Urbandale
CORPORATION

Transportation Impact Assessment - Step 4: Analysis

## Riverside South Phase 12



Prepared for Urbandale Corporation by IBI Group

## TIA Plan Reports - Certification

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of developmentrelated transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associate documents) and signing this document, the individual acknowledges that $\mathrm{s} / \mathrm{he}$ meets the four criteria listed below:

## CERTIFICATION

1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
3. I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
4. I am either a licensed ${ }^{1}$ or registered ${ }^{1}$ professional in good standing, whose field of expertise [check $\sqrt{ }$ appropriate field(s)] is either transportation engineering $\square$ or transportation planning a .
[^0]Dated at Ottawa this $24^{\text {th }}$ day of April, 2019.
(City)

Name: David Hook, P.Eng.

Professional Title: Project Engineer


Signature of Individual certifier that she/he meets the above four criteria

## Office Contact Information (Please Print)

Address: 400-333 Preston Street
City / Postal Code: K1S 5N4
Telephone / Extension: 613-225-1311 ext. 64029
E-Mail Address: dhook@ibigroup.com

Stamp
$\square$

## Document Control Page

| CLIENT: | Urbandale Corporation |
| :---: | :---: |
| PROJECT NAME: | Riverside South Phase 12 |
| REPORT TITLE: | Transportation Impact Assessment |
| ibi Reference: | 120031 |
| VERSION: | First Submission |
| DIGITAL MASTER: | J:I120031_RSPhase1215.2 Reports\5.2.4 Transportation\5.2.4.5 Traffic Impactl3 - Analysis |
| ORIGINATOR: | Ben Pascolo-Neveu, Eric M ${ }^{\text {c Laren }}$ |
| REVIEWER: | David Hook |
| AUTHORIZATION: | Justin Date |
| CIRCULATION LIST: | Mike Giampa - City of Ottawa Transportation Project Manager |
| HISTORY: | TIA Step 1 \& 2 Submitted for City Review - March 15, 2019 TIA Step 3 Submitted for City Review - March 27, 2019 TIA Step 4 Submitted to Client Review - April 24, 2019 |

## Table of Contents

Executive Summary
1 Introduction ..... 1
2 TIA Screening ..... 2
3 Project Scoping .....  2
3.1 Description of Proposed Development ..... 2
3.1.1 Site Location ..... 2
3.1.2 Land Use Details ..... 4
3.1.3 Development Phasing \& Date of Occupancy. .....  4
3.2 Existing Conditions ..... 6
3.2.1 Existing Road Network .....  6
3.2.2 Existing Bicycle and Pedestrian Facilities ..... 10
3.2.3 Existing Transit Facilities and Service ..... 10
3.2.4 Collision History ..... 11
3.3 Planned Conditions ..... 12
3.3.1 Transportation Network ..... 12
3.3.2 Future Adjacent Developments ..... 15
3.3.3 Network Concept Screenline ..... 19
3.4 Study Area ..... 20
3.5 Time Periods ..... 20
3.6 Study Horizon Year ..... 20
3.7 Exemptions Review ..... 20
4 Forecasting ..... 22
4.1 Development Generated Traffic ..... 22
4.1.1 Trip Generation Methodology ..... 22
4.1.2 Trip Generation Results ..... 22
4.1.3 Trip Distribution and Assignment ..... 25
4.2 Background Network Traffic ..... 30
4.2.1 Changes to the Background Transportation Network ..... 30

## Table of Contents

4.2.2 General Background Growth Rates ..... 30
4.2.3 Other Area Development ..... 31
4.3 Demand Rationalization ..... 31
4.3.1 Description of Capacity Issues ..... 31
4.3.2 Adjustment to Development Generated Demands ..... 32
4.3.3 Adjustment to Background Network Demands ..... 33
4.4 Traffic Volume Summary ..... 36
4.4.1 Future Background Traffic Volumes ..... 36
4.4.2 Future Total Traffic Volumes. ..... 36
5 Analysis ..... 43
5.1 Development Design ..... 43
5.1.1 Design for Sustainable Modes ..... 43
5.1.2 New Street Networks ..... 45
5.2 Parking ..... 45
5.3 Boundary Streets ..... 45
5.3.1 Mobility ..... 45
5.3.2 Road Safety ..... 45
5.4 Access Intersections ..... 46
5.4.1 Location and Design of Access ..... 46
5.4.2 Intersection Control ..... 47
5.4.3 Intersection Design (MMLOS) ..... 47
5.5 Transportation Demand Management (TDM) ..... 47
5.5.1 Context for TDM ..... 48
5.5.2 Need and Opportunity ..... 48
5.5.3 TDM Program ..... 48
5.6 Neighbourhood Traffic Management ..... 49
5.6.1 Adjacent Neighbourhoods ..... 49
5.7 Transit ..... 49
5.7.1 Route Capacity ..... 49

## Table of Contents

5.8 Review of Network Concept ..... 49
5.9 Intersection Design ..... 50
5.9.1 Intersection Control ..... 50
5.9.2 Intersection Analysis Criteria (Automobile) ..... 50
5.9.3 Intersection Capacity Analysis ..... 52
5.9.4 Intersection Design (MMLOS) ..... 58
5.10 Geometric Review. ..... 60
5.10.1 Sight Distance and Corner Clearances. ..... 60
5.10.2 Auxiliary Lane Analysis ..... 60
5.11 Summary of Improvements Indicated and Modification Options ..... 63
5.11.1 Earl Armstrong Road \& River Road ..... 64
5.11.2 River Road \& Phase 12 North Access ..... 64
5.11.3 River Road \& Summerhill Street/ Phase 12 South Access ..... 65
5.11.4 River Road \& Borbridge Avenue ..... 65
5.11.5 River Road \& Atrium Ridge/ 760 River Access ..... 65
6 Conclusion ..... 67
List of Tables
Table 1 - Land Use Statistics ..... 4
Table 2 - Reported Collisions within Vicinity of Proposed Development ..... 11
Table 3 - Adjacent Developments (Current Development Applications) ..... 16
Table 4 - Future Potential Developments ${ }^{1}$ ..... 17
Table 5 - Exemptions Review ..... 21
Table 6 - TRANS Vehicular Trip Generation Results (Riverside South Phase 12) ..... 22
Table 7 - TRANS Vehicular Trip Generation Results (760 River Road) ..... 23
Table 8 - Person-Trip Results (Riverside South Phase 12) ..... 23
Table 9 - Person-Trip Results (760 River Road) ..... 23
Table 10 - Existing and Proposed Mode Share for South Gloucester/Leitrim (2011 O-D Survey) ..... 24

## Table of Contents

Table 11 - Peak Hour Person Trips by Mode and Horizon Year (Riverside South Phase 12) ..... 25
Table 12 - Peak Hour Person Trips by Mode and Horizon Year (760 River Road) ..... 25
Table 13 - Earl Armstrong Road and River Road Historical Peak Hour Traffic Volumes - Pre-Bridge ..... 34
Table 14 - Earl Armstrong Road and River Road Historical Peak Hour Traffic Volumes - Post Bridge ..... 35
Table 15-Segment MMLOS - Existing \& Future Conditions ..... 45
Table 16-2029 Development Generated Transit Demand ..... 49
Table 17-2031 Network Concept ..... 49
Table 18 - LOS Criteria for Signalized Intersections ..... 51
Table 19 - LOS Criteria for Unsignalized Intersections ..... 51
Table 20 - Intersection Capacity Analysis: Existing (2019) Traffic ..... 52
Table 21 - Intersection Capacity Analysis: 2021 Background Traffic ..... 53
Table 22 - Intersection Capacity Analysis: 2024 Background Traffic ..... 54
Table 23 - Intersection Capacity Analysis: 2029 Background Traffic ..... 55
Table 24 - Intersection Capacity Analysis: 2021 Total Traffic ..... 56
Table 25 - Intersection Capacity Analysis: 2024 Total Traffic ..... 57
Table 26 - Intersection Capacity Analysis: 2029 Total Traffic ..... 58
Table 27 - Intersection MMLOS - Existing and Future Conditions ..... 59
Table 28 - Auxiliary Left-Turn Storage Analysis at Signalized Intersections ..... 61
Table 29 - Auxiliary Right-Turn Lane Storage Analysis at Signalized Intersections ..... 63
List of Figures
Figure 1 - Riverview Transit Station and Park \& Ride ..... 11
Figure 2 - Future Road Network Projects ..... 12
Figure 3 - Riverside South Community Design Plan - Network Concept ..... 13
Figure 4 - Future 'Affordable RTTP Network Projects' ..... 14
Figure 5 - Riverside South Community Design Plan - Cycling and Pedestrian Network ..... 15
Figure 6 - Screenlines ..... 19

## Table of Contents

## List of Exhibits

Exhibit 1 - Site Location ................................................................................................. 3
Exhibit 2 - Proposed Development ................................................................................. 5
Exhibit 3 - Existing (2018) Lane Configurations and Intersection Controls ........................ 7
Exhibit 4 - Existing (2019) Traffic ..................................................................................... 9
Exhibit 5 - Adjacent Developments ............................................................................... 18
Exhibit 6 - 2021 Site Generated AM \& PM Peak Hour Traffic Volumes .......................... 27
Exhibit 7 - 2024 Site Generated AM \& PM Peak Hour Traffic Volumes .......................... 28
Exhibit 8-2029 Site Generated AM \& PM Peak Hour Traffic Volumes ........................... 29
Exhibit 9 - Future (2021) Background Traffic .................................................................. 37
Exhibit 10 - Future (2024) Background Traffic ............................................................... 38
Exhibit 11 - Future (2029) Background Traffic ............................................................... 39
Exhibit 12 - Future (2021) Total Traffic .......................................................................... 40
Exhibit 13 - Future (2024) Total Traffic .......................................................................... 41
Exhibit 14 - Future (2029) Total Traffic .......................................................................... 42
Exhibit 15 - Proposed Mobility Plan .............................................................................. 44
Exhibit 16 - Recommended 2029 Lane Configurations and Intersection Controls ........... 66

## List of Appendices

Appendix A - City Circulation Comments
Appendix B - Screening Form
Appendix C - Traffic Data
Appendix D - OC Transpo Routes
Appendix E - Collision Data
Appendix F - Trip Generation Data
Appendix G - MMLOS Analysis
Appendix H - Intersection Control Warrants
Appendix I - TDM Checklist
Appendix J - Intersection Capacity Analysis

## Executive Summary

IBI Group (IBI) was retained by Urbandale Corporation to undertake a Transportation Impact Assessment (TIA) in support of a Draft Plan of Subdivision application for a proposed residential development to be located at 708 and 750 River Road, Ottawa. Both parcels have direct frontage onto River Road, however the southern parcel ( 750 River Road) will be accessed through 760 River Road (ownership by others) to the immediate south.

The northern parcel (708 River Road) will consist of 80 single-family homes and 110 condominium units, while the southern parcel ( 750 River Road) will consist of 55 townhome units. The proposed development will be constructed in two phases with the single-family and townhomes expected to be built out and occupied by 2021 followed by the condominium units in 2024.

Turning movement counts conducted by the City indicate that traffic volumes along River Road through the study area are presently in the order of 700 to 800 vehicles in the peak direction during the weekday morning and afternoon peak hours. Traffic volumes of this magnitude are an indication that the River Road corridor may be currently experiencing congestion issues. With significant growth in background travel demand expected within the horizon year of this study, River Road is expected to operate at its theoretical capacity as a two-lane facility by 2029.

There are 17 known developments of significance in the vicinity of the proposed development that were considered in the analysis for this TIA. According to Canada Mortgage and Housing Corporation (CMHC) statistics, historical new housing starts in the Riverside South Community range from 300 to 400 units per year. By contrast, this study assumes a high growth scenario with a build-out rate of 450 units per year from 2019 to 2029. The rate of development assumed in this study is deemed appropriate given the high market demand for new housing in the Riverside South community.

Based on the traffic analysis results, the proposed residential development is expected to generate up to 161 and 182 two-way vehicular trips during the weekday morning and afternoon peak hours, respectively. These traffic volumes were distributed amongst three all-movements access intersections, representing a marginal increase in traffic volumes with respect to the overall traffic projections expected within the 2029 horizon year of the study. For the purposes of this analysis, all site-generated traffic was assumed to exclusively utilize the arterial road network within the study area. River Road is expected to operate at capacity as a two-lane facility within the timeframe of this study primarily as a result of significant increases in background travel demand. As the transportation network in Riverside South is built to its ultimate configuration, east-west collectors Borbridge Avenue and Solarium Avenue will be extended further east to connect with Limebank Road, providing opportunities for traffic to be distributed amongst the broader transportation network, ultimately providing relief to these congested conditions.
The study has identified critical deficiencies in the Level of Service across all transportation modes. These deficiencies are a result of background conditions and not as a direct result of the proposed development. The implementation of protected crossings of River Road is one of the most essential improvements necessary to make transit service accessible to developments on the west side of River Road and reduce vehicular demand along the corridor. The study assumes these crossings will be implemented with any other signalization along the corridor.

The results of the analysis indicate that the Earl Armstrong and River Road intersection is presently approaching its theoretical capacity with a LOS ' $E$ ' during both the weekday morning and afternoon peak hours. This intersection is expected to continue to operate with poor levels of service during these peak periods with and without the proposed development traffic as a result of increased travel demand projected within Riverside South as well as steady growth in cross-commuter traffic to/ from Barrhaven.

With regards to site access, the River and Phase 12 North Access intersection was shown to operate above its theoretical capacity under Future (2029) Total Traffic conditions with a stop-controlled eastbound approach and single, shared lanes on all approaches. Traffic volumes utilizing the North Access however are expected to be minimal with only 17 and 11 weekday morning and afternoon trips expected to egress at this location, respectively, with sidestreet delays expected in the order of 1 to 2 minutes. With underground traffic signal infrastructure already in place at the River/ Summerhill intersection and traffic signals warranted within the timeframe of this study, the southern access will serve as the primary access/ egress for 708 River Road.

The results of the analysis indicate that the intersections of River/ Summerhill, River/ Borbridge, and River/ Atrium/ 760 River Access will require signals to operate at acceptable levels of service (LOS 'D' or better), however warrants are only triggered at River/ Summerhill within the horizon year of this study. Each of these intersections are shown to be operationally-required as a result of background travel demand, and will therefore will be necessary to accommodate the proposed development.

As confirmed through the analysis undertaken for this report, Functional Design Drawings of recommended roadway improvements to support a Roadway Modification Application (RMA) off-site intersection improvements will be required at River/ Summerhill and River/ Atrium Ridge to provide access to the proposed development.
Based on the findings of this study, it is the overall opinion of IBI Group that the proposed development will integrate well with and can be safely accommodated by the adjacent transportation network with the recommended actions and modifications in place.

## 1 Introduction

IBI Group (IBI) was retained by Urbandale Corporation to undertake a Transportation Impact Assessment (TIA) in support of a Draft Plan of Subdivision application for a proposed residential development to be located at 708 and 750 River Road, Ottawa.
In accordance with the City of Ottawa's Transportation Impact Assessment Guidelines, published in June 2017, the following report is divided into four major components:

- Screening - Prior to the commencement of a TIA, an initial assessment of the proposed development is undertaken to establish the need for a comprehensive review of the site based on three triggers: Trip Generation, Location and Safety.
- Scoping - This component of the TIA report describes both the existing and planned conditions in the vicinity of the development and defines such study parameters as the study area, analysis periods and horizon years of the development. It also provides an opportunity to identify any scope exemptions that would eliminate elements of scope described in the TIA Guidelines but not relevant to the development proposal, based on consultation with City staff.
- Forecasting - The Forecasting component of the TIA is intended to review both the development-generated travel demand and the background network travel demand, and provides an opportunity to rationalize this demand to ensure projections are within the capacity constraints of the transportation network.
- Analysis - This component documents the results of any analyses undertaken to ensure that the transportation related features of the proposed development are in conformance with prescribed technical standards and that its impacts on the transportation network are both sustainable and effectively managed. It also identifies a development strategy to ensure that what is being proposed is aligned with the City of Ottawa's city-building objectives.
Throughout the development of a TIA report, each of the four study components above are submitted in draft form to the City of Ottawa and undergo a review by a designated Transportation Project Manager. Any comments received are addressed to the satisfaction of the City's Transportation Project Manager before proceeding with subsequent components of the study. All technical comments and responses throughout this process are included in Appendix A.

Dependent on the findings of this report, the complete submission of this Transportation Impact Assessment may also require Functional Design Drawings of recommended roadway improvements to support a Roadway Modification Application (RMA). The submission may also require a post-development Monitoring Plan to track performance of the planned TIA Strategy. The need for these two elements will be confirmed through the analysis undertaken for this report.

## 2 TIA Screening

An initial screening was completed to confirm the need for a Transportation Impact Assessment by reviewing the following three triggers:

- Trip Generation: Based on the magnitude of the proposed development, the site is expected to generate up to 285 person-trips during morning and afternoon weekday peak hours. With consideration of the proposed land use and the documented modal share for the local area, the proposed development is expected to exceed the 60 person trip threshold during the weekday peak hours and therefore the Trip Generation trigger is satisfied.
- Location: The proposed development will not be accessed from a boundary street that is designated as part of the City's Transit Priority, Rapid Transit network, however the site is on a spine cycling route and is also partially located within 600 m of an existing rapid transit station and Transit-Oriented Development (TOD) Zone. The Location trigger is therefore satisfied.
- Safety: Boundary street conditions were reviewed to determine if there is an elevated potential for safety concerns adjacent the site. As the proposed development will access River Road, an arterial roadway with a posted speed limit of $80 \mathrm{~km} / \mathrm{h}$ south of Earl Armstrong Road, there may be potential for safety concerns and therefore the Safety trigger is satisfied.

As the proposed development meets the Trip Generation, Location and Safety triggers, the need to undertake a Transportation Impact Assessment is confirmed.

A copy of the Screening Form is provided in Appendix B.

## 3 Project Scoping

### 3.1 Description of Proposed Development

### 3.1.1 Site Location

The proposed development consists of two separate property parcels with the municipal addresses of 708 and 750 River Road, located in the community of Riverside South. The total lot size is approximately 20.5 hectares and is bound by River Road to the east, the Rideau River to the west, Earl Armstrong Road to the north and undeveloped lands to the south. Both parcels have direct frontage onto River Road, however the southern parcel ( 750 River Road) will be accessed through 760 River Road (ownership by others) to the immediate south.

The site location and its surrounding context is illustrated in Exhibit 1.


### 3.1.2 Land Use Details

Table 1 summarizes the proposed land uses included in this development.
Table 1 - Land Use Statistics

| LAND USE | SIZE (APPROX. \# <br> OF UNITS) |
| :---: | :---: |
| Single-Family Homes | 80 |
| Townhomes | 55 |
| Condominium Units | 110 |

The Draft Plan the proposed development, as well as the conceptual plan for 760 River Road to the south are illustrated in Exhibit 2.

The conceptual plan for 760 River Road, which presently has no defined development timeline, indicates the potential for approximately 55 single-family homes on these lands.

### 3.1.3 Development Phasing \& Date of Occupancy

The proposed Riverside South Phase 12 development will be constructed in two phases with the single-family and townhomes expected to be built out and occupied by 2021 followed by the condominium units in 2024.


-     -         - Proposed Development Limits
-     -         - 760 River Road Development Limits (By Others)

Project No: 120031
Date: April 2019
| B |


### 3.2 Existing Conditions

### 3.2.1 Existing Road Network

### 3.2.1.1 Roadways

The proposed development is bound by the following street(s):

- River Road is a 2-lane urban arterial roadway with a ROW of 37.5 m that runs parallel with the Rideau River from Riverside Drive/ Limebank Road to the southern urban boundary. River Road has a 4-lane urban cross section at the intersection with Earl Armstrong Road. The posted speed limit on River Road is $60 \mathrm{~km} / \mathrm{h}$ at the north and south approaches to Earl Armstrong Road, and increases to $80 \mathrm{~km} / \mathrm{h}$ south of Earl Armstrong Road as the road transitions to a 2-lane rural cross-section. River Road was recently reconstructed between Summerhill Street and Solarium Avenue.

Other streets within the vicinity of the proposed development are as follows:

- Earl Armstrong Road is designated as an urban arterial road with a 44.5 m ROW in the City of Ottawa Official Plan. Earl Armstrong Road is oriented east-west and extends from River Road in the west to High Road in the east. Further west, across the Vimy Memorial Bridge, Earl Armstrong Road becomes Strandherd Drive, which is also designated as an urban arterial road with a similar ROW. Earl Armstrong Road has a four-lane urban crosssection from the Riverview Park and Ride to just east of Limebank Road. To the west of the Riverview Park and Ride, two additional exclusive bus lanes are provided crossing the Rideau River. The posted speed limit on Earl Armstrong Road is $70 \mathrm{~km} / \mathrm{h}$ to the west of the Riverview Park and Ride station.
- Summerhill Street is an east-west 2-lane urban local road with a ROW of 20 m that provides access to the Riverside South Phase 9 community. The speed limit on Summerhill Street is $50 \mathrm{~km} / \mathrm{h}$.


### 3.2.1.2 Intersections

The following existing intersections have the greatest potential to be impacted by the proposed development:

- Earl Armstrong Road and River Road
- River Road and Summerhill Street

The intersection control and lane configurations of each intersection are shown in Exhibit 3.

### 3.2.1.3 Traffic Management Measures

There are currently no existing traffic management or traffic calming measures on the boundary streets within the vicinity of the proposed development.


## LEGEND

(-) STOP CONTROL
8 SIGNAL CONTROL
$\uparrow \uparrow$ TRAVEL LANES AND PERMITTED MOVEMENTS
(c) CHANNELIZATION

### 3.2.1.4 Existing Traffic Volumes

As the proposed development will comprise of residential land uses, the weekday peak hour traffic conditions will be most affected by the associated increase in traffic. Weekday morning and afternoon peak hour turning movement counts were therefore obtained from the City of Ottawa at the following intersections within close proximity to the site:

- Earl Armstrong Road and River Road (City of Ottawa, February 2019)
- River Road and Summerhill Street (City of Ottawa, April 2017)

It shall be noted that River Road recently underwent construction from Summerhill Street to Solarium Avenue with local detours in place. The traffic data referenced in this study was not impacted by this period of construction.

A growth rate was applied to through volumes along River Road at Summerhill Street and balanced along the corridor to approximate existing (2019) traffic volumes. Justification of background traffic volumes is discussed further in the Forecasting section of this TIA.

Peak hour traffic volumes representative of existing conditions are shown in Exhibit 4. Traffic count data is provided in Appendix C.


Riverside South Phase 12
EXHIBIT 4: Exsiting (2019)

### 3.2.2 Existing Bicycle and Pedestrian Facilities

Exclusive cycling lanes and concrete sidewalks exist on both sides of River Road for a distance of 150 m north of Earl Armstrong Road as well as on both sides of Earl Armstrong Road east and west of River Road. There is an existing multi-use pathway (MUP) along the west side of Prince of Wales Drive, extending both north and south of Vimy Memorial Bridge. Along the east side of the Rideau River, a MUP exists to the north of Earl Armstrong Road.

South of Earl Armstrong Road, paved shoulders exist along River Road for pedestrians and cyclists.

### 3.2.3 Existing Transit Facilities and Service

The following transit routes, operated by OC Transpo, exist within the vicinity of the site:

- Route \#94 provides regular, all-day service between Millennium Station and the Riverview Park \& Ride and operates on a 15 -minute headway. On weekends, service frequency is reduced to every 30 minutes.
- Route \#99 provides regular, all-day service between South Keys station and Barrhaven Centre. During weekday peak periods, service is extended to LeBreton Station and the route operates on a 15 -minute headway. On weekends, frequency is reduced to 30 minutes.
- Route \#198 provides weekday peak period service between South Keys station and the Riverview Park and Ride. This route does not operate on weekends.
- Route \#278 provides weekday peak period service between Earl Armstrong/Limebank and Mackenzie King Station and operates on a 15-minute headway.
- Route \#299 provides weekday peak period service between the village of Manotick and LeBreton Station.

The northern development parcel, 708 River Road, is located partially within the Transit-Oriented Development (TOD) zone surrounding Riverview Station, which services all of the above noted routes. The proposed condominium units will be within a 550 -metre walking distance of the Riverview Station, while the lower-density units will be greater than 750 -metre walking distance.

Bus stops nearest to the southern portion of the development at 750 River Road are within 100 m of the proposed access intersection, and provide access to Route \#299 only. All other routes are accessed via bus stops at the Riverview Park and Ride.

Transit service maps for the individual routes above are provided in Appendix $\mathbf{D}$.
The Riverview Park \& Ride, completed in August 2010, contains approximately 400 parking spaces and is located approximately one kilometer northeast of the proposed development on Earl Armstrong Road. Each of the transit routes described above can be accessed via this station. Exclusive transit lanes are provided on Earl Armstrong Road between the Riverview Park \& Ride and the adjacent community of Barrhaven via the Vimy Memorial Bridge. The Riverview Park \& Ride station is shown below in Figure 1.

Figure 1 - Riverview Transit Station and Park \& Ride


Source: OC Transpo

### 3.2.4 Collision History

A review of historical collision data has been reviewed for the road network surrounding the proposed development. The TIA Guidelines require a safety review if at least six collisions for any one movement or of a discernible pattern, over a five year period have occurred. Table 2 summarizes all reported collisions between January 1, 2013 and January 1, 2018.

Table 2 - Reported Collisions within Vicinity of Proposed Development

| LOCATION | \#OF <br> REPORTED <br> COLLISIONS |  |
| :--- | :---: | :--- |
| Earl Armstrong \& River | 61 | -Southbound rear end impact type: 25 similar <br> cases <br> Northbound rear end impact type: 9 similar <br> cases <br> Eastbound rear end impact type: 6 similar <br> cases <br> Westbound rear end impact type: 5 similar <br> cases <br> Earl Armstrong Road - <br> River to Spratt <br> River Road - Earl <br> Armstrong to Nicolls <br> Island <br> 8Property Damage Only (PD only): 4 similar <br> cases |

Based on the collision history noted above, the intersection of Earl Armstrong Road and River Road warrants further analysis which will be reviewed in subsequent sections of this report.

Detailed collision records are provided in Appendix E.

### 3.3 Planned Conditions

### 3.3.1 Transportation Network

### 3.3.1.1 Future Road Network Projects

The 2013 Transportation Master Plan (TMP) outlines future road network modifications required in the 2031 'Affordable Network'. The following projects were noted that may have an impact on area traffic within the vicinity of the site:

- Earl Armstrong Road - Planned widening from two to four lanes between Limebank Road and Bowesville Road (Phase 3: 2026-2031)
- Prince of Wales Drive - Planned widening from two to four lanes between Merivale Road and West Hunt Club Road (Phase 3: 2026-2031)
The 2019 City-Wide Development Charges Background Study (March 25, 2019) identifies that the Earl Armstrong Road and Prince of Wales Drive road projects are planned for implementation between 2030 and 2031.

Figure 2 illustrates the planned changes to the arterial road network projects in the broader area, as per the TMP Affordable Plan. It should also be noted that Prince of Wales Drive has recently undergone intersection modifications complete with coordinated network modifications from approximately 480 m north of Strandherd Drive to West Hunt Club Road. These road modifications were substantially completed in December 2017.

Figure 2 - Future Road Network Projects


Source: 2013 Transportation Master Plan - Map 11 '2031 Affordable Network'
The Riverside South Community Design Plan (CDP) identifies two major east-west collector roads to the south of the planned rapid transit corridor. As indicated in Figure 3 below, Collector ' 1 '
represents Borbridge Avenue which will ultimately extend from River Road to Bowesville Road. Collector ' $J$ ', also referred to as Solarium Avenue, will provide a connection between River Road and Limebank Road further to the south.

Also within the context area of this study, the CDP indicates that Brian Good Avenue will be extended south to Rideau Road, as indicated by a dashed line in Figure 3 below, between River Road and Spratt Road.

Figure 3 - Riverside South Community Design Plan - Network Concept


Source: Riverside South Community Design Plan

### 3.3.1.2 Future Transit Facilities and Services

The 2013 TMP outlines the future rapid transit and transit priority (RTTP) network. The following projects were noted in the 'Affordable RTTP Network' that may have a future impact on study area traffic:

- O-Train Trillium Line South - Extension of the O-Train from Greenboro Station to Limebank, including new stations at Gladstone, Walkley, South Keys, Leitrim and Earl Armstrong / Bowesville, and a spur line to the Airport, including a new station at Uplands. Based on the Trillium Line LRT Extension Environmental Project Report (EPR) Addendum (September, 2018), there have been notable changes to the planned extension of the Trillium Line since the publication of the TMP. These changes include:
o The location of the Bowesville Station has been moved further south near Earl Armstrong Road
o The Trillium Line terminus has been extended to Limebank Road.
o Crossings of Earl Armstrong Road, Bowesville Road and Limebank Road will be grade-separated.

The City is targeting the completion of the O-Train extension to Riverside South by 2022.

- Chapman Mills/ Strandherd Drive/ Earl Armstrong Road Transit Priority Corridor The corridor is expected to be upgraded with transit signal priority and queue jump lanes between the Barrhaven Town Centre Station and Bowesville Station. There is presently no specific timing available for the implementation of this project.

As shown previously in Figure 3, the Riverside South CDP identifies the eventual construction of a Rapid Transit Corridor immediately to the north of the proposed development, connecting the Riverside Park and Ride with the future O-Train terminus at Limebank Road. The implementation of this corridor, however, is presently not expected within the horizon year of this study.

Figure 4 shows the transit infrastructure projects in the vicinity of the proposed development that are part of the 2031 Affordable Network. Note that the figure below does not account for the changes to the Trillium Line LRT Extension described in the EPR Addendum which recommends a realignment of the LRT corridor and terminates at Limebank Road.

Figure 4 - Future 'Affordable RTTP Network Projects'


Source: 2013 Transportation Master Plan - Map 5 '2031 Affordable Network'

### 3.3.1.3 Future Cycling and Pedestrian Facilities

The Transportation Master Plan (TMP) designates Earl Armstrong Road and River Road as Spine Routes, which form part of a system linking the commercial, employment, institutional, residential and educational nodes throughout the City of Ottawa. River Road was recently reconstructed and provides paved shoulders on both sides of the road. There are currently no plans to introduce concrete sidewalks along this corridor, however the TMP identifies a major pathway west of River Road between Earl Armstrong Road and Nicolls Island Road. This pathway was also identified in the Riverside South Community Design Plan (CDP), approved in 2016, however the timing of this active transportation link is unknown.

The Riverside South CDP also provides details on proposed active transportation facilities within the area, including a multi-use pathway along the proposed Rapid Transit corridor and east of the Rideau River. Furthermore, it shows Earl Armstrong Road, Solarium Avenue and Borbridge Avenue east of Spratt Road as being part of the "Primary Pedestrian - Cycling Network".

The planned cycling and pedestrian network indicated in the CDP is shown below in Figure 5.
Figure 5 - Riverside South Community Design Plan - Cycling and Pedestrian Network


Source: Riverside South Community Design Plan

### 3.3.2 Future Adjacent Developments

The City of Ottawa Transportation Impact Assessment (TIA) Guidelines specify that all significant developments proposed within the surrounding area which are likely to occur within the study's horizon year must be identified and taken into consideration in the development of future background traffic projections.

There are 17 known developments of significance in the vicinity of the proposed development. For these developments, all unoccupied units have been accounted for in the development of background traffic volumes using consistent trip generation assumptions. Traffic generated by occupied units is assumed to have been captured in the existing traffic data, based on a site visit conducted by IBI staff on September 9, 2018.
All current developments applications adjacent to the site are summarized in Table 3. Future potential developments that have no official status are summarized in Table 4. Build-out assumptions for future potential developments are provided in the Forecasting section of this report.

The approximate locations of all current adjacent development applications and future potential developments are shown in Exhibit 5.

Table 3 - Adjacent Developments (Current Development Applications)

| DEVELOPMENT | LAND USE | SIzE | $\begin{aligned} & \text { BUILT/ } \\ & \text { OCCUPIED } \end{aligned}$ | \% BUILTI | BUILD-OUT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Claridge Phase 2 (Sub-Phase 1) | Single Family Residential | 268 units | 0 units | 0\% | 2021 |
|  | Townhome | 172 units | 0 units | 0\% | 2021 |
| Claridge Phase 2 (Sub-Phase 2) | Single Family <br> Residential | 78 units | 0 units | 0\% | 2026 |
|  | Townhome | 237 units | 0 units | 0\% | 2026 |
| Riverside Phase 8 (RSDC) | Single Family <br> Residential | 176 units | 153 units | 87\% | 2019 |
|  | Townhome | 256 units | 234 units | 91\% | 2019 |
|  | Stacked <br> Townhome | 146 units | 0 units | 0\% | 2019 |
| Phase 9 South (RSDC) | Single Family Residential | 414 units | 404 units | 98\% | 2019 |
|  | Townhome | 760 units | 0 units | 0\% | Complete |
|  | Stacked Townhome | 181 units | 181 units | 100\% | Complete |
| Phase 9 North (RSDC) | Shopping Centre | 101,000 sqft | 0 sqft | 0\% | 2019 |
|  | Stacked Townhome | 94 units | 81 units | 86\% | 2019 |
| Phase 9 Southeast (Urbandale) | Single Family Residential | 22 units | 0 units | 0\% | 2019 |
|  | Townhome | 114 units | 0 units | 0\% | 2019 |
| Phase 13 (RSDC) | Single Family Residential | 282 units | 18 units | 6\% | 2019 |
|  | Townhome | 190 units | 0 units | 0\% | 2019 |
| RSDC Phase 15 (Sub-Phase 1) | Single Family Residential | 215 units | 0 units | 0\% | 2021 |
|  | Townhome | 373 units | 0 units | 0\% | 2021 |
| RSDC Phase 15 (Sub Phases 2 \& 3) | Single Family Residential | 293 units | 0 units | 0\% | 2026 |
|  | Townhome | 192 units | 0 units | 0\% | 2026 |


| 4725 Spratt Road <br> (Claridge) | Townhome | 275 units | 0 units | $0 \%$ | 2021 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 879 River Road <br> (Richcraft) | Townhome | 117 units | 0 units | $0 \%$ | 2020 |
| 673 River Road <br> (Cardel Homes) | Single Family <br> Residential | 234 units | 0 units | $0 \%$ | 2029 |
|  | Townhome | 260 units | 0 units | $0 \%$ | 2029 |

Note: Occupancy rates are based on a site visit conducted by IBI Group staff on September 9, 2018 RSDC $=$ Riverside South Development Corporation

Table 4 - Future Potential Developments ${ }^{1}$

| DEVELOPMENT | LAND USE | StzE |
| :---: | :---: | :---: |
| 760 River Road | Single Family Residential | 55 units |
| Block K (RSDC) | Stacked Townhomes | 43 units |
|  | Shopping Centre | 143,000 sqft |
| Phase 17 - 4775 \& 4875 <br> Spratt Road <br> (Urbandale) ${ }^{2}$ | Single Family Residential | 588 units |
|  | Townhome | 294 units |
| Phase 4 <br> (Nicolls Island Road Holdings Inc.) | Single Family Residential | 24 units |
|  | Townhome | 31 units |
| 425 Nicolls Island Road (Alphon Group Canada Inc.) | Single Family Residential | 118 units |
|  | Townhome | 23 units |

Note: Occupancy rates are based on a site visit conducted by IBI Group staff on September 9, 2018.
RSDC = Riverside South Development Corporation
${ }^{1}$ Build-out years are not known for these developments and construction has not started. Assumptions regarding the build-out of developments in Table 4 are provided in the Forecasting section of this report.
${ }^{2}$ Preliminary unit count based on residential density targets specified on Page 16 of the Riverside South Community Design Plan (2016).


Riverside South Development Corporation (RSDC) - Phase 8 Riverside South Development Corporation (RSDC) - Phase 9 Riverside South Development Corporation (RSDC) - Phase 13 Riverside South Development Corporation (RSDC) - Phase 15 Riverside South Development Corporation (RSDC) - Phase 17

$\square$ Richcraft Urbandale
Claridge

### 3.3.3 Network Concept Screenline

A screenline is a predetermined boundary between areas of major traffic generation that captures all significant points of entry from one area to another to compare crossing demand with the available roadway capacity. Screenlines are typically located along geographical barriers such as rivers, rail lines or within the greenbelt. To capture existing flow and model future demand, count stations are established at each crossing point along the screenline.

The nearest strategic planning screenlines adjacent to the development have been considered in the screenline analysis:

- SL8 - Leitrim - This is the nearest east/west screenline to the north of the study area. It is located just north of Leitrim Road and runs from east of Hawthorne Road to just east of Limebank Road, transitioning to a north/south screenline travelling east of Limebank Road before terminating at the intersection of Limebank and River Road. This screenline has three crossing points immediately north of Leitrim Road at Hawthorne Road, Bank Street and Albion Road, as well as an additional crossing point at River Road where Limebank Road transitions to Riverside Drive.
- SL42 - Rideau River (Manotick) - This is the nearest north/south screenline to the study area, and it is located along the Rideau River from just south of Mitch Owens Road to just north of Leitrim Road. It has two crossing points: the Vimy Memorial Bridge and the Manotick Bridge.

SL8 and SL42 are shown in Figure 6, as determined from the City of Ottawa's Road Network Development Report (2013), a supporting document to the 2013 Transportation Master Plan (TMP). Analysis of the Network Impact at these screenlines will be assessed in the Analysis section of this report.
Figure 6 - Screenlines


### 3.4 Study Area

Based on a review of the information presented thus far, a study area bound by Earl Armstrong Road to the north, River Road to the east and the southern limit of the proposed development will provide a sufficient assessment of the development's impact on the adjacent transportation network.

The following intersections will therefore be assessed for vehicular capacity as part of this study:

- Earl Armstrong Road and River Road
- River Road and Ph. 12 North Access
- River Road and Ph. 12 South Access/ Summerhill Street
- River Road and 760 River Access/ Atrium Ridge

Multi-modal Level of Service will be conducted for all signalized intersections within the study area described above, as well as along River Road between Earl Armstrong and the southern limits of the proposed development.

### 3.5 Time Periods

As the proposed development will consist of residential land uses, traffic generated during the weekday morning and afternoon peak hours is expected to result in the most significant impact to traffic operations on the adjacent network.

### 3.6 Study Horizon Year

The following future analysis years will be assessed in this study:

- Year 2021 - Full Build-out/ Occupancy of Single-Family and Townhome Units Only
- Year 2024 - Full Build-out/ Occupancy of Proposed Development
- Year 2029-5 years Beyond Full Build-out/ Occupancy

As noted above, the proposed development is being evaluated with interim analysis years of 2021 and 2024 (full build-out/ occupancy) to coincide with the phasing of the development. The study horizon year for the development is therefore 2029.

### 3.7 Exemptions Review

The TIA Guidelines provide exemption considerations for elements of the Design Review and Network Impact components. Table 5 summarizes the TIA modules that are not applicable to this study.

Table 5 - Exemptions Review

| TIA MODULE | ELEMENT | EXEMPTION CONISDERATIONS | REQUIRED |
| :---: | :---: | :---: | :---: |
| DESIGN REVIEW COMPONENT |  |  |  |
| 4.1 Development Design | 4.1.2 Circulation and Access | - Only required for site plans | $X$ |
|  | 4.1.3 New Street Networks | - Only required for plans of subdivision | $\checkmark$ |
| 4.2 Parking | 4.2.1 Parking Supply | - Only required for site plans | $X$ |
|  | 4.2.2 Spillover Parking | - Only required for site plans where parking supply is $15 \%$ below unconstrained demand | $X$ |
| NETWORK IMPACT COMPONENT |  |  |  |
| 4.5 <br> Transportation Demand Management | All Elements | - Not required for site plans expected to have fewer than 60 employees and/or students on location at any given time | $\sqrt{ }$ |
| 4.6 <br> Neighbourhood <br> Traffic Management | 4.6.1 Adjacent Neighbourhoods | - Only required when the development relies on local or collector streets for access and total volumes exceed ATM capacity thresholds | $X$ |
| 4.8 <br> Network Concept | n/a | - Only required when proposed development generates more than 200 person-trips during the peak hour in excess of the equivalent volume permitted by established zoning | $\checkmark$ |

## 4 Forecasting

### 4.1 Development Generated Traffic

### 4.1.1 Trip Generation Methodology

Peak hour site-generated traffic volumes were developed using the 2009 TRANS Trip Generation Residential Trip Rates Study Report. The TRANS trip generation rates are based on a blended rate derived from 17 trip generation studies undertaken in 2008, the Institute of Transportation Engineers (ITE) Trip Generation Manual and the 2005 TRANS OD Travel Survey. Separate trip generation rates exist for each of the four general geographic areas in Ottawa: Core, Urban (Inside the Greenbelt), Suburban (Outside the Greenbelt) and Rural. These trip generation rates reflect existing travel behavior by dwelling type and geographic area. Adjusted trip generation rates also exist to reflect increased transit usage for developments in close proximity to rapid transit stations.

The Transportation Impact Assessment (TIA) Guidelines recommend the TRANS trip generation rates be converted to person-trips based on the vehicular mode share proportions detailed in the TRANS Trip Generation study. The person-trips are to be subdivided based on representative mode share percentages applicable to the study area to determine the number of vehicle, transit, pedestrian, cycling and other trip types.

Local mode shares were based on the TRANS Committee: 2011 Origin-Destination (OD) Survey completed for the City of Ottawa. The OD Survey has mode share breakdowns for specific Traffic Assessment Zones (TAZ) throughout the City; the South Gloucester/ Leitrim TAZ has been referenced for this study.

### 4.1.2 Trip Generation Results

### 4.1.2.1 Vehicle Trip Generation

Peak hour vehicular traffic volumes associated with the Riverside South Phase 12 development were determined using the peak hour trip generation rates in the TRANS Trip Generation study. The vehicular trip generation results for the proposed development have been summarized in Table 6.

Table 6 - TRANS Vehicular Trip Generation Results (Riverside South Phase 12)

| BUILD-OUT YEAR | LAND USE | stze <br> (DU) | PERIOD | GENERATED TRIPS (VPH) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | IN | OUT | TOTAL |
| 2021 | Townhouse | 55 | AM | 11 | 19 | 30 |
|  |  |  | PM | 21 | 18 | 39 |
| 2021 | Single-Family Homes | 80 | AM | 15 | 37 | 52 |
|  |  |  | PM | 41 | 26 | 67 |
| 2024 | Condominium Units | 110 | AM | 14 | 37 | 51 |
|  |  |  | PM | 29 | 21 | 50 |

Notes: DU = Dwelling Units, vph = Vehicles Per Hour
As the southern enclave of Riverside South Phase 12 is reliant on 760 River Road for access to the adjacent road network, the 760 River Road parcel has been given special consideration in this
study to ensure that the site access has been designed to sufficiently accommodate the total expected volume of traffic, based on the conceptual plan.

Traffic generation for 760 River Road is provided in Table 7 below:
Table 7 - TRANS Vehicular Trip Generation Results (760 River Road)

| LAND USE | SIZE <br> (DU) | PERIOD | GENERATED TRIPS (VPH) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | OUT | TOTAL |  |  |
| Single-Family <br> Homes | 55 | AM | 11 | 27 | 39 |
|  |  | PM | 31 | 19 | 50 |

Notes: $D U=$ Dwelling Units, $v p h=$ Vehicles Per Hour
Since the timing of 760 River Road is not presently not known, the study has conservatively assumed that it will be fully occupied by the 2024 horizon year.

### 4.1.2.2 Person Trip Generation

The person-trip to vehicle-trip conversion factors for TRANS trip generation rates vary depending on the peak hour, geographic location and land use considered. The vehicular trip generation results from the previous section were divided by the vehicle mode shares to determine the number of person-trips likely to be generated.

The results after applying the corresponding vehicle mode share conversion factor have been summarized in Table 8 and Table 9 for the proposed development and the adjacent 760 River Road development, respectively.

Table 8 - Person-Trip Results (Riverside South Phase 12)

| BUILD-OUTYEAR | LAND USE | VEH MODE SHARE | PERIOD | PERSON TRIPS (PPH) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | IN | OUT | TOTAL |
| 2021 | Townhouse | 55\% | AM | 20 | 35 | 55 |
|  |  | 61\% | PM | 34 | 30 | 64 |
| 2021 | Single-Family Homes | 55\% | AM | 27 | 67 | 94 |
|  |  | 64\% | PM | 64 | 41 | 105 |
| 2024 | Condominium Units | 44\% | AM | 32 | 84 | 116 |
|  |  | 44\% | PM | 67 | 48 | 115 |
| AM Total |  |  |  | 79 | 186 | 265 |
| PM Total |  |  |  | 165 | 119 | 284 |

Notes: DU = Dwelling Units, pph = persons per hour

Table 9 - Person-Trip Results (760 River Road)

| LAND USE | PERIOD | GENERATED TRIPS (VPH) |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | IN | OUT | TOTAL |
| Condominium <br> Units | AM | 20 | 50 | 70 |
|  | PM | 48 | 30 | 78 |

### 4.1.2.3 Mode Share Proportions

The 2011 TRANS Origin-Destination (O-D) Survey provides approximations of the existing modal share within the South Gloucester/ Leitrim Traffic Assessment Zone (TAZ). Relevant extracts from the 2011 O-D Survey are provided in Appendix F.

Adjustments were made to the Transit Modal Split (TMS) in future horizons to better reflect the impact of transit infrastructure projects planned in the TMP. The methodology for these adjustments is provided in Section 4.3.2. It should be noted that these adjustments were limited traffic generation at 708 River Road, and that modal shares for 750 and 760 River Road are assumed to follow the existing mode shares from the OD Survey for all analysis years considered in this study.

For the proposed development as a whole, no adjustments were made to active modes of transportation such as walking and cycling for future planning horizons. This approach should be considered conservative.

The existing and proposed mode share targets for the South Gloucester/ Leitrim TAZ for each of the analysis horizons are outlined in Table 10.

Table 10 - Existing and Proposed Mode Share for South Gloucester/Leitrim (2011 O-D Survey)

| TRAVEL MODE | MODE SHARE BY HORIZON YEAR FOR 708 RIVER ROAD |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { O-D SURVEY } \\ (2011) \end{gathered}$ |  | INTERIM BUILDOUT (2021) |  | FULL BUILDOUT (2024) |  | FULL BUILD-OUT <br> + 5 YRS (2029) |  |
|  | AM | PM | AM | PM | AM | PM | AM | PM |
| Auto Driver | 64\% | 68\% | 62\% | 65\% | 60\% | 63\% | 56\% | 59\% |
| Transit | 12\% | 11\% | 14\% | 14\% | 16\% | 16\% | 20\% | 20\% |
| Auto <br> Passenger | 17\% | 15\% | No Change |  |  |  |  |  |
| Cycling | 1\% | 1\% |  |  |  |  |  |  |
| Walking | 0\% | 0\% |  |  |  |  |  |  |
| Other | 6\% | 5\% |  |  |  |  |  |  |

### 4.1.2.4 Trip Reduction Factors

## Deduction of Existing Development Trips

Not Applicable: The proposed development lands are currently undeveloped, and do not generate any traffic volumes.

## Pass-by Traffic

Not Applicable: The proposed development will not generate pass-by traffic.

## Synergy/ Internalization

Not Applicable: The proposed development will include only residential land uses, therefore internalization reduction factors are not required for this study.

### 4.1.2.5 Trip Generation by Mode

The mode share targets from Table 10 were applied to the number of development generated person-trips to determine the number of trips per travel mode. The results after applying the mode share targets are summarized in Table 11 for the proposed development.

Table 11 - Peak Hour Person Trips by Mode and Horizon Year (Riverside South Phase 12)

|  |  | AM |  | PM |  | AM | 202 | PM | 202 | AM |  | PM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IN | OUT |
| Auto Driver | 30 | 64 | 65 | 47 | 48 | 113 | 106 | 76 | 46 | 107 | 100 | 73 |
| Transit | 6 | 14 | 13 | 9 | 12 | 28 | 25 | 18 | 14 | 34 | 30 | 21 |
| Auto <br> Passenger | 8 | 14 | 15 | 11 | 14 | 32 | 25 | 18 | 14 | 32 | 25 | 18 |
| Walking | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 |
| Cycling | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other | 3 | 5 | - 3 | 4 | 5 | 11 | 8 | 6 | 5 | 11 | 8 | 6 |
| Total | 145 |  | 169 |  | 265 |  | 284 |  | 265 |  | 284 |  |

The resulting number of person-trips by mode for 760 River Road are summarized in Table 12, assuming build-out of the development occurs by 2024 to coincide with the full build-out of the Riverside South Phase 12 development.

Table 12 - Peak Hour Person Trips by Mode and Horizon Year (760 River Road)

| MODE | 2024 AM |  | 2024 PM |  | 2029 AM |  | 2029 PM |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IN | OUT | IN | OUT | IN | OUT | IN | OUT |
| Auto Driver | 13 | 32 | 33 | 21 | 13 | 32 | 33 | 21 |
| Transit | 2 | 6 | 5 | 3 | 2 | 6 | 5 | 3 |
| Auto Passenger | 3 | 8 | 7 | 5 | 3 | 8 | 7 | 5 |
| Walking | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Cycling | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Other | 1 | 3 | 2 | 2 | 1 | 3 | 2 | 2 |
| Total | 70 |  | 78 |  | 70 |  | 78 |  |

### 4.1.3 Trip Distribution and Assignment

With consideration that the land use of the proposed development will be residential, the anticipated distribution of site-generated traffic in each of the four cardinal directions will be
consistent with the AM Peak commuter flow based on the 2011 O-D Survey data. Assignment of site-generated traffic along logical routes for each direction has been assumed as follows and is consistent with approved transportation impact assessments studies recently completed for nearby adjacent developments:

- $90 \%$ to/from North
o $40 \%$ via River Road
o 40\% via Limebank Road
o 10\% via Prince of Wales Drive
- $10 \%$ to/from South
o $10 \%$ via River Road
Utilizing the estimated number of new auto trips and applying the above distribution, future sitegenerated traffic volumes in the 2021, 2024 and 2029 horizon years are illustrated for each of the study area intersections in Exhibit 6, Exhibit 7 and Exhibit 8, respectively.

LEGEND
$(x x x) x x x \rightarrow 0$
$(x x x) x x x \rightarrow 0$
$(x x x) x x x \rightarrow 2$
-

## — Existing Roads

5 (5) * Nominal Traffic Volumes

EXHIBIT 6


EXHIBIT 7


### 4.2 Background Network Traffic

### 4.2.1 Changes to the Background Transportation Network

To properly assess future traffic conditions, planned modifications to the transportation network that may impact travel patterns or demand within the study area have been considered. The Scoping section of this TIA reviewed the anticipated changes to the study area transportation network based on the Transportation Master Plan (TMP), Capital Budget Forecasts and the 2019 City-Wide Development Charges Background Study, and determined that there are no major arterial road network modifications planned within the study area.
There are a number of anticipated transportation network changes triggered by development in the surrounding Riverside South Community. A summary of the relevant local transportation network changes has been provided below:

- Solarium Avenue (Collector 'J'), a new east-west collector road south of the study area, will connect River Road, Spratt Road and Limebank Road. The connection from River Road to Spratt Road is expected to be in place by 2020.
- Borbridge Avenue, an existing collector road, will be extended from River Road to Spratt Road, forming a new T-intersection at River Road and connecting to Collector 'l' at Spratt Road to form a new four-way intersection. The intersection of Borbridge and River is expected to be open for general traffic in spring 2019, while the extension and connection of Borbridge Avenue to Spratt is expected to be completed later in 2019.
- Brian Good Avenue will be extended south of its existing terminus at Borbridge Avenue to provide a connection with Solarium Avenue and continue further south towards Rideau Road.
- The Riverside South Phase 2 and Phase 15 TIAs conducted by IBI Group (November 2017) recommended the conversion of Earl Armstrong/ Brian Good from a stop controlled intersection to a signalized intersection immediately due to existing traffic capacity issues.
- The Riverside South Phase 13 TIA conducted by Dillon Consulting (July 2014) recommended dual westbound left-turn lanes at the Earl Armstrong / Spratt intersection with storage lane lengths of 70 m by 2023.


### 4.2.2 General Background Growth Rates

The background growth rate is intended to represent regional growth from outside the study area that will travel along the adjacent road network. Consistent with approved TIAs completed in the broader study area, the following growth rates were proposed within the study area for the calculation of future background traffic estimates:

- 0\% linear growth per annum for through movements along River Road south of Earl Armstrong Road
- $0.5 \%$ linear growth per annum for all movements at the Earl Armstrong Road and River Road intersection with the exception of eastbound and westbound through movements in the weekday morning and afternoon peak hours, respectively, which are expected to sustain a $1.0 \%$ growth rate.

As with previous TIAs completed within Riverside South, adjustments were made to the background growth rate at the intersection of Earl Armstrong and River to better reflect the impact of planned transit infrastructure projects planned in the TMP. The methodology for these adjustments is provided in Section 4.3.3.2.

A general background growth rate has not been applied to collector and local roadways within the study area, as traffic generation relating to all known future adjacent developments has been exclusively accounted for in the analysis.

### 4.2.3 Other Area Development

All current adjacent development applications and future potential developments within the study area were previously identified in Table 3 and Table 4, respectively. All of the developments identified have been accounted for in the future background volume projections. The developments represent specific areas of growth within the study area and are therefore considered in addition to the general background growth rate discussed previously.

A site survey was completed documenting all occupied units within these development lands. All unoccupied units have been accounted for separately in the development of future background traffic volumes established in this study. Conversely, all occupied units have been accounted for in the existing (2019) volumes.

According to Canada Mortgage and Housing Corporation (CMHC) statistics, historical new housing starts in the Riverside South Community range from 300 to 400 units per year. This study assumes a high growth scenario with a build-out rate of 450 units per year from 2019 to 2029. Construction of future potential developments is assumed to start after 2024 and progress uniformly to bridge the gap between the build-out of current development applications and the expected market absorption rate of 450 units per year. The rate of development assumed in this study is deemed appropriate given the high market demand for new housing in the Riverside South community.

### 4.3 Demand Rationalization

The purpose of this section is to rationalize future travel demands within the study area to account for potential capacity limitations in the transportation network and its ability to effectively accommodate the additional demand generated by a new development.

### 4.3.1 Description of Capacity Issues

### 4.3.1.1 Earl Armstrong and River

The Earl Armstrong Road and River Road intersection has been operating at or above its theoretical capacity since the Vimy Memorial Bridge opened in 2014, as determined in recent transportation studies for nearby developments. Despite the intersection having been built to its ultimate, 4-lane configuration with dual left-turn lanes on all approaches, channelized right-turn lanes, as well as exclusive bus and cycling lanes, the intersection remains congested during peak periods with limited opportunities to increase vehicular capacity.

As previously shown in Exhibit 4, weekday morning and afternoon peak hour volumes along Earl Armstrong Road at River Road are presently in the order of 1,000 vehicles per hour in the peak direction, which is within the capacity limitations ( 1,000 vehicles per hour per lane) for two lanes on an arterial road. Traffic volumes on River Road immediately south of Earl Armstrong Road are presently in the order of 800 vehicles per hour in the peak direction, which is also under capacity.
Even though the through volumes within the study area are presently shown to be within the capacity limitations along Earl Armstrong and River Roads, heavy turning movement volumes are a contributing factor to existing capacity issues at this intersection. The eastbound left-turn during the weekday morning peak hour and southbound right-turn during the weekday afternoon peak hour have been recorded in the order of 635 vehicles and 805 vehicles, respectively. The magnitude of these volumes suggests that these movements may be experiencing capacity
issues, and that additional contributions to these movements (or their opposing movements) will further exacerbate congestion at this intersection.

It should be noted, however, that based on the distribution of site-generated traffic assumed in this study, the proposed development is not expected to contribute additional traffic volumes to either of these turning movements. Further to this, there are viable alternative routes available to local traffic to avoid this bottleneck in the transportation network, such as Limebank Road and Prince of Wales Drive. According to the Needs and Opportunities Report (2013), the Leitrim Screenline (SL 8) has additional inbound capacity during the weekday morning peak period to accommodate diverted trips from the Earl Armstrong Road and River Road intersection to ensure that the theoretical capacity of the intersection is not exceeded in the future analysis scenarios.

### 4.3.1.2 River and Summerhill

Once the west leg of the River Road and Summerhill Street intersection is constructed, it is expected that there may be excessive delays on the eastbound-left movement. Analyses conducted in other TIAs within the study area previously indicated that the traffic volumes in future peak direction along River Road would exceed 1,100 vehicles during the peak hours, providing few gaps for vehicles entering from the side street. These volumes are further-increased with consideration of additional developments lands along the corridor and to the south.
In anticipation of these constraints, the City had proactively installed underground traffic signal infrastructure at the River and Summerhill intersection in late 2018. It is expected that the inclusion of the west leg will trigger the need for signalization at the intersection, based on intersection capacity analysis and Ontario Traffic Manual (OTM) signal warrants.

The Analysis section of this TIA will confirm the timing of any localized issues at any of the study area intersections under background and total traffic conditions, and suggest mitigation measures where applicable.

### 4.3.2 Adjustment to Development Generated Demands

Development generated demand and mode share can vary over time to reflect changes to the transportation network. The City continues to promote the proliferation of transit and active transportation modes in order to meet the mode share targets set in the Transportation Master Plan (TMP). Transit is expected to play a significant role, and will have an impact on travel behaviour within the study area.
Although pedestrian and cycling facilities have expanded within the Riverside South Community, the impact on development generated traffic demand is not expected to result in any significant changes to the target mode share assumed for this study.

### 4.3.2.1 Transit Modal Share

The trip generation results presented in Table 11 had been adjusted to account for future increases in transit mode share (TMS). The TMP indicates that the transit mode share in the morning peak period from Riverside South/ Leitrim area to all other areas in the City was estimated at $9 \%$ in 2011 with a transit mode share target of $16 \%$ by 2031.

This 7\% increase in the transit modal share (TMS) is based on expected Rapid Transit and Transit Priority projects outlined in the 'Affordable Network' of the TMP. Within the Riverside South Community specifically, the TMP notes that transit priority measures are to be implemented along Earl Armstrong Road to provide improved connectivity between the Town Centres of Barrhaven South and Riverside South.

The Trillium Line LRT Extension Addendum (Sept. 2018) identifies a few significant changes to the TMP's conceptual alignment for the Trillium Line South Extension, including the relocation of
the planned terminus station from its original location at Bowesville to within the Riverside South Community Core at Limebank Road. The South Extension is planned as part of the Light Rail Transit (LRT) Phase 2 project with a recently-revised target date of 2022.

The impacts to travel behaviour associated with locating a major light rail transit hub within the Riverside South Community by 2022 are therefore not accounted for in the City's Transportation Master Plan 2031 TMS projections. It is very likely that the 2031 transit modal share (TMS) target of $16 \%$ will be achieved well in advance of the City's ultimate planning horizon as a result of the LRT South Extension. In recognition of this, the following TMS target for both site-generated traffic and adjacent development traffic has been assumed:

- Year 2021:
o TMS = 14\%
- Year 2024:

$$
\text { o TMS }=16 \% \text { (TMP } 2031 \text { target) }
$$

- Year 2029:
o TMS = 20\%

The above noted increases in transit modal share assume proportional decreases in vehicular trip generation, and have been adjusted to account for the expected delay associated with the LRT Southern Extension.

### 4.3.3 Adjustment to Background Network Demands

### 4.3.3.1 Transit Mode Share

Previous TIAs conducted in the Riverside South area were carried under the assumption that the Trillium Line South Extension would be completed by 2021, however the City has recently indicated that this portion of LRT Stage 2 will be delayed until 2022. It was therefore necessary to adjust the transit mode share for all adjacent developments to align with the more realistic levels noted above.

### 4.3.3.2 Background Growth Rate Reductions

As discussed in Section 4.2.2, a regional background growth rate of $1.0 \%$ was applied to select movements along arterial roadways within the study area. This growth rate was based on previously approved traffic studies for developments located within the study area. Local side street traffic volumes were not subject to this growth rate as traffic generated by all potential and future adjacent development were explicitly accounted for in the analysis.
At the intersection of Earl Armstrong Road and River Road intersection, a growth rate of $0.5 \%$ was applied to all movements with the exception of the eastbound through in the morning peak period and the westbound through in the afternoon peak period. These two movements retained the 1.0\% background growth rate. The reason for the reduction to the remaining movements can be summarized as follows:

1. The Vimy Memorial Bridge crossing was opened in late 2014 and traffic volumes at the Earl Armstrong Road and River Road intersection increased significantly in the first 2 years of operation, however this initial growth is unsustainable nor representative of future background growth. Therefore, the historical trends prior to the bridge opening were reviewed to define a baseline rate for future background growth for all movements to/ from River Road. This approach was considered to be a more representative predictor of future background growth since the transportation network in the local area in the
years prior to the Bridge opening was stable. The results of this analysis has been summarized in Table 13, which show flat to negative growth for nearly all movements during this period.
2. The Earl Armstrong Road and River Road intersection is currently operating above its theoretical capacity despite being constructed to its ultimate configuration. It therefore was considered unreasonable to assume a constant $1.0 \%$ growth rate through to the 2029 horizon year for all movements at this intersection. Background traffic should be expected to redirect to other routes as a result.
3. Table $\mathbf{1 4}$ summarizes the post-bridge annual traffic volume trends. The results showed significant growth on major commuter movements e.g. the EBT and WBT, as expected, however on minor movements such as the EBR, WBL, NBL and NBR, growth was less significant and could be attributed to new local residents from the ongoing development of the Riverside South Community. It was therefore deemed appropriate to apply a marginal growth linear growth rate of $0.5 \%$ per annum to each movement. These movements are the most logical access and egress routes for local trips. As previously noted, all known future potential and proposed adjacent developments are accounted for separately in this analysis, therefore applying an additional growth rate to these movements may constitute double counting of future trips generated by the local community.
4. Projected growth on the southbound right-turn and eastbound left-turn movements is assumed to be marginal within the timeframe of the study, as continued growth at the current rate is not sustainable. As such, a marginal growth rate of $0.5 \%$ was applied linearly to the future projected traffic volumes.

Table 13 - Earl Armstrong Road and River Road Historical Peak Hour Traffic Volumes - Pre-Bridge

| COUNT <br> DATE | COMBINED AM \& PM TRAFFIC VOLUMES BY |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WBOVENT | WBR | NBT | NBR | SBL | SBT |
|  | June 2006 | 304 | 240 | 799 | 266 | 123 |
| May 2007 | 284 | 271 | 756 | 231 | 138 | 610 |
| May 2008 | 342 | 156 | 659 | 301 | 127 | 535 |
|  | June 2009 | 370 | 209 | 761 | 231 | 175 |
| July 2013 | 349 | 97 | 620 | 166 | 88 | 470 |
| July 2014 | 356 | 168 | 794 | 222 | 88 | 567 |
| Trend | Pos | Neg | Neg | Neg | Neg | Neg |

Table 14 - Earl Armstrong Road and River Road Historical Peak Hour Traffic Volumes - Post Bridge

| COUNT DATE | COMBINED AM \& PM TRAFFIC VOLUMES BY MOVEMENT |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |
| August $2014{ }^{1}$ | 695 | 1124 | 248 | 148 | 1040 | 106 | 305 | 535 | 127 | 54 | 396 | 652 |
| Sept 2015 | 722 | 1769 | 380 | 174 | 1399 | 150 | 430 | 516 | 133 | 59 | 318 | 922 |
| March 2016 | 667 | 1721 | 353 | 164 | 1457 | 104 | 400 | 503 | 130 | 52 | 273 | 768 |
| June 2016 | 643 | 1836 | 415 | 181 | 1512 | 139 | 502 | 498 | 144 | 60 | 335 | 898 |
| Feb 2019 | 1047 | 1949 | 463 | 94 | 1801 | 117 | 499 | 389 | 87 | 71 | 219 | 1031 |
| Long-Term Trend ${ }^{2}$ | Pos | Pos | Pos | - | Pos | Neg | - | Neg | - | - | Neg | Pos |

Notes: EB/WB/NB/SB - eastbound, westbound, northbound, southbound; L/T/R = left/through/right
${ }^{1}$ Count completed shortly after Vimy Memorial Bridge opened, expected to be low and was considered an outlier
2. Considers long-term trend in traffic volumes from June 2006 to Feb 2019

Table 14The historical trends noted in Table 14 support the $0.5 \%$ background growth rate assumptions at the Earl Armstrong Road and River Road intersection. The only exceptions to the $0.5 \%$ growth rate were the eastbound through in the morning peak period and the westbound through in the afternoon peak period. Cross traffic between the Barrhaven South and Riverside South communities is expected to continue increasing as City infrastructure projects are completed as part of Phases 2 and 3 of the TMP network timetable, such as the extension of the Trillium Line to Limebank Road and the planned widening and extension of Earl Armstrong Road east of Limebank Road. Therefore, the $1.0 \%$ background growth rate applied to these two movements was considered reasonable.

In addition to the above, a $0.5 \%$ background growth rate was also applied to movements that showed flat or negative trends.

### 4.3.3.3 River Road Background Growth Rate

As noted previously, a 0\% growth rate was applied to through movements along River Road, which is consistent with previously approved studies. With the significant development and construction of at least four new access intersections expected to occur along this corridor within the timeframe of this study, the peak direction capacity is expected to exceed 1000 vehicles per hour per lane in the peak direction, therefore it is not reasonable to expect that additional regional traffic growth of any significance will be sustained along this corridor. It is anticipated that traffic growth will originate almost exclusively from adjacent development traffic, which has was accounted for extensively for the development of traffic volumes for this report.

### 4.4 Traffic Volume Summary

### 4.4.1 Future Background Traffic Volumes

Future background traffic volumes projections have been established by combining the adjacent development traffic and background traffic derived through the application of a growth rate as discussed previously.
Exhibits 7 to 9 present the future background traffic volumes anticipated for the 2021 and 2024 build-out year, as well as the 2029 study horizon, respectively.

### 4.4.2 Future Total Traffic Volumes

Future total volumes have been derived by combining the site-generated traffic in Exhibit 6 with the future background volumes in Exhibits 7 to 9.

Exhibits 10 to 12 present the future total traffic volumes anticipated for 2021, 2024 and 2029 horizon years, respectively.



LEGEND




## 5 Analysis

### 5.1 Development Design

### 5.1.1 Design for Sustainable Modes

The enhancement of existing transit routes and/or the addition of new routes will be required to provide adequate transit service coverage. All-day transit service can potentially be extended along River Road south of Earl Armstrong Road, with strategically placed stops to capture 100\% of the proposed residential units within 400 m walking distance, as shown in Exhibit 15.

The Riverview Transit Station is located approximately 550 metre walking distance from the northern development parcel, 708 River Road, while the lower density units associated with 750 River Road will be greater than 750 metre walking distance from this station. It is anticipated that any local transit route providing service to the proposed development will provide direct connectivity to Riverview Station. It should be noted that transit coverage has been provisioned for with the installation of a bus pads at the intersections of River/ Summerhill (northbound) and River/ Atrium (northbound and southbound).
Once the future Barrhaven-Riverside South Bus Rapid Transit Corridor is constructed along the northern limits of the site, high quality transit service will connect Riverview Station and the Limebank LRT Station, proposed within the Riverside South Town Centre.

It is anticipated that as development within the Riverside South Community progresses, any future pedestrian and cycling connections identified in the primary pedestrian-cycling network in the Riverside South Community Design Plan will be constructed. Select local roads proposed within the development will provide sidewalks on at least one side to facilitate connections to nearby schools, parks, pathways and other community attractions.
There are presently no formal sidewalks or cycling facilities along River Road within the proposed development frontage, however it is expected that the River and Summerhill/ Ph. 12 South Access intersection will include formal pedestrian facilities once it is converted to a four-legged intersection and signalized to facilitate access to local transit stops. Future signalization of River Road/ Atrium Ridge will also enable access to transit stops from the southern enclave (750 River Road) of the proposed development.


### 5.1.2 New Street Networks

The proposed development consists of local roads configured in a modified grid pattern with two connections to River Road provided for 708 River Road, and single connection to River Road provided for 750 River Road through adjacent lands to the south. Consistent with the objectives of the Community Design Plan (CDP), frequent intersections with short block lengths are proposed to mitigate the risk of speeding while providing a more porous, walkable network for pedestrians.

Sidewalks will be constructed on select local roads within the development. There may be an opportunity to provide pedestrian connections between the future multi-use pathways (MUPs) proposed to the north and west of the site.

### 5.2 Parking

Not Applicable: The Parking Supply and Spillover Parking elements are exempt from this TIA, as defined in the study scope. These elements are not required for Draft Plans of Subdivision.

### 5.3 Boundary Streets

### 5.3.1 Mobility

River Road is the only existing boundary street associated with the proposed development, abutting the site to the east.
There is presently no 'complete streets' concept plan for River Road, and based on recent discussions with the City it is understood that the rural two-lane cross-section on River Road is to be maintained south of Earl Armstrong for the foreseeable future.

Segment-based MMLOS results for Spratt Road along the property frontage are provided in Table 15 below. Details of the MMLOS analysis are provided in Appendix G.

Table 15 - Segment MMLOS - Existing \& Future Conditions

| LOCATION | LeVEL OF SERVICE BY MODE |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { PEDESTRIAN } \\ & \text { (PLOS) } \end{aligned}$ | BICYCLE (BLOS) | TRANSIT (TLOS) | TRUCK <br> (TkLOS) |
| TARGET | C | C | D | D |
| SEGMENTS |  |  |  |  |
| River Road Earl Armstrong to Ph. 12 North Access | F | E | D | A |
| River Road - Ph. 12 <br> North Access to Southern Property Limit | F | E | D | B |

Note 1: Sidewalk must be 1.5m to meet provincial standard

### 5.3.2 Road Safety

A summary of all reported collisions within the study period over the past five years was presented in the Section 3.2.4. The City requires a safety review if at least six collisions for any one movement or of a discernible pattern, over a five year period have occurred. The analysis identified a collision pattern at the Earl Armstrong and River intersection.
In the past five years, there have been 45 rear-end collisions at this intersection. There have been 6 in the eastbound direction, 9 in the northbound direction and 26 in the southbound direction.

Details of these collisions were reviewed to determine if there is any probable cause for these repeated collisions:

- Eastbound
o Time of day: Peak hour (4 of 6)
- Northbound
o Surface condition: Slush/Wet (4 of 9)
o Time of day: Peak hour (5 of 9)
- Southbound
o Surface condition: Slush/Wet (4 of 17)
o Time of day: Peak hour (10 of 17)
Based on the above, there is no evident pattern or specific cause for collisions in these directions and can each be considered random occurrences.

In the southbound direction, 17 of these rear end collisions were caused by vehicles turning right, while the other 9 various manoeuvres can be considered random. Of these, 4 of the collisions occurred in unfavourable conditions. The only similar condition rear-end collisions were 8 southbound right-turning vehicles in the afternoon peak hour.

The 8 recorded rear-end collisions were likely caused by the high number of southbound rightturning vehicles at the River and Earl Armstrong intersection during the afternoon peak hour. Over 800 southbound right-turning vehicles were recorded in the afternoon peak hour, which is well above what is normally observed at a major intersection. These vehicles are required to yield to over 1,000 westbound through vehicles. It is expected that rear-end collisions may occur at this level of traffic intensity. The only mitigation measure is to reduce traffic volumes on the observed movement. City policies are attempting to accomplish this over time, as more supportive infrastructure projects are completed, such as the widening of Prince of Wales and completion of the O-Train: Line 2 extension to Limebank Road. As implementation gradually occurs, traffic volumes and the reported number of collisions is expected to decrease.

### 5.4 Access Intersections

### 5.4.1 Location and Design of Access

The proposed development will provide direct access to River Road at these locations, two of which will form a fourth leg at the established intersection locations:

1) Phase 12 North Access - An all-movements access is proposed approximately 205 metres south of the Earl Armstrong/ River Road intersections and 235 metres north of Summerhill Street. The access will have a 24.0 m Right-of-Way (ROW), however it is intended as a secondary access to River Road.
2) Phase 12 South Access - An all-movements access is proposed on the west leg of River Road/ Summerhill Street intersection approximately 275 metres north of Borbridge Avenue. The access will have an 18.0 m Right-of-Way (ROW). With underground traffic signal infrastructure already in place, this intersection will serve as a primary access/ egress for 708 River Road.
3) 760 River Access - An all-movements access is proposed on the west leg of the River Road/ Atrium Ridge intersection approximately 325 metres south of the future Borbridge Avenue. The access will have an 18.0 m ROW, consistent with the planned ROW for Atrium Ridge to the east. This intersection will provide access to both 750 and 760 River Road.

There are no other existing private approaches of significance along River Road within the study area.

### 5.4.2 Intersection Control

### 5.4.2.1 Traffic Signal Warrants

Based on the projected traffic volumes, the intersection of River and Summerhill/ Ph. 12 South Access is expected to trigger the warrants under Future (2024) Total Traffic conditions.

The other proposed access intersections, Phase 12 North Access and 760 River Access do not trigger traffic signal warrants under Future (2029) Total Traffic conditions.

The results of the traffic signal warrants are provided in Appendix H.

### 5.4.2.2 Roundabout Analysis

As per the City's Roundabout Implementation Policy, intersections that satisfy any of the following criteria should be screened utilizing the Roundabout Initial Feasibility Screening Tool:

- At any new City intersection
- Where traffic signals are warranted
- At intersections where capacity or safety problems are being experienced

As previously discussed, the City has pre-emptively installed underground signal infrastructure at River and Summerhill, therefore this intersection will not be considered as a potential candidate for a roundabout in this study.

The remaining site access intersections, River and Ph. 12 North Access and River and 760 River Access/ Atrium Ridge, were assessed against the above noted criteria and a Roundabout Feasibility Screening Tool was completed for each location, since both are considered as 'new City intersections'. The results of the Roundabout Feasibility Screening Tool indicates that a roundabout may be problematic at either location due to significant differences in directional flow experienced along River Road within the study area. Furthermore, based on the suitability factors a roundabout is not technically feasible at either location.

The results of the Roundabout Feasibility Screening Tool are provided in Appendix H.

### 5.4.3 Intersection Design (MMLOS)

Intersection MMLOS was completed for the intersection of River Road and Summerhill Street/ Phase 12 South Access, as well as River/ Atrium/ 760 River Access. Both of these access intersections are expected to require traffic signals to satisfy capacity requirements within the timeframe of this study. Section 5.9 describes the results of the Multi-Modal Level of Service (MMLOS) and Synchro analysis for these access intersections and any other signalized intersections in the study area.

### 5.5 Transportation Demand Management (TDM)

The City of Ottawa is committed to implementing Transportation Demand Management (TDM) measures on a City-wide basis in an effort to reduce automobile dependence, particularly during the weekday peak travel periods. TDM initiatives are aimed at encouraging individuals to use nonauto modes of travel during the peak periods.

### 5.5.1 Context for TDM

As described in the Forecasting section of this report, mode shares used to estimate future development traffic were based on the 2011 TRANS Origin-Destination Survey for the South Gloucester/Leitrim Traffic Assessment Zone (TAZ). The active transportation mode shares were assumed to remain unchanged, as the relative impact of any reasonable adjustments would be insignificant across all modes within the timeframe of this study.

The proposed development aligns with the objectives of the Riverside South Community Design Plan (CDP) and Building Better and Smarter Suburbs (BBSS) policy documents, which promotes sustainable and compact growth. Condominium units are proposed within the Transit-Oriented Development (TOD) zone, a denser form of development appropriate for a suburban TOD zone, promoting increased transit ridership and use of adjacent active transportation facilities with the overall effect of reducing reliance on private automobile transportation.

### 5.5.2 Need and Opportunity

Riverside South is presently an auto-oriented suburb with a single transit hub, Riverview Station, however the planned implementation of a light rail station within the Town Centre and the future extension of the BRT corridor through Riverside South provide opportunities to increase transit modal share and more effectively utilize existing transit infrastructure. Improving transit connectivity between residential areas and nearby transit hubs as the community grows will help to maximize use of the transit system.

As previously illustrated in Exhibit 6, the projected increase in site-generated traffic associated with the proposed development is expected to be relatively low in comparison with the total travel demand generated by all other adjacent developments expected to occur within the timeframe of this study. Any fluctuations in traffic generated solely by the proposed development are therefore unlikely to result in significant traffic impacts, therefore future conditions would be primarily influenced by background demand.
In order to effectively accommodate the expected future travel demand within the Riverside South Community, it is important that the City continue to promptly expand the existing transit service network as the road network evolves in order to capture local trips and provide direct connections to major transit hubs within the community. Providing high quality transit service within Riverside South will help promote the use of transit as a convenient and efficient alternative mode of transportation, particularly for sites within 600 m of planned rapid transit stations, thereby reducing auto-dependency. The implementation of protected pedestrian crossings of River Road is one of the most essential improvements necessary to make transit service accessible to developments on the west side of River Road.

### 5.5.3 TDM Program

The proposed development conforms to the City's TDM principles by providing convenient and direct connections to adjacent pedestrian, cycling and transit facilities where available. The internal road network has been configured with short street segments and frequent intersections to provide direct connections to River Road, the nearest roadway supporting transit service. Sidewalks and appropriate pedestrian connections will be provided throughout the subdivision to facilitate access to local amenities, pathways and the adjacent road and transit network.

The City of Ottawa's TDM Measures Checklist was completed for the proposed development, and the results are provided in Appendix I.

### 5.6 Neighbourhood Traffic Management

### 5.6.1 Adjacent Neighbourhoods

Not Applicable: The proposed development is not dependent on local or collector roads for access to the subdivision, therefore this section is exempt from this TIA.

### 5.7 Transit

### 5.7.1 Route Capacity

The estimated future 2029 total transit passenger demand within the study area was provided in Section 4.1.2.5 Trip Generation by Mode. The results have been summarized in Table 16.

Table 16-2029 Development Generated Transit Demand

| PERIOD | PEAK PERIOD DEMAND |  |
| :---: | :---: | :---: |
|  | IN | OUT |
| AM | 14 | 34 |
| PM | 30 | 21 |

By the 2029 horizon year, the newly proposed extension of the LRT Southern Extension to Limebank Road, combined with local transit service to Riverview Station is expected to provide sufficient transit capacity to accommodate future demand. It is recommended that OC-Transpo plan future transit routes to accommodate the transit demand of the proposed development.

### 5.8 Review of Network Concept

As discussed in Section 3.3.3 Network Concept Screenline, the following screenlines are applicable to this study: SL8 - Leitrim; and SL42 - Rideau River (Manotick). A summary comparison of the City 2031 Network Concept demand and capacity has been provided in Table 17.

Table 17-2031 Network Concept

| SCREENLINE | AM 2031 PREFERRED INBOUND |  |  |
| :---: | :---: | :---: | :---: |
|  | DEMAND | CAPACITY | VIC RATIO |
| SL8 - Leitrim | 5,884 | 7,000 | 0.84 |
| SL42 - Rideau River (Manotick) | 2,596 | 3,800 | 0.68 |

Note 1 - Table results from Road Network Development Report: Final Report (December 2013)
Traffic generated exclusively by the proposed development traffic generate less than 100 vehicle new trips across these screenlines and therefore will not trigger any capacity deficiencies. It is important to note that the results shown in Table 17 rely heavily on planned capital projects noted in the TMP and therefore may not be representative of current projections as result of infrastructure timing adjustments.

### 5.9 Intersection Design

The following sections summarize the methodology and results of the multi-modal intersection capacity analysis conducted within the study area.

### 5.9.1 Intersection Control

### 5.9.1.1 Traffic Signal Warrants

Traffic signal warrants for site access intersections were discussed previously in Section 5.4. Analysis of other study area intersections indicates that traffic signals are not warranted at the intersection of River Road and Borbridge Avenue under Future (2029) Total Traffic conditions.

### 5.9.1.2 Roundabout Analysis

The feasibility of implementing a roundabout was evaluated at River and Borbridge. It was determined that this would not be an appropriate location for a roundabout, as the intersection does not triggers signal warrants, has already been constructed and is set to open in spring 2019.

It was therefore not necessary to undertake further investigation with the Roundabout Initial Feasibility Screening Tool at this location.

The feasibility of implementing roundabouts at applicable site access intersections was evaluated in Section 5.4. The results of the Roundabout Feasibility Screening Tool are provided in Appendix H.

### 5.9.2 Intersection Analysis Criteria (Automobile)

The following section outlines the City of Ottawa's methodology for determining motor vehicle Level-of-Service (LOS) at signalized and unsignalized intersections.

### 5.9.2.1 Signalized Intersections

In qualitative terms, the Level-of-Service (LOS) defines operational conditions within a traffic stream and their perception by motorists. A LOS definition generally describes these conditions in terms of such factors as delay, speed and travel time, freedom to manoeuvre, traffic interruptions, safety, comfort and convenience. LOS can also be related to the ratio of the volume to capacity ( $\mathrm{v} / \mathrm{c}$ ) which is simply the relationship of the traffic volume (either measured or forecast) to the capability of the intersection or road section to accommodate a given traffic volume. This capability varies depending on the factors described above. LOS are given letter designations from ' $A$ ' to ' $F$ '. LOS ' $A$ ' represents the best operating conditions and LOS ' $E$ ' represents the level at which the intersection or an approach to the intersection is carrying the maximum traffic volume that can, practicably, be accommodated. LOS ' $F$ ' indicates that the intersection is operating beyond its theoretical capacity.
The City of Ottawa has developed criteria as part of the Transportation Impact Assessment Guidelines, which directly relate the volume to capacity ( $\mathrm{v} / \mathrm{c}$ ) ratio of a signalized intersection to a LOS designation. These criteria are as follows:

Table 18 - LOS Criteria for Signalized Intersections

| LOS | VOLUME TO CAPACITY <br> RATIO (v/c) |
| :---: | :---: |
| A | 0 to 0.60 |
| B | 0.61 to 0.70 |
| C | 0.71 to 0.80 |
| D | 0.81 to 0.90 |
| E | 0.91 to 1.00 |
| F | $>1.00$ |

The intersection capacity analysis technique provides an indication of the LOS for each movement at the intersection under consideration and for the intersection as a whole. The overall v/c ratio for an intersection is defined as the sum of equivalent volumes for all critical movements at the intersection divided by the sum of capacities for all critical movements.

The Level of Service calculation is based on locally-specific parameters as described in the TIA Guidelines and incorporates existing signal timing plans obtained from the City of Ottawa. The analysis existing conditions utilized a Peak Hour Factor (PHF) of 0.90 , while future conditions considers optimized signal timing plans and use of a Peak Hour Factor (PHF) of 1.0 to recognize peak spreading beyond a 15 -minute period in congested conditions.

### 5.9.2.2 Unsignalized Intersections

The capacity of an unsignalized intersection can also be expressed in terms of the LOS it provides. For an unsignalized intersection, the Level of Service is defined in terms of the average movement delays at the intersection. This is defined as the total elapsed time from when a vehicle stops at the end of the queue until the vehicle departs from the stop line; this includes the time required for a vehicle to travel from the last-in-queue position to the first-in-queue position. The average delay for any particular minor movement at the un-signalized intersection is a function of the capacity of the approach and the degree of saturation.

The Highway Capacity Manual 2010 (HCM), prepared by the Transportation Research Board, includes the following Levels of Service criteria for un-signalized intersections, related to average movement delays at the intersection, as indicated in Table 19.

Table 19 - LOS Criteria for Unsignalized Intersections

| LOS | DELAY (seconds) |
| :---: | :---: |
| A | $<10$ |
| B | $>10$ and $<15$ |
| C | $>15$ and $<25$ |
| D | $>25$ and $<35$ |
| E | $>35$ and $<50$ |
| F | $>50$ |

The unsignalized intersection capacity analysis technique included in the HCM and used in the current study provides an indication of the Level of Service for each movement of the intersection under consideration. By this technique, the performance of the unsignalized intersection can be compared under varying traffic scenarios, using the Level of Service concept in a qualitative sense. One unsignalized intersection can be compared with another unsignalized intersection using this concept. Level of Service ' $E$ ' represents the capacity of the movement under consideration and generally, in large urban areas, Level of Service 'D' is considered to represent an acceptable operating condition. Level of Service 'E' is considered an acceptable operating condition for planning purposes for intersections located within Ottawa's Urban Core the downtown and its vicinity). Level of Service ' $F$ ' indicates that the movement is operating beyond its design capacity.

### 5.9.3 Intersection Capacity Analysis

Following the established intersection capacity analysis criteria described above, the existing and future conditions are analyzed during the weekday peak hour traffic volumes derived in this study.
The following section presents the results of the intersection capacity analysis. All tables summarize study area intersection LOS results during the weekday morning and afternoon peak hour periods.

The Synchro analysis was calibrated based on traffic flows observed during the time of traffic count data collection.

The Synchro output files have been provided in Appendix J.

### 5.9.3.1 Existing (2019) Traffic

An intersection capacity analysis has been undertaken using the Existing (2019) Traffic volumes presented in Table 20, yielding the following results:

Table 20 - Intersection Capacity Analysis: Existing (2019) Traffic

| INTERSECTION | TRAFFIC CONTROL | AM PEAK HOUR |  | PM PEAK HOUR |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | OVERALL Los (NIC OR dELAY) | CRITICAL mOVEMENTS (NIC OR DELAY) | overall LOS (NC ORDELAY) | CRITICAL MOVEMENTS (VIC OR DELAY) |
| Earl Armstrong \& River | Signalized ${ }^{1}$ | E (0.93) | WBT (0.93) | E (1.00) | $\begin{gathered} \text { WBT \& SBR } \\ (1.00) \end{gathered}$ |
| River \& Summerhill | Unsignalized | D (25.8s) | WB (25.8s) | B (12.0s) | WB (12.0s) |

Notes:
${ }^{1}$ Intersection model calibrated to local conditions for the PM Peak Hour. Saturated flow rate increased on movements showing v/c ratios above 1.00 to just under or equal to 1.00 .

### 5.9.3.2 Future (2021) Background Traffic

An intersection capacity analysis has been undertaken using the Future (2021) Background Traffic volumes presented in Table 21, yielding the following results:

Table 21 - Intersection Capacity Analysis: 2021 Background Traffic

| INTERSECTION | TRAFFIC CONTROL | AM PEAK HOUR |  | PM PEAK HOUR |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | OVERALL LOS (NIC ORDELAY) | CRITICAL MOVEMENTS (NIC OR deLAY) | overall LOS (NIC OR deLAY) | CRITICAL mOVEMENTS (VIC OR DELAY) |
| Earl Armstrong \& River | Signalized | D (0.81) | EBL (0.81) | E (0.93) | $\begin{gathered} \text { NBL \& SBR } \\ (0.93) \end{gathered}$ |
| River \& Summerhill | Unsignalized | F (53.2s) | WB (53.2s) | C (16.0s) | WB (16.0s) |
| $>$ River \& Summerhill ${ }^{1}$ | Signalized | D (0.85) | NBT (0.85) | C (0.69) | SBT (0.69) |
| River \& Borbridge | Unsignalized | C (20.3s) | WB (20.3s) | C (15.0s) | WB (15.0s) |
| River \& Atrium | Unsignalized | B (14.9s) | WB (14.9s) | B (11.0s) | WB (11.0s) |

## Notes.

${ }^{1}$ Signals are required operationally at River \& Summerhill

### 5.9.3.3 Future (2024) Background Traffic

An intersection capacity analysis has been undertaken using the Future (2024) Background Traffic volumes presented in Table 22, yielding the following results:

Table 22 - Intersection Capacity Analysis: 2024 Background Traffic

| INTERSECTION | TRAFFIC CONTROL | AM PEAK HOUR |  | PM PEAK HOUR |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | OVERALL LOS (NIC OR DELAY) | CRITICAL MOVEMENTS (VIC OR DELAY) | OVERALL LOS (NIC OR DELAY) | CRITICAL mOVEMENTS (VIC OR DELAY) |
| Earl Armstrong \& River | Signalized | E (0.98) | EBL (0.98) | F (1.02) | EBT (1.02) |
|  <br> Summerhill | Unsignalized | F (53.2s) | WB (0.89) | C (18.7s) | WB (18.7s) |
| > River \& Summerhill ${ }^{1}$ | Signalized | D (0.89) | NBT (0.89) | C (0.74) | SBT (0.74) |
| River \& Borbridge | Unsignalized | C (20.6s) | WB (20.6s) | C (17.8s) | WB (17.8s) |
| River \& Atrium/ 760 River Access | Unsignalized | B (14.9s) | WB (14.9s) | E (39.5s) | EB (39.5s) |
| > River \& Atrium/ 760 River Access ${ }^{1}$ | Signalized | A (0.57) | NBT (0.57) | A (0.56) | SBT (0.56) |

Notes:
${ }^{1}$ Signals are required operationally at River/ Summerhill, as well as at River \& Atrium/ 760 River Access.
As indicated above, the intersection of Earl Armstrong and River is expected to approach its theoretical capacity by 2024 under background traffic conditions, without the addition of sitegenerated traffic. Potential mitigation measures are discussed in Section 5.11.

### 5.9.3.4 Future (2029) Background Traffic

An intersection capacity analysis has been undertaken using the Future (2029) Background Traffic volumes presented in Table 22, yielding the following results:

Table 23 - Intersection Capacity Analysis: 2029 Background Traffic

| INTERSECTION | TRAFFIC CONTROL | AM PEAK HOUR |  | PM PEAK HOUR |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | overall LOS (NIC OR DELAY) | CRITICAL MOVEMENTS (VIC OR DELAY) | OVERALL LOS (NIC OR deLAY) | CRITICAL MOVEMENTS (VIC OR DELAY) |
| Earl Armstrong \& River | Signalized | F (1.15) | WBT (1.15) | F (1.19) | WBL (1.19) |
| $>$ River \& Summerhill ${ }^{1}$ | Signalized | E (0.95) | NBT (0.95) | D (0.83) | SBT (0.83) |
| River \& Borbridge | Unsignalized | F (70.0s) | WB (70.0s) | E (39.7s) | WB (39.7s) |
| > River \& Borbridge ${ }^{2}$ | Signalized | C (0.78) | NBT (0.78) | D (0.85) | SBT (0.85) |
| River \& Atrium/ 760 River Access | Unsignalized | F (57.1s) | EB (57.1s) | F (73.2s) | EB (73.2s) |
| $>$ River \& Atrium/ 760 River Access ${ }^{3}$ | Signalized | B (0.69) | NBT (0.69) | B (0.64) | SBT (0.64) |

Notes:
${ }^{1}$ Signals are required operationally at River \& Summerhill, River \& Borbridge, as well as River \& Atrium/ 760 River Access.

### 5.9.3.5 Future (2021) Total Traffic

An intersection capacity analysis has been undertaken using the Future (2021) Total Traffic volumes presented in Table 24, yielding the following results:

Table 24 - Intersection Capacity Analysis: 2021 Total Traffic

| INTERSECTION | TRAFFIC CONTROL | AM PEAK HOUR |  | PM PEAK HOUR |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | OVERALL LOS (NIC OR DELAY) | CRITICAL MOVEMENTS (VIC OR DELAY) | OVERALL LOS (NIC OR DELAY) | CRITICAL mOVEMENTS (VIC OR DELAY) |
| Earl Armstrong \& River | Signalized | E (0.95) | WBT (0.95) | E (0.98) | EBT (0.98) |
| River \& Ph. 12 <br> North Access | Unsignalized | D (30.3s) | EB (30.3s) | E (40.3s) | EB (40.3s) |
| River \& Summerhill/ Ph. 12 South Access | Unsignalized | F (292.8s) | EB (292.8s) | F (151.9s) | EB (151.9s) |
| $>$ River \& Summerhill/ Ph. 12 South Access ${ }^{1}$ | Signalized | D (0.87) | NBT (0.87) | C (0.72) | SBT (0.72) |
| River \& Borbridge | Unsignalized | C (21.0s) | WB (21.0s) | C (15.1s) | WB (15.5s) |
| River \& Atrium/ 760 River Access | Unsignalized | D (27.6s) | EB (27.6s) | D (34.2s) | EB (34.2s) |

Notes:
${ }^{1}$ Signals are required operationally at River \& Summerhill.

### 5.9.3.6 Future (2024) Total Traffic

An intersection capacity analysis has been undertaken using the Future (2024) Total Traffic volumes presented in Table 25, yielding the following results:

Table 25 - Intersection Capacity Analysis: 2024 Total Traffic

| intersection | TRAFFIC CONTROL | AM PEAK HOUR |  | PM PEAK HOUR |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | overall LOS (NIC OR DELAY) | CRITICAL MOVEMENTS (NIC OR DELAY) | OVERALL LOS (vIC OR DELAY) | CRITICAL MOVEMENTS (VIC OR DELAY) |
| Earl <br>  <br> River | Signalized | F (1.01) | EBL (1.01) | F (1.08) | EBT (1.08) |
| River \& Ph. 12 <br> North Access | Unsignalized | E (42.8s) | EB (42.8s) | F (54.9s) | EB (54.9s) |
| River \& Summerhill/ Ph. 12 South Access | > Signalized ${ }^{1}$ | D (0.90) | NBT (0.90) | C (0.78) | SBT (0.78) |
| River \& Borbridge | Unsignalized | D (27.7s) | NBT (27.7s) | C (18.8s) | WB (18.8s) |
| River \& Atrium 760 | Unsignalized | E (41.2s) | EB (41.2s) | F (50.9s) | EB (50.9s) |
| River Access | > Signalized ${ }^{1}$ | B (0.62) | NBT (0.62) | B (0.63) | SBT (0.63) |

Notes:
${ }^{1}$ Signals are required operationally at River/ Summerhill, River \& Borbridge, as well as River \& Atrium/ 760 River Access.

It shall be noted that the addition of development-generated traffic is shown to have only a marginal impact on the intersection of Earl Armstrong/ River Road, as well as other study area intersections.

### 5.9.3.7 Future (2029) Total Traffic

An intersection capacity analysis has been undertaken using the Future (2029) Total Traffic volumes presented in Table 25, yielding the following results:

Table 26 - Intersection Capacity Analysis: 2029 Total Traffic

| INTERSECTION | TRAFFIC CONTROL | AM PEAK HOUR |  | PM PEAK HOUR |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | OVERALL LOS (NIC OR DELAY) | CRITICAL MOVEMENTS (vic or deLay | OVERALL Los (NIC OR DELAY | CRITICAL MOVEMENTS (vic or deLay |
| Earl Armstrong \& River | Signalized | F (1.18) | WBT (1.18) | F (1.22) | WBL (1.22) |
| River \& Ph. 12 <br> North Access | Unsignalized | F (77.5s) | EB (76.1s) | F (112.2s) | EB (112.2s) |
| $>$ River \& Summerhill/ Ph. 12 South Access ${ }^{1}$ | Signalized | E (1.00) | NBT (1.00) | D (0.90) | SBT (0.90) |
| River \& Borbridge | Unsignalized | F (77.0s) | WB (77.0s) | D (29.4s) | WB (29.4s) |
| $>$ River \& Borbridge ${ }^{1}$ | Signalized | D (0.89) | NBT (0.89) | D (0.85) | SBT (0.85) |
| River \& Atrium/ 760 River Access | Unsignalized | F (93.1s) | EB (93.1s) | F (112.9s) | EB (118.9s) |
| > River \& Atrium/ 760 River Access $^{1}$ | Signalized | C (0.75) | NBT (0.75) | B (0.69) | SBT (0.69) |

Notes:
${ }^{1}$ Signals are required operationally at River/ Summerhill, River \& Borbridge, as well as River \& Atrium/ 760 River Access.

### 5.9.4 Intersection Design (MMLOS)

Analysis of existing and future conditions for each mode has been conducted based on the methodology prescribed in the City of Ottawa Multi-Modal Level of Service (MMLOS) Guidelines (approved by City Council in October 2015 and amended in October 2016). The Level of Service (LOS) for each mode has been calculated for each intersection where signals exist or are anticipated.
The Existing (2019) and Future (2029) Total intersection MMLOS results have been summarized in Table 27. At the River Road/ Earl Armstrong intersection, the existing MMLOS results remain the unchanged for future conditions.
Detailed analysis results for existing and future conditions are provided Appendix G.

Table 27 - Intersection MMLOS - Existing and Future Conditions

| LOCATION | SCENARIO | LEVEL OF SERVICE BY MODE |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | PEDESTRIAN (PLOS) | BICYCLE (BLOS) | TRANSIT (TLOS) | TRUCK (TkLOS) |
| TARGET |  | C | C | D | D |
|  |  |  |  |  |  |
| River \& Earl Armstrong |  <br> Future Total (2029) | F | F | F | B |
| River \& Summerhill/ Ph. 12 South Access | Future (2029) Total | E | E | E | E |
| River \& Borbridge | Future (2029) Total | E | E | C | E |
| River \& Atrium/ 760 River Access | Future (2029) Total | E | E | B | E |

### 5.9.4.1 Intersection Pedestrian Level of Service (PLOS)

The PLOS at intersections is based on several factors including the number of traffic lanes that pedestrians must cross, corner radii, and whether the crossing allows for permissive or protective right or left turns, among others. The City of Ottawa minimum target for PLOS is ' C '.

The results of the analysis indicate that the Earl Armstrong and River intersection is currently experiencing a PLOS of ' $F$ ' primarily due to the number of lanes that pedestrians must cross at each approach. This intersection has been constructed to its ultimate configuration, and no reasonable modifications can be implemented to improve the PLOS without negatively impacting other modes, therefore it is reasonable to expect that the PLOS will continue to perform poorly as indicated by future MMLOS results.
Analysis indicates that the remaining study area intersections are expected to operate above the City's target with a PLOS of ' $E$ ', based on the delay to pedestrians associated with the long cycle lengths and short pedestrian walk times. There may be opportunities to reduce the cycle lengths at these intersections, however for the purposes of this analysis, cycle lengths between 120s and 130s were assumed.

### 5.9.4.2 Intersection Bicycle Level of Service (BLOS)

The BLOS at intersections is dependent on several factors: the number of lanes that the cyclist is required to cross to make a left-turn; the presence of a dedicated right-turn lane on the approach; and the operating speed of each approach. The City target for BLOS is ' C '.

The results of the analysis indicate that the Earl Armstrong and River intersection is currently experiencing a BLOS ' $F$ ', due to the high operating speeds along both roadways (i.e. $60 \mathrm{~km} / \mathrm{h}$ or greater) in combination with the number of lanes that cyclists must cross to make a left-turn.

It is anticipated that the remaining study area intersections will operate with a BLOS of 'E' primarily as a result of the high operating speeds along River Road.

Since it is not appropriate to utilize bike boxes along high speed corridors, this is not a feasible option at any of the study area intersections, therefore no reasonable modifications can be implemented to improve the BLOS without negatively impacting other modes.

### 5.9.4.3 Intersection Transit Level of Service (TLOS)

Intersection TLOS is based on the average signal delay experienced by transit vehicles at each intersection. The City Target TLOS is ' D '.

The results of the analysis indicate that the most severe delays at the Earl Armstrong/ River intersection will result in a TLOS of ' $F$ ' on the south leg in the morning peak period, and on the south and east legs in the afternoon peak period under Future (2029) Total Traffic Conditions. The degradation of the TLOS is triggered by the expected increase in background travel demand within the timeframe of this study. No reasonable modifications can be implemented to improve the TLOS without negatively impacting other modes.

### 5.9.4.4 Intersection Truck Level of Service (TKLOS)

The Truck LOS (TKLOS) is based on the right-turn radii, as well as the number of receiving lanes for vehicles making a right-turn from the traffic lane being analyzed. The City of Ottawa target for TKLOS is ' $D$ '.

Earl Armstrong and River meets the City's target with a TKLOS of ' $B$ '. River, while the remaining intersections along River Road marginally exceed the City's target with a TKLOS of 'E' due to the single-receiving lanes on each approach, as well as the tighter turning radii.

### 5.10 Geometric Review

The following section reviews all geometric requirements for the study area intersections.

### 5.10.1 Sight Distance and Corner Clearances

The Phase 12 North Access is proposed along a mildly curved section of River Road that affords drivers a favourable perspective both upstream and downstream of the access with no significant horizontal or vertical alignment constraints. Sight distance and corner clearances are therefore not expected to be a concern at this location, and visibility beyond intersections to the north and south will be achievable.

The Phase 12 South Access will be constructed across from the existing Summerhill Street access along a straight segment of River Road with no significant horizontal or vertical deflections.
The southernmost access, referred to as 760 River Access, proposes an intersection along a straight section of River Road with no significant horizontal or vertical deflections, thereby minimizing any potential sightline issues.

### 5.10.2 Auxiliary Lane Analysis

Auxiliary turning lane requirements for all intersections within the study area are described as follows:

### 5.10.2.1 Unsignalized Auxiliary Left-Turn Lane Requirements

Not Applicable: The results of the analysis indicate that, under Future (2029) Total Traffic conditions, traffic signals are anticipated at all study area intersections with the exception of the River and Phase 12 North Access. This access is expected to experience very few vehicles on the northbound left-turn movement (i.e. no greater than 5 vehicles during weekday peak hours), therefore MTO left-turn signal warrant analysis was deemed unnecessary at this intersection.

### 5.10.2.2 Signalized Auxiliary Left-Turn Requirements

A review of auxiliary left-turn lane storage requirements was completed at all signalized intersections within the study area in the 2026 total traffic scenario. The review compared the projected 95th percentile queue lengths from Synchro operational results, and the standard queue length calculation based on the following equation:

$$
\text { Storage Length }=\frac{N L}{C} \times 1.5
$$

Where:
$N$ = number of vehicles per hour
$L=$ Length occupied by a vehicle in the queue $=7 \mathrm{~m}$
$C=$ number of traffic signal cycles per hour (assumed 120s cycle length)
The results of the auxiliary left-turn lane analysis are summarized below in Table 28.
Table 28 - Auxiliary Left-Turn Storage Analysis at Signalized Intersections

| INTERSECTION | APPROACH | 95TH \%ILE QuEUE Lencth <br> (M) | CALCULATED QUEUE LENGTH (M) | Existing <br> storage <br> LENGTH (M) | $\begin{gathered} \text { STORAGE } \\ \text { DEFICIENCY (M) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Earl Armstrong \& River | NB | \#85 | 70 | $\begin{aligned} & 150 \text { (D) } \\ & 120 \text { (S) } \end{aligned}$ | Existing Storage Adequate |
|  | SB | 15 | 10 | $\begin{aligned} & 80 \text { (D) } \\ & 50 \text { (S) } \end{aligned}$ | Existing Storage Adequate |
|  | EB | \#160 | 120 | $\begin{gathered} 300 \text { (D) } \\ 80 \text { (S) } \end{gathered}$ | Existing Storage Adequate |
|  | WB | \#80 | 75 | $\begin{aligned} & 160(D) \\ & 140(S) \end{aligned}$ | Existing Storage Adequate |
| River \& Summerhill/ Ph. 12 South Access | NB | <10 | 5 | - | No Storage Required |
|  | SB | 15 | 50 | 100 | Existing Storage Adequate |
| River \& Borbridge | SB | 25 | 85 | - | 85 |
| River \& Atrium/ 760 River Access | NB | <10 | 5 | - | No Storage Required |
|  | SB | <10 | 10 | - | 10 |

Recommended storage lengths do not consider deceleration and taper lengths. Values rounded to nearest 5 m .
\# - Synchro queue length at congested intersections. From Synchro 9 User Guide "In practice, 95th percentile queue shown will rarely be exceeded and the queues shown with the \# footnote are acceptable for the design of storage bays."

As per the results of the queue length analyses presented above, it is recommended that southbound left-turn storage lanes of at least 85 metres and 10 metres are painted to accommodate future background traffic demand at the intersections of River/ Borbridge and River/ Atrium, respectively. The recent reconstruction of River Road had provisioned for these lanes and therefore sufficient pavement width is available with no need for road widening.

### 5.10.2.3 Unsignalized Auxiliary Right-Turn Lane Requirements

The Transportation Association of Canada (TAC) suggests that auxiliary right-turn lanes be considered "when the volume of decelerating or accelerating vehicles compared with through vehicles causes undue hazard." Consideration for auxiliary right-turn lanes is typically given when the right-turning traffic exceeds $10 \%$ of the through volume and is at least 60 vehicles per hour.
None of the right-turning movements associated with unsignalized study area intersections along River Road are projected to exceed these thresholds under Future (2029) Total Traffic conditions, therefore right-turn lanes were not considered at any of the unsignalized intersections within the study area.

### 5.10.2.4 Signalized Auxiliary Right-Turn Lane Requirements

Similarly for signalized intersections, Section 9.14 of TAC suggests that auxiliary right-turn lanes shall be considered when more than $10 \%$ of vehicles on an approach are turning right and when the peak hour demand exceeds 60 vehicles. The purpose of this guideline is to mitigate operational impacts to through-traffic, particularly on high-speed arterial roadways such as River Road, and may not be applicable in all circumstances.

The results of the auxiliary right-turn lane analysis are summarized below in Table $\mathbf{2 9}$ below:

Table 29 - Auxiliary Right-Turn Lane Storage Analysis at Signalized Intersections

| INTERSECTION | APPROACH | $\begin{aligned} & \text { RIGHT } \\ & \text { TURN } \\ & \text { VOLUME } \end{aligned}$ | APPROACH VEHICLES TURNING RIGHT (\%) | 95TH \%ILE QUEUE LENGTH <br> (M) | EXISTING <br> PROPOSED <br> STORAGE <br> LENGTH (M) | $\begin{gathered} \text { STORAGE } \\ \text { DEFICIENCY }(\mathrm{M})^{1} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Earl Armstrong \& River | EB | 458 | 22\% | 85 | 70 | 15 |
|  | WB | 121 | 8\% | <10 | 150 | Existing Storage Adequate |
|  | NB | 297 | 27\% | 25 | 25 | Existing <br> Storage <br> Adequate |
|  | SB | 825 | 58\% | \#180 | 100 | 80 |
| River \& Summerhill/ Ph. 12 South Access | NB | 15 | 1\% | <10 |  | No Storage Required |
|  | SB | 15 | 1\% | <10 | - | No Storage Required |
| River \& Borbridge | NB | 7 | 1\% | <10 | - | No Storage Required |
| River \& Atrium/ 760 River Access | NB | 5 | <1\% | <10 | - | No Storage Required |
|  | SB | 50 | 5\% | <10 | - | No Storage Required |

Note 1 - Recommended storage lengths do not include deceleration lane and taper lengths. Values rounded to nearest 5 m .
\#- Synchro queue length at congested intersections. From Synchro 9 User Guide "In practice, 95th percentile queue shown will rarely be exceeded and the queues shown with the $\#$ footnote are acceptable for the design of storage bays."

Based on the above results for the Earl Armstrong and River intersection, and confirmed through intersection capacity analyses, it is recommended to extend the eastbound and northbound rightturn lanes by at least 15 metres and 80 metres, respectively. It should be noted that the proposed development is expected to contribute minimal traffic to each of these movements, and therefore any potential spillback issues are primarily a result of background travel demand.

Right-turn storage bays are not required at the other study area intersections to accommodate projected 2029 total traffic volumes.

### 5.11 Summary of Improvements Indicated and Modification Options

Based on the intersection capacity, Multi-Modal Level of Service and auxiliary lane analyses results presented above, off-site improvements to the adjacent road network have been recommended in order to accommodate multi-modal demands of both background traffic and additional traffic generated by the proposed development.

The recommended off-site roadway modifications under 2029 total traffic conditions are shown graphically in Exhibit 16.

### 5.11.1 Earl Armstrong Road \& River Road

The results of the analysis indicate that the Earl Armstrong and River intersection is presently approaching its theoretical capacity with a LOS ' $E$ ' during both the weekday morning and afternoon peak hours. This intersection is expected to continue to operate with poor levels of service during these peak periods with and without the proposed development traffic as a result of increased travel demand projected within Riverside South as well as steady growth in cross-commuter traffic from Barrhaven. The eastbound left-turn and southbound right-turn are considered critical movements in the weekday morning and afternoon peak hours, respectively. The proposed development is not expected to contribute additional traffic to either of these movements. The development of east-west major collector roads (Borbridge Avenue and Solarium Avenue) will ultimately provide greater connectivity through the community and long-term relief to this intersection. In addition to this, the City's planned investment in rapid transit in the community will also provide greater mobility options and will aid the operation of this intersection in the long term.

Queue length analyses indicates that storage deficiencies on the eastbound and southbound-right turn channelized right-turn lanes may be encountered by the 2029 horizon year or sooner. It is recommended that the City consider extension of these lanes by at least 15 m and 80 m , respectively, to prevent spillback into the adjacent through lanes. The results of the analysis indicate that these modifications would be required with or without the inclusion of site-generated traffic.

As indicated by the MMLOS results, it has also been noted that the intersection is expected to perform poorly for other modes of travel, and a review of potential options indicated that there are no feasible improvements that would not impact vehicular capacity.

The planned implementation of the LRT South Extension will result in a shift of some automobile trips to more sustainable modes, however, to further reduce the vehicle mode share, it is recommended that the City review the timing of the future bus rapid transit extension through Riverside South to address future capacity constraints of the road network. Providing a continuous rapid transit corridor between these two rapidly-growing communities will ultimately reduce autodependency for cross-commuter trips along Earl Armstrong Road, which is not sustainable in the long term at current growth levels.

### 5.11.2 River Road \& Phase 12 North Access

The results of the analysis indicate that the River and Phase 12 North Access intersection is expected to operate above its theoretical capacity under Future (2029) Total Traffic conditions with a stop-controlled eastbound approach and single, shared lanes on all approaches.

It should be noted, however, that the Phase 12 South Access at Summerhill Street is expected to trigger signal warrants well in advance of the study horizon, therefore providing a more attractive egress route, with a consistent and reliable delay as a result of signal phasing.
Traffic volumes utilizing the North Access are therefore expected to be minimal with only 17 and 11 weekday morning and afternoon trips expected to egress at this location during peak hours. Despite the poor level of service, delays are only expected to be in the order of 1 to 2 minutes assuming free-flow traffic along River Road.

Based on the proposed location of this access approximately 205m south of Earl Armstrong/ River, and the $95^{\text {th }}$ percentile queue length of at most 85 metres projected for the northbound through movement during the weekday morning peak hour, there are expected to be few issues associated with vehicular blockage at this access. Should a blockage occur under particularly congested conditions, drivers typically leave gaps as a curtesy to facilitate the egress of vehicular traffic from
the sidestreet access. Outside of the weekday peak hours, is not expected that there will be any significant delays experienced to sidestreet traffic at this intersection.

It is important to note that the Phase 12 North Access will provide a secondary all-movements emergency access route direct emergency vehicle access to the northern enclave of the development where higher-density housing is planned.

Based on the conclusions of the analysis, no auxiliary lanes required at this intersection and thus no RMA will be required to construct the Phase 12 North Access.

### 5.11.3 River Road \& Summerhill Street/ Phase 12 South Access

The results of the analysis indicate that the River and Summerhill/ Phase 12 intersection will require signals to operate at acceptable levels of service under Future (2021) Background Traffic conditions, with signals being warranted by the Future (2024) Total Traffic condition.
Synchro results and the City's queue length calculation indicate that the existing southbound leftturn storage lane is capable of accommodating traffic volumes under Future (2029) Total Traffic conditions.

The results of the analysis indicate that River and Summerhill may approach its theoretical capacity as a signalized intersection by 2029 with and without the inclusion of site-generated traffic from the proposed development based on the rate of development within the community.

### 5.11.4 River Road \& Borbridge Avenue

The results of the analysis indicate that the River and Borbridge intersection is expected to experience significant delays on the westbound approach and may require signals to operate at acceptable levels of service by 2029 under background traffic conditions. Despite the need to provide signals to satisfy operational requirements, it should be noted that signals are not warranted within the timeframe of this study, based on the background growth projections assumed.

### 5.11.5 River Road \& Atrium Ridge/ 760 River Access

Based on the results of the analysis, the River and Atrium/ 760 River Access intersection is expected to experience significant delays on the sidestreet movements and will require signals to operate at acceptable levels (i.e. LOS 'D' or better) under Future (2024) Background and Future (2024) Total Traffic conditions. The results of the analysis indicate, however, that traffic signals are not warranted within the timeframe of this study based on background growth projections assumed.

Both Synchro results and the first-principles queue length calculation indicate that a southbound left-turn storage bay is required to alleviate congestion of the southbound through movement during the weekday afternoon peak hour, and allow the intersection to operate at LOS 'D' or better under Future (2029) Background or Future (2029) Total Traffic conditions. Sufficient pavement width was reserved for this future auxiliary lane under recent reconstruction of River Road.


## 6 Conclusion

The proposed residential development at 708 and 750 River Road is expected to generate up to 161 and 182 two-way vehicular trips during the weekday morning and afternoon peak hours, respectively. These traffic volumes were distributed amongst three all-movements access intersections, representing a marginal increase in traffic volumes with respect to the overall traffic projections expected within the 2029 horizon year of the study. For the purposes of this analysis, all site-generated traffic was assumed to exclusively utilize the arterial road network within the study area. River Road is expected to operate at capacity as a two-lane facility within the timeframe of this study primarily as a result of significant increases in background travel demand. As the transportation network in Riverside South is built to its ultimate configuration, east-west collectors Borbridge Avenue and Solarium Avenue will be extended further east to connect with Limebank Road, providing opportunities for traffic to be distributed amongst the broader transportation network, ultimately providing relief to these congested conditions.

The study has identified critical deficiencies in the Level of Service across all transportation modes. These deficiencies are a result of background conditions and not as a direct result of the proposed development. The implementation of protected pedestrian crossings of River Road is one of the most essential improvements necessary to make transit service accessible to developments on the west side of River Road and reduce vehicular demand along the corridor. The study assumes these crossings will be implemented with any other signalization along the corridor.

The results of the analysis indicate that the intersections of River/ Summerhill, River/ Borbridge, and River/ Atrium/ 760 River Access will require signals to operate at acceptable levels of service (LOS 'D' or better), however warrants are only triggered at River/ Summerhill. Each of these intersections are shown to be operationally-required as a result of background travel demand, and will therefore be necessary to accommodate the proposed development.

Off-site intersection improvements will be required at River/ Summerhill and River/ Atrium Ridge to provide access to the proposed development. An RMA will be included with the submission of this Transportation Impact Assessment for both of these locations.
Based on the findings of this study, it is the overall opinion of IBI Group that the proposed development will integrate well with and can be safely accommodated by the adjacent transportation network with the recommended actions and modifications in place.

## Appendix A - City Circulation Comments

Riverside South Phase 12 - Transportation Impact Assessment IBI Group

## Steps 1 \& 2 Submission (Screening \& Scoping) - Circulation \& Comments Response

City review and response from Scoping Submission: March 25, 2019
Transportation Project Manager: Mike Giampa

1) No comments were received from the City Transportation Project Manager, Mike Giampa, regarding the Scoping submission (Steps 1 and 2).

## Steps 3 Submission (Forecasting) - Circulation \& Comments Response

City review and response from Forecasting Submission: April 10, 2019
Transportation Project Manager: Mike Giampa

## Transportation Engineering Services

1) Please review the development-related person trips for single-family homes and condominium units. The numbers supplied are low.

The development-related person trips for the 80 single-family homes were derived based on the approximately $75 \%$ of units ( 60 homes) located outside of the TOD zone, while the remaining $25 \%$ (20 homes) were located within the Riverview TOD zone.
The condominium unit development-generated person-trip generation has been updated to reflect the use of high-rise condominium land use with a base vehicle trip rate of 0.46 in both the morning and afternoon peak hours with and without the Transit Bonus (see Table 6.3 in 2009 TRANS Trip Generation Study Report).
A total column has been added to the Table 8 to show the total morning and afternoon peak hour person-trips for full build-out of the proposed development by 2024.
2) Element 3.13 - Please review/modify trip assignments in exhibits 6 and 8 as some of the numbers do not match.

The trip generation exhibits have been updated to reflect changes to the trip generation noted in the previous response.
3) Section 4.3.3.2 indicates that a $50 \%$ reduction in morning EBL and afternoon SBR volumes is expected following the widening of Prince of Wales. However, this reduction is not likely at the 2029 horizon year as the widening is now projected to occur beyond 2031.

The TIA has been updated to reflect the delay to the widening of Prince of Wales Drive and the associated reductions on the eastbound left-turn and southbound right-turn at the intersection of River and Earl Armstrong have been removed.

## Traffic Signal Operations

1) The strategy report should show where possible transit routes will align. If proximity to the park \& ride is driving up the modal share, consider that these users will still need to exit the development site by car to drive to the park \& ride. Please indicate this in the strategy report.

It is assumed that local transit stops providing direct connections to Riverview Station will be located along River Road to provide local transit coverage within 400m of all doors/units not located within the Riverview TOD zone. It should be noted that there are provisions for bus stops at the intersection of River/ Summerhill and River/ Atrium to support enhanced transit service along River Road. Furthermore, pedestrian facilities will be provided at the intersection of River and Summerhill/ Phase 12 South Access once it is constructed as a signalized intersection, creating a safe and convenient crossing location for pedestrians to access nearby transit stops. It is acknowledged, however, that the lack of a controlled crossing location planned within close proximity to 750 River Road may create resistance for motorists to shift to utilizing local transit service to access the park and ride, therefore for this portion of the proposed development it is proposed to maintain the observed transit modal splits of $12 \%$ in the morning and $11 \%$ in the afternoon peak hours reported in the 2011 OD Survey for all analysis years considered in this study. This approach should be considered conservative.

## Appendix B - Screening Form

## City of Ottawa 2017 TIA Guidelines Screening Form

## 1. Description of Proposed Development

| Municipal Address | 708 and 750 River Road, Ottawa, ON |
| :--- | :--- |
| Description of Location | Gloucester South Nepean - Between Earl Armstrong Road <br> and Rideau Road and west of River Road |
| Land Use Classification | Residential <br> 85 townhome units <br> 80 single-family homes <br> 110 condominium units |
| Development Size (units) | N/A |
| Development Size $\left(\mathrm{m}^{2}\right)$ | Three (3) new all movement accesses located off of River <br> Road |
| Number of Accesses and <br> Locations | Two Phases |
| Phase of Development | 2021 - single family and townhomes <br> $2024-$ condominiums |
| Buildout Year |  |

## If available, please attach a sketch of the development or site plan to this form.

## 2. Trip Generation Trigger

Considering the Development's Land Use type and Size (as filled out in the previous section), please refer to the Trip Generation Trigger checks below.

| Land Use Type | Minimum Development Size |
| :---: | :---: |
| Single-family homes | 40 units |
| Townhomes or apartments | 90 units |
| Office | $3,500 \mathrm{~m}^{2}$ |
| Industrial | $5,000 \mathrm{~m}^{2}$ |
| Fast-food restaurant or coffee shop | $100 \mathrm{~m}^{2}$ |
| Destination retail | $1,000 \mathrm{~m}^{2}$ |
| Gas station or convenience market | $75 \mathrm{~m}^{2}$ |

[^1]Based on the results above, the Trip Generation Trigger was satisfied.

## 3. Location Triggers

|  | No |
| :--- | :--- | :--- |
| Does the development propose a new driveway to a boundary street that |  |
| is designated as part of the City's Transit Priority, Rapid Transit or Spine |  |
| Bicycle Networks? |  |
| Is the development in a Design Priority Area (DPA) or Transit-oriented |  |
| Development (TOD) zone?* |  |
| *DPA and TOD are identified in the City of Ottawa Official Plan (DPA in Section 2.5.1 and Schedules A and B; TOD in Annex 6). |  |
| See Chapter 4 for a list of City of Ottawa Planning and Engineering documents that support the completion of TIA). |  |

Based on the results above, the Location Trigger was satisfied.

## 4. Safety Triggers

|  | Yes | No |
| :---: | :---: | :---: |
| Are posted speed limits on a boundary street are $80 \mathrm{~km} / \mathrm{hr}$ or greater? | $\sqrt{ }$ |  |
| Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway? |  | $\checkmark$ |
| Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions)? |  | $\checkmark$ |
| Is the proposed driveway within auxiliary lanes of an intersection? |  |  |
| Does the proposed driveway make use of an existing median break that serves an existing site? |  | $\checkmark$ |
| Is there is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development? |  |  |
| Does the development include a drive-thru facility? |  |  |

## Based on the results above, the Safety Trigger was satisfied.

## 5. Summary

|  | Noes the development satisfy the Trip Generation Trigger? | Nes |  |
| :--- | :--- | :--- | :--- |
| Does the development satisfy the Location Trigger? |  |  |  |
| Does the development satisfy the Safety Trigger? |  |  |  |

All three of the triggers were satisfied. Therefore, the TIA Study must continue into the next stage (Scoping).

## Appendix C - Traffic Data

## Transportation Services - Traffic Services

## Turning Movement Count - Peak Hour Diagram

## EARL ARMSTRONG RD @ RIVER RD

Survey Date: Wednesday, February 20, 2019
Start Time: 07:00

WO No: 38315
Device: Miovision


Comments

## Transportation Services - Traffic Services

## Turning Movement Count - Peak Hour Diagram

## EARL ARMSTRONG RD @ RIVER RD

Survey Date: Wednesday, February 20, 2019
Start Time: 07:00

WO No: 38315
Device: Miovision


Comments Turning Movement Count - Full Study Peak Hour Diagram

## RIVER RD @ SUMMERHILL ST

Survey Date: Thursday, April 20, 2017
Start Time: 07:00

WO No: 36934
Device: Miovision


Comments Turning Movement Count - Full Study Peak Hour Diagram

## RIVER RD @ SUMMERHILL ST

Survey Date: Thursday, April 20, 2017
Start Time: 07:00

WO No: 36934
Device: Miovision


Comments

## Appendix D - OC Transpo Routes

## 0 MILLENNIUM

7 days a week / 7 jours par semaine
All day service
Service toute la journée


Information / Renseignement. 613-741-4390
Customer Relations
Service à la clientèle .613-842-3600

Lost and Found / Objets perdus .........613-563-4011
Schedul / Horaire............................613-560-1000
Text/Texto
.560560
plus your four digit bus stop number / plus votre numéro d'arrêt à quatre chiffres

Effective / En vigueur Sept. 4 sept. 2016
613-741-4390 octranspo.com

2018.04

$\cdots$
Schedule / Horaire
Text / Texto

Customer Relations
Service à la clientèle
Lost and Found / Objets perdus.......613-563-4011
Security / Sécurité.
. 613-741-2478
Effective April 22, 2018
En vigueur 22 avril 2018

198

## RIVERVIEW

GREENBORO
Local
Monday to Friday / Lundi au vendredi
Peak periods only
Périodes de pointe seulement

## GREENBORO PM 个


Park \& Ride / Parc-o-bus
Timepoint / Heures de passage
2017.12Schedule / Horaire $\qquad$
Text / Texto $\qquad$
plus your four digit bus stop number / plus votre numéro d'arrêt à quatre chiffres

```
Customer Relations
Service à la clientèle
Lost and Found / Objets perdus...... 613-563-4011 Security / Sécurité .... 613-741-2478
Effective Dec. 24, 2017
En vigueur 24 déc. 2017

MACKENZIE KING
RIVERSIDE SOUTH / SUD

\section*{Connexion}

\section*{Monday to Friday / Lundi au vendredi}

Peak periods only
Périodes de pointe seulement

Transitway \& Station
Limited stops: Off only in AM / No stop in PM
Arrêts limités : Débarquement en AM seulement /
Aucun arrêt en PM
Park \& Ride / Parc-o-bus
2017.12


Schedule / Horaire.......613-560-1000
Text / Texto .560560
plus your four digit bus stop number / plus votre numéro d'arrêt à quatre chiffres
Customer Relations
Service à la clientèle
Lost and Found / Objets perdus.......613-563-4011
Security / Sécurité.
613-741-2478

\section*{Effective December 24, 2017}

En vigueur 24 décembre 2017

HURDMAN
LEBRETON
MANOTICK

\section*{Connexion}

Monday to Friday / Lundi au vendredi

2018.04
Schedule / Horaire........613-560-1000
Text / Texto .................560560
plussour four digit bs stop umber pluswote numérod dareta quate chiffes


\section*{Appendix E - Collision Data}

City Operations - Transportation Services

\section*{Collision Details Report - Public Version}

Location: BRIAN GOOD AVE @ EARL ARMSTRONG RD


Location: EARL ARMSTRONG RD @ PARK N RIDE/295 E OF RIVER RD
Traffic Control: Traffic signal
Total Collisions: 2
\(\overline{\text { Date/Day/Time }}\) Environment Impact Type \(\quad\) Classification \(\quad\)\begin{tabular}{l} 
Surface \\
Cond'n
\end{tabular}\(\quad\) Veh. Dir Vehicle Manoeuver Vehicle type \(\quad\) First Event \(\quad\) Nod
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{2015-Sep-17, Thu, 12:12} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Rear end} & \multirow[t]{2}{*}{Non-fatal injury} & \multirow[t]{2}{*}{Dry} & \multirow[t]{2}{*}{\begin{tabular}{l}
East \\
East
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Going ahead \\
Stopped
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Pick-up truck \\
Automobile, station wagon
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Other motor vehicle \\
Other motor vehicle
\end{tabular}} \\
\hline & & & & & & & & \\
\hline \multirow[t]{2}{*}{2017-Jan-20, Fri,07:08} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Turning movement} & \multirow[t]{2}{*}{Non-fatal injury} & \multirow[t]{2}{*}{Wet} & East & Turning left & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & West & Going ahead & Automobile, station wagon & Other motor vehicle \\
\hline \multicolumn{9}{|l|}{Location: EARL ARMSTRONG RD @ RIVER RD} \\
\hline \multicolumn{5}{|l|}{Traffic Control: Traffic signal} & \multicolumn{4}{|r|}{Total Collisions: 61} \\
\hline Date/Day/Time & Environment & Impact Type & Classification & Surface Cond'n & Veh. Dir & \multicolumn{2}{|l|}{Vehicle Manoeuver Vehicle type} & First Event No. Ped \\
\hline \multirow[t]{2}{*}{2014-Feb-05, Wed, 16:55} & \multirow[t]{2}{*}{Snow} & \multirow[t]{2}{*}{Angle} & \multirow[t]{2}{*}{P.D. only} & \multirow[t]{2}{*}{Loose snow} & North & \multicolumn{2}{|l|}{Slowing or stopping Pick-up truck} & Other motor vehicle \\
\hline & & & & & West & Turning left & Passenger van & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2014-Mar-27, Thu,07:45} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Rear end} & \multirow[t]{2}{*}{Non-reportable} & \multirow[t]{2}{*}{Dry} & North & Turning right & Passenger van & Other motor vehicle \\
\hline & & & & & North & Turning right & Passenger van & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2014-Jul-18, Fri,21:01} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Angle} & \multirow[t]{2}{*}{P.D. only} & \multirow[t]{2}{*}{Dry} & East & Going ahead & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & North & Going ahead & Pick-up truck & Other motor vehicle \\
\hline 2014-Aug-19, Tue, 19:51 & Clear & SMV other & Non-fatal injury & Dry & North & Turning left & Motorcycle & Debris on road \\
\hline \multirow[t]{2}{*}{2014-Nov-07, Fri,09:31} & \multirow[t]{2}{*}{Rain} & \multirow[t]{2}{*}{Sideswipe} & \multirow[t]{2}{*}{P.D. only} & \multirow[t]{2}{*}{Wet} & East & Changing lanes & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & East & Turning left & Automobile, station wagon & Other motor vehicle \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{2014-Nov-07, Fri,20:10} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Rear end} & \multirow[t]{2}{*}{P.D. only} & \multirow[t]{2}{*}{Dry} & South & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & South & Turning right & Pick-up truck & Other motor vehicle \\
\hline \multirow[t]{3}{*}{2014-Oct-25, Sat, 14:08} & \multirow[t]{3}{*}{Rain} & \multirow[t]{3}{*}{Rear end} & \multirow[t]{3}{*}{P.D. only} & \multirow[t]{3}{*}{Wet} & North & Turning left & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & North & Turning left & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & North & Turning left & Automobile, station wagon & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2014-Nov-15, Sat, 10:48} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Rear end} & \multirow[t]{2}{*}{P.D. only} & \multirow[t]{2}{*}{Dry} & East & Going ahead & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & East & Slowing or stoppin & Pick-up truck & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2014-Dec-20, Sat, 19:39} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Rear end} & \multirow[t]{2}{*}{Non-fatal injury} & \multirow[t]{2}{*}{Dry} & South & Turning right & Passenger van & Other motor vehicle \\
\hline & & & & & South & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2015-Mar-31, Tue, 15:32} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Rear end} & \multirow[t]{2}{*}{Non-fatal injury} & \multirow[t]{2}{*}{Dry} & South & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & South & Turning right & Pick-up truck & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2015-Feb-08, Sun, 10:30} & \multirow[t]{2}{*}{Snow} & \multirow[t]{2}{*}{Rear end} & \multirow[t]{2}{*}{P.D. only} & \multirow[t]{2}{*}{Packed snow} & South & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & South & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2015-Jun-25, Thu,16:01} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Rear end} & \multirow[t]{2}{*}{P.D. only} & \multirow[t]{2}{*}{Dry} & North & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & North & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{2015-Oct-01, Thu,14:39} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Rear end} & \multirow[t]{2}{*}{Non-fatal injury} & \multirow[t]{2}{*}{Dry} & South & \multicolumn{2}{|l|}{Slowing or stopping Passenger van} & \multirow[t]{2}{*}{\begin{tabular}{l}
Other motor vehicle \\
Other motor vehicle
\end{tabular}} \\
\hline & & & & & South & Stopped & Automobile, station wagon & \\
\hline \multirow[t]{2}{*}{2015-May-01, Fri,07:12} & Clear & Rear end & P.D. only & Dry & South & Turning right & Pick-up truck & Other motor vehicle \\
\hline & & & & & South & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2015-Feb-13, Fri,07:30} & Clear & Rear end & P.D. only & Dry & East & Turning left & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & East & Turning left & Pick-up truck & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2015-Feb-26, Thu,15:30} & Clear & Rear end & P.D. only & Dry & South & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & South & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2015-Jul-27, Mon, 16:03} & Clear & Sideswipe & P.D. only & Dry & East & Changing lanes & Motor home & Other motor vehicle \\
\hline & & & & & East & Going ahead & Municipal transit bus & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2015-Jun-09, Tue, 16:13} & Clear & Rear end & P.D. only & Wet & West & Turning right & Passenger van & Other motor vehicle \\
\hline & & & & & West & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2015-Aug-12, Wed,08:25} & Clear & Rear end & P.D. only & Dry & East & Turning left & Pick-up truck & Other motor vehicle \\
\hline & & & & & East & Turning left & Automobile, station wagon & Other motor vehicle \\
\hline 2015-Aug-11, Tue, 16:17 & Clear & Rear end & P.D. only & Dry & South & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{2015-Oct-24, Sat,21:30} & \multirow[t]{2}{*}{Rain} & \multirow[t]{2}{*}{Rear end} & \multirow[t]{2}{*}{P.D. only} & \multirow[t]{2}{*}{Wet} & \multirow[t]{2}{*}{\begin{tabular}{l}
North \\
North
\end{tabular}} & \multirow[t]{2}{*}{Turning left Turning left} & \multirow[t]{2}{*}{Automobile, station wagon Pick-up truck} & \multirow[t]{2}{*}{\begin{tabular}{l}
Other motor vehicle \\
Other motor vehicle
\end{tabular}} \\
\hline & & & & & & & & \\
\hline \multirow[t]{2}{*}{2015-Dec-05, Sat, 11:49} & Clear & Rear end & P.D. only & Dry & South & \multicolumn{2}{|l|}{Slowing or stopping Automobile, station wagon} & Other motor vehicle \\
\hline & & & & & South & Slowing or stoppi & g Pick-up truck & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2016-Jan-14, Thu, 17:11} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Rear end} & \multirow[t]{2}{*}{P.D. only} & \multirow[t]{2}{*}{Slush} & North & Turning right & Passenger van & Other motor vehicle \\
\hline & & & & & North & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2016-Mar-27, Sun,13:20} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Rear end} & \multirow[t]{2}{*}{P.D. only} & \multirow[t]{2}{*}{Dry} & South & Turning right & Pick-up truck & Other motor vehicle \\
\hline & & & & & South & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2016-Sep-15, Thu, 19:37} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Angle} & \multirow[t]{2}{*}{Non-fatal injury} & \multirow[t]{2}{*}{Dry} & South & Turning right & Automobile, station wagon & Cyclist \\
\hline & & & & & West & Going ahead & Bicycle & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2016-Nov-16, Wed, 17:39} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Rear end} & \multirow[t]{2}{*}{Non-fatal injury} & \multirow[t]{2}{*}{Dry} & South & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & South & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2016-Apr-09, Sat, 16:30} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Rear end} & \multirow[t]{2}{*}{P.D. only} & \multirow[t]{2}{*}{Dry} & West & Turning right & Pick-up truck & Other motor vehicle \\
\hline & & & & & West & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline 2016-Jul-29, Fri,07:37 & Clear & Turning m & P.D. only & Dry & West & Going ahead & Automobile, station wagon & Other motor vehicle \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & East & Turning left & Automobile, station wagon & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2016-Sep-22, Thu,15:14} & Clear & Rear end & P.D. only & Dry & West & Going ahead & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & West & Stopped & Automobile, station wagon & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2017-Jan-09, Mon,11:36} & Clear & Rear end & P.D. only & Dry & East & Turning right & Passenger van & Other motor vehicle \\
\hline & & & & & East & Turning right & Pick-up truck & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2017-Sep-01, Fri, 16:00} & Clear & Angle & Non-fatal injury & Dry & East & Going ahead & Bicycle & Other motor vehicle \\
\hline & & & & & South & Turning right & Unknown & Cyclist \\
\hline \multirow[t]{3}{*}{2017-Feb-14, Tue,20:42} & Snow & Turning movement & Non-fatal injury & Loose snow & East & Turning left & Pick-up truck & Other motor vehicle \\
\hline & & & & & West & Going ahead & Automobile, station wagon & Skidding/sliding \\
\hline & & & & & South & Stopped & Passenger van & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2017-Jan-23, Mon, 15:50} & Clear & Rear end & Non-fatal injury & Dry & South & Turning right & Passenger van & Other motor vehicle \\
\hline & & & & & South & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2017-Feb-16, Thu, 10:58} & Snow & Rear end & Non-fatal injury & Wet & South & Turning right & School bus & Other motor vehicle \\
\hline & & & & & South & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline 2017-Mar-01, Wed, 17:52 & Clear & Rear end & P.D. only & Wet & South & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & South & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline 2016-Nov-04, Fri,11:12 & Clear & Rear end & P.D. only & Dry & South & Slowing or stopping & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & South & Stopped & Pick-up truck & Other motor vehicle \\
\hline 2016-Nov-24, Thu,11:30 & Clear & Sideswipe & P.D. only & Wet & East & Changing lanes & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & East & Going ahead & Pick-up truck & Other motor vehicle \\
\hline 2016-Nov-18, Fri,22:31 & Fog, m dust & Angle & Non-fatal injury & Wet & South & Turning left & Pick-up truck & Other motor vehicle \\
\hline & & & & & East & Going ahead & Automobile, station wagon & Other motor vehicle \\
\hline 2017-Mar-11, Sat, 19:34 & Clear & Other & P.D. only & Dry & West & Reversing & Passenger van & Other motor vehicle \\
\hline & & & & & East & Stopped & Automobile, station wagon & Other motor vehicle \\
\hline 2017-May-19, Fri, 12:30 & Clear & Rear end & P.D. only & Dry & North & Going ahead & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & North & Going ahead & Automobile, station wagon & Other motor vehicle \\
\hline 2017-May-23, Tue,18:16 & Clear & Rear end & P.D. only & Dry & East & Going ahead & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & East & Stopped & Automobile, station wagon & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2017-May-30, Tue,16:23} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Rear end} & \multirow[t]{2}{*}{P.D. only} & \multirow[t]{2}{*}{Dry} & South & Slowing or stopping & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & South & Stopped & Automobile, station wagon & Other motor vehicle \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 2017-Jun-21, Wed, 17:52 & Clear & Rear end & P.D. only & Dry & South
South & \begin{tabular}{l}
Turning right \\
Turning right
\end{tabular} & Automobile, station wagon Pick-up truck & \begin{tabular}{l}
Other motor vehicle \\
Other motor vehicle
\end{tabular} \\
\hline \multirow[t]{2}{*}{2017-Jun-26, Mon,15:30} & Clear & Rear end & Non-fatal injury & Dry & South & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & South & Turning right & Passenger van & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2017-Sep-12, Tue,16:22} & Clear & Rear end & Non-fatal injury & Dry & North & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & North & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2017-Jul-19, Wed, 11:30} & Clear & Rear end & P.D. only & Dry & South & Turning right & Passenger van & Other motor vehicle \\
\hline & & & & & South & Turning right & Pick-up truck & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2017-Aug-16, Wed, 10:45} & Clear & Rear end & P.D. only & Wet & North & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & North & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2017-Sep-22, Fri, 17:08} & Clear & Rear end & P.D. only & Dry & South & Going ahead & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & South & Stopped & Automobile, station wagon & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2017-Nov-25, Sat, 10:32} & Rain & Turning movement & P.D. only & Wet & West & Turning left & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & East & Going ahead & Pick-up truck & Other motor vehicle \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{2017-Nov-29, Wed, 16:45} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Rear end} & \multirow[t]{2}{*}{P.D. only} & \multirow[t]{2}{*}{Dry} & \multirow[t]{2}{*}{\begin{tabular}{l}
West \\
West
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Slowing or stopping Pick-up truck \\
Slowing or stopping Passenger van
\end{tabular}}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Other motor vehicle \\
Other motor vehicle
\end{tabular}} \\
\hline & & & & & & & & \\
\hline \multirow[t]{2}{*}{2017-Sep-28, Thu,07:17} & Clear & Rear end & P.D. only & Dry & South & Changing lanes & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & South & Slowing or stopping & Automobile, station wagon & Other motor vehicle \\
\hline 2013-Mar-06, Wed, 14:44 & Clear & SMV other & Non-fatal injury & Wet & North & Turning right & Truck - dump & Rollover \\
\hline \multirow[t]{2}{*}{2013-Feb-17, Sun, 14:08} & Clear & Rear end & Non-fatal injury & Dry & West & Going ahead & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & West & Stopped & Automobile, station wagon & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2013-Jun-27, Thu, 10:31} & Clear & Rear end & P.D. only & Dry & South & Going ahead & Delivery van & Other motor vehicle \\
\hline & & & & & South & Stopped & Automobile, station wagon & Other motor vehicle \\
\hline
\end{tabular}

\section*{Location: EARL ARMSTRONG RD @ SPRATT RD}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Traffic Control: Tra & fic signal & & & & \multicolumn{5}{|c|}{Total Collisions: 28} \\
\hline Date/Day/Time & Environment & Impact Type & Classification & Surface Cond'n & Veh. Dir & Vehicle Manoeuv & Vehicle type & First Event & No. Ped \\
\hline 2014-Apr-04, Fri, 10:30 & Clear & SMV other & P.D. only & Dry & East & Turning left & Pick-up truck & Ran off road & \\
\hline 2014-Oct-30, Thu, 18:39 & Clear & Rear end & P.D. only & Dry & South & Turning right & Pick-up truck & Other motor vehicle & \\
\hline & & & & & South & Turning right & Pick-up truck & Other motor vehicle & \\
\hline 2014-Jan-03, Fri, 11:15 & Snow & Turning movement & P.D. only & Ice & East & Turning left & Automobile, station wagon & Other motor vehicle & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & West & Going ahead & Pick-up truck & Other motor vehicle \\
\hline 2014-May-27, Tue,09:20 & Clear & Rear end & P.D. only & Dry & South & Turning right & Pick-up truck & Other motor vehicle \\
\hline & & & & & South & Turning right & Passenger van & Other motor vehicle \\
\hline 2015-Feb-12, Thu, 20:30 & Clear & Angle & P.D. only & Loose snow & South & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & West & Going ahead & Automobile, station wagon & Other motor vehicle \\
\hline 2014-Dec-16, Tue,08:54 & Clear & Turning movement & Non-fatal injury & Dry & East & Turning left & Pick-up truck & Other motor vehicle \\
\hline & & & & & West & Going ahead & Automobile, station wagon & Other motor vehicle \\
\hline 2014-Jul-04, Fri, 18:09 & Clear & Turning movement & Non-fatal injury & Dry & East & Turning left & Pick-up truck & Other motor vehicle \\
\hline & & & & & West & Going ahead & Automobile, station wagon & Other motor vehicle \\
\hline 2015-May-19, Tue,16:21 & Clear & Turning movement & Non-fatal injury & Dry & West & Going ahead & Pick-up truck & Other motor vehicle \\
\hline & & & & & East & Turning left & Passenger van & Other motor vehicle \\
\hline 2015-May-28, Thu,08:30 & Clear & Turning movement & Non-fatal injury & Dry & West & Turning left & Pick-up truck & Other motor vehicle \\
\hline & & & & & East & Going ahead & Passenger van & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2015-Sep-17, Thu, 14:25} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Rear end} & \multirow[t]{2}{*}{P.D. only} & \multirow[t]{2}{*}{Dry} & East & \multicolumn{2}{|l|}{Slowing or stopping Pick-up truck} & Other motor vehicle \\
\hline & & & & & East & Stopped & Passenger van & Other motor vehicle \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{2013-Feb-28, Thu,08:02} & \multirow[t]{2}{*}{Snow} & \multirow[t]{2}{*}{Angle} & \multirow[t]{2}{*}{Non-fatal injury} & \multirow[t]{2}{*}{Packed snow} & West & Going ahead & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & North & Turning left & Pick-up truck & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2013-Nov-14, Thu, 18:03} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Turning movement} & \multirow[t]{2}{*}{P.D. only} & \multirow[t]{2}{*}{Dry} & North & Turning left & Pick-up truck & Other motor vehicle \\
\hline & & & & & South & Going ahead & Automobile, station wagon & Other motor vehicle \\
\hline 2013-Nov-01, Fri,01:30 & Clear & SMV other & P.D. only & Wet & East & Turning left & Automobile, station wagon & Curb \\
\hline \multirow[t]{2}{*}{2013-Nov-17, Sun, 13:27} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Turning movement} & \multirow[t]{2}{*}{P.D. only} & \multirow[t]{2}{*}{Dry} & East & Turning left & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & West & Going ahead & Automobile, station wagon & Other motor vehicle \\
\hline
\end{tabular}

Location: EARL ARMSTRONG RD btwn RIVER RD \& SPRATT RD

\section*{Traffic Control: No control}

Total Collisions: 6
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Date/Day/Time & Environment & Impact Type & Classification & Surface Cond'n & Veh. Dir & Vehicle Manoeuv & Vehicle type & First Event & No. Ped \\
\hline 2016-Feb-06, Sat, 18:29 & Clear & Rear end & Non-fatal injury & Dry & East & Slowing or stoppin & Pick-up truck & Other motor vehicle & \\
\hline & & & & & East & Stopped & Pick-up truck & Other motor vehicle & \\
\hline 2015-Nov-27, Fri, 17:14 & Rain & SMV other & Non-fatal injury & Wet & West & Going ahead & Automobile, station wagon & Pedestrian & 1 \\
\hline 2017-Jan-09, Mon, 10:21 & Clear & SMV other & P.D. only & Dry & West & Going ahead & Automobile, station wagon & Snowbank/drift & \\
\hline 2017-Jan-18, Wed,08:00 & Clear & Turning movement & P.D. only & Loose snow & West & Turning right & Pick-up truck & Other motor vehicle & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & West & Turning right & Automobile, station wagon & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2017-Jun-13, Tue, 18:32} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Sideswipe} & \multirow[t]{2}{*}{P.D. only} & \multirow[t]{2}{*}{Dry} & East & Changing lanes & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & East & Going ahead & Pick-up truck & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2017-Nov-28, Tue,18:08} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Rear end} & \multirow[t]{2}{*}{P.D. only} & \multirow[t]{2}{*}{Dry} & West & Going ahead & Automobile, station wagon & Other motor vehicle \\
\hline & & & & & West & Slowing or stopping & Pick-up truck & Other motor vehicle \\
\hline
\end{tabular}

Location: NICOLLS ISLAND RD @ RIVER RD
Traffic Control: Stop sign Total Collisions: 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Date/Day/Time & Environment & Impact Type & Classification & Surface Cond'n & Veh. Dir & Vehicle Manoeuve & Vehicle type & First Event & No. Ped \\
\hline \multirow[t]{2}{*}{2015-Feb-26, Thu, 13:46} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Rear end} & \multirow[t]{2}{*}{P.D. only} & \multirow[t]{2}{*}{Ice} & North & Going ahead & Pick-up truck & Other motor vehicle & \\
\hline & & & & & North & Turning left & Pick-up truck & Other motor vehicle & \\
\hline \multirow[t]{2}{*}{2015-Jun-25, Thu, 11:28} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Angle} & \multirow[t]{2}{*}{P.D. only} & \multirow[t]{2}{*}{Dry} & East & Turning left & Automobile, station wagon & Other motor vehicle & \\
\hline & & & & & South & Going ahead & Truck - dump & Other motor vehicle & \\
\hline
\end{tabular}

\section*{Location: RIDEAU RD @ SPRATT RD}

Traffic Control: Stop sign

\section*{Total Collisions: 1}
\begin{tabular}{lllllllll}
\hline Date/Day/Time & Environment & Impact Type & Classification & \begin{tabular}{c} 
Surface \\
Cond'n
\end{tabular} & Veh. Dir & Vehicle Manoeuver Vehicle type & First Event & No. Ped \\
2018-Mar-01, Thu, 13:00 & Clear & SMV other & P.D. only & Dry & South & Going ahead & \begin{tabular}{l} 
Automobile, \\
station wagon
\end{tabular} & Ran off road \\
\hline
\end{tabular}

\section*{Location: RIVER RD @ 175 N OF EARL ARMSTRONG/LOBLAWS SC}

Traffic Control: Traffic signal
Total Collisions: 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Date/Day/Time & Environment & Impact Type & Classification & Surface Cond'n & Veh. Dir & Vehicle Manoeu & Vehicle type & First Event & No. Ped \\
\hline 2013-Sep-06, Fri, 10:25 & Clear & SMV other & Non-fatal injury & Dry & West & Turning left & Automobile, station wagon & Curb & \\
\hline
\end{tabular}

Location: RIVER RD @ RIDEAU RD
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Traffic Control: Stop sign} & \multicolumn{5}{|c|}{Total Collisions: 1} \\
\hline Date/Day/Time & Environment & Impact Type & Classification & Surface Cond'n & Veh. Dir & Vehicle Manoeuv & Vehicle type & First Event & No. Ped \\
\hline \multirow[t]{2}{*}{2016-Aug-24, Wed,22:55} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Angle} & \multirow[t]{2}{*}{Non-fatal injury} & \multirow[t]{2}{*}{Dry} & West & Going ahead & Automobile, station wagon & Other motor vehicle & \\
\hline & & & & & South & Going ahead & Automobile, station wagon & Other motor vehicle & \\
\hline
\end{tabular}

\section*{Location: RIVER RD @ SOUTH GOWER BOUNDARY RD}

Traffic Control: Stop sign
Total Collisions: 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Date/Day/Time & Environment & Impact Type & Classification & Surface Cond'n & Veh. Dir & Vehicle Manoeuv & Vehicle type & First Event & No. Ped \\
\hline \multirow[t]{2}{*}{2017-Nov-27, Mon,06:57} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Angle} & \multirow[t]{2}{*}{P.D. only} & \multirow[t]{2}{*}{Dry} & West & Turning left & Pick-up truck & Other motor vehicle & \\
\hline & & & & & North & Going ahead & Pick-up truck & Other motor vehicle & \\
\hline
\end{tabular}

Location: RIVERRD @ SUMMERHILL ST
Traffic Control: Stop sign Total Collisions: 2
\begin{tabular}{lllllllll} 
Date/Day/Time & Environment & Impact Type & Classification & \begin{tabular}{c} 
Surface \\
Cond'n
\end{tabular} & Veh. Dir & Vehicle Manoeuver Vehicle type & First Event & Nos
\end{tabular}

Location: RIVER RD btwn EARL ARMSTRONG RD \& 175 N OF EARL ARMSTRONG/LOBLAWS SC
Traffic Control: No control
Total Collisions: 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Date/Day/Time & Environment & Impact Type & Classification & Surface Cond'n & Veh. Dir & \multicolumn{2}{|l|}{Vehicle Manoeuver Vehicle type} & First Event & No. Ped \\
\hline 2013-Jun-13, Thu, 21:35 & Clear & SMV other & P.D. only & Dry & South & Going ahead & Automobile, station wagon & Animal - wild & \\
\hline 2013-Jan-30, Wed,09:36 & Clear & Sideswipe & P.D. only & Wet & North & Going ahead & Automobile, station wagon & Other motor vehicle & \\
\hline & & & & & North & Going ahead & Truck - dump & Other motor vehicle & \\
\hline
\end{tabular}

Location: RIVER RD btwn EARL ARMSTRONG RD \& NICOLLS ISLAND RD
Traffic Control: No control
Total Collisions: 8
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Date/Day/Time & Environment & Impact Type & Classification & Surface Cond'n & Veh. Dir & Vehicle Manoeuve & Vehicle type & First Event & No. Ped \\
\hline \multirow[t]{2}{*}{2014-Mar-12, Wed, 16:39} & \multirow[t]{2}{*}{Snow} & \multirow[t]{2}{*}{Approaching} & \multirow[t]{2}{*}{P.D. only} & \multirow[t]{2}{*}{Loose snow} & South & Going ahead & Automobile, station wagon & Skidding/sliding & \\
\hline & & & & & North & Going ahead & Pick-up truck & Other motor vehicle & \\
\hline \multirow[t]{2}{*}{2014-Mar-13, Thu,08:25} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Approaching} & \multirow[t]{2}{*}{Non-fatal injury} & \multirow[t]{2}{*}{Packed snow} & South & \multicolumn{2}{|l|}{Slowing or stopping Automobile, station wagon} & Other motor vehicle & \\
\hline & & & & & North & Going ahead & Automobile, station wagon & Other motor vehicle & \\
\hline 2014-Aug-14, Thu, 11:51 & Clear & SMV other & P.D. only & Dry & South & Going ahead & Truck - dump & Other & \\
\hline 2014-Aug-14, Thu, 11:51 & Clear & SMV other & P.D. only & Dry & North & Going ahead & Automobile, station wagon & Other & \\
\hline 2015-Feb-02, Mon, 12:47 & Clear & Rear end & P.D. only & Loose snow & North & Going ahead & Truck - open & Other motor vehicle & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & North & Stopped & Pick-up truck & Other motor vehicle \\
\hline \multirow[t]{2}{*}{2016-Aug-02, Tue,15:21} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Other} & \multirow[t]{2}{*}{P.D. only} & \multirow[t]{2}{*}{Dry} & South & Reversing & Farm tractor & Other motor vehicle \\
\hline & & & & & South & Turning left & Automobile, station wagon & Other \\
\hline 2016-Jan-01, Fri,02:33 & Snow & SMV other & P.D. only & Wet & South & Going ahead & Automobile, station wagon & Skidding/sliding \\
\hline 2017-Dec-29, Fri,23:58 & Clear & SMV other & P.D. only & Ice & West & Going ahead & Pick-up truck & Skidding/sliding \\
\hline
\end{tabular}

Location: RIVER RD btwn MULLIGAN ST \& LEITRIM RD
Traffic Control: No control
Total Collisions: 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Date/Day/Time & Environment & Impact Type & Classification & Surface Cond'n & Veh. Dir & Vehicle Manoeuver & Vehicle type & First Event & No. Ped \\
\hline \multirow[t]{2}{*}{2017-Aug-04, Fri,09:02} & \multirow[t]{2}{*}{Clear} & \multirow[t]{2}{*}{Rear end} & \multirow[t]{2}{*}{P.D. only} & \multirow[t]{2}{*}{Dry} & North & Slowing or stopping & Automobile, station wagon & Other motor vehicle & \\
\hline & & & & & North & Stopped & Automobile, station wagon & Other motor vehicle & \\
\hline 2018-May-09, Wed,02:42 & Clear & SMV other & Non-fatal injury & Dry & South & Going ahead & Automobile, station wagon & Ditch & \\
\hline
\end{tabular}

\section*{Location: RIVER RD btwn NICOLLS ISLAND RD \& RIDEAU RD}

Traffic Control: No control

\section*{Total Collisions: 1}
\begin{tabular}{llllllllll}
\hline Date/Day/Time & Environment & Impact Type & Classification & \begin{tabular}{l} 
Surface \\
Cond'n
\end{tabular} & Veh. Dir & Vehicle Manoeuver Vehicle type & First Event & No. Ped & North
\end{tabular} \begin{tabular}{lllll} 
Going ahead & Automobile, & Ditch \\
2015-Apr-18, Sat, 13:00 & Clear & SMV other & P.D. only & Dry
\end{tabular}

Location: SPRATT RD btwn CANYON WALK DR \& HOLLOW TRAIL GT
Traffic Control: No control
Total Collisions: 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Date/Day/Time & Environment & Impact Type & Classification & Surface Cond'n & Veh. Dir & Vehicle Manoeu & Vehicle type & First Event & No. Ped \\
\hline 2017-Sep-18, Mon,17:03 & Clear & SMV unattended vehicle & P.D. only & Dry & West & Going ahead & Automobile, station wagon & Unattended vehicle & \\
\hline
\end{tabular}

Location: SPRATT RD btwn CANYON WALK DR \& OWLS CABIN AVE
Traffic Control: No control Total Collisions: 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Date/Day/Time & Environment & Impact Type & Classification & Surface Cond'n & Veh. Dir & Vehicle Manoeuve & Vehicle type & First Event & No. Ped \\
\hline \multirow[t]{3}{*}{2016-Feb-03, Wed,09:05} & \multirow[t]{3}{*}{Freezing Rain} & \multirow[t]{3}{*}{Angle} & \multirow[t]{3}{*}{P.D. only} & \multirow[t]{3}{*}{Slush} & South & Turning left & Automobile, station wagon & Other motor vehicle & \\
\hline & & & & & East & Going ahead & Passenger van & Other motor vehicle & \\
\hline & & & & & West & Stopped & Automobile, station wagon & Other motor vehicle & \\
\hline 2016-May-30, Mon, 16:42 & Clear & Approaching & Non-fatal injury & Dry & East & Going ahead & Pick-up truck & Other motor vehicle & \\
\hline & & & & & West & Going ahead & Pick-up truck & Other motor vehicle & \\
\hline
\end{tabular}

Location: SPRATT RD btwn EARL ARMSTRONG RD \& RIDEAU RD
Traffic Control: No control
Total Collisions: 1
\begin{tabular}{lllllllll}
\hline Date/Day/Time & Environment & Impact Type & Classification & \begin{tabular}{c} 
Surface \\
Cond'n
\end{tabular} & Veh. Dir & Vehicle Manoeuver Vehicle type & First Event & No. Ped \\
2013-Feb-14, Thu, 20:16 & Snow & SMV other & P.D. only & Wet & North & Going ahead & \begin{tabular}{l} 
Automobile, \\
station wagon
\end{tabular} & Ran off road \\
\hline
\end{tabular}

\section*{Appendix F - Trip Generation Data}

Table 3.12: Person Trip Generation Rates - (all households with residents not older than 55 years of age)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{\begin{tabular}{l}
Person Trip Generation Rates \\
All Households with persons 55 years of age or less AM and PM Peak Hours
\end{tabular}} \\
\hline  & Core
\[
\begin{aligned}
& \text { Person } \\
& \text { Trip Rate }
\end{aligned}
\] & Area
\% & \begin{tabular}{l}
Urban \\
(Inside green Person Trip Rate
\end{tabular} & \begin{tabular}{l}
Area \\
the \\
elt)
\[
\% \nabla
\]
\end{tabular} & \begin{tabular}{l}
Subu \\
(Outsid green \\
Person \\
Trip Rate
\end{tabular} & \begin{tabular}{l}
rban \\
e the belt)
\end{tabular} & \[
\begin{gathered}
\text { Rui } \\
\begin{array}{c}
\text { Person } \\
\text { Trip Rate }
\end{array}
\end{gathered}
\] & al
\[
\% \nabla
\] & \begin{tabular}{l}
All Areas \\
Person Trip Rate
\end{tabular} \\
\hline Single detached: AM PM & \[
\begin{aligned}
& 0.85 \\
& 0.74
\end{aligned}
\] & \[
\begin{aligned}
& -7 \% \\
& -3 \%
\end{aligned}
\] & \[
\begin{gathered}
0.99 \\
0.75
\end{gathered}
\] & \[
\begin{gathered}
+9 \% \\
-1 \%
\end{gathered}
\] & \[
\begin{aligned}
& 0.94 \\
& 0.79
\end{aligned}
\] & \[
\begin{aligned}
& +3 \% \\
& +4 \%
\end{aligned}
\] & \[
\begin{gathered}
0.78 \\
0.71
\end{gathered}
\] & \[
\begin{array}{r}
-14 \% \\
-7 \%
\end{array}
\] & \[
\begin{aligned}
& 0.91 \\
& 0.76
\end{aligned}
\] \\
\hline Semi-detached: AM PM & \[
\begin{aligned}
& 0.79 \\
& 0.74
\end{aligned}
\] & \[
\begin{gathered}
-10 \% \\
-1 \%
\end{gathered}
\] & \[
\begin{aligned}
& 0.97 \\
& 0.68
\end{aligned}
\] & \[
\begin{aligned}
& 10 \% \\
& -9 \%
\end{aligned}
\] & \[
\begin{gathered}
0.89 \\
0.82
\end{gathered}
\] & \[
\begin{aligned}
& +1 \% \\
& +9 \%
\end{aligned}
\] & \[
\begin{aligned}
& 0.64 \\
& 0.60
\end{aligned}
\] & \[
\begin{aligned}
& -27 \% \\
& -20 \%
\end{aligned}
\] & \[
\begin{aligned}
& 0.88 \\
& 0.75
\end{aligned}
\] \\
\hline Row Townhouse: AM PM & \[
\begin{aligned}
& 0.71 \\
& 0.62
\end{aligned}
\] & \[
\begin{aligned}
& -3 \% \\
& -3 \%
\end{aligned}
\] & \[
\begin{aligned}
& 0.78 \\
& 0.60
\end{aligned}
\] & \[
\begin{gathered}
+7 \% \\
-6 \%
\end{gathered}
\] & \[
\begin{aligned}
& 0.67 \\
& 0.69
\end{aligned}
\] & \[
\begin{array}{r}
-8 \% \\
+8 \%
\end{array}
\] & \[
\begin{aligned}
& 0.74 \\
& 0.56
\end{aligned}
\] & \[
\begin{aligned}
& +1 \% \\
& -13 \%
\end{aligned}
\] & \[
\begin{aligned}
& 0.73 \\
& 0.64
\end{aligned}
\] \\
\hline Apartment: AM PM & \[
\begin{aligned}
& 0.48 \\
& 0.45
\end{aligned}
\] & \[
\begin{gathered}
-4 \% \\
0 \%
\end{gathered}
\] & \[
\begin{aligned}
& 0.51 \\
& 0.42
\end{aligned}
\] & \[
\begin{aligned}
& +2 \% \\
& -7 \%
\end{aligned}
\] & \[
\begin{aligned}
& 0.53 \\
& 0.52
\end{aligned}
\] & \[
\begin{array}{r}
+6 \% \\
+16 \%
\end{array}
\] & \[
\begin{aligned}
& 0.36 \\
& 0.52
\end{aligned}
\] & \[
\begin{array}{r}
-28 \% \\
+16 \%
\end{array}
\] & \[
\begin{aligned}
& 0.50 \\
& 0.45
\end{aligned}
\] \\
\hline All Types: AM PM & \[
\begin{aligned}
& 0.62 \\
& 0.57
\end{aligned}
\] & \[
\begin{aligned}
& -23 \% \\
& -16 \%
\end{aligned}
\] & \[
\begin{aligned}
& 0.82 \\
& 0.63
\end{aligned}
\] & \[
\begin{aligned}
& +2 \% \\
& -7 \%
\end{aligned}
\] & \[
\begin{aligned}
& 0.86 \\
& 0.75
\end{aligned}
\] & \[
\begin{array}{r}
+8 \% \\
+10 \%
\end{array}
\] & \[
\begin{aligned}
& 0.76 \\
& 0.69
\end{aligned}
\] & \[
\begin{aligned}
& -5 \% \\
& +1 \%
\end{aligned}
\] & \[
\begin{aligned}
& 0.80 \\
& 0.68
\end{aligned}
\] \\
\hline \multicolumn{10}{|l|}{Note: 5\% (+ or -) represents the percentage delta change in trip rate when compared against the average trip rate across all geographic areas} \\
\hline
\end{tabular}

Table 3.13: Mode Shares - (all households with residents not older than 55 years of age)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{\begin{tabular}{l}
Reported Mode Shares \\
All Households with persons 55 years of age or less AM and PM Peak Hours
\end{tabular}} \\
\hline  & \multicolumn{3}{|l|}{Core Area
Vehicle Transit
Non-} & \multicolumn{3}{|l|}{Urban Area (Inside the greenbelt)} & \multicolumn{3}{|l|}{\begin{tabular}{l}
Suburban \\
(Outside the greenbelt)
\end{tabular}} & \multicolumn{3}{|l|}{Rural \({ }^{*}\)} & \multicolumn{3}{|r|}{All Areas} \\
\hline \(\begin{array}{lr}\text { Single - } & \text { AM } \\ \text { Detached: } & \text { PM }\end{array}\) & \[
\begin{aligned}
& 35 \% \\
& 45 \%
\end{aligned}
\] & \[
\begin{aligned}
& 20 \% \\
& 11 \%
\end{aligned}
\] & \[
\begin{aligned}
& 33 \% \\
& 32 \%
\end{aligned}
\] & \[
\begin{aligned}
& 51 \% \\
& 58 \%
\end{aligned}
\] & \[
\begin{aligned}
& 26 \% \\
& 19 \%
\end{aligned}
\] & \[
\begin{aligned}
& 11 \% \\
& 13 \%
\end{aligned}
\] & \[
\begin{aligned}
& 55 \% \\
& 64 \%
\end{aligned}
\] & \[
\begin{aligned}
& 25 \% \\
& 19 \%
\end{aligned}
\] & \[
\begin{aligned}
& 9 \% \\
& 6 \%
\end{aligned}
\] & \[
\begin{aligned}
& 60 \% \\
& 73 \%
\end{aligned}
\] & \[
\begin{aligned}
& 27 \% \\
& 13 \%
\end{aligned}
\] & \[
\begin{aligned}
& 4 \% \\
& 2 \%
\end{aligned}
\] & \[
\begin{aligned}
& 54 \% \\
& 63 \%
\end{aligned}
\] & \[
\begin{aligned}
& 25 \% \\
& 17 \%
\end{aligned}
\] & \[
\begin{array}{r}
10 \% \\
8 \%
\end{array}
\] \\
\hline \(\begin{array}{ll}\text { Semi- } & \text { AM } \\ \text { Detached: } & \text { PM }\end{array}\) & \[
\begin{aligned}
& 38 \% \\
& 36 \%
\end{aligned}
\] & \[
\begin{aligned}
& 30 \% \\
& 20 \%
\end{aligned}
\] & \[
\begin{aligned}
& 26 \% \\
& 34 \%
\end{aligned}
\] & \[
\begin{aligned}
& 44 \% \\
& 51 \%
\end{aligned}
\] & \[
\begin{aligned}
& 35 \% \\
& 27 \%
\end{aligned}
\] & \[
\begin{gathered}
10 \% \\
13 \%
\end{gathered}
\] & \[
\begin{aligned}
& 52 \% \\
& 62 \%
\end{aligned}
\] & \(24 \%\)
\(17 \%\) & \[
\begin{array}{r}
12 \% \\
7 \%
\end{array}
\] & 64\%
\(77 \%\) & 27\%
12\% & \[
\begin{aligned}
& 5 \% \\
& 1 \%
\end{aligned}
\] & 49\%
58\% & \[
\begin{aligned}
& 28 \% \\
& 20 \%
\end{aligned}
\] & \[
\begin{aligned}
& 12 \% \\
& 10 \%
\end{aligned}
\] \\
\hline Row / AM
Townhouse: PM & \[
\begin{aligned}
& 33 \% \\
& 39 \%
\end{aligned}
\] & \[
\begin{aligned}
& 22 \% \\
& 15 \%
\end{aligned}
\] & \[
\begin{aligned}
& 40 \% \\
& 42 \%
\end{aligned}
\] & \[
\begin{aligned}
& 45 \% \\
& 53 \%
\end{aligned}
\] & \[
\begin{aligned}
& 34 \% \\
& 28 \%
\end{aligned}
\] & \[
\begin{array}{r}
10 \% \\
8 \%
\end{array}
\] & \[
\begin{aligned}
& 55 \% \\
& 61 \%
\end{aligned}
\] & \[
\begin{aligned}
& 27 \% \\
& 22 \%
\end{aligned}
\] & \[
\begin{aligned}
& 8 \% \\
& 6 \%
\end{aligned}
\] & \(73 \%\)
\(74 \%\) & \[
\begin{aligned}
& 15 \% \\
& 15 \%
\end{aligned}
\] & \[
\begin{aligned}
& \text { 3\% } \\
& \text { 1\% }
\end{aligned}
\] & \(49 \%\)
\(57 \%\) & \[
\begin{aligned}
& 30 \% \\
& 24 \%
\end{aligned}
\] & \[
\begin{array}{r}
11 \% \\
9 \%
\end{array}
\] \\
\hline Apartment: AM PM & \[
\begin{aligned}
& 27 \% \\
& 23 \%
\end{aligned}
\] & \[
\begin{aligned}
& \text { 27\% } \\
& 29 \%
\end{aligned}
\] & \[
\begin{aligned}
& 43 \% \\
& 42 \%
\end{aligned}
\] & \[
\begin{aligned}
& 37 \% \\
& 40 \%
\end{aligned}
\] & \[
\begin{aligned}
& 41 \% \\
& 37 \%
\end{aligned}
\] & \[
\begin{aligned}
& 14 \% \\
& 14 \%
\end{aligned}
\] & \[
\begin{aligned}
& 44 \% \\
& 44 \%
\end{aligned}
\] & \[
\begin{aligned}
& \hline 34 \% \\
& 33 \%
\end{aligned}
\] & \[
\begin{array}{r}
13 \% \\
9 \%
\end{array}
\] & \[
\begin{aligned}
& 76 \% \\
& 48 \%
\end{aligned}
\] & \[
\begin{aligned}
& 8 \% \\
& 4 \%
\end{aligned}
\] & \[
\begin{aligned}
& 16 \% \\
& 17 \%
\end{aligned}
\] & \[
\begin{aligned}
& 36 \% \\
& 35 \%
\end{aligned}
\] & \[
\begin{aligned}
& 35 \% \\
& 33 \%
\end{aligned}
\] & \[
\begin{aligned}
& 23 \% \\
& 23 \%
\end{aligned}
\] \\
\hline All Types: AM PM & \[
\begin{aligned}
& 32 \% \\
& 34 \%
\end{aligned}
\] & \[
\begin{aligned}
& 24 \% \\
& 21 \%
\end{aligned}
\] & \[
\begin{aligned}
& 38 \% \\
& 38 \%
\end{aligned}
\] & \[
\begin{aligned}
& 47 \% \\
& 53 \%
\end{aligned}
\] & \[
\begin{aligned}
& 31 \% \\
& 24 \%
\end{aligned}
\] & \[
\begin{aligned}
& 11 \% \\
& 12 \%
\end{aligned}
\] & \[
\begin{aligned}
& 54 \% \\
& 62 \%
\end{aligned}
\] & \[
\begin{aligned}
& 26 \% \\
& 20 \%
\end{aligned}
\] & \[
\begin{aligned}
& 9 \% \\
& 6 \%
\end{aligned}
\] & \[
\begin{aligned}
& 61 \% \\
& 73 \%
\end{aligned}
\] & \[
\begin{aligned}
& 26 \% \\
& 13 \%
\end{aligned}
\] & \[
\begin{aligned}
& 4 \% \\
& 2 \%
\end{aligned}
\] & \(51 \%\)
\(59 \%\) & \[
\begin{aligned}
& 27 \% \\
& 20 \%
\end{aligned}
\] & \[
\begin{aligned}
& 11 \% \\
& 10 \%
\end{aligned}
\] \\
\hline \multicolumn{16}{|l|}{\begin{tabular}{l}
Note: Percentages do not necessarily sum to \(100 \%\) as the proportion of automobile passengers have not been tabulated. Vehicle trips reflect the percentage of vehicle drivers. \\
* - Rural area sample size is extremely low and mode shares are highly influenced by school types where public transportation levels are high during the AM versus the PM peaks.
\end{tabular}} \\
\hline
\end{tabular}

Table 3.17: Blended Vehicle Trip Rate Directional Splits
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Comparison of Directional Splits (Inbound/Outbound) AM and PM Peak Hours} \\
\hline \multirow[t]{2}{*}{ITE Land Use Code} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|l|}{2008 Count Data} & \multicolumn{2}{|c|}{ITE} & \multicolumn{2}{|l|}{Blended Rate} \\
\hline & & & Inbound & Outbound & Inbound & Outbound & Inbound & Outbound \\
\hline \multirow{2}{*}{210} & \multirow[b]{2}{*}{Single-detached dwellings} & AM & 33\% & 67\% & 25\% & 75\% & 29\% & 71\% \\
\hline & & PM & 60\% & 40\% & 63\% & 37\% & 62\% & 39\% \\
\hline \multirow[t]{2}{*}{224} & \multirow[t]{2}{*}{Semi-detached dwellings, townhouses, rowhouses} & AM & 40\% & 60\% & 33\% & 67\% & 37\% & 64\% \\
\hline & & PM & 55\% & 45\% & 51\% & 49\% & 53\% & 47\% \\
\hline \multirow[b]{2}{*}{231} & \multirow[t]{2}{*}{Low-rise condominiums (1 or 2 floors)} & AM & 36\% & 64\% & 25\% & 75\% & 31\% & 70\% \\
\hline & & PM & 54\% & 46\% & 58\% & 42\% & 56\% & 44\% \\
\hline \multirow[b]{2}{*}{232} & \multirow[t]{2}{*}{High-rise condominiums (3+ floors)} & AM & 36\% & 64\% & 19\% & 81\% & 28\% & 73\% \\
\hline & & PM & 54\% & 46\% & 62\% & 38\% & 58\% & 42\% \\
\hline \multirow{2}{*}{233} & \multirow[b]{2}{*}{Luxury condominiums} & AM & 36\% & 64\% & 23\% & 77\% & 30\% & 71\% \\
\hline & & PM & 54\% & 46\% & 63\% & 37\% & 59\% & 42\% \\
\hline \multirow[t]{2}{*}{221} & \multirow[t]{2}{*}{Low-rise apartments (2 floors)} & AM & 22\% & 78\% & 21\% & 79\% & 22\% & 79\% \\
\hline & & PM & 62\% & 38\% & 65\% & 35\% & 64\% & 37\% \\
\hline \multirow[b]{2}{*}{223} & \multirow[t]{2}{*}{Mid-rise apartments (3-10 floors)} & AM & 22\% & 78\% & 25\% & 75\% & 24\% & 77\% \\
\hline & & PM & 62\% & 38\% & 61\% & 39\% & 62\% & 39\% \\
\hline \multirow[t]{2}{*}{222} & \multirow[t]{2}{*}{High-rise apartments (10+ floors)} & AM & 22\% & 78\% & 25\% & 75\% & 24\% & 77\% \\
\hline & & PM & 62\% & 38\% & 61\% & 39\% & 62\% & 39\% \\
\hline
\end{tabular}

The analysis of the OD Survey results confirmed that lower vehicle trip rates were reported in the core areas and higher vehicle trip rates in the suburban and rural areas. To account for the change in vehicle trip rates between geographic areas, the blended rates have been adjusted using information contained in Table 3.14. The resulting vehicle trip rates are highlighted in Table 3.18: Recommended Vehicle Trip Generation Rates without Transit Bonus.

Table 3.18: Recommended Vehicle Trip Generation Rates without Transit Bonus
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{\begin{tabular}{l}
Recommended Vehicle Trip Generation Rates \\
AM and PM Peak Hours
\end{tabular}} \\
\hline & & & \multicolumn{5}{|c|}{Vehicle Trip Rates} \\
\hline Use Code & Dwelling Unit Type & & Core & Urban (Inside the Greenbelt) & Suburban (Outside the Greenbelt) & Rural & All Areas \\
\hline 210 & Single-detached dwellings & \[
\begin{aligned}
& \text { AM } \\
& \text { PM }
\end{aligned}
\] & \[
\begin{aligned}
& 0.40 \\
& 0.60
\end{aligned}
\] & \[
\begin{aligned}
& 0.67 \\
& 0.76
\end{aligned}
\] & \[
\begin{aligned}
& 0.70 \\
& 0.90
\end{aligned}
\] & \[
\begin{aligned}
& 0.62 \\
& 0.92
\end{aligned}
\] & \[
\begin{aligned}
& 0.66 \\
& 0.81
\end{aligned}
\] \\
\hline 224 & Semi-detached dwellings, townhouses, rowhouses & AM
PM & \[
\begin{aligned}
& 0.34 \\
& 0.39
\end{aligned}
\] & \[
\begin{aligned}
& 0.51 \\
& 0.51
\end{aligned}
\] & \[
\begin{aligned}
& 0.54 \\
& 0.71
\end{aligned}
\] & \[
\begin{aligned}
& 0.62 \\
& 0.67
\end{aligned}
\] & \[
\begin{aligned}
& 0.52 \\
& 0.61
\end{aligned}
\] \\
\hline 231 & Low-rise condominiums (1 or 2 floors) & \[
\begin{aligned}
& \text { AM } \\
& \text { PM }
\end{aligned}
\] & \[
\begin{aligned}
& 0.34 \\
& 0.29
\end{aligned}
\] & \[
\begin{aligned}
& 0.50 \\
& 0.49
\end{aligned}
\] & \[
\begin{aligned}
& 0.60 \\
& 0.66
\end{aligned}
\] & \[
\begin{aligned}
& 0.71 \\
& 0.72
\end{aligned}
\] & \[
\begin{aligned}
& 0.47 \\
& 0.46
\end{aligned}
\] \\
\hline 232 & \begin{tabular}{l}
High-rise condominiums \\
(3+ floors)
\end{tabular} & \[
\begin{aligned}
& \text { AM } \\
& \text { PM }
\end{aligned}
\] & \[
\begin{aligned}
& 0.26 \\
& 0.20
\end{aligned}
\] & \[
\begin{aligned}
& 0.38 \\
& 0.34
\end{aligned}
\] & \[
\begin{aligned}
& 0.46 \\
& 0.46
\end{aligned}
\] & \[
\begin{aligned}
& 0.54 \\
& 0.50
\end{aligned}
\] & \[
\begin{aligned}
& 0.36 \\
& 0.32
\end{aligned}
\] \\
\hline 233 & Luxury condominiums & \[
\begin{aligned}
& \text { AM } \\
& \text { PM }
\end{aligned}
\] & \[
\begin{aligned}
& 0.31 \\
& 0.24
\end{aligned}
\] & \[
\begin{aligned}
& 0.45 \\
& 0.40
\end{aligned}
\] & \[
\begin{aligned}
& 0.55 \\
& 0.55
\end{aligned}
\] & \[
\begin{aligned}
& 0.65 \\
& 0.59
\end{aligned}
\] & \[
\begin{aligned}
& 0.43 \\
& 0.38
\end{aligned}
\] \\
\hline 221 & Low-rise apartments (2 floors) & \[
\begin{aligned}
& \text { AM } \\
& \text { PM }
\end{aligned}
\] & \[
\begin{aligned}
& 0.21 \\
& 0.20
\end{aligned}
\] & \[
\begin{aligned}
& 0.31 \\
& 0.34
\end{aligned}
\] & \[
\begin{aligned}
& 0.37 \\
& 0.46
\end{aligned}
\] & \[
\begin{aligned}
& 0.44 \\
& 0.50
\end{aligned}
\] & \[
\begin{aligned}
& 0.29 \\
& 0.32
\end{aligned}
\] \\
\hline 223 & Mid-rise apartments (3-10 floors) & \[
\begin{aligned}
& \text { AM } \\
& \text { PM }
\end{aligned}
\] & \[
\begin{aligned}
& 0.17 \\
& 0.16
\end{aligned}
\] & \[
\begin{aligned}
& 0.24 \\
& 0.28
\end{aligned}
\] & \[
\begin{aligned}
& 0.29 \\
& 0.37
\end{aligned}
\] & \[
\begin{aligned}
& 0.35 \\
& 0.41
\end{aligned}
\] & \[
\begin{aligned}
& 0.23 \\
& 0.26
\end{aligned}
\] \\
\hline 222 & High-rise apartments (10+ floors) & \[
\begin{aligned}
& \text { AM } \\
& \text { PM }
\end{aligned}
\] & \[
\begin{aligned}
& 0.17 \\
& 0.16
\end{aligned}
\] & \[
\begin{aligned}
& 0.24 \\
& 0.27
\end{aligned}
\] & \[
\begin{aligned}
& 0.29 \\
& 0.36
\end{aligned}
\] & \[
\begin{aligned}
& 0.35 \\
& 0.39
\end{aligned}
\] & \[
\begin{aligned}
& 0.23 \\
& 0.25
\end{aligned}
\] \\
\hline
\end{tabular}

\footnotetext{
Note: See Table 6.3 for recommended vehicle trip rates with transit bonus
}

Table 6.3: Recommended Vehicle Trip Generation Rates for Residential Land Uses with Transit Bonus
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{Recommended Vehicle Trip Generation Rates with Transit Bonus AM and PM Peak Hours} \\
\hline \multirow{3}{*}{\begin{tabular}{l}
ITE \\
Land \\
Use \\
Code
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & \multicolumn{7}{|c|}{Vehicle Trip Rate} \\
\hline & & & & ore & \multicolumn{2}{|r|}{Urban (Inside the Greenbelt)} & \multicolumn{2}{|r|}{\begin{tabular}{l}
Suburban \\
(Outside the Greenbelt
\end{tabular}} & Rural \\
\hline & & & Base Rate & \[
\begin{gathered}
<600 \mathrm{~m} \text { to } \\
\text { Rapid } \\
\text { Transit } \\
\hline
\end{gathered}
\] & Base
Rate & \[
\begin{aligned}
& <600 \mathrm{~m} \text { to } \\
& \text { Rapid } \\
& \text { Transit }
\end{aligned}
\] & Base Rate & \[
\begin{gathered}
\text { < } 600 \mathrm{~m} \text { to } \\
\text { Rapid } \\
\text { Transit }
\end{gathered}
\] & Base
Rate \\
\hline \multirow[t]{2}{*}{210} & \multirow[t]{2}{*}{Single-detached dwellings} & AM & 0.40 & 0.31 & 0.67 & 0.50 & 0.70 & 0.49 & 0.62 \\
\hline & & PM & 0.60 & 0.33 & 0.76 & 0.57 & 0.90 & 0.63 & 0.92 \\
\hline \multirow[b]{2}{*}{224} & \multirow[t]{2}{*}{Semi-detached dwellings, townhouses, rowhouses} & AM & 0.34 & 0.34 & 0.51 & 0.50 & 0.54 & 0.39 & 0.62 \\
\hline & & PM & 0.39 & 0.38 & 0.51 & 0.51 & 0.71 & 0.51 & 0.67 \\
\hline \multirow[t]{2}{*}{231} & \multirow[t]{2}{*}{Low-rise condominiums (1 or 2 floors)} & AM & 0.34 & 0.34 & 0.50 & 0.50 & 0.60 & 0.60 & 0.71 \\
\hline & & PM & 0.29 & 0.29 & 0.49 & 0.49 & 0.66 & 0.66 & 0.72 \\
\hline \multirow[t]{2}{*}{232} & \multirow[t]{2}{*}{High-rise condominiums (3+ floors)} & AM & 0.26 & 0.26 & 0.38 & 0.38 & 0.46 & 0.46 & 0.54 \\
\hline & & PM & 0.20 & 0.20 & 0.34 & 0.34 & 0.46 & 0.46 & 0.50 \\
\hline \multirow{2}{*}{233} & \multirow{2}{*}{Luxury condominiums} & AM & 0.31 & 0.31 & 0.45 & 0.45 & 0.55 & 0.55 & 0.65 \\
\hline & & PM & 0.24 & 0.24 & 0.40 & 0.40 & 0.55 & 0.55 & 0.59 \\
\hline \multirow[t]{2}{*}{221} & \multirow[t]{2}{*}{Low-rise apartments (2 floors)} & AM & 0.21 & 0.21 & 0.31 & 0.31 & 0.37 & 0.37 & 0.44 \\
\hline & & PM & 0.20 & 0.20 & 0.34 & 0.34 & 0.46 & 0.46 & 0.50 \\
\hline \multirow[t]{2}{*}{223} & \multirow[t]{2}{*}{Mid-rise apartments (3-10 floors)} & AM & 0.17 & 0.17 & 0.24 & 0.24 & 0.29 & 0.29 & 0.35 \\
\hline & & PM & 0.16 & 0.16 & 0.28 & 0.28 & 0.37 & 0.37 & 0.41 \\
\hline \multirow[t]{2}{*}{222} & \multirow[t]{2}{*}{High-rise apartments (10+ floors)} & AM & 0.17 & 0.17 & 0.24 & 0.24 & 0.29 & 0.29 & 0.35 \\
\hline & & PM & 0.16 & 0.16 & 0.27 & 0.27 & 0.36 & 0.36 & 0.39 \\
\hline
\end{tabular}

Note: The transit bonus was only applied to geographic areas and dwelling unit types where the reported transit mode shares were less than the transit mode share reported for residential development located within the 600 m proximity to a rapid transit station. It is noted that condominium and apartment housing categories reported similar levels of transit mode shares independent of location to rapid transit stations.

\subsection*{6.5 Future Data Collection}

While the rates presented in were prepared by blending the vehicle trip rates from ITE, the OD Survey and the 2008 local trip generation studies, it is important to stress the importance and need for ongoing local trip generation surveys to monitor changes in travel behaviour. The 2008 trip generation studies undertaken to support this study provide insight into local travel patterns and a well organized ongoing annual data collection program aimed at trip generation surveys of key land uses or requirement for data collection by local developers will continue to provide recent and accurate local trip generation rates. For example the high-rise apartment category of dwelling units reported the lowest peak hour vehicle trip rates.

\section*{Appendix G - MMLOS Analysis}




\section*{Appendix H - Intersection Control Warrants}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Data Sheet & Analysis Sheet & Results Sheet & Proposed Collision & \multicolumn{2}{|l|}{GO TO Justification:} \\
\hline What are the intersecting roadways? & \multicolumn{3}{|l|}{River \& Summerhill/ Ph. 12 South Access} & & \(\checkmark\) \\
\hline What is the direction of the Main Road street? & North-South & - When & data collected? F & Future (2024) Total AM \& PM Scenarios & s \\
\hline
\end{tabular}

\section*{Justification 1-4: Volume Warrants}
a.- Number of lanes on the Main Road? \(\quad 1\)
b.- Number of lanes on the Minor Road?
c.- How many approaches? \(\quad 4\)
d.- What is the operating environment? Rural Population < \(\mathbf{1 0 , 0 0 0}\) AND Speed \(>=\mathbf{7 0} \mathrm{km} / \mathrm{hr}\)
e.- What is the eight hour vehicle volume at the intersection? (Please fill in table below)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Hour Ending} & \multicolumn{3}{|l|}{Main Northbound Approach} & \multicolumn{3}{|l|}{Minor Eastbound Approach} & \multicolumn{3}{|l|}{Main Southbound Approach} & \multicolumn{3}{|l|}{Minor Westbound Approach} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Pedestrians } \\
& \text { Crossing Main }
\end{aligned}
\]
Road} \\
\hline & LT & TH & RT & \\
\hline 7:00 & 2 & 1,078 & 15 & 68 & 5 & 5 & 33 & 403 & 7 & 24 & 5 & 203 & \\
\hline 8:00 & 1 & 539 & 8 & 34 & 3 & 3 & 17 & 202 & 4 & 12 & 3 & 102 & \\
\hline 9:00 & 1 & 539 & 8 & 34 & 3 & 3 & 17 & 202 & 4 & 12 & 3 & 102 & \\
\hline 10:00 & 1 & 539 & 8 & 34 & 3 & 3 & 17 & 202 & 4 & 12 & 3 & 102 & \\
\hline 15:00 & 4 & 632 & 14 & 42 & 5 & 3 & 141 & 1,060 & 17 & 5 & 5 & 87 & \\
\hline 16:00 & 2 & 316 & 7 & 21 & 3 & 2 & 71 & 530 & 9 & 3 & 3 & 44 & \\
\hline 17:00 & 2 & 316 & 7 & 21 & 3 & 2 & 71 & 530 & 9 & 3 & 3 & 44 & \\
\hline 18:00 & 2 & 316 & 7 & 21 & 3 & 2 & 71 & 530 & 9 & 3 & 3 & 44 & \\
\hline Total & 15 & 4,275 & 73 & 275 & 25 & 20 & 435 & 3,658 & 60 & 73 & 25 & 725 & 0 \\
\hline
\end{tabular}

\section*{Justification 5: Collision Experience}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Preceding \\
Months
\end{tabular} & Number of Collisions* \\
\hline \(1-12\) & \\
\hline 13 & \multirow{2}{*}{\(\quad\)\begin{tabular}{c} 
* Include only collisions that are susceptable to correction \\
through the installation of traffic signal control
\end{tabular}} \\
\hline \(25-36\) &
\end{tabular}

\section*{Justification 6: Pedestrian Volume}
a.- Please fill in table below summarizing total pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{Zone 1} & \multicolumn{2}{|c|}{Zone 2} & \multicolumn{2}{|l|}{Zone 3 (if needed)} & \multicolumn{2}{|l|}{Zone 4 (if needed)} & \multirow{2}{*}{Total} \\
\hline & Assisted & Unassisted & Assisted & Unassisted & Assisted & Unassisted & Assisted & Unassisted & \\
\hline \multicolumn{9}{|l|}{Total 8 hour pedestrian volume} & \\
\hline Factored 8 hour pedestrian volume & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{0} & \\
\hline \multicolumn{3}{|l|}{\% Assigned to crossing rate} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{} & \\
\hline \multicolumn{9}{|l|}{Net 8 Hour Pedestrian Volume at Crossing} & 0 \\
\hline \multicolumn{9}{|l|}{Net 8 Hour Vehicular Volume on Street Being Crossed} & 6,411 \\
\hline
\end{tabular}
b.- Please fill in table below summarizing delay to pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{Zone 1} & \multicolumn{2}{|r|}{Zone 2} & \multicolumn{2}{|l|}{Zone 3 (if needed)} & \multicolumn{2}{|l|}{Zone 4 (if needed)} & \multirow{2}{*}{Total} \\
\hline & Assisted & Unassisted & Assisted & Unassisted & Assisted & Unassisted & Assisted & Unassisted & \\
\hline Total 8 hour pedestrian volume & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline \multicolumn{9}{|l|}{Total 8 hour pedestrians delayed greater than 10 seconds} & \\
\hline Factored volume of total pedestrians & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|r|}{0} & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{0} & \\
\hline Factored volume of delayed pedestrians & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|r|}{0} & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{0} & \\
\hline \% Assigned to Crossing Rate & \multicolumn{2}{|c|}{0\%} & \multicolumn{2}{|r|}{0\%} & \multicolumn{2}{|c|}{\[
0 \%
\]} & \multicolumn{2}{|c|}{0\%} & \\
\hline \multicolumn{9}{|l|}{Net 8 Hour Volume of Total Pedestrians} & 0 \\
\hline Net 8 Hour Volume of Delayed Pedest & & & & & & & & & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline A & Input Sheet & Results Sheet & Proposed Collision & GO TO Justification: \\
\hline Analysis & & & & \(\cdots\) \\
\hline
\end{tabular}

Intersection: River \& Summerhill/ Ph. 12 South Access
Count Date: Future (2024) Total AM \& PM Scenarios

\section*{Justification 1: Minimum Vehicle Volumes}

Free Flow Rural Conditions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Justification} & \multicolumn{4}{|c|}{Guidance Approach Lanes} & \multicolumn{8}{|c|}{Percentage Warrant} & \multirow[t]{2}{*}{Total Across} & \multirow[t]{2}{*}{Section Percent} \\
\hline & \multicolumn{2}{|c|}{1 Lanes} & \multicolumn{2}{|l|}{2 or More Lanes} & \multicolumn{8}{|c|}{Hour Ending} & & \\
\hline Flow
Condition & FREE FLOW & RESTR. FLOW ᄃ & FREE FLOW & RESTR. fLow Г & 7:00 & 8:00 & 9:00 & 10:00 & 15:00 & 16:00 & 17:00 & 18:00 & & \\
\hline \multirow{2}{*}{1A} & 480 & 720 & 600 & 900 & 1,848 & 924 & 924 & 924 & 2,015 & 1,008 & 1,008 & 1,008 & & \\
\hline & \multicolumn{4}{|c|}{COMPLIANCE \%} & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 800 & 100 \\
\hline \multirow{2}{*}{1B} & 120 & 170 & 120 & 170 & 310 & 155 & 155 & 155 & 147 & 74 & 74 & 74 & & \\
\hline & \multicolumn{4}{|c|}{COMPLIANCE \%} & 100 & 100 & 100 & 100 & 100 & 61 & 61 & 61 & 684 & 85 \\
\hline \multicolumn{5}{|c|}{Free Flow} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Both 1A and 1B 100\% Fulfilled each of 8 hours \\
Lesser of 1A or 1B at least \(80 \%\) fulfilled each of 8 hours
\end{tabular}} & & & & \[
\begin{aligned}
& \nabla \\
& \Gamma
\end{aligned}
\] & \\
\hline
\end{tabular}

\section*{Justification 2: Delay to Cross Traffic}

Free Flow Rural Conditions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Justification} & \multicolumn{4}{|c|}{Guidance Approach Lanes} & \multicolumn{8}{|c|}{Percentage Warrant} & \multirow[t]{2}{*}{Total Across} & \multirow[t]{2}{*}{Section Percent} \\
\hline & \multicolumn{2}{|c|}{1 lanes} & \multicolumn{2}{|l|}{2 or More lanes} & \multicolumn{8}{|c|}{Hour Ending} & & \\
\hline Flow Condition & FREE FLOW & RESTR. FLOW「 & FREE FLOW & RESTR. FLOW
\(\qquad\) \(\Gamma\) & 7:00 & 8:00 & 9:00 & 10:00 & 15:00 & 16:00 & 17:00 & 18:00 & & \\
\hline \multirow{2}{*}{2A} & 480 & 720 & 600 & 900 & 1,538 & 769 & 769 & 769 & 1,868 & 934 & 934 & 934 & & \\
\hline & \multicolumn{4}{|c|}{COMPLIANCE \%} & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 800 & 100 \\
\hline \multirow{2}{*}{2B} & 50 & 75 & 50 & 75 & 97 & 49 & 49 & 49 & 123 & 26 & 26 & 26 & & \\
\hline & \multicolumn{4}{|c|}{COMPLIANCE \%} & 100 & 97 & 97 & 97 & 100 & 52 & 52 & 52 & 647 & 81 \\
\hline & Signal & e Flow & 2: & & \multicolumn{4}{|l|}{Lesser of 2A or 2B at least 80\% fulfilled each of 8 hours} & & & & & \[
\begin{aligned}
& \nabla \\
& \Gamma
\end{aligned}
\] & \\
\hline
\end{tabular}

\section*{Justification 3: Combination}

Combination Justification 1 and 2
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Justification Satisfied 80\% or More} & \multicolumn{2}{|c|}{Two Justifications Satisfied 80\% or More} \\
\hline Justification 1 & Minimum Vehicle Volume & YES \(V\) & NO \(\Gamma\) & YES \(V\) & No \(\Gamma\) \\
\hline Justification 2 & Delay Cross Traffic & YES \(\nabla^{-}\) & NO 「 & Justified & \\
\hline
\end{tabular}

\section*{Justification 4: Four Hour Volume}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Justification} & \multirow[t]{2}{*}{Time Period} & Total Volume of Both Approaches (Main) & Heaviest Minor Approach & Required Value & \multirow[t]{2}{*}{Average \% Compliance} & \multirow[t]{2}{*}{Overall \% Compliance} \\
\hline & & X & \(Y\) (actual) & \(Y\) (warrant threshold) & & \\
\hline \multirow{4}{*}{Justification 4} & 7:00 & 1,538 & 232 & 80 & \(100 \%\) & \multirow{4}{*}{68 \%} \\
\hline & 15:00 & 1,868 & 97 & 80 & \(100 \%\) & \\
\hline & 16:00 & 934 & 49 & 133 & 36 \% & \\
\hline & 17:00 & 934 & 49 & 133 & 36 \% & \\
\hline
\end{tabular}

\section*{Justification 5: Collision Experience}
\begin{tabular}{|c|c|c|c|}
\hline Justification & Preceding Months & \% Fulfillment & \begin{tabular}{c} 
Overall \% \\
Compliance
\end{tabular} \\
\hline Justification 5 & \(1-12\) & \(0 \%\) & \(0 \%\) \\
\hline
\end{tabular}

\section*{Justification 6: Pedestrian Volume}

Pedestrian Volume Analysis
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{8 Hour Vehicular Volume \(\mathrm{V}_{8}\)}} & \multicolumn{5}{|c|}{Net 8 Hour Pedestrian Volume} \\
\hline & & < 200 & 200-275 & 276-475 & 476-1000 & >1000 \\
\hline \multirow{4}{*}{Justification 6A} & < 1440 & & & & & \\
\hline & 1440-2600 & & & & & \\
\hline & 2601-7000 & Not Justified & & & & \\
\hline & > 7000 & & & & & \\
\hline
\end{tabular}

Pedestrian Delay Analysis
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Net Total 8 Hour Volume of Total Pedestrians}} & \multicolumn{3}{|c|}{Net Total 8 Hour Volume of Delayed Pedestrians} \\
\hline & & \(<75\) & 75-130 & > 130 \\
\hline \multirow{3}{*}{Justification 6B} & < 200 & Not Justified & & \\
\hline & 200-300 & & & \\
\hline & > 300 & & & \\
\hline
\end{tabular}
Results Sheet \(\quad\) Input Sheet \(\quad\) Analysis Sheet \(\quad\) Proposed Collision \(\quad\) GO TO Justification:

Intersection: River \& Summerhill/ Ph. 12 South Access Count Date: Future (2024) Total AM \& PM Scenarios

\section*{Summary Results}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{\multirow[t]{2}{*}{Justification}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Compliance}} & \multicolumn{2}{|l|}{Signal Justified?} \\
\hline & & & & & YES & NO \\
\hline 1. Minimum & A & Total Volume & 100 & \% & \multirow{2}{*}{\(\ulcorner\)} & \multirow{2}{*}{V} \\
\hline Volume & B & Crossing Volume & 85 & \% & & \\
\hline 2. Delay to Cross & A & Main Road & 100 & \% & \multirow[t]{2}{*}{\(\Gamma\)} & \multirow{2}{*}{V} \\
\hline Traffic & B & Crossing Road & 81 & \% & & \\
\hline \multirow[t]{2}{*}{3. Combination} & A & Justificaton 1 & 85 & \% & \multirow{2}{*}{V} & \multirow{2}{*}{Г} \\
\hline & B & Justification 2 & 81 & \% & & \\
\hline \multicolumn{3}{|l|}{4. 4-Hr Volume} & 68 & \% & Г & V \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \hline 5. Collision Experience & 0 & \(\%\) & \(\ulcorner\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{6. Pedestrians} & A & Volume & Justification not met & \multirow{2}{*}{\(\ulcorner\)} & \multirow{2}{*}{V} \\
\hline & B & Delay & Justification not met & & \\
\hline
\end{tabular}

Proposed Collision Justification

INPUT
a.- Intersection type (no input required): \(\quad 3 \quad \square\)
b.- What year is the intersection being considered for traffic signals?

2004
c.- What is the collision history and annual average daily traffic over the past few years? (Please fill in table below)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{2}{|l|}{Traffic Volume} & \multicolumn{7}{|c|}{Impact Type/Year} \\
\hline & Major AADT & \begin{tabular}{l}
Minor \\
AADT
\end{tabular} & Approaching & Angle & Rear end & Sideswipe & Turning movement & SMV & Other \\
\hline 2000 & 21626 & 3893 & 0 & 4 & 5 & 1 & 4 & 0 & 0 \\
\hline 2001 & 22059 & 3971 & 0 & 6 & 4 & 1 & 3 & 1 & 1 \\
\hline 2002 & 22500 & 4050 & 0 & 7 & 5 & 2 & 2 & 1 & 0 \\
\hline 2003 & 23300 & 4200 & 0 & 8 & 3 & 3 & 2 & 1 & 0 \\
\hline 2004 & 23648 & 6528 & 0 & 9 & 0 & 4 & 1 & 0 & 0 \\
\hline & & & & & & & & & \\
\hline
\end{tabular}
d.- If known, please enter the expected traffic volume after signals are introduced Otherwise, leave the cell blank


\section*{ANALYSIS}

Reducible Collisions


Non-reducible Collisions
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 2000 & 2001 & 2002 & 2003 & 2004 & 2004 (Signal) \\
\hline Total Number of Crashes Per Year & 6 & 7 & 8 & 7 & 4 & --- \\
\hline Parameter k & 1.47 & 1.47 & 1.47 & 1.47 & 1.47 & 1.19 \\
\hline Model Prediction & 1.17 & 1.18 & 1.20 & 1.23 & 1.38 & 1.38 \\
\hline \(\mathrm{c}_{\mathrm{i}, \mathrm{y}}\) & 0.849 & 0.860 & 0.870 & 0.890 & 1.000 & 1.000 \\
\hline Comp. Ratio for Period & \multicolumn{6}{|r|}{\begin{tabular}{|l|l}
4.469 & 1.000
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Reducible Collisions &  \\
\hline Total Number of Historical Crashes & 46 & 32 \\
\hline Expected Annual Crashes without Signalization based on SPF & 2.150 & 1.377 \\
\hline Expected Annual Crashes without Signalization & 11.131 & 6.046 \\
\hline Variance of Expected Annual Crashes without Signalization & 2.647 & 1.092 \\
\hline Expected Annual Crashes after Signalization based on SPF & 2.089 & 3.286 \\
\hline Expected Annual Crashes after Signalization & 10.813 & 14.425 \\
\hline Variance of Expected Annual Crashes after Signalization & 194.857 & 174.867 \\
\hline
\end{tabular}
\begin{tabular}{|l|c:c|}
\cline { 2 - 4 } \multicolumn{1}{c|}{} & \begin{tabular}{c} 
Reducible \\
Collisions
\end{tabular} & \begin{tabular}{c} 
Non- \\
reducible \\
Collisions
\end{tabular} \\
\hline Weights for Unsignalized Intersections & 0.27 & 0.18 \\
\hline Weights for Signalized Intersections & 0.30 & 0.25 \\
\hline
\end{tabular}

\section*{RESULTS}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{Justification} & \multirow[b]{2}{*}{Compliance} & \multicolumn{2}{|l|}{Signal Justified?} \\
\hline & & YES & NO \\
\hline \multirow[t]{2}{*}{5. Collision Experience} & Net Safety Change 2.757 & \multirow[b]{2}{*}{\(\Gamma\)} & \multirow[b]{2}{*}{F} \\
\hline & Total Collisions will Increase
after this intersection is signalized & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Input Data Sheet & Analysis Sheet & Results Sheet & Proposed Collision & \multicolumn{2}{|l|}{GO TO Justification:} \\
\hline What are the intersecting roadways? & \multicolumn{3}{|l|}{River \& Borbridge} & & - \\
\hline What is the direction of the Main Road street? & North-South & - When & data collected? & re (2029) Total AM \& PM Scenarios & s \\
\hline
\end{tabular}

\section*{Justification 1-4: Volume Warrants}
a.- Number of lanes on the Main Road?
b.- Number of lanes on the Minor Road?
c.- How many approaches?
d.- What is the operating environment?
e.- What is the eight hour vehicle volume at the intersection? (Please fill in table below)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Hour Ending} & \multicolumn{3}{|l|}{Main Northbound Approach} & \multicolumn{3}{|l|}{Minor Eastbound Approach} & \multicolumn{3}{|l|}{Main Southbound Approach} & \multicolumn{3}{|l|}{Minor Westbound Approach} & \multirow[t]{2}{*}{Pedestrians Crossing Main Road} \\
\hline & LT & TH & RT & \\
\hline 7:00 & 0 & 1,107 & 7 & 0 & 0 & 0 & 102 & 445 & 0 & 3 & 0 & 218 & \\
\hline 8:00 & 0 & 554 & 4 & 0 & 0 & 0 & 51 & 223 & 0 & 2 & 0 & 109 & \\
\hline 9:00 & 0 & 554 & 4 & 0 & 0 & 0 & 51 & 223 & 0 & 2 & 0 & 109 & \\
\hline 10:00 & 0 & 554 & 4 & 0 & 0 & 0 & 51 & 223 & 0 & 2 & 0 & 109 & \\
\hline 15:00 & 0 & 671 & 6 & 0 & 0 & 0 & 218 & 1,077 & 0 & 7 & 0 & 165 & \\
\hline 16:00 & 0 & 336 & 3 & 0 & 0 & 0 & 109 & 539 & 0 & 4 & 0 & 83 & \\
\hline 17:00 & 0 & 336 & 3 & 0 & 0 & 0 & 109 & 539 & 0 & 4 & 0 & 83 & \\
\hline 18:00 & 0 & 336 & 3 & 0 & 0 & 0 & 109 & 539 & 0 & 4 & 0 & 83 & \\
\hline Total & 0 & 4,445 & 33 & 0 & 0 & 0 & 800 & 3,805 & 0 & 25 & 0 & 958 & 0 \\
\hline
\end{tabular}

\section*{Justification 5: Collision Experience}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Preceding \\
Months
\end{tabular} & Number of Collisions
\end{tabular}\(\quad\)\begin{tabular}{c} 
\\
\hline \(1-12\)
\end{tabular}

\section*{Justification 6: Pedestrian Volume}
a.- Please fill in table below summarizing total pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.

b.- Please fill in table below summarizing delay to pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{Zone 1} & \multicolumn{2}{|c|}{Zone 2} & \multicolumn{2}{|l|}{Zone 3 (if needed)} & \multicolumn{2}{|l|}{Zone 4 (if needed)} & \multirow[b]{2}{*}{Total} \\
\hline & Assisted & Unassisted & Assisted & Unassisted & Assisted & Unassisted & Assisted & Unassisted & \\
\hline Total 8 hour pedestrian volume & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline \multicolumn{9}{|l|}{Total 8 hour pedestrians delayed greater than 10 seconds} & \\
\hline Factored volume of total pedestrians & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{0} & \\
\hline Factored volume of delayed pedestrians & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{0} & \\
\hline \% Assigned to Crossing Rate & \multicolumn{2}{|c|}{0\%} & \multicolumn{2}{|c|}{0\%} & \multicolumn{2}{|c|}{0\%} & \multicolumn{2}{|c|}{0\%} & \\
\hline \multicolumn{9}{|l|}{Net 8 Hour Volume of Total Pedestrians} & 0 \\
\hline Net 8 Hour Volume of Delayed Pedestr & & & & & & & & & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & Input Sheet & Results Sheet & Proposed Collision & GO TO Justification: \\
\hline Analysis Sheet & Input Sheet & Results Sheet & Proposed Colision & - \\
\hline
\end{tabular}

\section*{Justification 1: Minimum Vehicle Volumes}

Free Flow Rural Conditions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Justification} & \multicolumn{4}{|c|}{Guidance Approach Lanes} & \multicolumn{8}{|c|}{Percentage Warrant} & \multirow[t]{2}{*}{Total Across} & \multirow[t]{2}{*}{Section Percent} \\
\hline & \multicolumn{2}{|c|}{1 Lanes} & \multicolumn{2}{|l|}{2 or More Lanes} & \multicolumn{8}{|c|}{Hour Ending} & & \\
\hline Flow
Condition & FREE FLOW & RESTR. fLow \(\Gamma\) & FREE FLOW & RESTR. fLow Г & 7:00 & 8:00 & 9:00 & 10:00 & 15:00 & 16:00 & 17:00 & 18:00 & & \\
\hline \multirow{2}{*}{1A} & 480 & 720 & 600 & 900 & 1,882 & 941 & 941 & 941 & 2,144 & 1,072 & 1,072 & 1,072 & & \\
\hline & \multicolumn{4}{|c|}{COMPLIANCE \%} & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 800 & 100 \\
\hline \multirow{2}{*}{1B} & 180 & 255 & 180 & 255 & 221 & 111 & 111 & 111 & 172 & 86 & 86 & 86 & & \\
\hline & \multicolumn{4}{|c|}{COMPLIANCE \%} & 100 & 61 & 61 & 61 & 96 & 48 & 48 & 48 & 523 & 65 \\
\hline \multicolumn{5}{|c|}{Free Flow} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Both 1A and 1B 100\% Fulfilled each of 8 hours \\
Lesser of 1 A or 1 B at least \(80 \%\) fulfilled each of 8 hours
\end{tabular}} & & & & & \\
\hline
\end{tabular}

\section*{Justification 2: Delay to Cross Traffic}

Free Flow Rural Conditions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Justification} & \multicolumn{4}{|c|}{Guidance Approach Lanes} & \multicolumn{8}{|c|}{Percentage Warrant} & \multirow[b]{2}{*}{Total Across} & \multirow[b]{2}{*}{Section Percent} \\
\hline & \multicolumn{2}{|c|}{1 lanes} & \multicolumn{2}{|l|}{2 or More lanes} & \multicolumn{8}{|c|}{Hour Ending} & & \\
\hline Flow Condition & FREE FLOW & RESTR. FLOW \(\Gamma\) & FREE FLOW & RESTR. FLOW
\(\qquad\) & 7:00 & 8:00 & 9:00 & 10:00 & 15:00 & 16:00 & 17:00 & 18:00 & & \\
\hline \multirow{2}{*}{2A} & 480 & 720 & 600 & 900 & 1,661 & 831 & 831 & 831 & 1,972 & 986 & 986 & 986 & & \\
\hline & \multicolumn{4}{|c|}{COMPLIANCE \%} & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 800 & 100 \\
\hline \multirow{2}{*}{2B} & 50 & 75 & 50 & 75 & 3 & 2 & 2 & 2 & 116 & 4 & 4 & 4 & & \\
\hline & \multicolumn{4}{|c|}{COMPLIANCE \%} & 6 & 3 & 3 & 3 & 100 & 7 & 7 & 7 & 136 & 17 \\
\hline & Signal & Elow & 2: & & \multicolumn{5}{|l|}{Both 2A and 2B 100\% fulfilled each of 8 hours} & Y & & & \(\sqrt{V}\) & \\
\hline
\end{tabular}

\section*{Justification 3: Combination}

Combination Justification 1 and 2
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Justification Satisfied 80\% or More} & \multicolumn{3}{|c|}{Two Justifications Satisfied 80\% or More} \\
\hline Justification 1 & Minimum Vehicle Volume & YES Г & NO \(\bar{V}\) & YES & \(\Gamma\) & No \(\bar{V}\) \\
\hline Justification 2 & Delay Cross Traffic & YES 「 & NO \(\bar{V}\) & & & NOT JUSTIFIED \\
\hline
\end{tabular}

\section*{Justification 4: Four Hour Volume}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Justification} & \multirow[t]{2}{*}{Time Period} & Total Volume of Both Approaches (Main) & Heaviest Minor Approach & Required Value & \multirow[t]{2}{*}{Average \% Compliance} & \multirow[t]{2}{*}{Overall \% Compliance} \\
\hline & & X & \(Y\) (actual) & \(Y\) (warrant threshold) & & \\
\hline \multirow{4}{*}{Justification 4} & 7:00 & 1,672 & 221 & 80 & \(100 \%\) & \multirow{4}{*}{86 \%} \\
\hline & 15:00 & 1,968 & 172 & 80 & 100 \% & \\
\hline & 16:00 & 984 & 86 & 121 & 71 \% & \\
\hline & 17:00 & 984 & 86 & 121 & \(71 \%\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Analysis Sheet} & Input Sheet & Results Sheet & Proposed Collision & \multirow[t]{2}{*}{-} \\
\hline & & & & \\
\hline
\end{tabular}

Intersection: River \& Borbridge
Count Date: Future (2029) Total AM \& PM Scenarios

\section*{Justification 5: Collision Experience}
\begin{tabular}{|c|c|c|c|}
\hline Justification & Preceding Months & \% Fulfillment & \begin{tabular}{c} 
Overall \% \\
Compliance
\end{tabular} \\
\hline Justification 5 & \(1-12\) & \(0 \%\) & \(0 \%\) \\
\hline
\end{tabular}

Justification 6: Pedestrian Volume

Pedestrian Volume Analysis
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{8 Hour Vehicular Volume \(\mathrm{V}_{8}\)}} & \multicolumn{5}{|c|}{Net 8 Hour Pedestrian Volume} \\
\hline & & <200 & 200-275 & 276-475 & 476-1000 & >1000 \\
\hline \multirow{4}{*}{Justification 6A} & \(<1440\) & & & & & \\
\hline & 1440-2600 & & & & & \\
\hline & 2601-7000 & Not Justified & & & & \\
\hline & > 7000 & & & & & \\
\hline
\end{tabular}

Pedestrian Delay Analysis
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Net Total 8 Hour Volume of Total Pedestrians}} & \multicolumn{3}{|c|}{Net Total 8 Hour Volume of Delayed Pedestrians} \\
\hline & & \(<75\) & 75-130 & > 130 \\
\hline \multirow{3}{*}{Justification 6B} & < 200 & Not Justified & & \\
\hline & 200-300 & & & \\
\hline & > 300 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Results Sheet & Input Sheet & Analysis Sheet & Proposed Collision & GO TO Justification: \\
\hline
\end{tabular}

Intersection: River \& Borbridge
Count Date: Future (2029) Total AM \& PM Scenarios

\section*{Summary Results}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{\multirow[t]{2}{*}{Justification}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Compliance}} & \multicolumn{2}{|l|}{Signal Justified?} \\
\hline & & & & & YES & NO \\
\hline \multirow[t]{2}{*}{1. Minimum Vehicular Volume} & A & Total Volume & 100 & \% & \multirow{2}{*}{Г} & \multirow[t]{2}{*}{\(\nabla\)} \\
\hline & B & Crossing Volume & 65 & \% & & \\
\hline \multirow[t]{2}{*}{2. Delay to Cross Traffic} & A & Main Road & 100 & \% & \multirow[t]{2}{*}{\(\Gamma\)} & \multirow[t]{2}{*}{\(\nabla\)} \\
\hline & B & Crossing Road & 17 & \% & & \\
\hline \multirow[t]{2}{*}{3. Combination} & A & Justificaton 1 & 65 & \% & Г & \(\sigma\) \\
\hline & B & Justification 2 & 17 & \% & & \\
\hline \multicolumn{3}{|l|}{4. 4-Hr Volume} & 86 & \% & \(\Gamma\) & V \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \hline 5. Collision Experience & 0 & \(\%\) & \(\ulcorner\) \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|l|l|l|}
\hline 6. Pedestrians & A & Volume & Justification not met & & \multirow{6}{|c|}{} \\
& B & Delay & Justification not met & & \\
\hline \hline
\end{tabular}

Proposed Collision Justification

INPUT
a.- Intersection type (no input required): \(\quad 3 \quad \square\)
b.- What year is the intersection being considered for traffic signals?

2004
c.- What is the collision history and annual average daily traffic over the past few years? (Please fill in table below)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{2}{|l|}{Traffic Volume} & \multicolumn{7}{|c|}{Impact Type/Year} \\
\hline & Major AADT & \begin{tabular}{l}
Minor \\
AADT
\end{tabular} & Approaching & Angle & Rear end & Sideswipe & Turning movement & SMV & Other \\
\hline 2000 & 21626 & 3893 & 0 & 4 & 5 & 1 & 4 & 0 & 0 \\
\hline 2001 & 22059 & 3971 & 0 & 6 & 4 & 1 & 3 & 1 & 1 \\
\hline 2002 & 22500 & 4050 & 0 & 7 & 5 & 2 & 2 & 1 & 0 \\
\hline 2003 & 23300 & 4200 & 0 & 8 & 3 & 3 & 2 & 1 & 0 \\
\hline 2004 & 23648 & 6528 & 0 & 9 & 0 & 4 & 1 & 0 & 0 \\
\hline & & & & & & & & & \\
\hline
\end{tabular}
d.- If known, please enter the expected traffic volume after signals are introduced Otherwise, leave the cell blank


\section*{ANALYSIS}

Reducible Collisions


Non-reducible Collisions
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 2000 & 2001 & 2002 & 2003 & 2004 & 2004 (Signal) \\
\hline Total Number of Crashes Per Year & 6 & 7 & 8 & 7 & 4 & --- \\
\hline Parameter k & 1.47 & 1.47 & 1.47 & 1.47 & 1.47 & 1.19 \\
\hline Model Prediction & 1.17 & 1.18 & 1.20 & 1.23 & 1.38 & 1.38 \\
\hline \(\mathrm{c}_{\mathrm{i}, \mathrm{y}}\) & 0.849 & 0.860 & 0.870 & 0.890 & 1.000 & 1.000 \\
\hline Comp. Ratio for Period & \multicolumn{6}{|r|}{\begin{tabular}{|l|l}
4.469 & 1.000
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Reducible Collisions &  \\
\hline Total Number of Historical Crashes & 46 & 32 \\
\hline Expected Annual Crashes without Signalization based on SPF & 2.150 & 1.377 \\
\hline Expected Annual Crashes without Signalization & 11.131 & 6.046 \\
\hline Variance of Expected Annual Crashes without Signalization & 2.647 & 1.092 \\
\hline Expected Annual Crashes after Signalization based on SPF & 2.089 & 3.286 \\
\hline Expected Annual Crashes after Signalization & 10.813 & 14.425 \\
\hline Variance of Expected Annual Crashes after Signalization & 194.857 & 174.867 \\
\hline
\end{tabular}
\begin{tabular}{|l|c:c|}
\cline { 2 - 4 } \multicolumn{1}{c|}{} & \begin{tabular}{c} 
Reducible \\
Collisions
\end{tabular} & \begin{tabular}{c} 
Non- \\
reducible \\
Collisions
\end{tabular} \\
\hline Weights for Unsignalized Intersections & 0.27 & 0.18 \\
\hline Weights for Signalized Intersections & 0.30 & 0.25 \\
\hline
\end{tabular}

\section*{RESULTS}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{Justification} & \multirow[b]{2}{*}{Compliance} & \multicolumn{2}{|l|}{Signal Justified?} \\
\hline & & YES & NO \\
\hline \multirow[t]{2}{*}{5. Collision Experience} & Net Safety Change 2.757 & \multirow[b]{2}{*}{\(\Gamma\)} & \multirow[b]{2}{*}{F} \\
\hline & Total Collisions will Increase
after this intersection is signalized & & \\
\hline
\end{tabular}


\section*{Justification 1-4: Volume Warrants}
a.- Number of lanes on the Main Road?
b.- Number of lanes on the Minor Road?
c.- How many approaches?
d.- What is the operating environment?
e.- What is the eight hour vehicle volume at the intersection? (Please fill in table below)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Hour Ending} & \multicolumn{3}{|l|}{Main Northbound Approach} & \multicolumn{3}{|l|}{Minor Eastbound Approach} & \multicolumn{3}{|l|}{Main Southbound Approach} & \multicolumn{3}{|l|}{Minor Westbound Approach} & \multirow[t]{2}{*}{Pedestrians
Crossing Main
Road} \\
\hline & LT & TH & RT & \\
\hline 7:00 & 3 & 1,037 & 0 & 49 & 5 & 5 & 9 & 417 & 23 & 0 & 5 & 27 & \\
\hline 8:00 & 2 & 519 & 0 & 25 & 3 & 3 & 5 & 209 & 12 & 0 & 3 & 14 & \\
\hline 9:00 & 2 & 519 & 0 & 25 & 3 & 3 & 5 & 209 & 12 & 0 & 3 & 14 & \\
\hline 10:00 & 2 & 519 & 0 & 25 & 3 & 3 & 5 & 209 & 12 & 0 & 3 & 14 & \\
\hline 15:00 & 6 & 620 & 0 & 37 & 5 & 4 & 29 & 1,004 & 50 & 0 & 5 & 16 & \\
\hline 16:00 & 3 & 310 & 0 & 19 & 3 & 2 & 15 & 502 & 25 & 0 & 3 & 8 & \\
\hline 17:00 & 3 & 310 & 0 & 19 & 3 & 2 & 15 & 502 & 25 & 0 & 3 & 8 & \\
\hline 18:00 & 3 & 310 & 0 & 19 & 3 & 2 & 15 & 502 & 25 & 0 & 3 & 8 & \\
\hline Total & 23 & 4,143 & 0 & 215 & 25 & 23 & 95 & 3,553 & 183 & 0 & 25 & 108 & 0 \\
\hline
\end{tabular}

\section*{Justification 5: Collision Experience}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Preceding \\
Months
\end{tabular} & Number of Collisions* \\
\hline \(1-12\) & \\
\hline 13
\end{tabular}

\section*{Justification 6: Pedestrian Volume}
a.- Please fill in table below summarizing total pedestrians crossing major roadway at the intersection or in proximity to the intersection (zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.

b.- Please fill in table below summarizing delay to pedestrians crossing major roadway at the intersection or in proximity to the intersection
(zones). Please reference Section 4.8 of the Manual for further explanation and graphical representation.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{Zone 1} & \multicolumn{2}{|c|}{Zone 2} & \multicolumn{2}{|l|}{Zone 3 (if needed)} & \multicolumn{2}{|l|}{Zone 4 (if needed)} & \multirow[b]{2}{*}{Total} \\
\hline & Assisted & Unassisted & Assisted & Unassisted & Assisted & Unassisted & Assisted & Unassisted & \\
\hline Total 8 hour pedestrian volume & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline \multicolumn{9}{|l|}{Total 8 hour pedestrians delayed greater than 10 seconds} & \\
\hline Factored volume of total pedestrians & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|r|}{0} & \\
\hline Factored volume of delayed pedestrians & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|c|}{0} & \multicolumn{2}{|r|}{0} & \\
\hline \% Assigned to Crossing Rate & \multicolumn{2}{|c|}{0\%} & \multicolumn{2}{|c|}{0\%} & \multicolumn{2}{|c|}{0\%} & \multicolumn{2}{|r|}{0\%} & \\
\hline \multicolumn{9}{|l|}{Net 8 Hour Volume of Total Pedestrians} & 0 \\
\hline Net 8 Hour Volume of Delayed Pedestriar & & & & & & & & & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Analysis Sheet & Input Sheet & Results Sheet & Proposed Collision & GO TO Justification: \\
\hline Analysis Shee & & & & - \\
\hline
\end{tabular}

\section*{Justification 1: Minimum Vehicle Volumes}

Free Flow Rural Conditions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Justification} & \multicolumn{4}{|c|}{Guidance Approach Lanes} & \multicolumn{8}{|c|}{Percentage Warrant} & \multirow[b]{2}{*}{Total Across} & \multirow[b]{2}{*}{Section Percent} \\
\hline & \multicolumn{2}{|c|}{1 Lanes} & \multicolumn{2}{|l|}{2 or More Lanes} & \multicolumn{8}{|c|}{Hour Ending} & & \\
\hline Flow
Condition & FREE FLOW & RESTR. fLOW
\[
\Gamma
\] & FREE FLOW & RESTR. fLow
\(\qquad\) & 7:00 & 8:00 & 9:00 & 10:00 & 15:00 & 16:00 & 17:00 & 18:00 & & \\
\hline \multirow{2}{*}{1A} & 480 & 720 & 600 & 900 & 1,580 & 790 & 790 & 790 & 1,776 & 888 & 888 & 888 & & \\
\hline & \multicolumn{4}{|c|}{COMPLIANCE \%} & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 800 & 100 \\
\hline \multirow{2}{*}{1B} & 120 & 170 & 120 & 170 & 91 & 46 & 46 & 46 & 67 & 34 & 34 & 34 & & \\
\hline & \multicolumn{4}{|c|}{COMPLIANCE \%} & 76 & 38 & 38 & 38 & 56 & 28 & 28 & 28 & 329 & 41 \\
\hline \multicolumn{5}{|c|}{Free Flow} & \multicolumn{5}{|l|}{\begin{tabular}{l}
Both 1A and 1B 100\% Fulfilled each of 8 hours \\
Lesser of 1A or 1B at least \(80 \%\) fulfilled each of 8 hours
\end{tabular}} & & & & & \\
\hline
\end{tabular}

\section*{Justification 2: Delay to Cross Traffic}

Free Flow Rural Conditions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Justification} & \multicolumn{4}{|c|}{Guidance Approach Lanes} & \multicolumn{8}{|c|}{Percentage Warrant} & \multirow[t]{2}{*}{Total Across} & \multirow[t]{2}{*}{Section Percent} \\
\hline & \multicolumn{2}{|c|}{1 lanes} & \multicolumn{2}{|l|}{2 or More lanes} & \multicolumn{8}{|c|}{Hour Ending} & & \\
\hline Flow Condition & FREE FLOW & RESTR. FLOW & FREE FLOW & RESTR. FLOW
\(\qquad\) & 7:00 & 8:00 & 9:00 & 10:00 & 15:00 & 16:00 & 17:00 & 18:00 & & \\
\hline \multirow{2}{*}{2A} & 480 & 720 & 600 & 900 & 1,489 & 745 & 745 & 745 & 1,709 & 855 & 855 & 855 & & \\
\hline & \multicolumn{4}{|c|}{COMPLIANCE \%} & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 800 & 100 \\
\hline \multirow{2}{*}{2B} & 50 & 75 & 50 & 75 & 54 & 27 & 27 & 27 & 42 & 21 & 21 & 21 & & \\
\hline & \multicolumn{4}{|c|}{COMPLIANCE \%} & 100 & 54 & 54 & 54 & 84 & 42 & 42 & 42 & 472 & 59 \\
\hline & Signal & e Flow & n 2: & & Both 2A an
Lesser of & 0\% fu & fulfill & rs of 8 & & & & & \(\sqrt{V}\) & \\
\hline
\end{tabular}

\section*{Justification 3: Combination}

Combination Justification 1 and 2
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Justification Satisfied 80\% or More} & \multicolumn{3}{|c|}{Two Justifications Satisfied 80\% or More} \\
\hline Justification 1 & Minimum Vehicle Volume & YES Г & NO \(\bar{V}\) & YES & \(\Gamma\) & No \(\bar{V}\) \\
\hline Justification 2 & Delay Cross Traffic & YES 「 & NO \(\bar{V}\) & & & NOT JUSTIFIED \\
\hline
\end{tabular}

\section*{Justification 4: Four Hour Volume}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Justification} & \multirow[t]{2}{*}{Time Period} & Total Volume of Both Approaches (Main) & Heaviest Minor Approach & Required Value & \multirow[t]{2}{*}{Average \% Compliance} & \multirow[t]{2}{*}{Overall \% Compliance} \\
\hline & & X & \(Y\) (actual) & \(Y\) (warrant threshold) & & \\
\hline \multirow{4}{*}{Justification 4} & 7:00 & 1,489 & 74 & 80 & 93 \% & \multirow{4}{*}{52 \%} \\
\hline & 15:00 & 1,709 & 61 & 80 & 76 \% & \\
\hline & 16:00 & 855 & 31 & 155 & 20 \% & \\
\hline & 17:00 & 855 & 31 & 155 & 20 \% & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Input Sheet & Results Sheet & Proposed Collision & GO TO Justification: & \\
\hline Analysis Sheet & & & & & \\
\hline
\end{tabular}

Intersection: River \& Atrium/ 760 River Access
Count Date: Future (2029) Total AM \& PM Scenarios

\section*{Justification 5: Collision Experience}
\begin{tabular}{|c|c|c|c|}
\hline Justification & Preceding Months & \% Fulfillment & \begin{tabular}{c} 
Overall \% \\
Compliance
\end{tabular} \\
\hline Justification 5 & \(1-12\) & \(0 \%\) & \(0 \%\) \\
\hline
\end{tabular}

\section*{Justification 6: Pedestrian Volume}

Pedestrian Volume Analysis
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{8 Hour Vehicular Volume \(\mathrm{V}_{8}\)}} & \multicolumn{5}{|c|}{Net 8 Hour Pedestrian Volume} \\
\hline & & < 200 & 200-275 & 276-475 & 476-1000 & >1000 \\
\hline \multirow{4}{*}{Justification 6A} & < 1440 & & & & & \\
\hline & 1440-2600 & & & & & \\
\hline & 2601-7000 & Not Justified & & & & \\
\hline & > 7000 & & & & & \\
\hline
\end{tabular}

Pedestrian Delay Analysis
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Net Total 8 Hour Volume of Total Pedestrians}} & \multicolumn{3}{|c|}{Net Total 8 Hour Volume of Delayed Pedestrians} \\
\hline & & \(<75\) & 75-130 & > 130 \\
\hline \multirow{3}{*}{Justification 6B} & < 200 & Not Justified & & \\
\hline & 200-300 & & & \\
\hline & > 300 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Results Sheet & Input Sheet & Analysis Sheet & Proposed Collision & GO TO Justification: \\
\hline
\end{tabular}

Intersection: River \& Atrium/ 760 River Access

\section*{Count Date: Future (2029) Total AM \& PM Scenarios}

\section*{Summary Results}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{\multirow[t]{2}{*}{Justification}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Compliance}} & \multicolumn{2}{|l|}{Signal Justified?} \\
\hline & & & & & YES & NO \\
\hline 1. Minimum & A & Total Volume & 100 & \% & \multirow{2}{*}{Г} & \multirow{2}{*}{V} \\
\hline Volume & B & Crossing Volume & 41 & \% & & \\
\hline 2. Delay to Cross & A & Main Road & 100 & \% & \multirow[t]{2}{*}{\(\ulcorner\)} & \multirow[t]{2}{*}{V} \\
\hline Traffic & B & Crossing Road & 59 & \% & & \\
\hline \multirow[t]{2}{*}{3. Combination} & A & Justificaton 1 & 41 & \% & \multirow[t]{2}{*}{\(\ulcorner\)} & \multirow{2}{*}{V} \\
\hline & B & Justification 2 & 59 & \% & & \\
\hline \multicolumn{3}{|l|}{4. 4-Hr Volume} & 52 & \% & \(\Gamma\) & V \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \hline 5. Collision Experience & 0 & \(\%\) & \(\ulcorner\) \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|l|l|l|}
\hline 6. Pedestrians & A & Volume & Justification not met & & \multirow{6}{|c|}{} \\
& B & Delay & Justification not met & & \\
\hline \hline
\end{tabular}

Proposed Collision Justification

INPUT
a.- Intersection type (no input required): \(\quad 3 \quad \square\)
b.- What year is the intersection being considered for traffic signals?

2004
c.- What is the collision history and annual average daily traffic over the past few years? (Please fill in table below)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{2}{|l|}{Traffic Volume} & \multicolumn{7}{|c|}{Impact Type/Year} \\
\hline & Major AADT & \begin{tabular}{l}
Minor \\
AADT
\end{tabular} & Approaching & Angle & Rear end & Sideswipe & Turning movement & SMV & Other \\
\hline 2000 & 21626 & 3893 & 0 & 4 & 5 & 1 & 4 & 0 & 0 \\
\hline 2001 & 22059 & 3971 & 0 & 6 & 4 & 1 & 3 & 1 & 1 \\
\hline 2002 & 22500 & 4050 & 0 & 7 & 5 & 2 & 2 & 1 & 0 \\
\hline 2003 & 23300 & 4200 & 0 & 8 & 3 & 3 & 2 & 1 & 0 \\
\hline 2004 & 23648 & 6528 & 0 & 9 & 0 & 4 & 1 & 0 & 0 \\
\hline & & & & & & & & & \\
\hline
\end{tabular}
d.- If known, please enter the expected traffic volume after signals are introduced Otherwise, leave the cell blank


\section*{ANALYSIS}

Reducible Collisions


Non-reducible Collisions

\begin{tabular}{|c|c|c|}
\hline & Reducible Collisions &  \\
\hline Total Number of Historical Crashes & 46 & 32 \\
\hline Expected Annual Crashes without Signalization based on SPF & 2.150 & 1.377 \\
\hline Expected Annual Crashes without Signalization & 11.131 & 6.046 \\
\hline Variance of Expected Annual Crashes without Signalization & 2.647 & 1.092 \\
\hline Expected Annual Crashes after Signalization based on SPF & 2.089 & 3.286 \\
\hline Expected Annual Crashes after Signalization & 10.813 & 14.425 \\
\hline Variance of Expected Annual Crashes after Signalization & 194.857 & 174.867 \\
\hline
\end{tabular}
\begin{tabular}{|l|c:c|}
\cline { 2 - 4 } \multicolumn{1}{c|}{} & \begin{tabular}{c} 
Reducible \\
Collisions
\end{tabular} & \begin{tabular}{c} 
Non- \\
reducible \\
Collisions
\end{tabular} \\
\hline Weights for Unsignalized Intersections & 0.27 & 0.18 \\
\hline Weights for Signalized Intersections & 0.30 & 0.25 \\
\hline
\end{tabular}

\section*{RESULTS}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{Justification} & \multirow[b]{2}{*}{Compliance} & \multicolumn{2}{|l|}{Signal Justified?} \\
\hline & & YES & NO \\
\hline \multirow[t]{2}{*}{5. Collision Experience} & Net Safety Change 2.757 & \multirow[b]{2}{*}{\(\Gamma\)} & \multirow[b]{2}{*}{F} \\
\hline & Total Collisions will Increase
after this intersection is signalized & & \\
\hline
\end{tabular}

\section*{City of Ottawa \\ Roundabout Initial Feasability Screening Tool}

The intent of this screening tool is to provide a relatively quick assessment of the feasibility of a roundabout at a particular intersection in comparison to other appropriate forms of traffic control or road modifications including all-way stop control, traffic signals, auxiliary lanes, etc. The intended outcome of this tool is to provide enough information to assist staff in deciding whether or not to proceed with an Intersection Control Study to investigate the feasibility of a roundabout in more detail.

1
Project Name:

2 Intersection:

3 Location and Description of
Intersection:
Lane Configuration, total or approach AADT, distance to nearby
intersection(s), etc. Attach or sketch a diagram and include existing and/or horizon-year turning movements. If an existing intersection then indicate type of control

4 What traditional modifications are proposed?
All-way stop control, traffic signals, auxiliary lanes, etc. Attach or sketch a diagram if necessary.

5 What size of roundabout is being considered?
Describe, and attach a Roundabout Traffic Flow Worksheet

6 Why is a roundabout being considered?
Riverside South Phase 12
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ River Road and Phase 12 North Access } \\
\hline \begin{tabular}{l} 
The proposed intersection of River Road and Phase 12 North \\
Access is located approximately 175m south of the Earl \\
Armstrong and River Road intersection. \\
\\
\hline
\end{tabular}
\end{tabular}\(.\)\begin{tabular}{l} 
\\
\hline
\end{tabular}

A stop-controlled eastbound approach with freeflow along River Road.

A single-lane roundabout is being considered.

As an alternative to signalization.

7 Are there contra-indications for a roundabout?

If "Yes" is indicated for one or more of the contra-indications then a roundabout may be problematic at the subject intersection. That is not to say that a
\begin{tabular}{|c|c|c|}
\hline No. & Contra-Indication & Outcome \\
\hline 1 & Is there insufficient property at the intersection (i.e. less than 44 metres diameter if considering a single-lane roundabout, and less than 60 metres if considering a twolane roundabout) or property constraints that would require demolition of adjacent structures? & \(\mathrm{Yes} \square \mathrm{No}\) X \\
\hline 2 & Are there any instances where stopping sight distance (SSD) of a roundabout yield line may not be attainable (i.e. the intersection is on a crest vertical curve)? & \(\mathrm{Yes} \square \mathrm{No} \mathrm{X}\) \\
\hline 3 & Is there an existing uncontrolled approach with a grade in excess of 4 percent? & \(\mathrm{Yes} \square \mathrm{No} \times\) \\
\hline 4 & Is the intersection located within a coordinated signal system? & \(\mathrm{Yes} \square \mathrm{No} \mathrm{X}\) \\
\hline 5 & Is there a closely-spaced traffic signal or railway crossing that could not be controlled with a nearby roundabout? & \(\mathrm{Yes} \square \mathrm{No} \mathrm{X}\) \\
\hline 6 & Are significant differences in directional flows or any situations of sudden high demand expected? & Yes X No \\
\hline 7 & Are there known visually-impaired pedestrians that cross this intersection? & \(\mathrm{Yes} \square \mathrm{No} \mathrm{X}\) \\
\hline
\end{tabular}

Are there suitability factors for a roundabout?

If "Yes" is indicated for two or more of the suitability factors then a roundabout should be technically feasible at the subject intersection..
\begin{tabular}{|c|l|l|}
\hline No. & \multicolumn{1}{|c|}{ Suitability Factor } & \multicolumn{1}{|c|}{ Outcome } \\
\hline 1 & \begin{tabular}{l} 
Does the intersection currently experience an average \\
collision frequency of more than 1.5 injury crashes per \\
year, or a collision rate in excess of 1 injury crash per 1 \\
million vehicles entering (MVE)?
\end{tabular} & Yes \(\square\) No X \\
\hline 2 & \begin{tabular}{l} 
Has there been a fatal crash at the intersection in the last \\
10 years?
\end{tabular} & Yes \(\square\) No X \\
\hline 3 & \begin{tabular}{l} 
Are capacity problems currently being experienced, or \\
expected in the future?
\end{tabular} & Yes \(\square\) No \(\square\) \\
\hline 4 & \begin{tabular}{l} 
Are traffic signals warranted, or expected to be warranted \\
in the future?
\end{tabular} & Yes \(\square\) No X \\
\hline 5 & \begin{tabular}{l} 
Does the intersection have more than 4 legs, or unusual \\
geometry?
\end{tabular} & Yes \(\square\) No X \\
\hline 6 & \begin{tabular}{l} 
Will Planned modifications to the intersection require \\
that nearby structures be widened (i.e. to accommodate \\
left-turn lanes)?
\end{tabular} & Yes \(\square\) No X \\
\hline 7 & \begin{tabular}{l} 
Is the intersection located at a transition between rural \\
and urban environments (i.e. an urban boundary) such \\
that a roundabout could act as a means of speed \\
transition?
\end{tabular} & Yes \(\square\) No X \\
\hline
\end{tabular}

9 Conclusions/recommendation whether to proceed with an Intersection Control Study:

This location has one contra-indication: Significant differences in directional flows. Furthermore, based on the suitability factors, a roundabout is not feasible at this location.

\section*{City of Ottawa \\ Roundabout Initial Feasability Screening Tool}

The intent of this screening tool is to provide a relatively quick assessment of the feasibility of a roundabout at a particular intersection in comparison to other appropriate forms of traffic control or road modifications including all-way stop control, traffic signals, auxiliary lanes, etc. The intended outcome of this tool is to provide enough information to assist staff in deciding whether or not to proceed with an Intersection Control Study to investigate the feasibility of a roundabout in more detail.

1
Project Name:
2 Intersection:

3 Location and Description of
Intersection:
Lane Configuration, total or approach AADT, distance to nearby
intersection(s), etc. Attach or sketch a diagram and include existing and/or horizon-year turning movements. If an existing intersection then indicate type of control

4 What traditional modifications are proposed?
All-way stop control, traffic signals, auxiliary lanes, etc. Attach or sketch a diagram if necessary.

5 What size of roundabout is being considered?
Describe, and attach a Roundabout Traffic Flow Worksheet

6 Why is a roundabout being considered?
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ River Road Reconstruction } \\
\hline \multicolumn{1}{|c|}{ River Road and Atrium/ Phase 12 South Access } \\
\hline \begin{tabular}{l} 
The proposed intersection of River and Atrium/ Ph. 12 North \\
Access is located approximately 300 m south of the future \\
Borbridge Avenue intersection. \\
\\
\hline
\end{tabular}
\end{tabular}\(.\)\begin{tabular}{l} 
\\
\hline
\end{tabular}

Auxiliary left-turn lanes - NB and SB approaches. Stop control on side streets initially. Traffic signals may be required ultimately to reduce delays to side street and to provide controlled crossing location for peds and cyclists. However signal warrants are not met.

A single-lane roundabout is being considered.

As an alternative to signalization.

7 Are there contra-indications for a roundabout?

If "Yes" is indicated for one or more of the contra-indications then a roundabout may be problematic at the subject intersection. That is not to say that a
\begin{tabular}{|c|c|c|}
\hline No. & Contra-Indication & Outcome \\
\hline 1 & Is there insufficient property at the intersection (i.e. less than 44 metres diameter if considering a single-lane roundabout, and less than 60 metres if considering a twolane roundabout) or property constraints that would require demolition of adjacent structures? & \(\mathrm{Yes} \square \mathrm{No}\) X \\
\hline 2 & Are there any instances where stopping sight distance (SSD) of a roundabout yield line may not be attainable (i.e. the intersection is on a crest vertical curve)? & \(\mathrm{Yes} \square \mathrm{No} \mathrm{X}\) \\
\hline 3 & Is there an existing uncontrolled approach with a grade in excess of 4 percent? & \(\mathrm{Yes} \square \mathrm{No} \times\) \\
\hline 4 & Is the intersection located within a coordinated signal system? & \(\mathrm{Yes} \square \mathrm{No} \mathrm{X}\) \\
\hline 5 & Is there a closely-spaced traffic signal or railway crossing that could not be controlled with a nearby roundabout? & \(\mathrm{Yes} \square \mathrm{No} \mathrm{X}\) \\
\hline 6 & Are significant differences in directional flows or any situations of sudden high demand expected? & Yes X No \\
\hline 7 & Are there known visually-impaired pedestrians that cross this intersection? & \(\mathrm{Yes} \square \mathrm{No} \mathrm{X}\) \\
\hline
\end{tabular}

Are there suitability factors for a roundabout?

If "Yes" is indicated for two or more of the suitability factors then a roundabout should be technically feasible at the subject intersection..
\begin{tabular}{|c|l|l|}
\hline No. & \multicolumn{1}{|c|}{ Suitability Factor } & \multicolumn{1}{|c|}{ Outcome } \\
\hline 1 & \begin{tabular}{l} 
Does the intersection currently experience an average \\
collision frequency of more than 1.5 injury crashes per \\
year, or a collision rate in excess of 1 injury crash per 1 \\
million vehicles entering (MVE)?
\end{tabular} & Yes \(\square\) No X \\
\hline 2 & \begin{tabular}{l} 
Has there been a fatal crash at the intersection in the last \\
10 years?
\end{tabular} & Yes \(\square\) No X \\
\hline 3 & \begin{tabular}{l} 
Are capacity problems currently being experienced, or \\
expected in the future?
\end{tabular} & Yes \(\square\) No \(\square\) \\
\hline 4 & \begin{tabular}{l} 
Are traffic signals warranted, or expected to be warranted \\
in the future?
\end{tabular} & Yes \(\square\) No X \\
\hline 5 & \begin{tabular}{l} 
Does the intersection have more than 4 legs, or unusual \\
geometry?
\end{tabular} & Yes \(\square\) No X \\
\hline 6 & \begin{tabular}{l} 
Will Planned modifications to the intersection require \\
that nearby structures be widened (i.e. to accommodate \\
left-turn lanes)?
\end{tabular} & Yes \(\square\) No X \\
\hline 7 & \begin{tabular}{l} 
Is the intersection located at a transition between rural \\
and urban environments (i.e. an urban boundary) such \\
that a roundabout could act as a means of speed \\
transition?
\end{tabular} & Yes \(\square\) No X \\
\hline
\end{tabular}

9 Conclusions/recommendation whether to proceed with an Intersection Control Study:

This location has one contra-indication: Significant differences in directional flows. Furthermore, based on the suitability factors a roundabout is not technically feasible at this location.

\section*{Appendix I - TDM Checklist}

\section*{TDM Measures Checklist:}

Residential Developments (multi-family, condominium or subdivision)

\section*{Legend}

BASIC The measure is generally feasible and effective, and in most cases would benefit the development and its users

\section*{better}

The measure could maximize support for users of sustainable modes, and optimize development performance
The measure is one of the most dependably effective tools to encourage the use of sustainable modes
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{TDM measures: Residential developments} & & \multirow[t]{2}{*}{Check if proposed \& add descriptions} \\
\hline \multicolumn{4}{|c|}{1. TDM PROGRAM MANAGEMENT} & \\
\hline \multicolumn{5}{|c|}{1.1 Program coordinator} \\
\hline BASIC & * 1.1.1 & Designate an internal coordinator, or contract with an external coordinator & \(\square\) & No \\
\hline \multicolumn{5}{|c|}{1.2 Travel surveys} \\
\hline BETTER & 1.2.1 & Conduct periodic surveys to identify travel-related behaviours, attitudes, challenges and solutions, and to track progress & \(\square\) & NO \\
\hline \multicolumn{5}{|c|}{2. WALKING AND CYCLING} \\
\hline \multicolumn{5}{|c|}{2.1 Information on walking/cycling routes \& destinations} \\
\hline BASIC & 2.1.1 & Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium) & \(\square\) & No \\
\hline & 2.2 & Bicycle skills training & & \\
\hline better & 2.2.1 & Offer on-site cycling courses for residents, or subsidize off-site courses & \(\square\) & No \\
\hline
\end{tabular}

TDM measures: Residential developments

\section*{3. TRANSIT}

\subsection*{3.1 Transit information}

BASIC 3.1.1 Display relevant transit schedules and route maps at entrances (multi-family, condominium)
BETTER 3.1.2 Provide real-time arrival information display at entrances (multi-family, condominium)

\subsection*{3.2 Transit fare incentives}
\begin{tabular}{|c|c|c|c|c|c|}
\hline BASIC & \(\star\) & 3.2.1 & Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit & \(\square\) & \\
\hline BETTER & & 3.2.2 & Offer at least one year of free monthly transit passes on residence purchase/move-in & \(\square\) & \\
\hline & & 3.3 & \multicolumn{2}{|l|}{Enhanced public transit service} & \\
\hline BETTER & \(\star\) & 3.3.1 & Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels (subdivision) & \[
\square
\] & \\
\hline & & 3.4 & \multicolumn{2}{|l|}{Private transit service} & \\
\hline BETTER & & 3.4.1 & Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs) & \[
\square
\] & \\
\hline & & 4. & \multicolumn{2}{|l|}{CARSHARING \& BIKESHARING} & \\
\hline & & 4.1 & \multicolumn{2}{|l|}{Bikeshare stations \& memberships} & \\
\hline BETTER & & 4.1.1 & Contract with provider to install on-site bikeshare station (multi-family) & \(\square\) & \\
\hline BETTER & & 4.1.2 & Provide residents with bikeshare memberships, either free or subsidized (multi-family) & \(\square\) & \\
\hline & & 4.2 & \multicolumn{2}{|l|}{Carshare vehicles \& memberships} & \\
\hline BETTER & & 4.2.1 & Contract with provider to install on-site carshare vehicles and promote their use by residents & \(\square\) & \\
\hline BETTER & & 4.2.2 & Provide residents with carshare memberships, either free or subsidized & \(\square\) & \\
\hline & & 5. & \multicolumn{2}{|l|}{PARKING} & \\
\hline & & 5.1 & \multicolumn{2}{|l|}{Priced parking} & \\
\hline BASIC & \(\star\) & 5.1.1 & Unbundle parking cost from purchase price (condominium) & \(\square\) & \\
\hline BASIC & \(\star\) & 5.1.2 & Unbundle parking cost from monthly rent (multi-family) & \(\square\) & \\
\hline
\end{tabular}

Check if proposed \& add descriptions

\section*{6. TDM MARKETING \& COMMUNICATIONS}

\subsection*{6.1 Multimodal travel information}
\begin{tabular}{|c|cc|cc|}
\hline BASIC & \(\star\) 6.1.1 & \begin{tabular}{l} 
Provide a multimodal travel option information \\
package to new residents
\end{tabular} & \(\square\) & No \\
\hline & 6.2 & Personalized trip planning & & \\
\hline BETTER & 6.2.1 & Offer personalized trip planning to new residents & \(\square\) & No \\
\hline
\end{tabular}

\title{
TDM-Supportive Development Design and Infrastructure Checklist: Residential Developments (multi-family or condominium)
}

\section*{Legend}

REQUIRED The Official Plan or Zoning By-law provides related guidance that must be followed
BASIC
The measure is generally feasible and effective, and in most cases would benefit the development and its users
better
The measure could maximize support for users of sustainable modes, and optimize development performance
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|r|}{TDM-supportive design \& infrastructure measures: Residential developments} & Check if completed \& add descriptions, explanations or plan/drawing references \\
\hline & & WALKING \& CYCLING: ROUTES & \\
\hline & 1.1 & Building location \& access points & \\
\hline BASIC & 1.1.1 & Locate building close to the street, and do not locate parking areas between the street and building entrances & current draft plan shows one of the 7 buildings having parking infront of the building \\
\hline BASIC & 1.1.2 & Locate building entrances in order to minimize walking distances to sidewalks and transit stops/stations & \(\square\) \\
\hline BASIC & 1.1.3 & Locate building doors and windows to ensure visibility of pedestrians from the building, for their security and comfort & \(\square\) \\
\hline & 1.2 & Facilities for walking \& cycling & \\
\hline REQUIRED & 1.2.1 & Provide convenient, direct access to stations or major stops along rapid transit routes within 600 metres; minimize walking distances from buildings to rapid transit; provide pedestrian-friendly, weather-protected (where possible) environment between rapid transit accesses and building entrances; ensure quality linkages from sidewalks through building entrances to integrated stops/stations (see Official Plan policy 4.3.3) & \(\square\) \\
\hline REQUIRED & 1.2.2 & Provide safe, direct and attractive pedestrian access from public sidewalks to building entrances through such measures as: reducing distances between public sidewalks and major building entrances; providing walkways from public streets to major building entrances; within a site, providing walkways along the front of adjoining buildings, between adjacent buildings, and connecting areas where people may congregate, such as courtyards and transit stops; and providing weather protection through canopies, colonnades, and other design elements wherever possible (see Official Plan policy 4.3.12) & \(\square\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{TDM-supportive design \& infrastructure measures: Residential developments} & Check if completed \& add descriptions, explanations or plan/drawing references \\
\hline REQUIRED & \[
1.2 .3
\] & Provide sidewalks of smooth, well-drained walking surfaces of contrasting materials or treatments to differentiate pedestrian areas from vehicle areas, and provide marked pedestrian crosswalks at intersection sidewalks (see Official Plan policy 4.3.10) & \(\square\) \\
\hline REQUIRED & 1.2.4 & Make sidewalks and open space areas easily accessible through features such as gradual grade transition, depressed curbs at street corners and convenient access to extra-wide parking spaces and ramps (see Official Plan policy 4.3.10) & \(\square\) \\
\hline REQUIRED & \[
1.2 .5
\] & Include adequately spaced inter-block/street cycling and pedestrian connections to facilitate travel by active transportation. Provide links to the existing or planned network of public sidewalks, multi-use pathways and onroad cycle routes. Where public sidewalks and multi-use pathways intersect with roads, consider providing traffic control devices to give priority to cyclists and pedestrians (see Official Plan policy 4.3.11) & \(\square\) \\
\hline BASIC & 1.2.6 & Provide safe, direct and attractive walking routes from building entrances to nearby transit stops & \(\square\) \\
\hline BASIC & 1.2.7 & Ensure that walking routes to transit stops are secure, visible, lighted, shaded and wind-protected wherever possible & \(\square\) \\
\hline BASIC & 1.2.8 & Design roads used for access or circulation by cyclists using a target operating speed of no more than \(30 \mathrm{~km} / \mathrm{h}\), or provide a separated cycling facility & \(\square{ }^{\text {No }}\) \\
\hline & 1.3 & Amenities for walking \& cycling & \\
\hline BASIC & 1.3.1 & Provide lighting, landscaping and benches along walking and cycling routes between building entrances and streets, sidewalks and trails & \(\square \quad\) No \\
\hline BASIC & 1.3.2 & Provide wayfinding signage for site access (where required, e.g. when multiple buildings or entrances exist) and egress (where warranted, such as when directions to reach transit stops/stations, trails or other common destinations are not obvious) & \(\square \square_{\text {No }}\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{TDM-supportive design \& infrastructure measures: Residential developments} & \multicolumn{3}{|l|}{Check if completed \& add descriptions, explanations or plan/drawing references} \\
\hline & & \multicolumn{4}{|l|}{RIDESHARING} \\
\hline & 4.1 & \multicolumn{4}{|l|}{Pick-up \& drop-off facilities} \\
\hline BASIC & 4.1.1 & Provide a designated area for carpool drivers (plus taxis and ride-hailing services) to drop off or pick up passengers without using fire lanes or other no-stopping zones & \(\square\) & \(\square\) No & No \\
\hline & 5. & \multicolumn{4}{|l|}{CARSHARING \& BIKESHARING} \\
\hline & 5.1 & \multicolumn{4}{|l|}{Carshare parking spaces} \\
\hline BETTER & 5.1.1 & Provide up to three carshare parking spaces in an R3, R4 or R5 Zone for specified residential uses (see Zoning By-law Section 94) & \(\square\) & & \\
\hline & 5.2 & Bikeshare station location & & & \\
\hline better & 5.2.1 & Provide a designated bikeshare station area near a major building entrance, preferably lighted and sheltered with a direct walkway connection & & \(\downarrow\) & \\
\hline & 6. & \multicolumn{4}{|l|}{PARKING} \\
\hline & 6.1 & \multicolumn{4}{|l|}{Number of parking spaces} \\
\hline REQUIRED & 6.1.1 & Do not provide more parking than permitted by zoning, nor less than required by zoning, unless a variance is being applied for & \multicolumn{3}{|l|}{\(\square\)} \\
\hline BASIC & 6.1.2 & Provide parking for long-term and short-term users that is consistent with mode share targets, considering the potential for visitors to use off-site public parking & \multicolumn{3}{|l|}{\(\square \quad{ }_{\text {No }}\)} \\
\hline BASIC & \[
6.1 .3
\] & Where a site features more than one use, provide shared parking and reduce the cumulative number of parking spaces accordingly (see Zoning By-law Section 104) & \(\square\) & & \\
\hline better & 6.1.4 & Reduce the minimum number of parking spaces required by zoning by one space for each 13 square metres of gross floor area provided as shower rooms, change rooms, locker rooms and other facilities for cyclists in conjunction with bicycle parking (see Zoning By-law Section 111) & \(\square\) & & \\
\hline & 6.2 & \multicolumn{4}{|l|}{Separate long-term \& short-term parking areas} \\
\hline better & 6.2.1 & Provide separate areas for short-term and long-term parking (using signage or physical barriers) to permit access controls and simplify enforcement (i.e. to discourage residents from parking in visitor spaces, and vice versa) & & & \\
\hline
\end{tabular}

\section*{Appendix J - Intersection Capacity Analysis}

\section*{Existing (2019) Traffic}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \％\({ }^{1 / 4}\) & 个个 & 「 & \({ }^{1+1}\) & 个个 & F＇ & \({ }^{7}{ }^{*}\) & 个个 & 「 & \({ }^{1+1}\) & 个4 & F \\
\hline Traffic Volume（vph） & 633 & 948 & 100 & 23 & 840 & 87 & 298 & 292 & 48 & 35 & 36 & 226 \\
\hline Future Volume（vph） & 633 & 948 & 100 & 23 & 840 & 87 & 298 & 292 & 48 & 35 & 36 & 226 \\
\hline Ideal Flow（vphpl） & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Storage Length（m） & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Storage Lanes & 2 & & 1 & 2 & & 1 & 2 & & 1 & 2 & & 1 \\
\hline Taper Length（m） & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Utill．Factor & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 \\
\hline Ped Bike Factor & 1.00 & & & & & 0.99 & & & 0.99 & 1.00 & & \\
\hline Frt & & & 0.850 & & & 0.850 & & & 0.850 & & & 0.850 \\
\hline FIt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（prot） & 3321 & 3357 & 1419 & 3077 & 3262 & 1502 & 3164 & 3390 & 1517 & 2795 & 3202 & 1502 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（perm） & 3319 & 3357 & 1419 & 3077 & 3262 & 1482 & 3164 & 3390 & 1497 & 2792 & 3202 & 1502 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & & 155 & & & 155 & & & 215 & & & 215 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Link Speed（k／h） & & 70 & & & 70 & & & 60 & & & 60 & \\
\hline Link Distance（m） & & 437.3 & & & 544.9 & & & 202.2 & & & 387.0 & \\
\hline Travel Time（s） & & 22.5 & & & 28.0 & & & 12.1 & & & 23.2 & \\
\hline Confl．Peds．（\＃／hr） & 1 & & & & & 1 & & & 1 & 1 & & \\
\hline Peak Hour Factor & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 \\
\hline Heavy Vehicles（\％） & 1\％ & 3\％ & 9\％ & 9\％ & 6\％ & 3\％ & 6\％ & 2\％ & 2\％ & 20\％ & 8\％ & 3\％ \\
\hline Adj．Flow（vph） & 703 & 1053 & 111 & 26 & 933 & 97 & 331 & 324 & 53 & 39 & 40 & 251 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic（\％）} \\
\hline Lane Group Flow（vph） & 703 & 1053 & 111 & 26 & 933 & 97 & 331 & 324 & 53 & 39 & 40 & 251 \\
\hline Turn Type & Prot & NA & Perm \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 7 & 4 & & 3 & 8 & \\
\hline Permitted Phases & & & 2 & & & 6 & & & 4 & & & 8 \\
\hline Detector Phase & 5 & 2 & 2 & 1 & 6 & 6 & 7 & 4 & 4 & 3 & 8 & 8 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrrrrrr} 
Switch Phase & & & & & & \\
Minimum Initial（s） & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 \\
\hline Minimum Split（s） & 11.8 & 35.1 & 35.1 & 11.8 & 35.1 & 35.1 & 11.8 & 43.6 & 43.6 & 11.8 & 43.6 & 43.6 \\
\hline Total Split（s） & 12.0 & 39.0 & 39.0 & 17.0 & 44.0 & 44.0 & 21.0 & 43.6 & 43.6 & 21.0 & 43.6 & 43.6 \\
Total Split（\％） & \(10.0 \%\) & \(32.3 \%\) & \(32.3 \%\) & \(14.1 \%\) & \(36.5 \%\) & \(36.5 \%\) & \(17.4 \%\) & \(36.2 \%\) & \(36.2 \%\) & \(17.4 \%\) & \(36.2 \%\) & \(36.2 \%\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Maximum Green（s） & 5.2 & 32.5 & 32.5 & 10.2 & 37.5 & 37.5 & 14.3 & 37.0 & 37.0 & 14.3 & 37.0 & 37.0 \\
\hline Yellow Time（s） & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 \\
\hline All－Red Time（s） & 2.6 & 2.3 & 2.3 & 2.6 & 2.3 & 2.3 & 3.0 & 2.9 & 2.9 & 3.0 & 2.9 & 2.9 \\
\hline Lost Time Adjust（s） & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Lost Time（s） & 6.8 & 6.5 & 6.5 & 6.8 & 6.5 & 6.5 & 6.7 & 6.6 & 6.6 & 6.7 & 6.6 & 6.6 \\
\hline Lead／Lag & Lead & Lead & Lead & Lag & Lag & Lag & Lead & Lag & Lag & Lead & Lag & Lag \\
\hline Lead－Lag Optimize？ & Yes \\
\hline Vehicle Extension（s） & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & C－Min & C－Min & None & C－Min & C－Min & None & Min & Min & None & Min & Min \\
\hline Walk Time（s） & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 \\
\hline Flash Dont Walk（s） & & 21.0 & 21.0 & & 21.0 & 21.0 & & 30.0 & 30.0 & & 30.0 & 30.0 \\
\hline Pedestrian Calls（\＃／hr） & & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & ， \\
\hline Act Efftt Green（s） & 30.3 & 63.9 & 63.9 & 8.4 & 37.0 & 37.0 & 14.3 & 24.6 & 24.6 & 7.1 & 12.4 & 12.4 \\
\hline Actuated g／C Ratio & 0.25 & 0.53 & 0.53 & 0.07 & 0.31 & 0.31 & 0.12 & 0.20 & 0.20 & 0.06 & 0.10 & 0.10 \\
\hline v／c Ratio & 0.84 & 0.59 & 0.13 & 0.12 & 0.93 & 0.17 & 0.89 & 0.47 & 0.11 & 0.24 & 0.12 & 0.72 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{ }{*}\) & \(\rightarrow\) & & 7 & & 4 & 4 & \(\uparrow\) & \(p\) & & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Control Delay & 53.9 & 23.4 & 1.5 & 52.7 & 57.2 & 1.3 & 77.5 & 45.8 & 0.5 & 57.1 & 48.2 & 22.8 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 53.9 & 23.4 & 1.5 & 52.7 & 57.2 & 1.3 & 77.5 & 45.8 & 0.5 & 57.1 & 48.2 & 22.8 \\
\hline LOS & D & C & A & D & E & A & E & D & A & E & D & C \\
\hline Approach Delay & & 33.6 & & & 51.9 & & & 57.2 & & & 29.9 & \\
\hline Approach LOS & & C & & & D & & & E & & & C & \\
\hline Queue Length 50th (m) & 73.6 & 86.5 & 0.0 & 2.7 & 103.0 & 0.0 & 37.1 & 35.7 & 0.0 & 4.2 & 4.3 & 7.5 \\
\hline Queue Length 95th (m) & \#124.0 & 124.7 & 3.8 & 6.9 & \#138.4 & 1.8 & \#60.4 & 46.2 & 0.0 & 9.4 & 8.7 & 30.5 \\
\hline Internal Link Dist (m) & & 413.3 & & & 520.9 & & & 178.2 & & & 363.0 & \\
\hline Turn Bay Length ( m ) & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Base Capacity (vph) & 834 & 1778 & 824 & 260 & 1014 & 567 & 375 & 1040 & 608 & 331 & 982 & 609 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.84 & 0.59 & 0.13 & 0.10 & 0.92 & 0.17 & 0.88 & 0.31 & 0.09 & 0.12 & 0.04 & 0.41 \\
\hline
\end{tabular}

\section*{Intersection Summary}

Area Type: Other
Cycle Length: 120.6
Actuated Cycle Length: 120.6
Offset: 63 (52\%), Referenced to phase 2:EBT and \(6: W B T\), Start of Green
Natural Cycle: 125
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.93
Intersection Signal Delay: 42.4
Intersection LOS: D
Intersection Capacity Utilization 76.3\%
ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 1: River Road \& Earl Armstrong Road

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Intersection} \\
\hline \multicolumn{7}{|l|}{Int Delay, S/veh 5.6} \\
\hline Movement & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & Y & & \(\hat{\dagger}\) & & \({ }^{7}\) & 4 \\
\hline Traffic Vol, veh/h & 23 & 196 & 602 & 14 & 31 & 184 \\
\hline Future Vol, veh/h & 23 & 196 & 602 & 14 & 31 & 184 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Free & Free & Free & Free \\
\hline RT Channelized & - & None & - & None & & None \\
\hline Storage Length & 0 & - & - & - & 1000 & - \\
\hline Veh in Median Storage, \# & 0 & - & 0 & & - & 0 \\
\hline Grade, \% & 0 & - & 0 & - & - & 0 \\
\hline Peak Hour Factor & 90 & 90 & 90 & 90 & 90 & 90 \\
\hline Heavy Vehicles, \% & 4 & 3 & 4 & 8 & 3 & 9 \\
\hline Mvmt Flow & 26 & 218 & 669 & 16 & 34 & 204 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & 7 & 中4 & 「 & \({ }^{7 \% 1}\) & 44 & 「 & 7 & 中4 & 「 & \({ }^{7 \%}\) & 44 & 7 \\
\hline Traffic Volume（vph） & 414 & 1001 & 363 & 71 & 961 & 30 & 201 & 97 & 39 & 36 & 183 & 805 \\
\hline Future Volume（vph） & 414 & 1001 & 363 & 71 & 961 & 30 & 201 & 97 & 39 & 36 & 183 & 805 \\
\hline Ideal Flow（vphpl） & 2000 & 1800 & 1800 & 1800 & 2200 & 1800 & 2000 & 1800 & 1800 & 1800 & 1800 & 2400 \\
\hline Storage Length（m） & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Storage Lanes & 2 & & 1 & 2 & & 1 & 2 & & 1 & 2 & & 1 \\
\hline Taper Length（m） & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Util．Factor & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 \\
\hline Ped Bike Factor & 1.00 & & & & & 0.98 & & & 0.99 & 1.00 & & \\
\hline Frt & & & 0.850 & & & 0.850 & & & 0.850 & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（prot） & 3654 & 3325 & 1502 & 3288 & 4103 & 1446 & 3584 & 3357 & 1369 & 3257 & 3458 & 2063 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（perm） & 3649 & 3325 & 1502 & 3288 & 4103 & 1423 & 3584 & 3357 & 1351 & 3252 & 3458 & 2063 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & & 310 & & & 155 & & & 215 & & & 363 \\
\hline Link Speed（k／h） & & 70 & & & 70 & & & 60 & & & 60 & \\
\hline Link Distance（m） & & 437.3 & & & 544.9 & & & 202.2 & & & 357.4 & \\
\hline Travel Time（s） & & 22.5 & & & 28.0 & & & 12.1 & & & 21.4 & \\
\hline Confl．Peds．（\＃／hr） & 3 & & & & & 3 & & & 1 & 1 & & \\
\hline Peak Hour Factor & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 & 0.90 \\
\hline Heavy Vehicles（\％） & 2\％ & 4\％ & 3\％ & 2\％ & 3\％ & 7\％ & 4\％ & 3\％ & 13\％ & 3\％ & 0\％ & 0\％ \\
\hline Adj．Flow（vph） & 460 & 1112 & 403 & 79 & 1068 & 33 & 223 & 108 & 43 & 40 & 203 & 894 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic（\％）} \\
\hline Lane Group Flow（vph） & 460 & 1112 & 403 & 79 & 1068 & 33 & 223 & 108 & 43 & 40 & 203 & 894 \\
\hline Turn Type & Prot & NA & Perm \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 7 & 4 & & 3 & 8 & \\
\hline Permitted Phases & & & 2 & & & 6 & & & 4 & & & 8 \\
\hline Detector Phase & 5 & 2 & 2 & 1 & 6 & 6 & 7 & 4 & 4 & 3 & 8 & 8 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial（s） & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 \\
\hline Minimum Split（s） & 11.8 & 34.5 & 34.5 & 11.8 & 34.5 & 34.5 & 11.7 & 43.6 & 43.6 & 11.7 & 43.6 & 43.6 \\
\hline Total Split（s） & 23.0 & 39.0 & 39.0 & 22.0 & 38.0 & 38.0 & 15.0 & 44.6 & 44.6 & 15.0 & 44.6 & 44.6 \\
\hline Total Split（\％） & 19．1\％ & 32．3\％ & 32．3\％ & 18．2\％ & 31．5\％ & 31．5\％ & 12．4\％ & 37．0\％ & 37．0\％ & 12．4\％ & 37．0\％ & 37．0\％ \\
\hline Maximum Green（s） & 16.2 & 32.5 & 32.5 & 15.2 & 31.5 & 31.5 & 8.3 & 38.0 & 38.0 & 8.3 & 38.0 & 38.0 \\
\hline Yellow Time（s） & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 \\
\hline All－Red Time（s） & 2.6 & 2.3 & 2.3 & 2.6 & 2.3 & 2.3 & 3.0 & 2.9 & 2.9 & 3.0 & 2.9 & 2.9 \\
\hline Lost Time Adjust（s） & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Lost Time（s） & 6.8 & 6.5 & 6.5 & 6.8 & 6.5 & 6.5 & 6.7 & 6.6 & 6.6 & 6.7 & 6.6 & 6.6 \\
\hline Lead／Lag & Lag & Lag & Lag & Lead & Lead & Lead & Lead & Lag & Lag & Lead & Lag & Lag \\
\hline Lead－Lag Optimize？ & Yes \\
\hline Vehicle Extension（s） & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & C－Min & C－Min & None & C－Min & C－Min & None & Min & Min & None & Min & Min \\
\hline Walk Time（s） & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 \\
\hline Flash Dont Walk（s） & & 21.0 & 21.0 & & 21.0 & 21.0 & & 30.0 & 30.0 & & 30.0 & 30.0 \\
\hline Pedestrian Calls（\＃／hr） & & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 \\
\hline Act Effct Green（s） & 16.2 & 42.0 & 42.0 & 8.3 & 31.5 & 31.5 & 8.3 & 41.9 & 41.9 & 6.9 & 38.0 & 38.0 \\
\hline Actuated g／C Ratio & 0.13 & 0.35 & 0.35 & 0.07 & 0.26 & 0.26 & 0.07 & 0.35 & 0.35 & 0.06 & 0.32 & 0.32 \\
\hline v／c Ratio & 0.94 & 0.96 & 0.56 & 0.35 & 1.00 & 0.07 & 0.91 & 0.09 & 0.07 & 0.22 & 0.19 & 1.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & 7 & 7 & & 4 & 4 & \(\uparrow\) & 1 & * & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Control Delay & 79.9 & 58.3 & 11.5 & 57.4 & 71.5 & 0.3 & 93.5 & 28.4 & 0.2 & 56.6 & 30.6 & 53.9 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 79.9 & 58.3 & 11.5 & 57.4 & 71.5 & 0.3 & 93.5 & 28.4 & 0.2 & 56.6 & 30.6 & 53.9 \\
\hline LOS & E & E & B & E & E & A & F & C & A & E & C & D \\
\hline Approach Delay & & 53.8 & & & 68.6 & & & 64.0 & & & 49.9 & \\
\hline Approach LOS & & D & & & E & & & E & & & D & \\
\hline Queue Length 50th (m) & 51.9 & ~135.8 & 14.5 & 8.6 & 122.7 & 0.0 & 25.3 & 8.5 & 0.0 & 4.3 & 16.8 & 132.1 \\
\hline Queue Length 95th (m) & \#80.1 & \#181.0 & 44.2 & 15.6 & \#164.7 & 0.0 & \#46.2 & 15.0 & 0.0 & 9.5 & 25.5 & \#214.0 \\
\hline Internal Link Dist (m) & & 413.3 & & & 520.9 & & & 178.2 & & & 333.4 & \\
\hline Turn Bay Length (m) & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Base Capacity (vph) & 490 & 1157 & 724 & 414 & 1071 & 486 & 246 & 1165 & 609 & 224 & 1089 & 898 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.94 & 0.96 & 0.56 & 0.19 & 1.00 & 0.07 & 0.91 & 0.09 & 0.07 & 0.18 & 0.19 & 1.00 \\
\hline
\end{tabular}

\section*{Intersection Summary}

Area Type: Other
Cycle Length: 120.6
Actuated Cycle Length: 120.6
Offset: 91 (75\%), Referenced to phase 2:EBT and 6:WBT, Start of Green
Natural Cycle: 125
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.00
Intersection Signal Delay: 57.4
Intersection LOS: E
Intersection Capacity Utilization 84.7\%
ICU Level of Service \(E\)
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: River Road \& Earl Armstrong Road




Future (2021) Background Traffic
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \％\({ }^{1+1}\) & 性 & 「 & \％\({ }^{*}\) & 个 \(\uparrow\) & 「 & \％\({ }^{*}\) & 个 \(\uparrow\) & 「 & \％\({ }^{1 *}\) & 个4 & 7 \\
\hline Traffic Volume（vph） & 639 & 1023 & 118 & 91 & 973 & 110 & 340 & 448 & 201 & 42 & 104 & 228 \\
\hline Future Volume（vph） & 639 & 1023 & 118 & 91 & 973 & 110 & 340 & 448 & 201 & 42 & 104 & 228 \\
\hline Ideal Flow（vphpl） & 2000 & 1800 & 1800 & 1800 & 2200 & 1800 & 2000 & 1800 & 1800 & 1800 & 1800 & 2400 \\
\hline Storage Length（m） & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Storage Lanes & 2 & & 1 & 2 & & 1 & 2 & & 1 & 2 & & 1 \\
\hline Taper Length（m） & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Utill．Factor & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 \\
\hline Ped Bike Factor & 1.00 & & & & & 0.99 & & & 0.99 & 1.00 & & \\
\hline Frt & & & 0.850 & & & 0.850 & & & 0.850 & & & 0.850 \\
\hline FIt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（prot） & 3690 & 3357 & 1419 & 3077 & 3987 & 1502 & 3516 & 3390 & 1517 & 2795 & 3202 & 2003 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（perm） & 3688 & 3357 & 1419 & 3077 & 3987 & 1482 & 3516 & 3390 & 1497 & 2793 & 3202 & 2003 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & & 155 & & & 155 & & & 215 & & & 215 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Link Speed（k／h） & \multicolumn{3}{|c|}{70} & \multicolumn{3}{|c|}{70} & \multicolumn{3}{|c|}{60} & \multicolumn{3}{|c|}{60} \\
\hline Link Distance（m） & \multicolumn{3}{|c|}{437.3} & \multicolumn{3}{|c|}{544.9} & \multicolumn{3}{|c|}{202.2} & \multicolumn{3}{|c|}{357.4} \\
\hline Travel Time（s） & \multicolumn{3}{|c|}{22.5} & \multicolumn{3}{|c|}{28.0} & \multicolumn{3}{|c|}{12.1} & \multicolumn{3}{|c|}{21.4} \\
\hline Confl．Peds．（\＃／hr） & \multicolumn{3}{|l|}{1} & \multicolumn{4}{|c|}{1} & & 1 & \multicolumn{2}{|l|}{1} & \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles（\％） & 1\％ & 3\％ & 9\％ & 9\％ & 6\％ & 3\％ & 6\％ & 2\％ & 2\％ & 20\％ & 8\％ & 3\％ \\
\hline Adj．Flow（vph） & 639 & 1023 & 118 & 91 & 973 & 110 & 340 & 448 & 201 & 42 & 104 & 228 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic（\％）} \\
\hline Lane Group Flow（vph） & 639 & 1023 & 118 & 91 & 973 & 110 & 340 & 448 & 201 & 42 & 104 & 228 \\
\hline Turn Type & Prot & NA & Perm \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 7 & 4 & & 3 & 8 & \\
\hline Permitted Phases & & & 2 & & & 6 & & & 4 & & & 8 \\
\hline Detector Phase & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrrrrrr} 
\\
Switch Phase & & & & & & & \\
Minimum Initial（s） & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 \\
Minimum Split（s） & 11.8 & 34.5 & 34.5 & 11.8 & 34.5 & 34.5 & 11.7 & 43.6 & 43.6 & 11.7 & 43.6 & 43.6 \\
Total Split（s） & 12.0 & 37.0 & 37.0 & 22.0 & 47.0 & 47.0 & 18.0 & 43.6 & 43.6 & 18.0 & 43.6 & 43.6 \\
Total Split（\％） & \(10.0 \%\) & \(30.7 \%\) & \(30.7 \%\) & \(18.2 \%\) & \(39.0 \%\) & \(39.0 \%\) & \(14.9 \%\) & \(36.2 \%\) & \(36.2 \%\) & \(14.9 \%\) & \(36.2 \%\) & \(36.2 \%\)
\end{tabular}
\begin{tabular}{lrrrrrrrrrrrr} 
& & & & \\
Maximum Green（s） & 5.2 & 30.5 & 30.5 & 15.2 & 40.5 & 40.5 & 11.3 & 37.0 & 37.0 & 11.3 & 37.0 & 37.0 \\
Yellow Time（s） & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 \\
All－Red Time（s） & 2.6 & 2.3 & 2.3 & 2.6 & 2.3 & 2.3 & 3.0 & 2.9 & 2.9 & 3.0 & 2.9 & 2.9 \\
Lost Time Adjust（s） & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Total Lost Time（s） & 6.8 & 6.5 & 6.5 & 6.8 & 6.5 & 6.5 & 6.7 & 6.6 & 6.6 & 6.7 & 6.6 & 6.6 \\
Lead／Lag & Lead & Lead & Lead & Lag & Lag & Lag & Lead & Lag & Lag & Lead & Lag & Lag \\
Lead－Lag Optimize？ & Yes \\
Vehicle Extension（s） & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
Recall Mode & None & C－Min & C－Min & None & C－Min & C－Min & None & Min & Min & None & Min & Min \\
Walk Time（s） & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 \\
Flash Dont Walk（s） & & 21.0 & 21.0 & & 21.0 & 21.0 & & 30.0 & 30.0 & & 30.0 & 30.0 \\
Pedestrian Calls s（\＃／hr） & & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 \\
Act Effct Green（s） & 25.8 & 51.1 & 51.1 & 11.6 & 36.9 & 36.9 & 14.6 & 26.6 & 26.6 & 7.2 & 16.8 & 16.8 \\
Actuated g／C Ratio & 0.21 & 0.42 & 0.42 & 0.10 & 0.31 & 0.31 & 0.12 & 0.22 & 0.22 & 0.06 & 0.14 & 0.14 \\
v／c Ratio & 0.81 & 0.72 & 0.17 & 0.31 & 0.80 & 0.20 & 0.80 & 0.60 & 0.40 & 0.25 & 0.23 & 0.49 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{ }{*}\) & & & 7 & 4 & 4 & 4 & \(\dagger\) & & , & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Control Delay & 55.2 & 33.9 & 2.3 & 52.3 & 43.8 & 2.2 & 67.0 & 46.5 & 6.6 & 57.2 & 45.3 & 10.4 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 55.2 & 33.9 & 2.3 & 52.3 & 43.8 & 2.2 & 67.0 & 46.5 & 6.6 & 57.2 & 45.3 & 10.4 \\
\hline LOS & E & C & A & D & D & A & E & D & A & E & D & B \\
\hline Approach Delay & & 39.4 & & & 40.6 & & & 45.5 & & & 25.3 & \\
\hline Approach LOS & & D & & & D & & & D & & & C & \\
\hline Queue Length 50th (m) & 67.7 & 93.6 & 0.0 & 9.6 & 101.6 & 0.0 & 37.8 & 48.7 & 0.0 & 4.5 & 10.9 & 2.5 \\
\hline Queue Length 95th (m) & \#127.0 & \#146.2 & 5.8 & 16.7 & 119.3 & 4.3 & \#67.8 & 60.5 & 14.1 & 9.8 & 16.7 & 20.4 \\
\hline Internal Link Dist (m) & & 413.3 & & & 520.9 & & & 178.2 & & & 333.4 & \\
\hline Turn Bay Length (m) & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Base Capacity (vph) & 789 & 1421 & 690 & 387 & 1338 & 600 & 425 & 1040 & 608 & 261 & 982 & 763 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.81 & 0.72 & 0.17 & 0.24 & 0.73 & 0.18 & 0.80 & 0.43 & 0.33 & 0.16 & 0.11 & 0.30 \\
\hline
\end{tabular}

\section*{Intersection Summary}
```

Area Type: Other

```

Cycle Length: 120.6
Actuated Cycle Length: 120.6
Offset: 69 (57\%), Referenced to phase 2:EBT and 6:WBT, Start of Green
Natural Cycle: 125
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.81
Intersection Signal Delay: \(39.9 \quad\) Intersection LOS: D
Intersection Capacity Utilization 76.2\% ICU Level of Service D
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 1: River Road \& Earl Armstrong Road

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Intersection} \\
\hline \multicolumn{7}{|l|}{Int Delay, s/veh 8} \\
\hline Movement & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & M & & F & & \({ }^{7}\) & 4 \\
\hline Traffic Vol, veh/h & 24 & 203 & 939 & 15 & 33 & 335 \\
\hline Future Vol, veh/h & 24 & 203 & 939 & 15 & 33 & 335 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Free & Free & Free & Free \\
\hline RT Channelized & - & None & - & None & - & None \\
\hline Storage Length & 0 & - & - & - & 1000 & - \\
\hline Veh in Median Storage, \# & 0 & - & 0 & - & - & 0 \\
\hline Grade, \% & 0 & - & 0 & - & - & 0 \\
\hline Peak Hour Factor & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline Heavy Vehicles, \% & 4 & 3 & 4 & 8 & 3 & 9 \\
\hline Mvmt Flow & 24 & 203 & 939 & 15 & 33 & 335 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 7 & 4 & & & ( & \(\frac{1}{\square}\) \\
\hline Lane Group & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & * \({ }^{*}\) & & \(\uparrow\) & & \({ }^{1}\) & 4 \\
\hline Traffic Volume (vph) & 24 & 203 & 939 & 15 & 33 & 335 \\
\hline Future Volume (vph) & 24 & 203 & 939 & 15 & 33 & 335 \\
\hline Ideal Flow (vphpl) & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Storage Length (m) & 0.0 & 0.0 & & 0.0 & 100.0 & \\
\hline Storage Lanes & 1 & 0 & & 0 & 1 & \\
\hline Taper Length (m) & 20.0 & & & & 20.0 & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Frt & 0.879 & & 0.998 & & & \\
\hline Flt Protected & 0.995 & & & & 0.950 & \\
\hline Satd. Flow (prot) & 1544 & 0 & 1745 & 0 & 1679 & 1670 \\
\hline Flt Permitted & 0.995 & & & & 0.165 & \\
\hline Satd. Flow (perm) & 1544 & 0 & 1745 & 0 & 292 & 1670 \\
\hline Right Turn on Red & & Yes & & Yes & & \\
\hline Satd. Flow (RTOR) & 196 & & 2 & & & \\
\hline Link Speed (k/h) & 50 & & 80 & & & 80 \\
\hline Link Distance (m) & 387.6 & & 283.0 & & & 234.8 \\
\hline Travel Time (s) & 27.9 & & 12.7 & & & 10.6 \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles (\%) & 4\% & 3\% & 4\% & 8\% & 3\% & 9\% \\
\hline Adj. Flow (vph) & 24 & 203 & 939 & 15 & 33 & 335 \\
\hline \multicolumn{7}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 227 & 0 & 954 & 0 & 33 & 335 \\
\hline Turn Type & Perm & & NA & & Perm & NA \\
\hline \multicolumn{3}{|l|}{Protected Phases} & 2 & & & 6 \\
\hline Permitted Phases & 8 & & & & 6 & \\
\hline Detector Phase & 8 & & 2 & & 6 & 6 \\
\hline \multicolumn{7}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & & 10.0 & & 10.0 & 10.0 \\
\hline Minimum Split (s) & 27.5 & & 24.9 & & 24.0 & 24.0 \\
\hline Total Split (s) & 28.2 & & 91.8 & & 91.8 & 91.8 \\
\hline Total Split (\%) & 23.5\% & & 76.5\% & & 76.5\% & 76.5\% \\
\hline Maximum Green (s) & 22.7 & & 85.9 & & 85.9 & 85.9 \\
\hline Yellow Time (s) & 3.6 & & 5.0 & & 5.0 & 5.0 \\
\hline All-Red Time (s) & 1.9 & & 0.9 & & 0.9 & 0.9 \\
\hline & 0.0 & & 0.0 & & 0.0 & 0.0 \\
\hline Total Lost Time (s) & 5.5 & & 5.9 & & 5.9 & 5.9 \\
\hline \multicolumn{7}{|l|}{Lead/Lag} \\
\hline \multicolumn{7}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & & 3.0 & & 3.0 & 3.0 \\
\hline Recall Mode & None & & Min & & Min & Min \\
\hline Walk Time (s) & 7.0 & & 7.0 & & 7.0 & 7.0 \\
\hline Flash Dont Walk (s) & 15.0 & & 11.0 & & 11.0 & 11.0 \\
\hline Pedestrian Calls (\#/hr) & 0 & & 0 & & 0 & 0 \\
\hline Act Effct Green (s) & 11.5 & & 41.9 & & 41.9 & 41.9 \\
\hline Actuated g/C Ratio & 0.18 & & 0.64 & & 0.64 & 0.64 \\
\hline v/c Ratio & 0.53 & & 0.85 & & 0.18 & 0.31 \\
\hline Control Delay & 12.6 & & 17.7 & & 6.8 & 5.8 \\
\hline Queue Delay & 0.0 & & 0.0 & & 0.0 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 7 & & \(\dagger\) & & & \(\downarrow\) \\
\hline Lane Group & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Total Delay & 12.6 & & 17.7 & & 6.8 & 5.8 \\
\hline LOS & B & & B & & A & A \\
\hline Approach Delay & 12.6 & & 17.7 & & & 5.9 \\
\hline Approach LOS & B & & B & & & A \\
\hline Queue Length 50th (m) & 2.6 & & 63.1 & & 1.1 & 12.5 \\
\hline Queue Length 95th (m) & 24.4 & & 137.5 & & 4.8 & 27.4 \\
\hline Internal Link Dist ( m ) & 363.6 & & 259.0 & & & 210.8 \\
\hline Turn Bay Length ( m ) & & & & & 00.0 & \\
\hline Base Capacity (vph) & 692 & & 1697 & & 284 & 1624 \\
\hline Starvation Cap Reductn & 0 & & 0 & & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & & 0 & & 0 & 0 \\
\hline Storage Cap Reductn & 0 & & 0 & & 0 & 0 \\
\hline Reduced v/c Ratio & 0.33 & & 0.56 & & 0.12 & 0.21 \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Area Type: Other} \\
\hline \multicolumn{7}{|l|}{Cycle Length: 120} \\
\hline \multicolumn{7}{|l|}{Actuated Cycle Length: 65.5} \\
\hline \multicolumn{7}{|l|}{Natural Cycle: 80} \\
\hline \multicolumn{7}{|l|}{Control Type: Actuated-Uncoordinated} \\
\hline \multicolumn{7}{|l|}{Maximum v/c Ratio: 0.85} \\
\hline \multicolumn{4}{|l|}{Intersection Signal Delay: 14.1} & & sectio & OS: B \\
\hline \multicolumn{4}{|l|}{Intersection Capacity Utilization 77.3\%} & \multicolumn{3}{|r|}{ICU Level of Service D} \\
\hline \multicolumn{2}{|l|}{Analysis Period (min) 15} & & & & & \\
\hline
\end{tabular}

Splits and Phases: 3: River Road \& Summerhill St

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Intersection} \\
\hline \multicolumn{7}{|l|}{Int Delay, s/veh 2.3} \\
\hline Movement & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & M & & \(\uparrow\) & & & \(\uparrow\) \\
\hline Traffic Vol, veh/h & 3 & 120 & 833 & 7 & 55 & 303 \\
\hline Future Vol, veh/h & 3 & 120 & 833 & 7 & 55 & 303 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Free & Free & Free & Free \\
\hline RT Channelized & - & None & - & None & - & None \\
\hline Storage Length & 0 & - & - & - & - & - \\
\hline Veh in Median Storage, \# & 0 & - & 0 & - & - & 0 \\
\hline Grade, \% & 0 & - & 0 & - & - & 0 \\
\hline Peak Hour Factor & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline Mvmt Flow & 3 & 120 & 833 & 7 & 55 & 303 \\
\hline
\end{tabular}


5: River Road \& Atrium Ridge
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Intersection} \\
\hline \multicolumn{7}{|l|}{Int Delay, s/veh 0.1} \\
\hline Movement & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & M & & F & & & \(\uparrow\) \\
\hline Traffic Vol, veh/h & 0 & 6 & 834 & 0 & 3 & 303 \\
\hline Future Vol, veh/h & 0 & 6 & 834 & 0 & 3 & 303 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Free & Free & Free & Free \\
\hline RT Channelized & - & None & - & None & - & None \\
\hline Storage Length & 0 & - & - & - & - & - \\
\hline Veh in Median Storage, \# & 0 & - & 0 & - & - & 0 \\
\hline Grade, \% & 0 & - & 0 & - & - & 0 \\
\hline Peak Hour Factor & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline Mvmt Flow & 0 & 6 & 834 & 0 & 3 & 303 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{7 \%}\) & 44 & 「 & ＊＊ & 44 & 「 & ＊＊ & 44 & 「 & ＊＊ & 44 & 「 \\
\hline Traffic Volume（vph） & 414 & 1001 & 363 & 71 & 961 & 30 & 201 & 97 & 39 & 36 & 183 & 805 \\
\hline Future Volume（vph） & 414 & 1001 & 363 & 71 & 961 & 30 & 201 & 97 & 39 & 36 & 183 & 805 \\
\hline Ideal Flow（vphpl） & 2000 & 1800 & 1800 & 1800 & 2200 & 1800 & 2000 & 1800 & 1800 & 1800 & 1800 & 2400 \\
\hline Storage Length（m） & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Storage Lanes & 2 & & 1 & 2 & & 1 & 2 & & 1 & 2 & & 1 \\
\hline Taper Length（m） & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Util．Factor & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 \\
\hline Ped Bike Factor & 1.00 & & & & & 0.98 & & & 0.99 & 1.00 & & \\
\hline Frt & & & 0.850 & & & 0.850 & & & 0.850 & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（prot） & 3654 & 3325 & 1502 & 3288 & 4103 & 1446 & 3584 & 3357 & 1369 & 3257 & 3458 & 2063 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（perm） & 3648 & 3325 & 1502 & 3288 & 4103 & 1423 & 3584 & 3357 & 1351 & 3252 & 3458 & 2063 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & & 310 & & & 155 & & & 215 & & & 372 \\
\hline Link Speed（k／h） & & 70 & & & 70 & & & 60 & & & 60 & \\
\hline Link Distance（m） & & 437.3 & & & 544.9 & & & 146.6 & & & 357.4 & \\
\hline Travel Time（s） & & 22.5 & & & 28.0 & & & 8.8 & & & 21.4 & \\
\hline Confl．Peds．（\＃／hr） & 3 & & & & & 3 & & & 1 & 1 & & \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles（\％） & 2\％ & 4\％ & 3\％ & 2\％ & 3\％ & 7\％ & 4\％ & 3\％ & 13\％ & 3\％ & 0\％ & 0\％ \\
\hline Adj．Flow（vph） & 414 & 1001 & 363 & 71 & 961 & 30 & 201 & 97 & 39 & 36 & 183 & 805 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic（\％）} \\
\hline Lane Group Flow（vph） & 414 & 1001 & 363 & 71 & 961 & 30 & 201 & 97 & 39 & 36 & 183 & 805 \\
\hline Turn Type & Prot & NA & Perm \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 7 & 4 & & 3 & 8 & \\
\hline Permitted Phases & & & 2 & & & 6 & & & 4 & & & 8 \\
\hline Detector Phase & 5 & 2 & 2 & 1 & 6 & 6 & 7 & 4 & 4 & 3 & 8 & 8 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial（s） & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 \\
\hline Minimum Split（s） & 11.8 & 34.5 & 34.5 & 11.8 & 34.5 & 34.5 & 11.7 & 43.6 & 43.6 & 11.7 & 43.6 & 43.6 \\
\hline Total Split（s） & 23.0 & 39.0 & 39.0 & 22.0 & 38.0 & 38.0 & 14.0 & 44.6 & 44.6 & 15.0 & 45.6 & 45.6 \\
\hline Total Split（\％） & 19．1\％ & 32．3\％ & 32．3\％ & 18．2\％ & 31．5\％ & 31．5\％ & 11．6\％ & 37．0\％ & 37．0\％ & 12．4\％ & 37．8\％ & 37．8\％ \\
\hline Maximum Green（s） & 16.2 & 32.5 & 32.5 & 15.2 & 31.5 & 31.5 & 7.3 & 38.0 & 38.0 & 8.3 & 39.0 & 39.0 \\
\hline Yellow Time（s） & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 \\
\hline All－Red Time（s） & 2.6 & 2.3 & 2.3 & 2.6 & 2.3 & 2.3 & 3.0 & 2.9 & 2.9 & 3.0 & 2.9 & 2.9 \\
\hline Lost Time Adjust（s） & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Lost Time（s） & 6.8 & 6.5 & 6.5 & 6.8 & 6.5 & 6.5 & 6.7 & 6.6 & 6.6 & 6.7 & 6.6 & 6.6 \\
\hline Lead／Lag & Lag & Lag & Lag & Lead & Lead & Lead & Lead & Lag & Lag & Lead & Lag & Lag \\
\hline Lead－Lag Optimize？ & Yes \\
\hline Vehicle Extension（s） & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & C－Min & C－Min & None & C－Min & C－Min & None & Min & Min & None & Min & Min \\
\hline Walk Time（s） & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 \\
\hline Flash Dont Walk（s） & & 21.0 & 21.0 & & 21.0 & 21.0 & & 30.0 & 30.0 & & 30.0 & 30.0 \\
\hline Pedestrian Calls（\＃／hr） & & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 \\
\hline Act Effct Green（s） & 17.4 & 46.1 & 46.1 & 8.0 & 34.2 & 34.2 & 7.3 & 40.6 & 40.6 & 6.8 & 35.1 & 35.1 \\
\hline Actuated g／C Ratio & 0.14 & 0.38 & 0.38 & 0.07 & 0.28 & 0.28 & 0.06 & 0.34 & 0.34 & 0.06 & 0.29 & 0.29 \\
\hline v／c Ratio & 0.79 & 0.79 & 0.47 & 0.33 & 0.83 & 0.06 & 0.93 & 0.09 & 0.07 & 0.20 & 0.18 & 0.93 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & 7 & & 4 & 4 & \(\uparrow\) & 7 & \(\checkmark\) & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Control Delay & 61.9 & 40.7 & 8.2 & 57.3 & 48.2 & 0.2 & 102.1 & 28.1 & 0.2 & 56.3 & 31.3 & 39.8 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 61.9 & 40.7 & 8.2 & 57.3 & 48.2 & 0.2 & 102.1 & 28.1 & 0.2 & 56.3 & 31.3 & 39.8 \\
\hline LOS & E & D & A & E & D & A & F & C & A & E & C & D \\
\hline Approach Delay & & 39.0 & & & 47.5 & & & 69.0 & & & 38.9 & \\
\hline Approach LOS & & D & & & D & & & E & & & D & \\
\hline Queue Length 50th (m) & 46.0 & 109.7 & 8.0 & 7.7 & 106.7 & 0.0 & 22.8 & 7.6 & 0.0 & 3.9 & 14.9 & 97.3 \\
\hline Queue Length 95th (m) & \#68.1 & \#152.4 & 32.4 & 14.4 & \#138.5 & 0.0 & \#43.6 & 13.7 & 0.0 & 8.8 & 23.1 & \#165.6 \\
\hline Internal Link Dist (m) & & 413.3 & & & 520.9 & & & 122.6 & & & 333.4 & \\
\hline Turn Bay Length (m) & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Base Capacity (vph) & 526 & 1270 & 765 & 414 & 1161 & 514 & 216 & 1130 & 597 & 224 & 1118 & 918 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.79 & 0.79 & 0.47 & 0.17 & 0.83 & 0.06 & 0.93 & 0.09 & 0.07 & 0.16 & 0.16 & 0.88 \\
\hline
\end{tabular}

\section*{Intersection Summary}
```

Area Type: Other

```

Cycle Length: 120.6
Actuated Cycle Length: 120.6
Offset: 91 ( \(75 \%\) ), Referenced to phase 2:EBT and 6:WBT, Start of Green
Natural Cycle: 105
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.93
Intersection Signal Delay: 43.5 Intersection LOS: D
Intersection Capacity Utilization 84.7\% ICU Level of Service E
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 1: River Road \& Earl Armstrong Road




\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 7 & & \(\dagger\) & & & \(\downarrow\) \\
\hline Lane Group & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Control Delay & 10.4 & & 5.6 & & 5.3 & 9.8 \\
\hline Queue Delay & 0.0 & & 0.0 & & 0.0 & 0.0 \\
\hline Total Delay & 10.4 & & 5.6 & & 5.3 & 9.8 \\
\hline LOS & B & & A & & A & A \\
\hline Approach Delay & 10.4 & & 5.6 & & & 9.2 \\
\hline Approach LOS & B & & A & & & A \\
\hline Queue Length 50th (m) & 0.5 & & 23.3 & & 5.1 & 56.3 \\
\hline Queue Length 95th (m) & 11.5 & & 36.9 & & 10.8 & 93.6 \\
\hline Internal Link Dist ( \(m\) ) & 363.6 & & 259.0 & & & 210.8 \\
\hline Turn Bay Length ( m ) & & & & & 100.0 & \\
\hline Base Capacity (vph) & 666 & & 1761 & & 793 & 1784 \\
\hline Starvation Cap Reductn & 0 & & 0 & & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & & 0 & & 0 & 0 \\
\hline Storage Cap Reductn & 0 & & 0 & & 0 & 0 \\
\hline Reduced v/c Ratio & 0.14 & & 0.31 & & 0.18 & 0.51 \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Area Type: Other} \\
\hline \multicolumn{7}{|l|}{Cycle Length: 120} \\
\hline \multicolumn{7}{|l|}{Actuated Cycle Length: 61.1} \\
\hline \multicolumn{7}{|l|}{Natural Cycle: 80} \\
\hline \multicolumn{7}{|l|}{Control Type: Actuated-Uncoordinated} \\
\hline \multicolumn{7}{|l|}{Maximum v/c Ratio: 0.69} \\
\hline \multicolumn{4}{|l|}{Intersection Signal Delay: 8.1} & \multicolumn{3}{|r|}{Intersection LOS: A} \\
\hline \multicolumn{4}{|l|}{Intersection Capacity Utilization 68.7\%} & \multicolumn{3}{|r|}{ICU Level of Service C} \\
\hline \multicolumn{7}{|l|}{Analysis Period (min) 15} \\
\hline
\end{tabular}

Splits and Phases: 3: River Road \& Summerhill St


4: River Road \& Borbridge Avenue



5: River Road \& Atrium Ridge



Future (2024) Background Traffic
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \％\({ }^{*}\) & 性 & 「 & \％\({ }^{1 / 1}\) & 性 & F & \％\({ }^{*}\) & 个 4 & 「 & \({ }^{*}{ }^{*}\) & 个 \(\uparrow\) & 7 \\
\hline Traffic Volume（vph） & 649 & 1053 & 125 & 115 & 989 & 111 & 357 & 505 & 255 & 43 & 128 & 232 \\
\hline Future Volume（vph） & 649 & 1053 & 125 & 115 & 989 & 111 & 357 & 505 & 255 & 43 & 128 & 232 \\
\hline Ideal Flow（vphpl） & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Storage Length（m） & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Storage Lanes & 2 & & 1 & 2 & & 1 & 2 & & 1 & 2 & & 1 \\
\hline Taper Length（ m ） & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Utill．Factor & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 \\
\hline Ped Bike Factor & 1.00 & & & & & 0.99 & & & 0.99 & 1.00 & & \\
\hline Frt & & & 0.850 & & & 0.850 & & & 0.850 & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（prot） & 3321 & 3357 & 1419 & 3077 & 3262 & 1502 & 3164 & 3390 & 1517 & 2795 & 3202 & 1502 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（perm） & 3319 & 3357 & 1419 & 3077 & 3262 & 1482 & 3164 & 3390 & 1497 & 2793 & 3202 & 1502 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & & 155 & & & 155 & & & 215 & & & 215 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Link Speed（k／h） & & 70 & & & 70 & & & 60 & & & 60 & \\
\hline Link Distance（ m ） & & 437.3 & & & 544.9 & & & 202.2 & & & 387.0 & \\
\hline Travel Time（s） & & 22.5 & & & 28.0 & & & 12.1 & & & 23.2 & \\
\hline Confl．Peds．（\＃／hr） & 1 & & & & & 1 & & & 1 & 1 & & \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles（\％） & 1\％ & 3\％ & 9\％ & 9\％ & 6\％ & 3\％ & 6\％ & 2\％ & 2\％ & 20\％ & 8\％ & 3\％ \\
\hline Adj．Flow（vph） & 649 & 1053 & 125 & 115 & 989 & 111 & 357 & 505 & 255 & 43 & 128 & 232 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic（\％）} \\
\hline Lane Group Flow（vph） & 649 & 1053 & 125 & 115 & 989 & 111 & 357 & 505 & 255 & 43 & 128 & 232 \\
\hline Turn Type & Prot & NA & Perm \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 7 & 4 & & 3 & 8 & \\
\hline Permitted Phases & & & 2 & & & 6 & & & 4 & & & 8 \\
\hline Detector Phase & 5 & 2 & 2 & 1 & 6 & 6 & 7 & 4 & 4 & 3 & 8 & 8 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrrrrrr} 
\\
Switch Phase & & & & & & & & \\
Minimum Initial（s） & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 \\
Minimum Split（s） & 11.8 & 35.1 & 35.1 & 11.8 & 35.1 & 35.1 & 11.8 & 43.6 & 43.6 & 11.8 & 43.6 & 43.6 \\
\hline Total Split（s） & 12.0 & 39.0 & 39.0 & 17.0 & 44.0 & 44.0 & 21.0 & 43.6 & 43.6 & 21.0 & 43.6 & 43.6 \\
Total Split（\％） & \(10.0 \%\) & \(32.3 \%\) & \(32.3 \%\) & \(14.1 \%\) & \(36.5 \%\) & \(36.5 \%\) & \(17.4 \%\) & \(36.2 \%\) & \(36.2 \%\) & \(17.4 \%\) & \(36.2 \%\) & \(36.2 \%\)
\end{tabular}
\begin{tabular}{lrrrrrrrrrrrr} 
& & & 32 & \\
Maximum Green（s） & 5.2 & 32.5 & 32.5 & 10.2 & 37.5 & 37.5 & 14.3 & 37.0 & 37.0 & 14.3 & 37.0 & 37.0 \\
Yellow Time（s） & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 \\
All－Red Time（s） & 2.6 & 2.3 & 2.3 & 2.6 & 2.3 & 2.3 & 3.0 & 2.9 & 2.9 & 3.0 & 2.9 & 2.9 \\
Lost Time Adjust（s） & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Total Lost Time（s） & 6.8 & 6.5 & 6.5 & 6.8 & 6.5 & 6.5 & 6.7 & 6.6 & 6.6 & 6.7 & 6.6 & 6.6 \\
Lead／Lag & Lead & Lead & Lead & Lag & Lag & Lag & Lead & Lag & Lag & Lead & Lag & Lag \\
Lead－Lag Optimize？ & Yes \\
Vehicle Extension（s） & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
Recall Mode & None & C－Min & C－Min & None & C－Min & C－Min & None & Min & Min & None & Min & Min \\
Walk Time（s） & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 \\
Flash Dont Walk（s） & & 21.0 & 21.0 & & 21.0 & 21.0 & & 30.0 & 30.0 & & 30.0 & 30.0 \\
Pedestrian Calls（\＃／\＃hr） & & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 \\
Act Effct Green（s） & 24.0 & 51.3 & 51.3 & 10.2 & 37.5 & 37.5 & 14.3 & 27.6 & 27.6 & 7.3 & 18.2 & 18.2 \\
Actuated g／C Ratio & 0.20 & 0.43 & 0.43 & 0.08 & 0.31 & 0.31 & 0.12 & 0.23 & 0.23 & 0.06 & 0.15 & 0.15 \\
v／c Ratio & 0.98 & 0.74 & 0.18 & 0.44 & 0.98 & 0.20 & 0.95 & 0.65 & 0.50 & 0.25 & 0.27 & 0.57 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{ }{*}\) & & & 7 & & 4 & 4 & \(\dagger\) & \(p\) & & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Control Delay & 79.9 & 34.1 & 2.7 & 58.3 & 64.3 & 2.4 & 88.9 & 46.5 & 11.7 & 57.2 & 44.8 & 12.8 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 79.9 & 34.1 & 2.7 & 58.3 & 64.3 & 2.4 & 88.9 & 46.5 & 11.7 & 57.2 & 44.8 & 12.8 \\
\hline LOS & E & C & A & E & E & A & F & D & B & E & D & B \\
\hline Approach Delay & & 48.2 & & & 58.1 & & & 52.1 & & & 27.7 & \\
\hline Approach LOS & & D & & & E & & & D & & & C & \\
\hline Queue Length 50th (m) & 73.1 & 99.3 & 0.0 & 12.5 & 112.0 & 0.0 & 40.4 & 54.4 & 7.2 & 4.6 & 13.1 & 3.2 \\
\hline Queue Length 95th (m) & \#135.4 & \#147.5 & 7.0 & 21.1 & \#152.3 & 4.6 & \#66.9 & 66.1 & 27.2 & 10.0 & 19.8 & 22.4 \\
\hline Internal Link Dist (m) & & 413.3 & & & 520.9 & & & 178.2 & & & 363.0 & \\
\hline Turn Bay Length (m) & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Base Capacity (vph) & 660 & 1427 & 692 & 260 & 1014 & 567 & 375 & 1040 & 608 & 331 & 982 & 609 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.98 & 0.74 & 0.18 & 0.44 & 0.98 & 0.20 & 0.95 & 0.49 & 0.42 & 0.13 & 0.13 & 0.38 \\
\hline
\end{tabular}

\section*{Intersection Summary}
```

Area Type: Other

```

Cycle Length: 120.6
Actuated Cycle Length: 120.6
Offset: 63 (52\%), Referenced to phase 2:EBT and \(6: W B T\), Start of Green
Natural Cycle: 125
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.98
Intersection Signal Delay: \(50.0 \quad\) Intersection LOS: D
Intersection Capacity Utilization 90.0\% ICU Level of Service E
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.

Splits and Phases: 1: River Road \& Earl Armstrong Road

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Intersection} \\
\hline \multicolumn{7}{|l|}{Int Delay, s/veh 8} \\
\hline Movement & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & \% & & \(\uparrow\) & & \({ }^{*}\) & 4 \\
\hline Traffic Vol, veh/h & 24 & 203 & 939 & 15 & 33 & 335 \\
\hline Future Vol, veh/h & 24 & 203 & 939 & 15 & 33 & 335 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Free & Free & Free & Free \\
\hline RT Channelized & - & None & - & None & - & None \\
\hline Storage Length & 0 & - & - & - & 1000 & - \\
\hline Veh in Median Storage, \# & 0 & - & 0 & - & - & 0 \\
\hline Grade, \% & 0 & - & 0 & - & - & 0 \\
\hline Peak Hour Factor & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline Heavy Vehicles, \% & 4 & 3 & 4 & 8 & 3 & 9 \\
\hline Mvmt Flow & 24 & 203 & 939 & 15 & 33 & 335 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\%\) & \[
4
\] & & & \(\pm\) & \\
\hline Lane Group & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & * & & 个 & & \({ }^{*}\) & 4 \\
\hline Traffic Volume (vph) & 24 & 203 & 1056 & 15 & 33 & 387 \\
\hline Future Volume (vph) & 24 & 203 & 1056 & 15 & 33 & 387 \\
\hline Ideal Flow (vphpl) & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Storage Length (m) & 0.0 & 0.0 & & 0.0 & 100.0 & \\
\hline Storage Lanes & 1 & 0 & & 0 & 1 & \\
\hline Taper Length (m) & 20.0 & & & & 20.0 & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Frt & 0.879 & & 0.998 & & & \\
\hline Flt Protected & 0.995 & & & & 0.950 & \\
\hline Satd. Flow (prot) & 1544 & 0 & 1746 & 0 & 1679 & 1670 \\
\hline Flt Permitted & 0.995 & & & & 0.131 & \\
\hline Satd. Flow (perm) & 1544 & 0 & 1746 & 0 & 231 & 1670 \\
\hline Right Turn on Red & & Yes & & Yes & & \\
\hline Satd. Flow (RTOR) & 157 & & 1 & & & \\
\hline Link Speed (k/h) & 50 & & 80 & & & 80 \\
\hline Link Distance (m) & 387.6 & & 297.0 & & & 234.8 \\
\hline Travel Time (s) & 27.9 & & 13.4 & & & 10.6 \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles (\%) & 4\% & 3\% & 4\% & 8\% & 3\% & 9\% \\
\hline Adj. Flow (vph) & 24 & 203 & 1056 & 15 & 33 & 387 \\
\hline \multicolumn{7}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 227 & 0 & 1071 & 0 & 33 & 387 \\
\hline Turn Type & Prot & & NA & & Perm & NA \\
\hline Protected Phases & 8 & & 2 & & & 6 \\
\hline Permitted Phases & & & & & 6 & \\
\hline Detector Phase & 8 & & 2 & & 6 & 6 \\
\hline \multicolumn{7}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & & 10.0 & & 10.0 & 10.0 \\
\hline Minimum Split (s) & 27.5 & & 24.0 & & 24.0 & 24.0 \\
\hline Total Split (s) & 28.2 & & 91.8 & & 91.8 & 91.8 \\
\hline Total Split (\%) & 23.5\% & & 76.5\% & & 76.5\% & 76.5\% \\
\hline Maximum Green (s) & 22.7 & & 85.9 & & 85.9 & 85.9 \\
\hline Yellow Time (s) & 3.6 & & 5.0 & & 5.0 & 5.0 \\
\hline All-Red Time (s) & 1.9 & & 0.9 & & 0.9 & 0.9 \\
\hline Lost Time Adjust (s) & 0.0 & & 0.0 & & 0.0 & 0.0 \\
\hline Total Lost Time (s) & 5.5 & & 5.9 & & 5.9 & 5.9 \\
\hline \multicolumn{7}{|l|}{Lead/Lag} \\
\hline \multicolumn{7}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & & 3.0 & & 3.0 & 3.0 \\
\hline Recall Mode & None & & Min & & Min & Min \\
\hline Walk Time (s) & 7.0 & & 7.0 & & 7.0 & 7.0 \\
\hline Flash Dont Walk (s) & 15.0 & & 11.0 & & 11.0 & 11.0 \\
\hline Pedestrian Calls (\#/hr) & 0 & & 0 & & 0 & 0 \\
\hline Act Effct Green (s) & 12.8 & & 55.4 & & 55.4 & 55.4 \\
\hline Actuated g/C Ratio & 0.16 & & 0.69 & & 0.69 & 0.69 \\
\hline v/c Ratio & 0.60 & & 0.89 & & 0.21 & 0.34 \\
\hline Control Delay & 20.6 & & 20.8 & & 8.0 & 5.8 \\
\hline Queue Delay & 0.0 & & 0.8 & & 0.0 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 7 & 4 & 4 & 7 & & \(\downarrow\) \\
\hline Lane Group & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Total Delay & 20.6 & & 21.6 & & 8.0 & 5.8 \\
\hline LOS & C & & C & & A & A \\
\hline Approach Delay & 20.6 & & 21.6 & & & 5.9 \\
\hline Approach LOS & C & & C & & & A \\
\hline Queue Length 50th (m) & 7.9 & & 83.2 & & 1.2 & 15.1 \\
\hline Queue Length 95th (m) & 36.2 & & 207.0 & & 5.7 & 36.2 \\
\hline Internal Link Dist (m) & 363.6 & & 273.0 & & & 10.8 \\
\hline Turn Bay Length ( \(m\) ) & & & & & 100.0 & \\
\hline Base Capacity (vph) & 576 & & 1621 & & 214 & 551 \\
\hline Starvation Cap Reductn & 0 & & 264 & & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & & 0 & & 0 & 0 \\
\hline Storage Cap Reductn & 0 & & 0 & & 0 & 0 \\
\hline Reduced v/c Ratio & 0.39 & & 0.79 & & 0.15 & 0.25 \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Area Type: Other} \\
\hline \multicolumn{7}{|l|}{Cycle Length: 120} \\
\hline \multicolumn{7}{|l|}{Actuated Cycle Length: 80.5} \\
\hline \multicolumn{7}{|l|}{Natural Cycle: 90} \\
\hline \multicolumn{7}{|l|}{Control Type: Actuated-Uncoordinated} \\
\hline \multicolumn{7}{|l|}{Maximum v/c Ratio: 0.89} \\
\hline \multicolumn{4}{|l|}{Intersection Signal Delay: 17.6} & \multicolumn{3}{|r|}{Intersection LOS: B} \\
\hline \multicolumn{4}{|l|}{Intersection Capacity Utilization 83.8\%} & \multicolumn{3}{|r|}{ICU Level of Service E} \\
\hline \multicolumn{7}{|l|}{Analysis Period (min) 15} \\
\hline
\end{tabular}

Splits and Phases: 3: River Road \& Summerhill St


4: River Road \& Borbridge Avenue



5: River Road \& 760 River Access/Atrium Ridge
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline \multicolumn{13}{|l|}{Int Delay, s/veh 0.1} \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & * & & & ¢ & & & \(\dagger\) & & & \({ }_{4}\) & \\
\hline Traffic Vol, veh/h & 0 & 0 & 0 & 0 & 0 & 6 & 0 & 834 & 0 & 3 & 303 & 0 \\
\hline Future Vol, veh/h & 0 & 0 & 0 & 0 & 0 & 6 & 0 & 834 & 0 & 3 & 303 & 0 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Stop & Stop & Stop & Stop & Free & Free & Free & Free & Free & Free \\
\hline RT Channelized & - & - & None & - & - & None & - & - & None & - & & None \\
\hline Storage Length & - & - & - & - & - & - & - & - & - & - & & \\
\hline Veh in Median Storage, \# & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & \\
\hline Peak Hour Factor & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline Mvmt Flow & 0 & 0 & 0 & 0 & 0 & 6 & 0 & 834 & 0 & 3 & 303 & 0 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rangle\) & & & & & & & \(\dagger\) & & & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & ¢ & & & \(\dagger\) & & & \(\dagger\) & & 7 & \(\hat{1}\) & \\
\hline Traffic Volume (vph) & 29 & 0 & 3 & 0 & 0 & 9 & 1 & 892 & 0 & 5 & 329 & 12 \\
\hline Future Volume (vph) & 29 & 0 & 3 & 0 & 0 & 9 & 1 & 892 & 0 & 5 & 329 & 12 \\
\hline Ideal Flow (vphpl) & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Storage Length (m) & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 10.0 & & 0.0 \\
\hline Storage Lanes & 0 & & 0 & 0 & & 0 & 0 & & 0 & 1 & & 0 \\
\hline Taper Length ( m ) & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.987 & & & 0.865 & & & & & & 0.995 & \\
\hline Flt Protected & & 0.957 & & & & & & & & 0.950 & & \\
\hline Satd. Flow (prot) & 0 & 1685 & 0 & 0 & 1543 & 0 & 0 & 1784 & 0 & 1695 & 1775 & 0 \\
\hline Flt Permitted & & & & & & & & & & 0.359 & & \\
\hline Satd. Flow (perm) & 0 & 1761 & 0 & 0 & 1543 & 0 & 0 & 1784 & 0 & 641 & 1775 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 26 & & & 217 & & & & & & 4 & \\
\hline Link Speed (k/h) & & 50 & & & 50 & & & 80 & & & 80 & \\
\hline Link Distance (m) & & 345.9 & & & 387.3 & & & 489.9 & & & 281.0 & \\
\hline Travel Time (s) & & 24.9 & & & 27.9 & & & 22.0 & & & 12.6 & \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% \\
\hline Adj. Flow (vph) & 29 & 0 & 3 & 0 & 0 & 9 & 1 & 892 & 0 & 5 & 329 & 12 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 32 & 0 & 0 & 9 & 0 & 0 & 893 & 0 & 5 & 341 & 0 \\
\hline Turn Type & Perm & NA & & & NA & & Perm & NA & & Perm & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & \\
\hline Minimum Split (s) & 27.5 & 27.5 & & 27.5 & 27.5 & & 24.0 & 24.0 & & 24.0 & 24.0 & \\
\hline Total Split (s) & 27.5 & 27.5 & & 27.5 & 27.5 & & 92.5 & 92.5 & & 92.5 & 92.5 & \\
\hline Total Split (\%) & 22.9\% & 22.9\% & & 22.9\% & 22.9\% & & 77.1\% & 77.1\% & & 77.1\% & 77.1\% & \\
\hline Maximum Green (s) & 22.0 & 22.0 & & 22.0 & 22.0 & & 86.6 & 86.6 & & 86.6 & 86.6 & \\
\hline Yellow Time (s) & 3.6 & 3.6 & & 3.6 & 3.6 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.9 & 1.9 & & 1.9 & 1.9 & & 0.9 & 0.9 & & 0.9 & 0.9 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & & 5.5 & & & 5.5 & & & 5.9 & & 5.9 & 5.9 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & & None & None & & Min & Min & & Min & Min & \\
\hline Walk Time (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & \\
\hline Flash Dont Walk (s) & 15.0 & 15.0 & & 15.0 & 15.0 & & 11.0 & 11.0 & & 11.0 & 11.0 & \\
\hline Pedestrian Calls (\#/hr) & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Act Effct Green (s) & & 11.3 & & & 11.3 & & & 48.1 & & 48.1 & 48.1 & \\
\hline Actuated g/C Ratio & & 0.21 & & & 0.21 & & & 0.89 & & 0.89 & 0.89 & \\
\hline v/c Ratio & & 0.08 & & & 0.02 & & & 0.57 & & 0.01 & 0.22 & \\
\hline Control Delay & & 15.2 & & & 0.1 & & & 5.4 & & 2.8 & 2.6 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\rangle\) & \(\rightarrow\) & & 7 & & 4 & 4 & \(\uparrow\) & \(p\) & - & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Total Delay & 15.2 & & & 0.1 & & & 5.4 & & 2.8 & 2.6 & \\
\hline LOS & B & & & A & & & A & & A & A & \\
\hline Approach Delay & 15.2 & & & 0.1 & & & 5.4 & & & 2.6 & \\
\hline Approach LOS & B & & & A & & & A & & & A & \\
\hline Queue Length 50th (m) & 0.4 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Queue Length 95th (m) & 7.3 & & & 0.0 & & & 87.8 & & 0.9 & 20.4 & \\
\hline Internal Link Dist (m) & 321.9 & & & 363.3 & & & 465.9 & & & 257.0 & \\
\hline Turn Bay Length (m) & & & & & & & & & 10.0 & & \\
\hline Base Capacity (vph) & 816 & & & 821 & & & 1784 & & 641 & 1775 & \\
\hline Starvation Cap Reductn & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Spillback Cap Reductn & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Storage Cap Reductn & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Reduced v/c Ratio & 0.04 & & & 0.01 & & & 0.50 & & 0.01 & 0.19 & \\
\hline Intersection Summary & & & & & & & & & & & \\
\hline Area Type: Other & & & & & & & & & & & \\
\hline Cycle Length: 120 & & & & & & & & & & & \\
\hline Actuated Cycle Length: 54.3 & & & & & & & & & & & \\
\hline Natural Cycle: 75 & & & & & & & & & & & \\
\hline Control Type: Actuated-Uncoordinated & & & & & & & & & & & \\
\hline Maximum v/c Ratio: 0.57 & & & & & & & & & & & \\
\hline Intersection Signal Delay: 4.8 & & & \multicolumn{4}{|c|}{Intersection LOS: A} & & & & & \\
\hline Intersection Capacity Utilization 68.4\% & & & \multicolumn{4}{|c|}{ICU Level of Service C} & & & & & \\
\hline Analysis Period (min) 15 & & & & & & & & & & & \\
\hline
\end{tabular}

Splits and Phases: 5: River Road \& 760 River Access/Atrium Ridge

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & ＊＊ & 44 & 「 & \％ 1 & 44 & 「 & \％ & 44 & 「 & \({ }^{7} 1\) & 44 & 「 \\
\hline Traffic Volume（vph） & 424 & 1116 & 423 & 278 & 1136 & 42 & 241 & 244 & 184 & 58 & 393 & 825 \\
\hline Future Volume（vph） & 424 & 1116 & 423 & 278 & 1136 & 42 & 241 & 244 & 184 & 58 & 393 & 825 \\
\hline Ideal Flow（vphpl） & 2000 & 1800 & 1800 & 1800 & 2200 & 1800 & 2000 & 1800 & 1800 & 1800 & 1800 & 2400 \\
\hline Storage Length（m） & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Storage Lanes & 2 & & 1 & 2 & & 1 & 2 & & 1 & 2 & & 1 \\
\hline Taper Length（m） & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Util．Factor & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 \\
\hline Ped Bike Factor & 1.00 & & & & & 0.98 & & & 0.99 & 1.00 & & \\
\hline Frt & & & 0.850 & & & 0.850 & & & 0.850 & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（prot） & 3654 & 3325 & 1502 & 3288 & 4103 & 1446 & 3584 & 3357 & 1369 & 3257 & 3458 & 2063 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（perm） & 3649 & 3325 & 1502 & 3288 & 4103 & 1423 & 3584 & 3357 & 1351 & 3253 & 3458 & 2063 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & & 306 & & & 155 & & & 215 & & & 355 \\
\hline Link Speed（k／h） & & 70 & & & 70 & & & 60 & & & 60 & \\
\hline Link Distance（m） & & 437.3 & & & 544.9 & & & 202.2 & & & 357.4 & \\
\hline Travel Time（s） & & 22.5 & & & 28.0 & & & 12.1 & & & 21.4 & \\
\hline Confl．Peds．（\＃／hr） & 3 & & & & & 3 & & & 1 & 1 & & \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles（\％） & 2\％ & 4\％ & 3\％ & 2\％ & 3\％ & 7\％ & 4\％ & 3\％ & 13\％ & 3\％ & 0\％ & 0\％ \\
\hline Adj．Flow（vph） & 424 & 1116 & 423 & 278 & 1136 & 42 & 241 & 244 & 184 & 58 & 393 & 825 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic（\％）} \\
\hline Lane Group Flow（vph） & 424 & 1116 & 423 & 278 & 1136 & 42 & 241 & 244 & 184 & 58 & 393 & 825 \\
\hline Turn Type & Prot & NA & Perm \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 7 & 4 & & 3 & 8 & \\
\hline Permitted Phases & & & 2 & & & 6 & & & 4 & & & 8 \\
\hline Detector Phase & 5 & 2 & 2 & 1 & 6 & 6 & 7 & 4 & 4 & 3 & 8 & 8 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial（s） & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 \\
\hline Minimum Split（s） & 11.8 & 34.5 & 34.5 & 11.8 & 34.5 & 34.5 & 11.7 & 43.6 & 43.6 & 11.7 & 43.6 & 43.6 \\
\hline Total Split（s） & 23.0 & 46.0 & 46.0 & 16.0 & 39.0 & 39.0 & 15.0 & 43.6 & 43.6 & 15.0 & 43.6 & 43.6 \\
\hline Total Split（\％） & 19．1\％ & 38．1\％ & 38．1\％ & 13．3\％ & 32．3\％ & 32．3\％ & 12．4\％ & 36．2\％ & 36．2\％ & 12．4\％ & 36．2\％ & 36．2\％ \\
\hline Maximum Green（s） & 16.2 & 39.5 & 39.5 & 9.2 & 32.5 & 32.5 & 8.3 & 37.0 & 37.0 & 8.3 & 37.0 & 37.0 \\
\hline Yellow Time（s） & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 \\
\hline All－Red Time（s） & 2.6 & 2.3 & 2.3 & 2.6 & 2.3 & 2.3 & 3.0 & 2.9 & 2.9 & 3.0 & 2.9 & 2.9 \\
\hline Lost Time Adjust（s） & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Lost Time（s） & 6.8 & 6.5 & 6.5 & 6.8 & 6.5 & 6.5 & 6.7 & 6.6 & 6.6 & 6.7 & 6.6 & 6.6 \\
\hline Lead／Lag & Lag & Lag & Lag & Lead & Lead & Lead & Lead & Lag & Lag & Lead & Lag & Lag \\
\hline Lead－Lag Optimize？ & Yes \\
\hline Vehicle Extension（s） & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & C－Min & C－Min & None & C－Min & C－Min & None & Min & Min & None & Min & Min \\
\hline Walk Time（s） & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 \\
\hline Flash Dont Walk（s） & & 21.0 & 21.0 & & 21.0 & 21.0 & & 30.0 & 30.0 & & 30.0 & 30.0 \\
\hline Pedestrian Calls（\＃／hr） & & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 \\
\hline Act Effct Green（s） & 16.2 & 39.5 & 39.5 & 10.4 & 33.7 & 33.7 & 8.3 & 39.3 & 39.3 & 7.3 & 35.8 & 35.8 \\
\hline Actuated g／C Ratio & 0.13 & 0.33 & 0.33 & 0.09 & 0.28 & 0.28 & 0.07 & 0.33 & 0.33 & 0.06 & 0.30 & 0.30 \\
\hline v／c Ratio & 0.87 & 1.02 & 0.61 & 0.98 & 0.99 & 0.08 & 0.98 & 0.22 & 0.32 & 0.29 & 0.38 & 0.96 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{ }{ }\) & & & 7 & 4 & 4 & 4 & 4 & & ( & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Control Delay & 69.6 & 73.9 & 13.3 & 104.9 & 68.4 & 0.3 & 108.6 & 31.0 & 3.8 & 57.7 & 34.6 & 45.7 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 69.6 & 73.9 & 13.3 & 104.9 & 68.4 & 0.3 & 108.6 & 31.0 & 3.8 & 57.7 & 34.6 & 45.7 \\
\hline LOS & E & E & B & F & E & A & F & C & A & E & C & D \\
\hline Approach Delay & & 59.9 & & & 73.4 & & & 51.5 & & & 42.8 & \\
\hline Approach LOS & & E & & & E & & & D & & & D & \\
\hline Queue Length 50th (m) & 47.3 & ~136.4 & 18.8 & ~35.6 & ~139.2 & 0.0 & 27.5 & 20.6 & 0.0 & 6.3 & 35.2 & 111.3 \\
\hline Queue Length 95th (m) & \#70.7 & \#174.1 & 49.8 & \#60.7 & \#177.2 & 0.0 & \#51.3 & 30.6 & 9.5 & 12.4 & 47.9 & \#186.0 \\
\hline Internal Link Dist (m) & & 413.3 & & & 520.9 & & & 178.2 & & & 333.4 & \\
\hline Turn Bay Length (m) & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Base Capacity (vph) & 490 & 1089 & 697 & 283 & 1146 & 509 & 246 & 1092 & 584 & 224 & 1060 & 879 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.87 & 1.02 & 0.61 & 0.98 & 0.99 & 0.08 & 0.98 & 0.22 & 0.32 & 0.26 & 0.37 & 0.94 \\
\hline
\end{tabular}

\section*{Intersection Summary}

Area Type: Other
Cycle Length: 120.6
Actuated Cycle Length: 120.6
Offset: 91 (75\%), Referenced to phase 2:EBT and 6:WBT, Start of Green
Natural Cycle: 125
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.02
Intersection Signal Delay: 58.5
Intersection LOS: E
Intersection Capacity Utilization 90.6\% ICU Level of Service \(E\)
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: River Road \& Earl Armstrong Road




\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 1 & 4 & 4 & \(p\) & & \(\downarrow\) \\
\hline Lane Group & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Control Delay & 12.5 & & 5.3 & & 4.9 & 10.6 \\
\hline Queue Delay & 0.0 & & 0.0 & & 0.0 & 0.0 \\
\hline Total Delay & 12.5 & & 5.3 & & 4.9 & 10.6 \\
\hline LOS & B & & A & & A & B \\
\hline Approach Delay & 12.5 & & 5.3 & & & 9.9 \\
\hline Approach LOS & B & & A & & & A \\
\hline Queue Length 50th (m) & 0.6 & & 28.8 & & 5.2 & 74.2 \\
\hline Queue Length 95th (m) & 13.4 & & 44.6 & & 11.1 & 23.8 \\
\hline Internal Link Dist (m) & 363.6 & & 259.0 & & & 210.8 \\
\hline Turn Bay Length ( m ) & & & & & 00.0 & \\
\hline Base Capacity (vph) & 586 & & 1733 & & 703 & 1756 \\
\hline Starvation Cap Reductn & 0 & & 0 & & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & & 0 & & 0 & 0 \\
\hline Storage Cap Reductn & 0 & & 0 & & 0 & 0 \\
\hline Reduced v/c Ratio & 0.16 & & 0.36 & & 0.20 & 0.59 \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Area Type: Other} \\
\hline \multicolumn{7}{|l|}{Cycle Length: 120} \\
\hline \multicolumn{7}{|l|}{Actuated Cycle Length: 70.9} \\
\hline \multicolumn{7}{|l|}{Natural Cycle: 90} \\
\hline \multicolumn{7}{|l|}{Control Type: Actuated-Uncoordinated} \\
\hline \multicolumn{7}{|l|}{Maximum v/c Ratio: 0.74} \\
\hline \multicolumn{4}{|l|}{Intersection Signal Delay: 8.5} & & sectio & OS: A \\
\hline \multicolumn{4}{|l|}{Intersection Capacity Utilization 75.4\%} & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{ICU Level of Service D}} \\
\hline \multicolumn{4}{|l|}{Analysis Period (min) 15} & & & \\
\hline
\end{tabular}

Splits and Phases: 3: River Road \& Summerhill St



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline \multicolumn{13}{|l|}{Int Delay, s/veh 0.7} \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \multicolumn{3}{|c|}{\(\dagger\)} & \multicolumn{3}{|c|}{\({ }_{\text {¢ }}\)} & \multicolumn{3}{|c|}{\(\dagger\)} & \multicolumn{3}{|c|}{¢} \\
\hline Traffic Vol, veh/h & 18 & 0 & 2 & 0 & 0 & 7 & 3 & 493 & 0 & 9 & 858 & 29 \\
\hline Future Vol, veh/h & 18 & 0 & 2 & 0 & 0 & 7 & 3 & 493 & 0 & 9 & 858 & 29 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Stop & Stop & Stop & Stop & Free & Free & Free & Free & Free & Free \\
\hline RT Channelized & - & - & None & - & & None & . & & None & & & None \\
\hline Storage Length & - & - & - & - & & - & & & - & & - & \\
\hline Veh in Median Storage, \# & - & 0 & - & - & 0 & - & & 0 & - & & 0 & \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & \\
\hline Peak Hour Factor & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline Mvmt Flow & 18 & 0 & 2 & 0 & 0 & 7 & 3 & 493 & 0 & 9 & 858 & 29 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Major/Minor & Minor2 & & \multicolumn{5}{|c|}{Minor1} & \multicolumn{3}{|c|}{Major1} & \multicolumn{4}{|c|}{Major2} \\
\hline Conflicting Flow All & 1394 & 1390 & 873 & & 1391 & 1404 & 493 & & 887 & 0 & 0 & 493 & 0 & 0 \\
\hline Stage 1 & 891 & 891 & - & & 499 & 499 & - & & - & - & - & - & - & \\
\hline Stage 2 & 503 & 499 & - & & 892 & 905 & - & & - & - & - & - & - & \\
\hline Critical Hdwy & 7.12 & 6.52 & 6.22 & & 7.12 & 6.52 & 6.22 & & 4.12 & - & - & 4.12 & & \\
\hline Critical Hdwy Stg 1 & 6.12 & 5.52 & & & 6.12 & 5.52 & & & - & - & - & - & - & \\
\hline Critical Hdwy Stg 2 & 6.12 & 5.52 & & & 6.12 & 5.52 & & & & - & - & & & \\
\hline Follow-up Hdwy & 3.518 & 4.018 & 3.318 & & 3.518 & 4.018 & 3.318 & & 2.218 & - & - & 2.218 & - & \\
\hline Pot Cap-1 Maneuver & 119 & 142 & 349 & & 120 & 140 & 576 & & 763 & - & - & 1071 & - & \\
\hline Stage 1 & 337 & 361 & - & & 554 & 544 & - & & - & - & - & - & - & \\
\hline Stage 2 & 551 & 544 & - & & 337 & 355 & - & & - & - & - & - & - & \\
\hline Platoon blocked, \% & & & & & & & & & & - & - & & - & \\
\hline Mov Cap-1 Maneuver & 116 & 139 & 349 & & 117 & 137 & 576 & & 763 & - & - & 1071 & - & \\
\hline Mov Cap-2 Maneuver & 116 & 139 & - & & 117 & 137 & - & & - & - & - & - & - & \\
\hline Stage 1 & 335 & 355 & - & & 551 & 541 & & & - & - & - & - & - & \\
\hline Stage 2 & 542 & 541 & - & & 329 & 349 & - & & - & - & - & - & - & \\
\hline Approach & EB & & & & WB & & & & NB & & & SB & & \\
\hline HCM Control Delay, s & 39.5 & & & & 11.3 & & & & 0.1 & & & 0.1 & & \\
\hline HCM LOS & E & & & & B & & & & & & & & & \\
\hline Minor Lane/Major Mvmt & NBL & NBT & NBR & EBLn1 & NBLn1 & SBL & SBT & SBR & & & & & & \\
\hline Capacity (veh/h) & 763 & - & & 124 & 576 & 1071 & - & - & & & & & & \\
\hline HCM Lane V/C Ratio & 0.004 & - & & 0.161 & 0.012 & 0.008 & - & - & & & & & & \\
\hline HCM Control Delay (s) & 9.7 & 0 & & 39.5 & 11.3 & 8.4 & 0 & - & & & & & & \\
\hline HCM Lane LOS & A & A & - & E & B & A & A & - & & & & & & \\
\hline HCM 95th \%tile Q(veh) & 0 & - & - & 0.6 & 0 & 0 & - & - & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{*}{ }\) & & & & & & 4 & \(\dagger\) & & & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & & \(\dagger\) & & & \(\uparrow\) & & * & \(\hat{\dagger}\) & \\
\hline Traffic Volume (vph) & 18 & 0 & 2 & 0 & 0 & 7 & 3 & 493 & 0 & 9 & 858 & 29 \\
\hline Future Volume (vph) & 18 & 0 & 2 & 0 & 0 & 7 & 3 & 493 & 0 & 9 & 858 & 29 \\
\hline Ideal Flow (vphpl) & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Storage Length (m) & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 10.0 & & 0.0 \\
\hline Storage Lanes & 0 & & 0 & 0 & & 0 & 0 & & 0 & 1 & & 0 \\
\hline Taper Length (m) & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Utill. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Frt & & 0.986 & & & 0.865 & & & & & & 0.995 & \\
\hline Flt Protected & & 0.957 & & & & & & & & 0.950 & & \\
\hline Satd. Flow (prot) & 0 & 1684 & 0 & 0 & 1543 & 0 & 0 & 1784 & 0 & 1695 & 1775 & 0 \\
\hline Flt Permitted & & & & & & & & 0.996 & & 0.482 & & \\
\hline Satd. Flow (perm) & 0 & 1759 & 0 & 0 & 1543 & 0 & 0 & 1777 & 0 & 860 & 1775 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 26 & & & 453 & & & & & & 4 & \\
\hline Link Speed (k/h) & & 50 & & & 50 & & & 80 & & & 80 & \\
\hline Link Distance (m) & & 345.9 & & & 387.3 & & & 489.9 & & & 295.0 & \\
\hline Travel Time (s) & & 24.9 & & & 27.9 & & & 22.0 & & & 13.3 & \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% \\
\hline Adj. Flow (vph) & 18 & 0 & 2 & 0 & 0 & 7 & 3 & 493 & 0 & 9 & 858 & 29 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 20 & 0 & 0 & 7 & 0 & 0 & 496 & 0 & 9 & 887 & 0 \\
\hline Turn Type & Perm & NA & & & NA & & Perm & NA & & Perm & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & \\
\hline Minimum Split (s) & 27.5 & 27.5 & & 27.5 & 27.5 & & 23.9 & 23.9 & & 23.9 & 23.9 & \\
\hline Total Split (s) & 27.5 & 27.5 & & 27.5 & 27.5 & & 92.5 & 92.5 & & 92.5 & 92.5 & \\
\hline Total Split (\%) & 22.9\% & 22.9\% & & 22.9\% & 22.9\% & & 77.1\% & 77.1\% & & 77.1\% & 77.1\% & \\
\hline Maximum Green (s) & 22.0 & 22.0 & & 22.0 & 22.0 & & 86.6 & 86.6 & & 86.6 & 86.6 & \\
\hline Yellow Time (s) & 3.6 & 3.6 & & 3.6 & 3.6 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.9 & 1.9 & & 1.9 & 1.9 & & 0.9 & 0.9 & & 0.9 & 0.9 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & & 5.5 & & & 5.5 & & & 5.9 & & 5.9 & 5.9 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & & None & None & & Min & Min & & Min & Min & \\
\hline Walk Time (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & \\
\hline Flash Dont Walk (s) & 15.0 & 15.0 & & 15.0 & 15.0 & & 11.0 & 11.0 & & 11.0 & 11.0 & \\
\hline Pedestrian Calls (\#/hr) & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Act Efft Green (s) & & 11.6 & & & 11.6 & & & 47.1 & & 47.1 & 47.1 & \\
\hline Actuated g/C Ratio & & 0.22 & & & 0.22 & & & 0.89 & & 0.89 & 0.89 & \\
\hline v/c Ratio & & 0.05 & & & 0.01 & & & 0.31 & & 0.01 & 0.56 & \\
\hline Control Delay & & 11.9 & & & 0.0 & & & 2.9 & & 2.6 & 5.1 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\stackrel{ }{*}\) & & & & & & & \(\uparrow\) & 7 & \(\checkmark\) & \(\frac{1}{\downarrow}\) & \(\downarrow\) \\
\hline Lane Group EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Total Delay & 11.9 & & & 0.0 & & & 2.9 & & 2.6 & 5.1 & \\
\hline LOS & B & & & A & & & A & & A & A & \\
\hline Approach Delay & 11.9 & & & & & & 2.9 & & & 5.1 & \\
\hline Approach LOS & B & & & & & & A & & & A & \\
\hline Queue Length 50th (m) & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Queue Length 95th (m) & 4.7 & & & 0.0 & & & 31.7 & & 1.2 & 83.9 & \\
\hline Internal Link Dist (m) & 321.9 & & & 363.3 & & & 465.9 & & & 271.0 & \\
\hline Turn Bay Length (m) & & & & & & & & & 10.0 & & \\
\hline Base Capacity (vph) & 864 & & & 980 & & & 1777 & & 860 & 1775 & \\
\hline Starvation Cap Reductn & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Spillback Cap Reductn & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Storage Cap Reductn & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Reduced v/c Ratio & 0.02 & & & 0.01 & & & 0.28 & & 0.01 & 0.50 & \\
\hline Intersection Summary & & & & & & & & & & & \\
\hline Area Type: Other & & & & & & & & & & & \\
\hline Cycle Length: 120 & & & & & & & & & & & \\
\hline Actuated Cycle Length: 52.9 & & & & & & & & & & & \\
\hline Natural Cycle: 75 & & & & & & & & & & & \\
\hline Control Type: Actuated-Uncoordinated & & & & & & & & & & & \\
\hline Maximum v/c Ratio: 0.56 & & & & & & & & & & & \\
\hline Intersection Signal Delay: 4.4 & & & \multicolumn{4}{|c|}{Intersection LOS: A} & & & & & \\
\hline Intersection Capacity Utilization 67.4\% & & & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{ICU Level of Service C}} & & & & & \\
\hline Analysis Period (min) 15 & & & & & & & & & & & \\
\hline
\end{tabular}

Splits and Phases: 5: River Road \& 760 River Access/Atrium Ridge


Future (2029) Background Traffic
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \％\({ }^{1 / 1}\) & 性 & 「 & \({ }^{7 *}\) & 性 & 「 & \({ }^{7 \times 1}\) & 个 \(\uparrow\) & 「 & \％\({ }^{1 *}\) & 个 \(\uparrow\) & 7 \\
\hline Traffic Volume（vph） & 665 & 1154 & 140 & 167 & 1132 & 121 & 390 & 614 & 358 & 45 & 181 & 237 \\
\hline Future Volume（vph） & 665 & 1154 & 140 & 167 & 1132 & 121 & 390 & 614 & 358 & 45 & 181 & 237 \\
\hline Ideal Flow（vphpl） & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Storage Length（m） & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Storage Lanes & 2 & & 1 & 2 & & 1 & 2 & & 1 & 2 & & 1 \\
\hline Taper Length（m） & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Utill．Factor & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 \\
\hline Ped Bike Factor & 1.00 & & & & & 0.99 & & & 0.99 & 1.00 & & \\
\hline Frt & & & 0.850 & & & 0.850 & & & 0.850 & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（prot） & 3321 & 3357 & 1419 & 3077 & 3262 & 1502 & 3164 & 3390 & 1517 & 2795 & 3202 & 1502 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（perm） & 3320 & 3357 & 1419 & 3077 & 3262 & 1482 & 3164 & 3390 & 1497 & 2793 & 3202 & 1502 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & & 155 & & & 155 & & & 218 & & & 215 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Link Speed（k／h） & & 70 & & & 70 & & & 60 & & & 60 & \\
\hline Link Distance（m） & & 437.3 & & & 544.9 & & & 202.2 & & & 387.0 & \\
\hline Travel Time（s） & & 22.5 & & & 28.0 & & & 12.1 & & & 23.2 & \\
\hline Confl．Peds．（\＃／hr） & 1 & & & & & 1 & & & 1 & 1 & & \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles（\％） & 1\％ & 3\％ & 9\％ & 9\％ & 6\％ & 3\％ & 6\％ & 2\％ & 2\％ & 20\％ & 8\％ & 3\％ \\
\hline Adj．Flow（vph） & 665 & 1154 & 140 & 167 & 1132 & 121 & 390 & 614 & 358 & 45 & 181 & 237 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic（\％）} \\
\hline Lane Group Flow（vph） & 665 & 1154 & 140 & 167 & 1132 & 121 & 390 & 614 & 358 & 45 & 181 & 237 \\
\hline Turn Type & Prot & NA & Perm \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 7 & 4 & & 3 & 8 & \\
\hline Permitted Phases & & & 2 & & & 6 & & & 4 & & & 8 \\
\hline Detector Phase & 5 & 2 & 2 & 1 & 6 & 6 & 7 & 4 & 4 & 3 & 8 & 8 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrrrrrr} 
\\
Switch Phase & & & & & & & & & \\
Minimum Initial（s） & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 \\
Minimum Split（s） & 11.8 & 35.1 & 35.1 & 11.8 & 35.1 & 35.1 & 11.8 & 43.6 & 43.6 & 11.8 & 43.6 & 43.6 \\
\hline Total Split（s） & 14.0 & 39.0 & 39.0 & 18.0 & 43.0 & 43.0 & 20.0 & 43.6 & 43.6 & 20.0 & 43.6 & 43.6 \\
Total Split（\％） & \(11.6 \%\) & \(32.3 \%\) & \(32.3 \%\) & \(14.9 \%\) & \(35.7 \%\) & \(35.7 \%\) & \(16.6 \%\) & \(36.2 \%\) & \(36.2 \%\) & \(16.6 \%\) & \(36.2 \%\) & \(36.2 \%\)
\end{tabular}
\begin{tabular}{lrrrrrrrrrrrr} 
& & & 32 & \\
Maximum Green（s） & 7.2 & 32.5 & 32.5 & 11.2 & 36.5 & 36.5 & 13.3 & 37.0 & 37.0 & 13.3 & 37.0 & 37.0 \\
Yellow Time（s） & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 \\
All－Red Time（s） & 2.6 & 2.3 & 2.3 & 2.6 & 2.3 & 2.3 & 3.0 & 2.9 & 2.9 & 3.0 & 2.9 & 2.9 \\
Lost Time Adjust（s） & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Total Lost Time（s） & 6.8 & 6.5 & 6.5 & 6.8 & 6.5 & 6.5 & 6.7 & 6.6 & 6.6 & 6.7 & 6.6 & 6.6 \\
Lead／Lag & Lead & Lead & Lead & Lag & Lag & Lag & Lead & Lag & Lag & Lead & Lag & Lag \\
Lead－Lag Optimize？ & Yes \\
Vehicle Extension（s） & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
Recall Mode & None & C－Min & C－Min & None & C－Min & C－Min & None & Min & Min & None & Min & Min \\
Walk Time（s） & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 \\
Flash Dont Walk（s） & & 21.0 & 21.0 & & 21.0 & 21.0 & & 30.0 & 30.0 & & 30.0 & 30.0 \\
Pedestrian Calls（\＃／\＃hr） & & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 \\
Act Effct Green（s） & 21.4 & 46.7 & 46.7 & 11.2 & 36.5 & 36.5 & 13.3 & 31.2 & 31.2 & 7.3 & 22.8 & 22.8 \\
Actuated g／C Ratio & 0.18 & 0.39 & 0.39 & 0.09 & 0.30 & 0.30 & 0.11 & 0.26 & 0.26 & 0.06 & 0.19 & 0.19 \\
v／c Ratio & 1.13 & 0.89 & 0.22 & 0.59 & 1.15 & 0.22 & 1.12 & 0.70 & 0.65 & 0.26 & 0.30 & 0.52 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{ }{*}\) & & & 7 & 4 & 4 & 4 & \(\dagger\) & \(p\) & ( & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Control Delay & 123.5 & 45.5 & 4.5 & 61.4 & 116.8 & 3.0 & 133.5 & 44.9 & 20.6 & 57.4 & 41.3 & 10.8 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 123.5 & 45.5 & 4.5 & 61.4 & 116.8 & 3.0 & 133.5 & 44.9 & 20.6 & 57.4 & 41.3 & 10.8 \\
\hline LOS & F & D & A & E & F & A & F & D & C & E & D & B \\
\hline Approach Delay & & 69.0 & & & 100.6 & & & 63.9 & & & 27.3 & \\
\hline Approach LOS & & E & & & F & & & E & & & C & \\
\hline Queue Length 50th (m) & ~89.1 & 123.7 & 0.0 & 18.2 & ~152.4 & 0.0 & \(\sim 50.4\) & 65.2 & 27.1 & 4.8 & 17.8 & 4.0 \\
\hline Queue Length 95th (m) & \#153.9 & \#193.5 & 10.6 & 28.8 & \#190.3 & 6.7 & \#78.4 & 76.4 & 52.8 & 10.4 & 24.6 & 21.9 \\
\hline Internal Link Dist (m) & & 413.3 & & & 520.9 & & & 178.2 & & & 363.0 & \\
\hline Turn Bay Length (m) & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Base Capacity (vph) & 588 & 1299 & 644 & 285 & 987 & 556 & 348 & 1042 & 611 & 308 & 982 & 609 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 1.13 & 0.89 & 0.22 & 0.59 & 1.15 & 0.22 & 1.12 & 0.59 & 0.59 & 0.15 & 0.18 & 0.39 \\
\hline
\end{tabular}

\section*{Intersection Summary}

Area Type: Other
Cycle Length: 120.6
Actuated Cycle Length: 120.6
Offset: 59 (49\%), Referenced to phase 2:EBT and 6:WBT, Start of Green
Natural Cycle: 125
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.15
Intersection Signal Delay: 72.6
Intersection LOS: E
Intersection Capacity Utilization 97.7\%
ICU Level of Service F
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: River Road \& Earl Armstrong Road

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 7 & \[
4
\] & & & ( & \\
\hline Lane Group & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & * \({ }^{*}\) & & \(\uparrow\) & & \({ }^{1}\) & 4 \\
\hline Traffic Volume (vph) & 24 & 203 & 1286 & 15 & 33 & 505 \\
\hline Future Volume (vph) & 24 & 203 & 1286 & 15 & 33 & 505 \\
\hline Ideal Flow (vphpl) & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Storage Length (m) & 0.0 & 0.0 & & 0.0 & 100.0 & \\
\hline Storage Lanes & 1 & 0 & & 0 & 1 & \\
\hline Taper Length (m) & 20.0 & & & & 20.0 & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Frt & 0.879 & & 0.998 & & & \\
\hline Flt Protected & 0.995 & & & & 0.950 & \\
\hline Satd. Flow (prot) & 1544 & 0 & 1746 & 0 & 1679 & 1670 \\
\hline Flt Permitted & 0.995 & & & & 0.075 & \\
\hline Satd. Flow (perm) & 1544 & 0 & 1746 & 0 & 133 & 1670 \\
\hline Right Turn on Red & & Yes & & Yes & & \\
\hline Satd. Flow (RTOR) & 109 & & 1 & & & \\
\hline Link Speed (k/h) & 50 & & 80 & & & 80 \\
\hline Link Distance (m) & 387.6 & & 297.0 & & & 234.8 \\
\hline Travel Time (s) & 27.9 & & 13.4 & & & 10.6 \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles (\%) & 4\% & 3\% & 4\% & 8\% & 3\% & 9\% \\
\hline Adj. Flow (vph) & 24 & 203 & 1286 & 15 & 33 & 505 \\
\hline \multicolumn{7}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 227 & 0 & 1301 & 0 & 33 & 505 \\
\hline Turn Type & Prot & & NA & & Perm & NA \\
\hline Protected Phases & 8 & & 2 & & & 6 \\
\hline Permitted Phases & & & & & 6 & \\
\hline Detector Phase & 8 & & 2 & & 6 & 6 \\
\hline \multicolumn{7}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & & 10.0 & & 10.0 & 10.0 \\
\hline Minimum Split (s) & 27.5 & & 24.0 & & 24.0 & 24.0 \\
\hline Total Split (s) & 28.0 & & 102.0 & & 102.0 & 102.0 \\
\hline Total Split (\%) & 21.5\% & & 78.5\% & & 78.5\% & 78.5\% \\
\hline Maximum Green (s) & 22.5 & & 96.1 & & 96.1 & 96.1 \\
\hline Yellow Time (s) & 3.6 & & 5.0 & & 5.0 & 5.0 \\
\hline All-Red Time (s) & 1.9 & & 0.9 & & 0.9 & 0.9 \\
\hline Lost Time Adjust (s) & 0.0 & & 0.0 & & 0.0 & 0.0 \\
\hline Total Lost Time (s) & 5.5 & & 5.9 & & 5.9 & 5.9 \\
\hline \multicolumn{7}{|l|}{Lead/Lag} \\
\hline \multicolumn{7}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & & 3.0 & & 3.0 & 3.0 \\
\hline Recall Mode & None & & Min & & Min & Min \\
\hline Walk Time (s) & 7.0 & & 7.0 & & 7.0 & 7.0 \\
\hline Flash Dont Walk (s) & 15.0 & & 11.0 & & 11.0 & 11.0 \\
\hline Pedestrian Calls (\#/hr) & 0 & & 0 & & 0 & 0 \\
\hline Act Effct Green (s) & 15.6 & & 96.7 & & 96.7 & 96.7 \\
\hline Actuated g/C Ratio & 0.13 & & 0.78 & & 0.78 & 0.78 \\
\hline v/c Ratio & 0.79 & & 0.95 & & 0.32 & 0.39 \\
\hline Control Delay & 45.7 & & 29.4 & & 14.7 & 5.7 \\
\hline Queue Delay & 0.0 & & 4.6 & & 0.0 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{lrrrr}
\hline & & & & \\
\hline
\end{tabular}

Splits and Phases: 3: River Road \& Summerhill St


4: River Road \& Borbridge Avenue


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 7 & \[
4
\] & & & - & \\
\hline Lane Group & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & */ & & \(\uparrow\) & & & \(\uparrow\) \\
\hline Traffic Volume (vph) & 3 & 218 & 1084 & 7 & 102 & 426 \\
\hline Future Volume (vph) & 3 & 218 & 1084 & 7 & 102 & 426 \\
\hline Ideal Flow (vphpl) & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Frt & 0.867 & & 0.999 & & & \\
\hline Flt Protected & 0.999 & & & & & 0.990 \\
\hline Satd. Flow (prot) & 1545 & 0 & 1783 & 0 & 0 & 1766 \\
\hline Flt Permitted & 0.999 & & & & & 0.504 \\
\hline Satd. Flow (perm) & 1545 & 0 & 1783 & 0 & 0 & 899 \\
\hline Right Turn on Red & & Yes & & Yes & & \\
\hline Satd. Flow (RTOR) & 151 & & 1 & & & \\
\hline Link Speed (k/h) & 50 & & 80 & & & 80 \\
\hline Link Distance (m) & 416.9 & & 281.0 & & & 297.0 \\
\hline Travel Time (s) & 30.0 & & 12.6 & & & 13.4 \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% \\
\hline Adj. Flow (vph) & 3 & 218 & 1084 & 7 & 102 & 426 \\
\hline \multicolumn{7}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 221 & 0 & 1091 & 0 & 0 & 528 \\
\hline Turn Type & Prot & & NA & & Perm & NA \\
\hline Protected Phases & 8 & & 2 & & & 6 \\
\hline Permitted Phases & & & & & 6 & \\
\hline Detector Phase & 8 & & 2 & & 6 & 6 \\
\hline \multicolumn{7}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & & 10.0 & & 10.0 & 10.0 \\
\hline Minimum Split (s) & 27.5 & & 24.0 & & 24.0 & 24.0 \\
\hline Total Split (s) & 27.5 & & 92.5 & & 92.5 & 92.5 \\
\hline Total Split (\%) & 22.9\% & & 77.1\% & & 77.1\% & 77.1\% \\
\hline Maximum Green (s) & 22.0 & & 86.6 & & 86.6 & 86.6 \\
\hline Yellow Time (s) & 3.6 & & 5.0 & & 5.0 & 5.0 \\
\hline All-Red Time (s) & 1.9 & & 0.9 & & 0.9 & 0.9 \\
\hline Lost Time Adjust (s) & 0.0 & & 0.0 & & & 0.0 \\
\hline Total Lost Time (s) & 5.5 & & 5.9 & & & 5.9 \\
\hline \multicolumn{7}{|l|}{Lead/Lag} \\
\hline \multicolumn{7}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & & 3.0 & & 3.0 & 3.0 \\
\hline Recall Mode & None & & Min & & Min & Min \\
\hline Walk Time (s) & 7.0 & & 7.0 & & 7.0 & 7.0 \\
\hline Flash Dont Walk (s) & 15.0 & & 11.0 & & 11.0 & 11.0 \\
\hline Pedestrian Calls (\#/hr) & 0 & & 0 & & 0 & 0 \\
\hline Act Effct Green (s) & 12.9 & & 87.7 & & & 87.7 \\
\hline Actuated g/C Ratio & 0.12 & & 0.78 & & & 0.78 \\
\hline v/c Ratio & 0.71 & & 0.78 & & & 0.75 \\
\hline Control Delay & 29.1 & & 12.9 & & & 16.1 \\
\hline Queue Delay & 0.0 & & 0.5 & & & 0.0 \\
\hline Total Delay & 29.1 & & 13.4 & & & 16.1 \\
\hline LOS & C & & B & & & B \\
\hline Approach Delay & 29.1 & & 13.4 & & & 16.1 \\
\hline
\end{tabular}

5: River Road \& 760 River Access/Atrium Ridge
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline Int Delay, s/veh & \multicolumn{12}{|c|}{1.6} \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \multicolumn{3}{|c|}{¢} & \multicolumn{3}{|c|}{¢} & \multicolumn{3}{|c|}{¢} & \multicolumn{3}{|c|}{\(\dagger\)} \\
\hline Traffic Vol, veh/h & 29 & 0 & 3 & 0 & 0 & 27 & 1 & 1034 & 0 & 9 & 409 & 12 \\
\hline Future Vol, veh/h & 29 & 0 & 3 & 0 & 0 & 27 & 1 & 1034 & 0 & 9 & 409 & 12 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Stop & Stop & Stop & Stop & Free & Free & Free & Free & Free & Free \\
\hline RT Channelized & - & - & None \\
\hline Storage Length & - & - & - & - & - & - & - & - & - & - & - & \\
\hline Veh in Median Storage, \# & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Grade, \% & - & 0 & - & - & 0 & - & & 0 & - & & 0 & \\
\hline Peak Hour Factor & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline Mvmt Flow & 29 & 0 & 3 & 0 & 0 & 27 & 1 & 1034 & 0 & 9 & 409 & 12 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Major/Minor & Minor2 & & \multicolumn{5}{|c|}{Minor1} & \multicolumn{3}{|c|}{Major1} & \multicolumn{4}{|c|}{Major2} \\
\hline Conflicting Flow All & 1483 & 1469 & 415 & & 1471 & 1475 & 1034 & & 421 & 0 & 0 & 1034 & 0 & 0 \\
\hline Stage 1 & 433 & 433 & - & & 1036 & 1036 & - & & - & - & - & - & - & \\
\hline Stage 2 & 1050 & 1036 & - & & 435 & 439 & - & & - & - & - & - & - & \\
\hline Critical Hdwy & 7.12 & 6.52 & 6.22 & & 7.12 & 6.52 & 6.22 & & 4.12 & - & - & 4.12 & & \\
\hline Critical Hdwy Stg 1 & 6.12 & 5.52 & & & 6.12 & 5.52 & & & - & - & - & - & - & \\
\hline Critical Hdwy Stg 2 & 6.12 & 5.52 & & & 6.12 & 5.52 & & & & - & - & & & \\
\hline Follow-up Hdwy & 3.518 & 4.018 & 3.318 & & 3.518 & 4.018 & 3.318 & & 2.218 & - & - & 2.218 & - & \\
\hline Pot Cap-1 Maneuver & 103 & 127 & 637 & & 105 & 126 & 282 & & 1138 & - & - & 672 & - & \\
\hline Stage 1 & 601 & 582 & - & & 280 & 309 & - & & - & - & - & - & - & \\
\hline Stage 2 & 275 & 309 & - & & 600 & 578 & - & & - & - & - & - & - & \\
\hline Platoon blocked, \% & & & & & & & & & & - & - & & - & \\
\hline Mov Cap-1 Maneuver & 92 & 124 & 637 & & 103 & 123 & 282 & & 1138 & - & - & 672 & - & \\
\hline Mov Cap-2 Maneuver & 92 & 124 & - & & 103 & 123 & - & & - & - & - & - & - & \\
\hline Stage 1 & 600 & 572 & - & & 279 & 308 & & & - & - & - & - & - & \\
\hline Stage 2 & 248 & 308 & - & & 586 & 568 & - & & - & - & - & - & - & \\
\hline Approach & EB & & & & WB & & & & NB & & & SB & & \\
\hline HCM Control Delay, s & 57.1 & & & & 19.1 & & & & 0 & & & 0.2 & & \\
\hline HCM LOS & F & & & & C & & & & & & & & & \\
\hline Minor Lane/Major Mvmt & NBL & NBT & NBR & BLn1W & NBLn1 & SBL & SBT & SBR & & & & & & \\
\hline Capacity (veh/h) & 1138 & - & - & 100 & 282 & 672 & - & - & & & & & & \\
\hline HCM Lane V/C Ratio & 0.001 & - & - & 0.32 & 0.096 & 0.013 & - & - & & & & & & \\
\hline HCM Control Delay (s) & 8.2 & 0 & - & 57.1 & 19.1 & 10.4 & 0 & - & & & & & & \\
\hline HCM Lane LOS & A & A & - & F & C & B & A & - & & & & & & \\
\hline HCM 95th \%tile Q(veh) & 0 & - & - & 1.2 & 0.3 & 0 & - & - & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\downarrow\) & 4 & 4 & P & & \(\downarrow\) \\
\hline Lane Group & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Approach LOS & C & & B & & & B \\
\hline Queue Length 50th (m) & 13.1 & & 88.8 & & & 40.4 \\
\hline Queue Length 95th (m) & 35.9 & & 206.3 & & & \#125.4 \\
\hline Internal Link Dist (m) & 392.9 & & 257.0 & & & 273.0 \\
\hline Turn Bay Length ( m ) & & & & & & \\
\hline Base Capacity (vph) & 424 & & 1396 & & & 703 \\
\hline Starvation Cap Reductn & 0 & & 76 & & & 0 \\
\hline Spillback Cap Reductn & 0 & & 0 & & & 0 \\
\hline Storage Cap Reductn & 0 & & 0 & & & 0 \\
\hline Reduced v/c Ratio & 0.52 & & 0.83 & & & 0.75 \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline
\end{tabular}
Area Type: Other

Cycle Length: 120
Actuated Cycle Length: 112
Natural Cycle: 120
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.78
Intersection Signal Delay: \(16.1 \quad\) Intersection LOS: B
Intersection Capacity Utilization 119.1\% ICU Level of Service H
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 4: River Road \& Borbridge Avenue

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{ }{*}\) & & & 7 & \(\checkmark\) & & 4 & \(\dagger\) & \% & & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\dagger\) & & & \(\dagger\) & & & \({ }_{\$}\) & & & ¢ & \\
\hline Traffic Volume (vph) & 29 & 0 & 3 & 0 & 0 & 27 & 1 & 1034 & 0 & 9 & 409 & 12 \\
\hline Future Volume (vph) & 29 & 0 & 3 & 0 & 0 & 27 & 1 & 1034 & 0 & 9 & 409 & 12 \\
\hline Ideal Flow (vphpl) & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Lane Utill. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Frt & & 0.987 & & & 0.865 & & & & & & 0.996 & \\
\hline Flt Protected & & 0.957 & & & & & & & & & 0.999 & \\
\hline Satd. Flow (prot) & 0 & 1685 & 0 & 0 & 1543 & 0 & 0 & 1784 & 0 & 0 & 1775 & 0 \\
\hline Flt Permitted & & 0.811 & & & & & & & & & 0.980 & \\
\hline Satd. Flow (perm) & 0 & 1428 & 0 & 0 & 1543 & 0 & 0 & 1784 & 0 & 0 & 1742 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 26 & & & 166 & & & & & & 3 & \\
\hline Link Speed (k/h) & & 50 & & & 50 & & & 80 & & & 80 & \\
\hline Link Distance (m) & & 345.9 & & & 387.3 & & & 489.9 & & & 281.0 & \\
\hline Travel Time (s) & & 24.9 & & & 27.9 & & & 22.0 & & & 12.6 & \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% \\
\hline Adj. Flow (vph) & 29 & 0 & 3 & 0 & 0 & 27 & 1 & 1034 & 0 & 9 & 409 & 12 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 32 & 0 & 0 & 27 & 0 & 0 & 1035 & 0 & 0 & 430 & 0 \\
\hline Turn Type & Perm & NA & & & NA & & Perm & NA & & Perm & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & \\
\hline Minimum Split (s) & 27.5 & 27.5 & & 27.5 & 27.5 & & 24.0 & 24.0 & & 24.0 & 24.0 & \\
\hline Total Split (s) & 27.5 & 27.5 & & 27.5 & 27.5 & & 92.5 & 92.5 & & 92.5 & 92.5 & \\
\hline Total Split (\%) & 22.9\% & 22.9\% & & 22.9\% & 22.9\% & & 77.1\% & 77.1\% & & 77.1\% & 77.1\% & \\
\hline Maximum Green (s) & 22.0 & 22.0 & & 22.0 & 22.0 & & 86.6 & 86.6 & & 86.6 & 86.6 & \\
\hline Yellow Time (s) & 3.6 & 3.6 & & 3.6 & 3.6 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.9 & 1.9 & & 1.9 & 1.9 & & 0.9 & 0.9 & & 0.9 & 0.9 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & & 0.0 & \\
\hline Total Lost Time (s) & & 5.5 & & & 5.5 & & & 5.9 & & & 5.9 & \\
\hline
\end{tabular}
Lead/Lag
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Vehicle Extension (s) & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & None & None & None & Min & Min & Min & Min \\
\hline Walk Time (s) & 7.0 & 7.0 & 7.0 & 7.0 & 7.0 & 7.0 & 7.0 & 7.0 \\
\hline Flash Dont Walk (s) & 15.0 & 15.0 & 15.0 & 15.0 & 11.0 & 11.0 & 11.0 & 11.0 \\
\hline Pedestrian Calls (\#/hr) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Act Efft Green (s) & & 11.6 & & 11.6 & & 54.9 & & 54.9 \\
\hline Actuated g/C Ratio & & 0.18 & & 0.18 & & 0.84 & & 0.84 \\
\hline v/c Ratio & & 0.12 & & 0.07 & & 0.69 & & 0.29 \\
\hline Control Delay & & 18.5 & & 0.3 & & 8.2 & & 3.4 \\
\hline Queue Delay & & 0.0 & & 0.0 & & 0.0 & & 0.0 \\
\hline Total Delay & & 18.5 & & 0.3 & & 8.2 & & 3.4 \\
\hline LOS & & B & & A & & A & & A \\
\hline Approach Delay & & 18.5 & & 0.3 & & 8.2 & & 3.4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & 7 & \(\leftrightarrow\) & 4 & - & \(\dagger\) & 7 & \(\downarrow\) & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Approach LOS & & B & & & A & & & A & & & A & \\
\hline Queue Length 50th (m) & & 0.7 & & & 0.0 & & & 74.0 & & & 17.0 & \\
\hline Queue Length 95th (m) & & 8.4 & & & 0.0 & & & 119.7 & & & 26.0 & \\
\hline Internal Link Dist (m) & & 321.9 & & & 363.3 & & & 465.9 & & & 257.0 & \\
\hline \multicolumn{13}{|l|}{Turn Bay Length (m)} \\
\hline Base Capacity (vph) & & 578 & & & 708 & & & 1770 & & & 1728 & \\
\hline Starvation Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Spillback Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Storage Cap Reductn & & 0 & & & 0 & & & 0 & & & 0 & \\
\hline Reduced v/c Ratio & & 0.06 & & & 0.04 & & & 0.58 & & & 0.25 & \\
\hline Intersection Summary & & & & & & & & & & & & \\
\hline
\end{tabular}
Area Type: Other
Cycle Length: 120

Actuated Cycle Length: 65
Natural Cycle: 90
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.69
Intersection Signal Delay: 6.9 Intersection LOS: A
Intersection Capacity Utilization 76.0\% ICU Level of Service D

Analysis Period (min) 15
Splits and Phases: 5: River Road \& 760 River Access/Atrium Ridge

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \({ }^{7}\) & 个个 & F & 7\％\({ }^{1+1}\) & 个4 & 「 & 7\％\({ }^{1 / 4}\) & 个4 & F & \({ }^{1 \%}\) & 个4 & F \\
\hline Traffic Volume（vph） & 424 & 1245 & 448 & 380 & 1220 & 45 & 263 & 328 & 268 & 58 & 495 & 825 \\
\hline Future Volume（vph） & 424 & 1245 & 448 & 380 & 1220 & 45 & 263 & 328 & 268 & 58 & 495 & 825 \\
\hline Ideal Flow（vphpl） & 2000 & 1800 & 1800 & 1800 & 2200 & 1800 & 2000 & 1800 & 1800 & 1800 & 1800 & 2400 \\
\hline Storage Length（m） & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Storage Lanes & 2 & & 1 & 2 & & 1 & 2 & & 1 & 2 & & 1 \\
\hline Taper Length（ m ） & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Utill．Factor & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 \\
\hline Ped Bike Factor & 1.00 & & & & & 0.98 & & & 0.99 & 1.00 & & \\
\hline Frt & & & 0.850 & & & 0.850 & & & 0.850 & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（prot） & 3654 & 3325 & 1502 & 3288 & 4103 & 1446 & 3584 & 3357 & 1369 & 3257 & 3458 & 2063 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（perm） & 3650 & 3325 & 1502 & 3288 & 4103 & 1423 & 3584 & 3357 & 1351 & 3253 & 3458 & 2063 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & & 250 & & & 155 & & & 268 & & & 375 \\
\hline Link Speed（k／h） & & 70 & & & 70 & & & 60 & & & 60 & \\
\hline Link Distance（ m ） & & 437.3 & & & 544.9 & & & 202.2 & & & 357.4 & \\
\hline Travel Time（s） & & 22.5 & & & 28.0 & & & 12.1 & & & 21.4 & \\
\hline Confl．Peds．（\＃／hr） & 3 & & & & & 3 & & & 1 & 1 & & \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles（\％） & 2\％ & 4\％ & 3\％ & 2\％ & 3\％ & 7\％ & 4\％ & 3\％ & 13\％ & 3\％ & 0\％ & 0\％ \\
\hline Adj．Flow（vph） & 424 & 1245 & 448 & 380 & 1220 & 45 & 263 & 328 & 268 & 58 & 495 & 825 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic（\％）} \\
\hline Lane Group Flow（vph） & 424 & 1245 & 448 & 380 & 1220 & 45 & 263 & 328 & 268 & 58 & 495 & 825 \\
\hline Turn Type & Prot & NA & Perm \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 7 & 4 & & 3 & 8 & \\
\hline Permitted Phases & & & 2 & & & 6 & & & 4 & & & 8 \\
\hline Detector Phase & 5 & 2 & 2 & 1 & 6 & 6 & 7 & 4 & 4 & 3 & 8 & 8 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial（s） & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 \\
\hline Minimum Split（s） & 11.8 & 34.5 & 34.5 & 11.8 & 34.5 & 34.5 & 11.7 & 43.6 & 43.6 & 11.7 & 43.6 & 43.6 \\
\hline Total Split（s） & 24.0 & 45.0 & 45.0 & 17.0 & 38.0 & 38.0 & 15.0 & 43.6 & 43.6 & 15.0 & 43.6 & 43.6 \\
\hline Total Split（\％） & 19．9\％ & 37．3\％ & 37．3\％ & 14．1\％ & 31．5\％ & 31．5\％ & 12．4\％ & 36．2\％ & 36．2\％ & 12．4\％ & 36．2\％ & 36．2\％ \\
\hline Maximum Green（s） & 17.2 & 38.5 & 38.5 & 10.2 & 31.5 & 31.5 & 8.3 & 37.0 & 37.0 & 8.3 & 37.0 & 37.0 \\
\hline Yellow Time（s） & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 \\
\hline All－Red Time（s） & 2.6 & 2.3 & 2.3 & 2.6 & 2.3 & 2.3 & 3.0 & 2.9 & 2.9 & 3.0 & 2.9 & 2.9 \\
\hline Lost Time Adjust（s） & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Lost Time（s） & 6.8 & 6.5 & 6.5 & 6.8 & 6.5 & 6.5 & 6.7 & 6.6 & 6.6 & 6.7 & 6.6 & 6.6 \\
\hline Lead／Lag & Lag & Lag & Lag & Lead & Lead & Lead & Lead & Lag & Lag & Lead & Lag & Lag \\
\hline Lead－Lag Optimize？ & Yes \\
\hline Vehicle Extension（s） & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & C－Min & C－Min & None & C－Min & C－Min & None & Min & Min & None & Min & Min \\
\hline Walk Time（s） & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 \\
\hline Flash Dont Walk（s） & & 21.0 & 21.0 & & 21.0 & 21.0 & & 30.0 & 30.0 & & 30.0 & 30.0 \\
\hline Pedestrian Calls（\＃／hr） & & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 \\
\hline Act Efftt Green（s） & 17.2 & 38.5 & 38.5 & 11.8 & 33.1 & 33.1 & 8.3 & 38.9 & 38.9 & 7.3 & 35.4 & 35.4 \\
\hline Actuated g／C Ratio & 0.14 & 0.32 & 0.32 & 0.10 & 0.27 & 0.27 & 0.07 & 0.32 & 0.32 & 0.06 & 0.29 & 0.29 \\
\hline v／c Ratio & 0.81 & 1.17 & 0.69 & 1.19 & 1.09 & 0.09 & 1.07 & 0.30 & 0.43 & 0.29 & 0.49 & 0.95 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{ }{ }\) & & & 7 & 4 & 4 & 4 & 4 & & ( & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Control Delay & 63.6 & 125.6 & 21.5 & 157.6 & 94.8 & 0.4 & 129.7 & 32.2 & 6.1 & 57.7 & 36.6 & 42.9 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 63.6 & 125.6 & 21.5 & 157.6 & 94.8 & 0.4 & 129.7 & 32.2 & 6.1 & 57.7 & 36.6 & 42.9 \\
\hline LOS & E & F & C & F & F & A & F & C & A & E & D & D \\
\hline Approach Delay & & 91.1 & & & 106.7 & & & 53.9 & & & 41.3 & \\
\hline Approach LOS & & F & & & F & & & D & & & D & \\
\hline Queue Length 50th (m) & 46.8 & \(\sim 170.5\) & 37.7 & \(\sim 56.3\) & \(\sim 163.3\) & 0.0 & ~32.6 & 28.5 & 0.0 & 6.3 & 45.8 & 105.8 \\
\hline Queue Length 95th (m) & \#67.2 & \#209.0 & 72.9 & \#84.3 & \#201.7 & 0.0 & \#57.2 & 40.4 & 17.9 & 12.4 & 60.6 & \#179.5 \\
\hline Internal Link Dist (m) & & 413.3 & & & 520.9 & & & 178.2 & & & 333.4 & \\
\hline Turn Bay Length (m) & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Base Capacity (vph) & 521 & 1061 & 649 & 320 & 1124 & 502 & 246 & 1082 & 617 & 224 & 1060 & 892 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.81 & 1.17 & 0.69 & 1.19 & 1.09 & 0.09 & 1.07 & 0.30 & 0.43 & 0.26 & 0.47 & 0.92 \\
\hline
\end{tabular}

\section*{Intersection Summary}

Area Type: Other
Cycle Length: 120.6
Actuated Cycle Length: 120.6
Offset: 91 (75\%), Referenced to phase 2:EBT and 6:WBT, Start of Green
Natural Cycle: 125
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.19
Intersection Signal Delay: 78.6
Intersection LOS: E
Intersection Capacity Utilization 93.2\%
ICU Level of Service F
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: River Road \& Earl Armstrong Road

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 7 & & & & - & \\
\hline Lane Group & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & * & & \(\uparrow\) & & \({ }^{1}\) & 4 \\
\hline Traffic Volume (vph) & 1 & 87 & 796 & 14 & 141 & 1263 \\
\hline Future Volume (vph) & 1 & 87 & 796 & 14 & 141 & 1263 \\
\hline Ideal Flow (vphpl) & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Storage Length (m) & 0.0 & 0.0 & & 0.0 & 100.0 & \\
\hline Storage Lanes & 1 & 0 & & 0 & 1 & \\
\hline Taper Length (m) & 20.0 & & & & 20.0 & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Ped Bike Factor & & & 1.00 & & & \\
\hline Frt & 0.867 & & 0.998 & & & \\
\hline Flt Protected & 0.999 & & & & 0.950 & \\
\hline Satd. Flow (prot) & 1530 & 0 & 1763 & 0 & 1712 & 1784 \\
\hline Flt Permitted & 0.999 & & & & 0.321 & \\
\hline Satd. Flow (perm) & 1530 & 0 & 1763 & 0 & 578 & 1784 \\
\hline Right Turn on Red & & Yes & & Yes & & \\
\hline Satd. Flow (RTOR) & 87 & & 2 & & & \\
\hline Link Speed (k/h) & 50 & & 80 & & & 80 \\
\hline Link Distance (m) & 387.6 & & 283.0 & & & 234.8 \\
\hline Travel Time (s) & 27.9 & & 12.7 & & & 10.6 \\
\hline Confl. Bikes (\#/hr) & & & & 2 & & \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles (\%) & 4\% & 3\% & 3\% & 2\% & 1\% & 2\% \\
\hline Adj. Flow (vph) & 1 & 87 & 796 & 14 & 141 & 1263 \\
\hline \multicolumn{7}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 88 & 0 & 810 & 0 & 141 & 1263 \\
\hline Turn Type & Prot & & NA & & Perm & NA \\
\hline Protected Phases & 8 & & 2 & & & 6 \\
\hline \multicolumn{7}{|l|}{Permitted Phases 6} \\
\hline Detector Phase & 8 & & 2 & & 6 & 6 \\
\hline \multicolumn{7}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & & 10.0 & & 10.0 & 10.0 \\
\hline Minimum Split (s) & 27.5 & & 25.0 & & 24.0 & 24.0 \\
\hline Total Split (s) & 27.5 & & 97.5 & & 97.5 & 97.5 \\
\hline Total Split (\%) & 22.0\% & & 78.0\% & & 78.0\% & 78.0\% \\
\hline Maximum Green (s) & 22.0 & & 91.6 & & 91.6 & 91.6 \\
\hline Yellow Time (s) & 3.6 & & 5.0 & & 5.0 & 5.0 \\
\hline All-Red Time (s) & 1.9 & & 0.9 & & 0.9 & 0.9 \\
\hline & 0.0 & & 0.0 & & 0.0 & 0.0 \\
\hline Total Lost Time (s) & 5.5 & & 5.9 & & 5.9 & 5.9 \\
\hline \multicolumn{7}{|l|}{Lead/Lag} \\
\hline \multicolumn{7}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & & 3.0 & & 3.0 & 3.0 \\
\hline Recall Mode & None & & Min & & Min & Min \\
\hline Walk Time (s) & 7.0 & & 7.0 & & 7.0 & 7.0 \\
\hline Flash Dont Walk (s) & 15.0 & & 11.0 & & 11.0 & 11.0 \\
\hline Pedestrian Calls (\#/hr) & 0 & & 0 & & 0 & 0 \\
\hline Act Effct Green (s) & 10.9 & & 89.5 & & 89.5 & 89.5 \\
\hline Actuated g/C Ratio & 0.10 & & 0.85 & & 0.85 & 0.85 \\
\hline v/c Ratio & 0.37 & & 0.54 & & 0.29 & 0.83 \\
\hline
\end{tabular}


Splits and Phases: 3: River Road \& Summerhill St


4: River Road \& Borbridge Avenue


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 7 & \[
4
\] & & & \(t\) & \\
\hline Lane Group & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & * & & \(\uparrow\) & & \({ }^{1}\) & 4 \\
\hline Traffic Volume (vph) & 7 & 165 & 645 & 6 & 218 & 1051 \\
\hline Future Volume (vph) & 7 & 165 & 645 & 6 & 218 & 1051 \\
\hline Ideal Flow (vphpl) & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Storage Length (m) & 0.0 & 0.0 & & 0.0 & 85.0 & \\
\hline Storage Lanes & 1 & 0 & & 0 & 1 & \\
\hline Taper Length (m) & 20.0 & & & & 20.0 & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Frt & 0.870 & & 0.999 & & & \\
\hline Flt Protected & 0.998 & & & & 0.950 & \\
\hline Satd. Flow (prot) & 1549 & 0 & 1783 & 0 & 1695 & 1784 \\
\hline Flt Permitted & 0.998 & & & & 0.364 & \\
\hline Satd. Flow (perm) & 1549 & 0 & 1783 & 0 & 649 & 1784 \\
\hline Right Turn on Red & & Yes & & Yes & & \\
\hline Satd. Flow (RTOR) & 165 & & 1 & & & \\
\hline Link Speed (k/h) & 50 & & 80 & & & 80 \\
\hline Link Distance (m) & 405.6 & & 295.0 & & & 283.0 \\
\hline Travel Time (s) & 29.2 & & 13.3 & & & 12.7 \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% \\
\hline Adj. Flow (vph) & 7 & 165 & 645 & 6 & 218 & 1051 \\
\hline \multicolumn{7}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 172 & 0 & 651 & 0 & 218 & 1051 \\
\hline Turn Type & Perm & & NA & & Perm & NA \\
\hline Protected Phases & & & 2 & & & 6 \\
\hline Permitted Phases & 8 & & & & 6 & \\
\hline Detector Phase & 8 & & 2 & & 6 & 6 \\
\hline \multicolumn{7}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & & 10.0 & & 10.0 & 10.0 \\
\hline Minimum Split (s) & 27.5 & & 23.9 & & 23.9 & 23.9 \\
\hline Total Split (s) & 27.5 & & 92.5 & & 92.5 & 92.5 \\
\hline Total Split (\%) & 22.9\% & & 77.1\% & & 77.1\% & 77.1\% \\
\hline Maximum Green (s) & 22.0 & & 86.6 & & 86.6 & 86.6 \\
\hline Yellow Time (s) & 3.6 & & 5.0 & & 5.0 & 5.0 \\
\hline All-Red Time (s) & 1.9 & & 0.9 & & 0.9 & 0.9 \\
\hline Lost Time Adjust (s) & 0.0 & & 0.0 & & 0.0 & 0.0 \\
\hline Total Lost Time (s) & 5.5 & & 5.9 & & 5.9 & 5.9 \\
\hline \multicolumn{7}{|l|}{Lead/Lag} \\
\hline \multicolumn{7}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & & 3.0 & & 3.0 & 3.0 \\
\hline Recall Mode & None & & Min & & Min & Min \\
\hline Walk Time (s) & 7.0 & & 7.0 & & 7.0 & 7.0 \\
\hline Flash Dont Walk (s) & 15.0 & & 11.0 & & 11.0 & 11.0 \\
\hline Pedestrian Calls (\#/hr) & 0 & & 0 & & 0 & 0 \\
\hline Act Effct Green (s) & 10.9 & & 52.2 & & 52.2 & 52.2 \\
\hline Actuated g/C Ratio & 0.15 & & 0.70 & & 0.70 & 0.70 \\
\hline v/c Ratio & 0.47 & & 0.52 & & 0.48 & 0.85 \\
\hline Control Delay & 12.1 & & 6.8 & & 8.9 & 15.7 \\
\hline Queue Delay & 0.0 & & 0.0 & & 0.0 & 0.5 \\
\hline
\end{tabular}


Splits and Phases: 4: River Road \& Borbridge Avenue


5: River Road \& 760 River Access/Atrium Ridge
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline \multicolumn{13}{|l|}{Int Delay, s/veh 1.1} \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \multicolumn{3}{|c|}{\(\dagger\)} & \multicolumn{3}{|c|}{\({ }_{\text {¢ }}\)} & \multicolumn{3}{|c|}{¢} & \multicolumn{3}{|c|}{¢} \\
\hline Traffic Vol, veh/h & 18 & 0 & 2 & 0 & 0 & 16 & 3 & 613 & 0 & 29 & 995 & 29 \\
\hline Future Vol, veh/h & 18 & 0 & 2 & 0 & 0 & 16 & 3 & 613 & 0 & 29 & 995 & 29 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Stop & Stop & Stop & Stop & Free & Free & Free & Free & Free & Free \\
\hline RT Channelized & - & - & None & - & & None & . & & None & & & None \\
\hline Storage Length & - & - & - & - & - & - & & & - & & - & \\
\hline Veh in Median Storage, \# & - & 0 & - & - & 0 & & & 0 & - & & 0 & \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & \\
\hline Peak Hour Factor & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline Mvmt Flow & 18 & 0 & 2 & 0 & 0 & 16 & 3 & 613 & 0 & 29 & 995 & 29 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Major/Minor & Minor2 & & \multicolumn{5}{|c|}{Minor1} & \multicolumn{3}{|c|}{Major1} & \multicolumn{4}{|c|}{Major2} \\
\hline Conflicting Flow All & 1695 & 1687 & 1010 & & 1688 & 1701 & 613 & & 1024 & 0 & 0 & 613 & 0 & 0 \\
\hline Stage 1 & 1068 & 1068 & - & & 619 & 619 & & & & - & - & - & - & \\
\hline Stage 2 & 627 & 619 & - & & 1069 & 1082 & & & & - & - & - & - & \\
\hline Critical Hdwy & 7.12 & 6.52 & 6.22 & & 7.12 & 6.52 & 6.22 & & 4.12 & - & - & 4.12 & - & \\
\hline Critical Hdwy Stg 1 & 6.12 & 5.52 & - & & 6.12 & 5.52 & - & & - & - & - & - & - & \\
\hline Critical Hdwy Stg 2 & 6.12 & 5.52 & - & & 6.12 & 5.52 & - & & - & - & - & - & - & \\
\hline Follow-up Hdwy & 3.518 & 4.018 & 3.318 & & 3.518 & 4.018 & 3.318 & & 2.218 & - & - & 2.218 & - & \\
\hline Pot Cap-1 Maneuver & 73 & 94 & 291 & & 74 & 92 & 492 & & 678 & - & - & 966 & - & \\
\hline Stage 1 & 268 & 298 & - & & 476 & 480 & - & & - & - & - & - & - & \\
\hline Stage 2 & 471 & 480 & - & & 268 & 294 & - & & - & - & - & - & - & \\
\hline Platoon blocked, \% & & & & & & & & & & - & - & & - & \\
\hline Mov Cap-1 Maneuver & 66 & 87 & 291 & & 69 & 85 & 492 & & 678 & - & - & 966 & - & \\
\hline Mov Cap-2 Maneuver & 66 & 87 & - & & 69 & 85 & & & & - & - & - & - & \\
\hline Stage 1 & 266 & 277 & - & & 473 & 477 & & & & - & - & & - & \\
\hline Stage 2 & 452 & 477 & - & & 248 & 273 & - & & & - & - & - & - & \\
\hline Approach & EB & & & & WB & & & & NB & & & SB & & \\
\hline HCM Control Delay, s & 73.2 & & & & 12.6 & & & & 0.1 & & & 0.2 & & \\
\hline HCM LOS & F & & & & B & & & & & & & & & \\
\hline Minor Lane/Major Mvmt & NBL & NBT & NBR & EBLn1 & NBLn1 & SBL & SBT & SBR & & & & & & \\
\hline Capacity (veh/h) & 678 & - & - & 72 & 492 & 966 & - & & & & & & & \\
\hline HCM Lane V/C Ratio & 0.004 & - & & 0.278 & 0.033 & 0.03 & - & & & & & & & \\
\hline HCM Control Delay (s) & 10.3 & 0 & - & 73.2 & 12.6 & 8.8 & 0 & & & & & & & \\
\hline HCM Lane LOS & B & A & - & F & B & A & A & - & & & & & & \\
\hline HCM 95th \%tile Q(veh) & 0 & - & - & 1 & 0.1 & 0.1 & - & - & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & & & & 4 & \(\dagger\) & & & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & & ¢ & & & ¢ & & \({ }^{*}\) & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 18 & 0 & 2 & 0 & 0 & 16 & 3 & 613 & 0 & 29 & 995 & 29 \\
\hline Future Volume (vph) & 18 & 0 & 2 & 0 & 0 & 16 & 3 & 613 & 0 & 29 & 995 & 29 \\
\hline Ideal Flow (vphpl) & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Storage Length (m) & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 10.0 & & 0.0 \\
\hline Storage Lanes & 0 & & 0 & 0 & & 0 & 0 & & 0 & 1 & & 0 \\
\hline Taper Length (m) & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Utill. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Frt & & 0.986 & & & 0.865 & & & & & & 0.996 & \\
\hline Flt Protected & & 0.957 & & & & & & & & 0.950 & & \\
\hline Satd. Flow (prot) & 0 & 1684 & 0 & 0 & 1543 & 0 & 0 & 1784 & 0 & 1695 & 1777 & 0 \\
\hline Flt Permitted & & & & & & & & 0.997 & & 0.470 & & \\
\hline Satd. Flow (perm) & 0 & 1759 & 0 & 0 & 1543 & 0 & 0 & 1779 & 0 & 839 & 1777 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 26 & & & 368 & & & & & & 3 & \\
\hline Link Speed (k/h) & & 50 & & & 50 & & & 80 & & & 80 & \\
\hline Link Distance (m) & & 345.9 & & & 387.3 & & & 489.9 & & & 295.0 & \\
\hline Travel Time (s) & & 24.9 & & & 27.9 & & & 22.0 & & & 13.3 & \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% \\
\hline Adj. Flow (vph) & 18 & 0 & 2 & 0 & 0 & 16 & 3 & 613 & 0 & 29 & 995 & 29 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 20 & 0 & 0 & 16 & 0 & 0 & 616 & 0 & 29 & 1024 & 0 \\
\hline Turn Type & Perm & NA & & & NA & & Perm & NA & & Perm & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & \\
\hline Minimum Split (s) & 27.5 & 27.5 & & 27.5 & 27.5 & & 24.0 & 24.0 & & 24.0 & 24.0 & \\
\hline Total Split (s) & 27.5 & 27.5 & & 27.5 & 27.5 & & 96.5 & 96.5 & & 96.5 & 96.5 & \\
\hline Total Split (\%) & 22.2\% & 22.2\% & & 22.2\% & 22.2\% & & 77.8\% & 77.8\% & & 77.8\% & 77.8\% & \\
\hline Maximum Green (s) & 22.0 & 22.0 & & 22.0 & 22.0 & & 90.6 & 90.6 & & 90.6 & 90.6 & \\
\hline Yellow Time (s) & 3.6 & 3.6 & & 3.6 & 3.6 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.9 & 1.9 & & 1.9 & 1.9 & & 0.9 & 0.9 & & 0.9 & 0.9 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & & 5.5 & & & 5.5 & & & 5.9 & & 5.9 & 5.9 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & & None & None & & Min & Min & & Min & Min & \\
\hline Walk Time (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & \\
\hline Flash Dont Walk (s) & 15.0 & 15.0 & & 15.0 & 15.0 & & 11.0 & 11.0 & & 11.0 & 11.0 & \\
\hline Pedestrian Calls (\#/hr) & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Act Efft Green (s) & & 11.8 & & & 11.8 & & & 54.3 & & 54.3 & 54.3 & \\
\hline Actuated g/C Ratio & & 0.20 & & & 0.20 & & & 0.90 & & 0.90 & 0.90 & \\
\hline v/c Ratio & & 0.05 & & & 0.03 & & & 0.38 & & 0.04 & 0.64 & \\
\hline Control Delay & & 13.3 & & & 0.1 & & & 2.9 & & 2.2 & 5.8 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline
\end{tabular}

5: River Road \& 760 River Access/Atrium Ridge
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\rangle\) & \(\rightarrow\) & & \(\downarrow\) & & 4 & 4 & \(\uparrow\) & \(>\) & \(\checkmark\) & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Total Delay & 13.3 & & & 0.1 & & & 2.9 & & 2.2 & 5.8 & \\
\hline LOS & B & & & A & & & A & & A & A & \\
\hline Approach Delay & 13.3 & & & 0.1 & & & 2.9 & & & 5.7 & \\
\hline Approach LOS & B & & & A & & & A & & & A & \\
\hline Queue Length 50th (m) & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Queue Length 95th (m) & 5.2 & & & 0.0 & & & 41.6 & & 2.5 & 113.7 & \\
\hline Internal Link Dist (m) & 321.9 & & & 363.3 & & & 465.9 & & & 271.0 & \\
\hline Turn Bay Length (m) & & & & & & & & & 10.0 & & \\
\hline Base Capacity (vph) & 778 & & & 878 & & & 1759 & & 829 & 1757 & \\
\hline Starvation Cap Reductn & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Spillback Cap Reductn & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Storage Cap Reductn & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Reduced v/c Ratio & 0.03 & & & 0.02 & & & 0.35 & & 0.03 & 0.58 & \\
\hline Intersection Summary & & & & & & & & & & & \\
\hline Area Type: Other & & & & & & & & & & & \\
\hline Cycle Length: 124 & & & & & & & & & & & \\
\hline Actuated Cycle Length: 60 & & & & & & & & & & & \\
\hline Natural Cycle: 90 & & & & & & & & & & & \\
\hline Control Type: Actuated-Uncoordinated & & & & & & & & & & & \\
\hline Maximum v/c Ratio: 0.64 & & & & & & & & & & & \\
\hline Intersection Signal Delay: 4.7 & & & \multicolumn{4}{|c|}{Intersection LOS: A} & & & & & \\
\hline Intersection Capacity Utilization 75.0\% & & & \multicolumn{4}{|c|}{ICU Level of Service D} & & & & & \\
\hline Analysis Period (min) 15 & & & & & & & & & & & \\
\hline
\end{tabular}

Splits and Phases: 5: River Road \& 760 River Access/Atrium Ridge


Future (2021) Total Traffic
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \％\({ }^{1 / 1}\) & 个4 & 「 & \％ & 个4 & F＇ & \({ }^{7} 1\) & 个4 & 「 & \({ }^{7}\) & 个4 & 「 \\
\hline Traffic Volume（vph） & 639 & 1023 & 121 & 103 & 973 & 110 & 346 & 473 & 227 & 42 & 116 & 228 \\
\hline Future Volume（vph） & 639 & 1023 & 121 & 103 & 973 & 110 & 346 & 473 & 227 & 42 & 116 & 228 \\
\hline Ideal Flow（vphpl） & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Storage Length（m） & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Storage Lanes & 2 & & 1 & 2 & & 1 & 2 & & 1 & 2 & & 1 \\
\hline Taper Length（m） & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Utill．Factor & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 \\
\hline Ped Bike Factor & 1.00 & & & & & 0.99 & & & 0.99 & 1.00 & & \\
\hline Frt & & & 0.850 & & & 0.850 & & & 0.850 & & & 0.850 \\
\hline FIt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（prot） & 3321 & 3357 & 1419 & 3077 & 3262 & 1502 & 3164 & 3390 & 1517 & 2795 & 3202 & 1502 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（perm） & 3319 & 3357 & 1419 & 3077 & 3262 & 1482 & 3164 & 3390 & 1497 & 2793 & 3202 & 1502 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & & 155 & & & 155 & & & 215 & & & 215 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Link Speed（k／h） & & 70 & & & 70 & & & 60 & & & 60 & \\
\hline Link Distance（m） & & 437.3 & & & 544.9 & & & 143.7 & & & 387.0 & \\
\hline Travel Time（s） & & 22.5 & & & 28.0 & & & 8.6 & & & 23.2 & \\
\hline Confl．Peds．（\＃／hr） & 1 & & & & & 1 & & & 1 & 1 & & \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles（\％） & 1\％ & 3\％ & 9\％ & 9\％ & 6\％ & 3\％ & 6\％ & 2\％ & 2\％ & 20\％ & 8\％ & 3\％ \\
\hline Adj．Flow（vph） & 639 & 1023 & 121 & 103 & 973 & 110 & 346 & 473 & 227 & 42 & 116 & 228 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic（\％）} \\
\hline Lane Group Flow（vph） & 639 & 1023 & 121 & 103 & 973 & 110 & 346 & 473 & 227 & 42 & 116 & 228 \\
\hline Turn Type & Prot & NA & Perm \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 7 & 4 & & 3 & 8 & \\
\hline Permitted Phases & & & 2 & & & 6 & & & 4 & & & 8 \\
\hline Detector Phase & 5 & 2 & 2 & 1 & 6 & 6 & 7 & 4 & 4 & 3 & 8 & 8 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrrrrrr} 
\\
Switch Phase & & & & & & & & & \\
Minimum Initial（s） & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 \\
Minimum Split（s） & 11.8 & 35.1 & 35.1 & 11.8 & 35.1 & 35.1 & 11.8 & 43.6 & 43.6 & 11.8 & 43.6 & 43.6 \\
\hline Total Split（s） & 12.0 & 44.0 & 44.0 & 13.0 & 45.0 & 45.0 & 20.0 & 43.6 & 43.6 & 20.0 & 43.6 & 43.6 \\
Total Split（\％） & \(10.0 \%\) & \(36.5 \%\) & \(36.5 \%\) & \(10.8 \%\) & \(37.3 \%\) & \(37.3 \%\) & \(16.6 \%\) & \(36.2 \%\) & \(36.2 \%\) & \(16.6 \%\) & \(36.2 \%\) & \(36.2 \%\)
\end{tabular}
\begin{tabular}{lllllllllllll} 
Maximum Green（s） & 5.2 & 37.5 & 37.5 & 6.2 & 38.5 & 38.5 & 13.3 & 37.0 & 37.0 & 13.3 & 37.0 & 37.0
\end{tabular}
\begin{tabular}{lllllllllllll} 
Yellow Time（s） & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7
\end{tabular}
\begin{tabular}{lrrrrrrrrrrrr} 
& 2.6 & 2.3 & 2.3 & 2.6 & 2.3 & 2.3 & 3.0 & 2.9 & 2.9 & 3.0 & 2.9 & 2.9 \\
All－Red Time（s） & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Lost Time Adjust（s） & 6.8 & 6.5 & 6.5 & 6.8 & 6.5 & 6.5 & 6.7 & 6.6 & 6.6 & 6.7 & 6.6 & 6.6 \\
Total Lost Time（s） & Lead & Lead & Lead & Lag & Lag & Lag & Lead & Lag & Lag & Lead & Lag & Lag \\
Lead／Lag & Yes \\
Lead－Lag Optimize？ & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
Vehicle Extension（s） & None & C－Min & C－Min & None & C－Min & C－Min & None & Min & Min & None & Min & Min \\
Recall Mode & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 \\
Walk Time（s） & & 21.0 & 21.0 & & 21.0 & 21.0 & & 30.0 & 30.0 & & 30.0 & 30.0 \\
Flash Dont Walk（s） & & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 \\
Pedestrian Calls（\＃／hr） & & 56.0 & 56.3 & 6.7 & 37.9 & 37.9 & 13.9 & 26.3 & 26.3 & 7.2 & 17.2 & 17.2 \\
Act Effct Green（s） & 25.0 & 56.3 & 5.0 \\
Actuated g／C Ratio & 0.21 & 0.47 & 0.47 & 0.06 & 0.31 & 0.31 & 0.12 & 0.22 & 0.22 & 0.06 & 0.14 & 0.14 \\
v／c Ratio & 0.93 & 0.65 & 0.16 & 0.61 & 0.95 & 0.19 & 0.95 & 0.64 & 0.46 & 0.25 & 0.25 & 0.57 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rangle\) & \(\rightarrow\) & \(\geqslant\) & 7 & & 4 & 4 & \(\dagger\) & P & - & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Control Delay & 68.5 & 28.0 & 2.0 & 71.3 & 58.8 & 2.2 & 90.3 & 47.6 & 9.3 & 57.2 & 45.5 & 12.8 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 68.5 & 28.0 & 2.0 & 71.3 & 58.8 & 2.2 & 90.3 & 47.6 & 9.3 & 57.2 & 45.5 & 12.8 \\
\hline LOS & E & C & A & E & E & A & F & D & A & E & D & B \\
\hline Approach Delay & & 40.8 & & & 54.6 & & & 53.4 & & & 27.5 & \\
\hline Approach LOS & & D & & & D & & & D & & & C & \\
\hline Queue Length 50th (m) & 70.9 & 86.0 & 0.0 & 11.5 & 108.0 & 0.0 & 39.4 & 51.4 & 2.2 & 4.5 & 12.0 & 2.5 \\
\hline Queue Length 95th (m) & \#129.3 & 122.6 & 5.7 & \#22.4 & \#145.0 & 4.4 & \#67.2 & 63.2 & 20.2 & 9.8 & 18.5 & 21.8 \\
\hline Internal Link Dist (m) & & 413.3 & & & 520.9 & & & 119.7 & & & 363.0 & \\
\hline Turn Bay Length (m) & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Base Capacity (vph) & 688 & 1566 & 744 & 170 & 1041 & 578 & 363 & 1040 & 608 & 308 & 982 & 609 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.93 & 0.65 & 0.16 & 0.61 & 0.93 & 0.19 & 0.95 & 0.45 & 0.37 & 0.14 & 0.12 & 0.37 \\
\hline
\end{tabular}

\section*{Intersection Summary}
```

Area Type: Other

```

Cycle Length: 120.6
Actuated Cycle Length: 120.6
Offset: 63 (52\%), Referenced to phase 2:EBT and \(6: W B T\), Start of Green
Natural Cycle: 125
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.95
Intersection Signal Delay: 46.3 Intersection LOS: D
Intersection Capacity Utilization 83.2\% ICU Level of Service E
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: River Road \& Earl Armstrong Road


\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Major/Minor & Minor2 & \multicolumn{4}{|c|}{Major1} & \multicolumn{3}{|l|}{Major2} \\
\hline Conflicting Flow All & 1586 & 390 & & 394 & 0 & - & 0 & \\
\hline Stage 1 & 390 & - & & - & - & - & - & \\
\hline Stage 2 & 1196 & - & & - & - & - & - & \\
\hline Critical Hdwy & 6.42 & 6.22 & & 4.12 & - & - & - & \\
\hline Critical Hdwy Stg 1 & 5.42 & - & & - & - & - & - & \\
\hline Critical Hdwy Stg 2 & 5.42 & & & - & - & - & - & \\
\hline Follow-up Hdwy & 3.518 & 3.318 & & 2.218 & - & - & - & \\
\hline Pot Cap-1 Maneuver & 119 & 658 & & 1165 & - & - & - & \\
\hline Stage 1 & 684 & - & & - & - & - & - & \\
\hline Stage 2 & 287 & - & & - & - & - & - & \\
\hline Platoon blocked, \% & & & & & - & - & - & \\
\hline Mov Cap-1 Maneuver & 119 & 658 & & 1165 & - & - & - & \\
\hline Mov Cap-2 Maneuver & 119 & - & & - & - & - & - & \\
\hline Stage 1 & 684 & - & & - & - & - & - & \\
\hline Stage 2 & 286 & - & & - & - & - & - & \\
\hline & & & & & & & & \\
\hline Approach & EB & & & NB & & SB & & \\
\hline HCM Control Delay, s & 30.3 & & & 0 & & 0 & & \\
\hline HCM LOS & D & & & & & & & \\
\hline & & & & & & & & \\
\hline Minor Lane/Major Mvmt & NBL & NBT EBLn1 & SBT & SBR & & & & \\
\hline Capacity (veh/h) & 1165 & 150 & - & - & & & & \\
\hline HCM Lane V/C Ratio & 0.001 & - 0.053 & - & - & & & & \\
\hline HCM Control Delay (s) & 8.1 & 030.3 & - & - & & & & \\
\hline HCM Lane LOS & A & A D & - & - & & & & \\
\hline HCM 95th \%tile Q(veh) & 0 & 0.2 & - & - & & & & \\
\hline
\end{tabular}

3: River Road \& Ph. 12 South Access/Summerhill St
AM Peak Hour
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline Int Delay, s/veh & \multicolumn{12}{|c|}{18.3} \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \multicolumn{3}{|c|}{¢} & \multicolumn{3}{|c|}{\({ }_{\text {¢ }}\)} & \multicolumn{3}{|c|}{\(\hat{\beta}\)} & \% & \multicolumn{2}{|l|}{\(\uparrow\)} \\
\hline Traffic Vol, veh/h & 31 & 5 & 2 & 24 & 5 & 203 & 1 & 959 & 15 & 33 & 348 & 8 \\
\hline Future Vol, veh/h & 31 & 5 & 2 & 24 & 5 & 203 & 1 & 959 & 15 & 33 & 348 & 8 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Stop & Stop & Stop & Stop & Free & Free & Free & Free & Free & Free \\
\hline RT Channelized & - & - & None & - & & None & . & & None & & & None \\
\hline Storage Length & - & - & - & - & - & - & & & - & 1000 & - & \\
\hline Veh in Median Storage, \# & - & 0 & - & - & 0 & & & 0 & - & & 0 & \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & \\
\hline Peak Hour Factor & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline Heavy Vehicles, \% & 0 & 0 & 0 & 4 & 0 & 3 & 0 & 4 & 8 & 3 & 9 & 0 \\
\hline Mumt Flow & 31 & 5 & 2 & 24 & 5 & 203 & 1 & 959 & 15 & 33 & 348 & 8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Major/Minor & Minor2 & & \multicolumn{5}{|c|}{Minor1} & \multicolumn{3}{|c|}{Major1} & \multicolumn{4}{|c|}{Major2} \\
\hline Conflicting Flow All & 1491 & 1394 & 352 & & 1391 & 1391 & 967 & & 356 & 0 & 0 & 974 & 0 & 0 \\
\hline Stage 1 & 418 & 418 & - & & 969 & 969 & - & & - & - & - & - & - & \\
\hline Stage 2 & 1073 & 976 & - & & 422 & 422 & - & & - & - & - & - & - & \\
\hline Critical Hdwy & 7.1 & 6.5 & 6.2 & & 7.14 & 6.5 & 6.23 & & 4.1 & - & - & 4.13 & & \\
\hline Critical Hdwy Stg 1 & 6.1 & 5.5 & - & & 6.14 & 5.5 & - & & - & - & - & - & & \\
\hline Critical Hdwy Stg 2 & 6.1 & 5.5 & - & & 6.14 & 5.5 & - & & - & - & - & - & - & \\
\hline Follow-up Hdwy & 3.5 & 4 & 3.3 & & 3.536 & 4 & 3.327 & & 2.2 & - & - & 2.227 & - & \\
\hline Pot Cap-1 Maneuver & 103 & 143 & 696 & & 118 & 143 & 307 & & 1214 & - & - & 704 & - & \\
\hline Stage 1 & 616 & 594 & - & & 302 & 334 & - & & - & - & - & - & - & \\
\hline Stage 2 & 269 & 332 & - & & 605 & 592 & - & & - & - & - & - & - & \\
\hline Platoon blocked, \% & & & & & & & & & & - & - & & - & \\
\hline Mov Cap-1 Maneuver & 33 & 136 & 696 & & 110 & 136 & 307 & & 1214 & - & - & 704 & - & \\
\hline Mov Cap-2 Maneuver & 33 & 136 & - & & 110 & 136 & - & & - & - & - & - & - & \\
\hline Stage 1 & 615 & 566 & - & & 301 & 333 & - & & & - & - & - & - & \\
\hline Stage 2 & 90 & 331 & - & & 570 & 564 & - & & - & - & - & - & - & \\
\hline & & & & & & & & & & & & & & \\
\hline Approach & EB & & & & WB & & & & NB & & & SB & & \\
\hline HCM Control Delay, s & 292.8 & & & & 79.4 & & & & 0 & & & 0.9 & & \\
\hline HCM LOS & F & & & & F & & & & & & & & & \\
\hline & & & & & & & & & & & & & & \\
\hline Minor Lane/Major Mvmt & NBL & NBT & NBR & EBLn1 & WBLn1 & SBL & SBT & SBR & & & & & & \\
\hline Capacity (veh/h) & 1214 & - & - & 39 & 253 & 704 & - & - & & & & & & \\
\hline HCM Lane V/C Ratio & 0.001 & - & & 0.974 & 0.917 & 0.047 & - & & & & & & & \\
\hline HCM Control Delay (s) & 8 & - & & 292.8 & 79.4 & 10.4 & & & & & & & & \\
\hline HCM Lane LOS & A & - & - & F & F & B & - & & & & & & & \\
\hline HCM 95th \%tile Q(veh) & 0 & - & - & 3.7 & 8.1 & 0.1 & - & - & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & 7 & & & 4 & \(\dagger\) & & & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & & ¢ & & & \(\uparrow\) & & * & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 31 & 5 & 2 & 24 & 5 & 203 & 1 & 959 & 15 & 33 & 348 & 8 \\
\hline Future Volume (vph) & 31 & 5 & 2 & 24 & 5 & 203 & 1 & 959 & 15 & 33 & 348 & 8 \\
\hline Ideal Flow (vphpl) & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Storage Length (m) & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 100.0 & & 0.0 \\
\hline Storage Lanes & 0 & & 0 & 0 & & 0 & 0 & & 0 & 1 & & 0 \\
\hline Taper Length (m) & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Utill. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Frt & & 0.993 & & & 0.882 & & & 0.998 & & & 0.997 & \\
\hline Flt Protected & & 0.961 & & & 0.995 & & & & & 0.950 & & \\
\hline Satd. Flow (prot) & 0 & 1737 & 0 & 0 & 1550 & 0 & 0 & 1746 & 0 & 1679 & 1668 & 0 \\
\hline Flt Permitted & & 0.561 & & & 0.963 & & & & & 0.292 & & \\
\hline Satd. Flow (perm) & 0 & 1014 & 0 & 0 & 1500 & 0 & 0 & 1746 & 0 & 516 & 1668 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 2 & & & 191 & & & 2 & & & 2 & \\
\hline Link Speed (k/h) & & 50 & & & 50 & & & 80 & & & 80 & \\
\hline Link Distance (m) & & 291.0 & & & 387.6 & & & 297.0 & & & 234.8 & \\
\hline Travel Time (s) & & 21.0 & & & 27.9 & & & 13.4 & & & 10.6 & \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 0\% & 4\% & 0\% & 3\% & 0\% & 4\% & 8\% & 3\% & 9\% & 0\% \\
\hline Adj. Flow (vph) & 31 & 5 & 2 & 24 & 5 & 203 & 1 & 959 & 15 & 33 & 348 & 8 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 38 & 0 & 0 & 232 & 0 & 0 & 975 & 0 & 33 & 356 & 0 \\
\hline Turn Type & Perm & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & \\
\hline Minimum Split (s) & 27.5 & 27.5 & & 27.5 & 27.5 & & 23.9 & 23.9 & & 23.9 & 23.9 & \\
\hline Total Split (s) & 27.6 & 27.6 & & 27.6 & 27.6 & & 92.4 & 92.4 & & 92.4 & 92.4 & \\
\hline Total Split (\%) & 23.0\% & 23.0\% & & 23.0\% & 23.0\% & & 77.0\% & 77.0\% & & 77.0\% & 77.0\% & \\
\hline Maximum Green (s) & 22.1 & 22.1 & & 22.1 & 22.1 & & 86.5 & 86.5 & & 86.5 & 86.5 & \\
\hline Yellow Time (s) & 3.6 & 3.6 & & 3.6 & 3.6 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.9 & 1.9 & & 1.9 & 1.9 & & 0.9 & 0.9 & & 0.9 & 0.9 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & & 5.5 & & & 5.5 & & & 5.9 & & 5.9 & 5.9 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & & None & None & & Min & Min & & Min & Min & \\
\hline Walk Time (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & \\
\hline Flash Dont Walk (s) & 15.0 & 15.0 & & 15.0 & 15.0 & & 11.0 & 11.0 & & 11.0 & 11.0 & \\
\hline Pedestrian Calls (\#/hr) & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Act Efft Green (s) & & 12.1 & & & 12.1 & & & 44.0 & & 44.0 & 44.0 & \\
\hline Actuated g/C Ratio & & 0.18 & & & 0.18 & & & 0.64 & & 0.64 & 0.64 & \\
\hline v/c Ratio & & 0.21 & & & 0.55 & & & 0.87 & & 0.10 & 0.33 & \\
\hline Control Delay & & 33.1 & & & 14.4 & & & 18.8 & & 4.9 & 5.9 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 4 & \(\rightarrow\) & & & & & 4 & 4 & & & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Total Delay & 33.1 & & & 14.4 & & & 18.8 & & 4.9 & 5.9 & \\
\hline LOS & C & & & B & & & B & & A & A & \\
\hline Approach Delay & 33.1 & & & 14.4 & & & 18.8 & & & 5.8 & \\
\hline Approach LOS & C & & & B & & & B & & & A & \\
\hline Queue Length 50th (m) & 3.2 & & & 3.6 & & & 66.0 & & 1.1 & 13.5 & \\
\hline Queue Length 95th (m) & 15.0 & & & 28.3 & & & 152.2 & & 4.2 & 31.0 & \\
\hline Internal Link Dist (m) & 267.0 & & & 363.6 & & & 273.0 & & & 210.8 & \\
\hline Turn Bay Length (m) & & & & & & & & & 100.0 & & \\
\hline Base Capacity (vph) & 356 & & & 649 & & & 1675 & & 495 & 1601 & \\
\hline Starvation Cap Reductn & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Spillback Cap Reductn & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Storage Cap Reductn & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Reduced v/c Ratio & 0.11 & & & 0.36 & & & 0.58 & & 0.07 & 0.22 & \\
\hline \multicolumn{12}{|l|}{Intersection Summary} \\
\hline \multicolumn{12}{|l|}{Area Type: Other} \\
\hline \multicolumn{12}{|l|}{Cycle Length: 120} \\
\hline \multicolumn{12}{|l|}{Actuated Cycle Length: 68.4} \\
\hline \multicolumn{12}{|l|}{Natural Cycle: 90} \\
\hline \multicolumn{12}{|l|}{Control Type: Actuated-Uncoordinated} \\
\hline \multicolumn{12}{|l|}{Maximum v/c Ratio: 0.87} \\
\hline \multicolumn{3}{|l|}{Intersection Signal Delay: 15.4} & \multicolumn{9}{|c|}{Intersection LOS: B} \\
\hline \multicolumn{3}{|l|}{Intersection Capacity Utilization 79.0\%} & \multicolumn{9}{|c|}{\multirow[t]{2}{*}{ICU Level of Service D}} \\
\hline \multicolumn{3}{|l|}{Analysis Period (min) 15} & & & & & & & & & \\
\hline
\end{tabular}

Splits and Phases: 3: River Road \& Ph. 12 South Access/Summerhill St


4: River Road \& Borbridge Avenue



5: River Road \& 760 River Access/Atrium Ridge
AM Peak Hour
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline \multicolumn{13}{|l|}{Int Delay, s/veh 0.8} \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \multicolumn{3}{|c|}{\(\uparrow\)} & \multicolumn{3}{|c|}{\(\dagger\)} & \multicolumn{3}{|c|}{¢} & \multicolumn{3}{|c|}{¢} \\
\hline Traffic Vol, veh/h & 20 & 5 & 2 & 0 & 5 & 6 & 1 & 836 & 0 & 3 & 307 & 12 \\
\hline Future Vol, veh/h & 20 & 5 & 2 & 0 & 5 & 6 & 1 & 836 & 0 & 3 & 307 & 12 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Stop & Stop & Stop & Stop & Free & Free & Free & Free & Free & Free \\
\hline RT Channelized & - & \multicolumn{2}{|r|}{None} & - & \multicolumn{2}{|r|}{None} & - & \multicolumn{2}{|r|}{None} & - & \multicolumn{2}{|r|}{None} \\
\hline Storage Length & - & - & - & - & & & & & & & & \\
\hline Veh in Median Storage, \# & - & 0 & - & & 0 & & & 0 & - & & 0 & \\
\hline Grade, \% & - & 0 & - & - & 0 & - & & 0 & - & - & 0 & \\
\hline Peak Hour Factor & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline Mvmt Flow & 20 & 5 & 2 & 0 & 5 & 6 & 1 & 836 & 0 & 3 & 307 & 12 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Major/Minor & Minor2 & & \multicolumn{5}{|c|}{Minor1} & \multicolumn{3}{|c|}{Major1} & \multicolumn{4}{|c|}{Major2} \\
\hline Conflicting Flow All & 1163 & 1157 & 313 & & 1161 & 1163 & 836 & & 319 & 0 & 0 & 836 & 0 & 0 \\
\hline Stage 1 & 319 & 319 & - & & 838 & 838 & - & & - & - & - & - & - & \\
\hline Stage 2 & 844 & 838 & & & 323 & 325 & & & & - & - & - & - & \\
\hline Critical Hdwy & 7.12 & 6.52 & 6.22 & & 7.12 & 6.52 & 6.22 & & 4.12 & - & - & 4.12 & - & \\
\hline Critical Hdwy Stg 1 & 6.12 & 5.52 & & & 6.12 & 5.52 & - & & - & - & - & - & - & \\
\hline Critical Hdwy Stg 2 & 6.12 & 5.52 & - & & 6.12 & 5.52 & - & & - & - & - & - & - & \\
\hline Follow-up Hdwy & 3.518 & 4.018 & 3.318 & & 3.518 & 4.018 & 3.318 & & 2.218 & - & - & 2.218 & - & \\
\hline Pot Cap-1 Maneuver & 172 & 196 & 727 & & 172 & 195 & 367 & & 1241 & - & - & 798 & - & \\
\hline Stage 1 & 693 & 653 & & & 361 & 382 & - & & - & - & - & - & - & \\
\hline Stage 2 & 358 & 382 & - & & 689 & 649 & - & & - & - & - & - & - & \\
\hline Platoon blocked, \% & & & & & & & & & & - & - & & - & \\
\hline Mov Cap-1 Maneuver & 165 & 195 & 727 & & 167 & 194 & 367 & & 1241 & - & - & 798 & - & \\
\hline Mov Cap-2 Maneuver & 165 & 195 & & & 167 & 194 & - & & & - & - & - & - & \\
\hline Stage 1 & 692 & 650 & - & & 360 & 381 & & & - & - & - & - & - & \\
\hline Stage 2 & 347 & 381 & - & & 678 & 646 & - & & - & - & - & - & - & \\
\hline & & & & & & & & & & & & & & \\
\hline Approach & EB & & & & WB & & & & NB & & & SB & & \\
\hline HCM Control Delay, s & 28.5 & & & & 19.4 & & & & 0 & & & 0.1 & & \\
\hline HCM LOS & D & & & & C & & & & & & & & & \\
\hline & & & & & & & & & & & & & & \\
\hline Minor Lane/Major Mvmt & NBL & NBT & NBR & EBLn1 & WBLn1 & SBL & SBT & SBR & & & & & & \\
\hline Capacity (veh/h) & 1241 & - & - & 180 & 261 & 798 & - & - & & & & & & \\
\hline HCM Lane V/C Ratio & 0.001 & - & - & 0.15 & 0.042 & 0.004 & - & & & & & & & \\
\hline HCM Control Delay (s) & 7.9 & 0 & . & 28.5 & 19.4 & 9.5 & 0 & & & & & & & \\
\hline HCM Lane LOS & A & A & - & D & C & A & A & - & & & & & & \\
\hline HCM 95th \%tile Q(veh) & 0 & - & - & 0.5 & 0.1 & 0 & - & - & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \％ & 44 & 「 & ＊＊ & 中4 & 「 & \({ }^{17}\) & 中4 & 「 & \({ }^{7 *}\) & 种 & 「 \\
\hline Traffic Volume（vph） & 418 & 1097 & 411 & 249 & 1105 & 41 & 234 & 224 & 165 & 58 & 362 & 813 \\
\hline Future Volume（vph） & 418 & 1097 & 411 & 249 & 1105 & 41 & 234 & 224 & 165 & 58 & 362 & 813 \\
\hline Ideal Flow（vphpl） & 2000 & 1800 & 1800 & 1800 & 2200 & 1800 & 2000 & 1800 & 1800 & 1800 & 1800 & 2400 \\
\hline Storage Length（m） & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Storage Lanes & 2 & & 1 & 2 & & 1 & 2 & & 1 & 2 & & 1 \\
\hline Taper Length（m） & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Util．Factor & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 \\
\hline Ped Bike Factor & 1.00 & & & & & 0.98 & & & 0.99 & 1.00 & & \\
\hline Frt & & & 0.850 & & & 0.850 & & & 0.850 & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（prot） & 3654 & 3325 & 1502 & 3288 & 4103 & 1446 & 3584 & 3357 & 1369 & 3257 & 3458 & 2063 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（perm） & 3649 & 3325 & 1502 & 3288 & 4103 & 1423 & 3584 & 3357 & 1351 & 3253 & 3458 & 2063 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & & 332 & & & 155 & & & 215 & & & 334 \\
\hline Link Speed（k／h） & & 70 & & & 70 & & & 60 & & & 60 & \\
\hline Link Distance（m） & & 437.3 & & & 544.9 & & & 137.6 & & & 357.4 & \\
\hline Travel Time（s） & & 22.5 & & & 28.0 & & & 8.3 & & & 21.4 & \\
\hline Confl．Peds．（\＃／hr） & 3 & & & & & 3 & & & 1 & 1 & & \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles（\％） & 2\％ & 4\％ & 3\％ & 2\％ & 3\％ & 7\％ & 4\％ & 3\％ & 13\％ & 3\％ & 0\％ & 0\％ \\
\hline Adj．Flow（vph） & 418 & 1097 & 411 & 249 & 1105 & 41 & 234 & 224 & 165 & 58 & 362 & 813 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic（\％）} \\
\hline Lane Group Flow（vph） & 418 & 1097 & 411 & 249 & 1105 & 41 & 234 & 224 & 165 & 58 & 362 & 813 \\
\hline Turn Type & Prot & NA & Perm \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 7 & 4 & & 3 & 8 & \\
\hline Permitted Phases & & & 2 & & & 6 & & & 4 & & & 8 \\
\hline Detector Phase & 5 & 2 & 2 & 1 & 6 & 6 & 7 & 4 & 4 & 3 & 8 & 8 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial（s） & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 \\
\hline Minimum Split（s） & 11.8 & 34.5 & 34.5 & 11.8 & 34.5 & 34.5 & 11.7 & 43.6 & 43.6 & 11.7 & 43.6 & 43.6 \\
\hline Total Split（s） & 22.0 & 47.0 & 47.0 & 15.0 & 40.0 & 40.0 & 15.0 & 43.6 & 43.6 & 15.0 & 43.6 & 43.6 \\
\hline Total Split（\％） & 18．2\％ & 39．0\％ & 39．0\％ & 12．4\％ & 33．2\％ & 33．2\％ & 12．4\％ & 36．2\％ & 36．2\％ & 12．4\％ & 36．2\％ & 36．2\％ \\
\hline Maximum Green（s） & 15.2 & 40.5 & 40.5 & 8.2 & 33.5 & 33.5 & 8.3 & 37.0 & 37.0 & 8.3 & 37.0 & 37.0 \\
\hline Yellow Time（s） & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 \\
\hline All－Red Time（s） & 2.6 & 2.3 & 2.3 & 2.6 & 2.3 & 2.3 & 3.0 & 2.9 & 2.9 & 3.0 & 2.9 & 2.9 \\
\hline Lost Time Adjust（s） & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Lost Time（s） & 6.8 & 6.5 & 6.5 & 6.8 & 6.5 & 6.5 & 6.7 & 6.6 & 6.6 & 6.7 & 6.6 & 6.6 \\
\hline Lead／Lag & Lag & Lag & Lag & Lead & Lead & Lead & Lead & Lag & Lag & Lead & Lag & Lag \\
\hline Lead－Lag Optimize？ & Yes \\
\hline Vehicle Extension（s） & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & C－Min & C－Min & None & C－Min & C－Min & None & Min & Min & None & Min & Min \\
\hline Walk Time（s） & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 \\
\hline Flash Dont Walk（s） & & 21.0 & 21.0 & & 21.0 & 21.0 & & 30.0 & 30.0 & & 30.0 & 30.0 \\
\hline Pedestrian Calls（\＃／hr） & & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 \\
\hline Act Effct Green（s） & 15.2 & 40.5 & 40.5 & 9.4 & 34.7 & 34.7 & 8.3 & 39.2 & 39.2 & 7.3 & 35.8 & 35.8 \\
\hline Actuated g／C Ratio & 0.13 & 0.34 & 0.34 & 0.08 & 0.29 & 0.29 & 0.07 & 0.33 & 0.33 & 0.06 & 0.30 & 0.30 \\
\hline v／c Ratio & 0.91 & 0.98 & 0.57 & 0.97 & 0.94 & 0.08 & 0.95 & 0.21 & 0.28 & 0.29 & 0.35 & 0.96 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{*}{ }\) & & 7 & 7 & & 4 & 4 & \(\dagger\) & 7 & & \(\downarrow\) & \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Control Delay & 76.7 & 63.2 & 10.1 & 104.9 & 57.1 & 0.3 & 102.2 & 30.8 & 2.7 & 57.7 & 34.2 & 47.4 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 76.7 & 63.2 & 10.1 & 104.9 & 57.1 & 0.3 & 102.2 & 30.8 & 2.7 & 57.7 & 34.2 & 47.4 \\
\hline LOS & E & E & B & F & E & A & F & C & A & E & C & D \\
\hline Approach Delay & & 54.8 & & & 64.0 & & & 50.2 & & & 44.0 & \\
\hline Approach LOS & & D & & & E & & & D & & & D & \\
\hline Queue Length 50th (m) & 47.0 & 124.2 & 12.0 & -32.1 & 125.5 & 0.0 & 26.7 & 18.8 & 0.0 & 6.3 & 32.1 & 112.9 \\
\hline Queue Length 95th (m) & \#72.8 & \#166.5 & 39.2 & \#56.1 & \#165.7 & 0.0 & \#49.2 & 28.3 & 5.8 & 12.4 & 44.3 & \#186.8 \\
\hline Internal Link Dist (m) & & 413.3 & & & 520.9 & & & 113.6 & & & 333.4 & \\
\hline Turn Bay Length (m) & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Base Capacity (vph) & 460 & 1116 & 724 & 257 & 1181 & 520 & 246 & 1091 & 584 & 224 & 1060 & 864 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.91 & 0.98 & 0.57 & 0.97 & 0.94 & 0.08 & 0.95 & 0.21 & 0.28 & 0.26 & 0.34 & 0.94 \\
\hline
\end{tabular}

\section*{Intersection Summary}

Area Type: Other
Cycle Length: 120.6
Actuated Cycle Length: 120.6
Offset: 47 (39\%), Referenced to phase 2:EBT and 6:WBT, Start of Green
Natural Cycle: 125
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.98
Intersection Signal Delay: \(54.1 \quad\) Intersection LOS: D
Intersection Capacity Utilization 89.1\% ICU Level of Service E
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: River Road \& Earl Armstrong Road

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Intersection} \\
\hline \multicolumn{7}{|l|}{Int Delay, s/veh 0.1} \\
\hline Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & \% & & & \(\uparrow\) & \(\hat{\beta}\) & \\
\hline Traffic Vol, veh/h & 4 & 1 & 2 & 652 & 1096 & 19 \\
\hline Future Vol, veh/h & 4 & 1 & 2 & 652 & 1096 & 19 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Free & Free & Free & Free \\
\hline RT Channelized & - & None & & None & . & None \\
\hline Storage Length & 0 & - & - & - & - & - \\
\hline Veh in Median Storage, \# & 0 & - & & 0 & 0 & - \\
\hline Grade, \% & 0 & - & - & 0 & 0 & - \\
\hline Peak Hour Factor & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline Mumt Flow & 4 & 1 & 2 & 652 & 1096 & 19 \\
\hline
\end{tabular}


3: River Road \& Phase 12 South Access/Summerhill St
PM Peak Hour
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline \multicolumn{13}{|l|}{Int Delay, s/veh 4.2} \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & ¢ & & & ¢ & & & * & & \({ }^{1}\) & f & \\
\hline Traffic Vol, veh/h & 20 & 5 & 1 & 5 & 5 & 87 & 2 & 548 & 14 & 141 & 937 & 19 \\
\hline Future Vol, veh/h & 20 & 5 & 1 & 5 & 5 & 87 & 2 & 548 & 14 & 141 & 937 & 19 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Stop & Stop & Stop & Stop & Free & Free & Free & Free & Free & Free \\
\hline RT Channelized & - & - & None & - & & None & - & - & None & - & - & None \\
\hline Storage Length & - & - & - & - & & - & - & - & - & 1000 & - & \\
\hline Veh in Median Storage, \# & - & 0 & - & - & 0 & & & 0 & - & - & 0 & \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & \\
\hline Peak Hour Factor & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline Heavy Vehicles, \% & 0 & 0 & 0 & 4 & 0 & 3 & 0 & 3 & 2 & 1 & 2 & 0 \\
\hline Mvmt Flow & 20 & 5 & 1 & 5 & 5 & 87 & 2 & 548 & 14 & 141 & 937 & 19 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Major/Minor & Minor2 & & \multicolumn{5}{|c|}{Minor1} & \multicolumn{3}{|c|}{Major1} & \multicolumn{4}{|c|}{Major2} \\
\hline Conflicting Flow All & 1834 & 1795 & 947 & & 1791 & 1797 & 555 & & 956 & 0 & 0 & 562 & 0 & 0 \\
\hline Stage 1 & 1229 & 1229 & - & & 559 & 559 & - & & - & - & - & - & - & \\
\hline Stage 2 & 605 & 566 & - & & 1232 & 1238 & - & & - & - & - & - & - & \\
\hline Critical Hdwy & 7.1 & 6.5 & 6.2 & & 7.14 & 6.5 & 6.23 & & 4.1 & - & - & 4.11 & & \\
\hline Critical Hdwy Stg 1 & 6.1 & 5.5 & & & 6.14 & 5.5 & & & - & - & - & - & - & \\
\hline Critical Hdwy Stg 2 & 6.1 & 5.5 & & & 6.14 & 5.5 & & & - & - & - & - & - & \\
\hline Follow-up Hdwy & 3.5 & 4 & 3.3 & & 3.536 & 4 & 3.327 & & 2.2 & - & - & 2.209 & - & \\
\hline Pot Cap-1 Maneuver & 59 & 81 & 319 & & 62 & 81 & 529 & & 727 & - & - & 1014 & - & \\
\hline Stage 1 & 220 & 252 & - & & 510 & 514 & - & & - & - & - & - & - & \\
\hline Stage 2 & 488 & 511 & - & & 215 & 250 & - & & - & - & - & - & - & \\
\hline Platoon blocked, \% & & & & & & & & & & - & - & & - & \\
\hline Mov Cap-1 Maneuver & 42 & 69 & 319 & & 52 & 69 & 529 & & 727 & - & - & 1014 & & \\
\hline Mov Cap-2 Maneuver & 42 & 69 & - & & 52 & 69 & - & & - & - & - & - & - & \\
\hline Stage 1 & 219 & 217 & - & & 508 & 512 & - & & - & - & - & - & - & \\
\hline Stage 2 & 402 & 509 & - & & 180 & 215 & - & & - & - & - & - & - & \\
\hline Approach & EB & & & & WB & & & & NB & & & SB & & \\
\hline HCM Control Delay, s & 151.9 & & & & 23.4 & & & & 0 & & & 1.2 & & \\
\hline HCM LOS & F & & & & C & & & & & & & & & \\
\hline Minor Lane/Major Mvmt & NBL & NBT & NBR & EBLn1 & WBLn1 & SBL & SBT & SBR & & & & & & \\
\hline Capacity (veh/h) & 727 & - & - & 47 & 291 & 1014 & - & & & & & & & \\
\hline HCM Lane V/C Ratio & 0.003 & - & & 0.553 & 0.333 & 0.139 & - & & & & & & & \\
\hline HCM Control Delay (s) & 10 & 0 & - & 151.9 & 23.4 & 9.1 & - & - & & & & & & \\
\hline HCM Lane LOS & A & A & - & F & C & A & - & - & & & & & & \\
\hline HCM 95th \%tile Q(veh) & 0 & - & & 2.1 & 1.4 & 0.5 & - & - & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rangle\) & & & & & & & & & & & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & & \$ & & & ¢ & & \({ }^{*}\) & ¢ & \\
\hline Traffic Volume (vph) & 20 & 5 & 1 & 5 & 5 & 87 & 2 & 548 & 14 & 141 & 937 & 19 \\
\hline Future Volume (vph) & 20 & 5 & 1 & , & 5 & 87 & 2 & 548 & 14 & 141 & 937 & 19 \\
\hline Ideal Flow (vphpl) & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Storage Length (m) & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 100.0 & & 0.0 \\
\hline Storage Lanes & 0 & & 0 & 0 & & 0 & 0 & & 0 & 1 & & 0 \\
\hline Taper Length (m) & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Ped Bike Factor & & & & & & & & 1.00 & & & 1.00 & \\
\hline Frt & & 0.995 & & & 0.879 & & & 0.997 & & & 0.997 & \\
\hline Flt Protected & & 0.963 & & & 0.997 & & & & & 0.950 & & \\
\hline Satd. Flow (prot) & 0 & 1744 & 0 & 0 & 1550 & 0 & 0 & 1761 & 0 & 1712 & 1779 & 0 \\
\hline Flt Permitted & & 0.827 & & & 0.981 & & & 0.998 & & 0.476 & & \\
\hline Satd. Flow (perm) & 0 & 1498 & 0 & 0 & 1525 & 0 & 0 & 1758 & 0 & 858 & 1779 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 1 & & & 87 & & & 3 & & & 2 & \\
\hline Link Speed (k/h) & & 50 & & & 50 & & & 80 & & & 80 & \\
\hline Link Distance (m) & & 330.9 & & & 387.6 & & & 283.0 & & & 234.8 & \\
\hline Travel Time (s) & & 23.8 & & & 27.9 & & & 12.7 & & & 10.6 & \\
\hline Confl. Bikes (\#/hr) & & & & & & & & & 2 & & & 1 \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 0\% & 4\% & 0\% & 3\% & 0\% & 3\% & 2\% & 1\% & 2\% & 0\% \\
\hline Adj. Flow (vph) & 20 & 5 & 1 & 5 & 5 & 87 & 2 & 548 & 14 & 141 & 937 & 19 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 26 & 0 & 0 & 97 & 0 & 0 & 564 & 0 & 141 & 956 & 0 \\
\hline Turn Type & Perm & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & \\
\hline Minimum Split (s) & 27.5 & 27.5 & & 27.5 & 27.5 & & 23.9 & 23.9 & & 23.9 & 23.9 & \\
\hline Total Split (s) & 27.5 & 27.5 & & 27.5 & 27.5 & & 92.5 & 92.5 & & 92.5 & 92.5 & \\
\hline Total Split (\%) & 22.9\% & 22.9\% & & 22.9\% & 22.9\% & & 77.1\% & 77.1\% & & 77.1\% & 77.1\% & \\
\hline Maximum Green (s) & 22.0 & 22.0 & & 22.0 & 22.0 & & 86.6 & 86.6 & & 86.6 & 86.6 & \\
\hline Yellow Time (s) & 3.6 & 3.6 & & 3.6 & 3.6 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.9 & 1.9 & & 1.9 & 1.9 & & 0.9 & 0.9 & & 0.9 & 0.9 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & & 5.5 & & & 5.5 & & & 5.9 & & 5.9 & 5.9 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & & None & None & & Min & Min & & Min & Min & \\
\hline Walk Time (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & \\
\hline Flash Dont Walk (s) & 15.0 & 15.0 & & 15.0 & 15.0 & & 11.0 & 11.0 & & 11.0 & 11.0 & \\
\hline Pedestrian Calls (\#/hr) & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Act Efftt Green (s) & & 10.5 & & & 10.5 & & & 47.5 & & 47.5 & 47.5 & \\
\hline Actuated g/C Ratio & & 0.16 & & & 0.16 & & & 0.74 & & 0.74 & 0.74 & \\
\hline v/c Ratio & & 0.11 & & & 0.30 & & & 0.43 & & 0.22 & 0.72 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & \(\rightarrow\) & & \(\dagger\) & & & 4 & 4 & & & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Control Delay & & 27.6 & & & 11.9 & & & 5.8 & & 5.1 & 10.8 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Total Delay & & 27.6 & & & 11.9 & & & 5.8 & & 5.1 & 10.8 & \\
\hline LOS & & C & & & B & & & A & & A & B & \\
\hline Approach Delay & & 27.6 & & & 11.9 & & & 5.8 & & & 10.0 & \\
\hline Approach LOS & & C & & & B & & & A & & & B & \\
\hline Queue Length 50th (m) & & 2.2 & & & 0.9 & & & 24.7 & & 5.1 & 61.9 & \\
\hline Queue Length 95th (m) & & 9.6 & & & 13.2 & & & 40.4 & & 10.8 & 106.5 & \\
\hline Internal Link Dist (m) & & 306.9 & & & 363.6 & & & 259.0 & & & 210.8 & \\
\hline Turn Bay Length (m) & & & & & & & & & & 100.0 & & \\
\hline Base Capacity (vph) & & 536 & & & 601 & & & 1758 & & 858 & 1779 & \\
\hline Starvation Cap Reductn & & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Spillback Cap Reductn & & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Storage Cap Reductn & & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Reduced v/c Ratio & & 0.05 & & & 0.16 & & & 0.32 & & 0.16 & 0.54 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{13}{|l|}{Area Type: Other} \\
\hline \multicolumn{13}{|l|}{Cycle Length: 120} \\
\hline \multicolumn{13}{|l|}{Actuated Cycle Length: 63.8} \\
\hline \multicolumn{13}{|l|}{Natural Cycle: 80} \\
\hline \multicolumn{13}{|l|}{Control Type: Actuated-Uncoordinated} \\
\hline \multicolumn{13}{|l|}{Maximum v/c Ratio: 0.72} \\
\hline \multicolumn{4}{|l|}{Intersection Signal Delay: 9.0} & \multicolumn{9}{|c|}{Intersection LOS: A} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Intersection Capacity Utilization 107.5\%
Analysis Period (min) 15}} & \multicolumn{9}{|c|}{\multirow[t]{2}{*}{ICU Level of Service G}} \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Splits and Phases: 3: River Road \& Phase 12 South Access/Summerhill St


4: River Road \& Borbridge Avenue
PM Peak Hour



5: River Road \& 760 River Access/Atrium Ridge
PM Peak Hour
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline \multicolumn{13}{|l|}{Int Delay, s/veh 0.9} \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & * & & & * & & & \(\dagger\) & & \% & \(\uparrow\) & \\
\hline Traffic Vol, veh/h & 18 & 5 & 2 & 0 & 5 & 5 & 2 & 456 & 0 & 7 & 802 & 21 \\
\hline Future Vol, veh/h & 18 & 5 & 2 & 0 & 5 & 5 & 2 & 456 & 0 & 7 & 802 & 21 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Stop & Stop & Stop & Stop & Free & Free & Free & Free & Free & Free \\
\hline RT Channelized & - & - & None & - & & None & - & - & None & - & & None \\
\hline Storage Length & - & - & - & - & - & - & - & - & - & 100 & - & \\
\hline Veh in Median Storage, \# & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & - \\
\hline Peak Hour Factor & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline Mumt Flow & 18 & 5 & 2 & 0 & 5 & 5 & 2 & 456 & 0 & 7 & 802 & 21 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Major/Minor & Minor2 & & \multicolumn{5}{|c|}{Minor1} & \multicolumn{3}{|c|}{Major1} & \multicolumn{4}{|c|}{Major2} \\
\hline Conflicting Flow All & 1292 & 1287 & 813 & & 1290 & 1297 & 456 & & 823 & 0 & 0 & 456 & 0 & 0 \\
\hline Stage 1 & 827 & 827 & - & & 460 & 460 & - & & - & - & - & - & - & \\
\hline Stage 2 & 465 & 460 & & & 830 & 837 & & & & - & - & - & - & \\
\hline Critical Hdwy & 7.12 & 6.52 & 6.22 & & 7.12 & 6.52 & 6.22 & & 4.12 & - & - & 4.12 & - & \\
\hline Critical Hdwy Stg 1 & 6.12 & 5.52 & & & 6.12 & 5.52 & - & & - & - & - & - & - & \\
\hline Critical Hdwy Stg 2 & 6.12 & 5.52 & - & & 6.12 & 5.52 & - & & - & - & - & - & - & \\
\hline Follow-up Hdwy & 3.518 & 4.018 & 3.318 & & 3.518 & 4.018 & 3.318 & & 2.218 & - & - & 2.218 & - & \\
\hline Pot Cap-1 Maneuver & 140 & 164 & 378 & & 140 & 162 & 604 & & 807 & - & - & 1105 & & \\
\hline Stage 1 & 366 & 386 & & & 581 & 566 & - & & - & - & - & - & - & \\
\hline Stage 2 & 578 & 566 & - & & 364 & 382 & - & & - & - & - & - & - & \\
\hline Platoon blocked, \% & & & & & & & & & & - & - & & - & \\
\hline Mov Cap-1 Maneuver & 135 & 162 & 378 & & 135 & 160 & 604 & & 807 & - & - & 1105 & - & \\
\hline Mov Cap-2 Maneuver & 135 & 162 & & & 135 & 160 & - & & - & - & - & - & - & \\
\hline Stage 1 & 365 & 384 & - & & 579 & 564 & & & - & - & - & - & - & \\
\hline Stage 2 & 566 & 564 & - & & 355 & 380 & - & & - & - & - & - & - & \\
\hline & & & & & & & & & & & & & & \\
\hline Approach & EB & & & & WB & & & & NB & & & SB & & \\
\hline HCM Control Delay, s & 34.2 & & & & 19.8 & & & & 0 & & & 0.1 & & \\
\hline HCM LOS & D & & & & C & & & & & & & & & \\
\hline & & & & & & & & & & & & & & \\
\hline Minor Lane/Major Mvmt & NBL & NBT & NBR & EBLn1 & WBLn1 & SBL & SBT & SBR & & & & & & \\
\hline Capacity (veh/h) & 807 & - & - & 148 & 253 & 1105 & - & - & & & & & & \\
\hline HCM Lane V/C Ratio & 0.002 & - & & 0.169 & 0.04 & 0.006 & - & & & & & & & \\
\hline HCM Control Delay (s) & 9.5 & 0 & - & 34.2 & 19.8 & 8.3 & - & & & & & & & \\
\hline HCM Lane LOS & A & A & - & D & C & A & - & - & & & & & & \\
\hline HCM 95th \%tile Q(veh) & 0 & - & - & 0.6 & 0.1 & 0 & - & - & & & & & & \\
\hline
\end{tabular}

Future (2024) Total Traffic
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & 71 & 中4 & 「 & \({ }^{7 * 1}\) & 中4 & 「 & \({ }^{471}\) & 中4 & 「 & \({ }^{7 *}\) & 中4 & F \\
\hline Traffic Volume（vph） & 649 & 1053 & 130 & 134 & 989 & 111 & 368 & 550 & 300 & 43 & 147 & 232 \\
\hline Future Volume（vph） & 649 & 1053 & 130 & 134 & 989 & 111 & 368 & 550 & 300 & 43 & 147 & 232 \\
\hline Ideal Flow（vphpl） & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Storage Length（m） & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Storage Lanes & 2 & & 1 & 2 & & 1 & 2 & & 1 & 2 & & 1 \\
\hline Taper Length（m） & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Util．Factor & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 \\
\hline Ped Bike Factor & 1.00 & & & & & 0.99 & & & 0.99 & 1.00 & & \\
\hline Frt & & & 0.850 & & & 0.850 & & & 0.850 & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（prot） & 3321 & 3357 & 1419 & 3077 & 3262 & 1502 & 3164 & 3390 & 1517 & 2795 & 3202 & 1502 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（perm） & 3319 & 3357 & 1419 & 3077 & 3262 & 1482 & 3164 & 3390 & 1497 & 2793 & 3202 & 1502 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & & 155 & & & 155 & & & 215 & & & 215 \\
\hline Link Speed（k／h） & & 70 & & & 70 & & & 60 & & & 60 & \\
\hline Link Distance（m） & & 437.3 & & & 544.9 & & & 130.3 & & & 387.0 & \\
\hline Travel Time（s） & & 22.5 & & & 28.0 & & & 7.8 & & & 23.2 & \\
\hline Confl．Peds．（\＃／hr） & 1 & & & & & 1 & & & 1 & 1 & & \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles（\％） & 1\％ & 3\％ & 9\％ & 9\％ & 6\％ & 3\％ & 6\％ & 2\％ & 2\％ & 20\％ & 8\％ & 3\％ \\
\hline Adj．Flow（vph） & 649 & 1053 & 130 & 134 & 989 & 111 & 368 & 550 & 300 & 43 & 147 & 232 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic（\％）} \\
\hline Lane Group Flow（vph） & 649 & 1053 & 130 & 134 & 989 & 111 & 368 & 550 & 300 & 43 & 147 & 232 \\
\hline Turn Type & Prot & NA & Perm \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 7 & 4 & & 3 & 8 & \\
\hline Permitted Phases & & & 2 & & & 6 & & & 4 & & & 8 \\
\hline Detector Phase & 5 & 2 & 2 & 1 & 6 & 6 & 7 & 4 & 4 & 3 & 8 & 8 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial（s） & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 \\
\hline Minimum Split（s） & 11.8 & 35.1 & 35.1 & 11.8 & 35.1 & 35.1 & 11.8 & 43.6 & 43.6 & 11.8 & 43.6 & 43.6 \\
\hline Total Split（s） & 13.0 & 37.0 & 37.0 & 19.0 & 43.0 & 43.0 & 21.0 & 43.6 & 43.6 & 21.0 & 43.6 & 43.6 \\
\hline Total Split（\％） & 10．8\％ & 30．7\％ & 30．7\％ & 15．8\％ & 35．7\％ & 35．7\％ & 17．4\％ & 36．2\％ & 36．2\％ & 17．4\％ & 36．2\％ & 36．2\％ \\
\hline Maximum Green（s） & 6.2 & 30.5 & 30.5 & 12.2 & 36.5 & 36.5 & 14.3 & 37.0 & 37.0 & 14.3 & 37.0 & 37.0 \\
\hline Yellow Time（s） & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 \\
\hline All－Red Time（s） & 2.6 & 2.3 & 2.3 & 2.6 & 2.3 & 2.3 & 3.0 & 2.9 & 2.9 & 3.0 & 2.9 & 2.9 \\
\hline Lost Time Adjust（s） & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Lost Time（s） & 6.8 & 6.5 & 6.5 & 6.8 & 6.5 & 6.5 & 6.7 & 6.6 & 6.6 & 6.7 & 6.6 & 6.6 \\
\hline Lead／Lag & Lead & Lead & Lead & Lag & Lag & Lag & Lead & Lag & Lag & Lead & Lag & Lag \\
\hline Lead－Lag Optimize？ & Yes \\
\hline Vehicle Extension（s） & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & C－Min & C－Min & None & C－Min & C－Min & None & Min & Min & None & Min & Min \\
\hline Walk Time（s） & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 \\
\hline Flash Dont Walk（s） & & 21.0 & 21.0 & & 21.0 & 21.0 & & 30.0 & 30.0 & & 30.0 & 30.0 \\
\hline Pedestrian Calls（\＃／hr） & & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 \\
\hline Act Effct Green（s） & 23.4 & 47.7 & 47.7 & 12.2 & 36.5 & 36.5 & 14.3 & 29.2 & 29.2 & 7.3 & 19.8 & 19.8 \\
\hline Actuated g／C Ratio & 0.19 & 0.40 & 0.40 & 0.10 & 0.30 & 0.30 & 0.12 & 0.24 & 0.24 & 0.06 & 0.16 & 0.16 \\
\hline v／c Ratio & 1.01 & 0.79 & 0.20 & 0.43 & 1.00 & 0.20 & 0.98 & 0.67 & 0.57 & 0.25 & 0.28 & 0.54 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & &  & 1 & & 4 & 4 & \(\dagger\) & 7 & , & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Control Delay & 86.0 & 38.7 & 3.5 & 55.6 & 71.4 & 2.4 & 95.2 & 45.7 & 16.1 & 57.2 & 43.7 & 11.8 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 86.0 & 38.7 & 3.5 & 55.6 & 71.4 & 2.4 & 95.2 & 45.7 & 16.1 & 57.2 & 43.7 & 11.8 \\
\hline LOS & F & D & A & E & E & A & F & D & B & E & D & B \\
\hline Approach Delay & & 53.0 & & & 63.5 & & & 53.4 & & & 27.5 & \\
\hline Approach LOS & & D & & & E & & & D & & & C & \\
\hline Queue Length 50th (m) & 73.6 & 104.7 & 0.0 & 14.3 & \(\sim 113.7\) & 0.0 & 41.8 & 59.1 & 15.4 & 4.6 & 15.0 & 3.2 \\
\hline Queue Length 95th (m) & \#140.0 & \#162.2 & 8.3 & 23.6 & \#155.5 & 4.7 & \#69.7 & 70.4 & 38.5 & 10.0 & 21.6 & 21.7 \\
\hline Internal Link Dist (m) & & 413.3 & & & 520.9 & & & 106.3 & & & 363.0 & \\
\hline Turn Bay Length ( m ) & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Base Capacity (vph) & 644 & 1328 & 655 & 311 & 987 & 556 & 375 & 1040 & 608 & 331 & 982 & 609 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 1.01 & 0.79 & 0.20 & 0.43 & 1.00 & 0.20 & 0.98 & 0.53 & 0.49 & 0.13 & 0.15 & 0.38 \\
\hline
\end{tabular}

\section*{Intersection Summary}

Area Type: Other
Cycle Length: 120.6
Actuated Cycle Length: 120.6
Offset: 63 (52\%), Referenced to phase 2:EBT and \(6: W B T\), Start of Green
Natural Cycle: 125
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.01
Intersection Signal Delay: 53.5
Intersection LOS: D
Intersection Capacity Utilization 91.3\%
ICU Level of Service F
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: River Road \& Earl Armstrong Road

\begin{tabular}{lrrrrrr}
\hline Intersection & & & & & & \\
\hline Int Delay, s/veh & 0.4 & & & & & \\
Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & r & & \(\uparrow\) & 4 & \\
Traffic Vol, veh/h & 14 & 5 & 2 & 1348 & 426 & 25 \\
Future Vol, veh/h & 14 & 5 & 2 & 1348 & 426 & 25 \\
Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
Sign Control & Stop & Stop & Free & Free & Free & Free \\
RT Channelized & - & None & - & None & - & None \\
Storage Length & 0 & - & - & - & - & - \\
Veh in Median Storage, \# & 0 & - & - & 0 & 0 & - \\
Grade, \% & 0 & - & - & 0 & 0 & - \\
Peak Hour Factor & 100 & 100 & 100 & 100 & 100 & 100 \\
Heavy Vehicles, \(\%\) & 2 & 2 & 2 & 2 & 2 & 2 \\
Mvmt Flow & 14 & 5 & 2 & 1348 & 426 & 25
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Major/Minor & Minor2 & & \multicolumn{2}{|l|}{Major1} & \multicolumn{3}{|l|}{Major2} \\
\hline Conflicting Flow All & 1791 & 439 & 451 & 0 & - & 0 & \\
\hline Stage 1 & 439 & - & - & - & - & - & \\
\hline Stage 2 & 1352 & - & - & - & - & - & \\
\hline Critical Hdwy & 6.42 & 6.22 & 4.12 & - & - & - & \\
\hline Critical Hdwy Stg 1 & 5.42 & - & - & - & - & - & \\
\hline Critical Hdwy Stg 2 & 5.42 & - & & - & - & - & \\
\hline Follow-up Hdwy & 3.518 & 3.318 & 2.218 & - & - & - & \\
\hline Pot Cap-1 Maneuver & 89 & 618 & 1109 & - & - & - & \\
\hline Stage 1 & 650 & - & - & - & - & - & \\
\hline Stage 2 & 241 & - & - & - & - & - & \\
\hline Platoon blocked, \% & & & & - & - & - & \\
\hline Mov Cap-1 Maneuver & 88 & 618 & 1109 & - & - & - & \\
\hline Mov Cap-2 Maneuver & 88 & - & - & - & - & - & \\
\hline Stage 1 & 650 & - & - & - & - & - & \\
\hline Stage 2 & 239 & - & - & - & - & - & \\
\hline & & & & & & & \\
\hline Approach & EB & & NB & & SB & & \\
\hline HCM Control Delay, s & 42.8 & & 0 & & 0 & & \\
\hline HCM LOS & E & & & & & & \\
\hline & & & & & & & \\
\hline Minor Lane/Major Mvmt & NBL & NBT EBLn1 & SBT SBR & & & & \\
\hline Capacity (veh/h) & 1109 & 114 & - - & & & & \\
\hline HCM Lane V/C Ratio & 0.002 & - 0.167 & - - & & & & \\
\hline HCM Control Delay (s) & 8.3 & 042.8 & - - & & & & \\
\hline HCM Lane LOS & A & A E & - - & & & & \\
\hline HCM 95th \%tile Q(veh) & 0 & 0.6 & - - & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rangle\) & & & \(\checkmark\) & & & 4 & \(\uparrow\) & & & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & ¢ & & & ¢ & & & \({ }_{\text {¢ }}\) & & \({ }^{7}\) & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 68 & 0 & 5 & 24 & 0 & 203 & 2 & 1078 & 15 & 33 & 403 & 7 \\
\hline Future Volume (vph) & 68 & 0 & 5 & 24 & 0 & 203 & 2 & 1078 & 15 & 33 & 403 & 7 \\
\hline Ideal Flow (vphpl) & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Storage Length ( m ) & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 100.0 & & 0.0 \\
\hline Storage Lanes & 0 & & 0 & 0 & & 0 & 0 & & 0 & 1 & & 0 \\
\hline Taper Length (m) & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Fit & & 0.991 & & & 0.879 & & & 0.998 & & & 0.997 & \\
\hline Flt Protected & & 0.955 & & & 0.995 & & & & & 0.950 & & \\
\hline Satd. Flow (prot) & 0 & 1722 & 0 & 0 & 1544 & 0 & 0 & 1746 & 0 & 1679 & 1667 & 0 \\
\hline Flt Permitted & & 0.382 & & & 0.958 & & & & & 0.262 & & \\
\hline Satd. Flow (perm) & 0 & 689 & 0 & 0 & 1486 & 0 & 0 & 1746 & 0 & 463 & 1667 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 26 & & & 144 & & & 1 & & & 2 & \\
\hline Link Speed (k/h) & & 50 & & & 50 & & & 80 & & & 80 & \\
\hline Link Distance (m) & & 318.2 & & & 387.6 & & & 297.0 & & & 234.8 & \\
\hline Travel Time (s) & & 22.9 & & & 27.9 & & & 13.4 & & & 10.6 & \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 0\% & 4\% & 0\% & 3\% & 0\% & 4\% & 8\% & 3\% & 9\% & 0\% \\
\hline Adj. Flow (vph) & 68 & 0 & 5 & 24 & 0 & 203 & 2 & 1078 & 15 & 33 & 403 & 7 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 73 & 0 & 0 & 227 & 0 & 0 & 1095 & 0 & 33 & 410 & 0 \\
\hline Turn Type & Perm & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & \\
\hline Minimum Split (s) & 27.5 & 27.5 & & 27.5 & 27.5 & & 23.9 & 23.9 & & 23.9 & 23.9 & \\
\hline Total Split (s) & 30.0 & 30.0 & & 30.0 & 30.0 & & 90.0 & 90.0 & & 90.0 & 90.0 & \\
\hline Total Split (\%) & 25.0\% & 25.0\% & & 25.0\% & 25.0\% & & 75.0\% & 75.0\% & & 75.0\% & 75.0\% & \\
\hline Maximum Green (s) & 24.5 & 24.5 & & 24.5 & 24.5 & & 84.1 & 84.1 & & 84.1 & 84.1 & \\
\hline Yellow Time (s) & 3.6 & 3.6 & & 3.6 & 3.6 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.9 & 1.9 & & 1.9 & 1.9 & & 0.9 & 0.9 & & 0.9 & 0.9 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & & 5.5 & & & 5.5 & & & 5.9 & & 5.9 & 5.9 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & & None & None & & Min & Min & & Min & Min & \\
\hline Walk Time (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & \\
\hline Flash Dont Walk (s) & 15.0 & 15.0 & & 15.0 & 15.0 & & 11.0 & 11.0 & & 11.0 & 11.0 & \\
\hline Pedestrian Calls (\#l/hr) & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Act Effct Green (s) & & 13.6 & & & 13.6 & & & 59.0 & & 59.0 & 59.0 & \\
\hline Actuated g/C Ratio & & 0.16 & & & 0.16 & & & 0.69 & & 0.69 & 0.69 & \\
\hline v/c Ratio & & 0.55 & & & 0.63 & & & 0.90 & & 0.10 & 0.35 & \\
\hline Control Delay & & 44.5 & & & 24.3 & & & 22.3 & & 5.1 & 6.0 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline
\end{tabular}

3: River Road \& Phase 12 South Access/Summerhill St


Splits and Phases: 3: River Road \& Phase 12 South Access/Summerhill St


4: River Road \& Borbridge Avenue
AM Peak Hour



5: River Road \& 760 River Access/Atrium Ridge
AM Peak Hour
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline \multicolumn{13}{|l|}{Int Delay, s/veh 1.8} \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \multicolumn{3}{|c|}{\(\dagger\)} & \multicolumn{3}{|c|}{\({ }_{\text {¢ }}\)} & \multicolumn{3}{|c|}{\(\dagger\)} & \multicolumn{3}{|c|}{\% \(\dagger\)} \\
\hline Traffic Vol, veh/h & 49 & 0 & 5 & 0 & 0 & 9 & 3 & 895 & 0 & 5 & 338 & 23 \\
\hline Future Vol, veh/h & 49 & 0 & 5 & 0 & 0 & 9 & 3 & 895 & 0 & 5 & 338 & 23 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Stop & Stop & Stop & Stop & Free & Free & Free & Free & Free & Free \\
\hline RT Channelized & - & - & None & - & & None & . & & None & & & None \\
\hline Storage Length & - & - & - & - & & - & & & - & 100 & - & \\
\hline Veh in Median Storage, \# & - & 0 & - & - & 0 & & & 0 & - & & 0 & \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & \\
\hline Peak Hour Factor & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline Mvmt Flow & 49 & 0 & 5 & 0 & 0 & 9 & 3 & 895 & 0 & 5 & 338 & 23 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Major/Minor & Minor2 & & \multicolumn{5}{|c|}{Minor1} & \multicolumn{3}{|c|}{Major1} & \multicolumn{4}{|c|}{Major2} \\
\hline Conflicting Flow All & 1266 & 1261 & 350 & & 1263 & 1272 & 895 & & 361 & 0 & 0 & 895 & 0 & 0 \\
\hline Stage 1 & 360 & 360 & - & & 901 & 901 & - & & - & - & - & - & - & \\
\hline Stage 2 & 906 & 901 & & & 362 & 371 & - & & - & - & - & - & - & \\
\hline Critical Hdwy & 7.12 & 6.52 & 6.22 & & 7.12 & 6.52 & 6.22 & & 4.12 & - & - & 4.12 & - & \\
\hline Critical Hdwy Stg 1 & 6.12 & 5.52 & - & & 6.12 & 5.52 & - & & - & - & - & - & - & \\
\hline Critical Hdwy Stg 2 & 6.12 & 5.52 & - & & 6.12 & 5.52 & - & & - & - & - & - & - & \\
\hline Follow-up Hdwy & 3.518 & 4.018 & 3.318 & & 3.518 & 4.018 & 3.318 & & 2.218 & - & - & 2.218 & - & \\
\hline Pot Cap-1 Maneuver & 146 & 170 & 693 & & 147 & 168 & 339 & & 1198 & - & - & 758 & & \\
\hline Stage 1 & 658 & 626 & & & 333 & 357 & - & & - & - & - & - & - & \\
\hline Stage 2 & 331 & 357 & & & 657 & 620 & - & & - & - & - & - & - & \\
\hline Platoon blocked, \% & & & & & & & & & & - & - & & - & \\
\hline Mov Cap-1 Maneuver & 141 & 168 & 693 & & 145 & 166 & 339 & & 1198 & - & - & 758 & - & \\
\hline Mov Cap-2 Maneuver & 141 & 168 & - & & 145 & 166 & - & & - & - & - & - & - & \\
\hline Stage 1 & 655 & 622 & & & 331 & 355 & & & & - & - & - & & \\
\hline Stage 2 & 321 & 355 & - & & 648 & 616 & - & & - & - & - & - & - & \\
\hline & & & & & & & & & & & & & & \\
\hline Approach & EB & & & & WB & & & & NB & & & SB & & \\
\hline HCM Control Delay, s & 41.2 & & & & 15.9 & & & & 0 & & & 0.1 & & \\
\hline HCM LOS & E & & & & C & & & & & & & & & \\
\hline & & & & & & & & & & & & & & \\
\hline Minor Lane/Major Mvmt & NBL & NBT & NBR & EBLn1W & WBLn1 & SBL & SBT & SBR & & & & & & \\
\hline Capacity (veh/h) & 1198 & - & - & 152 & 339 & 758 & - & - & & & & & & \\
\hline HCM Lane V/C Ratio & 0.003 & - & & 0.355 & 0.027 & 0.007 & - & - & & & & & & \\
\hline HCM Control Delay (s) & 8 & 0 & & 41.2 & 15.9 & 9.8 & - & & & & & & & \\
\hline HCM Lane LOS & A & A & - & E & C & A & - & - & & & & & & \\
\hline HCM 95th \%tile Q(veh) & 0 & - & - & 1.5 & 0.1 & 0 & - & - & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & 7 & & & 4 & \(\uparrow\) & & & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \(\uparrow\) & & & \$ & & & \(\uparrow\) & & \({ }^{*}\) & \(\hat{F}\) & \\
\hline Traffic Volume (vph) & 49 & - & 5 & 0 & 0 & 9 & 3 & 895 & 0 & 5 & 338 & 23 \\
\hline Future Volume (vph) & 49 & 0 & 5 & 0 & 0 & 9 & 3 & 895 & 0 & 5 & 338 & 23 \\
\hline Ideal Flow (vphpl) & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Storage Length (m) & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 10.0 & & 0.0 \\
\hline Storage Lanes & 0 & & 0 & 0 & & 0 & 0 & & 0 & 1 & & 0 \\
\hline Taper Length (m) & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Utill. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Frt & & 0.987 & & & 0.865 & & & & & & 0.990 & \\
\hline Flt Protected & & 0.957 & & & & & & & & 0.950 & & \\
\hline Satd. Flow (prot) & 0 & 1685 & 0 & 0 & 1543 & 0 & 0 & 1784 & 0 & 1695 & 1766 & 0 \\
\hline Flt Permitted & & 0.748 & & & & & & 0.999 & & 0.349 & & \\
\hline Satd. Flow (perm) & 0 & 1317 & 0 & 0 & 1543 & 0 & 0 & 1783 & 0 & 623 & 1766 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 26 & & & 234 & & & & & & 8 & \\
\hline Link Speed (k/h) & & 50 & & & 50 & & & 80 & & & 80 & \\
\hline Link Distance (m) & & 345.9 & & & 387.3 & & & 489.9 & & & 281.0 & \\
\hline Travel Time (s) & & 24.9 & & & 27.9 & & & 22.0 & & & 12.6 & \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% \\
\hline Adj. Flow (vph) & 49 & 0 & 5 & 0 & 0 & 9 & 3 & 895 & 0 & 5 & 338 & 23 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 54 & 0 & 0 & 9 & 0 & 0 & 898 & 0 & 5 & 361 & 0 \\
\hline Turn Type & Perm & NA & & & NA & & Perm & NA & & Perm & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & \\
\hline Minimum Split (s) & 23.1 & 23.1 & & 23.1 & 23.1 & & 23.9 & 23.9 & & 23.9 & 23.9 & \\
\hline Total Split (s) & 23.1 & 23.1 & & 23.1 & 23.1 & & 96.9 & 96.9 & & 96.9 & 96.9 & \\
\hline Total Split (\%) & 19.3\% & 19.3\% & & 19.3\% & 19.3\% & & 80.8\% & 80.8\% & & 80.8\% & 80.8\% & \\
\hline Maximum Green (s) & 18.0 & 18.0 & & 18.0 & 18.0 & & 91.0 & 91.0 & & 91.0 & 91.0 & \\
\hline Yellow Time (s) & 3.6 & 3.6 & & 3.6 & 3.6 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.5 & 1.5 & & 1.5 & 1.5 & & 0.9 & 0.9 & & 0.9 & 0.9 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & & 5.1 & & & 5.1 & & & 5.9 & & 5.9 & 5.9 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & & None & None & & Min & Min & & Min & Min & \\
\hline Walk Time (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & \\
\hline Flash Dont Walk (s) & 11.0 & 11.0 & & 11.0 & 11.0 & & 11.0 & 11.0 & & 11.0 & 11.0 & \\
\hline Pedestrian Calls (\#/hr) & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Act Efft Green (s) & & 11.0 & & & 11.0 & & & 47.5 & & 47.5 & 47.5 & \\
\hline Actuated g/C Ratio & & 0.19 & & & 0.19 & & & 0.82 & & 0.82 & 0.82 & \\
\hline v/c Ratio & & 0.20 & & & 0.02 & & & 0.62 & & 0.01 & 0.25 & \\
\hline Control Delay & & 19.4 & & & 0.1 & & & 7.4 & & 3.2 & 3.6 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 4 & \(\rightarrow\) & & & & & 4 & 4 & & & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Total Delay & 19.4 & & & 0.1 & & & 7.4 & & 3.2 & 3.6 & \\
\hline LOS & B & & & A & & & A & & A & A & \\
\hline Approach Delay & 19.4 & & & 0.1 & & & 7.4 & & & 3.6 & \\
\hline Approach LOS & B & & & A & & & A & & & A & \\
\hline Queue Length 50th (m) & 2.9 & & & 0.0 & & & 52.8 & & 0.2 & 12.9 & \\
\hline Queue Length 95th (m) & 11.9 & & & 0.0 & & & 89.9 & & 0.9 & 21.7 & \\
\hline Internal Link Dist (m) & 321.9 & & & 363.3 & & & 465.9 & & & 257.0 & \\
\hline Turn Bay Length (m) & & & & & & & & & 10.0 & & \\
\hline Base Capacity (vph) & 462 & & & 676 & & & 1783 & & 623 & 1766 & \\
\hline Starvation Cap Reductn & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Spillback Cap Reductn & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Storage Cap Reductn & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Reduced v/c Ratio & 0.12 & & & 0.01 & & & 0.50 & & 0.01 & 0.20 & \\
\hline \multicolumn{12}{|l|}{Intersection Summary} \\
\hline \multicolumn{12}{|l|}{Area Type: Other} \\
\hline \multicolumn{12}{|l|}{Cycle Length: 120} \\
\hline \multicolumn{12}{|l|}{Actuated Cycle Length: 58.1} \\
\hline \multicolumn{12}{|l|}{Natural Cycle: 70} \\
\hline \multicolumn{12}{|l|}{Control Type: Actuated-Uncoordinated} \\
\hline \multicolumn{12}{|l|}{Maximum v/c Ratio: 0.62} \\
\hline \multicolumn{3}{|l|}{Intersection Signal Delay: 6.8} & \multicolumn{9}{|c|}{Intersection LOS: A} \\
\hline \multicolumn{3}{|l|}{Intersection Capacity Utilization 71.3\%} & \multicolumn{9}{|c|}{\multirow[t]{2}{*}{ICU Level of Service C}} \\
\hline \multicolumn{3}{|l|}{Analysis Period (min) 15} & & & & & & & & & \\
\hline
\end{tabular}

Splits and Phases: 5: River Road \& 760 River Access/Atrium Ridge

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \％ & 44 & 「 & \％ & 44 & 「 & \％ & 44 & 「 & \({ }^{7} 1\) & 中4 & F \\
\hline Traffic Volume（vph） & 424 & 1116 & 434 & 320 & 1136 & 42 & 249 & 274 & 215 & 58 & 435 & 825 \\
\hline Future Volume（vph） & 424 & 1116 & 434 & 320 & 1136 & 42 & 249 & 274 & 215 & 58 & 435 & 825 \\
\hline Ideal Flow（vphpl） & 2000 & 1800 & 1800 & 1800 & 2200 & 1800 & 2000 & 1800 & 1800 & 1800 & 1800 & 2400 \\
\hline Storage Length（m） & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Storage Lanes & 2 & & 1 & 2 & & 1 & 2 & & 1 & 2 & & 1 \\
\hline Taper Length（m） & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Util．Factor & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 \\
\hline Ped Bike Factor & 1.00 & & & & & 0.98 & & & 0.99 & 1.00 & & \\
\hline Frt & & & 0.850 & & & 0.850 & & & 0.850 & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（prot） & 3654 & 3325 & 1502 & 3288 & 4103 & 1446 & 3584 & 3357 & 1369 & 3257 & 3458 & 2063 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（perm） & 3649 & 3325 & 1502 & 3288 & 4103 & 1423 & 3584 & 3357 & 1351 & 3253 & 3458 & 2063 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & & 281 & & & 155 & & & 215 & & & 362 \\
\hline Link Speed（k／h） & & 70 & & & 70 & & & 60 & & & 60 & \\
\hline Link Distance（m） & & 437.3 & & & 544.9 & & & 145.6 & & & 357.4 & \\
\hline Travel Time（s） & & 22.5 & & & 28.0 & & & 8.7 & & & 21.4 & \\
\hline Confl．Peds．（\＃／hr） & 3 & & & & & 3 & & & 1 & 1 & & \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles（\％） & 2\％ & 4\％ & 3\％ & 2\％ & 3\％ & 7\％ & 4\％ & 3\％ & 13\％ & 3\％ & 0\％ & 0\％ \\
\hline Adj．Flow（vph） & 424 & 1116 & 434 & 320 & 1136 & 42 & 249 & 274 & 215 & 58 & 435 & 825 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic（\％）} \\
\hline Lane Group Flow（vph） & 424 & 1116 & 434 & 320 & 1136 & 42 & 249 & 274 & 215 & 58 & 435 & 825 \\
\hline Turn Type & Prot & NA & Perm \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 7 & 4 & & 3 & 8 & \\
\hline Permitted Phases & & & 2 & & & 6 & & & 4 & & & 8 \\
\hline Detector Phase & 5 & 2 & 2 & 1 & 6 & 6 & 7 & 4 & 4 & 3 & 8 & 8 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial（s） & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 \\
\hline Minimum Split（s） & 11.8 & 34.5 & 34.5 & 11.8 & 34.5 & 34.5 & 11.7 & 43.6 & 43.6 & 11.7 & 43.6 & 43.6 \\
\hline Total Split（s） & 23.0 & 44.0 & 44.0 & 17.0 & 38.0 & 38.0 & 15.0 & 44.6 & 44.6 & 15.0 & 44.6 & 44.6 \\
\hline Total Split（\％） & 19．1\％ & 36．5\％ & 36．5\％ & 14．1\％ & 31．5\％ & 31．5\％ & 12．4\％ & 37．0\％ & 37．0\％ & 12．4\％ & 37．0\％ & 37．0\％ \\
\hline Maximum Green（s） & 16.2 & 37.5 & 37.5 & 10.2 & 31.5 & 31.5 & 8.3 & 38.0 & 38.0 & 8.3 & 38.0 & 38.0 \\
\hline Yellow Time（s） & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 \\
\hline All－Red Time（s） & 2.6 & 2.3 & 2.3 & 2.6 & 2.3 & 2.3 & 3.0 & 2.9 & 2.9 & 3.0 & 2.9 & 2.9 \\
\hline Lost Time Adjust（s） & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Lost Time（s） & 6.8 & 6.5 & 6.5 & 6.8 & 6.5 & 6.5 & 6.7 & 6.6 & 6.6 & 6.7 & 6.6 & 6.6 \\
\hline Lead／Lag & Lag & Lag & Lag & Lead & Lead & Lead & Lead & Lag & Lag & Lead & Lag & Lag \\
\hline Lead－Lag Optimize？ & Yes \\
\hline Vehicle Extension（s） & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & C－Min & C－Min & None & C－Min & C－Min & None & Min & Min & None & Min & Min \\
\hline Walk Time（s） & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 \\
\hline Flash Dont Walk（s） & & 21.0 & 21.0 & & 21.0 & 21.0 & & 30.0 & 30.0 & & 30.0 & 30.0 \\
\hline Pedestrian Calls（\＃／hr） & & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 \\
\hline Act Effct Green（s） & 16.2 & 37.5 & 37.5 & 11.9 & 33.2 & 33.2 & 8.3 & 39.8 & 39.8 & 7.3 & 36.3 & 36.3 \\
\hline Actuated g／C Ratio & 0.13 & 0.31 & 0.31 & 0.10 & 0.28 & 0.28 & 0.07 & 0.33 & 0.33 & 0.06 & 0.30 & 0.30 \\
\hline v／c Ratio & 0.87 & 1.08 & 0.66 & 0.99 & 1.01 & 0.08 & 1.01 & 0.25 & 0.37 & 0.29 & 0.42 & 0.94 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{*}{ }\) & \(\rightarrow\) & 7 & 7 & & 4 & 4 & \(\dagger\) & 1 & & \(\downarrow\) & \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Control Delay & 69.6 & 92.1 & 17.4 & 102.6 & 72.6 & 0.3 & 116.2 & 30.7 & 5.9 & 57.7 & 34.7 & 42.6 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 69.6 & 92.1 & 17.4 & 102.6 & 72.6 & 0.3 & 116.2 & 30.7 & 5.9 & 57.7 & 34.7 & 42.6 \\
\hline LOS & E & F & B & F & E & A & F & C & A & E & C & D \\
\hline Approach Delay & & 70.9 & & & 77.0 & & & 52.3 & & & 40.7 & \\
\hline Approach LOS & & E & & & E & & & D & & & D & \\
\hline Queue Length 50th (m) & 47.3 & -143.0 & 27.7 & \(\sim 42.3\) & ~143.3 & 0.0 & ~28.8 & 23.1 & 0.0 & 6.3 & 39.0 & 107.8 \\
\hline Queue Length 95th (m) & \#70.7 & \#180.7 & 61.2 & \#68.7 & \#181.2 & 0.0 & \#53.4 & 33.6 & 15.6 & 12.4 & 52.3 & \#181.1 \\
\hline Internal Link Dist (m) & & 413.3 & & & 520.9 & & & 121.6 & & & 333.4 & \\
\hline Turn Bay Length (m) & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Base Capacity (vph) & 490 & 1033 & 660 & 323 & 1128 & 503 & 246 & 1107 & 589 & 224 & 1089 & 897 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.87 & 1.08 & 0.66 & 0.99 & 1.01 & 0.08 & 1.01 & 0.25 & 0.37 & 0.26 & 0.40 & 0.92 \\
\hline
\end{tabular}

\section*{Intersection Summary}

Area Type: Other
Cycle Length: 120.6
Actuated Cycle Length: 120.6
Offset: 91 (75\%), Referenced to phase 2:EBT and 6:WBT, Start of Green
Natural Cycle: 125
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.08
Intersection Signal Delay: 62.8
Intersection LOS: E
Intersection Capacity Utilization 90.8\%
ICU Level of Service \(E\)
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: River Road \& Earl Armstrong Road


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rangle\) & & & & & & & & & & & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & & \$ & & & \(\dagger\) & & \({ }^{*}\) & \(\hat{6}\) & \\
\hline Traffic Volume (vph) & 42 & 5 & 3 & 5 & 5 & 87 & 4 & 632 & 14 & 141 & 1060 & 17 \\
\hline Future Volume (vph) & 42 & 5 & 3 & 5 & 5 & 87 & 4 & 632 & 14 & 141 & 1060 & 17 \\
\hline Ideal Flow (vphpl) & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Storage Length (m) & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 100.0 & & 0.0 \\
\hline Storage Lanes & 0 & & 0 & 0 & & 0 & 0 & & 0 & 1 & & 0 \\
\hline Taper Length (m) & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Ped Bike Factor & & & & & & & & 1.00 & & & 1.00 & \\
\hline Frt & & 0.992 & & & 0.879 & & & 0.997 & & & 0.998 & \\
\hline Flt Protected & & 0.960 & & & 0.997 & & & & & 0.950 & & \\
\hline Satd. Flow (prot) & 0 & 1733 & 0 & 0 & 1550 & 0 & 0 & 1762 & 0 & 1712 & 1781 & 0 \\
\hline Flt Permitted & & 0.761 & & & 0.980 & & & 0.995 & & 0.433 & & \\
\hline Satd. Flow (perm) & 0 & 1374 & 0 & 0 & 1524 & 0 & 0 & 1753 & 0 & 780 & 1781 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 2 & & & 87 & & & 2 & & & 2 & \\
\hline Link Speed (k/h) & & 50 & & & 50 & & & 80 & & & 80 & \\
\hline Link Distance (m) & & 330.9 & & & 387.6 & & & 283.0 & & & 234.8 & \\
\hline Travel Time (s) & & 23.8 & & & 27.9 & & & 12.7 & & & 10.6 & \\
\hline Confl. Bikes (\#/hr) & & & & & & & & & 2 & & & 1 \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 0\% & 4\% & 0\% & 3\% & 0\% & 3\% & 2\% & 1\% & 2\% & 0\% \\
\hline Adj. Flow (vph) & 42 & 5 & 3 & 5 & 5 & 87 & 4 & 632 & 14 & 141 & 1060 & 17 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 50 & 0 & 0 & 97 & 0 & 0 & 650 & 0 & 141 & 1077 & 0 \\
\hline Turn Type & Perm & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & \\
\hline Minimum Split (s) & 27.5 & 27.5 & & 27.5 & 27.5 & & 26.5 & 26.5 & & 26.5 & 26.5 & \\
\hline Total Split (s) & 27.5 & 27.5 & & 27.5 & 27.5 & & 92.5 & 92.5 & & 92.5 & 92.5 & \\
\hline Total Split (\%) & 22.9\% & 22.9\% & & 22.9\% & 22.9\% & & 77.1\% & 77.1\% & & 77.1\% & 77.1\% & \\
\hline Maximum Green (s) & 22.0 & 22.0 & & 22.0 & 22.0 & & 86.6 & 86.6 & & 86.6 & 86.6 & \\
\hline Yellow Time (s) & 3.6 & 3.6 & & 3.6 & 3.6 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.9 & 1.9 & & 1.9 & 1.9 & & 0.9 & 0.9 & & 0.9 & 0.9 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & & 5.5 & & & 5.5 & & & 5.9 & & 5.9 & 5.9 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & & None & None & & Min & Min & & Min & Min & \\
\hline Walk Time (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & \\
\hline Flash Dont Walk (s) & 15.0 & 15.0 & & 15.0 & 15.0 & & 11.0 & 11.0 & & 11.0 & 11.0 & \\
\hline Pedestrian Calls (\#/hr) & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Act Effct Green (s) & & 11.1 & & & 11.1 & & & 58.8 & & 58.8 & 58.8 & \\
\hline Actuated g/C Ratio & & 0.15 & & & 0.15 & & & 0.78 & & 0.78 & 0.78 & \\
\hline v/c Ratio & & 0.25 & & & 0.33 & & & 0.48 & & 0.23 & 0.78 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & \(\downarrow\) & & & 4 & 4 & & & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Control Delay & & 38.1 & & & 14.8 & & & 5.7 & & 4.7 & 12.0 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Total Delay & & 38.1 & & & 14.8 & & & 5.7 & & 4.7 & 12.0 & \\
\hline LOS & & D & & & B & & & A & & A & B & \\
\hline Approach Delay & & 38.1 & & & 14.8 & & & 5.7 & & & 11.1 & \\
\hline Approach LOS & & D & & & B & & & A & & & B & \\
\hline Queue Length 50th (m) & & 5.1 & & & 1.0 & & & 30.8 & & 5.2 & 81.5 & \\
\hline Queue Length 95th (m) & & 19.7 & & & 15.7 & & & 52.6 & & 11.5 & 148.6 & \\
\hline Internal Link Dist (m) & & 306.9 & & & 363.6 & & & 259.0 & & & 210.8 & \\
\hline Turn Bay Length (m) & & & & & & & & & & 100.0 & & \\
\hline Base Capacity (vph) & & 427 & & & 532 & & & 1676 & & 746 & 1703 & \\
\hline Starvation Cap Reductn & & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Spillback Cap Reductn & & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Storage Cap Reductn & & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Reduced v/c Ratio & & 0.12 & & & 0.18 & & & 0.39 & & 0.19 & 0.63 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{13}{|l|}{Area Type: Other} \\
\hline \multicolumn{13}{|l|}{Cycle Length: 120} \\
\hline \multicolumn{13}{|l|}{Actuated Cycle Length: 75.7} \\
\hline \multicolumn{13}{|l|}{Natural Cycle: 90} \\
\hline \multicolumn{13}{|l|}{Control Type: Actuated-Uncoordinated} \\
\hline \multicolumn{13}{|l|}{Maximum v/c Ratio: 0.78} \\
\hline \multicolumn{4}{|l|}{Intersection Signal Delay: 10.2} & \multicolumn{9}{|c|}{Intersection LOS: B} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Intersection Capacity Utilization 120.2\%
Analysis Period (min) 15}} & \multicolumn{9}{|c|}{\multirow[t]{2}{*}{ICU Level of Service H}} \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Splits and Phases: 3: River Road \& Phase 12 South Access/Summerhill St


4: River Road \& Borbridge Avenue
PM Peak Hour
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Intersection} \\
\hline \multicolumn{7}{|l|}{Int Delay, s/veh 2.1} \\
\hline Movement & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & M & & \(\uparrow\) & & & \(\uparrow\) \\
\hline Traffic Vol, veh/h & 7 & 111 & 539 & 6 & 151 & 912 \\
\hline Future Vol, veh/h & 7 & 111 & 539 & 6 & 151 & 912 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Free & Free & Free & Free \\
\hline RT Channelized & - & None & & None & - & None \\
\hline Storage Length & 0 & - & - & - & - & - \\
\hline Veh in Median Storage, \# & 0 & - & 0 & - & - & 0 \\
\hline Grade, \% & 0 & - & 0 & - & - & 0 \\
\hline Peak Hour Factor & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline Mumt Flow & 7 & 111 & 539 & 6 & 151 & 912 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|l|}{Intersection} \\
\hline \multicolumn{13}{|l|}{Int Delay, s/veh 1.6} \\
\hline Movement & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \multicolumn{3}{|c|}{\(\dagger\)} & \multicolumn{3}{|c|}{\({ }_{\text {¢ }}\)} & \multicolumn{3}{|c|}{¢} & \multicolumn{3}{|c|}{¢} \\
\hline Traffic Vol, veh/h & 37 & 0 & 4 & 0 & 0 & 7 & 6 & 501 & 0 & 9 & 860 & 50 \\
\hline Future Vol, veh/h & 37 & 0 & 4 & 0 & 0 & 7 & 6 & 501 & 0 & 9 & 860 & 50 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Stop & Stop & Stop & Stop & Free & Free & Free & Free & Free & Free \\
\hline RT Channelized & - & - & None & - & & None & . & & None & & & None \\
\hline Storage Length & - & - & - & - & & - & & & - & & - & \\
\hline Veh in Median Storage, \# & - & 0 & - & - & 0 & - & & 0 & - & & 0 & \\
\hline Grade, \% & - & 0 & - & - & 0 & - & - & 0 & - & - & 0 & \\
\hline Peak Hour Factor & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline Mvmt Flow & 37 & 0 & 4 & 0 & 0 & 7 & 6 & 501 & 0 & 9 & 860 & 50 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Major/Minor & Minor2 & & \multicolumn{5}{|c|}{Minor1} & \multicolumn{3}{|c|}{Major1} & \multicolumn{4}{|c|}{Major2} \\
\hline Conflicting Flow All & 1420 & 1416 & 885 & & 1418 & 1441 & 501 & & 910 & 0 & 0 & 501 & 0 & 0 \\
\hline Stage 1 & 903 & 903 & - & & 513 & 513 & - & & - & - & - & - & - & \\
\hline Stage 2 & 517 & 513 & - & & 905 & 928 & & & - & - & - & - & - & \\
\hline Critical Hdwy & 7.12 & 6.52 & 6.22 & & 7.12 & 6.52 & 6.22 & & 4.12 & - & - & 4.12 & - & \\
\hline Critical Hdwy Stg 1 & 6.12 & 5.52 & & & 6.12 & 5.52 & & & - & - & - & - & & \\
\hline Critical Hdwy Stg 2 & 6.12 & 5.52 & - & & 6.12 & 5.52 & & & & - & - & & & \\
\hline Follow-up Hdwy & 3.518 & 4.018 & 3.318 & & 3.518 & 4.018 & 3.318 & & 2.218 & - & - & 2.218 & - & \\
\hline Pot Cap-1 Maneuver & 114 & 137 & 344 & & 114 & 133 & 570 & & 748 & - & - & 1063 & - & \\
\hline Stage 1 & 332 & 356 & - & & 544 & 536 & - & & - & - & - & - & - & \\
\hline Stage 2 & 541 & 536 & - & & 331 & 347 & - & & - & - & - & - & - & \\
\hline Platoon blocked, \% & & & & & & & & & & - & - & & - & \\
\hline Mov Cap-1 Maneuver & 110 & 133 & 344 & & 110 & 129 & 570 & & 748 & - & - & 1063 & & \\
\hline Mov Cap-2 Maneuver & 110 & 133 & - & & 110 & 129 & - & & - & - & - & - & - & \\
\hline Stage 1 & 328 & 350 & - & & 538 & 530 & - & & - & - & - & & - & \\
\hline Stage 2 & 528 & 530 & - & & 322 & 341 & - & & - & - & - & - & - & \\
\hline Approach & EB & & & & WB & & & & NB & & & SB & & \\
\hline HCM Control Delay, s & 50.9 & & & & 11.4 & & & & 0.1 & & & 0.1 & & \\
\hline HCM LOS & F & & & & B & & & & & & & & & \\
\hline Minor Lane/Major Mvmt & NBL & NBT & NBR & EBLn1 & NBLn1 & SBL & SBT & SBR & & & & & & \\
\hline Capacity (veh/h) & 748 & - & & 118 & 570 & 1063 & - & - & & & & & & \\
\hline HCM Lane V/C Ratio & 0.008 & - & & 0.347 & 0.012 & 0.008 & - & - & & & & & & \\
\hline HCM Control Delay (s) & 9.9 & 0 & - & 50.9 & 11.4 & 8.4 & 0 & - & & & & & & \\
\hline HCM Lane LOS & A & A & - & F & B & A & A & - & & & & & & \\
\hline HCM 95th \%tile Q(veh) & 0 & - & - & 1.4 & 0 & 0 & - & - & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rangle\) & & & & & & 4 & & & & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & ¢ & & & ¢ & & & \(\dagger\) & & \({ }^{7}\) & \(\hat{\beta}\) & \\
\hline Traffic Volume (vph) & 37 & 5 & 4 & 0 & 5 & 7 & 6 & 501 & 0 & 9 & 860 & 50 \\
\hline Future Volume (vph) & 37 & 5 & 4 & 0 & 5 & 7 & 6 & 501 & 0 & 9 & 860 & 50 \\
\hline Ideal Flow (vphpl) & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Storage Length (m) & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 10.0 & & 0.0 \\
\hline Storage Lanes & 0 & & 0 & 0 & & 0 & 0 & & 0 & 1 & & 0 \\
\hline Taper Length ( m ) & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Frt & & 0.988 & & & 0.921 & & & & & & 0.992 & \\
\hline Flt Protected & & 0.961 & & & & & & 0.999 & & 0.950 & & \\
\hline Satd. Flow (prot) & 0 & 1694 & 0 & 0 & 1643 & 0 & 0 & 1783 & 0 & 1695 & 1770 & 0 \\
\hline Flt Permitted & & 0.760 & & & & & & 0.991 & & 0.516 & & \\
\hline Satd. Flow (perm) & 0 & 1340 & 0 & 0 & 1643 & 0 & 0 & 1768 & 0 & 921 & 1770 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 3 & & & 7 & & & & & & 7 & \\
\hline Link Speed (k/h) & & 50 & & & 50 & & & 80 & & & 80 & \\
\hline Link Distance (m) & & 345.9 & & & 387.3 & & & 489.9 & & & 295.0 & \\
\hline Travel Time (s) & & 24.9 & & & 27.9 & & & 22.0 & & & 13.3 & \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% \\
\hline Adj. Flow (vph) & 37 & 5 & 4 & 0 & 5 & 7 & 6 & 501 & 0 & 9 & 860 & 50 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 46 & 0 & 0 & 12 & 0 & 0 & 507 & 0 & 9 & 910 & 0 \\
\hline Turn Type & Perm & NA & & & NA & & Perm & NA & & Perm & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & , & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & \\
\hline Minimum Split (s) & 23.5 & 23.5 & & 23.5 & 23.5 & & 24.0 & 24.0 & & 24.0 & 24.0 & \\
\hline Total Split (s) & 23.5 & 23.5 & & 23.5 & 23.5 & & 96.5 & 96.5 & & 96.5 & 96.5 & \\
\hline Total Split (\%) & 19.6\% & 19.6\% & & 19.6\% & 19.6\% & & 80.4\% & 80.4\% & & 80.4\% & 80.4\% & \\
\hline Maximum Green (s) & 18.0 & 18.0 & & 18.0 & 18.0 & & 90.6 & 90.6 & & 90.6 & 90.6 & \\
\hline Yellow Time (s) & 3.6 & 3.6 & & 3.6 & 3.6 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.9 & 1.9 & & 1.9 & 1.9 & & 0.9 & 0.9 & & 0.9 & 0.9 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & & 5.5 & & & 5.5 & & & 5.9 & & 5.9 & 5.9 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & & None & None & & Min & Min & & Min & Min & \\
\hline Walk Time (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & \\
\hline Flash Dont Walk (s) & 11.0 & 11.0 & & 11.0 & 11.0 & & 11.0 & 11.0 & & 11.0 & 11.0 & \\
\hline Pedestrian Calls (\#/hr) & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Act Effct Green (s) & & 11.2 & & & 11.2 & & & 49.7 & & 49.7 & 49.7 & \\
\hline Actuated g/C Ratio & & 0.19 & & & 0.19 & & & 0.82 & & 0.82 & 0.82 & \\
\hline v/c Ratio & & 0.18 & & & 0.04 & & & 0.35 & & 0.01 & 0.63 & \\
\hline Control Delay & & 28.8 & & & 21.2 & & & 4.3 & & 3.3 & 7.6 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 4 & & & & & & & \(\uparrow\) & 7 & \(\checkmark\) & \(\frac{1}{\downarrow}\) & \(\checkmark\) \\
\hline Lane Group EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Total Delay & 28.8 & & & 21.2 & & & 4.3 & & 3.3 & 7.6 & \\
\hline LOS & C & & & C & & & A & & A & A & \\
\hline Approach Delay & 28.8 & & & 21.3 & & & 4.3 & & & 7.6 & \\
\hline Approach LOS & C & & & C & & & A & & & A & \\
\hline Queue Length 50th (m) & 4.6 & & & 0.5 & & & 21.3 & & 0.3 & 55.5 & \\
\hline Queue Length 95th (m) & 14.0 & & & 4.7 & & & 35.5 & & 1.3 & 97.1 & \\
\hline Internal Link Dist (m) & 321.9 & & & 363.3 & & & 465.9 & & & 271.0 & \\
\hline Turn Bay Length (m) & & & & & & & & & 10.0 & & \\
\hline Base Capacity (vph) & 443 & & & 545 & & & 1768 & & 921 & 1770 & \\
\hline Starvation Cap Reductn & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Spillback Cap Reductn & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Storage Cap Reductn & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Reduced v/c Ratio & 0.10 & & & 0.02 & & & 0.29 & & 0.01 & 0.51 & \\
\hline Intersection Summary & & & & & & & & & & & \\
\hline Area Type: Other & & & & & & & & & & & \\
\hline Cycle Length: 120 & & & & & & & & & & & \\
\hline Actuated Cycle Length: 60.5 & & & & & & & & & & & \\
\hline Natural Cycle: 70 & & & & & & & & & & & \\
\hline Control Type: Actuated-Uncoordinated & & & & & & & & & & & \\
\hline Maximum v/c Ratio: 0.63 & & & & & & & & & & & \\
\hline Intersection Signal Delay: 7.2 & & & \multicolumn{4}{|c|}{Intersection LOS: A} & & & & & \\
\hline Intersection Capacity Utilization 69.8\% & & & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{ICU Level of Service C}} & & & & & \\
\hline Analysis Period (min) 15 & & & & & & & & & & & \\
\hline
\end{tabular}

Splits and Phases: 5: River Road \& 760 River Access/Atrium Ridge


Future (2029) Total Traffic
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \％ 7 & 性 & 「 & \％＊ & 个4 & 「 & \％\({ }^{1}\) & 个 \(\uparrow\) & F & \({ }^{* *}\) & 个 \(\uparrow\) & F \\
\hline Traffic Volume（vph） & 665 & 1154 & 145 & 186 & 1132 & 121 & 401 & 657 & 401 & 45 & 199 & 237 \\
\hline Future Volume（vph） & 665 & 1154 & 145 & 186 & 1132 & 121 & 401 & 657 & 401 & 45 & 199 & 237 \\
\hline Ideal Flow（vphpl） & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Storage Length（m） & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Storage Lanes & 2 & & 1 & 2 & & 1 & 2 & & 1 & 2 & & 1 \\
\hline Taper Length（m） & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Utill．Factor & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 \\
\hline Ped Bike Factor & 1.00 & & & & & 0.99 & & & 0.99 & 1.00 & & \\
\hline Frt & & & 0.850 & & & 0.850 & & & 0.850 & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（prot） & 3321 & 3357 & 1419 & 3077 & 3262 & 1502 & 3164 & 3390 & 1517 & 2795 & 3202 & 1502 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（perm） & 3320 & 3357 & 1419 & 3077 & 3262 & 1482 & 3164 & 3390 & 1497 & 2793 & 3202 & 1502 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & & 155 & & & 155 & & & 228 & & & 215 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Link Speed（k／h） & & 70 & & & 70 & & & 60 & & & 60 & \\
\hline Link Distance（m） & & 437.3 & & & 544.9 & & & 137.1 & & & 387.0 & \\
\hline Travel Time（s） & & 22.5 & & & 28.0 & & & 8.2 & & & 23.2 & \\
\hline Confl．Peds．（\＃／hr） & 1 & & & & & 1 & & & 1 & 1 & & \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles（\％） & 1\％ & 3\％ & 9\％ & 9\％ & 6\％ & 3\％ & 6\％ & 2\％ & 2\％ & 20\％ & 8\％ & 3\％ \\
\hline Adj．Flow（vph） & 665 & 1154 & 145 & 186 & 1132 & 121 & 401 & 657 & 401 & 45 & 199 & 237 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic（\％）} \\
\hline Lane Group Flow（vph） & 665 & 1154 & 145 & 186 & 1132 & 121 & 401 & 657 & 401 & 45 & 199 & 237 \\
\hline Turn Type & Prot & NA & Perm \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 7 & 4 & & 3 & 8 & \\
\hline Permitted Phases & & & 2 & & & 6 & & & 4 & & & 8 \\
\hline Detector Phase & & 2 & 2 & & 6 & & 7 & 4 & \[
4
\] & 3 & 8 & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrrrrrr} 
\\
Switch Phase & & & & & & & & & & \\
Minimum Initial（s） & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 \\
Minimum Split（s） & 11.8 & 35.1 & 35.1 & 11.8 & 35.1 & 35.1 & 11.8 & 43.6 & 43.6 & 11.8 & 43.6 & 43.6 \\
Total Split（s） & 15.0 & 39.0 & 39.0 & 18.0 & 42.0 & 42.0 & 20.0 & 43.6 & 43.6 & 20.0 & 43.6 & 43.6 \\
Total Split（\％） & \(12.4 \%\) & \(32.3 \%\) & \(32.3 \%\) & \(14.9 \%\) & \(34.8 \%\) & \(34.8 \%\) & \(16.6 \%\) & \(36.2 \%\) & \(36.2 \%\) & \(16.6 \%\) & \(36.2 \%\) & \(36.2 \%\)
\end{tabular}
\begin{tabular}{lrrrrrrrrrrrr} 
& 8.2 & 32.5 & 32.5 & 11.2 & 35.5 & 35.5 & 13.3 & 37.0 & 37.0 & 13.3 & 37.0 & 37.0 \\
Maximum Green（s） & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 \\
Yellow Time（s） & 2.6 & 2.3 & 2.3 & 2.6 & 2.3 & 2.3 & 3.0 & 2.9 & 2.9 & 3.0 & 2.9 & 2.9 \\
All－Red Time（s） & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
Lost Time Adjust（s） & 6.8 & 6.5 & 6.5 & 6.8 & 6.5 & 6.5 & 6.7 & 6.6 & 6.6 & 6.7 & 6.6 & 6.6 \\
Total Lost Time（s） & Lead & Lead & Lead & Lag & Lag & Lag & Lead & Lag & Lag & Lead & Lag & Lag \\
Lead／Lag & Yes \\
Lead－Lag Optimize？ & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
Vehicle Extension（s） & None & C－Min & C－Min & None & C－Min & C－Min & None & Min & Min & None & Min & Min \\
Recall Mode & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 \\
Walk Time（s） & & 21.0 & 21.0 & & 21.0 & 21.0 & & 30.0 & 30.0 & & 30.0 & 30.0 \\
Flash Dont Walk（s） & & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 \\
Pedestrian Calls s（\＃／hr） & & 0.6 & 44.9 & 44.9 & 11.2 & 35.5 & 35.5 & 13.3 & 33.0 & 33.0 & 7.3 & 24.6 \\
Act Effct Green（s） & 20.6 \\
Actuated g／C Ratio & 0.17 & 0.37 & 0.37 & 0.09 & 0.29 & 0.29 & 0.11 & 0.27 & 0.27 & 0.06 & 0.20 & 0.20 \\
v／c Ratio & 1.17 & 0.92 & 0.23 & 0.65 & 1.18 & 0.22 & 1.15 & 0.71 & 0.70 & 0.26 & 0.31 & 0.50 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & 7 & 7 & & 4 & 4 & \(\dagger\) & 7 & & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Control Delay & 138.4 & 50.3 & 5.2 & 64.3 & 129.8 & 3.1 & 143.7 & 43.8 & 22.9 & 57.4 & 40.0 & 10.1 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 138.4 & 50.3 & 5.2 & 64.3 & 129.8 & 3.1 & 143.7 & 43.8 & 22.9 & 57.4 & 40.0 & 10.1 \\
\hline LOS & F & D & A & E & F & A & F & D & C & E & D & B \\
\hline Approach Delay & & 76.8 & & & 110.7 & & & 65.5 & & & 26.9 & \\
\hline Approach LOS & & E & & & F & & & E & & & C & \\
\hline Queue Length 50th (m) & -93.0 & 127.6 & 0.0 & 20.5 & ~155.6 & 0.0 & -52.9 & 69.1 & 34.4 & 4.8 & 19.2 & 3.9 \\
\hline Queue Length 95th (m) & \#157.4 & \#200.5 & 12.1 & 31.6 & \#193.6 & 6.8 & \#81.4 & 80.2 & 62.1 & 10.4 & 26.1 & 21.2 \\
\hline Internal Link Dist (m) & & 413.3 & & & 520.9 & & & 113.1 & & & 363.0 & \\
\hline Turn Bay Length (m) & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Base Capacity (vph) & 568 & 1250 & 626 & 285 & 960 & 545 & 348 & 1054 & 622 & 308 & 982 & 609 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 1.17 & 0.92 & 0.23 & 0.65 & 1.18 & 0.22 & 1.15 & 0.62 & 0.64 & 0.15 & 0.20 & 0.39 \\
\hline
\end{tabular}

\section*{Intersection Summary}

Area Type: Other
Cycle Length: 120.6
Actuated Cycle Length: 120.6
Offset: 63 (52\%), Referenced to phase 2:EBT and \(6: W B T\), Start of Green
Natural Cycle: 125
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.18
Intersection Signal Delay: 78.4
Intersection LOS: E
Intersection Capacity Utilization 98.9\%
ICU Level of Service F
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: River Road \& Earl Armstrong Road

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Intersection} \\
\hline \multicolumn{7}{|l|}{Int Delay, s/veh 0.6} \\
\hline Movement & EBL & EBR & NBL & NBT & SBT & SBR \\
\hline Lane Configurations & * & & & \(\uparrow\) & \(\uparrow\) & \\
\hline Traffic Vol, veh/h & 13 & 4 & 2 & 1573 & 555 & 23 \\
\hline Future Vol, veh/h & 13 & 4 & 2 & 1573 & 555 & 23 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Free & Free & Free & Free \\
\hline RT Channelized & - & None & - & None & - & None \\
\hline Storage Length & 0 & - & - & - & - & - \\
\hline Veh in Median Storage, \# & 0 & - & - & 0 & 0 & - \\
\hline Grade, \% & 0 & - & - & 0 & 0 & - \\
\hline Peak Hour Factor & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline Mvmt Flow & 13 & 4 & 2 & 1573 & 555 & 23 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & & & & 4 & \(\dagger\) & & & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & & ¢ & & & ¢ & & * & \(\hat{\dagger}\) & \\
\hline Traffic Volume (vph) & 63 & 5 & 4 & 24 & 5 & 203 & 2 & 1308 & 15 & 33 & 521 & 7 \\
\hline Future Volume (vph) & 63 & 5 & 4 & 24 & 5 & 203 & 2 & 1308 & 15 & 33 & 521 & 7 \\
\hline Ideal Flow (vphpl) & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Storage Length (m) & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 100.0 & & 0.0 \\
\hline Storage Lanes & 0 & & 0 & 0 & & 0 & 0 & & 0 & 1 & & 0 \\
\hline Taper Length (m) & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Utill. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Frt & & 0.992 & & & 0.882 & & & 0.998 & & & 0.998 & \\
\hline Flt Protected & & 0.958 & & & 0.995 & & & & & 0.950 & & \\
\hline Satd. Flow (prot) & 0 & 1730 & 0 & 0 & 1550 & 0 & 0 & 1746 & 0 & 1679 & 1668 & 0 \\
\hline Flt Permitted & & 0.272 & & & 0.960 & & & & & 0.210 & & \\
\hline Satd. Flow (perm) & 0 & 491 & 0 & 0 & 1496 & 0 & 0 & 1746 & 0 & 371 & 1668 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 2 & & & 106 & & & 1 & & & 1 & \\
\hline Link Speed (k/h) & & 50 & & & 50 & & & 80 & & & 80 & \\
\hline Link Distance (m) & & 318.2 & & & 387.6 & & & 297.0 & & & 234.8 & \\
\hline Travel Time (s) & & 22.9 & & & 27.9 & & & 13.4 & & & 10.6 & \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 0\% & 4\% & 0\% & 3\% & 0\% & 4\% & 8\% & 3\% & 9\% & 0\% \\
\hline Adj. Flow (vph) & 63 & 5 & 4 & 24 & 5 & 203 & 2 & 1308 & 15 & 33 & 521 & 7 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 72 & 0 & 0 & 232 & 0 & 0 & 1325 & 0 & 33 & 528 & 0 \\
\hline Turn Type & Perm & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & \\
\hline Minimum Split (s) & 27.5 & 27.5 & & 27.5 & 27.5 & & 23.9 & 23.9 & & 23.9 & 23.9 & \\
\hline Total Split (s) & 27.5 & 27.5 & & 27.5 & 27.5 & & 102.5 & 102.5 & & 102.5 & 102.5 & \\
\hline Total Split (\%) & 21.2\% & 21.2\% & & 21.2\% & 21.2\% & & 78.8\% & 78.8\% & & 78.8\% & 78.8\% & \\
\hline Maximum Green (s) & 22.0 & 22.0 & & 22.0 & 22.0 & & 96.6 & 96.6 & & 96.6 & 96.6 & \\
\hline Yellow Time (s) & 3.6 & 3.6 & & 3.6 & 3.6 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.9 & 1.9 & & 1.9 & 1.9 & & 0.9 & 0.9 & & 0.9 & 0.9 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & & 5.5 & & & 5.5 & & & 5.9 & & 5.9 & 5.9 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & & None & None & & Min & Min & & Min & Min & \\
\hline Walk Time (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & \\
\hline Flash Dont Walk (s) & 15.0 & 15.0 & & 15.0 & 15.0 & & 11.0 & 11.0 & & 11.0 & 11.0 & \\
\hline Pedestrian Calls (\#/hr) & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Act Efft Green (s) & & 18.3 & & & 18.3 & & & 96.7 & & 96.7 & 96.7 & \\
\hline Actuated g/C Ratio & & 0.14 & & & 0.14 & & & 0.77 & & 0.77 & 0.77 & \\
\hline v/c Ratio & & 1.00 & & & 0.76 & & & 0.99 & & 0.12 & 0.41 & \\
\hline Control Delay & & 158.7 & & & 43.8 & & & 39.2 & & 5.7 & 6.7 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 8.6 & & 0.0 & 0.0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\rangle\) & & & & & & & 4 & & & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Total Delay & 158.7 & & & 43.8 & & & 47.7 & & 5.7 & 6.7 & \\
\hline LOS & F & & & D & & & D & & A & A & \\
\hline Approach Delay & 158.7 & & & 43.8 & & & 47.7 & & & 6.6 & \\
\hline Approach LOS & F & & & D & & & D & & & A & \\
\hline Queue Length 50th (m) & 16.2 & & & 28.1 & & & -330.1 & & 1.9 & 40.7 & \\
\hline Queue Length 95th (m) & \#43.4 & & & 54.8 & & & \#406.8 & & 5.0 & 57.4 & \\
\hline Internal Link Dist (m) & 294.2 & & & 363.6 & & & 273.0 & & & 210.8 & \\
\hline Turn Bay Length (m) & & & & & & & & & 100.0 & & \\
\hline Base Capacity (vph) & 87 & & & 348 & & & 1336 & & 283 & 1276 & \\
\hline Starvation Cap Reductn & 0 & & & 0 & & & 42 & & 0 & 0 & \\
\hline Spillback Cap Reductn & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Storage Cap Reductn & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Reduced v/c Ratio & 0.83 & & & 0.67 & & & 1.02 & & 0.12 & 0.41 & \\
\hline \multicolumn{12}{|l|}{Intersection Summary} \\
\hline \multicolumn{12}{|l|}{Area Type: Other} \\
\hline \multicolumn{12}{|l|}{Cycle Length: 130} \\
\hline \multicolumn{12}{|l|}{Actuated Cycle Length: 126.4} \\
\hline \multicolumn{12}{|l|}{Natural Cycle: 130} \\
\hline \multicolumn{12}{|l|}{Control Type: Actuated-Uncoordinated} \\
\hline \multicolumn{12}{|l|}{Maximum v/c Ratio: 1.00} \\
\hline \multicolumn{4}{|l|}{Intersection Signal Delay: 40.4} & \multicolumn{8}{|l|}{Intersection LOS: D} \\
\hline \multicolumn{4}{|l|}{Intersection Capacity Utilization 106.9\%} & \multicolumn{8}{|l|}{ICU Level of Service G} \\
\hline \multicolumn{12}{|l|}{Analysis Period (min) 15} \\
\hline \multicolumn{12}{|l|}{~ Volume exceeds capacity, queue is theoretically infinite.} \\
\hline \multicolumn{12}{|l|}{Queue shown is maximum after two cycles.} \\
\hline \multicolumn{12}{|l|}{\# 95th percentile volume exceeds capacity, queue may be longer.} \\
\hline \multicolumn{12}{|l|}{Queue shown is maximum after two cycles.} \\
\hline
\end{tabular}

Splits and Phases: 3: River Road \& Phase 12 South Access/Summerhill St


4: River Road \& Borbridge Avenue
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Intersection} \\
\hline Int Delay, s/veh & 9.7 & & & & & \\
\hline Movement & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & * & & \(\hat{p}\) & & \({ }^{7}\) & \(\uparrow\) \\
\hline Traffic Vol, veh/h & 3 & 218 & 1107 & 7 & 102 & 445 \\
\hline Future Vol, veh/h & 3 & 218 & 1107 & 7 & 102 & 445 \\
\hline Conflicting Peds, \#/hr & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Sign Control & Stop & Stop & Free & Free & Free & Free \\
\hline RT Channelized & - & None & - & None & - & None \\
\hline Storage Length & 0 & - & - & - & 850 & - \\
\hline Veh in Median Storage, \# & 0 & - & 0 & - & - & 0 \\
\hline Grade, \% & 0 & - & 0 & - & - & 0 \\
\hline Peak Hour Factor & 100 & 100 & 100 & 100 & 100 & 100 \\
\hline Heavy Vehicles, \% & 2 & 2 & 2 & 2 & 2 & 2 \\
\hline Mvmt Flow & 3 & 218 & 1107 & 7 & 102 & 445 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & 7 & \[
4
\] & & & - & \\
\hline Lane Group & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & * & & \(\uparrow\) & & \({ }^{1}\) & 4 \\
\hline Traffic Volume (vph) & 3 & 218 & 1107 & 7 & 102 & 445 \\
\hline Future Volume (vph) & 3 & 218 & 1107 & 7 & 102 & 445 \\
\hline Ideal Flow (vphpl) & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Storage Length (m) & 0.0 & 0.0 & & 0.0 & 85.0 & \\
\hline Storage Lanes & 1 & 0 & & 0 & 1 & \\
\hline Taper Length (m) & 20.0 & & & & 20.0 & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Frt & 0.867 & & 0.999 & & & \\
\hline Flt Protected & 0.999 & & & & 0.950 & \\
\hline Satd. Flow (prot) & 1545 & 0 & 1783 & 0 & 1695 & 1784 \\
\hline Flt Permitted & 0.999 & & & & 0.115 & \\
\hline Satd. Flow (perm) & 1545 & 0 & 1783 & 0 & 205 & 1784 \\
\hline Right Turn on Red & & Yes & & Yes & & \\
\hline Satd. Flow (RTOR) & 148 & & 1 & & & \\
\hline Link Speed (k/h) & 50 & & 80 & & & 80 \\
\hline Link Distance (m) & 416.9 & & 281.0 & & & 297.0 \\
\hline Travel Time (s) & 30.0 & & 12.6 & & & 13.4 \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% \\
\hline Adj. Flow (vph) & 3 & 218 & 1107 & 7 & 102 & 445 \\
\hline \multicolumn{7}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 221 & 0 & 1114 & 0 & 102 & 445 \\
\hline Turn Type & Prot & & NA & & Perm & NA \\
\hline Protected Phases & 8 & & 2 & & & 6 \\
\hline Permitted Phases & & & & & 6 & \\
\hline Detector Phase & 8 & & 2 & & 6 & 6 \\
\hline \multicolumn{7}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & & 10.0 & & 10.0 & 10.0 \\
\hline Minimum Split (s) & 22.5 & & 22.5 & & 22.5 & 22.5 \\
\hline Total Split (s) & 22.5 & & 77.5 & & 77.5 & 77.5 \\
\hline Total Split (\%) & 22.5\% & & 77.5\% & & 77.5\% & 77.5\% \\
\hline Maximum Green (s) & 18.0 & & 73.0 & & 73.0 & 73.0 \\
\hline Yellow Time (s) & 3.5 & & 3.5 & & 3.5 & 3.5 \\
\hline All-Red Time (s) & 1.0 & & 1.0 & & 1.0 & 1.0 \\
\hline Lost Time Adjust (s) & 0.0 & & 0.0 & & 0.0 & 0.0 \\
\hline Total Lost Time (s) & 4.5 & & 4.5 & & 4.5 & 4.5 \\
\hline \multicolumn{7}{|l|}{Lead/Lag} \\
\hline \multicolumn{7}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & & 3.0 & & 3.0 & 3.0 \\
\hline Recall Mode & None & & Min & & Min & Min \\
\hline Walk Time (s) & 7.0 & & 7.0 & & 7.0 & 7.0 \\
\hline Flash Dont Walk (s) & 11.0 & & 11.0 & & 11.0 & 11.0 \\
\hline Pedestrian Calls (\#/hr) & 0 & & 0 & & 0 & 0 \\
\hline Act Effct Green (s) & 12.3 & & 52.2 & & 52.2 & 52.2 \\
\hline Actuated g/C Ratio & 0.17 & & 0.71 & & 0.71 & 0.71 \\
\hline v/c Ratio & 0.58 & & 0.89 & & 0.71 & 0.35 \\
\hline Control Delay & 19.3 & & 18.9 & & 37.4 & 5.1 \\
\hline Queue Delay & 0.0 & & 1.2 & & 0.0 & 0.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\checkmark\) & & 4 & \(p\) & & \(\downarrow\) \\
\hline Lane Group & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Total Delay & 19.3 & & 20.1 & & 37.4 & 5.1 \\
\hline LOS & B & & C & & D & A \\
\hline Approach Delay & 19.3 & & 20.1 & & & 11.1 \\
\hline Approach LOS & B & & C & & & B \\
\hline Queue Length 50th (m) & 7.6 & & 75.2 & & 5.2 & 15.0 \\
\hline Queue Length 95th (m) & 32.3 & & 195.8 & & \#40.0 & 35.8 \\
\hline Internal Link Dist ( m ) & 392.9 & & 257.0 & & & 273.0 \\
\hline Turn Bay Length ( m ) & & & & & 85.0 & \\
\hline Base Capacity (vph) & 506 & & 1623 & & 186 & 1624 \\
\hline Starvation Cap Reductn & 0 & & 281 & & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & & 0 & & 0 & 0 \\
\hline Storage Cap Reductn & 0 & & 0 & & 0 & 0 \\
\hline Reduced v/c Ratio & 0.44 & & 0.83 & & 0.55 & 0.27 \\
\hline \multicolumn{7}{|l|}{Intersection Summary} \\
\hline \multicolumn{7}{|l|}{Area Type: Other} \\
\hline \multicolumn{7}{|l|}{Cycle Length: 100} \\
\hline \multicolumn{7}{|l|}{Actuated Cycle Length: 74} \\
\hline \multicolumn{7}{|l|}{Natural Cycle: 90} \\
\hline \multicolumn{7}{|l|}{Control Type: Actuated-Uncoordinated} \\
\hline \multicolumn{7}{|l|}{Maximum v/c Ratio: 0.89} \\
\hline \multicolumn{4}{|l|}{Intersection Signal Delay: 17.4} & \multicolumn{3}{|r|}{Intersection LOS: B} \\
\hline Intersection Capacity Utiliz & 96.0\% & & & \multicolumn{3}{|r|}{ICU Level of Service} \\
\hline \multicolumn{7}{|l|}{Analysis Period (min) 15} \\
\hline \multicolumn{7}{|l|}{\# 95th percentile volume exceeds capacity, queue may be longer.} \\
\hline \multicolumn{7}{|l|}{Queue shown is maximum after two cycles.} \\
\hline
\end{tabular}

Splits and Phases: 4: River Road \& Borbridge Avenue

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & 7 & & & 4 & \(\uparrow\) & & & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & & \$ & & & \(\uparrow\) & & \% & \(\uparrow\) & \\
\hline Traffic Volume (vph) & 49 & 5 & 5 & 0 & 5 & 27 & 3 & 1037 & 0 & 9 & 417 & 23 \\
\hline Future Volume (vph) & 49 & 5 & 5 & 0 & 5 & 27 & 3 & 1037 & 0 & 9 & 417 & 23 \\
\hline Ideal Flow (vphpl) & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Storage Length (m) & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 10.0 & & 0.0 \\
\hline Storage Lanes & 0 & & 0 & 0 & & 0 & 0 & & 0 & 1 & & 0 \\
\hline Taper Length (m) & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Utill. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Frt & & 0.989 & & & 0.886 & & & & & & 0.992 & \\
\hline Flt Protected & & 0.960 & & & & & & & & 0.950 & & \\
\hline Satd. Flow (prot) & 0 & 1694 & 0 & 0 & 1581 & 0 & 0 & 1784 & 0 & 1695 & 1770 & 0 \\
\hline Flt Permitted & & 0.740 & & & & & & 0.999 & & 0.294 & & \\
\hline Satd. Flow (perm) & 0 & 1306 & 0 & 0 & 1581 & 0 & 0 & 1783 & 0 & 525 & 1770 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 3 & & & 27 & & & & & & 7 & \\
\hline Link Speed (k/h) & & 50 & & & 50 & & & 80 & & & 80 & \\
\hline Link Distance (m) & & 345.9 & & & 387.3 & & & 489.9 & & & 281.0 & \\
\hline Travel Time (s) & & 24.9 & & & 27.9 & & & 22.0 & & & 12.6 & \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% \\
\hline Adj. Flow (vph) & 49 & 5 & 5 & 0 & 5 & 27 & 3 & 1037 & 0 & 9 & 417 & 23 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 59 & 0 & 0 & 32 & 0 & 0 & 1040 & 0 & 9 & 440 & 0 \\
\hline Turn Type & Perm & NA & & & NA & & Perm & NA & & Perm & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & \\
\hline Minimum Split (s) & 23.1 & 23.1 & & 23.1 & 23.1 & & 23.9 & 23.9 & & 23.9 & 23.9 & \\
\hline Total Split (s) & 23.1 & 23.1 & & 23.1 & 23.1 & & 96.9 & 96.9 & & 96.9 & 96.9 & \\
\hline Total Split (\%) & 19.3\% & 19.3\% & & 19.3\% & 19.3\% & & 80.8\% & 80.8\% & & 80.8\% & 80.8\% & \\
\hline Maximum Green (s) & 18.0 & 18.0 & & 18.0 & 18.0 & & 91.0 & 91.0 & & 91.0 & 91.0 & \\
\hline Yellow Time (s) & 3.6 & 3.6 & & 3.6 & 3.6 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.5 & 1.5 & & 1.5 & 1.5 & & 0.9 & 0.9 & & 0.9 & 0.9 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & & 5.1 & & & 5.1 & & & 5.9 & & 5.9 & 5.9 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & & None & None & & Min & Min & & Min & Min & \\
\hline Walk Time (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & \\
\hline Flash Dont Walk (s) & 11.0 & 11.0 & & 11.0 & 11.0 & & 11.0 & 11.0 & & 11.0 & 11.0 & \\
\hline Pedestrian Calls (\#/hr) & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Act Efft Green (s) & & 12.0 & & & 12.0 & & & 56.5 & & 56.5 & 56.5 & \\
\hline Actuated g/C Ratio & & 0.17 & & & 0.17 & & & 0.78 & & 0.78 & 0.78 & \\
\hline \(\mathrm{v} / \mathrm{C}\) Ratio & & 0.27 & & & 0.11 & & & 0.75 & & 0.02 & 0.32 & \\
\hline Control Delay & & 36.4 & & & 17.2 & & & 11.2 & & 3.3 & 4.4 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\stackrel{ }{*}\) & \(\rightarrow\) & & \(\dagger\) & & & 4 & 4 & \(p\) & & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Total Delay & 36.4 & & & 17.2 & & & 11.2 & & 3.3 & 4.4 & \\
\hline LOS & D & & & B & & & B & & A & A & \\
\hline Approach Delay & 36.4 & & & 17.2 & & & 11.2 & & & 4.4 & \\
\hline Approach LOS & D & & & B & & & B & & & A & \\
\hline Queue Length 50th (m) & 6.4 & & & 0.6 & & & 72.9 & & 0.3 & 16.8 & \\
\hline Queue Length 95th (m) & 21.3 & & & 8.6 & & & 146.0 & & 1.4 & 32.4 & \\
\hline Internal Link Dist (m) & 321.9 & & & 363.3 & & & 465.9 & & & 257.0 & \\
\hline Turn Bay Length (m) & & & & & & & & & 10.0 & & \\
\hline Base Capacity (vph) & 368 & & & 462 & & & 1733 & & 510 & 1720 & \\
\hline Starvation Cap Reductn & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Spillback Cap Reductn & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Storage Cap Reductn & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Reduced v/c Ratio & 0.16 & & & 0.07 & & & 0.60 & & 0.02 & 0.26 & \\
\hline \multicolumn{12}{|l|}{Intersection Summary} \\
\hline \multicolumn{12}{|l|}{Area Type: Other} \\
\hline \multicolumn{12}{|l|}{Cycle Length: 120} \\
\hline \multicolumn{12}{|l|}{Actuated Cycle Length: 72.6} \\
\hline \multicolumn{12}{|l|}{Natural Cycle: 80} \\
\hline \multicolumn{12}{|l|}{Control Type: Actuated-Uncoordinated} \\
\hline \multicolumn{12}{|l|}{Maximum v/c Ratio: 0.75} \\
\hline \multicolumn{3}{|l|}{Intersection Signal Delay: 10.3} & \multicolumn{9}{|c|}{Intersection LOS: B} \\
\hline \multicolumn{3}{|l|}{Intersection Capacity Utilization 79.4\%} & \multicolumn{9}{|c|}{\multirow[t]{2}{*}{ICU Level of Service D}} \\
\hline \multicolumn{3}{|l|}{Analysis Period (min) 15} & & & & & & & & & \\
\hline
\end{tabular}

Splits and Phases: 5: River Road \& 760 River Access/Atrium Ridge

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & \％ & 44 & 「 & \％ & 44 & 「 & \％ & 44 & 「 & \({ }^{171}\) & 44 & F \\
\hline Traffic Volume（vph） & 424 & 1245 & 458 & 420 & 1220 & 45 & 270 & 357 & 297 & 58 & 535 & 825 \\
\hline Future Volume（vph） & 424 & 1245 & 458 & 420 & 1220 & 45 & 270 & 357 & 297 & 58 & 535 & 825 \\
\hline Ideal Flow（vphpl） & 2000 & 1800 & 1800 & 1800 & 2200 & 1800 & 2000 & 1800 & 1800 & 1800 & 1800 & 2400 \\
\hline Storage Length（m） & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Storage Lanes & 2 & & 1 & 2 & & 1 & 2 & & 1 & 2 & & 1 \\
\hline Taper Length（m） & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Util．Factor & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 & 0.97 & 0.95 & 1.00 \\
\hline Ped Bike Factor & 1.00 & & & & & 0.98 & & & 0.99 & 1.00 & & \\
\hline Frt & & & 0.850 & & & 0.850 & & & 0.850 & & & 0.850 \\
\hline Flt Protected & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（prot） & 3654 & 3325 & 1502 & 3288 & 4103 & 1446 & 3584 & 3357 & 1369 & 3257 & 3458 & 2063 \\
\hline Flt Permitted & 0.950 & & & 0.950 & & & 0.950 & & & 0.950 & & \\
\hline Satd．Flow（perm） & 3650 & 3325 & 1502 & 3288 & 4103 & 1423 & 3584 & 3357 & 1351 & 3253 & 3458 & 2063 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd．Flow（RTOR） & & & 232 & & & 155 & & & 297 & & & 375 \\
\hline Link Speed（k／h） & & 70 & & & 70 & & & 60 & & & 60 & \\
\hline Link Distance（m） & & 437.3 & & & 544.9 & & & 137.5 & & & 357.4 & \\
\hline Travel Time（s） & & 22.5 & & & 28.0 & & & 8.3 & & & 21.4 & \\
\hline Confl．Peds．（\＃／hr） & 3 & & & & & 3 & & & 1 & 1 & & \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles（\％） & 2\％ & 4\％ & 3\％ & 2\％ & 3\％ & 7\％ & 4\％ & 3\％ & 13\％ & 3\％ & 0\％ & 0\％ \\
\hline Adj．Flow（vph） & 424 & 1245 & 458 & 420 & 1220 & 45 & 270 & 357 & 297 & 58 & 535 & 825 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic（\％）} \\
\hline Lane Group Flow（vph） & 424 & 1245 & 458 & 420 & 1220 & 45 & 270 & 357 & 297 & 58 & 535 & 825 \\
\hline Turn Type & Prot & NA & Perm \\
\hline Protected Phases & 5 & 2 & & 1 & 6 & & 7 & 4 & & 3 & 8 & \\
\hline Permitted Phases & & & 2 & & & 6 & & & 4 & & & 8 \\
\hline Detector Phase & 5 & 2 & 2 & 1 & 6 & 6 & 7 & 4 & 4 & 3 & 8 & 8 \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial（s） & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 & 5.0 & 10.0 & 10.0 \\
\hline Minimum Split（s） & 11.8 & 34.5 & 34.5 & 11.8 & 34.5 & 34.5 & 11.7 & 43.6 & 43.6 & 11.7 & 43.6 & 43.6 \\
\hline Total Split（s） & 24.0 & 44.0 & 44.0 & 18.0 & 38.0 & 38.0 & 15.0 & 43.6 & 43.6 & 15.0 & 43.6 & 43.6 \\
\hline Total Split（\％） & 19．9\％ & 36．5\％ & 36．5\％ & 14．9\％ & 31．5\％ & 31．5\％ & 12．4\％ & 36．2\％ & 36．2\％ & 12．4\％ & 36．2\％ & 36．2\％ \\
\hline Maximum Green（s） & 17.2 & 37.5 & 37.5 & 11.2 & 31.5 & 31.5 & 8.3 & 37.0 & 37.0 & 8.3 & 37.0 & 37.0 \\
\hline Yellow Time（s） & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 4.2 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 & 3.7 \\
\hline All－Red Time（s） & 2.6 & 2.3 & 2.3 & 2.6 & 2.3 & 2.3 & 3.0 & 2.9 & 2.9 & 3.0 & 2.9 & 2.9 \\
\hline Lost Time Adjust（s） & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Lost Time（s） & 6.8 & 6.5 & 6.5 & 6.8 & 6.5 & 6.5 & 6.7 & 6.6 & 6.6 & 6.7 & 6.6 & 6.6 \\
\hline Lead／Lag & Lag & Lag & Lag & Lead & Lead & Lead & Lead & Lag & Lag & Lead & Lag & Lag \\
\hline Lead－Lag Optimize？ & Yes \\
\hline Vehicle Extension（s） & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 & 3.0 \\
\hline Recall Mode & None & C－Min & C－Min & None & C－Min & C－Min & None & Min & Min & None & Min & Min \\
\hline Walk Time（s） & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 \\
\hline Flash Dont Walk（s） & & 21.0 & 21.0 & & 21.0 & 21.0 & & 30.0 & 30.0 & & 30.0 & 30.0 \\
\hline Pedestrian Calls（\＃／hr） & & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 \\
\hline Act Effct Green（s） & 17.2 & 37.5 & 37.5 & 12.6 & 32.9 & 32.9 & 8.3 & 39.1 & 39.1 & 7.3 & 35.6 & 35.6 \\
\hline Actuated g／C Ratio & 0.14 & 0.31 & 0.31 & 0.10 & 0.27 & 0.27 & 0.07 & 0.32 & 0.32 & 0.06 & 0.30 & 0.30 \\
\hline v／c Ratio & 0.81 & 1.21 & 0.73 & 1.22 & 1.09 & 0.09 & 1.10 & 0.33 & 0.47 & 0.29 & 0.52 & 0.95 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{*}{ }\) & \(\rightarrow\) & 7 & 7 & & 4 & 4 & \(\dagger\) & 7 & & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Control Delay & 63.6 & 138.7 & 25.5 & 169.1 & 96.7 & 0.4 & 137.5 & 32.5 & 6.1 & 57.7 & 37.3 & 42.5 \\
\hline Queue Delay & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Total Delay & 63.6 & 138.7 & 25.5 & 169.1 & 96.7 & 0.4 & 137.5 & 32.5 & 6.1 & 57.7 & 37.3 & 42.5 \\
\hline LOS & E & F & C & F & F & A & F & C & A & E & D & D \\
\hline Approach Delay & & 99.4 & & & 112.2 & & & 54.7 & & & 41.2 & \\
\hline Approach LOS & & F & & & F & & & D & & & D & \\
\hline Queue Length 50th (m) & 46.8 & ~173.8 & 44.9 & \(\sim 6.5\) & ~163.3 & 0.0 & \(\sim 34.3\) & 31.4 & 0.0 & 6.3 & 50.3 & 105.8 \\
\hline Queue Length 95th (m) & \#67.2 & \#212.2 & 82.2 & \#91.4 & \#201.7 & 0.0 & \#59.0 & 43.8 & 18.9 & 12.4 & 65.8 & \#179.5 \\
\hline Internal Link Dist (m) & & 413.3 & & & 520.9 & & & 113.5 & & & 333.4 & \\
\hline Turn Bay Length (m) & 300.0 & & 70.0 & 160.0 & & 150.0 & 150.0 & & 25.0 & 80.0 & & 100.0 \\
\hline Base Capacity (vph) & 521 & 1033 & 626 & 343 & 1119 & 501 & 246 & 1087 & 638 & 224 & 1060 & 892 \\
\hline Starvation Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Spillback Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Storage Cap Reductn & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Reduced v/c Ratio & 0.81 & 1.21 & 0.73 & 1.22 & 1.09 & 0.09 & 1.10 & 0.33 & 0.47 & 0.26 & 0.50 & 0.92 \\
\hline
\end{tabular}

\section*{Intersection Summary}

Area Type: Other
Cycle Length: 120.6
Actuated Cycle Length: 120.6
Offset: 91 (75\%), Referenced to phase 2:EBT and 6:WBT, Start of Green
Natural Cycle: 125
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 1.22
Intersection Signal Delay: 82.8
Intersection LOS: F
Intersection Capacity Utilization 94.1\%
ICU Level of Service F
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 1: River Road \& Earl Armstrong Road


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 4 & & & \(\dagger\) & & & 4 & 4 & & & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & \$ & & & \$ & & & \$ & & \% & F & \\
\hline Traffic Volume (vph) & 39 & 5 & 3 & 5 & 5 & 87 & 4 & 818 & 14 & 141 & 1287 & 15 \\
\hline Future Volume (vph) & 39 & 5 & 3 & 5 & 5 & 87 & 4 & 818 & 14 & 141 & 1287 & 15 \\
\hline Ideal Flow (vphpl) & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Storage Length (m) & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 100.0 & & 0.0 \\
\hline Storage Lanes & 0 & & 0 & 0 & & 0 & 0 & & 0 & 1 & & 0 \\
\hline Taper Length (m) & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Ped Bike Factor & & & & & & & & 1.00 & & & 1.00 & \\
\hline Frt & & 0.991 & & & 0.879 & & & 0.998 & & & 0.998 & \\
\hline Flt Protected & & 0.960 & & & 0.997 & & & & & 0.950 & & \\
\hline Satd. Flow (prot) & 0 & 1731 & 0 & 0 & 1550 & 0 & 0 & 1763 & 0 & 1712 & 1781 & 0 \\
\hline Flt Permitted & & 0.569 & & & 0.984 & & & 0.995 & & 0.356 & & \\
\hline Satd. Flow (perm) & 0 & 1026 & 0 & 0 & 1530 & 0 & 0 & 1755 & 0 & 642 & 1781 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 3 & & & 87 & & & 2 & & & 1 & \\
\hline Link Speed (k/h) & & 50 & & & 50 & & & 80 & & & 80 & \\
\hline Link Distance (m) & & 330.9 & & & 387.6 & & & 283.0 & & & 234.8 & \\
\hline Travel Time (s) & & 23.8 & & & 27.9 & & & 12.7 & & & 10.6 & \\
\hline Confl. Bikes (\#/hr) & & & & & & & & & 2 & & & 1 \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles (\%) & 0\% & 0\% & 0\% & 4\% & 0\% & 3\% & 0\% & 3\% & 2\% & 1\% & 2\% & 0\% \\
\hline Adj. Flow (vph) & 39 & 5 & 3 & 5 & 5 & 87 & 4 & 818 & 14 & 141 & 1287 & 15 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 47 & 0 & 0 & 97 & 0 & 0 & 836 & 0 & 141 & 1302 & 0 \\
\hline Turn Type & Perm & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & \\
\hline Minimum Split (s) & 27.1 & 27.1 & & 27.1 & 27.1 & & 27.9 & 27.9 & & 27.9 & 27.9 & \\
\hline Total Split (s) & 27.1 & 27.1 & & 27.1 & 27.1 & & 92.9 & 92.9 & & 92.9 & 92.9 & \\
\hline Total Split (\%) & 22.6\% & 22.6\% & & 22.6\% & 22.6\% & & 77.4\% & 77.4\% & & 77.4\% & 77.4\% & \\
\hline Maximum Green (s) & 22.0 & 22.0 & & 22.0 & 22.0 & & 87.0 & 87.0 & & 87.0 & 87.0 & \\
\hline Yellow Time (s) & 3.6 & 3.6 & & 3.6 & 3.6 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.5 & 1.5 & & 1.5 & 1.5 & & 0.9 & 0.9 & & 0.9 & 0.9 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & & 5.1 & & & 5.1 & & & 5.9 & & 5.9 & 5.9 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & & None & None & & Min & Min & & Min & Min & \\
\hline Walk Time (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & \\
\hline Flash Dont Walk (s) & 15.0 & 15.0 & & 15.0 & 15.0 & & 15.0 & 15.0 & & 15.0 & 15.0 & \\
\hline Pedestrian Calls (\#/hr) & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Act Effct Green (s) & & 10.6 & & & 10.6 & & & 91.1 & & 91.1 & 91.1 & \\
\hline Actuated g/C Ratio & & 0.09 & & & 0.09 & & & 0.81 & & 0.81 & 0.81 & \\
\hline v/c Ratio & & 0.47 & & & 0.44 & & & 0.59 & & 0.27 & 0.90 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\downarrow\) & & & \(\dagger\) & & & ( & \(\dagger\) & & & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Control Delay & & 60.7 & & & 18.5 & & & 6.1 & & 4.3 & 19.2 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Total Delay & & 60.7 & & & 18.5 & & & 6.1 & & 4.3 & 19.2 & \\
\hline LOS & & E & & & B & & & A & & A & B & \\
\hline Approach Delay & & 60.7 & & & 18.5 & & & 6.1 & & & 17.8 & \\
\hline Approach LOS & & E & & & B & & & A & & & B & \\
\hline Queue Length 50th (m) & & 8.2 & & & 1.8 & & & 46.5 & & 5.3 & 141.4 & \\
\hline Queue Length 95th (m) & & 19.2 & & & 15.7 & & & 79.0 & & 12.1 & \#322.6 & \\
\hline Internal Link Dist (m) & & 306.9 & & & 363.6 & & & 259.0 & & & 210.8 & \\
\hline Turn Bay Length (m) & & & & & & & & & & 00.0 & & \\
\hline Base Capacity (vph) & & 203 & & & 369 & & & 1418 & & 518 & 1439 & \\
\hline Starvation Cap Reductn & & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Spillback Cap Reductn & & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Storage Cap Reductn & & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Reduced v/c Ratio & & 0.23 & & & 0.26 & & & 0.59 & & 0.27 & 0.90 & \\
\hline \multicolumn{13}{|l|}{Intersection Summary} \\
\hline \multicolumn{13}{|l|}{Area Type: Other} \\
\hline \multicolumn{13}{|l|}{Cycle Length: 120} \\
\hline \multicolumn{13}{|l|}{Actuated Cycle Length: 112.7} \\
\hline \multicolumn{13}{|l|}{Natural Cycle: 120} \\
\hline \multicolumn{13}{|l|}{Control Type: Actuated-Uncoordinated} \\
\hline \multicolumn{13}{|l|}{Maximum v/c Ratio: 0.90} \\
\hline \multicolumn{4}{|l|}{Intersection Signal Delay: 14.6} & \multicolumn{4}{|c|}{Intersection LOS: B} & & & & & \\
\hline \multicolumn{4}{|l|}{Intersection Capacity Utilization 134.0\%} & \multicolumn{4}{|c|}{ICU Level of Service H} & & & & & \\
\hline \multicolumn{13}{|l|}{Analysis Period (min) 15} \\
\hline \multicolumn{13}{|l|}{\# 95th percentile volume exceeds capacity, queue may be longer.} \\
\hline \multicolumn{13}{|l|}{Queue shown is maximum after two cycles.} \\
\hline
\end{tabular}

Splits and Phases: 3: River Road \& Phase 12 South Access/Summerhill St


4: River Road \& Borbridge Avenue
PM Peak Hour


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & \(\pm\) & \\
\hline Lane Group & WBL & WBR & NBT & NBR & SBL & SBT \\
\hline Lane Configurations & *T & & \(\uparrow\) & & \({ }^{1}\) & 4 \\
\hline Traffic Volume (vph) & 7 & 165 & 671 & 6 & 218 & 1073 \\
\hline Future Volume (vph) & 7 & 165 & 671 & 6 & 218 & 1073 \\
\hline Ideal Flow (vphpl) & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Storage Length (m) & 0.0 & 0.0 & & 0.0 & 85.0 & \\
\hline Storage Lanes & 1 & 0 & & 0 & 1 & \\
\hline Taper Length (m) & 20.0 & & & & 20.0 & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Frt & 0.870 & & 0.999 & & & \\
\hline Flt Protected & 0.998 & & & & 0.950 & \\
\hline Satd. Flow (prot) & 1549 & 0 & 1783 & 0 & 1695 & 1784 \\
\hline Flt Permitted & 0.998 & & & & 0.350 & \\
\hline Satd. Flow (perm) & 1549 & 0 & 1783 & 0 & 625 & 1784 \\
\hline Right Turn on Red & & Yes & & Yes & & \\
\hline Satd. Flow (RTOR) & 165 & & 1 & & & \\
\hline Link Speed (k/h) & 50 & & 80 & & & 80 \\
\hline Link Distance (m) & 405.6 & & 295.0 & & & 283.0 \\
\hline Travel Time (s) & 29.2 & & 13.3 & & & 12.7 \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% \\
\hline Adj. Flow (vph) & 7 & 165 & 671 & 6 & 218 & 1073 \\
\hline \multicolumn{7}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 172 & 0 & 677 & 0 & 218 & 1073 \\
\hline Turn Type & Perm & & NA & & Perm & NA \\
\hline Protected Phases & & & 2 & & & 6 \\
\hline Permitted Phases & 8 & & & & 6 & \\
\hline Detector Phase & 8 & & 2 & & 6 & 6 \\
\hline \multicolumn{7}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & & 10.0 & & 10.0 & 10.0 \\
\hline Minimum Split (s) & 27.5 & & 23.5 & & 23.9 & 23.9 \\
\hline Total Split (s) & 27.5 & & 92.5 & & 92.5 & 92.5 \\
\hline Total Split (\%) & 22.9\% & & 77.1\% & & 77.1\% & 77.1\% \\
\hline Maximum Green (s) & 22.0 & & 87.0 & & 86.6 & 86.6 \\
\hline Yellow Time (s) & 3.6 & & 3.6 & & 5.0 & 5.0 \\
\hline All-Red Time (s) & 1.9 & & 1.9 & & 0.9 & 0.9 \\
\hline Lost Time Adjust (s) & 0.0 & & 0.0 & & 0.0 & 0.0 \\
\hline Total Lost Time (s) & 5.5 & & 5.5 & & 5.9 & 5.9 \\
\hline \multicolumn{7}{|l|}{Lead/Lag} \\
\hline \multicolumn{7}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & & 3.0 & & 3.0 & 3.0 \\
\hline Recall Mode & None & & Min & & Min & Min \\
\hline Walk Time (s) & 7.0 & & 7.0 & & 7.0 & 7.0 \\
\hline Flash Dont Walk (s) & 15.0 & & 11.0 & & 11.0 & 11.0 \\
\hline Pedestrian Calls (\#/hr) & 0 & & 0 & & 0 & 0 \\
\hline Act Effct Green (s) & 10.9 & & 55.4 & & 54.9 & 54.9 \\
\hline Actuated g/C Ratio & 0.14 & & 0.71 & & 0.71 & 0.71 \\
\hline v/c Ratio & 0.48 & & 0.53 & & 0.49 & 0.85 \\
\hline Control Delay & 12.6 & & 6.6 & & 9.1 & 15.8 \\
\hline Queue Delay & 0.0 & & 0.0 & & 0.0 & 0.7 \\
\hline
\end{tabular}


Splits and Phases: 4: River Road \& Borbridge Avenue

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\rangle\) & & & & & & 4 & & & & \(\downarrow\) & \(\checkmark\) \\
\hline Lane Group & EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Lane Configurations & & ¢ & & & ¢ & & & \(\dagger\) & & \({ }^{7}\) & \(\dagger\) & \\
\hline Traffic Volume (vph) & 37 & 5 & 4 & 0 & 5 & 16 & 6 & 620 & 0 & 29 & 1004 & 50 \\
\hline Future Volume (vph) & 37 & 5 & 4 & 0 & 5 & 16 & 6 & 620 & 0 & 29 & 1004 & 50 \\
\hline Ideal Flow (vphpl) & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 & 1800 \\
\hline Storage Length (m) & 0.0 & & 0.0 & 0.0 & & 0.0 & 0.0 & & 0.0 & 10.0 & & 0.0 \\
\hline Storage Lanes & 0 & & 0 & 0 & & 0 & 0 & & 0 & 1 & & 0 \\
\hline Taper Length ( m ) & 20.0 & & & 20.0 & & & 20.0 & & & 20.0 & & \\
\hline Lane Util. Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Frt & & 0.988 & & & 0.897 & & & & & & 0.993 & \\
\hline Flt Protected & & 0.961 & & & & & & & & 0.950 & & \\
\hline Satd. Flow (prot) & 0 & 1694 & 0 & 0 & 1601 & 0 & 0 & 1784 & 0 & 1695 & 1772 & 0 \\
\hline Flt Permitted & & 0.754 & & & & & & 0.992 & & 0.449 & & \\
\hline Satd. Flow (perm) & 0 & 1329 & 0 & 0 & 1601 & 0 & 0 & 1770 & 0 & 801 & 1772 & 0 \\
\hline Right Turn on Red & & & Yes & & & Yes & & & Yes & & & Yes \\
\hline Satd. Flow (RTOR) & & 4 & & & 16 & & & & & & 4 & \\
\hline Link Speed (k/h) & & 50 & & & 50 & & & 80 & & & 80 & \\
\hline Link Distance (m) & & 345.9 & & & 387.3 & & & 489.9 & & & 295.0 & \\
\hline Travel Time (s) & & 24.9 & & & 27.9 & & & 22.0 & & & 13.3 & \\
\hline Peak Hour Factor & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
\hline Heavy Vehicles (\%) & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% & 2\% \\
\hline Adj. Flow (vph) & 37 & 5 & 4 & 0 & 5 & 16 & 6 & 620 & 0 & 29 & 1004 & 50 \\
\hline \multicolumn{13}{|l|}{Shared Lane Traffic (\%)} \\
\hline Lane Group Flow (vph) & 0 & 46 & 0 & 0 & 21 & 0 & 0 & 626 & 0 & 29 & 1054 & 0 \\
\hline Turn Type & Perm & NA & & & NA & & Perm & NA & & Perm & NA & \\
\hline Protected Phases & & 4 & & & 8 & & & 2 & & & 6 & \\
\hline Permitted Phases & 4 & & & 8 & & & 2 & & & 6 & & \\
\hline Detector Phase & 4 & 4 & & 8 & 8 & & 2 & 2 & & 6 & 6 & \\
\hline \multicolumn{13}{|l|}{Switch Phase} \\
\hline Minimum Initial (s) & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & & 10.0 & 10.0 & \\
\hline Minimum Split (s) & 44.6 & 44.6 & & 27.5 & 27.5 & & 24.0 & 24.0 & & 24.0 & 24.0 & \\
\hline Total Split (s) & 44.6 & 44.6 & & 44.6 & 44.6 & & 75.4 & 75.4 & & 75.4 & 75.4 & \\
\hline Total Split (\%) & 37.2\% & 37.2\% & & 37.2\% & 37.2\% & & 62.8\% & 62.8\% & & 62.8\% & 62.8\% & \\
\hline Maximum Green (s) & 39.1 & 39.1 & & 39.1 & 39.1 & & 69.5 & 69.5 & & 69.5 & 69.5 & \\
\hline Yellow Time (s) & 3.6 & 3.6 & & 3.6 & 3.6 & & 5.0 & 5.0 & & 5.0 & 5.0 & \\
\hline All-Red Time (s) & 1.9 & 1.9 & & 1.9 & 1.9 & & 0.9 & 0.9 & & 0.9 & 0.9 & \\
\hline Lost Time Adjust (s) & & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline Total Lost Time (s) & & 5.5 & & & 5.5 & & & 5.9 & & 5.9 & 5.9 & \\
\hline \multicolumn{13}{|l|}{Lead/Lag} \\
\hline \multicolumn{13}{|l|}{Lead-Lag Optimize?} \\
\hline Vehicle Extension (s) & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & & 3.0 & 3.0 & \\
\hline Recall Mode & None & None & & None & None & & Min & Min & & Min & Min & \\
\hline Walk Time (s) & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & & 7.0 & 7.0 & \\
\hline Flash Dont Walk (s) & 15.0 & 15.0 & & 15.0 & 15.0 & & 11.0 & 11.0 & & 11.0 & 11.0 & \\
\hline Pedestrian Calls (\#/hr) & 0 & 0 & & 0 & 0 & & 0 & 0 & & 0 & 0 & \\
\hline Act Effct Green (s) & & 10.4 & & & 10.4 & & & 75.3 & & 75.3 & 75.3 & \\
\hline Actuated g/C Ratio & & 0.12 & & & 0.12 & & & 0.86 & & 0.86 & 0.86 & \\
\hline v/c Ratio & & 0.29 & & & 0.10 & & & 0.41 & & 0.04 & 0.69 & \\
\hline Control Delay & & 40.2 & & & 22.0 & & & 3.8 & & 2.7 & 7.9 & \\
\hline Queue Delay & & 0.0 & & & 0.0 & & & 0.0 & & 0.0 & 0.0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\stackrel{ }{*}\) & & & & & & & \(\uparrow\) & 7 & , & \(\downarrow\) & \(\downarrow\) \\
\hline Lane Group EBL & EBT & EBR & WBL & WBT & WBR & NBL & NBT & NBR & SBL & SBT & SBR \\
\hline Total Delay & 40.2 & & & 22.0 & & & 3.8 & & 2.7 & 7.9 & \\
\hline LOS & D & & & C & & & A & & A & A & \\
\hline Approach Delay & 40.2 & & & 22.0 & & & 3.8 & & & 7.8 & \\
\hline Approach LOS & D & & & C & & & A & & & A & \\
\hline Queue Length 50th (m) & 7.2 & & & 0.8 & & & 29.2 & & 0.9 & 77.6 & \\
\hline Queue Length 95th (m) & 15.8 & & & 6.7 & & & 46.3 & & 2.7 & 135.7 & \\
\hline Internal Link Dist (m) & 321.9 & & & 363.3 & & & 465.9 & & & 271.0 & \\
\hline Turn Bay Length (m) & & & & & & & & & 10.0 & & \\
\hline Base Capacity (vph) & 608 & & & 738 & & & 1524 & & 689 & 1526 & \\
\hline Starvation Cap Reductn & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Spillback Cap Reductn & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Storage Cap Reductn & 0 & & & 0 & & & 0 & & 0 & 0 & \\
\hline Reduced v/c Ratio & 0.08 & & & 0.03 & & & 0.41 & & 0.04 & 0.69 & \\
\hline Intersection Summary & & & & & & & & & & & \\
\hline Area Type: Other & & & & & & & & & & & \\
\hline Cycle Length: 120 & & & & & & & & & & & \\
\hline Actuated Cycle Length: 87.2 & & & & & & & & & & & \\
\hline Natural Cycle: 120 & & & & & & & & & & & \\
\hline Control Type: Actuated-Uncoordinated & & & & & & & & & & & \\
\hline Maximum v/c Ratio: 0.69 & & & & & & & & & & & \\
\hline Intersection Signal Delay: 7.4 & & & \multicolumn{4}{|c|}{Intersection LOS: A} & & & & & \\
\hline Intersection Capacity Utilization 77.8\% & & & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{ICU Level of Service D}} & & & & & \\
\hline Analysis Period (min) 15 & & & & & & & & & & & \\
\hline
\end{tabular}

Splits and Phases: 5: River Road \& 760 River Access/Atrium Ridge
```


[^0]:    1 License or registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

[^1]:    * If the development has a land use type other than what is presented in the table above, estimates of person-trip generation may be made based on average trip generation characteristics represented in the current edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual.

