Appendix A Water Supply Servicing February 11, 2020

Appendix A WATER SUPPLY SERVICING

A.1 DOMESTIC WATER DEMAND ESTIMATE

105-109 Henderson Avenue - Domestic Water Demand Estimates

Phase 1

Building ID	Area (m2)	Population	Daily Rate of	Avg Day I	Demand ¹	Max Day	Demand ²	Peak Hour	Demand ²
Building IB			Demand	(L/min)	(L/s)	(L/min)	(L/s)	(L/min)	(L/s)
Residential 1		48	350	11.7	0.19	29.2	0.49	64.3	1.07
Total Site :		48		11.7	0.19	29.2	0.49	64.3	1.07

Densities as per City Guidelines:

1 Average day water demand for residential areas equal to 350 L/cap/d

2 City of Ottawa water demand criteria used to estimate peak demand rates for residential areas are as follows: maximum day demand rate = 2.5 x average day demand rate for residential

maximum hour demand rate = 2.2 x maximum day demand rate for residential

Appendix A Water Supply Servicing February 11, 2020

A.2 FIRE FLOW REQUIREMENTS PER FUS

FUS Fire Flow Calculation Sheet

Stantec Project #: 160401351 Project Name: 105-109 Henderson Ave Date: 5/7/2018 Fire Flow Calculation #: 1 Description: Apartment Buildings

Notes:

Step	Task				Notes			Value Used	Req'd Fire Flow (L/min)
1	Determine Type of Construction			0	rdinary Cons	truction		1	-
2	Determine Ground Floor Area of One Unit				-			307	-
2	Determine Number of Adjoining Units				-			1	-
3	Determine Height in Storeys		Does not i	nclude floor	s >50% below	grade or o	pen attic space	3	-
4	Determine Required Fire Flow		(F :	= 220 x C x A	^{1/2}). Round to	o nearest 10	00 L/min	-	7000
5	Determine Occupancy Charge			Ľ	imited Comb	ustible		-15%	5950
					None			0%	
,	Datamina Sprinklar Raduatian			Non-Sta	ndard Water	Supply or N/	A	0%	0
°	Determine spinkler keduction			Not I	Fully Supervis	ed or N/A		0%	0
				% Cov	erage of Spri	nkler System		0%	
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	-	-
		North	0 to 3	20	3	31-60	Ordinary or Fire-Resistive with Unprotected Openings	22%	
7	Determine Increase for Exposures (Max. 75%)	East	10.1 to 20	17.6	3	31-60	Wood Frame or Non-Combustible	13%	2200
		South	3.1 to 10	18.7	1	0-30	Ordinary or Fire-Resistive with Unprotected Openings	15%	3372
		West	20.1 to 30	17.5	2	31-60	Ordinary or Fire-Resistive with Unprotected Openings	7%	
			То	tal Required	Fire Flow in L	/min, Round	ed to Nearest 1000L/min		9000
	Determine Final Required Fire Flow				Total Requ	vired Fire Flo	w in L/s		150.0
Ů	Determine Final Required File Flow				Required Du	ration of Fire	Flow (hrs)		2.00
					Required Vo	lume of Fire	Flow (m ³)		1080

Appendix A Water Supply Servicing February 11, 2020

A.3 BOUNDARY CONDITIONS

Kilborn, Kris

From:	Mottalib, Abdul <abdul.mottalib@ottawa.ca></abdul.mottalib@ottawa.ca>
Sent:	Thursday, February 22, 2018 10:02 AM
То:	Kilborn, Kris
Cc:	McCreight, Andrew; Wu, John; Mottalib, Abdul
Subject:	FW: 105-109 Henderson Avenue - Boundary Requests
Attachments:	105-109 Henderson Feb 2018.pdf

Good morning Kris,

Please see the email below as requested.

Thanks,

Abdul Mottalib, P. Eng.

From:
Sent: February 22, 2018 8:38 AM
To: Mottalib, Abdul <Abdul.Mottalib@ottawa.ca>
Subject: RE: 105-109 Henderson Avenue - Boundary Requests

The following are boundary conditions, HGL, for hydraulic analysis at 105-109 Henderson (zone 1W) assumed to be connected to the 203mm on Henderson (see attached PDF for location).

Minimum HGL = 106.5m Maximum HGL = 115.5m Max Day + FireFlow (150L/s) = 102.7m Max Day + FireFlow (233L/s) = 97.4m

These are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

 From: Kilborn, Kris [mailto:kris.kilborn@stantec.com]

 Sent: February 15, 2018 2:00 PM

 To: Mottalib, Abdul <<u>Abdul.Mottalib@ottawa.ca</u>>

 Cc: McCreight, Andrew <<u>Andrew.McCreight@ottawa.ca</u>>; Odam, Cameron <<u>Cameron.Odam@stantec.com</u>>

 Subject: FW: 105-109 Henderson Avenue - Boundary Requests

Good afternoon Abdul

Stantec is working with TC united Group on their 105-109 Henderson Avenue Development.

I am looking for watermain hydraulic boundary conditions for the proposed 105-109 Henderson Avenue – site plan. We anticipate the watermain connection to the proposed site plan as shown in the attached figure. This includes the connection to the 203mm WM along Henderson Avenue - adjacent to the site.

The intended land use is a 3 storey apartment building consisting of two (two storey) 4-bedroom houses and an attached three storey building with two 3-bedroom units, one 2-bedroom unit and a bachelor unit on each floor.

Estimated domestic demands and fire flow requirements for the site are as follows, please provide the results for both fireflow scenarios:

Average Day Demand	- 0.14 L/s
Max Day Demand	- 0.35 L/s
Peak Hour Demand	- 0.78 L/s
Fire Flow Demand Scenario 1 (ordinary construction)	- 150 L/s
Fire Flow Demand Scenario 2 (wood frame)	- 233 L/s

The Fire Flow Requirement is based on 2 scenarios of how the building is built which is reflected in their respective FUS sheet. Scenario 1 is if the building complies with the characteristics of an ordinary construction classification and Scenario 2 where it is built with the characteristics of a wood frame classification.

Information and calculations for each scenario can be found in their respective FUS sheet attached to the email.

Thanks in advance,

Sincerely

Kris Kilborn

Senior Associate, Community Development, Business Center Sector Leader (BCSL)

Direct: (613) 724-4337 Mobile: (613) 297-0571 Fax: (613) 722-2799

Stantec Consulting Ltd. 400 - 1331 Clyde Avenue Ottawa ON K2C 3G4 CA

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

ī

Appendix B Wastewater Servicing February 11, 2020

Appendix B WASTEWATER SERVICING

B.1 SANITARY SEWER DESIGN SHEET

		SUBDIVISIO	N: 105-109	Henderso	n Avenue	e					SANIT DESI	ARY S GN SI	SEWEF	२											DESIGN P	ARAMETERS									
											(Ci	ty of Otta	wa)				MAX PEAK F	ACTOR (RES.))=	4.0		AVG. DAILY	FLOW / PERS	ON	280	l/p/day		MINIMUM V	ELOCITY		0.60	m/s			
		DATE:			2/6/	/2020	-				•	-					MIN PEAK FA	CTOR (RES.)	=	2.0		COMMERCIA	AL.		28,000	l/ha/day		MAXIMUM	VELOCITY		3.00	m/s			
		REVISION	:			2											PEAKING FA	CTOR (INDUS	TRIAL):	2.4		INDUSTRIAL	(HEAVY)		55,000	l/ha/day		MANNINGS	n		0.013				
Stanto	_	DESIGNE	D BY:		V	NJ		FILE NUME	BER:	160401351	l						PEAKING FA	CTOR (COMM	., INST.):	1.5		INDUSTRIAL	(LIGHT)		35,000	l/ha/day		BEDDING C	LASS		В				
Stante		CHECKED	BY:														PERSONS / E	ACHELOR AF	PΤ	1.4		INSTITUTION	IAL		28,000	l/ha/day		MINIMUM C	OVER		2.50	m			
																	PERSONS / 2	BED APT		2.1		INFILTRATIC	N		0.33	l/s/Ha									
																	PERSONS / 3	BED APT		3.1															
LOCATIO	ON					RESIDENTI	AL AREA AND	POPULATION				COMM	ERCIAL	INDUS	TRIAL (L)	INDUST	rial (H)	INSTITU	JTIONAL	GREEN	UNUSED	C+I+I		INFILTRATION	I	TOTAL				P	IPE				
AREA ID	FROM	TO	AREA		UNITS		POP.	CUMUL	ATIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	FLOW	LENGTH	DIA	MATERIAL	CLASS	SLOPE	CAP.	CAP. V	VEL.	VEL.
NUMBER	M.H.	M.H.		Bachelor	2 BED	3 BED		AREA	POP.	FACT.	FLOW		AREA		AREA		AREA		AREA		AREA	FLOW	AREA	AREA	FLOW							(FULL)	PEAK FLOW	(FULL)	(ACT.)
			(ha)					(ha)			(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(I/S)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)			(%)	(l/s)	(%)	(m/s)	(m/s)
PL DC	PL DC	TEE	0.065	7	2	11	40	0.065	40	4.00	0.62	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.065	0.065	0.02	0.65	11.0	125	DVC	600.09	1.00	11 5	E C0%	0.90	0.27
BLUG	BLDG	IEE	0.065	/	2		40	0.065	40	4.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.005	0.065	0.02	0.05	11.9	250	PVC	3DR 28	1.00	11.5	5.60%	0.60	0.37
																												200							

0.60	m/s
3.00	m/s
0.013	
В	
2.50	m
	0.60 3.00 0.013 B 2.50

Appendix C Stormwater Management February 11, 2020

Appendix C STORMWATER MANAGEMENT

C.1 STORM SEWER DESIGN SHEET

I A	105-'	109 Henderso	on Avenue				STORM	I SEWER	२ Г		<u>DESIGN</u> I = a / (t+	PARAMET	<u>rers</u>	(As per C	ity of Otta	wa Guidel	ines, 2012	2)												
	DATE:		12-Fe	b-2020			(City of	f Ottawa)				1:2 yr	1:100 yr	1																
Stantec	REVISION:			2							a =	732.951	1735.688	MANNING	"Sn=	0.013		BEDDING	CLASS =	В										
	DESIGNED BY:		V	VJ	FILE NUM	BER: 160	4-01351				b =	6.199	6.014	MINIMUM	COVER:	2.00	m													
	CHECKED BY:										c =	0.810	0.820	TIME OF E	ENTRY	10	min													
	LOCATION									DRAINA	GE AREA													PIPE SELEC	CTION					
AREA ID	FROM	то	AREA	AREA	AREA	С	ACCUM.	AxC	ACCUM.	ACCUM.	AxC	ACCUM.	T of C	12-YEAR	I _{100-YEAR}	Q _{CONTROL}	ACCUM.	Q _{ACT}	LENGT	H PIPE WIDTH	PIPE	PIPE	MATERIAL	CLASS	SLOPE	Q _{CAP}	% FULL	VEL.	VEL.	TIME OF
NUMBER	M.H.	M.H.	(2-YEAR)	(100-YEAR)	(ROOF)		AREA (2YR) (2-YEAR)	AxC (2YR)	AREA (100YI	R (100-YEAR) AxC (100YR)				(NOTE 1)	QCONTROL	(CIA/360)		OR DIAMETEI	HEIGHT	SHAPE				(FULL)		(FULL)	(ACT)	FLOW
			(ha)	(ha)	(ha)	(-)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(min)	(mm/h)	(mm/h)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(mm)	(-)	(-)	(-)	%	(L/s)	(-)	(m/s)	(m/s)	(min)
SITE	BLDG	MAIN	0.065	0.00	0.00	0.76	0.07	0.049	0.049	0.00	0.000	0.000	10.00	76.81	178.56	0.0	0.0	10.54	11.2	200	200	CIRCULAR	PVC	-	10.20	106.4	9.91%	3.35	1.79	0.10
													10.10							675	675									

Appendix C Stormwater Management February 11, 2020

C.2 RATIONAL METHOD CALCULATIONS

 File No:
 160401351

 Project:
 105-109 Henderson Avenue

 Date:
 12-Feb-20

SWM Approach: Post-development to Pre-development flows

Post-Development Site Conditions:

Overall Runoff Coefficient for Site and Sub-Catchment Areas

		Runoff C	oefficient Table					
Sub-catc Are Catchment Type	hment a ID / Description		Area (ha) "A"	C	Runoff oefficient "C"	"A	x C"	Overall Runoff Coefficient
Uncontrolled - Tributary	UNC-1	Hard Soft	0.006		0.9 0.2	0.006		
	Sub	ototal	0.001	0.007	0.2	0.000	0.00588	0.84
Uncontrolled - Tributary	UNC-2	Hard Soft	0.000 0.002		0.9 0.2	0.000 0.000		
	Sub	ototal		0.002			0.00035	0.20
Roof	BLDG 1	Hard Soft	0.025 0.000		0.9 0.2	0.023 0.000		
	Sub	ototal		0.025			0.0225	0.90
Roof	BLDG 2	Hard Soft	0.008 0.000		0.9 0.2	0.007 0.000		
	Sub	ototal		0.008			0.0072	0.90
Controlled - Tributary	CB-1 (Tank)	Hard Soft	0.012 0.012		0.9 0.2	0.011 0.002		
	Sub	ototal		0.024			0.0132	0.55
Total Overall Runoff Coefficient= C:				0.066			0.049	0.75
Total Roof Areas Total Tributary Surface Areas (C Total Tributary Area to Outlet	ontrolled and Uncontrolle	ed)	0.033 H 0.033 H 0.066 H	na na na				
Total Uncontrolled Areas (Non-T	ributary)		0.000 ł	ia				
Total Site			0.066 h	a				

Stormwater Management Calculations

Stormwater Management Calculations

		lethou car		lorage				
	10	76.81	4.71	1.71	3.00	1.80		
	20	52.03	3.80	1.71	2.09	2.51		
	30	40.04	3.36	1.71	1.65	2.97		
	40	32.86	3.10	1.71	1.39	3.33		
	50	28.04	2.85	1.71	1.14	3.41		
	60	24.56	2.65	1.71	0.94	3.39		
	70	21.91	2.50	1.71	0.79	3.32		
	80	19.83	2.35	1.71	0.64	3.09		
	90	18.14	2.15	1.71	0.44	2.40		
	100	16.75	1.99	1.71	0.28	1.67		
	110	15.57	1.85	1.71	0.14	0.92		
	120	14.56	1.73	1.71	0.02	0.15		
torage:	+ Above CB							
	Orifice Size:	LMF 40						
Ir	nvert Elevation	67.00	m					
	T/G Elevation	69.58	m					
Max	Storage Depth	0.90	m					
Do	wnstream W/L	66.20	m					
		Stage	Head	Discharge	Vreq	Vavail	Volume	
			(m)	(L/s)	(cu. m)	(cu. m)	Check	
2-ye	ar Water Level	67.90	0.90	1.71	3.41	14.80	OK	
SUMMAR	Y TO OUTLET	r				Vrequired	Vavailable*	
			Tributary Area	0.066	ha	vicquileu	v av and DIC	
		Total 2y	r Flow to Sewer	1.71	L/s	3.41	14.80	m ³
		No	-Tributary Area	0.007	ha			
		Nor Total 5yr Flo	n-Tributary Area	0.007 1.33	ha L/s			
		Nor Total 5yr Fle	n-Tributary Area ow Uncontrolled Total Area	0.007 1.33 0.073	ha L/s ha			
		Nor Total 5yr Flo	n-Tributary Area ow Uncontrolled Total Area Total 2yr Flow	0.007 1.33 0.073 3.04	ha L/s ha L/s			

10	178.56	8 45	1 71	6.73	4 04	
20	119.95	6.29	1.71	4.58	5 50	
30	91.87	5.26	1.71	3.55	6.40	
40	75 15	4 65	1.71	2.94	7.05	
50	63.95	4.24	1.71	2.53	7.59	
60	55 89	3 94	1 71	2 23	8 04	
70	49.79	3.72	1.71	2.01	8.44	
80	44.99	3.54	1.71	1.83	8.80	
90	41.11	3.40	1.71	1.69	9.13	
100	37.90	3.28	1.71	1.57	9.44	
110	35.20	3.18	1.71	1.47	9.73	
120	32.89	3.10	1.71	1.39	10.00	
orage: Surface Stor	age Above C	в				
Orifice Size:	LMF 40					
Inv. Elev.(orfice)	67.00	m				
T/G Elevation	69.58	m				
Max Storage Depth	0.90	m	0.00			
Downstream W/L	66.20	m				
Г	Stage	Head	Discharge	Vreq	Vavail	Volume
		(m)	(L/s)	(cu. m)	(cu. m)	Check
100-year Water Level	68.40	0.90	1.71	10.00	14.80	OK
					4.80	
JMMARY TO OUTLET					Management of the	(
		Tributary Area	0.066 ha		viequired	/available
					10.00	14.80 m
	Total 100	yr Flow to Sewer	1./1 L/S			
	Total 100	yr Flow to Sewer	1.71 L/S			
та	Total 100 No otal 100yr Fl	yr Flow to Sewer n-Tributary Area ow Uncontrolled	1.71 L/s 0.007 ha 3.09 L/s			
та	Total 100 No otal 100yr Fl	yr Flow to Sewer n-Tributary Area ow Uncontrolled Total Area	0.007 ha 3.09 L/s 0.073 ha			
та	Total 100 No otal 100yr Fl	yr Flow to Sewer n-Tributary Area ow Uncontrolled Total Area Total 100yr Flow	0.007 ha 3.09 L/s 0.073 ha 4.80 L/s			

Project #160401351, 105-109 Henderson Avenue Roof Drain Design Sheet, Area BLDG Standard Watts Model R1100 Accutrol Roof Drain

	Rating	Curve			Volume E	stimation		
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	e (cu. m)	Water Depth
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
0.025	0.0003	0.0013	0	0.025	6	0	0	0.025
0.050	0.0003	0.0013	0	0.050	22	0	0	0.050
0.075	0.0003	0.0013	1	0.075	50	1	1	0.075
0.100	0.0003	0.0013	3	0.100	89	2	3	0.100
0.125	0.0003	0.0013	6	0.125	139	3	6	0.125
0.150	0.0003	0.0013	10	0.150	201	4	10	0.150

	Drawdown	n Estimate	
Total	Total		
Volume	Time	Vol	Detention
(cu.m)	(sec)	(cu.m)	Time (hr)
0.0	0.0	0.0	0
0.3	257.9	0.3	0.07163
1.2	699.9	0.9	0.26605
2.9	1363.0	1.7	0.64465
5.8	2247.1	2.8	1.26884
10.0	3352.2	4.2	2.20001

Rooftop Storage Summary

	251	
80%	200.8	
	0.99	
	232	
	4	
	0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).
	10	
	1.8	
	80%	251 80% 200.8 0.99 232 4 0.15 10 1.8

From Watts Drain Catalogue						
Head (m) L/s						
Open	75%	50%				

	Open	75%	50%	25%	Closed
0.025	0.3155	0.3155	0.3155	0.3155	0.3155
0.050	0.6309	0.6309	0.6309	0.6309	0.3155
0.075	0.9464	0.8675	0.7886	0.7098	0.3155
0.100	1.2618	1.1041	0.9464	0.7886	0.3155
0.125	1.5773	1.3407	1.1041	0.8675	0.3155
0.150	1.8927	1.5773	1.2618	0.9464	0.3155

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results	2yr	100yr	Available
Qresult (cu.m/s)	0.001	0.001	-
Depth (m)	0.092	0.139	0.150
Volume (cu.m)	2.4	8.3	10.0
Draintime (hrs)	0.5	1.8	

Project #160401351, 105-109 Henderson Avenue Roof Drain Design Sheet, Area BLDG Standard Watts Model R1100 Accutrol Roof Drain

Rating Curve								
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	e (cu. m)	Water Depth
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
0.025	0.0003	0.0006	0	0.025	2	0	0	0.025
0.050	0.0003	0.0006	0	0.050	7	0	0	0.050
0.075	0.0003	0.0006	0	0.075	16	0	0	0.075
0.100	0.0003	0.0006	1	0.100	29	1	1	0.100
0.125	0.0003	0.0006	2	0.125	45	1	2	0.125
0.150	0.0003	0.0006	3	0.150	65	1	3	0.150

Drawdown Estimate								
Total	Total							
Volume	Time	Vol	Detention					
(cu.m)	(sec)	(cu.m)	Time (hr)					
0.0	0.0	0.0	0					
0.1	166.4	0.1	0.04623					
0.4	451.7	0.3	0.17171					
0.9	879.7	0.6	0.41607					
1.9	1450.3	0.9	0.81893					
3.2	2163.6	1.4	1.41992					

Rooftop Storage Summary

Total Building Area (sq.m)		81	
Assume Available Roof Area (sq.	80%	64.8	
Roof Imperviousness		0.99	
Roof Drain Requirement (sq.m/Notch)		232	
Number of Roof Notches*		2	
Max. Allowable Depth of Roof Ponding (m)		0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).
Max. Allowable Storage (cu.m)		3	
Estimated 100 Year Drawdown Time (h)		1.0	

From Watts Drain Catalogue									
Head (m)	L/s								
	Open	75%	50%	25%	Closed				
0.025	0.3155	0.3155	0.3155	0.3155	0.3155				
0.050	0.6309	0.6309	0.6309	0.6309	0.3155				
0.075	0.9464	0.8675	0.7886	0.7098	0.3155				
0.100	1.2618	1.1041	0.9464	0.7886	0.3155				
0.125	1.5773	1.3407	1.1041	0.8675	0.3155				

0.150 1.8927 1.5773 1.2618 0.9464 0.3155

* Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results	2yr	100yr	Available
Qresult (cu.m/s)	0.001	0.001	-
Depth (m)	0.081	0.130	0.150
Volume (cu.m)	0.5	2.2	3.2
Draintime (hrs)	0.2	1.0	

Appendix C Stormwater Management February 11, 2020

C.3 PCSWMM MODEL

NAGEMENT MODEL es 1 ments 3 ts 0 Data Source OTT_CHI_100Y ** Type OUTFALL STORAGE STORAGE STORAGE	- VERSION 	<pre>%Imperv %Imperv 100.00 50.00</pre>	Data Type INTENSITY %Slope 1.5000 1.0000	Recordi Interva 10 min Rain Gagu RG1 RG1 RG1	ng 1	Outlet BLDG1-S BLDG2-S TANK-S
es 1 ments 3 4 3 ts 0 s 0 s 0 bata Source OTT_CHI_100Y ** ** Area 0.02 0.01 0.02 Type OUTFALL STORAGE STORAGE STORAGE	R_03HR Width 17.40 12.00 5.36	%Imperv 100.00 100.00 50.00	Data Type INTENSITY %Slope 1.5000 1.5000 1.0000	Recordii Interva 10 min Rain Gage RG1 RG1	ng 1 -	Outlet BLDG1-S BLDG2-S TANK-S
Data Source OTT_CHI_100Y ** Ty ** Area 0.02 0.01 0.02 0.01 0.02 Type OUTFALL STORAGE STORAGE STORAGE	width 17.40 12.00 5.36	%Imperv 100.00 100.00 50.00	Data Type INTENSITY %Slope 1.5000 1.0000	Recordi Interva 10 min Rain Gag RG1 RG1 RG1	ng - e	Outlet BLDG1-S BLDG2-S TANK-S
Data Source OTT_CHI_100Y ** Ty ** Area 0.02 0.01 0.02 0.01 0.02 Type OUTFALL STORAGE STORAGE STORAGE	width 17.40 12.00 5.36	%Imperv 100.00 100.00 50.00	Data Type INTENSITY %Slope 1.5000 1.5000 1.0000	Recordi Interva 10 min Rain Gag RG1 RG1 RG1	ng 	Outlet BLDG1-S BLDG2-S TANK-S
OTT_CHI_100Y ** ** Area 0.02 0.01 0.02 Type OUTFALL STORAGE STORAGE STORAGE STORAGE	R_03HR width 17.40 12.00 5.36	%Imperv 100.00 100.00 50.00	INTENSITY %Slope 1.5000 1.5000 1.0000	10 min Rain Gagu RG1 RG1 RG1 RG1	 e	Outlet BLDG1-S BLDG2-S TANK-S
** ry ** Area 0.02 0.01 0.02 Type OUTFALL STORAGE STORAGE STORAGE	Width 17.40 12.00 5.36	%Imperv 100.00 100.00 50.00	%Slope 1.5000 1.5000 1.0000	Rain Gag RG1 RG1 RG1 RG1	e 	Outlet BLDG1-S BLDG2-S TANK-S
0.02 0.01 0.02 Type OUTFALL STORAGE STORAGE STORAGE	17.40 12.00 5.36	100.00 100.00 50.00	1.5000 1.5000 1.0000	RG1 RG1 RG1		BLDG1-S BLDG2-S TANK-S
Type OUTFALL STORAGE STORAGE STORAGE STORAGE	II 1 	nvert Elev.				
Type OUTFALL STORAGE STORAGE STORAGE	۲۲ ۱ ۱ ۱	Elev.	Max	Ponded	Fyternal	
OUTFALL STORAGE STORAGE STORAGE	2		Depth	Area	Inflow	
	(0.00 80.70 78.00 67.00	0.00 0.15 0.15 2.93	$0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0$		
	20	20-02-10-	100yr-СНІ.	rpt		
rom Node ANK-S	To Node		Type DUTLET	Len	gth %SIC 	ope Roughness
LDG1-S LDG2-S	TANK-S TANK-S		DUTLET			
*** ary ***	c11	c11			No 6	e.11
hape	Depth	Area	Rad.	Width	Barrels	Flow
statistics disp bund at every c s from each rep LPS YES NO NO NO YES YES NO d HORTON d DYNWAY	E 2019 00:00	********* this repo nal time : e step ***********	***** rt are step, *****			
	rom Node ANK-S LDG1-S LDG2-S *** hape statistics disp ound at every cs s from each rep s.from each rep s.from each rep LPS YES NO NO NO NO YES	20 rom Node To Node ANK-S OF3 LDG1-S TANK-S LDG2-S TANK-S *** ary *** statistics displayed in pund at every computation s from each reporting tin s from each reporting tin LPS YES YES NO NO NO NO YES	2020-02-10- rom Node To Node	2020-02-10-100yr-CHI. rom Node To Node Type ANK-S OF3 OUTLET LDG1-S TANK-S OUTLET LDG2-S TANK-S OUTLET *** ary *** Full Full Hyd. hape Depth Area Rad. statistics displayed in this report are ound at every computational time step, s from each reporting time step. LPS VES NO NO NO NO NO YES	2020-02-10-100yr-CHI.rpt rom Node To Node Type Len ANK-S OF3 OUTLET LDG1-S TANK-S OUTLET *** ary *** Full Full Hyd. Max. hape Full Full Hyd. Max. bepth Area Rad. width statistics displayed in this report are ound at every computational time step, s from each reporting time step LPS YES YES YES	2020-02-10-100yr-CHI.rpt rom Node To Node Type Length %Slc ANK-S OF3 OUTLET LDG1-S TANK-S OUTLET LDG2-S TANK-S OUTLET *** *** ary *** *** Full Full Hyd. Max. No. of hape Depth Area Statistics displayed in this report are width Barrels *** **** *** <t< td=""></t<>

Runoff Quantity Continuity Total Precipitation Evaporation Loss Infiltration Loss Surface Runoff Final Storage Continuity Error (%)	Volume hectare-m 0.004 0.000 0.001 0.003 0.000 -0.127	Depth mm 0.000 11.542 58.978 1.237
Flow Routing Continuity ************************************	Volume hectare-m 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Volume 10^6 ltr
Highest Flow Instability Inc Highest Flow Instability Inc All links are stable. Routing Time Step Summary Minimum Time Step Average Time Step Maximum Time Step	textext textextext tex	

Page 3

2020-02-10-100yr-CHI.rpt

subcatchment Runoff Summary

				1			_	_		
Total	Peak	Runoff	Total	Total	Total	Total	Imperv	Perv	Total	
			Precip	Runon	Evap	Infil	Runoff	Runoff	Runoff	
Runoff Subcat ltr	Runoff tchment LPS	Coeff	mm	mm	mm	mm	mm	mm	mm	10^6
BLDG1	12 20	0 080	71.67	0.00	0.00	0.00	70.20	0.00	70.20	
BLDG2	12.20	0.980	71.67	0.00	0.00	0.00	70.22	0.00	70.22	
0.01 CB-1	3.83	0.980	71.67	0.00	0.00	27.22	35.09	43.73	43.73	
0.01	7.90	0.610		0.00	0.00		55105		.5175	

Node Depth Summary

		Average	Maximum	Time of Max	Reported	
Node	Type	Depth Meters	Depth Meters	HGL Meters	Occurrence davs hr:min	Max Depth Meters
OF3	OUTFALL	66.20	66.19	66.19	0 00:00	66.19
BLDG1-S	STORAGE	0.02	0.15	80.85	0 01:33	0.15
BLDG2-S	STORAGE	0.01	0.13	78.13	0 01:22	0.13
TANK-S	STORAGE	0.18	1.15	68.15	0 03:02	1.15

Node	Туре	Inflow LPS	2020-02-1 Inflow LPS	Occuri days h	rence rence r:min	Volume 10^6 ltr	Volume 10^6 ltr	Error Percent
OF3 BLDG1-S BLDG2-S TANK-S	OUTFALL STORAGE STORAGE STORAGE	0.00 12.20 3.83 7.90	1.93 12.20 3.83 9.83		03:02 01:10 01:10 01:10	0 0.0173 0.00542 0.0104	0.0331 0.0173 0.00542 0.0331	0.000 -0.003 -0.002 0.002
**************************************	** ry **							
No nodes were surcha	rged.							
Node Flooding Summar	* Y *							
No nodes were flooded	d.							
**************************************	** ry **							
Storage Unit	Average Volume 1000 m3	Avg Pcnt Full	Evap Exfi Pcnt Pcn Loss Los	 1 t s	Maximum Volume 1000 m3	Max Pcnt Full	Time of Max Occurrence days hr:min	Maximum Outflow LPS
BLDG1-S BLDG2-S TANK-S	0.001 0.000 0.002	8 4 15	0 0 0	0 0 0	0.009 0.002 0.014	91 73 87	0 01:33 0 01:22 0 03:02	1.30 0.63 1.93
**************************************	*** ary ***							
Outfall Node	Flow Freq Pcnt	AVg Flow LPS	Max Flow LPS	To ⁻ Voli 1046	 tal ume ltr			
				10.0				
OF3	32.58	1.18	1.93	0.0 Page 5	033			
OF3	32.58	1.18	1.93 2020-02-1	0.0 Page 5	 033 			
OF3 System Link Flow Summary	32.58	1.18	1.93 2020-02-2 1.93	0.0 Page 5	 033 			
OF3 System Link Flow Summary	32.58 32.58	1.18 1.18 Maximum Flow	1.93 2020-02-1 1.93 Time of M Occurren	0.0 Page 5		Max/ M Full F	 xx/ J11	
OF3 System ************************************	32.58 32.58 Type DUMMY DUMMY	1.18 1.18 Maximum Flow LPS 1.93 1.30	1.93 2020-02-1 1.93 Time of M Occurren days hr:m 0 03: 0 03:	0.0 Page 5	 033 CHI.rpt 033 vimum eloc m/sec 	Max/ M Full Fi Flow Dej	 ax/ J1 J1 J1 J1	
OF3 System ************************************	32.58 32.58 Type DUMMY DUMMY DUMMY	1.18 1.18 Maximum Flow LPS 1.93 1.30 0.63	1.93 2020-02-1 1.93 Time of M Occurren days hr:m 0 03: 0 00: 0 00:	0.0 Page 5 Page 5 10-100yr 0.0 0.0 0.0 0.0 0.0 10 10 10 10 10 10 10 10 10 10 10 10 10	 033 033 ximum eloc m/sec 	Max/ Ma Full Fi Flow Dej	ax/ 11 11 11	
OF3 System Link Flow Summary Market State	32.58 32.58 Type DUMMY DUMMY DUMMY Summary ******	1.18 1.18 Maximum Flow LPS 1.93 1.30 0.63	1.93 2020-02-1 1.93 Time of M Occurren days hr:m 0 03: 0 00: 0 00:	0.0 Page 5 Page 5 10-100yr 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	 033 vimum eloc m/sec	Max/ Ma Full Fi Flow Dej	 x/ x1 oth 	
OF3 System ************************************	32.58 32.58 Type DUMMY DUMMY DUMMY Summary ****** Adjusted /Actual Length	1.18 1.18 1.18 Flow LPS 1.93 1.30 0.63	1.93 2020-02 1.93 Time of M Occurren days hr:m 0 03: 0 00: 0 00: 0 00:	0.0 Page 5 Page 5 LO-100yr 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	 033 vinum 033 vinum eloc m/sec 	Max/ MA Full F Flow Dep Flow Dep Down Ne Crit L	 ax/ J1 oth orm Inlet td Ctrl	
OF3 System ************************************	32.58 32.58 Type DUMMY DUMMY DUMMY ****** Adjusted /Actual Length Length	1.18 1.18 Maximum Flow LPS 1.93 1.30 0.63 Up Dry Dr	1.93 2020-02 1.93 Time of M Occurren days hr:m 0 03: 0 00: 0 00: 0 00:	0.0 Page 5 Page 5 LO-100yr 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	 033 vinum 033 	Max/ MA Full F Flow Dep Flow Class Down No Crit L	 ax/ j1 oth orm Inlet td Ctrl	

[TITLE]

[OPTIONS] ;;Options		Value			
FICW_UNITS INFILTRATION FLOW_ROUTING LINK_OFFSETS MIN_SLOPE ALLOW_PONDING SKIP_STEADY_ST START_TME REPORT_START_D END_DATE END_DATE END_DATE END_TIME SWEEP_START SWEEP_END DRY_DAYS REPORT_STEP WET_STEP DRY_STEP RULE_STEP INERTIAL_DAMPIN NORMAL_FLOW_TOL MIN_SURFAREA MAX_TRIALS HEAD_TOLERANCE SYS_FLOW_TOL LAT_FLOW_TOL MINIMUM_STEP THREADS	ATE IME MG MITED ATION EP	LPS HORTO DYNWA ELEVA 0 YES NO 05/09 00:00 05/09 00:00 05/10 00:01 00:01 12/31 00:01 10 00:01 00:01 00:01 00:01 10 00:01 00:00 PARTI BOTH H-W 0 0 8 0.001 5 5 0.5 6	N VE TION /2019 :00 /2019 :00 :00 :00 :00 :00 :00 :00 AL		
[EVAPORATION] ;;Type ::	Para	meters			
ĆÓNSTANT 0 DRY_ONLY N	.0 D				
[RAINGAGES] ;;	Rai	n	Time	Snow	Data

Page 1

;;Name	Туре	Intrvl	Catch	2020-02 Source	2-10-10	00yr-	CHI.inp							
,, RG1	INTENSITY	0:10	1.0	TIMESERI	ES OTT	_CHI_	_100YR_03I	HR						
[SUBCATCHMENTS] ;; ;Name	Raingage		Outlet	E C	Tota Area	1] 1	Pcnt. Imperv	Wi	dth	Pcnt Slop	e	Curb Lengt	Sı h Pa	now ack
;; BLDG1	RG1		BLDG1-	 -S	0.02	246	100	17	.4	1.5		0		
BLDG2	RG1		BLDG2-	-S	0.00	07724	100	12		1.5		0		
СВ-1	RG1		TANK-S	5	0.02	238	50	5.	355	1		0		
[SUBAREAS] ;;Subcatchment	N-Imperv	N-Per	v s	5-Imperv	S-Per	~v	PctZero		Route	То	Pct	Routed		
;; BLDG1 BLDG2 CB-1	0.013 0.013 0.013	0.025 0.025 0.25	1	L.57 L.57 L.57 L.57	4.67 4.67 4.67		0 0 0		OUTLE OUTLE PERVI	 T T OUS	100		-	
[INFILTRATION] ;;Subcatchment	MaxRate	MinRa	te [Decay	DryTi	me	MaxInfi	1						
BLDG1 BLDG2 CB-1	76.2 76.2 76.2	13.2 13.2 13.2	2	4.14 4.14 4.14	7 7 7		0 0 0							
[OUTFALLS] ;; ;;Name	Invert Elev.	Outfa Type	11	Stage/Ta Time Ser	ble ies	Ti Ga	ide ate Route	То						
OF3	0	FIXED		66.195		NC	0							
[STORAGE] ;; ;;Name Infiltration par ;;	Invert Elev. ameters	Max. Depth	Init Depth	. Stora n Curve	ige 9	Curve Paran	e ns					E' F	vap. rac.	
BLDG1-S BLDG2-S TANK-S	80.7 78 67	0.15 0.15 2.93	0 0 0	TABUL TABUL TABUL	.AR .AR .AR	ROOF_ ROOF_ TANK	_1-V _2-V -V				0 0 0	0 0 0		
[OUTLETS] ;; Flap	Inlet		Outlet	t.	Outf	Flow	Outlet			QCO	eff/			

,	Node	Node	2020-02	Height	Туре	QTable	Qexpon
F1	TANK-S	OF3		67	FUNCTIONAL/HEAD	1.805	0.503
7 R1 0	BLDG1-S	TANK	-S	80.7	TABULAR/HEAD	R00F_1-Q	
R2 D	BLDG2-S	TANK	-S	78	TABULAR/HEAD	ROOF_2-Q	
CURVES] ;Name	Туре	x-value	Y-Value				
00F_1-Q	Rating	0	0				
JOF_1-Q JOF_1-Q DOF_1-0		0.025 0.05 0.075	1.3 1.3 1 3				
00F_1-Q 00F_1-Q		0.1 0.125	1.3 1.3				
00F_1-Q	Pating	0.15	1.3				
DOF_2-Q DOF_2-Q DOF_2-Q	Racing	0.025 0.05	0.630902 0.630902				
00F_2-Q 00F_2-Q		0.075 0.1	0.630902				
DOF_2-Q DOF_2-Q		0.125	0.630902				
31 31	Storage	0 0.0001	0.36				
31 B1		2.08 2.0801	0.36				
31	C+	2.43	0				
JOF_1-V JOF_1-V OOF_1-V	Storage	0.025	0 6 22				
00F_1-V 00F_1-V		0.075	50 89				
JOF_1-V JOF_1-V		0.125 0.15	201				
00F_2-V 00F_2-V	Storage	0 0.025	0				
DOF_2-V		0.05	1	Page 3			
DOF_2-V DOF_2-V DOF_2-V DOF_2-V		0.075 0.1 0.125 0.15	2020-02 16 29 45 65	-10-100yr-c	HI.inp		
ANK-V ANK-V	Storage	0 0.0001	0 14				
ANK-V ANK-V		0.9	14				
ANK-V		0.3001	6				
ANK-V ANK-V		1.35 1.35001 2.58	6 6 0.72 0.72				
NK-V NK-V NK-V NK-V		1.35 1.35001 2.58 2.581 2.93	6 6 0.72 0.72 0				
ANK-V ANK-V ANK-V ANK-V TIMESERIES] ;Name	Date	1.35 1.35001 2.58 2.581 2.93	6 6 0.72 0.72 0 0 Value				
ANK-V ANK-V ANK-V TIMESERIES] ;Name ;	Date 2 2HR 2HR	1.35 1.35001 2.58 2.581 2.93 Time 	6 6 0.72 0.72 0 0 Value 				
ANK-V ANK-V ANK-V ANK-V TIMESERIES] ;Name ;	Date 2HR 2HR 2HR 2HR	1.35 1.35001 2.58 2.581 2.93 Time 00:00:00 00:15:00 00:45:00	6 6 0.72 0.72 0 Value 2.4 2.4 2.4 2.4 2.4				
ANK-V ANK-V ANK-V ANK-V TIMESERIES] ;Name ;	Date 24R 24R 24R 24R 24R 24R 24R 24R	1.35 1.3501 2.58 2.581 2.93 Time 00:00:00 00:15:00 00:45:00 00:45:00 01:15:00 01:15:00	6 6 0.72 0.72 0 Value 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4				
ANK-V ANK-V ANK-V ANK-V TIMESERIES] ;Name ;	Date 2HR 2HR 2HR 2HR 2HR 2HR 2HR 2HR	1.35 1.3501 2.58 2.581 2.93 Time 00:00:00 00:15:00 00:30:00 00:45:00 01:15:00 01:15:00 01:45:00 01:45:00 01:45:00	6 0.72 0.72 0 Value 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4				
ANK-V ANK-V ANK-V ANK-V TIMESERIES] ;Name ;	Date 2HR 2HR 2HR 2HR 2HR 2HR 2HR 2HR 2HR 2HR	1.35 1.3501 2.58 2.581 2.93 Time 00:00:00 00:15:00 00:45:00 01:00:00 01:15:00 01:45:00 01:45:00 02:15:00 02:15:00 02:45:00	6 6 0.72 0.72 0 Value 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4				
ANK-V ANK-V ANK-V ANK-V ANK-V TIMESERIES] Name 	Date 2 HR HR 2HR 2HR 2HR 2HR 2HR 2HR 2HR 2HR	1.35 1.3501 2.58 2.581 2.93 Time 	6 6 0.72 0.72 0 Value 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4				
ANK-V ANK-V ANK-V ANK-V TIMESERIES] ;Name ;	Date 	1.35 1.35001 2.58 2.581 2.93 Time 00:00:00 00:15:00 00:45:00 01:00:00 01:15:00 01:45:00 01:45:00 02:15:00 02:45:00 02:45:00 03:30:00 03:310:00 03:45:00 03:45:00	6 0.72 0.72 0 0 Value 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4				
ANK-V ANK-V ANK-V ANK-V TIMESERIES] ;Name ;	Date 2 HR HR HR 2HR 2HR 2HR 2HR 2HR 2HR 2HR 2	1.35 1.3501 2.58 2.581 2.93 Time 	6 0.72 0.72 0 Value 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4				
ANK-V ANK-V ANK-V ANK-V TIMESERIES] ;Name ;	Date Date 2HR 2HR 2HR 2HR 2HR 2HR 2HR 2HR	1.35 1.3501 1.35001 2.58 2.581 2.93 Time 00:00:00 00:15:00 00:30:00 00:45:00 01:15:00 01:45:00 01:45:00 02:45:00 02:45:00 03:30:00 03:15:00 03:45:00 04:45:00 05:00 05:00 05:00 05:00 05:00 05:00 05:00 05:00 05:0	6 0.72 0.72 0 0 Value 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4				
ANK-V ANK-V ANK-V ANK-V ANK-V TIMESERIES] ;Name ;	Date 2 HR HR HR 2HR 2HR 2HR 2HR 2HR 2HR 2HR 2	1.35 1.3501 1.3501 2.58 2.581 2.93 Time 	6 6 0.72 0.72 0 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4				
ANK-V ANK-V ANK-V ANK-V TIMESERIES] Name ;	Date 	1.35 1.3501 1.35001 2.58 2.581 2.93 Time 	6 6 0.72 0.72 0 0 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4				

MTO_SCS_100YR_12HR MTO_SCS_100YR_12HR	07:30:00 07:45:00 08:00:00 08:15:00 08:45:00 09:00:00 09:30:00 09:45:00 10:00:00 10:15:00 10:45:00 11:00:00 11:15:00 11:30:00 11:45:00 11:45:00 12:00:00	2020-02-10-100yr-CHI.inp 5.76 5.76 3.36 3.36 3.36 3.36 3.36 3.36 3.36 3
OTT_CHI_100YR_03HR OTT_CHI_100YR_03HR OTT_CHI_100YR_03HR OTT_CHI_100YR_03HR OTT_CHI_100YR_03HR OTT_CHI_100YR_03HR OTT_CHI_100YR_03HR OTT_CHI_100YR_03HR OTT_CHI_100YR_03HR OTT_CHI_100YR_03HR OTT_CHI_100YR_03HR OTT_CHI_100YR_03HR OTT_CHI_100YR_03HR OTT_CHI_100YR_03HR OTT_CHI_100YR_03HR OTT_CHI_100YR_03HR OTT_CHI_100YR_03HR OTT_CHI_100YR_03HR OTT_CHI_100YR_03HR	0:00 0:10 0:20 0:30 0:50 1:00 1:10 1:20 1:30 1:40 1:50 2:00 2:10 2:20 2:30 2:40 2:50 3:00	0 6.05 7.54 10.16 15.97 40.65 178.56 54.05 27.32 18.24 13.74 11.06 9.29 8.02 7.08 6.35 5.76 5.28 4.88
[REPORT] INPUT YES CONTROLS NO SUBCATCHMENTS ALL NODES ALL LINKS ALL		
[TAGS]		Page 5
[Wo]		2020-02-10-100yr-CHI.inp
IMAPI		

2020-02-10-100yr-CHI.inp

DIMENSIONS UNITS	368964.157046526 Meters	5031824.34308263	369001.121562898	5031860.47514723
[COORDINATES] ;;Node	X-Coord	Y-Coord		
OF3 BLDG1-S BLDG2-S TANK-S	368968.959 368981.859 368973.92 368976 649	5031825.985 5031844.095 5031837.099 5031831 791		
[VERTICES] ;;Link	x-Coord	Y-Coord		
<pre>[POLYGONS] ;;Subcatchment</pre>	X-Coord	Y-Coord		
;; BLDG1	368987.493 368992.174 368980.848 368980.848 368978.353 368978.353 368978.353 368977.36 368977.36 368973.547 368973.547 368971.427 368971.427 368972.115 368972.115 368972.29	5031847.965 5031840.268 5031830.268 5031833.378 5031833.378 5031837.479 5031837.479 5031837.479 5031836.875 5031843.143 5031843.143 5031843.61 5031843.61 5031846.61 5031847.028 5031847.028 5031847.135		
BLDG1 BLDG1 BLDG1 BLDG1 BLDG1 BLDG2 BLDG2 BLDG2 BLDG2 BLDG2 BLDG2 BLDG2 BLDG2 BLDG2	368971.589 368971.589 368983.055 368983.055 368987.493 368971.427 368973.547 368973.547 368977.36 368977.36	5031848.288 5031848.288 5031855.263 5031855.263 5031847.965 5031846.61 5031843.143 5031843.143 5031843.143 5031836.875 5031836.875		
	UMARSIONS UNITS [COORDINATES] ;;Node ;;Node ;; OF3 BLDG1-S BLDG1-S BLDG2-S TANK-S [VERTICES] ;;Link ;; [POLYGONS] ;;Subcatchment ;; [POLYGONS] ;Subcatchment ;; BLDG1 BLDG2 BLDG3 BLDG1 BLDG2 BLDG3 BLDG3 BLDG3 BLDG4 BL	[mar] 368964.157046526 UNITS Meters [COORDINATES]	LTMARJ DIMENSIONS 368964.157046526 5031824.34308263 UNITS Meters [COORDINATES] ;;Node Y-Coord i	DTMENSIONS UNITS 368964.157046526 5031824.34308263 369001.121562898 UNITS Meters 5031824.34308263 369001.121562898 [COORDINATES] ::

CB-1 CB-1	368987.128 368990.984 368997.908 368997.908 368997.908 368997.908 368995.181 368995.181 368975.181 368973.3056 368970.348 368970.348 368970.348 368977.36 368978.25 368978.25 368978.353 368978.355 368978.355 368978.355 368978.355 368978.355 368978.355 368978.355 368978.355 368978.355 368978.355 368978.355 368978.355 368978.355 368978.355 368978.355 368978.355 368978.355 368978.355 368978.3	So31857.033 So31855.119 So318455.119 So31843.756 So31842.195 So31842.195 So31839.603 So31826.151 So31826.151 So31826.151 So31832.418 So31835.392 So31835.392 So31836.875 So31837.479 So31837.479 So31837.479 So31837.378 So31840.268 So31840.268 So31847.965	
CB-1 CB-1 CB-1 CB-1 CB-1	368971.589 368970.822 368970.822 368970.822 368986.033	2020-02-10-100yr-CHI.inp 5031848.288 5031849.578 5031849.578 5031858.833	
[SYMBOLS] ;;Gage ;;	X-Coord	Y-Coord	

Appendix C Stormwater Management February 11, 2020

C.4 HDPE PIPE DETAILS

BOSS 2000 Specifications

STOCKED LENGTHS	6 metres
CUSTOM LENGTHS	Available on special order
STOCKED STIFFNESS	320 kPa (100mm - 900mm) - CSA 182.8 210 kPa (250mm - 900mm)
JOINING SYSTEMS	 WATER-TIGHT (CSA 182.8 Type 1, BNQ 3624-120) Ultra Stab 75 (100mm - 900mm) SOIL-TIGHT (CSA 182.8 Type 3, BNQ 3624-120) External double bell 'snap' coupler (100mm - 200mm) External 'split' coupler (250mm - 900mm)
FITTINGS AVAILABLE	Refer to Fig. 4, pg. 12
APPLICABLE STANDARDS	CSA B182.8, BNQ 3624-120

NOTE: PERFORATED PIPE AND FILTER SOCK AVAILABLE ON SPECIAL ORDER. PLEASE CONTACT AN ARMTEC REPRESENTATIVE FOR FURTHER INFORMATION.

NOMINAL INSIDE DIAMETERS (mm)	100	150	200	250	300	375	450	525	600	750	900
OUTSIDE DIAMETERS (mm)	120	177	234	292	361	444	540	627	726	895	1,087
PROFILE TYPE ANNULAR (A)	А	A	A	A	А	А	А	А	А	A	A

NOTE: MANNING'S 'N' VALUE = 0.012

If you wish to specify HDPE for your storm sewer application the following is suggested: HDPE in accordance to CSA Group specification B182.8, with Type 1 water-tight joints (75 kPa).

BOSS 2000 VARIOUS SIZES TO ACCOMMODATE ALMOST ANY PROJECT

BOSS 2000 DETAIL OF 300mm

Appendix D Geotechnical Investigation February 11, 2020

Appendix D GEOTECHNICAL INVESTIGATION

105-109 HENDERSON ROAD GEOTECHNICAL REPORT

Project No.: CP-17-0638

Prepared for:

Daniel Boulanger

Director – Planning & Consultation TC United 800 Industrial Ave, Unit 9 Ottawa, ON K1G 4B8

Prepared by:

McIntosh Perry 115 Walgreen Rd, R.R. 3 Carp, ON K0A 1L0

March 2018

TABLE OF CONTENTS

1.0	INTRO	ODUCTION	1
2.0	SITE [DESCRIPTION	1
3.0	FIELD	PROCEDURES	1
4.0	LABO	PRATORY TEST PROCEDURES	2
5.0	SITE C	GEOLOGY AND SUBSURFACE CONDITIONS	2
5.1	Site	e Geology	2
5.2	Sub	osurface Conditions	3
5.	2.1	Fill	3
5.	2.2	Clay	3
5.3	Gro	pundwater	3
5.4	Che	emical Analysis	4
6.0	DISCU	JSSIONS AND RECOMMENDATIONS	4
6.1	Ger	neral	4
6.2	Pro	ject Design	4
6.	2.1	Existing Site Condition	4
6.	2.2	Proposed Development	4
6.3	Fro	st Protection	5
6.4	Site	e Classification for Seismic Site Response	5
6.5	Eng	nineered Fill	5
6.6	Slat	bs-on-Grade	5
6.7	Sha	Illow Foundations	6
6.	7.1	Bearing Capacity	6
6.8	Pro	tection of Subgrade	6
6.9	Late	eral Earth Pressure	7
6.10	Cen	nent Type and Corrosion Potential	7
7.0	CONS	STRUCTION CONSIDERATIONS	7
8.0	SITE S	SERVICES	8
9.0	PAVE	MENT STRUCTURE	9

10.0	CLOSURE	9
11.0	REFERENCES	1

APPENDICES

Appendix A –	Limitations	of	Report
--------------	-------------	----	--------

- Appendix B Figures
- Appendix C Borehole Records
- Appendix D Laboratory Test Results
- Appendix E- Seismic Hazard Calculation

GEOTECHNICAL INVESTIGATION and FOUNDATION DESIGN RECOMMENDATION REPORT 105-109 Henderson Road, Ottawa, Ontario

1.0 INTRODUCTION

This report presents the factual findings obtained from a geotechnical investigation performed at the abovementioned site, for the proposed construction of three-story apartment building with a basement, in the neighborhood of Sandy Hill in Ottawa, Ontario. It is understood the existing residential homes will remain in place, and the proposed construction will be in the backyard of these properties. The field work was carried out on January 31, 2018 and comprised of two boreholes advanced to a maximum depth of 17.2 m below existing ground surface.

The purpose of the investigation was to explore the subsurface conditions at this site and to provide anticipated geotechnical conditions influencing the design and construction of the proposed building.

McIntosh Perry Consulting Engineers Ltd (McIntosh Perry) carried out the investigation at the request of TC United.

2.0 SITE DESCRIPTION

The property under consideration for proposed development is located at 105 and 109 Henderson Avenue in the Sandy Hill neighbourhood of Ottawa. Henderson Avenue is a southbound one-way avenue containing high density residential properties. The property to the south of 109 Henderson is a Hydro Ottawa building, with multiplexes bordering the East and North property lines of both properties. The properties have very minimal vegetation and the grade is relatively flat. 109 Henderson Avenue has a garage at the rear of the property bordering the fence line with 105 Henderson Avenue. At the south end of Henderson Avenue at Somerset Street, grade drops significantly to the South.

It is understood based on the concept plans provided, the proposed structure will be a 3-story building, with a basement. The proposed building will be surrounded with an asphalt parking lot.

Location of the property is shown on Figure 1, included in Appendix B.

3.0 FIELD PROCEDURES

Staff of McIntosh Perry Consulting Engineers (McIntosh Perry) visited the site before the drilling investigation to mark out the proposed borehole locations. Utility clearance was carried out by USL-1 on behalf of McIntosh Perry. Public and private utility authorities were informed and all utility clearance documents were obtained before the commencement of drilling work.

The equipment used for drilling was owned and operated by George Downing Estate Drilling Ltd. of Hawkesbury, Ontario. Boreholes were advanced using hollow and solid stem augers aided by track-mounted LC-55 drilling rig. Boreholes were advanced to a maximum depth of 17.2 m below the ground level. Soil samples were obtained at 0.75 m intervals of depth in boreholes using a 50 mm outside diameter split spoon sampler in accordance with the Standard Penetration Test (SPT) procedure. MTO 'N' vane tests were taken to measure in-situ shear strength of cohesive material. In boreholes BH18-1, the investigation was advanced beyond the sampled depth with Dynamic Cone Penetration Tests (DCPT) to the termination depth. Boreholes were backfilled with auger cuttings. All boreholes were restored to match the original surface. Borehole locations are shown on Figure 2, included in Appendix B.

4.0 LABORATORY TEST PROCEDURES

Laboratory testing on representative SPT samples was performed at McIntosh Perry geotechnical lab included moisture content, and Atterberg Limit Testing. Atterberg Limit test and moisture content was done on retrieved SPT samples, was tested by LRL Ltd. The laboratory tests to determine index properties were performed in accordance with CCIL test procedures, which follow American Society for Testing Materials (ASTM) test procedures.

The rest of the soil samples recovered will be stored in McIntosh Perry storage facility for a period of one month after submission of the final report. Samples will be disposed after this period of time unless otherwise requested in writing by the Client.

Laboratory tests are included in Appendix C.

5.0 SITE GEOLOGY AND SUBSURFACE CONDITIONS

5.1 Site Geology

Based on published physiography maps of the area (Ontario Geological Survey) the site is located within the Ottawa Valley Clay Plains. Surficial geology maps of southern Ontario identify the property as on older alluvial deposits.

The Ottawa Valley between Pembroke and Hawkesbury, Ontario consists of clay plains interrupted by ridges of rock or sand. It is naturally divided into two parts, above and below Ottawa, Ontario. Within the valley, the bedrock is further faulted so that some of the uplifted blocks appear above the clay beds. The sediments themselves in the valley are deep silty clay. Although the clay deposits are grey in color like the lime stones that underlies them in part, they are only mildly calcareous and likely derived from the more acidic rock of the Canadian Shield.

5.2 Subsurface Conditions

In general, the site stratigraphy consists of a topsoil, underlain by fill material, followed by a silty clay. The soils encountered at this site can be divided into two different zones.

- a) Fill
- b) Clay

The soils encountered during the course of the investigation, together with the field and laboratory test results are shown on the Record of Borehole sheets included in Appendix C. Description of the strata encountered are given below.

5.2.1 Fill

At the top of both boreholes a layer of topsoil was observed, the thickness of the topsoil was observed to be between 150 and 300 mm. Under the topsoil was silty sand fill, observed to have trace to some clay, and trace gravel. The fill was observed to be loose, brown and moist. SPT 'N' values were observed to be between 3 to 6 blows/300mm. The fill was observed to extend to a depth of 1.5 m.

5.2.2 Clay

The clay was observed to be stiff to firm, moist to wet and grey. Moisture content within the weathered crust was an average of 51%. Within the weathered clay crust SPT 'N' values ranged from 4 to 11 blows/300 mm, below the crust SPT 'N' values ranged from 0 to 2 blows/300 mm, with an average moisture content of 51%. Boreholes BH17-4 and BH17-5, were advanced with DCPT, values were observed to be between 0 and 16 blows/300mm. MTO N-sized vane tests were conducted which estimated the in-situ shear strength of the layer ranged from 38 kPa to 102 kPa (firm to stiff), with an average of 70kPa, and sensitivity ranging between 13 and 3, indicating non-sensitive to highly sensitive clay. Three Atterberg Limit test were conducted on representative samples and found to be clay of high-plasticity (CH). Results showed the liquid limit values range from 80% to 81% and the plastic limit range from 27% to 30%. Test results are shown on Figure 3, included in Appendix B. Moisture content of sample tested below the weathered crust for Atterberg Limits, indicate the natural moisture content of the sample is close to the liquid limit of the sample, indicating the layer is in a sensitive state. The thickness of the clay layer was observed to be 15.7 m, terminating at a depth of 17.2 m from the existing ground surface (El. 82.2 m). Bottom of the clay layer was determined to be at DCPT refusal on probable bedrock.

5.3 Groundwater

Groundwater was not observed in open boreholes. Moisture content of the clay was observed to increase at an approximate depth of 3.5-4.0 m. Groundwater level may be expected to fluctuate due to seasonal changes.

5.4 Chemical Analysis

The chemical test results conducted by Paracel Laboratories in Ottawa, Ontario, to determine the resistivity, pH, sulphate and chloride content of representative soil sample are shown in Table 5-1 below:

Borehole	Sample	Depth / El. (m)	рН	Sulphate (%)	Chloride (%)	Resistivity (Ohm-cm)	
BH18-1	SS-3	1.5-2.1	7.25	0.0016	0.0009	9,190	

6.0 DISCUSSIONS AND RECOMMENDATIONS

6.1 General

This section of the report provides recommendations for the design of the proposed building behind 105 and 109 Henderson Road in Ottawa, Ontario. The recommendations are based on interpretation of the factual information obtained from the boreholes advanced during the subsurface investigation. The discussions and recommendations presented are intended to provide sufficient information to the designer of the proposed building to select the suitable type of foundation to support the structure.

The comments made on the construction are intended to highlight aspects which could have impact or affect the detailed design of the building, for which special provisions may be required in the Contract Documents. Those who requiring information on construction aspects should make their own interpretation of the factual data presented in the report. Interpretation of the data presented may affect equipment selection, proposed construction methods, and scheduling of construction activities.

6.2 Project Design

6.2.1 Existing Site Condition

Detailed site condition is provided in Section 2. The site contains two existing two-story residential structures and is located in the middle of a residential subdivision. The location of the site is shown on Figure 1 included in Appendix B.

6.2.2 Proposed Development

It is understood that the proposed development will be a three-storey apartment building with a basement, and will likely be a conventional slab on grade with shallow footing foundation.

Finished grade was not provided at the time of this report, it is expected construction will occur at the existing grade and no grade raise are expected.

6.3 Frost Protection

Based on applicable building codes, a minimum earth cover of 1.8 m, or the thermal equivalent of insulation, should be provided for all exterior footings to reduce the effects of frost action.

6.4 Site Classification for Seismic Site Response

Table 4.2 of CHBDC shall be consulted for the purpose of seismic design. Selected spectral responses in the general vicinity of the site for 10% chance of exceedance in 50 years (475 years return period) are as indicated in Table 6-3, shown below;

Sa(0.2)	Sa(0.5)	Sa(2.0)	PGA	PGV		
0.161	0.124	0.021	0.102	0.068		

Table 6-1: Selected Seismic Spectral Responses (10% in 50 Yrs)

The site can be classified as a Site Class "E" based on the clay consistency for the purposes of site-specific seismic response to earthquakes based on Table 4.1.8.4.A OBC 2012.

6.5 Engineered Fill

It is understood there are no plans for grade raise at this site.

If engineered fill is required, any topsoil or soft and spongy material should be removed before placing the engineered fill. The fill should be placed in horizontal lifts of uniform thickness of no more than 300 mm before compaction. It should be placed at appropriate moisture content and compacted to the specified density. The requirements for fill material and compaction may be addressed with a note on the structural drawing for foundation or grading drawing and/or with a Non-Standard Special Provision (NSSP). In any location where the engineered fill is to support any structural element, including pavement structure, minimum 100% Standard Proctor Maximum Dry Density (SPMDD) should be achieved. In other cases, minimum 96% SPMDD is adequate.

6.6 Slabs-on-Grade

Slabs-on-grade should be supported on minimum 200 mm of Granular A compacted to 100% SPMDD. In case the subgrade needs to be raised Granular B type II or granular A needs to be compacted to minimum 96% SPMDD.

All subgrades should be proof-rolled under the supervision of a geotechnical representative prior to placement of the Granular "A" and slab-on-grade.

6.7 Shallow Foundations

Based on the proposed building concept and architectural sketches, it is the authors' understanding that the building foundation level may fall close to the interface of the weather crust and the soft clay. Based on the in-situ undrained shear test results of the clay and laboratory test results for plasticity index, a pre-consolidation pressure of 150 kPa was considered in settlement calculations.

The structure is expected to be a light-weight wood frame with or without steel or concrete components. Considering the order of structural loads expected at the foundation level, provision of conventional strip footings will be adequate. If necessary, pad footings can be also used in the design, however the dimensions of isolated pad footing shall not exceed 2 m. Footings are expected to be buried to resist overturning and sliding and also to provide protection against frost action.

The excavation should extended to the top of the native clay, care must be taken not to disturb the clay. From the final stage of the excavation to placement of footings, construction traffic over the sensitive clay shall be minimized. Placement of mud-slab immediately after excavation can reduce the risk of subgrade degradation. Excavation into the clay layer should be limited. If adequate frost cover is not provided, the deficit of earth cover should be compensated by application of synthetic insulation material. A minimum of 0.6m of the clay crust should remain intact.

6.7.1 Bearing Capacity

Assuming the strip footings are constructed through excavating the fill and exposing the native clay crust, the following bearing capacity values can be used for structural design;

Factored beading pressure at Ultimate Limit State (ULS): 115 kPa

Serviceability Limit State (SLS): 75 kPa (1 m to 1.5 m wide strip footings)

If strip footings wider than 1.5 m are required, then authors of this report should be informed to verify the compatibility of the design with settlement criteria. Footings narrower than 0.6 m are not recommended due to the risk of punching failure. Following above note recommendations, total settlements are expected to remain between 25 mm to 35 mm. The structural designer shall note that wider strip footings with the same applied pressure will trigger larger settlements. When designing footings on clay, it is the best practice to keep the footing sizes and bearing pressures as similar as possible to reduce the risk of differential settlements.

6.8 Protection of Subgrade

Inspection and approval of the footing subgrade are required. This requirement may be addressed with a note on the structural drawing for foundation and/or with a Non-Standard Special Provision (NSSP). If the

constructor can ensure there won't be any traffics on the subgrade, protection can be done through temporary covering. To limit disturbance, subgrade should be protected from freezing or precipitation.

6.9 Lateral Earth Pressure

Free draining material should be used as backfill material for foundation walls. If the proper drainage is provided "at rest" condition may be assumed for calculation of earth pressure on foundation walls. The following parameters are recommended for the granular backfill.

Table 6-1. Backini Material Properties							
Borehole	Granular "A"	Granular "B"					
Effective Internal Friction Angle, ϕ'	35°	30°					
Unit Weight, γ (kN/m^3)	22.8	22.8					

Table 6-1: Backfill Material Properties

6.10 Cement Type and Corrosion Potential

Sample from subgrade soil was submitted to Parcel laboratories for testing of chemical properties relevant to exposure of concrete elements to sulphate attacks as well as potential soil corrosivity effects on buried metallic structural element. Test results are presented in Tables 5-1.

The potential for sulphate attack on concrete structures is low. Therefore Type GU Portland cement may be adequate to protect buried concrete elements in the subsurface conditions encountered.

The soil pH is slightly on the basic side, high resistivity and relatively low chloride content determines the environment for buried steel elements is within the non-aggressive range.

7.0 CONSTRUCTION CONSIDERATIONS

Any organic or topsoil material, and existing fill material of any kind, should be removed from the footprint of the footing. If grade raise above the native clay subgrade is required suitable fill material to conform to specifications of OPSS Granular A should be placed over a layer of geotextile.

The founding level is expected above the groundwater level encountered at this site and no dewatering problems are anticipated. However, the excavated subgrade must be kept dry at all time to minimize the disturbance of the subgrade. Groundwater elevation is expected to fluctuate seasonally.

A geotechnical engineer or technician should attend the site to confirm the type of the material and level of compaction.

Foundation walls should be backfilled with free-draining material such as OPSS Granular material. The native clay is not a suitable material for backfilling. Sub-drains with positive drainage to the City sewer should be provided at foundation level.

Based on the proposed site layout there is not adequate room for sloped excavation. The contractor shall retain a professional engineer to provide excavation and shoring design to protect the existing buildings adjacent to the proposed excavation.

Groundwater table is expected to be lower than the proposed excavation (2.0 ± 0.3 m depth below existing ground) and the chance of water draw down due to the proposed excavation is minimal. Since the proposed excavation will be relatively close to the neighboring properties, the contractor should consider the addition of an instrumentation and monitoring program to their excavation plan. A baseline should be established and documented by surveying structural monitoring points and photographing exterior and interior of the adjacent buildings before the start of construction activities.

Given the age of the existing structure, the primary position of its consolidation settlement for the current load should have been achieved. The proposed building will undergo settlements as described in Section 6.7. In order to accommodate the expected varying levels of settlement between the two structures, it is best practice to separate the exiting and the proposed buildings. If there has to be connected structural components such as links or corridors, between the existing and proposed buildings, a provision of an expansion joint will be necessary.

The applied surcharge from the proposed building on the subgrade may also cause some settlement of the existing buildings. The magnitude of this settlement is a function of the distance, depth, and existing in-situ stress under each of the adjacent structures. The above noted instrumentation program can be used to measure or rule-out such effects and to quantify or reject potential claims by the owners of neighboring properties.

8.0 SITE SERVICES

At the subject site, the burial depth of water-bearing utility lines is typically 2.4 m below ground surface. If this depth is not achievable due to design restrictions, equivalent thermal insulation should be provided. The contractor should retain a professional engineer to provide detailed drawings for excavation and temporary support of the excavation walls during construction.

Utilities should be supported on minimum of 150 mm bedding of Granular A compacted to minimum 96% of SPMDD. Since the native subgrade is fine grained, it is recommended to separate the subgrade from the bedding material by a layer of geotextile to prevent cross migration of materials. Utility cover can be Granular A or Granular B type II compacted to 96% SPMDD. All covers are to be compacted to 100% SPMDD if intersecting structural elements.

Cut-off walls should be provided for utility trenches running below the groundwater level to mitigate the settlement risk due to groundwater lowering.

9.0 PAVEMENT STRUCTURE

It is understood the site plan contains an asphalt driveway to include room for two parking spaces. If this parking area is to be part of the new construction, the pavement structure detailed in the table below should be followed. The proposed pavement structure is suitable for construction on native subgrade or raised grade through engineered fill.

	Material	Thickness (mm)
Surface	Superpave 12.5, Design Category C, PG 58-34	50
Base	OPSS Granular A	250

Table 9-1: Proposed Pavement Structure for Residential Driveways

10.0 CLOSURE

We trust this geotechnical investigation and foundation design report meets requirements of your project. The "Limitations of Report" presented in Appendix A are an integral part of this report. Please do not hesitate to contact the undersigned should you have any questions or concerns.

McIntosh Perry Consulting Engineers Ltd.

Mary-Ellen Gleeson, M.Eng., EIT. Geotechnical Engineering Intern

N'eem Tavakkoli, M.Eng., P.Eng. Senior Geotechnical Engineer

REFERENCES

Canadian Geotechnical Society, "Canadian Foundation Engineering Manual", 4th Edition, 2006.

Ontario Ministry of Natural Resources (OMNR), Ontario Geological Survey, Special Volume 2, "The Physiography of Southern Ontario", 3rd Edition, 1984.

Google Earth, Google, 2015.

MTO – Pavement Design and Rehabilitation Manual

105 – 109 HENDERSON AVENUE

APPENDIX A LIMITATIONS OF REPORT

LIMITATIONS OF REPORT

McIntosh Perry Consulting Engineers Ltd. (McIntosh Perry) carried out the field work and prepared the report. This document is an integral part of the Foundation Investigation and Design report presented.

The conclusions and recommendations provided in this report are based on the information obtained at the borehole locations where the tests were conducted. Subsurface and groundwater conditions between and beyond the boreholes may differ from those encountered at the specific locations where tests were conducted and conditions may become apparent during construction, which were not detected and could not be anticipated at the time of the site investigation. The benchmark level used and borehole elevations presented in this report are primarily to establish relative differenced in elevations between the borehole locations and should not be used for other purposes such as to establish elevations for grading, depth of excavations or for planning construction.

The recommendations presented in this report for design are applicable only to the intended structure and the project described in the scope of the work, and if constructed in accordance with the details outlined in the report. Unless otherwise noted, the information contained in this report does not reflect on any environmental aspects of either the site or the subsurface conditions.

The comments or recommendation provided in this report on potential construction problems and possible construction methods are intended only to guide the designer. The number of boreholes advanced at this site may not be sufficient or adequate to reveal all the subsurface information or factors that may affect the method and cost of construction. The contractors who are undertaking the construction shall make their own interpretation of the factual data presented in this report and make their conclusions, as to how the subsurface conditions of the site may affect their construction work.

The boundaries between soil strata presented in the report are based on information obtained at the borehole locations. The boundaries of the soil strata between borehole locations are assumed from geological evidences. If differing site conditions are encountered, or if the Client becomes aware of any additional information that differs from or is relevant to the McIntosh Perry findings, the Client agrees to immediately advise McIntosh Perry so that the conclusions presented in this report may be re-evaluated.

Under no circumstances shall the liability of McIntosh Perry for any claim in contract or in tort, related to the services provided and/or the content and recommendations in this report, exceed the extent that such liability is covered by such professional liability insurance from time to time in effect including the deductible therein, and which is available to indemnify McIntosh Perry. Such errors and omissions policies are available for inspection by the Client at all times upon request, and if the Client desires to obtain further insurance to protect it against any risks beyond the coverage provided by such policies, McIntosh Perry will co-operate with the Client to obtain such insurance.

McIntosh Perry prepared this report for the exclusive use of the Client. Any use which a third party makes of this report, or any reliance on or decision to be made based on it, are the responsibility of such third parties. McIntosh Perry accepts no responsibility and will not be liable for damages, if any, suffered by any third party as a result of decisions made or actions taken based on this report.

105 – 109 HENDERSON AVENUE

APPENDIX B FIGURES

115 Walgreen Road, RR3, Carp, ON K0A1L0 Tel: 613-836-2184 Fax: 613-836-3742 www.mcintoshperry.com

GIS

Checked By

JD

MG

GIS data provided by the Ontario Ministry of Natural Resources and Forestry, 2018.

105 – 109 HENDERSON AVENUE

APPENDIX C BOREHOLE LOGS

EXPLANATION OF TERMS USED IN REPORT

N-VALUE: THE STANDARD PENETRATION TEST (SPT) N-VALUE IS THE NUMBER OF BLOWS REQUIRED TO CAUSE A STANDARD 51mm O.D SPLIT BARREL SAMPLER TO PENETRATE 0.3m INTO UNDISTURBED GROUND IN A BOREHOLE WHEN DRIVEN BY A HAMMER WITH A MASS OF 63.5 kg, FALLING FREELY A DISTANCE OF 0.76m. FOR PENETRATIONS OF LESS THAN 0.3m N-VALUES ARE INDICATED AS THE NUMBER OF BLOWS FOR THE PENETRATION ACHIEVED. AVERAGE N-VALUE IS DENOTED THUS N.

DYNAMIC CONE PENETRATION TEST: CONTINUOUS PENETRATION OF A CONICAL STEEL POINT (51mm O.D. 60° CONE ANGLE) DRIVEN BY 475J IMPACT ENERGY ON 'A' SIZE DRILL RODS. THE RESISTANCE TO CONE PENETRATION IS MEASURED AS THE NUMBER OF BLOWS FOR EACH 0.3m ADVANCE OF THE CONICAL POINT INTO THE UNDISTURBED GROUND.

SOILS ARE DESCRIBED BY THEIR COMPOSITION AND CONSISTENCY OR DENSENESS.

CONSISTENCY: COHESIVE SOILS ARE DESCRIBED ON THE BASIS OF THEIR UNDRAINED SHEAR STRENGTH (c,) AS FOLLOWS:

C _u (kPa)	0 – 12	12 – 25	25 – 50	50 – 100	100 – 200	>200
	VERY SOFT	SOFT	FIRM	STIFF	VERY STIFF	HARD

DENSENESS: COHESIONLESS SOILS ARE DESCRIBED ON THE BASIS OF DENSENESS AS INDICATED BY SPT N VALUES AS FOLLOWS:

N (BLOWS/0.3m)	0 – 5	5 – 10	10 – 30	30 – 50	>50
	VERY LOOSE	LOOSE	COMPACT	DENSE	VERY DENSE

ROCKS ARE DESCRIBED BY THEIR COMPOSION AND STRUCUTRAL FEATURES AND/OR STRENGTH.

RECOVERY: SUM OF ALL RECOVERED ROCK CORE PIECES FROM A CORING RUN EXPRESSED AS A PERCENT OF THE TOTAL LENGTH OF THE CORING RUN.

MODIFIED RECOVERY: SUM OF THOSE INTACT CORE PIECES, 100mm+ IN LENGTH EXPRESSED AS A PERCENT OF THE LENGTH OF THE CORING RUN. THE ROCK QUALITY DESIGNATION (RQD), FOR MODIFIED RECOVERY IS:

RQD (%)	0 – 25	25 – 50	50 – 75	75 – 90	90 - 100
	VERY POOR	POOR	FAIR	GOOD	EXCELLENT

JOINT AND BEDDING:

SPACING	50mm	50 – 300mm	0.3m – 1m	1m – 3m	>3m
JOINTING	VERY CLOSE	CLOSE	MOD. CLOSE	WIDE	VERY WIDE
BEDDING	VERY THIN	THIN	MEDIUM	THICK	VERY THICK

ABBREVIATIONS AND SYMBOLS

FIELD SAMPLING

MECHANICALL PROPERTIES OF SOIL

SPLIT SPOON	TP	THINWALL PISTON	m _v	kPa '	COEFFICIENT OF VOLUME CHANGE
WASH SAMPLE	OS	OSTERBERG SAMPLE	Cc	1	COMPRESSION INDEX
SLOTTED TUBE SAM	IPLE RC	ROCK CORE	Cs	1	SWELLING INDEX
BLOCK SAMPLE	PH	TW ADVANCED HYDRAULIC	ALLY c _a	1	RATE OF SECONDARY CONSOLIDATION
CHUNK SAMPLE	PM	TW ADVANCED MANUALLY	Cv	m²/s	COEFFICIENT OF CONSOLIDATION
THINWALL OPEN	FS	FOIL SAMPLE	Н	m	DRAINAGE PATH
			Τ _v	1	TIME FACTOR
	STRESS AN	D STRAIN	U	%	DEGREE OF CONSOLIDATION
kPa	PORE WATER PR	RESSURE	σ'vo	kPa	EFFECTIVE OVERBURDEN PRESSURE
1	PORE PRESSUR	E RATIO	σ'n	kPa	PRECONSOLIDATION PRESSURE
kPa	TOTAL NORMAL	STRESS	τ _f	kPa	SHEAR STRENGTH
kPa	EFFECTIVE NOR	MAL STRESS	c'	kPa	EFFECTIVE COHESION INTERCEPT
kPa	SHEAR STRESS		Φ,	_0	EFFECTIVE ANGLE OF INTERNAL FRICTION
σ ₃ kPa	PRINCIPAL STRE	ESSES	Cu	kPa	APPARENT COHESION INTERCEPT
%	LINEAR STRAIN		Φu	_0	APPARENT ANGLE OF INTERNAL FRICTION
s ₃ %	PRINCIPAL STRA	AINS	τ _R	kPa	RESIDUAL SHEAR STRENGTH
kPa	MODULUS OF LI	NEAR DEFORMATION	τ _r	kPa	REMOULDED SHEAR STRENGTH
kPa	MODULUS OF SH	HEAR DEFORMATION	St	1	SENSITIVITY = c_u / τ_r
1	COEFFICIENT O	F FRICTION			-
	SPLIT SPOON WASH SAMPLE SLOTTED TUBE SAN BLOCK SAMPLE CHUNK SAMPLE THINWALL OPEN kPa kPa kPa kPa % % kPa kPa 1	SPLIT SPOON TP WASH SAMPLE OS SLOTTED TUBE SAMPLE RC BLOCK SAMPLE PH CHUNK SAMPLE PH CHUNK SAMPLE PM THINWALL OPEN FS <u>STRESS AN</u> kPa PORE WATER PH 1 PORE PRESSUR kPa TOTAL NORMAL kPa EFFECTIVE NOR kPa SHEAR STRESS % LINEAR STRAIN % PRINCIPAL STR4 kPa MODULUS OF SH kPa MODULUS OF SH 1 COEFFICIENT OI	SPLIT SPOON TP THINWALL PISTON WASH SAMPLE OS OSTERBERG SAMPLE SLOTTED TUBE SAMPLE RC ROCK CORE BLOCK SAMPLE PH TW ADVANCED HYDRAULIC CHUNK SAMPLE PM TW ADVANCED MANUALLY THINWALL OPEN FS FOIL SAMPLE kPa PORE WATER PRESSURE 1 1 PORE PRESSURE RATIO kPa kPa EFFECTIVE NORMAL STRESS kPa SHEAR STRESS % LINEAR STRAINS % PRINCIPAL STRAINS %	SPLIT SPOON TP THINWALL PISTON mv, WASH SAMPLE OS OSTERBERG SAMPLE cc SLOTTED TUBE SAMPLE RC ROCK CORE cg BLOCK SAMPLE PH TW ADVANCED HYDRAULICALLY ca CHUNK SAMPLE PH TW ADVANCED MANUALLY cq CHUNK SAMPLE PM TW ADVANCED MANUALLY cq THINWALL OPEN FS FOIL SAMPLE H T STRESS AND STRAIN U KPa PORE WATER PRESSURE σ'vo 1 PORE PRESSURE RATIO σ'p KPa TOTAL NORMAL STRESS tr KPa EFFECTIVE NORMAL STRESS c' va LINEAR STRESS Φ' % LINEAR STRESS Φ' % PRINCIPAL STRAINS tr % PRINCIPAL STRAINS tr % PRINCIPAL STRAINS tr %Pa MODULUS OF LINEAR DEFORMATION tr %Pa MODULUS OF SHEAR DEFORMATION tr	$\begin{array}{ccccccc} \text{SPLIT SPOON} & \text{TP} & \text{THINWALL PISTON} & \text{m}_v & \text{kPa} & \text{WASH SAMPLE} & \text{OS} & \text{OSTERBERG SAMPLE} & \text{c}_c & 1 \\ \text{SLOTTED TUBE SAMPLE} & \text{RC} & \text{ROCK CORE} & \text{c}_s & 1 \\ \text{BLOCK SAMPLE} & \text{PH} & \text{TW} & \text{ADVANCED HYDRAULICALLY} & \text{c}_a & 1 \\ \text{CHUNK SAMPLE} & \text{PH} & \text{TW} & \text{ADVANCED MANUALLY} & \text{c}_v & \text{m}^2/\text{s} \\ \text{THINWALL OPEN} & \text{FS} & \text{FOIL SAMPLE} & \text{H} & \text{m} \\ & & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & \\ \hline$

PHYSICAL PROPERTIES OF SOIL

Ps	kg/m ³	DENSITY OF SOLID PARTICLES	е	1,%	VOID RATIO	e _{min}	1,%	VOID RATIO IN DENSEST STATE
Υ_{s}	kN/m ³	UNIT WEIGHT OF SOLID PARTICLES	n	1,%	POROSITY	ID	1	DENSITY INDEX = $\frac{e_{max} - e}{e_{max} - e_{min}}$
Pw	kg/m ³	DENSITY OF WATER	w	1,%	WATER CONTENT	D	mm	GRAIN DIAMETER
Y_{w}	kN/m ³	UNIT WEIGHT OF WATER	sr	%	DEGREE OF SATURATION	Dn	mm	N PERCENT – DIAMETER
P	kg/m ³	DENSITY OF SOIL	WL	%	LIQUID LIMIT	Cu	1	UNIFORMITY COEFFICIENT
r	kN/m ³	UNIT WEIGHT OF SOIL	WP	%	PLASTIC LIMIT	h	m	HYDRAULIC HEAD OR POTENTIAL
$P_{\rm d}$	kg/m ³	DENSITY OF DRY SOIL	Ws	%	SHRINKAGE LIMIT	q	m³/s	RATE OF DISCHARGE
\dot{Y}_{d}	kN/m ³	UNIT WEIGHT OF DRY SOIL	I _P	%	PLASTICITY INDEX = $(W_{L} - W_{L})$	v	m/s	DISCHARGE VELOCITY
Psat	kg/m ³	DENSITY OF SATURATED SOIL	l,	1	LIQUIDITY INDEX = $(W - W_P)/I_P$	i	1	HYDAULIC GRADIENT
γ_{sat}	kN/m ³	UNIT WEIGHT OF SATURATED SOIL	I _c	1	CONSISTENCY INDEX = $(W_L - W) / 1_P$	k	m/s	HYDRAULIC CONDUCTIVITY
Ρ'	kg/m ³	DENSITY OF SUBMERED SOIL	e _{max}	1,%	VOID RATIO IN LOOSEST STATE	i	kN/m ³	SEEPAGE FORCE
r	kN/m ³	UNIT WEIGHT OF SUBMERGED SOIL	,			-		

١	10	:11	١TO	SH PERRY	RE	CO	RĽ) C)F	BOF	REH	OL	ΕI	No 1	8-	1			Pag	e 1 of 2
D IC C	ATE): LIEI	i: NT:	<u>31/</u> <u>CP</u> TC	01/2018 - 31/01/2018 -17-0638-HENDERSON United	LOCATION COORDINA DATUM:	: <u>10</u> A TES : <u>La</u> Lo	<u>)5-10</u> at: 45 ocal	9 Her .4236	nderso 15, I	on Avenue Lon: -75.6	e () 679798			ORI COM CHE	GINA ⁻ MPILE ECKEI	TED I D BY	BY:F /: <u>N</u> : N	<u>Phil H</u> /lary-l J'eerr	lulan Ellen Gleesol n Tavakkoli	<u>n</u>
E	LEV	ATIC	DN: 99.	4 m	REMARK:	N	o wat	er ob	serve	d in open	borehole	e		REP	ORT	DATI	E: 0	7/03/	/2018	
+004		eters	Е - Е	SOIL PROFILE		S. Q. K.	AMF	PLES	Q	ATER	DYNAM RESIST 20	MIC CO FANCE	NE PEN PLOT	^{I.}	•	WA CON a	TER TEN nd	T	REMAF &	RKS
DEDTU		DEPTH - m	BELEVATION	DESCRIPTION	SYMBOL	TYPE AN NUMBE	STATE	RECOVER	"N" or RG	GROUNDW CONDITIO	SHEA Vane Oln Re 20	R STF e test tact emolde 40		H (kPa) b vane Intact Remolded 30 100	L N	-IMI⊺ V _P \ 	rs (᠀ ₩ ◯── ፮0 7	%) W _L ⊣ ′5	GRAIN DISTRIBU (%)	SIZE JTION M C
	-		0.0 99.1 0.3	Topsoil Fill. Silty sand, brown, moist, loos	e.	SS-01		79	3											<u> </u>
-	-	- 1	97.9			SS-02		54	6											
-	5	- 2	1.5	Silty clay, grey, moist to wet, stiff, weathered.		SS-03		83	7							0				
-	-	0				SS-04		83	5							⊢	-	4		
-	10 - -	- 3	95.6			SS-05		92	3								0			
-	-	- 4	3.8	Silty clay, grey, wet, firm.		SS-06		100	0								0			
-	15_	- 5									♦ ^{5.0}	27.0	\$6	8.0 ∲ ^{81.0}						
-	-	- 6				SS-07		100	2							 	(ĸ		
-	20 - - -	0						7			◆ ^{8.0} ◆ ^{11.0}	5		8.0						
nole_v5.sty	25-	- 7				SS-08	X	100	0								0			
ec80\Style\Log_Bore		- 8									◆^{11.0}◆^{7.0}	0 _{\0} 38.	0 49.0							
ILICENSES7/Sobek/Geot	30 _ - -	- 9				55-09		/5	1		•									

1	4	c M	V T O	SH P ERRY	RE	со	RĽ) C)F	BOR	REH	10	LE	E N	o 1	8-1	1				Pa	ge 2 d	of 2
	AT	≣:	<u>31/</u>	01/2018 - 31/01/2018	LOCATION:	<u>1(</u>	05-10	9 Her	nderso	on Avenue	e ()				ORIG	AINAT	ED E	3Y: <u>P</u>	hil H	ulan			
10	D:		CP	-17-0638-HENDERSON	COORDINA	TES: La	at: 45	.4236	15 , I	_on: -75.6	79798				СОМ	PILE	DBY	: <u>N</u>	lary-l	Ellen (Gleeso	on	
		NT:		United	DATUM:		ocal	tor ob	CONIC	d in open l	borobo				CHE	CKED	BY:	N	l'eem	1 Tava	kkoli		—
F			JN: <u>99</u> .		REMARK:	<u> </u>	o wa		serve			MIC C	ONE	PEN.	REPO			:: <u>u</u>	1/03/	2018			
		ers	ε							TER IS	RESIS	TAN	CE PL	TO.	80	· c	WA ON	TEN	т	R	ЕМА	RKS	3
	- Ie	met	× E		Ъ	AND ĔR	lμ	R√	B	TION A		Ľ				╘┤╻	ar IMIT	າd ີ S (%	6)	GI	& RAIN	SIZI	Е
		TH-	PTH PTH	DESCRIPTION	MB	I I I I	STA	Š	or		Var	he tes	t	Lab	(KPA) vane	w	_ v	N	w.	DIS	TRIB	UTIC	ЛС
	5	DEP	DEV		Ś			REC	r.	C C C	♦ F	ntact Remol	ded	∐ In ■R	tact emolded		P (1		()-	,	
Ļ	_		ш								20) 4() 80 	100	4	25 5		5	G	S	М	С
	ł																						
	35																						
											•												
	F	- 11									•												
	╞																						
	F	-									•												
	10	- 12									•					+							
	t																						
	-	- 13									$ \bullet $					_							
	t																						
ſ																							
	43	- 14									•												
ſ	╞																						
ſ	ŀ																						
Ē																							
ſ	-	- 15									•												
	50																						
F	t																						
f	+	- 16									\rightarrow					_							
Ē	ŀ																						
F	╞																						
F	55	- 17																					
. sty	F	- 17	82.2 17.2	END OF BOREHOLE												•							
016 12	F																						
Boren	F																						
- I I I I I I I I I I I I I I I I I I I	┢	- 18														-							
UISTYK	60																						
-	╞																						
DEK ICIE	ļ	- 19									$\left - \right $												
11500	╞																						
	ļ																						

M	lc	11	1 T O	SH P ERRY	R	Ε	CO	RĽ) C)F	BOF	RE	HC)LE	EN	10	18	3-2	2				age	1 of 1
DA ID: CL	TE:	T:	<u>31/</u> <u>CP</u> TC	01/2018 - 31/01/2018 -17-0638-HENDERSON United	LOCATIO COORDI DATUM:	ON: NA	<u>10</u> TES: <u>La</u> Lo	<u>)5-10</u> at: 45 ocal	<u>9 Her</u> .4235	nderso 55 , I	on Avenue Lon: -75.6	e () 7971	7	-			RIGI OMP	NAT PILEI KED	ED E D BY	BY: [Phil H Mary-I N'eem	ulan Ellen Gleo 1 Tavakko	eson bli	
EL	EV	ATIC	DN: 99.	5 m	REMARI	K :	No	o wat	er ob	serve	d in open	boreł	ole.	_		R	EPO	RT C	DATE	: 0	07/03/	2018		
:PTH - feet		TH - meters	/ATION - m PTH - m	SOIL PROFILE DESCRIPTION		YMBOL	YPE AND IUMBER	STATE W	COVERY ST	" or RQD	UNDWATER	DYN RES SHE	AMIC ISTAN 20 EAR S ane te	CONE ICE PL 40 	PEN OT 60 NGT	• 80 • • • • • • • • • • • • • • • • • • •	2))))))))))	C LI W	WA ON ar IMIT	TER TEN nd 'S (9	e IT %) W.	REN GRA DISTR	IARK & IN SI IBUT (%)	(S ZE FION
B B			DE			Ś	f z		REC	ż	GRO		Remo	olded		ntact Remol	ded	H	р —_()—	-1		,.,	
		_	9 9.5	Natural ground surface	~	~~~						2	20 4	0 6	08	0 10	00 	2	5 5	07	′5 	G S	М	С
-	-		0.0 \ <u>99.3</u> 0.2	Fill. Silty sand, trace to some clay, gravel, brown, dry to moist, loose.	trace		SS-01	X	8	5														
		1	08.0				SS-02		54	6														
	5_	2	1.5	Silty clay, grey with iron staining, n stiff to firm, weathered.	noist,		SS-03		83	11									0					
-							SS-04		92	7									(
- 10	o - - -	3	<u>96.1</u> 3.4	Silty clay, grey, moist to wet, stiff to	ō firm.		SS-05		100	4											0			
		4							2				19.0)		2.0	₀102.							
- 1	5-	5					SS-06		100	2									ŀ		а			
	-	J	00.7										19.0			85.	0							
- 20	b	6	5.8	END OF BOREHOLE									18.0			>***								
-		7																						
orenole_v5.st	5-																							
'0\Style\Log_E		8																						
	- - -	9																						
ILICENSESTIC																								

105 – 109 HENDERSON AVENUE

APPENDIX D LAB RESULTS

LRL Associates Ltd.

PLASTICITY INDEX

ASTM D 4318 / LS-703/704

 Client:
 McIntosh Perry Consulting Engineers
 Reference No.:
 CP-17-0638

 Project:
 Materials Testing
 File No.:
 170496-20

 5
 Location:
 Henderson
 Report No.:
 1

	Location	Sample	Depth, m	Moisture Content, %	Liquid Limit	Plastic Limit	Plasticity Index	Llquidity Index	Activity Number	USCS
Δ	BH 18-1	SS-04	2.29 - 2.90	54	81	30	51	0.47	n/d	СН
	BH 18-1	SS-07	5.33 - 5.94	75	80	27	53	0.90	n/d	CH

Date Issued:	February 7, 2018	,	Revie	we	d By: <u>W</u> .A.M) <u>, (-</u> °Lai	J-MLaul Jghlin, Geo.Tech., C.	Tech.
5430 Canotek Road	Ottawa, ON, K1J 9G2	I	info@lrl.ca	T	www.lrl.ca	I	(613) 842-3434	-

RELIABLE.

Certificate of Analysis

McIntosh Perry Consulting Eng. (Carp)

115 Walgreen Road RR#3 Carp, ON KOA 1L0 Attn: Mary Ellen Gleeson

Client PO: Henderson CP-17-0638 Project: CP-17-0638 Custody: 34160

Report Date: 12-Feb-2018 Order Date: 6-Feb-2018

Order #: 1806215

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID **Client ID** 1806215-01 CP-17-0638 BH18-1 SS-03

Approved By:

Nack Foto

Mark Foto, M.Sc. Lab Supervisor

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 12-Feb-2018 Order Date: 6-Feb-2018

Project Description: CP-17-0638

Order #: 1806215

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Anions	EPA 300.1 - IC, water extraction	8-Feb-18	9-Feb-18
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	6-Feb-18	7-Feb-18
Resistivity	EPA 120.1 - probe, water extraction	9-Feb-18	10-Feb-18
Solids, %	Gravimetric, calculation	7-Feb-18	7-Feb-18

Certificate of Analysis Client: McIntosh Perry Consulting Eng. (Carp) Client PO: Henderson CP-17-0638

Order #: 1806215

Report Date: 12-Feb-2018

Order Date: 6-Feb-2018

Project Description: CP-17-0638

	Client ID:	CP-17-0638 BH18-1	-	-	-
		SS-03			
	Sample Date:	31-Jan-18	-	-	-
	Sample ID:	1806215-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	75.2	-	-	-
General Inorganics					
рН	0.05 pH Units	7.25	-	-	-
Resistivity	0.10 Ohm.m	91.9	-	-	-
Anions					
Chloride	5 ug/g dry	9	-	-	-
Sulphate	5 ug/g dry	16	-	-	-

Report Date: 12-Feb-2018

Order Date: 6-Feb-2018

Project Description: CP-17-0638

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	ND	5	ug/g						
Sulphate	ND	5	ug/g						
General Inorganics Resistivity	ND	0.10	Ohm.m						

Order #: 1806215

Report Date: 12-Feb-2018

Order Date: 6-Feb-2018

Project Description: CP-17-0638

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	14.4	5	ug/g dry	17.3			18.5	20	
Sulphate	15.7	5	ug/g dry	15.6			0.6	20	
General Inorganics									
pН	7.84	0.05	pH Units	7.89			0.6	10	
Resistivity	401	0.10	Ohm.m	395			1.4	20	
Physical Characteristics									
% Šolids	90.0	0.1	% by Wt.	86.5			3.9	25	

Certificate of Analysis Client: McIntosh Perry Consulting Eng. (Carp) Client PO: Henderson CP-17-0638

Order #: 1806215

Report Date: 12-Feb-2018

Order Date: 6-Feb-2018

Project Description: CP-17-0638

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions Chloride Sulphate	108 118	5 5	ug/g ug/g	17.3 15.6	90.5 103	78-113 78-111			

Certificate of Analysis Client: McIntosh Perry Consulting Eng. (Carp) Client PO: Henderson CP-17-0638

Qualifier Notes:

None

Sample Data Revisions None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected MDL: Method Detection Limit Source Result: Data used as source for matrix and duplicate samples %REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

105 – 109 HENDERSON AVENUE

APPENDIX E SEISMIC HAZARD CALCULATION

2015 National Building Code Seismic Hazard Calculation

INFORMATION: Eastern Canada English (613) 995-5548 français (613) 995-0600 Facsimile (613) 992-8836 Western Canada English (250) 363-6500 Facsimile (250) 363-6565

February 14, 2018

Site: 45.4236 N, 75.6799 W User File Reference: 105-109 Henderson Road

Requested by: , McIntosh Perry

National Building Code	e ground motions:	2% probability of	f exceedance in 50	years (0.000404 p	er annum)
------------------------	-------------------	-------------------	--------------------	-------------------	-----------

Sa(0.05)	Sa(0.1)	Sa(0.2)	Sa(0.3)	Sa(0.5)	Sa(1.0)	Sa(2.0)	Sa(5.0)	Sa(10.0)	PGA (g)	PGV (m/s)
0.447	0.523	0.439	0.334	0.237	0.118	0.056	0.015	0.0054	0.281	0.197

Notes. Spectral (Sa(T), where T is the period in seconds) and peak ground acceleration (PGA) values are given in units of g (9.81 m/s²). Peak ground velocity is given in m/s. Values are for "firm ground" (NBCC 2015 Site Class C, average shear wave velocity 450 m/s). NBCC2015 and CSAS6-14 values are specified in **bold** font. Three additional periods are provided - their use is discussed in the NBCC2015 Commentary. Only 2 significant figures are to be used. *These values have been interpolated from a 10-km-spaced grid of points. Depending on the gradient of the nearby points, values at this location calculated directly from the hazard program may vary. More than 95 percent of interpolated values are within 2 percent of the directly calculated values.*

Ground motions for other probabilities:			
Probability of exceedance per annum	0.010	0.0021	0.001
Probability of exceedance in 50 years	40%	10%	5%
Sa(0.05)	0.044	0.149	0.247
Sa(0.1)	0.061	0.187	0.300
Sa(0.2)	0.055	0.161	0.255
Sa(0.3)	0.044	0.124	0.195
Sa(0.5)	0.031	0.088	0.138
Sa(1.0)	0.015	0.044	0.070
Sa(2.0)	0.0061	0.021	0.033
Sa(5.0)	0.0012	0.0047	0.0081
Sa(10.0)	0.0006	0.0019	0.0032
PGA	0.033	0.102	0.163
PGV	0.021	0.068	0.111

References

National Building Code of Canada 2015 NRCC no. 56190; Appendix C: Table C-3, Seismic Design Data for Selected Locations in Canada

User's Guide - NBC 2015, Structural Commentaries NRCC no. xxxxxx (in preparation) 45.5°N Commentary J: Design for Seismic Effects

Geological Survey of Canada Open File 7893 Fifth Generation Seismic Hazard Model for Canada: Grid values of mean hazard to be used with the 2015 National Building Code of Canada

See the websites www.EarthquakesCanada.ca and www.nationalcodes.ca for more information

Aussi disponible en français

Natural Resources Canada Ressources naturelles Canada

Appendix E Drawings February 11, 2020

Appendix E DRAWINGS

