

Engineers, Planners & Landscape Architects

Engineering

Land / Site Development

Municipal Infrastructure

Environmental / Water Resources

Traffic / Transportation

Structural

Recreational

Planning

Land / Site Development

Planning Application Management

Municipal Planning Documents & Studies

Expert Witness (OMB)

Wireless Industry

Landscape Architecture

Urban Design & Streetscapes

Open Space, Parks & Recreation Planning

Community & Residential Developments

Commercial & Institutional Sites

Environmental Restoration

Klondike Road – Block 10

Site Servicing and Stormwater Management Report

MAPLE LEAF HOMES

KLONDIKE ROAD – BLOCK 10

SITE SERVICING AND STORMWATER MANAGEMENT REPORT

Prepared for:

Maple Leaf Homes

Prepared By:

NOVATECH Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario K2M 1P6

Issued: May 17, 2021

Novatech File: 117034-10 Report Ref: R-2021-068

May 17, 2021

City of Ottawa Planning, Infrastructure and Economic Development Department Planning Services Branch 110 Laurier Ave. West, 4th Floor Ottawa, Ontario K1P 1J1

Attention: Lisa Stern, Planner

Reference: Klondike Road – Block 10 Site Servicing and Stormwater Management Report Novatech File No.: 117034-10

Novatech has prepared this Site Servicing and Stormwater Management Report on behalf of Maple Leaf Homes for Klondike Road – Block 10.

The report outlines the detailed sanitary, water, and storm servicing / stormwater management for the proposed site plan.

Should you have any questions or comments, please do not hesitate to contact us.

Sincerely,

NOVATECH

1 Mh

Lucas Wilson, P.Eng. Project Coordinator

M:\2017\117034\BLOCK 10\DATA\REPORTS\DESIGN BRIEF\20210517-SERVICING-SWM REPORT.DOCX

TABLE OF CONTENTS

1.0	INTRODUCTION	3
1.1 1.2 1.3	Background Existing / Planned Adjacent Land Uses Additional Reports	5
2.0	EXISTING CONDITIONS	5
2.1 2.2	Topography & Drainage Subsurface Conditions	
3.0	SANITARY SERVICING	7
3.1 3.2 3.3 3.4 3.5	Previous Studies Existing Sanitary Sewer System for the Subject Lands Proposed Sanitary Sewer Outlet Design Criteria Proposed Sanitary Sewer System	7 7 7
4.0	WATERMAIN	10
4.1 4.2 4.3 4.4	Existing Conditions Proposed Watermain System Design Criteria Hydraulic Analysis	10 10
5.0	STORM SEWER SYSTEM AND STORMWATER MANAGEMENT	13
5.1		
5. 5.2 5. 5. 5. 5. 5.3	Stormwater Management Criteria 1.1 Allowable Release Rate Existing and Proposed Storm Infrastructure 2.1 Stormwater Quality Control Criteria 2.2 Stormwater Quantity Control Criteria 2.3 Minor System (Storm Sewers) 2.4 Major System Design Hydrologic & Hydraulic Modeling 3.1 PCSWMM Model Results	13 13 14 16 16 17 17
5. 5.2 5. 5. 5. 5. 5.3	 1.1 Allowable Release RateExisting and Proposed Storm Infrastructure	13 13 14 16 16 17 18 20
5. 5.2 5. 5. 5. 5. 5.3 5.3	 1.1 Allowable Release Rate	13 13 14 16 16 17 18 20 22
5. 5.2 5. 5. 5. 5. 5.3 5.3 6.0	 1.1 Allowable Release Rate	13 13 14 16 16 17 18 20 22
5. 5.2 5. 5. 5. 5.3 5.3 5. 6.0 6.1	 1.1 Allowable Release Rate	13 13 14 16 16 17 18 20 22 22

LIST OF TABLES

Table 4.1: Summary of Hydraulic Model Results - Maximum Day + Fire Flow

- Table 4.2: Summary of Hydraulic Model Results Peak Hour Demand
- Table 4.3: Summary of Hydraulic Model Results Maximum Pressure Check
- Table 5.1: Total Available Storage
- Table 5.2: Hydrologic Modeling Parameters (subcatchments)
- Table 5.3: Inlet Control Devices and Design Flows
- Table 5.4: Overland Flow Results
- Table 5.5: 100-year HGL Elevations
- Table 5.6: Comparison of Peak Flows
- Table 6.1: Roadway Structure

LIST OF FIGURES

- Figure 1 Site Location
- Figure 2 Site Plan
- Figure 3 Proposed Sanitary System
- Figure 4 Proposed Watermain Network
- Figure 5 Proposed Storm System

LIST OF APPENDICIES

- Appendix A Correspondence
- Appendix B Sanitary Design Sheets
- Appendix C Watermain Boundary Conditions, FUS Calculations, and Modelling Results
- Appendix D STM Design Sheets, SWM Excerpts & PCSWMM Modelling Info

LIST OF DRAWINGS

117034-10-GR	Grading Plan
117034-10-GP	General Plan of Services
117034-10-STM	Storm Drainage Area Plan
117034-10-ESC	Erosion and Sediment Control Plan

ENCLOSED CD

- Report (pdf)
- Drawings (pdf)
- PCSWMM Packaged Model Files

1.0 INTRODUCTION

Novatech has been retained by Maple Leaf Homes to prepare a Site Servicing and Stormwater Management Report for Klondike Road – Block 10 in North Kanata, Ottawa.

This report outlines the servicing and proposed storm drainage and stormwater management strategy for the site.

1.1 Background

The proposed development is located within the Kanata North Community west of the intersection of Klondike Road and Sandhill Road. The development is approximately 0.60ha and is bounded by Klondike Road to the south, Shirley's Brook to the west, and the future 1055 Klondike Road – Orr Ridge subdivision to the north and east. Refer to **Figure 1** – Site Location and **Figure 2** – Site Plan.

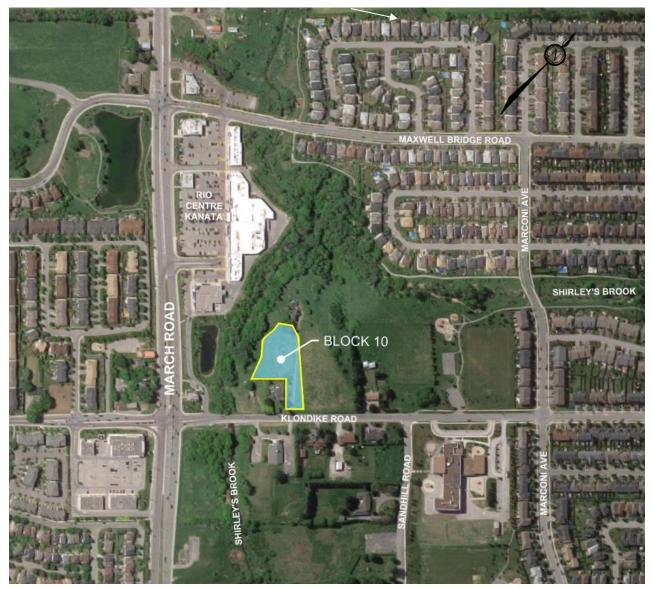
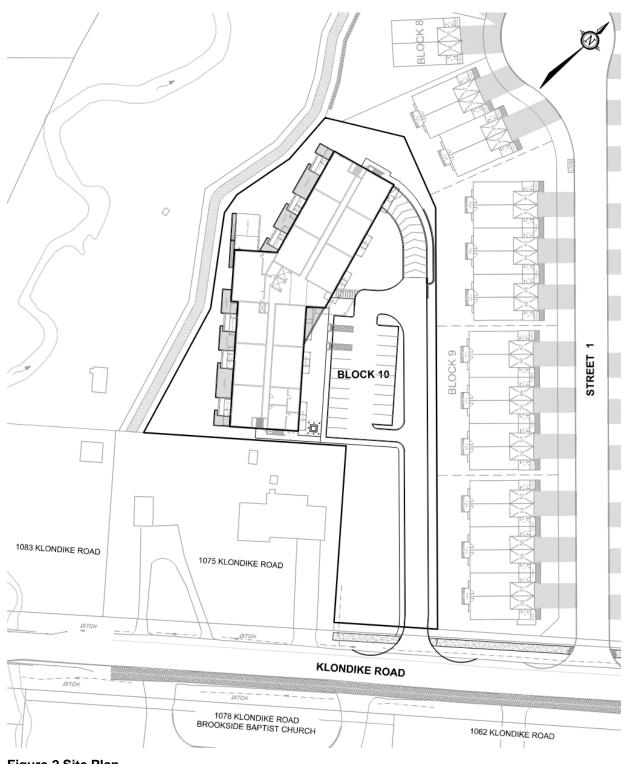



Figure 1 – Site Location: Klondike Rd – Block 10

The proposed development will consist of one 4-storey apartment building with underground parking consisting of 53 units. The proposed site plan is shown in **Figure 2**.

1.2 Existing / Planned Adjacent Land Uses

The following describes the existing and planned land uses adjacent to the subject site:

North / East: The lands north and east of the proposed site is the future 1055 Klondike Road – Orr Ridge Subdivision consisting of town house and semi-detached units.

South: Klondike Road, a two-lane urban collector road, bounds the Subject Site to the south. The Subject Site is located between March Road and Sandhill Road on the North Side of Klondike Road.

Southeast: To the Southeast of the Subject Site, across Klondike Road, are Brookside Baptist Church and The Greenwoods Academy.

West: The RioCentre Kanata (832-858 March Road) is located to the west of the Subject Site, separated by Shirley's Brook.

1.3 Additional Reports

This report provides information on the considerations and approach by which Novatech has designed and evaluated the proposed servicing for the Maple Leaf Homes Lands. This report should be read in conjunction with the following:

- Maple Leaf Homes Development, 1055 Klondike Road Orr Ridge, Site Servicing and Stormwater Management Report, completed by Novatech, Ref. No.: R-2020-013, dated March 12, 2021.
- Brookside Subdivision Infrastructure Servicing Study, completed by Novatech, Ref. No.: R-2006-071 dated November 2006.
- Shirley's Brook SWM Facility 'C', Detailed Design Report, completed by Novatech, Ref. No.: R-2006-105 dated November 2006.

2.0 EXISTING CONDITIONS

2.1 Topography & Drainage

The proposed site is currently undeveloped and consists of grassed table land and a tree-lined municipal watercourse. Access to the site is currently provided off Klondike Road via a private gravel entrance.

The majority of the site gently slopes westerly directly towards Shirley's Brook while a small portion near Klondike Road which slopes south towards the existing north side ditch of Klondike Road. The existing ditch travels west and outlets to Shirley's Brook.

2.2 Subsurface Conditions

Gemtec completed three (3) geotechnical investigations in support of the overall development, consisting of the Subdivision and Block 10. The first geotechnical investigation was conducted to provide a preliminary geotechnical investigation and slope stability assessment of the site:

• Preliminary Geotechnical Investigation, Proposed Residential Subdivision, 1055 Klondike Road, Ottawa, Ontario, dated April 13, 2017 (Project: 60616.46).

A second geotechnical investigation was conducted to obtain additional borehole information to provide engineering guidelines and recommendations on the geotechnical design aspects of this project and should be read in conjunction with the preliminary report:

• Geotechnical Investigation, Proposed Residential Subdivision, 1055 Klondike Road, Ottawa Ontario, dated April 4, 2018 (Project: 64153.85).

A third geotechnical investigation was conducted to supplement the existing subsurface information providing additional boreholes to obtain more precise grade raise restrictions within the site:

• Supplemental Geotechnical Investigation, Proposed Residential Development, 1055 Klondike – Ottawa, dated April 10, 2019 (File: 64153.85).

The principal findings of the geotechnical investigations are as follows:

- The work consisted of advancing eleven (11) boreholes to depths ranging from 4.0m to 10.2 m below ground surface.
- The existing soil profile consists of having a layer of topsoil ranging from 0.10m to 0.31m thick. Deposits of grey brown silty sand were encountered at all boreholes ranging from 0.8 to 2.0m thick. Native deposits of weathered, grey brown silt and clay with trace amounts of sand were encountered underlying the sand and silty sand at all locations ranging from 3.0m to 4.6m thick.
- Bedrock is expected to range from 4m-10m below grade.
- Groundwater is expected to range from 2.2m to 6.7m based on observations.
- Grade fill restrictions of 2.0m would apply to Block 10.

The report provides engineering guidelines based on Gemtec's interpretation of the borehole information and project requirements. Refer to the above-noted report for complete details.

3.0 SANITARY SERVICING

3.1 **Previous Studies**

The Subject Site is located within the Briar Ridge Pump Station catchment area. The 1055 Klondike Road – Orr Ridge Site Servicing and Stormwater Management Report, prepared by Novatech, dated March 2021, accounted for a sanitary flow of 1.5 L/s from the subject site to outlet to the Klondike Road sanitary sewer.

3.2 Existing Sanitary Sewer System for the Subject Lands

Currently, there is an existing 200mm sanitary sewer along Klondike Road with an existing manhole at Sandhill Road located approximately 117m from the site entrance. Flows from the site will be routed through the Klondike Road sewers to the 450mm trunk sanitary sewer within the pump station access road outletting to the Briar Ridge Pump Station.

Septic systems may be encountered on site, in the event a septic system is discovered, it should be decommissioned in accordance with Schedule 10 Decommissioning Requirements for Out-of-Service Septic Systems from the Ottawa Septic System Office (lands to be used for other purposes after decommissioning).

3.3 **Proposed Sanitary Sewer Outlet**

A 200mm sanitary sewer will be installed along Klondike Road, as part of the subdivision works, connecting the subject site to the existing manhole located at Klondike Road and Sandhill Road. The proposed outlet is consistent with the approved Brookside Infrastructure Servicing Study (Novatech). The proposed sanitary layout can be seen on **Figure 3** below.

3.4 Design Criteria

Sanitary sewers, for the proposed development, are designed based on criteria established by the City of Ottawa in the following documents:

- Section 4.0 of the City of Ottawa Sewer Design Guidelines (October 2012).
- Technical Bulletin ISTB-2018-01 from the City of Ottawa regarding new sanitary design parameters. Design parameters from this technical bulletin will supersede values within the Sewer Design Guidelines (2012).

The resulting design parameters are summarized as follows:

Population Flow = 280 L/capita/day Infiltration = 0.33 L/s/ha Block 10 Apartment = 2.1 persons per unit Maximum Residential Peak Factor = 4.0 Harmon Correction Factor = 0.8 Minimum velocity = 0.6m/s Manning's n = 0.013

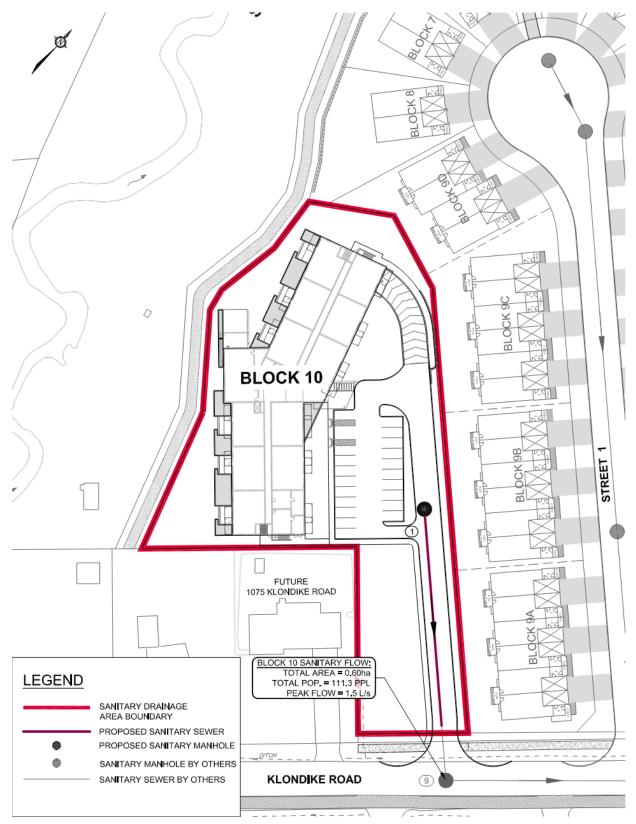


Figure 3 Proposed Sanitary System

3.5 Proposed Sanitary Sewer System

The calculated peak sanitary design flow for the development is 1.5 L/s meeting the flow accounted for in the subdivision servicing report mentioned above. For detailed calculations refer to the Sanitary Sewer Design Sheet located in **Appendix B**.

As previously noted, sanitary flows from the site will be directed to an existing 200mm diameter sanitary sewer on Klondike Road at Sandhill Road.

The downstream sanitary sewers within Klondike Road and the Briar Ridge Pump Station Access Road have adequate capacity to accommodate the proposed development as shown in the sanitary design sheet provided in **Appendix B**.

4.0 WATERMAIN

4.1 Existing Conditions

The proposed development is located inside the 2W Pressure Zone. An existing 400mm watermain stub is located at the intersections of Klondike Road and Sandhill Road and an existing 300mm watermain runs within Sandhill Road.

4.2 Proposed Watermain System

The development will be serviced with a combination of 150mm and 250mm pipes with a connection to the proposed 250mm diameter watermain stub at the entrance to the site. The proposed 250mm diameter stub will be installed as part of the adjacent subdivision works. **Figure 4** highlights the proposed works and connection point. All existing watermain boundary conditions were provided by the City of Ottawa and are included in **Appendix C**.

4.3 Design Criteria

A fire flow demand of 350 L/s has been calculated as per the Fire Underwriter's Survey (FUS) and calculations are included in **Appendix C**. Watermain analysis was completed based on the following criteria:

Demands:

٠	Apartment Density	2.1 persons/unit
٠	Average Daily Demand	280 L/capita/day
	Max Dally Damand	O F v Average Dally Da

- Max. Daily Demand
 2.5 x Average Daily Demand
- Peak Hour Demand 2.2 x Maximum Daily Demand
- Fire Flow Demand
 Fire Underwriters Survey

System Requirements:

٠	Max. Pressure (Unoccupied Areas)	690 kPa (100 psi)
•	Max. Pressure (Occupied Areas)	552 kPa (80 psi)
•	Min. Pressure	276 kPa (40 psi) excluding fire flows

- Min. Pressure (Fire)
 138 kPa (20 psi) including fire flows
- Max. Age (Quality)
 192 hours (onsite)

Friction Factors:

- Watermain Size C-Factor
- 200mm 100
- 250mm 110
- 400mm 120

Hydraulic modeling of the Subject Site was completed using EPANET 2.0. EPANET is public domain software capable of modeling municipal water distribution systems by performing simulations of the water movement within a pressurized system. EPANET uses the Hazen-Williams equation to analyze the performance of the proposed watermain and considered the

following input parameters: water demand, pipe length, pipe diameter, pipe roughness, and pipe elevation.

4.4 Hydraulic Analysis

A summary of the model results are shown below in **Table 4.1**, **Table 4.2** and **Table 4.3**. Full model results are included in **Appendix C**. Refer to **Figure 4** below for details about the node and pipe network.

Operating Condition	Minimum Pressure
350 L/s	241.23 kPa (B1)

Table 4.2: Summary of Hydraulic Model Results - Peak Hour Demand

Operating Condition	Maximum Pressure	Minimum Pressure
1.984 L/s through system	476.77 kPa (T4)	450.00 kPa (H3)

The hydraulic modeling summarized above highlights the maximum and minimum system pressures during Peak Hour conditions, and the minimum system pressures during the Maximum Day + Fire condition. Since the Maximum Day + Fire Flow pressures are above the minimum 140 kPa, and the Peak Hour Pressures onsite fall within the normal operating pressure range (345 kPa to 552 kPa) the proposed development can be adequately serviced.

Table 4.3: Summary of Hydraulic Model Results – Maximum Pressure Check

Operating Condition	Maximum Pressure	Minimum Pressure	Maximum Age
0.902 L/s through system	513.06 kPa (T4)	506.98 kPa (B1)	13.88 Hours (HYD4)

The average day pressures throughout the system are below 552 kPa, therefore pressure reducing valves are not required.

Water retention was analyzed at each node during average day demand. The maximum age throughout the system is within City standards.

A copy of the boundary conditions provided by the City of Ottawa, fire flow calculations, and detailed hydraulic analysis results are included in **Appendix C**.

There are no deviations from the City of Ottawa Design Guidelines – Water Distribution (2010).

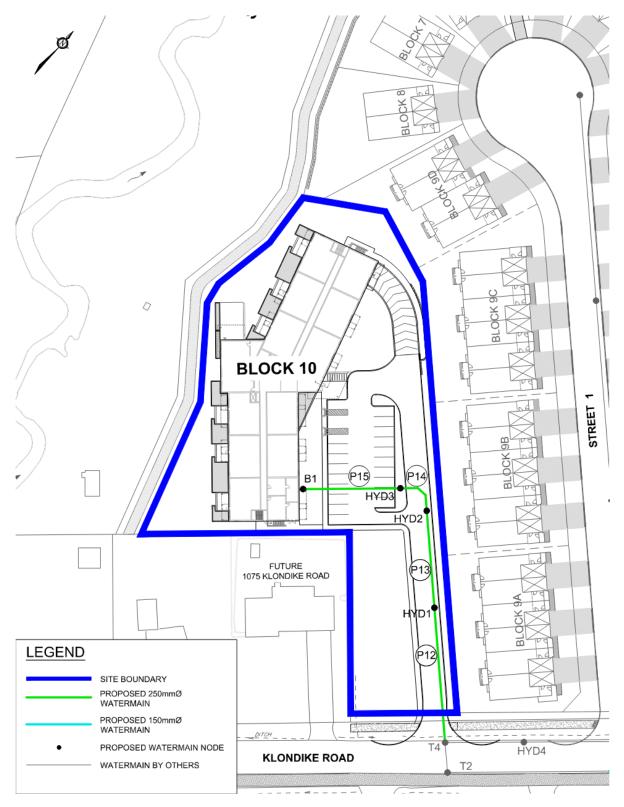


Figure 4 Proposed Watermain Network

5.0 STORM SEWER SYSTEM AND STORMWATER MANAGEMENT

5.1 Stormwater Management Criteria

The following stormwater management criteria for the proposed development was prepared in accordance with the City of Ottawa Sewer Design Guidelines (October 2012) and the 1055 Klondike Road – Orr Ridge Site Servicing and Stormwater Management Report (Novatech, March 2021). This report was prepared in accordance with the Brookside Subdivision Infrastructure Servicing Study (Novatech, 2006) and the Shirley's Brook SWM Facility 'C' Detailed Design Report (Novatech, 2006).

- Provide a dual drainage system (i.e. minor and major system flows);
- Maximize the use of surface storage available on site;
- Control the runoff to MH9 to the allowable release rate specified in Section 5.1.1 using on-site storage;
- Ensure that no surface ponding will occur on the paved surfaces (i.e. private drive aisles or parking areas) during the 2-year storm event; and,
- Ensure that ponding is confined within the parking areas at a maximum depth of 0.35m for both static ponding and dynamic flow.

For the approval of the 1055 Klondike Road – Orr Ridge Subdivision, the following assumptions were made for the future development of Block 10 (see **Appendix D** for 1055 Klondike Road – Orr Ridge report excerpts);

- Restricted minor system flow = 51 L/s;
- Major system storage = 81.6 m³; and,
- No major system overland flow to Shirley's Brook during the 100-year storm event.

5.1.1 Allowable Release Rate

The allowable release rate for Block 10 (0.60 ha) was established based on the restricted minor system flow of 85 L/s/ha (51 L/s) for all storms up-to and including the 100-year storm event.

5.2 Existing and Proposed Storm Infrastructure

Existing Conditions

Under existing conditions, storm runoff from the site generally flows overland to the main branch of Shirley's Brook along the west side of the site. A small amount of drainage is directed to the north side ditch along Klondike Road.

There is an existing 825mm storm sewer on Klondike Road. The existing storm sewer stops at the intersection of Klondike Road and Sandhill Road (existing MH 159).

Proposed Conditions

As part of the subdivision works, the existing storm sewer on Klondike Road will be extended 163 m west in order to service both the proposed subdivision and Block 10. A future storm sewer to service the Subject Site and adjacent lands was identified in the Novatech (2006) design. Refer to **Figure 5** for the storm servicing layout.

5.2.1 Stormwater Quality Control Criteria

Shirley's Brook SWM Facility 'C' provides a normal level of water quality treatment (70% long-term TSS removal) for Block 10. The proposed site has a drainage area of 0.60 ha and a runoff coefficient of 0.58. The site was previously referred to as area A-18 in the 1055 Klondike Road – Orr Ridge Design, which had a drainage area of 0.60 ha and runoff coefficient of 0.80 (refer to excerpt provided in **Appendix D**). When comparing the area x runoff coefficient values the proposed site has the same area, but a lower runoff coefficient than what was previously allocated, as shown below:

<u>Parameter</u> <u>Design</u>	<u> 1055 Klondike Road – Orr Ridge Design</u>	<u>Current</u>
Drainage Area	0.60 ha	0.60 ha
Runoff Coefficient	0.80	0.58
Area x Runoff Coefficient	0.48	0.35

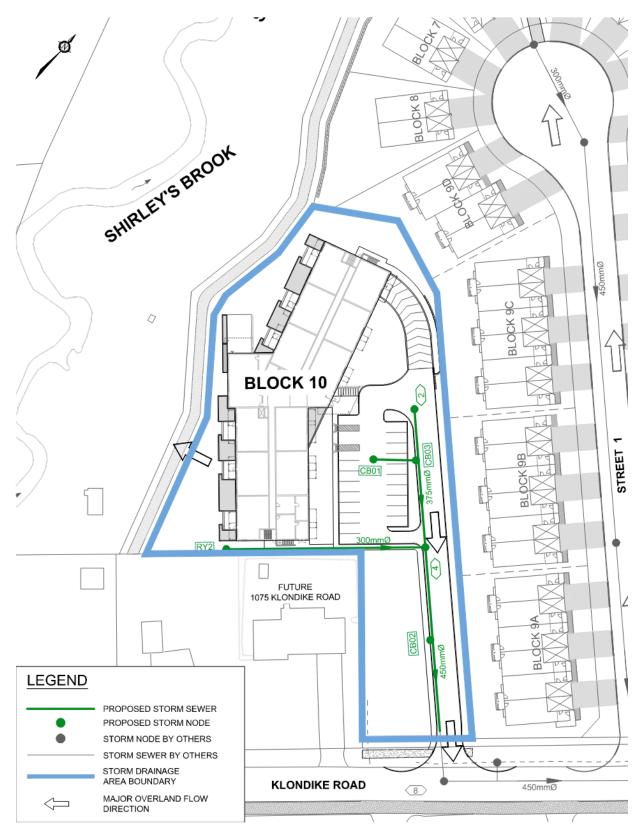


Figure 5 Proposed Storm System

5.2.2 Stormwater Quantity Control Criteria

The 1055 Klondike Road – Orr Ridge Design established a 100-year release rate to Shirley's Brook of 297.2 L/s. Allocating 100% of the release rate to the subdivision portion and requiring Block 10 to contain the 100-year storm event on site while providing a minimum major system storage volume of 81.6 m³. The subdivision portion releases 274.0 L/s of major system flow to Shirley's Brook, which would allow an additional 23.2 L/s of major system flow to be released from Block 10 while ensuring 81.6 m³ of major system storage is provided on-site.

5.2.3 Minor System (Storm Sewers)

Storm servicing has been provided using a dual-drainage system. Runoff from frequent events will be conveyed by the proposed storm sewers (minor system), while flows from large storm events that exceed the capacity of the minor system will be stored underground using Stormtech SC-740 arch-type chambers, on the surface in road sags, and/or conveyed overland along defined overland flow routes (major system).

Storm Sewer Design Criteria

The following is the storm sewer design criteria [Ottawa Sewer Design Guidelines (Oct. 2012)]:

- Rational Method (Q) = 2.78CIA, where
 - Q = peak flow (L/s)
 - C = runoff coefficient
 - C = (0.70 * %lmp.) + 0.20
 - I = rainfall intensity for a 2-year return period (mm/hr)
 - \circ I_{2yr} = 732.951 / [(Tc(min) + 6.199)]^{0.810}
 - A = site area (ha)
- Minimum Pipe Size = 250 mm; Minimum / Maximum Full Flow Velocity = 0.8 m/s / 3.0 m/s

The on-site storm sewers are sized to convey peak flows corresponding to a 2-year return period storm event based on the Rational Method. Refer to the storm sewer design sheets provided in **Appendix D**.

Underground Storage

Underground storage will be required to attenuate runoff from the site. Underground storage will be provided using Stormtech SC-740 arch-type chambers (or approved equivalent), which are covered in 50mm dia. (D_{50}) clearstone. A total of 15 storage chambers will provide 42.0 m³ of storage. Refer to **Appendix D** for further details. The proposed layout of underground storage chambers is shown on the General Plan of Services (drawing 117034-10-GP).

Inlet Control Devices

Inlet control devices (ICDs) are to be installed within the selected catchbasins and rear-yard catchbasins. The ICDs have been sized to control minor system peak flows to the Klondike Road storm sewer to the allowable release rate and to ensure that no ponding occurs during the 2-year storm event.

Hydraulic Grade Line

The storm sewers for the proposed site have been designed to ensure the hydraulic grade line (HGL) for a 100-year storm event will provide a minimum 0.30 m clearance from the underside of footing (USF) elevation.

5.2.4 Major System Design

The site has been designed to convey private roadway and parking area runoff from storms that exceed the minor system capacity to the Klondike Road north side ditch. The landscaped area along Shirley's Brook located on the west side of the building, has been designed to convey runoff that exceed the minor system capacity directly to Shirley's Brook. The site has been graded to ensure the 100-year peak overland flows are confined within the parking and landscaped areas and at least 81.6 m³ of major system storage is provided on-site.

Approximately 0.025 ha of land flows uncontrolled to Shirley's Brook and accounts for the only major system flow being directed to Shirley's Brook from the proposed site. These areas are not to surpass the allowable major system release rate of 23.2 L/s outlined in **Section 5.2.2** above.

Surface/Underground Storage

The stage-storage curves for each inlet were calculated based on the proposed Grading Plan (drawing 117034-10-GR) and the proposed underground storage chamber locations. The total storage shown in the stage-storage curves at each inlet is provided in **Appendix D**. Approximately 42 m³ of underground storage and 217.8 m³ of surface storage is available on-site.

The total storage provided underground and on the surface is as follows:

Structure ID	Number of Chambers	Underground Storage (m ³)	Surface Storage (m ³)	Total Storage (m ³)
		Provided	Provided	Provided
CB03*	9	25.7	28.2	53.9
CB01	-	-	79.5	79.5
LC03	-	-	16.0	16.0
TOTAL	9	25.7	123.7	149.4
CB02*	-	-	31.7	31.7
LC04	-	-	43.9	43.9
TOTAL	-	-	75.6	75.6
LC01	-	-	1.8	1.8
LC02	-	-	8.0	8.0
RY03	6	16.2	8.7	24.9
TOTAL	6	16.2	18.5	34.7
TOTAL OVERALL	15	41.9	217.8	259.7

Table 5.1: Total Available Storage

*Structure with ICD.

5.3 Hydrologic & Hydraulic Modeling

The City of Ottawa Sewer Design Guidelines (October 2012) require hydrologic modeling for all dual drainage systems. The performance of the proposed storm drainage system for Block 10 was evaluated using the PCSWMM hydrologic/hydraulic modeling software.

Design Storms

The PCSWMM model includes the following design storms based on the City of Ottawa IDF data presented in the City of Ottawa Sewer Design Guidelines (October 2012):

- 3-hour Chicago Storm Distribution (10-minute time step)
- 12-hour SCS Storm Distribution (30-minute time step)

Each storm distribution includes the 2-year, 5-year, 100-year, and 100-year (+20%) return periods.

The 3-hour Chicago storm distribution was determined to be the critical design storm for the proposed development. This is also consistent in the analysis by Novatech (2006), who designed SWM Facility 'C' using the SWMHYMO hydrologic model.

PCSWMM Model Schematics, Output Data and Modeling Files

PCSWMM model schematics and output data for the 100-year 3-hour Chicago storm distribution are provided in **Appendix D**.

 Table 5.2 provides a summary of the hydrologic modeling parameters (subcatchments).

Area ID	Catchment Area	Runoff Coefficient	Percent Imperviousness	Zero Imperviousness	Equivalent Width	Average Slope
	(ha)	(%)	(%)	(%)	(m)	(%)
B-01	0.044	0.80	85.7	0	17.6	1.5
B-02	0.070	0.20	0.0	0	35	2.5
B-03	0.004	0.20	0.0	0	40	33.33
B-04	0.007	0.20	0.0	0	35	33.33
B-05	0.041	0.78	82.9	0	20.5	1.5
B-06	0.130	0.78	82.9	34	52	1.5
B-07	0.015	0.90	100.0	0	7.5	10.5
B-08	0.009	0.51	44.3	0	45	33.33
B-09	0.008	0.20	0.0	0	40	33.33
B-10	0.054	0.60	57.1	95	36	4.5
B-11	0.022	0.33	18.6	0	14.7	2
B-12	0.086	0.58	54.3	86	43	3
B-13	0.082	0.55	50.0	90	41	3
C-01	0.011	0.20	0.0	0	22	33.33
C-02	0.009	0.64	62.9	0	18	2.5
C-03	0.002	0.20	0.0	0	20	33.33
C-04	0.003	0.20	0.0	0	30	33.33
Subdivision	0.60	0.58	54.7	-	-	-

Table 5.2: Hydrologic Modeling Parameters (subcatchments)

Subcatchment Areas / Runoff Coefficients

- The proposed site has been divided into subcatchments based on the tributary drainage areas to each inlet of the proposed storm sewer system, as shown on the Storm Drainage Area Plan (Drawing 117034-10-STM).
- Weighted runoff coefficients were assigned based on the percent impervious values used in the PCSWMM model. As per the City of Ottawa Sewer Design Guidelines (October 2012), the runoff coefficient is based on the following equation:

$$C = (\% \text{ Imp. } * 0.7) - 0.2$$

Infiltration

Infiltration losses for all catchment areas were modeled using Horton's infiltration equation, which defines the infiltration capacity of the soil over the duration of a precipitation event using a decay function that ranges from an initial maximum infiltration rate to a minimum rate as the storm progresses. The default values for the Sewer Design Guidelines were used for all catchments.

Horton's Equation:	Initial infiltration rate:	$f_0 = 76.2 \text{ mm/hr}$
$f(t) = f_c + (f_o - f_c)e^{-k(t)}$	Final infiltration rate:	f _c = 13.2 mm/hr
	Decay Coefficient:	k = 4.14/hr

Depression Storage

• The default values for depression storage (1.57 mm impervious / 4.67 mm pervious) have been applied to all catchments.

Subarea Routing

• Subarea routing for all subcatchments has been set to 'direct to outlet'.

Equivalent Width

• The equivalent width parameter for all subcatchments is based on the measured flow length.

Minor System Conduits (Bend / Exit Losses)

- The minor system network was created in Civil3D and imported into PCSWMM.
- The following exit losses have been inputted into the model. They represent the loss coefficient based on the bend angle, as per the Appendix 6-B in the City of Ottawa Sewer Design Guidelines (October 2012).

Bend Angle	Loss Coefficient
0	0.00
15	0.09
30	0.21
45	0.39
60	0.64
75	0.96
90	1.32

Downstream Boundary Condition (Minor System)

- The storm sewer outlet for the proposed development is the existing maintenance hole (MH 159) on Klondike Road.
- Novatech (2006) estimated a 100-year Hydraulic Grade Line (HGL) elevation of 69.73 m at MH 159 on Klondike Road at Sandhill Road. This is equivalent to obvert elevation of the outgoing 825mm storm sewer (69.73 m); therefore, it is assumed that this storm sewer does not surcharge during the 100-year storm event. In addition, this HGL elevation is lower than the invert elevation of the outgoing pipe from MH 09 at the end of the private access (72.16 m). As such, a 'Normal' outfall condition was used for all model simulations.

5.3.1 PCSWMM Model Results

Inlet Control Devices (ICDs)

ICDs are provided for select catchbasins within the roadway and catchbasin in the landscaped areas. The ICD sizes and design flows are provided in **Table 5.3**. The ICDs have been sized to maximize surface storage, limit the outlet peak flows to the allowable release rate and not have surface ponding during a 2-year storm event.

		ICD Size & Inlet Rate					
Structure ID	ICD Type	T/G	Orifice Invert	100-year Head on Orifice	2-year Orifice Peak Flow*	5-year Orifice Peak Flow*	100-year Orifice Peak Flow*
		(m)	(m)	(m)	(L/s)	(L/s)	(L/s)
CB02	Tempest MHF 77mm	77.73	76.33	1.61	13.4	15.5	15.0
CB03	Tempest LMF Vortex 93	77.83	76.13	1.93	9.3	10.2	10.5
RY02	Tempest MHF 82mm	77.96	75.24	2.08	12.5	14.4	19.2

*From PCSWMM model, 3-hour Chicago storm distribution.

Both IPEX Tempest LMF (i.e. Vortex ICD's) and MHF ICDs are proposed for the site. Sizing documentation and correspondence is provided in **Appendix D**.

Overland Flow (Major System)

The major system network was evaluated using the PCSWMM model to ensure that the ponding depths conform to the City of Ottawa Sewer Design Guidelines (Oct. 2012). A summary of ponding depths at each inlet for the 2-year, 5-year, 100-year and 100-year (+20%) events are provided in **Appendix D**. The maximum static and dynamic ponding depths are less than 0.35m during all events, thereby meeting the major system criteria. In addition, there is no cascading flow over the highpoint during the 100-year storm event.

	T/G Max. St		tic Ponding		100-yr Event		
Structure	(m)	Elev. (m)	Spill Depth (m)	Elev. (m)	Depth (m)	Cascading Flow?	Cascade Depth
	(11)	(11)	(11)	(11)	(11)		(m)
CB01	77.83	78.13	0.30	78.06	0.23	Ν	0.00
CB02	77.73	78.03	0.30	77.94	0.21	Ν	0.00
CB03	77.83	78.13	0.30	78.06	0.23	Ν	0.00
LC01	77.67	77.80	0.13	77.34	0.00	Ν	0.00
LC02	77.15	77.35	0.20	77.34	0.19	Ν	0.00
LC03	78.00	78.30	0.30	78.14	0.14	Ν	0.00
LC04	77.73	78.03	0.30	77.95	0.22	Ν	0.00
RY03	77.15	77.35	0.20	77.34	0.19	Ν	0.00

Table 5.4: Overland Flow Results

*From PCSWMM model, 3-hour Chicago storm distribution.

An expanded table of the ponding depths at low points in the roadway (including the stress-test event) is provided in **Appendix D**. Based on these results, the proposed storm drainage system will not experience any adverse flooding even with a 20% increase to the 100-year event.

Hydraulic Grade Line

Table 5.5 provides a summary of the 100-year HGL elevations at each storm manhole. The results of this analysis were used to ensure that a minimum freeboard of 0.30m is provided between the 100-year HGL and the designed underside of footing (USF) elevation.

There is no surcharging within the on-site sewers during both the 100-year and 100-year (+20%) storm events.

Manhole ID	MH Invert Elevation (m)	T/G Elevation (m)	HGL Elevation (100yr) (m)	Design USF (m)	Clearance (100yr) (m)
MH02	74.50	78.09	74.60	-	-
MH04	74.26	78.10	74.43	75.25	0.82
MH08	72.16	77.68	72.32	-	-
TD01	72.93	75.78	74.99	-	-

Table 5.5: 100-year HGL Elevations

*From PCSWMM model, 3-hour Chicago storm distribution.

An expanded table showing the results of the stress test (100-year +20% event) and the HGL elevations is provided in **Appendix B**. The stress test indicates that the HGL elevations will be below the USF elevations for this event.

Comparison of Peak Flows

Table 5.6 provides a comparison of the minor system flows from the proposed development to Klondike Road and major system flows / direct flows to Shirley's Brook.

	Drainage Area		elease Rate ¹ /s)	100-year Peak Flow (L/s)		
Proposed Development	(ha)	Minor Major System System (Klondike (Shirley's Rd.) Brook)		Minor System (Klondike Rd.)	Major System (Shirley's Brook)	
Block 10	0.60	51.0	23.2	50.7	12.4	

Table 5.6: Comparison of Peak Flows

⁽¹⁾ PCSWMM model results for the 3-hour Chicago storm distribution.

The 100-year minor system peak flow to Klondike Road is controlled to just under the allowable release rate of 51 L/s for the proposed site. The total 100-year major system peak flow to Shirley's Brook from the uncontrolled areas is also less than the 100-year major system allowable release rate for the Subject Site (23.2 L/s).

Areas Directed to Subdivision Rear-yard System

A small strip of land along the east property line, approximately 0.03 ha, slopes towards the rearyards of the subdivision and will be captured by the proposed landscape catchbasins with a 100year peak runoff of 14 L/s. The additional flow does not result in any increase to the subdivision minor or major system peak flows calculated in the 1055 Klondike Road – Orr Ridge Design Report.

6.0 ROADWAYS

6.1 **Proposed Road Infrastructure**

Gemtec has prepared a Geotechnical Investigation report for the Development (April 2018) that provides recommendations for roadway structure, servicing and foundations. The site consists of a private roadway and at-grade parking; the recommended roadway structure is as follows:

Table 6.1: Roadway Structure

Roadway Material Description	Pavement Structure Layer Thickness (mm) Private Road		
Asphalt Wear Course: Superpave 12.5 (Class B)	40		
Asphalt Binder Course: Superpave 19.0 (Class B)	60		
Base: Granular A	150		
Sub-Base: Granular B – Type II	<u>450</u>		
Total	700		

7.0 EROSION AND SEDIMENT CONTROL

Erosion and sediment control measures will be implemented during construction in accordance with the "Guidelines on Erosion and Sediment Control for Urban Construction Sites" (Government of Ontario, May 1987). An Erosion and Sediment Control Plan will be prepared as part of the detailed design.

Typical erosion and sediment control measures recommended include, but are not limited to, the use of silt fences around perimeter of site (OPSD 219.110), catch basin inserts under catch basin/maintenance hole lids, heavy duty silt fence barrier (OPSD 219.130), straw bale check dams (OPSD 219.180), rock check dams (219.210 or OPSD 219.211), riprap (OPSS 511), mud mats, silt bags for dewatering operations, topsoil and sod to disturbed areas and natural grassed waterways. Dewatering and sediment control techniques will be developed for the individual situations based on the above guidelines and utilizing typical measures to ensure erosion and sediment control is controlled in an acceptable manner and there is no negative impact to adjacent Lands, water bodies or water treatment/conveyance facilities.

It will be the responsibility of the Contractor to submit a detailed construction schedule and appropriate staging, dewatering and erosion and sediment control plans to the Contract Administrator for review and approval prior to the commencement of work.

General Erosion and Sediment Control Measures

- All erosion and sediment control measures are to be installed to the satisfaction of the engineer, the municipality and the conservation authority prior to undertaking any site alterations (filling, grading, removal of vegetation, etc.) and remain present during all phases of site preparation and construction.
- A qualified inspector, provided by the owner, should conduct daily visits during construction to ensure that the contractor is working in accordance with the design drawings and that mitigation measures are being implemented as specified.
 - A light duty silt fence barrier is to be installed in the locations shown on the Erosion and Sediment Control Plan.
 - Rock check dams and/or straw bales are to be installed in drainage ditches.
 - Catch basin inserts are to be placed under the grates of all proposed catchbasins and structures.
 - After complete build-out, all sewers are to be inspected and cleaned and all sediment and construction fencing is to be removed.
- The contractor shall ensure that proper dust control is provided with the application of water (and if required, calcium chloride) during dry periods.
- The contractor shall immediately report to the engineer or inspector any accidental discharges of sediment material into any ditch or sewer system. Appropriate response measures shall be carried out by the contractor without delay.

The contractor acknowledges that failure to implement erosion and sediment control measures may result in penalties imposed by any applicable regulatory agency.

8.0 CONCLUSIONS AND RECOMMENDATIONS

Sanitary Servicing

The analysis of the proposed sanitary servicing confirms the following:

- It is proposed that the development will outlet directly to the 200mm sanitary sewer along Klondike Road. The proposed outlet is consistent with the approved Brookside Subdivision Infrastructure Servicing Study (Novatech).
- The proposed development can be serviced with a 200mm sanitary sewer system.
- The total proposed sanitary flow from the subject lands is 1.5 L/s, which equals the calculated flows in the 1055 Klondike Road Orr Ridge Servicing Study (1.5 L/s).
- The proposed and existing sanitary sewers have adequate capacity to accommodate the peak sanitary flow.

<u>Watermain</u>

The analysis of the proposed watermain network confirms the following:

- It is proposed to service the site with 150mm and 250mm pipe with a connection to the future 250mm diameter stub to be located at the site entrance.
- The analysis confirms the proposed watermain provides adequate fire protection and domestic service under all operating conditions.
- Distribution mains have been looped as part of the subdivision works by connecting to the existing 300mm and 400mm diameter watermains at Klondike Road and Sandhill Road providing redundant supply and improved circulation and water quality.

Stormwater Management

The following provides a summary of the storm servicing and stormwater management system:

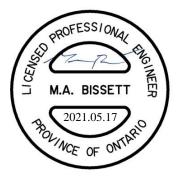
- Proposed storm sewer system will convey stormwater to MH9 on Klondike Road.
 - Storm sewers (minor system) have been designed to convey the uncontrolled 2year peak flow using the Rational Method.
 - Inflows to the minor system will be controlled using inlet control devices (ICDs) to an overall allowable release rate of 51.0 L/s.
 - A minimum clearance of 0.30m is provided between the 100-year hydraulic grade line (HGL) or storm sewer obvert and the designed underside of footing elevation.
- Surface and underground storage has been maximized to provide stormwater storage during storm events that exceed the allowable minor system inlet rate.
 - The major overland flow outlet for the site is the north side ditch along Klondike Road. No overland flow occurs up to and including the 100-year + 20% storm event, the major overland flow route is provided for emergency purposes only.
 - Ponding depths do not exceed 0.35m for all storms up to and including the 100year event.
 - Underground storage will be provided using Stormtech SC-740 (or approved equivalent) arch-type storage chambers.

Erosion and Sediment control

- Erosion and sediment control measures (i.e. filter fabric, silt fences, etc.) will be implemented prior to construction and are to remain in place until vegetation is established.
- The Erosion and Sediment Control Plan will ensure erosion and sediment control is controlled in an acceptable manner and there is no negative impact to adjacent lands, water bodies or water treatment/conveyance facilities.

9.0 CLOSURE

The preceding report is respectfully submitted for review and approval. Please contact the undersigned should you have questions or require additional information.


NOVATECH

Prepared by:

Lucas Wilson, P.Eng. Project Coordinator

FOR REVIEW

Mark Bissett, P.Eng. Senior Project Manager

Appendix A Correspondence

Novatech

<u>1055 Klondike Road</u> <u>Pre-Consultation Meeting Minutes</u> Meeting Date: Wednesday February 3, 2021

Attendee	Role	Organization	
Lisa Stern	Planner, File Lead	City of Ottawa	
Mark Young	Urban Design		
Josiane Gervais	Transportation		
Ahmed Elsayed	Infrastructure PM		
Justyna Garbos	Parks Planner		
Matthew Hayley	Environmental Planner		
Erica Ogden	Planner	MVCA	
Christine McCuaig	Planner	Q9 Planning	
Anthony Bruni	Architect	Colizza Bruni	
Brian Saumure		Maple Leaf Custom Homes	
Mark Bissett	Engineer	Novatech	

Comments from the Applicant:

- **1.** The subject lands are a part of subdivision rezoning application D07-16-19-0024.
- 2. Proposal is a 4 storey residential building with underground parking.
- 3. Access will be taken from Klondike Road.
- **4.** Future Block 12 will be merged with Block 10, but it is the intent that these lands will be developed with 1075 Klondike should it be sold in the future.

Planning Comments:

- 1. The subject application will be a Complex Site Plan Control Application. The application form, timeline and fees can be found <u>here</u>.
- 2. There is an on-going subdivision/rezoning process on the subject lands. While the subject site plan application may be reviewed concurrently, no approvals may occur until the zoning is in place and the block is registered.
- 3. Although it is the intent that block 12 would eventually be merged with 1075 Klondike, there is no assurance that this will occur. Please provide a 'concept plan' for Block 12, a shared private access between Blocks 10 and 12 may be warranted to ensure developability of Block 12.
- 4. Please provide a pedestrian connection (private sidewalk connection) to Klondike Road.
- 5. Please ensure that shadow impacts on the public realm and rear yards of surrounding homes are minimized.
- 6. Please discuss proposed transitions and access to the creek block, and transition to the adjacent low density residential in the planning rationale.
- 7. Cash-in-lieu of parkland will be taken as a part of the associated subdivision.
- 8. Please consult with the Ward Councillor prior to submission.

Urban Design Comments:

1. Please consider a re-organization of the parking and ramp locations at grade on the west side of the proposed building as discussed in the meeting.

- 2. Please review and consider the width of the portion of the parcel connecting to the public right of way. The portion of the parcel that connects to Klondike Road should allow for a private sidewalk and tree planting.
- 3. Please ensure that the terraces and amenity areas on the east side of the building will allow for accessible connections to the future pathway located along the abutting creek corridor.
- 4. Please look at the proposed building as it relates to the site located to the south. Efforts to minimize the impact on the abutting property should be reviewed. A high-level review of this building and how it could relate to any future redevelopment of the abutting lands should be considered.
- 5. Landscaping and screening between the possible ramp location adjacent to low density rear yards should be provided.
- 6. The applicant is required to provide a Design Brief as part of their planning rationale. Please see the attached terms of reference.

Transportation Comments:

- As the TIA prepared in support of the 1055 Klondike Rd Subdivision accounts for this apartment building in the Network Impact Component and is currently under review, simply addressing Modules 4.1 to 4.4 is required. This can be incorporated within the greater TIA document, an updated Step 4 report can be submitted (no need to submit Scoping and Forecasting). Alternatively, a separate supplementary technical memorandum can be provided.
- 2. ROW protection on Klondike between Old Second Line Rd and March Valley Rd is 24m even.
- 3. Clear throat requirements for <100 apartments on an major collector is 8m.
- 4. On site plan:
 - a. Show all details of the roads abutting the site up to and including the opposite curb; include such items as pavement markings, accesses and/or sidewalks.
 - b. Turning movement diagrams required for all accesses showing the largest vehicle to access/egress the site.
 - c. Turning movement diagrams required for internal movements (loading areas, garbage).
 - d. Show all curb radii measurements; ensure that all curb radii are reduced as much as possible
 - e. Show lane/aisle widths.
 - f. Sidewalk is to be continuous across access as per City Specification 7.1.
 - g. Grey out any area that will not be impacted by this application.
- 5. Provide pedestrian connection between parking area and main access, as well as from Klondike Road to the main access.
- 6. Underground ramps should be limited to a 12% grade and must contain a subsurface melting device when exceeding 6%. Ramp grades greater than 15% can be psychological barriers to some drivers.
- 7. The City recommends development on private property be in accordance with the Accessibility Design Standards. AODA legislation applies to areas of the site that will be accessed by the general public (i.e. visitor parking rates, exterior paths of travel, etc.).
- 8. Noise Impact Studies required for the following:
 - a. Road
 - b. Stationary, due to the proximity to neighboring exposed mechanical equipment or if there will be any exposed mechanical equipment due to the proximity to neighboring noise sensitive land uses.
- 9. A by-Law Exemption for section 25 (p) of the Private Approach Bylaw would be required for the site access if it remains in it's current location.

Environmental Comments:

- 1. No need for a new EIS as the one for the subdivision is sufficient
- 2. Consider the bird safe design but not required due to the building not being a mid rise
- 3. Pathway connection please provide a connection
- 4. Landscaping should be restricted to native tree species

MVCA Comments:

- 1. The setbacks from Shirley's Brook for this block has been established through the subdivision. We ask that the setbacks be shown in the site plan submissions as well.
- 2. Any works within the regulated area of Shirley's Brook will require a permit from the Conservation Authority under Ontario Regulation 153/06.
- 3. This block was included in the overall stormwater management plan for the subdivision. The detailed design for the site should take the following into account:
 - a. Minor system inlet rate of 51 L/s (based on 85 L/s/ha)
 - b. Major system storage of 30 m3 (based on 50 m3/ha)
 - c. No major system overland flow is allowed to Shirley's Brook for up to and including 1:100-yr storm events.

Forestry:

- 1. a Tree Conservation Report (TCR) must be supplied for review along with the suite of other plans/reports required by the City
 - a. an approved TCR is a requirement of Site Plan approval.
 - b. The TCR may be combines with the Landscape Plan
- 2. As of January 1 2021, any removal of privately or publicly (City) owned trees 10cm or larger in diameter requires a tree permit issued under the Tree Protection Bylaw (Bylaw 2020 340); the permit will be based on an approved TCR and made available at or near plan approval.
- 3. The Planning Forester from Planning and Growth Management as well as foresters from Forestry Services will review the submitted TCR
 - a. If tree removal is required, both municipal and privately-owned trees will be addressed in a single permit issued through the Planning Forester
 - b. Compensation may be required for city owned trees if so, it will need to be paid prior to the release of the tree permit
- 4. the TCR must list all trees on site by species, diameter and health condition
- 5. the TCR must list all trees on adjacent sites if they have a critical root zone that extends onto the development site
- 6. Trees should be identified by ownership Privately owned on-site trees; Privately owned offsite trees; City owned trees; Co-owned trees (growing on a property boundary)
- 7. If trees are to be removed, the TCR must clearly show where they are, and document the reason they cannot be retained
- 8. All retained trees must be shown and all retained trees within the area impacted by the development process must be protected as per City guidelines available at Tree Protection Specification or by searching Ottawa.ca
 - a. the location of tree protection fencing must be shown on a plan
 - b. show the critical root zone of the retained trees
 - c. if excavation will occur within the critical root zone, please show the limits of excavation

- 9. the City encourages the retention of healthy trees; if possible, please seek opportunities for retention of trees that will contribute to the design/function of the site.
- 10. For more information on the process or help with tree retention options, contact Mark Richardson mark.richardson@ottawa.ca or on City of Ottawa

For additional information on the following please contact Adam.Palmer@Ottawa.ca

Minimum Setbacks

- Maintain 1.5m from sidewalk or MUP/cycle track.
- Maintain 2.5m from curb
- Coniferous species require a minimum 4.5m setback from curb, sidewalk or MUP/cycle track/pathway.
- Maintain 7.5m between large growing trees, and 4m between small growing trees. Park or open space planting should consider 10m spacing.
- Adhere to Ottawa Hydro's planting guidelines (species and setbacks) when planting around overhead primary conductors.

Tree specifications

- Minimum stock size: 50mm tree caliper for deciduous, 200cm height for coniferous.
- Maximize the use of large deciduous species wherever possible to maximize future canopy coverage
- Tree planting on city property shall be in accordance with the City of Ottawa's Tree Planting Specification; and include watering and warranty as described in the specification (can be provided by Forestry Services).
- Plant native trees whenever possible
- No root barriers, dead-man anchor systems, or planters are permitted.

• No tree stakes unless necessary (and only 1 on the prevailing winds side of the tree) Hard surface planting

- Curb style planter is highly recommended
- No grates are to be used and if guards are required, City of Ottawa standard (which can be provided) shall be used.
- Trees are to be planted at grade

Soil Volume

• Please ensure adequate soil volumes are met:

Tree Type/Size	Single Tree Soil	Multiple Tree Soil
	Volume (m3)	Volume (m3/tree)
Ornamental	15	9
Columnar	15	9
Small	20	12
Medium	25	15
Large	30	18
Conifer	25	15

Please note that these soil volumes are not applicable in cases with Sensitive Marine Clay. Sensitive Marine Clay

• Please follow the City's 2017 Tree Planting in Sensitive Marine Clay guidelines

Infrastructure Comments:

Please note the following information regarding the engineering design submission for the above noted site:

- The Servicing Study Guidelines for Development Applications are available at the following address: <u>https://ottawa.ca/en/city-hall/planning-and-development/informationdevelopers/development-application-review-process/development-applicationsubmission/guide-preparing-studies-and-plans#servicing-study-guidelines-developmentapplications
 </u>
- 2. Servicing and site works shall be in accordance with the following documents:
 - Ottawa Sewer Design Guidelines (October 2012)
 - Ottawa Design Guidelines Water Distribution (2010)
 - Geotechnical Investigation and Reporting Guidelines for Development Applications in the City of Ottawa (2007)
 - City of Ottawa Slope Stability Guidelines for Development Applications (revised 2012)
 - City of Ottawa Environmental Noise Control Guidelines (January, 2016)
 - City of Ottawa Park and Pathway Development Manual (2012)
 - City of Ottawa Accessibility Design Standards (2012)
 - Ottawa Standard Tender Documents (latest version)
 - Ontario Provincial Standards for Roads & Public Works (2013)
- 3. Record drawings and utility plans are also available for purchase from the City (Contact the City's Information Centre by email at <u>InformationCentre@ottawa.ca</u> or by phone at (613) 580-2424 x.44455).
- 4. The proposed site will require extension of all services (water, sanitary and stormwater). The Stormwater Management Criteria, for the subject site, is to be based on the following:
 - i. There is currently no storm sewer on Klondike Road directly in front of the 1055 Klondike Property. There is a storm sewer manhole / system at the intersection of Klondike Road and Sandhill Road conveying flow to a ditch upstream of "Pond C".
 - Based on both the Shirley's Brook Floodplain Analysis and SWM Report (Klondike Road Development Lands, prepared by Novatech, May 2006) and the Shirley's Brook SWM Facility "C" Detailed Design Report (prepared by Novatech, 2006), it appears that Pond "C" was sized to service the 1055 Klondike parcel. Please demonstrate that the existing storm sewer and pond have capacity to service this proposed development (quantity and quality control).
 - Barring any additional SWM requirements from the MVCA (please see the note below), refer to the SWM design criteria in the Shirley's Brook SWM Facility "C" Detailed Design Report (prepared by Novatech, 2006) for the proposed development area (including rear yards):
- Minor system allowable release rate of 85 L/s/ha;
- Onsite major system storage of 50 m3 / ha (please see the note below);
- ICDs will be installed in the roadway catchbasins to ensure flow into the storm sewer system does not exceed the 5-year runoff rates; and
- HGL for 100-year event must have at least 0.3 m freeboard to the underside of footings.

NOTE: that MVCA is reviewing the SWM design criteria provided in the Shirley's Brook SWM Facility "C" Detailed Design Report (prepared by Novatech, 2006). The MVCA may require further stormwater management requirements be imposed on lands draining to Shirley's Brook (for example, this may include additional onsite major system storage volume, potentially requiring collection and storage of all runoff for storm events up to and including the 100-year return period). Please contact the MVCA to confirm all SWM design criteria (ESC, quality and quantity control).

- iv. IDF information derived from the Meteorological Services of Canada rainfall data, taken from the MacDonald Cartier Airport, collected 1966 to 1997.
- v. A calculated time of concentration (Cannot be less than 10 minutes).
- vi. Flows to the storm sewer in excess of the 5-year storm release rate, must be detained on site (please confirm with MVCA whether the onsite major system storage is 50 m3 / ha, or whether storage volume must be provided to attenuate all runoff up to and including the 100-year event).
- vii. SWM calculations using modified rational method is acceptable however, if a combination of surface storage (roof or at-grade / parking lot) is proposed in addition to sub-surface / cistern storage then the consultant is reminded to either:
- (a) use a dynamic computer model; or
- (b) use modified rational method:
 - 1. assuming an average release rate of 50% peak flow rate for a cistern / sub-surface storage facility.
 - 2. provide calculations for each storage facility /area (roof vs sub-surface storage) with respect to its attributing drainage area; and
 - 3. where storage facilities are inline (or in series), please add the upstream peak release rate to the downstream storage facilities modified rational method calculator.
- 1. Please note that there is a Special Area Development Charge for the subject site. Please refer to the current Development Charge attached (By-Law No. 2019 163). Note that this is the Charge for 2019 and may change over time.
- 2. Deep Services (Storm, Sanitary & Water Supply)
 - *i.* Provide existing servicing information and the recommended location for the proposed connections. Services should ideally be grouped in a common trench to minimize the number of road cuts.
 - *ii.* Connections to trunk sewers and easement sewers are typically not permitted.
 - *iii.* Provide information on the monitoring manhole requirements should be located in an accessible location on private property near the property line (i.e. Not in a parking area).
 - *iv.* Review provision of a high-level sewer.
 - v. Provide information on the type of connection permitted

Sewer connections to be made above the springline of the sewermain as per:

- *a.* Std Dwg S11.1 for flexible main sewers *connections made using approved tee or wye fittings.*
- *b.* Std Dwg S11 (For rigid main sewers) *lateral must be less that 50% the diameter of the sewermain,*
- *c.* Std Dwg S11.2 (for rigid main sewers using bell end insert method) *for larger diameter laterals where manufactured inserts are not available; lateral must be less that 50% the diameter of the sewermain,*
- *d.* Connections to manholes permitted when the connection is to rigid main sewers where the lateral exceeds 50% the diameter of the sewermain. Connect obvert to obvert with the outlet pipe unless pipes are a similar size.
- e. No submerged outlet connections.
- 3.As per Section 4.3.1 of the Water Design Guidelines: "Service areas with a basic day demand greater than 50 m³/day (about 50 homes) shall be connected with a minimum of two feedermains to avoid the creation of a vulnerable service area. Distribution mains shall be looped whenever possible to provide redundant supply and improved circulation and water quality."

Based on the proposed sub-division the site requires two watermain feeds. Linking the existing watermain stubs on Klondike Road (from March Road) to Sandhill Road.

Note: one connection to the existing watermain stub on Klondike at the intersection of Sandhill will not be accepted.

4. Water Boundary condition requests must include the location of the service and the expected loads required by the proposed development. Please provide the following information:

- i. Location of service
- ii. Type of development and the amount of fire flow required (as per FUS, 1999).
- iii. Average daily demand: ____ l/s.
- iv. Maximum daily demand: ____l/s.
- v. Maximum hourly daily demand: ____ l/s.

5. The applicant will need to confirm with the City whether sufficient capacity is available in the local

sanitary sewer on Sandhill or Klondike to accommodate flows generated from the subject site. Please note that residual capacity at the Briaridge PS is a constraint. A study is currently underway to increase the rated capacity at the station from 55 l/s to 175 l/s. The project to increase capacity is likely a few years away (target date 2021-2022). Note that an EA is not required as part of scope of work for this upgrade.

6. MOECC ECA Requirements

An MOECC Environmental Compliance Approval will be required for the proposed development due to new services and roads. Please contact Ontario Ministry of the Environment and Climate Change, Ottawa District Office to arrange a pre-submission consultation:

For residential applications:

Charlie Primeau

(613) 521-3450, ext. 251

Charlie.Primeau@ontario.ca

Note that the typically the Public Consultation performed as part of the ESA process is submitted as part of the application for the ECA. Please confirm this with the MOECC Ottawa District Office as part of the pre-submission consultation.

7. Phase 1 ESAs and Phase 2 ESAs must conform to clause 4.8.4 of the Official Plan that requires that development applications conform to Ontario Regulation 153/04.

Please refer to the links to <u>"Guide to preparing studies and plans"</u> and fees for general information. Additional information is available related to <u>building permits</u>, <u>development</u> <u>charges</u>, and the <u>Accessibility Design Standards</u>. Be aware that other fees and permits may be required, outside of the development review process. You may obtain background drawings by contacting informationcentre@ottawa.ca.

These pre-con comments are valid for one year. If you submit a development application(s) after this time, you may be required to meet for another pre-consultation meeting and/or the submission requirements may change. You are as well encouraged to contact us for a follow-up meeting if the plan/concept will be further refined.

Please contact me at Lisa.Stern@ottawa.ca or at 613-580-2424 extension 21108 if you have any questions.

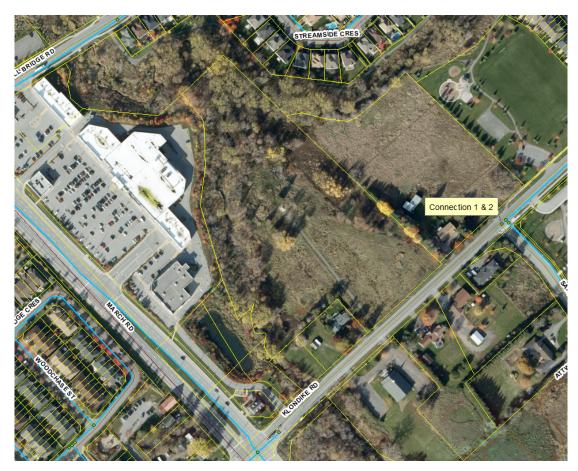
<u>Appendix B</u>

Sanitary Design Sheets

Klondike Road - Block 10: Sanitary Sewer Design Sheet

ļ	AREA						R	ESIDENTIA	L								ICI				INFI	LTRATIC	N				F	PIPE		
			Sir	gles		etached wns					Т	OTAL																		
ID	From	То	Units	Pop.	Units	Pop.		Future 1075 Klondike Rd	Pop.	Pop.	Accum. Pop.	Peak Factor	Peak Flow (I/s)	Light Industrial Area (ha)	Accum. Area (ha)	Peak Factor	Commercial Area (ha)	Institutional Area (ha)	Accum. Area (ha)	Peak Flow (l/s)	Total Area (ha)	Accum. Area (ha)	Infilt. Flow (l/s)	Total Flow (I/s)	Size (mm)	Slope (%)	Length (m)	Capacity (l/s)	Full Flow Vel. (m/s)	Q/Q _{full} (%)
Block 10																														
A2-1		MH09	0	0.0	0	0.0	53		111.3	111.3	111.3	3.6	1.3				0.00	0.00	0.00	0.0	0.60	0.60	0.2	1.5	200	0.50	67.8	24.2	0.75	6.2%
Klondike Roa								-						-			-								-					
A2-2	MH09	1	0	0.0	0	0.0	0.00	10	17.6	17.6	128.9	3.6	1.5				0.00	0.00	0.00	0.0	0.28	0.88	0.3	1.8	200	1.40	47.6	40.5	1.25	4.4%
A1-1, A1-2, A1-3	1	266	0	0.0	58	156.6	0.00		0.0	156.6	285.5	3.5	3.2				0.00	0.00	0.00	0.0	1.85	2.73	0.9	4.1	200	0.65	117.0	27.6	0.85	14.9%
Off-site Drain	age Areas	i (To Bria	r Ridge I	Pump Stat	ion)						1	I																		
A3-3	266	265	0	0.0	57	153.9	0.00		0.0	153.9	439.4	3.4	4.8				0.00	0.00	0.00	0.0	2.47	5.20	1.7	6.6	200	0.32	91.0	19.4	0.60	33.9%
A3-4	265	264	0	0.0	0	0.0	0.00		0.0	0.0	439.4	3.4	4.8				0.00	2.21	2.21	1.1	2.21	7.41	2.4	8.4	200	0.32	120.0	19.4	0.60	43.2%
A3-5	264	206	0	0.0	107	288.9	0.00		0.0	288.9	728.3	3.3	7.8				0.00	0.00	2.21	1.1	3.99	11.40	3.8	12.6	250	0.24	306.3	30.4	0.60	41.6%
A3-1, A3-2, A3-6	206	205	201	683.4	392	1058.4	0.00		0.0	1741.8	2470.1	3.0	24.1				9.02	0.00	11.23	5.5	37.33	48.73	16.1	45.6	450	0.20	52.5	133.0	0.81	34.3%
A3-7, A3-8	205	204	0	0.0	0	0.0	0.00		0.0	0.0	2470.1	3.0	24.1	5.4	5.4	4.7	0.00	0.00	11.23	15.7	5.40	54.13	17.9	57.7	450	0.20	79.7	133.0	0.81	43.4%
	204	203	0	0.0	0	0.0	0.00		0.0	0.0	2470.1	3.0	24.1		5.4	4.7	0.00	0.00	11.23	15.7	0.00	54.13	17.9	57.7	450	0.20	79.7	133.0	0.81	43.4%
	203	202	0	0.0	0	0.0	0.00		0.0	0.0	2470.1	3.0	24.1	7.9	13.3	3.9	0.00	0.00	11.23	26.5	7.90	62.03	20.5	71.0	450	0.26	90.0	151.7	0.92	46.8%
	202	201	0	0.0	0	0.0	0.00		0.0	0.0	2470.1	3.0	24.1		13.3	3.9	0.00	0.00	11.23	26.5	0.00	62.03	20.5	71.0	450	0.25	270.0	148.7	0.91	47.8%
	201	PS	0	0.0	0	0.0	0.00		0.0	0.0	2470.1	3.0	24.1		13.3	3.9	0.00	0.00	11.23	26.5	0.00	62.03	20.5	71.0	450	0.15	21.6	115.2	0.70	61.7%
Design Parar	neters:				1	1		1	1		1	1	Population	Density:				1	1	1						Project: "	1055 Klone	dike Road -	Block 10	(117034-10)
Avg Flow/Pers	son =		280	l/day										ppl/unit	units/ha											-			Des	igned: LRW
Comm./Inst. F	low =		28000	l/ha/day																									Ch	ecked: MAB
Light Industria Infiltration = Pipe Friction r			35000 0.33 0.013	l/ha/day l/s/ha									partment Uni Iondike Roac Single	1.8	35														Date: M	ay 17, 2021
Residential Pe Peaking Facto	0		•	tion (max ·	4, min 2)								Semi / Towr	2.7																

Appendix C


Watermain Boundary Conditions, FUS Calculations, & Modelling Results

Boundary Conditions 1055 Klondike Road

Provided Information

Scenario	Demand				
Scenario	L/min	L/s			
Average Daily Demand	21	0.355			
Maximum Daily Demand	53	0.887			
Peak Hour	117	1.952			
Fire Flow Demand #1	21,000	350.00			

Location

<u>Results</u>

Connection 1 – Klondike Rd.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	130.0	78.3
Peak Hour	126.3	73.1
Max Day plus Fire 1	113.3	54.6

Ground Elevation = 74.9 m

Connection 2 – Klondike Rd.

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	130.0	78.3
Peak Hour	126.3	73.1
Max Day plus Fire 1	113.3	54.6

Ground Elevation = 74.9 m

<u>Notes</u>

- 1. Two service connections with a separation valve in between.
- 2. Klondike 406mm watermain to be extended from East and West to provide redundancy

Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

FUS - Fire Flow Calculations

As per 1999 Fire Underwriter's Survey Guidelines

Novatech Project #:	117034-10
Project Name:	1055 Klondike Block 10
Date:	5/10/2021
Input By:	Designer
Reviewed By:	Project Manager

Engineers, Planners & Landscape Architects

Legend Input by User

No Information or Input Required

Building Description: 4-Storey Apartment

Wood frame

Step			Input		Value Used	Total Fire Flow (L/min)			
		Base Fire Flo	w		4	· · · /			
	Construction Ma	terial		Mult	plier				
	Coefficient	Wood frame	Yes	1.5					
1	related to type	Ordinary construction		1					
	of construction	Non-combustible construction		0.8	1.5				
	C	Modified Fire resistive construction (2 hrs)		0.6					
	_	Fire resistive construction (> 3 hrs)		0.6					
	Floor Area	2							
		Building Footprint (m ²)	1462						
•	Α	Number of Floors/Storeys	4						
2		Area of structure considered (m ²)			5,848				
	F	Base fire flow without reductions	20			25,000			
	•	$F = 220 C (A)^{0.5}$				23,000			
		b n							
	Occupancy haza	rd reduction or surcharge		Reduction	Surcharge				
		Non-combustible		-25%					
3		Limited combustible	Yes	-15%					
v	(1)	Combustible		0%	-15%	21,250			
		Free burning		15%					
		Rapid burning		25%					
	Sprinkler Reduct	ion		Redu	ction				
		Adequately Designed System (NFPA 13)	Yes	-30%	-30%				
4	(2)	Standard Water Supply	Yes	-10%	-10%	9 500			
	(2)	Fully Supervised System		-10%		-8,500			
			Cum	ulative Total	-40%				
	Exposure Surcha	arge (cumulative %)			Surcharge				
		North Side	10.1 - 20 m		15%				
5		East Side	20.1 - 30 m		10%				
5	(3)	South Side	10.1 - 20 m		15%	8,500			
		West Side	> 45.1m		0%				
			Cum	ulative Total	40%				
		Results							
		Total Required Fire Flow, rounded to nea	rest 1000L/mir	า	L/min	21,000			
6	(1) + (2) + (3)	(2,000 L/min < Fire Flow < 45,000 L/min)		or	L/s	350			
		(2,000 L/IIIII) > FILE FIOW > 45,000 L/IIIII)		or	USGPM	5,548			
7	Stowers Malare	Required Duration of Fire Flow (hours)			Hours	4.5			
7	Storage Volume	Required Volume of Fire Flow (m ³)			m ³	5670			

	KLONDIKE ROAD - BLOCK 10 Water Demand												
				Average Day	Maximum Day	Peak Hour							
	Area			Demand	Demand	Demand							
	(ha)	Units	Population	(L/s)	(L/s)	(L/s)							
Apartment Unit	N/A	53	111	0.361	0.902	1.984							
Total	0.00	53	111	0.361	0.902	1.984							

Water Demand Parameters

Apartment Unit	2.1	ppl/unit
Residential Demand	280	L/c/day
Residential Max Day	2.5	x Avg Day
Residential Peak Hour	2.2	x Max Day
Residential Fire Flow	350	L/s

Klondike Road - Block 10: Watermain Demand

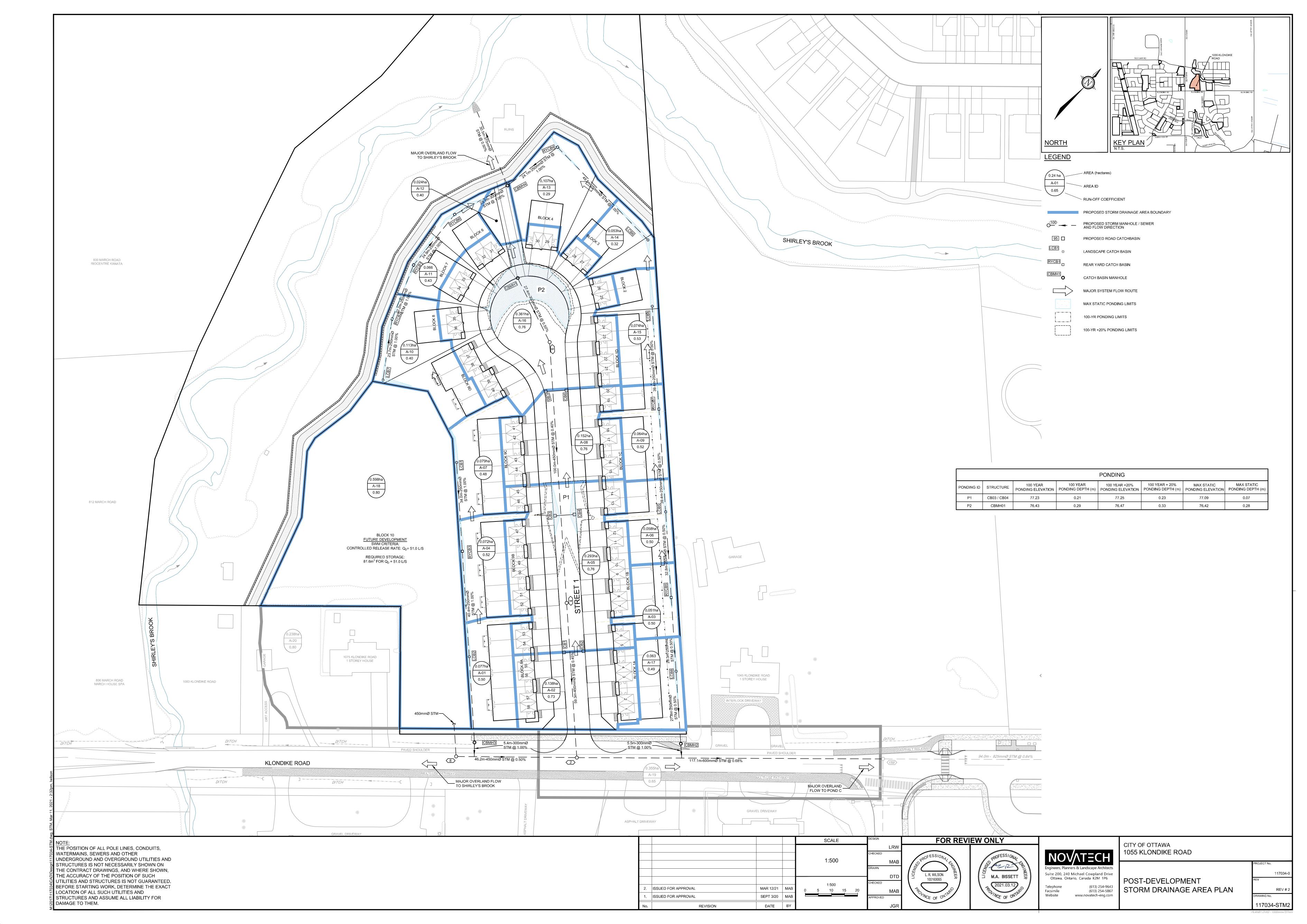
Node	Semi-Detached	Towns	Block 10 Apartment Unit	Total Population	Average Day Demand (L/s)	Maximum Day Demand (L/s)	Peak Hour Demand (L/s)	Fire Flow (L/s)
B1			53	111	0.361	0.902	1.984	N/A
H1				0	0.000	0.000	0.000	95
H2				0	0.000	0.000	0.000	95
Н3				0	0.000	0.000	0.000	95
HYD4				0	0.000	0.000	0.000	63
T4				0	0.000	0.000	0.000	N/A
Total	0	0	53	111	0.361	0.902	1.984	
Water Demand Pa	arameters							
Semi-Detached		2.7	ppl/unit		Residential Max D	Day	2.5	x Avg Day
Towns		2.7	ppl/unit		Residential Peak	Hour	2.2	x Max Day
Block 10 Apartment Unit 2.1		ppl/unit		Apartment Fire Fl	ow	350	L/s	
Residential Deman	ıd	280	L/c/day					

Klondike Road - Block 10: Watermain Analysis

	Elevation	Demand	Head	Pressure	Pressure	Pressure	
Node ID	m	LPS	m	m	kPa	psi	
Junc B1	78.3	1.98	126.29	47.97	470.59	68.25	
Junc H1	78.1	0	126.3	48.2	472.84	68.58	
Junc H2	78.12	0	126.3	48.18	460.00	66.72	
Junc H3	78.27	0	126.3	48.03	450.00	65.27	
Junc HYD4	77.93	0	126.3	48.37	474.51	68.82	
Junc T4	77.7	0	126.3	48.6	476.77	69.15	
Resvr RES1	126.3	-4.78	126.3	0	0.00	0.00	
Network Table - Links	s - (Peak Hour)						
	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm		LPS	m/s	m/km	Factor
Pipe P12	35	250	110	-1.98	0.04	0.02	0.045
Pipe P13	25	250	110	1.98	0.04	0.01	0.045
Pipe P14	11	250	110	-1.98	0.04	0.01	0.045
Pipe P15	25	155	100	-1.98	0.11	0.18	0.050

Klondike Road - Block 10: Watermain Analysis

	Elevation	Demand	Head	Pressure	Pressure	Pressure	Age
Node ID	m	LPS	m	m	kPa	psi	Hours
Junc B1	78.32	0.36	130	51.68	506.98	73.53	12.94
unc H1	78.1	0	130	51.9	509.14	73.84	11.21
unc H2	78.12	0	130	51.88	508.94	73.82	12.15
unc H3	78.27	0	130	51.73	507.47	73.60	12.57
unc HYD4	77.93	0	130	52.07	510.81	74.09	13.88
unc T4	77.7	0	130	52.3	513.06	74.41	9.89
Resvr RES1	130	-0.87	130	0	0.00	0.00	0
letwork Table - Link	s - (Max Pressure Check	<)					
	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm	-	LPS	m/s	m/km	Factor
Pipe P12	35	250	110	-0.36	0.01	0.00	0.049
Pipe P13	25	250	110	0.36	0.01	0.00	0.068
Pipe P14	11	250	110	0.36	0.01	0.00	0.075
Pipe P15	25	155	100	0.36	0.02	0.01	0.065


Klondike Road - Block 10: Watermain Analysis

	Elevation	Demand	Head	Pressure	Pressure	Pressure	
Node ID	m	LPS	m	m	kPa	psi	
Junc B1	78.32	0.87	102.91	24.59	241.23	34.99	
Junc H1	78.1	95	104.89	26.79	262.81	38.12	
Junc H2	78.12	95	103.13	25.01	245.35	35.58	
Junc H3	78.27	95	102.91	24.64	241.72	35.06	
Junc HYD4	77.93	65	110.14	32.21	315.98	45.83	
Junc T4	77.7	0	110.06	32.36	317.45	46.04	
Resvr RES1	113.3	-352.14	113.3	0	0.00	0.00	
Network Table - Link	s (Max Day + FF)						
	Length	Diameter	Roughness	Flow	Velocity	Headloss	Friction
Link ID	m	mm		LPS	m/s	m/km	Factor
Pipe P12	35	250	110	-285.87	5.82	148.88	0.02
Pipe P13	25	250	110	190.87	3.89	70.46	0.02
Pipe P14	11	250	110	-95.87	1.95	19.68	0.02
Pipe P15	25	155	100	-0.87	0.05	0.04	0.05

Appendix D

STM Design Sheets, SWM Excerpts & PCSWMM Modelling Info

1055 Klondike Road - Block 10 (117034-10) PCSWMM Storage Curves (surface/underground storage)

	CB01-Storage										
Depth (m)	Area (m ²)	Volume (m ³)									
0.00	0.00	0.00									
1.59	0.00	0.00									
1.64	0.00	0.00									
1.69	115.00	2.88									
1.74	255.00	12.13									
1.79	415.00	28.88									
1.84	495.00	51.63									
1.89	515.00	76.88									
1.90	0.00	79.45									
2.59	0.00	79.45									

CB02-Storag	e
Area (m ²)	Volume (m ³)
0.00	0.00
0.00	0.00
10.00	0.25
40.00	1.50
86.00	4.65
141.00	10.33
200.00	18.85
262.00	30.40
0.00	31.71
0.00	31.71
	0.00 0.00 10.00 86.00 141.00 200.00 262.00 0.00

	CB03-Storag	e			
Depth (m)	Area (m ²)	Volume (m ³)			
0.00	0.00	0.00			
1.06	0.00	0.00			
1.07	0.00	0.00			
1.70	0.00	0.00			
1.75	8.00	0.20			
1.80	31.00	1.18			
1.85	70.00	3.70			
1.90	125.00	8.57			
1.95	185.00	16.33			
2.00	240.00	26.95			
2.01	0.00	28.15			
2.70	0.00	28.15			

LC01-Storage									
Depth (m)	Area (m ²)	Volume (m ³)							
0.00	0.00	0.00							
1.00	0.00	0.00							
1.05	5.00	0.13							
1.10	20.00	0.75							
1.13	35.00	1.58							
1.14	0.00	1.75							
2.00	0.00	1.75							

	LC02-Storage	e					
Depth (m)	Area (m ²)	Volume (m ³)					
0.00	0.00	0.00					
0.95	0.00	0.00					
1.00	7.00	0.18					
1.05	30.00	1.10					
1.10	60.00	3.35					
1.15	105.00	7.47					
1.16	0.00	8.00					
1.95	0.00	8.00					

	LC03-Storag	e
Depth (m)	Area (m ²)	Volume (m ³)
0.00	0.00	0.00
1.44	0.00	0.00
1.49	4.00	0.10
1.54	17.00	0.63
1.59	38.00	2.00
1.64	66.00	4.60
1.69	104.00	8.85
1.74	150.00	15.20
1.75	0.00	15.95
2.44	0.00	15.95

	LC04-Storage										
Depth (m)	Area (m ²)	Volume (m ³)									
0.00	0.00	0.00									
1.31	0.00	0.00									
1.36	12.00	0.30									
1.41	46.00	1.75									
1.46	103.00	5.48									
1.51	183.00	12.63									
1.56	286.00	24.35									
1.61	412.00	41.80									
1.62	0.00	43.86									
2.31	0.00	43.86									

	RY03-Storage										
Depth (m)	Area (m2)	Volume (m3)									
0.00	0.00	0.00									
1.06	0.00	0.00									
1.07	0.00	0.00									
1.70	0.00	0.00									
1.75	8.00	0.20									
1.80	30.00	1.15									
1.85	67.00	3.58									
1.90	115.00	8.12									
1.91	0.00	8.70									
2.70	0.00	8.70									

1055 Klondike Road - Block 10 (117034-10) PCSWMM Model Results (Ponding)

СВ / СВМН	Invert	Rim	Spill	Ponding	HGL Elev. (m) ¹			F	onding	Depth (n	n)		Spill D	epth (m)		
ID	Elev. (m)	Elev. (m)	Elev. (m)	Depth (m)	2-yr	5-yr	100-yr	100-yr (+20%)	2-yr	5-yr	100-yr	100-yr (+20%)	2-yr	5-yr	100-yr	100-yr (+20%)
CB01	76.24	77.83	78.13	0.30	77.64	77.96	78.06	78.10	0.00	0.13	0.23	0.27	0.00	0.00	0.00	0.00
CB02	76.33	77.73	78.03	0.30	77.63	77.83	77.94	77.97	0.00	0.10	0.21	0.24	0.00	0.00	0.00	0.00
CB03	76.13	77.83	78.13	0.30	77.63	77.95	78.06	78.09	0.00	0.12	0.23	0.26	0.00	0.00	0.00	0.00
LC01	76.67	77.67	77.80	0.13	76.70	76.71	77.34	77.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LC02	76.20	77.15	77.35	0.20	76.31	76.45	77.34	77.37	0.00	0.00	0.19	0.22	0.00	0.00	0.00	0.02
LC03	76.56	78.00	78.30	0.30	77.64	78.01	78.14	78.18	0.00	0.01	0.14	0.18	0.00	0.00	0.00	0.00
LC04	76.42	77.73	78.03	0.30	77.63	77.83	77.95	77.97	0.00	0.10	0.22	0.24	0.00	0.00	0.00	0.00
RY03	75.45	77.15	77.35	0.20	76.17	76.45	77.34	77.36	0.00	0.00	0.19	0.21	0.00	0.00	0.00	0.01

¹ 3-hour Chicago Storm.

1055 Klondike Road - Block 10 (117034-10) Summary of Hydraulic Grade Line (HGL) Elevations

MH ID	Obvert Elevation T/G Eleva		HGL Elevation ¹	Surcharge	Clearance from T/G	HGL in Stress Test ¹
	(m)	(m)	(m)	(m)	(m)	(m)
MH02	74.88	78.09	74.60	0.00	3.49	74.60
MH04	74.71	78.10	74.43	0.00	3.67	74.43
MH08	72.61	77.68	72.32	0.00	5.36	72.33
TD01	75.18	75.78	74.99	0.00	0.79	75.00

¹ 3-hour Chicago Storm

STORM SEWER DESIGN SHEET

(Maple Leaf Homes)

FLOW RATES BASED ON RATIONAL METHOD

	LOCATION	LOCATION AREA (ha)						FLOW TOTAL					TOTAL FLOW				SE/	NER DA	ATA						
Street	Catchment ID	From	То	Area	C AC	Indiv	Accum	Time of	Rainfall Intensity	Rainfall Intensity	Rainfall Intensity	Peak Flow	Total Peak	Dia. (m)	Dia.	Туре	Slope	Length	Capacity		Flow Time	Ratio			
Sileei	Catchment ID	Manhole	Manhole	(ha)	(ha	2.78 AC	2.78 AC	Concentration	2 Year (mm/hr)	5 Year (mm/hr)	10 Year (mm/hr)	(L/s)	Flow, Q (L/s)	Actual	(mm)		(%)	(m)	(L/s)	(m/s)	(min) C)/Q ful			
				0.240	0.75 0.18		0.500	10.00	76.81			38.4													
	B-05, B-06, B-07, B-10	MH2	MH4		0.00	0.000	0.000	10.00					38.4	0.381	375	PVC	0.50	34.5	129.2	1.13	0.51	30%			
					0.00	0.000	0.000	10.00																	
				0.190	0.54 0.10		0.285	10.00	76.81			21.9													
	B-11, B-12, B-13	RY2	MH4		0.00	0.000	0.000	10.00					21.9	0.305	300	PVC	1.00	49.5	100.8	1.38	0.60	22%			
					0.00	0.000	0.000	10.00																	
				0.114	0.43 0.05	0.136	0.922	10.60	74.59			68.8													
	B-01, B-02	MH4	MH8		0.00	0.000	0.000	10.60					68.8	0.457	450	Conc	0.50	58.4	210.2	1.28	0.76	33%			
					0.00	0.000	0.000	10.60																	
Q = 2.78 AIC, where	9									Consul	tant:						1	Novatec	h						
	w in Litres per Second (L/s)							Date	. .						Ma	ıy 17, 20	121								
													1					-							
A = Area in hectares	s (na)						Design By:			Design By:			Design By:			Design By:			Design By: Lucas W				cas vviis	son	
I = Rainfall Intensity	(mm/hr), 5 year storm						Client:			Client:			Client:			1		Dwg.	. Referen	ce:			Checked	l By:	
C = Runoff Coefficie	ent						Maple Leaf Homes					1170)34-10-ST	M			MAE	}							

Q = 2.78 AIC, where	Consultant:	
Q = Peak Flow in Litres per Second (L/s)	Date:	
A = Area in hectares (ha)	Design By:	
I = Rainfall Intensity (mm/hr), 5 year storm	Client:	
C = Runoff Coefficient	Maple Leaf Homes	

Legend: *

Indicates 100 Year intensity for storm sewers

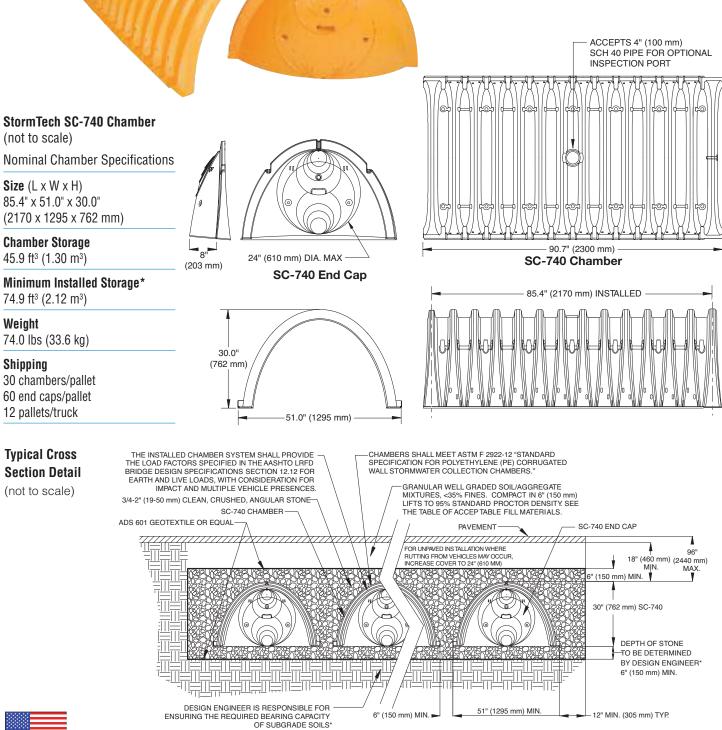
Storm sewers designed to the 2 year event (without ponding) for local roads

10.00 10.00 Storm sewers designed to the 5 year event (without ponding) for collector roads

10.00 Storm sewers designed to the 10 year event (without ponding) for arterial roads

NOVATECH

Engineers, Planners & Landscape Architects


StormTech SC-740 Chamber

Designed to meet the most stringent industry performance standards for superior structural integrity while providing designers with a cost-effective method to save valuable land and protect water resources. The StormTech system is designed primarily to be used under parking lots thus maximizing land usage for

commercial and municipal applications.

Subsurface Stormwater Management[™]

THIS CROSS SECTION DETAILS THE REQUIREMENTS NECESSARY TO SATISFY THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS SECTION 12.12 FOR EARTH AND LIVE LOADS USING STORMTECH CHAMBERS

SC-740 Cumulative Storage Volumes Per Chamber

Assumes 40% Stone Porosity. Calculations are Based Upon a 6" (152 mm) Stone Base Under the Chambers.

Depth of Water in System Inches (mm)	Cumulative Chamber Storage Ft ³ (m ³)	Total System Cumulative Storage Ft ³ (m ³)
42 (1067)	45.90 (1.300)	74.90 (2.121)
41 (1041)	45.90 (1.300)	73.77 (2.089)
40 (1016)	Stone 45.90 (1.300)	72.64 (2.057)
39 (991)	Cover 45.90 (1.300)	71.52 (2.025)
38 (965)	45.90 (1.300)	70.39 (1.993)
37 (948)	45.90 (1.300)	69.26 (1.961)
36 (914)	45.90 (1.300)	68.14 (1.929)
35 (889)	45.85 (1.298)	66.98 (1.897)
34 (864)	45.69 (1.294)	65.75 (1.862)
33 (838)	45.41 (1.286)	64.46 (1.825)
32 (813)	44.81 (1.269)	62.97 (1.783)
31 (787)	44.01 (1.246)	61.36 (1.737)
30 (762)	43.06 (1.219)	59.66 (1.689)
29 (737)	41.98 (1.189)	57.89 (1.639)
28 (711)	40.80 (1.155)	56.05 (1.587)
27 (686)	39.54 (1.120)	54.17 (1.534)
26 (660)	38.18 (1.081)	52.23 (1.479)
25 (635)	36.74 (1.040)	50.23 (1.422)
24 (610)	35.22 (0.977)	48.19 (1.365)
23 (584)	33.64 (0.953)	46.11 (1.306)
22 (559)	31.99 (0.906)	44.00 (1.246)
21 (533)	30.29 (0.858)	41.85 (1.185)
20 (508)	28.54 (0.808)	39.67 (1.123)
19 (483)	26.74 (0.757)	37.47 (1.061)
18 (457)	24.89 (0.705)	35.23 (0.997)
17 (432)	23.00 (0.651)	32.96 (0.939)
16 (406)	21.06 (0.596)	30.68 (0.869)
15 (381)	19.09 (0.541)	28.36 (0.803)
14 (356)	17.08 (0.484)	26.03 (0.737)
13 (330)	15.04 (0.426)	23.68 (0.670)
12 (305)	12.97 (0.367)	21.31 (0.608)
11 (279)	10.87 (0.309)	18.92 (0.535)
10 (254)	8.74 (0.247)	16.51 (0.468)
9 (229)	6.58 (0.186)	14.09 (0.399)
8 (203)	4.41 (0.125)	11.66 (0.330)
7 (178)	2.21 (0.063)	9.21 (0.264)
6 (152)		6.76 (0.191)
5 (127)	0	5.63 (0.160)
4 (102)	Stone Foundation 0	4.51 (0.125)
3 (76)	0	3.38 (0.095)
2 (51)		2.25 (0.064)
1 (25)	∀ 0	1.13 (0.032)

Note: Add 1.13 cu. ft. (0.032 m³) of storage for each additional inch (25 mm) of stone foundation.

Storage Volume Per Chamber

	Bare Chamber Storage	Chamber and Stone Stone Foundation Depth in. (mm)		
	ft³ (m³)	6 (150)	12 (305)	18 (460)
StormTech SC-740	45.9 (1.3)	74.9 (2.1)	81.7 (2.3)	88.4 (2.5)

Note: Storage volumes are in cubic feet per chamber. Assumes 40% porosity for the stone plus the chamber volume.

Amount of Stone Per Chamber

	Stone Foundation Depth				
ENGLISH TONS (CUBIC YARDS)	6"	12"	18"		
StormTech SC-740	3.8 (2.8 yd ³)	4.6 (3.3 yd ³)	5.5 (3.9 yd ³)		
METRIC KILOGRAMS (METER ³)	150 mm	305 mm	460 mm		
StormTech SC-740	3450 (2.1 m ³)	4170 (2.5 m ³)	4490 (3.0 m ³)		
Note: Assumes 6" (150 mm) of stone above, and between chambers					

Note: Assumes 6" (150 mm) of stone above, and between chambers.

Volume of Excavation Per Chamber

	Sto	ne Foundation De	pth			
	6" (150 mm) 12" (305 mm) 18" (460 mm					
StormTech SC-740	5.5 (4.2)	6.2 (4.7)	6.8 (5.2)			

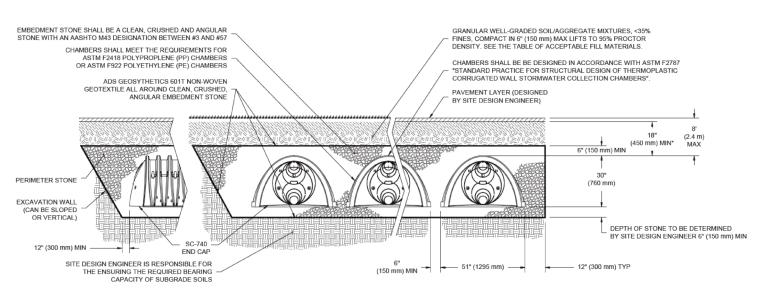
Note: Volumes are in cubic yards (cubic meters) per chamber. Assumes 6" (150 mm) of separation between chamber rows and 18" (460 mm) of cover. The volume of excavation will vary as the depth of the cover increases.

STANDARD LIMITED WARRANTY OF STORMTECH LLC ("STORMTECH"): PRODUCTS

- (A) This Limited Warranty applies solely to the StormTech chambers and endplates manufactured by StormTech and sold to the original purchaser (the "Purchaser"). The chambers and endplates are collectively referred to as the "Products."
- (B) The structural integrity of the Products, when installed strictly in accordance with StormTech's written installation instructions at the time of installation, are warranted to the Purchaser against defective materials and workmanship for one (1) year from the date of purchase. Should a defect appear in the Limited Warranty period, the Purchaser shall provide StormTech with written notice of the alleged defect at StormTech's corporate headquarters within ten (10) days of the discovery of the defect. The notice shall describe the alleged defect in reasonable detail. StormTech and covered by this Limited Warranty. The supply of replacement products is the sole remedy of the Purchaser for breaches of this Limited Warranty. StormTech's liability specifically excludes the cost of removal and/or installation of the Products.
- (C) THIS LIMITED WARRANTY IS EXCLUSIVE. THERE ARE NO OTHER WARRANTIES WITH RESPECT TO THE PRODUCTS, INCLUDING NO IMPLIED WARRANTIES OF MERCHANT-ABILITY OR OF FITNESS FOR A PARTICULAR PURPOSE.
- (D) This Limited Warranty only applies to the Products when the Products are installed in a single layer. UNDER NO CIRCUMSTANCES, SHALL THE PRODUCTS BE INSTALLED IN A MULTI-LAYER CONFIGURATION.
- (E) No representative of StormTech has the authority to change this Limited Warranty in any manner or to extend this Limited Warranty. This Limited Warranty does not apply to any person other than to the Purchaser.
- (F) Under no circumstances shall StormTech be liable to the Purchaser or to any third party for product liability claims; claims arising from the design, shipment, or installation of the Products, or the cost of other goods or services related to the purchase and installation of the Products. For this Limited Warranty to apply, the Products must be installed in accordance with all site conditions required by state and local codes; all other applicable laws; and StormTech's written installation instructions.
- (G) THE LIMITED WARRANTY DOES NOT EXTEND TO INCIDENTAL, CONSEQUENTIAL, SPE-CIAL OR INDIRECT DAMAGES. STORMTECH SHALL NOT BE LIABLE FOR PENALTIES OR LIQUIDATED DAMAGES, INCLUDING LOSS OF PRODUCTION AND PROFITS; LABOR AND MATERIALS; OVERHEAD COSTS; OR OTHER LOSS OR EXPENSE INCURRED BY THE PURCHASER OR ANY THIRD PARTY. SPECIFICALLY EXCLUDED FROM LIMITED WAR-RANTY COVERAGE ARE DAMAGE TO THE PRODUCTS ARISING FROM ONDINARY WEAR AND TEAR; ALTERATION, ACCIDENT, MISUSE, ABUSE OR NEGLECT; THE PRODUCTS BEING SUBJECTED TO VEHICLE TRAFFIC OR OTHER CONDITIONS WHICH ARE NOT PERMITTED BY STORMTECH'S WRITTEN SPECIFICATIONS OR INSTALLATION INSTRUC-TIONS; FAILURE TO MAINTAIN THE MINIMUM GROUND COVERS SET FORTH IN THE INSTALLATION INSTRUCTIONS; THE PLACEMENT OF IMPROPER MATERIALS INTO THE PRODUCTS; FAILURE TO THE PRODUCTS SUE TO IMPROPER MATERIALS INTO THE PRODUCTS; FAILURE TO THE PRODUCTS SUE TO IMPROPER MATERIALS INTO THE SIZING; OR ANY OTHER EVENT NOT CAUSED BY STORMTECH. THIS LIMITED WAR-RANTY REPRESENTS STORMTECH'S SOLE LIABILITY TO THE PURCHASER FOR CLAIMS RELATED TO THE PRODUCTS, WHETHER THE CLAIM IS BASED UPON CON-TRACT, TORT, OR OTHER LEGAL THEORY.

 20 Beaver Road, Suite 104
 Wethersfield
 Connecticut
 06109

 860.529.8188
 888.892.2694
 fax 866.328.8401
 fax 860-529-8040
 www.stormtech.com



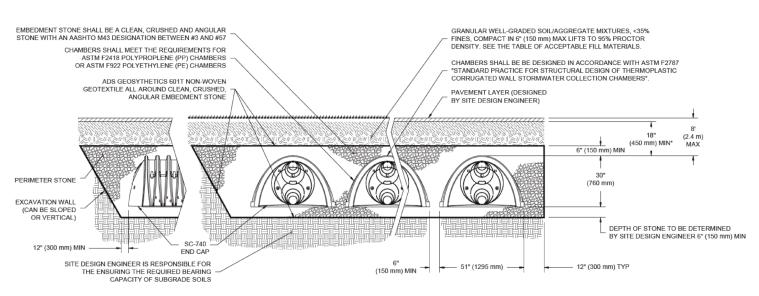
<u>User Inputs</u>

<u>Results</u>

Chamber Model:	SC-740	System Volume and Bed Size	
Outlet Control Structure:	No		
Project Name:	117034-10 (6 Cham-	Installed Storage Volume:	16.15 cubic meters.
	bers)	Storage Volume Per Chamber:	1.30 cubic meters.
Engineer:	Lucas Wilson	Number Of Chambers Required:	6
Project Location:		Number Of End Caps Required:	2
Measurement Type:	Metric	Chamber Rows:	1
Required Storage Volume:	16.10 cubic meters.	Maximum Length:	14.11 m.
Stone Porosity:	40%	Maximum Width:	1.91 m.
Stone Foundation Depth:	152 mm.	Approx. Bed Size Required:	26.88 square me-
Stone Above Chambers:	152 mm.		ters.
Average Cover Over Chambers:	457 mm.	System Components	
Design Constraint Dimensions:	(2.00 m. x 14.20 m.)		

Amount Of Stone Required:20.88 cubic metersVolume Of Excavation (Not Including28.68 cubic metersFill):

*MINIMUM COVER TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 24" (600 mm).

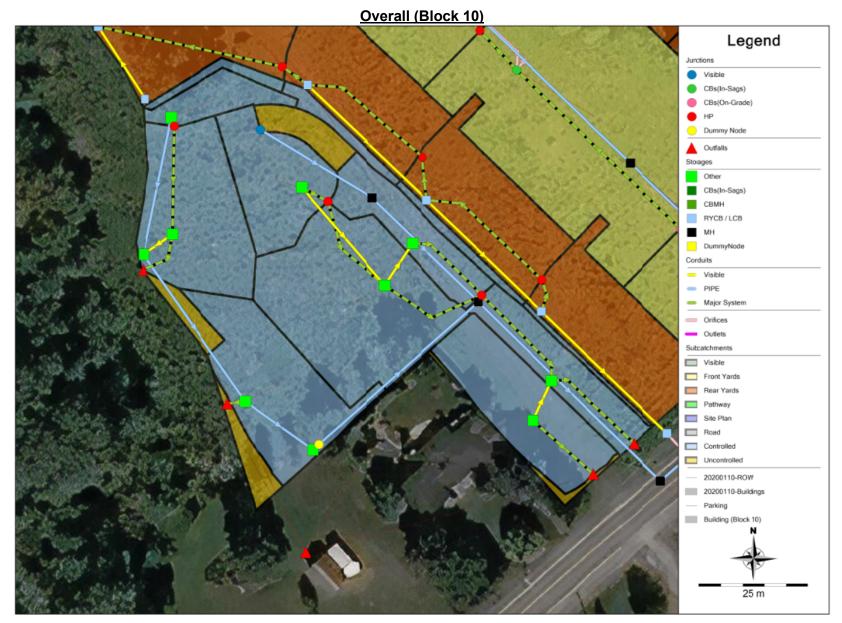


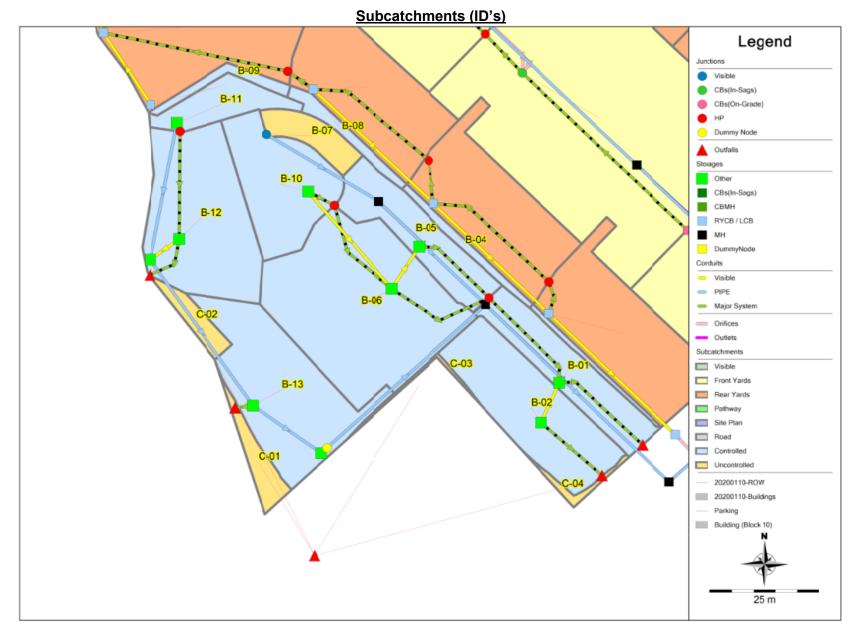
<u>User Inputs</u>

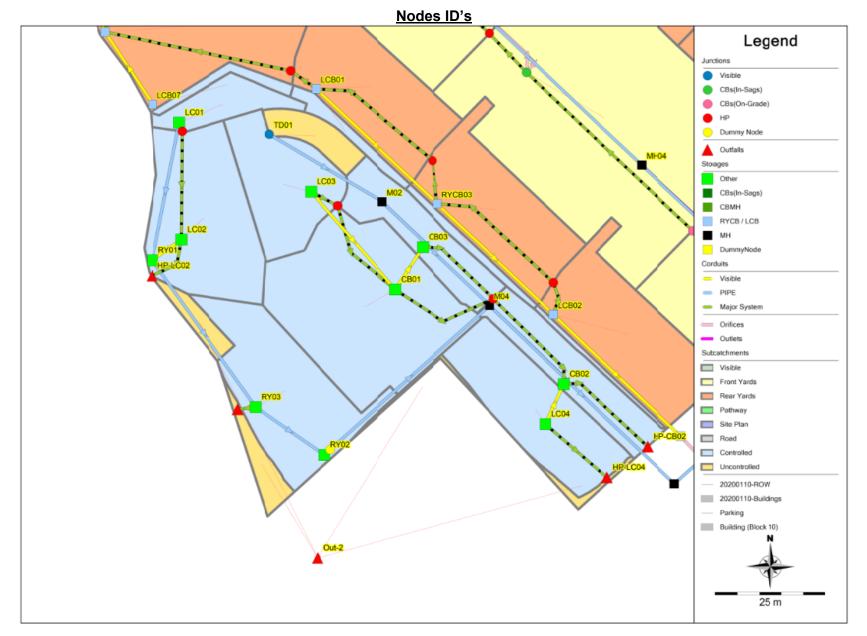
<u>Results</u>

Chamber Model:	SC-740	System Volume and Bed Size		
Outlet Control Structure:	Yes	System volume and bed size		
Project Name:	117034-10 (9 Cham-	Installed Storage Volume:	25.74 cubic meters.	
	bers)	Storage Volume Per Chamber:	1.30 cubic meters.	
Engineer:	Lucas Wilson	Number Of Chambers Required:	9	
Project Location:		Number Of End Caps Required:	6	
Measurement Type:	Metric	Chamber Rows:	3	
Required Storage Volume:	25.70 cubic meters.	Maximum Length:	8.80 m.	
Stone Porosity:	40%	Maximum Width:	4.98 m.	
Stone Foundation Depth:	152 mm.	Approx. Bed Size Required:	43.87 square me-	
Stone Above Chambers:	152 mm.	Approx. Dea bize nequirea.	ters.	
Average Cover Over Chambers:	457 mm.	System Components		
Design Constraint Dimensions:	(5.00 m. x 8.85 m.)			

Amount Of Stone Required:35.10 cubic metersVolume Of Excavation (Not Including46.80 cubic metersFill):


MINIMUM COVER TO BOTTOM OF FLEXIBLE PAVEMENT. FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUR, INCREASE COVER TO 24 (600 mm).





MAPLE LEAF HOMES

1055 KLONDIKE ROAD – ORR RIDGE

SITE SERVICING AND STORMWATER MANAGEMENT REPORT

Prepared for:

Maple Leaf Homes

Prepared By:

NOVATECH Suite 200, 240 Michael Cowpland Drive Ottawa, Ontario K2M 1P6

> Issued: September 3, 2020 Revised: March 12, 2021

Novatech File: 117034 Report Ref: R-2020-013

5.4.3 Rear Yard Perforated Pipes

Drainage from the rear yards / rooftops will be collected with rear yard catchbasins connected to a perforated pipe system. The perforated pipe system will consist of 250mm perforated pipe surrounded by 50mm dia. clearstone. The proposed perforated pipes in the rear yards will promote infiltration. This will mitigate the reduction in groundwater infiltration / recharge resulting from the proposed increase in impervious areas. Infiltration has not been accounted for in the model.

5.4.4 Stormwater Management Requirements for Site Plan Block

The Site Plan Block (0.60 ha) is to adhere to the following stormwater management criteria:

- Minor system inlet rate = 51 L/s
- Major system storage = 81.6 m³
- No major system overland flow to Shirley's Brook during the 100-year storm event.

The development of the Site Plan Block is to not include major system overland flow to Shirley's Brook during the 100-year storm event. The allowable 100-year flow rate to Shirley's Brook for the Subject Site is being used by the proposed subdivision.

6.0 ROADWAYS

6.1 Proposed Road Infrastructure

The proposed development will consist of a local roadway with an 18.0m right of way (ROW) to provide access to the townhome and semi-detached units. The access to the medium density block will consist of a private roadway. The proposed cross sections will conform to City of Ottawa Standards.

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.015)

1_(104)_(1)_(ST	MICBMH02-Dummy	EX-MH159 CBMH02-Dummy MH02	CONDUIT	40
Name		To Node		
************ Link Summary *****				
	DIOMAGE	12.00	2.50	0.0
RYCB06 RYCB07	STORAGE	/4.42 72 55	1.00 1.00 1.00 1.00 2.72 2.85 0.60 1.00 1.00 1.00 1.00 1.00 0.38 1.00 1.00 1.00 1.00 2.59 2.40 2.70 4.25 5.10 5.40 2.70 4.25 5.10 5.41 3.49 5.40 2.40 3.49 5.20 1.53 2.44 2.31 2.40 3.58 2.40 3.58 2.40 3.58 2.40 3.58 2.40 3.58 2.40 3.58 2.40 3.58 2.40 3.58 2.40 3.59 3.58 2.40 3.58 2.40 3.58 2.40 3.58 2.40 3.58 2.40 3.58 2.40 3.58 2.40 3.59 3.58 2.40 3.58 2.40 3.59 3.58 2.40 3.59 3.58 2.40 3.59 3.58 2.40 3.59 3.58 2.40 3.59 3.58 2.40 3.59 3.58 2.40 3.59 3.59 3.58 2.40 3.59 3.59 3.59 3.58 3.59 3.99 3.59 3.93 3.94 3.59 3.93 3.94 3.59 3.93 3.94 3.59 3.93 3.94 3.93 3.94 3.93 3.93 3.94 3.93 3.93 3.94 3.94 3.94 3.93 3.94	0.0
RYCB05 RYCB06	STORAGE STORAGE	72.19	3.61	0.0
RYCB04	STORAGE	71.34	2.94	0.0
RYCB03	STORAGE	75.09	3.03	0.0
RYCB02	STORAGE	74.94	2.59	0.0
RYCB01	STORAGE	74.72	2.73	0.0
RY03	STORAGE	75.45	2.70	0.0
RY02	STORAGE	75.24	2.72	0.0
MH08 RY01	STORAGE	/2.16	5.5Z	0.0
MH06 MH08	STORAGE STORAGE	72.60	4.04	0.0
MH04	STORAGE	72.19	5.23	0.0
MH02	STORAGE	71.77	5.99	0.0
M04	STORAGE	74.26	3.84	0.0
M02	STORAGE	74.50	3.59	0.0
LCB08	STORAGE	72.05	4.31	0.0
LCB07	STORAGE	75.18	2.40	0.0
LCB05	STORAGE	71 90	2 58	0.0
LCB04 LCB05	STORAGE	12.75	2.00	0.0
LCB02 LCB04	STORAGE STORAGE	74.69	3.64	0.0
LCB01	STORAGE	75.43	2.40	0.0
LC04	STORAGE	76.42	2.31	0.0
LC03	STORAGE	76.56	2.44	0.0
LC02	STORAGE	76.20	1.95	0.0
LC01	STORAGE	76.67	2.00	0.0
CBMH04	STORAGE	70.94	5.40	0.0
CBMH03	STORAGE	74.31	3.49	0.0
CBMH02-Dummv	STORAGE STORAGE STORAGE	71.49	5.41	0.0
CBMH02	STORAGE	71.86	5.10	0.0
CBMH01-Dummy	OUTFALL OUTFALL STORAGE STORAGE STORAGE STORAGE STORAGE	72.89	3.25	0.0
CBUS	STORAGE	70.13	2.70	0.0
CB02	STORAGE	76.33	2.40	0.0
CB01	STORAGE	76.24	2.59	0.0
Out-3	OUTFALL	73.47	1.00	0.0
		0.00	0.00	0.0
Out-1	OUTFALL	76.56	1.00	0.0
HW1_(STM) Out-1	OUTFALL	70.79	0.38	0.0
HP-RY03	OUTFALL	77.35	1.00	0.0
HP-LC04	OUTFALL	78.03	1.00	0.0
HP-LC02	OUTFALL	77.35	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.0
HP-CB02	OUTFALL	78.03	1.00	0.0
TD01 EX-MH159	JUNCTION OUTFALL	12.93	2.85	0.0
RY02-Dummy	JUNCTION	75.24	2.72	0.0
HP-RYCB05 RY02-Dummy	JUNCTION	74.33	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.0
HP-RYCB05	JUNCTION	75.00	1.00	0.0
HP-RYCB03	JUNCTION	77.44	1.00	0.0
HP-RYCB02	JUNCTION	76.71	1.00	0.0
HP-LCB08	JUNCTION	75.56	1.00	0.0
HP-LCB06	JUNCTION	73.77	1.00	0.0
HP-LCB05	JUNCTION	74.70	1.00	0.0
HP-LCB04	JUNCTION	74.00	1.00	0.0
HP-LCB02	JUNCTION	77.53	1.00	0.0
HP-LCB01	JUNCTION	77.03	1.00	0.0
HP-LC01 HP-LC03	JUNCTION	70 20	1 00	0 0

M:\2017\117034\CAD\Design\117034-GP.dwg ********* Element Count Number of rain gages 1 Number of subcatchments ... 34

Number of nodes 67 Number of links 63 Number of pollutants 0 Number of land uses 0

**** Raingage Summary

Name	Data Source			Data Type	Recording Interval	
Raingage	C3hr-100yr			INTENSITY	10 min.	

Subcatchment Summary						
Name	Area	Width	%Imperv	%Slope	Rain Gage	Outlet
A-01	0.08	38.50	42.90	3.5000	Raingage	LCB02
A-02	0.14	55.20	75.40	4.0000	Raingage	CB01/02
A-03	0.05	25.50	43.10	5.0000	Raingage Raingage Raingage Raingage Raingage	RYCB05
A-04	0.07	36.00	45.80	4.0000	Raingage	RYCB03
A-05	0.29	117.20	79.90	4.0000	Raingage	CB03/04 LCB05
A-06	0.06	29.00	43.10	5.0000	Raingage	LCB05
A-07	0.08	39.50	40.50	3.0000	Raingage Raingage	LCB01
A-08	0.15	60.80	79.60	4.0000	Raingage	CB05/06
A-09	0.06	32.00	45.30	5.0000	Raingage	RYCB07
A-10	0.11	45.20	29.20	2.5000	Raingage Raingage	RYCB02
A-11	0.07	44.00	33.30	5.0000	Raingage	RYCB01
A-12	0.02	9.60	29.20	3.5000	Raingage Raingage	CBMH04
A-13	0.11	30.57	12.10	3.5000	Raingage	RYCB04
A-14	0.05	21.20	17.00	4.0000	Raingage	LCB06
A-15	0.07	37.00	47.30	5.5000	Raingage Raingage Raingage Raingage Raingage Raingage	LCB04
A-16	0.36	90.25	79.50	3.0000	Raingage	CBMH01
A-17	0.06	31.50	41.30	5.0000	Raingage	LCB08
B-01	0.04	17.60	85.70	1.5000	Raingage	CB02
B-02	0.07	35.00	0.00	2.5000	Raingage	LC04
B-03	0.00	40.00	0.00	33.3300	Raingage	LCB02
B-04	0.01				Raingage	RYCB03
B-05	0.04	20.50	82.90	1.5000	Raingage Raingage	CB03
B-06	0.13	52.00	82.90	1.5000	Raingage	CB01
B-07	0.01	7.50	82.90	10.5000	Raingage Raingage	TD01
B-08	0.01	45.00	44.30	33.3300	Raingage	LCB01
B-09	0.01	40.00	0.00	33.3300	Raingage	LCB07
B-10	0.05	36.00	57.10	4.5000	Raingage Raingage	LC03
B-11	0.02	14.67	18.60	2.0000	Raingage	LC01
B-12	0.09	43.00	54.30	3.0000	Raingage Raingage	LC02
B-13	0.08	41.00	50.00	3.0000	Raingage	RY03
C-01	0.01	22.00	0.00	33.3300	Raingage	Out-2
C-02	0.01	18.00	62.90	2.5000	Raingage	Out-2
C-03	0.00	20.00	0.00	33.3300	Raingage Raingage	Out-2
C-04	0.00				Raingage	Out-2

******* Node Summary

Name	Туре	Invert Elev.	Max. Depth	Ponded Area	External Inflow
CB01/02	JUNCTION	77.52	1.00	0.0	
CB03/04	JUNCTION	75.62	2.40	0.0	
CB05/06	JUNCTION	76.73	1.00	0.0	
D01	JUNCTION	76.70	1.00	0.0	
HP01	JUNCTION	77.79	1.00	0.0	
HP02	JUNCTION	77.09	1.00	0.0	
HP-03	JUNCTION	76.42	1.00	0.0	
HP-CB01-CB03	JUNCTION	78.13	1.00	0.0	

Name	From Node	To Node	Type	Length	%Slope Ro	oughness
1_(104)_(1)_(STM	I) CBMH02-Dummy	EX-MH159	CONDUIT	76.3	0.6684	0.0130
1_(104)_(STM)	MH02	CBMH02-Dummy	CONDUIT	40.8	0.6863	0.0130
1_(11)_(STM)	MH04	MH02	CONDUIT	59.3	0.4555	0.0130
1_(131)_(STM)	CBMH01-Dummy	MH06	CONDUIT	27.4	0.5115	0.0130
1_(135)_(STM)	HP-03	CBMH04	CONDUIT	3.0	38.5872	0.0150
1_(87)_(STM)	CBMH04	HW1_(STM)	CONDUIT	30.5	0.4918	0.0130
1_(9)_(STM)	MH06	MH04	CONDUIT	100.0	0.4000	0.0130
19	LC04	HP-LC04	CONDUIT	3.0	-10.0504	0.0350
2	LCB08	HP-LCB08	CONDUIT	3.0	-6.6815	0.0350
3	CBMH01	HP-03	CONDUIT	3.0	-9.3743	0.0150
4	HP-LCB08	RYCB05	CONDUIT	3.0	26.1876	0.0350
4_1	CB05/06	D01	CONDUIT	3.0	1.0001	0.2500
4_2	D01	CBMH01	CONDUIT	3.0	19.0006	0.2500
5	HP02	CB05/06	CONDUIT	35.3	1.0199	0.2500
6	CB03/04	HP02	CONDUIT	12.4	-0.5645	0.2500
7	CB01/02	CB03/04	CONDUIT	52.4	0.9542	0.2500

HP01

CB01

CB01

CB02

CB03

HP-LC01

HP-LC03

HP-LCB01

HP-LCB02

HP-LCB04

HP_TCB05

HP-RYCB03

HP-RYCB07

LC01

LC01

LC02

LC02

LC03

LC03

LC04

LCB01

LCB01

LCB02

RYCB03

LCB04

LCB04

LCB05

LCB05

LCB06

LCB06

LCB07

LCB08

M02

M0.4

MH08

RY01

RY03

RY03

RYCB01

RYCB02

RYCB02

RYCB03

RYCB04

RYCB04

RYCB05

RYCB05

RYCB06

RYCB06

RYCB07

TD01

CB02

CB03

CB03/04

CB03/04

CBMH02

CBMH03

CBMH01

CB01/02

CB05/06

Shape

CIRCULAR

CIRCULAR

CIRCULAR

RECT OPEN

CIRCULAR

CIRCULAR

RY02

LCB02

RY02-Dummy

RYCB07

HP-CB01-CB03

CB01-CB03

CB01-HP

CB02-HP

CB03-HP

HP-CB01-CB02

HP-LC01-LC02

HP-LC03-CB01

HP-LCB01-RYCB02

HP-LCB02-RYCB03

HP-LCB04-LCB06

HP-LCB05-BYCB07

HP-RYCB03-LCB01

HP-RYCB07-LCB04

LC01-HP

LC02-HP

LC01-RY01

LC02-RY01

LC03-CB01

LC04-CB02

LCB01-LCB02

LCB02-RYCB03

LCB04-LCB08

LCB05-RYCB05

LCB06-RYCB04

LCB07-RYCB02

LCB08-CBMH02

LCB08-LCB05

M02-M04

M04-MH08

MH08-MH02

RY01-RY03

RY02-MH04

RY03-RY02

RYCB02-HP

RYCB03-HP

RYCB05-HP

RYCB07-HP

TD01-M02

CB02-0

CB03-0

CB04-0

CB3-0

CBmh02-TCD

CBMH03-ICD

CBMH1-0(1)

CB01/02-0

CB05/06-0

Conduit

1_(104)_(STM)

1_(11)_(STM)

1_(131)_(STM)

1 (135) (STM)

1 (87) (STM)

1_(9)_(STM)

Cross Section Summary

1_(104)_(1)_(STM) CIRCULAR

RY02-0

RYCB01-RYCB06

RYCB02-RYCB01

RYCB03-CBMH03

RYCB04-CBMH04

RYCB04-Out-3

RYCB05-LCB08

RYCB06-CBMH04

RYCB06-Out-1

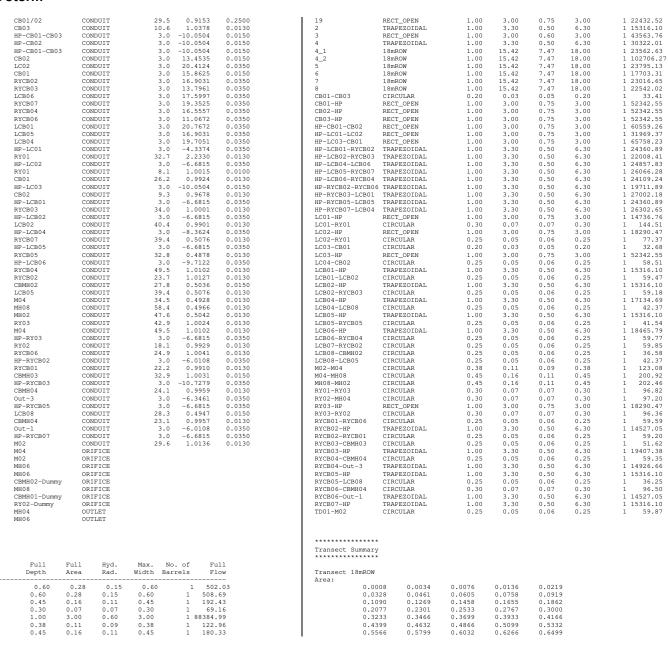
RY03-HP

LCB01-HP

LCB02-HP

LCB04-HP

LCB05-HP


LCB06-HP

LC03-HP

HP-LCB06-RYCB04 HP-LCB06

HP-RYCB02-RYCB06 HP-RYCB02

HP-RYCB05-LCB05 HP-RYCB05

	0.6732	0.6966	0.7199	0.7432	0.7666
	0.7899	0.8133	0.8366	0.8599	0.8833
	0.9066	0.9300	0.9533	0.9767	1.0000
Hrad:					
	0.0013	0.0026	0.0039	0.0051	0.0072
	0.0108	0.0163	0.0239	0.0327	0.0427
	0.0539	0.0662	0.0795	0.0938	0.1091
	0.1252	0.1421	0.1639	0.1905	0.2174
	0.2445	0.2718	0.2991	0.3265	0.3538
	0.3812	0.4084	0.4356	0.4627	0.4896
	0.5165	0.5432	0.5698	0.5963	0.6226
	0.6488	0.6749	0.7008	0.7265	0.7521
	0.7776	0.8029	0.8281	0.8531	0.8779
	0.9026	0.9272	0.9516	0.9759	1.0000
Width:					
	0.0728	0.1455	0.2183	0.3006	0.4114
	0.5222	0.5967	0.6350	0.6733	0.7116
	0.7499	0.7882	0.8265	0.8648	0.9031
	0.9414	0.9797	0.9989	0.9989	0.9990
	0.9990	0.9990	0.9991	0.9991	0.9991
	0.9992	0.9992	0.9992	0.9993	0.9993
	0.9994	0.9994	0.9994	0.9995	0.9995
	0.9995	0.9996	0.9996	0.9996	0.9997
	0.9997	0.9997	0.9998	0.9998	0.9998
	0.9999	0.9999	0.9999	1.0000	1.0000

NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step.

Analysis Options	

Flow Units I	LPS
Process Models:	
Rainfall/Runoff Y	(ES
RDII N	10
Snowmelt N	10
Groundwater M	10
Flow Routing Y	/ES
Ponding Allowed Y	(ES
Water Quality N	10
Infiltration Method H	IORTON
Flow Routing Method D	DYNWAVE
Surcharge Method B	
	07/22/2019 00:00:00
Ending Date 0	07/23/2019 00:00:00
Antecedent Dry Days 0	0.0
Report Time Step 0	00:01:00
Wet Time Step 0	00:01:00
Dry Time Step 0	
Routing Time Step 2	
	ÆS
Maximum Trials 8	3
Number of Threads 4	
Head Tolerance 0	0.001500 m

Control Actions Taken

Runoff Quantity Continuity Total Precipitation Evaporation Loss Surface Runoff Final Storage Continuity Error (%)	Volume hectare-m 0.175 0.000 0.036 0.138 0.001 -0.114	Depth mm 71.667 0.000 14.642 56.678 0.428
Flow Routing Continuity Dry Weather Inflow Wet Weather Inflow	Volume hectare-m 0.000 0.138	Volume 10^6 ltr 0.000 1.383

Groundwater Inflow RDII Inflow External Outflow Flooding Loss Evaporation Loss Exfiltration Loss Initial Stored Volume Final Stored Volume Continuity Error (%)		0.000 0.000 0.138 0.000 0.000 0.000 0.000 0.000 0.000 0.171	

Highest Continuity Errors			

Node CB05/06 (-2.55%) Node CB01/02 (-2.54%)			

Time-Step Critical Elements			

Link HP-LCB04-LCB06 (2.97%)			

Highest Flow Instability In			
Link RY02-0 (3)			
Link CBMH1-0(1) (2)			

Routing Time Step Summary			
Minimum Time Step	:	0.50 sec	
Average Time Step	:	1.97 sec	
Maximum Time Step Percent in Steady State	:	2.00 sec -0.00	
Average Iterations per Step		2.00	
Percent Not Converging	:	0.01	
Time Step Frequencies	:	96.76 %	
2.000 - 1.516 sec 1.516 - 1.149 sec	-	1.17 %	
1.149 - 0.871 sec	:	1.93 %	
0.871 - 0.660 sec 0.660 - 0.500 sec	:	0.13 % 0.00 %	
0.000 - 0.500 sec	•	0.00 8	

Subcatchment Runoff Summary			

						_	_	
		Total	Total	Total	Total	Imperv	Perv	Total
Total Peak	Runoff	Precip	Runon	Evap	Infil	Dupoff	Runoff	Runoff
Runoff Runof	f Coeff	riecip	Kulioli	Evap	THEFT	RUHOTT	RUHOTT	Runori
Subcatchment	00011	mm	mm	mm	mm	mm	mm	mm
10^6 ltr	LPS							
A-01		71.67	0.00	0.00	25.43	30.76	15.52	46.29
0.04 32.21 A-02	0.646	71.67	0.00	0.00	10.85	53.40	6.80	60.20
0.08 65.48	0.840	/1.0/	0.00	0.00	10.85	55.40	0.00	00.20
A-03		71.67	0.00	0.00	4.21	30.90	36.60	67.50
0.03 25.24	0.942							
A-04		71.67	0.00	0.00	24.09	32.84	14.79	47.63
0.03 30.85	0.665							
A-05	0.067	71.67	0.00	0.00	8.85	56.59	5.57	62.16
0.18 140.58 A-06	0.867	71.67	0.00	0.00	25.26	30.90	15.55	46.46
0.03 24.84	0.648	/1.0/	0.00	0.00	23.20	50.90	10.00	40.40
A-07	0.010	71.67	0.00	0.00	26.56	29.04	16.11	45.15
0.04 32.20	0.630							
A-08		71.67	0.00	0.00	8.99	56.38	5.65	62.03
0.09 72.88	0.866							
A-09		71.67	0.00	0.00	24.27	32.48	14.97	47.45
0.03 27.69	0.662							

0.000 0.001 1.382 0.000 0.000 0.000 0.003 0.003

A-10			71.67	0.00	0.00	32.01	20.94	18.76	39.70
0.04 A-11	39.24	0.554	71.67	0.00	0.00	29.56	23.87	18.29	42.16
0.03	27.94	0.588	/110/	0.00	0.00	20.00	20107	10.25	12110
A-12			71.67	0.00	0.00	31.85	20.50	18.92	39.42
0.01 A-13	8.72	0.550	71.67	0.00	0.00	40.30	8.67	22.72	31.39
0.03	28.27	0.438							
A-14 0.02	17.50	0.478	71.67	0.00	0.00	37.43	12.19	22.08	34.27
A-15		0.478	71.67	0.00	0.00	23.36	33.92	14.45	48.37
0.04	32.44	0.675							
A-16 0.22	170.67	0.863	71.67	0.00	0.00	9.09	56.23	5.61	61.84
A-17		0.005	71.67	0.00	0.00	26.07	29.61	16.03	45.64
0.03	26.74	0.637		0.00	0.00	1 00	<i>co</i> 1 <i>i</i>	0.00	co. 20
B-01 0.03	21.80	0.968	71.67	0.00	0.00	1.02	60.14	9.23	69.38
B-02			71.67	0.00	0.00	7.65	0.00	64.05	64.05
0.04 B-03	29.82	0.894	71.67	0.00	0.00	6.86	0.00	64.92	64.92
0.00	1.98	0.906	/1.0/	0.00	0.00	0.00	0.00	04.52	04.52
B-04			71.67	0.00	0.00	6.89	0.00	64.90	64.90
0.00 B-05	3.46	0.906	71.67	0.00	0.00	1.22	58.19	11.04	69.23
0.03	20.31	0.966	/110/	0.00			50.15		00.20
B-06 0.09	64.36	0.972	71.67	0.00	0.00	1.23	58.63	11.04	69.67
0.09 B-07		0.972	71.67	0.00	0.00	1.19	58.21	11.08	69.28
0.01	7.44	0.967							
B-08 0.01	4.46	0.938	71.67	0.00	0.00	3.82	31.09	36.16	67.25
B-09		0.550	71.67	0.00	0.00	6.89	0.00	64.90	64.90
0.01	3.96	0.906		0.00	0.00	2 07		07 70	co. c.
B-10 0.04	26.70	0.958	71.67	0.00	0.00	3.07	40.94	27.70	68.64
B-11			71.67	0.00	0.00	6.08	13.05	52.28	65.34
0.01 B-12	10.25	0.912	71.67	0.00	0.00	3.33	38.86	29.44	68.30
0.06	42.13	0.953	/1.0/	0.00	0.00	5.55	50.00	20.44	00.50
B-13			71.67	0.00	0.00	3.66	35.81	32.19	68.01
0.06 C-01	40.00	0.949	71.67	0.00	0.00	6.96	0.00	64.80	64.80
0.01	5.44	0.904							
C-02 0.01	4.46	0.951	71.67	0.00	0.00	2.60	44.15	24.02	68.17
C-03		0.901	71.67	0.00	0.00	6.86	0.00	64.92	64.92
0.00	0.99	0.906		0.00	0.00	c 0.c	0.00	64.00	64 00
C-04 0.00	1.48	0.906	71.67	0.00	0.00	6.86	0.00	64.92	64.92

TD01	JUNCTION	1.93	2.06	74.99	0	01:10	2.06
EX-MH159	OUTFALL	0.03	0.28	71.26	0	01:12	0.28
HP-CB02	OUTFALL	0.00	0.00	78.03	0	00:00	0.00
HP-LC02	OUTFALL	0.00	0.00	77.35	0		0.00
HP-LC04	OUTFALL	0.00	0.00	78.03	0	00:00	0.00
HP-RY03	OUTFALL	0.00	0.00	77.35	0	00:00	0.00
HW1_(STM)	OUTFALL	0.36	0.36	71.15	0		0.36
Out-1	OUTFALL	0.00	0.00	76.56	0		0.00
Out-2	OUTFALL	0.00	0.00	0.00	0		0.00
Out-3	OUTFALL	0.00	0.00	73.47		00:00	0.00
CB01	STORAGE	0.29	1.82	78.06		01:41	1.82
CB02	STORAGE	0.10	1.61	77.94		01:22	1.61
CB03	STORAGE	0.31	1.93	78.06		01:41	1.93
CBMH01	STORAGE	0.19	3.54	76.43		01:14	3.54
CBMH01-Dummy	STORAGE	0.02	0.23	73.12	0	01:14	0.23
CBMH02	STORAGE	0.31	3.03	74.89		01:10	3.01
CBMH02-Dummy	STORAGE	0.03	0.28	71.77		01:11	0.28
CBMH03	STORAGE	0.30	3.19	77.50		01:10	3.17
CBMH04	STORAGE	0.22	1.09	72.03		01:13	1.09
LC01	STORAGE	0.03	0.67	77.34		01:22	0.67
LC02	STORAGE	0.07	1.14	77.34		01:22	1.14
LC03	STORAGE	0.23	1.58	78.14	0	01:10	1.58
LC04	STORAGE	0.09	1.53	77.95	0	01:22	1.53
LCB01	STORAGE	0.14	1.74	77.17		01:10	1.74
LCB02	STORAGE	0.24	2.81	77.50	0	01:10	2.80
LCB04	STORAGE	0.14	1.40	74.15		01:10	1.40
LCB05	STORAGE	0.21	2.37	74.72	0	01:10	2.37
LCB06	STORAGE	0.03	1.97	73.87		01:10	1.96
LCB07	STORAGE	0.01	1.55	76.73	0	01:10	1.54
LCB08	STORAGE	0.27	2.84	74.89	0	01:10	2.83
M02	STORAGE	0.02	0.10	74.60	0	01:10	0.10
M04	STORAGE	0.02	0.17	74.43		01:10	0.17
MH02	STORAGE	0.03	0.28	72.05	0	01:11	0.28
MH04	STORAGE	0.03	0.39	72.58		01:14	0.39
MH06	STORAGE	0.02	0.30	72.90		01:12	0.30
MH08	STORAGE	0.02	0.16	72.32		01:11	0.16
RY01	STORAGE	0.09	1.43	77.34	0	01:22	1.43
RY02	STORAGE	0.16	2.08	77.32	0	01:23	2.08
RY03	STORAGE	0.13	1.89	77.34	0	01:23	1.89
RYCB01	STORAGE	0.02	1.28	76.00	0	01:10	1.27
RYCB02	STORAGE	0.02	1.78	76.72		01:10	1.78
RYCB03	STORAGE	0.18	2.35	77.44		01:10	2.34
RYCB04	STORAGE	0.03	2.12	73.46	0	01:11	2.11
RYCB05	STORAGE	0.24	2.67	74.86	0	01:10	2.66
RYCB06	STORAGE	0.01	0.43	74.85	0		0.43
RYCB07	STORAGE	0.17	1.86	74.41	0	01:10	1.85

***** Node Inflow Summary

Node Depth Summary ****************

Node	Туре	Average Depth Meters	Depth Meters	Maximum HGL Meters	Occu days	of Max Irrence hr:min	Reported Max Depth Meters
CB01/02	JUNCTION	0.00	0.10	77.62		01:10	0.10
CB03/04	JUNCTION	0.07	1.61	77.23	0	01:10	1.61
CB05/06	JUNCTION	0.00	0.14	76.87	0	01:10	0.14
001	JUNCTION	0.00	0.08	76.78	0	01:10	0.08
HP01	JUNCTION	0.00	0.00	77.79	0	00:00	0.00
IP02	JUNCTION	0.01	0.10	77.19	0	01:16	0.10
HP-03	JUNCTION	0.00	0.01	76.43	0	01:14	0.01
HP-CB01-CB03	JUNCTION	0.00	0.00	78.13	0	00:00	0.00
HP-LC01	JUNCTION	0.00	0.00	77.80	0	00:00	0.00
HP-LC03	JUNCTION	0.00	0.00	78.30	0	00:00	0.00
HP-LCB01	JUNCTION	0.00	0.09	77.12	0	01:10	0.09
HP-LCB02	JUNCTION	0.00	0.00	77.53	0	00:00	0.00
HP-LCB04	JUNCTION	0.00	0.10	74.10	0	01:10	0.10
HP-LCB05	JUNCTION	0.00	0.02	74.72	0	01:10	0.02
HP-LCB06	JUNCTION	0.00	0.08	73.85	0	01:10	0.07
HP-LCB08	JUNCTION	0.00	0.00	75.56	0	00:00	0.00
HP-RYCB02	JUNCTION	0.00	0.01	76.72	0	01:10	0.01
HP-RYCB03	JUNCTION	0.00	0.00	77.44	0	00:00	0.00
HP-RYCB05	JUNCTION	0.00	0.00	75.00	0	00:00	0.00
HP-RYCB07	JUNCTION	0.00	0.05	74.38	0	01:10	0.05
RY02-Dummy	JUNCTION	0.01	0.09	75.33	0	01:23	0.09

Node	Туре			Occu days	hr:min	Volume	Total Inflow Volume 10^6 ltr	Flow Balance Error Percent
CB01/02	JUNCTION	65.48	65.48		01:10	0.083	0.083	-2.479
CB03/04	JUNCTION	140.58	162.17	0	01:10	0.182	0.201	0.673
CB05/06	JUNCTION	72.88	75.66	0	01:10	0.0942	0.112	-2.489
001	JUNCTION	0.00	45.77	0	01:10	0	0.034	-0.793
HP01	JUNCTION	0.00	0.00	0	00:00	0	0	0.000
HP02	JUNCTION	0.00	48.14	0	01:11	0	0.0241	18.932
HP-03	JUNCTION	0.00	19.74	0	01:14	0	0.0078	0.002
HP-CB01-CB03	JUNCTION	0.00	0.00	0	00:00	0	0	0.000
HP-LC01	JUNCTION	0.00	0.00	0	00:00	0	0	0.000
HP-LC03	JUNCTION	0.00	0.00	0	00:00	0	0	0.000
HP-LCB01	JUNCTION	0.00	88.01	0	01:10	0	0.0554	0.028
HP-LCB02	JUNCTION	0.00	0.00	0	00:00	0	0	0.000
HP-LCB04	JUNCTION	0.00	114.17	0	01:10	0	0.0831	0.022
HP-LCB05	JUNCTION	0.00	6.17	0	01:10	0	0.000394	0.277
HP-LCB06	JUNCTION	0.00	62.93	0	01:10	0	0.012	0.202
HP-LCB08	JUNCTION	0.00	0.00	0	00:00	0	0	0.000
HP-RYCB02	JUNCTION	0.00	3.61	0	01:10	0	7.1e-05	0.728
HP-RYCB03	JUNCTION	0.00	0.00	0	00:00	0	0	0.000
HP-RYCB05	JUNCTION	0.00	0.00	0	00:00	0	0	0.000
HP-RYCB07	JUNCTION	0.00	36.13	0	01:10	0	0.00857	0.024
RY02-Dummy	JUNCTION	0.00	19.16	0	01:23	0	0.129	-0.014
FD01	JUNCTION	7.44	7.44	0	01:10	0.0104	0.0104	28.972
EX-MH159	OUTFALL	0.00	227.90	0	01:12	0	1.08	0.000
HP-CB02	OUTFALL	0.00	0.00	0	00:00	0	0	0.000

HP-LC02	OUTFALL	0.00	0.00	0	00:00	0	0	0.000 ltr
HP-LC02 HP-LC04	OUTFALL	0.00	0.00	0	00:00	0	0	0.000 ltr
HP-RY03	OUTFALL	0.00	0.00	0	00:00	0	0	0.000 ltr
HW1_(STM)	OUTFALL	0.00	254.33	0	01:13	0	0.287	0.000 101
Out-1	OUTFALL	0.00	0.00	0	00:00	0	0.287	0.000 ltr
Out-1 Out-2	OUTFALL	12.37	12.37	0	01:10	0.0165	0.0165	0.000 101
Out-2 Out-3	OUTFALL	0.00	0.00	0	00:00	0.0105	0.0105	0.000 ltr
CB01	STORAGE	64.36	84.09	0	01:09	0.0905	0.128	0.027
CB02	STORAGE	21.80	26.81	0	01:03	0.0305	0.0759	0.027
CB02 CB03	STORAGE	20.31	97.13	0	01:03	0.0284	0.156	-0.054
CBMH01	STORAGE	170.67	215.81	0	01:10	0.223	0.257	0.150
CBMH01-Dummy	STORAGE	0.00	62.28	0	01:10	0.225	0.249	0.002
CBMH02	STORAGE	0.00	13.95	0	01:04	0	0.0731	0.001
CBMH02-Dummy	STORAGE	0.00	227.90	0	01:11	ő	1.08	0.002
CBMH03	STORAGE	0.00	17.58	0	01:05	0	0.0633	0.007
CBMH04	STORAGE	8.72	254.95	0	01:12	0.00946	0.287	0.102
LC01	STORAGE	10.25	42.96	0	01:08	0.0144	0.0154	-0.137
LC02	STORAGE	42.13	46.12	0	01:09	0.0587	0.0587	0.255
LC03	STORAGE	26.70	26.70	0	01:10	0.037	0.0373	0.007
LC04	STORAGE	29.82	29.82	0	01:10	0.0448	0.0454	0.007
LCB01	STORAGE	36.66	88.41	0	01:10	0.0417	0.0729	-0.050
LCB02	STORAGE	34.19	42.26	0	01:05	0.0382	0.0748	0.052
LCB04	STORAGE	32.44	114.78	0	01:10	0.0358	0.096	-0.050
LCB05	STORAGE	24.84	61.17	0	01:10	0.0269	0.076	0.018
LCB06	STORAGE	17.50	131.02	0	01:10	0.0182	0.101	0.416
LCB07	STORAGE	3.96	26.16	0	01:07	0.00519	0.00646	-0.099
LCB08	STORAGE	26.74	30.13	0	01:04	0.0287	0.0816	0.069
M02	STORAGE	0.00	17.81	0	01:10	0	0.164	0.068
M04	STORAGE	0.00	51.19	0	01:10	0	0.368	-0.031
MH02	STORAGE	0.00	221.49	0	01:11	0	1.01	0.003
MH04	STORAGE	0.00	165.02	0	01:12	0	0.573	-0.215
MH06	STORAGE	0.00	143.24	0	01:12	0	0.506	0.212
MH08	STORAGE	0.00	57.32	0	01:10	0	0.432	-0.001
RY01	STORAGE	0.00	48.52	0	01:08	0	0.0743	0.051
RY02	STORAGE	0.00	36.30	0	01:07	0	0.129	0.012
RY03	STORAGE	40.00	75.09	0	01:06	0.0557	0.129	-0.146
RYCB01	STORAGE	27.94	133.75	0	01:10	0.0278	0.133	0.220
RYCB02	STORAGE	39.24	127.12	0	01:10	0.0448	0.107	0.038
RYCB03	STORAGE	34.31	56.86	0	01:10	0.0388	0.0678	0.011
RYCB04	STORAGE	28.27	151.57	0	01:10	0.0336	0.134	-0.961
RYCB05	STORAGE	25.24	40.81	0	01:10	0.0344	0.0776	0.010
RYCB06	STORAGE	0.00	128.59	0	01:10	0	0.133	-0.001
RYCB07	STORAGE	27.69	85.19	0	01:10	0.0304	0.0845	-0.022

Node Surcharge Summary

No nodes were surcharged.

****** Node Flooding Summary

No nodes were flooded.

***** Storage Volume Summary

Storage Unit	Average Volume 1000 m3	Avg Pcnt Full	Pcnt	Exfil Pcnt Loss	Maximum Volume 1000 m3	Max Pont Full	0ccu	of Max rrence hr:min	Maximum Outflow LPS
CB01	0.004	5	0	0	0.046	56	0	01:41	77.33
CB02	0.000	0	0	0	0.003	8	0	01:22	17.90
CB03	0.006	10	0	0	0.039	71	0	01:41	10.52
CBMH01	0.003	3	0	0	0.076	97	0	01:14	82.03
CBMH01-Dummy	0.000	1	0	0	0.000	7	0	01:14	62.28
CBMH02	0.000	6	0	0	0.000	59	0	01:10	6.49
CBMH02-Dummy	0.000	1	0	0	0.000	5	0	01:11	227.90
CBMH03	0.000	9	0	0	0.000	91	0	01:10	6.66
CBMH04	0.000	4	0	0	0.000	20	0	01:13	254.33
LC01	0.000	1	0	0	0.000	11	0	01:22	18.29
LC02	0.000	3	0	0	0.007	87	0	01:22	40.30
LC03	0.000	1	0	0	0.002	13	0	01:10	20.74
LC04	0.001	1	0	0	0.016	36	0	01:22	11.74
LCB01	0.000	6	0	0	0.000	72	0	01:10	88.01

LCB02	0.000	7	0	0	0.000	77	0	01:10	30.60
LCB04	0.000	7	0	0	0.000	70	0	01:10	114.17
LCB05	0.000	7	0	0	0.000	75	0	01:10	59.36
LCB06	0.000	1	0	0	0.000	76	0	01:10	126.09
LCB07	0.000	1	0	0	0.000	65	0	01:10	8.33
LCB08	0.000	6	0	0	0.000	66	0	01:10	23.80
M02	0.000	0	0	0	0.000	3	0	01:10	17.81
M04	0.000	1	0	0	0.000	4	0	01:10	50.68
MH02	0.000	0	0	0	0.000	5	0	01:11	221.53
MH04	0.000	1	0	0	0.000	8	0	01:14	164.90
MH06	0.000	1	0	0	0.000	7	0	01:12	143.22
MH08	0.000	0	0	0	0.000	3	0	01:11	57.21
RY01	0.000	6	0	0	0.001	94	0	01:22	36.40
RY02	0.000	6	0	0	0.001	77	0	01:23	19.16
RY03	0.001	6	0	0	0.023	92	0	01:23	36.30
RYCB01	0.000	1	0	0	0.000	47	0	01:10	126.73
RYCB02	0.000	1	0	0	0.000	69	0	01:10	111.11
RYCB03	0.000	6	0	0	0.000	77	0	01:10	52.90
RYCB04	0.000	1	0	0	0.000	72	0	01:11	122.07
RYCB05	0.000	7	0	0	0.000	74	0	01:10	37.88
RYCB06	0.000	0	0	0	0.000	14	0	01:11	127.12
RYCB07	0.000	7	0	0	0.000	72	0	01:10	84.16

***** Outfall Loading Summary

	Flow Freq	Avg Flow	Max Flow	Total Volume
Outfall Node	Pcnt	LPS	LPS	10^6 ltr
EX-MH159	26.65	58.46	227.90	1.079
HP-CB02	0.00	0.00	0.00	0.000
HP-LC02	0.00	0.00	0.00	0.000
HP-LC04	0.00	0.00	0.00	0.000
HP-RY03	0.00	0.00	0.00	0.000
HW1_(STM)	53.87	10.30	254.33	0.287
Out-1	0.00	0.00	0.00	0.000
Out-2	13.33	2.04	12.37	0.016
Out-3	0.00	0.00	0.00	0.000
System	10.43	70.80	485.97	1.383

****** Link Flow Summary

		Maximum	Time	of Max	Maximum	Max/	Max/
		Flow	Occu	irrence	Veloc	Full	Full
Link	Type	LPS	days	hr:min	m/sec	Flow	Depth
1_(104)_(1)_(STM)	CONDUIT	227.90	0	01:12	1.73	0.45	0.47
1_(104)_(STM)	CONDUIT	221.53	0	01:11	1.71	0.44	0.47
1_(11)_(STM)	CONDUIT	164.90	0	01:15	1.28	0.86	0.75
1_(131)_(STM)	CONDUIT	62.28	0	01:14	1.18	0.90	0.70
1_(135)_(STM)	CONDUIT	19.74	0	01:14	1.23	0.00	0.01
1_(87)_(STM)	CONDUIT	254.33	0	01:13	2.31	2.07	0.98
1_(9)_(STM)	CONDUIT	143.22	0	01:12	1.20	0.79	0.76
19	CONDUIT	0.00	0	00:00	0.00	0.00	0.11
2	CONDUIT	0.00	0	00:00	0.00	0.00	0.00
3	CONDUIT	19.74	0	01:14	0.05	0.00	0.15
4	CONDUIT	0.00	0	00:00	0.00	0.00	0.03
4_1	CHANNEL	45.77	0	01:10	0.11	0.00	0.11
4_2	CHANNEL	45.61	0	01:10	0.12	0.00	0.18
5	CHANNEL	23.24	0	01:16	0.06	0.00	0.11
6	CHANNEL	48.14	0	01:11	0.07	0.00	0.15
7	CHANNEL	22.79	0	01:10	0.03	0.00	0.16
8	CHANNEL	0.00	0	00:00	0.00	0.00	0.05
CB01-CB03	CONDUIT	77.33	0	01:04	2.46	2.31	1.00
CB01-HP	CONDUIT	0.00	0	00:00	0.00	0.00	0.12
CB02-HP	CONDUIT	0.00	0	00:00	0.00	0.00	0.11
CB03-HP	CONDUIT	0.00	0	00:00	0.00	0.00	0.11
HP-CB01-CB02	CONDUIT	0.00	0	00:00	0.00	0.00	0.11
HP-LC01-LC02	CONDUIT	0.00	0	00:00	0.00	0.00	0.07
HP-LC03-CB01	CONDUIT	0.00	0	00:00	0.00	0.00	0.12
HP-LCB01-RYCB02	CONDUIT	88.49	0	01:10	1.76	0.00	0.14
HP-LCB02-RYCB03	CONDUIT	0.00	0	00:00	0.00	0.00	0.16
HP-LCB04-LCB06	CONDUIT	114.17	0	01:10	1.85	0.00	0.24

HP-LCB05-RYCB07	CONDUIT	6.13	0	01:10	0.06	0.00	0.15
HP-LCB06-RYCB04	CONDUIT	63.18	0	01:10	1.59	0.00	0.12
HP-RYCB02-RYCB06	CONDUIT	2.14	0	01:10	0.48	0.00	0.01
HP-RYCB03-LCB01	CONDUIT	0.00	0	00:00	0.00	0.00	0.17
HP-RYCB05-LCB05	CONDUIT	0.00	0	00:00	0.00	0.00	0.11
HP-RYCB07-LCB04	CONDUIT	36.11	0	01:10	0.16	0.00	0.23
LC01-HP	CONDUIT	0.00	0	00:00	0.00	0.00	0.00
LC01-RY01	CONDUIT	33.14	0	01:08	0.53	0.23	1.00
LC02-HP	CONDUIT	0.00	0	00:00	0.00	0.00	0.10
LC02-RY01	CONDUIT	40.30	0	01:08	1.21	0.52	1.00
LC03-CB01	CONDUIT	20.74	0	01:04	0.66	0.63	1.00
LC03-HP	CONDUIT	0.00	0	00:00	0.00	0.00	0.07
LC04-CB02	CONDUIT	11.74	0	01:53	0.24	0.20	1.00
LCB01-HP LCB01-LCB02	CONDUIT	88.01 52.90	0	01:10	0.44	0.01	0.21
LCB02-HP	CONDUIT	0.00	0	00:00	0.00	0.89	0.08
LCB02-RYCB03	CONDUIT	22.95	0	00:00	0.52	0.39	1.00
LCB02-RICB03	CONDUIT	114.17	0	01:10	0.52	0.01	0.25
LCB04-LCB08	CONDUIT	48.16	0	01:10	0.98	1.14	1.00
LCB05-HP	CONDUIT	6.17	ō	01:10	0.08	0.00	0.12
LCB05-RYCB05	CONDUIT	37.88	ō	01:10	0.77	0.91	1.00
LCB06-HP	CONDUIT	62.93	õ	01:10	0.27	0.00	0.23
LCB06-RYCB04	CONDUIT	86.64	Ő	01:08	1.77	1.45	1.00
LCB07-RYCB02	CONDUIT	22.21	õ	01:07	0.48	0.37	1.00
LCB08-CBMH02	CONDUIT	13.95	õ	01:04	0.38	0.38	1.00
LCB08-LCB05	CONDUIT	53.35	ō	01:10	1.09	1.26	1.00
M02-M04	CONDUIT	17.81	0	01:10	0.80	0.14	0.26
M04-MH08	CONDUIT	50.68	0	01:10	1.00	0.25	0.36
MH08-MH02	CONDUIT	57.21	0	01:11	1.09	0.28	0.36
RY01-RY03	CONDUIT	36.40	0	01:06	0.77	0.38	1.00
RY02-MH04	CONDUIT	19.16	0	01:23	1.03	0.20	0.31
RY03-HP	CONDUIT	0.00	0	00:00	0.00	0.00	0.09
RY03-RY02	CONDUIT	36.30	0	01:07	0.51	0.38	1.00
RYCB01-RYCB06	CONDUIT	126.73	0	01:10	2.58	2.13	1.00
RYCB02-HP	CONDUIT	3.61	0	01:10	0.06	0.00	0.10
RYCB02-RYCB01	CONDUIT	107.81	0	01:11	2.20	1.82	1.00
RYCB03-CBMH03	CONDUIT	17.58	0	01:05	0.44	0.34	1.00
RYCB03-HP	CONDUIT	0.00	0	00:00	0.00	0.00	0.16
RYCB04-CBMH04	CONDUIT	122.07	0	01:11	2.49	2.06	1.00
RYCB04-Out-3	CONDUIT	0.00	0	00:00	0.00	0.00	0.09
RYCB05-HP	CONDUIT	0.00	0	00:00	0.00	0.00	0.03
RYCB05-LCB08	CONDUIT	16.59	0	01:10	0.38	0.46	1.00
RYCB06-CBMH04	CONDUIT	127.12	0	01:11	1.84	1.32	0.95
RYCB06-Out-1 RYCB07-HP	CONDUIT	0.00 36.13	0	00:00	0.00	0.00	0.00
TD01-M02	CONDUIT	7.44	0	01:10	0.27	0.12	0.24
CB02-0	ORIFICE	14.98	0	01:10	0.85	0.12	1.00
CB02-0	ORIFICE	10.52	0	01:22			1.00
CB04-0	ORIFICE	27.54	Ő	01:10			1.00
CB3-0	ORIFICE	27.54	0	01:10			1.00
CBmh02-ICD	ORIFICE	6.49	o	01:10			1.00
CBMH03-ICD	ORIFICE	6.66	0	01:10			1.00
CBMH1-0(1)	ORIFICE	62.28	Ő	01:10			1.00
RY02-0	ORIFICE	19.16	õ	01:23			1.00
CB01/02-0	DUMMY	21.80	0	01:01			
CB05/06-0	DUMMY	26.00	0	01:01			

Flow Classification Summary

	Adjusted			Fract	ion of	Time	in Flo	w Clas	s	
	/Actual		Up	Down	Sub	Sup	Up	Down	Norm	Inlet
Conduit	Length	Dry	Dry	Dry	Crit	Crit	Crit	Crit	Ltd	Ctrl
1_(104)_(1)_(STM)	1.00	0.01	0.00	0.00	0.76	0.24	0.00	0.00	0.85	0.00
1_(104)_(STM)	1.00	0.01	0.00	0.00	0.81	0.18	0.00	0.00	0.93	0.00
1_(11)_(STM)	1.00	0.01	0.00	0.00	0.00	0.00	0.00	0.99	0.00	0.00
1_(131)_(STM)	1.00	0.01	0.00	0.00	0.00	0.00	0.00	0.99	0.00	0.00
1_(135)_(STM)	1.00	0.98	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00
1_(87)_(STM)	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
1_(9)_(STM)	1.00	0.01	0.00	0.00	0.13	0.00	0.00	0.86	0.06	0.00
19	1.00	0.94	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	1.00	0.95	0.03	0.00	0.02	0.00	0.00	0.00	0.94	0.00
4	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4_1	1.00	0.01	0.50	0.00	0.49	0.00	0.00	0.00	0.87	0.00
4_2	1.00	0.01	0.00	0.00	0.05	0.00	0.00	0.94	0.03	0.00
5	1.00	0.01	0.04	0.00	0.96	0.00	0.00	0.00	0.02	0.00
6	1.00	0.04	0.00	0.00	0.04	0.00	0.00	0.92	0.00	0.00

M:\2017\117034\Block 10\DATA\Calculations\Sewer Calcs\SWM\ModelOutput_100yr.docx	
--	--

7	1.00	0.76	0.00	0.00	0.04	0.00	0.00	0.20	0.02	0.00	
8	1.00	0.76	0.24	0.00	0.04	0.00	0.00	0.20	0.02	0.00	
° CB01-CB03		0.01	0.24	0.00	0.99	0.00	0.00	0.00	0.00	0.00	
	1.00										
CB01-HP	1.00	0.86	0.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
CB02-HP	1.00	0.94	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
CB03-HP	1.00	0.86	0.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
HP-CB01-CB02	1.00	0.94	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
HP-LC01-LC02	1.00	0.96	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
HP-LC03-CB01	1.00	0.86	0.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
HP-LCB01-RYCB02	1.00	0.96	0.00	0.00	0.00	0.00	0.00	0.04	0.00	0.00	
HP-LCB02-RYCB03	1.00	0.98	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
HP-LCB04-LCB06	1.00	0.95	0.00	0.00	0.01	0.00	0.00	0.04	0.01	0.00	
HP-LCB05-RYCB07	1.00	0.98	0.01	0.00	0.01	0.00	0.00	0.00	0.95	0.00	
HP-LCB06-RYCB04	1.00	0.99	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	
HP-RYCB02-RYCB06	1.00	0.99	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	
HP-RYCB03-LCB01	1.00	0.94	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
HP-RYCB05-LCB05	1.00	0.99	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
HP-RYCB07-LCB04	1.00	0.92	0.06	0.00	0.02	0.00	0.00	0.00	0.95	0.00	
LC01-HP	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
LC01-RY01	1.00	0.02	0.00	0.00	0.09	0.01	0.00	0.89	0.04	0.00	
LC02-HP	1.00	0.95	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
LC02-RY01	1.00	0.01	0.00	0.00	0.08	0.00	0.00	0.91	0.00	0.00	
LC03-CB01	1.00	0.01	0.00	0.00	0.22	0.00	0.00	0.78	0.02	0.00	
LC03-HP	1.00	0.89	0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
LC04-CB02	1.00	0.02	0.01	0.00	0.97	0.00	0.00	0.00	0.91	0.00	
LCB01-HP	1.00	0.94	0.01	0.00	0.04	0.00	0.00	0.00	0.93	0.00	
LCB01-LCB02	1.00	0.01	0.00	0.00	0.99	0.00	0.00	0.00	0.12	0.00	
LCB02-HP	1.00	0.99	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
LCB02-RYCB03	1.00	0.01	0.00	0.00	0.99	0.00	0.00	0.00	0.87	0.00	
LCB04-HP	1.00	0.92	0.03	0.00	0.05	0.00	0.00	0.00	0.92	0.00	
LCB04-LCB08	1.00	0.01	0.00	0.00	0.99	0.00	0.00	0.00	0.86	0.00	
LCB05-HP	1.00	0.99	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	
LCB05-RYCB05	1.00	0.01	0.00	0.00	0.99	0.00	0.00	0.00	0.13	0.00	
LCB06-HP	1.00	0.99	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	
LCB06-RYCB04	1.00	0.01	0.00	0.00	0.02	0.00	0.00	0.97	0.00	0.00	
LCB07-RYCB02	1.00	0.01	0.02	0.00	0.97	0.00	0.00	0.00	0.96	0.00	
LCB08-CBMH02	1.00	0.01	0.00	0.00	0.22	0.00	0.00	0.77	0.01	0.00	
LCB08-LCB05	1.00	0.01	0.00	0.00	0.99	0.00	0.00	0.00	0.84	0.00	
M02-M04	1.00	0.01	0.00	0.00	0.05	0.00	0.00	0.94	0.04	0.00	
M04-MH08	1.00	0.01	0.00	0.00	0.00	0.00	0.00	0.99	0.00	0.00	
MH08-MH02	1.00	0.01	0.00	0.00	0.00	0.00	0.00	0.99	0.00	0.00	
RY01-RY03	1.00	0.01	0.00	0.00	0.11	0.00	0.00	0.88	0.02	0.00	
RY02-MH04	1.00	0.01	0.00	0.00	0.00	0.00	0.00	0.99	0.00	0.00	
RY03-HP	1.00	0.95	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
RY03-RY02	1.00	0.01	0.00	0.00	0.13	0.00	0.00	0.86	0.02	0.00	
RYCB01-RYCB06	1.00	0.01	0.00	0.00	0.01	0.00	0.00	0.99	0.00	0.00	
RYCB02-HP	1.00	0.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
RYCB02-RYCB01	1.00	0.01	0.00	0.00	0.95	0.04	0.00	0.00	0.98	0.00	
RYCB03-CBMH03	1.00	0.01	0.00	0.00	0.18	0.00	0.00	0.81	0.03	0.00	
RYCB03-HP	1.00	0.98	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
RYCB04-CBMH04	1.00	0.00	0.73	0.00	0.24	0.01	0.00	0.02	0.96	0.00	
RYCB04-Out-3	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	
RYCB05-HP	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
RYCB05-LCB08	1.00	0.01	0.00	0.00	0.98	0.00	0.00	0.00	0.81	0.00	
RYCB06-CBMH04	1.00	0.01	0.02	0.00	0.00	0.00	0.00	0.99	0.00	0.00	
RYCB06-Out-1	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
RYCB07-HP	1.00	0.98	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
TD01-M02	1.00	0.04	0.00	0.00	0.02	0.00	0.00	0.96	0.00	0.00	
	1.00	5.01	5.00	5.00	5.00	5.00	5.00	5.55	5.00		

***** Conduit Surcharge Summary

Conduit	Both Ends	Hours Full Upstream		Hours Above Full Normal Flow	Hours Capacity Limited
1_(87)_(STM)	0.01	0.26	0.01	0.25	0.01
CB01-CB03	4.59	4.59	4.87	0.06	0.06
LC01-RY01	0.90	0.90	1.46	0.01	0.01
LC02-RY01	1.20	1.20	1.30	0.01	0.01
LC03-CB01	3.98	3.98	4.46	0.01	0.01
LC04-CB02	1.23	1.23	1.29	0.01	0.01
LCB01-LCB02	2.21	2.21	2.53	0.01	0.01
LCB02-RYCB03	2.53	2.53	3.02	0.01	0.01
LCB04-LCB08	2.74	2.74	3.07	0.15	0.01
LCB05-RYCB05	3.49	3.49	3.80	0.01	0.01
LCB06-RYCB04	0.26	0.26	0.28	0.16	0.19
LCB07-RYCB02	0.15	0.15	0.19	0.01	0.01
LCB08-CBMH02	4.13	4.13	4.52	0.01	0.01

LCB08-LCB05	3.07	3.07	3.49	0.09	0.01
RY01-RY03	1.50	1.50	1.96	0.01	0.01
RY03-RY02	1.99	1.99	2.23	0.01	0.01
RYCB01-RYCB06	0.09	0.20	0.09	0.21	0.09
RYCB02-RYCB01	0.19	0.19	0.20	0.18	0.17
RYCB03-CBMH03	3.02	3.02	3.56	0.01	0.01
RYCB04-CBMH04	0.25	0.29	0.25	0.28	0.25
RYCB05-LCB08	3.80	3.80	4.13	0.01	0.01
RYCB06-CBMH04	0.01	0.08	0.01	0.11	0.01

Analysis begun on: Mon May 10 13:14:16 2021 Analysis ended on: Mon May 10 13:14:21 2021 Total elapsed time: 00:00:05

STORM SEWER: HYDRAULIC GRADE LINE ANALYSIS (100-YEAR EVENT - ULTIMATE CONDITION)

This spreadsheet uses the Darcy-Weisbach equation to calculate hydraulic losses through a pipe network with a specified flow rate. Minor losses are accounted for including both pipe bend losses and structure losses. The spreadsheet returns the upstream hydraulic grade line if surcharged, or the pipe obvert if free flow conditions exist. The slope of the HGL is calculated and the minimum USF elevations can be established +0.30m above the HGL. The theoretical 100-year event storm sewer peak flows will be controlled to the actual 5-year flow rates using various roadway inlet controls within CBs. Additional flows will be directed using overland flow routes. The Ultimate Condition accounts for the entire drainage areas flowing through the completed storm sewer network.

LOCATION	МА	NHOLE	INV ELEV		GROUND ELEVATION	COVER	PIPE	PARAME	TERS	TOTAL FLOW	Q _{cap}	Q _{in} /	COMPUTATIONAL COLUMNS			HEAD LOSS	SURCHARGE		HGL		PIPE SLOPE	MIN. USF ELEVATION		
	Upstream	Downstream	U/S	D/S	Upstream	Upstream	Dia	Length	'n'	(m ³ /s)	(m³/s)	Q _{cap}	Pipe		Friction	-		HL	Upstream	U/S	D/S	SLOPE	(%)	Upstream
			(m)	(m)	(m)	(m)	(mm)	(m)		(m /s)			Area (m ²)	L/D	Factor (f)	V (m/s)	V²/2g	(m)	(m)	(m)	(m)	(%)	<u> </u>	(m)
KLONDIK	KLONDIKE ROAD																			67.57	<- OUTLE	T TO PON	ID	
	FUT.MH C	OUTLET	65.93	65.90	67.95	0.670	1350	13.80	0.013	1.714	2.596	0.66	1.478	10	0.01905	1.16	0.07	0.05	0.34	67.62	67.57	0.35	0.14	67.92
	FUT.MH B	FUT.MH C	66.02	65.93	68.55	1.180	1350	51.00	0.013	1.738	2.339	0.74	1.478	38	0.01905	1.18	0.07	0.09	0.34	67.71	67.62	0.17	0.13	68.01
	FUT.MH A	FUT.MH B	66.24	66.05	68.87	1.280	1350	117.00	0.013	1.797	2.244	0.80	1.478	87	0.01905	1.22	0.08	0.14	0.26	67.85	67.71	0.12	0.13	68.15
	MH 153	FUT.MH A	66.40	66.24	70.01	2.260	1350	108.50	0.013	1.447	2.138	0.68	1.478	80	0.01905	0.98	0.05	0.09	0.19	67.94	67.85	0.08	0.13	68.24
	MH 154	MH 153	66.63	66.55	70.18	2.350	1200	39.90	0.013	1.441	1.821	0.79	1.167	33	0.01981	1.23	0.08	0.07	0.17	68.00	67.94	0.17	0.20	68.30
PHASE2																								
	MH 163	MH 154	66.97	66.90	70.25	2.380	900	65.0	0.013	0.180	0.620	0.29	0.657	72	0.02181	0.27	0.00	0.01	0.14	68.01	68.00	0.01	0.11	68.31
	MH 164	MH 163	67.33	67.27	69.82	1.890	600	41.5	0.013	0.159	0.244	0.65	0.292	69	0.02496	0.54	0.02	0.04	0.12	68.05	68.01	0.09	0.14	68.35
	MH 165	MH 164	67.59	67.41	70.15	2.035	525	110.0	0.013	0.161	0.181	0.89	0.223	210	0.02610	0.72	0.03	0.15	0.09	68.20	68.05	0.14	0.16	68.50
	MH 166	MH 165	67.87	67.67	70.50	2.180	450	90.3	0.013	0.126	0.140	0.90	0.164	201	0.02747	0.77	0.03	0.19	0.08	68.40	68.20	0.21	0.22	68.70
	MH 167	MH 166	68.25	68.02	70.50	1.950	300	66.4	0.013	0.045	0.059	0.75	0.073	221	0.03145	0.61	0.02	0.13	0.00	68.55	68.40	0.23	0.35	68.85
KLONDIK	E ROAD																						'	
	MH 155	MH 154	66.78	66.63	70.12	2.140	1200	117.00	0.013	1.335	1.456	0.92	1.167	98	0.01981	1.14	0.07	0.14	0.17	68.15	68.00	0.11	0.13	68.45
	MH 156	MH 155	66.90	66.78	70.39	2.290	1200	91.30	0.013	1.279	1.475	0.87	1.167	76	0.01981	1.10	0.06	0.10	0.15	68.25	68.15	0.11	0.13	68.55
	MH 157	MH 156	67.03	66.90	70.29	2.060	1200	97.00	0.013	1.214	1.489	0.82	1.167	81	0.01981	1.04	0.06	0.10	0.12	68.35	68.25	0.10	0.13	68.65
MARCON	I AVENUE																							
	MH 160	MH 157	68.08	67.78	70.64	2.110	450	120.00	0.013	0.129	0.149	0.87	0.164	267	0.02747	0.79	0.03	0.28	0.10	68.63	68.35	0.23	0.25	68.93
	MH 161	MH 160	68.35	68.23	70.87	2.220	300	23.90	0.013	0.023	0.071	0.32	0.073	80	0.03145	0.32	0.01	0.01	0.00	68.65	68.63	0.10	0.50	68.95
	MH 162	MH 161	68.50	68.38	71.50	2.700	300	24.60	0.013	0.000	0.070	0.00	0.073	82	0.03145	0.00	0.00	0.00	0.00	68.80	68.68	0.49	0.49	69.10
KLONDIK	E ROAD																							<u> </u>
	MH 158	MH 157	68.30	67.40	71.78	2.655	825	120.00	0.013	1.064	1.297	0.82	0.552	145	0.02245	1.93	0.19	0.66	0.00	69.13	68.35	0.65	0.75	69.43
	MH 159	MH 158	68.90	68.30	74.79	5.065	825	94.00	0.013	0.932	1.196	0.78	0.552	114	0.02245	1.69	0.15	0.40	0.00	69.73	69.13	0.64	0.64	70.03
TER LEVE	EL at Outle	et = 67.57m																						

TEMPEST Product Submittal Package

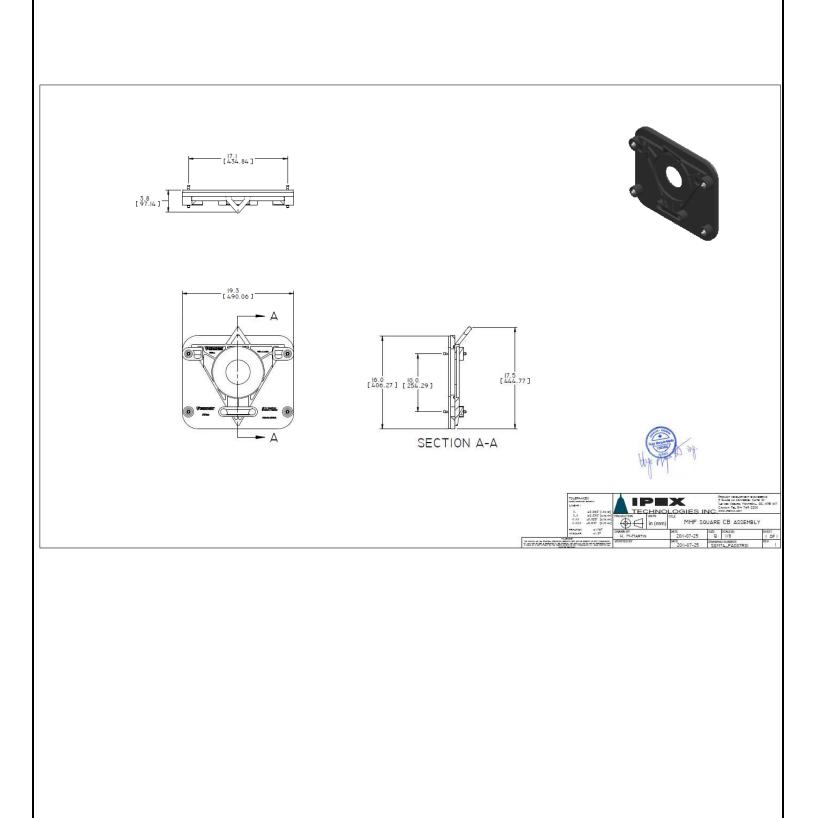
Date: May 12, 2021

<u>Customer</u>: Novatech

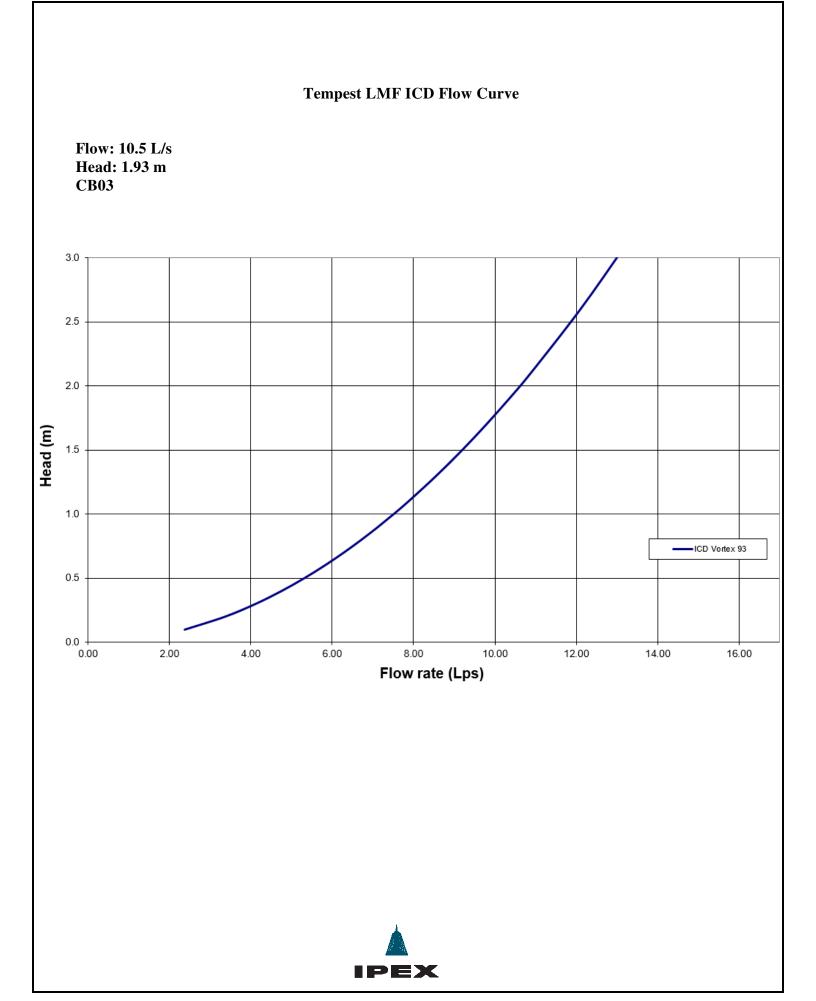
Contact: Lucas Wilson

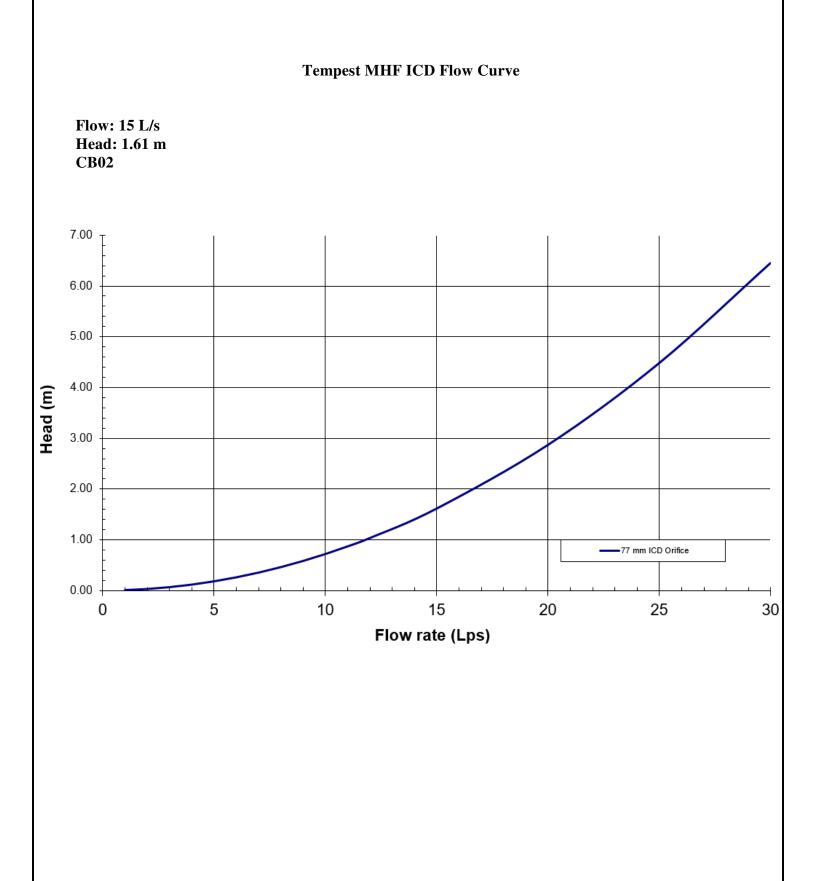
Location:

Project Name: Klondike Road

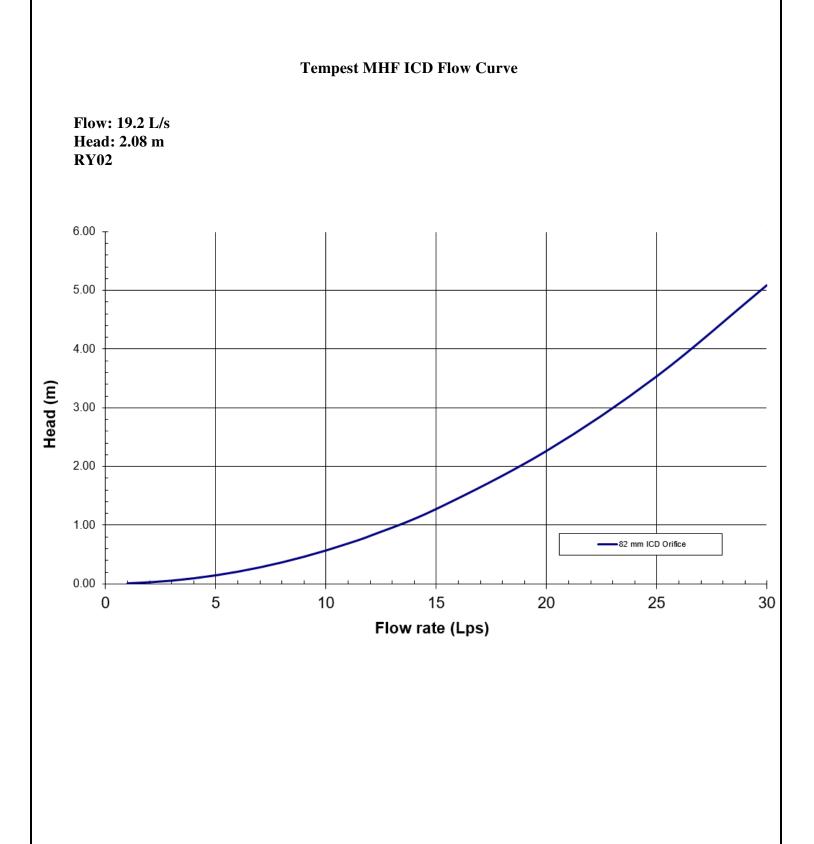


<u>Tempest LMF ICD Sq</u> Shop Drawing



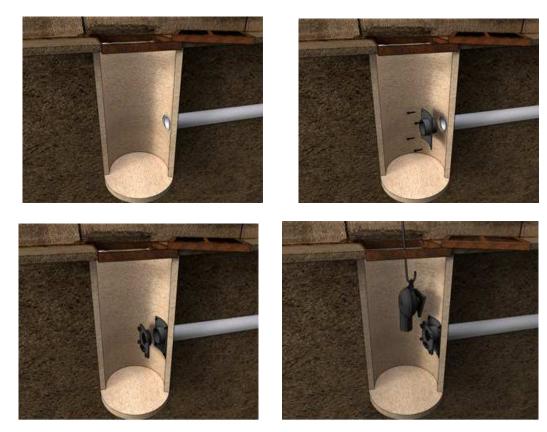


Tempest MHF ICD Sq Shop Drawing



Square CB Installation Notes:

- 1. Materials and tooling verification:
 - Tooling: impact drill, 3/8" concrete bit, torque wrench for 9/16" nut, hand hammer, level, and marker.
 - Material: (4) concrete anchor 3/8x3-1/2, (4) washers, (4) nuts
- 2. Use the mounting wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- 3. Use an impact drill with a 3/8'' concrete bit to make the four holes at a minimum of 1-1/2'' depth up to 2-1/2''. Clean the concrete dust from the holes.
- 4. Install the anchors (4) in the holes by using a hammer. Put the nuts on the top of the anchors to protect the threads when you will hit the anchors with the hammer. Remove the nuts on the ends of the anchors
- 5. Install the wall mounting plate on the anchors and screw the nut in place with a maximum torque of 40 N.m (30 lbf-ft). There should be no gap between the wall mounting plate and the catch basin wall.
- 6. From ground above using a reach bar, lower the device by hooking the end of the reach bar to the handle of the LMF device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered in to the wall mounting plate and has created a seal.



Round CB Installation Notes: (Refer to square install notes above for steps 1, 3, & 4)

- 2. Use spigot catch basin wall plate to locate and mark the hole (4) pattern on the catch basin wall. You should use a level to ensure that the plate is at the horizontal.
- 5. Install the CB spigot wall plate on the anchors and screw the 4 nuts in place with a maximum torque of 40 N.m (30 lb-ft). There should be no gap between the CB spigot wall plate and the catch basin wall.
- 6. Apply solvent cement on the hub of the universal mounting plate and the spigot of the spigot CB wall plate. Slide the hub over the spigot. Make sure the universal mounting plate is at the horizontal and its hub is completely inserted onto the spigot. Normally, the corners of the universal mounting plate hub adapter should touch the catch basin wall.
- 7. From ground above using a reach bar, lower the ICD device by hooking the end of the reach bar to the handle of the ICD device. Align the triangular plate portion into the mounting wall plate. Push down the device to be sure it has centered into the mounting plate and has created a seal.

CAUTION/WARNING/DISCLAIM:

- Verify that the inlet(s) pipe(s) is not protruding into the catch basin. If it is, cut it back so that the inlet pipe is flush with the catch basin wall.
- Any required cement in the installation must be approved for PVC.
- The solvent cement should not be used below 0°C (32°F) or in a high humidity environment. Please refer to the IPEX solvent cement guide to confirm required curing times or attend the IPEX <u>Online Solvent</u> <u>Cement Training Course</u>.
- Call your IPEX representative for more information or if you have any questions about our products.

IPEX TEMPEST Inlet Control Devices Technical Specification

General

Inlet control devices (ICD's) are designed to provide flow control at a specified rate for a given water head level and also provide odour and floatable control where specified. All ICD's will be IPEX Tempest or approved equal.

All devices shall be removable from a universal mounting plate. An operator from street level using only a T-bar with a hook will be able to retrieve the device while leaving the universal mounting plate secured to the catch basin wall face. The removal of the TEMPEST devices listed above must not require any unbolting or special manipulation or any special tools.

High Flow (HF) Sump devices will consist of a removable threaded cap which can be accessible from street level with out entry into the catchbasin (CB). The removal of the threaded cap shall not require any special tools other than the operator's hand.

ICD's must have no moving parts.

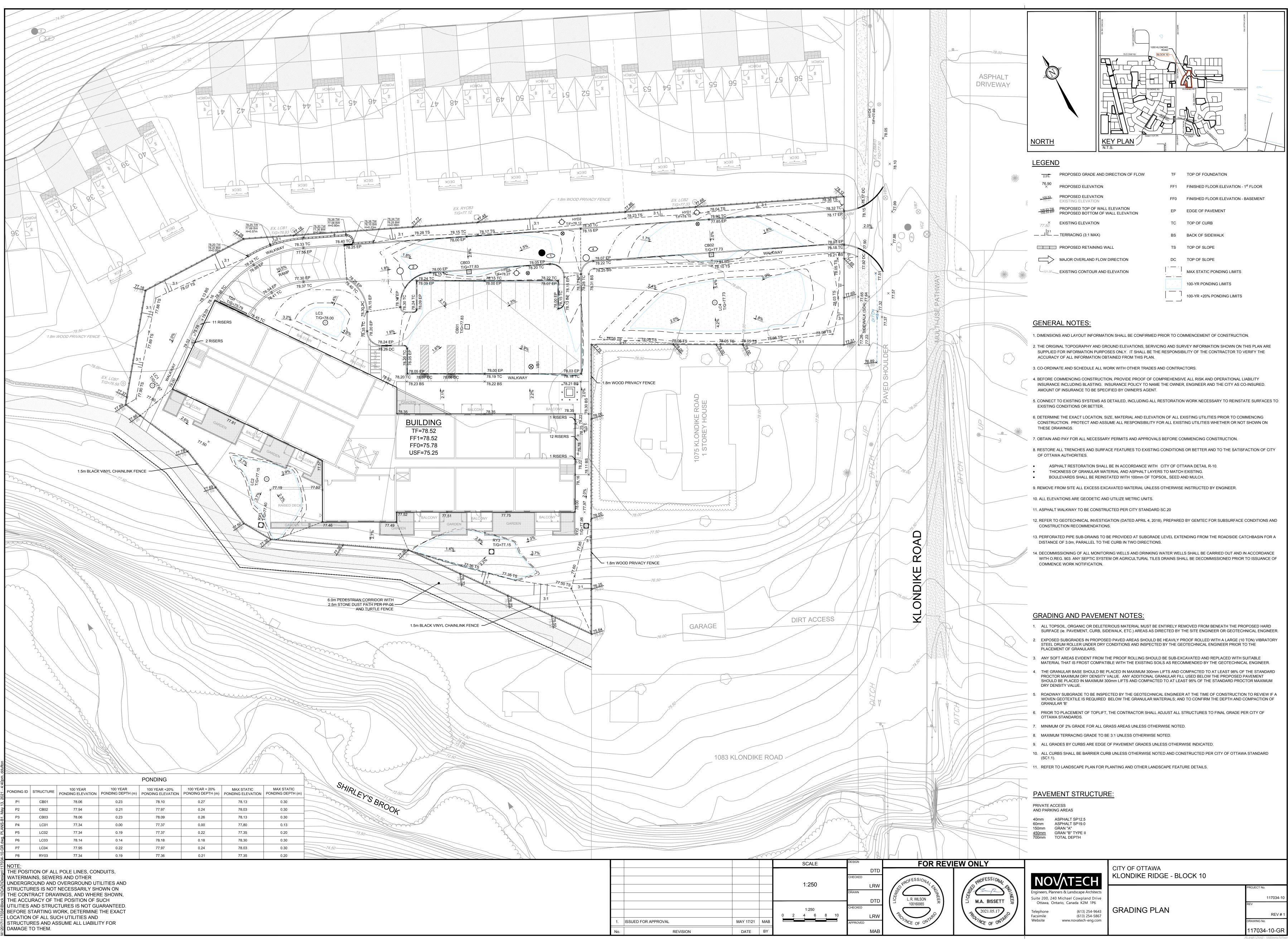
Materials

ICD's are to be manufactured from Polyvinyl Chloride (PVC) or Polyurethane material, designed to be durable enough to withstand multiple freeze-thaw cycles and exposure to harsh elements.

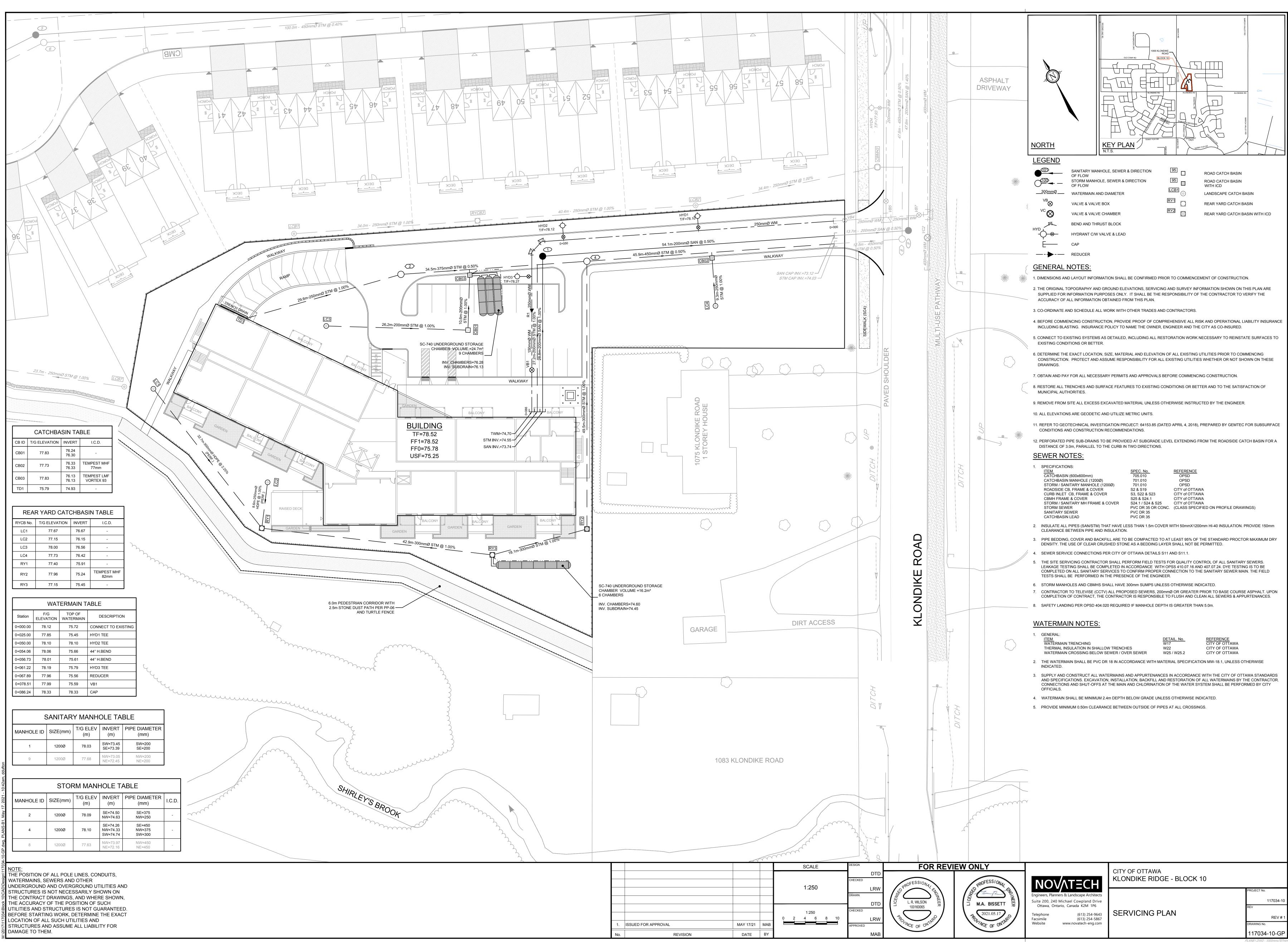
The inner ring seal will be manufactured using a Buna or Nitrile material with hardness between Duro 50 and Duro 70.

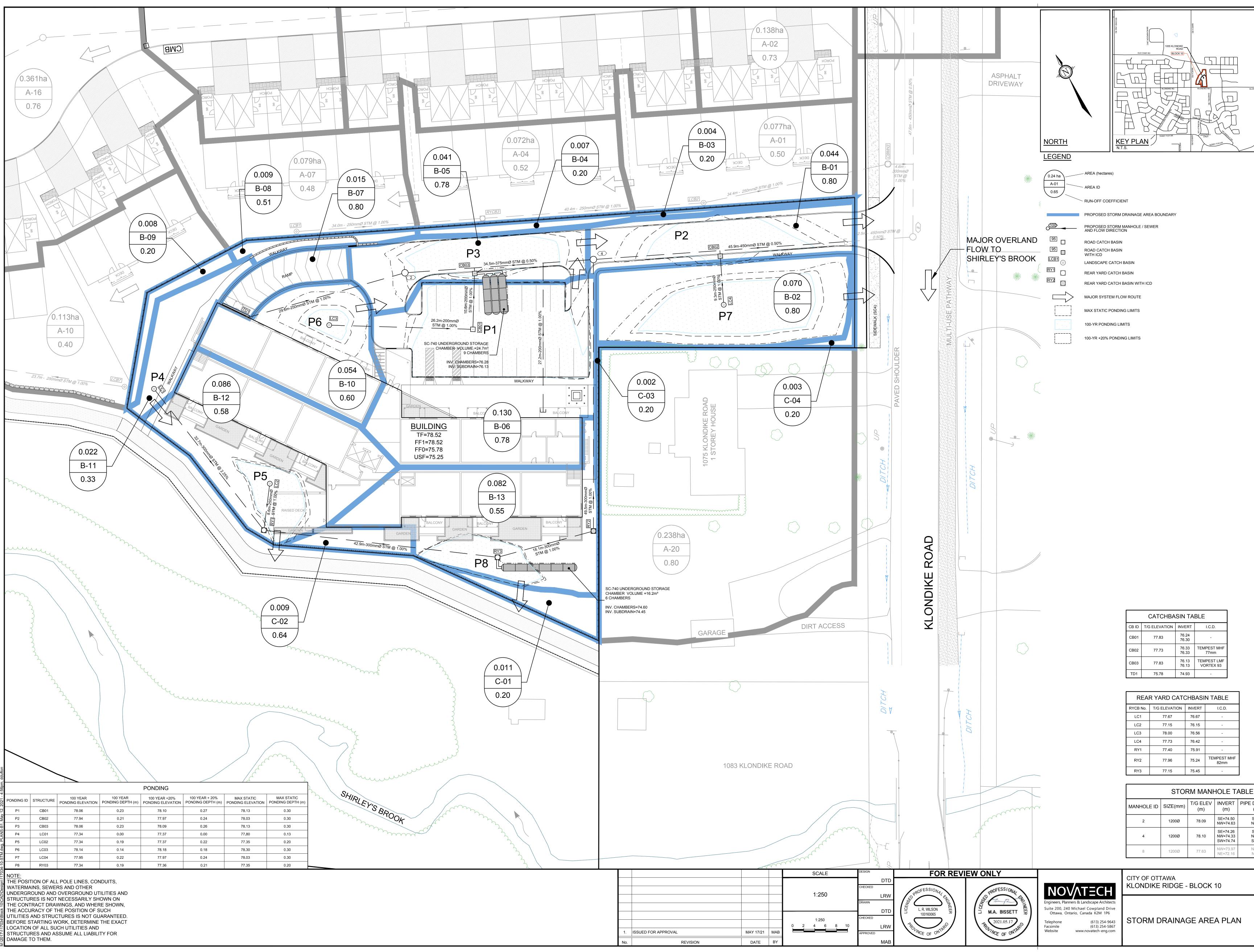
The wall seal is to be comprised of a 3/8" thick Neoprene Closed Cell Sponge gasket which is attached to the back of the wall plate.

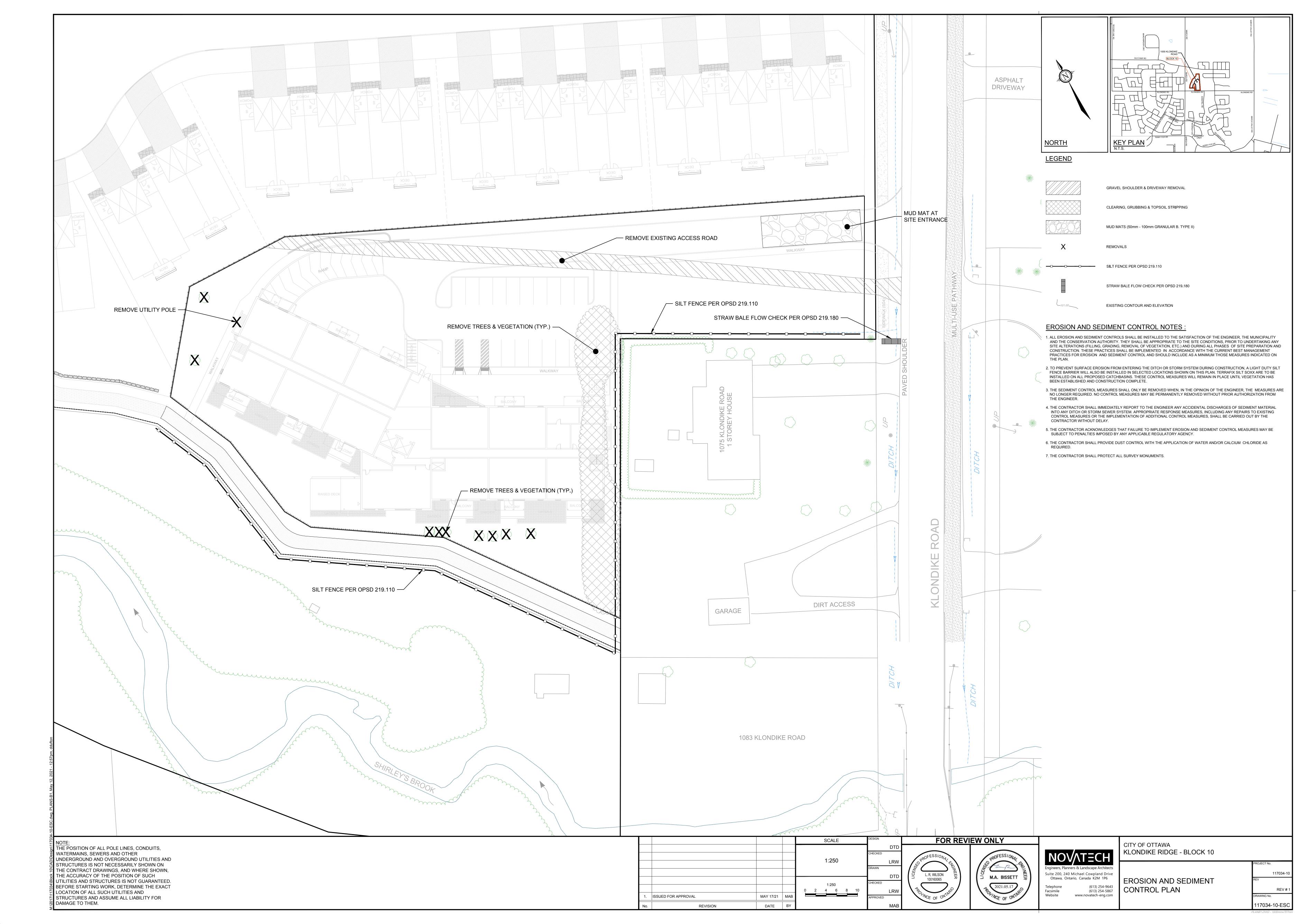
All hardware will be made from 304 stainless steel.


Dimensioning

The Low Medium Flow (LMF), High Flow (HF) and the High Flow (HF) Sump shall allow for a minimum outlet pipe diameter of 200mm with a 600mm deep Catch Basin sump.


Installation


Contractor shall be responsible for securing, supporting and connecting the ICD's to the existing influent pipe and catchbasin/manhole structure as specified and designed by the Engineer.



× <u>105.53</u> × 105.53	PROPOSED ELEVATION EXISTING ELEVATION	FF0
<u>105.53 TW</u> 105.53 BW	PROPOSED TOP OF WALL ELEVATION PROPOSED BOTTOM OF WALL ELEVATION	EP
× 77.50	EXISTING ELEVATION	TC
^{3:1}	- TERRACING (3:1 MAX)	BS
	PROPOSED RETAINING WALL	TS
\Rightarrow	MAJOR OVERLAND FLOW DIRECTION	DC
1		$1 \cdot - \cdot 1$

MARCH VALLEY RD					
		_			
ONDIKE RE		0			
				7	
-	_	-	-	-	
					-
DIAI (mm SE=3 NW=2		R	I.C.	D.	
SE=4 NW=3 SW=3 NW=4 NE=4	50 375 300		-		
	PROJE	CT No).		
	REV	NG No	117 F	034-1 REV #	± 1
1	170	34-	10-	STI	М

