Appendix A Water Supply Servicing May 7, 2018

Appendix A WATER SUPPLY SERVICING

A.1 DOMESTIC WATER DEMAND ESTIMATE

105-109 Henderson Avenue - Domestic Water Demand Estimates

Densities as per City Guidelines:

Phase 1

Building ID	Area (m2)	Population	Daily Rate of	Avg Day I	Demand ¹	Max Day	Demand ²	Peak Hour	Demand ²
building ib	Alea (IIIZ)	i opulation	Demand	(L/min)	(L/s)	(L/min)	(L/s)	(L/min)	(L/s)
Residential 1		48	350	11.6	0.19	29.0	0.48	63.9	1.06
Total Site :		48		11.6	0.19	29.0	0.48	63.9	1.06

¹ Average day water demand for residential areas equal to 350 L/cap/d

City of Ottawa water demand criteria used to estimate peak demand rates for residential areas are as follows: maximum day demand rate = 2.5 x average day demand rate for residential maximum hour demand rate = 2.2 x maximum day demand rate for residential

Appendix A Water Supply Servicing May 7, 2018

A.2 FIRE FLOW REQUIREMENTS PER FUS

FUS Fire Flow Calculation Sheet

Stantec Project #: 160401351
Project Name: 105-109 Henderson Ave
Date: 5/7/2018
Fire Flow Calculation #: 1
Description: Apartment Buildings

Notes:

Step	Task				Notes			Value Used	Req'd Fire Flow (L/min)
1	Determine Type of Construction			0	rdinary Cons	truction		1	-
2	Determine Ground Floor Area of One Unit				-			307	-
	Determine Number of Adjoining Units				-			1	-
3	Determine Height in Storeys		Does not i	nclude floor	s >50% belov	v grade or o	oen attic space	3	-
4	Determine Required Fire Flow		(F :	= 220 x C x A	$^{1/2}$). Round to	o nearest 100	00 L/min	-	7000
5	Determine Occupancy Charge			U	imited Comb	ustible		-15%	5950
					None			0%	
6	Determine Sprinkler Reduction			Non-Sta	ndard Water	Supply or N/	A	0%	0
ľ	Determine Spirikler Reduction			Not I	Fully Supervis	sed or N/A		0%	U
				% Cov	erage of Spri	nkler System		0%	
		Direction	Exposure Distance (m)	Exposed Length (m)	Exposed Height (Stories)	Length-Height Factor (m x stories)	Construction of Adjacent Wall	-	-
		North	0 to 3	20	3	31-60	Ordinary or Fire-Resistive with Unprotected Openings	22%	
7	Determine Increase for Exposures (Max. 75%)	East	10.1 to 20	17.6	3	31-60	Wood Frame or Non-Combustible	13%	3392
		South	3.1 to 10	18.7	1	0-30	Ordinary or Fire-Resistive with Unprotected Openings	15%	3372
		West	20.1 to 30	17.5	2	31-60	Ordinary or Fire-Resistive with Unprotected Openings	7%	
			То	tal Required	Fire Flow in L	/min, Round	ed to Nearest 1000L/min		9000
8	Determine Final Required Fire Flow				Total Requ	uired Fire Flo	w in L/s		150.0
	Determine rinal kequired rire flow				Required Du	ration of Fire	Flow (hrs)		2.00
					Required Vo	lume of Fire	Flow (m ³)		1080

Appendix A Water Supply Servicing May 7, 2018

A.3 BOUNDARY CONDITIONS

Kilborn, Kris

From: Mottalib, Abdul <Abdul.Mottalib@ottawa.ca>
Sent: Thursday, February 22, 2018 10:02 AM

To: Kilborn, Kris

Cc: McCreight, Andrew; Wu, John; Mottalib, Abdul

Subject: FW: 105-109 Henderson Avenue - Boundary Requests

Attachments: 105-109 Henderson Feb 2018.pdf

Good morning Kris,

Please see the email below as requested.

Thanks,

Abdul Mottalib, P. Eng.

From:

Sent: February 22, 2018 8:38 AM

To: Mottalib, Abdul < Abdul. Mottalib@ottawa.ca>

Subject: RE: 105-109 Henderson Avenue - Boundary Requests

The following are boundary conditions, HGL, for hydraulic analysis at 105-109 Henderson (zone 1W) assumed to be connected to the 203mm on Henderson (see attached PDF for location).

Minimum HGL = 106.5m

Maximum HGL = 115.5m

Max Day + FireFlow (150L/s) = 102.7m

Max Day + FireFlow (233L/s) = 97.4m

These are for current conditions and are based on computer model simulation.

Disclaimer: The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation.

From: Kilborn, Kris [mailto:kris.kilborn@stantec.com]

Sent: February 15, 2018 2:00 PM

To: Mottalib, Abdul < Abdul. Mottalib@ottawa.ca>

Cc: McCreight, Andrew <andrew.McCreight@ottawa.ca>; Odam, Cameron Cameron.Odam@stantec.com

Subject: FW: 105-109 Henderson Avenue - Boundary Requests

Good afternoon Abdul

Stantec is working with TC united Group on their 105-109 Henderson Avenue Development.

I am looking for watermain hydraulic boundary conditions for the proposed 105-109 Henderson Avenue – site plan. We anticipate the watermain connection to the proposed site plan as shown in the attached figure. This includes the connection to the 203mm WM along Henderson Avenue - adjacent to the site.

The intended land use is a 3 storey apartment building consisting of two (two storey) 4-bedroom houses and an attached three storey building with two 3-bedroom units, one 2-bedroom unit and a bachelor unit on each floor.

Estimated domestic demands and fire flow requirements for the site are as follows, please provide the results for both fireflow scenarios:

Average Day Demand - 0.14 L/s

Max Day Demand - 0.35 L/s

Peak Hour Demand - 0.78 L/s

Fire Flow Demand Scenario 1 (ordinary construction) - 150 L/s

Fire Flow Demand Scenario 2 (wood frame) - 233 L/s

The Fire Flow Requirement is based on 2 scenarios of how the building is built which is reflected in their respective FUS sheet. Scenario 1 is if the building complies with the characteristics of an ordinary construction classification and Scenario 2 where it is built with the characteristics of a wood frame classification.

Information and calculations for each scenario can be found in their respective FUS sheet attached to the email.

Thanks in advance.

Sincerely

Kris Kilborn

Senior Associate, Community Development, Business Center Sector Leader (BCSL)

Direct: (613) 724-4337 Mobile: (613) 297-0571 Fax: (613) 722-2799 Stantec Consulting Ltd. 400 - 1331 Clyde Avenue Ottawa ON K2C 3G4 CA

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

This e-mail originates from the City of Ottawa e-mail system. Any distribution, use or copying of this e-mail or the information it contains by other than the intended recipient(s) is unauthorized. Thank you.

Le présent courriel a été expédié par le système de courriels de la Ville d'Ottawa. Toute distribution, utilisation ou reproduction du courriel ou des renseignements qui s'y trouvent par une personne autre que son destinataire prévu est interdite. Je vous remercie de votre collaboration.

Appendix B Wastewater Servicing May 7, 2018

Appendix B WASTEWATER SERVICING

B.1 SANITARY SEWER DESIGN SHEET

Stantec

105-109 Henderson Avenue

DATE: 5/7/2018
REVISION: 1
DESIGNED BY: TR
CHECKED BY:

SANITARY SEWER DESIGN SHEET (City of Ottawa)

FILE NUMBER: 160401351

DESIGN PARAMETERS

MAX PEAK FACTOR (RES.)= AVG. DAILY FLOW / PERSON MINIMUM VELOCITY 4.0 280 l/p/day 0.60 m/s MIN PEAK FACTOR (RES.)= COMMERCIAL MAXIMUM VELOCITY 2.0 2.4 28,000 l/ha/day 3.00 m/s PEAKING FACTOR (RES.)=
PEAKING FACTOR (INDUSTRIAL):
PEAKING FACTOR (COMM., INST.): INDUSTRIAL (HEAVY) 55,000 l/ha/day MANNINGS n 0.013 1.5 INDUSTRIAL (LIGHT) 35,000 l/ha/day BEDDING CLASS В 1.4 2.1 PERSONS / BACHELOR APT INSTITUTIONAL 28,000 l/ha/day MINIMUM COVER 2.50 m PERSONS / 2 BED APT INFILTRATION 0.33 I/s/Ha

PERSONS / 3 BED APT 3.1

LOCATION																		T										_				$\overline{}$
		-	RESIDENTIAL	AREA AND P	OPULATION				COMMI	ERCIAL	INDUST	RIAL (L)	INDUSTR	RIAL (H)	INSTITU	TIONAL	GREEN / U	NUSED	C+I+I		NFILTRATION		TOTAL				PIF	Æ				
AREA ID FROM TO	AREA	UNITS		POP.	CUMULAT	TIVE	PEAK	PEAK	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	AREA	ACCU.	PEAK	TOTAL	ACCU.	INFILT.	FLOW	LENGTH	DIA	MATERIAL	CLASS	SLOPE	CAP.	CAP. V	VEL.	VEL.
NUMBER M.H. M.H.	Bachelor	2 BED	3 BED		AREA	POP.	FACT.	FLOW		AREA		AREA		AREA		AREA		AREA	FLOW	AREA	AREA	FLOW							(FULL)	PEAK FLOW	(FULL)	(ACT.)
	(ha)				(ha)			(l/s)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(l/s)	(ha)	(ha)	(l/s)	(l/s)	(m)	(mm)			(%)	(l/s)	(%)	(m/s)	(m/s)
BLDG BLDG TEE	0.065 6	4	10	48	0.065	48	4.00	0.62	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.065	0.065	0.02	0.64	11.8	135	PVC	SDR 28	1.00	11.5	5.57%	0.80	0.35
																									250							

1 of 1 160401351_san_2018-04-24.xlsx

Appendix C Stormwater Management May 7, 2018

Appendix C STORMWATER MANAGEMENT

C.1 STORM SEWER DESIGN SHEET

10	05-109 Hend	erson Avenue										TERS	(As per C	ity of Otta	wa Guideli	nes, 2012	2)												
DATE:		7-M	ay-2018			(City of	Ottawa)				1:2 yr	1:100 yr																	
REVISION:			1			` •	•			a =	732.951	1735.688	MANNING	S n=	0.013		BEDDING (CLASS =	В										
DESIGNED B	Y:		TR	FILE NUM	BER: 1604	4-01351				b =	6.199	6.014	MINIMUM	COVER:	2.00	m													
CHECKED B,	′ :									c =	0.810	0.820	TIME OF E	NTRY	10	min													
LOCATION									DRAINA	GE AREA													PIPE SELEC	CTION					
FROM	TO	AREA	AREA	AREA	С	ACCUM.	AxC	ACCUM.	ACCUM.	AxC	ACCUM.	T of C	I2 _{-YEAR}	I _{100-YEAR}	Q _{CONTROL}	ACCUM.	Q _{ACT}	LENGTH	PIPE WIDTH	PIPE	PIPE	MATERIAL	CLASS	SLOPE	Q_{CAP}	% FULL	VEL.	VEL.	TIME OF
M.H.	M.H.	(2-YEAR	(100-YEAR)	(ROOF)		AREA (2YR)	(2-YEAR)	AxC (2YR)	AREA (100Y	R (100-YEAR) AxC (100YR)			(NOTE 1)	Q _{CONTROL}	(CIA/360)	(OR DIAMETEI	HEIGHT	SHAPE				(FULL)		(FULL)	(ACT)	FLOW
		(ha)	(ha)	(ha)	(-)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(min)	(mm/h)	(mm/h)	(L/s)	(L/s)	(L/s)	(m)	(mm)	(mm)	(-)	(-)	(-)	%	(L/s)	(-)	(m/s)	(m/s)	(min)
								·														•							
BLDG	MAIN	0.065	0.00	0.00	0.70	0.07	0.046	0.046	0.00	0.000	0.000	10.00	76.81	178.56	0.0	0.0	9.71	11.5	200	200	CIRCULAR	PVC	-	17.10	137.7	7.05%	4.33	2.09	0.09
												10.09							675	675									
_	DATE: REVISION: DESIGNED B' CHECKED BY LOCATION FROM M.H.	DATE: REVISION: DESIGNED BY: CHECKED BY: LOCATION FROM TO M.H. M.H.	DATE: 7-M: REVISION: DESIGNED BY: CHECKED BY: LOCATION FROM TO AREA M.H. M.H. (2-YEAR) (ha)	REVISION: 1 DESIGNED BY: TR CHECKED BY: LOCATION FROM TO AREA AREA M.H. M.H. (2-YEAR) (100-YEAR) (ha) (ha)	DATE: 7-May-2018 REVISION: 1 DESIGNED BY: TR FILE NUM! CHECKED BY: LOCATION FROM TO AREA AREA AREA M.H. M.H. (2-YEAR) (100-YEAR) (ROOF) (ha) (ha) (ha)	DATE: 7-May-2018	DESIGN	DESIGN SHEET	DATE: 7-May-2018 (City of Ottawa)	DESIGN SHEET	DESIGN SHEET	DESIGN SHEET	DESIGN SHEET	DESIGN SHEET	DESIGN SHEET	DESIGN SHEET	DESIGN SHEET	DESIGN SHEET DATE: 7-May-2018 (City of Ottawa)	DESIGN SHEET FILE NUMBER: 1604-01351 F	Total State Stat	Total File File Total File File	A	Total From From	Second	Paris Pari	This is not	Paris Pari	Second S	This contribute This contr

Appendix C Stormwater Management May 7, 2018

C.2 RATIONAL METHOD CALCULATIONS

Stormwater Management Calculations

File No: **160401351**

Project: 105-109 Henderson Avenue
Date: 07-May-18

SWM Approach: Post-development to Pre-development flows

Post-Development Site Conditions:

Overall Runoff Coefficient for Site and Sub-Catchment Areas

		Runoff C	Coefficient Table					
Sub-catch			Area		inoff			Overall
Area Catchment Type	ID / Description		(ha) "A"		ficient 'C"	"A	x C"	Runoff Coefficient
Uncontrolled - Tributary	UNC-1	Hard	0.007		0.9	0.006		
		Soft	0.001		0.2	0.000		
	Su	ıbtotal		800.0			0.006232	0.82
Uncontrolled - Tributary	UNC-2	Hard	0.000	(0.9	0.000		
		Soft	0.002	(0.2	0.000		
	Su	ıbtotal		0.002			0.00035	0.20
Roof	BLDG 1	Hard	0.024	(0.9	0.021		
		Soft	0.000	(0.2	0.000		
	Su	ıbtotal		0.024			0.0211707	0.90
Roof	BLDG 2	Hard	0.007	(0.9	0.006		
		Soft	0.000	(0.2	0.000		
	Su	ıbtotal		0.007			0.005949	0.90
Controlled - Tributary	CB-1	Hard	0.008	(0.9	0.008		
,		Soft	0.015	(0.2	0.003		
	Su	ıbtotal		0.024			0.010575	0.45
Total				0.063			0.044	
Overall Runoff Coefficient= C:								0.70

Total Roof Areas	0.030 ha
Total Tributary Surface Areas (Controlled and Uncontrolled)	0.033 ha
Total Tributary Area to Outlet	0.063 ha
Total Uncontrolled Areas (Non-Tributary)	0.000 ha
Total Site	0.063 ha

Stormwater Management Calculations

Project #160401351, 105-109 Henderson Avenue
Modified Rational Method Calculatons for Storage

	2 yr Intensit		I = a/(t + b) ^c	a =		t (min)	l (mm/hr)	
	City of Otta	wa		b = c =	6.199 0.81	5 10	103.57 76.81	
			•			15 20	61.77 52.03	
						25	45.17	
						30 35	40.04 36.06	
						40 45	32.86 30.24	
						50	28.04	
						55 60	26.17 24.56	
	2	YFAR Prede	velopment Ta	rnet Release	from Portio			
0				-	II OIII I OILI	on or one		
Subura	Area (ha):	0.0630	t Tributary Area t	o Ouliet				
	C:	0.40						
	Typical Time	of Concentrati	on					
	tc (min)	l (2 yr) (mm/hr)	Qtarget (L/s)					
	10	76.81	5.38					
	2 YEAR M	odified Rati	onal Method f	or Entire Site	1			
Subdra	inage Area:	UNC-1				Uncontrol	ed - Tributary	
	Area (ha): C:	0.008 0.82						
	tc	l (5 yr)	Qactual	Qrelease	Qstored	Vstored		
	(min) 10	(mm/hr) 76.81	(L/s) 1.33	(L/s) 1.33	(L/s)	(m^3)		
	20 30	52.03 40.04	0.90	0.90				
	40	32.86	0.57	0.57				
	50 60	28.04 24.56	0.49 0.43	0.49 0.43				
	70 80	21.91 19.83	0.38 0.34	0.38 0.34				
	90 100	18.14 16.75	0.31	0.31				
	110	15.57	0.27	0.27				
Subdra	120 inage Area:	14.56 UNC-2	0.25	0.25			0.00	
	Area (ha): C:	0.002 0.20						
	tc	I (5 yr)	Qactual	Qrelease	Qstored	Vstored		
	(min) 10	(mm/hr) 76.81	(L/s) 0.07	(L/s) 0.07	(L/s)	(m^3)		
	20	52.03	0.05	0.05				
	30 40	40.04 32.86	0.04 0.03	0.04 0.03				
	50 60	28.04 24.56	0.03 0.02	0.03 0.02				
	70 80	21.91 19.83	0.02 0.02	0.02 0.02				
	90	18.14	0.02	0.02				
	100 110	16.75 15.57	0.02 0.02	0.02 0.02				
Subdra	120 inage Area:	14.56 BLDG 1	0.01	0.01			Roof	
	Area (ha): C:	0.024 0.90			Maximum Sto	rage Depth:	150	mm
	tc	I (2 yr)	Qactual	Qrelease	Qstored	Vstored	Depth	
	(min) 10	(mm/hr) 76.81	(L/s) 4.52	(L/s) 1.48	(L/s) 3.04	(m^3) 1.82	(mm) 84.9	0.00
	20	52.03	3.06 2.36	1.49	1.57	1.89	85.9	0.00
	30 40	40.04 32.86	1.93	1.46 1.42	0.90 0.51	1.61 1.22	81.6 75.7	0.00
	50 60	28.04 24.56	1.65 1.45	1.36 1.30	0.29 0.15	0.87 0.53	65.6 55.6	0.00
	70 80	21.91 19.83	1.29 1.17	1.21 1.11	0.08 0.06	0.33 0.28	48.0 44.0	0.00
	90	18.14	1.07	1.02	0.04	0.23	40.6	0.00
	100 110	16.75 15.57	0.99 0.92	0.95 0.89	0.03	0.20 0.17	37.7 35.3	0.00
	120	14.56	0.86	0.84	0.02	0.14	33.2	0.00
torage:	Roof Storage							
		Depth (mm)	Head (m)	Discharge (L/s)	Vreq (cu. m)	Vavail (cu. m)	Discharge Check	
	Water Level	85.9	0.09	1.49	1.89	9.45	OK	
2-year	Trutor Ecror							
-	,	81.800						
-	inage Area: Area (ha):	BLDG 2 0.007			Maximum Sto	rage Depth:	Roof 150	mm
-	inage Area:	0.007 0.90					150	mm
-	inage Area: Area (ha): C:	0.007	Qactual (L/s)	Qrelease	Qstored	Vstored	Depth	mm
-	inage Area: Area (ha): C:	0.007 0.90	(L/s) 1.27	Qrelease (L/s) 0.63	Qstored (L/s) 0.64		Depth (mm) 77.6	0.00
-	tc (min) 10 20 30	0.007 0.90 I (2 yr) (mm/hr) 76.81 52.03 40.04	1.27 0.86 0.66	Qrelease (L/s) 0.63 0.63 0.63	Qstored (L/s) 0.64 0.23 0.03	Vstored (m^3) 0.38 0.28 0.06	Depth (mm) 77.6 68.6 37.6	0.00 0.00 0.00
-	inage Area: Area (ha): C: tc (min) 10 20 30 40 50	0.007 0.90 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04	1.27 0.86 0.66 0.54 0.46	Qrelease (L/s) 0.63 0.63 0.63 0.54 0.46	Qstored (L/s) 0.64 0.23 0.03 0.00 0.00	Vstored (m^3) 0.38 0.28 0.06 0.01 0.01	Depth (mm) 77.6 68.6 37.6 21.4 18.3	0.00 0.00 0.00 0.00
-	tc (min) 10 20 30 40	0.007 0.90 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91	1.27 0.86 0.66 0.54	Qrelease (L/s) 0.63 0.63 0.63 0.54	Qstored (L/s) 0.64 0.23 0.03 0.00	Vstored (m^3) 0.38 0.28 0.06 0.01	Depth (mm) 77.6 68.6 37.6 21.4	0.00 0.00 0.00 0.00
-	inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80	0.007 0.90 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83	(L/s) 1.27 0.86 0.66 0.54 0.46 0.41 0.36 0.33	Qrelease (L/s) 0.63 0.63 0.63 0.54 0.46 0.40 0.36 0.33	Qstored (L/s) 0.64 0.23 0.03 0.00 0.00 0.00 0.00 0.00	Vstored (m^3) 0.38 0.28 0.06 0.01 0.01 0.01 0.01 0.01	77.6 68.6 37.6 21.4 18.3 16.0 14.3 12.9	0.00 0.00 0.00 0.00 0.00 0.00 0.00
-	tc (min) 10 20 30 40 50 60 70 80 90 100	0.007 0.90 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75	(L/s) 1.27 0.86 0.66 0.54 0.46 0.41 0.36 0.33 0.30 0.28	Qrelease (L/s) 0.63 0.63 0.63 0.54 0.46 0.40 0.36 0.33 0.28	Qstored (L/s) 0.64 0.23 0.03 0.00 0.00 0.00 0.00 0.00 0.00	Vstored (m^3) 0.38 0.28 0.06 0.01 0.01 0.01 0.01 0.01 0.01	Depth (mm) 77.6 68.6 37.6 21.4 18.3 16.0 14.3 12.9 11.8 10.9	0.00 0.00 0.00 0.00 0.00 0.00 0.00
-	inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90	0.007 0.90 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14	(L/s) 1.27 0.86 0.66 0.54 0.46 0.41 0.36 0.33 0.30	Qrelease (L/s) 0.63 0.63 0.63 0.54 0.46 0.40 0.36 0.33	Qstored (L/s) 0.64 0.23 0.03 0.00 0.00 0.00 0.00 0.00 0.00	Vstored (m^3) 0.38 0.28 0.06 0.01 0.01 0.01 0.01 0.01	Depth (mm) 77.6 68.6 37.6 21.4 18.3 16.0 14.3 12.9 11.8	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
-	inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110	0.007 0.90 I (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57	(L/s) 1.27 0.86 0.66 0.54 0.46 0.41 0.36 0.33 0.30 0.28 0.26	Qrelease (L/s) 0.63 0.63 0.63 0.54 0.46 0.40 0.36 0.33 0.30 0.28	Ostored (L/s) 0.64 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Vstored (m^3) 0.38 0.28 0.06 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Depth (mm) 77.6 68.6 37.6 21.4 18.3 16.0 14.3 12.9 11.8 10.9 10.2	0.00 0.00 0.00 0.00 0.00 0.00 0.00
Subdra	inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110 120	0.007 0.90 1 (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56	(L/s) 1.27 0.86 0.66 0.54 0.41 0.36 0.33 0.30 0.28 0.26 0.24	Qrelease (L/s) 0.63 0.63 0.63 0.54 0.46 0.40 0.36 0.33 0.33 0.30 0.28 0.26	Qstored (L/s) 0.64 0.23 0.03 0.00 0.00 0.00 0.00 0.00 0.00	Vstored (m^3) 0.38 0.28 0.06 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Depth (mm) 77.6 68.6 37.6 21.4 18.3 16.0 14.3 12.9 11.8 10.9 10.2 9.5	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Subdra Subdra	inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110 120 Roof Storage	0.007 0.90 1 (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 15.57 14.56	(L/s) 1.27 0.86 0.66 0.54 0.46 0.41 0.36 0.33 0.30 0.28 0.26 0.24	Qrelease (L/s) 0.63 0.63 0.63 0.54 0.46 0.40 0.36 0.33 0.26 0.22 0.24	Qstored (L/s)	Vstored (m^3) 0.38 0.28 0.06 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Depth (mm) 77.6 68.6 68.6 21.4 18.3 16.0 14.3 11.9 11.9 10.2 9.5	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Subdra Subdra	inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 110 120	0.007 0.90 1 (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 14.56	(L/s) 1.27 0.86 0.66 0.54 0.46 0.41 0.36 0.33 0.30 0.28 0.28	Qrelease (L/s) 0.63 0.63 0.63 0.54 0.46 0.36 0.36 0.36 0.32 0.26 0.24	Qstored (L/s) 0.64 0.23 0.03 0.00 0.00 0.00 0.00 0.00 0.00	Vstored (m^2s) 0.38 0.28 0.06 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Depth (mm) 77.6 68.6 37.6 21.4 18.3 16.0 14.3 12.9 11.8 10.9 5.5 Discharge	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Subdra Subdra torage:	inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Roof Storage Water Level	0.007 0.90 1 (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 14.56	(L/s) 1.27 0.86 0.66 0.54 0.46 0.41 0.36 0.33 0.30 0.28 0.26 0.24	Qrelease (L/s) 0.63 0.63 0.63 0.54 0.46 0.40 0.36 0.33 0.26 0.22 0.24	Qstored (L/s)	Vstored (m'3) 0.38 0.28 0.06 0.01 0.01 0.01 0.01 0.01 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000	Depth (mm) 77.6 68.6 68.6 21.4 18.3 16.0 14.3 11.9 11.9 10.2 9.5	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
Subdra Subdra torage:	inage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70 80 90 100 110 120 Roof Storage	0.007 0.90 1 (2 yr) (mm/hr) 76.81 52.03 40.04 32.86 28.04 24.56 21.91 19.83 18.14 16.75 14.56	(L/s) 1.27 0.86 0.66 0.54 0.46 0.41 0.36 0.33 0.30 0.28 0.26 0.24	Qrelease (L/s) 0.63 0.63 0.63 0.54 0.46 0.40 0.36 0.33 0.26 0.22 0.24	Qstored (L/s)	Vstored (m'3) 0.38 0.28 0.06 0.01 0.01 0.01 0.01 0.01 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000	Depth (mm) 77.6 68.6 68.6 68.6 14.3 12.9 11.8 10.9 9.5 Discharge Check OK	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Subdrainage Area: P Area (ha): C: 2-Yea Les	00 YEAR Pre redevelopment 0.0410 0.0410 0.0400 ir Pre Development Target Woodified Rat UNC-1 0.008 0.82 1(100 yr) (mm/hr) 178.55 119.95	ment Discharge y Discharge of Release Rate	-	1735,688 6.014 0.820 e from Portion of L/s L/s L/s		I (mm/hr) 242.70 178.56 142.89 119.95 103.85 91.87 82.56 69.05 63.95 59.62 555.89	
Subdrainage Area: P Area (ha): C: 2-Yea Les 100 YEAR I Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70	redevelopment 0.0410 0.40 ur Pre Developr s Peak Sanitar Target Wodified Rat UNC-1 0.008 0.82 I (100 yr) (mm/hr) 178.56	ment Discharge y Discharge of Release Rate	Target Release o Outlet Otarget 5.38 0.64 4.74	E/s L/s L/s	15 20 25 30 35 40 45 50 55 60	142.89 119.95 103.85 91.87 82.58 75.15 69.05 63.95 59.62 55.89	
Subdrainage Area: PArea (ha): C: 2-Yea Les 100 YEAR I Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70	redevelopment 0.0410 0.40 ur Pre Developr s Peak Sanitar Target Wodified Rat UNC-1 0.008 0.82 I (100 yr) (mm/hr) 178.56	ment Discharge y Discharge of Release Rate	Ottlet Qtarqet 5.38 0.64 4.74	L/s L/s	20 25 30 35 40 45 50 55 60	119.95 103.85 91.87 82.58 75.15 69.05 63.95 59.62 55.89	
Subdrainage Area: PArea (ha): C: 2-Yea Les 100 YEAR I Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70	redevelopment	ment Discharge y Discharge of Release Rate	Ottlet Qtarqet 5.38 0.64 4.74	L/s L/s	30 35 40 45 50 55 60	91.87 82.58 75.15 69.05 63.95 59.62 55.89	
Subdrainage Area: PArea (ha): C: 2-Yea Les 100 YEAR I Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70	redevelopment	ment Discharge y Discharge of Release Rate	Ottlet Qtarqet 5.38 0.64 4.74	L/s L/s	35 40 45 50 55 60	82.58 75.15 69.05 63.95 59.62 55.89	
Subdrainage Area: PArea (ha): C: 2-Yea Les 100 YEAR I Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70	redevelopment	ment Discharge y Discharge of Release Rate	Ottlet Qtarqet 5.38 0.64 4.74	L/s L/s	40 45 50 55 60 0	75.15 69.05 63.95 59.62 55.89	
Subdrainage Area: PArea (ha): C: 2-Yea Les 100 YEAR I Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70	redevelopment	ment Discharge y Discharge of Release Rate	Ottlet Qtarqet 5.38 0.64 4.74	L/s L/s	50 55 60 of Site	63.95 59.62 55.89	_
Subdrainage Area: P Area (ha): C: 2-Yea Les 100 YEAR I Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70	redevelopment	ment Discharge y Discharge of Release Rate	Ottlet Qtarqet 5.38 0.64 4.74	L/s L/s	55 60 of Site	59.62 55.89	_
Subdrainage Area: P Area (ha): C: 2-Yea Les 100 YEAR I Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70	redevelopment	ment Discharge y Discharge of Release Rate	Ottlet Qtarqet 5.38 0.64 4.74	L/s L/s	of Site		
Subdrainage Area: P Area (ha): C: 2-Yea Les 100 YEAR I Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70	redevelopment	ment Discharge y Discharge of Release Rate	Ottlet Qtarqet 5.38 0.64 4.74	L/s L/s			
C: 2-Yea Les 100 YEAR I Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70	0.40 If Pre Developr S Peak Sanitar Target Wodified Rat UNC-1 0.008 0.82 I (100 yr) (mm/hr) 178.56 119.95	y Discharge of Release Rate	5.38 0.64 4.74	L/s	Uncontrolle		
100 YEAR I Subdrainage Area: Area (ha): t: (min) 10 20 30 40 50 60 70	S Peak Sanitar Target Wodified Rat UNC-1 0.008 0.82 I (100 yr) (mm/hr) 178.56 119.95	y Discharge of Release Rate	5.38 0.64 4.74	L/s	Uncontrolle		
100 YEAR I Subdrainage Area: Area (ha): C: tc (min) 10 20 30 40 50 60 70	UNC-1 0.008 0.82 I (100 yr) (mm/hr) 178.56 119.95	Release Rate	4.74		Uncontrolle		
Subdrainage Area:	UNC-1 0.008 0.82 I (100 yr) (mm/hr) 178.56 119.95	Qactual	for Entire Site		Uncontrolle		
Area (ha): C: tc (min) 10 20 30 40 50 60 70	0.008 0.82 I (100 yr) (mm/hr) 178.56 119.95				Uncontrolle		
tc (min) 10 20 30 40 50 60 70	0.82 I (100 yr) (mm/hr) 178.56 119.95					ed - Tributary	
(min) 10 20 30 40 50 60 70	(mm/hr) 178.56 119.95						
10 20 30 40 50 60 70	178.56 119.95	(L/s)	Qrelease (L/s)	Qstored (L/s)	Vstored (m^3)		
30 40 50 60 70		3.09 2.08	3.09 2.08				
50 60 70	91.87	1.59	1.59				
60 70	75.15	1.30	1.30				
	63.95 55.89	1.11 0.97	1.11 0.97				
80	49.79 44.99	0.86 0.78	0.86 0.78				
90	41.11	0.71	0.71				
100 110	37.90 35.20	0.66 0.61	0.66 0.61				
120	32.89 UNC-2	0.57	0.57			0.00	
Subdrainage Area: Area (ha): C:	0.002 0.20					0.00	
tc	I (100 yr)	Qactual	Qrelease	Qstored	Vstored		
(min) 10	(mm/hr) 178.56	(L/s) 0.17	(L/s) 0.17	(L/s)	(m^3)		
20 30	119.95 91.87	0.12 0.09	0.12				
40	75.15	0.07	0.07				
50 60	63.95 55.89	0.06 0.05	0.06 0.05				
70	49.79	0.05	0.05				
80 90	44.99 41.11	0.04 0.04	0.04 0.04				
100	37.90	0.04	0.04				
110 120	35.20 32.89	0.03 0.03	0.03				
Subdrainage Area: Area (ha):	BLDG 1 0.024			Maximum Sto	orage Depth:	Roof 150	mm
C:	0.90 I (100 yr)	Qactual	Qrelease	Qstored	Vstored	Depth	ſ
(min) 10	(mm/hr) 178.56	(L/s) 10.51	(L/s) 1.72	(L/s) 8.79	(m^3) 5.27	(mm) 123.2	١ .
20	119.95	7.06	1.77	5.29	6.35	130.5	0
30	91.87	5.41	1.78	3.63	6.53	131.7	0
40 50	75.15 63.95	4.42 3.76	1.77 1.76	2.65 2.01	6.37 6.02	130.6 128.5	0
60	55.89	3.29	1.74	1.55	5.58	125.7	0
70 80	49.79 44.99	2.93 2.65	1.71 1.68	1.22 0.96	5.11 4.62	121.6 117.1	0
90	41.11	2.42	1.66	0.76	4.13	112.4	0
100 110	37.90 35.20	2.23 2.07	1.63 1.60	0.60 0.47	3.63 3.13	107.8 103.1	0
120	32.89	1.94	1.56	0.37	2.67	98.0	0
orage: Roof Storage							
	Depth (mm)	Head (m)	Discharge (L/s)	Vreq (cu. m)	Vavail (cu. m)	Discharge Check	
100-year Water Level	131.7	0.13	1.78	6.53	9.45	OK	
Subdrainage Area: Area (ha): C:	BLDG 2 0.007 0.90			Maximum Sto	orage Depth:	Roof 150	mm
tc	l (100 yr)	Qactual	Qrelease	Qstored	Vstored	Depth	ſ
(min) 10	(mm/hr) 178.56	(L/s) 2.95	(L/s) 0.63	(L/s) 2.32	(m^3) 1.39	(mm) 119.7	l o
20	119.95	1.98	0.63	1.35	1.62	126.6	0
30 40	91.87 75.15	1.52 1.24	0.63 0.63	0.89 0.61	1.60 1.47	126.0 122.2	0
50	63.95	1.06	0.63	0.43	1.28	116.0	0
60 70	55.89 49.79	0.92 0.82	0.63 0.63	0.29 0.19	1.06 0.81	108.6 100.4	0
80	44.99	0.74	0.63	0.11	0.54	86.3	0
90	41.11	0.68	0.63	0.05	0.26	67.5	0
100 110	37.90 35.20	0.63 0.58	0.62 0.58	0.00	0.01	24.8 23.0	0
120 orage: Roof Storage	32.89	0.54	0.54	0.00	0.01	21.5	0
nuu sulage	Depth	Head	Discharge	Vreq	Vavail	Discharge	l
100-year Water Level	(mm) 126.6	(m) 0.13	(L/s) 0.63	(cu. m) 1.62	(cu. m) 2.68	Check OK	
Subdrainage Area: C Area (ha):	0.024				Controlle	ed - Tributary	
C:	0.45 I (100 yr)	Qactual	Qrelease	Qstored	Vstored		

Stormwater Management Calculations

Project #160401351, 105-109 Henderson Avenue

	10	76.81		4.37	1.48	2.89	1.73	
	20	52.03		3.65	1.48	2.16	2.60	
	30	40.04		3.27	1.48	1.79	3.21	
	40	32.86		2.93	1.48	1.44	3.47	
	50	28.04		2.65	1.48	1.16	3.48	
	60	24.56		2.42	1.48	0.94	3.38	
	70	21.91		2.22	1.48	0.73	3.08	
	80	19.83		2.02	1.48	0.54	2.57	
	90	18.14		1.86	1.48	0.37	2.01	
	100	16.75		1.72	1.48	0.24	1.42	
	110	15.57		1.61	1.48	0.12	0.80	
	120	14.56		1.51	1.48	0.02	0.15	
Storage:	Above CB							
	Orifice Size:	LMF 40						
In	vert Elevation	67.88	m					
В	ottom of Tank	67.73	m					
	Top of Tank	69.08	m					
	T/G Elevation	69.58	m					
Max F	onding Depth	1.02	m					
Do	wnstream W/L	65.76	m					
	Г	Stage		Head	Discharge	Vreq	Vavail	Volume
				(m)	(L/s)	(cu. m)	(cu. m)	Check
2.400	ar Water Level	68.90		1.20	1.48	3.48	16.50	OK

Orifice Size:	LMF 40						
Invert Elevation	67.88	m					
Bottom of Tank	67.73	m					
Top of Tank	69.08	m					
T/G Elevation	69.58	m					
Max Ponding Depth	1.02	m					
Downstream W/L	65.76	m					
	Stage	Head	Discharge	Vreq	Vavail	Volume	1
		(m)	(L/s)	(cu. m)	(cu. m)	Check	
2-year Water Level		(m) 1.20	(L/s) 1.48	(cu. m) 3.48	16.50	OK	_
-		1.20	1.48	3.48			_
	Г	1.20 Tributary Area	0.063	3.48 ha	16.50 Vrequired	OK Vavailable*	_
	Г	1.20	0.063	3.48	16.50	OK Vavailable*	m³
-	Total 2y	1.20 Tributary Area rr Flow to Sewer	0.063 1.5 0.008	3.48 ha L/s	16.50 Vrequired	OK Vavailable*	m³
-	Total 2y	1.20 Tributary Area	0.063 1.5 0.008	3.48 ha L/s	16.50 Vrequired	OK Vavailable*	m³
	Total 2y	1.20 Tributary Area rr Flow to Sewer	0.063 1.5 0.008	ha L/s ha L/s	16.50 Vrequired	OK Vavailable*	m³
2-year Water Level	Total 2y	1.20 Tributary Area or Flow to Sewer n-Tributary Area ow Uncontrolled	0.063 1.5 0.008 1.4 0.071 2.9	ha L/s ha L/s	16.50 Vrequired	OK Vavailable*	m³

Project #160401351, 105-109 Henderson Avenue

Modified Rational Meth	nod Calcula	atons for Stor	age			
10	178.56	7.60	1.48	6.12	3.67	
20	119.95	5.93	1.48	4.44	5.33	
30	91.87	5.11	1.48	3.62	6.52	
40	75.15	4.61	1.48	3.13	7.50	
50	63.95	4.27	1.48	2.78	8.35	
60	55.89	4.01	1.48	2.53	9.11	
70	49.79	3.81	1.48	2.32	9.76	
80	44.99	3.64	1.48	2.15	10.34	
90	41.11	3.50	1.48	2.01	10.86	
100	37.90	3.37	1.48	1.88	11.29	
125	31.86	3.11	1.48	1.63	12.23	
130	30.90	3.02	1.48	1.53	11.95	
orage: Surface Stora	age Above CE	3				
Orifice Size:	LMF 40					
Inv. Elev.(orfice)	67.88	m				
Bottom of Tank	67.73	m				
Top of Tank	69.08	m				
T/G Elevation	69.58	m				
Max Ponding Depth	1.02	m				
Downstream W/L	65.76	m				
	Stage	Head	Discharge	Vreq	Vavail	Volume
		(m)	(L/s)	(cu. m)	(cu. m)	Check
					16.50	OK
100-year Water Level	70.60	1.20	1.48	12.23		
100-year Water Level	70.60	1.20	1.48	12.23	4.27	
	70.60	1.20	1.48	12.23		
	70.60	1.20	1.48	12.23		
	70.60	1.20 Tributary Area	0.063 ha	12.23	4.27	
				12.23	4.27	
<u> </u>	Total 100y	Tributary Area	0.063 ha	12.23	4.27 Vrequired	Vavailable*
UMMARY TO OUTLET	Total 100y	Tributary Area r Flow to Sewer	0.063 ha 1.5 L/s	12.23	4.27 Vrequired	Vavailable*
UMMARY TO OUTLET	Total 100y	Tributary Area r Flow to Sewer	0.063 ha 1.5 L/s 0.008 ha	12.23	4.27 Vrequired	Vavailable*
UMMARY TO OUTLET	Total 100v Non otal 100yr Flo	Tributary Area r Flow to Sewer I-Tributary Area w Uncontrolled	0.063 ha 1.5 L/s 0.008 ha 3.3 L/s	12.23	4.27 Vrequired	Vavailable*

Project #160401351, 105-109 Henderson Avenue Roof Drain Design Sheet, Area BLDG Standard Watts Model R1100 Accutrol Roof Drain

Max. Allowable Storage (cu.m) Estimated 100 Year Drawdown Time (h)

Rating Curve					Volume E	stimation		
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	e (cu. m)	Water Depth
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
0.025	0.0003	0.0006	0	0.025	5	0	0	0.025
0.050	0.0006	0.0013	0	0.050	21	0	0	0.050
0.075	0.0007	0.0014	1	0.075	47	1	1	0.075
0.100	0.0008	0.0016	3	0.100	84	2	3	0.100
0.125	0.0009	0.0017	5	0.125	131	3	5	0.125
0.150	0.0009	0.0019	9	0.150	189	4	9	0.150

9

1.1

Drawdown Estimate					
Total	Total				
Volume	Time	Vol	Detention		
(cu.m)	(sec)	(cu.m)	Time (hr)		
0.0	0.0	0.0	0		
0.3	242.7	0.3	0.06741		
1.1	585.5	8.0	0.23006		
2.8	1026.2	1.6	0.51512		
5.4	1538.1	2.7	0.94236		
9.4	2103.3	4.0	1.52661		

50%

0.6309

0.7886

0.9464

0.150 1.8927 1.5773 1.2618 0.9464 0.3155

0.125 1.5773 1.3407 1.1041

25% Closed 0.3155 0.3155 0.3155

0.6309 0.3155

0.7886 0.3155

0.8675 0.3155

0.3155

0.7098

Rooftop Storage Summary			-			
			_	From Wat	ts Drain C	atalog
Total Building Area (sq.m)		236.23		Head (m)	L/s	
Assume Available Roof Area (sq.	80%	188.984			Open	7
Roof Imperviousness		0.99		0.025	0.3155	0.31
Roof Drain Requirement (sq.m/Notch)		232		0.050	0.6309	0.63
Number of Roof Notches*		2		0.075	0.9464	0.86
Max Allowable Depth of Roof Ponding (m)		0.15	* As per Optario Building Code section OBC 7.4.10.4 (2)(c)	0.100	1 2618	1 10

^{*} Note: Number of drains can be reduced if multiple-notch drain used.

_			
Calculation Results	2yr	100yr	Available
Qresult (cu.m/s)	0.001	0.002	-
Depth (m)	0.086	0.132	0.150
Volume (cu.m)	1.9	6.5	9.4
Draintime (hrs)	0.4	1.1	

Project #160401351, 105-109 Henderson Avenue Roof Drain Design Sheet, Area BLDG Standard Watts Model R1100 Accutrol Roof Drain

Rating Curve					Volume E	stimation		
Elevation	Discharge Rate	Outlet Discharge	Storage	Elevation	Area	Volume	e (cu. m)	Water Depth
(m)	(cu.m/s)	(cu.m/s)	(cu. m)	(m)	(sq. m)	Increment	Accumulated	(m)
0.000	0.0000	0.0000	0	0.000	0	0	0	0.000
0.025	0.0003	0.0006	0	0.025	1	0	0	0.025
0.050	0.0003	0.0006	0	0.050	6	0	0	0.050
0.075	0.0003	0.0006	0	0.075	13	0	0	0.075
0.100	0.0003	0.0006	1	0.100	24	0	1	0.100
0.125	0.0003	0.0006	2	0.125	37	1	2	0.125
0.150	0.0003	0.0006	3	0.150	54	1	3	0.150

Drawdown Estimate					
Total	Total				
Volume	Time	Vol	Detention		
(cu.m)	(sec)	(cu.m)	Time (hr)		
0.0	0.0	0.0	0		
0.1	137.9	0.1	0.0383		
0.3	374.2	0.2	0.14225		
8.0	728.7	0.5	0.34467		
1.5	1201.4	0.8	0.6784		
2.7	1792.3	1.1	1.17626		

Rooftop Storage Summary			_						
			_	From Wa	tts Drain C	atalogue			
Total Building Area (sq.m)		67.1		Head (m)	L/s				
Assume Available Roof Area (sq.	80%	53.68			Open	75%	50%	25%	Closed
Roof Imperviousness		0.99		0.025	0.3155	0.3155	0.3155	0.3155	0.3155
Roof Drain Requirement (sq.m/Notch)		232		0.050	0.6309	0.6309	0.6309	0.6309	0.3155
Number of Roof Notches*		2		0.075	0.9464	0.8675	0.7886	0.7098	0.3155
Max. Allowable Depth of Roof Ponding (m)		0.15	* As per Ontario Building Code section OBC 7.4.10.4.(2)(c).	0.100	1.2618	1.1041	0.9464	0.7886	0.3155
Max. Allowable Storage (cu.m)		3		0.125	1.5773	1.3407	1.1041	0.8675	0.3155
Estimated 100 Year Drawdown Time (h)		0.7		0.150	1.8927	1.5773	1.2618	0.9464	0.3155

^{*} Note: Number of drains can be reduced if multiple-notch drain used.

Calculation Results	2yr	100yr	Available
Qresult (cu.m/s)	0.001	0.001	-
Depth (m)	0.078	0.127	0.150
Volume (cu.m)	0.4	1.6	2.7
Draintime (hrs)	0.2	0.7	

Appendix C Stormwater Management May 7, 2018

C.3 TANK DETAILS

16,500 LITRE PRECAST CONCRETE WATER HOLDING TANK MODEL H16.5L

WILKINSON HEAVY PRECAST LIMITED

DUNDAS, ONTARIO

1-800-263-8503

LOW PROFILE

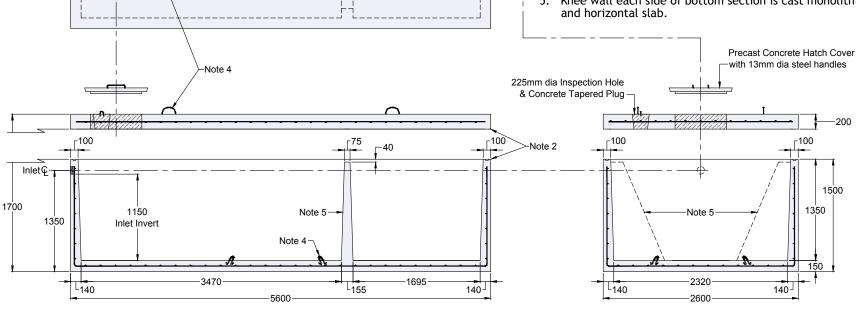
Tank Q-

CONSTRUCTION DETAILS *

Concrete: 35 MPa at 28 Days, 5 to 8% Air Entrainment.

Reinforcing: 10 M bars at 200 mm centres each way in walls and floor.

10 M bars at 200 mm centres each way in top slabs. Four extra 15 M bars around roof access opening.


Minimum cover over reinforcing steel - 25 mm.

Weight: Top Slab 7100 kg Tank Section 11,880 kg Total 18,880 kg

Actual Capacity: 12,378 Litres Per Vertical Metre. 16,710 Litres To Underside of Roof

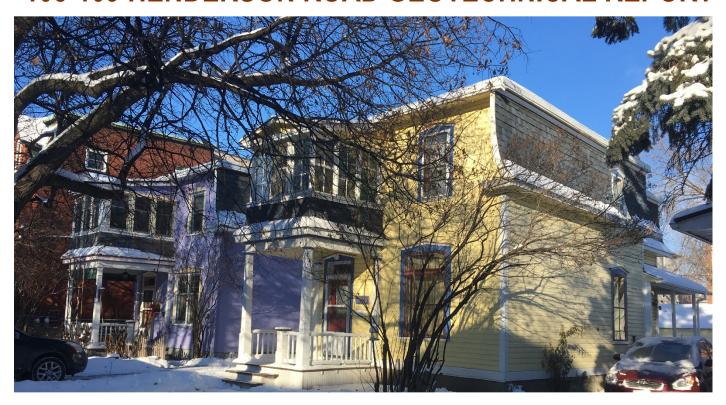
NOTES

- 1. Large 685 mm diameter roof access openings facilitate tank maintenance. Unless otherwise specified/ordered this tank will be shipped with 840 mm diameter concrete hatch cover. Please note that the cover weighs approximately 125 kg and must be handled only with suitable mechanical lifting equipment. Please see section for available options.
- Fibrous mastic sealant ensures a water-tight seal.
- 3. Flexible watertight inlet pipe connector in each end wall accommodates 100 mm diameter PVC pipe.
- 4. Top slab/tank section lifting points four places.
- Knee wall each side of bottom section is cast monolithically with the walls and horizontal slab.

Dimensions in mm

N.T.S.

For recommended installation procedures refer to Wilkinson


*Product designed for a Maximum 1 Metre burial over the top slab in firm soil beneath an area of vehicular traffic.

Appendix D Geotechnical Investigation May 7, 2018

Appendix D GEOTECHNICAL INVESTIGATION

105-109 HENDERSON ROAD GEOTECHNICAL REPORT

Project No.: CP-17-0638

Prepared for:

Daniel Boulanger

Director – Planning & Consultation TC United 800 Industrial Ave, Unit 9 Ottawa, ON K1G 4B8

Prepared by:

McIntosh Perry 115 Walgreen Rd, R.R. 3 Carp, ON K0A 1L0

March 2018

TABLE OF CONTENTS

1.0	INTRODUCTION	. 1
2.0	SITE DESCRIPTION	. 1
3.0	FIELD PROCEDURES	. 1
4.0	LABORATORY TEST PROCEDURES	. 2
5.0	SITE GEOLOGY AND SUBSURFACE CONDITIONS	. 2
5.1	Site Geology	2
5.2	Subsurface Conditions	3
5	.2.1 Fill	3
5	.2.2 Clay	3
5.3	Groundwater	3
5.4	Chemical Analysis	4
6.0	DISCUSSIONS AND RECOMMENDATIONS	. 4
6.1	General	4
6.2	Project Design	. 4
6	.2.1 Existing Site Condition	4
6	.2.2 Proposed Development	4
6.3	Frost Protection	. 5
6.4	Site Classification for Seismic Site Response	. 5
6.5	Engineered Fill	. 5
6.6	Slabs-on-Grade	. 5
6.7	Shallow Foundations	. 6
6	.7.1 Bearing Capacity	6
6.8	Protection of Subgrade	. 6
6.9	Lateral Earth Pressure	. 7
6.10	Cement Type and Corrosion Potential	. 7
7.0	CONSTRUCTION CONSIDERATIONS	. 7
8.0	SITE SERVICES	. 8
9.0	PAVEMENT STRUCTURE	. 9

10.0	CLOSURE	9
11.0	REFERENCES	1

APPENDICES

Appendix A – Limitations of Report

Appendix B - Figures

Appendix C – Borehole Records

Appendix D – Laboratory Test Results

Appendix E- Seismic Hazard Calculation

GEOTECHNICAL INVESTIGATION and FOUNDATION DESIGN RECOMMENDATION REPORT 105-109 Henderson Road, Ottawa, Ontario

1.0 INTRODUCTION

This report presents the factual findings obtained from a geotechnical investigation performed at the above-mentioned site, for the proposed construction of three-story apartment building with a basement, in the neighborhood of Sandy Hill in Ottawa, Ontario. It is understood the existing residential homes will remain in place, and the proposed construction will be in the backyard of these properties. The field work was carried out on January 31, 2018 and comprised of two boreholes advanced to a maximum depth of 17.2 m below existing ground surface.

The purpose of the investigation was to explore the subsurface conditions at this site and to provide anticipated geotechnical conditions influencing the design and construction of the proposed building.

McIntosh Perry Consulting Engineers Ltd (McIntosh Perry) carried out the investigation at the request of TC United.

2.0 SITE DESCRIPTION

The property under consideration for proposed development is located at 105 and 109 Henderson Avenue in the Sandy Hill neighbourhood of Ottawa. Henderson Avenue is a southbound one-way avenue containing high density residential properties. The property to the south of 109 Henderson is a Hydro Ottawa building, with multiplexes bordering the East and North property lines of both properties. The properties have very minimal vegetation and the grade is relatively flat. 109 Henderson Avenue has a garage at the rear of the property bordering the fence line with 105 Henderson Avenue. At the south end of Henderson Avenue at Somerset Street, grade drops significantly to the South.

It is understood based on the concept plans provided, the proposed structure will be a 3-story building, with a basement. The proposed building will be surrounded with an asphalt parking lot.

Location of the property is shown on Figure 1, included in Appendix B.

3.0 FIELD PROCEDURES

Staff of McIntosh Perry Consulting Engineers (McIntosh Perry) visited the site before the drilling investigation to mark out the proposed borehole locations. Utility clearance was carried out by USL-1 on behalf of McIntosh Perry. Public and private utility authorities were informed and all utility clearance documents were obtained before the commencement of drilling work.

The equipment used for drilling was owned and operated by George Downing Estate Drilling Ltd. of Hawkesbury, Ontario. Boreholes were advanced using hollow and solid stem augers aided by track-mounted LC-55 drilling rig. Boreholes were advanced to a maximum depth of 17.2 m below the ground level. Soil samples were obtained at 0.75 m intervals of depth in boreholes using a 50 mm outside diameter split spoon sampler in accordance with the Standard Penetration Test (SPT) procedure. MTO 'N' vane tests were taken to measure in-situ shear strength of cohesive material. In boreholes BH18-1, the investigation was advanced beyond the sampled depth with Dynamic Cone Penetration Tests (DCPT) to the termination depth. Boreholes were backfilled with auger cuttings. All boreholes were restored to match the original surface. Borehole locations are shown on Figure 2, included in Appendix B.

4.0 LABORATORY TEST PROCEDURES

Laboratory testing on representative SPT samples was performed at McIntosh Perry geotechnical lab included moisture content, and Atterberg Limit Testing. Atterberg Limit test and moisture content was done on retrieved SPT samples, was tested by LRL Ltd. The laboratory tests to determine index properties were performed in accordance with CCIL test procedures, which follow American Society for Testing Materials (ASTM) test procedures.

The rest of the soil samples recovered will be stored in McIntosh Perry storage facility for a period of one month after submission of the final report. Samples will be disposed after this period of time unless otherwise requested in writing by the Client.

Laboratory tests are included in Appendix C.

5.0 SITE GEOLOGY AND SUBSURFACE CONDITIONS

5.1 Site Geology

Based on published physiography maps of the area (Ontario Geological Survey) the site is located within the Ottawa Valley Clay Plains. Surficial geology maps of southern Ontario identify the property as on older alluvial deposits.

The Ottawa Valley between Pembroke and Hawkesbury, Ontario consists of clay plains interrupted by ridges of rock or sand. It is naturally divided into two parts, above and below Ottawa, Ontario. Within the valley, the bedrock is further faulted so that some of the uplifted blocks appear above the clay beds. The sediments themselves in the valley are deep silty clay. Although the clay deposits are grey in color like the lime stones that underlies them in part, they are only mildly calcareous and likely derived from the more acidic rock of the Canadian Shield.

5.2 Subsurface Conditions

In general, the site stratigraphy consists of a topsoil, underlain by fill material, followed by a silty clay. The soils encountered at this site can be divided into two different zones.

- a) Fill
- b) Clay

The soils encountered during the course of the investigation, together with the field and laboratory test results are shown on the Record of Borehole sheets included in Appendix C. Description of the strata encountered are given below.

5.2.1 Fill

At the top of both boreholes a layer of topsoil was observed, the thickness of the topsoil was observed to be between 150 and 300 mm. Under the topsoil was silty sand fill, observed to have trace to some clay, and trace gravel. The fill was observed to be loose, brown and moist. SPT 'N' values were observed to be between 3 to 6 blows/300mm. The fill was observed to extend to a depth of 1.5 m.

5.2.2 Clay

The clay was observed to be stiff to firm, moist to wet and grey. Moisture content within the weathered crust was an average of 51%. Within the weathered clay crust SPT 'N' values ranged from 4 to 11 blows/300 mm, below the crust SPT 'N' values ranged from 0 to 2 blows/300 mm, with an average moisture content of 51%. Boreholes BH17-4 and BH17-5, were advanced with DCPT, values were observed to be between 0 and 16 blows/300mm. MTO N-sized vane tests were conducted which estimated the in-situ shear strength of the layer ranged from 38 kPa to 102 kPa (firm to stiff), with an average of 70kPa, and sensitivity ranging between 13 and 3, indicating non-sensitive to highly sensitive clay. Three Atterberg Limit test were conducted on representative samples and found to be clay of high-plasticity (CH). Results showed the liquid limit values range from 80% to 81% and the plastic limit range from 27% to 30%. Test results are shown on Figure 3, included in Appendix B. Moisture content of sample tested below the weathered crust for Atterberg Limits, indicate the natural moisture content of the sample is close to the liquid limit of the sample, indicating the layer is in a sensitive state. The thickness of the clay layer was observed to be 15.7 m, terminating at a depth of 17.2 m from the existing ground surface (El. 82.2 m). Bottom of the clay layer was determined to be at DCPT refusal on probable bedrock.

5.3 Groundwater

Groundwater was not observed in open boreholes. Moisture content of the clay was observed to increase at an approximate depth of 3.5-4.0 m. Groundwater level may be expected to fluctuate due to seasonal changes.

5.4 Chemical Analysis

The chemical test results conducted by Paracel Laboratories in Ottawa, Ontario, to determine the resistivity, pH, sulphate and chloride content of representative soil sample are shown in Table 5-1 below:

Chloride Depth / Sulphate Resistivity **Borehole** Sample pН El. (m) (%) (%) (Ohm-cm) BH18-1 SS-3 1.5-2.1 0.0016 0.0009 9,190 7.25

Table 5-1: Soil Chemical Analysis Results

6.0 DISCUSSIONS AND RECOMMENDATIONS

6.1 General

This section of the report provides recommendations for the design of the proposed building behind 105 and 109 Henderson Road in Ottawa, Ontario. The recommendations are based on interpretation of the factual information obtained from the boreholes advanced during the subsurface investigation. The discussions and recommendations presented are intended to provide sufficient information to the designer of the proposed building to select the suitable type of foundation to support the structure.

The comments made on the construction are intended to highlight aspects which could have impact or affect the detailed design of the building, for which special provisions may be required in the Contract Documents. Those who requiring information on construction aspects should make their own interpretation of the factual data presented in the report. Interpretation of the data presented may affect equipment selection, proposed construction methods, and scheduling of construction activities.

6.2 Project Design

6.2.1 Existing Site Condition

Detailed site condition is provided in Section 2. The site contains two existing two-story residential structures and is located in the middle of a residential subdivision. The location of the site is shown on Figure 1 included in Appendix B.

6.2.2 Proposed Development

It is understood that the proposed development will be a three-storey apartment building with a basement, and will likely be a conventional slab on grade with shallow footing foundation.

Finished grade was not provided at the time of this report, it is expected construction will occur at the existing grade and no grade raise are expected.

6.3 Frost Protection

Based on applicable building codes, a minimum earth cover of 1.8 m, or the thermal equivalent of insulation, should be provided for all exterior footings to reduce the effects of frost action.

6.4 Site Classification for Seismic Site Response

Table 4.2 of CHBDC shall be consulted for the purpose of seismic design. Selected spectral responses in the general vicinity of the site for 10% chance of exceedance in 50 years (475 years return period) are as indicated in Table 6-3, shown below;

Table 6-1: Selected Seismic Spectral Responses (10% in 50 Yrs)

Sa(0.2)	Sa(0.5)	Sa(2.0)	PGA	PGV
0.161	0.124	0.021	0.102	0.068

The site can be classified as a Site Class "E" based on the clay consistency for the purposes of site-specific seismic response to earthquakes based on Table 4.1.8.4.A OBC 2012.

6.5 Engineered Fill

It is understood there are no plans for grade raise at this site.

If engineered fill is required, any topsoil or soft and spongy material should be removed before placing the engineered fill. The fill should be placed in horizontal lifts of uniform thickness of no more than 300 mm before compaction. It should be placed at appropriate moisture content and compacted to the specified density. The requirements for fill material and compaction may be addressed with a note on the structural drawing for foundation or grading drawing and/or with a Non-Standard Special Provision (NSSP). In any location where the engineered fill is to support any structural element, including pavement structure, minimum 100% Standard Proctor Maximum Dry Density (SPMDD) should be achieved. In other cases, minimum 96% SPMDD is adequate.

6.6 Slabs-on-Grade

Slabs-on-grade should be supported on minimum 200 mm of Granular A compacted to 100% SPMDD. In case the subgrade needs to be raised Granular B type II or granular A needs to be compacted to minimum 96% SPMDD.

All subgrades should be proof-rolled under the supervision of a geotechnical representative prior to placement of the Granular "A" and slab-on-grade.

6.7 Shallow Foundations

Based on the proposed building concept and architectural sketches, it is the authors' understanding that the building foundation level may fall close to the interface of the weather crust and the soft clay. Based on the in-situ undrained shear test results of the clay and laboratory test results for plasticity index, a preconsolidation pressure of 150 kPa was considered in settlement calculations.

The structure is expected to be a light-weight wood frame with or without steel or concrete components. Considering the order of structural loads expected at the foundation level, provision of conventional strip footings will be adequate. If necessary, pad footings can be also used in the design, however the dimensions of isolated pad footing shall not exceed 2 m. Footings are expected to be buried to resist overturning and sliding and also to provide protection against frost action.

The excavation should extended to the top of the native clay, care must be taken not to disturb the clay. From the final stage of the excavation to placement of footings, construction traffic over the sensitive clay shall be minimized. Placement of mud-slab immediately after excavation can reduce the risk of subgrade degradation. Excavation into the clay layer should be limited. If adequate frost cover is not provided, the deficit of earth cover should be compensated by application of synthetic insulation material. A minimum of 0.6m of the clay crust should remain intact.

6.7.1 Bearing Capacity

Assuming the strip footings are constructed through excavating the fill and exposing the native clay crust, the following bearing capacity values can be used for structural design;

Factored beading pressure at Ultimate Limit State (ULS): 115 kPa

Serviceability Limit State (SLS): 75 kPa (1 m to 1.5 m wide strip footings)

If strip footings wider than 1.5 m are required, then authors of this report should be informed to verify the compatibility of the design with settlement criteria. Footings narrower than 0.6 m are not recommended due to the risk of punching failure. Following above note recommendations, total settlements are expected to remain between 25 mm to 35 mm. The structural designer shall note that wider strip footings with the same applied pressure will trigger larger settlements. When designing footings on clay, it is the best practice to keep the footing sizes and bearing pressures as similar as possible to reduce the risk of differential settlements.

6.8 Protection of Subgrade

Inspection and approval of the footing subgrade are required. This requirement may be addressed with a note on the structural drawing for foundation and/or with a Non-Standard Special Provision (NSSP). If the

constructor can ensure there won't be any traffics on the subgrade, protection can be done through temporary covering. To limit disturbance, subgrade should be protected from freezing or precipitation.

6.9 Lateral Earth Pressure

Free draining material should be used as backfill material for foundation walls. If the proper drainage is provided "at rest" condition may be assumed for calculation of earth pressure on foundation walls. The following parameters are recommended for the granular backfill.

BoreholeGranular "A"Granular "B"Effective Internal Friction Angle, ϕ' 35°30°

22.8

22.8

Table 6-1: Backfill Material Properties

6.10 Cement Type and Corrosion Potential

Unit Weight, $\gamma (kN/m^3)$

Sample from subgrade soil was submitted to Parcel laboratories for testing of chemical properties relevant to exposure of concrete elements to sulphate attacks as well as potential soil corrosivity effects on buried metallic structural element. Test results are presented in Tables 5-1.

The potential for sulphate attack on concrete structures is low. Therefore Type GU Portland cement may be adequate to protect buried concrete elements in the subsurface conditions encountered.

The soil pH is slightly on the basic side, high resistivity and relatively low chloride content determines the environment for buried steel elements is within the non-aggressive range.

7.0 CONSTRUCTION CONSIDERATIONS

Any organic or topsoil material, and existing fill material of any kind, should be removed from the footprint of the footing. If grade raise above the native clay subgrade is required suitable fill material to conform to specifications of OPSS Granular A should be placed over a layer of geotextile.

The founding level is expected above the groundwater level encountered at this site and no dewatering problems are anticipated. However, the excavated subgrade must be kept dry at all time to minimize the disturbance of the subgrade. Groundwater elevation is expected to fluctuate seasonally.

A geotechnical engineer or technician should attend the site to confirm the type of the material and level of compaction.

Foundation walls should be backfilled with free-draining material such as OPSS Granular material. The native clay is not a suitable material for backfilling. Sub-drains with positive drainage to the City sewer should be provided at foundation level.

Based on the proposed site layout there is not adequate room for sloped excavation. The contractor shall retain a professional engineer to provide excavation and shoring design to protect the existing buildings adjacent to the proposed excavation.

Groundwater table is expected to be lower than the proposed excavation (2.0 ± 0.3 m depth below existing ground) and the chance of water draw down due to the proposed excavation is minimal. Since the proposed excavation will be relatively close to the neighboring properties, the contractor should consider the addition of an instrumentation and monitoring program to their excavation plan. A baseline should be established and documented by surveying structural monitoring points and photographing exterior and interior of the adjacent buildings before the start of construction activities.

Given the age of the existing structure, the primary position of its consolidation settlement for the current load should have been achieved. The proposed building will undergo settlements as described in Section 6.7. In order to accommodate the expected varying levels of settlement between the two structures, it is best practice to separate the exiting and the proposed buildings. If there has to be connected structural components such as links or corridors, between the existing and proposed buildings, a provision of an expansion joint will be necessary.

The applied surcharge from the proposed building on the subgrade may also cause some settlement of the existing buildings. The magnitude of this settlement is a function of the distance, depth, and existing in-situ stress under each of the adjacent structures. The above noted instrumentation program can be used to measure or rule-out such effects and to quantify or reject potential claims by the owners of neighboring properties.

8.0 SITE SERVICES

At the subject site, the burial depth of water-bearing utility lines is typically 2.4 m below ground surface. If this depth is not achievable due to design restrictions, equivalent thermal insulation should be provided. The contractor should retain a professional engineer to provide detailed drawings for excavation and temporary support of the excavation walls during construction.

Utilities should be supported on minimum of 150 mm bedding of Granular A compacted to minimum 96% of SPMDD. Since the native subgrade is fine grained, it is recommended to separate the subgrade from the bedding material by a layer of geotextile to prevent cross migration of materials. Utility cover can be Granular A or Granular B type II compacted to 96% SPMDD. All covers are to be compacted to 100% SPMDD if intersecting structural elements.

Cut-off walls should be provided for utility trenches running below the groundwater level to mitigate the settlement risk due to groundwater lowering.

9.0 PAVEMENT STRUCTURE

It is understood the site plan contains an asphalt driveway to include room for two parking spaces. If this parking area is to be part of the new construction, the pavement structure detailed in the table below should be followed. The proposed pavement structure is suitable for construction on native subgrade or raised grade through engineered fill.

Table 9-1: Proposed Pavement Structure for Residential Driveways

	Material	Thickness (mm)
Surface	Superpave 12.5, Design Category C, PG 58-34	50
Base	OPSS Granular A	250

10.0 CLOSURE

We trust this geotechnical investigation and foundation design report meets requirements of your project. The "Limitations of Report" presented in Appendix A are an integral part of this report. Please do not hesitate to contact the undersigned should you have any questions or concerns.

McIntosh Perry Consulting Engineers Ltd.

Mary-Ellen Gleeson, M.Eng., EIT. Geotechnical Engineering Intern N'eem Tavakkoli, M.Eng., P.Eng. Senior Geotechnical Engineer

11.0 REFERENCES

Canadian Geotechnical Society, "Canadian Foundation Engineering Manual", 4th Edition, 2006.

Ontario Ministry of Natural Resources (OMNR), Ontario Geological Survey, Special Volume 2, "The Physiography of Southern Ontario", 3rd Edition, 1984.

Google Earth, Google, 2015.

105 – 109 HENDERSON AVENUE

APPENDIX A LIMITATIONS OF REPORT

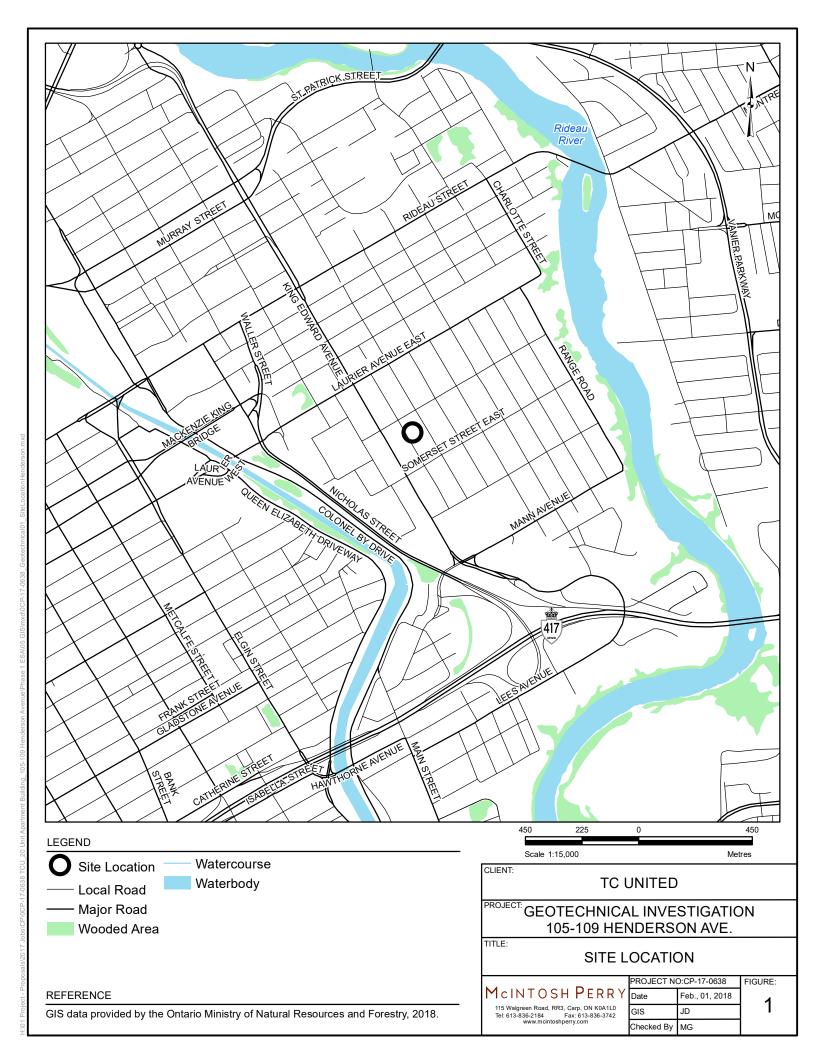
LIMITATIONS OF REPORT

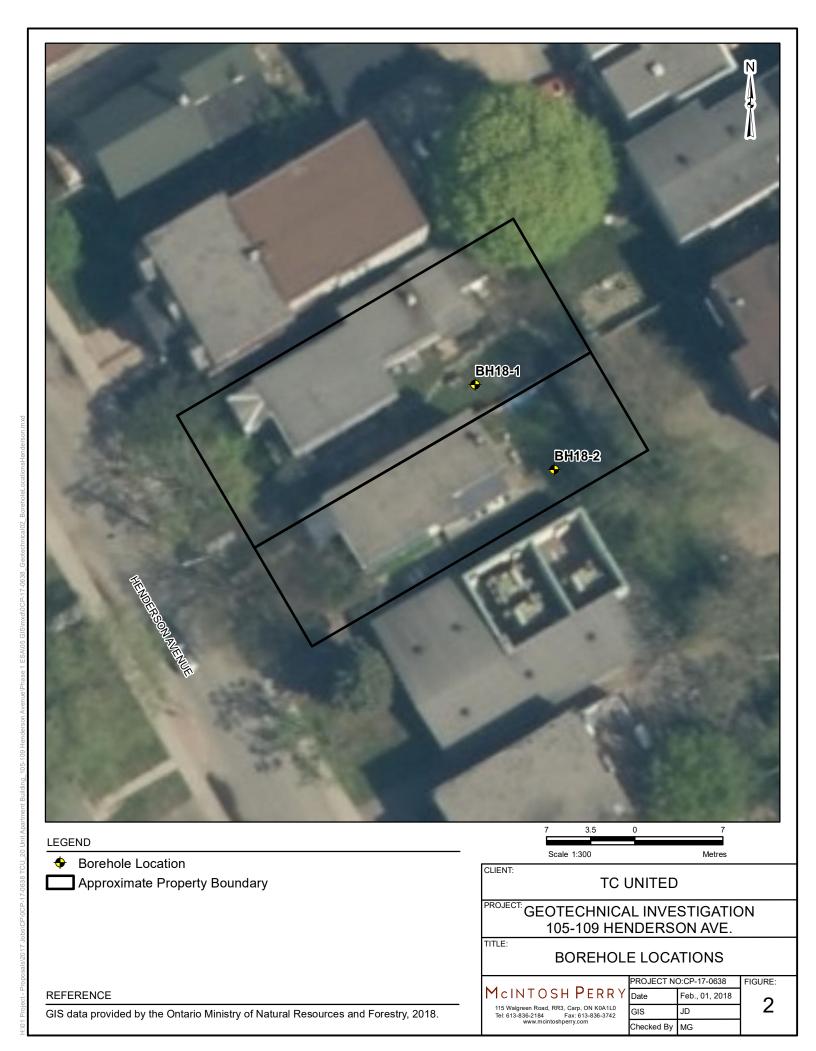
McIntosh Perry Consulting Engineers Ltd. (McIntosh Perry) carried out the field work and prepared the report. This document is an integral part of the Foundation Investigation and Design report presented.

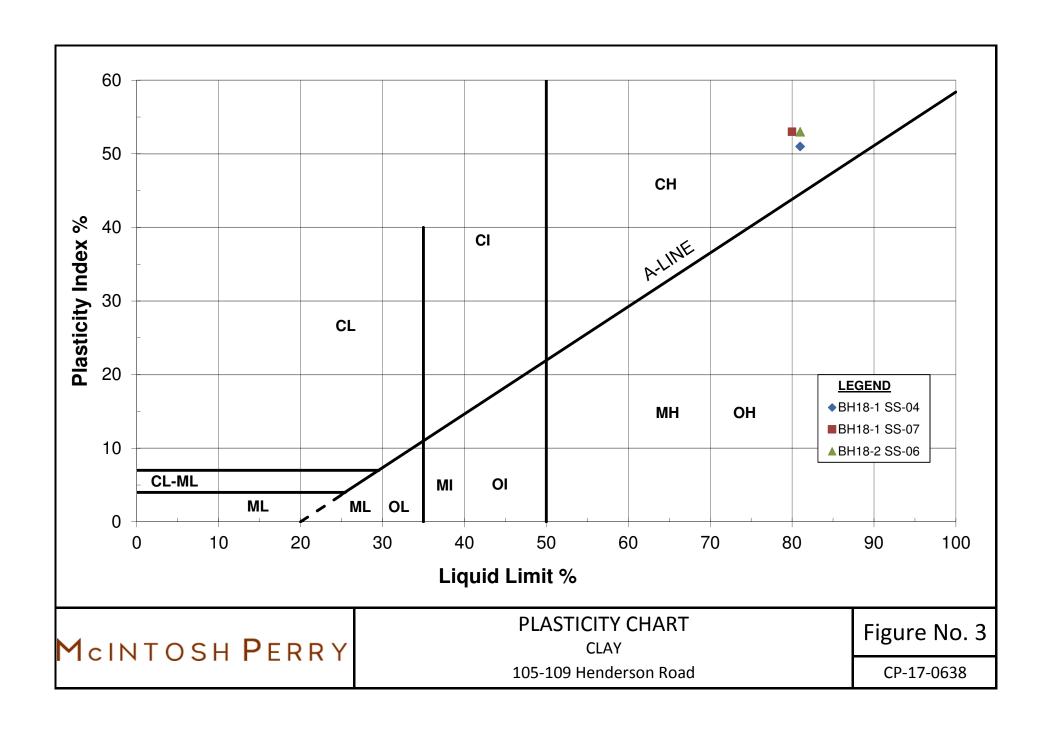
The conclusions and recommendations provided in this report are based on the information obtained at the borehole locations where the tests were conducted. Subsurface and groundwater conditions between and beyond the boreholes may differ from those encountered at the specific locations where tests were conducted and conditions may become apparent during construction, which were not detected and could not be anticipated at the time of the site investigation. The benchmark level used and borehole elevations presented in this report are primarily to establish relative differenced in elevations between the borehole locations and should not be used for other purposes such as to establish elevations for grading, depth of excavations or for planning construction.

The recommendations presented in this report for design are applicable only to the intended structure and the project described in the scope of the work, and if constructed in accordance with the details outlined in the report. Unless otherwise noted, the information contained in this report does not reflect on any environmental aspects of either the site or the subsurface conditions.

The comments or recommendation provided in this report on potential construction problems and possible construction methods are intended only to guide the designer. The number of boreholes advanced at this site may not be sufficient or adequate to reveal all the subsurface information or factors that may affect the method and cost of construction. The contractors who are undertaking the construction shall make their own interpretation of the factual data presented in this report and make their conclusions, as to how the subsurface conditions of the site may affect their construction work.


The boundaries between soil strata presented in the report are based on information obtained at the borehole locations. The boundaries of the soil strata between borehole locations are assumed from geological evidences. If differing site conditions are encountered, or if the Client becomes aware of any additional information that differs from or is relevant to the McIntosh Perry findings, the Client agrees to immediately advise McIntosh Perry so that the conclusions presented in this report may be re-evaluated.


Under no circumstances shall the liability of McIntosh Perry for any claim in contract or in tort, related to the services provided and/or the content and recommendations in this report, exceed the extent that such liability is covered by such professional liability insurance from time to time in effect including the deductible therein, and which is available to indemnify McIntosh Perry. Such errors and omissions policies are available for inspection by the Client at all times upon request, and if the Client desires to obtain further insurance to protect it against any risks beyond the coverage provided by such policies, McIntosh Perry will co-operate with the Client to obtain such insurance.


McIntosh Perry prepared this report for the exclusive use of the Client. Any use which a third party makes of this report, or any reliance on or decision to be made based on it, are the responsibility of such third parties. McIntosh Perry accepts no responsibility and will not be liable for damages, if any, suffered by any third party as a result of decisions made or actions taken based on this report.

APPENDIX B FIGURES

McINTOSH PERRY

APPENDIX C BOREHOLE LOGS

McINTOSH PERRY

EXPLANATION OF TERMS USED IN REPORT

N-VALUE: THE STANDARD PENETRATION TEST (SPT) N-VALUE IS THE NUMBER OF BLOWS REQUIRED TO CAUSE A STANDARD 51mm O.D SPLIT BARREL SAMPLER TO PENETRATE 0.3m INTO UNDISTURBED GROUND IN A BOREHOLE WHEN DRIVEN BY A HAMMER WITH A MASS OF 63.5 kg, FALLING FREELY A DISTANCE OF 0.76m. FOR PENETRATIONS OF LESS THAN 0.3m N-VALUES ARE INDICATED AS THE NUMBER OF BLOWS FOR THE PENETRATION ACHIEVED. AVERAGE N-VALUE IS DENOTED THUS $\overline{\rm N}$.

DYNAMIC CONE PENETRATION TEST: CONTINUOUS PENETRATION OF A CONICAL STEEL POINT (51mm O.D. 60° CONE ANGLE) DRIVEN BY 475J IMPACT ENERGY ON 'A' SIZE DRILL RODS. THE RESISTANCE TO CONE PENETRATION IS MEASURED AS THE NUMBER OF BLOWS FOR EACH 0.3m ADVANCE OF THE CONICAL POINT INTO THE UNDISTURBED GROUND.

SOILS ARE DESCRIBED BY THEIR COMPOSITION AND CONSISTENCY OR DENSENESS.

CONSISTENCY: COHESIVE SOILS ARE DESCRIBED ON THE BASIS OF THEIR UNDRAINED SHEAR STRENGTH (c,) AS FOLLOWS:

Γ	C _u (kPa)	0 – 12	12 – 25	25 – 50	50 – 100	100 – 200	>200
-		VERY SOFT	SOFT	FIRM	STIFF	VERY STIFF	HARD

DENSENESS: COHESIONLESS SOILS ARE DESCRIBED ON THE BASIS OF DENSENESS AS INDICATED BY SPT N VALUES AS FOLLOWS:

N (BLOWS/0.3m)	0 – 5	5 – 10	10 – 30	30 – 50	>50
	VERY LOOSE	LOOSE	COMPACT	DENSE	VERY DENSE

ROCKS ARE DESCRIBED BY THEIR COMPOSION AND STRUCUTRAL FEATURES AND/OR STRENGTH.

RECOVERY: SUM OF ALL RECOVERED ROCK CORE PIECES FROM A CORING RUN EXPRESSED AS A PERCENT OF THE TOTAL LENGTH OF THE CORING RUN.

MODIFIED RECOVERY: SUM OF THOSE INTACT CORE PIECES, 100mm+ IN LENGTH EXPRESSED AS A PERCENT OF THE LENGTH OF THE CORING RUN. THE ROCK QUALITY DESIGNATION (RQD), FOR MODIFIED RECOVERY IS:

RQD (%)	0 – 25	25 – 50	50 – 75	75 – 90	90 – 100
•	VERY POOR	POOR	FAIR	GOOD	EXCELLENT

JOINT AND BEDDING:

SPACING	50mm	50 – 300mm	0.3m – 1m	1m – 3m	>3m
JOINTING	VERY CLOSE	CLOSE	MOD. CLOSE	WIDE	VERY WIDE
BEDDING	VERY THIN	THIN	MEDIUM	THICK	VERY THICK

ABBREVIATIONS AND SYMBOLS

FIELD SAMPLING MECHANICALL PROPERTIES OF SOIL

SS	SPLIT SPOON	TP	THINWALL PISTON	m_v	kPa '	COEFFICIENT OF VOLUME CHANGE
WS	WASH SAMPLE	OS	OSTERBERG SAMPLE	C _C	1	COMPRESSION INDEX
ST	SLOTTED TUBE SAM	MPLE RC	ROCK CORE	Cs	1	SWELLING INDEX
BS	BLOCK SAMPLE	PH	TW ADVANCED HYDRAL	JLICALLY c _a	1	RATE OF SECONDARY CONSOLIDATION
CS	CHUNK SAMPLE	PM	TW ADVANCED MANUAL	LLY C _v	m²/s	COEFFICIENT OF CONSOLIDATION
TW	THINWALL OPEN	FS	FOIL SAMPLE	Н	m	DRAINAGE PATH
				T_v	1	TIME FACTOR
		STRESS AN	ID STRAIN	U	%	DEGREE OF CONSOLIDATION
u_w	kPa	PORE WATER P	RESSURE	σ' _{v0}	kPa	EFFECTIVE OVERBURDEN PRESSURE
r _u	1	PORE PRESSUR	RE RATIO	σ'ρ	kPa	PRECONSOLIDATION PRESSURE
σ	kPa	TOTAL NORMAL	STRESS	τ_{f}	kPa	SHEAR STRENGTH
σ'	kPa	EFFECTIVE NOF	RMAL STRESS	c'	kPa	EFFECTIVE COHESION INTERCEPT
τ	kPa	SHEAR STRESS		Φ,	_°	EFFECTIVE ANGLE OF INTERNAL FRICTION
$\sigma_1, \sigma_2, \sigma_3$	σ_3 kPa	PRINCIPAL STR	ESSES	Cu	kPa	APPARENT COHESION INTERCEPT
ε	%	LINEAR STRAIN		Φ_{u}	_°	APPARENT ANGLE OF INTERNAL FRICTION
$\varepsilon_1, \varepsilon_2, \varepsilon_3$	3 %	PRINCIPAL STR	AINS	τ_{R}	kPa	RESIDUAL SHEAR STRENGTH
E	kPa	MODULUS OF L	NEAR DEFORMATION	τ_r	kPa	REMOULDED SHEAR STRENGTH
G	kPa	MODULUS OF S	HEAR DEFORMATION	St	1	SENSITIVITY = c_{ii} / τ_{r}
u	1	COEFFICIENT O	F FRICTION			- '

PHYSICAL PROPERTIES OF SOIL

$P_{\rm s}$	kg/m ³	DENSITY OF SOLID PARTICLES	е	1,%	VOID RATIO	e_{min}	1,%	VOID RATIO IN DENSEST STATE
γ_{s}	kN/m³	UNIT WEIGHT OF SOLID PARTICLES	n	1,%	POROSITY	I_D	1	DENSITY INDEX = $\frac{e_{\text{max}} - e_{\text{min}}}{e_{\text{max}} - e_{\text{min}}}$
$P_{\rm w}$	kg/m ³	DENSITY OF WATER	W	1,%	WATER CONTENT	D	mm	GRAIN DIAMETER
Y_{w}	kN/m ³	UNIT WEIGHT OF WATER	sr	%	DEGREE OF SATURATION	D_n	mm	N PERCENT – DIAMETER
Ρ	kg/m ³	DENSITY OF SOIL	W_L	%	LIQUID LIMIT	C_{u}	1	UNIFORMITY COEFFICIENT
r	kN/m ³	UNIT WEIGHT OF SOIL	W_P	%	PLASTIC LIMIT	h	m	HYDRAULIC HEAD OR POTENTIAL
P_{d}	kg/m ³	DENSITY OF DRY SOIL	Ws	%	SHRINKAGE LIMIT	q	m³/s	RATE OF DISCHARGE
γ_{d}	kN/m ³	UNIT WEIGHT OF DRY SOIL	I _P	%	PLASTICITY INDEX = $(W_L - W_L)$	V	m/s	DISCHARGE VELOCITY
P_{sat}	kg/m ³	DENSITY OF SATURATED SOIL	ار	1	LIQUIDITY INDEX = $(W - W_P)/I_P$	i	1	HYDAULIC GRADIENT
$\gamma_{\rm sal}$	kN/m ³	UNIT WEIGHT OF SATURATED SOIL	Ic	1	CONSISTENCY INDEX = (W _L -W) / 1 _P	k	m/s	HYDRAULIC CONDUCTIVITY
P'	kg/m³	DENSITY OF SUBMERED SOIL	e _{,max}	1,%	VOID RATIO IN LOOSEST STATE	j	kN/m ³	SEEPAGE FORCE
γ	kN/m ³	UNIT WEIGHT OF SUBMERGED SOIL						

McINTOSH PERRY

RECORD OF BOREHOLE No 18-1

 DATE:
 31/01/2018 - 31/01/2018
 LOCATION:
 105-109 Henderson Avenue ()
 ORIGINATED BY: Phil Hulan

 ID:
 CP-17-0638-HENDERSON
 COORDINATES: Lat: 45.423615 , Lon: -75.679798
 COMPILED BY: Mary-Ellen Gleeson

 CLIENT:
 TC United
 DATUM: Local
 CHECKED BY: N'eem Tavakkoli

 ELEVATION: 99.4 m
 PEMARK: No water observed in open borehole
 PEPORT DATE: 07/03/2018

ELE	VATI	ON: 99.	4 m	REMARK:	No	wat	er obs	servec	l in open l	oreh	ole.	-		R	REPO	RT D	ATE	: <u>0</u>	7/03	/2018		
	S		SOIL PROFILE		SA	AMP	LES		Œ.	DYNA RESI				. •	2	'	WA ⁻	TER		_		
DEPTH - feet	DEPTH - meters	ELEVATION - m DEPTH - m	DESCRIPTION	SYMBOL	TYPE AND NUMBER	STATE	RECOVERY	"N" or RQD	GROUNDWATER CONDITIONS	SHE Va	AR Sone testintact Remo	TRE	60 NGTI Lab □ I	H (kF vane ntact Remol	Pa) e	LI W,		nd 'S (% V	6) W _L 	G DIS	& RAIN TRIB (%	SIZE UTION)
-		99.4 0.0	Natural ground surface Topsoil	222						آسا	-		0 8		 	سَسا	5 5	ш.	<u>Б</u>	G	S	м с
-	- - -	99.1	Fill. Silty sand, brown, moist, loose). 2.	SS-01		79	3														
-	- 1 -	97.9			SS-02	X	54	6														
- 5 -	- - - 2	1.5	Silty clay, grey, moist to wet, stiff, weathered.		SS-03	X	83	7									0					
-	- - -				SS-04		83	5										o—	Т			
- 10 - -	- 3 - -				SS-05	X	92	3										0				
-	- 4 - 4	_ <u>95.6</u> 3.8	Silty clay, grey, wet, firm.		SS-06		100	0										0				
- 15 -	- - - 5	i								◆ ^{5.0}	◆ ²⁷	.0	\$ ⁶⁸	.0)							
-	-				SS-07		100	2			,			v				—(K			
- 20 - -	- 6 - - -	i								◆ ^{8.0}			<0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0								
- - - 25	- 7	,			SS-08	X	100	0										0				
- - -	- 8 - - - - 9				SS-09		75	1		◆ ¹ ◆ ^{7.0}	1.0 ♦	38.0	0.0			C	>					
- 30 - -	-																					

McINTOSH PERRY

RECORD OF BOREHOLE No 18-2

 DATE:
 31/01/2018 - 31/01/2018
 LOCATION:
 105-109 Henderson Avenue ()
 ORIGINATED BY: Phil Hulan

 ID:
 CP-17-0638-HENDERSON
 COORDINATES: Lat: 45.423555 , Lon: -75.679717
 COMPILED BY: Mary-Ellen Gleeson

 CLIENT:
 TC United
 DATUM: Local
 CHECKED BY: N'eem Tavakkoli

 FLEVATION: 99.5 m
 PEMARK: No water observed in open borehole
 REPORT DATE: 07/03/2018

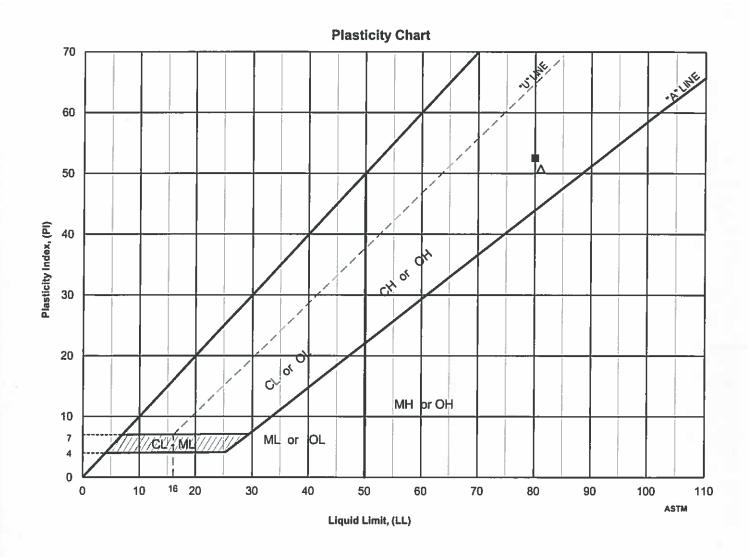
ELE	VATIO	ON: 99.		MARK:					l in open l			-			EPO	RT D	ATE	: 07	7/03/	2018			_
	ņ		SOIL PROFILE		S	AMP	LES	;	н.	DYN/ RESI				•	2.		WAT	ΓER	_	_			
DEPTH - feet	DEPTH - meters	© ELEVATION - m	DESCRIPTION	SYMBOL	TYPE AND NUMBER	STATE	RECOVERY	"N" or RQD	GROUNDWATER CONDITIONS	SHE Va	AR Sone tes	40 TRE	60 NGTI Lab	80 H (kF vane) Pa) 	LI	an MIT	TEN ⁻ id S (%	6)	G	REMA & RAIN TRIE (%	SIZI SUTIO	E
Ω	DE			0			#	:	GR C		Remo		F	Remol			—(5 5	_	1 5	_	_		_
		99.5 0.0	Natural ground surface 150 mm Topsoil.	×2							0 4	""			 			0 75	ш	G	S	М	С
	- -	\ <u>99.3</u> 0.2	Fill. Silty sand, trace to some clay, trace gravel, brown, dry to moist, loose.	e 💮	SS-01	X	8	5															
	- - 1 -				SS-02		54	6															
- 5	- - — 2	98.0 1.5	Silty clay, grey with iron staining, moist stiff to firm, weathered.	t, *	SS-03		83	11									0						
	- -				SS-04		92	7									C						
- 10	- - 3 -	_ <u>96.1</u> _ 3.4	Silty clay, grey, moist to wet, stiff to firm		SS-05		100	4										Ç)				
	- - - 4	G. .								4	19.0				o ¹⁰²								
15	- -									•	21.0		\$ ⁷⁰	2.0									
	- - 5 -				SS-06	\mathbb{A}	100	2									-		K				
	- - - 6	93.7 5.8	END OF BOREHOLE							•	19.0		4	◇ ^{85.} > ^{81.0}									
20	- - -																						
	- - 7 -																						
25	-																						
	- 8 - -																						
- 30	- - - 9																						
	- -																						

APPENDIX D LAB RESULTS

PLASTICITY INDEX

ASTM D 4318 / LS-703/704

Client: McIntosh Perry Consulting Engineers Project:


Materials Testing

Location: Henderson

Reference No.: CP-17-0638

170496-20 File No.:

Report No.: 1

	Location	Sample	Depth, m	Moisture Content, %	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Activity Number	uscs
Δ	BH 18-1	SS-04	2.29 - 2.90	54	81	30	51	0.47	n/d	СН
	BH 18-1	SS-07	5.33 - 5.94	75	80	27	53	0.90	n/d	CH_

Date Issued: February 7, 2018

Reviewed By: WAM

W.A.McLaughlin, Geo.Tech., C.Tech.

5430 Canotek Road | Ottawa, ON, KIJ 9G2 | info@lrl.ca | www.lrl.ca | (613) 842-3434

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

McIntosh Perry Consulting Eng. (Carp)

115 Walgreen Road RR#3 Carp, ON KOA 1LO Attn: Mary Ellen Gleeson

Client PO: Henderson CP-17-0638

Project: CP-17-0638 Custody: 34160 Report Date: 12-Feb-2018 Order Date: 6-Feb-2018

Order #: 1806215

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID

1806215-01 CP-17-0638 BH18-1 SS-03

Approved By:

Mark Froto

Mark Foto, M.Sc. Lab Supervisor

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Report Date: 12-Feb-2018

Order Date: 6-Feb-2018

Client PO: Henderson CP-17-0638 Project Description: CP-17-0638

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Anions	EPA 300.1 - IC, water extraction	8-Feb-18	9-Feb-18
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	6-Feb-18	7-Feb-18
Resistivity	EPA 120.1 - probe, water extraction	9-Feb-18	10-Feb-18
Solids, %	Gravimetric, calculation	7-Feb-18	7-Feb-18

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Henderson CP-17-0638

Report Date: 12-Feb-2018

Order Date: 6-Feb-2018 Project Description: CP-17-0638

	Client ID:	CP-17-0638 BH18-1	-	-	-
	Sample Date:	SS-03 31-Jan-18	-	-	-
	Sample ID:	1806215-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	75.2	-	-	-
General Inorganics					_
рН	0.05 pH Units	7.25	-	-	-
Resistivity	0.10 Ohm.m	91.9	-	•	-
Anions					_
Chloride	5 ug/g dry	9	-	-	-
Sulphate	5 ug/g dry	16	-	-	-

Certificate of Analysis

Order #: 1806215

Report Date: 12-Feb-2018

Order Date: 6-Feb-2018

Project Description: CP-17-0638

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Henderson CP-17-0638

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	ND	5	ug/g						
Sulphate	ND	5	ug/g						
General Inorganics									
Resistivity	ND	0.10	Ohm.m						

Report Date: 12-Feb-2018

Certificate of Analysis

Order Date: 6-Feb-2018 Client: McIntosh Perry Consulting Eng. (Carp) Client PO: Henderson CP-17-0638 Project Description: CP-17-0638

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	14.4	5	ug/g dry	17.3			18.5	20	
Sulphate	15.7	5	ug/g dry	15.6			0.6	20	
General Inorganics									
pH	7.84	0.05	pH Units	7.89			0.6	10	
Resistivity	401	0.10	Ohm.m	395			1.4	20	
Physical Characteristics									
% Solids	90.0	0.1	% by Wt.	86.5			3.9	25	

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp) Client PO: Henderson CP-17-0638

Order Date: 6-Feb-2018

Project Description: CP-17-0638

Report Date: 12-Feb-2018

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	108	5	ug/g	17.3	90.5	78-113			
Sulphate	118	5	ug/g	15.6	103	78-111			

Certificate of Analysis

Order #: 1806215

Report Date: 12-Feb-2018 Order Date: 6-Feb-2018

Project Description: CP-17-0638

Client: McIntosh Perry Consulting Eng. (Carp)
Client PO: Henderson CP-17-0638

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

TRUSTED RESPONS

Paracel ID: 1806215

e: paracel@paracellabs.com www.paracellabs.com

Chain of Custody (Lab Use Only)

34160

	Page		1	of	_	L	
T	urn	ar	ou	nd	Tiı	ne:	

lient Name: McTotosh Penu			Project Reference: Henderson CP-17-0638							Turnaround Time:				
ontact Name: Mary-Ellen Gleeson	Quote #							□ 1 Day			□ 3 Day			
uddress: 115 Walgreen Rd, R.R.3 CORD, ON KOAILO	D# CP-17-0638 mail Address:							□ 2 Day			Regular			
elephone: 613-836-2184 (exad)	79)		M.	gieeson	emein	toshpe	erry.c	an		Date R	equire			
Criteria: O. Reg. 153/04 (As Amended) Table RS	C Filing	□ O. R	leg. 558	/00 □PWQO □	CCME DS	SUB (Storm)	□ SUB (Sa	nitary) N	Aunicip	ality:	S 22	_ 00	Other:	
Matrix Type: S (Soil:Sed.) GW (Ground Water) SW (Surface Water) SS										red An	alyses			
Paracel Order Number:	×	Air Volume	of Containers	Sample Taken		Cerrosivity								
	Matrix	/ir/	Jo#	Date	Time	3								
Sample ID/Location Name 1	_		14	Jan 31/18		X	2	iplod	Ь.					_
2												_		-
3												_	-	+
4										_			-	
5													-	-
6											-	-	-	
7										-	_	-	-	_
8								_	_	-	_	-		-
9			ţ.			-		-		-	_	-		-
10												Method	of Delivery	7
Comments:													Parac	
Relinquished By (Sign):	Receiv	red by Dr	iver/Dep	Deals			uhel s	ubje	+	Verified	K	R	1	
Relinquished By (Print): Tuli USYOU	-		6/0	2/18 2	50 Date		Feb		54	Date/Ti	me:	By:	060	85.57
Date/Time: FBb 1 /30/8 15:20	Temp	erature: _		C	PM. Tem	perature: 18.			2.7	/pri vei	med []	Of more	-	

Chain of Custody (Blank) - Rev 0.4 Feb 2016

APPENDIX E SEISMIC HAZARD CALCULATION

McINTOSH PERRY

2015 National Building Code Seismic Hazard Calculation

INFORMATION: Eastern Canada English (613) 995-5548 français (613) 995-0600 Facsimile (613) 992-8836 Western Canada English (250) 363-6500 Facsimile (250) 363-6565

February 14, 2018

Site: 45.4236 N, 75.6799 W User File Reference: 105-109 Henderson Road

Requested by: , McIntosh Perry

National Building Code ground motions: 2% probability of exceedance in 50 years (0.000404 per annum)

Sa(0.1) **Sa(0.2)** Sa(0.3) Sa(0.5) Sa(1.0) Sa(2.0) Sa(5.0) Sa(10.0) PGA (g) PGV (m/s) 0.447 0.523 0.439 0.334 0.237 0.118 0.056 0.015 0.0054 0.281 0.197

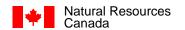
Notes. Spectral (Sa(T), where T is the period in seconds) and peak ground acceleration (PGA) values are given in units of g (9.81 m/s²). Peak ground velocity is given in m/s. Values are for "firm ground" (NBCC 2015 Site Class C, average shear wave velocity 450 m/s). NBCC2015 and CSAS6-14 values are specified in bold font. Three additional periods are provided - their use is discussed in the NBCC2015 Commentary. Only 2 significant figures are to be used. These values have been interpolated from a 10-km-spaced grid of points. Depending on the gradient of the nearby points, values at this location calculated directly from the hazard program may vary. More than 95 percent of interpolated values are within 2 percent of the directly calculated values.

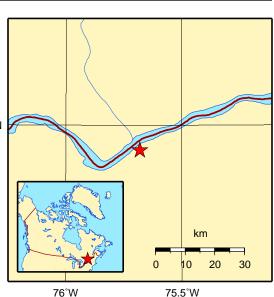
Ground motions for other probabilities:

Probability of exceedance per annum	0.010	0.0021	0.001
Probability of exceedance in 50 years	40%	10%	5%
Sa(0.05)	0.044	0.149	0.247
Sa(0.1)	0.061	0.187	0.300
Sa(0.2)	0.055	0.161	0.255
Sa(0.3)	0.044	0.124	0.195
Sa(0.5)	0.031	0.088	0.138
Sa(1.0)	0.015	0.044	0.070
Sa(2.0)	0.0061	0.021	0.033
Sa(5.0)	0.0012	0.0047	0.0081
Sa(10.0)	0.0006	0.0019	0.0032
PGA	0.033	0.102	0.163
PGV	0.021	0.068	0.111

References

National Building Code of Canada 2015 NRCC no. 56190; Appendix C: Table C-3, Seismic Design Data for Selected Locations in Canada


User's Guide - NBC 2015, Structural Commentaries NRCC no. $_{45.5^{\circ}\mathrm{N}}$ xxxxxx (in preparation)


Commentary J: Design for Seismic Effects

Geological Survey of Canada Open File 7893 Fifth Generation Seismic Hazard Model for Canada: Grid values of mean hazard to be used with the 2015 National Building Code of Canada

See the websites www.EarthquakesCanada.ca and www.nationalcodes.ca for more information

Aussi disponible en français

76°W

Canada

SERVICING REPORT - 105 - 109 HENDERSON AVENUE

Appendix E Drawings May 7, 2018

Appendix E DRAWINGS

