

Re: **Remedial Action Plan (RAP)**
1994 Scott Street and 317 Tweedsmuir Avenue – Ottawa, Ontario
To: Park River Properties – **Mr. Kevin McMahon** – kevin@parkriver.ca
Date: December 8, 2025
File: PE6402-MEMO.02

Introduction

Further to your request and authorization, Paterson Group (Paterson) have completed a remedial action plan (RAP) for the aforementioned site. It is our understanding that the subject site is being considered for redevelopment for residential land use. A Record of Site Condition will be required specifically for the 1994 Scott Street portion of the subject lands.

Background Information

A subsurface investigation (Phase II ESA) was conducted during the interim of February 7, 2024 to February 13, 2024. The purpose of the Phase II ESA was to address the areas of potential environmental concern identified during the historical review, in particular several nearby automotive service garages and retail fuel outlets, as well as the presence of fill material of unknown quality across the aforementioned site.

Observations

Nine boreholes (BH1-24 to BH9-24) were advanced on the subject site as part of the subsurface investigation, five of which were instrumented with groundwater monitoring wells.

Boreholes were drilled to a maximum depth of approximately 7.7m below ground surface. Generally, the subsurface conditions at the subject site consist of a layer of fill consisting of silty sand, with gravel, crushed stone and trace amounts of clay. The fill material was underlain by glacial till comprised of silty sand with gravel. Bedrock was encountered in all test holes and ranged between 0.69 and 1.22 mbgs. Some odours were observed in Borehole BH6-24 on the 1994 Scott Street parcel.

Groundwater levels on the subject site were measured using an electronic water level meter on February 21, 2024. The groundwater on the subject site was encountered at depths ranging from approximately 4.43m to 6.99m below the existing ground surface.

Soil and groundwater samples were submitted for a combination of benzene, toluene, ethylbenzene and xylenes (BTEX), petroleum hydrocarbons (PHCs), volatile organic

compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and metals. Test results compared to the selected MECP Table 7 Residential Standards and the MECP Table 2.1 ICC and 4.1 ICC reuse standards for off-site disposal during redevelopment are attached to this memo.

Impacted Soil

The analytical results comply with the selected MECP Table 7 Residential Standards, with the exception of PHCs F3 and F4 identified in the fill material at BH2-24 and BH9-24, as well as a lead exceedance in BH7-24. Fill material impacted with PHC F3 and F4 (and PHC F4G), as well as a minor lead exceedance was identified in excess of the MECP Table 2.1 and 4.1 ICC Standards for off-site disposal. These contaminants were identified throughout the northern portion of the subject site (1994 Scott Street) in the fill material (BH7-24-SS2 and BH9-24-AU1) and on the northeastern portion of the subject site (317 Tweedsmuir Avenue) in the fill material (BH2-24-AU1).

As a result of these impacts, approximately 750 m³ of impacted soil from the northern (1994 Scott Street; 400 m³) and northeast portion (317 Tweedsmuir Avenue; 350 m³) of the subject site is expected to have to be disposed off-site at an approved waste disposal facility at a premium.

Groundwater

Based on the findings of the Phase II ESA, the groundwater complies with the MECP Table 7 Standards.

Remedial Action Plan Summary

The suggested remedial action plan consists of a generic approach, where the excavation and subsequent disposal of contaminated soil at an approved waste disposal facility would be undertaken during the redevelopment of the subject site.

Due to the change in land use with respect to the property addressed 1994 Scott Street, the proposed residential development will require a Record of Site Condition (RSC) to be filed with the Ontario Ministry of the Environment, Conservation and Parks (MECP).

The suggested remedial action plan is as follows:

- The existing buildings will be demolished as part of the site redevelopment.
- Existing groundwater monitoring wells are required to be decommissioned by a licenced well driller in accordance with Ontario Regulation (O.Reg.) 903, although they should be maintained until just prior to site redevelopment.

- A remediation program using a full depth generic approach will be implemented. This will involve the excavation and removal of all impacted soil from the subject site. Prior to its off-site disposal, a leachate analysis of a representative sample of contaminated soil must be completed in accordance with Ontario Regulation 347/558.
- Overburden will be excavated and disposed of off-site. Excavated soil will be screened using visual and olfactory observations as well as a portable soil vapour analyzer. Field observations will be used in combination with the collection and analysis of verification samples to justify off-site disposal at an approved waste disposal facility, or a clean re-use site if appropriate.
- Impacted soil will be placed in trucks and hauled to an approved waste disposal facility. Excess non-impacted soil will be placed in trucks and hauled off-site for possible re-use as clean material or for disposal. Excess soil is required to be handled in accordance with O.Reg. 406/19 – On Site and Excess Soil Management.
- Based on our Phase II ESA, the groundwater complies with the selected MECP Standards at the subject site.
- Prior to pumping 50,000 L/day, a permit to take water (PTTW) from the MECP is required.
- Prior to discharging groundwater to the municipal sewer system, an Approval or Agreement from the City of Ottawa Sewer Use Program is required. Testing, reporting, and discharge requirements need to be carried out in compliance with the agreement.
- If appropriate, confirmatory soil sampling and analysis will be conducted upon completion of the soil remedial program to ensure the site complies with the selected MECP standards and to confirm the quality of the soil for off-site disposal purposes.
- Post-remediation groundwater monitoring wells may be required to support an RSC. If required, post-remediation groundwater monitoring wells will be installed and sampled in accordance with O.Reg. 153/04 to confirm groundwater quality.
- A remediation report will be prepared, while an RSC will be submitted to the MECP for acknowledgement for the 1994 Scott Street parcel.

Mr. Kevin McMahon

Page 4

File: PE6402-MEMO.02

Quantities and Incremental Cost Estimate

Based on the current information, the following quantities are expected:

1994 Scott Street

- Disposal of impacted soil (400m³) at an approved waste disposal facility 800 mt

317 Tweedsmuir Avenue

- Disposal of impacted soil (350m³) at an approved waste disposal facility 750 mt

We trust that this information satisfies your requirements.

Paterson Group Inc.

Mark D'Arcy, P.Eng., Q.P.ESA

Attachments:

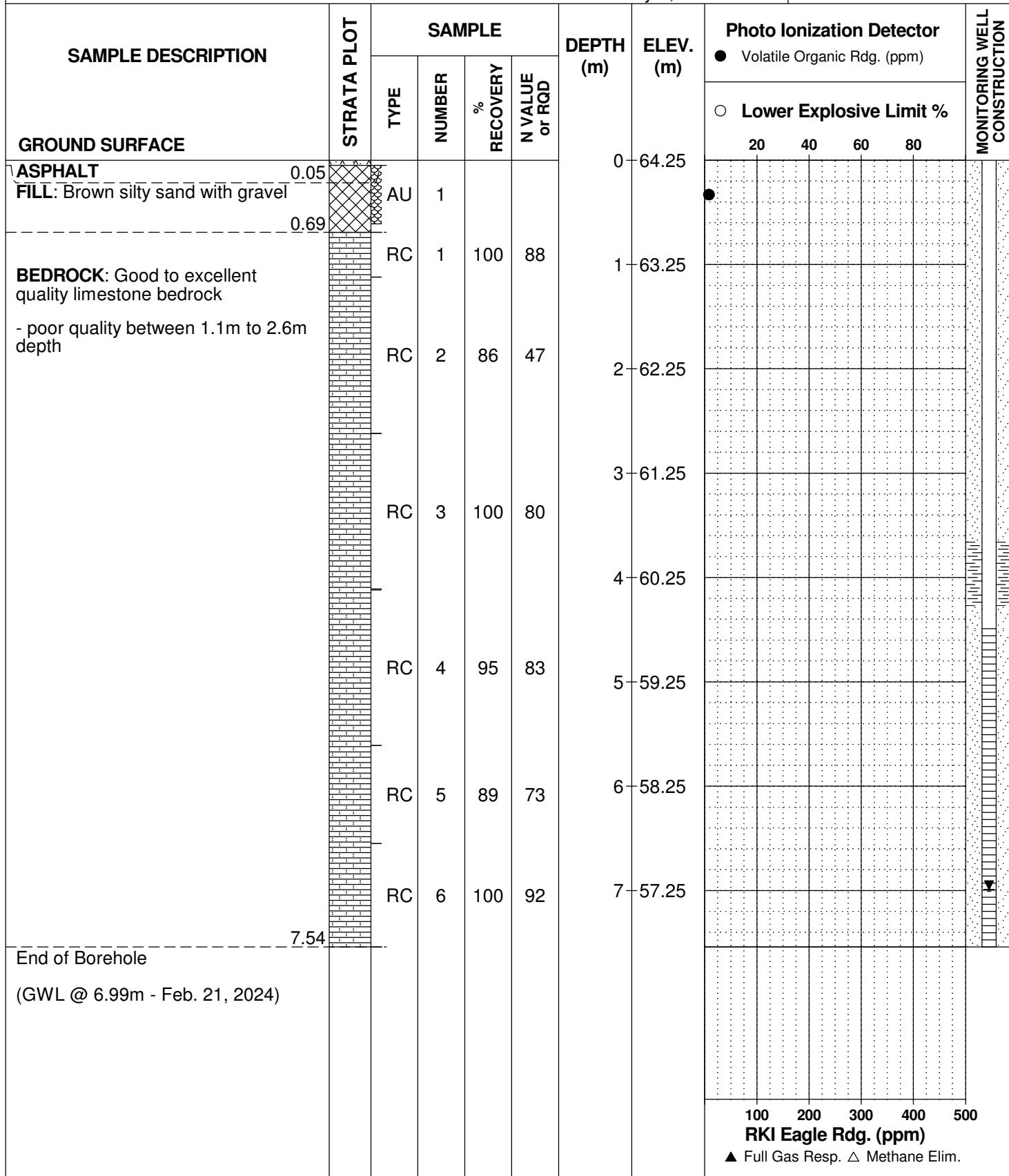
- Soil Profile and Test Data Sheets
- Soil Results Compared to MECP Table 7 Residential Standards
- Soil Results Compared to MECP Table 2.1 ICC Reuse Standards
- Soil Results Compared to MECP Table 4.1 ICC Reuse Standards
- Drawing PE6402-3- Test Hole Location Plan

EASTING: 363444.685 **NORTHING:**

EASTING: 363444.685 **NORTHING:** 5028720.724 **ELEVATION:** 64.25

DATUM: Geodetic

REMARKS:


BORINGS BY: Truck-Mounted Drill

DATE: February 7, 2024

FILE NO. PE6402

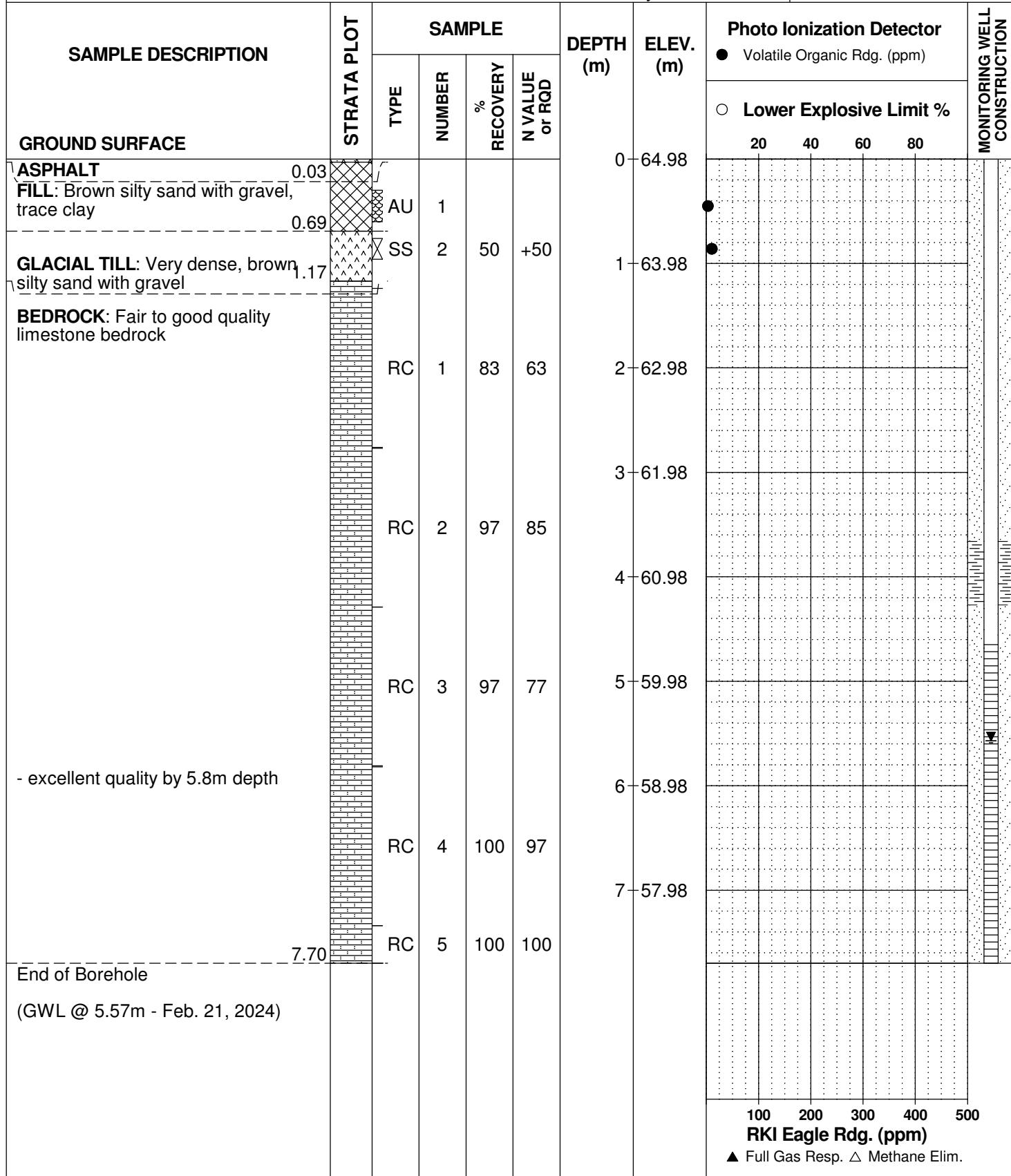
HOLE NO.

BH 2-24

EASTING: 363474.105 NORTHING: 5028664.211 ELEVATION: 64.98

FILE NO. **PE6402**

DATUM: Geodetic


REMARKS:

BORINGS BY: Truck-Mounted Drill

DATE: February 12, 2024

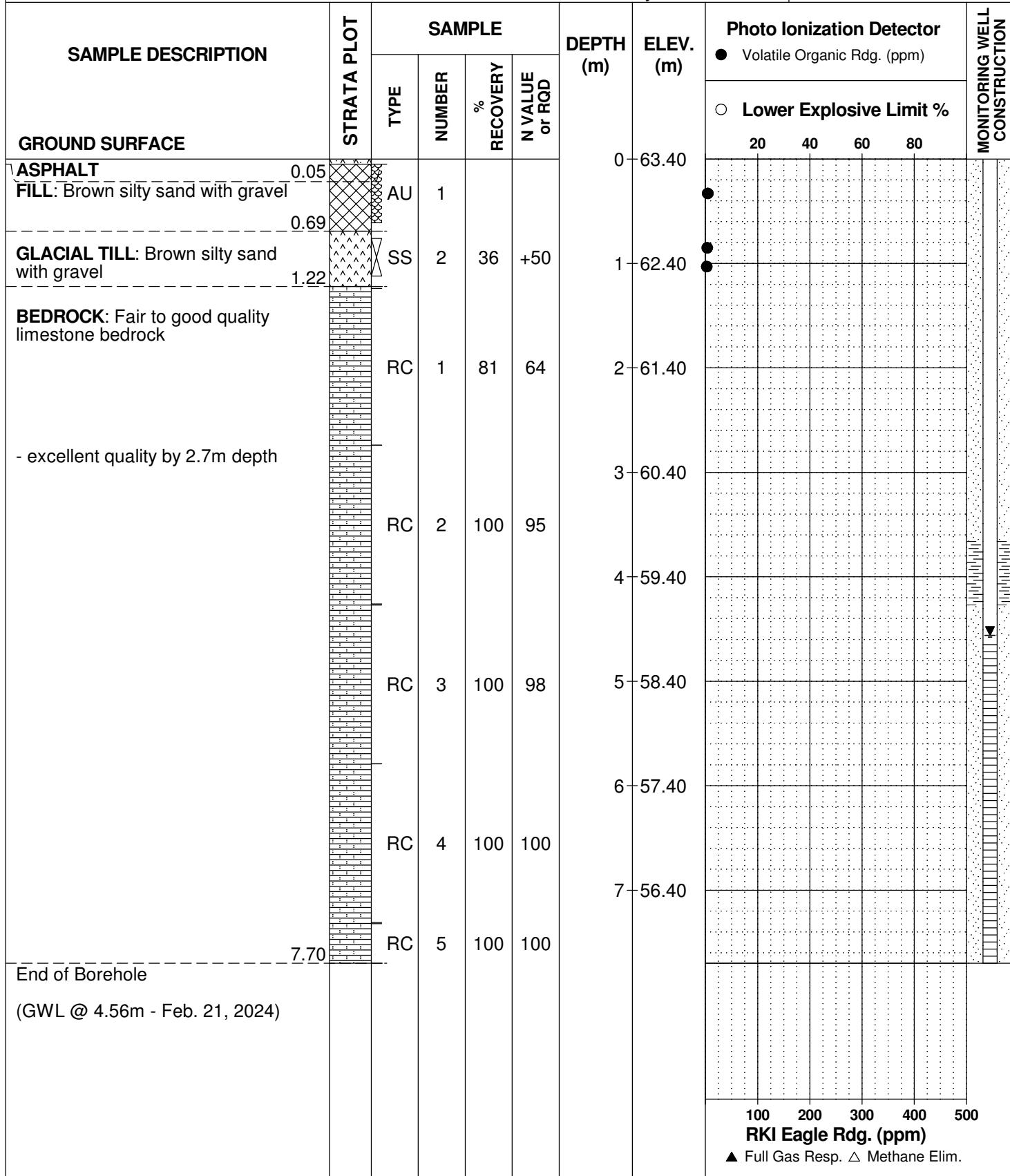
HOLE NO.

BH 5-24

EASTING: 363376.246 **NORTHING:** 5028739.503 **ELEVATION:** 63.40
DATUM: Geodetic

FILE NO. PE6402

HOLE NO.


PE6402

REMARKS:

BORINGS BY: Truck-Mounted Drill

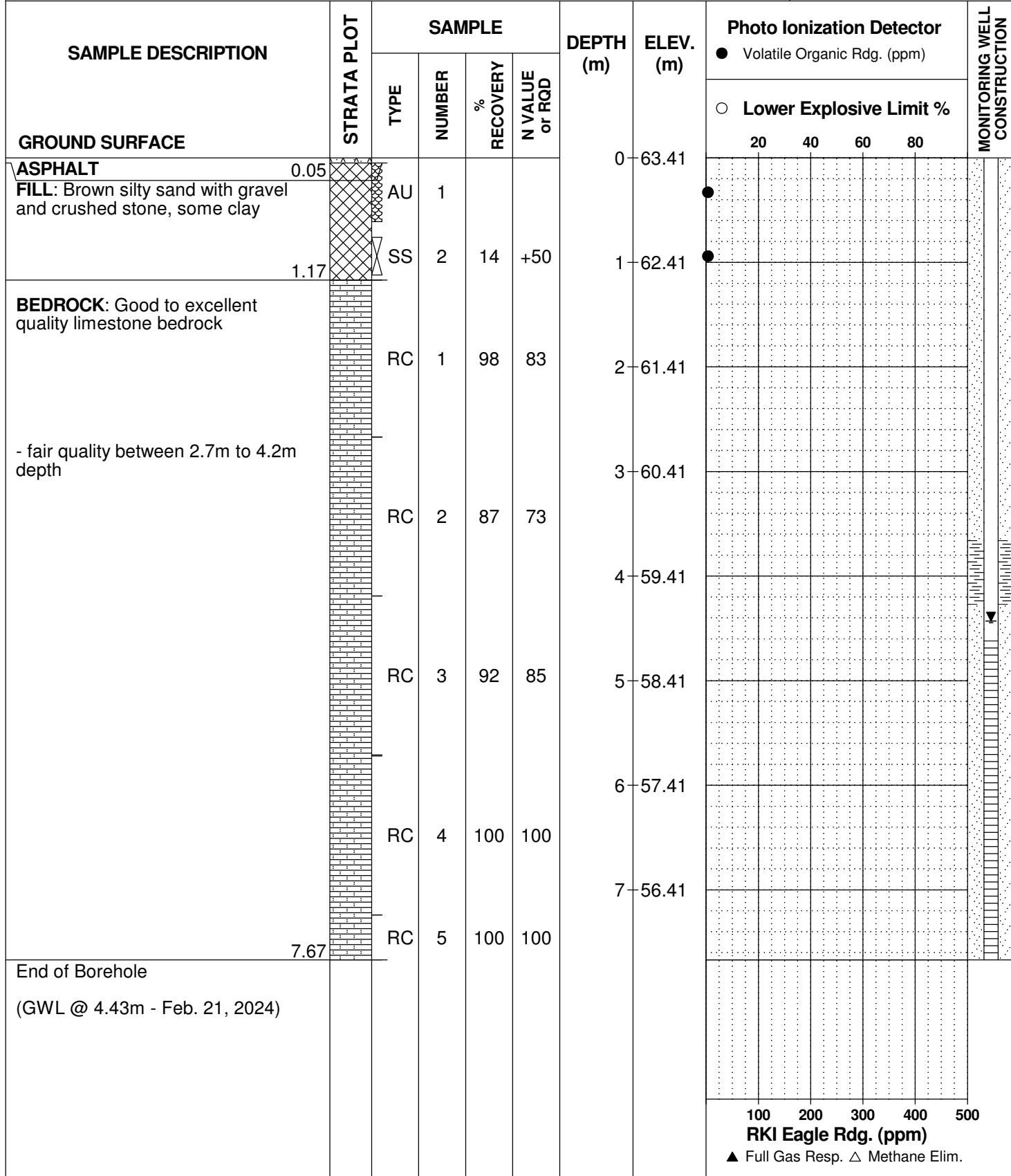
DATE: February 12, 2024

BH 6-24

EASTING: 363383.893 NORTHING: 5028749.401 ELEVATION: 63.41
DATUM: Geodetic

FILE NO. PE6402

HOLE NO.


BH 7-24

REMARKS:

BORINGS BY: Truck-Mounted Drill

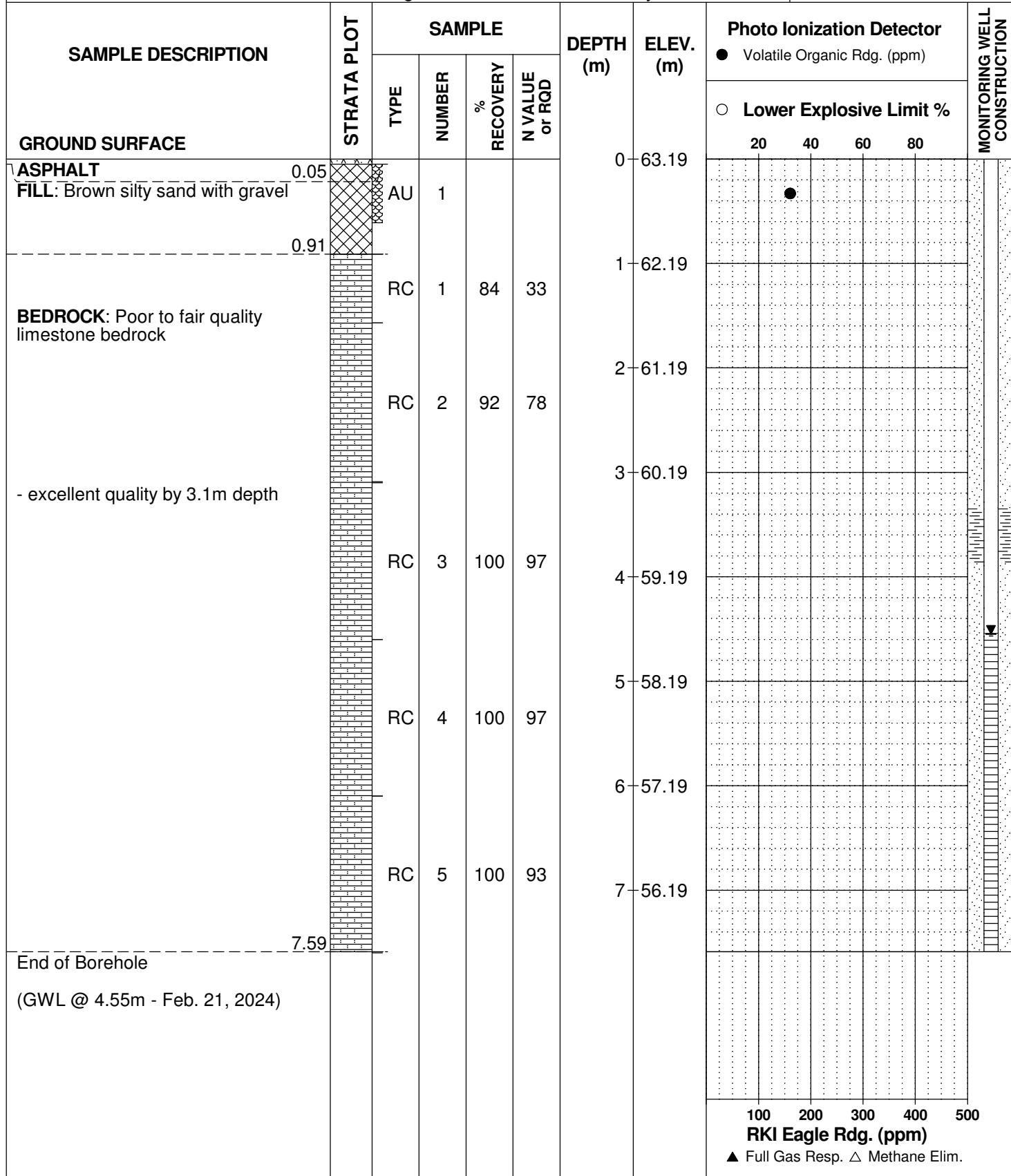
DATE: February 12, 2024

BH 7-24

EASTING: 363398.439 NORTHING: 5028757.149 ELEVATION: 63.19

FILE NO. **PE6402**

DATUM: Geodetic


REMARKS:

BORINGS BY: CME 55 Low Clearance Power Auger

DATE: February 13, 2024

HOLE NO.

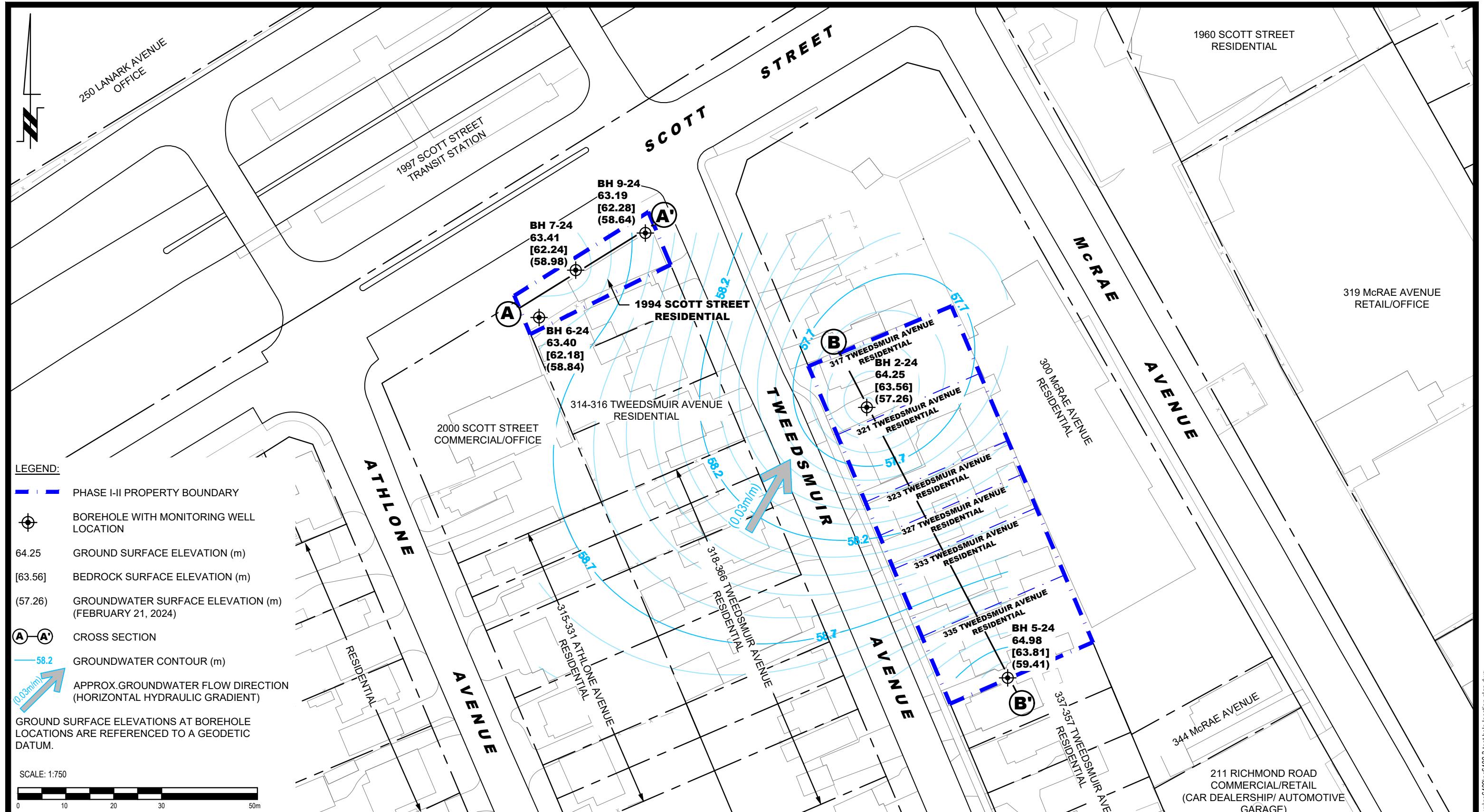
BH 9-24

Parameter	Units	MDL	Regulation	Sample					
				BH2-24-AU1	BH5-24-SS2	BH6-24-SS2	BH7-24-SS2	BH9-24-AU1	DUP-1-24 (BH9-24-AU1)
Sample Date (m/d/y)			Reg 153/04 (2011)-Table 7 Residential, coarse	07-Feb-24	12-Feb-24	12-Feb-24	12-Feb-24	13-Feb-24	13-Feb-24
Metals									
Antimony	ug/g dry	1.0	7.5 ug/g dry	ND	NA	ND	ND	ND	ND
Arsenic	ug/g dry	1.0	18 ug/g dry	2.1	NA	4.0	5.3	1.9	2.0
Barium	ug/g dry	1.0	390 ug/g dry	110	NA	124	276	80.1	81.4
Beryllium	ug/g dry	0.5	4 ug/g dry	ND	NA	ND	0.6	ND	ND
Boron	ug/g dry	5.0	120 ug/g dry	13.4	NA	9.4	16.9	7.2	5.3
Cadmium	ug/g dry	0.5	1.2 ug/g dry	ND	NA	ND	0.6	ND	ND
Chromium (VI)	ug/g dry	0.2	8 ug/g dry	NA	NA	ND	ND	ND	ND
Chromium	ug/g dry	5.0	160 ug/g dry	14.5	NA	18.2	24.1	12.3	10.8
Cobalt	ug/g dry	1.0	22 ug/g dry	5.4	NA	5.3	7.4	4.3	4.2
Copper	ug/g dry	5.0	140 ug/g dry	9.4	NA	26.3	32.2	11.8	11.8
Lead	ug/g dry	1.0	120 ug/g dry	16.2	NA	66.7	181	28.4	28.8
Mercury	ug/g dry	0.1	0.27 ug/g dry	NA	NA	ND	ND	ND	ND
Molybdenum	ug/g dry	1.0	6.9 ug/g dry	ND	NA	ND	1.4	ND	ND
Nickel	ug/g dry	5.0	100 ug/g dry	11.9	NA	12.5	16.0	13.3	13.4
Selenium	ug/g dry	1.0	2.4 ug/g dry	ND	NA	ND	ND	ND	ND
Silver	ug/g dry	0.3	20 ug/g dry	ND	NA	ND	ND	ND	ND
Thallium	ug/g dry	1.0	1 ug/g dry	ND	NA	ND	ND	ND	ND
Uranium	ug/g dry	1.0	23 ug/g dry	ND	NA	ND	ND	ND	ND
Vanadium	ug/g dry	10.0	86 ug/g dry	27.3	NA	26.0	30.6	50.5	43.9
Zinc	ug/g dry	20.0	340 ug/g dry	20.3	NA	85.3	201	31.9	31.2
Volatiles									
Benzene	ug/g dry	0.02	0.21 ug/g dry	ND	ND	ND	ND	ND	ND
Ethylbenzene	ug/g dry	0.05	2 ug/g dry	ND	ND	ND	ND	ND	ND
Toluene	ug/g dry	0.05	2.3 ug/g dry	ND	ND	ND	ND	ND	ND
m/p-Xylene	ug/g dry	0.05		0.07	ND	ND	ND	ND	ND
o-Xylene	ug/g dry	0.05		ND	ND	ND	ND	ND	ND
Xylenes, total	ug/g dry	0.05	3.1 ug/g dry	0.07	ND	ND	ND	ND	ND
Hydrocarbons									
F1 PHCs (C6-C10)	ug/g dry	7	55 ug/g dry	ND	ND	ND	ND	ND	ND
F2 PHCs (C10-C16)	ug/g dry	4	98 ug/g dry	ND	ND	ND	ND	ND	ND
F3 PHCs (C16-C34)	ug/g dry	8	300 ug/g dry	785	116	69	122	1070	946
F4 PHCs (C34-C50)	ug/g dry	6	2800 ug/g dry	2030	213	182	365	3940	4330
F4G PHCs (gravimetric)	ug/g dry	50	2800 ug/g dry	3340	277	243	586	5090	4520
Semi-Volatiles									
Acenaphthene	ug/g dry	0.02	7.9 ug/g dry	NA	NA	ND	ND	ND (0.40)	ND (0.40)
Acenaphthylene	ug/g dry	0.02	0.15 ug/g dry	NA	NA	0.02	0.09	ND (0.40)	ND (0.40)
Anthracene	ug/g dry	0.02	0.67 ug/g dry	NA	NA	0.06	0.10	ND (0.40)	ND (0.40)
Benzo[a]anthracene	ug/g dry	0.02	0.5 ug/g dry	NA	NA	0.18	0.24	ND (0.40)	ND (0.40)
Benzo[a]pyrene	ug/g dry	0.02	0.3 ug/g dry	NA	NA	0.15	0.24	ND (0.40)	ND (0.40)
Benzo[b]fluoranthene	ug/g dry	0.02	0.78 ug/g dry	NA	NA	0.18	0.23	ND (0.40)	ND (0.40)
Benzo[g,h,i]perylene	ug/g dry	0.02	6.6 ug/g dry	NA	NA	0.09	0.15	ND (0.40)	ND (0.40)
Benzo[k]fluoranthene	ug/g dry	0.02	0.78 ug/g dry	NA	NA	0.11	0.14	ND (0.40)	ND (0.40)
Chrysene	ug/g dry	0.02	7 ug/g dry	NA	NA	0.17	0.23	ND (0.40)	ND (0.40)
Dibenzo[a,h]anthracene	ug/g dry	0.02	0.1 ug/g dry	NA	NA	0.02	0.02	ND (0.40)	ND (0.40)
Fluoranthene	ug/g dry	0.02	0.69 ug/g dry	NA	NA	0.47	0.43	ND (0.40)	ND (0.40)
Fluorene	ug/g dry	0.02	62 ug/g dry	NA	NA	ND	0.02	ND (0.40)	ND (0.40)
Indeno [1,2,3-cd] pyrene	ug/g dry	0.02	0.38 ug/g dry	NA	NA	0.08	0.12	ND (0.40)	ND (0.40)
1-Methylnaphthalene	ug/g dry	0.02	0.99 ug/g dry	NA	NA	ND	ND	ND (0.40)	ND (0.40)
2-Methylnaphthalene	ug/g dry	0.02	0.99 ug/g dry	NA	NA	ND	ND	ND (0.40)	ND (0.40)
Methylnaphthalene (1&2)	ug/g dry	0.04	0.99 ug/g dry	NA	NA	ND	ND	ND (0.80)	ND (0.80)
Naphthalene	ug/g dry	0.01	0.6 ug/g dry	NA	NA	0.02	0.01	ND (0.20)	ND (0.20)
Phenanthrene	ug/g dry	0.02	6.2 ug/g dry	NA	NA	0.22	0.24	ND (0.40)	ND (0.40)
Pyrene	ug/g dry	0.02	78 ug/g dry	NA	NA	0.36	0.40	ND (0.40)	ND (0.40)

Elevated reporting limits due to the nature of the sample matrix

Exceeds the selected MECP Table 7 Residential Standards

Parameter	Units	MDL	Regulation	Sample					
				BH2-24-AU1	BH5-24-SS2	BH6-24-SS2	BH7-24-SS2	BH9-24-AU1	DUP-1-24 (BH9-24-AU1)
Sample Date (m/d/y)			Reg 406/19-Table 2.1 Industrial/Commercial	07-Feb-24	12-Feb-24	12-Feb-24	12-Feb-24	13-Feb-24	13-Feb-24
Metals									
Antimony	ug/g dry	1.0	40 ug/g dry	ND (1.0)	N/A	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Arsenic	ug/g dry	1.0	18 ug/g dry	2.1	N/A	4	5.3	1.9	2
Barium	ug/g dry	1.0	670 ug/g dry	110	N/A	124	276	80.1	81.4
Beryllium	ug/g dry	0.5	8 ug/g dry	ND (0.5)	N/A	ND (0.5)	0.6	ND (0.5)	ND (0.5)
Boron	ug/g dry	5.0	120 ug/g dry	13.4	N/A	9.4	16.9	7.2	5.3
Cadmium	ug/g dry	0.5	1.9 ug/g dry	ND (0.5)	N/A	ND (0.5)	0.6	ND (0.5)	ND (0.5)
Chromium (VI)	ug/g dry	0.2	8 ug/g dry	N/A	N/A	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)
Chromium	ug/g dry	5.0	160 ug/g dry	14.5	N/A	18.2	24.1	12.3	10.8
Cobalt	ug/g dry	1.0	80 ug/g dry	5.4	N/A	5.3	7.4	4.3	4.2
Copper	ug/g dry	5.0	230 ug/g dry	9.4	N/A	26.3	32.2	11.8	11.8
Lead	ug/g dry	1.0	120 ug/g dry	16.2	N/A	66.7	181	28.4	28.8
Mercury	ug/g dry	0.1	0.27 ug/g dry	N/A	N/A	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
Molybdenum	ug/g dry	1.0	40 ug/g dry	ND (1.0)	N/A	ND (1.0)	1.4	ND (1.0)	ND (1.0)
Nickel	ug/g dry	5.0	270 ug/g dry	11.9	N/A	12.5	16	13.3	13.4
Selenium	ug/g dry	1.0	5.5 ug/g dry	ND (1.0)	N/A	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Silver	ug/g dry	0.3	40 ug/g dry	ND (0.3)	N/A	ND (0.3)	ND (0.3)	ND (0.3)	ND (0.3)
Thallium	ug/g dry	1.0	3.3 ug/g dry	ND (1.0)	N/A	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Uranium	ug/g dry	1.0	33 ug/g dry	ND (1.0)	N/A	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Vanadium	ug/g dry	10.0	86 ug/g dry	27.3	N/A	26	30.6	50.5	43.9
Zinc	ug/g dry	20.0	340 ug/g dry	20.3	N/A	85.3	201	31.9	31.2
Volatiles									
Benzene	ug/g dry	0.02	0.02 ug/g dry	ND (0.02)					
Ethylbenzene	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)					
Toluene	ug/g dry	0.05	0.2 ug/g dry	ND (0.05)					
m/p-Xylene	ug/g dry	0.05		0.07	ND (0.05)				
o-Xylene	ug/g dry	0.05		ND (0.05)					
Xylenes, total	ug/g dry	0.05	0.091 ug/g dry	0.07	ND (0.05)				
Hydrocarbons									
F1 PHCs (C6-C10)	ug/g dry	7	25 ug/g dry	ND (7)					
F2 PHCs (C10-C16)	ug/g dry	4	26 ug/g dry	ND (4)					
F3 PHCs (C16-C34)	ug/g dry	8	240 ug/g dry	785	116	69	122	1070	946
F4 PHCs (C34-C50)	ug/g dry	6	3300 ug/g dry	2030	213	182	365	3940	4330
F4G PHCs (gravimetric)	ug/g dry	50	3300 ug/g dry	3340	277	243	586	5090	4520
Semi-Volatiles									
Acenaphthene	ug/g dry	0.02	2.5 ug/g dry	N/A	N/A	ND (0.02)	ND (0.02)	ND (0.40)	ND (0.40)
Acenaphthylene	ug/g dry	0.02	0.093 ug/g dry	N/A	N/A	0.02	0.09	ND (0.40)	ND (0.40)
Anthracene	ug/g dry	0.02	0.16 ug/g dry	N/A	N/A	0.06	0.1	ND (0.40)	ND (0.40)
Benzo[a]anthracene	ug/g dry	0.02	0.92 ug/g dry	N/A	N/A	0.18	0.24	ND (0.40)	ND (0.40)
Benzo[a]pyrene	ug/g dry	0.02	0.31 ug/g dry	N/A	N/A	0.15	0.24	ND (0.40)	ND (0.40)
Benzo[b]fluoranthene	ug/g dry	0.02	3.2 ug/g dry	N/A	N/A	0.18	0.23	ND (0.40)	ND (0.40)
Benzo[g,h,i]perylene	ug/g dry	0.02	13 ug/g dry	N/A	N/A	0.09	0.15	ND (0.40)	ND (0.40)
Benzo[k]fluoranthene	ug/g dry	0.02	3.1 ug/g dry	N/A	N/A	0.11	0.14	ND (0.40)	ND (0.40)
Chrysene	ug/g dry	0.02	9.4 ug/g dry	N/A	N/A	0.17	0.23	ND (0.40)	ND (0.40)
Dibenzo[a,h]anthracene	ug/g dry	0.02	0.7 ug/g dry	N/A	N/A	0.02	0.02	ND (0.40)	ND (0.40)
Fluoranthene	ug/g dry	0.02	2.8 ug/g dry	N/A	N/A	0.47	0.43	ND (0.40)	ND (0.40)
Fluorene	ug/g dry	0.02	6.8 ug/g dry	N/A	N/A	ND (0.02)	0.02	ND (0.40)	ND (0.40)
Indeno [1,2,3-cd] pyrene	ug/g dry	0.02	0.76 ug/g dry	N/A	N/A	0.08	0.12	ND (0.40)	ND (0.40)
1-Methylnaphthalene	ug/g dry	0.02	0.59 ug/g dry	N/A	N/A	ND (0.02)	ND (0.02)	ND (0.40)	ND (0.40)
2-Methylnaphthalene	ug/g dry	0.02	0.59 ug/g dry	N/A	N/A	ND (0.02)	ND (0.02)	ND (0.40)	ND (0.40)
Methylnaphthalene (1&2)	ug/g dry	0.04	0.59 ug/g dry	N/A	N/A	ND (0.04)	ND (0.04)	ND (0.80)	ND (0.80)
Naphthalene	ug/g dry	0.01	0.2 ug/g dry	N/A	N/A	0.02	0.01	ND (0.20)	ND (0.20)
Phenanthrene	ug/g dry	0.02	12 ug/g dry	N/A	N/A	0.22	0.24	ND (0.40)	ND (0.40)
Pyrene	ug/g dry	0.02	28 ug/g dry	N/A	N/A	0.36	0.4	ND (0.40)	ND (0.40)


Elevated reporting limits due to the nature of the sample matrix

Exceeds the selected MECP Table 7 Residential Standards

Parameter	Units	MDL	Regulation	Sample					
				BH2-24-AU1	BH5-24-SS2	BH6-24-SS2	BH7-24-SS2	BH9-24-AU1	DUP-1-24 (BH9-24-AU1)
Sample Date (m/d/y)			Reg 406/19-Table 4.1 Industrial/Commercial SubSurface	07-Feb-24	12-Feb-24	12-Feb-24	12-Feb-24	13-Feb-24	13-Feb-24
Metals									
Antimony	ug/g dry	1.0	63 ug/g dry	ND (1.0)	N/A	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Arsenic	ug/g dry	1.0	39 ug/g dry	2.1	N/A	4.0	5.3	1.9	2.0
Barium	ug/g dry	1.0	7700 ug/g dry	110	N/A	124	276	80.1	81.4
Beryllium	ug/g dry	0.5	60 ug/g dry	ND (0.5)	N/A	ND (0.5)	0.6	ND (0.5)	ND (0.5)
Boron	ug/g dry	5.0	5000 ug/g dry	13.4	N/A	9.4	16.9	7.2	5.3
Cadmium	ug/g dry	0.5	7.9 ug/g dry	ND (0.5)	N/A	ND (0.5)	0.6	ND (0.5)	ND (0.5)
Chromium (VI)	ug/g dry	0.2	40 ug/g dry	N/A	N/A	ND (0.2)	ND (0.2)	ND (0.2)	ND (0.2)
Chromium	ug/g dry	5.0	11000 ug/g dry	14.5	N/A	18.2	24.1	12.3	10.8
Cobalt	ug/g dry	1.0	2500 ug/g dry	5.4	N/A	5.3	7.4	4.3	4.2
Copper	ug/g dry	5.0	1900 ug/g dry	9.4	N/A	26.3	32.2	11.8	11.8
Lead	ug/g dry	1.0	1000 ug/g dry	16.2	N/A	66.7	181	28.4	28.8
Mercury	ug/g dry	0.1	1.9 ug/g dry	N/A	N/A	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)
Molybdenum	ug/g dry	1.0	1200 ug/g dry	ND (1.0)	N/A	ND (1.0)	1.4	ND (1.0)	ND (1.0)
Nickel	ug/g dry	5.0	510 ug/g dry	11.9	N/A	12.5	16.0	13.3	13.4
Selenium	ug/g dry	1.0	1200 ug/g dry	ND (1.0)	N/A	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Silver	ug/g dry	0.3	490 ug/g dry	ND (0.3)	N/A	ND (0.3)	ND (0.3)	ND (0.3)	ND (0.3)
Thallium	ug/g dry	1.0	33 ug/g dry	ND (1.0)	N/A	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Uranium	ug/g dry	1.0	300 ug/g dry	ND (1.0)	N/A	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Vanadium	ug/g dry	10.0	160 ug/g dry	27.3	N/A	26.0	30.6	50.5	43.9
Zinc	ug/g dry	20.0	15000 ug/g dry	20.3	N/A	85.3	201	31.9	31.2
Volatiles									
Benzene	ug/g dry	0.02	0.02 ug/g dry	ND (0.02)					
Ethylbenzene	ug/g dry	0.05	0.05 ug/g dry	ND (0.05)					
Toluene	ug/g dry	0.05	0.2 ug/g dry	ND (0.05)					
m/p-Xylene	ug/g dry	0.05		0.07	ND (0.05)				
o-Xylene	ug/g dry	0.05		ND (0.05)					
Xylenes, total	ug/g dry	0.05	0.091 ug/g dry	0.07	ND (0.05)				
Hydrocarbons									
F1 PHCs (C6-C10)	ug/g dry	7	25 ug/g dry	ND (7)					
F2 PHCs (C10-C16)	ug/g dry	4	26 ug/g dry	ND (4)					
F3 PHCs (C16-C34)	ug/g dry	8	240 ug/g dry	785	116	69	122	1070	946
F4 PHCs (C34-C50)	ug/g dry	6	6900 ug/g dry	2030	213	182	365	3940	4330
F4G PHCs (gravimetric)	ug/g dry	50	6900 ug/g dry	3340	277	243	586	5090	4520
Semi-Volatiles									
Acenaphthene	ug/g dry	0.02	2.5 ug/g dry	N/A	N/A	ND (0.02)	ND (0.02)	ND (0.40)	ND (0.40)
Acenaphthylene	ug/g dry	0.02	0.093 ug/g dry	N/A	N/A	0.02	0.09	ND (0.40)	ND (0.40)
Anthracene	ug/g dry	0.02	0.16 ug/g dry	N/A	N/A	0.06	0.1	ND (0.40)	ND (0.40)
Benz[a]anthracene	ug/g dry	0.02	0.92 ug/g dry	N/A	N/A	0.18	0.24	ND (0.40)	ND (0.40)
Benz[a]pyrene	ug/g dry	0.02	0.31 ug/g dry	N/A	N/A	0.15	0.24	ND (0.40)	ND (0.40)
Benz[b]fluoranthene	ug/g dry	0.02	3.2 ug/g dry	N/A	N/A	0.18	0.23	ND (0.40)	ND (0.40)
Benz[g,h,i]perylene	ug/g dry	0.02	110 ug/g dry	N/A	N/A	0.09	0.15	ND (0.40)	ND (0.40)
Benz[k]fluoranthene	ug/g dry	0.02	3.1 ug/g dry	N/A	N/A	0.11	0.14	ND (0.40)	ND (0.40)
Chrysene	ug/g dry	0.02	9.4 ug/g dry	N/A	N/A	0.17	0.23	ND (0.40)	ND (0.40)
Dibenzo[a,h]anthracene	ug/g dry	0.02	1 ug/g dry	N/A	N/A	0.02	0.02	ND (0.40)	ND (0.40)
Fluoranthene	ug/g dry	0.02	2.8 ug/g dry	N/A	N/A	0.47	0.43	ND (0.40)	ND (0.40)
Fluorene	ug/g dry	0.02	6.8 ug/g dry	N/A	N/A	ND (0.02)	0.02	ND (0.40)	ND (0.40)
Indeno [1,2,3-cd] pyrene	ug/g dry	0.02	11 ug/g dry	N/A	N/A	0.08	0.12	ND (0.40)	ND (0.40)
1-Methylnaphthalene	ug/g dry	0.02	0.59 ug/g dry	N/A	N/A	ND (0.02)	ND (0.02)	ND (0.40)	ND (0.40)
2-Methylnaphthalene	ug/g dry	0.02	0.59 ug/g dry	N/A	N/A	ND (0.02)	ND (0.02)	ND (0.40)	ND (0.40)
Methylnaphthalene (1&2)	ug/g dry	0.04	0.59 ug/g dry	N/A	N/A	ND (0.04)	ND (0.04)	ND (0.80)	ND (0.80)
Naphthalene	ug/g dry	0.01	0.2 ug/g dry	N/A	N/A	0.02	0.01	ND (0.20)	ND (0.20)
Phenanthrene	ug/g dry	0.02	23 ug/g dry	N/A	N/A	0.22	0.24	ND (0.40)	ND (0.40)
Pyrene	ug/g dry	0.02	28 ug/g dry	N/A	N/A	0.36	0.4	ND (0.40)	ND (0.40)

Elevated reporting limits due to the nature of the sample matrix

Exceeds the selected MECP Table 7 Residential Standards

