+01	00720> Storage Coeff. (min)= 9.87 (ii) 11.36 (ii) 00721> Unit Hyd. Tpeak (min)= 10.00 12.50 00722> Unit Hyd. peak (min)= 11 10
00588> 00589>	00722> Unit Hyd. peak (cms)= .11 .10 00723> *TOTALS* 00724> PEAK FLOW (cms)= .19 .00 .192 (iii)
00590> 001:002400590> *	00725> TIME TO PEAK (hrs)= 1.08 1.17 1.083 00726> RUNOFF VOLUME (mm)= 30.29 8.52 28.548
00592> *SUB-AREA No. 6 00593> 00594> DESIGN NASHYD Area (ha)= 2.70 Curve Number (CN)=76.00	00727> TOTAL RAINFALL (mm) = 31.86 31.86 31.86 00728> RUNOFF COEFFICIENT = .95 .27 .896 00729>
005959 01:HS DI= 2.50 14 (mm)= 4.670 # Of Linear Res.(N)= 3.00 00596> U.H. Tp(hrs)= .800	00730> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
00597> 00598> Unit Hyd Opeak (cms)= 129 00599>	00733> (11) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 00733> THAN THE STORAGE COEFFICIENT.
006605 PEAK FLOW (cms)= .013 (i) 0066015 TIME TO PEAK (hrs)= 2.292	00734> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00735>
00602> RUNOFF VOLUME (mm) = 4.110 00603> TOTAL RAINFALL (mm) = 24.999	00737> 001:0006 00738> *
00604> RUNOFF COEFFICIENT = .164 00605> 00606> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	00739> * SUB-AREA No.3 00740>
00607> 00608>	00741> CALIB STANDHYD Area (ha)= 1.40 00742> 03:030 DT= 2.50 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 00743>
	00744> IMPERVIOUS PERVIOUS (1) 00745> Surface Area (ha)= 1.36 .04
00611> ADD HYD (Ultima) ID: NHYD AREA QPEAK TPEAK R.V. DWF 00612> (ha) (cms) (hrs) (mm) (cms) 00613> ID1 10:HIP-PO 77.26 .063 5.43 16.25 .000	00746> Dep. Storage (mm)= 1.57 4.67 00747> Average Slope (%)= .51 1.00 00748> Length (m)= 225.63 5.00
00614> +ID2 01:A3 2.70 .013 2.29 4.11 .000 00615>	00748> Length (m)= 225.63 5.00 00749> Mannings n = .030 .030 00750>
00615> SUM 02:Ultima 79.96 .073 2.50 15.84 .000 00617> 00618> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	00751> Max.eff.Inten.(mm/hr)= 76.81 16.59 00752> over (min) 10.00 10.00
00619> 00620>	00753> Storage Coeff. (min)= 9.35 (ii) 10.79 (ii) 00754> Unit Hyd. Tpeak (min)= 10.00 10.00 00755> Unit Hyd. peak (cms)= .12 .11
00621> 001:0026	00756> *TOTALS* 00757> PEAK FLOW (cms)= 18 .00 .186 (iii)
00623> * CALCULATION OF 3HR - 1:2 YEAR STORM EVENT * 00623>	00758> TIME TO PEAK (hrs)= 1.08 1.13 1.083 00759> RUNOFF VOLUME (mm)= 30.29 8.52 29.637
00626> START Project dir.: V:\20983.DU\ENG\FINALS~1\SWMHYM~1\ 00627> Rainfall dir : V:\20983.DU\ENG\FINALS~1\SWMHYM~1\	00761> RUNOFF COEFFICIENT = .95 .27 .930 00762>
00528> T2ERO = .00 hrs on 0 00529> METOUT= 2 (output = METRIC) 00530> NRUN = 001	00763> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 00764> CN* = 81.0 Ia = Dep. Storage (Above)
00631> NSTORM= 0 00632>	00765> (ii) TIME STEP (DT) SHOULD BE SMALLËR OR EQUAL 00766> THAN THE STORAGE COEFFICIENT. 00767> (iii) PEAK FLOW DOES NOT INCLUDE BASELOW IF ANY.
00633> 001:0002 00634>	00768> 00769>
00635> CHICAGO STORM IDF curve parameters: A= 732.951 00636> Ptotal= 31.86 mm B= 6.199 00637> C= .810	00770> 001:0007 00771>
00638> used in: INTENSITY = A / (t + B)^C 00639>	00773> (ha) (cms) (hrs) (nm) (cms) 00774> IDI 01:010 2,07 .245 1.08 26.81 .000
00640> Duration of storm = 3.00 hrs 00641> Storm time step = 10.00 min 00642> Time to peak ratio = .33	00775> +ID2 02:020 1.54 .192 1.08 28.55 .000 00776>
00642> Time to peak fails = .33 00643> TIME RAIN	00777> SUM 04:040 3.61 .436 1.08 27.55 .000 00778> 00779> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
00645> hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr 00646> .17 2.815 1.00 76.805 1.83 5.095 2.67 2.684	00780> 00781>
00647> .33 3.498 1.17 24.079 2.00 4.291 2.83 2.463 00648> .50 4.687 1.33 12.364 2.17 3.718 3.00 2.279	00782> 001:0008
00650> .83 18.209 1.67 6.303 2.50 2.953 00651>	007845 ADD HYD (050) ID: NHYD AREA QFEAK TPEAK R.V. DWF 007855
00652>	00787> +ID2 04:040 3.61 .436 1.08 27.55 .000 00788>
00654> 00655> DEFAULT VALUES Filename: V:\20983.DU\ENG\FINALS-1\SWMHYM-1\ORGA.VAL 00556> ICASEdv = 1 (read and print data)	00799> SUM 05:050 5.01 .623 1.08 28.13 .000 00790> 00791> NOTE: PERK FLOWS DO NOT INCLUDE RESERVICES TO ANY
00657> FileTitle= ENTER YOUR COMMENTS ON THIS LINE AND THE NEXT ONE 00658> PARAMETER VALUES MUST BE ENTERD AFTER COUMMN 60	00791> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00792> 00793>
00659> Horton's infiltration equation parameters: 00660> [Fo= 50.00 mm/hr] [Fc= 7.50 mm/hr] [DCAY= 2.00 /hr] [F= .00 mm]	00794> 001:0009
00661> Parameters for PERVIOUS surfaces in STANDHYD: 00662> [LAper= 4.67 mm] [LGP=40.00 m] (MNP= .250] 00663> Parameters for IMPERVIOUS surfaces in STANDHYD:	00796> * SUB-AREA No.4 00797>
00664> [IAimp= 1.57 mm] [CLI= 1.50] [MNI= .035} 00665> Parameters used in NASHYD:	00795> CALIE STANDHYD Area (ha)= .89 00795> 06:060 DT=2.50 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 00800>
00666> [Ia= 4.67 mm] [N= 3.00] 00667>	00801> IMPERVIOUS PERVIOUS (i) 00802> Surface Area (ha)= .86 .03
00668> 001:0004	00803> Dep. Storage (mm) = 1.57 4.67 00804> Average Slope (%) = .33 .70 00805> Length (m) = 164.82 40.00
00671> ************************************	00805> Length (m)= 164.82 40.00 00806> Mannings n = .030 .250 00807>
00673> * SUB-AREA No.1 006745	00805 Max.eff.Inten.(mm/hr)= 76.81 10.24 00805 over [min] 7.50 30.00 008105 Storage Coeff. [min]= 6.47 (ii) 30.53 (ii)

Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = 7.50 30.00 00946> 001:0015-----00812> 00813> 00813> 00814> 00815> 00816> 00816> 00817> 00818> *TOTALS* .139 (iii) 1.042 29.637 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = .14 1.04 30.29 31.86 .95 .00 1.54 8.52 31.86 31.860 00953> 00954> 00955> 00955> 00956> 00819> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00820> 00821> (i) The free blue belocied for fevelous losses: $Ct^* = 81.0$ Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00822>
00823>
00824> 00957> 00825> 001:0010-----00828> 00827> 00828> 00829> 00830> 00831> * * SUB-AREA No.5
 SUG-ARLA RO.3

 I CALLE STANDHYD
 Area (ha) = 2.66

 (07:07) DT= 2.50
 Total Imp(\$) = 97.00

 Dir. Conn.(\$) = 97.00

 Surface Area (ha) = 2.58
 .08

 Dep. Scorage (mm) = 1.57
 4.67

 Average Slope (\$) = 6.1.50
 1.50

 Lempth
 (m) = 207.25
 20.00

 Mamnings n
 = 0.30
 .250

 Surface Area (ha)= Dep. Storage (nua)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS 00965> 00966> 00967> 00968> 00969> PERVIOUS (i) 12.07 1.57 .65 450.00 .030 4.93 4.67 1.50 100.00 00832> 00833> 00834> 00835> 00836> 00970> 00971> 00972> 00973> 00974> .250
 59.23
 25.04

 15.00
 37.50

 14.60
 (ii)
 37.80

 15.00
 37.80

 .08
 .03

 .91
 .19

 1.17
 1.63

 30.29
 13.34

 31.86
 .95
 00837> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 00839> 00840> 00841> 00842> 00843>
 76.81
 12.71

 7.50
 20.00

 8.42
 (ii)
 20.00

 7.50
 20.00

 .14
 .06
 00974> 00975> 00976> 00977> 00978> 00979> 00980> 00981> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= *TOTALS* .978 (iii) 1.167 21.814 31.860 .685 PEAK FLOW (CRAS) = TIME TO PEAK (hrs) = RUNOFF VOLUME [mm] = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 00844> 00845> 00846> 00846> 00847> 00848> *TOTALS* .379 (iii) 1.042 29.637 31.860 .930 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .38 .00 1.04 1.33 30.29 6.52 31.86 31.86 .95 .27 00982> 00983> 00984> 00985> 00986> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 01.0 I = Dep. Storage (Above)
 (ii) THE STEP (DT) SHOULD BE SWALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PERAFLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 00849> 00850> 00851> 00852> 00988> 00988> 00989> 00990> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 (ii) TIME STEP (DT) HOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00853> 00853> 00854> 00855> 00856> 00857> 00858> _____ -----00859> 00860> 001:0011-----4.52 4.67 1.50 100.00 .250 00865>
00867>
00868>
00869>
 Image: Constraint of the state of NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01004> 01005> 01006> 01007> Max.eff.Inten.(mm/hr)= over {min} Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 50.44 22.17 50.44 22.17 20.00 45.00 20.01 (ii) 44.37 (ii) 20.00 .06 .03 .69 .16 1.25 1.79 30.29 13.34 31.86 31.86 .95 .42
 AREA
 OPEAK
 TPEAK
 R.V.
 DWF

 (ha)
 (cms)
 (hrs)
 (mm)
 (cms)

 5.01
 .623
 1.08
 28.13
 .000

 3.55
 .518
 1.04
 29.64
 .000

 8.56
 1.118
 1.08
 28.76
 .000
 01007> 01008> 01009> 01010> 01011> 01012> 01013> *TOTALS* .753 (iii) 1.292 21.814 31.860 .685 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 01013> 01014> 01015> 01016> 01017> 01018> 01019> 01020> 01021> 01022> 01023> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00881> 00881> NOTE: 00882> 00883> -----00884> 001:0013-00885> ----- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES; CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STRP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 1:0013-----.
 CUTLFOW STORAGE TABLE

 FILOW STORAGE I OUTFLOW STORAGE

 (na.m.) I (cms) (ha.m.)

 000 .0000E+00 I .593 .6521E+00

 .008 .6560E-01 I .654 .6531E+00

 .017 .1311E+00 I .797 .7391E+00

 .233 .3971E+00 I .304 .1357E+00

 .337 .4731E+00 I .180 .1004E+01

 .455 .5491E+00 I .587 .1004E+01

 .5871E+00 I .000 .0000E+00
 01024> 001:0018-----(cms) .000 .008 .017 .093 00892> 00893> 00894> 00895> 00896> 00896> 00897> 00898> 00899> 00900> 00901> 00902> 01032> 01033> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01034>
 ROUTING RESULTS
 AREA
 OPEAK
 TPEAK
 R.V.

 INFLOW >09:
 (090)
 8.56
 (ina)
 (ina)
 (ina)

 OUTFLOW<10:</td>
 (POND)
 8.56
 .056
 3.000
 28.754

 PERK
 FLOW
 REDUCTION
 (out/Qin) (%)=
 5.030

 TIME SHIFT OF PEAK FLOW
 (min)=
 115.00

 MAXIMUM STORAGE
 USED
 (ha.m.)=.2095E+00
 01035> 01036> 001:0019-----00902> 00903> 00904> 00905> 00906> 00906> 01047> -----01048> 001:0020-----01057> 01058> 01059> 01060> 01061> 01062> 01063>
 54.21
 23.06

 17.50
 42.50

 18.04
 (ii)
 42.02

 17.50
 42.50

 .06
 .03

 .95
 .21

 1.21
 1.71

 30.29
 13.34

 1.86
 31.86

 .95
 .42
 76.81 29.02 7.80 30.00 8.15 (ii) 30.01 (ii) 7.80 30.00 .14 .04 .91 .16 1.04 1.50 30.29 13.34 31.86 31.86 .95 .42 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 01064> 01065> 01066> 01066> 01067> 01069> 01070> 01071> 01072> 01073> 01074> 01075> 01076> 01077> 01076> 010779> 01078> 01079> 01064> PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nm) = TOTAL RAINFALL (nm) = RUNOFF COEFFICIENT = *TOTALS* .941 (iii) 1.042 21.814 31.860 00938> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN*= 81.0 Ia = Dep. Storage (Above)
 IIB STEP (DT) SHOULD BE SMALLER OR BUDL
 THAN THE STORAGE COEPFICIENT.
 (ii) PERK FLOW DOE NOT INCLUDE BASEFICOW IF ANY. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 00940> 00941> 00942> 00943> (i) AN INCLUGAD SELECTED FOR FARINGS DESC.
 (c) ** = 81.0 II * DEP. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00945> _____

01081> 001:0021-----[Ia= 4.67 mm] [N= 3.00] 01082: SUB-AREA No.5 01083> 01084> | DESIGN NASHYD | Area (ha)= 4.00 Curve Number (CN)=85.00 | 08:Pond-5 DT= 2.50 | Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 ------ U.H. Tp(hrs)= .170 01085> 01086> 01087> 01068> Unit Hyd Qpeak (cms)= .899 01089; 01090:01091:01091:01092:000000
 PEAK FLOW
 (cms) =
 .145 (i)

 TIME TO PEAK
 (hrs) =
 1.167

 RUNOFF VOLUME
 (mm) =
 10.266

 TOTAL RAINFALL
 (mm) =
 31.860

 RUNOFF COEFFICIENT
 .322
 Surface Area (ha) = Dep. Storage (mm) = Average Slope (%) = Length (m) = Mannings n = 01093> 01094> 01095>
 Close
 RUNOFF CODEFECT

 01095
 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 01095
 (1) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 01095
 (1) 001:0022

 01100
 (1) 001:0022

 011015
 (1) 101: MIND

 01102
 (1) 101: MIND

 01103
 (1) 102: MIPO

 011045
 (1) 102: Grash

 011055
 + 1D2 07: MIPO7

 01105
 + 1D2 07: MIPO7

 011065
 + 1D3 00: Pond-18

 01107
 (1) 102: T10.27

 0010105
 SUM 09: HIPO8

 01108
 SUM 09: HIPO8

 01108
 SUM 09: HIPO8

 01108
 TNC INCLUDE BASEFLOWS IF ANY.
 01232> 01233> 01234> 01235> 01235> 01236> 204.72 20.00 .250 Max.eff.Inten.(nmm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 104.19 7.50 7.76 (ii) 7.50 .15 24.26 17.50 17.86 (ii) 17.50 01237> 01238> 01230> 01239> 01240> 01241> 01242> .06 PEAK FLOW (cms) = TIME TO PEAK (hrs) = TOTAL RAINFALL (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = *TOTALS* .362 (iii) 1.042 36.745 42.514 .36 1.04 40.94 42.51 .96 .01 1.25 14.70 42.51 .35 01243> 01243> 01244> 01245> 01246> 01246> 01247> 01248> 01111> 01112> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) THE STEP (DT) SHOULD BE SMALLER OR FQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01248> 01249> 01250> 01251> 01252> 01253> Requested routing time step = 1.0 min. 01118> 01119> 01120> 01121> STORAGE (ha.m.) .0000E+00 .5740E-01 .2434E+00 STORAGE
 STORAGE
 OUTFLOW

 (cms)
 (ha.m.)
 (cms)

 .000
 .00002+00
 .724

 .046
 .57402+01
 .937

 .054
 .24348+00
 1.262

 .055
 .58348+00
 1.404

 .064
 .1022+01
 1.532

 .064
 .1022+01
 1.532

 .24348+10
 .3689
 .472

 .1924E+01
 .000
 .000
 (cms) .000 .048 .054 (ha.m.) .2210E+01 .2501E+01 .2798E+01 .3101E+01 01122 CALIB STANDHYD | Area (ha)= 1.54 02:020 DT= 2.50 | Total Imp(\$)= 92.00 Dir. Conn.(\$)= 92.00 01123> 01123> 01124> 01125> 01126> .3101E+01 .3410E+01 .3724E+01 .4044E+01 .4370E+01 .0000E+00 Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS PERVIOUS (i) 01261> 01262> 01263> 01264> 01127> .12 4.67 1.00 5.00 .030 1.42 1.57 .50 01128> 01129> 01130> 01131> 01132> ROUTING RESULTS
 ROUTING RESULTS
 AREA
 OPEAK
 TPEAK

 (ha)
 (cms)
 (hrs)
 (hrs)

 INFLOW >09:
 (HIPOB)
 77.26
 3.542
 1.208

 OUTFLOW<10:</td>
 (HIP-PO)
 77.26
 .146
 4.014
 R.V. 01265> 244.34 (mm) 21,985 21,985 01266> 01267> 01268> 01270> 01271> 01271> 01272> 01273> 01274> 01275> 01275> 01276> 01277> 01277> 01278> 01278> 01279> 01280> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 104.19 31.02 7.50 10.00 8.73 (ii) 9.85 (ii) 7.50 10.00 .14 .11 .28 .01 01133> 01134> PEAK FLOW REDUCTION [Qout/Qin](%)= 4.179 TIME SHIFT OF PEAK FLOW (min)= 160.33 MAXIMUM STORAGE USED (ha.m.)=.1373E+01 01135> 01136> 01137> *TOTALS* .203 (iii) 1.042 30.645 42.514 .914 01138: PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (run) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .28 1.04 40.94 42.51 .96 .01 1.13 14.70 42.51 .35 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASSEFLOW IF ANY. 01280> 01281> 01282> 01283> 01284> 01285> 01285> PEAK FLOW (cms) = .024 (i) TIME TO PEAK (hrs) = 2.083 RUNOFF VOLUME (nm) = 6.883 TOTAL RAINFALL (nm) = 31.660 RUNOFF COEFFICIENT = .216 01150> 01151> 01152> 01152> 01153> 01154> 01155> 01287> 01288> 001:0006-----

 1288 *

 01289 *

 01289 *

 01290 *

 01291 *

 01292 !

 03:030 DT= 2.50 !

 Total Imp(%) =

 01293 *

 01293 *

 01293 *

 01293 *

 01293 *

 01293 *

 01293 *

 01293 *

 01293 *

 01293 *

 01293 *

 01295 *

 Surface Area (ha) =

 1.57

 01295 *

 01295 *

 10296 *

 01297 *

 Average Slope (%) =

 101298 *

 Length (m) =

 01298 *

 101299 *

 Mannings n =

 0300

 01300 *

 * SUB-AREA No.3 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01156: 01157> 01158> -----01159> 001:0025---125-----
 America
 I.D:
 NHYD
 AREA
 OPEAK
 TPEAK
 R.V.
 DWF

 TDI
 10:HIP-DO
 (Da)
 (cms)
 (hm)
 (cms)
 (cms)</ 01160> 01160/ LDD HYD (Ultima) | ID: NHYD AREA 01162> 01163> 01163> 01164> 01165> 01299> 01300> 01301> 01302> 01303> .030 104.19 31.02 7.50 10.00 8.28 (ii) 9.39 (ii) 7.50 10.00 .14 .12 .27 .00 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 01166> 01167> 0116/> 01169> 01170> 01170> 0110026-01172> 0110026-01172> 01172> 0110026-01172> 0110026-01172> 0110026-01172> ------01304> 01305> 01305> 01306> 01307> 01308> 01310> 01311> 01311> 01312> 01314> 01314> PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = *TOTALS* .274 (iii) 1.042 40.157 42.514 .27 1.04 40.94 42.51 .96 .00 1.13 14.70 42.51 .35 .944 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia ~ Dep. Storage (Above) (ii) THE STEP (DT) SHOULD BE SALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFICOW IF ANY. 01316> 01317> 01318> 01319>
 AREA
 QPEAK
 TPEAK
 R.V.
 DWF

 (ha)
 (cms)
 (hrs)
 (mm)
 (cms)

 2.07
 .362
 1.04
 36.75
 .000

 1.54
 .283
 1.04
 36.84
 .000
 01189> Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = .33 01190> 01191> 01192> 01193> 01193> 01326> 01327> SUM 04:040 3.61 .645 1.04 37.64 .000
 TIME
 RAIN
 <th 01328> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01330> 01331> -----TIME RAIN hrs mm/hr 2.67 3.510 2.83 3.220 3.00 2.978 01195> 01196> 01197> 01198> 01199> 01200> 01201> 01339> SUM 05:050 5.01 .918 1. 01340> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01342> 012085 012075 012085 012095 012105 012115 012125 PARAMETER VALUES MUST BE ENTERD AFTER OADS and and and the approximation of the mean one of the second s 01343> -01344> 001:0009-----01343> 001:0009------01345> * SUB-AREA No.4 01347> ------01348> | CALIE STANDHYD | Area (ha)= .89 01349> | 05:060 DT= 2.50 | Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 01350> ------01213> 01214> 01215>

013515 (ha) = (mm) = (%) = (m) = = IMPERVIOUS PERVIOUS (i) 01486> 01487> 01488> 01489> 01499> 01490> 01491> 01492> 01493> 01494> TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 01351> 01352> 01353> 01354> 01355> 01355> 01356> 01357> 42.51 .96 42.51 42.514 Surface Area .86 1.57 .93 164.82 .030 4.67 Surface Area Dep. Storage Average Slope Length Mannings n (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 40.00
 04.19
 20.32

 5.00
 25.00

 5.72
 (ii)

 5.00
 25.00

 .00
 25.00

 .00
 .05
 01358> 01359> 01360> 01361> 01362> Max.eff.Inten.(mm/hr)= 104.19 over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= *TOTALS* .205 (iii) 1.000 40.157 42.514 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 01363> .20 . 00 01364> 01365> 01366> 01367> 01368> 1.00 40.94 42.51 .96 1.38 14.70 42.51 .35 .000 01503> 01504> 01505> 01506> .000 01369> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES;
 CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01370> 01371> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01372> 01373> 01374> 01507> 01507> -----01508> 001:0016-----01509> * 01510> * SUB-AREA No.2 01511> -----01375:
 IMPERVIOUS
 PERVIOUS
 PERVIOUS
 (i)

 Surface Area
 (ha)=
 12.07
 4.93

 Dep. Storage
 (ma)=
 1.57
 4.67

 Average Storage
 (b)=
 .65
 1.50

 Length
 (m)=
 450.00
 100.00

 Mannings n
 =
 .030
 .250
 01380> | CALIB STANDHYD | Area (ha)= 2.66 | 07:070 DT= 2.50 | Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 01381> 01383> 01384> 01385>
 IMPERVIOUS
 PERVICUS
 (1)

 Surface Area
 (ha) =
 2.58
 .08

 Dep. Storage
 (mm) =
 1.57
 4.67

 Average Slope
 (%) =
 .61
 1.50

 Length
 (m) =
 207.25
 20.00

 Mannings n
 =
 .030
 .250
 01519> 01520> 01522> 01522> 01522> 01523> 01386> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=
 89.76
 47.48

 12.50
 30.00

 12.36 (i1)
 30.32 (i1)

 12.50
 30.00

 .09
 .04
 01387> 01388> 01389> 01390> 01391> 01392> 01524> 01525> 104.19 24.26 7.50 17.50 7.45 (ii) 16.40 (ii) 7.50 17.50 .15 .07 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 01526> 01527> 01528> *TOTALS* 1.504 (iii) 1.167 31.126 42.514 .732 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .37 1.46 21.31 42.51 .50 01393> 01394> 01395> 01395> 01396> 01397> 1.36 1.13 40.94 42.51 .96 01528> 01529> 01530> 01531> 01532> 01533> 01534> 01535> 01536> 01537> 01538> 01538> *TOTALS* .538 (iii) 1.042 40.157 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .54 1.04 40.94 42.51 .96 .00 01398> 01399> 01400> 01401> 01402> 1.25 14.70 42.51 .35 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 01.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SNOULD BE SMALLER OR REQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 42.514 (i) CN PROCEDURE SELECTED POR PERVIOUS LOSSES:
 (i) CN = 01.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01403> 01404> 01405> 01405> 01406> 01407> 01541> 001:001/------01542> * SUB-AREA No.3 01545> | CALLE STANDHYD | Area (ha]= 15.60 01545> | CALLE STANDHYD | Area (ha]= 15.60 01545> | Od: HIE04 DJ- 2.50 | Total Imp(§)= 71.00 Dir. Conn.(§)= 50.00 01547 ------IMPERVIOUS PERVIOUS (i) 01550> Dup. Storage (ma)= 1.09 4.52 01550> Dup. Storage (ma)= 1.57 4.67 Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = 11.08 1.57 .50 01414> 01415> 01416> 01417> 01417> 01418> 01419> 4.52 4.67 1.50 SUM 08:080 3.55 .733 1.04 40.16 01551> .000 01552> 01553> 01554> 01555> 600.00 100.00 .030
 NOTE:
 Fast

 01413>
 NOTE:
 Fast

 01423>
 001:0012
 Image: Strain S NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 73.27 42.65 17.50 35.00 17.24 (ii) 35.98 (ii) 17.50 35.00 .07 .03 Max.eff.Inten.(nm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 01556> 01557> 01558> 01559> 01560> 01561> *TOTALS* 1.176 (iii) 1.250 31.126 42.514 .732 .30 1.54 21.31 42.51 .50 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 1.03 1.21 40.94 42.51 _96 01562> 01563> 01564> 01565> 01566> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01432> 01433> -----01434> 001:0013-01435> -----01567> 01568> 01569> 01570> 01571> 01572> Requested routing time step = 1.0 min.
 OUTLEON
 STORAGE
 TABLE

 OUTFLOW
 STORAGE
 OUTLEON
 STORAGE

 OUTFLOW
 STORAGE
 OUTLOW
 STORAGE

 (ms)
 (ha.m.)
 (cms)
 (ha.m.)

 .000
 000008+00
 .593
 .625128+00

 .001
 .00008+00
 .593
 .625128+00

 .003
 .283128+00
 .950
 .82748+00

 .233
 .397128+00
 1.380
 .100428+01

 .465
 .59128+00
 2.577
 .109228+01

 .531
 .587128+00
 .000
 .000028+00

 01572>

 01573>

 01574>

 01575>

 01575>

 01575>

 01575>

 01575>

 01575>

 01575>

 01575>

 01575>

 01576>

 01576>

 01577>

 01578>

 01579>

 10103:HIP03

 01570>

 01570>

 01570>

 01570>

 01570>

 01570>

 01570>

 01570>

 01570>

 01570>

 01570>

 01570>

 01570>

 01580>

 01581>

 SUM 05:HIP05

 32.60

 2.621

 1.17

 01581>
 01441> 01442> 01443> 01445> 01445> 01446> 01446> 01446> 01446> 01447> 01448> 01450> (cms) .000 .000 UISEI> SUM USINIFUS UISE2> DISE2> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. .000
 AREA
 QPEAK
 TPEAK

 (ha)
 (cms)
 (hrs)

 8.56
 1.651
 1.042

 8.56
 .089
 2.625
 ROUTING RESULTS TPEAK R.V. (mm) 39.096 39.093 ------014525 INFLOW >09: (090) OUTFLOW<10: (POND) 01452> 01453> 01454> 01455> 01455> 01456> 01457>
 PEAK
 FLOW
 REDUCTION
 [Qout/Qin]
 (%) =
 5.413

 TIME
 SHIFT OF PEAK
 FLOW
 (min) =
 95.00

 MAXIMUM
 STORAGE
 USED
 (ha.m.) =
 2.758E+00
 014585 015965 015975 015975 015975 015975 015985 015985 015985 015985 015985 016025 016025 016025 016025 016035 016035 016035 01605 016055 01459 Surface Area (ha) = Dep. Storage (mm) = Average Slope (%) = Length (%) = Mannings n = 8.66 1.57 .70 210.00 .030 3.54 4.67 01607> 016009> 01610> 01611> 01612> 100.00 01475> 01476> 01477> 01478> 01479> 01479> 01480> 01481> 01481> 42.65 35.00 34.18 (ii) 35.00 .03 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 104.19 7.50 7.21 (ii) 7.50 .15 Max, eff, Inten, (mm/hr) = 80.14 52.96 25.00 24.40 (ii) 25.00 over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 15.00 15.43 (ii) 15.00 .07 01613> 01613> 01614> 01615> 01616> 01617> 01618> .05 *TOTALS* 1.572 (iii) 1.208 31.126 *TOTAL5* 1.375 (iii) 1.042 31.126 PEAK FLOW TIME TO PEAK RUNOFF VOLUME 1.41 1.17 40.94 .40 1.54 21.31 PEAK FLOW TIME TO PEAK RUNOFF VOLUME (cms)= (hrs)= (mm)= 01483 (cms) = 1.28 .31 01484> 01485> (hrs) = (mm) = 01619> 40.94 21.31

J. L. Richards & Associates Limited

Page 5

J. L. Richards & Associates Limited

01621> TOTAL RAINFALL (mma) = 42.51 RUNOFF COEFFICIENT = .96 42.51 42.514 01622> 01623> 01623> 01624> 01625> 01625> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SWALLER OR EQUAL
THAN THE STORAGE COEFFICIENT.
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01627> 01628> 01629> 01630> -----01631> 001:00 21-----01632> * 01632> * 01633> *SUB-AREA No.5 Unit Hyd Qpeak (cms)= .899 01639> 01640> 01641> 01642> 01643>
 PEAK FLOW
 (cms)=
 .260 (i)

 TIME TO PEAK
 (hrs)=
 1.167

 RUNOFF VOLUME
 (mm)=
 17.325

 TOTAL RAINFALL
 (mm)=
 42.514

 RUNOFF COEFFICIENT
 =
 408
 01643> 01644> 01645> 01646> 01647> 01648> (i) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01781> 01782> 01783> 01784> 01785> 01785> 01786> 01787> 122.14 34 7.50 15 7.28 (ii) 16 7.50 15 .15 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 34.69 U170--01785-01785-U1785-U1785-U1785-U1787-U1789-U17197-01789-U1797-01797 15.00 16.04 (ii) 15.00 .07 01656> 01656> 01657> 01658> 01659> 01660> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01661> 01662> 01663> 01663> 01663> 01663> 01663+ 01664 01602 01664+ 01665+ 10075 101665+ 10075 10175 01667> 01668> 01669> 01670> 01671> 01672> 01673> 01674> 01675> 01676> 01677> 01677> 01678> 01679> 01680> 01681> 01682>
 ROUTING RESULTS
 AREA
 OPEAK
 TPEAK

 INFLOW >09:
 (HIP08)
 77.26
 5.545
 1.167

 OUTFLOW<10:</td>
 (HIP-PO)
 77.26
 .435
 3.389
 ROUTING RESULTS R.V. (mm) 31.292 31.292 01816> 01817> 01818> 0182> 01822> 01822> 01822> 01822> 01824> 01825> 01826> 01827> 01826> 01827> 01828> 01828> 01829> 01830> 01830> 122.14 42.32 7.50 10.00 8.20 (ii) 9.18 (ii) 7.50 10.00 .14 .12 Max.eff.Inten.(mm/hr)= 01683> 01683> 01684> 01685> 01686> 01687> over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= PEAK FLOW REDUCTION [Qout/Qin](%)= 7.850 TIME SHIFT OF PEAK FLOW (min)= 133.33 MAXIMUM STORAGE USED (ha.m.)=.1871E+01 *TOTALS* .341 (iii) 1.042 45.640 49.505 .922 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = .33 1.04 47.93 49.50 .97 .01 1.13 19.25 49.50
 IDESIGN NASHYD
 Area
 (ha)=
 2.70
 Curve Number
 (CN)=76.00

 | 01:A3
 DT=
 2.50
 Ia
 (num)=
 4.670
 # of Linear Res.(N)=3.00

 ----- U.H. Tp(hrs)=
 .800
 .800
 .39 01694> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) Timk STEP (ID) SHOULD BS SMLLER OR ROUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOOS NOT INCLUDE BASEFLOW IF ANY. 01695> 01696> 01697> 01698> 01699> 01700> 01701> 01702> 01703> 01704> 01705> Unit Hyd Opeak (cms)= .129
 PEAK FLOW
 (cms)=
 .044 (i)

 TIME TO PEAK
 (hrs)=
 2.042

 RUNOFF VOLUME
 (mm)=
 12.131

 TOTAL RAINFALL
 (mm)=
 42.514

 RUNOFF COEFFICIENT
 =
 285
 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01706> 001:0025-----01849> 01850> 01851> 01852> 01853> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 122.14 48.18 7.50 7.50 7.77 (ii) 8.70 (ii) 7.50 7.50 .15 .14 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 01719> 01853> 01854> 01855> 01856> 01856> 01857> 01858> 01859> .33 1.04 47.93 49.50 .97 *TOTALS* .329 (iii) 1.042 47.074 49.505 .951 PEAK FLOW {cms} = TIME TO PEAK {hrs} = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .00 1.08 19.25 49.50 .39 01859> 01860> 01861> 01862> 01863> 01864> 01865> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: $CN^* = 81.0$ Ia = Dep. Storage (Above) CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 01866> 01867> 01737> 01738> 01739> 01740> 01741> 01742> 01743> 01743> 01745> 01745> 01745> 01746> 01746> 01746> 01747> 01746> 01751> 01751> 01752> Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = .33
 TIME
 RAIN
 TIME
 RAIN
 TIME
 RAIN
 TIME
 RAIN
 I

 hrs
 mmn/hr
 hrs
 mmn/hr
 hrs
 mmn/hr
 i
 isoma
 <td 01878> TIME RAIN hrs mm/hr 2.67 4.049 2.83 3.714 3.00 3.434 01879> NOTE: PEAK 01880> 01881> ------01882> 001:0008-----NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. ۱۹۵۰-----
 Oli883>
 Operating of the second DWF DWF (cms) .000 .000 1.107 01753> 001:0003------SUM 05:050 01754> ------01755> | DEFAULT VALUES | Filename: V:\20983.DU\ENG\FINALS~1\SWMHYM~1\ORGA.VAL 5.01 1.04 45.09 .000 01889> 01890>

J. L. Richards & Associates Limited

02296> 02297> 02298> 02299> 02300> 02301>
 .17
 4.934
 1.00
 144.693
 1.83
 9.014
 2.67
 4.701

 .33
 6.152
 1.17
 43.904
 2.00
 7.571
 2.83
 4.310

 .50
 8.262
 1.33
 22.224
 2.17
 6.544
 3.00
 3.983

 .67
 13.006
 1.50
 14.952
 2.33
 5.776
 3.00
 3.983

 .63
 33.041
 1.50
 14.952
 2.250
 5.776
 5.776
 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=
 122.14
 72.53

 7.50
 22.50

 6.77
 (ii)
 21.93

 7.50
 22.50

 .16
 .05
 02162> 02163> 02164> 02165> 02165> 02167> 02168> 02169> 02170> 02171> 02172> 02174> 02174> 02175> *TOTALS* 1.687 (111) 1.042 37.426 49.505 .756 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 1.54 1.04 47.93 49.50 .97 .42 1.33 26.92 49.50 .54 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) iii TIME STEP (JT) SHOULD BE SUBLIER OR EQUAL THAN THE STORAGE COEFFICIENT. (ii) PERK FLOW DOES NOT INCLUDE RASEFLOW IF ANY. 02176> 02177> 02178> 02179> 02180> _____ 02181> 001:0021-----02189> 02190> 02191> 02191> 02192>
 PEAK FLOW (cmms) = ...345 (i)

 TIME TO PEAK (hrs) = 1.167

 RUNOFF VOLUME (mm) = 22.420

 TOTAL RAINFALL (mm) = 49.505

 RUNOFF COEFFICIENT = .453
 Surface Area (ha)= Dep. Storage {mm}= Average Slope (%)= Length {m}= Mannings n = 02193> 02194> 02195> 02195> 02196> 02197> 1.74 1.57 .52 .33 4.67 1.00 20.00 02331> 02332> 02333> 02334> 02335> (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 204.72 021972 021995 -----022005 001:0022------.030 144.65 47.07 7.50 15.00 6.81 (11) 14.56 (11) 7.50 15.00 1.6 .09 .52 .03 1.04 1.21 56.25 56.23 .97 .44 .250 Max.eff.Inten.(mm/hr)= cver (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 47.07 15.00 14.56 (ii) 15.00
 D2201>
 D2203>
 AREA
 QPEAK
 TPEAK
 R.V.
 DWF

 02202>
 ADD HYD (HIP08)
 I D1: NMYD
 AREA
 QPEAK
 TPEAK
 R.V.
 DWF

 02203>
 (cma)
 (hrs)
 (mm)
 (cma)
 (hrs)
 (mm)
 (cma)

 02204>
 ID1 66:HIP06
 61.06
 5.358
 1.17
 38.61
 .000

 02205>
 +ID2 07:HIP07
 12.20
 1.667
 1.04
 .000

 02205>
 +ID3 08:Fond-B
 4.00
 .345
 1.17
 22.42
 .000

 02205>
 =ID3 08:Fond-B
 4.00
 .345
 1.17
 22.42
 .000

 02205>
 =UD3 08:Fond-B
 77.26
 7.016
 1.17
 37.59
 .000

 02208>
 SUM 09:HIP08
 77.26
 7.016
 1.17
 37.59
 .000
 02335> 02336> 02337> 02338> 02339> 02340> 02341> PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = *TOTALS* .532 (iii) 1.042 51.647 58.226 02342> 02343> 02344> 02345> 02345> 02346> 02347> 022095 02210> 02211> 02212> 02212> 02213> 02214> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) TINE STRP (DF) SHOULD BE SKALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) FDAK ELOW DOES NOT INCLOUE RASEFLOW IF ANY. 001:0023-02348> 02349> 02350> 02351> 02352> Requested routing time step = 1.0 min.
 Requested Pouting time step = 1.0 min.

 OUTFLOW STORAGE TABLE
 STORAGE I OUTFLOW STORAGE (mms)

 OUTFLOW STORAGE | OUTFLOW STORAGE (mms)
 (mms)

 (mms)
 ha.m.)
 (mms)

 (mms)
 ha.m.)
 (mms)

 048
 57408-01
 .321

 054
 .24348-00
 1.262

 054
 .24348-01
 1.522

 054
 .5348-00
 1.532

 .054
 .3518-01
 .0527

 .055
 .5348-00
 1.532

 .064
 .1028-01
 .37248-01

 .064
 .1028-01
 .532

 .4008+01
 1.532
 .37248-01

 .280
 .6448+01
 3.609

 .472
 .19248-01
 3.609
 022202 02221> 022222> 022223> 022224> 022225> 02226> 02228> 02229> 02230>
 AREA
 QPEAK
 TPEAK

 (ha)
 (cms)
 (hrs)

 77.26
 7.016
 1.167

 77.26
 .696
 3.208
 ROUTING RESULTS R.V. 02230> 02231> 02232> 02233> 02234> 02235> 02236> 02236> (nnn.) 37.588 37.588 INFLOW >09: (HIP08) OUTFLOW<10: (HIP-PO) Max.eff.Inten.(mm/hr)≈ over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=
 7.50
 7.50
 7.50

 7.66 (ii)
 8.49 (ii)
 7.50

 7.50
 7.50
 14

 .40
 ...
 ...
 144.69 65.19 02368> 02370> 02370> 02371> 02372> 02374> 02375> 02376> 02376> 02376> 02378> 02378> 02378> 02378> 02378> 02380> PEAK FLOW REDUCTION [Qout/Qin](%)= 9.919 TIME SHIFT OF PEAK FLOW (min)= 122.50 MAXIMUM STORAGE USED (ha.m.)=.2178E+01 02237> 02238> 02239> 02240> 001:0024------02241> *0U5-AREA No. 6 .01 1.08 25.35 58.23 .44 PEAK FLOW (cms)= .40 TIME TO PEAK (hrs)= 1.04 RUNOFF VOLUME (mm)= 56.66 TOTAL RAINFALL (mm)= 58.23 RUNOFF COEFFICIENT = .97 *TOTALS* .418 (iii) 1.042 54.152 58.226 -----| DESIGN NASHYD | Area (ha)= 2.70 Curve Number (CN)=76.00 | 01:A3 DT= 2.50 | Ia (mm)= 4.670 \$ of Linear Res.(N)= 3.00 | U.H. Tp(hrs)= .800 02243> 02244> 02245> 02245> 02245> 02246> 02249> 02249> 02250> 02251> 02251> 02252> 02252> .44 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR RQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOBS NOT INCLUDE BASEFLOW IF ANY. 02380> 02381> 02382> 02383> 02384> 02385> Unit Hyd Opeak (cms)= .129
 PERK FLOW
 (cms)=
 .059 (i)

 TIME TO PERK (hrs)≈
 2.000

 RUNOFF VOLUME (mm)=
 16.075

 TOTAL RAINFALL (mm)=
 49.505

 RUNOFF COEFFICIENT =
 .325
 02254> DWF 02398> 02398> 02400> 02401> 02402> .030 .030 144.69 65.19 7.50 7.50 7.26 (ii) 8.09 (ii) 7.50 7.50 .15 .14 .40 .00 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 02267> 02268> 02269> 02270> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02403> 02403> 02404> 02405> 02406> 02407> 02408> *TOTALS* .400 (iii) 1.042 55.717 58.226 .957 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINEALL (mm) = RUNOFF COEFFICIENT = .40 1.04 56.66 58.23 .97 .00 1.08 25.35 58.23 02409> 02410> 02411> 02412> 02412> 02413> 02414> 02415> .44 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CM* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR BEQUAL THAN THE STORAGE COEFFICIENT. (iii) FEAK FLOW DOES HOT INCLUDE BASEFICIENT IF ANY. 024165 THAN THE STEP (DT) SHOUL 024165 THAN THE STORAGE COEN 024177 (iii) PEAK FLOW DOES NOT IN 024185 024190 001:0007-----

 022825
 022835
 01:002

 022835
 01:002
 02:002

 022855
 1 CHICAGO STORM (
 IDF curve parameters: A=1402.884

 022855
 1 CHICAGO STORM (
 B=

 022857
 1 CHICAGO STORM (
 B=

 022857
 used in: INTENSITY = A / (t + B) ^C

 022805
 Duration of storm = 3.00 hrs

 022905
 Storm time step = 10.00 min

 022925
 Time to peak ratio = .33

 02298> 02299> 02290> 02291> 02292> 02293> 02294> 02295> 02428> 02429> 02430> TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

02431>	02566>
02432> 001:000802433>	02567> CALIB STANDHYD Area (ha)= 19.90 02568> 01:HIP01 DT= 2.50 Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00
02434> ADD HYD (050) ID: NHYD AREA QPEAK TPEAK R.V. DWF 02435> (ha) (cms) (hrs) (mm) (cms)	02569> 02570> IMPERVIOUS PERVIOUS (1)
02436> ID1 03:030 1.40 .400 1.04 55.72 .000 02437> +ID2 04:040 3.61 .950 1.04 52.72 .000	02571> Surface Area (ha) = 14.13 5.77
02438>	02573 Average Slope (%) = .60 1.50
02440>	025/4> Length (m)= 580.00 100.00 02575> Mannings n = .030 .250
02441> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02442>	02576> 02577> Max.eff.Inten.(mm/hr)= 124.54 81.98
02443>	02578> over (min) 12.50 27.50
02445> * 02446> * SUB-AREA NO.4	02560> Unit Hyd. Tpeak (min)= 12.50 27.50
02447	02581> Unit Hyd. peak (cms)= .09 .04 02582> *TOTALS*
02448> CALIB STANDHYD Area (ha)= .89 02449> 06:060 DT= 2.50 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00	02583> PEAK FLOW (cms)= 2.16 .77 2.548 (iii)
02450>	02585> PEAR FLOW (cms) = 2.16 .77 2.588 (iii) 02585> TIME TO FEAR (hrs) = 1.13 1.42 1.167 02585> RUNOFF VOLUME (mm) = 56.56 34.22 45.437 02586> TOTAL RAINFALL (mm) = 58.23 58.23 58.226 02567> RUNOFF COEFFICIENT = .97 .59 .780
	02587> RUNOFF COEFFICIENT = .97 .59 .780 02588>
02452> Surface Area (ha)= .86 .03 02453> Dep.Storae (mm)= 1.57 4.67 02454> Average Slope (%)= .93 .70 02455> Length (m)= 164.82 40.00	02589> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES,
02436> Mannings n = .030 .250	$\begin{array}{ccc} 02590> & CN^{\star} = 81.0 & Ia = Dep. Storage (Above) \\ 02591> & (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL \\ \end{array}$
)2457>)2458> Max.eff.Inten.(mm/hr)= 144.69 44.12	02592> THAN THE STORAGE COEFFICIENT. 02593> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
12459> over (min) 5.00 17.50 12460> Storage Coeff. (min)≈ 5.02 (ii) 18.44 (ii)	02594> 02595>
12460> Storage Coeff. (min)= 5.02 (ii) 18.44 (ii) 12461> Unit Hyd. Tpeak (min)= 5.00 17.50 2462> Unit Hyd. peak (cms)= .22 .06	02596> 001:0015
22463> *TOTALS*	02597> 02599> ADD HYD (HIP02) ID: NHYD AREA OPEAK TPEAK R.V. DWF
02464> PEAK FLOW (cms)= .30 .00 .296 (iii) 02465> TIME TO PEAK (hrs)= 1.00 1.25 1.000	02599> (ha) (cms) (hrs) (mm) (cms) 02600> IDI 10: POND 8.56 .189 2.06 54.45 000
12464> PEAK FLOW (cms)= .30 .00 .296 (iii) 22465> TIME TO PEAK (hrs)= 1.00 1.25 1.000 12465> RUNOFF VOLUME (mm)= 56.66 25.35 55.717 12467> TOTAL RAINFALL (mm)= 58.23 58.23 58.226 22468> RUNOFF COEFFICIENT = 97 44 957	02601> +ID2 01:HIP01 19.90 2.546 1.17 45.44 .000 02602>
D2468> RUNOFF COEFFICIENT = .97 .44 .957 D2469>	02603> SUM 02:HIP02 28.46 2.622 1.17 48.15 .000 02604>
2470> (i) CN PROCEDURE SELECTED FOR REPUTOUS LOSSES.	02605> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
2472> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL	02606> 02607>
<pre>12473> THAN THE STORAGE COEFFICIENT. 12474> (iii) PEAK FLOW DOES NOT INCLUDE BASEPLOW IF ANY.</pre>	02608> 001:0016
12475> 12476>	02610> * SUB-AREA No.2
22477> 001:0010	02612> CALIB STANDHYD Area (ha)= 17.00 02613> 03:HIP03 DT= 2.50 Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00
2479> * SUB-AREA NO.5 2480>	02614>
2481> CALIE STANDHYD Area (ha)= 2.66 2482> 07:070 DT= 2.50 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00	02615> IMPERVIOUS PERVIOUS (i) 02616> Surface Area (ha)= 12.07 4.93
2483>	02618> Average Slope (%)= .65 1.50
2484> IMPERVIOUS PERVIOUS (i) 2485> Surface Area (ham) = 2.56 .08 2486> Dep. Storage (mam) = 1.57 4.67	02619> Length (m) = 450.00 100.00 02620> Mannings n = .030 .250
2487> Average Slope (%)= .61 1.50	02621> 02622> Max.eff.Inten.(mm/hr)= 144.69 87.13
2488> Length (m)= 207.25 20.00 2489> Mannings n = .030 .250	02623> over (min) 10.00 25.00 02624> Storage Coeff. (min)= 10.21 (ii) 24.30 (ii)
2490> 2491> Max.eff.Inten. (mm/hr) = 144.69 51.33	02625> Unit Hyd. Tpeak (min)= 10.00 25.00
2492> over (min) 7.50 12.50	02627> *TOTALS*
2494> Unit Hvd. Tpeak (min)= 7.50 12.50	02628> PEAK FLOW (cms)= 2.10 .71 2.398 (iii) 02629> TIME TO PEAK (hrs)= 1.08 1.38 1.125
2495> Unit Hyd. peak (cms) = .16 .09 2496> *TOTALS*	02630> RUNOFF VOLUME (mm) = 56.66 34.22 45.437 02631> TOTAL RAINFALL (mm) = 58.23 58.23 58.226
2497> PERK FLOW (cmms)= .78 .01 .783 (iii) 2498> TIME TO PERK (hrs)= 1.04 1.17 1.042 2499> RUNOFF VOLUME (mms)= 56.66 25.35 55.717	02632> RUNOFF COEFFICIENT = .97 .59 .780 02633>
2500> TOTAL RAINFALL (mm) = 58.23 58.23 58.26	02634> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 02635> CN* = 01.0 Ia = Dep. Storage (Above)
2501> RUNOFF COEFFICIENT = .97 .44 .957 2502>	02635> (i) THE STEP (D) SHOULD BE SWALLER OR EQUAL 02636> (i) THE STEP (D) SHOULD BE SWALLER OR EQUAL 02637> TRAN THE STORAGE CORFICIENT.
2503> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 2504> $CN^* = 81.0$ Ia = Dep. Storage (Above)	02638> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02639>
2505> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 2506> THAN THE STORAGE COEFFICIENT.	02640>02641> 001:0017
2507> (iii) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 2508>	02642 * 002643 * SUB-AREA No. 3
2509> 2510> 001:0011	
2511>	02644>
2512> ADD HYD (080) ID: NHYD AREA QPEAK TPEAK R.V. DWF 2513>	
2514> ID1 06:060 .89 .296 1.00 55.72 .000 2515> +ID2 07:070 2.66 .783 1.04 55.72 .000	02649> Surface Area (ha)= 11.08 4.52 02650> Dep. Storage (mm)= 1.57 4.67
2516>	02651> Average Slope (%)= .50 1.50 02652> Length (m)= 600.00 100.00
2518> 2519> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	02653> Mannings n = .030 .250
2520> 2521>	02655> Max.eff.Inten.(mm/hr)= 111.10 77.71
522> 001:0012	02657> Storage Coeff. (min)= 14.59 (ii) 29.34 (ii)
2524> ADD HYD (090) ID: NHYD AREA QPEAK TPEAK R.V. DWF	02658> Unit Hyd. Tpeak (min)= 15.00 30.00 02659> Unit Hyd. peak (cms)= .08 .04
2525> (ha) (cm.s) (hrs) (num) (cm.s) 2526> IDI 05:050 5.01 1.350 1.04 53.55 .000	02660> *TOTALS* 02661> PEAK FLOW (cms)= 1.57 .57 1.879 (iii)
2527> +ID2 08:080 3.55 1.060 1.04 55.72 .000 2528>	02662> TIME TO PEAK (hts) = 1.17 1.46 1.208
2529> SUM 09:090 8.56 2.410 1.04 54.45 .000	02664> TOTAL RAINFALL (mm)= 58.23 58.23 58.226
531> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 552>	02666>
	02667> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 02668> CN* = 81.0 Ia = Dep. Storage (Above)
534> 001:0013 535>	02669> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 02670> THAN THE STORAGE COEFFICIENT.
536> ROUTE RESERVOIR Requested routing time step = 1.0 min. 537> IN>09:(090)	02671> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02672>
5385 OUT<10:(POND) ==================================	02673>
STATUS STATUS	02675>
540> (cms) (ha.m.) (cms) (ha.m.) 541> 000 00008+00 593 62518-00	02676> ADD HYD (HIPO5) ID: NHYD AREA QPEAK TPEAK R.V. DWF 02677> (ha) (cms) (hrs) (mm) (cms)
541> .000 .0000E+00 .593 .6251E+00 542> .008 .6560E-01 .654 .6631E+00	02678> ID1 03:HIP03 17.00 2.398 1.13 45.44 .000
541> .000 .00008+00 .593 .62518+00 542> .008 .65608-01 .654 .6518+00 543> .017 .13118+00 .797 .73918+00 544> .093 .28218+00 .950 .82748+00	02679> +ID2 04:HIP04 15.60 1.879 1.21 45.44 .000
541> .000 .00008+00 .593 .62518+00 542> .008 .65608-01 .654 .654 .654 543> .017 .13118+00 .797 .73918+00 544> .093 .28318+00 .950 .82748+100 545> .233 .39718+00 1.304 .91578+100 546> .337 .47318+00 1.880 .10048+01	02679> +ID2 04:HIP04 15.60 1.879 1.21 45.44 .000 02680>
541> .000 .0000E+00 .593 .6251E+00 542> .008 .6560E-01 .654 .631E+00 543> .017 .1311E+00 .797 .7391E+00 544> .093 .2831E+00 .950 .8274E+00 545> .233 .3971E+00 1.304 .9157E+00 546> .337 .4731E+00 1.880 .1004E+01 547> .465 .5491E+00 2.577 .1002E+01	02679> +1D2 04:HIP04 15.60 1.679 1.22 45.44 .000 02660> 02681> 5UM 05:HIP05 32.60 4.157 1.13 45.44 .000 02682>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02679> +1D2 04:HIP04 15.60 1.879 1.21 45.44 .000 02660>
541> .000 .0000E+00 .593 .6251E+00 542> .008 .6560E-01 .654 .654 .631E+00 543> .017 .1311E+00 .797 .7391E+00 545> .033 .3971E+00 .1.304 .9157E+00 546> .337 .4731E+00 1.304 .9157E+00 547> .337 .4731E+00 1.304 .9157E+00 546> .337 .4731E+00 1.880 .1002E+01 547> .465 .5491E+00 2.577 .1092E+01 548> .531 .571E+00 .0000E+00 .0000E+01 549> .531 .671E+00 .000 .0000E+01 549> .531 .671E+00 .000 .0000E+01 551> .792E+01 .000 .0000E+01 .551	02679> +1D2 04:HIP04 15.60 1.679 1.21 45.44 .000 02660>
541> .000 .00002+00 .593 .52512+00 5542> .008 .65602-01 .654 .654 .654 5435 .017 .13112+00 .950 .82742+00 5445 .033 .23142+00 .950 .82742+00 5445 .233 .39712+00 1.304 .91572+00 5455 .35124-00 1.304 .91572+00 .1080 .1064+01 5455 .35124-00 .237 .10822+01 .1080 .10624+01 5456 .3513-50124-00 .257 .10522+00 .000 .00004+00 5545 .551-50124-00 .257 .10522+00 .000 .00004+00 5550 ROUTING RESULTS AREA QPEAK TPEAK R.V. 5552 INFLOW >09: (090) 0.56 2.410 1.042 54.451 5533> 0UTFLOW.101 8.56 .189 2.055 54.449	02679> +1D2 04:HIP04 15.60 1.679 1.21 45.44 .000 02660>
2541> .000 .00002+00 .593 .62512+00 2542> .008 .65602-01 .564 .65312e-00 2543> .017 .13112+00 .797 .73912e-00 2545> .233 .39712e+00 .506 .82742e-00 2545> .233 .39712e+00 .1.304 .91572e-00 2545> .337 .47312e+00 .1.880 .1002e-01 2547> .465 .54912e+00 2.577 .10922e+01 2549> .551 .56712e+00 0.000 .00002e+00 2549> .551 .56712e+00 .000 .00002e+00 2555> ROUTING RESULTS AREA QPEAK TPEAK R.V. 2555> INFLOW >09; (090) 8.56 .189 2.055 54.451 2554>	02679> +1D2 04:HIP04 15.60 1.679 1.21 45.44 .000 02680> 02681> SUM 05:HIP05 32.60 4.157 1.13 45.44 .000 02681> SUM 05:HIP05 32.60 4.157 1.13 45.44 .000 02682> O2683> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02685 02685>
2541> .000 .0000E+00 .593 .5251E+00 2542> .008 .6560E-01 .654 .631E+00 2543> .017 .1311E+00 .950 .8274E+00 2545> .033 .3971E+00 .550 .8274E+00 2545> .233 .3971E+00 1.304 .9157E+00 2545> .337 .4731E+00 1.880 .1004E+01 2545> .5431E+00 1.877 .1002E+01 2545> .5531 .5971E+00 1.000 .0000E+00 2545> .5531 .5971E+00 1.000 .0000E+00 2545> .5531 .5971E+00 1.000 .000E+00 2555> INFLOW >09: (090 8.56 .189 2.055 54.419 2553> PEAK FLOW REDUCTION [Qout/qin] (%)= 7.838 2555> PEAK FLOW REDUCTION [Qout/qin] (%)= 7.838 2555> PEAK FLOW REDUCTION [000t/qin] (%)= 0.83	02579> +1D2 04:HIP04 15.60 1.879 1.21 45.44 .000 02660>
2541> .000 .00002+00 i .531 .5212+00 2542> .008 .65602+01 i .654 .65126+00 2543> .017 .13112+00 i .950 .82742+00 2545> .037 .473124+00 i .950 .82742+00 2545> .233 .397124+00 i .304 .91572+00 2545> .233 .397124+00 i .880 .10624+01 2545> .337 .473124+00 i .880 .10624+01 2545> .551 .59712+00 i .000 .000024+00 2545> .551 .59712+00 i .000 .000024+00 2545> .551 .59712+00 i .000 .000024+00 2555> NELGW .526 .410 i<.451	02579> +1D2 04:HIP04 15.60 1.879 1.21 45.44 .000 02680>
2541> .000 .0000E+00 .593 .5251E+00 2542> .008 .6560E+01 .654 .651E+00 2543> .017 .1311E+00 .797 .7391E+00 2545> .233 .3971E+00 .1.304 .9157E+00 2545> .233 .3971E+00 1.304 .9157E+00 2545> .233 .3971E+00 1.880 .1004E+01 2547> .465 .5491E+00 2.577 .1092E+01 2548> .531 .5871E+00 1.000 .0000E+00 2549> .531 .5871E+00 1.000 .000E+00 2550> ROUTING RESULTS AREA QPEAK TPEAK R.V. .555 1552> INFLOW >09: (090 8.56 .189 2.056 54.419 2554> PEAK FLOW REDUCTION (QOut/(rin) (%)= 7.338 2555> PEAK FLOW REDUCTION (QOut/(rin) (%)= 7.338 2555> MAXIMUM STORAGE USED (ha.m.)=.3612E+00 .558> 2559>	02579> +1D2 04:HIP04 15.60 1.879 1.21 45.44 .000 02680>
2541> .000 .00002+00 i .551.2500 2542> .008 .65602-01 i .654 .65124-00 2543> .017 .13112+00 .797 .73912+00 2545> .033 .2314+00 .950 .82742+00 2545> .233 .39712+00 1.304 .91572+00 2545> .233 .39712+00 1.304 .91572+00 2545> .233 .39712+00 1.304 .91572+00 2545> .353 .54912+00 .2577 .10522+01 2545> ROUTING RESULTS AREA QPEAK TPEAK R.V. .000 .00002+00 2555> INFLOW >09: (090) 8.56 2.410 1.042 54.451 2555> INFLOW >09: (090) 8.56 .189 2.055 54.459 2555> FEAK FLOW REDUCTION [Qout/din] (%) = 7.838 .3565 .189 .3562 .189 .3512±400 2565> TIME SHIFT OF PEAK FLOW (min.) = .5612±400 .565 .449 .565 .565 2565> TIME SHIFT OF PEAK FLOW (min.) = .5612±400 .5663 .5663 </td <td>02579> +1D2 04:HIP04 15.60 1.879 1.21 45.44 .000 02680> </td>	02579> +1D2 04:HIP04 15.60 1.879 1.21 45.44 .000 02680>
541> .000 .0000E+00 .593 .6251E+00 542> .009 .6560E-01 .544 .651E+00 543> .017 .1311E+00 .797 .7391E+00 544> .093 .2231.84*00 .950 .8274E+00 545> .233 .3971E+00 1.304 .9137E+00 545> .235 .3971E+00 1.880 .1004E+01 547> .665 .4731E+00 2.500 .1052E+01 548> .000 .0000E+00 549> .531 .5871E+00 2.500 .1052E+01 551>	02679> +ID2 04:HIP04 15.60 1.679 1.21 45.44 .000 02660>
541> .000 .00002+00 .593 .651E+00 542> .008 .6560E-01 .654 .654 543> .017 .1311E+00 .797 .7391E+00 545> .233 .3971E+00 .950 .8274E+00 545> .233 .3971E+00 1.304 .9157E+00 545> .233 .3971E+00 1.880 1004E+01 547> .465 .5491E+00 2.577 .1092E+01 548> .337 .4731E+00 1.880 .1004E+01 547> .465 .5491E+00 2.577 .1092E+01 548> .5491E+00 1.880 .1004E+01 .56 549 .6001E+00 8.56 .419 .000 .0000E+00 555 .00TFLGW .55 .419 .042 .451 .553 555 .00TFLGW .6001 .56 .189 2.055 54 .449 555 .57 MAXIMM STORAGE USED (min)= .60.3 .559 559 .56 .199 .3612E+00 <td< td=""><td>02679> +ID2 04:HIP04 15.60 1.679 1.21 45.44 .000 02680> </td></td<>	02679> +ID2 04:HIP04 15.60 1.679 1.21 45.44 .000 02680>

J. L. Richards & Associates Limited

Į,

l_,

Ł

J. L. Richards & Associates Limited

02836> | Ptotal= 64.81 mm | 02837> -----02838> 02839> 6.014 C= .820 used in: INTENSITY = A / (t + B)^C IMPERVIOUS PERVIOUS (i) 02839> 02840> 02841> 02842> 02842> 02843> 02845> 02845> 02845> 02846> 02846> 02846> 02846> 02846> 02846> 02846> Duration of storm = 3.00 hrs Storm time step = 10.00 min Time to peak ratio = .33 Surface Area Dep. Storage Average Slope Length Mannings n (ha) = {mm) = (%) = (m) = = 02706> 3.54 4.67 1.50 8.66 1.57 02707: 027082 .70 210.00 .030
 TIME
 RAIN |
 TIME |
 02709> 02710> 02711> 02712> 02713> 02714> 02716> 02716> 02716> 02719> 02720> 02720> 02722> 02722> 02722> 02725> 02726> 02726> 02727> 02726> 100.00 TIME hrs 2.67 2.83 3.00 RAIN mm/hr 5.209 4.774 4.412 Max, eff. Inten. (mm/hr)= 144.69 101.36 over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=
 44.69
 101.36

 7.50
 20.00

 6.32
 (ii)

 7.50
 20.00

 .17
 .06
 02850

 02850

 028513

 028524

 028534

 028535

 028535

 028536

 028537

 028538

 028539

 028539

 028539

 028539

 028531

 028535

 028537

 028538

 028539

 028539

 028539

 028539

 028539

 028539

 028539

 02854

 028559

 02859

 02859

 02859

 02859

 02859

 02859

 02859

 02859

 02850

 12959

 028605

 12861

 02862

 12862

 12863

 12863

 12864

 12864

 12865

 12865

 12867

 12868

 12868

 12869

 2851 *TOTALS* 2.109 (iii) 1.042 45.437 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 1.86 1.04 56.66 58.23 .97 .59 1.29 1.29 34.22 58.23 .59 58.226 .780 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (1) ON PROCLEDING SELECTED FOR PRAVIOUS LOSSES:
 (N* = 81.0 E. La = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IP ANY. 02873> * SUB-AREA No.1
 PEAK FLOW
 (cms)=
 .459 (i)

 TIME TO PEAK
 (hrs)=
 1.167

 RUNOFF VOLUME
 (mm)=
 29.155

 TOTAL FAINFALL
 (sm)=
 58.226

 RUNOFF COEFFICIENT
 .501

 Imp(t) =
 84.00
 Dir. Con

 IMPERVIOUS
 PERVIOUS (i)

 Surface Area (ha) =
 1.74
 .33

 Dep. Storage (han) =
 1.57
 4.67

 Average Slope (%) =
 .52
 1.00

 Length (m) =
 204.72
 20.00

 Mannings n
 =
 .030
 250
 02743> 02744> 02745> 02878> 02880> 02881> 02882> 02746> 028835 02884> 161.47 62.27 7.50 12.50 6.51 (ii) 13.44 (ii) 7.50 12.50 .16 .09 02886> 02886> 02887> 02888> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= DWE (cms) .000 .000 .000
 02887>
 Storage Coc

 02888>
 Unit Hyd. T

 02889>
 Unit Hyd. T

 02890>
 PEAK FLOW

 02891>
 FEAK FLOW

 02892>
 FEAK FLOW

 02893
 HUNOFF COEN

 02895
 HUNOFF COEN

 02895
 HUNOFF COEN

 02895
 (i) CN PR

 02800>
 THAM *

 02801>
 (ii) PEAK

 02802>
 CX*0

 02903>
 THAM *

 02905
 * SUB-AREA No.2

 02905
 * SUB-AREA No.2

 02905
 CTATA
 TOTALS .609 (iii) 1.042 57.952 64.806 .894 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mma) = TOTAL RAINPALL (mm) = RUNOFF COEFFICIENT = .59 1.04 63.24 64.81 .98 .03 1.17 30.21 64.81 .47 .000 02759> 02760> NOTE: PEAP 02761> 02762> 02762> 02763> 001:0023-----02763> 001:0023-----02765> | ROUTE RESERV 02765> | N>09:(HIPC 02765> | UX>09:(HIPC 02765> | OUT<10:(HIP-(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. | ROUTE RESERVOIR | | IN>09: (HIP08) | OUT<10: (HIP-PO) | Requested routing time step = 1.0 min.
 OUTLFOW STORAGE TABLE

 OUTLFOW STORAGE
 OUTFFOW

 OUTFLOW
 STORAG

 (cms)
 (ha.m.)

 (cms)
 (cms)

 (ba.m.)
 (cms)

 (cms)
 (cms)

 0005-----02768> STORAGE UTFLOW STORACE (cms) (ha.m.) | .000 .00002+00 .048 .57402-01] .054 .24342+00] .0559 .56342+00] .052 .84002+00 .054 .11022+01 .147 .13702+01 .472 .19242+01] 02769> 02770> 02770> 02771> 02772> 02773> (ha.m.) .2210E+01 .25018+01 .27982+01 .31012+01 .3410E+02 .3724E+01

 029065 * SUB-AREA No.2

 029075

 029078

 029078

 029079

 029079

 029079

 029079

 029079

 029079

 029079

 029079

 029079

 029079

 029079

 029079

 029079

 029079

 029079

 02912

 Surface Area

 (ha)=

 1.42

 12913

 Dep. Storage (mm)=

 1.50

 02915

 Length

 02915

 Length

 (m)=

 241.34

 5.00

 02915

 Mannings n

 161 47

 78.73

 1.262 1.404 1.532 1.650 02774>
 102775
 .064
 .11022+00
 1.532

 027765
 .147
 .13702+01
 1.630

 027775
 .147
 .13702+01
 1.630

 027775
 .280
 .1642+01
 3.689

 027785
 .280
 .1642+01
 3.689

 027785
 .472
 .1924+01
 .000

 027805
 .472
 .1924+01
 .000

 027805
 .0072100×99: (HIP08)
 .77.26
 .9930
 .125

 027825
 OUTFLOW-10: (HIP-PO)
 .77.26
 1.004
 3.083

 027845
 FEAK
 FLOW
 REDUCTION (Gout/Qin](%)
 .027865

 027865
 FEAK
 FLOW
 REDUCTION (Gout/Qin](%)
 .027865

 027865
 MAXIMUM STORAGE
 USED
 (ha.m.)=

 027865
 .001:0024
 .002
 .002

 027805
 .001:0024
 .002
 .002

 027905
 .001:0024
 .002
 .003
 .002

 027905
 .001:0024
 .002
 .002
 .002

 2.409 .4044E+01 3.689 .4370E+01 .000 .0000E+00 R.V. (mm) 45.591 45.591 161.47 78.73 7.50 7.50 7.33 (ii) 8.10 (ii) 7.50 7.50 .15 .14 Max.eff.Inten.(mm/hr)= 02918> 02929 02920> 02921> 02922> 02923> 02923> 02925> 02926> 02926> 02927> 02926> 02927> 02928> 02930> 02931> 02931> 02931> 02933> 02933> over (min) Storage Coeff. (min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = PERK FLOW REDUCTION [Qout/Qin]{%}= 11.160 TIME SHIFT OF PERK FLOW (min]= 117.50 MAXIMUM STORAGE USED (ha.m.)=.2562E+01 *TOTALS* .475 (111) 1.042 60.594 64.806 .935 .02 1.08 30.21 64.81 .47 PEAK FLOW (CRS) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = .46 1.04 63.24 64.81 .98

 02792*
 *SUB-AREA NO. 6

 02793*
 IDESIGN NASHYD
 Area (ha) = 2.70 Curve Number (CN)=76.00

 02794*
 IDESIGN NASHYD
 IA (ma) = 4.670 # of Linear Res.(N)=3.00

 02795
 U.H. Tp(hrs) = .800

 027995
 Unit Hyd Qpeak (cms) = .129

 02801>
 PEAK FLOW (cms) = .079 (i)

 02802
 RUNOFF VOLUME (mm) = 51.246

 02803
 TOTAL RAINFALL (mm) = 55.226

 02804
 RUNOFF COEFFICIENT = .368

 02805
 (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 (1) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (1) The FACENCIA SALENCE OF FLATTON FOR THE SALENCE OF FLATTON AND A SALENCE OF FLATTON THE STORAGE COFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 029355 02936> -----02937> 001:0006--02938> * 02938> * 02939> * SUB-AREA No.3 02807> _____ 02808>
 028105
 021025

 028101
 ADD HYD (Ultima)
 ID: NHYD
 AREA
 QPEAK
 TPEAK
 R.V. DWP

 028102
 C.Cmss
 (ha)
 (cms)
 (hrs)
 (mm)
 (cms)

 028125
 C.Cmss
 10:10:HIP-P0
 77.26
 1.004
 3.08
 45.59
 .000

 028145
 +ID2 01:A3
 2.70
 .079
 2.00
 21.44
 .000

 028155
 C28155
 SUM 02:Ultima
 79.96
 1.051
 3.01
 44.78
 .000
 02813> 02814> 02815> 02816> 02816> 02817> 02818> 02819> 02819> 161.47 78 7.50 7 6.95 (ii) 7 7.50 7 .16 Max.eff.Inten.(mm/hr)= 78.73 7.50 7.72 (ii) 7.50 02951> 02952> over [min] Storage Coeff. [min] Unit Hyd. Tpeak (min] = Unit Hyd. peak (cms] = NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02953> 02954> 02955> 02955> 02957> 02958> 02959> 02960> 02961> 02962> 02964> 02965> 02965> 02966> 02965> 02820> .15 .45 1.04 63.24 64.81 .98 .01 1.08 30.21 64.81 .47 *TOTALS* .454 (iii) 1.042 62.245 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (I) THE FROEDORE SELECTED FOR FEWRIOUS LOSSES:
 (I) THE STEP (DT) SHOULD BE SMALLER OR EQUAL TRAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 02834> -------02835> | CHICAGO STORM | IDF curve parameters: A=1569.580

(V. (SHA-ALL.O(L)	J. L. Richards & Associates Limi
02972> ADD HYD (040) ID: NHYD AREA QPEAK TPEAK R.V. DWF 02973> (ha) (cms) (hrs) (mm) (cms)	03106> TIME SHIFT OF PEAK FLOW (min)= 54.17 03107> MAXIMUM STORAGE USED (ha.m.)=.3967E+00 03108>
02975> +ID2 02:020 1.54 .475 1.04 60.59 .000 02976>	03110> 001:0014
02978>	03112> * Remaining Hawthorne Industrial Park * 03113> **********************************
02980> 02981>	03115> * SUB-AREA No.1 03116>
02982> 001:0008	03117> { CALIE STANDHYD Area (ha)= 19,90 03118> 01:HIP01 DT= 2.50 Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00
02985> (ha) (cms) (hrs) (mm) (cms)	03120> IMPERVIOUS PERVIOUS (1)
02987> +ID2 04:040 3.61 1.084 1.04 59.08 .000	03121> Surface Area (ha)= 14.13 5.77 03122> Dep. Storage (nm)= 1.57 4.67 03223> Average Slope (%)= .60 1.50
02989> SUM 05:050 5.01 1.538 1.04 59.96 .000 02990>	03124> Length (m)= 580.00 100.00 03125> Mannings n = .030 .250
02991> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 02992>	03126> 03127> Max.eff.Inten.(mm/hr)= 138.95 102.13
02994> 001:0009 02995> *	03128> over (min) 12.50 25.00 03129> Storage Coeff. (min)= 12.38 (ii) 25.60 (ii) 03130> Unit Hyd. Tpeak (min)= 12.50 25.00
02996> * SUB-AREA No.4 (03131> Unit Hyd. peak (cms)= .09 .04 03132> **********
02999> 06:060 DT= 2.50 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00	03133> PEAK FLOW (cms) = 2.46 .95 3.001 (iii)
03001> IMPERVIOUS PERVIOUS (i) 03002> Surface Area (ha)= .86 .03	03134> TIME TO PEAK (hrs)= 1.13 1.38 1.167 03135> RUNOFF VOLMME (mmu)= 63.24 39.90 51.566 03136> TOTAL RAINFALL (mm)= 64.81 64.81 64.80 03137> RUNOFF COEPFICIENT = .98 .62 .796
03004> Average Slope (%)= .93 .70	03138> 03139> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
03006> Mannings n = .030 .250	D3140> CN* = 81.0 Ia = Dep. Storage (Above) D3141> (ii) TIME STEP (DT) SHOULD BE SMALLER OR BOULT.
03008> Max.eff.Inten.(mm/hr)= 161.47 53.28 03009> over (min) 5.00 17.50	03142> THAN THE STORAGE COEFFICIENT. 03143> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03144>
03010> Storage Coeff. (min)= 4.80 (ii) 17.24 (ii) 03011> Unit Hyd. Tpeak (min)= 5.00 17.50	03145> 03146> 001:0015
03013> *TOTALS* 0	03147> 33148> ADD HYD (HIPO2) ID: NHYD AREA QPEAK TPEAK R.V. DWF
03015 THE TO PEAK (broke) = 1.00 1.25 1.000 (and 1.10) 0.000 (broke)	J3149>(ha) (cms) (hrs) (nma) (cms) J3150> ID1 10:POND 8.56 .233 1.94 60.91 .000
03017> TOTAL RAINFALL (mm)= 64.81 64.81 64.806 0	33151> +ID2 01:HIP01 19.90 3.001 1.17 51.57 .000 33152> SUM 02:HIP02 28.46 3.092 1.17 54.37 .000
03019> 03020> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	03154> 03155> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
03022> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 0)3156>)3157>
03024> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	33158> 001:0016)3159> ★ 33160> ★ SUB-AREA NO.2
03026>	13161
	3162> CALIB STANDHYD Area (ha)= 17.00 3163> 03:HIP03 DT= 2.50 Total Imp(%)= 71.00 Dir. Comm.(%)= 50.00 31665
03031> CALIB STANDHYD Area (ha)= 2.66)3165> IMPERVIOUS PERVIOUS (i))3166> Surface Area (ha)= 12.07 4.93 3167> Dep. Storage (mm)= 1.57 4.67
03033> 00 03034> IMPERVIOUS PERVIOUS (i) 0)3167> Dep. Storage (mm)= 1.57 4.67)3168> Average Slope (%)= .65 1.50)3169> Length (m)= 450.00 100.00
03035> Surface Area (ha)= 2.58 .08 0 03036> Dep. Storage (mm)= 1.57 4.67	03170> Mannings n = .030 .250 03171>
03038> Length (m)= 207.25 20.00 0	13172> Max.eff.Inten.(mm/hr)= 161.47 109.61 13173> over (min) 10.00 22.50 13174> Storage Coeff. (min)= 9.77 (ii) 22.63 (ii)
03040>)3174> Storage Coeff. (min)= 9.77 (ii) 22.63 (ii))3175> Unit Hyd. Tpeak (min)= 10.00 22.50)3176> Unit Hyd. peak (cms)= .11 .05
03042> over (min) 7.50 12.50 0 03043> Storage Coeff. (min)= 6.26 (ii) 12.39 (ii) 0	3177> *TOTALS* 3178> PEAK FLOW (cms)= 2.38 .88 2.819 (iii)
03045> Unit Hyd. peak (cms)= .17 .09 0	3179> TIME TO PERK (hrs)= 1.08 1.33 1.125 3180> RUNOFF VOLUME (mm)= 63.24 39.90 51.566
03047> PEAK FLOW (cms)= .88 .01 .886 (iii) 0	33181> TOTAL RAINFALL (mm)= 64.81 64.81 64.806 3182> RUNOFF COEFFICIENT = .98 .62 .796 3183>
03049> RUNOFF VOLUME (mm) = 63.24 30.21 62.245 0 03050> TOTAL RAINFALL (mm) = 64.81 64.806 0	3184> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 3185> CN* = 81.0 Ia = Dep. Storage (Above)
03052> 0.	3187> THAN THE STORAGE COEFFICIENT.
03054 CN* = 81.0 Ia = Dep. Storage (Above) 0. 03055 (ii) TIME STEP (DT) SHOULD BE SMALLER OR FOULT.	3188> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 3189> 3190>
03056> THAN THE STORAGE COEFFICIENT. 0 03057> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 0	3191> 001:0017
03059> 00	3193> * SUB-AREA No.3 3194>
03061> 00	3195> CALIB STANDHYD Area (ha)= 15.60 3196> 04:HIP04 DT= 2.50 Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 3197>
03063> (ha) (cms) (hrs) (mm) (cms) 03064> ID1 06:060 .89 .335 1.00 62.25 .000 03	3198> IMPERVIOUS PERVIOUS (i) 3199> Surface Area (ha)= 11.08 4.52
03066> ===================================	3200> Dep. Storage (mm) = 1.57 4.67 3201> Average Slope (%) = .50 1.50
03068>	3202> Length (m)= 600.00 100.00 3203> Mappingr p 030 250
03070> 03071> 0	3205> Max.eff.Inten.(mm/hr)= 138.95 96.02 3206> over (min) 12.50 27.50
03072> 001:0012 001:0012 001:0012 001:0012 001:0012 001:0012 001:0012 001:0012	32082 UNIC AYO, Ipeak (MIA)= 12.50 27.50
03075> (ha) (cms) (hma) (cms) 00	3209> Unit Hyd. peak (cms)= .09 .04 3210> *TOTALS*
03077> +ID2 08:080 3.55 1.197 1.04 62.25 .000 03076>	211> PEAK FLOW (cms) = 1.86 .72 2.237 (iii) 3212> TIME TO PEAK (hrs) = 1.13 1.42 1.167 3213> RUNOFF VOLUME (mm) = 63.24 39.90 51.566 3214> TOTAL RAINFALL (mm) = 64.61 64.81 64.806
03079> SUM 09:090 8.56 2.735 1.04 60.91 .000 03080>	3214> TOTAL RINFALL (mm)= 64.81 64.81 64.806 3215> RUNOFF COEFFICIENT = .98 .62 .796
03082> 03	3217> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
03084> 001:0013000000000000000000000000000	3219> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 3220> THAN THE STORAGE COEFFICIENT.
03086> ROUTE RESERVOIR Requested routing time step = 1.0 min. 00 03087> IN>09:(090)	3221> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 3222>
03089> OUTFLOW STORAGE OUTFLOW STORAGE 00 03090> (cms) (ba.m.) (cms) (ba.m.) (cms) (ba.m.)	3223>
03091> .000 .0000E+00 .593 .6251E+00 03	3225>
03093> .017 .1311E+00 .797 .7391E+00 03 03094> .093 .2831E+00 .950 .8274E+00 03	3228> ID1 03:HIP03 17.00 2.819 1.13 51.57 .000 3229> +ID2 04:HIP04 15.60 2.237 1.17 51.57 .000
03095> .233 .3971E+00 ! 1.304 .9157E+00 03 03096> .337 .4731E+00 1.880 .1004E+01 03	3230> ====================================
03098> .531 .5871E+00 .000 .0000E+00 03	3232> 3233> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 3234>
03100> ROUTING RESULTS AREA QPEAK TPEAK R.V. 03 03101> (ha) (cms) (hrs) (nmm) 03	32345 232365
03102> INFLOW >09: (090) 8.56 2.735 1.042 60.910 03 03103> OUTFLOW<10: (POND) 8.56 .233 1.944 60.908 03	3237>
03104> 03	3239> (ha) (cms) (hrs) (mm) (cms) 3240> ID1 05:HIP05 32.60 5.019 1.13 51.57 .000
I	

03241 03242 03243		03376> START Project dir.: V:\20983.DU\ENG\FINALS-1\SWMHYM-1\ 03377>
03244: 03245: 03246:	> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	03380> NRUN = 001
03247: 03248:	> 001:0020	03381> MSTORM= 0 03382> 03383> 001:0002
03251	> * SUB-AREA No.4	03384>
03252: 03253:	> CALIB STANDHYD Area (ha)= 12.20 > 07:HIP07 DT= 2.50 Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00	03365/ FC0Tal= /1.65 mm B= 6.014 03367> C= .820 03368> used in: INTENSITY = A / (t + B)^C
03254: 03255: 03256:	IMPERVIOUS PERVIOUS (i)	03389> 03390> Duration of storm = 3.00 hrs
03257: 03258:	> Dep. Storage (mm) = 1.57 4.67 > Average Slope (%) = .70 1.50	03391> Storm time step = 10.00 min 03392> Time to peak ratio = .33 03393>
03259: 03260: 03261:	> Length (m)= 210.00 100.00 > Mannings n = .030 .250	03394> TIME RAIN TIME RAIN TIME RAIN TIME RAIN 03395> hrs num/hr hrs num/hr hrs num/hr hrs num/hr
032622	> Max.eff.Inten.(mm/hr)= 161.47 126.32 > over (min) 5.00 17.50	03396> .17 6.046 1.00 176.559 1.83 11.059 2.67 5.760 03397> .33 7.542 1.17 54.049 2.00 9.285 2.83 5.280 03398> .50 10.159 1.33 27.319 2.17 8.024 3.00 4.879
03264	> Unit Hyd. Tpeak (min) = 5.00 17.50	03399> .67 15.969 1.50 18.240 2.33 7.080 03400> .83 40.655 1.67 13.737 2.50 6.347
03266: 03267: 03268:	*TOTALS*	03401> 03402> 03403> 001:0003
032692	> TIME TO PEAK (hrs)= 1.00 1.25 1.042 > RUNOFF VOLUME (mm)= 63.24 39.90 51.566	034045
03271> 03272> 03273>	- RONOFF COEFFICIENT = .98 .52 .796	03406>
03274>	$CN^* = 81.0$ Ia = Dep. Storage (Above)	03409> Horton's inflitration equation parameters:
03276> 03277> 03278>	THAN THE STORAGE COEFFICIENT.	03411> Parameters for PERVIOUS surfaces in STANDHYD:
	, ,	03414> [IAimp= 1.57 mm] [CLI= 1.50] [MNI= .035] 03415> Parameters used in NASHYD:
03282>	> 001:0021 * *SUB-AREA No.5	03416> [Ia= 4.67 mm] [N= 3.00] 03417>
		03419> ************************************
03286> 03287> 03288>	DESIGN NASHYD Area (ha)= 4.00 Curve Number (CN)=85.00 08:Pond-B DT= 2.50 Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= .170	03421> ************************************
03289> 03290>	• • • • • • • • • • • • • • • • • • • •	03424> 03425> CALIB STANDHYD Area (ba)= 2.07
03291> 03292> 03293>	TIME TO PEAK (hrs)= 1.125	03426> 01:010 DT= 2.50 Total Imp(%)= 84.00 Dir. Conn.(%)= 84.00
03294> 03295>	RUNOFF COEFFICIENT = .532	03429> Surface Area (ha)= 1.74 .33 03430> Dep. Storage (mm)= 1.57 4.67
03296> 03297> 03298>	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	03431> Average Slope (%)= .52 1.00 03432> Length (m)= 204.72 20.00
03299>	001:0022	03434> 03435> Max.eff.Inten.(mm/hr)= 178.56 74.05
03302>	ADD HYD (HIP08) ID: NHYD AREA QPEAK TPEAK R.V. DWP (ha) (cms) (hrs) (zma) (cms)	03436> over (min) 7.50 12.50 03437> Storage Coeff. (min)= 6.26 (ii) 12.72 (ii)
03304> 03305>	ID1 06:HIP06 61.06 8.054 1.13 52.87 .000 +ID2 07:HIP07 12.20 2.470 1.04 51 57 .000	03433> Unit Hyd. peak (cms)= .17 .09
03306> 03307> 03308>	字 및 특히 또 정신실 및 실송 분류를 들 프로드 및 문자 고려하고 등 등 등 등 등 등 등 등 등 가 가 있는 것 같은 드는 드 프로드 프로	03441> PEAK FLOW (cms)= .66 .04 .685 (iii) 03442> TIME TO PEAK (hrs)= 1.04 1.17 1.042
03309> 03310>	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	03443> RUNOFF VOLUME (mm)= 70.09 35.46 64.553 03444> TOTAL RAINFALL (mm)= 71.66 71.66 71.665 03445> RUNOFF COEFFICIENT = .98 .49 .901
03311> 03312> 03313>		03446> 03447> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
		03449> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 03450> THAN THE STORAGE COEFFICIENT.
03316> 03317> 03318>	ROUTE RESERVOIR (Requested routing time step = 1.0 min. IN>09:(HIP08) (03451> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03452>
03319>	.000 .0000E+00 .724 .2210E+01	03454> 001:000503455> *
03321> 03322> 03323>	.048 .5740E-01 .937 .2501E+01 .054 .2434E+00 1.262 .2798E+01 .059 .5834E+00 1.404 .3101E+01	034565 * SUB-AREA No.2 034575
03324>	.062 .8400E+00 1.532 .3410E+01 .064 .1102E+01 1.650 .3724E+01	03458> CALIE STANDHYD Area (ha]= 1.54 03459> 02:020 DT= 2.50 Total Imp(%)= 92.00 Dir. Conn.(%)= 92.00 03460>
03326> 03327> 03328>	.147 .1370E+01 (2.409 .4048+01 .280 .1644E+01 (3.689 .4370E+01 .472 .1924E+01 (.600 .000E+00	03461> IMPERVIOUS PERVIOUS (i) 03462> Surface Area (ha)= 1.42 .12 03463> Dep. Storage (mm)= 1.57 4.67
03329> 03330> 03331>	ROUTING RESULTS AREA QPEAK TPEAK R.V.	03464> Average Slope (%)= .50 1.00 03465> Length (m)= 244.34 5.00
03332>	INFLOW >09: (HIPOB) 77.26 10.570 1.125 51.714	034665 Mannings n = .030 .030 034675 034675 Max.eff.Inten.(mm/hr)= 178.56 93.23
03334> 03335> 03336>	PEAK FLOW REDUCTION [Oout/Oin] (%)= 12,106	03469> over (min) 7.50 7.50 03470> Storage Coeff. (min)= 7.04 (ii) 7.76 (ii)
03337> 03338>		03471> Unit Hyd. Tpeak (min)= 7.50 7.50 03472> Unit Hyd. peak (cms)= .16 .15 03473> *TOTALS*
	001:0024	
03342>	*SUB-AREA No. 6	O3475 ZDAR LDOR (Luns) .31 .02 .534 (111) 03475 TIME TO PEAK (hrs)= 1.04 1.042 1.042 03476> RUNOFF VOLUME (mm)= 70.09 35.46 67.324 03477> TOTAL RAINFALL (mm)= 71.66 71.665 10.655 03476> RUNOFF COEFFICIENT = 98 .49 939
03344>	DESIGN NASHYD Area (ha)= 2.70 Curve Number (CN)=76.00 01:A3 DT= 2.50 Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 U.H.TP(Lrs)= .800	03479> 03480> (i) CN PROCEDURE SELECTED FOR REPUTOUS LOSSES.
03347>	Unit Hyd Opeak (cms)= .129	03481> CN* = 81.0 Ia = Dep Fabricos Bospis 03482> (ii) THE STEP (DT) SHOULD BE SMALLER OR EQUAL 03482> THAN THE STORAGE COEFFICIENT.
03349> 03350> 03351>	PEAK FLOW $(cms) = .096 (i)$	03484> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 03485>
03352> 03353>	TIME TO PEAK (hrs)= 1.958 RUNOFF VOLUME (nmn)= 25.767 TOTAL RAINFALL (nmn)= 64.806	03486>
03354> 03355> 03356>	RUNOFF COEFFICIENT = .398	03489> * SUB-AREA No.3
03356> 03357> 03358>	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.	034915 CALIB STANDHYD Area (ha)= 1.40 034925 03:030 DT= 2.50 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 034935
03360>	001:0025	03494> IMPERVIOUS PERVIOUS (i) 03495> Surface Area (ha)= 1.36 .04
03361> 03362> 03363>	ADD HYD (Ultima) ID: NHYD AREA OPEAK TPEAK R.V. DWF 	03496> Dep. Storage (mm)= 1.57 4.67 03497> Average Slope (%)= .51 1.00
03364> 03365>	+ID2 01:A3 2.70 .096 1.96 25.77 .000	03499> Mannings n = .030 .030 03500>
03366> 03367> 03368>	SUM 02:Ultima 79.96 1.348 2.63 50.84 .000 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.	03501> Max.eff.Inten.(mm/hr)= 178.56 93.23 03502> ovver (min) 7.50 7.50 03503> Storage Coeff. (min)= 6.67 (ii) 7.39 (ii)
03369> 03370>		03504> Unit Hyd. Tpeak (min)= 7.50 7.50 03505> Unit Hyd. peak (cms)= .16 .15
03372>	001:0026******************************	03506> *TOTALS* 03507> PEAK FLOW (cms)= .50 .01 .509 (iii)
03374>		03508> TIME TO PEAK (hrs)= 1.04 1.08 1.042 03509> RUNOFF VOLUME (mm)= 70.09 35.46 69.056 03510> TOTAL RAINFALL (mm)= 71.66 71.66 71.665

J. L. Richards & Associates Limited

1...

1 1

Page 12

RUNOFF COEFFICIENT = 03646> 03647> 03648> 03649> 03650> 03651> .337 .4731E+00 | .465 .5491E+00 | .531 .5871E+00 | .98 .49 .964 1.880 .1004E+01 2.577 .1092E+01 .000 .0000E+00 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN⁺ = 81.0 Ia = Dep. Storage (Above) (ii) THE STEP (CP) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PERV FLOW DOES NOT INCLODE BASEFIOW IF ANY. 03513: 03514> 03515> TPEAK (hrs) 1.042 1.861 R.V. 03516> 03517> 03518> (mm) 67.655 67.653 03651> 03652> 03653> 03654> 03655> 03656> 03656> 03657> 03519> PEAK FLOW REDUCTION [Qout/Qin](%)= 9.214 TIME SHIFT OF PEAK FLOW (min)= 49.17 MAXIMUM STORAGE USED (ha.m.)=.4333E+00 03520> 001:0007----03658; 03525> 03526> SUM 04:040 3.61 1.220 1.04 65.74 .000 03527> 03528> 03529> * Remaining Hawthorne Industrial Park * 36632 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03530> 03670> 03671> 03672> 03673> Surface Area(ha) =Dep. Storage(mm) =Average Slope(%) =Length(m) =Mannings n= 14.13 1.57 .60 580.00 .030 5.77 4.67 1.50 100.00 03538> 03538> 03538> 03540> 03541> 5UM 05:050 5.01 1.729 1.04 66.66 . 000 03674> 03676> 03676> 03677> 03678> 03678> 03679> .250 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 153.66 117.89 12.50 25.00 11.69 (ii) 24.37 (ii) 12.50 25.00 .09 .05 03680> 03681> 03682> 03683> 03684> | CALIE STANDHYD | Area (ha)= .89 | 06:060 DT= 2.50 | Total Imp(8)= 97.00 Dir. Conn.(%)= 97.00 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nmn) = TOTAL RAINFALL (nmn) = RUNOFF COEFFICIENT = 2.77 1.13 70.09 71.66 .98 *TOTALS* 03548> 1.13 *TOTALS* 3.419 (iii) 1.167 58.015 71.665 .810 03548> 03549> 03550> 03551> 03552> 03553> 03554> 03555> 03556> 03556> 03558> 1.30 45.94 71.66 .64 Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = 03685> IMPERVIOUS PERVIOUS (i) 03686> .86 1.57 .93 164.82 .030 03687> 03688> 03689> .03 4.67 .70 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DI) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

 (iii) PBAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 40.00 03690> 178.56 67.61 5.00 15.00 4.62 (ii) 15.92 (ii) 5.00 15.00 .24 .07 .37 .00 1.00 1.21 70.09 25.46 71.66 71.66 .98 .49 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 67.61 15.00 15.92 (i1) 15.00 03559> 03560> 03561> 03562> 03562> *TOTALS* .374 (iii) 1.000 69.056 PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = 03563> 03564> 03565> 03566> 03567> 03567> 03568> .000 71.665 03702> 03703> 03704> 03705> 03706> 03707> .000 03569 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN⁴ = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SHALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 03570> 03572> 03573> 03574> _____ 03580> -03581> | 22.07 12.07 1.57 .65 450.00 .030 CALLE STANDHYD | Area (ha)= 2.66 | 07:070 DT= 2.50 | Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 03582> 03583> 03584> 03585> 03586> $\begin{array}{c} \text{IMPEWIGUS} \quad \text{PERVIOUS} \quad \text{PERVIOUS} \quad (i) \\ \text{Surface Area} \quad (ha) = & 2.58 & .08 \\ \text{Dep. Storage (mm)} = & 1.57 & 4.67 \\ \text{Average Slope} \quad (b) = & .51 & 1.50 \\ \text{Length} \quad (m) = & 207.25 & 20.00 \\ \text{Mannings n} & = & .030 & .250 \\ \end{array}$ 03717> 03718> 03719> 03720> 03721> 03722> 03722> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 03588> 03588> 03588> 03589> 03590> 03591> 178.56 126.60 10.00 22.50 9.39 (ii) 21.52 (ii) 10.00 22.50 .12 .05 03723> 03724> 03725> 03726> 03727> 03728> 178.56 74 5.00 12 6.01 (ii) 11 5.00 12 .20 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 74.05 12.50 11.73 (ii) 12.50 .09 03592> 03593> *TOTALS* 3.203 (iii) 1.125 58.015 71.665 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 2.68 1.08 70.09 71.66 .98 1.05 1.33 45.94 71.66 03593> 03595> 03595> 03596> 03597> 03598> 03599> 03600> 03601> 03602> 03729> 03729> 03730> 03731> 03732> 03733> 03734> 03735> 03736> 03736> 03737> 03738> 03739> *TOTALS* 1.034 (iii) 1.000 69.056 71.665 .964 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 1.03 1.00 70.09 71.66 .98

 TOTAL RAINFALL (mm) =
 71.66
 71.66

 RUNOFF COEFFICIENT =
 .98
 .64

 (i) CN PROCEDURE SELECTED FOR PERVICUS LOSSES:
 .64

 (ii) CN *
 61.0
 Ia = Dep. Storage (Above)

 (iii) TIME STEP (DT) SHOULD BE SMALLER OR ROUAL
 NEW SMALLER OR ROUAL

 (iii) PEAR FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 (iii) PEAR FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 .01 35.46 71.66 .49 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 03603> 03603> 03604> 03605> 03606> 03607> (i) IN PROLEDGE SELECTED FOR PERVIOUS LOSSES:
 CN = 81.0 I a = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 0017-----03740> 03608> 03609> 03609> 03610> 03612> 03612> 03612> 03613> 10613> 10700 03614 10100 10500 10100 100000 100000 100000 100000 100000 100000 100000 100000 03614> 03615> 03616> 03617> 03618> 03619> 03620> 03621> SUM 08:080 3.55 1.408 1.00 69.06 .000 03751> 03752> 03753> 03754> 03756> 03756> 03756> 03758> 03758> 03756> 03762> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)=
 153.66
 117.89

 12.50
 25.00

 12.82
 (ii)

 12.50
 25.30

 12.50
 25.00

 .09
 .04
 _____ 03622> 001:0012------03622> 001:0012-------03624> | ADD HYD (090) | ID: NHYD AREA QPEAK TPEAK R.V. DWF 03625> (ha) (cms) (hrs) (mm) (cms) 03625> (ha) (cms) (hrs) (mm) (cms) 03625> IDI 05:050 5.01 1.729 1.04 66.66 .000 03627> + 1D2 08:080 3.55 1.408 1.00 69.06 .000 03628> IDI 05:050 8.56 3.057 1.04 67.66 .000 .04 * TOTALS* 2.612 (iii) 1.167 58.015 71.665 .810 *TOTALS* PEAK FLOW {cms} = TIME TO PEAK {hrs} = RUNOFF VOLUME {mm} = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 2.10 .87 1.13 1.38 70.09 45.94 71.66 71.66 .98 .64 SUM 09:090 8.56 3.067 1.04 67.66 .000 03763> 03764> 03764> 03765> 03766> 03767> 03768> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES; CN* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP [CT] SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) FEAK FLOW DOES NOT INCLUDE BASEFICOW IF ANY.
 03765>
 (ii) TIME STEP (DT) SHOULD BE SWALLER OR GOUND ON THAN THE STORAGE COEFFICIENT OR GOUND ON THE STORAGE COEFFICIENT OF ANY.

 03771>
 (iii) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 03772>
 (iii) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 03773>
 (iii) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 03775>
 (iii) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 03775>
 (iii) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 03775>
 (iiii) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 03776>
 (iiii) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 03777>
 (iiii) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 03776>
 (iiii) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 03777>
 (iiii) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 03777>
 (iiii) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 03777>
 (iii) (iiii) FEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

 03778>
 (iii) (iiii) (iiiiii) (iiiiii) (iiii) (iiii) (iiii) (iiiii) (iiii) (iiii) (iiiii) (i 03769>
 OUTLEOW
 STORAGE
 I OUTFLOW
 STORAGE

 OUTFLOW
 STORAGE
 I OUTFLOW
 STORAGE

 (cms)
 (ha.m.)
 (ms)
 (ha.m.)

 000
 00008+00
 (533
 6251E+00

 008
 6560E+01
 6531E
 6531E+00

 017
 1311E+00
 1.797
 7391E+00

 039
 2831E+00
 950
 8274E+00

 .233
 3971E+00
 1.304
 9157E+00
 03639> 03640> 03641> 03642> 03642> 03643> 03644> .000 03645>

3782>	SUM 05:HIPO5 32.60 5.767 1.13 58.02 .000
3783> 3784>	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
3785>	001:0019
8787> 8788>	
1789> 1790>	ADD HYD (HIP06) ID: NHYD AREA OPEAK TPEAK R.V. DWF (ha) (cms) (hrs) (mm) (cms) ID1 05:HIP05 32.60 5.767 1.13 58.02 .000 +ID2 02:HIP02 28.46 3.554 1.17 60.91 .000
791>	+ID2 02:HIP02 28.46 3.554 1.17 60.91 .000
1793> 1794>	SUM 06:HIP06 61.06 9.239 1.13 59.36 .000
795> 796>	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
797>	001:0020
799>	* * SUB-AREA No.4
801>	
803> 804>	CALIB STANDHYD Area (ha)= 12.20 07:HIP07 DT=2.50 Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00
805> 806>	
807> 808>	Surface Area (ha)= 8.66 3.54 Dep. Storage (mm)= 1.57 4.67 Average Slope (%)= .70 1.50
809> 810>	Length (m)= 210.00 100.00 Mannings n = .030 .250
811> 812>	Max.eff.Inten. $(mm/br) = 178.56$ 146.17
813> 814>	Max.eff.Inten.(mm/hr)= 178.56 146.17 over (min) 5.00 17.50 Storage Coeff. (min)= 5.81 (ii) 17.27 (ii) Unit Hyd. Tpeak (min)= 5.00 17.50 Unit Hyd. Tpeak (min)= 5.00 17.50
815> 816>	Unit Hyd. Tpeak (min)≈ 5.00 17.50 Unit Hyd. peak (cms)= .20 .07
817> 818>	*TOTALS*
819> 820>	PEAK FLOW (cms)= 2.46 .87 2.793 (iii) TIME TO PEAK (hrs)= 1.00 1.25 1.042 RUNOFF VOLUME (nm)= 70.09 45.94 58.015 TOTAL RAINFALL (nm)= 71.66 71.66 71.65 RUNOFF COEFFICIENT 98 .64 .810
821> 822>	CONCEPT VOLUME (mm) = 71.09 45.99 58.015 TOTAL RAINFALL (mm) = 71.66 71.66 71.665 RUNOFF COEFFICIENT 98 .64 .810
823> 824>	
825>	 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 61.0 I a = Dep. Storage (Above) (ii) TIME STEP_(DD) SHOULD BE SMALLER OR EQUAL
827> 828>	THAN THE STORGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
829> 830> ·	(III) FEAR FLOW DODS NOT INCLUDE BASEFLOW IF ANY.
	001:0021
833> 1 834> -	*SUB-AREA NO.5
835>	DESIGN NASHYD Area (ha)= 4.00 Curve Number (CN)=85.00 00F10nd-B DT=2.50 Ia (mm)= 4.670 # of Linear Res.(N)=3.00 U.H. Tp(Lrs)= .170
37> - 38>	U.H. Tp(hrs)= .170
339> 340>	Unit Hyd Qpeak (cms) = .899
341> 342>	PEAK FLOW (Cms)= .649 (i) TIME TO PEAK (hrs)= 1.125 RUNOFF VOLLME (mm)= 40.139
843> 844>	RUNOFF VOLUME (mm) = 40.139 TOTAL RAINFALL (mm) = 71.665 RUNDER CORPETCIENT = 500
845> 846>	RUNOFF COEFFICIENT = .560
847> 848>	PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
149> - 150> 0	001:0022
351> - 352>	
353> - 154>	(ha) (cms) (hrs) (mm) (cms)
155> 156>	ID1 06:HIP06 61.06 9.239 1.13 59.36 000 +ID2 07:HIP07 12.20 2.793 1.04 58.02 000 +ID3 08:Pond-B 4.00 .649 1.13 40.14 000
157> 158>	SUM 09:HIP08 77.26 12.109 1.13 58.16 .000
159> 160>	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
861> 862> -	
64> -	001:0023
65>	ROUTE RESERVOIR Requested routing time step = 1.0 min. IN>09:(HIP08)
168> -	OUT<10:(HIP-PO) ========= OUTLFOW STORAGE TABLE ====================================
69> 70>	OUT<10: (HIP-PO) ====================================
71> 72>	.054 .2434E+00 1.262 .2798E+01
73> 74>	.059 .5834E+00 1.404 .3101E+01 .062 .0400E+00 1.532 .3410E+01
75>	.064 .1102E+01 / 1.650 .3724E+01 .147 .1370E+01 / 2.409 .4044E+01
77>	.280 .1644E+01 3.689 .4370E+01 .472 .1924E+01 .000 .0000E+00
79> 80>	ROUTING RESULTS AREA OPEAK TPEAK R.V.
81> 82>	(ha) (cms) (hrs) (nun) INFLOW >09: (HIPO8) 77.26 12.109 1.125 58.156
83> 84>	
85> 86>	PEAK FLOW REDUCTION [Qout/Qin](%)= 11.026 TIME SHIFT OF PEAK FLOW (min)= 105.83 MAXIMUM STOPACE LISED (horm)= 105.83
87> 88>	MAXIMUM STORAGE USED (ha.m.) =.3168E+01
	01:0024
91> * 92> *	
94> 1	SUB-AREA NO. 6
96> -	01:A3 DT= 2.50 Ia (mm) = 4.670 # of Linear Res.(N) = 3.00 U.H. Tp{hrs} = .800
97> 98>	Unit Hyd Qpeak (cms)= .129
99>	PEAK FLOW (cms)= .114 (i)
00>	RUNOFF VOLUME (num) = 30.490
01> 02>	TOTAL RAINFALL (mm) = 71.665 RUNOFF COEFFICIENT = .425
01> 02> 03> 04>	
00> 01> 02> 03> 04> 05> 06>	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY
01> 02> 03> 04> 05> 06> 07>	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
01> 02> 03> 04> 05> 06> 07> 06> -	(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
01> 02> 03> 04> 05> 06> 07> 06> 09> 0 10>	

03916>	SU	M 02:Ultima	79.96	1.515	2.57	57.22	.000	
03917>								
03918>	NOTE: PEAK FLOW	S DO NOT INCL	JDE BASEF	LOWS IF A	NY.			
03919>								
03920>								
03921>	001:0026							
03922>	FINISH							
03923>								
03924>	*****	***********	*******	********	******	*******	********	**
03925>	WARNINGS / ERR	DRS / NOTES						
03926>								
03927>	Simulation ended	on 2009-05-1	5 at 1	08:45:24				
03928>								
03929>								
03930>								

APPENDIX'I'

MINISTRY OF THE ENVIRONMENT CERTIFICATE OF APPROVAL EXISTING SETTLING PONDS

Ministry Ministère of the de Environment l'Environi

Ministère de l'Environnement

CERTIFICATE OF APPROVAL INDUSTRIAL SEWAGE WORKS NUMBER 6924-5YWQ3U

R. W. Tomlinson Limited 5597 Power Road, R.R. No. 6 Gloucester, Ontario K1G 3N4

Site Location: Tomlinson Property, east side of Hawthorne Road Lot 26 & 27, Concession VI Ottawa City

You have applied in accordance with Section 53 of the Ontario Water Resources Act for approval of:

the establishment of sewage works for the collection, transmission, treatment and disposal of excess wash plant wash water, consisting of the following:

410 millimeter pipeline extending from the wash plant, located on the Rideau Road Quarry #1 site, to the settling ponds;

three (3) settling ponds, in series, Cell #1 having an effective volume of 3,275 cubic metres (and an operating freeboard of 0.6 metres), Cell #2 having an effective volume of 2,347 cubic metres (and an operating freeboard of 0.6 metres) and Cell #3 having an effective volume of 1,154 cubic metres (and an operating freeboard of 0.6 metres), including temporary floating pumping station in Cell #1, floating recycle pumping station in Cell #2, baffle in Cell #2 and mixing manhole between Cell #2 and Cell #3 (if required), with an overflow discharge from Cell #3 to the roadside ditch along Hawthorne Road;

all other controls, electrical equipment, instrumentation, piping, pumps, valves and appurtenances essential for the proper operation of the aforementioned sewage works;

all in accordance with the following submitted supporting documents:

1. <u>Application for Approval of Industrial Sewage Works</u> submitted by Ronald Tomlinson of R. W. Tomlinson Limited dated March 8, 2004;

 Report on Application for Industrial Sewage Works Approval under Section 53 of the Ontario Water Resources Act, R.W. Tomlinson Limited, Aggregate Wash Water Management Associated with Rideau Road Quarry No. 1, Geographic City of Gloucester, City of Ottawa, Ontario prepared by Golder Associates, dated March 2004; and 3. Letter and attachments dated May 11, 2004 from Nural Kuyucak and K. Marentette of Golder Associates to Randy Chin of the Ministry of the Environment.

For the purpose of this Certificate of Approval and the terms and conditions specified below, the following definitions apply:

"Certificate" means this entire certificate of approval document, issued in accordance with Section 53 of the *Ontario Water Resources Act*, and includes any schedules;

"Director" means any Ministry employee appointed by the Minister pursuant to section 5 of the Ontario Water Resources Act;

"District Manager" means the District Manager of the Ottawa District Office of the Ministry;

"Ministry" means the Ontario Ministry of the Environment;

"Owner" means R. W. Tomlinson Limited and includes its successors and assignees; and

"works" means the sewage works described in the Owner's application, this certificate and in the supporting documentation referred to herein, to the extent approved by this certificate.

You are hereby notified that this approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1. <u>GENERAL CONDITION</u>

(1) Except as otherwise provided by these Conditions, the Owner shall design, build, install, operate and maintain the works in accordance with the description given in this Certificate, the application for approval of the works and the submitted supporting documents and plans and specifications as listed in this Certificate.

(2) Where there is a conflict between a provision of any submitted document referred to in this Certificate and the Conditions of this Certificate, the Conditions in this Certificate shall take precedence, and where there is a conflict between the listed submitted documents, the document bearing the most recent date shall prevail.

2. CHANGE OF OWNER

(1) The Owner shall notify the District Manager and the Director, in writing, of any of the following changes within 30 days of the change occurring:

(a) change of Owner or operating authority, or both;

(b) change of address of Owner or operating authority or address of new owner or operating

authority;

(c) change of partners where the Owner or operating authority is or at any time becomes a partnership, and a copy of the most recent declaration filed under the *Partnerships Registration Act*; and

(d) change of name of the corporation where the Owner or operator is or at any time becomes a corporation, and a copy of the most current "Initial Notice or Notice of Change" (Form 1, 2 or 3 of O. Reg. 189, R.R.O. 1980, as amended from time to time), filed under the *Corporations Informations Act* shall be included in the notification to the District Manager.

(2) In the event of any change in ownership of the works, the Owner shall notify in writing the succeeding owner of the existence of this certificate, and a copy of such notice shall be forwarded to the District Manager.

(3) The Owner shall ensure that all communications made pursuant to this condition will refer to this certificate's number.

OPERATIONS MANUAL

(1) The Owner shall prepare an operations manual prior to the commencement of operation of the sewage works, that includes, but not necessarily limited to, the following information:

(a) operating procedures for routine operation of the works;

(b) inspection programs, including frequency of inspection, for the works and the methods or tests employed to detect when maintenance is necessary;

(c) repair and maintenance programs, including the frequency of repair and maintenance for the works;

(d) contingency plans and procedures for dealing with potential spill, bypasses and any other abnormal situations and for notifying the District Manager; and

(e) complaint procedures for receiving and responding to public complaints.

(2) The Owner shall maintain the operations manual up to date through revisions undertaken from time to time and retain a copy at the location of the sewage works. Upon request, the Owner shall make the manual available for inspection and copying by Ministry personnel.

CLOSED LOOP OPERATION

(1) The Owner shall ensure that the works are normally operated as a closed loop system with treated water being recycled back to the wash plant.

(2) In the event that excess accumulation of water occurs and a discharge is necessary, the Owner shall undertake the monitoring outlined in Condition 6 and shall adhere to the effluent limits in Condition 5.

EFFLUENT LIMITS

5.

(1) The Owner shall design, construct and operate the works such that the concentration of Total Suspended Solids does not exceed 25 milligrams per litre in the effluent from the works.

(2) For the purposes of determining compliance with and enforcing subsection (1), non-compliance with respect to the Total Suspended Solids concentration limit is deemed to have occurred when any single sample (along with a follow-up confirmation sample collected within 7 days of the receipt of the original sample result that indicated that an exceedance had occurred) analyzed for Total Suspended Solids is greater than the corresponding maximum concentration set out in subsection (1).

EFFLUENT MONITORING AND RECORDING

The Owner shall, upon commencement of operation of the sewage works, carry out the following monitoring program:

(1) All samples and measurements taken for the purposes of this certificate are to be taken at a time and in a location characteristic of the quality and quantity of the effluent stream over the time period being monitored.

(2) Samples shall be collected of the discharge from Cell #3 to the Hawthorne Road ditch and analyzed, at the sampling frequencies and using the sample type specified for each parameter listed:

Table 1 - Effluent Monitoring							
Brequency	Once each Mo	onth During Perio	ods of Effluent D	ischarge			
Sample Lype	Grab	· ·					
Parameters	Total Suspen	ded Solids		•			

(3) The methods and protocols for sampling, analysis, and recording shall conform, in order of precedence, to the methods and protocols specified in the following:

(a) the Ministry's publication "Protocol for the Sampling and Analysis of Industrial/Municipal Wastewater" (August 1994), ISBN 0-7778-1880-9, as amended from time to time by more recently published editions; and

(b) the publication "Standard Methods for the Examination of Water and Wastewater" (17th edition) as amended from time to time by more recently published editions.

(4) The Owner shall measure, record and calculate the flowrate from Cell #3 to the Hawthorne Road ditch daily (during periods of discharge), within an accuracy of plus or minus 15 per cent of the actual flowrate.

(5) The Owner shall retain for a minimum of three (3) years from the date of their creation, all records and information related to or resulting from the monitoring activities required by this certificate.

7. <u>REPORTING</u>

1.

2.

3.

4.

5.

6.

(1) The Owner shall report to the District Manager or designate, of any exceedence of any parameter specified in Conditions 5 orally, as soon as reasonably possible, and in writing within seven (7) days of the exceedence.

The reasons for the imposition of these terms and conditions are as follows:

Condition 1 is imposed to ensure that the works are built and operated in the manner in which they were described for review and upon which approval was granted. This condition is also included to emphasize the precedence of Conditions in the Certificate and the practice that the Approval is based on the most current document, if several conflicting documents are submitted for review.

Condition 2 is included to ensure that the Ministry records are kept accurate and current with respect to approved works and to ensure that subsequent owners of the works are made aware of the certificate and continue to operate the works in compliance with it.

Condition 3 is included to ensure that a comprehensive operations manual governing all significant areas of operation, maintenance and repair is prepared, implemented and kept up-to-date by the owner and made available to the Ministry. Such a manual is an integral part of the operation of the works. Its compilation and use should assist the owner in staff training, in proper plant operation and in identifying and planning for contingencies during possible abnormal conditions. The manual will also act as a benchmark for Ministry staff when reviewing the owner's operation of the work.

Condition 4 is included to ensure that the works are operated as designed.

Condition 5 is imposed to ensure that the effluent discharged from the works meets the Ministry's effluent quality requirements thus minimizing environmental impact on the receiver.

Conditions 6 and 7 are included to require the owner to demonstrate on a continual basis that the quality of the effluent from the approved works is consistent with the effluent limits specified in the certificate and that the approved works does not cause any impairment to the receiving watercourse.

In accordance with Section 100 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, Chapter 0.40, as amended, you may by written notice served upon me and the Environmental Review Tribunal and in accordance with Section 47 of the <u>Environmental Bill of Rights</u>, S.O. 1993, Chapter 28, the Environmental Commissioner, within 15 days after receipt of this Notice, require a hearing by the Tribunal. The Environmental Commissioner will place notice of your appeal on the Environmental Registry. Section 101 of the <u>Ontario</u> <u>Water Resources Act</u>, R.S.O. 1990, Chapter 0.40, provides that the Notice requiring the hearing shall state:

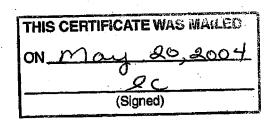
The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;
 The grounds on which you intend to rely at the hearing in relation to <u>each</u> portion appealed.

The Notice should also include:

- The name of the appellant; 4.
 - The address of the appellant;
- The Certificate of Approval number; 5. The date of the Certificate of Approval; 6.
- The name of the Director; 7.
 - The municipality within which the works are located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:


The Secretary* Environmental Review Tribunal 2300 Yonge St., 12th Floor P.O. Box 2382 Toronto, Ontario M4P 1E4	AND	The Environmental Commissioner 1075 Bay Street, 6th Floor Suite 605 Toronto, Ontario M5S 2B1	AND	The Director Section 53, <i>Ontario Water Resources Act</i> Ministry of the Environment 2 St. Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5
---	-----	--	-----	--

Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

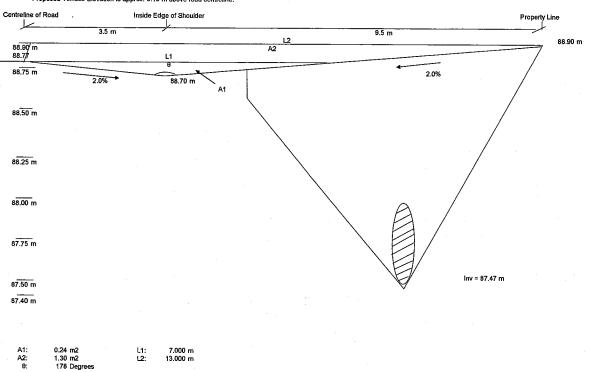
This instrument is subject to Section 38 of the Environmental Bill of Rights, that allows residents of Ontario to seek leave to appeal the decision on this instrument. Residents of Ontario may seek leave to appeal within 15 days from the date this decision is placed on the Environmental Registry. By accessing the Environmental Registry at www.ene.gov.on.ca, you can determine when the leave to appeal period ends.

The above noted sewage works are approved under Section 53 of the Ontario Water Resources Act.

DATED AT TORONTO this 19th day of May, 2004

RC/

District Manager, MOE Ottawa c: Nural Kuyucak, Golder Associates Ltd. v


Mohamed Dhalla, P.Eng. Director Section 53, Ontario Water Resources Act

Page 6 - NUMBER 6924-5YWQ3U

APPENDIX'J'

ASSESSMENT OF CULVERT CROSSING DURING AN EXTREME STORM EVENT

ENTRANCE TO POND ACCESS ROAD - OPEN DITCH/CULVERT CONFIGURATION

Typical open ditch/culvert configuration: 1390x970mm CSPA culvert, invert approx. 1.43 m below elevation at property line. Proposed Terrace Elevation is approx. 0.13 m above road centreline.

FLOW ABOVE CULVERT THRU A1:		FLOW ABOVE CULVERT THRU A2:
Since 0 is equal to app	rox. 180 degrees	
Jse the Rectangular W	eir Equation to Estimate the Flow Thru A1:	Using the Rectangular Weir Equation to Estimate the Flow Thru A2:
Q = C x I	x H ^ 1.5	Q = C x L x H ^ 1.5
C = 1.84		C = 1.84
L' = L1 - 1	0.1 x n x h) , where n= no. of end contra	actions L' = L3 - (0.1 x n x h) , where n= no. of end contractions
use h = 88.77 - 88.7 ≃ 0.07 m		use h = 88.9 - 88.77 = 0.13 m
h =	0.07 m	h= 0.13 m
		L3 = (L1 + L2) / 2 = 10m (Avg. Length)
L' =	6.99 m	L'= 9.97 m
Q _{A1} =	0.24 m3/s	Q _{A2} = 0.86 m3/s

1:100 year Peak Flow Rate of 3.0 m3/s (From Storm Design Sheet : 100 Year Flow 27B-27C)

Flow through the 1390 x 970 mm CSPA Culvert under Inlet Control Conditions = 1.9 m³/s (From Culvert Sizing Nomograph 27B-27C) Total flow above culvert = $Q_{A1} + Q_{A2} = 0.24$ m³/s + 0.86 m³/s = 1.10 m³/s Therefore, Total Flow = 1.9 m³/s + 1.1 m³ /s = 3.0 m³/s = 1:100 year Peak Flow Rate

APPENDIX'K'

SWMHYMO INPUT AND OUTPUT FILES (July 1, 1979 Historical Storm Event)

(V:\...July1979.dat)

00001> 2 Metric units 00003> # 00003> # 00003> # 00003 # 00004 # 00005 # 00005 # 00005 # 00005 # 00005 # 00005 # 00005 # 00006 # 00006 # 00006 # 00006 # 1 Company : J.L. Richards & Associates Limited 00008 # 1 License # : 4418403 00010 = 00011 # 00136> * 00137> * SUB-AREA No.1 00137> * SUB-AREA No.1 00138> 00139> CALIB STANDHYD 00140> 00141> ID=[1], NHYD=["HIPO1"], DT=[2.5] (min), AREA=[19.9] (ba), XIMP=[0.50], TIMP=[0.7]], DWF=[0.0] (cms), LOSS=[2), SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLP=[1.5] (%), LGD=[10.00] (m), MNP=[0.25], SCS=[0.0] (m Impervious surfaces: IAimp=[1.57] (mm), SLPI=[0.6] (%), LGI=[500] (m), MNT=[0.03], SCI=[0.0] (min RAINFALL=[, , ,] (mm/hr), END=1 IDsum=[2], NHYD=["HIP02"], IDs to add=[10+1] 00152> 00153> CALIB STANDHYD 00154> 00155> 00156> 00157> 00158> 00158> 00160> * 00161> * 00161> * 00161> * 00161> * SUB-AREA No.3 ID=[3], NHYD=["HIP03"], DT=[2.5](min), AREA=[17](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67](mm), SLPF=[1.5](%), LGP=[10.01](m), MNP=[0.25], SCS=[0.0](m) Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.65](%), LGD=[450](m), MNT=[0.3], SCI=[0.0](min RAINFALL=[, , ,] (mm/hr), END=-1 00023> SWMHIMO FILE DEVELOPED TO INVESTIGATE FLOOD FLOWS OF THE 00021> PROPOSED COMPOSTING SITE UNDER POST-DEVELOPMENT UNCONTROLLED CONDITIONS 0022> 00028> 00163> * SUB-AREA No.3 00164> 00165> CALIE STANDHYD 00166> 00166> 00166> 00160> 00169> 00031> 00032> START TZERO=[0.0], NETOUT=[2], NSTORM=[0], NRUN=[0] [] <--storm filename, one per line for NSTORM time STORM FILENAME=("JUL_1_79.STM"] ES ICASEdef=[1], read and print values DEFVAL_FILENAME=[V:\22973.DULENC\SWHYMO\"ORGA.VAL"] 00169> 00170> 00171> 00172> 00173> *%------00174> ADD HYD 00175> *%------**-----00038> IDsum=[5], NHYD=["HIP05"], IDs to add=[3+4] 0003 00175> *8-----00176> ADD HYD 00177> *8-----00178> * 00179> * SUB-AREA No.4 00180> IDsum=[6], NHYD=["HIP06"], IDs to add=[5+2] 00043> * 00043> * 00044> * SUB-AREA No.1 00044> 00044> CALIB STANDHYD 00047> ID=[1], NHYD=["010"], DT=[2.5] (min), ARZA=[2.07] (ha), XIMP=[0.84], TIMP=[0.84], DWT=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LOP=[2010], NMP=[0.25], SCE=[0.0] (mi ID=[7], NHYD=["HIP07"], DT=[2.5](min), AREA=[12.2](ha), XIMP=[0.50], TIMP=[0.71], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: IAper=[4.67](mm), SLPF=[1.5](%), Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.7](%), Impervious surfaces: IAimp=[1.57](mm), SLPI=[0.7](%), CAI=[2.0](mm/hr), SHD=-1 00180> 00181> CALIB STANDHYD 00182 00048> 00183> 00184> 00185> 00049> 00050>
 IndP=[20] (m), MMP=[0.25], SCP=[0.0] (m)

 Impervious surfaces: IAimp=[1.57] (m), SLPI=[0.52] (%),

 Icd=[204.72] (m), MMI=[0.03], SCI=[0.0]

 RAINFALL=[, , ,] (mm/hr], END=-1
 00185> 00186> 00187> 00188> 00189> 00190> *%------00191> * 00053> *8-----00055> * 00056> * SUB-AREA No.2 00057> 00058> CALIB STANDHYD ID=[2], NHYD=["020"], DT=[2.5] (min), ARBA=[1.54] (ha), XIMP=(0.92), TIMP=(0.92], DWF=[0.0] (cms), LOSS=[2], SCS curve number CM=[81], Pervious suffaces: IAper=[4.67] (mm), SLPP=[1.0] (%), LGP=[5] (m), NMP=[0.03], SCE=[0.0] (min), LGI=[5] (m), NMI=[0.03], SCI=[0.0] RAINFALL=[, ,] (mn/hr), END=-1 00192> *SUB-AREA No.5 00193> 00194> DESIGN NASHYD 00195> 00196> 00059: ID=[6], NHYD=["Pond-Block"], DT=[2.5]min, AREA=[4.0](ha), DWF=[0](cms), CM/C=[85], TP=[0.17]hrs, RAINFALL=[, , , ,](mm/hr), END=-1 00060> 00062> 00063> 00064> 00197> **-00198> 00199> ADD HYD 00200> *%-----IDsum=[9], NHYD=["HIP08"], IDs to add=[6+7+8] 00065> 00065> 00066> 00067> 00068> 00068> 00200> *%-----00201> 00202> ROUTE RESERVOIR *8-----IDout=[10], NHYD=["HIP-POND"], IDin=[9], RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values * SUB-AREA No.3 00203> 00204>
 UTFLOW-STORAGE)

 (cms) - (ha-m)

 0.0 , 0.0

 0.048, 0.0574

 0.0554, 0.2434

 0.062, 0.2434

 0.062, 0.2434

 0.062, 0.8400

 0.064, 1.1024

 0.147, 1.3705

 0.262, 0.5830

 0.472, 1.2724

 2.2097

 1.262, 2.7981

 1.563, 3.4066

 1.563, 3.4066

 2.409, 4.0421

 2.409, 4.0422

 3.689, 4.3702

 -1, -1
 ID=[3], NHYD=["030"], DT=[2.5](min), RREA=[1.4](ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0](cms), LOSS=[2], SCS curve number CN=[61], Pervious surfaces: IAper=[4.67](mm), SLPF=[1.0](%), LOP=[5](m), NMF=[0.03], SCF=[0.0](min), Impervious surfaces: IAimp=[1.57](mm), SLPI=(0.51](%), LOI=[225.63](m), MNT=[0.03], SCI=[0.0] RAINFALL=[, , ,](mm/hr), END=-1 00070> CALIB STANDHYD 00071> 00205> 000723 00073> 00074> 00074> 00075> 00076> 00077> 00079> ADD HYD 00080> *\$------00208> 00210> 00211> 00212> 00212> 00213> 00214> IDsum=[4], NHYD=["040"], IDs to add=[1+2] -----00215> 00215> 00216> 00217> 00218> 00219> IDsum=[5], NHYD=["050"], IDs to add=[3+4] 00081> ADD HYD 00082> *%-----00083> * 00084> * SUB-AREA No.4 00085> 00086> CALIB STANDHYD 00220> 00220> 00221> 00222> 00223> 00223> ID=[6], NHYD=["060"], DT=[2.5] (min), AREA=[0.69] (ha), XIMP=[0.97], ZIMP=[0.97], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.67] (mm), SLPP=[0.7] (%), LoE=[40] (m), MMP=[0.25], SCE=[0.0] (min) Impervious surfaces: IAimpe[1.57] (mm), SLPI=[0.93] (%), LoE=[164.82] (m), MMI=[0.03] (%), RAINFALL=[, , , ,] (mm/hr), EMD=-1 00087> 00083> 00083> 00090> 00091> 00092> 00092> 00093> * 00095> * 00095> * 00095> * 00095> * 00095> (max twenty pts) 00225> *8-----| ____ 00226> *SUB-AREA No. 6 00227> 00228> 00229> DESIGN NASHYD 00230> 00231> ID = [1], NHYD=["A3"], DT=[2.5]min, AREA=[2.7] (ha), DWF=[0] (cms), CNC=[76], TP=[0.80]hrs, RAINFALL=[, , , ,] (mm/hr), END=-1 ID=[7], NHYD=["070"], DT=[2.5] (min), AREA=[2.66] (ha), XIMP=[0.97], TIMP=[0.97], DWF=[0.0] (cms), LOSS=[2], SCS curve number CN=[81], Pervious surfaces: IAper=[4.57] (zm), SLPF=[1.5] (%), LoP=[20.0] (m), MMP=[0.25], SCP=[0.0] (mi Impervious surfaces: IAimp=[1.57] (mm), SLPT=[0.61] (%), CD=[20.0] (mi, MMP=[0.03], SCI=[0.0] (PAINPALL=[, , ,] (mm/hr), EMD=-1 00097> 00098> CALIB STANDHYD 00099> 00100> 00100> 00102> 00102> 00103> 00232> 00233> 00234> ADD HYD 00235> *%-----IDsum=[2], NHYD=["Ultimate"], IDs to add=[10+1] 00236> 00236> 00237> FINISH 00238> 00239> 00240> 00241> 00241> 00242> 00104> 00105> 00106> *\$-----00107> ADD HYD 00108> *\$-----00109> ADD HYD 00110> *\$-----RAINFALL=[, , , ,] (num/nL) , END-IDsum=[6], NHYD=["080"], IDs to add=[6+7] IDsum=[9], NHYD=["090"], IDs to add=[5+8] -----00110- **-----00112> ROUTE RESERVOIR 00113-00114-00115-00115-00116-00117-00118-00118-00120-00122-00122-00122-00123-00124-IDout=[10], NHYD=["POND"], IDin=[9], RDT=[1.0](min), TABLE of (OUTFLOW-STORAGE) values (CRRS) -0.000, 0.008, 0.017, 0.093, 0.233, 0.337, 0.465, 0.531, (ha-m) 0.0000] 0.0656] 0.1311] 0.2831] 0.3971] 0.4731] 0.5491] 0.5871] Ę 0.531, 0.5871] 0.593, 0.6251] 0.654, 0.6631] 0.950, 0.8274] 1.304, 0.9157] 1.800, 1.0040] 2.577, 1.0923] -1 , -1) 00123> 00124> 00125> 00126> 00127> 00128> 00129> 00130> [1.000, 00130> [2.577, 00131> [-1 , 00132> (max twenty pts)

J. L. Richards & Associates Limited

Page 0

l

l

	00136>
00002> 00003> 55555 W W M M H H Y Y M M 000 999 999 =======================	00137> Max.eff.Inten.(mm/hr)= 106.70 67.70 00138> over (min) 7.50 15.00
00004>5 WWW ММММННҮҮ ММММОО 9999	00139> Storage Coeff. (min)= 7.69 (ii) 14.39 (ii)
00005> SSSS WWWMMMHHHHH YMMMO O ## 9 9 9 9 Ver. 4.02 00006> SWWMMHHH YMMMO O ## 9 9 9 Ver. 4.02	00140> Unit Hyd. Tpeak (min)= 7.50 15.00
00007> SSSSS W W M M H H Y M M 000 9 9 9 9 4418403	00142> *TOTALS*
00009> StormWater Management HYdrologic Model 999 999 =======	00143> PEAK FLOW (cms)= .44 .05 .476 (iii) 00144> TIME TO PEAK (hrs)= 1.54 1.71 1.542
00010> 00011> *********************************	00145> RUNOFF VOLUME (nm) = 87.29 49.30 81.209
00012> ************************************	00146> TOTAL RAINFALL (mm) = 88.86 88.86 88.857 00147> RUNOFF COEFFICIENT = .98 .55 .914
00013> ****** A single event and continuous hydrologic simulation model ****** 00014> ****** 00015> ******* based on the principles of MYMO and its successors *******	00148>
000175 ####### Distant but a province and Second se	00150> CN*= 81.0 Ia = Dep. Storage (Above) 00151> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 00152> THAN THE STORAGE COEFFICIENT.
00018> ****** Ottawa, Ontario: (613) 727-5199 *******	00153> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
00020> ******* E-Mail: swmhymo@jfsa.Com *******	00154> 00155>
00021> ************************************	00156> 001:0005
00023> ++++++++++++++++++++++++++++++++++++	00157> * 00158> * SUB-AREA NO.2
00024> ++++++ Licensed user: J. L. Richards & Associates Limited +++++++ 00025> +++++++ Ottawa SERIAL#:4418403 +++++++	00159>
00026> ++++++++++++++++++++++++++++++++++++	00160> CALIB STANDHYD Area (ha)= 1.54 00161> 02:020 DT= 2.50 Total Imp(%)= 92.00 Dir. Conn.(%)= 92.00
00027> 00028> ************************************	00162> IMPERVIOUS PERVIOUS (i)
00029> ******* ******* ********************	00164> Surface Area (ha) = 1.42 .12
00031> ******* Max. number of rainfall points: 15000 *******	00165> Dep. Storage (mm)= 1.57 4.67 00166> Average Slope (%)= .50 1.00
OOG3D> ******* Maximum value for ID numbers : IO 00031> ******* Max. number of rainfall points : 15000 ******* 00032> ******* Max. number of flow points : 15000 *******	00167> Length (m)= 244.34 5.00
00034>	00168> Mannings n = .030 .030 00169>
00035> 00036> ********************* DETAILED OUTPUT **********************************	00170> Max.eff.Inten.(mm/hr)= 106.70 74.64 00171> over (min) 7.50 10.00
00037> ************************************	00172> Storage Coeff. (min) = 8.65 (ii) 9.44 (ii)
00039> ************************************	00173> Unit Hyd. Tpeak (min)= 7.50 10.00 00174> Unit Hyd. peak (cms)= .14 .12
00040> * Input filename: V:\20963.DU\ENG\FINALS~1\SWMHYM~1\July1979.dat * 00041> * Output filename: V:\20983.DU\ENG\FINALS~1\SWMHYM~1\July1979.out *	00175> *TOTALS*
00042> * Summary filename: V:\209B3.DU\ENG\FINALS~l\SWMHYM~l\n\lv1979.sum *	00176> PEAK FLOW (cms)= .35 .02 .367 (iii) 00177> TIME TO PEAK {hrs}= 1.54 1.63 1.542
00043> * User comments: * 00044> * 1: *	00178> RUNOFF VOLUME (mm) = 87.29 49.30 84.248
00045> * 2:*	00180> RUNOFF COEFFICIENT = .98 .55 .948
00047> ************************************	00161> 00162> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
00048>	00183> CN* = 81.0 Ia = Dep. Storage (Above)
00050> 001:0001 00051> *#***********************************	00184> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL 00185> THAN THE STORAGE COEFFICIENT.
00052> *# Project Name : Hawthorne Industrial Bark Decident Numbers (20082) +	00186> (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00187>
January, 2009	00188>
00055 * Reveloped W. Mark Buchanan F. T.	00189> 001:0006
000565 *# Reviewed by : Guy Forget, P.Eng. 000575 *# Company : J.L. Richards & Associates Limited * 00058 *# License # : 4418403 *	00191> * SUB-AREA NO.3
00058> *# License # : 4418403 *	00192> 00193> CALIB STANDHYD Area {ha}= 1.40
00059> *#***********************************	00194> 03:030 DT= 2.50 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00
00061> *	00195> IMPERVIOUS PERVIOUS (i)
00062> *#***********************************	00197> Surface Area (ha)= 1.36 .04
00064> *# FILE DEVELOPED FOR SITE FLAN APPLICATION AND DETAILED DESIGN * 00065> *# OF A FACILITY ASSOCIATED WITH THE OTTAWA COMPOSTING SITE *	00199> Average Slope (%)= .51 1.00
UUU66> "#""""""""""""""""""""""""""""""""""	00200> Length (m) = 225.63 5.00 00201> Mannings n = .030 .030
00067> * 00068> ************************************	00202>
00069> * SWMHYMO FILE DEVELOPED TO INVESTIGATE FLOOD FLOWS OF THE * 00070> * PROPOSED COMPOSTING SITE UNDER POST-DEVELOPMENT UNCONTROLLED CONDITIONS *	00203> Max.eff.Inten.(mm/hr)= 106.70 74.64 00204> over (min) 7.50 10.00
00070> * PROPOSED COMPOSTING SITE UNDER POST-DEVELOPMENT UNCONTROLLED CONDITIONS * 00071> ************************************	00205> Storage Coeff. (min)= 8.20 (ii) 8.98 (ii)
00072> ************************************	00207> Unit Hyd. peak (cms) = .14 .12
00073> * HINGOLGICAL ANALYSIS UNDER A 4 HR-25 MM STORM AND * 00074> * FOR DESIGN STORMS OF 1:2, 5, 10, 25, 50, AND 100 YR * 00075> *******	00208> *TOTALS* 00209> PEAK FLOW (cmms)= .34 .01 .344 (iii)
00075> ************************************	00210> TIME TO PEAK (hrs) = 1.54 1.63 1.542
00077> * CALCULATION OF JULY 1st 1979 STORM EVENT *	00211> RUNOFF VOLUME (nnm)= 87.29 49.30 86.147 00212> TOTAL RAINFALL (nnm)= 88.86 88.86 88.857
00078> ++++++++++++++++++++++++++++++++++++	00213> RUNOFF COEFFICIENT = .98 .55 .970 00214>
000805/ START Project dir.: V:\20983.DU\ENG\FINALS-1\SWMHYM-1\ 000805 = START Project dir.: V:\20983.DU\ENG\FINALS-1\SWMHYM-1\ 000825 = TZERO = 0.0 br maintail dir.: V:\20983.DU\ENG\FINALS-1\SWMHYM-1\	00215> (i) CN PROCEDURE SELECTED FOR REPUTOUS LOSSES:
	00216> CN* = 81.0 IA = Dep. Storage (Above) 00217> (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
00083> METOUT≃ 2 (output = METRIC) 00084> NRUN ≃ 001	00218> THAN THE STORAGE COEFFICIENT.
00085> NSTORM= 0 00086>	00220>
00087> 001:0002	00221>
00008>	00223>
	00224> ADD HYD (040) ID: NHYD AREA QPEAK TPEAK R.V. DWF 00225> (ha) (cms) (cms) (cms) 00226> ID1 01:010 2.07 .476 1.54 81,22 .000
00091> 00092> TIME RAIN TIME RAIN TIME RAIN TIME RAIN	
00093> hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr	
00095> .17 2.300 .92 38.100 1.67 71.100 2.42 3.800	00229> SUM 04:040 3.61 .844 1.54 82.50 .000 00230>
00096> .25 8.890 1.00 38.100 1.75 30.500 2.50 3.800 00097> .33 8.890 1.08 38.100 1.83 30.500 2.58 3.800	00231> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00232>
00098> .42 38.100 [1.17 50.800] 1.92 30.500] 2.67 3.800	00233>
	00234> 001:0008
00100> .58 38.100 1.33 76.200 2.08 3.800 2.83 3.800 00101> .67 38.100 1.42 106.700 2.17 3.800 2.92 3.800 00102> .75 38.100 1.50 106.700 2.25 3.800 3.800 3.800	00236> ADD HYD (050) ID: NHYD AREA QPEAK TPEAK R.V. DWF
00103>	00238> ID1 03:030 1.40 .344 1.54 86.15 .000
00104>001:0003	00239> +ID2 04:040 3.61 .844 1.54 82.50 .000 00240>
00106>	00241> SUM 05:050 5.01 1.188 1.54 83.52 .000
00107> DEFAULT VALUES Filename: V:\20983.DU\ENG\FINALS-1\SWMHYM-1\ORGA.VAL 00108> ICASEdv = 1 (read and print data)	00242> 00243> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
00109> FileTitle= ENTER YOUR COMMENTS ON THIS LINE AND THE NEXT ONE 00110> PARAMETER VALUES MUST BE ENTERD AFTER COLUMN 50	00244>
00111> Horton's infiltration equation parameters:	00246> 001:0009
00112> [[Fo= 50.00 mm/hr] [Fc= 7.50 mm/hr] [DCAY= 2.00 /hr] [F= .00 mm] 00113> Parameters for PERVIOUS surfaces in STANDHYD:	00247> * 00248> * SUB-AREA No.4
00114> [IAper= 4.67 mm] [LGP=40.00 m] [MNP= .250] 00115> Parameters for IMPERVIOUS surfaces in STANDHYD:	00249>
00116> [IAimp= 1.57 mm] [CLI= 1.50] [MNI= .035]	00250> CALIB STANDHYD Area (ha)= .89 00251> 06:060 DT= 2.50 Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00
00117> Parameters used in NASHYD: 00118> [Ia= 4.67 mm] [N= 3.00]	00252>
00119>	00254> Surface Area (ha) = .86 .03
00120> 001:0004	00255> Dep. Storage (mm.)= 1.57 4.67
00122> * ORGAWORLD FILE *	00257> Length (m) = 164.82 40.00
00123> ************************************	00258> Mannings n = .030 .250 00259>
00125> * SUB-AREA No.1 00126>	00260> Max.eff.Inten.(wm/hr)= 106.70 65.89
00127> i CALIB STANDHYD i Area (ba) = 2.07	00261> over (min) 5.00 17.50 00262> Storage Coeff. (min)= 5.67 (ii) 17.10 (ii)
00128> 01:010 DT= 2.50 Total Imp(%)= 84.00 Dir. Conn.(%)= 84.00 00129>	00263> Unit Hyd. Tpeak (min) = 5.00 17.50
00130> IMPERVIOUS PERVIOUS (i)	00265> *TOTALS*
00131> Surface Area (ha)= 1.74 .33 00132> Dep. Storage (num)= 1.57 4.67	00266> PEAK FLOW (cms) = .23 .00 .235 (iii) 00267> TIME TO PEAK (brs) = 1.50 1.75 1.500
00133> Average Slope (%)= .52 1.00	00268> RUNOFF VOLUME (mm) = 87.29 49.30 86.147
00134> Length (m)= 204.72 20.00 00135> Mannings n = .030 .250	00269> TOTAL RAINFALL (mm) = 88.86 88.86 88.857 00270> RUNOFF COEFFICIENT = .98 .55 .970

J. L. Richards & Associates Limited

Page 0

(V:\...July1979.out)

00271> 00272> 00273> 00274> 00275> 00276> 00276> 00277> 00278> 00406> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SWALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00407> NOTE: 00408> 00409> ------00410> 001:0016--00411> * NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY ------004125 004135 004145 004145 004165 004165 004125 004221 004221 004223 004225 004225 004225 004225 004225 00426 004275 00428 00428 00428 00428 004335 004335 004385 004385 * SUB-AREA No.2 CALIE STANDHYD | Area (ha)= 17.00 | 03:HIP03 DT=2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 00279> 001:0010------00280> * SUB-AREA No.5
 Intel imp(s)=
 71.00
 Dir. Con

 Surface Area (ha)=
 12.07
 4.93

 Dep. Storage (smn)=
 1.57
 4.67

 Avents of the storage (smn)=
 1.57
 4.67

 Mennings n
 00281> 00282> 00283> CALLE STANDHYD | Area (ha)= 2.66 07:070 DT=2.50 | Total Imp(%)= 97.00 Dir. Conn.(%)= 97.00 00283> | 00284> 1 00285> -00286> Surface Area (ha)= Dep. Storage (mm)= Average Slope (%)= Length (m)= Mannings n = IMPERVIOUS PERVIOUS (1) 2.58 1.57 .61 207.25 .030 00287> 00288> 00288> .08 4.67 1.50 20.00 .250 Max.eff.Inten.(mm/hr) = over (min) Storage Coeff.(min) = Unit Hyd. Tpeak (min) = Unit Hyd. peak (cms) = 100.60 125.35 12.50 25.00 11.81 (ii) 23.99 (ii) 12.50 25.00 .09 .05 00289> 00290> 00291> 00292> 00293> 00293> 00294> 00295> Max.eff.Inten.(mm/hr) = 106.70 *TOTALS* 2.923 (iii) 1.667 74.386 88.857 .837 over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= PEAK FLOW (cms) = TIME TO PEAK (hrs) = TIME TO PEAK (mm) = TOTAL RAINFALL (mm) = RUNOFF COEFFICIENT = 1.92 1.20 00296> 00297> 1.63 87.29 88.86 .98 1.20 1.88 61.48 68.86 .69 00298> 00299> 00300> 00301> 00302> PEAK FLOW (cms)= TIME TO PEAK (hrs)= RUNOFF VOLUME (mm)= TOTAL RAINFALL (mm)= RUNOFF COEFFICIENT = .65 1.54 87.29 88.86 .98 *TOTALS* .01 1.67 49.30 88.86 .55 .665 (iii) 1.542 86.147 88.857 .970 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) THE STEP (DT) SHOULD BE SWALER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00303> 00304> 00305> 00306> 00306> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: 00440> 00441> CN* = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEPFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00442> -----00443> 001:0017------00443> * SUB-AREA No.3 00320: NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00321> NOTE: PEAK F 00322> 00323> -----00324> 001:0012-----00456> 96.53 119.96 15.00 27.50 15.44 (ii) 27.83 (ii) 15.00 27.50 .07 .04 1.64 1.03 1.67 1.92 87.29 61.48 88.86 88.86 .98 .69 00456> 00457> 00458> 00459> 00460> 00461> 00462> 00463> 00463> 00465> 00465> 00465> 00465> Max.eff.Inten.(mm/hr)= 2----over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= *TOTALS* 2.519 (iii) 1.750 74.386 PEAK FLOW [cms] = TIME TO PEAK {hrs] = RUNOFF VOLUME (mm) = RUNOFF COEFFICIENT = 00330> 00331> 00332> 00333> 00333> 68.857 .837 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00467> 00468> 00469> 00470> 00470> 00471> 00472> 00473> (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 (c)* = 61.0 Ia = Dep. Storage (Above)
 (ii) TIME STEPP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE RASEFLOW IF ANY. E TABLE ------UTFLOW STORAGE (cms) (ha.m.) .593 .6251E+00 UTFLOW STORAGE | OUTFLOW STORAGE (cms] (ha.m.) | (cms] (ha.m.) 0005+00 | 593 (.6511+00 .005 .0502+00 | 593 (.6511+10 .007 .13118+00 | .797 .73118+00 .033 .28318+00 | .950 .82748+00 .233 .39718+00 | .304 .91758+00 .337 .47318+00 | .808 .10048+01 .455 .54918+00 | .807 .10028+01 .531 .58718+00 | .000 .00008+00 00341> 00342> 00343> 00344> 00345> 00345> 00346> 00346> 00347> 00348> 00349> 00350> 00351> 00351> -----(cms) .000 .000 .000 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 00485> 00486> 00487> TPEAK R.V. 00351> 00352> 00353> 00354> 00355> 00356> 00356>
 ROUTING RESULTS
 AREA
 OPEAK
 TPEAK
 R.V.

 INFLOW >09:
 (090)
 8.56
 2.084
 1.542
 84.611

 OUTFLOW<10:</td>
 (POND)
 8.56
 .496
 2.125
 84.607
 ROUTING RESULTS PEAK PLOW REDUCTION [Qout/Qin](%)= 23.815 TIME SHIFT OF PEAK FLOW (min)= 35.00 MAXIMUM STORAGE USED (ha.m.)=.5671E+00 00358> 00359> 00360> 00361> 00496> 00497> 00498> 00499> NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. 005000 001:UU20--00502> * SUB-AREA No.4 00502> * SUB-AREA No.4 00503> ------00504> | CALLE STANDHYD | Area (ha)= 12.20 00505> | O7:HIP07 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 IMPERVIOUS PERVIOUS (i) **-1= 8.66 3.54 4.67 00368> ------00369> | CALIE STANDRYD | Area (ha)= 19.90 00370> | 01:HIP01 DT= 2.50 | Total Imp(%)= 71.00 Dir. Conn.(%)= 50.00 00372> IMPERVIOUS PERVIOUS (i) 00372> Surface Area (ha)= 14 13 00505> 00506> 00507> 00508> 00509> 00510> 00511> Surface Area (ha)= Dep. Storage. (mm)= Average Slope (%)= Length (m)= Mannings n = Surface Area (ha) = Dep. Storage (mm) = Average Slope (%) = Length (m) = Mannings n = 8.66 1.57 .70 210.00 .030 3.54 4.67 1.50 100.00 5.77 4.67 1.50 00373> 00374> 00375> 00376> 00377> 00378> 00379> 00380> 14.13 .60 580.00 .030 100.00 100.00 00512> 00513> .03u 106.70 131.04 7.50 20.00 7.14 (ii) 19.11 (ii) 7.50 20.00 1.5 .06 1.56 .95 1.54 1.79 87.29 61.48 88.86 88.86 -99 .69 Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 00514> 00515> 00516> 00517> Max.eff.Inten.(mm/hr)= over (min) Storage Coeff. (min)= Unit Hyd. Tpeak (min)= Unit Hyd. peak (cms)= 00380> 00381> 00382> 00383> 00384> 00385> 00386> 00518> 00518> 00519> 00520> 00522> 00522> 00523> 00524> 00526> 00526> 00526> 00528> *TOTALS* 3.264 (iii) 1.708 74.386 88.857 PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (nmm) = RUNOFF COEFFICIENT = 2.14 1.67 87.29 88.86 .98 *TOTALS* PEAK FLOW (cms) = TIME TO PEAK (hrs) = RUNOFF VOLUME (rum) = RUNOFF COEFFICIENT = -TOTALS* 2.207 (iii) 1.503 74.386 88.857 .837 1.33 00387> 00388> 00388> 00389> 00390> 00391> 1.92 61.48 88.86 .69 (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN = 81.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: (1) CN PROCLOURS SELECTED FOR PERVIOUS LOSSES:
 (N* = 81.0 II = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. 00392> 00393> 00529> 00530> 00530> 00531> 00532>------00533> 001:0021------00534> * 00535> *SUB-AREA NO.5 DWF 00536>-----00537> | DESIGN NASHYD | Area (ha)= 4.00 Curve Number (CN)=85.00 00538> | 08:Pond-B DT= 2.50 | Ia (mm)= 4.670 # of Linear Res.(N)= 3.00 00539> U.H. Tp(hrs)= .170 (cms) .000 .000 SUM 02:HIP02 28.46 3.642 1.75 77.46 000

J. L. Richards & Associates Limited

(V:\...July1979.out)

0541>	Unit Hyd Qpeak (cms)= .899
0542>	
)543>)544>	PEAK FLOW (cms) = $.721$ (i)
545>	111111111111111111111111111111111111
546>	TOTAL RAINFALL (mm) = 88.857
1547> 1548>	PEAK FLOW (cms)= .721 (i) TIMS TO PEAK (hrs)= 1.667 RUNOFY VOLUME (mm)= 54.937 TOTAL RAINFALL (mm)= 86.857 RUNOFY COEFFICIENT = 618
1598>	
550>	PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
551>	
552>	001:0022
553>	
555>	ADD HYD (HIP06) ID: NHYD AREA QPEAK TPEAK R.V. DWF (ha) (cms) (hrs) (mm) (cms) (cms) (hrs) (mm) (cms) (hrs) (mm) (hrs) (mm) (cms) (hrs) (mm) (hrs) (mm) (hrs) (mm) (hrs) (
556>	ID1 06:HIP06 61.06 9.050 1.74 75.82 .000
557>	ID1 06:HIP06 61.06 9.050 1.74 75.82 .000 +ID2 07:HIP07 12.20 2.287 1.58 74.39 .000 +ID3 08:Pond-B 4.00 .721 1.57 54.94 .000
558> 559>	+ID3 08:Pond-B 4.00 .721 1.67 54.94 .000
560>	SUM 09:HIP06 77.26 11.944 1.71 74.51 .000
561>	
562>	NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
563> 564>	
	001:0023
566>	
567>	ROUTE RESERVOIR Requested routing time step = 1.0 min. IN>09:(HIP08) OUT<10:(HIP-P0) ===================================
0 68> 569>	IN>09:(HIP08) { OUT<10:(HIP-PO) { ======== OUTLFOW STORAGE TABLE ====================================
570>	OUTFLOW STORAGE OUTFLOW STORAGE
571>	
572> 573>	.000 .0000E+00 .724 .2210E+01 .048 .5740E-01 .937 .2501E+01
574>	.048 .5/40E-01 .937 .2501E+01 .054 .2434E+00 1.252 .2798E+01
575>	.059 .5834E+00 1.404 .3101E+01
576>	.062 .8400E+00 1.532 .3410E+01 .064 .1102E+01 1.650 .3724E+01
577> 578>	.064 .1102E+01 1.650 .3724E+01
579>	.147 .1370B+01 2.409 .4044B+01 .280 .1644B+01 3.669 .4370B+01 .472 .1924B+01 .000 .0000B+00
580>	.472 .1924E+01 .000 .0000E+00
581> 582>	
583>	(brs) (mm)
584>	INFLOW >09: (HIP00) 77.26 11.944 1.708 74.508
585>	ROUTING RESULTS AREA OPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) INFLOW >09: (HIP00) 77.26 11.944 1.708 74.508 OUTPLOW<10: (HIP-PO) 77.26 2.666 2.625 74.508
586>	
586> 587> 588>	PEAK FLOW REDUCTION [Qout/Qin] {%} = 22.321 TIME SHIFT OF PEAK FLOW (min) = 55.00
586> 587> 588> 589>	
586> 587> 588>	PEAK FLOW REDUCTION [Qout/Qin] {%} = 22.321 TIME SHIFT OF PEAK FLOW (min) = 55.00
586> 587> 588> 589> 590> 591> 591> 592>	PEAK FLOW REDUCTION [Qout/Qin](%)= 2.22 TIME SHIPT OF PEAK FLOW (min)= 55.00 MAXIMUM STORAGE USED (ha.m.)=.41102+01
586> 587> 588> 589> 590> 591> 591> 592> 593>	PEAK FLOW REDUCTION Qout/Qin} (%) = 22.321 TIME SHIFT OF PEAK FLOW (min) = 55.00 MAXIMUM STORAGE USED (ha.m.) = 4110E+01 001:0024
586> 587> 588> 589> 590> 591> 592> 592> 593> 594>	PEAK FLOW REDUCTION Qout/Qin} (%) = 22.321 TIME SHIFT OF PEAK FLOW (min) = 55.00 MAXIMUM STORAGE USED (ha.m.) = 4110E+01 001:0024
586> 587> 588> 590> 591> 592> 593> 594> 595> 596>	PEAK FLOW REDUCTION Qout/Qin} (%) = 22.321 TIME SHIFT OF PEAK FLOW (min) = 55.00 MAXIMUM STORAGE USED (ha.m.) = 4110E+01 001:0024
586> 587> 588> 590> 591> 592> 592> 594> 595> 596> 597>	PEAK FLOW REDUCTION Qout/Qin} (%) = 22.321 TIME SHIFT OF PEAK FLOW (min) = 55.00 MAXIMUM STORAGE USED (ha.m.) = 4110E+01 001:0024
586> 588> 588> 590> 591> 592> 592> 593> 594> 595> 596> 596> 598>	PEAK FLOW REDUCTION [Qout/Qin] (%)= 22.321 TIME SHIPT OF PEAK FLOW (min)= 55.00 MAXINUM STORAGE USBD (ha.m.)= 41105401 001:0024
586>> 588>> 588>> 590>> 591>> 592>> 593>> 594>> 595>> 596>> 596>> 598>>	PEAK FLOW REDUCTION Qout/Qin} {%} = 22.321 TIME SHIFT OF PEAK FLOW (min)= 55.00 MAXIMUM STORAGE USED (ha.m.)= 41102+01 001:0024
586> 5887> 5887> 5997> 5907> 5907> 5907> 5007> 5	PEAK FLOW REDUCTION Qout/Qin} {%} = 22.321 TIME SHIFT OF PEAK FLOW (min)= 55.00 MAXIMUM STORAGE USED (ha.m.)= 41102+01 001:0024
586> 587> 588> 590> 592> 593> 594> 595> 596> 598> 598> 598> 601> 602>	PEAK FLOW REDUCTION [Qout/Qin] (%)= 22.321 TIME SHIFT OF PEAK FLOW (min)= 55.00 MAXIMUM STORAGE USED (ha.m.)= 41102+01
586> 587> 5889> 5992> 5993> 5993> 5993> 5993> 5998> 5990> 5900> 50000> 50000> 5000> 5000> 5000> 5000> 5000> 5000> 50	PEAK FLOW REDUCTION [Qout/Qin] (%)= 22.321 TIME SHIFT OF PEAK FLOW (min)= 55.00 MAXIMUM STORAGE USED (ha.m.)= 41102+01
586>> 5889>> 5992>> 5992>> 5994>> 5992>> 5994>> 5995> 5999>> 59901>> 59001>> 60001>> 60001>> 60001>>	PEAK FLOW REDUCTION [Qout/Qin](\$)= 2.221 TIME SHIFT OF PEAK FLOW (min)= 55.00 MAXIMUM STORAGE USED (ha.m.)=.41102+01 001:0024
586>>586>>599>>5993>>5995>5995>5995>5995>5995>5	PEAK FLOW REDUCTION [Qout/Qin] (%)= 22.321 TIME SHIPT OF PEAK FLOW (min)= 55.00 MAXIMUM STORAGE USED (ha.m.)= 41102+01 001:0024
586>>>592>>592>>596>>>5901>>>596>>>5901>>>596>>>5901>>>596>>>5901>>>596>>>5901>>>596001>>>>596001>>>>596001>>>>>596001>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	PEAK FLOW REDUCTION [Qout/Qin](\$)= 2.22 TIME SHIFT OF PEAK FLOW (min)= 55.00 MAXIMUM STORAGE USED (ha.m.)=.41102+01 001:0024
586>> 588>> 599>> 599> 599> 599> 599> 599>	PEAK FLOW REDUCTION [Qout/Qin](\$)= 2.221 TIME SHIFT OF PEAK FLOW (min)= 55.00 MAXIMUM STORAGE USED (ha.m.)=.41102+01 001:0024
586>> 588>> 588>> 590>> 592> 592> 592> 595> 595> 595> 595> 59	PEAK FLOW REDUCTION [Qout/Qin] (%)= 22.321 TIME SHIPT OF PEAK FLOW (min)= 55.00 MAX.HUM STORAGE USED (ha.m.)=.4110E+01 001:0024
586>>588>>588>>590>>599>>599>>599>>599>>599	PEAK FLOW REDUCTION [Qout/Qin] (%) = 22.321 TIME SHIFT OF PEAK FLOW (min) = 55.00 (man.) = .41102+01 001:0024
586>>588>>588>>598>>599>>599>>599>>599>>	PEAK FLOW REDUCTION [Qout/Qin](\$)= 22.21 TIME SHIFT OF PEAK FLOW (min)= 55.00 MAXIMUM STORAGE USED (ha.n.)=.41102+01 001:0024
586>> 588>> 588>> 591>> 593> 593> 593> 593> 593> 593> 593> 59	PEAK FLOW REDUCTION [Qout/Qin](\$)= 22.21 TIME SHIFT OF PEAK FLOW (min)= 55.00 MAXIMUM STORAGE USED (ha.n.)=.41102+01 001:0024
586>> 5889> 5889> 599> 599> 599> 599> 599>	PEAK FLOW REDUCTION [Qout/Qin](\$)= 22.21 TIME SHIFT OF PEAK FLOW (min)= 55.00 MAXIMUM STORAGE USED (ha.n.)=.41102+01 001:0024
586>> 587>> 589>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 600>> 600>> 600>> 600>> 600>> 600>> 611>> 611>> 611>> 611>> 611>>	PEAK FLOW REDUCTION [Qout/Qin](\$)= 22.21 TIME SHIFT OF PEAK FLOW (min)= 55.00 MAXIMUM STORAGE USED (ha.n.)=.41102+01 001:0024
586>> 587>> 589>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 600>> 600>> 600>> 600>> 600>> 611>> 612> 611>> 615> 611>>	PEAK FLOW REDUCTION [Qout/Qin] (%)= 22.321 THE SHIFT OF PEAK FLOW (min)= 55.00 MAXIMUM STORAGE USBD (ha.m.)= 4110E+01 001:0024
586>> 587>> 589>> 599>> 599>> 599>> 599>> 599>> 599>> 599>> 600>> 600>> 600>> 600>> 611>> 61	PEAK FLOW REDUCTION [Qout/Qin] (%)= 22.321 THE SHIFT OF PEAK FLOW (min)= 55.00 (man.)= 4102+01 001:0024
586>> 587>> 589>> 590>> 591>> 592>> 593>> 5959> 5959>> 59595>> 59595>> 5959> 5959> 5959> 59595> 595959>> 595959>> 59595> 59595>	PEAK FLOW REDUCTION [Qout/Qin] (%)= 22.321 THE SHIFT OF PEAK FLOW (min)= 55.00 MAXIMUM STORAGE USBD (ha.m.)= 4110E+01 001:0024
586> 587>> 599> 599> 599> 599> 599> 599> 599> 599> 599> 599> 599> 599> 599> 599> 600> 600> 600> 600> 611>	PEAK FLOW REDUCTION [Qout/Qin] (%)= 22.321 THE SHIFT OF PEAK FLOW (min)= 55.00 MAXINUM STORAGE USBD (ha.m.)= 4110E+01 001:0024
586>>>>590>>590>>590>>5500>>5500>>5500>>5500>>5500>>5500>>5511>>5515>>5510>>5510>>5510>>5510>>5510>>5520>5500>	PEAK FLOW REDUCTION [Qout/Qin] (%) 22.221 TIME SHIFT OF PEAK FLOW (man) = 25.00 (man) = 25.00 (man) = 35.00 001:0024
586>>>>590>>>590>>>590>>>590>>>590>>>590>>>590>>>590>>>590>>>590>>>5590>>>>5590>>>5500>>>>5500>>>550	PEAK FLOW REDUCTION [Qout/Qin] (%) = 22.321 (min) = 25.00 (max) MAXIMUM STORAGE USED (max) = 25.00 (max) (max) = 25.00 (max) 001:0024
5887>>>589>>>599>>>>599>>>>599>>>599>>>>599>>>599>>>599>>>599>>>>599>>>>599>>>599>>>599>>>599>>>599>>>	PEAK FLOW REDUCTION [Qout/Qin](\$)= 22.21 (min]= 55.00 (ma)=.41102+01 001:0024
5867>>> 5587>> 5590>>> 5590>> 5595> 5595> 5595> 5595>> 55955>> 5595>> 5595>> 5595>> 5595>> 55955> 55955> 55955> 55955> 55955> 55955> 55955> 55955 55955 55955 55955> 559555 559555 559555 559555 559555 559555 559555 559555 559555 559555 559555 559555 559555 55955555 559555555	PEAK FLOW REDUCTION [Qout/Qin] (%) = 22.321 MAXIMUM STORAGE USBD (ha.m.) = 4102+01 001:0024
5867>>>>5599>>>55999>>559999>>559999>>55999>>55999>>55999>>5599999>>55999>>55999>>55999>>5599999>>55999>>5	PEAK FLOW REDUCTION [Qout/Qin] (%) = 22.321 MAXIMUM STORAGE USBD (han.) = 55.00 MAXIMUM STORAGE USBD (ha.n.) = .41102+01 001:0024
5867>>>>55959>>>55959>>>55959>>>55959>>>55959>>>55959>>>55959>>>55959>>>55959>>>55959>>>55959>>>55959>>>559595>>>559595>>>559595>>>559595>>>559595>>>559595>>>>559595>>>>>>	PEAK FLOW REDUCTION [Qout/Qin](6)= 22.221 TIME SHIFT OF PEAK FLOW (min)= 55.00 MAXIMUM STORAGE USED (ha.n.)=.41102+01 001:0024
5887>>>589>>>599>>>>599>>>>599>>>>599>>>599>>>599>>>599>>>599>>>>599>>>>599>>>599>>>599>>>599>>>599>>>	PEAK FLOW REDUCTION [Qout/Qin](6)= 22.221 TIME SHIFT OF PEAK FLOW (min)= 55.00 MAXIMUM STORAGE USED (ha.n.)=.41102+01 001:0024

Ministry of the Environment Ministère de l'Environnement

CERTIFICATE OF APPROVAL MUNICIPAL AND PRIVATE SEWAGE WORKS NUMBER 4660-7UNPRJ Issue Date: November 9, 2009

Tomlinson Development Corporation 5597 Power Rd Ottawa, Ontario K1G 3N4

Site Location: Hawthorne Industrial Park (HIP) - Phase 1 Lot 26 and 27, Concession 6 (R.F.) City of Ottawa, Ontario

You have applied in accordance with Section 53 of the Ontario Water Resources Act for approval of:

the establishment of sewage works for the collection, transmission, treatment and disposal of stormwater runoff from a catchment area of approximately 70 hectares, servicing the Hawthorne Industrial Park, located immediately southeast of the Hawthorne Road/Rideau Road intersection in the City of Ottawa, to provide partial water quality protection (Normal Protection Level) and to attenuate post-development peak flows to pre-development levels, discharging to Findlay Creek, which is a tributary to the North Castor River, for all storm events up to and including the 100 year return storm, consisting of the following stormwater works:

Stormwater Management System

Outlet No. 1, HIP to a dry pond facility (Service area of 69.81 ha):

- A dry pond facility to provide quantity control by attenuating post development peak flows to pre-development levels for all storm events up to and including the 100 year return storm, having a design minimum liquid retention volume of approximately 37,240 m³ at elevation 86.15 m (0.23 m above 100-year surface pond elevation), with side slopes of 4:1, and servicing approximately 69.81 hectares, which includes Orgaworld Canada Ltd's stormwater treated effluent (10.14 ha). The SWM pond is designed to provide a controlled maximum discharge flow rate of 1,531 L/s for the 100-year storm event, discharging to Findlay Creek; and equipped with:
 - An outlet structure consisting of a 150 mm diameter orifice within a 200 mm diameter polyvinyl chloride (PVC) pipe at an invert elevation of 82.90 m, which serves as outlet to the facility;
 - Two (2) 600 mm diameter corrugated steel pipe (CSP) culvert placed at an invert elevation of 84.80 m, which also serves as an outlet to the facility; and
 - An emergency spillway of 0.35 m deep with a 6.0 m wide base to convey surface flow toward the

receiving channel during extreme storm events.

Storm Events (catchment for Outlet #1 – 70 ha)	2-year	5-year	25-year	100-year
Existing flows, pre-development (m ³ /s.)	0.467	0.826	1.468	2.093
Post-development flows (m ³ /s)	3.077	4.812	7.772	10.662
Post-development attenuated flows (m ³ /s)	0.194	0.359	0.939	1.531

• The simulated modelling estimate and drainage pattern draining to Outlet No.1 is as follows:

- A new roadside ditch system draining to the dry pond facility, equipped with CSP culverts and approximately 1,755 m of 200 mm diameter HDPE perforated pipe sub-drains and clear stone bedding wrapped in geotextile located at the base of the ditches to meet a Normal water quality Protection Level (70% Total Suspended Solids removal) for the contributing catchment area of 1.58 ha which includes the paved portion of the industrial park road network located within the subdivision right-of-way as per the SWM Report (J.L.Richards, 2009).
- The requirement for quality protection for the remaining 68.23 ha is provided by the individual industrial lots within HIP as per the following Certificates of Approval (this list will be amended as future CofAs for other lots within HIP are developed, as per Condition 7 of this Certificate):
 - CofA # 9465-7NVRWT, issued on September 16, 2009, providing Normal water quality Protection Level for 10.14 ha.

Outlet No.2, to Findlay Creek (Service area of 39.16 ha):

• A new roadside ditch system draining to Findlay Creek via an existing roadside ditch located adjacent to Rideau Road, servicing a catchment area along the Hawthorne Road extension and includes the Tomlinson Quarry, as per the SWM Report (J.L.Richards, 2009). This service area is not part of the HIP site.

All including erosion/sedimentation control measures during construction and all other controls and appurtenances essential for the proper operation of the aforementioned *Works* ;

all in accordance with the following supporting documents:

- 1. <u>Application for Approval of Industrial Sewage Works</u> submitted by Domenic Idone, P.Eng., Planning Engineer of Tomlinson Development Corporation, dated March 12, 2009, and received on June 8, 2009;
- 2. Stormwater Management Report Hawthorne Industrial Park, dated February 2009 (revised May 2009), and prepared by J.L Richards & Associates Limited.
- 3. Geotechnical Study Subdivision Plan Hawthorne Industrial Park, Lots 26 and 27, Concession 6, Southeast of Hawthorne and Rideau Roads, Ottawa, dated May 4, 2009, and prepared by

Inspec-Sol Inc.

- 4. Certificate of Approval 6924-5YWQ3U, issued on May 19, 2004, for R.W. Tomlinson Limited for a lagoon system to treat sewage from the Tomlinson Quarry.
- 5. s.53 OWRA Certificate of Approval, Orgaworld Canada Ltd. (9465-7NVRWT, issued on September 16, 2009).
- 6. Revised Fish Habitat Ehnacement Strategy Hawthorne Industrial Park Stormwater Management Pond, prepared by Stantec (Jacques Whitford Stantec Limited), dated May 13, 2009.
- 7. Clearance Letter from the South Nation Conservation dated May 26, 2009, issued to the City of Ottawa for the Tomlinson / Hawthorne Industrial Park Subdivision.
- 8. Emails from Derrick P. Upton, P.Eng., of J.L. Richards & Associates Limited to Edgardo Tovilla, P.Eng., of the MOE, dated August 7 & 11, 2009, with additional information requested.
- 9. Letter from Derrick P. Upton, P.Eng., of J.L. Richards & Associates Limited to Edgardo Tovilla, P.Eng., of the MOE, dated August 31, 2009, with additional information requested.
- 10. Email from Tim Chadder of J.L. Richards & Associates Limited to Edgardo Tovilla, P.Eng., of the MOE, dated October 9, 2009, with final comments to the CofA.

For the purpose of this Certificate of Approval and the terms and conditions specified below, the following definitions apply:

"*Certificate* " means this entire certificate of approval document, issued in accordance with Section 53 of the <u>Ontario Water Resources Act</u>, and includes any schedules;

"*Director* " means any *Ministry* employee appointed by the Minister pursuant to section 5 of the <u>Ontario</u> Water Resources Act;

"District Manager " means the District Manager of the Ottawa District Office of the Ministry ;

"Ministry " means the Ontario Ministry of the Environment;

"Owner " means Tomlinson Development Corporation and includes its successors and assignees; and

"*Works* " means the sewage works described in the *Owner* 's application, this *Certificate* and in the supporting documentation referred to herein, to the extent approved by this *Certificate*.

You are hereby notified that this approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1. <u>GENERAL PROVISIONS</u>

(1) Except as otherwise provided by these Conditions, the *Owner* shall design, build, install, operate and maintain the *Works* in accordance with the description given in this *Certificate*, the application for approval of the works and the submitted supporting documents and plans and specifications as listed in this *Certificate*.

(2) Where there is a conflict between a provision of any submitted document referred to in this *Certificate* and the Conditions of this *Certificate*, the Conditions in this *Certificate* shall take precedence, and where there is a conflict between the listed submitted documents, the document bearing the most recent date shall prevail.

(3) Where there is a conflict between the listed submitted documents, and the application, the application shall take precedence unless it is clear that the purpose of the document was to amend the application.

2. <u>EXPIRY OF APPROVAL</u>

The approval issued by this *Certificate* will cease to apply to those parts of the *Works* which have not been constructed within five (5) years of the date of this *Certificate*.

3. CHANGE OF OWNER

The *Owner* shall notify the *District Manager* and the *Director*, in writing, of any of the following changes within thirty (30) days of the change occurring:

(a) change of Owner ;

(b) change of address of the Owner;

(c) change of partners where the *Owner* is or at any time becomes a partnership, and a copy of the most recent declaration filed under the <u>Business Names Act</u>, R.S.O. 1990, c.B17 shall be included in the notification to the *District Manager*; and

(d) change of name of the corporation where the *Owner* is or at any time becomes a corporation, and a copy of the most current information filed under the <u>Corporations Information Act</u>, R.S.O. 1990, c. C39 shall be included in the notification to the *District Manager*.

4. OPERATION AND MAINTENANCE.

(1) The *Owner* shall ensure that the design minimum liquid retention volume(s) is maintained at all times.

(2) The Owner shall inspect the Works at least once a year and, if necessary, clean and maintain the

Works to prevent the excessive build-up of sediments and/or vegetation.

(3) The *Owner* shall maintain a logbook to record the results of these inspections and any cleaning and maintenance operations undertaken, and shall keep the logbook at the Owner's office for inspection by the *Ministry*. The logbook shall include the following:

(a) the name of the Works ;

(b) the date and results of each inspection, maintenance, monitoring reports and cleaning, including an estimate of the quantity of any materials removed; and

(c) the date of each spill within the catchment area, including follow-up actions / remedial measures undertaken.

(4) The *Owner* shall operate the *Works* with an objective of achieving Normal water quality Protection Level (70% long-term Total Suspended Solids removal) for the portion of the land being treated with the proposed Works.

5. MONITORING AND RECORDING

The *Owner* shall, upon commencement of operation of the *Works*, carry out the following monitoring program:

(1) All samples and measurements taken for the purposes of this *Certificate* are to be taken at a time and in a location characteristic of the quality and quantity of the effluent stream over the time period being monitored.

(2) For the purposes of this condition, Semi-annually means once twice per year;

(3) Samples shall be collected at the following sampling points, at the frequency specified, by means of the specified sample type and analyzed for each parameter listed and all results recorded:

Sample location: a	Table 1 - Surface Water Monitoring at the inlet of the dry pond facility
Frequency	Semi-annually; at least once being for the snowmelt freshets and another being 72 hours after the fall of precipitation of more than 25 mm.
Sample Type	Grab
Parameters	<i>CBOD5</i> , Total Suspended Solids, Total Phosphorus, <i>E. Coli</i> , pH, Temperature, Acute Lethality.

(4) The methods and protocols for sampling, analysis and recording shall conform, in order of precedence, to the methods and protocols specified in the following:

(a) the Ministry's Procedure F-10-1, "Procedures for Sampling and Analysis Requirements for Municipal and Private Sewage Treatment Works (Liquid Waste Streams Only), as amended from

time to time by more recently published editions;

(b) the Ministry's publication "Protocol for the Sampling and Analysis of Industrial/Municipal Wastewater" (January 1999), ISBN 0-7778-1880-9, as amended from time to time by more recently published editions;

(c) the publication "Standard Methods for the Examination of Water and Wastewater" (21st edition), as amended from time to time by more recently published editions;

(d) the Environment Canada publications "Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to Rainbow Trout" (July 1990) and "Biological Test Method: Reference Method for Determining Acute Lethality of Effluents to <u>Daphnia magna</u>" (July 1990), as amended from time to time by more recently published editions; and,

(6) The measurement frequencies and the overall monitoring program specified in subsection (3) are minimum requirements which may, after three (3) years of monitoring in accordance with this Condition or after a minimum 75% build-up of the site, whichever occurs first, be modified by the *District Manager* in writing from time to time.

(7) The *Owner* shall retain for a minimum of three (3) years from the date of their creation, all records and information related to or resulting from the monitoring activities required by this *Certificate*.

(8) The *Owner* shall enter into an agreement with the owner of the composting facility located within HIP, located at Part of Lot 27, Concession 6, 5123 Hawthorne Road, for the long-term acess to private wells for its operation, maintenance and testing to ensure that the provisions of a groundwater monitoring program can be administered. A copy of such Agreement shall be provided to the *District Manager* prior to the commencement of operation of the *Works*.

6. <u>RECORD KEEPING</u>

The *Owner* shall retain for a minimum of five (5) years from the date of their creation, all records and information related to or resulting from the operation and maintenance and activities required by this *Certificate*.

7. SPECIAL CONDITION

(1) The *Owner* shall ensure through the Site Plan Approval process that individual lots developed within the industrial park will obtain a approval, in accordance with section 53 of the OWRA, before discharging into the roadside ditches and ultimately to the dry pond facility.

(2) The *Owner* shall not approve any additional flow from storm sewers, catchbasin leads, and storm service drains to the individual industrial plots to connect with the dry pond <u>unless this Certificate of Approval is amended</u> with adequate quality treatment proposed via provision of additional sewage treatment works, best management practices and hydraulic capacity servicing them has been designed and reviewed by the Ministry concluding that the additional quality of stormwater will not overload the

downstream collection system, pond and/or alter the stormwater quality of effluent discharged to the receiver of this *Certificate*.

The reasons for the imposition of these terms and conditions are as follows:

- 1. Condition 1 is imposed to ensure that the *Works* are built and operated in the manner in which they were described for review and upon which approval was granted. This condition is also included to emphasize the precedence of Conditions in the *Certificate* and the practice that the Approval is based on the most current document, if several conflicting documents are submitted for review.
 - 2. Condition 2 is included to ensure that the *Works* are constructed in a timely manner so that standards applicable at the time of Approval of the *Works* are still applicable at the time of construction, to ensure the ongoing protection of the environment
 - 3. Condition 3 is included to ensure that the *Ministry* records are kept accurate and current with respect to approved works and to ensure that subsequent owners of the works are made aware of the certificate and continue to operate the works in compliance with it.
 - 4. Condition 4 is included to require that the *Works* be properly operated and maintained such that the environment is protected.
 - 5. Conditions 5 and 7 are included to enable the *Owner* to evaluate and demonstrate the performance of the *Works*, on a continual basis, so that the *Works* are properly operated and maintained at a level which is consistent with the design objectives specified in the *Certificate* and that the *Works* does not cause any impairment to the receiving watercourse.
 - 6. Condition 6 is included to require that all records are retained for a sufficient time period to adequately evaluate the long-term operation and maintenance of the *Works*.

In accordance with Section 100 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, Chapter 0.40, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 101 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, Chapter 0.40, provides that the Notice requiring the hearing shall state:

- 1. The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to <u>eachportion</u> appealed.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The Certificate of Approval number;
- 6. The date of the Certificate of Approval;
- 7. The name of the Director;
- 8. The municipality within which the works are located;

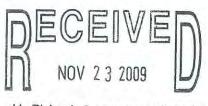
And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*		The Director
Environmental Review Tribunal		Section 53, Ontario Water Resources Act
655 Bay Street, 15th Floor		Ministry of the Environment
Toronto, Ontario	AND	2 St. Clair Avenue West, Floor 12A
M5G 1E5		Toronto, Ontario
		M4V 11.5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted sewage works are approved under Section 53 of the Ontario Water Resources Act.


DATED AT TORONTO this 9th day of November, 2009

THIS	Enn	FICA	TE W	15 W	and her and had
ONA	100	1	19	2	009
			2	C	
		(Si	gned)	SINCE SCALEWOOD	a file the general to the second second second

Mansoor Mahmood, P.Eng. Director Section 53, *Ontario Water Resources Act*

ET/

c: District Manager, MOE Ottawa District Office Derrick Upton, P.Eng., J.L. Richards & Associates Limited √

J.L. Richards & Associates Limited OTTAWA OFFICE

Appendix C -Hydrogeological Assessment

Hydrogeological Assessment Report

Proposed Commercial Development Rideau Road and Somme Street Gloucester Con 6 from Rideau River, Lot 26 Ottawa, Ontario

Prepared for: Consolidated Fastfrate (Ottawa) Holdings Inc.

Table of Contents

1.	Intro	duction		1
	1.1	Terms o	of Reference	1
2.	Hydr	ogeologic	cal Assessment	2
	2.1	Existing	Conditions	2
		2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 2.1.8	Assessment Overview Topography and Drainage Physiography Geology and Soils Description of Surface Water Features MECP Well Records Well Survey Groundwater Levels	
	2.2	Aquifer	Performance Assessment	5
		2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	Test Well Information Discussion of Pumping Test Summary of Aquifer Performance Test Well Water Quality Well Interference	6 7 8
	2.3	Water S	Supply	11
		2.3.1	Production Well Requirements	11
	2.4	Septic V	Naste Disposal	12
	2.5	Constru	iction Dewatering	12
		2.5.1 2.5.2 2.5.3	Groundwater Sampling for Construction Dewatering Single Well Response Testing Water Taking Evaluation	13
3.	Sum	mary and	Recommendations	16
4.	Refe	rences		18
5.	State	ement of L	Limitations	19

Enclosures

Site Location Plan						1
Preliminary Concept Pl	an					2
Well Location Plan						3
Regional Topography						4
Physiography .						5
Surficial Geology						6
Quaternary Geology						7
Bedrock Geology				-		8

Tables

Table 2.1:	Summary of Information from MECP Well Records	4
Table 2.2:	Water Level Summary	5
Table 2.3:	Aquifer Performance Testing Summary	7
Table 2.4:	Test Well Water Quality Summary	8
Table 2.5:	Distance Between Pumping Well and Observation Wells 1	0
Table 2.6:	Maximum Drawdowns in Pumping and Observation Wells1	0

Appendices

Appendix A:	Photographs MECP Well Records
Appendix B: Appendix C:	Certificates of Analysis – Water Supply
Appendix D:	Aquifer Performance Testing Data
Appendix E:	Observation Well Monitoring Data
Appendix F:	Single Well Response Testing

Appendix G: Certificates of Analysis – Construction Dewatering

1. Introduction

GHD Limited (GHD) is pleased to present the following hydrogeological report in support of a proposed commercial development at the intersection of Rideau Road and Somme Street in Ottawa, Ontario (herein referred to as "the Site"). The proposed development is to consist of a warehouse, cross-docks and office building, geographically located at Lot 26, Gloucester Concession 6 from the Rideau River. The Site covers an area of 7.02 hectares (17.35 acres) and will also consist of asphalt parking and storm water pond. The development will be serviced by a well and septic system. The Site consists of vacant parcel with evidence of fill (gravel, concrete, asphalt) observed on the ground surface. The surrounding lots in the area were in a similar condition.

This report has been prepared for the purposes of examining the hydrogeological characteristics of the Site and assessing the capacity of the on-site well to supply the proposed development and the potential impact to neighbouring properties. The scope of work was to identify the local hydrogeology of the Site including a desktop review of available geological and groundwater mapping and Ministry of the Environment, Conservation and Parks (MECP) well records; a water well survey within 500 m of the development, aquifer performance testing including analytical sampling; and single well response testing to determine hydraulic conductivity for purposes of construction dewatering. A septic assessment was not conducted in this report and the design is being completed by others.

1.1 Terms of Reference

GHD was retained by Consolidated Fastfrate (Ottawa) Holdings Inc. (the Client) to complete this hydrogeological assessment in accordance with our proposal reference no. 11216085 and dated November 6, 2020.

GHD (formerly Inspec Sol and Conestoga-Rovers & Associates) completed a Geotechnical Investigation and Phase II Environmental Site Assessment for the Site in 2008 and 2009, respectively; and a Geotechnical Investigation in 2020.

GHD has reviewed the following documents provided by the client as part of the investigation:

- Phase II Environmental Site Assessment and Hydrogeological Assessment, Report Ref. No. 045804 (12), by Conestoga-Rovers & Associates, dated September 2008;
- Hydrogeological Investigation, Terrain Analysis and Impact Assessment, Proposed Industrial Subdivision, Report Ref. No. 08-1122-0215, by Golder Associates, dated December 2008;
- Geotechnical Study Subdivision Plan, Hawthorne Industrial Park, Report Ref. No. T020556-A1, by Inspec-Sol, dated May 4, 2009; and
- Stormwater Management Report. Hawthorne Industrial Park, Report Ref. No. JLR 20983, by J.L. Richards & Associates Limited, dated February 2009 (Revised May 2009).

2. Hydrogeological Assessment

2.1 Existing Conditions

The following sections provide details and discussion regarding the existing conditions of the Site.

2.1.1 Assessment Overview

The location of the Site relative to nearby roads and watercourses is illustrated on the mapping entitled Site Location Plan, Figure 1. The mapping shows the Site is undeveloped. The areas to the north, east and south are currently privately serviced. To the west is a quarry development and additional industrial / commercial properties that are municipally serviced. Plans and figures are discussed throughout this report and provided following the text.

A field program was completed consisting of a site inspection; aquifer performance testing and observation well monitoring; well survey; and, single well response testing in support of the proposed development. A preliminary concept plan was provided to GHD that illustrated a 4,650 square metre (m²) (50,000 square feet or s.f.) warehouse; a 1,860 m² (20,000 s.f.) cross-docks and 280 m² (3,000 s.f.) office area with asphalt parking, stormwater pond, underground water tanks and a septic bed area. The concept plan is provided as Figure 2. As the concept plan is preliminary, locations of the well, building, septic, stormwater pond etc may be subject to change; however, the final locations will need to respect the setback distances required by the Ontario Building Code.

The hydrogeological assessment consisted of performing a pumping test of an existing drilled well at the Site known as test well TW-2 and monitoring of various observation wells including a private domestic well. The locations of the test well and observation wells is illustrated on the Well Location Plan, Figure 3.

The field work was conducted on November 19 and 20, 2020 by GHD to observe the general surficial characteristics of the Site, neighbouring lands and complete the pumping and hydraulic testing. The Site consists of undeveloped lands. GHD observed the test well and various production and monitoring wells in the vicinity of the Site. No surface water was observed on the Site. Photographs are provided in Appendix A.

Surrounding land use within 500 m of the Site are:

- East undeveloped lands;
- West undeveloped lands; Hawthorne Road then industrial properties (Tomlinson Rideau Quarry and Plant; LaFarge);
- North Rideau Road, forested area then residential lots; and
- South Somme Street; undeveloped lands then industrial / commercial lots (gated equipment lay-down yard and stormwater ponds; then Renewi Canada Ltd.).

Within 500 m of the proposed development, one residential lot was observed at 4885 Hawthorne Road.

2.1.2 Topography and Drainage

Regional topography is illustrated on Figure 4. The Site is relatively flat with the regional topography sloping from south to north. Topographic relief is on the order of 3 to 4 metres across the Site. Shallow groundwater flow is expected to follow the local topography.

Drainage of surface water is directed towards ditches alongside the Site. Drainage is generally to the east / northeast.

2.1.3 Physiography

The Site is situated within the physiographic region known as the Russell and Prescott Sand Plains. In the United Counties of Prescott and Russell, and the Regional Municipality of Ottawa-Carleton, there is a group of large sand plains separated by the clays of the lower Ottawa Valley. The plains cover an area of nearly 1500 square kilometers and a level surface of about 85 metres above sea level. The plains were originally a continuous delta that was built by the Ottawa River into the Champlain Sea. The plains are as thick as 6 to 10 m in some areas (Chapman and Putnam, 1984). The local physiography is illustrated on Figure 5 showing the Site is within a sand plains with Peat and Muck to the north and Limestone Plains to the west.

2.1.4 Geology and Soils

Surficial geology mapping on Figure 6 indicates the Site is a mix of organic deposits, Paleozoic bedrock and coarse textured glaciolacustrine deposits. The Quaternary geology (Figure 7) suggests carbonate and clastic sedimentary rock exposed at surface or covered by a discontinuous thin layer of drift. Bedrock outcrops are common in the area. Based upon GHD's previous geotechnical work (GHD, 2020), the upper soils are comprised of fill. Underlying the fill is native silty sand / sandy silt followed by a glacial till (GHD, 2020). Bedrock was found at 8.5 metres below ground surface (mbgs) based upon the well record for TW-2 at the Site.

The bedrock is Dolostone / Sandstone of the Beekmantown group (Figure 8). Golder's report also outlined the Gloucester Fault, a major northwest-southeast trending, steeply dipping structural feature in close proximity and northeast of the Site.

Based upon the well records reviewed within 500 m of the Site, bedrock was encountered within the drilled production wells at depths between ground surface and 8.5 mbgs.

2.1.5 Description of Surface Water Features

There are no surface water features on the Site.

2.1.6 MECP Well Records

Information regarding groundwater characteristics of the immediate area was obtained from an inventory of existing MECP well records. A total of seventeen (17) well records were identified within 500 m of the Site for statistical breakdown. A summary of the MECP well records and their locations are provided in Appendix B and summarized in Table 2.1.

The well records indicate a mix of overburden materials (fill, sand, clay, gravel etc.) overlying bedrock including shale, sandstone, limestone and quartz. Based upon the well records, there is one (1) primary bedrock aquifer in this immediate area that is tapped by drilled wells. Of the 17 records, seven (7) are for monitoring wells and will not be considered further within this discussion.

The groundwater was generally described as "fresh" in the well records reviewed. The information from the MECP data indicates that all ten (10) wells were drilled bedrock wells averaging a depth of about 41 m. The bedrock wells encountered water at an average depth of 31 m with pumping rates averaging nearly 100 L/min. No flowing artesian wells were reported.

No dug / bored well records were reviewed. Shallow dug / bored wells are susceptible to large seasonal fluctuations in the groundwater. The result is that shallow wells are also more prone to becoming dry in the winter and summer months. From a quality perspective, shallow dug / bored wells are generally difficult to seal at the surface and therefore considered to be susceptible to shallow sources of contamination and are not recommended for this commercial development.

Table 2.1: Summary of Information from MECP Well Records

		Dug/l Iled Wells (C Drilled Well	Overburden): 0 ls (Bedrock): 10 oring Wells*: 7	(0%) (0%) (59%) (41%)			
Parameters			Stati	stical Summary			
r arameters	Dug / Bo	red Wells	Drilled – C	Overburden	Drilled –	Bedrock	
WELL YIELDS Range Average					19 to 680 L/min 99.1 L/min	5 to 180 USgpm 26.2 USgpm	
REPORTED YIELDS	Frequency			uency	Frequency		
Not Reported Dry 0 to 1 USgpm 2 to 4 USgpm 5 to 9 USgpm ≥10 USgpm	0 0 0 0 0 0	0% 0% 0% 0% 0%	0 0 0 0 0 0	0% 0% 0% 0% 0%	0 0 0 6 4	0% 0% 0% 60% 40%	
STATIC WATER LEVELS Range Average					2.3 to 14.2 m 8.4 m	7.5 to 46.6 ft 27.6 ft	
WATER ENCOUNTERED Range Average					9.1 to 75.0 m 31.2 m	30 to 246 ft 103.5 ft	
WELL DEPTH Range Average				 ndiv B for well informatio	17.4 to 75.6 m 40.8 m	57 to 248 ft 133.9 ft	

Notes: Data based on MECP well record information (refer to Appendix B for well information).

*Monitoring wells are not included in the statistical data summarized in Table 2.1

2.1.7 Well Survey

A well survey was conducted. There was one home within 500 m of the Site at 4885 Hawthorne Road. This residential dwelling utilizes a drilled well that is 10.9 metres deep. The owner indicated they had resided at the home for about 3 months and that the water had a sulphur odour and was of sufficient quantity. No other issues were identified. The owner also provided authorization to use the well for monitoring purposes during our pumping test.

2.1.8 Groundwater Levels

Water levels were obtained from the test well, observation wells and neighbouring residential well on November 19, 2020 prior to the commencement of the pumping test. The data is summarized in Table 2.2. Based upon the water levels obtained from the drilled production wells, the groundwater flow tapped by the drilled wells is in a southeasterly direction. Shallow groundwater flow tapped by monitoring wells was not assessed.

Table 2.2: Water Level Summary

	Ground			Potentiometric
Location	Elevation* (masl)	Well (mbgs)	November 19, 2020	Elevation (masl)
TW-2	90	34.9	6.90	83.1
MW7-08	90	5.9	3.00	87.0
MW1-20	90	7.0	3.80	86.2
A305146	90	> 30	7.00	83.0
4885 Hawthorne	85	10.9	1.23	83.8
TW-5	90	29.9	7.23	82.8
Well 1514733	100	35.4	12.36	87.6
Notes:				

Notes:

masl = metres above sea level

*Elevations estimated from topographic contours provided on Figure 4. The elevations provided are for the purposes of evaluating potentiometric elevations and should not be relied upon as a legal survey or topographic elevation survey.

2.2 Aquifer Performance Assessment

The following sections discuss the test well, pumping test results and coefficients, well interference and water quality.

2.2.1 Test Well Information

The following sections discuss the test well utilized for the aquifer performance testing. For this project, an existing production well was utilized for assessment of the local aquifer via a pumping test. Based upon the location of the well and location identified on the well record, it is GHD professional opinion that the test well record provided in Appendix B is TW-2. The existing well is a drilled well constructed by Capital Water Supply Ltd. (MECP License No. 1558) and completed in on August 8, 1993. The test well is located on Figure 3 and is identified as TW-2. Adjacent water production wells, monitoring wells and a residential well that were monitored during testing are also illustrated on Figure 3.

Test Well TW-2

Test well TW-2 has the following characteristics based upon the well record filed with the MECP:

- Drilled to total depth of 30.5 mbgs (100 feet). GHD measured the actual well depth to be 34.9 mbgs. The well record indicates overburden materials consisting of brown sand with stone to 1.5 m and hardpan with boulders from 1.5 m to 8.5 m. The well is confined with the sandstone between 8.5 m and 30.5 m;
- Water was encountered at 17.7 mbgs and 26.8 mbgs and was not tested;
- The well was tested by the drillers at 75.6 litres per minute or L/min (20 gallons per minute or gpm) resulting in a drawdown of 2.1 m or about 7% of the available drawdown. The well is recommended for pumping at 18.9 L/min; and
- Construction was completed in August 1993. Constructed with steel casing to 11.9 mbgs (39 feet) then open hole to the bottom of the well. From grade to 11.4 mbgs (37.5 feet) the annular space was grouted and sealed with cement.

2.2.2 Discussion of Pumping Test

A pumping test was conducted at TW-2 on November 19, 2020 to assess aquifer conditions and confirm the availability of a suitable groundwater resource for the proposed commercial development. A pumping test was conducted for six (6) hours at a constant rate of 60 L/min (15.9 gpm). Recovery measurements were collected after the pumping was completed.

A submersible pump was used in the well to conduct the testing. Water levels in the test well and adjacent observation and monitoring wells were monitored throughout the aquifer performance testing manually and through the use of data loggers to evaluate drawdown, recovery and the potential of mutual interference with adjacent wells. The discharge water was directed away from the pumped well a distance of about 30 m downgradient. This practice safeguards against artificial recharge of the well from occurring during the pumping test.

The test well was chlorinated in advance of the pumping test. Chlorine levels were confirmed in the field prior to bacteria sampling conducted at the test well. The residual chlorine was at trace levels or non-detect prior to obtaining the bacteriological samples.

Water samples were collected and submitted to an accredited analytical laboratory for testing. The analytical data is provided in Appendix C.

Field measurements of methane, pH, temperature, free chlorine, turbidity, and conductivity were completed with a turbidity meter, Hach Pocket Pro+ Multi 2 and chlorine meter. Calibration of the instruments was completed prior to the pumping test. The field measurements are provided in Appendix D on Figure D-3.

The results of the constant rate pumping tests including field testing data are graphically presented in Appendix D. Pumping test information is summarized in Table 2.4.

Test Well TW-2

The water level during the pumping test at TW-2 is illustrated on Figures D-1 and D-2 showing water level versus time. The plot shows the water level very slowly lowering over the course of the testing at 60.0 L/min. After six hours of pumping, the water level was about 9.0 metres below top of pipe (mbtp). The drawdown was about 1.15 m over the course of the testing with about 23.9 m of available drawdown above the pump remaining. Approximately 4.6% of the available drawdown was used during the pumping test. A total groundwater volume of 21,600 L was pumped during the testing. Based upon the preliminary septic design flow calculations, about 10,000 L/day has been estimated. Actual groundwater usage is expected to be much less than 10,000 L/day for the warehouse and offices.

Recovery measurements were collected manually for 60 minutes after pumping ceased. The water level recovered about 46% in one (1) hour and fully recovered 100% in 13.5 hours. The estimated transmissivity for TW-2 was 47.6 m²/day (3193 gpd/ft) based on the drawdown and 46.4 m²/day (3115 gpd/ft) based on the recovery period and represents a high transmissivity. The specific capacity for this well is calculated to be 52.6 L/min/m based upon the pumping test completed.

The plotted data indicates the aquifer that this well is tapped into can safely provide long-term quantities of groundwater at a pumping rate of 60 L/min (15.9 gpm) based upon the pumping test completed.

Pumping tests were completed previously at TW2 in 1994 and 2008 and documented by Golder in 2008. Previous testing was completed at 67 L/min and 55 L/min in 1994 and 2008, respectively. The drawdowns of these tests were similar to our drawdown at 1.18 m in 1994 and 1.2 m in 2008. Static water levels were also similar 3.15 mbgs in 1994 and 6.90 mbgs in 2020, indicating that development in this area including quarries on nearby properties has not resulted in significant negative effects to the water supply well at the Site.

2.2.3 Summary of Aquifer Performance

Table 2.3 summarizes the data and coefficients obtained from the pumping test.

L STEP YIELD		LD	TEST TIME		MAXIMUM DRAWDOWN		AVAILABLE DRAWDOWN*		SPECIFIC CAPACITY		ESTIMATED TRANSMISSIVITY	
	gpm	L/min		minutes	feet	metres	feet	metres	gpm/ft	L/min/m	gpd/ft	m²/day
1	0	0	Static	0	0	0	82.1	25.0				
2	10	60.0	Const.	360	3.7	1.15	78.4	23.85	4.2	52.6	3193	47.6
3	0	0	Recvy.	46% recovery in 60 minutes; 100% recovery in 13.5 hours 3115 46.4				46.4				
	No.	gpm 1 0 2 10	gpm L/min 1 0 0 2 10 60.0	gpm L/min 1 0 0 Static 2 10 60.0 Const.	STEP No. Image: Construction of the second sec	STEP No.YIELDTEST TYPEIIMEDRAWgpmL/minminutesfeet100Static0021060.0Const.3603.7	STEP No. YIELD TEST TYPE IIME DRAWDOWN gpm L/min minutes feet metres 1 0 0 Static 0 0 0 2 10 60.0 Const. 360 3.7 1.15	STEP No.YIELDTEST TYPETIMEDRAWDOWNDRAWgpmL/minminutesfeetmetresfeet100Static0082.121060.0Const.3603.71.1578.4	STEP No. YIELD TEST TYPE TIME DRAWDOWN DRAWDOWN* gpm L/min minutes feet metres feet metres 1 0 0 Static 0 0 82.1 25.0 2 10 60.0 Const. 360 3.7 1.15 78.4 23.85	STEP No. YIELD TEST TYPE IIME DRAWDOWN DRAWDOWN* CAP. gpm L/min minutes feet metres feet metres gpm/ft 1 0 0 Static 0 0 82.1 25.0 2 10 60.0 Const. 360 3.7 1.15 78.4 23.85 4.2	STEP No. YIEL TEST TYPE IIME DRAWDOWN DRAWDOWN* CAPACITY gpm L/min minutes feet metres feet metres gpm/ft L/min/m 1 0 0 Static 0 0 82.1 25.0 2 10 60.0 Const. 360 3.7 1.15 78.4 23.85 4.2 52.6	STEP No. YIELD TEST TYPE IME DRAWDOWN DRAWDOWN* CAPACITY TRANSM gpm L/min minutes feet metres feet metres gpm/t L/min/m gpd/ft 1 0 0 Static 0 0 82.1 25.0 2 10 60.0 Const. 360 3.7 1.15 78.4 23.85 4.2 52.6 3193

Table 2.3: Aquifer Performance Testing Summary

Notes:

gpm = gallons per minute; gpd/ft = gallons per day per foot

"Recvy" refers to Recovery measurements; "Const" refers to the Constant Rate test conducted for 360 minutes.

*Available Drawdown refers to the height of water in the well above the pump.

Static water level at TW-2 was 7.83 metres below top of pipe (6.90 metres below ground surface).

2.2.4 Test Well Water Quality

Groundwater samples for laboratory testing were collected during the course of the pumping test for the purpose of water quality analyses. The well was sampled after one (1) hour into the constant rate test and at the end of the test on November 19, 2020. The water samples were delivered to Paracel Laboratories Ltd. in Ottawa, an accredited laboratory, for chemical analyses. The bacteria parameters of E.coli, Total Coliform and Fecal Coliform were re-sampled on December 10, 2020 to confirm the initial bacteria results were non-detect (i.e. zero colony forming units). Certificates of chemical analyses are presented in Appendix D. The water quality data are summarized and compared with the Ontario Drinking Water Standards (ODWS) in Table 2.4.

		ODWS			
PARAMETER	1 hour (Nov. 19, 2020)	End of test (Nov. 19, 2020)	TW-2 Re-Test** (Dec. 10, 2020)	MAC	AO/OG
Alkalinity (as CaCO ₃)	269	267			30 to 500
Ammonia as N	0.25	0.25			
Dissolved Organic Carbon	2.4	2.2			
Calcium	154	153			
Chloride	91	94			250
Colour (ACU)	67	68			
Conductivity (mS/cm)	1390	1380			
Fluoride	0.3	0.3		1.5	
Hardness (as CaCO ₃)	633	632			80 to 100
Iron	0.739	0.699			0.3
Magnesium	60.6	60.9			
Manganese	0.176	0.180			0.05
Nitrite as N	<0.05	<0.05		1.0	
Nitrate as N	<0.1	<0.1		10	
pH (units)	7.8	7.7			6.5 to 8.5
Potassium	9.55	9.77			
Phenolics	<0.001	<0.001			
Sodium	69.2*	68.6*			200
Sulphate	378	389			500
Sulphide	<0.02	<0.02			0.05
Tannin and Lignin	<0.1	<0.1			
Total Dissolved Solids	930	940			500
Total Kjeldahl Nitrogen	0.3	0.4			
Turbidity (NTU)	10	9.5			5
E. coli		ND (<10)	0	0	
Total Coliform		ND (<10)	0	< 6	
Fecal Coliform		ND (<10)	0	0	
Heterotrophic Plate Count		<10			

Table 2.4: Test Well Water Quality Summary

Notes:

Units are mg/L unless otherwise stated; "<" indicates concentrations are less than laboratory reporting limits

MAC = maximum acceptable concentration

AO / OG = aesthetic objective / operational guideline

Bold / shaded indicates the concentration exceeds the ODWS AO / OG. There are no exceedances of MAC (health related). *The aesthetic objective for sodium in drinking water is 200 mg/L. When the sodium concentration exceeds 20 mg/L, this

information should be communicated to those on sodium restricted diets.

**Re-tested at SGS Laboratory to confirm bacteria was non-detect.

The laboratory analyses confirmed that there were no health-related parameter exceedances of the ODWS. In general, the test results indicate the majority of parameters meet the ODWS with several exceedances of aesthetic objectives:

- Hardness;
- Total Dissolved Solids;
- Turbidity;
- Manganese; and
- Iron.

Elevated hardness is related to the overburden materials containing calcium and to a lesser extent, magnesium. Elevated hardness and iron are common traits of groundwater supplies in Southern Ontario and can be treated using commercially available treatment equipment such as a water softener.

The bacteria results were reported by Paracel as non-detect (i.e. <10 colony forming units per 100 mL (CFU)). GHD collected a re-sample from the well on December 10, 2020 to confirm that the bacteria results were non-detect. The sample was collected after pumping a well volume from the well and submitting the sample to SGS Environmental Laboratory in Lakefield, ON. The residual chlorine was measured in the field prior to testing and confirmed to be less than 0.05 mg/L.

As a proactive measure, GHD recommends that bacteriological treatment (i.e. ultraviolet (UV) treatment) be used at a minimum. As it is anticipated that this well system will be regulated and will require treatment to meet appropriate standards to ensure potable water is available to employees and visitors.

To supplement the analytical data, field measurements were obtained throughout the pumping test by GHD. At the end of the pump test, the groundwater at the well head had a conductivity of 1.2 mS/cm, a water temperature of 9.2 degrees Celsius, a pH of 6.65 and turbidity of 1.4 NTU. There was no methane detected within the water.

2.2.5 Well Interference

The potential for hydraulic connection between the test well TW-2 and neighbouring wells was monitored during the pumping test to assess the potential for hydraulic connection and well interference and overall impact on the aquifer with increased groundwater usage. Water levels were recorded of the observation wells during the pumping test and is provided in Appendix E. The approximate linear distances between the test well and observation wells are provided in Table 2.5.

Location	Distances between Test Wells and Observation Wells in metres							
Location	TW-2	TW-5	4885 Hawthorne	Well 1514733	Well A305146	MW1-20	MW7-08	
TW-2 (test well)		555	635	495	130	125	10	
TW-5	555		1185	785	450	670	550	
4885 Hawthorne	635	1185		675	735	510	640	
Well 1514733	495	785	675		450	430	520	
Well A305146	130	450	735	450		225	145	
MW1-20	125	670	510	430	225		145	
MW7-08	10	550	640	520	145	145		

Table 2.5: Distance Between Pumping Well and Observation Wells

Notes:

Distances based upon locations identified on Well Location Plan, Figure 3.

MW = monitoring well; TW = test well

The following table illustrates the maximum drawdowns that were observed in the test well and adjacent neighbouring wells during the pumping test.

Table 2.6:	Maximum	Drawdowns	in Pumping	and	Observation Wells
------------	---------	-----------	------------	-----	--------------------------

PUMPING WELL		OBSERVATION WELLS			
LOCATION	MAXIMUM DRAWDOWN AT PUMPING WELL(M)	LOCATION	DRAWDOWN AT OBSERVATION WELL(m)		
		TW-5	~0.03		
	1.15	4885 Hawthorne	~0.03		
TW-2		Well 1514733	0		
1 44-2		Well A305146	~0.95		
		MW1-20	0		
		MW7-08	0		

2.2.5.1 Interference Assessment

During the pumping test, data loggers were installed within nearby production wells (TW-5, Well 1514733 and Well A305146); a residential well (4885 Hawthorne Road) and monitoring wells (MW1-20 and MW7-08). This was completed to quantify any hydraulic connection between the overburden and bedrock aquifer, and, within the bedrock aquifer itself.

There was no drawdown attributable to pumping at TW-2 within the monitoring wells (MW1-20 and MW7-08) indicating that there is no vertical hydraulic connection between the overburden groundwater and confined bedrock aquifer that TW-2 draws from.

There was no drawdown at Well 1514733 and minimal drawdown within TW-5 and the residential well throughout the duration of the pumping test. The drawdown at TW-5 and 4885 Hawthorne Road was about 3 cm based upon the data logger readings and is considered insignificant. No impacts are expected at these wells as a result of future TW-2 usage.

The results of the interference monitoring did illustrate a hydraulic connection between TW-2 and Well A305146 about 130 m to the south. The drawdown at this well was about 95 cm during the pumping test. It is expected that these wells are confined within the same aquifer unit and are hydraulically connected.

The testing showed that the pumping of over 20,000 L resulted in the usage of about 5% of the available drawdown of the test well. As daily usage is expected to be below 10,000 L/day, the pump test results indicate that there is sufficient water quantity below the Site for the planned development without significant interference to future and existing neighbouring wells. In our professional opinion the risk of interference is minimal.

2.3 Water Supply

The water supply system for the commercial development is expected to be regulated under Ontario Regulation 170 with the MECP. Based upon the pumping test, the test well TW-2 provided sufficient water quantity and could support a higher yield if required. The testing indicated that the bedrock aquifer below the Site can produce enough groundwater to support the proposed commercial development without significant impact to other wells.

It is also understood by GHD that, due to the location of TW-2, a replacement production well may be drilled for the Site. The following requirements are outlined for a new replacement well.

2.3.1 Production Well Requirements

Based on the results of this assessment, it is recommended that the commercial development be serviced by a properly constructed drilled well. GHD understands that the current drilled well used at the Site may be used to support the proposed development. However, if a new replacement well is needed, the current well should be abandoned in accordance with Regulation 903 of the Ontario Water Resources Act.

A future well should target the bedrock aquifer on the order of about 30 m deep. Large diameter (300 mm or greater) wells are not considered suitable as a source of water supply as they can be susceptible to shallow sources of contamination and may be prone to going dry during summer and winter months. Water wells installed should be in accordance with Regulation 903 of the Ontario Water Resources Act and the following design specifics:

- 1. If the well is a bedrock well, the casing should be sealed in accordance with Regulation 903 to the bedrock.
- 2. The well must be developed by conventional techniques to obtain a minimum of 70% efficiency. It is recommended that a statement be provided that indicates the well is essentially sand-free (i.e. less than 5 mg/L sand). In addition, the statement should also include that the total drawdown in the well, comprising the pumping level plus the mutual interference from the other wells, is within a reasonable tolerance of the available drawdown.
- 3. A water sample must be collected from the new well and analyzed for the following, at a minimum, test parameters to meet the ODWS:

-Iron	-Manganese	-Nitrate
-Sodium	-Hardness	-Turbidity
-Total Coliform	-E.coli	-Fecal coliform
-Chloride	-Total Dissolved Solids	

4. It is recommended that the new well be pump tested by qualified hydrogeologic personnel prior to issuance of a building permit. The well should be pump tested to determine a safe long-term yield and short-term capacity to ensure uninterrupted water supply for the development and to ensure that adjacent properties will not be impacted. A report should be prepared by a Professional Engineer or Professional Geoscientist verifying the pump testing data.

The use of a properly constructed drilled well that is adequately sealed and certified by qualified hydrogeological personnel should be sufficient to provide ample quantities of potable water while preserving the long term water quality of the existing aquifer complexes. Based on the aforementioned water quality data, some aesthetic related exceedances were noted. Aesthetic objectives are not health related. Methane was not observed in the test well discharge water or detected with our field instrumentation.

The use of groundwater heat pumps that extract water from the aquifer is not recommended. Geothermal drilling is unregulated and there are no mandatory requirements to seal boreholes that are drilled through or into aquifers. Therefore, unsealed or improperly sealed boreholes into the aquifer could put the water supply at risk.

2.4 Septic Waste Disposal

The septic waste disposal system is being designed by others.

2.5 Construction Dewatering

Based upon the GHD Geotechnical Report (2020), approximately 6 m of fill was encountered on the Site. The report suggests that foundations are to be either shallow foundations completed in the fill (requiring soil improvements, such as dynamic compaction) or deep foundations (Drilled Micro piles or drilled cast-in-place concrete piles / caissons). Bedrock was encountered at depths of 8.2 to 11.1 mbgs. Groundwater during the geotechnical program was encountered at depths of 3.3 to 4.0 mbgs at the Site and measured on November 19, 2020 to be 3.0 mbgs at MW7-08 and 3.8 mbgs at MW1-20.

Based on these observations, the excavations for the deep foundation option will extend below the water table and will require dewatering to remove groundwater seepage as well as surface water runoff and precipitation to ensure safe and dry working conditions.

2.5.1 Groundwater Sampling for Construction Dewatering

On November 19, 2020, a groundwater sample was collected from MW7-08 as part of the hydrogeological assessment. The sample was submitted to Paracel Laboratories in Ottawa, Ontario for analysis of metals, general inorganics, and volatile organic compounds (VOCs). The results were compared to criteria described in City of Ottawa By Law 2003-514, which addresses discharge to the Municipal sewage system. The analytical results are summarized and provided with the certificates of analysis in Appendix G.

When the analytical results are compared to the City of Ottawa criteria, it is noted that the following parameters exceeded the criteria:

- Phosphorus (total);
- Suspended solids (total);
- Arsenic (total);
- Copper (total);
- Manganese (total);
- Nickel (total); and
- Zinc (total).

The results represent total concentrations including dissolved and sorbed particulate. Based on these observations, the water discharged from an excavation must be filtered to minimize the particulate and reduce the total concentrations to meet the City of Ottawa criteria. The discharge would be expected to be a combination of groundwater, surface water runoff and precipitation into the excavation and would require further assessment to verify its quality. City of Ottawa approval, sewer-use discharge permit and pre-treatment will be required prior to discharge to a drainage ditch or sewer.

2.5.2 Single Well Response Testing

On November 20, 2020, Single Well Response Tests (SWRTs) were completed on monitoring wells MW1-20 and MW7-08, both of which are completed within the overburden. The tests consisted of inducing a measurable change to the water level in the monitoring well and measuring the rate at which the water level recovers. In this case, dataloggers were placed in the wells, then water in the wells were displaced by inserting a solid slug. When water levels had stabilized, the slug was then removed.

The SWRT was analysed using AQTESOLV and the Bouwer-Rice solution for unconfined groundwater unit within the fill. The results yielded a geometric mean of 5.7×10^{-5} cm/s at MW1-20 and 2.1×10^{-3} cm/s at MW7-08 in the general area of the southern edge of the proposed warehouse. The SWRT analyses are provided in Appendix F. The hydraulic conductivity testing suggests that excavations within fill material such as MW7-08 would be expected to yield moderate water infiltration.

It is noted that the hydraulic conductivities in MW7-08 was significantly faster than that measured at MW1-20 (near the northwest limit of the Site). This is attributed to a combination of differing

screened depths and variations in fill composition. Accordingly, it is assumed that the hydraulic conductivities vary across the Site. For the calculations used in this report, hydraulic conductivity will be assumed to be 1×10^{-3} cm/sec.

2.5.3 Water Taking Evaluation

This section of the report is not intended to be considered for use as a dewatering plan for the construction contractor, as the water takings are for the purposes of regulatory submissions. It must also be noted that groundwater levels are transient and tend to fluctuate with the seasons, periods of precipitation and temperature.

The Site-specific borehole data, results of the hydraulic testing (i.e. single well response tests) and groundwater water monitoring were utilized to determine the aquifer hydraulic properties (hydraulic conductivity) and conditions to provide the basis for estimating the construction water taking rates and area of influence. If excavations extend beyond 3 mbgs, it is expected that groundwater will be encountered. The water takings and area of influence were determined using the field data and by employing analytical modelling methods. The projected drawdown was calculated as a partially penetrating excavation in an unconfined aquifer within the fill.

The radius of influence (R_o) was estimated using an empirical relationship developed by Sichardt and Kryieleis that gives R_o as a function of drawdown and hydraulic conductivity (Powers et al., 2007).

 $R_o = 3000(H - h)\sqrt{K}$ (For circular source) $R_o = 1750(H - h)\sqrt{K}$ (For line source)

Based upon an excavation depth of 8.5 m (i.e. removing all of the fill and native soil to bedrock as per the depth of bedrock at TW-2), the radius of influence is about 70 to 90 m. Based upon the size of the Site, no impacts to neighbouring properties is expected.

The steady state dewatering (Q) into the excavation was estimated using:

$$Q = \frac{\pi K \left(H^2 - h_w^2\right)}{\ln R_0 / r_w}$$
 (For steady state into a semi-penetrating shaft)

Where: $r_w = \sqrt{\frac{ab}{\pi}}$

There are a number of assumptions to this method including:

- Homogeneous material
- Steady state
- Initial horizontal potentiometric surface
- Unconfined aquifer
- Partially penetrating well
- Gravity flow
- Circular source
- Effect of a large rectangular excavation is equivalent to circular excavation of same area

Based upon an excavation size that includes the entire warehouse area (4650 m²) but does not include the cross docks or office areas, and assuming a dewatering depth to 9.5 m (one (1) m below the bedrock as per the bedrock depth at TW-2 to maintain dry conditions) steady state dewatering is estimated to be on the order of 725,000 L/day. This estimation includes a safety factor of 1.5 that was applied to the infiltration rate. The initial flows from the excavation may also be expected to be two to three times greater than the steady state.

Accordingly, the Owner should be aware of the limitations associated with the flow volume estimate contained in this report before utilizing the flow estimates for any use beyond their intended purpose (the generation of estimates to assess the need for a Permit To Take Water or an Environmental Activity and Sector Registry (EASR) application for construction). Our calculations assumed that there are 8.5 m of material to be removed to the bedrock for construction of the warehouse and dewatering to a depth of 9.5 m required to maintain 'dry' conditions. There may be areas on the Site with greater depths of material above the bedrock; or, other areas that have greater permeability and have more significant groundwater volume to be dewatered. The calculations also assumed that the footprint of the warehouse would be excavated in its entirety. To reduce groundwater pumping efforts, smaller areas of the warehouse footprint could be excavated at one time or alternative construction methods may be considered.

It is recommended that any contractor carry out a test excavation and / or pump testing of the fill layer prior to dewatering to evaluate the conditions and the most appropriate method to deal with the onsite conditions.

Based on the above assumptions and the scenario presented, we suggest that that the Client should:

- Submit a Permit To Take Water (PTTW) application to remove water from the Site, allowing for a water taking volume of greater than 400,000 Litres/day (L/day) for the purposes of the submission. It should be noted that PTTW reviews may take up to 90 business days (i.e. 4.5 months). Alternatively, an EASR application for construction dewatering can be obtained within several days and allows for up to 400,000 L/day of groundwater pumping for construction dewatering purposes.
- If required, obtain a City Ottawa Discharge Permit to allow discharge to the local municipal sewer system or ditch. At a minimum, the construction water takings will require sediment filtration prior to discharge such as a sediment filter bag or equivalent methods.

The discharge from the dewatering should be directed to the nearby ditches or ground surface away from the excavation in an area protected from erosion. In addition, the discharge water should be properly filtered to reduce turbidity and total suspended solids. The volume and rate of the water takings will be recorded daily and measured using a flow meter or other acceptable method. The daily groundwater discharge shall be maintained below the limits identified in PTTW or EASR permit, and the City of Ottawa Discharge Permit (if required).

It is important to conduct the excavation and dewatering work in a timely manner (i.e. short duration) if possible. In addition, the ideal period to conduct the program is during the summer when groundwater and surface water are expected to be at their lowest. Any suppression of the local shallow groundwater from dewatering during the construction phase is expected to be of a temporary nature.

3. Summary and Recommendations

Supporting data upon which our conclusions and recommendations are based have been presented in the foregoing sections of this report. The following conclusions and recommendations are governed by the physical properties of the subsurface materials that were encountered at the Site and assume that they are representative of the overall Site conditions. It should be noted that these conclusions and recommendations are intended for use by the designers only. Contractors bidding on or undertaking any work at the Site should examine the factual results of the assessment, satisfy themselves as to the adequacy of the information for construction, and make their own interpretation of this factual data as it affects their proposed construction techniques, equipment capabilities, costs, sequencing, and the like. Comments, techniques, or recommendations pertaining to construction should not be construed as instructions to the contractor.

Based on the results of the assessment, the test well has sufficient water of good quality and quantity to provide ample supply of potable groundwater for the proposed commercial development while preserving the long-term water quality of the aquifer complex. There was minor interference between adjacent wells; however, the interference is not considered significant to impact the operation of the wells. There is no vertical hydraulic connection between the shallow overburden groundwater and the bedrock aquifer unit. In the long term, it is our opinion that the bedrock aquifer tested can support the commercial development and neighbouring wells.

Water quality impacts are not expected provided that the waste disposal system is properly constructed. No impact is anticipated on downgradient baseline water quality functions or to the existing water bearing aquifers.

If a new well is drilled for the development, the well must be properly constructed and adequately sealed and the existing well decommissioned in accordance with Ontario Regulation 903.

Construction dewatering is estimated to be about 725,000 L/day or greater based upon field testing and dewatering the entire warehouse footprint to the bedrock surface. A PTTW is recommended for this approach. For dewatering of volumes up to 400,000 L/day, an EASR application is recommended. No significant impacts from construction dewatering are anticipated.

It is GHD's opinion that the results of this hydrogeological assessment support the development of the proposed commercial development.

The following Statement of Limitations should be read carefully and is an integral part of this report. We trust this report meets your immediate needs. Should any questions arise regarding any aspect of our report, please contact our office.

Sincerely,

GHD

Nert.

Robert Neck, M.Eng., P.Geo. (Limite

Nyle Mcliveen, P.Eng.

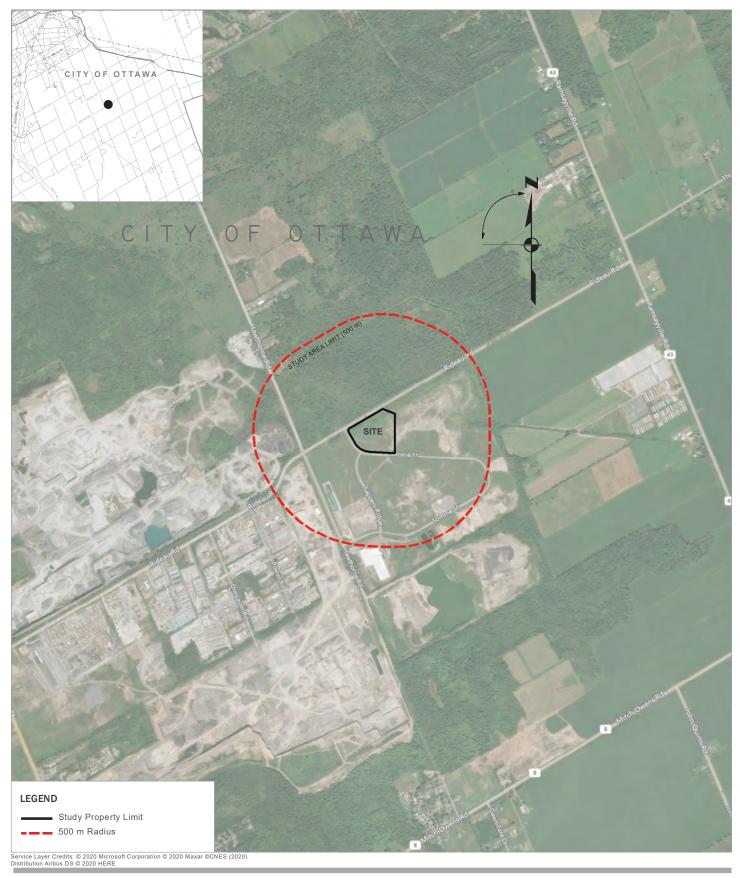
O LIMIT

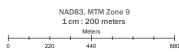
4

ROBERT W. NECK

4. References

- Chapman and Putnam, 1966. The Physiography of Southern Ontario, 2nd Edition. University of Toronto Press.
- Chapman and Putnam, 1984. The Physiography of Southern Ontario, 3rd Edition. Ministry of Natural Resources.
- Conestoga-Rovers & Associates, September 2008. Phase II Environmental Site Assessment and Hydrogeological Assessment. Report Ref. No. 045804 (12)
- Environmental Protection Act, R.S.O. 1990, and associated regulations.
- Fetter, C.W., 1994. Applied Hydrogeology, 3rd Edition.
- Freeze, R.A. and J.A. Cherry. 1979. Groundwater.
- GHD Limited, September 10, 2020. Geotechnical Investigation. Warehouse and Offices. Intersection of Rideau Street and Somme Street, Ottawa Ontario. Proj. No. 11215612-01.
- Golder Associates, December 2008. Hydrogeological Investigation, Terrain Analysis and Impact Assessment, Proposed Industrial Subdivision, Report Ref. No. 08-1122-0215.
- Inspec-Sol, May 4, 2009. Geotechnical Study Subdivision Plan, Hawthorne Industrial Park, Report Ref. No. T020556-A1.
- J.L. Richards & Associates Limited, February 2009 (Revised May 2009). Stormwater Management Report. Hawthorne Industrial Park, Report Ref. No. JLR 20983.
- Occupational Health and Safety Act, R.S.O. 1990, and associated regulations.
- Ontario Geological Survey, 2003. Surficial Geology of Southern Ontario.
- Ontario Ministry of the Environment, 2011. Ontario Regulation 153/04: Records of Site Condition Part XV.1 of the Act (*Environmental Protection Act* 153/04, as amended).
- Ontario Ministry of the Environment. June 2003. Revised June 2006. Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines.


5. Statement of Limitations


This report is intended solely for Consolidated Fastfrate (Ottawa) Holdings Inc. in assessing the hydrogeological aspects of the Site (Rideau Road and Somme Street, Ottawa, Ontario) and is prohibited for use by others without GHD's prior written consent. This report is considered GHD's professional work product and shall remain the sole property of GHD. Any unauthorized reuse, redistribution of or reliance on the report shall be at the Client and recipient's sole risk, without liability to GHD. Client shall defend, indemnify and hold GHD harmless from any liability arising from or related to Client's unauthorized distribution of the report. No portion of this report may be used as a separate entity; it is to be read in its entirety and shall include all supporting drawings and appendices.

The recommendations made in this report are in accordance with our present understanding of the project, the current site use, ground surface elevations and conditions, and are based on the work scope approved by the Client and described in the report. The services were performed in a manner consistent with that level of care and skill ordinarily exercised by members of hydrogeological engineering professions currently practicing under similar conditions in the same locality. No other representations, and no warranties or representations of any kind, either expressed or implied, are made. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

All details of design and construction are rarely known at the time of completion of a hydrogeological study. The recommendations and comments made in the study report are based on our subsurface investigation and resulting understanding of the project, as defined at the time of the study. We should be retained to review our recommendations when the drawings and specifications are complete. Without this review, GHD will not be liable for any misunderstanding of our recommendations or their application and adaptation into the final design.

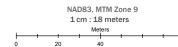
Enclosures

ATTRIBUTION STATEMENTS

Produced by GHD Limited under Licence with the Ontario Ministry of Natural Resources and Forestry® Queen's Printer for Ontario, 2020 (2020).

K:\GIS_PROJECTS\GHD\CA-

Consolidated Fastfrate (Ottawa) Holdings Inc. RIDEAU ROAD & SOMME STREET CITY OF OTTAWA ONTARIO

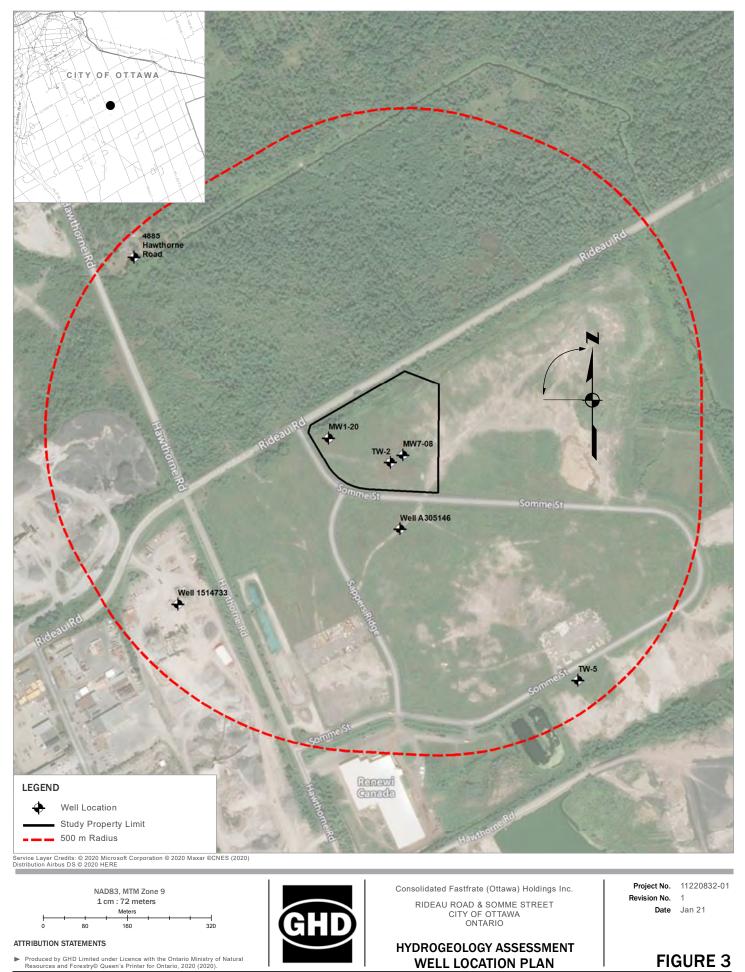

HYDROGEOLOGY ASSESSMENT SITE LOCATION PLAN
 Project No.
 11220832-01

 Revision No.
 1

 Date
 Jan. 2021

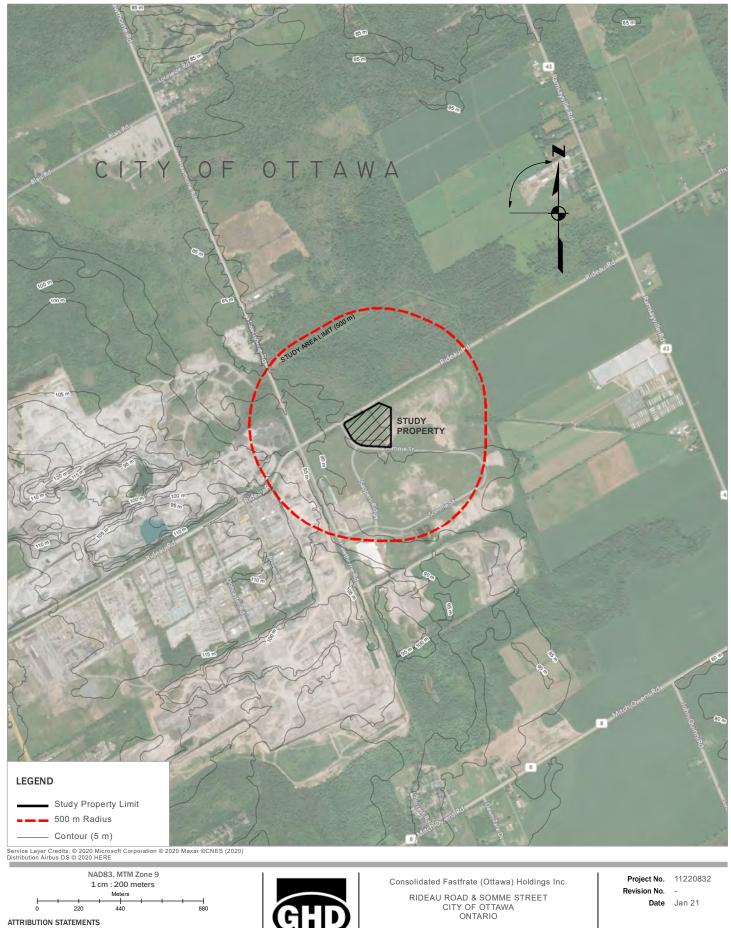
FIGURE 1

ATTRIBUTION STATEMENTS


- Preliminary Site Blocking Diagram [A100]. Civitas Group. 2020-11-04.
- Produced by GHD Limited under Licence with the Ontario Ministry of Natural Resources and Forestry[®] Queen's Printer for Ontario, 2020 (2020).

K:\GIS_PROJECTS\GHD\CA-

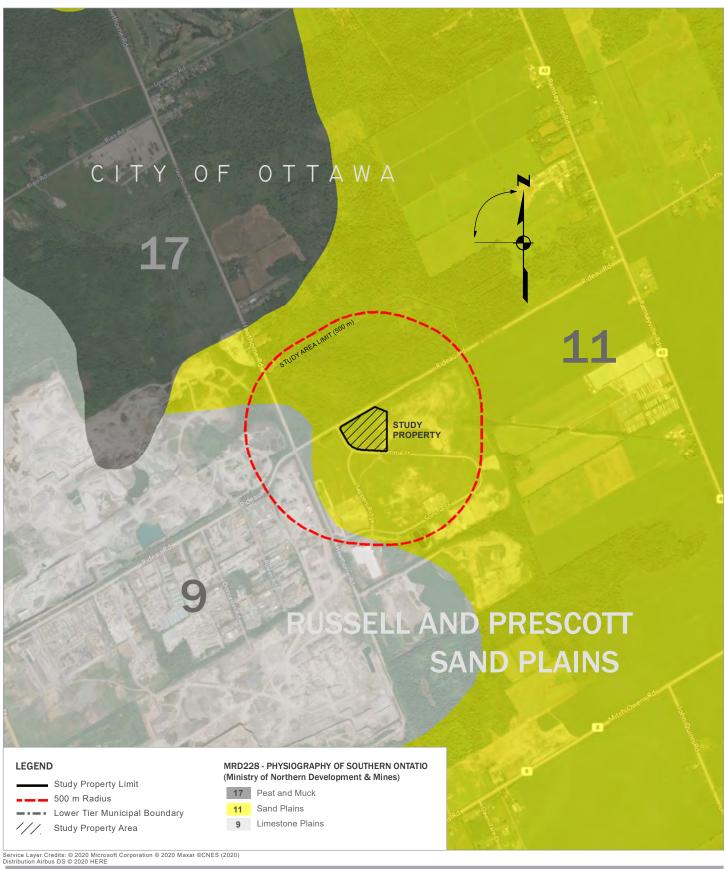
HYDROGEOLOGY ASSESSMENT PRELIMINARY CONCEPT PLAN


Consolidated Fastfrate (Ottawa) Holdings Inc.

RIDEAU ROAD & SOMME STREET CITY OF OTTAWA ONTARIO Project No.11220832-01Revision No.1DateJan 21

K:\GIS_PROJECTS\GHD\CA-

Created by: Will Pridhan



HYDROGEOLOGY ASSESSMENT

REGIONAL TOPOGRAPHY

►	MRD128-REV. Ontario Geological Survey 2010. Surficial geology of southern Ontario; Ontario Geological Survey, Miscellaneous Release—Data 128 – Revised
•	Braduand by CHD Limited under Licenses with the Onterio Ministry of Natural

FIGURE 4

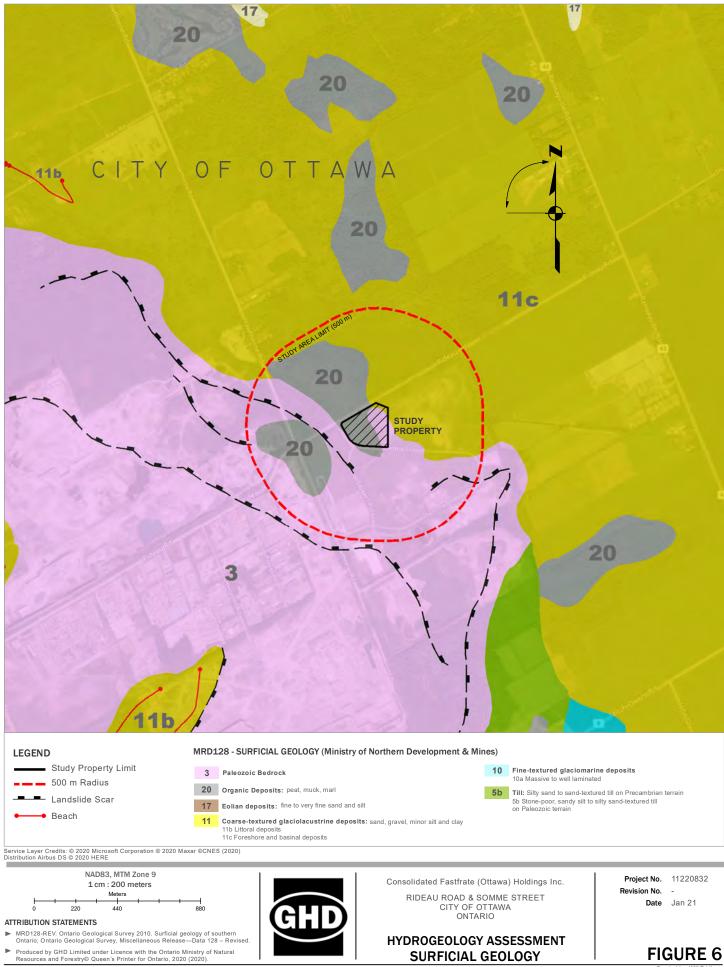
NAD83, MTM Zone 9 1 cm : 200 meters Meters 440 220

880

ATTRIBUTION STATEMENTS

- MRD228-REV. Chapman, L.J. and Putnam, D.F. 2007. Physiography of southern Ontario; Ontario Geological Survey, Miscellaneous Release—Data 228.
- Produced by GHD Limited under Licence with the Ontario Ministry of Natural Resources and Forestry[®] Queen's Printer for Ontario, 2020 (2020).

Consolidated Fastfrate (Ottawa) Holdings Inc. RIDEAU ROAD & SOMME STREET CITY OF OTTAWA ONTARIO


PHYSIOGRAPHY

HYDROGEOLOGY ASSESSMENT

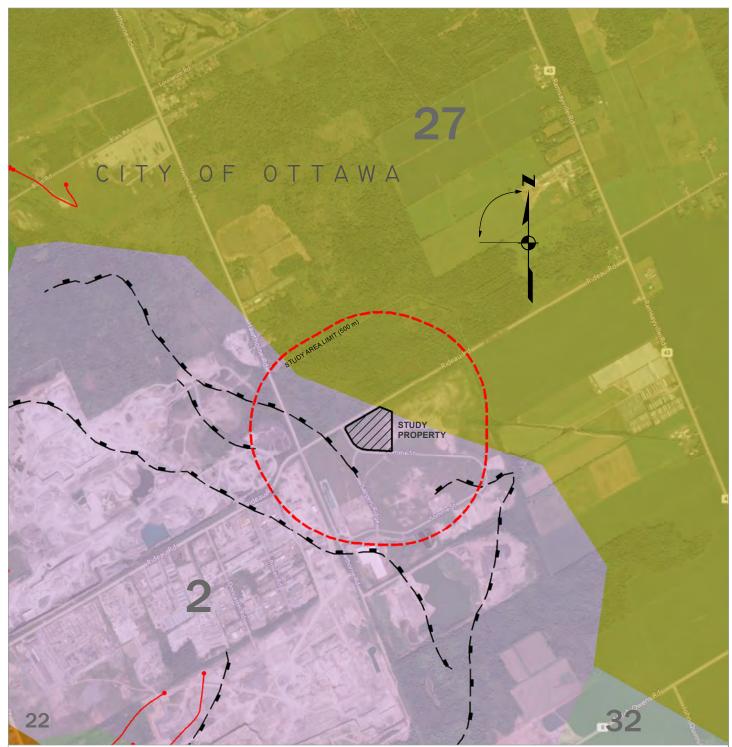

Project No. 11220832 Revision No. -Date Jan 21

FIGURE 5

K:\GIS_PROJECTS\GHD\CA-

Created by: Will Pridha

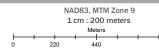
LEGEND

Study Property Limit

Landslide Scar

Beach

EDS014 - QUATERNARY GEOLOGY (Ministry of Northern Development & Mines)


32 Organic deposits: peat, muck and marl

880

27 Glaciomarine and marine deposits: sand, gravelly sand and gravel nearshore and beach deposits 22 Glaciofluvial ice-contact deposits: gravel and sand minor till includes esker, kame, end moraine, ice-marginal delta and subaqueous fan deposits
 2 Bedrock:

undifferentiated carbonate and clastic sedimentary rock, exposed at surface or covered by a discontinuous, thin layer of drift

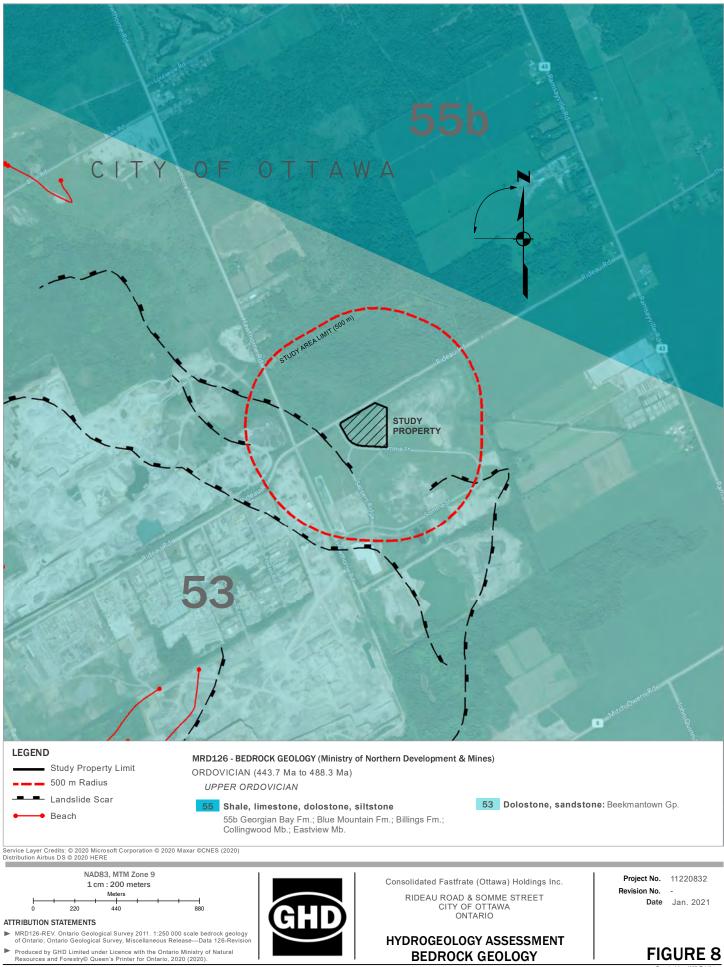
Service Layer Credits: © 2020 Microsoft Corporation © 2020 Maxar ©CNES (2020) Distribution Airbus DS © 2020 HERE

ATTRIBUTION STATEMENTS

- EDS014-REV. Ontario Geological Survey, 1997. Quaternary geology, seamless coverage of the province of Ontario: Ontario Geological Survey, Data Set 14.
- Produced by GHD Limited under Licence with the Ontario Ministry of Natural Resources and Forestry® Queen's Printer for Ontario, 2020 (2020).

GHD

Consolidated Fastfrate (Ottawa) Holdings Inc. RIDEAU ROAD & SOMME STREET CITY OF OTTAWA ONTARIO


HYDROGEOLOGY ASSESSMENT QUATERNARY GEOLOGY
 Project No.
 11220832

 Revision No.

 Date
 Jan 2021

FIGURE 7

Created by: Will Pridha

K:\GIS_PROJECTS\GHD\CA-

Created by: Will Pridha

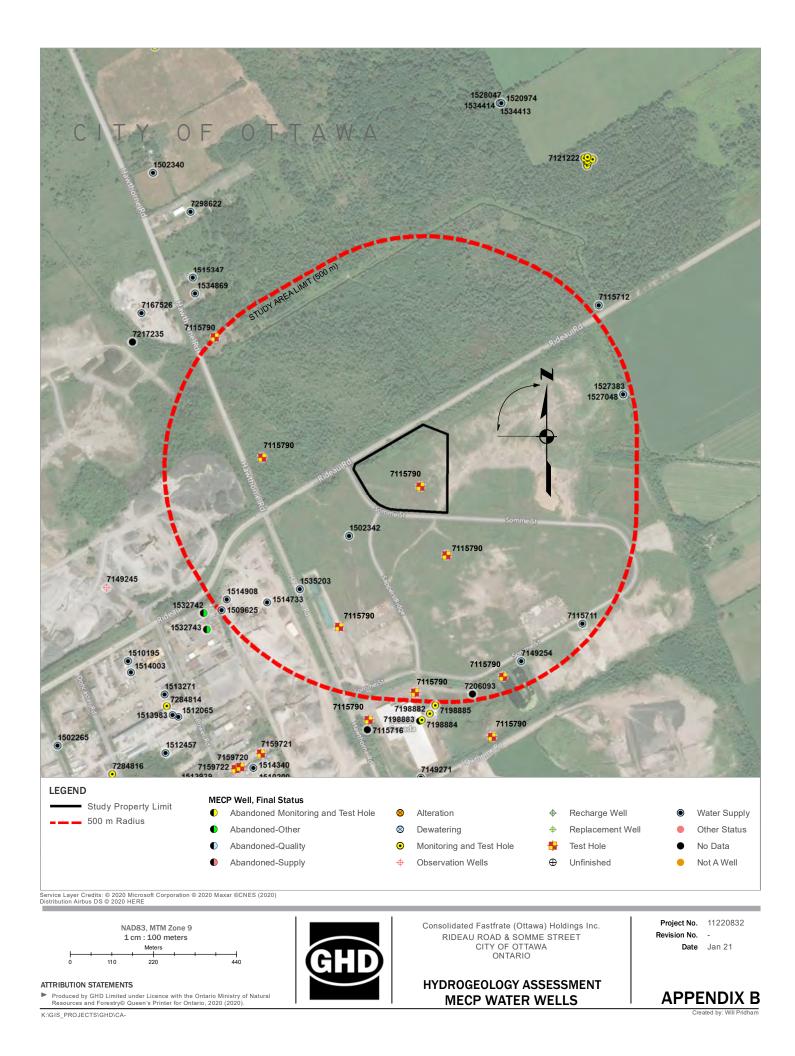
Appendix A Photographs

Photo 1 - View of drilled test well on the Site used during pumping test.

Photo 2 - View of discharge area looking across the Site.

Site Photographs

GHD | Hydrogeological Assessment | 11220832 (01) | Page 1


Photo 3 - Example of observation well (ID A305146) used during pumping test for monitoring of potential interference effects.

Site Photographs

GHD | Hydrogeological Assessment | 11220832 (01) | Page 2

Appendix B MECP Well Records

WELL RECORD LISTINGS

Ministry of the Environment Conservation & Parks (MECP) Database Currency: 2020-04-30 Date Accessed: 2020-11-13 Project ID: 11220832 Office: Peterborough, ON

Lot:	LOT 27	Well ID:	7206093
Con:	CON 6 FROM RIDEAU RIVER	Borehole ID:	1004500104
Township:	GLOUCESTER	Completion Date:	7/18/2013
County:	OTTAWA-CARLETON	Received Date:	8/12/2013
Street:	35 SAPPERS RIDGE	Tag:	A089801
City:	Ottawa	Audit No:	Z103282
Site:		Contractor License:	3749
Elevation:	89.57 masl.		
UTM:	18 E 456749 N 5016668 Long/Lat: -75.552 , 45.302		

 DETAILS

 Primary Use:
 Public
 Secondary Use:
 Public
 Final Status:

 Well Depth:
 47.2 m
 Depth to Bedrock:
 0 m
 Static Level:
 7.6 m
 Well Type:

 Pump Rate:
 10
 GPM
 Boring Method:
 Rotary (Convent.)

CASING DETAILS		DEPT	DEPTH IN METERS		
<u>Material</u>	Diameter (cm)	<u>Top</u>	-	Bottom	
STEEL	14.29	12.19		-0.61	

FORMATION DETAILS		DEPTH	I IN METERS
<u>Colour</u> <u>Material</u>		Тор	- <u>Bottom</u>
	LIMESTONE	7.32	47.24
	FILL	0.00	2.44
GREY	CLAY	2.44	7.32

Lot:	LOT 27	Well ID:	7115790
Con:	CON 6 FROM RIDEAU RIVER	Borehole ID:	1002782554
Township:	GLOUCESTER	Completion Date:	7/7/2008
County:	OTTAWA-CARLETON	Received Date:	11/26/2008
Street:	HAWTHORNE ROAD AT RIDEAU ROAD	Tag:	A074584
City:	Ottawa	Audit No:	M02897
Site:		Contractor License:	1844
Elevation:	90.95 <i>masl.</i>		

Page 1 of 13

DETAILS					
Primary Use: Mor	nitoring	Secondary Use: N	Ionitoring	Final Status:	Test Hole
Well Depth: 0	m Depth	to Bedrock: 0 m	Static Level:	1 m Well	Туре:
Pump Rate:	Во	oring Method:			
		H.S.A.			
	CASIN	IG DETAILS		DEPTH IN MET	ERS

<u>Material</u>	<u>Diameter (cm)</u>	<u>Top</u> - <u>Bottom</u>	
FORMATIO	N DETAILS	DEPTH IN METERS	
Colour	<u>Material</u>	<u>Top</u> - <u>Bottom</u>	
BROWN	FILL	0.27 1.43	
GREY	SAND	1.43 1.83	
BROWN	TILL	1.83 2.32	
GREY	FINE SAND	0.00 0.27	

Lot:	LOT 27	Well ID:	7115790
Con:	CON 6 FROM RIDEAU RIVER	Borehole ID:	1002782518
Township:	GLOUCESTER	Completion Date:	7/7/2008
County:	OTTAWA-CARLETON	Received Date:	11/26/2008
Street:	HAWTHORNE ROAD AT RIDEAU ROAD	Tag:	A074584
City:	Ottawa	Audit No:	M02897
Site:		Contractor License:	1844
Elevation:	94.41 masl.		
UTM:	18 E 456831 N 5016712 Long/Lat: -75.551,45.303		

DETAILS

Primary Use: Monitoring	Secondary Use: Monitoring	Final Status: Test Hole
Well Depth: 0 m Depth	n to Bedrock: 0 m Static Level:	1.3 m Well Type:
Pump Rate: Bo	oring Method: H.S.A.	

Page 2 of 13

<u>Material</u>	Diameter (cm)	<u>Top</u>	-	Bottom
STEEL	15.86	-0.45		6.40

FORMATION DETAILS		DEPTH	I IN METERS
<u>Colour</u>	<u>Material</u>	Тор	- <u>Bottom</u>
GREY	SANDSTONE	1.30	9.10
BROWN	TOPSOIL	0.00	1.30

Lot:	LOT 27	Well ID:	7149254
Con:	CON 6 FROM RIDEAU RIVER	Borehole ID:	1003262503
Township:	GLOUCESTER	Completion Date:	5/25/2010
County:	OTTAWA-CARLETON	Received Date:	8/4/2010
Street:	TW#7 HOAWTHORNE RD.	Tag:	A082844
City:	GLOUCESTER	Audit No:	Z101832
Site:		Contractor License:	1558
Elevation:	88.61 masl.		
UTM:	18 E 456879 N 5016752 Long/Lat: -75.550 , 45.303		

DETAILS

Primary Use: Monitoring	Secondary Use: Monitoring	Final Status: Water Supply
Well Depth: 29.9 m Dep	th to Bedrock: 0 m Static Leve	I: 4.4 m Well Type:
Pump Rate: 27.3 LPM	Boring Method: Rotary (Reverse)	

CASING DETAILS		DEPTI	DEPTH IN METERS		
<u>Material</u>	<u>Diameter (cm)</u>	<u>Top</u>	-	Bottom	
STEEL	15.86	-0.45		6.40	

FORMATION DETAILS		DEPT	DEPTH IN METERS		
<u>Colour</u>	<u>Material</u>	Тор	-	Bottom	
GREY	SANDSTONE	1.30		9.10	
BROWN	TOPSOIL	0.00		1.30	

Lot:	LOT 26	Well ID:	7115790
Con:	CON 6 FROM RIDEAU RIVER	Borehole ID:	1001905211
Township:	GLOUCESTER	Completion Date:	7/14/2008
County:	OTTAWA-CARLETON	Received Date:	11/26/2008
Street:	HAWTHORNE ROAD AT RIDEAU ROAD	Tag:	A074584
City:	Ottawa	Audit No:	M02897
Site:		Contractor License:	1844
Elevation:	89.13 masl.		
UTM:	18 E 456400 N 5016852 Long/Lat: -75.556 , 45.304		

DETAILS	
Primary Use: Monitoring	g Secondary Use: Monitoring Final Status: Test Hole
Well Depth: 7.6 m	Depth to Bedrock: 0 m Static Level: 1.7 m Well Type:
Pump Rate:	Boring Method: H.S.A.

CASING DETAILS

DEPTH IN METERS

<u>Material</u>	Diameter (cm)	<u>Top</u> ·	Bottom
FORMATIC	ON DETAILS	DEPTH	IN METERS
Colour	Material	Тор -	Bottom
GREY	FINE SAND	0.00	0.27
BROWN	FILL	0.27	1.43
BROWN	TILL	1.83	2.32
GREY	SAND	1.43	1.83
		1	

Lot:	LOT 27	Well ID:	7115711
Con:	CON 6 FROM RIDEAU RIVER	Borehole ID:	1001904894
Township:	GLOUCESTER	Completion Date:	9/26/2008
County:	OTTAWA-CARLETON	Received Date:	12/2/2008
Street:	TW #5	Tag:	A068335
City:	GLOUCESTER	Audit No:	Z84410
Site:		Contractor License:	1558

Page 4 of 13

DE	TAILS				
Primary U	Ise: Domestic	Secondary Use: Domestic	Final	Status: Water Supply	
Well Dept	h: 29.9 m Depth	to Bedrock: 0 m Static	Level: 6.8 m	Well Type: Bedrock	
Pump Rat	te: 180 GPM Bo	ing Method: Cable Tool			
		G DETAILS		IN METERS	
	<u>Material</u> STEEL	Diameter (cm)	<u>Top</u>	- <u>Bottom</u>	
		25.40		5.49	
	OPEN HOLE	22.86		58.52	
		ON DETAILS		IN METERS	
	<u>Colour</u>	<u>Material</u>	<u>Top</u>	- <u>Bottom</u>	
	BROWN	SANDSTONE	0.00	15.85	
	GREY	QUARTZITE	15.85	21.95	
	WHITE	SANDSTONE	21.95	48.77	
	GREY	SANDSTONE	48.77	58.52	
Lot:	LOT 26			Well ID:	1509625
Con:	CON 5 FROM RIDEA	U RIVER		Borehole ID:	10031657
Township:	GLOUCESTER			Completion Date:	5/4/1968
County:	OTTAWA-CARLETON	1		Received Date:	6/12/1968
Street:				Tag:	
City:				Audit No:	
Site:				Contractor License:	3002
Elevation:	103.27 <i>masl.</i>		15.001		
UTM:	18 E 456091 N 501	6902 Long/Lat: -75.560 ,	45.304		
DE	TAILS				
Primary U	Ise: Domestic	Secondary Use: Domestic	Final	Status: Water Supply	
Well Dept		-	Level: 11 m	Well Type: Bedrock	
Pump Rat	te: 180 GPM Bo	ing Method: Cable Tool			
	CASIN	G DETAILS	DEPTH	IN METERS	
	Material	Diameter (cm)	Тор	- Bottom	
	OPEN HOLE	22.86		58.52	
		I	I		

STEEL	25.40		5.49
-------	-------	--	------

FORMATION DETAILS		DEPTH IN	I METERS
<u>Colour</u>	<u>Material</u>	<u>Top</u> -	Bottom
BROWN	SHALE	0.61	3.05
BROWN	TOPSOIL	0.00	0.61
GREY	LIMESTONE	3.05	35.36

Lot:	LOT 26	Well ID:	1514733
Con:	CON 5 FROM RIDEAU RIVER	Borehole ID:	10036703
Township:	GLOUCESTER	Completion Date:	4/15/1975
County:	OTTAWA-CARLETON	Received Date:	7/8/1975
Street:		Tag:	
City:		Audit No:	
Site:		Contractor License:	1517
Elevation:	99.42 masl.		
UTM:	18 E 456211 N 5016920 Long/Lat: -75.559,45.304		

 DETAILS

 Primary Use:
 Commerical
 Secondary Use:
 Commerical
 Final Status:
 Water Supply

 Well Depth:
 35.4 m
 Depth to Bedrock:
 0.6 m
 Static Level:
 12..m
 Well Type:
 Bedrock

 Pump Rate:
 10
 GPM
 Boring Method:
 Cable Tool

CASING DETAILS		DEPTH IN METERS			
<u>Material</u>	Diameter (cm)		<u>Top</u>	-	Bottom
OPEN HOLE	12.70				35.36
STEEL	12.70				5.49

ON DETAILS DE	DEPTH IN METERS		
Material <u>Top</u>	- <u>Bottom</u>		
TOPSOIL 0.00	0.61		
SHALE 0.61	3.05		
LIMESTONE 3.05	5 35.36		
TOPSOIL 0.00 SHALE 0.61	0 0.61 3.05		

Lot:	LOT 26	Well ID:	1514908
Con:	CON 5 FROM RIDEAU RIVER	Borehole ID:	10036875
Township:	GLOUCESTER	Completion Date:	8/15/1975
County:	OTTAWA-CARLETON	Received Date:	9/11/1975

Page 6 of 13

Street:	3500 RIDEAU ROAD	Tag:	A018916
City:	GLOUCESTER	Audit No:	Z19099
Site:		Contractor License:	1119
Elevation:	90.37 masl.		
UTM:	18 E 456105 N 5016929 Long/Lat: -75.560,45.304		

DE	TAILS					
Primary	Use: Domestic	Secondary Use: Domestic	Final	Status: Water Supply		
Well Dep	oth: 75.6 m Depth to	Depth to Bedrock: 0 m Static L		Static Level: 12m Well Type: Bedrock		
Pump Ra	ate: 75.71 LPM Bori	ng Method: Air Percussion				
•		.9				
	CASING	DETAILS	DEPTH	IN METERS		
	<u>Material</u>	<u>Diameter (cm)</u>	Тор	- <u>Bottom</u>		
	OPEN HOLE		6.09	42.67		
	STEEL	15.88	0.00	6.70		
	EODMATIC	IN DETAILS	DEDTU	IN METERS		
	<u>Colour</u>	Material	Top	- <u>Bottom</u>		
	GREY	LIMESTONE	10.68	13.01		
	GREY	SANDSTONE	0.37	10.68		
	GILLI	GRAVEL	0.00	0.37		
_		GIAVEL	0.00	0.37		
Lot:	<null></null>			Well ID:	1535203	
Lot: Con:	<null></null>			Well ID: Borehole ID:		
	<null></null>				11172955	
Con:				Borehole ID:	11172955 10/27/2004	
Con: Township:	GLOUCESTER			Borehole ID: Completion Date:	11172955 10/27/2004 11/26/2004	
Con: Township: County:	GLOUCESTER OTTAWA-CARLETON			Borehole ID: Completion Date: Received Date:	11172955 10/27/2004 11/26/2004 A018916	
Con: Township: County: Street:	GLOUCESTER OTTAWA-CARLETON 3500 RIDEAU ROAD			Borehole ID: Completion Date: Received Date: Tag:	1535203 11172955 10/27/2004 11/26/2004 A018916 Z19099 1119	
Con: Township: County: Street: City:	GLOUCESTER OTTAWA-CARLETON 3500 RIDEAU ROAD			Borehole ID: Completion Date: Received Date: Tag: Audit No:	11172955 10/27/2004 11/26/2004 A018916 Z19099	
Con: Township: County: Street: City: Site:	GLOUCESTER OTTAWA-CARLETON 3500 RIDEAU ROAD GLOUCESTER	953 Long/Lat: -75.557,	45.305	Borehole ID: Completion Date: Received Date: Tag: Audit No:	11172955 10/27/2004 11/26/2004 A018916 Z19099	
Con: Township: County: Street: City: Site: Elevation: UTM:	GLOUCESTER OTTAWA-CARLETON 3500 RIDEAU ROAD GLOUCESTER 90.37 masl.	953 Long/Lat: -75.557,	45.305	Borehole ID: Completion Date: Received Date: Tag: Audit No:	11172955 10/27/2004 11/26/2004 A018916 Z19099	
Con: Township: County: Street: City: Site: Elevation: UTM: DE	GLOUCESTER OTTAWA-CARLETON 3500 RIDEAU ROAD GLOUCESTER 90.37 <i>masl.</i> 18 E 456298 N 5016	953 Long/Lat: -75.557, Secondary Use: Domestic		Borehole ID: Completion Date: Received Date: Tag: Audit No:	11172955 10/27/2004 11/26/2004 A018916 Z19099	
Con: Township: County: Street: City: Site: Elevation: UTM: DE Primary	GLOUCESTER OTTAWA-CARLETON 3500 RIDEAU ROAD GLOUCESTER 90.37 <i>masl.</i> 18 E 456298 N 5016 ETAILS Use: Domestic	Secondary Use: Domestic		Borehole ID: Completion Date: Received Date: Tag: Audit No: Contractor License:	11172955 10/27/2004 11/26/2004 A018916 Z19099	
Con: Township: County: Street: City: Site: Elevation: UTM: DE Primary Well Dep	GLOUCESTER OTTAWA-CARLETON 3500 RIDEAU ROAD GLOUCESTER 90.37 <i>masl.</i> 18 E 456298 N 5016 ETAILS Use: Domestic oth: 42.7 m Depth to	Secondary Use: Domestic	Final	Borehole ID: Completion Date: Received Date: Tag: Audit No: Contractor License: Status: Water Supply	11172955 10/27/2004 11/26/2004 A018916 Z19099	

Page 7 of 13

<u>Material</u>	Diameter (cm)	Тор	- <u>Bottom</u>
FORMATIO	N DETAILS	DEPT	TH IN METERS
<u>Colour</u>	<u>Material</u>	<u>Top</u>	- <u>Bottom</u>
GREY	FINE SAND	0.00	0.27
GREY	SAND	1.43	1.83
BROWN	TILL	1.83	2.32
BROWN	FILL	0.27	1.43

Lot:	LOT 26	Well ID:	7115790
Con:	CON 6 FROM RIDEAU RIVER	Borehole ID:	1002782572
Township:	GLOUCESTER	Completion Date:	7/15/2008
County:	OTTAWA-CARLETON	Received Date:	11/26/2008
Street:	HAWTHORNE ROAD AT RIDEAU ROAD	Tag:	A074584
City:	Ottawa	Audit No:	M02897
Site:		Contractor License:	1844
Elevation:	85.10 <i>masl.</i>		
UTM:	18 E 456687 N 5017036 Long/Lat: -75.552 , 45.305		

DETAILS		
mary Use: Monitoring	Secondary Use: Monitoring	Final Status: Test Hole
ell Depth: 0 m Dept	h to Bedrock: 0 m Static Level:	3 m Well Type:
mp Rate: E	oring Method:	

CASING DETAILS

DEPTH IN METERS

H.S.A.

<u>Material</u>	Diameter (cm)	Top	-	Bottom
FORMATION DETAILS			TH IN	METERS
<u>Colour</u>	<u>Material</u>	Тор	-	Bottom
BROWN	TILL	1.83		2.32
BROWN	FILL	0.27		1.43
GREY	SAND	1.43		1.83
		I		

	GREY FINE SAND 0.00	0.27	
_	1 1		
Lot:	LOT 26	Well ID:	1502342
Con:	CON 6 FROM RIDEAU RIVER	Borehole ID:	10024385
Township:	GLOUCESTER	Completion Date:	11/30/1950
County:	OTTAWA-CARLETON	Received Date:	12/6/1951
Street:		Tag:	
City:		Audit No:	
Site:		Contractor License:	3504
Elevation:	87.74 masl.		
UTM:	18 E 456431 N 5017092 Long/Lat: -75.556,45.306		

DETAILS			
Primary Use: Livestock	Secondary Use: Livestock	Final Status:	Water Supply
Well Depth: 17.4 m Depth	to Bedrock: 8.2 m Static Level:	4 m Well	Type: Bedrock
Pump Rate: 1 GPM B	oring Method: Cable Tool		

CASING DETAILS		DEP	TH IN	METERS
<u>Material</u>	Diameter (cm)	<u>Тор</u>	-	Bottom
STEEL	12.70			8.23
OPEN HOLE	12.70			17.37

FORMATION DETAILS		DEPTH I	N METERS
<u>Colour</u>	<u>Material</u>	<u>Тор</u> -	Bottom
	PREV. DRILLED	0.00	8.23
	SANDSTONE	8.23	17.37

Lot:	LOT 26	Well ID:	7115790
Con:	CON 6 FROM RIDEAU RIVER	Borehole ID:	1002782563
Township:	GLOUCESTER	Completion Date:	7/14/2008
County:	OTTAWA-CARLETON	Received Date:	11/26/2008
Street:	HAWTHORNE ROAD AT RIDEAU ROAD	Tag:	A074584
City:	Ottawa	Audit No:	M02897
Site:		Contractor License:	1844
Elevation:	84.01 masl.		
UTM:	18 E 456622 N 5017219 Long/Lat: -75.553 , 45.307		

Page 9 of 13

DETAILS					
Primary Use: Moni	toring S	econdary Use: N	Monitoring	Final Status:	Test Hole
Well Depth: 0 n	Depth to Be	drock: 0 m	Static Level:	3.6 m Well	Гуре:
Pump Rate:	Boring I	Method:			
		H.S.A.			
	CASING DE	TAILS		DEPTH IN MET	ERS

Material	<u>Diameter (cm)</u>	Тор	- <u>Bottom</u>
FORMATIO	N DETAILS	DEPTH	IN METERS
<u>Colour</u>	<u>Material</u>	Тор	- <u>Bottom</u>
GREY	FINE SAND	0.00	0.27
BROWN	TILL	1.83	2.32
BROWN	FILL	0.27	1.43
GREY	SAND	1.43	1.83
	1		

Lot:	LOT 25	Well ID:	7115790
Con:	CON 6 FROM RIDEAU RIVER	Borehole ID:	1002782590
Township:	GLOUCESTER	Completion Date:	7/15/2008
County:	OTTAWA-CARLETON	Received Date:	11/26/2008
Street:	HAWTHORNE ROAD AT RIDEAU ROAD	Tag:	A074584
City:	Ottawa	Audit No:	M02897
Site:		Contractor License:	1844
Elevation:	84.01 <i>masl.</i>		
UTM:	18 E 456206 N 5017303 Long/Lat: -75.559 , 45.308		

DETAILS		
Primary Use: Monitoring	Secondary Use: Monitoring	Final Status: Test Hole
Well Depth: 0 m Dept	n to Bedrock: 0 m Static Level:	1.6 m Well Type:
Pump Rate: B	oring Method:	
CASI	NG DETAILS	DEPTH IN METERS
	H.S.A.	

Page 10 of 13

<u>Material</u>	<u>Diameter (cm)</u>	Тор	-	<u>Bottom</u>
OPEN HOLE	15.24			30.48
STEEL	15.24			11.89

FORMATION DETAILS		DEPTH	DEPTH IN METERS	
Colour	<u>Material</u>	Тор	- <u>Bottom</u>	
GREY	SANDSTONE	8.53	30.48	
GREY	HARDPAN	1.52	8.53	
BROWN	SAND	0.00	1.52	

Lot:	LOT 26	Well ID:	1527383
Con:	CON 6 FROM RIDEAU RIVER	Borehole ID:	10049033
Township:	GLOUCESTER	Completion Date:	8/16/1993
County:	OTTAWA-CARLETON	Received Date:	9/21/1993
Street:		Tag:	
City:		Audit No:	135946
Site:		Contractor License:	1558
Elevation:	82.18 masl.		
UTM:	18 E 457162 N 5017453 Long/Lat: -75.546 , 45.309		

DETAILS			
Primary Use: Domestic	Secondary Use: Do	mestic Final	Status: Water Supply
Well Depth: 30.5 m Depth	to Bedrock: 8.5 m	Static Level: 2.1 m	Well Type: Bedrock
Pump Rate: 20 GPM B	oring Method: Air Percus	ssion	
CASI	NG DETAILS	DEPTH	IN METERS
Material	Diameter (cm)	Top	- <u>Bottom</u>
STEEL	15.24		11.89
OPEN HOL	E 15.24		30.48
	I	I	
FORMA	TION DETAILS	DEPTH	IN METERS
<u>Colour</u>	<u>Material</u>	Тор	- <u>Bottom</u>
BROWN	SAND	0.00	1.52
	Page 1	1 of 13	

GREY	HARDPAN	1.52	8.53
GREY	SANDSTONE	8.53	30.48

Lot:	LOT 26	Well ID:	1527048
Con:	CON 6 FROM RIDEAU RIVER	Borehole ID:	10048727
Township:	GLOUCESTER	Completion Date:	4/19/1993
County:	OTTAWA-CARLETON	Received Date:	5/6/1993
Street:		Tag:	
City:		Audit No:	130025
Site:		Contractor License:	1558
Elevation:	82.18 masl.		
UTM:	18 E 457162 N 5017453 Long/Lat: -75.546 , 45.309		

DETAILS		
Primary Use: Domestic	Secondary Use: Domestic	Final Status: Water Supply
Well Depth: 41.1 m Depth	to Bedrock: 0 m Static Level:	9.4 m Well Type: Bedrock
Pump Rate: 15 GPM Bo	ring Method: Air Percussion	

CASING DETAILS

<u>Material</u>	Diameter (cm)	<u>Top</u>	-	Bottom
OPEN HOLE	15.24			22.86
STEEL	15.24			9.45
OPEN HOLE	15.24			41.15

DEPTH IN METERS

FORMATIC	ON DETAILS	DEPTH I	DEPTH IN METERS				
<u>Colour</u>	<u>Material</u>	<u>Top</u> -	Bottom				
WHITE	SANDSTONE	10.06	41.15				
GREY	HARDPAN	2.74	4.57				
BROWN	CLAY	0.00	2.74				
GREY	LIMESTONE	4.57	10.06				

Lot:	LOT 26	Well ID:	1527384
Con:	CON 6 FROM RIDEAU RIVER	Borehole ID:	10049034
Township:	GLOUCESTER	Completion Date:	8/16/1993
County:	OTTAWA-CARLETON	Received Date:	9/21/1993
Street:		Tag:	
City:		Audit No:	135944
Site:		Contractor License:	1558

Page 12 of 13

 Elevation:
 82.18
 masl.

 UTM:
 18 E 457162
 N 5017453
 Long/Lat:
 -75.546
 45.309

DETAILS						
Primary Use: Domestic	Secondary Use: Dome	estic Final Status: Water Supply				
Well Depth: 30.5 m Depth	to Bedrock: 0 m St	tatic Level: 6.7 m Well Type: Bedrock				
Pump Rate: 15 GPM Bo	ring Method: Air Percussic	on				
0.4.01						
CASIN	G DETAILS	DEPTH IN METERS				
<u>Material</u>	<u>Diameter (cm)</u>	<u>Top</u> - <u>Bottom</u>				
STEEL	15.24	6.71				
OPEN HOLE	15.24	30.48				
	I	1				
FORMAT	ION DETAILS	DEPTH IN METERS				
<u>Colour</u>	<u>Material</u>	<u>Top</u> - <u>Bottom</u>				
GREY	SANDSTONE	0.00 30.48				

Page 13 of 13

Mini of th	•	TAW		Ontario Water Resources Act	CO	RD
Ontario	1. PRINT ONLY IN		15273		N	1 126
COUNTY OR DISTRICT	2. CHECK 🖄 CORR	TOWNSHIP, BOROUGH, CITY, TOWN, VILLAGE		10 14 15 CON. BLOCK, TRACT, SURVEY ETC		22 23 74 OT 25-27
	Ī	icester				<u>26</u> ••••
		Box 4208 stn.		Wa, Ontario KIS 5B2 DAY 16	<u>мо О</u>	<u> </u>
1 2		DG OF OVERBURDEN AND BEDRO				<u> </u> 47
GENERAL COLOUR	MOST	OTHER MATERIALS		GENERAL DESCRIPTION	DEPTH	FEET
Brown	CONMON MATERIAL	Stone			0	5
Gray	Hardpan	Boulders			5	28
Gray	Sandstone			Hard	28	100
				······································		
		· · ·				
	·					
				· · · ·		
31						
41 WATER FOUND	TER RECORD	51 CASING & OPEN HOLE	DEPTH - FEET	Z SIZE(S) OF OPENING 31-33 DIAM	ETER 34-34 L	ENGTH 39-40 FEET
AT - FEET	KIND OF WATER 14 15 FRESH 3 SULPHUR 14 14 14 14 14 14 14 14 14 14	DIAM MATERIAL THICKNESS INCHES FF	то О 39¹³⁻¹⁶	MATERIAL AND TYPE	DEPTH TO TOP OF SCREEN	41-44 30 FEET
30	6 GAS FRESH 3 SULPHUR 19	6 174 1 STEEL 2 GALVANIZED 3 □ CONCRETE 4 □ OPEN HOLE 5 □ PLASTIC	0 39	61 PLUGGING & SEA	LING RECO	
88 20-23 NO		17-18 19 1 STEEL 2 GALVANIZED	20-23	DEPTH SET AT FEET MATERIAL AN		NT GROUT CKER ETC >
25-28 1	_ SALIT 6 □ GAS _ FRESH 3 □ SULPHUR 29 4 □ MIMFRAIS	5 15 3 CONCRETE 4 2 OPEN HOLE 5 DPLASTIC 26	39 100	37.5 10-13 37.5 0 Cement	- Grout	ed
30-33 1	$\begin{array}{c c} & \text{SALTY} & 6 & \square \text{ GAS} \\ \hline & \text{GAS} \\ \hline & \text{FRESH} & 3 & \square \text{SULPHUR} & 34 & 80 \\ \hline & \text{FRESH} & 4 & \square \text{MINERALS} \\ \hline & \text{SALTY} & 6 & \square \text{GAS} \\ \hline \end{array}$	2 GALVANIZED 3 GLONCRETE 4 GOPEN HOLE		26-29 30-33 80		
71 PUMPING TEST NET	J			LOCATION OF WEL		
	WATER LEVEL 25	20 GPN 15-16 17-18 HOURS N'S		AGRAM BELOW SHOW DISTANCES OF WELL		N D
	END OF WATER L PUMPING 22-24 15 MINUTES 26-2		LOTI			
	14°6"FEET 13°11			Rideau Rd 380 meters		
U FLOWING. GIVE RATE	GPM MP TYPE RECOMMENDED	FEET 1 CLEAR 2 2 CLOUDY		-		
	PUMP SETTING	50 FEET RATE 5 GPN	D		o meter	5
	1 WATER SUPPLY	S 🗌 ABANDONED, INSUFFICIENT SUPPLY	[22	1 15,		
STATUS OF WELL	2 🗂 OBSERVATION WE 3 🔲 TEST HOLE 4 🔲 RECHARGE WELL	LL 6 C ABANDONED POOR QUALITY 7 D UNFINISHED D DEWATERING	OLD	1		
1	S-S6 1 DOMESTIC 2 STOCK	COMMERCIAL MUNICIPAL	d Y	1		
WATER USE	3 C IRRIGATION 4 INDUSTRIAL	7 D PUBLIC SUPPLY COOLING OR AIR CONDITIONING	cuth	X	wein	
	57	9 🗌 NOT USED	FI	(e ³	201	
METHOD OF	CABLE TOOL CABLE TOOL CONVEN	E) I DETTING				
CONSTRUCTIO	ON 4 C ROTARY (AIR) 5 AIR PERCUSSION	9 () DRIVING DIGGING () OTHER	DRILLERS REMAR		13	5946
NAME OF WELL		WELL CONTRACTOR'S LICENCE NUMBER	DATA SOURCE	1558 SEF	2 1 199	3 **** **
	Water Supply I					i
E NAME OF WEL	<u>Stittsville,</u> r/T. Harrison	Ontario K25 1A6 WELL TECHNICIAN'S LICENCE NUMBER TO097/T2251				
SIGNATURE OF	TECHNICIAN/CONTRACTOR	SUBMISSION DATE DAY 28_ MO_8_ YR.23	OFFICE			
MINISTRY	OF THE ENVIRON		E	F	ORM NO. 0506 (1	1/86) FORM 9

a she i kartata

Appendix C Certificates of Analysis – Water Supply

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

GHD Limited (Kingston)

1225 Gardiners Rd. Kingston, ON K7P 0G3 Attn: Scott Wallis

Client PO: 73522033 - Scott Wallis Project: 11220832 Custody: 50734

Report Date: 25-Nov-2020 Order Date: 19-Nov-2020

Order #: 2047521

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 2047521-01

TW2-1hr

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Report Date: 25-Nov-2020 Order Date: 19-Nov-2020

Project Description: 11220832

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Alkalinity, total to pH 4.5	EPA 310.1 - Titration to pH 4.5	23-Nov-20	23-Nov-20
Ammonia, as N	EPA 351.2 - Auto Colour	20-Nov-20	20-Nov-20
Anions	EPA 300.1 - IC	20-Nov-20	20-Nov-20
Colour, apparent	SM2120 - Spectrophotometric	20-Nov-20	20-Nov-20
Conductivity	EPA 9050A- probe @25 °C	23-Nov-20	23-Nov-20
Dissolved Organic Carbon	MOE E3247B - Combustion IR, filtration	20-Nov-20	20-Nov-20
Metals, ICP-MS	EPA 200.8 - ICP-MS	20-Nov-20	20-Nov-20
рН	EPA 150.1 - pH probe @25 °C	23-Nov-20	23-Nov-20
Phenolics	EPA 420.2 - Auto Colour, 4AAP	25-Nov-20	25-Nov-20
Hardness	Hardness as CaCO3	20-Nov-20	20-Nov-20
Sulphide	SM 4500SE - Colourimetric	20-Nov-20	20-Nov-20
Tannin/Lignin	SM 5550B - Colourimetric	23-Nov-20	23-Nov-20
Total Dissolved Solids	SM 2540C - gravimetric, filtration	20-Nov-20	23-Nov-20
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	20-Nov-20	20-Nov-20
Turbidity	SM 2130B - Turbidity meter	20-Nov-20	20-Nov-20

OTTAWA • MISSISSAUGA • HAMILTON • CALGARY • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Certificate of Analysis Client: GHD Limited (Kingston)

Client PO: 73522033 - Scott Wallis

Order #: 2047521

Report Date: 25-Nov-2020

Order Date: 19-Nov-2020

Project Description: 11220832

	Client ID: Sample Date:	TW2-1hr 19-Nov-20 12:00 2047521-01		-	- -
	Sample ID: MDL/Units	2047521-01 Water	-	-	-
General Inorganics	MDL/OIIIts		<u>I</u>		I
Alkalinity, total	5 mg/L	269	-	-	-
Ammonia as N	0.01 mg/L	0.25	-	-	-
Dissolved Organic Carbon	0.5 mg/L	2.4	-	-	-
Colour, apparent	2 ACU	67	-	-	-
Conductivity	5 uS/cm	1390	-	-	-
Hardness	0.824 mg/L	633	-	-	-
pН	0.1 pH Units	7.8	_	-	-
Phenolics	0.001 mg/L	<0.001	-	-	-
Total Dissolved Solids	10 mg/L	930	-	-	-
Sulphide	0.02 mg/L	<0.02	-	-	-
Tannin & Lignin	0.1 mg/L	<0.1	-	-	-
Total Kjeldahl Nitrogen	0.1 mg/L	0.3	-	-	-
Turbidity	0.1 NTU	10.0	_	-	-
Anions			•	•	
Chloride	1 mg/L	91	-	-	-
Fluoride	0.1 mg/L	0.3	-	-	-
Nitrate as N	0.1 mg/L	<0.1	-	-	-
Nitrite as N	0.05 mg/L	<0.05	-	-	-
Sulphate	1 mg/L	378	-	-	-
Metals					
Calcium	100 ug/L	154000	-	-	-
Iron	100 ug/L	739	-	-	-
Magnesium	200 ug/L	60600	-	-	-
Manganese	5 ug/L	176	-	-	-
Potassium	100 ug/L	9550	-	-	-
Sodium	200 ug/L	69200	-	-	-

OTTAWA • MISSISSAUGA • HAMILTON • CALGARY • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Method Quality Control: Blank

mothou quanty control Blank									
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	ND	1	mg/L						
Fluoride	ND	0.1	mg/L						
Nitrate as N	ND	0.1	mg/L						
Nitrite as N	ND	0.05	mg/L						
Sulphate	ND	1	mg/L						
General Inorganics									
Alkalinity, total	ND	5	mg/L						
Ammonia as N	ND	0.01	mg/L						
Dissolved Organic Carbon	ND	0.5	mg/L						
Colour, apparent	ND	2	AČU						
Conductivity	ND	5	uS/cm						
Phenolics	ND	0.001	mg/L						
Total Dissolved Solids	ND	10	mg/L						
Sulphide	ND	0.02	mg/L						
Tannin & Lignin	ND	0.1	mg/L						
Total Kjeldahl Nitrogen	ND	0.1	mg/L						
Turbidity	ND	0.1	NTU						
Metals									
Calcium	ND	100	ug/L						
Iron	ND	100	ug/L						
Magnesium	ND	200	ug/L						
Manganese	ND	5	ug/L						
Potassium	ND	100	ug/L						
Sodium	ND	200	ug/L						

Report Date: 25-Nov-2020 Order Date: 19-Nov-2020

Project Description: 11220832

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
			Onito	INCOUL		LIIIII		LIIIII	1000
Anions									
Chloride	93.6	1	mg/L	91.4			2.3	10	
Fluoride	0.33	0.1	mg/L	0.33			1.5	10	
Nitrate as N	ND	0.1	mg/L	ND			NC	10	
Nitrite as N	ND	0.05	mg/L	ND			NC	10	
Sulphate	352	1	mg/L	378			7.1	10	
General Inorganics									
Alkalinity, total	302	5	mg/L	265			13.0	14	
Ammonia as N	9.63	0.20	mg/L	8.78			9.1	18	
Dissolved Organic Carbon	3.2	0.5	mg/L	3.9			20.4	37	
Colour, apparent	67	2	ACU	67			0.0	12	
Conductivity	904	5	uS/cm	921			1.9	5	
рН	7.9	0.1	pH Units	7.9			0.4	3.3	
Phenolics	ND	0.001	mg/L	ND			NC	10	
Total Dissolved Solids	566	10	mg/L	570			0.7	10	
Sulphide	ND	0.02	mg/L	ND			NC	10	
Tannin & Lignin	ND	0.1	mg/L	ND			NC	11	
Total Kjeldahl Nitrogen	5.22	0.2	mg/L	5.40			3.3	16	
Turbidity	8.6	0.1	NTU	8.1			5.9	10	
Metals									
Calcium	31700	100	ug/L	31000			2.2	20	
Iron	ND	100	ug/L	ND			NC	20	
Magnesium	8220	200	ug/L	8150			0.9	20	
Manganese	ND	5	ug/L	ND			NC	20	
Potassium	1820	100	ug/L	1810			0.4	20	
Sodium	15400	200	ug/L	15300			0.7	20	

Order #: 2047521

Report Date: 25-Nov-2020 Order Date: 19-Nov-2020

Project Description: 11220832

OTTAWA • MISSISSAUGA • HAMILTON • CALGARY • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Method Quality Control: Spike

Report Date: 25-Nov-2020 Order Date: 19-Nov-2020

Project Description: 11220832

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	100	1	mg/L	91.4	85.8	77-123			
Fluoride	1.18	0.1	mg/L	0.33	85.2	79-121			
Nitrate as N	1.02	0.1	mg/L	ND	102	79-120			
Nitrite as N	0.952	0.05	mg/L	ND	95.2	84-117			
Sulphate	9.24	1	mg/L	ND	92.4	86-114			
General Inorganics									
Ammonia as N	0.390	0.01	mg/L	0.126	106	81-124			
Dissolved Organic Carbon	15.1	0.5	mg/L	3.9	112	60-133			
Phenolics	0.021	0.001	mg/L	ND	83.6	69-132			
Total Dissolved Solids	90.0	10	mg/L	ND	90.0	75-125			
Sulphide	0.46	0.02	mg/L	ND	93.0	79-115			
Tannin & Lignin	0.9	0.1	mg/L	ND	89.9	71-113			
Total Kjeldahl Nitrogen	1.99	0.1	mg/L	ND	99.4	81-126			
Metals									
Calcium	10600	100	ug/L	ND	106	80-120			
Iron	2130	100	ug/L	ND	84.5	80-120			
Magnesium	9570	200	ug/L	ND	95.7	80-120			
Manganese	48.4	5	ug/L	ND	94.6	80-120			
Potassium	10900	100	ug/L	1810	91.2	80-120			
Sodium	9510	200	ug/L	ND	95.1	80-120			

OTTAWA • MISSISSAUGA • HAMILTON • CALGARY • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Report Date: 25-Nov-2020 Order Date: 19-Nov-2020 Project Description: 11220832

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

GHD Limited (Kingston)

1225 Gardiners Rd. Kingston, ON K7P 0G3 Attn: Scott Wallis

Client PO: 73522033 - Robert Neck Project: 11220832 Custody: 57054

Revised Report

Report Date: 18-Jan-2021 Order Date: 19-Nov-2020

Order #: 2047519

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID 2047519-01

Client ID TW2-END

Approved By:

Dale Robertson, BSc Laboratory Director

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

Report Date: 18-Jan-2021 Order Date: 19-Nov-2020

Project Description: 11220832

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Alkalinity, total to pH 4.5	EPA 310.1 - Titration to pH 4.5	23-Nov-20	23-Nov-20
Ammonia, as N	EPA 351.2 - Auto Colour	20-Nov-20	20-Nov-20
Anions	EPA 300.1 - IC	20-Nov-20	20-Nov-20
Colour, apparent	SM2120 - Spectrophotometric	20-Nov-20	20-Nov-20
Conductivity	EPA 9050A- probe @25 °C	23-Nov-20	23-Nov-20
Dissolved Organic Carbon	MOE E3247B - Combustion IR, filtration	20-Nov-20	20-Nov-20
Hardness	Hardness as CaCO3	20-Nov-20	20-Nov-20
Metals, ICP-MS	EPA 200.8 - ICP-MS	20-Nov-20	20-Nov-20
рН	EPA 150.1 - pH probe @25 °C	23-Nov-20	23-Nov-20
Phenolics	EPA 420.2 - Auto Colour, 4AAP	25-Nov-20	25-Nov-20
Sulphide	SM 4500SE - Colourimetric	20-Nov-20	20-Nov-20
Tannin/Lignin	SM 5550B - Colourimetric	23-Nov-20	23-Nov-20
Total Dissolved Solids	SM 2540C - gravimetric, filtration	20-Nov-20	23-Nov-20
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	20-Nov-20	20-Nov-20
Turbidity	SM 2130B - Turbidity meter	20-Nov-20	20-Nov-20

Certificate of Analysis Client: GHD Limited (Kingston)

Client PO: 73522033 - Robert Neck

Report Date: 18-Jan-2021

Order Date: 19-Nov-2020

Project Description: 11220832

	Client ID:	TW2-END	-	-	-
	Sample Date:	19-Nov-20 15:30	-	-	-
	Sample ID:	2047519-01	-	-	-
	MDL/Units	Water	-	-	-
General Inorganics					
Alkalinity, total	5 mg/L	267	-	-	-
Hardness	mg/L	632	-	-	-
Ammonia as N	0.01 mg/L	0.25	-	-	-
Dissolved Organic Carbon	0.5 mg/L	2.2	-	-	-
Colour, apparent	2 ACU	68	-	-	-
Conductivity	5 uS/cm	1380	-	-	-
pН	0.1 pH Units	7.7	-	-	-
Phenolics	0.001 mg/L	<0.001	-	-	-
Total Dissolved Solids	10 mg/L	940	-	-	-
Sulphide	0.02 mg/L	<0.02	-	-	-
Tannin & Lignin	0.1 mg/L	<0.1	-	-	-
Total Kjeldahl Nitrogen	0.1 mg/L	0.4	-	-	-
Turbidity	0.1 NTU	9.5	-	-	-
Anions	· · · ·				
Chloride	1 mg/L	94	-	-	-
Fluoride	0.1 mg/L	0.3	-	-	-
Nitrate as N	0.1 mg/L	<0.1	-	-	-
Nitrite as N	0.05 mg/L	<0.05	-	-	-
Sulphate	1 mg/L	389	-	-	-
Metals					
Calcium	100 ug/L	153000	-	-	-
Iron	100 ug/L	699	-	-	-
Magnesium	200 ug/L	60900	-	-	-
Manganese	5 ug/L	180	-	-	-
Potassium	100 ug/L	9770	-	-	-
Sodium	200 ug/L	68600	-	-	-

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Linita	Source		%REC	RPD	RPD	Notes
, utayto	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	NOLES
Anions									
Chloride	ND	1	mg/L						
Fluoride	ND	0.1	mg/L						
Nitrate as N	ND	0.1	mg/L						
Nitrite as N	ND	0.05	mg/L						
Sulphate	ND	1	mg/L						
General Inorganics									
Alkalinity, total	ND	5	mg/L						
Ammonia as N	ND	0.01	mg/L						
Dissolved Organic Carbon	ND	0.5	mg/L						
Colour, apparent	ND	2	ACU						
Conductivity	ND	5	uS/cm						
Phenolics	ND	0.001	mg/L						
Total Dissolved Solids	ND	10	mg/L						
Sulphide	ND	0.02	mg/L						
Tannin & Lignin	ND	0.1	mg/L						
Total Kjeldahl Nitrogen	ND	0.1	mg/L						
Turbidity	ND	0.1	NTU						
Metals									
Calcium	ND	100	ug/L						
Iron	ND	100	ug/L						
Magnesium	ND	200	ug/L						
Manganese	ND	5	ug/L						
Potassium	ND	100	ug/L						
Sodium	ND	200	ug/L						

Order #: 2047519

Report Date: 18-Jan-2021 Order Date: 19-Nov-2020

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Anions									
Chloride	93.6	1	mg/L	91.4			2.3	10	
Fluoride	0.33	0.1	mg/L	0.33			1.5	10	
Nitrate as N	ND	0.1	mg/L	ND			NC	10	
Nitrite as N	ND	0.05	mg/L	ND			NC	10	
Sulphate	352	1	mg/L	378			7.1	10	
General Inorganics									
Alkalinity, total	302	5	mg/L	265			13.0	14	
Ammonia as N	9.63	0.20	mg/L	8.78			9.1	18	
Dissolved Organic Carbon	3.2	0.5	mg/L	3.9			20.4	37	
Colour, apparent	67	2	ACU	67			0.0	12	
Conductivity	904	5	uS/cm	921			1.9	5	
рН	7.9	0.1	pH Units	7.9			0.4	3.3	
Phenolics	ND	0.001	mg/L	ND			NC	10	
Total Dissolved Solids	566	10	mg/L	570			0.7	10	
Sulphide	ND	0.02	mg/L	ND			NC	10	
Tannin & Lignin	ND	0.1	mg/L	ND			NC	11	
Total Kjeldahl Nitrogen	5.22	0.2	mg/L	5.40			3.3	16	
Turbidity	8.6	0.1	NTU	8.1			5.9	10	
Metals									
Calcium	31700	100	ug/L	31000			2.2	20	
Iron	ND	100	ug/L	ND			NC	20	
Magnesium	8220	200	ug/L	8150			0.9	20	
Manganese	ND	5	ug/L	ND			NC	20	
Potassium	1820	100	ug/L	1810			0.4	20	
Sodium	15400	200	ug/L	15300			0.7	20	

Order #: 2047519

Report Date: 18-Jan-2021 Order Date: 19-Nov-2020

Project Description: 11220832

Method Quality Control: Spike

Report Date: 18-Jan-2021

Order Date: 19-Nov-2020

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	100	1	mg/L	91.4	85.8	77-123			
Fluoride	1.18	0.1	mg/L	0.33	85.2	79-121			
Nitrate as N	1.02	0.1	mg/L	ND	102	79-120			
Nitrite as N	0.952	0.05	mg/L	ND	95.2	84-117			
Sulphate	9.24	1	mg/L	ND	92.4	86-114			
General Inorganics									
Ammonia as N	0.390	0.01	mg/L	0.126	106	81-124			
Dissolved Organic Carbon	15.1	0.5	mg/L	3.9	112	60-133			
Phenolics	0.021	0.001	mg/L	ND	83.6	69-132			
Total Dissolved Solids	90.0	10	mg/L	ND	90.0	75-125			
Sulphide	0.46	0.02	mg/L	ND	93.0	79-115			
Tannin & Lignin	0.9	0.1	mg/L	ND	89.9	71-113			
Total Kjeldahl Nitrogen	1.99	0.1	mg/L	ND	99.4	81-126			
Metals									
Calcium	10600	100	ug/L	ND	106	80-120			
Iron	2130	100	ug/L	ND	84.5	80-120			
Magnesium	9570	200	ug/L	ND	95.7	80-120			
Manganese	48.4	5	ug/L	ND	94.6	80-120			
Potassium	10900	100	ug/L	1810	91.2	80-120			
Sodium	9510	200	ug/L	ND	95.1	80-120			

Report Date: 18-Jan-2021 Order Date: 19-Nov-2020 Project Description: 11220832

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

Revision 1 - Hardness is now included in this report.

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

GHD Limited (Kingston)

1225 Gardiners Rd. Kingston, ON K7P 0G3 Attn: Scott Wallis

Client PO: 73522033 - Scott Wallis Project: 11220832 Custody: 57054

Report Date: 25-Nov-2020 Order Date: 19-Nov-2020

Order #: 2047519

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID 2047519-01

Client ID TW2-END

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 25-Nov-2020

Order #: 2047519

Order Date: 19-Nov-2020

Project Description: 11220832

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
E. coli	MOE E3407	20-Nov-20	20-Nov-20
Fecal Coliform	SM 9222D	20-Nov-20	20-Nov-20
Heterotrophic Plate Count	SM 9215C	21-Nov-20	21-Nov-20
Total Coliform	MOE E3407	20-Nov-20	20-Nov-20

Client: GHD Limited (Kingston) Client PO: 73522033 - Scott Wallis

Certificate of Analysis

Report Date: 25-Nov-2020

Order Date: 19-Nov-2020

Project Description: 11220832

	Client ID:	TW2-END	-	-	-
	Sample Date:	19-Nov-20 15:30	-	-	-
	Sample ID:	2047519-01	-	-	-
	MDL/Units	Water	-	-	-
Microbiological Parameters			•	-	
E. coli	1 CFU/100 mL	<10 [1]	-	-	-
Fecal Coliforms	1 CFU/100 mL	<10 [1]	-	-	-
Total Coliforms	1 CFU/100 mL	<10 [1]	_	-	-
Heterotrophic Plate Count	10 CFU/mL	<10	-	-	-

Report Date: 25-Nov-2020 Order Date: 19-Nov-2020

Project Description: 11220832

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Microbiological Parameters									
E. coli	ND	1	CFU/100 mL						
Fecal Coliforms	ND	1	CFU/100 mL						
Total Coliforms	ND	1	CFU/100 mL						
Heterotrophic Plate Count	ND	10	CFU/mL						

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Microbiological Parameters									
E. coli	ND	10	CFU/100 mL	ND			NC	30	BAC13
Fecal Coliforms	ND	10	CFU/100 mL	ND			NC	30	BAC13
Total Coliforms	ND	10	CFU/100 mL	ND			NC	30	BAC13
Heterotrophic Plate Count	ND	10	CFU/mL	ND			NC	30	

OTTAWA • MISSISSAUGA • HAMILTON • CALGARY • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Order #: 2047519

Report Date: 25-Nov-2020 Order Date: 19-Nov-2020

Sample Qualifiers :

1 : Bacteria reporting limits are raised due to dilutions based on expected elevated concentrations based on source of water sample.

QC Qualifiers :

BAC13 : Bacteria reporting limits are raised due to dilutions based on expected elevated concentrations based on source of water sample.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated Report Date: 25-Nov-2020 Order Date: 19-Nov-2020

SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

GHD Limited - 735

Attn : Jason Geraldi

347 Pido Rd., Unit #29 Peterborough, ON K9J 6Z8, Canada

Phone: 705-749-3317 Fax:705-749-9248 Project : 11220832-01 Ottawa

15-December-2020

Date Rec. :	10 December 2020
LR Report:	CA15152-DEC20
Reference:	PO:73522265,
	11220832-01 Jason Geraldi

Copy: #1

CERTIFICATE OF ANALYSIS Final Report

Analysis	1: Analysis Start Date	2: Analysis Start Time	3: Analysis Completed Date	4: Analysis Completed Time	5: MAC	6: TW-2
Sample Date & Time						10-Dec-20
Temp Upon Receipt [°C]						9.0
Total Coliform [cfu/100mL]	10-Dec-20	16:05	14-Dec-20	11:02		0
Ecoli [cfu/100mL]	10-Dec-20	16:05	14-Dec-20	11:02		0
Fecal Coliform [cfu/100mL]	10-Dec-20	16:05	14-Dec-20	11:02		0

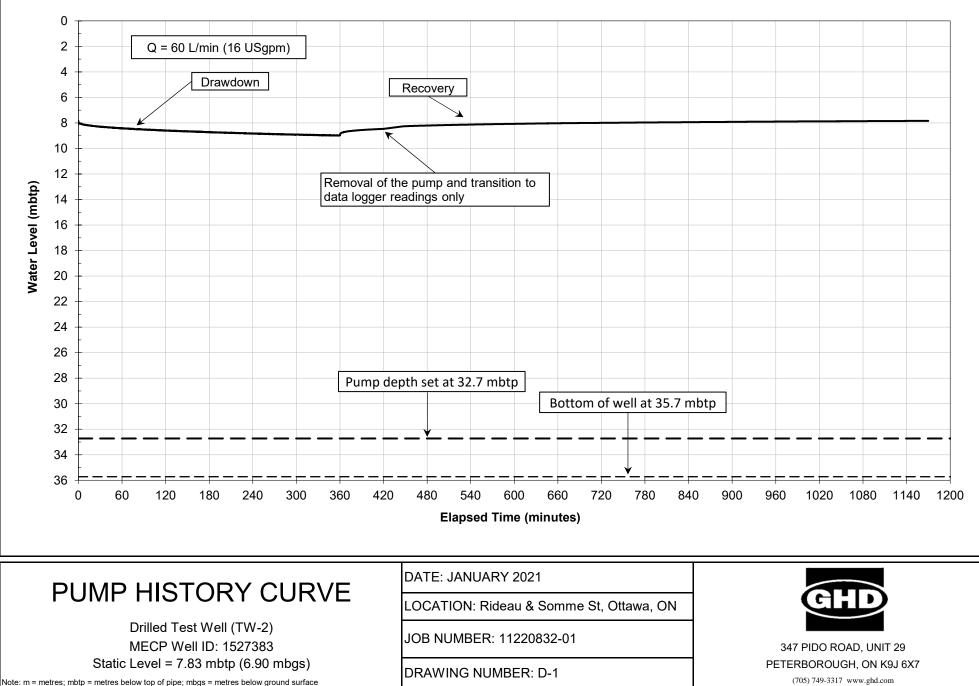
MAC - Maximum Acceptable Concentration AO/OG - Aesthetic Objective / Operational Guideline NR - Not reportable under applicable drinking water regulations as per client.

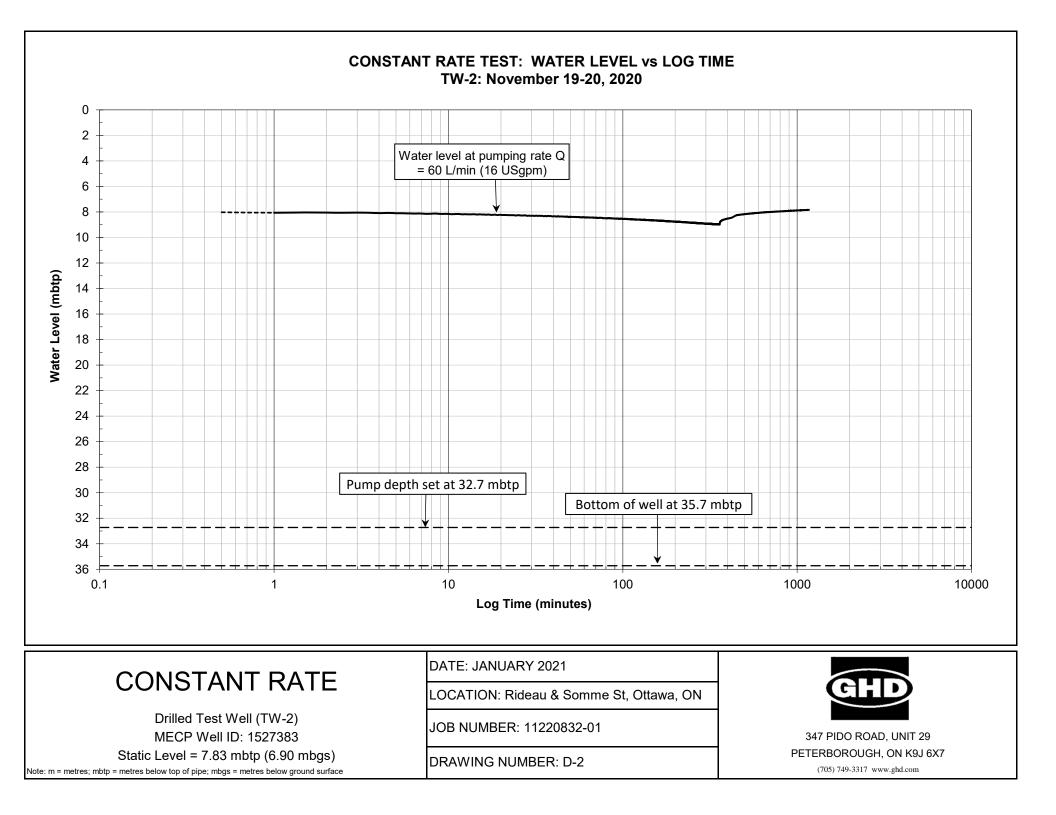
Temperature of Sample upon Receipt: 9 degrees C Cooling Agent Present: Yes Custody Seal Present: YEs

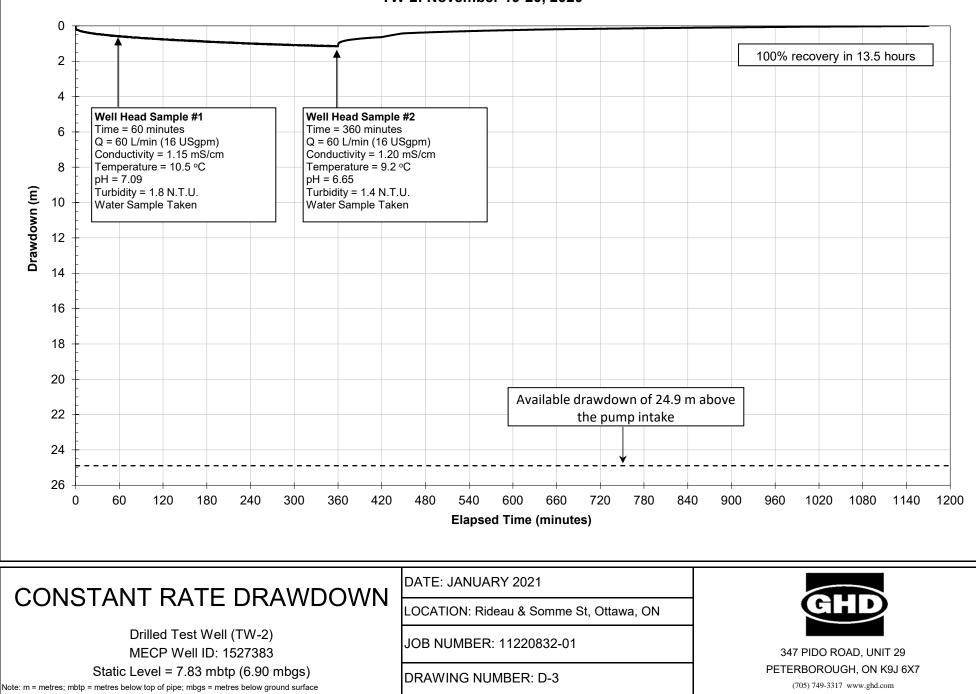
Chain of Custody Number: 011447

Jill Cumpbell

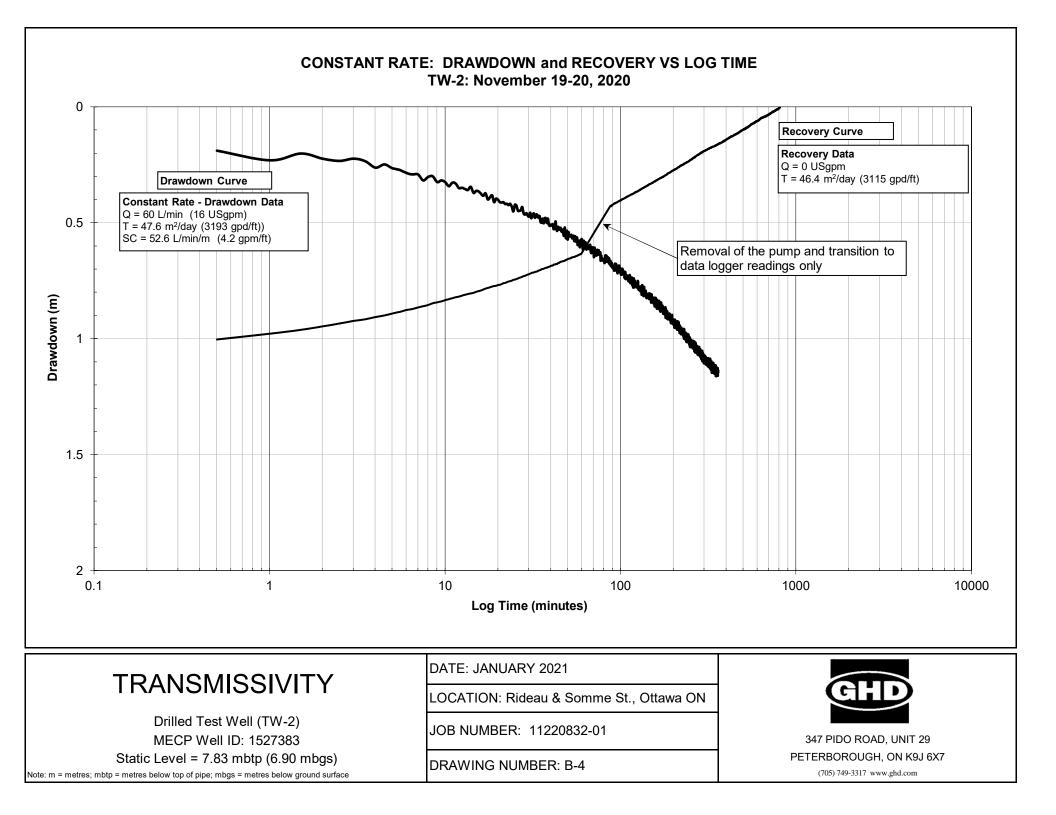
Jill Campbell, B.Sc.,GISAS Project Specialist, Environment, Health & Safety

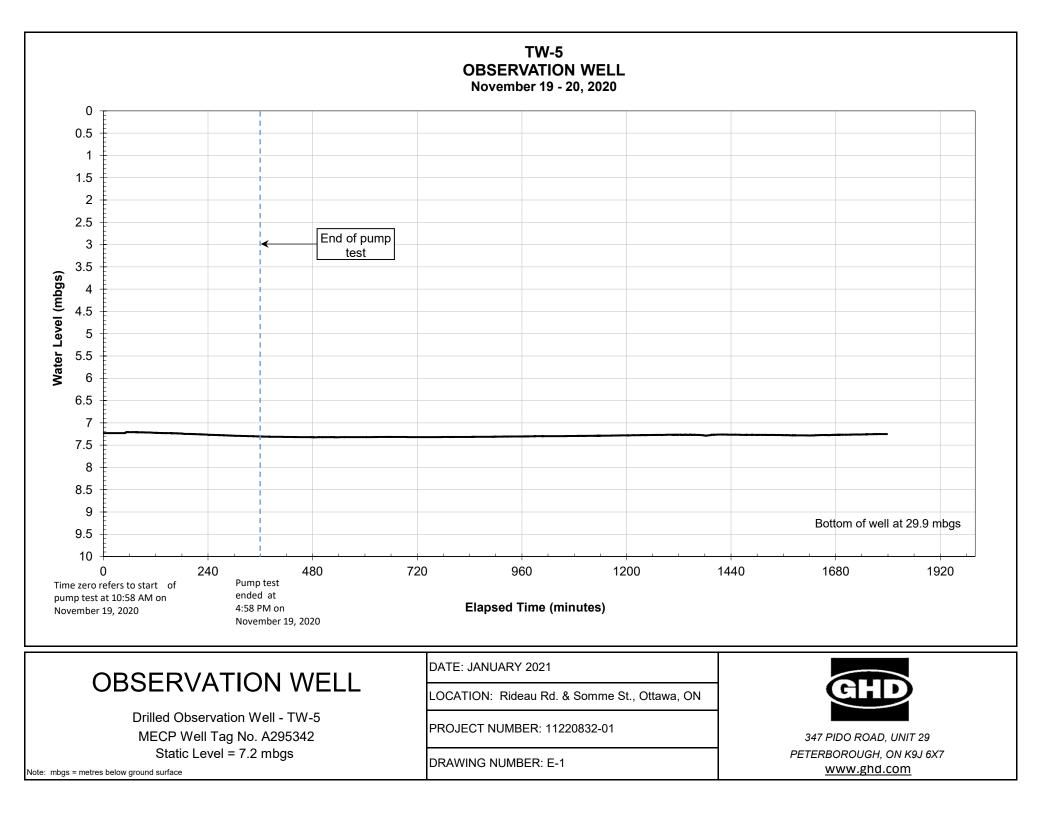

0002350752

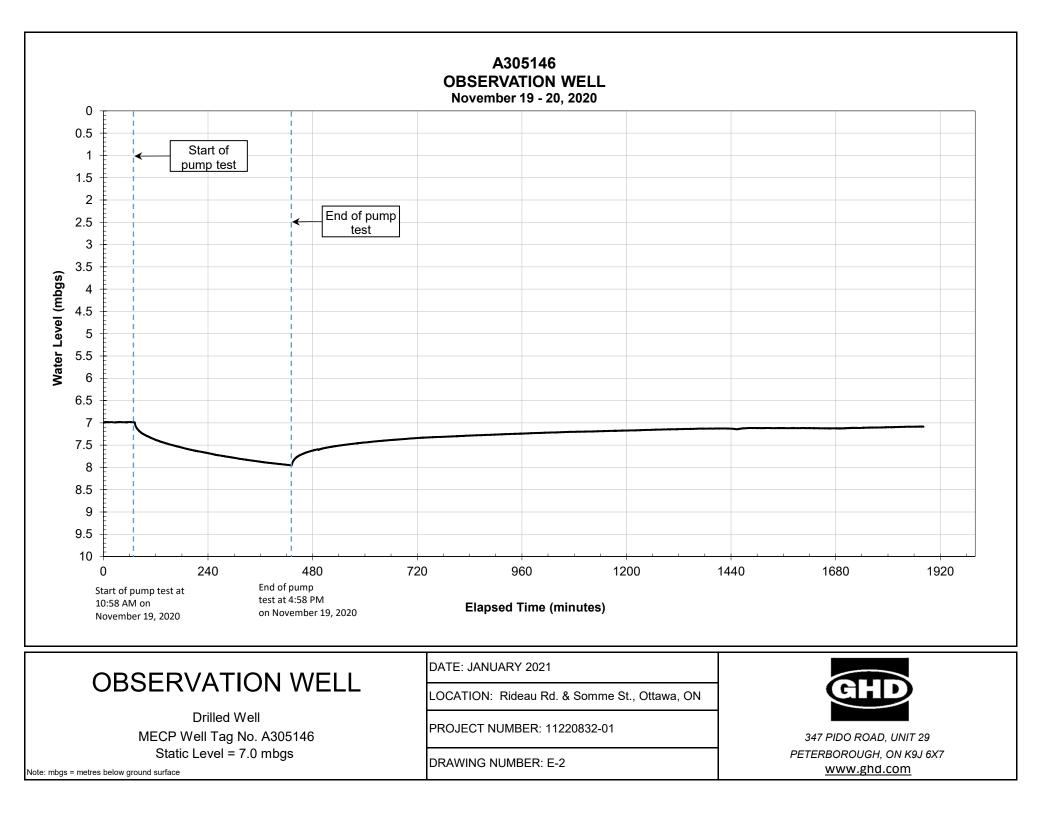

Page 1 of 1 Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

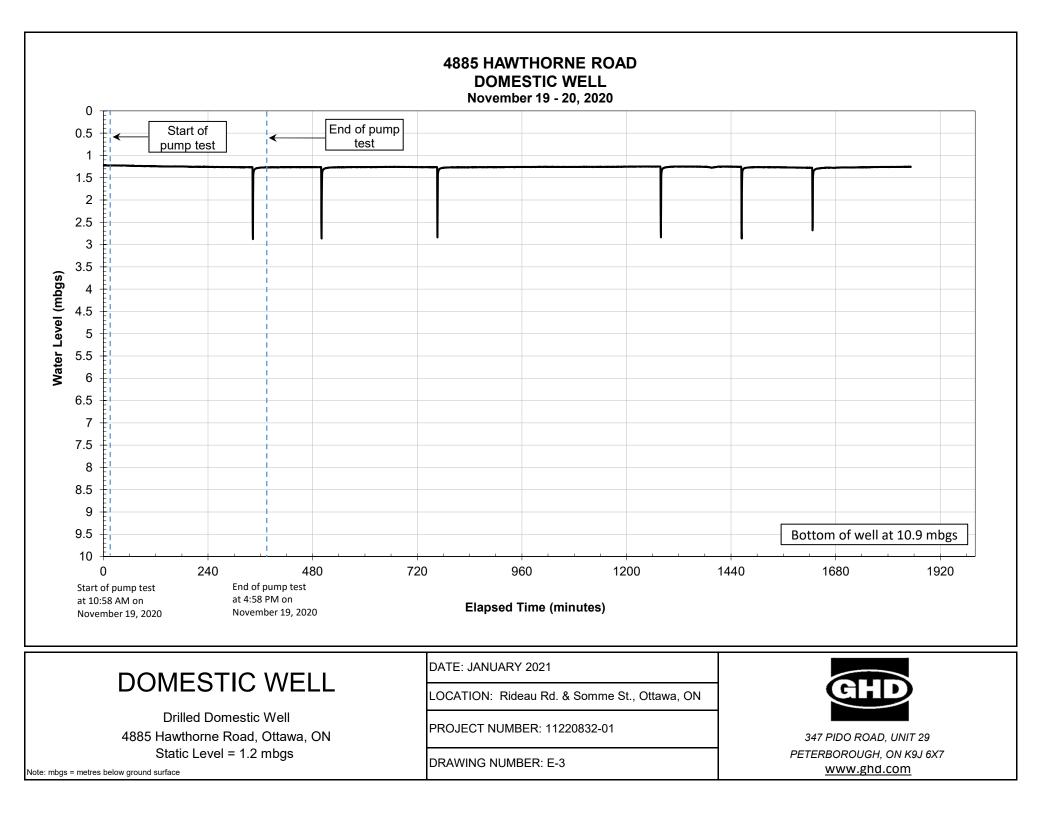

SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or

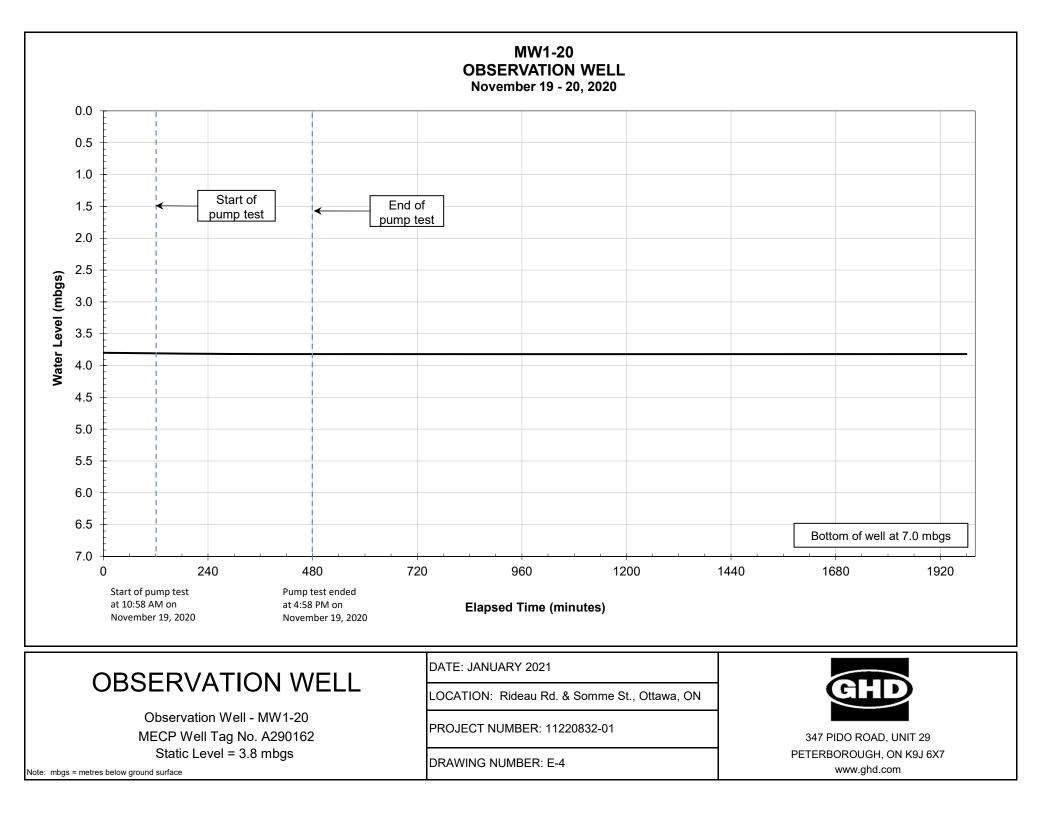
Appendix D Aquifer Performance Testing Data

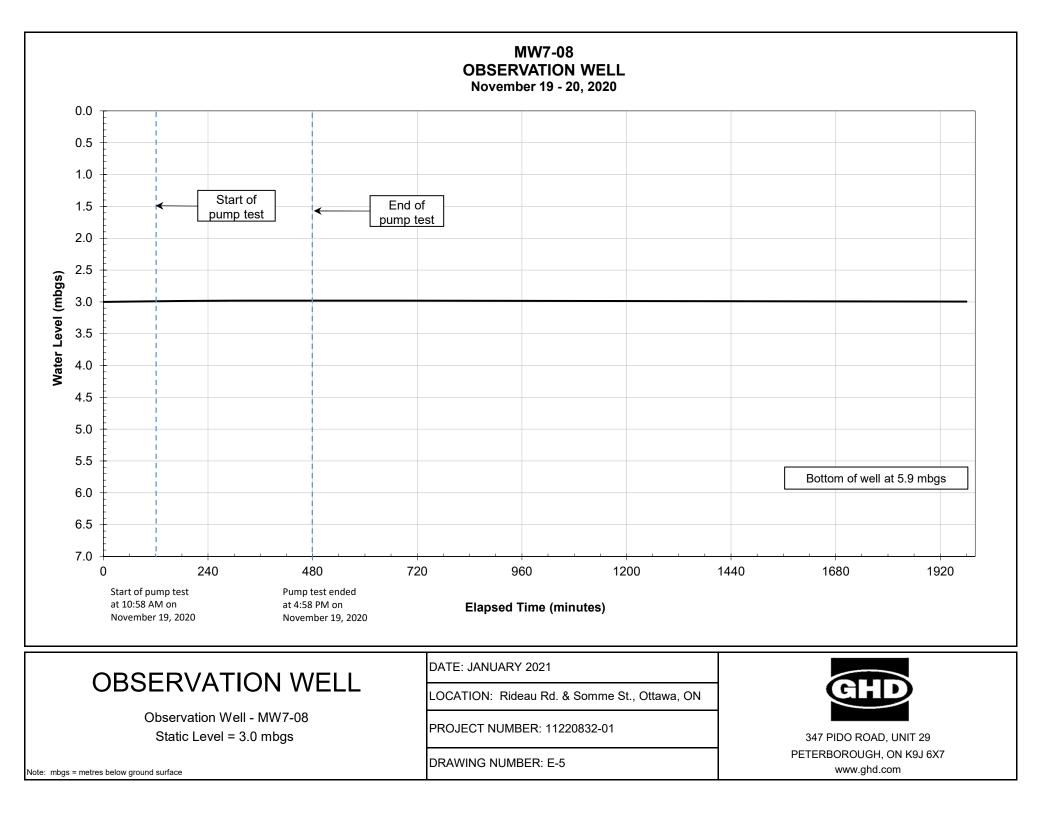

PUMP HISTORY CURVE TW-2: November 19-20, 2020

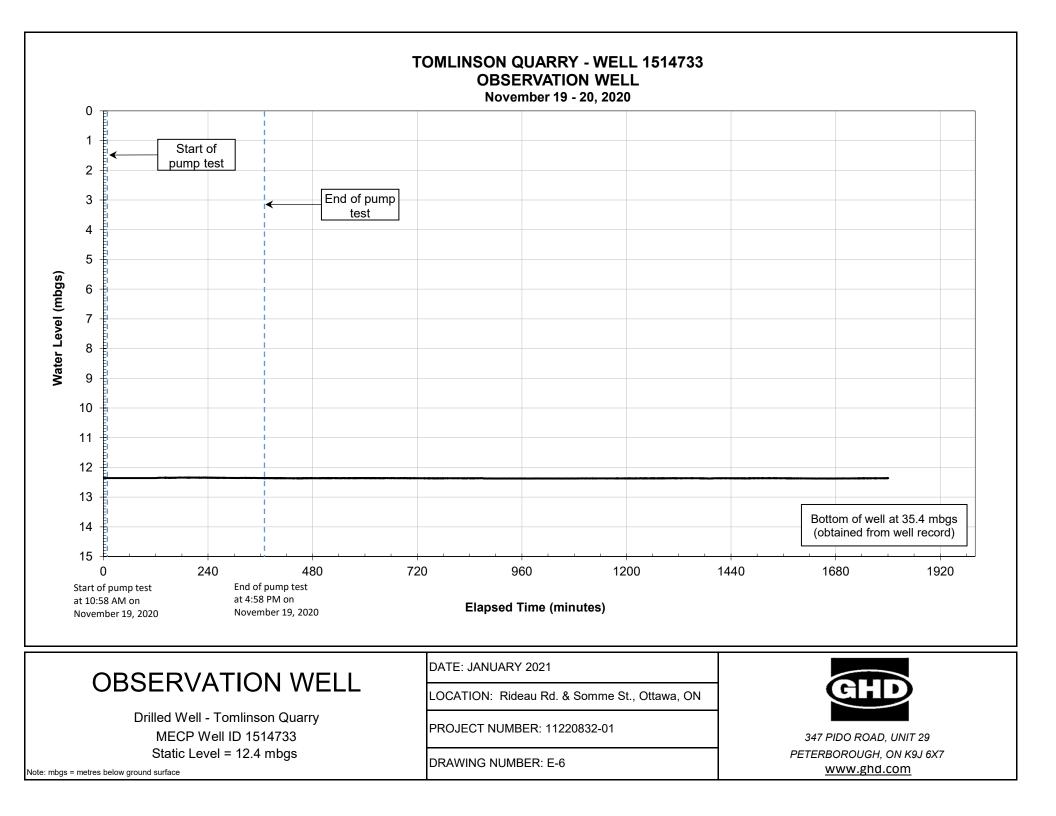


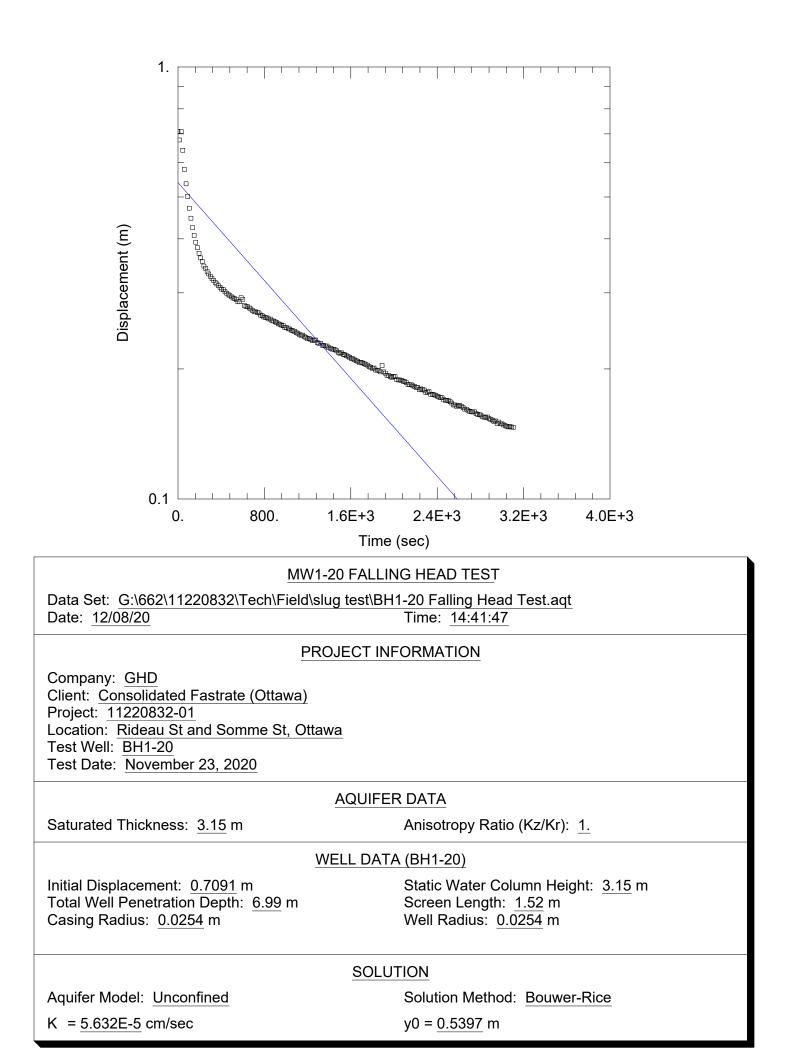


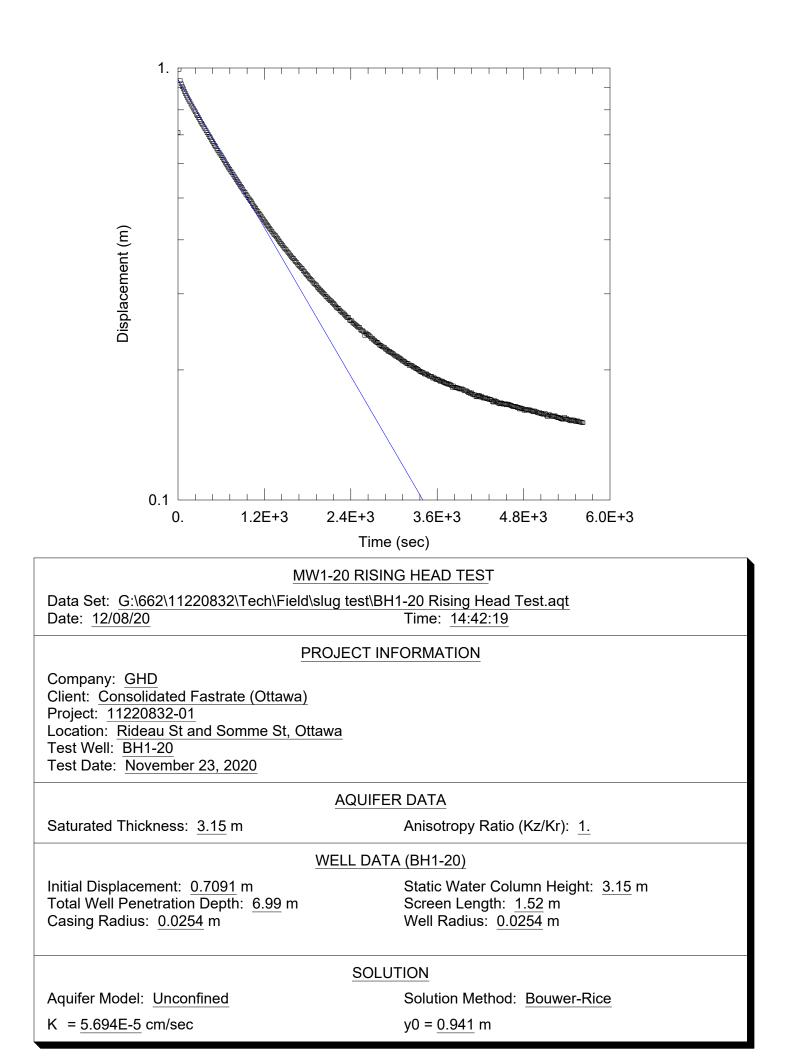

CONSTANT RATE DRAWDOWN, RECOVERY AND TESTING DETAILS TW-2: November 19-20, 2020

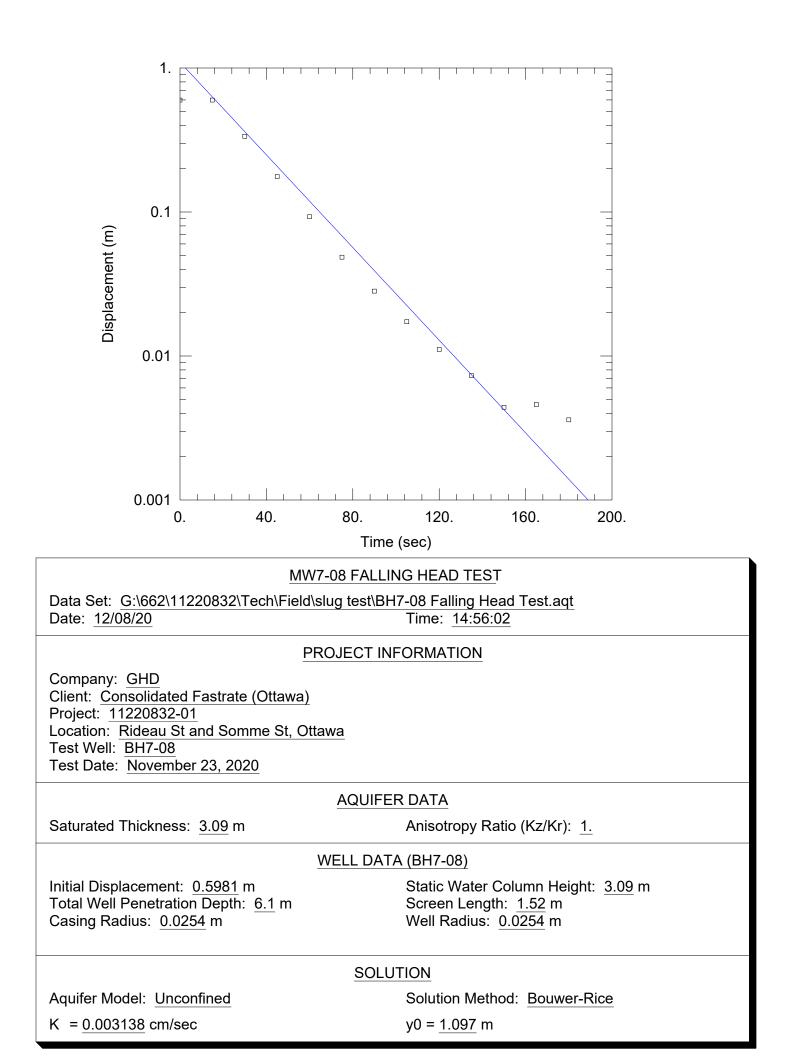


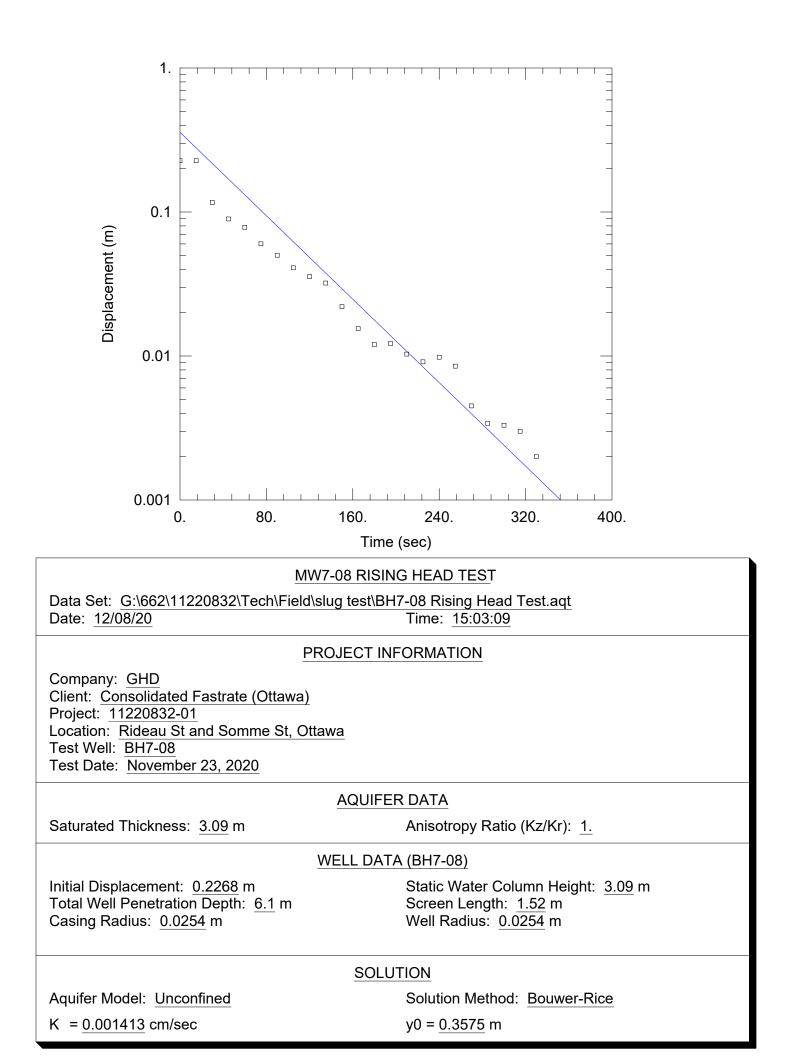

Appendix E Observation Well Monitoring Data











Appendix F Single Well Response Testing

Appendix G Certificates of Analysis – Construction Dewatering

Appendix G: Summary of Groundwater Sampling for Construction Dewatering

Storm Sewer ByLaw 2003-514 Schedule A Table 2

Parameter	Units	Limit	MW7-08
Biochemical Oxygen Demand	mg/L	25	<6
Cyanide (total)	mg/L	0.02	<0.01
Phenolics (4AAP)	mg/L	0.008	<0.001
Phosphorous (total)	mg/L	0.4	1.83
Suspended Solids (total)	mg/L	15	1030
рН		6-9	7.4
Arsenic (total)	mg/L	0.02	0.03
Cadmium (total)	mg/L	0.008	<0.001
Chromium (total)	mg/L	0.08	0.08
Copper (total)	mg/L	0.04	0.191
Lead (total)	mg/L	0.12	0.066
Manganese (total)	mg/L	0.05	9.34
Mercury (total)	mg/L	0.0004	<0.0001
Nickel (total)	mg/L	0.08	0.099
Selenium (total)	mg/L	0.02	0.007
Silver (total)	mg/L	0.12	<0.001
Zinc (total)	mg/L	0.04	0.33
Benzene	mg/L	0.002	<0.0005
Chloroform	mg/L	0.002	<0.0005
1,2.Dichlorobenzene / o	mg/L	0.0056	<0.0005
1,4-Dichlorobenzene / p	mg/L	0.0068	<0.0005
cis-1,2-dichloroethylene	mg/L	0.0056	<0.0005
trans-1,2-dichloroethylene	mg/L	0.0056	<0.0005
Ethylbenzene	mg/L	0.002	<0.0005
Methylene Chloride	mg/L	0.0052	<0.005
1,1,2,2-Tetrachloroethane	mg/L	0.017	<0.0005
Tetrachloroethylene	mg/L	0.0044	<0.0005
Toluene	mg/L	0.002	<0.0005
Trichloroethylene	mg/L	0.0076	<0.0005
Xylene (total)	mg/L	0.0044	<0.0005

RELIABLE.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

GHD Limited (Kingston)

1225 Gardiners Rd. Kingston, ON K7P 0G3 Attn: Scott Wallis

Client PO: 73522033 - Scott Wallis Project: 11220832 Custody: 55735

Report Date: 25-Nov-2020 Order Date: 19-Nov-2020

Order #: 2047520

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID 2047520-01

Client ID MW7-08

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Analysis Summary Table

	Order	#:	2047520
--	-------	----	---------

Report Date: 25-Nov-2020 Order Date: 19-Nov-2020

Project Description: 11220832

Analysis	Method Reference/Description	Extraction Date	Analysis Date
CBOD	SM 5210B - DO Probe	20-Nov-20	20-Nov-20
Cyanide, total	MOE E3015 - Auto Colour	20-Nov-20	20-Nov-20
Mercury by CVAA	EPA 245.2 - Cold Vapour AA	20-Nov-20	20-Nov-20
Metals, ICP-MS	EPA 200.8 - ICP-MS	20-Nov-20	20-Nov-20
Ottawa - Storm: VOCs	EPA 624 - P&T GC-MS	20-Nov-20	22-Nov-20
рН	EPA 150.1 - pH probe @25 °C	23-Nov-20	23-Nov-20
Phenolics	EPA 420.2 - Auto Colour, 4AAP	25-Nov-20	25-Nov-20
Phosphorus, total, water	EPA 365.4 - Auto Colour, digestion	20-Nov-20	20-Nov-20
Total Suspended Solids	SM 2540D - Gravimetric	20-Nov-20	20-Nov-20

Certificate of Analysis Client: GHD Limited (Kingston)

Client PO: 73522033 - Scott Wallis

Report Date: 25-Nov-2020

Order Date: 19-Nov-2020

Project Description: 11220832

	Client ID: Sample Date:	MW7-08 19-Nov-20 10:00	-	-	-
	Sample ID:	2047520-01	-	-	-
	MDL/Units	Water	-	-	-
General Inorganics					
CBOD	2 mg/L	<6 [1]	-	-	-
Cyanide, total	0.01 mg/L	<0.01	-	-	-
рН	0.1 pH Units	7.4	-	-	-
Phenolics	0.001 mg/L	<0.001	-	-	-
Phosphorus, total	0.01 mg/L	1.83	-	-	-
Total Suspended Solids	2 mg/L	1030	-	-	-
Metals - Total			•		
Arsenic	0.01 mg/L	0.03	-	-	-
Cadmium	0.001 mg/L	<0.001	-	-	-
Chromium	0.05 mg/L	0.08	-	-	-
Copper	0.005 mg/L	0.191	-	-	-
Lead	0.001 mg/L	0.066	-	-	-
Manganese	0.05 mg/L	9.34	-	-	-
Mercury	0.0001 mg/L	<0.0001	-	-	-
Nickel	0.005 mg/L	0.099	-	-	-
Selenium	0.005 mg/L	0.007	-	-	-
Silver	0.001 mg/L	<0.001	-	-	-
Zinc	0.02 mg/L	0.33	-	-	-
Volatiles					
Benzene	0.0005 mg/L	<0.0005	-	-	-
Chloroform	0.0005 mg/L	<0.0005	-	-	-
1,2-Dichlorobenzene	0.0005 mg/L	<0.0005	-	-	-
1,4-Dichlorobenzene	0.0005 mg/L	<0.0005	-	-	-
cis-1,2-Dichloroethylene	0.0005 mg/L	<0.0005	-	-	-
trans-1,3-Dichloropropylene	0.0005 mg/L	<0.0005	-	-	-
Ethylbenzene	0.0005 mg/L	<0.0005	-	-	-
Methylene Chloride	0.005 mg/L	<0.005	-	-	-
1,1,2,2-Tetrachloroethane	0.0005 mg/L	<0.0005	-	-	-
Tetrachloroethylene	0.0005 mg/L	<0.0005	-	-	-
Toluene	0.0005 mg/L	<0.0005	-	-	-
Trichloroethylene	0.0005 mg/L	<0.0005	-	-	-
Xylenes, total	0.0005 mg/L	<0.0005	-	-	-
4-Bromofluorobenzene	Surrogate	93.1%	-	-	-
Dibromofluoromethane	Surrogate	119%	-	-	-
Toluene-d8	Surrogate	127%	-	-	-

Method Quality Control: Blank

Report Date: 25-Nov-2020 Order Date: 19-Nov-2020

Project Description: 11220832

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
CBOD	ND	2	mg/L						
Cyanide, total	ND	0.01	mg/L						
Phenolics	ND	0.001	mg/L						
Phosphorus, total	ND	0.01	mg/L						
Total Suspended Solids	ND	2	mg/L						
Metals - Total									
Arsenic	ND	0.01	mg/L						
Cadmium	ND	0.001	mg/L						
Chromium	ND	0.05	mg/L						
Copper	ND	0.005	mg/L						
Lead	ND	0.001	mg/L						
Mercury	ND	0.0001	mg/L						
Manganese	ND	0.05	mg/L						
Nickel	ND	0.005	mg/L						
Selenium	ND	0.005	mg/L						
Silver	ND	0.001	mg/L						
Zinc	ND	0.02	mg/L						
Volatiles									
Benzene	ND	0.0005	mg/L						
Chloroform	ND	0.0005	mg/L						
1,2-Dichlorobenzene	ND	0.0005	mg/L						
1,4-Dichlorobenzene	ND	0.0005	mg/L						
cis-1,2-Dichloroethylene	ND	0.0005	mg/L						
trans-1,3-Dichloropropylene	ND	0.0005	mg/L						
Ethylbenzene	ND	0.0005	mg/L						
Methylene Chloride	ND	0.005	mg/L						
1,1,2,2-Tetrachloroethane	ND	0.0005	mg/L						
Tetrachloroethylene	ND	0.0005	mg/L						
Toluene	ND	0.0005	mg/L						
Trichloroethylene	ND	0.0005	mg/L						
Xylenes, total	ND	0.0005	mg/L						
Surrogate: 4-Bromofluorobenzene	0.0948		mg/L		119	50-140			
Surrogate: Dibromofluoromethane	0.0656		mg/L		82.0	50-140			
Surrogate: Toluene-d8	0.0863		mg/L		108	50-140			

Surrogate: Dibromofluoromethane

Surrogate: Toluene-d8

Method Quality Control: Duplicate

Analyto	Reporting			Source		%REC	.	RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
General Inorganics									
CBOD	ND	6	mg/L	ND			NC	20	BOD01
Cyanide, total	ND	0.01	mg/L	ND			NC	11	
pH	7.9	0.1	pH Units	7.9			0.4	3.3	
Phenolics	ND	0.001	mg/L	ND			NC	10	
Phosphorus, total	ND	0.01	mg/L	ND			NC	15	
Total Suspended Solids	6.0	2	mg/L	6.0			0.0	10	
Metals - Total			-						
Arsenic	ND	0.01	mg/L	ND			NC	20	
Cadmium	ND	0.001	mg/L	ND			NC	20	
Chromium	ND	0.05	mg/L	ND			NC	20	
Copper	0.007	0.005	mg/L	0.007			0.1	20	
Lead	0.003	0.001	mg/L	0.003			0.5	20	
Mercury	ND	0.0001	mg/L	ND			NC	20	
Manganese	4.14	0.05	mg/L	4.16			0.4	20	
Nickel	0.012	0.005	mg/L	0.013			1.5	20	
Selenium	ND	0.005	mg/L	ND			NC	20	
Silver	ND	0.001	mg/L	ND			NC	20	
Zinc	0.023	0.02	mg/L	0.023			0.6	20	
/olatiles									
Benzene	ND	0.0005	mg/L	ND			NC	30	
Chloroform	ND	0.0005	mg/L	ND			NC	30	
1,2-Dichlorobenzene	ND	0.0005	mg/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.0005	mg/L	ND			NC	30	
cis-1,2-Dichloroethylene	ND	0.0005	mg/L	ND			NC	30	
trans-1,3-Dichloropropylene	ND	0.0005	mg/L	ND			NC	30	
Ethylbenzene	ND	0.0005	mg/L	ND			NC	30	
Methylene Chloride	ND	0.005	mg/L	ND			NC	30	
1,1,2,2-Tetrachloroethane	ND	0.0005	mg/L	ND			NC	30	
Tetrachloroethylene	ND	0.0005	mg/L	ND			NC	30	
Toluene	ND	0.0005	mg/L	ND			NC	30	
Trichloroethylene	ND	0.0005	mg/L	ND			NC	30	
Surrogate: 4-Bromofluorobenzene	0.0952		mg/L		119	50-140			
-	0 0700								

mg/L

mg/L

95.4

107

50-140

50-140

0.0763

0.0852

OTTAWA • MISSISSAUGA • HAMILTON • CALGARY • KINGSTON • LONDON • NIAGARA • WINDSOR • RICHMOND HILL

Order #: 2047520

Report Date: 25-Nov-2020 Order Date: 19-Nov-2020

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit Notes
General Inorganics								
CBOD	109	2	mg/L	ND	54.6	62-129		QS-02
Cyanide, total	0.090	0.01	mg/L	ND	90.0	53-130		
Phenolics	0.021	0.001	mg/L	ND	83.6	69-132		
Phosphorus, total	0.492	0.01	mg/L	ND	98.4	80-120		
Total Suspended Solids	24.0	2	mg/L	ND	120	75-125		
Metals - Total								
Arsenic	50.5	0.01	mg/L	0.472	100	80-120		
Cadmium	41.8	0.001	mg/L	0.035	83.5	80-120		
Chromium	55.7	0.05	mg/L	0.946	110	80-120		
Copper	48.6	0.005	mg/L	0.727	95.8	80-120		
Lead	43.8	0.001	mg/L	0.268	87.0	80-120		
Mercury	0.0031	0.0001	mg/L	ND	103	70-130		
Manganese	453	0.05	mg/L	416	75.1	80-120		QM-4X
Nickel	50.0	0.005	mg/L	1.27	97.6	80-120		
Selenium	40.0	0.005	mg/L	0.126	79.7	80-120		QM-01
Silver	40.1	0.001	mg/L	0.032	80.2	80-120		
Zinc	44.9	0.02	mg/L	2.25	85.2	80-120		
Volatiles								
Benzene	0.043	0.0005	mg/L	ND	107	60-130		
Chloroform	0.040	0.0005	mg/L	ND	98.8	60-130		
1,2-Dichlorobenzene	0.040	0.0005	mg/L	ND	100	60-130		
1,4-Dichlorobenzene	0.041	0.0005	mg/L	ND	103	60-130		
cis-1,2-Dichloroethylene	0.046	0.0005	mg/L	ND	115	60-130		
trans-1,3-Dichloropropylene	0.041	0.0005	mg/L	ND	102	60-130		
Ethylbenzene	0.035	0.0005	mg/L	ND	86.8	60-130		
Methylene Chloride	0.045	0.005	mg/L	ND	112	60-130		
1,1,2,2-Tetrachloroethane	0.036	0.0005	mg/L	ND	90.4	60-130		
Tetrachloroethylene	0.040	0.0005	mg/L	ND	100	60-130		
Toluene	0.035	0.0005	mg/L	ND	87.7	60-130		
Trichloroethylene	0.042	0.0005	mg/L	ND	105	60-130		
Surrogate: 4-Bromofluorobenzene	0.0961		mg/L		120	50-140		
Surrogate: Dibromofluoromethane	0.0945		mg/L		118	50-140		
Surrogate: Toluene-d8	0.0724		mg/L		90.5	50-140		

Order #: 2047520

Report Date: 25-Nov-2020

Order Date: 19-Nov-2020

Project Description: 11220832

Certificate of Analysis Client: GHD Limited (Kingston) Client PO: 73522033 - Scott Wallis

1: Raised Reporting Limits for BOD due to dilutions based on preliminary COD screening results.

QC Qualifiers :

BOD01: Raised Reporting Limits for BOD due to dilutions based on preliminary COD screening results.

- QM-01: The spike recovery for this QC sample is outside of established control limits due to sample matrix interference.
- QM-4X : The spike recovery was outside of QC acceptance limits due to elevated analyte concentration.
- QS-02 : Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference. NC: Not Calculated Report Date: 25-Nov-2020 Order Date: 19-Nov-2020 Project Description: 11220832

about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

Nyle McIlveen, P.Eng. nyle.mcilveen@ghd.com 705-875-6106

Robert Neck, P.Geo. (Limited) robert.neck@ghd.com 705-761-9694

www.ghd.com

Appendix D -Septic Assessment and Percolation Rate Evaluation

347 Pido Road Peterborough, Ontario K9J 6X7 Canada www.ghd.com

Our ref: 11220832-01

12 April 2021

Consolidated Fastfrate (Ottawa) Holdings Inc. c/o Pierre Courteau CBRE Limited 333 Preston Street, 7th Floor Ottawa, Ontario K1S 5N4

Re: Septic Assessment and Percolation Rate Evaluation Proposed Commercial Development Rideau Road and Somme Street Gloucester Con 6 from Rideau River, Lot 26 Ottawa, Ontario

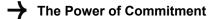
Dear Mr. Courteau:

1. Introduction

GHD Limited (GHD) is pleased to provide you (the Client) with the following letter documenting excavation activities completed in the general locations of a proposed septic tile bed and stormwater pond. The locations were requested by CIMA. This letter also provides a summary of approximate percolation rate (T-time) values based upon soil collected from the test pit locations.

The general location is illustrated on the Site Location Plan, Figure 1. The test pit locations are illustrated on the Test Pit Location Plan, Figure 2.

2. Field Activities


Test pits were advanced under the supervision of GHD on March 31, 2021. The test pits were excavated at five (5) locations to depths ranging from 2.4 to 3.4 m. The soil stratigraphy consisted of fill at each location described as gravelly sand with silt trace clay to a silty sand with gravel and clay. Fill was observed to the bottom of each test pit. The fill also included a mix of asphalt, bricks and concrete at each location. Refusal was encountered at 2.4 m at TP-1 due to asphalt. Test pit logs are provided in Appendix A.

Soil samples were collected from each test pit. Hydrometer testing was conducted at GHD's laboratory. The grain size data, included in Appendix A, indicated:

18 – 41% gravel; 36 – 47% sand; 12 – 23% silt; and, 4 – 12% clay size particles by weight.

Groundwater seepage was encountered at each test pit. The shallow groundwater was observed between 1.8 and 2.4 metres below ground surface (mbgs). Test pits TP-2, TP-3, TP-4 and TP-5 encountered groundwater at 1.8 mbgs.

Based upon the Supplementary Guidelines to the Ontario Building Code 1997, the percolation rate is estimated (based upon the gradation test results only) to have an average value of 12 to 20 min/cm with a medium permeability.

3. Conclusions and Recommendations

Due to the inconsistency of the fill materials observed and shallow groundwater seepage encountered it is recommended the septic disposal system be a fully raised bed absorption trench leaching bed. It is recommended prior to placement if the imported fill that any surficial organics be removed from the tile bed and mantle area. It is also suggested that that the existing fill material be compacted to ensure uneven settlement of the tiles does not occur.

The waste disposal system should meet Ontario Regulation 350/06 made under the Building Code Act, 1992 and incorporate the following design features:

- 1. Organics should be stripped from the area of the leaching bed and downgradient mantle.
- 2. The exposed subgrade below the tile bed should be trimmed and scarified, and provided with a gentle slope of 0.5% in the direction of the mantle.
- 3. The tile bed should be constructed as a fully raised leaching type bed up to the full height of at least 1 m above existing grade. The raised bed should consist of clean, granular fill capable of providing an in-place T-time of 4 to 8 min/cm.
- 4. The mantle should be constructed along the downgradient margin of the raised bed. Each mantle should extend along the full width of the bed and for a minimum of 15 m downgradient from the bed. The mantle should consist of similar granular fill raised to a minimum of 250 mm above the surrounding grade. Surface runoff should be diverted away from the leaching bed by means of proper site drainage.
- 5. The waste disposal system should be kept clear of surface drainage swales, roof leader drains, and other sources of surface water.
- 6. The tile bed should be kept away from shade trees and a healthy cover of vegetation should be developed and maintained over the bed to promote evapotranspiration.
- When sighting a tile bed on sloping ground, it is recommended that procedures outlined in the Building 7. Code be followed closely.
- 8. Minimum set back distances from septic tank (plus 2 times height raised):
 - Building 1.5 m

Property line - 3 m

Drilled well – 15 m

- Open water course 15 m
- Minimum set back distances from septic tile bed (plus 2 times height raised):
 - Building 5 m

- Property line 3 m
- Drilled well, properly sealed 15 m
- Open water course 15 m
- Shallow well 30 m
- 10. The layout, design and construction of the waste disposal bed should be subject to inspection by

RT W. NECK

226

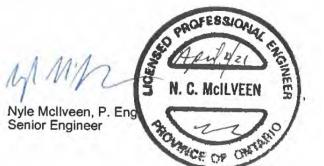
experienced hydrogeologic personnel.

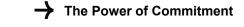
We trust that this report meets your immediate requirements. Should you have any questions, please contact our office.

Regards

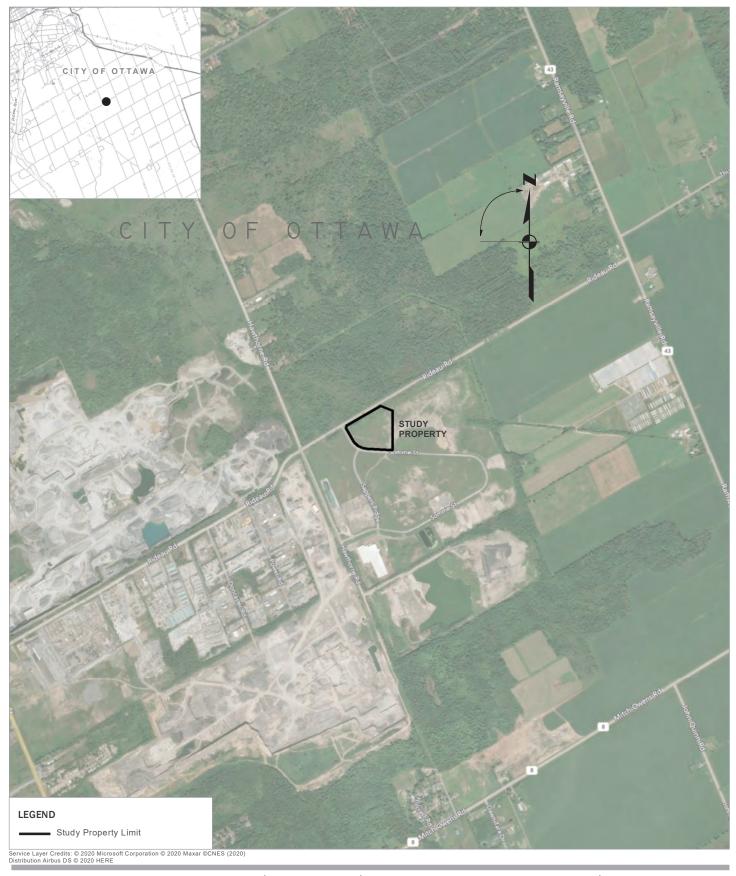
GHD

9.


Robert Neck, M.Eng., P.Geo. (**Project Manager**


Encl.: Appendix A (Test Pit Logs and Gradation Results)

Email to Pierre Courteau Cc: Christian Lavoie-Lebel (Christian.Lavoie-Lebel@cima.ca)


0

inited)

Attachment 1 Figures

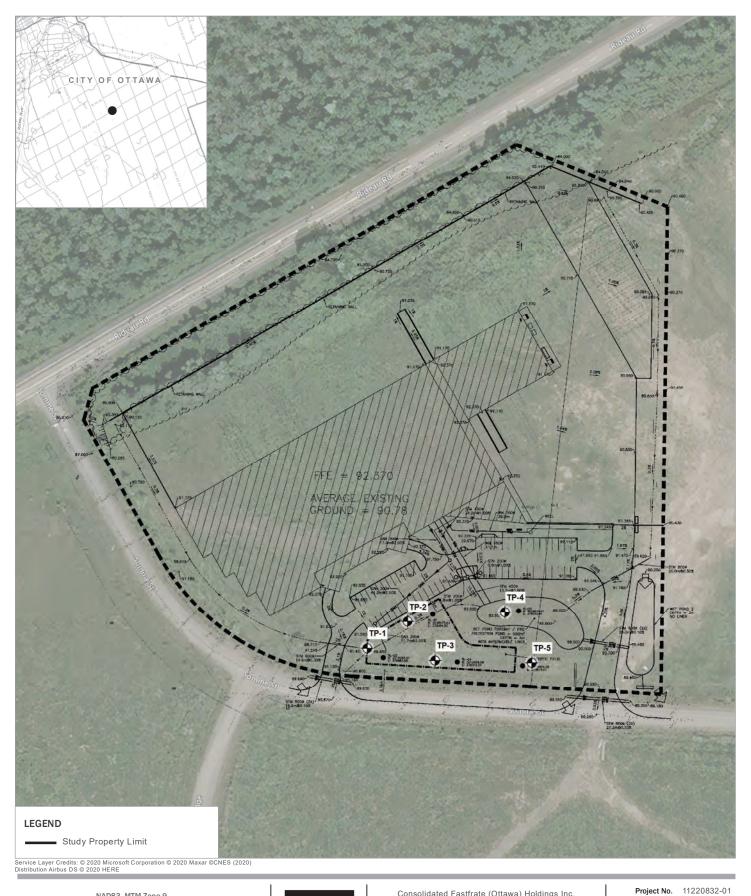
NAD83, MTM Zone 9 1 cm : 200 meters Meters 0 220 440 880

ATTRIBUTION STATEMENTS

Produced by GHD Limited under Licence with the Ontario Ministry of Natural Resources and Forestry[®] Queen's Printer for Ontario, 2020 (2020).

K:\GIS_PROJECTS\GHD\CA-

RIDEAU ROAD & SOMME STREET CITY OF OTTAWA ONTARIO SEPTIC ASSESSMENT SITE LOCATION PLAN


Consolidated Fastfrate (Ottawa) Holdings Inc.

 Project No.
 11220832-01

 Revision No.
 1

 Date
 Apr 2021

FIGURE 1

Consolidated Fastfrate (Ottawa) Holdings Inc.

RIDEAU ROAD & SOMME STREET CITY OF OTTAWA ONTARIO

SEPTIC ASSESSMENT

TEST HOLE LOCATION PLAN

Revision No. 1

Date

Apr 2021

FIGURE 2

ATTRIBUTION STATEMENTS

Produced by GHD Limited under Licence with the Ontario Ministry of Natural Resources and Forestry® Queen's Printer for Ontario, 2020 (2020). ►

K:\GIS_PROJECTS\GHD\CA-

Appendix A

Test Pit Logs and Gradation Results

REFER	ENCE	No.:	11220832											E١	ICLOSURE No.: A-1
GHD				TEST HOLE N ELEVATION:										TE	Page: <u>1</u> of <u>1</u>
CLIENT	:	(Consolidated Fastfrate												LEGEND
PROJE	CT:	Ś	Septic Assessment												
LOGGE	D BY:		J. Scott	DAT	E:	31	Marc	ch	2021						▼ - WATER LEVEL
EXCAV	ATION	СОМ	PANY: Goldie Mohr Lte	d. MET	ΉC	DD: <u>Ba</u>	ackho	e							_
NOTES	:		18T E: 456548 N: 5017	67											
	0														
Depth	m Below Existing Grade	Stratigraphy	DESCRIPT SOIL AND B		-	I ype and Number	Moisture Content		Shear Sensi O V H A	test (tivity (Vater tterbe	(Cu) S) conte erg lin	ent (nits	%) (%)	△ Fiel	d COMMENTS
ft m	0.0	· <u>x¹/</u> , . <u>x</u>	GROUND S	URFACE			%		10 20) 30 4	40 50	60) 70	80 90	
	0.2		, , , , , , , , , , , , , , , , , , ,	1) 10 10 0											
1			SM - Gravelly sand (fi clay, concrete, brick, a brown, moist	I), with silt, trace asphalt, compact,											- Test pit open upon completion
2								-							- GS-1 37% Gravel
		\bigotimes				GS-1									47% Sand 12% Silt
3															4% Clay
4															
		\bigotimes													
5 1.5		\bigotimes						_					_		-
		\bigotimes													
6-	1.8		With clay, loose					-				_	_		- GS-2
- 2.0		\bigotimes			$\left \right\rangle$	GS-2									41% Gravel 36% Sand
7	2.1	XX	Wet												16% Silt 7% Clay
8	2.4	\bigotimes													- Groundwater infiltration observed at approximately 2.1 mbgs
2.5	2.4		END OF TEST HOLE												- Refusal at 2.4m (asphalt)
9															(aspirait)
10								_				_	_	$\left \right $	-
+															
11								-					-		-
- 3.5															
12															-
4.0												T			
14								_					_		
- 4.5															

	REFEF	ENC	ΕN	lo.: _	11220832												ENC	CLOSURE No.: <u>A-2</u>
						TEST HOLE								_		т	ES	T HOLE REPORT
9	HU					ELEVATION	: _	E	xistir	ng g	grade	9		_		-		Page: <u>1</u> of <u>1</u>
	CLIEN	Г:		0	Consolidated Fastfrate													LEGEND
	PROJE	CT:		S	Septic Assessment													GS - GRAB SAMPLE
	LOGGE	ED B'	:	J	. Scott	DA	TE:	3	1 Ma	rch	202	1						▼ - WATER LEVEL
	EXCAV	ATIC	N (СОМ	PANY: Goldie Mohr Ltd	<u>. ME</u>	тн	DD: B	ackh	oe								
	NOTES	S:		1	8T E: 456572 N: 50171	75												
	Depth	m Below	Existing Grade	Stratigraphy	DESCRIPT SOIL AND B			Type and Number	Moisture	Content	Shea Sens O M _p W ₁	ar tes sitivit Wat Atter	st (Cu y (S) er cor rberg) ntent limit:	(%) s (%)		⁼ ield _ab	COMMENTS
f	t	0.	0	<u>, 1, , , , , , , , , , , , , , , , , , </u>	GROUND S	URFACE			%		10 2	20 3	0 40	50 6	60 70	80 9	90	
	÷	0.	1		TOPSOIL (102mm) SM - Gravelly sand (fil		-											
1	+			\bigotimes	concrete, brick, aspha	lt, brown, moist				-						_		- Test pit open upon
	- 0.5	5	K	\bigotimes														completion
2	-			\bigotimes						+				+		-		
	-		K	\bigotimes														
3	 1.()		\bigotimes						-				+		-		
	+		K	\bigotimes				GS-1										
4	-		R	\bigotimes														
5		5	K	\bigotimes														
]		R	\bigotimes														
6	_	1.	8 4	\bigotimes														
	+ 2.0		K	\bigotimes	Wet													- Groundwater infiltration observed at
7			R	\bigotimes						_						_		approximately 1.8 mbgs
21	-			\bigotimes														
8			R	\bigotimes						-				-		_		
IC.GD1	+			\bigotimes														
9 9		2.	7 🖁		END OF TEST HOLE		-			-				+		+		
TEST HOLE LOG GEOTECH 11220832 TEST PIT GINT LOGS GPJ GEOLOGIC.GDT 12/4/21	+ 3.0																	
0. S 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																		
	Ţ																	
	- 3.5																	
837 TE	F	, 																
112208	Ļ																	
· 표 민 13												\square				_		
3 GEO	+ 4.0	′																
	-									-	_	$\left \right $		-		+		
STHO	- 4.5																	
≝∟	- 4.3	<u>' </u>																

REFER	ENCE	No.:	11220832									ENC	CLOSUF	RE No.:
				TEST HOLE N								TES	тно	DLE REPORT
GHD				ELEVATION:		E	xisting	gra	de					<u>1</u> of <u>1</u>
CLIENT	:	(Consolidated Fastfrate										LEGE	END
			Septic Assessment											S - GRAB SAMPLE
			J. Scott						21				Ţ	- WATER LEVEL
			PANY: Goldie Mohr Lto										-	
NOTES	:		18T E: 456599 N: 5017	156									-	
Depth	m Below Existing Grade	Stratigraphy	DESCRIPT SOIL AND B		Type and	Number	Moisture Content	She Sei O Wp W	ear test nsitivity Water Atterb	(Cu) (S) conten erg limi	t (%) ts (%)	△ Field □ Lab	(COMMENTS
ft m	0.0		GROUND S	URFACE			%	10	20 30	40 50	60 70	80 90		
$\begin{array}{c} & & & \\$	1.2		TOPSOIL (152 mm) SM - Gravelly sand (fil concrete, asphalt, bro Grey, cobbles Wet END OF TEST HOLE	wn, moist		3S-1 3S-2								 Test pit open upon completion Groundwater infiltration observed at approximately 1.8 mbgs 50 mm diameter monitoring well installed to 2.7 mbgs
12 - 4.0														

	RE	FERE	NCE	No.:	11220832										ENC	CLOSURE N	lo.: <u> </u>	-4
	111					TEST HOLE									TES	T HOL	E REPC	ORT
9		4				ELEVATION:	_	E	xisting	g gra	ade						of	
	CLI	ENT:		(Consolidated Fastfrate											LEGEND	1	
	PR	OJEC	T: _	5	Septic Assessment												- GRAB SAN	
	LO	GGED	BY:		I. Scott	DA1	E:	3^	Marc	:h 2	021						- WATER LE	EVEL
	EX	CAVA	TION	COM	PANY: Goldie Mohr Lto	1 ME ⁻	ГНС	DD: <u>B</u> a	ackho	е						-		
	NO	TES:		1	I8T E: 456656 N: 50171	72												
			0															
	Depth		m Below Existing Grade	Stratigraphy	DESCRIPT SOIL AND B			Type and Number	Moisture Content	SSC ↓ ₩₽	hear te ensitiv Wa H Atte	est (C rity (S ater co erbero	iu)) onteni g limit	t (%) s (%)	∆ Field □ Lab		MMENTS	
f	t	m	0.0	· <u>· · · · · · · · · · · · · · · · · · </u>	GROUND S	JRFACE			%	1	0 20	30 40	50 (50 70	80 90			
	ł		0.1		TOPSOIL (102mm) SM - Gravelly sand (fil		-											
1	+			\bigotimes	clay, concrete, asphal	t, brown, moist										- T	est pit open u	Ipon
	Ę	0.5														CO	mpletion	
2	╧			\bigotimes														
	+			\bigotimes														
3	╞	- 1.0						GS-1									SS-1 % Gravel	
4]			\bigotimes				192-1								44	% Sand % Silt	
	Ļ															7%	6 Clay	
5	┢	1.5		\bigotimes														
	-			\bigotimes														
6	-		1.8														Groundwater	
	+	2.0		\bigotimes													iltration obser proximately 1	
7	-																	
12/4/21 8]			\bigotimes														
GDT 1	Ļ	2.5		\bigotimes														
10GIC	_			\bigotimes														
J GEC	+																	
10 IO	+	- 3.0																
SINT LC	t			\bigotimes				GS-2										
	+	2 5	3.4	×××	END OF TEST HOLE		-											
337 TES	ŀ	3.5																
112208	· -																	
но Но Ш 13	Ŀ	4.0									_							
G GEO	ł	ч.U																
	-									\mid					+			
TEST HOLE LOG GEOTECH 11220832 TEST PIT GINT LOGS.GPJ GEOLOGIC.GDT 12/4/21 P1 01 6 6 8 8 P1 11 01 6 6 8 8 P1 21/4/21	÷	4.5					I											

REFEREN	ICE N	o.: _	11220832									_	ENC	CLOSURE N	o.: <u>A-5</u>
CHID				TEST HOLE I	No						_		TES		E REPORT
GIND				ELEVATION:		E	xisting	gra	de		_			Page: <u>1</u>	
CLIENT:		С	consolidated Fastfrate											LEGEND	
PROJECT	:	S	eptic Assessment												- GRAB SAMPLE
LOGGED	BY: _	J	. Scott	DAT	E:	31	Marc	h 20)21						- WATER LEVEL
EXCAVAT	ION C	COMF	PANY: Goldie Mohr Lto	I. MET	THO	DD: <u>Ba</u>	ackhoe	;						-	
NOTES:		1	8T E: 456601 N: 50171	60											
Depth m Below	Existing Grade	Stratigraphy	DESCRIPT SOIL AND B			Type and Number	Moisture Content	Sh Se O W _p V	near te ensitivi Wa Wa Ma	est (Cu ity (S) ter co erberg	ı) ntent limits	(%) s (%)	△ Field □ Lab		MENTS
	0.0	<u>. 1,</u>	GROUND SI	JRFACE			%	10	20 3	30 40	50 6	0 70 8	30 90		
	0.1		TOPSOIL (102mm) SM - Silty sand (fill), w	ith gravel, with											
1			clay, with asphalt, con moist	crete, brown,				+						- T	est pit open upon
- 0.5	K													cor	mpletion
2	K							+							
3	k														
1.0						GS-1									
4	1.2	X			Ľ			_							
			Grey												
5 1.5	K							+							
	K														
	1.8	\bigotimes	Wet												roundwater Itration observed at
7-2.0	K														proximately 1.8 mbgs
	k														
8-05								_							
	K														
9-	K							+							IS2
						GS-2								479	% Gravel % Sand
	3.0 🗡		END OF TEST HOLE												% Silt % Clay
- 3.5															
12-								_							
13-4.0								+							
- 4.5					·										

Cli	ent:	Consolidate	d Fastfrate		Lab No.:	SS-2	1-25	_
Pro	ject/Site:	Rideau Street & Somm	ne Street, Ottav	wa, ON	Project No.:	11220	0832	_
	Borehole no.				Sample no.:	GS1		_
	Depth:	0.6 - 0.9	m		Enclosure:	A-6		_
Percent Passing	100 90 80 70 60 50 40 30 20 10							0 10 20 30 40 50 50 50 50 70 80 90
	0.001	0.01	0.1 Diameter	(mm)		10	100	100
		Clay & Silt		Sand		Gravel		
			Fine	Medium		Fine C	oarse	
			nified Soil Class					7
		Soil Description		Gravel (%)	Sand (%)	Clay & S	Silt (%)	
				37	47	16	6	
		Silt-size particles (%):			12			4
		Clay-size particles (%) (<0.002mn	1):		4			
Re	marks: <u>N</u>	loisture Content = 7.1% as per, A	STM D2216.					_
Pei	formed by:	Josh Si	ullivan		Date:	April 7,	, 2021	
Vei	rified by:	Joe Sullivan	JeSu	L	Date:	April 7,	, 2021	_

Clie	nt:	Consolidated	Fastfrate	L	_ab No.:	SS-2	1-25	-
Proj	ect/Site:	Rideau Street & Somme	e Street, Ottawa	a, ON F	Project No.:	11220)832	
	Borehole no	D.: TP1		5	Sample no.:	GS2		<u>.</u>
	Depth:	1.8 - 2.1 r	n	E	Enclosure:	A-7		-
Percent Passing	100 90 90 80 70 60 50 60 30 20 10						• • • • • • 0 10 20 30 40 50 60 70 80 90	Percent Retained
	0.001	0.01	0.1 Diameter (m	1 1		10	10 100	00
		Clay & Silt		Sand		Gravel		
			Fine ified Soil Classif	Medium		Fine Co	oarse	
		Soil Description	G	ravel (%)	Sand (%)	Clay & S	Silt (%)	
				41	36	23	3	
		Silt-size particles (%): Clay-size particles (%) (<0.002mm)):		16 7			
Ren	narks: <u> </u> -	Moisture Content = 8.7% as per, As	STM D2216.					
Per	ormed by:	Josh Su	llivan		Date:	April 7,	2021	-
Veri	fied by:	Joe Sullivan	Joe Suite		Date:	April 7,	2021	-

Client	:	Consol	idated Fastfrate		Lab No.:	SS	-21-25	
Projec	t/Site:	Rideau Street & S	omme Street, C	Ottawa, ON	Project No.:	112	220832	
Во	rehole no.:		TP4		Sample no.:	GS	61	
De	pth:	0.9	- 1.2 m		Enclosure:	A-	8	
100 90 80 70 50 50 40 30 20 10								0 10 20 30 40 50 50 60 - 70 - 80 - 90
C (0.001	0.01	0.1 Diam	neter (mm)		10	,	⊥ 100 100
		Clay & Silt		Sand		Gravel		
		only & one	Fine	e Media		Fine	Coarse	
					1			
		Soil Description		Gravel (%)	Sand (%)	Clay	& Silt (%)	
				32	44		24	
	(Silt-size particles (%): Clay-size particles (%) (<0.0			17 7			_
Remai	'ks : <u>Mo</u>	isture Content = 10.6% as	per, ASTM D22	216.				_
Perfor	med by:	Jo	sh Sullivan		Date:	April	7, 2021	
Verifie	d by:	Joe Sullivan	Jes	Sulla-	Date:	April	7, 2021	

Clie	nt:	Consolidated	Fastfrate		Lab No.:	SS-	-21-25	
Proj	ect/Site:	Rideau Street & Somme	e Street, Otta	awa, ON	Project No.:	112	20832	
	Borehole no.:	TP5			Sample no.:	GS	2	
	Depth:	2.75 - 3.05	m		Enclosure:	A-9	9	
Percent Passing	100 90 80 70 60 50 40 30 20 10							0 10 20 30 40 50 bercent Ketained 60 70 80 90
	0.001	0.01	0.1 Diamete	1 r (mm)		10		100 100
				Sand		Gravel		
		Clay & Silt	Fine	Medius ssification Syste		Fine	Coarse	
		Soil Description		Gravel (%)	Sand (%)	Clay 8	& Silt (%)	
				18	47		35	
		Silt-size particles (%): Clay-size particles (%) (<0.002mm)):		23 12			
Ren	narks: <u>M</u>	oisture Content = 22.4% as per, A	STM D2216	5.				
Per	ormed by:	Josh Su	llivan		Date:	April	7, 2021	
Veri	fied by:	Joe Sullivan) = Su	ylan	Date:	April	7, 2021	

ghd.com

Ε

Appendix E -Geotechnical Report

347 Pido Road Peterborough, Ontario K9J 6X7 Canada www.ghd.com

Our ref: 11220832-01

12 April 2021

Consolidated Fastfrate (Ottawa) Holdings Inc. c/o Pierre Courteau CBRE Limited 333 Preston Street, 7th Floor Ottawa, Ontario K1S 5N4

Re: Septic Assessment and Percolation Rate Evaluation Proposed Commercial Development Rideau Road and Somme Street Gloucester Con 6 from Rideau River, Lot 26 Ottawa, Ontario

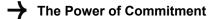
Dear Mr. Courteau:

1. Introduction

GHD Limited (GHD) is pleased to provide you (the Client) with the following letter documenting excavation activities completed in the general locations of a proposed septic tile bed and stormwater pond. The locations were requested by CIMA. This letter also provides a summary of approximate percolation rate (T-time) values based upon soil collected from the test pit locations.

The general location is illustrated on the Site Location Plan, Figure 1. The test pit locations are illustrated on the Test Pit Location Plan, Figure 2.

2. Field Activities


Test pits were advanced under the supervision of GHD on March 31, 2021. The test pits were excavated at five (5) locations to depths ranging from 2.4 to 3.4 m. The soil stratigraphy consisted of fill at each location described as gravelly sand with silt trace clay to a silty sand with gravel and clay. Fill was observed to the bottom of each test pit. The fill also included a mix of asphalt, bricks and concrete at each location. Refusal was encountered at 2.4 m at TP-1 due to asphalt. Test pit logs are provided in Appendix A.

Soil samples were collected from each test pit. Hydrometer testing was conducted at GHD's laboratory. The grain size data, included in Appendix A, indicated:

18 – 41% gravel; 36 – 47% sand; 12 – 23% silt; and, 4 – 12% clay size particles by weight.

Groundwater seepage was encountered at each test pit. The shallow groundwater was observed between 1.8 and 2.4 metres below ground surface (mbgs). Test pits TP-2, TP-3, TP-4 and TP-5 encountered groundwater at 1.8 mbgs.

Based upon the Supplementary Guidelines to the Ontario Building Code 1997, the percolation rate is estimated (based upon the gradation test results only) to have an average value of 12 to 20 min/cm with a medium permeability.

3. Conclusions and Recommendations

Due to the inconsistency of the fill materials observed and shallow groundwater seepage encountered it is recommended the septic disposal system be a fully raised bed absorption trench leaching bed. It is recommended prior to placement if the imported fill that any surficial organics be removed from the tile bed and mantle area. It is also suggested that that the existing fill material be compacted to ensure uneven settlement of the tiles does not occur.

The waste disposal system should meet Ontario Regulation 350/06 made under the Building Code Act, 1992 and incorporate the following design features:

- 1. Organics should be stripped from the area of the leaching bed and downgradient mantle.
- 2. The exposed subgrade below the tile bed should be trimmed and scarified, and provided with a gentle slope of 0.5% in the direction of the mantle.
- 3. The tile bed should be constructed as a fully raised leaching type bed up to the full height of at least 1 m above existing grade. The raised bed should consist of clean, granular fill capable of providing an in-place T-time of 4 to 8 min/cm.
- 4. The mantle should be constructed along the downgradient margin of the raised bed. Each mantle should extend along the full width of the bed and for a minimum of 15 m downgradient from the bed. The mantle should consist of similar granular fill raised to a minimum of 250 mm above the surrounding grade. Surface runoff should be diverted away from the leaching bed by means of proper site drainage.
- 5. The waste disposal system should be kept clear of surface drainage swales, roof leader drains, and other sources of surface water.
- 6. The tile bed should be kept away from shade trees and a healthy cover of vegetation should be developed and maintained over the bed to promote evapotranspiration.
- When sighting a tile bed on sloping ground, it is recommended that procedures outlined in the Building 7. Code be followed closely.
- 8. Minimum set back distances from septic tank (plus 2 times height raised):
 - Building 1.5 m

Property line - 3 m

Drilled well – 15 m

- Open water course 15 m
- Minimum set back distances from septic tile bed (plus 2 times height raised):
 - Building 5 m

- Property line 3 m
- Drilled well, properly sealed 15 m
- Open water course 15 m
- Shallow well 30 m
- 10. The layout, design and construction of the waste disposal bed should be subject to inspection by

RT W. NECK

226

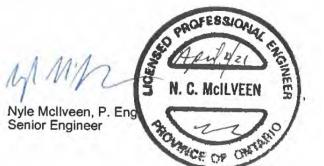
experienced hydrogeologic personnel.

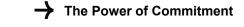
We trust that this report meets your immediate requirements. Should you have any questions, please contact our office.

Regards

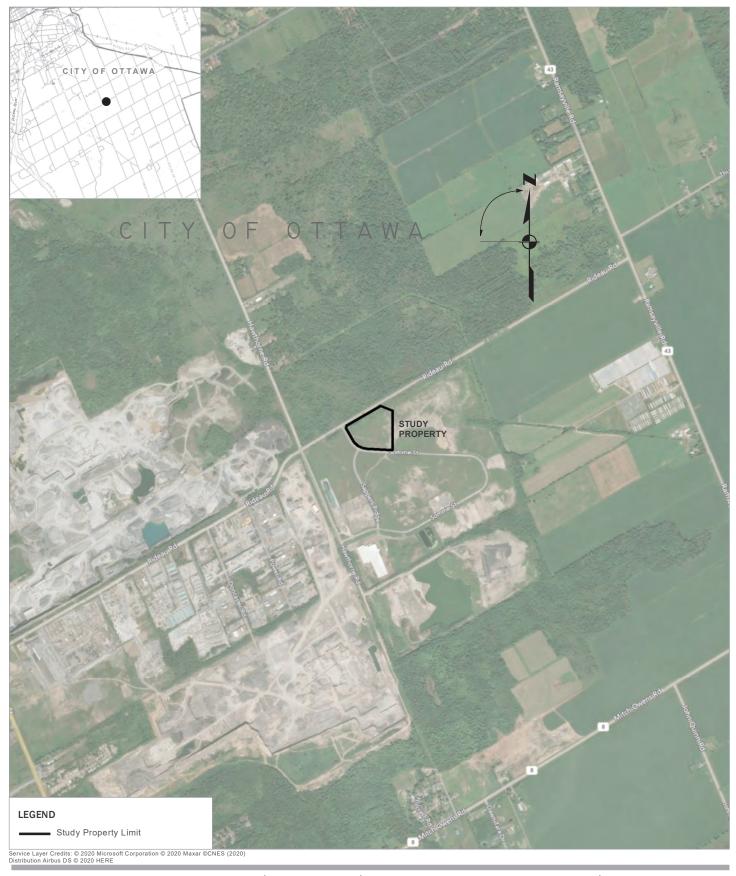
GHD

9.


Robert Neck, M.Eng., P.Geo. (**Project Manager**


Encl.: Appendix A (Test Pit Logs and Gradation Results)

Email to Pierre Courteau Cc: Christian Lavoie-Lebel (Christian.Lavoie-Lebel@cima.ca)


0

inited)

Attachment 1 Figures

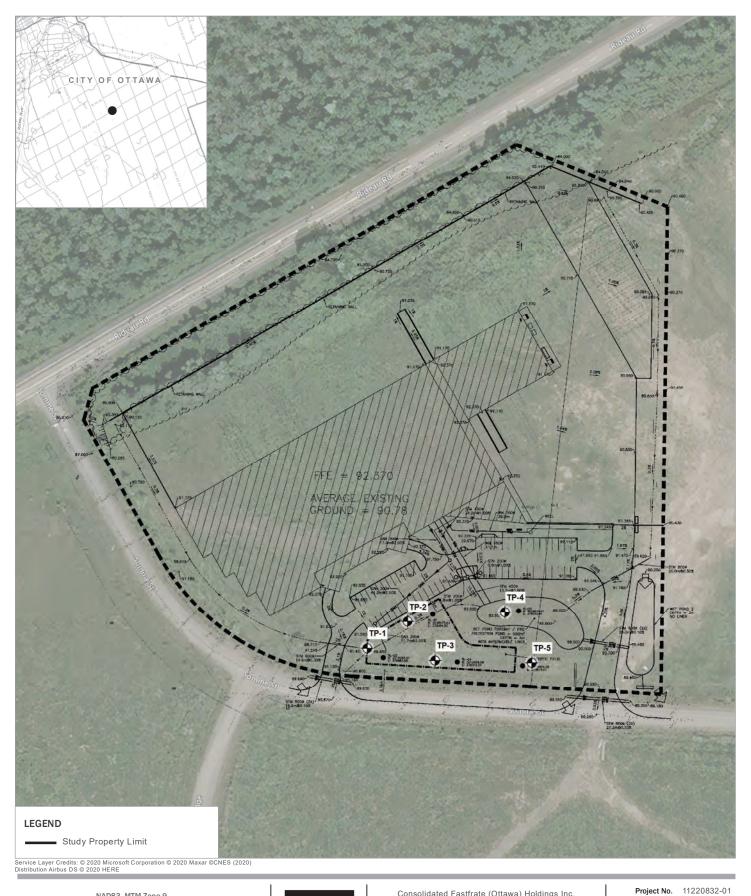
NAD83, MTM Zone 9 1 cm : 200 meters Meters 0 220 440 880

ATTRIBUTION STATEMENTS

Produced by GHD Limited under Licence with the Ontario Ministry of Natural Resources and Forestry[®] Queen's Printer for Ontario, 2020 (2020).

K:\GIS_PROJECTS\GHD\CA-

RIDEAU ROAD & SOMME STREET CITY OF OTTAWA ONTARIO SEPTIC ASSESSMENT SITE LOCATION PLAN


Consolidated Fastfrate (Ottawa) Holdings Inc.

 Project No.
 11220832-01

 Revision No.
 1

 Date
 Apr 2021

FIGURE 1

Consolidated Fastfrate (Ottawa) Holdings Inc.

RIDEAU ROAD & SOMME STREET CITY OF OTTAWA ONTARIO

SEPTIC ASSESSMENT

TEST HOLE LOCATION PLAN

Revision No. 1

Date

Apr 2021

FIGURE 2

ATTRIBUTION STATEMENTS

Produced by GHD Limited under Licence with the Ontario Ministry of Natural Resources and Forestry® Queen's Printer for Ontario, 2020 (2020). ►

K:\GIS_PROJECTS\GHD\CA-

Appendix A

Test Pit Logs and Gradation Results

REFER	ENCE	No.:	11220832											E١	ICLOSURE No.: A-1
GHD				TEST HOLE N ELEVATION:										TE	Page: <u>1</u> of <u>1</u>
CLIENT	:	(Consolidated Fastfrate												LEGEND
PROJE	CT:	Ś	Septic Assessment												
LOGGE	D BY:		J. Scott	DAT	E:	31	Marc	ch	2021						▼ - WATER LEVEL
EXCAV	ATION	СОМ	PANY: Goldie Mohr Lte	d. MET	ΉC	DD: <u>Ba</u>	ackho	e							_
NOTES	:		18T E: 456548 N: 5017	67											
	0														
Depth	m Below Existing Grade	Stratigraphy	DESCRIPT SOIL AND B		-	I ype and Number	Moisture Content		Shear Sensi O V H A	test (tivity (Vater tterbe	(Cu) S) conte erg lin	ent (nits	%) (%)	△ Fiel	d COMMENTS
ft m	0.0	· <u>x¹/</u> , . <u>x</u>	GROUND S TOPSOIL (178mm)	URFACE			%		10 20) 30 4	40 50	60) 70	80 90	
	0.2		, , , , , , , , , , , , , , , , , , ,	1) 10 10 0											
1			SM - Gravelly sand (fi clay, concrete, brick, a brown, moist	I), with silt, trace asphalt, compact,											- Test pit open upon completion
2								-							- GS-1 37% Gravel
		\bigotimes				GS-1									47% Sand 12% Silt
3															4% Clay
4															
		\bigotimes													
5 1.5		\bigotimes						_	+				_		-
		\bigotimes													
6-	1.8		With clay, loose					-				_	_		- GS-2
- 2.0		\bigotimes			$\left \right\rangle$	GS-2									41% Gravel 36% Sand
7	2.1	XX	Wet												16% Silt 7% Clay
8	2.4	\bigotimes													- Groundwater infiltration observed at approximately 2.1 mbgs
2.5	2.4		END OF TEST HOLE												- Refusal at 2.4m (asphalt)
9															(aspirait)
10								_				_	_	$\left \right $	-
+															
11								-					-		-
- 3.5															
12															-
4.0												T			
14								_					_		
- 4.5															

	REFEF	ENC	ΕN	lo.: _	11220832												ENC	CLOSURE No.: <u>A-2</u>
						TEST HOLE								_		т	ES	T HOLE REPORT
9	HU					ELEVATION	: _	E	xistir	ng g	grade	9		_		-		Page: <u>1</u> of <u>1</u>
	CLIEN	Г:		0	Consolidated Fastfrate													LEGEND
	PROJE	CT:		S	Septic Assessment													GS - GRAB SAMPLE
	LOGGE	ED B'	:	J	. Scott	DA	TE:	3	1 Ma	rch	202	1						▼ - WATER LEVEL
	EXCAV	ATIC	N (СОМ	PANY: Goldie Mohr Ltd	<u>. ME</u>	тно	DD: B	ackh	oe								
	NOTES	S:		1	8T E: 456572 N: 50171	75												
	Depth	m Below	Existing Grade	Stratigraphy	DESCRIPT SOIL AND B			Type and Number	Moisture	Content	Shea Sens O M _p W ₁	ar tes sitivit Wat Atter	st (Cu y (S) er cor rberg) ntent limit:	(%) s (%)		⁼ ield _ab	COMMENTS
f	t	0.	0	<u>, 1, , , , , , , , , , , , , , , , , , </u>	GROUND S	URFACE			%		10 2	20 3	0 40	50 6	60 70	80 9	90	
	÷	0.	1		TOPSOIL (102mm) SM - Gravelly sand (fil		-											
1	+		K	\bigotimes	concrete, brick, aspha	lt, brown, moist				-						_		- Test pit open upon
	- 0.5	5	K	\bigotimes														completion
2	-			\bigotimes						+				+		-		
	-		K	\bigotimes														
3	 1.()		\bigotimes						-				+		-		
	+		K	\bigotimes				GS-1										
4	-		R	\bigotimes														
5		5	K	\bigotimes														
]		R	\bigotimes														
6	_	1.	8 4	\bigotimes														
	+ 2.0		K	\bigotimes	Wet													- Groundwater infiltration observed at
7			R	\bigotimes						_						_		approximately 1.8 mbgs
21	-			\bigotimes														
8			R	\bigotimes						-				-		_		
IC.GD1	+			\bigotimes														
9 9		2.	7 🖁		END OF TEST HOLE		-			-				+		+		
TEST HOLE LOG GEOTECH 11220832 TEST PIT GINT LOGS GPJ GEOLOGIC.GDT 12/4/21	+ 3.0																	
0. S 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																		
	Ţ																	
	- 3.5																	
837 TE	F	, 																
112208	Ļ																	
· 표 민 13												\square				_		
3 GEO	+ 4.0	′																
	-									-	_	$\left \right $		-		+		
STHO	- 4.5																	
۳∟	- 4.3	<u>' </u>																

REFER										ENC	CLOSUF	RE No.:	A-3			
				TEST HOLE N								-	ΓES	тно	OLE RI	EPORT
GHD				ELEVATION:		E	xisting	gra	ade			Page: <u>1</u> of <u>1</u>				
CLIENT	:	(Consolidated Fastfrate		LEGEND											
			Septic Assessment										S GS - GRAB SAMPLE			
			J. Scott			31								Ţ	- WA	TER LEVEL
			PANY: Goldie Mohr Lto											-		
			18T E: 456599 N: 5017											-		
Depth Depth Stratigraphy Below Below Below Below Below		TION OF 3EDROCK		Number	Moisture Content	Shear test (Cu) Sensitivity (S) ○ Water content (^C ₩ _P W _I Atterberg limits (ent (% mits ('			COMMEN — 0.2 m	TS				
ft m	0.0		GROUND S	URFACE			%	1(0 20 30	0 40 5	0 60	70 80	90			
	0.2	<u>117</u> 1												$\Im \boxtimes$		
1-	0.2		SM - Gravelly sand (fi concrete, asphalt, bro	ll), with silt, wn, moist										38		
														3 🕅	- Test pit completio	open upon n
2								_						38		
_														38		
3-								_						38		
														38		
4	1.2		Grey, cobbles					_		_						
-			Grey, cobbles		$\left \right $	GS-1										
5 1.5					\square			_		_			+			
6-	1.8		 Wet					+				++	+		- Ground	vater
2.0																observed at ately 1.8 mbgs
7-								+		_		++	+			, ,
8 - 2.5								+				+	+			
9					\square			+							- 50 mm c	
					$\left \right\rangle$	GS-2									to 2.7 mb	g well installed gs
	3.0		END OF TEST HOLE		Γ											
								1								
3.5 12-																
								T								
4.0								T								
								\downarrow								
- 4.5																

	REFERENCE No.:11220832									ENCLOSURE No.: A-4								
6						TEST HOLE									TEST HOLE REPORT			
9						ELEVATION:	_	E	xisting	g gr	ade				Page: <u>1</u> of <u>1</u>			
	CLIEN	Г:		(Consolidated Fastfrate											LEGEND	1	
	PROJE	СТ	:	5	Septic Assessment												- GRAB SA	
	LOGGI	ED I	BY:		J. Scott	DAT	E:	3′	1 Mar	ch 2	2021					- ⊻ -	- WATER L	EVEL
	EXCA\	ΆT	ION	СОМ	PANY: Goldie Mohr Lte	d. MET	ГНС	DD: <u>B</u>	ackho	е						_		
	NOTES	S: _			18T E: 456656 N: 5017	172												
	Depth Below Stratigraphy BESCRIDIO DESCRIDIO DESCRIDIO DESCRIDIO			Shear test (Cu) Sensitivity (S) ○ Water conte W _p , W _i Atterberg lin			Cu) 6) onten g limi ⁻	t (%) ts (%)	∆ Field □ Lab		COMMENTS							
ft	m	(0.0	· <u>x¹ /z</u> · . <u>x</u>	GROUND S TOPSOIL (102mm)	URFACE			%	1	10 20	30 4	50	60 70	80 90			
	-		0.1		SM - Gravelly sand (fi		•											
1-	+			>>>	clay, concrete, asphal	i, diown, moisi				-			+		+++	- T	est pit open ι	upon
	- 0.8	5		\bigotimes												со	mpletion	
2-				\bigotimes														
	-			>>>														
3-)		\bigotimes			$\left \right $	GS-1									S-1 % Gravel	
4-	_			\bigotimes												17	% Sand % Silt	
	-			>>>												7%	6 Clay	
5-	1.	5		\bigotimes						_			_		+++			
	-																	
6-	F		1.8							-								
	2.0)		>>>													iltration obser proximately 1	
7-	_			\bigotimes														
8 - 8				>>>														
GDT	- 2.9 	5		>>>														
9-	-			\bigotimes						_			_		+			
J GEO	+			\bigotimes														
⁵⁰ .00	3.(-			>>>						-			-		+			
SINT LO	+			\bigotimes				GS-2										
			3.4	XXX	END OF TEST HOLE													
337 TES 337 12-	+ 3.9																	
112206	- -																	
но Но Но 13-	- 4.(_		+			
G GEO	+																	
	-									-		+	+	+	+++			
TEST HOLE LOG GEOTECH 11220832 TEST PIT GINT LOGS.GPJ GEOLOGIC.GDT 12/4/21 +	4.	5																

REFEREN									_	ENCLOSURE No.: A-5							
CHID				TEST HOLE I	No						_		TEST HOLE REPORT				
GIND				ELEVATION:		E	xisting	gra	de		_			Page: <u>1</u> of <u>1</u>			
CLIENT:		С	consolidated Fastfrate											LEGEND			
PROJECT	:	S	eptic Assessment												- GRAB SAMPLE		
LOGGED	BY: _	J	. Scott	DAT	E:	31	Marc	h 20)21						- WATER LEVEL		
EXCAVAT	ION C	COMF	PANY: Goldie Mohr Lto	I. MET	THO	DD: <u>Ba</u>	ackhoe	;						-			
NOTES:		1	8T E: 456601 N: 50171	60													
Depth m Below	Depth Below Stratigraphy Cade Cade Cade Cade Cade Cade Cade Cade					Type and Number	Moisture Content	$\begin{array}{llllllllllllllllllllllllllllllllllll$				(%) s (%)	△ Field □ Lab	COMMENTS			
	0.0	<u>. 1,</u>	GROUND SI	JRFACE			%	10	20 3	30 40	50 6	0 70 8	30 90				
	0.1		TOPSOIL (102mm) SM - Silty sand (fill), w	ith gravel, with													
1			clay, with asphalt, con moist	crete, brown,				+						- T	est pit open upon		
- 0.5	K													cor	npletion		
2	K							-									
3	k																
1.0						GS-1											
4	1.2	X			Ľ			_									
			Grey														
5 1.5	K							+									
	K																
	1.8	\bigotimes	Wet												roundwater Itration observed at		
7-2.0	K														proximately 1.8 mbgs		
	k																
8-05								_									
	K																
9-	K							+							S2		
						GS-2								479	% Gravel % Sand		
	3.0 🗡		END OF TEST HOLE												% Silt % Clay		
- 3.5																	
12-								_									
13-4.0								+									
- 4.5					·												

Clier	it:	Consolidat	ted Fastfrate		Lab No.:	SS-21	-25	
Proje	ect/Site:	Rideau Street & Som	ime Street, O	ottawa, ON	Project No.:	11220	832	
E	Borehole no	.:TP'	1		Sample no.:	GS1		
[Depth:	0.6 - 0.	.9 m		Enclosure:	A-6		
Percent Passing	00 90 80 70 60 50 40 30 20 10						0 10 20 30 40 50 60 70 80 90	Percent Retained
	0.001	0.01	0.1 Diame	eter (mm)		10	100 100	J
		Clay & Silt		Sand		Gravel		
			Fine Unified Soil C	Mediu		Fine Co	oarse	
		Soil Description		Gravel (%)	Sand (%)	Clay & S	Silt (%)	
				37	47	16		
		Silt-size particles (%): Clay-size particles (%) (<0.002m	וm):		12 4			
Rem	arks:	Moisture Content = 7.1% as per,	ASTM D221	6.				
Perfo	ormed by:	Josh	Sullivan		Date:	April 7,	2021	
Verif	ied by:	for Sulland				2021		

Client: Consolidated Fastfrate Lab No.: SS		SS-2	1-25	<u>.</u>					
Proj	ect/Site:	Rideau Street & Somme	e Street, Ottawa	a, ON F	Project No.:	11220)832		
	Borehole no	D.: TP1		S	Sample no.:	GS2		<u>.</u>	
	Depth:	1.8 - 2.1 r	n	E	Enclosure:	A-7		-	
Percent Passing	100 90 90 80 70 60 50 60 30 20 10						• • • • • • • 0 10 20 30 40 50 60 70 80 90	Percent Retained	
	0.001	0.01	0.1 Diameter (m	1 1		10	10 100	00	
		Clay & Silt		Sand		Gravel			
			Fine ified Soil Classif	Medium		oarse Fine Coarse			
		Soil Description	G	ravel (%)	Sand (%)	Clay & S	Silt (%)		
				41	36	23	3		
		Silt-size particles (%): Clay-size particles (%) (<0.002mm)):		16 7				
Ren	narks: <u> </u> -	Moisture Content = 8.7% as per, AS	STM D2216.						
Per	ormed by:	Josh Su	llivan		Date:	April 7,	2021	-	
Veri	fied by:	Joe Sullivan	Joe Suite		Date:	April 7,	2021	-	

Client:		Consolidated	l Fastfrate		Lab No.:		SS-21-25		
Proje	ct/Site:	Rideau Street & Somm	e Street, O	ttawa, ON	Project No.	:	11220832		
B	orehole no.:	TP4			Sample no.:		GS1		
D	epth:	0.9 - 1.2	m		Enclosure:		A-8		
9 Bercent Passing 4 3 2									
	0.001	0.01	0.1 Diame	eter (mm)	1	10		100 100	
		Clay & Silt		Sand		Gra	Gravel		
			Fine	Massification S	edium Coarse	Fine	Coarse		
		Soil Description		Gravel (%)) Sand (%) CI	ay & Silt (%)		
				32	44		24		
		Silt-size particles (%):				17			
		Clay-size particles (%) (<0.002mm):			7			
Rema	n rks : <u>Mo</u>	pisture Content = 10.6% as per, A	ASTM D22 ⁻	16.					
Perfo	rmed by:	Josh Su	Illivan		Date:	A	April 7, 2021		
Verifi	ed by:	Joe Sullivan)-S		Date:	A	pril 7, 2021		

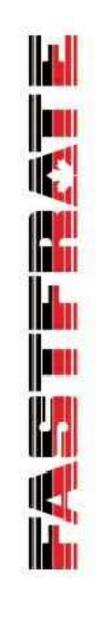
Client:		Consolidated	Fastfrate		_Lab No.:	S	SS-21-25			
Proj	ect/Site:	Rideau Street & Somme	e Street, Ot	tawa, ON	Project No.:	1	1220832			
	Borehole no.	.: TP5			Sample no.:	(GS2			
	Depth:	2.75 - 3.05	m		Enclosure:		A-9			
Percent Passing	100 90 80 70 60 50 40 30 20 10							0 10 20 30 40 50 50 bercent Ketained 60 70 80 90		
	0.001	0.01	0.1 Diamet	ter (mm)	1	10		100 100		
		Clay & Silt		Sand		Grav				
			Fine ified Soil Cla	Medi assification Syst		Fine				
		Soil Description		Gravel (%)	Sand (%)	Cla	y & Silt (%)			
				18	47		35			
		Silt-size particles (%): Clay-size particles (%) (<0.002mm)	\•		2					
	L		,-			_				
Rem	arks: <u>N</u>	/loisture Content = 22.4% as per, A	STM D221	6.						
Perf	ormed by:	Josh Su	llivan		Date:	Ар	ril 7, 2021			
Veri	fied by:	Joe Sullivan)= 5:	Mar	Date:	Ар	ril 7, 2021			

ghd.com

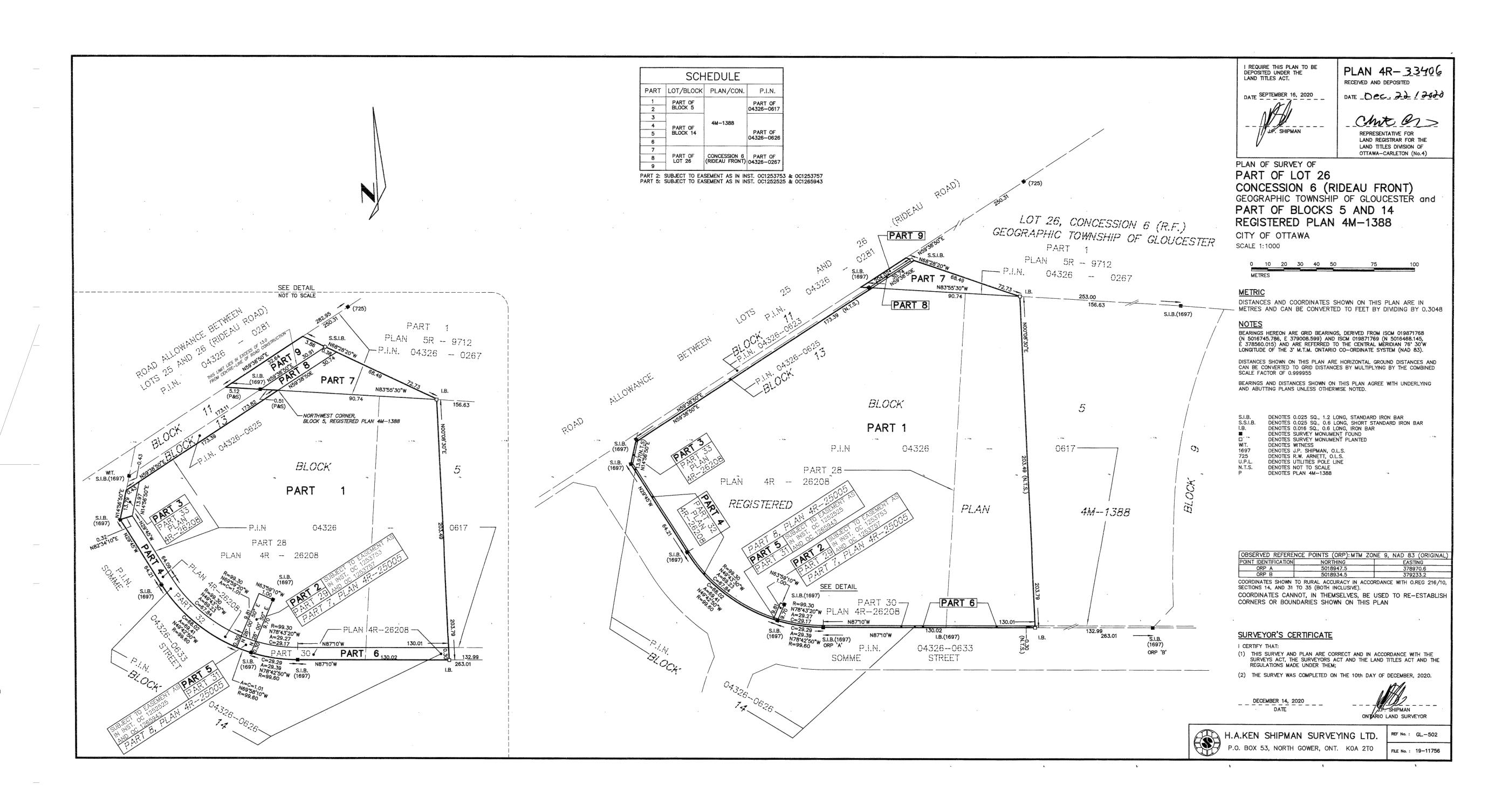
Appendix F -Drawings

FASTFRATE OTTAWA WAREHOUSE AND DISTRIBUTION FACILITY SOMME STREET, OTTAWA, ONTARIO

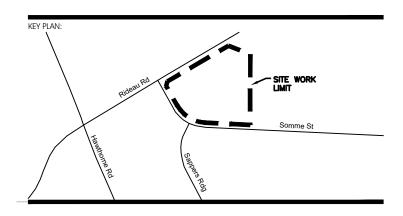
cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\400\460_Civil\C001 - Cover iae.dwa

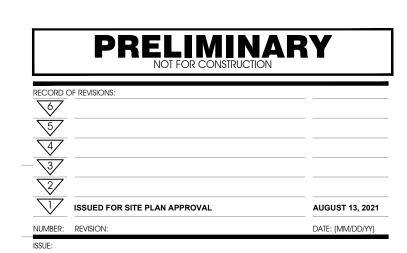

LIST OF DRAWINGS

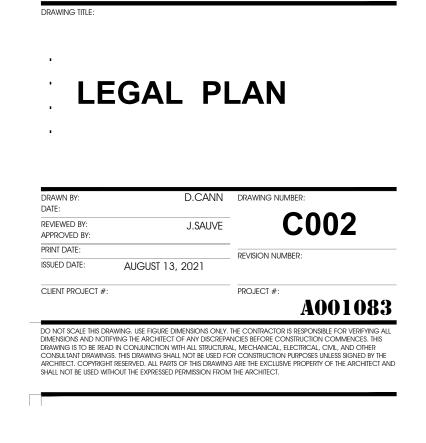
PLAN No:

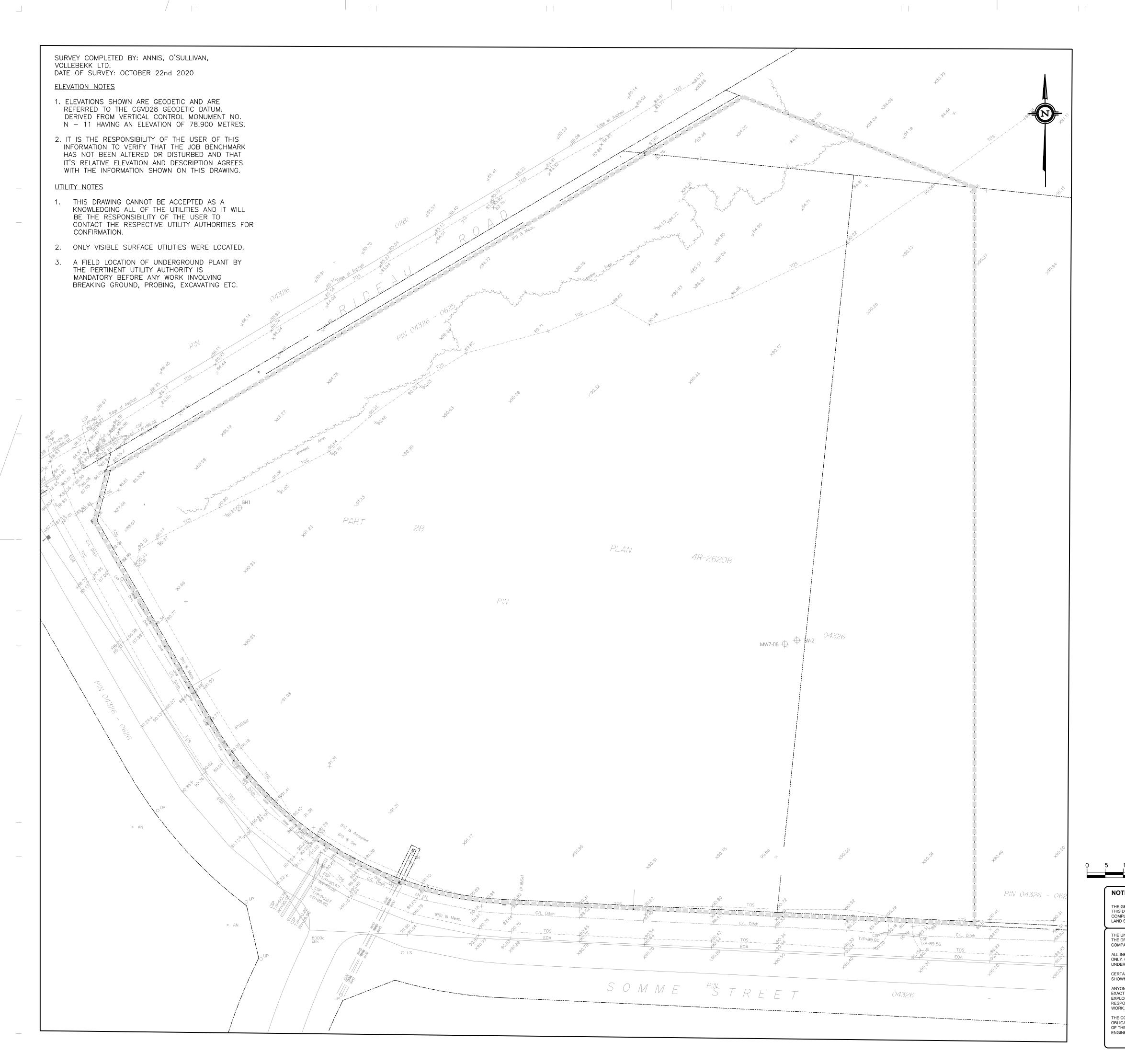

DESCRIPTION

C001	COVER PAGE
C002	LEGAL PLAN
C003	TOPOGRAPHICAL SURVEY PLAN
C004	SEDIMENT AND EROSION CONTROL PLAN
C005	NOTES PLAN
C006A	GRADING PLAN
C006B	SECTIONS
C007	SITE SERVICING PLAN
C008	SEPTIC SYSTEM CONFIGURATION AND SECTIONS
C009	DETAILS PLAN
C010	DETAILS PLAN
C011	DETAILS PLAN
C012	DETAILS PLAN
C013	DETAILS PLAN
C014	DETAILS PLAN
C015	DETAILS PLAN
C016	DETAILS PLAN
C017	DETAILS PLAN
C018	DETAILS PLAN
C019	DETAILS PLAN



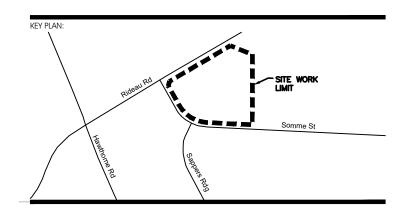


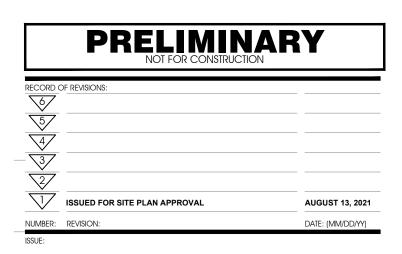

PROFESSIONAL STAMP



PROJECT TITLE: - FASTFRATE OTTAWA WAREHOUSE AND DISTRIBUTION FACILITY

Somme St. Ottawa, on


PROFESSIONAL STAMP:



EXISTING	LEGEND	PROPOSED
-0-	SURVEY MONUMENT PLANTED	
	SURVEY MONUMENT FOUND	
SIB	STANDARD IRON BAR	
SSIB IB	SHORT STANDARD IRON BAR	
CC	IRON BAR	
CP	CUT CROSS CONCRETE PIN	
IBØ	ROUND IRON BAR	
SSIB*	SHORT STANDARD IRON BAR	
IB*	IRON BAR	
(WIT)	WITNESS	
Meas.	MEASURED	
(AOG)	ANNIS, O'SULLIVAN, VOLLEBEKK LTD.	
(P)	REGISTERED PLAN 4M-1388	
(P2)	PLAN 4R-26208	
\bigtriangleup	SIGN	
O LS	LIGHT STANDARD	
OUP	UTILITY POLE	
• AN	ANCHOR	
0	NATURAL GAS LINE	
CSP	CORRUGATED STEEL PIPE	
+ 65.00	LOCATION OF ELEVATIONS	
C/L	CENTRELINE	
	PROPERTY LINE	
TOS	TOP OF SLOPE	
BOS	BOTTOM OF SLOPE	
T/P	TOP OF PIPE	
T/G	TOP OF GRATE	
EOA	EDGE OF ASPHALT	
JB	JERSEY BARRIER OVERHEAD WIRES	
OHW	WORK LIMIT	
	BOREHOLE	
- ӨН-1		

PROFESSIONAL STAMP

PROJECT TITLE: - FASTFRATE OTTAWA WAREHOUSE AND DISTRIBUTION FACILITY SCALE: 1:500 Somme St. Ottawa, on

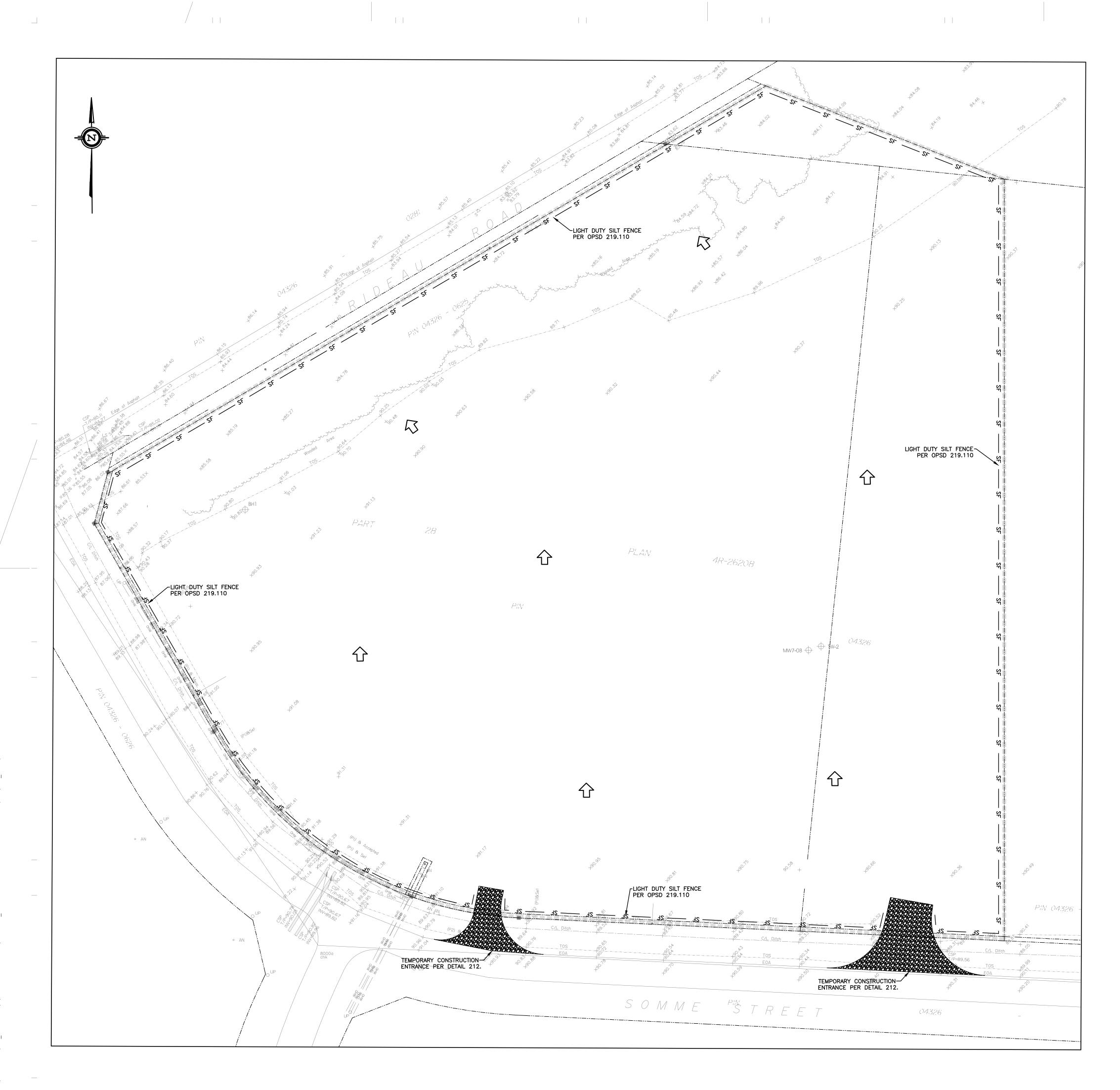
NSULTANT LOGO

FESSIONAL STAMP:

TOPOGRAPHICAL SURVEY PLAN

C003
REVISION NUMBER:
PROJECT #: A001083
E

NOTE OF CAUTION


THE GEODETIC COORDINATES OF EVERY ITEM INCLUDED AS PART OF THIS DOCUMENT HAVE NO LEGAL VALUE. THE SITE LAYOUT MUST BE COMPLETED USING THE OFFICIAL BENCHMARKS OF AN ACCREDITED LAND SURVEYOR.

THE UNDERGROUND FEATURES AND INFORMATION THAT APPEAR ON THE DRAWINGS WERE OBTAINED FROM THE PUBLIC UTILITY COMPANIES AND/OR FROM THE CITY EACH RESPECTIVELY.

ALL INFORMATION UNDER THE LEGEND 'EXISTING' IS FOR INFORMATION ONLY. COMPLETE OR EXACT LOCATION AND ELEVATION OF UNDERGROUND SERVICES ARE NOT GUARANTEED. CERTAIN UNDERGROUND FEATURES ON PRIVATE PROPERTY ARE NOT SHOWN ON THE CURRENT DRAWING.

ANYONE WHO PROCEEDS WITH EXCAVATION WORK SHALL VERIFY THE EXACT LOCATION OF ALL UNDERGROUND FEATURES, BY EXPLORATORY EXCAVATIONS, AND SHALL ASSUME FULL RESPONSIBILITY IF THERE IS ANY DAMAGE THAT OCCURS DURING

THE CONTRACTOR WILL HAVE THE RESPONSIBILITY AND THE OBLIGATION TO VALIDATE, BY EXPLORATORY EXCAVATION, THE SIZE OF THE PUBLIC UTILITIES UNDERGROUND SERVICES AND TO WARN THE ENGINEER OF ANY CONFLICT WITH THE PROJECTED WORK.

EXISTIN

1.8

1.12.

WORK

LEGEND

PROPOSED

	SURVEY MONUMENT PLANTED	
	SURVEY MONUMENT FOUND	
	STANDARD IRON BAR	
	SHORT STANDARD IRON BAR	
	IRON BAR	
	CUT CROSS	
	CONCRETE PIN	
	ROUND IRON BAR	
	SHORT STANDARD IRON BAR	
	IRON BAR	
	WITNESS	
	MEASURED	
	ANNIS, O'SULLIVAN, VOLLEBEKK LTD.	
	REGISTERED PLAN 4M-1388	
	PLAN 4R-26208	
	SIGN	
	LIGHT STANDARD	
	UTILITY POLE	
	ANCHOR	
	NATURAL GAS LINE	
	LIGHT STANDARD	
	CORRUGATED STEEL PIPE	
	LOCATION OF ELEVATIONS	
	CENTRELINE	
	PROPERTY LINE	
	TOP OF SLOPE	
	BOTTOM OF SLOPE	
	TOP OF PIPE	
	TOP OF GRATE	
	EDGE OF ASPHALT	
	JERSEY BARRIER	
-	OVERHEAD WIRES	
	WORK LIMIT	
	BOREHOLE	
		+ 99,000
	DRAINAGE DIRECTION	
	OVERLAND FLOW	
	SILT FENCE	SF
	TEMPORARY CONSTRUCTION ENTRANCE	

SEDIMENT AND EROSION CONTROL - GENERAL NOTES

1.1. Unless otherwise indicated, all materials and construction methods to be in accordance with the requirements of the latest edition of the Ontario Provincial Standard Specifications and Drawings (OPSS and OPSD), the Ontario Ministry of Environment, Conservation and Parks (MECP), applicable Conservation authorities, the municipal standard specifications and drawings, and all other governing authorities as they apply.

1.2. Wherever standards, laws and/or regulations are mentioned they refer to their current versions, modifications included.

1.3. Specifically, sediment and erosion control measures to be constructed as per OPSS.MUNI 805.

1.4. The Contractor must implement best management practices and provide adequate sediment and erosion control measures during construction:

Prevent soil erosion which can result from stormwater runoff or wind erosion during construction;
Prevent sediment deposits in the storm sewer and/or collecting streams and;
Prevent air pollution from dust and particulate matter.

Provisions must be made for sediment and erosion control measures prior to stripping the site of 1.6. vegetation and other deleterious materials. Measures such as phase stripping, vegetation buffer zones, silt fences, straw bales, sediment traps/basins, rock checks, etc. must be constructed and maintained in order to control sediment, as required by the provincial and municipal governing authorities.

The Contractor must set up the measures shown on the plan, inspect them frequently and clean and repair or replace the deteriorated structures.

When the sediment and erosion control measures have to be removed in order to complete a portion of the work, these same measures must be reinstated.

When storing soil on site in piles the Contractor must cover each pile with tarps, straw or a geotextile fabric to avoid fine particle transport by wind and/or streaming rain water.

The light duty silt fence barrier must be installed as per OPSD 219.110.

1.10. At all times the Contractor must maintain the municipal access roads clean and free of sediments. When cleaning the access roads, the Contractor must take the necessary precautions to clear the surfaces covered with sediment prior to cleaning with water.

1.11. For dust control, Contractor to apply calcium chloride (Type I - OPSS 2501 and CAN/CGSB-15-1) and water with equipment approved by the Owner's representative at rate in accordance to OPSS.MUNI 506 when directed by Owner's representative.

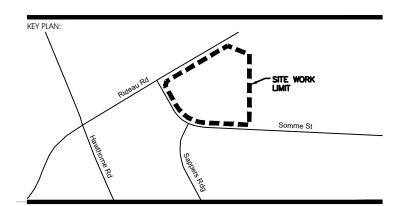
At the end of the construction period, the Contractor is responsible for removal of the temporary sediment and erosion control measures and reconditioning the affected areas.

1.9. This plan is a "Living Document" which may be revised in the event that the control measures are not sufficient.

10 20 30 40 50

NOTE OF CAUTION

THE GEODETIC COORDINATES OF EVERY ITEM INCLUDED AS PART OF THIS DOCUMENT HAVE NO LEGAL VALUE. THE SITE LAYOUT MUST BE COMPLETED USING THE OFFICIAL BENCHMARKS OF AN ACCREDITED LAND SURVEYOR.


THE UNDERGROUND FEATURES AND INFORMATION THAT APPEAR ON THE DRAWINGS WERE OBTAINED FROM THE PUBLIC UTILITY COMPANIES AND/OR FROM THE CITY EACH RESPECTIVELY.

ALL INFORMATION UNDER THE LEGEND 'EXISTING' IS FOR INFORMATION ONLY. COMPLETE OR EXACT LOCATION AND ELEVATION OF UNDERGROUND SERVICES ARE NOT GUARANTEED.

CERTAIN UNDERGROUND FEATURES ON PRIVATE PROPERTY ARE NOT SHOWN ON THE CURRENT DRAWING. ANYONE WHO PROCEEDS WITH EXCAVATION WORK SHALL VERIFY THE EXACT LOCATION OF ALL UNDERGROUND FEATURES, BY EXPLORATORY EXCAVATIONS, AND SHALL ASSUME FULL RESPONSIBILITY IF THERE IS ANY DAMAGE THAT OCCURS DURING

THE CONTRACTOR WILL HAVE THE RESPONSIBILITY AND THE OBLIGATION TO VALIDATE, BY EXPLORATORY EXCAVATION, THE SIZE OF THE PUBLIC UTILITIES UNDERGROUND SERVICES AND TO WARN THE ENGINEER OF ANY CONFLICT WITH THE PROJECTED WORK.

	PRELIMINA NOT FOR CONSTRUCTION	RY
RECORD	DF REVISIONS:	
$\overline{\mathbb{V}}$		
5		
$\overline{4}$		
$-\overline{3}$		
$\overline{2}$		
$\overline{\mathbb{V}}$	ISSUED FOR SITE PLAN APPROVAL	AUGUST 13, 2021
NUMBER:	REVISION:	DATE: (MM/DD/YY)

PROJECT TITLE: - FASTFRATE OTTAWA WAREHOUSE AND DISTRIBUTION FACILITY SCALE: 1:500

Somme st. Ottawa, on

DRAWING TITLE:

SEDIMENT AND EROSION CONTROL PLAN

DRAWN BY:	D.CANN	DRAWING NUMBER:
DATE:		
REVIEWED BY:	J.SAUVE	C004
APPROVED BY:		
PRINT DATE:		REVISION NUMBER:
ISSUED DATE:	AUGUST 13, 2021	_ REVISION NOWBER.
CLIENT PROJECT #:		PROJECT #:
		A001083
DIMENSIONS AND NO DRAWING IS TO BE RE CONSULTANT DRAWIN ARCHITECT. COPYRIG	DTIFYING THE ARCHITECT OF ANY DISCREP/ EAD IN CONJUNCTION WITH ALL STRUCTUR NGS. THIS DRAWING SHALL NOT BE USED FO	. THE CONTRACTOR IS RESPONSIBLE FOR VERIFYING ALL ANCIES BEFORE CONSTRUCTION COMMENCES. THIS ALL, MECHANICAL, ELECTRICAL, CIVIL, AND OTHER OR CONSTRUCTION PURPOSES UNLESS SIGNED BY THE G ARE THE EXCLUSIVE PROPERTY OF THE ARCHITECT AND WITHE ARCHITECT.

GRADING NOTES

- 1. GRADE CONTROL AND DRAINAGE GENERAL
- 1.1. The Contractor must conform to all laws, codes, ordinances, and regulations adopted by federal, provincial or municipal government councils and government agencies, applying to work to be carried
- 1.2. Unless otherwise indicated, all materials and construction methods to be in accordance with the requirements of the latest edition of the Ontario Provincial Standard Specifications and Drawings (OPSS and OPSD), the Ontario Ministry of Environment, Conservation and Parks (MECP), applicable Conservation Authorities, the municipal standard specifications and drawings, and all other governing authorities as they apply.
- 1.3. Wherever standards, laws and/or regulations are mentioned they refer to their current versions, modifications included
- 1.4. The boreholes and test pits shown on the plan are for information purposes only. Their location on the plan is approximate. The Contractor must refer to the boreholes and test pit records to obtain information about observed stratigraphy on site.
- 1.5. The Contractor is responsible for obtaining all permits required to complete all works and bear cost of same, including road cut permit and water permit and their associated costs.
- 1.6. The Contractor is responsible for the coordination of his activities with others on site.
- 1.7. The location of existing underground municipal services, wells, and public utilities as shown on the plans are approximate. The Contractor must determine the exact location, size, material and elevation of all existing utilities (on-site and off-site) prior to any excavation work. Damage to any existing services, wells and/or existing utilities during construction, whether or not shown on the drawings must be repaired by the Contractor at his own expense.
- 1.8. Site preparation includes clearing, grubbing, stripping of topsoil, demolition, removal of unsuitable materials, cut, fill and rough grading of all areas to receive finished surfaces.
- 1.9. All material must be compacted as per the requirements of the governing authority and be approved by 2. DEMOLITION AND REMOVALS the Consultant prior to delivery to the site.
- 1.10. Compaction must conform to the following requirements:
- Exposed subgrade & building pad preparation: 95% Standard Proctor maximum dry density (SPMDD)
- Granular subbase foundations:
- 100% Standard Proctor maximum dry density (SPMDD) Granular base foundations:
- 100% Standard Proctor maximum dry density (SPMDD)
- Asphalt pavement:
- As per OPSS.MUNI 310 Roller compacted concrete pavement
- 98% Mix Design Density
- Subgrade fill (pavement areas OPSS Select Subgrade Material):
- 98% Standard Proctor Maximum Dry Density (SPMDD) Structural fill (building footprints, foundation slabs, OPSS Granular 'A' or
- Granular 'B' Type II Material):
- 100% Standard Proctor Maximum Dry Density (SPMDD)
- 1.11. If groundwater is encountered during construction, dewatering of excavations could be required as per OPSS.MUNI 518. It is assumed that groundwater may be controlled by sump and pumping methods. As required under the "Ontario Water Resources Act (OWRA)", the Contractor must register all water taking activities on Ontario's "Environmental Activity and Sector Registry (EASR)" if water taking exceeds 50,000 l/day, and obtain a "Permit to Take Water (PTTW)" if water taking exceeds 400,000 l/day. Furthermore, Contractor must provide all necessary measures required to ensure dewatering operations does not affect in any way the integrity of the existing surrounding buildings and must plan his work accordingly. Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16.
- 1.12. Control disposal or runoff of water containing suspended materials or other harmful substances in accordance with local authority requirements and as follows:
- 1.12.1. Provide flocculation tanks, settling basins, or other treatment facilities to remove suspended solids or other materials to within the required parameters of the receiving body before discharging to storm sewers, watercourses or drainage areas.
- 1.12.2. Before discharging to storm sewers, watercourses or drainage areas, discharge water must be sampled and tested to ensure quality requirements in accordance with City of Ottawa Sewer Use By-Law No. 2003-514 and the MECP are adhered to. The Contractor is to perform all additional sampling and testing as required by City of Ottawa. All associated fees to be paid by the Contractor.
- Where water is not suitable for discharge into the adjacent storm sewers, watercourses or 1.12.3. drainage areas it must be discharged into the on-site sanitary sewer collection system, or disposed off-site at an approved disposal facility.
- 1.13. The Contractor must maintain benchmarks and landmark references as is. Otherwise, these references will be repositioned by a certified land surveyor at the Contractor's expense.
- 1.14. The Contractor is the only person in charge of safety on the building site. The Contractor is responsible for providing adequate protection of the workers, other personnel and the general public, protection of materials, as well as maintaining in good condition the completed works and works to be completed. The Contractor must supply, install and maintain an appropriate safety fence along the work perimeter until the work is complete.
 - The Contractor must provide at any time:
 - A sufficient number of barriers, posters, guards and others to ensure safety; Necessary conveniences for the completion of the work such as heating, lighting, ventilation, etc.
- 1.15. Temporary excavations in the overburden must be completed as per the requirements of the Occupational Health and Safety Act (OHSA), O. Reg. 213/91, Part III - Excavations. The side slopes of excavations in the soil and fill overburden materials should either be cut back at acceptable slopes or should be retained by shoring systems from the star of the excavation until the

structure is backfilled. The excavation side slopes above the groundwater level extending to a maximum depth of 3 m should ^{3.6.} be cut back at 1H:1V or flatter. The flatter slope is required for excavation below groundwater level. The subsurface soil is considered to be Type 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects. Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

- 1.16. The Contractor must pace deliveries and removals in order to minimize and control stockpiles.
- 1.17. Stockpile material must be stored away from excavations at a distance at least equal to the depth of the excavation. Construction traffic should be limited near open excavation.
- 1.18. Cleanliness on the site
 - The Contractor must clean roadways at his own cost as directed by the Owner's representative; All site roads and walkways to and from the construction zone must be kept clean at all times, from mud, dirt, granular material, debris, etc.;
 - The Contractor must leave the work area clean at the end of each day;
 - Materials and equipment must be laid out in an organized and safe manner; All material, equipment and temporary structures which are no longer necessary for the execution
 - of the Contract must be removed from the site; If required the Contractor must use screens, bulkheads, or any other recognized means in order to reduce noise, dust, interference, obstruction, etc., in conformity with the requirements of the provincial and municipal authorities having jurisdiction.
- 1.19. During the construction period the Contractor is responsible for installing and maintaining temporary traffic signage, including traffic signs, traffic markings and temporary traffic lights, and flagmen, as 4.6. required by the Owner, the Consultant, the Municipality, the MTO, and other governing authorities.
- 1.20. The Contractor must control surface runoff from precipitation during construction.
- 1.21. Where trees and other vegetation are proposed within close proximity to hard surfacs (i.e. sidewalks or pavement structures) it is recommended that the vegetation be panted in CU-Structural Soils or approved equivalent. Under the areas of hard surfaces, the CU soil should be compacted to 100% SPMDD using suitable compaction equipment. The CU-structural soil must extend at least 1.0 m below grade and extend to a 3.0 m radius around the trees/vegetation
- 1.22. Protection of existing trees and shrubs:
- The contractor must ensure that the existing trees and shrubs that are to remain on site will be protected throughout the construction phase in order to minimize the risk of damaging the trunks and branches and to avoid the compaction of the roots. As required, the Contractor must coordinate his work with other professionals to ensure that the existing tree and shrub protection measures are in place prior to any other work and that these measures are maintained until the work is complete:
- The Contractor must protect the existing trees in accordance with OPSS.MUNI 801 and OPSD 220.010.
- The Contractor must define paths for heavy machinery before construction to avoid compaction of the roots of existing trees and shrubs;

- The Contractor cannot store material at the base of trees and shrubs; The Contractor cannot backfill 5. the trunk of existing trees and shrubs; Prune tree branches, shrubs and roots as needed to complete the work.
- The Contractor must perform any tree cutting prior to April 15 (i.e. outside of the core Migratory Birds sting period, which is April 15 to August 15).
- 1.23. The Contractor must ensure the following mitigation measures are implemented in order to reduce the risk of ground contamination from petroleum products:
 - The list of persons and agencies to contact in the event of an emergency must be posted in plain
 - sight on the work site for the duration of the construction period; Machinery must be clean and kept clean to limit any grease or oil deposits inside the work area; Frequent inspections must be performed to detect any oil, fuel, grease or other leaks. If a leak is detected, the necessary corrective action must be taken immediately
 - An emergency kit for the recovery of petroleum products must be kept on site at all times. The kit must include at least 30 m of absorbent booms, a box of absorbent pads and solid absorbent material (powder or granules). The kit must be stored near the location of work and machinery, and kept within easy reach at all times to ensure a rapid response;
 - In the event of a spill the Contractor must immediately report to the Spills Action Centre of the MECP at 1-800-268-6060. Hydrocarbons and contaminated soils will be recovered by a specialized
- 1.24. The Contractor must ensure the following measures are implemented regarding the handling of concrete
 - Concrete should either be mixed away from the site or should be prepared on paved surfaces if only small quantities are required (i.e. minor repairs) Excess concrete must be disposed off-site at a location that meets all regulatory requirements;
 - The washing of concrete trucks and other equipment used for mixing concrete should not be carried out within 30 m of a watercourse or wetland and should take place outside of the work site;
 - All concrete trucks should collect their wash water and recycle it back into their trucks for disposal off-site at a location meeting all regulatory requirements.
- 2.1. The Contractor must visit the premises in order to be fully aware of existing conditions on site, including all elements to be removed and demolished. No claim will be accepted due to a poor evaluation of the work to be completed.
- The Contractor must protect and maintain in service the existing works which must remain in place. If 2.2. they are damaged, the Contractor must immediately make the replacements and necessary repairs to the satisfaction of the Owner's representative and without additional expense to the Owner.
- 2.3. The Contractor must perform the nessessary clearing and grubbing in accordance with OPSS.MUNI 201.
- 2.4. The Contractor must carry out necessary saw cuts even if they are not shown on the drawings.
- The Contractor must entirely remove the demolition wreckage from the construction site in accordance 2.5. with the requirements of the MECP and in accordance with OPSS.MUNI 180 and OPSS.MUNI 510.
 - The Contractor must discard recyclable demolition materials in collaboration with a regional recycling company. The Contractor must be able to provide proof, upon request, that the materials were properly recycled and that the chosen recycling company is recognized in the recycling field. All other demolition materials must be disposed off-site at authorized licensed landfills and in conformity with the applicable laws and regulations. The Contractor must be able to provide, upon
- request, copies of the disposal tickets. 2.6. The Contractor is responsible for locating existing public utilities and (if required) submit a request for
- the interruption of public utility services, such as gas, telephone, power, cable, sewers, watermain, etc.
- 2.7. The Contractor must conduct all removals required to make the work complete.
- 2.8. Unless otherwise specified, all materials, products and others coming from the demolition belong to the Contractor.
- Surfaces and works located outside of the construction work limit must be reinstated as they were 2.9. before beginning of work. The existing Well will be abandoned in accordance with O.Reg 903.
- 3. <u>GENERAL SUBGRADE PREPARATION</u>
- Earth removal must be inspected by an experienced Geotechnical Engineer to ensure that all 3.1. unsuitable materials are removed prior to the placement of fill, including concrete and/or others, and to confirm the compaction degree and condition of the founding soils. All unsuitable materials must be hauled off site and disposed as per provincial and municipal regulations.
- 3.2. Subgrade must be approved by experienced geotechnical personnel before proceeding with placement
- All granular fill must be placed in maximum 200 mm thick loose lifts and compacted using suitable 3.3. methods as per the requirements.
- All soft, wet or disturbed areas revealed under surface compaction must be removed to a minimum 3.4. depth of 500 mm and replaced with compacted suitable subgrade fill (i.e. OPSS Granular 'B' Type II material) and an approved non-woven geotextile per OPSS 1860 as directed by the Geotechnical Engineer, Transition around sub-excavations where backfill and native material are not of similar nature. shall be sloped at 5 horizontal to 1 vertical, within 1.8 m of finished surface
- 3.5. If contaminated material is encountered during the work, the Contractor must retain a Qualified Person (QP, as per the definition under O.Reg 153/04), characterize the soil and dispose off-site all materials from the contaminated area in accordance with the requirements of the MECP O.Reg 406/09 and OPSS.MUNI 180. Prior to the start of work the Contractor must provide the name and location of the intended Receiving Site (s) where the contaminated materials will be disposed to the Consultant. The Contractor must obtain from the Receiving Sites QP documents confirming that the site has the right to accept the contaminated material. During the work, the Contractor must provide the Consultant copies of all reports signed by the Receiving Site's QP.
- The Contractor is responsible for providing a confirmation that the imported material used as subgrade fill is free of any contaminants, as per O.Reg 153/04, such as Petroleum Hydrocarbons (C10-C50), Polycyclic Aromatic Hydrocarbons (PAH), and metals like mercury, silver, arsenic, cadmium, cobalt, chromium, copper, tin, manganese, molybdenum, nickel, lead and zinc.
- 4. EXCAVATION AND BACKFILL
- 4.1. Subgrade preparation must be completed as per Section "3.0 General Subgrade Preparation".
- 4.2. The management of excess materials to comply with OPSS.MUNI 180 and any excess soils with O.REG. 406/19.
- 4.3. Topsoil and deleterious fill, such as those containing organic materials, must be stripped from under any buildings, paved areas, pipe bedding, and other settlement sensitive structures.
- 44 Non-specified existing fill along with on-site excavated soil can be used as general landscaping fill where settlement of the ground surface is of minor concern. These materials should be spread in thin lifts and at least compacted by the tracks of the spreading equipment to minimize voids. If these materials are to be used to build up the subgrade level for areas to be paved, they should be compacted in thin lifts to a minimum density of 98% of their respective SPMDD.
- Structural fill used for grading beneath the footings of buildings, building floor slabs, sidewalks, 4.5. pavements and slab on gradesigns and light standards must consist of OPSS Granular 'A' or Granular 'B' Type II Material.
- Construction operations could cause vibrations, and possibly, sources of nuisance to the community. Therefore, means to reduce the vibration levels as much as possible must be incorporated in the construction operations to maintain a cooperative environment with the residents. The following construction equipments could cause vibrations: piling equipment, hoe ram, compactor, dozer, crane, truck traffic, etc. Vibrations, caused by blasting or construction operations could cause
- detrimental vibrations on the adjoining buildings and structures. Therefore, it is recommended that all vibrations be limited. Two parameters determine the recommended vibration limit, the maximum peak particle velocity and the frequency. For low frequency vibrations, the maximum allowable peak particle velocity is less than that for high frequency vibrations. As a guideline, the peak particle velocity should be less than 15 mm/s between frequencies of 4 to 12 Hz, and 50 mm/s above a frequency of 40 Hz (interpolate between 12

and 40 Hz). These guidelines are for current construction standards. Considering there are several sensitive buildings in close proximity to the subject site, consideration to lowering these guidelines is recommended. These guidelines are above perceptible human level and, in some cases, could be very disturbing to some people. A pre-construction survey is therefore required to minimize the risks of claims during or following the construction of the proposed building.

SERVICES NOTES

3.1.

3.2.

3.3.

3.4

3.5.

3.6.

37

3.8.

3.9.

3.11.

4.1.

4.2.

4.3.

4.5.

			<u></u>	
5. <u>PAV</u>	EMENT STRUCTURES, CURBS, AND SIDEWALKS	1. <u>MU</u>	JNICIPAL SERVICES - GENERAL	3.
5.1.	Construction of granular foundation must conform to OPSS.MUNI 314.	1.1.	Unless otherwise indicated, all materials and construction methods to be in accordance with the	
	Granular materials used on site must conform to the requirements of OPSS.MUNI 1010.		requirements of the latest edition of the Ontario Provincial Standard Specifications and Drawings (OPSS and OPSD), the Ontario Ministry of Environment, Conservation and Parks (MECP), applicable Conservation Authorities, the municipal standard specifications and drawings, and all other governing	9
	Road cut reinstatement as per City of Ottawa Detail R10 with surface course key. Where the proposed pavement structure abuts the existing pavement, the pavement structure should	1.2.	authorities as they apply. Wherever standards, laws and/or regulations are mentioned they refer to their current versions,	
0.4.	match the existing pavement layers.		modifications included.	3
	Construction of asphalt must conform to OPSS.MUNI 310 and OPSS.MUNI 313.	1.3.	The boreholes and test pits shown on the plan are for information purposes only. Their location on the plan is approximate. The Contractor must refer to the boreholes and test pit records to obtain information about observed stratigraphy on site.	
5.5.1. 5.5.2.	Paving must not be carried out if the roadbed is frozen or wet. The granular grade must be free of standing water at the time of hot mix asphalt placement. The surface of a pavement upon which hot mix asphalt is to be placed must be dry at the time of hot	1.4.	The location of existing underground municipal services and public utilities as shown on the plans are approximate. The Contractor must determine the exact location, size, material and elevation of all existing utilities (on-site and off-site) prior to any excavation work. Damage to any existing services	I
	mix asphalt placement. Following the final compaction of a hot mix asphalt course, a 4 hour minimum time laps must be respected before placing a new new hot mix asphalt course. Additionally, the temperature of the previous course must be 50 °C or less.	1.5.	and/or existing utilities during construction, whether or not shown on the drawings must be repaired by the Contractor at his own expense. The Contractor is responsible for obtaining all permits required to complete all works and bear cost of	1
5.5.3.	As per OPSS.310.07.06.02, the asphalt base course must not be placed unless the air temperature at the surface of the road is a minimum of 2°C and rising.	1.6.	The Contractor is responsible for the coordination of his activities with others on-site.	3
5.5.4.	As per OPSS.310.07.06.02, the asphalt surface course must not be placed unless the air temperature at the surface of the road is a minimum of 7°C and rising.	1.0.	Terminate and plug all service connections at 1.0 meter from edge of the building.	ĩ
	Asphalt concrete material must conform to OPSS.MUNI 1150 for Hot Mix Asphalt and OPSS.MUNI 1151 for Superpave and Stone Mastic Asphalt Mixtures. Minimum Performance Graded (PG) 58-34 asphalt cement must be used for this project.	1.8.	The Contractor must complete compaction as per OPSS.MUNI 501 and note the following requirements for service trenching:	;
5.7.	Asphalt mix design must be reviewed and approved by a Geotechnical Engineer before paving.		MATERIALS COMPACTION Pipe bedding 95% Standard Proctor Maximum Dry Density	:
5.8.	Concrete curbs must conform to OPSS 353.MUNI.		Trench backfill and pipe cover 95% Standard Proctor Maximum Dry Density	
5.9.	Concrete Toe-wall to be per OPSD 3120.100 Type I	1.9.	The Contractor is responsible for making or arranging all connections to the existing sewers as per municipal requirements. Prior to connection, the Contractor must provide, to the Engineer and the City	
	Elevation at top of concrete curbs to be 150 mm above the asphalt, unless otherwise indicated on the drawings.		for approval, all test results performed on the internal services. Test results must include C.C.T.V. inspection of sewers, infiltration/exfiltration tests for sewers and manholes, deformation tests of sewers, watermain hydrostatic leakage test, flushing and disinfecting operations, and bacteriological water analysis.	,
5.11.	Concrete sidewalks must conform to OPSS.MUNI 351.	1 10		
	For all concrete placement during cold weather Contractor must place material in accordance to OPSS.904.MUNI.	1.10.	The Contractor must determine the exact invert (geodetic elevation), diameter and construction material of the existing conduits at the proposed connections. He must also carry out, if necessary, exploratory excavations in order to determine the exact location and inverts of existing duct banks. This information must immediately be provided to the Engineer prior to start undertaking any municipal services work	/ 1
5.12.1	When ambient air temperature is 5°C or less, forms for concrete work must be left in place for the duration of the curing period.	1 1 1	and a 48 hour period must be allocated to the Engineer for design review. The Contractor is responsible for all excavation, backfill and reinstatement of all areas disturbed during	3
5.12.2	When the ambient air temperature is below 0°C at the time of placing, components must be cured with moisture vapour barrier.	1.11.	construction to existing conditions or better and all associated works to the satisfaction of the Engineer and municipal authorities.	
5.12.3	cold weather.		 Asphalt reinstatement must be in accordance with OPSS.MUNI 310. Landscape areas to be reinstated with 150 mm of topsoil and sod in accordance with OPSS.MUNI 802 and OPSS.MUNI 803. 	2
5.13.	 Construction of Roller-Compacted Concrete Pavement as follows: Subgrade to be prepared as specified, and contoured for efficient drainageConstruction of Roller-Compacted Concrete Pavement as follows: Subgrade to be prepared as specified, and contoured for efficient drainage 	1.12.	It is recommended that a trench box be used at all times to protect personnel working in trenches with steep or vertical sides. Services are expected to be installed by "cut and cover" methods and excavations should not remain open for extended periods of time.	
	 Concrete should be transported in dump trucks and placed using asphalt pavers. If placed in more than one lift, subsequent lift should be placed within 60 minutes of placing the bottom lift. Roller compacted concrete must be compacted using 10 ton dual drum vibratory roller within 	1.13.	The pipe bedding for sewer and water pipes must consist of at least 150 mm of OPSS Granular A material The material must be placed in maximum 300 mm thick lifts and compacted to a minimum of 95% of its SPMDD. The bedding material should extend at least to the spring line of the pipe.	
	 15 to 45 minutes of placement with 4 to 6 passes, until lift deflects uniformly under roller, and no pumping, shiny or pasty surface is observed. The desired density is 98% of the mix design density. Transverse saw joints must be placed at 5 m on centres. 	1.14.	The cover material, which must consist of OPSS Granular A, will extend from the spring line of the pipe to at least 300 mm above the obvert of the pipe. The material must be placed in maximum 300 mm thick loose lifts and compacted to a minimum of 95% of its SPMDD.	
6. <u>BUIL</u>	- Longitudinal saw joints must be placed at 0.2 m from the edges, and every 8m subsequently.	1.15.	Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) must match the soils exposed at the trench walls to minimize differential frost heaving. The trench backfill must be placed in maximum 300 mm thick loose)
	The Building Pad shall be prepared prior to Dynamic Compaction (DC) to a level that will allow the finished grade to be 450mm below the Finish Floor Elevation (FFE). The Contractor shall assume that the total settlement after DC will be 300mm. Therefore, the Building Pad finished grade Prior DC shall be 91.850m.	1.16.	lifts and compacted to a minimum of 95% of the material's SPMDD Dewatering of pipeline, utility and associated structure in rock excavations to be completed as per OPSS.MUNI 403.	2
6.2.	The Building Pad footprint shall extend 2m past the perimeter of the proposed building footprint.	1.17.	Trenching, backfilling and compacting must conform to OPSS.MUNI 401.	2
	The final layer of the building pad (Working Pad) shall consist of compacted 600 mm of Granular B	2. <u>W</u>	ATERMAIN	2
	type II. The Building Pad shall be excavated to 91.850m minus (-) 600mm = 91.250m in Cut areas and or	2.1.	Watermain, water service connections and associated appurtenances must be constructed in	
6.5.	raised to 91.250m plus (+) 600mm = 91.850m in Fill areas. In addition to the 600mm Granular pad specified above, in fill areas, the Building Pad shall be raised using excavated surplus materials from the site as per the Excavated Materials Management	2.2.	accordance with the Ontario Provincial Standard Specifications. Specifically watermains must conform to OPSS.MUNI 441. Watermain must be constructed as per OPSS.MUNI 441 and specifically OPSD 802.010 for earth	2
6.6.	specifications. Fill must be place in lifts no greater than 200mm thick and compacted to the specified density using	L . L .	excavations and 802.013 for rock excavation. Bedding and cover material to be OPSS Granular 'A' compacted to 95% Standard Proctor Maximum Dry Density.	
	suitable compaction equipments. The building pad preparation must include a 20 m wide temporary access road (up to the property line)	2.3.	Watermain pipe materials must be class 150 PVC DR 18 or approved equivalent, unless otherwise shown on the Drawings. Materials must conform to OPSS 441.	2
	around the building and, between the building and the access street. The contractor must be responsible for maintaining the temporary access roads in good and tidy condition at all times to the satisfaction of the Owner and / or Consultant. All temporary access roads constructed within future pavement areas must consist of compacted	2.4.	All watermain must be installed with a minimum of 2.40 meters cover from finished grade. Where a minimum of 2.40 meters cover is not reached, thermal insulation is required as per City of Ottawa Details W22 and W23.	
	granular materials as per pavement infrastructure details. All temporary access roads constructed within future landscaped areas must consist of compacted OPSS Select Subgrade Material to allow heavy equipment traffic.	2.5.	Watermain service connections must be installed a minimum of 2.40 meters from any catchbasin, manhole or object that may contribute to freezing. Thermal insulation must be installed as per City of Ottawa Details W22 and W23 where 2.40 meters of separation cannot be achieved.	
	If the building is constructed during the winter period, the Contractor must be responsible for the snow removal and spreading of abrasive throughout the construction work by the building contractor and his sub-contractors.	2.6.	Cathodic protection (if required) must be installed as per City of Ottawa Details W40 and W42.	
7. <u>EXC</u>	AVATED MATERIAL MANAGEMENT	2.7.	Restraints must be as per City of Ottawa Details W25.5 and W25.6.	
	During site preparation excavation work, the Contractor shall ensure that the excavated existing fill	2.8.	Valves to be installed as per OPSS 441 and conform to the following:	
	material remains on-site as much as possible and is incorporated within its work. All surplus excavation of existing Fill material shall be managed as per the following priorities Surplus excavated materials may come from excavation required to construct the proposed ponds		 All valves must open in a counter clockwise direction; Designed for cold water working pressure of 1035 kPa; Types must be one of the following: 	
7.1.2.	and parking areas at specified finished elevations. First, surplus excavated materials shall be incorporated within the Building Pad Preparation to		 Valves less than 75 mm to be brass or bronze gate valves; Valves greater than or equal to 75 mm, and less than or equal to 300 mm, to be cast or ductile iron 	ı
7.1.2.	First, surplus excavated materials shall be incorporated within the Building Pad Preparation to raise the Pad to the required elevation and allowing for the Working Pad layer mentioned at 6.3 Second, surplus materials shall be used to backfill the Vegetated Retaining wall.		 gate valves; Valves greater than 300 mm up to and including 500 mm to be gate or butterfly valves; Valves greater than 500 mm to be butterfly valves. 	
7.1.4.	The remaining surplus material shall be remove off-site as per the specification herein.	2.9.	A continuous 12 gauge copper tracer wire must be installed over all watermains. Tracer wire must be tied to all fire hydrants.	;
		2.10.	Valve box assembly to be as per City of Ottawa Detail W24.	
		2.11.	When a watermain pipe crosses a sewer pipe, installation must be as per City of Ottawa Detail W25.2.	
		2.12.	Watermains must be thoroughly flushed and cleaned to remove all dirt and debris prior to the disinfection process.	;
		2.13.	All watermains must be hydrostatically and bacteriologically tested as per provincial and municipal regulations. It is the Contractor's responsibility to ensure that all requirements are followed.	
		2 1/	Hydrostatic testing to be completed as per OPSS 441.07.24. Testing must be completed under the	<u>،</u>

2.14. Hydrostatic testing to be completed as per OPSS 441.07.24. Testing must be completed under the supervision of the Contract Administrator. The test section will be either a section between valves or the completed watermain. Test pressure to be 1035 kPa.

2.15. Flushing and Disinfecting to be completed as per OPSS 441.07.25 under the supervision of the Contract Administrator.

2.16. Contractor must coordinate the supply and installation of water meter and remote water meter for the building with the mechanical engineer

3. STORM SEWER

Storm sewers laterals and storm service connections must be constructed in accordance with the Ontario Provincial Standard Specifications. Specifically storm sewers must conform to OPSS.MUNI

PVC storm sewer material to conform to OPSS.MUNI 1841. PVC storm sewers to be installed as per OPSD 802.010 for earth excavation and 802.013 for rock excavation. Bedding and cover material to be OPSS Granular 'A'.

The allowable deflected pipe diameter when using flexible pipe is as follows: - Pipes 100 to 750 mm: 7.5% of the base inside diameter of the pipe Greater than 750 mm: 5.0% of the base inside diameter of the pipe

Final backfill material for storm sewers must be approved native material or select subgrade material in conformance with OPSS.MUNI 212.

Storm sewer pipes must be type PVC SDR-35, unless noted otherwise on the drawings.

Culverts, when double barreled, must be spaced laterally by 300mm between each barrel.

All storm sewers to be C.C.T.V. inspected by the Contractor as per OPSS.MUNI 409. Report must be provided to the Engineer in two (2) copies and the C.C.T.V. inspection in DVD format only.

Storm manholes, manhole/catchbasins, catchbasins, ditch inlets and valve chambers to be installed as per OPSS 407.

Adjustment or rebuilding of manholes, manhole/catchbasins, catchbasins, ditch inlets and valve chambers to be completed as per OPSS 408.

3.10. Excavating, backfilling, and compacting for manholes, manhole/catchbasins, catchbasins, ditch inlets and valve chambers to be completed as per OPSS 402.

Storm manhole, manhole/catchbasin and catchbasin excavations to be backfilled with OPSS Granular 'B' compacted to 99% Standard Proctor Maximum Dry Density (SPMDD). Joints between sections must be wrapped in a non-woven geotextile.

bacteriological water 3.12. Storm manholes and manhole/catchbasins to be as per OPSD 701.010 and must be equipped with safety platform as per OPSD 404.020 when exceeding 5.0 m to the lowest invert.

construction material 3.13. Storm manhole frame and cover to be as per OPSD 401.010 Type "A" closed cover.

unicipal services work 3.14. When a minimum cover of 1.5 meters is not reached, frost protection is required.

3.15. For building roof drain sizes and location refer to architectural and mechanical drawings.

action of the Engineer 4. <u>SANITARY SEWER</u>

Sanitary sewers, laterals and service connections must be constructed in accordance with the Ontario Provincial Standard Specifications. Specifically sanitary sewers must conform to OPSS.MUNI 410.

PVC sanitary sewer pipe material to type PVC SDR-35, conforming to OPSS.MUNI 1841. PVC sanitary sewers to be installed as per OPSD 802.010 for earth excavation and 802.013 for rock excavation. Bedding and cover material to be OPSS Granular 'A'.

The allowable deflected pipe diameter when using flexible pipe is as follows:

Pipes 100 to 750 mm: 7.5% of the base inside diameter of the pipe Greater than 750 mm: 5.0% of the base inside diameter of the pipe

spring line of the pipe 4.4. Final backfill material for sanitary sewers must be approved native material or select subgrade material

All sanitary sewers to be C.C.T.V. inspected by the Contractor as per OPSS.MUNI 409. Report must be rovided to the Engineer in two (2) copies and the C.C.T.V. inspection in DVD format only.

4.6. Sanitary manholes to be installed as per OPSS 407.

in conformance with OPSS.MUNI 212.

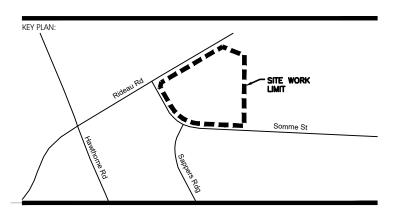
be completed as per 4.7. Adjustment or rebuilding of sanitary manholes to be completed as per OPSS 408.

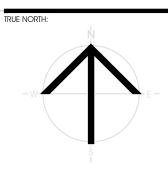
4.8. Excavating, backfilling, and compacting for sanitary manholes to be completed as per OPSS.MUNI 402.

4.9. Sanitary manholes to be backfilled with OPSS Granular 'B' compacted to 99% Standard Proctor Maximum Dry Density (SPMDD). Joints between sections must be wrapped in a non-woven geotextile.

4.10. Sanitary manholes to be as per OPSD 701.010 and must be equipped with safety platform as per OPSD 404.020 when exceeding 5.0 m to the lowest invert.

4.11. Sanitary manhole frame and cover to be as per OPSD 401.010 Type "A" closed cover.


OPSS Granular 'A' 4.12. A maintenance hole drop structure tee is to be used as per OPSD 1003.010 when the drop from the inlet invert to the outlet invert is greater than 600 mm and less than 1200 mm. A drop structure wye is to be used as per OPSD 1003.020 when the drop exceeds 1200 mm.

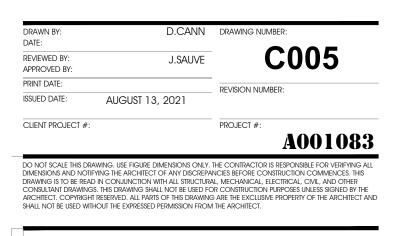

> 4.13. Sanitary service connections to rigid main sewer pipe to be as per City of Ottawa Detail S11. Connections to flexible main sewer pipe to be as per City of Ottawa Detail S11.1

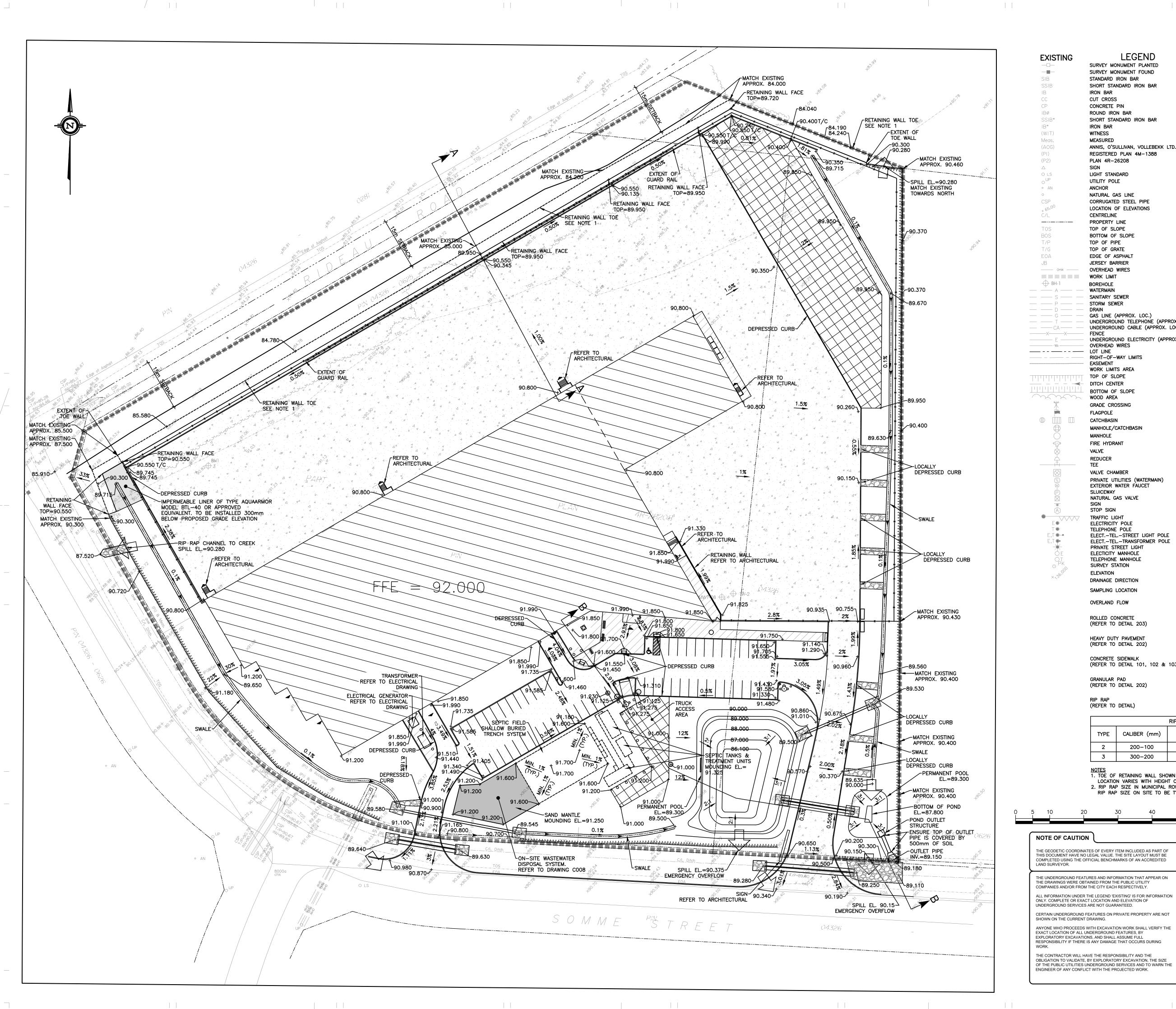
per City of Ottawa 4.14. When a minimum cover of 1.8 meters is not reached, frost protection is required.

4.15. Benching is required inside the concrete bottom of sanitary manholes as per OPSD 701.021.

PRELIMINARY

$\overline{}$		
5		
¥		
3		
$\sqrt{2}$		
$\overline{\mathbf{V}}$	ISSUED FOR SITE PLAN APPROVAL	AUGUST 13, 202
UMBER:	REVISION:	DATE: (MM/DD/YY)





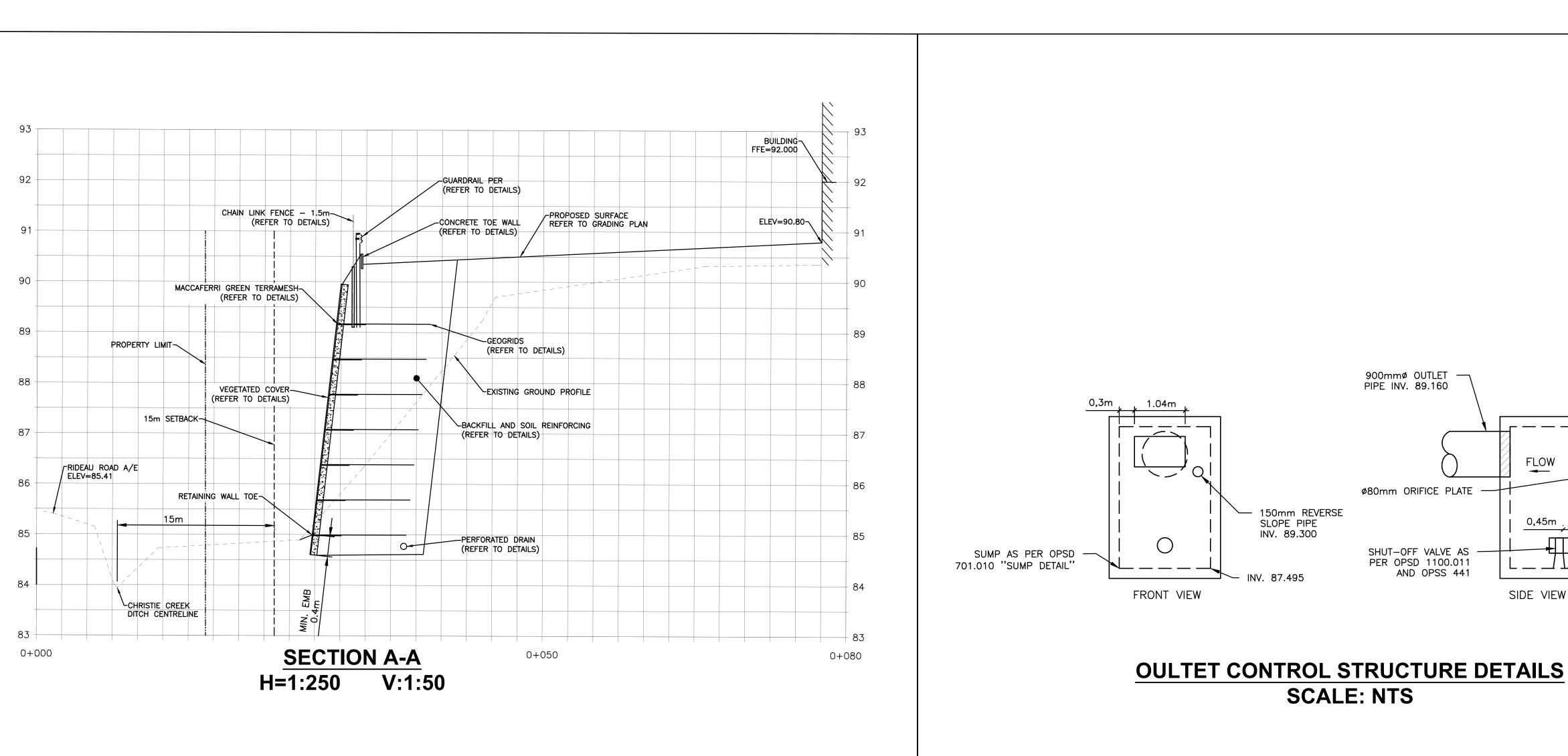
FASTFRATE OTTAWA WAREHOUSE AND DISTRIBUTION FACILITY SCALE: NONE

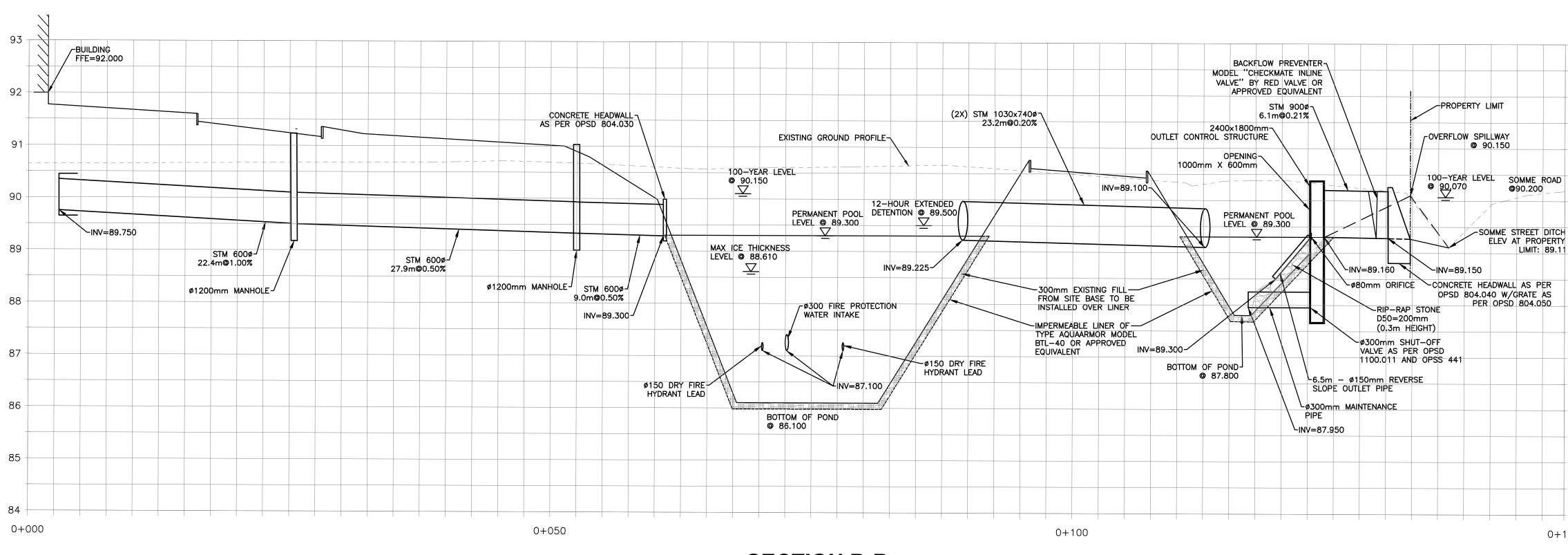
SOMME ST. OTTAWA, ON

NOTES PLAN

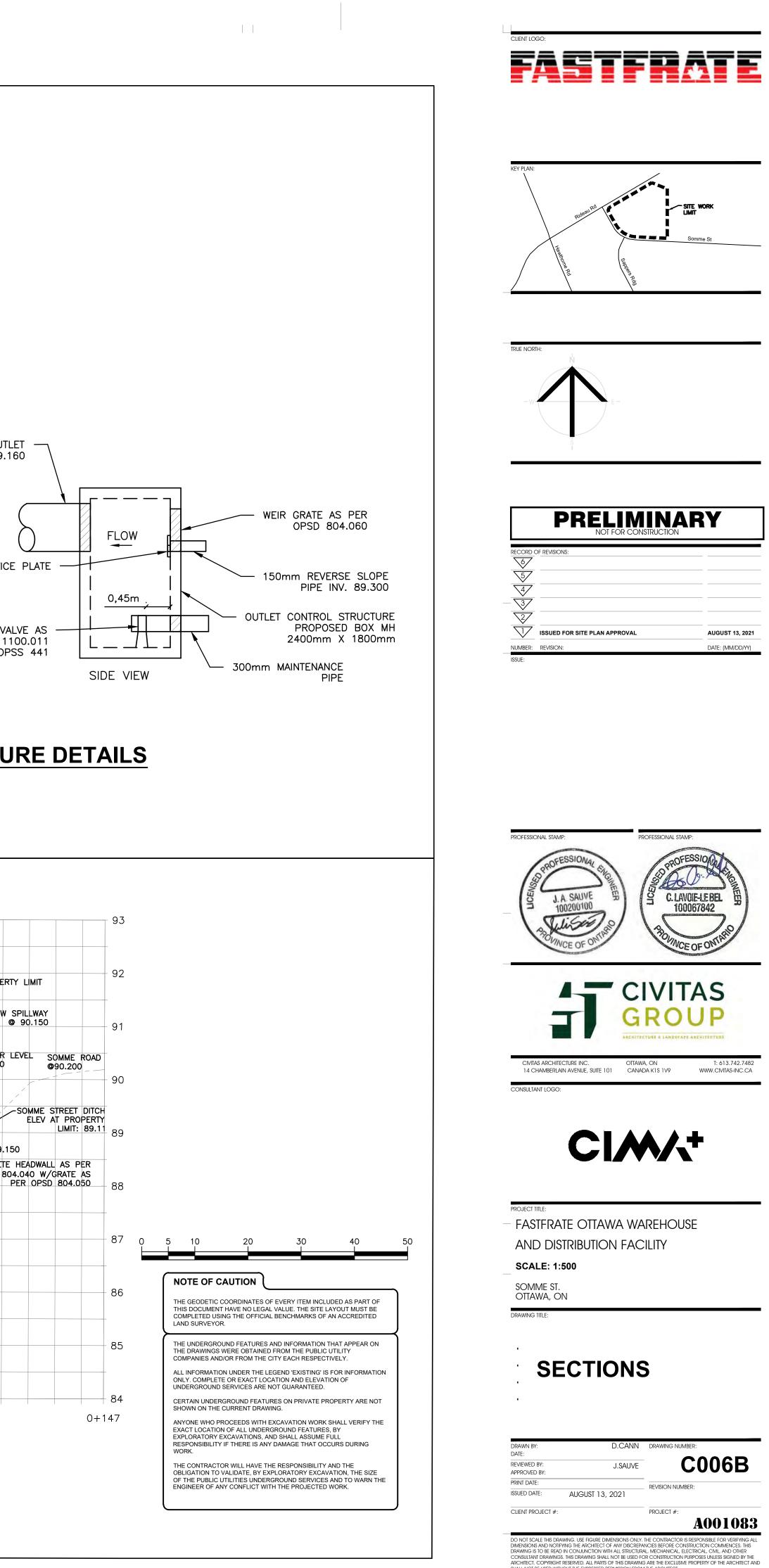
EXISTING SIB SSIB IB CC CP	SURVEY MC STANDARD SHORT STAI IRON BAR CUT CROSS CONCRETE	NDARD IRON BAR ; PIN		PROP	OSED	
IBØ SSIB* IB* (WIT) Meas. (AOG) (PI)	IRON BAR WITNESS MEASURED ANNIS, O'SI	N BAR NDARD IRON BAR JLLIVAN, VOLLEBEKK 1 9 PLAN 4M-1388	LTD.			
(P2) △ ○ LS	PLAN 4R-2 SIGN LIGHT STAN	DARD				
O ^{UP} • AN • CSP	UTILITY POL ANCHOR NATURAL GA	_				
+ 6 ^{5.00} C/L		OF ELEVATIONS				
TOS BOS T/P	TOP OF SL BOTTOM OF TOP OF PIF	SLOPE				
T/G EOA JB	TOP OF GR EDGE OF A JERSEY BAI OVERHEAD	SPHALT RRIER				
онw	WORK LIMIT BOREHOLE WATERMAIN		_		- -	
S	STORM SEW		+		• • • • •	
	GAS LINE (UNDERGROU	APPROX. LOC.) JND TELEPHONE (APP JND CABLE (APPROX.		- >		
E	UNDERGROU OVERHEAD	JND ELECTRICITY (APF WIRES	PROX. LOC.)			
	LOT LINE RIGHT-OF- EASEMENT	WAY LIMITS	-			
	WORK LIMIT		Т			
	DITCH CENT	ſER	<u> </u> 	<u>. 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1</u>		
	BOTTOM OF	A	1			
<u> </u>	GRADE CRO	JSSING				
	CATCHBASIN MANHOLE/(
	MANHOLE			ζ	Ž	
© ₽ ⊗	FIRE HYDR/ VALVE	ANT		di C	<u>ም</u>	
Ă	REDUCER TEE				<u>د</u> ا	
\otimes	VALVE CHA				Ž	
S S P X •	EXTERIOR V	'ILITIES (WATERMAIN) WATER FAUCET		C	۶ J	
	NATURAL G	AS VALVE				
	STOP SIGN	דטר				
	ELECTRICIT	(POLE				
E,T ●-• E,T ●•	ELECTTEL	STREET LIGHT POLI				
-```_` O`E	PRIVATE ST ELECTICITY	REET LIGHT MANHOLE				
OT PK	TELEPHONE SURVEY ST					
× .56,	ELEVATION DRAINAGE	DIRECTION		+ 99,	000	
	SAMPLING	LOCATION				
	OVERLAND	FLOW			$\mathbf{>}$	
	ROLLED CO (REFER TO	NCRETE DETAIL 203)		A		
		Y PAVEMENT DETAIL 202)				
	CONCRETE (REFER TO	SIDEWALK DETAIL 101, 102 &	103)			
		PAD DETAIL 202)				
	RIP RAP (REFER TO	DETAIL)				
			RIP-RAP]
	TYPE	CALIBER (mm)	d50 (n	nm)	THICKNESS	(mm)
	2	200-100	150		300	
	3	300–200	250		500	
	LOCATIO 2. RIP RAF	RETAINING WALL SHO N VARIES WITH HEIGH ? SIZE IN MUNICIPAL ? SIZE ON SITE TO B	IT OF WALL. ROW TO BE		ON.	

	PRELIM NOT FOR CONST	
RECORD	DF REVISIONS:	
\bigtriangledown		
5		
4		
3		
$\frac{1}{2}$		
, V	ISSUED FOR SITE PLAN APPROVAL	AUGUST 13, 2021
IUMBER:	REVISION:	DATE: (MM/DD/YY)

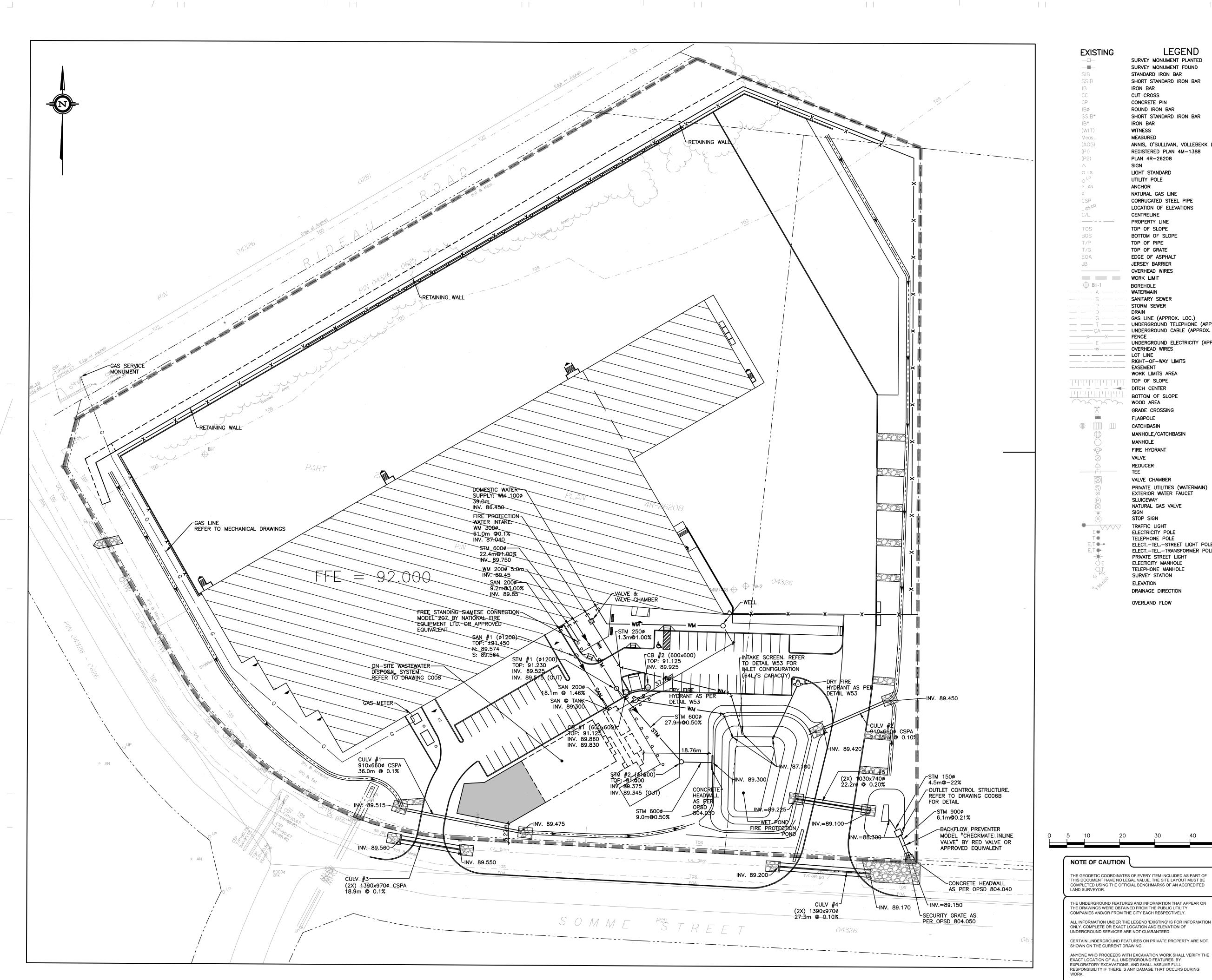



DRAWN BY: DATE:	D.CANN	DRAWING NUMBER:
REVIEWED BY: APPROVED BY:	J.SAUVE	C006A
PRINT DATE:		REVISION NUMBER:
ISSUED DATE:	AUGUST 13, 2021	REVIOLATION NOWIDER.
CLIENT PROJECT #	:	PROJECT #: A001083
DIMENSIONS AND NO DRAWING IS TO BE REA CONSULTANT DRAWIN ARCHITECT. COPYRIG	TIPYING THE ARCHITECT OF ANY DISCREPA AD IN CONJUNCTION WITH ALL STRUCTUR GS. THIS DRAWING SHALL NOT BE USED FO	THE CONTRACTOR IS RESPONSIBLE FOR VERIFYING ALL INCIES BEFORE CONSTRUCTION COMMENCES. THIS AL, MECHANICAL, ELECTRICAL, CML, AND OTHER OR CONSTRUCTION PURPOSES UNLESS SIGNED BY THE 3 ARE THE EXCLUSIVE PROPERTY OF THE ARCHITECT AND IT THE ARCHITECT.

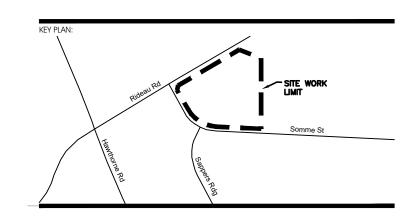
CERTAIN UNDERGROUND FEATURES ON PRIVATE PROPERTY ARE NOT

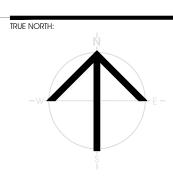

SHOWN ON THE CURRENT DRAWING.

WORK



<u>SECTION B-B</u> =1:250 V:1:50 H=1:250




SHALL NOT BE USED WITHOUT THE EXPRESSED PERMISSION FROM THE ARCHITECT.

١G	LEGEND	PROPOSED
	SURVEY MONUMENT PLANTED	
	SURVEY MONUMENT FOUND	
	STANDARD IRON BAR	
	SHORT STANDARD IRON BAR	
	IRON BAR CUT CROSS	
	CONCRETE PIN	
	ROUND IRON BAR	
	SHORT STANDARD IRON BAR	
	IRON BAR	
	WITNESS MEASURED	
	ANNIS, O'SULLIVAN, VOLLEBEKK LTD.	
	REGISTERED PLAN 4M-1388	
	PLAN 4R-26208	
	SIGN	
	LIGHT STANDARD UTILITY POLE	
	ANCHOR	
	NATURAL GAS LINE	
	CORRUGATED STEEL PIPE	
	LOCATION OF ELEVATIONS	
	CENTRELINE PROPERTY LINE	
	TOP OF SLOPE	
	BOTTOM OF SLOPE	
	TOP OF PIPE	
	TOP OF GRATE	
	EDGE OF ASPHALT JERSEY BARRIER	
	OVERHEAD WIRES	
	WORK LIMIT	
	BOREHOLE	
	WATERMAIN SANITARY SEWER	
	STORM SEWER	->
	DRAIN	── > ── □ ───
	GAS LINE (APPROX. LOC.) UNDERGROUND TELEPHONE (APPROX. LOC	2.)
	UNDERGROUND CABLE (APPROX. LOC.)	,
Х		
	UNDERGROUND ELECTRICITY (APPROX. LOO OVERHEAD WIRES	
	LOT LINE	
	RIGHT-OF-WAY LIMITS EASEMENT	
	WORK LIMITS AREA	
	TOP OF SLOPE	<u> הוהוהוהוהוהו</u>
	DITCH CENTER	
	BOTTOM OF SLOPE WOOD AREA	<u>+ + + + + + + + + + + + + + + + + + + </u>
	GRADE CROSSING	
	FLAGPOLE	
	CATCHBASIN	\odot \square \square
	MANHOLE/CATCHBASIN	\bigcirc
	MANHOLE	Q
	FIRE HYDRANT	
	VALVE	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	REDUCER TEE	
	VALVE CHAMBER	\bigcirc
	PRIVATE UTILITIES (WATERMAIN)	\bigcirc
	EXTERIOR WATER FAUCET	-
	SLUICEWAY NATURAL GAS VALVE	
	SIGN	
	STOP SIGN	
\bigtriangledown	TRAFFIC LIGHT ELECTRICITY POLE	
	TELEPHONE POLE	
	ELECTTELSTREET LIGHT POLE	
	ELECTTELTRANSFORMER POLE PRIVATE STREET LIGHT	
	ELECTICITY MANHOLE	
	TELEPHONE MANHOLE SURVEY STATION	
50	ELEVATION	+ 99,000
	DRAINAGE DIRECTION	
	OVERLAND FLOW	L

	PRELIMIN NOT FOR CONSTRUCTION	
RECORD C	DF REVISIONS:	
	ISSUED FOR SITE PLAN APPROVAL	AUGUST 13, 2021 DATE: (MM/DD/YY)

PROJECT TITLE: - FASTFRATE OTTAWA WAREHOUSE AND DISTRIBUTION FACILITY SCALE: 1:500 Somme st. Ottawa, on

DRAWN BY: DATE:	D.CANN	
REVIEWED BY: APPROVED BY:	J.SAUVE	C007
PRINT DATE:		REVISION NUMBER:
ISSUED DATE:	AUGUST 13, 2021	
CLIENT PROJECT #	:	PROJECT #: A001083
DIMENSIONS AND NO DRAWING IS TO BE RE CONSULTANT DRAWIN ARCHITECT. COPYRIG	TIFYING THE ARCHITECT OF ANY DISCREPA AD IN CONJUNCTION WITH ALL STRUCTUR IGS. THIS DRAWING SHALL NOT BE USED FO	THE CONTRACTOR IS RESPONSIBLE FOR VERIFYING AI NICES BEFORE CONSTRUCTION COMMENCES. THIS AL, MECHANICAL, ELECTRICAL, CIVIL, AND OTHER OR CONSTRUCTION PURPOSES UNLESS SIGNED BY THE 5 ARE THE EXCLUSIVE PROPERIY OF THE ARCHITECT A

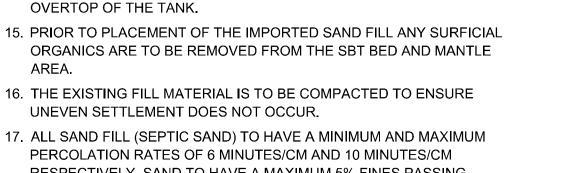
10	20 I	30	40 I	50

NOTE OF CAUTION

THE GEODETIC COORDINATES OF EVERY ITEM INCLUDED AS PART OF THIS DOCUMENT HAVE NO LEGAL VALUE. THE SITE LAYOUT MUST BE COMPLETED USING THE OFFICIAL BENCHMARKS OF AN ACCREDITED LAND SURVEYOR.

THE UNDERGROUND FEATURES AND INFORMATION THAT APPEAR ON THE DRAWINGS WERE OBTAINED FROM THE PUBLIC UTILITY COMPANIES AND/OR FROM THE CITY EACH RESPECTIVELY. ALL INFORMATION UNDER THE LEGEND 'EXISTING' IS FOR INFORMATION ONLY. COMPLETE OR EXACT LOCATION AND ELEVATION OF UNDERGROUND SERVICES ARE NOT GUARANTEED.

SHOWN ON THE CURRENT DRAWING. ANYONE WHO PROCEEDS WITH EXCAVATION WORK SHALL VERIFY THE EXACT LOCATION OF ALL UNDERGROUND FEATURES, BY EXPLORATORY EXCAVATIONS, AND SHALL ASSUME FULL RESPONSIBILITY IF THERE IS ANY DAMAGE THAT OCCURS DURING

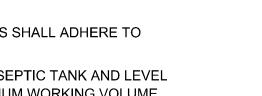

THE CONTRACTOR WILL HAVE THE RESPONSIBILITY AND THE OBLIGATION TO VALIDATE, BY EXPLORATORY EXCAVATION, THE SIZE OF THE PUBLIC UTILITIES UNDERGROUND SERVICES AND TO WARN THE ENGINEER OF ANY CONFLICT WITH THE PROJECTED WORK.

CLASS 4 SEPTIC SYSTEM NOTES

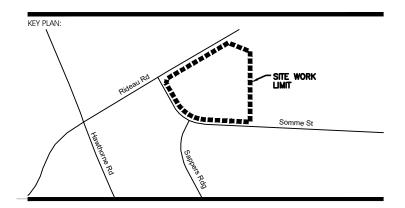
- 1. THE SEPTIC SYSTEM AND ALL APPURTENANCES SHALL ADHERE TO ONTARIO BUILDING CODE (OBC) PART 8.
- 2. THE DAILY DESIGN FLOW IS 12,800 L/DAY. THE SEPTIC TANK AND LEVEL IV TREATMENT UNIT TANK SHALL HAVE A MINIMUM WORKING VOLUME OF 38,400 L (THREE TIMES THE DAILY DESIGN FLOW).
- 3. THE SEPTIC SYSTEM TANK, PUMPING CHAMBER, AND LEVEL IV TREATMENT UNIT SHOWN ON THE DRAWINGS ARE APPROXIMATE SIZES. CONTRACTOR TO SUBMIT CUTSHEETS OF PROPOSED SEPTIC SYSTEM TANK, PUMPING CHAMBER, AND LEVEL IV TREATMENT TANK TO ENGINEER. ENGINEER TO APPROVE TANKS PRIOR TO THE CONTRACTOR ORDERING THE TANKS.
- 4. PROPOSED CHANGES TO SEPTIC SYSTEM DESIGN BY CONTRACTOR
- TO BE APPROVED BY THE ENGINEER. 5. SANITARY FLOWS FROM THE WAREHOUSE BY GRAVITY TO THE SEPTIC TANK. THE EFFLUENT FROM THE SEPTIC TANK TO THE PUMPING CHAMBER IS GRAVITY DRIVEN.
- 6. THE SEPTIC, PUMPING CHAMBER, AND LEVEL IV TREATMENT UNIT TO BE WRAPPED IN MEL-ROL (OR APPROVED EQUAL) ON THE TOP, BOTTOM AND SIDES.
- 7. THE LEVEL IV TREATMENT UNIT TO BE PROVIDED BY WATERLOO **BIOFILTER.**
- 8. THE LEVEL IV TREATMENT SYSTEM TO BE DESIGNED FOR THE FOLLOWING EFFLUENT OBJECTIVES: CBOD5 = 10 MG/L AND TSS = 10
- 9. THE SIMPLEX PUMP IN THE LEVEL IV TREATMENT UNIT RECIRCULATES A PORTION OF THE EFFLUENT TO THE INLET OF THE SEPTIC TANK.
- 10. THE PUMP TANK EFFLUENT TO BE DOSED TO THE WATERLOO BIOFILTER BASKET, HOUSING TWO BASKETS FILLED WITH BIOFILTER MEDIUM. THE PUMP TANK EFFLUENT TO BE EVENLY DISTRIBUTED OVER THE SURFACE OF THE MEDIUM. A PASSIVE CHARCOAL VENTING TO BE PROVIDED.
- 11. ALL PUMPS TO BE OPERATED BY WATERLOO SMART PANEL(S). THE WATERLOO SMART PANEL SHALL PROVIDE REMOTE MONITORING, CONTROL, AND DATALOGGING OVER A STABLE WIRELESS CELLULAR NETWORK.
- 12. PROVIDE ACCESS FROM GRADE TO SEPTIC TANK EFFLUENT FILTER AS PER THE OBC.
- 13. PROVIDE SEPTIC TANK EFFLUENT FILTER PER OBC REQUIREMENTS DESIGNED FOR A MINIMUM CAPACITY OF 25,000 L/DAY.
- 14. ALL TANKS TO BE DESIGNED FOR A MINIMUM OF 2m OF BURIAL OVERTOP OF THE TANK. 15. PRIOR TO PLACEMENT OF THE IMPORTED SAND FILL ANY SURFICIAL
- AREA.
- UNEVEN SETTLEMENT DOES NOT OCCUR.
- 17. ALL SAND FILL (SEPTIC SAND) TO HAVE A MINIMUM AND MAXIMUM PERCOLATION RATES OF 6 MINUTES/CM AND 10 MINUTES/CM RESPECTIVELY. SAND TO HAVE A MAXIMUM 5% FINES PASSING THROUGH A NO. 200 SIEVE. CONTRACTOR TO SUBMIT GRADATION MATERIAL TO THE ENGINEER FOR APPROVAL PRIOR TO DELIVERING MATERIAL TO THE SITE.
- 18. CONTRACTOR TO SUBMIT WORKING DRAWINGS FOR: SEPTIC TANK, SEPTIC TANK APPURTENANCES, PUMPING CHAMBER, PUMPING CHAMBER APPURTANENCES, ALL PUMPS, WATERLOO BIOFILTER LEVEL FLOATS, SBT CHAMBERS, PIPE SUPPORTS, CHECK VALVES, BALL VALVES, THREADED PLUG, PIPES, REDUCERS, PVC CAPS, GEOTEXTILE, ORFICE SHEILDS TO BE REVIEWED AND ACCEPTED BY THE ENGINEER.
- 19. APPROVED CHAMBERS FOR SBT INCLUDE: CULTEC RECHARGER 150XLHD OR APPROVED EQUAL. CONTRACTOR TO SUBMIT WORKING DRAWINGS FOR REVIEW AND APPROVAL BY THE ENGINEER
- 20. SEPTIC TANK, PUMPING CHAMBER, AND LEVEL IV TREATMENT UNIT LOADING. ALL TANKS TO CONFORM TO NATIONAL STANDARDS OF CANADA CAN/CSA B66-10 AND CSA A23.4-19. CONTRACTOR TO SUBMIT WORKING DRAWINGS FOR REVIEW AND APPROIVAL BY THE ENGINEER.

CURVES AND PERCOLATION TEST RESULTS FOR PROPOSED SAND FILL

TANKS TO BE PRE-CAST CONCRETE. CONCRETE AND RATED FOR H-20



- FASTFRATE OTTAWA WAREHOUSE AND DISTRIBUTION FACILITY SCALE: NONE

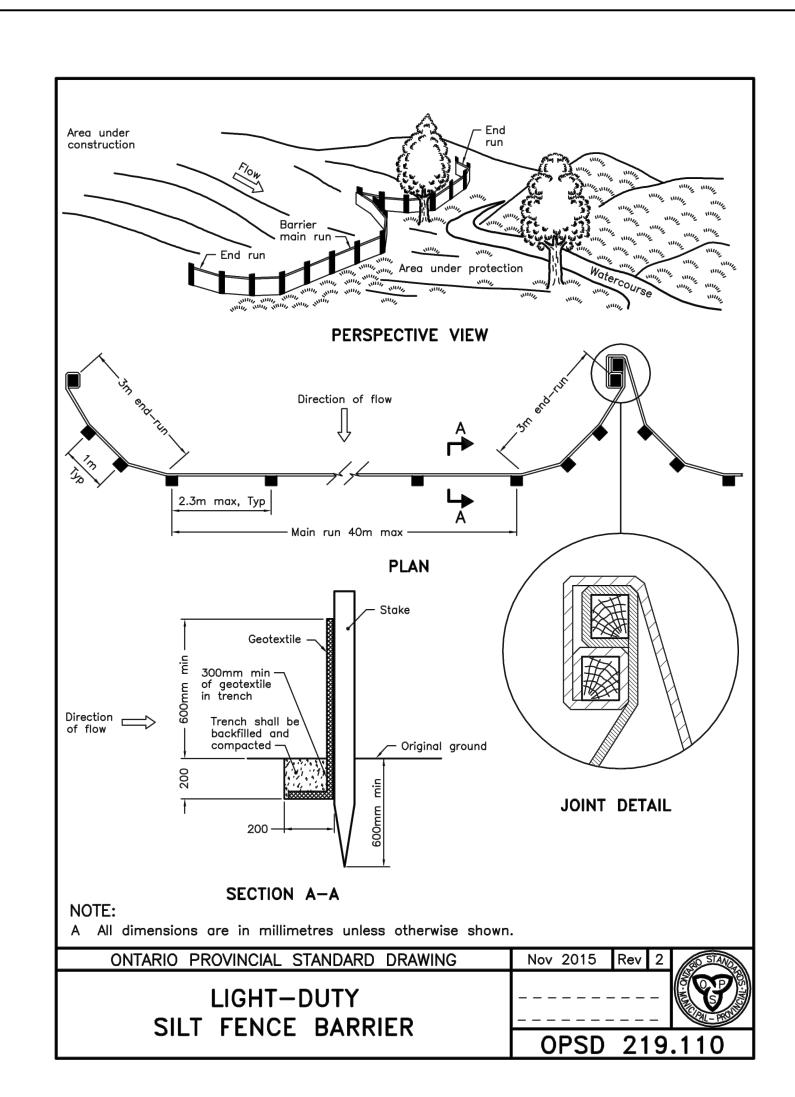

SOMME ST. OTTAWA, ON

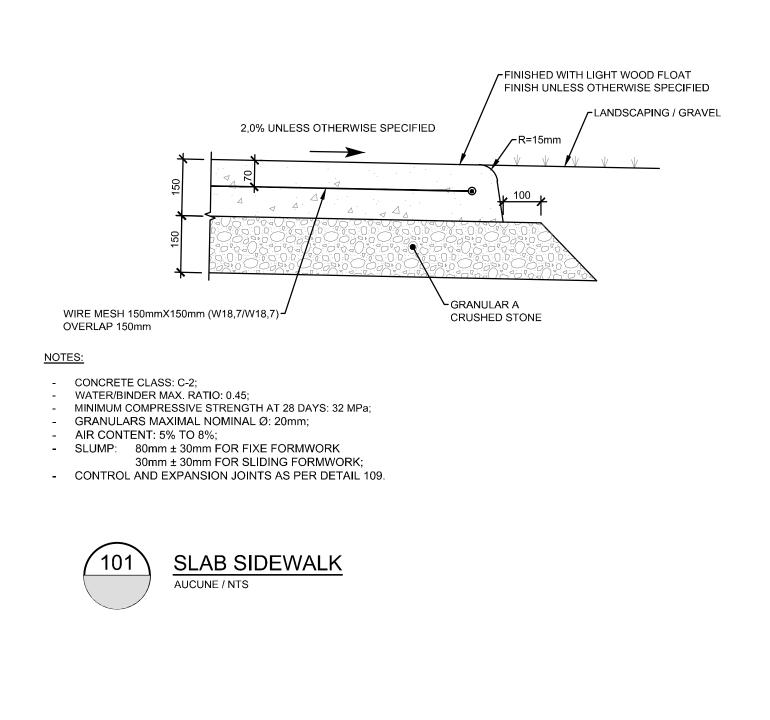
SEPTIC SYSTEM CONFIGURATION **AND SECTIONS**

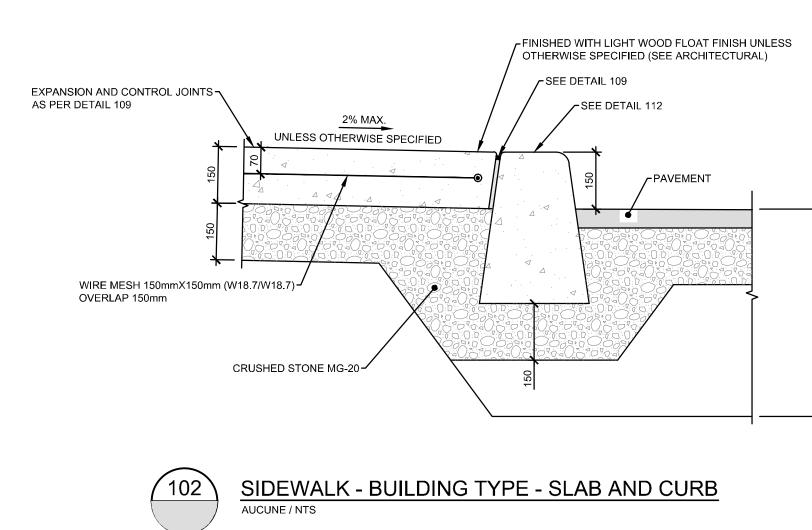
DRAWN BY: DATE:	D.CANN	DRAWING NUMBER:	
REVIEWED BY: APPROVED BY:	K.SCHMIDT	C008	
PRINT DATE:		- REVISION NUMBER:	
ISSUED DATE:	AUGUST 13, 2021		
CLIENT PROJECT #:		PROJECT #: A001083	
		AUUIUUU	
DIMENSIONS AND NO DRAWING IS TO BE RE CONSULTANT DRAWIN ARCHITECT. COPYRIG	DTIFYING THE ARCHITECT OF ANY DISCREP, AD IN CONJUNCTION WITH ALL STRUCTUR IGS. THIS DRAWING SHALL NOT BE USED F	THE CONTRACTOR IS RESPONSIBLE FOR VERIFYING ALL NACES BEFORE CONSTRUCTION COMMENCES. THIS AL, MECHANICAL, ELECTRICAL, CML, AND OTHER OR CONSTRUCTION PURPOSES UNLESS SIGNED BY THE G ARE THE EXCLUSIVE PROPERTY OF THE ARCHITECT AND M THE ARCHITECT.	

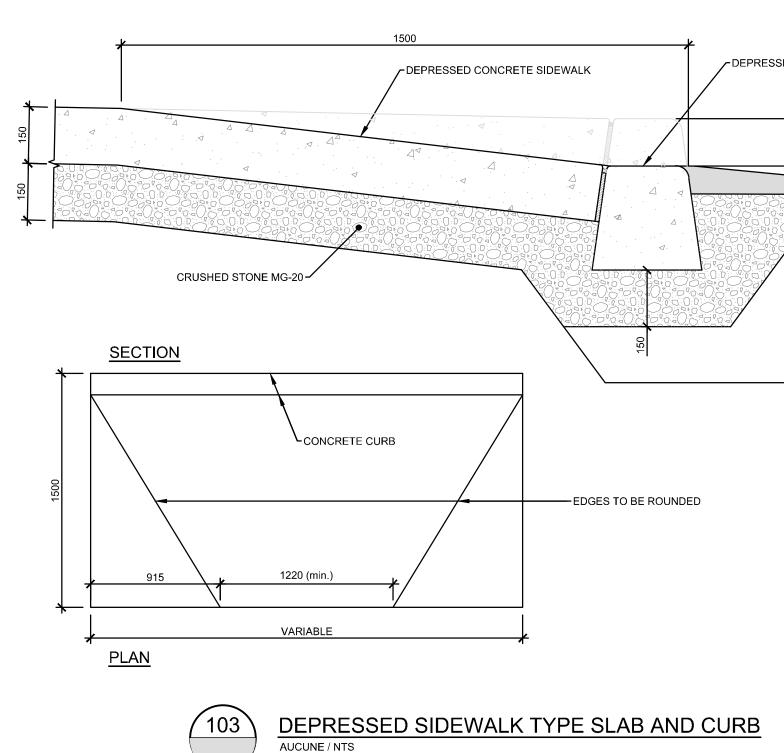
PRELIMINARY

AUGUST 13, 2021

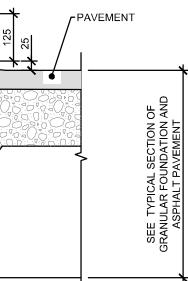

DATE: (MM/DD/Y

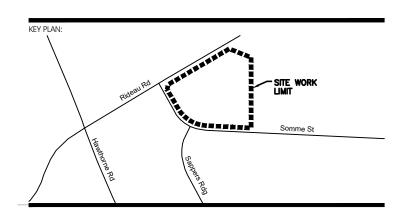

67

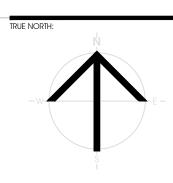

\3/


 $\overline{27}$

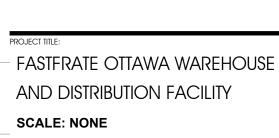
ISSUED FOR SITE PLAN APPROVA



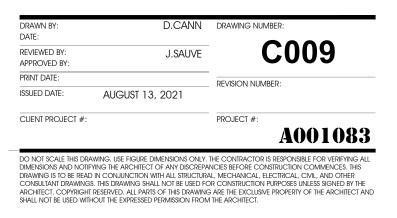


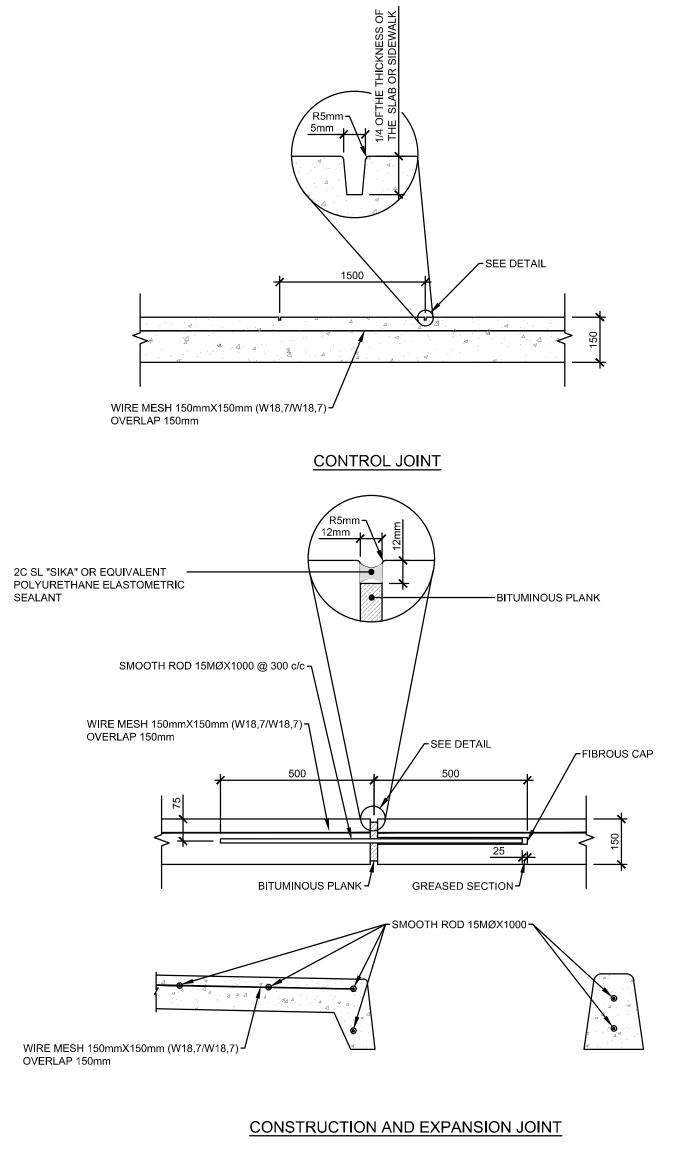


✓ DEPRESSED CONCRETE CURB



PRELIMINARY NOT FOR CONSTRUCTION							
ECORD	DF REVISIONS:						
\checkmark							
$\sqrt{5}$							
4							
3							
2							
	ISSUED FOR SITE PLAN APPROVAL	AUGUST 13, 2021					
JMBER:	REVISION:	DATE: (MM/DD/YY)					

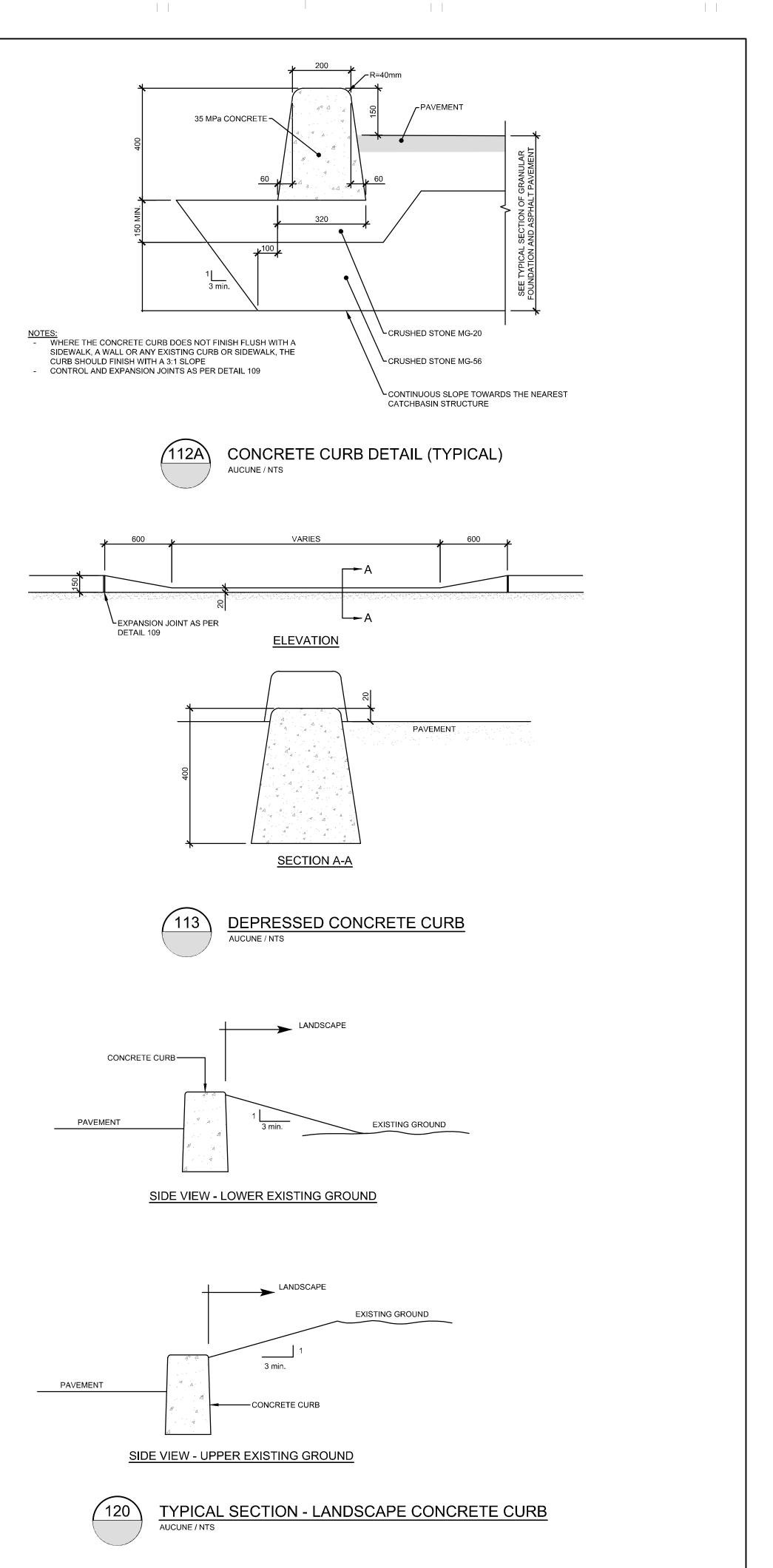




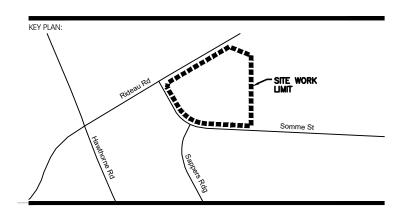
Somme St. Ottawa, on

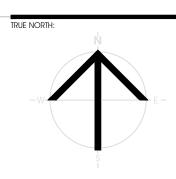
DRAWING TITLE:

DETAILS

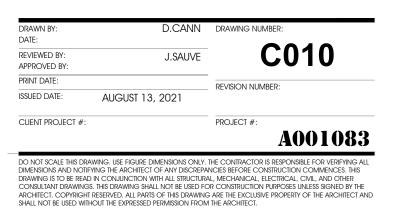

<u>NOTES :</u>

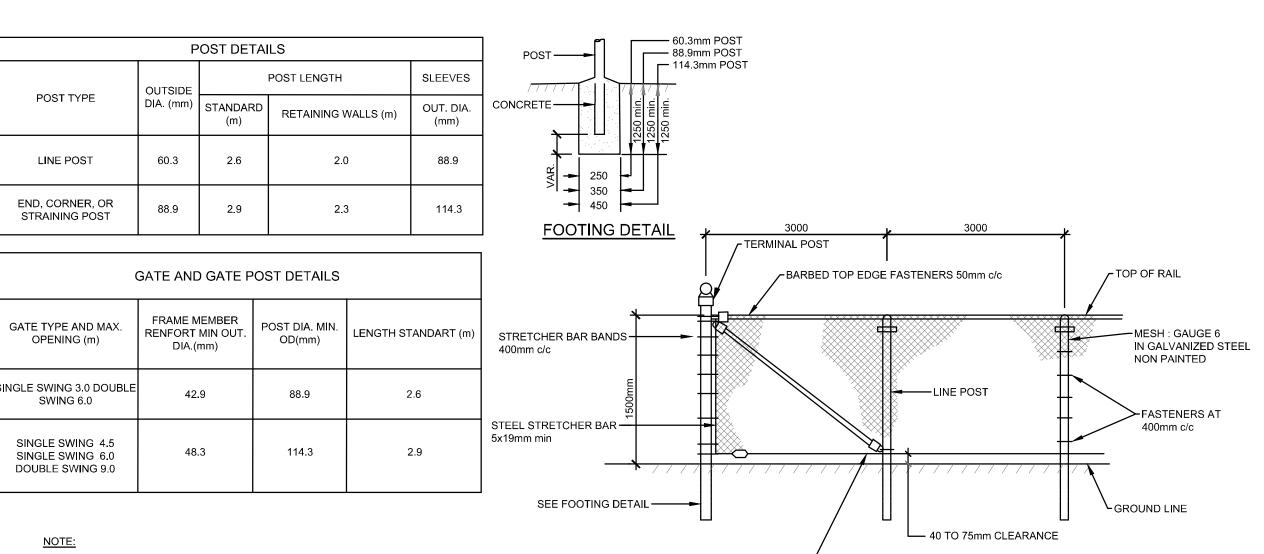
- EXPANSION JOINTS OF CONCRETE WORK AT 6,0m C/C MAX. DIRECTION CHANGE AND AT CONTACT WITH CONCRETE STRUCTURES EDGES AND CONTROL JOINTS SHALL BE GROOVED, TOOLED AND BURNISHED WITH BRONZE EDGERS AND GROOVERS.
- (109)


EXPANSION, CONTROL AND CONSTRUCTION JOINTS FOR CONCRETE WORK AUCUNE / NTS



PRELIMINARY NOT FOR CONSTRUCTION						
ECORD	OF REVISIONS:					
\checkmark						
5						
4/						
3/						
27						
$\overline{\mathbb{V}}$	ISSUED FOR SITE PLAN APPROVAL	AUGUST 13, 2021				
JMBER:	REVISION:	DATE: (MM/DD/YY)				

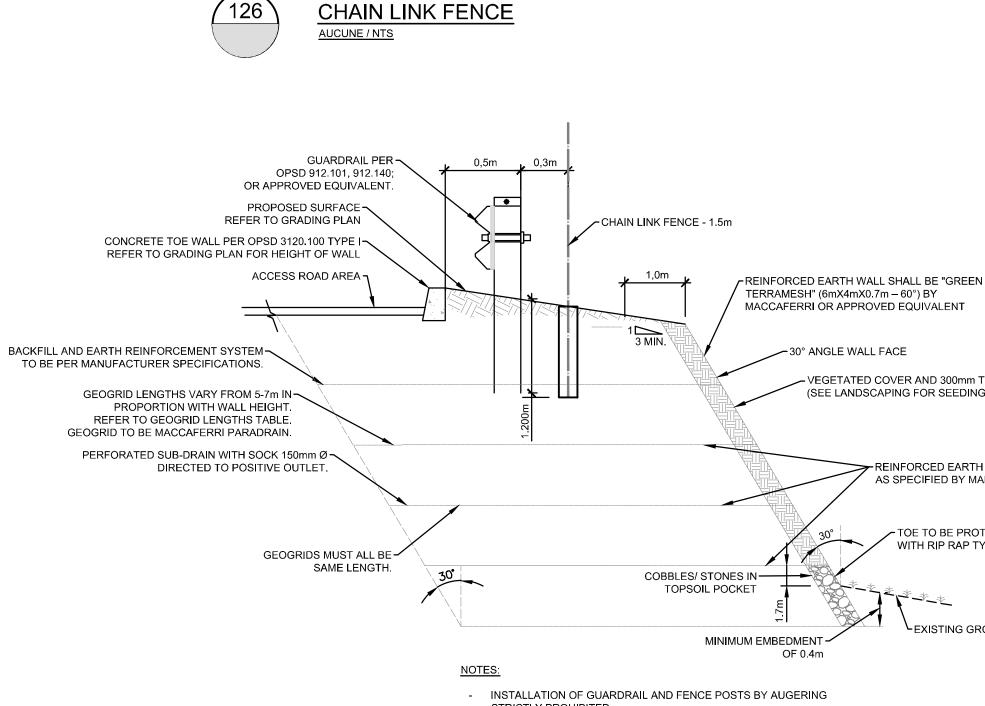




PROJECT TITLE: - FASTFRATE OTTAWA WAREHOUSE AND DISTRIBUTION FACILITY SCALE: NONE Somme St. Ottawa, on

DETAILS

DRAWING TITLE:



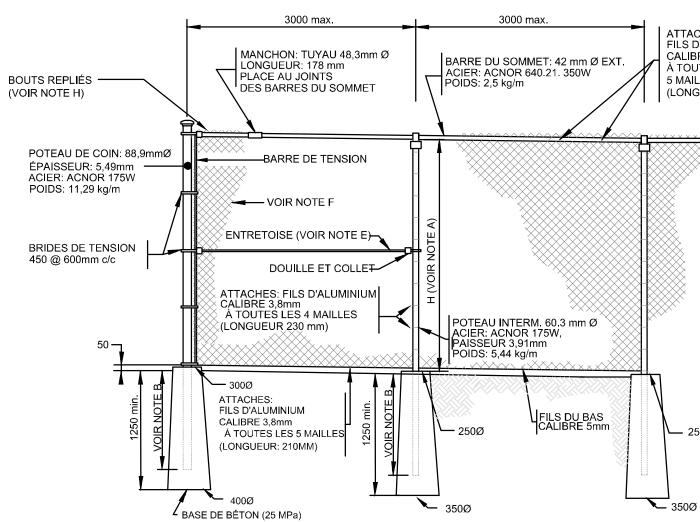
NOTE:

GATE LEAVES GREATER THAN 3.6m IN WIDTH ARE SUPPLIED WITH DIAGONAL BRACES.

3.5mm DIA. BOTTOM WIRE FASTENED

STRICTLY PROHIBITED. STRUCTURE MUST BE FOUNDED ON APPROVED COMPETENT SOIL APPLIED LOAD = 175kPA SHOP DRWAINGS FOR EARTH WALL DESIGN, SIGNED AND SEALED BY AN ENGINEER LICENSED IN ONTARIO SHALL BE SUBMITTED. A TRANSITION IS REQUIRED WHERE SUBGRADE FILL MATERIAL HAS DIFFERENT FROST SUCEPTIBILITY. TRANSITION SHALL REACH A MAXIMUM DEPTH OF 1.8m BELOW PROJECTED PAVEMENT ELEVATION.

	LOAD TABLE	
PARAMETERS	REINFORCED SOIL	RETAINE
UNIT WEIGHT, Kn/m³	21.2	19
ANGLE OF INTERNAL FRICTIONS, φ	32	30
COHESION, KPA	0	0
SURCHARGE LOAD AWAY FROM BACKSLOPE, KPA		17.(


GEOGRID LENGTH TABLE						
н	REINFORCED PARADRAIN LENGTH Lg (m)					
UP TO 4.9 m	5 m					
4.91 m TO 6.3 m	6 m					
6.31 m TO 7 m	7 m					

TYPICAL SECTION - RETAINING WALL, GUARDRAIL AND FENCE AUCUNE / NTS

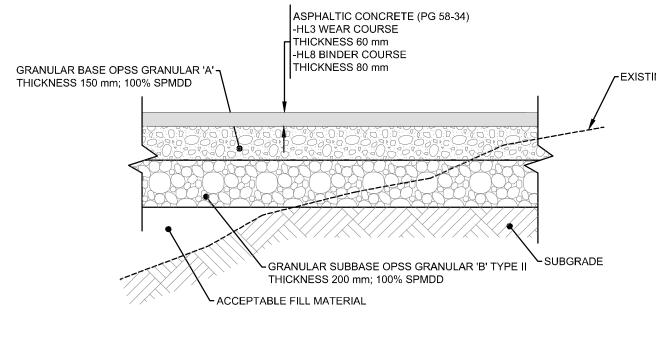
<u>NOTES</u>

1. ALL FASTENERS MADE OF GALVANIZED STEEL (NO ALUMINUM) 2. TOP OF RAIL TYPE "KNUCKLE/KNUCKLE" (NO POINTY EDGE)

NOTES:

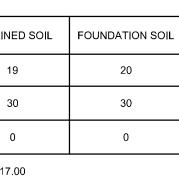
- A. FENCE HEIGHT: 1.5 m.
- B. LENGTH OF UNDERGROUND POLES: 1.1 m C. CORNER POST: 88.9 mmØ WITH TWO SPACERS.
- D. REINFORCING POST: 88.9 mmØ EVERY 60 m WITH TWO SPACERS.
- E. SPACERS: 42.2 mmØ, 350W ACNOR STEEL.
- F. GALVANIZED GRILLING-008; COVERED WITH VINYL (BLACK) FOR A TOTAL GAUGE #9E-008; CONFORMS TO CAN/CGSB-138.1 (TYPE 1. CATEGORY A, MEDIUM STYLE)
- SPACING OF 50mm X 50mm. G. ALL METAL PARTS ARE GALVANIZED.
- H. THE ENDS OF THE MESHES AT THE TOP AND BOTTOM MUST BE FOLDED
- INWARDS SO AS NOT TO HAVE PRICKLY TIPS. I. THE WIRE MESH AND METAL PARTS MUST BE BLACK WITH PVC STRAP "SUPER
- PRIVACY" (BLACK) IN THE PLACES INDICATED ON THE OVERALL PLAN
- J. MEASUREMENTS ARE IN MILLIMETRES

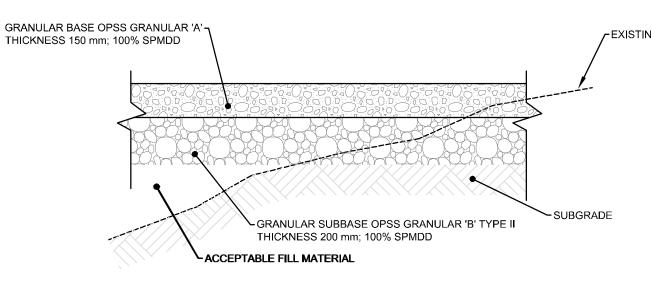
GALVANIZED METAL MESH FENCE 1.8m HIGH AUCUNE / NTS


- VEGETATED COVER AND 300mm TOPSOIL POCKETS

(SEE LANDSCAPING FOR SEEDING MIX DETAILS)

- REINFORCED EARTH WALL GEOGRID. AS SPECIFIED BY MANUFACTURER DETAIL ...

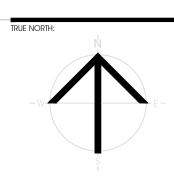

► TOE TO BE PROTECTED WITH RIP RAP TYPE 3.


EXISTING GROUND

TYPICAL SECTION - GRANULAR FOUNDATION AND ASPHALT PAVEMENT (HEAVY DUTY) AUCUNE / NTS

(202Å

TYPICAL SECTION - GRANULAR PAD AUCUNE / NTS


ATTACHES: FILS D'ALUMINIUM CALIBRE 3,8mm À TOUTES LES 5 MAILLES. (LONGUEUR: 210mm)

– 250Ø

EXISTING GROUND

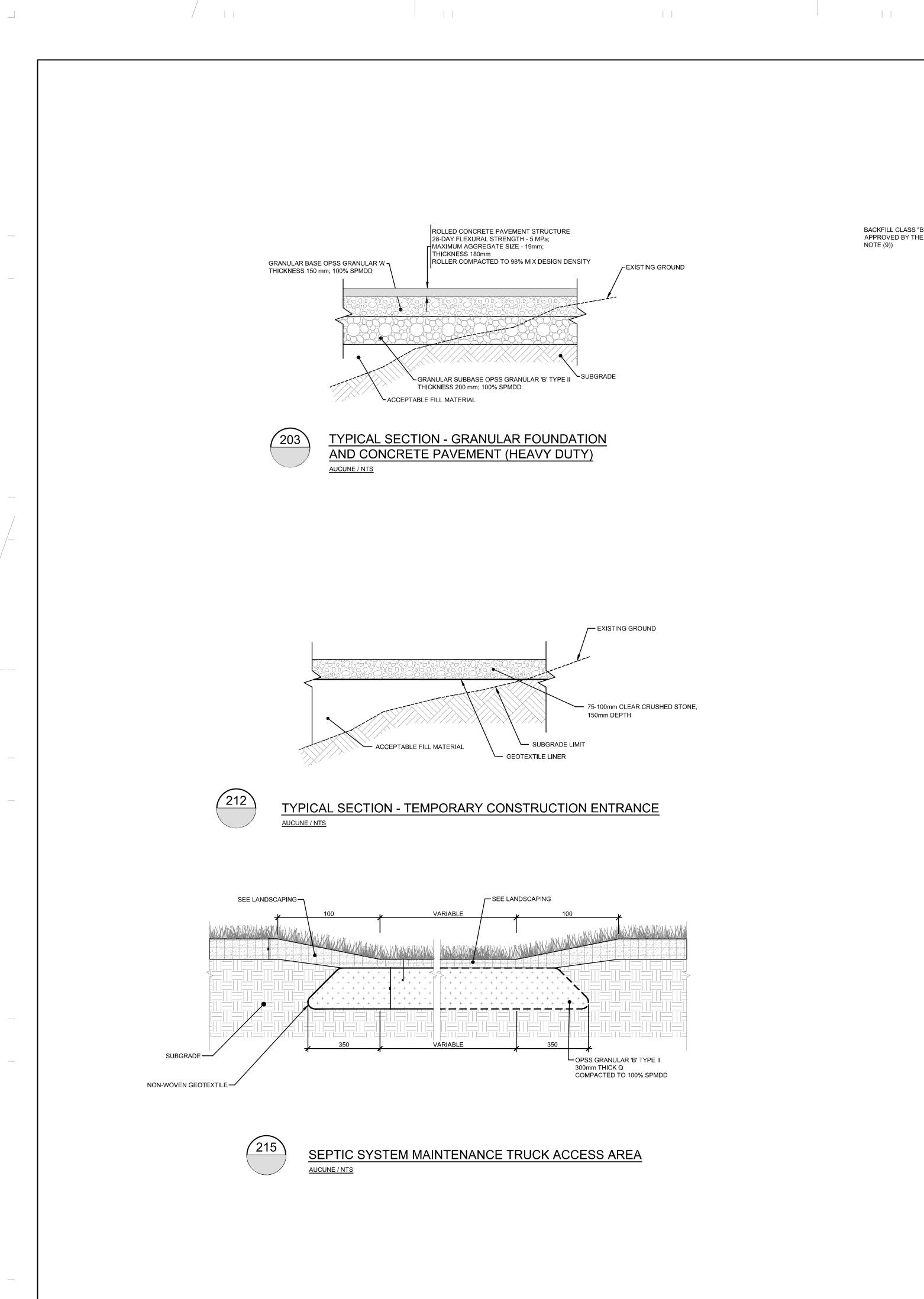
FEXISTING GROUND

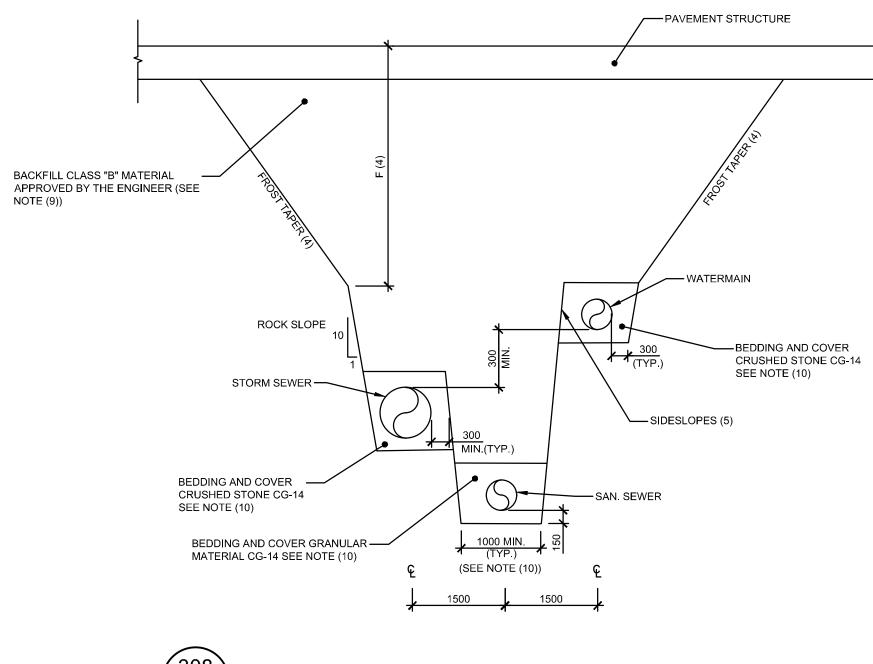
FASTFRA

NUMBER: REVISION:

PRELIMINARY ECORD OF REVISION $\overline{\mathbf{V}}$ $\overline{5}$ $\sqrt{4}$ $-\overline{3}$ $\overline{2}$ ISSUED FOR SITE PLAN APPROVAL AUGUST 13, 2021

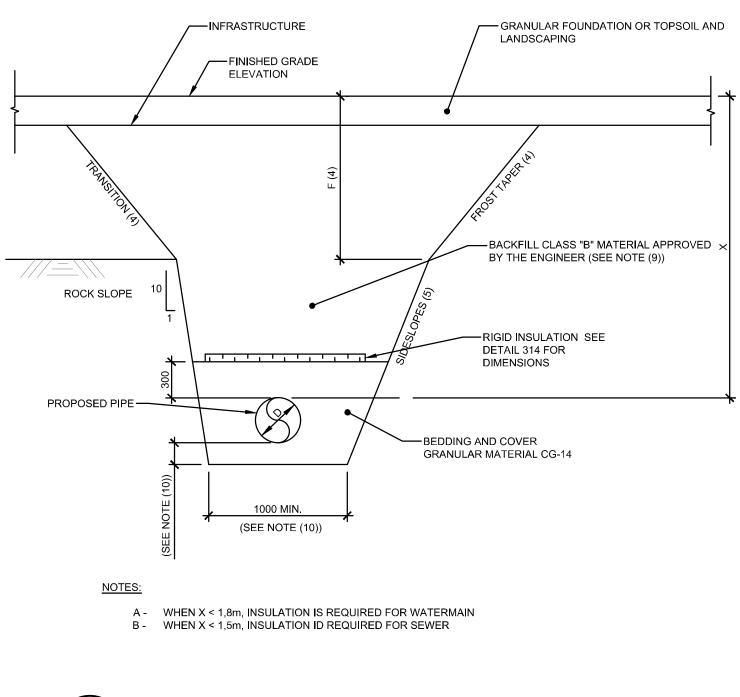
DATE: (MM/DD/YY)

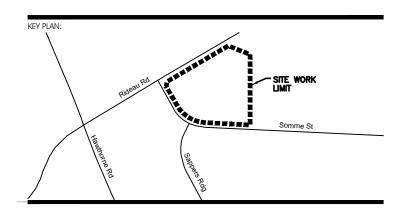


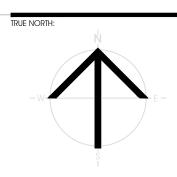


PROJECT TITLE - FASTFRATE OTTAWA WAREHOUSE AND DISTRIBUTION FACILITY SCALE: NONE Somme St. Ottawa, on

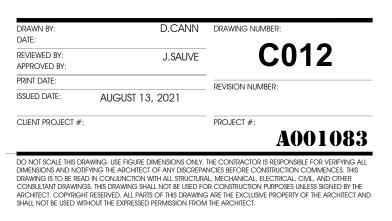
DETAILS

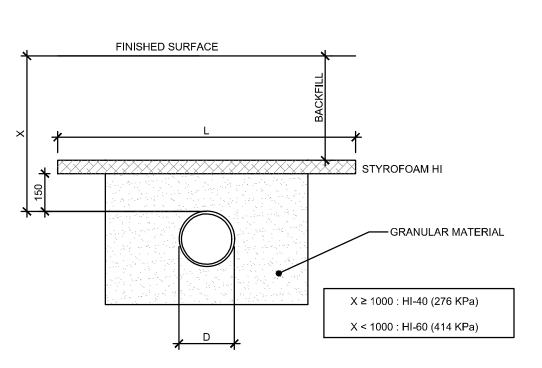

D.CANN **C01**1 REVIEWED BY: J.SAUVE APPROVED BY: PRINT DATE: REVISION NUMBER: ISSUED DATE: AUGUST 13, 2021 CLIENT PROJECT #: PROJECT #: A001083 do not scale this drawing. Use figure dimensions only, the contractor is responsible for verifying , Dimensions and notifying the architect of any discrepancies before construction commences. This DRAWING IS TO BE READ IN CONJUNCTION WITH ALL STRUCTURAL, MECHANICAL, ELECTRICAL, CIVIL, AND OTHER CONSULTANT DRAWINGS. THIS DRAWING SHALL NOT BE USED FOR CONSTRUCTION PURPOSES UNLESS SIGNED BY THE ARCHITECT. COPYRIGHT RESERVED. ALL PARTS OF THIS DRAWING ARE THE EXCUSIVE PROPERTY OF THE ARCHITECT AND SHALL NOT BE USED WITHOUT THE EXPRESSED PERMISSION FROM THE ARCHITECT.


TYPICAL SECTION SINGLE TRENCH - MULTIPLE PIPES ANCUME//NITS



TYPICAL SECTION FROST PROTECTION FOR SEWERS, CATCHBASIN LEAD AND WATERMAIN AUCUNE / NTS

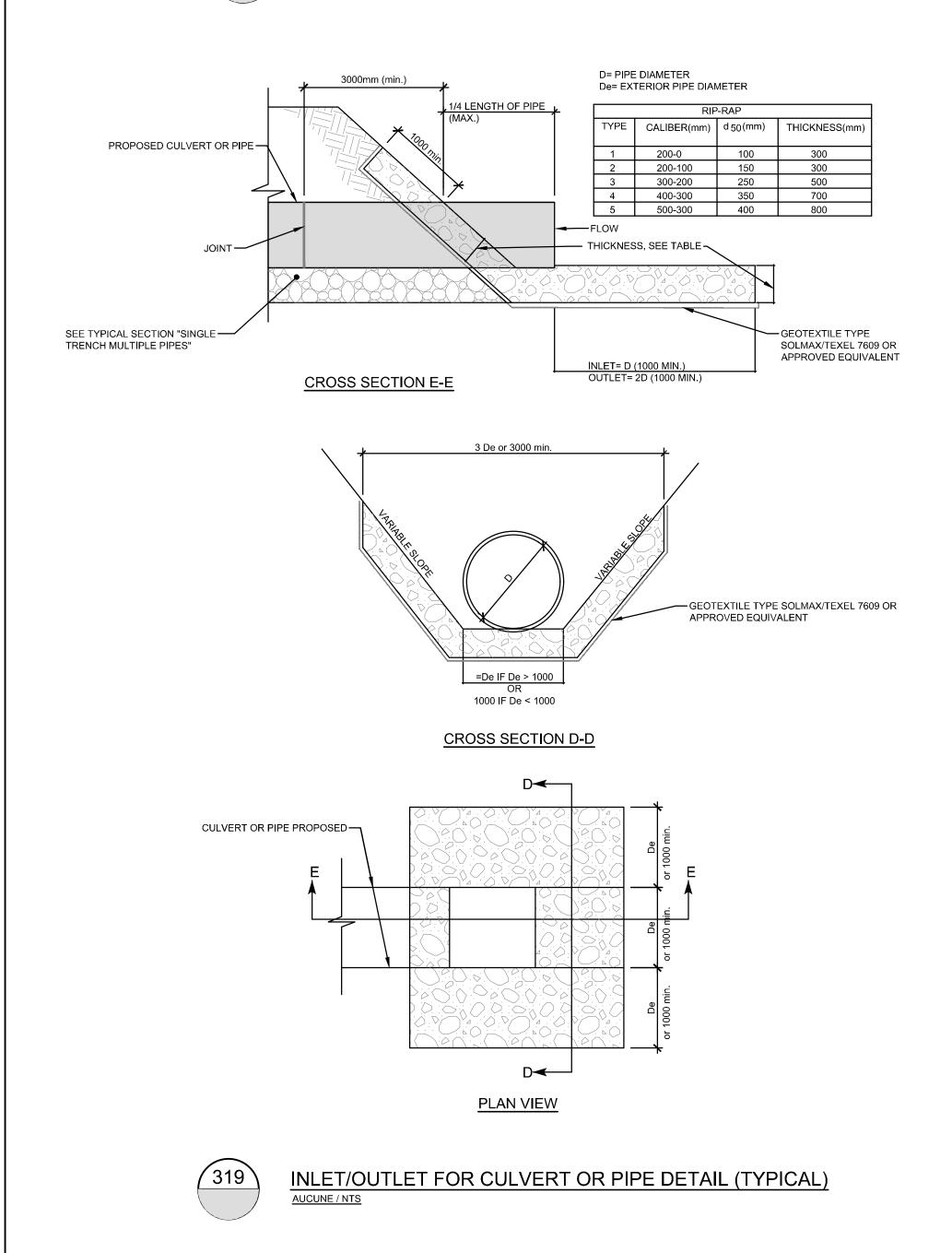

	PRELIMIN NOT FOR CONSTRUCTION	
ECORD (OF REVISIONS:	
$\overline{\mathbb{V}}$		
5		
4/		
3/		
$\frac{\tilde{2}}{2}$		
Ň	ISSUED FOR SITE PLAN APPROVAL	AUGUST 13, 2021
UMBER:	REVISION:	DATE: (MM/DD/YY)

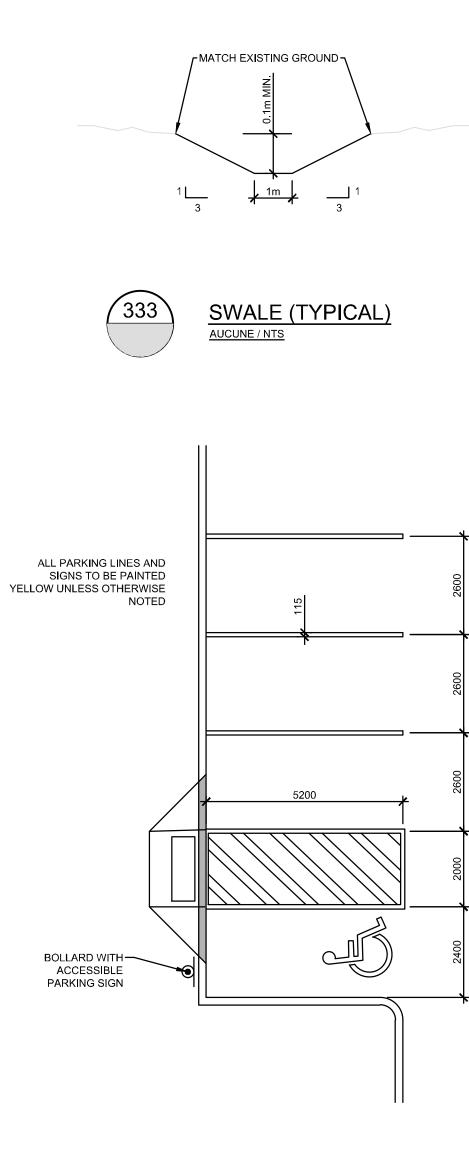


PROJECT TITLE: - FASTFRATE OTTAWA WAREHOUSE AND DISTRIBUTION FACILITY SCALE: NONE Somme St. Ottawa, on

DETAILS

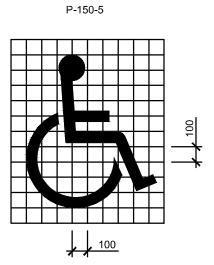
DRAWING TITLE:




MINIMUM WIDTH OF ISULATION TABLE (L) INSULATION THICKNESS <u>P</u> ≤150 200 250 300 375 450 525 600 750 1650 1700 1750 1800 1875 1950 2025 2100 100 1000 1150 1200 1250 1300 1375 1450 1525 1600 100 650 700 750 800 875 950 1025 1100 1250 75 1500 1750

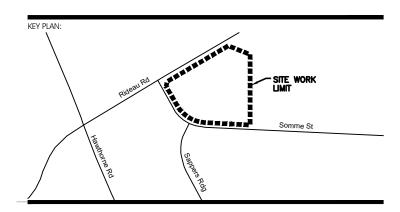
									10
1500	600	600	600	600	600	600	600	600	75
1750	600	600	600	600	600	600	600	600	50
L= INSULA D= PIPE D		. ,							

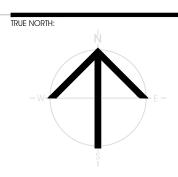
PIPE INSULATION (1.8m COVER)



TYPICAL PARKING STALLS AUCUNE / NTS

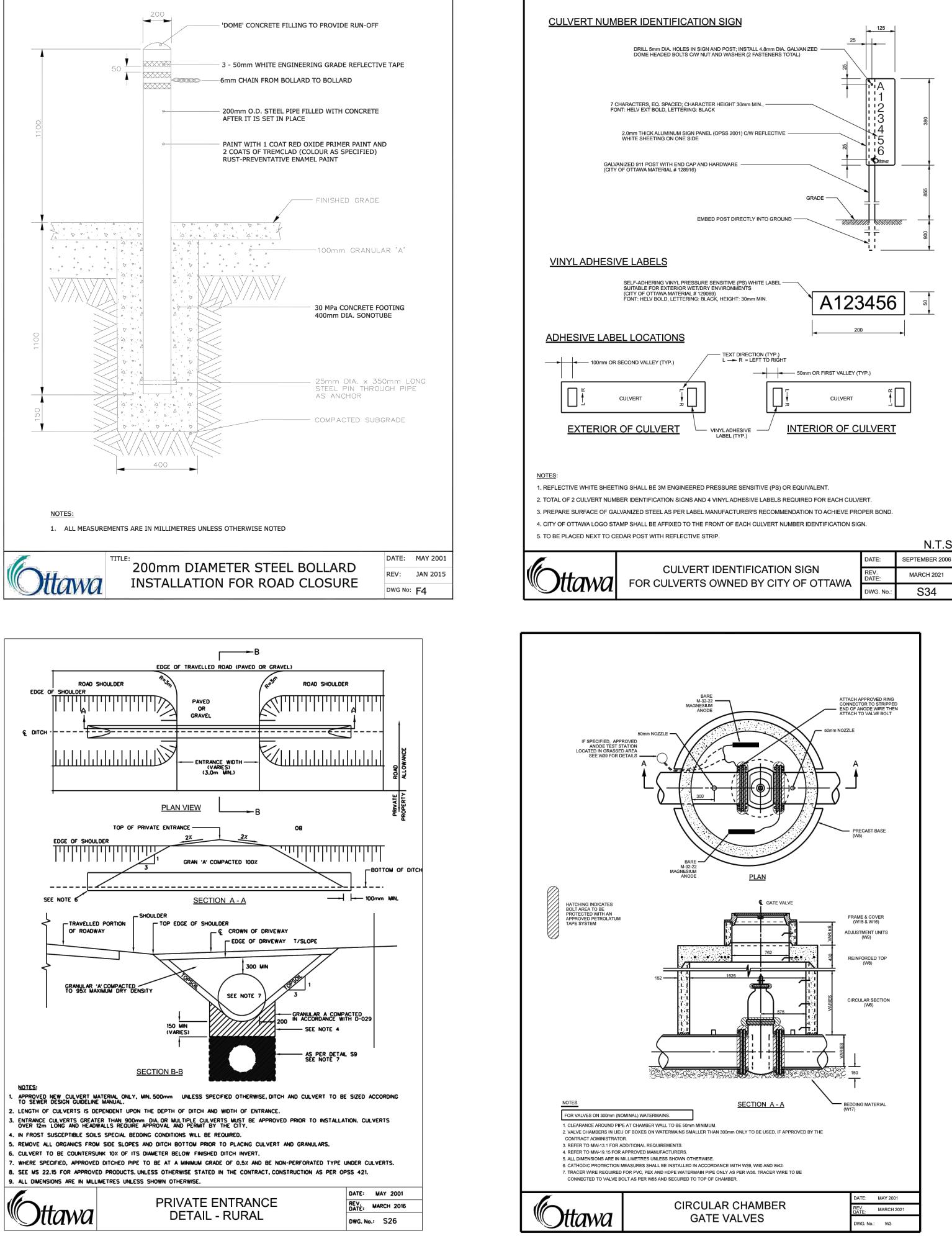
ACCESSIBLE PARKING SIGN

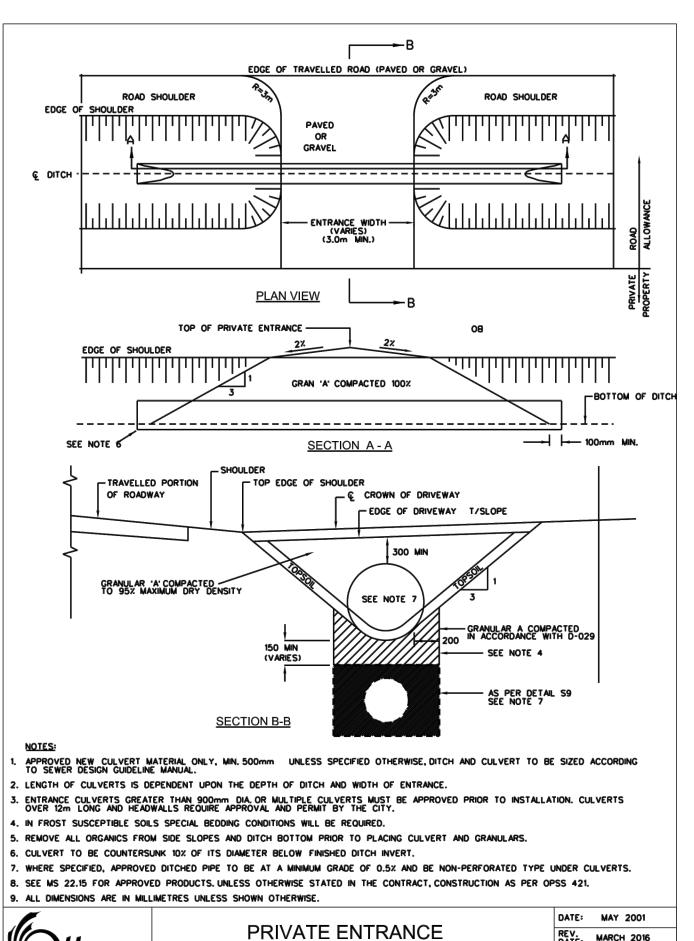


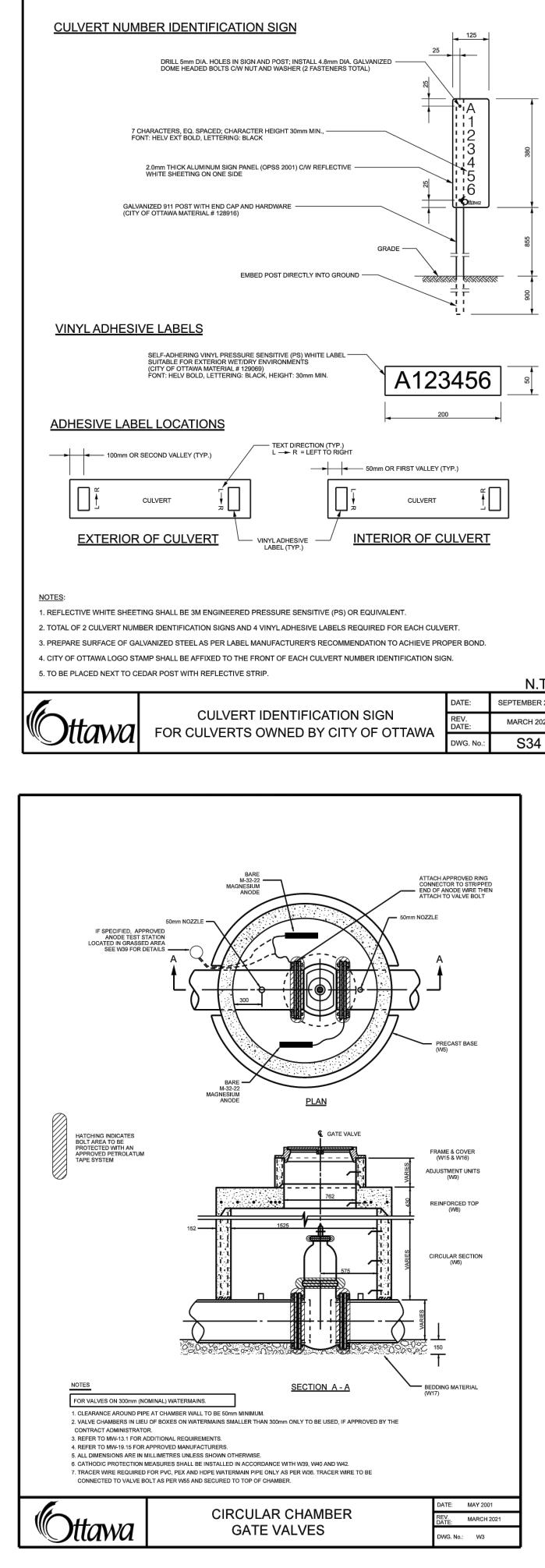


ACCESSIBLE PARKING SIGN AND MARKING

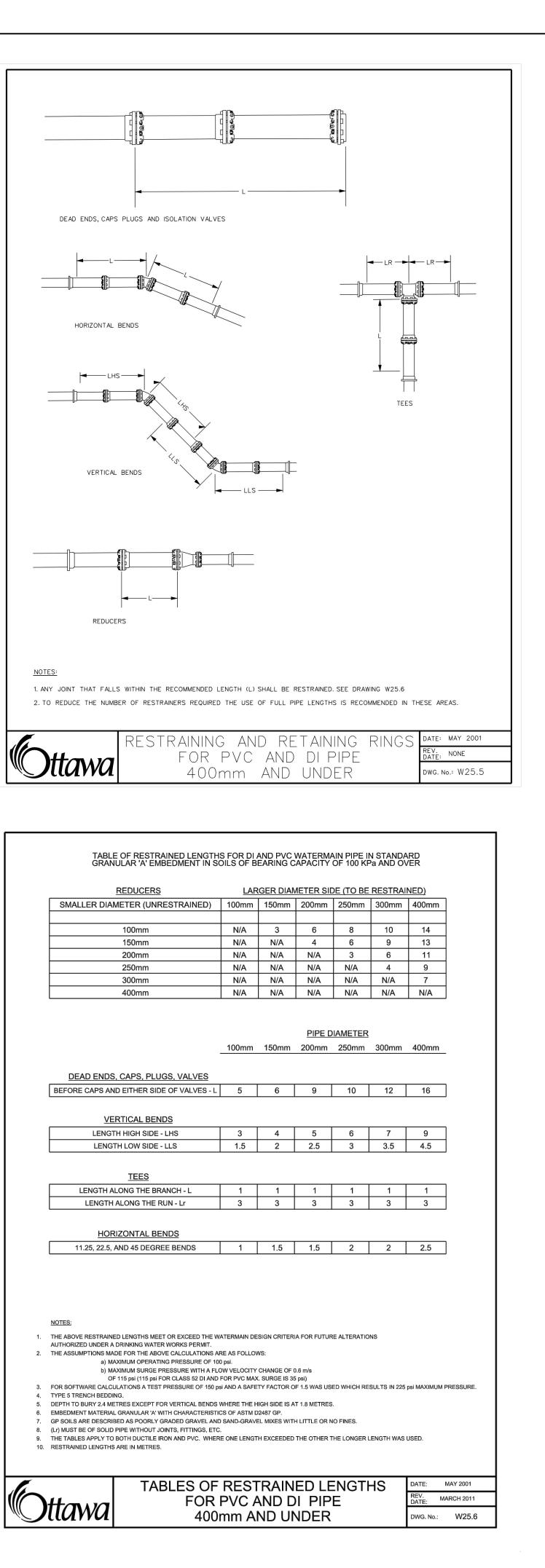
	PRELIMINARY NOT FOR CONSTRUCTION							
RECORD	DF REVISIONS:							
$\overline{\mathbf{V}}$								
$\overline{5}$								
$\overline{\sqrt{47}}$								
$-\overline{\sqrt{37}}$								
$\frac{\vee}{\sqrt{2}}$								
\rightarrow								
\sim	ISSUED FOR SITE PLAN APPROVAL	AUGUST 13, 2021						
NUMBER:	REVISION:	DATE: (MM/DD/YY)						

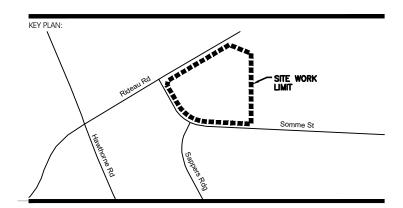

- FASTFRATE OTTAWA WAREHOUSE AND DISTRIBUTION FACILITY SCALE: NONE Somme St. Ottawa, on

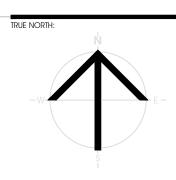

DETAILS

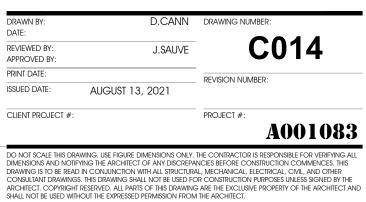

DRAWING TITLE:

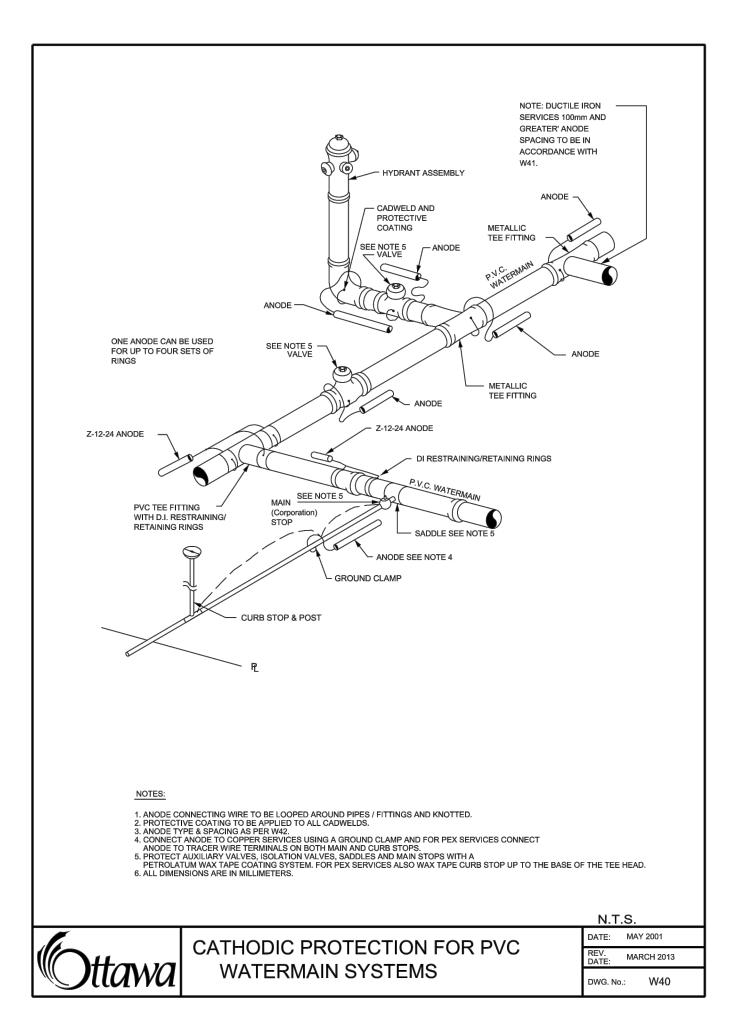
-		
DRAWN BY:	D.CANN	DRAWING NUMBER:
DATE:		
REVIEWED BY:	J.SAUVE	C013
APPROVED BY:		
PRINT DATE:		REVISION NUMBER:
ISSUED DATE:	AUGUST 13, 2021	
CLIENT PROJECT #:		PROJECT #:
		A001083
DIMENSIONS AND NOT DRAWING IS TO BE REA CONSULTANT DRAWING ARCHITECT. COPYRIGH	IFYING THE ARCHITECT OF ANY DISCREPA ID IN CONJUNCTION WITH ALL STRUCTUR GS. THIS DRAWING SHALL NOT BE USED FO	THE CONTRACTOR IS RESPONSIBLE FOR VERIFYING ALL NOLES BEFORE CONSTRUCTION COMMENCES. THIS AL, MECHANICAL, ELECTRICAL, CIVIL, AND OTHER OR CONSTRUCTION PURPOSES UNLESS SIGNED BY THE G ARE THE EXCLUSIVE PROPERTY OF THE ARCHITECT AND M THE ARCHITECT.

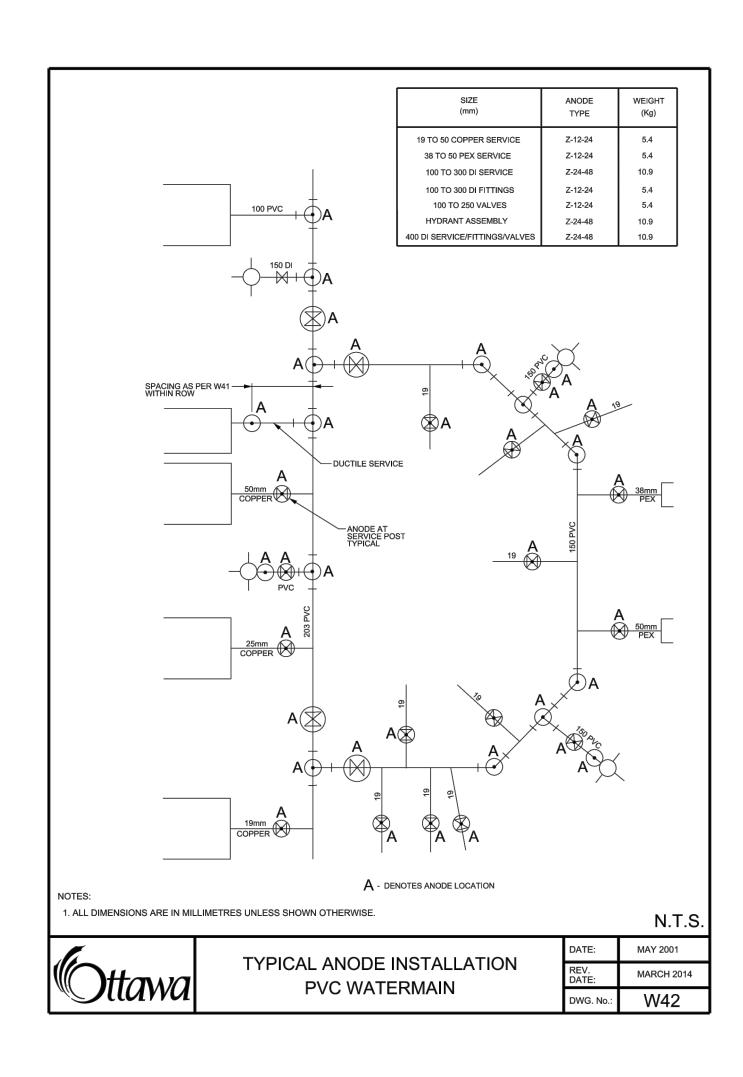




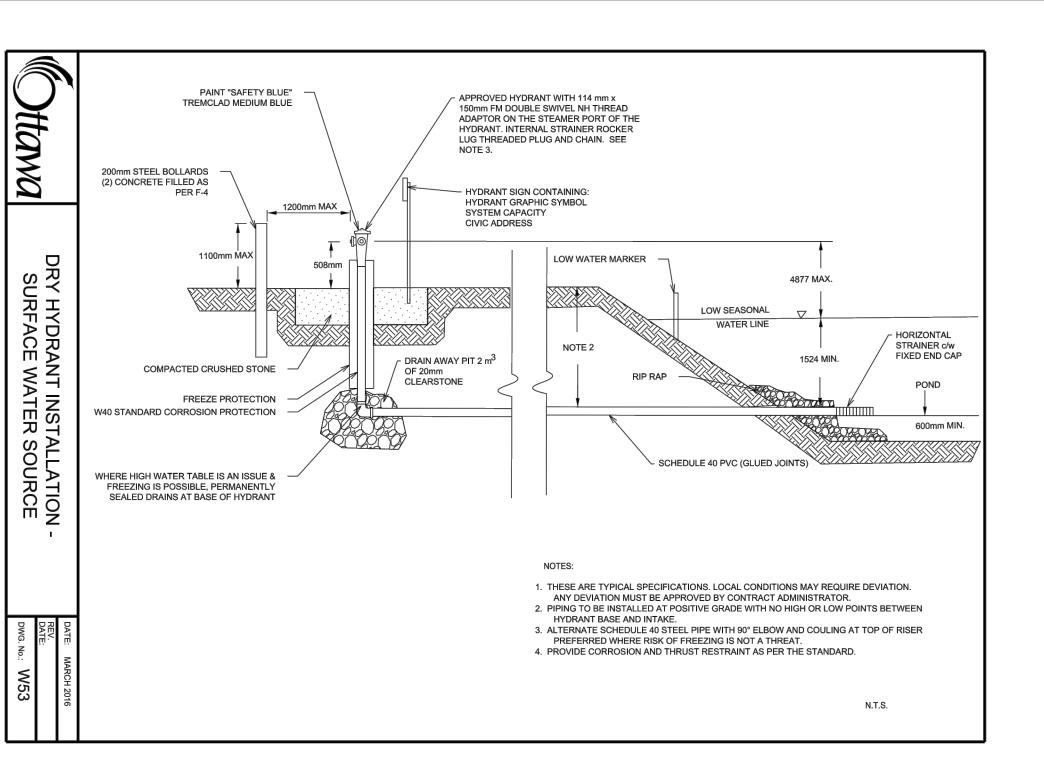


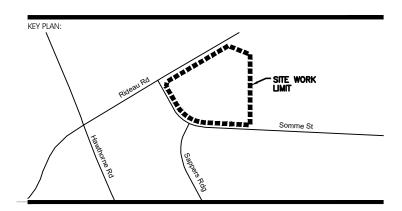

	PRELIMIN NOT FOR CONSTRUCTION	
	DF REVISIONS:	
\checkmark		
5		
4		
3		
$\frac{1}{\sqrt{2}}$		
Ŵ	ISSUED FOR SITE PLAN APPROVAL	AUGUST 13, 2021
UMBER:	REVISION:	DATE: (MM/DD/YY)



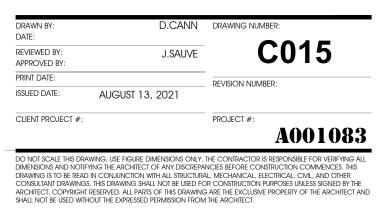

- FASTFRATE OTTAWA WAREHOUSE AND DISTRIBUTION FACILITY SCALE: NONE SOMME ST. OTTAWA, ON

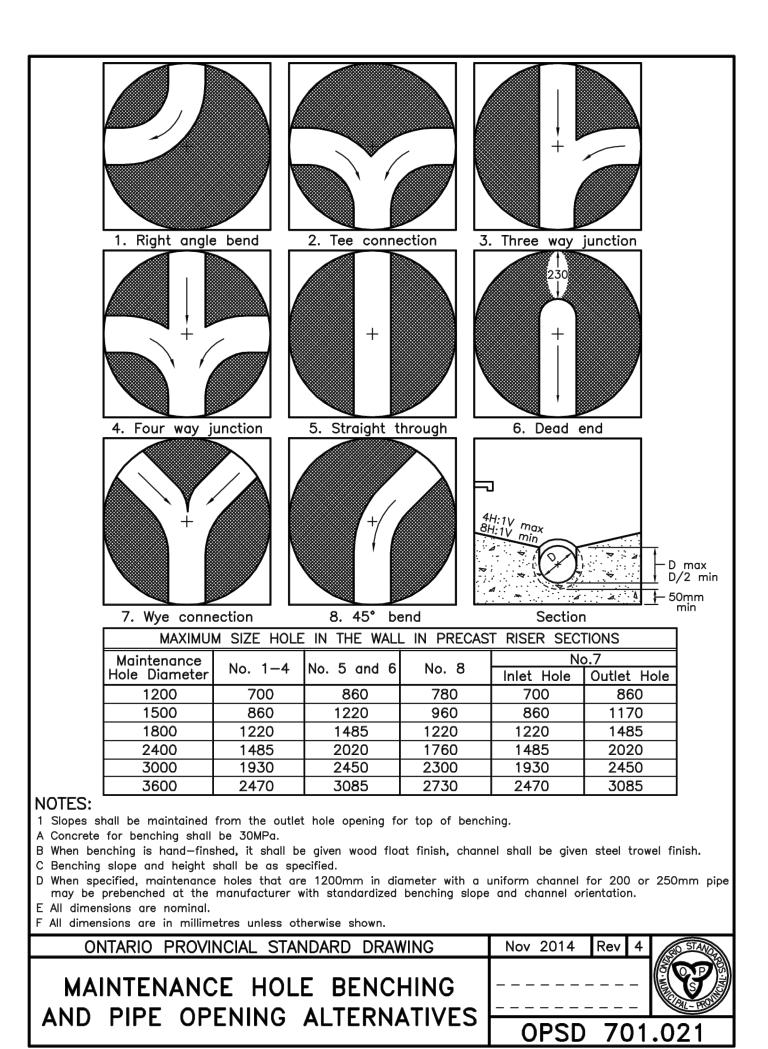
DETAILS

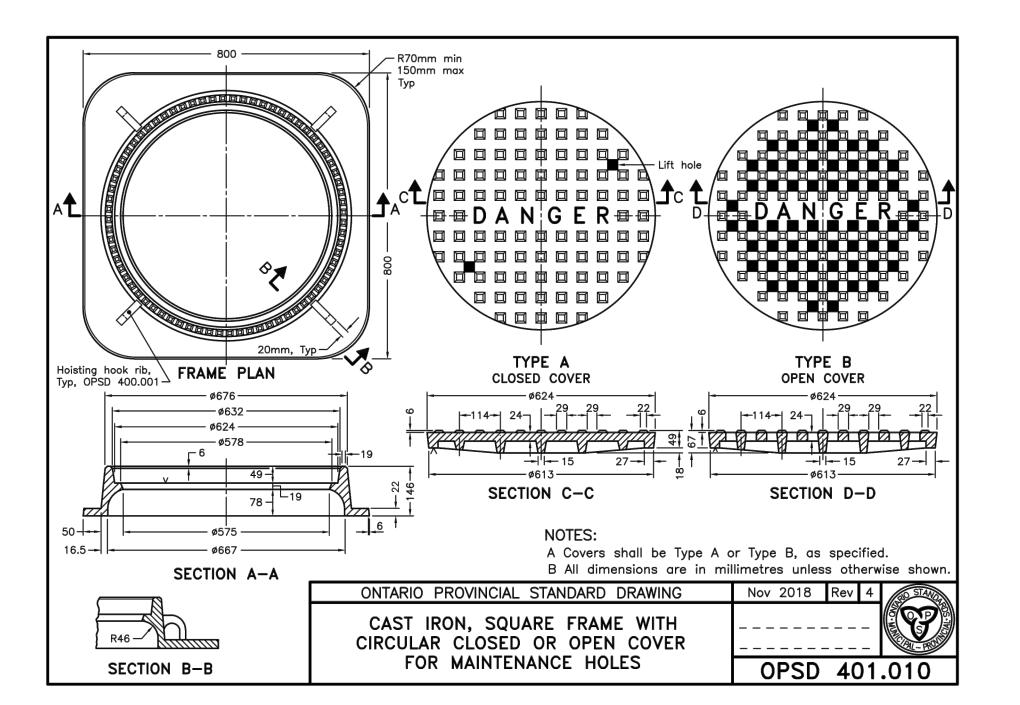


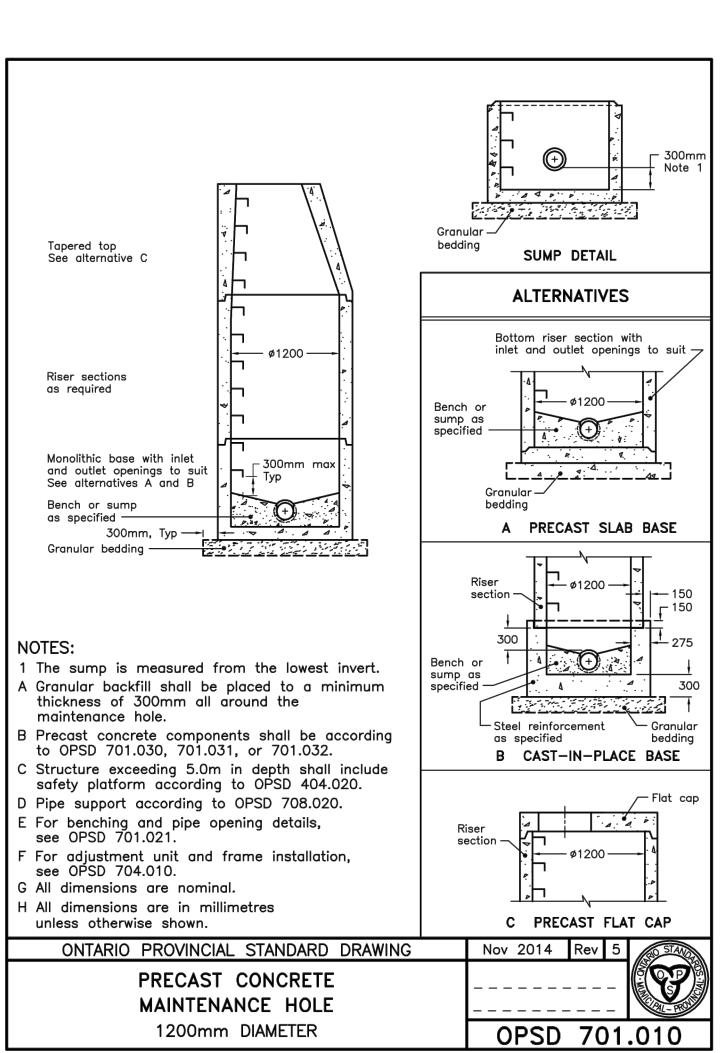


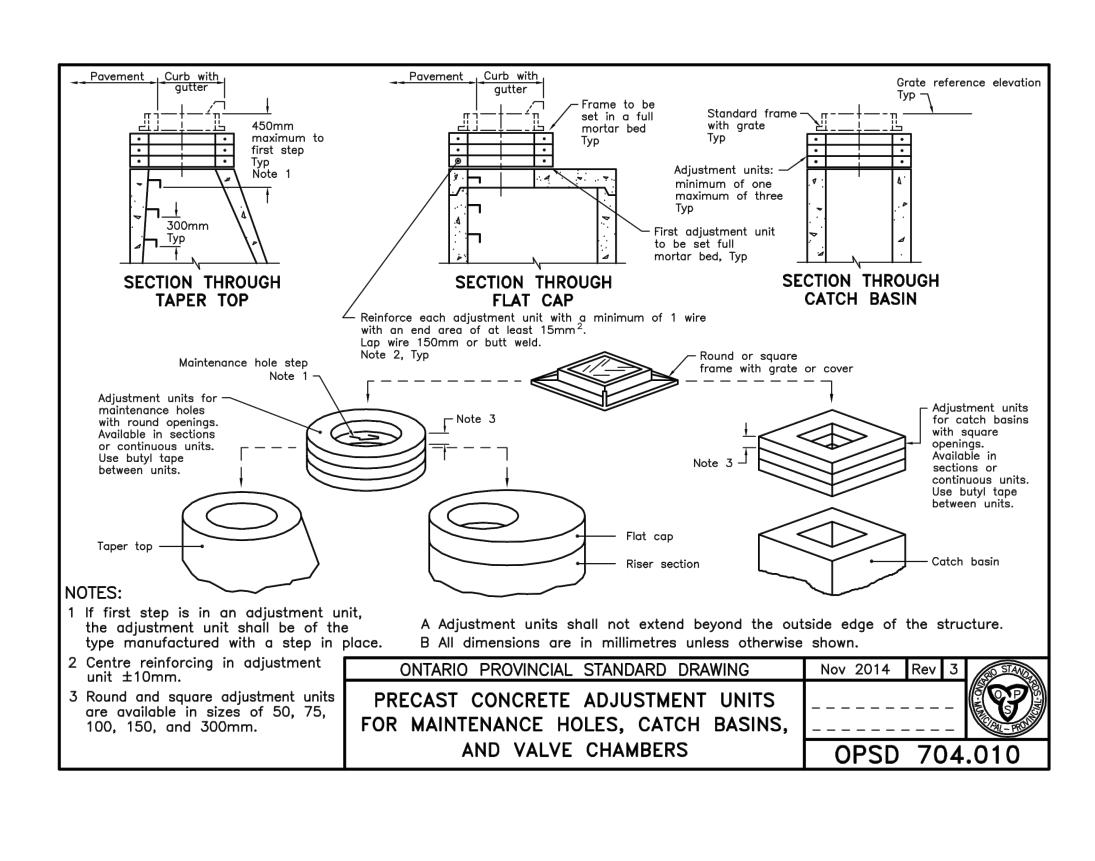
•

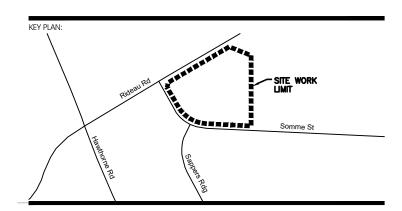

	PRELIMIN NOT FOR CONSTRUCTION	
RECORD C	DF REVISIONS:	
	ISSUED FOR SITE PLAN APPROVAL REVISION:	AUGUST 13, 2021 DATE: (MM/DD/YY)

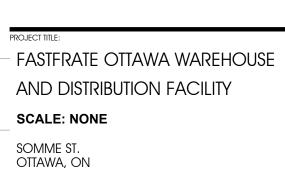


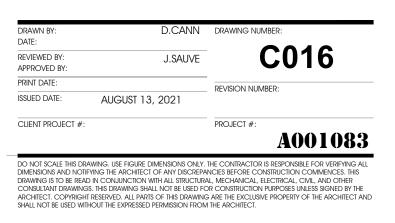

PROJECT TITLE: FASTFRATE OTTAWA WAREHOUSE AND DISTRIBUTION FACILITY SCALE: NONE SOMME ST. OTTAWA, ON

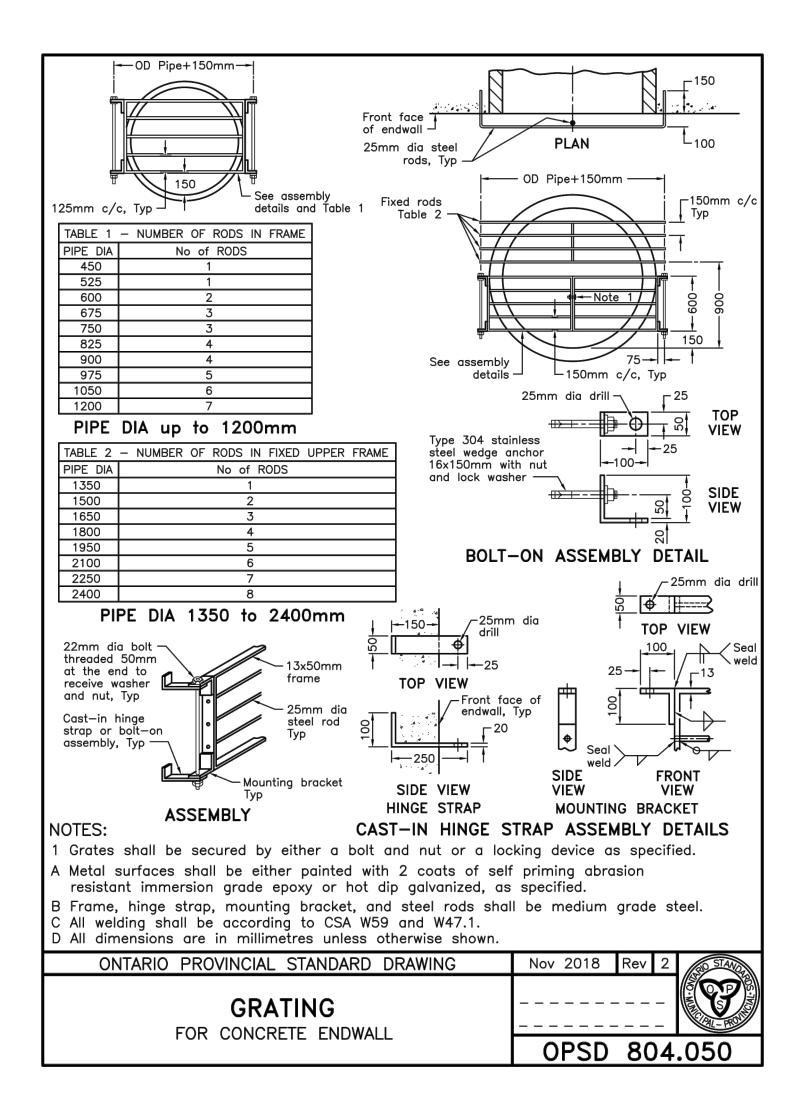

DETAILS

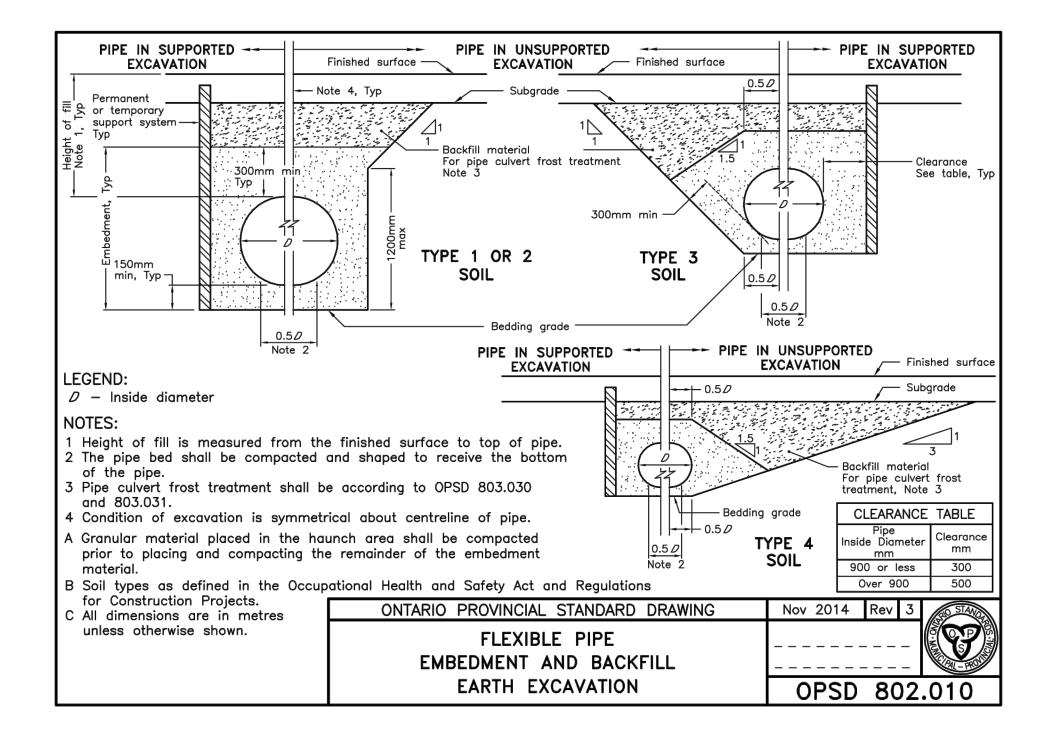

DRAWING TITLE:

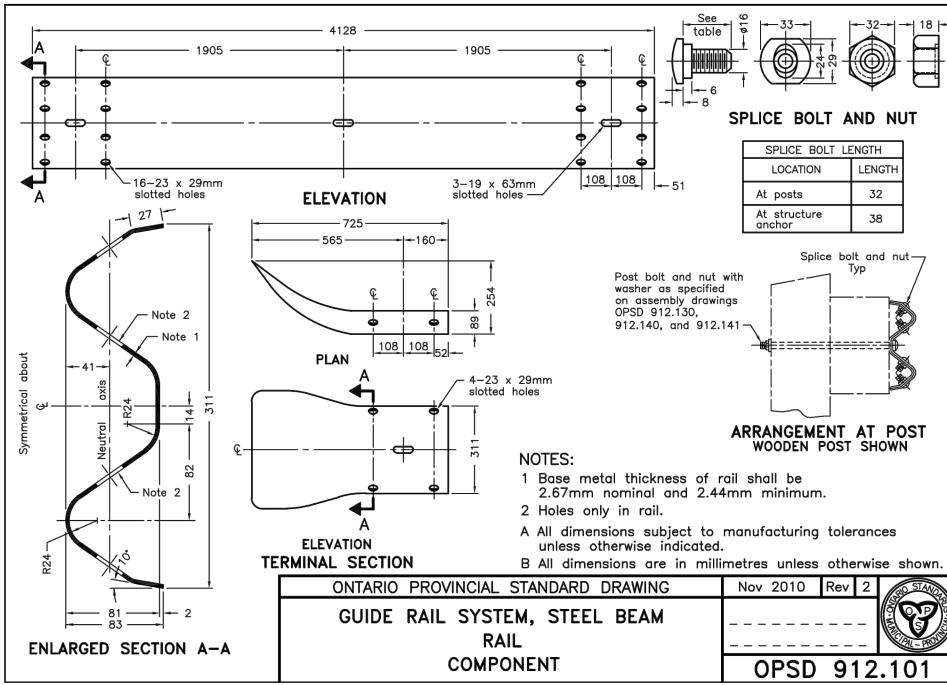


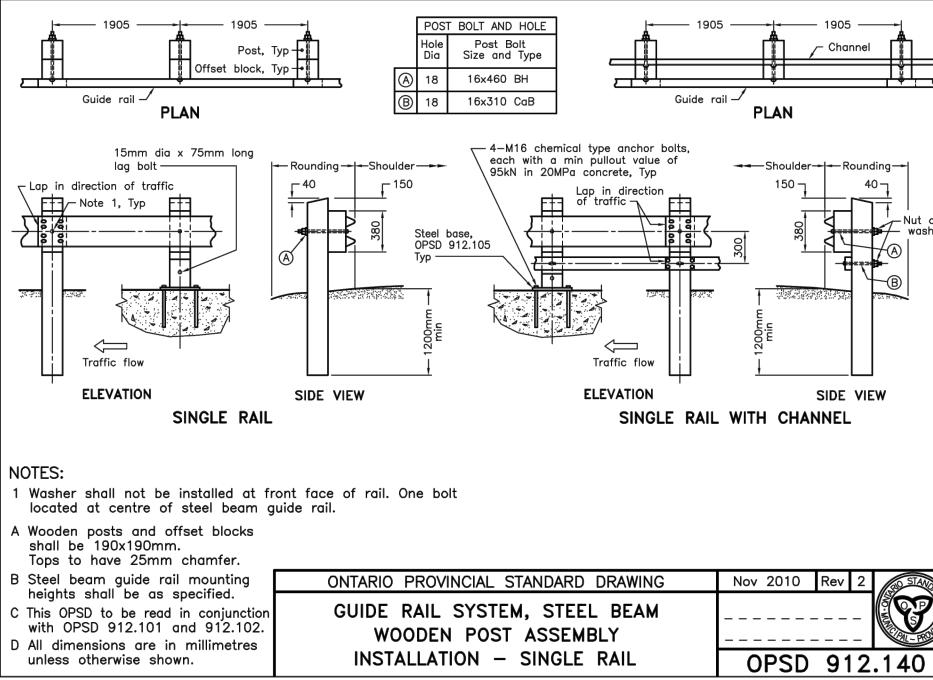


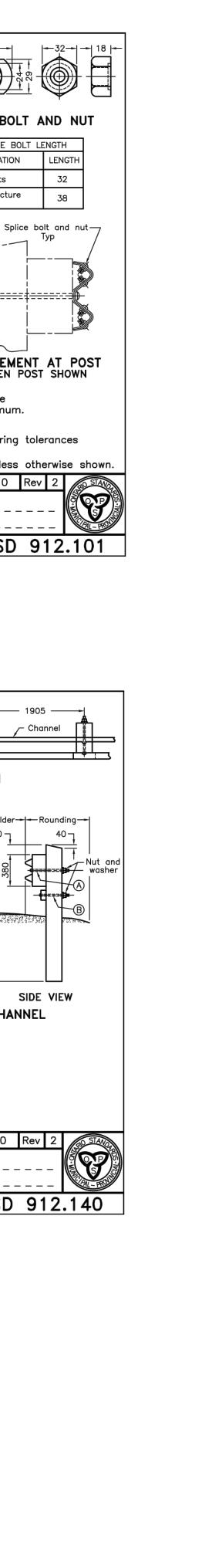


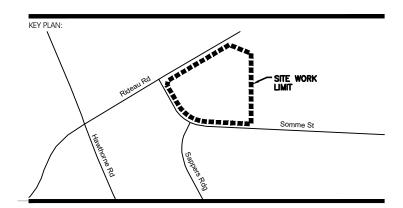

	PRELIMIN NOT FOR CONSTRUCT	
ECORD	DF_REVISIONS:	
$\overline{\mathbb{V}}$		
5		
4/		
3		
27		
Ň	ISSUED FOR SITE PLAN APPROVAL	AUGUST 13, 2021
JMBER:	REVISION:	DATE: (MM/DD/YY)

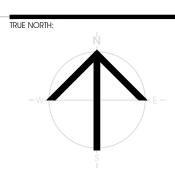





DETAILS

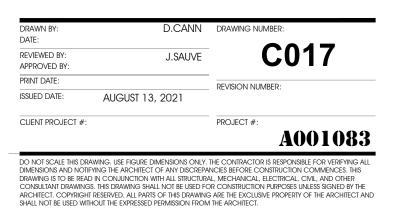


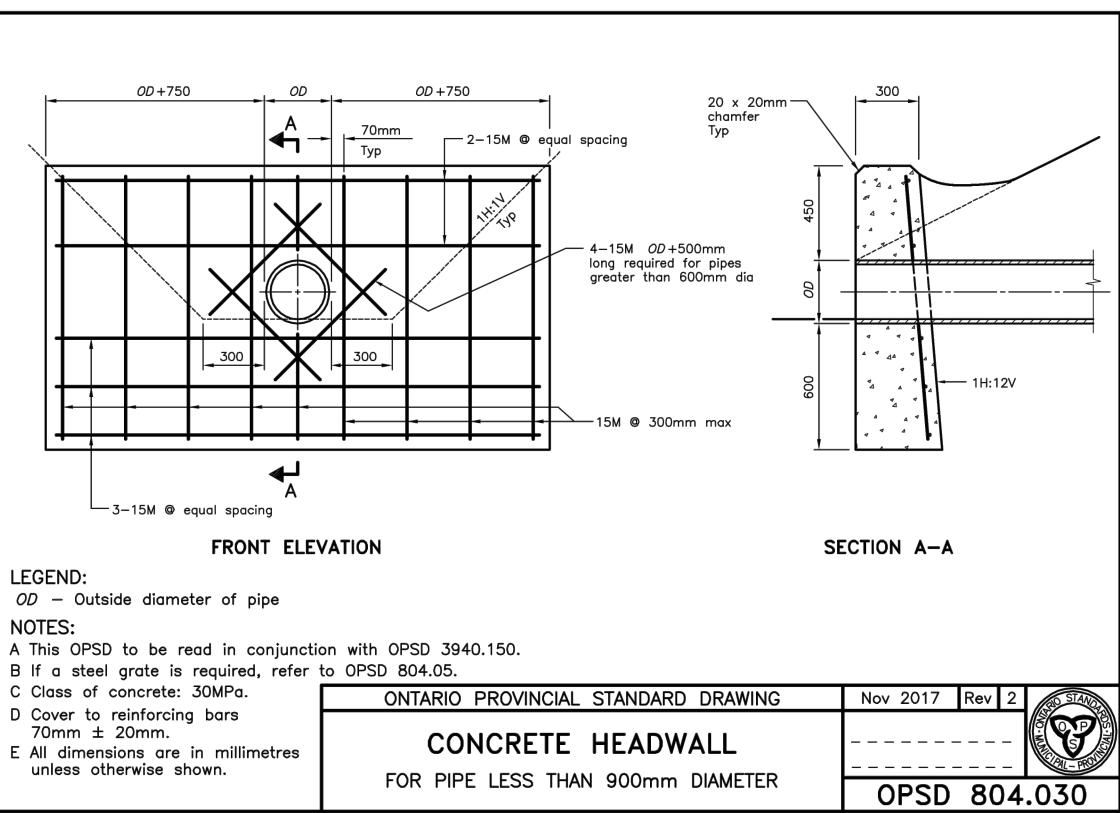


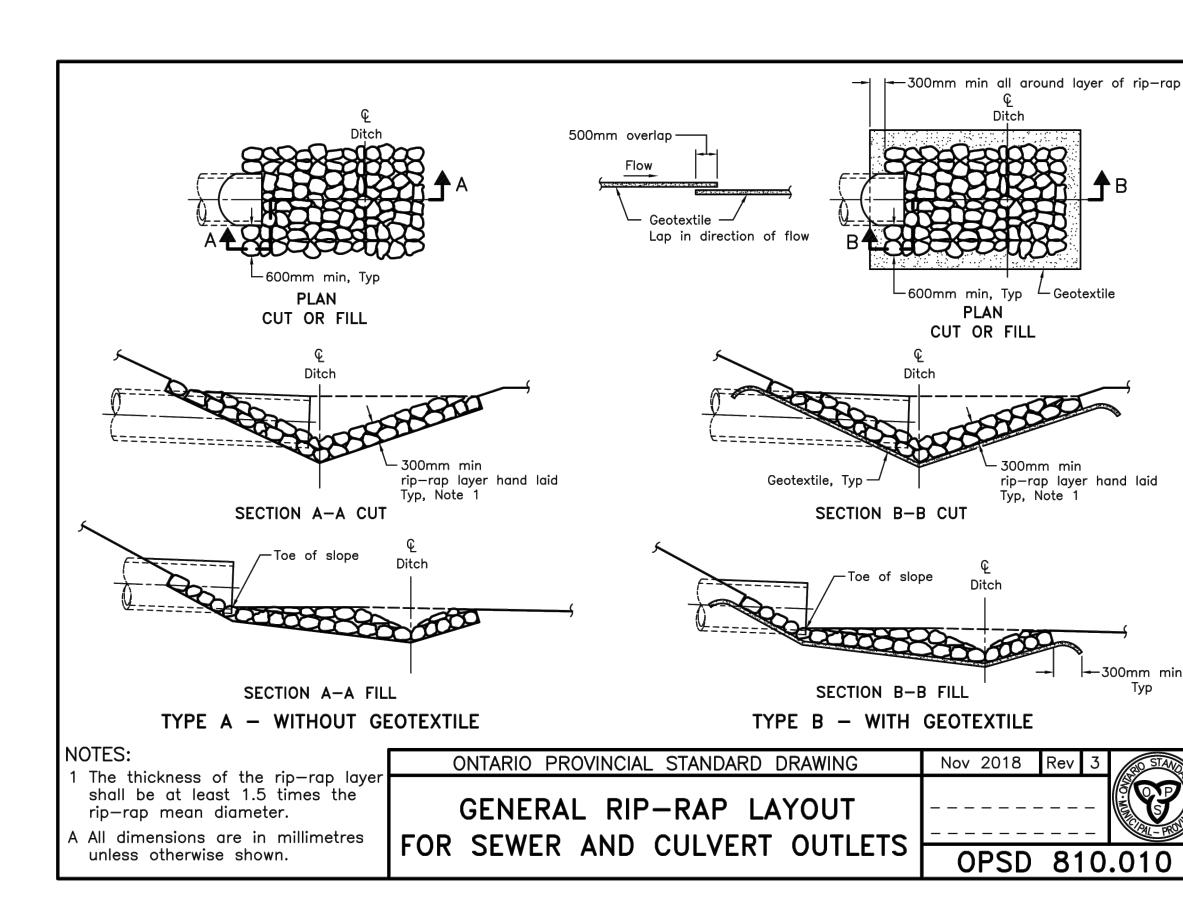


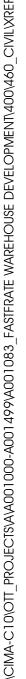
| |

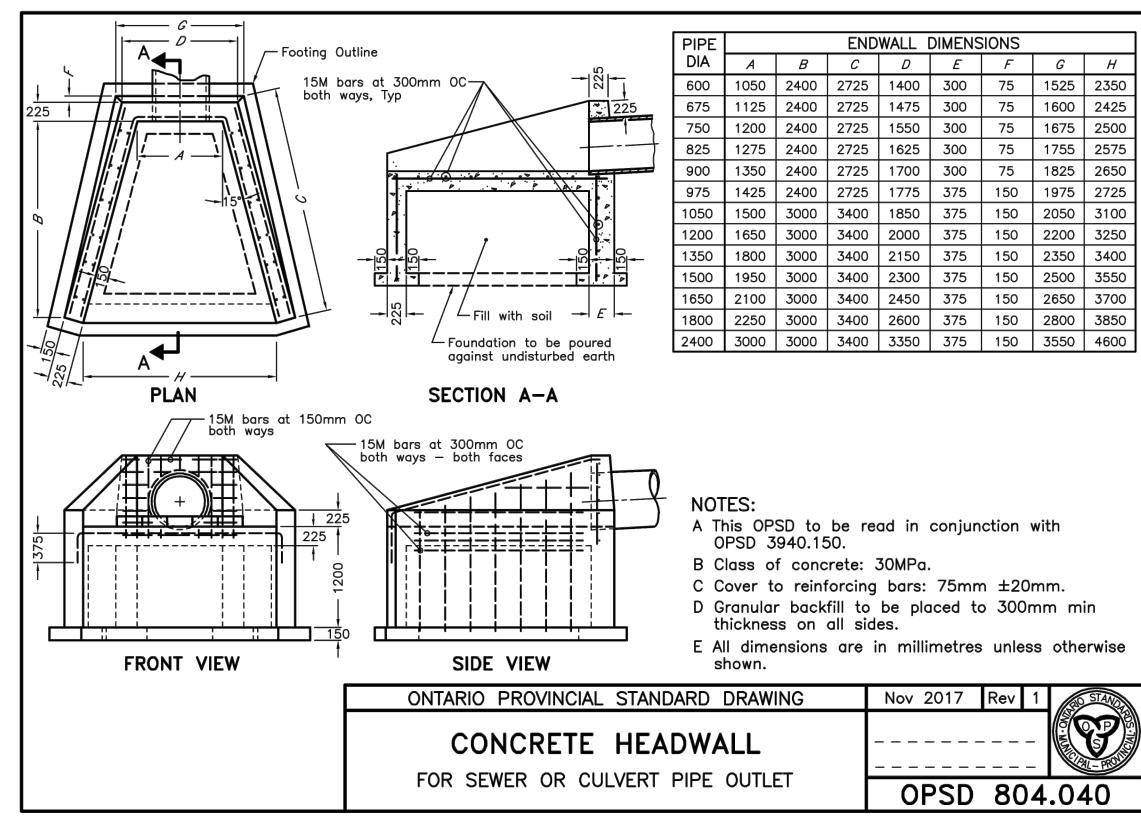
	PRELIMIN NOT FOR CONSTRUCTION	
RECORD (DF REVISIONS:	
$\overline{\mathbb{V}}$		
5		
$\overline{\sqrt{4/}}$		
$\overline{\sqrt{3}}$		
$\overline{\sqrt{2}}$		
$\mathbf{\tilde{V}}$	ISSUED FOR SITE PLAN APPROVAL	AUGUST 13, 2021
NUMBER:	REVISION:	DATE: (MM/DD/YY)

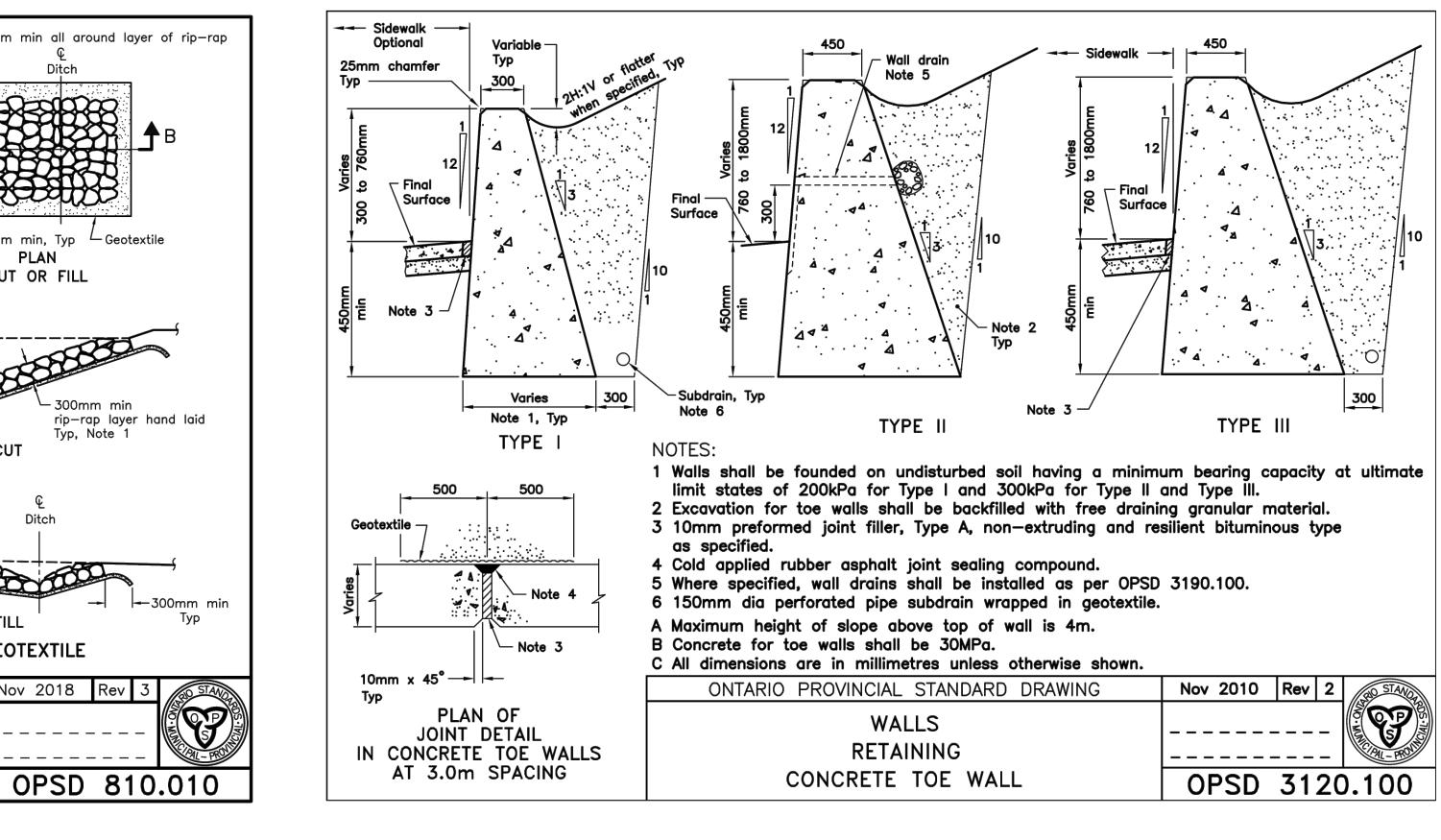


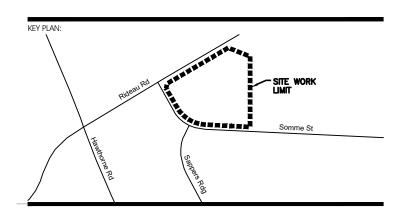


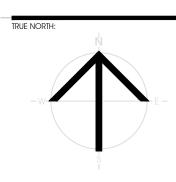

FASTFRATE OTTAWA WAREHOUSE AND DISTRIBUTION FACILITY SCALE: NONE SOMME ST. OTTAWA, ON


DETAILS


DRAWING TITLE:





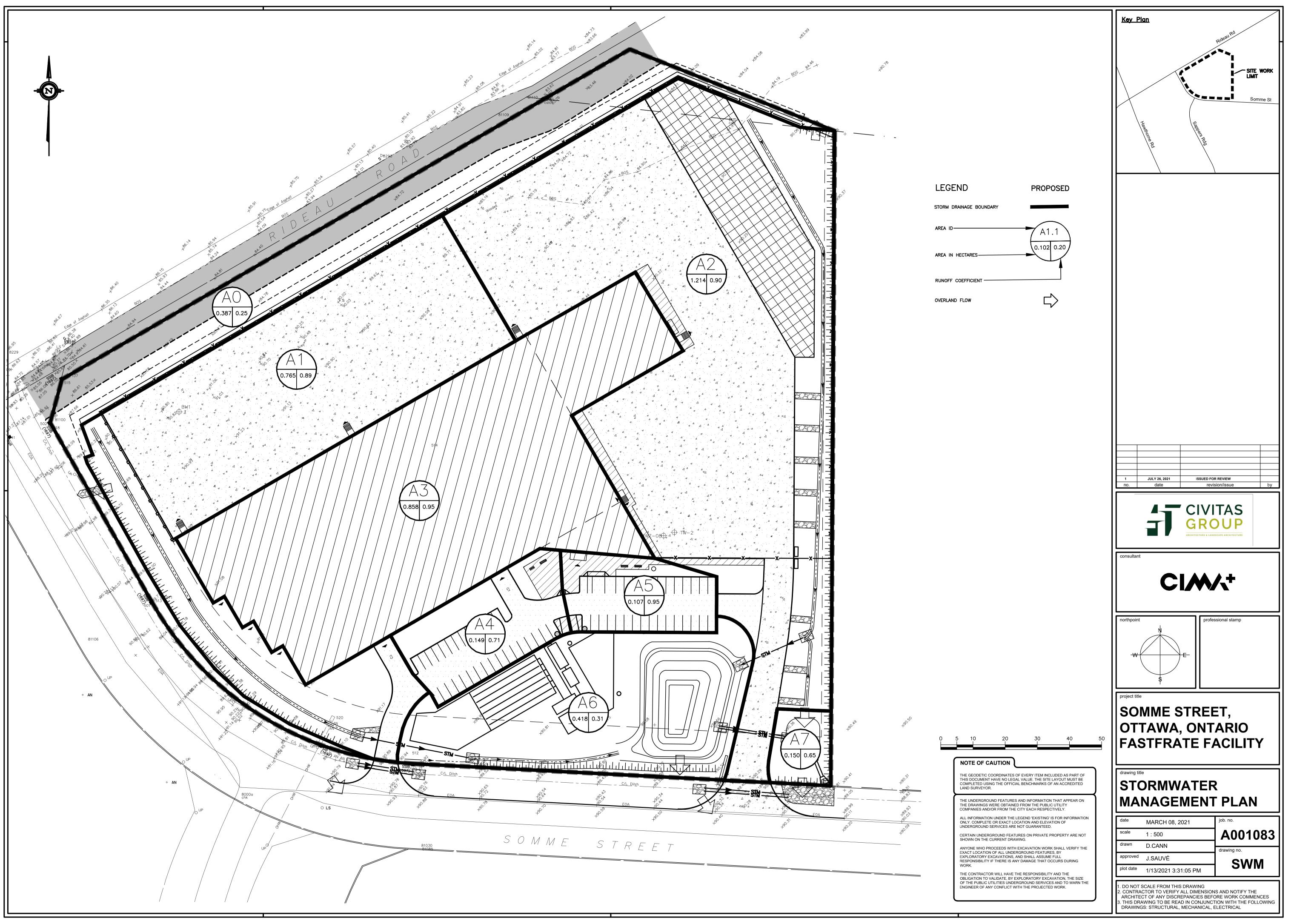


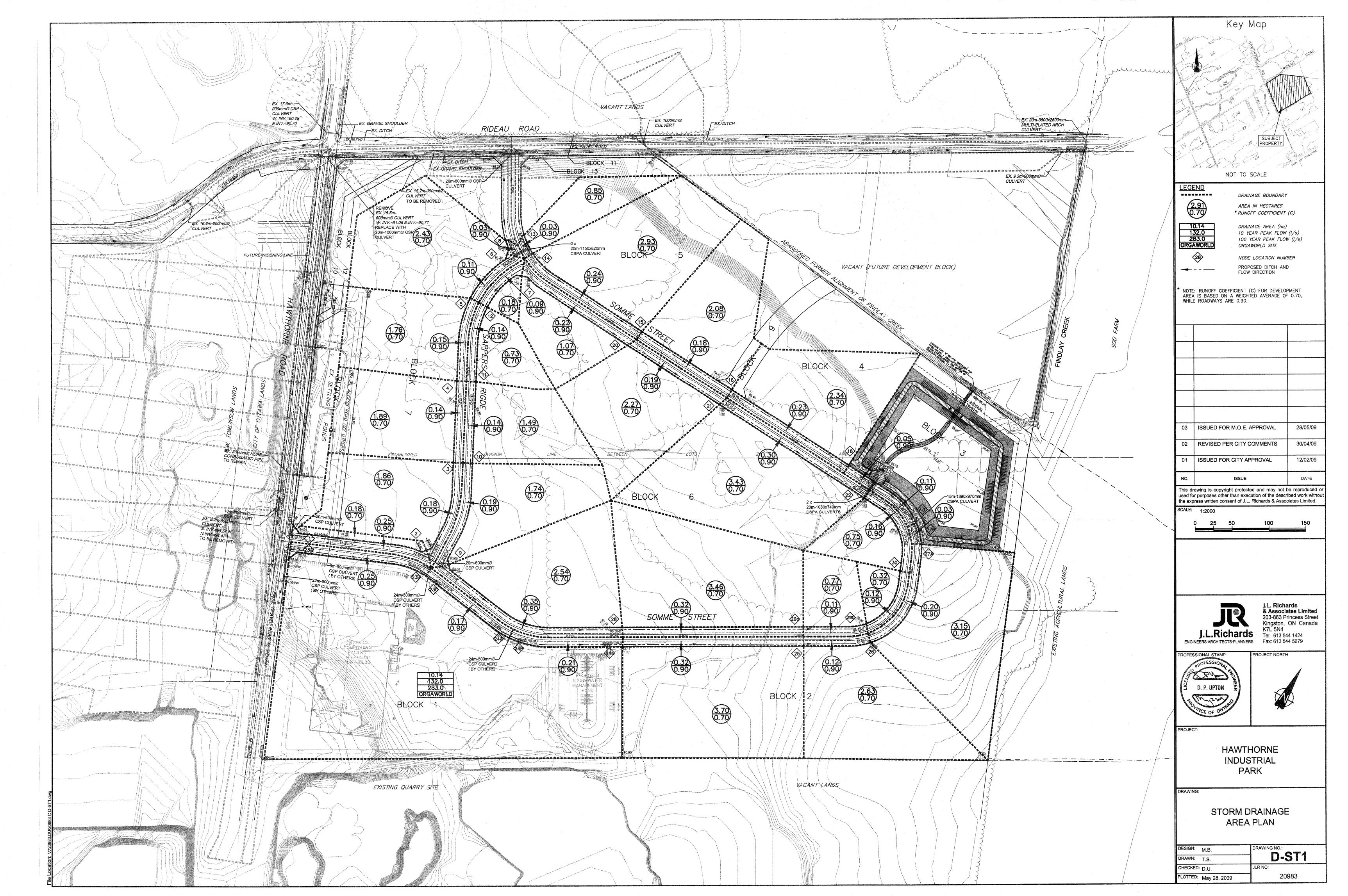
in conjunction v	vith
------------------	------

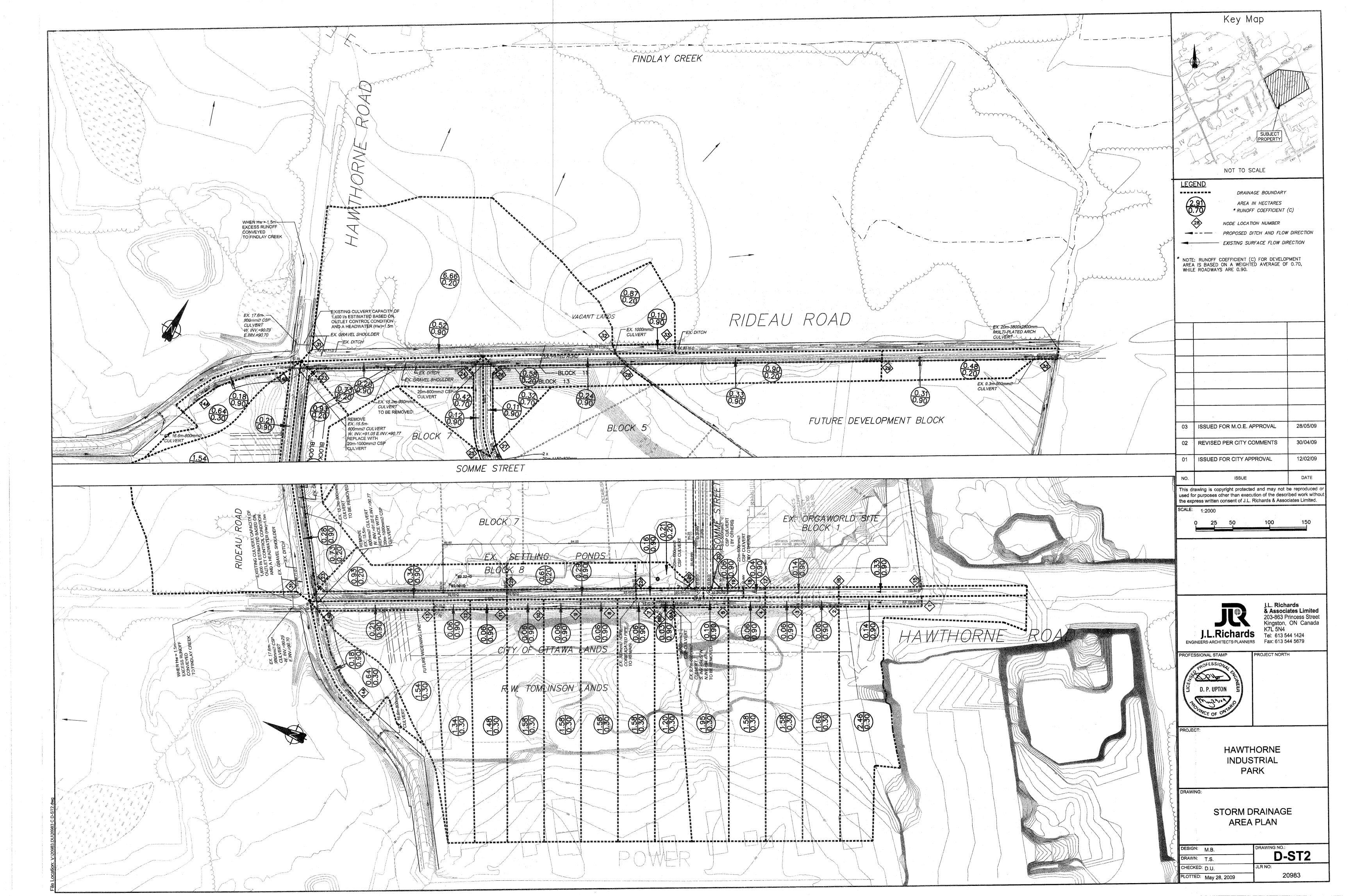
	PRELIMIN NOT FOR CONSTRUCTION	
RECORD C	DF REVISIONS:	
$\frac{4}{2}$		
	ISSUED FOR SITE PLAN APPROVAL REVISION:	AUGUST 13, 2021 DATE: (MM/DD/YY)

- FASTFRATE OTTAWA WAREHOUSE AND DISTRIBUTION FACILITY SCALE: NONE Somme st. Ottawa, on

DETAILS


DRAWN BY: DATE:	D.CANN	DRAWING NUMBER:
REVIEWED BY: APPROVED BY:	J.SAUVE	C018
PRINT DATE:		REVISION NUMBER:
ISSUED DATE:	AUGUST 13, 2021	
CLIENT PROJECT #	<i>ŧ</i> :	PROJECT #: A001083
DIMENSIONS AND NO DRAWING IS TO BE RE CONSULTANT DRAWIN ARCHITECT. COPYRIG	DTIFYING THE ARCHITECT OF ANY DISCREP, AD IN CONJUNCTION WITH ALL STRUCTUR NGS. THIS DRAWING SHALL NOT BE USED F	THE CONTRACTOR IS RESPONSIBLE FOR VERIFYING ALL ANCIES BEFORE CONSTRUCTION COMMENCES. THIS AL, MECHANICAL, ELECTRICAL, CML, AND OTHER OR CONSTRUCTION PURPOSES UNLESS SIGNED BY THE G ARE THE EXCLUSIVE PROPERTY OF THE ARCHITECT AND M THE ARCHITECT.




Appendix G -Stormwater Management Plan

1:10 year Ottawa International Airport IDF Curve

Hawthorne Industrial Park

City of Ottawa

JLR 20983 February 2009 (Revised April 2009)

	Increas	e Runoff	Coefficie	nt by	0.0%		4																-							
	NO	DES			DRAINAG	E AREA			PEAK FI	LOW GE	NERATIO	N				OPEN I	DITCH/S\	NALE DAT	Ά			CUL	VERTS SI	ZED UNDER	1:10 YEAF	STORME	VENT	FLOW	U/S	D/
DETAILS			Area	at C of				2.78AR	2.78AR	TIME	INTENS.	PEAK FL.	BW	D _{10yr}	D _{max}	SS	SLOPE	Q _{10yr}	Q _{100yr}	VEL.	LENGTH	No. of	DIA	BxD	INLET	OUTLET	HW	ТІМЕ	Inv	In
	FROM	TO	0.70	0.90	SUM(A)	SUM(A*C)	TOTAL		СЛМ	min.	mm/hr	l/s	m	m	m	X:1	%	l/s	l/s	m/s	m	Barrels	·			CONTROL		(min)	(m)	(m
	I I CON		(ha)	(ha)			A*C			11101.		""				7.1				1		Dancia	(mm)	(m)			(m)	(IIIII)	(11)	, vi
	1																								1	1			1	
NORTHERN CATCHMENT AREA	İ – – –			1		·															1		1	1. A. A. A. A. A.						
							1																		1	· · · · · · · · · · · · · · · · · · ·			1	
WEST SIDE SAPPERS RIDGE	2	3	1.86	0.18	2.04	1.46	1.46	4.07	4.07	15.00	97.85	398.2	0.00	0.42	1.20	3.00	0.50	424.2	6973.0	0.80	136.80		1			1	1	2.84	92.50	91.8
WEST SIDE SAPPERS RIDGE	3	4	1.89	0.14	2.03	1.45	2.92	4.04	8.11	17.84	88.22	715.4	0.00	0.51	1.20	3.00	0.80	904.2	8856.1	1.16	111.00							1.60	91.82	
WEST SIDE SAPPERS RIDGE	4	5	1.76	0.15	1.91	1.36	4.28	3.79	11.90	19.44		995.9	0.00	0.58	1.20	3.00	0.51	1011.3	7029.1	1.00	112.85							1.88	90.93	
WEST SIDE SAPPERS RIDGE	5	6	2.43	0.11	2.54	1.80	6.08	5.00	16.90	21.32 22.47	78.96	1334.4	0.00	0.65	1.20	3.00	0.62	1513.4	7762.6	1.19	82.79		<u> </u>					1.16	90.36	89.8
ORTH ENTRANCE TO SOMME STREET	8	6	 	0.03	0.03	0.03	0.03	0.08	0.08	15.00	97.85	7.3	0.00	0.20	1.20	3.00	1.30	94.9	11276.7	0.79	10.00							0.21	89.98	89.8
· · · · · · · · · · · · · · · · · · ·										15.21															· ·	<u></u>		┢────	<u> </u> '	<u> </u>
CULVERT CROSSING	6	14		0.00	0.00	0.00	6.11	0.00	16.97	22.47	76.34	1295.8	··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··				0.50	†	<u> · · · · · · · · · · · · · · · · · · ·</u>		20.00	2		1.15 x 0.82	NO	YES	0.75	0.38	89.85	89.7
										22.85																				
														* . 												<u> </u>				L
NORTH PORTION SOMME STREET	13	14	0.85	0.03	0.88	0.62	0.62	1.73	1.73	15.00	97.85	169.2	0.00	0.30	1.20	3.00	2.30	372.0	14999.4	1.38	10.00					_	_	0.12	89.98	89.7
								· · · · ·		15.12			i										<u> </u>					i	 '	
NORTH PORTION SOMME STREET	14	15	2.93	0.24	3.17	2.27	8.99	6.30	25.00	22.85	75.52	1888.2	0.00	0.74	1.20	3.00	0.50	1926.6	6992.8	1.17	184.04							2.62	89.75	88.8
NORTH PORTION SOMME STREET			2.08			1.62	10.61				70.36				1.20		0.57		7480.8										88.83	And 14
NORTH PORTION SOMME STREET	16	18	2.34	0.23	2.57	1.85	12.46	5.13	34.63	27.35	67.11	2323.9	0.00	0.80	1.20	3.00	0.51	2399.6	7074.8	1.25	185.66							2.48	88.00	87.C
NORTH PORTION SOMME STREET	18	19	0.00	0.05	0.05	0.05	12.50	0.13	34.75		63.30	2199.9	0.00	0.76	1.20	3.00	0.72	2476.8	8372.8	1.43	41.86		-					0.49	87.05	86.7
· · · · · · · · · · · · · · · · · · ·					ļ		.	· · · ·		30.31															ļ	<u> </u>	<u> </u>	 '	 '	┣—
EAST SIDE SAPPERS RIDGE	9	10	1.74	0.19	1.93	1.39	1.39	3.86	3.86	15.00	97.85	378.0	0.00	0.41	1.20	3.00	0.50	399.2	6996.6	0.79	147.87		<u> </u>					3.11	92.40	01 F
EAST SIDE SAPPERS RIDGE	10		1.49	0.10	1.63	1.17	2.56	3.25	7.11	18.11		622.0	0.00	0.49	1.20	3.00	0.66	735.9	8019.2	1.02	111.04							1.81	91.66	
EAST SIDE SAPPERS RIDGE	11	12	0.73	0.14	0.87	0.64	3.20	1.77	8.88	19.92	82.40	732.0	0.00	0.52	1.20	3.00	0.55	785.5	7304.8	0.97	104.49				1			1.80	90.93	
EAST SIDE SAPPERS RIDGE	12	7	0.18	0.09	0.27	0.21	3.40	0.58	9.46	21.72	78.02	738.2	0.00	0.49	1.20	3.00	0.81	818.5	8919.0	1.14	72.55							1.06	90.36	89.7
NORTH PORTION SOMME STREET	7	20	1.07	0.23	1.30	0.96	4.36	2.66	12.12	22.79	75.66	916.9	0.00	0.57	1.20	3.00	0.50	956.8	6966.1	0.98	177.39					1		3.01	89.77	
NORTH PORTION SOMME STREET	20	21	2.27	0.19	2.46	1.76	6.12	4.89	17.01	25.80	69.76	1186.8	0.00	0.62	1.20	3.00	0.50	1200.1	6981.9	1.04	147.49			ļ				2.36	88.89	
NORTH PORTION SOMME STREET	21	22	3.43	0.30	3.73	2.67	8.79	7.43	24.44	28.16 31.40	65.80	1608.1	0.00	0.70	1.20	3.00	0.56	1759.0	7404.4	1.20	232.84		<u> </u>					3.24	88.16	86.8
										51.40						* • • • •						······································				-		├ ───'	├ ──′	<u> </u>
SOUTHERN CATCHMENT AREA					•													·												
SOUTH PORTION SOMME STREET	23Å	23B	0.00	0.25	0.25	0.23	0.23	0.63	0.63	15.00	97.85	61.2	0.00	0.20	1.20	3.00	0.64	66.3	7883.5	0.55	181.00		<u> </u>			l		5.46	93.65	92 5
CULVERT CROSSING	23B	23C		0.00	0.00	0.00	0.23	0.00	0.63	20.46		50.7				0.00	0.42		1000.0		24.00	1	500		NO	YES	0.33	1.55	92.50	
SOUTH PORTION SOMME STREET	23C	24A	0.00	0.17	0.17	0.15	0.38	0.43	1.05	22.00	77.38	81.3	0.00	0.22	1.20	3.00	0.82	97.0	8946.1	0.67	110.00							2.74	92.40	
CULVERT CROSSING	24A	24B		0.00	0.00	0.00	0.38	0.00	1.05	24.75		75.3					0.42				24.00	1	500		NO	YES	0.34	1.04	91.50	
SOUTH PORTION SOMME STREET	24B	24C	0.00	0.21	0.21	0.19	0.57	0.53	1.58	25.79	69.78	110.0	0.00	0.25	1.20	3.00	0.70	126.0	8258.2	0.67	142.00		<u> </u>					3.52	91.40	90.4
ORGAWORLD - SITE	U/S	24C	1:10 year p	eak flow = 1	32 L/s. see Ta	able 4 of Orgaworld	Stormwater Si	te Managem	ent Plan. Se	pt. 2008		132.0		· · · · ·														'	 	
																					· .		1	<u> </u>	<u> </u>					
			3.70			2.88	3.44	8.00			64.05		0.00	0.52	1.20	3.00	0.54	783.8			244.84								90.41	
SOUTH PORTION SOMME STREET	25		2.63		2.75	1.95	5.39	5.42			58.41		0.00	0.58		3.00	0.51		7041.5											
SOUTH PORTION SOMME STREET	26					2.39	7.78					1357.2	0.00	0.62		3.00	0.65		7970.4		157.06			ļ	ļ	ļ	ļ		88.62	
		27B	0.00		0.03	0.03	7.81				54.29		0.00	0.61	1.20	3.00	0.65	1312.4	7973.8	1.18	20.00		<u> -;</u>	1 20 X 0 CT	VED				87.60	
CULVERT CROSSING CORNER OF POND	27B 27C	27C 19	0.00	0.00	0.00	0.00	7.81				54.00	1303.8	0.00	0.65	1.20	3.00	0.73 0.71	1602.0	8324.0	1 20	15.00	1		1.39 X 0.97	YES	NO	0.87		87.47 87.36	
	2/0	19	0.00		0.11	0.10	1.00	0.20	21.90	38.67	55.79	1314.2	0.00	0.05	1.20	3.00	0.71	1022.9	0324.0	1.20	12.00		+			+		0.94	01.30	00.8
				···						00.01	1								t				+	<u> </u>				↓ ′		

DATE : 5/27/2009

OPEN DITCH/CULVERT DESIGN SHEET

Prepared by: M. Buchanan, E.I.T.

J.L. RICHARDS AND ASSOCIATES LIMITED, Consulting Engineers, Architects and Planners

1:10 year Ottawa International Airport IDF Curve

Hawthorne Industrial Park

City of Ottawa

JLR 20983 February 2009 (Revised April 2009)

	NO	DES			DRAINAC	SE AREA			PEAK F	LOW GE	NERATIC	N				OPEN	DITCH/SV	NALE DAT	A			CUL	VERTS SI	ZED UNDER	1:10 YEAF	R STORM EV	VENT	FLOW	U/S	D/
DETAILS	1		Area a	at C of			TOTAL	2.78AR	2.78AR	TIME	INTENS	. PEAK FL.	BW	D _{10yr}	D _{max}	SS	SLOPE	Q _{10yr}	Q _{100yr}	VEL.	LENGTH	No. of	DIA	BxD	INLET	OUTLET	HW	TIME	Inv	In
	FROM	TO	0.70	0.90	SUM(A)	SUM(A*C)	A*C		СОМ	min.	mm/hr	l/s	m	m	m .	X:1	%	l/s	l/s	m/s	m	Barrels			CONTRO	LCONTROL	. 1:10	(min)	(m)	(n
			(ha)	(ha)																			(mm)	(m)			(m)			┶
W ENTRANCE TO SOMME STREET	1	2	0.18	0.25	0.43	0.35	0.35	0.97	0.97	15.00	97.85		0.00	0.32	1.20	3.00	0.61	226.9	7702.7	0.74	189.60							4.28		
CULVERT CROSSING	2	9		0.00	0.00	0.00	0.35	0.00	0.97	19.28	84.12	81.3					0.50				20.00	1	600		NO	YES	0.52	1.16	92.50) 92
SOUTH PORTION SOMME STREET	9	28	2.54	0.35	2.89	2.10	2.44	5.83	6.80	20.44	81.10		0.00	0.47	1.20	3.00	0.73	694.0	8450.7	1.05	272.58							4.34	92.40) 90
SOUTH PORTION SOMME STREET	28	29A	3.46	0.32	3.78	2.71	5.15	7.53	14.33	24.77	71.65	1026.7	0.00	0.61	1.20	3.00	0.54	1198.8	7283.5	1.07	245.24							3.81	90.41	89
SOUTH PORTION SOMME STREET	29A	29B	0.77	0.11	0.88	0.64	5.79	1.78	16.11	28.58	65.15	1049.5	0.00	0.62	1.20	3.00	0.53	1239.6	7212.0	1.07	86.51								89.08	
SOUTH PORTION SOMME STREET	29B	30	0.32	0.12	0.44	0.33	6.13	0.92	17.03	29.92	63.16	1075.8	0.00	0.58	1.20	3.00	0.70	1191.6	8282.1	1.18	94.12								88.62	
SOUTH PORTION SOMME STREET	30	22	0.75	0.16	0.91	0.67	6.80	1.86	18.89	31.25	61.31	1158.5	0.00	0.58	1.20	3.00	0.97	1402.6	9748.4	1.39	124.55			1				1.49	87.96	i 86
										32.74				[·									_	
CULVERT CROSSING	22	19		0.00	0.00	0.00	15.59	0.00	43.33	32.74	59.38	2573.1					0.50		· · · ·		20.00	2		1.03 X 0.74	YES	NO	1.30	0.08	86.85	3 86
					0.00	0.00	10.00	0.00		32.82	00.00	20/0.1					0.00							1.007(0.71				0.00		
A																														_
POND INLET	19	POND		0.00	0.00	0.00	35.97	0.00	100.06	38.67	52.87	5422.6	3.09	0.38	1.20	3.00	5.68	5629.1	13135.2	3.50	22.00	· · · · · ·			<u> </u>	+		0.10	86.75	85.
POND OUTLET DITCH	POND	DITCH	1:10 vear co	ntrolled po	l st developm	ent peak flow = 696	l /s. see SWMH	YMO output	t of this Rep	l		696.0	1.00	0.27	0.38	3.00	2.08	750.9	1506.6	1.54	24.00					<u> </u>	- :	0.26	82.50	1 82

Note: Conveyance Capacitites for the Open Ditch/Swale were calculated based on a Manning's Roughness Coefficient (n) of 0.030

DATE : 5/27/2009

OPEN DITCH/CULVERT DESIGN SHEET

Prepared by: M. Buchanan, E.I.T.

Hawthorne Industrial Park

City of Ottawa

JLR 20983

1:100 year Ottawa International Airpo			f Coefficie	nt by	25.0%					•	•	ised Apri	•							
	-	DES		-	DRAINAG	GE AREA			PEAK FI	LOW GEI	NERATIO	N			OPEN (DITCH/SW	ALE DATA	4		C
DETAILS			Area	at C of		SUM(A*1.25*C)	TOTAL	2.78AR	2.78AR	TIME	INTENS.	PEAK FL.	BW	D	SS	SLOPE	CAPAC.	VEL.	LENGTH	Γ
	FROM	то	0.70 (ha)	0.90 (ha)	SUM(A)	25% increase in C factor	A*C		СОМ	min.	mm/hr	l/s	m	m	X:1	%	l/s	m/s	m	
	Í																			Γ
NORTHERN CATCHMENT AREA			<u> </u>		ļ						<u> </u>									╞
WEST SIDE SAPPERS RIDGE	2	3	1.86	0.18	2.04	1.81	1.81	5.02	5.02	15.00	142.89	718.0	0.00	1.20	3.00	0.50	6973.0	1.61	136.80	F
WEST SIDE SAPPERS RIDGE	3	4	1.89	0.14	2.03	1.80	3.61	5.00	10.02	16.41	135.47	1357.9	0.00	1.20	3.00	0.80	8856.1	2.05	111.00	L
WEST SIDE SAPPERS RIDGE	4	5	1.76	0.15	1.91	1.69	5.29	4.69	14.71	17.31	131.16	1929.7	0.00	1.20	3.00	0.51	7029.1	1.63	112.85	
WEST SIDE SAPPERS RIDGE	- 5	6	2.43	0.11	2.54	2.23	7.53	6.21	20.92	18.47 19.24	126.06	2637.5	0.00	1.20	3.00	0.62	7762.6	1.80	82.79	F
																				F
NORTH ENTRANCE TO SOMME STREET	8	6.		0.03	0.03	0.03	0.03	0.08	0.08	15.00	142.89	11.9	0.00	1.20	3.00	1.30	11276.7	2.61	10.00	L
		ļ						 	ļ	15. 0 6	ļ			ļ		· · · · ·				1
											100.01	0.001.0								⊢
CULVERT CROSSING	6	14		0.00	0.00	0.00	7.56	0.00	21.01	19.24	122.91	2581.8				0.50			20.00	┢
										19.43										┢
NORTH PORTION SOMME STREET	13	14	0.85	0.03	0.88	0.77	0.77	2.15	2.15	15.00	142.89	307.4	0.00	1.20	3.00	2.30	14999.4	3.47	10.00	┢
NORTH FORMON SOMME STREET	15		0.00	0.05	0.00	0.77	0.11	2.13	2.15	15.00	142.03	307.4	0.00	1.20	0.00	2.00	14000.4	0.41	10.00	⊢
										10.00		I								⊢
NORTH PORTION SOMME STREET	14	15	2.93	0.24	3.17	2.80	11.13	7.79	30.95	19.43	122.15	3780.5	0.00	1.20	3.00	0.50	6992.8	1.62	184.04	F
NORTH PORTION SOMME STREET	15	16	2.08	0.18	2.26	2.00	13.13	5.56	36.51	21.32	115.16		0.00	1.20	3.00	0.57	7480.8	1.73	145.08	F
NORTH PORTION SOMME STREET	16	18	2.34	0.23	2.57	2.28	15.41	6.33	42.84	22.72	110.55	4736.0	0.00	1.20	3.00	0.51	7074.8	1.64	185.66	F
NORTH PORTION SOMME STREET	18	19	0.00	0.05	0.05	0.05	15.46	0.14	42.98	24.61	104.93	4509.7	0.00	1.20	3.00	0.72	8372.8	1.94	41.86	Γ
										24.97			_							
				•																L
EAST SIDE SAPPERS RIDGE	9	10	1.74	0.19	1.93	1.71	1.71	4.76	4.76	15.00	142.89	680.4	0.00	1.20	3.00	0.50	6996.6	1.62	147.87	
EAST SIDE SAPPERS RIDGE	10	11	1.49	0.14	1.63	1.44	3.16	4.02	8.78	16.52	134.93	1184.3	0.00	1.20	3.00	0.66	8019.2	1.86	111.04	L
EAST SIDE SAPPERS RIDGE	11	12	0.73	0.14	0.87	0.78	3.94	2.16	10.94	17.52	130.23	1424.7	0.00	1.20	3.00	0.55	7304.8	1.69	104.49	L
EAST SIDE SAPPERS RIDGE	12	7	0.18	0.09	0.27	0.25	4.18	0.69	11.63	18.55	125.73	1462.2	0.00	1.20	3.00	0.81	8919.0	2.06	72.55	
NORTH PORTION SOMME STREET	7	20	1.07	0.23	1.30	1.17	5.35	3.24	14.87	19.13	123.33	1834.1	0.00	1.20	3.00	0.50	6966.1	1.61	177.39	⊢
NORTH PORTION SOMME STREET	20	21	2.27	0.19	2.46	2.18	7.53	6.05	20.92	20.97	116.41	2435.6	0.00	1.20	3.00	0.50	6981.9	1.62	147.49	⊢
NORTH PORTION SOMME STREET	21	22	3.43	0.30	3.73	3.30	10.83	9.18	30.10	22.49	111.29	3350.0	0.00	1.20	3.00	0.56	7404.4	1.71	232.84	⊢
										24.75										┢─
SOUTHERN CATCHMENT AREA								· · · · · ·					+		 					┢
· · · · · · · · · · · · · · · · · · ·														<u> </u>						Γ
SOUTH PORTION SOMME STREET	23A	23B	0.00	0.25	0.25	0.25	0.25	0.70	0.70	15.00	142.89	99.3	0.00	1.20	3.00	0.64	7883.5	1.82	181.00	L
CULVERT CROSSING	23B	23C	I	0.00	0.00	0.00	0.25	0.00	0.70	16.65	134.29	93.3				0.42	12		24.00	L
SOUTH PORTION SOMME STREET	23C	24A	0.00	0.17	0.17	0.17	0.42	0.47	1.17	17.49	130.34	152.2	0.00	1.20	3.00	0.82	8946.1	2.07	110.00	L
CULVERT CROSSING	24A	24B		0.00	0.00	0.00	0.42	0.00	1.17	18.38	126.45	147.6		L		0.42			24.00	L
SOUTH PORTION SOMME STREET	24B	_24C	0.00	0.21	0.21	0.21	0.63	_0.58	1.75	18.91	124.24	217.6	0.00	1.20	3.00	0.70	8258.2	1.91	142.00	┝
ORGAWORLD - SITE	U/S	24C	1:100 year p	beak flow = :	283 I/s, see T	able 4 of Orgaworld	Stormwater S	ite Managen	nent Plan, Se	ept. 2008		283.0								
											110.15	1070.0					7055 7			-
SOUTH PORTION SOMME STREET	24C	25	3.70	0.32	4.02	3.56	4.19	9.89	11.64	20.15	119.40	1672.8	0.00	1.20	3.00	0.54	7289.5	1.69	244.84	⊢
SOUTH PORTION SOMME STREET	25	26	2.63	0.12	2.75	2.42	6.61	6.73	18.37	22.57	111.05		0.00	1.20	3.00	0.51	7041.5	1.63	90.75	⊢
SOUTH PORTION SOMME STREET	26	27A	3.15	0.20	3.35	2.96	9.57	8.22	26.59	23.49	108.17	3159.5	0.00	1.20	3.00	0.65	7970.4	1.84	157.06	┢
	27A 27B	27B	0.00	0.03	0.03	0.03	9.60	0.08	26.67	24.91	104.09	3059.5	0.00	1.20	3.00	0.65	7973.8	1.85	20.00	⊢

CULVERT CROSSING

CORNER OF POND

27B 27C

27C 19

0.00

0.11

0.00

0.00

0.11

0.00

0.11

9.60

9.71

0.00 26.67

26.98

0.31

25.09 103.59 3046.2

25.18 103.36 3071.7

25.80

0.00

1.20

3.00

DATE : 5/27/2009

OPEN DITCH/CULVERT DESIGN SHEET

Prepared by: M. Buchanan, E.I.T.

Checked by: G. Forget, P.Eng.

CULVER	TS SIZED	UNDER 1:10) YEAR STO	ORM EVENT	FLOW	U/S	D/S
No. of	DIA	BxD	INLET	OUTLET	TIME	Inv	Inv
Barrels			CONTROL	CONTROL	(min)	(m)	(m)
	(mm)	(m)					
	1				1.41	92.50	91.82
					0.90	91.82	90.93
					1.16	90.93	90.36
					0.77	90.36	89.85
- ·							
					0.06	89.98	89.85
2		1.15 x 0.82	NO	YES	0.19	89.85	89.75
		1.10 × 0.02			0.13	09.00	09.15
					0.05	89.98	89.75
					1.89	89.75	88.83
					1.40	88.83	88.00
					1.89	88.00	87.05
 					0.36	87.05	86.75
					1.52	92.40	91.66
	·				1.52	92.40 91.66	90.93
					1.00	90.93	90.36
					0.59	90.36	89.77
					1.83	89.77	88.89
					1.52	88.89	88.16
					2.26	88.16	86.85
				-			
					1.07	00.05	00.70
	EOO			VEC	1.65	93.65	92.50
1	500		NO	YES	0.84	92.50 92.40	92.40 91.50
1	500		NO	YES	0.89	92.40	91.50
╏──╵──┤				. 20	1.24	91.40	90.41
						U1	
					2.42	90.41	89.08
					0.93	89.08	88.62
					1.42	88.62	87.60
					0.18	87.60	87.47
1		1.39 X 0.97	YES	NO	0.09	87.47	87.36
					0.62	87.36	86.85
┫─────┤							

15.00

72.00

0.73

0.71

8324.0 1.93

Hawthorne Industrial Park

City of Ottawa

JLR 20983

February 2009 (Revised April 2009)

1:100 year	Ottawa	International	Airport IDF	Curve

		DES	Coefficie		25.0% DRAINAG	E AREA			PEAK F	LOW GEI	NERATIO	v			OPEN I	DITCH/SW	ALE DATA	4		CULVER	IS SIZED	UNDER 1:1	0 YEAR STO		FLOW	U/S	D/S
DETAILS			Area	at C of		SUM(A*1.25*C)	TOTAL	2.78AR	2.78AR	TIME	INTENS.	PEAK FL.	BW	D	SS	SLOPE	CAPAC.	VEL.	LENGTH	No, of	DIA	BxD	INLET	OUTLET	TIME	Inv	Inv
	FROM	то	0.70 (ha)	0.90 (ha)	SUM(A)	25% increase in C factor	A*C		CUM	min.	mm/hr	l/s	m	m	X:1	%	l/s	m/s	m	Barrels	(mm)	(m)	CONTROL	CONTROL	(min)	(m)	(m)
SW ENTRANCE TO SOMME STREET	1	2	0.18	0.25	0.43	0.40	0.40	1.12	1.12	15.00	142.89	160.5	0.00	1.20	3.00	0.61	7702.7	1.78	189.60						1.77	93.65	92.50
CULVERT CROSSING	2	9		0.00	0.00	0.00	0.40	0.00	1.12	16.77	133.71	150.2				0.50			20.00	1	600		NO	YES	0.63	92.50	92.40
SOUTH PORTION SOMME STREET	9	28	2.54	0.35	2.89	2.58	2.98	7.16	8.29	17.40	130.77	1083.6	0.00	1.20	3.00	0.73	8450.7	1.96	272.58				·		2.32	92.40	90.41
SOUTH PORTION SOMME STREET	28	29A	3.46	0.32	3.78	3.35	6.33	9.31	17.59	19.72	121.01	2128.9	0.00	1.20	3.00	0.54	7283.5	1.69	245.24		_				2.42	90.41	
SOUTH PORTION SOMME STREET	29A	29B	0.77	0.11	0.88	0.79	7.11	2.19	19.78	22.15	112.40	2223.0	0.00	1.20	3.00	0.53	7212.0	1.67	86.51						0.86	89.08	
SOUTH PORTION SOMME STREET	29B	30	0.32	0.12	0.44	0.40	7.51	1.11	20.89	23.01	1 09.6 5	2290.7	0.00	1.20	3.00	0.70	8282.1	1.92	94.12						0.82	88.62	
SOUTH PORTION SOMME STREET	30	22	0.75	0.16	0.91	0.82	8.33	2.27	23.16	23.83	107.18	2482.3	0.00	1.20	3.00	0.97	9748.4	2.26	124.55			L			0.92	87.96	86.75
										24.75	ļ							 									
CULVERT CROSSING	22	19		0.00	0.00	0.00	19.16	0.00	53.26	24.75	104.53	5567.5				0.50			20.00	2		1.03 X 0.74	YES	NO	0.04	86.85	86.7
										24.79																	\square
POND INLET	19	POND		0.00	0.00	0.00	44.32	0.00	123.22	25.80	101.69	12813.8	3.09	0.55	5.00	5.68	13135.2	4.09	22.00						0.09	86.75	85.50
POND OUTLET DITCH	POND	DITCH	1:100 year c	ontrolled p	ost developm	nent peak flow = 1,432	l/s, see SWI	MHYMO outp	out of this R	eport		1432.0	1.00	0.38	3.00	2.08	1506.6	1.85	24.00		· ·				0.22	82.50	82.0(
					·																						

Note: Conveyance Capacitites for the Open Ditch/Swale were calculated based on a Manning's Roughness Coefficient (n) of 0.030

OPEN DITCH/CULVERT DESIGN SHEET

Prepared by: M. Buchanan, E.I.T.

J.L. RICHARDS AND ASSOCIATES LIMITED, Consulting Engineers, Architects and Planners

Hawthorne Road & Rideau Road

City of Ottawa

JLR 20983 February 2009

		se Runof	t Coettici	ent by	0.0%	up C = '												_											(Bb) 1	I 		
DET	NO	DES					AGE ARE	A		0.7015			NERATIO			т в				WALE DAT			LIENOTU	No. of Concession, name				R STORM E		FLOW	U/S	D/S
DETAILS	FROM	T = = = =	0.00	· · · · · · · · · · · · · · · · · · ·	(A) at C o				TOTAL	2.78AR	2.78AR			PEAK FL.	BW	D _{10yr}	D _{max}	SS	SLOPE	1	Q _{100yr}	VEL.	LENGTH	No. of	DIA	BxD			HW	TIME	lnv (m)	Inv (m)
	FROM	ТО	0.20 (ha)	0.30 (ha)	0.70 (ha)	0.90 (ha)	SUM(A)	SUM(A*C)	A*C		CUM	min.	mm/hr	l/s	m	m	m	X:1	70	l/s	l/s	m/s	m	Barrels	(mm)	(m)	CONTROL		. 1:10 (m)	(min)	(m)	(m)
· · · · · · · · · · · · · · · · · · ·		+	(lia)	(112)	(11a)			I																								
WEST CATCHMENT AREA		+																						i								 '
																																'
EST SIDE HAWTHORNE ROAD	1	2		2.46		0.14	2.60	0.86	0.86	2.40	2.40	15.00	97,.85	235.0	0.00	0.41	0.50	3.00	0.20	250.1	424.5	0.50	112.00							3.76	103 22	103.00
WEST SIDE HAWTHORNE ROAD	· ·	3	-	1.60	1	0.14	1.66	0.53	1.40	1.48	3.89	18.76	85.54	332.5	0.00	0.41	0.50	3.00	5.00	337.3	2141.9	1.80	50.00							0.46		100.50
WEST SIDE HAWTHORNE ROAD		4	1	1.58	1	0.06	1.64	0.53	1.93	1.47		19.23	84.26	451.1	0.00	0.27	0.50	3.00	7.00	490.1	2534.3	2.24	50.00					1		0.37		97.00
EST SIDE HAWTHORNE ROAD	4	5		1.58		0.06	1.64	0.53	2.45	1.47	6.82	19.60	83.26	568.0	0.00	0.34	0.50	3.00	5.00	765.9	2141.9	2.21	50.00							0.38		94.50
EST SIDE HAWTHORNE ROAD		6a		1.95		0.10	2.05	0.68	3.13	1.88	-	19.98	82.27	715.6	0.00	0.45	0.65	3.00	1.07	747.0	1991.5	1.23	75.00							1.02		93.70
CULVERT CROSSING	6a	<u>6b</u>				0.00	0.00	0.00	3.13	0.00		20.99		693.6					1.00			0.07	10.00	1	800		YES	NO	0.84	0.12		93.60
WEST SIDE HAWTHORNE ROAD		7	Į	1.20		0.03	1.23	0.39	3.52	1.08	9.77	21.11	79.45	776.5	0.00	0.53	1.15 1.15	3.00 3.00	0.53	817.1 916.3	6447.9 6243.2	0.97	15.00 50.00			· · · · ·				0.26		93.52 93.27
EST SIDE HAWTHORNE ROAD	8	8		1.58 1.58		0.06	1.64 1.64	0.53	4.04	1.47 1.47	11.24	21.37	78.83	886.3 977.2	0.00	0.56	1.15	3.00	0.50	1006.2	6243.2	1.00	50.00		+					0.86		93.27
WEST SIDE HAWTHORNE ROAD		10		1.58		0.06	1.64	0.53	5.10	1.47		23.06	75.07	1064.4	0.00	0.60	1.15	3.00	0.50	11000.2	6243.2	1.00	50.00				-	+		0.82		92.77
WEST SIDE HAWTHORNE ROAD		11		1.58		0.06	1.64	0.53	5.63	1.47		23.88	73.39	1148.3	0.00	0.62	1.15	3.00	0.50	1202.1	6243.2	1.04	50.00				+			0.80		92.52
ST SIDE HAWTHORNE ROAD		12	1	1.48		0.06	1.54	0.50	6.13	1.38		24.68	71.83	1223.3	0.00	0.63	1.15	3.00	0.50	1254.5	6243.2	1.05	50.00							0.79	92.52	92.27
EST SIDE HAWTHORNE ROAD		13		1.34	_	0.06	1.40	0.46	6.58	1.27	18.30	25.47	70.35	1287.3	0.00	0.64	1.15	3.00	0.50	1308.3	6243.2	1.06	50.00							0.78		92.02
.JEST SIDE HAWTHORNE ROAD	13	14b		1.54	-	0.21	1.75	0.65	7.23	1.81	20.11		68.96	1386.6	0.00	0.64	1.15	3.00	0.61	1449.7	6918.0	1.18	158.00							2.23	92.02	91.05
	Į		<u> </u>	ļ							<u></u>	28.49		•								ļ										
SW RIDEAU & HAWTHORNE	140	14b	<u> </u>	0.64		0.18	0.82	0.35	0.35	0.98	0.98	15.00	97.85	96.3	0.00	0.20	1.30	3.00	4.06	167.6	24661.5	1.40	140.00				+			1.67	96.73	91.05
SW RIDEAU & HAW THORNE	14a	140	<u> </u>	0.04		0.10	0.62	0.35	0.35	0.90	0.90	16.67	91.00	30.3	0.00	0.20	1.30	0.00	4.00	107.0	24001.0	1.40	140.00		<u> </u>					1.07	30.75	131.05
	1	1				1		· · · · · · · · · · · · · · · · · · ·				10.01						······		1					<u> </u>			1				<u> </u>
CULVERT CROSSING	14b	23				0.00	0.00	0.00	7.59	0.00	21.09	28.49	65.29	1377.2					1.40				20.00	1	1000		YES	NO	1.14	0.19	91.05	90.77
						1. A. A.						28.68																				
		·								м.,											ļ											 '
EAST CATCHMENT AREA	Ş													<u> </u>						ļ		ļ			ļ			ļ				 '
	15	10				0.22	0.00	0.00	0.00	0.02	0.02	15.00	07.05	00.0	0.00	0.25	0.30	3.00	0.45	101.7	165.4	0.54	110.00	· · · · ·	-					3.38	103.90	103.30
AST SIDE HAWTHORNE ROAD	15	<u>16</u> 17				0.33	0.33	0.30	0.30	0.83	0.83	15.00	97.85 86.64	80.8	0.00	0.25	0.30	3.00	6.20	114.3	610.8	1.49	100.00							1.12		97.10
AST SIDE HAWTHORNE ROAD	17	18				0.04	0.04	0.04	0.46	0.00		19.50	83.52		0.00	0.16	1.20	3.00	6.36	115.8	24949.6	1.51	33.00		+					0.36		95.00
CULVERT CROSSING	18	19	1	1		0.00	0.00	0.00	0.46	0.00	1.28	19.86	82.56	105.3		1	· · · · · · · · · · · · · · · · · · ·		1.77		1		22.00	1 :	600		YES	NO	0.30	0.98	95.00	94.61
FAST SIDE HAWTHORNE ROAD	19	20				0.06	0.06	0.05	0.51	0.15	1.43	20.85	80.08	114.2	0.00	0.21	0.70	3.00	2.79	158.3	3925.7	1.20	24.00							0.33	94.61	93.94
CULVERT CROSSING	20	21				0.00	0.00	0.00	0.51	0.00	1.43	21.18	79.28	113.1					0.50				20.00	1	600		NO	YES	0.37	0.83	93.94	93.84
AST SIDE HAWTHORNE ROAD	21	-	0.21			0.16	0.37	0.19	0.70	0.52	1.94	22.02	77.35	150.3	0.00	0.29	0.80	3.00	0.50	158.5	2372.0	0.63	82.00			<u> </u>				2.18	93.84	93.43 92.52
EAST SIDE HAWTHORNE ROAD	22a	22b 23	0.61			0.29	0.90	0.38	1.08	1.06 1.37	3.01 4.38	24.19	72.77 65.47	218.9 286.5	0.00	0.33	1.17	3.00 3.00	0.52	228.1 309.6	6666.4 7734.6	0.70	175.00 260.00	<u> </u>	+					4.18 5.14	93.43 92.59	92.52
EAST SIDE HAWTHORNE ROAD	220	23	0.93	'l		0.34	1.27	0.49	1.57	1.37	4.30	33.51	05.47	200.0	0.00	0.55	1.17	3.00	0.70	509.0	1134.0	0.04	200.00							0.14	32.03	30.11
		1	<u>+</u>									00.01				·/					1 .											
SOUTH CATCHMENT AREA				<u> </u>		1																										
			1	1																												
SOUTH SIDE RIDEAU ROAD	23	24	0.73			0.28	1.01	0.40	9.56	1.11	26.57	33.51	58.43	1552.8	0.00	0.51	1.74	3.00	2.65	1642.9	43339.8	2.11	235.00							1.86	90.77	84.55
				ļ		`						35.37															-		ļ	ļ		 '
	05				0.40	0.40	0.54	0.40	0.10	- 1 10	1 10	45.00	07.05	100.4	0.00	0.40	4.00	2.00	2.00	105.4	40540.0	1.00	125.74							1.94	80.08	96.46
WEST SIDE SOMME STREET	25	24			0.42	0.12	0.54	0.40	0.40	1.12	1.12	15.00	97.85	109.4	0.00	0.18	1.20	3.00	2.80	105.1	16548.0	1.08	125.74				· · ·			1.94	09.90	00.40
										1		10.94									<u> </u>			·		<u> </u>	-		-	<u> </u>		
CULVERT CROSSING	-24	26	1			0.00	0.00	0.00	9.96	0.00	27.69	35.37	56.28	1558.5		+			1.00	1	1	<u> </u>	20.00	1	800		NO	YES	2.31	0.11	84.55	84.35
		1	1			1			1		1	35.48		<u> </u>			İ	İ			İ						<u>`</u>					
							·																									
EAST SIDE SOMME STREET	27	26			0.32	0.11	0.43	0.32	0.32	0.90	0.90		97.85	87.9	0.00	0.17	1.20	3.00	2.80	90.3	16548.0	1.04	125.74							2.01	89.98	86.46
												17.01									1											
			0.50	<u> </u>		0.04	0.00	0.00	40.00	0.00	00.54	25.40	56.40	16575	0.00	0.00		200	0.71	1605 7	42043.4	1 20	102 76				+	+	 	2.36	84.25	83.04
SOUTH SIDE RIDEAU ROAD	20	28	0.58	1		0.24	0.82	0.33	10.62	0.92	29.51	35.48		1657.5	0.00	0.66	2.20	3.00	0.71	1095.7	42043.4	1.30	103.70				+	<u> </u>		2.30	04.00	03.04
	<u>i</u>				1	<u> </u>	<u> </u>					J1.04	<u> </u>	<u> </u>		1		I	1	1	1	<u> </u>	L	L	<u></u>	1		1	L	L <u></u>	L	L

10 year Ottawa International Airport IDF Curve Increase Runoff Coefficient by 0.0% up C = 1.0

l

DATE : 4/28/2009

OPEN DITCH/CULVERT DESIGN SHEET

Prepared by: M. Buchanan, E.I.T.

J.L. RICHARDS AND ASSOCIATES LIMITED, Consulting Engineers, Architects and Planners

Hawthorne Road & Rideau Road

City of Ottawa

JLR 20983 February 2009

10 year Ottawa International Airport IDF Curve Increase Runoff Coefficient by

	NO	DES				DRAIN	AGE ARE	4			PEAK F	LOW GEI	NERATIO	N						NALE DAT	A			CUL	VERTS SIZ	ZED UNDER	R 1:10 YEAR	R STORM EV	ENT	FLOW	U/S
DETAILS				AREA (A) at C o	f .			TOTAL	2.78AR	2.78AR	TIME	INTENS.	PEAK FL.	BW	D _{10yr}	D _{max}	SS	SLOPE	Q _{10yr}	Q _{100yr}	VEL.	LENGTH	No. of	DIA	BxD	INLET	OUTLET	HW	TIME	Inv
	FROM	то	0.20 (ha)	0.30 (ha)	0.70 (ha)	0.90 (ha)	SUM(A)	SUM(A*C)	A*C		CUM	min.	mm/hr	l/s	m	m	m	X:1	%	l/s	l/s	m/s	m	Barrels	(mm)	(m)	CONTROL	CONTROL	1:10 (m)	(min)	(m)
IORTH CATCHMENT AREA																								1							
			Existing	900 m	n dia. cul	vert capa	city before	ditch flows to	Findlay Cree	ek				1400.0										1							í
ORTH SIDE RIDEAU ROAD	31	32	6.66			0.52	7.18	1.80	1.80	5.00	5.00	20.00	97.26		0.00	0.58	1.50	3.00	1.93	1974.3	24880.1	1.96	400.00			-				3.41	90.71
												23.41																			<u> </u>
· · · · · · · · · · · · · · · · · · ·			0.07			0.40	0.07			0.70	0.70	45.00	445.00		0.00	0.40	4.50	2.00	0.40	010.0	7040.0	0.44	02.00					<u> </u>		- 2.45	00.40
	33	32	0.87			0.10	0.97	0.26	0.26	0.73	0.73	15.00 18.45			0.00	0.40	1.50	3.00	0.16	213.3	7240.8	0.44	92.00	· · ·				<u> </u>		3.45	83.16
							-		<u> </u>			10.45			- <u>·</u>													├ ───┤			r
TING CULVERT CROSSING	32 [,]	28		<u> </u>		0.00	0.00	0.00	2.06	0.00	5.74	23.41	87.93						-0.15				20.00	1	1000			1		0.14	83.01
												23.55				1													1.1		· · · · ·
UTH CATCHMENT AREA							1																								
										1.0																		· · ·			
UTH SIDE RIDEAU ROAD	28	29 [.]	0.90			0.33	1.23	0.48	13.16	1.33	36.58		53.68			1.17	2.20	3.00	0.14				347.24							6.91	83.04
DUTH SIDE RIDEAU ROAD	29	30	0.48			0.31	0.79	0.38	13.53	1.04	37.62	44.76	47.64	3192.1	0.00	0.90	2.20	3.00	0.51	3287.0	35640.2	1.35	236.20					1		2.91	82.56

ote: Conveyance Capacitites for the Open Ditch/Swale were calculated based on a Manning's Roughness Coefficient (n) of 0.030

DATE : 4/28/2009

OPEN DITCH/CULVERT DESIGN SHEET

Prepared by: M. Buchanan, E.I.T.

1:100 year Ottawa International Airport IDF Curve

City of Ottawa

JLR 20983 February 2009

	NO		Coefficie			up C = 1	AGE ARE	EA			PEAK FL	OW GE	IERATIO	N			OPEN	DITCH/SW	ALE DATA			CULVER	TS SIZED	UNDER 1:1	0 YEAR STO	ORM EVENT	FLOW	U/S	D/S
DETAILS				AREA (A) at C o			SUM(A*1.25*C)	1	2.78AR		TIME		PEAK FL.	BW	D	SS	SLOPE		VEL.	LENGTH	No. of	DIA	BxD	INLET	OUTLET	TIME	Inv	Inv
	FROM	то	0.20 (ha)	0.30 (ha)	0.70 (ha)		SUM(A)	1 1 1	TOTAL A*C	2.7 07 1 1	CUM	min.	mm/hr	i/s	m	m	X:1	%	l/s	m/s	m	Barrels	(mm)	(m)		CONTROL	(min)	(m)	(m)
WEST CATCHMENT AREA																							 					<u> </u>	
MEST CATCHMENT AREA						<u></u>		1																					
VEST SIDE HAWTHORNE ROAD	1	2		2.46		0.14	2.60	1.06	1.06	2.95	2.95	15.00	142.89	422.1	0.00	0.50	3.00	0.20	424.5	0.57	112.00			+			3.30	103.22	2 103.0
WEST SIDE HAWTHORNE ROAD	2	3		1.60		0.06	1.66	0.66	1.72	1.83	4.79		126.80		0.00	0.50	3.00	5.00	2141.9	2.86	50.00						0.29	103.00	
WEST SIDE HAWTHORNE ROAD	3	4		1.58		0.06	1.64	0.65	2.38	1.81	6.60	18.59	125.56	829.0	0.00	0.50	3.00	7.00	2534.3	3.38	50.00						0.25		97.0
VEST SIDE HAWTHORNE ROAD	4	5		1.58		0.06	1.64	0.65	3.03	1.81	8.42	18.84		1048.2	0.00	0.50	3.00	5.00	2141.9	2.86	50.00		ļ	ļ			0.29	97.00	
VEST SIDE HAWTHORNE ROAD CULVERT CROSSING	5	6A 6D		1.95		0.10	2.05	0.83	3.86 3.86	2.31 0.00	10.73 10.73	19.13 19.92	123.35		0.00	0.65	3.00	1.07	1991.5	1.57	75.00		800		YES	NO	0.80	94.50 93.70	
	6A 6B	6B 7		1.20		0.00	1.23	0.00	4.34	1.33	10.73	19.92	119.99		0.00	1.15	3.00	0.53	6447.9	1.63	15.00		000				0.08	93.60	
WEST SIDE HAWTHORNE ROAD	7	8		1.58	1	0.06	1.64	0.65	4.99	1.81	13.88	20.14	-		0.00	1.15	3.00	0.50	6243.2	1.57	50.00						0.53	93.52	
WEST SIDE HAWTHORNE ROAD	8	9		1.58		0.06	1.64	0.65	5.64	1.81	15.69	20.67	117.47	1843.0	0.00	1.15	3.00	0.50	6243.2	1.57	50.00						0.53	93.27	
WEST SIDE HAWTHORNE ROAD	9	10		1.58		0.06	1.64	0.65	6.30	1.81	17.50	21.20			0.00	1.15	3.00	0.50	6243.2	1.57	50.00						0.53	93.02	
WEST SIDE HAWTHORNE ROAD	10	11		1.58		0.06	1.64	0.65	6.95	1.81	19.32		113.78		0.00	1.15	3.00	0.50	6243.2	1.57	50.00	·	ļ				0.53		92.52
	11	12		1.48		0.06	1.54	0.62	7.56	1.71	21.03	22.26			0.00	1.15	3.00	0.50	6243.2	<u>1.57</u> 1.57	50.00	i			· ·		0.53	92.52	
WEST SIDE HAWTHORNE ROAD	12 13	13 14B		1.34 1.54		0.06	1.40 1.75	0.56	8.13 8.91	1.56 2.19	22.59	22.79	110.34		0.00	1.15 1.15	3.00 3.00	0.50	6243.2 6918.0	1.57	50.00	·					0.53	92.27	92.02 91.05
	13	040		1.54		0.21	1.75	0.79	0.91	2.19	24.70	24.83	100.70	2000.0	0.00	1.10	0.00	0.01	0010.0	1.14	100.00		· · · · ·			<u> </u>	1.01	52.02	- 01.00
· · · · · · · · · · · · · · · · · · ·																						1							
SW RIDEAU & HAWTHORNE	14A	14B		0.64		0.18	0.82	0.42	0.42	1.17	1.17	15.00	142.89	166.8	0.00	1.30	3.00	4.06	24661.5	4.86	140.00						0.48	96.73	91.05
												15.48				·													┣──
CULVERT CROSSING	14B	23				0.00	0.00	0.00	9.33	0.00	25.95	24.83	104.32	2706.8				1.40			20.00	1	1000		YES	NO	0.10	91.05	90.77
										·		24.93																	—
EAST CATCHMENT AREA																	· · · ·				· · · ·								
EAST SIDE HAWTHORNE ROAD	15	16				0.33	0.33	0.33	0.33	0.92	0.92	15.00	142.89	131.1	0.00	0.30	3.00	0.45	165.4	0.61	110.00						2.99	103.80	103.30
EAST SIDE HAWTHORNE ROAD	16	17				0.33	0.33	0.33	0.35	0.92	1.31	17.99	128.11		0.00	0.30	3.00	6.20	610.8	2.26	100.00						0.74		97.10
EAST SIDE HAWTHORNE ROAD	17	18				0.04	0.04	0.04	0.51	0.11	1.42	18.73		177.2	0.00	1.20	3.00	6.36	24949.6	5.78	33.00						0.10	97.10	
CULVERT CROSSING	18	19				0.00	0.00	0.00	0.51	0.00	1.42	18.82		176.6				1.77			22.00	1	600		YES	NO	0.59	95.00	94.61
EAST SIDE HAWTHORNE ROAD	19	20				0.06	0.06	0.06	0.57	0.17	1.58	19.41	122.22		0.00	0.70	3.00	2.79	3925.7	2.67	24.00						0.15	94.61	
CULVERT CROSSING	20	21				0.00	0.00	0.00	0.57	0.00	1.58	19.56	121.63	192.7				0.50			20.00	1	600		NO	YES	0.49	93.94	
	21 22A	22A	0.21 0.61			0.16	0.37	0.21	0.78	0.59	2.18	20.05		260.5 394.2	0.00	0.80	3.00	0.50	2372.0 6666.4	1.24	82.00			<u> </u>			<u>1.11</u> 1.80	93.84 93.43	-
EAST SIDE HAWTHORNE ROAD	22A 22B	22B 23	0.01			0.29	0.90	0.44	1.23 1.80	1.23 1.59	<u>3.41</u> 5.00	21.10	115.75 109.83	548.8	0.00	1.17	3.00	0.52	7734.6	1.88	260.00						2.30	93.43	
	220	20	0.00			0.04	1.21	0.07	1.00	1.00	0.00	25.25	103.00	0-10.0	0.00		0.00	0.70	1101.0	1.00	200.00						2.00	02.00	
SOUTH CATCHMENT AREA							_					<u> </u>																	┢──
SOUTH SIDE RIDEAU ROAD	23	24	0.73			0.28	1.01	0.46	11.59	1.29	32.23		103.15	3324.7	0.00	1.74	3.00	2.65	43339.8	4.77	235.00						0.82	90.77	84.55
												26. 0 8										d						<u> </u>	
WEST SIDE SOMME STREET	25	24			0.42	0.12	0.54	0.49	0.49	1.36	1.36	15.00	142.89	193.7	0.00	1.20	3.00	2.80	16548.0	3.83	125.74					·····	0.55	89.98	86.46
						0.12	0.04	0.10		1.00	1.00	15.55	112.00				0.00	2.00		0.00									
CULVERT CROSSING	24	26				0.00	0.00	0.00	12.08	0.00	33.59	26.08	100.99	3391.7				1.00	·		20.00	1	800		NO	YES	0.05	84.55	84.35
												26.12						1											
EAST SIDE SOMME STREET	27	26			0.32	0.11	0.43	0.39	0.39	1.08	1.08	15.00	142.89	154.9	0.00	1.20	3.00	2.80	16548.0	3.83	125.74						0.55	89.98	86.46
												15.55																	
																			(00)				ļ	ļ	· · ·		4.00	0/05	
SOUTH SIDE RIDEAU ROAD	26	28	0.58		1	0.24	0.82	0.39	12.86	1.07	35.74	26 12	100.86	I 3604.7	0.00	2.20	3.00	0.71	42043.4	2.90	183.76	1	1	1	1	1	1.06	∎ 84.35	83.04

DATE : 4/28/2009

OPEN DITCH/CULVERT DESIGN SHEET

Prepared by: M. Buchanan, E.I.T.

Hawthorne Road & Rideau Road

City of Ottawa

JLR 20983 February 2009

1:100 year Ottawa	International A	Airport	IDF Cur	ve									F	ebruary	2009												Checked	d by: G.	Forget,	, P.Eng.
		Increase	e Runoff	Coefficie	ent by	25.0%	5 up C = 1	1.0																						
		NO	DES				DRAIN	AGE ARE	EA			PEAK F	LOW GEI	NERATION	1			OPEN I	DITCH/SW	ALE DATA			CULVER	TS SIZED	UNDER 1:1	0 YEAR STO	ORM EVENT	FLOW	U/S	D/S
DETAIL	.s				AREA (/	A) at C o	of		SUM(A*1.25*C)	TOTAL	2.78AR	2.78AR	TIME	INTENS.	PEAK FL.	BW	D	SS	SLOPE	CAPAC.	VEL.	LENGTH	No. of	DIA	BxD	INLET	OUTLET	TIME	inv	Inv
		FROM	то	0.20 (ha)	0.30 (ha)	0.70 (ha)		SUM(A)	25% increase in C factor	A*C	·	СОМ	min.	mm/hr	l/s	m	m	X:1	%	l/s	m/s	m	Barrels	(mm)	(m)	CONTRO		<u>(</u> min)	(m)	(m)
NORTH CATCHN	IENT AREA																													
				Existing	900 mm	n dia. Cu	lvert Cap	acity befo	ore ditch flows to F	indlay Cre	ek				1400.0								,							
NORTH SIDE RID	EAU ROAD	31	32	6.66			0.52	7.18	2.19	2.19	6.07	6.07	20.00	119.95	2128.6	0.00	1.50	3.00	1.93	24880.1	3.69	400.00						1.81	90.71	83.01
									_				21.81																	_
NORTH SIDE RID	EAU ROAD	33	32	0.87			0.10	0.97	0.32	0.32	0.88	0.88	15.00	142.89	126.1	0.00	1.50	3.00	0.16	7240.8	1.07	92.00		1				1.43	83.16	83.01
							<u> </u>						16.43																1	
EXISTING CULVER		32	28				0.00	0.00	0.00	2.50	0.00	6.96	21.81	113.52	2189.7		·		-0.15		·· <u></u> ···	20.00	1	1000				0.12	83.01	83.04
		1											21.93																	1
SOUTH CATCHM	IENTAREA					<u> </u>																								
SOUTH SIDE RID	EAU ROAD	28	29	0.90			0.33	1.23	0.56	15.91	1.54	44.24	27.18	98.22	5745.1	0.00	2.20	3.00	0.14	18513.7	1.28	347.24		<u> </u>				4.54	83.04	82.56
SOUTH SIDE RID		29	30	0.48		†	0.31	0.79	0.43	16.34	1.20		31.72		5417.3		2.20	3.00	0.51	35640.2						1	· · ·			81.35

Note: Conveyance Capacitites for the Open Ditch/Swale were calculated based on a Manning's Roughness Coefficient (n) of 0.030

DATE : 4/28/2009

OPEN DITCH/CULVERT DESIGN SHEET

Prepared by: M. Buchanan, E.I.T.

HAWTHORNE INDUSTRIAL PARK

1:10 YEAR ROADSIDE CULVERT DESIGN

CONVENTIONAL CULVERT DESIGN

		,			DESIGN DAT	A					CULVERT	DATA			INL	ET CONTRO	L	_			OUTLET (ONTROL				GOVERNING	
Station	Q		d	d _e	AHW	Skew No.	L	S	Description	в	D or H	N	Q/N	A (each)	Q/NB	HW/D	HW	K	Ĥ	d _c	(d _c + D)/2	TW	h。	LS	HW	HW	V.
	(m³/s)		(m)	(m)	(m)		(m)	(m/m)		(m)	(m)		(m³/s)	(m ²)	(m³/s/m)		(m)		(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m/s)
1	2	_	3	4	5	6	7	8	9	10a	10b	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
	I		l.		<u> </u>		-		I												<u> </u>						
6 to 14	1.29	96	0.67	0.05	1.1	0	20.0	0.005	CSPA 6	1.15	0.82	2	0.648	0.74	*****	0.73	0.60	0.9	0.13	0.33	0.58	0.72	0.72	0.10	0.75	0.75	
23B to 23C	0.05	51	0.22	0.05	1.15	0	24.0	0.004	CSP 500	N/A	0.5	1	0.051	0.20		0.50	0.25	0.9	0.1	0.15	0.33	0.27	0.33	0.10	0.33	0.33	
24A to 24B	0.07	75	0.25	0.05	1.15	0	24.0	0.004	CSP 500	N/A	0.5	1	0.075	0.20		0.54	0.27	0.9	0.1	0.18	0.34	0.30	0.34	0.10	0.34	0.34	
2 to 9	0.08	81	0.47	0.05	1.15	0	20.0	0.005	CSP 600	N/A	0.6	1	0.081	0.28		0.50	0.30	0.9	0.1	0.19	0.40	0.52	0.52	0.10	0.52	0.52	
27B to 27C	1.30	04	0.61	0.05	1.23	0	15.0	0.007	CSPA 7	1.39	0.97	1	1.304	1.06		0.90	0.87	0.9	0.22	0.45	0.71	0.66	0.71	0.11	0.82	0.87	
22 to 19	2.57	73	0.38	0.05	1.35	0	20.0	0.005	CSPA 5	1.03	0.74	2	1.287	0.61		1.75	1.30	0.9	0.74	0.51	0.63	0.43	0.63	0.10	1.27	1.30	
3 4 5	Col. 3 +	epth nent be col. 4	elow cha + allowa	col. 12 annel inve ible backw applicable		10a/b 11 13	Culvert Slo D (circular Number of Area per b For box on	or B x H (Barreis arrel	arch)		16 I 17 (18 (HW = col. Chart D5-8 Charts D5-		10)	<u> </u>	22 F 23 C 24 F	ol. 7 x col. IW = col. 1	rger of cols. 20 and 21)	

Prepared by: Mark Buchanan, E.I.T. Reviewed by: Guy Forget, P.Eng. Date: February 2009

Culverts

Appendix H -Stormwater Management and Storm Sewer Design Calculations

EVALUATION OF RUNOFF COEFFICIENTS

Client:Fastfrate (Ottawa) Holdings Inc.Project:Fastfrate Warehouse DevelopmentLocation:Ottawa, OntarioProject #:A001083Project Status:Image: Comparison of the status of the stat

Area	Grassed Area (m²)	Runoff Coefficient	Hard Surface Area (m²)	Runoff Coefficient	Total Area (m²)	Runoff Coefficient (10-year event)	Runoff Coefficient (100-year)
A0	3869	0.20	0	0.90	3869	0.20	0.25
TOTAL - Christie Creek	3869		0		3869	0.20	0.25
A1	2073	0.20	5573	0.90	7646	0.71	0.89
A2	2121	0.20	10017	0.83	12138	0.72	0.90
A3	0	0.20	8582	0.90	8582	0.90	0.95
A4	705	0.20	781	0.90	1486	0.57	0.71
A5	0	0.20	1069	0.90	1069	0.90	0.95
A6	3917	0.20	266	0.90	4183	0.24	0.31
A7	820	0.20	676	0.90	1496	0.52	0.65
TOTAL - Somme Street SWMF	9636		26964		36600	0.70	0.87
Prepared by: PEO No.:	Guillaume LeBl 100530467	ond, M.A.Sc., El	Г	Date:	202	21-07-20	
Verified by: PEO No.:	Christian Lavoie 100067842	e-Lebel, P.Eng.		Date:	202	21-07-20	

\\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civil\01-SWM\[210719_Storm Runoff Coefficients.xlsx]TABLEAU

CIMA+ PROJECT NUMBER: CLIENT: PROJECT STATUS: Fastfrate Warehouse Development Industrial/Commercial Development A001083 Fastfrate Detailed Design

STORM POST-DEVELOPMENT FLOW (UNCONTROLLED) Proposed Stormwater Management

APPLICABLE DESIGN GUIDELINES:

1. City of Ottawa Sewer Design Guidelines, 2012

PRE-DEVELOPMENT FLOW DETERMINATION: DESIGN CRITERIA:

Design Storm (year):	10				
IDF Regression Constants: (a) (b)	1174.184 6.014				
(c)	0.816				
IDF Curve Equation (mm/hr):	l = a / (Time in min + b) ^c				
Rational Formula (L/s):	Q = 2.78C*I*A	where: Q = Flow (L/s) C = Runoff Coefficient I = Rainfall Intensity (mm/hr) A = Area			

ALLOWABLE RELEASE RATE - SUMMARY:

Catchment ID	Area (A) _{ha}	Runoff Coefficient (C)	Time of Concentration (tc) ^{min}	Intensity (I) ^{mm/hr}	Allowable Release Rate (Q) ^{L/s}	Release Flow Per Unit Area (Q/ha) L/s/ha
A1	0.76	0.71	22.85	75.52	113.92	149.00
A2	1.21	0.72	22.85	75.52	183.32	151.03
A3	0.86	0.90	22.85	75.52	162.04	188.81
A4	0.15	0.57	22.85	75.52	17.70	119.14
A5	0.11	0.90	22.85	75.52	20.18	188.81
A6	0.49	0.24	22.85	75.52	24.47	50.35
A7	0.15	0.52	22.85	75.52	16.32	109.09
Total	3.73				537.956	144.31

NOTES:

1. Time of concentration taken from SWM report (JL Richards, 2009). It is assumed that the resulting time of concentration is identical to JL Richards SWM report.

2. IDF Parameters per City of Ottawa Sewer Design Guidelines, 2012 (Macdonald-Cartier International Airport)

Prepared by: Guillaume LeBlond, M.A.Sc., El PEO No.: 100530467 Date: July 20, 2021

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842

CIMA+ PROJECT NUMBER: CLIENT: PROJECT STATUS: Fastfrate Warehouse Development Industrial/Commercial Development A001083 Fastfrate Detailed Design

STORM POST-DEVELOPMENT FLOW (CONTROLLED)

Per Master Stormwater Management Report (J.L. Richards, 2009)

APPLICABLE DESIGN GUIDELINES:

1. City of Ottawa Sewer Design Guidelines, 2012

PRE-DEVELOPMENT FLOW DETERMINATION: DESIGN CRITERIA:

Design Storm (year):10IDF Regression Constants: (a)
(b)
(c)1174.184
6.014
0.816IDF Curve Equation (mm/hr): $I = a / (Time in min + b)^c$ IDF Curve Equation (mm/hr): $I = a / (Time in min + b)^c$ Rational Formula (L/s):Q = 2.78C*I*AQ = 2.78C*I*AI = Rainfall Intensity (mm/hr)
A = Area

ALLOWABLE RELEASE RATE - SUMMARY:

Catchment ID	Area (A) ^{ha}	Runoff Coefficient (C)	Time of Concentration (tc) ^{min}	Intensity (I) ^{mm/hr}	Allowable Release Rate (Q) ^{L/s}	Release Flow Per Unit Area (Q/ha) ^{L/s/ha}	
Total Site Area Draining to SWMF per JLR 2009 SWM	3.05	0.70	22.85	75.52	448.57	146.85	
Total	3.05				448.567	146.85	
Revised Total Area	3.73				448.567	120.33	

NOTES:

1. Time of concentration taken from SWM report (JL Richards, 2009).

2. Runoff coefficients taken from SWM report (JL Richards, 2009).

3. IDF Parameters per City of Ottawa Sewer Design Guidelines, 2012 (Macdonald-Cartier International Airport)

Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Date: July 20, 2021

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842

CIMA+ PROJECT NUMBER: CLIENT: PROJECT STATUS: Fastfrate Warehouse Development Industrial/Commercial Development A001083 Fastfrate Detailed Design

STORM POST-DEVELOPMENT FLOW (UNCONTROLLED) <u>Proposed</u> Stormwater Management

APPLICABLE DESIGN GUIDELINES:

1. City of Ottawa Sewer Design Guidelines, 2012

PRE-DEVELOPMENT FLOW DETERMINATION: DESIGN CRITERIA:

Design Storm (year):	100				
IDF Regression Constants: (a)	1735.688				
(D)	6.014				
(c)	0.820				
IDF Curve Equation (mm/hr):	I = a / (Time in min + b) ^c				
		where: Q = Flow (L/s)			
		C = Runoff Coefficient			
Rational Formula (L/s):	Q = 2.78C*I*A	I = Rainfall Intensity (mm/hr)			
		A = Area			

ALLOWABLE RELEASE RATE - SUMMARY:

Catchment ID	Area (A) _{ha}	Runoff Coefficient (C) (factored)	Time of Concentration (tc) ^{min}	Intensity (I) ^{mm/hr}	Allowable Release Rate (Q) ^{L/s}	Release Flow Per Unit Area (Q/ha) L/s/ha
A1	0.76	0.89	19.43	122.15	230.315	301.22
A2	1.21	0.90	19.43	122.15	370.618	305.34
A3	0.86	0.95	19.43	122.15	276.631	322.34
A4	0.15	0.71	19.43	122.15	35.792	240.86
A5	0.11	0.95	19.43	122.15	34.458	322.34
A6	0.42	0.31	19.43	122.15	43.999	105.18
A7	0.15	0.65	19.43	122.15	32.994	220.55
Total	3.66				1024.808	280.00

NOTES:

1. Time of concentration taken from SWM report (JL Richards, 2009). It is assumed that the resulting time of concentration is identical to JL Richards SWM report.

2. IDF Parameters per City of Ottawa Sewer Design Guidelines, 2012 (Macdonald-Cartier International Airport)

3. Runoff coefficients are increased by 25% for the 100y storm per City of Ottawa Sewer Design Guidelines.

Prepared by: <u>Guillaume LeBlond, M.A.Sc., El</u> PEO No.: 100530467 Date: July 20, 2021

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842

CIMA+ PROJECT NUMBER: CLIENT: PROJECT STATUS: Fastfrate Warehouse Development Industrial/Commercial Development A001083 Fastfrate Detailed Design

STORM POST-DEVELOPMENT FLOW (CONTROLLED) Per Master Stormwater Management Report (J.L. Richards, 2009)

APPLICABLE DESIGN GUIDELINES:

1. City of Ottawa Sewer Design Guidelines, 2012

PRE-DEVELOPMENT FLOW DETERMINATION:

DESIGN CRITERIA:

Design Storm (year):	100			
IDF Regression Constants: (a)	1735.688			
(b)	6.014			
(c)	0.820			
IDF Curve Equation (mm/hr):	l = a / (Time in min + b) ^c			
		where: Q = Flow (L/s)		
		C = Runoff Coefficient		
Rational Formula (L/s):	Q = 2.78C*I*A	I = Rainfall Intensity (mm/hr)		
		A = Area		

ALLOWABLE RELEASE RATE - SUMMARY:

Catchment ID	Area (A) ^{ha}	Runoff Coefficient (C) (factored)	Time of Concentration (tc) ^{min}	Intensity (I) ^{mm/hr}		Release Flow Per Unit Area (Q/ha) L/s/ha
Total Site Area Draining to SWMF per JLR 2009 SWM	3.05	0.70	19.43	122.15	906.87	296.89
Total Revised Total Area	3.05 3.66				906.867 906.867	296.89 247.78

NOTES:

1. Time of concentration taken from SWM report (JL Richards, 2009).

- 2. Runoff coefficients taken from SWM report (JL Richards, 2009).
- 3. IDF Parameters per City of Ottawa Sewer Design Guidelines, 2012 (Macdonald-Cartier International Airport)
- 4. Runoff coefficients are increased by 25% for the 100y storm per City of Ottawa Sewer Design Guidelines.

Prepared by: Guillaume LeBlond, M.A.Sc., El PEO No.: 100530467 Date: July 20, 2021

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842

CIMA+ PROJECT NUMBER: CLIENT: PROJECT STATUS: Fastfrate Warehouse Development Industrial/Commercial Development A001083 Fastfrate Detailed Design

STORM POST-DEVELOPMENT FLOW (CONTROLLED) Per Master Stormwater Management Report (J.L. Richards, 2009)

APPLICABLE DESIGN GUIDELINES:

1. City of Ottawa Sewer Design Guidelines, 2012

PRE-DEVELOPMENT FLOW DETERMINATION:

DESIGN CRITERIA:

Design Storm (year):	100				
IDF Regression Constants: (a)	1735.688				
(b)	6.014				
(C)	0.820				
IDF Curve Equation (mm/hr):	l = a / (Time in min + b) ^c				
		where: Q = Flow (L/s)			
		C = Runoff Coefficient			
Rational Formula (L/s):	Q = 2.78C*I*A	I = Rainfall Intensity (mm/hr)			
		A = Area			

ALLOWABLE RELEASE RATE - SUMMARY:

Catchment ID	Area (A) _{ha}	Runoff Coefficient (C) (factored)	Time of Concentration (tc) ^{min}	Intensity (I) ^{mm/hr}	Allowable Release Rate (Q) ^{L/s}	Release Flow Per Unit Area (Q/ha) ^{L/s/ha}
East Side Somme Street	0.32	0.88	15.00	142.89	111.140	347.31
South Side Rideau Road	0.58	0.25	26.12	100.87	40.628	70.05
East Side Somme Street (Revised	0.00	0.88	15.00	142.89	0.000	#DIV/0!
South Side Rideau Road (Revised	0.26	0.25	26.12	100.87	18.072	70.05
Total	0.90			151.768	168.63	
Revised Total Area	0.26		Actual Residual		70.05	

NOTES:

1. Time of concentration taken from SWM report (JL Richards, 2009).

2. Runoff coefficients taken from SWM report (JL Richards, 2009).

3. IDF Parameters per City of Ottawa Sewer Design Guidelines, 2012 (Macdonald-Cartier International Airport)

4. Runoff coefficients are increased by 25% for the 100y storm per City of Ottawa Sewer Design Guidelines.

Prepared by: Guillaume LeBlond, M.A.Sc., El PEO No.: 100530467 Date: July 21, 2021

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842

_

Fastfrate Warehouse Development Industrial/Commercial Development A001083 (360) STORM WATER MANAGEMENT - SUMMARY - FULL RELEASE RATE

Rainfall event		100	years												
Sub-Area	Total Area	Capacity Area	Catchbasin Elev.	Max. Elev.	Y _{max}	V _{max}	V _{rain}	Difference	V _{acc}	Y _{rain}	Elev _{rain}	A _{rain}	Q _{ave}	Drawdown Time	Comments
	(m ²)	(m ²)	(m)	(m)	(m)	(m ³)	(m ³)	(m ³)	(m ³)	(m)	(m)	(m ²)	(L/s)	(min)	
A1	7646	2294	10.000	10.001	0.001	0.76	90.96	-90.19	0.76	0.00	10.001	2294	184.959	0	
A2	12138	3641	10.000	10.001	0.001	1.21	148.91	-147.69	1.21	0.00	10.001	3641	293.621	0	
A3 - Building	8582	8582	10.000	10.050	0.050	143.03	115.04	27.99	115.04	0.04	10.045	7697	211.132	9	
A4	1486	446	10.000	10.001	0.001	0.15	10.63	-10.48	0.15	0.00	10.001	446	35.947	0	
A5	1069	321	10.000	10.001	0.001	0.11	14.70	-14.60	0.11	0.00	10.001	321	25.859	0	
A6	4860	1458	10.000	10.001	0.001	0.49	6.50	-6.02	0.49	0.00	10.001	1458	117.565	0	
A7	1497	449	10.000	10.001	0.001	0.15	8.81	-8.67	0.15	0.00	10.001	449	36.213	0	
Total	37278	17191				145.90	395.55	-249.65	117.91						

(cima.plus)cima\Cima-C10/0tl_Projects/A)4001000-A001499/A001083_Fastfrate Warehouse Development(300/360_Civil/01-SWM(J210719_Storm Water Management - Storage and Drawdown_full RR.xisx)Sommaire

Legend:

- NC = Non-controlled areas (no storage available)
- Capacity Area = Area of water accumulated in sub-area at Max. Elev.

Catchbasin Elev. = Elevation of catchbasin inlet (top of grate).

- Max. Elev. = Maximum elevation of water that may be accumulated within sub-area.
 - Y_{max} = Maximum depth of water that may be accumulated within the sub-area.

V_{max} = Maximum volume of water (capacity) that may be accumulated within the sub-area.

V_{rain} = Volume of water generated by rainfall.

- Difference = Difference between V_{max} and V_{rain} (remaining capacity of sub-area)
 - V_{acc} = Total volume of water accumulated within the sub-area in the event of a specific rainfall.
 - Y_{rain} = Depth of water generated by rainfall.
 - Elev_{rain} = Elevation of water generated by rainfall.
 - Arain = Area of water generated by rainfall.
 - $\boldsymbol{Q}_{ave}~$ = Average flow (for drawndown time calculation).

Drawdown Time = Time required for the total volume of water accumulated within sub-area to evacuate (following rainfall event).

Design Criteria: 1) Maximum Allowable Release Rate = 247.78 L/s/ha 2) Pipe size for 10 years

- 3) Rainfall event of 100 years

4) Pre-development flow (5 year) = ____ L/s (or ____ L/s/ha)

Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842

Date: July 22, 2021

Date: July 22, 2021

2021-08-06

Date:

STORM WATER MANAGEMENT - AVERAGE FLOW CALCULATION FOR DRAWDOWN TIME

Catchment ID	Release Rate	Specified Flow rate	Calculated area
	L/s/ha	L/s	(mm ²)
A1	241.93	184.98	50482
A2	241.93	293.66	80141
A3 - Building	247.78	212.64	57298
A4	241.93	35.95	9811
A5	241.93	25.86	7058
A6	241.93	117.58	32088
A7	241.93	36.22	9884
	Total Flowrate	906.90	

PEO No.: 100067842

\\cima.plus\cima\Cima-C10\0tt_Projects\A\0001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civili01-SWM([210719_Storm Water Management - Storage and Drawdown_full RR.xlsx]Temps de vidange

Préparé par: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Date: July 22, 2021

Vérifié par: Christian Lavoie-Lebel, P.Eng.

Date: July 22, 2021

Date:

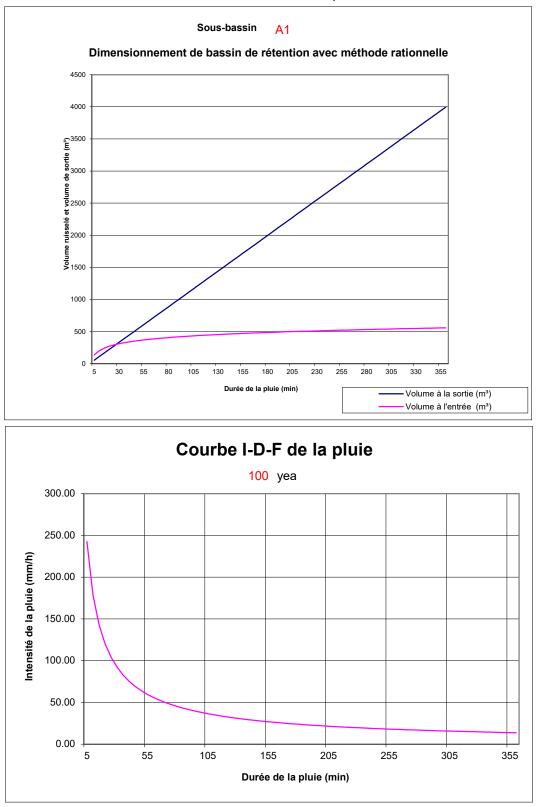
2021-08-06

Project:	Fastfrate Warehouse Development Industrial/Commercial Development				
Project #: Station Date:	A001083 (360) OTTAWA SEWER DESIGN GUIDELINES 2021-08-06 9:36				
File Location:	\\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civil\01-SWM\[210719_Storm Water Management - Storage and Drawdown_full				
Description:	: Storage volume calculations with the rational method				
Specified Rel	ease Rate: 241.9344526 L/s/ha				

Area : A1	0.7646 ha
Runoff Coefficient C (unfactored	0.71
C_runoff factor:	1.25
Runoff Coefficient C :	0.8875
Rainfall Event :	100 year
Discharge Flow Q :	0.184983082 m³/s
Discharge Factor K :	1

Design Volume: 90.96 m³

Rainfall	2 ye	ear	5 y	<i>r</i> ear	10 ye	ear
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
А	732.951	732.951	998.071	998.071	1174.184	1174.184
В	6.199	6.199	6.053	6.053	6.014	6.014
С	0.810	0.810	0.814	0.814	0.816	0.816
Rainfall	25 year		50 year		100 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
А	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688
В	6.018	6.018	6.014	6.014	6.014	6.014
С	0.819	0.819	0.820	0.820	0.820	0.820


Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842 Date: July 22, 2021

Rainfall	Rainfall	Runoff	Output	Retention
Duration	Intensity	Volume	Volume	Volume
(min)	(mm/h)	(m³)	(m ³)	(m³)
Ť		ĊIAŤ	kQŤ	(4)-(5)
(1)	(2)	(4)	(5)	(6)
5.0	242.70	137.25	55.4949247	81.75
10.0	178.56	201.95	110.989849	90.96
15.0	142.89	242.41	166.484774	75.93
20.0	119.95	271.32	221.979699	49.34
25.0	103.85	293.62	277.474624	16.15
30.0	91.87	311.70	332.969548	-21.27
35.0	82.58	326.88	388.464473	-61.59
40.0	75.15	339.95	443.959398	-104.01
45.0	69.05	351.42	499.454323	-148.03
50.0	63.95	361.65	554.949247	-193.30
55.0	59.62	370.88	610.444172	-239.56
60.0	55.89	379.29	665.939097	-286.65
65.0	52.65	387.02	721.434021	-334.41
70.0	49.79	394.17	776.928946	-382.75
75.0	47.26	400.83	832.423871	-431.59
80.0	44.99	407.07	887.918796	-480.85
85.0	42.95	412.93	943.41372	-530.49
90.0	41.11	418.46	998.908645	-580.45
95.0	39.43	423.70	1054.40357	-630.71
100.0	37.90	428.67	1109.89849	-681.23
105.0	36.50	433.41	1165.39342	-731.98
110.0	35.20	437.94	1220.88834	-782.95
115.0	34.01	442.28	1276.38327	-834.10
120.0	32.89	446.44	1331.87819	-885.44
125.0	31.86	450.44	1387.37312	-936.94
130.0	30.90	454.28	1442.86804	-988.58
135.0	30.00	458.00	1498.36297	-1040.37
140.0	29.15	461.58	1553.85789	-1092.28
145.0	28.36	465.05	1609.35282	-1144.31
150.0	27.61	468.40	1664.84774	-1196.44
155.0	26.91	471.66	1720.34267	-1248.69
160.0	26.24	474.81	1775.83759	-1301.02
165.0	25.61	477.88	1831.33252	-1353.45
170.0	25.01	480.87	1886.82744	-1405.96
175.0	24.44	483.77	1942.32237	-1458.55
180.0	23.90	486.60	1997.81729	-1511.22
185.0	23.39	489.35	2053.31221	-1563.96
190.0	22.90	492.04	2108.80714	-1616.77
195.0	22.43	494.67	2164.30206	-1669.64
200.0	21.98	497.23	2219.79699	-1722.57
205.0	21.55	499.74	2275.29191	-1775.55
210.0	21.14	502.19	2330.78684	-1828.60
215.0	20.75	504.59	2386.28176	-1881.69
220.0	20.37	506.94	2441.77669	-1934.84
225.0	20.01	509.24	2497.27161	-1988.03
230.0	19.66	511.50	2552.76654	-2041.27
235.0	19.33	513.71	2608.26146	-2094.55
240.0	19.01	515.88	2663.75639	-2147.88

14.34 14.37 14.20 14.04 13.88 13.72 max):	550.93 552.52 554.08 555.63 557.16 558.67	3718.15996 3773.65488 3829.14981 3884.64473 3940.13966 3995.63458	-3107.23 -3221.14 -3275.07 -3329.01 -3382.98 -3436.96 90.96
14.37 14.20 14.04 13.88	552.52 554.08 555.63 557.16	3773.65488 3829.14981 3884.64473 3940.13966	-3221.14 -3275.07 -3329.01 -3382.98
14.37 14.20 14.04	552.52 554.08 555.63	3773.65488 3829.14981 3884.64473	-3221.14 -3275.07 -3329.01
14.37 14.20	552.52 554.08	3773.65488 3829.14981	-3221.14 -3275.07
14.37	552.52	3773.65488	-3221.14
14.54	550.95	37 10.13990	-3107.23
14.54	550.02	2719 15006	-3167.23
14.72	549.32	3662.66503	-3113.35
14.90	547.69	3607.17011	-3059.48
15.09	546.03	3551.67518	-3005.64
	544.36	3496.18026	-2951.82
15.48	542.66	3440.68533	-2898.03
			-2844.26
		3329.69548	-2790.51
16.11	537.41	3274.20056	-2736.79
			-2683.10
			-2629.44
-			-2575.80
-			-2522.19
			-2468.62
	-		-2415.07
-			-2361.56
			-2308.09
			-2201.24 -2254.65
	15.89 15.68 15.48 15.28 15.09 14.90 14.72	18.39 520.10 18.11 522.15 17.83 524.17 17.56 526.16 17.29 528.11 17.04 530.03 16.80 531.92 16.56 533.78 16.33 535.61 16.11 537.41 15.68 540.93 15.48 542.66 15.28 544.36 15.09 546.03 14.90 547.69 14.72 549.32	18.39520.102774.7462418.11522.152830.2411617.83524.172885.7360917.56526.162941.2310117.29528.112996.7259417.04530.033052.2208616.80531.923107.7157816.56533.783163.2107116.33535.613218.7056316.11537.413274.2005615.89539.183329.6954815.68540.933385.1904115.28544.363496.1802615.09546.033551.6751814.90547.693607.1701114.72549.323662.66503

Fastfrate Warehouse Development Industrial/Commercial Development

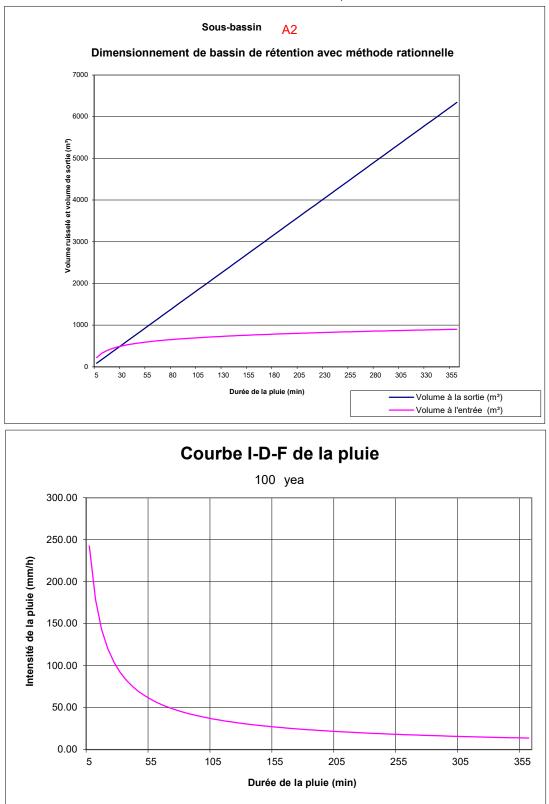
Init.____

Project:	Fastfrate Warehouse Development
Project #: Station Date:	Industrial/Commercial Development A001083 (360) OTTAWA SEWER DESIGN GUIDELINES 2021-08-06 9:36
File Location:	\\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civil\01-SWM\[210719_Storm Water Management - Storage and Drawdown_full
Description:	Storage volume calculations with the rational method

Specified Release Rate:	241.9344526 L/s/ha
Area : A2	1.2138 ha
Runoff Coefficient C (unfactore	ed 0.72
C_runoff factor:	1.25
Runoff Coefficient C :	0.9
Rainfall Event :	100 year
Discharge Flow Q :	0.293660039 m³/s
Discharge Factor K :	1

Design Volume:	148.91 m³

Rainfall	2 year		5 year		10 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	732.951	732.951	998.071	998.071	1174.184	1174.184
В	6.199	6.199	6.053	6.053	6.014	6.014
С	0.81	0.81	0.814	0.814	0.816	0.816
Rainfall	25 y	/ear	50	year	100	year
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688
В	6.018	6.018	6.014	6.014	6.014	6.014
С	0.819	0.819	0.82	0.82	0.82	0.82


Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842 Date: July 22, 2021

Rainfall	Rainfall	Runoff	Output	Retention
Duration	Intensity	Volume	Volume	Volume
(min)	(mm/h)	(m ³)	(m ³)	(m ³)
T	1	CIAT	kQT	(4)-(5)
(1)	(2)	(4)	(5)	(6)
5.0	242.70	220.95	88.0980116	132.85
10.0	178.56	325.10	176.196023	148.91
15.0	142.89	390.25	264.294035	125.96
20.0	119.95	436.79	352.392046	84.40
25.0	103.85	472.69	440.490058	32.20
30.0	91.87	501.79	528.588069	-26.79
35.0	82.58	526.23	616.686081	-90.46
40.0	75.15	547.27	704.784092	-157.52
45.0	69.05	565.74	792.882104	-227.14
50.0	63.95	582.21	880.980116	-298.77
55.0	59.62	597.06	969.078127	-372.01
60.0	55.89	610.60	1057.17614	-446.57
65.0	52.65	623.05	1145.27415	-522.23
70.0	49.79	634.56	1233.37216	-598.81
75.0	47.26	645.29	1321.47017	-676.18
80.0	44.99	655.32	1409.56818	-754.25
85.0	42.95	664.75	1497.6662	-832.91
90.0	41.11	673.66	1585.76421	-912.11
95.0	39.43	682.09	1673.86222	-991.77
100.0	37.90	690.10	1761.96023	-1071.86
105.0	36.50	697.73	1850.05824	-1152.32
110.0	35.20	705.02	1938.15625	-1233.13
115.0	34.01	712.00	2026.25427	-1314.25
120.0	32.89	718.70	2114.35228	-1395.65
125.0	31.86	725.14	2202.45029	-1477.31
130.0	30.90	731.33	2290.5483	-1559.22
135.0	30.00	737.31	2378.64631	-1641.34
140.0	29.15	743.08	2466.74432	-1723.67
145.0	28.36	748.66	2554.84234	-1806.18
150.0	27.61	754.06	2642.94035	-1888.88
155.0	26.91	759.30	2731.03836	-1971.74
160.0	26.24	764.38	2819.13637	-2054.75
165.0	25.61	769.32	2907.23438	-2137.91
170.0	25.01	774.12	2995.33239	-2221.21
175.0	24.44	778.80	3083.4304	-2304.63
180.0	23.90	783.35	3171.52842	-2388.18
185.0	23.39	787.79	3259.62643	-2471.84
190.0	22.90	792.12	3347.72444	-2555.61
195.0	22.43	796.34	3435.82245	-2639.48
200.0	21.98	800.47	3523.92046	-2723.45
205.0	21.55	804.50	3612.01847	-2807.51
210.0	21.14	808.45	3700.11649	-2891.66
215.0	20.75	812.31	3788.2145	-2975.90
220.0	20.37	816.10	3876.31251	-3060.22
225.0	20.01	819.80	3964.41052	-3144.61
230.0	19.66	823.43	4052.50853	-3229.07
235.0	19.33	827.00	4140.60654	-3313.61
240.0	19.01	830.49	4228.70455	-3398.21

245.0	18.69	833.92	4316.80257	-3482.88
250.0	18.39	837.29	4404.90058	-3567.61
255.0	18.11	840.59	4492.99859	-3652.41
260.0	17.83	843.84	4581.0966	-3737.25
265.0	17.56	847.04	4669.19461	-3822.16
270.0	17.29	850.18	4757.29262	-3907.11
275.0	17.04	853.27	4845.39064	-3992.12
280.0	16.80	856.31	4933.48865	-4077.18
285.0	16.56	859.30	5021.58666	-4162.29
290.0	16.33	862.25	5109.68467	-4247.44
295.0	16.11	865.15	5197.78268	-4332.63
300.0	15.89	868.01	5285.88069	-4417.87
305.0	15.68	870.82	5373.9787	-4503.15
310.0	15.48	873.60	5462.07672	-4588.48
315.0	15.28	876.34	5550.17473	-4673.84
320.0	15.09	879.04	5638.27274	-4759.24
325.0	14.90	881.70	5726.37075	-4844.67
330.0	14.72	884.32	5814.46876	-4930.15
335.0	14.54	886.91	5902.56677	-5015.65
340.0	14.37	889.47	5990.66479	-5101.19
345.0	14.20	892.00	6078.7628	-5186.77
350.0	14.04	894.49	6166.86081	-5272.37
355.0	13.88	896.95	6254.95882	-5358.01
360.0	13.72	899.38	6343.05683	-5443.67
Max Volume (V max):				148.91
Design Volume (V design) :				148.91

Fastfrate Warehouse Development Industrial/Commercial Development

Project:	Fastfrate Warehouse Development
	Industrial/Commercial Development
Project #:	A001083 (360)
Station	OTTAWA SEWER DESIGN GUIDELINES
Date:	2021-08-06 9:36

 File
 \\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse

 Location:
 Development\300\360_Civil\01-SWM\[210719_Storm Water Management - Storage and Drawdown_full RR.xlsx]A3

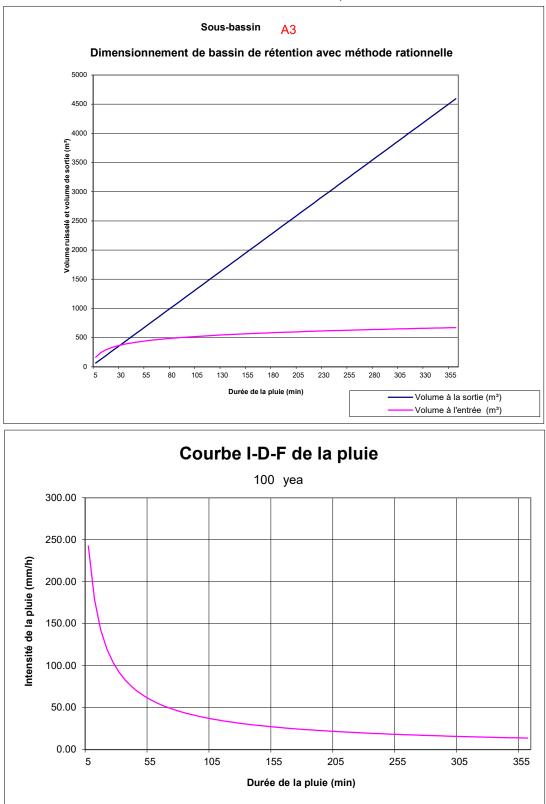
Description: Storage volume calculations with the rational method

Specified Release Rate:	247.7801153 L/s/ha
Area : A3 - Building	0.8582 ha
Runoff Coefficient C (unfactored):	0.9
C_runoff factor: -	
Runoff Coefficient C :	0.95
Rainfall Event :	100 year
Discharge Flow Q :	0.212644895 m ³ /s
Discharge Factor K :	1

Design Volume:

115.04 m³

Rainfall	2 year		5 y	/ear	10 year	
Pluviometry Coefficients	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
A	732.951	732.951	998.071	998.071	1174.184	1174.184
В	6.199	6.199	6.053	6.053	6.014	6.014
С	0.81	0.81	0.814	0.814	0.816	0.816
Rainfall	25 yea	ır	50 year		100 year	
Pluviometry Coefficients	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
A	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688
В	6.018	6.018	6.014	6.014	6.014	6.014
С	0.819	0.819	0.82	0.82	0.82	0.82


Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842 Date: July 22, 2021

Rainfall	Rainfall	Runoff	Output	Retention
Duration	Intensity	Volume	Volume	Volume
(min)	(mm/h)	(m ³)	(m ³)	(m ³)
T	(CIAT	kQT	(4)-(5)
(1)	(2)	(4)	(5)	(6)
5.0	242.70	164.90	63.7934685	101.10
10.0	178.56	242.63	127.586937	115.04
15.0	142.89	291.25	191.380405	99.87
20.0	119.95	325.98	255.173874	70.81
25.0	103.85	352.77	318.967342	33.81
30.0	91.87	374.50	382.760811	-8.26
35.0	82.58	392.73	446.554279	-53.82
40.0	75.15	408.43	510.347748	-101.91
45.0	69.05	422.22	574.141216	-151.92
50.0	63.95	434.51	637.934685	-203.43
55.0	59.62	445.60	701.728153	-256.13
60.0	55.89	455.70	765.521622	-309.82
65.0	52.65	464.99	829.31509	-364.32
70.0	49.79	473.58	893.108559	-419.52
75.0	47.26	481.59	956.902027	-475.32
80.0	44.99	489.08	1020.6955	-531.62
85.0	42.95	496.12	1084.48896	-588.37
90.0	41.11	502.76	1148.28243	-645.52
95.0	39.43	509.05	1212.0759	-703.02
100.0	37.90	515.03	1275.86937	-760.84
105.0	36.50	520.73	1339.66284	-818.93
110.0	35.20	526.17	1403.45631	-877.29
115.0	34.01	531.38	1467.24978	-935.87
120.0	32.89	536.38	1531.04324	-994.67
125.0	31.86	541.18	1594.83671	-1053.66
130.0	30.90	545.80	1658.63018	-1112.83
135.0	30.00	550.26	1722.42365	-1172.16
140.0	29.15	554.57	1786.21712	-1231.65
145.0	28.36	558.74	1850.01059	-1291.27
150.0	27.61	562.77	1913.80405	-1351.04
155.0	26.91	566.68	1977.59752	-1410.92
160.0	26.24	570.47	2041.39099	-1470.92
165.0	25.61	574.16	2105.18446	-1531.03
170.0	25.01	577.74	2168.97793	-1591.24
175.0	24.44	581.23	2232.7714	-1651.54
180.0	23.90	584.63	2296.56487	-1711.94
185.0	23.39	587.94	2360.35833	-1772.42
190.0	22.90	591.17	2424.1518	-1832.98
195.0	22.43	594.32	2487.94527	-1893.62
200.0	21.98	597.40	2551.73874	-1954.34
205.0	21.55	600.41	2615.53221	-2015.12
210.0	21.14	603.36	2679.32568	-2075.97
215.0	20.75	606.24	2743.11914	-2136.88
220.0	20.37	609.07	2806.91261	-2197.85
225.0	20.01	611.83	2870.70608	-2258.87
230.0	19.66	614.54	2934.49955	-2319.96
235.0	19.33	617.20	2998.29302	-2381.09
240.0	19.01	619.81	3062.08649	-2442.28

350.0 355.0 360.0	14.04 13.88 13.72	667.57 669.41 671.22	4465.54279 4529.33626 4593.12973	-3797.97 -3859.93 -3921.91
345.0	14.20	665.71	4401.74933	-3736.04
340.0	14.37	663.83	4337.95586	-3674.13
335.0	14.54	661.92	4274.16239	-3612.24
330.0	14.72	659.98	4210.36892	-3550.38
325.0	14.90	658.02	4146.57545	-3488.55
320.0	15.09	656.04	4082.78198	-3426.74
315.0	15.28	654.02	4018.98851	-3364.96
310.0	15.48	651.98	3955.19505	-3303.21
305.0	15.68	649.91	3891.40158	-3241.49
300.0	15.89	647.81	3827.60811	-3179.80
295.0	16.11	645.67	3763.81464	-3118.14
290.0	16.33	643.51	3700.02117	-3056.51
285.0	16.56	641.31	3636.2277	-2994.92
280.0	16.80	639.08	3572.43424	-2933.36
270.0	17.29	636.81	3508.64077	-2871.83
205.0	17.29	634.50	3444.8473	-2748.90
260.0	17.83	632.16	3381.05383	-2087.49
255.0	17.83	629.77	3317.26036	-2620.12
250.0 255.0	18.39 18.11	624.88 627.35	3189.67342 3253.46689	-2564.79 -2626.12
245.0	18.69	622.37	3125.87996	-2503.51

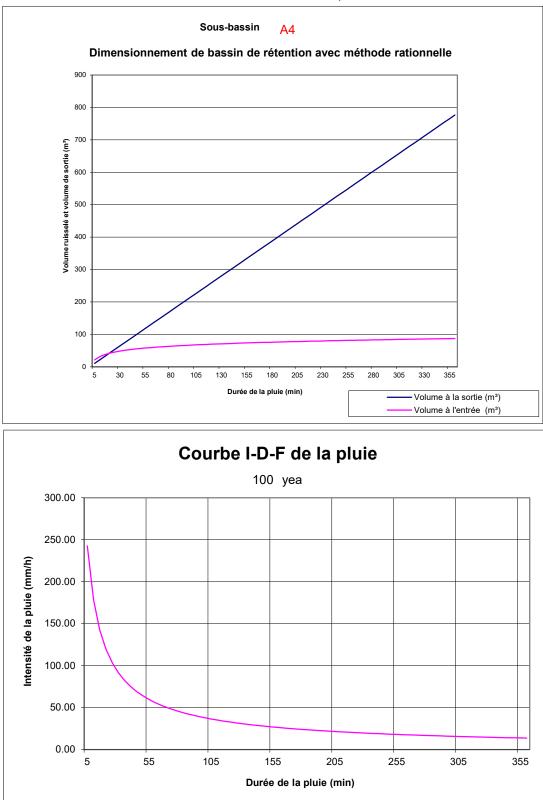
Fastfrate Warehouse Development Industrial/Commercial Development

Project:	Fastfrate Warehouse Development
	Industrial/Commercial Development
Project #:	A001083 (360)
Station	OTTAWA SEWER DESIGN GUIDELINES
Date:	2021-08-06 9:36
File Location:	\\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civil\01-SWM\[210719_Storm Water Management - Storage and Drawdown_full
Description:	Storage volume calculations with the rational method

Specified Release Rate: 241.9344526 L/s/ha Area 0.1486 ha : A4 Runoff Coefficient C (unfactored 0.57 C_runoff factor: 1.25 Runoff Coefficient C : 0.7125 Rainfall Event : 100 year 0.03595146 m³/s Discharge Flow Q : Discharge Factor K : 1

Design Volume: 10.63 m³

Rainfall	2 year		5 y	5 year		10 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	
Coefficients							
A	732.951	732.951	998.071	998.071	1174.184	1174.184	
В	6.199	6.199	6.053	6.053	6.014	6.014	
С	0.81	0.81	0.814	0.814	0.816	0.816	
Rainfall	25 y	/ear	50 year		100 year		
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	
Coefficients							
A	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688	
В	6.018	6.018	6.014	6.014	6.014	6.014	
С	0.819	0.819	0.82	0.82	0.82	0.82	


Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842 Date: July 22, 2021

Rainfall	Rainfall	Runoff	Output	Retention
Duration	Intensity	Volume	Volume	Volume
(min)	(mm/h)	(m³)	(m³)	(m³)
`Τ΄		ĊIAŤ	kQŤ	(4)-(5)
(1)	(2)	(4)	(5)	(6)
5.0	242.70	21.41	10.7854379	10.63
10.0	178.56	31.51	21.5708758	9.94
15.0	142.89	37.82	32.3563137	5.47
20.0	119.95	42.33	43.1417516	-0.81
25.0	103.85	45.81	53.9271895	-8.11
30.0	91.87	48.63	64.7126274	-16.08
35.0	82.58	51.00	75.4980653	-24.50
40.0	75.15	53.04	86.2835032	-33.24
45.0	69.05	54.83	97.0689411	-42.24
50.0	63.95	56.43	107.854379	-51.43
55.0	59.62	57.87	118.639817	-60.77
60.0	55.89	59.18	129.425255	-70.25
65.0	52.65	60.39	140.210693	-79.82
70.0	49.79	61.50	150.996131	-89.49
75.0	47.26	62.54	161.781568	-99.24
80.0	44.99	63.51	172.567006	-109.05
85.0	42.95	64.43	183.352444	-118.92
90.0	41.11	65.29	194.137882	-128.85
95.0	39.43	66.11	204.92332	-138.82
100.0	37.90	66.88	215.708758	-148.82
105.0	36.50	67.62	226.494196	-158.87
110.0	35.20	68.33	237.279634	-168.95
115.0	34.01	69.01	248.065072	-179.06
120.0	32.89	69.66	258.850509	-189.19
125.0	31.86	70.28	269.635947	-199.36
130.0	30.90	70.88	280.421385	-209.54
135.0	30.00	71.46	291.206823	-219.75
140.0	29.15	72.02	301.992261	-229.97
145.0	28.36	72.56	312.777699	-240.22
150.0	27.61	73.08	323.563137	-250.48
155.0	26.91	73.59	334.348575	-260.76
160.0	26.24	74.08	345.134013	-271.05
165.0	25.61	74.56	355.919451	-281.36
170.0	25.01	75.03	366.704888	-291.68
175.0	24.44	75.48	377.490326	-302.01
180.0	23.90	75.92	388.275764	-312.35
185.0	23.39	76.35	399.061202	-322.71
190.0	22.90	76.77	409.84664	-333.07
195.0	22.43	77.18	420.632078	-343.45
200.0	21.98	77.58	431.417516	-353.84
205.0	21.55	77.97	442.202954	-364.23
210.0	21.14	78.36	452.988392	-374.63
215.0	20.75	78.73	463.773829	-385.04
220.0	20.37	79.10	474.559267	-395.46
225.0	20.01	79.46	485.344705	-405.89
230.0	19.66	79.81	496.130143	-416.32
235.0	19.33	80.15	506.915581	-426.76
240.0	19.01	80.49	517.701019	-437.21

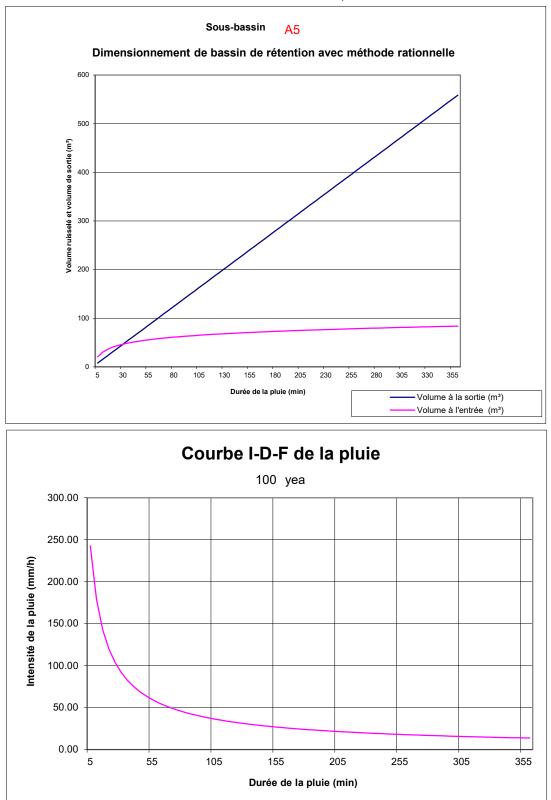
Design Volum				10.63
Max Volume (\	/ max):			10.63
360.0	13.72	87.17	776.551528	-689.38
355.0	13.88	86.93	765.766091	-678.83
350.0	14.04	86.69	754.980653	-668.29
345.0	14.20	86.45	744.195215	-657.74
340.0	14.37	86.21	733.409777	-647.20
335.0	14.54	85.96	722.624339	-636.66
330.0	14.72	85.71	711.838901	-626.13
325.0	14.90	85.45	701.053463	-615.60
320.0	15.09	85.20	690.268025	-605.07
315.0	15.28	84.93	679.482587	-594.55
310.0	15.48	84.67	668.697149	-584.03
305.0	15.68	84.40	657.911712	-573.51
300.0	15.89	84.13	647.126274	-563.00
295.0	16.11	83.85	636.340836	-552.49
290.0	16.33	83.57	625.555398	-541.99
285.0	16.56	83.28	614.76996	-531.49
280.0	16.80	82.99	603.984522	-520.99
275.0	17.04	82.70	593.199084	-510.50
270.0	17.29	82.40	582.413646	-500.01
265.0	17.56	82.10	571.628208	-489.53
260.0	17.83	81.79	560.842771	-479.06
255.0	18.11	81.47	550.057333	-468.59
250.0	18.39	81.15	539.271895	-458.12
245.0	18.69	80.82	528.486457	-447.66

Fastfrate Warehouse Development Industrial/Commercial Development

Project:	Fastfrate Warehouse De	Fastfrate Warehouse Development			
Project #: Station Date:	Industrial/Commercial De A001083 (360) OTTAWA SEWER DESI 2021-08-06 9:36				
File Location:		tt_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse 1-SWM\[210719_Storm Water Management - Storage and Drawdown_full			
Description:	Storage volume calculations with the rational method				
Specified Rel	ease Rate:	241.9344526 L/s/ha			

Area	:	A5	0.1069 ha
Runoff Coef	fficient C (u	nfactored	0.9
C_runoff fac	ctor:	-	
Runoff Coef	ficient C :		0.95
Rainfall Eve	nt :		100 year
Discharge F	low Q :		0.025862793 m³/s
Discharge F	actor K :		1

Rainfall	2 year		5 y	5 year		10 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	
Coefficients							
А	732.951	732.951	998.071	998.071	1174.184	1174.184	
В	6.199	6.199	6.053	6.053	6.014	6.014	
С	0.81	0.81	0.814	0.814	0.816	0.816	
Rainfall	25 y	/ear	50 year		100 year		
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	
Coefficients							
А	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688	
В	6.018	6.018	6.014	6.014	6.014	6.014	
С	0.819	0.819	0.82	0.82	0.82	0.82	


Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842 Date: July 22, 2021

Rainfall	Rainfall	Runoff	Output	Retention
Duration	Intensity	Volume	Volume	Volume
(min)	(mm/h)	(m³)	(m³)	(m³)
Ť	, i ,	ĊIAŤ	kQŤ	(4)-(5)
(1)	(2)	(4)	(5)	(6)
5.0	242.70	20.54	7.75883789	12.78
10.0	178.56	30.22	15.5176758	14.70
15.0	142.89	36.28	23.2765137	13.00
20.0	119.95	40.61	31.0353516	9.57
25.0	103.85	43.94	38.7941895	5.15
30.0	91.87	46.65	46.5530274	0.10
35.0	82.58	48.92	54.3118653	-5.39
40.0	75.15	50.88	62.0707031	-11.19
45.0	69.05	52.59	69.829541	-17.24
50.0	63.95	54.12	77.5883789	-23.46
55.0	59.62	55.51	85.3472168	-29.84
60.0	55.89	56.76	93.1060547	-36.34
65.0	52.65	57.92	100.864893	-42.94
70.0	49.79	58.99	108.623731	-49.63
75.0	47.26	59.99	116.382568	-56.39
80.0	44.99	60.92	124.141406	-63.22
85.0	42.95	61.80	131.900244	-70.10
90.0	41.11	62.63	139.659082	-77.03
95.0	39.43	63.41	147.41792	-84.01
100.0	37.90	64.15	155.176758	-91.02
105.0	36.50	64.86	162.935596	-98.07
110.0	35.20	65.54	170.694434	-105.15
115.0	34.01	66.19	178.453272	-112.26
120.0	32.89	66.81	186.212109	-119.40
125.0	31.86	67.41	193.970947	-126.56
130.0	30.90	67.99	201.729785	-133.74
135.0	30.00	68.54	209.488623	-140.95
140.0	29.15	69.08	217.247461	-148.17
145.0	28.36	69.60	225.006299	-155.41
150.0	27.61	70.10	232.765137	-162.67
155.0	26.91	70.59	240.523975	-169.94
160.0	26.24	71.06	248.282813	-177.22
165.0	25.61	71.52	256.04165	-184.52
170.0	25.01	71.97	263.800488	-191.84
175.0	24.44	72.40	271.559326	-199.16
180.0	23.90	72.82	279.318164	-206.50
185.0	23.39	73.24	287.077002	-213.84
190.0	22.90	73.64	294.83584	-221.20
195.0	22.43	74.03	302.594678	-228.56
200.0	21.98	74.41	310.353516	-235.94
205.0	21.55	74.79	318.112354	-243.32
210.0	21.14	75.16	325.871192	-250.71
215.0	20.75	75.52	333.630029	-258.11
220.0	20.37	75.87	341.388867	-265.52
225.0	20.01	76.21	349.147705	-272.94
230.0	19.66	76.55	356.906543	-280.36
235.0	19.33	76.88	364.665381	-287.79
240.0	19.01	77.21	372.424219	-295.22

245.0	18.69	77.52	380.183057	-302.66
250.0	18.39	77.84	387.941895	-310.11
255.0	18.11	78.14	395.700733	-317.56
260.0	17.83	78.45	403.45957	-325.01
265.0	17.56	78.74	411.218408	-332.47
270.0	17.29	79.04	418.977246	-339.94
275.0	17.04	79.32	426.736084	-347.41
280.0	16.80	79.61	434.494922	-354.89
285.0	16.56	79.88	442.25376	-362.37
290.0	16.33	80.16	450.012598	-369.86
295.0	16.11	80.43	457.771436	-377.34
300.0	15.89	80.69	465.530274	-384.84
305.0	15.68	80.95	473.289111	-392.33
310.0	15.48	81.21	481.047949	-399.84
315.0	15.28	81.47	488.806787	-407.34
320.0	15.09	81.72	496.565625	-414.85
325.0	14.90	81.97	504.324463	-422.36
330.0	14.72	82.21	512.083301	-429.87
335.0	14.54	82.45	519.842139	-437.39
340.0	14.37	82.69	527.600977	-444.91
345.0	14.20	82.92	535.359815	-452.44
350.0	14.04	83.15	543.118653	-459.96
355.0	13.88	83.38	550.87749	-467.49
360.0	13.72	83.61	558.636328	-475.03
Max Volume (\		14.70		
Design Volum	14.70			

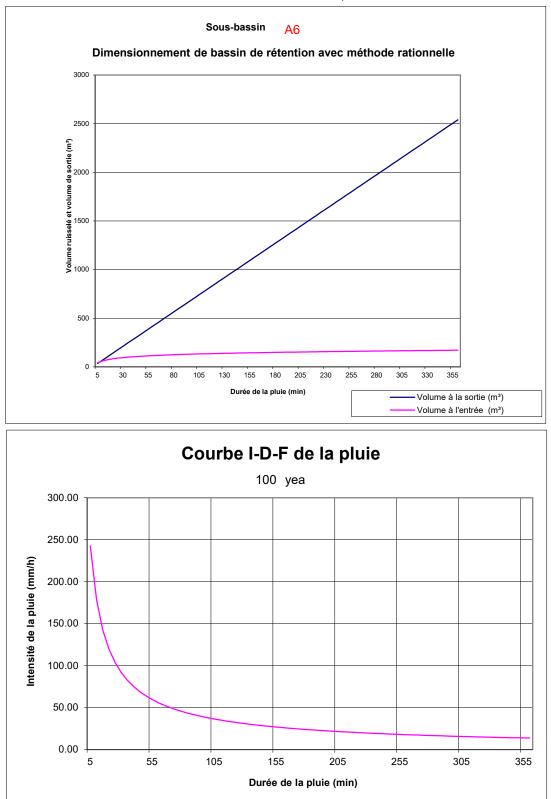
Fastfrate Warehouse Development Industrial/Commercial Development

Project:	Fastfrate Warehouse Development
	Industrial/Commercial Development
Project #:	A001083 (360)
Station	OTTAWA SEWER DESIGN GUIDELINES
Date:	2021-08-06 9:36
File Location:	\\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civil\01-SWM\[210719_Storm Water Management - Storage and Drawdown_full
Description:	Storage volume calculations with the rational method

Specified Release Rate: 241.9344526 L/s/ha Area A6 0.486 ha : Runoff Coefficient C (unfactored 0.34 C_runoff factor: 1.25 Runoff Coefficient C : 0.425 Rainfall Event : 100 year Discharge Flow Q : 0.117580144 m³/s Discharge Factor K : 1

Design Volume:	6.50 m³

Rainfall	2 year		5 year		10 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	732.951	732.951	998.071	998.071	1174.184	1174.184
В	6.199	6.199	6.053	6.053	6.014	6.014
С	0.81	0.81	0.814	0.814	0.816	0.816
Rainfall	25 y	/ear	50 year		100 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688
В	6.018	6.018	6.014	6.014	6.014	6.014
С	0.819	0.819	0.82	0.82	0.82	0.82


Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842 Date: July 22, 2021

Rainfall	Rainfall	Runoff	Output	Retention
Duration	Intensity	Volume	Volume	Volume
(min)	(mm/h)	(m ³)	(m ³)	(m ³)
T	(CIAT	kQT	(4)-(5)
(1)	(2)	(4)	(5)	(6)
5.0	242.70	41.78	35.2740432	6.50
10.0	178.56	61.47	70.5480864	-9.08
15.0	142.89	73.79	105.82213	-32.04
20.0	119.95	82.59	141.096173	-58.51
25.0	103.85	89.37	176.370216	-87.00
30.0	91.87	94.88	211.644259	-116.77
35.0	82.58	99.50	246.918302	-147.42
40.0	75.15	103.48	282.192345	-178.72
45.0	69.05	106.97	317.466389	-210.50
50.0	63.95	110.08	352.740432	-242.66
55.0	59.62	112.89	388.014475	-275.12
60.0	55.89	115.45	423.288518	-307.84
65.0	52.65	117.80	458.562561	-340.76
70.0	49.79	119.98	493.836605	-373.86
75.0	47.26	122.01	529.110648	-407.10
80.0	44.99	123.91	564.384691	-440.48
85.0	42.95	125.69	599.658734	-473.97
90.0	41.11	123.03	634.932777	-507.56
95.0	39.43	127.37	670.20682	-541.24
100.0	37.90	130.48	705.480864	-575.00
105.0	36.50	131.92	740.754907	-608.83
110.0	35.20	133.30	776.02895	-642.73
115.0	34.01	134.62	811.302993	-676.68
120.0	32.89	135.89	846.577036	-710.69
125.0	31.86	137.11	881.85108	-744.75
130.0	30.90	138.28	917.125123	-778.85
135.0	30.00	139.41	952.399166	-812.99
140.0	29.15	140.50	987.673209	-847.18
145.0	28.36	141.55	1022.94725	-881.39
150.0	27.61	142.57	1058.2213	-915.65
155.0	26.91	143.57	1093.49534	-949.93
160.0	26.24	144.53	1128.76938	-984.24
165.0	25.61	145.46	1164.04343	-1018.58
170.0	25.01	146.37	1199.31747	-1052.95
175.0	24.44	147.25	1234.59151	-1087.34
180.0	23.90	148.11	1269.86555	-1121.75
185.0	23.39	148.95	1305.1396	-1156.19
190.0	22.90	149.77	1340.41364	-1190.64
195.0	22.43	150.57	1375.68768	-1225.12
200.0	21.98	151.35	1410.96173	-1259.61
205.0	21.55	152.11	1446.23577	-1294.12
210.0	21.14	152.86	1481.50981	-1328.65
215.0	20.75	153.59	1516.78386	-1363.19
220.0	20.37	154.30	1552.0579	-1397.75
225.0	20.01	155.00	1587.33194	-1432.33
230.0	19.66	155.69	1622.60599	-1466.91
235.0	19.33	156.36	1657.88003	-1501.52
240.0	19.01	157.03	1693.15407	-1536.13
-		1		

245.0	18.69	157.67	1728.42812	-1570.75	
250.0	18.39	158.31	1763.70216	-1605.39	
255.0	18.11	158.94	1798.9762	-1640.04	
260.0	17.83	159.55	1834.25025	-1674.70	
265.0	17.56	160.15	1869.52429	-1709.37	
270.0	17.29	160.75	1904.79833	-1744.05	
275.0	17.04	161.33	1940.07238	-1778.74	
280.0	16.80	161.91	1975.34642	-1813.44	
285.0	16.56	162.47	2010.62046	-1848.15	
290.0	16.33	163.03	2045.8945	-1882.86	
295.0	16.11	163.58	2081.16855	-1917.59	
300.0	15.89	164.12	2116.44259	-1952.32	
305.0	15.68	164.65	2151.71663	-1987.07	
310.0	15.48	165.18	2186.99068	-2021.81	
315.0	15.28	165.69	2222.26472	-2056.57	
320.0	15.09	166.20	2257.53876	-2091.33	
325.0	14.90	166.71	2292.81281	-2126.11	
330.0	14.72	167.20	2328.08685	-2160.88	
335.0	14.54	167.69	2363.36089	-2195.67	
340.0	14.37	168.18	2398.63494	-2230.46	
345.0	14.20	168.65	2433.90898	-2265.25	
350.0	14.04	169.13	2469.18302	-2300.06	
355.0	13.88	169.59	2504.45707	-2334.87	
360.0	13.72	170.05	2539.73111	-2369.68	
Max Volume (Max Volume (V max):				
Design Volum	6.50				

Fastfrate Warehouse Development Industrial/Commercial Development

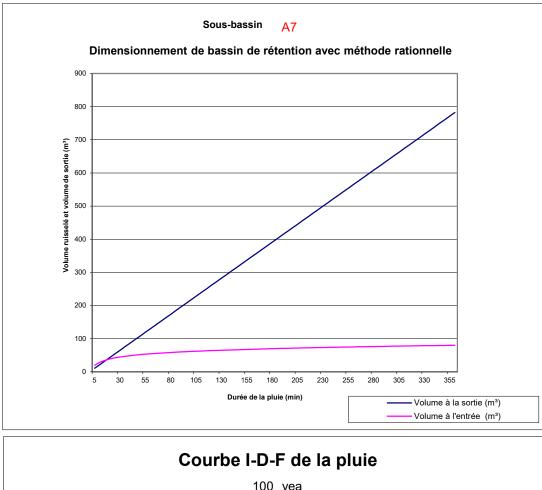
Project:	Fastfrate Warehouse Development
Project #: Station Date:	Industrial/Commercial Development A001083 (360) OTTAWA SEWER DESIGN GUIDELINES 2021-08-06 9:36
File Location:	\\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civil\01-SWM\[210719_Storm Water Management - Storage and Drawdown_full RR.xIsx]A7
Description	Storage volume coloulations with the rational method

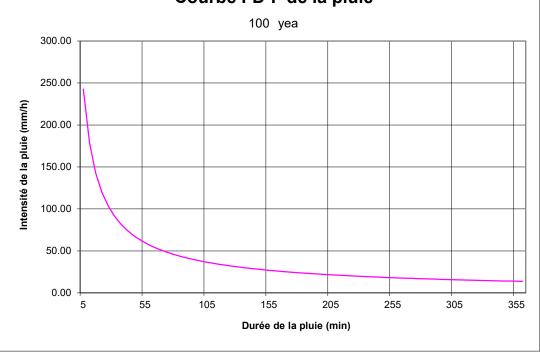
Description: Storage volume calculations with the rational method

Specified Release Rate:	241.9344526 L/s/ha		
Area : A7	0.1497 ha		
Runoff Coefficient C (unfactored	0.52		
C_runoff factor:	1.25		
Runoff Coefficient C :	0.65		
Rainfall Event :	100 year		
Discharge Flow Q :	0.036217588 m³/s		
Discharge Factor K :	1		

Design Volume:	8.81 m³

Rainfall	2 year		5 year		10 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	732.951	732.951	998.071	998.071	1174.184	1174.184
В	6.199	6.199	6.053	6.053	6.014	6.014
С	0.81	0.81	0.814	0.814	0.816	0.816
Rainfall	25 y	/ear	50 year		100 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688
В	6.018	6.018	6.014	6.014	6.014	6.014
С	0.819	0.819	0.82	0.82	0.82	0.82


Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467


Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842 Date: July 22, 2021

Rainfall	Rainfall	Runoff	Output	Retention
Duration	Intensity	Volume	Volume	Volume
(min)	(mm/h)	(m³)	(m³)	(m³)
Ť	Ì I Í	ĊIAŤ	kQŤ	(4)-(5)
(1)	(2)	(4)	(5)	(6)
5.0	242.70	19.68	10.8652763	8.81
10.0	178.56	28.96	21.7305525	7.23
15.0	142.89	34.76	32.5958288	2.16
20.0	119.95	38.91	43.4611051	-4.56
25.0	103.85	42.10	54.3263813	-12.22
30.0	91.87	44.70	65.1916576	-20.50
35.0	82.58	46.87	76.0569338	-29.18
40.0	75.15	48.75	86.9222101	-38.18
45.0	69.05	50.39	97.7874864	-47.40
50.0	63.95	51.86	108.652763	-56.79
55.0	59.62	53.18	119.518039	-66.34
60.0	55.89	54.39	130.383315	-76.00
65.0	52.65	55.50	141.248591	-85.75
70.0	49.79	56.52	152.113868	-95.59
75.0	47.26	57.48	162.979144	-105.50
80.0	44.99	58.37	173.84442	-115.47
85.0	42.95	59.21	184.709696	-125.50
90.0	41.11	60.00	195.574973	-135.57
95.0	39.43	60.76	206.440249	-145.68
100.0	37.90	61.47	217.305525	-155.84
105.0	36.50	62.15	228.170802	-166.02
110.0	35.20	62.80	239.036078	-176.24
115.0	34.01	63.42	249.901354	-186.48
120.0	32.89	64.02	260.76663	-196.75
125.0	31.86	64.59	271.631907	-207.04
130.0	30.90	65.14	282.497183	-217.36
135.0	30.00	65.67	293.362459	-227.69
140.0	29.15	66.19	304.227735	-238.04
145.0	28.36	66.69	315.093012	-248.41
150.0	27.61	67.17	325.958288	-258.79
155.0 160.0	26.91	67.63	336.823564	-269.19
165.0	26.24	68.09	347.68884	-279.60
170.0	25.61 25.01	68.53 68.95	358.554117 369.419393	-290.03 -300.47
175.0	25.01	69.37	380.284669	-310.91
175.0	23.90	69.78	391.149946	-310.91
185.0	23.39	70.17	402.015222	-331.84
190.0	23.39	70.17	412.880498	-342.32
195.0	22.43	70.93	423.745774	-352.81
200.0	21.98	71.30	434.611051	-363.31
205.0	21.55	71.66	445.476327	-373.82
210.0	21.14	72.01	456.341603	-384.33
215.0	20.75	72.36	467.206879	-394.85
220.0	20.37	72.69	478.072156	-405.38
225.0	20.01	73.02	488.937432	-415.92
230.0	19.66	73.35	499.802708	-426.46
235.0	19.33	73.66	510.667984	-437.01

	10.01	70.07		
240.0	19.01	73.97	521.533261	-447.56
245.0	18.69	74.28	532.398537	-458.12
250.0	18.39	74.58	543.263813	-468.68
255.0	18.11	74.87	554.129089	-479.26
260.0	17.83	75.16	564.994366	-489.83
265.0	17.56	75.45	575.859642	-500.41
270.0	17.29	75.73	586.724918	-511.00
275.0	17.04	76.00	597.590195	-521.59
280.0	16.80	76.27	608.455471	-532.18
285.0	16.56	76.54	619.320747	-542.78
290.0	16.33	76.80	630.186023	-553.38
295.0	16.11	77.06	641.0513	-563.99
300.0	15.89	77.32	651.916576	-574.60
305.0	15.68	77.57	662.781852	-585.22
310.0	15.48	77.81	673.647128	-595.83
315.0	15.28	78.06	684.512405	-606.45
320.0	15.09	78.30	695.377681	-617.08
325.0	14.90	78.54	706.242957	-627.71
330.0	14.72	78.77	717.108233	-638.34
335.0	14.54	79.00	727.97351	-648.97
340.0	14.37	79.23	738.838786	-659.61
345.0	14.20	79.45	749.704062	-670.25
350.0	14.04	79.67	760.569338	-680.89
355.0	13.88	79.89	771.434615	-691.54
360.0	13.72	80.11	782.299891	-702.19
Max Volume (V		8.81		
Design Volume	8.81			

Fastfrate Warehouse Development Industrial/Commercial Development

CIM	2	+,			STORM V	Fastf Indus VATER MANA	frate Warehouse De trial/Commercial D A001083 (360) AGEMENT - SUMM	Fastfrate Warehouse Development Industrial/Commercial Development A001083 (360) STORM WATER MANAGEMENT - SUMMARY - HALF RELEASE RATE	ıent nent ALF RELEASE	ĒRATE				Date:	2021-08-06
Rainfall event		100 years													
Sub-Area 7	Total Area	Capacity Area Catchbasin Elev.		Max. Elev.	Y_{max}	V _{max}	V_{rain}	Difference	V _{acc}	$\boldsymbol{Y}_{\text{rain}}$	Elev _{rain}	A_{rain}	$\mathbf{Q}_{\mathrm{ave}}$	Drawdown Time	Comments
Δ1	(m ²) 7646	(m ²) (m) 2294 10.00		(m) 10.001	(m) 0 001	(m ³) 0.76	(m ³) 197 16	(m ³) -106.30	(m ³) 0.76	(m)	(m) 10.001	(m ²) 2204	(L/s) 64 300	(min) O	
A2	12138	3641 10.000	88	10.001	0.001	1.21	319.55	-318.34	1.21	0.00	10.001	3641	102.076	0 0	
A3 - Building	8582		00	10.050	0.050	143.03	115.04	27.99	115.04	0.04	10.045	7697	211.132	6	
A4	1486		00	10.001	0.001	0.15	27.34	-27.19	0.15	0.00	10.001	446	12.497	0	
A5	1069		00	10.001	0.001	0.11	30.46	-30.36	0.11	0.00	10.001	321	8.990	0	
AG	4860	•	00	10.001	0.001	0.49	37.00	-36.51	0.49	0.00	10.001	1458	40.871	0	
A7	1497	449 10.000	00	10.001	0.001	0.15	23.80	-23.65	0.15	00.00	10.001	449	12.589	0	
Total	37278	17191				145.90	750.35	-604.44	117.91						
\\cima.plus\cima\Cima-C10\C	Dtt_Projects\A\A00	Nicima plue kcimal Clime - C10/OIL_Projectes AAx00 1000-A001 1499-A001 083_Fastfrate Warehouse Development/300360_Civil 01-SVMA(210723	ise Developmenti.	300(360_Civitio1-SWM(2)	10723_Storm Water Mar	_Storm Water Management - Storage and Drawdown_half RRXIsxjSommaire	1 Drawdown_half RR.x	dsxJSommaire							
Legend: NC - 1	Non-controller	ind: - Nion controlled areas (no storage available)							Decion Criterio:						
Capacity Area = /	Area of water	Capacity Area = Area of water accumulated in sub-area at Max. Elev.	Elev.					u ←	1) Maximum Allowable Release Rate = 124.04 L/s/ha	able Release Ratu	e = 124.04 L/s/ha				
Catchbasin Elev. =	Elevation of c	Catchbasin Elev. = Elevation of catchbasin inlet (top of grate).						CNI	2) Pipe size for 10 years	-years					
Max. Elev. = Y _{max} = 1	Maximum ele Maximum dep	Max Elev. = Maximum elevation of water that may be accumulated within sub-area. Y _{max} = Maximum depth of water that may be accumulated within the sub-area. 	ted within the	sub-area.) sub-area.	5			v) 4	3) Rainfall event of 100 years 4) Pre-development flow (5 ye	of 100 years nt flow (5 year) = _	3) Rainfall event of 100 years 4) Pre-development flow (5 year) = Us (or Us/ha)	L/s/ha)			
V _{max} = V _{rain} = V	Volume of wa	v _{max} = maximum voume or water (capacity) that may or V _{rain} = Volume of water generated by rainfall.	De accumulat	an winili nie sup-ai	<u>מ</u> ק.										
Difference =	Difference be:	Difference = Difference between V _{max} and V _{rain} (remaining capacity of sub-area)	apacity of sub	-area)			1								
V _{acc} = -	Total volume	= Total volume of water accumulated within the sub-area in the event of a specific rainfall.	ub-area in th∈	event of a specific	rainfall.										
Y _{rain} = [Depth of wate	= Depth of water generated by rainfall.						₽.	repared by: <u>C</u>	Suillaume Let	Prepared by: Guillaume LeBlond, M.A.Sc., EIT	, EIT	Date:	Date: July 23, 2021	
Elev _{rain} =	Elevation of w	Elev _{rain} = Elevation of water generated by rainfall.							PEO No.: 100530467	00530467					
Arain =.	Area of water	A _{rain} = Area of water generated by rainfall.													
Q _{ave} =,	Average flow	Q_{ave} = Average flow (for drawndown time calculation).							Verified by: C	<u>Christian Lavc</u>	Verified by: Christian Lavoie-Lebel, P.Eng	ng.	Date:	Date: July 23, 2021	
Drawdown Time =	Time required	Drawdown Time = Time required for the total volume of water accumulated within sub-area to evacuate (following rainfall event).	umulated with	in sub-area to evac	uate (following rair	fall event).			PEO No.:	PEO No.: 100067842					

C 1 Store Management 3600 Contrained and Contrained Con

	-			-					
Calculated area	(mm²)	17550	27861	57298	3411	2454	11155	3436	
Specified Flow rate	L/S	64.31	102.09	212.64	12.50	8.99	40.88	12.59	454.00
Release Rate	L/s/ha	84.11	84.11	247.78	84.11	84.11	84.11	84.11	Total Flowrate
Catchment ID		A1	A2	A3 - Building	A4	A5	A6	A7	

Noma pusicimalCima-C10/0ft_ProjectsIA4001600-4001499A001003_Fastrate Warehouse Development3001380_CWI01-SWM(210723_Storm Water Management - Storage and Drawdown_haft RR.XIsX)Temps de vidange Préparé parr: Guillaume LeBlond, M.A.Sc., EIT
PEO No.: 100530467
PEO No.: 100530467

PEO No.: <u>100330407</u> Vérifié par: <u>Christian Lavoi 2) Pipe size for 10 years</u> PEO No.: <u>100067842</u>

Date: hulv

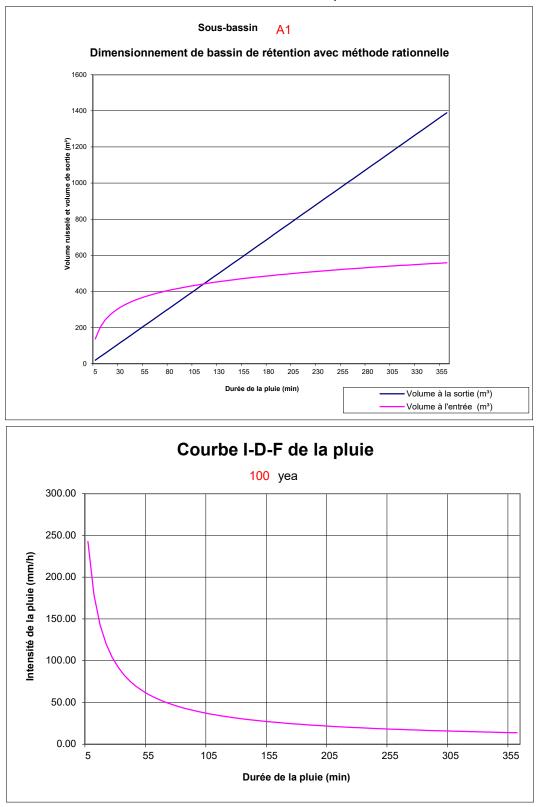
2021-08-06

Project:	Fastfrate Warehouse Development Industrial/Commercial Development
Project #: Station Date:	A001083 (360) OTTAWA SEWER DESIGN GUIDELINES 2021-08-06 9:33
File Location:	\\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civil\01-SWM\[210723_Storm Water Management - Storage and Drawdown_half
Description:	Storage volume calculations with the rational method
Specified Rel	ease Rate: 84.10757773 L/s/ha

Area :	A1	0.7646 ha
Runoff Coefficient C	(unfactored	0.71
C_runoff factor:		1.25
Runoff Coefficient C	:	0.8875
Rainfall Event :		100 year
Discharge Flow Q :		0.064308654 m³/s
Discharge Factor K :		1

Design Volume: 197.16 m³

Rainfall	2 ye	ear	5 y	<i>r</i> ear	10 ye	ear
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
А	732.951	732.951	998.071	998.071	1174.184	1174.184
В	6.199	6.199	6.053	6.053	6.014	6.014
С	0.810	0.810	0.814	0.814	0.816	0.816
Rainfall	25 y	/ear	50	year	100 y	ear
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
А	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688
В	6.018	6.018	6.014	6.014	6.014	6.014
С	0.819	0.819	0.820	0.820	0.820	0.820


Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842 Date: July 23, 2021

Rainfall	Rainfall	Runoff	Output	Retention
Duration	Intensity	Volume	Volume	Volume
(min)	(mm/h)	(m ³)	(m ³)	(m ³)
T	1	CIAT	kQT	(4)-(5)
(1)	(2)	(4)	(5)	(6)
5.0	242.70	137.25	19.2925962	117.95
10.0	178.56	201.95	38.5851924	163.36
15.0	142.89	242.41	57.8777885	184.54
20.0	119.95	271.32	77.1703847	194.15
25.0	103.85	293.62	96.4629809	197.16
30.0	91.87	311.70	115.755577	195.95
35.0	82.58	326.88	135.048173	191.83
40.0	75.15	339.95	154.340769	185.61
45.0	69.05	351.42	173.633366	177.79
50.0	63.95	361.65	192.925962	168.73
55.0	59.62	370.88	212.218558	158.66
60.0	55.89	379.29	231.511154	147.78
65.0	52.65	387.02	250.80375	136.22
70.0	49.79	394.17	270.096347	124.08
75.0	47.26	400.83	289.388943	111.45
80.0	44.99	407.07	308.681539	98.39
85.0	42.95	412.93	327.974135	84.95
90.0	41.11	418.46	347.266731	71.19
95.0	39.43	423.70	366.559327	57.14
100.0	37.90	428.67	385.851924	42.82
105.0	36.50	433.41	405.14452	28.27
110.0	35.20	437.94	424.437116	13.51
115.0	34.01	442.28	443.729712	-1.45
120.0	32.89	446.44	463.022308	-16.58
125.0	31.86	450.44	482.314904	-31.88
130.0	30.90	454.28	501.607501	-47.32
135.0	30.00	458.00	520.900097	-62.90
140.0	29.15	461.58	540.192693	-78.61
145.0	28.36	465.05	559.485289	-94.44
150.0	27.61	468.40	578.777885	-110.37
155.0	26.91	471.66	598.070482	-126.41
160.0	26.24	474.81	617.363078	-142.55
165.0	25.61	477.88	636.655674	-158.77
170.0	25.01	480.87	655.94827	-175.08
175.0	24.44	483.77	675.240866	-191.47
180.0	23.90	486.60	694.533462	-207.94
185.0	23.39	489.35	713.826059	-224.47
190.0	22.90	492.04	733.118655	-241.08
195.0	22.43	494.67	752.411251	-257.75
200.0	21.98	497.23	771.703847	-274.47
205.0	21.55	499.74	790.996443	-291.26
210.0	21.14	502.19	810.28904	-308.10
215.0	20.75	504.59	829.581636	-324.99
220.0	20.37	506.94	848.874232	-341.94
225.0	20.01	509.24	868.166828	-358.93
230.0	19.66	511.50	887.459424	-375.96
235.0	19.33	513.71	906.75202	-393.04
240.0	19.01	515.88	926.044617	-410.17

315.0	15.28	544.36	1215.43356	-671.08
315.0 320.0	15.28 15.09	544.36 546.03	1215.43356 1234.72616	-671.08 -688.69
320.0				
305.0 310.0	15.68 15.48	540.93 542.66	1176.84837	-635.92 -653.48
300.0 305.0	15.89 15.68	539.18 540.93	1157.55577 1176.84837	-618.37 -635.92
295.0	16.11	537.41	1138.26317	-600.86
290.0	16.33	535.61	1118.97058	-583.37
285.0	16.56	533.78	1099.67798	-565.90
275.0 280.0	17.04 16.80	530.03 531.92	1061.09279 1080.38539	-531.06 -548.47
270.0	17.29	528.11	1041.80019	-513.69
265.0	17.56	526.16	1022.5076	-496.35
260.0	17.83	524.17	1003.215	-479.04
255.0	18.11	522.15	983.922405	-461.77
245.0 250.0	18.69 18.39	518.01 520.10	945.337213 964.629809	-427.33 -444.53

Fastfrate Warehouse Development Industrial/Commercial Development

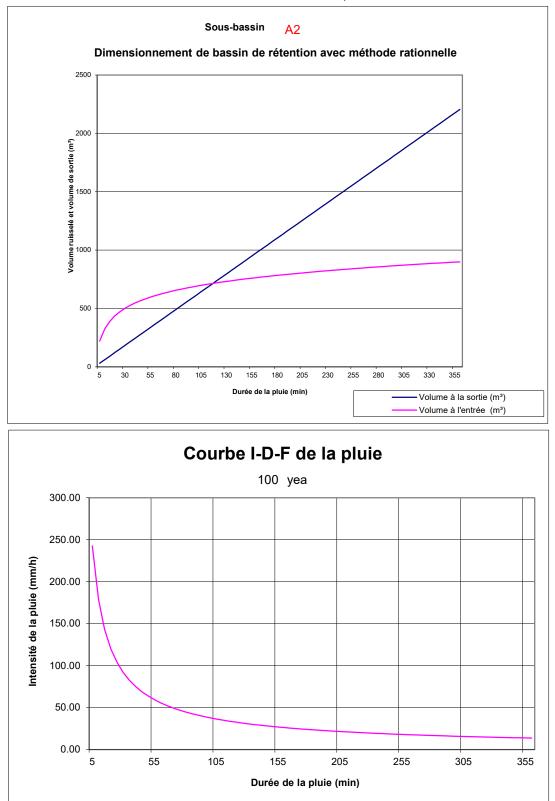
Init.____

Project:	Fastfrate Warehouse Development
Project #: Station Date:	Industrial/Commercial Development A001083 (360) OTTAWA SEWER DESIGN GUIDELINES 2021-08-06 9:33
File Location:	\\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civil\01-SWM\[210723_Storm Water Management - Storage and Drawdown_half
Description:	Storage volume calculations with the rational method

Specified Release Rate:	84.10757773 L/s/ha
Area : A2	1.2138 ha
Runoff Coefficient C (unfactore	ed 0.72
C_runoff factor:	1.25
Runoff Coefficient C :	0.9
Rainfall Event :	100 year
Discharge Flow Q :	0.102089778 m³/s
Discharge Factor K :	1

Design Volume:	319.55 m³

Rainfall	2 y	ear	5 y	/ear	10 y	/ear
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	732.951	732.951	998.071	998.071	1174.184	1174.184
В	6.199	6.199	6.053	6.053	6.014	6.014
С	0.81	0.81	0.814	0.814	0.816	0.816
Rainfall	25 y	/ear	50	year	100	year
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688
В	6.018	6.018	6.014	6.014	6.014	6.014
С	0.819	0.819	0.82	0.82	0.82	0.82


Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842 Date: July 23, 2021

Rainfall	Rainfall	Runoff	Output	Retention
Duration	Intensity	Volume	Volume	Volume
(min)	(mm/h)	(m ³)	(m ³)	(m ³)
() T	(,)	CIAT	kQT	(4)-(5)
(1)	(2)	(4)	(5)	(6)
5.0	242.70	220.95	30.6269334	190.32
10.0	178.56	325.10	61.2538667	263.85
15.0	142.89	390.25	91.8808001	298.37
20.0	119.95	436.79	122.507733	314.28
25.0	103.85	472.69	153.134667	319.55
30.0	91.87	501.79	183.7616	318.03
35.0	82.58	526.23	214.388533	311.84
40.0	75.15	547.27	245.015467	302.25
45.0	69.05	565.74	275.6424	290.10
50.0	63.95	582.21	306.269334	275.94
55.0	59.62	597.06	336.896267	260.17
60.0	55.89	610.60	367.5232	243.08
65.0	52.65	623.05	398.150134	224.90
70.0	49.79	634.56	428.777067	205.79
75.0	47.26	645.29	459.404	185.88
80.0	44.99	655.32	490.030934	165.29
85.0	42.95	664.75	520.657867	144.10
90.0	41.11	673.66	551.2848	122.37
95.0	39.43	682.09	581.911734	100.18
100.0	37.90	690.10	612.538667	77.56
105.0	36.50	697.73	643.1656	54.57
110.0	35.20	705.02	673.792534	31.23
115.0	34.01	712.00	704.419467	7.58
120.0	32.89	718.70	735.046401	-16.35
125.0	31.86	725.14	765.673334	-40.54
130.0	30.90	731.33	796.300267	-64.97
135.0	30.00	737.31	826.927201	-89.62
140.0	29.15	743.08	857.554134	-114.48
145.0	28.36	748.66	888.181067	-139.52
150.0	27.61	754.06	918.808001	-164.75
155.0	26.91	759.30	949.434934	-190.13
160.0	26.24	764.38	980.061867	-215.68
165.0	25.61	769.32	1010.6888	-241.37
170.0	25.01	774.12	1041.31573	-267.19
175.0	24.44	778.80	1071.94267	-293.15
180.0	23.90	783.35	1102.5696	-319.22
185.0	23.39	787.79	1133.19653	-345.41
190.0	22.90	792.12	1163.82347	-371.71
195.0	22.43	796.34	1194.4504	-398.11
200.0	21.98	800.47	1225.07733	-424.61
205.0	21.55	804.50	1255.70427	-451.20
210.0	21.14	808.45	1286.3312	-477.88
215.0	20.75	812.31	1316.95813	-504.64
220.0	20.37	816.10	1347.58507	-531.49
225.0	20.01	819.80	1378.212	-558.41
230.0	19.66	823.43	1408.83893	-585.40
235.0	19.33	827.00	1439.46587	-612.47
240.0	19.01	830.49	1470.0928	-639.60

245.0	18.69	833.92	1500.71973	-666.80
250.0	18.39	837.29	1531.34667	-694.06
255.0	18.11	840.59	1561.9736	-721.38
260.0	17.83	843.84	1592.60053	-748.76
265.0	17.56	847.04	1623.22747	-776.19
270.0	17.29	850.18	1653.8544	-803.68
275.0	17.04	853.27	1684.48133	-831.21
280.0	16.80	856.31	1715.10827	-858.80
285.0	16.56	859.30	1745.7352	-886.43
290.0	16.33	862.25	1776.36213	-914.11
295.0	16.11	865.15	1806.98907	-941.84
300.0	15.89	868.01	1837.616	-969.61
305.0	15.68	870.82	1868.24293	-997.42
310.0	15.48	873.60	1898.86987	-1025.27
315.0	15.28	876.34	1929.4968	-1053.16
320.0	15.09	879.04	1960.12373	-1081.09
325.0	14.90	881.70	1990.75067	-1109.05
330.0	14.72	884.32	2021.3776	-1137.05
335.0	14.54	886.91	2052.00453	-1165.09
340.0	14.37	889.47	2082.63147	-1193.16
345.0	14.20	892.00	2113.2584	-1221.26
350.0	14.04	894.49	2143.88533	-1249.40
355.0	13.88	896.95	2174.51227	-1277.56
360.0	13.72	899.38	2205.1392	-1305.76
Max Volume (\	/ max):			319.55
Design Volum				319.55

Fastfrate Warehouse Development Industrial/Commercial Development

Project:	Fastfrate Warehouse Development
	Industrial/Commercial Development
Project #:	A001083 (360)
Station	OTTAWA SEWER DESIGN GUIDELINES
Date:	2021-08-06 9:33

 File
 \\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse

 Location:
 Development\300\360_Civil\01-SWM\[210723_Storm Water Management - Storage and Drawdown_half RR.xlsx]A3

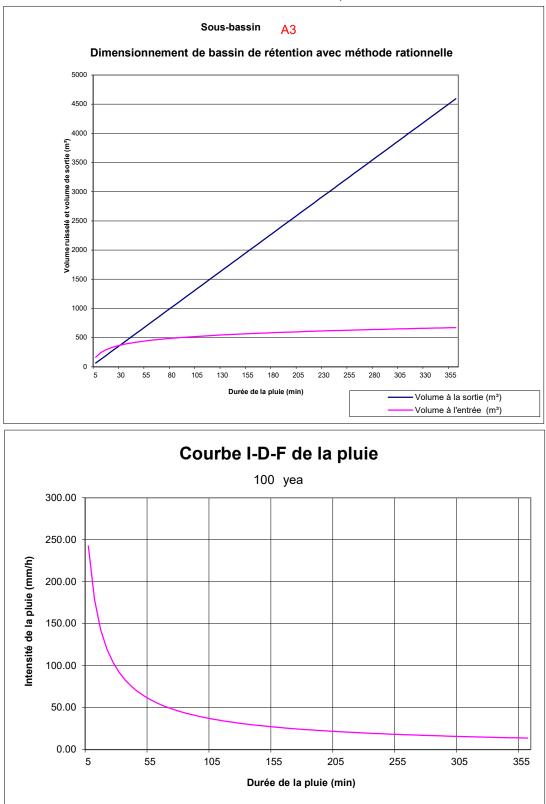
Description: Storage volume calculations with the rational method

Specified Release Rate:	247.7801153 L/s/ha
Area : A3 - Building	0.8582 ha
Runoff Coefficient C (unfactored):	0.9
C_runoff factor: -	
Runoff Coefficient C :	0.95
Rainfall Event :	100 year
Discharge Flow Q :	0.212644895 m³/s
Discharge Factor K :	1

Design Volume:

115.04 m³

Rainfall	2 year	ŕ	5 y	/ear	10 y	/ear
Pluviometry Coefficients	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
A	732.951	732.951	998.071	998.071	1174.184	1174.184
В	6.199	6.199	6.053	6.053	6.014	6.014
С	0.81	0.81	0.814	0.814	0.816	0.816
Rainfall	25 year		50 year		100 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688
В	6.018	6.018	6.014	6.014	6.014	6.014
С	0.819	0.819	0.82	0.82	0.82	0.82


Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842 Date: July 23, 2021

Rainfall	Rainfall	Runoff	Output	Retention
Duration	Intensity	Volume	Volume	Volume
(min)	(mm/h)	(m ³)	(m ³)	(m ³)
T	(CIAT	kQT	(4)-(5)
(1)	(2)	(4)	(5)	(6)
5.0	242.70	164.90	63.7934685	101.10
10.0	178.56	242.63	127.586937	115.04
15.0	142.89	291.25	191.380405	99.87
20.0	119.95	325.98	255.173874	70.81
25.0	103.85	352.77	318.967342	33.81
30.0	91.87	374.50	382.760811	-8.26
35.0	82.58	392.73	446.554279	-53.82
40.0	75.15	408.43	510.347748	-101.91
45.0	69.05	422.22	574.141216	-151.92
50.0	63.95	434.51	637.934685	-203.43
55.0	59.62	445.60	701.728153	-256.13
60.0	55.89	455.70	765.521622	-309.82
65.0	52.65	464.99	829.31509	-364.32
70.0	49.79	473.58	893.108559	-419.52
75.0	47.26	481.59	956.902027	-475.32
80.0	44.99	489.08	1020.6955	-531.62
85.0	42.95	496.12	1084.48896	-588.37
90.0	41.11	502.76	1148.28243	-645.52
95.0	39.43	509.05	1212.0759	-703.02
100.0	37.90	515.03	1275.86937	-760.84
105.0	36.50	520.73	1339.66284	-818.93
110.0	35.20	526.17	1403.45631	-877.29
115.0	34.01	531.38	1467.24978	-935.87
120.0	32.89	536.38	1531.04324	-994.67
125.0	31.86	541.18	1594.83671	-1053.66
130.0	30.90	545.80	1658.63018	-1112.83
135.0	30.00	550.26	1722.42365	-1172.16
140.0	29.15	554.57	1786.21712	-1231.65
145.0	28.36	558.74	1850.01059	-1291.27
150.0	27.61	562.77	1913.80405	-1351.04
155.0	26.91	566.68	1977.59752	-1410.92
160.0	26.24	570.47	2041.39099	-1470.92
165.0	25.61	574.16	2105.18446	-1531.03
170.0	25.01	577.74	2168.97793	-1591.24
175.0	24.44	581.23	2232.7714	-1651.54
180.0	23.90	584.63	2296.56487	-1711.94
185.0	23.39	587.94	2360.35833	-1772.42
190.0	22.90	591.17	2424.1518	-1832.98
195.0	22.43	594.32	2487.94527	-1893.62
200.0	21.98	597.40	2551.73874	-1954.34
205.0	21.55	600.41	2615.53221	-2015.12
210.0	21.14	603.36	2679.32568	-2075.97
215.0	20.75	606.24	2743.11914	-2136.88
220.0	20.37	609.07	2806.91261	-2197.85
225.0	20.01	611.83	2870.70608	-2258.87
230.0	19.66	614.54	2934.49955	-2319.96
235.0	19.33	617.20	2998.29302	-2381.09
240.0	19.01	619.81	3062.08649	-2442.28

350.0 355.0 360.0	14.04 13.88 13.72	667.57 669.41 671.22	4465.54279 4529.33626 4593.12973	-3797.97 -3859.93 -3921.91
345.0	14.20	665.71	4401.74933	-3736.04
340.0	14.37	663.83	4337.95586	-3674.13
335.0	14.54	661.92	4274.16239	-3612.24
330.0	14.72	659.98	4210.36892	-3550.38
325.0	14.90	658.02	4146.57545	-3488.55
320.0	15.09	656.04	4082.78198	-3426.74
315.0	15.28	654.02	4018.98851	-3364.96
310.0	15.48	651.98	3955.19505	-3303.21
305.0	15.68	649.91	3891.40158	-3241.49
300.0	15.89	647.81	3827.60811	-3179.80
295.0	16.11	645.67	3763.81464	-3118.14
290.0	16.33	643.51	3700.02117	-3056.51
285.0	16.56	641.31	3636.2277	-2994.92
280.0	16.80	639.08	3572.43424	-2933.36
270.0	17.29	636.81	3508.64077	-2871.83
205.0	17.29	634.50	3444.8473	-2748.90
260.0	17.83	632.16	3381.05383	-2087.49
255.0	17.83	629.77	3317.26036	-2620.12
250.0 255.0	18.39 18.11	<u>624.88</u> 627.35	3189.67342 3253.46689	-2564.79 -2626.12
245.0	18.69	622.37	3125.87996	-2503.51

Fastfrate Warehouse Development Industrial/Commercial Development

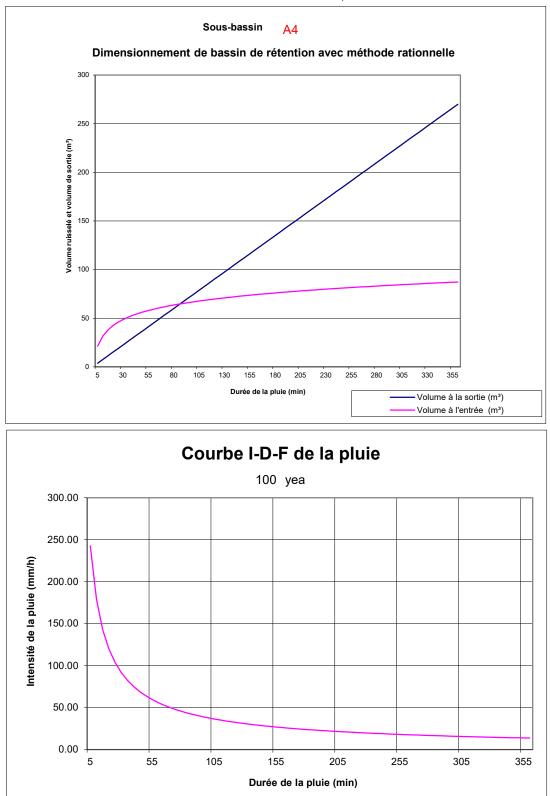
Project:	Fastfrate Warehouse Development
Project #: Station Date:	Industrial/Commercial Development A001083 (360) OTTAWA SEWER DESIGN GUIDELINES 2021-08-06 9:33
File Location:	\\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civil\01-SWM\[210723_Storm Water Management - Storage and Drawdown_half
Description:	Storage volume calculations with the rational method

Specified Release Rate:	84.10757773 L/s/ha
Area :	A4 0.1486 ha
Runoff Coefficient C (un	ifactored 0.57
C_runoff factor:	1.25
Runoff Coefficient C :	0.7125
Rainfall Event :	100 year
Discharge Flow Q :	0.012498386 m³/s
Discharge Factor K :	1

Design Volume:

27.34 m³

Rainfall	2 year		5 year		10 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	732.951	732.951	998.071	998.071	1174.184	1174.184
В	6.199	6.199	6.053	6.053	6.014	6.014
С	0.81	0.81	0.814	0.814	0.816	0.816
Rainfall	25 year		50 year		100 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688
В	6.018	6.018	6.014	6.014	6.014	6.014
С	0.819	0.819	0.82	0.82	0.82	0.82


Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842 Date: July 23, 2021

Rainfall	Rainfall	Runoff	Output	Retention
Duration	Intensity	Volume	Volume	Volume
(min)	(mm/h)	(m ³)	(m ³)	(m ³)
T	(,)	CIAT	kQT	(4)-(5)
(1)	(2)	(4)	(5)	(6)
5.0	242.70	21.41	3.74951582	17.66
10.0	178.56	31.51	7.49903163	24.01
15.0	142.89	37.82	11.2485474	26.57
20.0	119.95	42.33	14.9980633	27.34
25.0	103.85	45.81	18.7475791	27.07
30.0	91.87	48.63	22.4970949	26.14
35.0	82.58	51.00	26.2466107	24.76
40.0	75.15	53.04	29.9961265	23.05
45.0	69.05	54.83	33.7456423	21.09
50.0	63.95	56.43	37.4951582	18.93
55.0	59.62	57.87	41.244674	16.62
60.0	55.89	59.18	44.9941898	14.19
65.0	52.65	60.39	48.7437056	11.64
70.0	49.79	61.50	52.4932214	9.01
75.0	47.26	62.54	56.2427372	6.30
80.0	44.99	63.51	59.992253	3.52
85.0	42.95	64.43	63.7417689	0.69
90.0	41.11	65.29	67.4912847	-2.20
95.0	39.43	66.11	71.2408005	-5.13
100.0	37.90	66.88	74.9903163	-8.11
105.0	36.50	67.62	78.7398321	-11.12
110.0	35.20	68.33	82.4893479	-14.16
115.0	34.01	69.01	86.2388637	-17.23
120.0	32.89	69.66	89.9883796	-20.33
125.0	31.86	70.28	93.7378954	-23.46
130.0	30.90	70.88	97.4874112	-26.61
135.0	30.00	71.46	101.236927	-29.78
140.0	29.15	72.02	104.986443	-32.97
145.0	28.36	72.56	108.735959	-36.18
150.0	27.61	73.08	112.485474	-39.40
155.0	26.91	73.59	116.23499	-42.64
160.0	26.24	74.08	119.984506	-45.90
165.0	25.61	74.56	123.734022	-49.17
170.0	25.01	75.03	127.483538	-52.46
175.0	24.44	75.48	131.233054	-55.75
180.0	23.90	75.92	134.982569	-59.06
185.0	23.39	76.35	138.732085	-62.38
190.0	22.90	76.77	142.481601	-65.71
195.0	22.43	77.18	146.231117	-69.05
200.0	21.98	77.58	149.980633	-72.40
205.0	21.55	77.97	153.730148	-75.76
210.0	21.14	78.36	157.479664	-79.12
215.0	20.75	78.73	161.22918	-82.50
220.0	20.37	79.10	164.978696	-85.88
225.0	20.01	79.46	168.728212	-89.27
230.0	19.66	79.81	172.477727	-92.67
235.0	19.33	80.15	176.227243	-96.07
240.0	19.01	80.49	179.976759	-99.49

245.0	18.69	80.82	183.726275	-102.90
250.0	18.39	81.15	187.475791	-106.33
255.0	18.11	81.47	191.225307	-109.75
260.0	17.83	81.79	194.974822	-113.19
265.0	17.56	82.10	198.724338	-116.63
270.0	17.29	82.40	202.473854	-120.07
275.0	17.04	82.70	206.22337	-123.52
280.0	16.80	82.99	209.972886	-126.98
285.0	16.56	83.28	213.722401	-130.44
290.0	16.33	83.57	217.471917	-133.90
295.0	16.11	83.85	221.221433	-137.37
300.0	15.89	84.13	224.970949	-140.84
305.0	15.68	84.40	228.720465	-144.32
310.0	15.48	84.67	232.469981	-147.80
315.0	15.28	84.93	236.219496	-151.28
320.0	15.09	85.20	239.969012	-154.77
325.0	14.90	85.45	243.718528	-158.26
330.0	14.72	85.71	247.468044	-161.76
335.0	14.54	85.96	251.21756	-165.26
340.0	14.37	86.21	254.967075	-168.76
345.0	14.20	86.45	258.716591	-172.26
350.0	14.04	86.69	262.466107	-175.77
355.0	13.88	86.93	266.215623	-179.28
360.0	13.72	87.17	269.965139	-182.80
Max Volume (\	/ max):			27.34
Design Volum				27.34

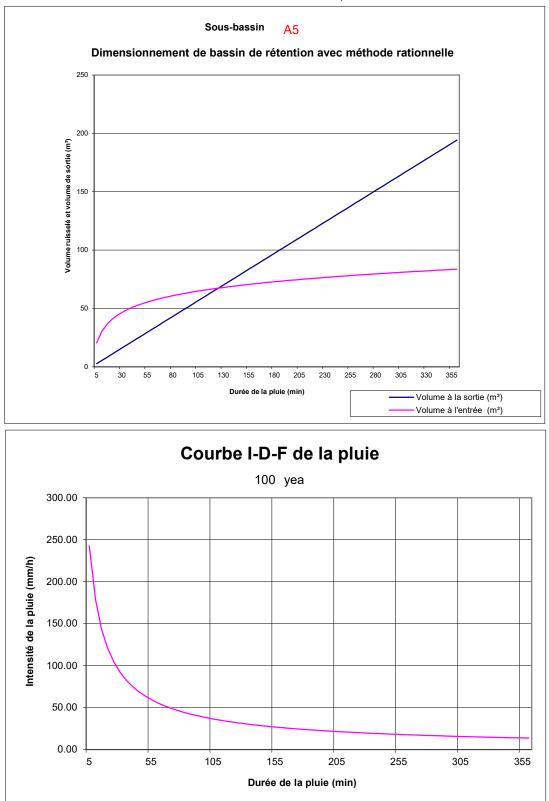
Fastfrate Warehouse Development Industrial/Commercial Development

Project:	Fastfrate Warehouse Development
Project #: Station Date:	Industrial/Commercial Development A001083 (360) OTTAWA SEWER DESIGN GUIDELINES 2021-08-06 9:33
File Location:	\\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civil\01-SWM\[210723_Storm Water Management - Storage and Drawdown_half
Description:	Storage volume calculations with the rational method
Specified Rel	ease Rate: 84.10757773 L/s/ha
A	0.1060 ha

Area	:	A5	0.1069 ha
Runoff Coeff	icient (C (unfactored	0.9
C_runoff fact	tor:	-	
Runoff Coeff	icient (C :	0.95
Rainfall Ever	nt:		100 year
Discharge Fl	ow Q :		0.0089911 m³/s
Discharge Fa	actor K	:	1

Design Volume:	30.46 m³

Rainfall	2 year		5 year		10 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	732.951	732.951	998.071	998.071	1174.184	1174.184
В	6.199	6.199	6.053	6.053	6.014	6.014
С	0.81	0.81	0.814	0.814	0.816	0.816
Rainfall	25 y	/ear	50 year		100 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
A	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688
В	6.018	6.018	6.014	6.014	6.014	6.014
С	0.819	0.819	0.82	0.82	0.82	0.82


Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842 Date: July 23, 2021

Rainfall	Rainfall	Runoff	Output	Retention
Duration	Intensity	Volume	Volume	Volume
(min)	(mm/h)	(m³)	(m³)	(m³)
Ť	Ì I Í	ĊIAŤ	kQŤ	(4)-(5)
(1)	(2)	(4)	(5)	(6)
5.0	242.70	20.54	2.69733002	17.84
10.0	178.56	30.22	5.39466004	24.83
15.0	142.89	36.28	8.09199005	28.19
20.0	119.95	40.61	10.7893201	29.82
25.0	103.85	43.94	13.4866501	30.46
30.0	91.87	46.65	16.1839801	30.46
35.0	82.58	48.92	18.8813101	30.04
40.0	75.15	50.88	21.5786401	29.30
45.0	69.05	52.59	24.2759702	28.32
50.0	63.95	54.12	26.9733002	27.15
55.0	59.62	55.51	29.6706302	25.83
60.0	55.89	56.76	32.3679602	24.40
65.0	52.65	57.92	35.0652902	22.86
70.0	49.79	58.99	37.7626202	21.23
75.0	47.26	59.99	40.4599503	19.53
80.0	44.99	60.92	43.1572803	17.76
85.0	42.95	61.80	45.8546103	15.94
90.0	41.11	62.63	48.5519403	14.07
95.0	39.43	63.41	51.2492703	12.16
100.0	37.90	64.15	53.9466004	10.21
105.0	36.50	64.86	56.6439304	8.22
110.0	35.20	65.54	59.3412604	6.20
115.0	34.01	66.19	62.0385904	4.15
120.0	32.89	66.81	64.7359204	2.08
125.0	31.86	67.41	67.4332504	-0.02
130.0	30.90	67.99	70.1305805	-2.14
135.0	30.00	68.54	72.8279105	-4.29
140.0	29.15	69.08	75.5252405	-6.45
145.0	28.36	69.60	78.2225705	-8.62
150.0	27.61	70.10	80.9199005	-10.82
155.0	26.91	70.59	83.6172306	-13.03
160.0	26.24	71.06	86.3145606	-15.25
165.0	25.61	71.52	89.0118906	-17.49
170.0	25.01	71.97	91.7092206	-19.74
175.0	24.44	72.40	94.4065506	-22.01
180.0	23.90	72.82	97.1038806	-24.28
185.0	23.39	73.24	99.8012107	-26.57
190.0	22.90	73.64	102.498541	-28.86
195.0	22.43	74.03	105.195871	-31.17
200.0	21.98	74.41	107.893201	-33.48
205.0	21.55	74.79	110.590531	-35.80
210.0	21.14	75.16	113.287861	-38.13
215.0	20.75	75.52	115.985191	-40.47
220.0	20.37	75.87	118.682521	-42.82
225.0	20.01	76.21	121.379851	-45.17
230.0	19.66	76.55	124.077181	-47.53
235.0	19.33	76.88	126.774511	-49.89
240.0	19.01	77.21	129.471841	-52.27

245.0	18.69	77.52	132.169171	-54.65
		-		
250.0	18.39	77.84	134.866501	-57.03
255.0	18.11	78.14	137.563831	-59.42
260.0	17.83	78.45	140.261161	-61.81
265.0	17.56	78.74	142.958491	-64.22
270.0	17.29	79.04	145.655821	-66.62
275.0	17.04	79.32	148.353151	-69.03
280.0	16.80	79.61	151.050481	-71.45
285.0	16.56	79.88	153.747811	-73.86
290.0	16.33	80.16	156.445141	-76.29
295.0	16.11	80.43	159.142471	-78.72
300.0	15.89	80.69	161.839801	-81.15
305.0	15.68	80.95	164.537131	-83.58
310.0	15.48	81.21	167.234461	-86.02
315.0	15.28	81.47	169.931791	-88.46
320.0	15.09	81.72	172.629121	-90.91
325.0	14.90	81.97	175.326451	-93.36
330.0	14.72	82.21	178.023781	-95.81
335.0	14.54	82.45	180.721111	-98.27
340.0	14.37	82.69	183.418441	-100.73
345.0	14.20	82.92	186.115771	-103.19
350.0	14.04	83.15	188.813101	-105.66
355.0	13.88	83.38	191.510431	-108.13
360.0	13.72	83.61	194.207761	-110.60
Max Volume (\		30.46		
Design Volum	30.46			

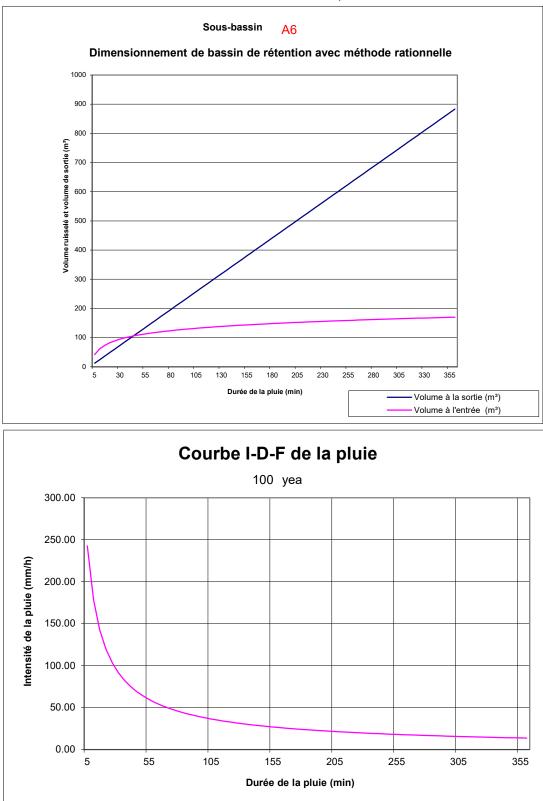
Fastfrate Warehouse Development Industrial/Commercial Development

Project:	Fastfrate Warehouse Development
Project #: Station Date:	Industrial/Commercial Development A001083 (360) OTTAWA SEWER DESIGN GUIDELINES 2021-08-06 9:33
File Location:	\\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civil\01-SWM\[210723_Storm Water Management - Storage and Drawdown_half
Description:	Storage volume calculations with the rational method

Specified Release Rate: 84.10757773 L/s/ha Area 0.486 ha : A6 Runoff Coefficient C (unfactored 0.34 C_runoff factor: 1.25 Runoff Coefficient C : 0.425 Rainfall Event : 100 year Discharge Flow Q : 0.040876283 m³/s Discharge Factor K : 1

Design Volume:	37.00 m ³

Rainfall	2 year		5 year		10 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
А	732.951	732.951	998.071	998.071	1174.184	1174.184
В	6.199	6.199	6.053	6.053	6.014	6.014
С	0.81	0.81	0.814	0.814	0.816	0.816
Rainfall	25 y	/ear	50 year		100 year	
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.
Coefficients						
А	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688
В	6.018	6.018	6.014	6.014	6.014	6.014
С	0.819	0.819	0.82	0.82	0.82	0.82


Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842 Date: July 23, 2021

Rainfall	Rainfall	Runoff	Output	Retention
Duration	Intensity	Volume	Volume	Volume
(min)	(mm/h)	(m³)	(m³)	(m³)
` <i>T</i> ′	(1)	ĊIAŤ	kQŤ	(4)-(5)
(1)	(2)	(4)	(5)	(6)
5.0	242.70	41.78	12.2628848	29.51
10.0	178.56	61.47	24.5257697	36.94
15.0	142.89	73.79	36.7886545	37.00
20.0	119.95	82.59	49.0515393	33.53
25.0	103.85	89.37	61.3144242	28.06
30.0	91.87	94.88	73.577309	21.30
35.0	82.58	99.50	85.8401938	13.66
40.0	75.15	103.48	98.1030787	5.37
45.0	69.05	106.97	110.365963	-3.40
50.0	63.95	110.08	122.628848	-12.55
55.0	59.62	112.89	134.891733	-22.00
60.0	55.89	115.45	147.154618	-31.70
65.0	52.65	117.80	159.417503	-41.61
70.0	49.79	119.98	171.680388	-51.70
75.0	47.26	122.01	183.943272	-61.94
80.0	44.99	123.91	196.206157	-72.30
85.0	42.95	125.69	208.469042	-82.78
90.0	41.11	127.37	220.731927	-93.36
95.0	39.43	128.97	232.994812	-104.03
100.0	37.90	130.48	245.257697	-114.78
105.0	36.50	131.92	257.520581	-125.60
110.0	35.20	133.30	269.783466	-136.48
115.0	34.01	134.62	282.046351	-147.42
120.0	32.89	135.89	294.309236	-158.42
125.0	31.86	137.11	306.572121	-169.47
130.0	30.90	138.28	318.835006	-180.56
135.0	30.00	139.41	331.09789	-191.69
140.0	29.15	140.50	343.360775	-202.86
145.0	28.36	141.55	355.62366	-214.07
150.0	27.61	142.57	367.886545	-225.31
155.0	26.91	143.57	380.14943	-236.58
160.0	26.24	144.53	392.412315	-247.89
165.0	25.61	145.46	404.675199	-259.22
170.0	25.01	146.37	416.938084	-270.57
175.0	24.44	147.25	429.200969	-281.95
180.0	23.90	148.11	441.463854	-293.35
185.0	23.39	148.95	453.726739	-304.78
190.0	22.90	149.77	465.989624	-316.22
195.0	22.43	150.57	478.252508	-327.68
200.0	21.98	151.35	490.515393	-339.17
205.0	21.55	152.11	502.778278	-350.67
210.0	21.14	152.86	515.041163	-362.18
215.0	20.75	153.59	527.304048	-373.72
220.0	20.37	154.30	539.566933	-385.26
225.0	20.01	155.00	551.829817	-396.83
230.0	19.66	155.69	564.092702	-408.40
235.0	19.33	156.36	576.355587	-419.99
240.0	19.01	157.03	588.618472	-431.59

245.0	18.69	157.67	600.881357	-443.21	
250.0	18.39	158.31	613.144242	-454.83	
255.0	18.11	158.94	625.407126	-466.47	
260.0	17.83	159.55	637.670011	-478.12	
265.0	17.56	160.15	649.932896	-489.78	
270.0	17.29	160.75	662.195781	-501.45	
275.0	17.04	161.33	674.458666	-513.13	
280.0	16.80	161.91	686.721551	-524.81	
285.0	16.56	162.47	698.984435	-536.51	
290.0	16.33	163.03	711.24732	-548.22	
295.0	16.11	163.58	723.510205	-559.93	
300.0	15.89	164.12	735.77309	-571.65	
305.0	15.68	164.65	748.035975	-583.38	
310.0	15.48	165.18	760.29886	-595.12	
315.0	15.28	165.69	772.561744	-606.87	
320.0	15.09	166.20	784.824629	-618.62	
325.0	14.90	166.71	797.087514	-630.38	
330.0	14.72	167.20	809.350399	-642.15	
335.0	14.54	167.69	821.613284	-653.92	
340.0	14.37	168.18	833.876169	-665.70	
345.0	14.20	168.65	846.139053	-677.48	
350.0	14.04	169.13	858.401938	-689.28	
355.0	13.88	169.59	870.664823	-701.07	
360.0	13.72	170.05	882.927708	-712.88	
Max Volume (Max Volume (V max):				
Design Volum	37.00				

Fastfrate Warehouse Development Industrial/Commercial Development

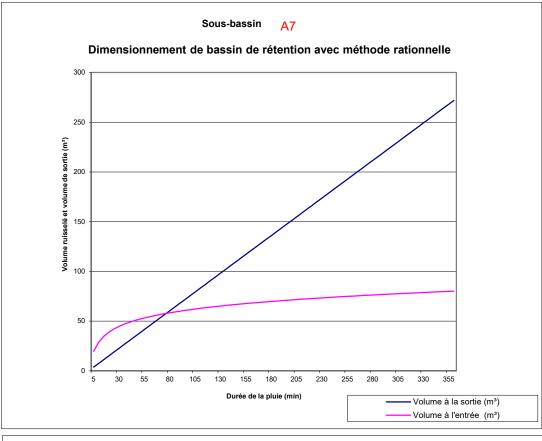
Project:	Fastfrate Warehouse Development
Project #: Station	Industrial/Commercial Development A001083 (360) OTTAWA SEWER DESIGN GUIDELINES
Date:	2021-08-06 9:33
File Location:	\\cima.plus\cima\Cima-C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civil\01-SWM\[210723_Storm Water Management - Storage and Drawdown_half RR.xlsx]A7

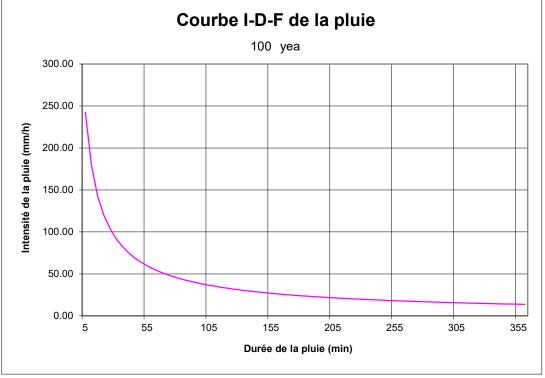
Description: Storage volume calculations with the rational method

Specified Release Rate:	84.10757773 L/s/ha
Area : A7	0.1497 ha
Runoff Coefficient C (unfactored	0.52
C_runoff factor:	1.25
Runoff Coefficient C :	0.65
Rainfall Event :	100 year
Discharge Flow Q :	0.012590904 m³/s
Discharge Factor K :	1

Design Volume:	23.80 m³

Rainfall	2 y	ear	5 y	/ear	10 year			
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.		
Coefficients								
A	732.951	732.951	998.071	998.071	1174.184	1174.184		
В	6.199	6.199	6.053	6.053	6.014	6.014		
С	0.81	0.81	0.814	0.814	0.816	0.816		
Rainfall	25 y	/ear	50	year	100 year			
Pluviometry	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.	30 min. or less	Over 30 min.		
Coefficients								
A	1402.884	1402.884	1569.58	1569.58	1735.688	1735.688		
В	6.018	6.018	6.014	6.014	6.014	6.014		
С	0.819	0.819	0.82	0.82	0.82	0.82		


Prepared by: <u>Guillaume LeBlond, M.A.Sc., EIT</u> PEO No.: 100530467


Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842 Date: July 23, 2021

Rainfall	Rainfall	Runoff	Output	Retention			
Duration	Intensity	Volume	Volume	Volume			
(min)	(mm/h)	(m ³)	(m ³)	(m ³)			
T	1	CIAT	kQT	(4)-(5)			
(1)	(2)	(4)	(5)	(6)			
5.0	242.70	19.68	3.77727132	15.90			
10.0	178.56	28.96	7.55454263	21.40			
15.0	142.89	34.76	11.3318139	23.43			
20.0	119.95	38.91	15.1090853	23.80			
25.0	103.85	42.10	18.8863566	23.22			
30.0	91.87	44.70	22.6636279	22.03			
35.0	82.58	46.87	26.4408992	20.43			
40.0	75.15	48.75	30.2181705	18.53			
45.0	69.05	50.39	33.9954418	16.40			
50.0	63.95	51.86	37.7727132	14.09			
55.0	59.62	53.18	41.5499845	11.63			
60.0	55.89	54.39	45.3272558	9.06			
65.0	52.65	55.50	49.1045271	6.39			
70.0	49.79	56.52	52.8817984	3.64			
75.0	47.26	57.48	56.6590697	0.82			
80.0	44.99	58.37	60.4363411	-2.07			
85.0	42.95	59.21	64.2136124	-5.00			
90.0	41.11	60.00	67.9908837	-7.99			
95.0	39.43	60.76	71.768155	-11.01			
100.0	37.90	61.47	75.5454263	-14.08			
105.0	36.50	62.15	79.3226976	-17.17			
110.0	35.20	62.80	83.0999689	-20.30			
115.0	34.01	63.42	86.8772403	-23.46			
120.0	32.89	64.02	90.6545116	-26.64			
125.0	31.86	64.59	94.4317829	-29.84			
130.0	30.90	65.14	98.2090542	-33.07			
135.0	30.00	65.67	101.986326	-36.31			
140.0	29.15	66.19	105.763597	-39.58			
145.0	28.36	66.69	109.540868	-42.86			
150.0	27.61	67.17	113.318139	-46.15			
155.0	26.91	67.63	117.095411	-49.46			
160.0	26.24	68.09	120.872682	-52.79			
165.0	25.61	68.53	124.649953	-56.12			
170.0	25.01	68.95	128.427225	-59.47			
175.0	24.44	69.37	132.204496	-62.83			
180.0	23.90	69.78	135.981767	-66.21			
185.0	23.39	70.17	139.759039	-69.59			
190.0	22.90	70.56	143.53631	-72.98			
195.0	22.43	70.93	147.313581	-76.38			
200.0	21.98	71.30	151.090853	-79.79			
205.0	21.55	71.66	154.868124	-83.21			
210.0	21.14	72.01	158.645395	-86.63			
215.0	20.75	72.36	162.422667	-90.07			
220.0	20.37	72.69	166.199938	-93.51			
225.0	20.01	73.02	169.977209	-96.96			
230.0	19.66	73.35	173.754481	-100.41			
235.0	19.33	73.66	177.531752	-103.87			

	10.01	70.07	404 000000	107.00
240.0	19.01	73.97	181.309023	-107.33
245.0	18.69	74.28	185.086294	-110.81
250.0	18.39	74.58	188.863566	-114.28
255.0	18.11	74.87	192.640837	-117.77
260.0	17.83	75.16	196.418108	-121.25
265.0	17.56	75.45	200.19538	-124.75
270.0	17.29	75.73	203.972651	-128.24
275.0	17.04	76.00	207.749922	-131.75
280.0	16.80	76.27	211.527194	-135.25
285.0	16.56	76.54	215.304465	-138.76
290.0	16.33	76.80	219.081736	-142.28
295.0	16.11	77.06	222.859008	-145.80
300.0	15.89	77.32	226.636279	-149.32
305.0	15.68	77.57	230.41355	-152.85
310.0	15.48	77.81	234.190822	-156.38
315.0	15.28	78.06	237.968093	-159.91
320.0	15.09	78.30	241.745364	-163.45
325.0	14.90	78.54	245.522636	-166.99
330.0	14.72	78.77	249.299907	-170.53
335.0	14.54	79.00	253.077178	-174.08
340.0	14.37	79.23	256.854449	-177.63
345.0	14.20	79.45	260.631721	-181.18
350.0	14.04	79.67	264.408992	-184.73
355.0	13.88	79.89	268.186263	-188.29
360.0	13.72	80.11	271.963535	-191.85
Max Volume (V	' max):			23.80
Design Volume				23.80

Fastfrate Warehouse Development Industrial/Commercial Development

FASTFRATE

A001083 (360)

CHANNEL CHECK AT DITCH ON SOMME STREET (100-YEAR)

Bed Length (I)	m	0.000			
Side Slopes (H:V)	H/V	3.0000	1.0000		
Slope (S)	m/m	0.0050	%	0.50	
Roughness Coefficient	n	0.0300			
Flow (Q)	m³/s	3.857	l/s	3,857	
Velocity (V)	m/s	1.395	cm/s	140	
Hydraulic Radius (R _h)	m	0.455			
Wetted Area	m ²	2.765		↑	
Wetted Perimeter	m	6.072			
Height of water (h)	m	0.960		4	1

Notes: The ditch on Somme street at which our site is connecting will have a headwater height of 0.96m during the 100-year storm event. The bottom of the ditch at that location is 89.110 which means the hydraulic grade line within the ditch will be at 90.07.

Prepared by: Julien Sauvé, P.Eng 100200100 Date: July 20, 2021

Verified by: Julien Sauvé, P.Eng PEO No.: 100200100

CALCUL DE LA LIGNE PIÉZOMÉTRIQUE Feuille de calcul

No. de projet:A001083 (360)Design par:Guillaume LeBlond, M.A.Sc. Date:2021-07-23Vérifié par:Christian Lavoie-Lebel, P.En Date:2021-07-23								Vitesse initiale (m/s):			90.07 1.4 0.013	LGH initiale (m):				Effacer		Graphique		
No.	D	Q	S	L	V	у	Α	Уc	$V^2/2g$	S _f	h _f	LGE _s	K	$K(V^2/2g)$	LGE _e	LGH _e	Él. cour. (amont)	Él. Surface	Туре	Él. Surface - LGH
de regard	(mm)	(m^3/s)	(m/m)	(m)	(m/s)	(m)	(m ²)	(m)	(m)	(m/m)	(m)	(m)		(m)	(m)	(m)	(m)	(m)	d'écoulement	(m)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)
Outlet	900	0.907			1.4				0.100			90.170			90.190	90.070	90.18	91	torrentiel	
STM 900	900	0.907	0.0022	6.1	1.537	0.788	0.5903	0.555	0.120	0.002	0.013	90.204	0.5	0.060	90.264	90.144	90.19342	91	fluvial	0.856
		<u> </u>				──		 					<u> </u>	 	'					
			'			<u> </u>		I							'					
		<u> </u>			+	<u>+</u>														
	l		1		1	1														
	 	<u> </u>	'			<u> </u>		 		<u> </u>		¹	 	<u> </u> !						
ļļ	 	 			_	──		 	 	ļ!	 			↓ !	!	 				
	┟────	┣───	[!]				[!]	┣───					──	 		 	<u> </u>			
	┟────	<u> </u>	<u> </u>		-		<u> </u> '			 				├ ────┦						
	ł				-										<u> </u>					
	l		1		1	1														
			['		T									[!						
	l	_		 	_	_	¹		_	<u> </u> !	_		 	<u> </u> !	'	 				
	L	<u> </u>			<u> </u>				<u> </u>				L						1	
Commentair	es:																			

CALCUL DE LA LIGNE PIÉZOMÉTRIQUE Feuille de calcul

Titre du proj No. de proje Design par: Vérifié par:		A001083 (360) Guillaume LeBlond, M.A.Sc. Date: 2021-07-23 Christian Lavoie-Lebel, P.En Date: 2021-07-23								Secteur: Outfall Rue: n.a. Niveau d'eau initial (m): Vitesse initiale (m/s): n de Manning:			9.11LGEs initiale (m):0.3LGH initiale (m):.013				Effacer		Graphique	
No.	D	Q	S	L	v	у	Α	Уc	$V^2/2g$	S _f	$\mathbf{h}_{\mathbf{f}}$	LGE _s	K	$K(V^2/2g)$	LGE _e	LGH _e	Él. cour. (amont)	Él. Surface	Туре	Él. Surface - LGH
de regard	(mm)	(m^3/s)	(m/m)	(m)	(m/s)	(m)	(m ²)	(m)	(m)	(m/m)	(m)	(m)		(m)	(m)	(m)	(m)	(m)	d'écoulement	(m)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)
Outlet	900	0.4965			1.4				0.100			90.034			90.030	89.934	90.18	91	torrentiel	
STM 900	900	0.4965	0.0022	6.1	1.367	0.500	0.3631	0.409	0.095	0.002	0.013	90.043	0.5	0.048	90.091	89.996	90.19342	91	fluvial	1.004
Commentair	es:				I															4
Commentan																				

CIM	E.	PROJECT NAME: CIMA+ PROJECT NUMBER: CLIENT: PROJECT STATUS:	Fastfrate (Ottawa) Warehouse Developmen A001083 Fastfrate (Ottawa) Holdings Inc. 90 % Design (Site plan Approval)	t					
Numerical Analysis; Orifice sizing			d by: Guillaume LeBlond, M.A.Sc., EIT No.: 100530467			Date: At	ıgust 9, 2021		
Extended Detention Control			d by: Christian Lavoie-Lebel, P.Eng. No.: 100067842			Date: Au	ugust 9, 2021		
Extended Detention Orifice Control Type Elevation Range (m) Base elevation (m) Initial head over Orifice Orifice Diameter (mm) No. of orifices	Circular Orfice plate 89.3 to 89.5	Weir Equation Comparison 89.3 Weir Elevation (m) 0 Head over weir, H_w (m) 80 Weir Discharge Coeff., C_w 1 Weir Length, L_w (m):		Values 89.3 0.20 0.61 0.1	<u>Notes</u>				
Gravitational Acceleration, g (m/s ² Discharge Coefficient, C_d)	9.81 Weir Flow, q_w (m ³ /s) – Peak Flow 0.63 Weir Flow, q_w (L/s) – Peak Flow		0.02 (2/3*C_w*L_w*sqrt(2 16.11	'g)*H_w^(3/2	2))			
Water Elevation (m)	Head over Orifice, hf (m) 89.30 89.31 89.32 89.33 89.34 89.35 89.36 89.37 89.38 89.39 89.38 89.39 89.38 89.39 89.40 89.41 89.42 89.43 89.44 89.45 89.46	0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15	Pond Area "A" (m2) 0 001 001 001 001 001 001 001 001 001	<u>Orifice Area "a" (m2)</u> 846.23 843.30 852.32 855.34 855.37 861.40 864.44 867.48 867.48 877.05 873.59 875.55 879.71 882.78 885.86 888.94 892.03 895.12	2 5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03 5.03E-03	2c=s*C*sort(2*s*h() (m3/s)) Ti 1.00E-06 1.40E-03 1.98E-03 2.48E-03 2.48E-03 3.14E-03 3.14E-03 3.71E-03 3.71E-03 3.71E-03 3.97E-03 4.21E-03 4.44E-03 4.48E-03 5.08E-03 5.4	ne differential, dt (5) 0 6055 4297 3521 3600 2746 2388 2194 2076 1891 1817 1752 1694 1694 1595	2=2/3*C w*L w*sart[2*g]*h w^[3/2] (m3/s)] 0.00E+00 1.88E-04 9.936E-04 9.936E-04 2.01E-03 2.01E-03 3.34E-03 3.34E-03 3.34E-03 4.08E-03 5.77E-03 6.577E-03 8.44E-03 8.44E-03 9.44E-03 9.44E-03 9.44E-03 1.155E-02 1.155E-02	Time differential, dt (s) 47149 16729 9138 5957 4277 3265 2600 2136 1796 1539 1339 1339 1339 1339 1349 422 852 776
	89.47 89.48	0.17 0.18	0.01 0.01	898.22 901.32	5.03E-03 5.03E-03	5.78E-03 5.95E-03	1553 1515	1.26E-02 1.38E-02	711 655
	89.49 89.50		0.01 0.01	904.43 907.55	5.03E-03 5.03E-03	6.11E-03 6.27E-03	1479 1447	1.49E-02 1.61E-02	606 563
			Numerical Results:	Parameter Peak Flowrate (L/s) Average Flowrate (L/s) Water Quality Volume Drawdown Time (h) 90% Drawdown Time ((m³)	/alue Ur 6.27 \/ 4.12 \/ 175.65 m 13.1 h 11.4 h	5	16.11 6.53 175.65 28.7 15.6	n ³
			MOE Equation 4.10 Results:	Parameter Area of Pond Orifice Discharge Coeff Orifice Area, A ₀ g h1 h2 Drawdown Time, t Drawdown Time, t		/alue Lr 878.2696766 m 0.03 u 5.03€03 m 9.81 m 0.2 m 0.0 m 5.6EV45 5.6EV55 5.	lls. 2 /s^2		

(

		Pr	epared by: <u>Guilla</u> PEO No.: <u>10053</u>	ume LeBlond, M.A.Sc., 0467	EIT	Date: August 9	, 2021
Retention Control - Freeflow condition		,	/erified by: Christ	ian Lavoie-Lebel, P.En	q.	Date: August 9	, 2021
			PEO No.: 10006		<u>5</u> .		,
Retention Control Orifice							
Control Type	Rectangular Orifice	huir a a					
Elevation Range (m)	89.5-89.85	Weir Equation Compar	ison	Values	Notes		
Base elevation (m)		89.5 Weir Elevation (m)		89.5			
Initial head over Orifice		0 Head over weir, H_w (m)		0.60			
Orifice Depth (mm)		600 Weir Discharge Coeff., C_w		0.61			
Orifice Width (mm) No. of orifices		1040	90mm	1040			
		1 Weir Length, L_w (m): 3x 7	summ				
Gravitational Acceleration, g (m/s ²)		9.81 Weir Flow, q_w (m ³ /s)			_w*L_w*sqrt(2*g)*H_w^(3/	2))	
Orifice Discharge Coeff., C_d		0.63 Weir Flow, q_w (L/s)		870659.40			
Water Elevation (m)	Head over Orifice, hf (m) Head differential, dh (m)	Pond A	rea "A" (m2) Orifice	Area "a" (m2) <u>Q</u> =a*C d*	sqrt(2*g*hf) (m3/s) Time diffe	erential. dt (s)
	89.50	0.00	0	907.55	6.24E-01	1.00E-06	0.00
	89.51	0.01	0.01	910.67	6.24E-01	1.74E-01	52.30
	89.52	0.02	0.01	913.79	6.24E-01	2.46E-01	37.11
	89.53	0.03	0.01	916.93	6.24E-01	3.02E-01	30.40
	89.54	0.04	0.01	920.06	6.24E-01	3.48E-01	26.42
	89.55	0.05	0.01	923.21	6.24E-01	3.89E-01	23.71
	89.56	0.06	0.01	926.35	6.24E-01	4.27E-01	21.72
	89.57	0.07	0.01	929.51	6.24E-01	4.61E-01	20.18
	89.58	0.08	0.01	932.67	6.24E-01	4.93E-01	18.94
	89.59	0.09	0.01	935.83	6.24E-01	5.22E-01	17.91
	89.60	0.10	0.01	939.00	6.24E-01	5.51E-01	17.05
	89.61	0.11	0.01	942.18	6.24E-01	5.78E-01	16.31
	89.62	0.12	0.01	945.36	6.24E-01	6.03E-01	15.67
	89.63	0.13	0.01	948.54	6.24E-01	6.28E-01	15.11
	89.64	0.14	0.01	951.73	6.24E-01	6.52E-01	14.61
	89.65	0.15	0.01	954.93	6.24E-01	6.74E-01	14.16
	89.66	0.16	0.01	958.13	6.24E-01	6.97E-01	13.76
	89.67	0.17	0.01	961.34	6.24E-01	7.18E-01	13.39
	89.68	0.18	0.01	964.56	6.24E-01	7.39E-01	13.06
	89.69	0.19	0.01	967.78	6.24E-01	7.59E-01	12.75
	89.70	0.20	0.01	971.00	6.24E-01	7.79E-01	12.47
	89.71	0.21	0.01	974.23	6.24E-01	7.98E-01	12.21
	89.72	0.22	0.01	977.47	6.24E-01	8.17E-01	11.97
	89.73	0.23	0.01	980.71	6.24E-01	8.35E-01	11.74
	89.74	0.24	0.01	983.95	6.24E-01	8.53E-01	11.53
	89.75	0.25	0.01	987.21	6.24E-01	8.71E-01	11.34
	89.76	0.26	0.01	990.46	6.24E-01	8.88E-01	11.16
	89.77	0.27	0.01	993.73	6.24E-01	9.05E-01	10.98
	89.78	0.28	0.01	997.00	6.24E-01	9.21E-01	10.82
	89.79	0.29	0.01	1000.27	6.24E-01	9.38E-01	10.67
	89.80	0.30	0.01	1003.55	6.24E-01	9.54E-01	10.52
	89.81	0.31	0.01	1006.84	6.24E-01	9.70E-01	10.38
	89.82	0.32	0.01	1010.13	6.24E-01	9.85E-01	10.25
	89.83	0.33	0.01	1013.42	6.24E-01	1.00E+00	10.13
	89.84	0.34	0.01	1016.72	6.24E-01	1.02E+00	10.01
	89.85	0.35	0.01	1020.03	6.24E-01	1.03E+00	9.90
	89.86	0.36	0.01	1023.34	6.24E-01	1.04E+00	9.79
	89.87	0.37	0.01	1025.54	6.24E-01	1.04E+00	9.69
	89.88	0.38	0.01	1029.99	6.24E-01	1.07E+00	9.60
	89.89	0.39	0.01	1033.32	6.24E-01	1.09E+00	9.50
	89.90	0.40	0.01	1036.65	6.24E-01	1.10E+00	9.41
	89.91	0.40	0.01	1039.99	6.24E-01	1.11E+00	9.33
	89.92	0.42	0.01	1043.34	6.24E-01	1.13E+00	9.25
	89.92	0.42	0.01	1045.54	6.24E-01	1.14E+00	9.23
	89.94	0.44	0.01	1050.04	6.24E-01	1.14E+00	9.09
	89.95	0.44	0.01	1053.41	6.24E-01	1.17E+00	9.09
	89.95	0.45	0.01	1055.41	6.24E-01	1.17E+00	8.95
	89.96	0.46	0.01	1056.77	6.24E-01 6.24E-01	1.18E+00	8.95
	89.98	0.48	0.01	1063.53	6.24E-01	1.21E+00	8.82
	89.99	0.48	0.01	1065.55	6.24E-01	1.22E+00	8.75
	90.00	0.50	0.01	1070.30	6.24E-01	1.22E+00 1.23E+00	8.69
	90.00	0.50	0.01	1070.30	6.24E-01 6.24E-01	1.23E+00	8.69
	90.01	0.51	0.01	1073.70	6.24E-01 6.24E-01	1.24E+00 1.26E+00	8.58
	90.02	0.53	0.01	1080.50	6.24E-01	1.27E+00	8.52
	90.03	0.53	0.01	1080.50	6.24E-01 6.24E-01	1.27E+00 1.28E+00	8.52
		0.54	0.01	1083.91 1087.33	6.24E-01 6.24E-01	1.28E+00 1.29E+00	8.47
				1087.33			
	90.05			1000.75			
	90.06	0.56	0.01	1090.75	6.24E-01	1.30E+00	8.37
	90.06 90.07	0.56 0.57	0.01 0.01	1094.18	6.24E-01	1.31E+00	8.32
	90.06 90.07 90.08	0.56 0.57 0.58	0.01 0.01 0.01	1094.18 1097.62	6.24E-01 6.24E-01	1.31E+00 1.33E+00	8.32 8.28
	90.06 90.07	0.56 0.57	0.01 0.01	1094.18	6.24E-01	1.31E+00	8.32

Numerical Results:

Average Flowrate - Extended Detention Orifice	9.6 L/s	
Total Average Flowrate	904.6 L/s	
Allowable Flowrate	906.9 L/s	

Prepared by: Guillaume LeBlond, M.A.Sc., EIT Date: August 9, 2021 PEO No.: 100530467 Date: August 9, 2021

			PEO No.: 1005	30467				
Retention Control - Freeflow condition			Verified by: Chris	erified by: Christian Lavoie-Lebel, P.Eng. Date: A				
			PEO No.: 1000		.9.		-,	
Extended Detention Orifice								
Control Type	Circular Or 89.5- 89.85							
Elevation Range (m) Base elevation (m)	89.5- 89.8	89.5						
Initial head over Orifice		0.2						
Orifice Diameter (mm)		80						
No. of orifices		1						
Gravitational Acceleration, g (m/s ²)		9.81						
Discharge Coefficient, C_d		0.63						
Water Elevation (m)	Head over	Orifice, hf (m) Head dif	ferential, dh (m) Pond	Area "A" (m2) Orifice	Area "a" (m2) Q=a*C*	sqrt(2*g*hf) (m3/s) Time dit	ferential, dt (s	
	89.50	0.20	0	907.55	5.03E-03	1.00E-06		
	89.51	0.21	0.01	910.67	5.03E-03	6.43E-03	141	
	89.52	0.22	0.01	913.79	5.03E-03	6.58E-03	138	
	89.53 89.54	0.23	0.01	916.93 920.06	5.03E-03 5.03E-03	6.73E-03 6.87E-03	136 133	
	89.55	0.24	0.01	923.21	5.03E-03	7.01E-03	133	
	89.56	0.26	0.01	926.35	5.03E-03	7.15E-03	129	
	89.57	0.27	0.01	929.51	5.03E-03	7.29E-03	127	
	89.58	0.28	0.01	932.67	5.03E-03	7.42E-03	12	
	89.59	0.29	0.01	935.83	5.03E-03	7.55E-03	12	
	89.60	0.30	0.01	939.00	5.03E-03	7.68E-03	12	
	89.61	0.31	0.01	942.18	5.03E-03	7.81E-03	120	
	89.62 89.63	0.32	0.01	945.36 948.54	5.03E-03 5.03E-03	7.93E-03 8.06E-03	119	
	89.64	0.33	0.01	948.34	5.03E-03	8.18E-03	11	
	89.65	0.35	0.01	954.93	5.03E-03	8.30E-03	11	
	89.66	0.36	0.01	958.13	5.03E-03	8.42E-03	11	
	89.67	0.37	0.01	961.34	5.03E-03	8.53E-03	112	
	89.68	0.38	0.01	964.56	5.03E-03	8.65E-03	11:	
	89.69	0.39	0.01	967.78	5.03E-03	8.76E-03	110	
	89.70	0.40	0.01	971.00	5.03E-03	8.87E-03	10	
	89.71 89.72	0.41	0.01	974.23 977.47	5.03E-03 5.03E-03	8.98E-03 9.09E-03	10	
	89.73	0.42	0.01	980.71	5.03E-03	9.20E-03	10	
	89.74	0.44	0.01	983.95	5.03E-03	9.30E-03	10	
	89.75	0.45	0.01	987.21	5.03E-03	9.41E-03	10	
	89.76	0.46	0.01	990.46	5.03E-03	9.51E-03	104	
	89.77	0.47	0.01	993.73	5.03E-03	9.62E-03	10	
	89.78	0.48	0.01	997.00	5.03E-03	9.72E-03	103	
	89.79	0.49	0.01	1000.27	5.03E-03	9.82E-03	10:	
	89.80	0.50	0.01	1003.55	5.03E-03	9.92E-03	10	
	89.81 89.82	0.51 0.52	0.01	1006.84 1010.13	5.03E-03 5.03E-03	1.00E-02 1.01E-02	10 9	
	89.83	0.52	0.01	1013.42	5.03E-03	1.02E-02	9	
	89.84	0.54	0.01	1016.72	5.03E-03	1.03E-02	9	
	89.85	0.55	0.01	1020.03	5.03E-03	1.04E-02	9	
	89.86	0.56	0.01	1023.34	5.03E-03	1.05E-02	9	
	89.87	0.57	0.01	1026.66	5.03E-03	1.06E-02	9	
	89.88	0.58	0.01	1029.99	5.03E-03	1.07E-02	9	
	89.89	0.59	0.01	1033.32	5.03E-03	1.08E-02	9	
	89.90	0.60	0.01	1036.65	5.03E-03	1.09E-02	9	
	89.91 89.92	0.61	0.01	1039.99	5.03E-03 5.03E-03	1.10E-02	9	
	89.92	0.62	0.01	1043.34 1046.69	5.03E-03	1.10E-02 1.11E-02	9	
	89.94	0.64	0.01	1050.04	5.03E-03	1.12E-02	9	
	89.95	0.65	0.01	1053.41	5.03E-03	1.13E-02	9	
	89.96	0.66	0.01	1056.77	5.03E-03	1.14E-02	9	
	89.97	0.67	0.01	1060.15	5.03E-03	1.15E-02	9	
	89.98	0.68	0.01	1063.53	5.03E-03	1.16E-02	9	
	89.99	0.69	0.01	1066.91	5.03E-03	1.17E-02	9	
	90.00 90.01	0.70	0.01	1070.30 1073.70	5.03E-03 5.03E-03	1.17E-02 1.18E-02	9	
	90.01	0.71	0.01	1073.70	5.03E-03	1.18E-02 1.19E-02	9	
	90.02	0.72	0.01	1080.50	5.03E-03	1.20E-02	9	
	90.04	0.74	0.01	1083.91	5.03E-03	1.21E-02	8	
	90.05	0.75	0.01	1087.33	5.03E-03	1.21E-02	8	
	90.06	0.76	0.01	1090.75	5.03E-03	1.22E-02	8	
	90.07	0.77	0.01	1094.18	5.03E-03	1.23E-02	8	
	90.08	0.78	0.01	1097.62	5.03E-03	1.24E-02	8	
	90.09	0.79	0.01	1101.05	5.03E-03	1.25E-02	8	
	90.10	0.80	0.01	1104.50	5.03E-03	1.25E-02	88	

				Guillaume LeBlond, M 100530467	I.A.Sc., EIT	Date:	August 9, 2021
Retention Control - Surcharged condition				Christian Lavoie-Lebe	el, P.Eng.	Date:	August 9, 2021
Retention Control Orifice						-	
Control Type	Rectangular Or	ifice					
Elevation Range (m)	90.07-90.15						
Base elevation (m)		90.07					
Initial net head over Orifice		0					
Orifice Depth (mm)		600					
Orifice Width (mm)		1040					
No. of orifices		1					
Gravitational Acceleration, g (m/s ²)		9.81					
Discharge Coefficient, C d		0.63					
Weir Discharge Coeff., C_w		0.61					
Water Elevation (m)	Head over Orifi	ce, hf (m)	Head differential, dh (m)	Pond Area "A" (m2)	Orifice Area "a" (m2)	Q=a*C*sqrt(2*g*hf) (m3/s)	Time differential, dt (s)
	90.07	0.00	c	1094.18	6.24E-01	1.00E-06	0.00
	90.08	0.01	0.01	1097.62	6.24E-01	1.74E-01	63.03
	90.09	0.02	0.01	1101.05	6.24E-01	2.46E-01	44.71
	90.10	0.03	0.01	1104.50	6.24E-01	3.02E-01	36.62
	90.11	0.04	0.01	1107.95	6.24E-01	3.48E-01	31.81
	90.12	0.05	0.01	1111.40	6.24E-01	3.89E-01	28.54
	90.13	0.06	0.01	1114.87	6.24E-01	4.27E-01	26.14
	90.14	0.07	0.01	1118.33	6.24E-01	4.61E-01	24.27
	90.15	0.08	0.01	1121.80	6.24E-01	4.93E-01	22.78

Numerical Results:

Maximum Flowrate - Quantity Control Orifice	492.52 L/s	
Maximum Flowrate - Extended Detention Orifice	3.97 L/s	
Total Flowrate	496.5 L/s	
Allowable Flowrate	906.9 L/s	

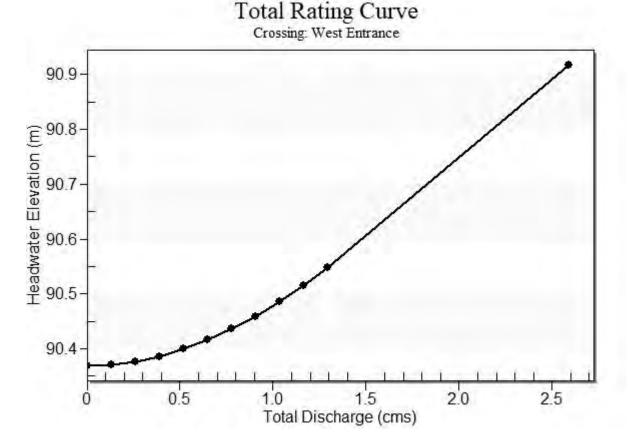
			Guillaume LeBlond, I 100530467	M.A.Sc., EIT	Date:	August 9, 2021
Retention Control - Surcharged condition			: Christian Lavoie-Leb : 100067842	el, P.Eng.	Date:	August 9, 2021
Extended Detention Orifice					-	
Control Type	Circular Orifice plate					
Elevation Range (m)	90.07-90.15					
Base elevation (m)	90.0	17				
Initial net head over Orifice		0				
Orifice Diameter (mm)	1	0				
No. of orifices		1				
Gravitational Acceleration, g (m/s ²)	9.1	1				
Discharge Coefficient, C_d	0.0	3				
Water Elevation (m)	Head over Orifice, hf (m)	Head differential, dh (m)	Pond Area "A" (m2)	Orifice Area "a" (m2)	Q=a*C*sqrt(2*g*hf) (m3/s)	Time differential, dt (s)
90			0 1094.18			0
90						7825
90						5551
90						4546
90						3949
90						3543
90						3245
90						3013
90	15 0.0	18 0.0	1 1121.80	5.03E-03	3.97E-03	2828

HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 0 cfs


Design Flow: 45.7678 cfs

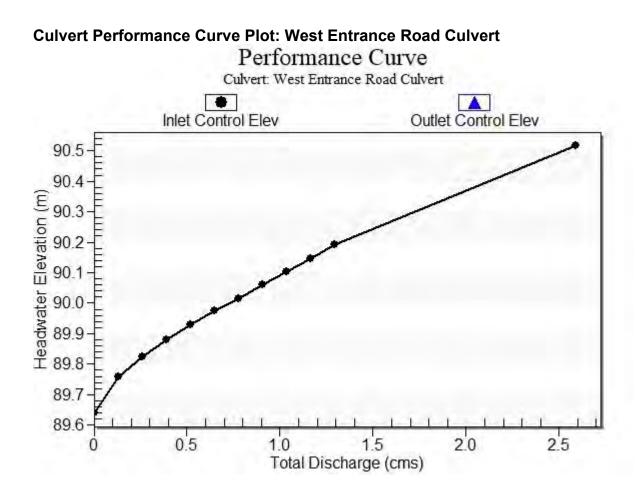
Maximum Flow: 45.7678 cfs

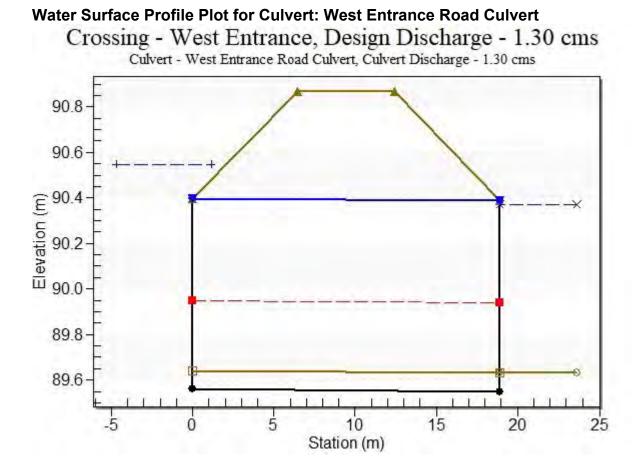
Table 1 - Summary of Culvert Flows at Crossing: West Entrance

Headwater Elevation (m)	Total Discharge (cms)	West Entrance Road Culvert Discharge (cms)	Roadway Discharge (cms)	Iterations
90.37	0.00	0.00	0.00	1
90.37	0.13	0.13	0.00	1
90.38	0.26	0.26	0.00	1
90.38	0.39	0.39	0.00	1
90.40	0.52	0.52	0.00	1
90.42	0.65	0.65	0.00	1
90.44	0.78	0.78	0.00	1
90.46	0.91	0.91	0.00	1
90.49	1.04	1.04	0.00	1
90.52	1.17	1.17	0.00	1
90.55	1.30	1.30	0.00	1
90.87	2.23	2.23	0.00	Overtopping

Rating Curve Plot for Crossing: West Entrance

Total Discharge (cms)	Culvert Discharge (cms)	Headwater Elevation (m)	Inlet Control Depth (m)	Outlet Control Depth (m)	Flow Type	Normal Depth (m)	Critical Depth (m)	Outlet Depth (m)	Tailwater Depth (m)	Outlet Velocity (m/s)	Tailwater Velocity (m/s)
0.00	0.00	90.37	0.000	0.730	0-NF	0.000	0.000	0.740	0.740	0.000	0.000
0.13	0.13	90.37	0.118	0.732	6-FFt	0.250	0.070	0.740	0.740	0.084	0.000
0.26	0.26	90.38	0.185	0.737	6-FFt	0.395	0.110	0.740	0.740	0.169	0.000
0.39	0.39	90.38	0.240	0.745	6-FFt	0.544	0.144	0.740	0.740	0.253	0.000
0.52	0.52	90.40	0.289	0.760	6-FFt	0.758	0.173	0.740	0.740	0.338	0.000
0.65	0.65	90.42	0.334	0.776	6-FFt	0.758	0.200	0.740	0.740	0.422	0.000
0.78	0.78	90.44	0.376	0.796	6-FFt	0.758	0.224	0.740	0.740	0.506	0.000
0.91	0.91	90.46	0.420	0.819	6-FFt	0.758	0.247	0.740	0.740	0.591	0.000
1.04	1.04	90.49	0.463	0.846	6-FFt	0.758	0.269	0.740	0.740	0.675	0.000
1.17	1.17	90.52	0.507	0.875	6-FFt	0.758	0.290	0.740	0.740	0.759	0.000
1.30	1.30	90.55	0.551	0.908	6-FFt	0.758	0.310	0.740	0.740	0.844	0.000


Table 2 - Culvert Summary Table: West Entrance Road Culvert


Straight Culvert

Inlet Elevation (invert): 89.64 m, Outlet Elevation (invert): 89.63 m

Culvert Length: 18.90 m, Culvert Slope: 0.0005

Site Data - West Entrance Road Culvert

Site Data Option: Culvert Invert Data Inlet Station: 0.00 m Inlet Elevation: 89.56 m Outlet Station: 18.90 m Outlet Elevation: 89.55 m Number of Barrels: 2

Culvert Data Summary - West Entrance Road Culvert

Barrel Shape: Pipe Arch Barrel Span: 1244.60 mm Barrel Rise: 838.20 mm Barrel Material: Steel or Aluminum Embedment: 80.00 mm Barrel Manning's n: 0.0240 (top and sides) Manning's n: 0.0350 (bottom) Culvert Type: Straight Inlet Configuration: Thin Edge Projecting Inlet Depression: None

Flow (cms)	Water Surface Elev (m)	Depth (m)
0.00	90.37	0.74
4.58	90.37	0.74
9.15	90.37	0.74
13.73	90.37	0.74
18.31	90.37	0.74
22.88	90.37	0.74
27.46	90.37	0.74
32.04	90.37	0.74
36.61	90.37	0.74
41.19	90.37	0.74
45.77	90.37	0.74

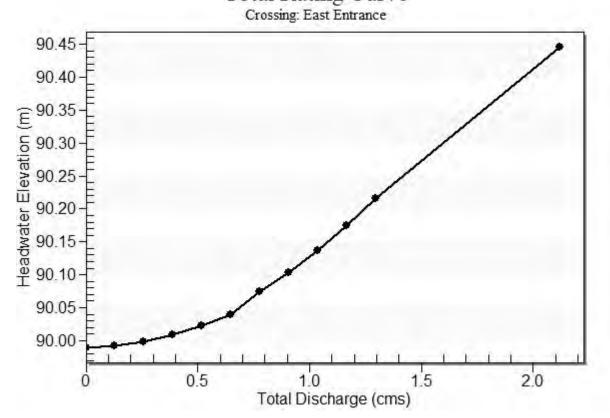
Table 3 - Downstream Channel Rating Curve (Crossing: West Entrance)

Tailwater Channel Data - West Entrance

Tailwater Channel Option: Enter Constant Tailwater Elevation Constant Tailwater Elevation: 90.37 m

Roadway Data for Crossing: West Entrance

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 14.60 m Crest Elevation: 90.87 m Roadway Surface: Paved Roadway Top Width: 6.00 m


Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 0 cfs Design Flow: 45.7325 cfs Maximum Flow: 45.7325 cfs

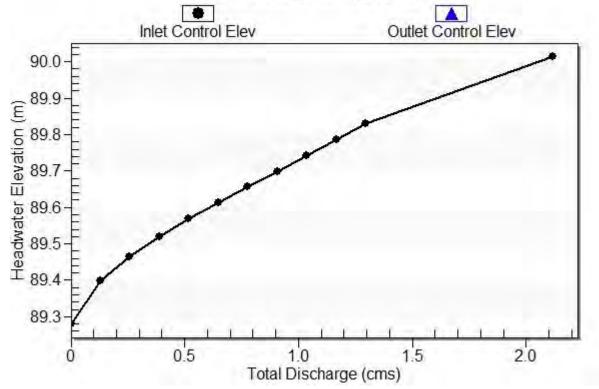
Headwater Elevation (m)	Total Discharge (cms)	East Entrance Road Culvert Discharge (cms)	Roadway Discharge (cms)	Iterations
89.99	0.00	0.00	0.00	1
89.99	0.13	0.13	0.00	1
90.00	0.26	0.26	0.00	1
90.01	0.39	0.39	0.00	1
90.02	0.52	0.52	0.00	1
90.04	0.65	0.65	0.00	1
90.07	0.78	0.78	0.00	1
90.10	0.91	0.91	0.00	1
90.14	1.04	1.04	0.00	1
90.17	1.17	1.17	0.00	1
90.22	1.29	1.29	0.00	1
90.40	1.77	1.77	0.00	Overtopping

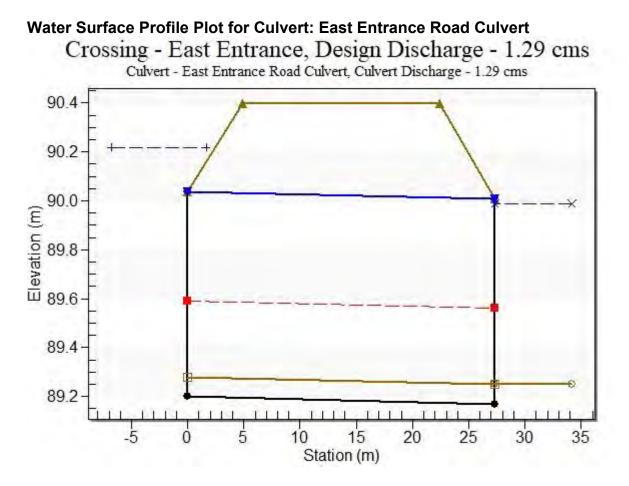
Table 4 - Summary of Culvert Flows at Crossing: East Entrance

Rating Curve Plot for Crossing: East Entrance Total Rating Curve

Total Discharge (cms)	Culvert Discharge (cms)	Headwater Elevation (m)	Inlet Control Depth (m)	Outlet Control Depth (m)	Flow Type	Normal Depth (m)	Critical Depth (m)	Outlet Depth (m)	Tailwater Depth (m)	Outlet Velocity (m/s)	Tailwater Velocity (m/s)
0.00	0.00	89.99	0.000	0.710	0-NF	0.000	0.000	0.740	0.740	0.000	0.000
0.13	0.13	89.99	0.118	0.712	6-FFt	0.199	0.070	0.740	0.740	0.084	0.000
0.26	0.26	90.00	0.185	0.719	6-FFt	0.308	0.110	0.740	0.740	0.169	0.000
0.39	0.39	90.01	0.240	0.730	6-FFt	0.406	0.143	0.740	0.740	0.253	0.000
0.52	0.52	90.02	0.289	0.743	6-FFt	0.507	0.173	0.740	0.740	0.337	0.000
0.65	0.65	90.04	0.334	0.760	6-FFt	0.636	0.200	0.740	0.740	0.422	0.000
0.78	0.78	90.07	0.376	0.795	6-FFt	0.758	0.224	0.740	0.740	0.506	0.000
0.91	0.91	90.10	0.419	0.824	6-FFt	0.758	0.247	0.740	0.740	0.590	0.000
1.04	1.04	90.14	0.463	0.858	6-FFt	0.758	0.269	0.740	0.740	0.674	0.000
1.17	1.17	90.17	0.507	0.895	6-FFt	0.758	0.290	0.740	0.740	0.759	0.000
1.29	1.29	90.22	0.550	0.936	6-FFt	0.758	0.310	0.740	0.740	0.843	0.000

Table 5 - Culvert Summary Table: East Entrance Road Culvert


Straight Culvert


Inlet Elevation (invert): 89.28 m, Outlet Elevation (invert): 89.25 m Culvert Length: 27.30 m, Culvert Slope: 0.0011

Culvert Performance Curve Plot: East Entrance Road Culvert Performance Curve

Performance Curve

Culvert: East Entrance Road Culvert

Site Data - East Entrance Road Culvert

Site Data Option: Culvert Invert Data Inlet Station: 0.00 m Inlet Elevation: 89.20 m Outlet Station: 27.30 m Outlet Elevation: 89.17 m Number of Barrels: 2

Culvert Data Summary - East Entrance Road Culvert

Barrel Shape: Pipe Arch Barrel Span: 1244.60 mm Barrel Rise: 838.20 mm Barrel Material: Steel or Aluminum Embedment: 80.00 mm Barrel Manning's n: 0.0240 (top and sides) Manning's n: 0.0350 (bottom) Culvert Type: Straight Inlet Configuration: Thin Edge Projecting Inlet Depression: None

Flow (cms)	Water Surface Elev (m)	Depth (m)
0.00	89.99	0.74
4.57	89.99	0.74
9.15	89.99	0.74
13.72	89.99	0.74
18.29	89.99	0.74
22.87	89.99	0.74
27.44	89.99	0.74
32.01	89.99	0.74
36.59	89.99	0.74
41.16	89.99	0.74
45.73	89.99	0.74

Tailwater Channel Data - East Entrance

Tailwater Channel Option: Enter Constant Tailwater Elevation Constant Tailwater Elevation: 89.99 m

Roadway Data for Crossing: East Entrance

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 14.60 m Crest Elevation: 90.40 m Roadway Surface: Paved Roadway Top Width: 17.45 m

HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 0 cfs

Design Flow: 4.02587 cfs

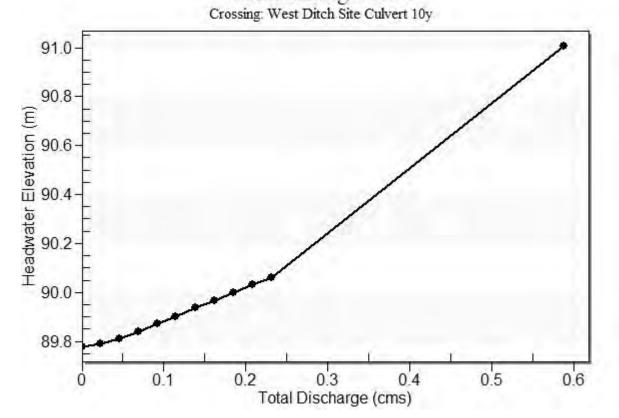

Maximum Flow: 8.15769 cfs

Table 1 - Summary of Culvert Flows at Crossing: West Ditch Site Culvert 10y

Headwater Elevation (m)	Total Discharge (cms)	West Ditch Site Culvert 10y Discharge (cms)	Roadway Discharge (cms)	Iterations
89.78	0.00	0.00	0.00	1
89.79	0.02	0.02	0.00	1
89.81	0.05	0.05	0.00	1
89.84	0.07	0.07	0.00	1
89.87	0.09	0.09	0.00	1
89.90	0.11	0.11	0.00	1
89.94	0.14	0.14	0.00	1
89.97	0.16	0.16	0.00	1
90.00	0.18	0.18	0.00	1
90.03	0.21	0.21	0.00	1
90.06	0.23	0.23	0.00	1
91.00	0.57	0.57	0.00	Overtopping

Rating Curve Plot for Crossing: West Ditch Site Culvert 10y

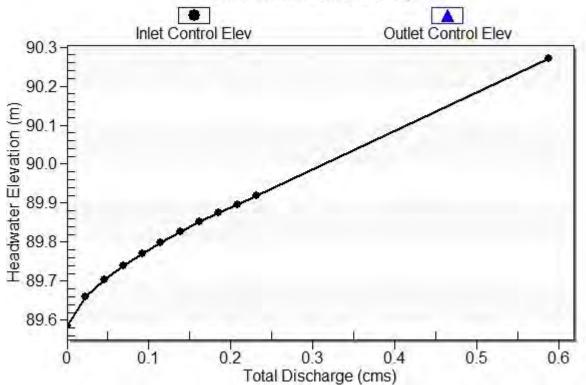
Total Rating Curve

Total Discharge (cms)	Culvert Discharge (cms)	Headwater Elevation (m)	Inlet Control Depth (m)	Outlet Control Depth (m)	Flow Type	Normal Depth (m)	Critical Depth (m)	Outlet Depth (m)	Tailwater Depth (m)	Outlet Velocity (m/s)	Tailwater Velocity (m/s)
0.00	0.00	89.78	0.000	0.195	0-NF	0.000	0.000	0.236	0.240	0.000	0.000
0.02	0.02	89.79	0.075	0.204	3-M1t	0.129	0.044	0.236	0.240	0.114	0.000
0.05	0.05	89.81	0.119	0.227	3-M1t	0.199	0.069	0.236	0.240	0.228	0.000
0.07	0.07	89.84	0.154	0.256	3-M2t	0.261	0.090	0.236	0.240	0.341	0.000
0.09	0.09	89.87	0.186	0.287	3-M2t	0.321	0.109	0.236	0.240	0.455	0.000
0.11	0.11	89.90	0.213	0.317	3-M2t	0.382	0.125	0.236	0.240	0.561	0.000
0.14	0.14	89.94	0.242	0.351	3-M2t	0.480	0.141	0.236	0.240	0.683	0.000
0.16	0.16	89.97	0.267	0.382	3-M2t	0.545	0.156	0.236	0.240	0.796	0.000
0.18	0.18	90.00	0.290	0.414	3-M2t	0.545	0.170	0.236	0.240	0.910	0.000
0.21	0.21	90.03	0.311	0.445	3-M2t	0.545	0.183	0.236	0.240	1.024	0.000
0.23	0.23	90.06	0.333	0.477	3-M2t	0.545	0.196	0.236	0.240	1.138	0.000

Table 2 - Culvert Summary Table: West Ditch Site Culvert 10y

Straight Culvert

Inlet Elevation (invert): 89.58 m, Outlet Elevation (invert): 89.54 m


Culvert Length: 36.00 m, Culvert Slope: 0.0011

Performance Curve

Culvert: West Ditch Site Culvert 10y

Water Surface Profile Plot for Culvert: West Ditch Site Culvert 10y Crossing - West Ditch Site Culvert 10y, Design Discharge - 0.11 cms Culvert - West Ditch Site Culvert 10y, Culvert Discharge - 0.11 cms 91.0-90.8 90.6 0.4-90.4-90.2-90.2-90.0 89.8 89.6 10 20 30 Ó 40 -10 Station (m)

Site Data - West Ditch Site Culvert 10y

Site Data Option: Culvert Invert Data Inlet Station: 0.00 m Inlet Elevation: 89.52 m Outlet Station: 36.00 m Outlet Elevation: 89.48 m Number of Barrels: 1

Culvert Data Summary - West Ditch Site Culvert 10y

Barrel Shape: Pipe Arch Barrel Span: 889.00 mm Barrel Rise: 609.60 mm Barrel Material: Steel or Aluminum Embedment: 65.00 mm Barrel Manning's n: 0.0250 (top and sides) Manning's n: 0.0350 (bottom) Culvert Type: Straight Inlet Configuration: Mitered to Conform to Slope Inlet Depression: None

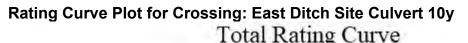
Flow (cms)	Water Surface Elev (m)	Depth (m)
0.00	89.78	0.24
0.82	89.78	0.24
1.63	89.78	0.24
2.45	89.78	0.24
3.26	89.78	0.24
4.03	89.78	0.24
4.89	89.78	0.24
5.71	89.78	0.24
6.53	89.78	0.24
7.34	89.78	0.24
8.16	89.78	0.24

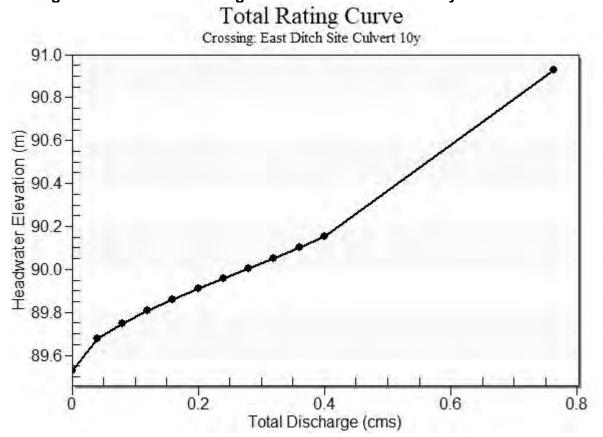
Table 3 - Downstream Channel Rating Curve (Crossing: West Ditch Site Culvert 10y)

Tailwater Channel Data - West Ditch Site Culvert 10y

Tailwater Channel Option: Enter Constant Tailwater Elevation Constant Tailwater Elevation: 89.78 m

Roadway Data for Crossing: West Ditch Site Culvert 10y

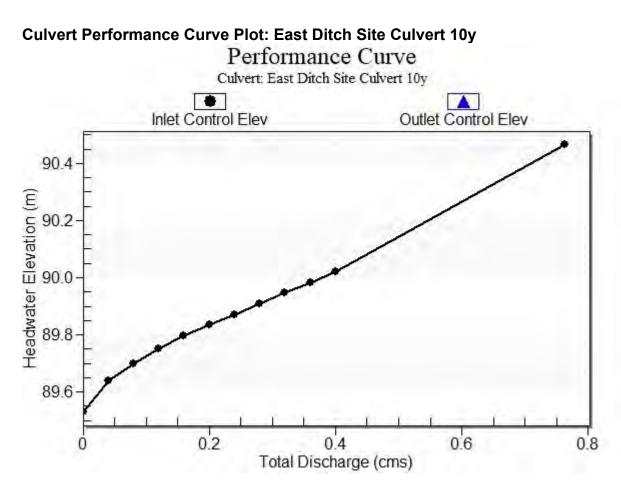

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 14.00 m Crest Elevation: 91.00 m Roadway Surface: Paved Roadway Top Width: 6.00 m

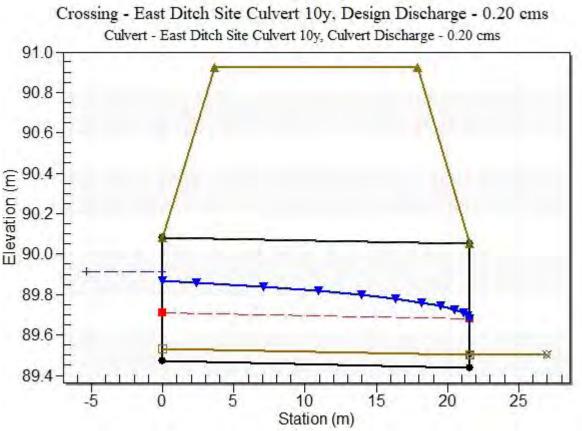

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 0 cfs Design Flow: 7.09825 cfs Maximum Flow: 14.1259 cfs

Headwater Elevation (m)	Total Discharge (cms)	East Ditch Site Culvert 10y Discharge (cms)	Roadway Discharge (cms)	Iterations
89.53	0.00	0.00	0.00	1
89.68	0.04	0.04	0.00	1
89.75	0.08	0.08	0.00	1
89.81	0.12	0.12	0.00	1
89.86	0.16	0.16	0.00	1
89.91	0.20	0.20	0.00	1
89.96	0.24	0.24	0.00	1
90.00	0.28	0.28	0.00	1
90.05	0.32	0.32	0.00	1
90.10	0.36	0.36	0.00	1
90.15	0.40	0.40	0.00	1
90.92	0.74	0.74	0.00	Overtopping

Table 4 - Summary of Culvert Flows at Crossing: East Ditch Site Culvert 10y


Total Discharge (cms)	Culvert Discharge (cms)	Headwater Elevation (m)	Inlet Control Depth (m)	Outlet Control Depth (m)	Flow Type	Normal Depth (m)	Critical Depth (m)	Outlet Depth (m)	Tailwater Depth (m)	Outlet Velocity (m/s)	Tailwater Velocity (m/s)
0.00	0.00	89.53	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
0.04	0.04	89.68	0.108	0.147	2-M2c	0.156	0.063	0.063	0.000	0.774	0.000
0.08	0.08	89.75	0.169	0.219	2-M2c	0.245	0.099	0.099	0.000	0.966	0.000
0.12	0.12	89.81	0.220	0.278	2-M2c	0.331	0.129	0.129	0.000	1.100	0.000
0.16	0.16	89.86	0.265	0.330	2-M2c	0.433	0.155	0.155	0.000	1.209	0.000
0.20	0.20	89.91	0.305	0.381	2-M2c	0.550	0.180	0.180	0.000	1.307	0.000
0.24	0.24	89.96	0.342	0.427	2-M2c	0.550	0.201	0.201	0.000	1.392	0.000
0.28	0.28	90.00	0.379	0.474	2-M2c	0.550	0.222	0.222	0.000	1.470	0.000
0.32	0.32	90.05	0.417	0.521	2-M2c	0.550	0.242	0.242	0.000	1.542	0.000
0.36	0.36	90.10	0.453	0.570	7-M2c	0.550	0.260	0.260	0.000	1.611	0.000
0.40	0.40	90.15	0.490	0.623	7-M2c	0.550	0.278	0.278	0.000	1.680	0.000


Table 5 - Culvert Summary Table: East Ditch Site Culvert 10y

Straight Culvert

Inlet Elevation (invert): 89.53 m, Outlet Elevation (invert): 89.50 m

Culvert Length: 21.55 m, Culvert Slope: 0.0014

Water Surface Profile Plot for Culvert: East Ditch Site Culvert 10y

Site Data - East Ditch Site Culvert 10y

Site Data Option: Culvert Invert Data Inlet Station: 0.00 m Inlet Elevation: 89.47 m Outlet Station: 21.55 m Outlet Elevation: 89.44 m Number of Barrels: 1

Culvert Data Summary - East Ditch Site Culvert 10y

Barrel Shape: Pipe Arch Barrel Span: 889.00 mm Barrel Rise: 609.60 mm Barrel Material: Steel or Aluminum Embedment: 60.00 mm Barrel Manning's n: 0.0250 (top and sides) Manning's n: 0.0300 (bottom) Culvert Type: Straight Inlet Configuration: Mitered to Conform to Slope Inlet Depression: None

Flow (cms)	Water Surface Elev (m)	Depth (m)
0.00	89.50	0.00
1.41	89.50	0.00
2.83	89.50	0.00
4.24	89.50	0.00
5.65	89.50	0.00
7.10	89.50	0.00
8.48	89.50	0.00
9.89	89.50	0.00
11.30	89.50	0.00
12.71	89.50	0.00
14.13	89.50	0.00

Table 6 - Downstream Channel Rating Curve (Crossing: East Ditch Site Culvert 10y)

Tailwater Channel Data - East Ditch Site Culvert 10y

Tailwater Channel Option: Enter Constant Tailwater Elevation Constant Tailwater Elevation: 89.50 m

Roadway Data for Crossing: East Ditch Site Culvert 10y

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 25.00 m Crest Elevation: 90.92 m Roadway Surface: Paved Roadway Top Width: 14.20 m

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 0 cfs

Design Flow: 8.15769 cfs

Maximum Flow: 8.15769 cfs

Table 7 - Summary of Culvert Flows at Crossing: West Ditch Site Culvert 100y

Headwater Elevation (m)	Total Discharge (cms)	West Ditch Site Culvert 100y Discharge (cms)	Roadway Discharge (cms)	Iterations
89.88	0.00	0.00	0.00	1
89.88	0.02	0.02	0.00	1
89.89	0.05	0.05	0.00	1
89.91	0.07	0.07	0.00	1
89.93	0.09	0.09	0.00	1
89.95	0.12	0.12	0.00	1
89.97	0.14	0.14	0.00	1
90.00	0.16	0.16	0.00	1
90.03	0.18	0.18	0.00	1
90.06	0.21	0.21	0.00	1
90.09	0.23	0.23	0.00	1
91.00	0.56	0.56	0.00	Overtopping

Rating Curve Plot for Crossing: West Ditch Site Culvert 100y

Total Rating Curve

Crossing: West Ditch Site Culvert 100y

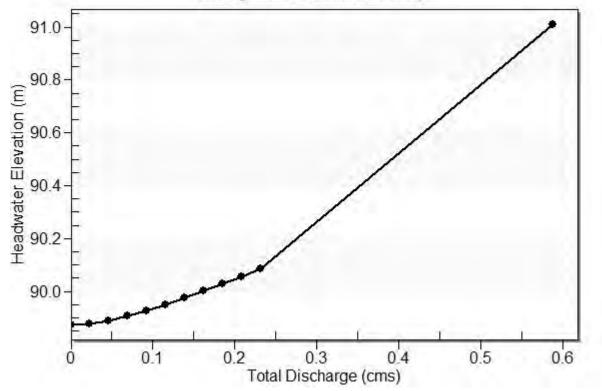
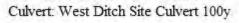
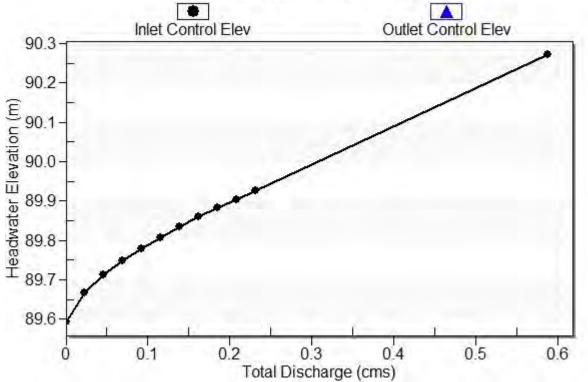


Table 8 - Culvert Summary Table: West Ditch Site Culvert 100y


Total Discharge (cms)	Culvert Discharge (cms)	Headwater Elevation (m)	Inlet Control Depth (m)	Outlet Control Depth (m)	Flow Type	Normal Depth (m)	Critical Depth (m)	Outlet Depth (m)	Tailwater Depth (m)	Outlet Velocity (m/s)	Tailwater Velocity (m/s)
0.00	0.00	89.88	0.000	0.282	0-NF	0.000	0.000	0.323	0.335	0.000	0.000
0.02	0.02	89.88	0.075	0.286	3-M1t	0.128	0.044	0.323	0.335	0.084	0.000
0.05	0.05	89.89	0.119	0.296	3-M1t	0.198	0.069	0.323	0.335	0.169	0.000
0.07	0.07	89.91	0.154	0.312	3-M1t	0.260	0.090	0.323	0.335	0.253	0.000
0.09	0.09	89.93	0.186	0.333	3-M1t	0.322	0.109	0.323	0.335	0.337	0.000
0.12	0.12	89.95	0.215	0.356	3-M2t	0.389	0.125	0.323	0.335	0.421	0.000
0.14	0.14	89.97	0.242	0.381	3-M2t	0.537	0.141	0.323	0.335	0.506	0.000
0.16	0.16	90.00	0.267	0.407	3-M2t	0.537	0.155	0.323	0.335	0.590	0.000
0.18	0.18	90.03	0.290	0.435	3-M2t	0.537	0.169	0.323	0.335	0.674	0.000
0.21	0.21	90.06	0.312	0.464	3-M2t	0.537	0.182	0.323	0.335	0.758	0.000
0.23	0.23	90.09	0.334	0.494	3-M2t	0.537	0.195	0.323	0.335	0.843	0.000


Straight Culvert

Inlet Elevation (invert): 89.59 m, Outlet Elevation (invert): 89.55 m

Culvert Length: 36.00 m, Culvert Slope: 0.0011

Culvert Performance Curve Plot: West Ditch Site Culvert 100y Performance Curve

Water Surface Profile Plot for Culvert: West Ditch Site Culvert 100y

Site Data - West Ditch Site Culvert 100y

Site Data Option: Culvert Invert Data Inlet Station: 0.00 m Inlet Elevation: 89.52 m Outlet Station: 36.00 m Outlet Elevation: 89.48 m Number of Barrels: 1

Culvert Data Summary - West Ditch Site Culvert 100y

Barrel Shape: Pipe Arch Barrel Span: 889.00 mm Barrel Rise: 609.60 mm Barrel Material: Steel or Aluminum Embedment: 73.00 mm Barrel Manning's n: 0.0250 (top and sides) Manning's n: 0.0350 (bottom) Culvert Type: Straight Inlet Configuration: Mitered to Conform to Slope Inlet Depression: None

Flow (cms)	Water Surface Elev (m)	Depth (m)
0.00	89.88	0.34
0.82	89.88	0.34
1.63	89.88	0.34
2.45	89.88	0.34
3.26	89.88	0.34
4.08	89.88	0.34
4.89	89.88	0.34
5.71	89.88	0.34
6.53	89.88	0.34
7.34	89.88	0.34
8.16	89.88	0.34

Table 9 - Downstream Channel Rating Curve (Crossing: West Ditch Site Culvert 100y)

Tailwater Channel Data - West Ditch Site Culvert 100y

Tailwater Channel Option: Enter Constant Tailwater Elevation Constant Tailwater Elevation: 89.88 m

Roadway Data for Crossing: West Ditch Site Culvert 100y

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 14.00 m Crest Elevation: 91.00 m Roadway Surface: Paved Roadway Top Width: 6.00 m

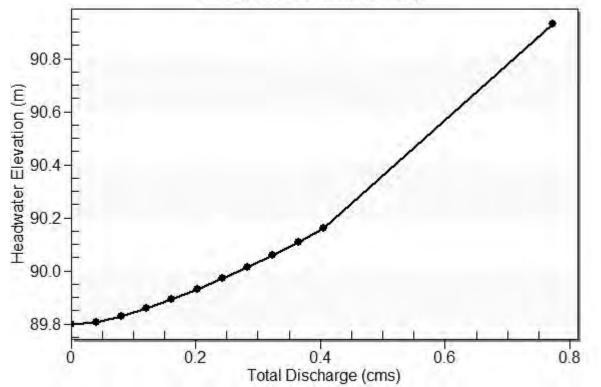
Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 0 cfs

Design Flow: 14.3024 cfs

Maximum Flow: 14.3024 cfs


Table 10 - Summary of Culvert Flows at Crossing: East Ditch Site Culvert 100y

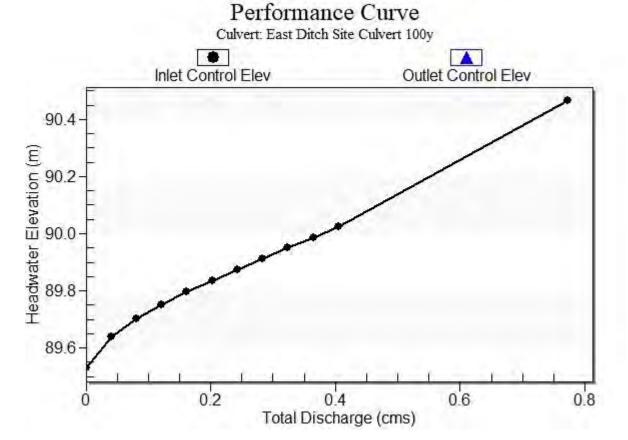
Headwater Elevation (m)	Total Discharge (cms)	East Ditch Site Culvert 100y Discharge (cms)	Roadway Discharge (cms)	Iterations
89.80	0.00	0.00	0.00	1
89.81	0.04	0.04	0.00	1
89.83	0.08	0.08	0.00	1
89.86	0.12	0.12	0.00	1
89.89	0.16	0.16	0.00	1
89.93	0.20	0.20	0.00	1
89.97	0.24	0.24	0.00	1
90.02	0.28	0.28	0.00	1
90.06	0.32	0.32	0.00	1
90.11	0.36	0.36	0.00	1
90.16	0.40	0.40	0.00	1
90.92	0.74	0.74	0.00	Overtopping

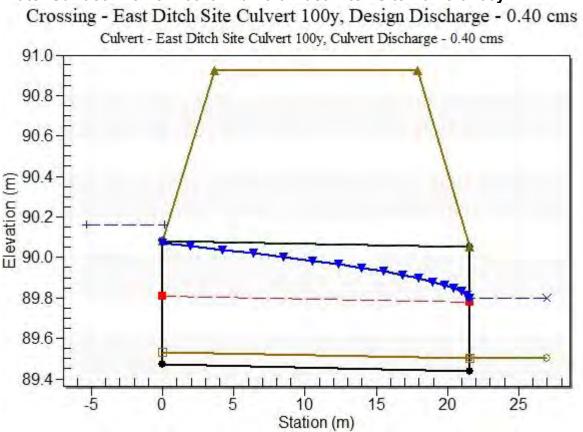
Rating Curve Plot for Crossing: East Ditch Site Culvert 100y

Total Rating Curve

Crossing: East Ditch Site Culvert 100y

Total Discharge (cms)	Culvert Discharge (cms)	Headwater Elevation (m)	Inlet Control Depth (m)	Outlet Control Depth (m)	Flow Type	Normal Depth (m)	Critical Depth (m)	Outlet Depth (m)	Tailwater Depth (m)	Outlet Velocity (m/s)	Tailwater Velocity (m/s)
0.00	0.00	89.80	0.000	0.270	0-NF	0.000	0.000	0.300	0.300	0.000	0.000
0.04	0.04	89.81	0.109	0.277	3-M1t	0.157	0.064	0.300	0.300	0.158	0.000
0.08	0.08	89.83	0.171	0.298	3-M1t	0.247	0.100	0.300	0.300	0.316	0.000
0.12	0.12	89.86	0.222	0.327	3-M2t	0.334	0.130	0.300	0.300	0.474	0.000
0.16	0.16	89.89	0.267	0.362	3-M2t	0.440	0.157	0.300	0.300	0.632	0.000
0.20	0.20	89.93	0.306	0.401	3-M2t	0.550	0.180	0.300	0.300	0.790	0.000
0.24	0.24	89.97	0.344	0.442	3-M2t	0.550	0.203	0.300	0.300	0.948	0.000
0.28	0.28	90.02	0.383	0.485	3-M2t	0.550	0.223	0.300	0.300	1.106	0.000
0.32	0.32	90.06	0.421	0.530	3-M2t	0.550	0.243	0.300	0.300	1.264	0.000
0.36	0.36	90.11	0.457	0.577	3-M2t	0.550	0.262	0.300	0.300	1.422	0.000
0.40	0.40	90.16	0.494	0.631	3-M2t	0.550	0.280	0.300	0.300	1.580	0.000


Table 11 - Culvert Summary Table: East Ditch Site Culvert 100y


Straight Culvert

Inlet Elevation (invert): 89.53 m, Outlet Elevation (invert): 89.50 m

Culvert Length: 21.55 m, Culvert Slope: 0.0014

Culvert Performance Curve Plot: East Ditch Site Culvert 100y

Water Surface Profile Plot for Culvert: East Ditch Site Culvert 100y

Site Data - East Ditch Site Culvert 100y

Site Data Option: Culvert Invert Data Inlet Station: 0.00 m Inlet Elevation: 89.47 m Outlet Station: 21.55 m Outlet Elevation: 89.44 m Number of Barrels: 1

Culvert Data Summary - East Ditch Site Culvert 100y

Barrel Shape: Pipe Arch Barrel Span: 889.00 mm Barrel Rise: 609.60 mm Barrel Material: Steel or Aluminum Embedment: 60.00 mm Barrel Manning's n: 0.0250 (top and sides) Manning's n: 0.0300 (bottom) Culvert Type: Straight Inlet Configuration: Mitered to Conform to Slope Inlet Depression: None

Table 12 - Downstream Channel Rating Curve (Crossing: East Ditch Site Culvert 100y)

Flow (cms)	Water Surface Elev (m)	Depth (m)
0.00	89.80	0.30
1.43	89.80	0.30
2.86	89.80	0.30
4.29	89.80	0.30
5.72	89.80	0.30
7.15	89.80	0.30
8.58	89.80	0.30
10.01	89.80	0.30
11.44	89.80	0.30
12.87	89.80	0.30
14.30	89.80	0.30

Tailwater Channel Data - East Ditch Site Culvert 100y

Tailwater Channel Option: Enter Constant Tailwater Elevation Constant Tailwater Elevation: 89.80 m

Roadway Data for Crossing: East Ditch Site Culvert 100y

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 25.00 m Crest Elevation: 90.92 m Roadway Surface: Paved Roadway Top Width: 14.20 m

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 0 cfs

Design Flow: 32.0304 cfs

Maximum Flow: 32.0304 cfs

Table 13 - Summary of Culvert Flows at Crossing: Transfer Culvert 100y

Headwater Elevation (m)	Total Discharge (cms)	Transfer Culvert 100y Discharge (cms)	Roadway Discharge (cms)	Iterations
89.50	0.00	0.00	0.00	1
89.51	0.09	0.09	0.00	1
89.53	0.18	0.18	0.00	1
89.56	0.27	0.27	0.00	1
89.60	0.36	0.36	0.00	1
89.63	0.45	0.45	0.00	1
89.67	0.54	0.54	0.00	1
89.71	0.63	0.63	0.00	1
89.74	0.73	0.73	0.00	1
89.78	0.82	0.82	0.00	1
89.82	0.91	0.91	0.00	1
90.43	2.01	2.01	0.00	Overtopping

Rating Curve Plot for Crossing: Transfer Culvert 100y

Total Rating Curve

Crossing: Transfer Culvert 100y

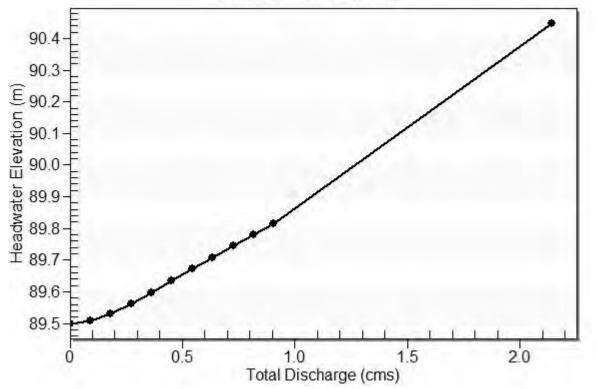
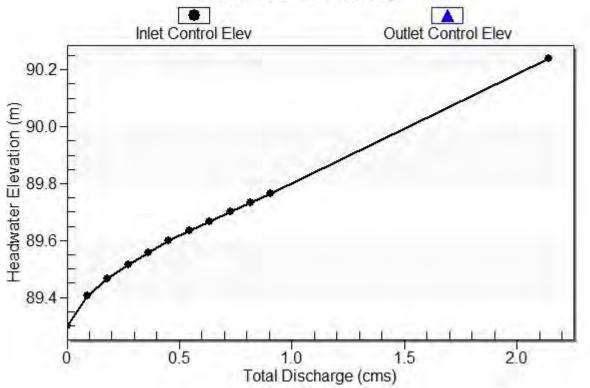
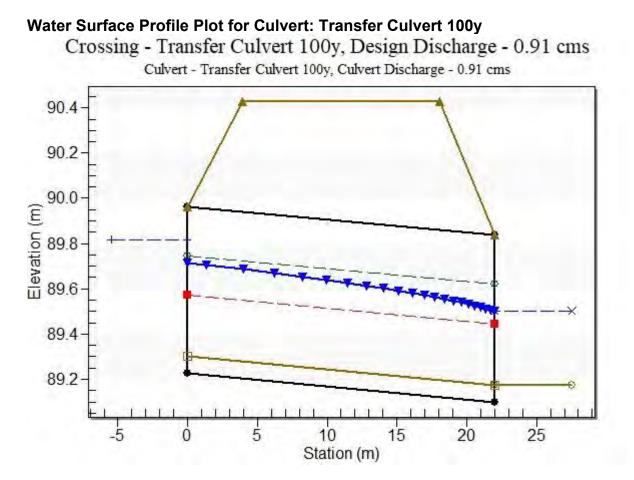


 Table 14 - Culvert Summary Table: Transfer Culvert 100y

Total Discharge (cms)	Culvert Discharge (cms)	Headwater Elevation (m)	Inlet Control Depth (m)	Outlet Control Depth (m)	Flow Type	Normal Depth (m)	Critical Depth (m)	Outlet Depth (m)	Tailwater Depth (m)	Outlet Velocity (m/s)	Tailwater Velocity (m/s)
0.00	0.00	89.50	0.000	0.200	0-NF	0.000	0.000	0.325	0.325	0.000	0.000
0.09	0.09	89.51	0.105	0.208	3-M1t	0.096	0.061	0.325	0.325	0.135	0.000
0.18	0.18	89.53	0.165	0.231	3-M1t	0.148	0.096	0.325	0.325	0.271	0.000
0.27	0.27	89.56	0.214	0.262	3-M1t	0.191	0.125	0.325	0.325	0.406	0.000
0.36	0.36	89.60	0.258	0.297	3-M1t	0.229	0.151	0.325	0.325	0.541	0.000
0.45	0.45	89.63	0.298	0.334	3-M1t	0.266	0.174	0.325	0.325	0.676	0.000
0.54	0.54	89.67	0.336	0.371	3-M1t	0.301	0.195	0.325	0.325	0.812	0.000
0.63	0.63	89.71	0.368	0.407	3-M2t	0.336	0.215	0.325	0.325	0.947	0.000
0.73	0.73	89.74	0.400	0.444	3-M2t	0.371	0.234	0.325	0.325	1.082	0.000
0.82	0.82	89.78	0.432	0.479	3-M2t	0.407	0.253	0.325	0.325	1.218	0.000
0.91	0.91	89.82	0.465	0.515	3-M2t	0.446	0.270	0.325	0.325	1.353	0.000


Straight Culvert


Inlet Elevation (invert): 89.30 m, Outlet Elevation (invert): 89.18 m

> Culvert Length: 22.00 m, Culvert Slope: 0.0057

Culvert Performance Curve Plot: Transfer Culvert 100y Performance Curve

Culvert: Transfer Culvert 100y

Site Data - Transfer Culvert 100y

Site Data Option: Culvert Invert Data Inlet Station: 0.00 m Inlet Elevation: 89.23 m Outlet Station: 22.00 m Outlet Elevation: 89.10 m Number of Barrels: 2

Culvert Data Summary - Transfer Culvert 100y

Barrel Shape: Pipe Arch Barrel Span: 1066.80 mm Barrel Rise: 736.60 mm Barrel Material: Steel or Aluminum Embedment: 75.00 mm Barrel Manning's n: 0.0250 (top and sides) Manning's n: 0.0300 (bottom) Culvert Type: Straight Inlet Configuration: Mitered to Conform to Slope Inlet Depression: None

Flow (cms)	Water Surface Elev (m)	Depth (m)
0.00	89.50	0.33
3.20	89.50	0.33
6.41	89.50	0.33
9.61	89.50	0.33
12.81	89.50	0.33
16.02	89.50	0.33
19.22	89.50	0.33
22.42	89.50	0.33
25.62	89.50	0.33
28.83	89.50	0.33
32.03	89.50	0.33

Table 15 - Downstream Channel Rating Curve (Crossing: Transfer Culvert 100y)

Tailwater Channel Data - Transfer Culvert 100y

Tailwater Channel Option:Enter Constant Tailwater ElevationConstant Tailwater Elevation:89.50 m

Roadway Data for Crossing: Transfer Culvert 100y

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 25.00 m Crest Elevation: 90.43 m Roadway Surface: Paved Roadway Top Width: 14.20 m

Hydraulic Analysis Report

Project Data

Project Title: A001103 - Fastfrate Swales Designer: Project Date: Wednesday, June 2, 2021 Project Units: SI Units (Metric) Notes:

Channel Analysis: Channel West_100y

Notes:

Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 4.5000 m/m Side Slope 2 (Z2): 3.0000 m/m Channel Width: 1.0000 m Longitudinal Slope: 0.0010 m/m Manning's n: 0.0300 Flow: 0.2310 cms

Result Parameters

Depth: 0.3050 m Area of Flow: 0.6537 m² Wetted Perimeter: 3.3702 m Hydraulic Radius: 0.1940 m Average Velocity: 0.3534 m/s Top Width: 3.2872 m Froude Number: 0.2529 Critical Depth: 0.1455 m Critical Velocity: 1.0269 m/s Critical Slope: 0.0190 m/m Critical Top Width: 2.09 m Calculated Max Shear Stress: 2.9893 N/m² Calculated Avg Shear Stress: 1.9013 N/m²

Channel Analysis: Channel West_10y

Notes:

Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 4.5000 m/m Side Slope 2 (Z2): 3.0000 m/m Channel Width: 1.0000 m Longitudinal Slope: 0.0010 m/m Manning's n: 0.0300 Flow: 0.1140 cms

Result Parameters

Depth: 0.2158 m Area of Flow: 0.3904 m^2 Wetted Perimeter: 2.6770 m Hydraulic Radius: 0.1458 m Average Velocity: 0.2920 m/s Top Width: 2.6183 m Froude Number: 0.2414 Critical Depth: 0.0967 m Critical Velocity: 0.8655 m/s Critical Slope: 0.0212 m/m Critical Top Width: 1.73 m Calculated Max Shear Stress: 2.1151 N/m^2 Calculated Avg Shear Stress: 1.4294 N/m^2

Channel Analysis: Channel East_100y

Notes:

Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 3.0000 m/m Side Slope 2 (Z2): 3.0000 m/m Channel Width: 1.0000 m Longitudinal Slope: 0.0010 m/m Manning's n: 0.0300 Flow: 0.4000 cms

Result Parameters

Depth: 0.4165 m Area of Flow: 0.9368 m² Wetted Perimeter: 3.6340 m Hydraulic Radius: 0.2578 m Average Velocity: 0.4270 m/s Top Width: 3.4988 m Froude Number: 0.2634 Critical Depth: 0.2052 m Critical Depth: 0.2052 m Critical Slope: 0.0173 m/m Critical Slope: 0.0173 m/m Critical Top Width: 2.23 m Calculated Max Shear Stress: 4.0823 N/m² Calculated Avg Shear Stress: 2.5269 N/m²

Channel Analysis: Channel East_10y

Notes:

Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 3.0000 m/m Side Slope 2 (Z2): 3.0000 m/m Channel Width: 1.0000 m Longitudinal Slope: 0.0010 m/m Manning's n: 0.0300 Flow: 0.2010 cms

Result Parameters

Depth: 0.2984 m Area of Flow: 0.5656 m^2 Wetted Perimeter: 2.8874 m Hydraulic Radius: 0.1959 m Average Velocity: 0.3554 m/s Top Width: 2.7906 m Froude Number: 0.2520 Critical Depth: 0.1386 m Critical Velocity: 1.0247 m/s Critical Slope: 0.0192 m/m Critical Slope: 0.0192 m/m Critical Top Width: 1.83 m Calculated Max Shear Stress: 2.9253 N/m^2 Calculated Avg Shear Stress: 1.9201 N/m^2

Channel Analysis: Channel West_B_100y

Notes:

Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 4.5000 m/m Side Slope 2 (Z2): 3.0000 m/m Channel Width: 1.0000 m Longitudinal Slope: 0.0010 m/m Manning's n: 0.0300 Flow: 0.2750 cms

Result Parameters

Depth: 0.3314 m Area of Flow: 0.7433 m² Wetted Perimeter: 3.5758 m Hydraulic Radius: 0.2079 m Average Velocity: 0.3700 m/s Top Width: 3.4856 m Froude Number: 0.2557 Critical Depth: 0.1605 m Critical Velocity: 1.0695 m/s Critical Slope: 0.0185 m/m Critical Slope: 0.0185 m/m Critical Top Width: 2.20 m Calculated Max Shear Stress: 3.2486 N/m²

Channel Analysis: Channel West_B_10y

Notes:

Input Parameters

Channel Type: Trapezoidal Side Slope 1 (Z1): 4.5000 m/m Side Slope 2 (Z2): 3.0000 m/m Channel Width: 1.0000 m Longitudinal Slope: 0.0010 m/m Manning's n: 0.0300 Flow: 0.1390 cms

Result Parameters

Depth: 0.2382 m Area of Flow: 0.4511 m² Wetted Perimeter: 2.8516 m Hydraulic Radius: 0.1582 m Average Velocity: 0.3081 m/s Top Width: 2.7868 m Froude Number: 0.2445 Critical Depth: 0.1086 m Critical Velocity: 0.9091 m/s Critical Slope: 0.0206 m/m Critical Slope: 0.0206 m/m Critical Top Width: 1.81 m Calculated Max Shear Stress: 2.3353 N/m² Calculated Avg Shear Stress: 1.5506 N/m²

PROJECT NAME:Warehouse DevelopmentCIMA+ PROJECT NUMBER:A001083CLIENT:Fastfrate (Ottawa) Holdings Inc.PROJECT STATUS:90% Design (Site Plan Approval)

HYDRAULIC CALCULATIONS FOR STORM SEWERS

APPLICABLE DESIGN GUIDELINES:

1. City of Ottawa Sewer Design Guidelines, 2012

2. City of Ottawa Technical Bulletins up to and including ISTB-2018-01

DESIGN BASIS:

Manning Coefficient :	0.013
Maximum permitted velocity :	3.00 m/s
Minimum permitted velocity :	0.80 m/s

Section	Dia.	Length	Slope	Invert	Invert	Capacity	Velocity	Flow	Velocity	% Full
				upstream	downstream	(full)	(full)		(actual)	
	mm	m	%	m	m	m³/s	m/s	m³/s	m/s	
Building Service Connection / STM 1	600	29.3	1.00%	89.750	89.460	0.614	2.17	0.213	1.96	35%
STM 2	600	21.9	0.50%	89.430	89.320	0.435	1.54	0.283	1.64	65%
STM 3	600	13.2	0.50%	87.765	87.700	0.435	1.54	0.283	1.64	65%
Outlet				87.700						

Remarks

The data in green has been calculated or modified by the designer

The data in blue has been calculated using formulas inserted by the designer

Notes :

1. Storm Sewer Peak Flow Determined per Roof Restricted flow of 213 L/s; and uncontrolled flow from Catchements A4 of 35.792 L/s and from Catchement A5 of 34.458 L/s.

Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467 Date: 2021-07-25

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 1E+08 Date: 2021-07-25

Appendix I -Potable Water & Fire Protection Calculations.

Fastfrate Warehouse Development

CIMA+ PROJECT NUMBER: A001083 CLIENT: PROJECT STATUS:

Fastfrate (Ottawa) Holdings Inc. 90 % Design (Site Plan Approval)

WATER CONSUMPTION CALCULATIONS

APPLICABLE DESIGN GUIDELINES:

1. Ottawa Design Guidelines - Water Distribution (2010)

- 2. City of Ottawa Technical Bulletin ISTB-2018-02, ISDTB-2014-02 and ISD-2010-02
- 3. MOE Design Guidelines for Drinking-Water Systems

RESIDENTIAL AND COMMERCIAL WA	TER DEMAND	DS:
RESIDENTIAL DESIGN CRITERIA:		
Residential Average Day Demand:	350	L/

Residential Average Day Demand.	300	L/C/Qa
Maximum Day Peaking Factor:	3.9	x Ave
Maximum (Peak Hour) Peaking Factor:	5.8	x Ave

/c/day erage Daily Demand erage Daily Demand

Per Unit Populations:

Unit Type	Persons Per Unit
Single Family	3.4
Semi-detached	2.7
Duplex	2.3
Townhouse (row)	2.7
Apartments:	
Bachelor	1.4
1 Bedroom	1.4
2 Bedroom	2.1
3 Bedroom	3.1
Average Apt.	1.8

EQUIVALENT POPULATION :

Unit Type	Number of Units	Unit	Population
Studio Apartments	0	1.4	0
1 Bedroom Apartments	0	1.4	0
1 Bedroom + Den Apartments	0	1.4	0
2 Bedroom Apartments	0	2.1	0
Total	0		0

0.711

1.5

1.8

COMMERCIAL DESIGN CRITERIA:

Contributing Commercial Area:
Commercial Average Day Demand:
Maximum Day Peaking Factor:
Maximum (Peak Hour) Peaking Factor:

gross ha (including amenity areas, party room and gym) 28,000 L/gross ha/d

x Average Daily Demand

- x Maximum Daily Demand

WATER DEMANDS:

Demand Type	Average Daily Demand (L/s)	Maximum Daily Demand (L/s)	Maximum (Peak) Hour Demand (L/s)
Residential	0.00	0.00	0.00
Commercial	0.23	0.35	0.62
Total	0.23	0.35	0.62

NOTES:

1. Maximum Day and Maximum Hour residential peaking factors determined using Table 3-3 of the MOE Design Guidelines for Drinking-Water System for 0 to 500 persons.

2. Given basic day demand greater than 50 m3/day (0.57 L/s), two connections, separated by an isolation valve required. Furthermore given location on corner lot, City will not support the addition of an isolation valve on the main line, thus one connection to Richmond Rd and one connection to Roosevelt Ave. required.

Prepared by: Guillaume LeBlond, M.A.Sc., E	Date:	2021-07-26
PEO# 100530467		
Verified by: Christian Lavoie-Lebel, P.Eng.	Date:	2021-07-26
PEO# 100173201		

\\cima.plus\cima\Cima.C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civil\03-Watermain\[210725_Water Supply & Fire Flow.xlsx]Water Demands_OSDG

Fastfrate Warehouse Development

CIMA+ PROJECT NUMBER: A001083 CLIENT: Fastfrate PROJECT STATUS: 90 % Des

A001083 Fastfrate (Ottawa) Holdings Inc. 90 % Design (Site Plan Approval)

- APPLICABLE DESIGN GUIDELINES: 1. Fire Underwriters Survey (FUS) Water Supply for Public Fire Protection, 1999
- 2. Ottawa Design Guidelines Water Distribution (2010) including Appendix H per ISTB-2018-02
- 3. City of Ottawa Technical Bulletin ISTB-2018-02
- 4. MOE Design Guidelines for Drinking-Water Systems

STEP A - DETERMINE THE TYPE OF CONSTRUCTION

Type of Construction	Coefficient (C)	Value Selected (C)
Fire-resistive Construction (> 3 hours)	0.6	
Non-combustible Construction	0.8	0.6
Ordinary Construction	1	0.0
Wood Frame Construction	1.5	

STEP B - DETERMINE THE FLOOR AREA

Floor/Level	Floor Area Per Level (sq. ft.)	Floor Area Per Level (m2)	Fire Resistive Building	Protected Openings (one hour rating)	Area of Structure Considered (m2)
Gross Floor Area (GFA) Ground Level:	92,376	8,582	YES	YES	8,582
TOTAL FLOOR AREA (A):	92,376	8,582			8,582

STEP C - DETERMINE THE HEIGHT IN STOREYS

Floor/Level	Number of Storeys	Percent of Floor Area Considered
Ground Level:	1	100%
HEIGHT IN STOREYS:	1	

STEP D - DETERMINE BASE FIRE FLOW (ROUND TO NEAREST 1,000 L/min)

$$F = 220C\sqrt{A}$$

Where:

A is the total floor area of the building in $\ensuremath{\text{m}}^2$

Coefficient Related to Type of Construction (C) =	0.6
Floor Area Considered (A) =	8,582 m ²

REQUIRED (BASE) FIRE FLOW (F) =

12000 L/min (Rounded to Nearest 1,000 L/min)

STEP E - DETERMINE THE INCREASE OR DECREASE FOR OCCUPANCY AND APPLY TO STEP D (STEP D x STEP E, DO NOT ROUND)

Occupancy Class	Occupancy Factor	Value Selected (C)
Non-combustible	0.75	
Limited combustible	0.85	
Combustible	1.00	1.00
Free burning	1.15	
Rapid burning	1.25	

REQUIRED (BASE) FIRE FLOW (F) = 12000 L/min (Not rounded)

F is the required fire flow in L/min

C is the coefficient related to the type of construction, and;

Fastfrate Warehouse Development

CIMA+ PROJECT NUMBER: A001083 CLIENT: Fastfrate PROJECT STATUS: 90 % Des

Fastfrate (Ottawa) Holdings Inc. 90 % Design (Site Plan Approval)

FIRE FLOW ASSESSMENT

STEP F - DETERMINE THE DECREASE, IF ANY, FOR AUTOMATIC SPRINKLER PROTECTION AND APPLY TO VALUE IN STEP D ABOVE (DO NOT ROUND)

Sprinkler System Design	Sprinkler Design Charge	Value Selected (C)	Total Charge
Automatic sprinkler system conforming to NFPA standards	-30%	Yes	-30%
Standard water supply	-10%	No	0%
Fully supervised system	-10%	No	0%
TOTAL CHARGE FOR SPRINKLER SYSTEM			-30%

DECREASE FOR SPRINKLER PROTECTION = -3600 L/min (Not rounded)

STEP G - DETERMINE THE TOTAL INCREASE FOR EXPOSURES AND APPLY TO VALUE IN STEP D ABOVE (DO NOT ROUND)

Façade	Separation Distance (m)	Length-height Factor of Exposed Wall (m-storeys)	Assumed Construction of Exposed Wall of Adiacent	Total Charge
North Façade	>45	N/A	N/A	0%
East Façade (fire/party wall)	>45	N/A	N/A	0%
South Façade	>45	N/A	N/A	0%
West Façade	>45	N/A	N/A	0%
TOTAL CHARGE FOR EXPOSURES				0%

INCREASE FOR EXPOSURES = 0 L/min (Not rounded)

STEP H - DETERMINE FIRE FLOW INCLUDING ALL INCREASES AND REDUCTIONS ((STEP E + STEP F + STEP G, ROUND TO NEAREST 1,000 L/min)

8000 L/min (Rounded to Nearest 1,000 L/min) 133.3333333 L/s

2113 USGPM

Fastfrate Warehouse Development

CIMA+ PROJECT NUMBER: A001083 CLIENT: PROJECT STATUS:

Fastfrate (Ottawa) Holdings Inc. 90 % Design (Site Plan Approval)

NOTES/COMMENTS:

STEP A - DETERMINE THE TYPE OF CONSTRUCTION

1. No notes or comments

STEP B - DETERMINE THE FLOOR AREA

1. Assumed vertical openings and exterior vertical communications are properly protected (one hour rating), thus only the area of the largest floor plus 25% of each of the two immediately adjoining floors accounted for per Fire Underwriters Survey (FUS) Water Supply for Public Fire Protection, 1999

2. Per the Fire Underwriters Survey (FUS) Water Supply for Public Fire Protection, 1999, Note E: Fire Walls - In determining floor areas, a fire wall that meets or exceeds the requirements of the current edition of the National Building Code of Canada (provided this necessitates a fire resistance rating of 2 or more hours) may be deemed to subdivide the building into more than one area or may, as a party wall, separate the building from an adjoining building. It is assumed that the party wall to the east will have a fire-resistance rating of at least two hours.

STEP C - DETERMINE THE HEIGHT IN STOREYS

1. Two levels of underground parking not considered as they are at least 50% below grade (note F of Fire Underwriters Survey (FUS) Water Supply for Public Fire Protection, 1999)

STEP D - DETERMINE BASE FIRE FLOW (ROUND TO NEAREST 1,000 L/min)

1. No notes or comments.

STEP E - DETERMINE THE INCREASE OR DECREASE FOR OCCUPANCY AND APPLY TO STEP D (STEP D x STEP E, DO NOT ROUND)

1. Occupancy selected assuming commercial establishment will fall under C-3 occupancy type.

STEP F - DETERMINE THE DECREASE, IF ANY, FOR AUTOMATIC SPRINKLER PROTECTION AND APPLY TO VALUE IN STEP D ABOVE (DO NOT ROUND) 1. Assumes sprinkler system will not be fully supervised.

STEP G - DETERMINE THE TOTAL INCREASE FOR EXPOSURES AND APPLY TO VALUE IN STEP D ABOVE (DO NOT ROUND)

1. Assumes adjoining wall to east is an unpierced party wall considered to form a boundary when determining floor areas warranting a 10% exposure charge per Note E of the Fire Underwriters Survey (FUS) Water Supply for Public Fire Protection, 1999

STEP H - DETERMINE FIRE FLOW INCLUDING ALL INCREASES AND REDUCTIONS ((STEP E + STEP F + STEP G, ROUND TO NEAREST 1,000 L/min) 1. No notes or comments.

Prepared by: Julien Sauvé, P.Eng. PEO# 100200100

Date: 2020-07-26

Verified by: Christian Lavoie-Lebel, P.Eng. PEO# 100067842

Date: 2020-07-26

na.plus\cima\Cima-C10\Ott Projects\A\A001000-A001499\A001083 Fastfrate Warehouse Development\300\360 Civil\03-Watermain\[210725 Water Supply & Fire Flow.xtsx]Water Demands OSDG

PROJECT NAME:Warehouse DevelopmentCIMA+ PROJECT NUMBER:A001083CLIENT:Fastfrate (Ottawa) Holdings Inc.PROJECT STATUS:90 % Design (Site Plan Approval)

HYDRAULIC CALCULATIONS FOR GRAVITY FIRE PROTECTION WATERMAIN

APPLICABLE DESIGN GUIDELINES:

NFPA 13

DESIGN BASIS:

Manning Coefficient :0.013Maximum permitted velocity :3.00 m/sMinimum permitted velocity :0.60 m/s

Section	Dia.	Length	Slope	Invert upstream	Invert downstream	Capacity (full)	Velocity (full)	Flow	Velocity (actual)	% Full	F.S.
	mm	m	%	m	m	m³/s	m/s	m³/s	m/s		
Fire Protection WM	300	60.1	0.10%	86.485	86.425	0.030	0.43	0.015800	0.43	53%	1.90

<u>Remarks</u>

The data in green has been calculated or modified by the designer

The data in blue has been calculated using formulas inserted by the designer

Notes :

1. Slope of 3.00% has been assumed for all building connections.

Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467 Date: 2021-07-25

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842 Date: 2021-07-25

PROJECT NAME: NUMBER: CLIENT: PROJECT STATUS:

Fastfrate (Ottawa) Warehouse Development A001083 Fastfrate (Ottawa) Holdings Inc. 90 % Design (Site Plan Approval)

Prepared b

Verified by Christian Lavoie-Lebel, P.Eng. Date:

$$AFDD = \sum_{day=1}^{n} FDD_{day}$$

AFDD 785 °C.day

Thickness (cm) = $\alpha \sqrt{AFDD}$

are used for calculation.

α 2.4 T (cm) 67.24 cm T (ft) 2.21 ft T (ft, in) 2'3"
T (ft) 2.21 ft
1 (11, 11) 2.5
α 1.7
T (cm) 47.63 cm
T (ft) 1.56 ft
T (ft, in) 1'7"
α 2.7
T (cm) 75.65 cm
T (ft) 2.48 ft
T (ft, in) 2'6"
Only temperatures from winter (Dec 21 – March 21)

Freezing Degree Days (FDD) are computed with this simple formula: FDD = $0^{\circ}C - T_{(daily mean)}$ AFDD is the sum of daily FDD over the season

- used to estimate river ice thickness

	Thickness	(cm) =	$\alpha \sqrt{AFDD}$
lo	e Cover Co	ndition	α
	Windy lake,	no snow	2.7
	Average lake	e with snow	1.7-2.4
	Average rive	er with snow	0.4-0.5
	Sheltered sr	nall river	0.7-1.4
Jaymeson Adams, EIT	Date:	2020-11-25	

2020-11-25

A001083

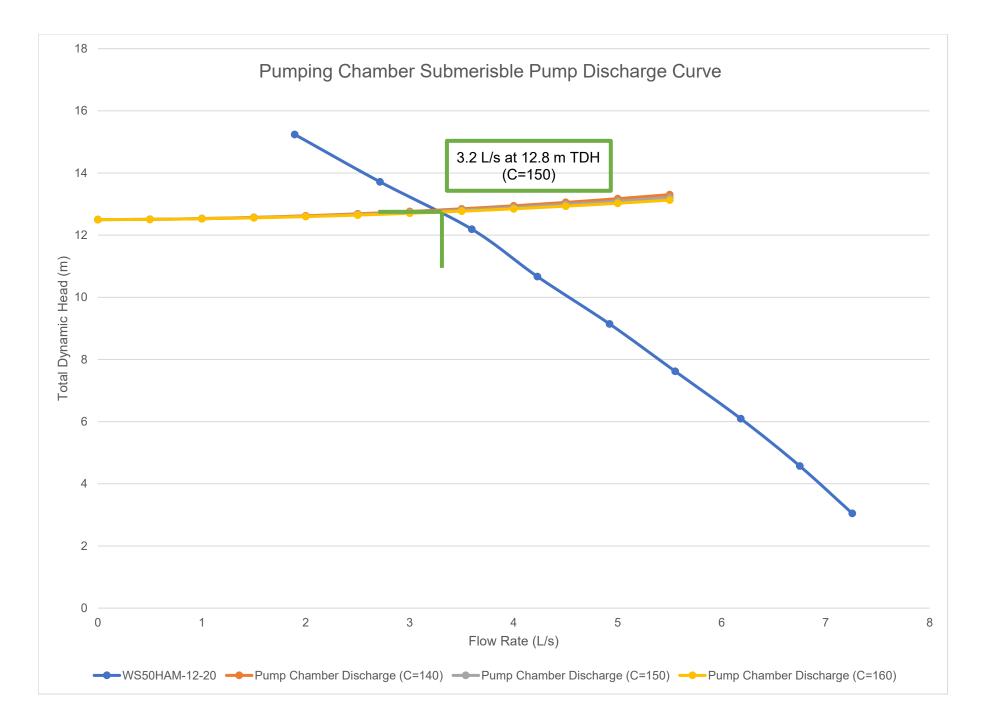
Appendix J -Septic System Detailed Calculations

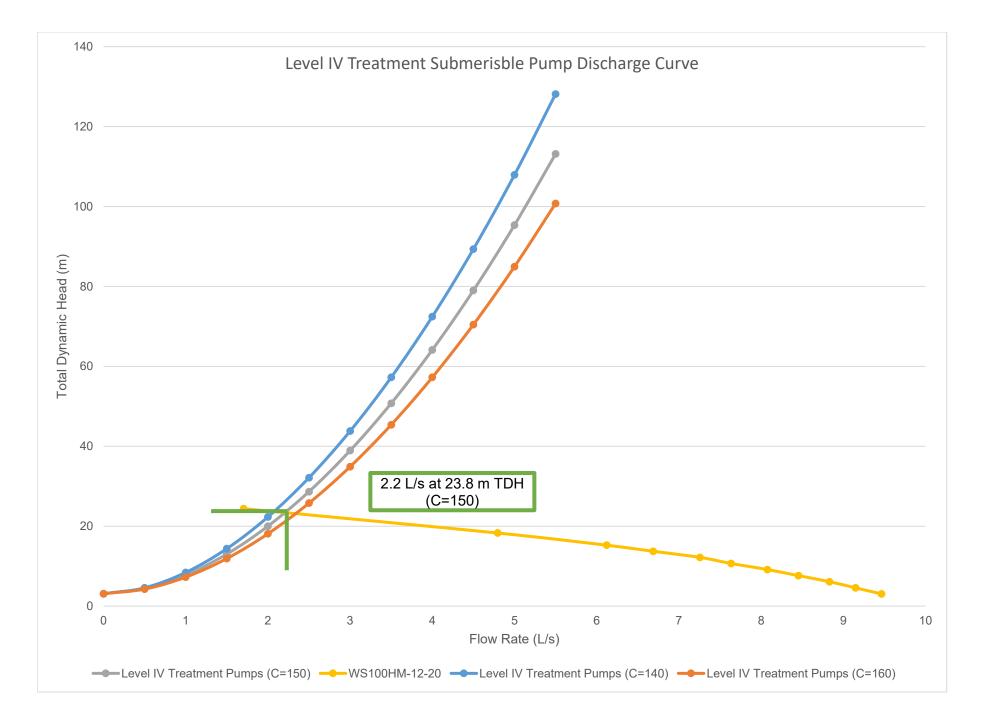
Project:	Fastfrate Warehouse
Task:	Saniatry Sewage Flows per OBC
Project Number:	A0001083
Created By:	Kayla Schmidt
Date:	19-Jul-21

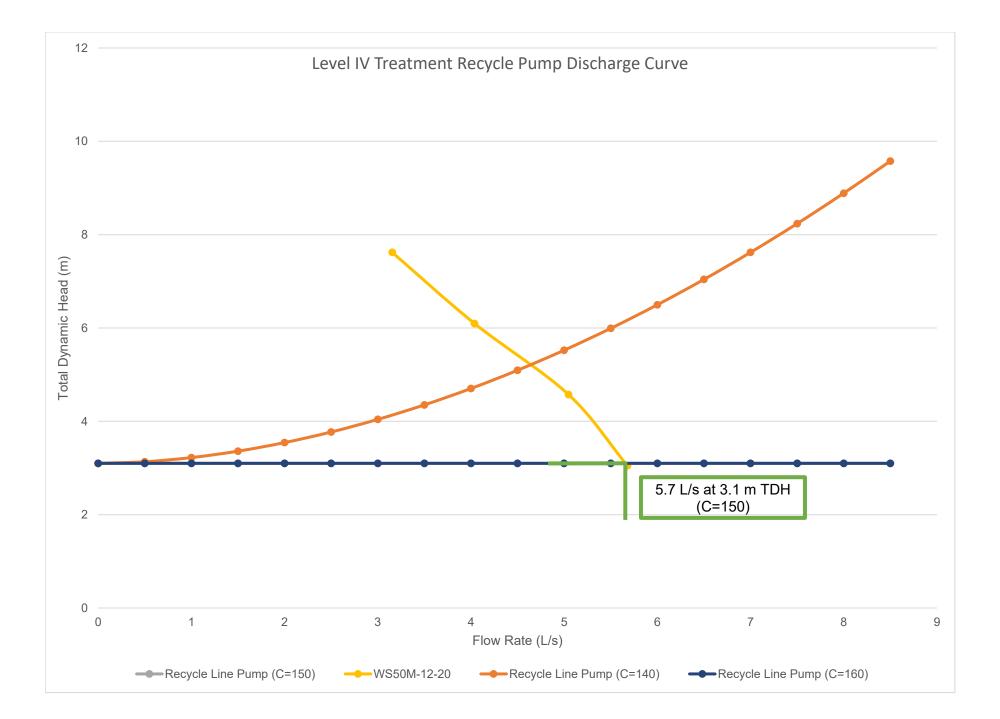
Notes:

Hazen Williams was used to calculate the TDH. There are 6 pumps total (2 for the Pumping Chamber, 2 for the Level IV treatment, and 1 for the recycle line).

Table 1: Dosing Criteria									
Parameter	Value	Unit							
Daily Design Flow Rate	12,800	L/d							
Required Dosing per day	24	times							
Time for each dosing	15	minutes							
Hourly Design Flow Rate	533.3	L/hr							
Design Flow Rate	8.9	L/min							
Design Flow Rate	0.15	L/s							
Assumed Pump Chamber Volume	17,578	L							
Where a pump or siphon is required, the pump or siphon shall be designed to discharge a dose of at least 75% of the internal									


be designed to discharge a dose of at least 75% of the intern volume of the *distribution pipe* within a time period not exceeding fifteen minutes.


Ta	able 2: Dosing Require	ments	
Parameter	Value	Unit	Notes
Length of Each	25		
Distibution Pipe	25	m	
Number of Distribution Pi	7		
Fotal Length	175	m	
Diameter	0.025	m	
Cross Sectional Area	0.000490874	m2	
otal Volume of Distribution Pipe	0.085902924	m3	
otal Volume of Distribution Pipe	85.90	L	
5% of Volume of Distibution Pipe	64.43	L	
/lax time	15	minutes	
low Rate Required	4.30	L/min	
Flow Rate Required	0.07	L/s	
Daily Volume for Flow Rate	2061.67	L/d	
linimum Required Flow Rate per hour	533.33	L/hr	
low Rate require for 15 minute time frame	35.56	L/min (per 15 minutes)	
Flow Rate require for 15 minute time frame	0.59	L/s (per 15 minutes)	
Check	12800	L/d	
Pump Design Flow Rate	1	L/s	
Daily Flow Rate	21600	L/d	


			Pu	mping Cha	mber Pum	ps (to Wa	terloo Biofilt	er)											
Parameter	Value	Unit	Notes	Flow		Flow		Flow		Velocity	Fitting Loss (K*V^2/2*g)	Frictio	riction on Coef (C) in m		Static Head	Pressure to be dosed	Total Dy	vnamic H (m)	ead Loss
Low Water Level	86.712	mASL		L/s	m3/s	m/s	m	140	150	160	m	m	140	150	160				
Top of Pipe	89.212	mASL		0	0.0000	0.0E+00	0.0E+00	0.00	0.00	0.00	2.5	10	12.50	12.50	12.50				
Static Head	2.5	m		0.5	0.0005	9.8E-07	2.6E-13	0.01	0.01	0.01	2.5	10	12.51	12.51	12.51				
Pipe Diameter	0.05	m		1	0.0010	2.0E-06	1.0E-12	0.03	0.03	0.03	2.5	10	12.53	12.53	12.53				
Pipe Area	0.001963495	m2		1.5	0.0015	2.9E-06	2.3E-12	0.07	0.06	0.06	2.5	10	12.57	12.56	12.56				
Pipe Length	5	m		2	0.0020	3.9E-06	4.1E-12	0.12	0.11	0.10	2.5	10	12.62	12.61	12.60				
Pressure at end	10	m		2.5	0.0025	4.9E-06	6.4E-12	0.19	0.16	0.15	2.5	10	12.69	12.66	12.65				
				3	0.0030	5.9E-06	9.3E-12	0.26	0.23	0.20	2.5	10	12.76	12.73	12.70				
Fittings	K Value	Qty	Total	3.5	0.0035	6.9E-06	1.3E-11	0.35	0.31	0.27	2.5	10	12.85	12.81	12.77				
90 degree elbows	0.81	3	2.43	4	0.0040	7.9E-06	1.7E-11	0.45	0.39	0.35	2.5	10	12.95	12.89	12.85				
Tees	1.62	1	1.62	4.5	0.0045	8.8E-06	2.1E-11	0.55	0.49	0.43	2.5	10	13.05	12.99	12.93				
	•	Subtotal	4.05	5	0.0050	9.8E-06	2.6E-11	0.67	0.59	0.53	2.5	10	13.17	13.09	13.03				
	Sa	fety Factor	1.2	5.5	0.0055	1.1E-05	3.1E-11	0.80	0.71	0.63	2.5	10	13.30	13.21	13.13				
		Total	5.25	-		•	•	-				•							

				Level IV 1	reatment	Unit Disch	narge Pumps	(to SB	T Leach	ing Be	d)							
Parameter	Value	Unit	Notes	Flc	w	Velocity	Fitting Loss (K*V^2/2*g)	Frictio	riction I on Coef (C) in m n Forcer Manifold	ficient nain &	Pipe F Friction C	Friction Los Coefficient rcemain &	(C) in m	Static Head	Pressure to be dosed		Dynamic ₋oss (m)	
Low Water Level	86.712	mASL		L/s	m3/s	m/s	m	140	150	160	140	150	160	m	m	140	150	160
Top of Pipe	89.212	mASL		0	0.0000	0.0E+00	0.0E+00	0.00	0.00	0.00	0.00	0.00	0.00	2.5	0.6	3.10	3.10	3.10
Static Head	2.5	m		0.5	0.0005	9.8E-07	7.9E-13	0.03	0.03	0.03	1.44	1.27	1.12	2.5	0.6	4.57	4.40	4.25
Pipe Diameter	0.05	m		1	0.0010	2.0E-06	3.2E-12	0.12	0.11	0.10	5.20	4.57	4.06	2.5	0.6	8.42	7.78	7.25
Pipe Area	0.001963495	m2		1.5	0.0015	2.9E-06	7.1E-12	0.26	0.23	0.20	11.01	9.69	8.60	2.5	0.6	14.37	13.02	11.90
Pipe Length	18	m		2	0.0020	3.9E-06	1.3E-11	0.44	0.39	0.35	18.76	16.51	14.65	2.5	0.6	22.31	20.00	18.10
				2.5	0.0025	4.9E-06	2.0E-11	0.67	0.59	0.52	28.36	24.96	22.15	2.5	0.6	32.13	28.65	25.77
Pipe Diameter	0.025	m		3	0.0030	5.9E-06	2.9E-11	0.94	0.83	0.73	39.75	34.99	31.04	2.5	0.6	43.80	38.91	34.88
Pipe Area	0.000490874	m2		3.5	0.0035	6.9E-06	3.9E-11	1.25	1.10	0.98	52.89	46.55	41.30	2.5	0.6	57.24	50.75	45.38
Pipe Length	26	m		4	0.0040	7.9E-06	5.1E-11	1.60	1.41	1.25	67.73	59.61	52.89	2.5	0.6	72.43	64.12	57.24
Pressure at end	0.6	m	per OOWA best practices	4.5	0.0045	8.8E-06	6.4E-11	1.99	1.76	1.56	84.24	74.13	65.78	2.5	0.6	89.33	78.99	70.44
				5	0.0050	9.8E-06	7.9E-11	2.42	2.13	1.89	102.39	90.11	79.96	2.5	0.6	107.91	95.34	84.95
Fittings	K Value	Qty	Total	5.5	0.0055	1.1E-05	9.6E-11	2.89	2.55	2.26	122.16	107.50	95.39	2.5	0.6	128.15	113.15	100.75
90 degree elbows	0.81	3	2.43															
Tees	1.62	1	1.62															
Reducer (50 to 25 mm)	0.02	1	0.02															
Check Valve	10.8	1	10.8															
Ball Valve	0.08	1	0.08															
		Subtotal	14.95															
	Sa	fety Factor	1.2															
		Total	16.15															

		I	Recycle Line Pun	np (from Le	vel IV Trea	tment to U	pstream of t	he Sep	tic Syst	em)					
Parameter	Value	Unit	Notes	Fl	ow	Velocity	-	Friction	riction l on Coef (C) in m	ficient	Static Head	Pressure to be dosed	Total Dy	vnamic H (m)	ead Loss
Low Water Level	86.712	mASL		L/s	m3/s	m/s	m	140	150	160	m	m	140	150	160
Top of Pipe	89.212	mASL		0	0.0000	0.0E+00	0.0E+00	0.00	0.00	0.00	2.5	0.6	3.10	3.10	3.10
Static Head	2.5	m		0.5	0.0005	9.8E-07	7.1E-13	0.03	0.00	0.00	2.5	0.6	3.13	3.10	3.10
Pipe Diameter	0.05	m		1	0.0010	2.0E-06	2.9E-12	0.12	0.00	0.00	2.5	0.6	3.22	3.10	3.10
Pipe Area	0.001963495	m2		1.5	0.0015	2.9E-06	6.4E-12	0.26	0.00	0.00	2.5	0.6	3.36	3.10	3.10
Pipe Length	18	m		2	0.0020	3.9E-06	1.1E-11	0.44	0.00	0.00	2.5	0.6	3.54	3.10	3.10
Pressure at end	0.6	m		2.5	0.0025	4.9E-06	1.8E-11	0.67	0.00	0.00	2.5	0.6	3.77	3.10	3.10
				3	0.0030	5.9E-06	2.6E-11	0.94	0.00	0.00	2.5	0.6	4.04	3.10	3.10
Fittings	K Value	Qty	Total	3.5	0.0035	6.9E-06	3.5E-11	1.25	0.00	0.00	2.5	0.6	4.35	3.10	3.10
90 degree elbows	0.81	3	2.43	4	0.0040	7.9E-06	4.6E-11	1.60	0.00	0.00	2.5	0.6	4.70	3.10	3.10
Check Valve	10.8	1	10.8	4.5	0.0045	8.8E-06	5.8E-11	1.99	0.00	0.00	2.5	0.6	5.09	3.10	3.10
Ball Valve	0.08	1	0.08	5	0.0050	9.8E-06	7.1E-11	2.42	0.00	0.00	2.5	0.6	5.52	3.10	3.10
		Subtotal	13.31	5.5	0.0055	1.1E-05	8.6E-11	2.89	0.00	0.00	2.5	0.6	5.99	3.10	3.10
	Sa	afety Factor	1.2	6	0.0060	1.2E-05	1.0E-10	3.40	0.00	0.00	2.5	0.6	6.50	3.10	3.10
		Total	14.51	6.5	0.0065	1.3E-05	1.2E-10	3.94	0.00	0.00	2.5	0.6	7.04	3.10	3.10
				7	0.0070	1.4E-05	1.4E-10	4.52	0.00	0.00	2.5	0.6	7.62	3.10	3.10
				7.5	0.0075	1.5E-05	1.6E-10	5.14	0.00	0.00	2.5	0.6	8.24	3.10	3.10
				8	0.0080	1.6E-05	1.8E-10	5.79	0.00	0.00	2.5	0.6	8.89	3.10	3.10
				8.5	0.0085	1.7E-05	2.1E-10	6.48	0.00	0.00	2.5	0.6	9.58	3.10	3.10

Appendix K -Sanitary Servicing Calculations

PROJECT NAME: CIMA+ PROJECT CLIENT: PROJECT STATUS:

Fastfrate (Ottawa) A001083 Fastfrate (Ottawa) Holdings Inc. 90 % Design (Site plan Approval)

WASTEWATER PEAK FLOW DETERMINATION - COMMERCIAL & INSTITUTIONAL

APPLICABLE DESIGN GUIDELINES:

City of Ottawa Sewer Design Guidelines, 2012
 City of Ottawa Technical Bulletin ISTB-2018-01

DOMESTIC CONTRIBUTIONS:

COMMERCIAL & INSTITUTIONAL DESIG	N CRITERIA:		
Base Flow: Peaking factor:	2.8 L/m ² /d 1.5 unitless		and Institutional Average Design Flow = 28,000 L/gross ha/day
Extreneous Flows + Infiltration: OBC Baseflow:	0.33 L/s/ha 12800 L/d 0.148 L/s	Institutional Peak factor: 1.5 if inst	imercial contribution >20%) otherwise use 1.0 tutional contribution >20%) otherwise use 1.0 e in Appendix 4-B

AVERAGE FLOW - DOMESTIC:

Buildings	Building Area	Building Area	Proportional Area	Average Base Flow	Peaking Factor	Peak Flow	Extraneous Flow	Maximum Flow	¹ If the commercial or institutional area is less than 20% of the total area, then a factor of 1.0 can be used.
	ft ²	m ²	ha	(L/s)		(L/s)	(L/s)	(L/s)	
Warehouse - Ottawa Sewer Desgin Guidelines	76503	7107	0.003	0.23	1.50	0.35	0.00	0.35	 Infiltration Allowance (Dry weather): 0.05 L/s/effective gross ha (for all areas) Infiltration Allowance (Wet weather): 0.28 L/s/effective gross ha (for all areas)
Warehouse - Ontario Building Code	76503	7107	0.003	0.15	1.50	0.22	0.00	0.22	 Infiltration Allowance (Total I/I): 0.33 L/s/effective gross
conservative.									Wet Weather Extraneous Flow: 5.0 L/s/gross ha (rare event) Annual event to be determined at design Neighborhood Level Analysis (between 10 ha and 100 ha): Wet Weather Extraneous Flow: 3.0 L/s/gross ha (rare event) Annual event to be determined at design Large Drainage area – Collector Level Analysis (greater than 100 ha):
		7107					- Total (L/s) =	0.35	Wet Weather Extraneous Flow: 2.0 L/s/gross ha (rare event) Annual event to be determined at design

Prepared by: Guillaume LeBlond, M.A.Sc., EIT. PEO No.: 100530467

Date: July 20 2021

Sewer Design Guidelines

Second Edition, October 2012

SDG002

Verified by: Christian Lavoie-Lebel, P.Eng.

Date: July 20 2021

PEO No.: 100067842

\\cima.plus\cima\Cima\C10\Ott_Projects\A\A001000-A001499\A001083_Fastfrate Warehouse Development\300\360_Civili02-Sanitary Sewer\[210720_CIMA+ Sanitary Sewer Flow - Commercial.xtsx]SANITARY FLOWS

PROJECT NAME:Warehouse DevelopmentCIMA+ PROJECT NUMBER:A001083CLIENT:Fastfrate (Ottawa) Holdings Inc.PROJECT STATUS:90 % Design (Site Plan Approval)

APPLICABLE DESIGN GUIDELINES:

1. City of Ottawa Sewer Design Guidelines, 2012

2. City of Ottawa Technical Bulletin ISTB-2018-01

DESIGN BASIS:

Manning Coefficient :	0.013
Maximum permitted velocity :	3.00 m/s
Minimum permitted velocity :	0.60 m/s

Section	Dia.	Length	Slope	Invert	Invert	Capacity	Velocity	Flow	Velocity	% Full
				upstream	downstream	(full)	(full)		(actual)	
	mm	m	%	m	m	m³/s	m/s	m³/s	m/s	
Building to SAN #1	200	9.2	3.00%	89.850	89.574	0.057	1.81	0.000350	0.50	1%
SAN #1 to Septic tank	200	18.1	1.46%	89.564	89.300	0.040	1.26	0.000350	0.39	1%
Outlet				89.300						

HYDRAULIC CALCULATIONS FOR SANITARY SEWERS

<u>Remarks</u>

The data in green has been calculated or modified by the designer

The data in blue has been calculated using formulas inserted by the designer

Notes :

1. Slope of 3.00% has been assumed for all building connections.

Prepared by: Guillaume LeBlond, M.A.Sc., EIT PEO No.: 100530467

Date: 2021-07-20

Verified by: Christian Lavoie-Lebel, P.Eng. PEO No.: 100067842 Date: 2021-07-20

Appendix L -

Correspondence

APPLICANT'S STUDY AND PLAN IDENTIFICATION LIST

Legend: **S** indicates that the study or plan is required with application submission.

A indicates that the study or plan may be required to satisfy a condition of approval/draft approval.

For information and guidance on preparing required studies and plans refer to:

http://ottawa.ca/en/development-application-review-process-0/guide-preparing-studies-and-plans

S/A	Number of copies	ENC	GINEERING	S/A	Number of copies
S	5	1. Site Servicing Plan	2. Assessment of Adequacy of Servicing	s	5
S	5	3. Grade Control and Drainage Plan	4. Geotechnical Study	S	5
		5. Composite Utility Plan	6. Groundwater Impact Study		
		7. Servicing Options Report	8. Wellhead Protection Study		
S	5	9. Transportation Impact Study	10.Erosion and Sediment Control Plan	S	5
S	5	11.Storm water Management Plan	12.Hydrogeological and Terrain Analysis	S	5
		13.Hydraulic Water main Analysis	14.Noise / Vibration Study	S	5
		15.Roadway Modification Design Plan	16.Confederation Line Proximity Study		

S/A	Number of copies	PLANNING	/ DESIGN / SURVEY	S/A	Number of copies
		17.Draft Plan of Subdivision	18.Plan Showing Layout of Parking Garage		
		19.Draft Plan of Condominium	20.Planning Rationale	S	3
S	5	21.Site Plan (can be combined with Landscape Plan)	22.Minimum Distance Separation (MDS)		
		23.Concept Plan Showing Proposed Land Uses and Landscaping	24.Agrology and Soil Capability Study		
		25.Concept Plan Showing Ultimate Use of Land	26.Cultural Heritage Impact Statement		
S	5	27.Landscape Plan <i>(can be combined with Site Plan)</i>	28.Archaeological Resource Assessment Requirements: S (site plan) A (subdivision, condo)		
S	3	29.Survey Plan	30.Shadow Analysis		
S	5	31.Architectural Building Elevation Drawings (dimensioned) - Concept	32.Design Brief (*should be a part of the Planning Rationale)	S	*
		33.Wind Analysis			

S/A	Number of copies	ENV	IRONMENTAL	S/A	Number of copies
		34.Phase 1 Environmental Site Assessment	35.Impact Assessment of Adjacent Waste Disposal/Former Landfill Site		
		36.Phase 2 Environmental Site Assessment	37.Assessment of Landform Features		
		38.Record of Site Condition	39.Mineral Resource Impact Assessment		
S	3	40.Tree Conservation Report (Include in EIS)	41.Environmental Impact Statement (please contact the SNC)	S	3
		42.Mine Hazard Study / Abandoned Pit or Quarry Study	43.Integrated Environmental Review (Draft, as part of Planning Rationale)		

Meeting Date: December 17, 2020

Application Type: Site Plan Control, Complex

File Lead (Assigned Planner): Krishon Walker

Infrastructure Approvals Project Manager: Harry Alvey

Site Address (Municipal Address): 301 Somme Street

*Preliminary Assessment: 1 2 3 4 5 5

*One (1) indicates that considerable major revisions are required before a planning application is submitted, while five (5) suggests that proposal appears to meet the City's key land use policies and guidelines. This assessment is purely advisory and does not consider technical aspects of the proposal or in any way guarantee application approval.

It is important to note that the need for additional studies and plans may result during application review. If following the submission of your application, it is determined that material that is not identified in this checklist is required to achieve complete application status, in accordance with the Planning Act and Official Plan requirements, the Planning, Infrastructure and Economic Development Department will notify you of outstanding material required within the required 30 day period. Mandatory pre-application consultation will not shorten the City's standard processing timelines, or guarantee that an application will be approved. It is intended to help educate and inform the applicant about submission requirements as well as municipal processes, policies, and key issues in advance of submitting a formal development application. This list is valid for one year following the meeting date. If the application is not submitted within this timeframe the applicant must again pre-consult with the Planning, Infrastructure and Economic Development Department.

 110 Laurier Avenue West, Ottawa ON K1P 1J1
 Mail code: 01-14

 110, av. Laurier Ouest, Ottawa (Ontario) K1P 1J1
 Courrier interne : 01-14

Pre-Application Consultation Site Plan Control (Complex)

301 Somme Street

Applicant:	Douglas Rancier, Civitas Group	Owner:	Rod Pierce, R. W. Tomlinson Limited				
Ward	20 - Osgoode	Councillor	George Darouze				
Proposal Summary:	Development of a 4,645.15 square metre (<i>50,000 sq. ft.</i>) warehouse on the western portion of the subject site, an 1,858.06 square metre (<i>20,000 sq. ft.</i>) cross deck that would connect to the warehouse, and a 278.71 square metre (<i>3,000 sq. ft.</i>) office space.						
Attendees:	Krishon Walker, Planner, PIEDD, City of Ottawa Harry Alvey, Infrastructure Project Manager, PIEDD, City of Ottawa						
Regrets:		ntal Planner, Pl nager, Hydroge					

Meeting Notes

Planning Comments (Provided by Krishon Walker, Planner)

 As per Schedule A of the Official Plan, the site is designated Rural Employment Area. The Rural Employment Area is intended to support and encourage clustering of primarily industrial uses not suitable in the Urban Area or General Rural Area. Uses permitted in this designation includes but is not limited to new; heavy and light industrial uses, transportation uses, and warehouse and storage operations. The prosed use is consistent with the policies of the Official Plan.

Development within the Rural Employment Area triggers Site Plan Control. Particular attention will be given to the physical design of the building(s) and site, including signage, buffering, landscaping and fencing.

• As per the City's Zoning By-law, the site is zoned as Rural Heavy Industrial Zone (RH).

The Zoning By-law defines a warehouse as "a building used for the storage and distribution of goods and equipment including self-storage units and mini-warehouses and may include one accessory dwelling unit for a facility manager".

Please ensure that your proposal complies with all applicable provisions of the Zoning By-law.

Additionally, please ensure that the proposed parking complies with the provisions of Part 4 of the Zoning By-law. Parking areas should be screened from the street.

If any aspect of the proposal does not comply with the zoning provisions of the applicable zone, a Minor Variance may be required through the Committee of Adjustment. If a Minor Variance is required, please note approval from the Committee of Adjustment would be required before a decision is made on the Site Plan Control application.

Cash-in-Lieu of Parkland was be collected through the Plan of Subdivision (15-94-0505) application. As the proposed site development is the same as anticipated in the subdivision agreement, we would not request any additional CIL or land at this time.

 There is a 30cm reserve along the frontage of the property. A lifting of a reserve application will also be required. The reserve was put in place during the establishment of the subdivision and, as per clause 18 of Schedule F, Section D, of the Subdivision Agreement, can only be lifted:

'when certification of the proposed on-site well has been provided by a Professional Engineer or professional geoscientist licensed in the Province of Ontario that the well construction is in accordance with Ontario Regulation 903 and the recommendations contained in the report titled "Hydrogeological Investigation, Terrain Analysis & Impact Assessment, Proposed Industrial Subdivision" prepared by Golder Associates; Dated December 2008; Project No. 08-1122-0215 and the supporting letter "Tomlinson Industrial Subdivision – City of Ottawa File Number D07-16-15-94-0505; response to South nation Conservation Authority"; Golder Associates; Dated April 17, 2009; Project No. 08-1122-0215. This certification must be to the satisfaction of the General Manager, Planning and Growth Management.'

- As the property is located within 500 metres of a Bedrock Resource Area, the Planning Rationale must speak to this designation and provide a discussion on how the proposal will impact (*if at all*) the Bedrock Resource Area.
- Please note that, as per Table 221 of the RH zone, any proposed outdoor storage is not permitted within the front yard and must be screened from the public street by an opaque screen at least 1.8 metres in height from finished grade.
- Please contact the South Nation Conservation Authority (SNC), amongst other federal and provincial departments/agencies, to identify all the necessary permits and approvals required to facilitate the development. Responsibility rests with the developer and their consultant for obtaining all external agency approvals. The address shall be in good standing with all approval agencies. Copies of confirmation of correspondence will be required by the City of Ottawa from all approval agencies that a form of assent is given. No construction shall commence until after a commence work notification is given.
- Please ensure that the Site Plan shows the full extent of the property and that a complete zoning table is provided. The Site Plan should also clearly show the dimensions of all proposed buildings, roads, radii of turns, overhead clearances, parking areas with defined parking spaces, steps, terraces, fences, walks, aisles and private approaches.
- Please show the location for snow storage on both the Site Plan and Landscape Plan. Storage shall not interfere with approved grading and drainage patterns or servicing. If snow is to be removed from the site, then please make a note of that on the Site Plan and include where the snow will be placed in the interim. Temporary snow storage areas should not conflict with utility box, landscaping, required parking, and site circulation.
- Be sure to follow the City's guide to preparing plans and studies (*see link below*) to ensure a high quality of your submission.

Feel free to contact Krishon Walker at Krishon.Walker@ottawa.ca, for follow-up questions.

Engineering Comments (Provided by Harry Alvey, Infrastructure Project Manager)

o This site is part of the Hawthorne Industrial Park that was approved in 2009. A stormwater management pond was constructed as part as the development of this park. This stormwater management pond provides stormwater management for 75% of Hawthorne Industrial Park and includes the proposed development in that service area. The pond was designed to provide 70% TSS removal. The current requirement is to provide 80% TSS removal, which will require this proposed development to meet the new enhanced requirement. It is suggested that the consultant procure a copy of the stormwater management report for Hawthorne

Industrial Park for coordination. The stormwater management report was prepared by J.L. Richards & Associates Limited (J.L.R. Project #: JLR 20983; City Index #: R-2973; City Old Tag #: W09-04-1713) Revision date May 2009.

- The site appears to cover two adjacent drainage areas. There should be a comprehensive discussion of how the SWM will be handled in each of the drainage areas.
- o Provide Pre- and Post-Drainage Area Maps with Pre- based on existing site conditions.
- The conceptual plan provided indicated there would possibly be several stormwater management ponds provided on site. These stormwater management facilities could be used to achieve the required 80% TSS removal now required. During the pre-consultation meeting, the design team indicated that the ponds along with underground water tanks will be needed to provide the required fire protection and sprinkler system for the proposed warehouse and truck docks. Information will need to be provided during the design process discussing how both the stormwater management objectives and the fire flow conditions will be meet jointly form these ponds.
- Information will need to be provide for fire siamese connections to the building for the sprinklers. These will need to be accessible from fire lanes for fire trucks.
- Provide fire flow computations based on FSU method and information on interior fire sprinkler system.
- This site has been filled with uncontrolled fill. The geotechnical report will should provide an analysis of these soils and their ability to provide adequate bearing capacity for the traffic and proposed structures on site.
- The geotechnical report will need to include a section on slope stability for the slopes along Rideau Road and Somme Street.
- Percolations tests should be provided to indicate that an appropriate infiltration rate can be achieved for the needed septic discharge. This should be provided in the hydrogeological report.
- Truck traffic maneuvers for the proposed trucks, fire trucks and garbage trucks should be modeled in AutoTurn for onsite to show there is adequate access/space for these vehicles to maneuver safely. This analysis should also show proposed location of proposed well if it is in or adjacent to the pavement.
- For onsite design of pavement provide the ESAL's expected for the site, the CBR or Mr of the subgrade soils, frost heave potential and proposed pavement design.
- The stormwater management will require a direct submission of the ECA to the MECP. The current turnaround times for these ECA applications are approximately 11 to 12 months.

Feel free to contact Harry Alvey at <u>Harry.Alvey@ottawa.ca</u>, for follow-up questions.

Transportation Comments (Provided by Mike Giampa, Transportation Project Manager)

- A Transportation Impact Assessment (TIA) is warranted, please proceed to scoping.
- The application will not be deemed complete until the submission of the draft step 1-4, including the functional draft RMA package (*if applicable*) and/or monitoring report (*if applicable*).
- Although a full review of the TIA Strategy report (*Step 4*) is not required prior to an application, it is strongly recommended.

- Right-of-way protection on Rideau is 26 metres and the sight triangle at Somme/Rideau: 5 metre x 5 metres
- o A Road Noise Impact Study is required for the proposed office use.

Feel free to contact Mike Giampa at Mike.Giampa@ottawa.ca, for follow-up questions.

Enviromental Comments (Provided by Matthew Hayley, Environmental Planner)

- The lot was created as part of a subdivision (15-94-0505) and in 2008 a "Tree Preservation and Protection Plan, Proposed Industrial Subdivision (Excluding Orgawolrd site)..." was prepared by Golder Associates; dated October 15, 2008 as part of the final approval of the subdivision. This document will need to be followed.
- The site plan will need to have a Tree Conservation Report (TCR) to implement the previously approved tree preservation and protection plan. The TCR will also need to reflect current requirements regarding butternuts and other Official Plan policies. The proposal to add parking within the wooded area will not be supported if this area is identified from preservation in the approved tree preservation and protection plan.
- Please note that a watercourse is mapped along Rideau Road and the South Nation Conservation Authority should consulted as the proposed parking lot may be within 30 m of this mapped feature. You will need to support this location for the parking lot as per the Official Plan and the Shields Creek Subwatershed study.

Feel free to contact Matthew Hayley at <u>Matthew.Hayley@ottawa.ca</u>, for follow-up questions.

Hydrogeological Comments (Provided by Michel Kearney, Hydrogeologist)

- A Hydrogeological and Terrain Analysis report is required, in accordance with Procedures D-5-4 and D-5-5 of the Ministry of the Environment, Conservation and Parks. This will include the siting, drilling and testing of the production well (*i.e. not just a test well*).
- It appears that there are thin soils (*defined as 2 m or less*) on the subject site. Enough test
 pits and boreholes are to be put down in the area of the leaching bed and in the surrounding
 area to assess the risk to the onsite well and any existing or future offsite wells. The report is
 to document the fieldwork and provide an opinion on the level of risk.
- Depending on the findings of the fieldwork, mitigation measures may be required in order to reduce the risk to the water supply. These may include a longer casing length for the well, a deeper aquifer source, an advanced (*Level 4 or beyond*) sewage treatment system and ensuring the well is upgradient from the sewage system. Discussion with the City's technical reviewers is encouraged, as the study progresses.
- The well must be located in a landscaped area, away from traffic and potential sources of contamination, a minimum distance of 3 m from property lines and buildings, as well as the minimum distance to the sewage system as prescribed in the Ontario Building Code. Grades are to be provided on the Grading Plan for the top of casing, the ground at the well and 3 m away from the well, to demonstrate drainage away from the well in accordance with the Regulation (O.Reg. 903).

Feel free to contact Michel Kearney at <u>Michel.Kearney@ottawa.ca</u>, for follow-up questions.

Conservation Authority Comments (Provided by James Holland, Watershed Planner, SNC)

Natural Heritage

- A watercourse flows along Rideau Road towards the Findlay Creek Municipal Drain, approximately 70m downstream. Findlay Creek is a permanent feature watercourse known to contain sensitive aquatic species.
- To prevent soil erosion and impacts to surface water, development and site alteration should be set back 30 metres from the high water mark of the watercourse, or 15 metres from the existing top of bank, whichever is greater. This is consistent with Section 4.7.3 of the City of Ottawa's Official Plan and Section 69 of the Zoning By-law.
- For any development within the setback area, an EIS should be completed demonstrating that the development will have no negative impacts on the feature or its functions.

Stormwater Management

- Stormwater management must conform to the design for the Hawthorn Industrial Park and meet the current standards.
- Water quality should be managed so that post-runoff equals pre runoff volumes for the 1 or 5 and the 100 year event.
- Water quality should achieve 80% TSS removal.
- The stormwater design should include, at a minimum, a grading and drainage plan, sediment and erosion control plan and a supporting report with calculations demonstrating how the standards have been met.

Conservation Authority Regulations

• Any interference with a watercourse, including a roadside ditch, may require a permit under O. Regulation 170/06, and restrictions may apply.

Private Servicing

• The applicant should contact the Ottawa Septic Service Office for input on the design of private servicing.

Feel free to contact Planner, James Holland, at <u>iholland@nation.on.ca</u>, for follow-up questions.

Application Submission Information

Applications Type: Site Plan Control, Complex.

Application processing timeline generally depends on the quality of the submission. For more information on standard processing timelines, please visit: <u>https://ottawa.ca/en/city-hall/planning-and-development/information-development/development-application-review-process/development-application-submission/development-application-forms#site-plan-control</u>

Prior to submitting a formal application, it is recommended that you pre-consult with the Ward Councillor.

For information on application fees, please visit: <u>https://ottawa.ca/en/city-hall/planning-and-development/information-development-application-review-process/development-application-submission/fees-and-funding-programs/development-application-fees</u>

To request City of Ottawa plan(s) or report information please contact the City of Ottawa Information Centre: <u>InformationCentre@ottawa.ca</u> or (613) 580-2424 ext. 44455

Application Submission Requirements

For information on the preparation of Studies and Plans and the City's requirements, please visit: <u>https://ottawa.ca/en/city-hall/planning-and-development/information-</u> <u>developers/development-application-review-process/development-application-</u> <u>submission/guide-preparing-studies-and-plans</u>

Please provide hard copies and electronic copy (PDF) of all plans and studies required.

All plans and drawings must be produced on A1-sized paper and folded to 21.6 cm x 27.9 cm ($8\frac{1}{2}$ "x 11").

Note that many of the plans and studies collected with this application must be signed, sealed and dated by a qualified engineer, architect, surveyor, planner or designated specialist.

Julien Sauvé

From:Julien SauvéSent:Wednesday, May 19, 2021 9:19 AMTo:Alvey, Harry; Brown, AdamCc:Christian Lavoie-Lebel; Tim KennedySubject:301 Somme Street. Fastfrate Meeting Minutes

Hi Harry,

Thanks a lot again for meeting with us. The following is a brief summary of our discussion.

Date of Meeting:	May 18, 2021
Attendees:	Harry Alvey – City of Ottawa
	Adam Brown – City of Ottawa
	Julien Sauve – CIMA+
	Tim Kennedy – CIMA+

Notes:

- 1. City will look to see if it can provide to CIMA+ a copy of the Appendices for the SWM Report by J.L. Richards. CIMA+ will refer to this report in the design development and append it to their report.
- 2. CIMA+ will refer to the SWM Report prepared by J.L. Richards for allowable release rate to the existing pond which accounts for a release of the entire site even though the site appears to cover two adjacent drainage areas. Any uncontrolled area will be accounted for in this allowable release rate. Pre and post development drainage maps would no longer be applicable in this instance.
- 3. CIMA+ discussed how on site pond and grassed swales would provide for quality control (80% TSS) and quantity control would be available in the existing downstream pond per J.L. Richards SWM Report.
 - a. On-site pond would also provide quantity for sprinklers and firefighting.
- 4. City recommended having a free standing Siamese connection closer to the Fire Route (within 3-6 m and perpendicular to adjacent parked fire truck).
- 5. City noted that dry Fire Hydrants need to be 3-6m from fire route and cannot be behind a parking stall.
- 6. CIMA+ to show Autoturn simulation for fire trucks positioned at hydrants and Siamese.
- 7. City provided the contact for Fire Service Allan Evans and noted he would be the best reference for questions regarding dry hydrant flow and firefighting requirements, etc.
- 8. City noted the retaining wall would require design by a structural engineer prior to approval. The design must include a cross section and the highest point of the wall as well as a force diagram and a load diagram as it is over 1m in height.
- 9. City noted that minimum slope of swale without subdrains is 0.5%. However, they are open to looking at the possibility of having low slope swale of 0.1% assuming CIMA+ can provide justification. CIMA+ to demonstrate adequate percolation (prior to and after vegetation) of water during frequent (smaller) storms and confirm it can still convey the larger storms at a reasonable velocity.
- 10. City noted that septic system to be design in accordance with DS55 and DS54.
- 11. City noted OSSO (Ottawa Septic System Office) would govern septic design where flows are less than 10 000 L, while the MECP would govern for over 10 000L. Correspondence is to be provide in the Servicing Report by CIMA+.
 - a. City confirmed OSSO operates out of RVCA's offices.
- 12. CIMA+ and City briefly discussed potential for Limited Commence Work Order given current long turnaround times for ECA approvals of 11-12 months. City confirmed this can be further discussed closer to the time of Site Plan Approval.
 - a. City confirmed they will <u>not</u> have ToR for the Industrial use ECA or the septic ECA.

Please let us know if there is anything we have missed or misrepresented in this summary.

Regards,

JULIEN SAUVÉ, P.Eng. Engineer / Infrastructure Ingénieur / Infrastructure

T 613-860-2462 ext. 6623 **M** 613-668-1298 **F** 613-860-1870 110–240 Catherine Street, Ottawa, ON K2P 2G8 CANADA

Do you really need to print this email? Let's protect the environment! Devez-vous vraiment imprimer ce courriel? Pensons à l'environnement!

CONFIDENTIALITY WARNING This e-mail is confidential. If you are not the intended recipient, please notify the sender immediately and delete it in its entirety.

AVERTISSEMENT CONCERNANT LA CONFIDENTIALITÉ Ce message est confidentiel. S'il ne vous est pas destiné, veuillez en informer l'émetteur immédiatement et le détruire intégralement.

Julien Sauvé

From:	James Holland <jholland@nation.on.ca></jholland@nation.on.ca>
Sent:	Tuesday, May 4, 2021 11:35 AM
To:	Julien Sauvé
Subject:	FW: Fastfrate Site Water Quality Requirements
Attachments:	FW_ South Nation Conservation Property Inquiry Letters _ (Roll_ 061460008029995.msg; 200608 2009 05 Hawthorne Industrial Park-SWM REPORT FEB09.pdf
Follow Up Flag:	Follow up
Flag Status:	Flagged

EXTERNAL EMAIL

Hi Julien,

Thanks for confirming with the Conservation Authority; this question has come up for every property in the subdivision. The current standard is 80% TSS removal.

The pre-constitution for the site plan focussed on the adjacent watercourse and encroachment into the 30m setback. Our review will look to confirm that the stormwater management design implements the recommendations of an environmental impact statement that addresses this issue. We have not received a study so I cannot provide any additional information.

Feel free to contact me if there are any other questions about the site plan application. Regards,

James

From: Julien Sauvé <<u>Julien.Sauve@cima.ca</u>>
Sent: May 3, 2021 3:33 PM
To: Laura Crites <<u>lcrites@nation.on.ca</u>>
Cc: Christian Lavoie-Lebel <<u>Christian.Lavoie-Lebel@cima.ca</u>>; Douglas Rancier <<u>drancier@civitasgroup.ca</u>>
Subject: Fastfrate Site Water Quality Requirements

External email - if you don't know or can't confirm the identity of the sender, please exercise caution and do not open links or attachments.

Hi Laura,

My name is Julien and I am working with Fastfrate to help design their new facility at the intersection of Rideau road and Somme Street. Refer to attached email for previous correspondence about the subject site.

The reason we are contacting you is to get confirmation on the water quality requirements. The attached SWM report 2009 for the Hawthorne Industrial site (see attached) states that individual site will need to fulfil the normal level of protection (TSS 70% removal). Can you confirm if this requirement is still valid? Refer to section 5 p. 14 of 30.

Please advise us on the water quality requirement and let us know if you have any questions.

Regards,

JULIEN SAUVÉ, P.Eng. Engineer / Infrastructure Ingénieur / Infrastructure

T 613-860-2462 ext. 6623 **M** 613-668-1298 **F** 613-860-1870 110–240 Catherine Street, Ottawa, ON K2P 2G8 CANADA

Do you really need to print this email? Let's protect the environment! Devez-vous vraiment imprimer ce courriel? Pensons à l'environnement!

CONFIDENTIALITY WARNING This e-mail is confidential. If you are not the intended recipient, please notify the sender immediately and delete it in its entirety.

AVERTISSEMENT CONCERNANT LA CONFIDENTIALITÉ Ce message est confidentiel. S'il ne vous est pas destiné, veuillez en informer l'émetteur immédiatement et le détruire intégralement.

From:	Uzoechina Ukeje <uukeje@gwal.com></uukeje@gwal.com>
Sent:	July 8, 2021 1:23 PM
То:	Guillaume LeBlond
Cc:	Christian Lavoie-Lebel; Peter Chan; Tim Kennedy; Julien Sauvé
Subject:	RE: [EXTERNAL]RE: A001083 - CBRE Fastfrate - Building Stormwater
	Management

EXTERNAL EMAIL

Hi Guillaume,

The architectural drawings we have on hand do not show any roof drain positions. However, <u>if we are to assume a horizontal roof with no adjacent walls</u>, the **tota**l release rate will be **173.45L/s.**

- 1) With a 6in capacity Rain Water Leader, a total of 13 Roof drains will be required (each having a release rate of 14L/s)
- 2) With an 8in capacity Rain Water Leader, a total of 6 Roof drains will be required (each having a release rate of 30L/s)

Let me know if you have further questions.

Thank you

From: Guillaume LeBlond <<u>Guillaume.LeBlond@cima.ca</u>>
Sent: July-08-21 11:53 AM
To: Uzoechina Ukeje <<u>uukeje@gwal.com</u>>
Cc: Christian Lavoie-Lebel <<u>Christian.Lavoie-Lebel@cima.ca</u>>; Peter Chan <<u>pchan@gwal.com</u>>; Tim
Kennedy <<u>Tim.Kennedy@cima.ca</u>>; Julien Sauvé <<u>Julien.Sauve@cima.ca</u>>
Subject: [EXTERNAL]RE: A001083 - CBRE Fastfrate - Building Stormwater Management

Hi Uzo,

Just to clarify what I need from my last email: I need the number of roof drains as well as the flowrate per drain . Hope this clears up any confusion.

Thanks,

GUILLAUME LEBLOND, M.A.Sc., EIT EIT / Infrastructures EIT / Infrastructure

T 613-860-2462 ext. 6667 **C** 613 868-5747 **F** 613-860-1870 110–240 Catherine Street, Ottawa, ON K2P 2G8 CANADA

Avis pour nos clients sur la COVID-19

L'humain au centre de l'ingénierie

From: Guillaume LeBlond
Sent: July 8, 2021 10:44 AM
To: Uzoechina Ukeje <<u>uukeje@gwal.com</u>>
Cc: Christian Lavoie-Lebel <<u>Christian.Lavoie-Lebel@cima.ca</u>>; pchan@gwal.com; Tim Kennedy
<<u>Tim.Kennedy@cima.ca</u>>; Julien Sauvé <<u>Julien.Sauve@cima.ca</u>>
Subject: A001083 - CBRE Fastfrate - Building Stormwater Management

Good morning Uzo,

I work with Julien Sauvé and Christian Lavoie-Lebel on the Fastfrate project and we are currently finalizing the stormwater management design for the site. Could you please provide us with the release rates of the building roof drains? We are looking for both the 10 year and 100 year rainfall.

Thank you,

GUILLAUME LEBLOND, M.A.Sc., EIT EIT / Infrastructures EIT / Infrastructure

T 613-860-2462 ext. 6667 **C** 613 868-5747 **F** 613-860-1870 110–240 Catherine Street, Ottawa, ON K2P 2G8 CANADA

Avis pour nos clients sur la COVID-19

L'humain au centre de l'ingénierie

This message and the documents attached thereto, is intended only for the addressee, and may contain privileged, confidential information and/or be exempt for disclosure under applicable law. If you are not the intended recipient, or responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender immediately by e- mail and delete the original message and its attachments. The sender does not accept liability for any errors, omissions, corruption or viruses in the contents of this message or any attachments that arise as a result of e-mail transmission. Thank you. By submitting your or another individual's information to Goodkey Weedmark and Associates Limited, you agree, and confirm your authority from such other individual, to our collection, use and disclosure of such information for such purposes as are reasonably connected with this communication.

Servicing Study Guidelines for Development Applications				
4. Develop	ment Servicing Study Checklist			
4.1 Genera				
Required Co		Reference Location		
	Executive Summary (for larger reports only).	N/A		
	Date and revision number of the report.	Cover Sheet		
 	Location map and plan showing municipal address, boundary, and layout of proposed development.	Report Figures, Appendix		
	Plan showing the site and location of all existing services.	Appendix B		
V	Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to which individual developments	Section 1.1		
7	Summary of Pre-consultation Meetings with City and other approval agencies.	Section 1.4, Appendix L		
	Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.	Section 1.3 & 4.3.2		
_	Statement of objectives and servicing criteria.	Section 1 , 2.2.1, 3.2 & 4.2		
 	Identification of existing and proposed infrastructure available in the immediate area.	Section 1.2 & Appendix B		
	Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).	Section 1.1		
	Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.	Appendix F		
	Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.	Appendix C, D		
	Proposed phasing of the development, if applicable.	N/A		
	Reference to geotechnical studies and recommendations concerning servicing.	Appendices B, C, D & E		
	All preliminary and formal site plan submissions should have the following information: - Metric scale; - North Arrow (including construction North); - Key Plan;	Complete drawings provided in Appendix F		
	 Name and contact information of applicant and property owner; Property limits including bearings and dimensions; Existing and proposed structures and parking areas; Easements, road widening and rights-of-way; Adjacent street names. 			
4 2 Develo	pment Servicing Report: Water			
Required Co		Reference Location		
	Confirm consistency with Master Servicing Study, if available	N/A		
	Availability of public infrastructure to service proposed development	Section 1.2 & 3.1		
	Identification of system constraints	Appendix C		
	· · · · · · · · · · · · · · · · · · ·			
✓ ✓	Identify boundary conditions Confirmation of adequate domestic supply and pressure	Appendix C Section 3.2 & 3.3		
	Confirmation of adequate domestic supply and pressure Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire			
	Underwriter's Survey. Output should show available fire flow at locations throughout the development.	Section 3.2.2		
	Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.	N/A		
	Definition of phasing constraints. Hydraulic modeling is required to confirm servicing for all defined phases of the project including the ultimate design	N/A		
7	Address reliability requirements such as appropriate location of shut-off valves	Appendix F		
	Check on the necessity of a pressure zone boundary modification.	N/A		
9	Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range	Section 3.3, Appendix C		
	Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants) including special metering provisions.	N/A		

	Servicing Study Guidelines for Development Applications Description of off-site required feedermains, booster pumping stations, and other water infrastructure	N/A
	that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.	N/A
~	Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.	Section 3.2, Appendix I
	Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.	N/A
.3 Devel	opment Servicing Report: Wastewater	
equired C		Reference Location
	Summary of proposed design criteria (Note: Wet-weather flow criteria should not deviate from the City of	Section 2.2
	Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).	0000001212
	Confirm consistency with Master Servicing Study and/or justifications for deviations.	N/A
	Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the guidelines. This includes groundwater and soil conditions, and age and condition of sewers.	N/A
~	Description of existing sanitary sewer available for discharge of wastewater from proposed development	N/A
7	Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable)	N/A
1	Calculations related to dry-weather and wet-weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.	Section 2.2 & Appendix K
~	Description of proposed sewer network including sewers, pumping stations, and forcemains.	Section 2.2
	Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality).	N/A
	Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.	N/A
	Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.	N/A
	Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.	N/A
	Special considerations such as contamination, corrosive environment etc.	N/A
.4 Devel	opment Servicing Report: Stormwater Checklist	
equired C		Reference Location
2	Description of drainage outlets and downstream constraints including legality of outlets (i.e. municipal drain, right-of-way, watercourse, or private property)	Section 4.1
v	Analysis of available capacity in existing public infrastructure.	Section 4.1, 4.3
	A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern.	Appendix B, G
	Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected subwatersheds, taking into account long-term cumulative effects.	Section 4.2
~	Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.	Section 4.2
1	Description of the stormwater management concept with facility locations and descriptions with references and supporting information.	Section 4.3, 4.4 & Appendix H
	Set-back from private sewage disposal systems.	Appendix F
	Watercourse and hazard lands setbacks.	Appendix F
✓	Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.	Section 1.4 & Appendix L
	Confirm consistency with sub-watershed and Master Servicing Study, if applicable study exists.	Section 4
<u>_</u>	Storage requirements (complete with calculations) and conveyance capacity for minor events (1:5 year return period) and major events (1:100 year return period).	Section 4.3 & Appendix F
	Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals.	Section 4
7	Calculate pre and post development peak flow rates including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.	Section 4.1 & 4.3

	Servicing Study Guidelines for Development Applications	
	Any proposed diversion of drainage catchment areas from one outlet to another.	Section 4.2, Appendix G
	Proposed minor and major systems including locations and sizes of stormwater trunk sewers, and stormwater management facilities.	Appendix F
	If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100 year return period storm event.	N/A
	Identification of potential impacts to receiving watercourses	Section 1.3.4
	Identification of municipal drains and related approval requirements.	N/A
\checkmark	Descriptions of how the conveyance and storage capacity will be achieved for the development.	Section 4.3 and 4.4
	100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.	Appendix F
	Inclusion of hydraulic analysis including hydraulic grade line elevations.	Appendix H
	Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.	Section 5
	Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.	N/A
	Identification of fill constraints related to floodplain and geotechnical investigation.	N/A
4.5 Appro	val and Permit Requirements: Checklist	
Required C	ontent	Reference Location
	Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams as defined in the Act.	N/A
	Application for Certificate of Approval (CofA) under the Ontario Water Resources Act.	N/A
	Changes to Municipal Drains.	N/A
	Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation etc.)	N/A
4.6 Concl	usion Checklist	
Required Content		Reference Location
~	Clearly stated conclusions and recommendations	Section 6
	Comments received from review agencies including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.	
	All draft and final reports shall be signed and stamped by a professional Engineer registered in Ontario	