Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

Hydrogeological Review

Proposed Multi-Storey Buildings 400 Albert Street Ottawa, Ontario

Prepared For

Main and Main Developments Inc.

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa, Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca August 5, 2020

Report PG4793-2

Table of Contents

Page

1.0	INTRODUCTION
2.0	SITE CONDITIONS22.1Surface Conditions22.2Subsurface Profile3
3.0	HYDROGEOLOGY53.1Estimated Water Taking Rates3.2Estimated Radius of Influence3.3Water Discharge8
4.0	POTENTIAL IMPACTS104.1Adverse Effects on Adjacent Structures.104.2Adverse Effects on Neighbouring Water Wells104.3Soil, Surface Water and Groundwater114.4Adjacent Permits to Take Water12
5.0	STATEMENT OF LIMITATIONS

Appendices

Appendix 1	Drawing PG4793-2 - Site Plan Drawing PG4793-3 - MECP Water Well Records
Appendix 2	PG4793 - Soil Profile and Test Data PG3914 - Soil Profile and Test Data PE3774 - Soil Profile and Test Data PG3543 - Soil Profile and Test Data Borehole Reports (by Others) PG4793-1 - Test Hole Location Plan
Appendix 3	MTO IDF Curves Sample Calculations - Dupuit Forchheimer
Appendix 4	IBI Group - Plan/Profile Drawings
Appendix 5	City of Ottawa - Sewer Use Program - Best Management Practices

1.0 INTRODUCTION

Introduction

Paterson Group (Paterson) was commissioned by Main and Main Developments Inc. to prepare a hydrogeological review for the proposed multi-storey buildings to be located at 400 Albert Street in Ottawa, Ontario (refer to Drawing PG4793-2 - Site Plan within Appendix 1).

Subsurface information was obtained from the field investigations carried out by Paterson and others to determine the subsoil and groundwater conditions at the site by means of test holes.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. It contains the investigation findings and includes hydrogeological assessments pertaining to the proposed program as understood at the time of writing this report.

Proposed Project

It's our understanding that the proposed development will consist of three multi-storey buildings and will share three levels of underground parking that will occupy the majority of the site. It's further understood that the proposed building will be municipally serviced.

In the event that groundwater infiltration is encountered within the excavation at the time of construction, consideration has been given to incorporating a water suppression system that will reduce infiltration volumes and long term groundwater lowering at the post-construction stage. However, based on projects currently under construction in the vicinity of the subject site, no significant water infiltration volumes were encountered at deeper levels. We expect a similar situation at the subject site.

2.0 SITE CONDITIONS

2.1 Surface Conditions

The subject site is currently occupied by an at-grade gravel parking lot. The topography of the site gently slopes down towards the south and is at grade with the surrounding roadways. It is bordered to the north by low-rise residential buildings and Albert Street followed by high-rise residential buildings currently under construction (former at-grade parking lot), to the east by Lyon Street followed by high-rise commercial buildings, to the south by Slater Street followed by an at-grade parking lot as well as a low-rise commercial and high-rise residential building, and to the west by Bay Street followed by a low-rise commercial building.

According to available mapping, the subject site is located in the Limestone Plains physiographic region.

Field Investigations

Field investigations completed by Paterson have been carried out between June 2015 and March 2019. During this time, a total of 15 boreholes have been advanced to a maximum depth of 19.4 m below ground surface (bgs). A previous field investigation completed by others in 2012 has also been included as part of the current hydrogeological review. The previous investigation consisted of 6 boreholes extending to a maximum depth of 7.2 m bgs. The test hole locations were distributed in a manner to provide general coverage of the subject site taking into consideration site features as well as evaluate any environmental concerns. The borehole locations of the field investigations are presented on Drawing PG4793-1, included in Appendix 2.

The subsurface conditions observed in the test holes were recorded in detail in the field. The soil profiles are presented on the Borehole Reports by others and the Soil Profile and Test Data sheets in Appendix 2 of this report.

Surface Water

The subject site is located within the Rideau Canal subwatershed. Surface water feature identified within 500 m of the property include the Ottawa River located approximately 500 m north of the subject site.

Groundwater

Groundwater monitoring wells were installed in select boreholes by Paterson to permit the monitoring of the groundwater levels at the subject site. Groundwater information is discussed in Sections 3 of this report and details are noted on the Soil Profile and Test Data sheets presented in Appendix 2 of this report.

2.2 Subsurface Profile

The subsurface profile at the subject site is generally comprised of fill material followed by a silty clay and/or glacial till deposit extending to bedrock surface. Practical refusal to augering was encountered at depths ranging between 2.8 and 4.9 m bgs, while bedrock was encountered between 2.3 and 4.8 m bgs.

Reference should be made to the soil profile records and test hole locations completed by Paterson and others included in Appendix 2 for the details of the soil profiles encountered at each borehole location.

Based on surficial mapping prepared by the Ontario Geological Survey, the subject site is located in an area where surficial geology consists of a stone-poor, sandy silt to silty sand-textured till deposited on Paleozoic terrain.

Fill Material

A fill layer was encountered at all borehole locations underlying the crushed stone gravel surfacing. The fill material consisted of silty sand with varying amounts of silty clay, gravel, boulders, crushed stone, construction debris and organics. The fill material extended to a maximum depth of 3.3 m bgs.

Silty Clay

Generally, the very stiff silty clay was encountered beneath the fill material in select boreholes and extended to a maximum depth of 3.7 m bgs.

Glacial Till

Generally, the compact to very dense glacial till deposit was noted underlying the silty clay and/or fill material in select boreholes. The glacial till deposit consists of clayey silt to silty sand matrix with varying amounts gravel, cobbles and boulders and it extends to a maximum depth of 4.9 m bgs.

Bedrock

Based on coring results completed by Paterson and others, limestone bedrock was encountered between 2.3 and 4.8 m bgs and was cored to a maximum depth of 19.4 m bgs. The recovery values ranged from 87 to 100%, while the RQD values generally varied between 61 and 100%. Based on these results, the quality of the bedrock ranges from fair to excellent.

Based on available geological mapping, the subject site is located in an area where the bedrock consists of interbedded limestone and shale of the Verulam Formation with an overburden thickness between 2 and 5 m.

3.0 HYDROGEOLOGY

Subsequent to the subsurface investigations completed at the subject site, groundwater levels were measured at the borehole locations by Paterson and others and ranged from 2.2 to 5.4 m bgs. However, it should be noted that the LRT Confederation Line tunnel is located approximately 75 m north of the subject site and drawing the groundwater to a depth greater than the proposed excavation depth at the subject site. Furthermore, minimal groundwater infiltration has been observed at adjacent developments currently under construction and consists of excavations depths greater than the proposed development. Based on the above noted observations, the long-term groundwater table at the subject site can be expected below the excavation depth of the proposed development. Groundwater levels can fluctuate both seasonally and in conjunction with precipitation events. Therefore, the groundwater levels could vary at the time of construction.

For the purpose of this hydrogeological review, the groundwater flow has been conservatively estimated based on measured groundwater levels subsequent to the subsurface investigations.

On a conceptual scale, hydrogeological/hydrologic conditions at the subject site suggest that water may infiltrate the open excavation as surface water infiltration during precipitation events and through groundwater flow within the bedrock at depth.

The excavation footprint related to the proposed underground parking structure at the subject site is expected to encompass an area of approximately 5,200 m². Therefore, the potential exists for a moderate amount of surface water to intercept the excavation footprint directly during significant precipitation events.

Based on the measured groundwater levels, the building excavation is expected to intercept bedrock within the saturated depth of excavation. The potential exists for a low to moderate amount of groundwater inflow through the bedrock. The volume of groundwater that infiltrates through the bedrock will depend on the quality of the bedrock across the subject site.

Based on the groundwater levels at the borehole locations, the local groundwater flow direction generally trends in a southeasterly direction. The regional groundwater flow direction is expected to trend north towards the Ottawa River. It should be noted that groundwater levels can fluctuate based on precipitation events and seasonal variations. Therefore, groundwater levels and flow directions may vary at the time of construction.

3.1 Estimated Water Taking Rates

The potential sources of water taking at the subject site has been identified as the excavation footprint of the proposed multi-storey buildings during the construction phase as well as long-term groundwater infiltration at post-construction.

The hydraulic conductivity values were conservatively estimated based upon typical values for limestone bedrock. These values range from 1×10^{-6} to 1×10^{-10} m/sec and is dependent on the quality of the bedrock.

To determine surface water infiltration into the excavation footprint, an intensity duration frequency (IDF) curve from the Ministry of Transportation - Ontario (MTO) was obtained. The IDF curve is the graphical representation of the probability that a given average rainfall intensity will occur. For the purposes of this project, a 5 year storm event with a one hour duration was chosen as the design storm. This provides a potential rainfall intensity of 2.62×10^{-2} m of precipitation into the excavation footprint. Various duration storm events with their associated rainfall intensities are presented in the IDF Curve in Appendix 3.

The infiltration rates provided for the following source was calculated using the Dupuit Forchheimer method:

- $Q = \pi K((h_0^2 h_p^2)/ln(R/r))$
- \Box K = hydraulic conductivity (m/sec)
- \Box h₀ = thickness of the aquifer (m)
- $\square \quad h_p = \text{thickness of the aquifer from the base of the excavation to the base of the aquifer (m)}$
- \Box R = effective drawdown radius for the excavation (m)
- \Box r = equivalent radius of the excavation (m)

A sample groundwater infiltration calculation is provided in Appendix 3 of this report.

Building Excavation Footprint (Construction Dewatering)

The strata at the proposed building location consists of fair to excellent limestone bedrock within the anticipated saturated depth of excavation. The maximum depth of excavation is generally expected to be approximately 10 m bgs. Calculations are based on an excavation sizing of 5,200 m² and a saturated depth of excavation of 7.5 m, using a conservative groundwater level measurement of 2.5 m bgs.

Using the above values and a conservative hydraulic conductivity of 1×10^{-6} m/sec, the steady state volume of groundwater anticipated is approximately **150,000** L/day, and does not account for the initial groundwater inflow into the excavation or unforseen circumstances.

A factor of safety should be applied to the calculated infiltration rates to account for variability in the quality of bedrock and any unforseen circumstances that may arise during construction activities.

With respect to the potential for surface water inflow into the excavation footprint, the subject site is adjacent to developed land on all sides. It is therefore expected that the majority of surface water inflow into the excavation footprint will be caused by precipitation directly onto the footprint rather than runoff from other sources. Given an excavation footprint with a sizing of 5,200 m² and a precipitation depth of 2.62×10^{-2} m, a total volume of approximately 125,000 L of surface water can be expected during a 5 year - 1 hour duration precipitation event. It is expected that the contractor will direct surface water away from open excavations whenever possible.

Based on the anticipated volumes, an Environmental Activity and Sector Registry (EASR) is recommended for temporary construction dewatering of the proposed development.

Post-Construction (Long-Term Dewatering)

If groundwater infiltration is encountered within the excavation and a water suppression system is required, the long-term groundwater infiltration breaching the suppression system at post-construction will be managed by the building sump pit system. Provided the proposed groundwater infiltration control system is properly installed and approved by the geotechnical engineer at the time of construction, a conservative 1 m drawdown in the groundwater table at the subject site could be expected. The steady state volume of groundwater anticipated post-construction is approximately **20,000 to 40,000 L/day**.

3.2 Estimated Radius of Influence

A series of calculations were carried out on theoretical radii of influence for the likely duration of extended pumping during the excavation of the buildings and postconstruction. These calculations were completed based on Sichardt (1992) using the equation: $R = r_e + 3000^* \Delta h(k^{0.5})$

- \Box R = radius of influence (m)
- \Box r_e = equivalent radius of excavation (m)
- \Box Δh = thickness of drawdown within the aquifer (m)
- \Box k = hydraulic conductivity (m/sec)

For the purposes of completing the calculations, the following assumptions were made:

- \Box $r_e = 50 m$
- \Box k = 1 x 10⁻⁶ m/sec, based upon published values
- \Box $\Delta h = 7$ to 8 m (building excavation); 0.5 to 1.5 (post-construction), to review potential minimum/maximum variable conditions.

Using the above equation and assumptions, a radius of influence of approximately **21 to 24 m** could develop as a steady state condition, extending from the edge of the excavation, during the construction of the proposed underground parking structure.

If a water suppression system is required and adequately installed, it is expected that a radius of influence of approximately **1.5 to 4.5 m** will develop as a steady state condition, extending from the edge of the building, at post-construction.

3.3 Water Discharge

The discharge point for the pumped water from the excavation sump is expected to be to the existing City of Ottawa sewer system via a sewer connection. As such, it will be subject to the City of Ottawa Sewer Use Bylaws and a permit will be required to discharge the water to the sewer system.

It is expected that BMP's as recommended by the City of Ottawa - Sewer Use Program (SUP) document (attached within Appendix 5) or similar will be used to reduce sediment loading within the water prior to discharge to the sewer system. If the pumped water does not meet the SUP criteria, it must be retained on site until test results indicate compliance with the SUP criteria or remove the water through other means such as tanker trucks.

Given the size of the excavation for the proposed development, the volumes of surface water pumped during a 100 year storm event are not expected to exceed the capacity of the nearby City sewer system. Should volumes exceed the available capacity, it's expected that water will be stored on site temporarily and released at an acceptable rate or removed via tanker trucks. The approved SUP permit may provide further discharge restrictions.

Based upon the anticipated water takings being discharged to the City sewer system, it's Paterson's opinion that the water discharged will not cause negative impacts to the natural environment. As the discharged water is not being returned directly to the natural environment, there are no negative effects expected related to the temperature of the discharged water. The location and operation of the appropriate discharge measures are the responsibility of the contractor.

4.0 POTENTIAL IMPACTS

4.1 Adverse Effects on Adjacent Structures

The subsurface profile at the subject site is generally comprised fill material overlain by a silty clay and/or glacial till deposit followed by bedrock. The majority of the expected groundwater infiltration will be encountered within the limestone bedrock. The potential dewatering volumes due to groundwater infiltration into excavation footprint are anticipated to be low to moderate dependant on the quality of bedrock at a given location across the subject site. The buildings in the surrounding area consists of a mixture or residential and commercial buildings. Given the relatively shallow depth to bedrock, the buildings are expected to be founded either on bedrock or the compact to very dense glacial till deposit. As the majority of the groundwater infiltration is expected to occur within the bedrock, adverse effects related to dewatering activities at the subject site are expected to be negligible.

It is not expected mitigation methods will be required related to potential adverse effects on structures or infrastructure adjacent to the excavation due to the lack of compressibility of the bedrock and short term nature of the construction. However, mitigation methods would consist of halting pumping and providing monitoring of the potential settlement to determine if the negative effects are related to the dewatering program. If the dewatering is causing the consolidation/settlement effects, then a revised dewatering program to reduce the taking of water or providing a water recharge system to reduce the consolidation effects would be necessary.

Due to the currently proposed construction activities at the subject site (hoe-ramming, controlled blasting, shoring installations), a pre-construction survey is recommended to be carried out for the structures immediately surrounding the site to document existing conditions. It is additionally recommended in Paterson Report PG4793-1 dated August 23, 2019.

4.2 Adverse Effects on Neighbouring Water Wells

A search of the Ontario Water Well Records database indicates there are a large number of wells within 500 m of the site as depicted in Drawing PG4793-3 included in Appendix 1. However, it is expected that these wells are either no longer in use due to their installation dates and the developed nature of the region or are monitoring well installations. As such, any domestic wells in the area are located well outside the theoretical radius of influence. Therefore, dewatering activities at the site are not expected to cause any interference to the water supply of surrounding properties or other negative impacts.

4.3 Soil, Surface Water and Groundwater

A search of the MECP Brownfields Environmental Site Registry was conducted as part of the assessment of the site, neighbouring properties and the general area. A total of 5 Brownfield sites were located within 500 m of the subject site and have been identified as Registration numbers 22908, 40506, 45110, 215648 and 225846. All Brownfield sites and their respective registration numbers indicated there are no groundwater controls under the Records of Site Condition (RSC), nor were there any groundwater remediations performed during the cleanup process. No concerns were identified in the review of the MECP Brownfields database.

Following the completion of a Phase II Environmental Site Assessment (ESA) by Paterson at the subject site, it was determined that all groundwater samples analysed for VOCs were in compliance with MECP Table 3 standards, with the exception of chloroform. Previous environmental assessments by Paterson others identified mercury and lead concentrations in excess of the MECP Table 3 Standards within the fill material underlying the asphaltic concrete and/or gravel layer. Groundwater results from the previous environmental assessments concluded all analyzed parameters were in compliance with the MECP Table 3 Standards.

The groundwater that is pumped from the site excavation must be managed in an appropriate manner. The contractor will be required to implement a water management program to dispose of the pumped water. It is expected the groundwater will be discharged to the City of Ottawa sewer system in accordance with the City Sewer Use By-Laws. Dependant upon the results of the baseline test to be performed for the discharge permit application, the City of Ottawa will determine the appropriate discharge location (storm versus sanitary sewer), on-site treatment or if off-site disposal is required.

It is anticipated that the material on site will be disposed of as per the MECP policy, *Management of Excess Soil - A Guide for Best Management Practices* dated January, 2014.

With respect to nearby surface water bodies, the Ottawa River is located approximately 500 m north of the property and well outside the theoretical radius of influence for the subject site. As such, adverse effects to surface water features resulting from dewatering activities at the subject site are expected to be negligible.

4.4 Adjacent Permits to Take Water

A search of the MECP Permit to Take Water database provided one active PTTW within 500 m of Cliff CHCP. Permit Number 1003-BCTP6R has been registered to 340 Queen Street Limited Partnership. The PTTW contains one source for construction dewatering with a potential taking of 3,000,000 L/day and is located approximately 20 m north of the subject site. While construction for the above noted development is on-going, it is understood that the foundation for the parking structure will be completed prior to the commencement of any water taking at the subject site. As such, cumulative impacts related to water taking activities between the existing PTTW and the subject site are expected to be negligible.

With regards to the Environmental Activity and Sector Registry (EASR), there are no EASR's within 500 m of the subject site.

5.0 STATEMENT OF LIMITATIONS

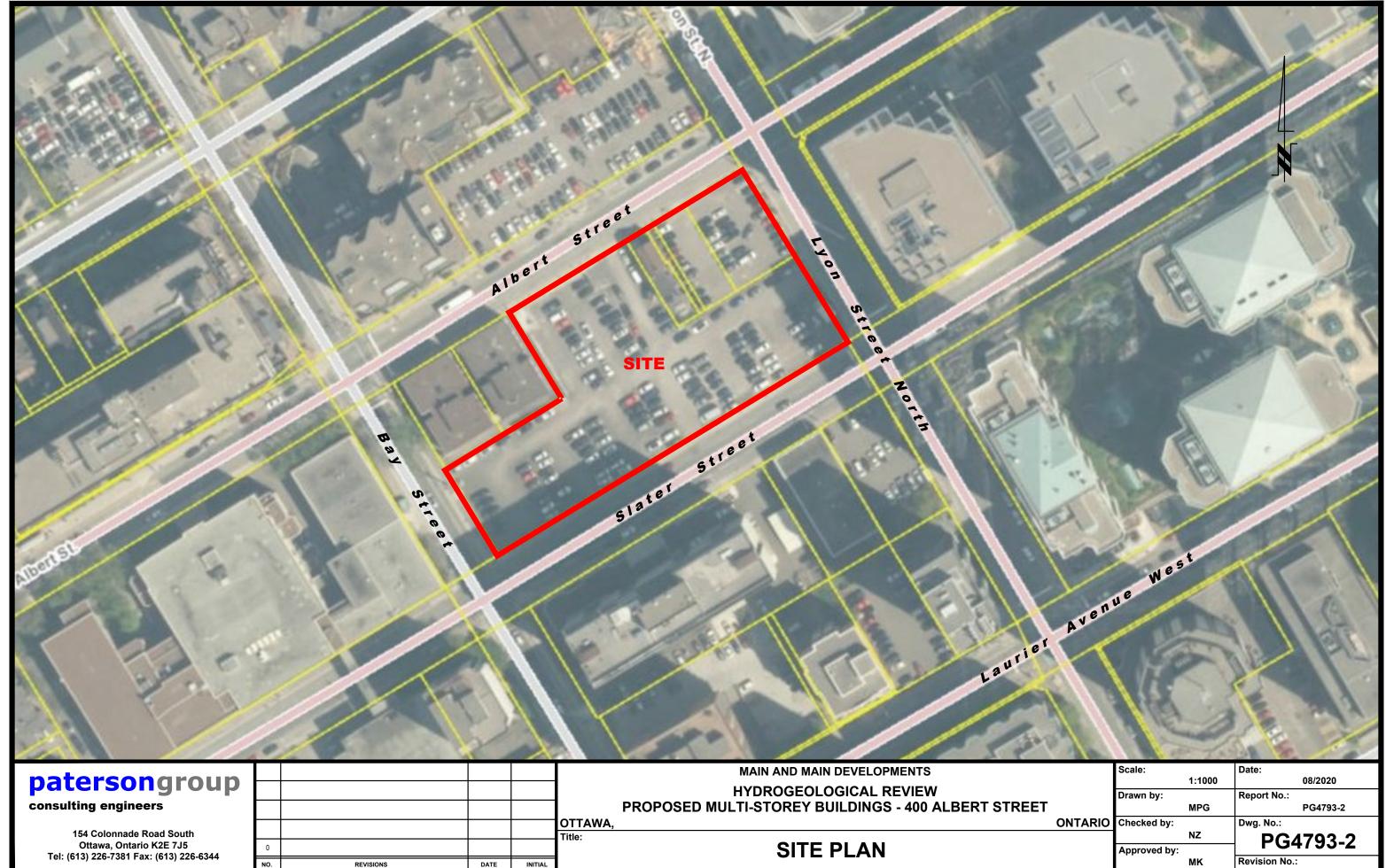
The recommendations provided in this report are in accordance with our present understanding of the project.

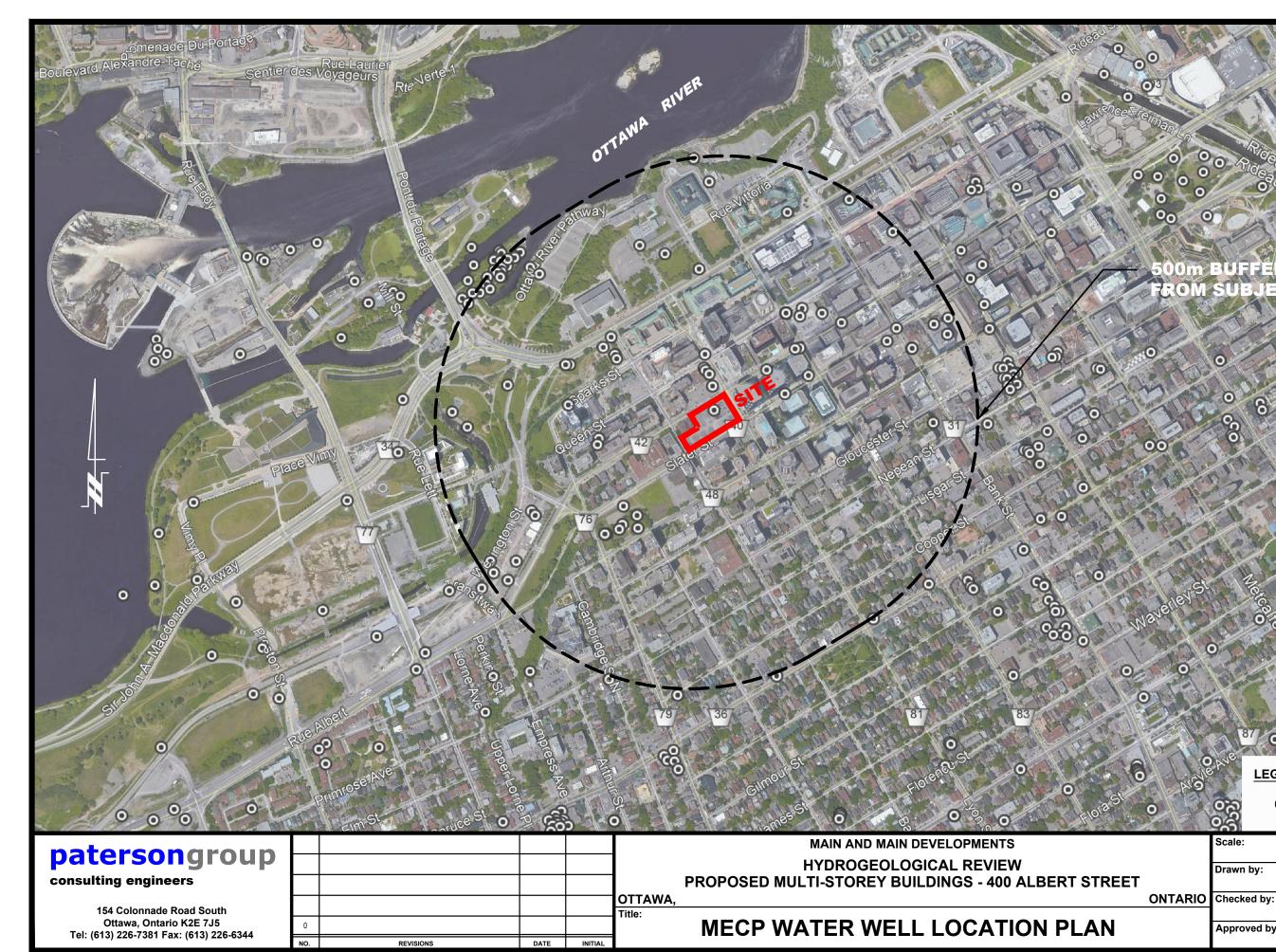
A hydrogeological review of this nature is a limited sampling of a site. The recommendations are based on information gathered at the specific test locations and can only be extrapolated to an undefined limited area around the test locations. Should any conditions at the site be encountered which differ from those at the test locations, we request notification immediately in order to permit reassessment of our recommendations.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than Main and Main Developments, or their agent(s) is not authorized without review by Paterson Group for the applicability of our recommendations to the altered use of the report.

Paterson Group Inc.

Nicholas Zulinski, P.Geo., géo.


Carlos P. Da Silva, P.Eng., ing., QP_{ESA}


APPENDIX 1

Drawing PG4793 - Site Plan

Drawing PG4793 - MECP Water Well Location Plan

:\autocad drawings\geotechnical\pg47xx\pg4793\pg4793-2 site plan

03		97		Ce Ce	enic.
	Ride Rides		0		-
°o o 500m	BUFFE	e au canai b u canai b anai W R ZONI C L SIT	astern pat	St R	
FROM	SUBJE	CT. SIT	E	· Ine Bri	Con a
	0 0 0 (0	9	2		Ron
		0.7	1 Hille	0 0et	awa
weiterst	Nielca	o ite ct	0 30 0 9 0	INK AVE	-Olio
0			0	417	
A CO		<u>GEND:</u> () MI	ECP WELL	LOCATIONS	and the second se
	Scale:	1:7500	Date:	08/2020	
	Drawn by:	MPG	Report No.:	PG4793-2	

MPG

NZ

ΜK

Approved by:

Dwg. No.:

Revision No.:

0

PG4793-2

PG4793-3

APPENDIX 2

PG4793 - Soil Profile and Test Data
PG3914 - Soil Profile and Test Data
PE3774 - Soil Profile and Test Data
PG3543 - Soil Profile and Test Data
Borehole Reports (by Others)
PG4793-1 - Test Hole Location Plan

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 383 Slater St., 400 Albert St. & 156-160 Lyon Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM

DATUM	TBM - Top of manhole cover located along east side of Bay Street, north of
	Slater Street. Geodetic elevation = 72.77m
REMARKS	

FILE NO. **PG4793**

BORINGS BY CME 55 Power Auger		1		D	ATE	March 28	, 2019				BH	11		
SOIL DESCRIPTION	РГОТ		SAN			DEPTH (m)	ELEV. (m)	Pen. Re ● 50	esist. 0 mm					I VIEII
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	()	(,	0 N	Vater	Con	tent	%	- Juitorino	Monitoring well Construction
GROUND SURFACE		~	-	RI	z ⁰	0-	-73.24	20	40	6	0	80	2	ΣŎ
25mm Asphaltic concrete over FILL: Brown clayey sand with sand and gravel		SS NU	1 2	79	12		-72.24							
Compact, brown SILTY SAND Very stiff, brown SILTY CLAY, some		ss	3	4	62	2-	-71.24		· · · · · · · · · · · · · · · · · · ·					
		ss	4	88	10	3-	-70.24			······································				
GLACIAL TILL: Brown clayey silt with sand and gravel 4.29		X SS X SS	5 6	62 47	10 50+	4-	-69.24							
_ _		RC	1	100	0		-68.24							
		RC	2	98	96		-67.24							
		RC	3	100	84		-66.24							
		– RC	4	100	89	8-	-65.24		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
		_				9-	-64.24					· · · · · · · · · · · · · · · · · · ·		
BEDROCK: Fair to excellent quality,		RC	5	100	100	10-	-63.24							
grey limestone		RC	6	100	97	11-	-62.24							
						12-	-61.24		· · · · · · · · · · · · ·			······································		
		RC -	7	100	100	13-	-60.24							
		RC	8	100	97	14-	-59.24							
		– RC	9	100	100	15-	-58.24							
		_	5	100	100	16-	-57.24							
10.04		RC	10	100	100	17-	-56.24							
18.01 End of Borehole	<u></u>					18-	-55.24							
(GWL @ 4.37m depth - Apr 9/19)														
								20 Shea ▲ Undist	40 ar Stre urbed		h (kF	80 Pa) Dulded	100	

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 383 Slater St., 400 Albert St. & 156-160 Lyon Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM	TBM - Top of manhole cover located along east side of Bay Street, north of Slater Street. Geodetic elevation = 72.77m
REMARKS	

FILE NO. PG4793

BORINGS BY CME 55 Power Auger				D	ATE	March 29	, 2019		HOL	E NO	BH	2		
SOIL DESCRIPTION	РІОТ		SAN	IPLE	1	DEPTH	ELEV.	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone				-		nen D
	STRATA I	ТҮРЕ	NUMBER	°° © © © © © ©	N VALUE or RQD	(m)	(m)	• Water Content %					iorior	Monitoring well Construction
GROUND SURFACE	S		Z	RE	z °	0	-71.99	20	40	6	0	80		žδ
Asphaltic concrete0.06		B AU	1] 0-	71.99							
FILL: Brown silty sand with gravel		ss	2	50	52	1-	70.99			÷ · · · · ·			-	
2.08		ss	3	46	17	2-	-69.99							
Compact, brown SILTY SAND 2.39		ss	4	33	2	2	09.99							
GLACIAL TILL: Brown clayey silt 2.84 with sand and gravel			-			3-	68.99		· · · · · · · · · · · ·	<u></u>				
		RC	1	100	87	1-	-67.99							
		_					07.33							արերությունը երերությունը երերությունը երերությունը երերությունը երերությունը երերությունը երերությունը երերությ Առեղությունը հետությունը երերությունը երերությունը երերությունը երերությունը երերությունը երերությունը երերությո
		RC	2	100	93	5-	66.99		- 1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1					
		_				6-	-65.99							
		RC	3	100	95	0	05.99							
				100	33	7-	64.99			······································	······		E	
						0	62.00							
		RC	4	100	95	0-	-63.99							
		<u> </u>				9-	62.99							
BEDROCK: Good to excellent		RC	5	100	100									
quality, grey limestone		-				10-	-61.99							
				100	100	11-	60.99							
		RC	6	100	100									
		_		100	100	12-	-59.99						Ē	
	R	RC	7			13-	58.99		· · · · · · · · · · · · · · · · · · ·	·····				
		<u> </u>											E	
		RC	8	100	100	14-	-57.99							
		—				15-	-56.99							
		RC	9	100	97									目
						16-	-55.99							目
						17-	-54.99							目
17.88		RC	10	100	100	17	04.00							
End of Borehole	' ` ` ` `	1-											+	<u> </u>
(GWL @ 2.20m depth - Apr 9/19)														
										:::				
								20	40	6	0	80	100	
								Shea			t h (kP Remo			
									undeu		i leilio			

SOIL PROFILE AND TEST DATA

Geotechnical Investigation 383 Slater St., 400 Albert St. & 156-160 Lyon Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM	TBM - Top of manhole cover located along eas Slater Street. Geodetic elevation = 72.77m	st side o	of Bay S	street, north of	
REMARKS					
	CME 55 Power Auger	DATE	April 1	2010	

FILE NO. PG4793

BORINGS BY CME 55 Power Auger				П		April 1, 2()19			нс	OLE NO	^{).} BH	3		
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	Per				ows/0. a. Con		Well	u
	STRATA F	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	C				ntent '		Monitoring Well	nstructic
GROUND SURFACE	N N		z	RE	z ^o	0-	-72.28	2	0	40) (50 8	80	ž	ö
		AU 🖉	1			0	12.20								
FILL: Grey silty sand with gravel,		ss	2	38	66	1-	-71.28								լիրիի
some clay		ss	3	46	21	2-	-70.28				· · · · · · · · · · · · · · · · · · ·				
3.	28	∭ SS ⊯ SS	4 5	8 44	11 50+	3-	-69.28			· · · · · ·			· · · · · · · · · · · · · · · · · · ·		լլլլլլ
Concrete with rebar and ties 3.	73		1	17	0	4-	-68.28				· · · · · · · · · · · · · · · · · · ·				
		RC	2	97	83	5-	-67.28			· · · · · ·					111111
		RC	3	100	61		-66.28								ויוויויו
		RC	4	100	82		-65.28								կկկկ
			_	100	00		-64.28			· · · · · · · ·					կկկկ
		RC	5	100	93		-63.28								111111
		RC	6	100	100										
							-62.28								
BEDROCK: Good to excellent		RC	7	100	100		-61.28								ויוויויו
quality, grey limestone		RC	8	100	100		-60.28								וויוויויו
		_				13-	-59.28			· · · · · ·					111111
		RC	9	100	100	14-	-58.28			· · · · · ·					
		RC	10	100	95	15-	-57.28								
				100	95	16-	-56.28			· · · · ·					
		RC	11	100	100	17-	-55.28								
						18-	-54.28			· · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
19.3	38	RC	12	100	10	19-	-53.28			· · · · · ·					
End of Borehole															
(GWL @ 3.50m depth - Apr 9/19)															
								2 S ▲ Ur	hea		treng	50 a th (kPa Remo	a)	00	

SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Investigation Proposed Multi-Storey Redevelopment** 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 383 Slater St. & 400 Albert St., Ottawa, Ontario TBM - Top cover of manhole located along east side of Bay Street, just north of FILE NO. DATUM Slate Street. A geodetic elevation of 72.77m was provided to the TBM by Annis, PG3914 O'Sullivan, Vollebekk Ltd. REMARKS HOLE NO. **BH 4-16** BORINGS BY CME 55 Power Auger DATE December 9, 2016 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction 50 mm Dia. Cone SOIL DESCRIPTION (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE o/c \bigcirc Water Content % **GROUND SURFACE** 20 40 60 80 0+72.36FILL: Brown silty fine sand with AU 1 crushed stone, some blast rock 0.81 1+71.36 FILL: Brown sandy silt, some SS 2 21 4 asphalt and concrete, trace brick <u>1.52</u> FILL: Brown sandy silt, some gravel, cobbles and topsoil SS 3 17 4 1.98 2 + 70.36FILL: Crushed concrete SS 4 50 +33 2.59 Concrete slab 2.74 FILL: Crushed stone, some sand 2.90 Inferred GLACIAL TILL: Grey silty 3+69.36 sand, some gravel, cobbles and boulders SS 5 0 50 +3.45 End of Borehole Practical refusal to augering at 3.45m depth (BH dry upon completion) 40 60 80 100 20 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Investigation Proposed Multi-Storey Redevelopment** 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 383 Slater St. & 400 Albert St., Ottawa, Ontario TBM - Top cover of manhole located along east side of Bay Street, just north of FILE NO. DATUM Slate Street. A geodetic elevation of 72.77m was provided to the TBM by Annis, **PG3914** O'Sullivan, Vollebekk Ltd. REMARKS HOLE NO. BH 5-16 BORINGS BY CME 55 Power Auger DATE December 9, 2016 SAMPLE Pen, Resist, Blows/0.3m -

SOIL DESCRIPTION		H SAMPLE				DEPTH	ELEV.	Pen. Resist. Blows/0.3m • 50 mm Dia. Cone						
	STRATA P	ТҮРЕ	NUMBER	°. © © © SECOVERY	N VALUE or RQD	(m)	(m)	0	Water			Piezometer		
GROUND SURFACE	N N		Z	RE	z o	0	71.01	20	40	60	80	Ē		
FILL: Crushed stone		AU	1			0+	71.91					-		
FILL: Brown silty sand, some concrete, brick and mortar, trace crushed stone <u>1.42</u>		ss	2	46	6	1-	70.91							
FILL: Brown silty fine sand, trace boulders		ss	3	83	7	2-	·69.91							
GLACIAL TILL: Grey silty sand, some gravel, cobbles and boulders 3.00 End of Borehole		ss	4	75	27	3-	·68.91					· · · · · · · · · · · · · · · · · · ·		
Practical refusal to augering at 3.00m depth (GWL @ 2.7m depth based on field observations)														
								20 Sł	40 near Stro	60 ength (00		

Undisturbed

△ Remoulded

SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Investigation Proposed Multi-Storey Redevelopment** 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 383 Slater St. & 400 Albert St., Ottawa, Ontario TBM - Top cover of manhole located along east side of Bay Street, just north of FILE NO. DATUM Slate Street. A geodetic elevation of 72.77m was provided to the TBM by Annis, PG3914 O'Sullivan, Vollebekk Ltd. REMARKS HOLE NO. **BH 6-16** BORINGS BY CME 55 Power Auger DATE December 9, 2016 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE o/0 \bigcirc Water Content % **GROUND SURFACE** 80 20 40 60 0+72.19FILL: Crushed stone 0.30 AU 1 FILL: Brown silty sand with crushed stone, some concrete and mortar 0.60 1+71.19 SS 2 21 5 FILL: Brown fine to coarse sand, some gravel SS 3 2 46 - trace coal by 1.5m depth 2 + 70.19₽ SS 4 33 2 - trace mortar by 2.7m depth 2.82 End of Borehole Practical refusal to augering at 2.82m depth (GWL @ 2.3m depth based on field observations)

40

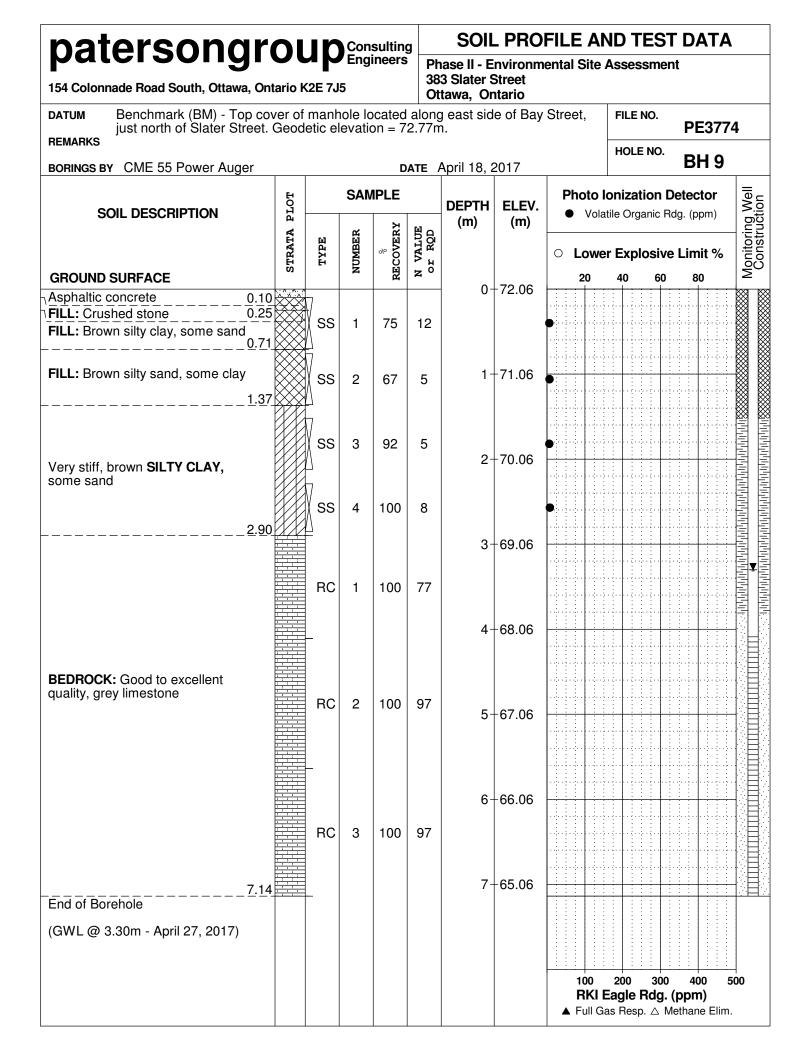
Shear Strength (kPa)

20

Undisturbed

60

80


△ Remoulded

100

SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Investigation Proposed Multi-Storey Redevelopment** 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 383 Slater St. & 400 Albert St., Ottawa, Ontario TBM - Top cover of manhole located along east side of Bay Street, just north of DATUM FILE NO. Slate Street. A geodetic elevation of 72.77m was provided to the TBM by Annis, **PG3914** O'Sullivan, Vollebekk Ltd. REMARKS HOLE NO. BH 7-16 BORINGS BY CME 55 Power Auger DATE December 9, 2016 PLOT SAMPLE Pen. Resist. Blows/0.3m DEPTH ELEV. SOIL DESCRIPTION • 50 mm Dia. Cone meter truction (m) (m) VERY АТА ALUE ROD BER 년 - - - /

	STRA	ΊλΡΙ	NUMB	RECOV	N VAI of R			0	Water	Content %	Piezon Constr
GROUND SURFACE	N		z	RE	z ^o	0	70.10	20) 40	60 80	SPie
FILL: Crushed stone		Š.				0-	-72.12				
0.30	°	S AU	1								
		Š									
FILL: Construction debris (concrete, mortar, tile)		_									
		$V_{}$				1.	-71.12				
		ss	2	36	27	1	/1.12				
<u>1.32</u>	1										
Concrete slab 1.47		-									
FILL: Brown silty fine to medium sand with crushed stone		$V_{\alpha\alpha}$	_	74							
<u>1.9</u> 8		ss	3	71	11	2	-70.12				
Brown CLAYEY SILT with sand 2.21						2	70.12				
GLACIAL TILL: Grey sandy silt, some gravel, cobbles and boulders		∇									
some gravel, coubles and boulders		ss	4	100	50+						
0.97											
2. <u>8</u> 7 End of Borehole		-									
Practical refusal to augering at 2.87m depth											
(BH dry upon completion)											
								20		60 80 ength (kPa)	100
								l ∎ Un	disturbed	A Remoulde	ed

patersongr	01	Jþ	Con Eng	sulting ineers	G	SOIL PR		ND TEST DATA	
154 Colonnade Road South, Ottawa, Or		-			P	oposed Multi-S	orey Redev	elopment , Ottawa, Ontario	
DATUMTBM - Top cover of manh Slate Street. A geodetic eREMARKSO'Sullivan, Vollebekk Ltd.	levatio	cated a on of 7	along '2.77r	east s n was	ide c prov	f Bay Street, jus ded to the TBM	t north of by Annis,	FILE NO. PG3914	
BORINGS BY CME 55 Power Auger				DA	ATE	December 9, 20	16	HOLE NO. BH 8-16	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH ELEV	, Pen. R	esist. Blows/0.3m 0 mm Dia. Cone	on
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r rod	(m) (m)	0 V	Vater Content %	Piezometer Construction
GROUND SURFACE	ST	H	ΝŪ	REC	N N N N		20	40 60 80	Piez
FILL: Crushed stone, trace brick	5	AU	1			- 0+72.08			
FILL: Brown sandy silt with topsoil, some brick, mortar, trace wood and gravel		ss	2	79	11	1-71.08			
Ell L : Prown clayou silt with cond	2	ss	3	88	13	2-70.08			
FILL: Brown clayey silt with sand, trace gravel and organics	7	ss	4	79	8	3-69.08			
Brown CLAYEY SILT, trace sand	5	ss	5	50	10	3-69.06			Ā
GLACIAL TILL: Grey silty sand with gravel, cobbles and boulders		ss	6	71	15	4-68.08			
) , , , , , , , , , , , , , , , , , , ,	ss	7	85	50+				
End of Borehole Practical refusal to augering at 4.90m									
depth (GWL @ 4.8m depth based on field observations)									
							20 Shea ▲ Undis	40 60 80 10 ar Strength (kPa) turbed △ Remoulded	0

patersongr		In	Con	sulting		SOIL	_ PRO	FILE AI		ST DATA	L
154 Colonnade Road South, Ottawa, Or		-		ineers	38	nase II - E 33 Slater \$ ttawa, Or	Street	ental Site	Assessn	nent	
DATUM Benchmark (BM) - Top co just north of Slater Street.	ver of Geod	manh etic el	iole lo evati	ocated on = 72	alon 2.77n	g east sid n.	le of Bay	Street,	FILE NO	PE377	4
REMARKS BORINGS BY CME 55 Power Auger				D/	TE	April 18, 2	2017		HOLE NO	^{D.} BH10	
	н		SAN	/PLE				Photo I	Ionizatio	n Detector	
SOIL DESCRIPTION	А РГОТ			T T	Щ о	DEPTH (m)	ELEV. (m)			c Rdg. (ppm)	ing We
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD				-	ive Limit %	Monitoring Well Construction
GROUND SURFACE Asphaltic concrete 0.10			-	Ř	4	- 0-	71.90	20	40 (50 80	
FILL: Crushed stone 0.30		ss	1	58	7						
FILL: Brown silty sand, trace clay		33	I	50	7						
TILL. Drown sity sand, trace day		∇				1.	-70.90				
1.37	, 💥	ss	2	83	5		10.90				
FILL: Brown sand, trace silt		ss	3	75	6						
2.13	3	Δ				2-	69.90				
Compact, brown SILTY SAND,		∇									
some clay		ss	4	83	10						
Very stiff, grey-brown CLAYEY		⊔ ∝ss	5	100	50+	3-	68.90				
SILT 3.20		∆ 33	5		50+						
		RC	1	89	66						
		110			00	1-	-67.90				
		_				4-	-07.90				
BEDROCK: Fair to excellent		RC	2	100	98						
quality, grey limestone		пС	2		90	5-	66.90				
		_									
						6-	65.90				
			0		100						
		RC	3	100	100						
						7	-64.90				
7.19		_				/-	04.90				
(GWL @ 3.76m - April 27, 2017)											
								100	200 3	00 400	500
								RKI	Eagle Rd	g. (ppm)	
								▲ Full G	as ∺esp. ∠	Methane Elim	•

patersongr		In	Con	sulting		SOII	L PRO	FILE AI	ND T	EST D	ΑΤΑ	
154 Colonnade Road South, Ottawa, Ont	38	hase II - E 33 Slater S ttawa, Or	Street	ental Site	Asses	sment						
DATUM Benchmark (BM) - Top cov just north of Slater Street.	/er of Geode	manh etic el	iole lo evatio	ocated a on = 72	alon 2.77r	g east sid n.	le of Bay	Street,	FILE		E3774	1
REMARKS BORINGS BY CME 55 Power Auger				ПА	TE	April 18, :	2017		HOLE	NO.	H11	
	ы		SAN	APLE				Photo I	onizat	ion Dete	ctor	
SOIL DESCRIPTION	A PLOT				Що	DEPTH (m)	ELEV. (m)			anic Rdg. (ing V
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	° © © © © © ©	N VALUE or RQD			 Lowe 20 	er Explo	osive Lir 60	nit % 80	Monitoring Well
Asphaltic concrete 0.10		7				- 0-	-72.60					
FILL: Crushed stone 0.25 FILL: Brown clayey sand, some silt		ss	1	58	4			•				
0.90		ss	2	83	4	1-	-71.60	•				
		7										մունըներներներներներներներներներների 🛛 🛛
/ery stiff, brown SILTY CLAY		ss	3	100	12	2-	-70.60	•				
		ss	4	100	6			•				
some sand by 2.7m depth						3-	-69.60					
3.66		ss	5	83	7			•				
Very dense, brown SILTY SAND, some clay		ss	6	62	50+	4-	-68.60	•				
4.27_												<u> </u>
BEDROCK: Excellent quality, grey		RC	1	98	93	5-	-67.60					
imestone												
		-				6-	-66.60					
		RC	2	100	98							
6.81 End of Borehole		-										
(GWL @ 4.59m - April 27, 2017)												
										300 4 Rdg. (ppi . △ Metha	n)	↓ 00

patersong	n	Ir	Con	sulting	3	SOIL	_ PRO	FILE AI	ND TES	T DATA	
154 Colonnade Road South, Ottawa, C		-		ineers	3	hase II - E 83 Slater S Ottawa, Or	Street	nental Site	Assessme	ent	
DATUM Benchmark (BM) - Top o just north of Slater Stree	cover of t. Geoc	f manł letic e	nole lo levati	ocated on = 7	alor 2.77	ng east sid m.	le of Bay	v Street,	FILE NO.	PE3774	ł
REMARKS BORINGS BY CME 55 Power Auger				D	ATE	April 18, 2	2017		HOLE NO.	BH12	
<u>_</u>	ОТ		SAN	IPLE		DEPTH	ELEV.	Photo	onization	Detector	Vell
SOIL DESCRIPTION	A PLOT		R	IRY	Be	(m)	(m)	Vola	tile Organic I	Rdg. (ppm)	ring V tructio
	STRATA	ЭДҮТ	NUMBER	% RECOVERY	N VALUE of ROD				er Explosiv		Monitoring Well Construction
GROUND SURFACE	10 🔆 🏠	2		Ř	4		72.30	20	40 60	80	2
	30	ss	1	58	11			•			
-	76										
		ss	2	100	11	1-	-71.30				
Very stiff, brown SILTY CLAY											
- some sand by 2.1m depth		ss	3	100	7			•			
						2-	-70.30				
		ss	4	100	3			•		• • • • • • • • • • • • • • • • • • • •	
2. Dense, brown SILTY SAND, some_						3-	-69.30				
_clay3.2 End of Borehole	20	ss	5	67	50+			•			
Practical refusal to augering at 3.20m depth											
5.20m depth											
								100	200 30		00
									Eagle Rdg		

Soll PROFILE AND TEST DATA Soll PROFILE AND TEST DATA Soll Proposed Development - 383 Slater St. & 400 Albert St. Ottawa, Ontario DATIM

TBM - Top of manhole loc Street. A geodetic elevatio	ated on on of 72	the ea .77m v	ast sid was pi	le of B rovideo	ay Str d by A	eet, just n nnis, O'Sı	orth of SI ullivan, Vo	ater ollebekk	FILE NO.	PG3543	3
MARKS Ltd. for the TBM.				D	ATE .	June 5, 20)15		HOLE NO.	BH 1	
SOIL DESCRIPTION	РІОТ		SAN	IPLE		DEPTH	ELEV.		onization tile Organic F		g Well
GROUND SUBFACE		ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		r Explosiv		Monitoring Well
ROUND SURFACE		~~~~		Ř	4	0-	72.74	20	40 60	80	
	10	§ AU ₿	1								
LL: Brown silty sand, some gravel d cobbles		ss	2	62	3	1-	-71.74			· · · · · · · · · · · · · · · · · · ·	
come brick and concrete by 0.4m	29	ss	3	25	16	2-	-70.74				
		RC	1	94	61	3-	-69.74				
		RC	2	100	86		-68.74			 • · · · · · · · · · · · · · · · · · · ·	
		_									<u> </u>
		RC	3	97	92	5-	-67.74				
	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	_				6-	-66.74				
EDROCK: Grey limestone with ale lenses	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	RC	4	98	95	7-	-65.74				
		RC	5	98	77	8-	-64.74			· · · · · · · · · · · · · · · · · · ·	
		_				9-	-63.74				
		RC	6	97	97	10-	-62.74				
alcite noted from 10.5m to 11.9m	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_				11-	-61.74			· • · · · · · · · · · · · · · · · · · ·	
		RC	7	100	97	12-	60.74				
		RC	8	98	98		-59.74				
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_					-58.74		· · · · · · · · · · · · · · · · · · ·		
		RC	9	100	100						
nd of Borehole	16					15-	-57.74				r: E
WL @ 4.61m-August 17, 2015)											
								100	200 300	······································	00

patersongroup Consulting Engineers SOIL PE

SOIL PROFILE AND TEST DATA

Groundwater Quality Assessment Proposed Development - 383 Slater St. & 400 Albert St. Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM TBM - Top of manhole loca Street. A geodetic elevation	ited or h of 72	the e 2.77m	ast sic was p	le of B rovide	ay Str d by A	eet, just n nnis, O'Si	orth of Sl ullivan, Vo	ater ollebekk	FILE NO.	PG354	3
REMARKS Ltd. for the TBM. BORINGS BY CME 55 Power Auger				0	ATE .	June 5, 2(015		HOLE NO.	BH 2	
SOIL DESCRIPTION	РГОТ		SAN	IPLE	1	DEPTH	ELEV.		Detector Rdg. (ppm)	g Well ction	
	STRATA I	ТҮРЕ	NUMBER	NUMBER % RECOVERY		(m)	(m)	 Lowe 	er Explosiv	ve Limit %	Monitoring Well Construction
GROUND SURFACE	ũ		N N	RE	N OL	0.	-73.72	20	40 60) 80	ž
Asphaltic concrete0.0 FILL: Crushed stone with sand 0.2 FILL: Brown silty sand with crushed stone, trace brick1 5	5	i or the second	1 2	50	19		-72.72				
stone, trace brick 1.57 FILL: Gravel and boulders, some silt and sand 2.44		ss	3	67	45	2-	-71.72				
Grey SILTY CLAY, trace sand 2.8		ss	4	70	10	3.	-70.72				<u>Silili</u>
GLACIAL TILL: Grey-brown silty sand with gravel and cobbles		ss	5	42	12						
<u>4.2</u>	$7 \frac{ \left[\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ \hline & & & &$	∦ ss ⊨	6	72	14	4-	-69.72				
		RC	1	100	97	5-	68.72				ווידן ווידע ווידע ווידע ווידע ווידע ווידע א דערוי ווידע ווידע ווידע ווידע ווידע ווידע ווידע
						6-	67.72				
		RC	2	98	98	7-	-66.72				
BEDROCK: Grey limestone with		RC	3	98	88		-65.72				
shale lenses		RC	4	95	95		-64.72 -63.72				նուն երերեներին երերեներին երերեներին երերեներին։ ԱՄՆԻՆԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵ
		RC	5	100	100	11-	-62.72				
		RC	6	98	98		-61.72				
		RC	7	97	97		-59.72				
1 <u>5.2</u> End of Borehole	$2^{\frac{1}{1} + \frac{1}{1} + \frac$	RC	8	100	100	15-	-58.72				
(GWL @ 5.41m-August 17, 2015)											
									200 30 Eagle Rdg as Resp. △		⊣ 00

SOIL PROFILE AND TEST DATA patersongroup Consulting Engineers **Groundwater Quality Assessment** Proposed Development - 383 Slater St. & 400 Albert St. 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Ottawa, Ontario TBM - Top of manhole located on the east side of Bay Street, just north of Slater FILE NO. DATUM Stre is, O'Sullivan, Vollebekk

PG3543

BH3

HOLE NO.

Τ

REMARKS	Street. A geodetic elevation Ltd. for the TBM.	of 72	2.77m was provided by Annis, O'Sulliva	a
BORINGS BY	CME 55 Power Auger		DATE June 8, 2015	

SOIL DESCRIPTION Note of the sector of the sec	SOIL DESCRIPTION	PLOT		SAN	IPLE	1	DEPTH	ELEV.	Photo Ionization Detector ● Volatile Organic Rdg. (ppm)
GROUND SUH-ACC Image: Construct of the site state of the site			гурЕ	UMBER	% COVERY	VALUE RQD	(m)	(m)	 Lower Explosive Limit %
Auguate conclude 0.10 AU 1 FILL: Crushed some with silty sand 1.55 2 67 4 1-71.12 GLACIAL TILL: Grey silty sand, some gravel, cobbles and boulders 2 SS 3 96 9 2-70.12 GLACIAL TILL: Grey silty sand, some gravel, cobbles and boulders 2 SS 4 71 50+ 3-69.12 RC 1 1 1 5 5 67.67.12 6-66.12 RC 3 97 90 5-67.12 6-66.12 6 RC 5 97 85 8-64.12 9 63.12 BEDROCK: Grey limestone with shale lenses RC 6 100 10-62.12 9 60.12 RC 6 100 100 10-62.12 9 60.12 9 RC 7 100 90 11-61.12 11-61.12 11-61.12 11-61.12 11-61.12 11-61.12 11-61.12 11-61.12 11-61.12 11-61.12 11-61.12 11-61.12 11-61.12 11-61.12 11-61.12 11-61.12 11-61.12 11-61.12<	GROUND SURFACE	<u>5</u>	. .	IN	REC	z ö		70.40	20 40 60 80
Fill:: Brown silty sand 1.65 SS 2 67 4 1-71.12 GLACIAL TILL: Grey silty sand, some gravel, cobbles and boulders SS 3 96 9 2-70.12 RC 1 1 50+ 3-69.12 3-69.12 3-69.12 BEDROCK: Grey limestone with shale lenses RC 2 - 4-66.12 - RC 5 97 85 8-64.12 - - - RC 6 100 100 7-65.12 - - - RC 6 100 100 10-62.12 - - - - RC 6 100 100 10-62.12 -			🕈 AU	1			0+	/2.12	
FILL: BOWI Sity Sand 1.55 1 <td></td> <td></td> <td></td> <td>2</td> <td>67</td> <td>4</td> <td>1-</td> <td>71.12</td> <td></td>				2	67	4	1-	71.12	
GLACIAL TILL: Grey slity sand, some gravel, cobbles and boulders 3 4 71 50+ 3-69.12 3-69.12 RC 2 4 -68.12	FILL: Brown silty sand 1.55								
some gravel, cobbles and boulders RC 1 RC 3 -69.12 AC 2 4 -68.12 4 -68.12 RC 3 97 90 5 -67.12 BEDROCK: Grey limestone with shale lenses RC 5 97 85 8 -64.12 RC 5 97 85 9 -63.12 -63.12 -63.12 RC 6 100 100 10 -62.12 -63.12 -63.12 RC 7 100 90 11 -61.12 -63.12 -63.12 RC 7 100 90 11 -61.12 -63.12 -63.12 RC 7 100 90 11 -61.12 -63.12 -64.12 RC 8 100 100 13 -59.12 -65.12 -67.12 RC 8 100 100 13 -59.12 -65.12 -66.12 RC 9 100 100 14 -58.12 -66.12 -66.12 -66.12 -66			x ss	3	96	9	2-	70.12	
3.68 RC 2 4-68.12 RC 3 97 90 5-67.12 BEDROCK: Grey limestone with shale lenses RC 4 100 100 7-65.12 RC 5 97 85 9-63.12 9-63.12 RC 6 100 100 10-62.12 RC 7 100 90 11-61.12 RC 8 100 100 13-59.12 RC 9 100 100 14-58.12 FRC 9 100 100 15-57.12 Ito 200 300 400 500 RC 9 100 100 15-67.12	GLACIAL TILL: Grey silty sand, some gravel cobbles and boulders				71	50+			
RC 2 4-68.12 RC 3 97 90 5-67.12 6-66.12 6-66.12 6-66.12 RC 4 100 100 7-65.12 BEDROCK: Grey limestone with shale lenses RC 5 97 85 8-64.12 RC 6 100 100 10-62.12 9-63.12 9-63.12 RC 6 100 100 10-62.12 11-61.12 12-60.12 RC 7 100 90 11-61.12 12-60.12 12-60.12 RC 8 100 100 13-59.12 14-58.12 15-57.12 End of Borehole 15.24 7 100 100 14-58.12 15-57.12 (GWL @ 4.50m-August 17, 2015) 100 100 100 100 100 100 100 100			_ RC	1			3-	69.12	
BEDROCK: Grey limestone with shale lenses RC 4 100 100 7 -65.12 RC 5 97 85 8 -64.12	<u>3.68</u>		RC	2				00.40	
RC 8 100 100 13 59.12 RC 9 100 100 13 59.12 RC 9 100 100 14 58.12 End of Borehole (GWL @ 4.50m-August 17, 2015)			_				4-	68.12	
RC 8 100 100 13 - 59.12 RC 9 100 100 13 - 59.12 RC 9 100 100 14 - 58.12 End of Borehole (GWL @ 4.50m-August 17, 2015)			_				5-	67 12	
RC 8 100 100 13 - 59.12 RC 9 100 100 13 - 59.12 RC 9 100 100 14 - 58.12 End of Borehole (GWL @ 4.50m-August 17, 2015)			RC	3	97	90		07.12	
RC 8 100 100 13 - 59.12 RC 9 100 100 13 - 59.12 RC 9 100 100 14 - 58.12 End of Borehole (GWL @ 4.50m-August 17, 2015)			_				6-	66.12	
RC 8 100 100 13 - 59.12 RC 9 100 100 13 - 59.12 RC 9 100 100 14 - 58.12 End of Borehole (GWL @ 4.50m-August 17, 2015)						100			
RC 8 100 100 13 - 59.12 RC 9 100 100 13 - 59.12 RC 9 100 100 14 - 58.12 End of Borehole (GWL @ 4.50m-August 17, 2015)			RC	4	100	100	7-	65.12	
RC 8 100 100 13 - 59.12 RC 9 100 100 13 - 59.12 RC 9 100 100 14 - 58.12 End of Borehole (GWL @ 4.50m-August 17, 2015)	BEDROCK: Grey limestone with		_						
RC 8 100 100 13 - 59.12 RC 9 100 100 13 - 59.12 RC 9 100 100 14 - 58.12 End of Borehole (GWL @ 4.50m-August 17, 2015)	shale lenses		BC	5	97	85	8-	64.12	
RC 8 100 100 13 - 59.12 RC 9 100 100 13 - 59.12 RC 9 100 100 14 - 58.12 End of Borehole (GWL @ 4.50m-August 17, 2015)				Ũ				00.40	
RC 8 100 100 13 - 59.12 RC 9 100 100 13 - 59.12 RC 9 100 100 14 - 58.12 End of Borehole (GWL @ 4.50m-August 17, 2015)			-				9-	63.12	
RC 8 100 100 13 - 59.12 RC 9 100 100 13 - 59.12 RC 9 100 100 14 - 58.12 End of Borehole (GWL @ 4.50m-August 17, 2015)			RC	6	100	100	10-	62 12	
RC 8 100 100 13 - 59.12 RC 9 100 100 13 - 59.12 RC 9 100 100 14 - 58.12 End of Borehole (GWL @ 4.50m-August 17, 2015)							10	02.12	
RC 8 100 100 13 - 59.12 RC 9 100 100 13 - 59.12 RC 9 100 100 14 - 58.12 End of Borehole (GWL @ 4.50m-August 17, 2015)							11-	61.12	
RC 8 100 100 13 - 59.12 RC 9 100 100 14 - 58.12 Ind of Borehole Ind of Borehole Ind of Borehole Ind of Borehole (GWL @ 4.50m-August 17, 2015) Image: State of the state of th			RC	7	100	90			
RC 9 100 100 14-58.12 14-58.12 15-24 End of Borehole (GWL @ 4.50m-August 17, 2015) I I I I I I I I I I I I I I I I I I I			_				12-	60.12	
RC 9 100 100 14-58.12 14-58.12 15-24 End of Borehole (GWL @ 4.50m-August 17, 2015) I I I I I I I I I I I I I I I I I I I			PC	0	100	100			
Indext PRC 9 100 100 15-57.12 Ind of Borehole Indext Provide the second		$ \begin{array}{ccccccccccccccccccccccccccccccccc$		0		100	13-	59.12	
Indext PRC 9 100 100 15-57.12 Ind of Borehole Indext Provide the second			-				14	EQ 10	
15.24 15-57.12 End of Borehole 15-57.12 (GWL @ 4.50m-August 17, 2015) 100 200 300 400 500 RKI Eagle Rdg. (ppm)		$ \frac{1}{1} \frac$	RC	9	100	100	14	50.12	
End of Borehole (GWL @ 4.50m-August 17, 2015) 100 200 300 400 500 RKI Eagle Rdg. (ppm)	15.24						15-	57.12	
100 200 300 400 500 RKI Eagle Rdg. (ppm)	End of Borehole	· · · ·	-						
100 200 300 400 500 RKI Eagle Rdg. (ppm)	(GWL @ 4.50m-August 17, 2015)								
RKI Eagle Rdg. (ppm)									
RKI Eagle Rdg. (ppm)									
▲ Full Gas Resp. △ Methane Elim.									RKI Eagle Rdg. (ppm)
									▲ Full Gas Resp. △ Methane Elim.

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value
Very Soft	<12	<2
Soft	12-25	2-4
Firm	25-50	4-8
Stiff	50-100	8-15
Very Stiff	100-200	15-30
Hard	>200	>30

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard
		Penetration Test (SPT))

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

MC% LL PL PI	- - -	Natural moisture content or water content of sample, % Liquid Limit, % (water content above which soil behaves as a liquid) Plastic limit, % (water content above which soil behaves plastically) Plasticity index, % (difference between LL and PL)
Dxx	-	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size
D10	-	Grain size at which 10% of the soil is finer (effective grain size)
D60	-	Grain size at which 60% of the soil is finer
Сс	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$
Cu	-	Uniformity coefficient = D60 / D10
Cc and	Cu are	used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Cc	-	Compression index (in effect at pressures above p'_c)
OC Ratio)	Overconsolidaton ratio = p'_c / p'_o
Void Rat	io	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill Δ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

MONITORING WELL AND PIEZOMETER CONSTRUCTION

Γ				Clier	nt :											BORE	101		ΞΙ	RI	ΞF	0	R	Т
	L				BF	ROCC	OLIN	-	COI nc.	NS'	TR	UCTIC	ON			File n°: Borehole n°: Date:					В	014 H-0 2-0)1-	12
Р	roje	ct: P	hase II Environmental	Site Investi	gati	on and	Geote	chn	ical	Inv	estiç	gation			Coo	ordinates (m):	No	rth ast				184 442	· ·	· /
L	ocat	tion: 4(00 Albert street, Ottawa	a, ON											Rod	E rock: 4,27 r	levati	on				98,9		(Z)
s	am	ple cor	dition							Org	gano	leptic s		exan	nina	tion:						1	,24	m
E		/ Inta	ct Remoulded	Lo	ost		Co	re								on-existent(N); Dissemi ent(N); Light(L); Mediu								
S S		ple typ Split Sp		Tests L Consist	ency	Limits		ом	Ora	anic M	Natter	(%)				Water Le	رما							
Т	М	Thin wa	II Tube	W _L Liquid I	_imit (%)		к	Perr	neabi	ility (c	m/s)				N Std Pene	ration t					,	_	
P R		Piston ⁻ Rock co		W _P Plastic I _P Plastici		. ,		UW A			ght (kl n (l/m	N/m³) iin. m)				N _c Dyn. Pen σ' _P Preconso						nm)	•	
A		Auger Bulk sa	mole	I _L Liquidit W Natural		ex er Content		U RQD				ressive stre esignation	-	(MPa)	SCI Soil Corro	sivity I	nde	х			×	4	
Т	U	Transpa	arent tube	GS Grain S	ize Aı	nalysis	. ,	CA	Che	mical	Analy	ysis	(,-)			Undrained she		-	h	41010		aborator		
P F		LVM Me Frozen	ega-Sampler ground	S Hydrom R Refusa		analysis		PL E _M			ssure meter	(kPa) Modulus (N	MPa)			C _u Undisturb C _{ur} Remoulde	`	'		▲ △				
				VBS Methyle		ue Value ods		e, SP _o				ograde reac		,							•			
\vdash			STRATIGRAPH	-				0	209	-	MP			-,		FIELD AND	LAB							
ŧ	ε	m - m			s	EL (m)	D R	ĽE	N		%	E	D	Orga Exa				NA	TUR/ A W	AL W. AND L /p	ATER IMIT W	R CON S (%) V	ITEN VL	л
DEPTH - ft	DEPTH - m	ELEVATION - m DEPTH - m	SOIL OR BEDRO DESCRIPTIO		SYMBOLS	WATER LEVEL / DATE	TYPE AND NUMBER	SUB-SAMPLE	CONDITION	SIZE	RECOVERY	Blows/150mm	or RQD			RESULTS		20	40	60)8	0 10	00 1	1 20
ſ	٥	DEP			SYN	ATEF	TΥΡ NUI	SUB-	CON	S	RECO	lows	"N"	Odor	Visual		UND	RAI		D SHI	EAR : C PE	STRE	NGT	H (kPa) N
		98,90				3						Ш		0	٨i			20	40	60) 8	0 10	00 1	20
1		0,00 98,88 0,03	Asphalt <i>Fill:</i> Gravelly sand, grey	, with lump	/ /		SS-1		\mathbb{X}		43	1-5 5-3	10											
2	LI	98,14 0,76	of clay Clayey and gravelly sand	d with clay	//				$\overline{}$															
4	- 1 -	97,53	lump and concrete fragn		/ // [SS-2		igarproduct		67	2-2 3-4	5											
5		1,37	Clayey and gravelly sand lump and concrete fragm	-	,	⊗ _≈ ⊗	SS-3		\bigtriangledown		48	1-3 5-50 /8 cm	8											
7	-2		moist		/ /	₿-2 2-6-2																		
8	-					а 25 25	SS-4		X		58	2-1 2-3	3			GS								
	-3	_95 <u>,86</u> 	Silt and fine sand, brown		÷7,	35,15						1-3									++++			
11 12					///	×-×	SS-5		igtriangleup		42	1-3 7-5	10											
13	-4	94,64			///	*												\parallel			\square	\mathbb{H}		
14		4,27	Rock : Limestone, black fine-grained, with clay ho																					
16 17	-5						RC-6				96		75			U= 100 MPa								
18																								
19	-6																							
21	F I				H	Ļ	RC-7				95		88											
22	-7																							
24	- 1	91,66 7,24	End of borehole						-															
25 26	- - -8																							
27	-																							
28 29	「																							
R	ema	arks:			•				•	•											للللك			
						-																		
-			be: Diamond				g equip									0010 07 11	Det							
L	repa	ared by	S. Séguin, tech.			Appro	oved by	:Т.	Lar	npro	on					2012-07-11	Page		1	I	0	1	1	

R.F. X:Style_LVM!LogLog_Forage_LVM_AN.sty- Printed : 2012-07-11 10h

Vertical Scale = 1 : 75

Γ				Clier	nt :											BORE	HOL	EF	RE	PC)R	Т
			VM		BF	ROCC	OLIN		COI nc.	NS	TRI	UCTIC	ON			File n°: Borehole n°:				001 BH-		
																Date:				012-		
P	roje	ct: P	hase II Environmental	Site Investi	gati	on and	Geote	chn	ical	Inv	estig	ation			Coo	rdinates (m):	North Eas			8314 4446		` '
L	ocat	ion: 4 (00 Albert street, Ottawa	a, ON											Red		Elevatior m End		hth.		, 13 6,33	
s	am	ole cor	ndition							Orç	jano	leptic s		exar	nina	tion:					0,00	
P		/ Inta	ct Remoulded	Lo	ost		Co	re								on-existent(N); Dissem ent(N); Light(L); Medi	().			'		
s	am	ole typ	e	Tests																		
S T	S M	Split Sp Thin wa		L Consist				0.М. К			Matter ility (ci	. ,				 Water Le N Std Pene 	evel tration tes	t (blov	vs/30() Jmm)		
P		Piston -		W _P Plastic	Limit	(%)		uw	Unit	Weig	ght (kN	N/m ³)				N _c Dyn. Pen	etration te	st (blo	ows/30	00mm)	•	
R		Rock co Auger	ore	I _P Plastici I _L Liquidit				A U			on (I/m Compr	in. m) ressive stre	ength	(MPa)	· •	olidation P osivity Ind		e (kPa	a)		
	IA	Bulk sa		W Natural		r Content	. ,	RQD				esignation	(%)			Undrained she	ar strong	th		> abora	or A	
T P	U W		arent tube ega-Sampler	GS Grain S S Hydrom				CA P _L			Analy ssure						ped (kPa)		¢i ^{el©}	_30 ^{0.}		
F	G	Frozen	ground	R Refusal		10 \/- ¹		Е _м				Modulus (I		MD 1		C _{UR} Remould	ed (kPa)		Δ			
				VBS Methyle WR Weight		ue Value ods		E, SP _o				grade read tential (mr										
			STRATIGRAPH	Y		E)		1		SA	MPL	ES				FIELD AND						
ŧ	E	Е Е			s		۵~	Щ	z		%	E	Q	Org	ano. am		N	ATURA Al Wp	L WAT	TER CC AITS (% W	WL	л
DEPTH - ft	DEPTH - m	ELEVATION - DEPTH - m	SOIL OR BEDRO DESCRIPTIO		SYMBOLS	WATER LEVEL / DATE	TYPE AND NUMBER	SUB-SAMPLE	CONDITION	SIZE	RECOVERY	Blows/150mm	or RQD			RESULTS	20	40	60	● 80	- 100 ·	120
Ē	ō	-EVATIO DEPTH -			SYN		IVN		CON	S	RECO	/smo	"N"	Odor	Visual		UNDRA	INDED	SHEA	AR STR PENETI	ENGT	H (kPa)
		표 99,13				Ň		^o				B		õ	Vis					80 ·		
	-	0,00 99,08	Asphalt <i>Fill:</i> Sandy gravel with s	como cilt			SS-1		\bigtriangledown		33	2-3 7-2	10							T		
2		0,05 98,37	grey-black, moist		, ,				\square			7-2	10									
3	1	0,76	Fine sand with some silt dry	, beige,	ý.,		SS-2		\mathbb{N}]	62	3-2 3-4	5			GS		+++				
5					//				\vdash	2												
6	-2				//		SS-3		Х		67	2-2 4-3	6									
8		96,84 2,29	Sandy silt with traces of	•	77							4-6										
9		96,08	grey, saturated, with trac oxydation	ce of	///		SS-4		igtriangleup		58	4-50 /3 cm										
10	-3	3,05	Rock : Limestone, black fine-grained, with clay he				SS-5				0	50	R									
12	-		into granou, marolay n	5112.011			CR-6				100		89									
13	4																					
15	- 1																					
16 17	-5						CR-7				98		83					+++				
18																						
19	- 6						CR-8				100		100									
20		92,80 6,33	End of borehole				0.110															
22	-																					
23	-7 -																					
25	F																					
26 27	8																					
28	- 1																					
29		arkar																				
	ema	arks:																				
	orol		e. Diamond			Rorin		mo	nt· 🗸		-75											
																2012-07-11	Page:	1		of	- 1	
	Borehole type: Diamond Boring equipment: CME-75 Prepared by: S. Séguin, tech. Approved by: T. Lampron 2012-07-11 Page: 1 of 1																					

R.F. X:Style_LVM!LogLog_Forage_LVM_AN.sty- Printed : 2012-07-11 10h

Vertical Scale = 1 : 75

Ŀ				C	Client	:											BOREH	0	L	Ξ	R	Eľ	Р()F	≀T
			V M		I	BF	ROCC	OLIN		COI nc.	۷S	TR	UCTIC	N			File n°: Borehole n°: Date:					E	BH-	04	6-1 -12 -12
P	roje	ct: P	hase II Environmental	Site Inv	estig	atio	on and	Geote	chn	ical	Inv	estiç	gation			Coo	ordinates (m):	No	rth ast					-	(Y) (X)
Lo	ocat	tion: 4(00 Albert street, Ottawa	a, ON												Pad	Ele rock: 4,85 m	evat	ion				99	,61	(Z) 6 m
S	amp	ple cor	dition								Orç	gano	leptic s		exan	nina	tion:							0,0	0 III
E	//	/ Inta	ct Remoulded		Los	t		Co	re								on-existent(N); Dissemina ent(N); Light(L); Medium					• •			
S	-	ple typ Split Sp		Tests	onsister	nev I	imits		ом	Ora	anic I	Matter	(%)				Water Leve	J							
т	N	Thin wa	II Tube	W _L Lic	quid Lin	nit (S	%)		к	Perr	neab	ility (c	m/s)				N Std Penetra	tion							
PS R(Piston Rock co			astic Liı asticity				UW A			ght (kN on (l/m					N _c Dyn. Penet σ' _P Preconsolic							•	
AS M		Auger Bulk sa	mole	-	quidity l atural W		x r Content		U RQD				essive streesignation	•	(MPa)	SCI Soil Corros	ivity I	nde	x				A	
т	J	Transpa	arent tube	GS Gr	rain Siz	e Ar	nalysis	()	CA	Che	mical	Analy	vsis	(,-)			Undrained shear		-	h	4'el	>	200res	\$°.	
P\ FC		LVM Me Frozen	ega-Sampler ground		ydromei efusal	ter a	inalysis		PL E _M			ssure meter	(kPa) Modulus (MPa)			C _U Undisturbed C _{UR} Remoulded		,		▲ △				
				VBS Me	ethylen /eight o				E, SP _o				grade read	,	,										
			STRATIGRAPH						0	9	-	MPI			- /		FIELD AND L	.AB							
ŧ	ε	m - NC - m	SOIL OR BEDRO			S,	(m) EL (m)	~ ۳	LE	N		۲ %	Ē	Q	Orga Ex				NĀ	TUR	AL V AND Vp		ER CO TS (%	WL	INT
DEPTH - ft	DEPTH - m	ELEVATION - m DEPTH - m	DESCRIPTIO			SYMBOLS	WATER LEVEL / DATE	TYPE AND NUMBER	SUB-SAMPLE	CONDITION	SIZE	RECOVERY	Blows/150mm	or RQD			RESULTS		20	40	6	 0;	80	- 100	120
		LEVATIC				SYN	ATEF	TYP NUI	SUB-	CON	S	RECO	lows	"N"	Odor	Visual		UNE	ORAI OR	NDE { DY	D SH	IEAR	I STR	ENG RATI	TH (kPa ION
		99,61					8						ш		0	Vi									120
1- 2- 3-	- - - 1	0,00 99,56 0,05 98,85 0,76	Topsoil <i>Fill:</i> Sandy silt with som grey-black - Silty fine sand, brown, w	.				SS-1 SS-2				87 79	4-7 5-4 4-4	12 8											
4- 5- 6-	-	_98,09 	lump and roots - Silty fine sand, beige, wi lump	th clay	¥			SS-2		\land		83	4-4 4-3 3-3	6											
7- 8- 9-	-	97,33 2,29 96,56	Clay, grey, with roots, m	oist			-28 -28	SS-4				46	2-2 2-3	4											
10- 11- 12- 13-	• • •	3,05	Clay with trace of coarse grey, with roots, moist	e gravel,			,95 m 2012-06-28	SS-5		X		42	2-3 8-12	11											
14- 15- 16-	-5	_95,04 	Sandy and silty gravel, g Rock: Limestone, black		; (in 194,	SS-6		\ge		60	25-50	R											
17- 18- 19- 20-	-	4,85	fine-grained, with clay he	orizon				RC-7				87		66											
20 21- 22- 23-	-							RC-8				100		83											
24- 25- 26-	-							RC-9				98		90			U = 107 MPa								
27- 28- 29-		90,75						10-9																	
В	oreł		be: Diamond : S. Séguin, tech.					ig equir									2012-07-11 P	age):		1	(of		1

Vertical Scale = 1 : 75

Γ				Cli	ent :											BOREH	IOL	EF	EP	0	RT	
			VM		BF	ROCC	OLIN		COI 1c.	NS	TR	UCTIC	ON			File n°: Borehole n°: Date:		I	B-000 Bl 2012	H-05	5-12	
Р	roje	ct: PI	hase II Environmental	Site Inves	stigati	on and	Geote	chn	ical	Inv	estiç	gation			Coc	ordinates (m):	Nort Eas		49831 4444		• •	
L	ocat	ion: 4(00 Albert street, Ottawa	a, ON											Red		evatio n En	n	ę	99,1	5 (Z) 43 m	
s	amp	ole con	dition							Orç	ganc	oleptic s		exan	nina					0,-	10 m	_
E		Inta	~	1 <u> </u>	Lost		Co	re								tent(N); Light(L); Mediu						_
S		Split Sp		Tests L Cons	sistency	Limits		о.м.	Orga	anic M	Matter	· (%)				Water Lev	el					
TI P		Thin wa Piston 1		- ·	d Limit (tic Limit (к UW			ility (c ght (kl					N Std Peneti N _c Dyn. Pene					•	
R	с	Rock co		I _P Plast	ticity Inde	ex (%)		A	Abso	orptic	on (l/m	nin. m)		(110-)		σ' _P Preconsol	dation F	ressure		,		
A M		Auger Bulk sa	mple	1 - ·	dity Inde ral Wate	er Content		U RQD				ressive stre esignation		(IVIPa	.)	SCI Soil Corro				alory		
T P			arent tube ega-Sampler		n Size Ai ometer a			CA P _L			Analy	ysis (kPa)				Undrained shea C _u Undisturbe	-	yth े	e ⁶ 0 ;2	aboratory		
F	G	Frozen		R Refu	sal			Е _м	Pres	sure	meter	Modulus (M				C _{UR} Remoulde		2		-		
					ght of Ro	ue Value ods		E, SP _o				ograde reac otential (mn		,								
			STRATIGRAPH	Y		(L		1		SA	MP	LES				FIELD AND		IATURAL	WATER	CONT	ENT	
₩. H	ε ÷	m - NC - m	SOIL OR BEDRO	оск	LS	, VEL (PLE	NO		% ۲۶	Ē	RQD	Orga Exa				AN Wp	D LIMITS W	(%) WL	•	
DEPTH - ft	DEPTH - m	ELEVATION DEPTH - n	DESCRIPTIO	N	SYMBOLS	WATER LEVEL / DATE	TYPE AND NUMBER	SUB-SAMPLE	CONDITION	SIZE	RECOVERY	Blows/150mm	þ			RESULTS	20	0 40	60 80	100	120	
		ELEV DE			Š	WATE	Żź	SUE	8		REC	Blow	"N"	Odor	Visual		UNDR	AINDED (DR DYNA)	SHEAR S MIC PEN	TRENO	3TH (ki FION	₽a)
⊢		99,15	✓ Asphalt			-									_		20	9 40	60 80	100) 120	
1	-	99,06 0,09	Fill: Sandy silt with som	e gravel,			SS-1		\boxtimes		49	1-7 9-11	16									
	-1	98,54, 0,61	Gravelly sand with some with trace of oxydation	silt, grey,			SS-2		\mathbb{N}		58	6-13 6-7	19									
4	łł	97,93 1,22	Sand with some silt and gravel, grey-beige, with a		- 78		SS-3		\bigtriangledown		75	6-12	21			VOC: 70ppm						
6		97,32 1, <mark>83</mark>	- black sand, moist Sand with some silt and						$\left(\right)$			9-9										
7 [.] 8	I I	96,71	gravel, grey, moist Silty sand with trace of g		-		SS-4		\square		71	3-4 5-5	9			VOC: 0ppm						
9	-3	2,44	grey, very moist	jravei,			SS-5		Х		58	2-3 4-4	7			VOC: 0ppm						
10 11	- I	95,72			1		SS-6		\boxtimes		40	2-8 50 /8 cm	R									
12 13	- 1	3,43	End of borehole																			
14	I I																					Ì
15																						
1 17																						
18 19	F																					
20	-6																					ſ
21 22	-																					
	7																					
24 25	F																					
26 27	-																					H
28	- 1																					
29 R		arks:																				
``																						
В	oreh	ole typ	e: Auger			Borin	ıg equip	omei	nt: C	ME	-75											
_			S. Séguin, tech.				oved by									2012-07-11	age:	1	of		1	-

R.F. X:IStyle_LVMILogLog_Forage_LVM_AN.sty- Printed : 2012-07-11 10h

Vertical Scale = 1 : 75

				Clier	ıt :											BORE	IOL	E	R	EP	OF	۲۲
			V M		BF	ROCC	OLIN		COI nc.	NS	TR	UCTIC	N			File n°: Borehole n°: Date:				000 ⁻ BH 2012	-06	-12
Р	roje	ct: P	hase II Environmental	Site Investi	gati	on and	Geote	chn	ical	Inv	estiç	gation			Coc	ordinates (m):	Nort Eas			9831 4444		• •
L	ocat	ion: 4(00 Albert street, Ottawa	a, ON											Ded		levatio	n		9	9,26	6 (Z)
s	amp	ole cor	dition							Orç	gano	leptic s		exan	nina	ation:	n En		-		3,1	2 m
E	//	/ Inta	ct Remoulded	Lo	ost		Co	re								on-existent(N); Dissemi ent(N); Light(L); Mediu						
S	-	ble typ Split Sp		Tests L Consist	encv	l imits		ом	Ora	anic N	Matter	(%)				▼ Water Le	vel					
Т	Л	Thin wa	II Tube	W _L Liquid L	.imit (%)		к	Perr	neab	ility (c	m/s)				N Std Pene	ration te					
P: R		Piston T Rock co		W _P Plastic		. ,		UW A			ght (kl on (l/m					N _c Dyn. Pen σ' _P Preconso					n) 🖲	
A		Auger Bulk sa	mple	I _L Liquidit W Natural		ex er Content		U BOD				ressive stre esignation	•	(MPa)	SCI Soil Corro	sivity Ind	dex			A	
Т	J	Transpa	arent tube	GS Grain S	ize Aı	nalysis	. ,	CA	Che	mical	Analy	ysis	(70)			Undrained she			4:1010	and	Natory	
P F		LVM Me Frozen	ega-Sampler ground	S Hydrom R Refusal		analysis		PL E _M			ssure meter	(kPa) Modulus (N	MPa)			C _u Undisturb C _{ur} Remoulde						
				VBS Methyle		ue Value		E, SP _o				ograde reac		,								
\vdash			STRATIGRAPH	Ű				<u> </u>	Jey		MP			-		FIELD AND						
ŧ,	ε	۲ ۲			s	EL (m)	0 ~	Щ	z		%	Ε	٥	Orga Exa			1		RAL W AND L Wp	ATER C .IMITS (W	ONT	ENT
DEPTH - ft	DEPTH - m	ELEVATION - m DEPTH - m	SOIL OR BEDRO DESCRIPTIO		SYMBOLS	WATER LEVEL / DATE	TYPE AND NUMBER	SUB-SAMPLE	CONDITION	SIZE	RECOVERY	Blows/150mm	or RQD			RESULTS	20	04	0 60	●) 80		120
ſ		LEVATIO DEPTH ·			SYN	ATEF	TYP NUI	SUB-	CON	S	RECO	lows	"N"	Odor	Visual		UNDR		ED SHI	EAR ST	RENG	STH (kPa ION
		ш 99,26				>						8		Ō	Vi					80		
1	-	0,00 99,20	Asphalt Fill: Gravelly sand with s	some silt,	y .		SS-1		\mathbb{N}		46	1-7 3-2	10			VOC: 0ppm						
2		0,05 \98,65 <i>]</i> 0,61	_ grey Clayey silt, grey		//		SS-2		\bigtriangledown		83	2-3	7			VOC: 0ppm						
3 4	-1	0,01							\bigotimes			4-7				VOC. oppin						
5- 6-	-	97,43					SS-3		\square	*	87	3-3 4-4	7			VOC: 0ppm						
7	-2	1,83 96,82	Silty sand with trace of g clay, grey, with trace of g		/		SS-4		X		46	4-2 3-3	5									
8 9	- 1	2,44	- very moist Silty sand with some gra	vel, grey,	7		SS-5		\square		71	2-1 4-8	5			VOC: 30ppm						
10 11	- 1	96,21 3,05 96,13	very moist Sand with some silt and	rock /	1		SS-6		\bowtie		100	50 /8 cm	R									+++++
12	-	3,12	fragment, grey End of borehole	/																		
13 14	-4																					+++++
15																						
16 17	5																					+++++
18																						
19 20																						+++++
21-	.																					
22- 23-	-																					
24																						
25- 26-																						
27- 28-																						
29	-																					
R	ema	arks:																				
	arek	nole tur	be: Auger			Rorin	ıg equip	mo	nt· 🗸		-75											
-			: S. Séguin, tech.				bved by									2012-07-11	Page:		1	of		1
Ľ	- 100	y					y										90.		•			·

R.F. X:IStyle_LVMILogLog_Forage_LVM_AN.sty- Printed : 2012-07-11 10h

Vertical Scale = 1 : 75

				Clier	nt :											BORE	IOL	Εŀ	RE	EP	0	R	Г
			V M		BF	ROCC	OLIN		COI nc.	NS	TR	UCTIC	N			File n°: Borehole n°: Date:				000 BH	I-07	7-1	2
Р	roje	ct: P	hase II Environmental	Site Investi	gati	on and	Geote	chn	ical	Inv	estiç	gation			Coo	ordinates (m):	North Eas)831 444	-	`	'
L	ocat	ion: 4(00 Albert street, Ottawa	a, ON											_ .		levatio	n		9	9,5	9 (2	Z)
s	amp	ole cor	dition							Orç	gano	leptic s	oil e				n End	d dep	oth:		2,9	97 I	n
E	//	/ Inta	ct Remoulded	Lo	ost		Co	re								on-existent(N); Dissemi ent(N); Light(L); Mediu							
S	-	ble typ Split Sp		Tests L Consist	onov	Limito		<u>о м</u>	Ora	onio N	Matter	(9/)				Water Lev	(a)						
Т		Thin wa		W _L Liquid I				С.М. К	-		ility (c					N Std Penel		t (blov	vs/30)0mm)		
P R		Piston 1 Rock co		W _P Plastic I _P Plastici		. ,		UW A			ght (kl on (l/m					N _c Dyn. Pene σ' _P Preconso					m) (
A		Auger	male	I _L Liquidit				U	Unia	axial (Compi	ressive stre	-	(MPa)	SCI Soil Corro	sivity Ind	ex					
т		Bulk sa Transpa	arent tube	GS Grain S		er Content nalysis	. ,	CA			Analy	esignation ysis	(%)			Undrained she	ar streng	th	i eld	es.	pratory		
P' F		LVM Me Frozen	ega-Sampler ground	S Hydrom R Refusal		analysis		P _L E _M			ssure meter	(kPa) Modulus (I	MPa)			C _u Undisturb C _{un} Remoulde			À	-			
				VBS Methyle	ene Bl	ue Value		E,	Mod	lulus	of sub	grade read	tion (,		UK	(u)		Δ				
\vdash			STRATIGRAPH	WR Weigh [.] Y	t of Re			SPo	Seg		ion Po	tential (mn	n²/H ٩	C)		FIELD AND	LABO	RAT	OR	Y TF	ST	s	
l #	ε	ε				(m)		щ	7		%			Org			-		- 1 W4		CONT	FNT	
DEPTH - ft	DEPTH - m	ELEVATION - m DEPTH - m	SOIL OR BEDRO DESCRIPTIO		SYMBOLS	WATER LEVEL / DATE	TYPE AND NUMBER	SUB-SAMPLE	CONDITION	SIZE	/ERY	Blows/150mm	r RQD	Ex	am	RESULTS	20	Ī	60	•	-		20
B	В	EVA1 DEPT			SYME	JTER / D	TYPE	UB-S		SI	RECOVERY	1/swc	"N" or	r	lal	RESULIS	UNDRA		SHE	ARST	REN	GTH	(kPa)
						WA		0			"	Bic	•	Odor	Visual			R DYN 40					
	-	99,59 0,00 99,51	Asphalt	/	**		00.1		$\overline{\nabla}$		40	2-5	9										TİT
2		0,08	<i>Fill:</i> Clayey silt with som and trace of gravel, grey		\mathbb{R}		SS-1		$\left \right\rangle$		48	4-3	9										
3	-1 -	0,61	Clayey silt, grey				SS-2		X		83	3-4 5-4	9			VOC: 10ppm				++++			+++
5		07 70					SS-3		\mathbb{N}		87	2-3 5-5	8			VOC: 0ppm							
6	-2	_97,76 	Clayey silt with some sa	nd and			SS-4		\bigtriangledown		67	4-5	11							++++			
8		_97,15 	trace of gravel, grey	avel et			SS-5		\bigotimes		76	6-6 1-50 /30	R			VOC: 0ppm							
9 10		96,62 2,97	trace of rock fragment, g End of borehole) ////////////////////////////////////		000		\sim			cm				V OO. oppin							
11	-	2,51																					
12 13	F 1																						
14																							
15 16	-																						
17	->																						
18 19	F 1																						
20	- 6 -																						
21 22																							
23	-7																						
24 25																							
	-8																						+++
27 28	- 1																						
29																							
	ema	arks:																					
R	oret	nole tvr	be: Auger			Borin	ıg equir	പ്പം	nt· r	:MF	-75												
_			: S. Séguin, tech.				oved by									2012-07-11	Page:	1		of		1	
	-1-6	: ~J	,,,																			•	

R.F. X:IStyle_LVMILogLog_Forage_LVM_AN.sty- Printed : 2012-07-11 10h

Vertical Scale = 1 : 75

EXPLANATION NOTE ON SOUNDING LOGS

The following sounding logs summarize soils and rock geotechnical properties as well as ground water conditions, as collected during field work and/or obtained from laboratory tests. This note explains the different symbols and abbreviations used in these logs.

obtailied ironn aboratory t	C313. 1113 11	ole explains the uncrent symbols and	abbicviations
S	TRATIGRA	PHIC UNITS	
Elevation/Depth:	or to a ben location of geological l	to the geodesic elevation of the soil ch mark of arbitrary elevation, at the the sounding. Depth of the different coundaries as measured from ground n the left, the scale is in meters while	TOP SOIL BACKFILL
		, it is in feet.	0041/51
Description of the	Every geol	ogical formation is detailed.	GRAVEL
stratigraphic units:	soil, defined is given follor relative co defined by Penetration	tion of the different elements of the daccording to the size of the particles, owing the classification hereafter. The mpactness of cohesionless soils is <i>v</i> the "N" index of the Standard Test. The consistency of cohesive need by their shear resistance.	This column during the ge and depth) ar
Classification		Particle size (mm)	Type and nu
Clay Clay and silt (undiffere Sand Gravel Cobble Boulder	ntiated)	< 0.002 < 0.08 0.08 to 5 5 to 80 80 to 300 > 300	Sub-sample
Descriptive termino	logy	Proportion (%)	Condition:
"Traces" (tr.) "Some" (s.) Adjective (ex.: sandy "And" (ex.: sand and g		1 to 10 10 to 20 20 to 35 35 to 50	Size:
Compactness of cohes soils	sionless	Standard Penetration Test index ("N" value), ASTM D-1586 (blows for a 300mm penetration)	"N" index
Very loose		0 to 4	
Loose Compact		4 to 10 10 to 30	
Dense		30 to 50	
Very dense		> 50	
Consistency of cohesi	ve soils	Undrained shear strength (kPa)	
Very soft		< 12	
Soft Firm		12 to 25 25 to 50	
Stiff		50 to 100	
Very stiff Hard		100 to 200 > 200	RQD index:
Plasticity of cohesive	e soils	Liquid limit (%)	
Medium		< 30 30 to 50	
High		> 50	
Sensitivity of cohesiv	e soils	<u>S_t = (C_u/C_{ur})</u>	Results:
Low		S _t < 2	
Medium		$2 < S_t < 4$	
High Extra-sensitive		4 < S _t < 8 8 < S _t < 16	
Quick (sensitive) c	lay	$S_t > 16$	
Classification of a	ock	RQD (%)	Graph:
Classification of r			
Classification of r Very poor quality	/	< 25	
Very poor quality Poor quality	/	< 25 25 to 50	
Very poor quality Poor quality Fair quality	/	25 to 50 50 to 75	
Very poor quality Poor quality		25 to 50	

	SYM	BOLS		
TOP SOIL	SAND		COBBLE	
BACKFILL	SILT		BOULDER	0000
GRAVEL	CLAY		ROCK	

WATER LEVEL

This column shows the ground water level, as measured at a given time during the geotechnical investigation. The details of the installation (type and depth) are also illustrated in this column.

SAMPLES

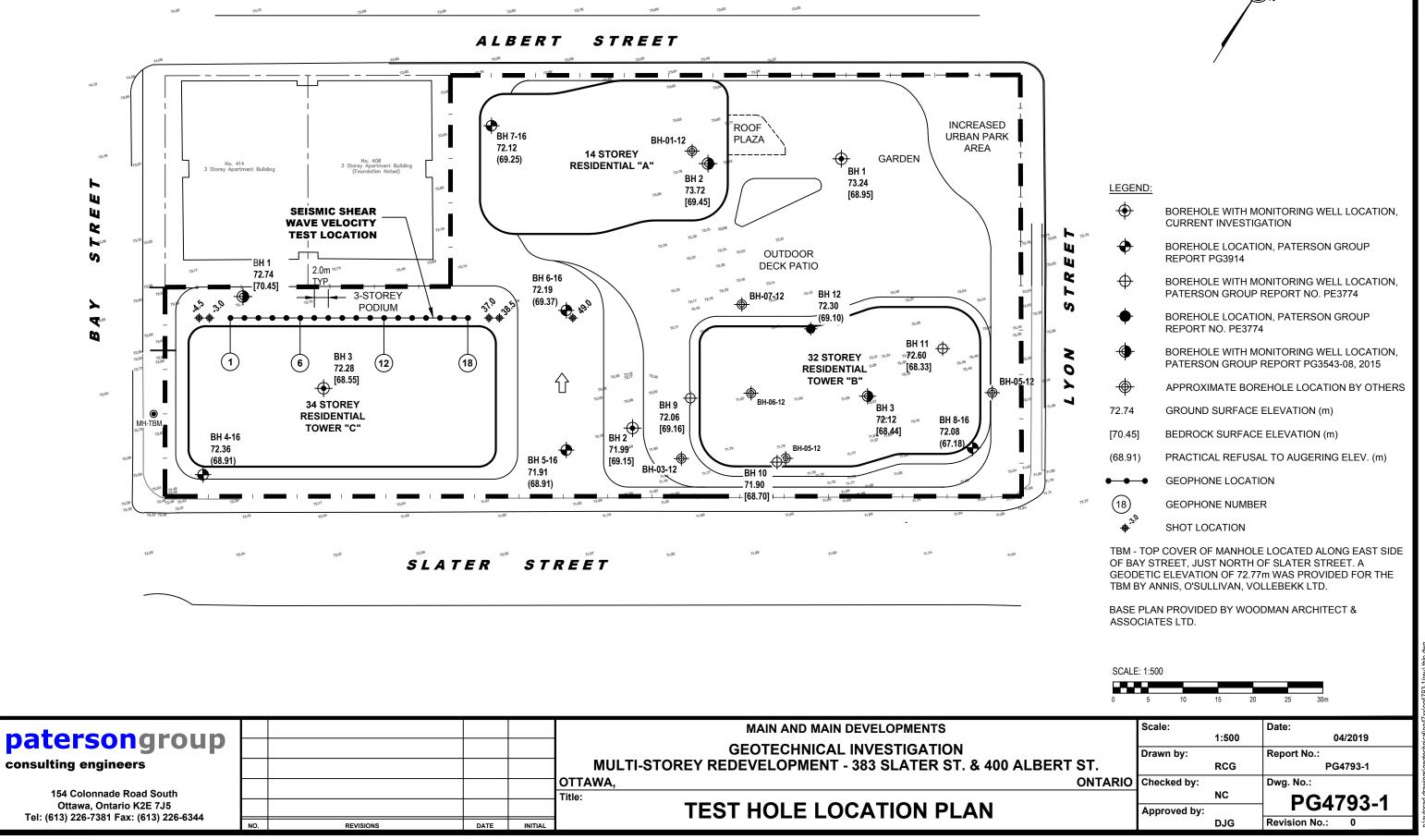
Type and number: Each sample is labelled in accordance with the number of this column and the given notation refers to samples types.

-sample: When a sample contains two or more different stratigraphic units, it is sometimes necessary to separate it and create sub-samples. This column allows for the identification of the latter and the association to *in situ* or laboratory measurements to these sub-samples.

> The position, length and condition of each sample are shown in this column. The symbol shows the condition of the sample, following the legend given on the sounding log.

This column indicates the split spoon sampler size.

The standard penetration index shown in this column is expressed with the letter "N". This index is obtained with the Standard Penetration Test. It corresponds to the number of blows required to drive the last 300mm of the split spoon, using a 622 Newton hammer falling freely from a height of 762mm (ASTM D-1586). For a 610mm long split spoon, the "N" index is obtained by adding the number of blows required for the driving of the 2nd and 3rd 150mm of the split spoon. Refusal (R) indicates a number of blows greater than 100. A set of numbers such as 28-30-50/60mm indicates that the number of blows required to drive the 1st and 2nd 150mm of the split spoon are respectively 28 and 30. Moreover, it indicates that 50 blows were necessary to get a penetration of 60mm, whereupon the test was suspended.


Rock Quality Designation index: This index is defined as the ratio between the total length of all rock cores of 100mm and more in length over the total length of the core run. The RQD index is an indirect measurement of the number of "natural" fractures and of the amount of the alteration in a rock mass.

TESTS

This column shows, for the corresponding depth, the results of tests carried out in the field or in the laboratory (shear strength, dynamic penetration, Atterberg limits with the cone, etc.). For more information, please refer to the legend in the upper part of the sounding log. However, an abbreviation indicating the type of analysis performed is shown next to the sample tested.

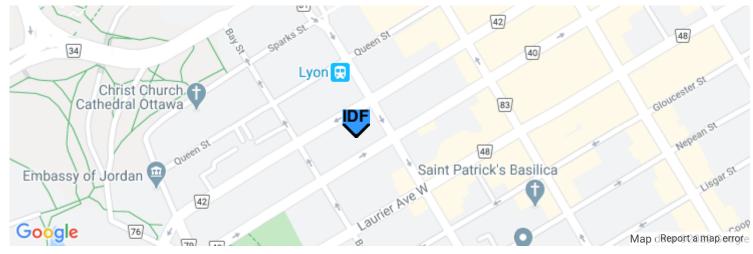
This graph shows the undrained shear strength resistance of cohesive soils, as measured *in situ* or in the laboratory (NQ 2501-200). It is also used to present the Dynamic Cone Penetration Test (NQ 2501-145) results.

Moreover, this graph is used for the representation of the water content and Atterberg limits test results.

¢	BOREHOLE WITH MONITORING WELL LOCATION, CURRENT INVESTIGATION
+	BOREHOLE LOCATION, PATERSON GROUP REPORT PG3914
\oplus	BOREHOLE WITH MONITORING WELL LOCATION, PATERSON GROUP REPORT NO. PE3774
•	BOREHOLE LOCATION, PATERSON GROUP REPORT NO. PE3774
•	BOREHOLE WITH MONITORING WELL LOCATION, PATERSON GROUP REPORT PG3543-08, 2015
\oplus	APPROXIMATE BOREHOLE LOCATION BY OTHERS
72.74	GROUND SURFACE ELEVATION (m)
[70.45]	BEDROCK SURFACE ELEVATION (m)
(68.91)	PRACTICAL REFUSAL TO AUGERING ELEV. (m)
• • •	GEOPHONE LOCATION
(18)	GEOPHONE NUMBER
• *	SHOT LOCATION

APPENDIX 3

MTO IDF Curves

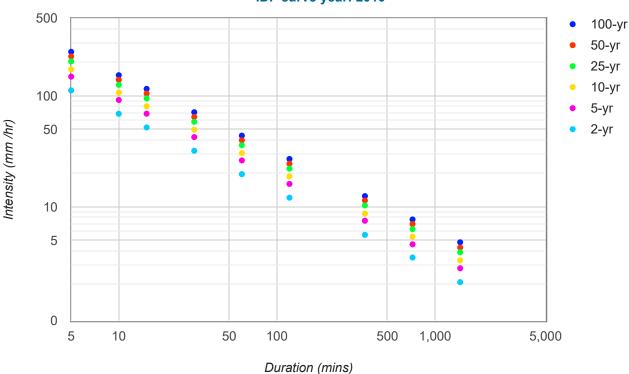

Sample Calculations - Dupuit Forchheimer

Ontario 😵 IDF CURVE LOOKUP

Active coordinate

45° 25' 15" N, 75° 42' 14" W (45.420833,-75.704167)

Retrieved: Thu, 23 Jul 2020 20:36:56 GMT


Location summary

These are the locations in the selection.

IDF Curve: 45° 25' 15" N, 75° 42' 14" W (45.420833,-75.704167)

Results

An IDF curve was found.

Coordinate: 45.420833, -75.704167 IDF curve year: 2010

Coefficient summary

IDF Curve: 45° 25' 15" N, 75° 42' 14" W (45.420833,-75.704167)

Retrieved: Thu, 23 Jul 2020 20:36:56 GMT

Data year: 2010

IDF curve year: 2010

Return period	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr
Α	19.7	26.2	30.5	35.9	39.8	43.8
В	-0.699	-0.699	-0.699	-0.699	-0.699	-0.699

Statistics

Rainfall intensity (mm hr⁻¹)

Duration	5-min	10-min	15-min	30-min	1-hr	2-hr	6-hr	12-hr	24-hr
2-yr	111.9	68.9	51.9	32.0	19.7	12.1	5.6	3.5	2.1
5-yr	148.8	91.7	69.0	42.5	26.2	16.1	7.5	4.6	2.8
10-yr	173.2	106.7	80.4	49.5	30.5	18.8	8.7	5.4	3.3
25-yr	203.9	125.6	94.6	58.3	35.9	22.1	10.3	6.3	3.9
50-yr	226.1	139.3	104.9	64.6	39.8	24.5	11.4	7.0	4.3
100-yr	248.8	153.3	115.4	71.1	43.8	27.0	12.5	7.7	4.8

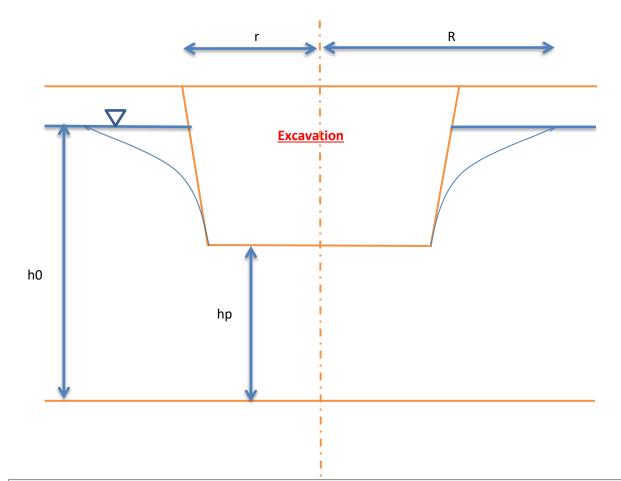
Rainfall depth (mm)

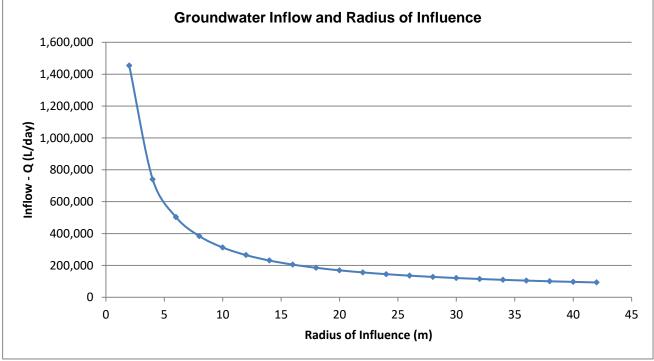
Duration	5-min	10-min	15-min	30-min	1-hr	2-hr	6-hr	12-hr	24-hr
2-yr	9.3	11.5	13.0	16.0	19.7	24.3	33.8	41.6	51.3
5-yr	12.4	15.3	17.3	21.3	26.2	32.3	44.9	55.4	68.2
10-yr	14.4	17.8	20.1	24.8	30.5	37.6	52.3	64.4	79.4
25-yr	17.0	20.9	23.7	29.1	35.9	44.2	61.6	75.8	93.4
50-yr	18.8	23.2	26.2	32.3	39.8	49.0	68.3	84.1	103.6
100-yr	20.7	25.5	28.9	35.6	43.8	54.0	75.1	92.5	114.0

Terms of Use

You agree to the Terms of Use of this site by reviewing, using, or interpreting these data.

Ontario Ministry of Transportation | Terms and Conditions | About Last Modified: September 2016

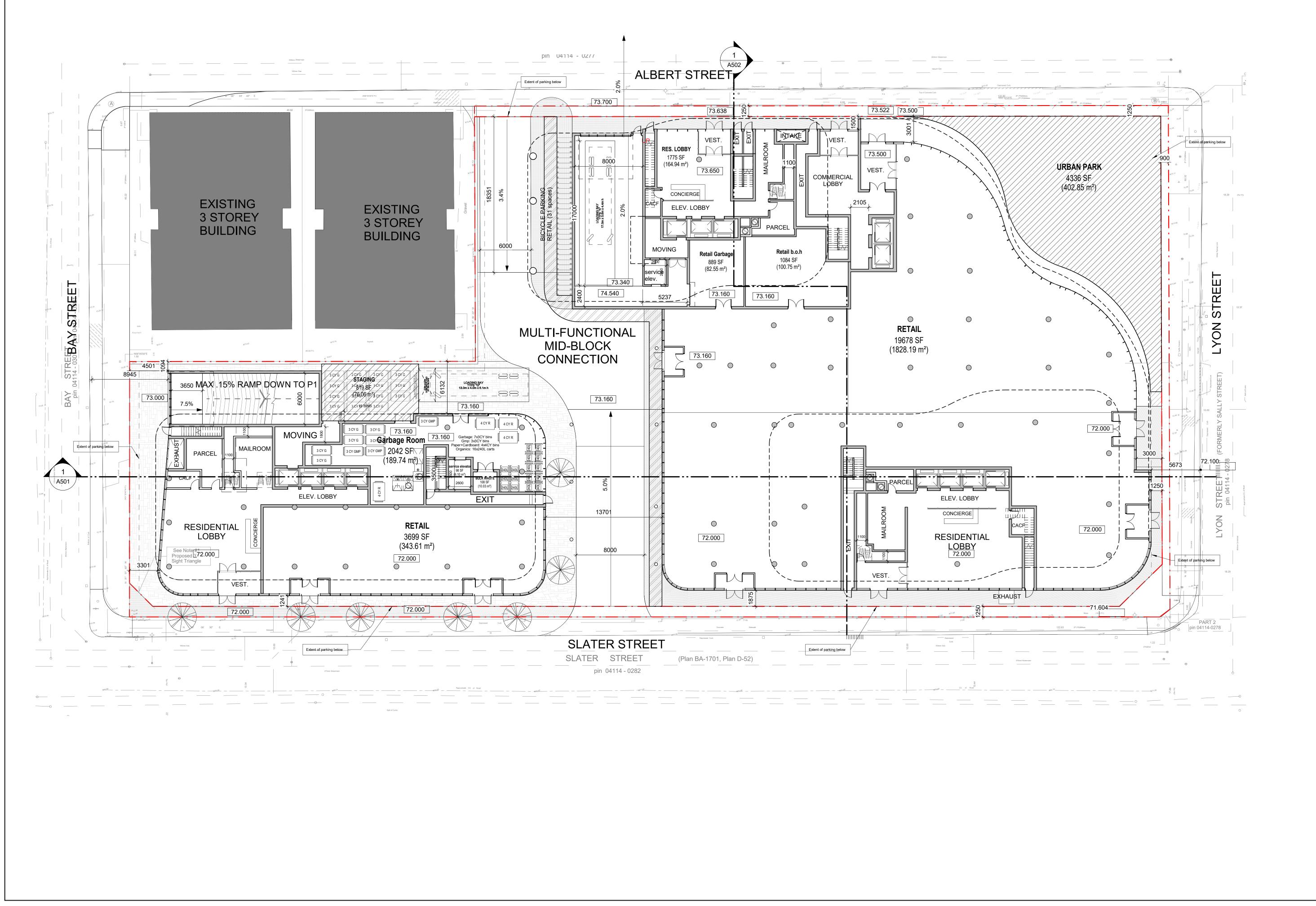

Report: PG4793-2


Estimated Groundwater InflowMain and Main Developments - 400 Albert Street - Building Excavation FootprintDupuit-Forchheimer Equation $Q = \pi K((h_0^2 - h_p^2)/ln(R/r))$

		Equivalent Radius of Excavation =	A+B=Pi*r
K (m/sec) =	1.00E-06		
h0 (m) =	17.5	Excavation Width (A) =	115 m
hp (m) =	10	Excavation Length (B) =	45 m
r (m) =	50.93	Perimeter Length =	320 m
		Equivalent Radius (r) =	50.93 m

	Distance to edge of
R	excavation
52.93	2.00
54.93	4.00
56.93	6.00
58.93	8.00
60.93	10.00
62.93	12.00
64.93	14.00
66.93	16.00
68.93	18.00
70.93	20.00
72.93	22.00
74.93	24.00
76.93	26.00
78.93	28.00
80.93	30.00
82.93	32.00
84.93	34.00
86.93	36.00
88.93	38.00
90.93	40.00
92.93	42.00

Q (m^3/s)	Q (m^3/day)	Q (L/day)
0.0168	1,453	1,453,412
0.0086	740	740,439
0.0058	503	502,672
0.0044	384	383,711
0.0036	312	312,276
0.0031	265	264,605
0.0027	231	230,517
0.0024	205	204,919
0.0021	185	184,982
0.0020	169	169,009
0.0018	156	155,920
0.0017	145	144,995
0.0016	136	135,734
0.0015	128	127,783
0.0014	121	120,879
0.0013	115	114,826
0.0013	109	109,475
0.0012	105	104,709
0.0012	100	100,436
0.0011	97	96,582
0.0011	93	93,088



patersongroup

APPENDIX 4

IBI Group - Plan/Profile Drawings

CLIENT 5015218 Ontario Inc. and Albert & Main Developments Inc.

109 Atlantic Avenue, Toronto, ON, M6K 1X4

COPYRIGHT This drawing has been prepared solely for the intended use, thus any reproduction or distribution for any purpose other than authorized by IBI Group is forbidden. Written dimensions shall have precedence over scaled dimensions. Contractors shall verify and be responsible for all dimensions and conditions on the job, and IBI Group shall be informed of any variations from the dimensions and conditions shown on the drawing. Shop drawings shall be submitted to IBI Group for general conformance before proceeding with fabrication.

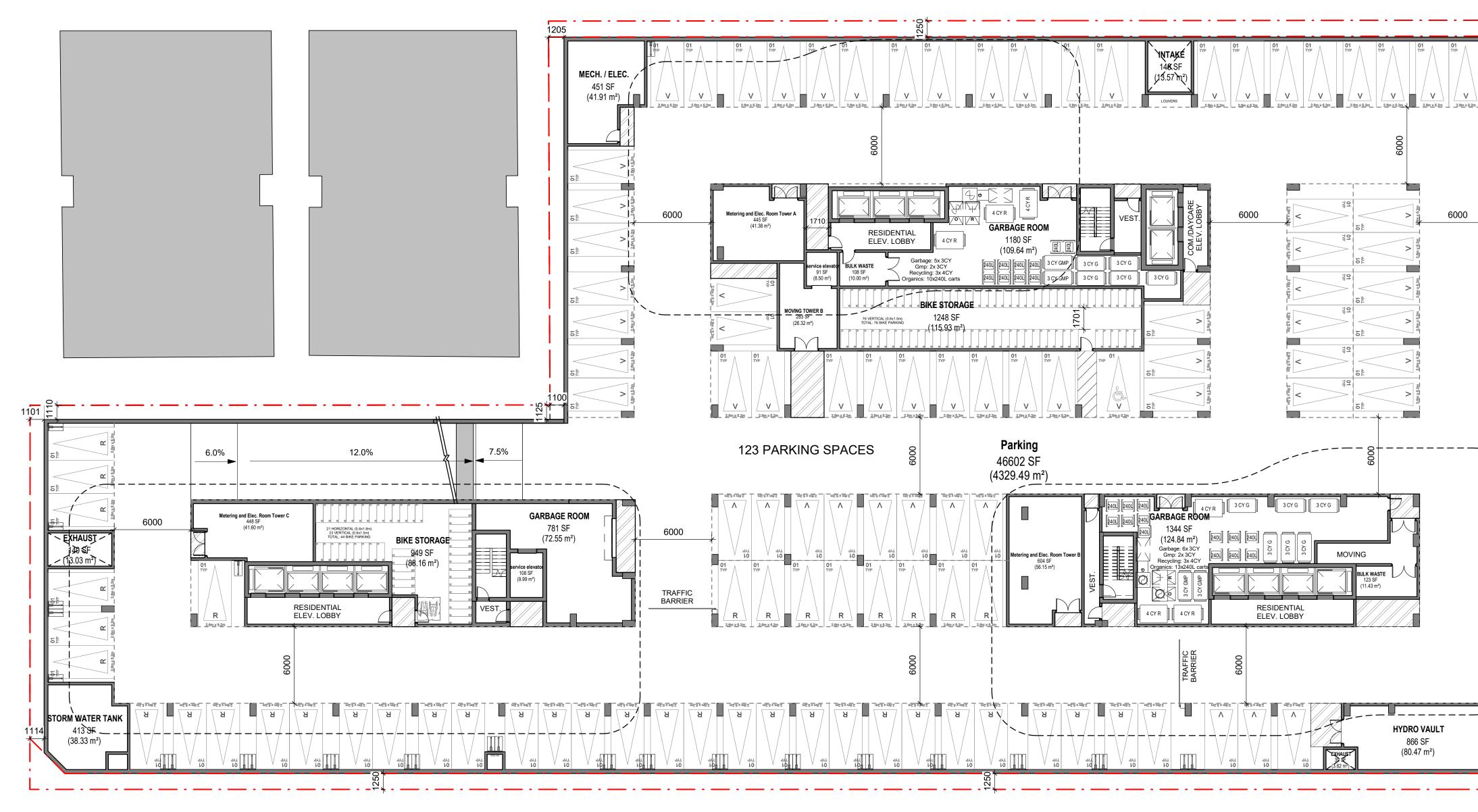
ISSUES

01 ISSUED FOR REZONING 2019-08-29 02 ISSUED FOR REZONING 2020-05-04

SEAL

PRIME CONSULTANT

IBI GROUP 55 St. Clair Avenue West, 7th Floor, Toronto, ON M4V 2Y7, Canada tel 416 596 1930 fax 416 596 0644 ibigroup.com

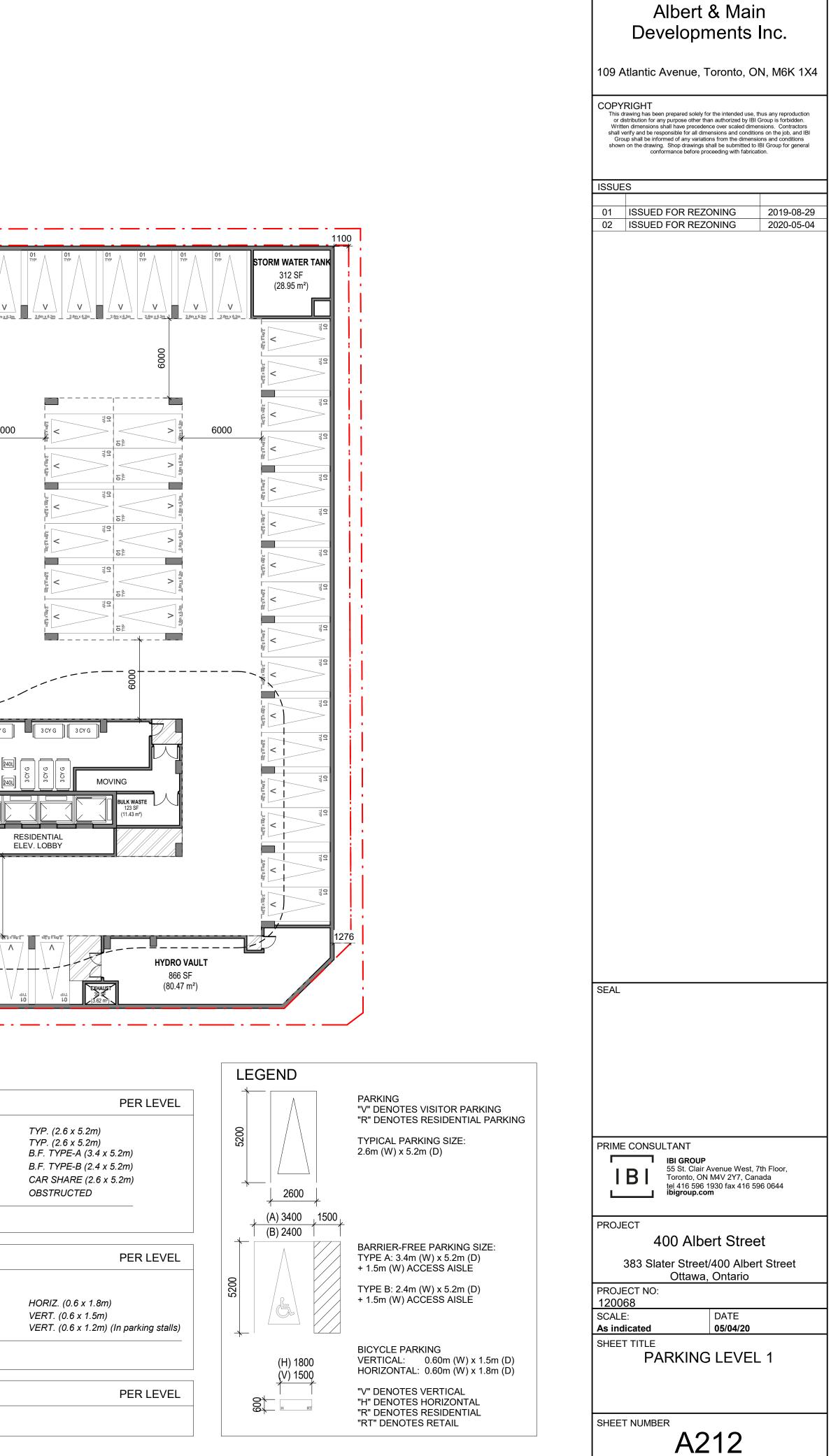

PROJECT 400 Albert Street

383 Slater Street/400 Albert Street Ottawa, Ontario

PROJECT NO: 120068 SCALE: DATE 1:200 07/02/20

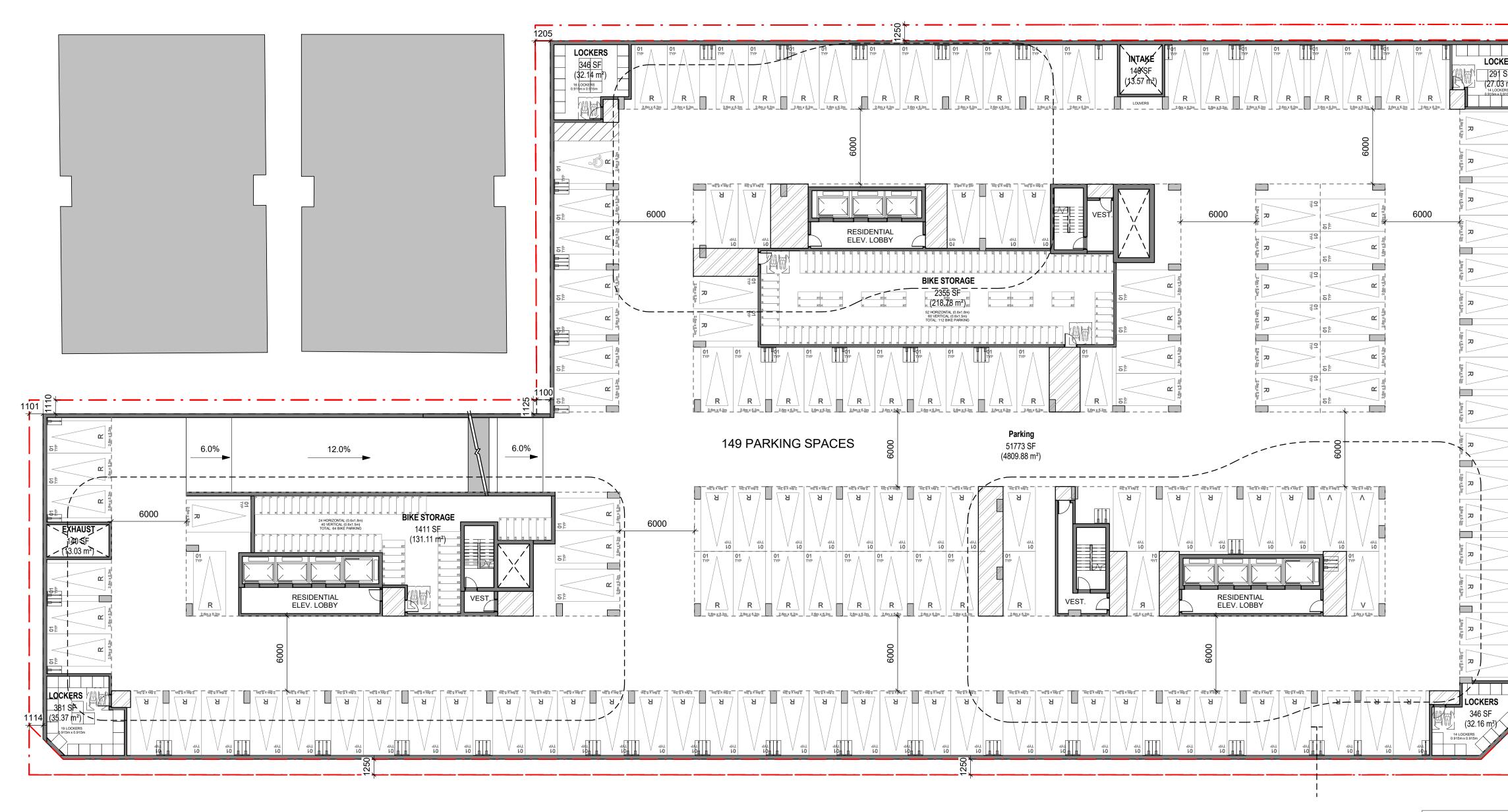
SHEET TITLE GROUND FLOOR PLAN

SHEET NUMBER A201


GAR RESI

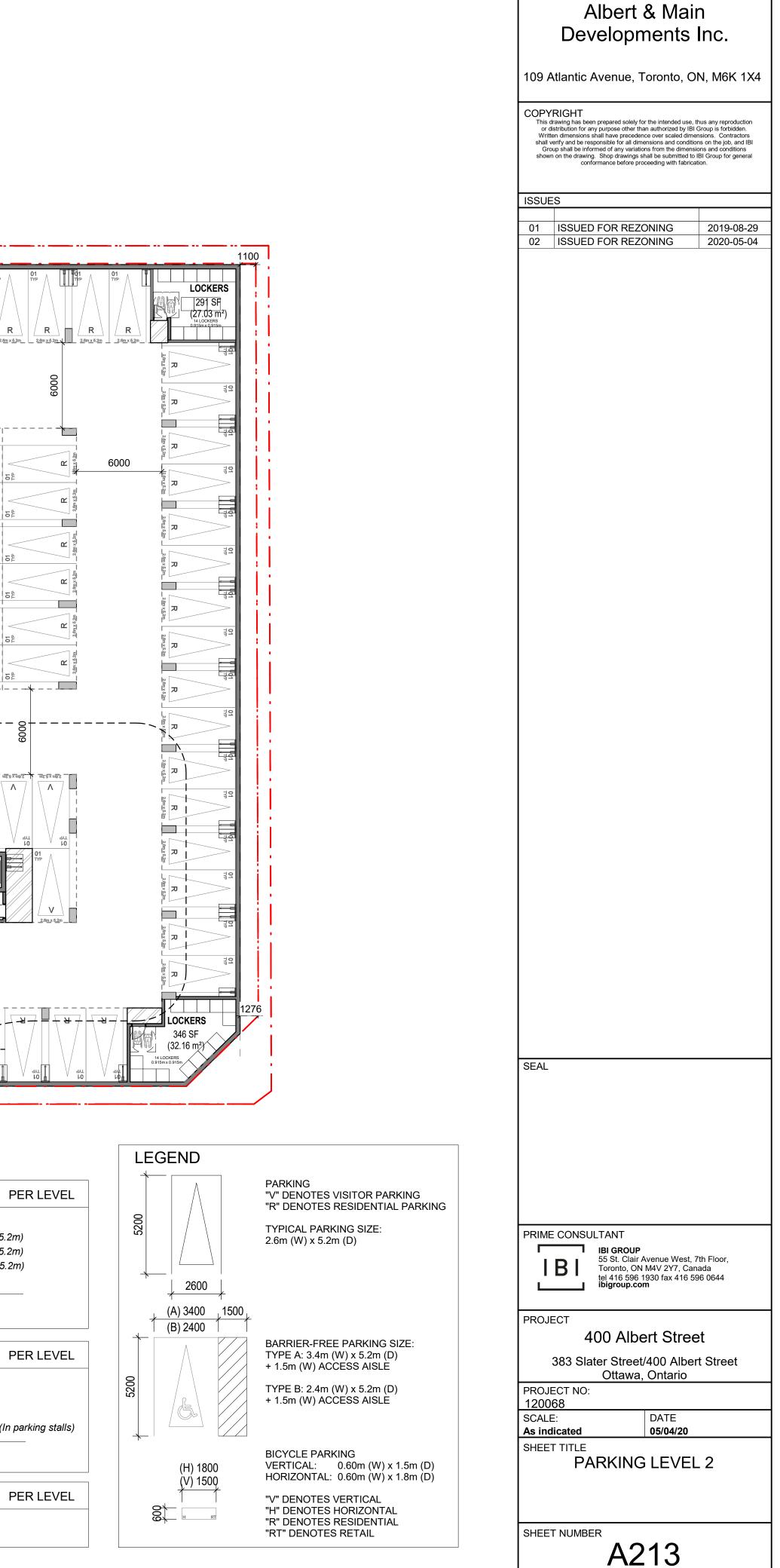
<u>Towe</u> Garba Gmp: Fiber: Orgar

<u>Towe</u> Garba Gmp: Fiber: Orgar

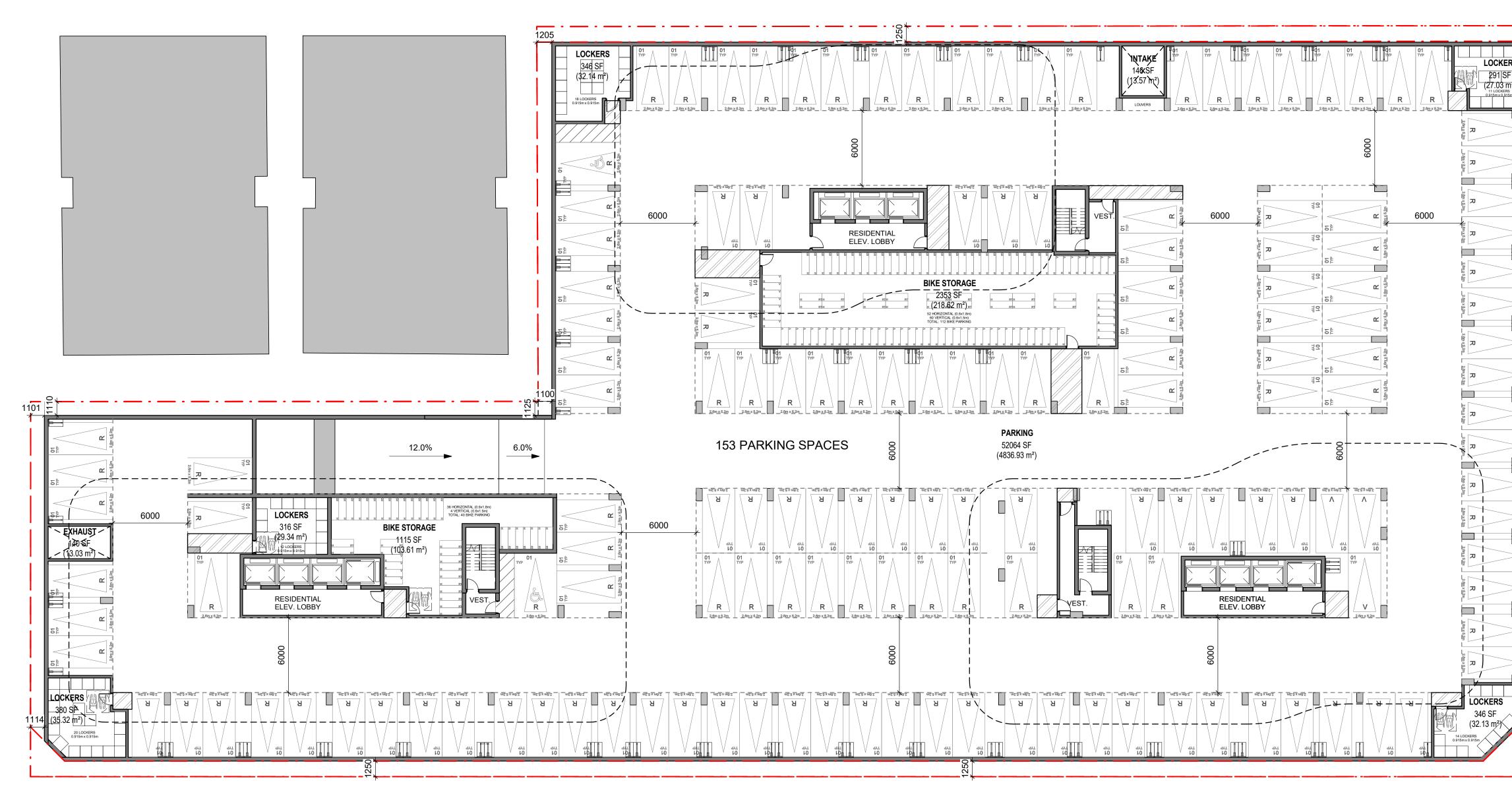

STAT GCA GFA

	PARKING P1		PER LE\	
	(RESIDENTIAL) (VISITOR) (VISITOR)	42 SPACES 81 SPACES 1 SPACES 0 SPACES 0 SPACES 0 SPACES	TYP. (2.6 x 5.2m) TYP. (2.6 x 5.2m) B.F. TYPE-A (3.4 x 5.2m) B.F. TYPE-B (2.4 x 5.2m) CAR SHARE (2.6 x 5.2m) OBSTRUCTED	
	TOTAL PARKING = 12			
	BICYCLE PARKING P1			
	RES. BIKE PARKING = (HORIZONTAL) (VERTICAL) (VERTICAL)	21 SPACES 99 SPACES 34 SPACES	HORIZ. (0.6 x 1.8m) VERT. (0.6 x 1.5m) VERT. (0.6 x 1.2m) (In parking)	
	TOTAL BIKE PARKING=	154 SPACES		
PER LEVEL	LOCKERS P1		PER LE\	
		= 0		
	PER LEVEL	(RESIDENTIAL) (VISITOR) (VISITOR) (VISITOR) TOTAL PARKING = BICYCLE PARKING P1 RES. BIKE PARKING = (HORIZONTAL) (VERTICAL) (VERTICAL) TOTAL BIKE PARKING= PER LEVEL	(RESIDENTIAL) 42 SPACES (VISITOR) 81 SPACES (VISITOR) 1 SPACES (VISITOR) 1 SPACES 0 SPACES 0 SPACES 0 SPACES 154 SPACES 154 SPACES 154 SPACES	

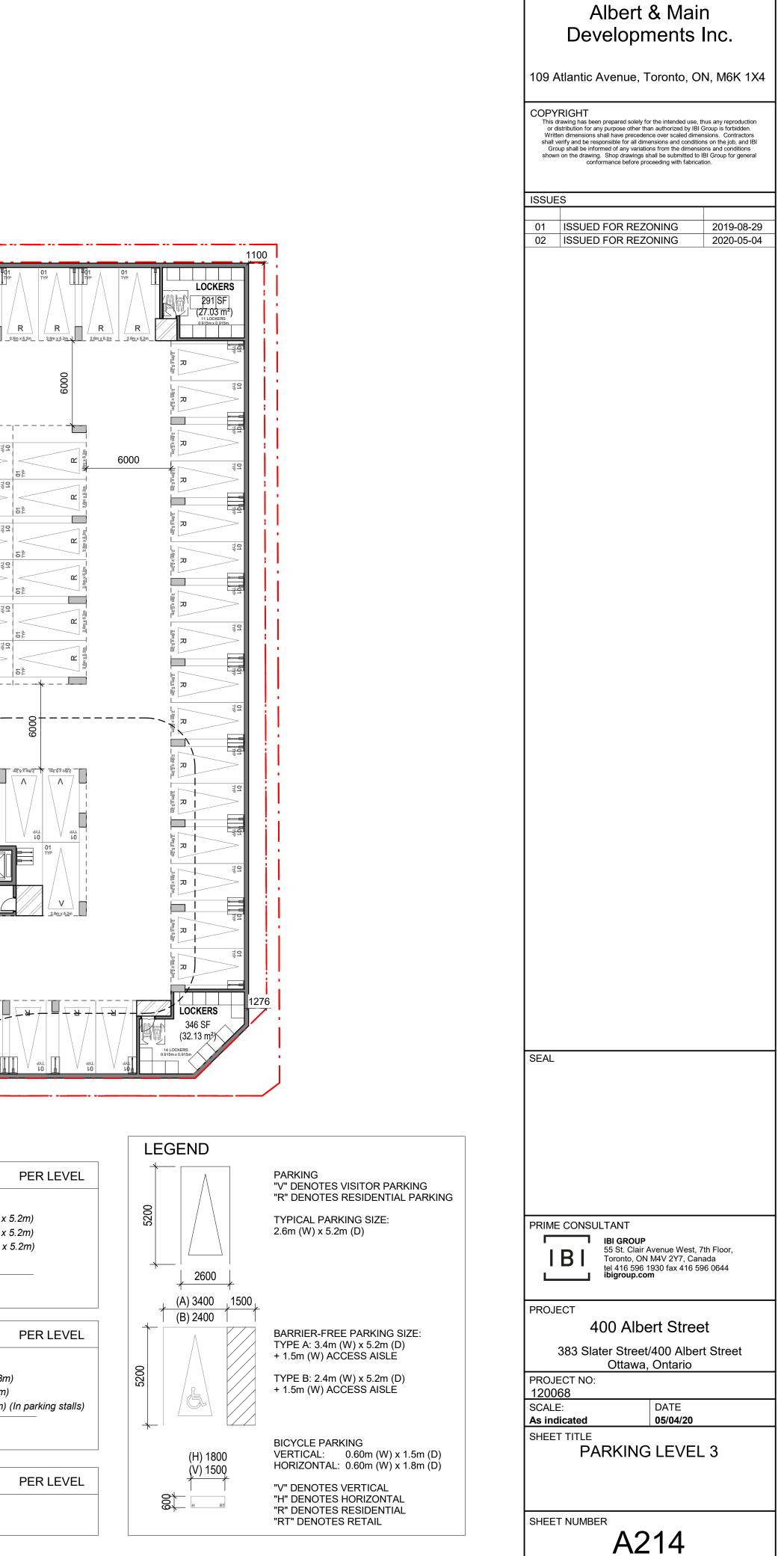
CLIENT


5015218 Ontario Inc. and

PARKING P2		PER LEVE
(RESIDENTIAL)	148 SPACES 1 SPACES 0 SPACES 0 SPACES 0 SPACES	TYP. (2.6 x 5.2m) B.F. TYPE-A (3.4 x 5.2m) B.F. TYPE-B (2.4 x 5.2m) CAR SHARE (2.6 x 5.2m) OBSTRUCTED
TOTAL PARKING =	149 SPACES	
BICYCLE PARKING P2		PER LEVE
RES. BIKE PARKING = (HORIZONTAL) (VERTICAL) (VERTICAL)		HORIZ. (0.6 x 1.8m) VERT. (0.6 x 1.5m) VERT. (0.6 x 1.2m) (In parking stalls
TOTAL BIKE PARKING=	271 SPACES	
LOCKERS P2		PER LEVE
TOTAL RES. LOCKERS @ P2 :	= 63 (0.915 x 0	.915m)


STATISTICS LEVEL P2 $GCA = 5,658 \text{ m}^2 (60,902 \text{ ft}^2)$ $GFA = 0 m^2 (0 ft^2)$

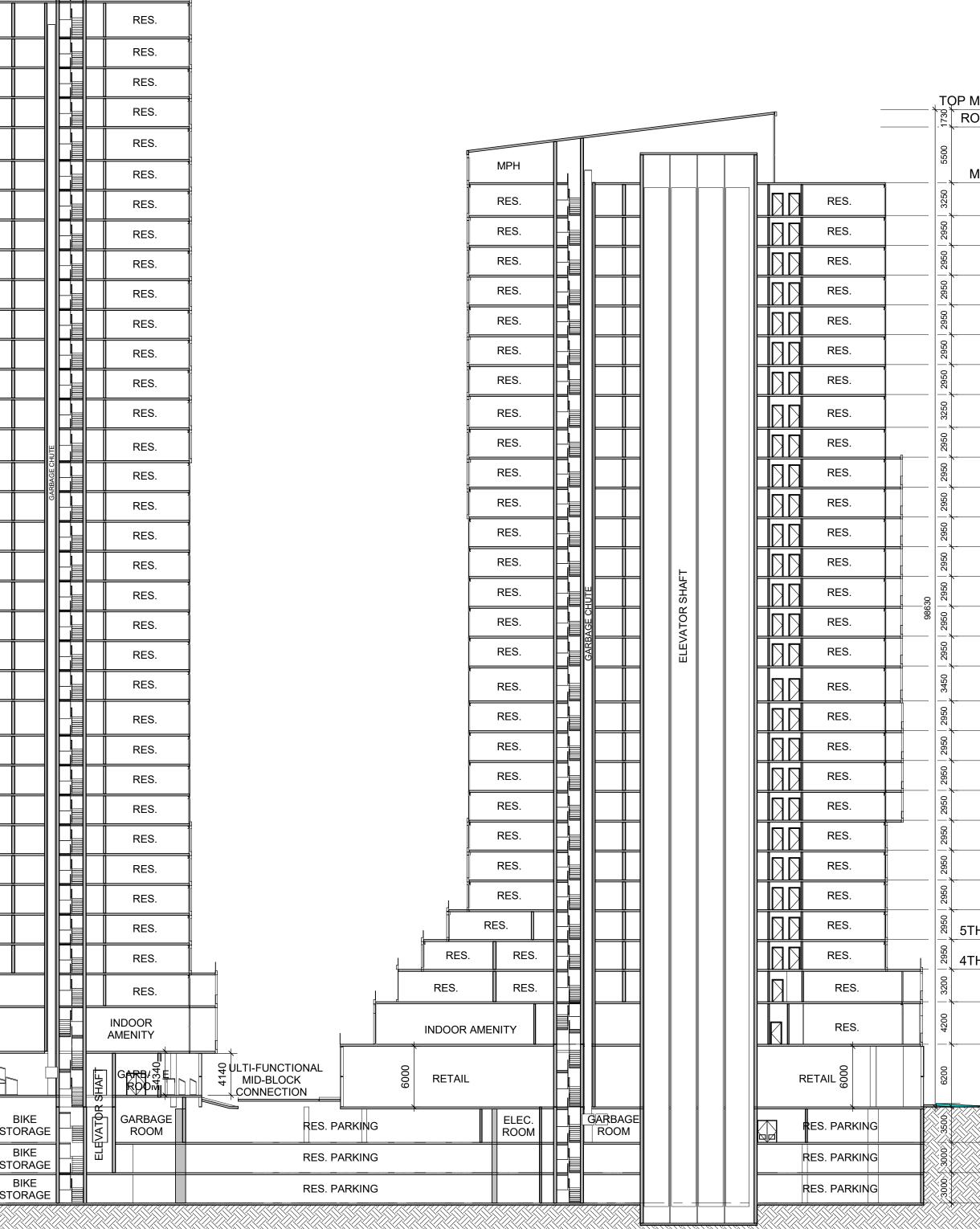
PER LEVEI



CLIENT

5015218 Ontario Inc. and

		PARKING P3		PER
		(RESIDENTIAL)	152 SPACES 2 SPACES 0 SPACES 0 SPACES 0 SPACES	TYP. (2.6 x 5.2m) B.F. TYPE-A (3.4 x 5.2m) B.F. TYPE-B (2.4 x 5.2m) CAR SHARE (2.6 x 5.2m) OBSTRUCTED
		TOTAL PARKING =	154 SPACES	
		BICYCLE PARKING P3		PER
		RES. BIKE PARKING = (HORIZONTAL) (VERTICAL) (VERTICAL)	88 SPACES 64 SPACES 95 SPACES	HORIZ. (0.6 x 1.8m) VERT. (0.6 x 1.5m) VERT. (0.6 x 1.2m) (In parki
		TOTAL BIKE PARKING=	152 SPACES	
ELEVEL P3	PER LEVEL	LOCKERS P3		PER
6 m² (60,902 ft²) (0 ft²)		TOTAL RES. LOCKERS @ P3	= 75 (0.9	015 x 0.915m)



CLIENT

5015218 Ontario Inc. and

186.4 m ROOF_TOWE					
181.35 m MPH_TOWER	2050 J				MPH
177.8 m LEVEL 35	3550	RES.			
174.85 m LEVEL 34	2950	RES.			
171.9 m LEVEL 33	2950	RES.			
168.95 m LEVEL 32	2950	RES.			
165.7 m LEVEL 31	3250	RES.			
162.75 m LEVEL 30	2950	RES.			
159.8 m LEVEL 29	2950	RES.			
156.85 m LEVEL 28	2950	RES.			
153.9 m LEVEL 27	2950	RES.			
150.95 m LEVEL 26	2950	RES.			
148 m LEVEL 25		RES.			
145.05 m LEVEL 24		RES.			
142.1 m LEVEL 23	2950	RES.			
139.15 m LEVEL 22	 	RES.		HAFT	
135.9 m LEVEL 21	3250	RES.		ELEVATOR SHAFT	
132.95 m LEVEL 20	5950	RES.		EVAT	
130 m LEVEL 19	116626 50 2950	RES.			
127.05 m LEVEL 18	56	RES.			
124.1 m LEVEL 17	73950	RES.			
121.15 m LEVEL 16	5950	RES.			
118.2 m LEVEL 15	73950	RES.			
115.25 m LEVEL 14	2950	RES.			
112.3 m LEVEL 13	5950	RES.			
108.85 m LEVEL 12	3450	RES.			
105.9 m LEVEL 11	5950	RES.			
102.95 m LEVEL 10	 	RES.			
100 m LEVEL 09	2950	RES.			
97.05 m LEVEL 08	2950	RES.			
94.1 m LEVEL 07		RES.			
91.15 m LEVEL 06	2950	RES.			
88.2 m LEVEL 05) 2950 	RES.			
85.25 m LEVEL 04		RES.			
82 m LEVEL 03	3250	RES.			
77.5 m LEVEL 02	4500	INDOOR AMENITY			
\frown	5500	RES.			
72 m LEVEL 01					
-3.5 m P1	3200	RES. PARKING	G		BIKE STORA
-6.5 m P2	3000	RES. PARKING	G		BIKE
-9.5 m P3	3000	RES. PARKING	G		BIKE

PLOTTED: 2020-07-20

CLIENT 5015218 Ontario Inc. and Albert & Main Developments Inc.

109 Atlantic Avenue, Toronto, ON, M6K 1X4

COPYRIGHT This drawing has been prepared solely for the intended use, thus any reproduction or distribution for any purpose other than authorized by IBI Group is forbidden. Written dimensions shall have precedence over scaled dimensions. Contractors shall verify and be responsible for all dimensions and conditions on the job, and IBI Group shall be informed of any variations from the dimensions and conditions shown on the drawing. Shop drawings shall be submitted to IBI Group for general conformance before proceeding with fabrication.

ISSUES

	_TOWER B /170.63 m _TOWER B /168.9 m
MPH_	_TOWER B 163.4 m
	LEVEL 29 160.15 m
	LEVEL 28 157.2 m
	LEVEL 27 154.25 m
	LEVEL 26 151.3 m
	LEVEL 25 148.35 m
	LEVEL 24 145.4 m
	LEVEL 23 142.45 m
	LEVEL 22 139.2 m
	LEVEL 21 136.25 m
	LEVEL 20 133.3 m
	LEVEL 19 130.35 m
	LEVEL 18 127.4 m
	LEVEL 17 124.45 m
	LEVEL 16 121.5 m
	LEVEL 15 118.55 m
	LEVEL 14 (115.6 m)
	LEVEL 13 112.15 m
	LEVEL 12 109.2 m
	LEVEL 11 106.25 m
	LEVEL 10 103.3 m
	LEVEL 09 100.35 m
	_LEVEL 08 97.4 m
	LEVEL 07 (94.45 m)
	LEVEL 06 (91.5 m
ГН ТС	DWER A&B (88.55 m)
<u>ГН Т</u> С	DWER A&B (85.6 m)
	LEVEL 03 (82.4 m)
	LEVEL 02 78.2 m
	LEVEL 01 (72 m
	_ <u>P1(-3.5 m</u>

P2 (-6.5 m

P3 (-9.5 m

SEAL	
PRIME CONSULTANT	venue West, 7th Floor,
Toronto, ON	M4V 2Y7, Canada 930 fax 416 596 0644
PROJECT 400 Albe	ert Street
383 Slater Street/ Ottawa,	400 Albert Street
PROJECT NO: 120068 SCALE:	DATE
1:300	DATE 06/10/20
BUILDING CRO	OSS SECTION
	~ 1
A5	01

RES. RES. RES. RES. RES. RES. RES. RES.	_TOWER B (170.63 m) _TOWER B (168.9 m) _TOWER B (163.4 m) LEVEL 29 (160.15 m) LEVEL 28 (157.2 m) LEVEL 27 (154.25 m) LEVEL 26 (151.3 m)
RES. RES. RES. RES.	LEVEL 29 160.15 m LEVEL 28 157.2 m LEVEL 27 154.25 m
RES. RES. RES. RES.	LEVEL 29 160.15 m LEVEL 28 157.2 m LEVEL 27 154.25 m
	LEVEL 28 157.2 m LEVEL 27 154.25 m
	LEVEL 27 154.25 m
	LEVEL 26 (151.3 m)
	LEVEL 25 148.35 m
	LEVEL 24 145.4 m
	LEVEL 23 142.45 m
	LEVEL 22 139.2 m
	LEVEL 21 136.25 m
	LEVEL 20 133.3 m
	LEVEL 19 130.35 m
	LEVEL 18 127.4 m
RES. RES. RES. RES.	LEVEL 17 124.45 m
	LEVEL 16 121.5 m
	LEVEL 15 118.55 m
	LEVEL 14 115.6 m
RES. RES. RES. RES. RES. RES. RES. RES.	LEVEL 13 112.15 m
	LEVEL 12 109.2 m
	LEVEL 11 106.25 m
	LEVEL 10 103.3 m
RES. RES. RES. RES.	LEVEL 09 100.35 m
	LEVEL 08 97.4 m
RES. RES. RES. RES.	LEVEL 07 94.45 m
	LEVEL 06 91.5 m
	OWER A&B 88.55 m
	OWER A&B 85.6 m
RES RES. OUTDOOR AMENITY RES. RES. RES.	LEVEL 03 82.4 m
RES. RETAIL INDOOR RES. RES.	LEVEL 02 78.2 m
RES. LOPE RETAIL B.O.H. RETAIL 000 EXIT	LEVEL 01 72 m
VISITOR PARKING Sporage VISITOR PARKING GARBAGE RES. PARKING RES. PARKING BIKE BIKE RES. PARKING RES. PARKING RES. PARKING Storage RES. PARKING RES. PARKING RES. PARKING	P1 (-3.5 m) P2 (-6.5 m)
RES. PARKING BIKE STORAGE RES. PARKING	
	<u>10 [-3.0 m]</u>

CLIENT 5015218 Ontario Inc. and Albert & Main Developments Inc.

109 Atlantic Avenue, Toronto, ON, M6K 1X4

COPYRIGHT This drawing has been prepared solely for the intended use, thus any reproduction or distribution for any purpose other than authorized by IBI Group is forbidden. Written dimensions shall have precedence over scaled dimensions. Contractors shall verify and be responsible for all dimensions and conditions on the job, and IBI Group shall be informed of any variations from the dimensions and conditions shown on the drawing. Shop drawings shall be submitted to IBI Group for general conformance before proceeding with fabrication.

ISSUES

SEAL				
	BI GROUP 5 St. Clair oronto, ON	Avenue Wes I M4V 2Y7, C 1930 fax 416 m	anada	
PROJECT		ert Stre	of	
383 Slate	r Street			
PROJECT NO: 120068		, Ontario		
SCALE: 1 : 300		DATE 06/10/20		
SHEET TITLE BUILDIN	G CR	OSS S	ECTIO	N
SHEET NUMBER				

APPENDIX 5

City of Ottawa - Sewer Use Program - Best Management Practices

DEWATERING UNCONTAMINATED WATER FROM CONSTRUCTION ACTIVITIES TO THE STORM SEWER

For information and assistant please direct all correspondence to Compliance Officer, Sewer Use Program 800 Green Creek Drive Ottawa ON K1J 1A6; or faxed to 613-745-9197; or scanned and emailed to SUP-PUE@ottawa.ca. Should you have any questions, please call the Sewer Use Program Duty Officer at 613-580-2424 extension 23326.

HOW TO KEEP SEDIMENTS AND POLLUTANTS OUT OF THE STORM DRAINS AND SANITARY SEWERS, AND PROTECT FISH HABITAT

Dewatering activities can occur at construction sites, during in-ground utilities maintenance, and site investigations/ assessments and cleanup. Depending on soil types and site history, stormwater and groundwater pumped from these sites may be contaminated with toxics (such as oil or solvents) and /or laden with sediments.

Discharging any water containing sediments or contaminants into a street, gutter, storm drain, or creek can pollute water, contaminate sediments and harm fish habitat. Some pollutants can also interfere with the operation of the Robert O. Pickard Environmental Centre- the City of Ottawa's wastewater treatment plant.

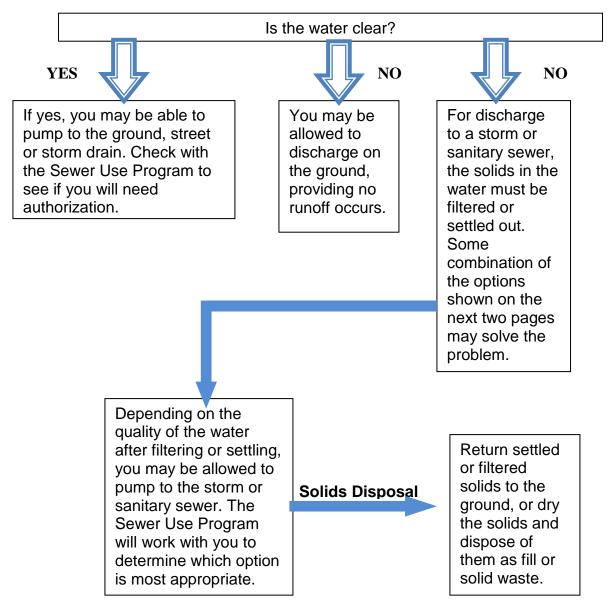
If sediments or contaminants from your job site enter a catch basin or storm drain system, you have violated the City of Ottawa's Sewer Use By-law (2003-514), as well as provincial and federal regulations. Offenders could be subject to fines and cleanup costs.

However, provided certain conditions are met, sites may dewater certain projects to the storm sewer under certain conditions.

TYPICAL PROJECTS THAT REQUIRE DEWATERING:

- Site Investigation/Assessment
- Construction, both large and small sites
- Foundation work
- Utilities infrastructure installation and repair
 - ✓ Electrical conduits
 - ✓ Vaults
 - ✓ Sewer line and storm drain maintenance
 - ✓ Phone lines and cable TV installation / repair
 - ✓ Tank removal

NOTE: Contaminated or impacted sites that involve Groundwater Remediation are not considered to be "dewatering" projects. The discharge of Remediated Groundwater to the storm sewer system is prohibited by the Sewer Use by-law. For more information on how to discharge remediated groundwater to the City's sewage works, contact the Sewer Use Program Duty Officer.

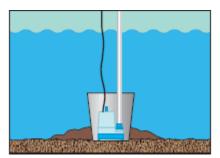


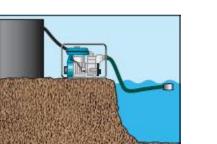
WHAT TO DO IF GROUNDWATER OR IMPOUNDED STORMWATER HAS SEDIMENTS BUT NO TOXICS ARE PRESENT

Sediments can clog storm drains, sewer lines, and smother aquatic life

HOW DO YOU DEWATER A SITE WHERE NO CONTAMINATION IS PRESENT IN THE GROUNDWATER OR IMPOUNDED STORMWATER?

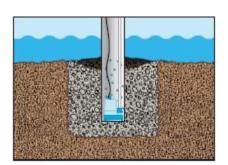
ASK YOURSELF THIS QUESTION:



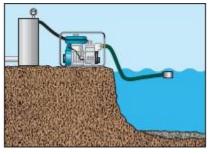

REMOVING SEDIMENTS FROM GROUNDWATER OR IMPOUNDED STORMWATER

In general, you will need to follow two steps – 1) source control; 2) filtration – to remove sediments from groundwater or impounded stormwater before you pump it off your site. Source control measures should be used before filtration. Use a combination of approaches described below for the best results. These are just some of the Best Management Practices available.

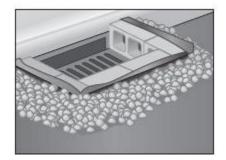
Remember to check sediment removal devices frequently to make sure they are unclogged and operating correctly. You may need to make adjustments depending on the amount of sediment in the water you're pumping.


Step 1: Control sediment loading before pumping

Using a submersible pump, pump from a bucket placed below the water level.


Place the end of the suction pipe on a float or similar device to draw off the top. Pump to a tank with sampling port(s).

Dig a small pit and fill with fine gravel. Pump through a perforated pipe sunk partway into the gravel.



Step 2: (if necessary) Filter before final discharge Options:

Pump through a filtering device such as a swimming pool filter with the end of the suction pipe on a float or similar device.

Direct water through a series of drums filled with successively finer gravel and sand.

Although not a preferred option, place filter fabric around the storm drain and anchor in place under the grate.

Surround the storm drain with concrete blocks and wrap the fabric around the outside of the blocks. Hold the fabric in place with crushed rock to complete the filtering dam.

This method is best used in conjunction with other options.

Wrap the end of the suction pipe with filter fabric and use a float or similar device to draw off the surface.

Another way to remove low levels of sediment is to discharge stormwater to a properly designed stormwater treatment facility for the type of discharge. This can include vegetated swales and/or structural devices.