

Phase Two Environmental Site Assessment/Preliminary Soil Characterization Report 980 Earl Armstrong Road, Ottawa, Ontario

Client:

Extendicare (Canada) Incorporated

Type of Document:

Final

Project Name:

Phase Two Environmental Site Assessment/Preliminary Soil Characterization Report

Project Number:

OTT-24005069-A0

Prepared By:

Devin Clouthier, B.Sc.

Reviewed By:

Chris Kimmerly, P.Geo.

EXP Services Inc. 100-2650 Queensview Drive Ottawa, Ontario K2B 8H6 t: +1.613.688.1899 f: +1.613.225.7337

Date Submitted:

2024-07-17

EXP Services Inc.

Extendicare (Canada) Incorporated Phase Two ESA/SCR 980 Earl Armstrong Road, Ottawa, Ontario OTT-24005069-A0 July 2, 2024

Legal Notification

This report was prepared by EXP Services Inc. for the account of the Extendicare (Canada) Incorporated.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

Executive Summary

EXP Services Inc. (EXP) was retained by Extendicare (Canada) Incorporated to conduct a Phase Two Environmental Site Assessment (ESA)/ Preliminary Soil Characterization Report (SCR) for the property located at 980 Earl Armstrong Road in Ottawa, Ontario hereinafter referred to as the 'Phase Two property'. At the time of the investigation, the Phase Two property was undeveloped greenspace.

The objective of the Phase Two ESA investigation was to assess the quality of the soil and groundwater conditions within the areas of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP. Since the proposed future use of the property is not more sensitive than the current use, a Record of Site Condition (RSC) is not required. In addition, as re-development is intended for the site, a preliminary soil characterization assessment of excess soil was also completed. It is understood that it is proposed to develop the Phase Two property for the development of a 5-storey, 256-bed long-term care facility.

This Phase Two ESA/SCR was conducted in general accordance with *Ontario Regulation 406/19 – On-Site and Excess Soil Management* and *Ontario Regulation 153/04 – Records of Site Condition*, and in accordance with generally accepted professional practices, which will be suitable for excess soil management and/or site plan approval. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

The Phase Two property has the municipal address of 980 Earl Armstrong Road and is located approximately 550 m west of the Earl Armstrong Road and Limebank Road intersection in Ottawa, Ontario. The Phase two property is undeveloped greenspace. The Phase Two property is irregular in shape with an area of approximately 1.8 hectares.

The Phase Two property is legally described as Part of Lots 21 & 22 Concession 1 (RF) Gloucester; Except Part 1 4R30323; Save and Except Plan 4M1601. Subject to an Easement in Gross Over Part 31 4R29819 as in OC1865493 City of Ottawa. The property identification number (PIN) is 043302200.

EXP completed a Phase One ESA for the property in June 2024. The following potentially contaminating activities (PCAs) and areas of potential environmental concern (APECs) were identified:

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
#1. The Phase Two property was historically used as an agricultural field from at least 1976 until 2014.	Entirety of Phase Two property.	PCA #40 – Pesticides (including Herbicides, Fungicides, and Anti-Fouling Agents) Large Scale Application	On-site	Organochlorine (OC) Pesticides	Soil and Groundwater
#2. The possibility of fill material was imported to the Phase Two property when it was graded. Small stockpiles of fill material were observed on the western portion of the Phase Two property.	Northwest corner of the Phase Two property.	PCA #30 – Importation of Fill Material of Unknown Quality	On-site	Metals, Petroleum Hydrocarbons (PHC), Benzene, Toluene, Ethylbenzene and Xylenes (BTEX)	Soil

Coupled with geotechnical and hydrogeological investigations, the Phase Two ESA component of this investigation consisted of collecting fifteen soil samples ranging in depths from 0.1 to 4.3 m bgs and two duplicates were collected and submitted

for analysis of OC pesticides to address APEC #1. Twelve soil samples ranging in depths from 0.1 to 6.0 m bgs were collected and submitted for analysis of PHC, BTEX, metals and pH to address APEC #2.

During the soil characterization component of this investigation, thirty-five soil samples and five duplicate samples were collected and submitted for analysis of PHC, BTEX, metals and pH. Three groundwater samples and a duplicate sample were submitted for chemical analysis of OC Pesticides. None of the groundwater samples exceeded the Table 3 SCS for the parameters analyzed.

During the soil characterization component of this investigation, thirty-five soil samples and five duplicate samples were collected and submitted for analysis of PHC, BTEX, metals and pH.

A summary of the soil exceedances for the Phase Two ESA/SCR are summarized in the table below.

Summary of Soil Exceedances

	Parameters	Provincial		
		MECP Table 1 SCS	MECP Table 3 SCS	
	Barium	BH24-1-SS6, BH24-2-SS6 (Dup.SS6-DUPE of BH24-1-SS6), BH24-7-SS1, BH24-14-SS1, BH24- 17-SS1, BH24-17-SS4, BH24-25- SS7, BH24-27-SS6, TP2-S2, TP6- S1, TP6-S2 (TP6-S3-DUPE of TP6- S2), TP8-S2	No Exceedances	
	Chromium (VI)	BH24-7-SS1, BH24-14-SS1, BH24- 22-SS2, BH24-27-SS1, TP6-S1, TP6-S2 (TP6-S3 – DUPE of TP6- S2), TP8-S2	No Exceedances	
	Chromium, Total	DUP.SS6 (DUPE of BH24-1-SS6), BH24-7-SS1, BH24-14-SS1, BH24- 22-SS2, BH24-27-SS1, BH24-27- SS6, TP2-S2, TP6-S1, TP6-S2, TP6- S3 (DUP of TP6-S2), TP8-S2	No Exceedances	
Metals	Cobalt	BH24-7-SS1, BH24-14-SS1, TP2- S2, TP6-S2, (TP6-S3 DUPE of TP6- S2)	BH24-7-SS1, TP2-S2, TP6-S2	
	Molybdenum	(Dup.SS6-DUPE of BH24-1-SS6), BH24-11-SS1, BH24-17-SS4, TP9- S2	No Exceedances	
	Uranium	BH1-SS2, BH1-SS5, BH2-SS7, BH3-SS6, BH4-SS4, BH5-SS2, BH5-SS3, BH15-SS5, BH16-SS8, DUP 5	No Exceedances	
	Vanadium	(Dup.SS6-DUPE of BH24-1-SS6), BH24-7-SS1, BH24-25-SS7, BH24- 27-SS1, BH24-27-SS6, TP2-S2, TP6-S2	(Dup.SS6-DUPE of BH24-1-SS6), BH24-7-SS1, BH24-25-SS7, BH24-27-SS1, BH24-27-SS6, TP2- S2, TP6-S2	

None of the soil samples analysed exceeded MECP Table 1 SCS or Table 3.1 ESQS for PHC, BTEX, pH, OC Pesticides or any other metals analyzed which are not listed in the above table. Cobalt and vanadium exceeded Table 3 SCS in several boreholes.

According to Section 49.1 of O.Reg 153/04 if, in the opinion of the Qualified Person, the applicable SCS at the Phase Two property are exceeded solely due fill containing a contaminant that exceeds the applicable site condition standard that was used at the property but the concentration of the contaminant does not exceed the natural occurring range of concentrations

of that contaminant typically found within the area where the property is located. The metals listed above are known to have elevated concentrations in this area of the Phase Two property typically found in Champlain Sea deposits. The largest exceedance for cobalt was 2.1 μ g/g higher than the applicable Table 3 SCS. The largest exceedance for vanadium was 15 μ g/g higher than the applicable Table 3 SCS.

The Qualified Person who oversaw this investigation can confirm that the soil characterization and Phase Two Environmental Site Assessment were conducted per the requirements of Ontario Regulation 406/19, Ontario Regulation 153/04, and in accordance with generally accepted professional practices.

This executive summary is a brief synopsis of the report and should not be read in lieu of reading the report in its entirety.

Table of Contents

Legal	Notificat	ion	i
Execu	tive Sum	mary	ii
List of	f Figures.		viii
List of	Append	ices	viii
1.0	Intro	ductionduction	1
	1.1	Site Description	1
	1.2	Property Ownership	1
	1.3	Current and Proposed Future Use	2
	1.4	Applicable Site Condition Standards	2
2.0	Backg	round Information	4
	2.1	Physical Setting	4
	2.2	Past Investigations	4
3.0	Scope	of the Investigation	6
	3.1	Overview of Site Investigation	6
	3.2	Scope of Work	6
	3.3	Media Investigated	6
	3.4	Phase One Conceptual Site Model	7
		3.4.1 Buildings and Structures	7
		3.4.2 Water Bodies and Groundwater Flow Direction	
		3.4.3 Areas of Natural Significance	
		3.4.4 Water Wells	
		3.4.5 Potentially Contaminating Activity	
		3.4.6 Areas of Potential Environmental Concern	
		3.4.7 Underground Utilities	
		3.4.8 Subsurface Stratigraphy	
	3.5	Deviations from Sampling and Analysis Plan	
	3.6	Impediments	
4.0		tigation Method	
4.0	4.1	General	
	4.2	Borehole Drilling and Test Pitting	
	4.3	Soil Sampling	
	4.4	Groundwater: Monitoring Well Installation	
	7.4	Groundwater, Monitoring Wen instandation	1

	4.5	Groundwater: Field Measurement and Water Quality Parameters	11
	4.6	Groundwater: Sampling	11
	4.7	Sediment: Sampling	12
	4.8	Analytical Testing	12
	4.9	Residue Management	12
	4.10	Elevation Surveying	12
	4.11	Quality Assurance and Quality Control Measures	12
5.0	Review	and Evaluation	14
	5.1	Geology	14
	5.2	Groundwater: Elevations and Flow Direction	14
	5.3	Groundwater: Hydraulic Gradients	15
	5.4	Soil: Field Screening	15
	5.5	Soil: Quality	15
	5.5.1	Soil Addressing APEC	15
	5.5.2	Characterization of Excess Soil	16
	5.6	Groundwater: Quality	17
		5.6.1 Chemical Transformation and Contaminant Sources	
		5.6.2 Evidence of Non-Aqueous Phase Liquid	18
	5.7	Sediment: Quality	18
	5.8	Leachate	18
		5.8.1 Maximum Concentrations	18
	5.9	Quality Assurance and Quality Control Results	
	5.10	Excess Soil	19
	5.11	Phase Two Conceptual Site Model	20
	5.11.1	Introduction	20
	5.11.2	Physical Site Description	21
	5.11.3	Geological and Hydrogeological	21
	5.11.4	Utilities and Impediments	22
	5.11.5	Potentially Contaminating Activities	23
	5.11.6	Areas of Potential Environmental Concern/Potential Contaminants of Concern	23
	5.11.7	Investigation	23
	5.11.8	Soil Sampling	24
	5.11.9	Groundwater Sampling	25
	5 11 10	Groundwater Samplina	25

	5.11.11 Contaminant Fate and Transport	25
6.0	Conclusions	27
7.0	References	29
8.0	General Limitations	30

List of Figures

Figure 1 – Site Location Plan

Figure 2 – Phase One Conceptual Site Model

Figure 3 – Borehole/Monitoring Wells and Test Pit Location Plan

Figure 4 – Groundwater Contour Plan

Figure 5 – Soil Analytical Results – APEC Assessment

Figure 6 - Soil Analytical Results - Excess Soil Assessment

Figure 7 – Groundwater Analytical Results

List of Appendices

Appendix A: Figures

Appendix B: Sampling and Analysis Plan

Appendix C: Borehole Logs

Appendix D: Analytical Summary Tables

Appendix E: Laboratory Certificates of Analysis

1.0 Introduction

EXP Services Inc. (EXP) was retained by Extendicare (Canada) Incorporated to conduct a Phase Two ESA/SRC for the property located at 980 Earl Armstrong Road in Ottawa, Ontario hereinafter referred to as the 'Phase Two property'. At the time of the investigation, the Phase Two property was undeveloped greenspace.

The objective of the Phase Two ESA investigation was to assess the quality of the soil and groundwater conditions within the areas of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP. Since the proposed future use of the property is not more sensitive than the current use, a Record of Site Condition (RSC) is not required. In addition, as re-development is intended for the site, a preliminary soil characterization assessment of excess soil was also completed. It is understood that it is proposed to develop the Phase Two property for the development of a 5-storey, 256-bed long-term care facility.

This report has been prepared in accordance with the Phase Two ESA/SCR standard as defined by Ontario Regulation 153/04 (as amended and Ontario Regulation 406/19 (as amended). Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

1.1 Site Description

The Phase Two property has the municipal address of 980 Earl Armstrong Road and is located approximately 550 m west of the Earl Armstrong Road and Limebank Road intersection in Ottawa, Ontario. The Phase Two property is undeveloped greenspace. The Phase Two property is irregular in shape with an area of approximately 1.8 hectares. A site location plan is provided as Figure 1 in Appendix A.

The Phase Two property is legally described as Part of Lots 21 & 22 Concession 1 (RF) Gloucester; Except Part 1 4R30323; Save and Except Plan 4M1601. Subject to an Easement in Gross Over Part 31 4R29819 as in OC1865493 City of Ottawa. The property identification number (PIN) is 043302200.

Refer to Table 1 for the Site identification information.

Civic Address 980 Earl Armstrong Road, Ottawa, Ontario **Current Land Use** Vacant - Zoned Residential **Proposed Future Land Use** Residential **Property Identification Number** 043302200 **UTM Coordinates** Zone 18, 447103 m E and 5013998 m N **Site Area** 1.8 hectares **Property Owner** Riverside South Development Corp.

Table 1: Site Identification Details

1.2 **Property Ownership**

The registered owner of the Phase Two property is Riverside South Development Corp. Authorization to proceed with this investigation was provided by Mr. Marcel Denomme on behalf of Riverside South Limited Partnership.

1.3 **Current and Proposed Future Use**

The current use of the Phase Two property is undeveloped greenspace and is zoned residential. It is understood that it is proposed to develop the Phase Two property with a 5-storey, 256-bed long-term care facility. Since the proposed future use of the Phase Two property is not more sensitive than the current use, an RSC is not required.

1.4 **Applicable Site Condition Standards**

Analytical results obtained for soil and groundwater samples were compared to Site Condition Standards (SCS) established under subsection 169.4(1) of the Environmental Protection Act, and presented in the document entitled Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, 2011. This document provides tabulated background SCS (Table 1) applicable to environmentally sensitive sites and effects-based generic SCS (Tables 2 to 9) applicable to non-environmentally sensitive sites. The effects-based SCS (Tables 2 to 9) are protective of human health and the environment for different groundwater conditions (potable and non-potable), land use scenarios (residential, parkland, institutional, commercial, industrial, community and agricultural/other), soil texture (coarse or medium/fine) and restoration depth (full or stratified).

Table 1 to 9 SCS are summarized as follows:

- Table 1 applicable to sites where background concentrations must be met (full depth), such as sensitive sites where site-specific criteria have not been derived
- Table 2 applicable to sites with potable groundwater and full depth restoration
- Table 3 applicable to sites with non-potable groundwater and full depth restoration
- Table 4 applicable to sites with potable groundwater and stratified restoration
- Table 5 applicable to sites with non-potable groundwater and stratified restoration
- Table 6 applicable to sites with potable groundwater and shallow soils (bedrock encountered at depths of 2 metres or less across one-third or more of the site)
- Table 7 applicable to sites with non-potable groundwater and shallow soils (bedrock encountered at depths of 2 metres or less across one-third or more of the site)
- Table 8 applicable to sites with potable groundwater and that are within 30 m of a water body
- Table 9 applicable to sites with non-potable groundwater and that are within 30 m of a water body

Application of the generic or background SCS to a specific site is based on a consideration of site conditions related to soil pH, thickness and extent of overburden material, and proximity to an area of environmental sensitivity or of natural significance. For some chemical parameters, consideration is also given to soil textural classification with SCS having been derived for both coarse and medium-fine textured soil conditions.

For assessment purposes, EXP selected the Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Groundwater Condition for Residential/Parkland/Institutional land use and fine-medium textured soil. The selection of this category was based on the following factors:

The selection of these categories was based on the following factors:

- Bedrock is greater than 2 metres below grade across 2/3 of the subject property;
- The Phase Two property is not located within 30 metres of a waterbody;
- The Phase Two property is not located within an area of natural significance, does not include nor is adjacent to an area of natural significance, and does not include land that is within 30 metres of an area of natural significance;

- The stratigraphy of the Phase Two predominantly consists of silty clay, which is fine-medium textured;
- The Phase Two property is located in an area serviced with potable water by the City of Ottawa through its water distribution system;
- The proposed future use of the Phase Two property is residential; and,
- It is the opinion of the Qualified Person who oversaw this work that the Phase Two property is not a sensitive site.

As development is planned for the site, it is anticipated that excess soil will be generated. For soil that is not being disposed of at a landfill, the applicable SCS depends on the quantity of soil required at the receiving site and the applicable SCS to the receiving property. In accordance with Regulation 406/19, excess soil that meets the MECP Table 1 to Table 9 SCS may be reused at a property where less than 350 m³ of soil are required, while excess soil that meets the MECP Table 1 or Table 2.1 to 9.1 SCS may be reused at a property where more than 350 m³ of soil are required. As such, since most receiving sites require more than 350 m³ of soil, soil results were compared to the Table 1 SCS, as well the MECP 2.1 and 3.1 volume independent excess soil quality standards (ESQS) for potential off-site residential/parkland/institutional and industrial/commercial/community re-use sites. The volume of excess soil to be generated at the Phase Two property is unknown. Also, the receiving site for the excess soil has not been selected. Due to these unknowns, the analytical soil results were compared to MECP Table 1 SCS.

2.0 Background Information

2.1 Physical Setting

The Phase Two property has the municipal address 980 Earl Armstrong Road in Ottawa, Ontario, and is located on the south side of Earl Armstrong Road approximately 550 m west of the Earl Armstrong Road and Limebank Road intersection. The Phase Two property is irregular in shape with an area of approximately 1.8 hectares. A low-lying area was observed in the southeast corner of the Phase Two property where standing water was observed. Historical air photos show the standing water in the low-lying area is observed in some years and not in others. However, the historical air photos do not indicate the time of year when the photos were taken.

The Phase Two property, and all other properties located, in whole or in part, within 250 metres of the boundaries of the Phase Two property, are supplied by a municipal drinking water system provided by the City of Ottawa. Further, the Phase Two property is not located in an area designated in the municipal official plan as a well-head protection area and no properties within the Phase Two study area have a well that is being used or is intended for use as a source of potable water. Thus, in accordance with Section 35 of Ontario Regulation 153/04, non-potable water standards apply to the Phase Two property.

In accordance with Section 41 of the Ontario Regulation 153/04 (as amended), the Phase Two property is not an environmentally sensitive area. In addition, the Phase Two property is not located within an area of natural significance, and it does not include land that is within 30 metres of an area of natural significance.

Based on the Phase Two ESA investigation, the property is not considered a shallow soil property as defined in Section 43.1 of the regulation as more than 2/3 of the Phase Two property has greater than 2 metres of soil overlaying bedrock.

Bedrock in the general area of the Phase Two property consists of limestone, dolostone, and sandstone of the Beekmantown Group. Native surficial soil consists of fine-textured glaciomarine deposits of silt and clay with minor amounts of sand and gravel. Ground surface is approximately 91 metres above sea level (masl).

The regional groundwater flow direction is inferred to be to the west towards the Thomas Gamble Municipal Drain and the Rideau River.

2.2 Past Investigations

 Golder Associates prepared a report entitled Phase I Environmental Site Assessment, 980 Earl Armstrong Road, Ottawa, Ontario dated August 2015.

A Phase I ESA on a 27.84-hectare parcel of the property with the municipal address of 980 Earl Armstrong Road was completed by Golder. Golder identified one (1) PCA on their site. This PCA was identified as the former presence of a farmhouse on the site that may have contained above ground storage tanks (ASTs) for farm equipment fueling or heating purposes. According to Golder, this PCA was addressed in 2009 when shallow test pits were advanced in the area of the identified AST. The results of Golder's 2009 shallow test pit investigation did not indicate any evidence of buried oil tanks or hydrocarbon impacts. Golder's Phase I ESA did not identify any APECs identified on the site.

It should be noted that Golder's Phase I ESA was completed in 2015 and focused on what was, at the time, the entire municipal address of 980 Earl Armstrong Drive, which has since been severed into properties with new municipal addresses. This Phase One ESA/APU being completed by EXP is focusing on a 1.8-hectare portion of the municipal address 980 Earl Armstrong Drive. Where the farmhouse was identified in the Phase I ESA completed by Golder was observed approximately 850 m west of the 1.8-hectare Phase One property which is the focus of EXPs Phase One ESA/APU with a new municipal address of 910 Earl Armstrong Drive. Therefore, the farmhouse identified in the Phase I ESA completed by Golder in 2015 is not in the Phase One study area for this Phase One ESA/APU completed by EXP.

EXP prepared a report entitled Phase One Environmental Site Assessment/Assessment of Past Uses, 980 Earl Armstrong Road, Gloucester, Ontario dated June 12, 2024.

The Phase One study area included the entire Phase Two property as well as properties within 250 m of the Phase Two property. Based on the results of the Phase One ESA, EXP identified two (2) APECs on the Phase One property. A summary is provided in Table 2.

Table 2: Findings of Phase One ESA

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
#1. The Phase Two property was historically used as an agricultural field from at least 1976 until 2014.	Entirety of Phase Two property.	PCA #40 – Pesticides (including Herbicides, Fungicides, and Anti-Fouling Agents) Large Scale Application	On-site	Organochlorine (OC) Pesticides	Soil and Groundwater
#2. The possibility of fill material was imported to the Phase Two property when it was graded. Small stockpiles of fill material were observed on the western portion of the Phase Two property.	Northwest corner of the Phase One property.	PCA #30 – Importation of Fill Material of Unknown Quality	On-site	Metals, Volatile Organic Compounds (VOC), Petroleum Hydrocarbons (PHC), Benzene, Toluene, Ethylbenzene and Xylenes (BTEX)	Soil

The locations of the APEC are shown on Figure 2 in Appendix A.

The Phase One ESA was conducted per the requirements of Ontario Regulation 153/04, as amended, and in accordance with generally accepted professional practices.

Scope of the Investigation 3.0

3.1 Overview of Site Investigation

The objective of the Phase Two ESA/SCR was to assess the quality of soil and groundwater quality conditions within the areas of potential environmental concern. The objective of the soil characterization component of the investigation was to determine whether excess soil that may be generated during future development can be reused beneficially.

3.2 Scope of Work

The Phase Two ESA/SCR was conducted in conjunction with a hydrogeological investigation and geotechnical investigation completed by EXP. The scope of work for the Phase Two ESA/SCR was as follows:

- Ensuring the work area is free from underground utilities;
- Drilling twenty-seven boreholes (BH24-1 to BH24-18, BH24-20 to BH24-22 and BH24-25 to BH24-30), advancing nine test pits (TP1 to TP9) on the subject property, and completing three (3) of the boreholes as monitoring wells;
- Collecting surficial, fill, native soil and stockpile samples for laboratory analysis of BTEX, PHC fractions F1 to F4, metals, pH and/or OC Pesticides to assess the APECs;
- Collecting groundwater samples from the monitoring wells and submitting them for analysis of OC Pesticides;
- Collecting surficial soil samples and submitting them for laboratory analysis of BTEX, PHC fractions F1 to F4, metals and pH and OC Pesticides in accordance with Ontario Regulation 153/04;
- Collecting stockpile soil samples for laboratory analysis of BTEX, PHC fractions F1 to F4, metals and pH for preliminary excess soil characterization in accordance with Regulation 406/19;
- Comparing the results of the soil and groundwater chemical analyses to applicable criteria, as set out by the Ontario MECP;
- Completing an elevation survey of the three monitoring wells to estimate direction of groundwater flow;
- Preparing a report summarizing the results of the assessment activities.

The locations for the test pits, boreholes and monitoring wells are provided as Figure 3 in Appendix A.

This report has been prepared in accordance with the Phase Two ESA/SCR standard as defined by Ontario Regulation 153/04 (as amended and Ontario Regulation 406/19 (as amended). Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

3.3 Media Investigated

The Phase Two ESA included the investigation of soil and groundwater on the Phase Two property. There are no waterbodies on the Phase Two property, therefore sediment sampling was not required.

The contaminants of potential concern (COPC) identified in the Phase One ESA were identified as target parameters for this Phase Two ESA/SCR. The APEC and COPC identified in the Phase One ESA are outlined in Section 2.2.

Soil that may be excavated and disposed off-site in conjunction with the re-development of the Phase Two property were submitted for analysis of parameters, listed in Section 3.2, in accordance with Regulation 406/19. Samples were also submitted on hold in the event that the results from bulk sample analysis required that Synthetic Precipitation Leaching Procedure (SPLP) be completed.

3.4 Phase One Conceptual Site Model

The Phase One conceptual site model (CSM) was developed by considering the following physical characteristics and pathways. The CSM showing the topography of the site, inferred groundwater flow, general site features, APEC, and PCA is shown in Figure 2 in Appendix A.

3.4.1 Buildings and Structures

There are no buildings or structures present on the Phase Two property.

3.4.2 Water Bodies and Groundwater Flow Direction

There are no waterbodies on the Phase Two property. The Thomas Gamble Municipal Drain is located approximately 225 m west of the Phase Two property. The Rideau River is located approximately 1.9 km west of the Phase One property. The inferred groundwater flow direction is west towards the Thomas Gamble Municipal Drain and the Rideau River. A low-lying area was observed in the southeast corner of the Phase Two property where standing water was observed. Historical air photos show the standing water in the low-lying area is observed in some years and not in others. However, the historical air photos do not indicate the time of year when they were taken.

3.4.3 Areas of Natural Significance

There are no ANSI within the Phase Two study area.

3.4.4 Water Wells

There were not any well records identified on the Phase Two property or the Phase One study area.

3.4.5 Potentially Contaminating Activity

Ontario Regulation 153/04 defines a Potential Contaminating Activity (PCA) as one of fifty-nine (59) industrial operations set out in Table 2 of Schedule D that occurs or has occurred in the Phase One study area.

Two PCAs were identified on the Phase Two property. The following PCAs were identified in the Phase One study area:

- PCA 1: Historic land use of the Phase One property as an agricultural field and possibility of large-scale application of pesticides (PCA #40 Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Large-Scale Applications); and
- PCA 2: The Phase One property was graded prior to temporarily being used for topsoil screening. It is possible that fill was brought in to complete the grading. Small stockpiles of fill material possibly source from nearby homeowners and residential developments were observed on the northwestern portion of the Phase One property (PCA #30 Importation of Fill Material of Unknown Quality).

Since the native soil at the Phase One property consists of silt and clay, which has a low hydraulic conductivity, it is unlikely that significant migration of contaminants will occur within the study area.

3.4.6 Areas of Potential Environmental Concern

The APEC identified are summarized in Table 3.

Table 3: Areas of Potential Environmental Concern

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
#1. The Phase Two property was historically used as an agricultural field from at least 1976 until 2014.	Entirety of Phase Two property.	PCA #40 – Pesticides (including Herbicides, Fungicides, and Anti-Fouling Agents) Large Scale Application	On-site	Organochlorine (OC) Pesticides	Soil and Groundwater
#2. The possibility of fill material was imported to the Phase Two property when it was graded. Small stockpiles of fill material were observed on the western portion of the Phase Two property.	Northwest corner of the Phase Two property.	PCA #30 – Importation of Fill Material of Unknown Quality	On-site	Metals, VOC, PHC, BTEX	Soil

3.4.7 Underground Utilities

Surrounding properties are connected to municipal services. Streetlights connected to underground electrical lines and manholes were present along Portico Way and Earl Armstrong Road, however these utilities were not present on the Phase Two property. No utilities were present on the Phase Two property.

3.4.8 Subsurface Stratigraphy

Bedrock in the general area of the Phase Two property consists of limestone of the Beekmantown Group. Native surficial soil consists of fine-textured glaciomarine deposits of silt and clay with minor amounts of sand and gravel. Ground surface is approximately 91 metres above sea level (masl).

3.4.9 Uncertainty Analysis

The CSM is a simplification of reality, which aims to provide a description and assessment of any areas where potentially contaminating activity that occurred within the Phase Two study area may have adversely affected the Phase Two property. All information collected during this investigation, including records, interviews, and site reconnaissance, has contributed to the formulation of the CSM.

Information was assessed for consistency, however EXP has confirmed neither the completeness nor the accuracy of any of the records that were obtained or of any of the statements made by others. All reasonable inquiries to obtain accessible information were made, as required by Schedule D, Table 1, Mandatory Requirements for Phase Two Environmental Site Assessment Reports. The CSM reflects our best interpretation of the information that was available during this investigation.

3.5 Deviations from Sampling and Analysis Plan

The field investigative and sampling program was carried out following the requirements of the Phase Two property, as described in Section 4.

The soil samples submitted for the soil characterization investigation were not all collected from the boreholes listed in the Sampling and Analysis Plan (SAAP). Four of the five proposed monitoring wells were installed on the Phase Two property. Soil characterization throughout the Phase Two property was achieved through additional sampling completed by advancing nine test pits and completing soil sampling from the test pits. A groundwater sample was not collected from BH/MW24-27 due to significant standing water surrounding the monitoring well. No other significant deviations from the SAAP, as provided in Appendix B, were reported that affected the sampling and data quality objectives for the Phase Two property.

3.6 **Impediments**

Significant amounts of standing water was present on the Phase Two property in the area of BH24-19, BH24-23 and BH24-24. As a result, these boreholes were not able to be drilled and soil samples were not able to be collected from these locations.

4.0 Investigation Method

4.1 General

The current investigation was performed following requirements provided in Ontario Regulation 406/19 and Ontario Regulation 153/04 and in accordance with generally accepted professional practices.

4.2 Borehole Drilling and Test Pitting

Prior to the commencement of excavating, the locations of underground public utilities including telephone, natural gas and electrical lines were marked at the subject property by public locating companies. A private utility locating contractor was also retained to clear the individual borehole locations.

The site investigative activities consisted of the drilling of boreholes and test pitting to facilitate the collection of soil samples for visual inspection and chemical analysis. Select boreholes were instrumented with monitoring wells to facilitate the collection of groundwater samples.

The borehole locations were selected to address the APECs identified in the Phase One ESA. The drilling program was completed June 4 to 7, 10 and 11, 2024, by George Downing Estate Drilling Ltd. (Downing), a licensed well contractor. Downing advanced twenty-seven (27) boreholes (BH24-1 to BH24-18, BH24-20 to BH24-22 and BH24-25 to BH24-30) across the Phase Two property, using a track drill. The boreholes were terminated 8.2 metres below ground surface(bgs), with the exception of BH24-28 which was terminated at 14.3 metres bgs. Four (4) of the boreholes were completed as monitoring wells.

The test pit locations were selected to compliment the soil sample locations collected during the borehole drilling and to address the APECs identified in the Phase One ESA. The test pitting was completed on June 19, 2024, by Thomas Cavanagh Construction Ltd. (Cavanagh). Cavanagh advanced nine (9) test pits (TP-1 to TP-9) across the Phase Two property, using a backhoe. The test pits were advanced to depths between 1.1 and 1.4 m bgs.

EXP staff continuously monitored the drilling activities to log the stratigraphy observed, to record the depth of soil sample collection, to record total depths of excavation, and to record visual or olfactory observations of potential impacts. Field observations are summarized on the borehole logs provided in Appendix C. Nitrile gloves (i.e., one pair per sample) were used during sample handling. No petroleum-based greases or solvents were used during drilling activities.

The locations boreholes/monitoring wells are shown in Figure 3.

4.3 Soil Sampling

The soil sampling during the completion of this Phase Two ESA/SCR was undertaken in general accordance with the Sampling and Analysis Plan presented in Appendix B with the noted deviations described in Section 3.6.

Soil samples for geologic characterization were collected on a continuous basis in the overburden materials using 5 cm diameter, 61 cm long, split spoon samplers advanced into the subsurface using the drill rig. EXP staff continuously monitored the drilling activities to log the stratigraphy observed from the recovered soil cores, to record the depth of soil sample collection, to record total depths of borings/excavation, and to record visual or olfactory observations of potential impacts. Field observations are summarized on the borehole logs provided in Appendix C.

Soil samples identified for possible laboratory analysis were collected from the samplers and placed directly into pre-cleaned, laboratory-supplied glass sample jars/vials. Samples to be analysed for PHC fraction F1 and BTEX were collected using a soil core sampler and placed into vials containing methanol as a preservative. The jars and vials were sealed with Teflon-lined lids to minimize headspace and reduce the potential for induced volatilization during storage/transport prior to analysis. All soil samples were placed in clean coolers containing ice prior to and during transportation to the subcontract laboratory,

Paracel Laboratories Ltd. (Paracel) of Ottawa, Ontario. The samples were transported/submitted within 72 hours of collection to the laboratory following chain of custody protocols for chemical analysis.

4.4 Groundwater: Monitoring Well Installation

Monitoring wells were installed in general accordance with the Ontario Water Resources Act - R.R.O. 1990, Regulation 903 (as amended). The monitoring wells consisted of a 52 mm diameter Schedule 40 PVC screen that was no more than 3.0 m long and a 52 mm diameter Schedule 40 PVC riser pipe that was at least 0.8 m long. The annular space around the wells was backfilled with sand to an average height of 0.3 m above the top of the screen. A bentonite seal was added from the top of the sand pack to approximately 0.3 m below ground surface. The monitoring wells were completed with stick-up casings.

Following the installation of the monitoring wells, the wells were developed by purging water with a dedicated inertial pump and foot valve until it became clear.

Measures taken to minimize the potential for cross contamination or the introduction of contaminants during well construction included:

- The use of well pipe components (e.g. riser pipe and well screens) with factory machined threaded flush coupling
 joints;
- Construction of wells without the use of glues or adhesives;
- Removing the protective plastic wraps from well components at the time of borehole insertion to prevent contact with the ground and other surfaces; and
- Cleaning or disposal of drilling equipment between sampling locations.

Details of the monitoring well installations are shown on the borehole logs provided in Appendix C.

4.5 Groundwater: Field Measurement and Water Quality Parameters

Field measurement of water quality parameters is described in Section 4.6.

EXP used a Heron water level tape to measure the static water level in each monitoring well. The measuring tape was cleaned with phosphate-free soap and tap water, rinsed with distilled water after each measurement.

4.6 Groundwater: Sampling

All groundwater samples were collected via a low flow sampling technique using a Horiba U-52 multi probe water quality meter. The U-52 probe was calibrated using in-house reference standards. Prior to collecting the groundwater samples, water quality field parameters (turbidity, dissolved oxygen, conductivity, temperature, pH, and oxidation reduction potential) were monitored until stable readings were achieved to ensure that the samples collected were representative of actual groundwater conditions. These parameters are considered to be stable when three consecutive readings meet the following conditions:

- Turbidity: within 10% for values greater than 5 nephelometric turbidity units (NTU), or three values less than 5 NTU;
- Dissolved oxygen: within 10% for values greater than 0.5 mg/L, or three values less than 0.5 mg/L;
- Conductivity: within 3%;
- Temperature: ± 1°C;
- pH: ± 0.1 unit; and,

Oxidation reduction potential: ±10 millivolts.

When stabilization occurs, equilibrium between groundwater within a monitor and the surrounding formation water is attained. As such, samples collected when stabilization occurs are considered to be representative of formation water.

The groundwater sampling during the completion of this Phase Two ESA/SCR was undertaken in general accordance with the SAAP presented in Appendix B. The groundwater samples were placed in clean coolers containing ice packs prior to and during transportation to the laboratory. The samples were transported to the laboratory within 48 hours of collection with a chain of custody.

Three groundwater samples and one field duplicate were collected as part of the groundwater monitoring program that were submitted for chemical analysis of OC Pesticides.

4.7 Sediment: Sampling

There are no waterbodies present on the Phase Two property, therefore sediment sampling was not required.

4.8 Analytical Testing

The contracted laboratory selected to perform chemical analysis on all soil and groundwater samples was Paracel Laboratories Ltd (Paracel). Paracel is accredited laboratories under the Standards Council of Canada/Canadian Association for Laboratory Accreditation in accordance with ISO/IEC 17025:1999- General Requirements for the Competence of Testing and Calibration Laboratories.

4.9 Residue Management

The soil cuttings from monitoring well installations were used to backfill the boreholes or were left at the borehole location.

Fluids from cleaning drilling equipment were disposed of by the driller at their facility.

4.10 Elevation Surveying

An elevation survey was conducted by EXP. The top of casing and ground surface elevation of each monitoring well location were surveyed relative to an assumed benchmark, which was a manhole on the southeast corner of the Phase Two property. The Universal Transverse Mercator (UTM) coordinates of each borehole and monitoring well were also recorded so that their locations could be plotted accurately.

4.11 Quality Assurance and Quality Control Measures

All soil and groundwater samples were placed in coolers containing ice packs prior to and during transportation to the contract laboratory. Paracel is accredited to the ISO/IEC 17025:2005 standard - General Requirements for the Competence of Testing and Calibration Laboratories.

A QA/QC program was also implemented to ensure that the analytical results received are accurate and dependable. A QA/QC program is a system of documented checks that validate the reliability of the data. Quality Assurance is a system that ensures that quality control procedures are correctly performed and documented. Quality Control refers to the established procedures observed both in the field and in the laboratory, designed to ensure that the resulting end data meet intended quality objectives. The QA/QC program implemented by EXP incorporated the following components:

- Using dedicated and/or disposable sampling equipment;
- Following proper decontamination protocols to minimize cross-contamination;

- Maintaining field notes and completing field forms to document field activities; and,
- Using only laboratory-supplied sample containers and following prescribed sample protocols, including using proper
 preservation techniques, meeting sample hold times, and documenting sample transmission on chains of custody,
 to ensure the integrity of the samples is maintained.

Paracel's QA/QC program involved the systematic analysis of control standards for the purpose of optimizing the measuring system as well as establishing system precision and accuracy and included calibration standards, method blanks, reference standards, spiked samples, surrogates and duplicates.

5.0 Review and Evaluation

5.1 Geology

A surficial topsoil layer was present in all of the boreholes with the exception of BH 24-08 and BH24-15 ranging in thickness of 25 mm to 410 mm. Surficial fill was contacted in BH24-08 and BH24-15 and extends to 0.9 and 2.2 metres below ground surface, respectively. The fill consists of a mixture of silty sand and crushed gravel with dark brown organic silty clay in BH24-15. The surficial topsoil layer was underlain by fill in all boreholes with the exception of BH24-08 and BH24-15. The fill consists of a mixture of a mixture of silty sand with roots and crushed gravel. Beneath the fill in BH24-01 and BH24-12, a 75 mm thick organic silty clay was contacted at 1.1 m depth in BH24-12 and a 50 mm thick topsoil layer was contacted at a depth of 0.8 metres bgs in BH24-01. The fill and buried organic silty clay/topsoil in BH24-01, BH24-04, BH24-08, BH24-11, BH24-12, BH24-16, BH24-22 and BH24-26 to BH24-28 are underlain by silty clay that extends to depths of 1.4 m to 2.2 m. In all boreholes, the upper sandy silty clay is underlain by silty clay that extends to depths of 5.6 m to 8.7 m. A lower layer of sand and silt were contacted below the grey silty clay in boreholes BH24-02, BH24-03, BH24-22, BH24-26 at 5.6 m to 8.7 m depths. With the exception of BH24-12, BH24-15, BH24-16, BH24-20, BH24-26 and BH24-27 glacial till was contacted at 5.8 m to 11.7 m. The glacial till extends to depths of 11.7 m to 14.1 m. Limestone bedrock underlaid the glacial till and was contacted in BH24-03, BH24-05, BH24-22, BH24-28 and BH24-29 at 11.7 m to 14.1 m below ground surface.

5.2 Groundwater: Elevations and Flow Direction

On June 21, 2024, the monitoring wells were inspected for general physical condition, groundwater depth, the presence of light non-aqueous phase liquid (LNAPL).

The depth to groundwater was measured to range from 2.62 m to 5.46 m below ground surface in monitoring wells where equilibrium had been attained. The June 21st groundwater monitoring and elevation data are provided below in Table 4.

Table 4: Monitoring and Elevation Data

Monitoring Well ID	Grade Elevation (masl)	Top of Casing Elevation (masl)	Screen Depth (mbgs)	Depth to LNAPL (mbgs)	Depth to Groundwater (mbTOC)	Groundwater Elevation (masl)
BH/MW24-1	91.772	92.822	6.0 to 7.5	N/A	2.62	90.73
BH/MW24-4	91.719	92.719	6.0 to 7.5	N/A	5.46	89.05
BH/MW24-25	91.681	92.701	4.5 to 7.5	N/A	4.40	89.39

Notes: Elevations were measured to a geodetic datum.

mbgs – metres below ground surface

masl – metres above sea level

mbTOC – metres below top of monitor casing

N/O - not observed

The depth to groundwater was measured to range from 2.62 m to 5.46 m below ground surface in monitoring wells where equilibrium had been attained. The June 21 groundwater monitoring and elevation data are provided below. Based on the groundwater level measurements, groundwater contours in the overburden were plotted, as shown on Figure 4. The groundwater flow direction in the overburden was to the west, towards the Thomas Gamble Municipal Drain and the Rideau River.

5.3 Groundwater: Hydraulic Gradients

On June 21, 2024, single well response tests were conducted for three overburden monitoring wells (BH24-1, BH24-4 and BH24-25). The rising head test requires that the static water level be measured in each monitoring well prior to the removal of groundwater. Groundwater is removed from the monitoring well using a bailer. After the water level has been sufficiently lowered, an interface probe is lowered into the monitor as quickly as possible to measure the new water level. The time at which the new water level is measured is noted as time equal zero. Water level readings are subsequently taken at frequent intervals. Both the water levels and the time they were taken are recorded.

The frequency of the time measurement is determined by the rate the water level recovers to the static water level. Measurements are taken until at least 70% recovery has been achieved or, in cases where recovery is extremely slow, until it is deemed that a sufficient amount of time has elapsed. Using the Bouwer & Rice (1976) solution, the hydraulic conductivity for the monitoring well was calculated.

Table 5 - Single Well Response Tests

Monitoring Well ID/ Installation ID	Horizon	Screen Depth (mbgs)	Initial Static Water Level (mbToC)	Water Level after Purging (mbToC)	% Recovery to Static after Elapsed time	Hydraulic Conductivity (m/s)
BH24-1	Silty Clay	6.0 to 7.5	2.62	7.23	100	1.57E-11
BH24-4	Silty Clay and Glacial Till	6.0 to 7.5	5.46	8.74	100	9.55E-10
BH24-25	Silty Clay, Silt and Glacial Till	4.5 to 7.5	4.40	8.61	100	6.52E-10

Notes: mbTOC – metres below top of monitor casing

The estimated K values indicate that the permeability of the screened soil material is very low within the range of till type soils which is not capable of transmitting fluids and has low potential to produce sustainable quantity of groundwater. Also due to the hydraulic property, the overburden till also acts as a confining layer at this site. However, there may be pockets of granular layers within the till which may generate very limited quantities of groundwater.

5.4 Soil: Field Screening

Petroleum vapours were not screened during this Phase Two ESA/SCR.

5.5 Soil: Quality

In accordance with the scope of work, chemical analyses were performed on soil samples recovered from the boreholes, test pits and stockpiles. Thirty-five soil samples and three duplicates were submitted for analysis of PHC, BTEX, metals and pH from the boreholes, test pits and stockpiles. Fifteen soil samples and two duplicates were submitted for analysis of OC Pesticides.

The soil analytical results are presented in Tables 1, 2 and 3 in Appendix D. Copies of the laboratory Certificates of Analysis are provided in Appendix E.

5.5.1 Soil Addressing APEC

Fifteen soil samples ranging in depths from 0.1 to 4.3 m bgs and two duplicates were collected and submitted for analysis of OC pesticides to address APEC #1. In accordance with Regulation 153/04, the results were compared to the MECP Table 1 SCS and Table 3 SCS for residential/parkland/institutional use. The analytical results for OC Pesticides are provided in Table 1 in

Appendix D. Soil analytical data addressing the APEC is provided in Figure 5 in Appendix A. All of the samples are within the Table 1 and Table 3 SCS for OC Pesticides.

Twelve soil samples ranging in depths from 0.1 to 6.0 m bgs were collected and submitted for analysis of PHC, BTEX, metals and pH to address APEC #2. These samples were collected from existing stockpiles as well as boreholes and test pits that were advanced in APEC #2 as determined in the Phase One ESA. In accordance with Regulation 153/04, the results were compared to MECP Table 1 SCS and Table 3 SCS for residential/parkland/institutional use. The analytical results for PHC and BTEX are provided in Table 2 in Appendix D and the analytical results for metals and pH are provided in Table 3 in Appendix D. One of the fifteen soil samples exceeded Table 3 SCS for cobalt and vanadium. When compared to Table 1 SCS, six of the fifteen soil samples exceeded for on or more of the following metals: barium, cobalt, chromium (VI), chromium total, molybdenum and vanadium. All of the samples are within Table 1 and Table 3 SCS for PHC, BTEX and pH.

According to Section 49.1 of O.Reg 153/04 if, in the opinion of the Qualified Person, the applicable SCS at the Phase Two property are exceeded solely due to fill containing a contaminant that exceeds the applicable site condition standard that was used at the property but the concentration of the contaminant does not exceed the natural occurring range of concentrations of that contaminant typically found within the area where the property is located. The metals listed above are known to have elevated concentrations in this area of the Phase Two property, the metals only exceed the applicable SCS by small concentrations. The largest exceedance for cobalt was 2.1 μ g/g higher than the applicable Table 3 SCS. The largest exceedance for vanadium was 15 μ g/g higher than the applicable Table 3 SCS.

5.5.2 Characterization of Excess Soil

Thirty-five soil samples and five duplicate samples were collected and submitted for analysis of PHC, BTEX, metals and pH. In accordance with Regulation 406/19, the results were compared to the MECP Table 1 SCS and Table 2.1 and 3.1 ESQS for residential/parkland/institutional and industrial/commercial/community property use. Soil analytical data addressing soil characterization is provided in Figure 6 in Appendix A. The analytical results for PHC and BTEX are provided in Table 2 and the analytical results for metals and pH are provided in Table 3, both in Appendix D.

These samples were collected from boreholes and test pits that were advanced throughout the Phase Two property. The analytical results for PHC and BTEX are provided in Table 2 in Appendix D and the analytical results for metals and pH are provided in Table 3 in Appendix D. All thirty-five samples are within Table 1 SCS and Table 2.1 and 3.1 ESQS for PHC, BTEX and pH. Seven of the thirty-five samples exceeded Table 2.1 and 3.1 for cobalt and/or vanadium. When compared to Table 1 SCS, fifteen of the thirty-five samples exceeded for one or more of the following metals: barium, cobalt, chromium (VI), chromium total, molybdenum, uranium and vanadium. The laboratory Certificate of Analysis is provided in Appendix E.

According to Section 49.1 of O.Reg 153/04 if, in the opinion of the Qualified Person, the applicable SCS at the Phase Two property are exceeded solely due fill containing a contaminant that exceeds the applicable site condition standard that was used at the property but the concentration of the contaminant does not exceed the natural occurring range of concentrations of that contaminant typically found within the area where the property is located. The metals listed above are known to have elevated concentrations in this area of the Phase Two property, the metals only exceed the applicable SCS by small concentrations. The largest exceedance for cobalt was $2.1\,\mu\text{g/g}$ higher than the applicable Table 3 SCS. The largest exceedance for vanadium was 15 $\,\mu\text{g/g}$ higher than the applicable Table 3 SCS. Excess soil characterization and disposal options are discussed further in Section 5.10.

Table 6 - Summary of Soil Exceedances

	Parameters	Provincial		
		MECP Table 1 SCS	MECP Table 3 SCS	
Metals	Barium	BH24-1-SS6, BH24-2-SS6 (Dup.SS6-DUPE of BH24-1-SS6), BH24-7-SS1, BH24-14-SS1, BH24- 17-SS1, BH24-17-SS4, BH24-25- SS7, BH24-27-SS6, TP2-S2, TP6- S1, TP6-S2 (TP6-S3-DUPE of TP6- S2), TP8-S2	No Exceedances	
	Chromium (VI)	BH24-7-SS1, BH24-14-SS1, BH24- 22-SS2, BH24-27-SS1, TP6-S1, TP6-S2 (TP6-S3 – DUPE of TP6- S2), TP8-S2	No Exceedances	
	Chromium, Total	DUP.SS6 (DUPE of BH24-1-SS6), BH24-7-SS1, BH24-14-SS1, BH24- 22-SS2, BH24-27-SS1, BH24-27- SS6, TP2-S2, TP6-S1, TP6-S2, TP6- S3 (DUP of TP6-S2), TP8-S2	No Exceedances	
Metals	Cobalt	BH24-7-SS1, BH24-14-SS1, TP2- S2, TP6-S2, (TP6-S3 DUPE of TP6- S2)	BH24-7-SS1, TP2-S2, TP6-S2	
	Molybdenum	(Dup.SS6-DUPE of BH24-1-SS6), BH24-11-SS1, BH24-17-SS4, TP9- S2	No Exceedances	
	Uranium	BH1-SS2, BH1-SS5, BH2-SS7, BH3-SS6, BH4-SS4, BH5-SS2, BH5-SS3, BH15-SS5, BH16-SS8, DUP 5	None	
	Vanadium	(Dup.SS6-DUPE of BH24-1-SS6), BH24-7-SS1, BH24-25-SS7, BH24- 27-SS1, BH24-27-SS6, TP2-S2, TP6-S2	(Dup.SS6-DUPE of BH24-1-SS6), BH24-7-SS1, BH24-25-SS7, BH24-27-SS1, BH24-27-SS6, TP2- S2, TP6-S2	

None of the soil samples analysed exceeded MECP Table 1 SCS or Table 3 SCS for PHC, BTEX, pH, OC Pesticides or any other metals analyzed which are not listed in the above table. The locations of the soil exceedances compared to Table 3 SCS are provided in Figures 5 and 6 in Appendix A. Copies of the laboratory Certificates of Analysis are provided in Appendix D.

5.6 Groundwater: Quality

All three groundwater samples were collected via a low flow sampling technique. EXP monitored several water quality parameters (such as water level, temperature, dissolved oxygen, conductivity, salinity, pH, oxygen reduction potential and turbidity) in order to ensure that the samples collected were representative of actual groundwater conditions.

Three groundwater samples and a duplicate sample were submitted for chemical analysis of OC Pesticides. None of the groundwater samples exceeded the Table 3 SCS for the parameters analyzed.

The groundwater results are provided in Table 4 in Appendix D and shown on Figure 7 in Appendix A. Copies of the laboratory Certificates of Analysis are provided in Appendix E.

5.6.1 Chemical Transformation and Contaminant Sources

A variety of physical, chemical and biochemical mechanisms affect the fate and transport of the potential COC in soil and groundwater, the contribution of which is dependent on the soil and groundwater conditions at the Phase Two property, as well as the chemical/physical properties of the COC. Relevant fate and transport mechanisms are natural attenuation mechanisms, including advection mixing, mechanical dispersion/molecular diffusion, phase partitions (i.e. sorption and volatilization), and possibly abiotic or biotic chemical reactions, which effectively reduce COC concentrations.

All soil samples met the applicable Table 3 commercial SCS for all parameters that were analyzed with the exception of seven soil samples which exceeded the Table 3 SCS for cobalt and/or vanadium. Due to the current use of the property being a vacant field and the proposed future use as a long-term care facility, it is EXPs opinion that the cobalt and vanadium exceedances observed in the soil do not pose a significant concern under the existing or proposed operating conditions at the Phase Two property.

5.6.2 Evidence of Non-Aqueous Phase Liquid

Inspection of the groundwater monitoring wells did not indicate the presence of non-aqueous phase liquid (NAPL).

5.7 Sediment: Quality

There are no water bodies on the Phase Two property, therefore sediment sampling was not required.

5.8 Leachate

As the soil characterization assessment was for preliminary purposes only, no SPLP leachate testing was conducted. SPLP leachate testing may be required once the actual areas of the site to be excavated, if any, are identified.

5.8.1 Maximum Concentrations

Contaminants that exceeded the applicable Table 3 residential standards included:

Soil: Cobalt and vanadium.

5.9 Quality Assurance and Quality Control Results

Quality assurance and quality control measures were taken during the field activities to meet the objectives of the sampling and quality assurance plan to collect unbiased and representative samples to characterize existing conditions in the fill materials and groundwater at the site. QA/QC measures, included:

- Collection and analysis of blind duplicate soil and groundwater samples to ensure sample collection precision;
- Using dedicated and/or disposable sampling equipment;
- Following proper decontamination protocols to minimize cross-contamination;
- Maintaining field notes and completing field forms to document on-site activities; and,
- Using only laboratory supplied sample containers and following prescribed sample protocols, including proper preservation, meeting sample hold times, proper chain of custody documentation, to ensure integrity of the samples.

Paracel's QA/QC program consisted of the preparation and analysis of laboratory duplicate samples to assess precision and sample homogeneity, method blanks to assess analytical bias, spiked blanks and QC standards to evaluate analyte recovery,

matrix spikes to evaluate matrix interferences and surrogate compound recoveries to evaluate extraction efficiency. The laboratory QA/QC results are presented in the Quality Assurance Report provided in the Certificate of Analysis prepared by Paracel.

Review of the laboratory QA/QC results report indicated that they were within the acceptable concentrations.

The laboratory QA/QC results are presented in the Quality Assurance Report provided in the Certificates of Analysis prepared by Paracel. The QA/QC results are reported as percent recoveries for matrix spikes, spiked blanks and QC standards, relative percent difference for laboratory duplicates and analyte concentrations for method blanks.

5.10 Excess Soil

The objective of the in-situ environmental characterization of excess soils component of the current investigation is to support the proposed relocation of potential "excess soil" during re-development activities. Regulation 406/19 specifies requirements that must be addressed prior to removing excess soil from a property. Depending on the total volume of excess soils being removed from the site, the requirements may include some or all of the following:

- Preparation of an assessment of past uses (Phase One ESA/APYU complete June 2024);
- Preparation and implementation of a sampling and analysis plan (SAAP);
- Preparation of a soil characterization report (this report);
- Preparation of an excess soil destination assessment report (to be determined); and
- Development and implementation of a tracking system (to be determined).

The EXP Phase One ESA may be used as the assessment of past uses report. The SAAP is provided in Appendix B of this report. This report may be used as the SCR. The other two requirements should be addressed once the destination has been decided.

The quantity of soil that will be excavated during site-re-development is unknown. Regulation 406/19 requires that, for the first 10,000 tonnes of soil that will be excavated, a minimum of one sample for every 200 cubic metres of soil must be submitted for analysis. Thus, the sampling program conducted will support the excavation and off-site reuse of up to 6000 cubic metres of soil. If more soil must be excavated, then additional sampling will be required.

As noted in Section 5.5.2, these samples were collected from boreholes and test pits that were advanced throughout the Phase Two property. The analytical results for PHC and BTEX are provided in Table 2 in Appendix D and the analytical results for metals and pH are provided in Table 3 in Appendix D.

During the soil characterization component of this investigation, thirty-five soil samples and five duplicate samples were collected and submitted for analysis of PHC, BTEX, metals and pH.

Table 6: Exceedances of Soil Paramters

Parameters	Provinc	Provincial		
	MECP Table 1 SCS	MECP Table 3 SCS		
	BH24-1-SS6, BH24-2-SS6			
	(Dup.SS6-DUPE of BH24-1-SS6),			
	BH24-7-SS1, BH24-14-SS1, BH24-			
Barium	17-SS1, BH24-17-SS4, BH24-25-	No Exceedances		
	SS7, BH24-27-SS6, TP2-S2, TP6-			
	S1, TP6-S2 (TP6-S3-DUPE of TP6-			
	S2), TP8-S2			

	Parameters	Provincial		
		MECP Table 1 SCS	MECP Table 3 SCS	
	Chromium (VI)	BH24-7-SS1, BH24-14-SS1, BH24- 22-SS2, BH24-27-SS1, TP6-S1, TP6-S2 (TP6-S3 – DUPE of TP6- S2), TP8-S2	No Exceedances	
	Chromium, Total	DUP.SS6 (DUPE of BH24-1-SS6), BH24-7-SS1, BH24-14-SS1, BH24- 22-SS2, BH24-27-SS1, BH24-27- SS6, TP2-S2, TP6-S1, TP6-S2, TP6- S3 (DUP of TP6-S2), TP8-S2	No Exceedances	
Metals	Cobalt	BH24-7-SS1, BH24-14-SS1, TP2- S2, TP6-S2, (TP6-S3 DUPE of TP6- S2)	BH24-7-SS1, TP2-S2, TP6-S2	
	Molybdenum	(Dup.SS6-DUPE of BH24-1-SS6), BH24-11-SS1, BH24-17-SS4, TP9- S2	No Exceedances	
	Uranium	BH1-SS2, BH1-SS5, BH2-SS7, BH3-SS6, BH4-SS4, BH5-SS2, BH5-SS3, BH15-SS5, BH16-SS8, DUP 5	None	
	Vanadium	(Dup.SS6-DUPE of BH24-1-SS6), BH24-7-SS1, BH24-25-SS7, BH24- 27-SS1, BH24-27-SS6, TP2-S2, TP6-S2	(Dup.SS6-DUPE of BH24-1-SS6), BH24-7-SS1, BH24-25-SS7, BH24-27-SS1, BH24-27-SS6, TP2- S2, TP6-S2	

None of the soil samples analysed exceeded MECP Table 1 SCS or Table 3 SCS for PHC, BTEX, pH, OC Pesticides or any other metals analyzed which are not listed in the above table.

Phase Two Conceptual Site Model

A Conceptual Site Model (CSM) provides a narrative, graphical and tabulated description integrating information related to the Phase Two property's geologic and hydrogeological conditions, areas of potential environmental concern/potential contaminating activities, the presence and distribution of contaminants of concern, contaminant fate and transport, and potential exposure pathways.

5.11.1 Introduction

EXP Services Inc. (EXP) was retained by Extendicare (Canada) Incorporated to complete Phase Two ESA Report for 980 Earl Armstrong Road in Ottawa, Ontario hereinafter referred to as the 'Phase Two property'. At the time of the investigation, the Phase Two property was undeveloped greenspace.

The objective of the Phase Two ESA/SCR investigation was to assess the quality of the soil and groundwater conditions within the areas of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP. It is understood that Extendicare (Canada) Incorporated is proposing to develop the Phase One property with a 5-storey, 256-bed long-term care facility. As the current zoning is R5Z residential, and the proposed future land use is residential there is no need to obtain a Record of Site Condition (RSC) at this time.

This Phase Two ESA/SCR was conducted in general accordance with Ontario Regulation 406/19 - On-Site and Excess Soil Management and Ontario Regulation 153/04 - Records of Site Condition, and in accordance with generally accepted professional practices, which will be suitable for excess soil management and/or site plan approval. Subject to this standard

of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

5.11.2 Physical Site Description

The Phase One property has the municipal address 980 Earl Armstrong Road and is located approximately 550 m west of the Earl Armstrong Road and Limebank Road intersection in Ottawa, Ontario. The Phase One property is undeveloped land. The Phase One property is irregular in shape with an area of approximately 1.8 hectares.

According to GeoWarehouse, the Phase One property is legally described as follows: Part of Lots 21 & 22 Concession 1 (RF) Gloucester; Except Part 1 4R30323; Save and Except Plan 4M1601. Subject to an Easement in Gross Over Part 31 4R29819 as in OC1865493 City of Ottawa. The property identification number (PIN) is 043302200.

A site plan showing the Phase Two property is presented as Figure 2 in Appendix A.

Refer to Table 7 for the Site identification information.

Table 7: Site Identification Details

Civic Address	980 Earl Armstrong Road, Ottawa, Ontario		
Current Land Use	Vacant – Zoned Residential		
Proposed Future Land Use	Residential		
Property Identification Number	043302200		
UTM Coordinates	Zone 18, 447103 m E and 5013998 m N		
Site Area	1.8 hectares		
Property Owner	Riverside South Development Corp.		

The Phase Two property and all other properties located, in whole or in part, within 250 metres of the boundaries of the Phase Two property, are supplied by a municipal drinking water system provided by the City of Ottawa. Further, the Phase Two property is not located in an area designated in the municipal official plan as a well-head protection area and no properties within the Phase Two study area has a well that is being used or is intended for use as a source of potable water. Thus, in accordance with Section 35 of Ontario Regulation 153/04, non-potable water standards apply to the Phase Two property.

In accordance with Section 41 of Ontario Regulation 153/04, the Phase Two property is not an environmentally sensitive area. In addition, the Phase Two property is not located within an area of natural significance, and it does not include land that is within 30 metres of an area of natural significance.

The Phase Two property is not a shallow soil property as defined in Section 43.1 of the regulation. It does not include all or part of a water body or is adjacent to a water body or includes land that is within 30 metres of a water body.

5.11.3 Geological and Hydrogeological

A surficial topsoil layer was present in all of the boreholes with the exception of BH 24-08 and BH24-15 ranging in thickness of 25 mm to 410 mm. Surficial fill was contacted in BH24-08 and BH24-15 and extends to 0.9 and 2.2 metres below ground surface, respectively. The fill consists of a mixture of silty sand and crushed gravel with dark brown organic silty clay in BH24-15. The surficial topsoil layer was underlain by fill in all boreholes with the exception of BH24-08 and BH24-15. The fill consists of a mixture of a mixture of silty sand with roots and

crushed gravel. Beneath the fill in BH24-01 and BH24-12, a 75 mm thick organic silty clay was contacted at 1.1 m depth in BH24-12 and a 50 mm thick topsoil layer was contacted at a depth of 0.8 metres bgs in BH24-01. The fill and buried organic silty clay/topsoil in BH24-01, BH24-04, BH24-08, BH24-11, BH24-12, BH24-16, BH24-22 and BH24-26 to BH24-28 are underlain by sily clay that extends to depths of 1.4 m to 2.2 m. In all boreholes, the upper sandy silty clay is underlain by silty clay that extends to depths of 5.6 m to 8.7 m. A lower layer of sand and silt were contacted below the grey silty clay in boreholes BH24-02, BH24-03, BH24-22, BH24-25, BH24-26 at 5.6 m to 8.7 m depths. With the exception of BH24-12, BH24-15, BH24-16, BH24-20, BH24-26 and BH24-27 glacial till was contacted at 5.8 m to 11.7 m. The glacial till extends to depths of 11.7 m to 14.1 m. Limestone bedrock underlaid the glacial till and was contacted in BH24-03, BH24-05, BH24-22, BH24-28 and BH24-29 at 11.7 m to 14.1 m below ground surface. Based on the bedrock geology map tilted, Generalized Bedrock Geology, Ottawa-Hull, Ontario and Quebec, Map 1508A, dated 1979 and prepared by the Geological Survey of Canada, the site lies near the transition zone between dolomite and limestone bedrock of the Oxford formation and interbedded sandstone and sandy dolomite bedrock of the March formation. The majority of the site appears to be underlain by the Oxford formation with the northeast corner of the site possibly underlain by the March formation.

Groundwater levels can also be influenced by seasonal changes, the presence of subsurface structures, or fill, however based on the based on the depth of the water table, it is unlikely that any of these factors will affect the groundwater flow direction at the Phase Two property.

Refer to Table 8 for the Site Characteristics information.

Table 8: Site Characteristics

Characteristic	Description		
Minimum Depth to Bedrock	13 metres below ground surface (BH24-03)		
Minimum Depth to Groundwater	2.62 m (9.073 masl June 21, 2024)		
Shallow Soil Property	No, bedrock is greater than 2.0 mbgs		
Proximity to a water body or ANSI	Approximately 225 m west – Thomas Gamble Municipal Drain		
Soil pH	Silty Clay – 6.76 and 7.54		
Soil Texture	Fine		
Current Property Use	Vacant		
Future Property Use	Residential		
Proposed Future Building	Long-Term Care Facility		
Areas Containing Suspected Fill	Northwest corner of Phase Two property		

5.11.4 Utilities and Impediments

There are no utilities present on the Phase Two property. There is seasonal standing water in the southwest corner of the Phase Two property.

5.11.5 Potentially Contaminating Activities

EXP completed a Phase One ESA for the property in June 2024 and the following on-site potentially contaminating activities (PCA) were identified:

- Historic land use for the Phase One property as an agricultural field and the possibility of large-scale application of pesticides (PCA #40); and
- Unknown quality of fill in the northwestern corner of the Phase One property (PCA #30).

5.11.6 Areas of Potential Environmental Concern/Potential Contaminants of Concern

Ontario Regulation 153/04 defines an APEC as an area on a property where one or more contaminants are potentially present. The following APEC were identified on the Phase Two property, as shown on Figure 2 and Table 9 below:

Table 9: Areas of Potential Environmental Concern

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On- Site of Off-Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or Sediment)
APEC 1: Large- scale pesticide application on agricultural field formerly located on Phase One property	Entirety of Phase One property	PCA 1: PCA #40 - Pesticides (including Herbicides, Fungicides and Anti- Fouling Agents) Large- Scale Applications	On-Site	OC Pesticides	Groundwater and soil
APEC 2: Importation of fill material of unknown quality across the Phase One property	Northwestern corner of the Phase One property	PCA 2: PCA #30 - Importation of Fill Material of Unknown Quality	On-Site	PHC, PAH, Metals	Soil

5.11.7 Investigation

The objective of the Phase Two ESA investigation was to assess the quality of the soil and groundwater conditions within the areas of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP. Since the proposed future use of the property is not more sensitive than the current use, a Record of Site Condition (RSC) is not required. In addition, as re-development is intended for the site, a preliminary soil characterization assessment of excess soil was also completed.

This Phase Two ESA/SCR was conducted in general accordance with *Ontario Regulation 406/19 – On-Site and Excess Soil Management* and *Ontario Regulation 153/04 – Records of Site Condition*, and in accordance with generally accepted professional practices, which will be suitable for excess soil management and/or site plan approval. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

The site investigative activities consisted of stockpile sampling, drilling of boreholes and advancing of test pits to facilitate the collection of soil samples for visual inspection and chemical analysis. Select boreholes were instrumented with monitoring wells to facilitate the collection of groundwater samples.

Prior to the commencement of drilling, the locations of underground public utilities including telephone, natural gas and electrical lines were marked at the subject property by public locating companies. A private utility locating contractor was also retained to clear the individual borehole locations.

The borehole locations were selected to address the APECs identified in the Phase One ESA. The drilling program was completed June 4 to 7, 10 and 11, 2024, by George Downing Estate Drilling Ltd. (Downing), a licensed well contractor. Downing advanced twenty-seven (27) boreholes (BH24-1 to BH24-18, BH24-20 to BH24-22 and BH24-25 to BH24-30) across the Phase Two property, using a track drill. The boreholes were terminated 8.2 metres below ground surface(bgs), with the exception of BH24-28 which was terminated at 14.3 metres bgs. Four (4) of the boreholes were completed as monitoring wells.

The test pit locations were selected to compliment the soil sample locations collected during the borehole drilling and to address the APECs identified in the Phase One ESA. The test pitting was completed on June 19, 2024, by Thomas Cavanagh Construction Ltd. (Cavanagh). Cavanagh advanced nine (9) test pits (TP-1 to TP-9) across the Phase Two property, using a backhoe. The test pits were advanced to depths between 1.1 and 1.4 m bgs.

A surficial topsoil layer was present in all of the boreholes with the exception of BH 24-08 and BH24-15 ranging in thickness of 25 mm to 410 mm. Surficial fill was contacted in BH24-08 and BH24-15 and extends to 0.9 and 2.2 metres below ground surface, respectively. The fill consists of a mixture of silty sand and crushed gravel with dark brown organic silty clay in BH24-15. The surficial topsoil layer was underlain by fill in all boreholes with the exception of BH24-08 and BH24-15. The fill consists of a mixture of a mixture of silty sand with roots and crushed gravel. Beneath the fill in BH24-01 and BH24-12, a 75 mm thick organic silty clay was contacted at 1.1 m depth in BH24-12 and a 50 mm thick topsoil layer was contacted at a depth of 0.8 metres bgs in BH24-01. The fill and buried organic silty clay/topsoil in BH24-01, BH24-04, BH24-08, BH24-11, BH24-12, BH24-16, BH24-22 and BH24-26 to BH24-28 are underlain by sily clay that extends to depths of 1.4 m to 2.2 m. In all boreholes, the upper sandy silty clay is underlain by silty clay that extends to depths of 5.6 m to 8.7 m. A lower layer of sand and silt were contacted below the grey silty clay in boreholes BH24-02, BH24-03, BH24-22, BH24-25, BH24-26 at 5.6 m to 8.7 m depths. With the exception of BH24-12, BH24-15, BH24-16, BH24-20, BH24-26 and BH24-27 glacial till was contacted at 5.8 m to 11.7 m. The glacial till extends to depths of 11.7 m to 14.1 m. Limestone bedrock underlaid the glacial till and was contacted in BH24-03, BH24-05, BH24-22, BH24-28 and BH24-29 at 11.7 m to 14.1 m below ground surface. Based on the bedrock geology map tilted, Generalized Bedrock Geology, Ottawa-Hull, Ontario and Quebec, Map 1508A, dated 1979 and prepared by the Geological Survey of Canada, the site lies near the transition zone between dolomite and limestone bedrock of the Oxford formation and interbedded sandstone and sandy dolomite bedrock of the March formation. The majority of the site appears to be underlain by the Oxford formation with the northeast corner of the site possibly underlain by the March formation.

The depth to groundwater ranged from 2.62 m to 5.46 m below ground surface. The groundwater flow direction was calculated to be to the west.

5.11.8 Soil Sampling

In accordance with the scope of work, chemical analyses were performed on soil samples recovered from the stockpiles, boreholes and test pits.

Fifteen soil samples ranging in depths from 0.1 to 4.3 m bgs and two duplicates were collected and submitted for analysis of OC pesticides to address APEC #1. In accordance with Regulation 153/04, the results were compared to the MECP Table 1 SCS and Table 3 SCS for residential/parkland/institutional use. The analytical results for OC Pesticides are provided in Table 1 in Appendix D. All of the samples are within the Table 1 and Table 3 SCS for OC Pesticides.

Twelve soil samples ranging in depths from 0.1 to 6.0 m bgs were collected and submitted for analysis of PHC, BTEX, metals and pH to address APEC #2. These samples were collected from existing stockpiles as well as boreholes and test pits that were

advanced in APEC #2 as determined in the Phase One ESA. In accordance with Regulation 153/04, the results were compared to MECP Table 1 SCS and Table 3 SCS for residential/parkland/institutional use. The analytical results for PHC and BTEX are provided in Table 2 in Appendix D and the analytical results for metals and pH are provided in Table 3 in Appendix D. One of the fifteen soil samples exceeded Table 3 SCS for cobalt and vanadium. When compared to Table 1 SCS, six of the fifteen soil samples exceeded for on or more of the following metals: barium, cobalt, chromium (VI), chromium total, molybdenum and vanadium. All of the samples are within Table 1 and Table 3 SCS for PHC, BTEX and pH.

Thirty-five soil samples and five duplicate samples were collected and submitted for analysis of PHC, BTEX, metals and pH. In accordance with Regulation 406/19, the results were compared to the MECP Table 1 SCS and Table 2.1 and 3.1 ESQS for residential/parkland/institutional and industrial/commercial/community property use. The analytical results for PHC and BTEX are provided in Table 2 and the analytical results for metals and pH are provided in Table 3, both in Appendix D.

These samples were collected from boreholes and test pits that were advanced throughout the Phase Two property. The analytical results for PHC and BTEX are provided in Table 2 in Appendix D and the analytical results for metals and pH are provided in Table 3 in Appendix D. All thirty-five samples are within Table 1 SCS and Table 2.1 and 3.1 ESQS for PHC, BTEX and pH. Seven of the thirty-five samples exceeded Tables 2.1, 3 and 3.1 for cobalt and/or vanadium. When compared to Table 1 SCS, fifteen of the thirty-five samples exceeded for one or more of the following metals: barium, cobalt, chromium (VI), chromium total, molybdenum, uranium and vanadium. The laboratory Certificate of Analysis is provided in Appendix E.

5.11.9 Groundwater Sampling

All groundwater samples were collected via a low-flow sampling technique. EXP monitored several water quality parameters (such as water level, temperature, dissolved oxygen, conductivity, salinity, pH, oxygen reduction potential and turbidity) in order to ensure that the samples collected were representative of actual groundwater conditions.

Following their installation, the monitoring wells were developed by purging water with an inertial pump and foot valve until it became clear. On June 21, 2024, three groundwater samples and one field duplicate were submitted for chemical analysis of OC Pesticides. None of the groundwater samples exceeded the Table 3 SCS for the parameters analyzed.

The groundwater results are provided in Table 4 in Appendix D and shown on Figure 7 in Appendix A. Copies of the laboratory Certificates of Analysis are provided in Appendix E.

5.11.10 Groundwater Sampling

Contaminants that exceeded the Table 3 residential standards included:

Soil: Cobalt and vanadium.

Groundwater: None.

5.11.11 Contaminant Fate and Transport

A variety of physical, chemical and biochemical mechanisms affect the fate and transport of the potential COC in soil and groundwater, the contribution of which is dependent on the soil and groundwater conditions at the Phase Two property, as well as the chemical/physical properties of the COC. Relevant fate and transport mechanisms are natural attenuation mechanisms, including advection mixing, mechanical dispersion/molecular diffusion, phase partitions (i.e. sorption and volatilization), and possibly abiotic or biotic chemical reactions, which effectively reduce COC concentrations.

All soil samples met the applicable Table 3 commercial SCS for all parameters that were analyzed with the exception of seven soil samples which exceeded the Table 3 SCS for cobalt and/or vanadium. Due to the current use of the property being a vacant field and the proposed future use as a long-term care facility, it is EXPs opinion that the cobalt and vanadium

exceedances observed in the soil do not pose a significant concern under the existing or proposed operating conditions at the Phase Two property.

6.0 Conclusions

EXP Services Inc. (EXP) was retained by Extendicare (Canada) Incorporated to conduct a soil characterization investigation and complete a Phase Two Environmental Site Assessment (ESA) at 980 Earl Armstrong Road in Ottawa, Ontario. The objective of the soil characterization component of the investigation was to determine whether excess soil that may be generated when during site re-development can be reused beneficially. The objective of the Phase Two ESA component of the investigation was to assess the quality of the soil and groundwater conditions within the areas of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP.

The scope of work included the drilling twenty-seven boreholes (BH24-1 to BH24-18, BH24-20 to BH24-22 and BH24-25 to BH24-30), advancing nine test pits (TP1 to TP9) on the subject property, and completing three (3) of the boreholes as monitoring wells. The scope of work also included collecting three stockpile soil samples from the northwestern corner of the Phase Two property.

Coupled with geotechnical and hydrogeological investigations, the Phase Two ESA component of this investigation consisted of collecting fifteen soil samples ranging in depths from 0.1 to 4.3 m bgs and two duplicates were collected and submitted for analysis of OC pesticides to address APEC #1. Twelve soil samples ranging in depths from 0.1 to 6.0 m bgs were collected and submitted for analysis of PHC, BTEX, metals and pH to address APEC #2.

During the soil characterization component of this investigation, thirty-five soil samples and five duplicate samples were collected and submitted for analysis of PHC, BTEX, metals and pH. Three groundwater samples and a duplicate sample were submitted for chemical analysis of OC Pesticides. None of the groundwater samples exceeded the Table 3 SCS for the parameters analyzed.

A summary of the soil exceedances for the Phase Two ESA/SCR are summarized in the table below.

Table 10: Summary of Soil Exceedances

	Parameters	Provincial					
		MECP Table 1 SCS	MECP Table 3 SCS				
	Barium	BH24-1-SS6, BH24-2-SS6 (Dup.SS6-DUPE of BH24-1-SS6), BH24-7-SS1, BH24-14-SS1, BH24- 17-SS1, BH24-17-SS4, BH24-25- SS7, BH24-27-SS6, TP2-S2, TP6- S1, TP6-S2 (TP6-S3-DUPE of TP6- S2), TP8-S2	No Exceedances				
	Chromium (VI)	BH24-7-SS1, BH24-14-SS1, BH24- 22-SS2, BH24-27-SS1, TP6-S1, TP6-S2 (TP6-S3 – DUPE of TP6- S2), TP8-S2	No Exceedances				
	Chromium, Total	DUP.SS6 (DUPE of BH24-1-SS6), BH24-7-SS1, BH24-14-SS1, BH24- 22-SS2, BH24-27-SS1, BH24-27- SS6, TP2-S2, TP6-S1, TP6-S2, TP6- S3 (DUP of TP6-S2), TP8-S2	No Exceedances				
Metals	Cobalt	BH24-7-SS1, BH24-14-SS1, TP2- S2, TP6-S2, (TP6-S3 DUPE of TP6- S2)	BH24-7-SS1, TP2-S2, TP6-S2				
	Molybdenum	(Dup.SS6-DUPE of BH24-1-SS6), BH24-11-SS1, BH24-17-SS4, TP9- S2	No Exceedances				

Parameters	Provincial				
	MECP Table 1 SCS	MECP Table 3 SCS			
Uranium	BH1-SS2, BH1-SS5, BH2-SS7, BH3-SS6, BH4-SS4, BH5-SS2, BH5-SS3, BH15-SS5, BH16-SS8, DUP 5	None			
Vanadium	(Dup.SS6-DUPE of BH24-1-SS6), BH24-7-SS1, BH24-25-SS7, BH24- 27-SS1, BH24-27-SS6, TP2-S2, TP6-S2	(Dup.SS6-DUPE of BH24-1-SS6), BH24-7-SS1, BH24-25-SS7, BH24-27-SS1, BH24-27-SS6, TP2- S2, TP6-S2			

None of the soil samples analysed exceeded MECP Table 1 SCS or Table 3 SCS for PHC, BTEX, pH, OC Pesticides or any other metals analyzed which are not listed in the above table. Cobalt and vanadium exceeded Table 3 SCS in several boreholes.

According to Section 49.1 of O.Reg 153/04 if, in the opinion of the Qualified Person, the applicable SCS at the Phase Two property are exceeded solely due fill containing a contaminant that exceeds the applicable site condition standard that was used at the property but the concentration of the contaminant does not exceed the natural occurring range of concentrations of that contaminant typically found within the area where the property is located. The metals listed above are known to have elevated concentrations in this area of the Phase Two property as remnants of Champlain Sea deposits. The largest exceedance for cobalt was 2.1 μ g/g higher than the applicable Table 3 SCS. The largest exceedance for vanadium was 15 μ g/g higher than the applicable Table 3 SCS.

The Qualified Person who oversaw this investigation can confirm that the soil characterization and Phase Two Environmental Site Assessment were conducted per the requirements of Ontario Regulation 406/19, Ontario Regulation 153/04, and in accordance with generally accepted professional practices.

We trust this report meets your current needs. If you have any questions pertaining to the investigation undertaken by EXP, please do not hesitate to contact the undersigned.

Devin Clouthier, B.Sc. Environmental Scientist

Earth and Environment

Chris Kimmerly, P.Geo., QPESA

Manager - Senior Geoscientist

Earth and Environment

7.0 References

This study was conducted in accordance with the applicable Regulations, Guidelines, Policies, Standards, Protocols and Objectives. Specific reference is made to the following documents.

- EXP Services Inc., Geotechnical Investigation, 980 Earl Armstrong Road, Ottawa, Ontario, July 2, 2024.
- EXP Services Inc., Hydrogeological Investigation, 980 Earl Armstrong Road, Ottawa, Ontario, July 2, 2024.
- EXP Services Inc., Phase One Environmental Site Assessment/Assessment of Past Uses, 980 Earl Armstrong Road, Ottawa, Ontario, June 12, 2024.
- Golder Associates, Phase I Environmental Site Assessment, 980 Earl Armstrong Road, Ottawa, Ontario, August 2015.
- Ontario Ministry of the Environment, Conservation and Parks, Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario, December 1996.
- Ontario Ministry of the Environment, Conservation and Parks, Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.
- Ontario Ministry of the Environment, Conservation and Parks, *Guide for Completing Phase Two Environmental Site Assessments under Ontario Regulation 153/04*, June 2011.
- Ontario Ministry of the Environment, Conservation and Parks, *Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, July 1, 2011.*
- Ontario Ministry of the Environment, Conservation and Parks, Management of Excess Soil A Guide for Best Management Practices, January 2014.
- Ontario Regulation 153/04, made under the Environmental Protection Act, as amended.
- Ontario Regulation 406/19, made under the Environmental Protection Act, as amended.
- Ontario R.R.O. 1990, Regulation 347, made under the Environmental Protection Act, as amended.
- Ontario R.R.O. 1990, Regulation 903, made under the Water Resources Act, as amended.

8.0 General Limitations

Basis of Report

This report ("Report") is based on site conditions known or inferred by the investigation undertaken as of the date of the Report. Should changes occur which potentially impact the condition of the site the recommendations of EXP may require re-evaluation. Where special concerns exist, or the Extendicare (Canada) Incorporated ("the Client") has special considerations or requirements, these should be disclosed to EXP to allow for additional or special investigations to be undertaken not otherwise within the scope of investigation conducted for the purpose of the Report.

Reliance on Information Provided

The evaluation and conclusions contained in the Report are based on conditions in evidence at the time of site inspections and information provided to EXP by the Client and others. The Report has been prepared for the specific site, development, building, design or building assessment objectives and purpose as communicated by the Client. EXP has relied in good faith upon such representations, information and instructions and accepts no responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of any misstatements, omissions, misrepresentation or fraudulent acts of persons providing information. Unless specifically stated otherwise, the applicability and reliability of the findings, recommendations, suggestions or opinions expressed in the Report are only valid to the extent that there has been no material alteration to or variation from any of the information provided to exp. If new information about the environmental conditions at the Site is found, the information should be provided to EXP so that it can be reviewed and revisions to the conclusions and/or recommendations can be made, if warranted.

Standard of Care

The Report has been prepared in a manner consistent with the degree of care and skill exercised by engineering consultants currently practicing under similar circumstances and locale. No other warranty, expressed or implied, is made. Unless specifically stated otherwise, the Report does not contain environmental consulting advice.

Complete Report

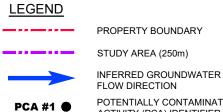
All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment form part of the Report. This material includes, but is not limited to, the terms of reference given to EXP by the Client, communications between EXP and the Client, other reports, proposals or documents prepared by EXP for the Client in connection with the site described in the Report. In order to properly understand the suggestions, recommendations and opinions expressed in the Report, reference must be made to the Report in its entirety. EXP is not responsible for use by any party of portions of the Report.

Use of Report

The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. No other party may use or rely upon the Report in whole or in part without the written consent of EXP. Any use of the Report, or any portion of the Report, by a third party are the sole responsibility of such third party. EXP is not responsible for damages suffered by any third party resulting from unauthorised use of the Report.

Report Format

Where EXP has submitted both electronic file and a hard copy of the Report, or any document forming part of the Report, only the signed and sealed hard copy shall be the original documents for record and working purposes. In the event of a dispute or discrepancy, the hard copy shall govern. Electronic files transmitted by EXP utilize specific software and hardware systems. EXP makes no representation about the compatibility of these files with the Client's current or future software and hardware systems. Regardless of format, the documents described herein are EXP's instruments of professional service and shall not be altered without the written consent of EXP.


EXP Services Inc.

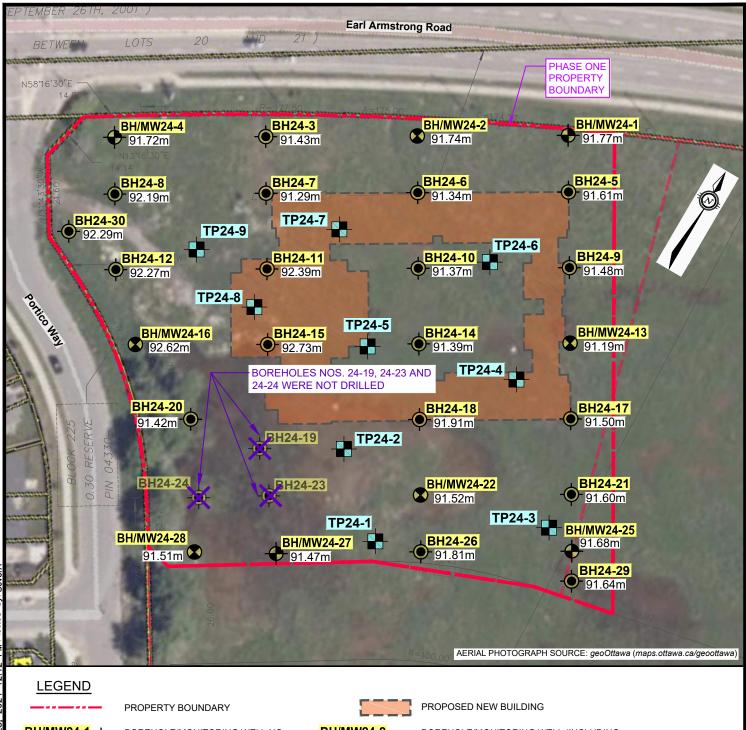
Extendicare (Canada) Incorporated Phase Two Environmental Site Assessment 980 Earl Armstrong Road, Ottawa, Ontario OTT-24005069-A0 July 17, 2024

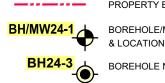
Appendix A: Figures

APEC 1

APEC 2

POTENTIALLY CONTAMINATING ACTIVITY (PCA) IDENTIFIER


Q	40m	80m	160m
HOR	IZONTAL		1:4,000



EXP Services Inc. www.exp.com

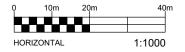
t: +1.613.688.1899 | f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada

JUNE 2024		PROPERTY ADDRESS: 980 EARL ARMSTRONG ROAD, OTTAWA, ONTARIO	OTT-24005069-A0		
DESIGN DC	CHECKED	PROJECT: PHASE TWO ENVIRONMENTAL SITE ASSESSMENT	scale 1:4,000		
DRAWN BY	NS	PHASE ONE CONCEPTUAL SITE MODEL	FIG 2		

BOREHOLE/MONITORING WELL NO.

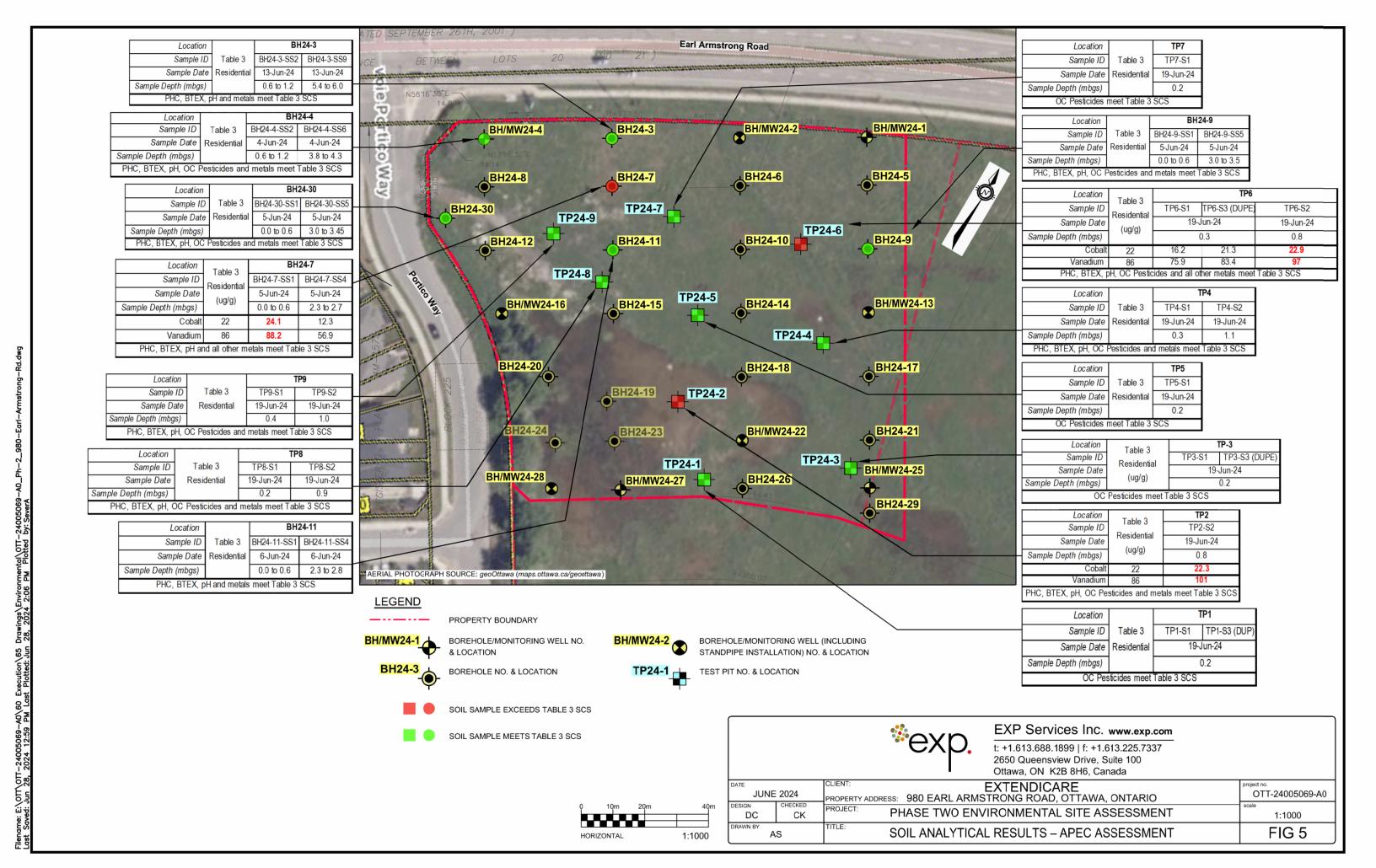
BOREHOLE NO. & LOCATION

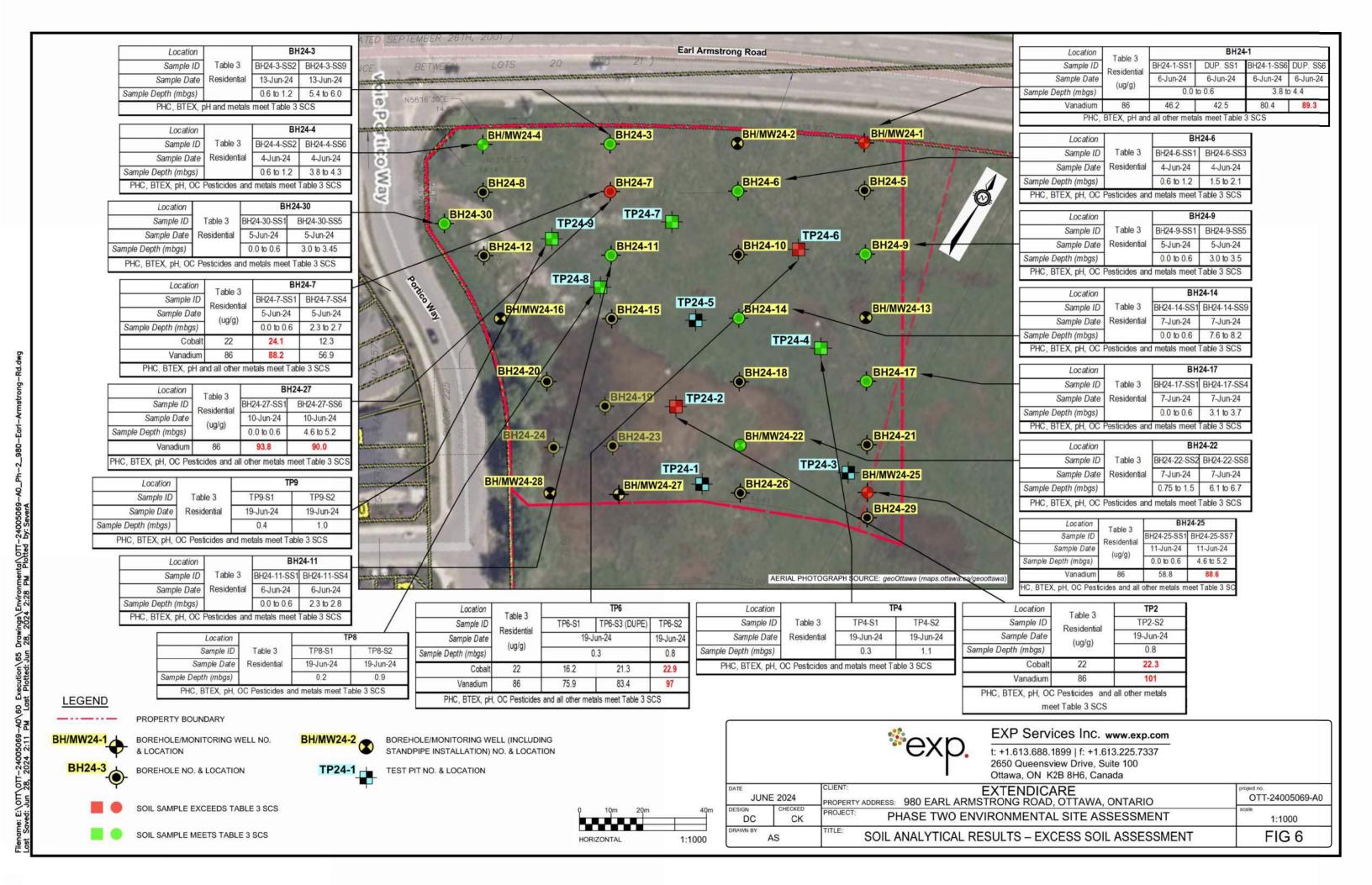
GROUND SURFACE ELEVATION (m)

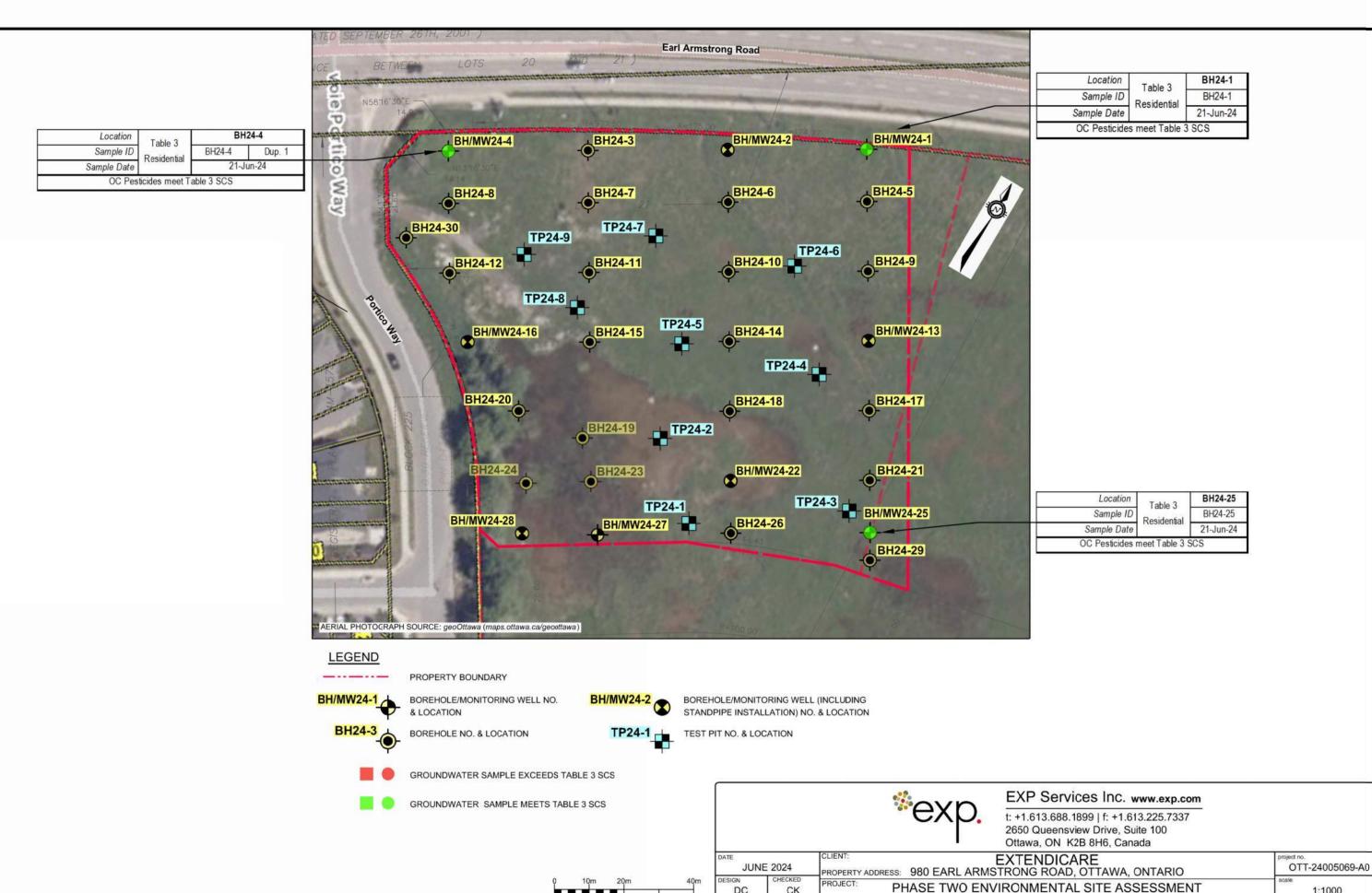

BOREHOLE/MONITORING WELL (INCLUDING STANDPIPE INSTALLATION) NO. & LOCATION

NOT DRILLED

TEST PIT NO. & LOCATION




EXP Services Inc. www.exp.com


t: +1.613.688.1899 | f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada

JUNE 2024		CLIENT: EXTENDICARE PROPERTY ADDRESS: 980 EARL ARMSTRONG ROAD, OTTAWA, ONTARIO				
DESIGN DC	CHECKED	PROJECT: PHASE TWO ENVIRONMENTAL SITE ASSESSMENT	1:1000			
DRAWN BY	\S	BOREHOLE/MONITORING WELLS AND TEST PIT LOCATION PLAN	FIG 3			

PTEMBER 261H, 2001

DC

1:1000

HORIZONTAL

CK

TITLE:

GROUNDWATER ANALYTICAL RESULTS

1:1000

FIG 7

me: E:\OTT\OTT-24005069-A0\60 Execution\65 Drawings\Environmental\OTT-24005069-Saved: Jul 2, 2024 8:08 AM Last Plotted: Jul 2, 2024 8:08 AM Plotted by: SeverA

EXP Services Inc.

Extendicare (Canada) Incorporated Phase Two Environmental Site Assessment 980 Earl Armstrong Road, Ottawa, Ontario OTT-24005069-A0 July 17, 2024

Appendix B: Sampling and Analysis Plan

OTT-24005069-A0 Soil Characterization Report 980 Earl Armstrong Road, Gloucester, Ontario Sampling and Analysis Plan

Objectives

- The property, 980 Earl Armstrong Road, is currently undeveloped greenspace but was historically
 used for agricultural land. Extendicare (Canada) Incorporated is seeking site characterization prior
 to the proposed development of a 5-storey, 256 bed long-term care facility (LTC).
- Address the areas of potential environmental concern (APEC) that were identified in the Phase I Environmental Site Assessment/Assessment of Past Uses (APU).

Areas of Potential Environmental Concern

Based on the results of our Phase I ESA, two potentially contaminating activities (PCAs) and APECs were identified. Potential contaminants of concern were identified to be petroleum hydrocarbons (F1 through F4) (PHC); benzene, toluene, ethylbenzene, xylenes (BTEX), metals and hydride forming metals (antimony, arsenic, barium, beryllium, boron, cadmium, chromium, cobalt, copper, lead, molybdenum, nickel, selenium, silver, thallium, uranium, vanadium and zinc). A summary of the PCA, APEC, and potential contaminants of concern is provided in Table 1:

Table 1: Areas of Potential Environmental Concern

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA)	Location of PCA (On-Site or Off- Site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, Soil and/or Sediment)
APEC 1: Large-scale pesticide application on agricultural field formerly located on Phase One property	Interest of Phase One Property Entirety of Phase One Property Entirety of Phase One Property Pesticides (including Herbicides, Fungicides and Anti-Fouling Agents) Large-Scale Application PCA 2: PCA #30 - Importation of Fill Material of Unknown Quality		On-Site	OC Pesticides	Soil and Groundwater
APEC 2: Importation of fill material of unknown quality across the Phase One property			On-Site	PHC, BTEX, Metals and Hydride Forming Metals, pH	Soil

The environmental work will be undertaken in accordance with Ontario Regulation 153/04.

Extendicare (Canada) Incorporated Sampling and Analysis Plan Combined Field Program – Geotechnical, Excess Soil and Hydrogeological 980 Earl Armstrong Road, Ottawa, Ontario OTT-24005069-A0

Scope of Work

- Sample from fifteen (15) of the proposed thirty (30) boreholes (Figure 1). Twenty-five (25) of the boreholes will be drilled to 5 to 6 metres depth or to a depth of refusal and five (5) boreholes each to 13 metres depth to a depth or refusal.
- Complete five (5) boreholes into 50 mm monitoring wells and complete three (3) boreholes into 19 mm standpipes.
- The monitoring wells should have a 50 mm PVC screen and an appropriate length of 50 mm PVC riser pipe. Label the MW in the field with a marker. The entire screen should be within a stratigraphic unit (i.e. all in fill or all in native sand or all in native clay, with minor transitions permitted).
- Equip the monitoring wells with stick-up casings.
- As drilling progresses, collect soil samples from sleeves.
- For each soil sample, log colour, grain size, moisture content, density, structures, texture, staining, odour, and field vapour readings.

Soil Sampling

Soil samples should be collected as follows:

Table 2: Soil Sampling Plan

Area of Potential Environmental Concern (APEC)	Field Program	Soil Analysis
#1. Former agricultural field (entirety of the site)#2. Fill of unknown quality (entirety of the site)	BH24-1, BH24-3, BH24-6, BH24-8, BH24-9, BH24-11, BH24-14, BH24-16, BH24-17, BH24-19, BH24-22, BH24-24, BH24-25, BH24-27 & BH24-30	One (1) sample representing any placed fill per borehole – PHC, VOC, BTEX, Metals and Hydride Forming Metals, pH, OC Pesticides One (1) sample representing native soil per borehole – PHC, VOC, BTEX, Metals and Hydride Forming Metals, pH, OC Pesticides
	Stockpile Sampling	Three (3) samples of stockpiled soil per borehole – PHC, BTEX, Metals and Hydride Forming Metals, pH

If fill is identified in boreholes not indicated above, that fill material should be sampled as well.

Thirty-five (35) samples will be submitted for the minimum requirements, fifteen (15) will be submitted for pesticides and five (5) samples will be submitted for leachate analysis as required.

Extendicare (Canada) Incorporated Sampling and Analysis Plan Combined Field Program – Geotechnical, Excess Soil and Hydrogeological 980 Earl Armstrong Road, Ottawa, Ontario OTT-24005069-A0

Two (2) samples will be collected per each borehole indicated above. Each sample requires one (1) MeOH preserved, laboratory provided vial and one (1) 250 ml laboratory provided jar.

Three (3) stockpile samples will be collected from the small stockpiles on the western portion of the site. Each sample requires one (1) MeOH preserved, laboratory provided vial and one (1) 250 ml laboratory provided jar. Stockpile samples will be collected separately from the drilling program.

There should be one chain of custody:

• COC #1: Reg. 406/19 parameters as specified above – Make sure there are four (4) field duplicate soil samples.

Soil samples should be submitted to Paracel for analysis. On the chains of custody, use EXP project number OTT-24005069-A0 in the Project Refence section. In the Quote Section, use Quote # 24-335 – Soil.

EXP Services Inc.

Extendicare (Canada) Incorporated Phase Two Environmental Site Assessment 980 Earl Armstrong Road, Ottawa, Ontario OTT-24005069-A0 July 17, 2024

Appendix C: Borehole Logs

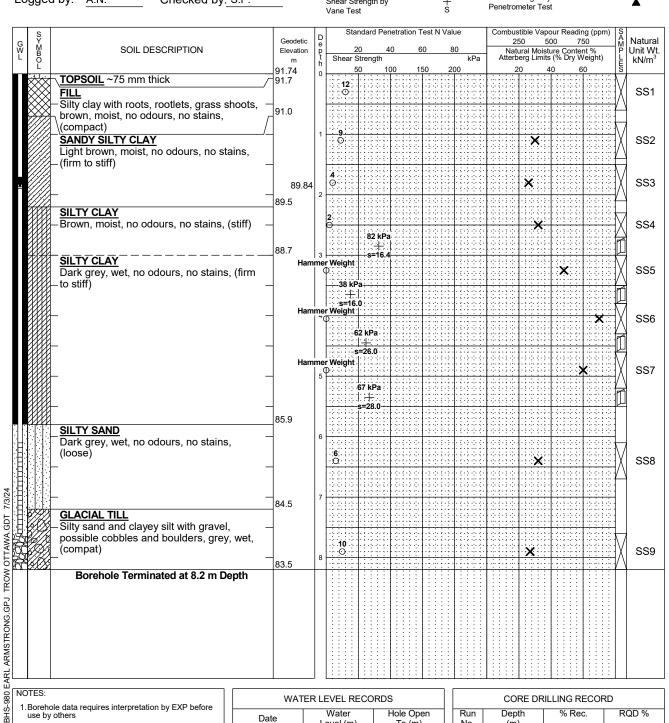
	Log of I	Bore		ho	le		<u> </u>	<u> V24</u>	<u> 1-0</u>	<u>1</u>			6	2	xr
Project No: OTT-24005069-A0									F	igure N	No	3	•	_	$^{\wedge}$
Project:	Proposed Long-Term Care Facility								_	•	_	1 of	1		'
Location:	980 Earl Armstrong Road, Ottawa, On	tario							_	ıa	Je	0 .			
Date Drilled	d: <u>'June 6, 2024</u>			Split Sp	oon Sa	mple				Combus	tible Vap	our Readir	ng		
Drill Type:	CME 55 Track-Mounted Drill Rig			Auger S SPT (N)						Natural I	Moisture (Content	_		X
Datum:	Geodetic Elevation			Dynamic	c Cone	Test				Undraine	- ed Triaxia		·		Φ
Logged by:	M.Z. Checked by: S.P.			Shelby Shear S		by		+		Shear S	at Failure trength by	y			•
				Vane Te		-		S		Penetroi	meter Tes	SI			
SY MBO	COIL DECODIDATION	Geodetic	D e			Penet 40	ration T 6	est N Valu		2	50 5	our Readir	50	S A M	Natural
G M B C L	SOIL DESCRIPTION	Elevation m	t h	Shear	20 Strengt 50		15		kPa	Atterb		ture Conters (% Dry W		SAMPLES	Unit Wt. kN/m³
	PSOIL ~125 mm thick	91.77 91.6	0	9		Ĭ					Ď			M	SS1
Silt	y clay, brown, damp, no odours, no	-							- : - : - : - : - : - : - : - : - : - :					Δ	331
	ins, (loose) PSOIL ~ 50 mm thick	91.0	1	14										М	
	TY CLAY ht brown to reddish brown, moist, no			0							X			M	SS2
odo	ours, no stains, (stiff)	90.27 90.1		. 9											
Lov	NDY SILTY CLAY v plasticity, light brown, moist, no		2	0							Ð X			Ň	SS3
odo	ours, no stains, (soft to stiff)													Н	
	•			Ŏ				. 5 . 6 . 5 . 5 . 5		0.000	×		-2-6-1-2-	X	SS4
			3		72 kl	Pa					X			n	V5
		88.2			s=6.	0								Ш	••
	TY CLAY ey, wet, no odours, no stains, (firm to													Н	
stiff		Ham	me (r Weight	t		- 1 - 2 - 2 - - 1 - 2 - 2 - 1		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				×	X	SS6
				43	kPa										
			_	12.213											
			5												
	-	Ham	me	r Weight				-2-0-1-2-1					×	M	SS7
			6											Д	
					77 k	31113									
	•														
		Ham	, me	r Weight	1									М	
		04.0	(D								X		Ň	SS8
1999//// <u>GL</u>	ACIAL TILL y clay to clayey silt of low plasticity,	84.2		9							* \$0				SS9
sor	ne gravel and sand, possible cobbles	83.7	8		1:::							 		Д	
∖sta	d boulders, grey, wet, no odours, no ins, (loose)	'													
	Borehole Terminated at 8.1 m Depth														

laboratory analyses. NOTES:

LOG OF BOREHOLE BHS-980 EARL ARMSTRONG.GPJ TROW OTTAWA.GDT 7/3/24

Borehole data requires interpretation by EXP before use by others

Note:
1) V5 -Soil sample taken from vane.
2) SS1 & SS6 and duplicate samples of SS1&SS6 submitted for environmental

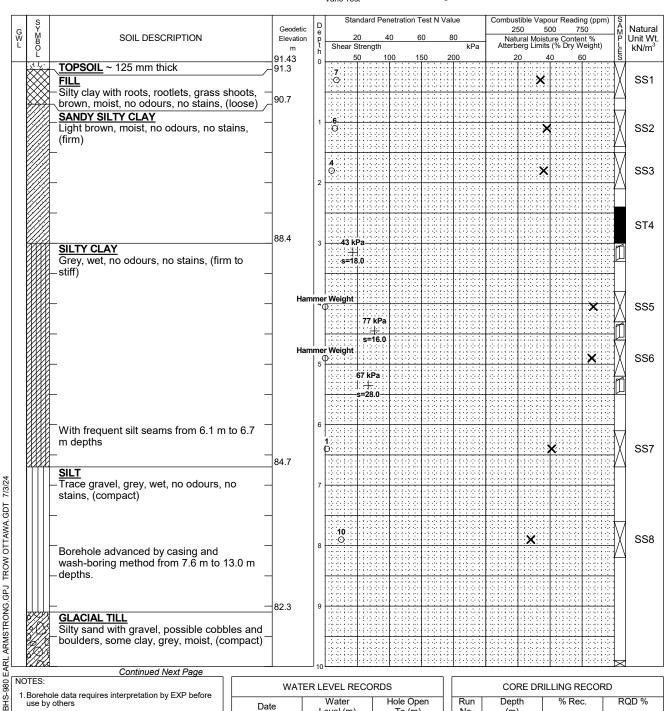

- 2.A 50 mm diameter monitoring well installed as shown.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5.Log to be read with EXP Report OTT-24005069-A0

WATER LEVEL RECORDS							
Date	Water Level (m)	Hole Open To (m)					
Upon Completion	no water	no cave-in					
Jun 19, 2024	1.5						

CORE DRILLING RECORD						
Run No.	Depth (m)	% Rec.	RQD %			
	` ,					

Log of Rorehole MW24-02

	Log of Dor	SIIOIC IVIVVZ		<u>, </u>	$\hookrightarrow x$
Project No:	OTT-24005069-A0				
Project:	Proposed Long-Term Care Facility			Figure No. 4	
Location:	980 Earl Armstrong Road, Ottawa, Ontario			Page. <u>1</u> of <u>1</u>	_
Date Drilled:	'June 4, 2024	Split Spoon Sample	\boxtimes	Combustible Vapour Reading	
Drill Type:	CME 55 Track-Mounted Drill Rig	Auger Sample SPT (N) Value	■	Natural Moisture Content Atterberg Limits	× ⊢—⊙
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	_	Undrained Triaxial at % Strain at Failure	\oplus
l oaged by:	A N Checked by: S P	Shear Strength by	_	Shear Strength by	



- Borehole data requires interpretation by EXP before use by others
- 2.A 19 mm diameter monitoring well installed as shown.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5.Log to be read with EXP Report OTT-24005069-A0

WATER LEVEL RECORDS							
Date	Water Level (m)	Hole Open To (m)					
Upon Completion	no water	no cave-in					
Jun 21, 2024	1.9						

CORE DRILLING RECORD					
Run No.	Depth (m)	% Rec.	RQD %		
	<u>,,</u>				

Project No: OTT-24005069-A0 Figure No. Project: Proposed Long-Term Care Facility Page. 1 of 2 Location: 980 Earl Armstrong Road, Ottawa, Ontario Date Drilled: 'June 13, 2024 Split Spoon Sample \boxtimes Combustible Vapour Reading X Auger Sample Natural Moisture Content Drill Type: CME 55 Track-Mounted Drill Rig SPT (N) Value 0 0 Atterberg Limits Dynamic Cone Test Datum: Undrained Triaxial at Geodetic Elevation \oplus % Strain at Failure Shelby Tube Shear Strength by Logged by: A.N. Checked by: S.P. Shear Strength by Penetrometer Test Vane Test

Continued Next Page

Borehole data requires interpretation by EXP before use by others

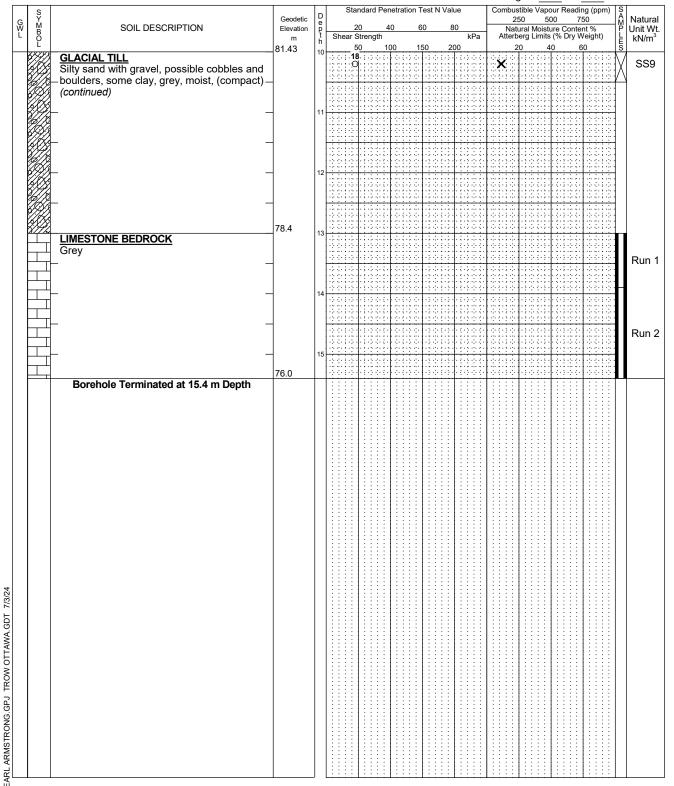
2. Borehole backfilled upon completion of drilling.

3. Field work supervised by an EXP representative.

4. See Notes on Sample Descriptions

LOG OF

5.Log to be read with EXP Report OTT-24005069-A0

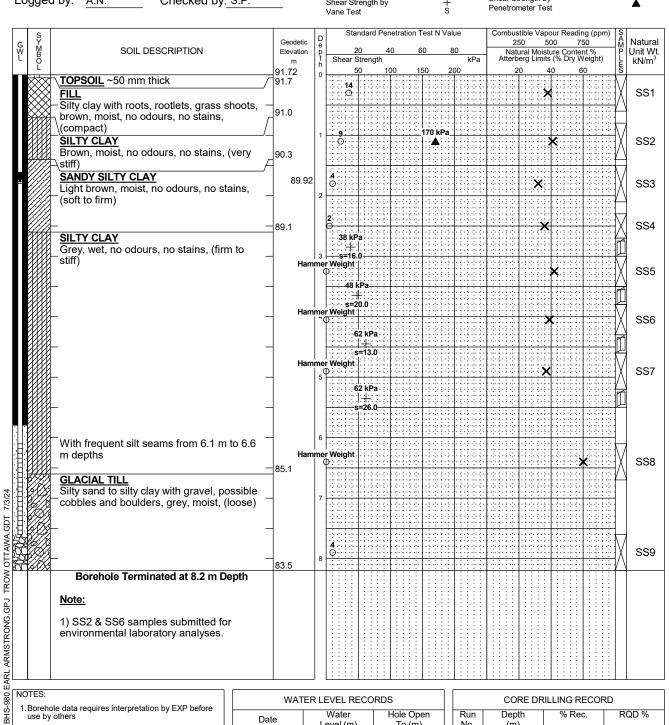

WATER LEVEL RECORDS					
Date	Water Level (m)	Hole Open To (m)			
		7 .			

CORE DRILLING RECORD				
Run No.	Depth (m)	% Rec.	RQD %	
1	13 - 13.9	95	34	
2	13.9 - 15.4	100	95	

Project No: OTT-24005069-A0

Figure No. 5

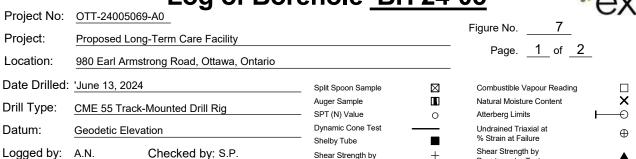
Project: Proposed Long-Term Care Facility Page. 2 of 2

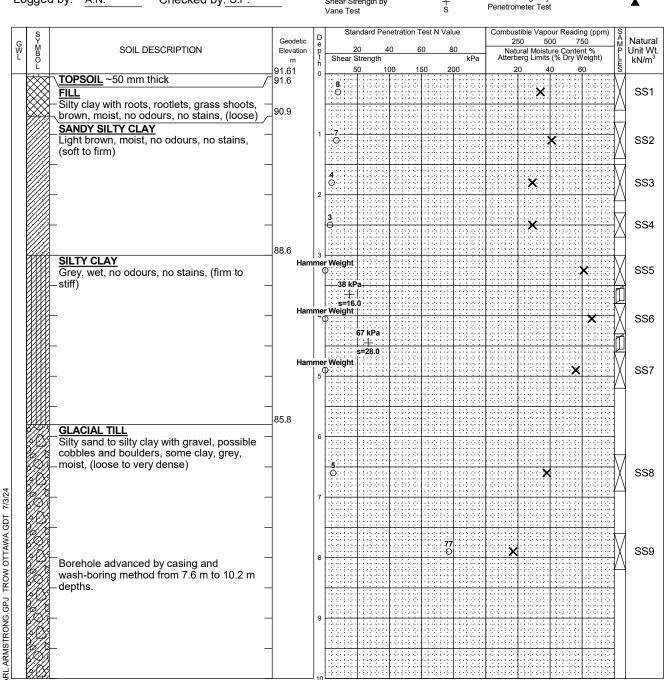

NOTES:

- Borehole data requires interpretation by EXP before use by others
- 2. Borehole backfilled upon completion of drilling.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-24005069-A0

WATER LEVEL RECORDS						
Date	Water Level (m)	Hole Open To (m)				

CORE DRILLING RECORD				
Run No.	Depth (m)	% Rec.	RQD %	
1	13 - 13.9	95	34	
2	13.9 - 15.4	100	95	


	Log of E	3ore	9	hole I	MW2	24-(04 🐉	2	71
Project No:	OTT-24005069-A0						_	U /	1
Project:	Proposed Long-Term Care Facility						Figure No. 6		-
Location:	980 Earl Armstrong Road, Ottawa, Onta	ırio					Page. <u>1</u> of <u>1</u>		
Date Drilled:	'June 5, 2024			Split Spoon Sample			Combustible Vapour Reading]
Orill Type:	CME 55 Track-Mounted Drill Rig			Auger Sample SPT (N) Value		Ⅲ ○	Natural Moisture Content Atterberg Limits	× €	(
Datum:	Geodetic Elevation			Dynamic Cone Test	_		Undrained Triaxial at % Strain at Failure		
_ogged by:	A.N. Checked by: S.P.	_		Shelby Tube Shear Strength by Vane Test		+ s	Shear Strength by Penetrometer Test	A	L
S Y W	SOIL DESCRIPTION	Geodetic	D e n	Standard Pene		I Value 80	Combustible Vapour Reading (ppr 250 500 750		atura



- Borehole data requires interpretation by EXP before use by others
- 2.A 50 mm diameter monitoring well installed as shown.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5.Log to be read with EXP Report OTT-24005069-A0

WATER LEVEL RECORDS						
Date	Water Level (m)	Hole Open To (m)				
June 19, 2024	1.8	, ,				

CORE DRILLING RECORD					
Run No.	Depth (m)	% Rec.	RQD %		
	` ,				

Continued Next Page

Borehole data requires interpretation by EXP before use by others

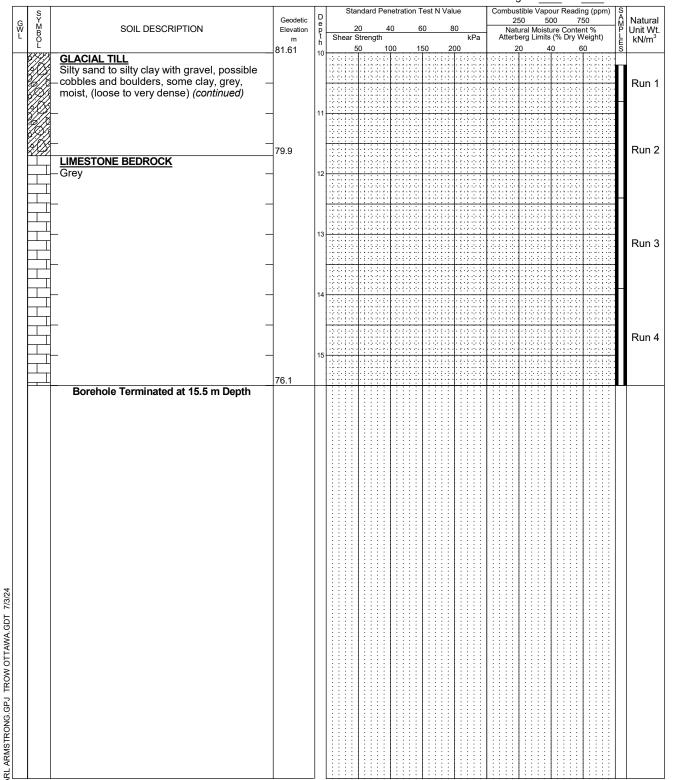
2. Borehole backfilled upon completion of drilling.

3. Field work supervised by an EXP representative.

4. See Notes on Sample Descriptions

LOG OF

5. Log to be read with EXP Report OTT-24005069-A0


WATER LEVEL RECORDS					
Water Level (m)	Hole Open To (m)				
	Water				

CORE DRILLING RECORD					
Run	Depth	% Rec.	RQD %		
No.	(m)				
1	10.2 - 10.8	0	0		
2	10.8 - 12.4	81	49		
3	12.4 - 13.9	95	34		
4	13.9 - 15.5	100	77		

Project No: OTT-24005069-A0

Figure No. 7

Project: Proposed Long-Term Care Facility
Page. 2 of 2

NOTES:

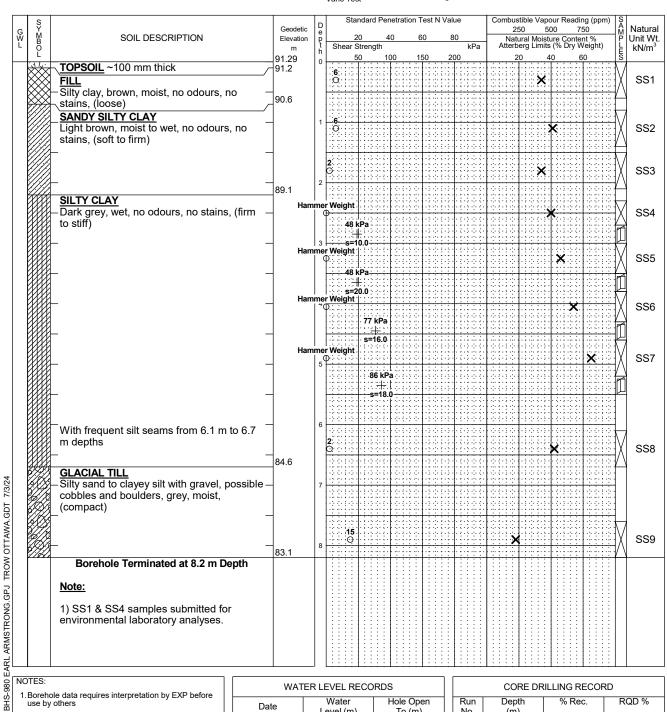
LOG 0F I

Borehole data requires interpretation by EXP before use by others

2. Borehole backfilled upon completion of drilling.

3. Field work supervised by an EXP representative.

4. See Notes on Sample Descriptions


5.Log to be read with EXP Report OTT-24005069-A0

WATER LEVEL RECORDS						
Date	Water Level (m)	Hole Open To (m)				

CORE DRILLING RECORD				
Run	Depth	% Rec.	RQD %	
No.	(m)			
1	10.2 - 10.8	0	0	
2	10.8 - 12.4	81	49	
3	12.4 - 13.9	95	34	
4	13.9 - 15.5	100	77	

roject.	Proposed Long Torm Care Facility	,									F	igur	e N	0		8	-		
roject:	Proposed Long-Term Care Facility											F	Pag	e	1_	of	1		
ocation:	980 Earl Armstrong Road, Ottawa,	Ontario																	
	'June 4, 2024				Split Spo Auger Sa		nple			_				ble Va oisture			ng		□ X
rill Type:	CME 55 Track-Mounted Drill Rig				SPT (N)									Limits		leni		<u> </u>	$\stackrel{\boldsymbol{\wedge}}{=}$
atum:	Geodetic Elevation				Dynamic Shelby T		Test		_	-				d Triax at Failu					\oplus
ogged by:	A.N. Checked by: S.P.	<u>- </u>			Shear St Vane Te		by		-	- - 3				ength eter To					A
							Pene	tration T	est N V	alue		Com	hust	ible Va	inour l	Readir	na (pp	m) [8	: T
S Y M B O	SOIL DESCRIPTION		odetic vation	D e p t	2	20	40		60	80			25		500	7	50		Natur Unit W
L	100	91.3		h 0	Shear	Strengt 50	h 100) 1:	50	200	kPa	At	terbe		40	Dry W	/eight) i0	L	kN/m
FILL	SOIL ~100 mm thick	91.2	2		. 6										×			\rangle	SS1
Silty	clay with roots, rootlets, grass shoot n, moist, no odours, no stains, (loos	is, — e) — 90.6	6																7
SANI	DY SILTY CLAY Diasticity, light brown to grey, moist,			1	3			: : : : : : : : : : : : : : : : : : :			:::			<u> </u>		; ; . ; ; .		-	ssa
odou	rs, no stains, (very loose / soft)													Ψ. :. : : : :				<u>/</u>	\ 332
					2									×		1.0.0		\setminus	ssa
		-		2		1.1.2.2		01000 01000	-2-0-1-	:		· · · · · · ·		11.68 11.44	1 - 1 - 1 -	100	-2-4-	/	1
			Ham	 me (r Weight						-:-::			×			1000		ss ₂
		88.4	1		34 kP	a :												<u> </u>	
	<u>/ CLAY</u> grey, wet, no odours, no stains, (firr	m -	Ham	3 me	r ws=14.	0											v		SS
	to stiff)	_				62 kPa		· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·		1 · · · · · · · · · · · · · · · · · · ·			1 33.
			Ham	me	r Weight	s=13.0													#
				*(P.: :	72 kF	a							· · · · · · · ·		X		X	SS
		-				s=15								: : : : : : : : : : : : : : : : : : :		; ; . ; ; .		-[]
			Ham	me	r Weight											: :: : : : : : : : : : : : : : : : : :	×		ss7
						82	кРа											/ /	1
					-0.01.0	s=1	1.3							· · · · · ·		1.0.0			1
With	frequent silt seams from 6.1 m to 6.	7		6	15 21 115				15 (C.)					1		1.0.7.			
m de		'			4									×				\rangle	SSE
GI AC	CIAL TILL	84.6	3		-2-0-1-2				12 (1)			0.00		1 2 1		1 - 2 - 4 -	12.41		1
Silty s	sand to silty clay with gravel, possibles and boulders, grey, moist, (loose	le –		7										1	1 - 1 - 2 -				
	es and bodiders, grey, moist, (100se				-5 - 1 - 5														
		83.4	1		0.010	6	then	50 / 100	0 mm				×						SSS
	Sampler Refusal at 7.9 m Depth																		
Note:																			
1) SS	1 & SS3 samples submitted for commental laboratory analyses.																		
	on and a second and years.																		
OTES:		V	/ATEF	R LI	EVEL RI	ECOF	DS					(COR	E DR	RILLIN	NG RI	ECO	 RD	
Borehole data re use by others	equires interpretation by EXP before	Date	T		Water evel (m)		Н	ole Ope		Ru		D	epth (m)			% Red			RQD %
	led upon completion of drilling.		\top		-v=1 (111)			10 (111)		IN	J.		<u>(111)</u>						
Field work supervised by an EXP representative. See Notes on Sample Descriptions																	1		

	Log of I	3ore	9	hole Bl	1 24-	<u>07</u>		\Box	xr
Project No:	OTT-24005069-A0					——	0		
Project:	Proposed Long-Term Care Facility					Figure No	<u> </u>		- 1
Location:	980 Earl Armstrong Road, Ottawa, Ont	ario				Page	<u>1</u> of <u>1</u>		
Date Drilled:	'June 5, 2024			Split Spoon Sample	\boxtimes	Combustible Va	oour Reading		
Drill Type:	CME 55 Track-Mounted Drill Rig			Auger Sample SPT (N) Value		Natural Moisture Atterberg Limits	Content		X ⊕
Datum:	Geodetic Elevation			Dynamic Cone Test Shelby Tube	_	Undrained Triaxi % Strain at Failu			Φ
Logged by:	A.N. Checked by: S.P.			Shear Strength by Vane Test	+ s	Shear Strength be Penetrometer Te			A
G Y M B O L	SOIL DESCRIPTION	Geodetic Elevation m	D e p t h	Shear Strength	60 80	250 Natural Mois	pour Reading (ppm) 500 750 sture Content % ts (% Dry Weight)	SAMPLIE	Natural Unit Wt. kN/m³
	SOIL ~100 mm thick	91.29	0	6. O	130 200	×	40 60		SS1

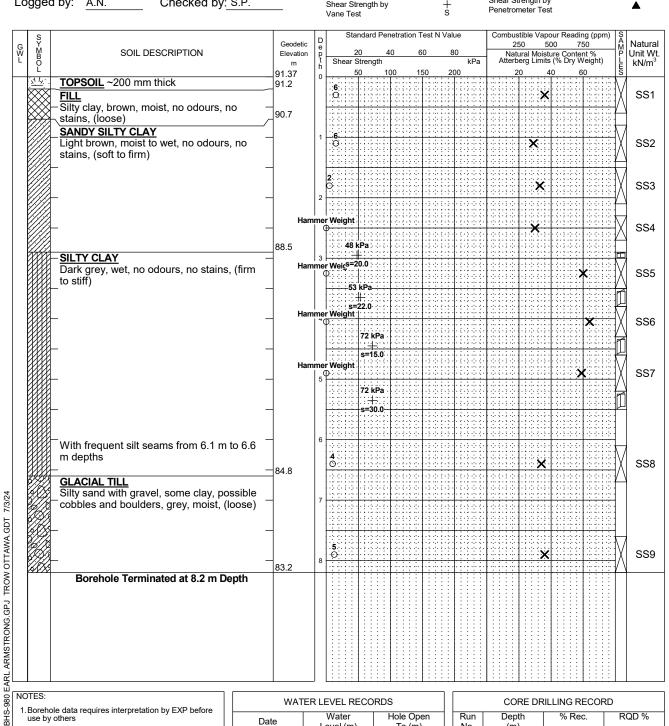
LOG 0F I

- Borehole data requires interpretation by EXP before use by others
- 2. Borehole backfilled upon completion of drilling.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5.Log to be read with EXP Report OTT-24005069-A0

WATER LEVEL RECORDS									
Date	Water Level (m)	Hole Open To (m)							

CORE DRILLING RECORD											
Run	Depth	% Rec.	RQD %								
No.	(m)										

Project No:	Log	of I	Воі	re	hole	<u> </u>	BH 2	<u> 24-0</u>	<u>8</u>				е	XĽ
Project:	Proposed Long-Term Care Fa	acility						F	igure No)	10			
Location:	980 Earl Armstrong Road, Ott		ario						Page	e	1_ of _	1_		
Date Drilled:		awa, On	ano					_						_
		D:		_	Split Spoon S Auger Sampl				Combustib Natural Mo			ıg		×
Drill Type:	CME 55 Track-Mounted Drill F	kig		_	SPT (N) Valu			0	Atterberg L		Lat	ŀ		→
Datum:	Geodetic Elevation			_	Shelby Tube	ie rest			Undrained % Strain a	t Failure	€			\oplus
Logged by:	A.N. Checked by:	S.P.			Shear Streng Vane Test	th by		+ s	Shear Stre Penetrome					A
s G Y			Geodet	ic D)		ation Test N	Value	250) 5	our Readin	50) S A M P	Natural
G Y M B O L	SOIL DESCRIPTION		Elevation	on p t h	Shear Strer	-	60	80 kPa	Natura Atterber		ure Conter s (% Dry W	nt % /eight)	PLE	Unit Wt. kN/m ³
Silty	~900 mm thick sand and crushed gravel, brow t, (compact)	n,	92.19	0	50 24 •••••	100	150	200	X		10 6		Ň	SS1
	, (00		91.3											
	Y CLAY n, moist, no odours, no stains,	(hard)	90.8	1	17 ⊙			200 kPa		×			X	SS2
Light	DY SILTY CLAY brown, moist to wet, no odours s, (firm)	s, no	90.0		6					×			$\sqrt{}$	SS3
Stair	5, (11111)	=		2						2 -				
		-	89.2		0::::::::::::::::::::::::::::::::::::::					×				SS4
144444	Y CLAY grey, wet, no odours, no stains ff)		Н	lamme	er Weight					×		-2-2-1-2		SS5
	,	-	Н	lamme	s=20.0 er Weight									SS6
		-			53 kPa									
		-	Н		er Weight D 53 kPa						×		\mathbb{N}	SS7
		-	86.4		s=22.0									
With	YEY SILT silt seams, some sand, grey, w	et, no		6	122121					1 - 1 - 1 - 1 - 1				
odou —	rs, no stains, (stiff)	-	_ н	lamme	er Weight 50 kPa					1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	>	(SS8
		_	_	7	s=6.0									
GLA	CIAL TILL		84.9											
Silty	sand with gravel, possible cobb ders, some clay, grey, moist, (co	oles and ompact)		8	10 ⊙					×				SS9
<i>29</i> %	orehole Terminated at 8.2 m D	epth	84.0											
NOTES:			1					1					<u>Ш</u>	
	equires interpretation by EXP before	Da			EVEL RECO	Hole	e Open	Run	Depth		LING RE			QD %
•	lled upon completion of drilling.	Da	ii.C	L	_evel (m)		o (m)	No.	(m)	+		+		
3. Field work supe	ervised by an EXP representative.	1												


LOG OF BOREHOLE BHS-980 EARL ARMSTRONG.GPJ TROW OTTAWA.GDT 7/3/24

4. See Notes on Sample Descriptions

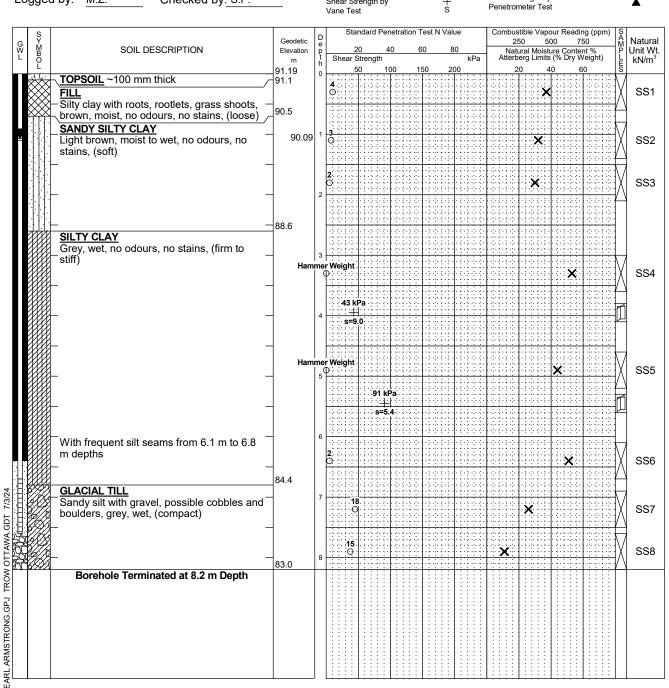
5.Log to be read with EXP Report OTT-24005069-A0

Project No:		114. /								ı	igure	No	11	<u> </u>							
roject: ocation:	Proposed Long-Term Care Faci	-	orio							_	Pa	ige	1_ of	_1_							
	980 Earl Armstrong Road, Ottav	va, Unta	ano							_											
	'June 4, 2024			-	Split Spo		ple					stible Vap Moisture		ding		□ X					
rill Type:	CME 55 Track-Mounted Drill Rig	l		-	SPT (N)	Value			0			rg Limits	Content		-	$\stackrel{\frown}{\multimap}$					
atum:	Geodetic Elevation			-	Dynamic Shelby T		est	_	_			ned Triaxi n at Failu				\oplus					
ogged by:	A.N. Checked by: S	.P.			Shear St		у		+ s			Strength bometer Te				A					
s				T_	Sta	ndard P	enetration	on Test	t N Va	lue	Combi	ustible Va	oour Read	ding (ppm) Ş						
S Y M B O	SOIL DESCRIPTION		Geodetic Elevation	D e p		20 Strength	40	60		30 kPa		250 tural Mois berg Limi		750 tent % Weight)) AMPLES	Natur Unit W					
Ĭ	SOIL ~200 mm thick	_	91.48	h 0	Glical	50]	100	150		100	1	20 .]	40 .l. : . : . : .	60 	\ ∷ .\	kN/m					
FILL FILL			91.3		12 •••							×			$ \rangle$	SS1					
and \	clay with roots, rootlets, grass sho wood fragments, brown, moist, no		90.8																		
	rs, no stains, (compact) DY SILTY CLAY	/_		1	9				****			×	1		$\frac{1}{2}$	SS2					
Light	brown, moist to wet, no odours, rs, (firm to stiff)	no _			-2-0-1-2				0.1.3				1.0.1.2		<u> </u>						
	o, ()				4 ⊙							×			$\left \right\rangle$	SS					
		_	-	2	9619				411	Y 11 2 2 4 - 1 - 1 - 1 - 1						1					
		_			2 O				0.00	1.1.1.1.1		×	10000		$\frac{1}{2}$	SS					
	V OLAV		88.6		48	kPa∷ #			0.1.2							1					
Dark	<u>Y CLAY</u> grey, wet, no odours, no stains, (firm	Han	1 3 nme 	r Weic ^{s=1}	10.0							,	<	X	SS					
to sti	to stiff)	to stiff)		stiff)		to stiff)		-		43 k											1
				Har	nme	s=9 or Weight	0.0										1				
				-	Ο.:	86 I								X		SS6					
		_				s=1	- +] 7					
		_	Han	nme 5	er Weight									×		SS7					
					3 3 1 1 3	72 kPa									Ī						
						-s=15.0			:::: :::::												
		_		6	-0.0-1-0			2 (2 1 2 2 (2 1 2	0. (+) 0. (+)			· • • • • • • • • • • • • • • • • • • •		:	: :	,					
GI A	CIAL TILL		85.1		2 :							×			<u> </u>	SSE					
Silty	sand with gravel, some clay, poss les and boulders, grey, moist,	sible							010 010						: 	4					
	pact)	_	_	7																	
		_			1.2.6.1.2					1:::::::::::::::::::::::::::::::::::::											
						28					×					SSS					
R	orehole Terminated at 8.2 m Dep	oth _	83.3	8											<u> </u>						
Note																					
	_																				
envir	S2 & SS5 samples submitted for onmental laboratory analyses.																				
OTES:	oquiros interpretation by EVD before		WATE	RL	EVEL R	ECORI	os				CC	DRE DR	ILLING	RECOR	D						
use by others	equires interpretation by EXP before	Dat	e	L	Water .evel (m))	Hole To			Run No.	De (n		% R	ec.	F	RQD %					
	Iled upon completion of drilling. ervised by an EXP representative.								7												
	sample Descriptions																				

	-09 00.	511010 <u> </u>	<u> </u>	-x
Project No:	OTT-24005069-A0			
Project:	Proposed Long-Term Care Facility		Figure No12_	
Location:	980 Earl Armstrong Road, Ottawa, Ontario		Page. <u>1</u> of <u>1</u> –	_
Date Drilled:	'June 4, 2024	_ Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	CME 55 Track-Mounted Drill Rig	Auger Sample SPT (N) Value O	Natural Moisture Content Atterberg Limits	× ⊢—⊙
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	A.N. Checked by: S.P.	Shear Strength by +	Shear Strength by	•

- Borehole data requires interpretation by EXP before use by others
- 2. Borehole backfilled upon completion of drilling.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5.Log to be read with EXP Report OTT-24005069-A0

WATER LEVEL RECORDS									
Date	Water Level (m)	Hole Open To (m)							
Upon Completion	3.0	no cave-in							


CORE DRILLING RECORD										
Run	Depth	% Rec.	RQD %							
No.	(m)									

roject No:		ta									F	igure	No.	_	1;	3_				
roject:	Proposed Long-Term Care Facil		•									Р	age.	_	1_ of	_1	_			
ocation:	980 Earl Armstrong Road, Ottaw	/a, Onta	ario											_	_					
	'June 6, 2024						on Samp	ole				Combustible Vapour Reading Natural Moisture Content Atterberg Limits Undrained Triaxial at % Strain at Failure								
ill Type:	CME 55 Track-Mounted Drill Rig					ger Sa T (N) \				• • • • • • • • • • • • • • • • • • •										
atum:	Geodetic Elevation					namic elby Ti	Cone Te	est	-		I									
gged by:	A.N. Checked by: S.	.P.			She		rength by	y		+ s		Shear						A		
1 - 1			1	1	Val		ndard Pe	notrat	ion To			Comb	uctible	Van	our Rea	ding (n	nm) [(9		
S Y M B O	SOIL DESCRIPTION		Geod	ietic	D e p	2	20	40	60		80		250	5	ture Cors (% Dry	750	— É	S M Natura P Unit W		
L		_	92.39	.	t s h		Strength 50	100	150	0 2	kPa 200	Atte	rberg l		s (% Dry 40	Weigh	nt) L	kN/m		
FILL	SOIL ~50 mm thick		92.3			14							×					√ ss1		
Silty	sand and crushed gravel, roots, ets, grass shoots, brown, moist, no	_ n	1		13					- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2							/	7		
	ır, no stains, (compact)		91.3		1	14_				190 I	(Pa							7		
	Y CLAY vn, moist, no odours, no stains, (ve	erv	90.9			0											<u> </u>	X SS2		
√stiff)			30.3		3	9												ssa		
Light	t brown, moist to wet, no odours, nos, (firm to stiff)	10 –	_		2	X1.5			. ; ; ; ; ;	. 5 . 6 . 5 . 5	1	3				4- 15-2 4- 15-2		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
stain	o, (IIIIII 10 SIIII)	_			4													7		
					0				· · · · [1000			×	: i			√ SS₄		
		_	89.1		3 2													J		
SILTY CLAY Dark grey, wet, no odours, no stains, (f		firm –	09.1		0.	-43 k	Pa			· · · · · · · · · · · · · · · · · · ·				X				X SS		
		111111		Hamn	nor W	s=18	3.0											∄		
					φ	eigiit	72 kPa				<u> </u>					×		⟨ sse		
		_	-		13		s=30.0	+:::												
		_		Hamn	ner W _⊕	eight				·				×				SS7		
						48	kPa :::										/ In	\ N		
		_			13	s=2	0.0			-2-0-6-2 -2-0-6-2		10:1:1		. (.)		6 6 6 5 6 6 7 6 6		4		
		_			6	0 1 1 2 1 0 1 1 2 1					1					:				
				Hamn														SSE		
		_				** ! * ! ** ! * !	82 kP											\ 		
		_	85.2		7	· · · · · · · · · · · · · · · · · · ·	+ s=17.	400			12.3.2.2							4		
	CIAL TILL	ible	03.2																	
cobb	sand with gravel, some clay, poss les and boulders, grey, moist, (loo	ose)			6													7		
			84.2		8) · · · · · · · · · · · · · · · · · · ·		1 ::::			1		<u> </u>	(:::				X SSS		
B	Sorehole Terminated at 8.2 m Dept	th						T				Ti ii			T					
<u>Note</u> 1) S	<u>:</u> S2 & SS4 samples submitted for																			
	ronmental laboratory analyses.																			
TES:					نا.			1::	1						1					
	requires interpretation by EXP before	Def		ATER		EL RE	ECORD		Opei	n	Run		ORE epth	ואט ד	LLING % F			RQD %		
•	illed upon completion of drilling.	Dat	ıe	+		el (m)			(m)		No.		m)	+			+			
Field work supe	ervised by an EXP representative.																			
See Notes on S	Sample Descriptions with EXP Report OTT-24005069-A0																			

Project No:	Log of OTT-24005069-A0	Bo	re	h	ol	е	_	B l	<u> 1</u> 2	<u>2</u> 4	<u> 1-1</u>	<u>2</u>				е	xr
Project:	Proposed Long-Term Care Facility										1	Figure	No.	14	_		
Location:	980 Earl Armstrong Road, Ottawa, On	tario									_	P	age	of	_1_		
Date Drilled:	: 'June 6, 2024			Sp	lit Spoo	on Sa	ample			\boxtimes	_	Comb	ustible Va	apour Rea	dina		
Drill Type:	CME 55 Track-Mounted Drill Rig			Au	ger Sa	mple						Natura	l Moistur	e Content	-		×
Datum:	Geodetic Elevation			Dy	T (N) \ namic	Cone			_	0		Undra	erg Limits	xial at			Ф
Logged by:	A.N. Checked by: S.P.			Sh	elby Tu ear Str ne Tes	ength	n by			+ s		Shear	in at Fail Strength ometer T	by			A
S Y M B O L	SOIL DESCRIPTION	Elev:	detic ation	D e p t	2 Shear S	0 Streng	40 jth		60	8	0 kPa		250	apour Rea 500 isture Con nits (% Dry	750	l A	Natural Unit Wt. kN/m³
	SOIL ~50 mm thick	92.27 92.2		0	18		10	0	150	20	00		20	40	60	S V	001
roots no o	sand and crushed gravel, some clay, s, rootlets, grass shoots, brown, moist, dours, no stains, (compact) GANIC SILTY CLAY ~75 mm thick	91.4 7 91.3		1 3	17							×	X	•		_/\ 	SS1 SS2
Dark	k brown to black, moist, organic odour, tains				:::: :::::::			::::::::::::::::::::::::::::::::::::::			: 1 - 2 - 2 - 1 - 1 - 2 - 3 - 1		1			Δ	002
SILT With stain	Y CLAY n rootlets, brown, moist, no odours, no ns, (hard)	90.1			10 ○			6-1-2-0 6-1-2-0 6-1-2-0						*		X	SS3
Low	plasticity, light brown to grey, moist to no odours, no stains, (firm)			4 ⊕	0.1.0								×			X	SS4
SUT	TY CLAY	88.7		0	-48 k	H::::							×			X	SS5
	grey, wet, no odours, no stains, (firm		Hamm	ner W	s=2 /eight 53	0.0 kPa					· (·) · (·			×			SS6
			Hamm	ner W		22.0 Pa								×		X	SS7
					s=2	: : : ;											
			Hamm	ner W	7.1.3										×	X	SS8
- CLA	YEY SILT	85.0		7		67 kP + s=14											
With odol	n silt seams, some sand, grey, wet, no urs, no stains, (very soft)	84.1	Hamm	ner W	/eight									*		X	SS9
NOTES: 1. Borehole data i use by others	Sorehole Terminated at 8.2 m Depth																
		W/ ate	ATER	W	EL RE ater el (m)	COI		lole Op To (m			Run No.	De	ORE DF	RILLING			QD %
3. Field work supe	eter monitoring well installed as shown. ervised by an EXP representative. Sample Descriptions with EXP Report OTT-24005069-A0																

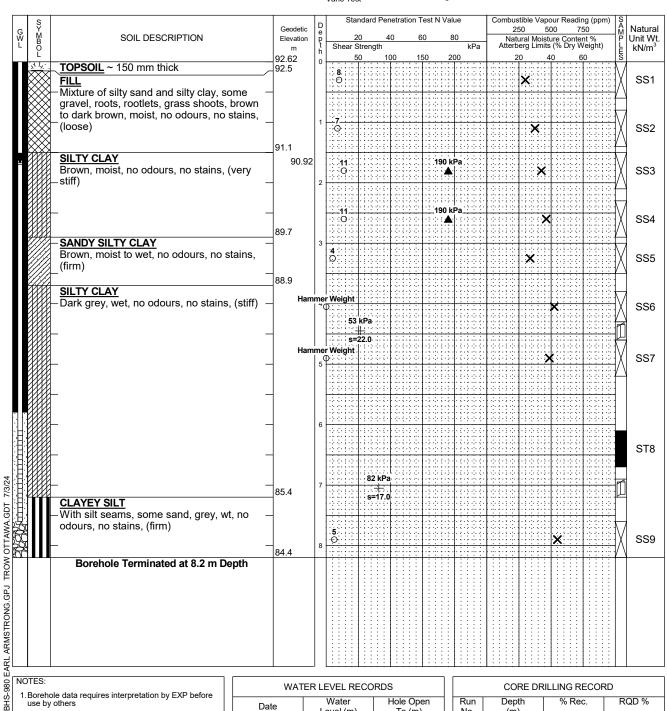
Log of Borehole MW24-13

	-09 0010		10	$\Box x$
Project No:	OTT-24005069-A0			\bigcirc
Project:	Proposed Long-Term Care Facility		Figure No <u>15</u> Page. 1 of 1	
Location:	980 Earl Armstrong Road, Ottawa, Ontario		Page I_ oi _ I_	-
Date Drilled:	'June 6, 2024	Split Spoon Sample	Combustible Vapour Reading	
Orill Type:	CME 55 Track-Mounted Drill Rig	Auger Sample SPT (N) Value O	Natural Moisture Content Atterberg Limits	× ⊢—⊙
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
_oaaed bv:	M.Z. Checked by: S.P.	Shear Strength by	Shear Strength by	

NOTES:

- Borehole data requires interpretation by EXP before use by others
- 2.A 19 mm diameter monitoring well installed as shown.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-24005069-A0

Date Water Level (m)	Hole Open To (m)
June 21, 2024 1.1	


CORE DRILLING RECORD											
Run No.	Depth (m)	% Rec.	RQD %								
	<u>,</u> /										

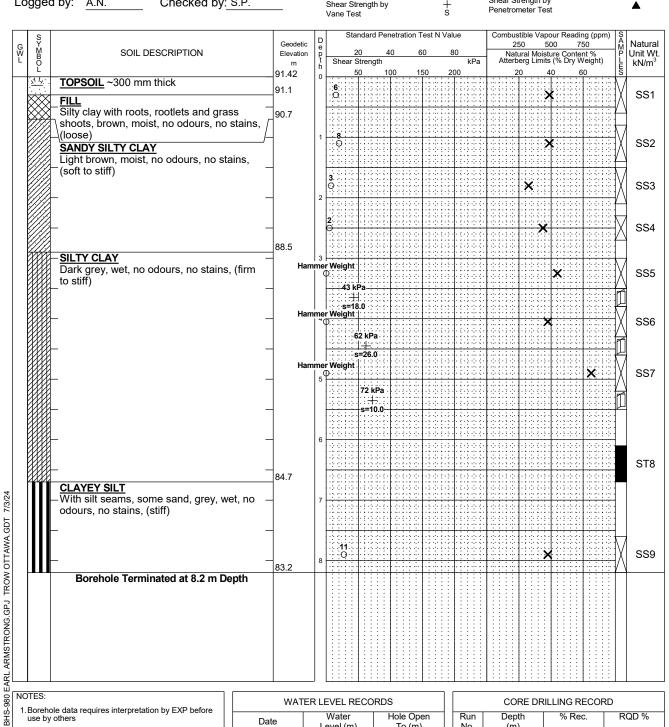
•	OTT-24005069-A0	SII:4. /									Figure	No.		16	<u> </u>					
roject:	Proposed Long-Term Care Fac										P	age.	_1	of	_1_					
ocation:	980 Earl Armstrong Road, Otta	wa, Ont	arıo																	
	'June 7, 2024			_	Split Sp Auger S		mple		⊠ II	-				our Read Content	ling		□ X			
rill Type:	CME 55 Track-Mounted Drill Ri	g		_	SPT (N				C			erg Lim		Jonleni		<u> </u>	~			
atum:	Geodetic Elevation			_	Dynami Shelby		Test		_	- I		ined Tr iin at F					\oplus			
ogged by:	A.N. Checked by:	S.P.			Shear S Vane To	Strength	by		+ s	-		Streng					A			
			1	1_	l s		Pene	tration T	est N Va	alue	Comb	ustible	Vapo	our Read	ling (ppr	n) Ş	1			
SY MBOL	SOIL DESCRIPTION		Geodetic Elevation m			20 Streng	40 th 100			80 kPa		250	50 Moistu Limits		750	I A	Natura Unit W kN/m			
	COIL ~50 mm thick		91.39 91.3	C	5	30	100		50 2	200		20					SS1			
	clay with roots, rootlets, grass sh		90.7		O: ::								×				551			
SAND	n, moist, no odours, no stains, (I DY SILTY CLAY		30.7	1	4												1			
Light	prown, moist to wet, no odours , (soft to firm)	no		1	Ö)	K			::: X	SS2			
	,	_	-		2			0-1-2-0 0-1-2-0	-2-0-1-2	1.1.1.1.1	1 0 1 1		: : : : : : : : : : : : : : : : : : :		1 2 3 1		$\overline{\Box}$			
		_		2	0::::				-3 -3 -3 -3 -3 -3 -4 -3 -3 -3 -4 -3	111111			×			<u>::: </u> X	SS3			
	CLAY (5	4	89.2 Ha	lmm	er Weigh	t]			
Grey, stiff)	Grey, wet, no odours, no stains, (firm stiff)	10 –	1		P	77	кРа							×		X	∫ SS∠			
		_	Ha	amm	er Weigh	s=1 t	6.0										#			
		_			φ	3 kPa									×	X	SS			
					s	# =22.0]			
		_	_ Ha	ımmı	er Weigh Φ										×		SS			
		_	_		10000	8 kPa - # =20.0			3333		3 ()		::::]			
					er Weigh										×		7 SS7			
		-				72 k	Pa									/\ 	1			
		_	05.0		05.0	- 0		33.1	s=1	5.0	4-1-2-4 4-1-2-4	9010	1.1.1.1.1	1010	:			1000		1
		.,	85.6							1			::::: ::::::::::::::::::::::::::::::::							
cobbl	sand to silty clay with gravel, pos es and boulders, grey, wet, (ver	ssible Y			3												000			
loose	to compact)	_	1		0:::				-3 -3 -3 -3				×				SS			
		_		7	,				1.3 (1.1)	1			7.1							
					10	10														
		_	83.2	8	1							×				<u> </u>	SSS			
Be	orehole Terminated at 8.2 m De	pth					ijŢ													
Note:	1 & SS9 samples submitted for																			
	onmental laboratory analyses.																			
DTES:			WATE	ER L	EVEL F	RECO	RDS				С	ORE I	ORIL	LING F	RECOF	RD				
Borehole data requires interpretation by EXP before use by others		Da			Water Level (m		Н	ole Ope To (m)		Run No.	De	epth m)		% R			RQD %			
	led upon completion of drilling.				re∧ei (u	')		10 (111)		INO.		111)								
Field work supervised by an EXP representative. See Notes on Sample Descriptions																				

roject:	OTT-24005069-A0 Proposed Long-Term Care Fa	cility									Figure	No	17	_		- 1
Location: 980 Earl Armstrong Road, Ottawa, Ontar											P	age	of	_1_		
		awa, Om	ano													
	'June 6, 2024	_		_	Split Spo Auger S		mple			_			pour Read Content	ing		□ X
rill Type:	CME 55 Track-Mounted Drill R	ounted Drill Rig			SPT (N)	Value			C	_	Atterbe	erg Limits		ŀ		→
atum:	Geodetic Elevation			_	Dynamic Shelby 1		lest			- I	% Stra	ned Triax in at Failu	ıre			\oplus
ogged by:	A.N. Checked by:	S.P.			Shear S Vane Te		by		 S	-		Strength ometer T				A
s			0 - 4 - 4 -	Ь	Sta	andard	Pene	tration T	est N Va	alue	Comb		pour Read		S	Netur
S Y M B O	SOIL DESCRIPTION		Geodetic Elevation m	le.		20 Strengt	40 h	6	0	80 kPa	N Atte	250 atural Moi erberg Lim	sture Conte its (% Dry \	750 ent % Weight)	SA M P L	Natura Unit W kN/m
FILL			92.73	0		50	100	1:	50	200		20	40	60	L E S	
	sand and crushed gravel, some n, moist, no odours, no stains,	clay, _										*				SS1
	pact)	/	92.0													
Mixtu	re of silty sand and dark brown		_	1	15 O						>				$\frac{1}{2}$	SS2
browi	nic silty clay, some gravel, rootle n to dark brown to grey, moist, ı		91.3												<u> </u>	
\odou FILE	rs, no stains, (compact)											×				SS
Silty s	sand and crushed gravel, some n, damp, no odours, no stains,	clay, –	90.5	2											-/_\	
(com	pact) DY SILTY CLAY				5	1.1.5						×	1-2-1-2-2		$\overline{\mathbb{R}}$	SS4
Light	brown, moist to wet, no odours s, (firm)	, no		3											:: <u>/</u> \	
Stairs	5, (11111)				4							×			\bigvee	SS
		_	89.0												1/	
	Y CLAY grey, wet, no odours, no stains	, (firm <i>–</i>	Ha	 Imme	r Weight											SSE
to stif		, (38 k											330
		-	1		s=16	3.0									Щ	1
		_	- па	5	φ::: <u>Τ::</u>	1.1.2.3							*			SS7
					133333	3 kPa ₩										
		_			S	=22.0-										
		_	-	6	-0-0-1-0	1-1-2-3		(+ 1 + 2 + 4 + (+ 1 + 2 + 4 +	-3-0-1-3			5 (-3 -5 -6 - 5 (-3 -5 -6 -	1 - 6 - 1 - 5 - 6			,
		_	Ha	mme	er Weight									×		SS8
					0.010		96 kP	a					1-1-1-1-1-1			
		_	1	7			s=13.	0								
		_			100000		#	(+					::::::::::::::::::::::::::::::::::::::	1:::::::		
With m de	frequent silt seams from 7.6 m pths	to 8.2			4								X		\mathbb{N}	SSS
B	orehole Terminated at 8.2 m De	- enth	84.5	8			#	: : : : :							-//	
	oronoic reminated at 0.2 in De	opui.														
OTES:			WATE	ER L	EVEL R	ECOF	RDS				С	ORE DF	RILLING F	RECORE)	
Borehole data requires interpretation by EXP before use by others Dat		te	J	Water evel (m	,		ole Ope To (m)		Run No.		epth m)	% Re	ec.	R	QD %	
	lled upon completion of drilling.				(111						,	-,				
. riela work supe	rvised by an EXP representative.															

Log of Borobola MW21-16

	Log of Dole	FIIOIC IVIVAT.	1-10	-X
Project No:	OTT-24005069-A0		Figure No. 18	
Project:	Proposed Long-Term Care Facility			
Location:	980 Earl Armstrong Road, Ottawa, Ontario			_
Date Drilled:	'June 14, 2024	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	CME 55 Track-Mounted Drill Rig	Auger Sample SPT (N) Value O		× ⊢—≎
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	A.N. Checked by: S.P.	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	•

- Borehole data requires interpretation by EXP before use by others
- 2.A 19 mm diameter monitoring well installed as shown.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5.Log to be read with EXP Report OTT-24005069-A0


WAT	ER LEVEL RECO	RDS
Date	Water Level (m)	Hole Open To (m)
June 21, 2024	1.7	

CORE DRILLING RECORD											
Run No.	Depth (m)	% Rec.	RQD %								
	<u>,</u> /										

Pr	ojec	t No:	OTT-24005069-A0	OI DO	re	HOIE	' _	<u>D</u>	1 2				40		e	X
Pr	ojec	t:	Proposed Long-Term Care Faci	lity							igure l	_	19	_		ı
Lo	cati	on:	980 Earl Armstrong Road, Ottav	va, Ontario							Pa	ge	1_ of	_1_		
Da	Date Drilled: 'June 7, 2024				Split Spoon Sample					1	Combus	tible Vap	our Read	ling		
Dr	Drill Type: CME 55 Track-Mounted Drill Rig]	Aug			Auger Sample			Combustible Vapour Reading Natural Moisture Content Atterberg Limits					×	
Da	atum	:	Geodetic Elevation			SPT (N) Val	ne Tes	t		• •	Undrain	ed Triaxia				 ⊕
Lo	gge	d by:	M.Z. Checked by: S	s.P		Shelby Tube Shear Stren Vane Test			+ s		Shear S	at Failur trength by meter Tes	y			•
G	S			Geode	etic D) [rd Pen	etration [*]	Test N Va	llue		stible Vap		ling (ppm) S A M P	Natural
G W L	SYMBOL		SOIL DESCRIPTION	Elevat m 91.5	ion p t h	Shear Stre	ngth 10			80 kPa 200	1	ural Moist perg Limit		ent % Weight) 60	PLES	Unit Wt. kN/m ³
			TOPSOIL ~ 80 mm thick	91.4	0	. 6						×			V	SS1
		−Silty −mois	clay, light brown to reddish browr t, no odours, no stains, (loose)	90.8		-3.5.1.3.1.1										
		Light	DY SILTY CLAY brown, moist, no odours, no stain	ns,	1	4 ⊙			1-2-0-1-2	1111111		×			$\left \right $	SS2
		(soft	to firm)	_												
					2	2						×				SS3
			SILTY CLAY rey, wet, no odours, no stains, (firm iff)	88.9												
		_Grey stiff)		_	3 Hamme	er Weight										
		_		_		Φ:::•		· · · · · · · · · · · · · · · · · · ·	10000	111111	· · · · · · · · · · · · · · · · · · ·			X		SS4
						43 kPa										
					1	s = 8.6									: : :	
		_	-													
			_	5									×	: :	ST5	
						53 kP										
						s=7.6										
					6 Hamme	er Weight	3 3 4 4		3 3 3 3 3							000
			YEY SILT	84.9		0:::::::::							×		Δ	SS6
/3/24	Ш	With	silt seams, some sand, grey, wet irs, no stains, (stiff)	i, no	7		kPa -		1.3.2.2.3							
, מפון	*		CIAL TILL	84.1		S=	4.0									
Awa.		Silty	sand, with gravel, possible cobble coulders, grey, moist, no odours,						64 ⊙		×				\bigvee	SS7
S S		stain	s, (very dense) orehole Terminated at 8.2 m Dep	83.3	8		: : : :		 	 	: / 		 : : : : : : : :	 : : : :		
임		Note		7.11												
16.6P.		2) SS	51 & SS4 samples submitted for conmental laboratory analyses.													
STRON		chivinonina laboratory analyses.														
EARL ARMSTRONG.GPJ TROW OTTAWA.GDT 7/3/24																
	TES:			////	TED!	.EVEL REC	OPDS	2	<u> </u>	1::::		RE DRII	LING	ECOP	:Ш —	
086-NO 1.	Borehole data requires interpretation by EXP before		Date		Water		Hole Op		Run	Dep	th	% Re			QD %	
ر ابد			illed upon completion of drilling.			_evel (m)	+	To (m		No.	<u>(m</u>	' 				
호			ervised by an EXP representative.													
5 5.			with EXP Report OTT-24005069-A0													
ဗိုြ																

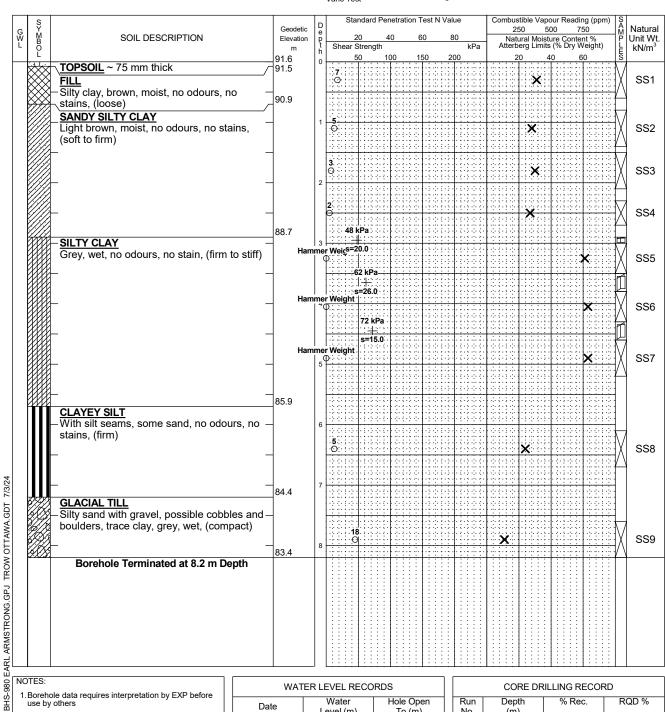
roject No:	OTT-24005069-A0	lit.										F	igure	e N	o	20	_			
roject:	Proposed Long-Term Care Faci											_	F	ag	e	1_ of	_1_			
ocation:	980 Earl Armstrong Road, Ottav	va, Onta	ario									_								
ate Drilled:	'June 6, 2024					plit Spo		mple	•	_	Z •					our Read	ling		□ X	
rill Type:	CME 55 Track-Mounted Drill Rig	J				uger S PT (N)				_					oisture (Limits	Jontent		<u> </u>	~	
atum:	Geodetic Elevation					ynamio helby T		Test		_	_				d Triaxia at Failure				\oplus	
ogged by:	A.N. Checked by: S	i.P.			S	hear S	trength	by		_	+				ength by				A	
1								Dene	etration ⁻	Toet NI V	/alu	Δ	Com	hueti	ihle Van	our Read	ling (nng	v 18	:1	
S Y M B O	SOIL DESCRIPTION		Geod		D e p t		20	40		30	80)		250	0 5		750	_ N	Natur Unit W	
L			91.91		t h	Shear	Streng 50	th 10	0 1	50	20	kPa 0	Att	erbe 20		s (% Dry \ 10	Weight)	L E S	kN/m	
TOPS FILL	SOIL ~ 150 mm thick		91.8		1	14 O									×			::: \ 	SS1	
Mixtu	re of silty sand and silty clay, son l, roots, rootlets and grass shoot	ne – s. –	91.2		ŀ								1					/-		
brow	n to dark brown, moist, no odours s, (compact)				1	9									×				ssz	
SANI	DY SILTY CLAY														^				332	
	plasticity, light brown to grey, moirs, no stains, (soft to stiff)	st, no –				3					7								ssa	
		_			2		1.1.5		÷1.55			1.5 (-)			×				33.	
		_			2										~				ss ₄	
	(OLA) /		89.1			5	8 kPa		0.1.2.0 0.1.2.0						··· ···				1	
Dark	<u>Y CLAY</u> grey, wet, no odours, no stains, (s, (firm		Hami	3 - mer	Weight	=24.0												7	
to stit	†)	_			ų Į	48	kPa-		****			1 · 2 · 2 · 4 · 4 · 4 · 4 · 4 · 4 · 4 · 4			· · · · · · · · · · · · · · · · · · ·				SS!	
				Hami	mor	s= Weight	# 20.0												-	
		_		Hall	φ		62 kPa		: : : : : : : : : : : : : : : : : : :			:::::::::::::::::::::::::::::::::::::	::::::				×	:: /X	SS	
		_			-		S=13.0	:::::t										<u>[</u>		
				Hami		Weight										×	(::: \ 	ss7	
		_			5		72 k	Ра										/ 	1	
		_	00.4		ŀ	0 (+ 1 + 2 0 (+ 1 + 2	-s=1	.0-	4444 4444	1-2-0-1-		1.200	1 - 1 - 1 - 2				1 2 21		4	
CLAY	<u>YEY SILT</u>	_	86.1	86.1		6														
With odou	silt seams, some sand, grey, wet rs, no stains, (very soft)	, no		Hami	mer	Weight													SSE	
		_			Ĭ	2 (-1-2			÷ i · è · è							^			330	
		_	047		7				**************************************			1 · 2 · 3 · 4 · 4 · 4 · 4 · 4 · 4 · 4 · 4 · 4								
	CIAL TILL		84.7																	
trace	clay to clayey silt of low plasticity gravel and sand, possible cobble	es]			16													1	
	ooulders, grey, moist, no odours, s, (compact)	no –	83.7		8	· · · · · ·				1.3.3.3.		<u> </u>		H) X			::: X	SSS	
В	orehole Terminated at 8.2 m Dep	oth																		
OTES:					_ L		1::		::::	1 : : :	<u>: 1</u>		L:::			1	1:::			
	equires interpretation by EXP before			ATER		VEL R	ECO		lole Op	en	-	Run		COR epth		LING F			RQD %	
•	lled upon completion of drilling.	Dat	e	+		vel (m)	•	To (m		-	No.		(<u>m)</u>		,,,,,				
	rvised by an EXP representative.																			
.See Notes on S	ample Descriptions																			

	Log of E	Bore	9	hole B	3H 2	4-2	20		ΥI
Project No:	OTT-24005069-A0								$^{\sim}$
Project:	Proposed Long-Term Care Facility						Figure No. 21		-
Location:	980 Earl Armstrong Road, Ottawa, Ontak	rio					Page. <u>1</u> of <u>1</u>	-	
Date Drilled:	'June 14, 2024			Split Spoon Sample]	Combustible Vapour Reading		
Orill Type:	CME 55 Track-Mounted Drill Rig			Auger Sample SPT (N) Value		_	Natural Moisture Content Atterberg Limits	<u> </u>	X €)
Datum:	Geodetic Elevation			Dynamic Cone Test Shelby Tube	_	- I	Undrained Triaxial at % Strain at Failure	•	⊕
_ogged by:	A.N. Checked by: S.P.	_		Shear Strength by Vane Test	 S	-	Shear Strength by Penetrometer Test		A
S G M	AND DESCRIPTION	Geodetic	D e	Standard Penetra		alue	Combustible Vapour Reading (pp 250 500 750		Natura

LOG OF

Borehole data requires interpretation by EXP before use by others

2. Borehole backfilled upon completion of drilling.


3. Field work supervised by an EXP representative. 4. See Notes on Sample Descriptions

5.Log to be read with EXP Report OTT-24005069-A0

WATER LEVEL RECORDS								
Date	Water Level (m)	Hole Open To (m)						

CORE DRILLING RECORD								
Run	Depth	% Rec.	RQD %					
No.	(m)							

	Log of B	Borehole BH 24-	-21	PY
Project No:	OTT-24005069-A0			
Project:	Proposed Long-Term Care Facility			1
Location:	980 Earl Armstrong Road, Ottawa, Ontar	rio	Page1_ of^	<u> </u>
Date Drilled:	'June 12, 2024	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	CME 55 Track-Mounted Drill Rig	Auger Sample SPT (N) Value	Natural Moisture Content Atterberg Limits	× ⊷
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	A.N. Checked by: S.P.	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	A
s		Standard Penetration Test N Value	Combustible Vapour Reading ((ppm) S

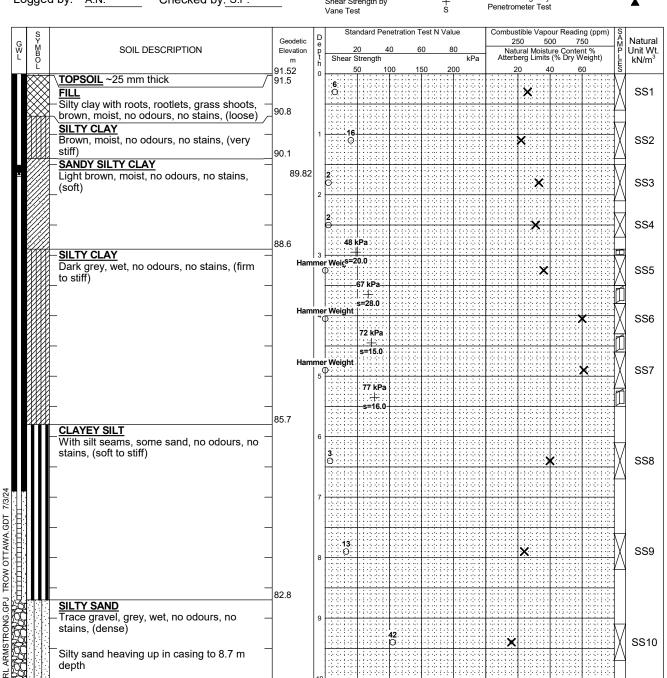
LOG OF I

Borehole data requires interpretation by EXP before use by others

2. Borehole backfilled upon completion of drilling.

3. Field work supervised by an EXP representative.

4. See Notes on Sample Descriptions


l	5.Log to be read	with	EXP	Report	OTT	-24005	6069-A0
---	------------------	------	-----	--------	-----	--------	---------

WATER LEVEL RECORDS							
Date	Water Level (m)	Hole Open To (m)					

CORE DRILLING RECORD								
Run No.	Depth (m)	% Rec.	RQD %					

Log of Borehole MW24-22

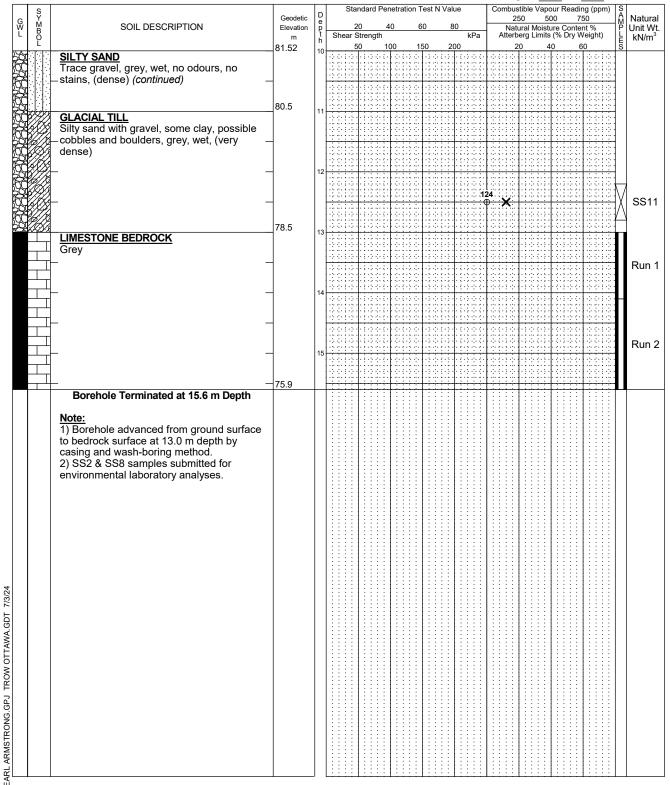
Project No: OTT-24005069-A0 Figure No. Project: Proposed Long-Term Care Facility Page. 1 of 2 Location: 980 Earl Armstrong Road, Ottawa, Ontario Date Drilled: 'June 7, 2024 Split Spoon Sample \boxtimes Combustible Vapour Reading X Auger Sample Natural Moisture Content Drill Type: CME 55 Track-Mounted Drill Rig SPT (N) Value 0 0 Atterberg Limits Dynamic Cone Test Datum: Undrained Triaxial at Geodetic Elevation \oplus % Strain at Failure Shelby Tube Shear Strength by Logged by: A.N. Checked by: S.P. Shear Strength by

Continued Next Page
NOTES:

Borehole data requires interpretation by EXP before use by others

2.A 19 mm diameter monitoring well installed as shown.

- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-24005069-A0


WATER LEVEL RECORDS						
	Date	Water Level (m)	Hole Open To (m)			
	June 21, 2024	1.7				

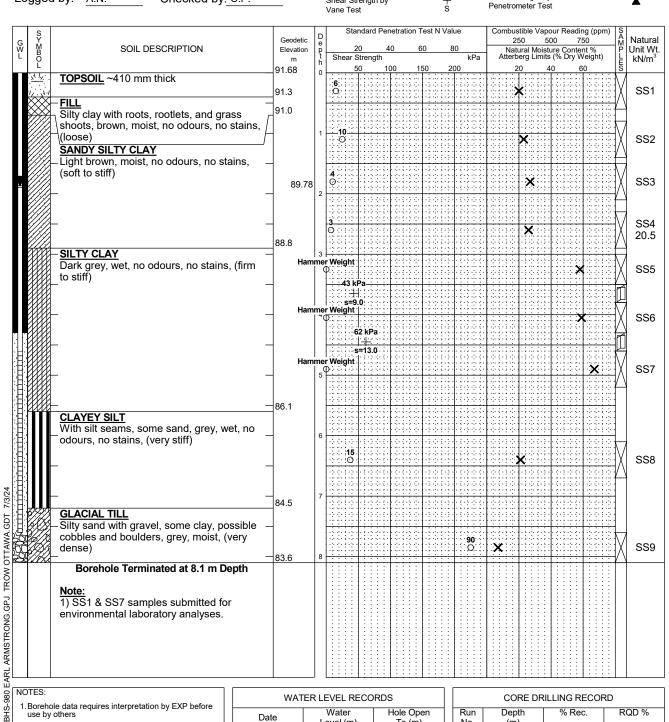
CORE DRILLING RECORD								
Run No.	Depth (m)	% Rec.	RQD %					
1	13 - 14.1	100	75					
2	14.1 - 15.6	100	73					

Log of Borehole <u>MW24-22</u>

Project No: OTT-24005069-A0
Figure No. 23

Project: Proposed Long-Term Care Facility
Page. 2 of 2

NOTES:

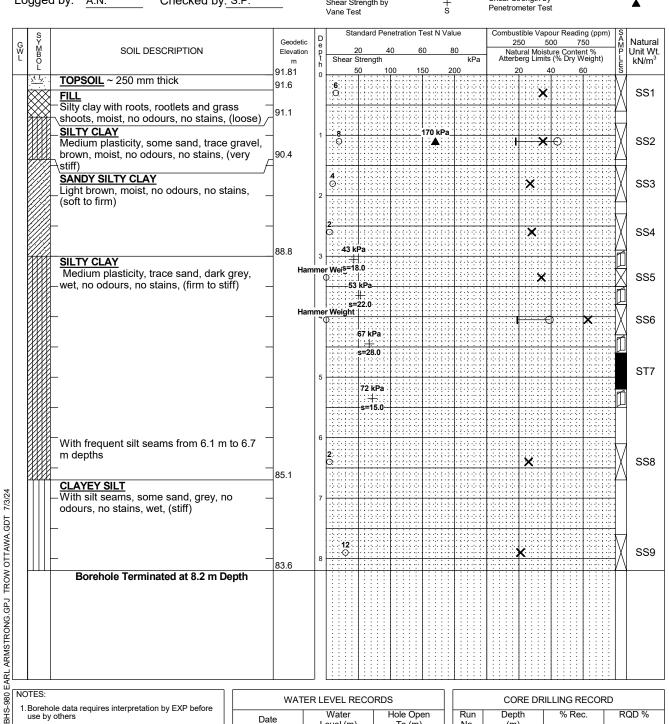

LOG OF

- Borehole data requires interpretation by EXP before use by others
- $2.\mbox{A 19}\ \mbox{mm}$ diameter monitoring well installed as shown.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- $5. Log\ to\ be\ read\ with\ EXP\ Report\ OTT-24005069-A0$

WATER LEVEL RECORDS						
Date	Water Level (m)	Hole Open To (m)				
June 21, 2024	1.7					

CORE DRILLING RECORD								
Run No.	Depth (m)	% Rec.	RQD %					
1	13 - 14.1	100	75					
2	14.1 - 15.6	100	73					

	Log of Bore	ehole	MW24-	25	· ex
Project No:	OTT-24005069-A0				
Project:	Proposed Long-Term Care Facility			Figure No. 24	1
ocation:	980 Earl Armstrong Road, Ottawa, Ontario			Page1 of _	<u> </u>
Date Drilled:	'June 11, 2024	Split Spoon San	nple 🛛	Combustible Vapour Reading	a 🗆
Orill Type:	CME 55 Track-Mounted Drill Rig	Auger Sample		Natural Moisture Content	X
Datum:	Geodetic Elevation	SPT (N) Value Dynamic Cone 1 Shelby Tube	Test ——	Atterberg Limits Undrained Triaxial at % Strain at Failure	□ ⊕
ogged by:	A.N. Checked by: S.P.	Shear Strength I Vane Test	by + S	Shear Strength by Penetrometer Test	A
1 1		Ct	D	Carabaratible Variana Dandina	- () C


LOG OF

- Borehole data requires interpretation by EXP before use by others
- 2.A 50 mm diameter monitoring well installed as shown.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5.Log to be read with EXP Report OTT-24005069-A0

WATER LEVEL RECORDS			
Date	Water Level (m)	Hole Open To (m)	
June 19, 2024	1.9		

CORE DRILLING RECORD			
Run No.	Depth (m)	% Rec.	RQD %
	<u>,,</u>		

	Log of Bor	enole BH 24-	26	'AY
Project No:	OTT-24005069-A0			CA
Project:	Proposed Long-Term Care Facility		Figure No25_	
Location:	980 Earl Armstrong Road, Ottawa, Ontario		Page. <u>1</u> of <u>1</u>	
Date Drilled:	'June 10, 2024	Split Spoon Sample	Combustible Vapour Reading	
Drill Type:	CME 55 Track-Mounted Drill Rig	Auger Sample — SPT (N) Value	Natural Moisture Content Atterberg Limits	× →
Datum:	Geodetic Elevation	Dynamic Cone Test ————————————————————————————————————	Undrained Triaxial at % Strain at Failure	\oplus
Logged by:	A.N. Checked by: S.P.	Shear Strength by + Vane Test S	Shear Strength by Penetrometer Test	•
S Y	Geodetic	Standard Penetration Test N Value	Combustible Vapour Reading (ppr 250 500 750	m) S A Natu

LOG OF

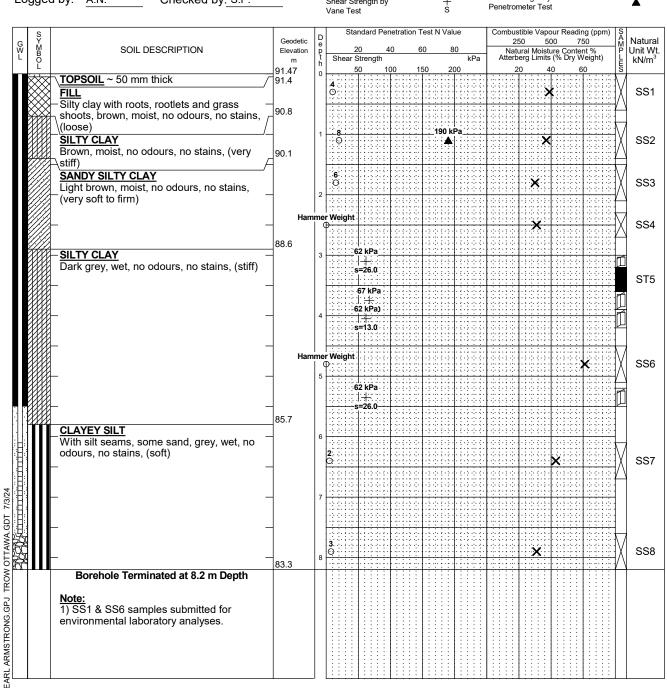
Borehole data requires interpretation by EXP before use by others

2. Borehole backfilled upon completion of drilling.

3. Field work supervised by an EXP representative.

4. See Notes on Sample Descriptions

5.Log to be read with EXP Report OTT-24005069-A0


WATER LEVEL RECORDS			
Date	Water Level (m)	Hole Open To (m)	

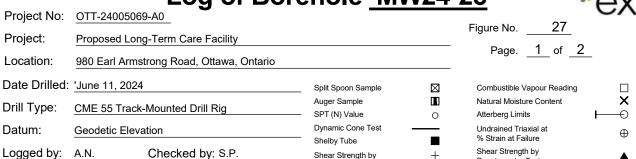
CORE DRILLING RECORD			
Run No.	Depth (m)	% Rec.	RQD %

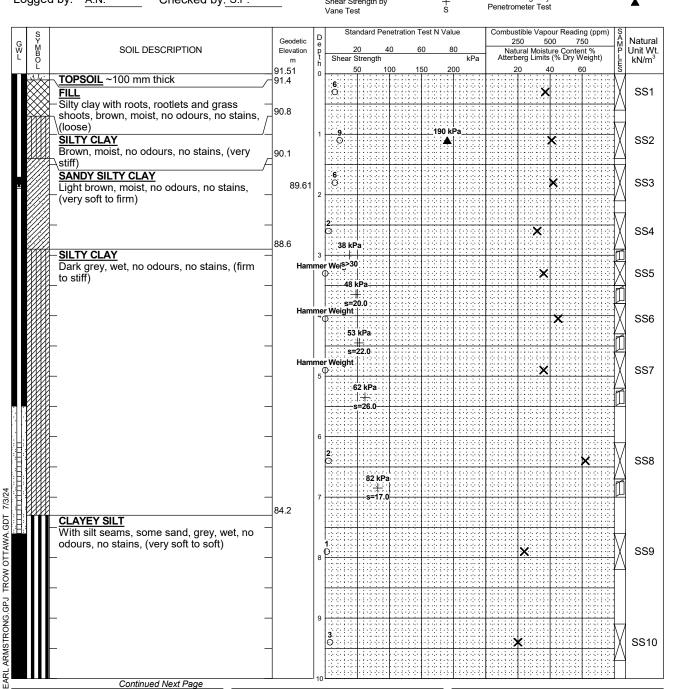
.00

Log of Borehole MW24-27

		711010 <u>111112</u>		-x
Project No:	OTT-24005069-A0	<u> </u>		
Project:	Proposed Long-Term Care Facility		Figure No <u>26</u> 	
Location:	980 Earl Armstrong Road, Ottawa, Ontario		— Fage. <u>I</u> 01 <u>I</u>	-
Date Drilled:	'June 10, 2024	Split Spoon Sample	Combustible Vapour Reading	
Orill Type:	CME 55 Track-Mounted Drill Rig	Auger Sample SPT (N) Value	-	× ⊢—⊕
Datum:	Geodetic Elevation	Dynamic Cone Test Shelby Tube	Undrained Triaxial at % Strain at Failure	\oplus
_ogged by:	A.N. Checked by: S.P.	Shear Strength by	Shear Strength by	•

NOTES:


LOG OF


- Borehole data requires interpretation by EXP before use by others
- $2.\mbox{A}\ 50\mbox{ mm}$ diameter monitoring well installed as shown.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report OTT-24005069-A0

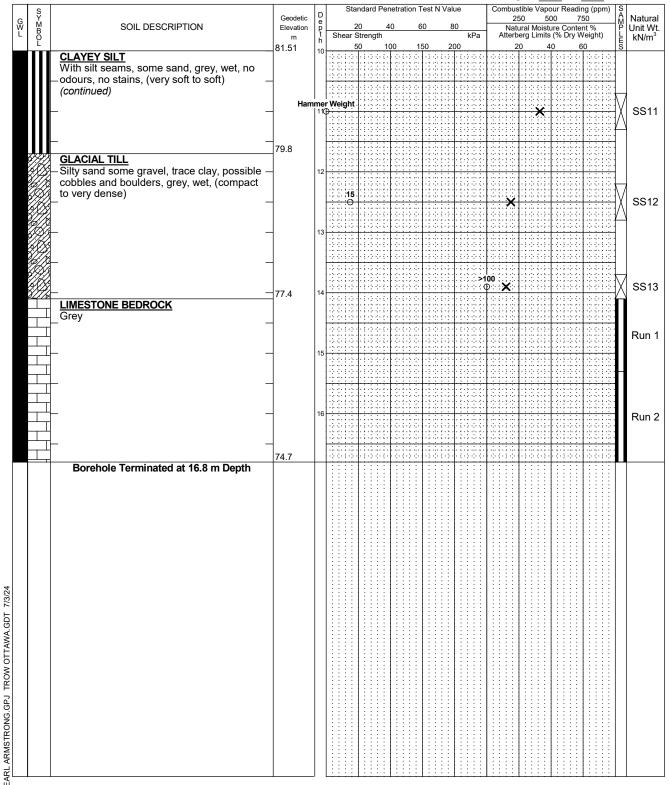
WATER LEVEL RECORDS			
Date	Water Level (m)	Hole Open To (m)	
June 25,2024	Inaccessible		

CORE DRILLING RECORD			
Run No.	Depth	% Rec.	RQD %
INO.	(111)		

Log of Borehole MW24-28

- Borehole data requires interpretation by EXP before use by others
- 2.A 19 mm diameter monitoring well installed as shown.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5.Log to be read with EXP Report OTT-24005069-A0

WATER LEVEL RECORDS			
Date	Water Level (m)	Hole Open To (m)	
June 25,2024	1.9		


CORE DRILLING RECORD			
Run No.	Depth	% Rec.	RQD %
INO.	(111)		
1	14.1 - 15.3	93	72
2	15.3 - 16.8	100	89

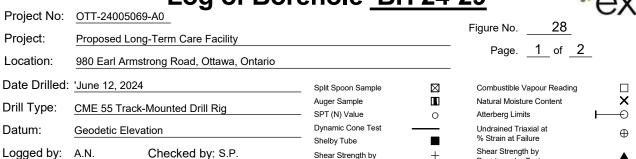
Log of Borehole <u>MW24-28</u>

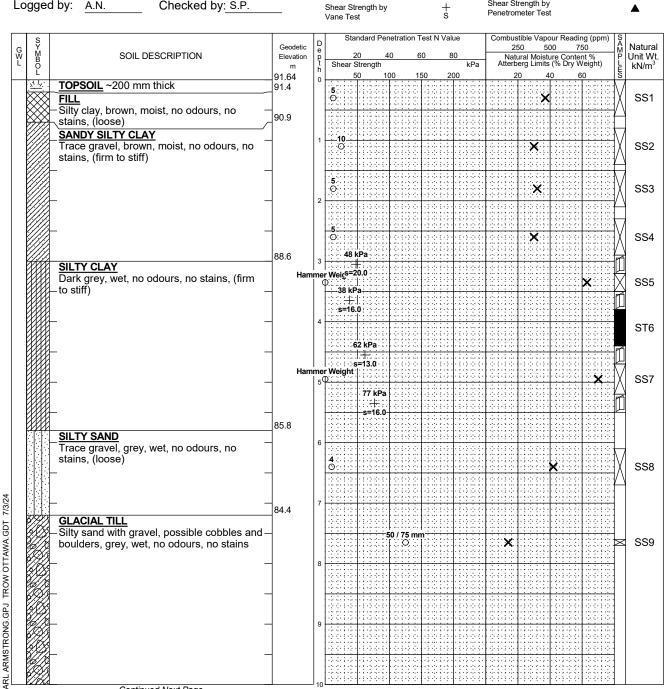
Project No: OTT-24005069-A0

Figure No. 27

Project: Proposed Long-Term Care Facility
Page. 2 of 2

NOTES:


LOG OF 1


- Borehole data requires interpretation by EXP before use by others
- 2.A 19 mm diameter monitoring well installed as shown.
- 3. Field work supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5.Log to be read with EXP Report OTT-24005069-A0

WATER LEVEL RECORDS			
Date	Water Level (m)	Hole Open To (m)	
June 25,2024	1.9		

	CORE DR	RILLING RECOF	RD
Run No.	Depth (m)	% Rec.	RQD %
1	14.1 - 15.3	93	72
2	15.3 - 16.8	100	89

Log of Borehole BH 24-29

Continued Next Page

Borehole data requires interpretation by EXP before use by others

2. Borehole backfilled upon completion of drilling.

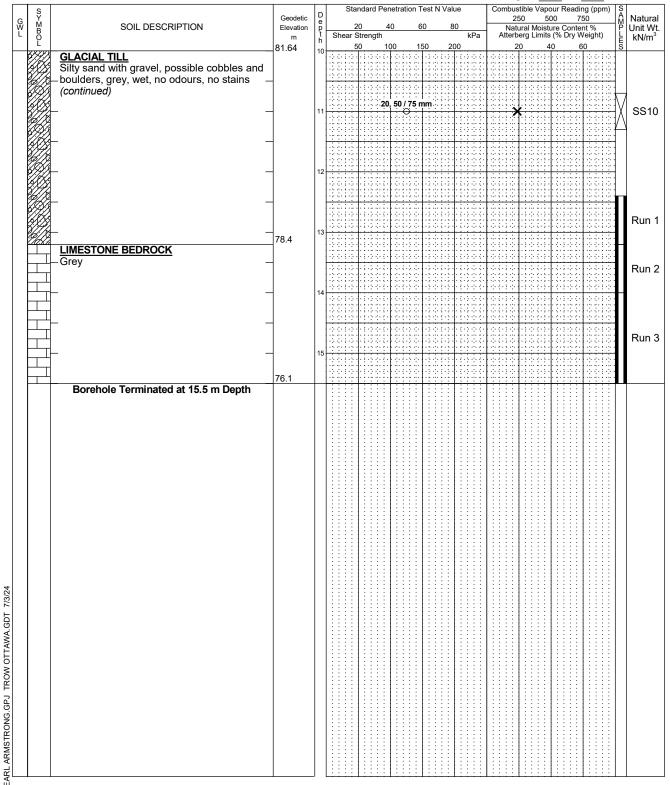
3. Field work supervised by an EXP representative.

4. See Notes on Sample Descriptions

LOG OF

5. Log to be read with EXP Report OTT-24005069-A0

WAT	ER LEVEL RECO	RDS
Date	Water Level (m)	Hole Open To (m)


	CORE DR	RILLING RECOF	RD
Run	Depth	% Rec.	RQD %
No.	(m)		
1	12.4 - 13.2	0	0
2	13.2 - 14	93	83
3	14 - 15.5	98	98

Log of Borehole BH 24-29

Project No: OTT-24005069-A0

Figure No. ____28

Project: Proposed Long-Term Care Facility Page. 2 of 2

NOTES:

LOG OF 1

Borehole data requires interpretation by EXP before use by others

2. Borehole backfilled upon completion of drilling.

3. Field work supervised by an EXP representative.

4. See Notes on Sample Descriptions

5.Log to be read with EXP Report OTT-24005069-A0

WAT	ER LEVEL RECO	RDS
Date	Water Level (m)	Hole Open To (m)

	CORE DR	RILLING RECOF	RD
Run	Depth	% Rec.	RQD %
No.	(m)		
1	12.4 - 13.2	0	0
2	13.2 - 14	93	83
3	14 - 15.5	98	98

roject No										ı	igure	No	29	<u>)</u>		
roject: ocation:	Proposed Long-Term Care Facility	Ontorio									Pa	ge	1_ of	_1_		
	980 Earl Armstrong Road, Ottawa, 0	Ontario														
	d: 'June 5, 2024				Split Spo Auger Sa		mple			_			pour Read	ding		□ X
rill Type:	CME 55 Track-Mounted Drill Rig				SPT (N)					_		rg Limits	Content		<u> </u>	~
atum:	Geodetic Elevation				Dynamic Shelby T		Test		_	- I		ied Triax n at Failu				\oplus
ogged by	: A.N. Checked by: S.P.				Shear St	rength	by		+	-		Strength I				•
							D	tration T						di (.\ le	
S Y M B O	SOIL DESCRIPTION	Georgi Eleva	detic ation	D e p t	2	20	40			80	1 :	250	pour Read 500 sture Con its (% Dry	750		Natur Unit W
L		92.29		h 0	Shear s	Strengt 50	h 100) 15	50	kPa 200	Atter	berg Lim 20	its (% Dry 40	Weight) 60	L E S	kN/m
$\times\times\times$	DPSOIL ~50 mm thick	92.2			12 ①							×			\bigvee	SS1
₩ -M	xture of silty sand and silty clay, some avel, roots, rootlets, grass shoots, brow														#//	1
XXX to	dark brown to grey, moist, no odours, n			1	17											
St St	ains, (compact)	90.9			• • • • • • • • • • • • • • • • • • •							×				SS2
	ANDY SILTY CLAY own, moist, no odours, no stains, (firm)				5											7
	own, moiot, no ododio, no otdino, (iiiii)			2	·O::::							×				SS3
					4											
		-			0::::			· · · · · ·				×			<u>::: X</u>	SS
<u> </u>	LTY CLAY	89.4		3												,
Gi sti	rey, wet, no odours, no stains, (firm to				2 O							>	<			SS
	,				3 3 3 3 3	kPa— ⊭										
			Ham	l mei l ⁴(r Weight	0.0		::::::::::::::::::::::::::::::::::::::	· · · · · · · · · · · · · · · · · · ·				×			SS
					53	kPa										
		1	Uom		s= r Weight	22.0		: : : : :	- 1 1 1							1
			Папп	5	District							1:::::::	×		::: X	SS7
						8 kPa ⊢										
					s	=12.0-										
				6	15 31 115			: : : : : : : : : : : : : : : : : : :				1.6.5.				
			Ham	l me i (r Weight								>		\bigvee	SS
															<u> </u>	1
		85.1		7												
	ACIAL TILL															
bc	Ity sand with gravel, possible cobbles and ulders, grey, wet, no odours, no stains,	ш —			11											_
(0	ompact)	84.1		8	0:)	(SSS
[Borehole Terminated at 8.2 m Depth										T:::::	Tiiii				
	ote: SS1 & SS5 samples submitted for															
	vironmental laboratory analyses.															
TES:				l	L	1:::				1::::	1::::	1:::	: 1 : : :	1:::	:	
.Borehole da	ata requires interpretation by EXP before		ATER		EVEL RI Water	ECOF		ole Ope	en.	Run	CC		ILLING			QD %
use by othe Borehole ba	rs ckfilled upon completion of drilling.	Date			vvater evel (m)		П	To (m)	211	No.	De _l		70 K	CU.		. ベロ %
	upervised by an EXP representative.															
See Notes o	on Sample Descriptions															

Extendicare (Canada) Incorporated Phase Two Environmental Site Assessment 980 Earl Armstrong Drive, Ottawa, Ontario OTT-24005069-A0 July 17, 2024

Test Pit Logs

Test Pit	Depth (m)	Description
TP1	0 to 0.2	Topsoil, dark brown, organic matter (S1) (Duplicate S3)
	0.2 to 0.9	Silty sand, brown, dry
	0.9 to 1.2	Silty clay, grey with some red, dry (S2)
TP2	0 to 0.2	Topsoil, dark brown, organic matter (S1)
	0.2 to 0.35	Silty sand, brown, dry
	0.35 to 1.4	Silty clay, grey and brown, organic odour (S2)
TP3	0 to 0.25	Topsoil, dark brown, organic matter (S1) (Duplicate S3)
	0.25 to 0.9	Silty sand, brown, dry
	0.9 to 1.2	Silty clay, grey, stiff (S2)
TP4	0 to 0.25	Topsoil, dark brown, organic matter (S1)
	0.25 to 1.0	Silty sand, grey and brown, dry
	1.0 to 1.2	Silty clay, grey, dry (S2)
TP5	0 to 0.2	Topsoil, dark brown, organic matter (S1)
	0.2 to 0.75	Silty sand, grey and brown, dry
	0.75 to 1.2	Silty clay, grey, dry (S2)
TP6	0 to 0.25	Topsoil, dark brown, organic matter (S1) (Duplicate S3)
	0.25 to 0.5	Silty sand, red and brown, dry
	0.5 to 1.1	Silty clay, brown, dry (S2)
TP7	0 to 0.2	Topsoil, dark brown, organic matter (S1)
	0.2 to 0.4	Silty sand, red and brown, dry (S2)
	1.0 to 1.2	Silty clay, grey, dry
TP8	0 to 0.2	Topsoil, dark brown, (S1)
	0.2 to 0.5	Silty sand, red and brown, dry
	1.0 to 1.2	Silty clay, grey/red, dry (S2)
TP9	0 to 0.8	Fill – sand and silt, brown, small stones, moist (S1)
	0.8 to 1.2	Black silty clay with organic odour, dry (S2)

EXP Services Inc.

Extendicare (Canada) Incorporated Phase Two Environmental Site Assessment 980 Earl Armstrong Road, Ottawa, Ontario OTT-24005069-A0 July 17, 2024

Appendix D: Analytical Summary Tables

Table 1 - Analytical Results in Soil - OC Pesticides

980 Earl Armstrong Road, Ottawa, Ontario

				Provi	incial								Parent and I	Duplicate Sample		Parent and [Duplicate Sample						
Sample ID	UNITS	Laboratory Minimum Detection Limit	MECP Table 1 All Land Uses ¹	MECP Table 2.1 Residential ²	MECP Table 3.1 Residential ²	MECP Table 3 Residential ³	BH24-4-SS2	BH24-4-SS6	BH24-6-SS1	BH24-6-SS3	BH24-9-SS1	BH24-9-SS5	TP1-S1	TP1-S3 (DUPE of TP1-S3)	TP2-S1	TP3-S1	TP3-S3 (DUPE of TP3-S1)	TP4-S1	TP5-S1	TP6-S1	TP7-S1	TP8-S1	TP9-S1
Sampling Date		(MDL)	D-14	n.l.l	LINDEDLINE		6/4/2024	6/4/2024	6/4/2024	6/4/2024	6/5/2024	6/5/2024	6/1	19/2024	6/19/2024	6/1	.9/2024	6/19/2024	6/19/2024	6/19/2024	6/19/2024	6/19/2024	6/19/2024
Sample Depth (mbgs)			Bold	Bold	<u>UNDERLINE</u>	BOLD	0.0 to 0.6	3.8 to 4.3	0.0 to 0.6	1.5 to 2.1	0.0 to 0.6	3.0 to 3.5		0.2	0.1		0.2	0.3	0.2	0.3	0.2	0.2	0.4
Organochlorine Pesticides	•		•				•	•	•	•					•	•						•	
Aldrin	μg/g	0.01	0.05	0.05	0.05	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
gamma-BHC (Lindane)	μg/g	0.01	NV	NV	NV	0.063	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
alpha-Chlordane	μg/g	0.01	NV	NV	NV	NV	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
gamma-Chlordane	μg/g	0.01	NV	NV	NV	NV	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chlordane	μg/g	0.01	0.05	0.05	0.05	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
o,p-DDD	μg/g	0.01	NV	NV	NV	NV	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01
p,p-DDD	μg/g	0.02	NV	NV	NV	NV	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
DDD	μg/g	0.02	0.05	3.3	3.3	3.3	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
o,p-DDE	μg/g	0.01	NV	NV	NV	NV	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
p,p-DDE	μg/g	0.01	NV	NV	NV	NV	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
DDE	μg/g	0.01	0.05	0.26	0.26	0.33	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
o,p-DDT	μg/g	0.01	NV	NV	NV	NV	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
p,p-DDT	μg/g	0.01	NV	NV	NV	NV	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
DDT	μg/g	0.01	1.4	1.4	1.4	1.4	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Dieldrin	μg/g	0.02	0.05	0.05	0.05	0.05	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Endrin	μg/g	0.02	0.04	0.04	0.04	0.04	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Endosulfan I	μg/g	0.01	NV	NV	NV	NV	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Endosulfan II	μg/g	0.02	NV	NV	NV	NV	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Endosulfan I/II	μg/g	0.02	0.04	0.04	0.04	0.04	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Heptachlor	μg/g	0.01	0.05	0.072	0.072	0.15	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Heptachlor Epoxide	μg/g	0.01	0.05	0.05	0.05	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Hexachlorobenzene	μg/g	0.01	0.01	0.034	0.52	0.52	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Hexachlorobutadiene	μg/g	0.01	0.01	0.01	0.01	0.014	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Hexachloroethane	μg/g	0.01	0.01	0.01	0.01	0.071	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Methoxychlor	μg/g	0.01	0.05	0.13	0.13	0.13	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01

NOTES:

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 1 full depth background site condition standards.

Ontario Ministry of Environment, Conservation and Parks (MECP), O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Rules for Soil Management and Excess Soil Quality Standards, Table 2.1 Full Depth Excess soil Quality Standards in a Non-Potable Groundwater Condition for residential/parkland/institutional property use.

Ontario Ministry of Environment, Conservation and Parks (MECP), O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Rules for Soil Management and Excess Soil Quality Standards, Table 3.1 Full Depth Excess soil Quality Standards in

a Non-Potable Groundwater Condition for residential/narkland/institutional property use
MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 3 full depth background site condition standards.

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

NV No Value

- Parameter not analyzed

m bgs Metres below ground surface

BOLD Indicates soil exceedance of MECP Table

BOLD Indicates soil exceedance of MECP Table 1 SCS

BOLD Indicates soil exceedance of MECP Table 2.1 SCS for residential/parkland/institutional land use

UNDERLINE Indicates soil exceedance of MECP Table 3.1 SCS for residential/parkland/institutional land use

Indicates soil exceedance of MECP Table 3 SCS for residential/parkland/institutional land use

Page 1 of 1

Table 2 - Analytical Results in Soil - PHC and BTEX

980 Earl Armstrong Road, Ottawa, Ontario OTT-24005069-A0

				Prov	rincial		Parent and D	uplicate Sample	Parent and D	uplicate Sample										
Sample ID	UNITS	Laboratory Minimum Detection	MECP Table 1 All Land Uses ¹	MECP Table 2.1 Residential ²	MECP Table 3.1 Residential ³	MECP Table 3 Residential ⁴	BH24-1 SS1	Dup. SS1 (DUPE of BH24- 1-SS1	BH24-1 SS6	Dup.SS6 (DUPE of BH24-1-SS6)	BH24-3-SS2	BH24-3-SS9	BH24-4-SS2	BH24-4-SS6	BH24-6-SS1	BH24-6-SS3	BH24-7-SS1	BH24-7-SS4	BH24-9-SS1	BH24-9-SS5
Sampling Date (MM/DD/YYYY)		Limit (MDL)	Bold	Bold	<u>UNDERLINE</u>		6/6	/2024	6/6	/2024	6/13/2024	6/13/2024	6/4/2024	6/4/2024	6/4/2024	6/4/2024	6/5/2024	6/5/2024	6/5/2024	6/5/2024
Sample Depth (mbgs)		, ,	Вош	Bolu	UNDERLINE		0.0	to 0.6	3.8	to 4.4	0.6 to 1.2	6.4 to 7.0	0.6 to 1.2	3.8 to 4.3	0.0 to 0.6	1.5 to 2.1	0.0 to 0.6	2.3 to 2.7	0.0 to 0.6	3.0 to 3.5
Petroleum Hydrocarbons																				
F1 PHC (C6-C10)	μg/g	7	25	25	25	55	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7
F2 PHC (C10-C16)	μg/g	4	10	10	10	98	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
F3 PHC (C16-C34)	μg/g	8	240	300	300	300	15	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8
F4 PHC (C34-C50)	μg/g	6	120	2800	2800	2800	43	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6
Volatile Organic Compounds																				
Benzene	μg/g	0.02	0.02	0.02	0.02	0.21	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Ethylbenzene	μg/g	0.05	0.05	0.05	1.9	2.0	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Гoluene	μg/g	0.05	0.2	0.2	0.99	2.3	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Kylene, m,p-	μg/g	0.05	NV	NV	NV	NV	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Kylene, o-	μg/g	0.05	NV	NV	NV	NV	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Total Xylenes	μg/g	0.05	0.05	0.091	0.9	3.1	< 0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05

NOTES:

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 1 full depth background site condition standards.

Ontario Ministry of Environment, Conservation and Parks (MECP), O.Reg 406/19 On-Site and Excess Soil Management and Excess Soil Quality Standards in a Non-Potable Groundwater Condition for residential/parkland/institutional property use.

Ontario Ministry of Environment, Conservation and Parks (MECP), O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Rules for Soil Management and Excess Soil Quality Standards in a Non-Potable Groundwater Condition for residential/parkland/institutional property use.

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 3 full depth background site condition standards.

<RDL Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

No Value

Parameter not analyzedm bgs Metres below ground surface

BOLD Indicates soil exceedance of MECP Table 1 SCS

Indicates soil exceedance of MECP Table 2.1 SCS for residential/parkland/institutional land use

UNDERLINE
Indicates soil exceedance of MECP Table 3.1 SCS for residential/parkland/institutional land use

BOLD
Indicates soil exceedance of MECP Table 3 SCS for residential/parkland/institutional land use

Table 2 - Analytical Results in Soil - PHC and BTEX

980 Earl Armstrong Road, Ottawa, Ontario

				Prov	incial															
Sample ID	UNITS	Laboratory Minimum Detection	MECP Table 1 All Land Uses ¹	MECP Table 2.1 Residential ²	MECP Table 3.1 Residential ³	MECP Table 3 Residential ⁴	BH24-11 SS1	BH24-11 SS4	BH24-14 SS1	BH24-14 SS9	BH24-17 SS1	BH24-17 SS4	BH24-22 SS2	BH24-22 SS8	BH24-25 SS1	BH24-25 SS7	BH24-27 SS1	BH24-27 SS6	BH24-30 SS1	BH24-30 S
ampling Date (MM/DD/YYYY)		Limit (MDL)	Bold	Bold	UNDERLINE		6/6/2024	6/6/2024	6/7/2024	6/7/2024	6/7/2024	6/7/2024	6/7/2024	6/7/2024	6/11/2024	6/11/2024	6/10/2024	6/10/2024	6/5/2024	6/5/2024
ample Depth (mbgs)		, ,	Боіц	Вош	ONDERLINE		0.0 to 0.6	2.3 to 2.8	0.0 to 0.6	7.6 to 8.2	0.0 to 0.6	3.1 to 3.7	0.75 to 1.5	6.1 to 6.7	0.0 to 0.6	4.6 to 5.2	0.0 to 0.6	4.6 to 5.2	0.0 to 0.6	3.0 to 3.45
Petroleum Hydrocarbons																				•
1 PHC (C6-C10)	μg/g	7	25	25	25	55	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7
2 PHC (C10-C16)	μg/g	4	10	10	10	98	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
3 PHC (C16-C34)	μg/g	8	240	300	300	300	40	<8	<8	<8	<8	<8	<8	<8	23	<8	<8	<8	40	<8
4 PHC (C34-C50)	μg/g	6	120	2800	2800	2800	58	<6	<6	<6	<6	<6	<6	<6	25	<6	<6	<6	58	<6
olatile Organic Compounds																				
Senzene	μg/g	0.02	0.02	0.02	0.02	0.21	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
thylbenzene	μg/g	0.05	0.05	0.05	1.9	2.0	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
oluene	μg/g	0.05	0.2	0.2	0.99	2.3	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
(ylene, m,p-	μg/g	0.05	NV	NV	NV	NV	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
ylene, o-	μg/g	0.05	NV	NV	NV	NV	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
otal Xylenes	ug/g	0.05	0.05	0.091	0.9	3.1	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 1 full depth background site conditions.

Ontario Ministry of Environment, Conservation and Parks (MECP), O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Rul

Ontario Ministry of Environment, Conservation and Parks (MECP), O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Rul

4 MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 3 full depth background site conditions.

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

NV No Value

<RDL

Parameter not analyzedm bgs Metres below ground surface

Indicates soil exceedance of MECP Table 1 SCS

Indicates soil exceedance of MECP Table 2.1 SCS for residential/parkland/institutional land use

UNDERLINE
Indicates soil exceedance of MECP Table 3.1 SCS for residential/parkland/institutional land use

BOLD
Indicates soil exceedance of MECP Table 3 SCS for residential/parkland/institutional land use

Table 2 - Analytical Results in Soil - PHC and BTEX

980 Earl Armstrong Road, Ottawa, Ontario

				Prov	incial					Parent and D	uplicate Sample				Stockpile Samples	
Sample ID	UNITS	Laboratory Minimum Detection	MECP Table 1 All Land Uses ¹	MECP Table 2.1 Residential ²	MECP Table 3.1 Residential ³	MECP Table 3 Residential ⁴	TP2-S2	TP4-S2	TP6-S1	TP6-S2	TP6-S3 (DUPE of TP6-S2)	TP8-S2	TP9-S2	Stockpile #1	Stockpile #2	Stockpile #3
Sampling Date (MM/DD/YYYY)	1	Limit (MDL)	Dold	Bold	LINDEDLINE		6/19/2024	6/19/2024	6/19/2024	6/19	9/2024	6/19/2024	6/19/2024	6/19/2024	6/19/2024	6/19/2024
Sample Depth (mbgs)		,	Bold	БОІО	UNDERLINE		0.8	1.1	0.3	(0.8	0.9	1.0	-	-	-
Petroleum Hydrocarbons																
1 PHC (C6-C10)	μg/g	7	25	25	25	55	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7
² PHC (C10-C16)	μg/g	4	10	10	10	98	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
3 PHC (C16-C34)	μg/g	8	240	300	300	300	<8	<8	<8	15	<8	15	16	32	30	34
⁵ 4 PHC (C34-C50)	μg/g	6	120	2800	2800	2800	<6	<6	<6	9	<6	9	6	14	30	25
olatile Organic Compounds																
Benzene	μg/g	0.02	0.02	0.02	0.02	0.21	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
thylbenzene	μg/g	0.05	0.05	0.05	1.9	2.0	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
- oluene	μg/g	0.05	0.2	0.2	0.99	2.3	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
(ylene, m,p-	μg/g	0.05	NV	NV	NV	NV	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
(ylene, o-	μg/g	0.05	NV	NV	NV	NV	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
otal Xylenes	μg/g	0.05	0.05	0.091	0.9	3.1	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 1 full depth background site condi

Ontario Ministry of Environment, Conservation and Parks (MECP), O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Rul

Ontario Ministry of Environment, Conservation and Parks (MECP), O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Rul

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 3 full depth background site condi

<RDL Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit. No Value NV

Parameter not analyzed Metres below ground surface m bgs

Indicates soil exceedance of MECP Table 1 SCS

Indicates soil exceedance of MECP Table 2.1 SCS for residential/parkland/institutional land use

<u>UNDERLINE</u> Indicates soil exceedance of MECP Table 3.1 SCS for residential/parkland/institutional land use BOLD Indicates soil exceedance of MECP Table 3 SCS for residential/parkland/institutional land use

Table 3 - Analytical Results in Soil - Metals and pH 980 Earl Armstrong Road, Ottawa, Ontario

				Provi	ncial		Parent and D	uplicate Sample	Parent and Du	plicate Sample										
Sample ID	UNITS	Laboratory Minimum	MECP Table 1 All Land Uses ¹	MECP Table 2.1 Residential ²	MECP Table 3.1 Residential ²	MECP Table 3 Residential ³	BH24-1-SS1	Dup. SS1 (DUPE of BH24-1-SS1)	BH24-1 SS6	Dup.SS6 (DUPE of BH24-1-SS6)	BH24-3-SS2	BH24-3-SS9	BH24-4-SS2	BH24-4-SS6	BH24-6-SS1	BH24-6-SS3	BH24-7-SS1	BH24-7-SS4	BH24-9-SS1	BH24-9-SS
Sampling Date		Detection Limit (MDL)	BOLD	BOLD	UNDERLINE	BOLD	6/6	/2024	6/6/	2024	6/13/2024	6/13/2024	6/4/2024	6/4/2024	6/4/2024	6/4/2024	6/5/2024	6/5/2024	6/5/2024	6/5/2024
Sample Depth (mbgs)		(22)	BOLD	BOLD	UNDERLINE	BULD	0.0	to 0.6	3.8 t	to 4.4	0.6 to 1.2	5.4 to 6.0	0.0 to 0.6	3.8 to 4.3	0.0 to 0.6	1.5 to 2.1	0.0 to 0.6	2.3 to 2.7	0.0 to 0.6	3.0 to 3.5
Metals																				
Antimony	μg/g	1.0	1.3	7.5	7.5	7.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Arsenic	μg/g	1.0	18	18	18	18	4.0	3.5	5.4	5.6	2.6	2.1	3.9	5.1	3.0	3.7	5.6	4.8	3.0	5.6
Barium	μg/g	1.0	220	390	390	390	111	102	240	272	89.8	78.8	169	165	115	145	245	194	100	213
Beryllium	μg/g	0.5	2.5	4.0	4.0	4.0	0.6	0.5	0.9	0.9	<0.5	<0.5	0.8	0.6	<0.5	0.5	1.1	0.6	<0.5	0.8
Boron, available	μg/g	0.5	NV	1.5	1.5	1.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Boron (Total)	μg/g	5.0	36	120	120	120	5.9	5.1	11.5	11.2	<5.0	<5.0	6.2	7.5	5.9	5.7	10.1	6.6	<5.0	10.5
Cadmium	μg/g	0.5	1.2	1.2	1.2	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium (VI)	μg/g	0.02	0.66	8.0	8.0	8.0	<0.2	<0.2	<0.2	<0.2	0.3	<0.2	0.6	<0.2	<0.2	0.2	0.8	<0.2	0.4	<0.2
Chromium (Total)	μg/g	5.0	70	160	160	160	41.6	38.0	62.5	71.2	23.0	13.1	63.7	34.4	24.9	29.1	109	38.4	29.8	54.9
Cobalt	μg/g	1.0	21	22	22	22	9.4	8.0	17.5	19.8	5.6	4.5	13.2	10.4	7.6	8.1	<u>24.1</u>	12.3	5.5	15.8
Copper	μg/g	5.0	92	140	140	140	16.7	15.4	32.8	36.6	13.3	11.1	21.6	21.1	16.9	16.7	44.8	25.0	18.1	32.4
Lead	μg/g	1.0	120	120	120	120	7.5	6.9	7.1	7.3	3.3	5.7	9.9	5.6	5.4	5.0	10.8	6.3	4.3	7.1
Mercury	μg/g	0.1	0.27	0.27	0.27	0.27	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Molybdenum	μg/g	1.0	2.0	6.9	6.9	6.9	<1.0	<1.0	1.9	3.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.8
Nickel	μg/g	5.0	82	100	100	100	21.1	19.1	36.4	41.2	12.1	8.7	31.7	21.7	14.8	16.7	67.0	24.1	14.7	35.5
Selenium	μg/g	1.0	1.5	2.4	2.4	2.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.4	<1.0	<1.0
Silver	μg/g	0.3	0.5	20	20	20	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Thallium	μg/g	1.0	1.0	1.0	1.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Uranium	μg/g	1.0	2.5	23	23	23	<1.0	1.0	1.1	1.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.4	<1.0	1.8
Vanadium	μg/g	10.0	86	86	86	86	46.2	42.5	80.4	89.3	36.5	21.6	60.5	48.7	39.1	41.7	88.2	56.9	35.4	72.1
Zinc	μg/g	20.0	290	340	340	340	52.8	52.6	98.9	108	32.4	<20.0	75.9	55.1	41.1	46.3	101	61.9	42.9	87.5
Inorganic Parameters	-																			
pH	No units		5 to 9	5 to 9	5 to 9	5 to 9	7.15	7.08	7.38	7.54	7.00	7.28	7.02	7.47	7.75	7.41	6.99	7.53	7.08	7.46

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 1 full depth background site condition standards.

Ontario Ministry of Environment, Conservation and Parks (MECP), O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Rules for Soil Management and Excess Soil Quality Standards in a Non-Potable Groundwater Condition for residential/parkland/institutional property use.

Ontario Ministry of Environment, Conservation and Parks (MECP), O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Rules for Soil Management and Excess Soil Quality Standards in a Non-Potable Groundwater Condition for residential/parkland/institutional property use.

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 3 full depth background site condition standards.

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit. < RDL

NV Parameter not analyzed

Metres below ground surface

BOLD Indicates soil exceedance of MECP Table 1 SCS BOLD Indicates soil exceedance of MECP Table 2.1 SCS for residential/parkland/institutional land use <u>UNDERLINE</u> Indicates soil exceedance of MECP Table 3.1 SCS for residential/parkland/institutional land use

Indicates soil exceedance of MECP Table 3 SCS for residential/parkland/institutional land use

Table 3 - Analytical Results in Soil - Metals and pH 980 Earl Armstrong Road, Ottawa, Ontario OTT-24005069-A0

				Prov	rincial															
Sample ID	UNITS	Laboratory Minimum	MECP Table 1 All Land Uses ¹	MECP Table 2.1 Residential ²	MECP Table 3.1 Residential ²	MECP Table 3 Residential ³	BH24-11 SS1	BH24-11 SS4	BH24-14 SS1	BH24-14 SS9	BH24-17 SS1	BH24-17 SS4	BH24-22 SS2	BH24-22 SS8	BH24-25 SS1	BH24-25 SS7	BH24-27 SS1	BH24-27 SS6	BH24-30 SS1	BH24-30 SS5
Sampling Date	7	Detection Limit (MDL)	BOLD	DOLD.	LINDEDLINE	BOLD	6/6/2024	6/6/2024	6/7/2024	6/7/2024	6/7/2024	6/7/2024	6/7/2024	6/7/2024	6/11/2024	6/11/2024	6/10/2024	6/10/2024	6/5/2024	6/5/2024
Sample Depth (mbgs)		(14152)	BOLD	BOLD	<u>UNDERLINE</u>	BULU	0.0 to 0.6	2.3 to 2.8	0.0 to 0.6	7.6 to 8.2	0.0 to 0.6	3.1 to 3.7	0.75 to 1.5	6.1 to 6.7	0.0 to 0.6	4.6 to 5.2	0.0 to 0.6	4.6 to 5.2	0.0 to 0.6	3.0 to 3.45
Metals	-		-		-												-			
Antimony	μg/g	1.0	1.3	7.5	7.5	7.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Arsenic	μg/g	1.0	18	18	18	18	4.8	3.0	5.4	2.7	4.3	6.0	3.6	2.1	2.9	2.0	4.9	2.5	5.9	3.8
Barium	μg/g	1.0	220	390	390	390	132	98.3	238	125	250	243	181	119	157	260	191	283	197	158
Beryllium	μg/g	0.5	2.5	4.0	4.0	4.0	0.6	<0.5	1.2	<0.5	0.9	1.0	1.0	<0.5	0.7	0.8	1.3	0.7	0.5	0.5
Boron, available	μg/g	0.5	NV	1.5	1.5	1.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Boron (Total)	μg/g	5.0	36	120	120	120	7.3	<5.0	9.9	<5.0	5.8	12.3	9.2	5.1	7.4	6.2	15.2	6.0	<5.0	5.3
Cadmium	μg/g	0.5	1.2	1.2	1.2	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium (VI)	μg/g	0.02	0.66	8.0	8.0	8.0	<0.2	0.3	1.1	<0.2	<0.2	<0.2	0.9	<0.2	<0.2	<0.2	0.9	<0.2	<0.2	0.2
Chromium (Total)	μg/g	5.0	70	160	160	160	46.0	21.4	96.4	26.4	78.6	65.7	87.2	34.6	56.3	66.9	102	73.0	40.7	31.9
Cobalt	μg/g	1.0	21	22	22	22	11.6	6.0	21.3	7.8	16.1	21.2	16.1	9.3	12.6	17.0	19.2	17.6	11.2	9.7
Copper	μg/g	5.0	92	140	140	140	19.9	13.7	37.9	18.6	31.3	34.9	40.7	21.0	21.9	32.3	43.3	32.2	17.9	19.3
Lead	μg/g	1.0	120	120	120	120	10.1	3.7	10.0	4.5	8.9	8.3	7.3	3.8	7.5	5.0	8.2	4.8	13.0	5.3
Mercury	μg/g	0.1	0.27	0.27	0.27	0.27	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Molybdenum	μg/g	1.0	2.0	6.9	6.9	6.9	2.2	<1.0	<1.0	1.2	<1.0	2.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.6	<1.0
Nickel	μg/g	5.0	82	100	100	100	26.6	12.7	50.7	15.4	38.7	40.1	45.2	18.7	28.1	36.7	53.7	39.0	24.9	19.8
Selenium	μg/g	1.0	1.5	2.4	2.4	2.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Silver	μg/g	0.3	0.5	20	20	20	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Thallium	μg/g	1.0	1.0	1.0	1.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Uranium	μg/g	1.0	2.5	23	23	23	<1.0	<1.0	<1.0	<1.0	<1.0	5.4	<1.0	1.2	1.3	<1.0	<1.0	1.1	<1.0	<1.0
Vanadium	μg/g	10.0	86	86	86	86	45.1	33.3	85.2	44.2	81.1	82.0	76.8	57.4	58.8	88.6	93.8	90.0	41.4	44.0
Zinc	μg/g	20.0	290	340	340	340	56.8	33.4	99.5	36.7	100	98.7	86.0	47.2	68.6	96.9	89.2	96.0	51.6	52.9
Inorganic Parameters																				
Hدر	No units		5 to 9	5 to 9	5 to 9	5 to 9	7.08	7.24	6.82	7.54	6.88	7.40	6.76	6.85	6.78	7.10	7.12	7.13	7.22	7.49

NOTES: MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 1 full depth background site cond

Ontario Ministry of Environment, Conservation and Parks (MECP), O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Ru

Ontario Ministry of Environment, Conservation and Parks (MECP), O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Ru MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 3 full depth background site cond

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit. < RDL

NV

Parameter not analyzed m bgs Metres below ground surface

BOLD Indicates soil exceedance of MECP Table 1 SCS

BOLD Indicates soil exceedance of MECP Table 2.1 SCS for residential/parkland/institutional land use <u>UNDERLINE</u> Indicates soil exceedance of MECP Table 3.1 SCS for residential/parkland/institutional land use

Indicates soil exceedance of MECP Table 3 SCS for residential/parkland/institutional land use

Table 3 - Analytical Results in Soil - Metals and pH 980 Earl Armstrong Road, Ottawa, Ontario OTT-24005069-A0

				Provi	ncial					Parent and Du	uplicate Sample					
Sample ID	UNITS	Laboratory Minimum	MECP Table 1 All Land Uses ¹	MECP Table 2.1 Residential ²	MECP Table 3.1 Residential ²	MECP Table 3 Residential ³	TP2-S2	TP4-S2	TP6-S1	TP6-S2	TP6-S3 (DUPE of TP6-S2)	TP8-S2	TP9-S2	Stockpile #1	Stockpile #2	Stockpile #3
Sampling Date	\neg	Detection Limit (MDL)	BOLD	BOLD	LINDEDLINE	BOLD	6/19/2024	6/19/2024	6/19/2024	6/19)/2024	6/19/2024	6/19/2024	6/19/2024	6/19/2024	6/19/2024
Sample Depth (mbgs)		(10152)	BOLD	BOLD	<u>UNDERLINE</u>	ם שטנט	0.8	1.1	0.3	(0.8	0.9	1.0	-	-	-
Metals	•						•									
Antimony	μg/g	1.0	1.3	7.5	7.5	7.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Arsenic	μg/g	1.0	18	18	18	18	5.7	3.7	4.6	5.4	5.3	5.5	5.4	3.8	4.0	3.8
Barium	μg/g	1.0	220	390	390	390	320	140	238	326	245	224	151	70.1	160	127
Beryllium	μg/g	0.5	2.5	4.0	4.0	4.0	1.0	0.6	1.2	1.1	1.4	1.3	0.6	<0.5	0.7	0.6
Boron, available	μg/g	0.5	NV	1.5	1.5	1.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Boron (Total)	μg/g	5.0	36	120	120	120	6.8	<5.0	11.0	9.2	14.1	13.6	7.4	5.6	7.1	7.5
Cadmium	μg/g	0.5	1.2	1.2	1.2	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium (VI)	μg/g	0.02	0.66	8.0	8.0	8.0	0.6	0.4	1.3	0.8	0.8	0.8	<0.2	<0.2	<0.2	<0.2
Chromium (Total)	μg/g	5.0	70	160	160	160	90.5	36.2	94.0	98.5	103	93.3	42.8	22.1	50.8	35.4
Cobalt	μg/g	1.0	21	22	22	22	22.3	8.7	16.2	22.9	21.3	20.2	11.4	6.5	11.3	8.5
Copper	μg/g	5.0	92	140	140	140	50.3	22.8	43.0	47.1	45.8	41.9	19.3	13.6	22.9	20.7
ead	μg/g	1.0	120	120	120	120	8.7	4.8	8.4	8.9	9.9	10.1	11.0	8.5	8.9	9.2
Mercury	μg/g	0.1	0.27	0.27	0.27	0.27	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Molybdenum	μg/g	1.0	2.0	6.9	6.9	6.9	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.1	2.1	1.3	1.4
lickel	μg/g	5.0	82	100	100	100	53.7	21.2	51.4	57.5	57.3	53.7	27.1	14.6	28.4	20.8
elenium	μg/g	1.0	1.5	2.4	2.4	2.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
ilver	μg/g	0.3	0.5	20	20	20	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
hallium	μg/g	1.0	1.0	1.0	1.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Jranium	μg/g	1.0	2.5	23	23	23	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.2
/anadium	μg/g	10.0	86	86	86	86	101	52.5	75.9	97.0	83.4	82.7	40.9	25.4	50.9	40.5
linc	μg/g	20.0	290	340	340	340	115	51.9	91.8	111	98.6	90.8	47.0	39.0	72.7	55.1
norganic Parameters																
Н	No units		5 to 9	5 to 9	5 to 9	5 to 9	7.03	7.03	6.27	6.79	6.52	6.93	7.28	7.10	7.23	7.16

NOTES: MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 1 full depth background site cond

Ontario Ministry of Environment, Conservation and Parks (MECP), O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Ru

Ontario Ministry of Environment, Conservation and Parks (MECP), O.Reg 406/19 On-Site and Excess Soil Management, December 2019, Ru

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 3 full depth background site cond

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit. < RDL NV

Parameter not analyzed

m bgs Metres below ground surface

BOLD Indicates soil exceedance of MECP Table 1 SCS

BOLD Indicates soil exceedance of MECP Table 2.1 SCS for residential/parkland/institutional land use <u>UNDERLINE</u> Indicates soil exceedance of MECP Table 3.1 SCS for residential/parkland/institutional land use Indicates soil exceedance of MECP Table 3 SCS for residential/parkland/institutional land use

Table 4 - Analytical Results in Groundwater - OC Pesticides 980 Earl Armstrong Road, Ottawa, Ontario OTT-24005069-A0

		Laboratory			Parent and Dup	licate Sample	
Sample ID	UNITS	Minimum Detection Limit	MECP Table 3 Residential ¹	BH24-1	BH24-4	Dup. 1	BH24-25
Sampling Date		(MDL)	BOLD	6/21/2024	6/21/2	2024	6/21/2024
Organochlorine Pesticides							
Aldrin	μg/L	0.01	8.5	<0.01	<0.01	<0.01	<0.01
gamma-BHC (Lindane)	μg/L	0.01	1.2	<0.01	<0.01	<0.01	<0.01
alpha-Chlordane	μg/L	0.01	NV	<0.01	<0.01	<0.01	<0.01
gamma-Chlordane	μg/L	0.01	NV	<0.01	<0.01	<0.01	<0.01
Chlordane	μg/L	0.01	28	<0.01	<0.01	<0.01	<0.01
o,p-DDD	μg/L	0.01	NV	<0.01	<0.01	<0.01	<0.01
p,p-DDD	μg/L	0.01	NV	<0.01	<0.01	<0.01	<0.01
DDD	μg/L	0.01	45	<0.01	<0.01	<0.01	<0.01
o,p-DDE	μg/L	0.01	NV	<0.01	<0.01	<0.01	<0.01
p,p-DDE	μg/L	0.01	NV	<0.01	<0.01	<0.01	<0.01
DDE	μg/L	0.01	20	<0.01	<0.01	<0.01	<0.01
o,p-DDT	μg/L	0.01	NV	<0.01	<0.01	<0.01	<0.01
p,p-DDT	μg/L	0.01	NV	<0.01	<0.01	<0.01	<0.01
DDT	μg/L	0.01	2.8	<0.01	<0.01	<0.01	<0.01
Dieldrin	μg/L	0.01	0.75	<0.01	<0.01	<0.01	<0.01
Endrin	μg/L	0.01	0.48	<0.01	<0.01	<0.01	<0.01
Endosulfan I	μg/L	0.01	NV	<0.01	<0.01	<0.01	<0.01
Endosulfan II	μg/L	0.01	NV	<0.01	<0.01	<0.01	<0.01
Endosulfan I/II	μg/L	0.01	1.5	<0.01	<0.01	<0.01	<0.01
Heptachlor	μg/L	0.01	2.5	<0.01	<0.01	<0.01	<0.01
Heptachlor Epoxide	μg/L	0.01	0.048	<0.01	<0.01	<0.01	<0.01
Hexachlorobenzene	μg/L	0.01	3.1	<0.01	<0.01	<0.01	<0.01
Hexachlorobutadiene	μg/L	0.01	4.5	<0.01	<0.01	<0.01	<0.01
Hexachloroethane	μg/L	0.01	200	<0.1	<0.1	<0.1	<0.1
Methoxychlor	μg/L	0.01	6.5	<0.1	<0.1	<0.1	<0.1

NOTES:

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 3 full depth background site condition standards.

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

NV No Value

Bold Indicates groundwater exceedance of MECP Table 3 SCS

Table 5 - Relative Percent Differences - OC Pesticides in Soil 980 Earl Armstrong Road, Ottawa, Ontario

OTT-24005069-A0

Parameter	Units	RDL	TP1-S1	TP1-S3 (DUPE of TP1-S3)	RPD (%)	Alert Limit (%)	TP3-S1	TP3-S3 (DUPE of TP3-S1)	RPD (%)	Alert Limit (%)
			6/19,	/2024			6/19	/2024		
Organochlorine Pesticides										
Aldrin	μg/g	0.01	<0.01	<0.01	nc	60	<0.01	<0.01	nc	60
gamma-BHC (Lindane)	μg/g	0.01	<0.01	<0.01	nc	60	<0.01	<0.01	nc	60
alpha-Chlordane	μg/g	0.01	<0.01	<0.01	nc	60	<0.01	<0.01	nc	60
gamma-Chlordane	μg/g	0.01	<0.01	<0.01	nc	60	<0.01	<0.01	nc	60
Chlordane	μg/g	0.01	<0.01	<0.01	nc	60	<0.01	<0.01	nc	60
o,p-DDD	μg/g	0.01	<0.01	<0.01	nc	60	<0.01	<0.01	nc	60
p,p-DDD	μg/g	0.02	<0.02	<0.02	nc	60	<0.02	<0.02	nc	60
DDD	μg/g	0.02	<0.02	<0.02	nc	60	<0.02	<0.02	nc	60
o,p-DDE	μg/g	0.01	<0.01	<0.01	nc	60	<0.01	<0.01	nc	60
p,p-DDE	μg/g	0.01	<0.01	<0.01	nc	60	<0.01	<0.01	nc	60
DDE	μg/g	0.01	<0.01	<0.01	nc	60	<0.01	<0.01	nc	60
o,p-DDT	μg/g	0.01	<0.01	<0.01	nc	60	<0.01	<0.01	nc	60
p,p-DDT	μg/g	0.01	<0.01	<0.01	nc	60	<0.01	<0.01	nc	60
DDT	μg/g	0.01	<0.01	<0.01	nc	60	<0.01	<0.01	nc	60
Dieldrin	μg/g	0.02	<0.02	<0.02	nc	60	<0.02	<0.02	nc	60
Endrin	μg/g	0.02	<0.02	<0.02	nc	60	<0.02	<0.02	nc	60
Endosulfan I	μg/g	0.01	<0.01	<0.01	nc	60	<0.01	<0.01	nc	60
Endosulfan II	μg/g	0.02	<0.02	<0.02	nc	60	<0.02	<0.02	nc	60
Endosulfan I/II	μg/g	0.02	<0.02	<0.02	nc	60	<0.02	<0.02	nc	60
Heptachlor	μg/g	0.01	<0.01	<0.01	nc	60	<0.01	<0.01	nc	60
Heptachlor Epoxide	μg/g	0.01	<0.01	<0.01	nc	60	<0.01	<0.01	nc	60
Hexachlorobenzene	μg/g	0.01	<0.01	<0.01	nc	60	<0.01	<0.01	nc	60
Hexachlorobutadiene	μg/g	0.01	<0.01	<0.01	nc	60	<0.01	<0.01	nc	60
Hexachloroethane	μg/g	0.01	<0.01	<0.01	nc	60	<0.01	<0.01	nc	60
Methoxychlor	μg/g	0.01	< 0.01	<0.01	nc	60	< 0.01	<0.01	nc	60

NOTES:

Analysis by Paracel Laboratories

All results on dry weight basis; Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

⁻ means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in **bold**

Table 6 - Relative Percent Differences - PHC and BTEX in Soil 980 Earl Armstrong Road, Ottawa, Ontario OTT-24005069-A0

Parameter	Units	RDL	BH24-1 SS1	Dup. SS1 (DUPE of BH24-1-SS1	RPD (%)	Alert Limit (%)
			6/6/2024			
Patroleum Hydrocarbons						-
Antimony	ug/g dry	7	<7	<7	<(RDL)	60
Arsenic	ug/g dry	4	<4	<4	<(RDL)	60
Barium	ug/g dry	8	15	<8	nc	60
Beryllium	ug/g dry	6	43	<6	nc	60
Volatile Organic Compounds						
Benzene	ug/g dry		<0.02	<0.02	nc	60
Ethylbenzene	ug/g dry	0.02	<0.05	<0.05	nc	60
Toluene	ug/g dry	0.05	<0.05	<0.05	nc	60
Xylene, m,p-	ug/g dry	0.05	<0.05	<0.05	nc	60
Xylene, o-	ug/g dry	0.05	<0.05	<0.05	nc	60
Total Xylenes	ug/g dry	0.05	<0.05	<0.05	nc	60

NOTES:

Analysis by Paracel Laboratories

All results on dry weight basis; Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in $\underline{\text{\bf bold}}$

BH24-1 SS6	Dup.SS6 (DUPE of BH24-1-SS6)	RPD (%)	Alert Limit (%)	BH24-1 SS6	Dup.SS6 (DUPE of BH24-1-SS6)	RPD (%)	Alert Limit (%)
6/0	6/2024			6/6	/2024		
<7	<7	<(RDL)	60	<7	<7	<(RDL)	60
<4	<4	<(RDL)	60	<4	<4	<(RDL)	60
<8	<8	<(RDL)	60	15	<8	nc	60
<6	<6	<(RDL)	60	9	<6	nc	60
<0.02	<0.02	<(RDL)	60	<0.02	<0.02	<(RDL)	60
<0.05	<0.05	<(RDL)	60	<0.05	<0.05	<(RDL)	60
<0.05	<0.05	<(RDL)	60	<0.05	<0.05	<(RDL)	60
<0.05	<0.05	<(RDL)	60	<0.05	<0.05	<(RDL)	60
<0.05	<0.05	<(RDL)	60	<0.05	<0.05	<(RDL)	60
<0.05	<0.05	<(RDL)	60	<0.05	<0.05	<(RDL)	60

Table 7 - Relative Percent Differences - Metals 980 Earl Armstrong Road, Ottawa, Ontario OTT-24005069-A0

Parameter	Units	RDL	BH24-1-SS1	Dup. SS1 (DUPE of BH24-1-SS1)	RPD (%)	Alert Limit (%)
			6/6	5/2024		
Inorganic Parameters				-		
Antimony	ug/g dry	1.0	<1.0	<1.0	nc	60
Arsenic	ug/g dry	1.0	4.0	3.5	13	60
Barium	ug/g dry	1.0	111	102	10	60
Beryllium	ug/g dry	0.5	0.6	0.5	nc	60
Boron, available	ug/g dry	0.5	<0.5	<0.5	nc	60
Boron (Total)	ug/g dry	5.0	5.9	5.1	5	60
Cadmium	ug/g dry	0.5	<0.5	<0.5	nc	60
Chromium (VI)	ug/g dry	0.02	<0.2	<0.2	nc	60
Chromium (Total)	ug/g dry	5.0	41.6	38.0	4	60
Cobalt	ug/g dry	1.0	9.4	8.0	9	60
Copper	ug/g dry	5.0	16.7	15.4	2	60
Lead	ug/g dry	1.0	7.5	6.9	8	60
Mercury	ug/g dry	0.1	<0.1	<0.1	nc	60
Molybdenum	ug/g dry	1.0	<1.0	<1.0	nc	60
Nickel	ug/g dry	5.0	21.1	19.1	10	60
Selenium	ug/g dry	1.0	<1.0	<1.0	nc	60
Silver	ug/g dry	0.3	<0.3	<0.3	nc	60
Thallium	ug/g dry	1.0	<1.0	<1.0	nc	60
Uranium	ug/g dry	1.0	<1.0	1.0	nc	60
Vanadium	ug/g dry	10.0	46.2	42.5	8	60
Zinc	ug/g dry	20.0	52.8	52.6	nc	60

NOTES:

Analysis by Paracel Laboratories

All results on dry weight basis; Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in $\underline{\text{\bf bold}}$

BH24-1 SS6	Dup.SS6 (DUPE of BH24-1-SS6)	RPD (%)	Alert Limit (%)	TP6-S2	TP6-S3 (DUPE of TP6-S2)	RPD (%)	Alert Limit (%
6/6	5/2024			6/1	19/2024		
<1.0	<1.0	nc	60	<1.0	<1.0	nc	60
5.4	5.6	nc	60	5.4	5.3	1	60
240	272	10	60	326	245	33	60
0.9	0.9	nc	60	1.1	1.4	27	60
<0.5	<0.5	nc	60	<0.5	<0.5	nc	60
11.5	11.2	5	60	9.2	14.1	53	60
<0.5	<0.5	nc	60	<0.5	<0.5	nc	60
<0.2	<0.2	nc	60	0.8	0.8	nc	60
62.5	71.2	4	60	98.5	103	5	60
17.5	19.8	9	60	22.9	21.3	8	60
32.8	36.6	2	60	47.1	45.8	3	60
7.1	7.3	nc	60	8.9	9.9	11	60
<0.1	<0.1	nc	60	<0.1	<0.1	nc	60
1.9	3.6	nc	60	<1.0	<1.0	nc	60
36.4	41.2	nc	60	57.5	57.3	1	60
<1.0	<1.0	nc	60	<1.0	<1.0	nc	60
<0.3	<0.3	nc	60	<0.3	<0.3	nc	60
<1.0	<1.0	nc	60	<1.0	<1.0	nc	60
1.1	1.2	nc	60	<1.0	<1.0	nc	60
80.4	89.3	nc	60	97.0	83.4	16	60
98.9	108	nc	60	111	98.6	13	60

EXP Services Inc.

Extendicare (Canada) Incorporated Phase Two Environmental Site Assessment 980 Earl Armstrong Road, Ottawa, Ontario OTT-24005069-A0 July 17, 2024

Appendix E: Laboratory Certificates of Analysis

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

exp Services Inc. (Ottawa)

100-2650 Queensview Dr.

Ottawa, ON K2B 8H6

Attn: Chris Kimmerly

Client PO:

Project: OTT24005069A0

Custody: 73691

Report Date: 13-Jun-2024

Order Date: 7-Jun-2024

Order #: 2423546

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2423546-01	BH24-1 SS1
2423546-02	BH24-1 SS6
2423546-03	BH24-11 SS1
2423546-04	BH24-11 SS4
2423546-05	Dup. SS1
2423546-06	Dup. SS6

Approved By:

Mark Foto

Mark Foto, M.Sc.

Lab Supervisor

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

exp Services Inc. (Ottawa)

100-2650 Queensview Dr. Ottawa, ON K2B 8H6

Attn: Chris Kimmerly

Client PO:

Project: OTT24005069A0

Custody: 145424

Report Date: 13-Jun-2024

Order Date: 6-Jun-2024

Order #: 2423497

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2423497-01	BH24-6 SS1
2423497-02	BH24-6 SS3
2423497-03	BH24-9 SS2
2423497-04	BH24-9 SS5
2423497-05	BH24-7 SS1
2423497-06	BH24-7 SS4
2423497-07	BH24-4 SS2
2423497-08	BH24-4 SS6
2423497-09	BH24-30 SS1
2423497-10	BH24-30 SS5

Approved By:

Client: exp Services Inc. (Ottawa)

Report Date: 13-Jun-2024 Order Date: 6-Jun-2024

Client PO:

Project Description: OTT24005069A0

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Boron, available	MOE (HWE), EPA 200.8 - ICP-MS	10-Jun-24	10-Jun-24
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	10-Jun-24	10-Jun-24
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	11-Jun-24	12-Jun-24
Mercury by CVAA	EPA 7471B - CVAA, digestion	10-Jun-24	10-Jun-24
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	12-Jun-24	13-Jun-24
PHC F1	CWS Tier 1 - P&T GC-FID	10-Jun-24	10-Jun-24
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	10-Jun-24	11-Jun-24
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	10-Jun-24	10-Jun-24
REG 153: Pesticides, OC	EPA 8081B - GC-ECD	12-Jun-24	12-Jun-24
Solids, %	CWS Tier 1 - Gravimetric	10-Jun-24	10-Jun-24

Client: exp Services Inc. (Ottawa)

Report Date: 13-Jun-2024

Order Date: 6-Jun-2024

Client PO:

	Client ID:	BH24-6 SS1	BH24-6 SS3	BH24-9 SS2	BH24-9 SS5		
	Sample Date:	04-Jun-24 14:45	04-Jun-24 14:00	04-Jun-24 10:00	04-Jun-24 10:45	_	_
	Sample ID:	2423497-01	2423497-02	2423497-03	2423497-04		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Physical Characteristics	<u> </u>						
% Solids	0.1 % by Wt.	84.6	71.1	70.8	63.7	-	-
General Inorganics	-			•	•		
рН	0.05 pH Units	7.75	7.41	7.08	7.46	-	-
Metals				•	•	•	
Antimony	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Arsenic	1.0 ug/g	3.0	3.7	3.0	5.6	-	-
Barium	1.0 ug/g	115	145	100	213	-	-
Beryllium	0.5 ug/g	<0.5	0.5	<0.5	0.8	-	-
Boron	5.0 ug/g	5.9	5.7	<5.0	10.5	-	-
Boron, available	0.5 ug/g	<0.5	<0.5	<0.5	<0.5	-	-
Cadmium	0.5 ug/g	<0.5	<0.5	<0.5	<0.5	-	-
Chromium (VI)	0.2 ug/g	<0.2	0.2	0.4	<0.2	-	-
Chromium	5.0 ug/g	24.9	29.1	29.8	54.9	-	-
Cobalt	1.0 ug/g	7.6	8.1	5.5	15.8	-	-
Copper	5.0 ug/g	16.9	16.7	18.1	32.4	-	-
Lead	1.0 ug/g	5.4	5.0	4.3	7.1	-	-
Mercury	0.1 ug/g	<0.1	<0.1	<0.1	<0.1	-	-
Molybdenum	1.0 ug/g	<1.0	<1.0	<1.0	1.8	-	-
Nickel	5.0 ug/g	14.8	16.7	14.7	35.5	-	-
Selenium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Silver	0.3 ug/g	<0.3	<0.3	<0.3	<0.3	-	-
Thallium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Uranium	1.0 ug/g	<1.0	<1.0	<1.0	1.8	-	-
Vanadium	10.0 ug/g	39.1	41.7	35.4	72.1	-	-
Zinc	20.0 ug/g	41.1	46.3	42.9	87.5	-	-

Client: exp Services Inc. (Ottawa)

Report Date: 13-Jun-2024

Order Date: 6-Jun-2024

Client PO:

	Client ID:	BH24-6 SS1	BH24-6 SS3	BH24-9 SS2	BH24-9 SS5		
	Sample Date:	04-Jun-24 14:45	04-Jun-24 14:00	04-Jun-24 10:00	04-Jun-24 10:45	-	-
	Sample ID:	2423497-01	2423497-02	2423497-03	2423497-04		
	Matrix:	Soil	Soil	Soil	Soil		
[MDL/Units						
Volatiles	•		•	•	•		•
Benzene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
Ethylbenzene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Toluene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
m,p-Xylenes	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Xylenes, total	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Toluene-d8	Surrogate	123%	108%	127%	135%	-	-
Hydrocarbons	<u> </u>			·			
F1 PHCs (C6-C10)	7 ug/g	<7	<7	<7	<7	-	-
F2 PHCs (C10-C16)	4 ug/g	<4	<4	<4	<4	-	-
F3 PHCs (C16-C34)	8 ug/g	<8	<8	<8	<8	-	-
F4 PHCs (C34-C50)	6 ug/g	<6	<6	<6	<6	-	-
Pesticides, OC	<u> </u>						
Aldrin	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
gamma-BHC (Lindane)	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
alpha-Chlordane	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
gamma-Chlordane	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
Chlordane	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
o,p'-DDD	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
p,p'-DDD	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
DDD	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
o,p'-DDE	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
p,p'-DDE	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
DDE	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
o,p'-DDT	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-

Client: exp Services Inc. (Ottawa)

Report Date: 13-Jun-2024

Order Date: 6-Jun-2024

Client PO:

	Client ID: Sample Date: Sample ID: Matrix: MDL/Units	BH24-6 SS1 04-Jun-24 14:45 2423497-01 Soil	BH24-6 SS3 04-Jun-24 14:00 2423497-02 Soil	BH24-9 SS2 04-Jun-24 10:00 2423497-03 Soil	BH24-9 SS5 04-Jun-24 10:45 2423497-04 Soil	-	-
Pesticides, OC							-
p,p'-DDT	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
DDT	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
Dieldrin	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
Endrin	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
Endosulfan I	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
Endosulfan II	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
Endosulfan I/II	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
Heptachlor	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
Heptachlor epoxide	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
Hexachlorobenzene	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
Hexachlorobutadiene	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
Hexachloroethane	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
Methoxychlor	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
Decachlorobiphenyl	Surrogate	61.8%	57.7%	56.9%	63.8%	-	-

Client: exp Services Inc. (Ottawa)

Report Date: 13-Jun-2024

Order Date: 6-Jun-2024

Client PO:

	Client ID:	BH24-7 SS1	BH24-7 SS4	BH24-4 SS2	BH24-4 SS6		
	Sample Date:	05-Jun-24 10:00	05-Jun-24 10:00	05-Jun-24 13:00	05-Jun-24 13:00	-	-
	Sample ID:	2423497-05	2423497-06	2423497-07	2423497-08		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Physical Characteristics			•		-		•
% Solids	0.1 % by Wt.	72.8	64.3	71.9	72.8	-	-
General Inorganics			•	•		•	·
рН	0.05 pH Units	6.99	7.53	7.02	7.47	-	-
Metals					•		
Antimony	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Arsenic	1.0 ug/g	5.6	4.8	3.9	5.1	-	-
Barium	1.0 ug/g	245	194	169	165	-	-
Beryllium	0.5 ug/g	1.1	0.6	0.8	0.6	-	-
Boron, available	0.5 ug/g	<0.5	<0.5	<0.5	<0.5	-	-
Boron	5.0 ug/g	10.1	6.6	6.2	7.5	-	-
Cadmium	0.5 ug/g	<0.5	<0.5	<0.5	<0.5	-	-
Chromium	5.0 ug/g	109	38.4	63.7	34.4	-	-
Chromium (VI)	0.2 ug/g	0.8	<0.2	0.6	<0.2	-	-
Cobalt	1.0 ug/g	24.1	12.3	13.2	10.4	-	-
Copper	5.0 ug/g	44.8	25.0	21.6	21.1	-	-
Lead	1.0 ug/g	10.8	6.3	9.9	5.6	-	-
Mercury	0.1 ug/g	<0.1	<0.1	<0.1	<0.1	-	-
Molybdenum	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Nickel	5.0 ug/g	67.0	24.1	31.7	21.7	-	-
Selenium	1.0 ug/g	<1.0	1.4	<1.0	<1.0	-	-
Silver	0.3 ug/g	<0.3	<0.3	<0.3	<0.3	-	-
Thallium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Uranium	1.0 ug/g	<1.0	1.4	<1.0	<1.0	-	-
Vanadium	10.0 ug/g	88.2	56.9	60.5	48.7	-	-
Zinc	20.0 ug/g	101	61.9	75.9	55.1	-	-

Client: exp Services Inc. (Ottawa)

Report Date: 13-Jun-2024

Order Date: 6-Jun-2024

Client PO:

	Client ID:	BH24-7 SS1	BH24-7 SS4	BH24-4 SS2	BH24-4 SS6		
	Sample Date:	05-Jun-24 10:00	05-Jun-24 10:00	05-Jun-24 13:00	05-Jun-24 13:00	-	-
	Sample ID:	2423497-05	2423497-06	2423497-07	2423497-08		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Volatiles							
Benzene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
Ethylbenzene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Toluene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
m,p-Xylenes	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Xylenes, total	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Toluene-d8	Surrogate	121%	125%	123%	122%	-	-
Hydrocarbons	•						
F1 PHCs (C6-C10)	7 ug/g	<7	<7	<7	<7	-	-
F2 PHCs (C10-C16)	4 ug/g	<4	<4	<4	<4	-	-
F3 PHCs (C16-C34)	8 ug/g	<8	<8	<8	<8	-	-
F4 PHCs (C34-C50)	6 ug/g	<6	<6	<6	<6	-	-
Pesticides, OC							
Aldrin	0.01 ug/g	-	-	<0.01	<0.01	-	-
gamma-BHC (Lindane)	0.01 ug/g	-	-	<0.01	<0.01	-	-
alpha-Chlordane	0.01 ug/g	-	-	<0.01	<0.01	-	-
gamma-Chlordane	0.01 ug/g	-	-	<0.01	<0.01	-	-
Chlordane	0.01 ug/g	-	-	<0.01	<0.01	-	-
o,p'-DDD	0.01 ug/g	-	-	<0.01	<0.01	-	-
p,p'-DDD	0.02 ug/g	-	-	<0.02	<0.02	-	-
DDD	0.02 ug/g	-	-	<0.02	<0.02	-	-
o,p'-DDE	0.01 ug/g	-	-	<0.01	<0.01	-	-
p,p'-DDE	0.01 ug/g	-	-	<0.01	<0.01	-	-
DDE	0.01 ug/g	-	-	<0.01	<0.01	-	-
o,p'-DDT	0.01 ug/g	-	-	<0.01	<0.01	-	-

Client: exp Services Inc. (Ottawa)

Report Date: 13-Jun-2024

Order Date: 6-Jun-2024

Client PO:

	Client ID:	BH24-7 SS1	BH24-7 SS4	BH24-4 SS2	BH24-4 SS6		
	Sample Date:	05-Jun-24 10:00	05-Jun-24 10:00	05-Jun-24 13:00	05-Jun-24 13:00	-	-
	Sample ID:	2423497-05	2423497-06	2423497-07	2423497-08		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Pesticides, OC					•		
p,p'-DDT	0.01 ug/g	-	-	<0.01	<0.01	-	-
DDT	0.01 ug/g	-	-	<0.01	<0.01	-	-
Dieldrin	0.02 ug/g	-	-	<0.02	<0.02	-	-
Endrin	0.02 ug/g	-	-	<0.02	<0.02	-	-
Endosulfan I	0.01 ug/g	-	-	<0.01	<0.01	-	-
Endosulfan II	0.02 ug/g	-	-	<0.02	<0.02	-	-
Endosulfan I/II	0.02 ug/g	-	-	<0.02	<0.02	-	-
Heptachlor	0.01 ug/g	-	-	<0.01	<0.01	-	-
Heptachlor epoxide	0.01 ug/g	-	-	<0.01	<0.01	-	-
Hexachlorobenzene	0.01 ug/g	-	-	<0.01	<0.01	-	-
Hexachlorobutadiene	0.01 ug/g	-	-	<0.01	<0.01	-	-
Hexachloroethane	0.01 ug/g	-	-	<0.01	<0.01	-	-
Methoxychlor	0.01 ug/g	-	-	<0.01	<0.01	-	-
Decachlorobiphenyl	Surrogate	-	-	60.0%	64.4%	-	-

Client: exp Services Inc. (Ottawa)

Report Date: 13-Jun-2024

Order Date: 6-Jun-2024

Client PO:

	Client ID:	BH24-30 SS1	BH24-30 SS5				
	Sample Date:	05-Jun-24 15:30	05-Jun-24 15:30			_	_
	Sample ID:	2423497-09	2423497-10			_	
	Matrix:	Soil	Soil				
	MDL/Units						
Physical Characteristics	<u> </u>				1	<u>l</u>	
% Solids	0.1 % by Wt.	87.4	73.6	-	-	-	-
General Inorganics	•				•	•	
рН	0.05 pH Units	7.22	7.49	-	-	-	-
Metals	•						
Antimony	1.0 ug/g	<1.0	<1.0	-	-	-	-
Arsenic	1.0 ug/g	5.9	3.8	-	-	-	-
Barium	1.0 ug/g	197	158	-	-	-	-
Beryllium	0.5 ug/g	0.5	0.5	-	-	-	-
Boron, available	0.5 ug/g	<0.5	<0.5	-	-	-	-
Boron	5.0 ug/g	<5.0	5.3	-	-	-	-
Cadmium	0.5 ug/g	<0.5	<0.5	-	-	-	-
Chromium	5.0 ug/g	40.7	31.9	-	-	-	-
Chromium (VI)	0.2 ug/g	<0.2	0.2	-	-	-	-
Cobalt	1.0 ug/g	11.2	9.7	-	-	-	-
Copper	5.0 ug/g	17.9	19.3	-	-	-	-
Lead	1.0 ug/g	13.0	5.3	-	-	-	-
Mercury	0.1 ug/g	<0.1	<0.1	-	-	-	-
Molybdenum	1.0 ug/g	2.6	<1.0	-	-	-	-
Nickel	5.0 ug/g	24.9	19.8	-	-	-	-
Selenium	1.0 ug/g	<1.0	<1.0	-	-	-	-
Silver	0.3 ug/g	<0.3	<0.3	-	-	-	-
Thallium	1.0 ug/g	<1.0	<1.0	-	-	-	-
Uranium	1.0 ug/g	<1.0	<1.0	-	-	-	-
Vanadium	10.0 ug/g	41.4	44.0	-	-	-	-
Zinc	20.0 ug/g	51.6	52.9	-	_	-	-

Client: exp Services Inc. (Ottawa)

Report Date: 13-Jun-2024 Order Date: 6-Jun-2024

Project Description: OTT24005069A0

Client PO:

	Client ID:	BH24-30 SS1	BH24-30 SS5				
	Sample Date:	05-Jun-24 15:30	05-Jun-24 15:30			-	-
	Sample ID:	2423497-09	2423497-10				
	Matrix:	Soil	Soil				
	MDL/Units						
Volatiles	•			•	•		•
Benzene	0.02 ug/g	<0.02	<0.02	-	-	-	-
Ethylbenzene	0.05 ug/g	<0.05	<0.05	-	-	-	-
Toluene	0.05 ug/g	<0.05	<0.05	-	-	-	-
m,p-Xylenes	0.05 ug/g	<0.05	<0.05	-	-	-	-
o-Xylene	0.05 ug/g	<0.05	<0.05	-	-	-	-
Xylenes, total	0.05 ug/g	<0.05	<0.05	-	-	-	-
Toluene-d8	Surrogate	115%	122%	-	-	-	-
Hydrocarbons	•						
F1 PHCs (C6-C10)	7 ug/g	<7	<7	-	-	-	-
F2 PHCs (C10-C16)	4 ug/g	<4	<4	-	-	-	-
F3 PHCs (C16-C34)	8 ug/g	<8	<8	-	-	-	-
F4 PHCs (C34-C50)	6 ug/g	<6	<6	-	-	-	-

Client: exp Services Inc. (Ottawa)

Report Date: 13-Jun-2024 Order Date: 6-Jun-2024

Client PO:

Project Description: OTT24005069A0

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons								
F1 PHCs (C6-C10)	ND	7	ug/g					
F2 PHCs (C10-C16)	ND	4	ug/g					
F3 PHCs (C16-C34)	ND	8	ug/g					
F4 PHCs (C34-C50)	ND	6	ug/g					
Metals								
Antimony	ND	1.0	ug/g					
Arsenic	ND	1.0	ug/g					
Barium	ND	1.0	ug/g					
Beryllium	ND	0.5	ug/g					
Boron, available	ND	0.5	ug/g					
Boron	ND	5.0	ug/g					
Cadmium	ND	0.5	ug/g					
Chromium (VI)	ND	0.2	ug/g					
Chromium	ND	5.0	ug/g					
Cobalt	ND	1.0	ug/g					
Copper	ND	5.0	ug/g					
Lead	ND	1.0	ug/g					
Mercury	ND	0.1	ug/g					
Molybdenum	ND	1.0	ug/g					
Nickel	ND	5.0	ug/g					
Selenium	ND	1.0	ug/g					
Silver	ND	0.3	ug/g					
Thallium	ND	1.0	ug/g					
Uranium	ND	1.0	ug/g					
Vanadium	ND	10.0	ug/g					
Zinc	ND	20.0	ug/g					
Pesticides, OC			3-3					
Aldrin	ND	0.01	ug/g					
gamma-BHC (Lindane)	ND	0.01	ug/g					
alpha-Chlordane	ND	0.01	ug/g					
gamma-Chlordane	ND	0.01	ug/g					
Chlordane	ND	0.01	ug/g					

Client: exp Services Inc. (Ottawa)

Report Date: 13-Jun-2024 Order Date: 6-Jun-2024

Project Description: OTT24005069A0

Client PO:

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
o,p'-DDD	ND	0.01	ug/g					
p,p'-DDD	ND	0.02	ug/g					
DDD	ND	0.02	ug/g					
p,p'-DDE	ND	0.01	ug/g					
p,p'-DDE	ND	0.01	ug/g					
DDE	ND	0.01	ug/g					
p,p'-DDT	ND	0.01	ug/g					
p,p'-DDT	ND	0.01	ug/g					
DDT	ND	0.01	ug/g					
Dieldrin	ND	0.02	ug/g					
Endrin	ND	0.02	ug/g					
Endosulfan I	ND	0.01	ug/g					
Endosulfan II	ND	0.02	ug/g					
Endosulfan I/II	ND	0.02	ug/g					
leptachlor	ND	0.01	ug/g					
leptachlor epoxide	ND	0.01	ug/g					
Hexachlorobenzene	ND	0.01	ug/g					
·lexachlorobutadiene	ND	0.01	ug/g					
Hexachloroethane	ND	0.01	ug/g					
Methoxychlor	ND	0.01	ug/g					
Surrogate: Decachlorobiphenyl	0.0718		%	71.8	50-140			
/olatiles								
Benzene	ND	0.02	ug/g					
Ethylbenzene	ND	0.05	ug/g					
oluene	ND	0.05	ug/g					
n,p-Xylenes	ND	0.05	ug/g					
p-Xylene	ND	0.05	ug/g					
Kylenes, total	ND	0.05	ug/g					
Surrogate: Toluene-d8	8.77		%	110	50-140			

Client: exp Services Inc. (Ottawa)

Report Date: 13-Jun-2024

Order Date: 6-Jun-2024

Client PO: Project Description: OTT24005069A0

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics				7.75			0.4	0.0	
pH	7.76	0.05	pH Units	7.75			0.1	2.3	
Hydrocarbons	ND	7	/a	ND			NC	40	
F1 PHCs (C6-C10)	ND	7	ug/g	ND 88			55.1	30	QR-04
F2 PHCs (C10-C16)	155	4	ug/g						QR-04
F3 PHCs (C16-C34)	195	8	ug/g	130 ND			40.1	30	QK-04
F4 PHCs (C34-C50)	ND	6	ug/g	ND			NC	30	
Metals Antimony	ND	4.0	ua/a	ND			NC	30	
Arsenic	ND 3.7	1.0	ug/g	3.6			3.9	30	
Barium		1.0	ug/g	3.6 222			2.3	30	
Beryllium	227	1.0	ug/g	0.6			0.2	30	
Boron, available	0.6	0.5	ug/g	ND			NC	35	
	ND	0.5	ug/g						
Boron	19.7	5.0	ug/g	21.3			7.7	30	
Cadmium	ND	0.5	ug/g	ND			NC	30	
Chromium (VI)	ND	0.2	ug/g	ND			NC	35	
Chromium	19.4	5.0	ug/g	20.7			6.2	30	
Cobalt	13.1	1.0	ug/g	13.6			3.9	30	
Copper	26.9	5.0	ug/g	28.1			4.4	30	
Lead	16.3	1.0	ug/g	18.5			12.3	30	
Mercury	ND	0.1	ug/g	ND			NC	30	
Molybdenum	ND	1.0	ug/g	ND			NC	30	
Nickel	23.0	5.0	ug/g	23.8			3.5	30	
Selenium	ND	1.0	ug/g	ND			NC	30	
Silver	ND	0.3	ug/g	ND			NC	30	
Thallium	ND	1.0	ug/g	ND			NC	30	
Uranium	ND	1.0	ug/g	ND			NC	30	
Vanadium	28.8	10.0	ug/g	30.1			4.4	30	
Zinc	44.8	20.0	ug/g	46.1			2.9	30	
Pesticides, OC									
Aldrin	ND	0.01	ug/g	ND			NC	40	

Client: exp Services Inc. (Ottawa)

Report Date: 13-Jun-2024

Order Date: 6-Jun-2024

Client PO: Project Description: OTT24005069A0

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
gamma-BHC (Lindane)	ND	0.01	ug/g	ND			NC	40	
alpha-Chlordane	ND	0.01	ug/g	ND			NC	40	
gamma-Chlordane	ND	0.01	ug/g	ND			NC	40	
o,p'-DDD	ND	0.01	ug/g	ND			NC	40	
p,p'-DDD	ND	0.02	ug/g	ND			NC	40	
o,p'-DDE	ND	0.01	ug/g	ND			NC	40	
p,p'-DDE	ND	0.01	ug/g	ND			NC	40	
o,p'-DDT	ND	0.01	ug/g	ND			NC	40	
p,p'-DDT	ND	0.01	ug/g	ND			NC	40	
Dieldrin	ND	0.02	ug/g	ND			NC	40	
Endrin	ND	0.02	ug/g	ND			NC	40	
Endosulfan I	ND	0.01	ug/g	ND			NC	40	
Endosulfan II	ND	0.02	ug/g	ND			NC	40	
Heptachlor	ND	0.01	ug/g	ND			NC	40	
Heptachlor epoxide	ND	0.01	ug/g	ND			NC	40	
Hexachlorobenzene	ND	0.01	ug/g	ND			NC	40	
Hexachlorobutadiene	ND	0.01	ug/g	ND			NC	40	
Hexachloroethane	ND	0.01	ug/g	ND			NC	40	
Methoxychlor	ND	0.01	ug/g	ND			NC	40	
Surrogate: Decachlorobiphenyl	0.0768		%		65.0	50-140			
Physical Characteristics % Solids	87.1	0.1	% by Wt.	87.7			0.7	25	
Volatiles									
Benzene	ND	0.02	ug/g	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g	ND			NC	50	
Toluene	ND	0.05	ug/g	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g	ND			NC	50	
o-Xylene	ND	0.05	ug/g	ND			NC	50	
Surrogate: Toluene-d8	10.5		%		115	50-140			

Client: exp Services Inc. (Ottawa)

Report Date: 13-Jun-2024

Order Date: 6-Jun-2024

Client PO: Project Description: OTT24005069A0

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	182	7	ug/g	ND	106	85-115			
F2 PHCs (C10-C16)	244	4	ug/g	88	128	60-140			
F3 PHCs (C16-C34)	510	8	ug/g	130	127	60-140			
F4 PHCs (C34-C50)	197	6	ug/g	ND	104	60-140			
Metals									
Arsenic	52.4	1.0	ug/g	1.4	102	70-130			
Barium	146	1.0	ug/g	88.6	114	70-130			
Beryllium	50.3	0.5	ug/g	ND	100	70-130			
Boron, available	3.54	0.5	ug/g	ND	70.8	70-122			
Boron	56.6	5.0	ug/g	8.5	96.1	70-130			
Cadmium	49.9	0.5	ug/g	ND	99.7	70-130			
Chromium (VI)	4.0	0.2	ug/g	ND	72.5	70-130			
Chromium	62.4	5.0	ug/g	8.3	108	70-130			
Cobalt	57.9	1.0	ug/g	5.4	105	70-130			
Copper	59.0	5.0	ug/g	11.2	95.6	70-130			
Lead	55.6	1.0	ug/g	7.4	96.5	70-130			
Mercury	1.47	0.1	ug/g	ND	98.2	70-130			
Molybdenum	51.4	1.0	ug/g	ND	102	70-130			
Nickel	60.2	5.0	ug/g	9.5	101	70-130			
Selenium	46.1	1.0	ug/g	ND	91.7	70-130			
Silver	44.8	0.3	ug/g	ND	89.6	70-130			
Thallium	47.6	1.0	ug/g	ND	94.9	70-130			
Uranium	49.4	1.0	ug/g	ND	98.4	70-130			
Vanadium	66.9	10.0	ug/g	12.1	110	70-130			
Zinc	63.5	20.0	ug/g	ND	90.0	70-130			
Pesticides, OC									
Aldrin	0.19	0.01	ug/g	ND	80.2	50-140			
gamma-BHC (Lindane)	0.17	0.01	ug/g	ND	70.4	50-140			
alpha-Chlordane	0.20	0.01	ug/g	ND	84.1	50-140			
gamma-Chlordane	0.19	0.01	ug/g	ND	82.3	50-140			

Client: exp Services Inc. (Ottawa)

Report Date: 13-Jun-2024 Order Date: 6-Jun-2024

Client PO:

Project Description: OTT24005069A0

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
o,p'-DDD	0.16	0.01	ug/g	ND	67.1	50-140		Liiiii	
p,p'-DDD	0.20	0.02	ug/g	ND	84.2	50-140			
o,p'-DDE	0.19	0.01	ug/g	ND	82.0	50-140			
p,p'-DDE	0.18	0.01	ug/g	ND	76.0	50-140			
o,p'-DDT	0.13	0.01	ug/g	ND	53.5	50-140			
p,p'-DDT	0.15	0.01	ug/g	ND	62.5	50-140			
Dieldrin	0.18	0.02	ug/g	ND	74.1	50-140			
Endrin	0.15	0.02	ug/g	ND	61.8	50-140			
Endosulfan I	0.20	0.01	ug/g	ND	82.6	50-140			
Endosulfan II	0.19	0.02	ug/g	ND	80.9	50-140			
Heptachlor	0.19	0.01	ug/g	ND	82.1	50-140			
Heptachlor epoxide	0.21	0.01	ug/g	ND	88.7	50-140			
Hexachlorobenzene	0.14	0.01	ug/g	ND	59.7	50-140			
Hexachlorobutadiene	0.27	0.01	ug/g	ND	114	50-140			
Hexachloroethane	0.23	0.01	ug/g	ND	97.6	50-140			
Methoxychlor	0.15	0.01	ug/g	ND	61.5	50-140			
Surrogate: Decachlorobiphenyl	0.0775		%		65.6	50-140			
Volatiles									
Benzene	4.47	0.02	ug/g	ND	112	60-130			
Ethylbenzene	4.60	0.05	ug/g	ND	115	60-130			
Toluene	4.72	0.05	ug/g	ND	118	60-130			
m,p-Xylenes	9.29	0.05	ug/g	ND	116	60-130			
o-Xylene	4.78	0.05	ug/g	ND	120	60-130			
Surrogate: Toluene-d8	7.53		%		94.2	50-140			

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 13-Jun-2024

Order Date: 6-Jun-2024

Project Description: OTT24005069A0

Qualifier Notes:

Client PO:

Login Qualifiers:

Container and COC sample IDs don't match - Sample was labelled BH24-6, SS7 (soil jars) and SS7, BH24-6 (methanol vial); chain of custody reads

BH24-6 SS1.

Applies to Samples: BH24-6 SS1

Sample - F1/BTEX/VOCs (soil) not submitted according to Reg. 153/04, Amended 2011 - not field preserved. Prepared in the lab as directed by

client.

Applies to Samples: BH24-7 SS1, BH24-7 SS4, BH24-4 SS2, BH24-4 SS6, BH24-30 SS1, BH24-30 SS5

QC Qualifiers:

QR-04 Duplicate results exceeds RPD limits due to non-homogeneous matrix.

Sample Data Revisions:

None

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 13-Jun-2024 Order Date: 6-Jun-2024

Client PO: Project Description: OTT24005069A0

Work Order Revisions / Comments:

Client confirmed sample collection times for samples BH24-6 SS1 (14:45), BH24-6 SS3 (14:00), BH24-9 SS2 (10:00), and BH24-9 SS5 (10:45) as per the containers, and not the chain of custody.

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Soil results are reported on a dry weight basis unlesss otherwise noted.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

		n 1	_	_	
Q1	A	RA	()	F	

Paracel Order Number (Lab Use Only)

1173497 N

Chain of Custody (Lab Use Only)

Nº 145424

	LABURATURIES LID.									2900 111									
Client Name: Exp Service	Inc. (ottawa)		Projec	ot Ref.	24-335-	Soil								Page		of			
Chris Kim			Quote	181	24-335-5	9.0						Turnaround Time							
Address: 100-2650 Queens			E-mail Chris. Kimmerly 2 exp. com Shahunaz. Abdel Mohsen 2									☐ 1 day ☐ 3 day ☐ 2 day ☐ Regular							
(613)688-i	899		5	he	What Abde	L Monsen	es es	P .	Cam			Date	Requ	iired: _					
☐ REG 153/04 ☐ REG 406/19	Other Regulation				S (Soil/Sed.) GW (G		8.,							4					
□ Table 1 □ Res/Park □ Med/Fine	☐ REG 558 ☐ PWQO] }	SW (Su	rface '	Water) SS (Storm/Sa	nitary Sewer)					Re	quirec	Anal	ysis					
☐ Table 2 ☐ Ind/Comm ☐ Coarse	☐ CGME ☐ MISA		P (paint A (Air) O (Other)			r)	X					CL V			3	3			
☐ Table 3 ☐ Agri/Other ☐ Table	SU - Sani SU-Storm		ne	Containers	Sample	Taken	F1-F4+BTEX			by ICP				+ Higher.		Sesticides			
For RSC: ☐ Yes ☐ No	☐ Other	×	Air Volume				N.	LO.	60	als b			WS)	metals	I				
Sample ID/Loca	ation Name	Matrix	Air	# of	Date	Time	PHCs	VOCs	PAHS	Metals	Ð	CrV	B (HWS)	meta	Hd	00			
1 BH24-6 S		8		6	June, 44,20	1-00 Pm	V	V						V	V	/			
10 M 54-d 2		+	-	6	June 4,2021	4.00 pm	1							1		V			
BH24- # 5	51,559			9	dunes, 2029	10,00 Gm	1	Ш											
BR74.3	52,556	1		6	June 5, 2029	1.00 Pm									1 2	1			
5 B H24-30 S	51,555	V		4	June 5, 2024	3.30pm	J	V						V	Y				
7									*										
8																			
9							T												
10			П																
Comments:											Meth	od of D	Sivery	1	IV	^	10		
Relinquished By (Sign): Shadings Abdel.	Hohso Received at C	epot.				Received at Leby	0	1 6	24	3	Verific	ed By	から		Λ		V		
Ahamas Abdell	Oate/Time:					Date/Time:	IN		5	h	Date	1	Jur	20	t	08	55		
June 16+4/8,49	QAH Temperature.				1G	Temperatulu	124		-		pH W	riied: [NA						

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

exp Services Inc. (Ottawa)

100-2650 Queensview Dr. Ottawa, ON K2B 8H6

Attn: Chris Kimmerly

Client PO:

Project: OTT24005069A0

Custody: 145423

Report Date: 17-Jun-2024

Order Date: 11-Jun-2024

Order #: 2424259

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2424259-01	BH24-17 SS1
2424259-02	BH24-17 SS4
2424259-03	BH24-14 SS1
2424259-04	BH24-14 SS9

Approved By:

Mark Froto

Mark Foto, M.Sc.

Report Date: 17-Jun-2024 Certificate of Analysis Client: exp Services Inc. (Ottawa)

Order Date: 11-Jun-2024

Client PO: Project Description: OTT24005069A0

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Boron, available	MOE (HWE), EPA 200.8 - ICP-MS	13-Jun-24	13-Jun-24
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	12-Jun-24	12-Jun-24
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	13-Jun-24	13-Jun-24
Mercury by CVAA	EPA 7471B - CVAA, digestion	14-Jun-24	14-Jun-24
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	17-Jun-24	17-Jun-24
PHC F1	CWS Tier 1 - P&T GC-FID	12-Jun-24	12-Jun-24
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	13-Jun-24	15-Jun-24
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	14-Jun-24	14-Jun-24
Solids, %	CWS Tier 1 - Gravimetric	13-Jun-24	14-Jun-24

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 17-Jun-2024

Order Date: 11-Jun-2024

Client PO: Project Description: OTT24005069A0

	Client ID:	BH24-17 SS1	BH24-17 SS4	BH24-14 SS1	BH24-14 SS9		
	Sample Date:	07-Jun-24 09:00	07-Jun-24 09:30	07-Jun-24 10:00	07-Jun-24 10:30	-	-
	Sample ID:	2424259-01	2424259-02	2424259-03	2424259-04		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Physical Characteristics			•	•	•	•	
% Solids	0.1 % by Wt.	71.9	63.5	71.2	72.1	-	-
General Inorganics				•			
рН	0.05 pH Units	6.88	7.40	6.82	7.54	-	-
Metals							
Antimony	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Arsenic	1.0 ug/g	4.3	6.0	5.4	2.7	-	-
Barium	1.0 ug/g	250	243	238	125	-	-
Beryllium	0.5 ug/g	0.9	1.0	1.2	<0.5	-	-
Boron, available	0.5 ug/g	<0.5	<0.5	<0.5	<0.5	-	-
Boron	5.0 ug/g	5.8	12.3	9.9	<5.0	-	-
Cadmium	0.5 ug/g	<0.5	<0.5	<0.5	<0.5	-	-
Chromium (VI)	0.2 ug/g	<0.2	<0.2	1.1	<0.2	-	-
Chromium	5.0 ug/g	78.6	65.7	96.4	26.4	-	-
Cobalt	1.0 ug/g	16.1	21.2	21.3	7.8	-	-
Copper	5.0 ug/g	31.3	34.9	37.9	18.6	-	-
Lead	1.0 ug/g	8.9	8.3	10.0	4.5	-	-
Mercury	0.1 ug/g	<0.1	<0.1	<0.1	<0.1	-	-
Molybdenum	1.0 ug/g	<1.0	2.5	<1.0	1.2	-	-
Nickel	5.0 ug/g	38.7	40.1	50.7	15.4	-	-
Selenium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Silver	0.3 ug/g	<0.3	<0.3	<0.3	<0.3	-	-
Thallium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Uranium	1.0 ug/g	<1.0	5.4	<1.0	<1.0	-	-
Vanadium	10.0 ug/g	81.1	82.0	85.2	44.2	-	-
Zinc	20.0 ug/g	100	98.7	99.5	36.7	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 17-Jun-2024

Order Date: 11-Jun-2024

Client PO: Project Description: OTT24005069A0

	Client ID:	BH24-17 SS1	BH24-17 SS4	BH24-14 SS1	BH24-14 SS9		
	Sample Date:	07-Jun-24 09:00	07-Jun-24 09:30	07-Jun-24 10:00	07-Jun-24 10:30	-	-
	Sample ID:	2424259-01	2424259-02	2424259-03	2424259-04		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Volatiles					•	-	•
Benzene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
Ethylbenzene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Toluene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
m,p-Xylenes	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Xylenes, total	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Toluene-d8	Surrogate	117%	119%	117%	118%	-	-
Hydrocarbons							
F1 PHCs (C6-C10)	7 ug/g	<7	<7	<7	<7	-	-
F2 PHCs (C10-C16)	4 ug/g	<4	<4	<4	<4	-	-
F3 PHCs (C16-C34)	8 ug/g	<8	<8	<8	<8	-	-
F4 PHCs (C34-C50)	6 ug/g	<6	<6	<6	<6	-	-

Client: exp Services Inc. (Ottawa)

Order #: 2424259

Certificate of Analysis

Report Date: 17-Jun-2024 Order Date: 11-Jun-2024

Client PO: Project Description: OTT24005069A0

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons								
F1 PHCs (C6-C10)	ND	7	ug/g					
F2 PHCs (C10-C16)	ND	4	ug/g					
F3 PHCs (C16-C34)	ND	8	ug/g					
F4 PHCs (C34-C50)	ND	6	ug/g					
Metals								
Antimony	ND	1.0	ug/g					
Arsenic	ND	1.0	ug/g					
Barium	ND	1.0	ug/g					
Beryllium	ND	0.5	ug/g					
Boron, available	ND	0.5	ug/g					
Boron	ND	5.0	ug/g					
Cadmium	ND	0.5	ug/g					
Chromium (VI)	ND	0.2	ug/g					
Chromium	ND	5.0	ug/g					
Cobalt	ND	1.0	ug/g					
Copper	ND	5.0	ug/g					
Lead	ND	1.0	ug/g					
Mercury	ND	0.1	ug/g					
Molybdenum	ND	1.0	ug/g					
Nickel	ND	5.0	ug/g					
Selenium	ND	1.0	ug/g					
Silver	ND	0.3	ug/g					
Thallium	ND	1.0	ug/g					
Uranium	ND	1.0	ug/g					
Vanadium	ND	10.0	ug/g					
Zinc	ND	20.0	ug/g					
Volatiles			0.0					
Benzene	ND	0.02	ug/g					
Ethylbenzene	ND	0.05	ug/g					
Toluene	ND	0.05	ug/g					
m,p-Xylenes	ND	0.05	ug/g					
o-Xylene	ND	0.05	ug/g					

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 17-Jun-2024

Order Date: 11-Jun-2024

Client PO: Project Description: OTT24005069A0

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Xylenes, total	ND	0.05	ug/g					
Surrogate: Toluene-d8	8.02		%	100	50-140			

Report Date: 17-Jun-2024

Order Date: 11-Jun-2024

Project Description: OTT24005069A0

Certificate of Analysis Client: exp Services Inc. (Ottawa)

Client PO:

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
pH	7.02	0.05	pH Units	7.07			0.7	2.3	
Hydrocarbons		_	,	ND			NO	40	
F1 PHCs (C6-C10)	ND	7	ug/g	ND			NC	40	
F2 PHCs (C10-C16)	ND	4	ug/g	ND			NC	30	
F3 PHCs (C16-C34)	ND	8	ug/g	ND			NC	30	
F4 PHCs (C34-C50)	ND	6	ug/g	ND			NC	30	
Metals									
Antimony	ND	1.0	ug/g	ND			NC	30	
Arsenic	3.8	1.0	ug/g	3.7			2.2	30	
Barium	157	1.0	ug/g	166			5.8	30	
Beryllium	0.7	0.5	ug/g	0.7			9.6	30	
Boron, available	0.76	0.5	ug/g	0.83			8.9	35	
Boron	5.7	5.0	ug/g	5.9			2.2	30	
Cadmium	ND	0.5	ug/g	ND			NC	30	
Chromium (VI)	ND	0.2	ug/g	ND			NC	35	
Chromium	41.3	5.0	ug/g	45.5			9.6	30	
Cobalt	11.8	1.0	ug/g	13.2			11.2	30	
Copper	22.1	5.0	ug/g	24.8			11.2	30	
Lead	8.4	1.0	ug/g	8.4			0.1	30	
Mercury	ND	0.1	ug/g	ND			NC	30	
Molybdenum	ND	1.0	ug/g	ND			NC	30	
Nickel	24.0	5.0	ug/g	26.5			10.1	30	
Selenium	ND	1.0	ug/g	ND			NC	30	
Silver	ND	0.3	ug/g	ND			NC	30	
Thallium	ND	1.0	ug/g	ND			NC	30	
Uranium	ND	1.0	ug/g	ND			NC	30	
Vanadium	52.5	10.0	ug/g	59.0			11.7	30	
Zinc	69.0	20.0	ug/g	76.8			10.7	30	
Physical Characteristics									
% Solids	72.4	0.1	% by Wt.	71.9			8.0	25	

Project Description: OTT24005069A0

Report Date: 17-Jun-2024

Order Date: 11-Jun-2024

Certificate of Analysis Client: exp Services Inc. (Ottawa)

Client PO:

Method Quality Control: Duplicate

incured duality control 2 apricate									
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Volatiles									
Benzene	ND	0.02	ug/g	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g	ND			NC	50	
Toluene	ND	0.05	ug/g	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g	ND			NC	50	
o-Xylene	ND	0.05	ug/g	ND			NC	50	
Surrogate: Toluene-d8	8.01		%		100	50-140			

Client PO:

Order #: 2424259

Report Date: 17-Jun-2024

Order Date: 11-Jun-2024

Project Description: OTT24005069A0

Client: exp Services Inc. (Ottawa)

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	198	7	ug/g	ND	99.0	85-115			
F2 PHCs (C10-C16)	86	4	ug/g	ND	81.3	60-140			
F3 PHCs (C16-C34)	232	8	ug/g	ND	88.8	60-140			
F4 PHCs (C34-C50)	145	6	ug/g	ND	87.9	60-140			
Metals									
Arsenic	48.0	1.0	ug/g	1.5	92.9	70-130			
Barium	67.1	1.0	ug/g	20.3	93.6	70-130			
Beryllium	48.3	0.5	ug/g	ND	96.1	70-130			
Boron, available	4.36	0.5	ug/g	0.83	70.5	70-122			
Boron	47.5	5.0	ug/g	ND	90.3	70-130			
Cadmium	44.1	0.5	ug/g	ND	88.2	70-130			
Chromium (VI)	0.2	0.2	ug/g	ND	78.5	70-130			
Chromium	65.1	5.0	ug/g	18.2	93.8	70-130			
Cobalt	51.8	1.0	ug/g	5.3	93.1	70-130			
Copper	53.0	5.0	ug/g	9.9	86.2	70-130			
∟ead	51.2	1.0	ug/g	3.4	95.7	70-130			
Mercury	1.50	0.1	ug/g	ND	99.8	70-130			
Molybdenum	47.2	1.0	ug/g	ND	93.9	70-130			
Nickel	55.5	5.0	ug/g	10.6	89.8	70-130			
Selenium	46.6	1.0	ug/g	ND	92.9	70-130			
Silver	38.1	0.3	ug/g	ND	76.2	70-130			
Γhallium	45.9	1.0	ug/g	ND	91.5	70-130			
Jranium	50.5	1.0	ug/g	ND	100	70-130			
/anadium	69.7	10.0	ug/g	23.6	92.2	70-130			
Zinc	71.9	20.0	ug/g	30.7	82.3	70-130			
/olatiles									
Benzene	4.47	0.02	ug/g	ND	112	60-130			
Ethylbenzene	4.23	0.05	ug/g	ND	106	60-130			
Toluene	4.11	0.05	ug/g	ND	103	60-130			
n,p-Xylenes	8.57	0.05	ug/g	ND	107	60-130			

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 17-Jun-2024

Order Date: 11-Jun-2024

Project Description: OTT24005069A0

Client PO:

Method Quality Control: Spike %REC RPD Reporting Source Analyte RPD Notes Result Units %REC Limit Result Limit Limit o-Xylene 4.10 0.05 ug/g ND 102 60-130 Surrogate: Toluene-d8 8.03 % 100 50-140

Client: exp Services Inc. (Ottawa)

Order #: 2424259

Report Date: 17-Jun-2024

Order Date: 11-Jun-2024

Project Description: OTT24005069A0

Certificate of Analysis

Client PO:

Qualifier Notes:

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Soil results are reported on a dry weight basis unlesss otherwise noted.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

GPARACEI III

LABORATORIES LTI

Paracel ID: 2424259		Paracel Order Number (Lab Use Only)	С	hain of Custody (Lab Use Only)
	ım	2424257	Nº	145423
postorina.		0		

Client Name: EXP Service	ceInc.		Projec	t Ret:		01001							Page of					
Contact Name Chris Icmn	nerly				4-335-50								Turna	round	i Time			
Address: 100, 2650 Qv06 0 N 1 Telephone: 613 - 688-		wa	E-mail	Ch	- 240050 ris. kimmer na Z-Abdel	569-AO Ly Dexp.com [Mohsen Dexp.com						☐ 1 day ☐ 3 day ☐ 2 day ☐ Regula ☐ Date Required:						
☐ REG 153/04 ☐ REG 406/19	Other Regulation			U	0.0000000000000000000000000000000000000	Innow will be and						Date	rioquirous_					
Table 1	REG 558 PWQO	1 8		rface V	S (Soil/Sed.) GW (Gr Vater) SS (Storm/Sar paint A (Air) O (Othe	itary Sewer)	×	e ide			Red	quired	Analysis					
☐ Table 3 ☐ Agri/Other ☐ Table For RSC: ☐ Yes ☐ No	SU - Sani SU-Storm Mun:	×	Matrix Air Volume # of Containers and a page			Taken	s F1-F4+BTEX	40	0	Metals by ICP			NS) Tr. LS+Hyli neToli		Н			
Sample ID/Loca	ation Name	Date 9 2 June 7, 2024				Time	PHCs	VOCs	PAHs	Meta	n I	CrZ	B (HWS)	4				
1 BH24-17 S	351					9.00 cm	1						J	V				
2 BH24-17 S 3 BH24-14 S 4 BH24-14 S	55 1				9:50 am 10:00 am 10:30 am	1						4		2				
7	,								-							-		
8	-	H		-								-				-		
9															46			
10																		
Comments:											Meth	ed of D	Droll	130	1			
Palmquished By (Sign): Ahayne Abda Palinquished By (Print) Shayna Data/Firne:	Au Received at D	Depot:	W		410 41	Record Lab	=	1	2 -		1000	ed By.	2	1.0		Inc		
Date/Time: June (oth 201) Chain of Custody (Env) xlsx	RADDELLAS DE TEMPERATURE	rg.				Junil 24759 Temperature 7.3				pHV	Date-Tilly 1/30/4/75\							

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

exp Services Inc. (Ottawa)

100-2650 Queensview Dr. Ottawa, ON K2B 8H6

Attn: Chris Kimmerly

Client PO:

Project: OTT24005069A0

Custody: 144220

Report Date: 18-Jun-2024

Order Date: 13-Jun-2024

Order #: 2424462

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2424462-01	BH24-22 SS2
2424462-02	BH24-22 SS8
2424462-03	BH24-25 SS1
2424462-04	BH24-25 SS7
2424462-05	BH24-27 SS1
2424462-06	BH24-27 SS6

Approved By:

Mark Froto

Mark Foto, M.Sc.

Lab Supervisor

Client: exp Services Inc. (Ottawa)

Report Date: 18-Jun-2024

Order Date: 13-Jun-2024

Client PO: Project Description: OTT24005069A0

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Boron, available	MOE (HWE), EPA 200.8 - ICP-MS	14-Jun-24	14-Jun-24
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	14-Jun-24	14-Jun-24
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	14-Jun-24	17-Jun-24
Mercury by CVAA	EPA 7471B - CVAA, digestion	17-Jun-24	17-Jun-24
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	18-Jun-24	18-Jun-24
PHC F1	CWS Tier 1 - P&T GC-FID	14-Jun-24	14-Jun-24
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	13-Jun-24	15-Jun-24
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	17-Jun-24	17-Jun-24
Solids, %	CWS Tier 1 - Gravimetric	17-Jun-24	18-Jun-24

Client: exp Services Inc. (Ottawa)

Report Date: 18-Jun-2024

Order Date: 13-Jun-2024

Client PO:

	Client ID:	BH24-22 SS2	BH24-22 SS8	BH24-25 SS1	BH24-25 SS7		
	Sample Date:	07-Jun-24 15:00	10-Jun-24 09:00	11-Jun-24 09:00	11-Jun-24 09:30	-	-
	Sample ID:	2424462-01	2424462-02	2424462-03	2424462-04		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Physical Characteristics			•		•		
% Solids	0.1 % by Wt.	69.1	65.9	74.9	61.0	-	-
General Inorganics							
рН	0.05 pH Units	6.76	6.85	6.78	7.10	-	-
Metals							
Antimony	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Arsenic	1.0 ug/g	3.6	2.1	2.9	2.0	-	-
Barium	1.0 ug/g	181	119	157	260	-	-
Beryllium	0.5 ug/g	1.0	<0.5	0.7	0.8	-	-
Boron, available	0.5 ug/g	<0.5	<0.5	<0.5	<0.5	-	-
Boron	5.0 ug/g	9.2	5.1	7.4	6.2	-	-
Cadmium	0.5 ug/g	<0.5	<0.5	<0.5	<0.5	-	-
Chromium (VI)	0.2 ug/g	0.9	<0.2	<0.2	<0.2	-	-
Chromium	5.0 ug/g	87.2	34.6	56.3	66.9	-	-
Cobalt	1.0 ug/g	16.1	9.3	12.6	17.0	-	-
Copper	5.0 ug/g	40.7	21.0	21.9	32.3	-	-
Lead	1.0 ug/g	7.3	3.8	7.5	5.0	-	-
Mercury	0.1 ug/g	<0.1	<0.1	<0.1	<0.1	-	-
Molybdenum	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Nickel	5.0 ug/g	45.2	18.7	28.1	36.7	-	-
Selenium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Silver	0.3 ug/g	<0.3	<0.3	<0.3	<0.3	-	-
Thallium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Uranium	1.0 ug/g	<1.0	1.2	1.3	<1.0	-	-
Vanadium	10.0 ug/g	76.8	57.4	58.8	88.6	-	-
Zinc	20.0 ug/g	86.0	47.2	68.6	96.9	-	-

Client: exp Services Inc. (Ottawa)

Report Date: 18-Jun-2024

Order Date: 13-Jun-2024

Client PO: Project Description: OTT24005069A0

	Client ID:	BH24-22 SS2	BH24-22 SS8	BH24-25 SS1	BH24-25 SS7		
	Sample Date:	07-Jun-24 15:00	10-Jun-24 09:00	11-Jun-24 09:00	11-Jun-24 09:30	-	-
	Sample ID:	2424462-01	2424462-02	2424462-03	2424462-04		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Volatiles	•		-	•			
Benzene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
Ethylbenzene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Toluene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
m,p-Xylenes	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Xylenes, total	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Toluene-d8	Surrogate	120%	133%	119%	126%	-	-
Hydrocarbons						-	
F1 PHCs (C6-C10)	7 ug/g	<7	<7	<7	<7	-	-
F2 PHCs (C10-C16)	4 ug/g	<4	<4	<4	<4	-	-
F3 PHCs (C16-C34)	8 ug/g	<8	<8	23 [1]	<8	-	-
F4 PHCs (C34-C50)	6 ug/g	<6	<6	25	<6	-	-

Client: exp Services Inc. (Ottawa)

Report Date: 18-Jun-2024 Order Date: 13-Jun-2024

Project Description: OTT24005069A0

Client PO:

	Client ID:	BH24-27 SS1	BH24-27 SS6				
	Sample Date:	10-Jun-24 14:00	10-Jun-24 14:30			-	-
	Sample ID:	2424462-05	2424462-06				
	Matrix:	Soil	Soil				
	MDL/Units						
Physical Characteristics				!			
% Solids	0.1 % by Wt.	71.4	61.9	-	-	-	-
General Inorganics	•						
рН	0.05 pH Units	7.12	7.13	-	-	-	-
Metals							
Antimony	1.0 ug/g	<1.0	<1.0	-	-	-	-
Arsenic	1.0 ug/g	4.9	2.5	-	-	-	-
Barium	1.0 ug/g	191	283	-	-	-	-
Beryllium	0.5 ug/g	1.3	0.7	-	-	-	-
Boron, available	0.5 ug/g	<0.5	<0.5	-	-	-	-
Boron	5.0 ug/g	15.2	6.0	-	-	-	-
Cadmium	0.5 ug/g	<0.5	<0.5	-	-	-	-
Chromium	5.0 ug/g	102	73.0	-	-	-	-
Chromium (VI)	0.2 ug/g	0.9	<0.2	-	-	-	-
Cobalt	1.0 ug/g	19.2	17.6	-	-	-	-
Copper	5.0 ug/g	43.3	32.2	-	-	-	-
Lead	1.0 ug/g	8.2	4.8	-	-	-	-
Mercury	0.1 ug/g	<0.1	<0.1	-	-	-	-
Molybdenum	1.0 ug/g	<1.0	<1.0	-	-	-	-
Nickel	5.0 ug/g	53.7	39.0	-	-	-	-
Selenium	1.0 ug/g	<1.0	<1.0	-	-	-	-
Silver	0.3 ug/g	<0.3	<0.3	-	-	-	-
Thallium	1.0 ug/g	<1.0	<1.0	-	-	-	-
Uranium	1.0 ug/g	<1.0	1.1	-	-	-	-
Vanadium	10.0 ug/g	93.8	90.0	-	-	-	-
Zinc	20.0 ug/g	89.2	96.0	-	-	-	-

Client: exp Services Inc. (Ottawa)

Report Date: 18-Jun-2024

Order Date: 13-Jun-2024

Client PO: Project Description: OTT24005069A0

	Client ID:	BH24-27 SS1	BH24-27 SS6				
	Sample Date:	10-Jun-24 14:00	10-Jun-24 14:30			-	-
	Sample ID:	2424462-05	2424462-06				
	Matrix:	Soil	Soil				
	MDL/Units						
Volatiles	•			•	•		•
Benzene	0.02 ug/g	<0.02	<0.02	-	-	-	-
Ethylbenzene	0.05 ug/g	<0.05	<0.05	-	-	-	-
Toluene	0.05 ug/g	<0.05	<0.05	-	-	-	-
m,p-Xylenes	0.05 ug/g	<0.05	<0.05	-	-	-	-
o-Xylene	0.05 ug/g	<0.05	<0.05	-	-	-	-
Xylenes, total	0.05 ug/g	<0.05	<0.05	-	-	-	-
Toluene-d8	Surrogate	123%	134%	-	-	-	-
Hydrocarbons							
F1 PHCs (C6-C10)	7 ug/g	<7	<7	-	-	-	-
F2 PHCs (C10-C16)	4 ug/g	<4	<4	-	-	-	-
F3 PHCs (C16-C34)	8 ug/g	<8	<8	-	-	-	-
F4 PHCs (C34-C50)	6 ug/g	<6	<6	-	-	-	-

Client: exp Services Inc. (Ottawa)

Report Date: 18-Jun-2024

Order Date: 13-Jun-2024

Client PO: Project Description: OTT24005069A0

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons								
F1 PHCs (C6-C10)	ND	7	ug/g					
F2 PHCs (C10-C16)	ND	4	ug/g					
F3 PHCs (C16-C34)	ND	8	ug/g					
F4 PHCs (C34-C50)	ND	6	ug/g					
Metals								
Antimony	ND	1.0	ug/g					
Arsenic	ND	1.0	ug/g					
Barium	ND	1.0	ug/g					
Beryllium	ND	0.5	ug/g					
Boron, available	ND	0.5	ug/g					
Boron	ND	5.0	ug/g					
Cadmium	ND	0.5	ug/g					
Chromium (VI)	ND	0.2	ug/g					
Chromium	ND	5.0	ug/g					
Cobalt	ND	1.0	ug/g					
Copper	ND	5.0	ug/g					
Lead	ND	1.0	ug/g					
Mercury	ND	0.1	ug/g					
Molybdenum	ND	1.0	ug/g					
Nickel	ND	5.0	ug/g					
Selenium	ND	1.0	ug/g					
Silver	ND	0.3	ug/g					
Thallium	ND	1.0	ug/g					
Uranium	ND	1.0	ug/g					
Vanadium	ND	10.0	ug/g					
Zinc	ND	20.0	ug/g					
Volatiles								
Benzene	ND	0.02	ug/g					
Ethylbenzene	ND	0.05	ug/g					
Toluene	ND	0.05	ug/g					
m,p-Xylenes	ND	0.05	ug/g					
o-Xylene	ND	0.05	ug/g					

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 18-Jun-2024

Order Date: 13-Jun-2024

Project Description: OTT24005069A0

Client PO:

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Xylenes, total	ND	0.05	ug/g					
Surrogate: Toluene-d8	8.56		%	107	50-140			

Client PO:

Client: exp Services Inc. (Ottawa)

Report Date: 18-Jun-2024

Order Date: 13-Jun-2024

Project Description: OTT24005069A0

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
pH	6.98	0.05	pH Units	6.93			0.7	2.3	
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g	ND			NC	40	
F2 PHCs (C10-C16)	ND	4	ug/g	ND			NC	30	
F3 PHCs (C16-C34)	ND	8	ug/g	ND			NC	30	
F4 PHCs (C34-C50)	ND	6	ug/g	ND			NC	30	
Metals									
Antimony	ND	1.0	ug/g	ND			NC	30	
Arsenic	2.9	1.0	ug/g	3.1			6.9	30	
Barium	47.6	1.0	ug/g	51.8			8.4	30	
Beryllium	ND	0.5	ug/g	ND			NC	30	
Boron, available	ND	0.5	ug/g	ND			NC	35	
Boron	5.7	5.0	ug/g	6.6			13.8	30	
Cadmium	ND	0.5	ug/g	ND			NC	30	
Chromium (VI)	ND	0.2	ug/g	ND			NC	35	
Chromium	17.2	5.0	ug/g	18.9			9.8	30	
Cobalt	5.8	1.0	ug/g	5.8			8.0	30	
Copper	11.0	5.0	ug/g	11.4			3.3	30	
Lead	7.1	1.0	ug/g	6.7			6.2	30	
Mercury	ND	0.1	ug/g	ND			NC	30	
Molybdenum	ND	1.0	ug/g	ND			NC	30	
Nickel	11.7	5.0	ug/g	12.5			6.3	30	
Selenium	ND	1.0	ug/g	ND			NC	30	
Silver	ND	0.3	ug/g	ND			NC	30	
Thallium	ND	1.0	ug/g	ND			NC	30	
Uranium	ND	1.0	ug/g	ND			NC	30	
Vanadium	25.0	10.0	ug/g	27.7			10.5	30	
Zinc	ND	20.0	ug/g	ND			NC	30	
Physical Characteristics									
% Solids	69.5	0.1	% by Wt.	69.1			0.6	25	

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 18-Jun-2024

Order Date: 13-Jun-2024

Project Description: OTT24005069A0

Client PO:

Method Quality Control: Duplicate

mountain quantity control on a apricate									
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Volatiles									
Benzene	ND	0.02	ug/g	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g	ND			NC	50	
Toluene	ND	0.05	ug/g	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g	ND			NC	50	
o-Xylene	ND	0.05	ug/g	ND			NC	50	
Surrogate: Toluene-d8	9.32		%		110	50-140			

Client PO:

Client: exp Services Inc. (Ottawa)

Report Date: 18-Jun-2024

Order Date: 13-Jun-2024

Project Description: OTT24005069A0

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	193	7	ug/g	ND	96.6	85-115			
F2 PHCs (C10-C16)	104	4	ug/g	ND	80.8	60-140			
F3 PHCs (C16-C34)	297	8	ug/g	ND	93.7	60-140			
F4 PHCs (C34-C50)	167	6	ug/g	ND	83.1	60-140			
Metals									
Arsenic	45.9	1.0	ug/g	1.2	89.4	70-130			
Barium	57.4	1.0	ug/g	20.7	73.4	70-130			
Beryllium	48.9	0.5	ug/g	ND	97.5	70-130			
Boron, available	3.71	0.5	ug/g	ND	74.3	70-122			
Boron	47.6	5.0	ug/g	ND	90.0	70-130			
Cadmium	40.1	0.5	ug/g	ND	80.1	70-130			
Chromium (VI)	0.2	0.2	ug/g	ND	80.0	70-130			
Chromium	55.5	5.0	ug/g	7.6	95.8	70-130			
Cobalt	49.3	1.0	ug/g	2.3	94.0	70-130			
Copper	48.6	5.0	ug/g	ND	88.1	70-130			
Lead	46.7	1.0	ug/g	2.7	88.1	70-130			
Mercury	1.57	0.1	ug/g	ND	105	70-130			
Molybdenum	43.4	1.0	ug/g	ND	86.3	70-130			
Nickel	50.6	5.0	ug/g	5.0	91.3	70-130			
Selenium	44.5	1.0	ug/g	ND	88.8	70-130			
Silver	40.8	0.3	ug/g	ND	81.6	70-130			
Thallium	41.6	1.0	ug/g	ND	83.0	70-130			
Uranium	53.4	1.0	ug/g	ND	106	70-130			
Vanadium	59.1	10.0	ug/g	11.1	96.1	70-130			
Zinc	49.2	20.0	ug/g	ND	83.6	70-130			
Volatiles									
Benzene	3.96	0.02	ug/g	ND	99.0	60-130			
Ethylbenzene	3.85	0.05	ug/g	ND	96.2	60-130			
Toluene	3.97	0.05	ug/g	ND	99.4	60-130			
m,p-Xylenes	6.88	0.05	ug/g	ND	86.0	60-130			

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 18-Jun-2024

Order Date: 13-Jun-2024

Client PO: Project Description: OTT24005069A0

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
o-Xylene	3.47	0.05	ug/g	ND	86.7	60-130			
Surrogate: Toluene-d8	7.78		%		97.2	50-140			

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 18-Jun-2024

Order Date: 13-Jun-2024

Project Description: OTT24005069A0

Qualifier Notes:

Client PO:

Sample Qualifiers:

 Some peak(s) in the GC-FID Chromatogram are not typical of petroleum hydrocarbon distillates. May be the result of high concentrations of non-mineral based compounds not completely removed by the method cleanup. Results may be biased high.
 Applies to Samples: BH24-25 SS1

Sample Data Revisions:

None

Certificate of Analysis

Report Date: 18-Jun-2024 Client: exp Services Inc. (Ottawa)

Order Date: 13-Jun-2024

Client PO: Project Description: OTT24005069A0

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Soil results are reported on a dry weight basis unlesss otherwise noted.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Blvd. 4J8

Paracel Order Number (Lab Use Only)

Chain of Custody (Lab Use Only)

14741112

Nº 144220

Client Name: EXP Service	co 7 m/.		Project Ret.														
ontact Name: 01	ELIC		Quot	934.027										Pag	geo	f	
ontact Name: Chris Icimi ddress: 100/2650 Qu OTTowa 10N:	nerly leens view or.		PO# 04-335-506 PO# 04-24005069-A0 E-mail: Chris-Kimmer y @ exp. com Shahyna Z-Abdel Mohsen @ Kexp. com									Turnaround Time ☐ 1 day ☐ 3 day					
613-688-1	899										☐ 2 day a☐ Regular Date Required:						
REG 153/04 REG 406/19	Other Regulation							0-1-1-1			50.00	Date	incup	uncu			
Table 1 Res/Park Med/Fine	☐ REG 558 ☐ PWQO		Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS (Storm/Sanitary Sewer) Requ					quired	ulred Analysis								
Table 2 Ind/Comm Coarse	☐ CCME ☐ MISA				paint A (Air) O (Other	(her)								4			
Table 3 Agri/Other Table	☐ SU - Sani ☐ SU-Storm		s e l			Taken	F1-F4+BTEX			by ICP					+ Hydr.		
For RSC: Yes No	☐ Other	×	Air Volume	Cont	63770036		Ē.			s by			(3)		3 50		
Sample ID/Location Name		Matrix	Air V	jo #	Date	Time	PHCs	VOCs	PAHS	Metals t	E E	Crvs	B (HWS)	T	é		
BH24-22 BH24-25 BH24-25 BH24-25	558 551 557	5		2	June 7,200 June 10,200 June 11,200 June 10,200 June 10,200	9:00am 9:00am 9:30am	Y							1			
BH24-27	556	7		1	In 10/2009		V							1	Y		
		-		-													
nments:											Metho	od of D	elivery,	12	0	FINE S	
inclushed By Signs: Abdely	Fiscerved at I	Depot;	X	T		Received					Vente	d By	Sport I	P	504		
Shaky na Z Abdelush m., Date/Time:			Cate Vince 12 a					2 2 14 0M) Date/T				T ne	15) =	2	111/1	
arTime: Temperature. Temperature.			Temperature 30 1980 pH Veri						med: E	Je By	1	1700	DJ 7 1159				

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

exp Services Inc. (Ottawa)

100-2650 Queensview Dr. Ottawa, ON K2B 8H6

Attn: Chris Kimmerly

Client PO: OTT24005069A0

Project: OTT24005069A0

Custody: 144273

Report Date: 24-Jun-2024

Order Date: 18-Jun-2024

Order #: 2425136

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID

2425136-01 BH24-3 SS2 2425136-02 BH24-3 SS9

Approved By:

Mark Froto

Mark Foto, M.Sc.

Lab Supervisor

Report Date: 24-Jun-2024

Order Date: 18-Jun-2024

Project Description: OTT24005069A0

Client: exp Services Inc. (Ottawa) Client PO: OTT24005069A0

Certificate of Analysis

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Boron, available	MOE (HWE), EPA 200.8 - ICP-MS	19-Jun-24	19-Jun-24
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	20-Jun-24	21-Jun-24
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	19-Jun-24	19-Jun-24
Mercury by CVAA	EPA 7471B - CVAA, digestion	19-Jun-24	20-Jun-24
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	20-Jun-24	20-Jun-24
PHC F1	CWS Tier 1 - P&T GC-FID	20-Jun-24	21-Jun-24
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	19-Jun-24	19-Jun-24
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	19-Jun-24	19-Jun-24
Solids, %	CWS Tier 1 - Gravimetric	20-Jun-24	21-Jun-24

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 24-Jun-2024 Order Date: 18-Jun-2024

0.40. Date. 10 04.1 202

Project Description: OTT24005069A0

Client PO: OTT24005069A0

	Client ID:	BH24-3 SS2	BH24-3 SS9	-	-		
	Sample Date:	13-Jun-24 03:00	13-Jun-24 03:30	-	-	-	-
	Sample ID:	2425136-01	2425136-02	-	-		
	Matrix:	Soil	Soil	-	-		
	MDL/Units						
Physical Characteristics							
% Solids	0.1 % by Wt.	75.9	81.6	-	-	-	-
General Inorganics							
рН	0.05 pH Units	7.00	7.28	-	-	-	-
Metals				-	-		
Antimony	1.0 ug/g	<1.0	<1.0	-	-	-	-
Arsenic	1.0 ug/g	2.6	2.1	-	-	-	-
Barium	1.0 ug/g	89.8	78.8	-	-	-	-
Beryllium	0.5 ug/g	<0.5	<0.5	-	-	-	-
Boron, available	0.5 ug/g	<0.5	<0.5	-	-	-	-
Boron	5.0 ug/g	<5.0	<5.0	-	-	-	-
Cadmium	0.5 ug/g	<0.5	<0.5	-	-	-	-
Chromium (VI)	0.2 ug/g	0.3	<0.2	-	-	-	-
Chromium	5.0 ug/g	23.0	13.1	-	-	-	-
Cobalt	1.0 ug/g	5.6	4.5	-	-	-	-
Copper	5.0 ug/g	13.3	11.1	-	-	-	-
Lead	1.0 ug/g	3.3	5.7	-	-	-	-
Mercury	0.1 ug/g	<0.1	<0.1	-	-	-	-
Molybdenum	1.0 ug/g	<1.0	<1.0	-	-	-	-
Nickel	5.0 ug/g	12.1	8.7	-	-	-	-
Selenium	1.0 ug/g	<1.0	<1.0	-	-	-	-
Silver	0.3 ug/g	<0.3	<0.3	-	-	-	-
Thallium	1.0 ug/g	<1.0	<1.0	-	-	-	-
Uranium	1.0 ug/g	<1.0	<1.0	-	-	-	-
Vanadium	10.0 ug/g	36.5	21.6	-	-	-	-
Zinc	20.0 ug/g	32.4	<20.0	-	-	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 24-Jun-2024 Order Date: 18-Jun-2024

Project Description: OTT24005069A0

Client PO: OTT24005069A0

	Client ID:	BH24-3 SS2	BH24-3 SS9	-	-		
	Sample Date:	13-Jun-24 03:00	13-Jun-24 03:30	-	-	-	-
	Sample ID:	2425136-01	2425136-02	-	-		
	Matrix:	Soil	Soil	-	-		
	MDL/Units						
Volatiles	-						
Benzene	0.02 ug/g	<0.02	<0.02	-	-	-	-
Ethylbenzene	0.05 ug/g	<0.05	<0.05	-	-	-	-
Toluene	0.05 ug/g	<0.05	<0.05	-	-	-	-
m,p-Xylenes	0.05 ug/g	<0.05	<0.05	-	-	-	-
o-Xylene	0.05 ug/g	<0.05	<0.05	-	-	-	-
Xylenes, total	0.05 ug/g	<0.05	<0.05	-	-	-	-
Toluene-d8	Surrogate	116%	113%	-	•	-	-
Hydrocarbons	-					-	
F1 PHCs (C6-C10)	7 ug/g	<7	<7	-	-	-	-
F2 PHCs (C10-C16)	4 ug/g	<4	<4	-	-	-	-
F3 PHCs (C16-C34)	8 ug/g	<8	<8	-	-	-	-
F4 PHCs (C34-C50)	6 ug/g	<6	<6	-	-	-	-

Certificate of Analysis

Client PO: OTT24005069A0

Client: exp Services Inc. (Ottawa)

Report Date: 24-Jun-2024 Order Date: 18-Jun-2024

Project Description: OTT24005069A0

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons								
F1 PHCs (C6-C10)	ND	7	ug/g					
F2 PHCs (C10-C16)	ND	4	ug/g					
F3 PHCs (C16-C34)	ND	8	ug/g					
F4 PHCs (C34-C50)	ND	6	ug/g					
Metals								
Antimony	ND	1.0	ug/g					
Arsenic	ND	1.0	ug/g					
Barium	ND	1.0	ug/g					
Beryllium	ND	0.5	ug/g					
Boron, available	ND	0.5	ug/g					
Boron	ND	5.0	ug/g					
Cadmium	ND	0.5	ug/g					
Chromium (VI)	ND	0.2	ug/g					
Chromium	ND	5.0	ug/g					
Cobalt	ND	1.0	ug/g					
Copper	ND	5.0	ug/g					
Lead	ND	1.0	ug/g					
Mercury	ND	0.1	ug/g					
Molybdenum	ND	1.0	ug/g					
Nickel	ND	5.0	ug/g					
Selenium	ND	1.0	ug/g					
Silver	ND	0.3	ug/g					
Thallium	ND	1.0	ug/g					
Uranium	ND	1.0	ug/g					
Vanadium	ND	10.0	ug/g					
Zinc	ND	20.0	ug/g					
Volatiles	2		3-3					
Benzene	ND	0.02	ug/g					
Ethylbenzene	ND	0.05	ug/g					
Toluene	ND	0.05	ug/g					
m,p-Xylenes	ND	0.05	ug/g					
o-Xylene	ND	0.05	ug/g					

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 24-Jun-2024

Order Date: 18-Jun-2024

Project Description: OTT24005069A0

Client PO: OTT24005069A0

Method Quality Control: Blank

monioa quanty control Dian								
Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Xylenes, total	ND	0.05	ug/g					
Surrogate: Toluene-d8	8.20		%	103	50-140			

Certificate of Analysis

Client PO: OTT24005069A0

Client: exp Services Inc. (Ottawa)

Report Date: 24-Jun-2024 Order Date: 18-Jun-2024

Project Description: OTT24005069A0

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics				0.50					
рН	6.57	0.05	pH Units	6.53			0.6	2.3	
Hydrocarbons		_		ND			NO	40	
F1 PHCs (C6-C10)	ND	7	ug/g	ND			NC	40	
F2 PHCs (C10-C16)	ND	4	ug/g	ND			NC	30	
F3 PHCs (C16-C34)	ND	8	ug/g	ND			NC	30	
F4 PHCs (C34-C50)	ND	6	ug/g	ND			NC	30	
Metals			,						
Antimony	ND	1.0	ug/g	ND			NC	30	
Arsenic	2.7	1.0	ug/g	2.5			7.6	30	
Barium	93.5	1.0	ug/g	96.2			2.8	30	
Beryllium	ND	0.5	ug/g	ND			NC	30	
Boron, available	ND	0.5	ug/g	ND			NC	35	
Boron	7.9	5.0	ug/g	7.6			4.6	30	
Cadmium	ND	0.5	ug/g	ND			NC	30	
Chromium (VI)	ND	0.2	ug/g	ND			NC	35	
Chromium	20.3	5.0	ug/g	21.2			4.5	30	
Cobalt	5.6	1.0	ug/g	5.1			9.0	30	
Copper	23.9	5.0	ug/g	22.7			5.2	30	
Lead	112	1.0	ug/g	106			5.6	30	
Mercury	ND	0.1	ug/g	ND			NC	30	
Molybdenum	ND	1.0	ug/g	ND			NC	30	
Nickel	12.6	5.0	ug/g	12.0			4.9	30	
Selenium	ND	1.0	ug/g	ND			NC	30	
Silver	ND	0.3	ug/g	ND			NC	30	
Thallium	ND	1.0	ug/g	ND			NC	30	
Uranium	ND	1.0	ug/g	ND			NC	30	
Vanadium	26.1	10.0	ug/g	24.3			7.2	30	
Zinc	68.2	20.0	ug/g	61.0			11.1	30	
Physical Characteristics % Solids	89.0	0.1	% by Wt.	88.5			0.6	25	

Client: exp Services Inc. (Ottawa)

Order #: 2425136

Project Description: OTT24005069A0

Report Date: 24-Jun-2024

Order Date: 18-Jun-2024

Certificate of Analysis

Client PO: OTT24005069A0

Method Quality Control: Duplicate

metrica Quanty Control: Duplicate									
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Volatiles									
Benzene	ND	0.02	ug/g	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g	ND			NC	50	
Toluene	ND	0.05	ug/g	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g	ND			NC	50	
o-Xylene	ND	0.05	ug/g	ND			NC	50	
Surrogate: Toluene-d8	7.99		%		99.9	50-140			

Certificate of Analysis

Client PO: OTT24005069A0

Client: exp Services Inc. (Ottawa)

Report Date: 24-Jun-2024 Order Date: 18-Jun-2024

Project Description: OTT24005069A0

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	198	7	ug/g	ND	115	85-115			
F2 PHCs (C10-C16)	91	4	ug/g	ND	96.3	60-140			
F3 PHCs (C16-C34)	240	8	ug/g	ND	103	60-140			
F4 PHCs (C34-C50)	140	6	ug/g	ND	95.4	60-140			
Metals									
Arsenic	44.5	1.0	ug/g	1.0	87.0	70-130			
Barium	80.4	1.0	ug/g	38.5	83.9	70-130			
Beryllium	47.0	0.5	ug/g	ND	93.8	70-130			
Boron, available	3.69	0.5	ug/g	ND	73.9	70-122			
Boron	45.6	5.0	ug/g	ND	85.0	70-130			
Cadmium	42.5	0.5	ug/g	ND	84.8	70-130			
Chromium (VI)	0.2	0.2	ug/g	ND	77.0	70-130			
Chromium	55.8	5.0	ug/g	8.5	94.6	70-130			
Cobalt	47.5	1.0	ug/g	2.1	90.9	70-130			
Copper	52.4	5.0	ug/g	9.1	86.6	70-130			
Lead	91.2	1.0	ug/g	42.3	97.8	70-130			
Mercury	1.48	0.1	ug/g	ND	98.3	70-130			
Molybdenum	42.9	1.0	ug/g	ND	85.2	70-130			
Nickel	49.9	5.0	ug/g	ND	90.1	70-130			
Selenium	42.9	1.0	ug/g	ND	85.6	70-130			
Silver	40.9	0.3	ug/g	ND	81.7	70-130			
Thallium	43.2	1.0	ug/g	ND	86.4	70-130			
Uranium	45.5	1.0	ug/g	ND	90.7	70-130			
Vanadium	58.1	10.0	ug/g	ND	96.8	70-130			
Zinc	67.6	20.0	ug/g	24.4	86.4	70-130			
Volatiles									
Benzene	3.22	0.02	ug/g	ND	80.4	60-130			
Ethylbenzene	3.83	0.05	ug/g	ND	95.7	60-130			
Toluene	3.63	0.05	ug/g	ND	90.7	60-130			
m,p-Xylenes	7.42	0.05	ug/g	ND	92.7	60-130			

Certificate of Analysis

Client PO: OTT24005069A0

Client: exp Services Inc. (Ottawa)

Report Date: 24-Jun-2024

Order Date: 18-Jun-2024

Project Description: OTT24005069A0

Method Quality Control: Spike									
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
o-Xylene	3.72	0.05	ug/g	ND	93.1	60-130			
Surrogate: Toluene-d8	8.04		%		101	50-140			

Client: exp Services Inc. (Ottawa)

Order #: 2425136

Report Date: 24-Jun-2024

Order Date: 18-Jun-2024

Project Description: OTT24005069A0

Certificate of Analysis

Client PO: OTT24005069A0

Qualifier Notes:

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Soil results are reported on a dry weight basis unlesss otherwise noted.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

()	D	A		A	0	poor	1
10	\mathbf{P}	Δ	\mathbf{R}	Λ	1	_	1
(9		Λ	11	\sqcap	U	L	L
					277	1000	_

Paracel ID: 2425136

Paracel Order Number (Lab Use Only)

Chain of Custody (Lab Use Only) Nº 144273

Client Name:	0.1560.H1 1922-01920.H1	S 10.								151	50							
Control Name EXP Servi		C		Project Ref: 0 #- 2400 S069-A0							Page of							
Chris leir				24-535-Soil							Turnaround Time							
2650 Queens 0ttawa 102 Telephone: 613-688	View Dr 1. - 1899	150:1-10	ن 	Email Chris. Kimmerya exp. Com Shalynaz. Abdel Mohsen Dexp. Com					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			□ 3 □ R	day legular					
☐ REG 153/04	Other Re	gulation				S (Soil/Sed.) GW (G												
□ Table 1 □ Res/Park □ Med/Fine □ Table 2 □ Ind/Comm □ Coarse	☐ REG 558	☐ PWQO ☐ MISA			rface !	Water) SS (Storm/Sa paint A (Air) O (Othe	nitary Sewer)					Re	quirec	d Anal	ysis	de.	Ι,	
☐ Table 3 ☐ Agri/Other ☐ Table For RSC: ☐ Yes ☐ No	SU - Sani Mun;	SU-Storm	_	Air Volume	Containers	Sample		PHCs F1-F4+BTEX			Metals by ICP			S)		at 1 13dr		
Sample ID/Loca	12001280001		Matrix	Air Vo	# of C	Date	Time	- HCs	VOCs	PAHs	Metals	Ę	CrVI	B (HWS)	H 6	metal		
BH24-3	552		5		2	June,13,22	3	V			-) 	U	ш	1	1	+	+
3 131424-3	SSq		1		2	1	3.30	1							1	J		
																	-	+
											0							
												-					+	+
																	+	+
0																	-	-
mments:									-			Metho	gonpe	7	18	^	IV	\
inquished By (Sign): Ahaly now Abde	who	Received at De	pot:			i su julie	Received at Log)	1/30	12	10	Verme	U (2	11		V	
Inquished By Printi Sherting Abdyl	lihsen	Date/Time:					Date/Firms	ne	U K	5/	h.	Date/T	ime:	JU	e 19	1200	9 11	1.57a
nin of Custody (Env) xlsx		- or perature				"C	Temperature.	14	6	1		pH Ver	ied: 🗆	By:				

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

exp Services Inc. (Ottawa)

100-2650 Queensview Dr. Ottawa, ON K2B 8H6

Attn: Devin Clouthier

Client PO:

Project: OTT24005069A0

Custody: 145439

Report Date: 25-Jun-2024

Order Date: 19-Jun-2024

Order #: 2425358

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID		Paracel ID	Client ID
2425358-01	TP1-S1		2425358-17	TP6-S3
2425358-02	TP2-S1		2425358-18	Stockpile #1
2425358-03	TP1-S3		2425358-19	Stockpile #2
2425358-04	TP3-S1		2425358-20	Stockpile #3
2425358-05	TP4-S1			
2425358-06	TP3-S3			
2425358-07	TP5-S1			
2425358-08	TP6-S1			
2425358-09	TP8-S1			
2425358-10	TP9-S1			
2425358-11	TP7-S1			
2425358-12	TP2-S2			
2425358-13	TP4-S2			
2425358-14	TP8-S2			
2425358-15	TP6-S2			
2425358-16	TP9-S2			

Approved By:

Mark Froto

Mark Foto, M.Sc.

Lab Supervisor

Certificate of Analysis

Order #: 2425358

Report Date: 25-Jun-2024

Order Date: 19-Jun-2024

Client: exp Services Inc. (Ottawa) Client PO: Project Description: OTT24005069A0

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Boron, available	MOE (HWE), EPA 200.8 - ICP-MS	24-Jun-24	24-Jun-24
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	21-Jun-24	21-Jun-24
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	21-Jun-24	24-Jun-24
Mercury by CVAA	EPA 7471B - CVAA, digestion	25-Jun-24	25-Jun-24
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	24-Jun-24	24-Jun-24
PHC F1	CWS Tier 1 - P&T GC-FID	21-Jun-24	21-Jun-24
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	21-Jun-24	22-Jun-24
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	24-Jun-24	25-Jun-24
REG 153: Pesticides, OC	EPA 8081B - GC-ECD	21-Jun-24	21-Jun-24
Solids, %	CWS Tier 1 - Gravimetric	21-Jun-24	24-Jun-24

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 25-Jun-2024 Order Date: 19-Jun-2024

Client PO:

Project Description: OTT24005069A0

	Client ID: Sample Date: Sample ID: Matrix:	TP1-S1 19-Jun-24 09:00 2425358-01 Soil	TP2-S1 19-Jun-24 09:00 2425358-02 Soil	TP1-S3 19-Jun-24 09:00 2425358-03 Soil	TP3-S1 19-Jun-24 09:00 2425358-04 Soil	-	-
	MDL/Units						
Physical Characteristics							
% Solids	0.1 % by Wt.	77.9	72.3	77.6	77.6	-	-
Pesticides, OC				T			
Aldrin	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
gamma-BHC (Lindane)	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
alpha-Chlordane	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
gamma-Chlordane	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
Chlordane	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
o,p'-DDD	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
p,p'-DDD	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
DDD	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
o,p'-DDE	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
p,p'-DDE	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
DDE	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
o,p'-DDT	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
p,p'-DDT	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
DDT	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
Dieldrin	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
Endrin	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
Endosulfan I	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
Endosulfan II	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
Endosulfan I/II	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
Heptachlor	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
Heptachlor epoxide	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
Hexachlorobenzene	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
Hexachlorobutadiene	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 25-Jun-2024

Order Date: 19-Jun-2024

Client PO: Project Description: OTT24005069A0

	Client ID:	TP1-S1	TP2-S1	TP1-S3	TP3-S1		
	Sample Date:	19-Jun-24 09:00	19-Jun-24 09:00	19-Jun-24 09:00	19-Jun-24 09:00	-	-
	Sample ID:	2425358-01	2425358-02	2425358-03	2425358-04		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Pesticides, OC					•		
Hexachloroethane	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
Methoxychlor	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
Decachlorobiphenyl	Surrogate	93.9%	50.3%	87.1%	65.6%	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 25-Jun-2024 Order Date: 19-Jun-2024

Client PO: Project Description: OTT24005069A0

	Client ID:	TP4-S1	TP3-S3	TP5-S1	TP6-S1		
	Sample Date:	19-Jun-24 09:00	19-Jun-24 09:00	19-Jun-24 09:00	19-Jun-24 09:00	-	-
	Sample ID:	2425358-05	2425358-06	2425358-07	2425358-08		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Physical Characteristics						•	•
% Solids	0.1 % by Wt.	76.3	74.4	77.4	73.9	-	-
General Inorganics	·				•	•	·
pH	0.05 pH Units	-	-	-	6.27	-	-
Metals						·	
Antimony	1.0 ug/g	-	-	-	<1.0	-	-
Arsenic	1.0 ug/g	-	-	-	4.6	-	-
Barium	1.0 ug/g	-	-	-	238	-	-
Beryllium	0.5 ug/g	-	-	-	1.2	-	-
Boron, available	0.5 ug/g	-	-	-	<0.5	-	-
Boron	5.0 ug/g	-	-	-	11.0	-	-
Cadmium	0.5 ug/g	-	-	-	<0.5	-	-
Chromium	5.0 ug/g	-	-	-	94.0	-	-
Chromium (VI)	0.2 ug/g	-	-	-	1.3	-	-
Cobalt	1.0 ug/g	-	-	-	16.2	-	-
Copper	5.0 ug/g	-	-	-	43.0	-	-
Lead	1.0 ug/g	-	-	-	8.4	-	-
Mercury	0.1 ug/g	-	-	-	<0.1	-	-
Molybdenum	1.0 ug/g	-	-	-	<1.0	-	-
Nickel	5.0 ug/g	-	-	-	51.4	-	-
Selenium	1.0 ug/g	-	-	-	<1.0	-	-
Silver	0.3 ug/g	-	-	-	<0.3	-	-
Thallium	1.0 ug/g	-	-	-	<1.0	-	-
Uranium	1.0 ug/g	-	-	-	<1.0	-	-
Vanadium	10.0 ug/g	-	-	-	75.9	-	-
Zinc	20.0 ug/g	-	-	-	91.8	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 25-Jun-2024 Order Date: 19-Jun-2024

Client PO:

Project Description: OTT24005069A0

	Client ID:	TP4-S1	TP3-S3	TP5-S1	TP6-S1		
	Sample Date:	19-Jun-24 09:00	19-Jun-24 09:00	19-Jun-24 09:00	19-Jun-24 09:00	-	-
	Sample ID:	2425358-05	2425358-06	2425358-07	2425358-08		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Volatiles			<u> </u>	!	!		-
Benzene	0.02 ug/g	-	-	-	<0.02	-	-
Ethylbenzene	0.05 ug/g		-	-	<0.05	-	-
Toluene	0.05 ug/g	-	-	-	<0.05	-	-
m,p-Xylenes	0.05 ug/g		-	-	<0.05	-	-
o-Xylene	0.05 ug/g	-	-	-	<0.05	-	-
Xylenes, total	0.05 ug/g	-	-	-	<0.05	-	-
Toluene-d8	Surrogate	-	-	-	121%	-	-
Hydrocarbons	<u> </u>						
F1 PHCs (C6-C10)	7 ug/g	-	-	-	<7	-	-
F2 PHCs (C10-C16)	4 ug/g	-	-	-	<4	-	-
F3 PHCs (C16-C34)	8 ug/g	-	-	-	<8	-	-
F4 PHCs (C34-C50)	6 ug/g	-	-	-	<6	-	-
Pesticides, OC							<u>'</u>
Aldrin	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
gamma-BHC (Lindane)	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
alpha-Chlordane	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
gamma-Chlordane	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
Chlordane	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
o,p'-DDD	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
p,p'-DDD	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
DDD	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
o,p'-DDE	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
p,p'-DDE	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
DDE	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
o,p'-DDT	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 25-Jun-2024 Order Date: 19-Jun-2024

Project Description: OTT24005069A0

Client PO:

	Client ID: Sample Date: Sample ID: Matrix: MDL/Units	TP4-S1 19-Jun-24 09:00 2425358-05 Soil	TP3-S3 19-Jun-24 09:00 2425358-06 Soil	TP5-S1 19-Jun-24 09:00 2425358-07 Soil	TP6-S1 19-Jun-24 09:00 2425358-08 Soil	-	-
Pesticides, OC					!		
p,p'-DDT	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
DDT	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
Dieldrin	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
Endrin	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
Endosulfan I	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
Endosulfan II	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
Endosulfan I/II	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
Heptachlor	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
Heptachlor epoxide	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
Hexachlorobenzene	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
Hexachlorobutadiene	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
Hexachloroethane	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
Methoxychlor	0.01 ug/g	<0.01	<0.01	<0.01	<0.01	-	-
Decachlorobiphenyl	Surrogate	110%	69.2%	54.9%	66.8%	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 25-Jun-2024 Order Date: 19-Jun-2024

Client PO:

Project Description: OTT24005069A0

	Client ID:	TP8-S1	TP9-S1	TP7-S1	TP2-S2		
	Sample Date:	19-Jun-24 09:00	19-Jun-24 09:00	19-Jun-24 09:00	19-Jun-24 09:00	-	-
	Sample ID:	2425358-09	2425358-10	2425358-11	2425358-12		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Physical Characteristics					•		
% Solids	0.1 % by Wt.	75.9	84.5	81.0	71.4	-	-
General Inorganics	· · · · ·			·	·	<u> </u>	
рН	0.05 pH Units	-	-	-	6.95	-	-
Metals						•	
Antimony	1.0 ug/g	-	-	-	<1.0	-	-
Arsenic	1.0 ug/g	-	-	-	5.7	-	-
Barium	1.0 ug/g	-	-	-	320	-	-
Beryllium	0.5 ug/g	-	-	-	1.0	-	-
Boron, available	0.5 ug/g	-	-	-	<0.5	-	-
Boron	5.0 ug/g	-	-	-	6.8	-	-
Cadmium	0.5 ug/g	-	-	-	<0.5	-	-
Chromium	5.0 ug/g	-	-	-	90.5	-	-
Chromium (VI)	0.2 ug/g	-	-	-	0.6	-	-
Cobalt	1.0 ug/g	-	-	-	22.3	-	-
Copper	5.0 ug/g	-	-	-	50.3	-	-
Lead	1.0 ug/g	-	-	-	8.7	-	-
Mercury	0.1 ug/g	-	-	-	<0.1	-	-
Molybdenum	1.0 ug/g	-	-	-	<1.0	-	-
Nickel	5.0 ug/g	-	-	-	53.7	-	-
Selenium	1.0 ug/g	-	-	-	<1.0	-	-
Silver	0.3 ug/g	-	-	-	<0.3	-	-
Thallium	1.0 ug/g	-	-	-	<1.0	-	-
Uranium	1.0 ug/g	-	-	-	<1.0	-	-
Vanadium	10.0 ug/g	-	-	-	101	-	-
Zinc	20.0 ug/g	-	-	-	115	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 25-Jun-2024 Order Date: 19-Jun-2024

Client PO:

Project Description: OTT24005069A0

	Client ID:	TP8-S1	TP9-S1	TP7-S1	TP2-S2		
	Sample Date:	19-Jun-24 09:00	19-Jun-24 09:00	19-Jun-24 09:00	19-Jun-24 09:00	-	-
	Sample ID:	2425358-09	2425358-10	2425358-11	2425358-12		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Volatiles					•	•	
Benzene	0.02 ug/g	-	-	-	<0.02	-	-
Ethylbenzene	0.05 ug/g	-	-	-	<0.05	-	-
Toluene	0.05 ug/g	-	-	-	<0.05	-	-
m,p-Xylenes	0.05 ug/g	-	-	-	<0.05	-	-
o-Xylene	0.05 ug/g	-	-	-	<0.05	-	-
Xylenes, total	0.05 ug/g	-	-	-	<0.05	-	-
Toluene-d8	Surrogate	-	-	-	126%	-	-
Hydrocarbons					·		
F1 PHCs (C6-C10)	7 ug/g	-	-	-	<7	-	-
F2 PHCs (C10-C16)	4 ug/g	-	-	-	<4	-	-
F3 PHCs (C16-C34)	8 ug/g	-	-	-	<8	-	-
F4 PHCs (C34-C50)	6 ug/g	-	-	-	<6	-	-
Pesticides, OC							
Aldrin	0.01 ug/g	<0.01	<0.01	<0.01	-	-	-
gamma-BHC (Lindane)	0.01 ug/g	<0.01	<0.01	<0.01	-	-	-
alpha-Chlordane	0.01 ug/g	<0.01	<0.01	<0.01	-	-	-
gamma-Chlordane	0.01 ug/g	<0.01	<0.01	<0.01	-	-	-
Chlordane	0.01 ug/g	<0.01	<0.01	<0.01	-	-	-
o,p'-DDD	0.01 ug/g	<0.01	<0.01	<0.01	-	-	-
p,p'-DDD	0.02 ug/g	<0.02	<0.02	<0.02	-	-	-
DDD	0.02 ug/g	<0.02	<0.02	<0.02	-	-	-
o,p'-DDE	0.01 ug/g	<0.01	<0.01	<0.01	-	-	-
p,p'-DDE	0.01 ug/g	<0.01	<0.01	<0.01	-	-	-
DDE	0.01 ug/g	<0.01	<0.01	<0.01	-	-	-
o,p'-DDT	0.01 ug/g	<0.01	<0.01	<0.01	-	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 25-Jun-2024

Order Date: 19-Jun-2024

Client PO: Project Description: OTT24005069A0

	Client ID:	TP8-S1	TP9-S1	TP7-S1	TP2-S2		
	Sample Date:	19-Jun-24 09:00	19-Jun-24 09:00	19-Jun-24 09:00	19-Jun-24 09:00	-	-
	Sample ID:	2425358-09	2425358-10	2425358-11	2425358-12		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Pesticides, OC							•
p,p'-DDT	0.01 ug/g	<0.01	<0.01	<0.01	-	-	-
DDT	0.01 ug/g	<0.01	<0.01	<0.01	-	-	-
Dieldrin	0.02 ug/g	<0.02	<0.02	<0.02	-	-	-
Endrin	0.02 ug/g	<0.02	<0.02	<0.02	-	-	-
Endosulfan I	0.01 ug/g	<0.01	<0.01	<0.01	-	-	-
Endosulfan II	0.02 ug/g	<0.02	<0.02	<0.02	-	-	-
Endosulfan I/II	0.02 ug/g	<0.02	<0.02	<0.02	-	-	-
Heptachlor	0.01 ug/g	<0.01	<0.01	<0.01	-	-	-
Heptachlor epoxide	0.01 ug/g	<0.01	<0.01	<0.01	-	-	-
Hexachlorobenzene	0.01 ug/g	<0.01	<0.01	<0.01	-	-	-
Hexachlorobutadiene	0.01 ug/g	<0.01	<0.01	<0.01	-	-	-
Hexachloroethane	0.01 ug/g	<0.01	<0.01	<0.01	-	-	-
Methoxychlor	0.01 ug/g	<0.01	<0.01	<0.01	-	-	-
Decachlorobiphenyl	Surrogate	80.6%	74.8%	82.2%	-	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 25-Jun-2024 Order Date: 19-Jun-2024

Client PO: Project Description: OTT24005069A0

	Client ID:	TP4-S2	TP8-S2	TP6-S2	TP9-S2		
	Sample Date:	19-Jun-24 09:00	19-Jun-24 09:00	19-Jun-24 09:00	19-Jun-24 09:00	-	-
	Sample ID:	2425358-13	2425358-14	2425358-15	2425358-16		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Physical Characteristics					•		
% Solids	0.1 % by Wt.	77.7	74.1	71.8	80.9	-	-
General Inorganics							
рН	0.05 pH Units	7.03	6.93	6.79	7.28	-	-
Metals							
Antimony	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Arsenic	1.0 ug/g	3.7	5.5	5.4	5.4	-	-
Barium	1.0 ug/g	140	224	326	151	-	-
Beryllium	0.5 ug/g	0.6	1.3	1.1	0.6	-	-
Boron, available	0.5 ug/g	<0.5	<0.5	<0.5	<0.5	-	-
Boron	5.0 ug/g	<5.0	13.6	9.2	7.4	-	-
Cadmium	0.5 ug/g	<0.5	<0.5	<0.5	<0.5	-	-
Chromium	5.0 ug/g	36.2	93.3	98.5	42.8	-	-
Chromium (VI)	0.2 ug/g	0.4	0.8	0.8	<0.2	-	-
Cobalt	1.0 ug/g	8.7	20.2	22.9	11.4	-	-
Copper	5.0 ug/g	22.8	41.9	47.1	19.3	-	-
Lead	1.0 ug/g	4.8	10.1	8.9	11.0	-	-
Mercury	0.1 ug/g	<0.1	<0.1	<0.1	<0.1	-	-
Molybdenum	1.0 ug/g	<1.0	<1.0	<1.0	3.1	-	-
Nickel	5.0 ug/g	21.2	53.7	57.5	27.1	-	-
Selenium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Silver	0.3 ug/g	<0.3	<0.3	<0.3	<0.3	-	-
Thallium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Uranium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Vanadium	10.0 ug/g	52.5	82.7	97.0	40.9	-	-
Zinc	20.0 ug/g	51.9	90.8	111	47.0	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 25-Jun-2024 Order Date: 19-Jun-2024

Client PO:

Project Description: OTT24005069A0

	Client ID:	TP4-S2	TP8-S2	TP6-S2	TP9-S2		
	Sample Date:	19-Jun-24 09:00	19-Jun-24 09:00	19-Jun-24 09:00	19-Jun-24 09:00	-	-
	Sample ID:	2425358-13	2425358-14	2425358-15	2425358-16		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Volatiles			-	•	•		
Benzene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
Ethylbenzene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Toluene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
m,p-Xylenes	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Xylenes, total	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Toluene-d8	Surrogate	120%	123%	121%	121%	-	-
Hydrocarbons	•						
F1 PHCs (C6-C10)	7 ug/g	<7	<7	<7	<7	-	-
F2 PHCs (C10-C16)	4 ug/g	<4	<4	<4	<4	-	-
F3 PHCs (C16-C34)	8 ug/g	<8	15	15	16	-	-
F4 PHCs (C34-C50)	6 ug/g	<6	9	9	6	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 25-Jun-2024 Order Date: 19-Jun-2024

Client PO:

Project Description: OTT24005069A0

	Client ID:	TP6-S3	Stockpile #1	Stockpile #2	Stockpile #3		
	Sample Date:	19-Jun-24 09:00	19-Jun-24 09:00	19-Jun-24 09:00	19-Jun-24 09:00	-	_
	Sample ID:	2425358-17	2425358-18	2425358-19	2425358-20		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Physical Characteristics	<u> </u>		•	!	!		
% Solids	0.1 % by Wt.	74.0	84.9	83.3	82.8	-	-
General Inorganics	•					•	
рН	0.05 pH Units	6.52	7.10	7.23	7.16	-	-
Metals				•	•		
Antimony	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Arsenic	1.0 ug/g	5.3	3.8	4.0	3.8	-	-
Barium	1.0 ug/g	245	70.1	160	127	-	-
Beryllium	0.5 ug/g	1.4	<0.5	0.7	0.6	-	-
Boron	5.0 ug/g	14.1	5.6	7.1	7.5	-	-
Boron, available	0.5 ug/g	<0.5	<0.5	<0.5	<0.5	-	-
Cadmium	0.5 ug/g	<0.5	<0.5	<0.5	<0.5	-	-
Chromium	5.0 ug/g	103	22.1	50.8	35.4	-	-
Chromium (VI)	0.2 ug/g	0.8	<0.2	<0.2	<0.2	-	-
Cobalt	1.0 ug/g	21.3	6.5	11.3	8.5	-	-
Copper	5.0 ug/g	45.8	13.6	22.9	20.7	-	-
Lead	1.0 ug/g	9.9	8.5	8.9	9.2	-	-
Mercury	0.1 ug/g	<0.1	<0.1	<0.1	<0.1	-	-
Molybdenum	1.0 ug/g	<1.0	2.1	1.3	1.4	-	-
Nickel	5.0 ug/g	57.3	14.6	28.4	20.8	-	-
Selenium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Silver	0.3 ug/g	<0.3	<0.3	<0.3	<0.3	-	-
Thallium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Uranium	1.0 ug/g	<1.0	<1.0	<1.0	1.2	-	-
Vanadium	10.0 ug/g	83.4	25.4	50.9	40.5	-	-
Zinc	20.0 ug/g	98.6	39.0	72.7	55.1	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 25-Jun-2024 Order Date: 19-Jun-2024

Project Description: OTT24005069A0

Client PO: Project

	Client ID:	TP6-S3	Stockpile #1	Stockpile #2	Stockpile #3		
	Sample Date:	19-Jun-24 09:00	19-Jun-24 09:00	19-Jun-24 09:00	19-Jun-24 09:00	-	-
	Sample ID:	2425358-17	2425358-18	2425358-19	2425358-20		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Volatiles	•			•	•		
Benzene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
Ethylbenzene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Toluene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
m,p-Xylenes	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Xylenes, total	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Toluene-d8	Surrogate	120%	115%	115%	116%	-	-
Hydrocarbons	•				•		
F1 PHCs (C6-C10)	7 ug/g	<7	<7	<7	<7	-	-
F2 PHCs (C10-C16)	4 ug/g	<4	<4	<4	<4	-	-
F3 PHCs (C16-C34)	8 ug/g	<8	32	30	34	-	-
F4 PHCs (C34-C50)	6 ug/g	<6	14	30	25	-	-

Certificate of Analysis

Client PO:

Cobalt

Copper

Mercury

Nickel

Silver

Zinc

Aldrin

Selenium

Thallium

Uranium

Vanadium

Pesticides, OC

alpha-Chlordane

Chlordane

gamma-Chlordane

gamma-BHC (Lindane)

Molybdenum

Lead

Order #: 2425358

Report Date: 25-Jun-2024

Order Date: 19-Jun-2024

Project Description: OTT24005069A0

Client: exp Services Inc. (Ottawa)

ND

1.0

5.0

1.0

0.1

1.0

5.0

1.0

0.3

1.0

1.0

10.0

20.0

0.01

0.01

0.01

0.01

0.01

Method Quality Control: Blank								
Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons								
F1 PHCs (C6-C10)	ND	7	ug/g					
F2 PHCs (C10-C16)	ND	4	ug/g					
F3 PHCs (C16-C34)	ND	8	ug/g					
F4 PHCs (C34-C50)	ND	6	ug/g					
Metals								
Antimony	ND	1.0	ug/g					
Arsenic	ND	1.0	ug/g					
Barium	ND	1.0	ug/g					
Beryllium	ND	0.5	ug/g					
Boron, available	ND	0.5	ug/g					
Boron	ND	5.0	ug/g					
Cadmium	ND	0.5	ug/g					
Chromium (VI)	ND	0.2	ug/g					
Chromium	ND	5.0	ug/g					

ug/g

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 25-Jun-2024 Order Date: 19-Jun-2024

Client PO: Project Description: OTT24005069A0

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
p'-DDD	ND	0.01	ug/g					
p,p'-DDD	ND	0.02	ug/g					
DDD	ND	0.02	ug/g					
o,p'-DDE	ND	0.01	ug/g					
p,p'-DDE	ND	0.01	ug/g					
DDE	ND	0.01	ug/g					
p,p'-DDT	ND	0.01	ug/g					
p,p'-DDT	ND	0.01	ug/g					
DDT	ND	0.01	ug/g					
Dieldrin	ND	0.02	ug/g					
Endrin	ND	0.02	ug/g					
Endosulfan I	ND	0.01	ug/g					
Endosulfan II	ND	0.02	ug/g					
Endosulfan I/II	ND	0.02	ug/g					
Heptachlor	ND	0.01	ug/g					
Heptachlor epoxide	ND	0.01	ug/g					
Hexachlorobenzene	ND	0.01	ug/g					
Hexachlorobutadiene	ND	0.01	ug/g					
Hexachloroethane	ND	0.01	ug/g					
Methoxychlor	ND	0.01	ug/g					
Surrogate: Decachlorobiphenyl	0.0794		%	79.4	50-140			
/olatiles								
Benzene	ND	0.02	ug/g					
Ethylbenzene	ND	0.05	ug/g					
Toluene	ND	0.05	ug/g					
n,p-Xylenes	ND	0.05	ug/g					
o-Xylene	ND	0.05	ug/g					
Xylenes, total	ND	0.05	ug/g					
Surrogate: Toluene-d8	8.74		%	109	50-140			

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 25-Jun-2024 Order Date: 19-Jun-2024

Client PO:

Project Description: OTT24005069A0

Method Quality Control: Duplicate

urce %REC %REC RPD RPD sult Limit	Notes
25 0.0 2.3	
_	
D NC 40	
D NC 30	
25 15.1 30	
7 79.2 30	QR-04
D NC 30	
.6 5.8 30	
38 2.9 30	
.2 4.4 30	
D NC 35	
.0 7.2 30	
D NC 30	
.3 8.5 35	
1.0 0.9 30	
3.2 0.9 30	
3.0 1.0 30	
.4 1.1 30	
D NC 30	
D NC 30	
1.4 1.1 30	
D NC 30	
D NC 30	
D NC 30	
D NC 30	
5.9 0.9 30	
1.8 1.3 30	
D NC 40	
I.8 D	1.3 30 NC 40

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 25-Jun-2024 Order Date: 19-Jun-2024

Project Description: OTT24005069A0

Client PO:

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
gamma-BHC (Lindane)	ND	0.01	ug/g	ND			NC	40	
alpha-Chlordane	ND	0.01	ug/g	ND			NC	40	
gamma-Chlordane	ND	0.01	ug/g	ND			NC	40	
o,p'-DDD	ND	0.01	ug/g	0.02			NC	40	
p,p'-DDD	0.04	0.02	ug/g	0.04			20.3	40	
o,p'-DDE	0.01	0.01	ug/g	ND			NC	40	
p,p'-DDE	1.31	0.01	ug/g	1.18			11.0	40	
o,p'-DDT	0.06	0.01	ug/g	0.05			12.1	40	
p,p'-DDT	0.13	0.01	ug/g	0.11			13.3	40	
Dieldrin	ND	0.02	ug/g	ND			NC	40	
Endrin	ND	0.02	ug/g	ND			NC	40	
Endosulfan I	ND	0.01	ug/g	ND			NC	40	
Endosulfan II	ND	0.02	ug/g	ND			NC	40	
Heptachlor	ND	0.01	ug/g	ND			NC	40	
Heptachlor epoxide	ND	0.01	ug/g	ND			NC	40	
Hexachlorobenzene	ND	0.01	ug/g	ND			NC	40	
Hexachlorobutadiene	ND	0.01	ug/g	ND			NC	40	
Hexachloroethane	ND	0.01	ug/g	ND			NC	40	
Methoxychlor	ND	0.01	ug/g	ND			NC	40	
Surrogate: Decachlorobiphenyl	0.113		%		90.2	50-140			
Physical Characteristics % Solids	90.8	0.1	% by Wt.	88.5			2.6	25	
Volatiles									
Benzene	ND	0.02	ug/g	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g	ND			NC	50	
Toluene	ND	0.05	ug/g	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g	ND			NC	50	
o-Xylene	ND	0.05	ug/g	ND			NC	50	
Surrogate: Toluene-d8	10.9		%		116	50-140			

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 25-Jun-2024 Order Date: 19-Jun-2024

Client PO:

Project Description: OTT24005069A0

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	198	7	ug/g	ND	98.9	85-115			
F2 PHCs (C10-C16)	86	4	ug/g	ND	101	60-140			
F3 PHCs (C16-C34)	313	8	ug/g	125	90.4	60-140			
F4 PHCs (C34-C50)	153	6	ug/g	17	104	60-140			
Metals									
Arsenic	47.2	1.0	ug/g	1.8	90.7	70-130			
Barium	127	1.0	ug/g	95.1	64.5	70-130			QS-02
Beryllium	48.9	0.5	ug/g	0.5	96.9	70-130			
Boron, available	3.54	0.5	ug/g	ND	70.8	70-122			
Boron	50.2	5.0	ug/g	ND	91.6	70-130			
Cadmium	43.2	0.5	ug/g	ND	86.3	70-130			
Chromium (VI)	6.2	0.2	ug/g	1.3	73.0	70-130			
Chromium	82.4	5.0	ug/g	37.6	89.5	70-130			
Cobalt	53.9	1.0	ug/g	6.5	94.9	70-130			
Copper	61.3	5.0	ug/g	17.2	88.3	70-130			
Lead	48.6	1.0	ug/g	3.4	90.4	70-130			
Mercury	1.51	0.1	ug/g	ND	101	70-130			
Molybdenum	47.1	1.0	ug/g	ND	93.8	70-130			
Nickel	65.3	5.0	ug/g	20.6	89.5	70-130			
Selenium	45.7	1.0	ug/g	ND	91.2	70-130			
Silver	36.6	0.3	ug/g	ND	73.1	70-130			
Thallium	45.0	1.0	ug/g	ND	89.7	70-130			
Uranium	48.3	1.0	ug/g	ND	96.0	70-130			
Vanadium	77.0	10.0	ug/g	30.4	93.2	70-130			
Zinc	76.9	20.0	ug/g	36.7	80.4	70-130			
Pesticides, OC									
Aldrin	0.24	0.01	ug/g	ND	97.8	50-140			
gamma-BHC (Lindane)	0.22	0.01	ug/g	ND	89.4	50-140			
alpha-Chlordane	0.24	0.01	ug/g	ND	97.3	50-140			
gamma-Chlordane	0.23	0.01	ug/g	ND	91.6	50-140			

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 25-Jun-2024 Order Date: 19-Jun-2024

Client PO:

Project Description: OTT24005069A0

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
o,p'-DDD	0.26	0.01	ug/g	0.02	93.8	50-140			
p,p'-DDD	0.25	0.02	ug/g	0.04	84.3	50-140			
o,p'-DDE	0.25	0.01	ug/g	ND	98.5	50-140			
p,p'-DDE	1.22	0.01	ug/g	1.18	19.7	50-140			QM-06
o,p'-DDT	0.24	0.01	ug/g	0.05	75.9	50-140			
p,p'-DDT	0.28	0.01	ug/g	0.11	67.0	50-140			
Dieldrin	0.26	0.02	ug/g	ND	104	50-140			
Endrin	0.15	0.02	ug/g	ND	62.1	50-140			
Endosulfan I	0.24	0.01	ug/g	ND	95.9	50-140			
Endosulfan II	0.23	0.02	ug/g	ND	90.3	50-140			
Heptachlor	0.25	0.01	ug/g	ND	101	50-140			
Heptachlor epoxide	0.26	0.01	ug/g	ND	104	50-140			
Hexachlorobenzene	0.17	0.01	ug/g	ND	67.9	50-140			
Hexachlorobutadiene	0.32	0.01	ug/g	ND	128	50-140			
Hexachloroethane	0.19	0.01	ug/g	ND	77.8	50-140			
Methoxychlor	0.14	0.01	ug/g	ND	56.6	50-140			
Surrogate: Decachlorobiphenyl	0.0922		%		73.9	50-140			
Volatiles									
Benzene	4.68	0.02	ug/g	ND	117	60-130			
Ethylbenzene	4.95	0.05	ug/g	ND	124	60-130			
Toluene	4.38	0.05	ug/g	ND	109	60-130			
m,p-Xylenes	8.58	0.05	ug/g	ND	107	60-130			
o-Xylene	4.35	0.05	ug/g	ND	109	60-130			
Surrogate: Toluene-d8	7.74		%		96.8	50-140			

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 25-Jun-2024

Order Date: 19-Jun-2024

Client PO: Project Description: OTT24005069A0

Qualifier Notes:

QC Qualifiers:

QM-06 Due to noted non-homogeneity of the QC sample matrix, the spike recoveries were out side the accepted range. Batch data accepted based on

other QC.

QR-04 Duplicate results exceeds RPD limits due to non-homogeneous matrix.

QS-02 Spike level outside of control limits. Analysis batch accepted based on other QC included in the batch.

Sample Data Revisions:

None

Report Date: 25-Jun-2024

Order Date: 19-Jun-2024

Project Description: OTT24005069A0

Certificate of Analysis

Work Order Revisions / Comments:

Client: exp Services Inc. (Ottawa)

None

Client PO:

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Soil results are reported on a dry weight basis unlesss otherwise noted.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

0	P	A	R	A	C
	I A	BOR	ΑТ	ORI	FS

nt Blvd. 1G 4J8

labs.com

Paracel Order Number (Lab Use Only)

2425358

Chain of Custody (Lab Use Only)

Nº 145439

						om											
lient Name: EXP Service	s loc.		Projec	t Ref:	OTT-24	005069	-A0	8				Page <u>l</u> of <u>l</u>					
Contact Name: Devin Clor	the		Quote	#1	24.335-	50:1	= =//						Т	urna	round	Time	:
100-8650 Quensia	Dove Ottawa	2	PO#:		51 - 2X							1 day			□ 3	day	
10 10 - 0000 3010	0 011 / 01101	•	E-mai	0	Perin clast	hie eexp.	com] 2 da	У		BF	Regular
Telephone: 613-608-59	66			37		9.5						Date	Requ	ired:			
☐ REG 153/04 🕍 REG 406/19	Other Regulation	-	Matrix	Type:	S (Soil/Sed.) GW (0	Ground Water)			111		Re	quirec	i Anal	vsis			
Table 1 ☐ Res/Park ☐ Med/Fine	☐ REG 558 ☐ PWQO	SW (Surface Water) SS (Storm/Sanitary Sewer)									quirot						
☐ Table 2 ☐ Ind/Comm ☐ Coarse	☐ CCME ☐ MISA			Р	(paint A (Air) O (Oth	er)	X							3	力か		
☐ Table 3 ☐ Agri/Other	SU - Sani SU-Storm			ers	2000000000		F1-F4+BTEX			d.				He.	400		
] Table	Mun:		me	Sample Taken			4			by 10			(6)	3	7 8	2.	
For RSC: Yes No	☐ Other	Matrix	Air Volume	of Containers	CONTROL OF		PHCs F	VOCs	PAHs	Metals by ICP		5	B (HWS)	J	Porming metals	p H	
Sample ID/Loca	ation Name	Z	Air	#	Date	Time	표	Ş	PA	Ž	Hg	Crys	8	0	20	3 %	
1 TP1-51		5		1	06.19,24	AM								X			
2 TP2-51		1		1										X			
3 TP1-53				1										X			
4 TP3-51				1										K			
TP4-51				1										X			
6 TP3-53				1										X			
TP5-51	= 50			1										X			
8 TP6-51	*			2			X							X	X	X	
9 TP9-51				(X			
10 TP9 -51		V		1	\)	V								X	8		
Comments:											Meth	ned of C	Delivery.	10	1	^	l.a
								-1	Λ.	10		1	l	10	W	1	1
Relinquished By (Sign): Club C	Elee Received at D	epot:				Received at 100	B		604	į2	Veriti	ied By:	So				
Painquished By (Sign): Che le Painquished By (Print): Deem C Date/Time: The Galfy	Cother Date/Time:					Date/Time:	TUI	1	TC	14	Date	/Time:	Ju	ve i	26 ;	2024	4:5
Date/Time: V. (9.1)11	Temperature.				*C	Temperature:	100	2	.c	L-(-'	pHV	/eriied:					
sale of Custody (East view					-	-	10.				-			-			

ent Blvd. I1G 4J8 Paracel Order Number (Lab Use Only) Chain of Custody (Lab Use Only)

ABORATORIES

ellabs.com

Nº 145439

LABORATORI					www.paracenaus.	com											
Contact Name: EXP Service: Dean Clark	loc		Projec	t Ref;	6tt- 24	005069	-AL)				Page 2 of 2					
Contact Name: Deuth Clark	hie		Quote		24-385-		1.17.16					Turnaround Time					
iddress:	10199	-	PO#:		· · · · · · · · · · · · · · · · · · ·		*		×3115			☐ 1 day				□ 3 da	У
			E-mail derh. Clothir @ cop. van								☐ 2 day				Reg	ular	
olephone: 613-608-59	66											Date	Requ	iired:			
☐ REG 153/04 🗷 REG 406/19	Other Regulation	,	Matrix	Type:	S (Soil/Sed.) GW (Gr	ound Water)	100		-		0	au el ma el	Anal	hoda			
	☐ REG 558 ☐ PWQO	4 8			Water) SS (Storm/Sar						Hei	quired	Anai	ysis			
Table 2 Ind/Comm Coarse	☐ COME ☐ MISA		1	P	paint A (Air) O (Othe	0	X							To say	3 5		
Table 3 Agri/Other	☐ SU - Sani ☐ SU-Storm			50			+BTEX			D.				4	3		
Table	Mun:		au e	Containers	Sample	Taken	1-F4			by ICP				9	+ 2		
For RSC: ☐ Yes ☐ No	☐ Other	×	Air Volume				E	10	40	Metals b		-	B (HWS)	3	Age Tall	E	
Sample ID/Loca	tion Name	Matrix	Air	# of	Date	Time	PHCs	VOCs	PAHS	Met	웃	Crvi	8	0	Corming		
TP7-51		5		1	Jue 19/2/21	Am								X	MANUEL STREET		
TP2-52		1		2			X								XX		
TP41-52				2			X								XX	<	
TP8 -52				2			X								XX	(
TP6 -52				2			X								XX		
TP9 -52				2			X								XX	(
TP6 -53		V		2		V	X							MOA	XX		10
Stockpile #	>1	5		2	Y		X							1 10	XX		2.
Stockpile F	12	1		1			X								XX		
	3.	U		V	V	V	Χ								* >	(Т
Please ignor the OC F	Estimale box for 7	-PK -	53	PL	ux include of	netals & h	ydride	for	ms N	rclos	Metre	od of Dy	livery.	0	10	à	^
			•		Themse !	_	B	17	6-5:	3.		11) 1		11	XX)
alancarished By (Sept):	Received at D	epoti				Receive (g	> 1	6	64	L	Vertic	id i	5			9	dia.
alinquished By (Print) Dewn Ch	Mae Date/Time					Date/Tripu:	/ [(L)	iQ	th	Onto	inte:	1	. 0	0,20	14 1	97,53
allo Taraco Ture 18/184	Temperature:				°C	Tempergue U	100		C	- 12	pHW	rioti E		e a	100	J (1

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

exp Services Inc. (Ottawa)

100-2650 Queensview Dr. Ottawa, ON K2B 8H6

Attn: Chris Kimmerly

Client PO: OTT24005069A0

Project: OTT24005069A0

Custody: 145446

Report Date: 24-Jun-2024

Order Date: 21-Jun-2024

Order #: 2425595

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2425595-01	BH24-1
2425595-02	BH24-4
2425595-03	BH24-25
2425595-04	DUP. 1

Approved By:

Mark Foto

Mark Foto, M.Sc.

Lab Supervisor

Certificate of Analysis

Client PO: OTT24005069A0

Client: exp Services Inc. (Ottawa)

Report Date: 24-Jun-2024

Order Date: 21-Jun-2024

Project Description: OTT24005069A0

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
REG 153: Pesticides, OC	EPA 8081B - GC-ECD	21-Jun-24	24-Jun-24

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 24-Jun-2024 Order Date: 21-Jun-2024

Client PO: OTT24005069A0 Project Description: OTT24005069A0

	Client ID:	BH24-1	BH24-4	BH24-25	DUP. 1		
	Sample Date:	21-Jun-24 13:10	21-Jun-24 11:15	21-Jun-24 14:50	21-Jun-24 11:15	_	-
	Sample ID:	2425595-01	2425595-02	2425595-03	2425595-04		
	Matrix:	Ground Water	Ground Water	Ground Water	Ground Water		
	MDL/Units						
Pesticides, OC			•	!	!		
Aldrin	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
gamma-BHC (Lindane)	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
alpha-Chlordane	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
gamma-Chlordane	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
Chlordane	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
o,p'-DDD	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
p,p'-DDD	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
DDD	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
o,p'-DDE	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
p,p'-DDE	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
DDE	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
o,p'-DDT	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
p,p'-DDT	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
DDT	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
Dieldrin	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
Endrin	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
Endosulfan I	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
Endosulfan II	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
Endosulfan I/II	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
Heptachlor	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
Heptachlor epoxide	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
Hexachlorobenzene	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	
Hexachlorobutadiene	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
Hexachloroethane	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-
Methoxychlor	0.01 ug/L	<0.01	<0.01	<0.01	<0.01	-	-

Certificate of Analysis

Client PO: OTT24005069A0

Client: exp Services Inc. (Ottawa)

Report Date: 24-Jun-2024

Order Date: 21-Jun-2024

Project Description: OTT24005069A0

	Client ID:	BH24-1	BH24-4	BH24-25	DUP. 1		
	Sample Date:	21-Jun-24 13:10	21-Jun-24 11:15	21-Jun-24 14:50	21-Jun-24 11:15	-	-
	Sample ID:	2425595-01	2425595-02	2425595-03	2425595-04		
	Matrix:	Ground Water	Ground Water	Ground Water	Ground Water		
	MDL/Units	'					
Pesticides, OC	•		•				
Decachlorobiphenyl	Surrogate	107%	73.0%	97.3%	109%	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 24-Jun-2024 Order Date: 21-Jun-2024

Client PO: OTT24005069A0 Pr

Project Description: OTT24005069A0

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Pesticides, OC								
Aldrin	ND	0.01	ug/L					
gamma-BHC (Lindane)	ND	0.01	ug/L					
alpha-Chlordane	ND	0.01	ug/L					
gamma-Chlordane	ND	0.01	ug/L					
Chlordane	ND	0.01	ug/L					
o,p'-DDD	ND	0.01	ug/L					
p,p'-DDD	ND	0.01	ug/L					
DDD	ND	0.01	ug/L					
o,p'-DDE	ND	0.01	ug/L					
p,p'-DDE	ND	0.01	ug/L					
DDE	ND	0.01	ug/L					
o,p'-DDT	ND	0.01	ug/L					
p,p'-DDT	ND	0.01	ug/L					
DDT	ND	0.01	ug/L					
Dieldrin	ND	0.01	ug/L					
Endrin	ND	0.01	ug/L					
Endosulfan I	ND	0.01	ug/L					
Endosulfan II	ND	0.01	ug/L					
Endosulfan I/II	ND	0.01	ug/L					
Heptachlor	ND	0.01	ug/L					
Heptachlor epoxide	ND	0.01	ug/L					
Hexachlorobenzene	ND	0.01	ug/L					
Hexachlorobutadiene	ND	0.01	ug/L					
Hexachloroethane	ND	0.01	ug/L					
Methoxychlor	ND	0.01	ug/L					
Surrogate: Decachlorobiphenyl	0.329		%	65.8	50-140			

Client: exp Services Inc. (Ottawa)

Order #: 2425595

Certificate of Analysis

Report Date: 24-Jun-2024

Order Date: 21-Jun-2024

Client PO: OTT24005069A0 Project Description: OTT24005069A0

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Pesticides, OC									
Aldrin	0.56	0.01	ug/L	ND	113	50-140			
gamma-BHC (Lindane)	0.45	0.01	ug/L	ND	90.6	50-140			
alpha-Chlordane	0.57	0.01	ug/L	ND	114	50-140			
gamma-Chlordane	0.53	0.01	ug/L	ND	105	50-140			
o,p'-DDD	0.61	0.01	ug/L	ND	122	50-140			
p,p'-DDD	0.58	0.01	ug/L	ND	116	50-140			
o,p'-DDE	0.57	0.01	ug/L	ND	114	50-140			
p,p'-DDE	0.50	0.01	ug/L	ND	99.2	50-140			
o,p'-DDT	0.28	0.01	ug/L	ND	55.0	50-140			
p,p'-DDT	0.34	0.01	ug/L	ND	67.2	50-140			
Dieldrin	0.59	0.01	ug/L	ND	119	50-140			
Endrin	0.62	0.01	ug/L	ND	124	50-140			
Endosulfan I	0.58	0.01	ug/L	ND	116	50-140			
Endosulfan II	0.48	0.01	ug/L	ND	96.2	50-140			
Heptachlor	0.51	0.01	ug/L	ND	102	50-140			
Heptachlor epoxide	0.59	0.01	ug/L	ND	118	50-140			
Hexachlorobenzene	0.31	0.01	ug/L	ND	62.1	50-140			
Hexachlorobutadiene	0.50	0.01	ug/L	ND	99.4	50-140			
Hexachloroethane	0.42	0.01	ug/L	ND	84.9	50-140			
Methoxychlor	0.44	0.01	ug/L	ND	87.1	50-140			
Surrogate: Decachlorobiphenyl	0.442		%		88.4	50-140			

Report Date: 24-Jun-2024

Order Date: 21-Jun-2024

Project Description: OTT24005069A0

Certificate of Analysis

Client PO: OTT24005069A0

Client: exp Services Inc. (Ottawa)

Qualifier Notes:

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

	$D \lambda$	DΛ	0
	PA	KA	
3			-

urent Blvd. K1G 4J8

Paracel Order Number (Lab Use Only)

Chain of Custody (Lab Use Only)

LABORATORI		11111111		188 8 11		47 cellabs.com s.com	111	, 2,	59	· /		_1	Λō	1454	46	
Client Name: EXP Servi	ce Inc.		Proje	ct Ref.	2400 50		97	03	1	7				Page _	of	
Contact Name: Chris 1C	mmer y		Quot			1.10	24					Turnaround Time				
26 SU CQUEENS OTTOW, UN, Telephone: 613-863-189	Glephone: 613-863-1891				bris.1cim hynaz.H	merly c	e	xp	, CO	hy	124] 1 da	ау		3 day Regular
X REG 153/04 ☐ REG 406/19	Other Regulation				\$ (Soil/Sed.) GW (and a	4 4	ht.		
☐ Table 1 ☐ Res/Park ☐ Med/Fine ☐ Table 2 ☐ Ind/Comm ☐ Coarse	REG 558 PWQO		SW (Su		Water) SS (Storm/S						He	quire	a Ana			
■ Table 3	☐ CCME ☐ MISA ☐ SU - Sani ☐ SU-Storm Mun: ☐ Other	×	Air Volume	of Containers	(paint A (Air) O (Oth	e Taken	S F1-F4+BTEX	70	892	Metals by ICP			VS)	Pesticides		
Sample ID/Loca	ation Name	Matrix	Air V	# of	Date	01 110 p	PHC	VOCS	PAHS	Meta	Ð	CrVI	B (HWS)	OC		
1 BH24-1 3 BH24-4		0-6		1	Jun 2/1 2024	11:150	No.							7		
5 131124-25				-		2 (50 P	hin									
8 Note: 9 13424-1 7	im collected	V 01	: 1	0	en.	11:150	i pira							J		
10 comments;	The state of the s															
February Man Able Shally Man Able Relinquished By (Print): Able Able	Received at De Date/Time: Temperature:	epot.			°C	Received at land	BAL	18	55° 218	8	Verifie	d of De	U)	Q)	2014	In 758

Certificate of Analysis

Order #: 2423546

Report Date: 13-Jun-2024

Client: exp Services Inc. (Ottawa)

Order Date: 7-Jun-2024

Project Description: OTT24005069A0

Client PO:

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Boron, available	MOE (HWE), EPA 200.8 - ICP-MS	10-Jun-24	10-Jun-24
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	10-Jun-24	11-Jun-24
Chromium, hexavalent - soil	MOE E3056 - Extraction, colourimetric	11-Jun-24	12-Jun-24
Mercury by CVAA	EPA 7471B - CVAA, digestion	12-Jun-24	12-Jun-24
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	12-Jun-24	13-Jun-24
PHC F1	CWS Tier 1 - P&T GC-FID	10-Jun-24	11-Jun-24
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	11-Jun-24	12-Jun-24
REG 153: Metals by ICP/MS, soil	EPA 6020 - Digestion - ICP-MS	12-Jun-24	12-Jun-24
Solids, %	CWS Tier 1 - Gravimetric	10-Jun-24	11-Jun-24

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 13-Jun-2024 Order Date: 7-Jun-2024

Client PO:

Project Description: OTT24005069A0

	Client ID:	BH24-1 SS1	BH24-1 SS6	BH24-11 SS1	BH24-11 SS4		
	Sample Date:	06-Jun-24 11:30	06-Jun-24 11:30	06-Jun-24 11:00	06-Jun-24 11:00	-	-
	Sample ID:	2423546-01	2423546-02	2423546-03	2423546-04		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Physical Characteristics							•
% Solids	0.1 % by Wt.	85.4	58.7	86.7	77.4	-	-
General Inorganics				•	•		<u> </u>
рН	0.05 pH Units	7.15	7.38	7.08	7.24	-	-
Metals				-			
Antimony	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Arsenic	1.0 ug/g	4.0	5.4	4.8	3.0	-	-
Barium	1.0 ug/g	111	243	132	98.3	-	-
Beryllium	0.5 ug/g	0.6	0.9	0.6	<0.5	-	-
Boron, available	0.5 ug/g	<0.5	<0.5	<0.5	<0.5	-	-
Boron	5.0 ug/g	5.9	11.5	7.3	<5.0	-	-
Cadmium	0.5 ug/g	<0.5	<0.5	<0.5	<0.5	-	-
Chromium (VI)	0.2 ug/g	<0.2	<0.2	<0.2	0.3	-	-
Chromium	5.0 ug/g	41.6	62.5	46.0	21.4	-	-
Cobalt	1.0 ug/g	9.4	17.5	11.6	6.0	-	-
Copper	5.0 ug/g	16.7	32.8	19.9	13.7	-	-
Lead	1.0 ug/g	7.5	7.1	10.1	3.7	-	-
Mercury	0.1 ug/g	<0.1	<0.1	<0.1	<0.1	-	-
Molybdenum	1.0 ug/g	<1.0	1.9	2.2	<1.0	-	-
Nickel	5.0 ug/g	21.1	36.4	26.6	12.7	-	-
Selenium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Silver	0.3 ug/g	<0.3	<0.3	<0.3	<0.3	-	-
Thallium	1.0 ug/g	<1.0	<1.0	<1.0	<1.0	-	-
Uranium	1.0 ug/g	<1.0	1.1	<1.0	<1.0	-	-
Vanadium	10.0 ug/g	46.2	80.4	45.1	33.3	-	-
Zinc	20.0 ug/g	52.8	98.9	56.8	33.4	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 13-Jun-2024 Order Date: 7-Jun-2024

Client PO: Project Description: OTT24005069A0

	Client ID:	BH24-1 SS1	BH24-1 SS6	BH24-11 SS1	BH24-11 SS4		
	Sample Date:	06-Jun-24 11:30	06-Jun-24 11:30	06-Jun-24 11:00	06-Jun-24 11:00	-	-
	Sample ID:	2423546-01	2423546-02	2423546-03	2423546-04		
	Matrix:	Soil	Soil	Soil	Soil		
	MDL/Units						
Volatiles			-	•	•		
Benzene	0.02 ug/g	<0.02	<0.02	<0.02	<0.02	-	-
Ethylbenzene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Toluene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
m,p-Xylenes	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Xylenes, total	0.05 ug/g	<0.05	<0.05	<0.05	<0.05	-	-
Toluene-d8	Surrogate	125%	112%	122%	121%	-	-
Hydrocarbons					•		
F1 PHCs (C6-C10)	7 ug/g	<7	<7	<7	<7	-	-
F2 PHCs (C10-C16)	4 ug/g	<4	<4	<4	<4	-	-
F3 PHCs (C16-C34)	8 ug/g	15	<8	40	<8	-	-
F4 PHCs (C34-C50)	6 ug/g	43	<6	58	<6	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 13-Jun-2024 Order Date: 7-Jun-2024

Client PO:

Project Description: OTT24005069A0

	Client ID:	Dup. SS1	Dup. SS6				
	Sample Date:	06-Jun-24 11:30	06-Jun-24 11:30			_	_
	Sample ID:	2423546-05	2423546-06				
	Matrix:	Soil	Soil				
	MDL/Units						
Physical Characteristics	-		•	•	•		
% Solids	0.1 % by Wt.	84.3	58.8	-	-	-	-
General Inorganics	•				•	•	
рН	0.05 pH Units	7.08	7.54	-	-	-	-
Metals					•	•	
Antimony	1.0 ug/g	<1.0	<1.0	-	-	-	-
Arsenic	1.0 ug/g	3.5	5.6	-	-	-	-
Barium	1.0 ug/g	102	272	-	-	-	-
Beryllium	0.5 ug/g	0.5	0.9	-	-	-	-
Boron, available	0.5 ug/g	<0.5	<0.5	-	-	-	-
Boron	5.0 ug/g	5.1	11.2	-	-	-	-
Cadmium	0.5 ug/g	<0.5	<0.5	-	-	-	-
Chromium	5.0 ug/g	38.0	71.2	-	-	-	-
Chromium (VI)	0.2 ug/g	<0.2	<0.2	-	-	-	-
Cobalt	1.0 ug/g	8.0	19.8	-	-	-	-
Copper	5.0 ug/g	15.4	36.6	-	-	-	-
Lead	1.0 ug/g	6.9	7.3	-	-	-	-
Mercury	0.1 ug/g	<0.1	<0.1	-	-	-	-
Molybdenum	1.0 ug/g	<1.0	3.6	-	-	-	-
Nickel	5.0 ug/g	19.1	41.2	-	-	-	-
Selenium	1.0 ug/g	<1.0	<1.0	-	-	-	-
Silver	0.3 ug/g	<0.3	<0.3	-	-	-	-
Thallium	1.0 ug/g	<1.0	<1.0	-	-	-	-
Uranium	1.0 ug/g	1.0	1.2	-	-	-	-
Vanadium	10.0 ug/g	42.5	89.3	-	-	-	-
Zinc	20.0 ug/g	52.6	108	-	-	-	-

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 13-Jun-2024 Order Date: 7-Jun-2024

Project Description: OTT24005069A0

Client PO: Project

	Client ID:	Dup. SS1	Dup. SS6				
	Sample Date:	06-Jun-24 11:30	06-Jun-24 11:30			-	-
	Sample ID:	2423546-05	2423546-06				
	Matrix:	Soil	Soil				
	MDL/Units						
Volatiles	•			•	•	-	
Benzene	0.02 ug/g	<0.02	<0.02	-	-	-	-
Ethylbenzene	0.05 ug/g	<0.05	<0.05	-	-	-	-
Toluene	0.05 ug/g	<0.05	<0.05	-	-	-	-
m,p-Xylenes	0.05 ug/g	<0.05	<0.05	-	-	-	-
o-Xylene	0.05 ug/g	<0.05	<0.05	-	-	-	-
Xylenes, total	0.05 ug/g	<0.05	<0.05	-	-	-	-
Toluene-d8	Surrogate	120%	110%	-	-	-	-
Hydrocarbons	.						
F1 PHCs (C6-C10)	7 ug/g	<7	<7	-	-	-	-
F2 PHCs (C10-C16)	4 ug/g	<4	<4	-	-	-	-
F3 PHCs (C16-C34)	8 ug/g	<8	<8	-	-	-	-
F4 PHCs (C34-C50)	6 ug/g	<6	<6	-	-	-	-

Certificate of Analysis

Client PO:

Report Date: 13-Jun-2024

Order Date: 7-Jun-2024

Project Description: OTT24005069A0

Client: exp Services Inc. (Ottawa)

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons								
F1 PHCs (C6-C10)	ND	7	ug/g					
F2 PHCs (C10-C16)	ND	4	ug/g					
F3 PHCs (C16-C34)	ND	8	ug/g					
F4 PHCs (C34-C50)	ND	6	ug/g					
Metals								
Antimony	ND	1.0	ug/g					
Arsenic	ND	1.0	ug/g					
Barium	ND	1.0	ug/g					
Beryllium	ND	0.5	ug/g					
Boron, available	ND	0.5	ug/g					
Boron	ND	5.0	ug/g					
Cadmium	ND	0.5	ug/g					
Chromium (VI)	ND	0.2	ug/g					
Chromium	ND	5.0	ug/g					
Cobalt	ND	1.0	ug/g					
Copper	ND	5.0	ug/g					
Lead	ND	1.0	ug/g					
Mercury	ND	0.1	ug/g					
Molybdenum	ND	1.0	ug/g					
Nickel	ND	5.0	ug/g					
Selenium	ND	1.0	ug/g					
Silver	ND	0.3	ug/g					
Thallium	ND	1.0	ug/g					
Uranium	ND	1.0	ug/g					
Vanadium	ND	10.0	ug/g					
Zinc	ND	20.0	ug/g					
Volatiles	2		3-3					
Benzene	ND	0.02	ug/g					
Ethylbenzene	ND	0.05	ug/g					
Toluene	ND	0.05	ug/g					
m,p-Xylenes	ND	0.05	ug/g					
o-Xylene	ND	0.05	ug/g					

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 13-Jun-2024

Order Date: 7-Jun-2024

Project Description: OTT24005069A0

Client PO:

Method Quality Control: Blank

mothod equality control. Did	1111							
Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Xylenes, total	ND	0.05	ug/g					
Surrogate: Toluene-d8	8.77		%	110	50-140			

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 13-Jun-2024 Order Date: 7-Jun-2024

Client PO:

Project Description: OTT24005069A0

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
General Inorganics									
pH	7.49	0.05	pH Units	7.50			0.1	2.3	
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g	ND			NC	40	
F2 PHCs (C10-C16)	ND	4	ug/g	ND			NC	30	
F3 PHCs (C16-C34)	985	8	ug/g	995			1.0	30	
F4 PHCs (C34-C50)	469	6	ug/g	674			35.9	30	QR-04
Metals									
Antimony	ND	1.0	ug/g	ND			NC	30	
Arsenic	3.8	1.0	ug/g	4.1			7.7	30	
Barium	171	1.0	ug/g	168			1.4	30	
Beryllium	0.5	0.5	ug/g	0.5			3.1	30	
Boron, available	ND	0.5	ug/g	ND			NC	35	
Boron	6.8	5.0	ug/g	7.5			9.9	30	
Cadmium	ND	0.5	ug/g	ND			NC	30	
Chromium (VI)	ND	0.2	ug/g	ND			NC	35	
Chromium	43.8	5.0	ug/g	44.2			1.0	30	
Cobalt	10.6	1.0	ug/g	10.3			2.7	30	
Copper	24.0	5.0	ug/g	23.9			0.3	30	
Lead	16.6	1.0	ug/g	15.5			6.8	30	
Mercury	ND	0.1	ug/g	ND			NC	30	
Molybdenum	1.4	1.0	ug/g	1.5			3.0	30	
Nickel	27.1	5.0	ug/g	26.3			3.0	30	
Selenium	ND	1.0	ug/g	ND			NC	30	
Silver	ND	0.3	ug/g	ND			NC	30	
Thallium	ND	1.0	ug/g	ND			NC	30	
Uranium	1.1	1.0	ug/g	1.1			3.1	30	
Vanadium	45.6	10.0	ug/g	46.1			1.0	30	
Zinc	62.3	20.0	ug/g	64.0			2.7	30	
Physical Characteristics	02.0	20.0	3- 3						
% Solids	83.4	0.1	% by Wt.	83.8			0.5	25	
	00.⊣	0.1	,,	55.5			0.0		

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 13-Jun-2024 Order Date: 7-Jun-2024

Project Description: OTT24005069A0

Client PO:

Method Quality Control: Duplicate

incured duality control 2 apricate									
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Volatiles									
Benzene	ND	0.02	ug/g	ND			NC	50	
Ethylbenzene	ND	0.05	ug/g	ND			NC	50	
Toluene	ND	0.05	ug/g	ND			NC	50	
m,p-Xylenes	ND	0.05	ug/g	ND			NC	50	
o-Xylene	ND	0.05	ug/g	ND			NC	50	
Surrogate: Toluene-d8	10.5		%		115	50-140			

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 13-Jun-2024 Order Date: 7-Jun-2024

Client PO:

Project Description: OTT24005069A0

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	182	7	ug/g	ND	106	85-115			
F2 PHCs (C10-C16)	133	4	ug/g	ND	107	60-140			
F3 PHCs (C16-C34)	195	8	ug/g	ND	99.5	80-120			
F4 PHCs (C34-C50)	111	6	ug/g	ND	89.5	80-120			
Metals									
Arsenic	47.5	1.0	ug/g	1.6	91.8	70-130			
Barium	110	1.0	ug/g	67.3	84.8	70-130			
Beryllium	45.9	0.5	ug/g	ND	91.4	70-130			
Boron, available	3.54	0.5	ug/g	ND	70.8	70-122			
Boron	47.3	5.0	ug/g	ND	88.6	70-130			
Cadmium	44.5	0.5	ug/g	ND	88.9	70-130			
Chromium (VI)	4.0	0.2	ug/g	ND	72.5	70-130			
Chromium	65.0	5.0	ug/g	17.7	94.7	70-130			
Cobalt	50.4	1.0	ug/g	4.1	92.6	70-130			
Copper	52.6	5.0	ug/g	9.6	86.1	70-130			
Lead	50.5	1.0	ug/g	6.2	88.6	70-130			
Mercury	1.47	0.1	ug/g	ND	98.0	70-130			
Molybdenum	46.6	1.0	ug/g	ND	92.0	70-130			
Nickel	55.7	5.0	ug/g	10.5	90.3	70-130			
Selenium	43.9	1.0	ug/g	ND	87.4	70-130			
Silver	40.9	0.3	ug/g	ND	81.7	70-130			
Thallium	44.1	1.0	ug/g	ND	88.1	70-130			
Uranium	47.3	1.0	ug/g	ND	93.8	70-130			
Vanadium	66.4	10.0	ug/g	18.4	96.0	70-130			
Zinc	66.1	20.0	ug/g	25.6	81.1	70-130			
Volatiles									
Benzene	4.47	0.02	ug/g	ND	112	60-130			
Ethylbenzene	4.60	0.05	ug/g	ND	115	60-130			
Toluene	4.72	0.05	ug/g	ND	118	60-130			
m,p-Xylenes	9.29	0.05	ug/g	ND	116	60-130			

Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 13-Jun-2024

Order Date: 7-Jun-2024

Project Description: OTT24005069A0

Client PO:

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
o-Xylene	4.78	0.05	ug/g	ND	120	60-130			
Surrogate: Toluene-d8	7.53		%		94.2	50-140			

Client: exp Services Inc. (Ottawa)

Order #: 2423546

Certificate of Analysis

Report Date: 13-Jun-2024

Order Date: 7-Jun-2024

Client PO: Project Description: OTT24005069A0

Qualifier Notes:

QC Qualifiers:

QR-04 Duplicate results exceeds RPD limits due to non-homogeneous matrix.

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Soil results are reported on a dry weight basis unlesss otherwise noted.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.
- When reported, data for F4G has been processed using a silica gel cleanup.

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Paracel Order Number (Lab Use Only)

Chain Of Custody (Lab Use Only)

01-22566

73691

Client Name: F.D.C.	100 7100		_				2	42	רכ	70					
Contact Name: EXP Serv	ice Inc. (o.	Mave		ect Ref:									Pag	ge	of
Contact Name: Chris Kim	merly				24-335							1	Turnar		
100-2650 Queen	View Da with	w	PO# OT - 240050 69-A0									I 1 day			□ 3 day
@ A/.	- Sit		E-ma	01	ris. Kimn	nerlya	CXI	2,0	om			1 2 day			□ Regular
Telephone: 613-688-1	899		5	ha	hyna Ziak	delMoh	ser	1 2	exi	PICOM	Dat	e Requ	ired:		
REG 153/04 REG 406/19	Other Regulation						T.		, ,		-		_		
□ Table 1 □ Res/Park □ Med/Fine	☐ REG 558 ☐ PWQ0	1	SW (St	rface	S (Soil/Sed.) GW (G Water) SS (Storm/Sa	round Water) nitary Sewer)			25		Require	ed Anal	ysis		
☐ Table 2 ☐ Ind/Comm ☐ Coarse	□ COME □ MISA				Paint) A (Air) O (Oth		+		300			T			T
☐ Table 3 ☐ Agri/Other	□ su-sani □ su-st	orm		22			F4+		Hydr						
Table	Mun:	- 60	ue.	Containers	Sample	Taken	17.1	U	# #						
For RSC: ☐ Yes ☐ No	Other:	ž	Air Volume				Y.	0	F	エ					
Sample ID/Location Name		Matrix	Air	0 11	Date	Time	Y	>	83	0					
BH 24-1 <	551	5		2	June, 6, 2024	11:30 0 11	J	1	V	1					
2 RH 24-15		1		1	34.6/0/6021	11:30 am		1	1	1	-				
3 RH24-11 S						11:00 am	1								
* BH 24-11 5							\dagger	+	\dagger	1					
5 Dup. 55,						11:00 am	1	+	+	+	_				
6 Dup. 550		1				11:30 am			+		-			-	-
7 1007 230		-		V	Α	11:3000	4	1	J	4	+	-	-	-	
8										-	-	-	-	-	-
9											-	-		-	
10							-				_		_	-	
omments:							2 12		L.,		1.				
										JV1 e	thod of D	TI	0	08	ln
Shayraz Abdel	Mah Sen Received	at Depot:				Received at Laty	2			IC ve	rified 8y:	W	U	11	///
slinguished By (Print):	inquished By (Print): Shahina Bhalina Bhalina Date/Time:			-	1/10/2007		0		3	10	(SS			. 64
Shahynors Abd.	el HeA					Date/Ting	u	7	++	1 Da	tertyme:	Jun		14	42
pin of Gustody (Blank) xisx					°C	emperature: 6	.4		"C	рН	Verified.	71/	By:		