JLR No.: 26299-006.1 Revision: 0 Prepared for:

MINTO COMMUNITIES INC. 200-180 Kent Street Ottawa, ON K1P 0B6 Prepared by:

J.L. RICHARDS & ASSOCIATES LIMITED 343 Preston Street, Suite 900 and 1000 Ottawa, ON K1S 1N4

Site Servicing Report

Arcadia Stage 6 450 Huntmar Drive

Value through service and commitment

Table of Contents

1.0	INTRO	DUCTION	1
	1.1	General	1
	1.2	Site Description	1
	1.3	Proposed Development	
	1.4	Proposed Connections to Existing Infrastructure	1
	1.5	Consultation and Permits	
2.0	WATE	ER SERVICING	4
	2.1	Water Supply Design Criteria	4
	2.2	Domestic Water Demands	4
	2.3	Fire Flow Requirements	5
	2.4	Proposed Water Servicing, Boundary Conditions and Water Model	
		2.4.1 Proposed Water Servicing	5
		2.4.2 Boundary Conditions	5
		2.4.3 Water Model	6
	2.5	Simulation Results	6
		2.5.1 Peak Hour	6
		2.5.2 Maximum Day Plus Fire Flow	6
		2.5.3 Maximum Pressure	7
	2.6	Summary and Conclusions	7
3.0	WAS1	rewater servicing	8
	3.1	Background	8
	3.2	Design Criteria	8
	3.3	Proposed Sanitary Servicing and Design Flows	8
	3.4	Overflow and Sanitary Hydraulic Grade Line Analysis	9
	3.5	Summary and Conclusions	
4.0	STOR	RM SERVICING AND STORMWATER MANAGEMENT	15
	4.1	Background	15
	4.2	Design Criteria	15
	4.3	Proposed Stormwater Management Approach	16
	4.4	Proposed Minor System Servicing	17
		4.4.1 Runoff Coefficient	
		4.4.2 Minor System Servicing	17
		4.4.3 Inlet Control Devices	
		4.4.4 Water Quality	18
	4.5	Stormwater Management Modelling Approach	18
		4.5.1 Dual Drainage Model	
		4.5.2 Integration with the Carp River Modelling and Boundary Conditions	19
		4.5.3 Simulation of Street Segments	19
		4.5.4 Adjoining Existing Areas	
	4.6	Modelling Parameters	21
		4.6.1 Hydrological Parameters	
		4.6.2 Simulation of Storm Distributions	
		4.6.3 Simulation of Park and Amenity Blocks	
		4.6.4 Simulation of Garage Access Ramps	
	4.7	Simulation Results	
		4.7.1 Low Point Ponding Analysis	
		4.7.2 Major System Flow	
		4.7.3 Storm Sewer HGL Analysis	
		Acception Limited Review	

		4.7.4	Storm Sewer HGL Analysis for Existing Arcadia Stages	26
		4.7.5	System Release Rates	28
	4.8	Summ	ary and Conclusions	28
6.0	CONC	CLUSIO	NŚ	30

List of Tables

Table 2-1: Water Demands	4
Table 2-2: Fire Flow Requirements	5
Table 2-3: Hydraulic Boundary Conditions	
Table 2-4: Watermain Internal Diameters and C-Factors	
Table 3-1: Wastewater Key Design Parameters	8
Table 3-2: Sanitary Design Flow Summary	
Table 3-3: Sanitary Annual Flows at Overflow Locations	
Table 3-4: Freeboard from Sanitary HGL under Pumping Station Failure	11
Table 3-5: 2014 Signature Ridge Pumping Station (IBI Group)	12
Table 4-1: C-Factors	
Table 4-2: Major Overland Flow Comparison along Campeau Drive	
Table 4-3: Incoming Flow to the North and South Low Points – 3-hour Chicago Storm	21
Table 4-4: Release Rates for the Park and Amenity Area	23
Table 4-5: Low Point Major System Ponding (3-hour Chicago Event)	23
Table 4-6: HGL Analysis (12-hour SCS Storm)	
Table 4-7: Storm HGL Analysis Arcadia Stage 1 and 2 (12-hour SCS)	
Table 4-8: System Release Rates Comparison	

 List of Figures

 Figure 1-1
 Location Plan

List of Appendices

Appendix A1	Draft Plan of Subdivision, Concept Plan and Topographical Plan
Appendix A2	Pre-consultation notes
Appendix A3	As-built Information
Appendix A4	Servicing Study Checklist
Appendix B1	Water Demands and FUS Calculations
Appendix B2	City Correspondence – Boundary Conditions
Appendix B3	WaterCAD Schematics
Appendix B4	Simulation Results – Peak Hour Demand
Appendix B5	Simulation Results – Maximum Day + Required Fire Flow
Appendix B6	Simulation Results – Maximum HGL
Appendix C1	Sanitary Sewer Design Sheet
Appendix C2	Background Sanitary Documents
Appendix D1	Storm
Appendix E1	Modelling Schematics
Appendix E2	CB Tables
Appendix E3	HGL Analysis
Appendix E4	Street Ponding Areas

1.0 INTRODUCTION

1.1 General

In 2022, J.L. Richards & Associates Limited (JLR) was retained by Minto Communities Inc. (Minto) to prepare the detailed design of municipal infrastructure for Site Plan Approval (SPA) of Arcadia Stage 6. This Site Servicing Report (SSR) presents the servicing constraints and strategies for water, wastewater, stormwater servicing, and stormwater management in accordance with the City of Ottawa Design Guidelines, the associated technical bulletins and relevant design excerpts. This SSR also includes strategies for implementing erosion and sedimentation control measures throughout the construction phase of the project.

1.2 Site Description

Minto's Arcadia Stage 6 is located within the City of Ottawa's Official Plan boundary and consists of a ±5.58 ha parcel bounded by Campeau Drive and Arcadia Stage 3 to the north, Campeau Drive SWMF and Donum Lane to the east, Country Glen Way to the west and by the Light Rail Transit (LRT) / Feedmill Creek to the south (refer to Figure 1-1: Location Plan). The legal description of the subject property is Part of Block 2, Registered Plan 4M-1563 and Part of Lot 3, Concession 1 (Geographic Township of March), City of Ottawa (refer to Appendix A1 for the Legal Plan)

A topographical survey was completed by Stantec Inc. in May 2022 (Appendix A1). The survey indicates that the existing ground surface contains fill piles and generally slopes downwards in a northeasterly direction towards Donum Lane.

1.3 **Proposed Development**

The proposed development will consist of 368 residential units, one public parkette (0.56 ha) and two (2) amenity blocks (0.087 ha and 0.113 ha). Overall, the site will feature 11 Executive Towns, 80 Avenue Towns, 13 Urban Towns and 264 Metro Towns. The Concept Plan for Arcadia Stage 6 is attached to Appendix A1.

1.4 Proposed Connections to Existing Infrastructure

A review of existing services was completed along both frontages of the subject property to identify existing sewers and watermains to service the development. The proposed connections to the existing infrastructure consists of the following (refer to Appendix A3 for a copy of the background drawings):

<u>Watermain</u>

- East: Connection to existing 305 mm diameter PVC watermain along Donum Lane.
- West: Connection to existing 305 mm diameter PVC watermain along Country Glen Way.

<u>Sanitary</u>

• East: Removal and relocation of existing maintenance hole on Donum Lane and connection using 375 mm pipe.

<u>Storm</u>

- East: Removal and relocation of existing maintenance hole on Donum Lane and connection using 1500 mm pipe.
- West: Connection to existing maintenance hole on Country Glen Way using 900 mm pipe. The existing 600 mm pipe initially intended to service the proposed development will be removed.

The existing watermain, storm and sanitary stubs on Donum Lane will be removed.

1.5 Consultation and Permits

A pre-consultation meeting was held on September 2, 2021, to discuss the planning process, design criteria, and servicing constraints. A copy of the pre-consultation meeting notes has been provided in Appendix A2.

As stated during the pre-consultation meeting, Stage 6 will be a Site Plan Control Application to the City of Ottawa. Existing structures are in place at the East and West side of the property line. These structures will be removed and/or relocated. As noted in the Servicing Drawings (S1 and S2), Stage 6 will have two storm, one sanitary and two watermain connections. An Environmental Compliance Approval (ECA) will be necessary to meet the Ministry of Environment, Conservation and Parks (MECP) requirements.

In addition, a Servicing Study Checklist has been included in Appendix A4 of this report. The checklist provides all the details associated with this development as well as the approval and permit requirements.

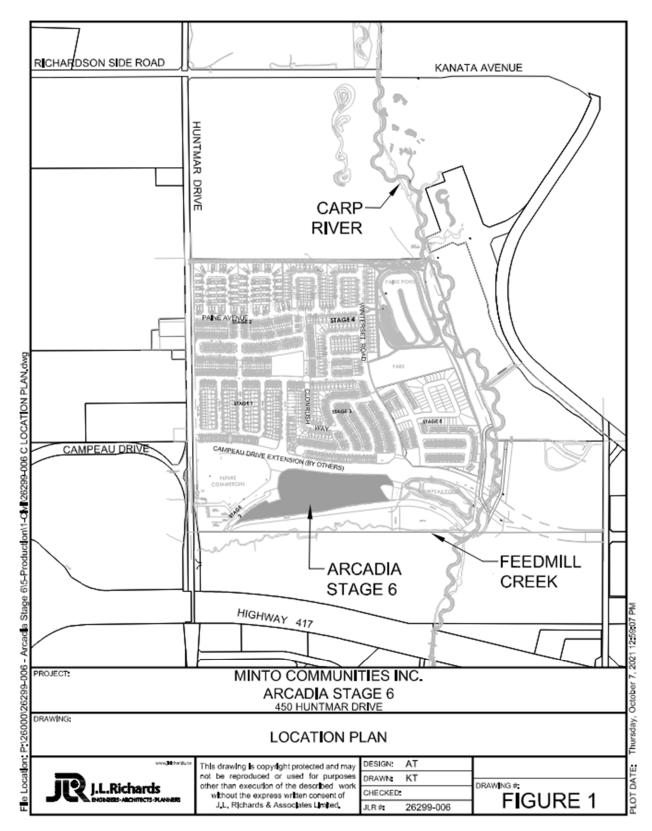


Figure 1-1: Location Plan

2.0 WATER SERVICING

2.1 Water Supply Design Criteria

A Hydraulic Network Analysis (HNA) was carried out to confirm the site's watermain sizing and to demonstrate its compliance to the Ottawa Design Guidelines for Water Distribution (July 2010) and Technical Bulletins ISDTB-2014-02, ISTB-2018-02 and ISTB-2021-03. These documents are herein referred to as the Design Guidelines and TB-2014-02, TB-2018-02, and TB-2021-03, respectively.

Section 4.2.2 of the Design Guidelines states the following criteria for development additions to the public water distribution system:

- Under maximum hourly demand conditions (peak hour), the residual pressures shall not be less than 276 kPa (40 psi);
- During periods of maximum day and fire flow demand, the residual pressure at any point in the distribution system shall not be less than 140 kPa (20 psi);
- In accordance with the Ontario Building Code (OBC) in areas that may be occupied, the static pressure at any fixture shall not exceed 552 kPa (80 psi);
- The maximum pressure at any point in the distribution system in unoccupied areas shall not exceed 689 kPa (100 psi); and
- Feedermains, which have been provided primarily for the purpose of redundancy, shall meet, at a minimum, the basic day plus fire flow demand.

2.2 Domestic Water Demands

The estimated domestic water demands presented in this section are based on the site layout and unit count proposed in the Concept Plan (Appendix A1). Since receiving the boundary conditions from the City (Appendix B2), the number of units has been reduced from 409 to 368. The proposed development now consists of 104 townhouses (11 Executive Towns, 80 Avenue Towns and 13 Rear Lane Towns) and 264 duplexes (Metro Towns).

The residential consumption rate for average day demand was set in accordance with the City's TB-2021-03. Table 2-1 summarizes the water consumption rates and total estimated water demands used in the HNA. Calculated in accordance with Section 4.2.8 of the Design Guidelines, the detailed water demand distribution is presented in Appendix B1.

Demand Scenario	Water Consumption or Peaking Factor	Residential Demand (L/s)
Average Day Demand	280 L/c/d	2.88
Maximum Day Demand	2.5 x Avg Day	7.20
Peak Hour Demand	2.2 x Max Day	15.83

Table 2-1: Water Demands

2.3 Fire Flow Requirements

The City has specified that the Fire Underwriters Survey (FUS) method shall be used for any public or private site where new fire hydrants are being designed. Specifically, the required fire flow (RFF) for each structure was calculated in accordance with TB-2018-02. Several firewalls were specified throughout the development to limit the maximum RFF to 15,000 L/min (250 L/s) in accordance with the boundary conditions received from the City of Ottawa. Critical fire areas for Arcadia Stage 6 are presented in Table 2-2.

Location	Block Number	Calculated Fire Flow L/min (L/s)
Critical Fire Area 1	Block 14	15,000 (250)
Critical Fire Area 2	Block 15	15,000 (250)
Critical Fire Area 3	Block TE-05	15,000 (250)
Critical Fire Area 4	Block TE-11	15,000 (250)

Table 2-2: Fire Fl	ow Requirements
--------------------	-----------------

Refer to Appendix B1 for the detailed RFF calculations for the critical fire areas.

2.4 Proposed Water Servicing, Boundary Conditions and Water Model

2.4.1 Proposed Water Servicing

The proposed water servicing for Arcadia Stage 6 includes a private 203 mm watermain loop connected to the following existing watermains:

- Connection-1: the existing 305 mm watermain south of the intersection of Donum Lane and Campeau Drive; and
- Connection-2: the existing 305 mm watermain stub south of the intersection of Country Glen Way and Campeau Drive.

The water demands will be supplied by local 203 mm PVC watermains and 50 mm PEX water services. All units will be provided with an individual water service from the front except for the duplex blocks with underground parking, which will be provided with a shared water service into the mechanical room for each complex. A 50 mm PEX water service will be extended from the mainline to provide domestic water service to units which do not have direct access to the 203 mm watermains from the front. Refer to Drawing S1 and S2 for the water servicing layout.

2.4.2 Boundary Conditions

Hydraulic boundary conditions were provided by the City at the two proposed connection locations (Connection-1 and Connection-2) listed in Section 2.4.1 above. Tables 2-3 summarizes the hydraulic boundary conditions received (refer to Appendix B2 for a copy of the City correspondence).

Demand Scenarios	Connection-1 Head (m)	Connection-2 Head (m)
Maximum HGL	161.3	161.3
Peak Hour	156.3	156.3
Max Day plus Fire 1 (167 L/s)	153.8	151.5
Max Day plus Fire 2 (250 L/s)	150.5	145.5

Table 2-3: Hydraulic Boundary Conditions

2.4.3 Water Model

A hydraulic water model within the WaterCAD® software platform was used to carry out the HNA (refer to the overall schematics presented in Appendix B3). The water demands from Table 2-1 and the boundary conditions from Table 2-3 were input into the model for each demand scenario. Table 2-4 summarizes the watermain diameters and roughness coefficients used in the model, based on Sections 4.2.12 and 4.3.5 of the Design Guidelines.

Table 2-4: Watermain Internal Diameters and C-Factors

Nominal Diameter	Inside Diameter	C-Factor
50 mm	50 mm	100
150 mm	155 mm	100
200 mm	204 mm	110
300 mm	297 mm	120

2.5 Simulation Results

The HNA was carried out under steady-state peak hour, maximum day plus fire flow, and maximum pressure conditions to confirm that the proposed water servicing can meet the design criteria outlined in Section 2.1.

2.5.1 Peak Hour

The simulation results found the minimum pressure at the site during the peak hour condition to be 528 kPa (76.6 psi) (refer to Appendix B4), which exceeds the minimum pressure criterion of 276 kPa (40 psi) per the Design Guidelines.

2.5.2 Maximum Day Plus Fire Flow

Fire water supply will be provided by hydrants located along the 203 mm watermains. Hydrant spacing was carried out in accordance with the Design Guidelines.

To ensure adequate fire protection, the maximum day demand shown in Table 2-1 was analyzed simultaneously with the fire flow requirements. The fire flow simulation was

carried out by allowing WaterCAD® to calculate the maximum fire flow that can be drawn from each hydrant without allowing any part of the system to experience pressures less than 140 kPa (20 psi). Except for hydrant H-6, it is expected that the targeted fire flow of 15,000 L/min (250 L/s) can be provided throughout the site (refer to Appendix B5). Contributing fire hydrants were assessed for each structure within the site to confirm that adequate water supply is available per Appendix I of TB-2018-02.

As hydrant H-6 was only able to provide an available fire flow of 247 L/s, fire flow demands of 63 L/s were manually applied to the nearby hydrants (H-4, H-5, H-6 and H-7) to confirm if the hydrants could provide the RFF (250 L/s) while achieving the minimum pressure requirement of 140 kPa (20 psi). The results indicated that the hydrants were able to provide the RFF for Block TE-05 while maintaining the minimum pressure requirement throughout the site (refer to Appendix B5).

2.5.3 Maximum Pressure

Based on a zero (0 L/s) demand condition, the simulation results found the pressures at the site during the maximum pressure condition to range between 604 kPa (87.6 psi) and 648 kPa (94.0 psi) (refer to Appendix B6). Since these values exceed the maximum pressure constraint of 552 kPa (80 psi) per the Design Guidelines, all units within Arcadia Stage 6 will require pressure reducing valves (PRVs).

2.6 Summary and Conclusions

Based on the water simulation results, the proposed development can be serviced by a 203 mm watermain loop, 203 mm local watermains and 50 mm water service extensions as shown on Drawing S1 and S2. Simulation results under peak hour demand and maximum pressure conditions showed that the design criteria can be achieved with the installation of PRVs for all of the units within the site. Furthermore, adequate fire water supply can be achieved with the proposed servicing.

3.0 WASTEWATER SERVICING

3.1 Background

In accordance with the Kanata West Master Servicing Study (KWMSS), wastewater servicing in Arcadia Stage 6 is designed to outlet to the existing 675 mm diameter gravity sanitary sewer on Campeau Drive. Sanitary sewage will then be conveyed by gravity to the Signature Ridge Pump Station (SRPS) which, in turn, will eventually outlet to the Robert O. Pickard Environmental Centre where wastewater is processed and treated prior to discharge into the Ottawa River.

3.2 Design Criteria

The sanitary sewer system within Arcadia Stage 6 is designed in accordance with the Ottawa Sewer Design Guidelines and subsequent technical bulletins. The design parameters are applied under two scenarios as per ISTB Technical Bulletin 2018-01. In addition to the typical design values, annual values are used for the simulation of the system with failure of the pump station and operation of the overflows. The simulation of the pump station failure should show that the HGL of the sanitary system remains below the underside of footings due to the operation of the overflows. The key design parameters have been summarized in Table 3-1.

Design Parameter	Design Value	Annual Value
Duplex ¹ Population Density	2.3 ppu	Same as design
Row Townhouse ² Population	2.7 ppu	Same as design
Density		
Residential Average Flow	280 L/Cap/Day	200 L/cap/day
Residential Peaking Factor	Harmon's Formula	Same as design
Harmon's Correction Factor (K)	0.8	0.6
Infiltration Allowance	0.33 L/s/ha	0.3
Manning's Roughness	0.013	0.013
Coefficient (n)		
Allowable Slopes	Varies (Refer to Section	-
	6.1.2.2 of ODSG)	
Allowable Velocities	0.6 m/s – 3.0 m/s	-
Allowable Freeboard	-	> 0 m

Table 3-1: Wastewater Key Design Parameters

- (1) The product "Metro Towns" are duplex units.
- (2) The products "Rear Lane (or Urban) Towns", "Executive Towns", and "Avenue Towns" are row townhouse units.

3.3 Proposed Sanitary Servicing and Design Flows

Wastewater generated from Arcadia Stage 6 will be conveyed via a local 200 mm diameter sanitary sewer system that will discharge into the existing 375 mm sewer on Donum Lane as shown in the Servicing Drawings (S1-S2).

Wastewater flows from the proposed development are presented in the Arcadia Stage 6 Sanitary Design Sheet (refer to Appendix C1). Based on the design criteria (Table 3-1) and the site constraints, a total design peak flow of 11.24 L/s is calculated for the development. Table 3-2 summarizes the results from the sanitary design sheet.

Unit Type	Site Area	Unit Count	Unit Density	Average Flow	Res. Peak Flow	Infilt. Flow	Total Flow
Duplex		264	2.3 ppu	280	9.40 L/s	1.84 L/s	11.24 L/s
Row Townhouse	5.58 ha	104	2.7 ppu	L/cap/day	9.40 L/S	1.04 L/S	11.24 L/S

 Table 3-2: Sanitary Design Flow Summary

The peak wastewater flow calculated for the proposed Arcadia Stage 6 development is 11.24 L/s as shown in Table 3-2. This is based on a total population of 888 people. The sanitary design spreadsheet prepared by IBI (Appendix C2) shows that a flow of 4.80 L/s was allocated for the western portion of Stage 6 and a flow of 20.06 L/s was allocated for a 24.3 ha land parcel which included the eastern portion of Stage 6. This amounts to a pro-rated flow allocation of 1.75 L/s for the eastern portion. Thus, the total flow allocation for the entire Stage 6 development is 6.55 L/s (4.80 L/s + 1.75 L/s).

It is noted that previously, the sanitary flows from this site were to be split between the western portion discharging to Country Glen Way and the eastern portion discharging to Donum Lane. Though two outlets were identified for this site, the flows were anticipated to quickly converge along Campeau Drive into the same sewer located northeast of the site at the Donum Lane/Winterset Road/Campeau Drive intersection (i.e., at ex. MH 307A). Although the calculated peak flow for Arcadia Stage 6 is 11.24 L/s which is greater than the original combined allocated flow of 6.55 L/s the following points discuss the downstream capacities:

- 1) The Donum Lane detailed design sheets completed as part of Arcadia Stage 3 & 4, show that there is sufficient residual downstream capacity to accept the 11.24 L/s from Arcadia Stage 6 on Donum Lane.
- 2) The design sheets from the KWMSS for Campeau Drive (Appendix C2) indicate that there is sufficient residual capacity in the downstream system up to the signature ridge pumping station to accommodate the increase in flow.

Given there is sufficient residual capacity in the sewer system, it is proposed to adopt the sanitary servicing strategy described in this section.

3.4 Overflow and Sanitary Hydraulic Grade Line Analysis

Protection against basement flooding within the existing Arcadia Stages 1 to 4 is currently provided by an existing overflow that outlets to the Paine Pond stormwater management facility along with other overflows in the wastewater sewer network. No new overflows are proposed for additional basement protection for Stage 6.

The hydraulic grade line (HGL) analysis carried out for the detailed design of Stage 4 (latest analysis dated February 2020) demonstrated that the design criterion for freeboard was met within the system for Arcadia Stages 1 to 4, including a flow allowance from Stage 6. An updated HGL analysis has been carried out to confirm the HGL within the Stage 6 development.

The HGL analysis was completed using the PCSWMM software platform. The HGL analysis was based on the Signature Ridge HGL analysis completed by IBI in September 2014 with the following revisions:

- Peak wastewater flows were calculated in accordance with the parameters prescribed in Technical Bulletin ISTB-2018-01 and based on residential unit counts and land uses per the current proposed Arcadia Development (Appendix 'A1').
- The local sanitary sewers in Stage 6 were added to the model.
- Land use and residential unit counts were updated using design documents from Arcadia Stages 1, 2 and the Arcadia Retail Development. Appendix C references all applicable documents. Allocations are shown on Drawing OSAN.
- Populations and land uses on the eastern side of the Carp River were maintained as per the 2014 HGL analysis; however, wastewater flows were recalculated based on the parameters in the Technical Bulletin ISTB-2018-01.
- Existing overflows in the model on the East side of the Carp River were maintained in the model although all sanitary sewers were updated as per the GeoOttawa information.
- As per the recent constructed works implemented in Stage 4, an emergency sanitary sewer overflow was included at the Paine SWMF at the 1:25 year design elevation of 93.37 m.

The revisions to the sewershed areas are shown in the marked-up Figures from the September 2014 report (Appendix C8) along with the revised Sanitary Design Sheets for the Dry Weather Flow and Wet Weather Flow with the Annual Parameters. Table 3-4 summarize the wet and dry weather flows for Arcadia Stage 6 under the annual event.

The resulting flows at the overflows are listed in Table 3-3 below using the Annual Parameters for the Dry Weather Flow condition and the Wet Weather Flow Condition. The values can be summed to give the equivalent flow to the SRPS when the pump is operating.

Overflow Location	Overflow Elevation (m)	Dry Weather Flow (I/s)	Wet Weather Flow (I/s)
Paine SWMF	93.37	29	42
SRPS Emergency Overflow	93.70	97	244
Richardson Ridge Overflow	94.10	6	34
Total Flow	-	132	319

Table 3-3: Sanitary Annual Flows at Overflow Loca	tions
---	-------

The simulated HGL elevations were then compared to underside of footing (USF) elevations of Stage 4 and Stage 3. It should be noted that the USF used in this HGL analysis are generally lower than those assumed as part of the 2013 IBI HGL analysis due to changes in the development criteria of the site during the design phases.

Table 5 6 displays the freeboard under dry and wet weather flows. Results in Table 5 6 indicate that a minimum freeboard greater 0.01m will be achieved throughout Stage 6. HGL levels for conceptual future stages can be found in Appendix 'C8'.

Manhole ID	Underside of Footing (m)	DWF Max HGL (m)	DWF Freeboard (m)	WWF Max HGL (m)	WWF Freeboard (m)
100A	94.24	93.92	0.32	94.20	0.04
101	94.24	93.92	0.32	94.20	0.04
101A	94.24	93.92	0.32	94.21	0.03
101B	94.24	93.92	0.32	94.21	0.03
102	94.24	93.92	0.32	94.21	0.03
102A	94.44	93.93	0.51	94.21	0.23
102B	94.62	93.93	0.69	94.22	0.40
103	94.24	93.92	0.32	94.21	0.03
104	94.24	93.92	0.32	94.21	0.03
105	94.24	93.92	0.32	94.21	0.03
106	94.69	93.93	0.76	94.22	0.47
107	94.80	93.93	0.87	94.22	0.58
109	94.80	93.93	0.87	94.23	0.57
110	94.80	93.93	0.87	94.23	0.57
110A	94.80	93.93	0.87	94.23	0.57
110B	94.80	93.93	0.87	94.23	0.57
111	95.10	93.93	1.17	94.23	0.87
112	95.10	93.93	1.17	94.23	0.87
113	95.10	93.93	1.17	94.23	0.87
114	95.15	93.93	1.22	94.23	0.92
114A	95.30	93.93	1.37	94.23	1.07
115	95.43	95.06	0.37	95.07	0.36
116	95.75	93.94	1.81	94.23	1.52
117	95.85	93.94	1.91	94.24	1.61
118	95.50	93.94	1.56	94.24	1.26
119	96.14	94.10	2.04	94.24	1.90
120	96.14	94.17	1.97	94.17	1.97
121	96.14	94.16	1.98	94.24	1.90
122	96.14	95.39	0.75	95.40	0.74
123	96.14	95.05	1.09	95.06	1.08
124	96.14	95.20	0.94	95.20	0.94

Table 3-4: Freeboard from Sanitary HGL under Pumping Station Failure

Manhole ID	Underside of Footing (m)	DWF Max HGL (m)	DWF Freeboard (m)	WWF Max HGL (m)	WWF Freeboard (m)
124A	96.14	95.47	0.67	95.47	0.67

The table presented below displays the freeboard values for existing Arcadia Stages along with existing downstream infrastructure up to the Signature Ridge Pumping Station. The information summarized below provides a comparison of the updated results from the current JLR model to those presented in the SRPS report.

Table 3-5: 2014 Signature Ridge Pumping Station (IBI Group)

IBI 2014 Signature Ridge Pumping Station Model Parameters				JLR Moo	del Results			
NODE ID	Ground Elevation (approx USF elev.) (m)	USF Elevation	Ultimate Buildout Scenario HGL(m)	Min. FB to ground (FB to approx. USF elev.) (m)	JLR Model Node	JLR HGL (m)	JLR Revised Minimum Freeboard to USF or Ground Elevation (m)	Difference from IBI
			(Campeau Dr	ive			
1	103.5		99.53	3.97	MHSA66062	96.99	6.51	-2.54
2		96.68	95.47	1.21	MHSA66066	94.44	2.24	-1.03
2B		95.14	94.76	0.38	MHSA65328	94.27	0.87	-0.49
14	99.5		94.64	4.86	MHSA65349	94.19	5.31	-0.45
14A	96		94.52	1.48	MHSA65349	94.19	1.81	-0.33
3		94.8	94.5	0.3	MHSA65349	94.19	0.61	-0.31
4	94.86		94.44	0.42	MHSA65352	94.15	0.71	-0.29
5		94.2	94.23	-0.03	MHSA65123	94.12	0.08	-0.11
12465	95.7		94.27	1.43	MHSA12465	94.12	1.58	-0.15
			Sou	th of Highw	ay 417			
15	97.6		94.77	2.83	MHSA43765	94.26	3.34	-0.51
				Didsbury Ro	ad			
20011	97.55		94.29	3.26	MHSA20011	94.13	3.42	-0.16
12461	96.05		94.26	1.79	MHSA12461	94.12	1.93	-0.14
Prop 5E	94.45		94.17	0.28	MHSA69564	94.11	0.34	-0.06
Prop5D	94.38		94.11	0.27	MHSA69565	94.1	0.28	-0.01
Prop 5C	94.33		94.06	0.27	MHSA69566	94.08	0.25	0.02
5A	95.15		94.03	1.12	MHSA65995	94.07	1.08	0.04

Site Servicing Report Arcadia Stage 6

	Arcadia Stage 1 and 2							
MH9		94.79		MHSA69409	94.29		-0.5	
MH41	95.12	94.77	0.35	MHSA69400	94.29	0.83	-0.48	
MH32		94.75		MHSA69392	94.29		-0.46	
MH31	95.11	94.81	0.3	MHSA69391	94.55	0.56	-0.26	
MH30	95.17	94.87	0.3	MHSA69390	94.76	0.41	-0.11	
MH29	95.46	95.05	0.41	MHSA69389	94.99	0.47	-0.06	
MH28	95.46	95.17	0.29	MHSA69388	95.1	0.36	-0.07	
MH27	95.8	95.4	0.4	MHSA69387	95.33	0.47	-0.07	
MH26	96.5	95.73	0.77	MHSA69386	95.66	0.84	-0.07	
MH25 [S1]	97.77	96.02	1.75	MHSA69385	95.97	1.8	-0.05	
MH40	95.11	94.77	0.34	MHSA69399	94.44	0.67	-0.33	
MH39	95.1	94.77	0.33	MHSA69398	94.68	0.42	-0.09	
MH38	95.17	94.53	0.64	MHSA69397	94.88	0.29	0.35	
MH36	95.59	94.76	0.83	MHSA69396	95.1	0.49	0.34	
MH37	96.07	95.06	1.01	MHSA69410	95.38	0.69	0.32	
MH35	96.04	95.02	1.02	MHSA69395	95.35	0.69	0.33	
MH34	96.5	95.46	1.04	MHSA69394	95.78	0.72	0.32	
MH33		96.37		MHSA69393	96.67		0.3	
MH8		94.8		MHSA69408	94.29		-0.51	
MH7		94.8		MHSA69407	94.29		-0.51	
MH6	95.27	94.82	0.45	MHSA69406	94.29	0.98	-0.53	
MH24	95.2	94.82	0.38	MHSA69556	94.48	0.72	-0.34	
MH23	95.37	94.82	0.55	MHSA69555	94.73	0.64	-0.09	
MH22	95.16	94.82	0.34	MHSA69554	94.79	0.37	-0.03	
MH21	95.5	94.7	0.8	MHSA69553	95.02	0.48	0.32	
MH5	95.16	94.86	0.3	MHSA69405	94.38	0.78	-0.48	
MH4	95.47	94.9	0.57	MHSA69404	94.54	0.93	-0.36	
MH20	95.52	94.9	0.62	MHSA69551	94.83	0.69	-0.07	
MH19	95.32	94.66	0.66	MHSA69552	95.05	0.27	0.39	
MH3	96.17	95.02	1.15	MHSA69403	94.94	1.23	-0.08	
MH18	96.24	95.03	1.21	MHSA69421	95.36	0.88	0.33	
MH17	96.59	95.3	1.29	MHSA69420	95.63	0.96	0.33	
MH16	96.59	95.41	1.18	MHSA69419	95.73	0.86	0.32	
MH15	96.59	95.83	0.76	MHSA69417	96.26	0.33	0.43	
MH13	97.25	95.94	1.31	MHSA69417	96.26	0.99	0.32	
MH2	97.27	95.73	1.54	MHSA69402	95.68	1.59	-0.05	
MH14	97.09	95.7	1.39	MHSA69416	96.02	1.07	0.32	
MH13	97.25	95.94	1.31	MHSA69417	96.26	0.99	0.32	
MH1 [S2]	98.12	96.31	1.81	MHSA69401	96.25	1.87	-0.06	
S6	95.19	94.77	0.42	MHSA65325	94.28	0.91	-0.49	
MH104A		94.725		MHSA65342	94.28		-0.445	

Site Servicing Report Arcadia Stage 6

	Heritage Hills							
20116	107.9		103.86	4.04	MHSA20116	103.84	4.06	-0.02
20164	107.3		101.66	5.64	MHSA20164	101.64	5.66	-0.02
12735	102.01		96.37	5.64	MHSA12735	96.35	5.66	-0.02
12732	99.4		95.19	4.21	MHSA12732	94.84	4.56	-0.35
20098	106.8		104.32	2.48	MHSA20098	104.32	2.48	0
20179	106.6		103.67	2.93	MHSA20179	103.63	2.97	-0.04
20123	106.1		103.39	2.71	MHSA20123	103.33	2.77	-0.06
20127	105.4		101.7	3.7	MHSA20127	101.67	3.73	-0.03
20130	102.9		99.29	3.61	MHSA20130	99.27	3.63	-0.02
13058	98		95.06	2.94	MHSA13058	94.98	3.02	-0.08
20161	98		94.84	3.16	MHSA20161	94.61	3.39	-0.23
			Terry Fox	Drive (Richa	ardson Ridge)			
Baylis	97.15		94.65	2.5	MHSA64878	95.03	2.12	0.38
Rchrdsn N.	96		94.6	1.4	MHSA64876	94.89	1.11	0.29
L. Rchrdsn		94.8	94.5	0.3	MHSA64834	94.45	0.35	-0.05
MH329A		94.81	94.49	0.32	MHSA64833	94.46	0.35	-0.03
MH328A		94.84	94.51	0.33	MHSA64832	94.46	0.38	-0.05
L. Rchrdsn Ea.		94.97	94.46	0.51	MHSA63532	94.45	0.52	-0.01
N62		94.7	94.44	0.26	MHSA63527	94.42	0.28	-0.02
			Terry Fox D	rive (Broug	hton to SRPS)			
Broughton		94.7	94.42	0.28	MHSA58579	94.39	0.31	-0.03
MH205	96.99		94.8	2.19	MHSA58578	94.46	2.53	-0.34
MH207		97.26	94.95	2.31	MHSA58577	94.52	2.74	-0.43
TBD	95.42		94.34	1.08	MHSA58582	94.29	1.13	-0.05
SRPS	95.35		94.03	1.32	SPRS	94.07	1.28	0.04

3.5 Summary and Conclusions

Wastewater servicing for Arcadia Stage 6 will be designed in accordance with the City of Ottawa Sewer Design Guidelines, the associated technical bulletins, and various background documents as highlighted throughout this section. The proposed collection and conveyance of wastewater will consist of a local 200 mm diameter sewer which will outlet into Donum Lane as shown on Drawings S1 and S2. It is recommended that this wastewater servicing plan be implemented in order to provide adequate sanitary servicing for the proposed development.

4.0 STORM SERVICING AND STORMWATER MANAGEMENT

4.1 Background

Similar to Arcadia Stages 1 to 4 stormwater management requirements for this development were originally set by the 2006 Kanata West Master Servicing Study (KWMSS), which identified a single stormwater management facility (referred as a Pond One) to service the area of the then proposed Arcadia developments. In 2018, after development of Stages 1 and 2, JLR evaluated various storm servicing strategies for the remainder of the Arcadia Development as part of the document entitled "Stormwater Management Strategy Report - Arcadia Residential Stages 3, 4 and Commercial Stage 2, JLR, May 2018". The 2018 report identified that the preferred solution for the remainder of the Arcadia development was to incorporate a second stormwater management facility (SWM facility) on the south side of Campeau Drive which would improve HGL issues, allow for the immediate servicing of Campeau Drive extension and Light Rail Transit (LRT) and reduce submergence along the minor system when compared to a single pond servicing strategy. The two-pond concept was accepted by the City of Ottawa. The second SWM facility referred to as the Campeau Drive SWMF is the dedicated storm outlet for Stage 3, which included part of the Stage 6 lands.

Storm flows from the west side of Arcadia Stage 6 discharge to existing stubs on Country Glen Road that were included as part of the design for the commercial development on the west side of Country Glen Road. Discharges to the minor system on Country Glen Road flow via the existing minor system through Stages 1, 2 and 4 of Arcadia development and outlet to the Paine Pond, which provides water quantity and quality control for discharges to Carp River. Release rates to Country Glen Road were set in the Arcadia Commercial 370 Huntmar Drive Design Brief by IBI Group, October 2014.

Storm flows from the east side of Arcadia Stage 6 discharge to an existing storm sewer on Donum Lane, which discharges into Campeau Drive SWMF. This facility provides water quantity and quality controls prior to releasing controlled flows into the Carp River. Allowable release rates from the east side of Arcadia Stage 6 were set out in the JLR 2018 report and confirmed in the design of Arcadia Stage 3.

4.2 Design Criteria

Storm and stormwater management servicing for the Arcadia Stage 6 was developed in accordance with the City of Ottawa 2012 Sewer Design Guidelines (OSDG) and the more recent Technical Bulletin PIEDTB-2016-01 (September 6, 2016). These two documents are herein referred to as the Design Guidelines in this section. A summary of the key storm and stormwater management criteria follows:

- Control minor system flows to the allowable release rates at existing stubs at Country Glen Road and Donum Lane;
- Storm sewers are designed to capture the 1:5 year storm event as a minimum using the Rational Method and using the regressions derived from Intensity-Duration-Frequency (IDF) equations as per the Design Guidelines;
- Provide a freeboard in the sewer network to the underside of footing (USF) of 300 mm during the 1:100-year storm where weeping tile connections are present;
- The runoff coefficients (C-factors) for the residential development were based on the maximum lot coverage permitted by the proposed zoning, as per the Design Guidelines.

C-factors for non-residential land uses to be calculated based on the ratio of pervious and impervious surfaces depicted on proposed site plans;

- Minimum roadway profile grades at 0.5%;
- Roadway cross-fall of 3% was used for all streets;
- Minimum roadway slope of 0.1% from crest-to-crest for overland flow route;
- Minimum rear yard slope in the absence of perforated pipe system of 1.5% along with swale side slopes of 3 horizontal to 1 vertical;
- Maximum street ponding depth of 350 mm (static and dynamic) as per the Design Guidelines and maximum depth of rear yard flow to be 300 mm;
- Minimum vertical clearance of 0.15 m between the spill elevation on the street and the finished grade (garage elevation);
- Minimum vertical clearance of 0.30 m between the rear yard spill elevation and the ground elevation at the building in the rear yards;
- During the Climate Change event, the street ponding is not to reach the lowest building opening while the storm HGL must remain at or below the USF;
- The product of the velocity and depth of major system flows on streets during the 1:100year design storm event is not to exceed 0.60 m²/s; and,
- Major system flows up to and including the 1:100-year design storm event are contained within the site and internally are self-contained within the park and amenity blocks.

4.3 Proposed Stormwater Management Approach

It is proposed to utilize both the west and east connection points to the existing minor storm sewers on Country Glen Road and Donum Lane respectively. The stormwater management approach will require that the discharges to these locations are controlled to the allowable release rates identified in the design of Phase 1 and Stage 3 of the Arcadia site. These allowable release rates are identified in Table XX.

Outlet	Allowable Release Rate (m³/s)	Set By
West – Country Glen Road	0.667	Arcadia Commercial 370 Huntmar Drive Design Brief by IBI Group, October 2014
East – Donum Lane	0.567	Stormwater Management Strategy report- Arcadia Residential Stages 3, 4 and Commercial Stage 2, JLR, May 2018

It should be noted that the outlet to Country Glen Road is downstream of an additional outlet previously provided for lands covering the Stage 6 development. Since the proposed outlet is the downstream outlet the allowable release rates for both outlets were combined as the pipe network on Country Glen Road will have sufficient capacity for the combined flow at the proposed connection point.

In order to achieve the allowable release rates, the stormwater management of the site will include online detention of the stormwater runoff in underground oversized sewers and allowing increased headwater depths in sewer sections with no weeping tile connections. Where weeping tile connections are proposed the 1:5-year free flow capacity of the pipe network will be maintained and the 1:100-year HGL will remain below the underside of footing of connected units.

4.4 Proposed Minor System Servicing

4.4.1 Runoff Coefficient

Runoff coefficients (C-Factors) were calculated for Arcadia Stage 6 based on the weighted product between the percentage of the pervious area at a C-Factor of 0.2 and the percentage of the impervious area at a C-Factor of 0.9. GIS Mapping of the impervious and pervious surfaces was used in the PCSWMM software spatial weighting tool to develop an overall weighted C-Factor for the site, excluding the park and amenity site. Due to consistency and density of the site, this approach provides a conservative C-Factor to be used across the site. C-Factors are provided in Table 4-1.

Area	C-Factor
Site Development Area	0.78
Parkland	0.4
Amenity Space	0.4

Table	4-1:	C-Factors
1 4 5 1 0		•

4.4.2 Minor System Servicing

The proposed storm sewers of Arcadia Stage 6 were sized using the Rational Method based on the C-Factors presented in Table 4-1. Appropriate rainfall intensities were used in the Rational Method based on the rainfall regression equations presented in Section 5.4.2 of the OSDG along with an inlet time of ten (10) minutes at the upstream end of the system. The Rational Method Storm Sewer Design Sheet is included in Appendix 'D1', while the Storm Drainage Plans included in the drawing set provide details associated with the storm drainage areas.

The storm drainage design sheet includes sewer sections which are used to control upstream flows through a restricted size. The restricted sewer sections operate under pressure in the minor system design event to control flows downstream and so show as operating beyond capacity in the design sheet, however these sewers are accounted for in the modelling HGL analysis.

4.4.3 Inlet Control Devices

Storm servicing for Arcadia Stage 6 was developed to limit all flows transmitted to the storm sewers and meet the 0.35 m criterion as the maximum street ponding depth requirement. To achieve this criterion, servicing was developed using ICDs at inlets to the minor system.

The response under the 1:5-year rational method calculation was used to determine the minimum ICD targeted flow for Arcadia Stage 6. The ICDs were selected based on the dynamic model head differential between the maximum HGL at the grate and the higher of the geodetic elevation of the centroid of the ICD or the downstream HGL, in each catch basin lead. Therefore, each ICD was sized to transmit the targeted peak flow based on the calculated water level depth at the top of grate. When water rises above the top of grate in the roadway sag, flows transmitted to the storm sewers will marginally increase due to the increase in the

hydraulic head. Based on the range of flows and hydraulic heads at each catch basin, the following types of ICDs are proposed in Stage 6:

- IPEX Tempest Type A;
- IPEX Tempest Type B;
- IPEX Tempest Type C;
- IPEX Tempest Type D; and,
- IPEX Tempest Type E.

Comprehensive ICD Tables referred to as the Catch Basin Table were prepared and are included in Appendix 'E2'. The Catch Basin Tables show specific information including top of grate elevation, pipe size and invert, the restricted capture rate and ICD type. The information shown on the Catch Basin Tables was extracted and shown on Drawing D1.

4.4.4 Water Quality

The storm discharge criterion for the subdivision is based on the enhanced protection level (80% TSS), which was set to a level greater than the required normal protection level (70% TSS).

The downstream stormwater management ponds, either Campeau Drive SWMF for eastern flows or the Paine Pond for western flows, were designed to provide water quality treatment for the Arcadia Stage 6 development. Excess permanent pool volume was available in both ponds for water quality treatment to 80% TSS removal.

4.5 Stormwater Management Modelling Approach

4.5.1 Dual Drainage Model

The analysis of both major and minor drainage systems was carried out to demonstrate their compliance with respect to the design criteria described in Section 4.2. The performance of the major overland system and minor storm sewer system was analyzed with PCSWMM. This software is a dynamic model which allows both hydrologic and hydraulic components to be simulated in the same platform and also allows the simulation of the interaction between the major and minor systems. The PCSWMM software platform was used to:

- Generate the surface runoff hydrograph for each sub-area under various recurrences.
- Subdivide each inflow hydrograph into its minor and major system components based on the proposed inlet capture rates and roadway sag storage.
- Assess cascading, if any, and carry out dynamic routing of storm flows to determine flow depths along the roadways. As previously stated, the maximum major overland flow depths along the subdivision's roadways are to be limited to 350 mm or less, as per Technical Bulletin PIEDTB-2016-01.
- Demonstrate that the HGL along the storm sewers during the 1:100-year event without sedimentation is 300 mm below the basement's USFs.

PCSWMM was set-up to evaluate the proposed servicing as detailed on Drawings G1 (Grading), Drawings SWM1 (Ponding Plan), Drawings DST, ODST (Drainage) and Drawings S1-S2 & OS (Servicing). As per Drawings DST, the Arcadia Stage 6 lands were discretized into more refined sub-catchments for the immediate drainage area of Stage 6 and lumped sub-catchments for the entire modelled extents. To demonstrate the model schematic, Figure E1-1 and Figure E1-2 (Appendix E1) were prepared and depict the major and minor system elements of the model along with the subcatchments.

4.5.2 Integration with the Carp River Modelling and Boundary Conditions

In order to evaluate the design of the Paine and Campeau Stormwater Management Facilities and the impact on the Carp River, a sub-model of the City of Ottawa PCSWMM Carp River model was extracted to act as the downstream receiver for the stormwater management facilities. The inflow hydrograph at the upstream end of the sub-section of the Carp and the downstream stage hydrograph were both extracted from the overall Carp River model and used as inputs for the respective storm events in the Arcadia Detailed Design model.

Details of the detailed design model and the control of flows released to the Carp River were provided in the Paine Stormwater Management Facility Design Brief, JLR February 2020 for Arcadia Stage 4 and the Stormwater Management Facility Design Brief, Campeau Drive SWMF, JLR May 2019 for Arcadia Stage 3.

Both reports demonstrated that the use of the sub-model was a representation of the flows in the Carp River from the full model and that the stormwater management ponds provided sufficient controls to achieve no impact to the peak flows or maximum water levels in the Carp River.

Since the Arcadia Stage 6 development is internal to the detailed model used in these two reports and discharges to the two ponds, the Arcadia Stage 6 model will use the detailed sub-model to demonstrate that flows to the ponds can be maintained under the proposed Stage 6 stormwater management strategy and therefore there will be no impact on the Carp River.

4.5.3 Simulation of Street Segments

Flow directed to a street segment is split at the major system node; flows are broken down into minor and major system components using an outlet rating curve representing the ICD capture and assigning the minor system flow directly into the minor conduit while maintaining the major system flows on the surface conduit. Flow through the outlet link is calculated based on the HGL above the elevation of the ICD and its rated capacity under various water surface elevations. The ICD rating curves are those provided by the manufacturer.

An additional outlet link with rating curve is placed between the street surface low point and the rear yard connection manhole in the ROW. The outlet link is set at the top of grate elevation of the rear yard connection manhole and, if the street sag storage extents into the rear yard connection manhole lid, the outlet link represents any flow through the holes in the manhole lid which will enter from the ponded runoff. The storage in roadway sag is included in the model as being inherent within the major system conduits. The dynamic capability of PCSWMM means that the static and any dynamic flow is calculated in the model to provide one depth value at each sag location. The low points and high points in the street conduits are taken from the Civil 3D surface.

The subdivision's grading was developed with roadway static storage depths to maximize detention and attenuation of major overland flows while those of lesser volume sags were designed to maximize the conveyance capability of the dynamic section of the cross-section during events where cascading occurs.

4.5.4 Adjoining Existing Areas

The western half of Campeau Drive, from Huntmar Drive to 160 metres east of the roundabout with Country Glen Road, was included in the SWMHYMO modelling for Arcadia Phase I, which included flows from Campeau Drive, residential facing Campeau Drive, Country Glen Road and minor flows from the commercial areas. The minor system flows were extracted from the approved SWMHYMO modelling and imported into the PCSWMM modelling. The IBI design allowed for some major overland flow to continue down Campeau Drive to the low point at the junction with Donum Lane and this hydrograph was also extracted from the SWMHYMO model and imported into the PCSWMM model.

It should be noted that the previous modelling for Arcadia Phase I included Stage 6 as commercial with all major overland flows retained on site, however, due to the change to residential and some of the properties facing Campeau Drive, the grading means that there is some runoff contributing directly to Campeau Drive flows. In order to capture the change in major system flow and small changes in drainage areas as a result of Stage 4, the hydrographs along Campeau Drive from the Phase I model were removed and replaced with subcatchments, inlet links and weirs representing the runoff and conveyance included in the SWMHYMO model.

The hydrologic parameters used are consistent with the Phase I modelling and the flows in the model are consistent with those in the Phase I modelling. A comparison of the flows is provided in Table 4-2.

Section of Major Overland Flow along Campeau Drive	SWMHYMO 1:100 year 3-hour Chicago flow (m³/s)	PCSWMM 1:100 year 3-hour Chicago flow (m³/s)
MH300 to MH301 at commercial access on Campeau Drive	0.221	0.221
MH301 to MH302	0.267	0.263
MH302 to Country Glen Road roundabout	0.319	0.306
Country Glen Road roundabout to MH304	0.357	0.354
MH304 to Donum Lane roundabout	0.430	0.430

Table 4-2: Major Overland Flow Comparison along Campeau Drive

In addition, the total inflow to the low points on Campeau Drive at the Donum Lane roundabout were simulated in the Stage 4 model. The inlet capture defined in the Stage 4 model was set at the 1:10-year rate at each of the low point inlets. Additional flows to the low points at the Donum Lane roundabout included the immediate catchments in the model. In a change to the Stage 4 model, the actual impervious surface coverage was used to refine the imperviousness values used in the hydrology for the Campeau Drive catchment. The imperviousness reduced from 85.7% to 72.0% reflecting the front yards facing the north side of Campeau Drive covered by the catchment area. A comparison of the incoming flow for the 1:10-year and 1:100-year 3-hour Chicago storms at the north and south low points is provided in Table 4-3.

Table 4-3: Incoming Flow to the North and South Low Points – 3-hour Chicago Storm

Low Point	Stage 4 Model 1:10-year incoming flow (m³/s)	1:100-year	1:10-year	Stage 6 Model 1:100-year incoming flow (m³/s)	Stage 4 Modelled Minor System Inlet Capture Rate (m ³ /s)
North	0.198	0.517	0.174	0.480	0.2
South	0.156	0.452	0.160	0.459	0.16

The comparison with the flows in the SWMHYMO model with those in the Stage 4 modelling shows that the changes to the drainage areas have negligible impact on the hydraulics of Campeau Drive. The flows from upstream are consistent with the previous modelling and the inclusion of the runoff from Stage 6 front yards, along with refinement of the imperviousness values for Campeau Drive, means that the 1:10-year flow rate remains below, or at, the modelled inlet capture rate and the 1:100-year event flows are no greater, or at, previously simulated flow rates.

4.6 Modelling Parameters

4.6.1 Hydrological Parameters

The following parameters were used in the hydrologic component of PCSWMM:

- Areas and Imperviousness: Catchment ID and drainage areas used by PCSWMM match those shown on either Drawing DST or Figure E-1 (Appendix E1). In regard to the imperviousness of subcatchments, C-Factors reported in Section 4.4.1were used to estimate PCSWMM's imperviousness. A total imperviousness (TIMP) of 67.14% was calculated and simulated for all front yard areas, while a TIMP of 54.3% was used for the rear yard areas. Subarea routing (percent of impervious surface routed to pervious surface) was calculated for typical lots.
- Flow Path Length / Catchment Width: The flow path length is based on the measured length of the flow from the rear of the property to the street section. The catchment width is, therefore, approximately twice the length of the street segment through the subcatchment, in accordance with the OSDG.

- **Manning's Roughness Coefficient**: Manning's Roughness Coefficients of 0.013 and 0.24 were used for the impervious and pervious surfaces, respectively, which are consistent with the OSDG.
- **CN Infiltration parameters**: For consistency with the City of Ottawa Carp River Model the CN infiltration approach was used. The CN value of 75 for pervious land cover was maintained from the Carp River Model.

Since PCSWMM is based on the Nonlinear Reservoir Routing Method (SWMM 5 engine) to generate runoff from subcatchments, the infiltration and depression storage are accounted for separately. The formulation of the SCS Loss Method incorporated into SWMM does not include the Initial Abstraction term. CN is used in SWMM to compute infiltration losses only, not total hydrologic losses as in the original SCS methodology. Therefore, the CN value is used and not a modified CN (CN*) as this alters for term to account for the difference in Initial Abstraction.

• Initial Abstraction: Initial abstraction of 4.67 mm and 1.57 mm was used for the pervious and impervious surfaces respectively, consistent with the OSDG and Carp River Model.

Note that for catchments that were previously modelled in SWMHYMO for Arcadia Phase I maintained the catchment parameters as per the SWMHYMO model to maintain consistency with previous work.

4.6.2 Simulation of Storm Distributions

The City of Ottawa requires that the performance of the minor and major systems be investigated under the 3-hour Chicago design storm. As such, 1:2-year, 1:5-year, 1:10-year, 1:25-year, 1:50-year, and 1:100-year 3-hour Chicago storms were evaluated. In addition, the critical storm distribution for the Carp River is the 12-hour SCS storm and so this distribution was also assessed by the model for the same durations, in addition to the standard 24-hour SCS storm distribution for the same durations. The 12-hour SCS storm was found to be critical for the minor system HGL while the Chicago 3-hour storm for the major overland flow system.

The Climate Change stress test event was run for all three storm distributions used. As per the requirements of the Ottawa Sewer Design Guidelines, historical storms were also assessed, including the July 1, 1979 storm, the August 4, 1988 storm and the August 8, 1996 storm.

4.6.3 Simulation of Park and Amenity Blocks

For the park and amenity blocks the model includes a storage node with an outlet link to restrict flow to the minor system to the 1:5-year runoff rate for the blocks. In events greater than the 1:5-year return period then the storage node detains runoff over and above the release rate for the block. The 1:5-year release rates for the blocks are shown in Table 4-4.

Block	Imperviousness (%)	Runoff Coefficient	1:5-year Release Rate (m³/s)
Park Block	28.57	0.40	0.058
Amenity Block	54.43	0.58	0.061

 Table 4-4: Release Rates for the Park and Amenity Area

4.6.4 Simulation of Garage Access Ramps

Two of the units within the Stage 6 development have depressed garage access ramps. One of these will be able to drain via gravity to the storm sewer system while the other to the east of the site will require to be pumped to the minor system. A maximum pump rate of 9 L/s, approximately equivalent to a 1:10 year event. Where the gravity connection is provided the drain is above the underside of footing for the unit and 300mm freeboard should be maintained below the grate elevation.

4.7 Simulation Results

This section of the Report presents the results of the simulation of Stage 6 as part of the detailed model for the Arcadia site as a whole, incorporating Stages 1 to 4 and the Paine Pond and Campeau Drive stormwater management facilities. The modelling includes the future Stage 5 at a conceptual level with the same parameters as used in the Stage 3 and 4 models.

The objective of this section is to assess the performance of the following systems under the build-out condition:

- The major overland system under extreme storm events (i.e., 1:100 year and climate change events) as per the OSDG; and
- The major overland system during the 1:2-year storm event and determine whether surface ponding is to occur.
- Appendices E4 and E5 provide Storm HGL analyses and Street Ponding Analyses respectively for a range of historical storms and interim conditions.

4.7.1 Low Point Ponding Analysis

The results at each of the low points, as generated by a 3-hour Chicago storm distribution, are set out in Table 4-5. Low points correspond to Area IDs from the ponding plan Drawing SWM1.

Low Point ID	Top of Grate (m)	Maximum Static Depth	1:2 year Depth (mm)	1:5 year Depth (mm)	1:100 year Depth (mm)	Climate Change Depth (mm)
1	97.1	300	-	-	200	230
2	96.9	300	-	-	90	190
3	96.9	100	-	-	-	-

Site Servicing Report Arcadia Stage 6

Low Point ID	Top of Grate (m)	Maximum Static Depth	1:2 year Depth (mm)	1:5 year Depth (mm)	1:100 year Depth (mm)	Climate Change Depth (mm)
4	96.8	100	-	-	-	-
5	96.7	190	-	-	-	-
6	96.2	200	-	-	50	100
7	96	150	-	-	100	140
8	95.6	220	-	-	70	110
9	96.87	230	-	-	160	200
10	97.04	230	-	-	100	150
11	96.97	300	-	-	-	-
12	96.88	290	-	-	-	60
13	96.87	200	-	-	-	-
14	96.67	300	-	-	50	100
15	96.57	130	-	-	110	150
16	96.77	160	-	-	150	200
17	96.92	250	-	-	160	210
18	96.67	170	-	-	160	200
19	96.83	240	-	-	160	210
20	96.1	250	-	-	110	150
21	96.2	200	-	-	70	120
22	95.9	250	-	-	100	140
23	95.7	200	-	-	240	260
24	95.6	220	-	-	170	250

The simulation results compiled in Table 4-5 shows that:

- No ponding nor dynamic flow will occur in the 1:2-year or 1:5 year events within the site; and,
- Maximum ponding depth of 200 mm during the 1:100-year event;
- In the climate change event, the peak ponding depth is below 350mm.
- 4.7.2 Major System Flow

No cascading flow occurs in the site during any events and therefore the depth x velocity requirement is achieved.

-24-

4.7.3 Storm Sewer HGL Analysis

The storm sewer HGL under the ultimate servicing scenario is shown at each of the manhole nodes in Table 4-6. Where there is no Underside of Footing (USF) associated with the manhole a dash is shown in the table.

MH ID	USF Elevation (m)	1:100 year Event Max HGL (m)	1:100 year Freeboard (m)-	Climate Change Max HGL (m)	Climate Change Freeboard (m)-
217	-	95.74	-	95.74	-
214A	-	95.74	-	95.74	-
214	95.37	94.97	0.40	94.97	0.4
216	-	95.72	-	95.72	-
213A	-	95.72	-	95.72	-
213	95.32	94.97	0.35	94.97	0.35
210	-	95.16	-	95.16	-
211	-	95.16	-	95.16	-
212	95.32	94.98	0.34	94.98	0.34
J_CBMH1	96.14	95.59	0.55	95.6	0.54
CBMH2	-	95.67	-	95.67	-
224	96.14	95.33	0.81	95.33	0.81
226	96.14	95.2	0.94	95.2	0.94
220	-	95.34	-	95.34	-
218	-	95.2	-	95.2	-
227	95.43	95.04	0.39	95.04	0.39
215	95.3	94.95	0.35	94.95	0.35
MHST77649	-	94.87	-	94.87	-
208	94.69	94.1	0.59	94.1	0.59
207	94.8	93.97	0.83	93.97	0.83
206	94.69	93.9	0.79	93.9	0.79
205	94.24	93.84	0.40	93.84	0.4
201	-	93.71	-	93.71	-
200A	-	93.65	-	93.65	-
200	-	93.65	-	93.65	-
ST6_CB102	-	96.24	-	96.24	-
J_CB103	-	94.43	-	94.44	-
204A	94.69	94.02	0.67	94.02	0.67
204	-	94	-	94	-
203	-	95.49	-	95.49	-
202	-	95.48	-	95.48	-
201A	-	95.45	-	95.45	-
CBMH3	-	95.56	-	95.56	-
202A	-	95.51	-	95.51	-
201A	-	95.45	-	95.45	-

Table 4-6: HGL Analysis (12-hour SCS Storm)

MH ID	USF Elevation (m)	1:100 year Event Max HGL (m)	1:100 year Freeboard (m)-	Climate Change Max HGL (m)	Climate Change Freeboard (m)-
J_CB108	-	94.98	-	95.05	-
J_CBMH4	94.24	93.65	0.59	93.89	0.35

The simulation results compiled in Table 4-6 shows that:

- All nodes achieve HGLs with 300 mm freeboard to the underside of footing in the 1:100-year event with the smallest freeboard being 300 mm; and,
- All nodes maintain a clearance to the underside of footing in the climate change stress test event.
- 4.7.4 Storm Sewer HGL Analysis for Existing Arcadia Stages

The storm sewer HGL under the ultimate servicing scenario is shown at each of the existing Arcadia Stages 1 and 2 manhole nodes in Table 4-7. Where there is no Underside of Footing (USF) associated with the manhole, a dash is shown in the table.

MH ID	USF (m)	Stage 1 or 2 Interim Buildout HGL (m)	Ultimate Buildout HGL (m)	Difference between Stage 1 Interim & Stage 4 Ultimate HGL (m) ⁽¹⁾	Freeboard
MH200	95.15	94.75	94.39	-	0.76
MH201	95.31	94.96	94.59	-	0.72
MH202	95.37	95.07	94.73	-	0.64
MH203	95.43	95.13	94.81	-	0.62
MH204	95.69	95.20	94.93	-	0.76
MH205	97.59	95.87	95.92	0.05	1.67
MH206	97.59	96.01	96.05	0.04	1.54
MH207	97.74	96.50	96.54	0.04	1.20
MH208	97.64	97.13	97.17	0.04	0.47
MH209	96.71	95.74	95.66	-	1.05
MH210	95.94	95.27	95.07	-	0.87
MH211	95.64	95.31	95.16	-	0.48
MH212	96.14	95.54	95.50	-	0.64
MH213	95.89	95.31	95.20	-	0.69
MH214	95.89	95.27	95.15	-	0.74
MH215	95.49	95.15	94.86	-	0.63
MH216	95.39	95.09	94.70	-	0.69

 Table 4-7: Storm HGL Analysis Arcadia Stage 1 and 2 (12-hour SCS)

Site Servicing Report Arcadia Stage 6

MH ID	USF (m)	Stage 1 or 2 Interim Buildout HGL (m)	Ultimate Buildout HGL (m)	Difference between Stage 1 Interim & Stage 4 Ultimate HGL (m) ⁽¹⁾	Freeboard
MH217	95.64	95.21	94.78	-	0.86
MH501	97.82	95.72	95.54	-	2.28
MH502	96.32	95.37	94.99	-	1.33
MH503	95.57	94.87	94.24	-	1.33
MH504	95.23	94.53	93.97	-	1.26
MH505	95.16	94.48	93.93	-	1.23
MH506	95.12	94.42	93.88	-	1.24
MH513	97.25	96.48	96.11	-	1.14
MH514	96.87	96.01	95.67	-	1.20
MH515	96.59	96.14	95.74	-	0.85
MH516	96.59	95.63	95.27	-	1.32
MH517	96.52	95.51	95.11	-	1.41
MH518	96.17	95.26	94.83	-	1.34
MH519	95.32	94.85	94.34	-	0.98
MH520	95.27	94.81	94.27	-	1.00
MH521	95.14	94.81	94.05	-	1.09
MH522	95.14	94.73	94.05	-	1.09
MH523	95.31	94.72	94.04	-	1.27
MH524	95.16	94.63	93.99	-	1.17
MH525	97.77	95.25	95.25	-	2.52
MH526	96.42	95.25	95.16	-	1.26
MH527	95.77	95.05	94.71	-	1.06
MH528	95.47	94.88	94.59	-	0.88
MH529	95.46	94.81	94.53	-	0.93
MH530	95.23	94.68	94.42	-	0.81
MH531	95.11	94.54	94.31	-	0.80
MH532	0	94.3	94.10	-	-94.10
MH533	97.68	95.58	95.58	-	2.10
MH534	96.42	95.78	95.38	-	1.04
MH535	96.04	95.31	94.73	-	1.31
MH536	95.59	95.05	94.58	-	1.01

Site Servicing Report Arcadia Stage 6

MH ID	USF (m)	Stage 1 or 2 Interim Buildout HGL (m)	Ultimate Buildout HGL (m)	Difference between Stage 1 Interim & Stage 4 Ultimate HGL (m) ⁽¹⁾	Freeboard
MH537	96.07	95.16	94.81	-	1.26
MH538	95.31	94.81	94.41	-	0.90
MH539	95.11	94.59	94.25	-	0.86
MH540	95.11	94.46	94.15	-	0.96

(1) If the HGL in ultimate buildout condition is greater than the HGL of the Stage 1 Interim buildout, then the difference in HGL levels is provided.

The simulation results compiled in Table 4-7 shows that:

- The HGL levels for the ultimate buildout condition are lower than the HGL levels in Arcadia Stages 1 and 2 interim buildout conditions, except in Stage 1 at MH205, MH206, MH207, and MH208.
- A minimum freeboard of 0.3m is provided at all manhole nodes in the existing Arcadia Stages.

4.7.5 System Release Rates

The allowable release rates for the system to Donum Lane and Country Glen Road were identified in Section 4.3. The results of the modelling for the 1:100-year event for the three storm distributions are shown in Table 4-8

Event	Stage 6 to Donum Lane (m³/s)	Allowable to Donum Lane (m³/s)	Stage 6 to Country Glen Road (m ³ /s)	Allowable Release Rate to Country Glen Road (m ³ /s)
3-hour Chicago	0.559	0.567	0.635	0.667
12-hour SCS	0.518	0.567	0.635	0.667
24-hour SCS	0.516	0.567	0.619	0.667

Table 4-8.	System	Release	Rates	Comparison
	System	IVEIEase	Naico	Companson

Table 4-8 shows that the system meets the allowable release rate in each of the storm distributions for events up to the 1:100-year event. Since the allowable release rates are achieved the operations of the Paine Pond and Campeau Drive SWMF will be maintained as per the Design Briefs for the facilities and there will be no impact on the downstream Carp River.

4.8 Summary and Conclusions

The stormwater servicing and management concept is proposed to provide stormwater servicing for Arcadia Stage 6, as shown on the Servicing Plan (Drawing S1 and S2).

5.0 Erosion and Sedimentation Control

Erosion and sediment control measures, as outlined in the Ontario Ministry of Natural Resources (MNR) Guidelines on Erosion and Sediment Control for Urban Construction Sites, will be implemented to trap sediment on site. The following erosion and sediment control measures can be implemented during construction as shown on the Erosion and Sediment Control Plan (Drawing ESC):

- Supply and installation of a silt fence barrier, as per OPSD 219.110.
- Supply and installation of siltsack or sentinel CB inserts between the frame and cover of catch basins and maintenance holes adjacent to the project area during construction, to prevent sediment from entering the sewer system.
- Stockpiling of material during construction is to be located along flat areas away from drainage paths. For material placed on sloped areas, stockpiles are to be enclosed with a silt fence to protect watercourses.
- All catch basins are to be equipped with sumps, inspected frequently, and cleaned as required.
- Temporary ICDs are to be placed blocking part of the sewer pipe in the connecting storm maintenance holes to eliminate construction debris from entering the existing storm sewer system. The ICDs are to be removed after the proposed storm sewers have been fully cleaned.
- A mud mat is to be built at each of the site entranceways to prevent the transport of sediment onto paved surfaces. The mud mat shall be:
 - Minimum of 20 m in length for the full width of the entrance way (10 m wide minimum).
 - Minimum of 400 mm thick underlain with a geotextile (or graded aggregate filter); and
 - Constructed with 50 mm diameter clear stone for the first 10 m (extending from the paved street) and the remainder of the length with 150 mm diameter clear stone.

The proposed removal and reinstatement measures as well as the erosion control measures shall conform to the following documents:

- "Guidelines on Erosion and Sediment Control for Urban Construction Sites" published by Ontario Ministries of Natural Resources, Environment, Municipal Affairs, and Transportation & Communication, Association of Construction Authorities of Ontario and Urban Development Institute, Ontario, May 1987.
- "MTO Drainage Manual", Chapter F: "Erosion of Materials and Sediment Control", Ministry of Transportation & Communications, 1985.
- "Erosion and Sediment Control" Training Manual by Ministry of Environment, Spring 1998.
- Applicable Regulations and Guidelines of the Ministry of Natural Resources.

6.0 CONCLUSIONS

Servicing of Minto's Arcadia Stage 6 development, as depicted on the detailed design drawings, has been accounted for in previous studies completed for the subject area. In General, the lands will be serviced as follows:

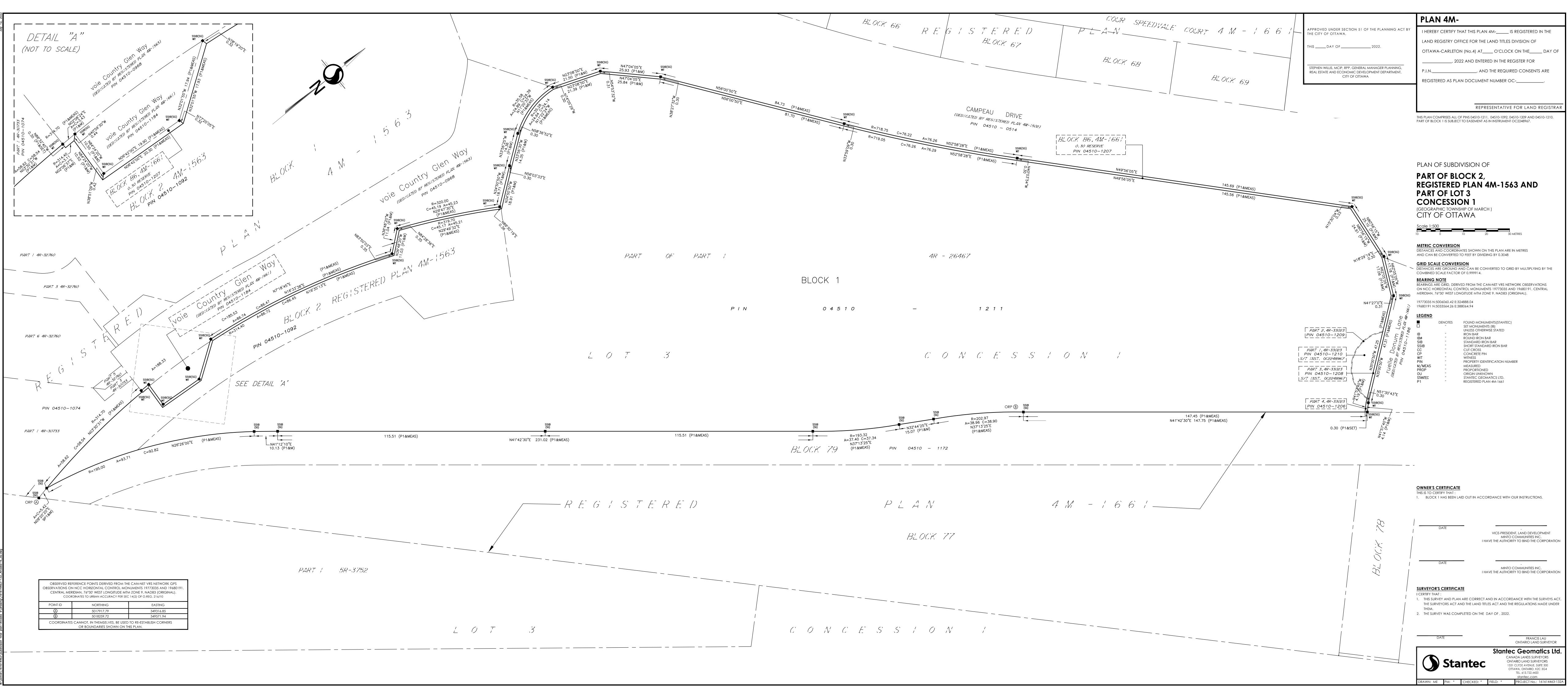
- Water servicing will be provided by connections to existing watermains on Country Glen Way and Donum Lane, and to the existing feedermain located on Campeau Drive.
- Wastewater servicing will be provided by a local sanitary sewer system that will outlet to existing sanitary sewers on Campeau Drive.
- Storm servicing is to be provided on-site by means of local sewers that outlet to the existing storm sewers on Donum Land and Country Glen way.
- Flows in excess of the prescribed allowable peak flow are to be detained by means of onsite storage methods; either above ground or underground or a combination of both.

This Report has been prepared for the exclusive use of Minto, for the stated purpose, for the named facility. Its discussions and conclusions are summary in nature and cannot be properly used, interpreted or extended to other purposes without a detailed understanding and discussions with the client as to its mandated purpose, scope and limitations. This report was prepared for the sole benefit and use of Minto and may not be used or relied on by any other party without the express written consent of JLR.

This report is copyright protected and may not be reproduced or used, other than by Minto for the stated purpose, without the express written consent of JLR.

J.L. RICHARDS & ASSOCIATES LIMITED

Annie Williams, P.Eng.


Ivan Dzeparoski, P.Eng.

Appendix A1

Concept Plan, Draft Plan of Subdivision and Topographical Survey

		Title:	Concept	Plan 32	2	
		Project:	Arcadia -	Stage	6	
			Lege	nd		
		Public Parkette				
			Amenity Are	ea		
			Open Space	2		
- A			Executive To	owns		
			Avenue (B2	B) Towns		
,			Urban (Rear	Lane) Tov	vns	
	-		Infusion (Sta	acked) Tow	/ns	
			Stage Limits			
			💻 🛛 100 Year Flo	odplain		
			Site Stati For Stacked To		nly)	
7 /	1	Unit Count	(Stacked Towns on l y)	264		
				Require	d Provi	ided
		Total Amenity Space (6 sq m./unit) Communal Amenity Space		1,584 Sq	m. 4,910	Sq m.
+++++++++++++	+++++++++++++++++++++++++++++++++++++++		al amenity per unit =	792 Sq n	n. 2,006	Sq m.
		Bike Rack Count (0.5/Unit - 8 spaces per rack)		16.5	16	6
		Above Ground Parking (Units x 1.1)		162	15	8
		(Section 101)	Under Ground Parking (Units x 1.1) Total Parking Spaces	128 290	14	
		 Each st upper u amenity All path Parking + 0.1 pets Assumets 	s a 10m No Build Setback a acked town has an lower u nit with a balcony (6 sq.m. area. ways are 1.5m unless othe requirement for stacked tc r unit for visitor = total 1.0 9 UG garage for TE-4 to 7 58 parking spaces.	nit with a pati) which are ind erwise noted. owns is 0.90 p per unit.	io (16 sq. m.) a cluded as priva per unit for the i	nd an ite residents
			ed curbs on Street No. 2 & ground garage boundary fo		2022-06-09	K.G.
		3 Add la	psed site plan for west pro Avenue Town & TE-4 to	perty	2022-06-03	K.G.
		1 Update	e Avenue Town models (20		2022-05-11 2022-05-11	K.G. K.G.
		0 Issued No.	for Review Description		2022-05-03 Date	K.G. By
Stag	ge 6		Revisio	ons		
11	2.99 %	レ	VE m	in	to	
80	21.7 %	2		in		
13	3.5 %		Cor	nmun	lities	
264	71.7 %	Drawn By: I			North	
264	100.0 %	Checked By	y: C.S.			
264 368	100.0 %					
368	100.0 /8		nmunities Inc)
	100.0 //	Minto Com 180 Kent Si Ottawa, Ol	reet,		\bigcirc)

DRAWN: TMT CHECKED: FL PM: FL FIELD: CA PROJECT No.: 161614463-111

Appendix A2

Pre-consultation Meeting Notes

Pre-application Consultation Meeting Notes

Site Address: 370 Huntmar Drive and 450 Huntmar Drive Location: Virtual - Microsoft Teams Meeting Date: August 12, 2021

- **Attendees:** Colette Gorni Planner, City of Ottawa Wendy Tse - Planner, City of Ottawa Justin Armstrong – Project Manager (Infrastructure), City of Ottawa Mark Young – Planner (Urban Design), City of Ottawa Jeff Goettling – Planner (Parks), City of Ottawa Mike Russett - Planner (Parks), City of Ottawa Jeffrey Ren – Co-op Student, City of Ottawa Matt Craig – MVCA Erica Ogden – MVCA Curtiss Scarlett - Minto Communities Inc. Bronwyn Anderson – Minto Communities Inc. Kiara Gonzales – Minto Communities Inc. Danielle Forget – Minto Communities Inc. Alexandre Tourigny – J.L Richards Eric Forhan – J.L Richards Lucie Dalrymple – J.L Richards Andrew Harte – CGH Transportation
- **Regrets:** Mark Richardson Planning Forester, City of Ottawa Mike Giampa – Project Manager (Transportation), City of Ottawa Matthew Hayley – Planner (Environmental), City of Ottawa

APPLICANT COMMENTS:

- 1. Two separate developments are proposed:
 - a. Stage 5 will be a Plan of Subdivision application and a Zoning By-law Amendment application:
 - Stage 5 is located east of Arcadia Stages 1-4; it is the last piece north of Campeau Drive;
 - Existing infrastructure extends to the boundaries of the site and two accesses off of Winterset Road are proposed;
 - A total of 225 low-rise units are proposed in the form of singles, townhouses and back-to-back townhouses; and,

- The site is designated as General Urban Area in the Official Plan; the Carp River Restoration Policy Area Overlay applies; and the site is zoned Development Reserve (DR).
- b. Stage 6 will be a Site Plan Control application and a Zoning By-law Amendment application:
 - Stage 6 lands are located south of Campeau Drive, the parcel closest to the intersection of Huntmar Drive and Campeau Drive was sold by Minto to a hotel developer;
 - The site is designated as Mixed-Use Centre in the Official Plan, the Kanata West Concept Plan identifies this area as a community core, and the site is zoned Development Reserve;
 - Land dedications have been made for the proposed future Campeau Station LRT Station;
 - Two accesses, one off of Campeau Drive is proposed and one off of Country Glen Way, are proposed;
 - Infrastructure connections are proposed to be made from Country Glen Way and Donum Lane;
 - A total of 480 units are proposed in the form of stacked townhouses (please note that the submitted plans reference a higher unit count); and,
 - 2 communal amenity spaces are proposed.
- 2. The separate applications for both developments are expected to be submitted in September 2021 (Stage 5) and October 2021 (Stage 6).

STAFF COMMENTS:

<u>Planning</u>

Stage 5

- 1. A Major Zoning By-law Amendment application will be required for the Stage 5 lands to permit the proposed development. Urban Exception 1932 can removed through this application as the Holding Symbol has now been lifted.
- 2. A new Plan of Subdivision application will be required to permit the proposed development, as Stage was not included in the previous draft approval.
- 3. Please note that there is a 30cm reserve along Winterset Road that will need to be lifted.
- 4. Staff are generally satisfied with the current layout.

- 5. Please consider adding another pedestrian connection between Street 1 and 6; please consider providing a pedestrian plan with the application submissions.
- 6. Please submit a streetscape plan with your application. The location of trees and sidewalks should be considered early in the design process.

Stage 6

- 7. A Major Zoning By-law Amendment application will be required to permit the proposed development on the Stage 6 lands.
- 8. The Phase 6 lands previously received draft approval through a previous plan of subdivision application (File No. D07-16-16-0025).
- 9. It is understood that the applicant currently intends to allow the draft approval to lapse and pursue Site Plan Control and Plan of Condominium applications to permit the proposed development.
 - a. The proposed development requires a Complex (Manager Approval, Public Consultation) Site Plan Control Application.
- 10. Please note that there are 30cm reserves along Country Glen Way, Campeau, and Donum Lane.
- 11. It is understood that the applicant is interested in straightening the jagged section of the Country Glen Way right-of-way. Staff have reach out to the City's Corporate Real Estate Office (CREO) to discuss the possibility of a land swap, and will provide more information once a response is received.
- 12. Please ensure that adequate bicycle parking is provided both in and outside the proposed storage building.
- 13. Please review the City's Urban Design Guidelines for Transit Oriented Development to ensure that proposed development conforms to the guidelines

General

- 14. Fees and forms for the above mentioned applications can be found <u>here</u>; please note that each planning application fee will be reduced by 10 per cent if two or more applications are submitted at the same time and for the same lands.
- 15. Please ensure that each submission considers the Official Plan policies that are applicable at the time of the submission of the application
 - a. If a complete application is received by no later than the day before the new Official Plan is adopted (October 2021), it will be processed on the basis of existing Official Plan policy provided it is consistent with the 2020 Provincial Policy Statement.

b. Applications received after the day before the new Official Plan is adopted (October 2021), will be reviewed and evaluated on the basis of the policies of the new Official Plan, which is consistent with the 2020 Provincial Policy Statement.

Please contact the Planner, Colette Gorni, at <u>Colette.Gorni@ottawa.ca</u> if you have any questions or require additional information relating to the comments above.

<u>Urban Design</u>

Stage 5

- 1. A design brief is required. A terms of reference is attached.
- 2. Please ensure the pathway connections to the Carp River Open Space Lands are accessible. This may require co-locating the two blocks in the vicinity of Lot 25 and Block 8 to provide additional length for these blocks.
- 3. Please consider locations for sidewalks and trees at the time of submission, as it relates to utilities and clay soils.
- 4. Orientation of units to minimize the need for noise walls on Winterset Road should be considered.
- 5. A pathway connection should be provided within Block 43 Dry Pond to provide access to Winterset Road.

Stage 6

- 6. A design brief is required. A terms of reference is attached.
- 7. The subject lands are located within a design priority area. A high-quality site and building design are expected, suitable for a mixed use centre.
- 8. Consideration should be given to providing more than one product/dwelling type for this site.
- 9. Options to eliminate the need for a single loaded private street abutting Campeau Drive should be explored.
- 10. The current access on Campeau should be considered for a more urban treatment vs. a pork chop island.
- 11. The units abutting Campeau Drive in the Western Block, should be oriented to be in alignment with Campeau Drive vs. being offset.
- 12. The treatment of built form abutting Country Glen Way should be reviewed. Opportunities to regularize this property line should also be explored if possible.
- 13. Connectivity to the MUP along Feedmill Creek should be strengthened at key locations.

- 14. Consideration should be given to allowing for live/work arrangements at grade.
- 15. Consideration should be given to allowing for a mix of uses on-site.

Please contact Urban Design Planner Mark Young at <u>Mark.Young@ottawa.ca</u> if you have any questions or require additional information relating to the comments above.

Engineering

- 1. The Servicing Study Guidelines for Development Applications are available at the following address: <u>http://ottawa.ca/en/development-application-review-process-</u><u>0/servicing-study-guidelines-development-applications</u>
- 2. Servicing and site works shall be in accordance with the following documents:
 - ⇒ Ottawa Sewer Design Guidelines (October 2012)
 - ⇒ Ottawa Design Guidelines Water Distribution (2010)
 - ⇒ Geotechnical Investigation and Reporting Guidelines for Development Applications in the City of Ottawa (2007)
 - ⇒ City of Ottawa Slope Stability Guidelines for Development Applications (revised 2012)
 - ⇒ City of Ottawa Environmental Noise Control Guidelines (January, 2016)
 - ⇒ City of Ottawa Park and Pathway Development Manual (2012)
 - ⇒ City of Ottawa Accessibility Design Standards (2012)
 - ⇒ Ottawa Standard Tender Documents (latest version)
 - ⇒ Ontario Provincial Standards for Roads & Public Works (2013)
- 3. Record drawings and utility plans are also available for purchase from the City (Contact the City's Information Centre by email at <u>InformationCentre@ottawa.ca</u> or by phone at (613) 580-2424 x.44455).
- 4. The Stormwater Management Criteria, for the subject site, is to be based on the criteria outlined in the KWMSS. Understanding that deviations have been made to the KWMSS in previous phases and that Phases 5 & 6 are the final two phases in the Arcadia subdivision area, and that infrastructure and stormwater management facilities surrounding the sites have been constructed as part of previous phases of development, it will be important to demonstrate that the surrounding infrastructure has been designed with enough capacity to support the proposed developments.

Deviations from previous design assumption shall be justified in the plans and reports.

- 5. As was mentioned in the pre-consultation meeting, Phases 5 & 6 are the final two phases in the Arcadia subdivision area, and the surrounding infrastructure intended to provide servicing for Phases 5 & 6 has been constructed as part of previous Phases. The plans and reports that are to be submitted in support of Phase 5 & 6 will need to demonstrate that the surrounding/downstream infrastructure has been designed with enough capacity to support the proposed developments and that any works required by the KWMSS to support the proposed developments have been completed. Any deviations within Phase 5 & 6 from previous design assumptions will need to be clearly justified.
- 6. Preference for servicing of Phase 5 would be entirely internal to Phase 5 (i.e., individual building service connections to Winterset to be avoided) in order to eliminate any potential service disruptions to existing residents.
- 7. Water Boundary condition requests must include the location of the service and the expected loads required by the proposed development. Please provide the following information:
 - i. Location of service
 - ii. Type of development and the amount of fire flow required (as per FUS, 1999).
 - iii. Average daily demand: ____ l/s.
 - iv. Maximum daily demand: ____l/s.
 - v. Maximum hourly daily demand: ____ l/s.
- 8. As mentioned in the pre-consultation meeting, soil and geotechnical conditions are of potential concern for these sites. Sufficient justification should be provided to support the feasibility of Phase 5 and 6 proposals from a geotechnical perspective. For these proposals, where sensitive marine clays exist, the following information must be provided to the City:
 - A map that shows:
 - i. Location and depth of sensitive soils
 - ii. Location of utilities

- iii. Location of proposed landscaping
- 9. MOECC ECA Requirements

It is anticipated that an MECP Environmental Compliance Approval(s) (ECA) will be needed (or existing will need to be amended) for sewers as well as for any deviation from previous ECA approvals.

10. Phase 1 ESAs and Phase 2 ESAs must conform to clause 4.8.4 of the Official Plan that requires that development applications conform to Ontario Regulation 153/04.

Please contact Infrastructure Project Manager Justin Armstrong at <u>Justin.Armstrong@ottawa.ca</u> if you have any questions or require additional information relating to the comments above.

Transportation

- 1. A TIA is warranted- proceed to scoping.
- The application will not be deemed complete until the submission of the draft step 1-4, including the functional draft RMA package (if applicable) and/or monitoring report (if applicable). Although a full review of the TIA Strategy report (Step 4) is not required prior to an application, it is strongly recommended.
- 3. Synchro files are required with Step 4.
- 4. ROW protection on Campeau is 37.5m.
- 5. Geometric Road Design (GRD) drawings will be required with the first submission of underground infrastructure and grading drawings.
- 6. These drawings should include such items as, but is not limited to:
 - a. Road Signage and Pavement Marking for the subdivision;
 - b. Intersection control measure at new internal intersections; and
 - c. Location of depressed curbs and TWSIs;
 - d. Include traffic calming measures on roads within the limits of their subdivision to limit vehicular speed to 30 kph and improve pedestrian safety. These measures may include either vertical or horizontal features.
- 7. Site triangles at the following locations on the final plan will be required:
 - a. Local Road to Local Road: 3 metre x 3 metres
 - b. Local Road to Collector Road: 5 metre x 5 metres
 - c. Collector Road to Collector Road: 5 metre x 5 metres

- d. Collector Road to Arterial Road: 5 metre x 5 metres
- 8. A Road Noise Impact Study is required.
- 9. Please note that all new applications (pre-consultation meetings dated after March 3, 2021) must use the NEW TRANS Trip Generation Manual when forecasting site generated trips using this manual. The TRANS committee (a joint transportation planning committee serving the National Capital region) finalized a new manual early in March 2021. The document will be available in French and English on the TRANS website <u>http://www.ncr-trans-rcn.ca/surveys/2009-trip-generation</u>. The new manual has simplified the conversion from vehicle trips to person trips and then trips by modal share.
- 10. Any Development Charge road work may be front ended by the applicant, so long as the work is listed in the affordable network. Repayment will be based on warrants, as determined solely by the Transportation Services Department. A Front Ending application is required.

Please contact Transportation Project Manager Mike Giampa at <u>Mike.Giampa@ottawa.ca</u> if you have any questions or require additional information relating to the comments above.

<u>Parks</u>

- 1. Staff understand that the applicant intends to provide cash-in-lieu rather than dedicate land for parkland for both Stages 5 and 6.
- 2. Please confirm lands that are to be dedicated to the City (e.g., corner park blocks, dry ponds, open space blocks, etc.) in each application..
- 3. Please provide more information on pedestrian pathways to the adjacent park and open space blocks for Stage 5.
- 4. Please reach out to Councillor Sudds to discuss the cash-in-lieu of parkland proposal.

Please contact Parks Planner Mike Russett at <u>Mike.Russett@ottawa.ca</u> if you have any questions or require additional information relating to the comments above.

Environment

- 1. Up-dated EIS, should focus on the transition from the developed lands to the natural area/watercourse blocks.
- 2. Implementing all recommendations from older EIS if still applicable.

Please contact Environmental Planner Matthew Hayley at <u>Matthew.Hayley@ottawa.ca</u> if you have any questions or require additional information relating to the comments above.

<u>Forestry</u>

TCR requirements:

- 1. A Tree Conservation Report (TCR) must be supplied for review along with the suite of other plans/reports required by the City
 - a. An approved TCR is a requirement of Site Plan approval.
 - b. The TCR may be combined with eh LP provided all information is supplied
- As of January 1 2021, any removal of privately-owned trees 10cm or larger in diameter, or publicly (City) owned trees of any diameter requires a tree permit issued under the Tree Protection Bylaw (Bylaw 2020 – 340); the permit will be based on an approved TCR and made available at or near plan approval.
- 3. The Planning Forester from Planning and Growth Management as well as foresters from Forestry Services will review the submitted TCR
 - a. If tree removal is required, both municipal and privately-owned trees will be addressed in a single permit issued through the Planning Forester
 - b. Compensation may be required for city owned trees if so, it will need to be paid prior to the release of the tree permit
- 4. The TCR must list all trees on site, as well as off-site trees if the CRZ extends into the developed area, by species, diameter and health condition
- 5. Please identify trees by ownership private onsite, private on adjoining site, city owned, co-owned (trees on a property line)
- 6. the TCR must list all trees on adjacent sites if they have a critical root zone that extends onto the development site
- 7. If trees are to be removed, the TCR must clearly show where they are, and document the reason they cannot be retained
- 8. All retained trees must be shown and all retained trees within the area impacted by the development process must be protected as per City guidelines available at <u>Tree</u> <u>Protection Specification</u> or by searching Ottawa.ca
 - a. The location of tree protection fencing must be shown on a plan;
 - b. Show the critical root zone of the retained trees; and,
 - c. If excavation will occur within the critical root zone, please show the limits of excavation .

9. The City encourages the retention of healthy trees; if possible, please seek opportunities for retention of trees that will contribute to the design/function of the site.

For more information on the process or help with tree retention options, contact Mark Richardson <u>mark.richardson@ottawa.ca</u> or on <u>City of Ottawa</u>

Landscape Plan Tree Planting requirements:

10. Minimum Setbacks

- a. Maintain 1.5m from sidewalk or MUP/cycle track.
- b. Maintain 2.5m from curb
- c. Coniferous species require a minimum 4.5m setback from curb, sidewalk or MUP/cycle track/pathway.
- d. Maintain 7.5m between large growing trees, and 4m between small growing trees. Park or open space planting should consider 10m spacing.
- e. Adhere to Ottawa Hydro's planting guidelines (species and setbacks) when planting around overhead primary conductors.
- 11. Tree specifications
 - a. Minimum stock size: 50mm tree caliper for deciduous, 200cm height for coniferous.
 - b. Maximize the use of large deciduous species wherever possible to maximize future canopy coverage
 - c. Tree planting on city property shall be in accordance with the City of Ottawa's Tree Planting Specification; and include watering and warranty as described in the specification (can be provided by Forestry Services).
 - d. Plant native trees whenever possible
 - e. No root barriers, dead-man anchor systems, or planters are permitted.
 - f. No tree stakes unless necessary (and only 1 on the prevailing winds side of the tree)
- 12. Hard surface planting
 - a. Curb style planter is highly recommended
 - b. No grates are to be used and if guards are required, City of Ottawa standard (which can be provided) shall be used.

c. Trees are to be planted at grade

13. Soil Volume

a. Please ensure adequate soil volumes are met:

Tree	Single Tree Soil	Multiple Tree
Type/Size	Volume (m3)	Soil Volume
		(m3/tree)
Ornamental	15	9
Columnar	15	9
Small	20	12
Medium	25	15
Large	30	18
Conifer	25	15

**Please note that these soil volumes are not applicable in cases with Sensitive Marine Clay.

14. Sensitive Marine Clay

a. Please follow the City's 2017 Tree Planting in Sensitive Marine Clay guidelines.

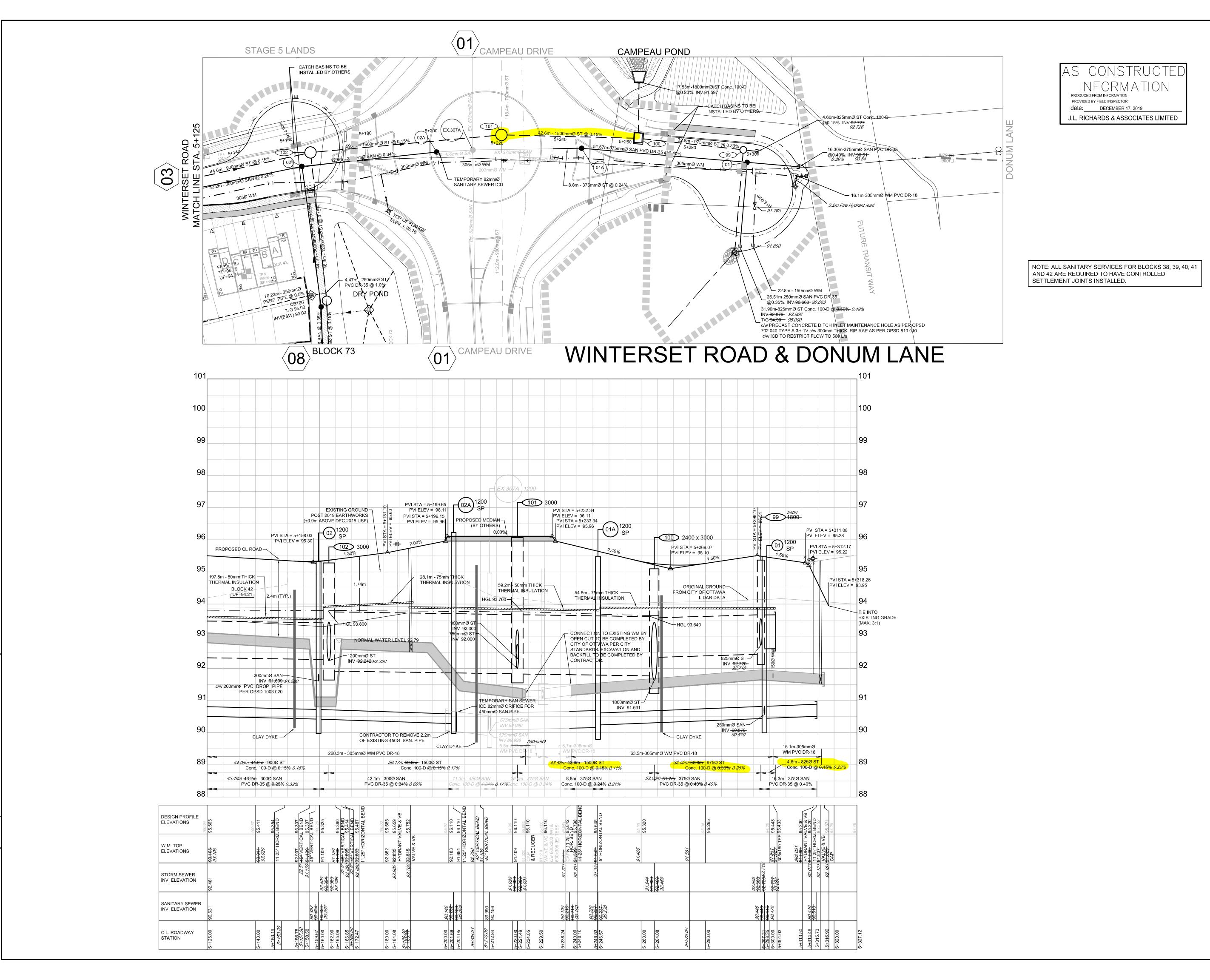
Please contact Adam Palmer at <u>adam.palmer@Ottawa.ca</u> if you have any questions or require additional information relating to the landscape plan tree planting requirements.

MVCA

- 1. MVCA staff have recently reviewed permit applications and related documents required as part of the Lifting of a Holding Symbol application for the Stage 5 lands.
- 2. Please ensure that the Campeau pond setbacks and LRT alignment are considered as the site designs for both applications are further refined.
- 3. Please note that the MVCA will be conducting a floodplain mapping update by the end of the year.
- 4. Please refer to MVCA comments provided for previous stages of the Arcadia subdivision.

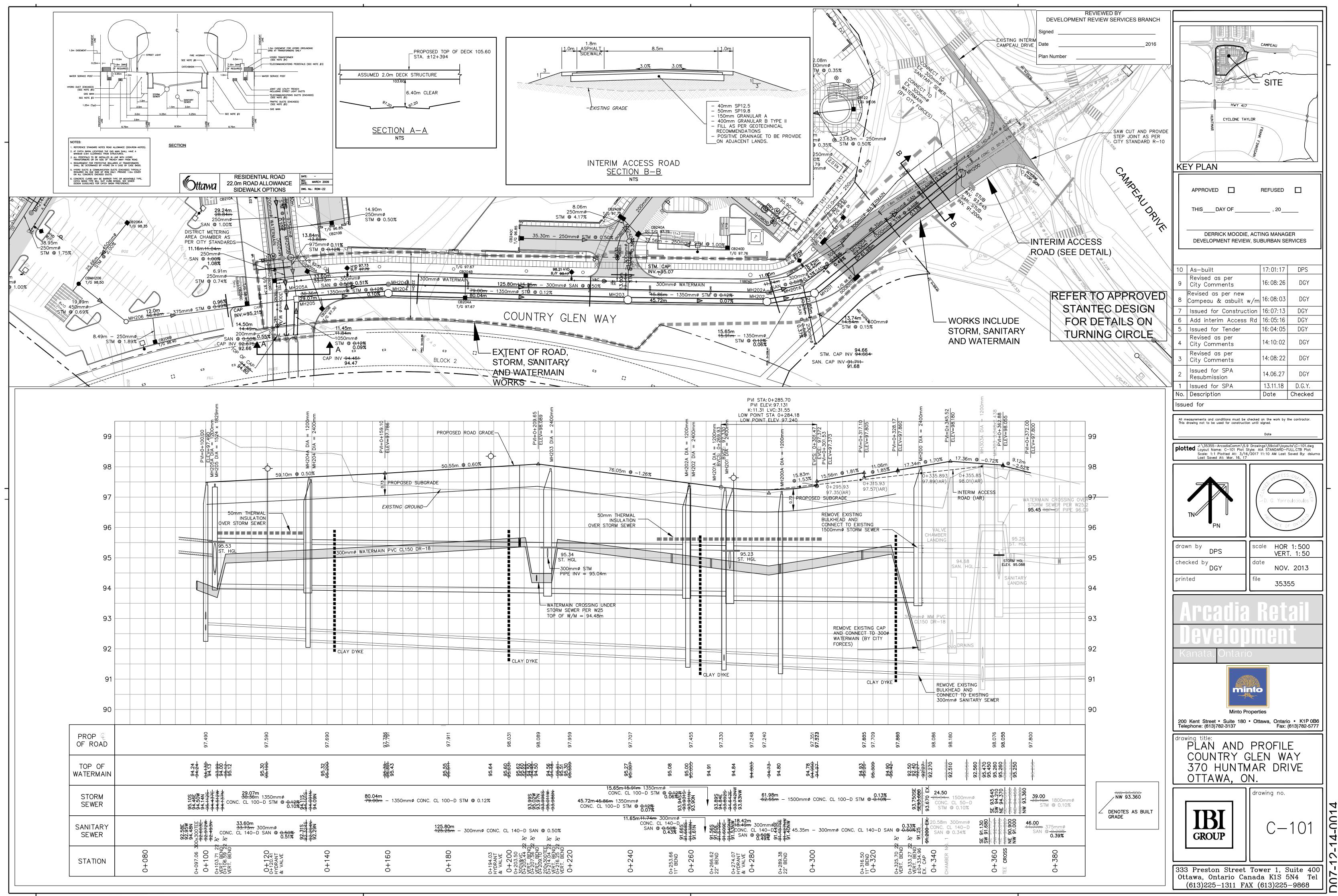
Please contact the MVCA's Planning Manager, Matt Craig, at <u>MCraig@mvc.on.ca</u> if you have any questions or require additional information relating to the comments above.

NEXT STEPS:


Please refer to the links to <u>Guide to preparing studies and plans</u> and <u>fees</u> for further information. Additional information is available related to <u>building permits</u>, <u>development</u> <u>charges</u>, and the <u>Accessibility Design Standards</u>. Be aware that other fees and permits may be required, outside of the development review process. You may obtain background drawings by contacting informationcentre@ottawa.ca.

These pre-con comments are valid for one year. If you submit a development application(s) after this time, you may be required to meet for another pre-consultation meeting and/or the submission requirements may change. You are as well encouraged to contact us for a follow-up meeting if the plan/concept will be further refined.

Please do not hesitate to Colette Gorni, at <u>Colette.Gorni@ottawa.ca</u>, if you have any questions.


Appendix A3

As-Built Information

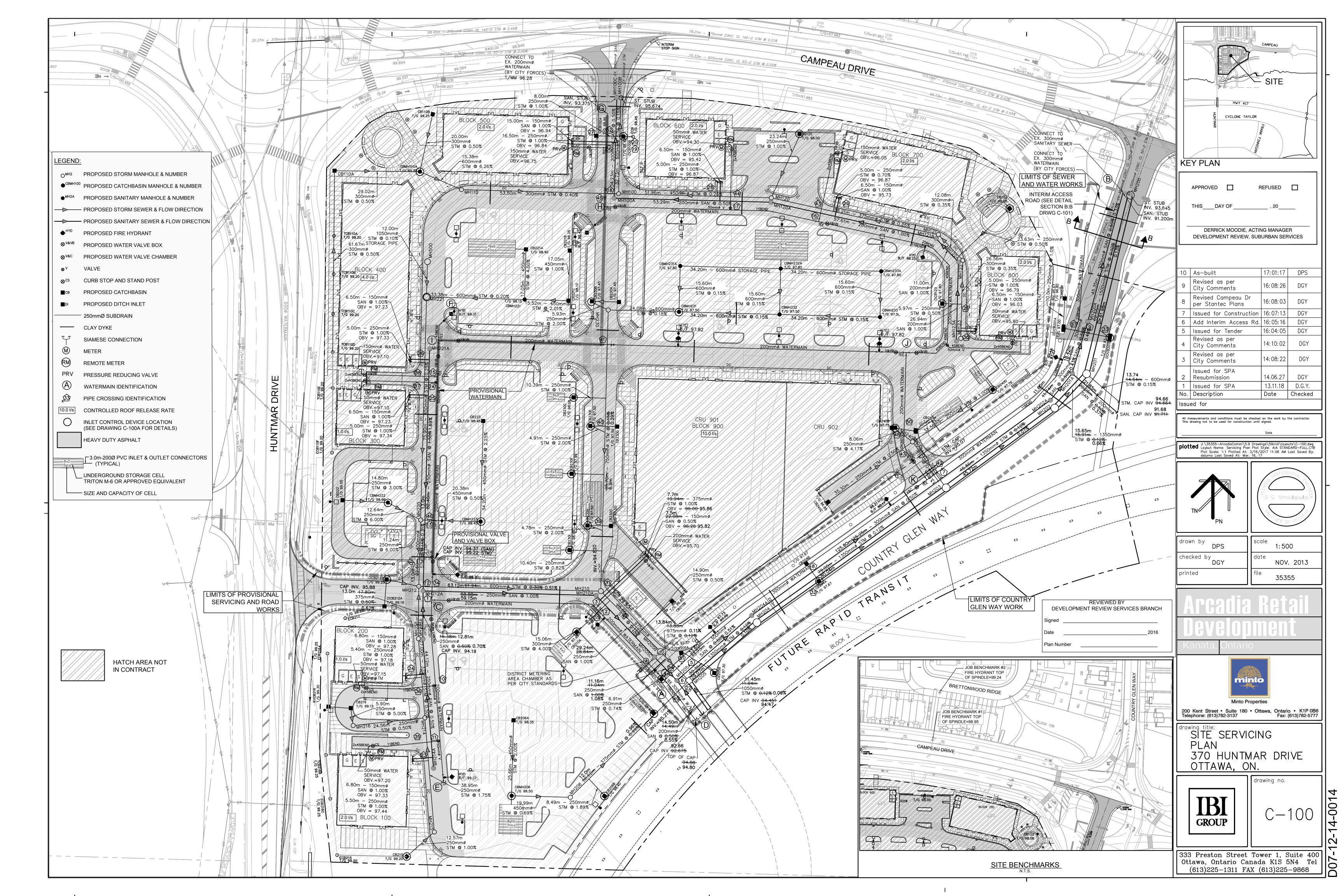


Image: State of the state	~		A.F. F. C.	Carp River		
Augusta and a second and a second			STAGE A	7	\searrow	
LEGEND: CONTRACTOR MAN PROPOSED CATCH EARNING TO CAUGE HUMAN PROPOSED CATCH EARNING TO CAUGE HUMAN PROPOSED CATCH EARNING TO CAUGE HUMAN PROPOSED CATCH EARNING TO CAUGE HUMAN PROPOSED CATCH EARNING TO CAUGE HUMAN PROPOSED CATCH EARNING TO CAUGE HUMAN PROPOSED CATCH EARNING TO CAUGE HUMAN PROPOSED CATCH EARNING TO CAUGE HUMAN PROPOSED CATCH EARNING TO CAUGE HUMAN PROPOSED CATCH EARNING TO CAUGE HUMAN PROPOSED CATCH EARNING TO CAUGE HUMAN PROPOSED CATCH EARNING TO CAUGE HUMAN PROPOSED CATCH EARNING TO CAUGE HUMAN PROPOSED CATCH EARNING TO CAUGE HUMAN PROPOSED CATCH EARNING TO CAUGE HUMAN PROPOSED CATCH EARNING HUMAN PROPOSED CATCH EARNING HUMAN EARNING PROPOSED CATCH HUMAN	HUN	\sim	STAGE 4	STAC	-	CAMPEAU DR
COMMERCIAL C		MAA DA				
COMMERCIAL C				and a second sec		
LEGENCE L						
LEGNUM LEGNUM DIFFUSION D				7/3		IERCIAL
LEGNUM LEGNUM DIFFUSION D		CAMPEAUD.	S.N.T.MAR DR	STAGE 3	IGHWAY AT	
PROPOSED CATCH LANGE AN OUT OF PROPOSED MANTAGENER LANGE PROPOSED MANTAGENER LANGE PROPOSED MANTAGENER LANGE PROPOSED MANTAGENER PROPOSED PROPOSED MANTAGENER PROPOSED PRO	LEC	GEND:		BASIN	/	
PUTURE CALCULARIAN BUT OTHERS PURPORED ELECTOR MAIN ALLAR PURPORED ENTRA MAINAGE PURPORED ENTRA MAINAGE <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
Image: Control Status and Control Statu		\diamond			D	
PROPOSED FUNCTIONARIA PROPOSED	۵					
Important Structure Results Important Structure Results <th></th> <th>Ø</th> <th>PROPOSED ELBO</th> <th>W CATCHBASIN</th> <th></th> <th></th>		Ø	PROPOSED ELBO	W CATCHBASIN		
Image: construction of the consthe construction of the construction of the construction o		-				
PROPOSED INTERNAN, VALUE & HYDRANT PROPOSED MATERIAN, VALUE & HYDRANT PROPOSED STATUS PROPOSED STATUS </th <th>-</th> <th>-</th> <th>250mmØ PERFOR</th> <th>ATED PIPE AS PER CIT</th> <th>ΓY</th> <th></th>	-	-	250mmØ PERFOR	ATED PIPE AS PER CIT	ΓY	
Image: Status WATERNAM KAN E AND ENDER Image: Status WATERNAM KAN E AND ENDER Image: Status WATERNAM KAN ENDER Image: Status PER Status Status PER Status WATERNAM KAN ENDER Image: Status PER Status Status PER Status Status PER Status PE	-	<u>∓</u> · →∢			RANT	
<p< th=""><th>-</th><th></th><th></th><th></th><th></th><th></th></p<>	-					
PROPOSED STATUS SERVERS WINDLE PROPOSED STATUS SERVERS WINDLE PROPOSED STATUS SERVERS WINDLE PROPOSED STATUS SERVERS PROPOSED SERVERS PROPOSED SERVERS PROPOSES STATUS SERVERS <th>_</th> <th>21</th> <th></th> <th></th> <th></th> <th></th>	_	21				
PROPOSED STORM SERVERA HANNELLE PROPOSED STORM SERVERA PROPOSED STORM SERVERANTS PROPOSED STORM SERVERANTS <t< th=""><th>-</th><th>(21)</th><th>EXISTING STORM</th><th>SEWER & MANHOLE</th><th></th><th></th></t<>	-	(21)	EXISTING STORM	SEWER & MANHOLE		
WINDER BUNCE CONSUMPTION WINDER FOR SHOOT GEOMETRY UPDATES WINDER FOR SHOOT GEOMETRY UPDATES WINDER STOR SHOUT WINDER BUNCE CONSTRUCTION WINDER BUNCE BUNCE CONSTRUCTION WINDER BUNCE BUNCE BUNCE WINDER BUNCE BUNCE BUNCE	-					
V INCLE GENVEL COMMETTING	-		MANHOLE NUMBE	R AND SIZE (mm) C/W		
V (Internal advances of the counter		<u> </u>	SINGLE SERVICE	CONNECTION		
PROJECT NORTH COMMUNICIPAL NOTES FOR SUBJECT NORTH COMMUNICIPAL NOTES FOR COMMUNICIPAL STANP 0 AS-CONSTRUCTED INFORMATION ADDED 17/12/2019 0 AS-CONSTRUCTED INFORMATION ADDED 17/12/2019 0 ISSUED FOR SHORE GEOMETRY UPDATES 13/08/2019 0 ISSUED FOR SHORE AGRAGE UNITS 13/08/2019 0 ISSUED FOR CONSTRUCTION 28/06/2019 10/08	_	V	(STORM, SANITAR	Y AND WATER)		
CONCRETE BORWAK ASPINIT SERVICE ASPINIT SERVICE 09 AS-CONSTRUCTED INFORMATION ADDED 09 ISSUED FOR SHO06 - GEOMETRY UPDATES 09 ISSUED FOR SHO06 - GEOMETRY UPDATES 09 ISSUED FOR SHO06 - GEOMETRY UPDATES 09 ISSUED FOR SHO07 - GEOMETRY UPDATES 09 ISSUED FOR CONSTRUCTION 09 ISSUED FOR CONSTRUCTION 09 ISSUED FOR CONSTRUCTION 09 ISSUED FOR TENDER 01 ISSUED FOR TENDER 02 ISSUED FOR TENDER 03 ISSUED FOR TENDER 04 REVISED TO MECP 05 ISSUED FOR TENDER 06 ISSUED FOR TENDER 07 ISSUE / REVISION 08 DDMM/YY <th></th> <th></th> <th>PHASING LIMIT</th> <th>TION REQUIRING BEN</th> <th>NDS</th> <th></th>			PHASING LIMIT	TION REQUIRING BEN	NDS	
DEVELOCESSION DEVELOCESS ROAD 09 AS-CONSTRUCTED INFORMATION ADDED 17/12/2019 08 ISSUED FOR SHOR- GEOMETRY UPDATES 13/09/2019 07 LATERAL UPDATES FOR 2-CAR GARAGE UNITS 13/09/2019 06 ISSUED FOR TOR SHOR- CAR GARAGE UNITS 13/09/2019 06 ISSUED FOR TENDER 11/06/2019 06 ISSUED FOR TENDER 11/06/2019 07 LATERAL UPDATES FOR 2-CAR GARAGE UNITS 28/06/2019 08 ISSUED FOR TENDER 11/06/2019 09 ISSUED FOR TENDER 11/06/2019 04 REVISED FER CITY COMMENTS 28/06/2019 05 ISSUED FOR TENDER 28/06/2019 04 REVISED FER CITY COMMENTS 28/06/2019 05 ISSUED FOR TENDER 28/06/2019 06 ISSUED FOR TENDER 28/06/2019 07 ISSUE TO MORE TENDER 28/06/2019 08 ISSUE TO MORE TENDER 28/06/2019 06 ISSUE TO MORE TENDER 28/06/2019 07 ISSUE TO MORE TENDER 28/06/2019 08 ASULTANT 0 28/06 CONSULTANT ISSUE TO MORE TENDER ISSUE TO MORE TENDER 08 ISSUE TO MORE TENDER ISSUE TO MORE TENDER	Ī		CONCRETE SIDEW			
09 AS-CONSTRUCTED INFORMATION ADDED 17/12/2019 08 ISSUED FOR SLOW-GEOMETRY UPDATES 13/08/2019 07 LATERAL UPDATES FOR 2-CAR GARAGE UNITS 13/08/2019 06 ISSUED FOR CONSTRUCTION 28/06/2019 06 ISSUED FOR CONSTRUCTION 28/06/2019 06 ISSUED FOR CONSTRUCTION 28/06/2019 04 ISSUED FOR CONSTRUCTION 28/06/2019 04 ISSUED FOR TENDER 11/06/2019 04 ISSUED FOR TENDER 11/06/2019 04 ISSUED FOR TENDER 23/06/2019 05 ISSUED FOR TENDER 23/06/2019 04 ISSUED FOR TENDER 23/06/2019 05 ISSUED FOR TENDER DD/MM/Y This drawing is consent of J.L. Richards & Associates Limited. VERIFY SEE INFORMED RECOURTEMENTS. SCALE: 1:500H, 1:50V Issue FORE NOTESTE SEE LEGEND & GEMERAL NOTES FOR 25mm SCALE: 1:500H, 1:50V Issue FORE NOTESTE SEE LEGEND & GEMERAL NOTES FOR 25mm CONSULTANT: www.jrichards.ca DOSULTANT: www.jrichards.ca PROFESSIONAL STAMP PROJECT NORTH PROFESSIONAL STAMP PROJECT NORTH PROJECT: MINTO COMMUNITIES INC. ARCADIA STAGE 3 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						
08 ISSUED FOR SHADE - GEOMETRY UPDATES 13/09/2019 07 LATERAL UPDATES FOR SHADS - SERVICE 13/09/2019 06 ISSUED FOR CONSTRUCTION 28/06/2019 05 ISSUED FOR TENDER 11/06/2019 04 REVISEO PER CITY COMMENTS 23/05/2019 No. ISSUED FOR TENDER 11/06/2019 04 REVISEO PER CITY COMMENTS 23/05/2019 No. ISSUE / REVISION DD/IMMYY This drawing is copyright protected and may not be reproduced or used for purposes other than execution of the described work without the express writter consent OJ JL. Richards & Associales Limited. VEREY SHEET SIZE AND SCALES, BAR TO THE 0 25mm SCALE: 15:00H.1:50V 0 25mm SCALE: 15:00H.1:50V DECEMEND REQUIREMENTS. 25mm CONSULTANT: www.jirichards ca 25mm CONSULTANT: www.jirichards ca PROFESSIONAL STAMP PROJECT: WINTER COMMUNITIES INCLARCE STAGE S PROJECT: MINTEO COMMUNITIES INCLARCE STAGE S 450 HUNTMAR DRIVE PROJECT: PLAN & PROFILE WINTERSET ROAD & DONUM LANE VERNESET ROAD & DONUM LANE STA 5+125 TO 5+327.12						
08 ISSUED FOR SHADE - GEOMETRY UPDATES 13/09/2019 07 LATERAL UPDATES FOR SHADS - SERVICE 13/09/2019 06 ISSUED FOR CONSTRUCTION 28/06/2019 05 ISSUED FOR TENDER 11/06/2019 04 REVISEO PER CITY COMMENTS 23/05/2019 No. ISSUED FOR TENDER 11/06/2019 04 REVISEO PER CITY COMMENTS 23/05/2019 No. ISSUE / REVISION DD/IMMYY This drawing is copyright protected and may not be reproduced or used for purposes other than execution of the described work without the express writter consent OJ JL. Richards & Associales Limited. VEREY SHEET SIZE AND SCALES, BAR TO THE 0 25mm SCALE: 15:00H.1:50V 0 25mm SCALE: 15:00H.1:50V DECEMEND REQUIREMENTS. 25mm CONSULTANT: www.jirichards ca 25mm CONSULTANT: www.jirichards ca PROFESSIONAL STAMP PROJECT: WINTER COMMUNITIES INCLARCE STAGE S PROJECT: MINTEO COMMUNITIES INCLARCE STAGE S 450 HUNTMAR DRIVE PROJECT: PLAN & PROFILE WINTERSET ROAD & DONUM LANE VERNESET ROAD & DONUM LANE STA 5+125 TO 5+327.12	00	AS CONS				17/12/2010
07 LATERAL UPDATES FOR 2-CAR GARAGE UNITS 1308/2019 06 ISSUED FOR CONSTRUCTION 28/06/2019 05 ISSUED FOR TENDER 11/06/2019 04 REVISED PER CITY COMMENTS 23/05/2019 No. ISSUED TO MECP 23/05/2019 No. ISSUED TO MECP 23/05/2019 No. ISSUED TO MECP 23/05/2019 No. ISSUE / REVISION DD/IMM/YY This drawing is copyright protocod and may not be reproduced or used for purposes withen consent of J.J. Richards & Associates Limited. VERTY SHEET SIZE AND SCALES. BAR TO THE REWITS CORMUNITY TO SOME AND SCALES. DAR TO THE REWITS CORMUNITY SALE CORMUNIC SALE CORMUNITY SALE CORMUNIC SALE CORMUNIC CORMUNICATIONS SALE CORMUNICATION SALE CORMAND CALE CORMUNICATION SALE CORMUNICATION SALE CORMUNICATION SALE						
07 LATERAL UPDATES FOR 2-QAR GARAGE UNITS 13092019 06 ISSUED FOR CONSTRUCTION 2806/2019 05 ISSUED FOR TENDER 1106/2019 04 REVISED PER CITY COMMENTS 23/05/2019 05 ISSUED FOR TENDER 11/06/2019 04 REVISED PER CITY COMMENTS 23/05/2019 05 ISSUE / REVISION DDMMMYY This drawing is copyright protected and may not be reproduced or used for purposes oner than execution of the describe own; without the express written consent of J.L. Richards & Associates Limited. VERIFY SEET SIZE AND SCALES BAR TO THE RIGHT IS ZOMIN FILIS A FULL SIZE DRAWING.	08				5	13/09/2019
05 ISSUED FOR TENDER 11/06/2019 04 ISSUED TO MECP, REVISEO PER CITY COMMENTS 23/05/2019 No. ISSUE / REVISION DDMMYY This drawing is copyright protected and may not be reproduced or used for purposes orther than exocution of the described work without the express written consent of J.L. Richards & Associates Limited. 23/07/2019 VERIFY SHEET SIZE AND SOLES, BAR TO THE RIGHT IS Zomm IF THIS IS A FULL SIZE DRAWING. 0 23/07/2019 SCALE: 1:500H, 1:50V Internet Size Construction of GENERAL NOTES FOR SERVICE BEND REQUIREMENTS. 23/07/2019 CONSULTANT: www.jirichards.com 0 23/07/2019 CONSULTANT: www.jirichards.com 0 23/07/2019 PROFESSIONAL STAMP PROJECT NORTH Internet Size And Consultant State 0 PROJECT: MINTO COMMUNITIES INC. ARCADIA STAGE 3 1/06/2019 PROJECT: MINTO COMMUNITIES INC. ARCADIA STAGE 3 1/06/2019 PROFESSIONAL STAMP PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12 1/07/2019	07				тѕ	13/08/2019
04 ISSUED TO MECP. 23/05/2019 No. ISSUE / REVISION DD/MMYY This drawing is copyright protected and may not be reproduced or used for purposes other than execution of the described work without the express written consent of J.L. Richards & Associates Limited. VERIFY SHEET SIZE AND SCALES. BAR TO THE RIGHT IS 25mm IF THIS IS A FULL SIZE DRAWING. 0 25mm SCALE 1:500H, 1:50V Image: Copyright protected PRAWING. 0 25mm SCALE 1:500H, 1:50V Image: Copyright protected PRAWING. 0 25mm SCALE 1:500H, 1:50V Image: Copyright protected PRAWING. 0 25mm SCALE 1:500H, 1:50V Image: Copyright protected PRAWING. 0 25mm SCALE 1:500H, 1:50V Image: Copyright protected PRAWING. 0 25mm SCALE 1:500H, 1:50V Image: Copyright protected PRAWING. 0 25mm CONSULTANT: Image: Copyright protected PRAWING. 0 25mm 25mm CONSULTANT: Image: Copyright protected PRAWING. Image: Copyright protected PRAWING. 1 25mm PROFESSIONAL STAMP PROJECT NORTH Image: Copyright protected PRAWING. Image: Copyright protected PRAWING. 1	06	ISS	UED FOR CONS	TRUCTION		28/06/2019
14 REVISED PER CITY COMMENTS 2303/2019 No. ISSUE / REVISION DD/MM/YY This drawing is copyright protected and may not be reproduced or used for purposes other than execution of the described work without the express written consents is Associated Limited. Image: Comments is Associated Limited. VERIFY SHEET SIZE AND SCALES, BAR TO THE RIGHT IS 25mm IF THIS IS A FULL SIZE DRAWINO. 0 25mm SCALE 1:500H, 1:50V 0 25mm No. ISSUE / REVISION 0 25mm SCALE 1:500H, 1:50V 0 25mm NOTE: SERVICE BEND REQUIREMENTS. 0 25mm CLIENT: www.jinichards.co 25mm CONSULTANT: www.jinichards.co PROFESSIONAL STAMP PROJECT NORTH PROFESSIONAL STAMP PROJECT NORTH PROFESSIONAL STAMP PROJECT NORTH PROJECT: MINTO COMMUNITIES INC. ARCADIA STAGE 3 Ago HUNTMAR DRIVE 25m HUNTMAR DRIVE DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12	05		ISSUED FOR TE	ENDER		11/06/2019
No. ISUE / REVISION DD/MWYY This drawing is copyright protected and may not be reproduced or used for purposes other than execution of the described work without the express written consent of J.L. Richards & Associates Limited. VERIFY SHEET SIZE AND SCALES, BAR TO THE RIGHT IS SOME IT HIS IS A FULL SIZE DRAWING. 0 25mm SCALE: 1:500H, 1:50V 0 25mm NOTE: SEEL EGEND & GENERAL NOTES FOR SERVICE BEND REQUIREMENTS. 0 25mm CLIENT: WWW.jifichards.ca WWW.jifichards.ca CONSULTANT: WWW.jifichards.ca PROFESSIONAL STAMP PROJECT NORTH PROFESSIONAL STAMP PROJECT NORTH PROFESSIONAL STAMP PROJECT NORTH PROFESSIONAL STAMP PROJECT NORTH PROJECT: MINTO COMMUNITIES INC. ARCADIA STAGE 3 ASO HUNTMAR DRIVE DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12	04	REV				23/05/2019
This drawing is copyright protected and may not be reproduced or used for purposes ofter than execution of the desorbed work without the express written consent of J.L. Richards & Associates Limited. VERIFY SHEET SIZE AND SCALES. BAR TO THE RIGHT IS JOINT IF THIS IS A FULL SIZE DRAWING. OTHER SERVICE BEOR DA GENERAL NOTES FOR SERVICE BEOR DEGUIREMENTS. CLIENT: CONSULTANT: PROFESSIONAL STAMP PROJECT: PROJECT: MINTO COMMUNITIES INC. ARCADIA STAGE 3 450 HUNTMAR DRIVE DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12	No.					
the express written consent of J.L. Richards & Associates Limited. VERIFY SHEET SIZE AND SCALES BAR TO THE RIGHT IS 25mm IF THIS IS A FULL SIZE DRAWING. CALE: 1:500H, 1:50V INDTE: SEE LEGEND & GENERAL NOTES FOR BERVICE BERO REQUIREMENTS. CLIENT: CONSULTANT: VWW.jiftchards.ca CONSULTANT: VWW.jiftchards.ca CONSULTANT: PROFESSIONAL STAMP PROJECT: PROJECT: MINTO COMMUNITIES INC. ARCADIA STAGE 3 450 HUNTMAR DRIVE DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12				SION		DD/MM/YY
RIGHT IS 25mm IF THIS IS A FULL SIZE DRAWING.			yright protecte	ed and may no		roduced or
INSURA LISUV INTE: SEE LEGEND & GENERAL NOTES FOR SERVICE BEND REQUIREMENTS. CLIENT: WWW.JRICHARDS.CO CONSULTANT: PROFESSIONAL STAMP PROFESSIONAL STAMP PROFESSIONAL STAMP PROFESSIONAL STAMP PROFESSIONAL STAMP PROFESSIONAL STAMP PROJECT: MINTO COMMUNITIES INC. ARCADIA STAGE 3 450 HUNTMAR DRIVE DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12	used	for purposes of	yright protecte her than exec	ed and may no ution of the des	cribed v	roduced or ork without
BERVICE BEND REQUIREMENTS. CLIENT: CONSULTANT: CONSULTANT: PROFESSIONAL STAMP PROFESSIONAL STAMP PROFESSIONAL STAMP PROJECT NORTH PROJECT: MINTO COMMUNITIES INC. ARCADIA STAGE 3 450 HUNTMAR DRIVE DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12	used the e VERIF	for purposes of xpress written of Y SHEET SIZE AN	yright protecte her than exec consent of J.L. D SCALES. BAR	ed and may no ution of the des Richards & Ass TO THE	cribed v	oroduced or vork without Limited.
PROFESSIONAL STAMP PROFESI	used the e VERIF RIGHT	for purposes of xpress written of Y SHEET SIZE AN I IS 25mm IF THIS	yright protecte her than exec consent of J.L. D SCALES. BAR IS A FULL SIZE D	ed and may no ution of the des Richards & Ass TO THE	cribed v	oroduced or vork without Limited.
CONSULTANT: VOUNDERING VOUNDERING PROFESSIONAL STAMP PROJECT: MINTO COMMUNITIES INC. ARCADIA STAGE 3 450 HUNTMAR DRIVE DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12	used the e VERIF RIGHT SCAL	for purposes of xpress written of Y SHEET SIZE AN F IS 25mm IF THIS E: 1:500H, TE: SEE LEGENT	yright protecte her than exec consent of J.L. D SCALES. BAR IS A FULL SIZE D 1:50V D & GENERAL N	ed and may no ution of the des Richards & Ass TO THE RAWING. 0	cribed v	oroduced or vork without Limited.
CONSULTANT: VOUNDERING VOUNDERING PROFESSIONAL STAMP PROJECT: MINTO COMMUNITIES INC. ARCADIA STAGE 3 450 HUNTMAR DRIVE DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12	used the e VERIF RIGHT SCAL	for purposes of xpress written of Y SHEET SIZE AN F IS 25mm IF THIS E: 1:500H, TE: SEE LEGENT RVICE BEND REC	yright protecte her than exec consent of J.L. D SCALES. BAR IS A FULL SIZE D 1:50V D & GENERAL N	ed and may no ution of the des Richards & Ass TO THE RAWING. 0	cribed v	oroduced or vork without Limited.
CONSULTANT: WWW.jirichards.ca INCONSULTANT: PROFESSIONAL STAMP PROFESSIONAL STAMP PROJECT NORTH INTO COMMUNITIES INC. ARCADIA STAGE 3 450 HUNTMAR DRIVE DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12	used the e VERIF RIGHT SCAL	for purposes of xpress written of Y SHEET SIZE AN T IS 25mm IF THIS E: 1:500H, TE: SEE LEGENT RVICE BEND REC	yright protecte her than exec consent of J.L. D SCALES. BAR IS A FULL SIZE D 1:50V D & GENERAL N QUIREMENTS.	ed and may no ution of the des Richards & Ass TO THE RAWING. 0	cribed v	oroduced or vork without Limited. 25mm
PROFESSIONAL STAMP PROFESSIONAL STAMP PROFESSIONAL STAMP PROJECT NORTH Image:	used the e VERIF RIGHT SCAL	for purposes of xpress written of Y SHEET SIZE AN F IS 25mm IF THIS E: 1:500H, TE: SEE LEGENT RVICE BEND REC NT:	yright protecte her than exec consent of J.L. D SCALES. BAR IS A FULL SIZE D 1:50V 0 & GENERAL N QUIREMENTS.	ed and may no ution of the des . Richards & Ass TO THE .RAWING. 0 NOTES FOR	sociates	oroduced or vork without Limited. 25mm
PROFESSIONAL STAMP PROFESSIONAL STAMP PROJECT NORTH Image: Project: MINTO COMMUNITIES INC. ARCADIA STAGE 3 450 HUNTMAR DRIVE DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12	used the e VERIF RIGHT SCAL	for purposes of xpress written of Y SHEET SIZE AN F IS 25mm IF THIS E: 1:500H, TE: SEE LEGENT RVICE BEND REC NT:	yright protecte her than exec consent of J.L. D SCALES. BAR IS A FULL SIZE D 1:50V 0 & GENERAL N QUIREMENTS.	ed and may no ution of the des . Richards & Ass TO THE RAWING. 0 NOTES FOR	sociates	produced or york without Limited. 25mm
PROFESSIONAL STAMP PROFESSIONAL STAMP PROJECT NORTH Image: Project: MINTO COMMUNITIES INC. ARCADIA STAGE 3 450 HUNTMAR DRIVE DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12	used the e VERIF RIGHT SCAL	for purposes of xpress written of Y SHEET SIZE AN T IS 25mm IF THIS E: 1:500H, TE: SEE LEGENE VICE BEND RECONNT:	yright protecte her than exec consent of J.L. D SCALES. BAR IS A FULL SIZE D 1:50V 0 & GENERAL N QUIREMENTS.	ed and may no ution of the des . Richards & Ass TO THE RAWING. 0 NOTES FOR	nit	25mm
PROFESSIONAL STAMP PROJECT NORTH PROJECT NORTH PROJECT: PROJECT: MINTO COMMUNITIES INC. ARCADIA STAGE 3 450 HUNTMAR DRIVE DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12	Used the e VERIF RIGHT SCAL	for purposes of xpress written of Y SHEET SIZE AN F IS 25mm IF THIS E: 1:500H, TE: SEE LEGEND RVICE BEND RECONT:	yright protecte her than exec consent of J.L. D SCALES. BAR IS A FULL SIZE D 1:50V D & GENERAL N QUIREMENTS.	ed and may no ution of the des Richards & Ass TO THE DRAWING. 0	nit	25mm
PROFESSIONAL STAMP PROJECT NORTH PROJECT: PROJECT: PROJECT: MINTO COMMUNITIES INC. ARCADIA STAGE 3 450 HUNTMAR DRIVE DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12 DESIGN: AT DRAWING #	Used the e VERIF RIGHT SCAL	for purposes of xpress written of Y SHEET SIZE AN F IS 25mm IF THIS E: 1:500H, TE: SEE LEGEND RVICE BEND RECONT:	yright protecte her than exec consent of J.L. D SCALES. BAR IS A FULL SIZE D 1:50V D & GENERAL N QUIREMENTS.	ed and may no ution of the des Richards & Ass TO THE DRAWING. 0	nit	25mm
PROJECT: MINTO COMMUNITIES INC. ARCADIA STAGE 3 450 HUNTMAR DRIVE DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12	Used the e VERIF RIGHT SCAL	for purposes of xpress written of Y SHEET SIZE AN F IS 25mm IF THIS E: 1:500H, TE: SEE LEGEND RVICE BEND RECONT:	yright protecte her than exec consent of J.L. D SCALES. BAR IS A FULL SIZE D 1:50V 0 & GENERAL N QUIREMENTS.	ed and may no ution of the des Richards & Ass TO THE RAWING. 0 IOTES FOR	nit www	z5mm
PROJECT: MINTO COMMUNITIES INC. ARCADIA STAGE 3 450 HUNTMAR DRIVE DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12	USED VERIFRIGHT SCAL	for purposes of xpress written of Y SHEET SIZE AN T IS 25mm IF THIS E: 1:500H, TE: SEE LEGEND ROUCE BEND RECONNT: SULTANT:	yright protecte her than exec consent of J.L. D SCALES. BAR IS A FULL SIZE D 1:50V 0 & GENERAL N QUIREMENTS.	ed and may no ution of the des Richards & Ass TO THE RAWING. 0 IOTES FOR	nit www	z5mm
PROJECT: MINTO COMMUNITIES INC. ARCADIA STAGE 3 450 HUNTMAR DRIVE DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12	USED VERIFRIGHT SCAL	for purposes of xpress written of Y SHEET SIZE AN T IS 25mm IF THIS E: 1:500H, TE: SEE LEGEND ROUCE BEND RECONNT: SULTANT:	yright protecte her than exec consent of J.L. D SCALES. BAR IS A FULL SIZE D 1:50V 0 & GENERAL N QUIREMENTS.	ed and may no ution of the des Richards & Ass TO THE RAWING. 0 IOTES FOR	nit www	z5mm
PROJECT: MINTO COMMUNITIES INC. ARCADIA STAGE 3 450 HUNTMAR DRIVE DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12	USED VERIFRIGHT SCAL	for purposes of xpress written of Y SHEET SIZE AN T IS 25mm IF THIS E: 1:500H, TE: SEE LEGEND ROUCE BEND RECONNT: SULTANT:	yright protecte her than exec consent of J.L. D SCALES. BAR IS A FULL SIZE D 1:50V 0 & GENERAL N QUIREMENTS.	ed and may no ution of the des Richards & Ass TO THE RAWING. 0 IOTES FOR	nit www	z5mm
MINTO COMMUNITIES INC. ARCADIA STAGE 3 450 HUNTMAR DRIVE DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12	USED VERIFRIGHT SCAL	for purposes of xpress written of Y SHEET SIZE AN T IS 25mm IF THIS E: 1:500H, TE: SEE LEGEND ROUCE BEND RECONNT: SULTANT:	yright protecte her than exec consent of J.L. D SCALES. BAR IS A FULL SIZE D 1:50V 0 & GENERAL N QUIREMENTS.	ed and may no ution of the des Richards & Ass TO THE RAWING. 0 IOTES FOR	nit www	z5mm
MINTO COMMUNITIES INC. ARCADIA STAGE 3 450 HUNTMAR DRIVE DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12	USED VERIF RIGHT SCAL	for purposes of xpress written of Y SHEET SIZE AN F IS 25mm IF THIS E: 1:500H, TE: SEE LEGEND RCO NT: NT: NT: NT: NT: NT: NT: NT: NT: NT:	yright protecte her than exec consent of J.L. D SCALES. BAR IS A FULL SIZE D 1:50V D & GENERAL N QUIREMENTS.	ed and may no ution of the des Richards & Ass TO THE DRAWING. 0 IOTES FOR to Richard Richard	nit www ds rs-plan	z5mm
MINTO COMMUNITIES INC. ARCADIA STAGE 3 450 HUNTMAR DRIVE DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12	USED VERIF RIGHT SCAL	for purposes of xpress written of Y SHEET SIZE AN F IS 25mm IF THIS E: 1:500H, TE: SEE LEGEND RCO NT: NT: NT: NT: NT: NT: NT: NT: NT: NT:	yright protecte her than exec consent of J.L. D SCALES. BAR IS A FULL SIZE D 1:50V D & GENERAL N QUIREMENTS.	ed and may no ution of the des Richards & Ass TO THE DRAWING. 0 IOTES FOR to Richard Richard	nit www ds rs-plan	z5mm
MINTO COMMUNITIES INC. ARCADIA STAGE 3 450 HUNTMAR DRIVE DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12	USED VERIF RIGHT SCAL	for purposes of xpress written of Y SHEET SIZE AN F IS 25mm IF THIS E: 1:500H, TE: SEE LEGEND RCO NT: NT: NT: NT: NT: NT: NT: NT: NT: NT:	yright protecte her than exec consent of J.L. D SCALES. BAR IS A FULL SIZE D 1:50V D & GENERAL N QUIREMENTS.	ed and may no ution of the des Richards & Ass TO THE DRAWING. 0 IOTES FOR to Richard Richard	nit www ds rs-plan	z5mm
MINTO COMMUNITIES INC. ARCADIA STAGE 3 450 HUNTMAR DRIVE DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12	USED VERIF RIGHT SCAL	for purposes of xpress written of Y SHEET SIZE AN F IS 25mm IF THIS E: 1:500H, TE: SEE LEGEND RCO NT: NT: NT: NT: NT: NT: NT: NT: NT: NT:	yright protecte her than exec consent of J.L. D SCALES. BAR IS A FULL SIZE D 1:50V D & GENERAL N QUIREMENTS.	ed and may no ution of the des Richards & Ass TO THE DRAWING. 0 IOTES FOR to Richard Richard	nit www ds rs-plan	z5mm
MINTO COMMUNITIES INC. ARCADIA STAGE 3 450 HUNTMAR DRIVE DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12	USED VERIF RIGHT SCAL	for purposes of xpress written of Y SHEET SIZE AN F IS 25mm IF THIS E: 1:500H, TE: SEE LEGEND RCO NT: NT: NT: NT: NT: NT: NT: NT: NT: NT:	yright protecte her than exec consent of J.L. D SCALES. BAR IS A FULL SIZE D 1:50V D & GENERAL N QUIREMENTS.	ed and may no ution of the des Richards & Ass TO THE DRAWING. 0 IOTES FOR to Richard Richard	nit www ds rs-plan	z5mm
ARCADIA STAGE 3 450 HUNTMAR DRIVE DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12 DESIGN: AT	USED VERIF RIGHT SCAL	for purposes of xpress written of Y SHEET SIZE AN F IS 25mm IF THIS E: 1:500H, TE: SEE LEGEND RCO NT: NT: NT: NT: NT: NT: NT: NT: NT: NT:	yright protecte her than exec consent of J.L. D SCALES. BAR IS A FULL SIZE D 1:50V D & GENERAL N QUIREMENTS.	ed and may no ution of the des Richards & Ass TO THE DRAWING. 0 IOTES FOR to Richard Richard	nit www ds rs-plan	z5mm
ARCADIA STAGE 3 450 HUNTMAR DRIVE DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12	USED VERIF RIGHT SCAL NOT SEF CLIEF CONS CONS	for purposes of xpress written of Y SHEET SIZE AN T IS 25mm IF THIS E: 1:500H, TE: SEE LEGEND RECONSTRUCTION SULTANT: SULTANT: FESSIONAL STAN	yright protecte her than exec consent of J.L. D SCALES. BAR IS A FULL SIZE D 1:50V D & GENERAL N QUIREMENTS.	ed and may no ution of the des Richards & Ass TO THE DRAWING. 0 IOTES FOR to Richard Richard	nit www ds rs-plan	z5mm
450 HUNTMAR DRIVE DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12 DESIGN: AT DRAWIN: A HIGH MING #:	USED VERIF RIGHT SCAL NOT SEF CLIEF CONS CONS	for purposes of xpress written of Y SHEET SIZE AN T IS 25mm IF THIS E: 1:500H, TE: SEE LEGEND RVICE BEND RECO NT: VICE BEND RECO SULTANT: SULTANT: FESSIONAL STAT	yright protecte her than exec consent of J.L. D SCALES. BAR IS A FULL SIZE D 1:50V D & GENERAL N DUIREMENTS.	ed and may no ution of the des Richards & Ass TO THE PRAWING. 0 IOTES FOR CONTESTOR CONTENTION Richard Richard RS - ARCHITECT	Init www ds rs-plan TH	ilichards.ca
DRAWING: PLAN & PROFILE WINTERSET ROAD & DONUM LANE STA 5+125 TO 5+327.12 DESIGN: AT	USED VERIF RIGHT SCAL NOT SEF CLIEF CONS CONS	for purposes of xpress written of Y SHEET SIZE AN T IS 25mm IF THIS E: 1:500H, TE: SEE LEGEND ROUCE BEND RECO NT: ISULTANT: SULTANT: FESSIONAL STAN	yright protecte her than exec consent of J.L. D SCALES. BAR IS A FULL SIZE D 1:50V D & GENERAL N D UIREMENTS. D & GENERAL N D UIREMENTS. D & GENERAL N D COMM	ed and may no ution of the des Richards & Ass TO THE RAWING. 0 ROTES FOR COTES FOR COTES FOR COTES FOR COTES FOR FOR FOR FOR FOR FOR FOT		ilichards.ca
	USED VERIF RIGHT SCAL NOT SEF CLIEF CONS CONS	for purposes of xpress written of Y SHEET SIZE AN T IS 25mm IF THIS E: 1:500H, TE: SEE LEGEND ROUCE BEND RECO NT: ISULTANT: SULTANT: FESSIONAL STAN	yright protecte her than exec consent of J.L. D SCALES. BAR IS A FULL SIZE D 1:50V D & GENERAL N D UIREMENTS. D & GENERAL N D UIREMENTS. D & GENERAL N D COMM	ed and may no ution of the des Richards & Ass TO THE RAWING. 0 ROTES FOR COTES FOR COTES FOR COTES FOR COTES FOR FOR FOR FOR FOR FOR FOT		ilichards.ca
	USED VERIF RIGHT SCAL NOT SEF CLIEF CONS CONS	for purposes of xpress written of Y SHEET SIZE AN T IS 25mm IF THIS E: 1:500H, TE: SEE LEGEND ROUCE BEND RECO NT: ISULTANT: SULTANT: FESSIONAL STAN	APP	ed and may no ution of the des Richards & Ass TO THE DRAWING. 0 IOTES FOR CONTESTOR CONTENTION Richard Richard Richard RS - ARCHITECT		roduced or vork without 25mm
	USED VERIF RIGHT SCAL NOT SEF CLIET CONS CONS	FY SHEET SIZE AN T SHEET SIZE AN T S 25mm IF THIS E: 1:500H, TE: SEE LEGEND AVICE BEND REC NT: SULTANT: FESSIONAL STAT JECT: MINTC AI	APP	ed and may no ution of the des Richards & Ass TO THE DRAWING. 0 IOTES FOR CONTESTOR CONTENTION Richard Richard Richard RS - ARCHITECT		roduced or vork without 25mm
	USED VERIF RIGHT SCAL NOT SEF CLIET CONS CONS	FY SHEET SIZE AN T SHEET SIZE AN T S 25mm IF THIS E: 1:500H, TE: SEE LEGEND AVICE BEND REC NT: SULTANT: FESSIONAL STAT JECT: MINTC AI	APP	ed and may no ution of the des Richards & Ass TO THE DRAWING. 0 IOTES FOR CONTESTOR CONTENTION Richard Richard Richard RS - ARCHITECT		roduced or vork without 25mm
	USED VERIF RIGHT SCAL NOT SEF CLIET CONS CONS	for purposes of xpress written of Y SHEET SIZE AN T IS 25mm IF THIS E: 1:500H, TE: SEE LEGEND RUICE BEND REC NT: WINE: DECT: MINTCA AI	APP	ed and may no ution of the des Richards & Ass TO THE RAWING. O ROTES FOR C C C C C C C C C C C C C C C C C C C	TH	roduced or vork without 25mm
	USED VERIF RIGHT SCAL NOT SEF CLIET CONS CONS CONS	FINTERSE	APP	ed and may no ution of the des Richards & Ass TO THE WAWING. 0 IOTES FOR CONTRACTION CONTR		roduced or vork without 25mm
	USED VERIF RIGHT SCAL NOT SEF CLIET CONS CONS CONS	FINTERSE	APP	ed and may no ution of the des Richards & Ass TO THE WAWING. 0 IOTES FOR CONTRACTION CONTR		roduced or vork without 25mm
JLR #: 26299-03 02	VERIF RIGHT SCAL NOT SEF CLIEF CONS CONS CONS PROF	for purposes of xpress written	APP	ed and may no ution of the des Richards & Ass TO THE RAWING. 0 IOTES FOR COMMENDE RES-ARCHITECT OPROJECT NOR PROJECT NOR OPROJECT NOR ANDRIVE		roduced or vork without 25mm
		for purposes of xpress written	APP	ed and may no ution of the des Richards & Ass TO THE RAWING. O IOTES FOR COTES FOR CO	TH	Inited.

Citv

-14-0014 0

A	STATION 0+000.00 0+004.00	WATERMAIN SCHEDU DESCRIPTION 300Ø x 300Ø TEE	FINISHED 97.24 97.31	TOP OF 94.24 94.18	AS-BUIL
	0+004.00	-	97.31	94.18	
	0+008.47 0+009.92	22.5° VERTICAL BEND 22.5° VERTICAL BEND	97.33 97.28	94.25 94.88	
	0+013.98	-	97.28	94.89	
	0+015.00 0+027.40		97.30	94.90 94.94	
	0+027.40	300ø x 150ø HY DRA NT TEE -	97.34 97.24	94.94	
	0+058.95 0+075.00	300Ø – 11 1/4° BEND	97.44	95.04 95.15	
	0+075.00	- 300Ø x 150Ø HY DRANT TEE	97.55 97.67	95.15	
	0+109.87	3000 V&C	97.77	95.37	
	0+110.60 0+112.71	22.5° VERTICAL BEND 22.5° VERTICAL BEND	97.78 97.79	95.37 94.48	
К	0+114.22	300ø x 200ø TEE	97.79	94.48	
	0+118.37 0+120.51	22.5° VERTICAL BEND 22.5° VERTICAL BEND	97.76 97.75	94.48 95.35	
	0+135.00		97.67	95.27	
	0+153.49 0+159.43	300Ø-22 ½° BEND 300Ø -11 ¼° BEND	95.57 97.50	95.17 95.10	
	0+166.99	300Ø - 11 ¼° BEND	97.46	95.06	
	0+181.92 0+185.96	300Ø-11 ¼° BEND	97.37	94.97	
	0+195.40	300Ø x 150Ø HY DRANT TEE 300Ø - 11 ¼° BEND	97.33 97.28	94.93 94.89	
	0+210.00	-	97.34	94.94	
в	0+230.00 0+245.15	- EX. 300Ø CA P	97.41 97.46	95.01 95.06	
С	0+000.00 0+003.50	200Ø x 200Ø TEE 200Ø V&VB	99.23 99.12	96.83 96.72	96.91 96.73
	0+025.00	-	98.43	96.03	96.12
	0+050.19 0+055.85		97.62	95.22 95.17	95.20
	0+055.85	200ø x 200ø TEE DOMESTIC SERVICE 200ø x 150ø HY DRA NT TEE	97.57 97.53	95.17 95.13	95.17 95.12
	0+083.70	200ø V&VB	97.33	94.93	94.95
	0+088.00 0+089.13	200ø x 300ø REDUCER 22.5° VERTICAL BEND	97.28 97.27	94.88 94.87	94.90 94.85
	0+090.79	22.5° VERTICAL BEND	97.25	94.25	94.30
Α	0+092.29 0+099.50	300ø x 300ø tee 22.5° VERTICAL BEND	97.23 97.26	94.24 94.25	94.30 94.80
	0+100.96	22.5° VERTICAL BEND	97.25	94.85	94.80
-	0+103.70 0+107.06	300Ø V&C	97.26	94.86	94.75
D	U+1U7.06	300Ø CA P	97.28	94.88	94.80
Е	0+000.00	2000 CAP	99.18	96.78	
	0+003.33 0+009.80	200Ø x 150Ø HY DRAINT TEE 200Ø C/W 50Ø TVS DOMESTIC SERVICE	<u>99.17</u> 99.12	96.77 96.72	
	0+028.68	2000 C/W 500 TVS DOMESTIC SERVICE	99.16	96.76	
	0+045.08 0+054.52	TEMP 200Ø CAP 200Ø - 11 ¼° BEND 200Ø V&VB	99.18 99.22	96.78 96.82	96.80 96.82
С	0+058.02	2000 V & V B 2000 X 2000 TEE	99.22	96.83	96.82
	0+066.80	2000 x 1500 HY DRANT TEE	99.21	96.81	96.80
	0+071.10 0+085.00	200Ø V&VB TEMP 200Ø CA P	99.19	96.79	96.79
	0+100.00	-	99.17	96.77	
	0+115.00 0+132.00	 2000 C/W 500 TVS DOMESTIC SERVICE	99.15 99.13	96.75 96.73	
	0+134.00	2000 x 1500 TEE DOMESTIC SERVICE	99.13	96.73	
ī	0+140.92 0+146.42	200Ø V&VB	99.13 99.13	96.73 96.73	
	0+140.42	200Ø x 200Ø TEE 200Ø - 45° BEND	99.13	96.70	
F	0+153.50 0+157.18		99.07	96.67 96.82	
1	0+157.18	HY DRA NT	99.22	90.82	
G	0+000.00	200Ø CA P	98.68	96.28	
	0+009.34 0+015.00	2000 x 1500 TEE DOMESTIC SERVICE	98.36 98.35	95.96 95.95	
	0+025.52	45° BEND VERTICAL BEND	98.58	96.18	
	0+026.09 0+027.24	45° BEND VERTICAL BEND	98.56 98.53	95.52 95.52	
	0+028.39	45° BEND VERTICAL BEND	98.52	95.52	
	0+028.91 0+031.74	45° BEND VERTICAL BEND	98.52	96.12 96.05	
Н	0+031.74	200Ø x 200Ø TEE 200Ø - 45°BEND	98.45 98.36	95.96	
	0+039.30	200Ø MV	98.27	95.87	
	0+043.16	HY DRA NT	98.40	96.00	
Н	0+000.00	200Ø X200ø TEE	98.45	96.05	
	0+003.53 0+025.00	200Ø V&VB 	98.43 98.34	96.03 95.94	
	0+025.00	2000 C/W 500 TVS DOMESTIC SERVICE	98.34	95.94 95.93	
	0+056.07	2000 -11 1/2° BEND	98.32	95.92	
	0+073.14 0+076.14	200Ø x 150Ø TEE DOMESTIC SERVICE 200Ø V&VB	98.09 98.10	95.69 95.70	
	0+090.00	-	98.09	95.69	
	0+110.32 0+110.74	200Ø x 150Ø HY DRA NT TEE 200Ø - 11 ¼° BEND	98.08 98.08	95.68 95.68	
	0+113.24	200Ø – 22 1/2 °BEND	98.05	95.65	-
	0+121.21 0+135.00	200Ø – 45°BEND -	97.99 97.92	95.59 95.52	
	0+147.40	- 200Ø – 45°BEND	97.92	95.46	<u> </u>
	0+148.08 0+152.76	2000 C/W 500 TVS DOMESTIC SERVICE	97.84	95.44 95.42	
	0+159.42	200Ø – 45°BEND 200Ø – V&VB	97.82 97.76	95.42 95.36	
J	0+162.92	200Ø X200Ø TEE	97.72	95.32	
	0+166.42 0+172.13	200Ø – V&VB 200Ø x 150Ø HY DRA NT TEE	97.72 97.73	95.32 95.33	
	0+185.00	-	97.73	95.33	
	0+205.00 0+225.00	-	97.73 97.73	95.33 95.33	
	0+240.53	- 200Ø x 150Ø HY DRANT TEE	97.73	95.33	
	0+255.00 0+265.51		97.71	95.31 95.29	
	0+265.51	45° BEND VERTICAL BEND 45° BEND VERTICAL BEND	97.69 97.71	95.29 94.30	
	0+268.96	45° BEND VERTICAL BEND	97.65	94.30	
	0+269.80 0+275.00	45° BEND VERTICAL BEND -	97.75 97.88	95.35 95.48	
	0+300.00	-	98.53	96.13	<u> </u>
	0+319.53 0+323.03	200ø V&VB	99.04 99.13	96.64 96.73	
		200Ø x 200ø TEE	ଅଅ. I ଓ 	<u> </u>	
J	0+000.00	200Ø X200ø TEE	97.72	95.32	
	0+015.00 0+030.95	- 200Ø – 22 ½ °BEND	97.81 97.90	95.41 95.40	
	0+034.23	200Ø-11 ¼° BEND	97.93	95.39	1
	0+037.14	45° BEND VERTICAL BEND	97.91	95.38 95.00	
			0,00	1 <u>45</u> 100	
	0+037.63 0+038.76	45° BEND VERTICAL BEND -	97.83 97.90	95.00	

			ELEVATION		DATA TABLE				
	AREA ID	TOP OF GRATE	1	VERT	DIAMETER (mm)	ТҮРЕ	100 yr HEAD	FLOW (I/s)	CUSTOM IPEX TEMPEST ICD
10		GRATE		OUTLET	(1111)				*SEE NOTE 3.9
CICB123	123	97.80		96.55	250	PVC DR-35	1.225	15.0	LMF
CB122	122	98.06	97.03 96.71	96.61	250	PVC DR-35	1.265	10.0	LMF
CB120	120	98.00	50.71	96.55	250	PVC DR-35	1.475	15.0	LMF
CB110B		99.25		97.75	300	PVC DR-35			
CB110A		99.25	97.60	97.45	300	PVC DR-35			
CBMH110A CICB100A	110	99.35 98.45	97.45	97.35 97.05	600 250	PVC DR-35 PVC DR-35	1.700	40.0	HF
CICB100A	100	98.45	96.97	96.91	250	PVC DR-35	1.515	30.0	LMF
CBMH233A		97.80		95.64	600	CONC			
CBMH233		97.50	95.62	95.56	600	CONC			
CBMH232A		97.80	96.77 96.37	95.57	600	CONC			
CBMH232		97.50	95.51	95.49	600	CONC			
CBMH231A	221	97.80	05.44	95.46	600	CONC	2.204	150.0	HF
CBMH231 CICB230A	231	97.50 97.45	95.44	95.14 96.00	600 250	CONC PVC DR-35	2.264	150.0	
CICB230B	230B	97.45	95.92	95.79	250	PVC DR-35	1.715	70.0	HF
CB230C	230C	98.08	97.05 96.73	96.63	250	PVC DR-35	1.395	10.0	LMF
CB230D		97.50		96.05	250	PVC DR-35			
CB230E	230D	97.50	95.97	95.85	250	PVC DR-35	1.679	67.0	HF
CB230F	230F	97.99	96.96	96.54	250	PVC DR-35	1.535	38.0	HF
CB230G		97.50	96.64	96.05	250	PVC DR-35			
CB230G	230G	97.50	95.97	95.84	250	PVC DR-35	1.710	53.0	HF
	2000		96.47(N) 96.07(N)						
CB230I	2301	98.09	97.06	96.64	250	PVC DR-35	1.435	11.0	LMF
			96.74						
CB221A		98.40	97.37 96.97	96.75	450	CONC			
CB221B		98.25		96.50	450	CONC			
CB221C CBMH221		98.10 98.15	96.33 96.02	96.33 95.87	450 600	CONC CONC			
MH221	221	99.22	95.80	95.87	450	CONC	2.349	85.0	HF
CB222		99.05		97.60	250	PVC DR-35	21010	0010	
CBMH222	222	98.96	97.16	96.58	250	PVC DR-35	2.440	15.0	LMF
CB223		98.45		96.80	450	CONC			
CBMH223	223	98.45	96.03 97.42(S)	95.81	450	CONC	2.669	32.0	HF
CICD212A		00.10	97.02(S)	07.71	250				
CICB212A CICB212B	212	99.16 99.16	97.62	97.71 97.50	250 250	PVC DR-35 PVC DR-35	1.626	24.0	LMF
CB215	212	99.20	57.02	97.75	250	PVC DR-35	1.575	10.0	LMF
RYCB216		99.30		97.50	250	PVC DR-35			
CB216		99.15		97.17	250	PVC DR-35			
MH216	2104	99.29	96.88	96.82	250	PVC DR-35	1 550	77.0	HF
CB210A	210A	97.90	96.87 96.50	96.40	300	PVC DR-35	1.550	77.0	- 11
CB210B		96.85		95.40	250	PVC DR-35			
CB206A		98.35		96.70	450	PVC DR-35			
CBMH206	206A	98.50	96.19 97.47(S)	95.96	450	CONC	2.413	85.0	HF
			97.07(S)						
MH206 CB206B	206B	98.58	95.82	95.67	375	PVC DR-35 PVC DR-35	1 575	10.0	LMF
CB206B CB206C	206B 206C	98.40 98.40	97.37	96.95 96.95	250 250	PVC DR-35 PVC DR-35	1.575 1.475	10.0	
CB206D	2000 206D	97.34	97.05	95.89	250	PVC DR-35	1.465	60.0	HF
CB205D CB205A	2000	97.34		95.89	250	PVC DR-35 PVC DR-35	T.102	00.0	1.17
CB205B	205	97.30	95.80	95.68	250	PVC DR-35	1.680	60.0	HF
CB204B		97.67		96.25	250	PVC DR-35			
CB204A	204	97.67	96.16	96.04	250	PVC DR-35	1.510	55.0	HF
CB240A		97.75	96.72 96.40	96.30	250	PVC DR-35			
CB240B	240A	97.75	96.40	96.07	250	PVC DR-35	1.652	10.0	LMF
CB240D CB240C	_ 10/1	96.85		95.40	250	PVC DR-35	2.002	10.0	
CB240D	240D	97.76	96.73 96.43	96.31	250	PVC DR-35	1.465	10.0	LMF
DCB201A		97.02	50,45	95.57	250	PVC DR-35			
DCB201R	201	97.02	95.42	95.30	250	PVC DR-35	1.707	60.0	HF

	Below	Pipe	Above	Pipe	Difference		Below	Pipe	Above	Pipe	Difference
Location	Size (mm)	Obvert	Size (mm)	Invert	(m)	Location	Size (mm)	Obvert	Size (mm)	Invert	(m)
1	250Ø SAN	94.41	200Ø W/M	96.65	2.20	30	150Ø SAN	95.98	300Ø STM	96.55	0.49
2	250Ø SAN	93.68	250Ø STM	95.95	2.23	31	975Ø STM	95.61	150Ø SAN	96.01	0.27
3	250Ø SAN	93.33	200Ø W/M	93.85	0.50	32	1350Ø STM	95.44	250Ø STM	95.97	0.37
4	250Ø SAN	93.69	300Ø W/M	96.16	2.42	33	1500Ø STM	95.23	250Ø STM	95.63	0.25
5	300Ø SAN	92.80	250Ø STM	95.67	2.79	34	600Ø STM	95.78	200Ø W/M	96.62	0.73
6	300Ø SAN	92.82	975Ø STM	94.57	1.55	35	250Ø STM	96.74	50Ø W/M	97.35	0.57
7	300Ø SAN	92.24	300Ø STM	95.07	2.69	36	375Ø STM	96.54	50Ø W/M	97.15	0.52
8	300Ø SAN	92.50	250Ø STM	96.00	3.43	37	450Ø STM	96.00	50Ø W/M	96.75	0.68
9	300Ø SAN	91.78	250Ø STM	95.68	3.83	38	450Ø STM	96.01	150Ø W/M	96.65	0.57
10	250Ø SAN	94.79	50Ø W/M	97.35	2.52	39	675Ø STM	95.64	250Ø STM	<mark>95.91</mark>	0.15
11	250Ø SAN	94.69	50Ø W/M	97.15	2.41	40	675Ø STM	95.70	250Ø STM	95.99	0.18
12	250Ø SAN	94.52	600Ø STM	95.19	0.54	41	200Ø W/M	94.30	675Ø STM	95.06	0.65
13	250Ø SAN	94.86	450Ø STM	95.50	0.55	42	300Ø W/M	94.48	300Ø STM	95.04	0.56
14	250Ø SAN	95.56	50Ø W/M	96.73	1.12	43	150Ø W/M	95.63	375Ø STM	96.21	0.50
15	250Ø SAN	95.59	150Ø W/M	96.63	0.99	44	50Ø W/M	95.42	450Ø STM	96.03	0.53
16	250Ø SAN	94.95	150Ø W/M	95.47	0.50	45	200Ø W/M	95.60	300Ø STM	96.10	0.50
17	250Ø SAN	94.68	50Ø W/M	95.35	0.63	46	450Ø STM	96.10	200Ø W/M	96.78	0.68
18	250Ø SAN	93.30	300Ø STM	96.09	2.68	47	200Ø W/M	94.70	250Ø STM	95.23	0.50
19	250Ø SAN	93.23	250Ø STM	96.99	3.72	48	200Ø W/M	95.40	250Ø STM	95.90	0.50
20	250Ø SAN	93.21	250Ø STM	96.44	3.19	49	300Ø W/M	94.35	375Ø STM	95.23	0.79
21	250Ø SAN	95.91	250Ø STM	96.57	0.62	50	200Ø W/M	95.45	250Ø STM	96.26	0.79
22	250Ø SAN	92.91	375Ø STM	95.19	2.18	51	300Ø W/M	94.89	250Ø STM	95.71	0.79
23	250Ø STM	96.83	150Ø SAN	97.13	0.26	52	200Ø W/M	96.24	250Ø STM	97.02	0.76
24	375Ø STM	96.52	150Ø SAN	97.07	0.47	53	975Ø STM	95.60	200Ø W/M	96.15	0.50
25	450Ø STM	95.99	150Ø SAN	97.03	0.97	54	300Ø W/M	94.01	975Ø STM	94.57	0.50
26	450Ø STM	96.02	150Ø SAN	97.03	<mark>0.94</mark>	55	200Ø W/M	95.16	250Ø STM	96.15	0.97
27	200Ø W/M	95.98	150Ø SAN	96.67	0.69	56	200Ø W/M	95.97	250Ø STM	96.47	0.50
28	150Ø SAN	95.36	450Ø STM	96.02	0.59	57	300Ø W/M	94.89	250Ø STM	95.71	0.80
29	150Ø SAN	95.68	375Ø STM	96.23	0.47						

REVIEWED BY DEVELOPMENT REVIEW SERVICES BRANCH

Signed	
Date	2016
Plan Number	

CROSSING SCHEDULE

DRAWING NOTES

1.0 GENERAL

1.2 DO NOT SCALE DRAWINGS.

1.1 CONTRACTOR TO VERIFY ALL DIMENSIONS PRIOR TO CONSTRUCTION.

1.3 CONTRACTOR TO REPORT ALL DISCOVERIES OF ERRORS, OMISSIONS OR DISCREPANCIES TO THE ARCHITECT OR DESIGN ENGINEER AS APPLICABLE.

1.4 USE ONLY THE LATEST REVISED DRAWINGS OR THOSE THAT ARE MARKED "ISSUED FOR CONSTRUCTION". 1.5 ALL CONSTRUCTION SHALL COMPLY WITH CURRENT CITY OF OTTAWA STANDARDS AND SPECIFICATIONS. 1.6 THIS DRAWING SHALL BE READ IN CONJUNCTION WITH ALL RELEVANT DRAWINGS AND SPECIFICATIONS.

1.7 FOR LEGAL SURVEY INFORMATION REFER TO REGISTERED PLAN.

1.8 REFER TO SITE PLAN BY PELLOW + ASSOCIATES ARCHITECTS INC.FOR SITE PLAN LAYOUT.

1.9 REFER TO LANDSCAPE ARCHITECTURAL DRAWINGS FOR SURFACE FEATURES DETAILS.

1.10 CONTRACTOR TO IMPLEMENT EROSION AND SEDIMENT CONTROL MEASURES AS IDENTIFIED IN THE EROSION AND SEDIMENT CONTROL PLAN TO THE SATISFACTION OF THE CITY OF OTTAWA, PRIOR TO UNDERTAKING ANY SITE ALTERATIONS (FILLING, GRADING, REMOVAL OF VEGETATION, ETC.). DURING ALL PHASES OF THE SITE PREPARATION AND CONSTRUCTION THE MEASURES ARE TO BE MAINTAINED TO THE SATISFACTION OF THE ENGINEER AND CITY OF OTTAWA IN ACCORDANCE WITH THE BEST MANAGEMENT PRACTICES FOR EROSION AND SEDIMENT CONTROL. SHOULD ANY ADDITIONAL MEASURES BE REQUIRED TO ADDRESS FIELD CONDITIONS THEY SHALL BE INSTALLED AS DIRECTED BY THE ENGINEER OR THE CITY OF OTTAWA. SUCH ADDITIONAL MEASURES MAY INCLUDE BUT NOT BE LIMITED TO INSTALLATION OF FILTER CLOTHS ACROSS MANHOLE AND CATCHBASIN LIDS TO PREVENT SEDIMENT FROM ENTERING THE STRUCTURE AND INSTALLATION AND MAINTENANCE OF A LIGHT DUTY SILT FENCE BARRIER AS REQUIRED

1.11 ALL IRON WORK ELEVATIONS SHOWN ARE APPROXIMATE AND ARE SUBJECT TO MINOR ADJUSTMENTS AS DETERMINED BY THE ENGINEER.

1.12 ALL CONCRETE CURBS AND SIDEWALKS TO CONFORM TO O.P.S. AND CONSTRUCTED TO CITY STANDARDS. ALL ONSITE CURBS TO BE BARRIER TYPE, WITH DEPRESSIONS AS NOTED.

1.13 ALL CONCRETE SHALL BE "NORMAL PORTLAND CEMENT" IN ACCORDANCE WITH O.P.S.S. 1350 AND SHALL ACHIEVE A MINIMUM STRENGTH OF 30MPa AT 28 DAYS.

1.14 ALL CONSTRUCTION TRAFFIC TO ACCESS SITE FROM CAMPEAU DRIVE.

1.15 FOR DETAILS OF TEST PITS SEE GEOTECHNICAL REPORT.

1.16 CONTRACTOR TO PROTECT EXISTING INFRASTRUCTURE AND PROPERTY SUCH AS TREES, PARKING METERS, SIDEWALKS, CURBS, ASPHALT, AND STREET SIGNS FROM DAMAGE DURING CONSTRUCTION. CONTRACTOR TO PAY THE COST TO REINSTATE OR REPLACE ANY DAMAGED INFRASTRUCTURE OR PROPERTY TO THE SATISFACTION OF THE CITY.

1.17 THE POSITION OF POLE LINES, CONDUITS, WATERMAIN, SEWERS, AND OTHER UNDERGROUND AND ABOVEGROUND UTILITIES AND STRUCTURES ARE NOT NECESSARILY SHOWN ON THE CONTRACT DRAWINGS, AND WHERE SHOWN, THE ACCURACY OF THE POSITION OF SUCH UTILITIES AND STRUCTURES IS NOT GUARANTEED. BEFORE STARTING WORK THE CONTRACTOR SHALL INFORM ITSELF OF THE EXACT LOCATION OF ALL SUCH UTILITIES AND STRUCTURES, SHALL PROTECT ALL UTILITIES AND STRUCTURES, AND SHALL ASSUME ALL LIABILITY FOR DAMAGE TO THEM.

1.18 CONTRACTOR TO SUPPLY SUITABLE FILL MATERIAL WHERE REQUIRED TO ROUGH GRADE THE SITE. ALL IMPORTED FILL MATERIAL TO BE CERTIFIED AS ACCEPTABLE BY THE GEOTECHNICAL ENGINEER. 1.19 CONTRACTOR TO HAUL EXCESS MATERIAL OFFSITE AS NECESSARY TO GRADE SITE TO MEET THE

PROPOSED GRADES. ALL EXCESS MATERIAL TO BE HAULED OFFSITE AND DISPOSED OF AT AN APPROVED DUMP SITE. SHOULD THE CONTRACTOR DISCOVER ANY HAZARDOUS MATERIAL, CONTRACTOR IS TO NOTIFY ENGINEER. ENGINEER TO DETERMINE APPROPRIATE DISPOSAL METHOD/LOCATION.

1.20 FILL MATERIAL WITHIN THE PARKING LOT AND BUILDING PAD AREAS, AND SUPPORTING BUILDING FOUNDATIONS SHALL BE COMPACTED TO 98% STANDARD MODIFIED PROCTOR DENSITY AND TO THE

SATISFACTION OF THE GEOTECHNICAL ENGINEER. 1.21 ALL COMPACTION METHODS TO BE PERFORMED TO THE SATISFACTION OF THE GEOTECHNICAL ENGINEER TO INCLUDE BUT NOT BE LIMITED TO THE THICKNESS OF LIFTS, AND COMPACTION EQUIPMENT USED.

1.22 ALL DISTURBED BOULEVARDS TO BE REINSTATED WITH SOD ON 100mm TOPSOIL. 1.23 UTILITY DUCTS TO BE INSTALLED PRIOR TO ROAD BASE CONSTRUCTION.

1.24 CLAY DIKES TO BE INSTALLED WHERE INDICATED ON THE DRAWINGS OR AS APPROVED AND DIRECTED BY THE GEOTECHNICAL ENGINEER ALL IN ACCORDANCE WITH CITY OF OTTAWA STANDARDS AND SPECIFICATIONS. 1.25 ALL PIPE BEDDING TO BE OPSS GRANULAR 'A' PLACED A MINIMUM OF 300mm BELOW SEWER AND WATER PIPES AND COMPACTED TO SPRING LINE. BEDDING AND COVER MATERIAL AS PER RECOMMENDATIONS FROM GEOTECHNICAL ENGINEER.

2.0 SANITARY

2.1 ALL SANITARY SEWER MAINS TO BE CSA CERTIFIED, BELL AND SPIGOT TYPE. ONLY FACTORY FITTINGS TO BE USED. SEWER TO BE INSTALLED AS PER OSPD 1005.01. SANITARY SEWER MATERIALS TO BE: 250mmØ AND SMALLER - PVC DR 28 300mmØ AND LARGER - CONC. CL. 140-D

2.2 ALL SANITARY MAINTENANCE HOLES TO BE 1.2m DIAMETER AS PER CITY OF OTTAWA STANDARDS COMPLETE WITH BENCHING, RUNGS, FRAME AND COVER, DROP PIPES AND LANDINGS WHERE NEEDED. 2.3 SANITARY MANHOLE COVERS TO BE CITY OF OTTAWA STD. S25 (MOD. OPSD. 401.020). SANITARY MANHOLE COVER TO BE CLOSED COVER TYPE, AS PER CITY STANDARD S24.

2.4 SANITARY SEWER LEAKAGE TEST AND CCTV INSPECTION SHALL BE COMPLETED AS PER CITY SPECIFICATIONS PRIOR TO INSTALLATION OF BASE COURSE ASPHALT.

2.5 ANY SANITARY SEWER WITH JIRES THERMAL INSULATION AS PER CITY OF

OTTAWA STANDARD W22, OR AS APPROVED BY THE ENGINEER. 2.6 CONNECTION TO THE EXISTING SANITARY SEWER TO BE INCLUDED IN THE COST FOR SANITARY SEWER INSTALLATION. THIS INCLUDES REINSTATEMENT OF ROAD CUTS TO CITY STANDARDS.

	Commercial—Storm STRUCTURE TABLE								
NAME	RIM ELEV.	INVERT IN	INVERT IN AS-BUILT	INVERT OUT	INVERT OUT AS-BUILT	DESCRIPTION			
MH100	98.51	NE95.873 SW96.023		NW95.723		1200ø OPSD 701.010			
MH100B	98.58	SE95.674		NW95.674		1200ø OPSD 701.010			
MH110	98.95	W96.387		NE96.237		1200ø OPSD 701.010			
MH120	98.24	NE96.108 N96.318		SW96.003		1200ø OPSD 701.010			
MH121	98.17	E96.329		SW96.254		1200ø OPSD 701.010			
MH122	98.24	SE96.401		W96.371		1200ø OPSD 701.010			
MH123	97.97			NW96.494		1200ø OPSD 701.010			
MH200	97.80	- SE93.680-	SE93.75	NW93.670		2400ø OPSD 701.01			
MH201	97.27	- S93.892 - E94.642 -	SE93.89 SE94.64	NW93.742	NW93.83	2400ø OPSD 701.013			
MH202	97.38	- \$93.931-	SE93.94	- N93.911 -	N93.90	2400ø OPSD 701.01			
MH203	97.94	- S93.996- - W95.011-	S93.99 W95.02	- N93.986-	N93.97	2400ø OPSD 701.013			
MH204	97.57	- S94.101	S94.11	- N94.091 -	N94.09	2400ø OPSD 701.01			
MH205	97.43	- W94.512 - - E94.437 - - S95.112 -	W94.50 E94.46 S95.10	- N94.137 -	N94.14	1524x1829mm Rectangular Metric			
MH205B	97.47	- W94.538 -	W94.52	- E94.528 -	E94.515	1800ø OPSD 701.01			
MH206	98.59	SW95.824		N95.674		1200ø OPSD 701.010			
MH210	97.78	-SW94.957 NW94.807	SW94.83 NW94.80	- E94.582 -	E94.55	1500ø OPSD 701.01			
MH212	99.30	-SE95.927 NW95.202 SW96.824 -	SE95.80 NW95.18 SW96.83	-NE95.142-	NE95.15	1200ø OPSD 701.010			
MH213	99.27	SE96.036		NW96.016		1200ø OPSD 701.010			
MH214	99.19	SE96.296 SW96.696		NW96.171		1200ø OPSD 701.010			
MH215	99.30	S97.624		NW96.978		1200ø OPSD 701.010			
MH216	99.29	NW96.879		NE96.819		1200Ø OPSD 701.010			
MH220	99.12	NW95.386 W95.826 NE95.704		SE95.236		1200ø OPSD 701.01			
MH221	99.22	NE95.801 NW95.596		SE95.576		1800ø OPSD 701.01			
MH230	97.56	NE95.100 W95.676		SE94.950		1200ø OPSD 701.01			
MH240	97.86	S95.224 N95.984 W95.737		E95.089		1200ø OPSD 701.01			
MH500	99.21			SE95.608		1800ø OPSD 701.01			

3 () STORM		1							
3.1 / PEF	ALL STORM SEV MANUFACTURI 375mmØ AND S		ONS. ONLY FAC DR 35			WERS TO BE INSTALI				
) IN ACCORDANCE , RUNGS, AND FRA		ND AS PER CITY OF				
	3.3 STORM MH COVERS TO BE OPEN TYPE, AS PER CITY STANDARD S24, FRAMES TO BE PER CITY OF OTTAWA STD. S25 CONTRACTOR TO INSTALL FILTER FABRIC UNDER STORM MH COVER UNTIL SODDING IS COMPLETE.									
		NANCE HOLES A		BE OPSD, SIZE AS	SPECIFIED, TAPER	TOP FOR MH AND FL				
3.5	ALL CATCH BAS	INS TO BE AS PE	ER OPSD 705.01			R CITY OF OTTAWA ST JTLET INVERT AT 1.45				
BEL 3.6 3.0r	OW TOP OF GR. 150mm DIAMETE n FROM 4 SIDES	ATE, UNLESS OT ER SOCK-WRAPF	THERWISE NOTE	ED. ED PVC SUBDRAIN	S TO BE INSTALLEI	O AT ALL CB'S, EXTEN N EACH DIRECTION				
3.7				/ER REQUIRES THI	ERMAL INSULATION	AS PER CITY OF				
3.8	CONNECTION TO		STORM SEWER	R TO BE INCLUDED		STORM SEWER				
3.9	CONTRACTOR T	O PROVIDE IPE	X-TEMPEST ICD		T)SHOP DRAWING	S BASED ON HEAD A				
3.10	CONTRACTOR	TO PROVIDE TR	TON M-6 STOR		JIVALENT) SHOP DI	NG ICD'S. RAWING BASED ON				
	UME SPECIFIED	D FOR ENGINEE	RS APPROVAL P	RIOR TO ORDERIN	G MATERIAL.					
4.1 . STA	ALL WATERMAIN NDARDS. ALL D	OMESTIC WATE	R SERVICES AR	E TO BE 200mmØ.		PER CITY OF OTTAW				
4.3	CONTRACTOR T	TO CONDUCT PR	ESSURE AND LI	EAKAGE TESTING	OF ALL WATERMAIN	S AND DISINFECT A				
4.4	TRACER WIRE T	O BE INSTALLE	D ALONG THE F	TION OF M.O.E. AN		AWA. TACHED TO EACH MA				
4.5	ALL COMPONEN			ON SYSTEM SHALL	BE CATHODICALLY	PROTECTED AS PER				
4.6		ALVE BOXES AN	,	,	YDRANT VALVES A	ND ASSEMBLIES SHA				
4.7	ANY WATERMAI		IAN 2.4m COVEF	R REQUIRES THER	AL INSULATION A	S PER CITY OF OTTA				
4.8 PAY	CONTRACTOR IS	EES ASSOCIATE	FOR ACQUIRIN	G THE WATER PER	ERMIT. OWNER IS I	Y OF OTTAWA AND RESPONSIBLE FOR				
4.9	CONNECTION TO	O EXISTING WAT	FERMAIN TO BE	IL COST OF ACQUII INCLUDED IN THE CUTS TO CITY STAI	COST FOR THE WA	'ERMIT. TERMAIN INSTALLAT				
				UBLIC RIGH						
5.1	CONTRACTOR T	O REINSTATE R	OAD CUTS PER	CITY OF OTTAWA	STANDARD R-10.					
CIT MAI DET	Y OF OTTAWA. C NTENANCE OF F OURS AS NECE	CONTRACTOR TO ROAD CUTS SHA	O MAINTAIN TRA LL BE THE RES ADES AND SIGN	AFFIC FLOW DURIN PONSIBILITY OF TH IS TO THE FULL SA	G THE ENTIRE CON IE CONTRACTOR. F	ND APPROVAL BY THI ISTRUCTION PERIOD PROVISION OF FLAGM E ENGINEER AND RC				
5.3	CONTRACTOR	TO PREPARE SU	IBGRADE, INCLU	JDING PROOFROLL						
REC OF	COMMENDATION	IS OF THE GEOE ATERIAL FOR TE	TCHNICAL ENG		OR TO PROVIDE E	NGINEER WITH SAMP AL ENGINEER THAT				
	GRANULAR A MA		PLACED ONLY U	IPON APPROVAL B	Y THE GEOTECHNI	CAL ENGINEER OF				
REC	COMMENDATION	IS OF THE GEOE	TCHNICAL ENG		FOR TO PROVIDE E	NGINEER WITH SAME				
MAT	FERIAL MEETS T	THE GRADATION	REQUIREMENT	S SPECIFIED IN TH	E GEOTECHNICAL					
	ASPHALT MATEI ANULAR A PLAC		CED ONLY UPON	N APPROVAL BY TH	E GEOTECHNICAL	ENGINEER OF				
REC OF 2	COMMENDATION ASPHALT MATE	IS OF THE GEOT	ECHNICAL ENG		OR TO PROVIDE E	NCE WITH THE NGINEER WITH SAMP ENGINEER THAT THE				
				SHING LINE AND GI CATION PRIOR TO I		NCE WITH THE PLAN				
		DISTURBED DUR ONDITION AND F		= 0	PERATIONS ARE TO	BE REINSTATED TO				
				RIGHTS OF WAY AN SHED WITH SOD OI		TURBED AREAS IN				
THE	CONTRACTOR	DISCOVER ANY	HAZARDOUS M	ATERIAL, CONTRA		ED DUMP SITE. SHOU (ENGINEER. ENGINE				
5.14	PAVEMENT ST		ERIAL TYPES AN	ID THICKNESSES) I		ND LIGHT DUTY ARE				
TO				STRUCTU		Ē				
NAME	RIM ELEV.	INVERT IN	INVERT IN AS-BUILT	INVERT OUT	INVERT OUT AS-BUILT	DESCRIPTION				
_K100A	99.58			NE97.184		BLDG SERVICE				
_K200A	99.44			NE97.126		BLDG SERVICE				
K300A K400A	99.43 99.40			NE97.081 NE97.077		BLDG SERVICE BLDG SERVICE				
K600A	98.68			SE95.265		BLDG SERVICE				
K700A	98.43			SE95.580		BLDG SERVICE				
K800A K900A	98.28 97.99			SW95.878		BLDG SERVICE BLDG SERVICE				
H100A	98.50	NE94.283		NW93.061		OPSD 701.010				
H100C	94.42	SE92.890		SW04 550		OPSD 701.010				
IH120A IH121A	98.21 98.13	NE94.580 E95.356		SW94.550 SW95.156		OPSD 701.010 OPSD 701.010				
IH122A	98.06	SE95.566		W95.466		OPSD 701.010				
1H123A	97.93 97.18	SE01 457	SE01 44	NW95.835		OPSD 701.010				
IH200A	97.18 97.30	SE91.457 - S91.579	SE91.44 S91.56	NW91.427	NW91.40	OPSD 701.010 OPSD 701.010				
	97.30	-E91.609-	E91.60	<u>-N91-678</u>	NW91.53	OPSD 701.010				

333 Preston Street Tower 1, Suite 400 Ottawa, Ontario Canada K1S 5N4 Tel (613)225-1311 FAX (613)225-9868

-0014 14 I \cap 207

LIGHT DUTY 50mm 12.5 SUPERPAVE 150mm GRANULAR 'A' 400mm GRANULAR 'B' TYPE II

97.45 S91.668 S91.66 N91.638 N91.61

W92.95

E92.58

NW94.15

- N92.294 -

- N92.493 -

-NE94.119 -

NW94.261

NW94.512

SE95.415

- S92.324 S92.31

97.55 | W93.112 | **W93.09** | E93.082

97.82 SW93.530 SW93.46 -E93.400

SE94.179 SE94.10

- W92.972 - |

-E92.603

NW94.179

HEAVY DUTY 40mm 12.5 SUPERPAVE

MH202A

MH204A

MH205A

MH205C

MH210A

MH212A

MH213A

MH214A

MH221A

97.66

97.49

99.24

99.25

99.18

99.23 SE94.291

50mm 19.0 SUPERPAVE 150mm GRANULAR 'A' 450mm GRANULAR 'B' TYPE II

COUNTRY GLEN WAY

OPSD 701.010

40mm 12.5 SUPERPAVE 50mm 19.8 SUPERPAVE 50mm 19.8 SUPERPAVE 150mm GRANULAR 'A'

40mm 12.5 SUPERPAVE 50mm 19.8 SUPERPAVE 150mm GRANULAR 'A'

PAVEMENT STRUCTURE

N92.29

N92.48

E93.07

E93.39

NE94.05

450mm GRANULAR 'B' TYPE II INTERIM ACCESS ROAD

400mm GRANULAR 'B' TYPE II

Appendix A4

Servicing Study Checklist

MINTO COMMUNITIES INC. ARCADIA STAGE 6

DEVELOPMENT SERVICING STUDY CHECKLIST

REFERENCED STUDIES AND REPORTS	REFERENCE
Site Servicing Report for Minto Communities Inc., Arcadia Stage 6 (J.L. Richards & Associates Limited, Revision 0 dated July 2022)	SSR
Geotechnical Investigation, Proposed Residential Development – Arcadia Stage 6, Campeau Drive - Ottawa, Ontario" Report Number PG5648-1, Revision 4 dated June 30, 2022	GR

4.1	GENERAL CONTENT	REFERENCE
	Executive Summary (for larger reports only).	N/A
\boxtimes	Date and revision number of the report.	SSR (Title Page)
\boxtimes	Location map and plan showing municipal address, boundary, and layout of proposed development.	SSR (Figure 1-1, Appendix 'A1')
\boxtimes	Plan showing the site and location of all existing services.	Site Servicing Plan (S1)
\boxtimes	Development statistics, land use, density, adherence to zoning and official plan, and reference to applicable subwatershed and watershed plans that provide context to which individual developments must adhere.	SSR (Sect. 1.0)
\boxtimes	Summary of Pre-consultation Meetings with City and other approval agencies.	SSR (Appendix 'A2')
	Reference and confirm conformance to higher level studies and reports (Master Servicing Studies, Environmental Assessments, Community Design Plans), or in the case where it is not in conformance, the proponent must provide justification and develop a defendable design criteria.	SSR (Sect. 1.0)
\boxtimes	Statement of objectives and servicing criteria.	SSR (Sect. 2.1, 3.1, 3.2, 4.1, 4.2)
\boxtimes	Identification of existing and proposed infrastructure available in the immediate area.	SSR (Sect. 1.4) Site Servicing Plan (S1)
\boxtimes	Identification of Environmentally Significant Areas, watercourses and Municipal Drains potentially impacted by the proposed development (Reference can be made to the Natural Heritage Studies, if available).	SSR (Sect. 3.1, 4.1)
\boxtimes	Concept level master grading plan to confirm existing and proposed grades in the development. This is required to confirm the feasibility of proposed stormwater management and drainage, soil removal and fill constraints, and potential impacts to neighbouring properties. This is also required to confirm that the proposed grading will not impede existing major system flow paths.	GR Grading Plans (G1, G2) Ponding Plans (SWM1, SWM2)

Identification of potential impacts of proposed piped services on private services (such as wells and septic fields on adjacent lands) and mitigation required to address potential impacts.	N/A
Proposed phasing of the development, if applicable.	N/A
Reference to geotechnical studies and recommendations concerning servicing.	GR
 All preliminary and formal site plan submissions should have the following information: Metric scale North arrow (including construction North) Key plan Name and contact information of applicant and property owner Property limits, including bearings and dimensions Existing and proposed structures and parking areas Easements, road widening and rights-of-way Adjacent street names 	All Drawings

4.2	DEVELOPMENT SERVICING REPORT: WATER	REFERENCE
	Confirm consistency with Master Servicing Study, if available.	SSR (Sect. 2)
	Availability of public infrastructure to service proposed development.	SSR (Sect. 1.4, 2.4) Site Servicing Plan (S1)
	Identification of system constraints.	SSR (Sect. 2.0)
	Identify boundary conditions.	SSR (Sect. 2.4)
	Confirmation of adequate domestic supply and pressure.	SSR (Sect. 2.5, Appendix B)
	Confirmation of adequate fire flow protection and confirmation that fire flow is calculated as per the Fire Underwriter's Survey. Output should show available fire flow at locations throughout the development.	SSR (Sect. 2.3, 2.5, Appendix B)
	Provide a check of high pressures. If pressure is found to be high, an assessment is required to confirm the application of pressure reducing valves.	SSR (Sect. 2.5)
	Definition of phasing constraints. Hydraulic modelling is required to confirm servicing for all defined phases of the project, including the ultimate design.	N/A
	Address reliability requirements, such as appropriate location of shutoff valves.	Site Servicing Plan (S1)
	Check on the necessity of a pressure zone boundary modification.	N/A

Reference to water supply analysis to show that major infrastructure is capable of delivering sufficient water for the proposed land use. This includes data that shows that the expected demands under average day, peak hour and fire flow conditions provide water within the required pressure range.	SSR (Sect. 2.0)
Description of the proposed water distribution network, including locations of proposed connections to the existing system, provisions for necessary looping, and appurtenances (valves, pressure reducing valves, valve chambers, and fire hydrants), including special metering provisions.	SSR (Sect. 2.0) Site Servicing Plan (S1)
Description of off-site required feedermains, booster pumping stations, and other water infrastructure that will be ultimately required to service proposed development, including financing, interim facilities, and timing of implementation.	N/A
Confirmation that water demands are calculated based on the City of Ottawa Design Guidelines.	SSR (Sect. 2.2)
Provision of a model schematic showing the boundary conditions locations, streets, parcels, and building locations for reference.	SSR (Appendix B)

4.3	DEVELOPMENT SERVICING REPORT: WASTEWATER	REFERENCE
	Summary of proposed design criteria (Note: Wet weather flow criteria should not deviate from the City of Ottawa Sewer Design Guidelines. Monitored flow data from relatively new infrastructure cannot be used to justify capacity requirements for proposed infrastructure).	SSR (Sect. 3.2)
	Confirm consistency with Master Servicing Study and/or justifications for deviations.	SSR (Sect. 3)
	Consideration of local conditions that may contribute to extraneous flows that are higher than the recommended flows in the Guidelines. This includes groundwater and soil conditions, and age and condition of sewers.	N/A
	Description of existing sanitary sewer available for discharge of wastewater from proposed development.	SSR (Sect. 1.4, 3.1, Appendix C)
	Verify available capacity in downstream sanitary sewer and/or identification of upgrades necessary to service the proposed development. (Reference can be made to previously completed Master Servicing Study if applicable.)	SSR (Sect. 3.3)
	Calculations related to dry weather and wet weather flow rates from the development in standard MOE sanitary sewer design table (Appendix 'C') format.	SSR (Appendix C)
	Description of proposed sewer network, including sewers, pumping stations and forcemains.	SSR (Sect. 3.4, Appendix C)

Discussion of previously identified environmental constraints and impact on servicing (environmental constraints are related to limitations imposed on the development in order to preserve the physical condition of watercourses, vegetation, soil cover, as well as protecting against water quantity and quality).	GR
Pumping stations: impacts of proposed development on existing pumping stations or requirements for new pumping station to service development.	N/A
Forcemain capacity in terms of operational redundancy, surge pressure and maximum flow velocity.	N/A
Identification and implementation of the emergency overflow from sanitary pumping stations in relation to the hydraulic grade line to protect against basement flooding.	SSR (Section 3.4)
Special considerations, such as contamination, corrosive environment, etc.	N/A

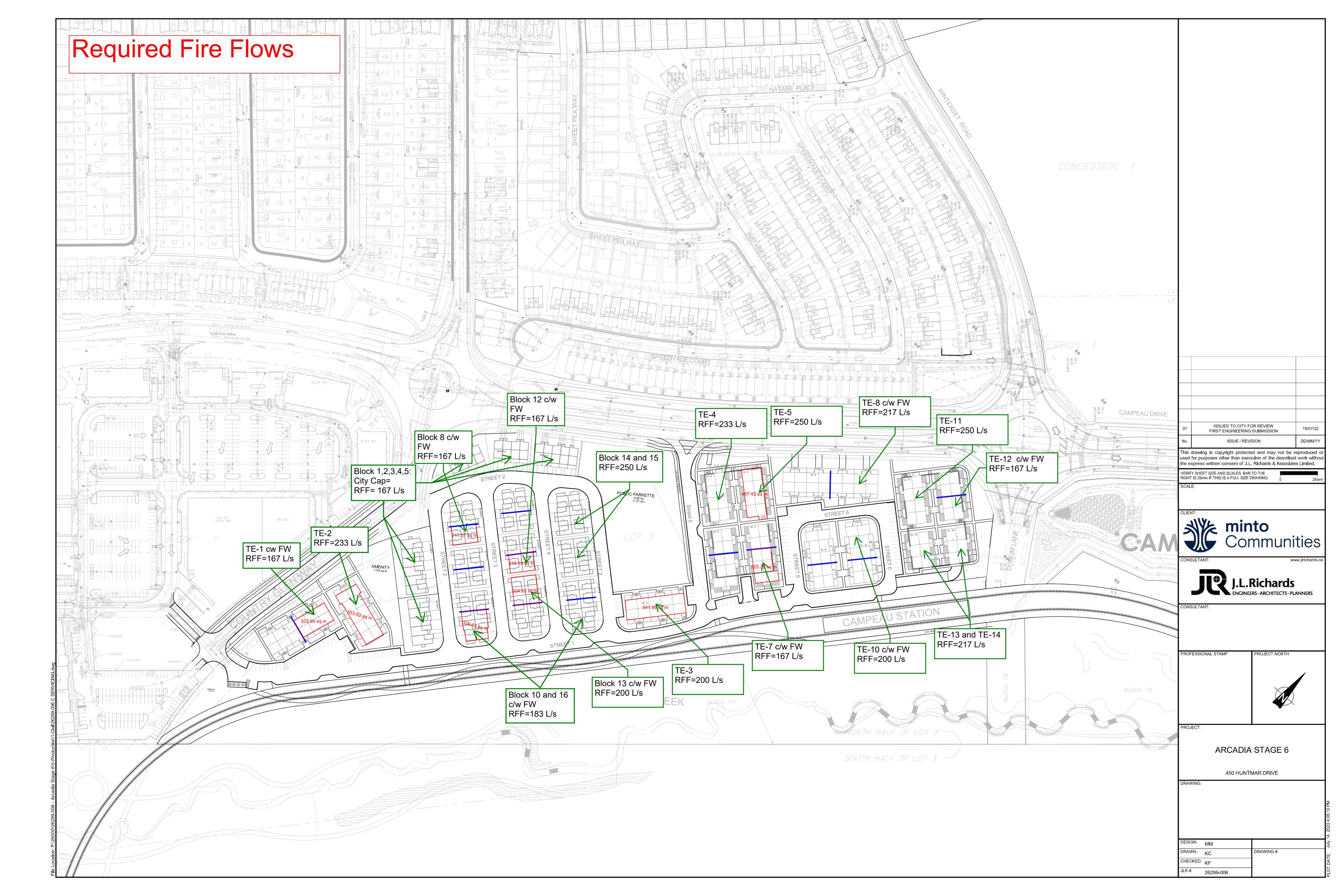
4.4	DEVELOPMENT SERVICING REPORT: STORMWATER	REFERENCE
	Description of drainage outlets and downstream constraints, including legality of outlets (i.e., municipal drain, right-of-way, watercourse, or private property).	SSR (Sect. 1.6, 6.1, 6.2)
\boxtimes	Analysis of available capacity in existing public infrastructure.	SSR (Sect. 1.3)
	A drawing showing the subject lands, its surroundings, the receiving watercourse, existing drainage patterns, and proposed drainage pattern.	Drawing DST, ODST
	Water quantity control objective (e.g. controlling post-development peak flows to pre-development level for storm events ranging from the 2 or 5 year event (dependent on the receiving sewer design) to 100 year return period); if other objectives are being applied, a rationale must be included with reference to hydrologic analyses of the potentially affected sub watersheds, taking into account long-term cumulative effects.	SSR (Sect. 4.2, 4.3)
	Water Quality control objective (basic, normal or enhanced level of protection based on the sensitivities of the receiving watercourse) and storage requirements.	SSR (Sect. 4.3)
	Description of the stormwater management concept with facility locations and descriptions with references and supporting information.	SSR (Sect. 4, Drawing S1, DST, ODST)
	Setback from private sewage disposal systems.	N/A
	Watercourse and hazard lands setbacks.	N/A
	Record of pre-consultation with the Ontario Ministry of Environment and the Conservation Authority that has jurisdiction on the affected watershed.	Appendix A2

Confirm consistency with subwatershed and Master Servicing Study, if applicable study exists.	SSR (Sect. 4)
Storage requirements (complete with calculations) and conveyance capacity for minor events (1:2 year return period) and major events (1:100 year return period).	SSR (Sect. 4, Appendix E)
Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals.	N/A
Calculate pre- and post-development peak flow rates, including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions.	SSR (Sect. 4, Appendix E)
Any proposed diversion of drainage catchment areas from one outlet to another.	N/A
Proposed minor and major systems, including locations and sizes of stormwater trunk sewers, and stormwater management facilities.	Site Servicing Plan (S1) Plan and Profile Drawings Ponding Plans Appendix E
If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100-year return period storm event.	N/A
Identification of potential impacts to receiving watercourses.	SSR (Sect 4.3)
Identification of municipal drains and related approval requirements.	N/A
Description of how the conveyance and storage capacity will be achieved for the development.	SSR (Sect. 4.3)
100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading.	SSR (Sect. 4.3) Site Servicing Plan (S1) Ponding Plans (SWM1 & SWM2) Appendix E
Inclusion of hydraulic analysis, including hydraulic grade line elevations.	SSR (Sect. 4.3, Appendix E)
Description of approach to erosion and sediment control during construction for the protection of receiving watercourse or drainage corridors.	SSR (Sect. 5.0) Erosion & Sediment Control Plan (ESC)
Identification of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.	N/A
Identification of fill constraints related to floodplain and geotechnical investigation.	GR
	 applicable study exists. Storage requirements (complete with calculations) and conveyance capacity for minor events (1:2 year return period) and major events (1:100 year return period). Identification of watercourses within the proposed development and how watercourses will be protected, or, if necessary, altered by the proposed development with applicable approvals. Calculate pre- and post-development peak flow rates, including a description of existing site conditions and proposed impervious areas and drainage catchments in comparison to existing conditions. Any proposed diversion of drainage catchment areas from one outlet to another. Proposed minor and major systems, including locations and sizes of stormwater trunk sewers, and stormwater management facilities. If quantity control is not proposed, demonstration that downstream system has adequate capacity for the post-development flows up to and including the 100-year return period storm event. Identification of potential impacts to receiving watercourses. Identification of how the conveyance and storage capacity will be achieved for the development. 100 year flood levels and major flow routing to protect proposed development from flooding for establishing minimum building elevations (MBE) and overall grading. Inclusion of hydraulic analysis, including hydraulic grade line elevations. Description of floodplains – proponent to obtain relevant floodplain information from the appropriate Conservation Authority. The proponent may be required to delineate floodplain elevations to the satisfaction of the Conservation Authority if such information is not available or if information does not match current conditions.

4.5	APPROVAL AND PERMIT REQUIREMENTS	REFERENCE
develop	vicing Study shall provide a list of applicable permits and regulatory approvals ment, as well as the relevant issues affecting such approval. The approval an mited to the following:	
	Conservation Authority as the designated approval agency for modification of floodplain, potential impact on fish habitat, proposed works in or adjacent to a watercourse, cut/fill permits and Approval under Lakes and Rivers Improvement Act. The Conservation Authority is not the approval authority for the Lakes and Rivers Improvement Act. Where there are Conservation Authority regulations in place, approval under the Lakes and Rivers Improvement Act is not required, except in cases of dams, as defined in the Act.	N/A
	Application for Environmental Compliance Approval (ECA) under the Ontario Water Resources Act.	N/A
	Changes to Municipal Drains.	N/A
	Other permits (National Capital Commission, Parks Canada, Public Works and Government Services Canada, Ministry of Transportation, etc.).	N/A

4.6	CONCLUSION CHECKLIST	REFERENCE
	Clearly stated conclusions and recommendations.	SSR (Sect. 2, 3 & 4)
	Comments received from review agencies, including the City of Ottawa and information on how the comments were addressed. Final sign-off from the responsible reviewing agency.	N/A (first submission)
	All draft and final reports shall be signed and stamped by a Professional Engineer registered in Ontario.	SSR, Drawings

Appendix B1


Water Demands and FUS Calculations

PROJECT :

ARCADIA STAGE 6

	LOCATION : DEVELOPER :			CITY OF OTTAV MINTO COMMU														
	RESIDENTIAL					NON	NON-RESIDENTIAL			VERAGE DAI	LY	N	AXIMUM DAI	LY	1	PEAK HOUR	2	
NODE	DUPLEX	EXECUTIVE TOWNHOUSE	REAR LANE TOWNHOUSE	AVENUE (B2B) TOWNHOUSE	UNIT COUNT	POP'N	COMM (ha.)	INST. (ha.)	PARK (ha.)	Res.	DEMAND (I/s Non-res.	s) Total	DEMAND (l/s) Res. Non-res. Total			DEMAND (l/s) Res. Non-res. Total		
ARCADIA STAGE 6							. ,	()	. ,									
J-1	0	0	0	0	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
J-2	0	0	0	0	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
J-3	0	5	0	5	10	27	0.00	0.00	0.00	0.09	0.00	0.09	0.22	0.00	0.22	0.48	0.00	0.48
J-4	0	0	0	11	11	30	0.00	0.00	0.00	0.10	0.00	0.10	0.24	0.00	0.24	0.53	0.00	0.53
J-5	6	0	0	1	7	17	0.00	0.00	0.00	0.05	0.00	0.05	0.13	0.00	0.13	0.29	0.00	0.29
J-6	0	6	0	8	14	38	0.00	0.00	0.00	0.12	0.00	0.12	0.31	0.00	0.31	0.67	0.00	0.67
J-7	0	0	8	16	24	65	0.00	0.00	0.00	0.21	0.00	0.21	0.53	0.00	0.53	1.16	0.00	1.16
J-8	0	0	2	4	6	16	0.00	0.00	0.00	0.05	0.00	0.05	0.13	0.00	0.13	0.29	0.00	0.29
J-9	4	0	0	0	4	9	0.00	0.00	0.00	0.03	0.00	0.03	0.07	0.00	0.07	0.17	0.00	0.17
J-10	4	0	0	0	4	9	0.00	0.00	0.00	0.03	0.00	0.03	0.07	0.00	0.07	0.16	0.00	0.16
J-11	16	0	0	0	16	37	0.00	0.00	0.00	0.12	0.00	0.12	0.30	0.00	0.30	0.66	0.00	0.66
J-12	16	0	0	0	16	37	0.00	0.00	0.00	0.12	0.00	0.12	0.30	0.00	0.30	0.66	0.00	0.66
J-13	4	0	0	0	4	9	0.00	0.00	0.00	0.03	0.00	0.03	0.07	0.00	0.07	0.16	0.00	0.16
J-14	0	0	0	0	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
J-15 J-17	12	0	0	0	12	28	0.00	0.00	0.00	0.09	0.00	0.09	0.22	0.00	0.22	0.49	0.00	0.49
	0	0	3	16	19	51	0.00	0.00	0.00	0.17	0.00	0.17	0.42		0.42	0.91	0.00	
J-18 J-20	0	0	0	11 0	<u>11</u> 8	30 18	0.00	0.00	0.00	0.10	0.00	0.10	0.24	0.00	0.24	0.53	0.00	0.53
J-20 J-21	12	0	0	0	0 12	28	0.00	0.00	0.00	0.08	0.00	0.06	0.15	0.00	0.15	0.33	0.00	0.33
J-21 J-22	4	0	0	0	12	28	0.00	0.00	0.00	0.09	0.00	0.09	0.22	0.00	0.22	0.49	0.00	0.49
J-22 J-23	8	0	0	0	4	18	0.00	0.00	0.00	0.03	0.00	0.03	0.07	0.00	0.07	0.33	0.00	0.10
J-24	8	0	0	0	8	18	0.00	0.00	0.00	0.06	0.00	0.06	0.15	0.00	0.15	0.33	0.00	0.33
J-25	8	0	0	0	8	18	0.00	0.00	0.00	0.06	0.00	0.06	0.15	0.00	0.15	0.33	0.00	0.33
J-26	ŏ	0	0	0	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
J-27	16	0	0	0	16	37	0.00	0.00	0.00	0.12	0.00	0.12	0.30	0.00	0.30	0.66	0.00	0.66
J-28	6	0 0	0	8	14	35	0.00	0.00	0.00	0.12	0.00	0.12	0.29	0.00	0.29	0.63	0.00	0.63
J-29	4	0	0	0	4	9	0.00	0.00	0.00	0.03	0.00	0.03	0.07	0.00	0.07	0.16	0.00	0.16
J-32	72	0 0	0	0	72	166	0.00	0.00	0.00	0.54	0.00	0.54	1.34	0.00	1.34	2.95	0.00	2.95
J-33	0	ő	0	Ő	0	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
J-34	56	0	0	0	56	129	0.00	0.00	0.00	0.42	0.00	0.42	1.04	0.00	1.04	2.30	0.00	2.30
TOTALS	264	11	13	80	368	888	0.00	0.00	0.00	2.88	0.00	2.88	7.20	0.00	7.20	15.83	0.00	15.83

ASSUMPTIONS									
RESIDENTIAL DENSITIES		AVG. DAILY DEMAND		MAX. HOURLY DEMAND					
- DUPLEX (INFUSION TERRACES)	<u>2.3</u> p/p/u	- Residential	280 I / cap / day	- Residential	<u>1,540</u> I / cap / day				
		- Institutional	28.000 I / ha / day	- Institutional	75,600 I / ha / day				
- TOWNHOUSE UNITS (AVENUE, EXECUTIVE, ROW)	<u>2.7</u> p/p/u	- Commercial	28,000 I / ha / day	- Commercial	75,600 l / ha / day				
		MAX. DAILY DEMAND							
		- Residential	700 I / cap / day						
		- Institutional	42,000 I / ha / day						
		- Commercial	42,000 I / ha / day						

ARCADIA STAGE 6 - Block TE - 5 - Duplex Townhouse (JLR 26299-06)

Step	Parameter	Value		Note
١	Type of Construction	Wood Frame		Block TE-5
	Coefficient (C)	1.5		—
	Ground Floor Area	470	m ²	
	Height in storeys	3	storeys	Basements are excluded.
	Total Floor Area	1410	m ²	—
)	Fire Flow Formula	F=220C√A		
	Fire Flow	12391	L/min	
	Rounded Fire Flow	12000	L/min	Flow rounded to nearest 1000 L/min.
			2/11111	
	Occupancy Class	Limited Combustible		Residential units have a limited combustible occupancy
	Occupancy Charge	-15%		
	Occupancy Increase or	-1800		
	Decrease		<u> </u>	
	Fire Flow	10200	L/min	No rounding applied.
	Sprinkler Protection	None		No sprinkler.
	Sprinkler Credit	0%		
	Decrease for Sprinkler	0	L/min	
	North Side Exposure			
	Exposing Wall:	Wood Frame		TE-5
	Exposed Wall:	Wood Frame		No structures within 50m
	Length of Exposed Wall:	24.0	m	
	Height of Exposed Wall:	3	storeys	
	Length-Height Factor	72.0	m-storeys	
	Separation Distance	50	m	
	North Side Exposure	0%		—
	Charge	0%		
	East Side Exposure			
	Exposing Wall:	Wood Frame		TE-5
	Exposed Wall:	Wood Frame		TE-8
	Length of Exposed Wall:	14.0	m	
	Height of Exposed Wall:	3	storeys	
	Length-Height Factor	42.0	m-storeys	
	Separation Distance	11	m	
	East Side Exposure			_
	Charge	13%		
	South Side Exposure			
	Exposing Wall:	Wood Frame		TE-5
	Exposed Wall:	Non-combustible		Firewall
	Length of Exposed Wall:	14.0	m	
	Height of Exposed Wall:	3	storeys	
	Length-Height Factor	42.0	m-storeys	
	Separation Distance	3.5	m	
	South Side Exposure			—
	Charge	18%		
	West Side Exposure			
	Exposing Wall:	Wood Frame		TE-5
	Exposed Wall:	Wood Frame		TE-4
	Length of Exposed Wall:	32.0	m	
	Height of Exposed Wall:	3	storeys	
	Length-Height Factor	96.0	m-storeys	
	Separation Distance	11	m	
	West Side Exposure			—
	Charge	15%		
	Total Exposure Charge	46%		The total exposure charge is below the maximum value of 75%.
	Increase for Exposures	4692	L/min	
	Fire Flow	14892	L/min	
			, L/min	Flow rounded to nearest 1000 L/min.
	Rounded Fire Flow	15000	L / 11111	
iity Cap	Required Fire Flow	15000	L/min	City Cap Does Not Apply

Fire Underwriters Survey (FUS) Fire Flow Calculations

ARCADIA STAGE 6 - Block TE - 11 - Duplex Townhouse (JLR 26299-06)

Step	Parameter	Value		Note
1	Type of Construction	Wood Frame		Block TE-11
	Coefficient (C)	1.5		
5	Ground Floor Area	470	m²	8 units (From total of 10 units)
	Height in storeys	3	storeys	Basements are excluded.
	Total Floor Area	1410	m ²	_
)	Fire Flow Formula	F=220C√A		
	Fire Flow	12391	L/min	
	Rounded Fire Flow	12000	L/min	Flow rounded to nearest 1000 L/min.
			Ly min	
	Occupancy Class	Limited Combustible		Residential units have a limited combustible occupancy
	Occupancy Charge	-15%		
	Occupancy Increase or	-1800		
	Decrease		<u> </u>	
	Fire Flow	10200	L/min	No rounding applied.
	Sprinkler Protection	None		No sprinkler.
	Sprinkler Credit	0%		_
	Decrease for Sprinkler	0	L/min	
ì	North Side Exposure			
	Exposing Wall:	Wood Frame		TE-11
	Exposed Wall:	Wood Frame		No structure within 50m
	Length of Exposed Wall:	16.0	m	
	Height of Exposed Wall:	3	storeys	
	Length-Height Factor	48.0	m-storeys	
	Separation Distance	50	m	
	North Side Exposure	0%		—
	Charge	0%		
	East Side Exposure			
	Exposing Wall:	Wood Frame		TE-11
	Exposed Wall:	Wood Frame		TE-12
	Length of Exposed Wall:	32.0	m	
	Height of Exposed Wall:	3	storeys	
	Length-Height Factor	96.0	m-storeys	
	Separation Distance	12	m	
	East Side Exposure	15%		
	Charge	15%		
	South Side Exposure			
	Exposing Wall:	Wood Frame		TE-11
	Exposed Wall:	Wood Frame		TE-13
	Length of Exposed Wall:	14.0	m	
	Height of Exposed Wall:	3	storeys	
	Length-Height Factor	42.0	m-storeys	
	Separation Distance	3.5	m	
	South Side Exposure	18%		
	Charge	18%		_
	West Side Exposure			
	Exposing Wall:	Wood Frame		TE-11
	Exposed Wall:	Wood Frame		TE-8 and TE-10
	Length of Exposed Wall:	17.0	m	
	Height of Exposed Wall:	3	storeys	
	Length-Height Factor	51.0	m-storeys	
	Separation Distance	15	m	
	West Side Exposure	13%		
	Charge			The total exposure charge is below the maximum value
	Total Exposure Charge	46%		of 75%.
	Increase for Exposures	4692	L/min	
ł	Fire Flow	14892	L/min	
	Rounded Fire Flow	15000	L/min	Flow rounded to nearest 1000 L/min.
City Cap	Required Fire Flow (RFF)	15000	L/min	City Cap Does Not Apply
	· · ·	250	L/s	—

Fire Underwriters Survey (FUS) Fire Flow Calculations

ARCADIA STAGE 6 - Block 14 - Back-to-Back Townhouse

(JLR 26299-06)

Step	Parameter	Value			Note
A	Type of Construction	Wo	od Frame		Block 14
	Coefficient (C)		1.5		
3	Ground Floor Area		443	m ²	8 units
:	Height in storeys		3	storeys	Basements are excluded.
	Total Floor Area		1329	m²	—
)	Fire Flow Formula	F=	220C√A		
	Fire Flow		12030	L/min	
	Rounded Fire Flow		12000	L/min	Flow rounded to nearest 1000 L/min.
E	Occupancy Class	Limited	Combustible		Residential units have a limited combustible occupancy
	Occupancy Charge		-15%		
	Occupancy Increase or		-1800		
	Decrease		-1800		
	Fire Flow		10200	L/min	No rounding applied.
	Sprinkler Protection		None		No sprinkler.
	Sprinkler Credit		0%		
	Decrease for Sprinkler		0	L/min	
6	North Side Exposure				
	Exposing Wall:	Wo	od Frame		Block 14
	Exposed Wall:	Wo	od Frame		Block 5
	Length of Exposed Wall:		16.0	m	
	Height of Exposed Wall:		3	storeys	
	Length-Height Factor		48.0	m-storeys	
	Separation Distance		19	m	
	North Side Exposure		13%		—
	Charge		1570		
	East Side Exposure				
	Exposing Wall:	Wo	od Frame		Block 14
	Exposed Wall:	Wo	od Frame		No exposure within 50 m
	Length of Exposed Wall:		19.0	m	
	Height of Exposed Wall:		3	storeys	
	Length-Height Factor		57.0	m-storeys	
	Separation Distance		50	m	
	East Side Exposure Charge		0%		
	South Side Exposure				—
	Exposing Wall:	Wo	od Frame		Block 14
	Exposed Wall:	Wo	od Frame		Block 15
	Length of Exposed Wall:		18.0	m	
	Height of Exposed Wall:		3	storeys	
	Length-Height Factor		54.0	m-storeys	
	Separation Distance		3.1	m	
	South Side Exposure		18%		_
	Charge		18%		
	West Side Exposure				
	Exposing Wall:	Wo	od Frame		Block 14
	Exposed Wall:	Wo	od Frame		Block 11 and 12
	Length of Exposed Wall:		27.0	m	
	Height of Exposed Wall:		3	storeys	
	Length-Height Factor		81.0	m-storeys	
	Separation Distance		19	m	
	West Side Exposure Charge		14%		
	Total Exposure Charge		45%		The total exposure charge is below the maximum value of 75%.
	Increase for Exposures		4590	L/min	
1	Fire Flow		14790	L/min	
-	Rounded Fire Flow		15000	L/min	Flow rounded to nearest 1000 L/min.
City Cap	Required Fire Flow		15000	L/min	City Cap Does Not Apply
•	(RFF)			-	
			250	L/s	

Fire Underwriters Survey (FUS) Fire Flow Calculations

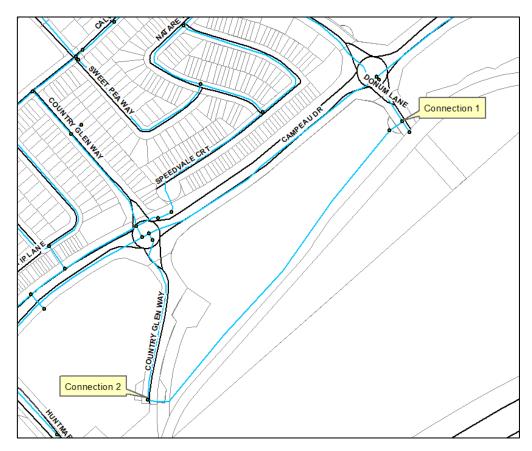
ARCADIA STAGE 6 - Block 15 - Back-to-Back Townhouse

(JLR 26299-06)

Step	Parameter	Value			Note	
4	Type of Construction	Wood Frame			Block 15	
	Coefficient (C)		1.5			
3	Ground Floor Area		435	m ²	8 units	
2	Height in storeys		3	storeys	Basements are excluded.	
	Total Floor Area		1305	m²		
)	Fire Flow Formula		F=220C√A			
	Fire Flow		11921	L/min		
	Rounded Fire Flow		12000	L/min	Flow rounded to nearest 1000 L/min.	
E	Occupancy Class	Limited Combustible			Residential units have a limited combustible occupancy	
	Occupancy Charge	-15%				
	Occupancy Increase or		-1800			
	Decrease			L/min	No rounding applied.	
	Fire Flow	10200				
F	Sprinkler Protection		None		No sprinkler.	
	Sprinkler Credit		0%		_	
	Decrease for Sprinkler		0	L/min		
6	North Side Exposure					
	Exposing Wall:	v	/ood Frame		Block 15	
	Exposed Wall:	V	/ood Frame		Block 14	
	Length of Exposed Wall:		17.0	m		
	Height of Exposed Wall:		3	storeys		
	Length-Height Factor		51.0	m-storeys		
	Separation Distance		3.1	m		
	North Side Exposure 18%			—		
	Charge 18%			_		
	East Side Exposure					
	Exposing Wall:	v	/ood Frame		Block 15	
	Exposed Wall:	v	/ood Frame		No exposure within 50 m	
	Length of Exposed Wall:		19.0	m		
	Height of Exposed Wall:		3	storeys		
	Length-Height Factor		57.0	m-storeys		
	Separation Distance		50	m		
	ast Side Exposure 0%					
	South Side Exposure			_		
	Exposing Wall:	v	/ood Frame		Block 15	
	Exposed Wall:		/ood Frame		Block 16	
	Length of Exposed Wall:		17.0	m		
	Height of Exposed Wall:		3	storeys		
	Length-Height Factor		51.0	m-storeys		
	Separation Distance		3.1	m		
	South Side Exposure				—	
	Charge 18%					
	West Side Exposure			—		
	Exposing Wall:	V	/ood Frame		Block 15	
	Exposed Wall:	v	/ood Frame		Block 12 and 13	
	Length of Exposed Wall:		26.0	m		
	Height of Exposed Wall:		3	storeys		
	Length-Height Factor		78.0	m-storeys		
	Separation Distance		19	m		
	West Side Exposure 14%			—		
	Charge Total Exposure Charge 50%			The total exposure charge is below the maximum value		
	Increase for Exposures	5100		L/min	of 75%.	
1	Fire Flow		15300	L/min		
•					Flow rounded to nearest 1000 L/min.	
City Cap	Rounded Fire Flow Required Fire Flow		15000 15000	L/min L/min	Flow rounded to nearest 1000 L/min. City Cap Does Not Apply	
, cap	(RFF)					
			250	L/s		

Fire Underwriters Survey (FUS) Fire Flow Calculations

Appendix B2


City Correspondence – Boundary Conditions

Boundary Conditions Arcadia Stage 6

Provided Information

Scenario	Demand			
Scenario	L/min	L/s		
Average Daily Demand	179	2.98		
Maximum Daily Demand	446	7.44		
Peak Hour	982	16.36		
Fire Flow Demand #1	10,000	166.67		
Fire Flow Demand #2	15,000	250.00		

Location

<u>Results</u>

Connection 1 – Donum Lane

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	161.3	95.4
Peak Hour	156.3	88.3
Max Day plus Fire 1	153.8	84.8
Max Day plus Fire 2	150.5	80.0

Ground Elevation = 94.2 m

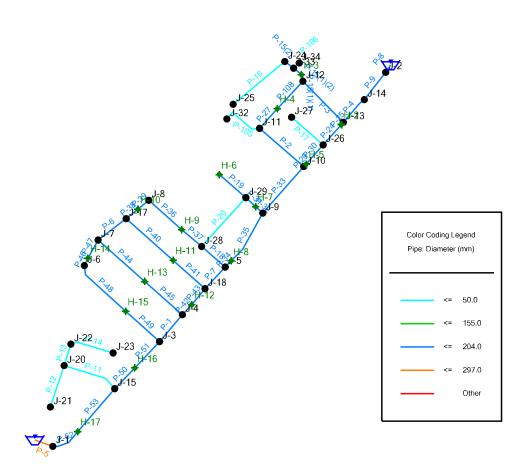
Connection 2 – Country Glen Way

Demand Scenario	Head (m)	Pressure ¹ (psi)
Maximum HGL	161.3	88.8
Peak Hour	156.3	81.7
Max Day plus Fire 1	151.5	74.9
Max Day plus Fire 2	145.5	66.4

Ground Elevation = 98.8 m

<u>Notes</u>

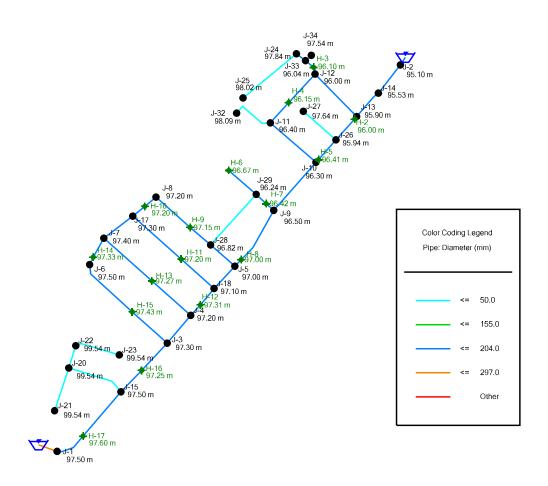
- 1. As per the Ontario Building Code in areas that may be occupied, the static pressure at any fixture shall not exceed 552 kPa (80 psi.) Pressure control measures to be considered are as follows, in order of preference:
 - a. If possible, systems to be designed to residual pressures of 345 to 552 kPa (50 to 80 psi) in all occupied areas outside of the public right-of-way without special pressure control equipment.
 - b. Pressure reducing valves to be installed immediately downstream of the isolation valve in the home/ building, located downstream of the meter so it is owner maintained.


Disclaimer

The boundary condition information is based on current operation of the city water distribution system. The computer model simulation is based on the best information available at the time. The operation of the water distribution system can change on a regular basis, resulting in a variation in boundary conditions. The physical properties of watermains deteriorate over time, as such must be assumed in the absence of actual field test data. The variation in physical watermain properties can therefore alter the results of the computer model simulation. Fire Flow analysis is a reflection of available flow in the watermain; there may be additional restrictions that occur between the watermain and the hydrant that the model cannot take into account.

Appendix B3

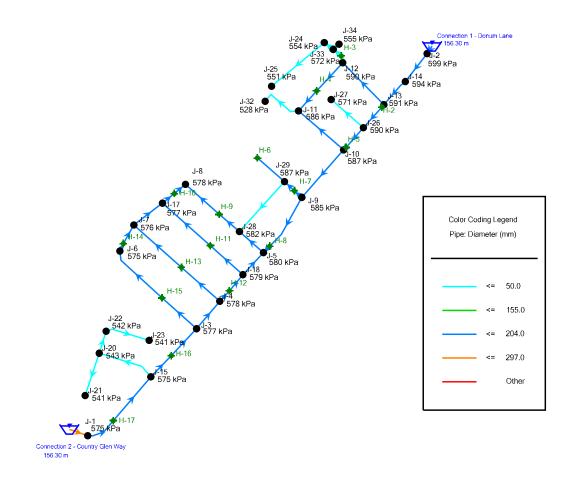
WaterCAD Schematics


Arcadia Stage 6 Model Schematic

26299-006 Arcadia Stage 6- June 6 2022.wtg 2022-07-18

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Arcadia Stage 6 Model Schematic Elevation Model


26299-006 Arcadia Stage 6- June 6 2022.wtg 2022-07-18

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Appendix B4

Simulation Results – Peak Hour Demand

Arcadia Stage 6 Peak Hour Demand Existing Condition

26299-006 Arcadia Stage 6- June 6 2022.wtg 2022-07-18

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Peak Hour Demand

Existing Condition

Junction Table

Label	ID	Elevation (m)	Demand (L/s)	Hydraulic Grade (m)	Pressure (kPa)
J-32	436	98.09	2.95	152.07	528
J-23	345	99.54	0.33	154.85	541
J-21	341	99.54	0.49	154.85	541
J-22	343	99.54	0.16	154.92	542
J-20	337	99.54	0.33	155.00	543
J-25	349	98.02	0.33	154.32	551
J-24	347	97.84	0.33	154.44	554
J-34	442	97.54	2.30	154.21	555
J-27	354	97.64	0.66	155.98	571
J-33	439	96.04	0.00	154.50	572
J-6	53	97.50	0.67	156.24	575
J-15	95	97.50	0.49	156.26	575
J-1	33	97.50	0.00	156.30	575
J-7	54	97.40	1.16	156.24	576
J-17	167	97.30	0.91	156.24	577
J-3	44	97.30	0.48	156.25	577
J-8	55	97.20	0.29	156.24	578
J-4	47	97.20	0.53	156.24	578
J-18	171	97.10	0.53	156.24	579
J-5	50	97.00	0.29	156.24	580
J-28	360	96.82	0.63	156.24	582
J-9	62	96.50	0.17	156.24	585
J-11	70	96.40	0.66	156.24	586
J-10	67	96.30	0.16	156.24	587
J-29	363	96.24	0.16	156.24	587
J-12	72	96.00	0.66	156.24	590
J-26	351	95.94	0.00	156.24	590
J-13	74	95.90	0.16	156.25	591
J-14	78	95.53	0.00	156.27	594
J-2	34	95.10	0.00	156.29	599

26299-006 Arcadia Stage 6- June 6 2022.wtg 2022-07-18

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Peak Hour Demand

Existing Condition

Pipe Table

				-	DIE			
Label	Length	Diameter	Material	Hazen-Williams C	Hydraulic	Hydraulic	Flow	Velocity
	(Scaled)	(mm)			Grade (Start)	Grade (Stop)	(L/s)	(m/s)
	(m)				(m)	(m)		
P-106	8	50.0	PEX	130.0	154.50	154.21	2.30	1.17
P-16	70	50.0	PEX	100.0	154.44	154.32	0.33	0.17
P-15	12	50.0	PEX	100.0	154.50	154.44	0.66	0.34
(2)	12	50.0	FLA	100.0	154.50	134.44	0.00	0.54
P-15	11	50.0	PEX	100.0	155.51	154.50	2.96	1.51
(1)(2)								
P-14	46	50.0	PEX	100.0	154.92	154.85	0.33	0.17
P-12	46	50.0	PEX	100.0	155.00	154.85	0.49	0.25
P-13	24	50.0	PEX	100.0	155.00	154.92	0.49	0.25
P-11	60	50.0	PEX	100.0	156.26	155.00	1.31	0.67
P-15	8	50.0	PEX	100.0	156.24	155.51	2.96	1.51
(1)(1)								
P-17	44	50.0	PEX	100.0	156.24	155.98	0.66	0.34
P-2	61	204.0	PVC	110.0	156.24	156.24	2.61	0.08
P-105	44	50.0	PEX	100.0	152.07	156.24	-2.95	1.50
P-27	28	204.0	PVC	110.0	156.24	156.24	-1.00	0.03
P-108	39	204.0	PVC	110.0	156.24	156.24	-1.00	0.03
P-20	69	50.0	PEX	100.0	156.24	156.24	0.01	0.01
P-36	46	204.0	PVC	110.0	156.24	156.24	-0.02	0.00
P-37	27	204.0	PVC	110.0	156.24	156.24	-0.02	0.00
P-39	15	204.0	PVC	110.0	156.24	156.24	0.27	0.01
P-38	16	204.0	PVC	110.0	156.24	156.24	0.27	0.01
P-6	37	204.0	PVC	110.0	156.24	156.24	0.75	0.02
P-7	31	204.0	PVC	110.0	156.24	156.24	0.60	0.02
P-18	33	204.0	PVC	110.0	156.24	156.24	-0.63	0.02
P-34	9	204.0	PVC	110.0	156.24	156.24	-0.32	0.01
P-40	66	204.0	PVC	110.0	156.24	156.24	-0.43	0.01
P-19	37	204.0	PVC	110.0	156.24	156.24	0.00	0.00
P-31	14	204.0	PVC	110.0	156.24	156.24	-0.17	0.01
P-32	10	204.0	PVC	110.0	156.24	156.24	-0.17	0.01
P-33	65	204.0	PVC	110.0	156.24	156.24	0.66	0.02
P-35	61	204.0	PVC	110.0	156.24	156.24	-0.32	0.01
P-47	22	204.0	PVC	110.0	156.24	156.24	1.08	0.03
P-41	45	204.0	PVC	110.0	156.24	156.24	-0.43	0.01
P-43	22	204.0	PVC	110.0	156.24	156.24	1.57	0.05
P-46	9	204.0	PVC	110.0	156.24	156.24	1.08	0.03
P-44	65	204.0	PVC	110.0	156.24	156.24	-0.84	0.03
P-42	14	204.0	PVC	110.0	156.24	156.24	1.57	0.05
P-29	4	204.0	PVC	110.0	156.24	156.24	-3.44	0.11
P-1	37	204.0	PVC	110.0	156.25	156.24	2.93	0.09
P-45	53	201.0	PVC	110.0	156.24	156.24	-0.84	0.03
P-48	67	201.0	PVC	110.0	156.24	156.24	-1.75	0.05
P-30	27	201.0	PVC	110.0	156.24	156.24	-3.44	0.11
P-49	48	204.0	PVC	110.0	156.24	156.25	-1.75	0.05
, i j	01	207.0		1 110.0	130.27	130.23	1.75	0.05

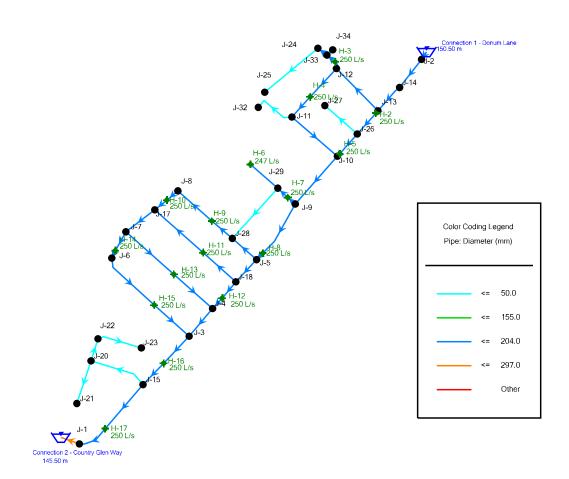
26299-006 Arcadia Stage 6- June 6 2022.wtg 2022-07-18

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Peak Hour Demand

Existing Condition

Pipe Table


Label	Length (Scaled)	Diameter (mm)	Material	Hazen-Williams C	Hydraulic Grade (Start)	Hydraulic Grade (Stop)	Flow (L/s)	Velocity (m/s)
	(m)				(m)	(m)		
P-51	38	204.0	PVC	110.0	156.25	156.25	5.16	0.16
P-24	29	204.0	PVC	110.0	156.24	156.25	-4.10	0.13
P-3	60	204.0	PVC	110.0	156.24	156.25	-4.62	0.14
P-25	3	204.0	PVC	110.0	156.25	156.25	-4.10	0.13
P-50	30	204.0	PVC	110.0	156.26	156.25	5.16	0.16
P-53	59	204.0	PVC	110.0	156.29	156.26	6.96	0.21
P-4	33	204.0	PVC	110.0	156.25	156.27	-8.87	0.27
P-52	32	204.0	PVC	110.0	156.30	156.29	6.96	0.21
P-9	36	204.0	PVC	110.0	156.27	156.29	-8.87	0.27
P-5	20	297.0	PVC	120.0	156.30	156.30	-6.96	0.10
P-8	9	204.0	PVC	110.0	156.29	156.30	-8.87	0.27

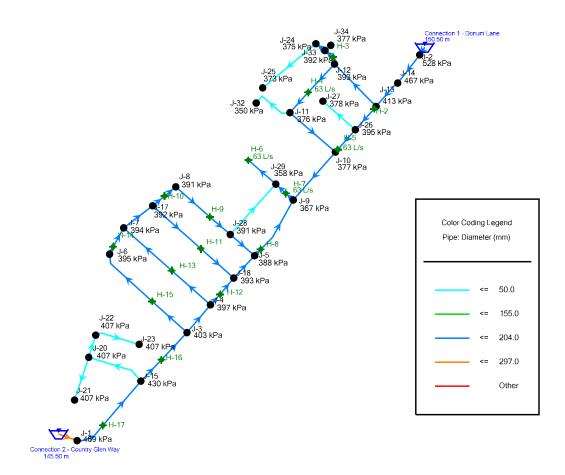
Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Appendix B5

Simulation Results – Maximum Day + Required Fire Flow

26299-006 Arcadia Stage 6- June 6 2022.wtg 2022-07-18

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

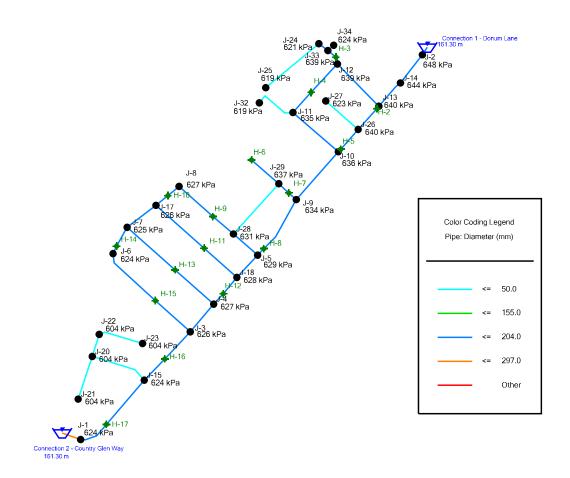

Maximum Day Fire Flow (RFF=250L/s)

Label	Fire Flow (Available) (L/s)	Flow (Total Available) (L/s)	Satisfies Fire Flow Constraints?	Pressure (Residual Lower Limit) (kPa)	Pressure (Calculated System Lower Limit) (kPa)	Pressure (Calculated Residual) (kPa)	Junction w/ Minimum Pressure (System)
H-6	247	247	True	140	256	140	J-29
H-2	250	250	True	140	363	385	J-32
H-4	250	250	True	140	302	305	J-32
H-5	250	250	True	140	348	360	J-32
H-7	250	250	True	140	287	290	H-6
H-8	250	250	True	140	311	303	J-5
H-9	250	250	True	140	280	250	J-8
H-10	250	250	True	140	268	260	J-8
H-11	250	250	True	140	298	256	J-17
H-12	250	250	True	140	304	290	J-4
H-13	250	250	True	140	297	252	H-14
H-14	250	250	True	140	260	252	J-6
H-15	250	250	True	140	289	253	J-6
H-16	250	250	True	140	346	322	J-3
H-17	250	250	True	140	420	406	J-23
H-3	250	250	True	140	280	292	J-34

26299-006 Arcadia Stage 6- June 6 2022.wtg 2022-07-18

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Arcadia Stage 6 Maximum Day Fire Flow (RFF=250L/s) TE-05 Hydraulics Test


26299-006 Arcadia Stage 6- June 6 2022.wtg 2022-07-19

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Appendix B6

Simulation Results – Maximum HGL

Arcadia Stage 6 Maximum Day Analysis Existing Condition

26299-006 Arcadia Stage 6- June 6 2022.wtg 2022-07-18

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Maximum Day Analysis

Existing Condition

Junction Table

Label	ID	Elevation (m)	Demand (L/s)	Hydraulic Grade (m)	Pressure (kPa)
J-20	337	99.54	0.00	161.30	604
J-21	341	99.54	0.00	161.30	604
J-22	343	99.54	0.00	161.30	604
J-23	345	99.54	0.00	161.30	604
J-32	436	98.09	0.00	161.30	619
J-25	349	98.02	0.00	161.30	619
J-24	347	97.84	0.00	161.30	621
J-27	354	97.64	0.00	161.30	623
J-34	442	97.54	0.00	161.30	624
J-1	33	97.50	0.00	161.30	624
J-6	53	97.50	0.00	161.30	624
J-15	95	97.50	0.00	161.30	624
J-7	54	97.40	0.00	161.30	625
J-3	44	97.30	0.00	161.30	626
J-17	167	97.30	0.00	161.30	626
J-4	47	97.20	0.00	161.30	627
J-8	55	97.20	0.00	161.30	627
J-18	171	97.10	0.00	161.30	628
J-5	50	97.00	0.00	161.30	629
J-28	360	96.82	0.00	161.30	631
J-9	62	96.50	0.00	161.30	634
J-11	70	96.40	0.00	161.30	635
J-10	67	96.30	0.00	161.30	636
J-29	363	96.24	0.00	161.30	637
J-33	439	96.04	0.00	161.30	639
J-12	72	96.00	0.00	161.30	639
J-26	351	95.94	0.00	161.30	640
J-13	74	95.90	0.00	161.30	640
J-14	78	95.53	0.00	161.30	644
J-2	34	95.10	0.00	161.30	648

26299-006 Arcadia Stage 6- June 6 2022.wtg 2022-07-18

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Maximum Day Analysis

Existing Condition

Pipe Table

Length (Scaled) Diameter (mm) Material Material Hazen-Williams C Hazen-Williams C Material Hydraulic Grade (Start) (m) Hydraulic (m) Hydraulic (m)					Прета				
P-137204.0PVC110.0161.30(m) <td>Label</td> <td>Length</td> <td></td> <td>Material</td> <td>Hazen-Williams C</td> <td></td> <td></td> <td></td> <td></td>	Label	Length		Material	Hazen-Williams C				
P-1 37 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-2 61 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-3 60 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-4 33 204.0 PVC 120.0 161.30 161.30 0.00 0.00 P-5 20 297.0 PVC 120.0 161.30 161.30 0.00 0.00 P-7 31 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-9 36 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-11 60 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-13 24 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-17 44 50.0			(mm)					(L/s)	(m/s)
P-261204.0PVC110.0161.30161.300.000.00P-360204.0PVC110.0161.30161.300.000.00P-433204.0PVC120.0161.30161.300.000.00P-520297.0PVC110.0161.30161.300.000.00P-637204.0PVC110.0161.30161.300.000.00P-731204.0PVC110.0161.30161.300.000.00P-936204.0PVC110.0161.30161.300.000.00P-116050.0PEX100.0161.30161.300.000.00P-132450.0PEX100.0161.30161.300.000.00P-144650.0PEX100.0161.30161.300.000.00P-174450.0PEX100.0161.30161.300.000.00P-1833204.0PVC110.0161.30161.300.000.00P-206950.0PEX100.0161.30161.300.000.00P-2429204.0PVC110.0161.30161.300.000.00P-2728204.0PVC110.0161.30161.300.000.00P-3114204.0PVC110.0161.30161.300.00 <td< td=""><td></td><td>(m)</td><td></td><td></td><td></td><td>(m)</td><td>(m)</td><td></td><td></td></td<>		(m)				(m)	(m)		
P-3 60 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-4 33 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-5 20 297.0 PVC 120.0 161.30 161.30 0.00 0.00 P-6 37 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-7 31 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-12 46 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-13 24 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-14 46 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-17 44 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-19 37 204.0	P-1	37				161.30			
P-4 33 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-5 20 297.0 PVC 120.0 161.30 161.30 0.00 0.00 P-7 31 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-9 36 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-11 60 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-13 24 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-14 46 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-14 46 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-14 46 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-19 37 204.0	P-2	61	204.0	PVC	110.0	161.30	161.30	0.00	0.00
P-5 20 297.0 PVC 120.0 161.30 161.30 0.00 0.00 P-6 37 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-8 9 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-9 36 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-11 60 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-12 46 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-14 46 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-17 44 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-19 37 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-25 3 204.0	P-3		204.0			161.30	161.30	0.00	
P-6 37 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-7 31 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-9 36 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-11 60 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-12 46 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-14 46 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-17 44 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-18 33 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-20 69 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-22 23 204.0 <td>P-4</td> <td>33</td> <td>204.0</td> <td>PVC</td> <td>110.0</td> <td>161.30</td> <td>161.30</td> <td>0.00</td> <td>0.00</td>	P-4	33	204.0	PVC	110.0	161.30	161.30	0.00	0.00
P-731204.0PVC110.0161.30161.30161.300.000.00P-89204.0PVC110.0161.30161.300.000.00P-936204.0PVC110.0161.30161.300.000.00P-116050.0PEX100.0161.30161.300.000.00P-124650.0PEX100.0161.30161.300.000.00P-144650.0PEX100.0161.30161.300.000.00P-167050.0PEX100.0161.30161.300.000.00P-174450.0PEX100.0161.30161.300.000.00P-1833204.0PVC110.0161.30161.300.000.00P-206950.0PEX100.0161.30161.300.000.00P-233204.0PVC110.0161.30161.300.000.00P-2429204.0PVC110.0161.30161.300.000.00P-253204.0PVC110.0161.30161.300.000.00P-3114204.0PVC110.0161.30161.300.000.00P-3114204.0PVC110.0161.30161.300.000.00P-3365204.0PVC110.0161.30161.30<	P-5	20	297.0	PVC	120.0	161.30	161.30	0.00	0.00
P-89204.0PVC110.0161.30161.30161.300.000.00P-936204.0PVC110.0161.30161.300.000.00P-116050.0PEX100.0161.30161.300.000.00P-124650.0PEX100.0161.30161.300.000.00P-132450.0PEX100.0161.30161.300.000.00P-144650.0PEX100.0161.30161.300.000.00P-157050.0PEX100.0161.30161.300.000.00P-1833204.0PVC110.0161.30161.300.000.00P-206950.0PEX100.0161.30161.300.000.00P-2429204.0PVC110.0161.30161.300.000.00P-2728204.0PVC110.0161.30161.300.000.00P-284204.0PVC110.0161.30161.300.000.00P-294204.0PVC110.0161.30161.300.000.00P-3114204.0PVC110.0161.30161.300.000.00P-3365204.0PVC110.0161.30161.300.000.00P-349204.0PVC110.0161.30161.30 <td>P-6</td> <td>37</td> <td>204.0</td> <td>PVC</td> <td>110.0</td> <td>161.30</td> <td>161.30</td> <td>0.00</td> <td>0.00</td>	P-6	37	204.0	PVC	110.0	161.30	161.30	0.00	0.00
P-9 36 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-11 60 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-12 46 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-13 24 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-14 46 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-17 44 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-18 33 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-24 29 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-25 3 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-30 27 204.0 <td></td> <td>31</td> <td>204.0</td> <td>PVC</td> <td>110.0</td> <td>161.30</td> <td></td> <td>0.00</td> <td>0.00</td>		31	204.0	PVC	110.0	161.30		0.00	0.00
P-11 60 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-12 46 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-13 24 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-14 46 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-16 70 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-17 44 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-19 37 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-22 69 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-24 29 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-27 28 204.0 <td>P-8</td> <td></td> <td></td> <td></td> <td></td> <td>161.30</td> <td>161.30</td> <td></td> <td></td>	P-8					161.30	161.30		
P-12 46 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-13 24 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-14 46 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-16 70 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-17 44 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-19 37 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-24 29 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-25 3 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-29 4 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-30 27 204.0 <td>P-9</td> <td>36</td> <td>204.0</td> <td>PVC</td> <td>110.0</td> <td>161.30</td> <td>161.30</td> <td>0.00</td> <td>0.00</td>	P-9	36	204.0	PVC	110.0	161.30	161.30	0.00	0.00
P-13 24 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-14 46 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-16 70 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-17 44 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-18 33 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-20 69 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-25 3 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-27 28 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-31 14 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-33 65 204.0 </td <td>P-11</td> <td>60</td> <td>50.0</td> <td>PEX</td> <td></td> <td>161.30</td> <td>161.30</td> <td>0.00</td> <td>0.00</td>	P-11	60	50.0	PEX		161.30	161.30	0.00	0.00
P-144650.0PEX100.0161.30161.300.000.00P-167050.0PEX100.0161.30161.300.000.00P-174450.0PEX100.0161.30161.300.000.00P-1833204.0PVC110.0161.30161.300.000.00P-1937204.0PVC110.0161.30161.300.000.00P-206950.0PEX100.0161.30161.300.000.00P-2429204.0PVC110.0161.30161.300.000.00P-253204.0PVC110.0161.30161.300.000.00P-2728204.0PVC110.0161.30161.300.000.00P-3027204.0PVC110.0161.30161.300.000.00P-3114204.0PVC110.0161.30161.300.000.00P-3365204.0PVC110.0161.30161.300.000.00P-349204.0PVC110.0161.30161.300.000.00P-3561204.0PVC110.0161.30161.300.000.00P-349204.0PVC110.0161.30161.300.000.00P-3561204.0PVC110.0161.30161.300.00 <td>P-12</td> <td>46</td> <td>50.0</td> <td>PEX</td> <td>100.0</td> <td>161.30</td> <td>161.30</td> <td>0.00</td> <td>0.00</td>	P-12	46	50.0	PEX	100.0	161.30	161.30	0.00	0.00
P-16 70 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-17 44 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-18 33 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-19 37 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-24 29 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-25 3 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-27 28 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-30 27 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-31 14 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-33 65 204.	P-13								
P-174450.0PEX100.0161.30161.300.000.00P-1833204.0PVC110.0161.30161.300.000.00P-1937204.0PVC110.0161.30161.300.000.00P-206950.0PEX100.0161.30161.300.000.00P-2429204.0PVC110.0161.30161.300.000.00P-253204.0PVC110.0161.30161.300.000.00P-2728204.0PVC110.0161.30161.300.000.00P-294204.0PVC110.0161.30161.300.000.00P-3027204.0PVC110.0161.30161.300.000.00P-3114204.0PVC110.0161.30161.300.000.00P-3365204.0PVC110.0161.30161.300.000.00P-349204.0PVC110.0161.30161.300.000.00P-3561204.0PVC110.0161.30161.300.000.00P-3727204.0PVC110.0161.30161.300.000.00P-3646204.0PVC110.0161.30161.300.000.00P-3727204.0PVC110.0161.30161.300.00<		46							
P-1833204.0PVC110.0161.30161.300.000.00P-1937204.0PVC110.0161.30161.300.000.00P-206950.0PEX100.0161.30161.300.000.00P-2429204.0PVC110.0161.30161.300.000.00P-253204.0PVC110.0161.30161.300.000.00P-2728204.0PVC110.0161.30161.300.000.00P-294204.0PVC110.0161.30161.300.000.00P-3027204.0PVC110.0161.30161.300.000.00P-3114204.0PVC110.0161.30161.300.000.00P-3365204.0PVC110.0161.30161.300.000.00P-349204.0PVC110.0161.30161.300.000.00P-3561204.0PVC110.0161.30161.300.000.00P-3646204.0PVC110.0161.30161.300.000.00P-3727204.0PVC110.0161.30161.300.000.00P-3727204.0PVC110.0161.30161.300.000.00P-3727204.0PVC110.0161.30161.300.00	P-16	70		PEX		161.30	161.30	0.00	
P-19 37 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-20 69 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-24 29 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-25 3 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-27 28 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-30 27 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-31 14 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-33 65 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-34 9 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-35 61 204.	P-17		50.0			161.30	161.30	0.00	
P-20 69 50.0 PEX 100.0 161.30 161.30 0.00 0.00 P-24 29 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-25 3 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-27 28 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-29 4 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-30 27 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-31 14 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-33 65 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-34 9 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-35 61 204.0	P-18		204.0			161.30	161.30		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P-19	37	204.0	PVC	110.0	161.30	161.30	0.00	0.00
P-253204.0PVC110.0161.30161.300.000.00P-2728204.0PVC110.0161.30161.300.000.00P-294204.0PVC110.0161.30161.300.000.00P-3027204.0PVC110.0161.30161.300.000.00P-3114204.0PVC110.0161.30161.300.000.00P-3210204.0PVC110.0161.30161.300.000.00P-3365204.0PVC110.0161.30161.300.000.00P-349204.0PVC110.0161.30161.300.000.00P-3561204.0PVC110.0161.30161.300.000.00P-3646204.0PVC110.0161.30161.300.000.00P-3727204.0PVC110.0161.30161.300.000.00P-3816204.0PVC110.0161.30161.300.000.00P-3915204.0PVC110.0161.30161.300.000.00P-4145204.0PVC110.0161.30161.300.000.00P-4465204.0PVC110.0161.30161.300.000.00P-4465204.0PVC110.0161.30161.300.0			50.0	PEX	100.0	161.30	161.30		
P-2728204.0PVC110.0161.30161.300.000.00P-294204.0PVC110.0161.30161.300.000.00P-3027204.0PVC110.0161.30161.300.000.00P-3114204.0PVC110.0161.30161.300.000.00P-3210204.0PVC110.0161.30161.300.000.00P-3365204.0PVC110.0161.30161.300.000.00P-349204.0PVC110.0161.30161.300.000.00P-3561204.0PVC110.0161.30161.300.000.00P-3646204.0PVC110.0161.30161.300.000.00P-3727204.0PVC110.0161.30161.300.000.00P-3816204.0PVC110.0161.30161.300.000.00P-3915204.0PVC110.0161.30161.300.000.00P-4145204.0PVC110.0161.30161.300.000.00P-4214204.0PVC110.0161.30161.300.000.00P-4465204.0PVC110.0161.30161.300.000.00P-4553204.0PVC110.0161.30161.300.	P-24	29	204.0	PVC	110.0	161.30	161.30	0.00	0.00
P-29 4 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-30 27 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-31 14 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-32 10 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-33 65 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-34 9 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-35 61 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-36 46 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-37 27 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-38 16 204	P-25	3	204.0	PVC	110.0	161.30	161.30	0.00	0.00
P-3027204.0PVC110.0161.30161.300.000.00P-3114204.0PVC110.0161.30161.300.000.00P-3210204.0PVC110.0161.30161.300.000.00P-3365204.0PVC110.0161.30161.300.000.00P-349204.0PVC110.0161.30161.300.000.00P-3561204.0PVC110.0161.30161.300.000.00P-3646204.0PVC110.0161.30161.300.000.00P-3727204.0PVC110.0161.30161.300.000.00P-3816204.0PVC110.0161.30161.300.000.00P-3915204.0PVC110.0161.30161.300.000.00P-4066204.0PVC110.0161.30161.300.000.00P-4145204.0PVC110.0161.30161.300.000.00P-4214204.0PVC110.0161.30161.300.000.00P-4322204.0PVC110.0161.30161.300.000.00P-4465204.0PVC110.0161.30161.300.000.00P-4553204.0PVC110.0161.30161.300.		28	204.0			161.30	161.30		
P-3114204.0PVC110.0161.30161.300.000.00P-3210204.0PVC110.0161.30161.300.000.00P-3365204.0PVC110.0161.30161.300.000.00P-349204.0PVC110.0161.30161.300.000.00P-3561204.0PVC110.0161.30161.300.000.00P-3646204.0PVC110.0161.30161.300.000.00P-3727204.0PVC110.0161.30161.300.000.00P-3816204.0PVC110.0161.30161.300.000.00P-3915204.0PVC110.0161.30161.300.000.00P-4066204.0PVC110.0161.30161.300.000.00P-4145204.0PVC110.0161.30161.300.000.00P-4214204.0PVC110.0161.30161.300.000.00P-4322204.0PVC110.0161.30161.300.000.00P-4465204.0PVC110.0161.30161.300.000.00P-4553204.0PVC110.0161.30161.300.000.00P-469204.0PVC110.0161.30161.300.0	P-29	4	204.0	PVC	110.0	161.30	161.30	0.00	0.00
P-3210204.0PVC110.0161.30161.300.000.00P-3365204.0PVC110.0161.30161.300.000.00P-349204.0PVC110.0161.30161.300.000.00P-3561204.0PVC110.0161.30161.300.000.00P-3646204.0PVC110.0161.30161.300.000.00P-3727204.0PVC110.0161.30161.300.000.00P-3816204.0PVC110.0161.30161.300.000.00P-3915204.0PVC110.0161.30161.300.000.00P-4066204.0PVC110.0161.30161.300.000.00P-4145204.0PVC110.0161.30161.300.000.00P-4214204.0PVC110.0161.30161.300.000.00P-4322204.0PVC110.0161.30161.300.000.00P-4465204.0PVC110.0161.30161.300.000.00P-4553204.0PVC110.0161.30161.300.000.00P-469204.0PVC110.0161.30161.300.000.00P-4722204.0PVC110.0161.30161.300.0	P-30	27	204.0	PVC	110.0	161.30	161.30	0.00	0.00
P-3365204.0PVC110.0161.30161.300.000.00P-349204.0PVC110.0161.30161.300.000.00P-3561204.0PVC110.0161.30161.300.000.00P-3646204.0PVC110.0161.30161.300.000.00P-3727204.0PVC110.0161.30161.300.000.00P-3816204.0PVC110.0161.30161.300.000.00P-3915204.0PVC110.0161.30161.300.000.00P-4066204.0PVC110.0161.30161.300.000.00P-4145204.0PVC110.0161.30161.300.000.00P-4214204.0PVC110.0161.30161.300.000.00P-4322204.0PVC110.0161.30161.300.000.00P-4465204.0PVC110.0161.30161.300.000.00P-4553204.0PVC110.0161.30161.300.000.00P-469204.0PVC110.0161.30161.300.000.00P-4722204.0PVC110.0161.30161.300.000.00P-4867204.0PVC110.0161.30161.300.0	P-31	14	204.0	PVC	110.0	161.30	161.30	0.00	0.00
P-349204.0PVC110.0161.30161.300.000.00P-3561204.0PVC110.0161.30161.300.000.00P-3646204.0PVC110.0161.30161.300.000.00P-3727204.0PVC110.0161.30161.300.000.00P-3816204.0PVC110.0161.30161.300.000.00P-3915204.0PVC110.0161.30161.300.000.00P-4066204.0PVC110.0161.30161.300.000.00P-4145204.0PVC110.0161.30161.300.000.00P-4214204.0PVC110.0161.30161.300.000.00P-4322204.0PVC110.0161.30161.300.000.00P-4465204.0PVC110.0161.30161.300.000.00P-4553204.0PVC110.0161.30161.300.000.00P-469204.0PVC110.0161.30161.300.000.00P-4722204.0PVC110.0161.30161.300.000.00P-4867204.0PVC110.0161.30161.300.000.00P-4948204.0PVC110.0161.30161.300.0			204.0			161.30		0.00	
P-3561204.0PVC110.0161.30161.300.000.00P-3646204.0PVC110.0161.30161.300.000.00P-3727204.0PVC110.0161.30161.300.000.00P-3816204.0PVC110.0161.30161.300.000.00P-3915204.0PVC110.0161.30161.300.000.00P-4066204.0PVC110.0161.30161.300.000.00P-4145204.0PVC110.0161.30161.300.000.00P-4214204.0PVC110.0161.30161.300.000.00P-4322204.0PVC110.0161.30161.300.000.00P-4465204.0PVC110.0161.30161.300.000.00P-4553204.0PVC110.0161.30161.300.000.00P-469204.0PVC110.0161.30161.300.000.00P-4722204.0PVC110.0161.30161.300.000.00P-4867204.0PVC110.0161.30161.300.000.00P-4948204.0PVC110.0161.30161.300.000.00		65	204.0		110.0	161.30	161.30		
P-3646204.0PVC110.0161.30161.300.000.00P-3727204.0PVC110.0161.30161.300.000.00P-3816204.0PVC110.0161.30161.300.000.00P-3915204.0PVC110.0161.30161.300.000.00P-4066204.0PVC110.0161.30161.300.000.00P-4145204.0PVC110.0161.30161.300.000.00P-4214204.0PVC110.0161.30161.300.000.00P-4322204.0PVC110.0161.30161.300.000.00P-4465204.0PVC110.0161.30161.300.000.00P-4553204.0PVC110.0161.30161.300.000.00P-469204.0PVC110.0161.30161.300.000.00P-4722204.0PVC110.0161.30161.300.000.00P-4867204.0PVC110.0161.30161.300.000.00P-4948204.0PVC110.0161.30161.300.000.00	P-34	9	204.0			161.30	161.30		
P-3727204.0PVC110.0161.30161.300.000.00P-3816204.0PVC110.0161.30161.300.000.00P-3915204.0PVC110.0161.30161.300.000.00P-4066204.0PVC110.0161.30161.300.000.00P-4145204.0PVC110.0161.30161.300.000.00P-4214204.0PVC110.0161.30161.300.000.00P-4322204.0PVC110.0161.30161.300.000.00P-4465204.0PVC110.0161.30161.300.000.00P-4553204.0PVC110.0161.30161.300.000.00P-469204.0PVC110.0161.30161.300.000.00P-4722204.0PVC110.0161.30161.300.000.00P-4867204.0PVC110.0161.30161.300.000.00P-4948204.0PVC110.0161.30161.300.000.00		61							
P-3816204.0PVC110.0161.30161.300.000.00P-3915204.0PVC110.0161.30161.300.000.00P-4066204.0PVC110.0161.30161.300.000.00P-4145204.0PVC110.0161.30161.300.000.00P-4214204.0PVC110.0161.30161.300.000.00P-4322204.0PVC110.0161.30161.300.000.00P-4465204.0PVC110.0161.30161.300.000.00P-4553204.0PVC110.0161.30161.300.000.00P-469204.0PVC110.0161.30161.300.000.00P-4722204.0PVC110.0161.30161.300.000.00P-4867204.0PVC110.0161.30161.300.000.00P-4948204.0PVC110.0161.30161.300.000.00									
P-3915204.0PVC110.0161.30161.300.000.00P-4066204.0PVC110.0161.30161.300.000.00P-4145204.0PVC110.0161.30161.300.000.00P-4214204.0PVC110.0161.30161.300.000.00P-4322204.0PVC110.0161.30161.300.000.00P-4465204.0PVC110.0161.30161.300.000.00P-4553204.0PVC110.0161.30161.300.000.00P-469204.0PVC110.0161.30161.300.000.00P-4722204.0PVC110.0161.30161.300.000.00P-4867204.0PVC110.0161.30161.300.000.00P-4948204.0PVC110.0161.30161.300.000.00									
P-4066204.0PVC110.0161.30161.300.000.00P-4145204.0PVC110.0161.30161.300.000.00P-4214204.0PVC110.0161.30161.300.000.00P-4322204.0PVC110.0161.30161.300.000.00P-4465204.0PVC110.0161.30161.300.000.00P-4553204.0PVC110.0161.30161.300.000.00P-469204.0PVC110.0161.30161.300.000.00P-4722204.0PVC110.0161.30161.300.000.00P-4867204.0PVC110.0161.30161.300.000.00P-4948204.0PVC110.0161.30161.300.000.00									
P-4145204.0PVC110.0161.30161.300.000.00P-4214204.0PVC110.0161.30161.300.000.00P-4322204.0PVC110.0161.30161.300.000.00P-4465204.0PVC110.0161.30161.300.000.00P-4553204.0PVC110.0161.30161.300.000.00P-469204.0PVC110.0161.30161.300.000.00P-4722204.0PVC110.0161.30161.300.000.00P-4867204.0PVC110.0161.30161.300.000.00P-4948204.0PVC110.0161.30161.300.000.00									
P-42 14 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-43 22 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-44 65 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-45 53 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-46 9 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-47 22 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-47 22 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-48 67 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-49 48 204.0 PVC 110.0 161.30 161.30 0.00 0.00									
P-43 22 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-44 65 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-45 53 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-46 9 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-47 22 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-48 67 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-48 67 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-49 48 204.0 PVC 110.0 161.30 161.30 0.00 0.00									
P-4465204.0PVC110.0161.30161.300.000.00P-4553204.0PVC110.0161.30161.300.000.00P-469204.0PVC110.0161.30161.300.000.00P-4722204.0PVC110.0161.30161.300.000.00P-4867204.0PVC110.0161.30161.300.000.00P-4948204.0PVC110.0161.30161.300.000.00									
P-4553204.0PVC110.0161.30161.300.000.00P-469204.0PVC110.0161.30161.300.000.00P-4722204.0PVC110.0161.30161.300.000.00P-4867204.0PVC110.0161.30161.300.000.00P-4948204.0PVC110.0161.30161.300.000.00									
P-46 9 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-47 22 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-48 67 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-49 48 204.0 PVC 110.0 161.30 161.30 0.00 0.00									
P-47 22 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-48 67 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-49 48 204.0 PVC 110.0 161.30 161.30 0.00 0.00									
P-48 67 204.0 PVC 110.0 161.30 161.30 0.00 0.00 P-49 48 204.0 PVC 110.0 161.30 161.30 0.00 0.00									
P-49 48 204.0 PVC 110.0 161.30 161.30 0.00 0.00		22	204.0			161.30	161.30		
P-50 30 204.0 PVC 110.0 161.30 0.00 0.00									
	P-50	30	204.0	PVC	110.0	161.30	161.30	0.00	0.00

26299-006 Arcadia Stage 6- June 6 2022.wtg 2022-07-18

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Arcadia Stage 6 Maximum Day Analysis

Existing Condition

Pipe Table

Label	Length (Scaled)	Diameter (mm)	Material	Hazen-Williams C	Hydraulic Grade (Start)	Hydraulic Grade (Stop)	Flow (L/s)	Velocity (m/s)
	`(m) ́				(m)	(m)		
P-51	38	204.0	PVC	110.0	161.30	161.30	0.00	0.00
P-52	32	204.0	PVC	110.0	161.30	161.30	0.00	0.00
P-53	59	204.0	PVC	110.0	161.30	161.30	0.00	0.00
P-105	44	50.0	PEX	100.0	161.30	161.30	0.00	0.00
P-15 (2)	12	204.0	PVC	110.0	161.30	161.30	0.00	0.00
P-106	8	50.0	PEX	130.0	161.30	161.30	0.00	0.00
P-15 (1)(1)	8	204.0	PVC	110.0	161.30	161.30	0.00	0.00
P-15 (1)(2)	11	204.0	PVC	110.0	161.30	161.30	0.00	0.00
P-108	39	204.0	PVC	110.0	161.30	161.30	0.00	0.00

26299-006 Arcadia Stage 6- June 6 2022.wtg 2022-07-18

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666

Appendix C1

Sanitary Sewer Design Sheet

LOCATIO	N				RES	SIDENTIAL ARE	A AND P	OPULATION	l		PARKS	ROADS	IN	FILTRAT	ΓΙΟΝ	Peak					Pipe Data					Upstream	Geometry			Downs	stream Ge	ometry	
Street Name	From	То	Area (ha)	Cum. Area (ha)	Duplex Units	Townhouse Units	Pop.	Cum. Pop.	Peaking Factor	Residential Flows (L/s)	Area (ha)	Cum. Area (ha)	Total Area (ha)	Total Cum. Area (ha)	Infilt. Flow (L/s)	Design Flow L/s	Туре	Nominal Dia. (mm)	Actual Dia (mm)	Slope	Length Q Fu (m) (L/s		Canacity		TG From	Obvert	Invert	Cover	TG To	Drop	Obvert	Invert	Cover
DONUM LANE OUTLET (TO EX.307					_																	_											
TE-2 SERVICE/AMENITY TE-2 SERVICE	124A 124	124 123	0.15	0.15 0.19	8		18 9	18 27	3.71 3.69	0.22 0.32			0.15	0.15		0.27 0.39	Circular Circular	200 200	203.20 203.20								95.774 95.501		98.058 97.903		95.704 95.534		
TE-1 SERVICE	122	123	0.09	0.09	12		28	28	3.69	0.33		0.00	0.09	0.09	0.03	0.36	Circular	200	203.20	0.65%	52.37 27.5	9 0.85	27.22	1%	97.902	95.575	95.372	2.328	97.903		95.234	95.031	2.669
TE-1 SERVICE	123	121	0.06	0.34	8		18	73	3.62	0.86			0.06	0.34	0.11	0.97	Circular	200	203.20	0.65%	46.09 27.5			4%			95.031		97.615		94.935		
STREET 1	121	119		0.34			0	73	3.62	0.86		0.00	0.00	0.34	0.11	0.97	Circular	200	203.20	0.50%	10.45 24.1	9 0.75	23.23	4%	97.615	94.335	94.132	3.280	97.417		94.283	94.079	3.135
STREET 1	120	119	0.40	0.40	12		28	28	3.69	0.33		0.00	0.40	0.40	0.13	0.47	Circular	200	203.20	0.65%	51.58 27.5	9 0.85	27.12	2%	97.148	94.678	94.475	2.470	97.417	0.060	94.343	94.139	3.075
STREET 1	119	118	-	0.74			0	101	3.59	1.18	0.12	0.12	0.12	0.86	0.28	1.46	Circular	200	203.20	0.50%	63.00 24.1	9 0.75	22.73	6%	97.417	94.283	94.079	3.135	97.300		93.968	93.764	3.332
STREET 2	115	118	0.49	0.49		24	65	65	3.63	0.77		0.00	0.49	0.49	0.16	0.93	Circular	200	203.20	0.65%	102.73 27.5	9 0.85	26.66	3%	97.420	95.235	95.032	2.185	97.300	0.600	94.568	94.364	2.732
STREET 1	118	117		1.23			0	166	3.54	1.91	0.04	0.16	0.04	1.39	0.46	2.36	Circular	200	203.20	0.50%	36.50 24.1	9 0.75	21.83	10%	97.300	93.968	93.764	3.332	97.200		93.785	93.582	3.415
STREET 2	114A	114	0.07	0.07		3	8	8	3.74	0.10		0.00	0.07	0.07	0.02	0.12	Circular	200	203.20	0.65%	24.51 27.5	9 0.85	27.47	0%	97.266	94.045	93.842	3.221	97.361		93.886	93.683	3.475
STREET 2	114	113	0.15	0.22		6	16	24	3.70	0.29		0.00	0.15	0.22	0.07	0.36	Circular	200	203.20	0.50%	36.87 24.1	9 0.75	23.83	1%	97.361	93.886	93.683	3.475	97.300		93.702	93.498	3.598
STREET 3	114	117	0.39	0.39		27	73	73	3.62	0.86		0.00	0.39	0.39	0.13	0.99	Circular	200	203.20	0.65%	116.65 27.5	9 0.85	26.60	4%	97.361	94.603	94.400	2.758	97.200	0.060	93.845	93.642	3.355
STREET 1	117	116		1.62			0	239	3.50	2.71	0.04		0.04	1.82		3.31	Circular	200	203.20	0.50%				14%	97.200	93.785		3.415	97.100			93.399	3.497
STREET 4	113	116	0.38	0.38		27	73	73	3.62	0.86		0.00	0.38	0.38	0.13	0.98	Circular	200	203.20	0.65%	111.34 27.5			4%	97.300	94.386	94.183	2.914	97.100				3.437
STREET 1	116	110		2.00			0	312	3.46	3.50	0.04		0.04		0.74		Circular	200	203.20								93.399			0.460	93.420		3.580
STREET 2	113	112	0.09	0.31		4	11	35	3.67	0.42		0.00	0.09	0.31	0.10	0.52	Circular	200	203.20	0.65%	31.18 27.5	9 0.85	27.07	2%	97.300	93.702	93.498	3.598	97.094		93.499	93.296	3.595
STREET 2/PUBLIC PARKETTE	112	111	0.02	0.33		1	3	38	3.67	0.45	0.56	0.56			0.29		Circular	200	203.20				23.45	3%			93.296		97.114		93.451		
STREET 2	111	110A	0.15	0.48		9	24	62	3.64	0.73		0.56	0.15	1.04	0.34	1.07	Circular	200	203.20	0.50%	70.49 24.1	9 0.75	23.12	4%	97.114	93.451	93.247	3.663	96.803		93.098	92.895	3.705
TE-3 SERVICE	110B	110A	0.06	0.06	10		23	23	3.70	0.28		0.00	0.06	0.06	0.02	0.30	Circular	200	203.20	1.00%	51.50 34.2	2 1.06	33.92	1%	96.608	93.613	93.410	2.994	96.803		93.098	92.895	3.705
STREET 2	110A	110	0.07	0.61		3	8	93	3.60	1.09		0.56	0.07	1.17	0.39	1.47	Circular	200	203.20	0.50%	27.65 24.1	9 0.75	22.72	6%	96.803	93.098	92.895	3.705	97.000		92.960	92.757	4.040
STREET 1 STREET 1	110	109	0.03	2.64	2		5	410	3.41	4.54 4.72		0.80		3.44		5.67	Circular	200	203.20	0.50%					97.000	92.960		4.040	96.527		92.849		3.678
STREET 1	109 107	107 106	0.08	2.72 2.72	8		18	428 428	3.41 3.41	4.72	0.24		0.08	3.52 3.76		5.89 5.97	Circular Circular	200 200	203.20 203.20	0.50%	40.70 24.1 33.42 24.1		18.31 18.23	24% 25%	96.527		92.645 92.442	3.678 3.855	96.500 96.215		92.645 92.478		3.855
STREET 1	106	105		2.72			0	428	3.41	4.72	0.06		0.06		1.26		Circular		203.20					25%			92.275	3.737	96.278		92.295		3.983
STREET 6	104	105	0.18	0.18	8		18	18	3.71	0.22		0.00	0.18	0.18	0.06	0.28	Circular	200	203.20	0.65%	39.03 27.5	9 0.85	27.31	1%	96.212	93.149	92.945	3.063	96.278	0.600	92.895	92.692	3.383
STREET 1	105	101A		2.90			0	446	3.40	4.91	0.03	1.13	0.03	4.03	1.33	6.24	Circular	200	203.20	0.50%	29.08 24.1	9 0.75	17.95	26%	96.278	92.295	92.092	3.983	95.859		92.150	91.946	3.709
TE-9 AND TE-10 SERVICE	101B	101A	0.10	0.10	16		37	37	3.67	0.44		0.00	0.10	0.10	0.03	0.47	Circular	200	203.20	1.00%	39.58 34.2	2 1.06	33.74	1%	96.100	93.145	92.942	2.955	95.859	0.600	92.750	92.546	3.109
STREET 1	101A	101		3.00			0	483	3.39	5.30	0.03	1.16	0.03	4.16	1.37	6.67	Circular	200	203.20	0.65%	32.04 27.5	9 0.85	20.91	24%	95.859	92.150	91.946	3.709	96.038		91.941	91.738	4.097
TE-5 AND TE-8 SERVICE	102B	102A	0.50	0.50	88		202	202	3.52	2.30		0.00	0.00	0.50	0.17	2.47	Circular	200	203.20	0.65%	70.22 27.5	0.00	25.12	9%	96.420	93.468	93.265	2.951	96.207			92.809	3.195
TE-11 SERVICE	102A	102	0.33	0.83	56		130	332	3.45	3.71		0.00	0.33	0.83	0.27	3.98	Circular	200	203.20	0.65%	30.37 27.5	9 0.85	23.60	14%	96.207	93.012	92.809	3.195	95.916		92.815	92.611	3.101
STREET 6	103	102	0.22	0.22	24		55	55	3.64	0.65		0.00	0.22	0.22	0.07	0.72	Circular	200	203.20	0.65%	59.67 27.5	9 0.85	26.86	3%	96.268	93.262	93.059	3.005	95.916	0.060	92.875	92.671	3.041
STREET 6	102	101	0.16	1.21	8		18	405	3.42	4.48		0.00	0.16	1.21	0.40	4.88	Circular	200	203.20	0.65%	57.43 27.5	9 0.85	22.70	18%	95.916	92.815	92.611	3.101	96.038	0.500	92.441	92.238	3.597
STREET 1	101	100A		4.21			0	888	3.27	9.40	0.10	1.20	0.10	5.47	1.01	11.20	Circular	300	304.80	1.00%	63.04 100.	1.00		11%	96.038	91.941	000.		95.098		91.311		3.787
	100A	100		4.21			0 888	888	3.27	9.40	0.11 1.37 0.17		0.11 5.58 0.17	5.58	1.84	11.24 11.30	Circular	300	304.80	1.50%	16.76 123.5 1554 60.16 115.1		112.31	9%	95.098	91.311	91.006	3.787	95.354	0.200	91.060	90.755	4.294
DONUM LANE DONUM LANE/CAMPEAU TOTALS:	100 01A	EX.307A	4.21	4.21 4.21	264	104	0	888	3.27	9.40 9.40	0.17 0.21 3.12	0.17	0.17	5.96	1.90	11.30	Circular	375	381.00	0.40%	60.16 115.0 33.84 83.8 1648	2 0.74	72.45	14%	95.220	90.860	90.479	4.360	95.290	-0.139	90.537	90.238	4.463
INTALO.			7.41	I	204	104	000	L			J.12		5.50		1	1		I	1	1	10-10	1		1	I I	1	1						

Design Parameters		
Duplex	2.3	Cap/Unit
Townhouse	2.7	Cap/Unit
Residential Flows	280	L/Cap/d
Infiltration Flows	0.33	L/s/ha
Harmon's Correction Factor (K)	0.8	unitless
Manning Coefficient	0.013	unitless

Legend

89.232	Proposed Mainline Sewers
89.232	Proposed Service Sewers for Duplexes
89.232	Existing (As-Built Information)
<u>Statistics</u> No. of Duplexes: No. of THs: No. of Total Units: Total Population: Total DST Area within property line:	264 104 368 888 5.58
Total Pipe Length within property line	: 1554

GENERAL NOTES:

Total Site Area = 5.58 ha
 Design parameters as per the City of Ottawa Sewer Design Guidelines (2012) and Associated Technical Bulletins
 As-Built Information as per "As Constructed Information for Minto Communities Inc. Arcadia Stage 3". Prepared by J.L. Richards & Associates and signed on December 17, 2019
 Actual catchment area (from 2022) at Donum Lane was used for flow allocation of existing infrastructure on Donum Lane.
 Duplex units must be serviced at front entrance except for blocks with undeground parking garages
 Servicing for underground parking garage units shown on Servicing Drawings for Arcadia Stage 6

Existing Infrastructure (Downstream Info)	OBV	INV
@ MH 01A on Donum Lane	90.619	90.238
@ MH EX.307A on Campeau Drive/Donum Lane	90.537	90.156

Appendix C2

Background Sanitary Documents

Single Family	3.4	pers/unit	
Semi-Detached/Townhouse (row)	2.7	pers/unit	
*Future Stage 5 Unit Density	44.0	units/ha	
Manning's Coeff. N =	0.013		

q =	280	L/cap/day	
=	0.330	L/s/ha	
Inst. =	28000	L/ha/day	

			Denotes I	Existing Sa	anitary Sew	ers from Ar	cadia Stag	e 2 Develop	oment as per J	LR's design	sheet da	ted July 20	15							
			· ·	•				a Stages 4 a	and 5				-							
			Sanitary [Drainage A	reas/popul	ation for Are	cadia Stag						OMMERCIAL		DAG	RK/ROAD	1	INFILTRA	TION	
			NUMB	ER OF				JLATIVE	PEAKING	POPUL.		CUMM.	PEAKING	INST.	ΓA	CUMM.		CUMM.	PEAK EXTR.	PEAK DESIGN
STREET	M.ł	н. # ТО	UN		AREA ha	POPUL.	POPUL.	AREA	FACTOR	FLOW	AREA ha	AREA	FACTOR	FLOW	AREA ha	AREA	AREA ha	AREA	FLOW	FLOW L/s
	FROM	10	SING.	WOLT.	па	peop.	peop.	ha		1/5	na	па		1/5	па	па	па	na	1/5	
Eramosa Crescent (Stage 3B)	90	91	14.0	_	0.65	48	48	0.65	3.65	0.57		0.0	1.5	0.0		0.00	0.65	0.65	0.21	0.78
Eramosa Crescent (Stage 3B)	91	92	2.0		0.18	7	55	0.83	3.64	0.65		0.0	1.5	0.0		0.00	0.18	0.83	0.27	0.92
Eramosa Crescent (Stage 3B)	92	93	4.0		0.28	14	69	1.11	3.63	0.81		0.0	1.5	0.0		0.00	0.28	1.11	0.37	1.18
Eramosa Crescent (Stage 3B)	93	94	2.0		0.17	7	76	1.28	3.62	0.89		0.0	1.5	0.0		0.00	0.17	1.28	0.42	1.31
Eramosa Crescent (Stage 3B)	94	81	14.0		0.65	48	124	1.93	3.57	1.44		0.0	1.5	0.0		0.00	0.65	1.93	0.64	2.07
Paine Avenue (Stage 3B)	EX.9	81	6.0		0.28	20	20	0.28	3.70	0.24		0.0	1.5	0.0		0.00	0.28	0.28	0.09	0.33
Paine Avenue (Stage 3B)	81	80	12.0		0.52	41	185	2.73	3.53	2.12		0.0	1.5	0.0		0.00	0.52	2.73	0.90	3.02
Coco (Stage 3B)	27 E	23	5.0		0.30	17	17	0.30	3.71	0.20		0.0	1.5	0.0		0.00	0.30	0.30	0.10	0.30
Winterset Road (Stage 3B)	24	23	2.0		0.15	7	7	0.15	3.74	0.08		0.0	1.5	0.0		0.00	0.15	0.15	0.05	0.13
Winterset Road (Stage 3B)	23	22	17.0		0.83	58	82	1.28	3.61	0.96		0.0	1.5	0.0		0.00	0.83	1.28	0.42	1.38
Coco (Stage 3B)	27	28	2.0		0.18	7	7	0.18	3.74	0.08		0.0	1.5	0.0		0.00	0.18	0.18	0.06	0.14
Coco (Stage 3B)	28	80	15.0		0.69	51	58	0.87	3.64	0.68		0.0	1.5	0.0		0.00	0.69	0.87	0.29	0.97
Paine Avenue (Stage 3B)	80	22	5.0		0.33	17	260	3.93	3.48	2.94		0.0	1.5	0.0		0.00	0.33	3.93	1.30	4.23
Winterset Deed (Otense 2D)		22B	1.0		0.16	3	345	5.37	3.44	3.85		0.0	1.5	0.0		0.00	0.16	5.37	1.77	5.62
Winterset Road (Stage 3B) Winterset Road (Stage 3B)	22 22B	225	5.0		0.32	17	362	5.69	3.43	4.03		0.0	1.5	0.0		0.00	0.32	5.69	1.88	5.91
Parabolica	72	71	2.0		0.17	7	7	0.17	3.74	0.08		0.0	1.5	0.0		0.00	0.17	0.17	0.06	0.14
Parabolica	71	21	14.0		0.67	48	55	0.84	3.64	0.65		0.0	1.5	0.0		0.00	0.67	0.84	0.28	0.93
Riverchase Drive (Stage 4)	21	20	11		0.56	37	454	7.09	3.40	5.00		0.0	1.5	0.0		0.00	0.56	7.09	2.34	7.34
Parabolica	73 S	61	5		0.30	17	17	0.30	3.71	0.20		0.0	1.5	0.0		0.00	0.30	0.30	0.10	0.30
Parabolica	72 S	73	7		0.33	24	24	0.33	3.70	0.29		0.0	1.5	0.0		0.00	0.33	0.33	0.11	0.40
Basalt	73	20	6	9	0.60	45	69	0.93	3.63	0.81		0.0	1.5	0.0		0.00	0.60	0.93	0.31	1.12
Winterset Road (Stage 4) Winterset Road (Stage 4)	20 19	19 18		4 3	0.17 0.15	11 8	534 542	8.19 8.34	3.37 3.36	5.83 5.91		0.0 0.0	1.5 1.5	0.0 0.0		0.00 0.00	0.17 0.15	8.19 8.34	2.70 2.75	8.53 8.66
Calvington Avenue (Stage 3B)	62	61	6		0.31	20	20	0.31	3.70	0.24		0.0	1.5	0.0		0.00	0.31	0.31	0.10	0.34
Calvington Avenue (Stage 3B)	61	60	5	7	0.44	36	73	1.05	3.62	0.86		0.0	1.5	0.0		0.00	0.44	1.05	0.35	1.20
Calvington Avenue (Stage 3B)	60	18	2	2	0.22	12	85	1.27	3.61	0.99		0.0	1.5	0.0		0.00	0.22	1.27	0.42	1.41
Park (Stage 3B)	Stub	18				0	0	0.00				0.0	1.5	0.0	2.46	2.46	2.46	2.46	0.81	0.81
Winterset Road (Stage 3B)	18	16	5		0.30	17	644	9.91	3.33	6.95		0.0	1.5	0.0		2.46	0.30	12.37	4.08	11.04
Stage 5*	Stub	16		180	4.10	486	486	4.10	3.38	5.33		0.0	1.5	0.0		0.00	4.10	4.10	1.35	6.68

Single Family 3.4 pers/unit Semi-Detached/Townhouse (row) 2.7 pers/unit *Future Stage 5 Unit Density 44.0 units/ha Manning's Coeff. N = 0.013

 Denotes Existing Sanitary Sewers from Arcadia Stage 2 Development as per JLR's design sheet dated July 2015

 Sanitary Drainage Areas/population for future Arcadia Stages 4 and 5

Sanitary Drainage Areas/population for Arcadia Stage 3

																				1							
	M.H	4 #	Actual		S	EWER DA	TA		RESIDUAL			UPSTR	EAM				DOV	VNSTREAM				S	ELF-CLEANSING	VELOCITIES	6		
STREET			DIA.	DIA.		CAPAC.	VEL.	LENGTH	CAP.	Center	Obvert	Obvert	Invert	Cover		Obvert	Obvert	Invert	Cover	Angle	Depth	Area	Wetted	Flow	Flow (L/s)	Velocity	Q/Qmax
	FROM	то	mm	mm	%	l/s	m/s	m	l/s	Line	Drop				Line	Drop					(m)	(m²)	Perimeter			(L/s)	
Eramosa Crescent (Stage 3B)	90	91	203	200	0.35	20.2	0.62	79.430	19.46	96.710		94.573	94.370	2.137	96.780		94.295	94.092	2.485	86.9263	0.027	0.003	0.152	0.001	0.783	0.3	
Eramosa Crescent (Stage 3B)	91 92	92 93	203 203	200 200	0.35	20.2 20.2	0.62	7.951 61.890	19.32 19.07	96.780 96.750		94.295 94.268	94.092 94.064	2.485 2.482	96.750 96.550		94.268 94.051	94.064 93.848	2.482 2.499	90.6673 96.5054	0.030	0.003	0.158 0.168	0.001	0.924 1.178	0.3 0.3	0.317
Eramosa Crescent (Stage 3B) Eramosa Crescent (Stage 3B)	92	93 94	203	200	0.35	20.2	0.62	10.750	18.93	96.750		94.266	93.848	2.402	96.550 96.550		94.051	93.810	2.499	96.5054	0.035	0.003	0.100	0.001	1.170	0.3	0.341
Eramosa Crescent (Stage 3B)	94	81	203	200	0.35	20.2	0.62	116.510	18.17	96.550		94.013	93.810	2.537	96.060		93.606	93.402	2.454	112.088	0.044	0.005	0.196	0.002	2.073	0.4	
· · · · · · · · · · · · · · · · · · ·																											
	= = = = = = = = = = = = = = = = = = = =							10.000				00.074						00.100		00.0405	0.045	0.004	0.444	0.000	0.000	0.0	0.007
Paine Avenue (Stage 3B)	EX.9	81	203	200	0.77	30.0	0.92	48.060	29.64	96.060		93.974	93.771	2.086	96.627		93.606	93.402	3.021	63.8425	0.015	0.001	0.111	0.000	0.333	0.3	0.307
Paine Avenue (Stage 3B)	81	80	203	200	0.35	20.2	0.62	72.060	17.23	96.060		93.606	93.402	2.454	95.850		93.353	93.150	2.497	124.328	0.053	0.007	0.217	0.003	3.016	0.4	0.449
Coco (Stage 3B)	27 E	23	203	200	0.65	27.6	0.85	70.240	27.28	96.000		93.938	93.734	2.062	95.550		93.481	93.278	2.069	63.7538	0.015	0.001	0.111	0.000	0.304	0.3	0.282
										1																	
Winterset Road (Stage 3B)	24	23	254	250	0.25	31.0	0.61	23.320	30.88	95.340		93.539	93.285	1.801	95.550		93.481	93.227	2.069	50.9399	0.012	0.001	0.111	0.000	0.134	0.2	0.153
Winterset Road (Stage 3B)	23	22	254	250	0.25	31.0	0.61	116.700	29.64	95.550		93.481	93.227	2.069	95.250	0.102	93.189	92.935	2.061	90.1089	0.037	0.004	0.197	0.001	1.382	0.3	0.309
Coco (Stage 3B)	27	28	203	200	0.65	27.6	0.85	7.560	27.44	95.960		93.894	93.691	2.066	95.980	0.030	93.845	93.642	2.135	53.2136	0.011	0.001	0.093	0.000	0.144	0.2	0.224
Coco (Stage 3B)	28	80	203	200	0.35	20.2	0.62	114.710	19.27	95.980		93.815	93.612	2.165	95.850	0.060	93.413	93.210	2.437	91.8319	0.030	0.003	0.160	0.001	0.971	0.3	0.322
Paine Avenue (Stage 3B)	80	22	203	200	0.35	20.2	0.62	76.040	16.01	95.850		93.353	93.150	2.497	95.250		93.087	92.884	2.163	137.121	0.063	0.009	0.239	0.004	4.232	0.5	0.494
Winterset Road (Stage 3B)	22	22B	254	250	0.35	36.7	0.72	5.420	31.08	95.300		93.087	92.833	2.213	95.480	0.870	93.068	92.814	2.412	125.29	0.068	0.011	0.273	0.006	5.620	0.5	
Winterset Road (Stage 3B)	22B	21	254	250	0.35	36.7	0.72	70.600	30.80	95.250		92.198	91.944	3.052	95.350		91.951	91.697	3.399	127.072	0.069	0.011	0.277	0.006	5.906	0.5	0.532
					0.05	07.0	0.05		07.45	05 470		00.570			05.400		00.500		0.077	50.0000	0.040	0.004		0.000	0.440		0.000
Parabolica	72	71	203	200	0.65	27.6	0.85	11.700	27.45	95.470		92.579	92.376	2.891	95.480	0.030	92.503	92.300	2.977	52.9392	0.010	0.001	0.092	0.000	0.140	0.2	0.223
Parabolica	71	21	203	200	0.35	20.2	0.62	110.810	19.32	95.480		92.473	92.270	3.007	95.350	0.134	92.085	91.882	3.265	90.7404	0.030	0.003	0.158	0.001	0.927	0.3	0.318
Riverchase Drive (Stage 4)	21	20	254	250	0.35	36.7	0.72	77.580	29.37	95.350		91.951	91.697	3.399	95.450		91.680	91.426	3.770	135.315	0.077	0.013	0.295	0.007	7.337	0.6	0.566
Parabolica	73 S	61	203	200	1.00	34.2	1.06	74.370	33.91	96.200		92.738	92.535	3.462	96.800		91.994	91.791	4.806	60.4855	0.014	0.001	0.106	0.000	0.304	0.3	0.327
Parabolica	72 S	73	203	200	0.65	27.6	0.85	68.200	27.19	95.500		92.582	92.379	2.918	96.200		92.138	91.935	4.062	67.9896	0.017	0.001	0.119	0.000	0.396	0.3	0.306
	123	13	203	200	0.05	27.0	0.65	00.200	27.19	95.500		92.302	92.379	2.910	90.200		92.130	91.900	4.002	07.9090	0.017	0.001	0.119	0.000	0.390	0.3	0.300
Basalt	73	20	203	200	0.35	20.2	0.62	116.810	19.12	96.200		92.138	91.935	4.062	95.450	0.050	91.730	91.526	3.720	95.2179	0.033	0.003	0.166	0.001	1.118	0.3	0.336
																									0.50		0.501
Winterset Road (Stage 4)	20 19	19 18	254 254	250 250	0.35	36.7 36.7	0.72	42.140	28.17 28.04	95.450		91.680	91.426 91.278	3.770 3.838	95.370		91.532 91.419	91.278 91.165	3.838	141.532 142.197	0.084	0.014	0.309 0.310	0.009	8.528 8.661	0.6 0.6	0.591 0.593
Winterset Road (Stage 4)	19	18	254	250	0.35	30.7	0.72	32.390	28.04	95.370		91.532	91.278	3.838	95.550		91.419 91.403	91.100	4.131	142.197	0.065	0.015	0.310	0.009	0.001	0.6	0.593
Calvington Avenue (Stage 3B)	62	61	203	200	0.65	27.6	0.85	58.210	27.24	96.750		92.372	92.169	4.378	96.800		91.994	91.791	4.806	65.6322	0.016	0.001	0.115	0.000	0.343	0.3	0.292
Calvington Avenue (Stage 3B)	61	60	203	200	0.35	20.2	0.62	61.700	19.04	96.800		91.994	91.791	4.806	95.680	0.404	91.778	91.575	3.902	97.0541	0.034	0.004	0.169	0.001	1.204	0.3	0.343
Calvington Avenue (Stage 3B)	60	18	203	200	0.35	20.2	0.62	64.400	18.83	95.680		91.778	91.575	3.902	95.550	0.134	91.553	91.350	3.997	101.213	0.037	0.004	0.177	0.001	1.414	0.4	0.360
Park (Stage 3B)	Stub	18	203	200	0.65	27.6	0.85	15.340	26.77	94.018		91.518	91.315	2.500	95.550		91.419	91.216	4.131	81.1472	0.024	0.002	0.142	0.001	0.812	0.4	0.379
																										-	
Winterset Road (Stage 3B)	18	16	305	300	0.25	50.4	0.69	62.820	39.41	95.550		91.419	91.114	4.131	95.690		91.262	90.957	4.428	138.987	0.097	0.020	0.364	0.011	11.035	0.6	0.554
Stage 5*	Stub	16	203	200	0.35	20.2	0.62	15.350	13.56	94.288		91.788	91,585	2.500	95.690	0.473	91,735	91.532	3.955	158.051	0.081	0.012	0.276	0.007	6.683	0.6	0.561
Stage 5*	Slub	10	203	200	0.35	20.2	0.02	15.350	13.30	94.208		91.700	91.000	2.500	95.690	0.473	91.755	91.332	3.900	156.051	0.001	0.012	0.276	0.007	0.003	0.0	0.501

SANITARY SEWER DESIGN SHEET

Designed by: NG

Checked by: TC

Date : April 2019

Single Family	3.4	pers/unit	
Semi-Detached/Townhouse (row)	2.7	pers/unit	
*Future Stage 5 Unit Density	44.0	units/ha	
Manning's Coeff. N =	0.013		

q =	280	L/cap/day	
=	0.330	L/s/ha	
Inst. =	28000	L/ha/day	

			Denotes E	Existing S	anitary Sev	vers from A	cadia Stag	e 2 Develop	ment as per J	LR's desigr	n sheet da	ited July 20	15							
			Sanitary D	Drainage A	Areas/popu	lation for fut	ure Arcadia	a Stages 4 a	and 5											
			Sanitary D	Drainage A	Areas/popu	lation for Ar	cadia Stag	e 3												
						RES	IDENTIAL					CC	OMMERCIAL		PA	RK/ROAD		INFILTRA	TION	PEAK DESIGN
STREET	М.	H. #			AREA	POPUL.	CUMU POPUL.	JLATIVE AREA	PEAKING FACTOR	POPUL. FLOW	AREA	CUMM. AREA	PEAKING FACTOR	INST. FLOW	AREA	CUMM. AREA	AREA	CUMM. AREA	PEAK EXTR. FLOW	FLOW L/s
	FROM	TO	SING.	MULT.	ha	peop.	peop.	ha		l/s	ha	ha		l/s	ha	ha	ha	ha	l/s	L/S
Winterset Road	16	14		14	0.60	38	1168	14.61	3.20	12.13		0.0	1.5	0.0		2.46	0.60	17.07	5.63	17.76
Winterset Road	14	13		8	0.29	22	1189	14.90	3.20	12.33		0.0	1.5	0.0		2.46	0.29	17.36	5.73	18.06
Winterset Road	13	2		4	0.18	11	1200	15.08	3.20	12.44		0.0	1.5	0.0		2.46	0.18	17.54	5.79	18.23
Natare	45 E	46		17	0.48	46	46	0.48	3.66	0.54		0.0	1.5	0.0		0.00	0.48	0.48	0.16	0.70
Natare	47	46		3	0.13	8	8	0.13	3.74	0.10		0.0	1.5	0.0		0.00	0.13	0.13	0.04	0.14
Speedvale	46	39				0	54	0.61	3.65	0.64		0.0	1.5	0.0	0.03	0.03	0.03	0.64	0.21	0.85
Speedvale	39	38	ł	16	0.48	43	97	1.09	3.60	1.13	t	0.0	1.5	0.0	0.00	0.03	0.48	1.12	0.37	1.50
Speedvale	38	37	ł	10	0.40	32	130	1.40	3.57	1.10	1	0.0	1.5	0.0	1	0.03	0.31	1.43	0.47	1.97
Speedvale	37	36	1	9	0.01	24	154	1.64	3.55	1.77	1	0.0	1.5	0.0		0.03	0.24	1.67	0.55	2.32
Speedvale	36	30		7	0.24	19	173	1.88	3.54	1.98		0.0	1.5	0.0		0.03	0.24	1.91	0.63	2.61
Natare	45	44		4	0.19	11	11	0.19	3.73	0.13		0.0	1.5	0.0		0.00	0.19	0.19	0.06	0.19
Natare	44	43		6	0.18	16	27	0.37	3.69	0.32		0.0	1.5	0.0		0.00	0.18	0.37	0.12	0.44
Natare	43	42		10	0.31	27	54	0.68	3.65	0.64		0.0	1.5	0.0		0.00	0.31	0.68	0.22	0.86
Sweet Pea	54	53	17		0.80	58	58	0.80	3.64	0.68		0.0	1.5	0.0		0.00	0.80	0.80	0.26	0.95
Sweet Pea	53	52	2		0.15	7	65	0.95	3.63	0.77		0.0	1.5	0.0		0.00	0.15	0.95	0.31	1.08
Sweet Pea	52	51	10		0.44	34	99	1.39	3.60	1.15		0.0	1.5	0.0		0.00	0.44	1.39	0.46	1.61
Sweet Pea	51	50	1		0.10	3	102	1.49	3.59	1.19		0.0	1.5	0.0		0.00	0.10	1.49	0.49	1.68
Sweet Pea	50	42			0.01	0	102	1.50	3.59	1.19		0.0	1.5	0.0	0.01	0.01	0.02	1.51	0.50	1.69
Natare	42	40		16	0.48	43	199	2.66	3.52	2.27		0.0	1.5	0.0		0.01	0.48	2.67	0.88	3.15
Natare	42	31		5	0.40	14	213	2.84	3.52	2.42		0.0	1.5	0.0		0.01	0.40	2.85	0.94	3.36
Natare	40	01		J	0.10	17	210	2.04	0.01	2.72		0.0	1.0	0.0		0.01	0.10	2.00	0.04	0.00
Speedvale	34	33		6	0.27	16	16	0.27	3.71	0.19		0.0	1.5	0.0		0.00	0.27	0.27	0.09	0.28
Speedvale	33	32		29	0.68	78	95	0.95	3.60	1.10		0.0	1.5	0.0		0.00	0.68	0.95	0.31	1.42
Speedvale	32	31		12	0.30	32	127	1.25	3.57	1.47		0.0	1.5	0.0		0.00	0.30	1.25	0.41	1.88
Speedvale	31	30		14	0.32	38	377	4.41	3.43	4.19		0.0	1.5	0.0		0.01	0.32	4.42	1.46	5.65
	30	30A				0	550	6.29	3.36	5.99		0.0	1.5	0.0		0.04		6.33	2.09	8.08
Speedvale	30A	2			0.20	0	550	6.49	3.36	5.99		0.0	1.5	0.0	0.20	0.24	0.40	6.73	2.22	8.22
Stage 5*	Stub	2		180	4.10	486	486	4.10	3.38	5.33		0.0	1.5	0.0		0.00	4.10	4.10	1.35	6.68
Winterset Road	2	2A	1		0.18	0	2236	25.85	3.04	22.02	-	0.0	1.5	0.0	0.18	2.88	0.36	28.73	9.48	31.50
Winterset Road	2 2A	ex. 307A			0.10	0	2236	25.85	3.04	22.02		0.0	1.5	0.0	0.10	2.88	0.00	28.73	9.48	31.50
Campeau Drive	ex.306A	ex. 307A			23.00	1700	1700	23.00	3.11	17.14	95.58	95.6	1.5	46.5	5.10	5.10	123.68	123.68	40.81	104.42
Donum Lane	South Stub	1A				1	0	0.00			24.28	24.3	1.5	11.8	0.37	0.37	24.65	24.65	8.13	19.94
Donum Lane	1A	ex. 307A					0	0.00			24.20	24.3	1.5	11.8	0.37	0.37	0.37	24.05	8.15	20.06
Campeau Drive	ex. 307A	ex. 308A					3936	48.85	2.87	36.63		119.9	1.5	58.3		8.35	0.00	177.43	58.55	153.45
Oumpour Divo	OA. OUTA	0A. 000A					0000	+0.00	2.01	00.00		110.0	1.0	00.0		0.00	0.00	111.40	00.00	100.40

SANITARY FLOW ALLOCATIONS 24.65 Ha, 20.06 L/s Stage 6 Lands 2.15ha, 1.75 L/s

Single Family	3.4	pers/unit
Semi-Detached/Townhouse (row)	2.7	pers/unit
*Future Stage 5 Unit Density Manning's Coeff. N =	44.0 0.013	units/ha

Denotes Existing Sanitary Sewers from Arcadia Stage 2 Development as per JLR's design sheet dated July 2015 Sanitary Drainage Areas/population for future Arcadia Stages 4 and 5

			Sanitary Drainage Areas/population for Arcadia Stage 3							-																
	1			1										1		5.011										
	М.	H. #	Actual		-	EWER DA			RESIDUAL		UPSTR		-				NSTREAM		l		r	SELF-CLEANSING	-			
STREET	FROM	то	DIA. mm	DIA. mm	SLOPE	CAPAC.	VEL. m/s	LENGTH	CAP. I/s	Center Obvert	Obvert	Invert	Cover	Center Line	Obvert Drop	Obvert	Invert	Cover	Angle	Depth (m)	Area (m ²)	Wetted Perimeter	Flow	Flow (L/s)	Velocity (L/s)	Q/Qmax
	FROM	10	mm	mm	-70	I/S	m/s	m	1/5	Line Drop				Line	Drop					(111)	(m)	1 crimeter			(L/S)	
Winterset Road	16	14	305	300	0.25	50.4	0.69	119.600	32.68	95.690	91.262	90.957	4.428	95.440		90.963	90.658	4.477	161.429	0.126	0.028	0.423	0.018	17.752	0.6	0.631
Winterset Road	14	13	305	300	0.25	50.4	0.69	50.600	32.38	95.440	90.963	90.658	4.477	95.320		90.836	90.531	4.484	162.348	0.120	0.028		0.018	18.056	0.6	0.634
Winterset Road	13	2	305	300	0.25	50.2	0.69	43.200	32.01	95.320	90.836	90.531	4.484	94.860		90.729	90.424	4.131	162.839	0.128	0.029		0.018	18.146	0.6	0.633
Natare	45 E	46	203	200	0.96	33.6	1.03	60.200	32.86	96.430	93.626	93.423	2.804	96.100	0.237	93.047	92.843	3.053	75.2809	0.021	0.002	0.131	0.001	0.730	0.4	0.421
N1 (47	10	000	000	0.05	07.5	0.05	40.000	07.04	05 700	00.000	00.005	0 704	00.400	0.077	00.007	00.000	0.010	52.0442	0.011	0.004	0.000	0.000	0.444	0.0	0.222
Natare	47	46	203	200	0.65	27.5	0.85	18.900	27.34	95.790	93.009	92.805	2.781	96.100	0.077	92.887	92.683	3.213	53.0113	0.011	0.001	0.093	0.000	0.141	0.2	0.222
Speedvale	46	39	203	200	0.35	20.2	0.62	9.800	19.34	96.100	92.810	92.606	3.290	95.940	0.030	92.776	92.572	3.164	88.7314	0.029	0.003	0.155	0.001	0.847	0.3	0.308
Speedvale	39	38	203	200	0.35	20.2	0.62	74.800	18.71	95.940	92.746	92.542	3.194	95.600	0.000	92.484	92.281	3.116	102.859	0.038	0.004		0.002	1.501	0.4	0.366
Speedvale	38	37	203	200	0.35	20.2	0.62	45.100	18.21	95.600	92.484	92.281	3.116	95.660		92.328	92.124	3.332	110.571	0.043	0.005		0.002	1.965	0.4	0.396
Speedvale	37	36	203	200	0.35	20.2	0.62	32.000	17.92	95.660	92.328	92.124	3.332	95.700		92.216	92.012	3.484	115.603	0.047	0.006	0.202	0.002	2.322	0.4	0.416
Speedvale	36	30	203	200	0.35	20.2	0.62	33.900	17.60	95.700	92.216	92.012	3.484	95.700		92.097	91.894	3.603	119.404	0.050	0.006	0.208	0.003	2.607	0.4	0.430
																			57 4070	0.040	0.004	0.400		0.400		0.040
Natare	45 44	44 43	203	200	0.65	27.6	0.85	16.900 35.300	27.39 19.09	96.430 96.460	93.787 93.647	93.583	2.643	96.460 96.160	0.030	93.677	93.473	2.783	57.1272 75.4648	0.012	0.001		0.000	0.193	0.2	0.246
Natare Natare	44 43	43	203 203	200 200	0.33	19.5 20.2	0.60	47.900	19.09	96.160	93.647	93.443 93.328	2.813 2.628		0.300	93.532 93.364	93.328 93.161	2.628 3.036	89.0885	0.021	0.002		0.000	0.429	0.2	0.246
INALAIC	43	42	203	200	0.55	20.2	0.02	47.300	19.50	30.100	33.33Z	33.320	2.020	30.400	0.300	33.304	35.101	3.030	03.0005	0.023	0.000	0.133	0.001	0.002	0.5	0.511
Sweet Pea	54	53	203	200	0.35	20.2	0.62	105.982	19.29	97.070	93.956	93.753	3.114	96.770	0.030	93.585	93.382	3.185	91.1911	0.030	0.003	0.159	0.001	0.945	0.3	0.319
Sweet Pea	53	52	203	200	0.35	20.2	0.62	10.580	19.16	96.770	93.555	93.352	3.215	96.750	0.030	93.518	93.315	3.232	94.1148	0.032	0.003	0.164	0.001	1.069	0.3	0.331
Sweet Pea	52	51	203	200	0.35	20.2	0.62	70.071	18.63	96.750	93.488	93.285	3.262	96.130		93.243	93.040	2.887	104.734	0.039	0.004		0.002	1.609	0.4	0.374
Sweet Pea	51	50	203	200	0.35	20.2	0.62	25.280	18.56	96.130	93.243	93.040	2.887	96.320		93.154	92.951	3.166	105.874	0.040	0.004		0.002	1.676	0.4	0.378
Sweet Pea	50	42	203	200	0.35	20.2	0.62	8.680	18.56	96.320	93.154	92.951	3.166	96.400	0.060	93.124	92.921	3.276	105.985	0.040	0.004	0.185	0.002	1.683	0.4	0.379
Natare	42	40	203	200	0.35	20.2	0.62	63.600	17.03	96.400	93.064	92.861	3.336	95.730	0.030	92.843	92.639	2.887	125.856	0.054	0.007	0.220	0.003	3.140	0.5	0.453
Natare	42	31	203	200	0.35	20.2	0.62	34.300	16.82	95.730	92.813	92.609	2.917	96.000	0.060	92.693	92.490	3.307	128.167	0.054	0.007		0.003	3.347	0.5	0.461
, tatal o		0.	200	200	0.00	20.2	0.02	01.000	10.02	00.100	02.010	02.000	2.011	00.000	0.000	02.000	02.100	0.001	1201101	0.000	0.001	0.22 .	0.000	0.011	0.0	
Speedvale	34	33	203	200	0.65	27.6	0.85	17.100	27.30	97.430	93.410	93.206	4.020	97.220	0.050	93.299	93.095	3.921	62.926	0.015	0.001	0.110	0.000	0.288	0.3	0.277
Speedvale	33	32	203	200	0.36	20.4	0.63	100.900	19.03	97.220	93.249	93.045	3.971	96.680	0.031	92.888	92.685	3.792	101.258	0.037	0.004		0.001	1.430	0.4	0.364
Speedvale	32	31	203	200	0.34	20.0	0.62	65.500	18.13	96.680	92.857	92.654	3.823	96.000		92.633	92.430	3.367	109.186	0.042	0.005	0.191	0.002	1.859	0.4	0.387
0 1 1	0.1		000	000	0.05	00.0	0.00	74.000	44.50	00.000	00.000	00.400	0.007	05 700	0.070	00.070	00.470	0.007	440 700	0.074	0.014	0.004	0.000	5.047	0.5	0.505
Speedvale	31	30	203	200	0.35	20.2	0.62	74.300	14.59	96.000	92.633	92.430	3.367	95.700	0.276	92.373	92.170	3.327	149.732	0.074	0.011	0.261	0.006	5.647	0.5	0.535
	30	30A	203	200	0.35	20.2	0.62	39.890	12.16	95.700	92.097	91.894	3.603	95.700		91.958	91.754	3.742	168.505	0.090	0.014	0.294	0.008	8.080	0.6	0.589
Speedvale	30A	2	203	200	0.33	19.7	0.61	44.100	11.44	95.700	91.958	91.754	3.742	94.860	1.083	91.812	91.609	3.048	168.984	0.090	0.014		0.008	7.910	0.6	0.574
•																										
Stage 5*	Stub	2	305	300	0.35	59.7	0.82	19.200	53.00	93.493	90.993	90.688	2.500	94.860	0.197	90.926	90.621	3.934	114.846	0.069	0.012	0.301	0.007	6.683	0.5	0.542
	-																		100 170	0.150			0.004	00.004		0.011
Winterset Road	2	2A	305	300	0.34	58.7	0.80	42.100	27.15	94.860	90.729	90.424	4.131	94.860	0.000	90.587	90.282	4.273	186.472	0.158	0.038		0.031	30.821	0.8	0.814
Winterset Road	2A	ex. 307A	457	450	1.04	303.3	1.85	13.460	271.83	94.860	90.587	90.130	4.273	95.500	-0.229	90.447	89.990	5.053	112.381	0.100	0.026	0.441	0.031	31.363	1.2	1.195
Campeau Drive	ex.306A	ex. 307A	533	525	0.24	219.8	0.98	120.080	115.38	95.500	90.817	90.284	4.683	95.500		90.529	89.996	4.971	179.408	0.261	0.108	0.822	0.104	104.420	1.0	0.971
Campeau Dive	CA.300A	CA. 307A	000	525	0.24	213.0	0.30	120.000	113.30	00.000	50.017	00.204	4.000	55.500		30.323	00.000	4.371	173.400	0.201	0.100	0.022	0.104	104.420	1.0	0.971
Donum Lane	South Stub	1A	381	375	0.40	115.8	1.02	67.970	95.89	94.740	90.891	90.510	3.849	95.290		90.618	90.237	4.672	103.197	0.071	0.015	0.338	0.009	8.707	0.6	0.599
Donum Lane	1A	ex. 307A	381	375	0.40	89.6	0.79	8.800	69.55	95.290	90.618	90.237	4.672	95.500		90.537	90.156	4.963	103.197	0.071	0.015		0.003	6.736	0.0	0.353
Donum Lanc		CA. 00/A	001	010	0.2-1	00.0	0.10	0.000	00.00	00.200	00.010	00.207	1.012	30.000		50.007	00.100	4.000	100.107	0.071	0.010	0.000	0.007	0.700	0.0	0.400
Campeau Drive	ex. 307A	ex. 308A	686	675	0.25	438.5	1.19	118,960	285.02	95.500	90.676	89.990	4.824	94.400		90.379	89.693	4.021	156.838	0.270	0.133	0.924	0.141	141.389	1.1	1.059
Campeau Dive	UN. 001A		000	015	0.20	400.0	1.13	110.300	200.02	33.300	30.070	03.330	4.024	34.400		30.313	03.030	4.021	100.000	0.210	0.100	0.024	0.141	11.003	1.1	1.003

SANITARY SEWER DESIGN SHEET

Designed by: NG

Checked by: TC

Date : April 2019

IBI Group 400-333 Preston Street Ottawa, Ontario K1S 5N4

[RESIDENTI	AL							ICI AREAS			INFIL	TRATION ALLO	WANCE	TOTAL	1			PROPOSED	SEWER DESIGN	N		
	LOCAT					UNIT	TYPES	AREA	POPL	JLATION	PEAK	PEAK			AREA			PEAK	ARE	A (Ha)	FLOW	FLOW	CAPACITY	LENGTH	DIA	SLOPE	VELOCITY	VELOCITY		LABLE
STREET	AREA ID	D FROM	TO MH	9	SF	SD	TH APT	(Ha)	IND	сим	FACTOR	FLOW (L/s)	INSTITUTION	IAL CUM		CUM	INDUSTRIAL IND CUM	FLOW (L/s)	IND	CUM	(L/s)	(L/s)	(L/s)	(m)	(mm)	(%)	(full) (m/s)	(actual) (m/s)	CAP/ L/s	ACITY (%)
												(2/3)				com		(2/3)									(, 0)	(, 5)	2,0	(,,,)
	BLK800	BLK800	MAIN						0.0	0.0	4.00	0.00	0	0.00	0.06	0.06	0.00	0.05	0.06	0.06	0.02	0.07	15.89	6.50	150	1.00	0.871		15.82	99.57
	123A	MH123	MH122A						0.0	0.0	4.00	0.00	0	0.00	0.29	0.35	0.00	0.30	0.29	0.35	0.10	0.40	34.22	26.94	200	1.00	1.055		33.81	98.83
	122A	MH122	MH121A						0.0	0.0	4.00	0.00	0	0.00	0.09	0.44	0.00	0.38	0.09	0.44	0.12	0.51	34.22	11.00	200	1.00	1.055		33.71	98.52
	BLK700) BLK700/	MAIN						0.0	0.0	4.00	0.00		0.00	0.10	0.10	0.00	0.09	0.10	0.10	0.03	0.11	15.89	6.50	150	1.00	0.871		15.77	99.28
	DER700	BER700							0.0	0.0	4.00	0.00			0.10	0.10	0.00	0.05	0.10	0.10	0.03	0.11	13.85	0.50	150	1.00	0.871		13.77	55.28
	121A	MH121/	MH120A						0.0	0.0	4.00	0.00	0	0.00	0.08	0.62	0.00	0.54	0.08	0.62	0.17	0.71	34.22	57.61	200	1.00	1.055		33.50	97.92
	BLK600	BLK600/	MAIN						0.0	0.0	4.00	0.00	0	0.00	0.06	0.06	0.00	0.05	0.06	0.06	0.02	0.07	15.89	6.50	150	1.00	0.871		15.82	99.57
	120A	MH120/	MH100A						0.0	0.0	4.00	0.00	0	0.00	0.56	1.24	0.00	1.08	0.56	1.24	0.35	1.42	24.19	53.29	200	0.50	0.746		22.77	94.12
	BLK500	BLK500/	MAIN						0.0	0.0	4.00	0.00	0	0.00	0.09	0.09	0.00	0.08	0.09	0.09	0.03	0.10	15.89	15.00	150	1.00	0.871		15.78	99.35
	4000	Nalition of	halla coo								4.00				0.45	4 70		4.55	0.46	4 70	0.50	2.00	24.40	24.22	200	0.50	0.746		22.44	04 54
	100A	MH100/ MH100	MH100C	1	<u> </u>				0.0	0.0	4.00	0.00		0.00	0.46	1.79 1.79	0.00	1.55	0.46	1.79 1.79	0.50	2.06	24.19 24.19	34.23 23.50	200 200	0.50	0.746		22.14 22.14	91.51 <i>91.51</i>
													1																	
	BLK400) BLK400/	MAIN					_	0.0	0.0	4.00	0.00		0.00	0.15	0.15	0.00	0.13	0.15	0.15	0.04	0.17	15.89	6.50	150	1.00	0.871		15.72	98.92
	BLK400 BLK300								0.0	0.0	4.00	0.00		0.00	0.05	0.05	0.00	0.13	0.05	0.05	0.04	0.06	15.89	6.50	150	1.00	0.871		15.83	99.64
	221A	MH221	MH212A						0.0	0.0	4.00	0.00		0.00	0.71	0.91	0.00	0.79	0.71	0.91	0.05	1.04	75.98	82.40	250	1.50	1.500	0.522	74.94	98.63
	221A	IVIT221/							0.0	0.0	4.00	0.00		.00	0.71	0.91	0.00	0.79	0.71	0.91	0.25	1.04	75.98	82.40	250	1.50	1.500	0.522	74.94	98.03
	BLK100								0.0	0.0	4.00	0.00		0.00	0.06	0.06	0.00	0.05	0.06	0.06	0.02	0.07	15.89	6.85	150	1.00	0.871		15.82	99.57
	BLK200) BLK200/	MAIN	_					0.0	0.0	4.00	0.00	0	0.00	0.05	0.05	0.00	0.04	0.05	0.05	0.01	0.06	15.89	6.75	150	1.00	0.871		15.83	99.64
	214A	MH214	MH213A						0.0	0.0	4.00	0.00	0	0.00	0.42	0.53	0.00	0.46	0.42	0.53	0.15	0.61	43.87	44.12	250	0.50	0.866	0.301	43.26	98.61
	213A	MH213/	MH212A					_	0.0	0.0	4.00	0.00		0.00	0.13	0.66	0.00	0.57	0.13	0.66	0.18	0.76	43.87	16.38	250	0.50	0.866	0.325	43.11	98.27
	213A	WH213/	WIHZ1ZA					-	0.0	0.0	4.00	0.00	0	0.00	0.13	0.66	0.00	0.57	0.13	0.66	0.18	0.76	43.87	16.38	250	0.50	0.866	0.325	43.11	98.27
	212A	MH212/	MH210A						0.0	0.0	4.00	0.00	0	0.00	0.31	1.88	0.00	1.63	0.31	1.88	0.53	2.16	62.04	58.88	250	1.00	1.224	0.551	59.88	96.52
	BLK900	BLK900/	MAIN	-				-	0.0	0.0	4.00	0.00	0	0.00	0.47	0.47	0.00	0.41	0.47	0.47	0.13	0.54	11.23	22.08	150	0.50	0.616		10.69	95.20
															-	-		-												
	210A	MH210/ MH205/						_	0.0	0.0	4.00	0.00		0.00 0.00	0.32	2.67	0.00	2.32	0.32	2.67	0.75	3.07 3.28	62.04 62.04	28.84 11.04	250 250	1.00	1.224 1.224	0.633	58.97 58.76	95.06 94.71
		WIH203							0.0	0.0	4.00	0.00	ľ		0.19	2.00	0.00	2.40	0.19	2.00	0.80	5.20	02.04	11.04	230	1.00	1.224	0.033	56.70	94.71
External South mixed	EXT 2	STUB	MH205A						0.0	0.0	4.00	0.00	0	0.00		0.00	0.00	3.01	2.82	2.82	0.79	3.80	24.19	14.51	200	0.50	0.746		20.39	84.29
Country Glen Way	205A	MH205/	MH204A						0.0	0.0	4.00	0.00	0	0.00	0.08	2.94	0.00	5.56	0.08	5.76	1.61	7.18	71.33	33.73	300	0.50	0.978	0.620	64.16	89.94
Country Glen Way	204A	MH204/	MH202A						0.0	0.0	4.00	0.00	0	0.00	0.32	3.26	0.00	5.84	0.32	6.08	1.70	7.54	71.33	125.25	300	0.50	0.978	0.628	63.79	89.43
Country Glen Way	202A	MH202/	MH201A						0.0	0.0	4.00	0.00	0	0.00	0.04	3.30	0.00	5.87	0.04	6.12	1.71	7.59	71.33	11.74	300	0.50	0.978	0.633	63.75	89.36
External East Mix	EXT-1	Stub	MH201A						0.0	0.0	4.00	0.00	0	0.00		0.00	0.00	0.79	0.74	0.74	0.21	1.00	24.19	20.27	200	0.50	0.746		23.19	95.87
Country Glen Way	201A	MH201/	MH200A						0.0	0.0	4.00	0.00	0	0.00	0.10	3.40	0.00	6.75	0.10	6.96	1.95	8.70	71.33	18.49	300	0.50	0.978	0.659	62.63	87.80
Country Glen Way	201A 200A	MH200/	EX CAP						0.0	0.0	4.00	0.00		0.00	0.10	3.40	0.00	6.75	0.00	6.96	1.95	8.70	58.82	45.35	300	0.34	0.806	0.630	50.12	85.20
Campeau Dr		EX CAP	EXMH3034	1					0.0	0.0			0.00 0	0.00	0.00	3.40	0.00 0.00	6.75	0.00	6.96	1.95	8.70	58.82	20.50	300	0.34	0.806	0.630	50.12	85.20
Design Parameters:	1	I		Notes	s:		<u> </u>	1	1	I	Designed:	I	RM		-	No.		I	1	Revision	1	1	I	I			 	Date	I	
					annings coe			0.013			_				ļ	1.				Issued for S								15/2013		
Residential SF 3.4 p/p/u		ICI Areas	Peak Facto		emand (per filtration all			50 L/day 28 L/s/Ha		D L/day 4 L/s/Ha	Checked:		DY			2.				ised as per City ised as per City								4/2014 2/2014		
TH/SD 2.7 p/p/u	INST	50,000 L/Ha/day	1.5		sidential Pe				0.4	+ L/S/Nd	checked:				F	4.	1			ised as per City					1			2/2014 2/2014		
APT 1.8 p/p/u	COM	50,000 L/Ha/day	1.5		Har	mon Forr	mula = 1+(14/(4+P^0.5)))																						
Other 60 p/p/Ha	IND	35,000 L/Ha/day 17000 L/Ha/day	MOE Char	t	whe	ere P = po	opulation in thousands				Dwg. Refer	ence:	12345-501		-		File Reference:				Date:						Ch-	et No:		
		17000 L/Ha/day															12345.5.7.1				Date: 11/15/2013							of 1		
																					,, 1010						-	-		

SANITARY SEWER DESIGN SHEET

PROJECT: NAME OF PROJECT LOCATION: CITY OF OTTAWA CLIENT: NAME OF CLIENT

SANITARY SEWER DESIGN SHEET

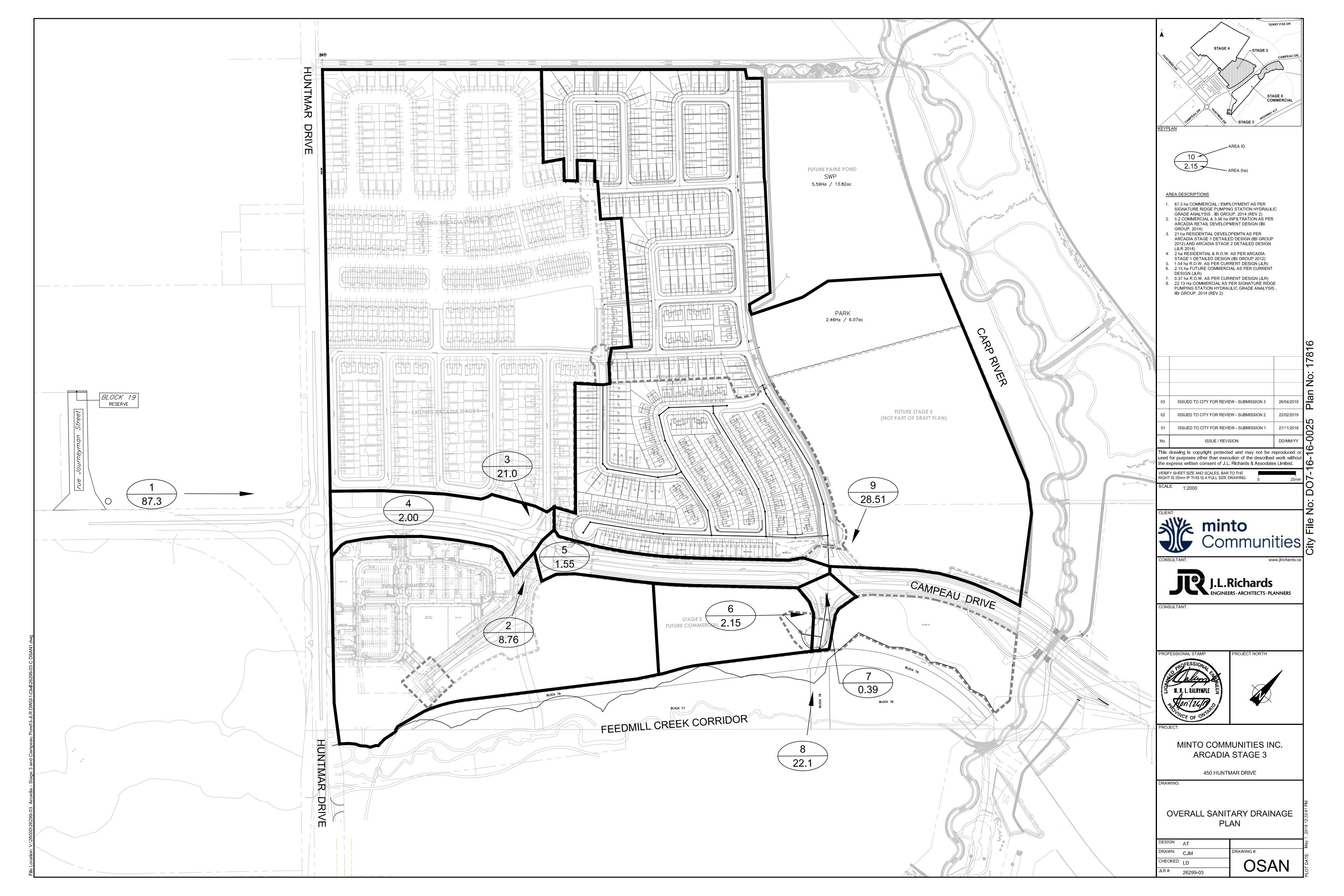
PROJECT : Kanata West Servicibility Stury LOCATION : CITY OF OTTAWA

PHASE 1 SIGNATURE RIDGE (population based criteria..ICI simultaneous peaking)

	LOCA	TION		TOTAL			RE	SIDENTIAL					EMPLO	YMENT/RE	AIL/BUSIN	ESS PARK/O	PEN SPACES			INFILT	RATION		TOTAL		PROPOSED S	SEWER			
				AREA	APPLIC	UNIT/Ha 1	OTAL	POPULAT	ION	PEAK	PEAK	APPLIC	ACCUM	TOTAL	FLOW		PEAK FLOW		A	AREA (Ha)	PEAK	FLOW	CAPACITY	VELOCITY	LGTH.	PIPE	GRADE	AVAIL.
STREET	FROM	то			AREA	L L	JNITS	INDIV AC	CUM	FACTOR	FLOW	AREA	AREA	AREA	RATE	INDIV	ACCUM	TOTAL	INDIV	CUMUL	TOTAL	FLOW			(full)		1		CAP.
	мн	МН		(Ha)	(Ha)						(l/s)	(Ha)	(Ha)	(Ha)	(I/Ha/d)	(l/s)	(l/s)	(l/s)			CUMUL	(l/s)	(l/s)	l/s	m/s	(m)	(mm)	%	(%)
																											\vdash		
Campeau Drive Trunk Sewer	1	2	Area 1 (PBP)	0.00								0.00	0.00		35000	0.00			0.00	0.00							\vdash		
			Area 2 (PBP)	0.00								0.00	0.00		35000	0.00			0.00	0.00							\vdash		
			Area 3 Ext Employment	0.00								0.00	0.00		50000	0.00			0.00	0.00							$ \longrightarrow $		
			Area 4 HP Employment	0.00								0.00	0.00		50000	0.00	0.00	0.00	0.00	0.00		0.00	0.00	283.79	1.27	500.0	525	0.40	100.009
	2	3	Area 5 Residential	29.19	29.1	9 19	555	1664	1664	3.65	24.58			0.00				0.00	29.19	29.19							\square		
			Area 9 Ext Employment	0.00							24.58	0.00	0.00		50000	0.00			0.00	0.00		8.17	32.75	286.61	0.98	700.0	600	0.20	88.579
	14	3	Area 6/8 Ext Employment	0.00								0.00	0.00		50000	0.00		0.00	0.00	0.00		0.00	0.00						
			Area 7 HP Employment	0.00								0.00	0.00	0.00	50000	0.00	0.00	0.00	0.00	0.00)			148.74	0.91	920.0	450	0.25	100.009
	3	4							1664	3.65	24.58	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00		8.17	32.75	200.67	0.90	150.0	675	0.20	83.689
	4A	4	Area 10 Residential	27.86	27.8	6 19	529	1588	1588	3.66	23.55								27.86	27.86	27.86	7.80	31.36	34.00	0.67	750.0	450	0.25	7.76%
	4	5	14 Mixed Use	4.13	1.7	6 50	88	263	3515	3.38	48.17	2.37	2.37	123.33	35000	1.44	1.44	1.44	4.13	4.13	61.18	17.13	66.74	200.67	0.90	600.0	750	0.20	66.74%
Corel Centre Etc. (Existing Sewer)		15	Area 35 HP Employment	6.05								6.05	6.05		30000	3.15	3.15		6.05									· · · · · ·	
			Area 36 (Corel Centre)																			30.00)						
			Area 38 Exten Employment	20.15								20.15	26.20	26.20	14400	5.04	8.19	8.19	20.15	26.20	26.20	7.34	45.52				Existing		
First Line Road Sewer		15	Area 40 Employment	14.59								14.59	14.59		35000	8.87	8.87		14.59	14.59)								
			Area 41 Employment	11.97								11.97	26.56		35000	7.27	16.14		11.97	26.56	5								
			Area 42 Employment	20.66								20.66	47.22		35000	12.55	28.69		20.66	47.22	2								
			Area 43 Employment	28.89								28.89	76.11	76.11	35000	17.55	46.25	46.25	28.89	76.11	76.11	21.31	67.56	100.21	0.88	694.0	375	0.30	32.59%
Totals South Of Queensway To SRPS	15	5A		102.31	0.0	0	0		0		0.00	102.31						54.44	102.31		102.31	58.65	113.08	203.90	1.24	230.0	450	0.47	44.54%
	Queensway	5	Area 13 Community Retail	6.35								6.35	108.66		35000	3.86	58.29		6.35	6.35	5								
			Area 11/12 Mixed Use	11.80	5.0	2 50	251	752	752	3.88	11.81	6.79	115.45	115.45	35000	4.12	62.42	62.42	11.80	18.15	120.46	63.73	137.96	203.90	1.24	420.0	450	0.47	32.34%
	5	5A	Area 15 Community Retail	3.88								3.88	119.33		35000	2.36	64.77		3.88	124.34	ŀ								
			Area 44	25.54							59.98	25.54	144.87	268.20	35000	15.52	81.73	81.73	25.54	149.88	211.06	89.10	230.81	<u>519.43</u>	1.14	300.0	750	0.20	55.56%
				149.88																		63.73	63.73						(
Heritage Hills		5A	Area 100 Residential	90.20	90.2	0 19	1714	5141	5141	3.23	67.35	0.00							90.20				1				\square		
Heritage Hills		5A	Area 100 Non-Residential	4.88							67.35	4.88	4.88	4.88	50000	4.24	4.24	4.24	4.88	95.08	95.08	26.62	98.21				\square		
Broughton-Richardson / Interstitial		5A																					65.00						
Total To SRPS	5A	SRPS		306.14	154.03	3	3136		9409		127.33	152.12						85.97			306.14	115.72	394.02	625.68	1.37	30.0	750	0.29	37.03%
	<u> </u>				<u>n</u>	<u> </u>								·										<u>, </u>		Revision	No. 1:	April 11, 200)5
Average Daily Per capita Flow Rate =	350	l/cap/d	7					Note: Se	wer fro	om node 5	to SRPS	S is existin	g and is	to be repla	aced.											Revision	No. 2:	April 20, 200)5
													0	···· · F															

Average Daily Per capita Flow Rate =	350 l/cap/d	
Infiltration Allowance Flow Rate =	0.28 l/sec/Ha	
Residential Peaking Factor = $1+(14/(4+(P^{0.5})))$), P=Pop. in 1000's,	Max
Population density per unit =	3.00	
P. F. For Employment/Retail/Business Park =	1.5	0
10 111 1 150 0 1 D 11	10.50 D : D	

Mixed Uses Assumes: 15% Community Retail, 42.5% Business Park and 42.5% Residential



PAGE 1 OF 1 PROJECT: 3598-LD-03 DATE: Apr 2005 DESIGN: JIM FILE: 3598LD.sewers.XLS

FIG. 4.2-2

Revision No. 3: June 07, 2005

Revision No. 4: Oct. 14, 2005 Revision No. 5: Feb. 15, 2006

Appendix D1

Storm Sewer Design Sheet

LOCATI	ION			DRAINAGE AREA	AS		1					PEA'	K FLOW F	ESTIMATION (RAT		ETHOD)										Pipe Data					Ups	stream Geometry			r	Downstream Ge	eometry	
Street Name	From	То	C-Factor (1: 0.40 0.58	1:5 Yr) C-Factor (1:10 Yr)	(r)		Inlet Time (min.)	In Pipe Flow Time (min)	Total Times	2.78AR Add. 2.78AR	1:2 Year Sto Cum. 2.78AR	Storm 1:2 Yr Intensity Pea	hand h	Add.	1:5 Year S Cum. 2.78AR		Peak Flow (L/s)	2.78AR Add. 2.78AR	1:10 Yea Cum. 2.78AR	ar Storm 1:10 Yr Intensity (mm/hr)	Peak Flow (L/s)	Total Peak Flow (L/s)	Type Nominal Dia. (mm)	l Actual a) Dia. (mm)) Slope	Length	Q Full V Full (L/s) (m/s)	Residual Capacity (L/s)	% Full	TG From	Obvert	Invert Springline Elev	Cover	TG To			Invert Springline Elev	ine Cover
COUNTRY GLEN WAY OUTLET (TO STREET 1	220	218	0.09	0.48	0.57	0.57	10.00	2.16	12.16				1	1.14	1.14	104.19	118.88					118.88	Circular 450	457.20	0.25%	117.52	148.72 0.91	29.84	80%	97.200	95.285	94.827 95.056	1.915	97.300		94.991	94.534 94.762	2.309
STREET 2	218	227		0.34	0.34	0.91	12.16	1.52	13.69	<u> </u>		,).74	1.88	94.01	176.56			1		176.56	Circular 525	533.40	0.22%	86.15	210.44 0.94	33.87	84%	97.300	94.991	94.457 94.724	2.309	97.300	=	94.801 9	94.268 94.535	, 2.499
BLOCK TE-2	CBMH1	224		0.14	0.14	0.14	10.00	0.38	10.38		=		0	J.30	0.30	104.19	31.63					31.63	Circular 375	381.00	1.00%	37.00	182.91 1.60	151.28	17%	97.700	95.841	95.460 95.651	1.859	98.000	=	95.471 9	95.090 95.281	2.529
AMENITY SPACE	CBMH2	224	0.24		0.24	0.24	10.00	0.29	10.29				0).39	0.39	104.19	40.32					40.32	Circular 300	304.80	0.80%	21.78	90.23 1.24	49.91	45%	97.220	95.607	95.303 95.455	1.613	98.000		95.433 9	5.128 95.281	2.567
AMENITY SPACE BLOCK 2	224 226	226 227	í E E'		0.00	0.38	10.38 10.65	0.26	10.65 10.92		\equiv		0.	00.00 0.00	0.69 0.69	102.21 100.89	70.58 69.67					70.58 69.67	Circular 375 Circular 375	381.00 381.00	0.80%	22.74 32.54	163.60 1.43 224.02 1.96	93.02 154.35	43% 31%	98.000 97.800	95.471 95.289	95.090 95.281 94.908 95.099	2.529 2.511	97.800 97.300		95.289 9 94.801 9	94.908 95.099 94.420 94.611	2.511
STREET 2	227	215		<u> </u>	0.00	1.29	13.69	0.35	14.04		,		0).00	2.57	88.05	226.19				<u> </u>	226.19	Circular 600	609.60	0.18%	19.74	271.77 0.93	45.58	83%	97.300	94.801	94.192 94.496	2.499	97.500	=	94.766	/4.156 94.461	2.734
STREET 2 STREET 2 *See note in Legend STREET 2	210 211	211 212	0.50	0.31	0.31 0.50 0.07	0.31	10.00 11.44	1.44 0.17 0.52	11.44 11.62				0).67).56	0.67	104.19 97.13 96.37	70.04			1		70.04 119.30	Circular 900 Circular 250	914.40 254.00	0.15%	96.55 8.40	731.45 1.11 41.62 0.82 731.45 1.11	<u>661.41</u> -77.68	10% 287%	97.000 97.20000 97.200 97.200 97.200 97.200 97.200 97.200 97.200 97.200 97.2000	95.418 94.613	94.504 94.961 94.359 94.486 94.321 94.778	1.582 2.587	97.200 97.200		95.273 9 94.575 f	94.359 94.816 94.321 94.448 94.269 94.726	1.927 3 2.625
STREET 2	212	213		0.07	0.07	0.88	11.62	0.52	12.14		\equiv		0.	1.15	1.38	96.37	132.99					132.99	Circular 900	914.40	0.15%	35.08	731.45 1.11	598.45	18%	97.200	95.236	94.321 94.778	1.964	97.300		95.183 9	4.269 94.726	2.117
STREET 4 STREET 4 *See note in Legend	216 213A	213A 213		0.41	0.41	0.41	10.00 11.56	1.56 0.14	11.56				0	.89).00	0.89	104.19 96.61	92.63 85.89				1	92.63 85.89	Circular 900 Circular 200	914.40 203.20	0.15%	<u>104.34</u> 6.10	731.45 1.11 22.95 0.71	-62.94	13% 374%	97.100 97.200	95.367 94.499	94.453 94.910 94.296 94.398	1.733 2.701	97.200 97.300	r t	95.210 9 94.472 9	94.296 94.753 94.269 94.370	1.990 , 2.828
STREET 3 STREET 3 *See note in Legend	217 214A	214A 214		0.43	0.43	0.43	10.00 11.64	1.64 0.14	11.64 11.78		—	—	0).93 0.00	0.93	104.19 96.27	97.15 89.76					97.15 89.76	Circular 900 Circular 200	914.40 203.20	0.15% 0.45%	109.54 6.10	731.45 1.11 22.95 0.71	634.29 -66.81	13% 391%	97.200 97.300	95.319 94.444	94.405 94.862 94.241 94.342	1.881 2.856	97.300 97.400	it-	95.155 9 94.417	94.241 94.698 94.213 94.315	2.145 5 2.983
STREET 2	213	214		0.10	0.10	1.39	12.14	0.55	12.69	\rightarrow	\equiv		0		2.49		233.93					233.93	Circular 900	914.40	0.15%	36.85	731.45 1.11	497.52	32%	97.300	95.183	94.269 94.726		97.400		95.128	34.213 94.671	2.272
STREET 2	214	215	(0.08	0.08	1.90	12.69	0.57	13.26		=		0).17	3.59	91.84	329.88			1	=	329.88	Circular 900	914.40	0.15%	38.14	731.45 1.11	401.57	45%	97.400	95.128	94.213 94.671	2.272	97.500	(‡	95.071 9	J4.156 94.613	, 2.429
COUNTRY GLEN WAY	215	EXMH201		FF	0.00	3.19	14.04	0.21	14.25		<u> </u>		0	<u>).00</u>	6.16	86.79	534.68					534.68	Circular 900	914.40	0.15%	14.20	731.45 1.11	196.76	73%	97.500	95.071	94.156 94.613	2.429	98.000	r t	95.049 9	4.135 94.592	2.951
FUTURE COMMERCIAL (IBI 2013)	EXMH205B	EXMH205					14.15	0.23	14.38		\equiv		0.	0.00 7.74	7.74	86.41	668.80					668.80	Circular 975	990.60	0.11%	13.84	775.41 1.01	106.61	86%	97.470	95.506	94.515 95.010	1.964	97.430		95.491 9	4.500 94.995	1.939
FUTURE COMMERCIAL (IBI 2013)	EXMH206	EXMH205	í Etter	$\blacksquare = =$	_	'		0.13	10.56		=		0.	1.00 1.23	1.23	101.98	125.43				—	125.43	Circular 375	381.00	0.96%	12.00	179.22 1.57	53.79	70%	98.590	95.596	95.215 95.406	2.994	97.430		95.481 9	<u>5.100 95.291</u>	1.949
COUNTRY GLEN WAY COUNTRY GLEN WAY COUNTRY GLEN WAY	EXMH205 EXMH204 FXMH203	EXMH204 EXMH203 FXMH202		<u> </u>	4		14.38 14.79 15.81	0.41 1.02 0.76	14.79 15.81 16.57		=	=	0.	00 0.33	9.30 9.57 9.87	85.62 84.26 81.04	796.25 806.33 799.82				<u> </u>	796.25 806.33 799.82	Circular 1350 Circular 1350 Circular 1350	1371.60 1371.60 1371.60	0.10%	80.04 45.72	1/60.81 1.19 1928.87 1.31 1473.20 1.00	964.57 1122.55 673.38	45% 42% 54%	97.430 97.570 97.940	95.512 95.462 95.342	94.140 94.020 94.090 94.776 93.970 94.656	2.108 2.598	97.570 97.940 97.380	=	95.362 9 95.312	4.110 94.790 13.990 94.676 93.940 94.626	2.088
COUNTRY GLEN WAY	EXMH202	EXMH201					16.57	0.28	16.85				0	1.00 0.89	10.76	78.80	847.89					847.89	Circular 1350	1371.60	0.06%	15.65	1363.92 0.92	516.03	62%	97.380	95.272	93.900 94.586	2.108	97.270		95.262 9	.3.890 94.576	2.008
COUNTRY GLEN WAY COUNTRY GLEN WAY/CAMPEAU	EXMH201 EXMH200	EXMH200 EXMH303			Ŧ		16.85 17.56	0.71 0.32	17.56 17.88				0.	00.0 0.00	16.92 16.92	78.01 76.10	1319.93 1287.60					1319.93 1287.60	Circular 1500 Circular 1500	1524.00 1524.00	0.13%	61.98 2 24.50	2658.92 1.46 2332.02 1.28	1338.98 1044.42	50% 55%	98.000 98.000	95.354 95.194	93.830 94.592 93.670 94.432	2.646 2.806	98.000 98.100		95.274 9 95.169 9	3.750 94.512 33.645 94.407	2.726 2.931
DONUM LANE OUTLET (TO CAMPE STREET 5	AU POND)	207		0.29	0.29	0.29	10.00	1.10	11.10		F			0.63	0.63	104,19	65.52				—	65.52	Circular 375	381.00	0.35%	62,58	108.21 0.95	42,69	61%	003.39	94.310	93.929 94.120	2 290	96 500	—	94.091	93,710 93,901	1 2 409
STREET 1	207	206				0.41	11.10	0.57	11.67		÷		0	0.26	0.89	98.73	87.77					87.77	Circular 450	457.20			175.96 1.07					93.634 93.863			E E	93.963	93.506 93.734	4 2.337
STREET 1	206								12.27		\equiv		0.			96.13						137.57	Circular 525	533.40								93.429 93.696					93.360 93.626	
BLOCK TE-5 BLOCK TE-8	CB102 CB103			0.14 0.07	0.14 0.07	0.14 0.21	10.00 10.29		10.29 10.98				0.			104.19 102.68					=	31.63 46.76	Circular 250 Circular 375	381.00			62.04 1.22 173.52 1.52			96.200 96.300 9	94.805 94.656	94.551 94.678 94.275 94.465	1.395 1.644	96.450 96.450			94.338 94.465 93.704 93.895	
BLOCK TE-8 STREET 6	204A 204			0.16	0.00	0.21	10.98 11.07		11.07 11.45		<u> </u>		0			99.27 98.86	45.20 79.31				—	45.20 79.31	Circular 375 Circular 375	381.00 381.00	0.90%		173.52 1.52 126.72 1.11			96.450 96.200 9	94.085 94.014	93.704 93.895 93.633 93.824	2.365 2.186	96.200 96.300			93.633 93.824 93.512 93.703	
STREET 1	205	201		0.15	0.15	1.18	12.27	0.99	13.27	<u> </u>	\equiv		0		2.56		239.36					239.36	Circular 600	609.60	0.24%		313.81 1.08	74.44	76%	96.300	93.893	93.283 93.588	2.407	95.800		93.739 9	33.130 93.434	4 2.061
BLOCK TE-12 BLOCK TE-8	CBMH3 202A	202A TEE-2		0.14	0.14		10.00	0.83	10.83 11.15				0			104.19 100.00						31.63 30.36	Circular 300 Circular 300	304.80	0.34%	40.14	58.82 0.81 58.82 0.81	27.19	54%	95.500 96.000	94.231	93.926 94.078	1.269	96.000		94.094 9	<u>3.790 93.942</u>	. 1.906
BLOCK TE-12	CB106			0.04	0.00		10.00	0.02	10.02	\rightarrow	=	=	0			104.19						9.04	Circular 200	203.20	2.00%		48.39 1.49		19%	95.850	94.034	93.825 93.927	1.822	95.800		93.991 9	93.737 93.890 93.788 93.890	0 1.809
BLOCK TE-12	TEE-2	202	4		0.00	0.18	11.15	0.23	11.38				0		0.39		38.45					38.45	Circular 300	304.80	0.34%	11.07	58.82 0.81		65%	95.800	94.042	93.737 93.890	1.758	96.000		94.005 §	J3.700 93.852	1.995
STREET 6	203	202	4 ——	0.27	0.27	0.27	10.00	1.33	11.33				0).59	0.59	104.19	61.00					61.00	Circular 525	533.40	0.16%	64.05	179.46 0.80	118.46	34%	96.400	94.221	93.688 93.955	2.179	96.000		94.119 9	J3.585 93.852	1.881
STREET 6 STREET 6 *See note in Legend	202 201A	201A 201		0.19	0.19		11.38 12.44		12.44 12.57				0			97.45 92.86						135.23 128.87	Circular 525 Circular 250	533.40 254.00	0.16%		179.46 0.80 40.78 0.80		75% 316%	96.000 95.820 95	94.119 93.758	93.585 93.852 93.504 93.631	1.881 2.062	95.820 95.800	0.500	94.037 9 93.731		0 <u>1.783</u> 4 2.069
BLOCK TE-13	201	200A		0.03	0.03	1.85	13.27		14.08		\equiv		0	3.07	4.01	89.61	359.49					359.49	Circular 750	762.00	0.23%	59.65	556.99 1.22	197.51		95.800	93.739	92.977 93.358	2.061	95.100		93.602	92.840 93.221	
BLOCK TE-12 BLOCK TE-12	CB108	CBMH4 200A		0.08	0.08	0.08	10.00	0.39	10.39		\equiv		0).17		104.19 102.19						18.07	Circular 525	533.40	1.00%	46.62	448.66 2.01	430.58	4%	95.400	93.981	93.447 93.714 92.981 93.248	1.419	94.950		93.514 5	92.981 93.248 92.916 93.183	1.436
STREET 1/DONUM LANE	200A	2004		0.21			14.08	0.03	10.44		—		0	0.00	4.64	86.65	402.10					402.10	Circular 323	838.20	0.19%	24.14		250.65		95.100	93.514	92.764 93.183	1.498	95.400	e t	93.556	92.718 93.137	7 1.844
DONUM LANE	FUTURE	200		1.68	0.00 2.14 1.68	1.68	10.00	0.00	10.00	0.00	0.00	76.81 0	.00 0	0.00	0.00	104.19	0.00	3.74	3.74	122.14	456.36	456.36																
DONUM LANE	200	EX100	4		0.00	3.82	14.42	0.40	14.82	0.00	0.00	63.17 0	.00 0	00.0	4.64	85.48	396.65	0.00	3.74	100.11	374.05	770.70	Circular 975	990.60	0.26%	37.12	1192.13 1.55	421.42	65%	95.400	93.556	92.566 93.061	1.844	95.470		93.460 9	J2.469 92.964	, 2.010
DONUM LANE/CAMPEAU DRIVE	EX101	EX100		0.30	13.91	13.91	17.69	0.54	18.23	0.00 10.97	10.97	56.07 61	5.09 0	0.00 9.57	9.57	75.77	725.08	0.67 5.69	6.36	88.69	564.08	1904.25	Circular 1500	1524.00	0.11%	43.55	2445.85 1.34	541.59	78%	95.520	93.515	91.991 92.753	2.005	95.470		93.468 9	1.944 92.706	2.002
CAMPEAU POND	EX100	POND			0.00	17.73	18.23	0.15	18.38	0.00	10.97	55.06 604	4.03 0	j.00	14.21	74.39	1057.09	0.00	10.10	87.07	879.11	2540.23	Circular 1800	1828.80	0.19%	17.53	5227.09 1.99	2686.86	49%	95.470	93.468	91.631 92.545	2.002	95.430		93.426 9	/1.597 92.511	2.004

Design Parameter Manning's Coefficient 0.013

Legend

 Legend
 89.232
 Proposed Mainline Sewers

 89.232
 Proposed Storage Sewers

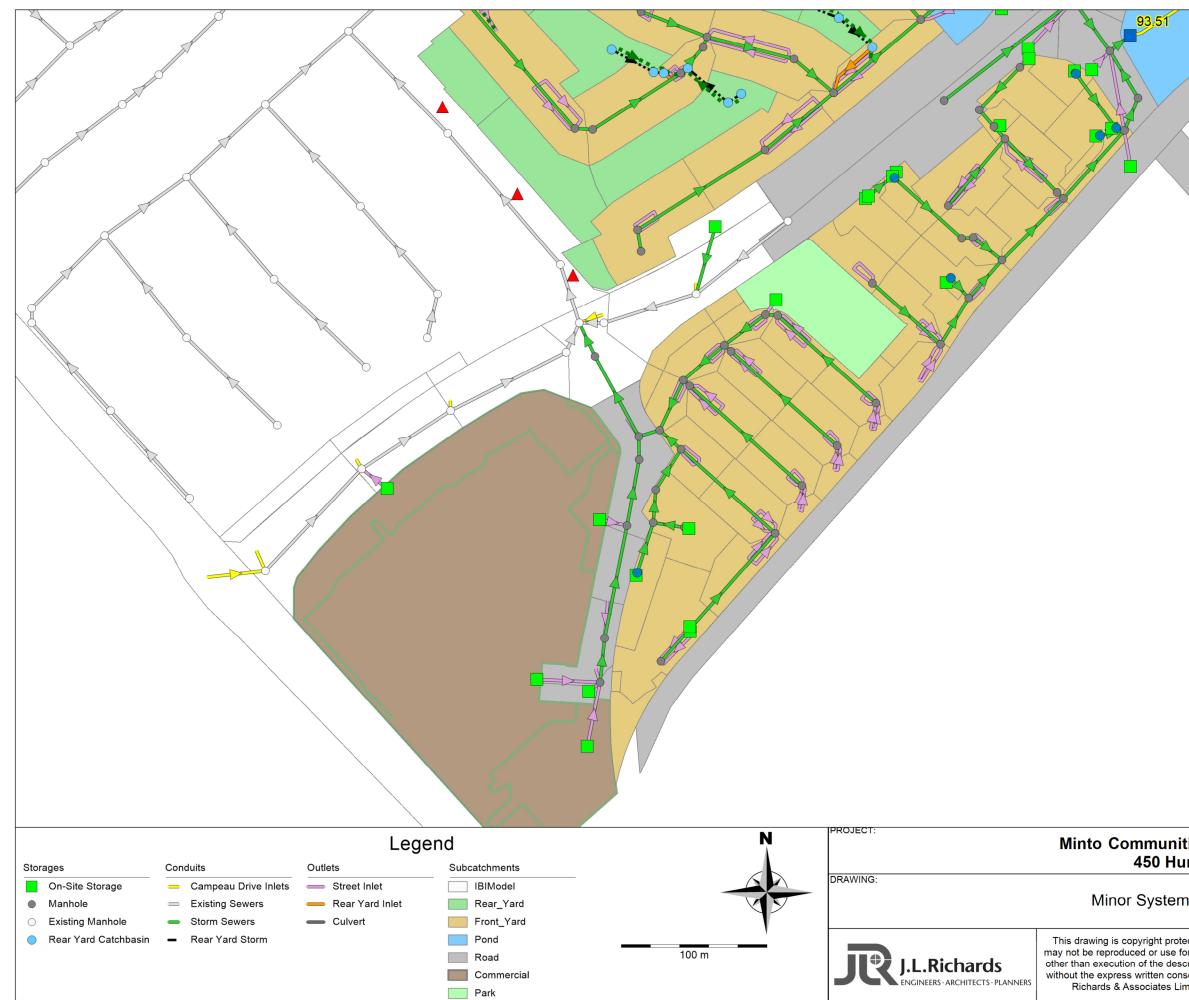
 89.232
 Proposed Connection to CB/Landscape Pot 89.232

 *Note for sewer pipes over capacity:
 Sewer operating under pressure to provide flow control

Statistics Area Tributary to Paine Pond: Area Tributary to Campeau Pond: Total DST Area for Arcadia Stage 6

3.19 2.14 **5.33**

Appendix E1


Modelling Schematics

Minto Communities Arcadia Stage 6 450 Huntmar Drive

Major System Model Schematic

tected and	DESIGN:	ID	JLR NO.: 26299-006
for purposes scribed work sent of J.L.	DRAWN:	ID	DRAWING NO.: FIGURE E1-1
imited.	CHECKED:	BP	

Minto Communities Arcadia Stage 6 450 Huntmar Drive

Minor System Model Schematic

ected and	DESIGN:	ID	JLR NO.: 26299-006
for purposes scribed work sent of J.L.	DRAWN:	ID	DRAWING NO.: FIGURE E1-2
imited.	CHECKED:	BP	

Appendix E2

CB Tables

STREET CATCHBASINS

Street Name	CB ID Number	T/G	In	et		tlet	Return Period (years)	Rational Method Capture Rate	Max Depth (100 yr) (m)	1:100 Yr Restricted Capture Rate	ICD TYPE
			Pipe Dia. (mm)	Invert	Pipe Dia. (mm)	Invert		(1:5 yr) (L/s)		(L/s)	
	CB1	97.1	-	-	200	95.30	1:5 year	10	1.65	47	MHF_IPEX_TYPE_C
	CB2	97.1	-	-	200	95.30	1:5 year	76	1.65	47	MHF_IPEX_TYPE_C
	CB3	96.9	-	-	200	95.10	1:5 year	34	1.89	25	MHF_IPEX_TYPE_A
	CB4	96.9	-	-	200	95.10	1:5 year	34	1.89	25	MHF_IPEX_TYPE_A
	CB5	96.9	200	95.15	250	95.10	1:5 year	9	0.68	9	MHF_IPEX_TYPE_A
	CB6	96.9	-	-	200	95.21	1:5 year	9	0.68	9	MHF_IPEX_TYPE_A
	CB7	96.8	200	95.05	250	95.00	1:5 year	9	0.76	9	MHF_IPEX_TYPE_A
Street 1	CB8	96.8	-	-	200	95.11	1:5 year	9	0.76	9	MHF_IPEX_TYPE_A
	CB9	96.7	200	94.95	250	94.90	1:5 year	9	0.33	9	MHF_IPEX_TYPE_A
	CB10 CB11	96.7 96.2	-	-	200 200	95.01 94.40	1:5 year	9 28	0.33	9	MHF_IPEX_TYPE_A MHF_IPEX_TYPE_A
	CB11 CB12	96.2	-	-	200	94.40	1:5 year	28	1.85	25 25	
	CB12 CB13	96.2	-	-	200	94.40	1:5 year 1:5 year	20 54	1.85	35	MHF_IPEX_TYPE_A MHF_IPEX_TYPE_B
	CB13 CB14	90	-	-	200	94.20	1:5 year	54	1.9	35	MHF IPEX TYPE B
	CB14 CB15	90	-	-	200	94.20	1:5 year	33	1.87	25	MHF IPEX TYPE A
	CB15 CB16	95.6	-		200	93.80	1:5 year	33	1.87	25	MHF IPEX TYPE A
	CB10 CB17	96.87	-	-	200	95.00	1:5 year	43	1.96	25	MHF_IPEX_TYPE_A
	CB17 CB18	96.87	-	-	200	95.07	1:5 year	43	1.90	25	MHF IPEX TYPE A
	CB10 CB19	97.04	-		200	95.24	1:5 year	34	1.90	25	MHF IPEX TYPE A
	CB19 CB20	97.04	-		200	95.24	1:5 year	34	1.9	25	MHF IPEX TYPE A
	CB21	96.97	-	-	200	95.17	1:5 year	19	1.06	19	MHF IPEX TYPE A
	CB22	96.97	_	_	200	95.17	1:5 year	19	1.06	19	MHF IPEX TYPE A
	CB23	96.88	-	-	200	95.08	1:5 year	23	1.54	22	MHF IPEX TYPE A
Street 2	CB24	96.88	-	-	200	95.08	1:5 year	23	1.54	22	MHF IPEX TYPE A
	CB25	96.87	-	-	200	95.07	1:5 year	16	0.82	16	MHF IPEX TYPE A
	CB26	96.87	-	-	200	95.07	1:5 year	16	0.82	16	MHF IPEX TYPE A
	CB27	96.67	-	-	200	94.87	1:5 year	27	1.85	24	MHF IPEX TYPE A
	CB28	96.67	-	-	200	94.87	1:5 year	27	1.85	24	MHF IPEX TYPE A
	CB29	96.57	-	-	200	94.77	1:5 year	33	1.91	24	MHF IPEX TYPE A
	CB30	96.57	-	-	200	94.77	1:5 year	33	1.91	24	MHF IPEX TYPE A
	CB31	96.8	-	-	200	95.00	1:5 year	42	1.95	25	MHF IPEX TYPE A
Street 3	CB32	96.8	-	-	200	95.00	1:5 year	42	1.95	25	MHF_IPEX_TYPE_A
Street 5	CB33	96.92	-	-	200	95.12	1:5 year	44	1.96	25	MHF_IPEX_TYPE_A
	CB34	96.92	-	-	200	95.12	1:5 year	44	1.96	25	MHF_IPEX_TYPE_A
	CB35	96.67	-	-	200	94.87	1:5 year	42	1.96	25	MHF_IPEX_TYPE_A
Street 4	CB36	96.67	-	-	200	94.87	1:5 year	42	1.96	25	MHF_IPEX_TYPE_A
511001 4	CB37	96.83	-	-	200	95.03	1:5 year	43	1.96	25	MHF_IPEX_TYPE_A
	CB38	96.83	-	-	200	95.03	1:5 year	43	1.96	25	MHF_IPEX_TYPE_A
	CB39	96.1	-	-	200	94.30	1:5 year	36	1.91	25	MHF_IPEX_TYPE_A
Street 5	CB40	96.1	-	-	200	94.30	1:5 year	36	1.91	25	MHF_IPEX_TYPE_A
011001 0	CB41	96.2	-	-	200	94.40	1:5 year	30	1.87	25	MHF_IPEX_TYPE_A
	CB42	96.2	-	-	200	94.40	1:5 year	30	1.87	25	MHF_IPEX_TYPE_A
	CB43	95.9	-	-	200	94.10	1:5 year	36	1.9	25	MHF_IPEX_TYPE_A
	CB44	95.9	-	-	200	94.10		36	1.9	25	MHF_IPEX_TYPE_A
Street 6	CB45	95.7	-	-	200	93.90	1:5 year	61	2.04	40	MHF_IPEX_TYPE_C
0.0000	CB46	95.7	-	-	200	93.90	1:5 year	61	2.04	40	MHF_IPEX_TYPE_C
	CB47	95.6	-	-	200	93.80	1:5 year	43	1.97	29	MHF_IPEX_TYPE_B
	CB48	95.6	-	-	200	93.80	1:5 year	43	1.97	29	MHF_IPEX_TYPE_B

	REAR YARD ICD TABLE														
			INL	.ET		OUTLET		1:100 Yr							
STREET	CB ID Number	T/G	Pipe Dia. (mm)	Invert	Pipe Dia. (mm)	Pipe Length	Invert	Restricted Flow (L/s)	-						
BLOCK TE-12	CB108	95.40	-	-	525	46.62	93.447	22	MHF_IPEX_TYPE_A						
BLUCK TE-12	CBMH4	94.8	525	92.981	525	6.48	92.981	61	MHF_IPEX_TYPE_D						
BLOCK TE-5	CB103	96.30	250	94.338	375	63.38	94.275	65	MHF_IPEX_TYPE_D						
BLOCK TE-2	CBMH1	97.70	-	-	375	37.00	95.460	57	MHF_IPEX_TYPE_D						

Appendix E3

HGL Analysis

USF MH ID Elevation (m)		1:2 Year Event (12 hr SCS)		1:5 Yea (12 hr			ar Event · SCS)		ar Event · SCS)	1:50 Yea (12 hr	,	1:100 Ye (12 hr	/	1:100 Ye (24 hr	SCS)
	Elevation (m)	Max HGL (m)	Freeboard (m)	Max HGL (m)	Freeboard (m)	Max HGL (m)	Freeboard (m)	Max HGL (m)	Freeboard (m)	Max HGL (m)	Freeboard (m)	Max HGL (m)	Freeboard (m)	Max HGL (m)	Freeboard (m)
217	-	94.79	-	94.99	-	95.18	-	95.50	-	95.64	-	95.74	-	95.68	-
214A 214	- 95.37	94.79 94.61	- 0.76	94.99 94.70	- 0.67	95.18 94.77	- 0.60	95.50 94.86	- 0.51	95.64 94.92	- 0.45	95.74 94.97	- 0.40	95.68 94.95	- 0.42
214	-	94.82	-	95.02	-	95.18	-	95.50	-	95.64	-	95.72	-	95.67	- 0.42
213A	-	94.81	-	95.01	-	95.18	-	95.50	-	95.63	-	95.72	-	95.66	-
213	95.32	94.63	0.69	94.71	0.61	94.78	0.54	94.87	0.45	94.92	0.40	94.97	0.35	94.96	0.36
210 211	-	94.69 94.69	-	94.81 94.81	-	94.89 94.89	-	95.00 95.00	-	95.08 95.08	-	95.16 95.16	-	95.13 95.13	-
212	95.32	94.64	0.68	94.72	0.60	94.79	0.53	94.88	0.44	94.93	0.39	94.98	0.34	94.96	0.36
J_CBMH1	96.14	95.54	0.60	95.56	0.58	95.57	0.57	95.58	0.56	95.58	0.56	95.59	0.55	95.59	0.55
CBMH2	-	95.42	-	95.46	-	95.49	-	95.54	-	95.60	-	95.67	-	95.66	-
224 226	96.14 96.14	95.22 95.02	0.92 1.12	95.25 95.04	0.89 1.10	95.27 95.05	0.87 1.09	95.29 95.08	0.85 1.06	95.31 95.14	0.83 1.00	95.33 95.20	0.81 0.94	95.33 95.19	0.81 0.95
220	-	95.02	-	95.06	-	95.09	-	95.18	-	95.26	-	95.34	-	95.32	-
218	-	94.72	-	94.82	-	94.91	-	95.05	-	95.12	-	95.20	-	95.18	-
227 215	95.43	94.62 94.59	0.81	94.72 94.67	0.71	94.81 94.75	0.62	94.92 94.85	0.51	94.98 94.90	0.45	95.04	0.39	95.03 94.93	0.40
215 MHST77649	95.30	94.59 94.37	0.71	94.67	0.63	94.75	0.55	94.85	0.45	94.90	0.40	94.95 94.87	0.35	94.93	0.37
208	94.69	94.04	0.65	94.06	0.63	94.07	0.62	94.08	0.61	94.09	0.60	94.10	0.59	94.10	0.59
207	94.80	93.82	0.98	93.85	0.95	93.88	0.92	93.91	0.89	93.94	0.86	93.97	0.83	93.97	0.83
206	94.69	93.67	1.02	93.72	0.97	93.76	0.93	93.81	0.88	93.85	0.84	93.90	0.79	93.90	0.79
205 201	94.24	93.56 93.33	0.68	93.62 93.42	0.62	93.66 93.49	0.58	93.72 93.57	0.52	93.77 93.63	0.47	93.84 93.71	0.40	93.84 93.71	0.40
200A	-	93.21	-	93.33	-	93.42	-	93.51	-	93.57	-	93.65	-	93.62	-
200	-	93.21	-	93.33	-	93.42	-	93.51	-	93.56	-	93.65	-	93.62	-
ST6_CB102 J_CB103	- 94.69	94.77 94.38	- 0.31	95.14 94.40	- 0.29	95.44 94.41	- 0.28	95.86 94.42	- 0.27	96.19 94.43	- 0.26	96.24 94.43	- 0.26	96.23 94.43	- 0.26
J_CB103 204A	94.69	94.38 93.85	0.31	94.40	0.29	94.41	0.28	94.42 93.96	0.27	94.43	0.26	94.43	0.26	94.43	0.26
204A	-	93.83	-	93.87	-	93.90	-	93.94	-	93.97	-	94.00	-	94.00	-
203	-	94.29	-	94.78	-	95.13	-	95.35	-	95.44	-	95.49	-	95.46	-
202 201A	-	94.29 94.28	-	94.78 94.76	-	95.13 95.11	-	95.34 95.31	-	95.43 95.40	-	95.48 95.45	-	95.45 95.42	-
CBMH3	-	94.20	-	94.76	-	95.18	-	95.39	-	95.50	-	95.56	-	95.53	-
202A	-	94.30	-	94.80	-	95.15	-	95.36	-	95.45	-	95.51	-	95.48	-
201A	-	94.28	-	94.76	-	95.11	-	95.31	-	95.40	-	95.45	-	95.42	-
CB108 CBMH4	- 94.24	93.67 93.21	- 1.03	94.23 93.33	- 0.91	94.74 93.42	- 0.82	94.87 93.51	- 0.73	94.92 93.57	- 0.67	94.98 93.65	- 0.59	94.97 93.63	- 0.61
Ex. 508	94.24	93.09	1.64	93.30	1.43	93.46	1.27	93.63	1.10	93.72	1.01	93.81	0.92	93.79	0.01
116	94.12	93.16	0.96	93.30	0.82	93.42	0.70	93.60	0.52	93.70	0.42	93.78	0.34	93.76	0.36
173	94.17	93.17	1.00	93.24	0.93	93.32	0.85	93.44	0.73	93.53	0.64	93.61	0.56	93.59	0.58
120 171	93.90 93.98	93.08 93.24	0.82 0.74	93.20 93.27	0.70 0.71	93.28 93.30	0.62 0.68	93.40 93.42	0.50 0.56	93.49 93.50	0.41 0.48	93.57 93.57	0.33 0.41	93.55 93.55	0.35
121	93.89	93.08	0.81	93.20	0.69	93.28	0.60	93.37	0.52	93.45	0.40	93.53	0.36	93.52	0.43
122	93.84	93.08	0.76	93.20	0.64	93.28	0.56	93.36	0.48	93.41	0.43	93.51	0.33	93.49	0.35
192	95.08	93.33	1.75	93.39	1.69	93.53	1.55	93.70	1.38	93.78	1.30	93.86	1.22	93.84	1.24
193 194	94.86 94.74	93.13 93.09	1.73 1.65	93.33 93.32	1.53 1.42	93.48 93.46	1.38 1.28	93.64 93.62	1.22 1.12	93.72 93.71	1.14 1.03	93.81 93.79	1.05 0.95	93.79 93.77	1.07 0.97
191	95.05	93.46	1.59	93.48	1.57	93.54	1.51	93.71	1.34	93.80	1.25	93.88	1.17	93.86	1.19
Ex509	94.54	93.08	1.46	93.29	1.25	93.44	1.10	93.61	0.93	93.70	0.84	93.78	0.76	93.76	0.78
Ex510	94.14	93.08	1.06	93.25	0.89	93.38	0.76	93.54	0.60	93.63	0.51	93.71	0.43	93.69	0.45
127 128	94.16 94.07	93.08 93.08	1.08 0.99	93.27 93.27	0.89 0.80	93.41 93.42	0.75 0.65	93.57 93.57	0.59 0.50	93.65 93.65	0.51 0.42	93.72 93.72	0.44 0.35	93.70 93.70	0.46 0.37
124	93.88	93.08	0.80	93.20	0.68	93.28	0.60	93.38	0.50	93.46	0.42	93.54	0.34	93.52	0.36
123	93.88	93.08	0.80	93.20	0.68	93.28	0.60	93.38	0.50	93.46	0.42	93.54	0.34	93.52	0.36
160	94.09	93.08	1.01	93.21	0.88	93.32	0.77	93.47	0.62	93.57	0.52	93.65	0.44	93.63	0.46
172 118	94.54 94.01	93.44 93.08	1.10 0.93	93.46 93.20	1.08 0.81	93.47 93.31	1.07 0.70	93.47 93.46	1.07 0.55	93.51 93.56	1.03 0.45	93.57 93.64	0.97	93.56 93.62	0.98 0.39
119	94.01	93.08	0.93	93.20	0.81	93.29	0.72	93.43	0.58	93.53	0.48	93.61	0.40	93.59	0.42
161	94.63	94.13	0.50	94.15	0.48	94.16	0.47	94.17	0.46	94.17	0.46	94.17	0.46	94.17	0.46
162 180	94.79 94.02	94.10 93.08	0.69 0.94	94.13 93.20	0.66 0.82	94.14 93.31	0.65 0.71	94.16 93.44	0.63	94.16 93.52	0.63	94.16 93.60	0.63 0.42	94.16 93.58	0.63 0.44
180 PAINE PON	94.02	93.08 93.08	0.94	93.20	- 0.82	93.31	0.71	93.44 93.36	0.58	93.52 93.39	0.50	93.60 93.51	- 0.42	93.58 93.49	- 0.44
_															
104_(Ex- 103 (Ex-	-	93.23 93.22	-	93.34 93.34	-	93.42 93.42	-	93.52 93.51	-	93.59 93.57	-	93.67 93.65	-	93.67 93.62	-
100_(Ex-	-	93.21	-	93.34	-	93.42	-	93.51	-	93.56	-	93.65	-	93.62	-
101_(Ex-	-	93.21	-	93.34	-	93.42		93.51	-	93.57	-	93.65	-	93.62	-
102_(Ex-	94.21	93.21	1.00	93.34	0.87	93.42	0.79	93.52	0.69	93.58	0.63	93.65	0.56	93.65	0.56
113_(Ex- 114_(Ex-	94.21 94.21	93.21 93.21	1.00	93.34 93.34	0.87 0.87	93.42 93.42	0.79 0.79	93.52 93.52	0.69 0.69	93.58 93.59	0.63 0.62	93.65 93.67	0.56	93.65 93.67	0.56 0.54
114_(Ex-	94.21	93.21	1.00	93.34	0.87	93.42	0.79	93.52	0.89	93.61	0.62	93.69	0.54	93.69	0.54
130_(Ex-	94.25	93.21	1.04	93.34	0.91	93.42	0.83	93.52	0.73	93.61	0.64	93.68	0.57	93.68	0.57
130A_(Ex-	-	93.21	-	93.34	-	93.42	-	93.52	-	93.59	-	93.67	-	93.67	-
131_(Ex-	94.26	93.24 93.54	1.02	93.39 93.57	0.87 1.36	93.46 93.58	0.80	93.56	0.70	93.64 93.66	0.62	93.72 93.74	0.54 1.19	93.71	0.55 1.20
132_(Ex- 133 (Ex-	94.93 95.43	93.54	1.39	93.57	1.63	93.80	1.35 1.63	93.62 93.80	1.31 1.63	93.80	1.63	93.74	1.19	93.73 93.81	1.20
134_(Ex-	95.62	93.48	2.14	93.64	1.98	93.78	1.84	93.80	1.82	93.80	1.82	93.81	1.81	93.81	1.81
136_(Ex-	94.25	93.23	1.02	93.36	0.89	93.44	0.81	93.54	0.71	93.62	0.63	93.70	0.55	93.69	0.56
137_(Ex-	94.26	93.27	0.99	93.39	0.87	93.46	0.80	93.55	0.71	93.63	0.63	93.71	0.55	93.70	0.56
139_(Ex-	94.26	93.39	0.87	93.46 93.41	0.80	93.52	0.74	93.59 93.57	0.67	93.65	0.61	93.73 93.71	0.53	93.73 93.71	0.53
138_(Ex- 146 (Ex-	94.26 94.43	93.30 93.55	0.96	93.41 93.58	0.85	93.48 93.59	0.78 0.84	93.57 93.62	0.69	93.63 93.67	0.63 0.76	93.71 93.74	0.55	93.71 93.74	0.55
140_(Ex-	94.43	93.71	0.72	93.73	0.70	93.73	0.70	93.73	0.70	93.73	0.70	93.76	0.67	93.76	0.67
145 (Ex-	94.39	93.91	0.48	93.95	0.44	93.97	0.42	93.97	0.42	93.97	0.42	93.98	0.41	93.98	0.41
140_(Ex-	94.26	93.28	0.98	93.42	0.84	93.49	0.77	93.58	0.68	93.65	0.61	93.73	0.53	93.73	0.53

MH ID	USF Elevation	1:2 Yea (12 hr		1:5 Year Event (12 hr SCS)		1:10 Yea (12 hr	ar Event · SCS)	1:25 Yea (12 hr	ar Event [·] SCS)	1:50 Yea (12 hr	ar Event SCS)		ear Event r SCS)		ar Event · SCS)
MHID	(m)	Max HGL (m)	Freeboard (m)	Max HGL (m)	Freeboard (m)	Max HGL (m)	Freeboard (m)	Max HGL (m)	Freeboard (m)	Max HGL (m)	Freeboard (m)	Max HGL (m)	Freeboard (m)	Max HGL (m)	Freeboa (m)
142_(Ex-	94.48	93.53	0.95	93.60	0.88	93.63	0.85	93.67	0.81	93.72	0.76	93.78	0.70	93.78	0.70
143_(Ex- 144_(Ex-	94.43 94.51	93.91 93.74	0.52	93.95 93.74	0.48	93.96 93.74	0.47	93.96 93.74	0.47	93.96 93.74	0.47	93.96 93.74	0.47	93.96 93.74	0.47
150_(Ex-	94.43	93.66	0.77	93.71	0.72	93.71	0.72	93.72	0.71	93.74	0.69	93.80	0.63	93.79	0.64
151_(Ex-	94.50	93.81	0.69	93.87	0.63	93.88	0.62	93.88	0.62	93.88	0.62	93.89	0.61	93.88	0.62
152_(Ex-	94.75	93.88	0.87	93.94	0.81	93.95	0.80	93.95	0.80	93.96	0.79	93.96	0.79	93.96	0.79
153_(Ex- 154 (Ex-	94.89 95.06	94.04 94.16	0.85 0.90	94.08 94.18	0.81 0.88	94.09 94.19	0.80 0.87	94.09 94.19	0.80 0.87	94.09 94.19	0.80 0.87	94.10 94.19	0.79 0.87	94.10 94.19	0.79
CAMPEAU_	-	93.21	-	93.33	-	93.42	-	93.51	-	93.56	-	93.65	-	93.62	-
EXT	Stage 6]													
FEXT	Stage 4														
TEXT	Stage3														
EXT	Stages 1 8														
MH305	-	94.80	-	94.84	-	94.87	-	94.91	-	94.91	-	94.93	-	94.92	-
MH304 MH303C	-	94.80 94.63	-	94.84 94.66	-	94.87 94.68	-	94.90 94.73	-	94.91 94.77	-	94.93 94.83	-	94.92 94.81	-
MH303B	-	94.64	-	94.70	-	94.74	-	94.80	-	94.86	-	94.91	-	94.88	-
MH303	-	94.21	-	94.40	-	94.54	-	94.67	-	94.75	-	94.81	-	94.79	-
MH302	-	95.25	-	95.30	-	95.34	-	95.38	-	95.41	-	95.43	-	95.41	-
MH301	-	95.76	-	95.82	-	95.85	-	95.91	-	95.94	-	95.97	-	95.94	-
MH300 MH217	- 95.44	96.29 94.17	- 1.27	96.36 94.36	- 1.08	96.41 94.50	- 0.94	96.47 94.64	- 0.80	96.51 94.71	- 0.73	96.51 94.78	- 0.66	96.51 94.76	- 0.68
MH216	95.20	94.06	1.14	94.27	0.93	94.41	0.94	94.56	0.64	94.63	0.57	94.70	0.50	94.68	0.52
MH215	95.40	94.65	0.75	94.72	0.68	94.76	0.64	94.81	0.59	94.83	0.57	94.86	0.54	94.86	0.54
MH214	95.51	95.02	0.49	95.07	0.44	95.11	0.40	95.14	0.37	95.14	0.37	95.15	0.36	95.15	0.36
MH213	96.19	95.11	1.08	95.14	1.05	95.17	1.02	95.20	0.98	95.20	0.98	95.20	0.98	95.20	0.98
MH212 MH211	95.89 95.53	95.40 95.01	0.49 0.52	95.45 95.08	0.44	95.49 95.13	0.40	95.50 95.15	0.39 0.38	95.50 95.15	0.39 0.38	95.50 95.16	0.39 0.37	95.50 95.16	0.39
MH210	95.79	94.90	0.89	94.96	0.83	95.00	0.79	95.04	0.35	95.06	0.73	95.07	0.72	95.07	0.37
MH209	96.10	95.50	0.60	95.56	0.54	95.60	0.50	95.63	0.47	95.65	0.45	95.66	0.44	95.66	0.44
MH208	97.64	97.12	0.52	97.15	0.49	97.17	0.47	97.17	0.47	97.17	0.47	97.17	0.47	97.17	0.47
MH207	97.64	96.50	1.14	96.53	1.11	96.54	1.10	96.54	1.10	96.54	1.10	96.54	1.10	96.54	1.10
MH206 MH205	97.64 96.85	95.99 95.87	1.65 0.98	96.03 95.90	1.61 0.95	96.05 95.92	1.59 0.93	96.05 95.92	1.59 0.93	96.05 95.92	1.59 0.93	96.05 95.92	1.59 0.93	96.05 95.92	1.59 0.93
MH204	95.62	94.72	0.90	94.78	0.84	94.83	0.33	94.87	0.33	94.90	0.72	94.93	0.69	94.92	0.70
MH203	95.43	94.46	0.97	94.56	0.87	94.63	0.80	94.71	0.72	94.75	0.68	94.81	0.62	94.80	0.63
MH202	95.35	94.30	1.05	94.41	0.94	94.48	0.87	94.59	0.76	94.66	0.69	94.73	0.62	94.72	0.63
MH201	95.11	93.91	1.20	94.13	0.98	94.28	0.83	94.43	0.68	94.52	0.59	94.59	0.52	94.57	0.54
MH200 MH541	95.11 95.10	93.70 93.17	1.41 1.93	93.88 93.42	1.23 1.68	94.04 93.60	1.07 1.50	94.21 93.81	0.90	94.30 93.92	0.81	94.39 94.03	0.72	94.37 94.00	0.74
MH532	95.10	93.19	1.91	93.46	1.64	93.64	1.46	93.87	1.23	93.99	1.11	94.10	1.07	94.07	1.03
MH104	95.32	93.24	2.08	93.50	1.82	93.68	1.64	93.90	1.42	94.01	1.31	94.12	1.20	94.10	1.22
MH513	97.18	95.84	1.34	95.93	1.25	96.01	1.17	96.08	1.10	96.09	1.09	96.11	1.07	96.10	1.08
MH519	95.33	94.13	1.20	94.18	1.15	94.22	1.11	94.22	1.11	94.24	1.09	94.34	0.99	94.32	1.01
MH540 MH531	95.25 95.68	93.62 93.62	1.63 2.06	93.70 93.70	1.55 1.98	93.76 93.79	1.49 1.89	93.92 94.07	1.33 1.61	94.04 94.19	1.21 1.49	94.15 94.31	1.10 1.37	94.13 94.28	1.12 1.40
MH520	95.33	93.92	1.41	93.99	1.34	94.03	1.30	94.05	1.28	94.12	1.21	94.27	1.06	94.24	1.09
MH501	97.83	95.37	2.46	95.42	2.41	95.45	2.38	95.49	2.34	95.52	2.31	95.54	2.29	95.54	2.29
MH518	96.37	94.66	1.71	94.71	1.66	94.75	1.62	94.80	1.57	94.81	1.56	94.83	1.54	94.83	1.54
MH529	95.47	93.94	1.53	94.00	1.47	94.05	1.42	94.28	1.19	94.40	1.07	94.53	0.94	94.50	0.97
MH517 MH527	96.57 96.23	94.99 94.56	1.58 1.67	95.03 94.61	1.54	95.07 94.64	1.50 1.59	95.09 94.66	1.48 1.57	95.10 94.67	1.47 1.56	95.11 94.71	1.46 1.52	95.10 94.69	1.47 1.54
MH528	95.78	94.02	1.76	94.08	1.70	94.13	1.65	94.34	1.44	94.46	1.32	94.59	1.19	94.56	1.22
MH526	96.51	95.06	1.45	95.10	1.41	95.13	1.38	95.15	1.36	95.16	1.35	95.16	1.35	95.16	1.35
MH525	97.77	95.25	2.52	95.25	2.52	95.25	2.52	95.25	2.52	95.25	2.52	95.25	2.52	95.25	2.52
MH524 MH523	95.17	93.32	1.85	93.41	1.76	93.57	1.60	93.81	1.36	93.90	1.27	93.99	1.18	93.97	1.20
MH523 MH522	95.23 95.15	93.86 93.75	1.37 1.40	93.90 93.75	1.33	93.92 93.75	1.31 1.40	93.93 93.75	1.30 1.40	93.97 93.75	1.26 1.40	94.04 94.05	1.19	94.03 93.95	1.20 1.20
MH521	95.28	94.05	1.23	94.05	1.23	94.05	1.23	94.05	1.23	94.05	1.23	94.05	1.23	94.05	1.23
MH516	96.60	95.17	1.43	95.21	1.39	95.24	1.36	95.26	1.34	95.27	1.33	95.27	1.33	95.27	1.33
MH505	95.16	93.16	2.00	93.37	1.79	93.53	1.63	93.73	1.43	93.83	1.33	93.93	1.23	93.91	1.25
Ex509 MH515	94.54	93.08 95.60	1.46 1.13	93.29 95.64	1.25	93.44 95.68	1.10	93.61	0.93	93.70 95.72	0.84	93.78 95.74	0.76	93.76 95.74	0.78
MH515 MH504	96.73 95.28	93.20	2.08	93.40	1.09	93.56	1.05 1.72	95.71 93.77	1.02 1.51	93.87	1.01 1.41	95.74 93.97	0.99	93.95	1.33
MH514	97.10	95.41	1.69	95.50	1.60	95.57	1.53	95.64	1.46	95.65	1.45	95.67	1.43	95.67	1.43
MH502	96.38	94.74	1.64	94.82	1.56	94.87	1.51	94.93	1.45	94.96	1.42	94.99	1.39	94.99	1.39
MH503	95.98	93.90	2.08	93.98	2.00	94.04	1.94	94.11	1.87	94.16	1.82	94.24	1.74	94.22	1.76
MH530 MH506	95.47 95.13	93.75 93.11	1.72 2.02	93.83 93.33	1.64 1.80	93.90 93.50	1.57 1.63	94.18 93.70	1.29 1.43	94.30 93.79	1.17 1.34	94.42 93.88	1.05 1.25	94.39 93.86	1.08 1.27
EXT	Stage 6]													
EXT	Stage 4														
EXT	Stage3														
EXT	Stages 1 8	2													

	USF	1:100 Ye (3hr Cł	ar Event	Climate Cha (12 hr		Historica	al Storm	Historica Augus		Historica Augus	
MH ID	Elevation		Freeboard		Freeboard	Max HGL (m)	Freeboard		Freeboard	Ŭ	Freeboard
047	(m)	Max HGL (m)	(m)	Max HGL (m)	(m)	. ,	(m)	Max HGL (m)	(m)	Max HGL (m)	(m)
217 214A	-	95.75 95.75	-	95.87 95.87	-	95.76 95.76	-	95.61 95.61	-	95.20 95.20	-
214	95.37	94.94	0.43	95.08	0.29	94.90	0.47	94.90	0.47	94.80	0.57
216 213A	-	95.73 95.73	-	95.85 95.85	-	95.74 95.74	-	95.59 95.59	-	95.21 95.21	-
213	95.32	94.95	0.37	95.08	0.24	94.91	0.41	94.91	0.41	94.81	0.51
210 211	-	95.15	-	95.33 95.33	-	95.05	-	95.03 95.04	-	94.91	-
211 212	- 95.32	95.15 94.95	- 0.37	95.08	- 0.24	95.05 94.92	- 0.40	95.04	- 0.41	94.91 94.81	- 0.51
J_CBMH1	96.14	95.61	0.53	95.60	0.54	95.58	0.56	95.59	0.55	95.57	0.57
CBMH2 224	- 96.14	95.67 95.35	- 0.79	95.91 95.49	- 0.65	95.55 95.29	- 0.85	95.61 95.31	- 0.83	95.49 95.27	- 0.87
226	96.14	95.21	0.93	95.38	0.76	95.10	1.04	95.14	1.00	95.06	1.08
220 218	-	95.34 95.20	-	95.47	-	95.21 95.09		95.23 95.10	-	95.11	-
210	- 95.43	95.03	0.40	95.33 95.17	0.26	95.09	- 0.48	94.97	0.46	94.96 94.84	0.59
215	95.30	94.92	0.38	95.06	0.24	94.88	0.42	94.89	0.41	94.78	0.52
MHST77649 208	- 94.69	94.83 94.12	- 0.57	94.99 94.23	- 0.46	94.81 94.08	- 0.61	94.82 94.11	- 0.58	94.67 94.09	- 0.60
200	94.80	93.98	0.82	94.17	0.63	93.92	0.88	94.01	0.79	93.91	0.89
206	94.69	93.86	0.83	94.09	0.60	93.81	0.88	93.96	0.73	93.79	0.90
205 201	94.24	93.77 93.57	0.47	94.01 93.88	0.23	93.73 93.65	0.51	93.89 93.75	0.35	93.69 93.52	0.55
200A	-	93.51	-	93.88	-	93.63	-	93.65	-	93.51	-
200 ST6 CB102	-	93.51 96.33	-	93.88 96.36	-	93.62 95.86	-	93.60 96.20	-	93.51 95.69	-
J_CB103	94.69	94.44	0.25	94.44	0.25	94.42	0.27	94.43	0.26	94.42	0.27
204A	94.69	94.00	0.69	94.20	0.49	93.96	0.73	94.06	0.63	93.94	0.75
204 203	-	93.98 95.49	-	94.18 95.60	-	93.94 95.42	-	94.04 95.42	-	93.93 95.20	-
202	-	95.48	-	95.59	-	95.41	-	95.41	-	95.19	-
201A CBMH3	-	95.45 95.56	-	95.56 95.69	-	95.38 95.48		95.38 95.49	-	95.16 95.22	-
202A	-	95.51	-	95.63	-	95.48	-	95.49	-	95.20	-
201A	-	95.45	-	95.56	-	95.38	-	95.38	-	95.16	-
CB108 CBMH4	- 94.24	94.99 93.51	- 0.73	95.05 93.89	- 0.35	94.88 93.64	- 0.60	94.91 93.66	- 0.58	94.77 93.51	- 0.73
Ex508	94.73	93.62	1.11	93.96	0.77	93.79	0.94	93.83	0.90	93.51	1.22
116 173	94.12 94.17	93.63 93.47	0.49 0.70	93.89 93.76	0.23 0.41	93.77 93.62	0.35 0.55	93.80 93.64	0.32 0.53	93.49 93.44	0.63 0.73
120	93.90	93.43	0.47	93.76	0.41	93.58	0.32	93.59	0.33	93.41	0.49
171	93.98	93.43	0.55	93.76	0.22	93.58	0.40	93.59	0.39	93.44	0.54
121 122	93.89 93.84	93.40 93.38	0.49 0.46	93.76 93.76	0.13 0.08	93.55 93.51	0.34 0.33	93.56 93.51	0.33 0.33	93.40 93.39	0.49 0.45
192	95.08	93.69	1.39	94.01	1.07	93.85	1.23	93.89	1.19	93.56	1.52
193 194	94.86 94.74	93.63 93.61	1.23 1.13	93.95 93.93	0.91 0.81	93.80 93.78	1.06 0.96	93.83 93.82	1.03 0.92	93.53 93.52	1.33 1.22
191	95.05	93.70	1.35	94.02	1.03	93.86	1.19	93.90	1.15	93.57	1.48
Ex509 Ex510	94.54 94.14	93.60	0.94 0.61	93.93 93.85	0.61 0.29	93.77 93.70	0.77 0.44	93.81 93.74	0.73 0.40	93.50	1.04 0.66
127	94.14	93.53 93.56	0.60	93.84	0.29	93.70	0.44	93.74	0.40	93.48 93.48	0.68
128	94.07	93.56	0.51	93.84	0.23	93.73	0.34	93.75	0.32	93.48	0.59
124 123	93.88 93.88	93.39 93.39	0.49	93.76 93.76	0.12	93.56 93.56	0.32 0.32	93.57 93.57	0.31	93.40 93.40	0.48
160	94.09	93.51	0.58	93.76	0.33	93.65	0.44	93.66	0.43	93.45	0.64
172 118	94.54 94.01	93.48 93.49	1.06 0.52	93.76 93.76	0.78 0.25	93.59 93.64	0.95 0.37	93.60 93.65	0.94 0.36	93.47 93.44	1.07 0.57
110	94.01	93.49	0.55	93.76	0.25	93.62	0.39	93.63	0.38	93.44	0.58
161	94.63	94.17	0.46	94.17	0.46	94.17	0.46	94.17	0.46	94.17	0.46
162 180	94.79 94.02	94.17 93.43	0.62	94.17 93.76	0.62	94.16 93.61	0.63 0.41	94.16 93.63	0.63	94.15 93.43	0.64 0.59
PAINE_PON	-	93.38	-	93.76	-	93.47	-	93.44	-	93.39	-
104_(Ex-	-	93.52	-	93.89	-	93.65	-	93.72	-	93.52	-
103_(Ex-	-	93.52 93.51	-	93.89	-	93.63	-	93.60	-	93.51 93.51	-
100_(Ex- 101_(Ex-	-	93.51 93.52	-	93.88 93.88	-	93.61 93.63	-	93.58 93.60	-	93.51 93.51	-
102_(Ex-	94.21	93.52	0.69	93.88	0.33	93.64	0.57	93.64	0.57	93.51	0.70
113_(Ex- 114 (Ex-	94.21 94.21	93.52 93.52	0.69 0.69	93.89 93.89	0.32	93.64 93.64	0.57 0.57	93.64 93.65	0.57 0.56	93.51 93.51	0.70
115_(Ex-	94.24	93.52	0.72	93.89	0.35	93.65	0.59	93.68	0.56	93.51	0.73
130_(Ex- 130A (Ex-	94.25	93.53 93.52	0.72	93.89	0.36	93.68	0.57	93.68	0.57	93.52 93.52	0.73
130A_(Ex- 131_(Ex-	- 94.26	93.52 93.55	0.71	93.89 93.89	- 0.37	93.66 93.71	0.55	93.66 93.71	0.55	93.52 93.54	- 0.72
132_(Ex-	94.93	93.60	1.33	93.89	1.04	93.74	1.19	93.74	1.19	93.60	1.33
133_(Ex- 134 (Ex-	95.43 95.62	93.80 93.81	1.63 1.81	93.89 93.89	1.54 1.73	93.82 93.82	1.61 1.80	93.82 93.82	1.61 1.80	93.80 93.80	1.63 1.82
134_(Ex-	94.25	93.53	0.72	93.89	0.36	93.69	0.56	93.69	0.56	93.53	0.72
137_(Ex-	94.26	93.54	0.72	93.89	0.37	93.70	0.56	93.71	0.55	93.53	0.73
139_(Ex- 138 (Ex-	94.26 94.26	93.56 93.55	0.70	93.89 93.89	0.37	93.73 93.71	0.53 0.55	93.73 93.72	0.53 0.54	93.56 93.54	0.70
146_(Ex-	94.43	93.60	0.83	93.89	0.54	93.73	0.70	93.74	0.69	93.59	0.84
147_(Ex- 145_(Ex-	94.43 94.39	93.73 93.98	0.70 0.41	93.89 93.98	0.54 0.41	93.76 93.97	0.67 0.42	93.76 93.97	0.67	93.73 93.97	0.70
140_(Ex-	94.26	93.57	0.69	93.89	0.41	93.73	0.53	93.72	0.42	93.56	0.42
		•								•	

	USF Elevation			Climate Cha (12 hr	•		al Storm 1979	Historica Augus		Historic: Augus	
MH ID	Elevation (m)	Max HGL (m)	Freeboard (m)	Max HGL (m)	Freeboard (m)	Max HGL (m)	Freeboard (m)	Max HGL (m)	Freeboard (m)	Max HGL (m)	Freeboard (m)
142_(Ex-	94.48	93.67	0.81	93.89	0.59	93.78	0.70	93.78	0.70	93.63	0.85
143_(Ex- 144_(Ex-	94.43 94.51	93.96 93.74	0.47	93.97 93.74	0.46	93.96 93.74	0.47	93.96 93.74	0.47	93.96 93.74	0.47
150_(Ex-	94.43	93.72	0.71	93.89	0.54	93.80	0.63	93.79	0.64	93.71	0.72
151_(Ex-	94.50	93.89	0.61	93.93	0.57	93.89	0.61	93.88	0.62	93.88	0.62
152_(Ex- 153 (Ex-	94.75 94.89	93.96 94.10	0.79	93.98 94.10	0.77 0.79	93.96 94.09	0.79 0.80	93.95 94.09	0.80	93.95 94.09	0.80
154_(Ex-	95.06	94.19	0.87	94.19	0.87	94.19	0.87	94.19	0.87	94.19	0.87
CAMPEAU_	-	93.51	-	93.88	-	93.61	-	93.58	-	93.51	-
TEXT	Stage 6	7									
TEXT	Stage 4	-									
TEXT	Stage3	-									
TEXT	Stages 1 8	1									
MH305	-	94.93	-	94.99	-	94.91	-	94.91	-	94.88	-
MH304	-	94.92	-	94.99	-	94.91	-	94.90	-	94.88	-
MH303C	-	94.79 94.87	-	94.94 95.02	-	94.76		94.77 94.86	-	94.69 94.76	-
MH303B MH303	-	94.76	-	94.94	-	94.85 94.74	-	94.75	-	94.57	-
MH302		95.42		95.48		95.41	-	95.41		95.35	-
MH301	-	95.95	-	96.01	-	95.95	-	95.95	-	95.87	-
MH300 MH217	- 95.44	96.51 94.72	- 0.72	96.51 94.90	- 0.54	96.47 94.70	- 0.74	96.51 94.72	- 0.72	96.42 94.53	- 0.91
MH216	95.20	94.64	0.56	94.83	0.37	94.62	0.58	94.65	0.55	94.44	0.76
MH215	95.40	94.85	0.55	94.93	0.47	94.82	0.58	94.84	0.56	94.78	0.62
MH214 MH213	95.51 96.19	95.15 95.21	0.36 0.98	95.17 95.22	0.34 0.97	95.14 95.20	0.37 0.98	95.15 95.20	0.36	95.12 95.19	0.39 1.00
MH213 MH212	95.89	95.50	0.39	95.50	0.39	95.50	0.39	95.50	0.39	95.50	0.39
MH211	95.53	95.16	0.37	95.17	0.36	95.15	0.38	95.16	0.37	95.14	0.39
MH210	95.79	95.07	0.72	95.11	0.68	95.04	0.75	95.06	0.73	95.01	0.78
MH209 MH208	96.10 97.64	95.66 97.17	0.44 0.47	95.68 97.17	0.42	95.63 97.17	0.47	95.66 97.17	0.44 0.47	95.61 97.17	0.49 0.47
MH207	97.64	96.55	1.09	96.55	1.09	96.54	1.10	96.54	1.10	96.54	1.10
MH206	97.64	96.05	1.59	96.05	1.59	96.05	1.59	96.05	1.59	96.05	1.59
MH205 MH204	96.85 95.62	95.92 94.91	0.93	95.92 94.99	0.93	95.92 94.88	0.93 0.74	95.92 94.90	0.93	95.92 94.84	0.93 0.78
MH203	95.43	94.77	0.66	94.90	0.53	94.73	0.70	94.77	0.66	94.65	0.78
MH202	95.35	94.67	0.68	94.83	0.52	94.63	0.72	94.68	0.67	94.50	0.85
MH201 MH200	95.11	94.51	0.60 0.84	94.72 94.53	0.39	94.51	0.60	94.54	0.57	94.31	0.80
MH200 MH541	95.11 95.10	94.27 93.83	1.27	94.55	0.58	94.31 93.97	0.80	94.35 94.02	0.76	94.05 93.59	1.06
MH532	95.10	93.90	1.20	94.27	0.83	94.03	1.07	94.08	1.02	93.62	1.48
MH104	95.32	93.93	1.39	94.30	1.02	94.05	1.27	94.11	1.21	93.66	1.66
MH513 MH519	97.18 95.33	96.12 94.23	1.06	96.12 94.52	1.06 0.81	96.08 94.26	1.10 1.07	96.09 94.32	1.09 1.01	96.07 94.22	1.11
MH540	95.25	93.95	1.30	94.34	0.91	94.07	1.18	94.14	1.11	93.78	1.47
MH531	95.68	94.12	1.56	94.50	1.18	94.21	1.47	94.26	1.42	93.82	1.86
MH520 MH501	95.33 97.83	94.08 95.54	1.25 2.29	94.44 95.54	0.89	94.17 95.50	1.16 2.33	94.25 95.50	1.08	94.04 95.46	1.29 2.37
MH501 MH518	96.37	94.83	1.54	94.86	1.51	94.80	1.57	94.82	1.55	94.78	1.59
MH529	95.47	94.37	1.10	94.74	0.73	94.43	1.04	94.45	1.02	94.08	1.39
MH517	96.57	95.11	1.46	95.12	1.45	95.10	1.47	95.10	1.47	95.09	1.48
MH527 MH528	96.23 95.78	94.67 94.43	1.56 1.35	94.95 94.80	1.28 0.98	94.66 94.49	1.57 1.29	94.66 94.50	1.57	94.66 94.16	1.57
MH526	96.51	95.16	1.35	95.16	1.35	95.15	1.36	95.15	1.36	95.15	1.36
MH525	97.77	95.25	2.52	95.25	2.52	95.25	2.52	95.25	2.52	95.25	2.52
MH524 MH523	95.17 95.23	93.80 93.93	1.37 1.30	94.17 94.23	1.00	93.95 94.01	1.22 1.22	94.00 94.05	1.17 1.18	93.58 93.93	1.59 1.30
MH522	95.15	93.75	1.40	94.23	0.92	93.77	1.38	94.05	1.10	93.75	1.40
MH521	95.28	94.05	1.23	94.37	0.91	94.05	1.23	94.05	1.23	94.05	1.23
MH516 MH505	96.60 95.16	95.28 93.73	1.32 1.43	95.28 94.08	1.32	95.26 93.89	1.34 1.27	95.27 93.94	1.33	95.26 93.56	1.34 1.60
Ex509	94.54	93.60	0.94	93.93	0.61	93.77	0.77	93.81	0.73	93.50	1.04
MH515	96.73	95.76	0.97	95.77	0.96	95.72	1.01	95.72	1.01	95.71	1.02
MH504	95.28	93.76	1.52	94.13	1.15	93.92	1.36	93.98	1.30	93.58	1.70
MH514 MH502	97.10 96.38	95.68 94.99	1.42	95.71 94.99	1.39	95.64 94.94	1.46 1.44	95.66 94.94	1.44	95.61 94.90	1.49 1.48
MH503	95.98	94.16	1.82	94.45	1.53	94.17	1.81	94.21	1.77	94.07	1.91
MH530	95.47	94.25	1.22	94.62	0.85	94.32	1.15	94.36	1.11	93.93	1.54
MH506	95.13	93.69	1.44	94.03	1.10	93.85	1.28	93.90	1.23	93.54	1.59
TEXT	Stage 6	1									
TEXT	Stage 4	1									
TEXT	Stage3	1									
TEXT	Stages 1 8										
	5.5.0										

Appendix E4

Street Ponding Areas

STREET PONDING TABLE

		Maximu	1:2 year	1:5 year Depth	1:10	/ear	1:25)	year	1:50 y	/ear	1:100	year	Climate 0	Change	Lowest
Ponding Area ID	Top of Grate (m)	m Static Depth (m)	Total Ponding Depth (m)	Total Ponding Depth (m)	Total Ponding Depth (m)	Max. HGL (m)	Opening Grade (m)								
1	97.1	0.30	0	0	0.02	97.12	0.08	97.18	0.14	97.24	0.2	97.30	0.23	97.33	98.10
2	96.9	0.30	0	0	0	-	0.04	96.94	0.07	96.97	0.09	96.99	0.19	97.09	97.40
4	96.9	0.10	0	0	0	-	0	-	0.00	-	0	-	0	-	97.08
6	96.8	0.10	0	0	0	-	0		0.00	-	0	-	0	-	96.99
8	96.7	0.19	0	0	0		0		0.00		0		0	-	96.86
9	96.2	0.20	0	0	0	-	0	-	0.00	-	0.05	96.25	0.1	96.30	96.70
11	96	0.15	0	0	0	-	0.06	96.06	0.08	96.08	0.1	96.10	0.14	96.14	96.65
12	95.6	0.22	0	0	0	-	0.02	95.62	0.05	95.65	0.07	95.67	0.11	95.71	96.20
3	96.87	0.23	0	0	0.06	96.93	0.1	96.97	0.13	97.00	0.16	97.03	0.2	97.07	97.26
30	97.04	0.23	0	0	0	-	0.04	97.08	0.07	97.11	0.1	97.14	0.15	97.19	97.48
28	96.97	0.30	0	0	0		0		0.00		0		0	-	97.32
27	96.88	0.29	0	0	0	-	0		0.00		0	-	0.06	96.94	97.24
26	96.87	0.20	0	0	0	-	0		0.00		0	-	0	-	97.12
24	96.67	0.30	0	0	0	-	0	-	0.00		0.05	96.72	0.1	96.77	97.12
23	96.57	0.13	0	0	0		0.04	96.61	0.08	96.65	0.11	96.68	0.15	96.72	96.86
5	96.77	0.16	0	0	0.05	96.82	0.09	96.86	0.12	96.89	0.15	96.92	0.2	96.97	97.08
29	96.92	0.25	0	0	0.06	96.98	0.11	97.03	0.14	97.06	0.16	97.08	0.21	97.13	97.24
7	96.67	0.17	0	0	0.05	96.72	0.1	96.77	0.13	96.80	0.16	96.83	0.2	96.87	96.99
25	96.83	0.24	0	0	0.05	96.88	0.1	96.93	0.13	96.96	0.16	96.99	0.21	97.04	97.12
22	95.9	0.25	0	0	0		0.05	95.95	0.07	95.97	0.1	96.00	0.14	96.04	96.2
16	95.7	0.20	0	0	0.07	95.77	0.15	95.85	0.22	95.92	0.24	95.94	0.26	95.96	96.02
15	95.6	0.22	0	0	0.04	95.64	0.09	95.69	0.12	95.72	0.17	95.77	0.25	95.85	96.2

www.jlrichards.ca

Ottawa

343 Preston Street Ottawa ON Canada K1S 1N4 Tel: 613 728-3571

ottawa@jlrichards.ca

North Bay

200-175 Progress Road North Bay ON Canada P1A 0B8 Tel: 705 495-7597

northbay@jlrichards.ca

Kingston

203-863 Princess Street Kingston ON Canada K7L 5N4 Tel: 613 544-1424

kingston@jlrichards.ca

Hawkesbury

326 Bertha Street Hawkesbury ON Canada K6A 2A8 Tel: 613 632-0287

hawkesbury@jlrichards.ca

Sudbury

314 Countryside Drive Sudbury ON Canada P3E 6G2 Tel: 705 522-8174

sudbury@jlrichards.ca

Guelph

107-450 Speedvale Ave. West Guelph ON Canada N1H 7Y6 Tel: 519 763-0713

guelph@jlrichards.ca

Timmins

201-150 Algonquin Blvd. East Timmins ON Canada P4N 1A7 Tel: 705 360-1899 timmins@jlrichards.ca

JLR Logo is a Registered Trademark ® 2009, all rights are reserved