

# Phase Two Environmental Site Assessment Update 6659 Franktown Road, Ottawa, Ontario

#### Client:

Air Rock Drilling Company Ltd.

#### Type of Document:

Final

#### **Project Name:**

Phase Two Environmental Site Assessment

## **Project Number:**

OTT-00243705-B0

## **Prepared By:**

Mackenzie Russell, M.Sc. Chris Kimmerly, P.Geo.

EXP Services Inc. 100-2650 Queensview Drive Ottawa, Ontario K2B 8H6 t: +1.613.688.1899 f: +1.613.225.7337

#### **Date Submitted:**

2025-10-17

# **Legal Notification**

This report was prepared by EXP Services Inc. for the account of Air Rock Drilling Company Ltd.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.



# **Executive Summary**

EXP Services Inc. (EXP) was retained by Air Rock Drilling Company Ltd. to conduct a Phase Two Environmental Site Assessment (ESA) at 6659 Franktown Road in Ottawa, Ontario (hereinafter referred to as the 'Phase Two Property'). At the time of the investigation the Phase Two property was occupied by one residential dwelling, one workshop/office building and a quonset hut associated with the on-Site well drilling company (Air Rock Drilling Company Ltd.).

The objective of the Phase Two ESA investigation was to assess the quality of the soil and groundwater conditions within the areas of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP. EXP notes that this report is being conducted in support of a zoning by-law amendment (ZBLA) and the subsequent Site Plan Application (SPA). There is no change in land use that would require the filing of a Record of Site Condition.

The Phase Two ESA activities consisted of collecting groundwater samples from the three on-site monitoring wells (2023 and 2024) followed by a surface soil sampling program (2024).

The Phase Two property is located on the north side of Franktown Road, at 6659 Franktown Road in Ottawa and has an area of approximately 1.22 hectares. The Phase Two property is legally described as CON 4 E PT LOT 19 RP;4R-14477 PART 2. The PIN for the Phase Two property is 044390239.

A Phase I and II ESA was conducted by EXP in 2017 for due diligence purposes. Based on the Phase I ESA, three potentially contaminating activities (PCA) (sump pit discharge and several above ground storage tanks) were identified. These PCAs resulted in the identification of three areas of potential environmental concern (APEC). As part of the Phase II ESA, nine test pits (TP1 to TP9) were excavated in the areas of the sump pit discharge and the above ground storage tanks and soil samples were collected for laboratory analysis of the contaminants of concern. In addition, three monitoring wells were installed and groundwater samples were collected for laboratory analysis of the contaminants of concern. Based on the laboratory analyses, the concentrations of petroleum hydrocarbons (PHC), benzene, toluene, ethylbenzene, xylenes (BTEX) and metals measured in the analysed soil and groundwater samples were less than the provincial Table 2 SCS, with the exception of a sample collected from TP5, which was found to have soil exceedances of the Table 2 SCS for PHC F1 and PHC F2. The impacts at TP5 were delineated in all four cardinal directions. No elevated PHC and/or BTEX concentrations were detected from any of the three water samples collected as the water results were less than the Table 2 SCS. Therefore, it was determined that the minor soil impact from TP5 had not impacted the groundwater at MW-3 (which was located immediately next to TP5).

In 2023, EXP updated the ESAs by completing a Phase One and Two ESA in support of the ZBLA and SPA. No additional PCAs were identified and the 2023 site investigative consisted of collecting groundwater samples from the three on-site monitoring wells. Based on the laboratory analyses, there were no exceedances of the MECP Table 2 SCS for any of the parameters analyzed in the groundwater samples from the monitoring wells (MW-1 to MW-3), with the exception of PHC F3 and F4 in the sample collected from MW3. It was suspected that the elevated PHC concentrations were due to sediment in the groundwater sample. A second groundwater sample was taken from MW3 ensuring no sediment was present in the sample. Based on the analytical results, PHC was not detected in the re-sample. The concentrations therefore did not exceed the Table 2 SCS.

Upon review of the 2023 Phase One and Two ESA, the City of Ottawa noted that it was not clear what potential impact the fuel storage tanks and the sump discharge had on the surface runoff, and consequently the adjacent properties, including a downstream Storm Water Management system (i.e., road right of way ditches to the south) and an Environmental Protection Zone {EPZ} to the north. Additional surface soil and groundwater sampling was completed in 2024 to address the City's comments. This report presents the results of the updated Phase Two ESA investigations.

As indicated in the 2023 Phase One ESA for the property, the following on-site PCA were identified. No off-site PCA were identified.

- PCA #10 Commercial autobody shops
  - On-site repair garage active repair garage



- PCA #28 Gasoline and associated products storage in fixed tanks
  - 2 AST in east part of Phase One property
  - 4 AST in west part of Phase One property

Ontario Regulation 153/04 defines an APEC as an area on a property where one or more contaminants are potentially present. The following APEC were identified on the Phase Two property, as shown in Table EX-1:

Location of **Media Potentially** Area of Potential **Contaminants of Potentially Contaminating** Location of APEC on PCA (On-Site **Impacted Potential Environmental Phase One Property** Activity (PCA) (Groundwater, Soil or Concern Concern (APEC) Off-Site) and/or Sediment) APEC #1 Workshop shop sump On-site Benzene, Soil and groundwater PCA #10 – Gasoline and discharge (sump toluene, **Associated Products** discharges to gravel ethylbenzene, Storage in Fixed Tanks just outside xylene (BTEX), workshop building, and petroleum south side) hydrocarbons (PHC), metals APEC #2 and 3 BTEX and PHC Soil and groundwater Above ground On-site PCA #28 - Gasoline and storage tanks for **Associated Products** furnace oil and Storage in Fixed Tanks refueling

Table EX-1: Areas of Potential Environmental Concern

In terms of evaluating laboratory analytical results to a particular property, the application of the provincial generic or background Site Condition Standards (SCS) is based on a consideration of site conditions related to soil pH, thickness and extent of overburden material, and proximity to an area of environmental sensitivity or of natural significance. For some chemical parameters, consideration is also given to soil textural classification with SCS having been derived for both coarse and medium-fine textured soil conditions.

For assessment purposes, EXP selected the 2011 Table 2 SCS in a non-potable groundwater condition for residential/parkland/institutional property use, coarse grained soil.

The selection of these categories was based on the following factors:

- Bedrock is greater than 2 metres below grade across the subject property;
- The Phase Two property is not located within 30 metres of a waterbody;
- The Phase Two property is not located within an area of natural significance, does not include nor is adjacent to an area of natural significance, and does not include land that is within 30 metres of an area of natural significance;
- Potable water for the Phase Two property is supplied from an on-Site water well;
- The Phase Two property is located in an area designated in a municipal official plan as a well-head protection area;
- The proposed building is planned for residential and commercial use; and
- It is the opinion of the Qualified Person who oversaw this work that the Phase Two property is not a sensitive site.

Based on the results of the 2023 and 2024 groundwater monitoring, no impact to the shallow groundwater regime was noted at the three on-site monitoring wells that were installed at the PCA/point sources. Therefore, the migration of impacted groundwater was not observed.



Based on the surface soil sampling program, there was evidence of point source surface soil impact at i) the sump discharge point as indicated by the PHC and cobalt results at S1 and ii) the refueling storage tanks as indicated by the PHC results at S5. The area beyond these point sources is either asphalt or hard-pack gravel.

With respect to potential impact to adjacent properties overland, as there are no surface water features on the Phase Two property, surface soil samples were collected at point sources (i.e., the sump discharge point and ASTs) and in the downgrade directions towards the east and west residential properties and the south drainage ditch. Based on the results from surficial soil samples along the eastern (S2 and S7) and western property boundaries (S6 and S8), no impact was observed to these adjacent receptors. With respect to the EPZ to the north, no potential impact from the operations at the Phase Two property is expected. A slight exceedance of hydrocarbon (PHC F3) was observed at S4 the northwest corner of the property, however no hydrocarbon exceedances were detected in delineation soil samples (S9, S10, S11 and S12) from this location. This indicates the impact is limited and has not contributed to an off-site receptor or the EPZ.

Based on lack of groundwater exceedances and given the location and nature of the contaminants (PHC F2 and F3 and cobalt) exceeding MECP Table 2 SCS in soil samples (S1, S4 and S5), the likely source of these impacts are from minor spills related to refueling practices associated with the refueling ASTs and/or sump and limited to the point sources. There is no evidence that contaminants are moving off site.

The Qualified Person can confirm that the Phase Two Environmental Site Assessment was conducted per the requirements of Ontario Regulation 153/04, as amended, and in accordance with generally accepted professional practices. No further environmental investigations are deemed to be warranted.

This executive summary is a brief synopsis of the report and should not be read in lieu of reading the report in its entirety.



# **Table of Contents**

| Legal N | Notification                                   | i    |
|---------|------------------------------------------------|------|
| Execut  | tive Summary                                   | ii   |
| List of | Figures                                        | viii |
| List of | f Appendices                                   | ix   |
| 1.0     | Introduction                                   | 20   |
| 1.1     | Background                                     | 20   |
| 1.2     | Site Description                               | 21   |
| 1.3     | Property Ownership                             | 22   |
| 1.4     | Current and Proposed Future Use                | 22   |
| 1.5     | Applicable Site Condition Standards            | 22   |
| 2.0     | Background Information                         | 24   |
| 2.1     | Physical Setting                               | 24   |
| 2.2     | Past Investigations                            | 24   |
| 3.0     | Scope of the Investigation                     | 26   |
| 3.1     | Overview of Site Investigation                 | 26   |
| 3.2     | Scope of Work                                  | 26   |
| 3.3     | Media Investigated                             | 26   |
| 3.4     | Phase One Conceptual Site Model                | 26   |
| 3.4.    | .1 Buildings and Structures                    | 26   |
| 3.4.2   | .2 Water Bodies and Groundwater Flow Direction | 27   |
| 3.4.3   | .3 Areas of Natural Significance               | 27   |
| 3.4.4   | .4 Water Wells                                 | 27   |
| 3.4.5   | .5 Potentially Contaminating Activity          | 27   |
| 3.4.6   | .6 Areas of Potential Environmental Concern    | 27   |
| 3.4.    | .7 Underground Utilities                       | 28   |



|    | 3.4.8 | Subsurface Stratigraphy                                     | 28         |
|----|-------|-------------------------------------------------------------|------------|
|    | 3.4.9 | Uncertainty Analysis                                        | 28         |
|    | 3.5   | Deviations from Sampling and Analysis Plan                  | 28         |
|    | 3.6   | Impediments                                                 | 28         |
| 4. | 0 І   | Investigation Method                                        | <b>2</b> 9 |
|    | 4.1   | General                                                     |            |
|    | 4.2   | Groundwater: Field Measurement and Water Quality Parameters | 29         |
|    | 4.3   | Groundwater: Sampling                                       | 29         |
|    | 4.4   | Surface Soil: Sampling                                      | 30         |
|    | 4.5   | Surface water or Sediment: Sampling                         | 31         |
|    | 4.6   | Analytical Testing                                          | 31         |
|    | 4.7   | Residue Management                                          | 32         |
|    | 4.8   | Elevation Surveying                                         | 32         |
|    | 4.9   | Quality Assurance and Quality Control Measures              | 32         |
| 5. | .0 г  | Review and Evaluation                                       | 33         |
|    | 5.1   | Geology                                                     | 33         |
|    | 5.2   | Groundwater: Elevations and Flow Direction                  |            |
|    | 5.3   | Groundwater: Hydraulic Gradients                            | 34         |
|    | 5.4   | Soil: Field Screening                                       |            |
|    | 5.5   | Soil: Quality                                               | 35         |
|    | 5.6   | Groundwater: Quality                                        | 35         |
|    | 5.6.1 | Chemical Transformation and Contaminant Sources             | 36         |
|    | 5.6.2 | Evidence of Non-Aqueous Phase Liquid                        | 36         |
|    | 5.6.3 | Maximum Concentrations                                      | 36         |
|    | 5.7   | Surface Water and Sediment: Quality                         | 3 <i>6</i> |
|    | 5.8   | Quality Assurance and Quality Control Results               | 36         |
|    | 5 Q   | Discussion                                                  | 27         |



| 6.0 Ph | ase Two Conceptual Site Model                                              | 39 |
|--------|----------------------------------------------------------------------------|----|
| 6.1.1  | Introduction                                                               | 39 |
| 6.1.2  | Physical Site Description                                                  | 39 |
| 6.1.3  | Geological and Hydrogeological                                             | 40 |
| 6.1.4  | Utilities and Impediments                                                  | 40 |
| 6.1.5  | Potentially Contaminating Activities                                       | 40 |
| 6.1.6  | Areas of Potential Environmental Concern/Potential Contaminates of Concern | 41 |
| 6.1.7  | Investigation                                                              | 41 |
| 6.1.8  | Groundwater Sampling                                                       | 41 |
| 6.1.9  | Surface Soil Sampling                                                      | 41 |
| 6.1.10 | Contaminants of Concern                                                    | 42 |
| 6.1.11 | Contaminant Fate and Transport                                             | 42 |
| 7.0 Co | nclusion                                                                   | 43 |
| 8.0 Re | ferences                                                                   | 44 |
| o.u ke | itel cilices                                                               | 44 |
| 9.0 Ge | eneral Limitations                                                         | 45 |



# **List of Figures**

- Figure 1 Site Location Plan
- Figure 2 6659 Franktown Road Entire Property Boundary
- Figure 3 Phase One Study Area
- Figure 4 Test Hole Location Plan
- Figure 5 Groundwater Contour Plan Overburden 2024
- Figure 6 Cross Section Plan
- Figure 7 Cross Section A-A'
- Figure 8 Soil Analytical Results PHC and BTEX
- Figure 9 Soil Analytical Results Inorganics
- Figure 10 Soil Cross Sections A-A'– PHC and BTEX
- Figure 11 Soil Cross Sections A-A' Inorganics
- Figure 12 Groundwater Analytical Results PHC and BTEX
- Figure 13 Groundwater Cross Sections A-A'-PHC and BTEX
- Figure 14- Surface Soil Sampling Plan



# **List of Appendices**

Appendix A: Figures Appendix B: Survey Plan

Appendix C: Sampling and Analysis Plan

Appendix D: Borehole Logs

Appendix E: Analytical Summary Tables – 2023 Appendix F: Analytical Summary Tables - 2024 Appendix G: Laboratory Certificates of Analysis Appendix H: Hydraulic Conductivity Test



# 1.0 Introduction

EXP Services Inc. (EXP) was retained by Air Rock Drilling to conduct a Phase Two Environmental Site Assessment (ESA) for the property located at 6659 Franktown Road in Ottawa, Ontario (hereinafter referred to as the 'Phase Two property'). At the time of the investigation, the Site was occupied by one residential dwelling, one workshop/office building and a quonset hut associated with the on-Site well drilling company (Air Rock Drilling Company Ltd.).

The objective of the Phase Two ESA investigation was to assess the quality of the soil and groundwater conditions within the areas of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP in 2017 and updated in 2023. EXP understands that this report is being conducted in support of a zoning by-law amendment (ZBLA) and the subsequent Site Plan Application. There is no change in land use that would require the filing of a Record of Site Condition.

This report has been prepared in accordance with the Phase Two ESA standard as defined by Ontario Regulation 153/04 (as amended), and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services, and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

# 1.1 Background

A Phase I and II ESA was conducted by EXP in 2017 for due diligence purposes. Based on the results of the Phase I ESA, three potentially contaminating activities (PCA) (sump pit discharge and several above ground storage tanks) were identified on the property which resulted in three areas of potential environmental concern (APEC) which triggered the Phase II ESA. As part of the Phase II ESA, nine (9) test pits (TP1 to TP9) were excavated in the areas of the sump pit discharge and the above ground storage tanks. Soil samples were collected for laboratory analysis. In addition, three (3) monitoring wells were installed, and groundwater samples were collected for laboratory analysis of the contaminants of concern. Based on the laboratory analyses, the concentrations of petroleum hydrocarbons (PHC), benzene, toluene, ethylbenzene, xylenes (BTEX) and metals measured in the analysed soil and groundwater samples were less than the provincial Table 2 SCS, with the exception of a sample collected from TP5, which was found to have soil exceedances of the Table 2 SCS for PHC F1 and PHC F2. The impacts at TP5 were delineated in all four cardinal directions. No elevated PHC and/or BTEX concentrations were detected from any of the three water samples collected as the water results were less than the Table 2 SCS. Therefore, it was determined that the minor soil impact from TP5 had not impacted the groundwater at MW-3 (which was located immediately next to TP5).

In 2023, EXP subsequently updated the ESAs by completing a Phase One and Two ESA in support of the ZBLA and SPA. The 2023 site investigative consisted of collecting groundwater samples from the three on-site monitoring wells. Based on the laboratory analyses, there were no exceedances of the MECP Table 2 SCS for any of the parameters analyzed in the groundwater samples from the monitoring wells (MW-1 to MW-3), with the exception of PHC F3 and F4 in the sample collected from MW3. It was suspected that the elevated PHC concentrations were due to sediment in the groundwater sample. A second groundwater sample was taken from MW3 ensuring no sediment was present in the sample. Based on the analytical results, PHC was not detected in the re-sample. The concentrations therefore did not exceed the Table 2 SCS.

Upon review of the 2023 Phase One and Two ESA, the City of Ottawa noted that it was not clear what potential impact the fuel storage tanks and the sump discharge had on the surface runoff, and consequently the adjacent properties, including a downstream Storm Water Management system (i.e., road right of way ditches to the south) and an Environmental Protection Zone {EPZ} to the north. Additional surface soil and groundwater sampling was completed in 2024 to address the City's comments. This report presents the results of the updated Phase Two ESA investigations.



# 1.2 Site Description

The Phase Two property is located on the north side of Franktown Road, at 6659 Franktown Road in Ottawa, just west of the village of Richmond (Figure 1). The Phase Two property is rectangular in shape with an area of approximately 1.22 hectares and is currently occupied by one residential dwelling, one workshop/office building and a quonset hut associated with the on-site well drilling company (Air Rock Drilling Company Ltd.) (Figure 3).

It is noted that the Phase Two property (i.e. operations at 6659 Franktown Rd) is part of larger parcel of land owned by Air Rock Drilling Company (Figure 1 and 2). This larger portion includes the balance of lot 6659 Franktown Road as well as lots 6695 Franktown Road and 6707 Franktown Road (Figure 2). The Phase Two property is legally described as CON 4 E PT LOT 19 RP;4R-14477 PART 2. The PIN for the Phase Two property is 044390239. A survey plan of the Phase Two property was completed by H.A. Ken Shipman Surveying Ltd. in March 2022. A copy of the survey plan is provided in Appendix B.

Site identification information is presented in Table 1.1.

Civic Address 6659 Franktown Road, Ottawa, Ontario

Current Land Use Commercial-Residential

Proposed Future Land Use Commercial-Residential

Property Identification Number 040460029, 04060037

UTM Coordinates Zone 18, 432048 m E and 5003159 m N

Site Area 1.22 hectares

Property Owner Air Rock Drilling

**Table 1.1: Site Identification Details** 

The workshop is improved with a floor trench that drains to a shallow sump (Photos 1 to 3). The sump effluent passes through a bag filter housing system, followed by a "ZURN Z1186" oil interceptor before discharging to the exterior gravel surface on the east side of the workshop (Photos 3 to 5) (APEC 1).

The Phase Two property utilizes the following above ground storage tanks (AST) which are supported by a Risk Management Plan which was signed in August 2023.

| ACT#  | Landing                              | Volume            |        | Combouto    | Ye        | ear     |
|-------|--------------------------------------|-------------------|--------|-------------|-----------|---------|
| AST#  | Location                             | Туре              | Litres | Contents    | Installed | Removed |
| AST-1 | Rear of workshop – exterior (APEC 2) | Single wall steel | 2295   | Waste oil   | 2009      | Present |
| AST-2 | Rear of workshop – exterior (APEC 2) | Single wall steel | 910    | Furnace oil | 2004      | Present |
| AST-3 | Fueling station – exterior (APEC 3)  | Double wall steel | 2270   | Gasoline    | 2005      | Present |

**Table 1.2: Summary of Aboveground Storage Tanks** 



| AST-4 | Fueling station – exterior (APEC 3) | Double wall steel | 4540   | Diesel (coloured) | 2005 | Present |
|-------|-------------------------------------|-------------------|--------|-------------------|------|---------|
| AST-5 | Fueling station – exterior (APEC 3) | Double wall steel | 2270   | Diesel            | 2001 | Present |
| AST-6 | Workshop – interior (APEC 1)        | Single wall steel | No tag | New Oil           | 2005 | Present |
| AST-7 | Workshop – interior (APEC 1)        | Single wall steel | No tag | New Oil           | 2005 | Present |

# 1.3 Property Ownership

The registered owner of the Phase One property is Air Rock Drilling. Authorization to proceed with this investigation was provided by Mr. Jeremy Hanna of Air Rock Drilling. Contact information for Mr. Hanna is 6659 Franktown Road, Ottawa, Ontario, KOA 2ZO.

# 1.4 Current and Proposed Future Use

Based on a review of historical aerial photographs, historical maps, and other records review, it appears that the Site was initially agricultural land dating back to the 1970's (1976) up to the early 2000's (2002) when the property was developed in its current configuration.

#### 1.5 Applicable Site Condition Standards

Analytical results obtained for soil and groundwater samples were compared to Site Condition Standards (SCS) established under subsection 169.4(1) of the Environmental Protection Act, and presented in the document entitled *Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act*, 2011. This document provides tabulated background SCS (Table 1) applicable to environmentally sensitive sites and effects-based generic SCS (Tables 2 to 9) applicable to non-environmentally sensitive sites. The effects-based SCS (Tables 2 to 9) are protective of human health and the environment for different groundwater conditions (potable and non-potable), land use scenarios (residential, parkland, institutional, commercial, industrial, community and agricultural/other), soil texture (coarse or medium/fine) and restoration depth (full or stratified).

Table 1 to 9 SCS are summarized as follows:

- Table 1 applicable to sites where background concentrations must be met (full depth), such as sensitive sites where site-specific criteria have not been derived
- Table 2 applicable to sites with potable groundwater and full depth restoration
- Table 3 applicable to sites with non-potable groundwater and full depth restoration
- Table 4 applicable to sites with potable groundwater and stratified restoration
- Table 5 applicable to sites with non-potable groundwater and stratified restoration
- Table 6 applicable to sites with potable groundwater and shallow soils (bedrock encountered at depths of 2 metres or less across one-third or more of the site)
- Table 7 applicable to sites with non-potable groundwater and shallow soils (bedrock encountered at depths of 2 metres or less across one-third or more of the site)
- Table 8 applicable to sites with potable groundwater and that are within 30 m of a water body



Table 9 – applicable to sites with non-potable groundwater and that are within 30 m of a water body

Application of the generic or background SCS to a specific site is based on a consideration of site conditions related to soil pH, thickness and extent of overburden material, and proximity to an area of environmental sensitivity or of natural significance. For some chemical parameters, consideration is also given to soil textural classification with SCS having been derived for both coarse and medium-fine textured soil conditions.

For assessment purposes, EXP selected the 2011 Table 2 SCS in a non-potable groundwater condition for residential/parkland/institutional property use, coarse grained soil.

The selection of these categories was based on the following factors:

- Bedrock is greater than 2 metres below grade across the subject property;
- The Phase Two property is not located within 30 metres of a waterbody;
- The Phase Two property is not located within an area of natural significance, does not include nor is adjacent to an area of natural significance, and does not include land that is within 30 metres of an area of natural significance;
- Potable water for the Phase Two property is supplied from an on-Site water well;
- The Phase Two property is located in an area designated in a municipal official plan as a well-head protection area;
- The proposed building is planned for residential and commercial use; and
- It is the opinion of the Qualified Person who oversaw this work that the Phase Two property is not a sensitive site.



# 2.0 Background Information

# 2.1 Physical Setting

The Phase Two property is located on the north side of Franktown Road, at 6659 Franktown Road in Ottawa, just west of the village of Richmond. The Phase Two property is rectangular in shape with am area of approximately 1.22 hectares and is currently occupied by one residential dwelling, one workshop / office building and a quonset hut associated with the on-site well drilling company (Air Rock Drilling Company Ltd.). Asphalt and hard-pack gravel parking area and access-way is present along the east and west side of the Phase Two property. The north part of the Phase Two property is soil covered. The remainder of the Phase Two property around the residential dwelling is landscaped. The residential structure was constructed in 2002 and the quonset hut and workshop/office were constructed around 2005.

A site plan showing the Phase Two property is presented as Figure 2 in Appendix A.

Topographically, the Phase Two property grades towards the southeast (Figure 3). A shallow earth berm had been constructed along the west property line separating the Phase Two property from the adjacent residential property to the west. In terms of surface drainage, there are no surface water features on the operations portion of Phase Two property or within 30 metres of the property, apart from a shallow east grading swale that constructed in the northwest corner of the Phase Two property. There are no drainage ditches along the east or west property lines. An east grading right of way drainage ditch exists along Franktown Rd to the south.

The Phase Two property, and all other properties located, in whole or in part, within 250 metres of the boundaries of the Phase Two property, are supplied by individual water wells. Thus, in accordance with Section 35 of Ontario Regulation 153/04, potable water standards apply to the Phase Two property.

In accordance with Section 41 of Ontario Regulation 153/04, the Phase Two property is not an environmentally sensitive area. In addition, the Phase Two property is not located within an area of natural significance, and it does not include land that is within 30 metres of an area of natural significance. There is however, a provincially significant wetland located 240 m northwest of the Phase Two property (Figure 1 and 2).

The bedrock geology underlying the subject Phase One property consists of Ottawa Formation, limestone, dolostone, and shale. The overburden at the Phase Two property, beneath any fill, material consists of clay and silty underlying erosional terraces.

#### 2.2 Past Investigations

A Phase I and II ESA was conducted by EXP in 2017 for due diligence purposes. The property owner at the time of the investigation indicated that the site was first developed in the 2000s with a residence and workshop and office building, as well as a Quonset hut. Three PCAs resulting in three APECs were identified and an additional site investigation was recommended. Nine (9) test pits (TP1 to TP9) were excavated in the areas of the sump pit discharge (APEC 1) and the above ground storage tanks (APEC 2 ad 3) performed on the site and soil samples were collected for laboratory analysis of the contaminants of concern. In addition, three (3) monitoring wells were advanced at the APECs and groundwater samples were collected for laboratory analysis of the contaminants of concern. Based on the laboratory analyses, the concentrations of PHC, BTEX and metals measured in the analysed soil and groundwater samples were less than the provincial Table 2 SCS, with the exception of the sample collected from TP5 which was found to have soil exceedances of the Table 2 SCS for PHC F1 and PHC F2. The impacts at TP5 were delineated in all four cardinal directions. No elevated PHC and/or BTEX concentrations were detected from any of the three water samples collected and the water results were less than the Table 2 SCS. Therefore, the minor soil impact from TP5 had not impacted the groundwater at MW3 (which was located immediately next to TP5).

More recently, EXP prepared a report entitled *Phase One Environmental Site Assessment, 6659 Franktown Road, Ottawa, Ontario,* dated August 3, 2023. The Phase One study area included properties within 250 m of the Phase Two property. Based



on the results of the Phase One ESA, no new PCA or APEC were identified. The locations of the APEC are shown on Figure 3 in Appendix A. A summary of the Phase One ESA is provided in Table 2.1.

Table 2.1: Findings of Phase One ESA

| Area of Potential<br>Environmental<br>Concern (APEC) | Location of APEC on<br>Phase One Property                                                                          | Potentially Contaminating<br>Activity (PCA)                             | Location of<br>PCA (On-Site<br>or<br>Off-Site) | Contaminants of<br>Potential<br>Concern                                                                   | Media Potentially<br>Impacted<br>(Groundwater, Soil<br>and/or Sediment) |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| APEC #1                                              | Workshop shop sump<br>discharge (sump<br>discharges to ground<br>just outside<br>workshop building,<br>south side) | PCA #10 – Gasoline and<br>Associated Products<br>Storage in Fixed Tanks | On-site                                        | Benzene,<br>toluene,<br>ethylbenzene,<br>xylene (BTEX),<br>and petroleum<br>hydrocarbons<br>(PHC), metals | Soil and groundwater                                                    |
| APEC #2 and 3                                        | Above ground<br>storage tanks for<br>furnace oil, waste oil,<br>and fuel (diesel and<br>gasoline)                  | PCA #28 – Gasoline and<br>Associated Products<br>Storage in Fixed Tanks | On-site                                        | BTEX and PHC                                                                                              | Soil and groundwater                                                    |



# 3.0 Scope of the Investigation

# 3.1 Overview of Site Investigation

The objective of the Phase Two ESA was to assess the quality of surface soil and groundwater on the Phase Two property.

The most recent use of the property was commercial and residential, and the land use will not be changing. Since the land use will not be changing, an RSC is not required, per Ontario Regulation 153/04.

# 3.2 Scope of Work

The scope of work for the Phase Two ESA was as follows:

- Monitoring groundwater levels in the wells to determine groundwater elevations;
- Collecting groundwater samples from the monitoring wells and submitting for analysis of BTEX and PHC;
- Collecting surface soil sampling plan in response to comments provided by the City of Ottawa and submitting for PHC, polycyclic aromatic hydrocarbons (PAH), volatile organic compounds (VOC), metals and/or BTEX;
- Comparing the results of the soil and groundwater chemical analyses to applicable criteria, as set out by the Ontario Ministry of the Environment, Conservation and Parks (MECP);
- Preparing a report summarizing the results of the assessment activities.

This report has been prepared in accordance with the Phase Two ESA standard as defined by Ontario Regulation 153/04 (as amended), and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services, and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

#### 3.3 Media Investigated

The soil quality on the Phase One property was assessed in 2017. The current Phase Two ESA included the investigation of surface soil and groundwater on the Phase Two property. There are no waterbodies on the Phase Two property, therefore surface water or sediment sampling was not required.

The contaminants of potential concern (COPC) identified in the Phase One ESA were identified as target parameters for this Phase Two ESA. The APEC and COPC identified in the Phase One ESA are outlined in Section 2.2.

# 3.4 Phase One Conceptual Site Model

The Phase One conceptual site model (CSM) was developed by considering the following physical characteristics and pathways. The CSM showing the topography of the site, inferred groundwater flow, general site features, APEC, and PCA is shown in Figure 3 in Appendix A.

# 3.4.1 Buildings and Structures

The Phase Two property is rectangular in shape with am area of approximately 1.22 hectares and is currently occupied by residential structure, one workshop/office building and a quonset hut associated with the on-site well drilling company (Air Rock Drilling Company Ltd.). Ground surface is typically asphalting paved or hard-pack gravel around the structures. The north part of the Phase Two property is soil covered, whereas the area around the residential dwelling is landscaped.



#### 3.4.2 Water Bodies and Groundwater Flow Direction

The local groundwater flow direction is unknown, although based on regional topography, groundwater flow is anticipated to be southeast toward the Jock River, approximately 2.3 km south.

# 3.4.3 Areas of Natural Significance

A Provincially Significant Wetland is located approximately 240 m to the north of the Phase Two property.

#### 3.4.4 Water Wells

Fifteen well records were identified within the Phase One study area, including 6 records for monitoring wells on the Phase One property. Three of the remaining well records were for monitoring wells and/or monitoring well abandonment, and six were for domestic water supply wells. Well records indicate surficial soil consists of sand and sandy clay. Limestone bedrock was present approximately 1.0 to 9.0 metres below ground surface.

# 3.4.5 Potentially Contaminating Activity

The following on-site PCA were identified:

- PCA #10 Commercial autobody shops
  - On-site repair garage active repair garage
- PCA #28 Gasoline and associated products storage in fixed tanks
  - 2 AST in east part of Phase One property
  - o 4 AST in west part of Phase One property

#### 3.4.6 Areas of Potential Environmental Concern

The APEC identified are summarized in Table 3.1.

**Table 3.1: Areas of Potential Environmental Concern** 

| Area of Potential<br>Environmental<br>Concern (APEC) | Location of APEC on<br>Phase One Property                                                                          | Potentially Contaminating<br>Activity (PCA)                             | Location of<br>PCA (On-Site<br>or<br>Off-Site) | Contaminants of<br>Potential<br>Concern                                                                   | Media Potentially<br>Impacted<br>(Groundwater, Soil<br>and/or Sediment) |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| APEC #1                                              | Workshop shop sump<br>discharge (sump<br>discharges to ground<br>just outside<br>workshop building,<br>south side) | PCA #10 – Gasoline and<br>Associated Products<br>Storage in Fixed Tanks | On-site                                        | Benzene,<br>toluene,<br>ethylbenzene,<br>xylene (BTEX),<br>and petroleum<br>hydrocarbons<br>(PHC), metals | Soil and groundwater                                                    |
| APEC #2 and 3                                        | Above ground<br>storage tanks for<br>furnace oil, waste oil,<br>and fuel (diesel and<br>gasoline)                  | PCA #28 – Gasoline and<br>Associated Products<br>Storage in Fixed Tanks | On-site                                        | BTEX and PHC                                                                                              | Soil and groundwater                                                    |



# 3.4.7 Underground Utilities

Utilities, including underground hydro, natural gas are present on the Phase Two property. There is a private water well and septic system at the Phase Two property.

# 3.4.8 Subsurface Stratigraphy

Bedrock in the general area of the Phase One property consists of limestone and shale of the Simcoe Group. Native surficial soil consists of sand and silt glacial till. Based on local mapping, beneath any fill, the surficial geology of The Phase One property is characterised by sand, gravel, silt and clay. The bedrock geology underlying the subject Site consists of Ottawa Formation, limestone, dolostone, and shale. The local MECP water well records and geotechnical boreholes indicate local geology is sand over limestone bedrock. Bedrock is anticipated approximately 1.0 to 9 metres below ground surface. The general topography of the Phase One property and study area slopes down to the southeast towards Jock River.

## 3.4.9 Uncertainty Analysis

The CSM is a simplification of reality, which aims to provide a description and assessment of any areas where potentially contaminating activity that occurred within the Phase Two study area may have adversely affected the Phase Two property. All information collected during this investigation, including records, interviews, and site reconnaissance, has contributed to the formulation of the CSM.

Information was assessed for consistency, however EXP has confirmed neither the completeness nor the accuracy of any of the records that were obtained or of any of the statements made by others. All reasonable inquiries to obtain accessible information were made, as required by Schedule D, Table 1, Mandatory Requirements for Phase Two Environmental Site Assessment Reports. The CSM reflects our best interpretation of the information that was available during this investigation.

#### 3.5 Deviations from Sampling and Analysis Plan

The field investigative and sampling program was carried out following the requirements of the Phase Two property, as described in Section 4.

No significant deviations from the SAAP, as provided in Appendix C, were reported that affected the sampling and data quality objectives for the Phase Two property.

#### 3.6 Impediments

No impediments were encountered during this investigation.



# 4.0 Investigation Method

#### 4.1 General

The current investigation was performed following requirements given under Ontario Regulation 153/04 and in accordance with generally accepted professional practices.

## 4.2 Groundwater: Field Measurement and Water Quality Parameters

Field measurement of water quality parameters is described in Section 4.3.

All measurements of petroleum vapours in the monitor riser were made with an RKI Eagle 2 in methane elimination mode. Immediately after removing the well cap, the collection tube of the Eagle was inserted into the riser and the peak instrument reading was recorded. EXP used a Heron water level tape to measure the static water level in each monitoring well. The measuring tape was cleaned with phosphate-free soap and tap water, rinsed with distilled water after each measurement.

# 4.3 Groundwater: Sampling

All groundwater samples were collected via a low flow sampling technique using a Horiba U-52 multi probe water quality meter. The Horiba probe was calibrated using in-house reference standards. Prior to collecting the groundwater samples, water quality field parameters (turbidity, dissolved oxygen, conductivity, temperature, pH, and oxidation reduction potential) were monitored until stable readings were achieved to ensure that the samples collected were representative of actual groundwater conditions. These parameters are considered to be stable when three consecutive readings meet the following conditions:

- Turbidity: within 10% for values greater than 5 nephelometric turbidity units (NTU), or three values less than 5 NTU;
- Dissolved oxygen: within 10% for values greater than 0.5 mg/L, or three values less than 0.5 mg/L;
- Conductivity: within 3%;
- Temperature: ± 1°C;
- pH: ± 0.1 unit; and,
- Oxidation reduction potential: ±10 millivolts.

When stabilization occurs, equilibrium between groundwater within a monitor and the surrounding formation water is attained. As such, samples collected when stabilization occurs are considered to be representative of formation water.

The groundwater sampling during the completion of this Phase Two ESA was undertaken in general accordance with the SAAP presented in Appendix C. The groundwater samples were placed in clean coolers containing ice packs prior to and during transportation to the laboratory. The samples were transported to the laboratory within 24 hours of collection with a chain of custody.

On July 11, 2023, groundwater samples were collected from the three monitoring wells (MW-1, MW-2, and MW-3) using the low flow sampling method described above. Three groundwater samples, a field blank, a field duplicate, and a trip blank were submitted for chemical analysis of PHC, and BTEX parameters.

On July 14, 2023, a second groundwater sample was collected from MW-3 using the low flow sampling method described above and the sample was submitted for laboratory analysis of BTEX and PHC.

On July 9, 2024, a third round of groundwater samples were collected from the three monitoring wells (MW-1, MW-2, and MW-3) using the low flow sampling method described above.



The following table summarizes the groundwater sampling program.

**Table 4.1: Groundwater Sampling Programs** 

| Sample Location | Media       | Parameters      | Rationale                                                                           |
|-----------------|-------------|-----------------|-------------------------------------------------------------------------------------|
| MW-1            | Groundwater | PHC F1-F4, VOC  | To assess potential impact on groundwater from sump discharge and heating oil tanks |
| MW-2            | Groundwater | PHC F1-F4, VOC  | To assess potential impact on groundwater from sump discharge and heating oil tanks |
| MW-3            | Groundwater | PHC F1-F4, BTEX | To assess potential impact on groundwater from refueling AST location               |

# 4.4 Surface Soil: Sampling

In the absence of surface water features on the Phase Two property, a surface soil sampling program was completed to assess what potential impact the fuel storage tanks and the sump discharge had on the surface runoff, and consequently the adjacent properties, ta the right of way ditches to the south and the EPZ to the north. Surface samples were collected at the point sources and downgradient soil locations. The following table summarises the July and December 2024 surface soil sampling programs.

**Table 4.2: Supplementary Surface Soil Sampling Program** 

| Sample Location                                                        | Media                             | Parameters                  | Rationale                                                                                                                                 |
|------------------------------------------------------------------------|-----------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| S-1 Discharge point of<br>sump and adjacent to<br>ASTs                 | Surface soil<br>beneath<br>gravel | PHC F1-F4, VOC, PAH, metals | To assess potential impact on surface soil from sump discharge                                                                            |
| S-2 Downgradient from<br>sump discharge towards<br>east property line) | Surface soil                      | PHC F1-F4, VOC, PAH, metals | To assess potential impact on surface soil from sump discharge at downgrade location along eastern property line and towards ROW drainage |
| S-3 Northeast of<br>workshop and quonset<br>building                   | Surface soil                      | PHC F1-F4, VOC, PAH, metals | To assess potential impact on surface soil from sump discharge at upgrade location along eastern property line and towards EPZ            |
| S-4 Northwest corner of<br>Phase Two property in<br>constructed swale  | Surface soil                      | PHC F1-F4, VOC, PAH, metals | To assess potential impact on surface soil at northwest corner of Phase Two property                                                      |
| S-5 Within refueling AST location                                      | Surface soil<br>beneath<br>gravel | PHC F1-F4, BTEX             | To assess potential impact on surface soil from refueling ASTs                                                                            |
| S-6 Downgradient from refueling AST location along west property line  | Surface soil                      | PHC F1-F4, BTEX             | To assess potential impact on surface soil from refueling ASTs at downgrade location along western property line and towards ROW drainage |
| S-7 Downgradient from<br>sump discharge along<br>east property line    | Surface soil                      | PHC F1-F4, BTEX             | To assess potential impact on surface soil from sump discharge at downgrade location along eastern property line.                         |



| S-8 Downgradient from<br>refueling AST location<br>along west property line,<br>adjacent to constructed<br>berm | Surface soil | PHC F1-F4, BTEX | To assess potential impact on surface soil from refueling ASTs at downgrade location                        |
|-----------------------------------------------------------------------------------------------------------------|--------------|-----------------|-------------------------------------------------------------------------------------------------------------|
| S-9 Northwest corner of<br>Phase Two property in<br>constructed swale                                           | Surface soil | PHC F1-F4, BTEX | To assess potential impact on surface soil at<br>northwest corner of Phase Two property and<br>delineate S4 |
| S-10 Northwest corner<br>of Phase Two property in<br>constructed swale                                          | Surface soil | PHC F1-F4, BTEX | To assess potential impact on surface soil at<br>northwest corner of Phase Two property and<br>delineate S4 |
| S-11 Northwest corner<br>of Phase Two property in<br>constructed berm                                           | Surface soil | PHC F1-F4, BTEX | To assess potential impact on surface soil at<br>northwest corner of Phase Two property and<br>delineate S4 |
| S-12 Northwest corner<br>of Phase Two property<br>north adjacent of<br>constructed swale                        | Surface soil | PHC F1-F4, BTEX | To assess potential impact on surface soil at<br>northwest corner of Phase Two property and<br>delineate S4 |

During the July, 2024 investigation, six surficial soil samples (S1 to S6)were collected using a shovel at the discharge point of the workshop sump (S1), downgradient of the sump discharge (S2), adjacent to the two locations of above ground fuel storage tanks (S1, S5), downgradient of the fuel storage locations (S2, S6), as well as two samples upgradient from the APECs along the northern property boundary (S3, S4) (Figure 14).

During the December, 2024 investigation, an additional six surficial soil samples were collected using a backhoe for excavation. Surficial soil samples were collected downgradient from the workshop sump discharge point along the eastern property boundary (S7), downgradient from the refueling ASTs along the western property boundary (S8), and at the northwest corner of the property (S9, S10, S11 and S12).

All surficial soil samples were collected between 0.10 and 0.50 m depths. Soil samples were placed directly into pre-cleaned, laboratory-supplied glass sample jars/vials. Samples to be analysed for PHC fraction F1 and BTEX were collected using a soil core sampler and placed into vials containing methanol as a preservative. The jars and vials were sealed with Teflon-lined lids to minimize headspace and reduce the potential for induced volatilization during storage/transport prior to analysis. All soil samples were placed in clean coolers containing ice prior to and during transportation to the subcontract laboratory, Bureau Veritas Laboratories (BV) of Ottawa, Ontario. The samples were transported/submitted within 24 hours of collection to the laboratory following chain of custody protocols for chemical analysis. Soil samples were submitted for laboratory analysis of PAH and metals and/or BTEX and PHC, as per findings of previous investigations

# 4.5 Surface water or Sediment: Sampling

There are no waterbodies present on the Phase Two property; therefore surface water or sediment sampling was not required.

# 4.6 Analytical Testing

The contracted laboratory selected to perform chemical analysis on all ground water samples was Bureau Veritas Laboratories (BVL). BVL is an accredited laboratory under the Standards Council of Canada/Canadian Association for Laboratory Accreditation in accordance with ISO/IEC 17025:1999- General Requirements for the Competence of Testing and Calibration Laboratories.



# 4.7 Residue Management

The purged water from groundwater sampling were stored in on site drums until work was completed and were disposed of off site by a licenced contractor.

# 4.8 Elevation Surveying

An elevation survey was conducted by EXP. The top of casing and ground surface elevation of each monitoring well location was surveyed relative to a geodetic reference. The Universal Transverse Mercator (UTM) coordinates of each monitoring well were also recorded so that their locations could be plotted accurately.

# 4.9 Quality Assurance and Quality Control Measures

All groundwater samples were placed in coolers containing ice packs prior to and during transportation to the contract laboratory, BVL. BVL is accredited to the ISO/IEC 17025:2005 standard - General Requirements for the Competence of Testing and Calibration Laboratories.

A QA/QC program was also implemented to ensure that the analytical results received are accurate and dependable. A QA/QC program is a system of documented checks that validate the reliability of the data. Quality Assurance is a system that ensures that quality control procedures are correctly performed and documented. Quality Control refers to the established procedures observed both in the field and in the laboratory, designed to ensure that the resulting end data meet intended quality objectives. The QA/QC program implemented by EXP incorporated the following components:

- Collecting and analysing field duplicate samples to ensure analytical precision;
- Using dedicated and/or disposable sampling equipment;
- Following proper decontamination protocols to minimize cross-contamination;
- Maintaining field notes and completing field forms to document field activities; and
- Using only laboratory-supplied sample containers and following prescribed sample protocols, including using proper
  preservation techniques, meeting sample hold times, and documenting sample transmission on chains of custody,
  to ensure the integrity of the samples is maintained.

BVL's QA/QC program involved the systematic analysis of control standards for the purpose of optimizing the measuring system as well as establishing system precision and accuracy and included calibration standards, method blanks, reference standards, spiked samples, surrogates and duplicates.



# 5.0 Review and Evaluation

# 5.1 Geology

A 0.15-0.6 m thick layer of gravel was found at the ground surface at TP1, TP2, TP3, TP4, TP5, TP6 and TP9. A 0.15 m thick surface layer of topsoil was found at TP7 and TP8. Below the topsoil a layer of sand was observed. No indications of petroleum impact were identified in the fill. Below any topsoil or gravel was a brown sand in all test pits. This extended to a depth of 0.3-1.8 m. Below the sand was a layer of grey silty clay. There were no visual or olfactory indications of petroleum impact to the native soil except for TP5 which was observed to have a slight petroleum odour within the grey silty clay layer.

A plan view showing cross-sections is provided as Figure 5 in Appendix A, while the Phase Two property geology is depicted in cross-sections on Figure 6 in Appendix A.

#### 5.2 Groundwater: Elevations and Flow Direction

During groundwater monitoring events, the monitoring wells (MW-1, MW-2, and MW-3) were inspected for general physical condition, groundwater depth, the presence of light non-aqueous phase liquid (LNAPL). Overburden groundwater monitoring and elevation data for 2023 and 2024 are provided below.

Table 5.1: Monitoring and Elevation Data – July 11, 2023

| Monitoring<br>Well ID | Screen<br>Location | Grade<br>Elevation<br>(masl) | Top of Casing<br>Elevation<br>(masl) | Screen Depth<br>(mbgs) | Depth to<br>LNAPL (mbgs) | Depth to<br>Groundwater<br>(mbTOC) | Groundwater<br>Elevation<br>(masl) |
|-----------------------|--------------------|------------------------------|--------------------------------------|------------------------|--------------------------|------------------------------------|------------------------------------|
| MW-1                  | Overburden         | 99.46                        | 99.43                                | 1.5 to 4.5             | N/A                      | 1.63                               | 97.80                              |
| MW-2                  | Overburden         | 99.49                        | 99.45                                | 1.5 to 4.5             | N/A                      | 1.67                               | 97.78                              |
| MW-3                  | Overburden         | 99.48                        | 99.42                                | 1.5 to 4.50            | N/A                      | 1.20                               | 98.22                              |

Notes: Elevations were measured to a geodetic datum

 $mbgs-metres\ below\ ground\ surface$ 

masl - metres above sea level

mbTOC - metres below top of monitor casing

N/A – not applicable

Table 5.2: Monitoring and Elevation Data – July 9, 2024

| Monitoring<br>Well ID | Screen<br>Location | Grade<br>Elevation<br>(masl) | Top of Casing<br>Elevation<br>(masl) | Screen Depth<br>(mbgs) | Depth to<br>LNAPL (mbgs) | Depth to<br>Groundwater<br>(mbTOC) | Groundwater<br>Elevation<br>(masl) |
|-----------------------|--------------------|------------------------------|--------------------------------------|------------------------|--------------------------|------------------------------------|------------------------------------|
| MW-1                  | Overburden         | 99.46                        | 99.43                                | 1.5 to 4.5             | N/A                      | 1.02                               | 98.41                              |
| MW-2                  | Overburden         | 99.49                        | 99.45                                | 1.5 to 4.5             | N/A                      | 0.99                               | 98.46                              |
| MW-3                  | Overburden         | 99.48                        | 99.42                                | 1.5 to 4.5             | N/A                      | 0.28                               | 99.14                              |

Notes: Elevations were measured to a geodetic datum

mbgs – metres below ground surface

masl - metres above sea level

mbTOC – metres below top of monitor casing

N/A – not applicable



Previous investigations on the Phase Two property and the greater property at 6659 Franktown Road, indicate that the groundwater flow direction was determined to be to the northeast (Figure 4 in Appendix A). Groundwater levels can also be influenced by seasonal changes, the presence of subsurface structures, or fill material.

# 5.3 Groundwater: Hydraulic Gradients

Horizontal hydraulic gradients were estimated for the groundwater flow components identified in the overburden aquifer based on the July 2023 groundwater elevations.

The horizontal hydraulic gradient is calculated across the using the following equation:

 $i = \Delta h/\Delta s$ 

Where,

i = horizontal hydraulic gradient;

 $\Delta h$  (m) = groundwater elevation difference; and,

 $\Delta s$  (m) = separation distance.

The horizontal hydraulic gradient was calculated to be 0.007 m/m.

On August 2, 2023, a rising head test was conducted in one monitoring well (MW1). The rising head test requires that the static water level be measured in each monitoring well prior to the removal of groundwater. Groundwater is removed from the monitoring well using a pump. After the water level has been sufficiently lowered, an interface probe is lowered into the monitor as quickly as possible to measure the new water level. The time at which the new water level is measured is noted as time equal zero. Water level readings are subsequently taken at frequent intervals. Both the water levels and the time they were taken are recorded.

The frequency of the time measurement is determined by the rate the water level recovers to the static water level. Measurements are taken until at least 70% recovery has been achieved or, in cases where recovery is extremely slow, until it is deemed that a sufficient amount of time has elapsed. Using the Hvorslev model, the hydraulic conductivity for the monitoring well was calculated.

The hydraulic conductivity calculated in MW1 was  $1.4 \times 10^{-4}$  cm/s. The data and the calculations for the hydraulic conductivity testing are provided in Appendix H.

**Initial Static Water Level** Recovery to Hydraulic **Monitoring Well Screen Depth** Horizon Water Level after Purging Conductivity Static after **ID/ Installation ID** (mbgs) (mbToC) (mbToC) Elapsed time (s) (cm/s) MW1 Overburden 3.0 to 4.5 1.27 4.05 780 1.4 x 10<sup>-4</sup>

Table 5.3: Rising Head Tests – July 2023

Notes: mbTOC – metres below top of monitor casing

#### 5.4 Soil: Field Screening

The methodology for the collection of soil vapour concentration measurements is described in Section 4.4.

Petroleum vapours ranged from non-detectable to 40 ppm in samples collected from the boreholes. Field screening data is presented in the borehole logs in Appendix D.



# 5.5 Soil: Quality

In accordance with the scope of work, chemical analyses were performed on selected soil samples recovered from the boreholes and from the north wall of the utility trench excavation. The selection of representative "worst case" soil samples from each borehole was based on field visual or olfactory evidence of impacts and/or presence of potential water bearing zones.

#### 2017 Soil - Testpits

In 2017, the concentrations of PHC and BTEX measured in the analysed soil samples were less than the MECP 2011 Table 2 SCS, except for PHC (F1 and F2) in the sample collected from TP5 (68 and 412 ug/g, respectively) at a depth of 1.8 m which exceeded the provincial Table 2 SCS of 65 and 150 ug/g respectively. The concentrations of metals measured in the analysed soil samples were less than the MECP 2011 Table 2 SCS.

Based on the field observations and analytical results obtained, a zone of PHC impacted soil was found in the central western part of the Phase Two property directly to the south of the fuel tanks. The lateral extent of the petroleum impacted soil has been delineated. Given the nature of the contaminant (PHC F1 and F2) and its location on the Phase Two property, the most likely source of this impact is from minor spills related to refueling practices associated with the gas and diesel ASTs.

The soil results are provided in Tables 1 and 2 in Appendix E. They are shown in plan view on Figures 7 and 8 and on cross-sections on Figures 9 and 10 in Appendix A.

Copies of the laboratory Certificates of Analysis are provided in Appendix G.

#### 2024 Soil - Surface Soil

In July 2024, additional surface soil sampling (S1 to S6) was completed at the discharge point of the sump pit and in the vicinity of the ASTs and at subsequent downgradient locations of these PCAs. Based on these results, second round of surface soil sampling (S7 to S12) completed in December 2024 with the objective of defining the extent of impact and/or off-site impact (Figure 14).

A summary of the surface soil analytical results is presented in Tables 1, 2, and 3 in Appendix F. The laboratory certificates of analysis are presented in Appendix G.

Based on the laboratory analytical results, there were no exceedances of the MECP Table 2 SCS for any of the parameters analyzed in the soil samples collected in July 2024 with the exceptions of PHC F2-F3 at S1 (collected at the discharge point of the workshop sump near the (east) fuel storage tanks), and PHC F3 at S4 and S5 (collected at the northwest corner of the property and adjacent to the (west) fuel storage tanks) respectively. In terms of metals, an exceedance of cobalt was noted at S1 (sump discharge point).

During the subsequent sampling program in December 2024, there were no exceedances of MECP Table 2 SCS for any of the parameters analyzed in the soil samples.

#### 5.6 Groundwater: Quality

All groundwater samples were collected via a low flow sampling technique. EXP monitored several water quality parameters (such as water level, temperature, dissolved oxygen, conductivity, salinity, pH, oxygen reduction potential and turbidity) in order to ensure that the samples collected were representative of actual groundwater conditions.

During the 2023 groundwater sampling program, there were no exceedances of the MECP Table 2 SCS for any of the parameters analyzed in the groundwater samples from the monitoring wells (MW-1 to MW-3), with the exception of PHC F3 and F4 in the sample collected from MW3. It was suspected that the measured PHC concentrations were due to sediment in the groundwater sample. A second groundwater sample taken from MW3 on July 14, 2023. During this round PHC was not detected in the re-sample and the concentrations therefore did not exceed the Table 2 SCS.



During the 2024 groundwater sampling round, no exceedances of the Table 2 SCS were detected in the groundwater samples.

The 2023 analytical results are included in Table 3 in Appendix E and are shown in plan view on Figure 11 and on the cross-section on Figure 12 in Appendix A. The 2024 analytical results are included in Table 4 in Appendix F. Copies of the laboratory Certificates of Analysis are provided in Appendix G.

## 5.6.1 Chemical Transformation and Contaminant Sources

A variety of physical, chemical and biochemical mechanisms affect the fate and transport of the potential COC in soil and groundwater, the contribution of which is dependent on the soil and groundwater conditions at the Phase Two property, as well as the chemical/physical properties of the COC. Relevant fate and transport mechanisms are natural attenuation mechanisms, including advection mixing, mechanical dispersion/molecular diffusion, phase partitions (i.e. sorption and volatilization), and possibly abiotic or biotic chemical reactions, which effectively reduce COC concentrations.

No groundwater exceedances were identified on the Phase Two property.

Cross-sections that depict the geological, hydrogeological, and groundwater chemical data for the Phase Two property are provided as Figures 9, 10 and 12 in Appendix A.

## 5.6.2 Evidence of Non-Aqueous Phase Liquid

Inspection of the groundwater monitoring wells did not indicate the presence of non-aqueous phase liquid (NAPL).

#### 5.6.3 Maximum Concentrations

Contaminants that exceeded the applicable Table 2 residential standards included:

Soil: Petroleum hydrocarbons, cobalt

Groundwater: None.

Maximum groundwater concentrations are provided in Tables 5 and 6 in Appendix E.

# 5.7 Surface Water and Sediment: Quality

There are no surface water bodies on the Phase Two property, therefore surface water and sediment sampling was not completed.

#### 5.8 Quality Assurance and Quality Control Results

Quality assurance and quality control measures were taken during the field activities to meet the objectives of the sampling and quality assurance plan to collect unbiased and representative samples to characterize existing conditions in the fill materials and groundwater at the site. QA/QC measures, included:

- Collection and analysis of blind duplicate soil and groundwater samples to ensure sample collection precision;
- Analysis of a groundwater field blank for all parameters that were analysed to assess potential impact during sampling;
- Using dedicated and/or disposable sampling equipment;
- Following proper decontamination protocols to minimize cross-contamination;
- Maintaining field notes and completing field forms to document on-site activities; and



 Using only laboratory supplied sample containers and following prescribed sample protocols, including proper preservation, meeting sample hold times, proper chain of custody documentation, to ensure integrity of the samples.

Bureau Veritas' QA/QC program consisted of the preparation and analysis of laboratory duplicate samples to assess precision and sample homogeneity, method blanks to assess analytical bias, spiked blanks and QC standards to evaluate analyte recovery, matrix spikes to evaluate matrix interferences and surrogate compound recoveries to evaluate extraction efficiency. The laboratory QA/QC results are presented in the Quality Assurance Report provided in the Certificates of Analysis prepared by Caduceon. The QA/QC results are reported as percent recoveries for matrix spikes, spiked blanks and QC standards, relative percent difference for laboratory duplicates and analyte concentrations for method blanks.

Review of the laboratory QA/QC results reported indicated that they were within acceptable control limits or below applicable alert criteria for the sampled media and analytical test groups.

For QA/QC purposes, the analytical sample results are quantitatively evaluated by calculating the relative percent difference (RPD) between the samples and their duplicates. To accurately calculate a statistically valid RPD, the concentration of the analytes found in both the original and duplicate sample must be greater than five times the reporting detection limit (RDL).

The results of the RPD calculations are provided in Appendix E in Table4. All of the RPD for groundwater were either not calculable or within the applicable alert limits.

Field blanks and trip blanks were prepared and submitted for laboratory analysis of BTEX and PHC. The results of the trip blank and field blank analyses are provided in Table 3 in Appendix E. The trip blank and field blank were below the detection limits for all parameters analysed.

## 5.9 Discussion

The 2024 site investigative activities consisted of collecting groundwater samples from the three on-site monitoring wells, and surficial soil samples at the discharge point of the workshop sump, downgradient from the workshop sump discharge, adjacent to the fuel tank storage, downgradient from the fuel tank storage, and in the northwest corner of the Phase Two property. The objective was to assess what impact these point sources/PCAs had on the site and to assess the potential impact to adjacent residential properties, the ROW drainage ditch to the south and the EPZ to the north.

Based on the results of the groundwater monitoring, no impact to the shallow groundwater regime was noted at the three on-site monitoring wells that were installed at the point sources. Therefore, the migration of impacted groundwater was note observed.

Based on the surface soil sampling program, there was evidence of surface soil impact at i) the sump discharge point as indicated by the PHC and cobalt results at S1 and ii) the refueling storage tanks as indicated by the PHC results at S5 (Figure 14).

With respect to potential impact to adjacent properties overland, as there are no surface water features on the Phase Two property, surface soil samples were collected at point sources (i.e., the sump discharge point and ASTs) and in the downgrade directions towards the east and west residential properties and the south drainage ditch. Based on the results from surficial soil samples along the eastern (S2 and S7) and western property boundaries (S6 and S8), impact to these adjacent receptors has not been observed (Figure 14). With respect to the EPZ to the north, no impact from the operations at the Phase Two property are expected based on the intervening distance and results from S3. Although there was a slight exceedance of hydrocarbon (PHC F3) at S4, based on no hydrocarbon exceedances detected in supplementary soil samples from the northwest corner of the property (S9, S10, S11 and S12), this has not contributed to an impact of the EPZ.

Based on lack of groundwater exceedances identified in the monitoring wells on the Phase Two property, and given the location and nature of the contaminants (PHC F2 and F3 and cobalt) exceeding MECP Table 2 SCS in soil samples (S1, S4 and S5), the likely source of these impact is from minor spills related to refueling practices associated with the gas and diesel ASTs



EXP Services Inc. 38

Air Rock Drilling Company Ltd.
Phase Two Environmental Site Assessment
6659 Franktown Road, Richmond, Ontario
OTT-00243705-B0
October 17, 2025

and/or sump, there is no evidence that contaminants are moving off site. No further environmental investigations are deemed to be warranted.



# 6.0 Phase Two Conceptual Site Model

A Conceptual Site Model (CSM) provides a narrative, graphical and tabulated description integrating information related to the Phase Two property's geologic and hydrogeological conditions, areas of potential environmental concern/potential contaminating activities, the presence and distribution of contaminants of concern, contaminant fate and transport, and potential exposure pathways.

### 6.1.1 Introduction

EXP Services Inc. (EXP) was retained by Air-Rock Drilling Ltd. to conduct a Phase Two Environmental Site Assessment (ESA) at 6659 Franktown Road in Ottawa, Ontario (hereinafter referred to as the 'Phase Two property'). At the time of the investigation, the Phase Two property was occupied one residential dwelling, one workshop / office building and a quonset hut associated with the on-Site well drilling company (Air Rock Drilling Company Ltd.).

The objective of the Phase Two ESA investigation was to assess the quality of the groundwater conditions within the areas of potential environmental concern (APEC) identified in a Phase One ESA prepared by EXP. EXP understands that this report is being conducted in support of a zoning amendment and site plan application.

## 6.1.2 Physical Site Description

The Phase Two property is located on the north side of Franktown Road, as shown on Figure 1 in Appendix A. The Phase Two property is rectangular in shape and has an area of approximately 1.22 hectares. The approximate centroid coordinates are NAD83 18T 432048 m E and 5003159 m N.

The municipal address of the Phase Two property is 6659 Franktown Road, Ottawa, Ontario. The Phase Two property is legally described as CON 4 E PT LOT 19 RP; 4R-14477 PART 2. The property identification number (PIN) is 044390239. Based on topography, the groundwater flow is anticipated to be to the southeast towards the Jock River, approximately 2.3 km south.

Refer to Table 5.4 for the Site identification information.

Civic Address 6659 Franktown Road, Ottawa, Ontario

Current Land Use Residential - Commercial

Proposed Future Land Use Residential - Commercial

Property Identification Number 044390239

UTM Coordinates Zone 18, 432048 m E and 5003159 m N

Site Area 1.22 hectares

Property Owner Air-Rock Drilling

**Table 5.4: Site Identification Details** 

The Phase One Conceptual Site Model is provided as Figure 3.

The Phase Two property and all other properties located, in whole or in part, within 250 metres of the boundaries of the Phase Two property, are supplied by domestic water wells. Further, the Phase Two property is located in an area designated in the municipal official plan as a well-head protection area. Thus, in accordance with Section 35 of Ontario Regulation 153/04, potable water standards apply to the Phase Two property.



In accordance with Section 41 of Ontario Regulation 153/04, the Phase Two property is not an environmentally sensitive area. In addition, the Phase Two property is not located within an area of natural significance, and it does not include land that is within 30 metres of an area of natural significance. A provincial significant wetland is located 240 n of the Phase Two property.

The Phase Two property is not a shallow soil property as defined in Section 43.1 of the regulation. It does not include all or part of a water body or is adjacent to a water body or includes land that is within 30 metres of a water body.

# 6.1.3 Geological and Hydrogeological

Bedrock in the general area of the Phase Two property consists of limestone of the Ottawa Formation. The bedrock elevation is approximately 96 metres above sea level (masl). The overburden at the Phase Two property, beneath any fill, material consists of clay and silty underlying erosional terraces.

The groundwater flow direction is anticipated to be southeast, towards the Jock River. Based on groundwater levels measured on July 11, 2023, the groundwater flow direction was to the northeast, however MW1 and MW2 are relatively close together so the groundwater flow direction is definitely to the east but could be more towards the south. Groundwater levels can also be influenced by seasonal changes, the presence of subsurface structures, or fill, however based on the based on the depth of the water table, it is unlikely that any of these factors will affect the groundwater flow direction at the Phase Two property.

The hydraulic conductivity in monitoring well MW1 was  $1.4 \times 10^{-4}$  cm/s.

A plan view showing cross-sections is provided as Figure 6, while the Phase Two property geology is depicted in cross-sections on Figure 7.

A summary of factors that apply to the Phase Two property is provided in Table 5.5.

Characteristic Description Minimum Depth to Bedrock Not encountered during drilling Minimum Depth to Groundwater 1.20 masl (July 11, 2023) 0.28 masl (July 9, 2024) **Shallow Soil Property** No, bedrock is deeper than 2.0 mbgs Proximity to water body or ANSI Approximately 2.3 km south - Jock River **Soil Texture** Coarse Residential - Commercial **Current Property Use** Residential - Commercial **Future Property Use Proposed Future Building** Same

**Table 5.5: Site Characteristics** 

# 6.1.4 Utilities and Impediments

Utilities, including underground hydro, and natural gas are present on the Phase Two property.

#### 6.1.5 Potentially Contaminating Activities

The following on-site PCA were identified:

PCA #10 – Commercial autobody shops



- On-site repair garage active repair garage
- PCA #28 Gasoline and associated products storage in fixed tanks
  - 2 AST in east part of Phase One property
  - 4 AST in west part of Phase One property

No off-site PCA were identified.

# 6.1.6 Areas of Potential Environmental Concern/Potential Contaminates of Concern

Ontario Regulation 153/04 defines an APEC as an area on a property where one or more contaminants are potentially present. The following APEC were identified on the Phase Two property, as shown on Figure 2 and Table 5.6 below:

Location of **Media Potentially** Contaminants of Area of Potential Location of APEC on **Potentially Contaminating** PCA (On-Site **Impacted Potential** Environmental **Phase One Property** Activity (PCA) or (Groundwater, Soil Concern (APEC) Concern Off-Site) and/or Sediment) Workshop shop sump On-site Benzene, Soil and groundwater PCA #10 - Gasoline and discharge (sump toluene, **Associated Products** discharges to ground Storage in Fixed Tanks ethylbenzene, APEC #1 just outside xylene (BTEX), workshop building, and petroleum south side) hydrocarbons (PHC), metals Soil and groundwater Above ground On-site BTEX and PHC PCA #28 - Gasoline and APEC #2 and 3 storage tanks for **Associated Products** furnace oil and fuel Storage in Fixed Tanks

Table 6.1: Areas of Potential Environmental Concern

# 6.1.7 Investigation

In 2017, the site investigative activities consisted of excavating test pits and installing monitoring wells to facilitate the collection of groundwater samples. On July 11, 2023, EXP collected groundwater samples from the three monitoring wells. In 2024, the groundwater was re-sampled from the monitoring wells and a surface soil program was completed.

#### 6.1.8 Groundwater Sampling

During the 2023 groundwater sampling program, there were no exceedances of the MECP Table 2 SCS for any of the parameters analyzed in the groundwater samples from the monitoring wells (MW-1 to MW-3), with the exception of PHC F3 and F4 in the sample collected from MW3. It was suspected that the measured PHC concentrations were due to sediment in the groundwater sample. A second groundwater sample taken from MW3 on July 14, 2023. During this round PHC was not detected in the re-sample and the concentrations therefore did not exceed Table 2 SCS.

During the 2024 groundwater sampling round, no exceedances of the Table 2 SCS were detected in the groundwater samples.

# 6.1.9 Surface Soil Sampling

In July 2024, additional surface soil sampling (S1 to S6) was completed at the discharge point of the sump pit and in the vicinity of the ASTs and at subsequent downgradient locations of these PCAs. Based on these results, second round of surface soil



sampling (S7 to S12) completed in December 2024 with the objective of defining the extent of impact and/or off-site impact (Figure 14).

Based on the laboratory analytical results, there were no exceedances of the MECP Table 2 SCS for any of the parameters analyzed in the soil samples collected in July 2024 with the exceptions of PHC F2-F3 at S1 (collected at the discharge point of the workshop sump near the (east) fuel storage tanks), and PHC F3 at S4 and S5 (collected at the northwest corner of the property and adjacent to the (west) fuel storage tanks) respectively. In terms of metals, an exceedance of cobalt was noted at S1 (sump discharge point).

During the subsequent sampling program in December 2024, there were no exceedances of MECP Table 2 SCS for any of the parameters analyzed in the soil samples

#### 6.1.10 Contaminants of Concern

Contaminants that exceeded the Table 2 SCS included:

Soil: petroleum hydrocarbons, cobalt

Groundwater: none

## 6.1.11 Contaminant Fate and Transport

A variety of physical, chemical and biochemical mechanisms affect the fate and transport of the potential COC in soil and groundwater, the contribution of which is dependent on the soil and groundwater conditions at the Phase Two property, as well as the chemical/physical properties of the COC. Relevant fate and transport mechanisms are natural attenuation mechanisms, including advection mixing, mechanical dispersion/molecular diffusion, phase partitions (i.e. sorption and volatilization), and possibly abiotic or biotic chemical reactions, which effectively reduce COC concentrations.

Based on the results of the groundwater monitoring, no impact to the shallow groundwater regime was noted at the three on-site monitoring wells that were installed at the point sources. Therefore, the migration of impacted groundwater was note observed.

Based on the surface soil sampling program, there was evidence of surface soil impact at i) the sump discharge point as indicated by the PHC and cobalt results at S1 and ii) the refueling storage tanks as indicated by the PHC results at S5.

With respect to potential impact to adjacent properties overland, as there are no surface water features on the Phase Two property, surface soil samples were collected at point sources (i.e., the sump discharge point and ASTs) and in the downgrade directions towards the east and west residential properties and the south drainage ditch. Based on the results from surficial soil samples along the eastern (S2 and S7) and western property boundaries (S6 and S8), impact to these adjacent receptors has not been observed. With respect to the EPZ to the north, no impact from the operations at the Phase Two property are expected based on the intervening distance and results from S3. Although there was a slight exceedance of hydrocarbon (PHC F3) at S4, based on no hydrocarbon exceedances detected in supplementary soil samples from the northwest corner of the property (S9, S10, S11 and S12), this has not contributed to an impact of the EPZ.

Based on lack of groundwater exceedances identified in the monitoring wells on the Phase Two property, and given the location and nature of the contaminants (PHC F2 and F3 and cobalt) exceeding MECP Table 2 SCS in soil samples (S1, S4 and S5), the likely source of these impact is from minor spills related to refueling practices associated with the gas and diesel ASTs and/or sump and limited to the point sources. There is no evidence that contaminants are moving off site.



# 7.0 Conclusion

The site investigative activities consisted of collecting groundwater samples from the three on-site monitoring wells (2023 and 2024) followed by a surface soil sampling program (2024).

Based on the results of the groundwater monitoring, no impact on the shallow groundwater regime was noted at the three on-site monitoring wells that were installed at the point sources. Therefore, the migration of impacted groundwater was not observed.

Based on the surface soil sampling program, there was evidence of point source surface soil impact at i) the sump discharge point as indicated by the PHC and cobalt results at S1 and ii) the refueling storage tanks as indicated by the PHC results at S5. The area beyond these point sources is either asphalt or hard-pack gravel.

With respect to potential impact to adjacent properties overland, as there are no surface water features on the Phase Two property, surface soil samples were collected at point sources (i.e., the sump discharge point and ASTs) and in the downgrade directions towards the east and west residential properties and the south drainage ditch. Based on the results from surficial soil samples along the eastern (S2 and S7) and western property boundaries (S6 and S8), no impact was observed to these adjacent receptors. With respect to the EPZ to the north, no potential impact from the operations at the Phase Two property is expected. A slight exceedance of hydrocarbon (PHC F3) was observed at S4 the northwest corner of the property, however no hydrocarbon exceedances were detected in delineation soil samples (S9, S10, S11 and S12) from this location. This indicates the impact is limited and has not contributed to an off-site receptor or the EPZ.

Based on lack of groundwater exceedances and given the location and nature of the contaminants (PHC F2 and F3 and cobalt) exceeding MECP Table 2 SCS in soil samples (S1, S4 and S5), the likely source of these impacts are from minor spills related to refueling practices associated with the refueling ASTs and/or sump and limited to the point sources. There is no evidence that contaminants are moving off site.

The Qualified Person can confirm that the Phase Two Environmental Site Assessment was conducted per the requirements of Ontario Regulation 153/04, as amended, and in accordance with generally accepted professional practices. No further environmental investigations are deemed to be warranted.

Chris Kimmerly, P.Geo.,

Manager - Senior Geoscientist Earth and Environment Oct. 13/7

Mackenzie Russell, M.Sc. Environmental Scientist

Earth and Environment



# 8.0 References

This study was conducted in accordance with the applicable Regulations, Guidelines, Policies, Standards, Protocols and Objectives. Specific reference is made to the following documents.

- EXP Services Inc., Phase I and II Environmental Site Assessment, 6659 Franktown Road, Ottawa, Ontario, Novermber 28, 2017
- EXP Services Inc., Phase One Environmental Site Assessment, 6659 Franktown Road, Ottawa, Ontario, August 9, 2023
- EXP Services Inc., Phase Two Environmental Site Assessment, 6659 Franktown Road, Ottawa, Ontario, August 11, 2023.
- Freeze and Cherry, Groundwater, Prentice Hall, 1979.
- Ontario Ministry of the Environment, Conservation and Parks, *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario*, December 1996.
- Ontario Ministry of the Environment, Conservation and Parks, Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, April 15, 2011.
- Ontario Ministry of the Environment, Conservation and Parks, Guide for Completing Phase Two Environmental Site Assessments under Ontario Regulation 153/04, June 2011.
- Ontario Ministry of the Environment, Conservation and Parks, *Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, July 1, 2011.*
- Ontario Ministry of the Environment, Conservation and Parks, Management of Excess Soil A Guide for Best Management Practices, January 2014.
- Ontario Regulation 153/04, made under the Environmental Protection Act, as amended.
- Ontario R.R.O. 1990, Regulation 347, made under the Environmental Protection Act, as amended.
- Ontario R.R.O. 1990, Regulation 903, made under the Water Resources Act, as amended.



# 9.0 General Limitations

### **Basis of Report**

This report ("Report") is based on site conditions known or inferred by the investigation undertaken as of the date of the Report. Should changes occur which potentially impact the condition of the site the recommendations of EXP may require reevaluation. Where special concerns exist, or Air Rock Drilling Company Ltd. ("the Client") has special considerations or requirements, these should be disclosed to EXP to allow for additional or special investigations to be undertaken not otherwise within the scope of investigation conducted for the purpose of the Report.

### **Reliance on Information Provided**

The evaluation and conclusions contained in the Report are based on conditions in evidence at the time of site inspections and information provided to EXP by the Client and others. The Report has been prepared for the specific site, development, building, design or building assessment objectives and purpose as communicated by the Client. EXP has relied in good faith upon such representations, information and instructions and accepts no responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of any misstatements, omissions, misrepresentation or fraudulent acts of persons providing information. Unless specifically stated otherwise, the applicability and reliability of the findings, recommendations, suggestions or opinions expressed in the Report are only valid to the extent that there has been no material alteration to or variation from any of the information provided to exp. If new information about the environmental conditions at the Site is found, the information should be provided to EXP so that it can be reviewed and revisions to the conclusions and/or recommendations can be made, if warranted.

#### **Standard of Care**

The Report has been prepared in a manner consistent with the degree of care and skill exercised by engineering consultants currently practicing under similar circumstances and locale. No other warranty, expressed or implied, is made. Unless specifically stated otherwise, the Report does not contain environmental consulting advice.

#### **Complete Report**

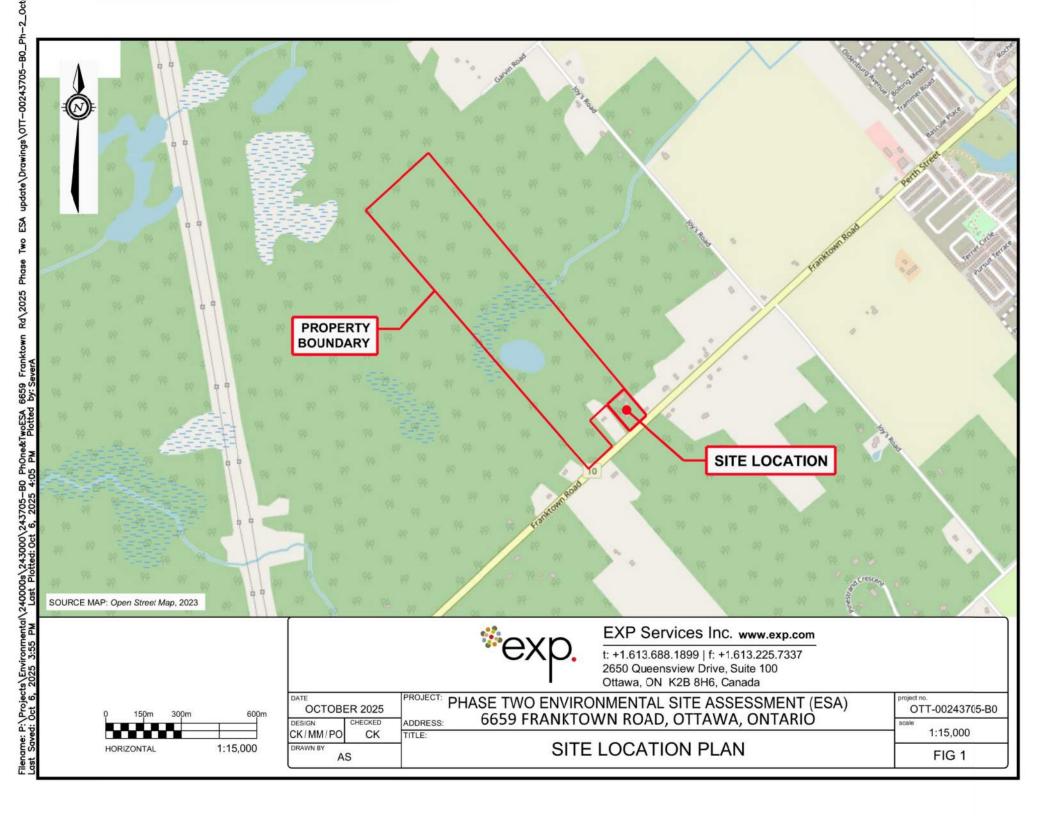
All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment form part of the Report. This material includes, but is not limited to, the terms of reference given to EXP by the Client, communications between EXP and the Client, other reports, proposals or documents prepared by EXP for the Client in connection with the site described in the Report. In order to properly understand the suggestions, recommendations and opinions expressed in the Report, reference must be made to the Report in its entirety. EXP is not responsible for use by any party of portions of the Report.

#### **Use of Report**

The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. No other party may use or rely upon the Report in whole or in part without the written consent of EXP. Any use of the Report, or any portion of the Report, by a third party are the sole responsibility of such third party. EXP is not responsible for damages suffered by any third party resulting from unauthorised use of the Report.

#### **Report Format**

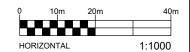
Where EXP has submitted both electronic file and a hard copy of the Report, or any document forming part of the Report, only the signed and sealed hard copy shall be the original documents for record and working purposes. In the event of a dispute or discrepancy, the hard copy shall govern. Electronic files transmitted by EXP utilize specific software and hardware systems. EXP makes no representation about the compatibility of these files with the Client's current or future software and hardware systems. Regardless of format, the documents described herein are EXP's instruments of professional service and shall not be altered without the written consent of EXP.




#### EXP Services Inc.

Air Rock Drilling Company Ltd. Phase Two Environmental Site Assessment 6659 Franktown Road, Richmond, Ontario OTT-00243705-B0 October 17, 2025


**Appendix A: Figures** 






Franktown Rd\2025 Phase Two ESA update\Drawings\0TT-00243705-B0\_Ph-2\_October-2025.dwg

Franktown Rd\2025 Phase Two ESA update\Drawings\0TT-00243705-B0\_Ph-2\_October-2025.dwg





| OCTOBI   | ER 2025 | PROJECT: | PHASE TWO ENVIRONMENTAL SITE ASSESSMENT (ESA) |
|----------|---------|----------|-----------------------------------------------|
| DESIGN   | CHECKED | ADDRESS: | 6659 FRANKTOWN ROAD, OTTAWA, ONTARIO          |
| CK/MM/PO | CK      | TITLE:   |                                               |
| DRAWN BY |         |          | TECT HOLE LOCATION DLAN                       |

1:1,000

FIG 4

OTT-00243705-B0

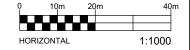


**LEGEND** 



PROPERTY BOUNDARY




INFERRED GROUNDWATER FLOW DIRECTION

(98.41)

GROUNDWATER LEVEL ELEVATION (JULY 9, 2024)



TEST PIT & MONITORING WELL NO. AND LOCATION (*EXP*, 2017)





### EXP Services Inc. www.exp.com

t: +1.613.688.1899 | f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada

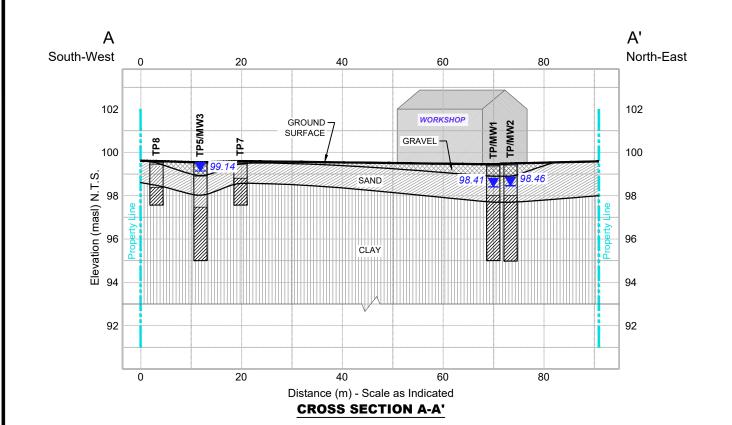
|          |         |          | •                                             |    |
|----------|---------|----------|-----------------------------------------------|----|
| OCTOBI   | ER 2025 | PROJECT: | PHASE TWO ENVIRONMENTAL SITE ASSESSMENT (ESA) | рі |
| DESIGN   | CHECKED | ADDRESS: | 6659 FRANKTOWN ROAD, OTTAWA, ONTARIO          | s  |
| CK/MM/PO | CK      | TITLE:   |                                               | l  |
| DRAWN BY | C       | 1GROL    | JNDWATER CONTOUR PLAN - OVERBURDEN JULY 2024  |    |

project no. OTT-00243705-B0 scale 1:1,000

FIG 5

40m

1:1000


OTT-00243705-B0

1:1,000

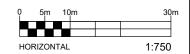
FIG 6

DESIGN CK/MM/PO

AS



**LEGEND** 


98.41

FILL - GRAVEL

SAND (DRY TO MOIST)

CLAY (BROWN)

WATER LEVEL DATE: JULY 9, 2024

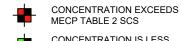




### EXP Services Inc. www.exp.com

t: +1.613.688.1899 | f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada

| 2025 | PHASE TWO ENVIRONMENTAL SITE ASSESSMENT (ESA) | ott-00243705-B0 |
|------|-----------------------------------------------|-----------------|
|      | ADDRESS: 6659 FRANKTOWN ROAD, OTTAWA, ONTARIO | scale           |
| CK   | TITLE:                                        | 1:750           |
|      | CROSS SECTION A-A'                            | FIG 7           |

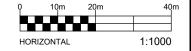

| TP1A            | Depth (mbgs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |       |       |       |    |      |      | 14-Nov |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|----|------|------|--------|
| IFIA            | Depth (mbgs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | В     | T     | E     | X     | F1 | F2   | F3   | F4     |
|                 | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.02 | <0.02 | <0.02 | <0.05 | <7 | <4   | <8   | <6     |
| TP2B            | Depth (mbgs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |       |       |       |    |      |      | 14-Nov |
| IFZD            | Depth (mbgs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | В     | T     | E     | X     | F1 | F2   | F3   | F4     |
|                 | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.02 | <0.02 | <0.02 | <0.05 | <7 | 4    | <8   | <6     |
| TP3A            | Depth (mbgs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |       |       |       |    |      |      | 14-Nov |
| 11.24           | CONTRACTOR OF THE PARTY OF THE | В     | T     | E     | X     | F1 | F2   | F3   | F4     |
|                 | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.02 | <0.02 | <0.02 | <0.05 | <7 | 4    | <8   | <6     |
| TP3B            | Depth (mbgs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |       |       |       |    |      | ~    | 14-Nov |
| 11 00           | Personal Control Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | В     | T     | E     | X     | F1 | F2   | F3   | F4     |
|                 | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.02 | <0.02 | <0.02 | <0.05 | <7 | 4    | <8   | <6     |
| TP5B            | Donth (mhas)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |       |       | 3. 33 |    |      | ali. | 14-Nov |
| IPab            | Depth (mbgs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | В     | T     | E     | X     | F1 | F2   | F3   | F4     |
|                 | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.02 | <0.02 | <0.02 | <0.05 | 68 | 412  | 202  | <6     |
| <b>TD44</b>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       | X     |       |    |      | 20   | 14-Nov |
| TP6A            | Depth (mbgs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | В     | T     | E     | X     | F1 | F2   | F3   | F4     |
|                 | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.02 | <0.02 | <0.02 | <0.04 | <7 | <4   | <8   | <6     |
|                 | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |       |       |       |    |      |      | 14-Nov |
| TP7B            | Depth (mbgs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | В     | Т     | E     | X     | F1 | F2   | F3   | F4     |
|                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.02 | <0.02 | <0.02 | <0.05 | <7 | 4    | <8   | <6     |
| and the land of |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | ***   |       | -     |    | 1145 | 57   | 14-Nov |
| TP8B            | Depth (mbgs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | В     | т     | E     | X     | F1 | F2   | F3   | F4     |
|                 | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.02 | <0.02 | <0.02 | <0.05 | <7 | <4   | <8   | <6     |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       | 99    |       |    | 25   | 25   | 14-Nov |
| TP9B            | Depth (mbgs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | В     | Т     | E     | X     | F1 | F2   | F3   | F4     |
|                 | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.02 | <0.02 | <0.02 | <0.05 | <7 | 4    | <8   | <6     |

| PARAMETERS    | ABBREVIATION | REG 153/04<br>TABLE 2<br>STANDARDS |
|---------------|--------------|------------------------------------|
| Benzene       | В            | 0.21                               |
| Toluene       | T            | 2.3                                |
| Ethylbenzene  | E            | 1.1                                |
| Total Xylenes | X            | 3.1                                |
| F1            | F1 (C6-C10)  | 55                                 |
| F2            | F2 (C10-C16) | 98                                 |
| F3            | F3 (C16-C34) | 300                                |
| F4            | F4 (C34-C50) | 2800                               |





PROPERTY BOUNDARY




CONCENTRATION IS LESS THAN MECP TABLE 2 SCS

TEST PIT NO. AND LOCATION (EXP, 2017) (NO TEST)



TP/MW1 TEST PIT & MONITORING WELL NO. AND LOCATION (EXP, 2017)





### EXP Services Inc. www.exp.com

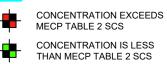
t: +1.613.688.1899 | f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT (ESA) OCTOBER 2025 6659 FRANKTOWN ROAD, OTTAWA, ONTARIÒ DESIGN CK/MM/PO CK

oroject no. OTT-00243705-B0

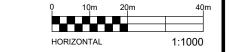
1:1,000 FIG 8

SOIL ANALYTICAL RESULTS - PHC & BTEX


| TP1A | Depth (mbgs)  | 22-Jul-22       |      |      |      |     |       |     |     |     |     |      |     |      |      |      |     |      |     |
|------|---------------|-----------------|------|------|------|-----|-------|-----|-----|-----|-----|------|-----|------|------|------|-----|------|-----|
| IFIA | Deptil (mogs) | Sb              | As   | Ва   | Be   | В   | Cd    | Cr  | Co  | Cu  | Pb  | Mo   | Ni  | Se   | Ag   | TI   | U   | V    | Zn  |
|      | 0.9           | <1.0            | <1.0 | 23.0 | <1.0 | 1.9 | < 0.5 | 6.2 | 1.9 | 2.2 | 3.8 | <1.0 | 3.3 | <1.0 | <0.5 | <1.0 | 1.6 | 14.7 | 9.3 |
|      |               |                 |      |      |      |     |       |     |     |     |     |      |     |      |      |      |     |      |     |
|      |               | 22_lul-22       |      |      |      |     |       |     | 0   |     |     |      |     |      |      |      |     |      |     |
| TP2B | Depth (mbgs)  | 22-Jul-22<br>Sb | As   | Ba   | Be   | В   | Cd    | Cr  | Co  | Cu  | Рь  | Mo   | Ni  | Se   | Ag   | TI   | U   | V    | Zn  |

| PARAMETERS  | ABBREVIATION | REG 153/04<br>TABLE 2<br>STANDARDS |
|-------------|--------------|------------------------------------|
| Antimony    | Sb           | 7.5                                |
| Arsenic     | As           | 18                                 |
| Barium      | Ba           | 390                                |
| Beryllium   | Be           | 4                                  |
| Boron       | В            | 120                                |
| Cadmium     | Cd           | 1.2                                |
| Chromium    | Cr           | 160                                |
| Cobalt      | Co           | 22                                 |
| Copper      | Cu           | 140                                |
| Lead        | Pb           | 120                                |
| Moly bdenum | Mo           | 6.9                                |
| Nickel      | Ni           | 100                                |
| Selenium    | Se           | 2.4                                |
| Silver      | Ag           | 20                                 |
| Thallium    | TI           | 1                                  |
| Uranium     | U            | 23                                 |
| Vanadium    | V            | 86                                 |
| Zinc        | Zn           | 340                                |






PROPERTY BOUNDARY



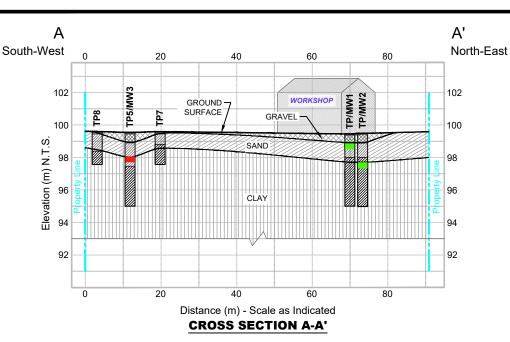
TP3
TEST PIT NO. AND LOCATION (EXP, 2017) (NO TEST)

TP/MW1
TEST PIT & MONITORING WELL NO.
AND LOCATION (EXP, 2017)





EXP Services Inc. www.exp.com


t: +1.613.688.1899 | f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada

| OCTOBI   | OCTOBER 2025 |          | HASE TWO ENVIRONMENTAL SITE ASSESSMENT (ESA) |
|----------|--------------|----------|----------------------------------------------|
| DESIGN   | CHECKED      | ADDRESS: | 6659 FRANKTOWN ROAD, OTTAWA, ONTARIO         |
| CK/MM/PO | CK           | TITLE:   |                                              |
| DRAWN BY |              |          | SOIL ANALYTICAL RESULTS _ INORGANICS         |

OTT-00243705-B0
scale
1:1,000

FIG 9

SOIL ANALYTICAL RESULTS – INORGANICS

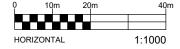


| PARAMETERS    | ABBREVIATION | REG 153/04<br>TABLE 2<br>STANDARDS |
|---------------|--------------|------------------------------------|
| Benzene       | В            | 0.21                               |
| Toluene       | T            | 2.3                                |
| Ethylbenzene  | E            | 1.1                                |
| Total Xylenes | X            | 3.1                                |
| F1            | F1 (C6-C10)  | 55                                 |
| F2            | F2 (C10-C16) | 98                                 |
| F3            | F3 (C16-C34) | 300                                |
| F4            | F4 (C34-C50) | 2800                               |

#### **LEGEND**

FILL - GRAVEL



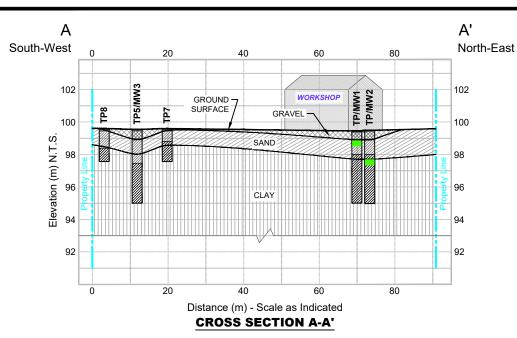

SAND (DRY TO MOIST)



CLAY (BROWN)

CONCENTRATION EXCEEDS
MECP TABLE 2 SCS
CONCENTRATION IS LESS
THAN MECP TABLE 2 SCS

| TP1A           | Depth (mbgs)   |       |       |       |       |    |     |      | 14-Nov-1 |
|----------------|----------------|-------|-------|-------|-------|----|-----|------|----------|
| IFIA           | Depth (mbgs)   | В     | T     | E     | X     | F1 | F2  | F3   | F4       |
|                | 0.9            | <0.02 | <0.02 | <0.02 | <0.05 | <7 | 4   | <8   | <6       |
| TDAD           | T              |       |       |       |       |    |     |      | 14-Nov-1 |
| TP2B           | Depth (mbgs)   | В     | T     | E     | X     | F1 | F2  | F3   | F4       |
|                | 2.1            | <0.02 | <0.02 | <0.02 | <0.05 | <7 | 4   | <8   | <6       |
| TP3A           | Double (miles) |       |       |       | -     |    |     |      | 14-Nov-1 |
| IPSA           | Depth (mbgs)   | В     | T     | E     | Х     | F1 | F2  | F3   | F4       |
|                | 0.9            | <0.02 | <0.02 | <0.02 | <0.05 | <7 | 4   | <8   | <6       |
| TP3B           | Depth (mbgs)   |       |       |       |       |    |     |      | 14-Nov-  |
| 11 30          |                | В     | T     | E     | х     | F1 | F2  | F3   | F4       |
|                | 1.8            | <0.02 | <0.02 | <0.02 | <0.05 | <7 | 4   | <8   | <6       |
| TP5B           | Double (mb and |       |       |       |       |    |     |      | 14-Nov-  |
| IPDB           | Depth (mbgs)   | В     | Т     | E     | Х     | F1 | F2  | F3   | F4       |
|                | 1.8            | <0.02 | <0.02 | <0.02 | <0.05 | 68 | 412 | 202  | <6       |
|                |                |       |       |       | - 162 |    |     | 946  | 14-Nov-  |
| TP6A           | Depth (mbgs)   | В     | т     | E     | X     | F1 | F2  | F3   | F4       |
|                | 0.9            | <0.02 | <0.02 | <0.02 | <0.04 | <7 | <4  | <8   | <6       |
| Alla de Citaci |                |       |       |       |       |    |     |      | 14-Nov-  |
| TP7B           | Depth (mbgs)   | В     | Т     | E     | х     | F1 | F2  | F3   | F4       |
|                | 2              | <0.02 | <0.02 | <0.02 | <0.05 | <7 | <4  | <8   | <6       |
|                | i i            |       |       |       |       |    |     | •    | 14-Nov-  |
| TP8B           | Depth (mbgs)   | В     | Т     | E     | х     | F1 | F2  | F3   | 14-Nov-  |
|                | 2.1            | <0.02 | <0.02 | <0.02 | <0.05 | <7 | <4  | <8   | F4<br><6 |
|                | Z.1            | -0.02 | <0.02 | 40.02 | 40.05 | 4  | 4   | - 48 | 1        |
| TP9B           | Depth (mbgs)   |       |       |       |       |    |     |      | 14-Nov-  |
| 00             | Sopul (moga)   | В     | T     | E     | X     | F1 | F2  | F3   | F4       |
|                | 2.3            | <0.02 | <0.02 | <0.02 | <0.05 | <7 | <4  | <8   | <6       |
|                |                |       |       |       |       |    |     |      |          |






#### EXP Services Inc. www.exp.com

t: +1.613.688.1899 | f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada

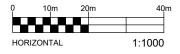
| ОСТОВІ   | ER 2025 | PHASE TWO ENVIRONMENTAL SITE ASSESSMENT (ESA) | OTT-00243705-B0 |
|----------|---------|-----------------------------------------------|-----------------|
| DESIGN   |         | ADDRESS: 6659 FRANKTOWN ROAD, OTTAWA, ONTARIO | scale           |
| CK/MM/PO | CK      | TITLE:                                        | 1:1000          |
| DRAWN BY | S       | SOIL CROSS SECTION A-A' – PHC & BTEX          | FIG 10          |



**LEGEND** 

FILL - GRAVEL

SAND (DRY TO MOIST)


CLAY (BROWN)

CONCENTRATION EXCEEDS MECP TABLE 2 SCS

CONCENTRATION IS LESS THAN MECP TABLE 2 SCS

| PARAMETERS  | ABBREVIATION | TABLE 2<br>STANDARDS |  |  |
|-------------|--------------|----------------------|--|--|
| Antimony    | Sb           | 7.5                  |  |  |
| Arsenic     | As           | 18                   |  |  |
| Barium      | Ba           | 390                  |  |  |
| Beryllium   | Be           | 4                    |  |  |
| Boron       | В            | 120                  |  |  |
| Cadmium     | Cd           | 1.2                  |  |  |
| Chromium    | Cr           | 160                  |  |  |
| Cobalt      | Co           | 22                   |  |  |
| Copper      | Cu           | 140                  |  |  |
| Lead        | Pb           | 120                  |  |  |
| Moly bdenum | Mo           | 6.9                  |  |  |
| Nickel      | Ni           | 100                  |  |  |
| Selenium    | Se           | 2.4                  |  |  |
| Silver      | Ag           | 20                   |  |  |
| Thallium    | TI           | 1                    |  |  |
| Uranium     | U            | 23                   |  |  |
| Vanadium    | V            | 86                   |  |  |
| Zinc        | Zn           | 340                  |  |  |

| TP1A | Depth (mbgs)  | 22-Jul-22       |      |      |      |     |      |     |     |     |     |      |     |      |      |      |     |      |     |
|------|---------------|-----------------|------|------|------|-----|------|-----|-----|-----|-----|------|-----|------|------|------|-----|------|-----|
| IFIA | Deptil (moga) | Sb              | As   | Ba   | Be   | В   | Cd   | Cr  | Co  | Cu  | Pb  | Mo   | Ni  | Se   | Ag   | TI   | U   | ٧    | Zn  |
|      | 0.9           | <1.0            | <1.0 | 23.0 | <1.0 | 1.9 | <0.5 | 6.2 | 1.9 | 2.2 | 3.8 | <1.0 | 3.3 | <1.0 | <0.5 | <1.0 | 1.6 | 14.7 | 9.3 |
|      |               |                 |      |      |      |     |      |     |     |     |     |      |     |      |      |      |     |      |     |
|      |               |                 |      |      |      |     |      |     |     |     |     |      |     |      |      |      |     |      |     |
| TD2R | Denth (mhas)  | 22-Jul-22       |      |      |      |     |      |     |     |     |     |      |     |      |      |      |     |      |     |
| TP2B | Depth (mbgs)  | 22-Jul-22<br>Sb | As   | Ba   | Be   | В   | Cd   | Cr  | Co  | Cu  | Pb  | Mo   | Ni  | Se   | Ag   | TI   | U   | v    | Zn  |





### EXP Services Inc. www.exp.com

t: +1.613.688.1899 | f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada

| ОСТОВІ   | ER 2025 |          | PHASE TWO ENVIRONMENTAL SITE ASSESSMENT (ESA) | OTT-00243705-B0 |
|----------|---------|----------|-----------------------------------------------|-----------------|
| DESIGN   |         | ADDRESS: | 6659 FRANKTOWN ROAD, OTTAWA, ONTARIO          | scale           |
| CK/MM/PO | CK      | TITLE:   |                                               | 1:1000          |
| DRAWN BY | S       |          | SOIL CROSS SECTION A-A' – INORGANICS          | FIG 11          |




| MW1       | Screen Interval 3.0 to 4.5 mbg |       |       |       |      |       |       |       |  |  |
|-----------|--------------------------------|-------|-------|-------|------|-------|-------|-------|--|--|
| DATE      | В                              | T     | E     | X     | F1   | F2    | F3    | F4    |  |  |
| 15-Nov-17 | < 0.5                          | < 0.5 | < 0.5 | < 0.5 | < 25 | < 100 | < 200 | < 200 |  |  |
| 11-Jul-23 | <0.2                           | <0.2  | <0.2  | <0.4  | < 25 | < 100 | < 200 | < 200 |  |  |
| 9-Jul-24  | <0.2                           | <0.2  | <0.2  | <0.4  | < 25 | < 100 | < 200 | < 200 |  |  |

| MW2       | Screen Interval 3.0 to 4.5 mb |       |       |       |      |       |       |       |  |  |  |
|-----------|-------------------------------|-------|-------|-------|------|-------|-------|-------|--|--|--|
| DATE      | В                             | T     | E     | Х     | F1   | F2    | F3    | F4    |  |  |  |
| 15-Nov-17 | < 0.5                         | < 0.5 | < 0.5 | < 0.5 | < 25 | < 100 | < 200 | < 200 |  |  |  |
| 11-Jul-23 | <0.2                          | <0.2  | <0.2  | <0.4  | < 25 | < 100 | < 200 | < 200 |  |  |  |
| 9-Jul-24  | <0.2                          | <0.2  | <0.2  | <0.4  | < 25 | < 100 | < 200 | < 200 |  |  |  |

| MW3       |       |       |       |       | Scre | en Interva | al 3.0 to 4 | .5 mbg |
|-----------|-------|-------|-------|-------|------|------------|-------------|--------|
| DATE      | В     | T     | E     | X     | F1   | F2         | F3          | F4     |
| 15-Nov-17 | < 0.5 | < 0.5 | < 0.5 | < 0.5 | < 25 | < 100      | 172         | < 200  |
| 11-Jul-23 | <0.2  | <0.2  | <0.2  | <0.4  | < 25 | < 100      | 850         | 970    |
| Duplicate | <0.2  | <0.2  | <0.2  | <0.4  | < 25 | < 100      | 550         | 620    |
| 14-Jul-23 | <0.2  | <0.2  | <0.2  | <0.4  | < 25 | < 100      | < 200       | < 200  |
| 9-Jul-24  | <0.2  | <0.2  | <0.2  | <0.4  | < 25 | < 100      | < 200       | < 200  |

| PARAMETERS    | ABBREVIATION | REG 153/04<br>TABLE 2<br>STANDARDS |
|---------------|--------------|------------------------------------|
| Benzene       | В            | 0.5                                |
| Toluene       | T            | 24                                 |
| Ethylbenzene  | E            | 2.4                                |
| Total Xylenes | X            | 300                                |
| F1            | F1 (C6-C10)  | 750                                |
| F2            | F2 (C10-C16) | 150                                |
| F3            | F3 (C16-C34) | 500                                |
| F4            | F4 (C34-C50) | 500                                |





PROPERTY BOUNDARY



(98.41) GROUNDWATER LEVEL ELEVATION (JULY 9, 2024)

TP/MW1 TEST PIT & MONITORING WELL NO. AND LOCATION (EXP, 2017)

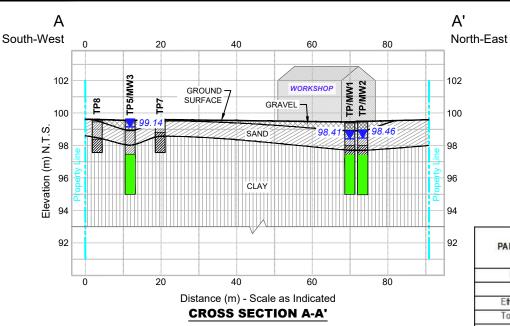
CONCENTRATION EXCEEDS MECP TABLE 2 SCS CONCENTRATION IS LESS THAN MECP TABLE 2 SCS

HORIZONTAL 1:1000



### EXP Services Inc. www.exp.com

t: +1.613.688.1899 | f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada


OCTOBER 2025 DESIGN CK/MM/PO CK

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT (ESA) 6659 FRANKTOWN ROAD, OTTAWA, ONTARIÒ

1:1,000 FIG 12

oroject no. OTT-00243705-B0

GROUNDWATER ANALYTICAL RESULTS - PHC & BTEX



| PARAMETERS    | ABBREVIATION | TABLE 2<br>STANDARDS |  |  |
|---------------|--------------|----------------------|--|--|
| Benzene       | В            |                      |  |  |
| Toluene       | T            | 24                   |  |  |
| Ethylbenzene  | E            | 2.4                  |  |  |
| Total Xylenes | X            | 300                  |  |  |
| F1            | F1 (C6-C10)  | 750                  |  |  |
| F2            | F2 (C10-C16) | 150                  |  |  |
| F3            | F3 (C16-C34) | 500                  |  |  |
| F4            | F4 (C34-C50) | 500                  |  |  |

#### **LEGEND**

\_\_\_\_\_ F

FILL - GRAVEL

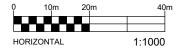
SAND (DRY TO MOIST)

CLAY (BROWN)



CONCENTRATION EXCEEDS MECP TABLE 2 SCS

CONCENTRATION IS LESS THAN MECP TABLE 2 SCS


98.41

WATER LEVEL DATE: JULY 9, 2024

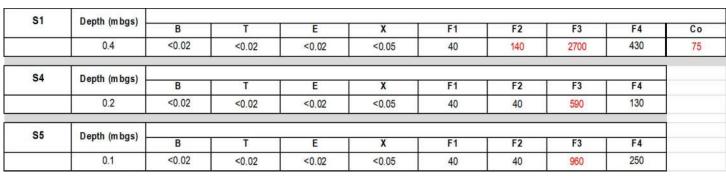
| MW1       | Screen Interval 3.0 to 4.5 |       |       |       |      |       |       |       |  |  |  |
|-----------|----------------------------|-------|-------|-------|------|-------|-------|-------|--|--|--|
| DATE      | В                          | Т     | E     | Х     | F1   | F2    | F3    | F4    |  |  |  |
| 15-Nov-17 | < 0.5                      | < 0.5 | < 0.5 | < 0.5 | < 25 | < 100 | < 200 | < 200 |  |  |  |
| 11-Jul-23 | <0.2                       | <0.2  | <0.2  | < 0.4 | < 25 | < 100 | < 200 | < 200 |  |  |  |
| 9-Jul-24  | <0.2                       | <0.2  | <0.2  | <0.4  | < 25 | < 100 | < 200 | < 200 |  |  |  |

| MW2       | Screen Interval 3.0 to 4 |       |       |       |      |       |       |       |  |
|-----------|--------------------------|-------|-------|-------|------|-------|-------|-------|--|
| DATE      | В                        | T     | E     | X     | F1   | F2    | F3    | F4    |  |
| 15-Nov-17 | < 0.5                    | < 0.5 | < 0.5 | < 0.5 | < 25 | < 100 | < 200 | < 200 |  |
| 11-Jul-23 | <0.2                     | <0.2  | <0.2  | < 0.4 | < 25 | < 100 | < 200 | < 200 |  |
| 9-Jul-24  | <0.2                     | <0.2  | <0.2  | <0.4  | < 25 | < 100 | < 200 | < 200 |  |

| MW3       | Screen Interval 3.0 to 4.5 r |       |       |       |      |       |       |       |  |  |
|-----------|------------------------------|-------|-------|-------|------|-------|-------|-------|--|--|
| DATE      | В                            | Т     | E     | X     | F1   | F2    | F3    | F4    |  |  |
| 15-Nov-17 | < 0.5                        | < 0.5 | < 0.5 | < 0.5 | < 25 | < 100 | 172   | < 200 |  |  |
| 11-Jul-23 | <0.2                         | <0.2  | <0.2  | < 0.4 | < 25 | < 100 | 850   | 970   |  |  |
| Duplicate | <0.2                         | < 0.2 | <0.2  | <0.4  | < 25 | < 100 | 550   | 620   |  |  |
| 14-Jul-23 | <0.2                         | <0.2  | <0.2  | <0.4  | < 25 | < 100 | < 200 | < 200 |  |  |
| 9-Jul-24  | <0.2                         | <0.2  | <0.2  | < 0.4 | < 25 | < 100 | < 200 | < 200 |  |  |






### EXP Services Inc. www.exp.com

t: +1.613.688.1899 | f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada

| DATE<br>OCTOBI |         | PROJECT: PHASE TWO ENVIRONMENTAL SITE ASSESSMENT (ESA) |
|----------------|---------|--------------------------------------------------------|
| DESIGN         | CHECKED | ADDRESS: 6659 FRANKTOWN ROAD, OTTAWA, ONTARIO          |
| CK/MM/PO       | CK      | TITLE:                                                 |
| DRAWN BY       | S       | GROUNDWATER CROSS SECTION A-A' – PHC & BTEX            |

OTT-00243705-B0
scale
1:1000
FIG 13

project no




PHC & BTEX

REG 153/04 PARAMETERS ABBREVIATION TABLE 2 STANDARDS Benzene 0.21 2.3 Ethy Ibenzene 1.1 Total Xylenes 3.1 F1 (C6-C10) 55 F2 (C10-C16) 98 F3 (C16-C34) 300 F4 (C34-C50)

**METALS** 

|            | 2            | REG 153/04 |
|------------|--------------|------------|
| PARAMETERS | ABBREVIATION | TABLE 2    |
|            |              | STANDARDS  |
| Cobalt     | Co           | 22         |

AS





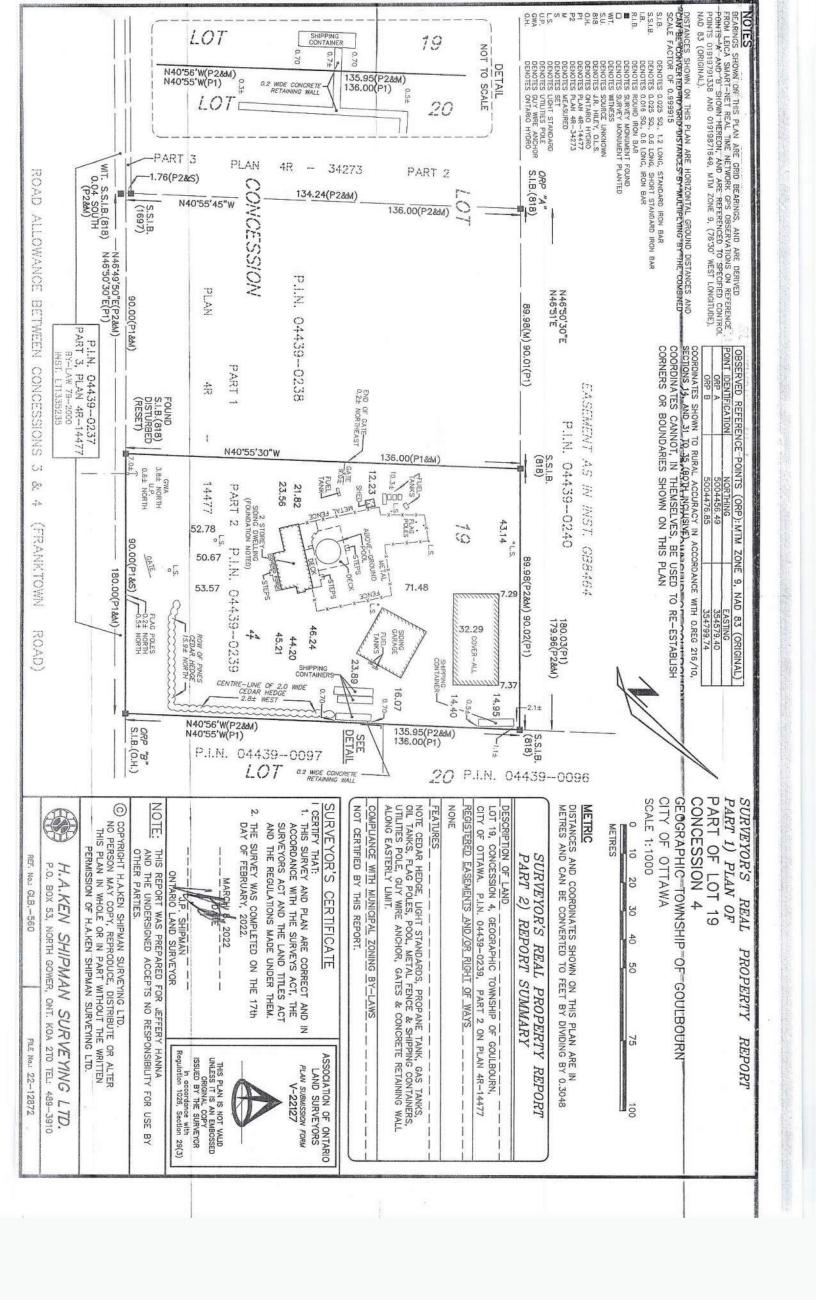
### EXP Services Inc. www.exp.com

t: +1.613.688.1899 | f: +1.613.225.7337 2650 Queensview Drive, Suite 100 Ottawa, ON K2B 8H6, Canada

| OCTOBER 2025 |    | PROJECT: | PHASE TWO ENVIRONMENTAL SITE ASSESSMENT (ESA) |  |
|--------------|----|----------|-----------------------------------------------|--|
| ESIGN        |    | ADDRESS: | 6659 FRANKTOWN ROAD, OTTAWA, ONTARIO          |  |
| K/MM/PO      | CK | TITLE:   |                                               |  |

OTT-00243705-B0 1:1,000

SURFACE SOIL SAMPLING PLAN


FIG 14

#### EXP Services Inc.

Air Rock Drilling Company Ltd.
Phase Two Environmental Site Assessment
6659 Franktown Road, Richmond, Ontario
OTT-00243705-B0
October 17, 2025

**Appendix B: Survey Plan** 





EXP Services Inc.

Air Rock Drilling Company Ltd. Phase Two Environmental Site Assessment 6659 Franktown Road, Richmond, Ontario OTT-00243705-B0 October 17, 2025

**Appendix C: Sampling and Analysis Plan** 





# OTT-00243705-C0 Supplemental Sampling Program – 6659 Franktown Road, Ottawa, Ontario Sampling and Analysis Plan

#### **Objectives**

 The objectives are to collect soil and groundwater data that will address comments raised by the City of Ottawa following review of the Phase One and Two Environmental Site Assessments (ESAs) that were prepared for Air Rock Drilling company Ltd. for the property at 6659 Franktown Road in Ottawa, Ontario in support of a the proposed zoning by-law amendment.

#### **Scope of Work**

- Surface soil sampling downgradient of drainage from sump discharge, at the eastern property boundary
- Surface soil sampling downgradient of re-fuelling tank storage area at the western property boundary
- Surface soil sampling in the northwest corner of the property in constructed swale

#### **Areas of Potential Environmental Concern**

The APECs identified in previous investigations are summarized below in Table 1.

**Table 1: Areas of Potential Environmental Concern** 

| Area of Potential<br>Environmental<br>Concern (APEC) | Location of APEC on<br>Phase One Property                                                                          | Potentially Contaminating PCA (On-Activity (PCA) or Off-Sit             |         | Contaminants of<br>Potential<br>Concern                                                                   | Media Potentially<br>Impacted<br>(Groundwater, Soil<br>and/or Sediment) |  |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| APEC #1                                              | Workshop shop sump<br>discharge (sump<br>discharges to ground<br>just outside<br>workshop building,<br>south side) | PCA #10 – Commercial<br>Autobody Shop                                   | On-site | Benzene,<br>toluene,<br>ethylbenzene,<br>xylene (BTEX),<br>and petroleum<br>hydrocarbons<br>(PHC), metals | Soil and groundwater                                                    |  |
| APEC #2-#3                                           | Above ground storage tanks for furnace oil and fuel                                                                | PCA #28 – Gasoline and<br>Associated Products<br>Storage in Fixed Tanks | On-site | BTEX and PHC                                                                                              | Soil and groundwater                                                    |  |

The environmental work will be undertaken in accordance with Ontario Regulation 153/04.

Air Rock Drilling Sampling and Analysis Plan Addendum - Phase Two ESA 6659 Franktown Road, Ottawa, Ontario OTT-00243705-B0

### **Soil Sampling**

Soil samples should be collected as follows:

**Table 2: Soil Sampling Plan** 

| Commission                                                                                                      | B4- !!                            | <b>D</b>                    | D. U. L                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Sample Location                                                                                                 | Media                             | Parameters                  | Rationale                                                                                                                                 |
| S-1 Discharge point of sump and adjacent to ASTs                                                                | Surface soil<br>beneath<br>gravel | PHC F1-F4, VOC, PAH, metals | To assess potential impact on surface soil from sump discharge                                                                            |
| S-2 Downgradient from sump discharge towards east property line)                                                | Surface soil                      | PHC F1-F4, VOC, PAH, metals | To assess potential impact on surface soil from sump discharge at downgrade location along eastern property line and towards ROW drainage |
| S-3 Northeast of<br>workshop and quonset<br>building                                                            | Surface soil                      | PHC F1-F4, VOC, PAH, metals | To assess potential impact on surface soil from sump discharge at upgrade location along eastern property line and towards EPZ            |
| S-4 Northwest corner of<br>Phase Two property in<br>constructed swale                                           | Surface soil                      | PHC F1-F4, VOC, PAH, metals | To assess potential impact on surface soil at northwest corner of Phase Two property                                                      |
| S-5 Within refueling AST location                                                                               | Surface soil<br>beneath<br>gravel | PHC F1-F4, BTEX             | To assess potential impact on surface soil from refueling ASTs                                                                            |
| S-6 Downgradient from refueling AST location along west property line                                           | Surface soil                      | PHC F1-F4, BTEX             | To assess potential impact on surface soil from refueling ASTs at downgrade location along western property line and towards ROW drainage |
| S-7 Downgradient from sump discharge along east property line                                                   | Surface soil                      | PHC F1-F4, BTEX             | To assess potential impact on surface soil from sump discharge at downgrade location along eastern property line.                         |
| S-8 Downgradient from<br>refueling AST location<br>along west property line,<br>adjacent to constructed<br>berm | Surface soil                      | PHC F1-F4, BTEX             | To assess potential impact on surface soil from refueling ASTs at downgrade location                                                      |
| S-9 Northwest corner of<br>Phase Two property in<br>constructed swale                                           | Surface soil                      | PHC F1-F4, BTEX             | To assess potential impact on surface soil at<br>northwest corner of Phase Two property and<br>delineate S4                               |
| S-10 Northwest corner of Phase Two property in constructed swale                                                | Surface soil                      | PHC F1-F4, BTEX             | To assess potential impact on surface soil at<br>northwest corner of Phase Two property and<br>delineate S4                               |
| S-11 Northwest corner<br>of Phase Two property in<br>constructed berm                                           | Surface soil                      | PHC F1-F4, BTEX             | To assess potential impact on surface soil at<br>northwest corner of Phase Two property and<br>delineate S4                               |
| S-12 Northwest corner<br>of Phase Two property<br>north adjacent of<br>constructed swale                        | Surface soil                      | PHC F1-F4, BTEX             | To assess potential impact on surface soil at<br>northwest corner of Phase Two property and<br>delineate S4                               |



Air Rock Drilling Sampling and Analysis Plan Addendum - Phase Two ESA 6659 Franktown Road, Ottawa, Ontario OTT-00243705-B0

Soil samples should be submitted to Bureau Veritas for analysis as described in Table 2. On the chains of custodies, use EXP project number OTT-00243705-B0.

Test locations will be backfilled following completion of environmental sampling.



#### EXP Services Inc.

Air Rock Drilling Company Ltd. Phase Two Environmental Site Assessment 6659 Franktown Road, Richmond, Ontario OTT-00243705-B0 October 17, 2025

**Appendix D: Borehole Logs** 



### **Explanation of Terms Used on Borehole Records**

#### SOIL DESCRIPTION

Terminology describing common soil genesis:

Topsoil: mixture of soil and humus capable of supporting good vegetative growth.

Peat: fibrous fragments of visible and invisible decayed organic matter.

Fill: where fill is designated on the borehole log it is defined as indicated by the sample recovered during the boring process. The reader is cautioned that fills are heterogeneous in nature and variable in density or degree of compaction. The borehole description may therefore not be applicable as a general description of site fill materials. All fills should be expected to contain obstruction such as wood, large concrete pieces or subsurface basements, floors, tanks, etc.; none of these may have been encountered in the boreholes. Since boreholes cannot accurately define the contents of the fill, test pits are recommended to provide supplementary information. Despite the use of test pits, the heterogeneous nature of fill will leave some ambiguity as to the exact composition of the fill. Most fills contain pockets, seams, or layers of organically contaminated soil. This organic material can result in the generation of methane gas and/or significant ongoing and future settlements. Fill at this site may have been monitored for the presence of methane gas and, if so, the results are given on the borehole logs. The monitoring process does not indicate the volume of gas that can be potentially generated nor does it pinpoint the source of the gas. These readings are to advise of the presence of gas only, and a detailed study is recommended for sites where any explosive gas/methane is detected. Some fill material may be contaminated by toxic/hazardous waste that renders it unacceptable for deposition in any but designated land fill sites; unless specifically stated the fill on this site has not been tested for contaminants that may be considered toxic or hazardous. This testing and a potential hazard study can be undertaken if requested. In most residential/commercial areas undergoing reconstruction, buried oil tanks are common and are generally not detected in a conventional geotechnical site investigation.

Till: the term till on the borehole logs indicates that the material originates from a geological process associated with glaciation. Because of this geological process the till must be considered heterogeneous in composition and as such may contain pockets and/or seams of material such as sand, gravel, silt or clay. Till often contains cobbles (60 to 200 mm) or boulders (over 200 mm). Contractors may therefore encounter cobbles and boulders during excavation, even if they are not indicated by the borings. It should be appreciated that normal sampling equipment cannot differentiate the size or type of any obstruction. Because of the horizontal and vertical variability of till, the sample description may be applicable to a very limited zone; caution is therefore essential when dealing with sensitive excavations or dewatering programs in till materials.

#### Terminology describing soil structure:

Desiccated: having visible signs of weathering by oxidization of clay minerals, shrinkage cracks, etc.

Stratified: alternating layers of varying material or color with the layers greater than 6 mm thick.

Laminated: alternating layers of varying material or color with the layers less than 6 mm thick.

Fissured: material breaks along plane of fracture.

Varved: composed of regular alternating layers of silt and clay.

*Slickensided:* fracture planes appear polished or glossy, sometimes striated.

Blocky: cohesive soil that can be broken down into small angular lumps which resist further

breakdown.



Lensed: inclusion of small pockets of different soil, such as small lenses of sand scattered

through a mass of clay; not thickness.

Seam: a thin, confined layer of soil having different particle size, texture, or color from

materials above and below.

Homogeneous: same color and appearance throughout.

Well Graded: having wide range in grain sized and substantial amounts of all predominantly on grain

size.

Uniformly Graded: predominantly on grain size.

All soil sample descriptions included in this report follow the ASTM D2487-11 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). The system divides soils into three major categories: (1) coarse grained, (2) fine-grained, and (3) highly organic. The soil is then subdivided based on either gradation or plasticity characteristics. The system provides a group symbol (e.g. SM) and group name (e.g. silty sand) for identification. The classification excludes particles larger than 76 mm. Please note that, with the exception of those samples where a grain size analysis has been made, all samples are classified visually in accordance with ASTM D2488-09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). Visual classification is not sufficiently accurate to provide exact grain sizing or precise differentiation between size classification systems. Others may use different classification systems; one such system is the ISSMFE Soil Classification.

#### ISSMFE SOIL CLASSIFICATION

|      | SILT   |        |                    | SAND                    |                                |                                       | GRAVEL                                     |                                                   | COBBLES                                                  | BOULDERS                                                 |
|------|--------|--------|--------------------|-------------------------|--------------------------------|---------------------------------------|--------------------------------------------|---------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| FINE | MEDIUM | COARSE | FINE               | MEDIUM                  | COARSE                         | FINE                                  | MEDIUM                                     | COARSE                                            |                                                          |                                                          |
|      |        |        |                    |                         |                                |                                       |                                            |                                                   |                                                          |                                                          |
|      |        |        |                    |                         |                                |                                       |                                            |                                                   |                                                          |                                                          |
| 0.00 | 6 0.02 | 0.06   | 0.2                | 0.6                     | 2.0                            | 6.0                                   | 20                                         | 60                                                | 200                                                      |                                                          |
| 0.00 | 0.02   | 0.00   | I                  | 0.0                     | I 2.0                          | I 0.0                                 | l                                          | I                                                 | 200                                                      |                                                          |
|      |        |        | FINE MEDIUM COARSE | FINE MEDIUM COARSE FINE | FINE MEDIUM COARSE FINE MEDIUM | FINE MEDIUM COARSE FINE MEDIUM COARSE | FINE MEDIUM COARSE FINE MEDIUM COARSE FINE | FINE MEDIUM COARSE FINE MEDIUM COARSE FINE MEDIUM | FINE MEDIUM COARSE FINE MEDIUM COARSE FINE MEDIUM COARSE | FINE MEDIUM COARSE FINE MEDIUM COARSE FINE MEDIUM COARSE |

#### **EQUIVALENT GRAIN DIAMETER IN MILLIMETRES**

| CLAY (PLASTIC) TO | FINE | MEDIUM | CRS. | FINE  | COARSE |
|-------------------|------|--------|------|-------|--------|
| SILT (NONPLASTIC) |      |        | GF   | RAVEL |        |

UNIFIED SOIL CLASSIFICATION

Terminology describing materials outside the USCS, (e.g. particles larger than 76 mm, visible organic matter, construction debris) is based upon the proportion of these materials present and as described below in accordance with Note 16 in ASTM D2488-09a:

Table a: Percent or Proportion of Soil, Pp

|        | Criteria                                               |
|--------|--------------------------------------------------------|
| Trace  | Particles are present but estimated to be less than 5% |
| Few    | 5≤Pp≤10%                                               |
| Little | 15≤Pp≤25%                                              |
| Some   | 30≤Pp≤45%                                              |
| Mostly | 50≤Pp≤100%                                             |

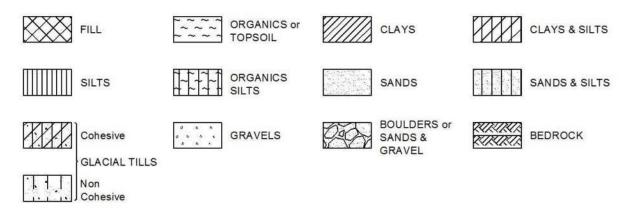
The standard terminology to describe cohesionless soils includes the compactness as determined by the Standard Penetration Test 'N' value:

Table b: Apparent Density of Cohesionless Soil

| 'N' Value (blows/0.3 m) |
|-------------------------|
| N<5                     |
| 5≤N<10                  |
| 10≤N<30                 |
| 30≤N<50                 |
| 50≤N                    |
|                         |



The standard terminology to describe cohesive soils includes consistency, which is based on undrained shear strength as measured by insitu vane tests, penetrometer tests, unconfined compression tests or similar field and laboratory analysis, Standard Penetration Test 'N' values can also be used to provide an approximate indication of the consistency and shear strength of fine grained, cohesive soils:


Table c: Consistency of Cohesive Soil

| Consistency | Vane Shear Measurement (kPa) | 'N' Value |
|-------------|------------------------------|-----------|
| Very Soft   | <12.5                        | <2        |
| Soft        | 12.5-25                      | 2-4       |
| Firm        | 25-50                        | 4-8       |
| Stiff       | 50-100                       | 8-15      |
| Very Stiff  | 100-200                      | 15-30     |
| Hard        | >200                         | >30       |

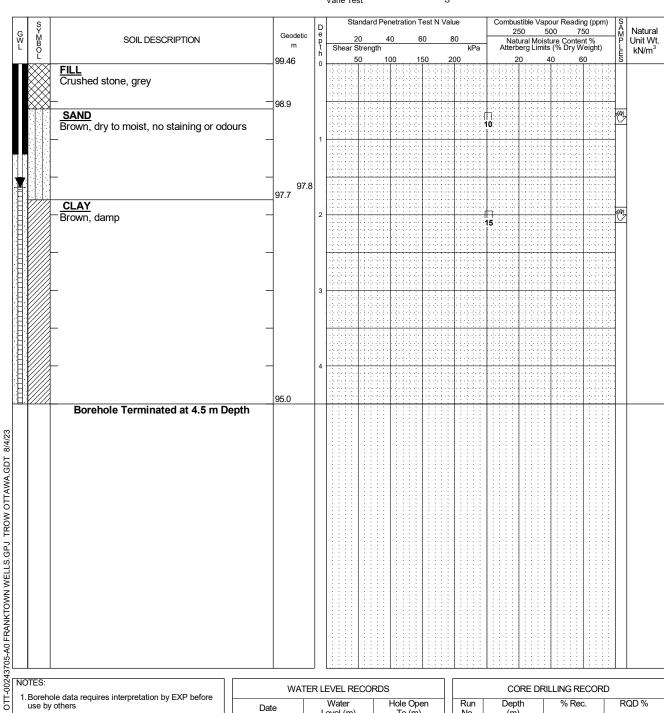
Note: 'N' Value - The Standard Penetration Test records the number of blows of a 140 pound (64kg) hammer falling 30 inches (760mm), required to drive a 2 inch (50.8mm) O.D. split spoon sampler 1 foot (305mm). For split spoon samples where full penetration is not achieved, the number of blows is reported over the sampler penetration in meters (e.g. 50/0.15).

#### **STRATA PLOT**

Strata plots symbolize the soil or bedrock description. They are combinations of the following basic symbols:



#### WATER LEVEL MEASUREMENT


∑

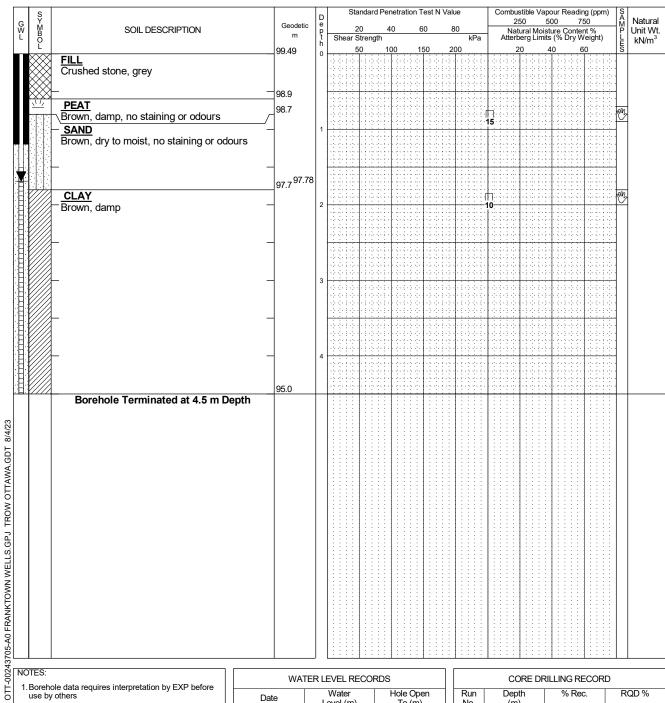
Open Borehole or Test Pit Monitoring Well, Piezometer or Standpipe



### Log of Borehole MW1

|               | Log of L                             | JOI CHOIC INIVI                 |                                              | $\leftarrow x$ |
|---------------|--------------------------------------|---------------------------------|----------------------------------------------|----------------|
| Project No:   | OTT-00243705-B0                      |                                 | Cigura No                                    |                |
| Project:      | Phase Two ESA                        |                                 | Figure No.                                   |                |
| Location:     | 6659 Franktown Road, Ottawa, Ontario |                                 | Page1_ of _1_                                | _              |
| Date Drilled: | November 14, 2017                    | Split Spoon Sample              | Combustible Vapour Reading                   |                |
| Drill Type:   | Well rig                             | Auger Sample  SPT (N) Value     | Natural Moisture Content<br>Atterberg Limits | ×<br>⊷         |
| Datum:        | Geodetic                             | Dynamic Cone Test  Shelby Tube  | Undrained Triaxial at<br>% Strain at Failure | $\oplus$       |
| Logged by:    | M.L. Checked by: C.K.                | Shear Strength by + Vane Test S | Shear Strength by<br>Penetrometer Test       | •              |




LOG OF BOREHOLE

- Borehole data requires interpretation by EXP before use by others
- 2. A 37 mm diameter monitoring well was installed upon completion.
- 3. Field work was supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report No. OTT-00243705-B0

| Date Water Level (m) To (m)  July 11, 2023 1.7 | WA <sup>-</sup> | TER LEVEL RECO | RDS |
|------------------------------------------------|-----------------|----------------|-----|
| July 11, 2023 1.7                              | Date            |                |     |
|                                                | July 11, 2023   | 1.7            |     |

|            | CORE DRILLING RECORD |        |       |  |  |  |  |  |  |
|------------|----------------------|--------|-------|--|--|--|--|--|--|
| Run<br>No. | Depth<br>(m)         | % Rec. | RQD % |  |  |  |  |  |  |
|            |                      |        |       |  |  |  |  |  |  |
|            |                      |        |       |  |  |  |  |  |  |
|            |                      |        |       |  |  |  |  |  |  |
|            |                      |        |       |  |  |  |  |  |  |

|                        | Log                                  | of Bo                       | O                     | rehole                                            | M۱                                     | N2                                        |                                                                       |                     | 0         | VI               |
|------------------------|--------------------------------------|-----------------------------|-----------------------|---------------------------------------------------|----------------------------------------|-------------------------------------------|-----------------------------------------------------------------------|---------------------|-----------|------------------|
| Project N              |                                      |                             |                       | '                                                 |                                        |                                           | Tianina Nia                                                           |                     |           | $\sim$           |
| Project: Phase Two ESA |                                      |                             |                       |                                                   |                                        | r                                         | Figure No.                                                            |                     |           | - 1              |
| Location:              | 6659 Franktown Road, Ottawa, Ontario |                             |                       |                                                   |                                        |                                           | Page. <u>1</u>                                                        | _ of _1_            |           |                  |
| Date Drille            | ed: 'November 14, 2017               |                             | _                     | Split Spoon Sample                                |                                        |                                           | Combustible Vapo                                                      | ur Reading          |           |                  |
| Orill Type: Well rig   |                                      | Auger Sample  SPT (N) Value |                       |                                                   | Natural Moisture C<br>Atterberg Limits | ontent                                    | <u> </u>                                                              | ×                   |           |                  |
| Datum: Geodetic        |                                      |                             | Dynamic Cone Test ——— |                                                   | _                                      | Undrained Triaxial<br>% Strain at Failure |                                                                       | •                   | $\oplus$  |                  |
| _ogged b               | y: M.L. Checked by: C.K.             | _                           |                       | Shelby Tube<br>Shear Strength by<br>Vane Test     |                                        | +<br>s                                    | Shear Strength by<br>Penetrometer Test                                |                     |           | •                |
| G M B O L              | SOIL DESCRIPTION                     | Geodetic<br>m               | D<br>e<br>p<br>t<br>h | Standard Penetrate  20 40  Shear Strength  50 100 | 60<br>150                              | Value<br>80<br>kPa<br>200                 | Combustible Vapou<br>250 500<br>Natural Moistur<br>Atterberg Limits ( | 750<br>re Content % | ) SAMPLES | Natura<br>Unit W |
|                        | FILL<br>Crushed stone, grey          | 33.49                       | 0                     |                                                   |                                        |                                           |                                                                       |                     |           |                  |



- Borehole data requires interpretation by EXP before use by others
- 2.A 37 mm diameter monitoring well was installed upon completion.
- $3. \mbox{\it Field}$  work was supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report No. OTT-00243705-B0

| WA            | TER LEVEL RECO     | RDS                 |
|---------------|--------------------|---------------------|
| Date          | Water<br>Level (m) | Hole Open<br>To (m) |
| July 11, 2023 | 1.7                |                     |
|               |                    |                     |

|            | CORE DRILLING RECORD |        |       |  |  |  |  |  |  |  |  |
|------------|----------------------|--------|-------|--|--|--|--|--|--|--|--|
| Run<br>No. | Depth<br>(m)         | % Rec. | RQD % |  |  |  |  |  |  |  |  |
|            |                      |        |       |  |  |  |  |  |  |  |  |
|            |                      |        |       |  |  |  |  |  |  |  |  |
|            |                      |        |       |  |  |  |  |  |  |  |  |
|            |                      |        |       |  |  |  |  |  |  |  |  |

| Project No: Project:        | OTT-00243705-B0  Phase Two ESA                    |               |           |                     |              |         |                    |                                          |            | Figur |                     |                                          | 4                        |                       |         | X                    |
|-----------------------------|---------------------------------------------------|---------------|-----------|---------------------|--------------|---------|--------------------|------------------------------------------|------------|-------|---------------------|------------------------------------------|--------------------------|-----------------------|---------|----------------------|
| _ocation:                   | Ontario                                           |               |           |                     |              |         |                    | _                                        |            | Pag   | ge                  | 1_ of                                    |                          |                       |         |                      |
| ate Drilled:                | 'November 14, 2017                                |               |           | Split Spo           | on S         | amp     | le                 | $\boxtimes$                              |            | Com   | bus                 | tible Var                                | our Read                 | ding                  |         |                      |
| rill Type:                  | Well rig                                          |               |           | Auger Sa<br>SPT (N) |              |         |                    |                                          |            |       |                     | Moisture<br>Limits                       | Content                  |                       |         | <b>×</b><br>⊕        |
| atum:                       | Geodetic                                          |               |           | Dynamic<br>Shelby T | Con          |         | st                 | _                                        | ,          | Undi  | aine                | ,<br>ed Triaxia<br>at Failu              |                          |                       |         | $\oplus$             |
| Logged by: M.L. Checked by: |                                                   | C.K           |           | Shear St<br>Vane Te | rengt        | h by    |                    | +<br>s                                   |            |       |                     | rength b                                 |                          |                       |         | •                    |
| S Y M B O I                 | SOIL DESCRIPTION                                  | Geodetic<br>m | D e p t h | 2<br>Shear S        | 20<br>Streng | 4<br>th |                    | 0                                        | 80<br>kPa  |       | 25<br>Natu<br>tterb | io 5<br>ural Moisi<br>erg Limits         | ture Conte<br>s (% Dry V | 50<br>nt %<br>/eight) | SAMPLES | Natu<br>Unit<br>kN/i |
| FILL<br>Crus                | hed stone, grey                                   | 99.48         | 0         | 5                   | 50           | 10      | 00 1               | 50 2                                     | 200        |       | 2                   | 0 4                                      | 10 6                     | 60                    | S       |                      |
| SAN<br>Brow                 | <u>√D</u><br>∕n, dry to moist, no staining or odd | 98.9<br>ours  | 1         |                     |              |         |                    |                                          |            | 15    |                     |                                          |                          |                       | m       | 2                    |
| CLA                         | <u>NY</u>                                         | 98.22         |           | 1                   |              |         |                    |                                          |            |       |                     |                                          |                          |                       | WW.     |                      |
| Brow                        | <del>/n</del> , damp                              | _             | 2         |                     |              |         |                    |                                          |            | 40    |                     |                                          |                          |                       |         | 2                    |
|                             |                                                   | _             |           |                     |              |         |                    |                                          |            |       |                     |                                          |                          |                       |         |                      |
|                             |                                                   | _             | 3         |                     |              |         |                    | 13 (3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  |            |       |                     |                                          |                          |                       |         |                      |
|                             |                                                   |               | ,         |                     |              |         |                    | -2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2 |            |       |                     | -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 - |                          |                       |         |                      |
|                             | orehole Terminated at 4.5 m De                    | 95.0          | 4         |                     |              |         |                    |                                          |            |       |                     |                                          |                          |                       |         |                      |
|                             | or entore Terminated at 4.5 III De                | spui          |           |                     |              |         |                    |                                          |            |       |                     |                                          |                          |                       |         |                      |
|                             |                                                   |               |           |                     |              |         |                    |                                          |            |       |                     |                                          |                          |                       |         |                      |
|                             |                                                   |               |           |                     |              |         |                    |                                          |            |       |                     |                                          |                          |                       |         |                      |
|                             |                                                   |               |           |                     |              |         |                    |                                          |            |       |                     |                                          |                          |                       |         |                      |
|                             |                                                   |               |           |                     |              |         |                    |                                          |            |       |                     |                                          |                          |                       |         |                      |
|                             |                                                   |               |           |                     |              |         |                    |                                          |            |       |                     |                                          |                          |                       |         |                      |
| OTES:<br>.Borehole data ı   | requires interpretation by EXP before             | WATE          | RLI       | EVEL RE             | COF          |         | Jole O             |                                          | D          |       |                     |                                          | LLING RI                 |                       |         | )OD 1                |
| use by others               |                                                   | Date          | ı         | Water<br>evel (m)   |              |         | Hole Ope<br>To (m) | a I                                      | Run<br>No. | '     | Dept<br>(m)         |                                          | % Re                     | ٠.                    | H       | RQD 9                |

- Borehole data requires interpretation by EXP before use by others
- 2.A 37 mm diameter monitoring well was installed upon completion.
- 3. Field work was supervised by an EXP representative.
- 4. See Notes on Sample Descriptions
- 5. Log to be read with EXP Report No. OTT-00243705-B0

| WA <sup>-</sup> | TER LEVEL RECO     | RDS                 |
|-----------------|--------------------|---------------------|
| Date            | Water<br>Level (m) | Hole Open<br>To (m) |
| July 11, 2023   | 1.3                |                     |

|            | CORE DRILLING RECORD |        |       |  |  |  |  |  |  |  |  |
|------------|----------------------|--------|-------|--|--|--|--|--|--|--|--|
| Run<br>No. | Depth<br>(m)         | % Rec. | RQD % |  |  |  |  |  |  |  |  |
|            | ,                    |        |       |  |  |  |  |  |  |  |  |
|            |                      |        |       |  |  |  |  |  |  |  |  |
|            |                      |        |       |  |  |  |  |  |  |  |  |
|            |                      |        |       |  |  |  |  |  |  |  |  |



# **FIELD TEST PIT LOG**

**Project Name:** Phase II ESA **Date:** November 14, 2017

**Test Pit ID: TP1** 

**Project Number:** OTT-00243705-A0 **Project Location:** 6659 Franktown Road

| Depth | (m) | Description                                                                                                                                                                                                                                          | Sample | Sample    | GasTech/PID |
|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|-------------|
| From  | To  | <b>1</b>                                                                                                                                                                                                                                             | ID     | Depth (m) | (ppm)       |
| 0     | 0.6 | Gravel, grey. No staining or odours.                                                                                                                                                                                                                 | N/A    | N/A       | N/A         |
| 0.6   | 1.8 | Sand, brown. Dry to damp, No staining or odours.                                                                                                                                                                                                     | TP1A   | 0.9       | 15          |
| 1.8   | 2.1 | Silty Clay, grey brown. Damp, No staining or odours.                                                                                                                                                                                                 | TP1B   | 2.0       | 10          |
|       |     |                                                                                                                                                                                                                                                      |        |           |             |
|       |     | Notes:                                                                                                                                                                                                                                               |        |           |             |
|       | 1   | TP investigation via excavator using bucket.                                                                                                                                                                                                         |        |           |             |
|       | 2   | No odours.                                                                                                                                                                                                                                           |        |           |             |
|       | 3   | Test pit terminated at 2.1m and backfilled.                                                                                                                                                                                                          |        |           |             |
|       | 4   | Samples warmed in office at site and screened at exp office.                                                                                                                                                                                         |        |           |             |
|       | 5   | See Test Pit Location Plan.                                                                                                                                                                                                                          |        |           |             |
|       | 6   | Sample TP1A submitted for analysis of PHC(f1-f4) and BTEX and metals                                                                                                                                                                                 |        |           |             |
|       | 7   | A monitoring well (MW1) constructed of 37 mm diameter, 1.5 m long Schedule 40 PVC screen and appropriate length riser pipe was installed at this location. Space around the screen was backfilled with cilies to approximately 0.2m shows the screen |        |           |             |
|       |     | silica to approximately 0.3m above the screen.  Monitoring well installed to a depth of 4.5 m.                                                                                                                                                       |        |           |             |
|       |     |                                                                                                                                                                                                                                                      |        |           |             |



# **FIELD TEST PIT LOG**

**Project Name:** Phase II ESA **Date:** November 14, 2017

**Test Pit ID: TP2** 

**Project Number:** OTT-00243705-A0 **Project Location:** 6659 Franktown Road

| Depth | (ft) | Description                                                                                                                                          | Sample | Sample    | GasTech/PID |
|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|-------------|
| From  | To   | 1                                                                                                                                                    | ID     | Depth (m) | (ppm)       |
| 0     | 0.6  | Gravel, grey. No staining or odours.                                                                                                                 | N/A    | N/A       | N/A         |
|       |      |                                                                                                                                                      |        |           |             |
| 0.6   | 0.8  | Humus Layer, black., Damp, No staining or odours.                                                                                                    | TP2A   | 0.8       | 10          |
| 0.8   | 1.8  | Sand, brown. Dry to damp, No staining or odours.                                                                                                     |        |           |             |
| 1.8   | 2.1  | Silty Clay, grey brown. Damp, No staining or odours.                                                                                                 | TP2B   | 2.1       | 15          |
|       |      | Notes:                                                                                                                                               |        |           |             |
|       | 1    | TP investigation via excavator using bucket.                                                                                                         |        |           |             |
|       | 2    | No odours.                                                                                                                                           |        |           |             |
|       | 3    | Test pit terminated at 2.1m and backfilled.                                                                                                          |        |           |             |
|       | 4    | Samples warmed in office at site and screened at exp office.                                                                                         |        |           |             |
|       | 5    | See Test Pit Location Plan.                                                                                                                          |        |           |             |
|       | 6    | Sample TP2B submitted for analysis of PHC(f1-f4) and BTEX                                                                                            |        |           |             |
|       | 7    | A monitoring well (MW2) constructed of 37 mm diameter, 1.5 m long Schedule 40 PVC screen and appropriate length riser pipe was installed at this     |        |           |             |
|       |      | location. Space around the screen was backfilled with silica to approximately 0.3m above the screen.  Monitoring well installed to a depth of 4.8 m. |        |           |             |
|       |      |                                                                                                                                                      |        |           |             |



# **FIELD TEST PIT LOG**

**Project Name:** Phase II ESA **Date:** November 14, 2017

**Test Pit ID: TP3** 

**Project Number:** OTT-00243705-A0 **Project Location:** 6659 Franktown Road

| Depth (m) |     | Description                                                                                                     | Sample | Sample    | GasTech/PID |
|-----------|-----|-----------------------------------------------------------------------------------------------------------------|--------|-----------|-------------|
| From      | То  | <b>F</b>                                                                                                        | ID     | Depth (m) | (ppm)       |
| 0         | 0.6 | Gravel, grey. No staining or odours.                                                                            | N/A    | N/A       | N/A         |
| 0.6       | 1.5 | Sand, brown. Water saturated, No staining or odours.                                                            | TP3A   | 0.9       | 20          |
| 1.5       | 1.8 | Silty Clay, grey brown. Water saturated, No staining or odours.                                                 | TP3B   | 1.8       | 15          |
|           |     |                                                                                                                 |        |           |             |
|           |     | Notes:                                                                                                          |        |           |             |
|           | 1   | TP investigation via excavator using bucket.                                                                    |        |           |             |
|           | 2   | No odours.                                                                                                      |        |           |             |
|           | 3   | Test pit terminated at 1.8m and backfilled.                                                                     |        |           |             |
|           | 4   | Water infiltration occurred as test pitting was being performed, water entering test pit at approximately 0.6 m |        |           |             |
|           | 5   | Water in pit was not observed to have sheen                                                                     |        |           |             |
|           | 6   | Samples warmed in office at site and screened at exp office.                                                    |        |           |             |
|           | 7   | See Test Pit Location Plan.                                                                                     |        |           |             |
|           | 8   | Sample TP3A submitted for analysis of PHC(f1-f4) and BTEX                                                       |        |           |             |
|           |     |                                                                                                                 |        |           |             |
|           |     |                                                                                                                 |        |           |             |
|           |     |                                                                                                                 |        |           |             |
|           |     |                                                                                                                 |        |           |             |
|           |     |                                                                                                                 |        |           |             |



### FIELD TEST PIT LOG

**Project Name:** Phase II ESA **Date:** November 14, 2017

**Test Pit ID: TP4** 

**Project Number:** OTT-00243705-A0 **Project Location:** 6659 Franktown Road

| Depth | ( <b>m</b> ) | Description                                                                                                     | Sample | Sample    | GasTech/PID |
|-------|--------------|-----------------------------------------------------------------------------------------------------------------|--------|-----------|-------------|
| From  | То           | 2 cscription                                                                                                    | ID     | Depth (m) | (ppm)       |
| 0     | 0.6          | Gravel, grey. No staining or odours.                                                                            | N/A    | N/A       | N/A         |
| 0.6   | 0.9          | Sand, brown. Water saturated, No staining or odours.                                                            | TP4A   | 0.9       | 15          |
|       |              |                                                                                                                 |        |           |             |
|       |              | Notes:                                                                                                          |        |           |             |
|       | 1            | TP investigation via hand shovel due to proximity to utilities and ASTs.                                        |        |           |             |
|       | 3            | Test pit terminated at 0.9m and backfilled.                                                                     |        |           |             |
|       | 4            | Water infiltration occurred as test pitting was being performed, water entering test pit at approximately 0 .6m |        |           |             |
|       | 5            | Water in pit was not observed to have sheen                                                                     |        |           |             |
|       | 6            | Samples warmed in office at site and screened at exp office.                                                    |        |           |             |
|       | 7            | See Test Pit Location Plan.                                                                                     |        |           |             |
|       | 8            | Samples were not submitted from this TP                                                                         |        |           |             |
|       |              |                                                                                                                 |        |           |             |
|       |              |                                                                                                                 |        |           |             |
|       |              |                                                                                                                 |        |           |             |
|       |              |                                                                                                                 |        |           |             |



# **FIELD TEST PIT LOG**

**Project Name:** Phase II ESA **Date:** November 14, 2017

**Test Pit ID: TP5** 

**Project Number:** OTT-00243705-A0 **Project Location:** 6659 Franktown Road

| Description  Gravel, grey. No staining or odours.  Sand, brown. Water saturated, No staining or odours.  Silty Clay, grey brown. Slight odour.  Notes:  TP investigation via excavator using bucket.  Test pit terminated at 1.8m and backfilled.     | Sample ID  N/A  TP5A  TP5B                                                                                                                                                                                                                                                                              | Sample<br>Depth (m)<br>N/A<br>0.9                                                                                                                                                                                                                                                                                                                      | (ppm)<br>N/A<br>15<br>40                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sand, brown. Water saturated, No staining or odours.  Silty Clay, grey brown. Slight odour.  Notes:  TP investigation via excavator using bucket.                                                                                                     | TP5A                                                                                                                                                                                                                                                                                                    | 0.9                                                                                                                                                                                                                                                                                                                                                    | 15                                                                                                                                                                                                                                                                                                                                                     |
| 8 Silty Clay, grey brown. Slight odour.  Notes:  TP investigation via excavator using bucket.                                                                                                                                                         |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                        |
| Notes:  TP investigation via excavator using bucket.                                                                                                                                                                                                  | TP5B                                                                                                                                                                                                                                                                                                    | 1.8                                                                                                                                                                                                                                                                                                                                                    | 40                                                                                                                                                                                                                                                                                                                                                     |
| TP investigation via excavator using bucket.                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                        |
| TP investigation via excavator using bucket.                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                      |
| Test pit terminated at 1.8m and backfilled.                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                        |
| Water infiltration occurred as test pitting was being performed, water entering test pit at approximately 0.6m                                                                                                                                        |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                        |
| Water in pit was not observed to have sheen                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                        |
| Samples warmed in office at site and screened at exp office.                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                        |
| See Test Pit Location Plan.                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                        |
| Sample TP5B submitted for analysis of PHC(f1-f4) and BTEX                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                        |
| A monitoring well (MW3) constructed of 37 mm diameter, 1.5 m long Schedule 40 PVC screen and appropriate length riser pipe was installed at this location. Space around the screen was backfilled with silica to approximately 0.3m above the screen. |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                       | office.  See Test Pit Location Plan.  Sample TP5B submitted for analysis of PHC(f1-f4) and BTEX  A monitoring well (MW3) constructed of 37 mm diameter, 1.5 m long Schedule 40 PVC screen and appropriate length riser pipe was installed at this location. Space around the screen was backfilled with | office.  See Test Pit Location Plan.  Sample TP5B submitted for analysis of PHC(f1-f4) and BTEX  A monitoring well (MW3) constructed of 37 mm diameter, 1.5 m long Schedule 40 PVC screen and appropriate length riser pipe was installed at this location. Space around the screen was backfilled with silica to approximately 0.3m above the screen. | office.  See Test Pit Location Plan.  Sample TP5B submitted for analysis of PHC(f1-f4) and BTEX  A monitoring well (MW3) constructed of 37 mm diameter, 1.5 m long Schedule 40 PVC screen and appropriate length riser pipe was installed at this location. Space around the screen was backfilled with silica to approximately 0.3m above the screen. |



# **FIELD TEST PIT LOG**

**Project Name:** Phase II ESA **Date:** November 14, 2017

**Test Pit ID: TP6** 

**Project Number:** OTT-00243705-A0 **Project Location:** 6659 Franktown Road

| Depth | (m) | Description                                                                                                    | Sample | Sample    | GasTech/PID |
|-------|-----|----------------------------------------------------------------------------------------------------------------|--------|-----------|-------------|
| From  | To  | 2 tseripuon                                                                                                    | ID     | Depth (m) | (ppm)       |
| 0     | 0.6 | Gravel, grey. No staining or odours.                                                                           | N/A    | N/A       | N/A         |
| 0.6   | 0.9 | Sand, brown. Water saturated, No staining or odours.                                                           | TP6A   | 0.9       | 10          |
|       |     |                                                                                                                |        |           |             |
|       |     | Notes:                                                                                                         |        |           |             |
|       | 1   | TP investigation via hand shovel due to proximity to utilities and ASTs.                                       |        |           |             |
|       | 3   | Test pit terminated at 0.9m and backfilled.                                                                    |        |           |             |
|       | 4   | Water infiltration occurred as test pitting was being performed, water entering test pit at approximately 0.6m |        |           |             |
|       | 5   | Water in pit was not observed to have sheen                                                                    |        |           |             |
|       | 6   | Samples warmed in office at site and screened at exp office.                                                   |        |           |             |
|       | 7   | See Test Pit Location Plan.                                                                                    |        |           |             |
|       | 8   | Sample TP6A submitted for analysis of PHC(f1-f4) and BTEX                                                      |        |           |             |
|       |     |                                                                                                                |        |           |             |
|       |     |                                                                                                                |        |           |             |
|       |     |                                                                                                                |        |           |             |
|       |     |                                                                                                                |        |           |             |



### FIELD TEST PIT LOG

**Project Name:** Phase II ESA **Date:** November 20, 2017

**Test Pit ID: TP7** 

**Project Number:** OTT-00243705-A0 **Project Location:** 6659 Franktown Road

| Depth (m) |      | Description                                                                               | Sample | Sample    | GasTech/PID |
|-----------|------|-------------------------------------------------------------------------------------------|--------|-----------|-------------|
| From      | To   | •                                                                                         | ID     | Depth (m) | (ppm)       |
| 0         | 0.15 | Topsoil. Dry to Damp, No staining or odours.                                              |        |           | 0           |
| 0.15      | 1.2  | Sand, brown. Damp, No staining or odours.                                                 | TP7A   | 1.1       | 10          |
| 0.13      | 1.2  | Sand, From Early, 170 stanning of odours.                                                 | 11 //1 | 1.1       | 10          |
| 1.2       | 1.98 | Clay, hard, grey. Damp, No staining of odours                                             | TP7B   | 1.98      | 12          |
|           |      |                                                                                           |        |           |             |
|           |      | Notes:                                                                                    |        |           |             |
|           | 1    | TP investigation via excavator using bucket.                                              |        |           |             |
|           | 3    | Test pit terminated at 1.98m and backfilled.                                              |        |           |             |
|           | 4    | Samples warmed in office at site and screened at exp office.                              |        |           |             |
|           | 5    | See Test Pit Location Plan.                                                               |        |           |             |
|           | 6    | Sample TP7B submitted for analysis of PHC(f1-f4) and BTEX to delineate previous findings. |        |           |             |
|           |      |                                                                                           |        |           |             |
|           |      |                                                                                           |        |           |             |
|           |      |                                                                                           |        |           |             |
|           |      |                                                                                           |        |           |             |
|           |      |                                                                                           |        |           |             |



### FIELD TEST PIT LOG

**Project Name:** Phase II ESA **Date:** November 20, 2017

**Test Pit ID: TP8** 

**Project Number:** OTT-00243705-A0 **Project Location:** 6659 Franktown Road

| Depth (m) |     | Description                                                                               | Sample | Sample    | GasTech/PID |
|-----------|-----|-------------------------------------------------------------------------------------------|--------|-----------|-------------|
| From      | To  | <b></b>                                                                                   | ID     | Depth (m) | (ppm)       |
| 0         | 0.3 | Topsoil. Dry to Damp, No staining or odours.                                              |        |           | 0           |
|           |     |                                                                                           |        |           |             |
| 0.3       | 1.5 | Sand, brown. Damp, No staining or odours.                                                 | TP8A   | 1.2       | 10          |
|           |     |                                                                                           |        |           |             |
| 1.5       | 2.1 | Clay, hard, grey. Damp, No staining of odours                                             | TP8B   | 2.1       | 10          |
|           |     |                                                                                           |        |           |             |
|           |     |                                                                                           |        |           |             |
|           |     | Notes:                                                                                    |        |           |             |
|           | 1   | TP investigation via excavator using bucket.                                              |        |           |             |
|           | 3   | Test pit terminated at 2.1m and backfilled.                                               |        |           |             |
|           | 4   | Samples warmed in office at site and screened at exp office.                              |        |           |             |
|           | 5   | See Test Pit Location Plan.                                                               |        |           |             |
|           | 6   | Sample TP8B submitted for analysis of PHC(f1-f4) and BTEX to delineate previous findings. |        |           |             |
|           |     |                                                                                           |        |           |             |
|           |     |                                                                                           |        |           |             |
|           |     |                                                                                           |        |           |             |
|           |     |                                                                                           |        |           |             |
|           |     |                                                                                           |        |           |             |
|           |     |                                                                                           |        |           |             |
|           |     |                                                                                           |        |           |             |
|           |     |                                                                                           |        |           |             |



**exp** Services Inc. 2650 Queensview Drive, Suite 100 Ottawa, Ontario K2B 8H6

## FIELD TEST PIT LOG

**Project Name:** Phase II ESA **Date:** November 20, 2017

**Test Pit ID: TP9** 

**Project Number:** OTT-00243705-A0 **Project Location:** 6659 Franktown Road

Field Supervisor: Matt Laneville

| Depth | (m)  | Description                                                                               | Sample | Sample    | GasTech/PID |
|-------|------|-------------------------------------------------------------------------------------------|--------|-----------|-------------|
| From  | То   | <b>1</b>                                                                                  | ID     | Depth (m) | (ppm)       |
| 0     | 0.15 | Gravel, grey. Dry to damp, No staining or odours.                                         |        |           | 0           |
| 0.15  | 0.3  | Humus, dark brown. Dry to damp, No staining or odours                                     |        |           | 0           |
| 0.3   | 1.5  | Sand, brown. Damp, No staining or odours.                                                 | TP9A   | 1.5       | 10          |
| 1.5   | 2.3  | Clay, mix of hard and soft, grey. Damp, No staining of odours                             | TP9B   | 2.3       | 11          |
|       |      | Notes:                                                                                    |        |           |             |
|       | 1    | TP investigation via excavator using bucket.                                              |        |           |             |
|       | 3    | Test pit terminated at 2.3m and backfilled.                                               |        |           |             |
|       | 4    | Samples warmed in office at site and screened at exp office.                              |        |           |             |
|       | 5    | See Test Pit Location Plan.                                                               |        |           |             |
|       | 6    | Sample TP9B submitted for analysis of PHC(f1-f4) and BTEX to delineate previous findings. |        |           |             |
|       |      |                                                                                           |        |           |             |
|       |      |                                                                                           |        |           |             |
|       |      |                                                                                           |        |           |             |
|       |      |                                                                                           |        |           |             |
|       |      |                                                                                           |        |           |             |

EXP Services Inc.

Air Rock Drilling Company Ltd. Phase Two Environmental Site Assessment 6659 Franktown Road, Richmond, Ontario OTT-00243705-B0 October 17, 2025

**Appendix E: Analytical Summary Tables - 2023** 



EXP Services Inc. OTT-00240337-b0

TABLE 1 SOIL ANALYTICAL RESULTS (μg/g)
PETROLEUM HYDROCARBONS
6659 Franktown Road, Ottawa, Ontario

| Parameter                                               | MECP<br>Table 2 <sup>1</sup> | TP1A     | TP2B     | TP3A     | TP3B     | TP5B     | TP6A     | TP7B       | TP8B       | TP9B       |
|---------------------------------------------------------|------------------------------|----------|----------|----------|----------|----------|----------|------------|------------|------------|
| Sample Date (d/m/y)                                     | Residential                  | 14/11/17 | 14/11/17 | 14/11/17 | 14/11/17 | 14/11/17 | 14/11/17 | 20/11/2017 | 20/11/2017 | 20/11/2017 |
| Sample Depth (mbsg)                                     | Residential                  | 0.9      | 2.1      | 0.9      | 1.8      | 1.8      | 0.9      | 1.98       | 2.1        | 2.3        |
| Benzene                                                 | 0.21                         | <0.02    | < 0.02   | <0.02    | < 0.02   | < 0.02   | <0.02    | <0.02      | <0.02      | < 0.02     |
| Ethylbenzene                                            | 1.1                          | <0.02    | < 0.02   | <0.02    | < 0.02   | < 0.02   | <0.02    | <0.02      | < 0.02     | < 0.02     |
| Toluene                                                 | 2.3                          | <0.02    | < 0.02   | <0.02    | < 0.02   | < 0.02   | <0.02    | <0.02      | < 0.02     | < 0.02     |
| Xylenes, Total                                          | 3.1                          | <0.05    | <0.05    | <0.05    | <0.05    | <0.05    | <0.04    | <0.05      | <0.05      | <0.05      |
| PHC F <sub>1</sub> (>C <sub>6</sub> -C <sub>10</sub> )  | 55                           | <7       | <7       | <7       | <7       | 68       | <7       | <7         | <7         | <7         |
| PHC F <sub>2</sub> (>C <sub>10</sub> -C <sub>16</sub> ) | 98                           | <4       | <4       | <4       | <4       | 412      | <4       | <4         | <4         | <4         |
| PHC F <sub>3</sub> (>C <sub>16</sub> -C <sub>34</sub> ) | 300                          | <8       | <8       | <8       | <8       | 202      | <8       | <8         | <8         | <8         |
| PHC F <sub>4</sub> (>C <sub>34</sub> -C <sub>50</sub> ) | 2800                         | <6       | <6       | <6       | <6       | <6       | <6       | <6         | <6         | <6         |

#### NOTES:

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 2 potable residential standards, with coarse textured soil.

Shaded Concentration exceeds MECP Table 2 site condition standard.



EXP Services Inc. OTT-00240337-B0

TABLE 2 SOIL ANALYTICAL RESULTS (μg/g)
METALS
6659 Franktown Road, Ottawa, Ontario

| Parameter           | MECP<br>Table 2 <sup>1</sup> | TP1A     | TP2B     |
|---------------------|------------------------------|----------|----------|
| Sample Date (d/m/y) | Residential                  | 14/11/17 | 14/11/17 |
| Sample Depth (mbsg) | Residential                  | 0.9      | 2.1      |
| Antimony            | 7.5                          | <1.0     | <1.0     |
| Arsenic             | 18                           | <1.0     | <1.0     |
| Barium              | 390                          | 23.0     | 30.2     |
| Beryllium           | 4                            | <1.0     | <1.0     |
| Boron               | 120                          | 1.9      | 2.0      |
| Cadmium             | 1.2                          | <0.5     | <0.5     |
| Chromium            | 160                          | 6.2      | 10.8     |
| Cobalt              | 22                           | 1.9      | 4.0      |
| Copper              | 140                          | 2.2      | 10.3     |
| Lead                | 120                          | 3.8      | 3.1      |
| Molybdenum          | 7                            | <1.0     | <1.0     |
| Nickel              | 100                          | 3.3      | 6.1      |
| Selenium            | 2.4                          | <1.0     | <1.0     |
| Silver              | 20                           | <0.5     | <0.5     |
| Thallium            | 1                            | <1.0     | <1.0     |
| Uranium             | 23                           | 1.6      | <1.0     |
| Vanadium            | 86                           | 14.7     | 24.9     |
| Zinc                | 340                          | 9.3      | 17.1     |

#### NOTES:

1 MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 2 potable residential standards, with coarse textured soil.

Shaded Concentration exceeds MECP Table 2 site condition standard.



EXP Service Inc. OTT-00240337-B0

TABLE 3 GROUNDWATER ANALYTICAL RESULTS (μg/L)
PHC and BTEX
6659 Franktown Road, Ottawa, Ontario

| Parameter                                               | MECP                 | MW1      | MW1     | MW2      | MW2     | MW3      | MW3     | DUP              | MW3      | Trip Blank | Field Blank |
|---------------------------------------------------------|----------------------|----------|---------|----------|---------|----------|---------|------------------|----------|------------|-------------|
| Sample Date (d/m/y)                                     | Table 2 <sup>1</sup> | 15/11/17 | 11/7/23 | 15/11/17 | 11/7/23 | 15/11/17 | 11/7/23 | Duplicate of MW3 | 11/11/23 | 11/7/23    | 11/7/23     |
| Benzene                                                 | 5                    | <0.5     | <0.2    | <0.5     | <0.2    | <0.5     | <0.2    | <0.2             | <0.2     | <0.2       | <0.2        |
| Ethylbenzene                                            | 2.4                  | <0.5     | <0.2    | <0.5     | <0.2    | <0.5     | <0.2    | <0.2             | <0.2     | <0.2       | <0.2        |
| Toluene                                                 | 24                   | <0.5     | <0.2    | <0.5     | <0.2    | <0.5     | 0.24    | 0.22             | <0.2     | <0.2       | <0.2        |
| Xylenes, total                                          | 300                  | <0.5     | <0.4    | <0.5     | <0.4    | <0.5     | <0.4    | <0.4             | <0.4     | <0.4       | <0.4        |
| PHC $F_1$ ( $C_6$ - $C_{10}$ )                          | 750                  | <25      | <25     | <25      | <25     | <25      | <25     | <25              | <25      | <25        | <25         |
| PHC F <sub>2</sub> (>C <sub>10</sub> -C <sub>16</sub> ) | 150                  | <100     | <100    | <100     | <100    | <100     | <100    | <100             | <100     | <100       | <100        |
| PHC F <sub>3</sub> (>C <sub>16</sub> -C <sub>34</sub> ) | 500                  | <200     | <200    | <200     | <200    | 172      | 850     | 550              | <200     | <200       | <200        |
| PHC F <sub>4</sub> (>C <sub>34</sub> -C <sub>50</sub> ) | 500                  | <200     | <200    | <200     | <200    | <200     | 970     | 620              | <200     | <200       | <200        |

#### NOTES:

1

MECP Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the EPA, April 2011, Table 2 potable residential standards, with coarse textured soil.

Shaded Concentration exceeds MECP Table 2 groundwater quality standard.



EXP Services Inc. OTT-00240337-B0

Table 4 - Relative Percent Differences - PHC and BTEX in Groundwater 6659 Franktown Road, Ottawa, Ontario

| Parameter                | Units | RDL | MW3     | DUP     | RPD (%) | Alert Limit (%) |
|--------------------------|-------|-----|---------|---------|---------|-----------------|
|                          |       |     | 11/7/23 | 11/7/23 | ` '     | ` ,             |
| Petroleum Hydrocarbons   |       |     | 3       |         | 3       |                 |
| F1 PHC (C6 - C10) - BTEX | ug/L  | 25  | <25     | <25     | nc      | 60              |
| F2 PHC (C10-C16)         | ug/L  | 100 | <100    | <100    | nc      | 60              |
| F3 PHC (C16-C34)         | ug/L  | 100 | 850     | 550     | 43      | 60              |
| F4 PHC (C34-C50)         | ug/L  | 100 | 970     | 620     | 44      | 60              |
| Volatiles                |       |     |         |         |         |                 |
| Benzene                  | ug/L  | 0.5 | <0.2    | <0.2    | nc      | 60              |
| Ethylbenzene             | ug/L  | 0.5 | <0.2    | <0.2    | nc      | 60              |
| Toluene                  | ug/L  | 0.5 | 0.24    | 0.22    | nc      | 60              |
| Xylenes, total           | ug/L  | 0.5 | <0.40   | <0.40   | nc      | 60              |

#### NOTES:

Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in **bold** 

Table 5 - Maximum Concentrations in Soil 6659 Franktown Road, Ottawa, Ontario OTT-00243705-B0

| Parameter              | Sample Location      | Sample Depth<br>(m bgs) | Sampling Date | Maximum<br>Concentration | MECP Table 2<br>Residential |
|------------------------|----------------------|-------------------------|---------------|--------------------------|-----------------------------|
| Petroleum Hydrocarbons | •                    | •                       |               | •                        |                             |
| Benzene                | All sample locations | 0.9                     | 14-Nov-17     | <0.02                    | 0.21                        |
| Ethylbenzene           | All sample locations | 0.9                     | 14-Nov-17     | <0.02                    | 1.1                         |
| Toluene                | All sample locations | 0.9                     | 14-Nov-17     | <0.02                    | 2.3                         |
| Xylenes                | All sample locations | 0.9                     | 14-Nov-17     | <0.05                    | 3.1                         |
| F1 PHC (C6-C10)        | TP5B                 | 1.5 - 1.8               | 14-Nov-17     | 68                       | 55                          |
| F2 PHC (C10-C16)       | TP5B                 | 1.5 - 1.8               | 14-Nov-17     | 412                      | 98                          |
| F3 PHC (C16-C34)       | TP5B                 | 1.5 - 1.8               | 14-Nov-17     | 202                      | 300                         |
| F4 PHC (C34-C50)       | All sample locations | 0.9                     | 14-Nov-17     | <6                       | 2800                        |
| Metals                 |                      |                         |               |                          |                             |
| Antimony               | All sample locations | 0.9                     | 14-Nov-17     | <1                       | 7.5                         |
| Arsenic                | All sample locations | 0.9                     | 14-Nov-17     | <1                       | 18                          |
| Barium                 | TP2B                 | 1.8 - 2.1               | 14-Nov-17     | 30.2                     | 390                         |
| Beryllium              | All sample locations | 0.9                     | 14-Nov-17     | <1.0                     | 4                           |
| Boron (Total)          | TP2B                 | 1.8 - 2.1               | 14-Nov-17     | 2.0                      | 120                         |
| Cadmium                | All sample locations | 0.9                     | 14-Nov-17     | <0.5                     | 1.2                         |
| Chromium (Total)       | TP2B                 | 1.8 - 2.1               | 14-Nov-17     | 10.8                     | 160                         |
| Cobalt                 | TP2B                 | 1.8 - 2.1               | 14-Nov-17     | 4.0                      | 22                          |
| Copper                 | TP2B                 | 1.8 - 2.1               | 14-Nov-17     | 10.3                     | 140                         |
| Lead                   | TP1A                 | 0.6 - 0.9               | 14-Nov-17     | 3.8                      | 120                         |
| Molybdenum             | All sample locations | 0.9                     | 14-Nov-17     | <1.0                     | 6.9                         |
| Nickel                 | TP2B                 | 1.8 - 2.1               | 14-Nov-17     | 6.1                      | 100                         |
| Selenium               | All sample locations | 0.9                     | 14-Nov-17     | <1.0                     | 2.4                         |
| Silver                 | All sample locations | 0.9                     | 14-Nov-17     | <0.5                     | 20                          |
| Thallium               | All sample locations | 0.9                     | 14-Nov-17     | <1.0                     | 1                           |
| Uranium                | TP1A                 | 0.6 - 0.9               | 14-Nov-17     | 1.6                      | 23                          |
| Vanadium               | TP2B                 | 1.8 - 2.1               | 14-Nov-17     | 24.9                     | 86                          |
| Zinc                   | TP2B                 | 1.8 - 2.1               | 14-Nov-17     | 17.1                     | 340                         |

### NOTES:

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 2 Full Depth Generic Site Condition Standards (SCS) in a Potable Ground Water Condition for Residential/Institutional/Parkland Property Use (fine textured soils)

NV No Value

- Parameter not analyzed m bgs Metres below ground surface

Table 6 - Maximum Concentrations in Groundwater 6659 Franktown Road, Ottawa, Ontario OTT-00243705-B0

| Parameter              | Sample Location      | Screen Depth<br>(m bgs) | Sampling Date | Maximum<br>Concentration | MECP Table 2 |
|------------------------|----------------------|-------------------------|---------------|--------------------------|--------------|
| Petroleum Hydrocarbons |                      |                         |               |                          |              |
| Benzene                | All sample locations | 3.0 - 4.5               | 11-Jul-23     | <0.2                     | 5            |
| Ethylbenzene           | All sample locations | 3.0 - 4.5               | 11-Jul-23     | <0.2                     | 2.4          |
| Toluene                | All sample locations | 3.0 - 4.5               | 11-Jul-23     | <0.2                     | 24           |
| Xylenes                | All sample locations | 3.0 - 4.5               | 11-Jul-23     | <0.4                     | 300          |
| F1 PHC (C6-C10)        | All sample locations | 3.0 - 4.5               | 11-Jul-23     | <25                      | 750          |
| F2 PHC (C10-C16)       | All sample locations | 3.0 - 4.5               | 11-Jul-23     | <100                     | 150          |
| F3 PHC (C16-C34)       | All sample locations | 3.0 - 4.5               | 11-Jul-23     | <200                     | 500          |
| F4 PHC (C34-C50)       | All sample locations | 3.0 - 4.5               | 11-Jul-23     | <200                     | 500          |

#### NOTES:

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under
Part XV.1 of the Environmental Protection Act, April 2011, Table 2 Full Depth Generic Site Condition Standards (SCS) in a
Potable Ground Water Condition for Residential/Parkland/Institutional Property Use (fine textured soils)

NV No Value

- Parameter not analyzed m bgs Metres below ground surface

EXP Services Inc.

Air Rock Drilling Company Ltd. Phase Two Environmental Site Assessment 6659 Franktown Road, Richmond, Ontario OTT-00243705-B0 October 17, 2025

**Appendix F: Analytical Summary Tables – 2024** 





## Table 1 - Analytical Results in Soil - PHC and VOC - 2024 6659 Franktown Road, Ottawa, Ontario

| OTT-00243705-C0                                  |              |                                          |                  |          |          |          |          |            |           |           |           |           |           |           |
|--------------------------------------------------|--------------|------------------------------------------|------------------|----------|----------|----------|----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|
|                                                  |              | Provincial                               |                  |          |          |          |          | Samp       | oles      |           |           |           |           |           |
| Sample ID                                        | UNITS        | MECP Table 2<br>Residential <sup>1</sup> | S1               | S2       | S3       | \$4      | S5       | \$6        | S7        | 58        | S9        | S10       | S11       | S12       |
| Sampling Date                                    | Ī            |                                          | 9-Jul-24         | 9-Jul-24 | 9-Jul-24 | 9-Jul-24 | 9-Jul-24 | 9-Jul-24   | 20-Dec-24 | 20-Dec-24 | 20-Dec-24 | 20-Dec-24 | 20-Dec-24 | 20-Dec-24 |
| Sampling Depth (mbgs)                            |              |                                          | 0.40             | 0.30     | 0.30     | 0.20     | 0.10     | 0.3 to 0.5 | 0.20      | 0.10      | 0.30      | 0.10      | 0.40      | 0.30      |
| Petroleum Hydrocarbons                           |              |                                          |                  |          |          |          |          |            |           |           |           |           |           |           |
| F1 PHC (C6-C10)                                  | µg/g         | 55                                       | <10              | <20      | <10      | <10      | <10      | <10        | <10       | <10       | <10       | <10       | <10       | <10       |
| F2 PHC (C10-C16)                                 | µg/g         | 98                                       | 140              | <10      | <10      | <10      | <10      | <10        | 8.7       | <7.0      | <7.0      | <7.0      | <7.0      | <7.0      |
| F3 PHC (C16-C34)                                 | µg/g         | 300                                      | 2700             | <50      | 59       | 590      | 960      | 250        | <50       | 75        | <50       | <50       | 110       | <50       |
| F4 PHC (C34-C50)                                 | µg/g         | 2800                                     | 430              | <50      | <50      | 130      | 400      | 160        | <50       | <50       | <50       | <50       | <50       | <50       |
| Volatile Organic Compounds                       |              |                                          |                  |          |          |          |          |            |           |           |           |           |           |           |
| Acetone                                          | µg/g         | 16                                       | < 0.49           | < 0.98   | < 0.49   | < 0.49   |          | -          |           | -         | -         |           |           | -         |
| Benzene                                          | µg/g         | 0.21                                     | -                | -        | -        | -        | < 0.020  | < 0.020    | <0.020    | < 0.020   | < 0.020   | <0.020    | <0.020    | < 0.020   |
| Bromodichloromethane                             | µg/g         | 1.5                                      | < 0.040          | <0.080   | < 0.040  | < 0.040  | -        | -          | -         | -         | -         | -         | -         | -         |
| Bromoform                                        | µg/g         | 0.27                                     | <0.040           | <0.080   | < 0.040  | < 0.040  | -        | -          | -         | -         | -         | -         | -         | -         |
| Bromomethane                                     | µg/g         | 0.05                                     | <0.040           | <0.080   | <0.040   | <0.040   | -        | -          | -         | -         | -         | -         | -         | -         |
| Carbon Tetrachloride                             | µg/g         | 0.05                                     | <0.040           | <0.080   | <0.040   | <0.040   | -        | -          | -         | -         | -         | -         | -         | -         |
| Chlorobenzene                                    | µg/g         | 2.4                                      | <0.040           | <0.080   | <0.040   | <0.040   | -        | -          | -         | -         | -         | -         | -         | -         |
| Chloroform                                       | µg/g         | 0.05                                     | <0.040           | <0.080   | < 0.040  | < 0.040  | -        | -          | -         | -         | -         | -         | -         | -         |
| Dibromochloromethane                             | µg/g         | 2.3                                      | <0.040           | <0.080   | <0.040   | < 0.040  | -        | -          | -         | -         | -         | -         | -         | -         |
| 1,2-Dichlorobenzene                              | µg/g         | 1.2                                      | <0.040           | <0.080   | <0.040   | < 0.040  | -        | -          | -         | -         | -         | -         |           | -         |
| 1,3-Dichlorobenzene                              | µg/g         | 4.8                                      | <0.040           | <0.080   | < 0.040  | < 0.040  | -        | -          | -         | -         | -         | -         | -         | -         |
| 1,4-Dichlorobenzene                              | µg/g         | 0.083                                    | <0.040           | <0.080   | < 0.040  | < 0.040  | -        | -          | -         | -         | -         | -         |           | -         |
| Dichlorodifluoromethane                          | µg/g         | 16                                       | <0.040           | <0.080   | <0.040   | <0.040   | -        | -          | -         | -         | -         | -         | -         | -         |
| 1,1-Dichloroethane                               | нв/в         | 0.47                                     | <0.040           | <0.080   | <0.040   | <0.040   | -        | -          | -         | -         | -         | -         | -         | -         |
| 1,2-Dichloroethane                               | нв/в         | 0.05                                     | <0.049<br><0.040 | <0.098   | <0.049   | <0.049   |          | -          | 1         | -         | -         | -         | - 1       | - 1       |
| 1,1-Dichloroethylene<br>Cis-1.2-Dichloroethylene | нв/в         | 1.9                                      | <0.040           | <0.080   | <0.040   | <0.040   | -        | -          | -         | -         | -         | -         |           |           |
| Trans-1.2-Dichloroethylene                       | µg/g<br>µg/g | 0.084                                    | <0.040           | <0.080   | <0.040   | <0.040   | -        |            |           | -         |           |           | -         |           |
| 1.2-Dichloropropane                              | µg/g<br>µg/g | 0.05                                     | <0.040           | <0.080   | <0.040   | <0.040   | - :      |            | -         |           |           | - 1       |           |           |
| Cis-1,3-Dichloropropylene                        | µg/g<br>µg/g | NV                                       | <0.030           | <0.060   | <0.030   | <0.030   |          |            |           | -         |           | -         | -         |           |
| Trans-1,3-Dichloropropylene                      | нв/в<br>нв/я | NV                                       | <0.040           | <0.080   | <0.040   | <0.040   |          | -          |           | -         | -         |           | -         |           |
| 1,3-Dichloropropylene, Total                     | нв/в<br>нв/я | 0.05                                     | <0.050           | <0.10    | <0.050   | <0.050   | -        |            | -         |           |           | -         | -         |           |
| Ethylbenzene                                     | µв/в<br>µв/в | 1.1                                      |                  | V0.10    |          | - 0.030  | <0.020   | <0.020     | <0.020    | <0.020    | <0.020    | <0.020    | <0.020    | <0.020    |
| Ethylene Dibromide                               | µg/g         | 0.05                                     | < 0.040          | <0.080   | < 0.040  | <0.040   |          |            | -0.020    |           | -         |           | -0.020    |           |
| Hexane(n)                                        | нв/в         | 2.8                                      | < 0.040          | <0.080   | < 0.040  | < 0.040  | -        |            | -         | -         |           | -         |           | -         |
| Methylene Chloride                               | μg/g         | 0.1                                      | < 0.049          | <0.098   | < 0.049  | < 0.049  | -        |            | -         | -         |           | -         |           | -         |
| Methyl Ethyl Ketone                              | μg/g         | 16                                       | <0.40            | <0.80    | <0.40    | <0.40    | -        |            | -         | -         |           |           |           | -         |
| Methyl Isobutyl Ketone                           | µg/g         | 1.7                                      | < 0.40           | < 0.80   | < 0.40   | < 0.40   | -        | -          | -         | -         | -         | -         |           | -         |
| Methyl-t-Butyl Ether                             | µg/g         | 0.75                                     | < 0.040          | < 0.080  | < 0.040  | < 0.040  | -        | -          | -         | -         | -         | -         |           | -         |
| Styrene                                          | µg/g         | 0.7                                      | < 0.040          | <0.080   | <0.040   | < 0.040  | -        | -          | -         | -         | -         | -         | -         | -         |
| 1,1,1,2-Tetrachloroethane                        | µg/g         | 0.058                                    | < 0.040          | < 0.080  | < 0.040  | < 0.040  | -        | -          | -         | -         | -         | -         |           | -         |
| 1,1,2,2-Tetrachloroethane                        | µg/g         | 0.05                                     | < 0.040          | <0.080   | < 0.040  | < 0.040  | -        | -          | -         | -         | -         | -         | -         | -         |
| Tetrachloroethylene                              | µg/g         | 0.28                                     | < 0.040          | < 0.080  | < 0.040  | < 0.040  | -        | -          | -         | -         | -         | -         |           | -         |
| Toluene                                          | µg/g         | 2.3                                      | -                | -        | -        | -        | 0.022    | <0.020     | <0.020    | < 0.020   | < 0.020   | <0.020    | <0.020    | < 0.020   |
| 1,1,1-Trichloroethane                            | µg/g         | 0.38                                     | < 0.040          | < 0.080  | < 0.040  | < 0.040  | -        | -          | -         | -         | -         | -         | -         | -         |
| 1,1,2-Trichloroethane                            | µg/g         | 0.05                                     | <0.040           | <0.080   | < 0.040  | < 0.040  | -        | -          | -         | -         | -         | -         |           | -         |
| Trichloroethylene                                | µg/g         | 0.061                                    | < 0.010          | <0.020   | < 0.010  | < 0.010  | -        | -          | -         | -         | -         | -         | -         | -         |
| Trichlorofluoromethane                           | µg/g         | 4                                        | <0.040           | <0.080   | < 0.040  | < 0.040  | -        | -          | -         | -         | -         | -         | -         | -         |
| Vinyl Chloride                                   | µg/g         | 0.02                                     | < 0.019          | <0.038   | < 0.019  | < 0.019  | -        | -          |           |           |           | -         |           | -         |
| Total Xylenes                                    | µg/g         | 3.1                                      | -                | -        | -        | -        | < 0.040  | < 0.040    | <0.040    | < 0.040   | < 0.040   | <0.040    | <0.040    | < 0.040   |
| NOTES:                                           |              |                                          |                  |          |          |          |          |            |           |           |           |           |           |           |

Indicates soil exceedance of MECP Table 2 SCS



Table 2 - Analytical Results in Soil - PAH - 2024 6659 Franktown Road, Ottawa, Ontario OTT-00243705-C0

|                            |        | Provincial                               |          |          | Samples                         |          |          |
|----------------------------|--------|------------------------------------------|----------|----------|---------------------------------|----------|----------|
| Sample ID                  | UNITS  | MECP Table 2<br>Residential <sup>1</sup> | \$1      | S2       | DUP1 (Field<br>Duplicate of S2) | \$3      | \$4      |
| Sampling Date              |        |                                          | 9-Jul-24 | 9-Jul-24 | 9-Jul-24                        | 9-Jul-24 | 9-Jul-24 |
| Sampling Depth (mbgs)      |        |                                          | 0.40     | 0.30     | 0.30                            | 0.30     | 0.20     |
| Polycyclic Aromatic Hydroc | arbons |                                          |          |          |                                 |          |          |
| Acenaphthene               | μg/g   | 7.9                                      | <0.050   | < 0.0050 | <0.0050                         | <0.0050  | <0.0050  |
| Acenaphthylene             | μg/g   | 0.15                                     | <0.050   | < 0.0050 | <0.0050                         | <0.0050  | <0.0050  |
| Anthracene                 | μg/g   | 0.67                                     | <0.050   | <0.0050  | <0.0050                         | <0.0050  | <0.0050  |
| Benzo[a]anthracene         | μg/g   | 0.5                                      | <0.050   | <0.0050  | <0.0050                         | <0.0050  | <0.0050  |
| Benzo[a]pyrene             | μg/g   | 0.3                                      | <0.050   | <0.0050  | <0.0050                         | <0.0050  | <0.0050  |
| Benzo[b/j]fluoranthene     | μg/g   | 0.78                                     | <0.050   | 0.0063   | <0.0050                         | 0.0067   | <0.0050  |
| Benzo[g,h,i]perylene       | μg/g   | 6.6                                      | <0.050   | <0.0050  | <0.0050                         | <0.0050  | <0.0050  |
| Benzo[k]fluoranthene       | μg/g   | 0.78                                     | <0.050   | <0.0050  | <0.0050                         | <0.0050  | <0.0050  |
| Chrysene                   | μg/g   | 7                                        | <0.050   | <0.0050  | <0.0050                         | <0.0050  | <0.0050  |
| Dibenzo[a,h]anthracene     | μg/g   | 0.1                                      | <0.050   | <0.0050  | <0.0050                         | <0.0050  | <0.0050  |
| Fluoranthene               | μg/g   | 0.69                                     | <0.050   | 0.0061   | <0.0050                         | 0.0073   | <0.0050  |
| Fluorene                   | μg/g   | 62                                       | <0.050   | <0.0050  | <0.0050                         | <0.0050  | <0.0050  |
| Indeno[1,2,3-cd]pyrene     | μg/g   | 0.38                                     | <0.050   | <0.0050  | <0.0050                         | <0.0050  | <0.0050  |
| 1-Methylnaphthalene        | μg/g   | 0.99                                     | <0.050   | <0.0050  | <0.0050                         | <0.0050  | <0.0050  |
| 2-Methylnaphthalene        | μg/g   | 0.99                                     | <0.050   | <0.0050  | <0.0050                         | <0.0050  | <0.0050  |
| Naphthalene                | μg/g   | 0.6                                      | <0.050   | <0.0050  | <0.0050                         | <0.0050  | <0.0050  |
| Phenanthrene               | μg/g   | 6.2                                      | <0.050   | <0.0050  | <0.0050                         | <0.0050  | <0.0050  |
| Pyrene                     | μg/g   | 78                                       | <0.050   | 0.0055   | <0.0050                         | 0.0062   | <0.0050  |

#### NOTES:

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 2 Full Depth Generic Site Condition Standards (SCS) in a Potable Ground Water Condition for Residential/Parkland/Institutional Use (coarse textured soils)

<RDL Non-detectable results are shown as "<(RDL)" where RDL represents the reporting detection limit.</p>

NV No Value

Parameter not analyzed

Indicates soil exceedance of MECP Table 2 SCS



Table 3 - Analytical Results in Soil - Inorganic Parameters - 2024 6659 Franktown Road, Ottawa, Ontario OTT-00243705-C0

|                            |       | Provincial                               |          | Sa        | mples    |          |
|----------------------------|-------|------------------------------------------|----------|-----------|----------|----------|
| Sample ID                  | UNITS | MECP Table 2<br>Residential <sup>1</sup> | \$1      | <b>S2</b> | \$3      | \$4      |
| Sampling Date              |       |                                          | 9-Jul-24 | 9-Jul-24  | 9-Jul-24 | 9-Jul-24 |
| Sampling Depth (mbgs)      |       |                                          | 0.40     | 0.30      | 0.30     | 0.20     |
| Metals                     |       |                                          |          | •         | •        | •        |
| Antimony                   | μg/g  | 7.5                                      | 0.65     | <0.20     | <0.20    | <0.20    |
| Arsenic                    | μg/g  | 18                                       | 1.9      | 2.1       | <1.0     | <1.0     |
| Barium                     | μg/g  | 390                                      | 210      | 36        | 25       | 32       |
| Beryllium                  | μg/g  | 4                                        | 0.22     | 0.21      | <0.20    | <0.20    |
| Boron (Hot Water Soluble)  | μg/g  | 1.5                                      | 0.74     | 0.085     | 0.22     | 0.1      |
| Boron (Total)              | μg/g  | 120                                      | 14       | <5.0      | <5.0     | <5.0     |
| Cadmium                    | μg/g  | 1.2                                      | 0.25     | 0.12      | <0.10    | <0.10    |
| Chromium (Total)           | μg/g  | 160                                      | 11.00    | 8.40      | 4.80     | 8.40     |
| Chromium VI                | μg/g  | 8                                        | <0.18    | <0.18     | <0.18    | <0.18    |
| Cobalt                     | μg/g  | 22                                       | 75       | 2         | 0.95     | 1.9      |
| Copper                     | μg/g  | 140                                      | 30       | 5.2       | 2.2      | 2.9      |
| Lead                       | μg/g  | 120                                      | 16       | 8.2       | 7.8      | 2.7      |
| Mercury                    | μg/g  | 0.27                                     | <0.25    | 0.065     | <0.050   | < 0.050  |
| Molybdenum                 | μg/g  | 6.9                                      | 5.1      | <0.50     | <0.50    | <0.50    |
| Nickel                     | μg/g  | 100                                      | 15       | 3.8       | 1.8      | 4        |
| Selenium                   | μg/g  | 2.4                                      | <0.50    | <0.50     | <0.50    | <0.50    |
| Silver                     | μg/g  | 20                                       | <0.20    | <0.20     | <0.20    | <0.20    |
| Thallium                   | μg/g  | 1                                        | 0.16     | <0.050    | <0.050   | < 0.050  |
| Uranium                    | μg/g  | 23                                       | 0.36     | 0.35      | 0.22     | 0.44     |
| Vanadium                   | μg/g  | 86                                       | 7.5      | 20        | 12       | 17       |
| Zinc                       | μg/g  | 340                                      | 97       | 21        | 16       | 14       |
| Other Inorganic Parameters |       |                                          |          |           |          |          |
| рН                         | рН    | NV                                       | 7.48     | 7.27      | 7.19     | 7.2      |
| SAR                        | NA    | 5                                        | 0.29     | 0.26      | 0.23     | 0.62     |
| EC                         | mS/cm | 0.7                                      | 0.17     | 0.15      | 0.19     | 0.23     |
| Cyanide (Free)             | μg/g  | 0.051                                    | < 0.01   | <0.01     | <0.01    | <0.01    |

#### NOTES:

1

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 3.1 Full Depth Generic Site Condition Standards (SCS) in a Non-Potable Ground Water Condition for Inductrial/Commercial/Community Use (fine-medium textured soils) <RDL Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

NV

Parameter not analyzed

Indicates soil exceedance of MECP Table 2 SCS



Table 4 - Analytical Results in Groundwater - PHC and VOC - 2024 6659 Franktown Road, Ottawa, Ontario

OTT-00243705-C0

| Parameter                                | Units | MECP Table 2<br>Residential <sup>1</sup> | MW-1       | MW-2       | MW-3       | DUP1 (Field Duplicate of MW-3) |
|------------------------------------------|-------|------------------------------------------|------------|------------|------------|--------------------------------|
| Sampling Date                            |       |                                          | 9-Jul-2024 | 9-Jul-2024 | 9-Jul-2024 | 9-Jul-2024                     |
| Screen Depth (mbgs)                      | 1     |                                          | 3.0 to 4.5 | 3.0 to 4.5 | 3.0 to 4.5 | 3.0 to 4.5                     |
| Volatile Organic Compounds               |       |                                          |            |            |            |                                |
| Acetone                                  | ug/L  | 2700                                     | <10        | <10        | -          | -                              |
| Benzene                                  | ug/L  | 5                                        | <0.17      | <0.17      | <0.20      | <0.20                          |
| Bromodichloromethane                     | ug/L  | 16                                       | <0.50      | <0.50      | -          | -                              |
| Bromoform                                | ug/L  | 25                                       | <1.0       | <1.0       | -          | _                              |
| Bromomethane                             | ug/L  | 0.89                                     | <0.50      | <0.50      | -          | _                              |
| Carbon Tetrachloride                     | ug/L  | 0.79                                     | <0.20      | <0.20      | -          | -                              |
| Chlorobenzene                            | ug/L  | 30                                       | <0.20      | <0.20      | -          | -                              |
| Chloroform                               | ug/L  | 2,4                                      | <0.20      | <0.20      | -          | -                              |
| Dibromochloromethane                     | ug/L  | 25                                       | <0.50      | <0.50      | -          | -                              |
| Dichlorodifluoromethane                  | ug/L  | 590                                      | <1.0       | <1.0       | -          | -                              |
| 1,2-Dichlorobenzene                      | ug/L  | 3                                        | <0.50      | <0.50      | -          | -                              |
| 1,3-Dichlorobenzene                      | ug/L  | 59                                       | <0.50      | <0.50      | -          | -                              |
| 1.4-Dichlorobenzene                      | ug/L  | 1                                        | <0.50      | <0.50      | -          | _                              |
| 1,1-Dichloroethane                       | ug/L  | 5                                        | <0.20      | <0.20      | -          | -                              |
| 1,2-Dichloroethane                       | ug/L  | 1.6                                      | <0.50      | <0.50      | -          | -                              |
| 1,1-Dichloroethylene                     | ug/L  | 1.6                                      | <0.20      | <0.20      | -          | -                              |
| cis-1,2-Dichloroethylene                 | ug/L  | 1.6                                      | <0.50      | <0.50      | -          | -                              |
| trans-1,2-Dichloroethylene               | ug/L  | 1.6                                      | <0.50      | <0.50      | -          | -                              |
| 1,2-Dichloropropane                      | ug/L  | 5                                        | <0.20      | <0.20      | -          | -                              |
| cis-1,3-Dichloropropylene                | ug/L  | NV                                       | <0.30      | <0.30      | -          | -                              |
| trans-1,3-Dichloropropylene              | ug/L  | NV                                       | <0.40      | <0.40      | -          | -                              |
| 1,3-Dichloropropene, total               | ug/L  | 0.5                                      | <0.50      | <0.50      | -          | -                              |
| Ethylbenzene                             | ug/L  | 2.4                                      | <0.20      | <0.20      | <0.20      | <0.20                          |
| Ethylene dibromide (dibromoethane, 1,2-) | ug/L  | 0.20                                     | <0.20      | <0.20      | -          | -                              |
| Hexane                                   | ug/L  | 51                                       | <1.0       | <1.0       | -          | -                              |
| Methyl Ethyl Ketone (2-Butanone)         | ug/L  | 1800                                     | <10        | <10        | -          | -                              |
| Methyl Isobutyl Ketone                   | ug/L  | 640                                      | <5.0       | <5.0       | -          | -                              |
| Methyl tert-butyl ether                  | ug/L  | 15                                       | <0.50      | <0.50      | -          | -                              |
| Methylene Chloride                       | ug/L  | 50                                       | <2.0       | <2.0       | -          | -                              |
| Styrene                                  | ug/L  | 5.4                                      | <0.50      | <0.50      | -          | -                              |
| 1,1,1,2-Tetrachloroethane                | ug/L  | 1.1                                      | <0.50      | <0.50      | -          | -                              |
| 1,1,2,2-Tetrachloroethane                | ug/L  | 1                                        | <0.50      | <0.50      | -          | -                              |
| Tetrachloroethylene                      | ug/L  | 1.6                                      | <0.20      | <0.20      | -          | -                              |
| Toluene                                  | ug/L  | 24                                       | <0.20      | <0.20      | <0.20      | <0.20                          |
| 1,1,1-Trichloroethane                    | ug/L  | 200                                      | <0.20      | <0.20      | -          | -                              |
| 1,1,2-Trichloroethane                    | ug/L  | 4.7                                      | <0.50      | <0.50      | -          | -                              |
| Trichloroethylene                        | ug/L  | 1.6                                      | <0.20      | <0.20      | -          | -                              |
| Trichlorofluoromethane                   | ug/L  | 150                                      | <0.50      | <0.50      | -          | -                              |
| Vinyl Chloride                           | ug/L  | 0.5                                      | <0.20      | <0.20      | -          | -                              |
| m/p-Xylene                               | ug/L  | NV                                       | <0.20      | <0.20      | <0.40      | <0.40                          |
| o-Xylene                                 | ug/L  | NV                                       | <0.20      | <0.20      | <0.20      | <0.20                          |
| Xylenes, total                           | ug/L  | 300                                      | <0.20      | <0.20      | <0.40      | <0.40                          |
| Petroleum Hydrocarbons                   |       |                                          |            |            |            |                                |
| F1 PHC (C6 - C10) - BTEX*                | ug/L  | 750                                      | <25        | <25        | <25        | <25                            |
| F2 PHC (C10-C16)                         | ug/L  | 150                                      | <100       | <100       | <100       | -                              |
| F3 PHC (C16-C34)                         | ug/L  | 500                                      | 300        | <200       | <200       | -                              |
| F4 PHC (C34-C50)**                       | ug/L  | 500                                      | <200       | <200       | <200       |                                |

NOTES:

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 2 Generic Site Condition Standards in a Potable Ground Water Condition for all types of Property Use

(coarse textured soils).

F1 fraction does not include BTEX.

\*\* In instances where the PHC F2 to F4 chromatogram did not reach baseline, the F4 fraction result shown is the highest value obtained via the gas

ND Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

NV No Value N/A Not Applicable

Parameter not analyzed m bgs Metres below ground surface

Indicates groundwater exceedance of MECP Table 2 SCS



Table 5 - Maximum Concentrations in Soil 6659 Franktown Road, Ottawa, Ontario

| Parameter                                      | Sample Location                            | Sampling Date        | Sampling Depth<br>(mbgs)     | Maximum<br>Concentration | MECP Table<br>Residential |
|------------------------------------------------|--------------------------------------------|----------------------|------------------------------|--------------------------|---------------------------|
| Petroleum Hydrocarbons                         | All 1 1 1:                                 | 0.1.124              | 0.401.050                    | 1                        |                           |
| F1 PHC (C6-C10)<br>F2 PHC (C10-C16)            | All sample locations<br>S1                 | 9-Jul-24<br>9-Jul-24 | 0.10 to 0.50<br>0.40         | < 10<br>140              | 55<br>98                  |
| F3 PHC (C16-C34)                               | S1                                         | 9-Jul-24             | 0.40                         | 2700                     | 300                       |
| F4 PHC (C34-C50)                               | S1                                         | 9-Jul-24             | 0.40                         | 430                      | 2800                      |
| Volatile Organic Compounds                     |                                            |                      |                              |                          |                           |
| Acetone                                        | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.49                    | 16                        |
| Benzene                                        | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.020                   | 0.210                     |
| Bromodichloromethane<br>Bromoform              | All sample locations All sample locations  | 9-Jul-24<br>9-Jul-24 | 0.10 to 0.50<br>0.10 to 0.50 | <0.040<br><0.040         | 1.5<br>0.27               |
| Bromomethane                                   | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.040                   | 0.27                      |
| Carbon Tetrachloride                           | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.040                   | 0.05                      |
| Chlorobenzene                                  | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.040                   | 2.4                       |
| Chloroform                                     | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.040                   | 0.05                      |
| Dibromochloromethane                           | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.040                   | 2.3                       |
| 1,2-Dichlorobenzene                            | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.040                   | 1.2                       |
| 1,3-Dichlorobenzene                            | All sample locations                       | 9-Jul-24<br>9-Jul-24 | 0.10 to 0.50                 | <0.040                   | 4.8<br>0.083              |
| I,4-Dichlorobenzene<br>Dichlorodifluoromethane | All sample locations All sample locations  | 9-Jul-24<br>9-Jul-24 | 0.10 to 0.50<br>0.10 to 0.50 | <0.040                   | 16                        |
| I,1-Dichloroethane                             | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.040                   | 0.47                      |
| 1,2-Dichloroethane                             | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.049                   | 0.05                      |
| ,1-Dichloroethylene                            | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.040                   | 0.05                      |
| Cis-1,2-Dichloroethylene                       | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.040                   | 1.9                       |
| Frans-1,2-Dichloroethylene                     | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.040                   | 0.084                     |
| 1,2-Dichloropropane                            | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.040                   | 0.05                      |
| Cis-1,3-Dichloropropylene                      | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.030                   | NV                        |
| Trans-1,3-Dichloropropylene                    | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.040<br><0.050         | NV<br>0.05                |
| ,3-Dichloropropylene, Total                    | All sample locations All sample locations  | 9-Jul-24<br>9-Jul-24 | 0.10 to 0.50<br>0.10 to 0.50 | <0.050<br><0.020         | 0.05<br>1.1               |
| thylene Dibromide                              | All sample locations  All sample locations | 9-Jul-24<br>9-Jul-24 | 0.10 to 0.50<br>0.10 to 0.50 | <0.020                   | 0.05                      |
| lexane(n)                                      | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.040                   | 2.8                       |
| Methylene Chloride                             | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.049                   | 0.1                       |
| Methyl Ethyl Ketone                            | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.40                    | 16                        |
| Methyl Isobutyl Ketone                         | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.40                    | 1.7                       |
| Methyl-t-Butyl Ether                           | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.040                   | 0.75                      |
| ityrene                                        | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.040                   | 0.7                       |
| 1,1,2-Tetrachloroethane                        | All sample locations All sample locations  | 9-Jul-24<br>9-Jul-24 | 0.10 to 0.50<br>0.10 to 0.50 | <0.040<br><0.040         | 0.058                     |
| Tetrachloroethylene                            | All sample locations  All sample locations | 9-Jul-24<br>9-Jul-24 | 0.10 to 0.50<br>0.10 to 0.50 | <0.040                   | 0.05                      |
| oluene                                         | S5                                         | 9-Jul-24             | 0.10 (0 0.30                 | 0.022                    | 2.3                       |
| ,1,1-Trichloroethane                           | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.040                   | 0.38                      |
| ,1,2-Trichloroethane                           | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.040                   | 0.05                      |
| richloroethylene                               | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | < 0.010                  | 0.061                     |
| richlorofluoromethane                          | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.040                   | 4                         |
| /inyl Chloride                                 | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.019                   | 0.02                      |
| Total Xylenes                                  | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.040                   | 3.1                       |
| Polycyclic Aromatic Hydrocarbons Acenaphthene  | All sample locations                       | 9-Jul-24             | 1 0.10 to 0.50               | <0.0050                  | 7.9                       |
| Acenaphthylene                                 | All sample locations                       | 9-Jul-24             | 0.10 to 0.50<br>0.10 to 0.50 | <0.0050                  | 0.15                      |
| Anthracene                                     | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.0050                  | 0.67                      |
| Benzo[a]anthracene                             | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | < 0.0050                 | 0.5                       |
| Benzo[a]pyrene                                 | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.0050                  | 0.3                       |
| Benzo[b/j]fluoranthene                         | S3                                         | 9-Jul-24             | 0.30                         | 0.0067                   | 0.78                      |
| Benzo[g,h,i]perylene                           | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.0050                  | 6.6                       |
| senzo[k]fluoranthene                           | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.0050                  | 0.78                      |
| Chrysene                                       | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.0050                  | 7                         |
| Dibenzo[a,h]anthracene<br>Iuoranthene          | All sample locations                       | 9-Jul-24<br>9-Jul-24 | 0.10 to 0.50<br>0.30         | <0.0050<br>0.0073        | 0.1                       |
| luorene                                        | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.0050                  | 62                        |
| ndeno[1,2,3-cd]pyrene                          | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.0050                  | 0.38                      |
| -Methylnaphthalene                             | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.0050                  | 0.99                      |
| -Methylnaphthalene                             | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.0050                  | 0.99                      |
| laphthalene                                    | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.0050                  | 0.6                       |
| Phenanthrene                                   | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.0050                  | 6.2                       |
| yrene<br>Actals                                | S3                                         | 9-Jul-24             | 0.30                         | 0.0062                   | 78                        |
| Metals<br>Antimony                             | S1                                         | 9-Jul-24             | 0.40                         | 0.65                     | 7.5                       |
| Antimony<br>Arsenic                            | S1<br>S2                                   | 9-Jul-24<br>9-Jul-24 | 0.40                         | 2.1                      | 18                        |
| arium                                          | S1                                         | 9-Jul-24             | 0.40                         | 210                      | 390                       |
| eryllium                                       | S1                                         | 9-Jul-24             | 0.40                         | 0.22                     | 4                         |
| oron (Hot Water Soluble)                       | S1                                         | 9-Jul-24             | 0.40                         | 0.74                     | 1.5                       |
| Soron (Total)                                  | S1                                         | 9-Jul-24             | 0.40                         | 14                       | 120                       |
| Cadmium                                        | S1                                         | 9-Jul-24             | 0.40                         | 0.25                     | 1.2                       |
| Chromium (Total)                               | S1                                         | 9-Jul-24             | 0.40<br>0.10 to 0.50         | 11                       | 160                       |
| Chromium VI<br>Cobalt                          | All sample locations<br>S1                 | 9-Jul-24<br>9-Jul-24 | 0.10 to 0.50<br>0.40         | <0.18<br><b>75</b>       | 8<br>22                   |
| Copper                                         | S1                                         | 9-Jul-24<br>9-Jul-24 | 0.40                         | 30                       | 140                       |
| ead                                            | S1                                         | 9-Jul-24             | 0.40                         | 16                       | 120                       |
| Mercury                                        | S3                                         | 9-Jul-24             | 0.30                         | 0.065                    | 0.27                      |
| Nolybdenum                                     | S1                                         | 9-Jul-24             | 0.40                         | 5.1                      | 6.9                       |
| lickel                                         | S1                                         | 9-Jul-24             | 0.40                         | 15                       | 100                       |
| elenium                                        | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.50                    | 2.4                       |
| ilver                                          | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | <0.20                    | 20                        |
| hallium                                        | S1                                         | 9-Jul-24             | 0.40                         | 0.16                     | 1                         |
| Iranium<br>'anadium                            | S4<br>S2                                   | 9-Jul-24<br>9-Jul-24 | 0.20<br>0.30                 | 0.44<br>20               | 23<br>86                  |
| inc                                            | S1                                         | 9-Jul-24<br>9-Jul-24 | 0.40                         | 97                       | 340                       |
| Other Inorganic Parameters                     | - JI                                       | J 301-24             | 3.40                         |                          | 340                       |
| H                                              | S1                                         | 9-Jul-24             | 0.40                         | 7.48                     | NV                        |
| AR                                             | S4                                         | 9-Jul-24             | 0.20                         | 0.62                     | 5                         |
| C                                              | S4                                         | 9-Jul-24             | 0.20                         | 0.23                     | 0.7                       |
| Cyanide (Free)                                 | All sample locations                       | 9-Jul-24             | 0.10 to 0.50                 | < 0.01                   | 0.051                     |

Ontario Ministry of Environment, Conservation and Parks (MECP), Soil, Groundwater and Sediment Standards for use under Part XV.1 of the Environmental Protection Act, April 2011, Table 2 Full Depth Generic Site Condition Standards (SCS) in a Potable Ground Water Condition for Residential/Parkland/Institutional Use (coarse textured soils)

NV

No Value Parameter not analyzed



# Table 6 - Relative Percent Differences - PHC and VOC in Groundwater 6659 Franktown Road, Ottawa, Ontario OTT-00243705-C0

| Parameter                | Units    | RDL    | MW-3     | DUP 1    | RPD (%) | Alert Limit (%) |
|--------------------------|----------|--------|----------|----------|---------|-----------------|
|                          |          |        | 9-Jul-24 | 9-Jul-24 |         |                 |
| Petroleum Hydrocarbons   |          |        |          |          |         |                 |
| F1 PHC (C6 - C10) - BTEX | ug/g dry | 10     | <25      | <25      | nc      | 60              |
| F2 PHC (C10-C16)         | ug/g dry | 10     | <100     | -        | nc      | 60              |
| F3 PHC (C16-C34)         | ug/g dry | 50     | <200     | -        | nc      | 60              |
| F4 PHC (C34-C50)         | ug/g dry | 50     | <200     | -        | nc      | 60              |
| Volatiles                |          |        |          |          |         |                 |
| Benzene                  | ug/g dry | 0.0060 | <0.20    | <0.20    | nc      | 100             |
| Ethylbenzene             | ug/g dry | 0.010  | <0.20    | <0.20    | nc      | 100             |
| Toluene                  | ug/g dry | 0.020  | <0.20    | <0.20    | nc      | 100             |
| Xylenes, total           | ug/g dry | 0.020  | <0.40    | <0.40    | nc      | 100             |

#### NOTES:

Analysis by Bureau Veritas Labratories

All results on dry weight basis; Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in **bold** 



#### Table 7- Relative Percent Differences - PAH in Soil 6659 Franktown Road, Ottawa, Ontario OTT-00243705-C0

| Parameter                        | Units    | RDL    | \$2        | DUP 1      | RPD (%) | Alert Limit (%) |
|----------------------------------|----------|--------|------------|------------|---------|-----------------|
|                                  |          |        | 9-Jul-2024 | 9-Jul-2024 |         |                 |
| Polycyclic Aromatic Hydrocarbons |          |        |            |            |         |                 |
| Acenaphthene                     | ug/g dry | 0.0050 | <0.0050    | <0.0050    | nc      | 80              |
| Acenaphthylene                   | ug/g dry | 0.0050 | <0.0050    | <0.0050    | nc      | 80              |
| Anthracene                       | ug/g dry | 0.010  | <0.0050    | <0.0050    | nc      | 80              |
| Benzo[a]anthracene               | ug/g dry | 0.0050 | <0.0050    | <0.0050    | nc      | 80              |
| Benzo[a]pyrene                   | ug/g dry | 0.0050 | <0.0050    | <0.0050    | nc      | 80              |
| Benzo[b/j]fluoranthene           | ug/g dry | 0.0050 | 0.0063     | <0.0050    | nc      | 80              |
| Benzo[g,h,i]perylene             | ug/g dry | 0.0050 | <0.0050    | <0.0050    | nc      | 80              |
| Benzo[k]fluoranthene             | ug/g dry | 0.0050 | <0.0050    | <0.0050    | nc      | 80              |
| Chrysene                         | ug/g dry | 0.0050 | <0.0050    | <0.0050    | nc      | 80              |
| Dibenzo[a,h]anthracene           | ug/g dry | 0.0050 | <0.0050    | <0.0050    | nc      | 80              |
| Fluoranthene                     | ug/g dry | 0.0050 | 0.0061     | <0.0050    | nc      | 80              |
| Fluorene                         | ug/g dry | 0.0050 | <0.0050    | <0.0050    | nc      | 80              |
| Indeno[1,2,3-cd]pyrene           | ug/g dry | 0.0050 | <0.0050    | <0.0050    | nc      | 80              |
| 1-Methylnaphthalene              | ug/g dry | 0.0050 | <0.0050    | <0.0050    | nc      | 80              |
| 2-Methylnaphthalene              | ug/g dry | 0.0050 | <0.0050    | <0.0050    | nc      | 80              |
| Naphthalene                      | ug/g dry | 0.0050 | <0.0050    | <0.0050    | nc      | 80              |
| Phenanthrene                     | ug/g dry | 0.0050 | <0.0050    | <0.0050    | nc      | 80              |
| Pyrene                           | ug/g dry | 0.0050 | 0.0055     | <0.0050    | nc      | 80              |

#### NOTES:

Analysis by Bureau Veritas Labratories

All results on dry weight basis; Non-detectable results are shown as "< (RDL)" where RDL represents the reporting detection limit.

- means "not analysed"

nc means "not calculable" - one (or both) of the results are <5x RDL

Exceedances of alert limits are shown in  $\underline{\textbf{bold}}$ 

EXP Services Inc.

Air Rock Drilling Company Ltd. Phase Two Environmental Site Assessment 6659 Franktown Road, Richmond, Ontario OTT-00243705-B0 October 17, 2025

**Appendix G: Laboratory Certificates of Analysis** 





300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

## Certificate of Analysis

exp Services Inc. (Ottawa)

100-2650 Queensview Dr. Ottawa, ON K2B 8K2 Attn: Matt Laneville

Client PO:

Project: OTT00243705AO

Custody: 40796

Report Date: 21-Nov-2017 Order Date: 20-Nov-2017

Order #: 1747092

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

| Paracel ID | Client ID |
|------------|-----------|
| 1747092-01 | TP3B      |
| 1747092-02 | TP7B      |
| 1747092-03 | TP8B      |
| 1747092-04 | TP9B      |

Approved By:



Dale Robertson, BSc Laboratory Director



Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 21-Nov-2017

Order Date: 20-Nov-2017

Client PO: Project Description: OTT00243705AO

### **Analysis Summary Table**

| Analysis          | Method Reference/Description    | Extraction Date | Analysis Date |
|-------------------|---------------------------------|-----------------|---------------|
| BTEX by P&T GC-MS | EPA 8260 - P&T GC-MS            | 20-Nov-17       | 21-Nov-17     |
| PHC F1            | CWS Tier 1 - P&T GC-FID         | 20-Nov-17       | 21-Nov-17     |
| PHCs F2 to F4     | CWS Tier 1 - GC-FID, extraction | 20-Nov-17       | 21-Nov-17     |
| Solids, %         | Gravimetric, calculation        | 21-Nov-17       | 21-Nov-17     |



Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 21-Nov-2017

Order Date: 20-Nov-2017

Client PO: Project Description: OTT00243705AO

|                          |               |            | TD7D       | <del></del> |            |
|--------------------------|---------------|------------|------------|-------------|------------|
|                          | Client ID:    | TP3B       | TP7B       | TP8B        | TP9B       |
|                          | Sample Date:  | 14-Nov-17  | 20-Nov-17  | 20-Nov-17   | 20-Nov-17  |
|                          | Sample ID:    | 1747092-01 | 1747092-02 | 1747092-03  | 1747092-04 |
|                          | MDL/Units     | Soil       | Soil       | Soil        | Soil       |
| Physical Characteristics |               |            |            |             |            |
| % Solids                 | 0.1 % by Wt.  | 82.5       | 78.4       | 81.3        | 86.3       |
| Volatiles                |               |            | •          | •           | -          |
| Benzene                  | 0.02 ug/g dry | <0.02      | <0.02      | <0.02       | <0.02      |
| Ethylbenzene             | 0.05 ug/g dry | <0.05      | <0.05      | <0.05       | <0.05      |
| Toluene                  | 0.05 ug/g dry | <0.05      | <0.05      | <0.05       | <0.05      |
| m,p-Xylenes              | 0.05 ug/g dry | <0.05      | <0.05      | <0.05       | <0.05      |
| o-Xylene                 | 0.05 ug/g dry | <0.05      | <0.05      | <0.05       | <0.05      |
| Xylenes, total           | 0.05 ug/g dry | <0.05      | <0.05      | <0.05       | <0.05      |
| Toluene-d8               | Surrogate     | 84.6%      | 84.5%      | 84.3%       | 83.2%      |
| Hydrocarbons             |               |            |            |             |            |
| F1 PHCs (C6-C10)         | 7 ug/g dry    | <7         | <7         | <7          | <7         |
| F2 PHCs (C10-C16)        | 4 ug/g dry    | <4         | <4         | <4          | <4         |
| F3 PHCs (C16-C34)        | 8 ug/g dry    | <8         | <8         | <8          | <8         |
| F4 PHCs (C34-C50)        | 6 ug/g dry    | <6         | <6         | <6          | <6         |



Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Order #: 1747092

Report Date: 21-Nov-2017 Order Date: 20-Nov-2017

December 20-Nov-2017

Client PO: Project Description: OTT00243705AO

Method Quality Control: Blank

| Analyte               | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Hydrocarbons          |        |                    |       |                  |      |               |     |              |       |
| F1 PHCs (C6-C10)      | ND     | 7                  | ug/g  |                  |      |               |     |              |       |
| F2 PHCs (C10-C16)     | ND     | 4                  | ug/g  |                  |      |               |     |              |       |
| F3 PHCs (C16-C34)     | ND     | 8                  | ug/g  |                  |      |               |     |              |       |
| F4 PHCs (C34-C50)     | ND     | 6                  | ug/g  |                  |      |               |     |              |       |
| Volatiles             |        |                    |       |                  |      |               |     |              |       |
| Benzene               | ND     | 0.02               | ug/g  |                  |      |               |     |              |       |
| Ethylbenzene          | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Toluene               | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| m,p-Xylenes           | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| o-Xylene              | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Xylenes, total        | ND     | 0.05               | ug/g  |                  |      |               |     |              |       |
| Surrogate: Toluene-d8 | 2.89   |                    | ug/g  |                  | 90.2 | 50-140        |     |              |       |



Client PO:

Order #: 1747092

Certificate of Analysis
Client: exp Services Inc. (Ottawa)

Report Date: 21-Nov-2017 Order Date: 20-Nov-2017

Project Description: OTT00243705AO

**Method Quality Control: Duplicate** 

| Analyte                  | Result | Reporting<br>Limit | Units    | Source<br>Result | %REC | %REC<br>Limit | RPD  | RPD<br>Limit | Notes |
|--------------------------|--------|--------------------|----------|------------------|------|---------------|------|--------------|-------|
| Hydrocarbons             |        |                    |          |                  |      |               |      |              |       |
| F1 PHCs (C6-C10)         | ND     | 7                  | ug/g dry | ND               |      |               |      | 40           |       |
| F2 PHCs (C10-C16)        | ND     | 4                  | ug/g wet | ND               |      |               | 0.0  | 30           |       |
| F3 PHCs (C16-C34)        | 68     | 8                  | ug/g wet | 85               |      |               | 21.6 | 30           |       |
| F4 PHCs (C34-C50)        | 90     | 6                  | ug/g wet | 108              |      |               | 18.3 | 30           |       |
| Physical Characteristics |        |                    |          |                  |      |               |      |              |       |
| % Solids                 | 75.1   | 0.1                | % by Wt. | 72.1             |      |               | 4.1  | 25           |       |
| Volatiles                |        |                    |          |                  |      |               |      |              |       |
| Benzene                  | ND     | 0.02               | ug/g dry | ND               |      |               |      | 50           |       |
| Ethylbenzene             | ND     | 0.05               | ug/g dry | ND               |      |               |      | 50           |       |
| Toluene                  | ND     | 0.05               | ug/g dry | ND               |      |               |      | 50           |       |
| m,p-Xylenes              | ND     | 0.05               | ug/g dry | ND               |      |               |      | 50           |       |
| o-Xylene                 | ND     | 0.05               | ug/g dry | ND               |      |               |      | 50           |       |
| Surrogate: Toluene-d8    | 2.64   |                    | ug/g dry |                  | 92.9 | 50-140        |      |              |       |



Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 21-Nov-2017

Order Date: 20-Nov-2017

Client PO: Project Description: OTT00243705AO

Method Quality Control: Spike

| Analyte               | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Hydrocarbons          |        |                    |       |                  |      |               |     |              |       |
| F1 PHCs (C6-C10)      | 198    | 7                  | ug/g  |                  | 98.8 | 80-120        |     |              |       |
| F2 PHCs (C10-C16)     | 89     | 4                  | ug/g  | ND               | 99.3 | 60-140        |     |              |       |
| F3 PHCs (C16-C34)     | 276    | 8                  | ug/g  | 85               | 102  | 60-140        |     |              |       |
| F4 PHCs (C34-C50)     | 243    | 6                  | ug/g  | 108              | 108  | 60-140        |     |              |       |
| Volatiles             |        |                    |       |                  |      |               |     |              |       |
| Benzene               | 2.91   | 0.02               | ug/g  |                  | 72.7 | 60-130        |     |              |       |
| Ethylbenzene          | 3.96   | 0.05               | ug/g  |                  | 98.9 | 60-130        |     |              |       |
| Toluene               | 3.81   | 0.05               | ug/g  |                  | 95.3 | 60-130        |     |              |       |
| m,p-Xylenes           | 9.10   | 0.05               | ug/g  |                  | 114  | 60-130        |     |              |       |
| o-Xylene              | 4.58   | 0.05               | ug/g  |                  | 115  | 60-130        |     |              |       |
| Surrogate: Toluene-d8 | 2.20   |                    | ug/g  |                  | 68.8 | 50-140        |     |              |       |



Client: exp Services Inc. (Ottawa)

Certificate of Analysis

Order #: 1747092

Report Date: 21-Nov-2017 Order Date: 20-Nov-2017

Client PO: Project Description: OTT00243705AO

#### **Qualifier Notes:**

None

#### **Sample Data Revisions**

None

#### **Work Order Revisions / Comments:**

None

#### **Other Report Notes:**

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

#### CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

Paracel ID: 1747092





9 St. Laurent Blvd. Ontario K1G 4J8

, J-749-1947 e: paracel@paracellabs.com Chain of Custody (Lab Use Only)

Nº 40796

Verified By:

pH Ventiel & By: N/4

Page of Project Reference: OTT 00243705 AC Turnaround Time: Client Name: Day Contact Name: Quote # MATT LAWEVILLE D3 Day PO# Address 2650 queonsoir Dr. □ 2 Day □ Regular matther lane le exp.ca Date Required: Nov 21 //7 Telephone: 617-608-1958 Criteria: 🗆 O. Reg. 153/04 (As Amended) Table \_ 🗆 RSC Filing 🗆 O. Reg. 558/00 🗆 PWQO 🗆 CCME 🗆 SUB (Storm) 🗆 SUB (Samitary) Municipality: O Other Matrix Type: S (Sml Sed.) GW (Ground Water) SW (Surface Water) SS (Storm Sanitary Sewer) P (Paint) A (Air) O (Other) Required Analyses F1-F4 Paracel Order Number: of Containers Air Volume Sample Taken BTEX 1747092 PHC Matrix Date Time Sample ID/Location Name 150mi+ 1vid MOUN TP3B 3 NOU 20 TP73 N0020 5 TPSB ζ NOV20 TP9B 5 6 7 8 y 10 Method of Delivery: Comments: walk-in

Received by Driver Depot:

Karen Cull

Date/Time Nov 20/17

Temperature: 6.3 °C

Received at Lab:

Femperature 9,5

SUMPERTRY DOKING

11 59 Date Time NOV 30, 2002 (3,51 Date Time

Relinquished By (Print) HAT LANEVILLE

Date Time UOV 20/17 @ 11:55 Am



300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

## Certificate of Analysis

exp Services Inc. (Ottawa)

100-2650 Queensview Dr. Ottawa, ON K2B 8K2 Attn: Matt Laneville

Client PO:

Project: OTT00243705A0

Custody: 40150

Report Date: 17-Nov-2017 Order Date: 15-Nov-2017

Order #: 1746321

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

| Paracel ID | Client ID |
|------------|-----------|
| 1746321-01 | MW#1      |
| 1746321-02 | MW#2      |
| 1746321-03 | MW#3      |

Approved By:



Dale Robertson, BSc Laboratory Director



Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 17-Nov-2017

Order Date: 15-Nov-2017

Client PO: Project Description: OTT00243705A0

### **Analysis Summary Table**

| Analysis          | Method Reference/Description    | Extraction Date | Analysis Date |
|-------------------|---------------------------------|-----------------|---------------|
| BTEX by P&T GC-MS | EPA 624 - P&T GC-MS             | 16-Nov-17       | 16-Nov-17     |
| PHC F1            | CWS Tier 1 - P&T GC-FID         | 16-Nov-17       | 16-Nov-17     |
| PHCs F2 to F4     | CWS Tier 1 - GC-FID, extraction | 16-Nov-17       | 17-Nov-17     |



Report Date: 17-Nov-2017

Order Date: 15-Nov-2017

Certificate of Analysis
Client: exp Services Inc. (Ottawa)

Client PO: Project Description: OTT00243705A0

|                   | _            |            |            | -          |   |
|-------------------|--------------|------------|------------|------------|---|
|                   | Client ID:   | MW#1       | MW#2       | MW#3       | - |
|                   | Sample Date: | 15-Nov-17  | 15-Nov-17  | 15-Nov-17  | - |
|                   | Sample ID:   | 1746321-01 | 1746321-02 | 1746321-03 | - |
|                   | MDL/Units    | Water      | Water      | Water      | - |
| Volatiles         |              |            |            |            |   |
| Benzene           | 0.5 ug/L     | <0.5       | <0.5       | <0.5       | - |
| Ethylbenzene      | 0.5 ug/L     | <0.5       | <0.5       | <0.5       | - |
| Toluene           | 0.5 ug/L     | <0.5       | <0.5       | <0.5       | - |
| m,p-Xylenes       | 0.5 ug/L     | <0.5       | <0.5       | <0.5       | - |
| o-Xylene          | 0.5 ug/L     | <0.5       | <0.5       | <0.5       | - |
| Xylenes, total    | 0.5 ug/L     | <0.5       | <0.5       | <0.5       | - |
| Toluene-d8        | Surrogate    | 89.6%      | 88.1%      | 88.3%      | - |
| Hydrocarbons      |              |            |            |            |   |
| F1 PHCs (C6-C10)  | 25 ug/L      | <25        | <25        | <25        | - |
| F2 PHCs (C10-C16) | 100 ug/L     | <100       | <100       | <100       | - |
| F3 PHCs (C16-C34) | 100 ug/L     | <100       | <100       | 172        | - |
| F4 PHCs (C34-C50) | 100 ug/L     | <100       | <100       | <100       | - |



Certificate of Analysis

Client: exp Services Inc. (Ottawa)

Report Date: 17-Nov-2017

Order Date: 15-Nov-2017

Client PO: Project Description: OTT00243705A0

Method Quality Control: Blank

| Analyte               | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Hydrocarbons          |        |                    |       |                  |      |               |     |              |       |
| F1 PHCs (C6-C10)      | ND     | 25                 | ug/L  |                  |      |               |     |              |       |
| F2 PHCs (C10-C16)     | ND     | 100                | ug/L  |                  |      |               |     |              |       |
| F3 PHCs (C16-C34)     | ND     | 100                | ug/L  |                  |      |               |     |              |       |
| F4 PHCs (C34-C50)     | ND     | 100                | ug/L  |                  |      |               |     |              |       |
| Volatiles             |        |                    |       |                  |      |               |     |              |       |
| Benzene               | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Ethylbenzene          | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Toluene               | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| m,p-Xylenes           | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| o-Xylene              | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Xylenes, total        | ND     | 0.5                | ug/L  |                  |      |               |     |              |       |
| Surrogate: Toluene-d8 | 72.3   |                    | ug/L  |                  | 90.4 | 50-140        |     |              |       |



Client PO:

Order #: 1746321

Certificate of Analysis
Client: exp Services Inc. (Ottawa)

Report Date: 17-Nov-2017 Order Date: 15-Nov-2017

Project Description: OTT00243705A0

Method Quality Control: Duplicate

| -                     | •      | Reporting |       | Source |      | %REC   |     | RPD   |       |  |
|-----------------------|--------|-----------|-------|--------|------|--------|-----|-------|-------|--|
| Analyte               | Result | Limit     | Units | Result | %REC | Limit  | RPD | Limit | Notes |  |
| Hydrocarbons          |        |           |       |        |      |        |     |       |       |  |
| F1 PHCs (C6-C10)      | ND     | 25        | ug/L  | ND     |      |        |     | 30    |       |  |
| Volatiles             |        |           |       |        |      |        |     |       |       |  |
| Benzene               | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| Ethylbenzene          | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| Toluene               | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| m,p-Xylenes           | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| o-Xylene              | ND     | 0.5       | ug/L  | ND     |      |        |     | 30    |       |  |
| Surrogate: Toluene-d8 | 70.4   |           | ug/L  |        | 88.0 | 50-140 |     |       |       |  |



Report Date: 17-Nov-2017 Order Date: 15-Nov-2017

Project Description: OTT00243705A0

Certificate of Analysis Client: exp Services Inc. (Ottawa) Client PO:

Method Quality Control: Spike

| modified quality contact |        |                    |       |                  |      |               |     |              |       |
|--------------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Analyte                  | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
| Hydrocarbons             |        |                    |       |                  |      |               |     |              |       |
| F1 PHCs (C6-C10)         | 2020   | 25                 | ug/L  |                  | 101  | 68-117        |     |              |       |
| F2 PHCs (C10-C16)        | 1830   | 100                | ug/L  |                  | 102  | 60-140        |     |              |       |
| F3 PHCs (C16-C34)        | 4180   | 100                | ug/L  |                  | 112  | 60-140        |     |              |       |
| F4 PHCs (C34-C50)        | 3050   | 100                | ug/L  |                  | 123  | 60-140        |     |              |       |
| Volatiles                |        |                    |       |                  |      |               |     |              |       |
| Benzene                  | 43.6   | 0.5                | ug/L  |                  | 109  | 60-130        |     |              |       |
| Ethylbenzene             | 31.1   | 0.5                | ug/L  |                  | 77.7 | 60-130        |     |              |       |
| Toluene                  | 29.7   | 0.5                | ug/L  |                  | 74.2 | 60-130        |     |              |       |
| m,p-Xylenes              | 65.4   | 0.5                | ug/L  |                  | 81.7 | 60-130        |     |              |       |
| o-Xylene                 | 30.3   | 0.5                | ug/L  |                  | 75.7 | 60-130        |     |              |       |
| Surrogate: Toluene-d8    | 63.6   |                    | ug/L  |                  | 79.5 | 50-140        |     |              |       |



Client: exp Services Inc. (Ottawa)

Certificate of Analysis

Order #: 1746321

Report Date: 17-Nov-2017 Order Date: 15-Nov-2017

Client PO: Project Description: OTT00243705A0

#### **Qualifier Notes:**

None

#### **Sample Data Revisions**

None

#### **Work Order Revisions / Comments:**

None

#### **Other Report Notes:**

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

#### CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.



Paracel ID: 1746321



aurent Blvd. 5 K1G 4J8 947 racellabs.com Chain of Custody (Lab Use Only)

Nº 40150

Page \\_\ of \\_

| Client Name: EXP                                   |                                                                                |                     |                         | Project Reference: 652.97 |                    |            |            |       |                                              |            | Turnaround Time: |            |                |                                       |    |
|----------------------------------------------------|--------------------------------------------------------------------------------|---------------------|-------------------------|---------------------------|--------------------|------------|------------|-------|----------------------------------------------|------------|------------------|------------|----------------|---------------------------------------|----|
|                                                    | IN Name: MATT LANEUTLLE                                                        |                     |                         | Quote #                   |                    |            |            |       |                                              |            | 011              | Day        | (.             | D3 Day                                | )  |
| Address 2650 Queensure Dr Telephone: 612-600 (950) |                                                                                |                     | PO#                     |                           |                    |            |            |       |                                              | D/2 B      |                  |            | _              |                                       |    |
|                                                    |                                                                                |                     | Mostlies Lanuil Cexp Ca |                           |                    |            |            |       | □ 2 Day □ Regular  Date Required: Frie No. 1 |            |                  |            | ar             |                                       |    |
| 017 000 1100                                       |                                                                                |                     |                         |                           |                    |            |            |       |                                              |            |                  |            | -              |                                       |    |
| C                                                  | riteria: \$\overline{\pi}\$ O. Reg. 153/04 (As Amended) Table \$\overline{2}\$ | - DRSC Filing       | □ 0.1                   | Reg 558                   | 8/00 □ PWQO        | □ CCME □:  | SUB (Sto   | rm) 🗆 | SUB (Sanit                                   | ary) Munic | ipality:_        |            | Other          |                                       |    |
| Matri                                              | x Type: S (Soil Sed.) GW (Ground Water) SW (Surface V                          | Vater) SS (Storm Sa | nitary Se               | ewer) P (                 | Paint) A (Air) O ( | Other)     |            |       |                                              | Req        | uired A          | nalyses    |                |                                       |    |
| Para                                               | cel Order Number:                                                              |                     |                         | 2                         |                    |            |            |       |                                              |            |                  |            |                |                                       |    |
| 1746321                                            |                                                                                | N.                  | Air Volume              | of Containers             | Sample Taken       |            | EX         | PHCs  |                                              |            |                  |            |                |                                       |    |
|                                                    | Sample ID/Location Name                                                        | Matrix              | Air                     | # of                      | Date               | Time       | BTE        | 0     |                                              |            |                  |            |                |                                       |    |
| 1                                                  | MW */                                                                          | 64                  |                         | 3                         | NOV 15             |            | V          | V     |                                              |            |                  |            |                |                                       | V  |
| 2                                                  | NW #2                                                                          | - 11                |                         | 3                         | -11-               |            | V          | V     |                                              |            |                  |            |                |                                       |    |
| 3                                                  | MW#3                                                                           | - Fee               |                         | 3                         | T)                 |            | V          | V     |                                              |            |                  |            |                |                                       |    |
| 4                                                  |                                                                                |                     |                         |                           |                    |            |            |       |                                              |            |                  |            |                |                                       |    |
| 5                                                  |                                                                                |                     |                         |                           |                    |            |            |       |                                              |            |                  |            | +              | 1                                     |    |
| 6                                                  |                                                                                |                     |                         |                           |                    |            |            |       |                                              |            |                  |            |                |                                       |    |
| 1                                                  |                                                                                |                     |                         |                           |                    |            |            |       |                                              | +          |                  |            |                |                                       |    |
| 8                                                  |                                                                                |                     |                         |                           |                    |            |            |       |                                              |            |                  |            |                | +                                     |    |
| y                                                  |                                                                                |                     | -                       |                           |                    |            |            |       |                                              |            |                  | -          | -              | 1                                     | -  |
| 10                                                 |                                                                                |                     |                         |                           |                    |            |            |       |                                              |            |                  |            | -              | +                                     | -  |
| Conu                                               | nents: 3 day TAT per                                                           | chent.              |                         | >                         | ipda               | ted mat    | TA         | 30    | to o                                         | 2-de       | ry               | , N        | fethod of Deli | ivery<br>K-in                         |    |
| Reling                                             | uished By Gign                                                                 | Received            | by Dny                  | er/Depot                  | ill                | Receive    | ed at Lab: | 1     | -                                            | ė .        | Venticd          | By Ce      | 1              | · · · · · · · · · · · · · · · · · · · |    |
| _                                                  | ished By (Print) but Laneville                                                 | Date Tim            | e No                    |                           |                    | 16 Date Ti |            | 1/6/  | 174                                          | 20m        | Date/Tin         | nc.        | lov i          | le /1-                                | 7  |
| Date T                                             | me: Nov 15/17                                                                  | Temperar            | ure: 7                  | 196                       |                    | l'emper    | alure 9    | 130   |                                              | 1          | pH Veril         | led   ] By | NI             | 19                                    |    |
| Chain                                              | of Custody (Blank) - Rev 0.4 Feb 2016                                          |                     |                         |                           |                    |            |            |       |                                              |            |                  |            |                | 7:57                                  | la |



300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

## Certificate of Analysis

exp Services Inc. (Ottawa)

100-2650 Queensview Dr. Ottawa, ON K2B 8K2 Attn: Matt Laneville

Client PO:

Project: OTT00243705A0 Report Date: 17-Nov-2017 Custody: 110819 Order Date: 14-Nov-2017

Order #: 1746264

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

| Paracel ID | Client ID |
|------------|-----------|
| 1746264-01 | TP1A      |
| 1746264-02 | TP2B      |
| 1746264-03 | TP3A      |
| 1746264-04 | TP6A      |
| 1746264-05 | TP5B      |

Approved By:

Mark Froto

Mark Foto, M.Sc. Lab Supervisor



Certificate of Analysis

Order #: 1746264

Report Date: 17-Nov-2017 Order Date: 14-Nov-2017

Client PO: Project Description: OTT00243705A0

### **Analysis Summary Table**

Client: exp Services Inc. (Ottawa)

| Analysis                         | Method Reference/Description    | Extraction Date | Analysis Date |
|----------------------------------|---------------------------------|-----------------|---------------|
| BTEX by P&T GC-MS                | EPA 8260 - P&T GC-MS            | 16-Nov-17       | 17-Nov-17     |
| PHC F1                           | CWS Tier 1 - P&T GC-FID         | 16-Nov-17       | 17-Nov-17     |
| PHCs F2 to F4                    | CWS Tier 1 - GC-FID, extraction | 15-Nov-17       | 16-Nov-17     |
| REG 153: Metals by ICP/OES, soil | based on MOE E3470, ICP-OES     | 17-Nov-17       | 17-Nov-17     |
| Solids, %                        | Gravimetric, calculation        | 16-Nov-17       | 17-Nov-17     |



Report Date: 17-Nov-2017

Order Date: 14-Nov-2017

Certificate of Analysis
Client: exp Services Inc. (Ottawa)

Client PO: Project Description: OTT00243705A0

|                          | Client ID:<br>Sample Date:<br>Sample ID: | TP1A<br>14-Nov-17<br>1746264-01<br>Soil | TP2B<br>14-Nov-17<br>1746264-02<br>Soil | TP3A<br>14-Nov-17<br>1746264-03<br>Soil | TP6A<br>14-Nov-17<br>1746264-04<br>Soil |
|--------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| Physical Characteristics | MDL/Units                                | 3011                                    | 3011                                    | 3011                                    | 3011                                    |
| % Solids                 | 0.1 % by Wt.                             | 84.8                                    | 73.9                                    | 80.0                                    | 76.3                                    |
| Metals                   | <u> </u>                                 | 01.0                                    | 70.0                                    | 00.0                                    | 7 0.0                                   |
| Antimony                 | 1.0 ug/g dry                             | <1.0                                    | <1.0                                    | -                                       | -                                       |
| Arsenic                  | 1.0 ug/g dry                             | <1.0                                    | <1.0                                    | -                                       | -                                       |
| Barium                   | 1.0 ug/g dry                             | 23.0                                    | 30.2                                    | -                                       | -                                       |
| Beryllium                | 1.0 ug/g dry                             | <1.0                                    | <1.0                                    | -                                       | -                                       |
| Boron                    | 1.0 ug/g dry                             | 1.9                                     | 2.0                                     | -                                       | -                                       |
| Cadmium                  | 0.5 ug/g dry                             | <0.5                                    | <0.5                                    | -                                       | -                                       |
| Chromium                 | 1.0 ug/g dry                             | 6.2                                     | 10.8                                    | _                                       | -                                       |
| Cobalt                   | 1.0 ug/g dry                             | 1.9                                     | 4.0                                     | _                                       | -                                       |
| Copper                   | 1.0 ug/g dry                             | 2.2                                     | 10.3                                    | _                                       | -                                       |
| Lead                     | 1.0 ug/g dry                             | 3.8                                     | 3.1                                     | -                                       | -                                       |
| Molybdenum               | 1.0 ug/g dry                             | <1.0                                    | <1.0                                    | _                                       | -                                       |
| Nickel                   | 1.0 ug/g dry                             | 3.3                                     | 6.1                                     | _                                       | -                                       |
| Selenium                 | 1.0 ug/g dry                             | <1.0                                    | <1.0                                    | _                                       | -                                       |
| Silver                   | 0.5 ug/g dry                             | <0.5                                    | <0.5                                    | _                                       | -                                       |
| Thallium                 | 1.0 ug/g dry                             | <1.0                                    | <1.0                                    | _                                       | -                                       |
| Uranium                  | 1.0 ug/g dry                             | 1.6                                     | <1.0                                    | _                                       | -                                       |
| Vanadium                 | 1.0 ug/g dry                             | 14.7                                    | 24.9                                    | -                                       | -                                       |
| Zinc                     | 1.0 ug/g dry                             | 9.3                                     | 17.1                                    | _                                       | -                                       |
| Volatiles                |                                          |                                         |                                         | <u> </u>                                |                                         |
| Benzene                  | 0.02 ug/g dry                            | <0.02                                   | <0.02                                   | <0.02                                   | <0.02                                   |
| Ethylbenzene             | 0.05 ug/g dry                            | <0.05                                   | <0.05                                   | <0.05                                   | <0.05                                   |
| Toluene                  | 0.05 ug/g dry                            | <0.05                                   | <0.05                                   | <0.05                                   | <0.05                                   |
| m,p-Xylenes              | 0.05 ug/g dry                            | <0.05                                   | <0.05                                   | <0.05                                   | <0.05                                   |
| o-Xylene                 | 0.05 ug/g dry                            | <0.05                                   | <0.05                                   | <0.05                                   | <0.05                                   |
| Xylenes, total           | 0.05 ug/g dry                            | <0.05                                   | <0.05                                   | <0.05                                   | <0.05                                   |
| Toluene-d8               | Surrogate                                | 104%                                    | 105%                                    | 104%                                    | 105%                                    |
| Hydrocarbons             |                                          |                                         |                                         |                                         |                                         |
| F1 PHCs (C6-C10)         | 7 ug/g dry                               | <7                                      | <7                                      | <7                                      | <7                                      |
| F2 PHCs (C10-C16)        | 4 ug/g dry                               | <4                                      | <4                                      | <4                                      | <4                                      |
| F3 PHCs (C16-C34)        | 8 ug/g dry                               | <8                                      | <8                                      | <8                                      | <8                                      |
| F4 PHCs (C34-C50)        | 6 ug/g dry                               | <6                                      | <6                                      | <6                                      | <6                                      |



Order #: 1746264

Certificate of Analysis
Client: exp Services Inc. (Ottawa)

Report Date: 17-Nov-2017 Order Date: 14-Nov-2017

Client PO:

Project Description: OTT00243705A0

| Physical Characteristics | Client ID:<br>Sample Date:<br>Sample ID:<br>MDL/Units | TP5B<br>14-Nov-17<br>1746264-05<br>Soil | -<br>-<br>- | -<br>-<br>-<br>- | -<br>-<br>- |
|--------------------------|-------------------------------------------------------|-----------------------------------------|-------------|------------------|-------------|
| % Solids                 | 0.1 % by Wt.                                          | 78.7                                    | _           | -                | -           |
| Volatiles                | <u>l</u>                                              |                                         | <u> </u>    |                  |             |
| Benzene                  | 0.02 ug/g dry                                         | <0.02                                   | -           | -                | -           |
| Ethylbenzene             | 0.05 ug/g dry                                         | <0.05                                   | -           | -                | -           |
| Toluene                  | 0.05 ug/g dry                                         | <0.05                                   | -           | -                | -           |
| m,p-Xylenes              | 0.05 ug/g dry                                         | <0.05                                   | -           | -                | -           |
| o-Xylene                 | 0.05 ug/g dry                                         | <0.05                                   | -           | -                | -           |
| Xylenes, total           | 0.05 ug/g dry                                         | <0.05                                   | -           | -                | -           |
| Toluene-d8               | Surrogate                                             | 100%                                    | -           | -                | -           |
| Hydrocarbons             | •                                                     |                                         |             |                  |             |
| F1 PHCs (C6-C10)         | 7 ug/g dry                                            | 68                                      | -           | -                | -           |
| F2 PHCs (C10-C16)        | 4 ug/g dry                                            | 412                                     | -           | -                | -           |
| F3 PHCs (C16-C34)        | 8 ug/g dry                                            | 202                                     | -           | -                | -           |
| F4 PHCs (C34-C50)        | 6 ug/g dry                                            | <6                                      | -           | -                | -           |



Certificate of Analysis

Order #: 1746264

Report Date: 17-Nov-2017 Order Date: 14-Nov-2017

Client: exp Services Inc. (Ottawa)

Order Date: 14-Nov-2017

Client PO:

Project Description: OTT00243705A0

Method Quality Control: Blank

| Analyte               | Result   | Reporting<br>Limit | Units        | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------|----------|--------------------|--------------|------------------|------|---------------|-----|--------------|-------|
| Hydrocarbons          |          |                    |              |                  |      |               |     |              |       |
| F1 PHCs (C6-C10)      | ND       | 7                  | ug/g         |                  |      |               |     |              |       |
| F2 PHCs (C10-C16)     | ND<br>ND | 4                  | ug/g<br>ug/g |                  |      |               |     |              |       |
| F3 PHCs (C16-C34)     | ND       | 8                  | ug/g         |                  |      |               |     |              |       |
| F4 PHCs (C34-C50)     | ND       | 6                  | ug/g         |                  |      |               |     |              |       |
| Metals                | ,,,      | -                  |              |                  |      |               |     |              |       |
| Antimony              | ND       | 1.0                | ug/g         |                  |      |               |     |              |       |
| Arsenic               | ND       | 1.0                | ug/g         |                  |      |               |     |              |       |
| Barium                | ND       | 1.0                | ug/g         |                  |      |               |     |              |       |
| Beryllium             | ND       | 1.0                | ug/g         |                  |      |               |     |              |       |
| Boron                 | ND       | 1.0                | ug/g         |                  |      |               |     |              |       |
| Cadmium               | ND       | 0.5                | ug/g         |                  |      |               |     |              |       |
| Chromium              | ND       | 1.0                | ug/g         |                  |      |               |     |              |       |
| Cobalt                | ND       | 1.0                | ug/g         |                  |      |               |     |              |       |
| Copper                | ND       | 1.0                | ug/g         |                  |      |               |     |              |       |
| Lead                  | ND       | 1.0                | ug/g         |                  |      |               |     |              |       |
| Molybdenum            | ND       | 1.0                | ug/g         |                  |      |               |     |              |       |
| Nickel                | ND       | 1.0                | ug/g         |                  |      |               |     |              |       |
| Selenium              | ND       | 1.0                | ug/g         |                  |      |               |     |              |       |
| Silver                | ND       | 0.5                | ug/g         |                  |      |               |     |              |       |
| Thallium              | ND       | 1.0                | ug/g         |                  |      |               |     |              |       |
| Uranium               | ND       | 1.0                | ug/g         |                  |      |               |     |              |       |
| Vanadium              | ND       | 1.0                | ug/g         |                  |      |               |     |              |       |
| Zinc                  | ND       | 1.0                | ug/g         |                  |      |               |     |              |       |
| Volatiles             |          |                    |              |                  |      |               |     |              |       |
| Benzene               | ND       | 0.02               | ug/g         |                  |      |               |     |              |       |
| Ethylbenzene          | ND       | 0.05               | ug/g         |                  |      |               |     |              |       |
| Toluene               | ND       | 0.05               | ug/g         |                  |      |               |     |              |       |
| m,p-Xylenes           | ND       | 0.05               | ug/g         |                  |      |               |     |              |       |
| o-Xylene              | ND       | 0.05               | ug/g         |                  |      |               |     |              |       |
| Xylenes, total        | ND       | 0.05               | ug/g         |                  |      |               |     |              |       |
| Surrogate: Toluene-d8 | 7.77     |                    | ug/g         |                  | 97.1 | 50-140        |     |              |       |



Order #: 1746264

Certificate of Analysis
Client: exp Services Inc. (Ottawa)

Report Date: 17-Nov-2017 Order Date: 14-Nov-2017

Client PO: Project Description: OTT00243705A0

Method Quality Control: Duplicate

| Analyte                  | Result | Reporting<br>Limit | Units    | Source<br>Result | %REC | %REC<br>Limit | RPD  | RPD<br>Limit | Notes |
|--------------------------|--------|--------------------|----------|------------------|------|---------------|------|--------------|-------|
| Hydrocarbons             |        |                    |          |                  |      |               |      |              |       |
| F1 PHCs (C6-C10)         | ND     | 7                  | ug/g dry | ND               |      |               |      | 40           |       |
| F2 PHCs (C10-C16)        | ND     | 4                  | ug/g wet | ND               |      |               |      | 30           |       |
| F3 PHCs (C16-C34)        | 47     | 8                  | ug/g wet | 50               |      |               | 6.4  | 30           |       |
| F4 PHCs (C34-C50)        | 41     | 6                  | ug/g wet | 54               |      |               | 27.4 | 30           |       |
| Metals                   |        |                    | 0.0      |                  |      |               |      |              |       |
| Antimony                 | ND     | 1.0                | ug/g dry | ND               |      |               |      | 30           |       |
| Arsenic                  | 7.13   | 1.0                | ug/g dry | 6.61             |      |               | 7.5  | 30           |       |
| Barium                   | 147    | 1.0                | ug/g dry | 148              |      |               | 0.7  | 30           |       |
| Beryllium                | ND     | 1.0                | ug/g dry | ND               |      |               | 0.0  | 30           |       |
| Boron                    | 10.4   | 1.0                | ug/g dry | 11.1             |      |               | 6.9  | 30           |       |
| Cadmium                  | ND     | 0.5                | ug/g dry | ND               |      |               | 0.0  | 30           |       |
| Chromium                 | 15.4   | 1.0                | ug/g dry | 14.9             |      |               | 3.2  | 30           |       |
| Cobalt                   | 5.17   | 1.0                | ug/g dry | 5.26             |      |               | 1.6  | 30           |       |
| Copper                   | 42.7   | 1.0                | ug/g dry | 39.6             |      |               | 7.7  | 30           |       |
| Lead                     | 110    | 1.0                | ug/g dry | 109              |      |               | 0.6  | 30           |       |
| Molybdenum               | 1.01   | 1.0                | ug/g dry | 1.18             |      |               | 15.1 | 30           |       |
| Nickel                   | 13.7   | 1.0                | ug/g dry | 13.2             |      |               | 3.9  | 30           |       |
| Selenium                 | ND     | 1.0                | ug/g dry | ND               |      |               | 0.0  | 30           |       |
| Silver                   | ND     | 0.5                | ug/g dry | ND               |      |               | 0.0  | 30           |       |
| Thallium                 | ND     | 1.0                | ug/g dry | ND               |      |               | 0.0  | 30           |       |
| Uranium                  | 1.89   | 1.0                | ug/g dry | 1.97             |      |               | 4.1  | 30           |       |
| Vanadium                 | 24.0   | 1.0                | ug/g dry | 24.2             |      |               | 1.0  | 30           |       |
| Zinc                     | 168    | 1.0                | ug/g dry | 169              |      |               | 0.4  | 30           |       |
| Physical Characteristics |        |                    |          |                  |      |               |      |              |       |
| % Šolids                 | 83.2   | 0.1                | % by Wt. | 82.9             |      |               | 0.4  | 25           |       |
| Volatiles                |        |                    |          |                  |      |               |      |              |       |
| Benzene                  | ND     | 0.02               | ug/g dry | ND               |      |               | 0.0  | 50           |       |
| Ethylbenzene             | ND     | 0.05               | ug/g dry | ND               |      |               | 0.0  | 50           |       |
| Toluene                  | ND     | 0.05               | ug/g dry | ND               |      |               |      | 50           |       |
| m,p-Xylenes              | ND     | 0.05               | ug/g dry | ND               |      |               | 0.0  | 50           |       |
| o-Xylene                 | ND     | 0.05               | ug/g dry | ND               |      |               | 0.0  | 50           |       |
| Surrogate: Toluene-d8    | 6.84   |                    | ug/g dry |                  | 104  | 50-140        |      |              |       |



Certificate of Analysis

Order #: 1746264

Report Date: 17-Nov-2017 Order Date: 14-Nov-2017

Client: exp Services Inc. (Ottawa)

Order Date: 14-Nov-2017

Client PO:

Project Description: OTT00243705A0

Method Quality Control: Spike

| Analyte               | Result | Reporting<br>Limit | Units | Source<br>Result | %REC | %REC<br>Limit | RPD | RPD<br>Limit | Notes |
|-----------------------|--------|--------------------|-------|------------------|------|---------------|-----|--------------|-------|
| Hydrocarbons          |        |                    |       |                  |      |               |     |              |       |
| F1 PHCs (C6-C10)      | 172    | 7                  | ug/g  |                  | 86.1 | 80-120        |     |              |       |
| F2 PHCs (C10-C16)     | 85     | 4                  | ug/g  | ND               | 94.3 | 60-140        |     |              |       |
| F3 PHCs (C16-C34)     | 248    | 8                  | ug/g  | 50               | 107  | 60-140        |     |              |       |
| F4 PHCs (C34-C50)     | 174    | 6                  | ug/g  | 54               | 96.7 | 60-140        |     |              |       |
| Metals                |        |                    |       |                  |      |               |     |              |       |
| Antimony              | 310    |                    | ug/L  | ND               | 124  | 70-130        |     |              |       |
| Arsenic               | 402    |                    | ug/L  | 132              | 108  | 70-130        |     |              |       |
| Barium                | 251    |                    | ug/L  |                  | 100  | 70-130        |     |              |       |
| Beryllium             | 252    |                    | ug/L  | 1.87             | 100  | 70-130        |     |              |       |
| Boron                 | 456    |                    | ug/L  | 222              | 93.3 | 70-130        |     |              |       |
| Cadmium               | 246    |                    | ug/L  | 8.94             | 94.8 | 70-130        |     |              |       |
| Chromium              | 515    |                    | ug/L  | 298              | 86.8 | 70-130        |     |              |       |
| Cobalt                | 327    |                    | ug/L  | 105              | 88.9 | 70-130        |     |              |       |
| Copper                | 1020   |                    | ug/L  | 791              | 89.9 | 70-130        |     |              |       |
| Lead                  | 2360   |                    | ug/L  | 2180             | 74.1 | 70-130        |     |              |       |
| Molybdenum            | 245    |                    | ug/L  | 23.5             | 88.5 | 70-130        |     |              |       |
| Nickel                | 479    |                    | ug/L  | 263              | 86.1 | 70-130        |     |              |       |
| Selenium              | 224    |                    | ug/L  | 7.82             | 86.3 | 70-130        |     |              |       |
| Silver                | 230    |                    | ug/L  | ND               | 91.9 | 70-130        |     |              |       |
| Thallium              | 235    |                    | ug/L  | ND               | 94.1 | 70-130        |     |              |       |
| Uranium               | 307    |                    | ug/L  | 39.4             | 107  | 70-130        |     |              |       |
| Vanadium              | 714    |                    | ug/L  | 484              | 91.8 | 70-130        |     |              |       |
| Zinc                  | 226    |                    | ug/L  |                  | 90.4 | 70-130        |     |              |       |
| Volatiles             |        |                    |       |                  |      |               |     |              |       |
| Benzene               | 2.85   | 0.02               | ug/g  |                  | 71.3 | 60-130        |     |              |       |
| Ethylbenzene          | 3.46   | 0.05               | ug/g  |                  | 86.6 | 60-130        |     |              |       |
| Toluene               | 3.09   | 0.05               | ug/g  |                  | 77.2 | 60-130        |     |              |       |
| m,p-Xylenes           | 7.59   | 0.05               | ug/g  |                  | 94.9 | 60-130        |     |              |       |
| o-Xylene              | 3.81   | 0.05               | ug/g  |                  | 95.2 | 60-130        |     |              |       |
| Surrogate: Toluene-d8 | 6.33   |                    | ug/g  |                  | 79.1 | 50-140        |     |              |       |



Client: exp Services Inc. (Ottawa)

Certificate of Analysis

Order #: 1746264

Report Date: 17-Nov-2017 Order Date: 14-Nov-2017

Client PO: Project Description: OTT00243705A0

#### **Qualifier Notes:**

None

#### **Sample Data Revisions**

None

#### **Work Order Revisions / Comments:**

None

#### **Other Report Notes:**

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

#### CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

# GPARACEL

TRUSTED .
RESPONSIVE
RELIABLE .



Chain of Custody (Lab Use Only)

Nº 110819

| Page | U | of | ١ |
|------|---|----|---|
|      | - | 11 | 1 |

LABORATORIES LTD.

| lient Na              | net EXP                                                |          |            |                 | Project Reference                        |        |                |        |        |              |      |          |       | Turnaround time.         |       |              |         |
|-----------------------|--------------------------------------------------------|----------|------------|-----------------|------------------------------------------|--------|----------------|--------|--------|--------------|------|----------|-------|--------------------------|-------|--------------|---------|
| ontact N              | -X1                                                    |          |            |                 | Quote#                                   |        |                |        |        |              |      |          |       | 011                      | Day   | O            | 3 Day   |
|                       | MAIN CALLE                                             |          |            |                 | PO#                                      |        |                |        |        |              |      |          |       |                          | D     | -            | Dagular |
| out you               | 2650 Queens ve Dr                                      |          |            |                 | Email Address: Moethow lane itel exp. Co |        |                |        |        |              |      |          |       | □ 2 Day □ Regular        |       |              |         |
| elephon               | 17-1-14-1956                                           |          |            |                 |                                          |        |                |        |        |              |      |          |       | Date Required: Nov 17/17 |       |              |         |
| ritaria               | ; 🗹 O. Reg. 153/04 (As Amended) Table 🕹 🗆 R            | □PWQO □C | CME D SUI  | B (Sto          | rm)                                      | DS!    | UB (           | Sanita | ry) Mi | micipality:_ |      | □ Other: |       |                          |       |              |         |
|                       | sper S (Soil/Sed.) GW (Ground Water) SW (Surface Water |          |            |                 |                                          |        |                |        | ed A   |              |      |          |       |                          |       |              |         |
|                       |                                                        |          |            | -               |                                          |        | EX             |        | П      |              |      | T        |       |                          |       |              |         |
| Paracel Order Number: |                                                        | iner     | Sample     | Taken           | +81                                      |        |                | ICP    |        |              |      |          |       |                          |       |              |         |
|                       | 1746264                                                | rix      | Air Volume | # of Containers | Sample Taken                             |        | PHCs FI-F4+BTE | S      | Hs     | als by       |      | B (HWS)  |       |                          |       |              |         |
|                       | Sample ID/Location Name                                | Matrix   | Air        | 10 #            | Date                                     | Time   | PER            | VOC    | PAHS   | ME           | 11.5 | B (F)    |       | +                        | +     | -            | -       |
| 1                     | TDIA                                                   | 5        |            | 3               | MINIMA                                   |        | V              |        |        | 2            |      | -        | -     | -                        | -     | -            | -       |
| 2                     | TP2B                                                   | 5        |            | 3               |                                          |        | 1              |        |        | 4            |      |          |       | _                        | -     |              | -       |
| 3                     | TP3A                                                   | 5        |            | 3               |                                          |        | 1              |        | 1      | -            |      | 1        |       |                          | +     | -            | _       |
| 1                     | TP6A                                                   | 5        |            | 3               |                                          |        | 1              |        | L      | 1            |      |          |       |                          | -     |              |         |
| 5                     | TPSB                                                   | 5        |            | 3               |                                          |        | 1              |        |        | +            |      | 1        |       |                          |       |              | _       |
|                       | Trop                                                   |          |            |                 |                                          |        |                |        |        |              |      |          |       |                          |       |              |         |
| 6                     |                                                        |          |            |                 |                                          |        |                |        |        |              |      |          |       |                          |       |              |         |
| 7                     |                                                        |          |            |                 |                                          |        |                |        |        |              |      |          |       |                          |       |              |         |
| 8                     |                                                        |          |            |                 |                                          |        |                |        |        |              |      |          |       |                          |       |              |         |
| 9                     |                                                        |          |            |                 |                                          |        |                |        |        |              |      |          |       |                          |       |              |         |
| 10                    | ments: Cancel metals and                               | dice     | 0.0        | Stusi           | ales IB                                  | 3A TPL | A              | inc    | X      | TP           | 58   | 017      | chien | +.                       | Metho | d of Deliver | th      |
| Com                   | nents: Cancel metals and                               | 4313     | U/ I       | 20111           | Pics                                     | 1111   |                |        |        |              | -    | Pos      |       |                          | C     | Joen         | "       |
|                       | CA 4 10 - 67 - 60                                      | Recei    | ed by be   | nyer/l)ep       | ol:                                      | Rece   | ived at        | Lab:   |        |              |      |          | V     | erified By:              | 1/    | 1            |         |
| Relinc                | nished By (Sign)                                       | N        | Al         | K               | 2                                        | 11/10  | _              | 4      |        |              | -    | 1        | _     | X                        | 1     |              | na Ef.  |
| Reline                | nished By (Print) Many Lagrand                         | Date/    | inte: 4    | 4.40            | 10                                       |        | /Time:         |        |        |              | SIF  | 711      | - 40  | H Verified               |       | 15/17        | 11400   |
| Date/                 | ine: MN 14/17 @ 4:30pm                                 | Temp     | erature:   | 38              | 'c                                       | Tem    | peratur        | ¢;_,   | 34     | C            |      | -        | P     | n-vennea                 | 1 107 |              |         |



Your Project #: (EXP) OTT-00243705-B0

Your C.O.C. #: 943454-01-01

**Attention: Mark McCalla** 

exp Services Inc 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2023/07/14

Report #: R7717059 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

BUREAU VERITAS JOB #: C3K4929 Received: 2023/07/11, 13:53

Sample Matrix: Water # Samples Received: 6

|                                              |          | Date       | Date       |                          |                   |
|----------------------------------------------|----------|------------|------------|--------------------------|-------------------|
| Analyses                                     | Quantity | Extracted  | Analyzed   | <b>Laboratory Method</b> | Analytical Method |
| Petroleum Hydro. CCME F1 & BTEX in Water (1) | 6        | N/A        | 2023/07/13 | CAM SOP-00315            | CCME PHC-CWS m    |
| Petroleum Hydrocarbons F2-F4 in Water (1, 2) | 6        | 2023/07/13 | 2023/07/13 | CAM SOP-00316            | CCME PHC-CWS m    |

#### Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

 $Reference\ Method\ suffix\ "m"\ indicates\ test\ methods\ incorporate\ validated\ modifications\ from\ specific\ reference\ methods\ to\ improve\ performance.$ 

- \* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Mississauga, 6740 Campobello Rd , Mississauga, ON, L5N 2L8
- (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.



Your Project #: (EXP) OTT-00243705-B0

Your C.O.C. #: 943454-01-01

**Attention: Mark McCalla** 

exp Services Inc 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2023/07/14

Report #: R7717059 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

BUREAU VERITAS JOB #: C3K4929 Received: 2023/07/11, 13:53

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to: Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.



Client Project #: (EXP) OTT-00243705-B0

Sampler Initials: MR

# O.REG 153 PHCS, BTEX/F1-F4 (WATER)

| ·                         | _        |              |              |      | <u>.</u> |                 |     |          |              |      |          |
|---------------------------|----------|--------------|--------------|------|----------|-----------------|-----|----------|--------------|------|----------|
| Bureau Veritas ID         |          | WIX824       | WIX825       |      |          | WIX825          |     |          | WIX826       |      |          |
| Sampling Date             |          | 2023/07/11   | 2023/07/11   |      |          | 2023/07/11      |     |          | 2023/07/11   |      |          |
| Sampling Date             |          | 10:30        | 11:25        |      |          | 11:25           |     |          | 12:10        |      |          |
| COC Number                |          | 943454-01-01 | 943454-01-01 |      |          | 943454-01-01    |     |          | 943454-01-01 |      |          |
|                           | UNITS    | MW-1         | MW-2         | RDL  | QC Batch | MW-2<br>Lab-Dup | RDL | QC Batch | MW-3         | RDL  | QC Batch |
| BTEX & F1 Hydrocarbons    | <u> </u> | <u> </u>     | <u> </u>     |      |          | ·               |     | ·        | ·            | •    |          |
| Benzene                   | ug/L     | <0.20        | <0.20        | 0.20 | 8787759  |                 |     |          | <0.20        | 0.20 | 8787759  |
| Toluene                   | ug/L     | <0.20        | <0.20        | 0.20 | 8787759  |                 |     |          | 0.24         | 0.20 | 8787759  |
| Ethylbenzene              | ug/L     | <0.20        | <0.20        | 0.20 | 8787759  |                 |     |          | <0.20        | 0.20 | 8787759  |
| o-Xylene                  | ug/L     | <0.20        | <0.20        | 0.20 | 8787759  |                 |     |          | <0.20        | 0.20 | 8787759  |
| p+m-Xylene                | ug/L     | <0.40        | <0.40        | 0.40 | 8787759  |                 |     |          | <0.40        | 0.40 | 8787759  |
| Total Xylenes             | ug/L     | <0.40        | <0.40        | 0.40 | 8787759  |                 |     |          | <0.40        | 0.40 | 8787759  |
| F1 (C6-C10)               | ug/L     | <25          | <25          | 25   | 8787759  |                 |     |          | <25          | 25   | 8787759  |
| F1 (C6-C10) - BTEX        | ug/L     | <25          | <25          | 25   | 8787759  |                 |     |          | <25          | 25   | 8787759  |
| F2-F4 Hydrocarbons        |          |              |              |      |          |                 |     |          |              |      |          |
| F2 (C10-C16 Hydrocarbons) | ug/L     | <100         | <100         | 100  | 8786310  | <100            | 100 | 8786310  | <100         | 100  | 8786310  |
| F3 (C16-C34 Hydrocarbons) | ug/L     | <200         | <200         | 200  | 8786310  | <200            | 200 | 8786310  | 850          | 200  | 8786310  |
| F4 (C34-C50 Hydrocarbons) | ug/L     | <200         | <200         | 200  | 8786310  | <200            | 200 | 8786310  | 970          | 200  | 8786310  |
| Reached Baseline at C50   | ug/L     | Yes          | Yes          |      | 8786310  | Yes             |     | 8786310  | Yes          |      | 8786310  |
| Surrogate Recovery (%)    | •        |              |              |      |          |                 | •   |          |              |      |          |
| 1,4-Difluorobenzene       | %        | 122          | 121          |      | 8787759  |                 |     |          | 121          |      | 8787759  |
| 4-Bromofluorobenzene      | %        | 87           | 88           |      | 8787759  |                 |     |          | 87           |      | 8787759  |
| D10-o-Xylene              | %        | 113          | 112          |      | 8787759  |                 |     |          | 113          |      | 8787759  |
| D4-1,2-Dichloroethane     | %        | 109          | 109          |      | 8787759  |                 |     |          | 112          |      | 8787759  |
| o-Terphenyl               | %        | 90           | 98           |      | 8786310  | 96              |     | 8786310  | 97           |      | 8786310  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate



Client Project #: (EXP) OTT-00243705-B0

Sampler Initials: MR

# O.REG 153 PHCS, BTEX/F1-F4 (WATER)

| Bureau Veritas ID            |       | WIX827              | WIX828       | WIX829              |      |          |
|------------------------------|-------|---------------------|--------------|---------------------|------|----------|
| Sampling Date                |       | 2023/07/11<br>12:30 | 2023/07/11   | 2023/07/11<br>12:10 |      |          |
| COC Number                   |       | 943454-01-01        | 943454-01-01 | 943454-01-01        |      |          |
|                              | UNITS | FIELD BLANK         | TRIP BLANK   | DUP                 | RDL  | QC Batch |
| BTEX & F1 Hydrocarbons       |       |                     |              |                     |      |          |
| Benzene                      | ug/L  | <0.20               | <0.20        | <0.20               | 0.20 | 8787759  |
| Toluene                      | ug/L  | <0.20               | <0.20        | 0.22                | 0.20 | 8787759  |
| Ethylbenzene                 | ug/L  | <0.20               | <0.20        | <0.20               | 0.20 | 8787759  |
| o-Xylene                     | ug/L  | <0.20               | <0.20        | <0.20               | 0.20 | 8787759  |
| p+m-Xylene                   | ug/L  | <0.40               | <0.40        | <0.40               | 0.40 | 8787759  |
| Total Xylenes                | ug/L  | <0.40               | <0.40        | <0.40               | 0.40 | 8787759  |
| F1 (C6-C10)                  | ug/L  | <25                 | <25          | <25                 | 25   | 8787759  |
| F1 (C6-C10) - BTEX           | ug/L  | <25                 | <25          | <25                 | 25   | 8787759  |
| F2-F4 Hydrocarbons           |       |                     |              |                     |      |          |
| F2 (C10-C16 Hydrocarbons)    | ug/L  | <100                | <100         | <100                | 100  | 8786310  |
| F3 (C16-C34 Hydrocarbons)    | ug/L  | <200                | <200         | 550                 | 200  | 8786310  |
| F4 (C34-C50 Hydrocarbons)    | ug/L  | <200                | <200         | 620                 | 200  | 8786310  |
| Reached Baseline at C50      | ug/L  | Yes                 | Yes          | Yes                 |      | 8786310  |
| Surrogate Recovery (%)       |       |                     |              |                     |      |          |
| 1,4-Difluorobenzene          | %     | 119                 | 117          | 120                 |      | 8787759  |
| 4-Bromofluorobenzene         | %     | 88                  | 89           | 87                  |      | 8787759  |
| D10-o-Xylene                 | %     | 110                 | 108          | 113                 |      | 8787759  |
| D4-1,2-Dichloroethane        | %     | 107                 | 111          | 111                 |      | 8787759  |
| o-Terphenyl                  | %     | 95                  | 97           | 97                  |      | 8786310  |
| RDL = Reportable Detection I | imit  |                     |              |                     |      |          |
| QC Batch = Quality Control B | atch  |                     |              |                     |      |          |



Client Project #: (EXP) OTT-00243705-B0

Sampler Initials: MR

# **TEST SUMMARY**

**Bureau Veritas ID:** WIX824

Sample ID: MW-1

. Matrix: Water Collected: 2023/07/11

Shipped:

**Received:** 2023/07/11

| Test Description                         | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst       |
|------------------------------------------|-----------------|---------|------------|---------------|---------------|
| Petroleum Hydro. CCME F1 & BTEX in Water | HSGC/MSFD       | 8787759 | N/A        | 2023/07/13    | Georgeta Rusu |
| Petroleum Hydrocarbons F2-F4 in Water    | GC/FID          | 8786310 | 2023/07/13 | 2023/07/13    | Emir Danisman |

Bureau Veritas ID: WIX825

Sample ID: MW-2

Matrix: Water

Collected: 2023/07/11

Shipped:

**Received:** 2023/07/11

| Test Description                         | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst       |
|------------------------------------------|-----------------|---------|------------|---------------|---------------|
| Petroleum Hydro. CCME F1 & BTEX in Water | HSGC/MSFD       | 8787759 | N/A        | 2023/07/13    | Georgeta Rusu |
| Petroleum Hydrocarbons F2-F4 in Water    | GC/FID          | 8786310 | 2023/07/13 | 2023/07/13    | Emir Danisman |

Bureau Veritas ID: WIX825 Dup

Sample ID: MW-2

Matrix: Water

Collected: 2023/07/11 Shipped:

**Received:** 2023/07/11

| Test Description                      | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst       |
|---------------------------------------|-----------------|---------|------------|---------------|---------------|
| Petroleum Hydrocarbons F2-F4 in Water | GC/FID          | 8786310 | 2023/07/13 | 2023/07/13    | Emir Danisman |

**Bureau Veritas ID:** WIX826

Sample ID: MW-3

Matrix: Water

Collected: 2023/07/11 Shipped:

Received: 2023/07/11

| Test Description                         | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst       |
|------------------------------------------|-----------------|---------|------------|---------------|---------------|
| Petroleum Hydro. CCME F1 & BTEX in Water | HSGC/MSFD       | 8787759 | N/A        | 2023/07/13    | Georgeta Rusu |
| Petroleum Hydrocarbons F2-F4 in Water    | GC/FID          | 8786310 | 2023/07/13 | 2023/07/13    | Emir Danisman |

Bureau Veritas ID: WIX827

Sample ID: FIELD BLANK

Matrix: Water

**Collected:** 2023/07/11

Shipped: Received: 2023/07/11

| Test Description                         | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst       |
|------------------------------------------|-----------------|---------|------------|---------------|---------------|
| Petroleum Hydro. CCME F1 & BTEX in Water | HSGC/MSFD       | 8787759 | N/A        | 2023/07/13    | Georgeta Rusu |
| Petroleum Hydrocarbons F2-F4 in Water    | GC/FID          | 8786310 | 2023/07/13 | 2023/07/13    | Emir Danisman |

**Bureau Veritas ID:** WIX828

Sample ID: TRIP BLANK

Matrix: Water

Collected: 2023/07/11

Shipped:

**Received:** 2023/07/11

| Test Description                         | otion Instrumentation Batch |         | Extracted  | Date Analyzed | Analyst       |  |  |
|------------------------------------------|-----------------------------|---------|------------|---------------|---------------|--|--|
| Petroleum Hydro. CCME F1 & BTEX in Water | HSGC/MSFD                   | 8787759 | N/A        | 2023/07/13    | Georgeta Rusu |  |  |
| Petroleum Hydrocarbons F2-F4 in Water    | GC/FID                      | 8786310 | 2023/07/13 | 2023/07/13    | Emir Danisman |  |  |



Client Project #: (EXP) OTT-00243705-B0

Sampler Initials: MR

# **TEST SUMMARY**

**Collected:** 2023/07/11 **Shipped:** Received: 2023/07/11 **Bureau Veritas ID:** WIX829

Sample ID: DUP
Matrix: Water

| Test Description                         | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst       |
|------------------------------------------|-----------------|---------|------------|---------------|---------------|
| Petroleum Hydro. CCME F1 & BTEX in Water | HSGC/MSFD       | 8787759 | N/A        | 2023/07/13    | Georgeta Rusu |
| Petroleum Hydrocarbons F2-F4 in Water    | GC/FID          | 8786310 | 2023/07/13 | 2023/07/13    | Emir Danisman |



Client Project #: (EXP) OTT-00243705-B0

Sampler Initials: MR

# **GENERAL COMMENTS**

| Each te | emperature is the    | average of up to t | hree cooler temperatures taken at receipt |
|---------|----------------------|--------------------|-------------------------------------------|
|         | Package 1            | 20.7°C             | 7                                         |
|         |                      | •                  |                                           |
| Result  | s relate only to the | e items tested.    |                                           |



#### **QUALITY ASSURANCE REPORT**

exp Services Inc

Client Project #: (EXP) OTT-00243705-B0

Sampler Initials: MR

|          |                           |            | Matrix     | Spike     | SPIKED     | BLANK     | Method I | Blank | RPD       |           |
|----------|---------------------------|------------|------------|-----------|------------|-----------|----------|-------|-----------|-----------|
| QC Batch | Parameter                 | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value    | UNITS | Value (%) | QC Limits |
| 8786310  | o-Terphenyl               | 2023/07/13 | 101        | 60 - 130  | 100        | 60 - 130  | 100      | %     |           |           |
| 8787759  | 1,4-Difluorobenzene       | 2023/07/13 | 98         | 70 - 130  | 114        | 70 - 130  | 118      | %     |           |           |
| 8787759  | 4-Bromofluorobenzene      | 2023/07/13 | 107        | 70 - 130  | 91         | 70 - 130  | 89       | %     |           |           |
| 8787759  | D10-o-Xylene              | 2023/07/13 | 94         | 70 - 130  | 112        | 70 - 130  | 107      | %     |           |           |
| 8787759  | D4-1,2-Dichloroethane     | 2023/07/13 | 94         | 70 - 130  | 101        | 70 - 130  | 108      | %     |           |           |
| 8786310  | F2 (C10-C16 Hydrocarbons) | 2023/07/13 | 113        | 60 - 130  | 101        | 60 - 130  | <100     | ug/L  | NC        | 30        |
| 8786310  | F3 (C16-C34 Hydrocarbons) | 2023/07/13 | 117        | 60 - 130  | 108        | 60 - 130  | <200     | ug/L  | NC        | 30        |
| 8786310  | F4 (C34-C50 Hydrocarbons) | 2023/07/13 | 117        | 60 - 130  | 106        | 60 - 130  | <200     | ug/L  | NC        | 30        |
| 8787759  | Benzene                   | 2023/07/14 | 97         | 50 - 140  | 114        | 50 - 140  | <0.20    | ug/L  | NC        | 30        |
| 8787759  | Ethylbenzene              | 2023/07/14 | 108        | 50 - 140  | 130        | 50 - 140  | <0.20    | ug/L  | NC        | 30        |
| 8787759  | F1 (C6-C10) - BTEX        | 2023/07/14 |            |           |            |           | <25      | ug/L  | NC        | 30        |
| 8787759  | F1 (C6-C10)               | 2023/07/14 | 97         | 60 - 140  | 101        | 60 - 140  | <25      | ug/L  | NC        | 30        |
| 8787759  | o-Xylene                  | 2023/07/14 | 100        | 50 - 140  | 120        | 50 - 140  | <0.20    | ug/L  | NC        | 30        |
| 8787759  | p+m-Xylene                | 2023/07/14 | 97         | 50 - 140  | 119        | 50 - 140  | <0.40    | ug/L  | NC        | 30        |
| 8787759  | Toluene                   | 2023/07/14 | 89         | 50 - 140  | 106        | 50 - 140  | <0.20    | ug/L  | NC        | 30        |
| 8787759  | Total Xylenes             | 2023/07/14 |            |           |            |           | <0.40    | ug/L  | NC        | 30        |

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).



Client Project #: (EXP) OTT-00243705-B0

Sampler Initials: MR

#### **VALIDATION SIGNATURE PAGE**

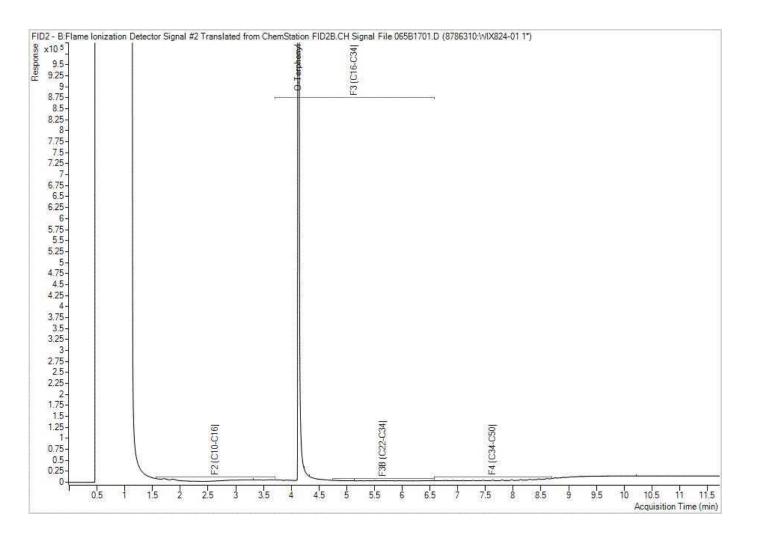
The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for  $\{2\}$   $\{3\}$  laboratory operations.

| VERITAS    |                                    | 6740 Campobello Road, Mississa<br>VOICE TO:                 | uga, Untario Cana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | da L5N 2L8 T              | el: (905) 817-57 |                | -563-6266 Fax                                    | (905) 817-57 | 77 www.b | vna com       |                     |           |          |                                  | СНА            |                                         | 11-Jul-23 13:53                                                               |                              |
|------------|------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------|----------------|--------------------------------------------------|--------------|----------|---------------|---------------------|-----------|----------|----------------------------------|----------------|-----------------------------------------|-------------------------------------------------------------------------------|------------------------------|
| mpany Name | #17497 exp Ser                     | vices Inc                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 160              | REPO           | RI IU:                                           |              |          |               | _                   |           |          | T INFORMATION:                   |                | Kathe                                   | rine Szozda                                                                   | -                            |
| ention:    | Accounts Payabl                    |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Company Nar<br>Attention: | Mark M           | lcCalla        | _                                                | _            |          | - 0           | otation#            |           | C3167    | 78                               |                | HILIMAN                                 | 3K4929                                                                        | Order#:                      |
| íress:     | 100-2650 Queen                     |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Address:                  | -                | .v.coma        |                                                  |              |          | 100           | 0.#:                |           | (EXP)    | OTT-0024370                      | 5-B0           |                                         |                                                                               |                              |
|            | Ottawa ON K2B                      |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                  |                |                                                  |              |          |               | oject:<br>oject Nam |           | 1000     | 011-0024010                      | 5-60           | AN4                                     | ENV-910                                                                       | J454<br>Project Manager:     |
|            | (613) 688-1899                     | Fax: (613) 225                                              | -7337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tet                       |                  | 25-9940 Ext:   |                                                  |              |          |               | 0 #:                |           |          |                                  |                |                                         |                                                                               |                              |
| iit:       | AP@exp.com                         |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Email                     |                  | ccalla@exp.    | com                                              |              |          | Sa            | mpled By            |           | Ma       | ckenzor                          | Russell        |                                         | C#943454-01-01                                                                | Katherine Szozda             |
| MOE RE     | GULATED DRINKING<br>SUBMITTED ON T | S WATER OR WATER INTEI<br>HE BUREAU VERITAS DRIN            | NDED FOR HU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MAN CONS                  | UMPTION          | MUST BE        |                                                  |              | _        | ANALY         | SIS REQI            | JESTED (P | PLEASE B | E SPECIFIC)                      |                |                                         | Turnaround Time (TAT                                                          |                              |
| Regula     | tion 153 (2011)                    | Other Re                                                    | The state of the s | CHAIN OF                  |                  |                | 9                                                | 1 1          |          |               |                     |           |          |                                  |                | Popular (                               | Please provide advance notice<br>Standard) TAT:                               | e for rush projects          |
|            | Res/Park Medium                    |                                                             | ry Sewer Bylaw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                         | Special In       | structions     | circle):                                         | 2            |          |               |                     |           |          |                                  |                | 100000000000000000000000000000000000000 | ed if Rush TAT is not specified):                                             |                              |
| able 2     | Ind/Comm Coarse                    | Reg 558. Storm                                              | Sewer Bylaw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 3                       |                  |                | Cr                                               | 15           |          |               |                     |           |          |                                  |                | Standard TA                             | T = 5-7 Working days for most tests                                           |                              |
| able 3     | Ind/Comm Coarse Agri/Other For RS  | C MISA Municipal                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                         |                  |                | eld)                                             | BTEXF1       |          |               |                     |           |          |                                  | 1 1 .          | Please note:<br>days - contai           | Standard TAT for certain tests such a<br>it your Project Manager for details. | s BOD and Dioxins/Furans are |
| able       |                                    |                                                             | 106 Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                  |                | Field Filtered (please of<br>Metals / Hg / Cr VI | 2            |          |               |                     |           |          |                                  |                |                                         | ic Rush TAT (if applies to entire su                                          | thmission)                   |
|            |                                    | Other                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                         |                  |                | / Filt                                           | 183 P        |          |               |                     |           |          |                                  |                | Date Require                            |                                                                               | Time Required:               |
|            | Include Criteria                   | on Certificate of Analysis (Y                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                  |                | Pie -                                            | Reg 1        |          |               |                     |           | 12.5     |                                  |                | Rush Confin                             | nation Number:                                                                | (call lab for #)             |
| Samp       | se Barcode Label                   | Sample (Location) Identification                            | n Date Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ampled Ti                 | me Sampled       | Matrix         |                                                  | 0            |          |               |                     |           |          |                                  |                | # of Bottles                            | Con                                                                           | nments                       |
| Mu         | )- l                               |                                                             | 07/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1123                      | 0:30             | GW             |                                                  | /            |          |               |                     |           |          |                                  |                | 4                                       |                                                                               |                              |
| ML         | 1-2                                |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 11:25            | 1              |                                                  | 1            |          |               |                     |           |          |                                  |                | 4                                       |                                                                               |                              |
| ML         | 1-3                                |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13                        | 2:10             |                |                                                  | 1            |          |               |                     |           |          |                                  |                | ч                                       | turbid                                                                        |                              |
| Fiel       | d Blank                            |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                         | 2:30             |                |                                                  | 1            |          |               | 1                   |           |          |                                  |                | 4                                       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                       |                              |
| Tri        | p Blank                            |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                  |                |                                                  | 1            |          |               | +                   | +         | -        |                                  |                | 3                                       |                                                                               |                              |
| - 1        | . 0                                |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                  |                |                                                  | -            | -        |               | -                   | -         | _        |                                  |                | 3                                       |                                                                               |                              |
| D          | UP                                 |                                                             | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                         | 2:10             | V              |                                                  | /            |          |               |                     |           |          |                                  |                | 4                                       | turbid                                                                        |                              |
|            |                                    |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                  |                |                                                  |              |          |               | 8                   |           |          |                                  |                |                                         |                                                                               |                              |
|            |                                    |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                  |                |                                                  |              |          |               |                     |           |          |                                  |                |                                         |                                                                               |                              |
|            |                                    |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                  |                |                                                  |              |          |               | 1                   |           | 1        |                                  |                |                                         |                                                                               |                              |
|            |                                    |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                  |                |                                                  |              |          |               | +                   | +         | +        |                                  |                |                                         |                                                                               |                              |
|            | RELINQUISHED BY: (Sig              | mature/Print) Dat                                           | e: (YY/MM/DD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Time                      |                  | DECEMEN O      | W. (Sianat                                       | 2-11         |          |               |                     |           |          |                                  |                |                                         |                                                                               |                              |
| W 1        | 0 /11 :                            |                                                             | 107/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13:20                     | S                |                | 3Y: (Signature/                                  | 725          |          | ate: (YY/MM/C |                     | Time      |          | # jars used and<br>not submitted |                |                                         | tory Use Only TCEPACKS                                                        |                              |
| 10         | / Luciu                            | C. C.                                                       | , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.00                     | James            | Mand           | Sermed                                           |              | -        | 123/07/1      |                     | 13:53     |          |                                  | Time Sensitive | Temperat                                | ure (°C) on Recei Custody                                                     | nt V                         |
| SS OTHER   | WISE AGREED TO IN WRI              | TING, WORK SUBMITTED ON THIS<br>FOUR TERMS WHICH ARE AVAILA | CHAIN OF CUSTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y IS SUBJECT              | TO BUREAU        | VERITAS'S STAN | 1                                                | WD CONDITI   | -        | 23/07/        |                     | 08-       | 50       |                                  |                | 6011                                    | U, 22 Intac                                                                   |                              |

Bureau Veritas Canada (2019) Inc.


Bureau Veritas Job #: C3K4929 Report Date: 2023/07/14 Bureau Veritas Sample: WIX824

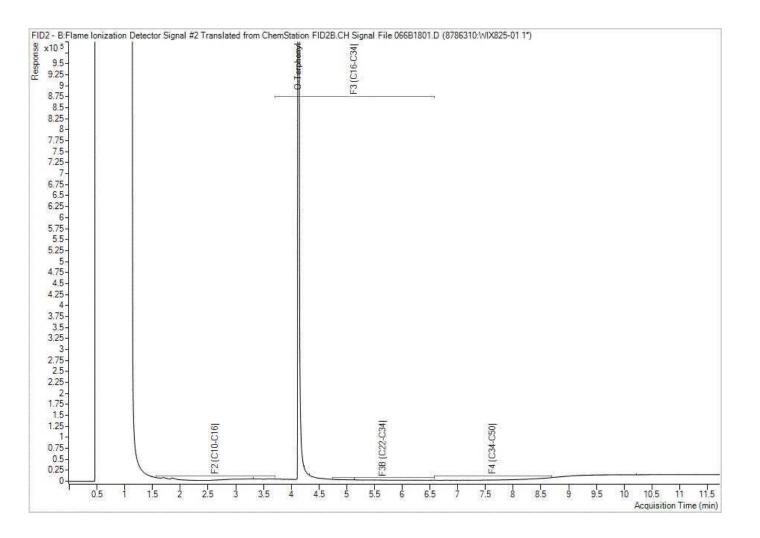
exp Services Inc

Client Project #: (EXP) OTT-00243705-B0

Client ID: MW-1

Petroleum Hydrocarbons F2-F4 in Water Chromatogram




Bureau Veritas Job #: C3K4929 Report Date: 2023/07/14 Bureau Veritas Sample: WIX825

exp Services Inc

Client Project #: (EXP) OTT-00243705-B0

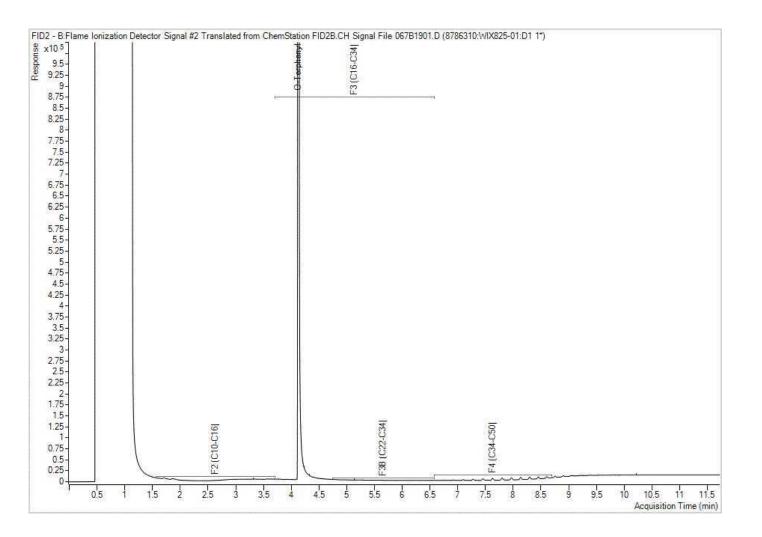
Client ID: MW-2

Petroleum Hydrocarbons F2-F4 in Water Chromatogram



Bureau Veritas Job #: C3K4929 Report Date: 2023/07/14

Bureau Veritas Sample: WIX825 Lab-


Dup

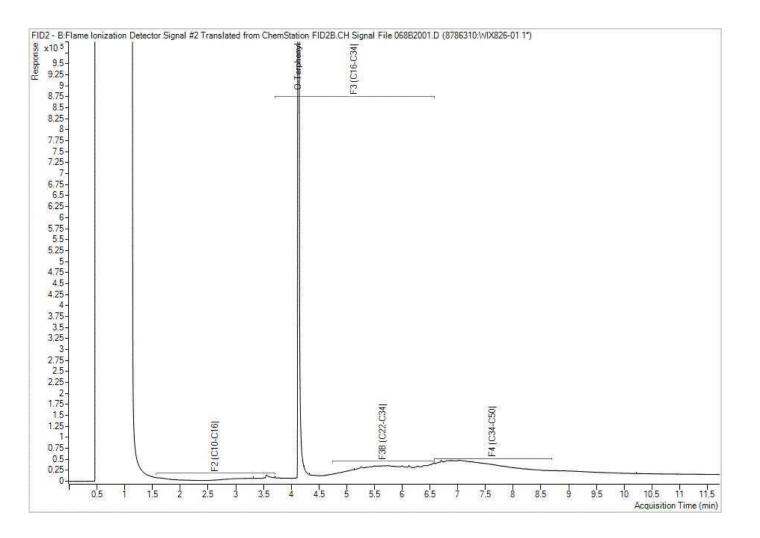
exp Services Inc

Client Project #: (EXP) OTT-00243705-B0

Client ID: MW-2

#### Petroleum Hydrocarbons F2-F4 in Water Chromatogram




Bureau Veritas Job #: C3K4929 Report Date: 2023/07/14 Bureau Veritas Sample: WIX826

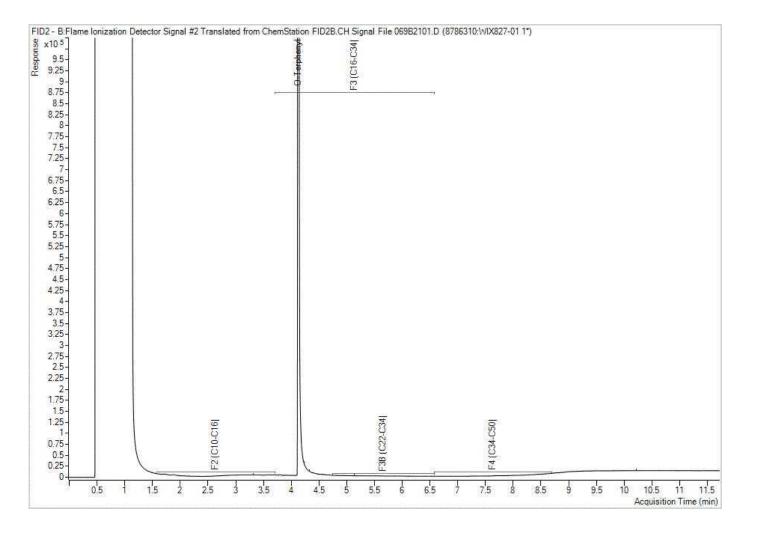
exp Services Inc

Client Project #: (EXP) OTT-00243705-B0

Client ID: MW-3

Petroleum Hydrocarbons F2-F4 in Water Chromatogram




Bureau Veritas Job #: C3K4929 Report Date: 2023/07/14 Bureau Veritas Sample: WIX827

exp Services Inc

Client Project #: (EXP) OTT-00243705-B0

Client ID: FIELD BLANK

#### Petroleum Hydrocarbons F2-F4 in Water Chromatogram





Your Project #: OTT-00243750-B Site Location: 6659 FRANKTOWN RD

Your C.O.C. #: n/a

**Attention: Mark McCalla** 

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2023/07/19

Report #: R7724936 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

BUREAU VERITAS JOB #: C3L0437 Received: 2023/07/14, 16:29

Sample Matrix: Water # Samples Received: 1

|                                              | Da          | ate       | Date       |                          |                          |
|----------------------------------------------|-------------|-----------|------------|--------------------------|--------------------------|
| Analyses                                     | Quantity Ex | tracted   | Analyzed   | <b>Laboratory Method</b> | <b>Analytical Method</b> |
| Petroleum Hydro. CCME F1 & BTEX in Water (1) | 1 N/        | /A        | 2023/07/17 | CAM SOP-00315            | CCME PHC-CWS m           |
| Petroleum Hydrocarbons F2-F4 in Water (1, 2) | 1 20        | 023/07/18 | 2023/07/19 | CAM SOP-00316            | CCME PHC-CWS m           |

#### Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCCFP, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- \* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Mississauga, 6740 Campobello Rd, Mississauga, ON, L5N 2L8
- (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.



Your Project #: OTT-00243750-B
Site Location: 6659 FRANKTOWN RD

Your C.O.C. #: n/a

**Attention: Mark McCalla** 

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2023/07/19

Report #: R7724936 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

BUREAU VERITAS JOB #: C3L0437 Received: 2023/07/14, 16:29

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to: Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

\_\_\_\_\_

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.



Client Project #: OTT-00243750-B Site Location: 6659 FRANKTOWN RD

Sampler Initials: MR

# O.REG 153 PHCS, BTEX/F1-F4 (WATER)

| Bureau Veritas ID            |       | WKB310     |      |          | WKB310          |     |          |
|------------------------------|-------|------------|------|----------|-----------------|-----|----------|
| Sampling Date                |       | 2023/07/14 |      |          | 2023/07/14      |     |          |
| Sampling Date                |       | 15:00      |      |          | 15:00           |     |          |
| COC Number                   |       | n/a        |      |          | n/a             |     |          |
|                              | UNITS | MW-3       | RDL  | QC Batch | MW-3<br>Lab-Dup | RDL | QC Batch |
| BTEX & F1 Hydrocarbons       |       |            |      |          |                 |     |          |
| Benzene                      | ug/L  | <0.20      | 0.20 | 8794260  |                 |     |          |
| Toluene                      | ug/L  | 0.23       | 0.20 | 8794260  |                 |     |          |
| Ethylbenzene                 | ug/L  | <0.20      | 0.20 | 8794260  |                 |     |          |
| o-Xylene                     | ug/L  | <0.20      | 0.20 | 8794260  |                 |     |          |
| p+m-Xylene                   | ug/L  | <0.40      | 0.40 | 8794260  |                 |     |          |
| Total Xylenes                | ug/L  | <0.40      | 0.40 | 8794260  |                 |     |          |
| F1 (C6-C10)                  | ug/L  | <25        | 25   | 8794260  |                 |     |          |
| F1 (C6-C10) - BTEX           | ug/L  | <25        | 25   | 8794260  |                 |     |          |
| F2-F4 Hydrocarbons           | •     | -          |      | -        |                 |     | •        |
| F2 (C10-C16 Hydrocarbons)    | ug/L  | <100       | 100  | 8795823  | <100            | 100 | 8795823  |
| F3 (C16-C34 Hydrocarbons)    | ug/L  | <200       | 200  | 8795823  | <200            | 200 | 8795823  |
| F4 (C34-C50 Hydrocarbons)    | ug/L  | <200       | 200  | 8795823  | <200            | 200 | 8795823  |
| Reached Baseline at C50      | ug/L  | Yes        |      | 8795823  | Yes             |     | 8795823  |
| Surrogate Recovery (%)       |       |            |      |          |                 |     |          |
| 1,4-Difluorobenzene          | %     | 107        |      | 8794260  |                 |     |          |
| 4-Bromofluorobenzene         | %     | 94         |      | 8794260  |                 |     |          |
| D10-o-Xylene                 | %     | 99         |      | 8794260  |                 |     |          |
| D4-1,2-Dichloroethane        | %     | 91         |      | 8794260  |                 |     |          |
| o-Terphenyl                  | %     | 95         |      | 8795823  | 95              |     | 8795823  |
| RDL = Reportable Detection I | imit  | •          | •    | •        |                 | •   | •        |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate



Report Date: 2023/07/19

exp Services Inc

Client Project #: OTT-00243750-B Site Location: 6659 FRANKTOWN RD

Sampler Initials: MR

#### **TEST SUMMARY**

Bureau Veritas ID: WKB310

**Collected:** 2023/07/14

Sample ID: MW-3 Matrix: Water

Shipped:

**Received:** 2023/07/14

| Test Description                         | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                 |
|------------------------------------------|-----------------|---------|------------|---------------|-------------------------|
| Petroleum Hydro. CCME F1 & BTEX in Water | HSGC/MSFD       | 8794260 | N/A        | 2023/07/17    | Georgeta Rusu           |
| Petroleum Hydrocarbons F2-F4 in Water    | GC/FID          | 8795823 | 2023/07/18 | 2023/07/19    | Agnieszka Brzuzy-Snopko |

Bureau Veritas ID: WKB310 Dup Sample ID: MW-3

Matrix: Water

**Collected:** 2023/07/14

Shipped:

Received: 2023/07/14

**Test Description** Instrumentation Batch Extracted **Date Analyzed** Analyst 8795823 2023/07/18 2023/07/19 Petroleum Hydrocarbons F2-F4 in Water GC/FID Agnieszka Brzuzy-Snopko



Client Project #: OTT-00243750-B Site Location: 6659 FRANKTOWN RD

Sampler Initials: MR

# **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1 21.7°C

Results relate only to the items tested.



**QUALITY ASSURANCE REPORT** 

exp Services Inc

Client Project #: OTT-00243750-B

Site Location: 6659 FRANKTOWN RD

Sampler Initials: MR

|          |                           |            | Matrix     | Spike     | SPIKED     | BLANK     | Method I | Blank | RPD       |           |  |
|----------|---------------------------|------------|------------|-----------|------------|-----------|----------|-------|-----------|-----------|--|
| QC Batch | Parameter                 | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value    | UNITS | Value (%) | QC Limits |  |
| 8794260  | 1,4-Difluorobenzene       | 2023/07/17 | 105        | 70 - 130  | 108        | 70 - 130  | 110      | %     |           |           |  |
| 8794260  | 4-Bromofluorobenzene      | 2023/07/17 | 99         | 70 - 130  | 96         | 70 - 130  | 94       | %     |           |           |  |
| 8794260  | D10-o-Xylene              | 2023/07/17 | 100        | 70 - 130  | 102        | 70 - 130  | 106      | %     |           |           |  |
| 8794260  | D4-1,2-Dichloroethane     | 2023/07/17 | 91         | 70 - 130  | 89         | 70 - 130  | 92       | %     |           |           |  |
| 8795823  | o-Terphenyl               | 2023/07/18 | 96         | 60 - 130  | 93         | 60 - 130  | 96       | %     |           |           |  |
| 8794260  | Benzene                   | 2023/07/17 | 98         | 50 - 140  | 99         | 50 - 140  | <0.20    | ug/L  | NC        | 30        |  |
| 8794260  | Ethylbenzene              | 2023/07/17 | 108        | 50 - 140  | 112        | 50 - 140  | <0.20    | ug/L  | NC        | 30        |  |
| 8794260  | F1 (C6-C10) - BTEX        | 2023/07/17 |            |           |            |           | <25      | ug/L  |           |           |  |
| 8794260  | F1 (C6-C10)               | 2023/07/17 | 108        | 60 - 140  | 114        | 60 - 140  | <25      | ug/L  |           |           |  |
| 8794260  | o-Xylene                  | 2023/07/17 | 101        | 50 - 140  | 103        | 50 - 140  | <0.20    | ug/L  | NC        | 30        |  |
| 8794260  | p+m-Xylene                | 2023/07/17 | 105        | 50 - 140  | 111        | 50 - 140  | <0.40    | ug/L  | NC        | 30        |  |
| 8794260  | Toluene                   | 2023/07/17 | 95         | 50 - 140  | 98         | 50 - 140  | <0.20    | ug/L  | NC        | 30        |  |
| 8794260  | Total Xylenes             | 2023/07/17 |            |           |            |           | <0.40    | ug/L  | NC        | 30        |  |
| 8795823  | F2 (C10-C16 Hydrocarbons) | 2023/07/19 | 100        | 60 - 130  | 96         | 60 - 130  | <100     | ug/L  | NC        | 30        |  |
| 8795823  | F3 (C16-C34 Hydrocarbons) | 2023/07/19 | 105        | 60 - 130  | 101        | 60 - 130  | <200     | ug/L  | NC        | 30        |  |
| 8795823  | F4 (C34-C50 Hydrocarbons) | 2023/07/19 | 104        | 60 - 130  | 100        | 60 - 130  | <200     | ug/L  | NC        | 30        |  |

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).



Client Project #: OTT-00243750-B Site Location: 6659 FRANKTOWN RD

Sampler Initials: MR

# **VALIDATION SIGNATURE PAGE**

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.



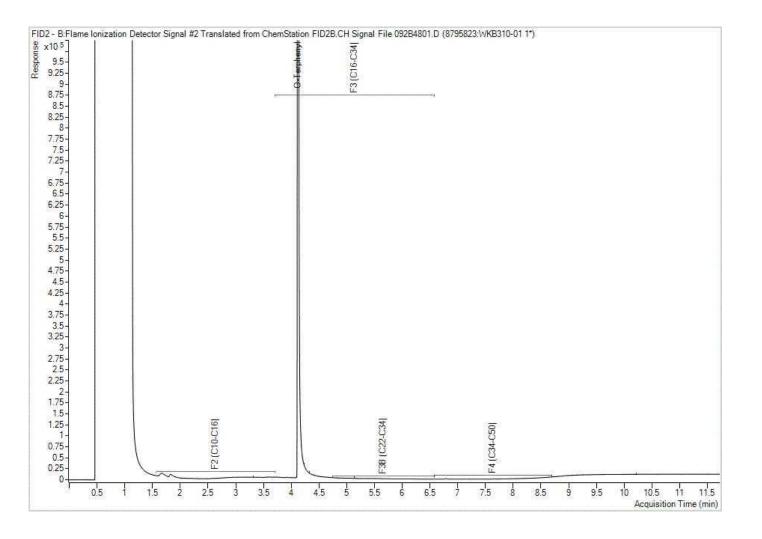
Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266

| CAM FCD-011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 91/6                                                                                                           |                      |             |                         |             |              |                                     |                      | CH                           | AIN C     | F CU     | STOD     | Y RE     | COR       | D 🛚        | L59929 Page 1 of 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------|-------------|-------------------------|-------------|--------------|-------------------------------------|----------------------|------------------------------|-----------|----------|----------|----------|-----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Invoice Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                | Report Info          | rmation (if | differs f               | rom inv     | roice)       |                                     |                      |                              | Project I | nformati | on (wher | e applic | able)     | 1          | Turnaround Time (TAT) Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| pany Name: EXP Services Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Company                                                                                                        | Name:                | O AI        | USE I                   | 11000       | H            |                                     |                      | Quotation #                  |           | 1.1      | 10/11    |          |           |            | Regular TAT (5-7 days) Most analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| act Name: Mark McCalle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Contact N                                                                                                      | ame:                 |             |                         |             |              | Han                                 |                      | P.O. #/ AFE#                 |           |          |          |          |           |            | PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2650 Queerone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dr. Address:                                                                                                   |                      |             | ng lan                  | MIN         |              | July 3                              | 11-44                | Project #:                   | 0         | TT-      | 200      | 43       | 750-      | B          | Rush TAT (Surcharges will be applied)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                |                      | of Maria    | W.                      | (Text       |              |                                     |                      | Site Location                | 6         | 659      | F        | ank      | Low       | rd         | 1 Day 2 Days 3-4 Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| e: (13 688 1899 Fax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Phone:                                                                                                         |                      |             | Fax                     |             | 120          |                                     | UVE                  | Site #:                      |           |          |          |          |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| markinecalla Cepp co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Email:                                                                                                         |                      | NI PER      |                         | MU .        |              |                                     |                      | Site Location                |           |          |          | 100      | West Till |            | Date Required:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| E REGULATED DRINKING WATER OR WATER INTENDED FOR HUMAN CONSUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                |                      | S LABORATO  | RIES' DRIN              | KING WA     | TER CHAI     | N OF CUST                           | ODY:                 | Sampled By:                  |           |          | erz      |          | Reces     | Щ          | Rush Confirmation #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Regulation 153 Table 1 Res/Park Med/Fine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Other Reg                                                                                                      | y Sewer Bylaw        |             |                         | _           |              | _                                   |                      | Analysis R                   | equested  |          | _        |          | _         |            | LABORATORY USE ONLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Table 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                | Sewer Bylaw          |             | TTED Metals / Hg / GrV1 |             |              | SANICS                              |                      | HWS - 8)                     |           | ^        | 40       | y        |           |            | CUSTODY SEAL Y / N COOLER TEMPERATURE  Présent Intact  V V 23.22.20 Y 2/2.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| e Criteria on Certificate of Analysis: Y / N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | de de la composiçõe de la |                      |             | SUBMI<br>RCLE)          |             | Ш            | INOR                                | TALS                 | Metals,                      |           | П        |          |          |           | ANALYZE    | 1 1 6/5/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SAMPLES MUST BE KEPT COOL ( < 10 °C ) FROM TIME OF SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PLING UNTIL DELIVERY                                                                                           | TO BUREAU VERITA     | AS          | JINERS<br>RED (CI       | 7           |              | TALS 8                              | MS ME                | METALS<br>1, ICPMS N         |           | П        |          | П        |           | NOT AN     | COOLING MEDIA PRESENT: (Y ) N 10 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SAMPLE IDENTIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DATE SAMPLED<br>(YYYY/MM/DD)                                                                                   | TIME SAMPLED (HH:MM) | MATRIX      | # OF CONTA              | BTEX/ PHC R | PHCs F2 - F4 | VOCs<br>REG 153 METALS & INORGANICS | REG 153 ICPMS METALS | REG 153 ME<br>(Hg, Cr VI, IC |           |          |          |          |           | HOLD- DO N | COOLING MEDIA PRESENT: (V) N /CO COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MW-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2023/07/14                                                                                                     | 15:00                | GW.         | 4                       | V           | /            |                                     |                      |                              |           |          |          |          |           | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                      |             |                         |             |              |                                     |                      |                              |           |          |          |          |           | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                      |             |                         |             |              |                                     |                      |                              |           | П        |          |          |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                      |             | em o                    |             |              |                                     |                      |                              |           |          |          |          |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                      |             |                         |             |              |                                     |                      |                              |           | П        |          |          |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 74                                                                                                           |                      |             | 77                      |             |              |                                     |                      |                              |           | $\Box$   |          |          |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                      |             |                         |             |              |                                     |                      | 7                            |           | $\Box$   |          |          |           |            | THE RESERVE TO THE VICENCE OF THE VI |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | 10                   |             |                         |             |              |                                     |                      |                              |           |          |          |          |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| War and the Part of the Part o |                                                                                                                |                      |             |                         |             |              |                                     |                      |                              |           |          |          |          |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | 36                   |             |                         |             |              | +                                   |                      |                              | +         |          |          |          |           |            | 14-Jul-23 16:29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RELINQUISHED BY: (Signature/Print) DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TE: (YYYY/MM/DD)                                                                                               | TIME: (HH:MM)        |             | RI                      | CEIVED      | BY: (Sig     | nature/I                            | Print)               |                              | DATE:     | YYYY/N   | IM/DD)   | T        | IME: (HH  | :MI        | ar therine Szozda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Papel C 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23/07/14                                                                                                       | 16:25                | ALU         | _                       | _           |              |                                     | -                    | RENKE                        | 20011001  | 13/0     | ,        |          | 162       | 9 11       | Katherine Szozda<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mackenzie Reviell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                | TOTAL STREET         | 100         | 0                       |             | ,            | 000                                 |                      | 151                          |           | - 1      | 27/13    |          |           |            | ENV-902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

COC-1004 (06/19)

and-conditions

White: BV Labs - Yellow: Client


Bureau Veritas Job #: C3L0437 Report Date: 2023/07/19 Bureau Veritas Sample: WKB310

exp Services Inc

Client Project #: OTT-00243750-B Project name: 6659 FRANKTOWN RD

Client ID: MW-3

Petroleum Hydrocarbons F2-F4 in Water Chromatogram



Bureau Veritas Job #: C3L0437 Report Date: 2023/07/19

Bureau Veritas Sample: WKB310 Lab-

Dup

exp Services Inc

Client Project #: OTT-00243750-B Project name: 6659 FRANKTOWN RD

Client ID: MW-3

Petroleum Hydrocarbons F2-F4 in Water Chromatogram



EXP Services Inc.

Air Rock Drilling Phase Two Environmental Site Assessment 6659 Franktown Road, Richmond, Ontario OTT-00243705-B0 August 11, 2023

**Appendix G: Hydraulic Conductivity** 



6659 Franktown Road, Ottawa MW1 2-Aug-23
Rising Head Test Analysis Test 1
Hvorslev Method (1951)

H<sub>0</sub> 1.27 m

(static water level in metres) Water Level Drawdown H-h/H-h0 Time (sec) (m) (m) 0 4.05 2.78 1.00 30 3.26 1.99 0.72 60 3.27 2.00 0.72 90 3.07 1.80 0.65 1.59 120 2.86 0.57 150 2.67 1.40 0.50 180 2.49 1.22 0.44 210 2.38 1.11 0.40 2.35 1.08 0.39 240 360 1.86 0.59 0.21 480 1.62 0.35 0.13 600 1.48 0.21 0.08 720 1.4 0.13 0.05 780 1.36 0.09 0.03

To constant= 0.37

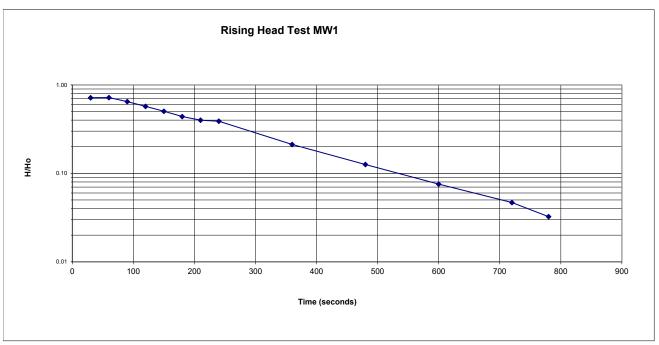
K=

L/R In(L/R) 30.0 3.401197

input

0.018 (pipe radius)

L= 1.50 (effective screen length, if strattles water)
R= 0.05 (hole radius)


To= 260

2(To)(L)

K= 1.41E-06 m/sec

r2(ln(L/R))

1.41E-04 cm/sec





Your Project #: OTT-00243705-C0

Your C.O.C. #: N/A

**Attention: Chris Kimmerly** 

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2024/12/30

Report #: R8463893 Version: 1 - Final

# **CERTIFICATE OF ANALYSIS**

BUREAU VERITAS JOB #: C4BP677 Received: 2024/12/20, 16:00

Sample Matrix: Soil # Samples Received: 6

|                                                | Date            | Date             |                          |                      |  |
|------------------------------------------------|-----------------|------------------|--------------------------|----------------------|--|
| Analyses                                       | Quantity Extrac | ted Analyzed     | <b>Laboratory Method</b> | Analytical Method    |  |
| Petroleum Hydro. CCME F1 & BTEX in Soil (1, 2) | 6 N/A           | 2024/12/2        | CAM SOP-00315            | CCME PHC-CWS m       |  |
| Petroleum Hydrocarbons F2-F4 in Soil (1, 3)    | 6 2024/         | 12/24 2024/12/24 | 1 CAM SOP-00316          | CCME CWS m           |  |
| Moisture (1)                                   | 6 N/A           | 2024/12/23       | 3 CAM SOP-00445          | Carter 2nd ed 70.2 m |  |

Sample Matrix: Water # Samples Received: 1

|                                              |          | Date       | Date       |                   |                   |
|----------------------------------------------|----------|------------|------------|-------------------|-------------------|
| Analyses                                     | Quantity | Extracted  | Analyzed   | Laboratory Method | Analytical Method |
| Methylnaphthalene Sum (1)                    | 1        | N/A        | 2024/12/30 | CAM SOP-00301     | EPA 8270D m       |
| 1,3-Dichloropropene Sum (1)                  | 1        | N/A        | 2024/12/30 |                   | EPA 8260C m       |
| Petroleum Hydrocarbons F2-F4 in Water (1, 3) | 1        | 2024/12/24 | 2024/12/24 | CAM SOP-00316     | CCME PHC-CWS m    |
| Lab Filtered Metals by ICPMS (1)             | 1        | 2024/12/23 | 2024/12/24 | CAM SOP-00447     | EPA 6020B m       |
| PAH Compounds in Water by GC/MS (SIM) (1)    | 1        | 2024/12/24 | 2024/12/25 | CAM SOP-00318     | EPA 8270E         |
| Volatile Organic Compounds and F1 PHCs (1)   | 1        | N/A        | 2024/12/28 | CAM SOP-00230     | EPA 8260C m       |

#### Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.



Your Project #: OTT-00243705-C0

Your C.O.C. #: N/A

**Attention: Chris Kimmerly** 

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2024/12/30

Report #: R8463893 Version: 1 - Final

#### **CERTIFICATE OF ANALYSIS**

# BUREAU VERITAS JOB #: C4BP677

Received: 2024/12/20, 16:00

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- \* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Mississauga, 6740 Campobello Rd , Mississauga, ON, L5N 2L8
- (2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated.
- (3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

#### **Encryption Key**

Please direct all questions regarding this Certificate of Analysis to: Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports.

For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor

validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible

for Ontario Environmental laboratory operations.



Client Project #: OTT-00243705-C0

Sampler Initials: PO

# O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

| Bureau Veritas ID         |          | AMLI44     | AMLI45     | AMLI46     | AMLI47     |          |          | AMLI47         |     |          |
|---------------------------|----------|------------|------------|------------|------------|----------|----------|----------------|-----|----------|
| Sampling Date             |          | 2024/12/20 | 2024/12/20 | 2024/12/20 | 2024/12/20 |          |          | 2024/12/20     |     |          |
| Sampling Date             |          | 12:30      | 10:45      | 11:00      | 12:10      |          |          | 12:10          |     |          |
| COC Number                |          | N/A        | N/A        | N/A        | N/A        |          |          | N/A            |     |          |
|                           | UNITS    | <b>S7</b>  | \$8        | <b>S9</b>  | S10        | RDL      | QC Batch | S10<br>Lab-Dup | RDL | QC Batch |
| BTEX & F1 Hydrocarbons    | <u> </u> |            |            | <u> </u>   |            | <u> </u> |          | <u> </u>       |     | ·        |
| Benzene                   | ug/g     | <0.020     | <0.020     | <0.020     | <0.020     | 0.020    | 9845359  |                |     |          |
| Toluene                   | ug/g     | <0.020     | <0.020     | <0.020     | <0.020     | 0.020    | 9845359  |                |     |          |
| Ethylbenzene              | ug/g     | <0.020     | <0.020     | <0.020     | <0.020     | 0.020    | 9845359  |                |     |          |
| o-Xylene                  | ug/g     | <0.020     | <0.020     | <0.020     | <0.020     | 0.020    | 9845359  |                |     |          |
| p+m-Xylene                | ug/g     | <0.040     | <0.040     | <0.040     | <0.040     | 0.040    | 9845359  |                |     |          |
| Total Xylenes             | ug/g     | <0.040     | <0.040     | <0.040     | <0.040     | 0.040    | 9845359  |                |     |          |
| F1 (C6-C10)               | ug/g     | <10        | <10        | <10        | <10        | 10       | 9845359  |                |     |          |
| F1 (C6-C10) - BTEX        | ug/g     | <10        | <10        | <10        | <10        | 10       | 9845359  |                |     |          |
| F2-F4 Hydrocarbons        |          |            |            |            |            |          |          |                |     |          |
| F2 (C10-C16 Hydrocarbons) | ug/g     | 8.7        | <7.0       | <7.0       | <7.0       | 7.0      | 9845281  | <7.0           | 7.0 | 9845281  |
| F3 (C16-C34 Hydrocarbons) | ug/g     | <50        | 75         | <50        | <50        | 50       | 9845281  | <50            | 50  | 9845281  |
| F4 (C34-C50 Hydrocarbons) | ug/g     | <50        | <50        | <50        | <50        | 50       | 9845281  | <50            | 50  | 9845281  |
| Reached Baseline at C50   | ug/g     | Yes        | Yes        | Yes        | Yes        |          | 9845281  | Yes            |     | 9845281  |
| Surrogate Recovery (%)    | •        |            |            |            |            |          |          | •              | •   |          |
| 1,4-Difluorobenzene       | %        | 99         | 98         | 99         | 99         |          | 9845359  |                |     |          |
| 4-Bromofluorobenzene      | %        | 122        | 116        | 111        | 115        |          | 9845359  |                |     |          |
| D10-o-Xylene              | %        | 95         | 98         | 93         | 97         |          | 9845359  |                |     |          |
| D4-1,2-Dichloroethane     | %        | 94         | 96         | 94         | 97         |          | 9845359  |                |     |          |
| o-Terphenyl               | %        | 96         | 93         | 93         | 92         |          | 9845281  | 94             |     | 9845281  |
|                           |          |            |            |            |            |          |          |                |     |          |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate



Client Project #: OTT-00243705-C0

Sampler Initials: PO

# O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

| Bureau Veritas ID                                             |       | AMLI48     |          | AMLI49     |       |          |
|---------------------------------------------------------------|-------|------------|----------|------------|-------|----------|
| Sampling Date                                                 |       | 2024/12/20 |          | 2024/12/20 |       |          |
| Jamping Date                                                  |       | 11:50      |          | 11:15      |       |          |
| COC Number                                                    |       | N/A        |          | N/A        |       |          |
|                                                               | UNITS | S11        | QC Batch | S12        | RDL   | QC Batch |
| BTEX & F1 Hydrocarbons                                        |       |            |          |            |       |          |
| Benzene                                                       | ug/g  | <0.020     | 9845359  | <0.020     | 0.020 | 9845359  |
| Toluene                                                       | ug/g  | <0.020     | 9845359  | <0.020     | 0.020 | 9845359  |
| Ethylbenzene                                                  | ug/g  | <0.020     | 9845359  | <0.020     | 0.020 | 9845359  |
| o-Xylene                                                      | ug/g  | <0.020     | 9845359  | <0.020     | 0.020 | 9845359  |
| p+m-Xylene                                                    | ug/g  | <0.040     | 9845359  | <0.040     | 0.040 | 9845359  |
| Total Xylenes                                                 | ug/g  | <0.040     | 9845359  | <0.040     | 0.040 | 9845359  |
| F1 (C6-C10)                                                   | ug/g  | <10        | 9845359  | <10        | 10    | 9845359  |
| F1 (C6-C10) - BTEX                                            | ug/g  | <10        | 9845359  | <10        | 10    | 9845359  |
| F2-F4 Hydrocarbons                                            |       |            |          |            |       |          |
| F2 (C10-C16 Hydrocarbons)                                     | ug/g  | <7.0       | 9845281  | <7.0       | 7.0   | 9846560  |
| F3 (C16-C34 Hydrocarbons)                                     | ug/g  | 110        | 9845281  | <50        | 50    | 9846560  |
| F4 (C34-C50 Hydrocarbons)                                     | ug/g  | <50        | 9845281  | <50        | 50    | 9846560  |
| Reached Baseline at C50                                       | ug/g  | Yes        | 9845281  | Yes        |       | 9846560  |
| Surrogate Recovery (%)                                        |       |            |          |            |       |          |
| 1,4-Difluorobenzene                                           | %     | 99         | 9845359  | 99         |       | 9845359  |
| 4-Bromofluorobenzene                                          | %     | 116        | 9845359  | 112        |       | 9845359  |
| D10-o-Xylene                                                  | %     | 91         | 9845359  | 98         |       | 9845359  |
| D4-1,2-Dichloroethane                                         | %     | 98         | 9845359  | 98         |       | 9845359  |
| o-Terphenyl                                                   | %     | 89         | 9845281  | 90         |       | 9846560  |
| RDL = Reportable Detection L<br>QC Batch = Quality Control Ba |       |            |          |            |       |          |



Report Date: 2024/12/30

exp Services Inc

Client Project #: OTT-00243705-C0

Sampler Initials: PO

### **RESULTS OF ANALYSES OF SOIL**

| Bureau Veritas ID        |           | AMLI44     | AMLI45     | AMLI46     | AMLI47     | AMLI48     | AMLI49     |     |          |
|--------------------------|-----------|------------|------------|------------|------------|------------|------------|-----|----------|
| Campling Data            |           | 2024/12/20 | 2024/12/20 | 2024/12/20 | 2024/12/20 | 2024/12/20 | 2024/12/20 |     |          |
| Sampling Date            |           | 12:30      | 10:45      | 11:00      | 12:10      | 11:50      | 11:15      |     |          |
| COC Number               |           | N/A        | N/A        | N/A        | N/A        | N/A        | N/A        |     |          |
|                          | UNITS     | <b>S7</b>  | S8         | S9         | S10        | S11        | S12        | RDL | QC Batch |
| Inorganics               |           |            |            |            |            |            |            |     |          |
| Moisture                 | %         | 5.0        | 24         | 23         | 20         | 19         | 18         | 1.0 | 9843947  |
| RDL = Reportable Detect  | ion Limit | •          |            |            |            |            |            |     |          |
| QC Batch = Quality Conti | rol Batch |            |            |            |            |            |            |     |          |



Client Project #: OTT-00243705-C0

Sampler Initials: PO

# O.REG 153 ICPMS METALS (LAB FILTERED)

| Bureau Veritas ID             |       | AMLI50     |       |          |
|-------------------------------|-------|------------|-------|----------|
| Sampling Date                 |       | 2024/12/20 |       |          |
|                               |       | 13:20      |       |          |
| COC Number                    |       | N/A        |       |          |
|                               | UNITS | SUMP       | RDL   | QC Batch |
| Metals                        |       |            |       |          |
| Dissolved Antimony (Sb)       | ug/L  | 3.3        | 0.50  | 9844553  |
| Dissolved Arsenic (As)        | ug/L  | <1.0       | 1.0   | 9844553  |
| Dissolved Barium (Ba)         | ug/L  | 120        | 2.0   | 9844553  |
| Dissolved Beryllium (Be)      | ug/L  | <0.40      | 0.40  | 9844553  |
| Dissolved Boron (B)           | ug/L  | 150        | 10    | 9844553  |
| Dissolved Cadmium (Cd)        | ug/L  | 0.27       | 0.090 | 9844553  |
| Dissolved Chromium (Cr)       | ug/L  | <5.0       | 5.0   | 9844553  |
| Dissolved Cobalt (Co)         | ug/L  | 35         | 0.50  | 9844553  |
| Dissolved Copper (Cu)         | ug/L  | 4.5        | 0.90  | 9844553  |
| Dissolved Lead (Pb)           | ug/L  | <0.50      | 0.50  | 9844553  |
| Dissolved Molybdenum (Mo)     | ug/L  | 9.4        | 0.50  | 9844553  |
| Dissolved Nickel (Ni)         | ug/L  | 8.7        | 1.0   | 9844553  |
| Dissolved Selenium (Se)       | ug/L  | <2.0       | 2.0   | 9844553  |
| Dissolved Silver (Ag)         | ug/L  | <0.090     | 0.090 | 9844553  |
| Dissolved Sodium (Na)         | ug/L  | 51000      | 100   | 9844553  |
| Dissolved Thallium (TI)       | ug/L  | <0.050     | 0.050 | 9844553  |
| Dissolved Uranium (U)         | ug/L  | 0.50       | 0.10  | 9844553  |
| Dissolved Vanadium (V)        | ug/L  | <0.50      | 0.50  | 9844553  |
| Dissolved Zinc (Zn)           | ug/L  | 45         | 5.0   | 9844553  |
| RDL = Reportable Detection Li | mit   |            |       |          |
| QC Batch = Quality Control Ba | tch   |            |       |          |



Client Project #: OTT-00243705-C0

Sampler Initials: PO

# O.REG 153 PAHS (WATER)

| Bureau Veritas ID         |       | AMLI50     |        |          |
|---------------------------|-------|------------|--------|----------|
| Sampling Date             |       | 2024/12/20 |        |          |
| Sampling Date             |       | 13:20      |        |          |
| COC Number                |       | N/A        |        |          |
|                           | UNITS | SUMP       | RDL    | QC Batch |
| Calculated Parameters     |       |            |        |          |
| Methylnaphthalene, 2-(1-) | ug/L  | <0.42      | 0.42   | 9843311  |
| Polyaromatic Hydrocarbons | •     |            | •      |          |
| Acenaphthene              | ug/L  | <0.50 (1)  | 0.50   | 9845295  |
| Acenaphthylene            | ug/L  | <0.050     | 0.050  | 9845295  |
| Anthracene                | ug/L  | <0.90 (1)  | 0.90   | 9845295  |
| Benzo(a)anthracene        | ug/L  | <0.050     | 0.050  | 9845295  |
| Benzo(a)pyrene            | ug/L  | <0.0090    | 0.0090 | 9845295  |
| Benzo(b/j)fluoranthene    | ug/L  | <0.050     | 0.050  | 9845295  |
| Benzo(g,h,i)perylene      | ug/L  | <0.050     | 0.050  | 9845295  |
| Benzo(k)fluoranthene      | ug/L  | <0.050     | 0.050  | 9845295  |
| Chrysene                  | ug/L  | <0.050     | 0.050  | 9845295  |
| Dibenzo(a,h)anthracene    | ug/L  | <0.050     | 0.050  | 9845295  |
| Fluoranthene              | ug/L  | <0.070 (1) | 0.070  | 9845295  |
| Fluorene                  | ug/L  | <0.050     | 0.050  | 9845295  |
| Indeno(1,2,3-cd)pyrene    | ug/L  | <0.050     | 0.050  | 9845295  |
| 1-Methylnaphthalene       | ug/L  | <0.30 (1)  | 0.30   | 9845295  |
| 2-Methylnaphthalene       | ug/L  | <0.30 (1)  | 0.30   | 9845295  |
| Naphthalene               | ug/L  | <0.40 (1)  | 0.40   | 9845295  |
| Phenanthrene              | ug/L  | 0.85       | 0.030  | 9845295  |
| Pyrene                    | ug/L  | 0.34       | 0.050  | 9845295  |
| Surrogate Recovery (%)    |       |            |        |          |
| D10-Anthracene            | %     | 94         |        | 9845295  |
| D14-Terphenyl (FS)        | %     | 95         |        | 9845295  |
| D8-Acenaphthylene         | %     | 103        |        | 9845295  |
| i                         |       |            |        |          |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) Detection Limit was raised due to matrix interferences.



Client Project #: OTT-00243705-C0

Sampler Initials: PO

# O.REG 153 VOCS BY HS & F1-F4 (WATER)

| Bureau Veritas ID                   |       | AMLI50              |      |          |
|-------------------------------------|-------|---------------------|------|----------|
| Sampling Date                       |       | 2024/12/20<br>13:20 |      |          |
| COC Number                          |       | N/A                 |      |          |
|                                     | UNITS | SUMP                | RDL  | QC Batch |
| Calculated Parameters               |       |                     |      |          |
| 1,3-Dichloropropene (cis+trans)     | ug/L  | <0.50               | 0.50 | 9843312  |
| Volatile Organics                   |       |                     |      | I.       |
| Acetone (2-Propanone)               | ug/L  | 24                  | 10   | 9845440  |
| Benzene                             | ug/L  | <0.17               | 0.17 | 9845440  |
| Bromodichloromethane                | ug/L  | <0.50               | 0.50 | 9845440  |
| Bromoform                           | ug/L  | <1.0                | 1.0  | 9845440  |
| Bromomethane                        | ug/L  | <0.50               | 0.50 | 9845440  |
| Carbon Tetrachloride                | ug/L  | <0.20               | 0.20 | 9845440  |
| Chlorobenzene                       | ug/L  | <0.20               | 0.20 | 9845440  |
| Chloroform                          | ug/L  | <0.20               | 0.20 | 9845440  |
| Dibromochloromethane                | ug/L  | <0.50               | 0.50 | 9845440  |
| 1,2-Dichlorobenzene                 | ug/L  | <0.50               | 0.50 | 9845440  |
| 1,3-Dichlorobenzene                 | ug/L  | <0.50               | 0.50 | 9845440  |
| 1,4-Dichlorobenzene                 | ug/L  | <0.50               | 0.50 | 9845440  |
| Dichlorodifluoromethane (FREON 12)  | ug/L  | <1.0                | 1.0  | 9845440  |
| 1,1-Dichloroethane                  | ug/L  | <0.20               | 0.20 | 9845440  |
| 1,2-Dichloroethane                  | ug/L  | <0.50               | 0.50 | 9845440  |
| 1,1-Dichloroethylene                | ug/L  | <0.20               | 0.20 | 9845440  |
| cis-1,2-Dichloroethylene            | ug/L  | <0.50               | 0.50 | 9845440  |
| trans-1,2-Dichloroethylene          | ug/L  | <0.50               | 0.50 | 9845440  |
| 1,2-Dichloropropane                 | ug/L  | <0.20               | 0.20 | 9845440  |
| cis-1,3-Dichloropropene             | ug/L  | <0.30               | 0.30 | 9845440  |
| trans-1,3-Dichloropropene           | ug/L  | <0.40               | 0.40 | 9845440  |
| Ethylbenzene                        | ug/L  | 0.35                | 0.20 | 9845440  |
| Ethylene Dibromide                  | ug/L  | <0.20               | 0.20 | 9845440  |
| Hexane                              | ug/L  | 1.1                 | 1.0  | 9845440  |
| Methylene Chloride(Dichloromethane) | ug/L  | <2.0                | 2.0  | 9845440  |
| Methyl Ethyl Ketone (2-Butanone)    | ug/L  | <10                 | 10   | 9845440  |
| Methyl Isobutyl Ketone              | ug/L  | <5.0                | 5.0  | 9845440  |
| Methyl t-butyl ether (MTBE)         | ug/L  | <0.50               | 0.50 | 9845440  |
| Styrene                             | ug/L  | <0.50               | 0.50 | 9845440  |
| 1,1,1,2-Tetrachloroethane           | ug/L  | <0.50               | 0.50 | 9845440  |
| 1,1,2,2-Tetrachloroethane           | ug/L  | <0.50               | 0.50 | 9845440  |
| Tetrachloroethylene                 | ug/L  | <0.20               | 0.20 | 9845440  |
| Toluene                             | ug/L  | 0.87                | 0.20 | 9845440  |
| RDL = Reportable Detection Limit    |       |                     |      |          |
| QC Batch = Quality Control Batch    |       |                     |      |          |



Client Project #: OTT-00243705-C0

Sampler Initials: PO

# O.REG 153 VOCS BY HS & F1-F4 (WATER)

| Bureau Veritas ID                 |       | AMLI50     |      |          |
|-----------------------------------|-------|------------|------|----------|
| Sampling Date                     |       | 2024/12/20 |      |          |
| Sampling Date                     |       | 13:20      |      |          |
| COC Number                        |       | N/A        |      |          |
|                                   | UNITS | SUMP       | RDL  | QC Batch |
| 1,1,1-Trichloroethane             | ug/L  | <0.20      | 0.20 | 9845440  |
| 1,1,2-Trichloroethane             | ug/L  | <0.50      | 0.50 | 9845440  |
| Trichloroethylene                 | ug/L  | <0.20      | 0.20 | 9845440  |
| Trichlorofluoromethane (FREON 11) | ug/L  | <0.50      | 0.50 | 9845440  |
| Vinyl Chloride                    | ug/L  | <0.20      | 0.20 | 9845440  |
| p+m-Xylene                        | ug/L  | 1.5        | 0.20 | 9845440  |
| o-Xylene                          | ug/L  | 1.3        | 0.20 | 9845440  |
| Total Xylenes                     | ug/L  | 2.8        | 0.20 | 9845440  |
| F1 (C6-C10)                       | ug/L  | 310        | 25   | 9845440  |
| F1 (C6-C10) - BTEX                | ug/L  | 300        | 25   | 9845440  |
| F2-F4 Hydrocarbons                |       |            |      |          |
| F2 (C10-C16 Hydrocarbons)         | ug/L  | 150000     | 90   | 9845338  |
| F3 (C16-C34 Hydrocarbons)         | ug/L  | 43000      | 200  | 9845338  |
| F4 (C34-C50 Hydrocarbons)         | ug/L  | 6800       | 200  | 9845338  |
| Reached Baseline at C50           | ug/L  | Yes        |      | 9845338  |
| Surrogate Recovery (%)            |       |            |      |          |
| o-Terphenyl                       | %     | 104        |      | 9845338  |
| 4-Bromofluorobenzene              | %     | 92         |      | 9845440  |
| D4-1,2-Dichloroethane             | %     | 109        |      | 9845440  |
| D8-Toluene                        | %     | 100        |      | 9845440  |
| RDL = Reportable Detection Limit  |       |            |      |          |
| QC Batch = Quality Control Batch  |       |            |      |          |



Report Date: 2024/12/30

exp Services Inc

Client Project #: OTT-00243705-C0

Sampler Initials: PO

#### **TEST SUMMARY**

Bureau Veritas ID: AMLI44

Sample ID: S7

Matrix: Soil

**Collected:** 2024/12/20

Shipped:

**Received:** 2024/12/20

| Test Description                        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst              |
|-----------------------------------------|-----------------|---------|------------|---------------|----------------------|
| Petroleum Hydro. CCME F1 & BTEX in Soil | HSGC/MSFD       | 9845359 | N/A        | 2024/12/24    | Lincoln Ramdahin     |
| Petroleum Hydrocarbons F2-F4 in Soil    | GC/FID          | 9845281 | 2024/12/24 | 2024/12/24    | Anna Stuglik-Rolland |
| Moisture                                | BAL             | 9843947 | N/A        | 2024/12/23    | Muhammad Chhaidan    |

Bureau Veritas ID: AMLI45

Sample ID: S8

Matrix: Soil

**Collected:** 2024/12/20

Shipped:

**Received:** 2024/12/20

| Test Description                        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst              |
|-----------------------------------------|-----------------|---------|------------|---------------|----------------------|
| Petroleum Hydro. CCME F1 & BTEX in Soil | HSGC/MSFD       | 9845359 | N/A        | 2024/12/24    | Lincoln Ramdahin     |
| Petroleum Hydrocarbons F2-F4 in Soil    | GC/FID          | 9845281 | 2024/12/24 | 2024/12/24    | Anna Stuglik-Rolland |
| Moisture                                | BAL             | 9843947 | N/A        | 2024/12/23    | Muhammad Chhaidan    |

Bureau Veritas ID: AMLI46

Sample ID: S9

Matrix: Soil

**Collected:** 2024/12/20

Shipped: **Received:** 2024/12/20

| Test Description                        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst              |
|-----------------------------------------|-----------------|---------|------------|---------------|----------------------|
| Petroleum Hydro. CCME F1 & BTEX in Soil | HSGC/MSFD       | 9845359 | N/A        | 2024/12/24    | Lincoln Ramdahin     |
| Petroleum Hydrocarbons F2-F4 in Soil    | GC/FID          | 9845281 | 2024/12/24 | 2024/12/24    | Anna Stuglik-Rolland |
| Moisture                                | BAL             | 9843947 | N/A        | 2024/12/23    | Muhammad Chhaidan    |

Bureau Veritas ID: AMLI47

Sample ID: S10

Matrix: Soil

Collected:

2024/12/20

Shipped:

2024/12/20 Received:

| Test Description                        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst              |
|-----------------------------------------|-----------------|---------|------------|---------------|----------------------|
| Petroleum Hydro. CCME F1 & BTEX in Soil | HSGC/MSFD       | 9845359 | N/A        | 2024/12/24    | Lincoln Ramdahin     |
| Petroleum Hydrocarbons F2-F4 in Soil    | GC/FID          | 9845281 | 2024/12/24 | 2024/12/24    | Anna Stuglik-Rolland |
| Moisture                                | BAL             | 9843947 | N/A        | 2024/12/23    | Muhammad Chhaidan    |

Bureau Veritas ID: AMLI47 Dup

Sample ID: S10

Matrix: Soil

Collected: Shipped:

2024/12/20

Received: 2024/12/20

| Test Description                     | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst              |
|--------------------------------------|-----------------|---------|------------|---------------|----------------------|
| Petroleum Hydrocarbons F2-F4 in Soil | GC/FID          | 9845281 | 2024/12/24 | 2024/12/24    | Anna Stuglik-Rolland |

Bureau Veritas ID: AMLI48

Sample ID: S11

Matrix: Soil

Collected: 2024/12/20 Shipped:

**Received:** 2024/12/20

| Test Description                        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst              |
|-----------------------------------------|-----------------|---------|------------|---------------|----------------------|
| Petroleum Hydro. CCME F1 & BTEX in Soil | HSGC/MSFD       | 9845359 | N/A        | 2024/12/24    | Lincoln Ramdahin     |
| Petroleum Hydrocarbons F2-F4 in Soil    | GC/FID          | 9845281 | 2024/12/24 | 2024/12/24    | Anna Stuglik-Rolland |
| Moisture                                | BAL             | 9843947 | N/A        | 2024/12/23    | Muhammad Chhaidan    |



Report Date: 2024/12/30

exp Services Inc

Client Project #: OTT-00243705-C0

Sampler Initials: PO

#### **TEST SUMMARY**

Bureau Veritas ID: AMLI49

Sample ID: S12 Matrix: Soil

**Collected:** 2024/12/20

Shipped:

**Received:** 2024/12/20

| Test Description                        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst           |
|-----------------------------------------|-----------------|---------|------------|---------------|-------------------|
| Petroleum Hydro. CCME F1 & BTEX in Soil | HSGC/MSFD       | 9845359 | N/A        | 2024/12/24    | Lincoln Ramdahin  |
| Petroleum Hydrocarbons F2-F4 in Soil    | GC/FID          | 9846560 | 2024/12/24 | 2024/12/24    | Dennis Ngondu     |
| Moisture                                | BAL             | 9843947 | N/A        | 2024/12/23    | Muhammad Chhaidan |

Bureau Veritas ID: AMLI50 Sample ID: SUMP Matrix: Water

**Collected:** 2024/12/20

Shipped:

**Received:** 2024/12/20

| Test Description                       | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst              |
|----------------------------------------|-----------------|---------|------------|---------------|----------------------|
| Methylnaphthalene Sum                  | CALC            | 9843311 | N/A        | 2024/12/30    | Automated Statchk    |
| 1,3-Dichloropropene Sum                | CALC            | 9843312 | N/A        | 2024/12/30    | Automated Statchk    |
| Petroleum Hydrocarbons F2-F4 in Water  | GC/FID          | 9845338 | 2024/12/24 | 2024/12/24    | Anna Stuglik-Rolland |
| Lab Filtered Metals by ICPMS           | ICP/MS          | 9844553 | 2024/12/23 | 2024/12/24    | Nan Raykha           |
| PAH Compounds in Water by GC/MS (SIM)  | GC/MS           | 9845295 | 2024/12/24 | 2024/12/25    | Mitesh Raj           |
| Volatile Organic Compounds and F1 PHCs | GC/MSFD         | 9845440 | N/A        | 2024/12/28    | Xueming Jiang        |



Client Project #: OTT-00243705-C0

Sampler Initials: PO

#### **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

Sample AMLI45 [S8]: F1/BTEX Analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.

Sample AMLI46 [S9]: F1/BTEX Analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.

Sample AMLI47 [S10]: F1/BTEX Analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.

Sample AMLI48 [S11]: F1/BTEX Analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.

Sample AMLI49 [S12]: F1/BTEX Analysis: Soil weight exceeds the protocol specification of approximately 5g in the field preserved vial. Additional methanol was added to the vial to ensure extraction efficiency.

Results relate only to the items tested.



### **QUALITY ASSURANCE REPORT**

exp Services Inc

Client Project #: OTT-00243705-C0

|          |                           |            | Matrix     | Spike     | SPIKED BLANK |           | Method | Blank | RPD       |           |
|----------|---------------------------|------------|------------|-----------|--------------|-----------|--------|-------|-----------|-----------|
| QC Batch | Parameter                 | Date       | % Recovery | QC Limits | % Recovery   | QC Limits | Value  | UNITS | Value (%) | QC Limits |
| 9845281  | o-Terphenyl               | 2024/12/24 | 104        | 60 - 140  | 98           | 60 - 140  | 99     | %     |           |           |
| 9845295  | D10-Anthracene            | 2024/12/25 | 102        | 50 - 130  | 108          | 50 - 130  | 108    | %     |           |           |
| 9845295  | D14-Terphenyl (FS)        | 2024/12/25 | 103        | 50 - 130  | 104          | 50 - 130  | 107    | %     |           |           |
| 9845295  | D8-Acenaphthylene         | 2024/12/25 | 101        | 50 - 130  | 103          | 50 - 130  | 98     | %     |           |           |
| 9845338  | o-Terphenyl               | 2024/12/24 | 106        | 60 - 140  | 105          | 60 - 140  | 104    | %     |           |           |
| 9845359  | 1,4-Difluorobenzene       | 2024/12/24 | 98         | 60 - 140  | 99           | 60 - 140  | 100    | %     |           |           |
| 9845359  | 4-Bromofluorobenzene      | 2024/12/24 | 123        | 60 - 140  | 120          | 60 - 140  | 115    | %     |           |           |
| 9845359  | D10-o-Xylene              | 2024/12/24 | 97         | 60 - 140  | 93           | 60 - 140  | 91     | %     |           |           |
| 9845359  | D4-1,2-Dichloroethane     | 2024/12/24 | 93         | 60 - 140  | 91           | 60 - 140  | 95     | %     |           |           |
| 9845440  | 4-Bromofluorobenzene      | 2024/12/28 | 101        | 70 - 130  | 100          | 70 - 130  | 99     | %     |           |           |
| 9845440  | D4-1,2-Dichloroethane     | 2024/12/28 | 105        | 70 - 130  | 103          | 70 - 130  | 96     | %     |           |           |
| 9845440  | D8-Toluene                | 2024/12/28 | 100        | 70 - 130  | 101          | 70 - 130  | 102    | %     |           |           |
| 9846560  | o-Terphenyl               | 2024/12/24 | 112        | 60 - 140  | 117          | 60 - 140  | 116    | %     |           |           |
| 9843947  | Moisture                  | 2024/12/23 |            |           |              |           |        |       | 1.6       | 20        |
| 9844553  | Dissolved Antimony (Sb)   | 2024/12/30 | 103        | 80 - 120  | 99           | 80 - 120  | <0.50  | ug/L  | 1.0       | 20        |
| 9844553  | Dissolved Arsenic (As)    | 2024/12/30 | NC         | 80 - 120  | 99           | 80 - 120  | <1.0   | ug/L  | 2.3       | 20        |
| 9844553  | Dissolved Barium (Ba)     | 2024/12/30 | 97         | 80 - 120  | 98           | 80 - 120  | <2.0   | ug/L  | 2.5       | 20        |
| 9844553  | Dissolved Beryllium (Be)  | 2024/12/30 | 100        | 80 - 120  | 106          | 80 - 120  | <0.40  | ug/L  | NC        | 20        |
| 9844553  | Dissolved Boron (B)       | 2024/12/30 | NC         | 80 - 120  | 99           | 80 - 120  | <10    | ug/L  | 5.9       | 20        |
| 9844553  | Dissolved Cadmium (Cd)    | 2024/12/30 | 99         | 80 - 120  | 97           | 80 - 120  | <0.090 | ug/L  | NC        | 20        |
| 9844553  | Dissolved Chromium (Cr)   | 2024/12/30 | 102        | 80 - 120  | 100          | 80 - 120  | <5.0   | ug/L  | NC        | 20        |
| 9844553  | Dissolved Cobalt (Co)     | 2024/12/30 | 100        | 80 - 120  | 99           | 80 - 120  | <0.50  | ug/L  | 2.4       | 20        |
| 9844553  | Dissolved Copper (Cu)     | 2024/12/30 | 99         | 80 - 120  | 100          | 80 - 120  | <0.90  | ug/L  | 1.9       | 20        |
| 9844553  | Dissolved Lead (Pb)       | 2024/12/30 | 95         | 80 - 120  | 94           | 80 - 120  | <0.50  | ug/L  | NC        | 20        |
| 9844553  | Dissolved Molybdenum (Mo) | 2024/12/30 | NC         | 80 - 120  | 100          | 80 - 120  | <0.50  | ug/L  | 2.4       | 20        |
| 9844553  | Dissolved Nickel (Ni)     | 2024/12/30 | 94         | 80 - 120  | 95           | 80 - 120  | <1.0   | ug/L  | 0.27      | 20        |
| 9844553  | Dissolved Selenium (Se)   | 2024/12/30 | 99         | 80 - 120  | 97           | 80 - 120  | <2.0   | ug/L  | NC        | 20        |
| 9844553  | Dissolved Silver (Ag)     | 2024/12/30 | 81         | 80 - 120  | 96           | 80 - 120  | <0.090 | ug/L  | NC        | 20        |
| 9844553  | Dissolved Sodium (Na)     | 2024/12/30 | NC         | 80 - 120  | 100          | 80 - 120  | <100   | ug/L  | 0.97      | 20        |
| 9844553  | Dissolved Thallium (Tl)   | 2024/12/30 | 98         | 80 - 120  | 99           | 80 - 120  | <0.050 | ug/L  | 2.9       | 20        |
| 9844553  | Dissolved Uranium (U)     | 2024/12/30 | NC         | 80 - 120  | 99           | 80 - 120  | <0.10  | ug/L  | 3.2       | 20        |
| 9844553  | Dissolved Vanadium (V)    | 2024/12/30 | 100        | 80 - 120  | 97           | 80 - 120  | <0.50  | ug/L  | NC        | 20        |



exp Services Inc

Client Project #: OTT-00243705-C0

|          |                           |            | Matrix     | Spike     | SPIKED     | BLANK     | Method I | Blank | RP        | D         |
|----------|---------------------------|------------|------------|-----------|------------|-----------|----------|-------|-----------|-----------|
| QC Batch | Parameter                 | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value    | UNITS | Value (%) | QC Limits |
| 9844553  | Dissolved Zinc (Zn)       | 2024/12/30 | 95         | 80 - 120  | 98         | 80 - 120  | <5.0     | ug/L  | 0.75      | 20        |
| 9845281  | F2 (C10-C16 Hydrocarbons) | 2024/12/24 | 111        | 60 - 140  | 106        | 80 - 120  | <7.0     | ug/g  | NC        | 30        |
| 9845281  | F3 (C16-C34 Hydrocarbons) | 2024/12/24 | 112        | 60 - 140  | 107        | 80 - 120  | <50      | ug/g  | NC        | 30        |
| 9845281  | F4 (C34-C50 Hydrocarbons) | 2024/12/24 | 105        | 60 - 140  | 99         | 80 - 120  | <50      | ug/g  | NC        | 30        |
| 9845295  | 1-Methylnaphthalene       | 2024/12/25 | NC         | 50 - 130  | 88         | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9845295  | 2-Methylnaphthalene       | 2024/12/25 | NC         | 50 - 130  | 84         | 50 - 130  | <0.050   | ug/L  | 7.8       | 30        |
| 9845295  | Acenaphthene              | 2024/12/25 | 100        | 50 - 130  | 97         | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9845295  | Acenaphthylene            | 2024/12/25 | 104        | 50 - 130  | 100        | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9845295  | Anthracene                | 2024/12/25 | 103        | 50 - 130  | 104        | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9845295  | Benzo(a)anthracene        | 2024/12/25 | 112        | 50 - 130  | 110        | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9845295  | Benzo(a)pyrene            | 2024/12/25 | 111        | 50 - 130  | 110        | 50 - 130  | <0.0090  | ug/L  | NC        | 30        |
| 9845295  | Benzo(b/j)fluoranthene    | 2024/12/25 | 110        | 50 - 130  | 109        | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9845295  | Benzo(g,h,i)perylene      | 2024/12/25 | 113        | 50 - 130  | 111        | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9845295  | Benzo(k)fluoranthene      | 2024/12/25 | 107        | 50 - 130  | 106        | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9845295  | Chrysene                  | 2024/12/25 | 103        | 50 - 130  | 103        | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9845295  | Dibenzo(a,h)anthracene    | 2024/12/25 | 100        | 50 - 130  | 98         | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9845295  | Fluoranthene              | 2024/12/25 | 117        | 50 - 130  | 116        | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9845295  | Fluorene                  | 2024/12/25 | 108        | 50 - 130  | 104        | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9845295  | Indeno(1,2,3-cd)pyrene    | 2024/12/25 | 114        | 50 - 130  | 115        | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9845295  | Naphthalene               | 2024/12/25 | NC         | 50 - 130  | 83         | 50 - 130  | <0.050   | ug/L  | 2.8       | 30        |
| 9845295  | Phenanthrene              | 2024/12/25 | 105        | 50 - 130  | 104        | 50 - 130  | <0.030   | ug/L  | NC        | 30        |
| 9845295  | Pyrene                    | 2024/12/25 | 115        | 50 - 130  | 114        | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9845338  | F2 (C10-C16 Hydrocarbons) | 2024/12/24 | 108        | 60 - 140  | 105        | 60 - 140  | <90      | ug/L  | NC        | 30        |
| 9845338  | F3 (C16-C34 Hydrocarbons) | 2024/12/24 | 109        | 60 - 140  | 108        | 60 - 140  | <200     | ug/L  | NC        | 30        |
| 9845338  | F4 (C34-C50 Hydrocarbons) | 2024/12/24 | 103        | 60 - 140  | 98         | 60 - 140  | <200     | ug/L  | NC        | 30        |
| 9845359  | Benzene                   | 2024/12/24 | 90         | 50 - 140  | 84         | 50 - 140  | <0.020   | ug/g  | NC        | 50        |
| 9845359  | Ethylbenzene              | 2024/12/24 | 98         | 50 - 140  | 92         | 50 - 140  | <0.020   | ug/g  | NC        | 50        |
| 9845359  | F1 (C6-C10) - BTEX        | 2024/12/24 |            |           |            |           | <10      | ug/g  | NC        | 30        |
| 9845359  | F1 (C6-C10)               | 2024/12/24 | 101        | 60 - 140  | 98         | 80 - 120  | <10      | ug/g  | NC        | 30        |
| 9845359  | o-Xylene                  | 2024/12/24 | 93         | 50 - 140  | 88         | 50 - 140  | <0.020   | ug/g  | NC        | 50        |
| 9845359  | p+m-Xylene                | 2024/12/24 | 89         | 50 - 140  | 85         | 50 - 140  | <0.040   | ug/g  | NC        | 50        |
| 9845359  | Toluene                   | 2024/12/24 | 86         | 50 - 140  | 81         | 50 - 140  | <0.020   | ug/g  | 1.5       | 50        |



exp Services Inc

Client Project #: OTT-00243705-C0

|          |                                    |            | Matrix     | Spike     | SPIKED     | BLANK     | Method I | Blank | RPD       |           |
|----------|------------------------------------|------------|------------|-----------|------------|-----------|----------|-------|-----------|-----------|
| QC Batch | Parameter                          | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value    | UNITS | Value (%) | QC Limits |
| 9845359  | Total Xylenes                      | 2024/12/24 |            |           |            |           | <0.040   | ug/g  | NC        | 50        |
| 9845440  | 1,1,1,2-Tetrachloroethane          | 2024/12/28 | 91         | 70 - 130  | 109        | 70 - 130  | <0.50    | ug/L  | NC        | 30        |
| 9845440  | 1,1,1-Trichloroethane              | 2024/12/28 | 82         | 70 - 130  | 100        | 70 - 130  | <0.20    | ug/L  | NC        | 30        |
| 9845440  | 1,1,2,2-Tetrachloroethane          | 2024/12/28 | 84         | 70 - 130  | 99         | 70 - 130  | <0.50    | ug/L  | NC        | 30        |
| 9845440  | 1,1,2-Trichloroethane              | 2024/12/28 | 90         | 70 - 130  | 106        | 70 - 130  | <0.50    | ug/L  | NC        | 30        |
| 9845440  | 1,1-Dichloroethane                 | 2024/12/28 | 81         | 70 - 130  | 99         | 70 - 130  | <0.20    | ug/L  | NC        | 30        |
| 9845440  | 1,1-Dichloroethylene               | 2024/12/28 | 81         | 70 - 130  | 101        | 70 - 130  | <0.20    | ug/L  | NC        | 30        |
| 9845440  | 1,2-Dichlorobenzene                | 2024/12/28 | 85         | 70 - 130  | 101        | 70 - 130  | <0.50    | ug/L  | NC        | 30        |
| 9845440  | 1,2-Dichloroethane                 | 2024/12/28 | 89         | 70 - 130  | 106        | 70 - 130  | <0.50    | ug/L  | NC        | 30        |
| 9845440  | 1,2-Dichloropropane                | 2024/12/28 | 83         | 70 - 130  | 100        | 70 - 130  | <0.20    | ug/L  | NC        | 30        |
| 9845440  | 1,3-Dichlorobenzene                | 2024/12/28 | 84         | 70 - 130  | 100        | 70 - 130  | <0.50    | ug/L  | NC        | 30        |
| 9845440  | 1,4-Dichlorobenzene                | 2024/12/28 | 85         | 70 - 130  | 101        | 70 - 130  | <0.50    | ug/L  | NC        | 30        |
| 9845440  | Acetone (2-Propanone)              | 2024/12/28 | 89         | 60 - 140  | 102        | 60 - 140  | <10      | ug/L  | NC        | 30        |
| 9845440  | Benzene                            | 2024/12/28 | 83         | 70 - 130  | 101        | 70 - 130  | <0.17    | ug/L  | NC        | 30        |
| 9845440  | Bromodichloromethane               | 2024/12/28 | 84         | 70 - 130  | 100        | 70 - 130  | <0.50    | ug/L  | NC        | 30        |
| 9845440  | Bromoform                          | 2024/12/28 | 88         | 70 - 130  | 104        | 70 - 130  | <1.0     | ug/L  | NC        | 30        |
| 9845440  | Bromomethane                       | 2024/12/28 | 78         | 60 - 140  | 95         | 60 - 140  | <0.50    | ug/L  | NC        | 30        |
| 9845440  | Carbon Tetrachloride               | 2024/12/28 | 89         | 70 - 130  | 109        | 70 - 130  | <0.20    | ug/L  | NC        | 30        |
| 9845440  | Chlorobenzene                      | 2024/12/28 | 77         | 70 - 130  | 92         | 70 - 130  | <0.20    | ug/L  | NC        | 30        |
| 9845440  | Chloroform                         | 2024/12/28 | 85         | 70 - 130  | 97         | 70 - 130  | <0.20    | ug/L  | NC        | 30        |
| 9845440  | cis-1,2-Dichloroethylene           | 2024/12/28 | 86         | 70 - 130  | 104        | 70 - 130  | <0.50    | ug/L  | NC        | 30        |
| 9845440  | cis-1,3-Dichloropropene            | 2024/12/28 | 72         | 70 - 130  | 82         | 70 - 130  | <0.30    | ug/L  | NC        | 30        |
| 9845440  | Dibromochloromethane               | 2024/12/28 | 89         | 70 - 130  | 105        | 70 - 130  | <0.50    | ug/L  | NC        | 30        |
| 9845440  | Dichlorodifluoromethane (FREON 12) | 2024/12/28 | 86         | 60 - 140  | 125        | 60 - 140  | <1.0     | ug/L  | NC        | 30        |
| 9845440  | Ethylbenzene                       | 2024/12/28 | 80         | 70 - 130  | 97         | 70 - 130  | <0.20    | ug/L  | NC        | 30        |
| 9845440  | Ethylene Dibromide                 | 2024/12/28 | 86         | 70 - 130  | 101        | 70 - 130  | <0.20    | ug/L  | NC        | 30        |
| 9845440  | F1 (C6-C10) - BTEX                 | 2024/12/28 |            |           |            |           | <25      | ug/L  | NC        | 30        |
| 9845440  | F1 (C6-C10)                        | 2024/12/28 | 94         | 60 - 140  | 100        | 60 - 140  | <25      | ug/L  | NC        | 30        |
| 9845440  | Hexane                             | 2024/12/28 | 89         | 70 - 130  | 112        | 70 - 130  | <1.0     | ug/L  | NC        | 30        |
| 9845440  | Methyl Ethyl Ketone (2-Butanone)   | 2024/12/28 | 96         | 60 - 140  | 111        | 60 - 140  | <10      | ug/L  | NC        | 30        |
| 9845440  | Methyl Isobutyl Ketone             | 2024/12/28 | 86         | 70 - 130  | 101        | 70 - 130  | <5.0     | ug/L  | NC        | 30        |
| 9845440  | Methyl t-butyl ether (MTBE)        | 2024/12/28 | 82         | 70 - 130  | 99         | 70 - 130  | <0.50    | ug/L  | NC        | 30        |



exp Services Inc

Client Project #: OTT-00243705-C0

Sampler Initials: PO

|          |                                     |            | Matrix     | Spike     | SPIKED     | BLANK     | Method I | Blank | RPI       | )         |
|----------|-------------------------------------|------------|------------|-----------|------------|-----------|----------|-------|-----------|-----------|
| QC Batch | Parameter                           | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value    | UNITS | Value (%) | QC Limits |
| 9845440  | Methylene Chloride(Dichloromethane) | 2024/12/28 | 83         | 70 - 130  | 100        | 70 - 130  | <2.0     | ug/L  | NC        | 30        |
| 9845440  | o-Xylene                            | 2024/12/28 | 85         | 70 - 130  | 103        | 70 - 130  | <0.20    | ug/L  | NC        | 30        |
| 9845440  | p+m-Xylene                          | 2024/12/28 | 81         | 70 - 130  | 97         | 70 - 130  | <0.20    | ug/L  | NC        | 30        |
| 9845440  | Styrene                             | 2024/12/28 | 80         | 70 - 130  | 97         | 70 - 130  | <0.50    | ug/L  | NC        | 30        |
| 9845440  | Tetrachloroethylene                 | 2024/12/28 | 81         | 70 - 130  | 98         | 70 - 130  | <0.20    | ug/L  | NC        | 30        |
| 9845440  | Toluene                             | 2024/12/28 | 84         | 70 - 130  | 96         | 70 - 130  | <0.20    | ug/L  | NC        | 30        |
| 9845440  | Total Xylenes                       | 2024/12/28 |            |           |            |           | <0.20    | ug/L  | NC        | 30        |
| 9845440  | trans-1,2-Dichloroethylene          | 2024/12/28 | 84         | 70 - 130  | 103        | 70 - 130  | <0.50    | ug/L  | NC        | 30        |
| 9845440  | trans-1,3-Dichloropropene           | 2024/12/28 | 79         | 70 - 130  | 87         | 70 - 130  | <0.40    | ug/L  | NC        | 30        |
| 9845440  | Trichloroethylene                   | 2024/12/28 | 84         | 70 - 130  | 102        | 70 - 130  | <0.20    | ug/L  | NC        | 30        |
| 9845440  | Trichlorofluoromethane (FREON 11)   | 2024/12/28 | 82         | 70 - 130  | 104        | 70 - 130  | <0.50    | ug/L  | NC        | 30        |
| 9845440  | Vinyl Chloride                      | 2024/12/28 | 79         | 70 - 130  | 103        | 70 - 130  | <0.20    | ug/L  | NC        | 30        |
| 9846560  | F2 (C10-C16 Hydrocarbons)           | 2024/12/24 | 114        | 60 - 140  | 119        | 80 - 120  | <7.0     | ug/g  | NC        | 30        |
| 9846560  | F3 (C16-C34 Hydrocarbons)           | 2024/12/24 | 113        | 60 - 140  | 118        | 80 - 120  | <50      | ug/g  | NC        | 30        |
| 9846560  | F4 (C34-C50 Hydrocarbons)           | 2024/12/24 | 103        | 60 - 140  | 108        | 80 - 120  | <50      | ug/g  | NC        | 30        |

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).



Client Project #: OTT-00243705-C0

Sampler Initials: PO

#### **VALIDATION SIGNATURE PAGE**

The analytical data and all QC contained in this report were reviewed and validated by:

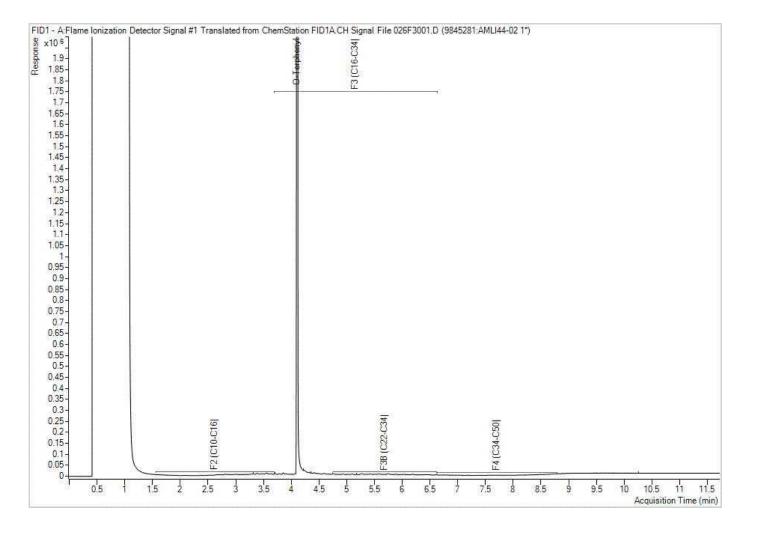
Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

# C4BP677 2024/12/20 16:00

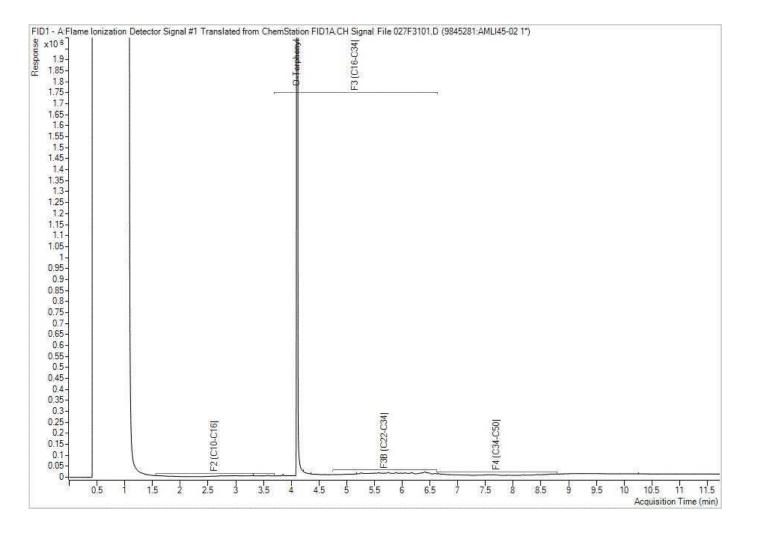
www.BVNA.com

6740 Campobello Road, Mississauga, Ontario L5N 2L8 Phone: 905-817-5700 Fax: 905-817-5779 Toil Free: 800-563-6266


#### CHAIN OF CUSTODY RECORD ENV COC - 00014v6

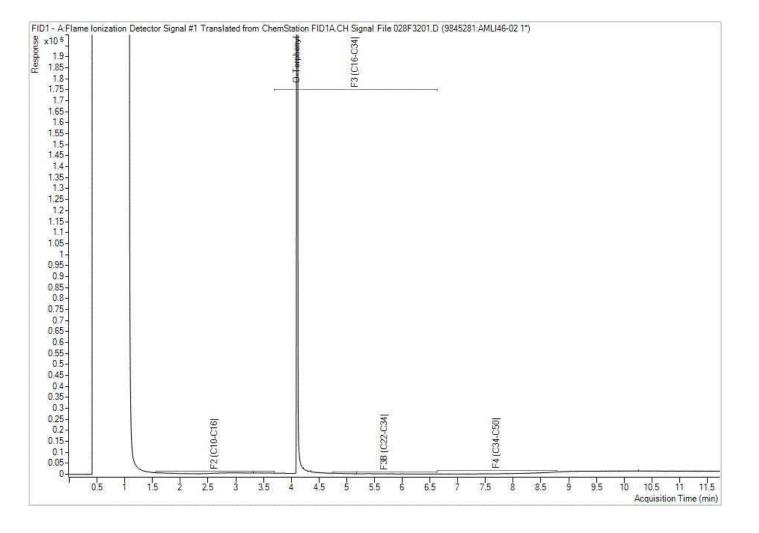
Page \_\_\_\_\_\_ of \_\_\_\_\_

Report Information (if differs from invoice) Project Information Invoice Information Invoice to (requires report) Quotation #: STREAM EXP SORVICES Contact P.O. #/ AFE#: Name Street Rusensview De OTT-00343705-CO roject #: Address NONT-2024-12-4537 Prov: On Code: OTTAWA City: City: Prov: Site #: 688 - 1890 Site Location: ite Location mail Email: Kimmonh Province: hip. Olivema 10 Copies: Sampled By: Copies. 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 ; 18 | 19 | 20 | 21 | 22 Regular Turnaround Time (TAT) Table 1 Res/Park 5 to 7 Day ☐ 10 Day ☐ Ind/Comm Coarse ☐ Reg 558\* 5 Sanitary Sewer Bylaw Table 2 Agri/other ☐ For RSC \*min 3 day TAT 🖂 Storm Sewer Bylavi Table 3 Rush Turnaround Time (TAT) PAISA Municipality Table Surcharges andly PWQO Inch. le Criteria on Certificate of Analysis (check if yes): ☐ 1 Day □ 2 Day II 3 Day CONTAINERS Date Sampled (antes AAAA WW 30 Sample identification Date Matrix (Flease print or Type) Required: Mag 29 RH MM OF 12/20 Soil 10 45 59 101 50 511 11 15 512 XXXXX SUMP 13 201 Wester Received in Ottow SONLESS CONDITIONS SEALING TO IN WRITING, WITH SUBMITTED ON THIS CHAIN OF CUSTODY'S SUBMITTED ON THIS CHAIN OF CUSTODY'S SUBMITTED ON THIS CHAIN OF CUSTODY SUBMITTED ON THIS CHAIN OF CUSTODY DOCUMENT IS A KNOWLEDGMENT AND ACCEPTANCE OF OUR TERMS AND CONDITIONS OF BY CALLING THE LABORATORY LISTED ABOVE TO OBTAIN A COPY ice packs Temperature LAB USE DILLY Yes LAB LISE ONLY LAB USE ONLY No Yes No reading oy: 01 °C Seal present Seal present Seal injact Seal intact Seal Intact 6 Cooling media present Cooling media present Cooling media present Received by: (Signature/ Print) Relinquished by: (Signature/ Print) нн MM 70 rengeliza Santiges A89 16 00 2024 0 12 21 08 SUGAN SALVAN 2324 Olivera DESCRIPTION


exp Services Inc Client Project #: OTT-00243705-C0 Client ID: S7

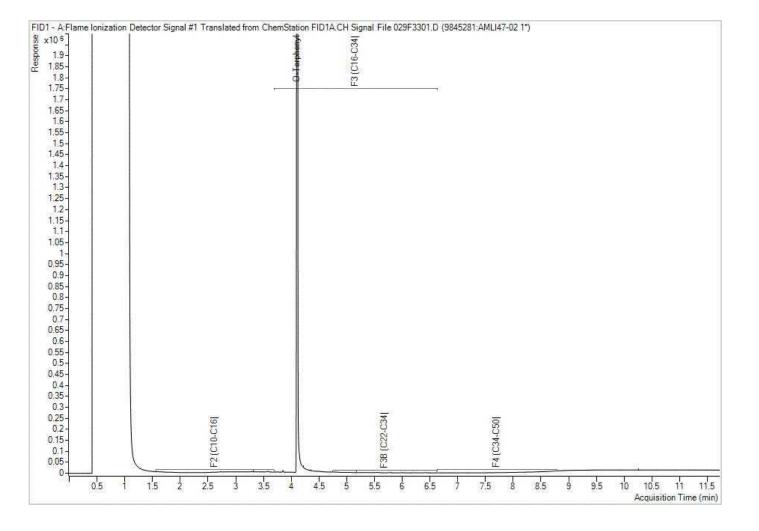
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram




exp Services Inc Client Project #: OTT-00243705-C0 Client ID: S8

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram




exp Services Inc Client Project #: OTT-00243705-C0 Client ID: S9

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram



exp Services Inc Client Project #: OTT-00243705-C0 Client ID: S10

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

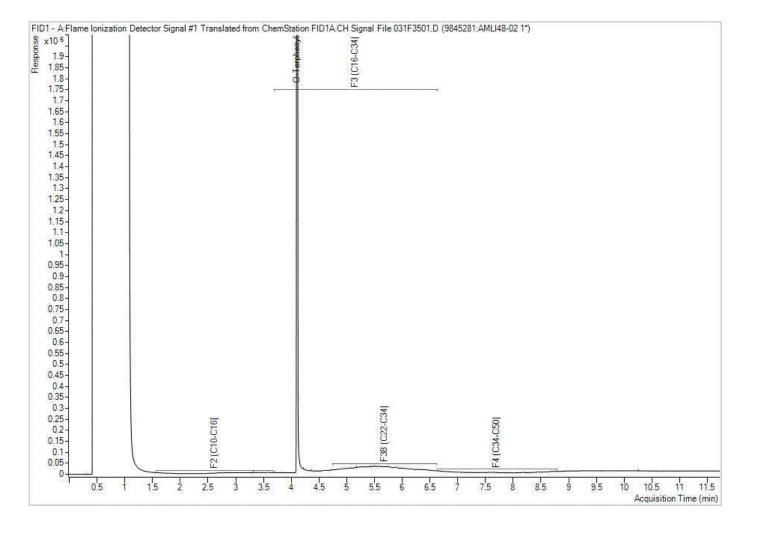


Bureau Veritas Job #: C4BP677 Report Date: 2024/12/30

Bureau Veritas Sample: AMLI47 Lab-Dup

exp Services Inc

Client Project #: OTT-00243705-C0

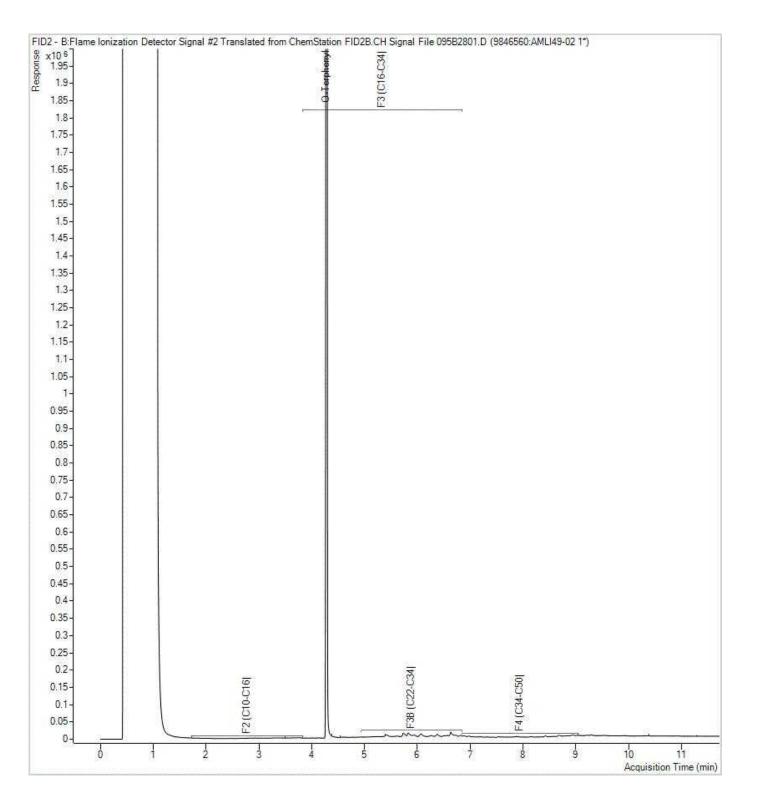

Client ID: S10

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram



exp Services Inc Client Project #: OTT-00243705-C0 Client ID: S11

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram

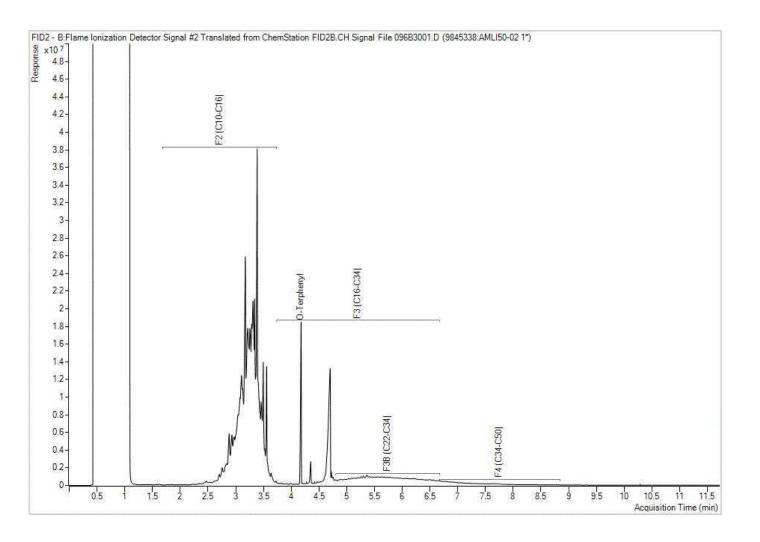



exp Services Inc

Client Project #: OTT-00243705-C0

Client ID: S12

#### Petroleum Hydrocarbons F2-F4 in Soil Chromatogram




exp Services Inc

Client Project #: OTT-00243705-C0

Client ID: SUMP

Petroleum Hydrocarbons F2-F4 in Water Chromatogram





Your Project #: OTT-00243705-C0

Your C.O.C. #: N/A

**Attention: Chris Kimmerly** 

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2025/01/02

Report #: R8465243 Version: 1 - Final

#### **CERTIFICATE OF ANALYSIS**

BUREAU VERITAS JOB #: C4BP680 Received: 2024/12/20, 16:00

Sample Matrix: Water # Samples Received: 1

|                                              |          | Date       | Date       |                   |                   |
|----------------------------------------------|----------|------------|------------|-------------------|-------------------|
| Analyses                                     | Quantity | Extracted  | Analyzed   | Laboratory Method | Analytical Method |
| Methylnaphthalene Sum (1)                    | 1        | N/A        | 2024/12/30 | CAM SOP-00301     | EPA 8270D m       |
| 1,3-Dichloropropene Sum (1)                  | 1        | N/A        | 2024/12/30 |                   | EPA 8260C m       |
| Petroleum Hydrocarbons F2-F4 in Water (1, 2) | 1        | 2024/12/24 | 2024/12/24 | CAM SOP-00316     | CCME PHC-CWS m    |
| Dissolved Metals by ICPMS (1)                | 1        | N/A        | 2025/01/02 | CAM SOP-00447     | EPA 6020B m       |
| PAH Compounds in Water by GC/MS (SIM) (1)    | 1        | 2024/12/24 | 2024/12/25 | CAM SOP-00318     | EPA 8270E         |
| Volatile Organic Compounds and F1 PHCs (1)   | 1        | N/A        | 2024/12/28 | CAM SOP-00230     | EPA 8260C m       |

#### Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- $^{st}$  RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Mississauga, 6740 Campobello Rd , Mississauga, ON, L5N 2L8
- (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.



Your Project #: OTT-00243705-C0

Your C.O.C. #: N/A

**Attention: Chris Kimmerly** 

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2025/01/02

Report #: R8465243 Version: 1 - Final

#### **CERTIFICATE OF ANALYSIS**

BUREAU VERITAS JOB #: C4BP680 Received: 2024/12/20, 16:00

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to: Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

\_\_\_\_\_

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.



Client Project #: OTT-00243705-C0

Sampler Initials: PO

### O.REG 153 DISSOLVED ICPMS METALS (WATER)

| Bureau Veritas ID              |       | AMLI61     |       |          |
|--------------------------------|-------|------------|-------|----------|
| Sampling Date                  |       | 2024/12/20 |       |          |
| COC Number                     |       | N/A        |       |          |
|                                | UNITS | FILTRED    | RDL   | QC Batch |
| Metals                         |       |            |       |          |
| Dissolved Antimony (Sb)        | ug/L  | 1.3        | 0.50  | 9845566  |
| Dissolved Arsenic (As)         | ug/L  | <1.0       | 1.0   | 9845566  |
| Dissolved Barium (Ba)          | ug/L  | 140        | 2.0   | 9845566  |
| Dissolved Beryllium (Be)       | ug/L  | <0.40      | 0.40  | 9845566  |
| Dissolved Boron (B)            | ug/L  | 150        | 10    | 9845566  |
| Dissolved Cadmium (Cd)         | ug/L  | 0.12       | 0.090 | 9845566  |
| Dissolved Chromium (Cr)        | ug/L  | <5.0       | 5.0   | 9845566  |
| Dissolved Cobalt (Co)          | ug/L  | 22         | 0.50  | 9845566  |
| Dissolved Copper (Cu)          | ug/L  | 3.4        | 0.90  | 9845566  |
| Dissolved Lead (Pb)            | ug/L  | <0.50      | 0.50  | 9845566  |
| Dissolved Molybdenum (Mo)      | ug/L  | 12         | 0.50  | 9845566  |
| Dissolved Nickel (Ni)          | ug/L  | 8.0        | 1.0   | 9845566  |
| Dissolved Selenium (Se)        | ug/L  | <2.0       | 2.0   | 9845566  |
| Dissolved Silver (Ag)          | ug/L  | <0.090     | 0.090 | 9845566  |
| Dissolved Sodium (Na)          | ug/L  | 73000      | 100   | 9845566  |
| Dissolved Thallium (TI)        | ug/L  | <0.050     | 0.050 | 9845566  |
| Dissolved Uranium (U)          | ug/L  | 0.50       | 0.10  | 9845566  |
| Dissolved Vanadium (V)         | ug/L  | <0.50      | 0.50  | 9845566  |
| Dissolved Zinc (Zn)            | ug/L  | 33         | 5.0   | 9845566  |
| RDL = Reportable Detection Lin | mit   |            |       |          |
| QC Batch = Quality Control Bat | ch    |            |       |          |



Client Project #: OTT-00243705-C0

Sampler Initials: PO

# O.REG 153 PAHS (WATER)

| Bureau Veritas ID         |       | AMLI61     |        |          |
|---------------------------|-------|------------|--------|----------|
| Sampling Date             |       | 2024/12/20 |        |          |
| COC Number                |       | N/A        |        |          |
|                           | UNITS | FILTRED    | RDL    | QC Batch |
| Calculated Parameters     |       |            |        |          |
| Methylnaphthalene, 2-(1-) | ug/L  | <0.67      | 0.67   | 9843311  |
| Polyaromatic Hydrocarbons | •     | •          | •      |          |
| Acenaphthene              | ug/L  | <0.80 (1)  | 0.80   | 9845295  |
| Acenaphthylene            | ug/L  | <0.060 (1) | 0.060  | 9845295  |
| Anthracene                | ug/L  | <0.50 (1)  | 0.50   | 9845295  |
| Benzo(a)anthracene        | ug/L  | <0.050     | 0.050  | 9845295  |
| Benzo(a)pyrene            | ug/L  | <0.0090    | 0.0090 | 9845295  |
| Benzo(b/j)fluoranthene    | ug/L  | <0.050     | 0.050  | 9845295  |
| Benzo(g,h,i)perylene      | ug/L  | 0.080      | 0.050  | 9845295  |
| Benzo(k)fluoranthene      | ug/L  | <0.050     | 0.050  | 9845295  |
| Chrysene                  | ug/L  | <0.050     | 0.050  | 9845295  |
| Dibenzo(a,h)anthracene    | ug/L  | <0.050     | 0.050  | 9845295  |
| Fluoranthene              | ug/L  | <0.20 (1)  | 0.20   | 9845295  |
| Fluorene                  | ug/L  | <0.050     | 0.050  | 9845295  |
| Indeno(1,2,3-cd)pyrene    | ug/L  | <0.050     | 0.050  | 9845295  |
| 1-Methylnaphthalene       | ug/L  | <0.30 (1)  | 0.30   | 9845295  |
| 2-Methylnaphthalene       | ug/L  | <0.60 (1)  | 0.60   | 9845295  |
| Naphthalene               | ug/L  | <0.30 (1)  | 0.30   | 9845295  |
| Phenanthrene              | ug/L  | <0.40 (1)  | 0.40   | 9845295  |
| Pyrene                    | ug/L  | 0.74       | 0.050  | 9845295  |
| Surrogate Recovery (%)    |       |            |        |          |
| D10-Anthracene            | %     | 100        |        | 9845295  |
| D14-Terphenyl (FS)        | %     | 93         |        | 9845295  |
| D8-Acenaphthylene         | %     | 107        |        | 9845295  |
|                           |       |            |        |          |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) Detection Limit was raised due to matrix interferences.



Client Project #: OTT-00243705-C0

Sampler Initials: PO

# O.REG 153 VOCS BY HS & F1-F4 (WATER)

| Bureau Veritas ID                                                 |       | AMLI61       |      |          |
|-------------------------------------------------------------------|-------|--------------|------|----------|
| Sampling Date                                                     |       | 2024/12/20   |      |          |
| COC Number                                                        |       | N/A          |      |          |
| COC Number                                                        | UNITS | FILTRED      | RDL  | QC Batch |
|                                                                   | UNITS | FILINED      | NDL  | QC Batti |
| Calculated Parameters                                             |       |              | 1    |          |
| 1,3-Dichloropropene (cis+trans)                                   | ug/L  | <0.50        | 0.50 | 9843312  |
| Volatile Organics                                                 |       |              | •    |          |
| Acetone (2-Propanone)                                             | ug/L  | 26           | 10   | 9845440  |
| Benzene                                                           | ug/L  | <0.17        | 0.17 | 9845440  |
| Bromodichloromethane                                              | ug/L  | <0.50        | 0.50 | 9845440  |
| Bromoform                                                         | ug/L  | <1.0         | 1.0  | 9845440  |
| Bromomethane                                                      | ug/L  | <0.50        | 0.50 | 9845440  |
| Carbon Tetrachloride                                              | ug/L  | <0.20        | 0.20 | 9845440  |
| Chlorobenzene                                                     | ug/L  | <0.20        | 0.20 | 9845440  |
| Chloroform                                                        | ug/L  | <0.20        | 0.20 | 9845440  |
| Dibromochloromethane                                              | ug/L  | <0.50        | 0.50 | 9845440  |
| 1,2-Dichlorobenzene                                               | ug/L  | <0.50        | 0.50 | 9845440  |
| 1,3-Dichlorobenzene                                               | ug/L  | <0.50        | 0.50 | 9845440  |
| 1,4-Dichlorobenzene                                               | ug/L  | <0.50        | 0.50 | 9845440  |
| Dichlorodifluoromethane (FREON 12)                                | ug/L  | <1.0         | 1.0  | 9845440  |
| 1,1-Dichloroethane                                                | ug/L  | <0.20        | 0.20 | 9845440  |
| 1,2-Dichloroethane                                                | ug/L  | <0.50        | 0.50 | 9845440  |
| 1,1-Dichloroethylene                                              | ug/L  | <0.20        | 0.20 | 9845440  |
| cis-1,2-Dichloroethylene                                          | ug/L  | <0.50        | 0.50 | 9845440  |
| trans-1,2-Dichloroethylene                                        | ug/L  | <0.50        | 0.50 | 9845440  |
| 1,2-Dichloropropane                                               | ug/L  | <0.20        | 0.20 | 9845440  |
| cis-1,3-Dichloropropene                                           | ug/L  | <0.30        | 0.30 | 9845440  |
| trans-1,3-Dichloropropene                                         | ug/L  | <0.40        | 0.40 | 9845440  |
| Ethylbenzene                                                      | ug/L  | 1.3          | 0.20 | 9845440  |
| Ethylene Dibromide                                                | ug/L  | <0.20        | 0.20 | 9845440  |
| Hexane                                                            | ug/L  | <1.0         | 1.0  | 9845440  |
| Methylene Chloride(Dichloromethane)                               | ug/L  | <2.0         | 2.0  | 9845440  |
| Methyl Ethyl Ketone (2-Butanone)                                  | ug/L  | <10          | 10   | 9845440  |
| Methyl Isobutyl Ketone                                            | ug/L  | <5.0         | 5.0  | 9845440  |
| Methyl t-butyl ether (MTBE)                                       | ug/L  | <0.50        | 0.50 | 9845440  |
| Styrene                                                           | ug/L  | <0.50        | 0.50 | 9845440  |
| 1,1,1,2-Tetrachloroethane                                         | ug/L  | <0.50        | 0.50 | 9845440  |
| 1,1,2,2-Tetrachloroethane                                         | ug/L  | <0.50        | 0.50 | 9845440  |
| Tetrachloroethylene                                               | ug/L  | <0.20        | 0.20 | 9845440  |
| Toluene                                                           | ug/L  | 1.9          | 0.20 | 9845440  |
| 1,1,1-Trichloroethane                                             | ug/L  | <0.20        | 0.20 | 9845440  |
|                                                                   | ug/L  | <b>\U.ZU</b> | 0.20 | 2042440  |
| RDL = Reportable Detection Limit QC Batch = Quality Control Batch |       |              |      |          |
| QC Battii – Quality Collifol Battii                               |       |              |      |          |



Client Project #: OTT-00243705-C0

Sampler Initials: PO

# **O.REG 153 VOCS BY HS & F1-F4 (WATER)**

| Bureau Veritas ID                                                    |       | AMLI61     |      |          |
|----------------------------------------------------------------------|-------|------------|------|----------|
| Sampling Date                                                        |       | 2024/12/20 |      |          |
| COC Number                                                           |       | N/A        |      |          |
|                                                                      | UNITS | FILTRED    | RDL  | QC Batch |
| 1,1,2-Trichloroethane                                                | ug/L  | <0.50      | 0.50 | 9845440  |
| Trichloroethylene                                                    | ug/L  | <0.20      | 0.20 | 9845440  |
| Trichlorofluoromethane (FREON 11)                                    | ug/L  | <0.50      | 0.50 | 9845440  |
| Vinyl Chloride                                                       | ug/L  | <0.20      | 0.20 | 9845440  |
| p+m-Xylene                                                           | ug/L  | 6.8        | 0.20 | 9845440  |
| o-Xylene                                                             | ug/L  | 5.6        | 0.20 | 9845440  |
| Total Xylenes                                                        | ug/L  | 12         | 0.20 | 9845440  |
| F1 (C6-C10)                                                          | ug/L  | 360        | 25   | 9845440  |
| F1 (C6-C10) - BTEX                                                   | ug/L  | 350        | 25   | 9845440  |
| F2-F4 Hydrocarbons                                                   |       |            |      |          |
| F2 (C10-C16 Hydrocarbons)                                            | ug/L  | 120000     | 90   | 9845338  |
| F3 (C16-C34 Hydrocarbons)                                            | ug/L  | 66000      | 200  | 9845338  |
| F4 (C34-C50 Hydrocarbons)                                            | ug/L  | 12000      | 200  | 9845338  |
| Reached Baseline at C50                                              | ug/L  | Yes        |      | 9845338  |
| Surrogate Recovery (%)                                               |       |            |      |          |
| o-Terphenyl                                                          | %     | 106        |      | 9845338  |
| 4-Bromofluorobenzene                                                 | %     | 96         |      | 9845440  |
| D4-1,2-Dichloroethane                                                | %     | 103        |      | 9845440  |
| D8-Toluene                                                           | %     | 100        |      | 9845440  |
| RDL = Reportable Detection Limit<br>QC Batch = Quality Control Batch |       |            |      |          |



Report Date: 2025/01/02

exp Services Inc

Client Project #: OTT-00243705-C0

Sampler Initials: PO

#### **TEST SUMMARY**

Bureau Veritas ID: AMLI61 Collected: 2024/12/20

Sample ID:FILTREDShipped:Matrix:WaterReceived:2024/12/20

**Test Description** Extracted **Date Analyzed** Instrumentation Batch Analyst Methylnaphthalene Sum CALC 9843311 N/A 2024/12/30 **Automated Statchk** CALC 9843312 N/A 2024/12/30 1,3-Dichloropropene Sum **Automated Statchk** Petroleum Hydrocarbons F2-F4 in Water GC/FID 9845338 2024/12/24 2024/12/24 Anna Stuglik-Rolland ICP/MS 9845566 2025/01/02 Dissolved Metals by ICPMS N/A Prempal Bhatti PAH Compounds in Water by GC/MS (SIM) GC/MS 9845295 2024/12/24 2024/12/25 Mitesh Raj Volatile Organic Compounds and F1 PHCs GC/MSFD 9845440 N/A 2024/12/28 **Xueming Jiang** 



Client Project #: OTT-00243705-C0

Sampler Initials: PO

### **GENERAL COMMENTS**

| Each te | emperature is the ave | erage of up to thi | ee cooler temperatures taken at receipt |
|---------|-----------------------|--------------------|-----------------------------------------|
|         | Package 1             | 5.0°C              |                                         |
| ·       |                       | •                  |                                         |

Results relate only to the items tested.



### **QUALITY ASSURANCE REPORT**

exp Services Inc

Client Project #: OTT-00243705-C0

|          | Parameter                 |            | Matrix Spike |           | SPIKED BLANK |           | Method Blank |       | RPD       |           |
|----------|---------------------------|------------|--------------|-----------|--------------|-----------|--------------|-------|-----------|-----------|
| QC Batch |                           | Date       | % Recovery   | QC Limits | % Recovery   | QC Limits | Value        | UNITS | Value (%) | QC Limits |
| 9845295  | D10-Anthracene            | 2024/12/25 | 102          | 50 - 130  | 108          | 50 - 130  | 108          | %     |           |           |
| 9845295  | D14-Terphenyl (FS)        | 2024/12/25 | 103          | 50 - 130  | 104          | 50 - 130  | 107          | %     |           |           |
| 9845295  | D8-Acenaphthylene         | 2024/12/25 | 101          | 50 - 130  | 103          | 50 - 130  | 98           | %     |           |           |
| 9845338  | o-Terphenyl               | 2024/12/24 | 106          | 60 - 140  | 105          | 60 - 140  | 104          | %     |           |           |
| 9845440  | 4-Bromofluorobenzene      | 2024/12/28 | 101          | 70 - 130  | 100          | 70 - 130  | 99           | %     |           |           |
| 9845440  | D4-1,2-Dichloroethane     | 2024/12/28 | 105          | 70 - 130  | 103          | 70 - 130  | 96           | %     |           |           |
| 9845440  | D8-Toluene                | 2024/12/28 | 100          | 70 - 130  | 101          | 70 - 130  | 102          | %     |           |           |
| 9845295  | 1-Methylnaphthalene       | 2024/12/25 | NC           | 50 - 130  | 88           | 50 - 130  | <0.050       | ug/L  | NC        | 30        |
| 9845295  | 2-Methylnaphthalene       | 2024/12/25 | NC           | 50 - 130  | 84           | 50 - 130  | <0.050       | ug/L  | 7.8       | 30        |
| 9845295  | Acenaphthene              | 2024/12/25 | 100          | 50 - 130  | 97           | 50 - 130  | <0.050       | ug/L  | NC        | 30        |
| 9845295  | Acenaphthylene            | 2024/12/25 | 104          | 50 - 130  | 100          | 50 - 130  | <0.050       | ug/L  | NC        | 30        |
| 9845295  | Anthracene                | 2024/12/25 | 103          | 50 - 130  | 104          | 50 - 130  | <0.050       | ug/L  | NC        | 30        |
| 9845295  | Benzo(a)anthracene        | 2024/12/25 | 112          | 50 - 130  | 110          | 50 - 130  | <0.050       | ug/L  | NC        | 30        |
| 9845295  | Benzo(a)pyrene            | 2024/12/25 | 111          | 50 - 130  | 110          | 50 - 130  | <0.0090      | ug/L  | NC        | 30        |
| 9845295  | Benzo(b/j)fluoranthene    | 2024/12/25 | 110          | 50 - 130  | 109          | 50 - 130  | <0.050       | ug/L  | NC        | 30        |
| 9845295  | Benzo(g,h,i)perylene      | 2024/12/25 | 113          | 50 - 130  | 111          | 50 - 130  | <0.050       | ug/L  | NC        | 30        |
| 9845295  | Benzo(k)fluoranthene      | 2024/12/25 | 107          | 50 - 130  | 106          | 50 - 130  | <0.050       | ug/L  | NC        | 30        |
| 9845295  | Chrysene                  | 2024/12/25 | 103          | 50 - 130  | 103          | 50 - 130  | <0.050       | ug/L  | NC        | 30        |
| 9845295  | Dibenzo(a,h)anthracene    | 2024/12/25 | 100          | 50 - 130  | 98           | 50 - 130  | <0.050       | ug/L  | NC        | 30        |
| 9845295  | Fluoranthene              | 2024/12/25 | 117          | 50 - 130  | 116          | 50 - 130  | <0.050       | ug/L  | NC        | 30        |
| 9845295  | Fluorene                  | 2024/12/25 | 108          | 50 - 130  | 104          | 50 - 130  | <0.050       | ug/L  | NC        | 30        |
| 9845295  | Indeno(1,2,3-cd)pyrene    | 2024/12/25 | 114          | 50 - 130  | 115          | 50 - 130  | <0.050       | ug/L  | NC        | 30        |
| 9845295  | Naphthalene               | 2024/12/25 | NC           | 50 - 130  | 83           | 50 - 130  | <0.050       | ug/L  | 2.8       | 30        |
| 9845295  | Phenanthrene              | 2024/12/25 | 105          | 50 - 130  | 104          | 50 - 130  | <0.030       | ug/L  | NC        | 30        |
| 9845295  | Pyrene                    | 2024/12/25 | 115          | 50 - 130  | 114          | 50 - 130  | <0.050       | ug/L  | NC        | 30        |
| 9845338  | F2 (C10-C16 Hydrocarbons) | 2024/12/24 | 108          | 60 - 140  | 105          | 60 - 140  | <90          | ug/L  | NC        | 30        |
| 9845338  | F3 (C16-C34 Hydrocarbons) | 2024/12/24 | 109          | 60 - 140  | 108          | 60 - 140  | <200         | ug/L  | NC        | 30        |
| 9845338  | F4 (C34-C50 Hydrocarbons) | 2024/12/24 | 103          | 60 - 140  | 98           | 60 - 140  | <200         | ug/L  | NC        | 30        |
| 9845440  | 1,1,1,2-Tetrachloroethane | 2024/12/28 | 91           | 70 - 130  | 109          | 70 - 130  | <0.50        | ug/L  | NC        | 30        |
| 9845440  | 1,1,1-Trichloroethane     | 2024/12/28 | 82           | 70 - 130  | 100          | 70 - 130  | <0.20        | ug/L  | NC        | 30        |
| 9845440  | 1,1,2,2-Tetrachloroethane | 2024/12/28 | 84           | 70 - 130  | 99           | 70 - 130  | <0.50        | ug/L  | NC        | 30        |
| 9845440  | 1,1,2-Trichloroethane     | 2024/12/28 | 90           | 70 - 130  | 106          | 70 - 130  | <0.50        | ug/L  | NC        | 30        |



exp Services Inc

Client Project #: OTT-00243705-C0

|          | Parameter                           |            | Matrix Spike |           | SPIKED BLANK |           | Method Blank |       | RPD       |           |
|----------|-------------------------------------|------------|--------------|-----------|--------------|-----------|--------------|-------|-----------|-----------|
| QC Batch |                                     | Date       | % Recovery   | QC Limits | % Recovery   | QC Limits | Value        | UNITS | Value (%) | QC Limits |
| 9845440  | 1,1-Dichloroethane                  | 2024/12/28 | 81           | 70 - 130  | 99           | 70 - 130  | <0.20        | ug/L  | NC        | 30        |
| 9845440  | 1,1-Dichloroethylene                | 2024/12/28 | 81           | 70 - 130  | 101          | 70 - 130  | <0.20        | ug/L  | NC        | 30        |
| 9845440  | 1,2-Dichlorobenzene                 | 2024/12/28 | 85           | 70 - 130  | 101          | 70 - 130  | <0.50        | ug/L  | NC        | 30        |
| 9845440  | 1,2-Dichloroethane                  | 2024/12/28 | 89           | 70 - 130  | 106          | 70 - 130  | <0.50        | ug/L  | NC        | 30        |
| 9845440  | 1,2-Dichloropropane                 | 2024/12/28 | 83           | 70 - 130  | 100          | 70 - 130  | <0.20        | ug/L  | NC        | 30        |
| 9845440  | 1,3-Dichlorobenzene                 | 2024/12/28 | 84           | 70 - 130  | 100          | 70 - 130  | <0.50        | ug/L  | NC        | 30        |
| 9845440  | 1,4-Dichlorobenzene                 | 2024/12/28 | 85           | 70 - 130  | 101          | 70 - 130  | <0.50        | ug/L  | NC        | 30        |
| 9845440  | Acetone (2-Propanone)               | 2024/12/28 | 89           | 60 - 140  | 102          | 60 - 140  | <10          | ug/L  | NC        | 30        |
| 9845440  | Benzene                             | 2024/12/28 | 83           | 70 - 130  | 101          | 70 - 130  | <0.17        | ug/L  | NC        | 30        |
| 9845440  | Bromodichloromethane                | 2024/12/28 | 84           | 70 - 130  | 100          | 70 - 130  | <0.50        | ug/L  | NC        | 30        |
| 9845440  | Bromoform                           | 2024/12/28 | 88           | 70 - 130  | 104          | 70 - 130  | <1.0         | ug/L  | NC        | 30        |
| 9845440  | Bromomethane                        | 2024/12/28 | 78           | 60 - 140  | 95           | 60 - 140  | <0.50        | ug/L  | NC        | 30        |
| 9845440  | Carbon Tetrachloride                | 2024/12/28 | 89           | 70 - 130  | 109          | 70 - 130  | <0.20        | ug/L  | NC        | 30        |
| 9845440  | Chlorobenzene                       | 2024/12/28 | 77           | 70 - 130  | 92           | 70 - 130  | <0.20        | ug/L  | NC        | 30        |
| 9845440  | Chloroform                          | 2024/12/28 | 85           | 70 - 130  | 97           | 70 - 130  | <0.20        | ug/L  | NC        | 30        |
| 9845440  | cis-1,2-Dichloroethylene            | 2024/12/28 | 86           | 70 - 130  | 104          | 70 - 130  | <0.50        | ug/L  | NC        | 30        |
| 9845440  | cis-1,3-Dichloropropene             | 2024/12/28 | 72           | 70 - 130  | 82           | 70 - 130  | <0.30        | ug/L  | NC        | 30        |
| 9845440  | Dibromochloromethane                | 2024/12/28 | 89           | 70 - 130  | 105          | 70 - 130  | <0.50        | ug/L  | NC        | 30        |
| 9845440  | Dichlorodifluoromethane (FREON 12)  | 2024/12/28 | 86           | 60 - 140  | 125          | 60 - 140  | <1.0         | ug/L  | NC        | 30        |
| 9845440  | Ethylbenzene                        | 2024/12/28 | 80           | 70 - 130  | 97           | 70 - 130  | <0.20        | ug/L  | NC        | 30        |
| 9845440  | Ethylene Dibromide                  | 2024/12/28 | 86           | 70 - 130  | 101          | 70 - 130  | <0.20        | ug/L  | NC        | 30        |
| 9845440  | F1 (C6-C10) - BTEX                  | 2024/12/28 |              |           |              |           | <25          | ug/L  | NC        | 30        |
| 9845440  | F1 (C6-C10)                         | 2024/12/28 | 94           | 60 - 140  | 100          | 60 - 140  | <25          | ug/L  | NC        | 30        |
| 9845440  | Hexane                              | 2024/12/28 | 89           | 70 - 130  | 112          | 70 - 130  | <1.0         | ug/L  | NC        | 30        |
| 9845440  | Methyl Ethyl Ketone (2-Butanone)    | 2024/12/28 | 96           | 60 - 140  | 111          | 60 - 140  | <10          | ug/L  | NC        | 30        |
| 9845440  | Methyl Isobutyl Ketone              | 2024/12/28 | 86           | 70 - 130  | 101          | 70 - 130  | <5.0         | ug/L  | NC        | 30        |
| 9845440  | Methyl t-butyl ether (MTBE)         | 2024/12/28 | 82           | 70 - 130  | 99           | 70 - 130  | <0.50        | ug/L  | NC        | 30        |
| 9845440  | Methylene Chloride(Dichloromethane) | 2024/12/28 | 83           | 70 - 130  | 100          | 70 - 130  | <2.0         | ug/L  | NC        | 30        |
| 9845440  | o-Xylene                            | 2024/12/28 | 85           | 70 - 130  | 103          | 70 - 130  | <0.20        | ug/L  | NC        | 30        |
| 9845440  | p+m-Xylene                          | 2024/12/28 | 81           | 70 - 130  | 97           | 70 - 130  | <0.20        | ug/L  | NC        | 30        |
| 9845440  | Styrene                             | 2024/12/28 | 80           | 70 - 130  | 97           | 70 - 130  | <0.50        | ug/L  | NC        | 30        |
| 9845440  | Tetrachloroethylene                 | 2024/12/28 | 81           | 70 - 130  | 98           | 70 - 130  | <0.20        | ug/L  | NC        | 30        |



exp Services Inc

Client Project #: OTT-00243705-C0

|          |                                   |            |            | Matrix Spike         |     | SPIKED BLANK |        | Method Blank |           | RPD       |  |
|----------|-----------------------------------|------------|------------|----------------------|-----|--------------|--------|--------------|-----------|-----------|--|
| QC Batch | Parameter                         | Date       | % Recovery | % Recovery QC Limits |     | QC Limits    | Value  | UNITS        | Value (%) | QC Limits |  |
| 9845440  | Toluene                           | 2024/12/28 | 84         | 70 - 130             | 96  | 70 - 130     | <0.20  | ug/L         | NC        | 30        |  |
| 9845440  | Total Xylenes                     | 2024/12/28 |            |                      |     |              | <0.20  | ug/L         | NC        | 30        |  |
| 9845440  | trans-1,2-Dichloroethylene        | 2024/12/28 | 84         | 70 - 130             | 103 | 70 - 130     | <0.50  | ug/L         | NC        | 30        |  |
| 9845440  | trans-1,3-Dichloropropene         | 2024/12/28 | 79         | 70 - 130             | 87  | 70 - 130     | <0.40  | ug/L         | NC        | 30        |  |
| 9845440  | Trichloroethylene                 | 2024/12/28 | 84         | 70 - 130             | 102 | 70 - 130     | <0.20  | ug/L         | NC        | 30        |  |
| 9845440  | Trichlorofluoromethane (FREON 11) | 2024/12/28 | 82         | 70 - 130             | 104 | 70 - 130     | <0.50  | ug/L         | NC        | 30        |  |
| 9845440  | Vinyl Chloride                    | 2024/12/28 | 79         | 70 - 130             | 103 | 70 - 130     | <0.20  | ug/L         | NC        | 30        |  |
| 9845566  | Dissolved Antimony (Sb)           | 2025/01/02 | 105        | 80 - 120             | 101 | 80 - 120     | <0.50  | ug/L         |           |           |  |
| 9845566  | Dissolved Arsenic (As)            | 2025/01/02 | 103        | 80 - 120             | 101 | 80 - 120     | <1.0   | ug/L         |           |           |  |
| 9845566  | Dissolved Barium (Ba)             | 2025/01/02 | 102        | 80 - 120             | 99  | 80 - 120     | <2.0   | ug/L         |           |           |  |
| 9845566  | Dissolved Beryllium (Be)          | 2025/01/02 | 104        | 80 - 120             | 100 | 80 - 120     | <0.40  | ug/L         |           |           |  |
| 9845566  | Dissolved Boron (B)               | 2025/01/02 | 98         | 80 - 120             | 94  | 80 - 120     | <10    | ug/L         |           |           |  |
| 9845566  | Dissolved Cadmium (Cd)            | 2025/01/02 | 101        | 80 - 120             | 98  | 80 - 120     | <0.090 | ug/L         |           |           |  |
| 9845566  | Dissolved Chromium (Cr)           | 2025/01/02 | 103        | 80 - 120             | 101 | 80 - 120     | <5.0   | ug/L         |           |           |  |
| 9845566  | Dissolved Cobalt (Co)             | 2025/01/02 | 99         | 80 - 120             | 99  | 80 - 120     | <0.50  | ug/L         |           |           |  |
| 9845566  | Dissolved Copper (Cu)             | 2025/01/02 | 103        | 80 - 120             | 102 | 80 - 120     | <0.90  | ug/L         |           |           |  |
| 9845566  | Dissolved Lead (Pb)               | 2025/01/02 | 98         | 80 - 120             | 96  | 80 - 120     | <0.50  | ug/L         | NC        | 20        |  |
| 9845566  | Dissolved Molybdenum (Mo)         | 2025/01/02 | 105        | 80 - 120             | 101 | 80 - 120     | <0.50  | ug/L         |           |           |  |
| 9845566  | Dissolved Nickel (Ni)             | 2025/01/02 | 96         | 80 - 120             | 97  | 80 - 120     | <1.0   | ug/L         |           |           |  |
| 9845566  | Dissolved Selenium (Se)           | 2025/01/02 | 101        | 80 - 120             | 99  | 80 - 120     | <2.0   | ug/L         |           |           |  |
| 9845566  | Dissolved Silver (Ag)             | 2025/01/02 | 99         | 80 - 120             | 97  | 80 - 120     | <0.090 | ug/L         |           |           |  |
| 9845566  | Dissolved Sodium (Na)             | 2025/01/02 | 102        | 80 - 120             | 102 | 80 - 120     | <100   | ug/L         |           |           |  |
| 9845566  | Dissolved Thallium (TI)           | 2025/01/02 | 99         | 80 - 120             | 97  | 80 - 120     | <0.050 | ug/L         |           |           |  |
| 9845566  | Dissolved Uranium (U)             | 2025/01/02 | 100        | 80 - 120             | 96  | 80 - 120     | <0.10  | ug/L         |           |           |  |
| 9845566  | Dissolved Vanadium (V)            | 2025/01/02 | 103        | 80 - 120             | 101 | 80 - 120     | <0.50  | ug/L         |           |           |  |



Bureau Veritas Job #: C4BP680 Report Date: 2025/01/02

### QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: OTT-00243705-C0

Sampler Initials: PO

|          |                     |            | Matrix     | Spike     | SPIKED     | BLANK     | Method B | lank  | RPD       | ,         |
|----------|---------------------|------------|------------|-----------|------------|-----------|----------|-------|-----------|-----------|
| QC Batch | Parameter           | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value    | UNITS | Value (%) | QC Limits |
| 9845566  | Dissolved Zinc (Zn) | 2025/01/02 | 99         | 80 - 120  | 99         | 80 - 120  | <5.0     | ug/L  |           |           |

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).



Report Date: 2025/01/02

exp Services Inc

Client Project #: OTT-00243705-C0

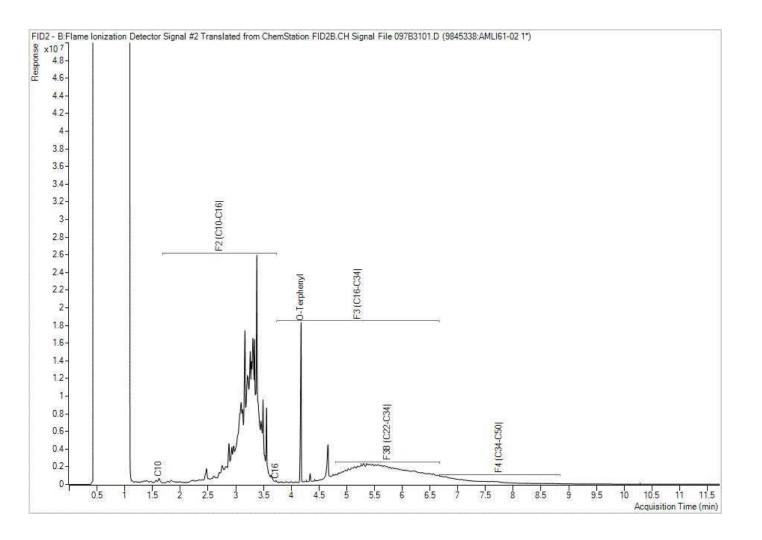
Sampler Initials: PO

#### **VALIDATION SIGNATURE PAGE**

The analytical data and all QC contained in this report were reviewed and validated by:

Cristin Carriere Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.


| 580<br>12/20 16:00                                                       | 5740 Campus             | obello Road,       | Mississana                       | ea Cestario I                                                     | SN 21 R                |           |                 |                       |          |          |                         |                   | CHA      | AIN OF     | CUSTODY    | RECOF                 | tD.    |             |                           |                                  |                     | ı                        |                         | ı            |
|--------------------------------------------------------------------------|-------------------------|--------------------|----------------------------------|-------------------------------------------------------------------|------------------------|-----------|-----------------|-----------------------|----------|----------|-------------------------|-------------------|----------|------------|------------|-----------------------|--------|-------------|---------------------------|----------------------------------|---------------------|--------------------------|-------------------------|--------------|
| www.BVNA.com                                                             |                         |                    |                                  |                                                                   | Toll Free: 800-        | 63-6266   |                 |                       |          |          |                         |                   |          | ENV C      | OC - 000:  | 14v6                  |        |             |                           |                                  | Page                |                          | of                      | -            |
| nvoice information Invoice to (re-                                       | quires report)          | T                  | Rep                              | port Informa                                                      | tion (if differs       | rom invoi | ce)             |                       | Т        |          |                         |                   | Project  | t Informat | ion        |                       |        | 7           |                           |                                  |                     |                          |                         |              |
| Company: EXP SERV                                                        | ices inc                | Company:           |                                  | EXP                                                               | SPANIE                 | 25        | ine             |                       | Q        | uotatio  | on #:                   |                   | Ste      | EAM        | 3          |                       |        |             |                           | -                                |                     |                          |                         | SOS          |
| Contact Name: ACCOUNTS F                                                 | anable                  | Contact<br>Name:   | Chi                              | ris k                                                             | imme                   |           |                 |                       | Р.       | .0. #/   | AFE#:                   |                   |          |            | -          |                       |        |             |                           |                                  |                     |                          |                         |              |
| Ctrapt                                                                   | nsview De               | Street<br>Address: | 265                              | 50 6                                                              | ) UKEN                 | sule      | VK              | D                     | P        | roject ( | <b>#</b> .              | - 1               | 77-      | DO.        | 2437       | 205                   | Co     | 1           | 47                        | Œλ,                              | VONT-               | 2024.                    | -12-453                 | 10           |
| City: OTTAWA Prov.                                                       | [Bestal ]               | City:              | 07714                            | WA                                                                |                        |           | Postal<br>Code: | 1                     | Si       | ite#:    |                         |                   |          | -          | 1          |                       |        |             | i e                       | σ.                               | 10111               | 2024                     | 12-43.                  | 0            |
|                                                                          | - 1899                  | Phone:             |                                  | 613-                                                              | 688-                   | 189       | 5               |                       |          | ite Loca |                         |                   |          |            |            |                       |        | _           |                           | 77.                              |                     |                          |                         |              |
| Email: 170 (0) exp.                                                      | im                      | Email:             | Chr                              | iso LN                                                            | morly                  | 10 L      | Sp. 0           | ッル                    |          | ite Loca |                         |                   | 1        | 1.         | 2.         | *                     |        |             |                           |                                  |                     |                          |                         | ī            |
| Copies:                                                                  |                         | Copies:            | Ph                               | 1/7 .                                                             | Divers                 | 0         | exp.            | un                    | -        | ampleo   | -                       |                   | m        | 1/10       | DIVE       |                       |        | 101 30      | T:                        | 772555                           |                     | Date of the              |                         |              |
| Table 1 Res/Parx Table 2 Indifferent Table 2 Agn/other Table 1 Agn/other | Med/Fine Coarse For RSC | PWQ0               | (AT Z                            | Reg 406, Fab<br>Sanitary Ser-<br>Storm Sewer<br>Municip<br>Other: | er Bylaw<br>Bylaw      | 925382    |                 | 2                     |          |          | nics.                   |                   | HWS - B1 |            |            |                       |        |             |                           | X 5 to                           | Rush Turna<br>Surch | round Time<br>arges appl | (O Day<br>e (TAT)       | The State of |
| Sentple Identifi<br>(Figures print or                                    | aud now hat or sale     | e dum              | Sampled                          | 100                                                               |                        | tria      | PALID PRINCES   | AB 14 FRATION PEQUISE | 1 Phe    | THE PHE  | eg 153 metals and morga | og 153 n . 1als   | PAH      |            |            |                       |        |             | # OF CONTAINERS SUBMITTED | ☐ 20<br>☐ 40<br>Date<br>Required | ay Y                |                          |                         |              |
| FILTERE                                                                  |                         | 7224               | 12 3                             | 20                                                                | Wa                     | 10.       | 4 14            | 200                   | XX       | m 1 /    | . 127                   | 2 2               | X        | $\forall$  | 11         | +-                    |        | 1           | 2                         | 1                                | Co                  | enments                  |                         | 1            |
| ZI FILLONE                                                               | 2                       | 2009               | 10-0                             |                                                                   | 1000                   | 100       |                 | 1/                    | i        | +        | +                       | -                 | ++       | 11         | ++         | +                     | -      | 1           | 7-                        | +-                               |                     |                          |                         | 1            |
|                                                                          |                         | +                  | -                                |                                                                   |                        |           | -               | +-                    | +        | +        | 1-1                     | -                 | ++       | +          |            | +                     | -+-    |             | ++                        |                                  |                     | -                        | -                       | +            |
| 3                                                                        |                         | 1-1                |                                  | -                                                                 |                        |           |                 | -                     | -+       | +        | -                       | -                 | +        | ++         |            | -                     | !      | -           | 1                         | -                                |                     |                          |                         | 4            |
| *                                                                        |                         |                    | !_                               |                                                                   |                        |           |                 | 1                     |          | 4        | 1-1                     | -                 | 1-1-     | 4-1        |            |                       |        |             | <u> </u>                  | -                                |                     |                          |                         | 1            |
| 5                                                                        |                         |                    |                                  |                                                                   | l                      |           |                 |                       |          |          |                         |                   |          |            |            | 1                     |        |             |                           |                                  |                     |                          |                         |              |
| 6                                                                        |                         |                    |                                  |                                                                   | 1                      |           |                 |                       |          | -        |                         |                   |          |            |            |                       |        |             |                           |                                  |                     |                          |                         | 1            |
| 7                                                                        |                         |                    |                                  |                                                                   |                        |           |                 |                       |          |          |                         |                   |          |            |            |                       |        |             |                           |                                  |                     |                          |                         | 1            |
| 3                                                                        |                         |                    |                                  | T                                                                 |                        |           |                 |                       | T        | T        |                         |                   | 11       | $\top$     | 11         | 1                     |        |             |                           | 1                                |                     |                          |                         | 1            |
|                                                                          |                         | +-1                | -+-                              | +                                                                 | $\dashv$               |           | -               | H                     | +        | +        | +                       | +                 | ++       | +          | ++         | _                     |        |             |                           | +-                               |                     |                          |                         | 1            |
|                                                                          |                         | +-                 | +                                | -                                                                 |                        | -         | +               | -                     | -        | +        | +                       | -                 | 1-1-     | +-+        | +          | +                     |        |             |                           | -                                |                     |                          |                         | +            |
| 10                                                                       |                         | 1-1                | -                                |                                                                   | +-                     |           | -               |                       | 4        | +        | -                       | +                 | ++       |            | ++         | +-                    | -      |             | 1                         | Rec                              | eive                | d in                     | Otto                    | VS           |
| 21                                                                       |                         | 1                  |                                  | _                                                                 |                        |           |                 |                       |          | 1        | 4.1                     |                   |          | 11         | 11         | -                     |        |             |                           |                                  |                     |                          |                         | 1            |
| 12                                                                       |                         |                    |                                  |                                                                   |                        |           |                 |                       |          | 1        |                         |                   | 11       |            |            |                       |        |             |                           |                                  |                     |                          |                         |              |
| CONTROL TELEVISION OF THE WALL                                           | ю жангындартегой н      |                    | usrepy i                         | SSOULUL H                                                         | BUREACTURE<br>VIDENTAL |           | AND TH          |                       | ONS OF   | TONS     | III III                 | icai yil<br>Handi | SCHAIN O | F CHISTOR  | V DOCUME   | uT+jeACKU<br>N A £OPY | OWLEDG | iga AND     | coel m                    | CE OF OUR                        | TERMS AND           | CONDITION                | NS WHICH AR             |              |
| TANCESTALEY Yes No Seal present Suel intact Cooling media present        | 1 tepas                 | 45                 | LAB<br>Seal prese<br>Seal intacr | use only                                                          | Yes                    | N         | P               | *C                    | ٤ (      | 2        | 1                       | 3                 | Seal pro | ZAR (      | SÉ ONLY    |                       | Yes    | No          | °C                        | 1                                | 2                   | 3                        | Temperature reading by: | 2            |
| Relinquished by: (Signature/ Prin                                        | t) YYYY Da              | ite<br>MM   DE     | Hir                              | i Mi                                                              | 4                      |           | Received        | by: (Sig              | gnature, | / Print) | )                       |                   | 79       | YY I       | Date<br>MM | 1 0                   | 0      | Time<br>H N | 6M                        |                                  | Special in          | structions               |                         | F            |
| · fly Ohni                                                               | 3004                    | 12 20              | 15                               | 53                                                                | A                      | ug        | elia            | 46/5                  | au       | ti       | ago                     | 18                | 20.      | 24         | 12         | 2                     |        | 80          |                           |                                  |                     |                          | (A)<br>Senanti          |              |

Bureau Veritas Job #: C4BP680 Report Date: 2025/01/02 Bureau Veritas Sample: AMLI61 exp Services Inc

Client Project #: OTT-00243705-C0

Client ID: FILTRED

Petroleum Hydrocarbons F2-F4 in Water Chromatogram





Your Project #: OTT-00243705-B0

Your C.O.C. #: N/A

**Attention: Chris Kimmerly** 

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2024/07/15

Report #: R8234812 Version: 1 - Final

#### **CERTIFICATE OF ANALYSIS**

BUREAU VERITAS JOB #: C4K9181 Received: 2024/07/09, 16:57

Sample Matrix: Water # Samples Received: 4

|                                              |          | Date       | Date       |                          |                   |
|----------------------------------------------|----------|------------|------------|--------------------------|-------------------|
| Analyses                                     | Quantity | Extracted  | Analyzed   | <b>Laboratory Method</b> | Analytical Method |
| Methylnaphthalene Sum (1)                    | 1        | N/A        | 2024/07/12 | CAM SOP-00301            | EPA 8270D m       |
| 1,3-Dichloropropene Sum (1)                  | 3        | N/A        | 2024/07/13 |                          | EPA 8260C m       |
| Petroleum Hydro. CCME F1 & BTEX in Water (1) | 1        | N/A        | 2024/07/11 | CAM SOP-00315            | CCME PHC-CWS m    |
| Petroleum Hydrocarbons F2-F4 in Water (1, 2) | 4        | 2024/07/11 | 2024/07/12 | CAM SOP-00316            | CCME PHC-CWS m    |
| Total Metals Analysis by ICPMS (1)           | 1        | 2024/07/12 | 2024/07/12 | CAM SOP-00447            | EPA 6020B m       |
| PAH Compounds in Water by GC/MS (SIM) (1)    | 1        | 2024/07/11 | 2024/07/12 | CAM SOP-00318            | EPA 8270E         |
| Volatile Organic Compounds and F1 PHCs (1)   | 3        | N/A        | 2024/07/12 | CAM SOP-00230            | EPA 8260C m       |

#### Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- $^{st}$  RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Mississauga, 6740 Campobello Rd, Mississauga, ON, L5N 2L8
- (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data



Your Project #: OTT-00243705-B0

Your C.O.C. #: N/A

**Attention: Chris Kimmerly** 

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2024/07/15

Report #: R8234812 Version: 1 - Final

#### **CERTIFICATE OF ANALYSIS**

**BUREAU VERITAS JOB #: C4K9181** Received: 2024/07/09, 16:57

reported using validated cold solvent extraction instead of Soxhlet extraction.

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to: Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com

Phone# (613)274-0573 Ext:7063633

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.



Client Project #: OTT-00243705-B0

Sampler Initials: PO

# **ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)**

| Sampling Date                |       |            |       |          |
|------------------------------|-------|------------|-------|----------|
| 54b6 5446                    |       | 2024/07/09 |       |          |
|                              |       | 14:30      |       |          |
| COC Number                   |       | N/A        |       |          |
|                              | UNITS | SUMP RAW   | RDL   | QC Batch |
| Metals                       |       |            |       |          |
| Total Aluminum (Al)          | ug/L  | 5100       | 4.9   | 9510530  |
| Total Antimony (Sb)          | ug/L  | 39         | 0.50  | 9510530  |
| Total Arsenic (As)           | ug/L  | 4.6        | 1.0   | 9510530  |
| Total Barium (Ba)            | ug/L  | 400        | 2.0   | 9510530  |
| Total Beryllium (Be)         | ug/L  | <0.40      | 0.40  | 9510530  |
| Total Bismuth (Bi)           | ug/L  | 1.1        | 1.0   | 9510530  |
| Total Boron (B)              | ug/L  | 170        | 10    | 9510530  |
| Total Cadmium (Cd)           | ug/L  | 3.5        | 0.090 | 9510530  |
| Total Calcium (Ca)           | ug/L  | 140000     | 200   | 9510530  |
| Total Chromium (Cr)          | ug/L  | 63         | 5.0   | 9510530  |
| Total Cobalt (Co)            | ug/L  | 830        | 0.50  | 9510530  |
| Total Copper (Cu)            | ug/L  | 820        | 0.90  | 9510530  |
| Total Iron (Fe)              | ug/L  | 32000      | 100   | 9510530  |
| Total Lead (Pb)              | ug/L  | 32         | 0.50  | 9510530  |
| Total Lithium (Li)           | ug/L  | 20         | 5.0   | 9510530  |
| Total Magnesium (Mg)         | ug/L  | 33000      | 50    | 9510530  |
| Total Manganese (Mn)         | ug/L  | 540        | 2.0   | 9510530  |
| Total Molybdenum (Mo)        | ug/L  | 120        | 0.50  | 9510530  |
| Total Nickel (Ni)            | ug/L  | 200        | 1.0   | 9510530  |
| Total Potassium (K)          | ug/L  | 7400       | 200   | 9510530  |
| Total Selenium (Se)          | ug/L  | <2.0       | 2.0   | 9510530  |
| Total Silicon (Si)           | ug/L  | 9600       | 50    | 9510530  |
| Total Silver (Ag)            | ug/L  | 2.4        | 0.090 | 9510530  |
| Total Sodium (Na)            | ug/L  | 28000      | 100   | 9510530  |
| Total Strontium (Sr)         | ug/L  | 1800       | 1.0   | 9510530  |
| Total Tellurium (Te)         | ug/L  | <1.0       | 1.0   | 9510530  |
| Total Thallium (Tl)          | ug/L  | 0.061      | 0.050 | 9510530  |
| Total Tin (Sn)               | ug/L  | 24         | 1.0   | 9510530  |
| Total Titanium (Ti)          | ug/L  | 170        | 5.0   | 9510530  |
| Total Tungsten (W)           | ug/L  | 5700       | 50    | 9510530  |
| Total Uranium (U)            | ug/L  | 2.0        | 0.10  | 9510530  |
| Total Vanadium (V)           | ug/L  | 13         | 0.50  | 9510530  |
| Total Zinc (Zn)              | ug/L  | 1600       | 5.0   | 9510530  |
| Total Zirconium (Zr)         | ug/L  | 7.7        | 1.0   | 9510530  |
| RDL = Reportable Detection   | Limit |            |       |          |
| QC Batch = Quality Control B | atch  |            |       |          |



Client Project #: OTT-00243705-B0

Sampler Initials: PO

# O.REG 153 PAHS (WATER)

| Bureau Veritas ID         |       | ZRH739     |       |          |
|---------------------------|-------|------------|-------|----------|
| Sampling Date             |       | 2024/07/09 |       |          |
| Sampling Date             |       | 14:30      |       |          |
| COC Number                |       | N/A        |       |          |
|                           | UNITS | SUMP RAW   | RDL   | QC Batch |
| Calculated Parameters     |       |            |       |          |
| Methylnaphthalene, 2-(1-) | ug/L  | <3.2       | 3.2   | 9505169  |
| Polyaromatic Hydrocarbons |       |            |       |          |
| Acenaphthene              | ug/L  | <1.0 (1)   | 1.0   | 9508562  |
| Acenaphthylene            | ug/L  | <0.50      | 0.50  | 9508562  |
| Anthracene                | ug/L  | <0.50      | 0.50  | 9508562  |
| Benzo(a)anthracene        | ug/L  | <0.50      | 0.50  | 9508562  |
| Benzo(a)pyrene            | ug/L  | <0.090     | 0.090 | 9508562  |
| Benzo(b/j)fluoranthene    | ug/L  | <0.50      | 0.50  | 9508562  |
| Benzo(g,h,i)perylene      | ug/L  | <0.50      | 0.50  | 9508562  |
| Benzo(k)fluoranthene      | ug/L  | <0.50      | 0.50  | 9508562  |
| Chrysene                  | ug/L  | <0.50      | 0.50  | 9508562  |
| Dibenzo(a,h)anthracene    | ug/L  | <0.50      | 0.50  | 9508562  |
| Fluoranthene              | ug/L  | 0.73       | 0.50  | 9508562  |
| Fluorene                  | ug/L  | <0.60 (1)  | 0.60  | 9508562  |
| Indeno(1,2,3-cd)pyrene    | ug/L  | <0.50      | 0.50  | 9508562  |
| 1-Methylnaphthalene       | ug/L  | 1.9        | 0.50  | 9508562  |
| 2-Methylnaphthalene       | ug/L  | <3.2 (1)   | 3.2   | 9508562  |
| Naphthalene               | ug/L  | 5.2        | 0.50  | 9508562  |
| Phenanthrene              | ug/L  | 1.8        | 0.30  | 9508562  |
| Pyrene                    | ug/L  | 3.6        | 0.50  | 9508562  |
| Surrogate Recovery (%)    |       |            |       |          |

RDL = Reportable Detection Limit

D10-Anthracene

D14-Terphenyl (FS)

D8-Acenaphthylene

QC Batch = Quality Control Batch

(1) Detection Limit was raised due to matrix interferences.

%

%

98

59

80

9508562

9508562

9508562



Client Project #: OTT-00243705-B0

Sampler Initials: PO

# O.REG 153 PHCS, BTEX/F1-F4 (WATER)

| Bureau Veritas ID           |       | ZRH738     |      |          | ZRH738          |      |          |
|-----------------------------|-------|------------|------|----------|-----------------|------|----------|
| Campling Data               |       | 2024/07/09 |      |          | 2024/07/09      |      |          |
| Sampling Date               |       | 14:15      |      |          | 14:15           |      |          |
| COC Number                  |       | N/A        |      |          | N/A             |      |          |
|                             | UNITS | MW-3       | RDL  | QC Batch | MW-3<br>Lab-Dup | RDL  | QC Batch |
| BTEX & F1 Hydrocarbons      |       |            |      |          |                 |      |          |
| Benzene                     | ug/L  | <0.20      | 0.20 | 9509365  | <0.20           | 0.20 | 9509365  |
| Toluene                     | ug/L  | <0.20      | 0.20 | 9509365  | <0.20           | 0.20 | 9509365  |
| Ethylbenzene                | ug/L  | <0.20      | 0.20 | 9509365  | <0.20           | 0.20 | 9509365  |
| o-Xylene                    | ug/L  | <0.20      | 0.20 | 9509365  | <0.20           | 0.20 | 9509365  |
| p+m-Xylene                  | ug/L  | <0.40      | 0.40 | 9509365  | <0.40           | 0.40 | 9509365  |
| Total Xylenes               | ug/L  | <0.40      | 0.40 | 9509365  | <0.40           | 0.40 | 9509365  |
| F1 (C6-C10)                 | ug/L  | <25        | 25   | 9509365  | <25             | 25   | 9509365  |
| F1 (C6-C10) - BTEX          | ug/L  | <25        | 25   | 9509365  | <25             | 25   | 9509365  |
| F2-F4 Hydrocarbons          |       |            |      |          |                 |      |          |
| F2 (C10-C16 Hydrocarbons)   | ug/L  | <100       | 100  | 9510391  |                 |      |          |
| F3 (C16-C34 Hydrocarbons)   | ug/L  | <200       | 200  | 9510391  |                 |      |          |
| F4 (C34-C50 Hydrocarbons)   | ug/L  | <200       | 200  | 9510391  |                 |      |          |
| Reached Baseline at C50     | ug/L  | Yes        |      | 9510391  |                 |      |          |
| Surrogate Recovery (%)      | -     | -          |      |          | -               |      | •        |
| 1,4-Difluorobenzene         | %     | 108        |      | 9509365  | 110             |      | 9509365  |
| 4-Bromofluorobenzene        | %     | 98         |      | 9509365  | 99              |      | 9509365  |
| D10-o-Xylene                | %     | 104        |      | 9509365  | 107             |      | 9509365  |
| D4-1,2-Dichloroethane       | %     | 109        |      | 9509365  | 105             |      | 9509365  |
| o-Terphenyl                 | %     | 100        |      | 9510391  |                 |      |          |
| DDI Danastalila Datastian I |       | •          | •    |          | •               | •    | •        |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate



Client Project #: OTT-00243705-B0

Sampler Initials: PO

# O.REG 153 VOCS BY HS & F1-F4 (WATER)

| Bureau Veritas ID                   |       | ZRH736              | ZRH737              |      |          | ZRH739              |      |          |
|-------------------------------------|-------|---------------------|---------------------|------|----------|---------------------|------|----------|
| Sampling Date                       |       | 2024/07/09<br>13:30 | 2024/07/09<br>12:20 |      |          | 2024/07/09<br>14:30 |      |          |
| COC Number                          |       | N/A                 | N/A                 |      |          | N/A                 |      |          |
|                                     | UNITS | MW-1                | MW-2                | RDL  | QC Batch | SUMP RAW            | RDL  | QC Batch |
| Calculated Parameters               |       |                     |                     |      |          |                     |      |          |
| 1,3-Dichloropropene (cis+trans)     | ug/L  | <0.50               | <0.50               | 0.50 | 9506389  | <1.0                | 1.0  | 9506389  |
| Volatile Organics                   |       |                     | •                   | •    | •        |                     |      | •        |
| Acetone (2-Propanone)               | ug/L  | <10                 | <10                 | 10   | 9510653  | 770                 | 20   | 9510653  |
| Benzene                             | ug/L  | <0.17               | <0.17               | 0.17 | 9510653  | <0.34               | 0.34 | 9510653  |
| Bromodichloromethane                | ug/L  | <0.50               | <0.50               | 0.50 | 9510653  | <1.0                | 1.0  | 9510653  |
| Bromoform                           | ug/L  | <1.0                | <1.0                | 1.0  | 9510653  | <2.0                | 2.0  | 9510653  |
| Bromomethane                        | ug/L  | <0.50               | <0.50               | 0.50 | 9510653  | <1.0                | 1.0  | 9510653  |
| Carbon Tetrachloride                | ug/L  | <0.20               | <0.20               | 0.20 | 9510653  | <0.40               | 0.40 | 9510653  |
| Chlorobenzene                       | ug/L  | <0.20               | <0.20               | 0.20 | 9510653  | <0.40               | 0.40 | 9510653  |
| Chloroform                          | ug/L  | <0.20               | <0.20               | 0.20 | 9510653  | <0.40               | 0.40 | 9510653  |
| Dibromochloromethane                | ug/L  | <0.50               | <0.50               | 0.50 | 9510653  | <1.0                | 1.0  | 9510653  |
| 1,2-Dichlorobenzene                 | ug/L  | <0.50               | <0.50               | 0.50 | 9510653  | <1.0                | 1.0  | 9510653  |
| 1,3-Dichlorobenzene                 | ug/L  | <0.50               | <0.50               | 0.50 | 9510653  | <1.0                | 1.0  | 9510653  |
| 1,4-Dichlorobenzene                 | ug/L  | <0.50               | <0.50               | 0.50 | 9510653  | <1.0                | 1.0  | 9510653  |
| Dichlorodifluoromethane (FREON 12)  | ug/L  | <1.0                | <1.0                | 1.0  | 9510653  | <2.0                | 2.0  | 9510653  |
| 1,1-Dichloroethane                  | ug/L  | <0.20               | <0.20               | 0.20 | 9510653  | <0.40               | 0.40 | 9510653  |
| 1,2-Dichloroethane                  | ug/L  | <0.50               | <0.50               | 0.50 | 9510653  | <1.0                | 1.0  | 9510653  |
| 1,1-Dichloroethylene                | ug/L  | <0.20               | <0.20               | 0.20 | 9510653  | <0.40               | 0.40 | 9510653  |
| cis-1,2-Dichloroethylene            | ug/L  | <0.50               | <0.50               | 0.50 | 9510653  | <1.0                | 1.0  | 9510653  |
| trans-1,2-Dichloroethylene          | ug/L  | <0.50               | <0.50               | 0.50 | 9510653  | <1.0                | 1.0  | 9510653  |
| 1,2-Dichloropropane                 | ug/L  | <0.20               | <0.20               | 0.20 | 9510653  | <0.40               | 0.40 | 9510653  |
| cis-1,3-Dichloropropene             | ug/L  | <0.30               | <0.30               | 0.30 | 9510653  | <0.60               | 0.60 | 9510653  |
| trans-1,3-Dichloropropene           | ug/L  | <0.40               | <0.40               | 0.40 | 9510653  | <0.80               | 0.80 | 9510653  |
| Ethylbenzene                        | ug/L  | <0.20               | <0.20               | 0.20 | 9510653  | <0.40               | 0.40 | 9510653  |
| Ethylene Dibromide                  | ug/L  | <0.20               | <0.20               | 0.20 | 9510653  | <0.40               | 0.40 | 9510653  |
| Hexane                              | ug/L  | <1.0                | <1.0                | 1.0  | 9510653  | <2.0                | 2.0  | 9510653  |
| Methylene Chloride(Dichloromethane) | ug/L  | <2.0                | <2.0                | 2.0  | 9510653  | <4.0                | 4.0  | 9510653  |
| Methyl Ethyl Ketone (2-Butanone)    | ug/L  | <10                 | <10                 |      | 9510653  | 140                 |      | 9510653  |
| Methyl Isobutyl Ketone              | ug/L  | <5.0                | <5.0                | 5.0  | 9510653  | <10                 | 10   | 9510653  |
| Methyl t-butyl ether (MTBE)         | ug/L  | <0.50               | <0.50               | 0.50 | 9510653  | <1.0                | 1.0  | 9510653  |
| Styrene                             | ug/L  | <0.50               | <0.50               | 0.50 |          | <1.0                | 1.0  | 9510653  |
| 1,1,1,2-Tetrachloroethane           | ug/L  | <0.50               | <0.50               | 0.50 |          | <1.0                | 1.0  | 9510653  |
| 1,1,2,2-Tetrachloroethane           | ug/L  | <0.50               | <0.50               | 0.50 |          | <1.0                | 1.0  | 9510653  |
| Tetrachloroethylene                 | ug/L  | <0.20               | <0.20               | 0.20 |          | <0.40               | 0.40 | 9510653  |
| Toluene                             | ug/L  | <0.20               | <0.20               | 0.20 |          | 3.1                 | 0.40 | 9510653  |

QC Batch = Quality Control Batch



Client Project #: OTT-00243705-B0

Sampler Initials: PO

# O.REG 153 VOCS BY HS & F1-F4 (WATER)

| Bureau Veritas ID                 |       | ZRH736     | ZRH737     |      |          | ZRH739     |      |          |
|-----------------------------------|-------|------------|------------|------|----------|------------|------|----------|
| Sampling Date                     |       | 2024/07/09 | 2024/07/09 |      |          | 2024/07/09 |      |          |
|                                   |       | 13:30      | 12:20      |      |          | 14:30      |      |          |
| COC Number                        |       | N/A        | N/A        |      |          | N/A        |      |          |
|                                   | UNITS | MW-1       | MW-2       | RDL  | QC Batch | SUMP RAW   | RDL  | QC Batch |
| 1,1,1-Trichloroethane             | ug/L  | <0.20      | <0.20      | 0.20 | 9510653  | <0.40      | 0.40 | 9510653  |
| 1,1,2-Trichloroethane             | ug/L  | <0.50      | <0.50      | 0.50 | 9510653  | <1.0       | 1.0  | 9510653  |
| Trichloroethylene                 | ug/L  | <0.20      | <0.20      | 0.20 | 9510653  | <0.40      | 0.40 | 9510653  |
| Trichlorofluoromethane (FREON 11) | ug/L  | <0.50      | <0.50      | 0.50 | 9510653  | <1.0       | 1.0  | 9510653  |
| Vinyl Chloride                    | ug/L  | <0.20      | <0.20      | 0.20 | 9510653  | <0.40      | 0.40 | 9510653  |
| p+m-Xylene                        | ug/L  | <0.20      | <0.20      | 0.20 | 9510653  | 0.67       | 0.40 | 9510653  |
| o-Xylene                          | ug/L  | <0.20      | <0.20      | 0.20 | 9510653  | <0.40      | 0.40 | 9510653  |
| Total Xylenes                     | ug/L  | <0.20      | <0.20      | 0.20 | 9510653  | 0.67       | 0.40 | 9510653  |
| F1 (C6-C10)                       | ug/L  | <25        | <25        | 25   | 9510653  | 200        | 50   | 9510653  |
| F1 (C6-C10) - BTEX                | ug/L  | <25        | <25        | 25   | 9510653  | 190        | 50   | 9510653  |
| F2-F4 Hydrocarbons                |       |            |            |      |          |            |      |          |
| F2 (C10-C16 Hydrocarbons)         | ug/L  | <100       | <100       | 100  | 9510391  | 330000     | 100  | 9508564  |
| F3 (C16-C34 Hydrocarbons)         | ug/L  | 300        | <200       | 200  | 9510391  | 330000     | 200  | 9508564  |
| F4 (C34-C50 Hydrocarbons)         | ug/L  | <200       | <200       | 200  | 9510391  | 57000      | 200  | 9508564  |
| Reached Baseline at C50           | ug/L  | Yes        | Yes        |      | 9510391  | Yes        |      | 9508564  |
| Surrogate Recovery (%)            | •     |            |            |      |          |            |      |          |
| o-Terphenyl                       | %     | 102        | 100        |      | 9510391  | 97         |      | 9508564  |
| 4-Bromofluorobenzene              | %     | 87         | 87         |      | 9510653  | 86         |      | 9510653  |
| D4-1,2-Dichloroethane             | %     | 115        | 113        |      | 9510653  | 114        |      | 9510653  |
| D8-Toluene                        | %     | 88         | 89         |      | 9510653  | 91         |      | 9510653  |
| RDL = Reportable Detection Limit  |       |            |            |      |          |            |      |          |
| 1                                 |       |            |            |      |          |            |      |          |

QC Batch = Quality Control Batch



Client Project #: OTT-00243705-B0

Sampler Initials: PO

#### **TEST SUMMARY**

Bureau Veritas ID: ZRH736

Sample ID: MW-1

Matrix: Water

Collected:

2024/07/09 Shipped:

**Received:** 2024/07/09

| Test Description                       | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                    |
|----------------------------------------|-----------------|---------|------------|---------------|----------------------------|
| 1,3-Dichloropropene Sum                | CALC            | 9506389 | N/A        | 2024/07/13    | Automated Statchk          |
| Petroleum Hydrocarbons F2-F4 in Water  | GC/FID          | 9510391 | 2024/07/11 | 2024/07/12    | Mohammed Abdul Nafay Shoeb |
| Volatile Organic Compounds and F1 PHCs | GC/MSFD         | 9510653 | N/A        | 2024/07/12    | Xueming Jiang              |

Bureau Veritas ID: ZRH737

Sample ID: MW-2

Matrix: Water

**Collected:** 2024/07/09 Shipped:

**Received:** 2024/07/09

| Test Description                       | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                    |
|----------------------------------------|-----------------|---------|------------|---------------|----------------------------|
| 1,3-Dichloropropene Sum                | CALC            | 9506389 | N/A        | 2024/07/13    | Automated Statchk          |
| Petroleum Hydrocarbons F2-F4 in Water  | GC/FID          | 9510391 | 2024/07/11 | 2024/07/12    | Mohammed Abdul Nafay Shoeb |
| Volatile Organic Compounds and F1 PHCs | GC/MSFD         | 9510653 | N/A        | 2024/07/12    | Xueming Jiang              |

Bureau Veritas ID: ZRH738

Sample ID: MW-3

Matrix: Water

Collected: 2024/07/09 Shipped:

**Received:** 2024/07/09

| Test Description                         | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                    |
|------------------------------------------|-----------------|---------|------------|---------------|----------------------------|
| Petroleum Hydro. CCME F1 & BTEX in Water | HSGC/MSFD       | 9509365 | N/A        | 2024/07/11    | Domnica Andronescu         |
| Petroleum Hydrocarbons F2-F4 in Water    | GC/FID          | 9510391 | 2024/07/11 | 2024/07/12    | Mohammed Abdul Nafay Shoeb |

Bureau Veritas ID: ZRH738 Dup

Sample ID: MW-3

. Matrix: Water Collected: 2024/07/09 Shipped:

Received: 2024/07/09

| Test Description                         | Instrumentation | Batch   | Extracted | Date Analyzed | Analyst            |
|------------------------------------------|-----------------|---------|-----------|---------------|--------------------|
| Petroleum Hydro. CCME F1 & BTEX in Water | HSGC/MSFD       | 9509365 | N/A       | 2024/07/11    | Domnica Andronescu |

Bureau Veritas ID: ZRH739

Sample ID: SUMP RAW

Matrix: Water

2024/07/09 Collected:

Shipped:

**Received:** 2024/07/09

| Test Description                       | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst           |
|----------------------------------------|-----------------|---------|------------|---------------|-------------------|
| Methylnaphthalene Sum                  | CALC            | 9505169 | N/A        | 2024/07/12    | Automated Statchk |
| 1,3-Dichloropropene Sum                | CALC            | 9506389 | N/A        | 2024/07/13    | Automated Statchk |
| Petroleum Hydrocarbons F2-F4 in Water  | GC/FID          | 9508564 | 2024/07/11 | 2024/07/12    | (Kent) Maolin Li  |
| Total Metals Analysis by ICPMS         | ICP/MS          | 9510530 | 2024/07/12 | 2024/07/12    | Indira HarryPaul  |
| PAH Compounds in Water by GC/MS (SIM)  | GC/MS           | 9508562 | 2024/07/11 | 2024/07/12    | Jonghan Yoon      |
| Volatile Organic Compounds and F1 PHCs | GC/MSFD         | 9510653 | N/A        | 2024/07/12    | Xueming Jiang     |



Client Project #: OTT-00243705-B0

Sampler Initials: PO

### **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

| Package 1 | 8.0°C |
|-----------|-------|
|-----------|-------|

Sample ZRH739 [SUMP RAW]: PAH ANALYSIS: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly. VOC/F1 Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Results relate only to the items tested.



# **QUALITY ASSURANCE REPORT**

exp Services Inc

Client Project #: OTT-00243705-B0

|          |                           |            | Matrix     | Spike     | SPIKED     | BLANK     | Method I | Blank | RPI       | <b>D</b>  |
|----------|---------------------------|------------|------------|-----------|------------|-----------|----------|-------|-----------|-----------|
| QC Batch | Parameter                 | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value    | UNITS | Value (%) | QC Limits |
| 9508562  | D10-Anthracene            | 2024/07/11 | 115        | 50 - 130  | 109        | 50 - 130  | 113      | %     |           |           |
| 9508562  | D14-Terphenyl (FS)        | 2024/07/11 | 126        | 50 - 130  | 119        | 50 - 130  | 124      | %     |           |           |
| 9508562  | D8-Acenaphthylene         | 2024/07/11 | 104        | 50 - 130  | 97         | 50 - 130  | 102      | %     |           |           |
| 9508564  | o-Terphenyl               | 2024/07/12 | 100        | 60 - 140  | 97         | 60 - 140  | 94       | %     |           |           |
| 9509365  | 1,4-Difluorobenzene       | 2024/07/11 | 107        | 70 - 130  | 103        | 70 - 130  | 108      | %     |           |           |
| 9509365  | 4-Bromofluorobenzene      | 2024/07/11 | 99         | 70 - 130  | 98         | 70 - 130  | 98       | %     |           |           |
| 9509365  | D10-o-Xylene              | 2024/07/11 | 108        | 70 - 130  | 106        | 70 - 130  | 99       | %     |           |           |
| 9509365  | D4-1,2-Dichloroethane     | 2024/07/11 | 103        | 70 - 130  | 101        | 70 - 130  | 106      | %     |           |           |
| 9510391  | o-Terphenyl               | 2024/07/12 | 102        | 60 - 140  | 103        | 60 - 140  | 100      | %     |           |           |
| 9510653  | 4-Bromofluorobenzene      | 2024/07/12 | 98         | 70 - 130  | 99         | 70 - 130  | 88       | %     |           |           |
| 9510653  | D4-1,2-Dichloroethane     | 2024/07/12 | 106        | 70 - 130  | 103        | 70 - 130  | 108      | %     |           |           |
| 9510653  | D8-Toluene                | 2024/07/12 | 102        | 70 - 130  | 105        | 70 - 130  | 88       | %     |           |           |
| 9508562  | 1-Methylnaphthalene       | 2024/07/11 | 99         | 50 - 130  | 93         | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9508562  | 2-Methylnaphthalene       | 2024/07/11 | 101        | 50 - 130  | 94         | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9508562  | Acenaphthene              | 2024/07/11 | 114        | 50 - 130  | 104        | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9508562  | Acenaphthylene            | 2024/07/11 | 111        | 50 - 130  | 103        | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9508562  | Anthracene                | 2024/07/11 | 116        | 50 - 130  | 108        | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9508562  | Benzo(a)anthracene        | 2024/07/11 | 115        | 50 - 130  | 107        | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9508562  | Benzo(a)pyrene            | 2024/07/11 | 104        | 50 - 130  | 98         | 50 - 130  | <0.0090  | ug/L  | NC        | 30        |
| 9508562  | Benzo(b/j)fluoranthene    | 2024/07/11 | 108        | 50 - 130  | 104        | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9508562  | Benzo(g,h,i)perylene      | 2024/07/11 | 90         | 50 - 130  | 87         | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9508562  | Benzo(k)fluoranthene      | 2024/07/11 | 101        | 50 - 130  | 95         | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9508562  | Chrysene                  | 2024/07/11 | 107        | 50 - 130  | 102        | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9508562  | Dibenzo(a,h)anthracene    | 2024/07/11 | 82         | 50 - 130  | 81         | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9508562  | Fluoranthene              | 2024/07/11 | 128        | 50 - 130  | 118        | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9508562  | Fluorene                  | 2024/07/11 | 112        | 50 - 130  | 101        | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9508562  | Indeno(1,2,3-cd)pyrene    | 2024/07/11 | 90         | 50 - 130  | 93         | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9508562  | Naphthalene               | 2024/07/11 | 110        | 50 - 130  | 102        | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9508562  | Phenanthrene              | 2024/07/11 | 119        | 50 - 130  | 109        | 50 - 130  | <0.030   | ug/L  | NC        | 30        |
| 9508562  | Pyrene                    | 2024/07/11 | 125        | 50 - 130  | 116        | 50 - 130  | <0.050   | ug/L  | NC        | 30        |
| 9508564  | F2 (C10-C16 Hydrocarbons) | 2024/07/12 | 97         | 60 - 140  | 93         | 60 - 140  | <100     | ug/L  | NC        | 30        |
| 9508564  | F3 (C16-C34 Hydrocarbons) | 2024/07/12 | 105        | 60 - 140  | 101        | 60 - 140  | <200     | ug/L  | NC        | 30        |



exp Services Inc

Client Project #: OTT-00243705-B0

|          |                           |            | Matrix     | Spike     | SPIKED     | BLANK     | Method I | Blank | RPI       | D         |
|----------|---------------------------|------------|------------|-----------|------------|-----------|----------|-------|-----------|-----------|
| QC Batch | Parameter                 | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value    | UNITS | Value (%) | QC Limits |
| 9508564  | F4 (C34-C50 Hydrocarbons) | 2024/07/12 | 96         | 60 - 140  | 94         | 60 - 140  | <200     | ug/L  | NC        | 30        |
| 9509365  | Benzene                   | 2024/07/11 | 106        | 50 - 140  | 102        | 50 - 140  | <0.20    | ug/L  | NC        | 30        |
| 9509365  | Ethylbenzene              | 2024/07/11 | 111        | 50 - 140  | 108        | 50 - 140  | <0.20    | ug/L  | NC        | 30        |
| 9509365  | F1 (C6-C10) - BTEX        | 2024/07/11 |            |           |            |           | <25      | ug/L  | NC        | 30        |
| 9509365  | F1 (C6-C10)               | 2024/07/11 | 109        | 60 - 140  | 106        | 60 - 140  | <25      | ug/L  | NC        | 30        |
| 9509365  | o-Xylene                  | 2024/07/11 | 106        | 50 - 140  | 104        | 50 - 140  | <0.20    | ug/L  | NC        | 30        |
| 9509365  | p+m-Xylene                | 2024/07/11 | 104        | 50 - 140  | 102        | 50 - 140  | <0.40    | ug/L  | NC        | 30        |
| 9509365  | Toluene                   | 2024/07/11 | 96         | 50 - 140  | 94         | 50 - 140  | <0.20    | ug/L  | NC        | 30        |
| 9509365  | Total Xylenes             | 2024/07/11 |            |           |            |           | <0.40    | ug/L  | NC        | 30        |
| 9510391  | F2 (C10-C16 Hydrocarbons) | 2024/07/12 | 103        | 60 - 140  | 103        | 60 - 140  | <100     | ug/L  | NC        | 30        |
| 9510391  | F3 (C16-C34 Hydrocarbons) | 2024/07/12 | 107        | 60 - 140  | 108        | 60 - 140  | <200     | ug/L  | NC        | 30        |
| 9510391  | F4 (C34-C50 Hydrocarbons) | 2024/07/12 | 95         | 60 - 140  | 95         | 60 - 140  | <200     | ug/L  | NC        | 30        |
| 9510530  | Total Aluminum (AI)       | 2024/07/12 | 95         | 80 - 120  | 96         | 80 - 120  | <4.9     | ug/L  | 17        | 20        |
| 9510530  | Total Antimony (Sb)       | 2024/07/12 | 102        | 80 - 120  | 104        | 80 - 120  | <0.50    | ug/L  | NC        | 20        |
| 9510530  | Total Arsenic (As)        | 2024/07/12 | 98         | 80 - 120  | 99         | 80 - 120  | <1.0     | ug/L  | 5.7       | 20        |
| 9510530  | Total Barium (Ba)         | 2024/07/12 | 94         | 80 - 120  | 96         | 80 - 120  | <2.0     | ug/L  | 0.43      | 20        |
| 9510530  | Total Beryllium (Be)      | 2024/07/12 | 99         | 80 - 120  | 99         | 80 - 120  | <0.40    | ug/L  | NC        | 20        |
| 9510530  | Total Bismuth (Bi)        | 2024/07/12 | 97         | 80 - 120  | 96         | 80 - 120  | <1.0     | ug/L  | NC        | 20        |
| 9510530  | Total Boron (B)           | 2024/07/12 | 94         | 80 - 120  | 95         | 80 - 120  | <10      | ug/L  | 2.2       | 20        |
| 9510530  | Total Cadmium (Cd)        | 2024/07/12 | 97         | 80 - 120  | 99         | 80 - 120  | <0.090   | ug/L  | NC        | 20        |
| 9510530  | Total Calcium (Ca)        | 2024/07/12 | NC         | 80 - 120  | 99         | 80 - 120  | <200     | ug/L  | 2.4       | 20        |
| 9510530  | Total Chromium (Cr)       | 2024/07/12 | 93         | 80 - 120  | 94         | 80 - 120  | <5.0     | ug/L  | NC        | 20        |
| 9510530  | Total Cobalt (Co)         | 2024/07/12 | 90         | 80 - 120  | 92         | 80 - 120  | <0.50    | ug/L  | NC        | 20        |
| 9510530  | Total Copper (Cu)         | 2024/07/12 | 89         | 80 - 120  | 91         | 80 - 120  | <0.90    | ug/L  | NC        | 20        |
| 9510530  | Total Iron (Fe)           | 2024/07/12 | 98         | 80 - 120  | 99         | 80 - 120  | <100     | ug/L  | NC        | 20        |
| 9510530  | Total Lead (Pb)           | 2024/07/12 | 94         | 80 - 120  | 95         | 80 - 120  | <0.50    | ug/L  | 4.4       | 20        |
| 9510530  | Total Lithium (Li)        | 2024/07/12 | 99         | 80 - 120  | 99         | 80 - 120  | <5.0     | ug/L  | NC        | 20        |
| 9510530  | Total Magnesium (Mg)      | 2024/07/12 | 101        | 80 - 120  | 101        | 80 - 120  | <50      | ug/L  | 4.7       | 20        |
| 9510530  | Total Manganese (Mn)      | 2024/07/12 | 95         | 80 - 120  | 97         | 80 - 120  | <2.0     | ug/L  | 2.0       | 20        |
| 9510530  | Total Molybdenum (Mo)     | 2024/07/12 | 93         | 80 - 120  | 94         | 80 - 120  | <0.50    | ug/L  | 6.3       | 20        |
| 9510530  | Total Nickel (Ni)         | 2024/07/12 | 94         | 80 - 120  | 97         | 80 - 120  | <1.0     | ug/L  | NC        | 20        |
| 9510530  | Total Potassium (K)       | 2024/07/12 | 96         | 80 - 120  | 98         | 80 - 120  | <200     | ug/L  | 7.6       | 20        |



exp Services Inc

Client Project #: OTT-00243705-B0

|          |                           |            | Matrix     | Spike     | SPIKED     | BLANK     | Method I | Blank | RPI       | <b>D</b>  |
|----------|---------------------------|------------|------------|-----------|------------|-----------|----------|-------|-----------|-----------|
| QC Batch | Parameter                 | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value    | UNITS | Value (%) | QC Limits |
| 9510530  | Total Selenium (Se)       | 2024/07/12 | 99         | 80 - 120  | 99         | 80 - 120  | <2.0     | ug/L  | NC        | 20        |
| 9510530  | Total Silicon (Si)        | 2024/07/12 | 93         | 80 - 120  | 95         | 80 - 120  | <50      | ug/L  | 2.6       | 20        |
| 9510530  | Total Silver (Ag)         | 2024/07/12 | 92         | 80 - 120  | 95         | 80 - 120  | <0.090   | ug/L  | NC        | 20        |
| 9510530  | Total Sodium (Na)         | 2024/07/12 | 99         | 80 - 120  | 102        | 80 - 120  | <100     | ug/L  | 5.8       | 20        |
| 9510530  | Total Strontium (Sr)      | 2024/07/12 | 96         | 80 - 120  | 97         | 80 - 120  | <1.0     | ug/L  | 4.4       | 20        |
| 9510530  | Total Tellurium (Te)      | 2024/07/12 | 96         | 80 - 120  | 98         | 80 - 120  | <1.0     | ug/L  | NC        | 20        |
| 9510530  | Total Thallium (TI)       | 2024/07/12 | 96         | 80 - 120  | 99         | 80 - 120  | <0.050   | ug/L  | NC        | 20        |
| 9510530  | Total Tin (Sn)            | 2024/07/12 | 98         | 80 - 120  | 100        | 80 - 120  | <1.0     | ug/L  | NC        | 20        |
| 9510530  | Total Titanium (Ti)       | 2024/07/12 | 94         | 80 - 120  | 93         | 80 - 120  | <5.0     | ug/L  | NC        | 20        |
| 9510530  | Total Tungsten (W)        | 2024/07/12 | 92         | 80 - 120  | 93         | 80 - 120  | <1.0     | ug/L  | NC        | 20        |
| 9510530  | Total Uranium (U)         | 2024/07/12 | 100        | 80 - 120  | 102        | 80 - 120  | <0.10    | ug/L  | 4.7       | 20        |
| 9510530  | Total Vanadium (V)        | 2024/07/12 | 96         | 80 - 120  | 98         | 80 - 120  | <0.50    | ug/L  | 4.9       | 20        |
| 9510530  | Total Zinc (Zn)           | 2024/07/12 | 100        | 80 - 120  | 102        | 80 - 120  | <5.0     | ug/L  | NC        | 20        |
| 9510530  | Total Zirconium (Zr)      | 2024/07/12 | 100        | 80 - 120  | 101        | 80 - 120  | <1.0     | ug/L  | NC        | 20        |
| 9510653  | 1,1,1,2-Tetrachloroethane | 2024/07/12 | 104        | 70 - 130  | 102        | 70 - 130  | <0.50    | ug/L  | NC        | 30        |
| 9510653  | 1,1,1-Trichloroethane     | 2024/07/12 | 109        | 70 - 130  | 107        | 70 - 130  | <0.20    | ug/L  | NC        | 30        |
| 9510653  | 1,1,2,2-Tetrachloroethane | 2024/07/12 | 107        | 70 - 130  | 102        | 70 - 130  | <0.50    | ug/L  | NC        | 30        |
| 9510653  | 1,1,2-Trichloroethane     | 2024/07/12 | 108        | 70 - 130  | 102        | 70 - 130  | <0.50    | ug/L  | NC        | 30        |
| 9510653  | 1,1-Dichloroethane        | 2024/07/12 | 112        | 70 - 130  | 100        | 70 - 130  | <0.20    | ug/L  | NC        | 30        |
| 9510653  | 1,1-Dichloroethylene      | 2024/07/12 | 109        | 70 - 130  | 106        | 70 - 130  | <0.20    | ug/L  | NC        | 30        |
| 9510653  | 1,2-Dichlorobenzene       | 2024/07/12 | 104        | 70 - 130  | 102        | 70 - 130  | <0.50    | ug/L  | NC        | 30        |
| 9510653  | 1,2-Dichloroethane        | 2024/07/12 | 111        | 70 - 130  | 104        | 70 - 130  | <0.50    | ug/L  | NC        | 30        |
| 9510653  | 1,2-Dichloropropane       | 2024/07/12 | 103        | 70 - 130  | 98         | 70 - 130  | <0.20    | ug/L  | NC        | 30        |
| 9510653  | 1,3-Dichlorobenzene       | 2024/07/12 | 106        | 70 - 130  | 106        | 70 - 130  | <0.50    | ug/L  | NC        | 30        |
| 9510653  | 1,4-Dichlorobenzene       | 2024/07/12 | 112        | 70 - 130  | 112        | 70 - 130  | <0.50    | ug/L  | NC        | 30        |
| 9510653  | Acetone (2-Propanone)     | 2024/07/12 | 108        | 60 - 140  | 99         | 60 - 140  | <10      | ug/L  | NC        | 30        |
| 9510653  | Benzene                   | 2024/07/12 | 104        | 70 - 130  | 102        | 70 - 130  | <0.17    | ug/L  | NC        | 30        |
| 9510653  | Bromodichloromethane      | 2024/07/12 | 108        | 70 - 130  | 103        | 70 - 130  | <0.50    | ug/L  | NC        | 30        |
| 9510653  | Bromoform                 | 2024/07/12 | 100        | 70 - 130  | 97         | 70 - 130  | <1.0     | ug/L  | NC        | 30        |
| 9510653  | Bromomethane              | 2024/07/12 | 90         | 60 - 140  | 82         | 60 - 140  | <0.50    | ug/L  | NC        | 30        |
| 9510653  | Carbon Tetrachloride      | 2024/07/12 | 110        | 70 - 130  | 108        | 70 - 130  | <0.20    | ug/L  | NC        | 30        |
| 9510653  | Chlorobenzene             | 2024/07/12 | 98         | 70 - 130  | 97         | 70 - 130  | <0.20    | ug/L  | NC        | 30        |



exp Services Inc

Client Project #: OTT-00243705-B0

|          |                                     |            | Matrix     | Spike     | SPIKED     | BLANK     | Method | Blank | RPI       | סי        |  |
|----------|-------------------------------------|------------|------------|-----------|------------|-----------|--------|-------|-----------|-----------|--|
| QC Batch | Parameter                           | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value  | UNITS | Value (%) | QC Limits |  |
| 9510653  | Chloroform                          | 2024/07/12 | 110        | 70 - 130  | 97         | 70 - 130  | <0.20  | ug/L  | NC        | 30        |  |
| 9510653  | cis-1,2-Dichloroethylene            | 2024/07/12 | 108        | 70 - 130  | 105        | 70 - 130  | <0.50  | ug/L  | NC        | 30        |  |
| 9510653  | cis-1,3-Dichloropropene             | 2024/07/12 | 104        | 70 - 130  | 95         | 70 - 130  | <0.30  | ug/L  | NC        | 30        |  |
| 9510653  | Dibromochloromethane                | 2024/07/12 | 105        | 70 - 130  | 101        | 70 - 130  | <0.50  | ug/L  | NC        | 30        |  |
| 9510653  | Dichlorodifluoromethane (FREON 12)  | 2024/07/12 | 87         | 60 - 140  | 80         | 60 - 140  | <1.0   | ug/L  | NC        | 30        |  |
| 9510653  | Ethylbenzene                        | 2024/07/12 | 95         | 70 - 130  | 97         | 70 - 130  | <0.20  | ug/L  | NC        | 30        |  |
| 9510653  | Ethylene Dibromide                  | 2024/07/12 | 107        | 70 - 130  | 103        | 70 - 130  | <0.20  | ug/L  | NC        | 30        |  |
| 9510653  | F1 (C6-C10) - BTEX                  | 2024/07/12 |            |           |            |           | <25    | ug/L  | NC        | 30        |  |
| 9510653  | F1 (C6-C10)                         | 2024/07/12 | 93         | 60 - 140  | 98         | 60 - 140  | <25    | ug/L  | NC        | 30        |  |
| 9510653  | Hexane                              | 2024/07/12 | 109        | 70 - 130  | 109        | 70 - 130  | <1.0   | ug/L  | NC        | 30        |  |
| 9510653  | Methyl Ethyl Ketone (2-Butanone)    | 2024/07/12 | 110        | 60 - 140  | 104        | 60 - 140  | <10    | ug/L  | NC        | 30        |  |
| 9510653  | Methyl Isobutyl Ketone              | 2024/07/12 | 100        | 70 - 130  | 97         | 70 - 130  | <5.0   | ug/L  | NC        | 30        |  |
| 9510653  | Methyl t-butyl ether (MTBE)         | 2024/07/12 | 100        | 70 - 130  | 97         | 70 - 130  | <0.50  | ug/L  | NC        | 30        |  |
| 9510653  | Methylene Chloride(Dichloromethane) | 2024/07/12 | 110        | 70 - 130  | 105        | 70 - 130  | <2.0   | ug/L  | NC        | 30        |  |
| 9510653  | o-Xylene                            | 2024/07/12 | 94         | 70 - 130  | 96         | 70 - 130  | <0.20  | ug/L  | NC        | 30        |  |
| 9510653  | p+m-Xylene                          | 2024/07/12 | 96         | 70 - 130  | 98         | 70 - 130  | <0.20  | ug/L  | NC        | 30        |  |
| 9510653  | Styrene                             | 2024/07/12 | 96         | 70 - 130  | 98         | 70 - 130  | <0.50  | ug/L  | NC        | 30        |  |
| 9510653  | Tetrachloroethylene                 | 2024/07/12 | 103        | 70 - 130  | 96         | 70 - 130  | <0.20  | ug/L  | NC        | 30        |  |
| 9510653  | Toluene                             | 2024/07/12 | 102        | 70 - 130  | 95         | 70 - 130  | <0.20  | ug/L  | NC        | 30        |  |
| 9510653  | Total Xylenes                       | 2024/07/12 |            |           |            |           | <0.20  | ug/L  | NC        | 30        |  |
| 9510653  | trans-1,2-Dichloroethylene          | 2024/07/12 | 106        | 70 - 130  | 103        | 70 - 130  | <0.50  | ug/L  | NC        | 30        |  |
| 9510653  | trans-1,3-Dichloropropene           | 2024/07/12 | 111        | 70 - 130  | 99         | 70 - 130  | <0.40  | ug/L  | NC        | 30        |  |
| 9510653  | Trichloroethylene                   | 2024/07/12 | 105        | 70 - 130  | 102        | 70 - 130  | <0.20  | ug/L  | NC        | 30        |  |
| 9510653  | Trichlorofluoromethane (FREON 11)   | 2024/07/12 | 101        | 70 - 130  | 99         | 70 - 130  | <0.50  | ug/L  | NC        | 30        |  |



exp Services Inc

Client Project #: OTT-00243705-B0

Sampler Initials: PO

|          |                |            | Matrix     | Spike     | SPIKED     | BLANK     | Method B | lank  | RPE       | )         |
|----------|----------------|------------|------------|-----------|------------|-----------|----------|-------|-----------|-----------|
| QC Batch | Parameter      | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value    | UNITS | Value (%) | QC Limits |
| 9510653  | Vinyl Chloride | 2024/07/12 | 95         | 70 - 130  | 94         | 70 - 130  | <0.20    | ug/L  | NC        | 30        |

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).



Client Project #: OTT-00243705-B0

Sampler Initials: PO

#### **VALIDATION SIGNATURE PAGE**

The analytical data and all QC contained in this report were reviewed and validated by:

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

|   |   | ũ | r | ¥ |   |   |
|---|---|---|---|---|---|---|
|   |   | Ę |   | y |   |   |
|   |   | 2 | ř | - |   |   |
| ž | Ţ | Ž | ŭ | ă | ÷ | į |

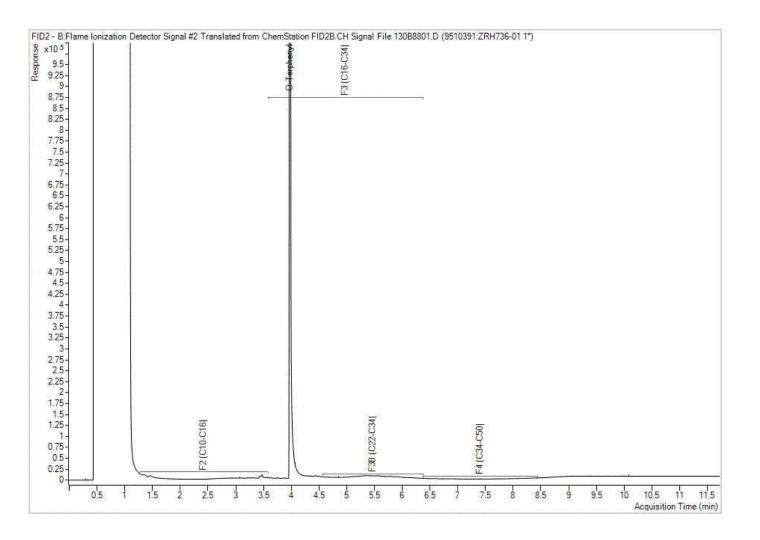
www.BVNA.com

6740 Campobello Road, Mississauga, Ontario LSN 2L8
Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266

# Received in Ottawa

CHAIN OF CUSTODY RECORD ENV COC - 00014v5

Page \_\_\_\_\_\_ of \_\_\_\_\_

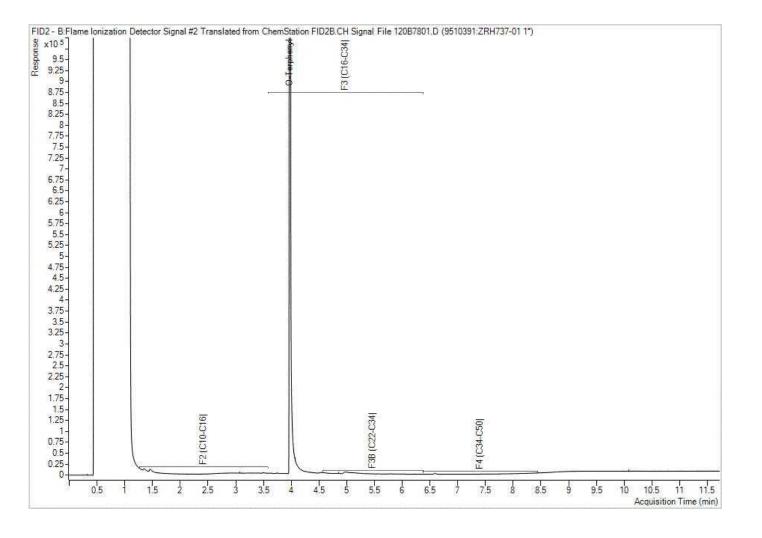

| Invoice Inform               | nation Invoice to (requires report                         | 0 🗆             |                                   |           | Report              | Inform                                   | ation (        | if differs from inv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oíce)         |                 |              | Т     |           |         |               |                    |                          | Project Inf               | formatio  | in         |          |          |        | Т         | -,     | =                         | IJ.      |                            |          |                         |                              |                        |
|------------------------------|------------------------------------------------------------|-----------------|-----------------------------------|-----------|---------------------|------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|--------------|-------|-----------|---------|---------------|--------------------|--------------------------|---------------------------|-----------|------------|----------|----------|--------|-----------|--------|---------------------------|----------|----------------------------|----------|-------------------------|------------------------------|------------------------|
| Company:                     | EXP Services                                               | inc             | Company:                          | C         | 2                   | P                                        | Se             | ERVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3             | 1               | re           |       | Quot      | ation   | #:            |                    |                          |                           |           |            |          |          |        |           | ļ      | -                         | Y        | $\mathcal{M}_{\mathbf{L}}$ |          |                         |                              |                        |
| Contact<br>Name:             | Accounts Pana                                              | W.              | Contact<br>Name:                  | C         | 5,-                 | · c .                                    |                | mmerel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -             |                 |              |       | P.O. 1    | #/ AFE  | E#:           |                    |                          |                           |           |            |          |          |        |           | - 1    | 3.                        | 7        |                            | 7        | NONT.                   | 2024-                        | 07-827                 |
| Street<br>Address:           |                                                            |                 | Street<br>Address:                | 21        | 50                  |                                          |                | Ensula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -             | D               | 1            |       | Proje     | ect#:   |               | 0                  | 77                       | 7- 0                      | 02        | V2         | 70       | 35       | -18    | 0         | i      |                           | 2        | 7E                         | 1.       |                         |                              | -07-827                |
| City: 1                      | TTAWA . Prov: Posta                                        | 1               | City: 8                           | STE       | 141                 | 1.                                       |                | Prov:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Post          |                 |              |       | Site #    | 1:      |               |                    |                          |                           |           |            |          |          |        |           |        | _                         | 1 4      | . 188                      | · Tr     |                         |                              |                        |
| Phone:                       |                                                            |                 | Phone:                            | 6         | 13-                 | 08                                       | 18-            | 1899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Teode         |                 |              |       |           | ocatio  |               |                    |                          |                           |           |            |          |          |        | $\top$    |        |                           |          |                            |          |                         |                              |                        |
| Email:                       |                                                            |                 | Email:                            | Ch        | ic                  | K                                        |                | mark Ce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0             | N               | 0            | _     | Site L    | ocatio  | on            |                    |                          | 11.                       |           | 0.         |          |          |        | T         |        |                           |          |                            |          |                         |                              |                        |
| Copies:                      |                                                            |                 | Coples:                           |           | Mr                  | 10                                       | 16             | neels (a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 1           | Y               | 2. 4         | 2     | Samp      | oled By | -             |                    | +                        | lyso                      | d         |            | one      |          |        |           |        |                           |          |                            |          |                         |                              |                        |
| Table Trule                  | 1 Res/Park Med/<br>2 Ind/Comm Coars<br>3 Agri/othe: For Rt | sc NHO          | CCME Reg 558 *min 3 day MISA PWQO | •<br>TAT  | Reg<br>Sani<br>Stor | 406, Ta<br>tary Seve<br>m Sewe<br>Munici | ble:<br>wer By | law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1             | -2              | 3            | 4     | 5         | 6       | 7 spin        | 8                  | WS - B)                  | 10 711                    | 12 1      | 3 14       | 15       | 16       | 17     | 18 19     | 9 20   |                           | 22       | Service.                   | to 7 Day | urnaround<br>Surcharges | ☐ 10 Da<br>Ilme (TA<br>apply | ay<br>AT) (2           |
|                              | Include Criteria o                                         |                 |                                   |           |                     | PER                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2             |                 | OURED        | - 1   |           |         | organ         |                    | 1                        |                           | 1         |            |          |          |        | 1         |        | BMITT                     | YZE      | Sa                         | ame Day  |                         | 1 Day                        | γ                      |
| - 4,5                        | White West kend tool (*10,4) kenow                         | THE OF SAMPLE   | NE UNTIL                          | SHIVE     | ион                 | MEAU A                                   | JERUTA         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5940          | 0               | 35           |       |           |         | in bine ster  | metals             | Smet                     | 44                        |           |            |          |          |        |           |        | # OF CONTAINERS SUBMITTED | NOT ANAL | □ 2                        | Day      |                         | 3 Day                        | v                      |
|                              |                                                            | NAME OF STREET  |                                   | te f- inp |                     | 10                                       | me             | THE PARTY OF THE P | ERED          | PIELD PRESERVED | AB PLETOTION |       |           |         | retals        | tog 153 ICP145 met | netal:                   | 4                         |           |            |          | !        |        |           |        | VINE                      |          | □4                         | Day      | -0.0                    |                              |                        |
|                              | Sample Identification<br>(Please print of Type)            |                 | 7777                              | Mad       | DD                  | 1                                        | MM             | Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ICLD SILTERED | 3 P.R.E.        | SEE (        |       | =         |         | Reg. 152 met. | 153 10             | Reg 153 in<br>03g, Cr.VL |                           |           | İ          |          |          |        |           |        | CONI                      |          | Date<br>Require            | ed:      | YYYY                    | M                            | M DD                   |
| <u> </u>                     |                                                            |                 | 1                                 | N'issa    | 50                  | l mn                                     | WIN            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FIELD         | 194             | P P          |       | F2 - F1   | NOUS.   | Reg           | 80 S               | Reg<br>(1:12             |                           |           |            |          |          |        |           |        |                           | HOL      |                            |          | Comme                   | nts                          |                        |
| 1                            | mw-1                                                       |                 | 24                                | 07        | 09                  | 13                                       | 30             | GW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                 |              |       |           |         |               |                    |                          |                           |           |            |          |          |        |           |        | 4                         |          |                            |          |                         |                              |                        |
| 2                            | MW-2<br>MW-3<br>SUMP RAW                                   |                 | 1                                 | 11        | 11                  | 12                                       | 20             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                 |              | ×     | X         | X       |               |                    |                          |                           |           |            |          |          |        |           |        | 4                         |          | P4                         | v +      | Vo                      | C                            |                        |
| 3                            | may - 3                                                    |                 |                                   |           |                     | 14                                       | 15             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                 |              | X     | X         |         |               |                    |                          |                           |           |            |          |          |        |           |        | 4                         |          | PH                         | 1        | VO<br>+ B-              | hear                         |                        |
| 4                            | Suma PAI                                                   | (               | 1                                 | 1/        | 1.1                 | 14                                       | 30             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -             |                 | -            |       |           | X       | ~             |                    | 7                        | 10                        | +         | +          | T        |          | $\neg$ | +         | 1      | 7                         |          | 1-11                       |          | 1_0                     | ( ex                         |                        |
| 5                            | Sour MAW                                                   |                 | V                                 | V         | V                   | 1                                        | 50             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +-            |                 | +            | X     | X         | X       | ^             |                    | -                        | X                         |           | +-         | -        | -        | +      | +         | -      | 7                         |          |                            |          |                         |                              |                        |
| 6                            |                                                            |                 | +                                 |           |                     | -                                        | $\vdash$       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +-            | H               | -            | +     | +         | -       | -             | $\vdash$           |                          |                           | +         | +-         | -        | $\vdash$ | +      | +         | +      | -                         | -        | -                          |          |                         |                              |                        |
| •                            |                                                            |                 |                                   |           | -                   |                                          | $\square$      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -             |                 | -            | -     | -         |         | _             | $\vdash$           | -                        | - -                       | 1         | +          | _        |          | -      | -         | -      |                           |          |                            |          |                         |                              |                        |
| 7                            |                                                            |                 | 1                                 |           |                     |                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                 |              |       |           |         |               |                    |                          |                           |           |            |          |          |        |           |        |                           |          |                            |          |                         |                              |                        |
| 8                            |                                                            |                 | 1                                 |           |                     |                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                 |              |       |           |         |               |                    |                          |                           |           |            |          |          |        |           |        |                           |          |                            |          |                         |                              |                        |
| 9                            |                                                            |                 |                                   |           |                     |                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                 |              | T     |           |         |               |                    |                          |                           |           |            |          |          | T      | T         |        | П                         |          |                            |          |                         |                              |                        |
| 10.7                         |                                                            |                 | 1                                 |           |                     | Г                                        | $\Box$         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                 |              | 7     | 7         |         |               | П                  | $\neg$                   | 11                        | +         | 1          |          |          | 7      | +         |        |                           |          |                            |          |                         |                              |                        |
| 11                           |                                                            |                 | +                                 |           |                     | $\vdash$                                 | $\vdash$       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                 | -+           | +     | $\exists$ |         |               | $\forall$          | T                        | Ti                        | +         | +          |          | $\vdash$ | +      | +         | +      |                           |          |                            |          |                         |                              |                        |
| 12                           |                                                            |                 | +-                                |           |                     | $\vdash$                                 | H              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -             |                 | +            | +     | -         | -       | -             | H                  | $\dashv$                 | +                         | -+        | +          | $\vdash$ | $\vdash$ | +      | +         | +      |                           |          |                            |          |                         |                              |                        |
|                              | IERWISE AGREED TO IN WRITING, WORK SU                      | BMITTETTONITHIS | CHAIN OF                          | custon    | V IS SH             | a Brone                                  | OBIE           | FALL VERLYAS STA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NDARR         | TERM            | S AND        | COM   | OITIO     | MIS 2   | ICAN.         | NG OF              | ringe                    |                           | STORY     | DOCUM.     | NEW THE  | ACVA     | OWLES  | CE VIEW   | AMD    |                           | ANGE     | OFOUR                      | Trinie   | AND CONT                | urio (III                    | William And            |
| 1 0111233 0(1)               | Active to he withing, work so                              | J. Trans        | AVA                               | ILABLE F  | OR VIE              | WING A                                   | TWW            | W BVNA COM/TE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RMS-A         | ND-CC           | NDITIO       | DNS O | R BY      | CALLI   | ING T         | HE LAB             | OŖAT                     | ORY LISTED                | ABOVE     | TO OBT     | AIN A    | COPY     | OWLEL  | ASTVIEN I | FAND A | CCEPI                     | ANCE     | OF OUR                     | CIERMS   | AND CONE                | MIONS W                      | VHICH ARE              |
| LAB US                       | EONLY Yes No                                               | ice             |                                   | 1         | AB USE              | ONLY                                     |                | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No            |                 | T            |       |           |         |               |                    | -                        |                           | LAB US    | E ONLY     |          |          | Yes    |           | No     |                           |          |                            |          |                         |                              | mperature<br>ading by: |
| Seal present                 | y 'c                                                       | 17              | 10                                | Seal pro  |                     |                                          |                | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | **              | :            | 1     |           | 2       |               | 2                  |                          | Seal presen               | t         |            |          |          | -123   | 1         |        | ,                         | c        |                            |          |                         |                              | aung uy.               |
| Seal intact<br>Cooling media | present                                                    | 1 2             | 3                                 | Seal int  | media               |                                          | t              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                 | 1            |       |           | 2       |               | 3                  | - 1                      | Seal intact<br>Cooling me | dia prese | ent        |          |          |        |           |        |                           |          | 1                          | 2        | 3                       |                              |                        |
| Reli                         | nquished by: (Signature/ Print)                            | YYYY N          | e<br>MM D                         | D         | нн                  | me<br>Mi                                 | м              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Recei         | ived b          | y: (Sig      | natur | e/ Pri    | int)    |               |                    |                          | YYYY                      |           | Date<br>MM | 1        | Di       |        | нн        | Time M | 1M                        |          |                            | Spec     | ial instruct            | ions                         |                        |
| 1 1/1                        | Ly Olina                                                   | 2000            | 70                                | 9/        | 7%.                 | 00                                       |                | Ace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e e           | le e            | a            | Sa    | ru        | ti      | y             | 0 10               | 182)                     | 202                       | 1 0       | 07         |          | 0        | 7      | 16        | 5.     | 7                         |          |                            |          |                         |                              | (7)                    |
| 2                            | /                                                          |                 |                                   |           |                     |                                          |                | · VIY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                 |              |       |           |         |               |                    |                          | 20 211                    |           | 07         | -        | 10       | 0      | 8         | 3      | 9                         |          |                            |          |                         |                              | 132H534                |

exp Services Inc

Client Project #: OTT-00243705-B0

Client ID: MW-1

Petroleum Hydrocarbons F2-F4 in Water Chromatogram

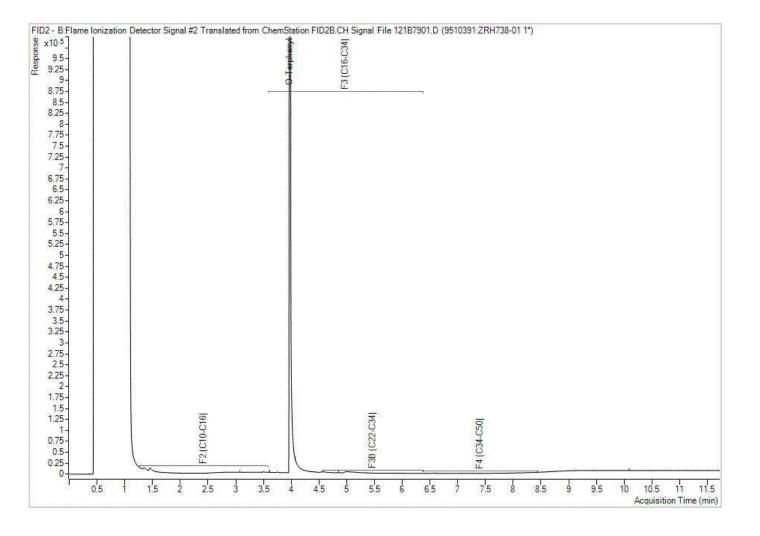



exp Services Inc

Client Project #: OTT-00243705-B0

Client ID: MW-2

#### Petroleum Hydrocarbons F2-F4 in Water Chromatogram

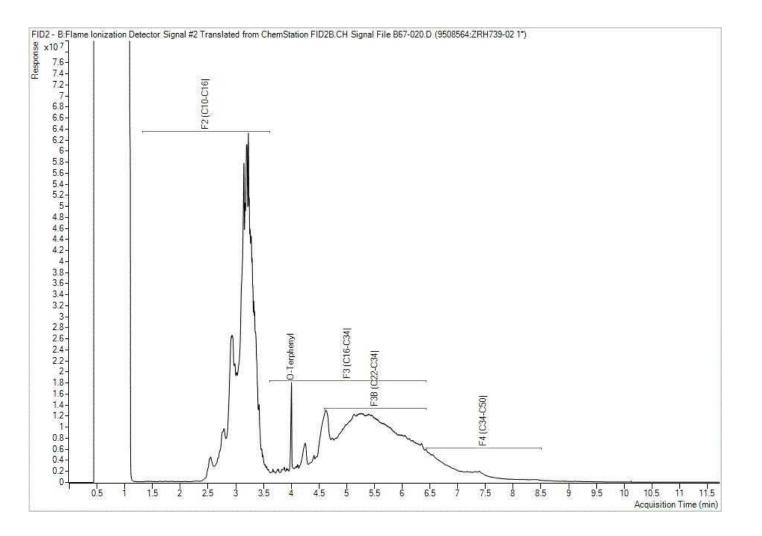



exp Services Inc

Client Project #: OTT-00243705-B0

Client ID: MW-3

#### Petroleum Hydrocarbons F2-F4 in Water Chromatogram




exp Services Inc

Client Project #: OTT-00243705-B0

Client ID: SUMP RAW

#### Petroleum Hydrocarbons F2-F4 in Water Chromatogram





Your Project #: OTT-00243705-B0

Your C.O.C. #: N/A

**Attention: Chris Kimmerly** 

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2024/07/16

Report #: R8236343 Version: 1 - Final

#### **CERTIFICATE OF ANALYSIS**

BUREAU VERITAS JOB #: C4K9189 Received: 2024/07/09, 16:57

Sample Matrix: Water # Samples Received: 1

|                                              |          | Date       | Date       |                          |                   |
|----------------------------------------------|----------|------------|------------|--------------------------|-------------------|
| Analyses                                     | Quantity | Extracted  | Analyzed   | <b>Laboratory Method</b> | Analytical Method |
| Methylnaphthalene Sum (1)                    | 1        | N/A        | 2024/07/13 | CAM SOP-00301            | EPA 8270D m       |
| 1,3-Dichloropropene Sum (1)                  | 1        | N/A        | 2024/07/16 |                          | EPA 8260C m       |
| Petroleum Hydrocarbons F2-F4 in Water (1, 2) | 1        | 2024/07/12 | 2024/07/12 | CAM SOP-00316            | CCME PHC-CWS m    |
| PAH Compounds in Water by GC/MS (SIM) (1)    | 1        | 2024/07/12 | 2024/07/13 | CAM SOP-00318            | EPA 8270E         |
| Volatile Organic Compounds and F1 PHCs (1)   | 1        | N/A        | 2024/07/15 | CAM SOP-00230            | EPA 8260C m       |

#### Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- $^{st}$  RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Mississauga, 6740 Campobello Rd , Mississauga, ON, L5N 2L8
- (2) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.



Your Project #: OTT-00243705-B0

Your C.O.C. #: N/A

**Attention: Chris Kimmerly** 

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2024/07/16

Report #: R8236343 Version: 1 - Final

### **CERTIFICATE OF ANALYSIS**

BUREAU VERITAS JOB #: C4K9189 Received: 2024/07/09, 16:57

**Encryption Key** 

Please direct all questions regarding this Certificate of Analysis to: Katherine Szozda, Project Manager Email: Katherine.Szozda@bureauveritas.com Phone# (613)274-0573 Ext:7063633

\_\_\_\_\_\_

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.



Client Project #: OTT-00243705-B0

Sampler Initials: PO

# O.REG 153 PAHS (WATER)

| Bureau Veritas ID             |       | ZRH816        |       |          |
|-------------------------------|-------|---------------|-------|----------|
| Sampling Date                 |       | 2024/07/09    |       |          |
| Sampling Date                 |       | 14:45         |       |          |
| COC Number                    |       | N/A           |       |          |
|                               | UNITS | SUMP FILTERED | RDL   | QC Batch |
| Calculated Parameters         |       |               |       |          |
| Methylnaphthalene, 2-(1-)     | ug/L  | 3.8           | 0.71  | 9505169  |
| Polyaromatic Hydrocarbons     |       |               |       |          |
| Acenaphthene                  | ug/L  | 0.88          | 0.50  | 9510464  |
| Acenaphthylene                | ug/L  | <0.50         | 0.50  | 9510464  |
| Anthracene                    | ug/L  | <0.50         | 0.50  | 9510464  |
| Benzo(a)anthracene            | ug/L  | <0.50         | 0.50  | 9510464  |
| Benzo(a)pyrene                | ug/L  | <0.090        | 0.090 | 9510464  |
| Benzo(b/j)fluoranthene        | ug/L  | <0.50         | 0.50  | 9510464  |
| Benzo(g,h,i)perylene          | ug/L  | <0.50         | 0.50  | 9510464  |
| Benzo(k)fluoranthene          | ug/L  | <0.50         | 0.50  | 9510464  |
| Chrysene                      | ug/L  | <0.50         | 0.50  | 9510464  |
| Dibenzo(a,h)anthracene        | ug/L  | <0.50         | 0.50  | 9510464  |
| Fluoranthene                  | ug/L  | <0.50         | 0.50  | 9510464  |
| Fluorene                      | ug/L  | <0.50         | 0.50  | 9510464  |
| Indeno(1,2,3-cd)pyrene        | ug/L  | <0.50         | 0.50  | 9510464  |
| 1-Methylnaphthalene           | ug/L  | 1.5           | 0.50  | 9510464  |
| 2-Methylnaphthalene           | ug/L  | 2.3           | 0.50  | 9510464  |
| Naphthalene                   | ug/L  | <0.50         | 0.50  | 9510464  |
| Phenanthrene                  | ug/L  | 1.2           | 0.30  | 9510464  |
| Pyrene                        | ug/L  | 2.0           | 0.50  | 9510464  |
| Surrogate Recovery (%)        | •     | •             | 3     | •        |
| D10-Anthracene                | %     | 127           |       | 9510464  |
| D14-Terphenyl (FS)            | %     | 73            |       | 9510464  |
| D8-Acenaphthylene             | %     | 100           |       | 9510464  |
| RDL = Reportable Detection L  | imit  |               |       |          |
| QC Batch = Quality Control Ba | atch  |               |       |          |



Client Project #: OTT-00243705-B0

Sampler Initials: PO

# **O.REG 153 VOCS BY HS & F1-F4 (WATER)**

| Bureau Veritas ID                   |       | ZRH816              |      |          |
|-------------------------------------|-------|---------------------|------|----------|
| Sampling Date                       |       | 2024/07/09<br>14:45 |      |          |
| COC Number                          |       | N/A                 |      |          |
|                                     | UNITS | SUMP FILTERED       | RDL  | QC Batch |
| Calculated Parameters               |       |                     |      |          |
| 1,3-Dichloropropene (cis+trans)     | ug/L  | <0.50               | 0.50 | 9506389  |
| Volatile Organics                   |       | ı                   |      | I.       |
| Acetone (2-Propanone)               | ug/L  | 650                 | 10   | 9511117  |
| Benzene                             | ug/L  | <0.17               | 0.17 | 9511117  |
| Bromodichloromethane                | ug/L  | <0.50               | 0.50 | 9511117  |
| Bromoform                           | ug/L  | <1.0                | 1.0  | 9511117  |
| Bromomethane                        | ug/L  | <0.50               | 0.50 | 9511117  |
| Carbon Tetrachloride                | ug/L  | <0.20               | 0.20 | 9511117  |
| Chlorobenzene                       | ug/L  | <0.20               | 0.20 | 9511117  |
| Chloroform                          | ug/L  | <0.20               | 0.20 | 9511117  |
| Dibromochloromethane                | ug/L  | <0.50               | 0.50 | 9511117  |
| 1,2-Dichlorobenzene                 | ug/L  | <0.50               | 0.50 | 9511117  |
| 1,3-Dichlorobenzene                 | ug/L  | <0.50               | 0.50 | 9511117  |
| 1,4-Dichlorobenzene                 | ug/L  | <0.50               | 0.50 | 9511117  |
| Dichlorodifluoromethane (FREON 12)  | ug/L  | <1.0                | 1.0  | 9511117  |
| 1,1-Dichloroethane                  | ug/L  | <0.20               | 0.20 | 9511117  |
| 1,2-Dichloroethane                  | ug/L  | <0.50               | 0.50 | 9511117  |
| 1,1-Dichloroethylene                | ug/L  | <0.20               | 0.20 | 9511117  |
| cis-1,2-Dichloroethylene            | ug/L  | <0.50               | 0.50 | 9511117  |
| trans-1,2-Dichloroethylene          | ug/L  | <0.50               | 0.50 | 9511117  |
| 1,2-Dichloropropane                 | ug/L  | <0.20               | 0.20 | 9511117  |
| cis-1,3-Dichloropropene             | ug/L  | <0.30               | 0.30 | 9511117  |
| trans-1,3-Dichloropropene           | ug/L  | <0.40               | 0.40 | 9511117  |
| Ethylbenzene                        | ug/L  | <0.20               | 0.20 | 9511117  |
| Ethylene Dibromide                  | ug/L  | <0.20               | 0.20 | 9511117  |
| Hexane                              | ug/L  | <1.0                | 1.0  | 9511117  |
| Methylene Chloride(Dichloromethane) | ug/L  | <2.0                | 2.0  | 9511117  |
| Methyl Ethyl Ketone (2-Butanone)    | ug/L  | 130                 | 10   | 9511117  |
| Methyl Isobutyl Ketone              | ug/L  | <5.0                | 5.0  | 9511117  |
| Methyl t-butyl ether (MTBE)         | ug/L  | <0.50               | 0.50 | 9511117  |
| Styrene                             | ug/L  | <0.50               | 0.50 | 9511117  |
| 1,1,1,2-Tetrachloroethane           | ug/L  | <0.50               | 0.50 | 9511117  |
| 1,1,2,2-Tetrachloroethane           | ug/L  | <0.50               | 0.50 | 9511117  |
| Tetrachloroethylene                 | ug/L  | <0.20               | 0.20 | 9511117  |
| Toluene                             | ug/L  | 1.7                 | 0.20 | 9511117  |
| RDL = Reportable Detection Limit    |       |                     |      |          |
| QC Batch = Quality Control Batch    |       |                     |      |          |



Client Project #: OTT-00243705-B0

Sampler Initials: PO

# O.REG 153 VOCS BY HS & F1-F4 (WATER)

| Bureau Veritas ID                 |       | ZRH816        |      |          |
|-----------------------------------|-------|---------------|------|----------|
| Sampling Date                     |       | 2024/07/09    |      |          |
| Sampling Date                     |       | 14:45         |      |          |
| COC Number                        |       | N/A           |      |          |
|                                   | UNITS | SUMP FILTERED | RDL  | QC Batch |
| 1,1,1-Trichloroethane             | ug/L  | <0.20         | 0.20 | 9511117  |
| 1,1,2-Trichloroethane             | ug/L  | <0.50         | 0.50 | 9511117  |
| Trichloroethylene                 | ug/L  | <0.20         | 0.20 | 9511117  |
| Trichlorofluoromethane (FREON 11) | ug/L  | <0.50         | 0.50 | 9511117  |
| Vinyl Chloride                    | ug/L  | <0.20         | 0.20 | 9511117  |
| p+m-Xylene                        | ug/L  | 0.47          | 0.20 | 9511117  |
| o-Xylene                          | ug/L  | 0.26          | 0.20 | 9511117  |
| Total Xylenes                     | ug/L  | 0.74          | 0.20 | 9511117  |
| F1 (C6-C10)                       | ug/L  | 230           | 25   | 9511117  |
| F1 (C6-C10) - BTEX                | ug/L  | 230           | 25   | 9511117  |
| F2-F4 Hydrocarbons                |       |               |      |          |
| F2 (C10-C16 Hydrocarbons)         | ug/L  | 110000        | 100  | 9510474  |
| F3 (C16-C34 Hydrocarbons)         | ug/L  | 78000         | 200  | 9510474  |
| F4 (C34-C50 Hydrocarbons)         | ug/L  | 14000         | 200  | 9510474  |
| Reached Baseline at C50           | ug/L  | Yes           |      | 9510474  |
| Surrogate Recovery (%)            | •     |               |      |          |
| o-Terphenyl                       | %     | 99            |      | 9510474  |
| 4-Bromofluorobenzene              | %     | 104           |      | 9511117  |
| D4-1,2-Dichloroethane             | %     | 117           |      | 9511117  |
| D8-Toluene                        | %     | 89            |      | 9511117  |
| RDL = Reportable Detection Limit  |       |               |      |          |
| QC Batch = Quality Control Batch  |       |               |      |          |



Report Date: 2024/07/16

exp Services Inc

Client Project #: OTT-00243705-B0

Sampler Initials: PO

### **TEST SUMMARY**

**Collected:** 2024/07/09 **Shipped: Received:** 2024/07/09 **Bureau Veritas ID:** ZRH816 Sample ID: SUMP FILTERED
Matrix: Water

| Test Description                       | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst            |
|----------------------------------------|-----------------|---------|------------|---------------|--------------------|
| Methylnaphthalene Sum                  | CALC            | 9505169 | N/A        | 2024/07/13    | Automated Statchk  |
| 1,3-Dichloropropene Sum                | CALC            | 9506389 | N/A        | 2024/07/16    | Automated Statchk  |
| Petroleum Hydrocarbons F2-F4 in Water  | GC/FID          | 9510474 | 2024/07/12 | 2024/07/12    | Ksenia Trofimova   |
| PAH Compounds in Water by GC/MS (SIM)  | GC/MS           | 9510464 | 2024/07/12 | 2024/07/13    | Jiaxuan (Simon) Xi |
| Volatile Organic Compounds and F1 PHCs | GC/MSFD         | 9511117 | N/A        | 2024/07/15    | Gladys Guerrero    |



Client Project #: OTT-00243705-B0

Sampler Initials: PO

### **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

| Package 1 | 8.0°C |
|-----------|-------|
|-----------|-------|

Sample ZRH816 [SUMP FILTERED]: PAH ANALYSIS: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Results relate only to the items tested.



# **QUALITY ASSURANCE REPORT**

exp Services Inc

Client Project #: OTT-00243705-B0

|          |                           |            | Matrix Spike |           | SPIKED     | BLANK     | Method I | Blank | RPI       | RPD       |  |
|----------|---------------------------|------------|--------------|-----------|------------|-----------|----------|-------|-----------|-----------|--|
| QC Batch | Parameter                 | Date       | % Recovery   | QC Limits | % Recovery | QC Limits | Value    | UNITS | Value (%) | QC Limits |  |
| 9510464  | D10-Anthracene            | 2024/07/12 | 108          | 50 - 130  | 106        | 50 - 130  | 106      | %     |           |           |  |
| 9510464  | D14-Terphenyl (FS)        | 2024/07/12 | 103          | 50 - 130  | 115        | 50 - 130  | 117      | %     |           |           |  |
| 9510464  | D8-Acenaphthylene         | 2024/07/12 | 101          | 50 - 130  | 96         | 50 - 130  | 95       | %     |           |           |  |
| 9510474  | o-Terphenyl               | 2024/07/12 | 91           | 60 - 140  | 89         | 60 - 140  | 89       | %     |           |           |  |
| 9511117  | 4-Bromofluorobenzene      | 2024/07/15 | 101          | 70 - 130  | 103        | 70 - 130  | 98       | %     |           |           |  |
| 9511117  | D4-1,2-Dichloroethane     | 2024/07/15 | 100          | 70 - 130  | 104        | 70 - 130  | 108      | %     |           |           |  |
| 9511117  | D8-Toluene                | 2024/07/15 | 101          | 70 - 130  | 105        | 70 - 130  | 92       | %     |           |           |  |
| 9510464  | 1-Methylnaphthalene       | 2024/07/12 | 91           | 50 - 130  | 65         | 50 - 130  | <0.050   | ug/L  |           |           |  |
| 9510464  | 2-Methylnaphthalene       | 2024/07/12 | 93           | 50 - 130  | 72         | 50 - 130  | <0.050   | ug/L  |           |           |  |
| 9510464  | Acenaphthene              | 2024/07/12 | 102          | 50 - 130  | 85         | 50 - 130  | <0.050   | ug/L  |           |           |  |
| 9510464  | Acenaphthylene            | 2024/07/12 | 96           | 50 - 130  | 83         | 50 - 130  | <0.050   | ug/L  |           |           |  |
| 9510464  | Anthracene                | 2024/07/12 | 79           | 50 - 130  | 95         | 50 - 130  | <0.050   | ug/L  |           |           |  |
| 9510464  | Benzo(a)anthracene        | 2024/07/12 | 105          | 50 - 130  | 97         | 50 - 130  | <0.050   | ug/L  |           |           |  |
| 9510464  | Benzo(a)pyrene            | 2024/07/12 | 98           | 50 - 130  | 91         | 50 - 130  | <0.0090  | ug/L  |           |           |  |
| 9510464  | Benzo(b/j)fluoranthene    | 2024/07/12 | 98           | 50 - 130  | 94         | 50 - 130  | <0.050   | ug/L  |           |           |  |
| 9510464  | Benzo(g,h,i)perylene      | 2024/07/12 | 77           | 50 - 130  | 73         | 50 - 130  | <0.050   | ug/L  |           |           |  |
| 9510464  | Benzo(k)fluoranthene      | 2024/07/12 | 98           | 50 - 130  | 92         | 50 - 130  | <0.050   | ug/L  |           |           |  |
| 9510464  | Chrysene                  | 2024/07/12 | 99           | 50 - 130  | 93         | 50 - 130  | <0.050   | ug/L  |           |           |  |
| 9510464  | Dibenzo(a,h)anthracene    | 2024/07/12 | 78           | 50 - 130  | 67         | 50 - 130  | <0.050   | ug/L  |           |           |  |
| 9510464  | Fluoranthene              | 2024/07/12 | 107          | 50 - 130  | 105        | 50 - 130  | <0.050   | ug/L  |           |           |  |
| 9510464  | Fluorene                  | 2024/07/12 | 98           | 50 - 130  | 87         | 50 - 130  | <0.050   | ug/L  |           |           |  |
| 9510464  | Indeno(1,2,3-cd)pyrene    | 2024/07/12 | 85           | 50 - 130  | 81         | 50 - 130  | <0.050   | ug/L  |           |           |  |
| 9510464  | Naphthalene               | 2024/07/12 | 93           | 50 - 130  | 76         | 50 - 130  | <0.050   | ug/L  |           |           |  |
| 9510464  | Phenanthrene              | 2024/07/12 | 108          | 50 - 130  | 95         | 50 - 130  | <0.030   | ug/L  | NC        | 30        |  |
| 9510464  | Pyrene                    | 2024/07/12 | 112          | 50 - 130  | 104        | 50 - 130  | <0.050   | ug/L  |           |           |  |
| 9510474  | F2 (C10-C16 Hydrocarbons) | 2024/07/12 | 94           | 60 - 140  | 93         | 60 - 140  | <100     | ug/L  | NC        | 30        |  |
| 9510474  | F3 (C16-C34 Hydrocarbons) | 2024/07/12 | 96           | 60 - 140  | 94         | 60 - 140  | <200     | ug/L  | NC        | 30        |  |
| 9510474  | F4 (C34-C50 Hydrocarbons) | 2024/07/12 | 88           | 60 - 140  | 85         | 60 - 140  | <200     | ug/L  | NC        | 30        |  |
| 9511117  | 1,1,1,2-Tetrachloroethane | 2024/07/15 | 97           | 70 - 130  | 108        | 70 - 130  | <0.50    | ug/L  | NC        | 30        |  |
| 9511117  | 1,1,1-Trichloroethane     | 2024/07/15 | 99           | 70 - 130  | 109        | 70 - 130  | <0.20    | ug/L  | NC        | 30        |  |
| 9511117  | 1,1,2,2-Tetrachloroethane | 2024/07/15 | 97           | 70 - 130  | 111        | 70 - 130  | <0.50    | ug/L  | NC        | 30        |  |
| 9511117  | 1,1,2-Trichloroethane     | 2024/07/15 | 101          | 70 - 130  | 109        | 70 - 130  | <0.50    | ug/L  | NC        | 30        |  |



exp Services Inc

Client Project #: OTT-00243705-B0

|          |                                     |            | Matrix     | Spike     | SPIKED BLANK |           | Method | Blank | RPD       |           |
|----------|-------------------------------------|------------|------------|-----------|--------------|-----------|--------|-------|-----------|-----------|
| QC Batch | Parameter                           | Date       | % Recovery | QC Limits | % Recovery   | QC Limits | Value  | UNITS | Value (%) | QC Limits |
| 9511117  | 1,1-Dichloroethane                  | 2024/07/15 | 106        | 70 - 130  | 115          | 70 - 130  | <0.20  | ug/L  | NC        | 30        |
| 9511117  | 1,1-Dichloroethylene                | 2024/07/15 | 104        | 70 - 130  | 111          | 70 - 130  | <0.20  | ug/L  | NC        | 30        |
| 9511117  | 1,2-Dichlorobenzene                 | 2024/07/15 | 90         | 70 - 130  | 99           | 70 - 130  | <0.50  | ug/L  | NC        | 30        |
| 9511117  | 1,2-Dichloroethane                  | 2024/07/15 | 104        | 70 - 130  | 110          | 70 - 130  | <0.50  | ug/L  | NC        | 30        |
| 9511117  | 1,2-Dichloropropane                 | 2024/07/15 | 107        | 70 - 130  | 113          | 70 - 130  | <0.20  | ug/L  | NC        | 30        |
| 9511117  | 1,3-Dichlorobenzene                 | 2024/07/15 | 93         | 70 - 130  | 100          | 70 - 130  | <0.50  | ug/L  | NC        | 30        |
| 9511117  | 1,4-Dichlorobenzene                 | 2024/07/15 | 91         | 70 - 130  | 99           | 70 - 130  | <0.50  | ug/L  | NC        | 30        |
| 9511117  | Acetone (2-Propanone)               | 2024/07/15 | 99         | 60 - 140  | 101          | 60 - 140  | <10    | ug/L  | NC        | 30        |
| 9511117  | Benzene                             | 2024/07/15 | 101        | 70 - 130  | 105          | 70 - 130  | <0.17  | ug/L  | NC        | 30        |
| 9511117  | Bromodichloromethane                | 2024/07/15 | 99         | 70 - 130  | 108          | 70 - 130  | <0.50  | ug/L  | NC        | 30        |
| 9511117  | Bromoform                           | 2024/07/15 | 92         | 70 - 130  | 104          | 70 - 130  | <1.0   | ug/L  | NC        | 30        |
| 9511117  | Bromomethane                        | 2024/07/15 | 78         | 60 - 140  | 86           | 60 - 140  | <0.50  | ug/L  | NC        | 30        |
| 9511117  | Carbon Tetrachloride                | 2024/07/15 | 97         | 70 - 130  | 107          | 70 - 130  | <0.20  | ug/L  | NC        | 30        |
| 9511117  | Chlorobenzene                       | 2024/07/15 | 96         | 70 - 130  | 100          | 70 - 130  | <0.20  | ug/L  | NC        | 30        |
| 9511117  | Chloroform                          | 2024/07/15 | 98         | 70 - 130  | 108          | 70 - 130  | <0.20  | ug/L  | NC        | 30        |
| 9511117  | cis-1,2-Dichloroethylene            | 2024/07/15 | 102        | 70 - 130  | 107          | 70 - 130  | <0.50  | ug/L  | NC        | 30        |
| 9511117  | cis-1,3-Dichloropropene             | 2024/07/15 | 101        | 70 - 130  | 97           | 70 - 130  | <0.30  | ug/L  | NC        | 30        |
| 9511117  | Dibromochloromethane                | 2024/07/15 | 97         | 70 - 130  | 106          | 70 - 130  | <0.50  | ug/L  | NC        | 30        |
| 9511117  | Dichlorodifluoromethane (FREON 12)  | 2024/07/15 | 70         | 60 - 140  | 83           | 60 - 140  | <1.0   | ug/L  | NC        | 30        |
| 9511117  | Ethylbenzene                        | 2024/07/15 | 101        | 70 - 130  | 93           | 70 - 130  | <0.20  | ug/L  | 0         | 30        |
| 9511117  | Ethylene Dibromide                  | 2024/07/15 | 101        | 70 - 130  | 108          | 70 - 130  | <0.20  | ug/L  | NC        | 30        |
| 9511117  | F1 (C6-C10) - BTEX                  | 2024/07/15 |            |           |              |           | <25    | ug/L  | 4.0       | 30        |
| 9511117  | F1 (C6-C10)                         | 2024/07/15 | NC         | 60 - 140  | 88           | 60 - 140  | <25    | ug/L  | 3.9       | 30        |
| 9511117  | Hexane                              | 2024/07/15 | 108        | 70 - 130  | 114          | 70 - 130  | <1.0   | ug/L  | NC        | 30        |
| 9511117  | Methyl Ethyl Ketone (2-Butanone)    | 2024/07/15 | 106        | 60 - 140  | 109          | 60 - 140  | <10    | ug/L  | NC        | 30        |
| 9511117  | Methyl Isobutyl Ketone              | 2024/07/15 | 100        | 70 - 130  | 104          | 70 - 130  | <5.0   | ug/L  | NC        | 30        |
| 9511117  | Methyl t-butyl ether (MTBE)         | 2024/07/15 | 104        | 70 - 130  | 104          | 70 - 130  | <0.50  | ug/L  | NC        | 30        |
| 9511117  | Methylene Chloride(Dichloromethane) | 2024/07/15 | 100        | 70 - 130  | 109          | 70 - 130  | <2.0   | ug/L  | NC        | 30        |
| 9511117  | o-Xylene                            | 2024/07/15 | 94         | 70 - 130  | 96           | 70 - 130  | <0.20  | ug/L  | 1.5       | 30        |
| 9511117  | p+m-Xylene                          | 2024/07/15 | 97         | 70 - 130  | 95           | 70 - 130  | <0.20  | ug/L  | 1.8       | 30        |
| 9511117  | Styrene                             | 2024/07/15 | 74         | 70 - 130  | 76           | 70 - 130  | <0.50  | ug/L  | NC        | 30        |
| 9511117  | Tetrachloroethylene                 | 2024/07/15 | 97         | 70 - 130  | 106          | 70 - 130  | <0.20  | ug/L  | NC        | 30        |



Bureau Veritas Job #: C4K9189 Report Date: 2024/07/16

#### QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc

Client Project #: OTT-00243705-B0

Sampler Initials: PO

|          |                                   |            | Matrix Spike |           | SPIKED     | BLANK     | Method Blank |       | RPD       |           |
|----------|-----------------------------------|------------|--------------|-----------|------------|-----------|--------------|-------|-----------|-----------|
| QC Batch | Parameter                         | Date       | % Recovery   | QC Limits | % Recovery | QC Limits | Value        | UNITS | Value (%) | QC Limits |
| 9511117  | Toluene                           | 2024/07/15 | 96           | 70 - 130  | 99         | 70 - 130  | <0.20        | ug/L  | 6.8       | 30        |
| 9511117  | Total Xylenes                     | 2024/07/15 |              |           |            |           | <0.20        | ug/L  | 1.6       | 30        |
| 9511117  | trans-1,2-Dichloroethylene        | 2024/07/15 | 96           | 70 - 130  | 103        | 70 - 130  | <0.50        | ug/L  | NC        | 30        |
| 9511117  | trans-1,3-Dichloropropene         | 2024/07/15 | 102          | 70 - 130  | 99         | 70 - 130  | <0.40        | ug/L  | NC        | 30        |
| 9511117  | Trichloroethylene                 | 2024/07/15 | 99           | 70 - 130  | 105        | 70 - 130  | <0.20        | ug/L  | NC        | 30        |
| 9511117  | Trichlorofluoromethane (FREON 11) | 2024/07/15 | 91           | 70 - 130  | 102        | 70 - 130  | <0.50        | ug/L  | NC        | 30        |
| 9511117  | Vinyl Chloride                    | 2024/07/15 | 86           | 70 - 130  | 97         | 70 - 130  | <0.20        | ug/L  | NC        | 30        |

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).



Client Project #: OTT-00243705-B0

Sampler Initials: PO

#### **VALIDATION SIGNATURE PAGE**

The analytical data and all QC contained in this report were reviewed and validated by:

Cristina Carriere, Senior Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.

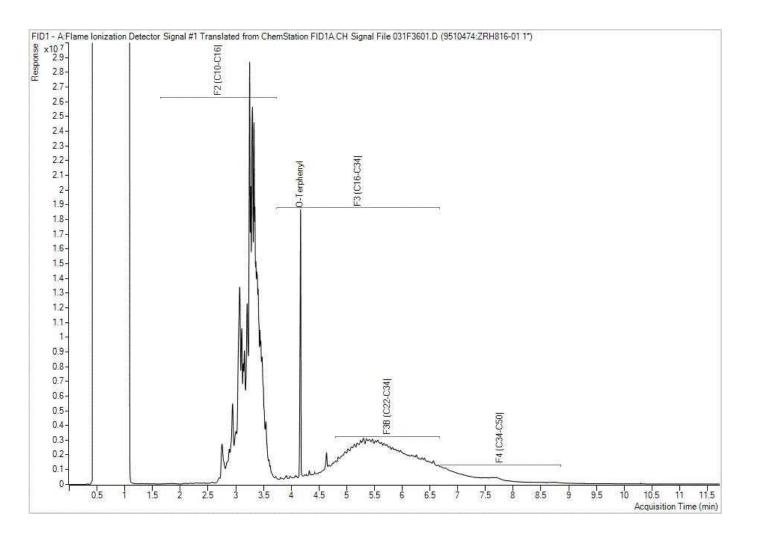
# Received in Ottawa



www.BVNA.com

6740 Campobello Road, Mississauga, Ontario L5N 2L8
Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266

CHAIN OF CUSTODY RECORD ENV COC - 00014v5 Page / of /


| Invoice Information Invoice to (requires report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Repo                                             | rt Information (if dif                                                           | ffers from invoice)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T                                     | Project Information                         |                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------|------------------------------------------------------|
| Company: ENRY SERVICES INC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Company: EX                                      | O SERV                                                                           | lices Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Quotation #:                          | Stran 3                                     | <b>电影</b>                                            |
| Contact Name: Paralle Paralle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Contact<br>Name:                                 |                                                                                  | nmorely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P.O. #/ AFE#:                         |                                             | NONT-2024-07-826                                     |
| Street Address: 2650 QUEENVION DR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Street Address: 2650                             |                                                                                  | Ensview DR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Project #:                            | OTT-00243 705-130                           | 10N1-2024-07-826                                     |
| City: OTTAWA Prov. Postal Code:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | City: OTTAN                                      | IA Pro                                                                           | / Postal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Site #:                               | 011 000 0705                                | T=1 - 666.903                                        |
| Phone: 613-688-1895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Phone: 61                                        | 3-688                                                                            | - 1895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Site Location:                        |                                             |                                                      |
| Email:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Email: Chris                                     | c . Kimi                                                                         | word, @ exo,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Site Location                         | 2/                                          |                                                      |
| Copies:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Copies: Phili                                    | 5. Oliver                                                                        | = @ exp. com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | hilo Olvaina                                |                                                      |
| Regulatory Crit Table 1   Res/Park   Med/Fine   Coarse   State   Table 3   Agri/other   For RSC   Coarse   State   Table   Tab | CCME Reg S58* Sa *min 3 day TAT Str MISA PWQO OF | ig 406, Table:<br>nitary Sewer Bylaw<br>orm Sewer Bylaw<br>Municipality<br>ther: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 10 11 12 13 14 15 16 17 18 19               | S to 7 Day 10 Day                                    |
| Include Criteria on Certificate of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>第二年4万年至10日日 10日日</b>                          |                                                                                  | JINED JINED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                             | Same Day 1 Day                                       |
| SAMPLES MUST BE KEPT COOL (340 C) FROM SIME OF SAMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LINGUNTIL DELIVERY TO                            | Time                                                                             | RELD FILTERED FILTO PRESENCED LAS FILTELTON REQUIRED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 8 8 8                               | CAR                                         | Surcharges apply    Same Day                         |
| Sample Identification<br>(Please print or Type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | YYYY MM DO                                       | (24hr)<br>O HH MM                                                                | FELD FILTERED FILTER FOR STATEMENT FOR STATE | 75                                    |                                             | Date YYYY MM DD Required: Consments                  |
| 1 Sump Filherd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2004 07 00                                       | 3 14 45                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (x x X                                | l <sub>x</sub>                              | 4 Continents                                         |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                             |                                                      |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                             |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                             |                                                      |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                             |                                                      |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                             |                                                      |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                | +++                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                             |                                                      |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +++                                              | ++                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                             |                                                      |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +++                                              | +++                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ++++                                  |                                             |                                                      |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1-1-1-                                           |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                             |                                                      |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                             |                                                      |
| *UNLESS OTHERWISE AGREED TO IN WRITING, WORK SUBMITTED ON TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | CHAIN OF CUSTODY DOCUMENT IS ACKNOWLEDGMENT | AND ACCEPTANCE OF OUR TERMS AND CONDITIONS WHICH ARE |
| LAB USE ONLY Yes No CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  | SE ONLY                                                                          | Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V. S. CALLING THE LABOR               | LAB USE ONLY                                | Temperature                                          |
| Seal present 'C'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Seal present                                     |                                                                                  | - 'c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 122                                   | Seal present                                | No reading by:                                       |
| Seal intact Cooling media present 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Seal intact Cooling med                          | ia present<br>Time                                                               | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 3                                   | Seal intact  Cooling media present  Date    | 1 2 3                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MM DD HH                                         | MM                                                                               | Received by: (Signa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | YYYY MM DD HH                               | Time Special instructions MM                         |
| 1 Philp Olivens 2027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 07 09 17                                         | 00 1                                                                             | Augolizu Sa<br>VIY VIYUSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | whom AST                              | 2024 07 09 16                               | 57                                                   |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | 2                                                                                | MIN MINOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 117 PATEL                             | 2024 07 10 8                                | 39                                                   |

exp Services Inc

Client Project #: OTT-00243705-B0

Client ID: SUMP FILTERED

#### Petroleum Hydrocarbons F2-F4 in Water Chromatogram





Your Project #: OTT-00243705-B0

Your C.O.C. #: N/A

## **Attention: Chris Kimmerly**

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2024/07/16

Report #: R8237079 Version: 1 - Final

#### **CERTIFICATE OF ANALYSIS**

BUREAU VERITAS JOB #: C4K9977 Received: 2024/07/09, 16:57

Sample Matrix: Soil # Samples Received: 6

| # Samples Received. 6                          |          |                   |                  |                   |                      |
|------------------------------------------------|----------|-------------------|------------------|-------------------|----------------------|
| Analyses                                       | Quantity | Date<br>Extracted | Date<br>Analyzed | Laboratory Method | Analytical Method    |
| Methylnaphthalene Sum (1)                      | 4        | N/A               |                  | CAM SOP-00301     | EPA 8270D m          |
| Hot Water Extractable Boron (1)                | 4        |                   |                  | CAM SOP-00408     | R153 Ana. Prot. 2011 |
| 1,3-Dichloropropene Sum (1)                    | 4        | N/A               | 2024/07/13       |                   | EPA 8260C m          |
| Free (WAD) Cyanide (1)                         | 3        | •                 |                  | CAM SOP-00457     | OMOE E3015 m         |
| Free (WAD) Cyanide (1)                         | 1        | 2024/07/15        | 2024/07/15       | CAM SOP-00457     | OMOE E3015 m         |
| Conductivity (1)                               | 4        | 2024/07/13        | 2024/07/13       | CAM SOP-00414     | OMOE E3530 v1 m      |
| Hexavalent Chromium in Soil by IC (1, 2)       | 1        | 2024/07/12        | 2024/07/12       | CAM SOP-00436     | EPA 3060A/7199 m     |
| Hexavalent Chromium in Soil by IC (1, 2)       | 3        | 2024/07/13        | 2024/07/15       | CAM SOP-00436     | EPA 3060A/7199 m     |
| Petroleum Hydro. CCME F1 & BTEX in Soil (1, 3) | 1        | N/A               | 2024/07/12       | CAM SOP-00315     | CCME PHC-CWS m       |
| Petroleum Hydro. CCME F1 & BTEX in Soil (1, 3) | 1        | N/A               | 2024/07/14       | CAM SOP-00315     | CCME PHC-CWS m       |
| Petroleum Hydrocarbons F2-F4 in Soil (1, 4)    | 6        | 2024/07/12        | 2024/07/15       | CAM SOP-00316     | CCME CWS m           |
| Acid Extractable Metals by ICPMS (1)           | 4        | 2024/07/13        | 2024/07/13       | CAM SOP-00447     | EPA 6020B m          |
| Moisture (1)                                   | 6        | N/A               | 2024/07/11       | CAM SOP-00445     | Carter 2nd ed 70.2 m |
| PAH Compounds in Soil by GC/MS (SIM) (1)       | 1        | 2024/07/12        | 2024/07/12       | CAM SOP-00318     | EPA 8270E            |
| PAH Compounds in Soil by GC/MS (SIM) (1)       | 3        | 2024/07/12        | 2024/07/13       | CAM SOP-00318     | EPA 8270E            |
| pH CaCl2 EXTRACT (1)                           | 1        | 2024/07/13        | 2024/07/13       | CAM SOP-00413     | EPA 9045 D m         |
| pH CaCl2 EXTRACT (1)                           | 3        | 2024/07/15        | 2024/07/15       | CAM SOP-00413     | EPA 9045 D m         |
| Sodium Adsorption Ratio (SAR) (1)              | 4        | N/A               | 2024/07/15       | CAM SOP-00102     | EPA 6010C            |
| Volatile Organic Compounds and F1 PHCs (1)     | 4        | N/A               | 2024/07/13       | CAM SOP-00230     | EPA 8260C m          |

#### Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, EPA, APHA or the Quebec Ministry of Environment.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report.



Your Project #: OTT-00243705-B0

Your C.O.C. #: N/A

**Attention: Chris Kimmerly** 

exp Services Inc Ottawa Branch 100-2650 Queensview Drive Ottawa, ON CANADA K2B 8H6

Report Date: 2024/07/16

Report #: R8237079 Version: 1 - Final

#### **CERTIFICATE OF ANALYSIS**

#### **BUREAU VERITAS JOB #: C4K9977**

Received: 2024/07/09, 16:57

Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- \* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Mississauga, 6740 Campobello Rd , Mississauga, ON, L5N 2L8
- (2) Soils are reported on a dry weight basis unless otherwise specified.
- (3) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated.
- (4) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Bureau Veritas conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

#### **Encryption Key**

Please direct all questions regarding this Certificate of Analysis to:

Katherine Szozda, Project Manager

Email: Katherine.Szozda@bureauveritas.com

Phone# (613)274-0573 Ext:7063633

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.



Client Project #: OTT-00243705-B0

Sampler Initials: PO

## O.REG 153 METALS & INORGANICS PKG (SOIL)

| Bureau Veritas ID                |       | ZRL443              |       |          | ZRL444              |          | ZRL445              | ZRL446              |       |          |
|----------------------------------|-------|---------------------|-------|----------|---------------------|----------|---------------------|---------------------|-------|----------|
| Sampling Date                    |       | 2024/07/09<br>11:15 |       |          | 2024/07/09<br>11:00 |          | 2024/07/09<br>10:40 | 2024/07/09<br>10:20 |       |          |
| COC Number                       |       | N/A                 |       |          | N/A                 |          | N/A                 | N/A                 |       |          |
|                                  | UNITS | <b>S1</b>           | RDL   | QC Batch | <b>S2</b>           | QC Batch | <b>S3</b>           | <b>S4</b>           | RDL   | QC Batch |
| Calculated Parameters            |       |                     |       |          |                     |          |                     |                     |       |          |
| Sodium Adsorption Ratio          | N/A   | 0.29 (1)            |       | 9506420  | 0.26 (1)            | 9506420  | 0.23 (1)            | 0.62                |       | 9506420  |
| Inorganics                       | •     |                     |       |          |                     | !        |                     |                     |       |          |
| Conductivity                     | mS/cm | 0.17                | 0.002 | 9513128  | 0.15                | 9513128  | 0.19                | 0.23                | 0.002 | 9513128  |
| Available (CaCl2) pH             | рН    | 7.48                |       | 9514270  | 7.27                | 9513149  | 7.19                | 7.20                |       | 9514270  |
| WAD Cyanide (Free)               | ug/g  | <0.01               | 0.01  | 9512087  | <0.01               | 9514110  | <0.01               | <0.01               | 0.01  | 9512087  |
| Chromium (VI)                    | ug/g  | <0.18               | 0.18  | 9511617  | <0.18               | 9513288  | <0.18               | <0.18               | 0.18  | 9513288  |
| Metals                           |       |                     |       |          |                     |          |                     |                     |       | •        |
| Hot Water Ext. Boron (B)         | ug/g  | 0.74                | 0.050 | 9513480  | 0.085               | 9513480  | 0.22                | 0.10                | 0.050 | 9513480  |
| Acid Extractable Antimony (Sb)   | ug/g  | 0.65                | 0.20  | 9513366  | <0.20               | 9513366  | <0.20               | <0.20               | 0.20  | 9513366  |
| Acid Extractable Arsenic (As)    | ug/g  | 1.9                 | 1.0   | 9513366  | 2.1                 | 9513366  | <1.0                | <1.0                | 1.0   | 9513366  |
| Acid Extractable Barium (Ba)     | ug/g  | 210                 | 0.50  | 9513366  | 36                  | 9513366  | 25                  | 32                  | 0.50  | 9513366  |
| Acid Extractable Beryllium (Be)  | ug/g  | 0.22                | 0.20  | 9513366  | 0.21                | 9513366  | <0.20               | <0.20               | 0.20  | 9513366  |
| Acid Extractable Boron (B)       | ug/g  | 14                  | 5.0   | 9513366  | <5.0                | 9513366  | <5.0                | <5.0                | 5.0   | 9513366  |
| Acid Extractable Cadmium (Cd)    | ug/g  | 0.25                | 0.10  | 9513366  | 0.12                | 9513366  | <0.10               | <0.10               | 0.10  | 9513366  |
| Acid Extractable Chromium (Cr)   | ug/g  | 11                  | 1.0   | 9513366  | 8.4                 | 9513366  | 4.8                 | 8.4                 | 1.0   | 9513366  |
| Acid Extractable Cobalt (Co)     | ug/g  | 75                  | 0.10  | 9513366  | 2.0                 | 9513366  | 0.95                | 1.9                 | 0.10  | 9513366  |
| Acid Extractable Copper (Cu)     | ug/g  | 30                  | 0.50  | 9513366  | 5.2                 | 9513366  | 2.2                 | 2.9                 | 0.50  | 9513366  |
| Acid Extractable Lead (Pb)       | ug/g  | 16                  | 1.0   | 9513366  | 8.2                 | 9513366  | 7.8                 | 2.7                 | 1.0   | 9513366  |
| Acid Extractable Molybdenum (Mo) | ug/g  | 5.1                 | 0.50  | 9513366  | <0.50               | 9513366  | <0.50               | <0.50               | 0.50  | 9513366  |
| Acid Extractable Nickel (Ni)     | ug/g  | 15                  | 0.50  | 9513366  | 3.8                 | 9513366  | 1.8                 | 4.0                 | 0.50  | 9513366  |
| Acid Extractable Selenium (Se)   | ug/g  | <0.50               | 0.50  | 9513366  | <0.50               | 9513366  | <0.50               | <0.50               | 0.50  | 9513366  |
| Acid Extractable Silver (Ag)     | ug/g  | <0.20               | 0.20  | 9513366  | <0.20               | 9513366  | <0.20               | <0.20               | 0.20  | 9513366  |
| Acid Extractable Thallium (TI)   | ug/g  | 0.16                | 0.050 | 9513366  | <0.050              | 9513366  | <0.050              | <0.050              | 0.050 | 9513366  |
| Acid Extractable Uranium (U)     | ug/g  | 0.36                | 0.050 | 9513366  | 0.35                | 9513366  | 0.22                | 0.44                | 0.050 | 9513366  |
| Acid Extractable Vanadium (V)    | ug/g  | 7.5                 | 5.0   | 9513366  | 20                  | 9513366  | 12                  | 17                  | 5.0   | 9513366  |
| Acid Extractable Zinc (Zn)       | ug/g  | 97                  | 5.0   | 9513366  | 21                  | 9513366  | 16                  | 14                  | 5.0   | 9513366  |
| Acid Extractable Mercury (Hg)    | ug/g  | <0.25               | 0.25  | 9513366  | 0.065               | 9513366  | <0.050              | <0.050              | 0.050 | 9513366  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

<sup>(1)</sup> Sodium was not detected. To report SAR the sodium detection limit was used in the calculation. This value represents a maximum ratio.



Client Project #: OTT-00243705-B0

Sampler Initials: PO

# O.REG 153 PAHS (SOIL)

| Bureau Veritas ID         |          | ZRL443     |          |          | ZRL444     |        |          | ZRL444        |          |          |
|---------------------------|----------|------------|----------|----------|------------|--------|----------|---------------|----------|----------|
| Sampling Date             |          | 2024/07/09 |          |          | 2024/07/09 |        |          | 2024/07/09    |          |          |
| Sampling Date             |          | 11:15      |          |          | 11:00      |        |          | 11:00         |          |          |
| COC Number                |          | N/A        |          |          | N/A        |        |          | N/A           |          |          |
|                           | UNITS    | <b>S1</b>  | RDL      | QC Batch | <b>S2</b>  | RDL    | QC Batch | S2<br>Lab-Dup | RDL      | QC Batch |
| Calculated Parameters     | <u> </u> | •          | <u> </u> | •        | •          |        |          |               | <u> </u> |          |
| Methylnaphthalene, 2-(1-) | ug/g     | <0.071     | 0.071    | 9506426  | <0.0071    | 0.0071 | 9506941  |               |          |          |
| Polyaromatic Hydrocarbons |          |            |          | I.       |            |        |          |               | I.       |          |
| Acenaphthene              | ug/g     | <0.050     | 0.050    | 9511300  | <0.0050    | 0.0050 | 9511300  | <0.0050       | 0.0050   | 9511300  |
| Acenaphthylene            | ug/g     | <0.050     | 0.050    | 9511300  | <0.0050    | 0.0050 | 9511300  | <0.0050       | 0.0050   | 9511300  |
| Anthracene                | ug/g     | <0.050     | 0.050    | 9511300  | <0.0050    | 0.0050 | 9511300  | <0.0050       | 0.0050   | 9511300  |
| Benzo(a)anthracene        | ug/g     | <0.050     | 0.050    | 9511300  | <0.0050    | 0.0050 | 9511300  | <0.0050       | 0.0050   | 9511300  |
| Benzo(a)pyrene            | ug/g     | <0.050     | 0.050    | 9511300  | <0.0050    | 0.0050 | 9511300  | <0.0050       | 0.0050   | 9511300  |
| Benzo(b/j)fluoranthene    | ug/g     | <0.050     | 0.050    | 9511300  | 0.0063     | 0.0050 | 9511300  | <0.0050       | 0.0050   | 9511300  |
| Benzo(g,h,i)perylene      | ug/g     | <0.050     | 0.050    | 9511300  | <0.0050    | 0.0050 | 9511300  | <0.0050       | 0.0050   | 9511300  |
| Benzo(k)fluoranthene      | ug/g     | <0.050     | 0.050    | 9511300  | <0.0050    | 0.0050 | 9511300  | <0.0050       | 0.0050   | 9511300  |
| Chrysene                  | ug/g     | <0.050     | 0.050    | 9511300  | <0.0050    | 0.0050 | 9511300  | <0.0050       | 0.0050   | 9511300  |
| Dibenzo(a,h)anthracene    | ug/g     | <0.050     | 0.050    | 9511300  | <0.0050    | 0.0050 | 9511300  | <0.0050       | 0.0050   | 9511300  |
| Fluoranthene              | ug/g     | <0.050     | 0.050    | 9511300  | 0.0061     | 0.0050 | 9511300  | <0.0050       | 0.0050   | 9511300  |
| Fluorene                  | ug/g     | <0.050     | 0.050    | 9511300  | <0.0050    | 0.0050 | 9511300  | <0.0050       | 0.0050   | 9511300  |
| Indeno(1,2,3-cd)pyrene    | ug/g     | <0.050     | 0.050    | 9511300  | <0.0050    | 0.0050 | 9511300  | <0.0050       | 0.0050   | 9511300  |
| 1-Methylnaphthalene       | ug/g     | <0.050     | 0.050    | 9511300  | <0.0050    | 0.0050 | 9511300  | <0.0050       | 0.0050   | 9511300  |
| 2-Methylnaphthalene       | ug/g     | <0.050     | 0.050    | 9511300  | <0.0050    | 0.0050 | 9511300  | <0.0050       | 0.0050   | 9511300  |
| Naphthalene               | ug/g     | <0.050     | 0.050    | 9511300  | <0.0050    | 0.0050 | 9511300  | <0.0050       | 0.0050   | 9511300  |
| Phenanthrene              | ug/g     | <0.050     | 0.050    | 9511300  | <0.0050    | 0.0050 | 9511300  | <0.0050       | 0.0050   | 9511300  |
| Pyrene                    | ug/g     | <0.050     | 0.050    | 9511300  | 0.0055     | 0.0050 | 9511300  | <0.0050       | 0.0050   | 9511300  |
| Surrogate Recovery (%)    |          |            |          |          |            |        |          |               |          |          |
| D10-Anthracene            | %        | 106        |          | 9511300  | 103        |        | 9511300  | 96            |          | 9511300  |
| D14-Terphenyl (FS)        | %        | 90         |          | 9511300  | 102        |        | 9511300  | 94            |          | 9511300  |
| D8-Acenaphthylene         | %        | 89         |          | 9511300  | 91         |        | 9511300  | 86            |          | 9511300  |

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate



Client Project #: OTT-00243705-B0

Sampler Initials: PO

# O.REG 153 PAHS (SOIL)

| Bureau Veritas ID            |       | ZRL445     | ZRL446     |        |          |
|------------------------------|-------|------------|------------|--------|----------|
| C!: D-t-                     |       | 2024/07/09 | 2024/07/09 |        |          |
| Sampling Date                |       | 10:40      | 10:20      |        |          |
| COC Number                   |       | N/A        | N/A        |        |          |
|                              | UNITS | <b>S3</b>  | <b>S4</b>  | RDL    | QC Batch |
| Calculated Parameters        |       |            |            |        |          |
| Methylnaphthalene, 2-(1-)    | ug/g  | <0.0071    | <0.0071    | 0.0071 | 9506941  |
| Polyaromatic Hydrocarbons    |       |            |            |        |          |
| Acenaphthene                 | ug/g  | <0.0050    | <0.0050    | 0.0050 | 9511300  |
| Acenaphthylene               | ug/g  | <0.0050    | <0.0050    | 0.0050 | 9511300  |
| Anthracene                   | ug/g  | <0.0050    | <0.0050    | 0.0050 | 9511300  |
| Benzo(a)anthracene           | ug/g  | <0.0050    | <0.0050    | 0.0050 | 9511300  |
| Benzo(a)pyrene               | ug/g  | <0.0050    | <0.0050    | 0.0050 | 9511300  |
| Benzo(b/j)fluoranthene       | ug/g  | 0.0067     | <0.0050    | 0.0050 | 9511300  |
| Benzo(g,h,i)perylene         | ug/g  | <0.0050    | <0.0050    | 0.0050 | 9511300  |
| Benzo(k)fluoranthene         | ug/g  | <0.0050    | <0.0050    | 0.0050 | 9511300  |
| Chrysene                     | ug/g  | <0.0050    | <0.0050    | 0.0050 | 9511300  |
| Dibenzo(a,h)anthracene       | ug/g  | <0.0050    | <0.0050    | 0.0050 | 9511300  |
| Fluoranthene                 | ug/g  | 0.0073     | <0.0050    | 0.0050 | 9511300  |
| Fluorene                     | ug/g  | <0.0050    | <0.0050    | 0.0050 | 9511300  |
| Indeno(1,2,3-cd)pyrene       | ug/g  | <0.0050    | <0.0050    | 0.0050 | 9511300  |
| 1-Methylnaphthalene          | ug/g  | <0.0050    | <0.0050    | 0.0050 | 9511300  |
| 2-Methylnaphthalene          | ug/g  | <0.0050    | <0.0050    | 0.0050 | 9511300  |
| Naphthalene                  | ug/g  | <0.0050    | <0.0050    | 0.0050 | 9511300  |
| Phenanthrene                 | ug/g  | <0.0050    | <0.0050    | 0.0050 | 9511300  |
| Pyrene                       | ug/g  | 0.0062     | <0.0050    | 0.0050 | 9511300  |
| Surrogate Recovery (%)       |       |            |            | •      |          |
| D10-Anthracene               | %     | 103        | 108        |        | 9511300  |
| D14-Terphenyl (FS)           | %     | 102        | 105        |        | 9511300  |
| D8-Acenaphthylene            | %     | 94         | 94         |        | 9511300  |
| RDL = Reportable Detection I | imit  |            |            |        |          |
| QC Batch = Quality Control B | atch  |            |            |        |          |



Client Project #: OTT-00243705-B0

Sampler Initials: PO

# O.REG 153 PHCS, BTEX/F1-F4 (SOIL)

| Bureau Veritas ID             |       | ZRL447     |          | ZRL448     |       |          |
|-------------------------------|-------|------------|----------|------------|-------|----------|
| Sampling Date                 |       | 2024/07/09 |          | 2024/07/09 |       |          |
| Sampling Date                 |       | 10:00      |          | 09:45      |       |          |
| COC Number                    |       | N/A        |          | N/A        |       |          |
|                               | UNITS | <b>S5</b>  | QC Batch | <b>S6</b>  | RDL   | QC Batch |
| BTEX & F1 Hydrocarbons        |       |            |          |            |       |          |
| Benzene                       | ug/g  | <0.020     | 9512436  | <0.020     | 0.020 | 9513114  |
| Toluene                       | ug/g  | 0.022      | 9512436  | <0.020     | 0.020 | 9513114  |
| Ethylbenzene                  | ug/g  | <0.020     | 9512436  | <0.020     | 0.020 | 9513114  |
| o-Xylene                      | ug/g  | <0.020     | 9512436  | <0.020     | 0.020 | 9513114  |
| p+m-Xylene                    | ug/g  | <0.040     | 9512436  | <0.040     | 0.040 | 9513114  |
| Total Xylenes                 | ug/g  | <0.040     | 9512436  | <0.040     | 0.040 | 9513114  |
| F1 (C6-C10)                   | ug/g  | <10        | 9512436  | <10        | 10    | 9513114  |
| F1 (C6-C10) - BTEX            | ug/g  | <10        | 9512436  | <10        | 10    | 9513114  |
| F2-F4 Hydrocarbons            |       |            |          |            |       |          |
| F2 (C10-C16 Hydrocarbons)     | ug/g  | <10        | 9511555  | <10        | 10    | 9511555  |
| F3 (C16-C34 Hydrocarbons)     | ug/g  | 960        | 9511555  | 250        | 50    | 9511555  |
| F4 (C34-C50 Hydrocarbons)     | ug/g  | 400        | 9511555  | 160        | 50    | 9511555  |
| Reached Baseline at C50       | ug/g  | Yes        | 9511555  | Yes        |       | 9511555  |
| Surrogate Recovery (%)        |       |            |          |            |       |          |
| 1,4-Difluorobenzene           | %     | 101        | 9512436  | 109        |       | 9513114  |
| 4-Bromofluorobenzene          | %     | 98         | 9512436  | 99         |       | 9513114  |
| D10-o-Xylene                  | %     | 120        | 9512436  | 135        |       | 9513114  |
| D4-1,2-Dichloroethane         | %     | 90         | 9512436  | 106        |       | 9513114  |
| o-Terphenyl                   | %     | 100        | 9511555  | 102        |       | 9511555  |
| RDL = Reportable Detection L  | imit  |            |          |            |       |          |
| QC Batch = Quality Control Ba | atch  |            |          |            |       |          |



Client Project #: OTT-00243705-B0

Sampler Initials: PO

## O.REG 153 VOCS BY HS & F1-F4 (SOIL)

| Calculated Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bureau Veritas ID                   |       | ZRL443     |       | ZRL444     |       | ZRL445     | ZRL446     |       |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------|------------|-------|------------|-------|------------|------------|-------|----------|
| 11.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sampling Date                       |       | 2024/07/09 |       | 2024/07/09 |       | 2024/07/09 | 2024/07/09 |       |          |
| Calculated Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sampling Date                       |       | 11:15      |       | 11:00      |       | 10:40      | 10:20      |       |          |
| Calculated Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COC Number                          |       | N/A        |       | N/A        |       | N/A        | N/A        |       |          |
| 1,3-Dichloropropene (cis+trans)   ug/g   <0.050   0.050   <0.10   0.10   <0.050   <0.050   0.050   0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.050   <0.049   <0.049   <0.049   <0.049   <0.049   <0.049   <0.049   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0.040   <0 |                                     | UNITS | <b>S1</b>  | RDL   | <b>S2</b>  | RDL   | <b>S3</b>  | <b>S4</b>  | RDL   | QC Batch |
| Volatile Organics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Calculated Parameters               |       |            |       |            |       |            |            |       |          |
| Acetone (2-Propanone)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,3-Dichloropropene (cis+trans)     | ug/g  | <0.050     | 0.050 | <0.10      | 0.10  | <0.050     | <0.050     | 0.050 | 9506427  |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Volatile Organics                   |       |            |       |            |       |            |            |       |          |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Acetone (2-Propanone)               | ug/g  | <0.49      | 0.49  | <0.98      | 0.98  | <0.49      | <0.49      | 0.49  | 9508786  |
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bromodichloromethane                | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | <0.040     | <0.040     | 0.040 | 9508786  |
| Carbon Tetrachloride         ug/g         <0.040         0.040         <0.080         <0.040         <0.040         0.040         950878           Chlorobenzene         ug/g         <0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bromoform                           | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | <0.040     | <0.040     | 0.040 | 9508786  |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bromomethane                        | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | <0.040     | <0.040     | 0.040 | 9508786  |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Carbon Tetrachloride                | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | <0.040     | <0.040     | 0.040 | 9508786  |
| Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chlorobenzene                       | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | <0.040     | <0.040     | 0.040 | 9508786  |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chloroform                          | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | <0.040     | <0.040     | 0.040 | 9508786  |
| 1,3-Dichlorobenzene         ug/g         < 0.040         0.040         < 0.080         < 0.040         < 0.040         0.040         950878           1,4-Dichlorobenzene         ug/g         < 0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dibromochloromethane                | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | <0.040     | <0.040     | 0.040 | 9508786  |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,2-Dichlorobenzene                 | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | <0.040     | <0.040     | 0.040 | 9508786  |
| Dichlorodifiluoromethane (FREON 12)   ug/g   < 0.040   0.040   < 0.080   0.080   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0.040   < 0 | 1,3-Dichlorobenzene                 | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | <0.040     | <0.040     | 0.040 | 9508786  |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,4-Dichlorobenzene                 | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | <0.040     | <0.040     | 0.040 | 9508786  |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dichlorodifluoromethane (FREON 12)  | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | <0.040     | <0.040     | 0.040 | 9508786  |
| 1,1-Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,1-Dichloroethane                  | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | <0.040     | <0.040     | 0.040 | 9508786  |
| cis-1,2-Dichloroethylene         ug/g         <0.040         0.040         <0.080         <0.040         <0.040         0.040         950878           trans-1,2-Dichloroethylene         ug/g         <0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,2-Dichloroethane                  | ug/g  | <0.049     | 0.049 | <0.098     | 0.098 | <0.049     | <0.049     | 0.049 | 9508786  |
| trans-1,2-Dichloroethylene         ug/g         <0.040         0.040         <0.080         <0.040         <0.040         0.040         950878           1,2-Dichloropropane         ug/g         <0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,1-Dichloroethylene                | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | <0.040     | <0.040     | 0.040 | 9508786  |
| 1,2-Dichloropropane         ug/g         <0.040         0.040         <0.080         <0.040         <0.040         0.040         950878           cis-1,3-Dichloropropene         ug/g         <0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cis-1,2-Dichloroethylene            | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | <0.040     | <0.040     | 0.040 | 9508786  |
| cis-1,3-Dichloropropene         ug/g         <0.030         0.030         <0.060         <0.030         <0.030         950878           trans-1,3-Dichloropropene         ug/g         <0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | trans-1,2-Dichloroethylene          | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | <0.040     | <0.040     | 0.040 | 9508786  |
| trans-1,3-Dichloropropene         ug/g         <0.040         0.040         <0.080         <0.040         <0.040         0.040         950878           Ethylene Dibromide         ug/g         <0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,2-Dichloropropane                 | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | <0.040     | <0.040     | 0.040 | 9508786  |
| Ethylene Dibromide         ug/g         <0.040         0.040         <0.080         <0.040         <0.040         0.040         950878           Hexane         ug/g         <0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cis-1,3-Dichloropropene             | ug/g  | <0.030     | 0.030 | <0.060     | 0.060 | <0.030     | <0.030     | 0.030 | 9508786  |
| Hexane         ug/g         <0.040         0.040         <0.080         0.080         <0.040         <0.040         950878           Methylene Chloride(Dichloromethane)         ug/g         <0.049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | trans-1,3-Dichloropropene           | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | <0.040     | <0.040     | 0.040 | 9508786  |
| Methylene Chloride(Dichloromethane)         ug/g         <0.049         0.049         <0.098         <0.049         <0.049         950878           Methyl Ethyl Ketone (2-Butanone)         ug/g         <0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ethylene Dibromide                  | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | <0.040     | <0.040     | 0.040 | 9508786  |
| Methyl Ethyl Ketone (2-Butanone)         ug/g         <0.40         0.40         <0.80         0.80         <0.40         0.40         950878           Methyl Isobutyl Ketone         ug/g         <0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hexane                              | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | <0.040     | <0.040     | 0.040 | 9508786  |
| Methyl Isobutyl Ketone         ug/g         <0.40         0.40         <0.80         <0.40         <0.40         0.40         950878           Methyl t-butyl ether (MTBE)         ug/g         <0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Methylene Chloride(Dichloromethane) | ug/g  | <0.049     | 0.049 | <0.098     | 0.098 | <0.049     | <0.049     | 0.049 | 9508786  |
| Methyl t-butyl ether (MTBE)         ug/g         <0.040         0.040         <0.080         0.080         <0.040         <0.040         950878           Styrene         ug/g         <0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Methyl Ethyl Ketone (2-Butanone)    | ug/g  | <0.40      | 0.40  | <0.80      | 0.80  | <0.40      | <0.40      | 0.40  | 9508786  |
| Styrene         ug/g         <0.040         0.040         <0.080         0.080         <0.040         <0.040         950878           1,1,1,2-Tetrachloroethane         ug/g         <0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Methyl Isobutyl Ketone              | ug/g  | <0.40      | 0.40  | <0.80      | 0.80  | <0.40      | <0.40      | 0.40  | 9508786  |
| 1,1,1,2-Tetrachloroethane         ug/g         <0.040         0.040         <0.080         <0.040         <0.040         0.040         950878           1,1,2,2-Tetrachloroethane         ug/g         <0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Methyl t-butyl ether (MTBE)         | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | <0.040     | <0.040     | 0.040 | 9508786  |
| 1,1,2,2-Tetrachloroethane       ug/g       <0.040       0.040       <0.080       0.080       <0.040       <0.040       950878         Tetrachloroethylene       ug/g       <0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Styrene                             | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | <0.040     | <0.040     | 0.040 | 9508786  |
| Tetrachloroethylene ug/g <0.040 0.040 <0.080 0.080 <0.040 <0.040 0.040 950878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,1,1,2-Tetrachloroethane           | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | <0.040     | <0.040     | 0.040 | 9508786  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,1,2,2-Tetrachloroethane           | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | <0.040     | <0.040     | 0.040 | 9508786  |
| 1,1,1-Trichloroethane ug/g <0.040 0.040 <0.080 0.080 <0.040 <0.040 0.040 950878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tetrachloroethylene                 | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | < 0.040    | < 0.040    | 0.040 | 9508786  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,1,1-Trichloroethane               | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | <0.040     | <0.040     | 0.040 | 9508786  |
| 1,1,2-Trichloroethane         ug/g         <0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,1,2-Trichloroethane               | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | <0.040     | <0.040     | 0.040 | 9508786  |
| Trichloroethylene ug/g <0.010 0.010 <0.020 0.020 <0.010 <0.010 950878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Trichloroethylene                   | ug/g  | <0.010     | 0.010 | <0.020     | 0.020 | <0.010     | <0.010     | 0.010 | 9508786  |
| RDL = Reportable Detection Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RDL = Reportable Detection Limit    |       |            |       |            |       |            |            |       |          |
| QC Batch = Quality Control Batch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | QC Batch = Quality Control Batch    |       |            |       |            |       |            |            |       |          |



Client Project #: OTT-00243705-B0

Sampler Initials: PO

# O.REG 153 VOCS BY HS & F1-F4 (SOIL)

| Bureau Veritas ID                 |       | ZRL443     |       | ZRL444     |       | ZRL445     | ZRL446     |       |          |
|-----------------------------------|-------|------------|-------|------------|-------|------------|------------|-------|----------|
| Sampling Date                     |       | 2024/07/09 |       | 2024/07/09 |       | 2024/07/09 | 2024/07/09 |       |          |
|                                   |       | 11:15      |       | 11:00      |       | 10:40      | 10:20      |       |          |
| COC Number                        |       | N/A        |       | N/A        |       | N/A        | N/A        |       |          |
|                                   | UNITS | <b>S1</b>  | RDL   | <b>S2</b>  | RDL   | <b>S3</b>  | <b>S4</b>  | RDL   | QC Batch |
| Trichlorofluoromethane (FREON 11) | ug/g  | <0.040     | 0.040 | <0.080     | 0.080 | <0.040     | <0.040     | 0.040 | 9508786  |
| Vinyl Chloride                    | ug/g  | <0.019     | 0.019 | <0.038     | 0.038 | <0.019     | <0.019     | 0.019 | 9508786  |
| F1 (C6-C10)                       | ug/g  | <10        | 10    | <20        | 20    | <10        | <10        | 10    | 9508786  |
| F1 (C6-C10) - BTEX                | ug/g  | <10        | 10    | <20        | 20    | <10        | <10        | 10    | 9508786  |
| F2-F4 Hydrocarbons                |       |            |       |            |       |            |            |       |          |
| F2 (C10-C16 Hydrocarbons)         | ug/g  | 140        | 10    | <10        | 10    | <10        | <10        | 10    | 9511555  |
| F3 (C16-C34 Hydrocarbons)         | ug/g  | 2700       | 50    | <50        | 50    | 59         | 590        | 50    | 9511555  |
| F4 (C34-C50 Hydrocarbons)         | ug/g  | 430        | 50    | <50        | 50    | <50        | 130        | 50    | 9511555  |
| Reached Baseline at C50           | ug/g  | Yes        |       | Yes        |       | Yes        | Yes        |       | 9511555  |
| Surrogate Recovery (%)            |       |            |       |            |       |            |            |       |          |
| o-Terphenyl                       | %     | 101        |       | 103        |       | 104        | 101        |       | 9511555  |
| 4-Bromofluorobenzene              | %     | 91         |       | 102        |       | 103        | 107        |       | 9508786  |
| D10-o-Xylene                      | %     | 84         |       | 97         |       | 87         | 102        |       | 9508786  |
| D4-1,2-Dichloroethane             | %     | 104        |       | 104        |       | 114        | 102        |       | 9508786  |
| D8-Toluene                        | %     | 87         |       | 86         |       | 84         | 89         |       | 9508786  |

QC Batch = Quality Control Batch



Client Project #: OTT-00243705-B0

Sampler Initials: PO

## **RESULTS OF ANALYSES OF SOIL**

| Bureau Veritas ID        |           | ZRL443     | ZRL444     | ZRL445     | ZRL446     | ZRL447     | ZRL448     |     |          |
|--------------------------|-----------|------------|------------|------------|------------|------------|------------|-----|----------|
| Sampling Date            |           | 2024/07/09 | 2024/07/09 | 2024/07/09 | 2024/07/09 | 2024/07/09 | 2024/07/09 |     |          |
| Sampling Date            |           | 11:15      | 11:00      | 10:40      | 10:20      | 10:00      | 09:45      |     |          |
| COC Number               |           | N/A        | N/A        | N/A        | N/A        | N/A        | N/A        |     |          |
|                          | UNITS     | <b>S1</b>  | S2         | <b>S3</b>  | <b>S4</b>  | S5         | <b>S6</b>  | RDL | QC Batch |
| Inorganics               |           |            |            |            |            |            |            |     |          |
| Moisture                 | %         | 12         | 21         | 22         | 32         | 26         | 28         | 1.0 | 9508607  |
| RDL = Reportable Detect  | ion Limit | •          |            | •          |            |            | •          |     | •        |
| QC Batch = Quality Conti | rol Ratch |            |            |            |            |            |            |     |          |



Client Project #: OTT-00243705-B0

Sampler Initials: PO

## **TEST SUMMARY**

Bureau Veritas ID: ZRL443 Sample ID: S1

Matrix: Soil

Collected:

2024/07/09

Shipped:

**Received:** 2024/07/09

| Test Description                       | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                 |
|----------------------------------------|-----------------|---------|------------|---------------|-------------------------|
| Methylnaphthalene Sum                  | CALC            | 9506426 | N/A        | 2024/07/13    | Automated Statchk       |
| Hot Water Extractable Boron            | ICP             | 9513480 | 2024/07/13 | 2024/07/15    | Suban Kanapathippllai   |
| 1,3-Dichloropropene Sum                | CALC            | 9506427 | N/A        | 2024/07/13    | Automated Statchk       |
| Free (WAD) Cyanide                     | TECH            | 9512087 | 2024/07/12 | 2024/07/15    | Prgya Panchal           |
| Conductivity                           | AT              | 9513128 | 2024/07/13 | 2024/07/13    | Gurparteek KAUR         |
| Hexavalent Chromium in Soil by IC      | IC/SPEC         | 9511617 | 2024/07/12 | 2024/07/12    | Violeta Porcila         |
| Petroleum Hydrocarbons F2-F4 in Soil   | GC/FID          | 9511555 | 2024/07/12 | 2024/07/15    | Agnieszka Brzuzy-Snopko |
| Acid Extractable Metals by ICPMS       | ICP/MS          | 9513366 | 2024/07/13 | 2024/07/13    | Thuy Linh Nguyen        |
| Moisture                               | BAL             | 9508607 | N/A        | 2024/07/11    | Frances Gacayan         |
| PAH Compounds in Soil by GC/MS (SIM)   | GC/MS           | 9511300 | 2024/07/12 | 2024/07/13    | Jonghan Yoon            |
| pH CaCl2 EXTRACT                       | AT              | 9514270 | 2024/07/15 | 2024/07/15    | Taslima Aktar           |
| Sodium Adsorption Ratio (SAR)          | CALC/MET        | 9506420 | N/A        | 2024/07/15    | Automated Statchk       |
| Volatile Organic Compounds and F1 PHCs | GC/MSFD         | 9508786 | N/A        | 2024/07/13    | Dina Wang               |

Bureau Veritas ID: ZRL444 Sample ID: S2 Soil . Matrix:

2024/07/09 Collected: Shipped:

**Received:** 2024/07/09

| Test Description                       | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                 |
|----------------------------------------|-----------------|---------|------------|---------------|-------------------------|
| Methylnaphthalene Sum                  | CALC            | 9506941 | N/A        | 2024/07/13    | Automated Statchk       |
| Hot Water Extractable Boron            | ICP             | 9513480 | 2024/07/13 | 2024/07/15    | Suban Kanapathippllai   |
| 1,3-Dichloropropene Sum                | CALC            | 9506427 | N/A        | 2024/07/13    | Automated Statchk       |
| Free (WAD) Cyanide                     | TECH            | 9514110 | 2024/07/15 | 2024/07/15    | Alen Wang               |
| Conductivity                           | AT              | 9513128 | 2024/07/13 | 2024/07/13    | Gurparteek KAUR         |
| Hexavalent Chromium in Soil by IC      | IC/SPEC         | 9513288 | 2024/07/13 | 2024/07/15    | Rupinder Sihota         |
| Petroleum Hydrocarbons F2-F4 in Soil   | GC/FID          | 9511555 | 2024/07/12 | 2024/07/15    | Agnieszka Brzuzy-Snopko |
| Acid Extractable Metals by ICPMS       | ICP/MS          | 9513366 | 2024/07/13 | 2024/07/13    | Thuy Linh Nguyen        |
| Moisture                               | BAL             | 9508607 | N/A        | 2024/07/11    | Frances Gacayan         |
| PAH Compounds in Soil by GC/MS (SIM)   | GC/MS           | 9511300 | 2024/07/12 | 2024/07/12    | Jonghan Yoon            |
| pH CaCl2 EXTRACT                       | AT              | 9513149 | 2024/07/13 | 2024/07/13    | Gurparteek KAUR         |
| Sodium Adsorption Ratio (SAR)          | CALC/MET        | 9506420 | N/A        | 2024/07/15    | Automated Statchk       |
| Volatile Organic Compounds and F1 PHCs | GC/MSFD         | 9508786 | N/A        | 2024/07/13    | Dina Wang               |
|                                        |                 |         |            |               |                         |

Bureau Veritas ID: ZRL444 Dup

Sample ID: S2

Matrix: Soil

Collected: 2024/07/09

Shipped:

2024/07/09 Received:

| Test Description                     | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst      |
|--------------------------------------|-----------------|---------|------------|---------------|--------------|
| PAH Compounds in Soil by GC/MS (SIM) | GC/MS           | 9511300 | 2024/07/12 | 2024/07/12    | Jonghan Yoon |

Bureau Veritas ID: ZRL445

Sample ID: **S3** 

Matrix: Soil

2024/07/09 Collected: Shipped:

2024/07/09 Received:

| Test Description      | Instrumentation | Batch   | Extracted | Date Analyzed | Analyst           |
|-----------------------|-----------------|---------|-----------|---------------|-------------------|
| Methylnaphthalene Sum | CALC            | 9506941 | N/A       | 2024/07/13    | Automated Statchk |



Client Project #: OTT-00243705-B0

Sampler Initials: PO

## **TEST SUMMARY**

Bureau Veritas ID: ZRL445

**Collected:** 2024/07/09 Shipped:

Sample ID: S3 Matrix: Soil

**Received:** 2024/07/09

| Test Description                       | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                 |
|----------------------------------------|-----------------|---------|------------|---------------|-------------------------|
| Hot Water Extractable Boron            | ICP             | 9513480 | 2024/07/13 | 2024/07/15    | Suban Kanapathippllai   |
| 1,3-Dichloropropene Sum                | CALC            | 9506427 | N/A        | 2024/07/13    | Automated Statchk       |
| Free (WAD) Cyanide                     | TECH            | 9512087 | 2024/07/12 | 2024/07/15    | Prgya Panchal           |
| Conductivity                           | AT              | 9513128 | 2024/07/13 | 2024/07/13    | Gurparteek KAUR         |
| Hexavalent Chromium in Soil by IC      | IC/SPEC         | 9513288 | 2024/07/13 | 2024/07/15    | Rupinder Sihota         |
| Petroleum Hydrocarbons F2-F4 in Soil   | GC/FID          | 9511555 | 2024/07/12 | 2024/07/15    | Agnieszka Brzuzy-Snopko |
| Acid Extractable Metals by ICPMS       | ICP/MS          | 9513366 | 2024/07/13 | 2024/07/13    | Thuy Linh Nguyen        |
| Moisture                               | BAL             | 9508607 | N/A        | 2024/07/11    | Frances Gacayan         |
| PAH Compounds in Soil by GC/MS (SIM)   | GC/MS           | 9511300 | 2024/07/12 | 2024/07/13    | Jonghan Yoon            |
| pH CaCl2 EXTRACT                       | AT              | 9514270 | 2024/07/15 | 2024/07/15    | Taslima Aktar           |
| Sodium Adsorption Ratio (SAR)          | CALC/MET        | 9506420 | N/A        | 2024/07/15    | Automated Statchk       |
| Volatile Organic Compounds and F1 PHCs | GC/MSFD         | 9508786 | N/A        | 2024/07/13    | Dina Wang               |

**Bureau Veritas ID:** ZRL446 Sample ID: S4

**Collected:** 2024/07/09 Shipped:

Matrix: Soil

**Received:** 2024/07/09

| Test Description                       | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                 |
|----------------------------------------|-----------------|---------|------------|---------------|-------------------------|
| Methylnaphthalene Sum                  | CALC            | 9506941 | N/A        | 2024/07/13    | Automated Statchk       |
| Hot Water Extractable Boron            | ICP             | 9513480 | 2024/07/13 | 2024/07/15    | Suban Kanapathippllai   |
| 1,3-Dichloropropene Sum                | CALC            | 9506427 | N/A        | 2024/07/13    | Automated Statchk       |
| Free (WAD) Cyanide                     | TECH            | 9512087 | 2024/07/12 | 2024/07/15    | Prgya Panchal           |
| Conductivity                           | AT              | 9513128 | 2024/07/13 | 2024/07/13    | Gurparteek KAUR         |
| Hexavalent Chromium in Soil by IC      | IC/SPEC         | 9513288 | 2024/07/13 | 2024/07/15    | Rupinder Sihota         |
| Petroleum Hydrocarbons F2-F4 in Soil   | GC/FID          | 9511555 | 2024/07/12 | 2024/07/15    | Agnieszka Brzuzy-Snopko |
| Acid Extractable Metals by ICPMS       | ICP/MS          | 9513366 | 2024/07/13 | 2024/07/13    | Thuy Linh Nguyen        |
| Moisture                               | BAL             | 9508607 | N/A        | 2024/07/11    | Frances Gacayan         |
| PAH Compounds in Soil by GC/MS (SIM)   | GC/MS           | 9511300 | 2024/07/12 | 2024/07/13    | Jonghan Yoon            |
| pH CaCl2 EXTRACT                       | AT              | 9514270 | 2024/07/15 | 2024/07/15    | Taslima Aktar           |
| Sodium Adsorption Ratio (SAR)          | CALC/MET        | 9506420 | N/A        | 2024/07/15    | Automated Statchk       |
| Volatile Organic Compounds and F1 PHCs | GC/MSFD         | 9508786 | N/A        | 2024/07/13    | Dina Wang               |

**Bureau Veritas ID:** ZRL447

**Collected:** 2024/07/09

Sample ID: S5 Matrix: Soil Shipped:

**Received:** 2024/07/09

| Test Description                        | Instrumentation | Batch   | Extracted  | Date Analyzed | Analyst                 |
|-----------------------------------------|-----------------|---------|------------|---------------|-------------------------|
| Petroleum Hydro. CCME F1 & BTEX in Soil | HSGC/MSFD       | 9512436 | N/A        | 2024/07/12    | Georgeta Rusu           |
| Petroleum Hydrocarbons F2-F4 in Soil    | GC/FID          | 9511555 | 2024/07/12 | 2024/07/15    | Agnieszka Brzuzy-Snopko |
| Moisture                                | BAL             | 9508607 | N/A        | 2024/07/11    | Frances Gacayan         |



Matrix: Soil

exp Services Inc

Client Project #: OTT-00243705-B0

Sampler Initials: PO

## **TEST SUMMARY**

Bureau Veritas ID: ZRL448 **Collected:** 2024/07/09 Sample ID: S6

Shipped:

**Received:** 2024/07/09

**Test Description** Instrumentation Batch Extracted Date Analyzed Analyst HSGC/MSFD 2024/07/14 Petroleum Hydro. CCME F1 & BTEX in Soil 9513114 N/A Lincoln Ramdahin GC/FID 2024/07/12 2024/07/15 Petroleum Hydrocarbons F2-F4 in Soil 9511555 Agnieszka Brzuzy-Snopko Moisture BAL 9508607 N/A 2024/07/11 Frances Gacayan



Client Project #: OTT-00243705-B0

Sampler Initials: PO

## **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

| Package 1 | 8.0°C |
|-----------|-------|
|-----------|-------|

Sample ZRL443 [S1]: PAH ANALYSIS: Due to the sample matrix, sample required dilution. Detection limist were adjusted accordingly.

Sample ZRL444 [S2]: VOC/F1 Analysis: Detection limits were raised due to high moisture content and/or low weight of soil provided.

Results relate only to the items tested.



## **QUALITY ASSURANCE REPORT**

exp Services Inc

Client Project #: OTT-00243705-B0

|          |                           |            | Matrix     | Spike     | SPIKED     | BLANK     | Method | Blank | RPI       | D         |
|----------|---------------------------|------------|------------|-----------|------------|-----------|--------|-------|-----------|-----------|
| QC Batch | Parameter                 | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value  | UNITS | Value (%) | QC Limits |
| 9508786  | 4-Bromofluorobenzene      | 2024/07/13 | 97         | 60 - 140  | 105        | 60 - 140  | 98     | %     |           |           |
| 9508786  | D10-o-Xylene              | 2024/07/13 | 106        | 60 - 130  | 83         | 60 - 130  | 84     | %     |           |           |
| 9508786  | D4-1,2-Dichloroethane     | 2024/07/13 | 98         | 60 - 140  | 109        | 60 - 140  | 102    | %     |           |           |
| 9508786  | D8-Toluene                | 2024/07/13 | 105        | 60 - 140  | 105        | 60 - 140  | 94     | %     |           |           |
| 9511300  | D10-Anthracene            | 2024/07/12 | 94         | 50 - 130  | 104        | 50 - 130  | 112    | %     |           |           |
| 9511300  | D14-Terphenyl (FS)        | 2024/07/12 | 93         | 50 - 130  | 99         | 50 - 130  | 101    | %     |           |           |
| 9511300  | D8-Acenaphthylene         | 2024/07/12 | 86         | 50 - 130  | 89         | 50 - 130  | 83     | %     |           |           |
| 9511555  | o-Terphenyl               | 2024/07/15 | 102        | 60 - 130  | 104        | 60 - 130  | 101    | %     |           |           |
| 9512436  | 1,4-Difluorobenzene       | 2024/07/12 |            |           | 97         | 60 - 140  | 96     | %     |           |           |
| 9512436  | 4-Bromofluorobenzene      | 2024/07/12 |            |           | 103        | 60 - 140  | 99     | %     |           |           |
| 9512436  | D10-o-Xylene              | 2024/07/12 |            |           | 102        | 60 - 140  | 95     | %     |           |           |
| 9512436  | D4-1,2-Dichloroethane     | 2024/07/12 |            |           | 103        | 60 - 140  | 99     | %     |           |           |
| 9513114  | 1,4-Difluorobenzene       | 2024/07/14 | 100        | 60 - 140  | 100        | 60 - 140  | 105    | %     |           |           |
| 9513114  | 4-Bromofluorobenzene      | 2024/07/14 | 103        | 60 - 140  | 102        | 60 - 140  | 96     | %     |           |           |
| 9513114  | D10-o-Xylene              | 2024/07/14 | 108        | 60 - 140  | 89         | 60 - 140  | 99     | %     |           |           |
| 9513114  | D4-1,2-Dichloroethane     | 2024/07/14 | 106        | 60 - 140  | 103        | 60 - 140  | 110    | %     |           |           |
| 9508607  | Moisture                  | 2024/07/11 |            |           |            |           |        |       | 2.6       | 20        |
| 9508786  | 1,1,1,2-Tetrachloroethane | 2024/07/13 | 86         | 60 - 140  | 87         | 60 - 130  | <0.040 | ug/g  | NC        | 50        |
| 9508786  | 1,1,1-Trichloroethane     | 2024/07/13 | 85         | 60 - 140  | 90         | 60 - 130  | <0.040 | ug/g  | NC        | 50        |
| 9508786  | 1,1,2,2-Tetrachloroethane | 2024/07/13 | 79         | 60 - 140  | 92         | 60 - 130  | <0.040 | ug/g  | NC        | 50        |
| 9508786  | 1,1,2-Trichloroethane     | 2024/07/13 | 83         | 60 - 140  | 86         | 60 - 130  | <0.040 | ug/g  | NC        | 50        |
| 9508786  | 1,1-Dichloroethane        | 2024/07/13 | 86         | 60 - 140  | 93         | 60 - 130  | <0.040 | ug/g  | NC        | 50        |
| 9508786  | 1,1-Dichloroethylene      | 2024/07/13 | 87         | 60 - 140  | 90         | 60 - 130  | <0.040 | ug/g  | NC        | 50        |
| 9508786  | 1,2-Dichlorobenzene       | 2024/07/13 | 88         | 60 - 140  | 88         | 60 - 130  | <0.040 | ug/g  | NC        | 50        |
| 9508786  | 1,2-Dichloroethane        | 2024/07/13 | 83         | 60 - 140  | 93         | 60 - 130  | <0.049 | ug/g  | NC        | 50        |
| 9508786  | 1,2-Dichloropropane       | 2024/07/13 | 85         | 60 - 140  | 90         | 60 - 130  | <0.040 | ug/g  | NC        | 50        |
| 9508786  | 1,3-Dichlorobenzene       | 2024/07/13 | 84         | 60 - 140  | 88         | 60 - 130  | <0.040 | ug/g  | NC        | 50        |
| 9508786  | 1,4-Dichlorobenzene       | 2024/07/13 | 85         | 60 - 140  | 88         | 60 - 130  | <0.040 | ug/g  | NC        | 50        |
| 9508786  | Acetone (2-Propanone)     | 2024/07/13 | 80         | 60 - 140  | 91         | 60 - 140  | <0.49  | ug/g  | NC        | 50        |
| 9508786  | Bromodichloromethane      | 2024/07/13 | 86         | 60 - 140  | 98         | 60 - 130  | <0.040 | ug/g  | NC        | 50        |
| 9508786  | Bromoform                 | 2024/07/13 | 80         | 60 - 140  | 86         | 60 - 130  | <0.040 | ug/g  | NC        | 50        |
| 9508786  | Bromomethane              | 2024/07/13 | 72         | 60 - 140  | 81         | 60 - 140  | <0.040 | ug/g  | NC        | 50        |



exp Services Inc

Client Project #: OTT-00243705-B0

|          |                                     |            | Matrix     | Spike     | SPIKED     | BLANK     | Method I | Blank | RPI       | <b>D</b>  |
|----------|-------------------------------------|------------|------------|-----------|------------|-----------|----------|-------|-----------|-----------|
| QC Batch | Parameter                           | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value    | UNITS | Value (%) | QC Limits |
| 9508786  | Carbon Tetrachloride                | 2024/07/13 | 85         | 60 - 140  | 90         | 60 - 130  | <0.040   | ug/g  | NC        | 50        |
| 9508786  | Chlorobenzene                       | 2024/07/13 | 85         | 60 - 140  | 85         | 60 - 130  | <0.040   | ug/g  | NC        | 50        |
| 9508786  | Chloroform                          | 2024/07/13 | 83         | 60 - 140  | 90         | 60 - 130  | <0.040   | ug/g  | NC        | 50        |
| 9508786  | cis-1,2-Dichloroethylene            | 2024/07/13 | 80         | 60 - 140  | 90         | 60 - 130  | <0.040   | ug/g  | NC        | 50        |
| 9508786  | cis-1,3-Dichloropropene             | 2024/07/13 | 81         | 60 - 140  | 92         | 60 - 130  | <0.030   | ug/g  | NC        | 50        |
| 9508786  | Dibromochloromethane                | 2024/07/13 | 81         | 60 - 140  | 84         | 60 - 130  | <0.040   | ug/g  | NC        | 50        |
| 9508786  | Dichlorodifluoromethane (FREON 12)  | 2024/07/13 | 70         | 60 - 140  | 78         | 60 - 140  | <0.040   | ug/g  | NC        | 50        |
| 9508786  | Ethylene Dibromide                  | 2024/07/13 | 83         | 60 - 140  | 87         | 60 - 130  | <0.040   | ug/g  | NC        | 50        |
| 9508786  | F1 (C6-C10) - BTEX                  | 2024/07/13 |            |           |            |           | <10      | ug/g  | NC        | 30        |
| 9508786  | F1 (C6-C10)                         | 2024/07/13 | 83         | 60 - 140  | 80         | 80 - 120  | <10      | ug/g  | NC        | 30        |
| 9508786  | Hexane                              | 2024/07/13 | 90         | 60 - 140  | 97         | 60 - 130  | <0.040   | ug/g  | 1.5       | 50        |
| 9508786  | Methyl Ethyl Ketone (2-Butanone)    | 2024/07/13 | 76         | 60 - 140  | 90         | 60 - 140  | <0.40    | ug/g  | NC        | 50        |
| 9508786  | Methyl Isobutyl Ketone              | 2024/07/13 | 73         | 60 - 140  | 88         | 60 - 130  | <0.40    | ug/g  | NC        | 50        |
| 9508786  | Methyl t-butyl ether (MTBE)         | 2024/07/13 | 81         | 60 - 140  | 92         | 60 - 130  | <0.040   | ug/g  | NC        | 50        |
| 9508786  | Methylene Chloride(Dichloromethane) | 2024/07/13 | 84         | 60 - 140  | 87         | 60 - 130  | <0.049   | ug/g  | NC        | 50        |
| 9508786  | Styrene                             | 2024/07/13 | 72         | 60 - 140  | 71         | 60 - 130  | <0.040   | ug/g  | NC        | 50        |
| 9508786  | Tetrachloroethylene                 | 2024/07/13 | 84         | 60 - 140  | 83         | 60 - 130  | <0.040   | ug/g  | NC        | 50        |
| 9508786  | trans-1,2-Dichloroethylene          | 2024/07/13 | 83         | 60 - 140  | 89         | 60 - 130  | <0.040   | ug/g  | NC        | 50        |
| 9508786  | trans-1,3-Dichloropropene           | 2024/07/13 | 78         | 60 - 140  | 81         | 60 - 130  | <0.040   | ug/g  | NC        | 50        |
| 9508786  | Trichloroethylene                   | 2024/07/13 | 85         | 60 - 140  | 85         | 60 - 130  | <0.010   | ug/g  | NC        | 50        |
| 9508786  | Trichlorofluoromethane (FREON 11)   | 2024/07/13 | 88         | 60 - 140  | 97         | 60 - 130  | <0.040   | ug/g  | NC        | 50        |
| 9508786  | Vinyl Chloride                      | 2024/07/13 | 82         | 60 - 140  | 91         | 60 - 130  | <0.019   | ug/g  | NC        | 50        |
| 9511300  | 1-Methylnaphthalene                 | 2024/07/12 | 89         | 50 - 130  | 84         | 50 - 130  | <0.0050  | ug/g  | NC        | 40        |
| 9511300  | 2-Methylnaphthalene                 | 2024/07/12 | 88         | 50 - 130  | 82         | 50 - 130  | <0.0050  | ug/g  | NC        | 40        |
| 9511300  | Acenaphthene                        | 2024/07/12 | 88         | 50 - 130  | 87         | 50 - 130  | <0.0050  | ug/g  | NC        | 40        |
| 9511300  | Acenaphthylene                      | 2024/07/12 | 86         | 50 - 130  | 84         | 50 - 130  | <0.0050  | ug/g  | NC        | 40        |
| 9511300  | Anthracene                          | 2024/07/12 | 92         | 50 - 130  | 93         | 50 - 130  | <0.0050  | ug/g  | NC        | 40        |
| 9511300  | Benzo(a)anthracene                  | 2024/07/12 | 95         | 50 - 130  | 91         | 50 - 130  | <0.0050  | ug/g  | NC        | 40        |
| 9511300  | Benzo(a)pyrene                      | 2024/07/12 | 94         | 50 - 130  | 94         | 50 - 130  | <0.0050  | ug/g  | NC        | 40        |
| 9511300  | Benzo(b/j)fluoranthene              | 2024/07/12 | 87         | 50 - 130  | 94         | 50 - 130  | <0.0050  | ug/g  | 23        | 40        |
| 9511300  | Benzo(g,h,i)perylene                | 2024/07/12 | 89         | 50 - 130  | 96         | 50 - 130  | <0.0050  | ug/g  | NC        | 40        |
| 9511300  | Benzo(k)fluoranthene                | 2024/07/12 | 90         | 50 - 130  | 93         | 50 - 130  | <0.0050  | ug/g  | NC        | 40        |



exp Services Inc

Client Project #: OTT-00243705-B0

|          |                           |            | Matrix     | Spike     | SPIKED     | BLANK     | Method I | Blank | RP        | D         |
|----------|---------------------------|------------|------------|-----------|------------|-----------|----------|-------|-----------|-----------|
| QC Batch | Parameter                 | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value    | UNITS | Value (%) | QC Limits |
| 9511300  | Chrysene                  | 2024/07/12 | 91         | 50 - 130  | 94         | 50 - 130  | <0.0050  | ug/g  | NC        | 40        |
| 9511300  | Dibenzo(a,h)anthracene    | 2024/07/12 | 95         | 50 - 130  | 89         | 50 - 130  | <0.0050  | ug/g  | NC        | 40        |
| 9511300  | Fluoranthene              | 2024/07/12 | 92         | 50 - 130  | 98         | 50 - 130  | <0.0050  | ug/g  | 21        | 40        |
| 9511300  | Fluorene                  | 2024/07/12 | 90         | 50 - 130  | 89         | 50 - 130  | <0.0050  | ug/g  | NC        | 40        |
| 9511300  | Indeno(1,2,3-cd)pyrene    | 2024/07/12 | 91         | 50 - 130  | 100        | 50 - 130  | <0.0050  | ug/g  | NC        | 40        |
| 9511300  | Naphthalene               | 2024/07/12 | 80         | 50 - 130  | 80         | 50 - 130  | <0.0050  | ug/g  | NC        | 40        |
| 9511300  | Phenanthrene              | 2024/07/12 | 90         | 50 - 130  | 94         | 50 - 130  | <0.0050  | ug/g  | NC        | 40        |
| 9511300  | Pyrene                    | 2024/07/12 | 92         | 50 - 130  | 98         | 50 - 130  | <0.0050  | ug/g  | 8.8       | 40        |
| 9511555  | F2 (C10-C16 Hydrocarbons) | 2024/07/15 | 106        | 60 - 130  | 109        | 80 - 120  | <10      | ug/g  | 20        | 30        |
| 9511555  | F3 (C16-C34 Hydrocarbons) | 2024/07/15 | 106        | 60 - 130  | 106        | 80 - 120  | <50      | ug/g  | 19        | 30        |
| 9511555  | F4 (C34-C50 Hydrocarbons) | 2024/07/15 | 93         | 60 - 130  | 83         | 80 - 120  | <50      | ug/g  | 26        | 30        |
| 9511617  | Chromium (VI)             | 2024/07/12 | 0.16 (1)   | 70 - 130  | 91         | 80 - 120  | <0.18    | ug/g  | NC        | 35        |
| 9512087  | WAD Cyanide (Free)        | 2024/07/15 | 100        | 75 - 125  | 98         | 80 - 120  | <0.01    | ug/g  | NC        | 35        |
| 9512436  | Benzene                   | 2024/07/12 |            |           | 90         | 50 - 140  | <0.020   | ug/g  | NC        | 50        |
| 9512436  | Ethylbenzene              | 2024/07/12 |            |           | 96         | 50 - 140  | <0.020   | ug/g  | NC        | 50        |
| 9512436  | F1 (C6-C10) - BTEX        | 2024/07/12 |            |           |            |           | <10      | ug/g  | NC        | 30        |
| 9512436  | F1 (C6-C10)               | 2024/07/12 |            |           | 99         | 80 - 120  | <10      | ug/g  | NC        | 30        |
| 9512436  | o-Xylene                  | 2024/07/12 |            |           | 96         | 50 - 140  | <0.020   | ug/g  | NC        | 50        |
| 9512436  | p+m-Xylene                | 2024/07/12 |            |           | 92         | 50 - 140  | <0.040   | ug/g  | NC        | 50        |
| 9512436  | Toluene                   | 2024/07/12 |            |           | 87         | 50 - 140  | <0.020   | ug/g  | NC        | 50        |
| 9512436  | Total Xylenes             | 2024/07/12 |            |           |            |           | <0.040   | ug/g  | NC        | 50        |
| 9513114  | Benzene                   | 2024/07/14 | 97         | 50 - 140  | 93         | 50 - 140  | <0.020   | ug/g  | NC        | 50        |
| 9513114  | Ethylbenzene              | 2024/07/14 | 107        | 50 - 140  | 100        | 50 - 140  | <0.020   | ug/g  | NC        | 50        |
| 9513114  | F1 (C6-C10) - BTEX        | 2024/07/14 |            |           |            |           | <10      | ug/g  | NC        | 30        |
| 9513114  | F1 (C6-C10)               | 2024/07/14 | 95         | 60 - 140  | 96         | 80 - 120  | <10      | ug/g  | NC        | 30        |
| 9513114  | o-Xylene                  | 2024/07/14 | 103        | 50 - 140  | 96         | 50 - 140  | <0.020   | ug/g  | NC        | 50        |
| 9513114  | p+m-Xylene                | 2024/07/14 | 92         | 50 - 140  | 86         | 50 - 140  | <0.040   | ug/g  | NC        | 50        |
| 9513114  | Toluene                   | 2024/07/14 | 90         | 50 - 140  | 84         | 50 - 140  | <0.020   | ug/g  | NC        | 50        |
| 9513114  | Total Xylenes             | 2024/07/14 |            |           |            |           | <0.040   | ug/g  | NC        | 50        |
| 9513128  | Conductivity              | 2024/07/13 |            |           | 102        | 90 - 110  | <0.002   | mS/cm | 2.5       | 10        |
| 9513149  | Available (CaCl2) pH      | 2024/07/13 |            |           | 100        | 97 - 103  |          |       | 0.94      | N/A       |
| 9513288  | Chromium (VI)             | 2024/07/15 | 91         | 70 - 130  | 91         | 80 - 120  | <0.18    | ug/g  | NC        | 35        |



exp Services Inc

Client Project #: OTT-00243705-B0

|          |                                  |            | Matrix     | Spike     | SPIKED     | BLANK     | Method E | Blank | RPE       | )         |
|----------|----------------------------------|------------|------------|-----------|------------|-----------|----------|-------|-----------|-----------|
| QC Batch | Parameter                        | Date       | % Recovery | QC Limits | % Recovery | QC Limits | Value    | UNITS | Value (%) | QC Limits |
| 9513366  | Acid Extractable Antimony (Sb)   | 2024/07/13 | 105        | 75 - 125  | 104        | 80 - 120  | <0.20    | ug/g  | 8.3       | 30        |
| 9513366  | Acid Extractable Arsenic (As)    | 2024/07/13 | 105        | 75 - 125  | 102        | 80 - 120  | <1.0     | ug/g  | 0.61      | 30        |
| 9513366  | Acid Extractable Barium (Ba)     | 2024/07/13 | 103        | 75 - 125  | 101        | 80 - 120  | <0.50    | ug/g  | 1.6       | 30        |
| 9513366  | Acid Extractable Beryllium (Be)  | 2024/07/13 | 101        | 75 - 125  | 96         | 80 - 120  | <0.20    | ug/g  | NC        | 30        |
| 9513366  | Acid Extractable Boron (B)       | 2024/07/13 | 98         | 75 - 125  | 99         | 80 - 120  | <5.0     | ug/g  | 1.0       | 30        |
| 9513366  | Acid Extractable Cadmium (Cd)    | 2024/07/13 | 102        | 75 - 125  | 98         | 80 - 120  | <0.10    | ug/g  | 2.2       | 30        |
| 9513366  | Acid Extractable Chromium (Cr)   | 2024/07/13 | 104        | 75 - 125  | 100        | 80 - 120  | <1.0     | ug/g  | 3.2       | 30        |
| 9513366  | Acid Extractable Cobalt (Co)     | 2024/07/13 | 103        | 75 - 125  | 100        | 80 - 120  | <0.10    | ug/g  | 2.6       | 30        |
| 9513366  | Acid Extractable Copper (Cu)     | 2024/07/13 | 98         | 75 - 125  | 98         | 80 - 120  | <0.50    | ug/g  | 1.6       | 30        |
| 9513366  | Acid Extractable Lead (Pb)       | 2024/07/13 | 95         | 75 - 125  | 99         | 80 - 120  | <1.0     | ug/g  | 9.8       | 30        |
| 9513366  | Acid Extractable Mercury (Hg)    | 2024/07/13 | 103        | 75 - 125  | 101        | 80 - 120  | <0.050   | ug/g  |           |           |
| 9513366  | Acid Extractable Molybdenum (Mo) | 2024/07/13 | 100        | 75 - 125  | 95         | 80 - 120  | <0.50    | ug/g  | 7.4       | 30        |
| 9513366  | Acid Extractable Nickel (Ni)     | 2024/07/13 | 105        | 75 - 125  | 102        | 80 - 120  | <0.50    | ug/g  | 2.6       | 30        |
| 9513366  | Acid Extractable Selenium (Se)   | 2024/07/13 | 106        | 75 - 125  | 103        | 80 - 120  | <0.50    | ug/g  | NC        | 30        |
| 9513366  | Acid Extractable Silver (Ag)     | 2024/07/13 | 101        | 75 - 125  | 98         | 80 - 120  | <0.20    | ug/g  | NC        | 30        |
| 9513366  | Acid Extractable Thallium (TI)   | 2024/07/13 | 100        | 75 - 125  | 99         | 80 - 120  | <0.050   | ug/g  | 4.8       | 30        |
| 9513366  | Acid Extractable Uranium (U)     | 2024/07/13 | 107        | 75 - 125  | 101        | 80 - 120  | <0.050   | ug/g  | 0.69      | 30        |
| 9513366  | Acid Extractable Vanadium (V)    | 2024/07/13 | 112        | 75 - 125  | 100        | 80 - 120  | <5.0     | ug/g  | 2.7       | 30        |
| 9513366  | Acid Extractable Zinc (Zn)       | 2024/07/13 | NC         | 75 - 125  | 101        | 80 - 120  | <5.0     | ug/g  | 0.43      | 30        |
| 9513480  | Hot Water Ext. Boron (B)         | 2024/07/15 | 99         | 75 - 125  | 92         | 75 - 125  | <0.050   | ug/g  | 5.9       | 40        |
| 9514110  | WAD Cyanide (Free)               | 2024/07/15 | 97         | 75 - 125  | 97         | 80 - 120  | <0.01    | ug/g  | NC        | 35        |



exp Services Inc

Client Project #: OTT-00243705-B0

Sampler Initials: PO

|          |                      |            | Matrix Spike |           | SPIKED     | BLANK     | Method B | lank  | RPD       |           |  |
|----------|----------------------|------------|--------------|-----------|------------|-----------|----------|-------|-----------|-----------|--|
| QC Batch | Parameter            | Date       | % Recovery   | QC Limits | % Recovery | QC Limits | Value    | UNITS | Value (%) | QC Limits |  |
| 9514270  | Available (CaCl2) pH | 2024/07/15 |              |           | 100        | 97 - 103  |          |       | 0.11      | N/A       |  |

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) The matrix spike recovery was below the lower control limit. This may be due in part to the reducing environment of the sample. The sample was reanalyzed with the same results.



Client Project #: OTT-00243705-B0

Sampler Initials: PO

#### **VALIDATION SIGNATURE PAGE**

The analytical data and all QC contained in this report were reviewed and validated by:

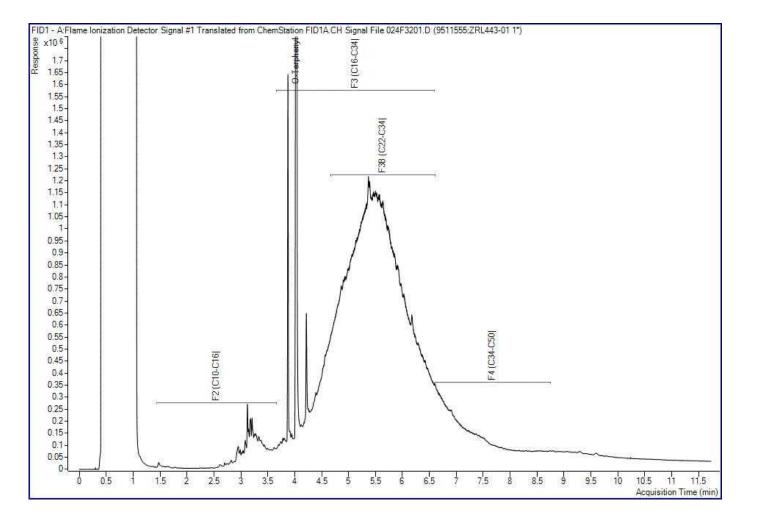
Anastassia Hamanov, Scientific Specialist

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Rodney Major, General Manager responsible for Ontario Environmental laboratory operations.



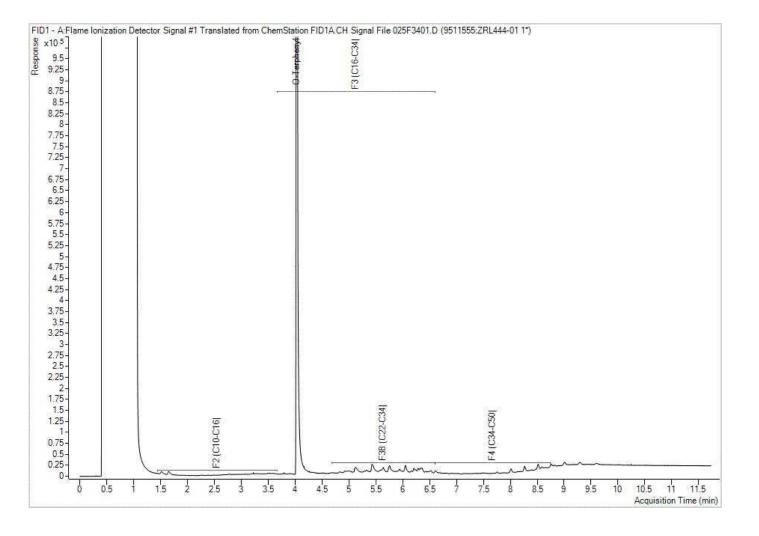
www.BVNA.com

6/40 Campobello Road, Mississauga, Ontario L5N 2L8 Phone: 905-817-5700 Fax: 905-817-5779 Toll Free: 800-563-6266


#### CHAIN OF CUSTODY RECORD ENV COC - 00014v5

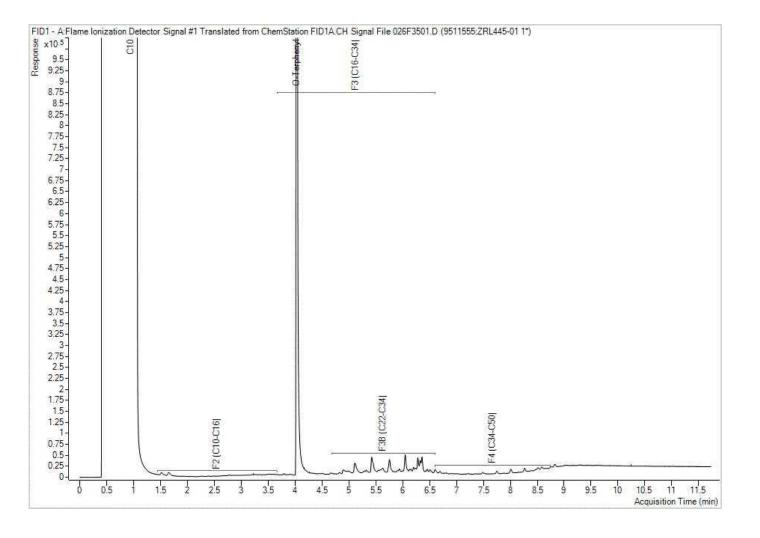
Page \_ f of \_

| Invoice Information                     | Invoice to (requires report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T                  |                     | Report              | Inform        | nation (             | if differs from inv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oice)          |                 |                 | T              |         |                   |               |                                                     | Projec   | t Infor | mation |                |        |              |       | T    |        | -                         |             | L-CTC             | -                 |            |             |            |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|---------------------|---------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|-----------------|----------------|---------|-------------------|---------------|-----------------------------------------------------|----------|---------|--------|----------------|--------|--------------|-------|------|--------|---------------------------|-------------|-------------------|-------------------|------------|-------------|------------|
| Company:                                | Sorices inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Company            | " (E                | X                   | , _           | 50                   | NICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1              | nc              |                 | Q              | uotati  | on #:             | T             | 54                                                  | e cu     | n A     | # :    | 3              |        |              |       |      |        | L                         | 46          | SIL               | 'n                |            |             |            |
| Contact<br>Name: Chr                    | is Kimmale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Contact<br>Name:   | 0                   | hi:                 | 5             | Kin                  | merle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                 |                 | P.             | .0. #/  | AFE#:             | T             |                                                     |          |         |        |                |        |              |       |      |        | A                         | 3           |                   | 7                 | THON       | -2024-0     | 7-828      |
| Street 2650                             | QUEEnsview DR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Street<br>Address: | 26                  | 50                  | a             |                      | sviel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D.             | 0               |                 | P              | roject  | #:                |               | 677                                                 | -        | 00      | 2      | 4              | 37     | 405          | 5-1   | 30   |        | ř                         |             |                   | 1                 |            |             |            |
| City: OTTOM                             | Prov: Postal Code:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | City:              | DT                  | TAN                 | IA            |                      | . /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Posta          |                 |                 | SI             | te#:    |                   | T             |                                                     |          |         |        | -              | -      |              |       |      |        | -                         | 3           | 2.184             |                   |            |             |            |
| Phone: 6/3-                             | 188-1855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Phone:             | 1                   | 6/3                 | -             | 68                   | 8-189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5              |                 |                 |                |         | ation:            | 1             |                                                     |          |         |        |                |        |              |       |      |        |                           |             |                   |                   |            |             |            |
| Email: Chui                             | Karal Oly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Email:             | 1                   | lock                | . /           |                      | uneili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | 11              | 10.0            | Si             | te Loc  |                   | T             | 1                                                   | 7/-      |         | 0      |                |        | 1            |       | T    |        |                           |             |                   |                   |            |             | - 1        |
| Copies: Acco                            | VATS Panalle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Copies:            | 1de                 | 3/1                 | 0.6           | Vil                  | eirala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | es             | 6               | 600             | 2 50           |         |                   |               | 11                                                  | hit      | P       | DI     |                | ein    |              |       |      |        |                           |             |                   |                   |            |             |            |
| Table 1                                 | Regulatory Cri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | teria<br>CCME      |                     | Reg                 | 406, T        | able:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              | 2               | 3               | 4              | 5       | 6 7               | 7             | 8 9                                                 | 10       | 11 1    | 2 13   | 14             | 15     | 16           | 17    | 18   | 19 2   | 21                        | 22          | Re 5 to           | The second second | Turnarour  | d Time (TAT | •          |
| Table 3 Table 3                         | Ind/Comm Coarse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reg 55             |                     |                     |               | ewer By<br>ver Bylan |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 | - 1             |                | 1       |                   |               |                                                     |          |         |        |                |        |              |       |      |        |                           |             |                   | -                 | rnaround   | Time (TAT)  | Sales Area |
| Table                                   | _ [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MIS.               | 020000              | Oth                 | Munic         | cipality             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -              | i               |                 |                |         | 1                 | 2             | HWS B                                               |          | i       |        |                |        |              |       |      |        | 8                         |             |                   |                   | rcharges   |             |            |
|                                         | include Criteria on Certificate of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PERCHAPOTES        | SERVING STATE       | C'SETTER!           | KORAG         | San San              | es Acosta Store                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 | IRED            | - 1            |         | orean.            | organ         | IS, HV                                              |          |         |        |                |        |              |       |      | 1      | TIME                      | 32)         | ☐ Same            | Day               |            | 1 Day       |            |
| SAMPLES MUS                             | THE WATEROOL LANGUE COMMITTEE OF SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LING JANTI         | LPELIVE             | RV to Bi            | JREAU         | VERITA               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                 | REQUIRED        |                | 1       | land for          | 9             | netals                                              | H        |         |        |                |        |              |       | i    |        | # OF CONTAINERS SUBMITTED | ANALYZE     | ☐ Z Day           | Y                 |            | 3 Day       | - 1        |
| CHARLES NOT CARD                        | THE REAL PROPERTY OF THE PARTY |                    | ate Sam             |                     | 1             | lime                 | <b>美国第一次</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RED            | FIELD PRESERVED | TION            |                |         |                   | 2 1           | TMS H<br>Etals<br>CPMS                              | 8        |         |        |                |        | ı            | - !   |      | 1      | AINER                     | - DO NOT    | ☐ 4 Day           | ,                 |            |             |            |
|                                         | ample identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | -                   | T                   | 7             | (hr)                 | Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FIELD FILT.    | PRES            | AS FILTRATION   | 0              |         | 13 00             | 23 11         | Reg 153 rCPMS<br>Reg 153 metals<br>(Hg, Cr VI, rCPN | 7        |         |        | 1              | H      |              |       |      |        | COINT                     | 9-          | Date<br>Required: | -                 | YYYY       | MM          | 00         |
|                                         | (Please print or Type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4157               | Med                 | 00                  | HH            | Wint                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FIELD          | FIELD           | LASE            | Daniel Control | 2       | VCCs              | Heg 133       | Reg 1                                               |          |         |        |                |        |              |       |      |        | ROF                       | ного        |                   |                   | Comme      | nts         |            |
| 1                                       | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24                 | 107                 | 2 00                | 11            | 15                   | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                 |                 | X              | di      | ()                | K             |                                                     | X        |         | T      |                |        |              |       | T    |        | 3                         |             | No                |                   | Bt         | x.          |            |
| ż                                       | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | 11                  | 1                   | 111           | 00                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                 | 1               | X              | -       | 17                | K             |                                                     | X        |         |        |                |        |              |       |      |        | 3                         |             | No                |                   | RX         | N           |            |
| 3                                       | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                 | 11                  | 1                   | 10            | 40                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 | 1               | <              | *       | x )               | C             |                                                     | X        | T       | T      | T              |        |              |       | T    | T      | 3                         |             | 1                 |                   | R+         | 24          |            |
| 4                                       | SU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                 | +                   | 1                   | 10            | 20                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              | 1               | -               | ,              | X       | X                 | 1             | 1                                                   | ×        | +       | +      | 1              |        |              | 1     | 1    | -      | 3                         |             | 1                 | _                 | 21         | ex.         |            |
| 5                                       | S5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +                  | +                   | 11                  | 10            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 1               | -               | ×              |         | 7                 | 7             | +                                                   |          | +       | +      | 1              |        |              |       | +    | +      | 2                         | 1           | 20.               | +                 | 131        | PHO         |            |
| -                                       | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ++                 | 11/                 | 1                   | -             | oc                   | -11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\vdash$       | $\dashv$        |                 |                | 7       | +                 | +             | +                                                   | -        | +       | +      | -              |        | -            | -     | +    | +      | 10                        | -           |                   |                   |            |             |            |
| 9                                       | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                  | V                   | A                   | 9             | 43                   | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1              | 1               | ×               | ( )            | ×       | -                 | 4             | -                                                   | 4        | +       | +      | -              | -      | -            | -     | +    | -      | 3                         | -           | 137               | ex                | +          | PHC         |            |
| 7                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                     | 1                   |               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 1               |                 |                |         |                   | 1             |                                                     |          |         |        |                |        |              |       |      |        |                           |             |                   |                   |            |             |            |
| 3                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                     |                     |               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                 |                |         |                   |               |                                                     |          |         |        |                |        |              |       |      |        |                           |             |                   |                   |            |             |            |
| 9                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                     |                     |               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                 |                |         |                   | 7             |                                                     |          |         | T      | T              |        |              |       |      |        | T                         |             |                   |                   |            |             |            |
| 10                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +-                 | +                   | 1                   | 1             | $\forall$            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\vdash$       | 1               | +               | +              | +       | +                 | +             | +                                                   | 1        | +       | +      | 1              |        |              |       | +    | +      | +                         | 1           |                   |                   |            |             |            |
| 111                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                  | +-                  | +-                  | -             | +                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +              | +               | +               | +              | +       | +                 | +             | +                                                   | +        | +       | +      | -              | -      | -            | -     | +    | +      | +                         | +           | -                 | -                 | -          |             | -          |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                  | -                   | -                   | -             | $\vdash$             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | -               | +               | +              | +       | +                 | +             | -                                                   | -        | +       | +-     | -              | -      | -            | -     | +    | +      | +                         | +           |                   |                   |            |             |            |
| 12                                      | INDEX SORRES ENGINEERING CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                     | _                   |               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                 |                |         |                   | _             |                                                     |          |         |        | 1              |        |              |       |      |        |                           | L           |                   | aurums            |            |             |            |
| *UNLESS OTHERWISE AGR                   | REED TO IN WRITING, WORK SUBMITTED ON T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HIS CHAIN C        | F CUSTO<br>VAILABLE | DY IS SU<br>FOR VIE | BJECT<br>WING | TO BUR<br>AT WW      | eau veritas sta<br>W.BVNA COM/TE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NDARD<br>RMS-A | TERM.           | S AND<br>NDITIO | COND<br>NS OF  | ITION   | S. SIGI<br>ALLING | NINC<br>S THI | OF THIS                                             | CHAIN C  | F CUSI  | ODY D  | OCUM<br>O OBT  | ENT IS | ACKN<br>COPY | IOWLE | DGME | NT ANE | ACCEP                     | TANC        | E OF OUR TE       | RMS /             | ND CONE    | ITIONS WHI  | CH ARE     |
| LAB USE ONLY                            | Yes No VO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                     | LAB US              |               |                      | STATE OF THE PARTY | No             | CHIPCH          |                 | 9010           |         | 400               | 9000          | e constant                                          |          |         | B USE  |                |        |              |       |      |        | T                         | September 1 |                   |                   |            |             | erature    |
| Seal present                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | Seal p              | re-ent              |               |                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -              | "E              |                 |                |         | _                 |               | 2                                                   | Seal pr  | esent   | 1000   |                |        |              | Yes   | -    | No     | +                         | *c          |                   |                   | 1          | readi       | ing by:    |
| Seal intact                             | 7 7 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                  | Seal in             |                     |               |                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | 1               |                 | I              |         | 2                 |               | 50.                                                 | Seal int |         |        |                |        |              |       | 1    |        | 7                         |             |                   |                   |            |             |            |
| Cooling media present  Relippuished by: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ate 3              | 1                   |                     | ime           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Recei          | ved by          | : (Sign         | ature          | / Print | t)                |               | -                                                   | Cooling  | YYY     |        | ate<br>MM      | _      | DI           |       |      | Time   | MM                        | F           | 1- 1              | Speci             | i instruct | ions        |            |
| 1/24                                    | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | 00                  | HH //               | 1             | MM                   | Λ-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                 |                 |                |         |                   |               | An                                                  |          | 24      | +      |                |        |              | -     | 1    |        | -0                        | 1           |                   |                   |            |             |            |
| 1 / 0/10                                | Marie 30 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 070                | 9                   | 16                  | 5             | 3                    | 1 Acu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | y              | ele             | CCI             | Y              | u       | ME                | 9             | YO A-                                               |          |         | -      | ) <del>7</del> | -      | 00           | 5 T   | 16   | -      | +                         | 1           |                   |                   |            |             | 0          |
| 2 Philip                                | Mirria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                     |                     | _             |                      | 2 744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VI             | 41              | 13H             | 17:            | LP      | A                 | 19            | _                                                   | 2        | 326     | () (   | 37             |        | 10           | 2     | 8    | 13     | 39                        | 1           |                   |                   |            |             | Havan      |


exp Services Inc Client Project #: OTT-00243705-B0 Client ID: S1

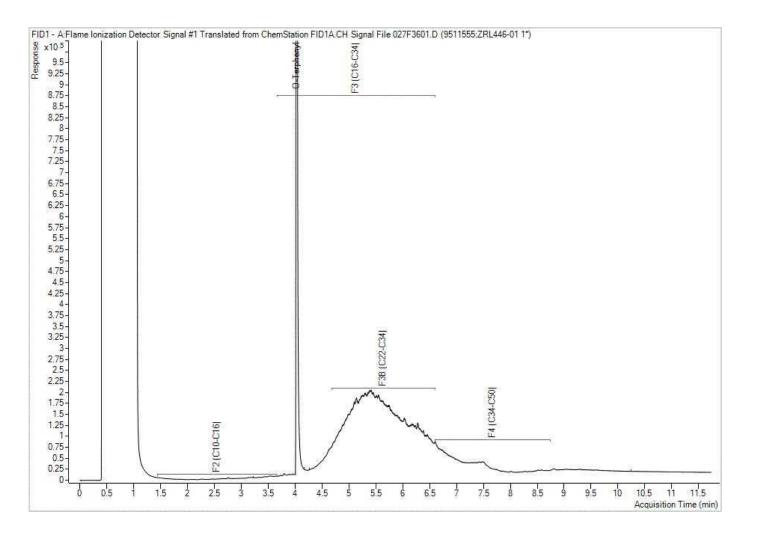
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram




exp Services Inc Client Project #: OTT-00243705-B0 Client ID: S2

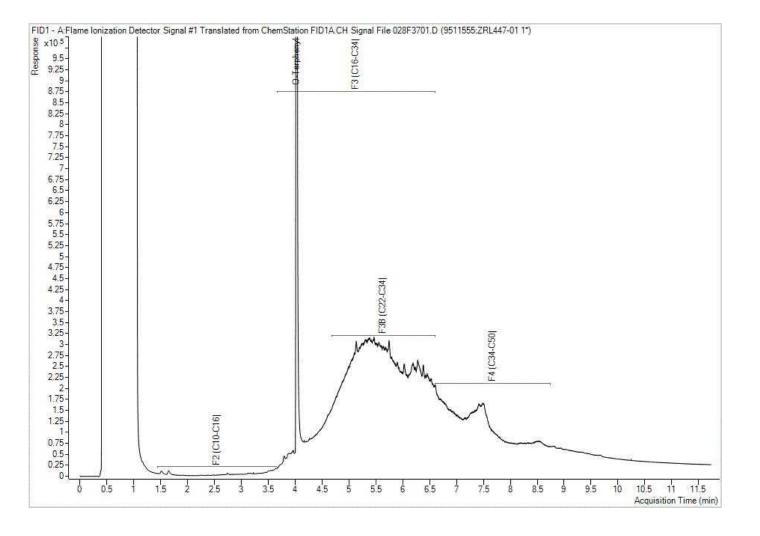
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram




exp Services Inc Client Project #: OTT-00243705-B0 Client ID: S3

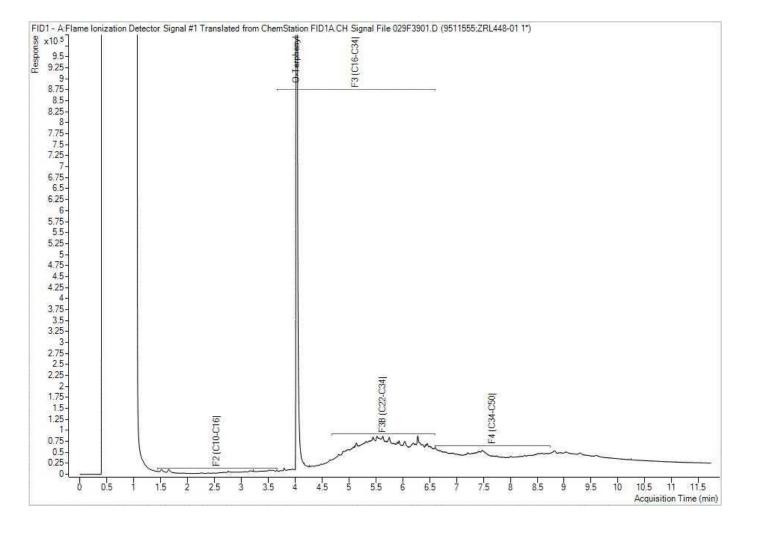
Petroleum Hydrocarbons F2-F4 in Soil Chromatogram




exp Services Inc Client Project #: OTT-00243705-B0 Client ID: S4

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram




exp Services Inc Client Project #: OTT-00243705-B0 Client ID: S5

#### Petroleum Hydrocarbons F2-F4 in Soil Chromatogram



exp Services Inc Client Project #: OTT-00243705-B0 Client ID: S6

Petroleum Hydrocarbons F2-F4 in Soil Chromatogram



EXP Services Inc.

Air Rock Drilling Company Ltd. Phase Two Environmental Site Assessment 6659 Franktown Road, Richmond, Ontario OTT-00243705-B0 October 17, 2025

**Appendix H: Hydraulic Conductivity** 



6659 Franktown Road, Ottawa MW1 2-Aug-23
Rising Head Test Analysis Test 1
Hvorslev Method (1951)

H<sub>0</sub> 1.27 m

(static water level in metres) Water Level Drawdown H-h/H-h0 Time (sec) (m) (m) 0 4.05 2.78 1.00 30 3.26 1.99 0.72 60 3.27 2.00 0.72 90 3.07 1.80 0.65 1.59 120 2.86 0.57 150 2.67 1.40 0.50 180 2.49 1.22 0.44 210 2.38 1.11 0.40 2.35 1.08 0.39 240 360 1.86 0.59 0.21 480 1.62 0.35 0.13 600 1.48 0.21 0.08 720 1.4 0.13 0.05 780 1.36 0.09 0.03

To constant= 0.37

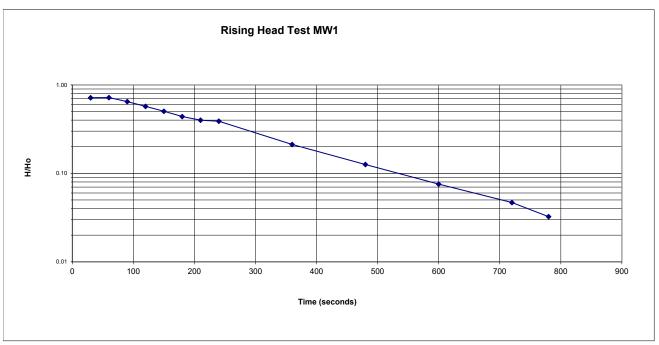
K=

L/R In(L/R) 30.0 3.401197

input

0.018 (pipe radius)

L= 1.50 (effective screen length, if strattles water)
R= 0.05 (hole radius)


To= 260

2(To)(L)

K= 1.41E-06 m/sec

r2(ln(L/R))

1.41E-04 cm/sec

