patersongroup

Geotechnical Investigation

Proposed Residential Development Summerside West - Phases 4, 5 and 6 Tenth Line Road - Ottawa

Prepared For

2447591 Ontario Inc.

May 14, 2018

Report: PG4049-2

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

1.0	Introduction	Page ₁
1.0		1
2.0	Proposed Development	1
3.0	Method of Investigation3.1Field Investigation3.2Field Survey3.3Laboratory Testing3.4Analytical Testing	3 3
4.0	Observations4.1Surface Conditions4.2Subsurface Profile4.3Groundwater4.4Test Fill Settlement Monitoring Program	5 7
5.0	Discussion5.1Geotechnical Assessment.5.2Site Grading and Preparation5.3Foundation Design5.4Design of Earthquakes5.5Basement Slab5.6Pavement Structure.	9 10 11 12
6.0	Design and Construction Precautions6.1Foundation Drainage and Backfill6.2Protection Against Frost Action6.3Excavation Side Slopes6.4Pipe Bedding and Backfill6.5Groundwater Control6.6Winter Construction6.7Corrosion Potential and Sulphate6.8Landscaping Considerations	15 15 17 19 19 20
7.0	Recommendations	23
8.0	Statement of Limitations	24

Appendices

- Appendix 1 Soil Profile and Test Data Sheets Symbols and Terms Analytical Test Results Atterberg Limits Testing Results Grain Size Distribution Sheets
- Appendix 2 Figure 1 Key Plan Figure 2 - Test Fill Pile Settlement Monitoring Program Drawing PG4049-1 - Test Hole Location Plan Drawing PG4049-3 - Tree Planting Setback Recommendations

1.0 Introduction

Paterson Group (Paterson) was commissioned by 2447591 Ontario Inc. to conduct a preliminary geotechnical investigation for the proposed residential development to be located between Mer Bleue Road and Tenth Line Road, in the City of Ottawa (refer to Figure 1 - Key Plan presented in Appendix 2). The objective of the investigation was to:

- □ determine the subsurface soil and groundwater conditions by means of a boreholes and a monitoring well program.
- □ provide geotechnical recommendations for the foundation design for the proposed buildings and pavement structure design of the proposed development including construction considerations which may affect the design.

The following report has been prepared specifically and solely for the aforementioned project which is described herein. The report contains our findings and includes geotechnical recommendations pertaining to the design and construction of the proposed development as understood at the time of this report.

Investigating the presence or potential presence of contamination on the subject property was not part of the scope of work of this present investigation. Therefore, the present report does not address environmental issues.

2.0 Proposed Development

It is understood that the proposed development will consist of low rise residential dwellings and townhouse style housing. Local roadways and residential driveways are also anticipated for the proposed development. It is further anticipated that the site will be serviced by future municipal services.

3.0 Method of Investigation

North Bay

3.1 Field Investigation

patersongroup

Kinaston

Ottawa

The field program for the current investigation was carried out on February 27 and 28, 2017. At that time, 14 boreholes were completed to a maximum depth of 6.1 m below existing ground surface. The test hole locations were placed in a manner to provide general coverage of the subject site taking into consideration site features and underground utilities. The test hole locations for the current investigation are presented on Drawing PG4049-1 - Test Hole Location Plan included in Appendix 2.

The boreholes were completed using a track-mounted auger drill rig operated by a two person crew. All fieldwork was conducted under the full-time supervision of Paterson personnel under the direction of a senior engineer from the geotechnical division. The testing procedure consisted of augering to the required depths and at the selected locations sampling the overburden.

Sampling and In Situ Testing

Soil samples were collected from the boreholes using a 50 mm diameter splitspoon (SS) sampler, or from the auger flights. The depths at which the auger and split spoon samples were recovered from the test holes are shown as AU, and SS, respectively, on the Soil Profile and Test Data sheets in Appendix 1.

A Standard Penetration Test (SPT) was conducted in conjunction with the recovery of the split spoon samples. The SPT results are recorded as "N" values on the Soil Profile and Test Data sheets. The "N" value is the number of blows required to drive the split spoon sampler 300 mm into the soil after a 150 mm initial penetration using a 63.5 kg hammer falling from a height of 760 mm. This testing was done in general accordance with ASTM D1586-11 - Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils.

Undrained shear strength testing was carried out in cohesive soils using a field vane apparatus.

The overburden thickness was evaluated by a dynamic cone penetration test (DCPT) completed at MW 3B. The DCPT consists of driving a steel drill rod, equipped with a 50 mm diameter cone at the tip, using a 63.5 kg hammer falling from a height of 760 mm. The number of blows required to drive the cone into the soil is recorded for each 300 mm increment.

Subsurface conditions observed in the test holes were recorded in detail in the field. Reference should be made to the Soil Profile and Test Data sheets presented in Appendix 1 for specific details of the soil profile encountered at the test hole locations

Groundwater

Groundwater monitoring wells were installed in all the boreholes to monitor the longterm groundwater level subsequent to the completion of the sampling program. The groundwater observations are discussed in Subsection 4.3 and presented in the Soil Profile and Test Data sheets in Appendix 1.

Sample Storage

All samples from the current investigation will be stored in the laboratory for a period of one month after issuance of this report. They will then be discarded unless we are otherwise directed.

3.2 Field Survey

The test hole locations were determined by Paterson personnel and were located and surveyed in the field by JD Barnes Limited. The locations of the boreholes are presented on Drawing PG4049-1 - Test Hole Location Plan in Appendix 2.

3.3 Laboratory Testing

The soil samples recovered from the our field investigation were examined in our laboratory. 17 Atterberg limits tests were completed on selected silty clay samples. Grain Size distribution (hydrometer) testing was also completed on four (4) selected soil samples and one (1) soil samples submitted for shrinkage testing. The results are presented in Subsection 4.2 of our current report.

3.4 Analytical Testing

One (1) soil sample was submitted for analytical testing to assess the corrosion potential for exposed ferrous metals and the potential of sulphate attacks against subsurface concrete structures. The sample was submitted to determine the concentration of sulphate and chloride, the resistivity and the pH of the sample. The results are presented in Appendix 1 and are discussed further in Subsection 6.7.

4.0 Observations

4.1 Surface Conditions

The subject site is currently undeveloped, agricultural land and is grass covered. McKinnons Creek transects the eastern portion of the property. Several shallow drainage ditches were also observed along the property lines and throughout the site for agricultural drainage purposes. The subject site is relatively flat and slightly below grade of Mer Bleue Road and Tenth Line Road. The site is bordered to the north by a residential development currently under construction, to the east by Tenth Line Road, to the West by Mer Bleue Road and to the south by mostly vacant land and some treed areas. Various piles of fill, topsoil and construction debris were observed along the north perimeter of the subject site.

4.2 Subsurface Profile

Generally, the soil profile encountered at the test hole locations consists of an agriculturally disturbed organic layer overlying a stiff brown silty clay crust followed by a deep, firm grey silty clay deposit. A silty sand layer approximately 1 m in thickness was present between the topsoil layer and silty clay deposit at MW 3A. A DCPT was completed at MW 3B with no practical refusal to a depth of 30 m below the existing ground surface. Reference should be made to the Soil Profile and Test Data sheets in Appendix 1 for the details of the soil profile encountered at each test hole location.

Based on available geological mapping, the bedrock in the area is part of the Lindsay formation, which consists of interbedded limestone and shale. Also, based on available geological mapping, the overburden thickness is expected to range from 25 to 50 m.

Silty Clay

Silty clay was encountered immediately beneath the topsoil at all test hole locations with the exception of MW 3A. The upper portion of the silty clay has been weathered to a firm to very stiff brown crust. The crust extends to depths varying between 1.5 and 3 m. In situ shear vane field testing carried out within the silty clay layer in the lower portion of the weathered crust yielded undrained shear strength values ranging from approximately 31 to 140 kPa. These values are indicative of a firm to very stiff consistency. In situ shear vane field testing carried out within the grey silty clay yielded undrained shear strengths ranging from approximately 24 to 39 kPa. These values are indicative of a soft to firm consistency.

Ditawa Kingston North Bay

BH 15-18 SS 3

BH 16-18 SS 2

Table 1 - Summary of	Atterberg I	_imits Tests									
Sample	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index %	Classification						
BH 1-18 SS 3	n/a	63	26	37	СН						
BH 2-18 SS 2	38.0	75	25	50	СН						
BH 3-18 SS 3	n/a	57	21	35	СН						
BH 4-18 SS 2	49.5	66	20	46	СН						
BH 5-18 SS 2	38.0	65	24	41	СН						
BH 6-18 SS 3	n/a	45	28	17	ML						
BH 7-18 SS 2	37.6	66	22	44	СН						
BH 8-18 SS 2	35.2	73	20	53	СН						
BH 9-18 SS 3	41.2	59	22	37	СН						
BH 10-18 SS 2	42.0	59	22	37	СН						
BH 11-18 SS 3	65.2	60	22	38	СН						
BH 12-18 SS 2	40.1	72	24	48	СН						
BH 12-18 SS 3	n/a	70	24	46	СН						
BH 13-18 SS 3	38.7	65	22	43	СН						
BH 14-18 SS 2	47.2	77	25	52	СН						

The results of the shrinkage testing of BH 4-18 - SS 2 resulted in a shrinkage limit of 20% with a shrinkage ratio of **1.80**. Sieve analysis and hydrometer testing was completed on selected silty clay samples collected between design underside of footing and 3.5 m depth below finished grade. The results of our testing are presented in the Grain Size Distribution sheets presented in Appendix 1.

59

73

n/a

47.2

24

25

35

48

СН

CH

4.3 Groundwater

Groundwater level readings were recorded on May 2, 2017 at the monitoring well locations. The groundwater level readings are presented in the Soil Profile and Test Data sheets in Appendix 1, and in Table 2 below. Long-term groundwater level can also be estimated based on the observed colour, moisture levels and consistency of the recovered soil samples. Based on these observations, the long-term groundwater level is expected between 1.5 to 2.5 m depth. It should be noted that groundwater levels are subject to seasonal fluctuations, therefore the groundwater levels could vary at the time of construction.

It should be noted that groundwater levels presented in the following table were recorded after heavy rain events and spring melting. Therefore, the groundwater levels within the monitoring wells had not stabilized at the time of recording. To accurately assess the groundwater levels, quarterly monitoring events will be completed to establish the long-term groundwater levels.

Table 2 - Summary of Groundwater Level Readings										
Test Hole	Ground	Groundwa	ater Levels, m	Describer Date						
Number	Elevation, m	Depth	Elevation	Recording Date						
MW 1A	88.76	0.19	88.57	May 2, 2017						
MW 1B	86.76	0.20	86.56	May 2, 2017						
MW 2A	86.40	0.29	86.11	May 2, 2017						
MW 2B	86.40	0.30	86.10	May 2, 2017						
MW 3A	86.82	0.12	86.70	May 2, 2017						
MW 3B	86.82	0.28	86.54	May 2, 2017						
MW 4A	86.41	0.48	85.93	May 2, 2017						
MW 4B	86.41	0.34	86.07	May 2, 2017						
MW 5A	86.55	0.60	85.95	May 2, 2017						
MW 5B	86.55	0.38	86.17	May 2, 2017						
MW 6A	86.17	0.62	85.55	May 2, 2017						
MW 6B	86.17	0.10	86.07	May 2, 2017						
MW 7A	86.60	0.38	86.22	May 2, 2017						
MW 7B	86.60	0.17	86.43	May 2, 2017						

4.4 Test Fill Settlement Monitoring Program

The test fill pile settlement monitoring program was initiated in July 2017 by placing silty clay fill over the existing ground surface and installing two (2) settlement plates at each test fill pile to accurately monitor on-going settlement. On July 4, 2017, SP1B and SP2B, and SP1C and SP2C were installed within Test Fill Piles B and C, respectively. SP1A and SP2A were installed within test pile A on July 6, 2017 and the initial survey was completed the same day. SP1D and SP2D, and SP1E and SP2E were installed within Test Fill Piles D and E, respectively, on July 13, 2017 and the initial surveys were completed on July 14, 2017.

The majority of the fill material consisted of brown silty clay, placed in several lifts and compacted using the bucket of a hydraulic shovel. The piles were shaped with a 1 percent slope in order to shed water from the surface.

As part of the settlement monitoring program, a total of five (5) temporary benchmarks (TBM) consisting of a steel settlement monitoring plate were installed approximately 1.6 m below the ground surface at strategic locations adjacent to each of the test fill piles. Geodetic elevations were provided for each of the temporary benchmarks by Agrodrain Systems Limited (ASL).

The results of our survey are presented in Figure 2 - Test Fill Settlement Monitoring Program in Appendix 2. Total settlement of less than 25 mm was observed at all of the test fill piles, except Test Fill Pile A where total settlement of less than 35 mm was recorded up to May 2018. Less than 5 mm of settlement was observed at all settlement monitoring plates over the last 6 months. Therefore, it is expected that majority of the primary settlement has occurred to date.

Based on the settlement data recorded, a permissible grade raise has been updated for the subject site. Our permissible grade raise recommendations for the subject site are presented in Subsection 5.3.

5.0 Discussion

5.1 Geotechnical Assessment

From a geotechnical perspective, the subject site is satisfactory for the proposed residential development. However, due to the presence of the sensitive silty clay layer, the proposed development will be subjected to grade raise restrictions.

The above and other considerations are further discussed in the following sections.

5.2 Site Grading and Preparation

Stripping Depth

Topsoil and deleterious fill, such as those containing organic materials, should be stripped from under any buildings, paved areas, pipe bedding and other settlement sensitive structures.

Fill Placement

Fill used for grading beneath the building areas should consist, unless otherwise specified, of clean imported granular fill, such as Ontario Provincial Standard Specifications (OPSS) Granular A or Granular B Type II. Granular material should be tested and approved prior to delivery to the site. The fill should be placed in loose lifts of 300 mm thick or less and compacted using suitable compaction equipment for the lift thickness. Fill placed beneath the building areas should be compacted to at least 98% of the Standard Proctor Maximum Dry Density (SPMDD).

Non-specified existing fill along with site-excavated soil can be used as general landscaping fill and beneath parking areas where settlement of the ground surface is of minor concern. In landscaped areas, these materials should be spread in thin lifts and at least compacted by the tracks of the spreading equipment to minimize voids. If these materials are to be used to build up the subgrade level for areas to be paved, they should be compacted in thin lifts to a minimum density of 95% of the SPMDD. Non-specified existing fill and site-excavated soils are not suitable for use as backfill against foundation walls unless a composite drainage blanket connected to a perimeter drainage system is provided.

5.3 Foundation Design

Bearing Resistance Values

Using continuously applied loads, footings for the proposed buildings can be designed using the bearing resistance values presented in Table 3.

Table 3 - Bearing Resistance Values										
Bearing Surface	Bearing Resistance Value at SLS (kPa)	Factored Bearing Resistance Value at ULS (kPa)								
Stiff Silty Clay	75	140								
Firm Silty Clay 60 125										
Note: Strip footings, up to 1.5 m wide, and pad footings, up to 3 m wide, can be designed using the above										

noted bearing resistance values.

The bearing resistance values are provided on the assumption that the footings will be placed on undisturbed soil bearing surfaces. An undisturbed soil bearing surface consists of one from which all topsoil and deleterious materials, such as loose, frozen or disturbed soil, whether in situ or not, have been removed, prior to the placement of concrete for footings.

Bearing resistance values for footing design should be determined on a per lot basis at the time of construction.

Lateral Support

The bearing medium under footing-supported structures is required to be provided with adequate lateral support with respect to excavations and different foundation levels. Adequate lateral support is provided to the in-situ bearing medium soils above the groundwater table when a plane extending down and out from the bottom edge of the footing at a minimum of 1.5H:1V passes only through in situ soil of the same or higher capacity as the bearing medium soil.

Settlement/Grade Raise

Consideration must be given to potential settlements which could occur due to the presence of the silty clay deposit and the combined loads from the proposed footings, any groundwater lowering effects, and grade raise fill.

Generally, the potential long term settlement is evaluated based on the compressibility characteristics of the silty clay. A test fill settlement monitoring program was recently completed for the subject site to accurately model the site permissible grade raise recommendations. Based on the test fill monitoring program results, a permissible grade raise restriction of **1.3 m** above original ground surface is recommended for grading within 4 m of the proposed buildings and a permissible grade raise of **1.5 m** is recommended for roadways. It should be noted that the abovenoted permissible grade raise value is based on the results of our test fill settlement monitoring program. Figure 2 - Test Fill Pile Settlement Monitoring Program in Appendix 2 presents the results of our test fill settlement to date.

The total and differential settlements will be dependent on characteristics of the proposed buildings. For design purposes, the total and differential settlements are estimated to be 25 and 20 mm, respectively. A post-development groundwater lowering of 0.5 m was assumed.

The potential post construction total and differential settlements are dependent on the position of the long term groundwater level when buildings are situated over deposits of compressible silty clay. Efforts can be made to reduce the impacts of the proposed development on the long term groundwater level by placing clay dykes in the service trenches, reducing the sizes of paved areas, leaving green spaces to allow for groundwater recharge or limiting planting of trees to areas away from the buildings. However, it is not economically possible to control the groundwater level.

To reduce potential long term liabilities, consideration should be given to accounting for a larger groundwater lowering and to provide means to reduce long term groundwater lowering (e.g. clay dykes, restriction on planting around the dwellings, etc). Building on silty clay deposits increases the likelihood of movements and therefore of cracking. The use of steel reinforcement in foundations placed at key structural locations will tend to reduce foundation cracking compared to unreinforced foundations.

5.4 Design for Earthquakes

A seismic site response **Class E** should be used for design of the proposed buildings at the subject site according to the OBC 2012. The soils underlying the site are not susceptible to liquefaction.

5.6 Basement Slab

With the removal of all topsoil and deleterious fill, containing organic matter, within the footprints of the proposed buildings, the native soil surface will be considered an acceptable subgrade on which to commence backfilling for floor slab construction. Any soft areas should be removed and backfilled with appropriate backfill material. OPSS Granular B Type II, with a maximum particle size of 50 mm, are recommended for backfilling below the floor slab. It is recommended that the upper 200 mm of sub-slab fill consist of 19 mm clear crushed stone.

5.7 Pavement Structure

For design purposes, the pavement structure presented in the following tables could be used for the design of driveways, local residential streets and roadways with bus traffic. It should be noted that for residential driveways and car only parking areas, an Ontario Traffic Category A is applicable. For local roadways and roadways with bus traffic, an Ontario Traffic Category B and Category D should be used for design purposes, respectively.

Table 4 - Recommended Pavement Structure - Driveways								
Thickness Material Description								
50	50 Wear Course - HL 3 or Superpave 12.5 Asphaltic Concrete							
150	BASE - OPSS Granular A Crushed Stone							
300	SUBBASE - OPSS Granular B Type II							
SUBGRADE - Either fill, in situ soil or OPSS Granular B Type I or II material placed over in situ soil or fill								

Thickness (mm)	Material Description							
40 Wear Course - Superpave 12.5 Asphaltic Concrete								
50 Binder Course - Superpave 19.0 Asphaltic Concrete								
150	BASE - OPSS Granular A Crushed Stone							
400 SUBBASE - OPSS Granular B Type II								

Thickness	Pavement Structure - Roadways with Bus Traffic Material Description							
mm								
40	Wear Course - Superpave 12.5 Asphaltic Concrete							
50	Upper Binder Course - Superpave 19.0 Asphaltic Concrete							
50	Lower Binder Course - Superpave 19.0 Asphaltic Concrete							
150	BASE - OPSS Granular A Crushed Stone							
600	SUBBASE - OPSS Granular B Type II							
SUBGRADE - Either fill, in situ soil or OPSS Granular B Type I or II material placed over in situ soil or fill								

If soft spots develop in the subgrade during compaction or due to construction traffic, the affected areas should be excavated and replaced with OPSS Granular B Type II material. Weak subgrade conditions may be experienced over service trench fill materials. This may require the use of a geotextile, thicker subbase or other measures that can be recommended at the time of construction as part of the field observation program.

Minimum Performance Graded (PG) 58-34 asphalt cement should be used for driveways and local roadways and PG 64-34 asphalt cement should be used for roadways with bus traffic. The pavement granular base and subbase should be placed in maximum 300 mm thick lifts and compacted to a minimum of 100% of the material's SPMDD using suitable vibratory equipment.

Pavement Structure Drainage

Satisfactory performance of the pavement structure is largely dependent on the contact zone between the subgrade material and the base stone in a dry condition. Failure to provide adequate drainage under conditions of heavy wheel loading can result in the fine subgrade soil being pumped into the voids in the stone subbase, thereby reducing load carrying capacity.

Due to the low permeability of the subgrade materials consideration should be given to installing subdrains during the pavement construction as per City of Ottawa standards. The subdrain inverts should be approximately 300 mm below subgrade level. The subgrade surface should be crowned to promote water flow to the drainage lines.

6.0 Design and Construction Precautions

6.1 Foundation Drainage and Backfill

A perimeter foundation drainage system is recommended for proposed structures. The system should consist of a 100 to 150 mm diameter, geotextile-wrapped, perforated, corrugated, plastic pipe, surrounded on all sides by 150 mm of 10 mm clear crushed stone, placed at the footing level around the exterior perimeter of the structure. The pipe should have a positive outlet, such as a gravity connection to the storm sewer.

Backfill against the exterior sides of the foundation walls should consist of free-draining, non frost susceptible granular materials. The site materials will be frost susceptible and, as such, are not recommended for re-use as backfill unless a composite drainage system (such as system Platon or Miradrain G100N) connected to a drainage system is provided.

6.2 **Protection Against Frost Action**

Perimeter footings of heated structures are required to be insulated against the deleterious effect of frost action. A minimum 1.5 m thick soil cover (or equivalent) should be provided in this regard.

A minimum of 2.1 m thick soil cover (or equivalent) should be provided for other exterior unheated footings.

6.3 Excavation Side Slopes

The excavations for the proposed development will be mostly through a sensitive grey silty clay. Where excavation is above the groundwater level to a depth of approximately 3 m, the excavation side slopes should be stable in the short term at 1H:1V. Flatter slopes could be required for deeper excavations or for excavation below the groundwater level. Where such side slopes are not permissible or practical, temporary shoring should be used. The subsoil at this site is considered to be mainly a Type 2 or 3 soil according to the Occupational Health and Safety Act and Regulations for Construction Projects.

The slope cross-sections recommended above are for temporary slopes. Excavated soil should not be stockpiled directly at the top of excavations and heavy equipment should be kept away from the excavation sides.

It is recommended that a trench box be used at all times to protect personnel working in trenches with steep or vertical sides. It is expected that services will be installed by "cut and cover" methods and excavations will not be left open for extended periods of time.

It is expected that deep service trenches in excess of 3 m will be completed using a temporary shoring system designed by a structural engineer, such as stacked trench boxes in conjunction with steel plates. The trench boxes should be installed to ensure that the excavation sidewalls are tight to the outside of the trench boxes and that the steel plates are extended below the base of the excavation to prevent basal heave (if required).

Slopes in excess of 3 m in height should be periodically inspected by the geotechnical consultant in order to detect if the slopes are exhibiting signs of distress.

Excavation Base Stability

The base of supported excavations can fail by three (3) general modes:

- □ Shear failure within the ground caused by inadequate resistance to loads imposed by grade difference inside and outside of the excavation,
- Piping from water seepage through granular soils, and
- □ Heave of layered soils due to water pressures confined by intervening low permeability soils.

Shear failure of excavation bases is typically rare in granular soils if adequate lateral support is provided. Inadequate dewatering can cause instability in excavations made through granular or layered soils. The potential for base heave in cohesive soils should be determined for stability of flexible retaining systems.

The factor of safety with respect to base heave, FS_{b} , is:

$$FS_{b} = N_{b}s_{u}/\sigma_{z}$$

where:

 $N_{\scriptscriptstyle b}$ - stability factor dependent upon the geometry of the excavation and given in Figure 1 on the following page.

s_u - undrained shear strength of the soil below the base level

 σ_z - total overburden and surcharge pressures at the bottom of the excavation

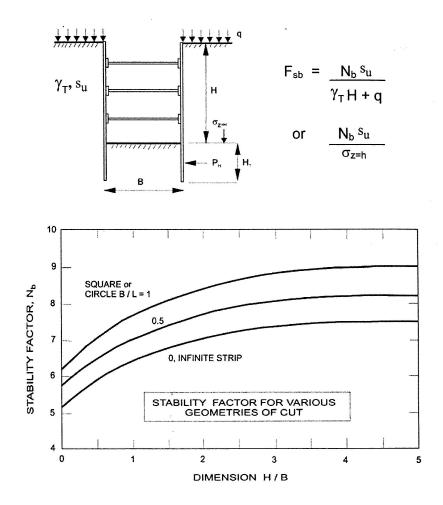


Figure 1 - Stability Factor for Various Geometries of Cut

In the case of soft to firm clays, a factor of safety of 2 is recommended for base stability.

6.4 Pipe Bedding and Backfill

patersongroup

Kingston

Ottawa

North Bay

Bedding and backfill materials should be in accordance with the most recent Material Specifications and Standard Detail Drawings from the City of Ottawa. These recommendations are for standard, open cut excavation placed services.

The pipe bedding for sewer and water pipes should consist of at least 150 mm of OPSS Granular A material. Where the bedding is located within the firm grey silty clay, the thickness of the bedding material should be increased to a minimum of 300 mm. The material should be placed in maximum 300 mm thick lifts and compacted to a minimum of 95% of its SPMDD. The bedding material should extent at least to the spring line of the pipe.

The cover material, which should consist of OPSS Granular A, should extend from the spring line of the pipe to at least 300 mm above the obvert of the pipe. The material should be placed in maximum 300 mm thick lifts and compacted to a minimum of 95% of its SPMDD.

Generally, it should be possible to re-use the moist (not wet) brown silty clay above the cover material if the excavation and filling operations are carried out in dry weather conditions. Wet silty clay materials will be difficult to re-use, as the high water contents make compacting impractical without an extensive drying period.

Where hard surface areas are considered above the trench backfill, the trench backfill material within the frost zone (about 1.8 m below finished grade) should match the soils exposed at the trench walls to minimize differential frost heaving. The trench backfill should be placed in maximum 300 mm thick loose lifts and compacted to a minimum of 95% of the material's SPMDD.

To reduce long-term lowering of the groundwater level at this site, clay seals should be provided in the service trenches. The seals should be at least 1.5 m long (in the trench direction) and should extend from trench wall to trench wall. The seals should extend from the frost line and fully penetrate the bedding, subbedding and cover material. The barriers should consist of relatively dry and compactable brown silty clay placed in maximum 225 mm thick loose layers and compacted to a minimum of 95% of the SPMDD. The clay seals should be placed at the site boundaries and at strategic locations at no more than 60 m intervals in the service trenches. Periodic inspection of the clay seal placement work should be completed by Paterson personnel during servicing installation work.

Bedding for Thrust Blocks

To increase the vertical allowable bearing capacity to 100 kPa or greater, Paterson suggests the following alternative bedding changes at the thrust block locations:

Place a granular bedding to a minimum thickness of 400 mm using OPSS Granular A or OPSS Granular B, Type II compacted to 95% of the material's standard Proctor maximum dry density.

The bearing medium under the thrust blocks is required to be provided with adequate lateral support with respect to excavations and different foundation levels. Adequate lateral support is provided to the engineered fill and/or in-situ bearing medium soils when a plane extending down and out from the bottom edge of the thrust block at a minimum of 1.5H:1V passes only through in situ soil of the same or higher capacity as the bearing medium soil.

6.5 Groundwater Control

Due to the relatively impervious nature of the silty clay materials, it is anticipated that groundwater infiltration into the excavations should be low and controllable using open sumps. Pumping from open sumps should be sufficient to control the groundwater influx through the sides of shallow excavations.

Permit to Take Water

A temporary Ministry of the Environment and Climate Change (MOECC) permit to take water (PTTW) may be required for this project if more than 400,000 L/day of ground and/or surface water is to be pumped during the construction phase. A minimum 4 to 5 months should be allowed for completion of the PTTW application package and issuance of the permit by the MOECC.

For typical ground or surface water volumes, being pumped during the construction phase, between 50,000 to 400,000 L/day, it is required to register on the Environmental Activity and Sector Registry (EASR). A minimum of two to four weeks should be allotted for completion of the EASR registration and the Water Taking and Discharge Plan to be prepared by a Qualified Person as stipulated under O.Reg. 63/16. If a project qualifies for a PTTW based upon anticipated conditions, an EASR will not be allowed as a temporary dewatering measure while awaiting the MOECC review of the PTTW application.

The contractor should be prepared to direct water away from all bearing surfaces and subgrades, regardless of the source, to prevent disturbance to the founding medium.

6.6 Winter Construction

The subsurface conditions at this site mostly consist of frost susceptible materials. In presence of water and freezing conditions ice could form within the soil mass. Heaving and settlement upon thawing could occur. Precautions should be taken if winter construction is considered for this project.

In the event of construction during below zero temperatures, the founding stratum should be protected from freezing temperatures by the use of straw, propane heaters, tarpaulins or other suitable means. In this regard, the base of the excavations should be insulated from sub-zero temperatures immediately upon exposure and until such time as heat is adequately supplied to the building and the footings are protected with sufficient soil cover to prevent freezing at founding level.

The trench excavations should be constructed in a manner that will avoid the introduction of frozen materials into the trenches. As well, pavement construction is difficult during winter. The subgrade consists of frost susceptible soils which will experience total and differential frost heaving as the work takes place. In addition, the introduction of frost, snow or ice into the pavement materials, which is difficult to avoid, could adversely affect the performance of the pavement structure. Additional information could be provided, if required.

6.7 Corrosion Potential and Sulphate

One (1) sample was submitted for testing. The analytical test results of the soil sample indicate that the sulphate content is less than 0.01%. These results along with the chloride and pH value are indicative that Type 10 Portland cement (normal cement) would be appropriate for this site. The results of the resistivity indicate the presence of a moderate to very aggressive environment for exposed ferrous metals at this site, which is typical of silty clay samples submitted for the subject area. It is anticipated that standard measures for corrosion protection are sufficient for services placed within the silty clay deposit.

6.8 Landscaping Considerations

Tree Planting Restrictions

In accordance with the City of Ottawa Tree Planting in Sensitive Marine Clay Soils (2017 Guidelines), Paterson completed a soils review of the site to determine applicable tree planting setbacks. Atterberg limits testing was completed for recovered silty clay samples at selected locations throughout the subject site. Sieve analysis testing was also completed on selected soil samples. The abovenoted test results were completed between design underside of footing elevation and a 3.5 m depth below finished grade. The results of our testing are presented in Table 1 in Subsection 4.1 and in Appendix 1.

Based on the results of our review, the two tree planting setback areas are present within the proposed development. The two areas are detailed below and have been outlined in Drawing PG4049-3 - Tree Planting Setback Recommendations presented in Appendix 2.

Area 1 - Low to Medium Sensitivity Area

A low to medium sensitivity clay soil was encountered between design underside of footing elevations and 3.5 m below finished grade as per City Guidelines at the areas outlined in Drawing PG4049-3 - Tree Planting Setback Recommendations in Appendix 2. Based on our Atterberg Limits test results, the modified plasticity limit generally does not exceed 40% in these areas. The following tree planting setbacks are recommended for the low to medium sensitivity area. Large trees (mature height over 14 m) can be planted within these areas provided a tree to foundation setback equal to the full mature height of the tree can be provided (e.g. in a park or other green space). Tree planting setback limits may be reduced to 4.5 m for small (mature tree height up to 7.5m) and medium size trees (mature tree height 7.5 m to 14 m) provided that the conditions noted below are met.

Area 2 - High Sensitivity Area

A high sensitivity clay soil was encountered between design underside of footing elevations and 3.5 m below finished grade as per City Guidelines at the areas outlined in Drawing PG4049-3 - Tree Planting Setback Recommendations in Appendix 2. Based on our Atterberg Limits test results, the modified plasticity limit generally exceeds 40%. The following tree planting setbacks are recommended for these high sensitivity areas. Large trees (mature height over 14 m) can be planted within these provided a tree to foundation setback equal to the full mature height of the tree can be provided (e.g. in a park or other green space). Tree planting setback limits is 7.5 m for small (mature tree height up to 7.5m) and medium size trees (mature tree height 7.5 m to 14 m) provided that the following conditions are met:

- □ The underside of footing (USF) is 2.1 m or greater below the lowest finished grade must be satisfied for footings within 10 m from the tree, as measured from the centre of the tree trunk and verified by means of the Grading Plan as indicated procedural changes below.
- □ A small tree must be provided with a minimum of 25 m³ of available soil volume while a medium tree must be provided with a minimum of 30 m³ of available soil volume, as determined by the Landscape Architect. The developer is to ensure that the soil is generally un-compacted when backfilling in street tree planting locations.
- □ The tree species must be small (mature tree height up to 7.5 m) to medium size (mature tree height 7.5 m to 14 m) as confirmed by the Landscape Architect.

- □ The foundation walls are to be reinforced at least nominally (minimum of two upper and two lower 15M bars in the foundation wall).
- Grading surround the tree must promote drainage to the tree root zone (in such a manner as not to be detrimental to the tree), as noted on the subdivision Grading Plan.

Swimming Pools, Aboveground Hot Tubs, Decks and Additions

The in-situ soils are considered to be acceptable for swimming pools. Above ground swimming pools must be placed at least 5 m away from the residence foundation and neighbouring foundations. Otherwise, pool construction is considered routine, and can be constructed in accordance with the manufacturer's requirements.

Additional grading around the hot tub should not exceed permissible grade raises. Otherwise, hot tub construction is considered routine, and can be constructed in accordance with the manufacturer's specifications.

Additional grading around proposed deck or addition should not exceed permissible grade raises. Otherwise, standard construction practices are considered acceptable.

7.0 Recommendations

It is recommended that the following be completed once the master plan and site development are determined:

- **Q** Review detailed grading plan(s) from a geotechnical perspective.
- Observation of all bearing surfaces prior to the placement of concrete.
- Periodic observation of the condition of unsupported excavation side slopes in excess of 3 m in height, if applicable.
- Observation of all subgrades prior to placing backfilling materials.
- Observation of clay seal placement at specified locations.
- □ Field density tests to ensure that the specified level of compaction has been achieved.
- Sampling and testing of the bituminous concrete including mix design reviews.

A report confirming that these works have been conducted in general accordance with Paterson's recommendations could be issued upon request, following the completion of a satisfactory material testing and observation program by the geotechnical consultant.

8.0 Statement of Limitations

The recommendations made in this report are in accordance with Paterson's present understanding of the project. Paterson requests permission to review the grading plan once available. Paterson's recommendations should be reviewed when the drawings and specifications are complete.

The client should be aware that any information pertaining to soils and the test hole log are furnished as a matter of general information only. Test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes.

A soils investigation is a limited sampling of a site. Should any conditions at the site be encountered which differ from those at the test locations, Paterson requests to be notified immediately in order to permit reassessment of the recommendations.

The present report applies only to the project described in this document. Use of this report for purposes other than those described herein or by person(s) other than 2447591 Ontario Inc. or their agent(s) is not authorized without review by this firm for the applicability of our recommendations to the altered use of the report.

Paterson Group Inc.

Colin Belcourt, M.Eng.

Report Distribution:

- □ 2447591 Ontario Inc. (4 copies)
- Paterson Group (1 copy)

David J. Gilbert, P.Eng.

APPENDIX 1

SOIL PROFILE AND TEST DATA SHEETS

SYMBOLS AND TERMS

ANALYTICAL TEST RESULTS

ATTERBERG LIMIT TESTING RESULTS

GRAIN SIZE DISTRIBUTION SHEETS

patersongroup					SOIL PROFILE AND TEST DATA							
154 Colonnade Road South, Ottawa, On		-		ineers	Geotechnical Residential Residential Development - Summerside West Ph. 4 & 5 Tenth Line Road, Ottawa, Ontario							
DATUM Ground surface elevations	s prov	ided b	by J.D	. Barne	-		nuau, Ul	lawa, On	FILE NO.	DC 40 40		
REMARKS									HOLE NO.	PG4049		
BORINGS BY CME 55 Power Auger	DA	TE	February	20, 2018			BH 1-18					
SOIL DESCRIPTION	ON 넓 SAMP					DEPTH ELEV.		Pen. Resist. Blows/0.3m • 50 mm Dia. Cone			on "	
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	RQD	(11)	• Water Content %			Piezometer Construction	
GROUND SURFACE	•	×		R	z v		-86.26	20	40 60	80	i⊑ ŭ ‱ ∭	
TOPSOIL		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1									
		i N ∏										
		ss	2	67	5	1-	-85.26					
Very stiff to stiff, brown SILTY						2-	-84.26					
CLAY, trace sand												
- firm and grey by 2.3m depth								<u>k</u>				
						3-	-83.26					
						4-	-82.26					
						5-	-81.26					
		ss	3	100	Р							
		Δ				6-	-80.26					
<u>6.4</u> 0												
End of Borehole												
									40 60 ar Strength		00	
								▲ Undist		Remoulded		

SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Residential** Residential Development - Summerside West Ph. 4 & 5 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Tenth Line Road, Ottawa, Ontario DATUM Ground surface elevations provided by J.D. Barnes Limited. FILE NO. **PG4049** REMARKS HOLE NO. BH 2-18 BORINGS BY CME 55 Power Auger DATE February 20, 2018 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER TYPE o/0 Water Content % Ο **GROUND SURFACE** 80 20 40 60 0+86.10TOPSOIL 0.38 AU 1 1+85.10 SS 2 5 75 2+84.10 Very stiff to stiff, brown SILTY CLÁY, trace sand - firm and grey by 2.3m depth 3+83.10 SS 3 Ρ 100 4+82.10 5 + 81.106+80.10 6.40 End of Borehole 20 40 60 80 100 Shear Strength (kPa) Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA patersongroup Geotechnical Residential Residential Development - Summerside West Ph. 4 & 5 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Tenth Line Road, Ottawa, Ontario DATUM Ground surface elevations provided by J.D. Barnes Limited. FILE NO. **PG4049** REMARKS HOLE NO. **BH 3-18** BORINGS BY CME 55 Power Auger DATE February 20, 2018 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION • 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER TYPE o/0 Water Content % Ο **GROUND SURFACE** 80 20 40 60 0 + 86.25TOPSOIL 0.30 AU 1 1+85.25 SS 2 5 75 2+84.25 Very stiff to stiff, brown SILTY CLÁY, trace sand SS Ρ 3 100 - firm and grey by 2.3m depth 3+83.25 4+82.25 5 + 81.256 + 80.25<u>6.4</u>0 End of Borehole 20 40 60 80 100 Shear Strength (kPa) Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA patersongroup Geotechnical Residential Residential Development - Summerside West Ph. 4 & 5 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Tenth Line Road, Ottawa, Ontario DATUM Ground surface elevations provided by J.D. Barnes Limited. FILE NO. **PG4049** REMARKS HOLE NO. **BH 4-18** BORINGS BY CME 55 Power Auger DATE February 20, 2018 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE o/0 Water Content % \bigcirc **GROUND SURFACE** 80 20 40 60 0 + 86.21TOPSOIL 0.30 AU 1 1+85.21 SS 2 67 4 Ó 2+84.21 Very stiff to stiff, brown SILTY CLÁY, trace sand - firm and grey by 2.3m depth 3+83.21 4+82.21 SS 3 100 Ρ 5 + 81.216 + 80.216.40 **Dynamic Cone Penetration Test** commenced at 6.40m depth. Cone pushed to 30.48m depth, no refusal encountered. 20 40 60 80 100 Shear Strength (kPa) Undisturbed △ Remoulded

patersongroup				SOIL PROFILE AND TEST DATA							
154 Colonnade Road South, Ottawa, On		-		ineers	Geotechnical Residential Residential Development - Summerside West Ph. 4 & 5 Tenth Line Road, Ottawa, Ontario						
DATUM Ground surface elevations	s prov	ided b	by J.D	. Barne	-		11000, 01		FILE NO. PG4049		
REMARKS									HOLE NO.		
BORINGS BY CME 55 Power Auger	1		DA	TE	February	20, 2018		BH 5-18			
SOIL DESCRIPTION	5 SAMPLE				DEPTH ELEV. (m) (m)		esist. Blows/0.3m 0 mm Dia. Cone 😽 ຣ				
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER ************************************		OF ROD		0 V 20	0 mm Dia. Cone Vater Content % Yater Construction %			
TOPSOIL		×				0-	-86.27				
0.28	3	SS	1	79	5	1-	-85.27		C		
Very stiff to stiff, brown SILTY CLAY , trace sand - firm and grey by 2.3m depth						2-	-84.27				
						3-	-83.27				
		17				4-	-82.27				
		SS	3	100	Ρ	5-	-81.27	<u>À</u>			
6.40						6-	-80.27				
								20 Shea ▲ Undist	40 60 80 100 ar Strength (kPa) turbed △ Remoulded		

SOIL PROFILE AND TEST DATA patersongroup Geotechnical Residential Residential Development - Summerside West Ph. 4 & 5 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Tenth Line Road, Ottawa, Ontario DATUM Ground surface elevations provided by J.D. Barnes Limited. FILE NO. **PG4049** REMARKS HOLE NO. **BH 6-18** BORINGS BY CME 55 Power Auger DATE February 21, 2018 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION • 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER TYPE o/0 Water Content % Ο **GROUND SURFACE** 80 20 40 60 0 + 86.36TOPSOIL 0.25 AU 1 1+85.36 SS 2 88 4 2+84.36 Very stiff to stiff, brown SILTY CLÁY, trace sand SS Ρ 3 100 - firm and grey by 2.3m depth 3+83.36 4+82.36 5 + 81.366+80.36 <u>6</u>.40 End of Borehole 20 40 60 80 100 Shear Strength (kPa) Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA patersongroup Geotechnical Residential Residential Development - Summerside West Ph. 4 & 5 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Tenth Line Road, Ottawa, Ontario DATUM Ground surface elevations provided by J.D. Barnes Limited. FILE NO. **PG4049** REMARKS HOLE NO. **BH 7-18** BORINGS BY CME 55 Power Auger DATE February 21, 2018 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE o/0 Water Content % \bigcirc **GROUND SURFACE** 80 20 40 60 0 + 86.49TOPSOIL 0.30 AU 1 1+85.49 SS 2 5 75 2 + 84.49Very stiff to stiff, brown SILTY CLÁY, trace sand - firm and grey by 2.3m depth 3+83.49 SS 3 Ρ 100 4+82.49 5 + 81.496 + 80.496.40 **Dynamic Cone Penetration Test** commenced at 6.40m depth. Cone pushed to 30.48m depth, no refusal encountered. 20 40 60 80 100 Shear Strength (kPa) Undisturbed △ Remoulded

patersongroup					SOIL PROFILE AND TEST DATA								
154 Colonnade Road South, Ottawa, Ont		-		ineers	Geotechnical Residential Residential Development - Summerside West Ph. 4 & 5 Tenth Line Road, Ottawa, Ontario								
DATUM Ground surface elevations				. Barne	_		Road, O	itawa, On	FILE I				
REMARKS											049		
BORINGS BY CME 55 Power Auger				DA	TE	February	21, 2018	8	HOLE	BH 8	i-18		
	SAMPLE					DEPTH ELEV.				esist. Blows/0.3m			
SOIL DESCRIPTION			R	IRY	Вa	(m)	(m)	• 5	o mm	Dia. Cone	leter Lotior		
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD			• • •	Vater C	Content %	Piezometer Construction		
GROUND SURFACE	Ω Ω	~	Z	RE	z ⁰	- 0-	-86.42	20	40	60 80			
TOPSOIL		8 8 8 8 AU	1										
		17				1.	-85.42						
		ss	2	79	5		05.42		0				
								A					
Very stiff to stiff, brown SILTY						2-	-84.42						
CLÁY, trace sand													
- firm and grey by 2.3m depth									Ť				
						3-	-83.42						
						4-	4-82.42						
		ss	3	100	Ρ	-	01.40						
		\mathbb{N}				5-	-81.42						
						6-	-80.42						
6.40	<u> P</u> ZZ	+											
								20 She	40 ar Stre	60 80 ngth (kPa)			
								▲ Undis					

SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Residential** Residential Development - Summerside West Ph. 4 & 5 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Tenth Line Road, Ottawa, Ontario DATUM Ground surface elevations provided by J.D. Barnes Limited. FILE NO. **PG4049** REMARKS HOLE NO. **BH 9-18** BORINGS BY CME 55 Power Auger DATE February 21, 2018 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE o/0 Water Content % Ο **GROUND SURFACE** 80 20 40 60 0 + 86.53TOPSOIL 0.30 AU 1 1+85.53 SS 2 83 6 SS 3 Ρ 100 2 + 84.53Very stiff to stiff, brown SILTY CLÁY, trace sand - firm and grey by 2.3m depth 3+83.53 4+82.53 5 + 81.536 + 80.53SS Ρ 4 100 6.70 End of Borehole 20 40 60 80 100 Shear Strength (kPa) Undisturbed △ Remoulded

natersonar						SOIL PROFILE AND TEST DATA						
154 Colonnade Road South, Ottawa, On		-		ineers	Re		Develop	ment - Su		West Ph. 4	& 5	
DATUM Ground surface elevations				. Barne	-		Road, Ot	ttawa, On	FILE NO.	DO 40 40		
REMARKS									HOLE NO.	PG4049		
BORINGS BY CME 55 Power Auger				DA	TE I	ebruary	21, 2018	}	TIOLE NO.	BH10-18		
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.		esist. Blov i0 mm Dia.			
SUIL DESCRIPTION		ᅜ	ER	ERY	Б О	(m)	(m)	• J		COLLE	neter uctio	
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD				Vater Conte		Piezometer Construction	
GROUND SURFACE TOPSOIL		×		щ		0-	-86.71	20	40 60	80		
0.30		AU	1									
		ss	2	92	3	1-	-85.71		0			
		1										
Stiff to firm, brown SILTY CLAY,						2-	-84.71					
trace sand												
- grey by 2.3m depth									(
						3-	-83.71					
								[
						1-	-82.71					
							02.71	 				
						_	04 74					
						5-	-81.71					
		$\overline{\mathbb{N}}$			_							
		ss	3	100	Ρ							
						6-	-80.71					
6.40												
								20	40 60	80 10	00	
								Shea	ar Strength	i (kPa)	00	
								▲ Undist	turbed $ riangle$ F	Remoulded		

SOIL PROFILE AND TEST DATA patersongroup Geotechnical Residential Residential Development - Summerside West Ph. 4 & 5 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Tenth Line Road, Ottawa, Ontario DATUM Ground surface elevations provided by J.D. Barnes Limited. FILE NO. **PG4049** REMARKS HOLE NO. **BH11-18** BORINGS BY CME 55 Power Auger DATE February 21, 2018 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION • 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER TYPE o/0 Water Content % Ο **GROUND SURFACE** 80 20 40 60 0 + 86.82TOPSOIL 0.33 AU 1 1+85.82 SS 2 83 3 2+84.82 Stiff to firm, brown SILTY CLAY, trace sand SS Ρ 3 67 \odot - soft to firm and grey by 2.3m depth 3+83.82 4+82.82 5+81.82 6+80.82 <u>6</u>.40 End of Borehole 20 40 60 80 100 Shear Strength (kPa) Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA patersongroup Geotechnical Residential Residential Development - Summerside West Ph. 4 & 5 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Tenth Line Road, Ottawa, Ontario DATUM Ground surface elevations provided by J.D. Barnes Limited. FILE NO. **PG4049** REMARKS HOLE NO. **BH12-18** BORINGS BY CME 55 Power Auger DATE February 22, 2018 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER TYPE o/0 Water Content % Ο **GROUND SURFACE** 80 20 40 60 0 + 86.34TOPSOIL 0.28 AU 1 1+85.34 SS 2 5 58 A 2 + 84.34Very stiff to stiff, brown SILTY CLÁY, trace sand SS Ρ 3 100 - firm and grey by 2.3m depth 3+83.34 4+82.34 5 + 81.346+80.34 6.40 End of Borehole 20 40 60 80 100 Shear Strength (kPa) Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA patersongroup Consulting Engineers **Geotechnical Residential** Residential Development - Summerside West Ph. 4 & 5 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Tenth Line Road, Ottawa, Ontario Ground surface elevations provided by J.D. Barnes Limited. DATUM FILE NO. **PG4049** REMARKS HOLE NO. BH13-18 DATE February 22, 2018 BORINGS BY CME 55 Power Auger Τ Τ

SOIL DESCRIPTION	РГОТ		SAN	IPLE	1	DEPTH	ELEV.	Pen. Resist. Blows/0.3m ● 50 mm Dia. Cone
	STRATA I	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	● 50 mm Dia. Cone □ a patient ○ Water Content % 20 40 60 80
GROUND SURFACE	E S	Ĥ	ЮN	REC	N N OL		96.61	
FILL: Crushed stone with silt and sand 0.51		AU	1				-86.61	
		ss	2	83	7	1-	-85.61	
Very stiff to stiff, brown SILTY CLAY, trace sand		ss	3	83	Ρ	2-	-84.61	
- firm and grey by 2.3m depth						3-	-83.61	
						4-	-82.61	
						5-	-81.61	
6.40						6-	-80.61	
Dynamic Cone Penetration Test commenced at 6.40m depth. Cone pushed to 30.48m depth, no refusal encountered.		-						
								20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA patersongroup Geotechnical Residential Residential Development - Summerside West Ph. 4 & 5 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Tenth Line Road, Ottawa, Ontario DATUM Ground surface elevations provided by J.D. Barnes Limited. FILE NO. **PG4049** REMARKS HOLE NO. **BH14-18** BORINGS BY CME 55 Power Auger DATE February 22, 2018 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER TYPE o/0 Water Content % Ο **GROUND SURFACE** 80 20 40 60 0 + 86.40TOPSOIL 0.28 AU 1 1+85.40 SS 2 46 4 O 2 + 84.40Very stiff to stiff, brown SILTY CLÁY, trace sand Δ - firm and grey by 2.3m depth 3+83.40 4+82.40 SS 3 100 Ρ 5 + 81.406 + 80.406.40 End of Borehole 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Residential** Residential Development - Summerside West Ph. 4 & 5 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Tenth Line Road, Ottawa, Ontario DATUM Ground surface elevations provided by J.D. Barnes Limited. FILE NO. **PG4049** REMARKS HOLE NO. BH15-18 BORINGS BY CME 55 Power Auger DATE February 23, 2018 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE o/0 Water Content % Ο **GROUND SURFACE** 80 20 40 60 0 + 86.25TOPSOIL 0.25 AU 1 1+85.25 2 SS 29 4 SS 3 100 Ρ 2+84.25 Very stiff to stiff, brown SILTY CLÁY, trace sand - firm and grey by 2.3m depth 3+83.25 4+82.25 5 + 81.256 + 80.25SS Ρ 4 100 6.70 End of Borehole 20 40 60 80 100 Shear Strength (kPa) Undisturbed △ Remoulded

SOIL PROFILE AND TEST DATA patersongroup **Geotechnical Residential** Residential Development - Summerside West Ph. 4 & 5 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Tenth Line Road, Ottawa, Ontario DATUM Ground surface elevations provided by J.D. Barnes Limited. FILE NO. **PG4049** REMARKS HOLE NO. **BH16-18** BORINGS BY CME 55 Power Auger DATE February 23, 2018 SAMPLE Pen. Resist. Blows/0.3m STRATA PLOT DEPTH ELEV. Piezometer Construction SOIL DESCRIPTION 50 mm Dia. Cone (m) (m) RECOVERY N VALUE or RQD NUMBER TYPE o/0 Water Content % \bigcirc **GROUND SURFACE** 80 20 40 60 0+86.60FILL: Crushed stone with silt and 1 AU sand, trace organics 0.51 1+85.60 SS 2 100 10 O 2+84.60 Very stiff to stiff, brown SILTY CLÁY, trace sand - firm and grey by 2.3m depth 3+83.60 SS 3 Ρ 100 4+82.60 5 + 81.606 + 80.606.40 End of Borehole 20 40 60 80 100 Shear Strength (kPa)

Undisturbed

△ Remoulded

SOIL PROFILE AND TEST DATA patersongroup Geotechnical Residential Residential Development - Summerside West Phase 4 & 5 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Tenth Line Road, Ottawa, Ontario DATUM Ground surface elevations provided by J.D. Barnes Limited. FILE NO. **PG4049** REMARKS HOLE NO. **MW 1A** BORINGS BY CME 55 Power Auger DATE February 27, 2017 SAMPLE Pen. Resist. Blows/0.3m Monitoring Well Construction STRATA PLOT DEPTH ELEV. SOIL DESCRIPTION 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER TYPE o/0 Water Content % Ο **GROUND SURFACE** 80 20 40 60 0 + 86.7611111 TOPSOIL T 0.28 AU 1 Ö Very stiff to stiff, brown SILTY 1+85.76 SS 2 100 4 \odot CLÁY, trace sand 1.80 SS 3 Ρ 92 2+84.76 3+83.76 Firm, grey SILTY CLAY, trace sand C 4+82.76 Ċ 5 + 81.76Ò 6+80.76 <u>6.1</u>0 End of Monitoring Well (GWL @ 0.19m - May 2, 2017) 20 40 60 80 100 Shear Strength (kPa) Undisturbed △ Remoulded

natoreonar						SOIL	_ PROI		ND TE	ST DATA	
154 Colonnade Road South, Ottawa, Oni		-		ineers	Re	esidential		ment - Su		de West Phas	e4&5
DATUM Ground surface elevations				. Barne	-		Road, Ot	tawa, On	FILE NC		
REMARKS									HOLE N	PG4049	
BORINGS BY CME 55 Power Auger		1		DA	TE F	February	27, 2017			MW 1B	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.			lows/0.3m ia. Cone	Nell N
	STRATA I	ТҮРЕ	NUMBER	% RECOVERY	VALUE r RQD	(m)	(m)			ntent %	Monitoring Well Construction
GROUND SURFACE	STI	1.	NUN	RECO	N O			20	40	60 80	Moni Cons
TOPSOIL						0-	-86.76				IIII IIII V
0.28											ուներին ուներին երերերին երերուներին։ Իրերերին երերերին երերերին երերերին։ Դերերին երերերին երերերին։
Very stiff to stiff, brown SILTY CLAY, trace sand						1-	-85.76				<u>արդորդու</u>
<u>1.80</u>										· · · · · · · · · · · · · · · · · · ·	
						2-	-84.76				
Firm, grey SILTY CLAY, trace sand										· · · · · · · · · · · · · · · · · · ·	
						3-	-83.76				
End of Monitoring Well	XX										
(GWL @ 0.20m - May 2, 2017)											
								20 She ▲ Undis	ar Streng	60 80 1 gth (kPa) ∆ Remoulded	00

natorsonar		In	Con	sulting	1	SOIL	L PRO	FILE AI	ND T	EST D	ΑΤΑ
patersongr 154 Colonnade Road South, Ottawa, On		-		ineers	R		l Develop	ment - Su		side Wes	t Phase 4 &
DATUM Ground surface elevations				. Barne	-		Road, O	tawa, On	FILE		
REMARKS									HOLE		4049
BORINGS BY CME 55 Power Auger	_	1		D	ATE	February	27, 2017	,		MW	/ 2A
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.			Blows/0. Dia. Con	3m = ≥⊂
SUIL DESCRIPTION		ы	ER	ERY	VALUE r ROD	(m)	(m)	● 1		Dia. Con	8 % a monitoring Well wc
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VA.			0 V 20	Vater (40	Content 60	Monite %
TOPSOIL		×	1	-		- 0-	86.40				
Very stiff to stiff, brown SILTY CLAY, trace sand	5	SS	1	83	4	1-	-85.40	<u> </u>	0	0	
2.70							-84.40 -83.40				
Firm, grey SILTY CLAY, trace sand						4-	-82.40				
						5-	-81.40				102.5
6.40 End of Monitoring Well (GWL @ 0.29m - May 2, 2017)						6-	-80.40				
								20 Shea ▲ Undis		60 60 ength (kP ∆ Remo	-

natoreonar		ır	Con	sultina		SOII	- PRO	FILE AI		ST DATA	
patersongr 154 Colonnade Road South, Ottawa, On		-		ineers	Re	sidentia		ment - Su		de West Phas	e4&5
DATUM Ground surface elevations				. Barne	-		Road, Ot	tawa, On	tario		
REMARKS										PG4049	
BORINGS BY CME 55 Power Auger				DA	TE F	ebruary	27, 2017		HOLE N	^{IO.} MW 2B	
	от		SAN	IPLE		DEPTH	ELEV.			lows/0.3m	'ell
SOIL DESCRIPTION	A PLOT		64	RY		(m)	(m)	• 5	0 mm Di	ia. Cone	ng √ ction
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	VALUE r rod			0 V	Vater Co	ntent %	Monitoring Well Construction
GROUND SURFACE	Ñ		Ň	REC	N OF OF	0-	-86.40	20	40	60 80	စီလိ
TOPSOIL0.25						0	00.40				
						1-	-85.40				
Very stiff to stiff, brown SILTY											
CLAY, trace sand											
						2-	-84.40				
2.70											
2											
Firm, grey SILTY CLAY, trace sand						3-	-83.40				
Tinn, grey SILTT CLAT, trace sand											
3.66											
End of Monitoring Well											
(GWL @ 0.30m - May 2, 2017)											
									40	60 00 1	
										gth (kPa)	00
								▲ Undist	turbed 4	△ Remoulded	

SOIL PROFILE AND TEST DATA patersongroup Geotechnical Residential Residential Development - Summerside West Phase 4 & 5 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Tenth Line Road, Ottawa, Ontario Ground surface elevations provided by J.D. Barnes Limited. DATUM FILE NO. **PG4049** REMARKS HOLE NO. **MW 3A** BORINGS BY CME 55 Power Auger DATE February 28, 2017 SAMPLE Pen. Resist. Blows/0.3m Monitoring Well Construction STRATA PLOT DEPTH ELEV. SOIL DESCRIPTION 50 mm Dia. Cone • (m) (m) N VALUE or RQD RECOVERY NUMBER TYPE o/0 Water Content % Ο **GROUND SURFACE** 80 20 40 60 0 + 86.82TOPSOIL 0.20 SAU 1 T 8 Compact, brown SILTY SAND SS 2 38 11 Õ 1+85.82 1.22 SS 3 92 2 Ó 2+84.82 Firm, brown SILTY CLAY, some Ò sand - grey by 2.0m depth 3+83.82 Ò 4+82.82 Ó 5+81.82 O Ö 6+80.82 6.40 End of Monitoring Well (GWL @ 0.12m - May 2, 2017) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

patersongr		ır	Con	sulting		SOIL	- PRO	FILE AI	ND TES	ST DATA	
		-		ineers		eotechnic esidential			mmersid	e West Phas	e4&5
154 Colonnade Road South, Ottawa, Ont				Derree	Te	enth Line			tario		
DATUM Ground surface elevations	prov	ided t	by J.D	. Barne	II II	mited.			FILE NO.	PG4049	
						Fahruary	00 0017		HOLE NO	[.] MW 3B	
BORINGS BY CME 55 Power Auger	_				IE	February	20, 2017				
SOIL DESCRIPTION	A PLOT			NPLE 것	<u>ط</u>	DEPTH (m)	ELEV. (m)		esist. Bi 0 mm Dia	ows/0.3m a. Cone	Monitoring Well Construction
	STRATA	ТҮРЕ	NUMBER	∾ RECOVERY	N VALUE or RQD			• V	Vater Cor	ntent %	onitorir onstruc
GROUND SURFACE	01		4	RE	z		-86.82	20	40 6	60 80	Ξŭ
TOPSOIL 0.20 Compact, brown SILTY SAND		_					00.02				तितित्रतितित्ततितित्तितित्तितितितितितिति
1.22		_				1-	-85.82				<u>իրիիրիի</u> դրիրիրի
Firm, brown SILTY CLAY, some sand - grey by 2.0m depth <u>3.66</u> Dynamic Cone Penetration Test							-84.82 -83.82				
(DCPT) commenced at 3.66m depth. Cone pushed to 30.48m depth. No refusal encountered. (GWL @ 0.28m - May 2, 2017)								20 Shea ▲ Undist	ar Streng		00

natoreonar		ır	Con	sulting	1	SOI	L PRO	FILE AI	ND T	EST DA	ТА
patersongr 154 Colonnade Road South, Ottawa, On		-		ineers	R		l Develop	oment - Su		side West	Phase 4 & 5
DATUM Ground surface elevations				. Barne			Road, O	ttawa, On	file file file	NO.	1049
REMARKS									HOLE	NO	
BORINGS BY CME 55 Power Auger	1	1		D	ATE	February	28, 2017	7		MW	4 A
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.			Blows/0.3 Dia. Cone	m = _
JUL DESCRIPTION		ы	ER	ERY	VALUE E ROD	(m)	(m)	• 5			oring \
GROUND SURFACE	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VA.			0 V 20	Vater C 40	60 80	
TOPSOIL		×	-	-		- 0-	-86.41		-+0		
<u>0.30</u>	VV X/	Š AU	1								
		17									
		ss	2	42	6				o		
Very stiff to stiff, brown SILTY		1				1.	-85.41				
CLÁY, trace sand									d		
											
										/	
<u>2.00</u>		-				2	-84.41			0	
								4	Á	, v	
									/	0	
						3-	-83.41				
										0	
Firm, grey SILTY CLAY, trace sand						4	-82.41				
									O		
						5	-81.41				
										0	
						6	-80.41			0	
6.40											
End of Monitoring Well		Ť									
(GWL @ 0.48m - May 2, 2017)											
								20	40	60 80	100
								Shea	ar Stre	ngth (kPa)	
								▲ Undist	urbed	△ Remoule	ded

patersongr		ır	Con	sulting		SOIL	- PRO	FILE AI	ND TES	T DATA	
154 Colonnade Road South, Ottawa, Ont		-		ineers	R		Develop	ment - Su		e West Phase	e4&5
DATUM Ground surface elevations				. Barne	_		Road, Ol	ttawa, On	FILE NO.		
REMARKS									HOLE NO	PG4049	
BORINGS BY CME 55 Power Auger				DA	TE	February	28, 2017	,	HOLE NO	MW 4B	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.		esist. Blo 0 mm Dia		Nell
SOIL DESCRIPTION		ы	ER	ERY	Ba	(m)	(m)	• 5			ring \ uctio
	STRATA	ТҮРЕ	NUMBER	* RECOVERY	N VALUE or RQD			0 V	Vater Con		Monitoring Well Construction
GROUND SURFACE TOPSOIL			-	24	4	- 0-	-86.41	20	40 60	0 80	
Very stiff to stiff, brown SILTY						1-	-85.41				ԱԴԵՐԻՆԵՐԻՆԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐԵՐ → 1111111111111111111111111111111111
CLAY, trace sand											
									· · · · · · · · · · · · · · · ·		
2.00						2-	-84.41				
Firm, grey SILTY CLAY, trace sand								· · · · · · · · · · · · · · · · ·			
						3-	-83.41				
3.66											
End of Monitoring Well											
(GWL @ 0.34m - May 2, 2017)											
								20 Shea	40 60 ar Strengt		
								▲ Undis		Remoulded	

SOIL PROFILE AND TEST DATA patersongroup Geotechnical Residential Residential Development - Summerside West Phase 4 & 5 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Tenth Line Road, Ottawa, Ontario Ground surface elevations provided by J.D. Barnes Limited. DATUM FILE NO. **PG4049** REMARKS HOLE NO. **MW 5A** BORINGS BY CME 55 Power Auger DATE February 28, 2017 SAMPLE Pen. Resist. Blows/0.3m Monitoring Well Construction STRATA PLOT DEPTH ELEV. SOIL DESCRIPTION 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER TYPE o/0 Water Content % Ο **GROUND SURFACE** 80 20 40 60 0 + 86.55TOPSOIL 0.28 AIJ 1 Ö 1 + 85.552 SS 83 4 Stiff to firm, brown SILTY CLAY, trace sand SS 3 100 Ρ Ö 2+84.55 3.00 3+83.55 0 \bigcirc 4+82.55 Firm, grey SILTY CLAY, trace sand 5 + 81.556+80.55 6.40 End of Monitoring Well (GWL @ 0.60m - May 2, 2017) 20 40 60 80 100 Shear Strength (kPa) ▲ Undisturbed △ Remoulded

natoreonar		ır	Con	sulting		SOII	- PRO			FEST D	ATA	
patersongr 154 Colonnade Road South, Ottawa, Or		-		ineers	R		Develop	ment - Su		rside West	Phase 4	4 & 5
DATUM Ground surface elevations				. Barne			Road, Ot	tawa, On				
REMARKS									ног	PG4 E NO.	4049	
BORINGS BY CME 55 Power Auger		1		DA	TE	February	28, 2017			MW	5B	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.			Blows/0.3 Dia. Cone	3m =	n Well
	STRATA I	ТҮРЕ	NUMBER	% RECOVERY	VALUE E ROD	(m)	(m)			Content %		Monitoring Well Construction
GROUND SURFACE	STI	Ĥ	NUN	RECO	N 0 U			20	40	60 8	0 2	Mon Con
TOPSOIL 0.28						- 0-	-86.55					
<u>0.2</u>	3											
						1-	-85.55					
Stiff to firm, brown SILTY CLAY, trace sand												
						2-	-84.55					
<u>3.0</u> (3-	-83.55					
Firm, grey SILTY CLAY, trace sand												
End of Monitoring Well												
(GWL @ 0.38m - May 2, 2017)												
								20 She ▲ Undis		60 8 ength (kPa △ Remou	l)	

patersongr		In	Con	sulting		SOII		FILE AI		EST DA	ATA
154 Colonnade Road South, Ottawa, On		_		ineers	Re		l Develop			ide West	Phase 4 &
DATUM Ground surface elevations	prov	ided b	y J.D	. Barne	-				FILE N		1049
REMARKS									HOLE	NO	
BORINGS BY CME 55 Power Auger				DA	TE	February	28, 2017	,		MW	6A
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV. (m)			Blows/0.3 Dia. Cone	im Tenno ten
	STRATA	ТҮРЕ	NUMBER	% RECOVERY	N VALUE or ROD	(m)	(11)	• V	Vater C	ontent %	Monitoring Well Construction
GROUND SURFACE	LS	H	NN	REC	N O			20	40	60 80	o Maria (
TOPSOIL			1			- 0-	-86.17			0	
Very stiff to firm, brown SILTY CLAY, trace sand		SS	2	75	7	1-	-85.17		0 A		ւներեր է ու են երկերությունը են երկերությունը է երկերությունը։ Ալերերերերերերերի երկերությունը երկերությունը է երկերությունը երկերությունը երկերությունը երկերությունը երկերու երկերությունը երկերությունը երկերությունը երկերությունը երկերությունը երկերությունը երկերությունը երկերությունը
<u>2.40</u>						2-	-84.17	4	 	2	
						3-	-83.17				0
Firm, grey SILTY CLAY, trace sand						4-	-82.17				0 0
						5-	-81.17				O
End of Monitoring Well						6-	-80.17	<u> </u>			
(GWL @ 0.62m - May 2, 2017)											
								20 Shea ▲ Undist		60 80 ngth (kPa ∆ Remoul)

natoreonar		ır	Con	sulting		SOII	L PRO	FILE AI	ND 1	rest	DATA	
patersongreet 154 Colonnade Road South, Ottawa, Ont		-		ineers	R		l Develop	ment - Su		rside W	est Phase	e4&5
DATUM Ground surface elevations				. Barne			Road, Ot	tawa, On	fille			
REMARKS										F E NO.	PG4049	
BORINGS BY CME 55 Power Auger		1		D	ΔTE	February	28, 2017			ι <u>ε</u> ΝΟ. Ν	IW 6B	
	PLOT		SAN	IPLE		DEPTH	ELEV.			Blows		Vell
SOIL DESCRIPTION	1		ĸ	'RY	Ba	(m)	(m)	• 5	50 mm	Dia. Co	one	Monitoring Well Construction
	STRATA	ТУРЕ	NUMBER	% RECOVERY	N VALUE or RQD			0 1	Vater	Conten	t %	onitor
GROUND SURFACE	03		2	RE	z ^o	- 0-	-86.17	20	40	60	80	
TOPSOIL		-										<u>IIIIII</u> IIIIIIIIIIIIIIIIIIIIIIIIIIIIII
							05 47					
Vorus stiff to firm brown CILTV						1-	-85.17					րթիներուներիներիներիներիներիներին Խ
Very stiff to firm, brown SILTY CLAY, trace sand												
						2-	-84.17					
2.40												
Firm, grey SILTY CLAY, trace sand						3-	-83.17					
<u>3.66</u>												
End of Monitoring Well												
(GWL @ 0.10m - May 2, 2017)												
								20	40	60	80 10	00
									ar Stro	ength (l		

SOIL PROFILE AND TEST DATA patersongroup Geotechnical Residential Residential Development - Summerside West Phase 4 & 5 154 Colonnade Road South, Ottawa, Ontario K2E 7J5 Tenth Line Road, Ottawa, Ontario DATUM Ground surface elevations provided by J.D. Barnes Limited. FILE NO. **PG4049** REMARKS HOLE NO. MW 7A BORINGS BY CME 55 Power Auger DATE February 28, 2017 SAMPLE Pen. Resist. Blows/0.3m Monitoring Well Construction STRATA PLOT DEPTH ELEV. SOIL DESCRIPTION 50 mm Dia. Cone (m) (m) N VALUE or RQD RECOVERY NUMBER TYPE o/0 Water Content % Ο **GROUND SURFACE** 80 20 40 60 0+86.601,1,1,1,1,1 AU 1 TOPSOIL 0.36 T SS 2 75 5 1 + 85.60Very stiff to stiff, brown SILTY CLÁY, trace sand SS 3 Ρ 92 Ò 2+84.60 X 2.60 \odot 3+83.60 4+82.60 Soft to firm, grey SILTY CLAY, trace sand O 5 + 81.60Ö Ó 6+80.60 6.40 End of Monitoring Well (GWL @ 0.38m - May 2, 2017) 20 40 60 80 100 Shear Strength (kPa) Undisturbed △ Remoulded

natoreonar						SOII	L PRO	FILE AI	ND T	EST D	ΑΤΑ	
154 Colonnade Road South, Ottawa, On		-		ineers	R		l Develop	ential ment - Su ttawa, On		side Wes	t Phase	e 4 & 5
DATUM Ground surface elevations	s prov	ided I	oy J.D	. Barne	_		nuau, U	llawa, On	FILE		4040	
REMARKS									HOLE	NO	4049	
BORINGS BY CME 55 Power Auger	1	1		DA	TE	February	28, 2017	,		MW	/ 7B	
SOIL DESCRIPTION	PLOT		SAN			DEPTH (m)	ELEV. (m)			Blows/0. Dia. Con		g Well ion
	STRATA	ТҮРЕ	NUMBER	* RECOVERY	N VALUE of ROD			0	Vater C	Content	%	Monitoring Well Construction
GROUND SURFACE				8	Z *	- 0-	86.60	20	40	60 8	B O	
TOPSOIL												րիներինը ուրեններին երիներին երիներին։ Իրեններին երիներին երիներին երիներին երիներին։ Արևեներին երիներին երիներին երիներին երիներին։
Very stiff to stiff, brown SILTY						1-	-85.60					անդերիների աներերիների
CLÁY, trace sand						2-	-84.60					
2. <u>6</u> 0												
Soft to firm, grey SILTY CLAY, trace sand						3-	-83.60					
3.66 End of Monitoring Well												
(GWL @ 0.17m - May 2, 2017)												
								20 She ▲ Undis		60 a ngth (kP ∆ Remo	a)	4 DO

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %
Very Loose	<4	<15
Loose	4-10	15-35
Compact	10-30	35-65
Dense	30-50	65-85
Very Dense	>50	>85

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value		
Very Soft	<12	<2		
Soft	12-25	2-4		
Firm	25-50	4-8		
Stiff	50-100	8-15		
Very Stiff	100-200	15-30		
Hard	>200	>30		

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD % ROCK QUALITY

90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard
		Penetration Test (SPT))

- TW Thin wall tube or Shelby tube
- PS Piston sample
- AU Auger sample or bulk sample
- WS Wash sample
- RC Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

MC% LL PL PI	- - -	Natural moisture content or water content of sample, % Liquid Limit, % (water content above which soil behaves as a liquid) Plastic limit, % (water content above which soil behaves plastically) Plasticity index, % (difference between LL and PL)
Dxx	-	Grain size which xx% of the soil, by weight, is of finer grain sizes These grain size descriptions are not used below 0.075 mm grain size
D10	-	Grain size at which 10% of the soil is finer (effective grain size)
D60	-	Grain size at which 60% of the soil is finer
Cc	-	Concavity coefficient = $(D30)^2 / (D10 \times D60)$
Cu	-	Uniformity coefficient = D60 / D10
Cc and	Cu are	used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 4Well-graded sands have: 1 < Cc < 3 and Cu > 6Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded. Cc and Cu are not applicable for the description of soils with more than 10% silt and clay (more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

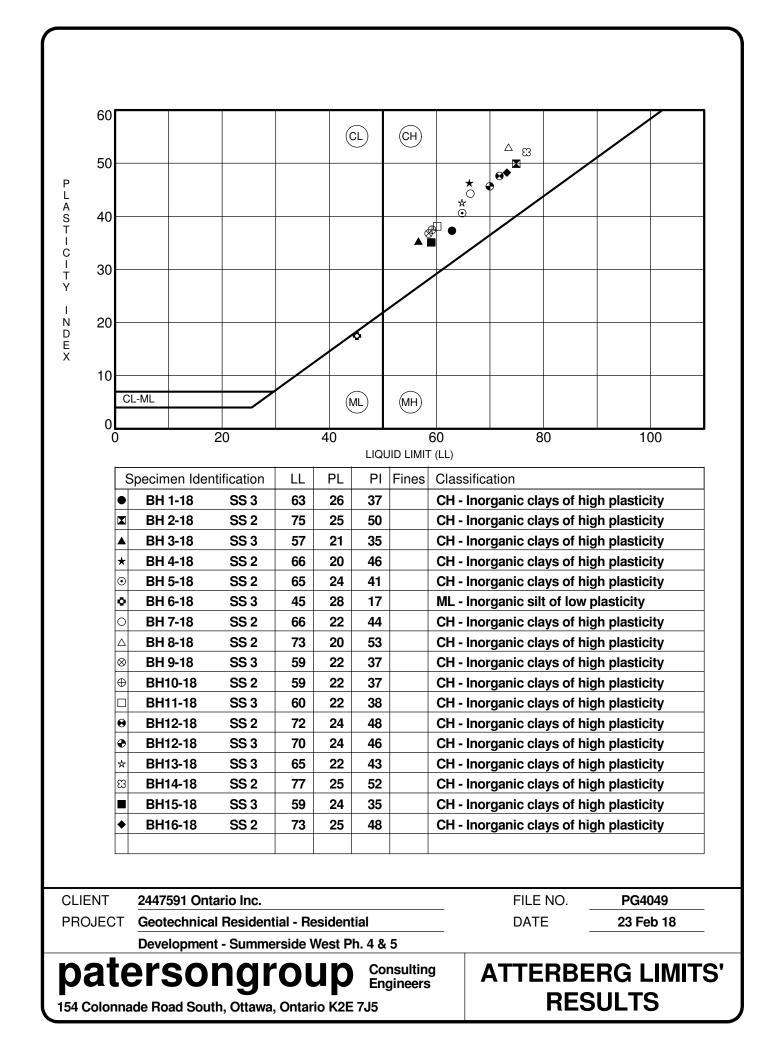
p'o	-	Present effective overburden pressure at sample depth
p'c	-	Preconsolidation pressure of (maximum past pressure on) sample
Ccr	-	Recompression index (in effect at pressures below p'c)
Cc	-	Compression index (in effect at pressures above p'_c)
OC Ratio)	Overconsolidaton ratio = p'_c / p'_o
Void Rat	io	Initial sample void ratio = volume of voids / volume of solids
Wo	-	Initial water content (at start of consolidation test)

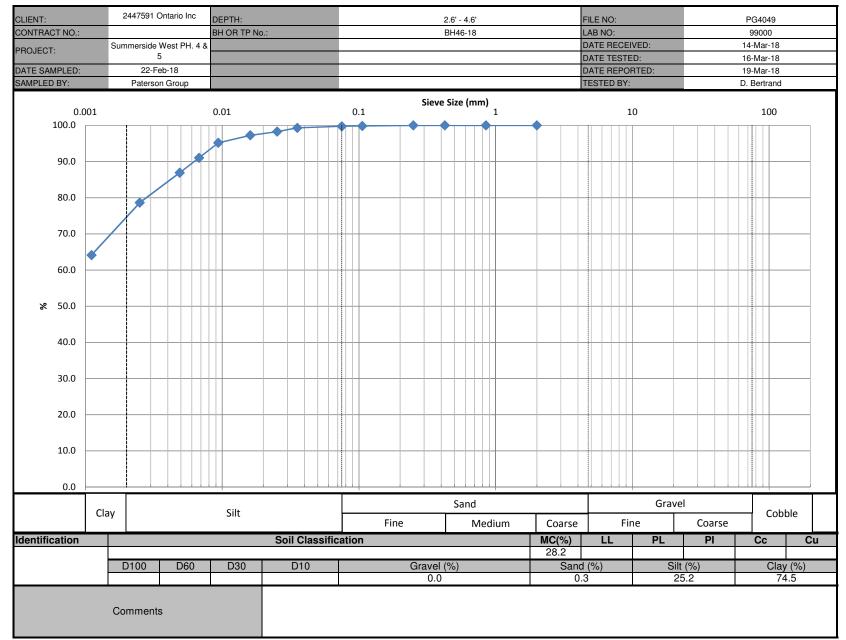
PERMEABILITY TEST

k - Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued) STRATA PLOT Topsoil Asphalt Peat Sand Silty Sand Fill Δ Sandy Silt Clay Silty Clay Clayey Silty Sand Glacial Till Shale Bedrock

MONITORING WELL AND PIEZOMETER CONSTRUCTION

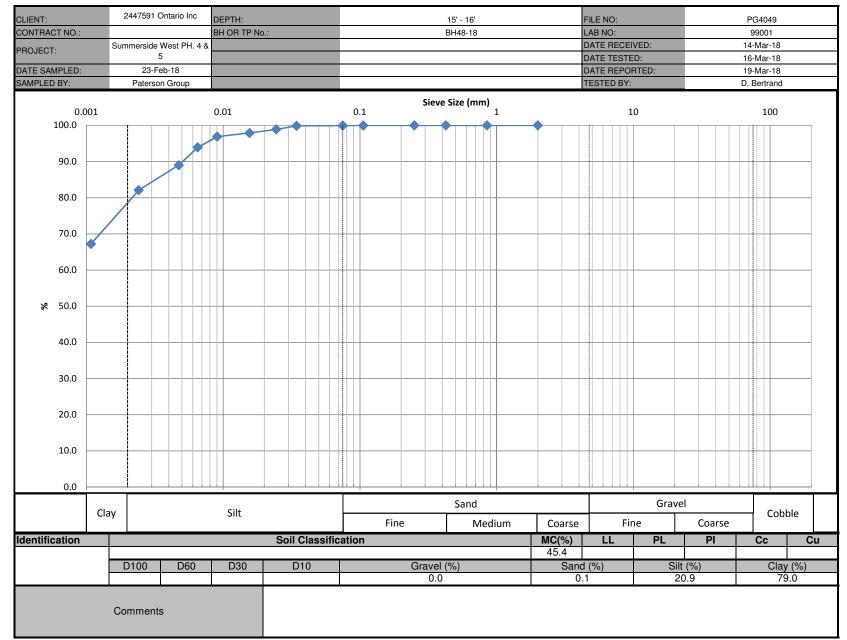

Certificate of Analysis Client: Paterson Group Consulting Engineers Client PO: 21693


Report Date: 07-Mar-2017

Order Date: 3-Mar-2017

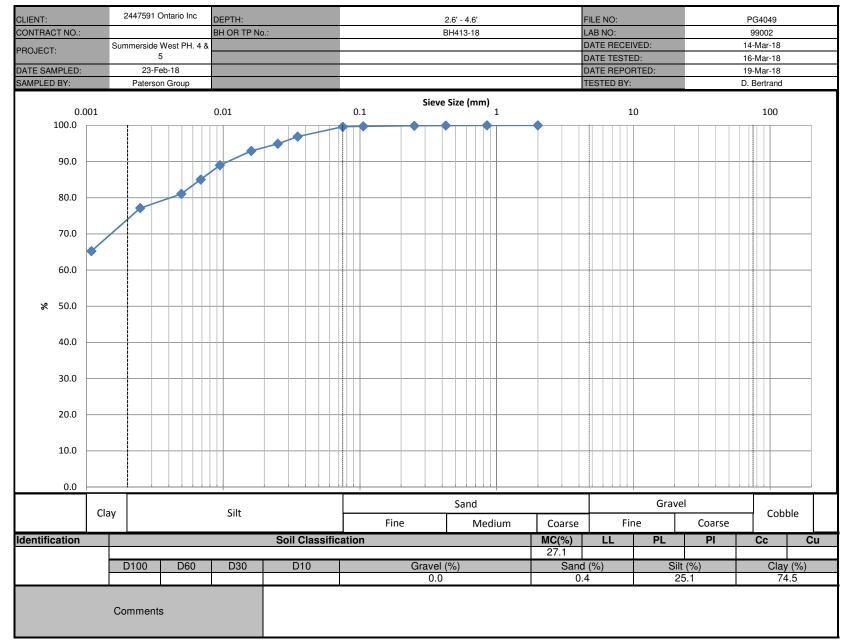
Project Description: PG4049

	-				
	Client ID:	MW1-SS3	-	-	-
	Sample Date:	27-Feb-17	-	-	-
	Sample ID:	1709440-01	-	-	-
	MDL/Units	Soil	-	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	69.4	-	-	-
General Inorganics	-				
pН	0.05 pH Units	7.62	-	-	-
Resistivity	0.10 Ohm.m	8.69	-	-	-
Anions					
Chloride	5 ug/g dry	496	-	-	-
Sulphate	5 ug/g dry	177	-	-	-



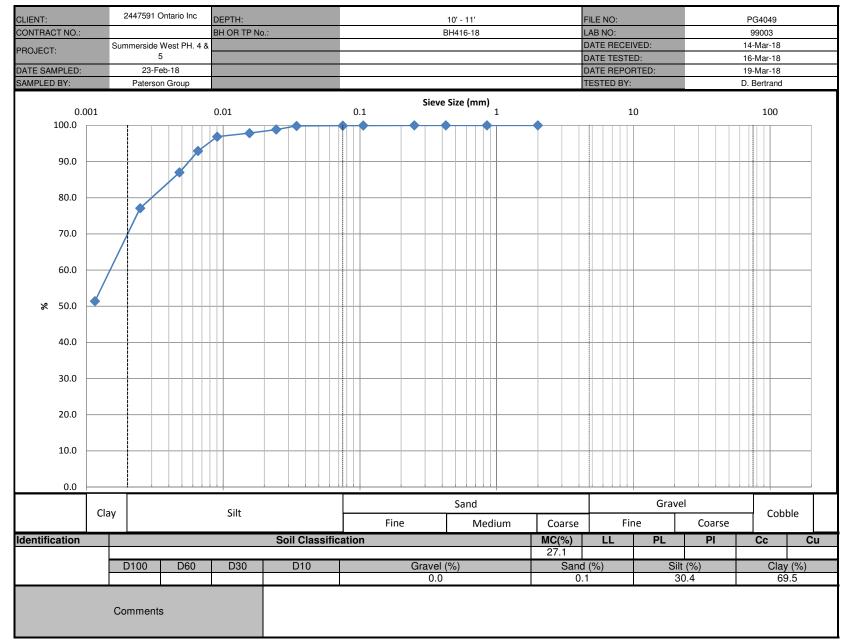
Im hun get

HYDROMETER LS-702 ASTM-422


CLIENT:	2447591 Ontario Inc			DEPTH:	2.6'	- 4.6'	FILE NO.:	PG4049	
PROJECT:	Su	Summerside West PH. 4 & 5			BH4	6-18	DATE SAMPLED:	22-Feb-18	
LAB No. :		99000		TESTED BY:	D. Be	ertrand	DATE RECEIVED:	14-Mar-18	
SAMPLED BY:		Paterson Group		DATE REPT'D:	19-N	lar-18	DATE TESTED:	16-Mar-18	
				AMPLE INFORMAT	TION				
SAMPLE MASS	12	25.1	50	.02					
SPECIFIC G		2.700			REM	IARKS			
HYGROSCOP		Tare No.							
TARE Wt.	50.00	ACTUAL Wt.							
AIR DRY (Wa)	150.00	100.00							
OVEN DRY (Wo)	145.55	95.55							
F=(Wo/Wa)		956							
INITIAL Wt. (Ma)		0.02							
Wt. CORRECTED		7.79							
Wt. AFTER WAS		0.2							
SOLUTION CONCE	NTRATION	40 g / L							
				RAIN SIZE ANALY	'SIS				
SI	EVE DIAMETER (m	าm)	WEIGHT RI	ETAINED (g)	PERCENT	RETAINED	PERCENT	PASSING	
	63.0								
	53.0								
	37.5								
	26.5								
	19.0								
	16.0								
	13.2								
	9.5								
	4.75			0.0				-	
	2.0		0.0		0.0		100.0		
	Pan		12	5.1					
	0.050		0	00			100	0	
	0.850			0.00 0.00		.0		100.0	
	0.425		0.00		0.0			100.0	
	0.250			08				100.0	
	0.106			13		.2	99.8		
	Pan			20			99.7		
SIEVE		0.0		= 0.3%					
JIL VE	SHEOK	0.0		HYDROMETER DA	TA		-		
51 4 5 6 5 5	TIME	Hs	Hc	Temp. (°C)	DIAMETER	(P)	TOTAL PERCE	NT PASSING	
ELAPSED	(24 hours)	54.0	6.0	21.0	0.0255	00.2	00.1	2	
1 2	7:20	54.0	6.0	21.0	0.0355	99.3	99.		
5	7:21	53.5 53.0	6.0 6.0	21.0 21.0	0.0252	98.3 97.2	98.		
5 15	7:24	52.0	6.0	21.0	0.0094	97.2	97.		
30	7:34	52.0	6.0	21.0	0.0094	95.2	95.		
60	8:19	48.0	6.0	21.0	0.0049	86.9	86.9		
250	11:29	44.0	6.0	21.0	0.0025	78.6	78.0		
1440	7:19	37.0	6.0	21.0	0.0023	64.1	64.		
		0.10	0.0	COMMENTS					
Moisture Cont	tent = 28.2%			•					
		Curtis Beadow					Joe Forsyth, P. Eng.		
REVIEWED BY:	Im to	hun		APPRO	VED BY:		Jenz	\geq	

Im hun get

HYDROMETER LS-702 ASTM-422


CLIENT:	2447591 Ontario Inc			DEPTH:	15'	- 16'	FILE NO.:	PG4049		
PROJECT:	Su	ummerside West PH. 4	& 5	BH OR TP No.:	BH4	8-18	DATE SAMPLED:	23-Feb-18		
LAB No. :		99001		TESTED BY:	D. Be	ertrand	DATE RECEIVED:	14-Mar-18		
SAMPLED BY:		Paterson Group		DATE REPT'D:	19-N	lar-18	DATE TESTED:	16-Mar-18		
			S	AMPLE INFORMAT	ΓΙΟΝ					
SAMPLE MASS	9	5.8	50	.00						
SPECIFIC GI	RAVITY (Gs)	2.700			REN	MARKS				
HYGROSCOP	IC MOISTURE	Tare No.								
TARE Wt.	50.00	ACTUAL Wt.								
AIR DRY (Wa)	150.00	100.00								
OVEN DRY (Wo)	150.00	100.00								
F=(Wo/Wa)	1.	000								
INITIAL Wt. (Ma)	50	0.00								
Wt. CORRECTED	50	0.00								
Wt. AFTER WAS	SH BACK SIEVE	0.05								
SOLUTION CONCE	NTRATION	40 g / L								
			C	GRAIN SIZE ANALY	'SIS					
SIE	EVE DIAMETER (m	IAMETER (mm) WEIGHT RETAINED (g) PERCENT RETAINED PERCENT					PASSING			
	63.0									
	53.0									
	37.5 26.5									
	19.0									
	16.0									
	13.2									
	9.5									
	4.75									
2.0			0.0		0	.0	100	.0		
	Pan			95.8		50		-		
					1		1			
	0.850			00	0	.0	100	.0		
	0.425			0.00		0.0		100.0		
	0.250		0.00		0	0.0		100.0		
	0.106			02	0	.0	100.	100.0		
	0.075			03	0	.1	99.9			
	Pan			05						
SIEVE	CHECK	0.0		= 0.3%						
				HYDROMETER DA						
ELAPSED	TIME (24 hours)	Hs	Hc	Temp. (°C)	DIAMETER	(P)	TOTAL PERCE	NT PASSING		
1	7:32	56.5	6.0	21.0	0.0344	99.9	99.	9		
2	7:33	56.0	6.0	21.0	0.0245	98.9	98.	9		
5	7:36	55.5	6.0	21.0	0.0156	97.9	97.	9		
15	7:46	55.0	6.0	21.0	0.0091	96.9	96.	9		
30	8:01	53.5	6.0	21.0	0.0065	93.9	93.	9		
60	8:31	51.0	6.0	21.0	0.0047	89.0	89.0	D		
250	11:41	47.5	6.0	21.0	0.0024	82.1	82.	1		
1440	7:31	40.0	6.0	21.0	0.0011	67.2	67.:	2		
				COMMENTS						
Moisture Cont	ent = 45.4%									
		Curtis Beadow					Joe Forsyth, P. Eng.			
REVIEWED BY:	for the						JeAz	\geq		

Im hun get

HYDROMETER LS-702 ASTM-422

	2447591 Ontario Inc		DEPTH:	2.6'	- 4.6'	FILE NO.:	PG4049	
Su	ummerside West PH. 4 &	5	BH OR TP No.: BH413-18		DATE SAMPLED:	23-Feb-18		
	99002		TESTED BY:	D. Be	ertrand	DATE RECEIVED:	14-Mar-18	
	Paterson Group		DATE REPT'D:	19-N	lar-18	DATE TESTED:	16-Mar-18	
				TION				
	28	50	0.01					
	2.700			REN	IARKS			
	40 g / L	(BAIN SIZE ANAL V	2919				
EVE DIAMETER (m	חm)	WEIGHT RETAINED (g)		PERCENT	RETAINED	PERCENT F	PERCENT PASSING	
63.0								
			0.0		0	100.	0	
Pan			128		0.0			
0.850			-	0	.0	100.	0	
0.425		0.03		0.1		99.9		
0.250				0	0.1		99.9	
0.106				0	.3	99.7		
0.075				0	.4	99.6		
Pan		0.	.20					
CHECK	0.0							
			HYDROMETER DA					
TIME (24 hours)	Hs	Hc	Temp. (°C)	DIAMETER	(P)	TOTAL PERCEN	NT PASSING	
7:45	55.0	6.0	21.0	0.0351	96.9	96.9)	
7:46	54.0	6.0	21.0	0.0251	94.9	94.9)	
7:49	53.0	6.0	21.0	0.0161	92.9	92.9)	
7:59	51.0	6.0	21.0	0.0095	89.0	89.0)	
8:14	49.0	6.0	21.0	0.0069	85.0	85.0)	
8:44	47.0	6.0	21.0	0.0049	81.1	81.1		
11:54	45.0	6.0	21.0	0.0025	77.1			
7:44	39.0	6.0	21.0	0.0011	65.2	65.2	2	
tent = 27.1%			COMMENTS					
Curtis Beadow						Joe Forsyth, P. Eng.		
REVIEWED BY:								
low 10	hun		APPRO	VED BY:		Jette	\geq	
	RAVITY (Gs) IC MOISTURE 50.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 150.00 State EVE DIAMETER (n 63.0 53.0 37.5 26.5 19.0 16.0 13.2 9.5 4.75 2.0 Pan 0.850 0.425 0.250 0.106 0.075 Pan CHECK TIME (24 hours) 7:45 7:46 7:59 8:14 8:44 11:54	Summerside West PH. 4 & 99002 Paterson Group Paterson Group IPATERSON GROUP RAVITY (Gs) 2.700 I RAVITY (Gs) 2.700 I GAUITY (Gs) 2.700 I GAUITY (Gs) 2.700 I IONO ACTUAL Wt. 150.01 IONO 100.00 IONO IONO IONO IONO <td>Summerside West PH. 4 & 5 99002 Paterson Group S 128 50 RAVITY (Gs) 2.700 0 COMOISTURE Tare No. 50.00 ACTUAL Wt. 150.00 100.00 150.00 100.00 100.00 100.00 S <</td> <td>BH OR TP No.:: TESTED BY: CATE REPTD:: SAMPLE INFORMAT TESTED BY: SAMPLE INFORMAT SAMPLEINFORMAT </td>	Summerside West PH. 4 & 5 99002 Paterson Group S 128 50 RAVITY (Gs) 2.700 0 COMOISTURE Tare No. 50.00 ACTUAL Wt. 150.00 100.00 150.00 100.00 100.00 100.00 S <	BH OR TP No.:: TESTED BY: CATE REPTD:: SAMPLE INFORMAT TESTED BY: SAMPLE INFORMAT SAMPLEINFORMAT				

Im hun get

HYDROMETER LS-702 ASTM-422

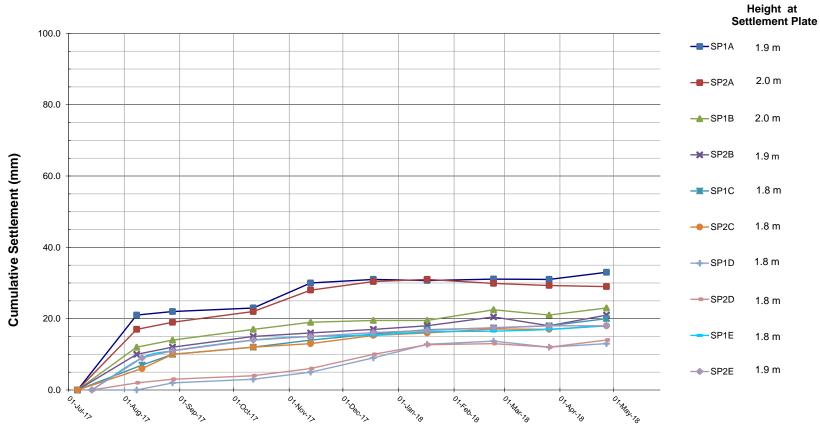
Su 10 AVITY (Gs) MOISTURE 50.00 150.00 150.00 1.(50	2447591 Ontario Inc mmerside West PH. 4 / 99003 Paterson Group 7.1 2.700 Tare No. ACTUAL Wt. 100.00 100.00	\$5 S	DEPTH: BH OR TP No.: TESTED BY: DATE REPT'D: AMPLE INFORMAT .02		6-18 rtrand	FILE NO.: DATE SAMPLED: DATE RECEIVED: DATE TESTED:	PG4049 23-Feb-18 14-Mar-18 16-Mar-18	
10 AVITY (Gs) MOISTURE 50.00 150.00 150.00 1.(50	99003 Paterson Group 7.1 2.700 Tare No. ACTUAL Wt. 100.00 100.00 000	s	TESTED BY: DATE REPT'D: AMPLE INFORMAT	D. Bei 19-Mi 1 ON	trand ar-18	DATE RECEIVED:	14-Mar-18	
AVITY (Gs) MOISTURE 50.00 150.00 150.00 1.1. 50	Paterson Group 7.1 2.700 Tare No. ACTUAL Wt. 100.00 100.00		DATE REPT'D: AMPLE INFORMAT	19-M: TON	ar-18			
AVITY (Gs) MOISTURE 50.00 150.00 150.00 1.1. 50	7.1 2.700 Tare No. ACTUAL Wt. 100.00 100.00 000		AMPLE INFORMAT	ION		DATE TESTED:	16-Mar-18	
AVITY (Gs) MOISTURE 50.00 150.00 150.00 1.1. 50	2.700 Tare No. ACTUAL Wt. 100.00 100.00				ARKS			
AVITY (Gs) MOISTURE 50.00 150.00 150.00 1.1. 50	2.700 Tare No. ACTUAL Wt. 100.00 100.00	50	.02	REM	ARKS			
MOISTURE 50.00 150.00 150.00 1.0 50	Tare No. ACTUAL Wt. 100.00 100.00			REM	ARKS			
50.00 150.00 150.00 1.0 50	ACTUAL Wt. 100.00 100.00							
150.00 150.00 1.0 50	100.00 100.00							
150.00 1.(50	100.00 000							
1.(50	000							
50								
	00							
50	.02							
	.02							
I BACK SIEVE	0.07							
TRATION	40 g / L							
		(RAIN SIZE ANALY	SIS				
E DIAMETER (m	ım)	WEIGHT R	ETAINED (g)	PERCENT	RETAINED	PERCENT F	ASSING	
63.0								
53.0								
37.5								
26.5								
19.0								
16.0								
13.2								
9.5								
2.0					0.0		100.0	
Pan		10	7.1					
0.850			0.04					
						100.0		
0.250						100.0		
0.106								
0.075				0.	1	99.9		
HECK	0.0							
TIME (24 hours)	Hs	Hc	Temp. (°C)	DIAMETER	(P)	TOTAL PERCEN	NT PASSING	
7:56	56.5	6.0	21.0	0.0344	99.8	99.8	3	
7:57	56.0	6.0	21.0	0.0245	98.8	98.8	3	
8:00	55.5	6.0	21.0	0.0156	97.9	97.9)	
8:10	55.0	6.0	21.0	0.0091	96.9			
8:25	53.0	6.0	21.0	0.0066	92.9			
8:55	50.0	6.0	21.0	0.0048	87.0			
12:05	45.0	6.0	21.0	0.0025	77.1			
7:55	32.0	6.0		0.0012	51.4	51.4	÷	
nt = 41.1%			COMMENTS					
	Curtis Boodow					los Forouth D Err		
for the			APPRO	VED BY:			>	
	E DIAMETER (m 63.0 53.0 37.5 26.5 19.0 16.0 13.2 9.5 4.75 2.0 Pan 0.850 0.425 0.250 0.106 0.075 Pan IECK TIME (24 hours) 7:56 7:57 8:00 8:10 8:25 8:55 12:05 7:55 T1:55	E DIAMETER (mm) 63.0 53.0 37.5 26.5 19.0 16.0 13.2 9.5 4.75 2.0 Pan 0.850 0.425 0.250 0.106 0.075 Pan IECK 0.0 TIME Hs (24 hours) 7:56 56.5 7:57 56.0 8:00 55.5 8:10 55.0 8:25 53.0 8:55 50.0 12:05 45.0 7:55 32.0	Curtis Beadow Curtis Beadow Curtis Beadow 6.0 Curtis Beadow 6.0	GRAIN SIZE ANALY E DIAMETER (mm) WEIGHT RETAINED (g) 63.0 53.0 37.5 26.5 19.0 16.0 13.2 9.5 4.75 0.0 20 0.0 Pan 107.1 0.850 0.01 0.250 0.01 0.250 0.01 0.106 0.03 0.075 0.04 Pan 0.07 10250 0.01 0.106 0.03 0.075 0.04 Pan 0.07 IECK 0.0 MAX = 0.3% HYDROMETER DA TIME Hs Hc Temp. (°C) 7:56 56.5 6.0 21.0 8:00 55.5 6.0 21.0 8:25 53.0 6.0 21.0 8:55 50.0 6.0 21.0 8:55 50.0 6.0 21.0 7:55 </td <td>GRAIN SIZE ANALYSIS E DIAMETER (mm) WEIGHT RETAINED (g) PERCENT 63.0 </td> <td>GRAIN SIZE ANALYSIS E DIAMETER (mm) WEIGHT RETAINED (g) PERCENT RETAINED 63.0 53.0 </td> <td>GRAIN SIZE ANALYSIS E DIAMETER (mm) WEIGHT RETAINED (g) PERCENT RETAINED PERCENT P 63.0 </td>	GRAIN SIZE ANALYSIS E DIAMETER (mm) WEIGHT RETAINED (g) PERCENT 63.0	GRAIN SIZE ANALYSIS E DIAMETER (mm) WEIGHT RETAINED (g) PERCENT RETAINED 63.0 53.0	GRAIN SIZE ANALYSIS E DIAMETER (mm) WEIGHT RETAINED (g) PERCENT RETAINED PERCENT P 63.0	

APPENDIX 2

FIGURE 1 - KEY PLAN

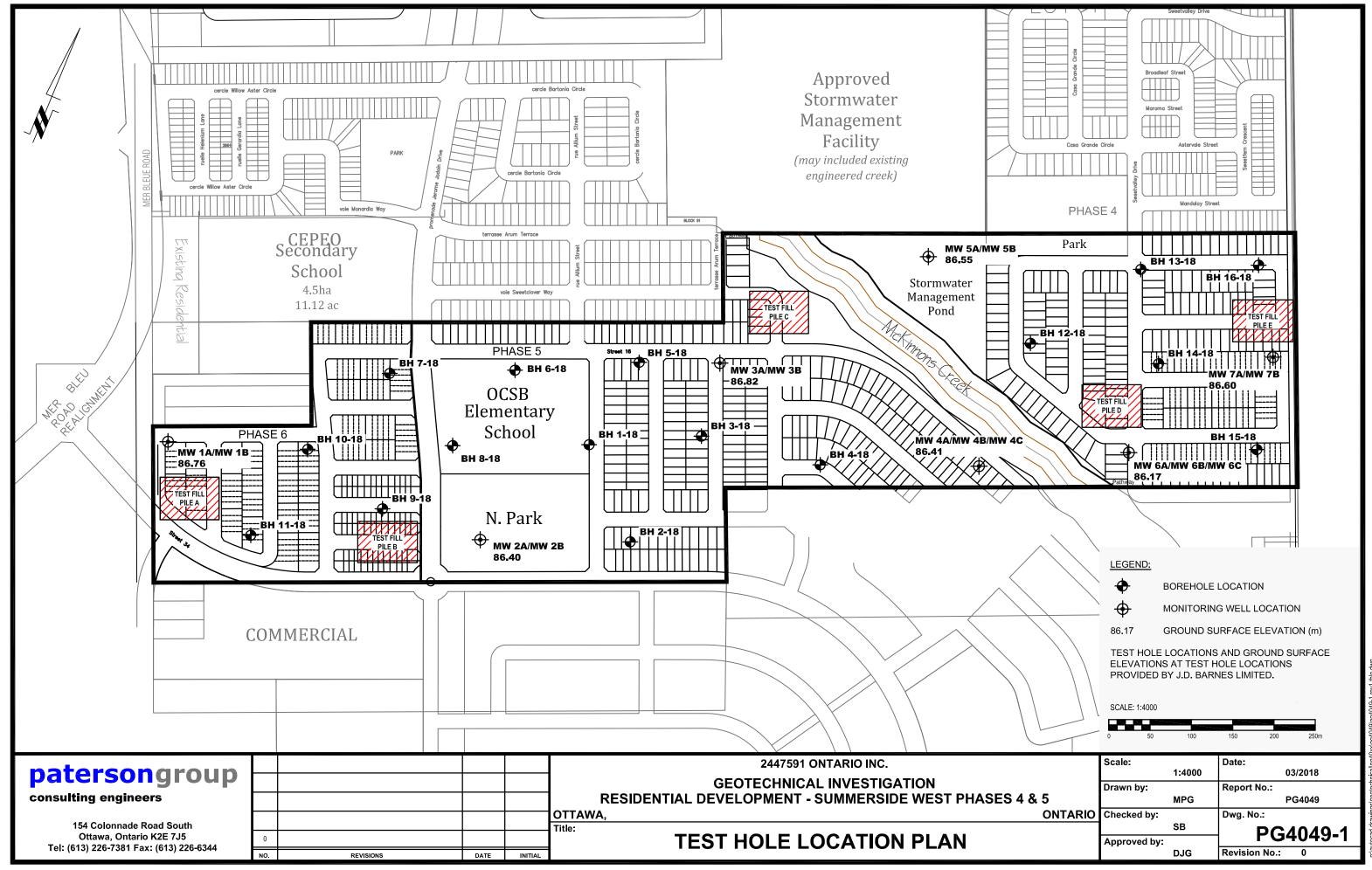
FIGURE 2 - TEST FILL SETTLEMENT MONITORING PROGRAM

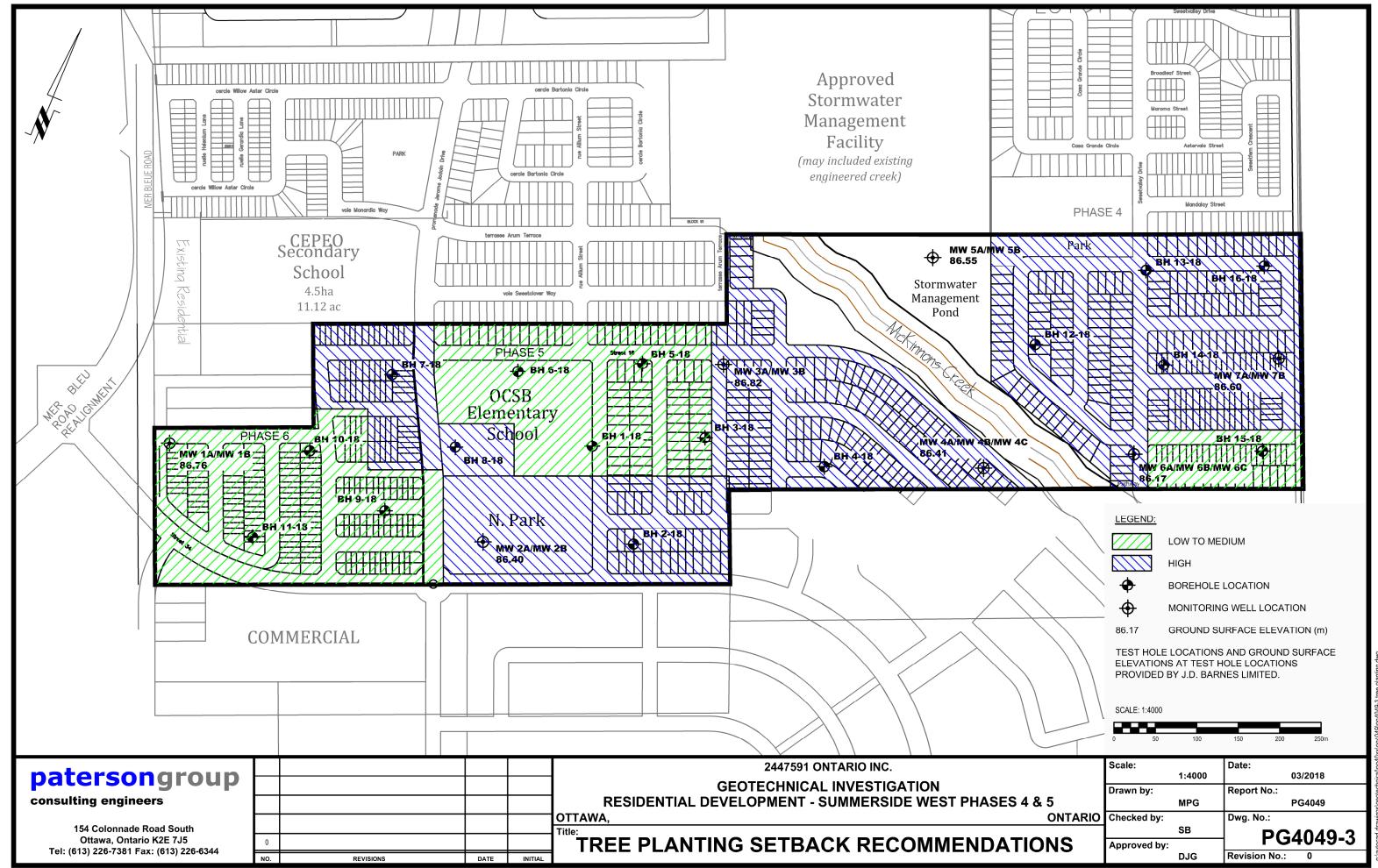
DRAWING PG4049-1 - TEST HOLE LOCATION PLAN


DRAWING PG4049-3 - TREE PLANTING SETBACK RECOMMENDATIONS

patersongroup

<u>FIGURE 1</u> KEY PLAN




Figure 2 - Test Fill Pile Settlement Monitoring Program Summerside West - Phases 4, 5 and 6 - Mer Bleue Road

Test Fill Pile

Time (date)

tocad drawings/geotechnical/pg40xx/pg4049/pg4049-1 rev1 thl

