

## Regional Group

# S-4 Leitrim West of Bank Lands

**Master Transportation Study** 

October 20, 2025



#### **TIA Plan Reports - Certification**

On 14 June 2017, the Council of the City of Ottawa adopted new Transportation Impact Assessment (TIA) Guidelines. In adopting the guidelines, Council established a requirement for those preparing and delivering transportation impact assessments and reports to sign a letter of certification.

Individuals submitting TIA reports will be responsible for all aspects of development-related transportation assessment and reporting, and undertaking such work, in accordance and compliance with the City of Ottawa's Official Plan, the Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines.

By submitting the attached TIA report (and any associate documents) and signing this document, the individual acknowledges that s/he meets the four criteria listed below:

#### CERTIFICATION

- 1. I have reviewed and have a sound understanding of the objectives, needs and requirements of the City of Ottawa's Official Plan, Transportation Master Plan and the Transportation Impact Assessment (2017) Guidelines;
- 2. I have a sound knowledge of industry standard practice with respect to the preparation of transportation impact assessment reports, including multi modal level of service review;
- I have substantial experience (more than 5 years) in undertaking and delivering transportation impact studies (analysis, reporting and geometric design) with strong background knowledge in transportation planning, engineering or traffic operations; and
- 4. I am either a licensed<sup>1</sup> or registered<sup>1</sup> professional in good standing, whose field of expertise [check  $\sqrt{\ }$  appropriate field(s)] is either transportation engineering  $\square$ /or transportation planning  $\square$ .

License or registration body that oversees the profession is required to have a code of conduct and ethics guidelines that will ensure appropriate conduct and representation for transportation planning and/or transportation engineering works.

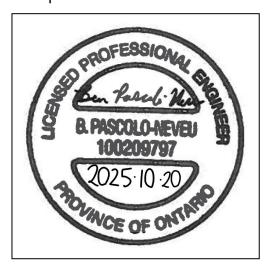
Dated at Ottawa this 20<sup>th</sup> day of October, 2025. (City)

Ben Pascolo-Neveu, P.Eng. Name:

Professional Title: Transportation Engineer

Ben Pascolo Never

Signature of Individual certifier that she/he meets the above four criteria


## Office Contact Information (Please Print) Address: 500-333 Preston Street

City / Postal Code: K1S 5N4

Telephone / Extension: 613-225-1311 ext. 64074

E-Mail Address: ben.pascoloneveu@arcadis.com

#### Stamp



## S-4 Leitrim West of Bank Lands

#### **Master Transportation Study**

October 20, 2025

#### Prepared By:

Arcadis Professional Services (Canada) Inc. 333 Preston Street, Suite 500 Ottawa, ON K1S 5N4 613 721 0555

## Our Ref:

145172

Ben Pascolo-Neveu, P.Eng.

Ben Pascolo Never

Transportation Engineer

Manager, Land Development Regional Group 1737 Woodward Drive Ottawa, ON K2C 0P8

**Prepared For:** 

Evan Garfinkel

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

## **Version Control**

| Issue | Revision No. | Date Issued | Page No. | Description         | Reviewed By           |
|-------|--------------|-------------|----------|---------------------|-----------------------|
| Draft | 1.0          | 2024-11-07  | 28       | Existing Conditions | David Hook            |
| Draft | 2.0          | 2025-02-21  | 29       | Existing Conditions | David Hook            |
| Draft | 3.0          | 2025-06-18  | 68       | Part 1 & 2 - MTS    | Matthew Mantle        |
| Draft | 4.0          | 2025-08-19  | 68       | Part 1 & 2 - MTS    | Ben Pascolo-<br>Neveu |
| Draft | 5.0          | 2025-09-18  | 68       | Part 1 & 2 - MTS    | Ben Pascolo-<br>Neveu |
| Draft | 6.0          | 2025-10-20  | 68       | Part 1 & 2 - MTS    | Ben Pascolo-<br>Neveu |

## **Table of Contents**

| E | xecutiv | re Summary                                        | 1    |
|---|---------|---------------------------------------------------|------|
| 1 | Intr    | oduction                                          | 1    |
| 2 | Stu     | dy Area                                           | 3    |
| P | ART 1:  | EXISTING CONDITIONS, OPPORTUNITIES & CONSTRAINTS  | 5    |
| 3 | Exis    | sting Transportation Network                      | 5    |
|   | 3.1     | Neighbourhood Amenities                           | 5    |
|   | 3.2     | Existing Road Network                             | 7    |
|   | 3.2.    | I Existing Traffic Volumes                        | 9    |
|   | 3.2.2   | 2 Intersection Capacity Analysis Criteria         | . 11 |
|   | 3.2.3   | Intersection Capacity Analysis Results            | . 12 |
|   | 3.3     | Existing Pedestrian and Cycling Facilities        | . 13 |
|   | 3.4     | Existing Transit Facilities and Service           | . 13 |
|   | 3.5     | Existing Multi-Modal Level of Service             | . 16 |
|   | 3.5.    | Segment-Based Multi-Modal Level of Service        | . 17 |
|   | 3.5.2   | 2 Intersection-Based Multi-Modal Level of Service | . 17 |
|   | 3.6     | Collision History                                 | . 18 |
| 4 | Fut     | ure Transportation Network                        | . 19 |
|   | 4.1     | Future Road Network                               | . 19 |
|   | 4.2     | Future Cycling and Pedestrian Facilities          | . 22 |
|   | 4.3     | Future Transit Facilities and Service             | . 23 |
|   | 4.4     | Future Adjacent Developments                      | . 25 |
| 5 | Visi    | on, Objective and Targets                         | . 27 |
|   | 5.1     | Community Vision                                  | . 27 |
|   | 5.2     | Development Objectives                            | . 27 |
|   | 5.3     | Transportation Targets                            | . 28 |
|   | 5.3.    | Mode Share Targets                                | . 28 |
| 6 | Орр     | portunities and Constraints                       | . 30 |
|   | 6.1     | Opportunities                                     | . 30 |
|   | 6.2     | Constraints                                       | . 31 |
| P | ART 2:  | CONCEPT PLAN DEVELOPMENT                          | . 33 |
| 7 | Cor     | nmunity Design                                    | . 33 |

|   | 7.1    | Transportation Network Layout                  | 33 |
|---|--------|------------------------------------------------|----|
|   | 7.1.1  | Road Network Layout                            | 33 |
|   | 7.1.2  | Transit Network                                | 36 |
|   | 7.1.3  | ·                                              |    |
|   | 7.2    | Street Cross-Sections                          | 38 |
|   | 7.3    | Land Use Projections                           | 38 |
|   | 7.4    | Analysis Years and Time Periods                | 38 |
|   | 7.5    | Community Generated Traffic                    | 39 |
|   | 7.5.1  | Peak Period Person-Trip Generation             | 39 |
|   | 7.5.2  | Trip Generation by Mode                        | 39 |
|   | 7.5.3  | Trip Distribution and Assignment               | 40 |
| 8 | TIA    | Exceptions Review                              | 42 |
| P | ART 3: | NETWORK ANALYSIS                               | 43 |
| 9 | Tran   | sportation Network Review                      | 43 |
|   | 9.1    | Future Traffic Volumes                         | 43 |
|   | 9.1.1  | General Background Growth Rates                | 43 |
|   | 9.1.2  | Future Background Traffic                      | 43 |
|   | 9.1.3  | Future Total Traffic                           | 43 |
|   | 9.2    | Review of Network Concept                      | 48 |
|   | 9.3    | Intersection Operational Review                | 49 |
|   | 9.3.1  | Intersection Capacity Analysis Results         | 49 |
|   | 9.3    | 3.1.1 Future (2031) Background Traffic         | 50 |
|   | 9.3    | 3.1.2 Future (2036) Background Traffic         | 51 |
|   | 9.3    | 3.1.3 Future (2031) Total Traffic              | 52 |
|   | 9.3    | 3.1.4 Future (2036) Total Traffic              | 53 |
|   | 9.3.2  | Intersection Control                           | 53 |
|   | 9.4    | Auxiliary Lane Requirements                    | 54 |
|   | 9.4.1  | Left-Turn Lanes at Signalized Intersections    | 54 |
|   | 9.4.2  | Left-Turn Lanes at Unsignalized Intersections  | 55 |
|   | 9.4.3  | Right-Turn Lanes at Signalized Intersections   | 55 |
|   | 9.4.4  | Right-Turn Lanes at Unsignalized Intersections | 56 |
|   | 9.5    | Multi-Modal Level of Service                   | 56 |
|   | 9.5.1  | Segment-Based MMLOS                            | 56 |

|                                                                                                                                                                                                                                                                                                                                                                                                                      | 57             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 9.6 Traffic Calming Plan                                                                                                                                                                                                                                                                                                                                                                                             | 58             |
| 9.7 Transit Network Requirements                                                                                                                                                                                                                                                                                                                                                                                     | 58             |
| 9.8 Pedestrian Crossing Requirements                                                                                                                                                                                                                                                                                                                                                                                 | 59             |
| 10 Earl Armstrong Road Extension Impact                                                                                                                                                                                                                                                                                                                                                                              | 60             |
| 10.1 Traffic Diversion                                                                                                                                                                                                                                                                                                                                                                                               | 60             |
| 10.2 Sensitivity Scenarios - Intersection Capacity Analysis Results                                                                                                                                                                                                                                                                                                                                                  | 64             |
| 10.2.1 Future (2036) Background Traffic with Earl Armstrong Extension                                                                                                                                                                                                                                                                                                                                                | 64             |
| 10.2.2 Future (2036) Total Traffic with Earl Armstrong Extension                                                                                                                                                                                                                                                                                                                                                     | 65             |
| PART 4: IMPLEMENTATION                                                                                                                                                                                                                                                                                                                                                                                               | 66             |
| 11 Mobility Plan                                                                                                                                                                                                                                                                                                                                                                                                     | 66             |
| 11.1 Transportation Demand Management                                                                                                                                                                                                                                                                                                                                                                                | 66             |
| 11.2 Zoning and Policy Amendments                                                                                                                                                                                                                                                                                                                                                                                    | 66             |
| 11.3 City Policies and Objectives                                                                                                                                                                                                                                                                                                                                                                                    | 67             |
| 12 Implementation Plan                                                                                                                                                                                                                                                                                                                                                                                               | 67             |
| 13 Conclusion                                                                                                                                                                                                                                                                                                                                                                                                        | 68             |
|                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| Tables                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| Table 1-1 Terms of Reference and TIA Requirement Review                                                                                                                                                                                                                                                                                                                                                              |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                      | -              |
| Table 3-1 Existing Road Characteristics within Context Area                                                                                                                                                                                                                                                                                                                                                          |                |
| Table 3-2 Level of Service Thresholds                                                                                                                                                                                                                                                                                                                                                                                | 11             |
| Table 3-2 Level of Service Thresholds  Table 3-3 Intersection Capacity Analysis: Existing Traffic                                                                                                                                                                                                                                                                                                                    | 11<br>12       |
| Table 3-2 Level of Service Thresholds  Table 3-3 Intersection Capacity Analysis: Existing Traffic  Table 3-4 Existing Transit Routes                                                                                                                                                                                                                                                                                 | 11<br>12<br>13 |
| Table 3-2 Level of Service Thresholds                                                                                                                                                                                                                                                                                                                                                                                | 11<br>12<br>13 |
| Table 3-2 Level of Service Thresholds                                                                                                                                                                                                                                                                                                                                                                                | 11121317       |
| Table 3-2 Level of Service Thresholds                                                                                                                                                                                                                                                                                                                                                                                | 11121317       |
| Table 3-2 Level of Service Thresholds                                                                                                                                                                                                                                                                                                                                                                                |                |
| Table 3-2 Level of Service Thresholds                                                                                                                                                                                                                                                                                                                                                                                |                |
| Table 3-2 Level of Service Thresholds                                                                                                                                                                                                                                                                                                                                                                                |                |
| Table 3-2 Level of Service Thresholds  Table 3-3 Intersection Capacity Analysis: Existing Traffic  Table 3-4 Existing Transit Routes  Table 3-5 Segment-Based MMLOS Analysis Results: Existing Conditions  Table 3-6 Intersection-Based MMLOS Analysis Results: Existing Conditions  Table 3-7 Historical Collisions  Table 4-1 Future Adjacent Developments  Table 5-1 Existing and Target Mode Share Distributions |                |
| Table 3-2 Level of Service Thresholds                                                                                                                                                                                                                                                                                                                                                                                |                |

| Table 9-1 2046 Screenline Analysis                                                                        | 49 |
|-----------------------------------------------------------------------------------------------------------|----|
| Table 9-2 Intersection Capacity Analysis: Future (2031) Background Traffic                                | 50 |
| Table 9-3 Intersection Capacity Analysis: Future (2036) Background Traffic                                | 51 |
| Table 9-4 Intersection Capacity Analysis: Future (2031) Total Traffic                                     | 52 |
| Table 9-5 Intersection Capacity Analysis: Future (2036) Total Traffic                                     | 53 |
| Table 9-6 Auxiliary Left-Turn Storage Analysis at Signalized Intersections                                | 54 |
| Table 9-7 Auxiliary Right-Turn Storage Analysis at Signalized Intersections                               | 56 |
| Table 9-8 Segment-Based MMLOS Analysis Results: Future Conditions                                         | 57 |
| Table 10-1 Intersection Capacity Analysis: Future (2036) Background Traffic with Earl Armstrong Extension | 64 |
| Table 10-2 Intersection Capacity Analysis: Future (2036) Total Traffic with Earl Armstrong Extension      | 65 |
| Figures                                                                                                   |    |
| Figure 3-1 Existing Streets Within 1,200m Walking Distance                                                | 6  |
| Figure 3-2 Existing Pedestrian Network                                                                    | 13 |
| Figure 3-3 Existing Cycling Network                                                                       | 13 |
| Figure 3-4 Local Transit Network                                                                          | 14 |
| Figure 3-5 Bus Stop Locations                                                                             | 15 |
| Figure 4-1 Future Road Network Projects                                                                   | 20 |
| Figure 4-2 Future Earl Armstrong Road Extension Alignment                                                 | 20 |
| Figure 4-3 Future Bank Street & Miikana Road/Blais Road Intersection                                      | 21 |
| Figure 4-4 Future Bank Street & Earl Armstrong Road Roundabout                                            | 21 |
| Figure 4-5 Future Earl Armstrong Road & Kelly Farm Drive Intersection                                     | 22 |
| Figure 4-6 Future Rural Active Transportation Network                                                     | 23 |
| Figure 4-7 Future Priority Transit Network                                                                | 24 |
| Figure 7-1 Proposed Kelly Farm Drive Cross-Section                                                        | 38 |
| Figure 9-1 Screenlines                                                                                    | 48 |
| Exhibits                                                                                                  |    |
| Exhibit 2-1 Context Area                                                                                  | 4  |
| Exhibit 3-1 Existing Traffic Control and Lane Configurations                                              | 8  |
| Exhibit 3-2 Existing Traffic                                                                              | 10 |

#### S-4 Leitrim West of Bank Lands Master Transportation Study

| Exhibit 4-1 Adjacent Development                                            | 26         |
|-----------------------------------------------------------------------------|------------|
| Exhibit 7-1 Concept Plan                                                    | 34         |
| Exhibit 7-2 Road Network Layout                                             | 35         |
| Exhibit 7-3 Active Transportation Network                                   | 37         |
| Exhibit 7-4 Site-Generated Traffic                                          | 41         |
| Exhibit 9-1 Future (2031) Background Traffic                                | <b>4</b> 4 |
| Exhibit 9-2 Future (2036) Background Traffic                                | 45         |
| Exhibit 9-3 Future (2031) Total Traffic                                     | 46         |
| Exhibit 9-4 Future (2036) Total Traffic                                     | 47         |
| Exhibit 10-1 Future (2036) Background Traffic with Earl Armstrong Extension | 61         |
| Exhibit 10-2 Site-Generated Traffic with Earl Armstrong Extension           | 62         |
| Exhibit 10-3 Future (2036) Total Traffic with Earl Armstrong Extension      | 63         |

## **Appendices**

**Appendix A Terms of Reference** 

**Appendix B TIA Screening Form** 

**Appendix C Neighbourhood Amenities** 

**Appendix D Traffic Data** 

**Appendix E Intersection Capacity Analysis Reports** 

**Appendix F Transit Service Maps** 

Appendix G Multi-Modal Level of Service Analyses

**Appendix H Transit Service Alternative Review** 

**Appendix I Left-Turn Warrant Analysis** 

**Appendix J Transportation Demand Management** 

## **Acronyms and Abbreviations**

ALOS Auto Level of Service

AM Morning

BLOS Bicycle Level of Service

DC Development Charges

EA Environmental Assessment

EBL Eastbound Left

EBR Eastbound Right

EBT Eastbound Through

HCM Highway Capacity Manual

LOS Level of Service

LRT Light Rail Transit

3

LTS Level of Traffic Stress

MMLOS Multi-Modal Level of Service

MTS Master Transportation Study

MUP Multi-Use Path

NBL Northbound Left

NBR Northbound Right

NBT Northbound Through

OTM Ontario Traffic Manual

PHF Peak Hour Factor

PLOS Pedestrian Level of Service

PM Afternoon

RTTP Rapid Transit and Transit Priority

SBL Southbound Left

SBR Southbound Right

SBT Southbound Through

TIA Transportation Impact Assessment

TLOS Transit Level of Service

TMP Transportation Master Plan

www.arcadis.com

TTR\_S4LandsMTS\_MASTER\_2025-10-2020

## S-4 Leitrim West of Bank Lands Master Transportation Study

WBL Westbound Left

WBR Westbound Right

WBT Westbound Through

TTR\_S4LandsMTS\_MASTER\_2025-10-2020 İX

## **Executive Summary**

#### Introduction

Arcadis was retained by Regional Group to undertake a Master Transportation Study (MTS) in support of the Concept Plan process for the S-4 Leitrim West of Bank Lands. The MTS will also be used in support of a subsequent and concurrent Draft Plan of Subdivision and Zoning By-law Amendment applications, thereby fulfilling the requirements of a Transportation Impact Assessment (TIA) as well. The subject site is located at the southern edge of the urban boundary in the Leitrim community, and is bound by residential development to the north, Bank Street to the east, undeveloped land to the west and the future Earl Armstrong Road extension to the south.

#### **Transportation Network**

<u>Walking</u>: Within a 15-minute walk of the site are a number of amenities including a school, several parks, some existing and future retail, and one place of worship. At a slightly greater walking distance (20- to 25-minute walking distance) is an additional school, park and two shopping centres.

Cycling: Currently there are few cycling facilities within the study area and no sidewalks on Bank Street. As part of the Bank Street widening, it is expected that sidewalks and cycle tracks will be provided on both sides of the road from Leitrim Road to Miikana Road/Blais Road. Cycle tracks and sidewalks will also be provided on both sides of the Earl Armstrong Road extension when it is constructed. Furthermore, the TMP identifies plans to provide bike lanes on Findlay Creek Drive as well as a major pathway connection to the future cross-town bikeway adjacent to the Trillium Line extension.

<u>Transit</u>: There are three transit routes that currently serve the Leitrim community, although only one provides weekday peak period transit service within walking distance of the site. In the future, it is anticipated that transit priority measures will be implemented on Bank Street. The Earl Armstrong Road extension will also be a transit priority corridor providing connectivity to Bowesville LRT Station.

Roads: Bank Street is currently being widened to four lanes between Leitrim Road and Miikana Road/Blais Road with completion anticipated for 2026. Further widening south of Miikana Road/Blais Road is not expected to occur within the timeframe of this study but may be implemented by 2046. The Transportation Master Plan also identifies the eventual extension of Earl Armstrong Road east to Hawthorne Road within approximately 10 years, although given the uncertainty of the timing for this extension this study has evaluated traffic conditions both with and without the road extension.

#### **Development Impact**

Based on the size of the subject site, it is estimated that a mix of single-family homes and townhomes could be provided, with a total of approximately 300 dwelling units. The overall trip generation associated with the site would therefore range from 131 to 143 two-way vehicle-trips during the weekday peak hours.

#### **Transportation Network Review**

The development of the subject lands could result in major changes to the area's transportation network. Sitegenerated trips were therefore assigned to the study area road network based on EMME model projections. Intersection capacity analysis was completed, and no road network modifications are recommended as a result of site-generated traffic. Growth in background traffic, however, is expected to result in capacity issues at the future

ES-1

Bank & Earl Armstrong roundabout and therefore it is recommended that the City revisit the proposed design for this intersection and consider a signalized intersection design instead.

Multi-Modal Level of Service (MMLOS) analysis results indicate that the portion of Bank Street adjacent to the site does not currently meet the prescribed Pedestrian or Bicycle Level of Service targets due to the lack of facilities for both road user groups. It is expected that these issues will be addressed in the future once Bank Street is widened and urbanized south of Miikana Road/Blais Road (by others). The intersection of Bank & Miikana/Blais is also not meeting its Pedestrian Level of Service target due to long crossing distances. The portion of Kelly Farm Drive through the subject site is anticipated to meet and exceed its MMLOS targets.

Traffic generated by the subject site is not likely to trigger the need for traffic-calming measures on existing streets. Within the site, however, it is recommended that local roads be designed for a 30km/h posted speed limit through the implementation of the City's *Local Residential Streets 30km/h Streets Toolbox (2021)*, while the collector road network be designed for a 40km/h posted speed limit in accordance with the *Designing Neighbourhood Collector Streets* (2019).

#### **Community Design Recommendations**

To guide the development of these urban expansion lands, a number of objectives and targets have been developed in accordance with the City of Ottawa 2022 Official Plan. Opportunities and constraints relating to the development of these lands have been identified in this report and a conceptual development plan has been established. It is recommended that vehicular access to the site be provided via an extension of Kelly Farm Drive, in accordance with the approved Environment Assessment study completed by the City of Ottawa for the Earl Armstrong Road extension. The connection of this collector road to the future arterial road network provides an opportunity to establish continuity in the pedestrian, cycling and transit facilities within the community while providing an additional routing alternative for the community that will reduce congestion on the primary transportation spine (i.e., Bank Street).

Although the site has 20m of frontage on Bank Street, this study has found that there would be operational challenges with providing a road connection to Bank Street and it is therefore recommended that this space be used to provide a mid-block active transportation connection to Bank Street instead which could also serve as a direct vehicular connection to the arterial road network in the event of an emergency. Appropriate traffic control measures such as regulatory signage and bollards will need to be installed to prevent its usage outside of emergency situations.

A future road block connection, identified as Block 80 on the Draft Plan of Subdivision, has been provided as part of the proposed development connecting the subject site to the westerly lands, should the roadway network be extended. This is consistent with other neighbourhoods at the edge of urban areas in the City of Ottawa.

A mid-block active transportation connection to Paakanaak Road is proposed at the northwest corner of the site via an existing servicing block.

Given the uncertainty regarding the timing of the Earl Armstrong Road extension and the near-term need for transit service within the site, it is recommended that transit service be routed along Miikana Road, Paakanaak Avenue and Kelly Farm Drive. Once the extension is completed, however, it is expected that transit service will be provided along Kelly Farm Drive and Earl Armstrong Road.

The Kelly Farm Drive extension is proposed to adhere to cross-section 26C of the City of Ottawa's *Designing Neighbourhood Collector Streets* guidelines. This cross-section has sidewalks on both sides and does not include any on-street parking to allow for more green space and a narrower roadway. For pedestrian network

ES-2

connectivity, future traffic volume projections indicate a Level 2, Type 'D' pedestrian cross-over could be considered on Kelly Farm Drive.

With consideration of site-generated multi-modal travel demands, sensitivity analysis and mitigation measures recommended through this study, the proposed development is not dependent on the Earl Armstrong Road extension from a transportation perspective.

In accordance with the City of Ottawa's local street standard cross-sections approved in 2022, all double-loaded local roads within the subject lands are recommended to have an 18.0m right-of-way which will provide space for on-street parking, 1.8m wide sidewalks and treed boulevards, while single-loaded local streets (i.e. 'window streets') within the site are recommended to have a 14.75m right-of-way, with similar cross-section characteristics.

#### **Mobility Plan**

To encourage the use of non-auto travel modes, consideration will be given to the following Transportation Demand Management (TDM) measures:

 Provide a multimodal travel information package to new residents highlighting routes to/from local amenities, the location of bus stops within walking distance of the site, and the location of potential future amenities. Of particular importance will be highlighting safe routes to/from local schools as it is anticipated that this represents the greatest opportunity to reduce auto usage.

In addition, the design of the community to avoid private approaches on Kelly Farm Drive to maximize tree coverage and limit conflict points with cyclists and pedestrians.

Combined with the proposed layout of the transportation network, it is expected that these measures will ensure that the City of Ottawa policies and objectives are achieved.

Based on the findings of this study, it is the overall opinion of Arcadis that the subject site will integrate well with and can be safely accommodated by the adjacent transportation network with consideration of the recommendations outlined above.

## 1 Introduction

Arcadis was retained by Regional Group to undertake a Master Transportation Study (MTS) in support of the Concept Plan application for the S-4 Leitrim West of Bank Lands located at the southern edge of the Leitrim community west of Bank Street.

The Terms of Reference for this study were established in consultation with City of Ottawa staff and finalized on July 22, 2024. Additional clarification on elements relating to transit were finalized by email on September 11, 2024. These Terms of Reference have been used to guide the contents of this study and are provided in **Appendix A**.

This MTS report is also intended to support concurrent Draft Plan of Subdivision and Zoning By-law Amendment applications which will follow the approval of the Concept Plan by the City of Ottawa. As such, supplemental elements are provided to conform with the requirements outlined in the City of Ottawa's Transportation Impact Assessment Guidelines (June 2017) and the guideline revisions enacted in June 2023. A screening form has been prepared for the subject site and is provided in **Appendix B**.

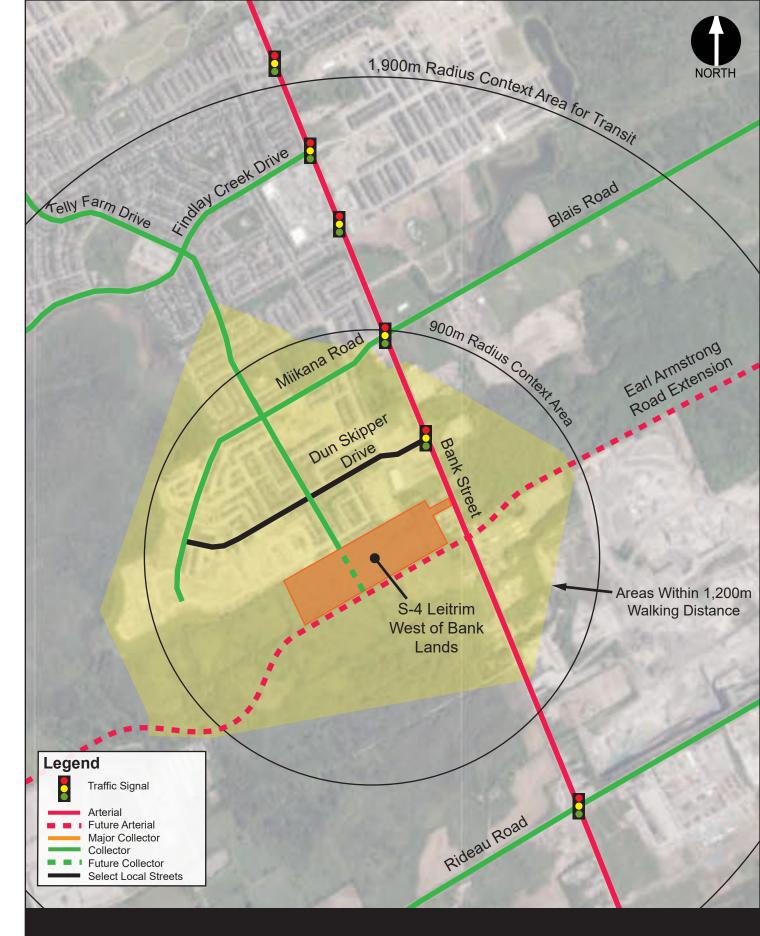
To assist City staff with their review, **Table 1-1** has been prepared and summarizes which sections of the report address the requirements of the Terms of Reference and the requirements of the Transportation Impact Assessment (TIA) Guidelines.

Table 1-1 Terms of Reference and TIA Requirement Review

| Terms of Reference<br>Requirement | Report Section/Figure/<br>Exhibit/Table         | TIA Module/Element       | Report Section/Figure/<br>Exhibit/Table |
|-----------------------------------|-------------------------------------------------|--------------------------|-----------------------------------------|
| Plan Context                      |                                                 | Step 1: Screening        |                                         |
| Requirement #1                    | See Exhibit 2-1                                 | Module 1.1 to 1.4        | See Appendix B                          |
| Requirement #2                    | See Section 2                                   | Step 2: Scoping & Foreca | asting                                  |
| Requirement #3                    | See Section 4                                   | Element 2.1.1            | See Sections 2, 7.1, 7.3 and 7.4        |
| <b>Existing Conditions</b>        | '                                               | Element 2.1.2            | See Sections 3 and 7.1.1                |
| Requirement #4                    | See Section 6                                   | Element 2.1.3            | See Section 4                           |
| Requirement #5                    | See Sections 3.2 and 3.6 and <b>Exhibit 2-1</b> | Element 2.2.1            | See Section 2                           |
| Requirement #6                    | See Sections 3.1, 3.3, 4.2 and 6                | Element 2.2.2            | See Section 7.4                         |
| Requirement #7                    | See Section 3.4                                 | Element 2.2.3            | See Section 7.4                         |
| Requirement #8                    | See Section 3.1                                 | Module 2.3               | See Section 8                           |
| Vision, Objectives and Ta         | argets                                          | Element 3.1.1            | See Sections 5.3.1, 7.5.1 and 7.5.2     |
| Requirement #9                    | See Sections 5.1 and 5.2                        | Element 3.1.2            | See Section 7.5.3                       |
| Requirement #10                   | See Section 5.3                                 | Element 3.1.3            | See Section 7.5.3                       |

| Terms of Reference<br>Requirement | Report Section/Figure/<br>Exhibit/Table | TIA Module/Element | Report Section/Figure/ Exhibit/Table |  |
|-----------------------------------|-----------------------------------------|--------------------|--------------------------------------|--|
| Key Plan Components               |                                         | Step 3: Analysis   |                                      |  |
| Requirement #11                   | See Section 7.1                         | Element 3.2.1      | See Section 4                        |  |
| Requirement #12                   | See Sections 7.1, 0, 7.3 and 7.4        | Element 3.2.2      | See Section 9.1.1                    |  |
| Requirement #13                   | See Sections 7.1, 0 and 7.3             | Element 3.2.3      | See Section 4.4                      |  |
| Forecasting & Analysis            | '                                       | Module 3.3         | See Section 3.2.3                    |  |
| Requirement #14                   | See Sections 7.5 and 9.1                | Element 4.1.1      | See Section 11.1 and Appendix H      |  |
| Requirement #15                   | See Sections 9.3, 9.7 and 9.8           | Element 4.1.2      | Not Applicable                       |  |
| Requirement #16                   | See Section 7.1                         | Element 4.1.3      | See Section 7.1.1                    |  |
| Requirement #17                   | See Sections 9.3 and 9.4                | Element 4.2.1      | Not Applicable                       |  |
| Mobility Plan                     | '                                       | Module 4.3         | See Sections 3.6 and 9.5             |  |
| Requirement #18                   | See Section 11.1                        | Element 4.4.1      | See Section 7.1.1                    |  |
| Requirement #19                   | See Section 11.2                        | Element 4.4.2      | See Section 9.3.2                    |  |
| Requirement #20                   | See Section 11.3                        | Element 4.4.3      | See Section 9.3.1                    |  |
| Requirement #21                   | Not Applicable                          | Element 4.5.1      | See Section 11.1                     |  |
| Implementation Strateg            | ıy                                      | Element 4.5.2      | See Section 11.1                     |  |
| Requirement #22                   | See Section 12                          | Element 4.5.3      | See Section 11.1                     |  |
| Requirement #23                   | See Section 12                          | Module 4.6         | See Section 9.6                      |  |
| Requirement #24                   | See Section 12                          | Element 4.7.1      | See Section 9.7                      |  |
| Requirement #25                   | See Section 12                          | Element 4.7.2      | See Section 9.7                      |  |
|                                   | ·                                       | Module 4.8         | See Section 9.2                      |  |
|                                   |                                         | Element 4.9.1      | See Section 9.3.2                    |  |
|                                   |                                         | Element 4.9.2      | See Section 9.3.1                    |  |

## 2 Study Area


The subject site is located at the southern boundary of the Leitrim community west of Bank Street. The site is bound by Bank Street to the east, the Pathways South subdivision to the north, and undeveloped land to the south and west. The future extension of Earl Armstrong Road will eventually form the southern limits of the site.

According to the Official Plan (Schedule B9), the site is currently located within the Rural Transect and is within an area designated as Rural Countryside. The lands immediately to the north of the site are located within the Suburban Transect (as per Schedule B7) and are designated as a Neighbourhood. Bank Street is designated a Mainstreet Corridor between Leitrim Road and the northern boundary of the site. The lands adjacent to Bank Street are within the *Evolving Neighbourhood* overlay.

The context area for this study is illustrated in **Exhibit 2-1** and includes all lands located within a 900m radius or 1,200m walking distance of the site, whichever is greater, consistent with the Official Plan policy relating to 15-Minute Neighbourhoods. In addition, the Official Plan also requires that safe and convenient cycling routes and facilities are provided within 1.9 kilometre radius or 2.5 kilometre cycling distance, whichever is greatest, to existing or planned rapid transit stations, frequent street transit stops and street transit stops on the Transit Priority network. A supplemental 1.9km radius around the proposed development site will be reviewed to assess this requirement.

As agreed by City staff, the following intersections will be evaluated as part of this study:

- Bank & Miikana/Blais
- Bank & Dun Skipper
- Kelly Farm & Findlay Creek
- Kelly Farm & Miikana
- Kelly Farm & Dun Skipper
- Bank & Earl Armstrong (future)
- Kelly Farm & Earl Armstrong (future)



SCALE:

# PART 1: EXISTING CONDITIONS, OPPORTUNITIES & CONSTRAINTS

## 3 Existing Transportation Network

## 3.1 Neighbourhood Amenities

A key theme of the Official Plan is the establishment of walkable *15-Minute Neighbourhoods*. There are a number of existing neighbourhood amenities located within at 15-minute walking distance of the site.

#### Schools:

• Future Findlay Creek Elementary School

#### Parks:

- Anisha Park
- Salamander Park
- Dun Skipper Park
- Miikana Park

#### Retail/Services:

- Hardware Store
- Future Mix-Use Development along Bank Street

#### Places of Worship:

Hindu Temple of Ottawa-Carleton

**Figure 3-1** below illustrates the existing streets that are located within a 15-minute (1,200m) walking distance of the site.

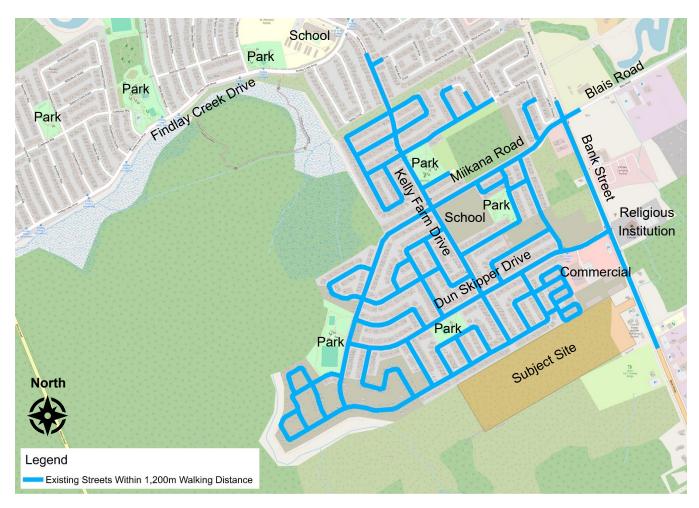



Figure 3-1 Existing Streets Within 1,200m Walking Distance

Within a 20-minute walking distance (~1,600m) additional greenspace such as the Findlay Creek Boardwalk and the Vimy Ridge Public School are reachable.

Within a 25-minute walking distance (~1,900m), additional neighbourhood amenities are provided at the Findlay Creek Shopping Centre and Cowan's Grove Plaza. These two shopping centres include a variety of key daily amenities such as banks, grocery stores and restaurants.

The locations of the above amenities are shown in **Appendix C**.

## 3.2 Existing Road Network

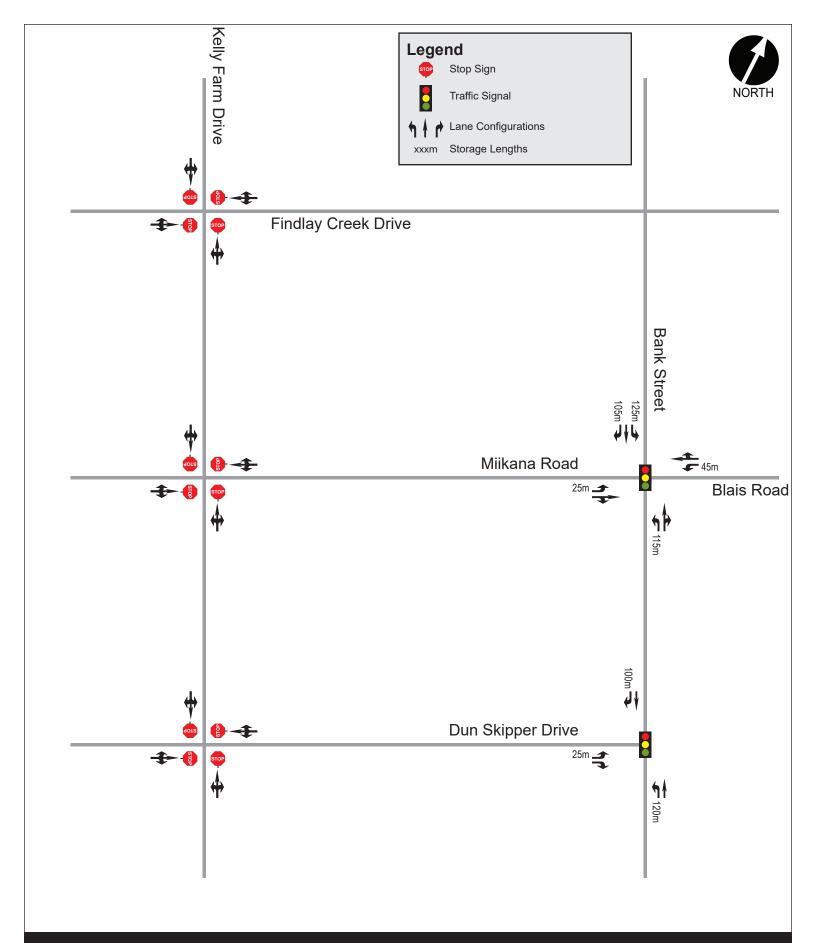
Table 3-1 summarizes the details of the existing street network within the context area.

Table 3-1 Existing Road Characteristics within Context Area

| Name                      | Class               | Orientation And<br>Extents                          | Cross-Section<br>within Context<br>Area | Right-Of-Way<br>Protection within<br>Context Area (m) | Speed Limit<br>within Context<br>Area (km/h) |
|---------------------------|---------------------|-----------------------------------------------------|-----------------------------------------|-------------------------------------------------------|----------------------------------------------|
| Bank<br>Street            | Arterial            | North-South,<br>Wellington to<br>Ottawa City limits | 2-Lane, Rural,<br>Undivided             | 44.5                                                  | 80                                           |
| Kelly Farm<br>Drive       | Collector           | North-South, Leitrim to Paakanaak                   | 2-Lane, Urban,<br>Undivided             | ~24/261                                               | 50                                           |
| Findlay<br>Creek<br>Drive | Collector           | East-West, Albion to<br>Highgarden                  | 2-Lane, Urban,<br>Undivided             | ~301                                                  | 50                                           |
| Miikana<br>Drive          | Collector           | East-West,<br>Paakanaak to Bank                     | 2-Lane, Urban,<br>Undivided             | ~241                                                  | 50                                           |
| Blais Road                | Collector           | East-West, Bank to<br>Hawthorne                     | 2-Lane, Rural,<br>Undivided             | 31                                                    | 50                                           |
| Dun<br>Skipper<br>Drive   | Collector/<br>Local | East-West, Miikana<br>to Bank                       | 2-Lane, Urban,<br>Undivided             | ~24¹                                                  | 50                                           |

<sup>&</sup>lt;sup>1</sup> Approximate right-of-way (existing).

Bank Street represents a key north-south connection to both local and city-wide destinations. The majority of commercial amenities in the community are located on Bank Street and the street also represents the most direct connection to the city-wide arterial road network.


Within the context area, the truck network is limited to Bank Street and Blais Road. Bank Street is designated as a full-load truck route while Blais Road is a restricted load truck route.

It should be noted that arterial roads generally have a theoretical capacity of 1,000 vehicles per hour per lane, while the capacity of collector and local roads is lower as a result of increased 'friction'.

Within the study area, the following traffic management measures have been implemented:

- On-street speed limit pavement markings and flexible bollards on Findlay Creek Drive and Kelly Farm Drive.
- Flexible bollards on Miikana Road

Exhibit 3-1 below illustrates the existing traffic control and lane configurations of the study area intersections.



### 3.2.1 Existing Traffic Volumes

The following weekday morning and afternoon peak hour turning movement counts were obtained from the City of Ottawa:

Bank & Miikana/Blais: July 6, 2023

Bank & Dun Skipper: September 14, 2023

Bank & Rideau: December 6, 2023

Findlay Creek & Kelly Farm: February 9, 2023

• Kelly Farm & Miikana: February 23, 2023

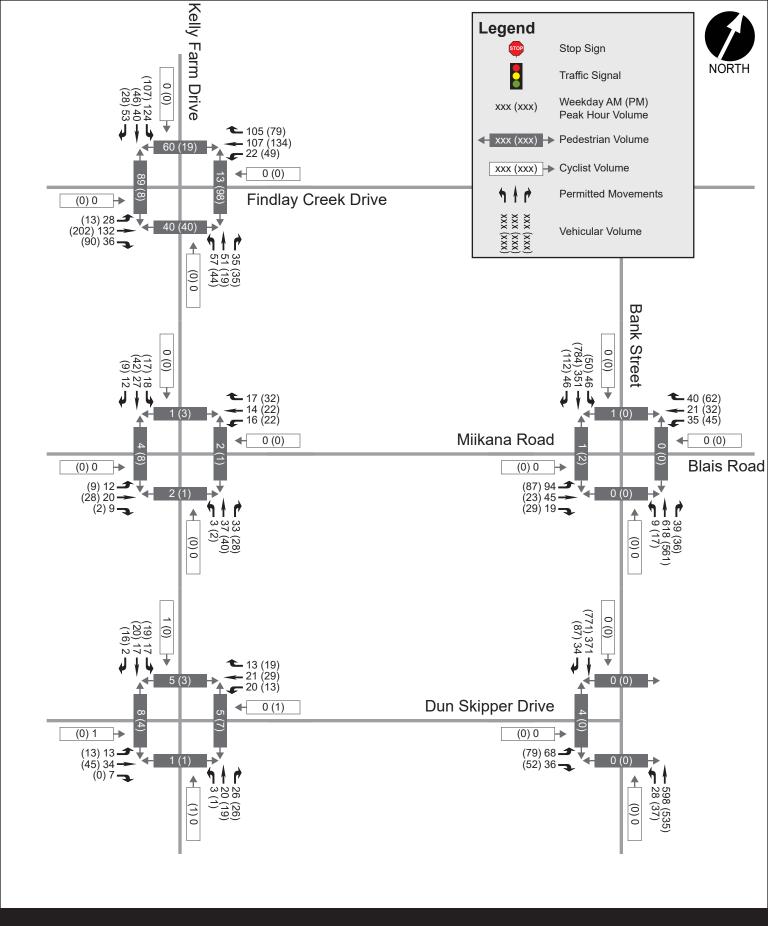
Kelly Farm & Dun Skipper: June 29, 2023

Several of the above traffic counts were collected during the winter months and therefore the volume of cyclists at some intersections may be lower than the volumes during the peak cycling season.

The traffic count at the Bank & Rideau intersection was obtained to provide information on potential future volumes on the Earl Armstrong Road extension. The intersection is not included in the study area otherwise.

Growth rates were applied to northbound and southbound through volumes on Bank Street to account for growth in regional traffic between 2023 and 2024. Justification of the background growth rates is discussed later in this report.

Peak hour traffic volumes representative of existing conditions are shown in **Exhibit 3-2**<sup>1</sup>. Weekday morning and afternoon peak hour turning movement counts have been provided in **Appendix D**.


www.arcadis.com

TTR\_S4LandsMTS\_MASTER\_2025-10-2010-20

9

\_

<sup>&</sup>lt;sup>1</sup> It is acknowledged that Bank Street was under construction at the time of this study and therefore traffic volumes may be lower than usual. For the purposes of this study, "existing traffic" shall be interpreted as the level of traffic that would be expected under normal operating conditions.



N.T.S.

S4-Lands

## 3.2.2 Intersection Capacity Analysis Criteria

In qualitative terms, Level of Service (LOS) describes a user's perception of the operational conditions of a transportation facility. For vehicular LOS, these conditions are generally defined in terms of delay, speed and travel time, freedom to maneuver, traffic interruptions, safety, comfort and convenience. The two key metrics used to evaluate vehicular LOS are as follows:

- Volume to Capacity (v/c) Ratio: The ratio of traffic volume (either measured or forecast) to the capacity of the intersection or roadway.
- Average Delay: The average elapsed time from when a vehicle stops at the end of the queue until the
  vehicle departs from the stop line, including the time required for a vehicle to travel from the last-in-queue
  position to the first-in-queue position.

LOS is given a letter designation from 'A' to 'F'. LOS 'A' represents the best operating conditions and LOS 'E' represents the level at which the intersection, or an approach to the intersection, is carrying the maximum traffic volume that can, practicably, be accommodated. LOS 'F' indicates that the facility is operating beyond its theoretical capacity.

For signalized intersections, the City of Ottawa has developed criteria for signalized intersections as part of the TIA Guidelines which directly relate the v/c ratio to a LOS designation. In contrast, the LOS for unsignalized intersections is based on average delay using the criteria outlined in the Highway Capacity Manual (HCM) 2010. These criteria are presented in **Table 3-2** below.

Table 3-2 Level of Service Thresholds

| Level Of | Signalized   | Unsignalized                |
|----------|--------------|-----------------------------|
| Service  | v/c Ratio    | Delay (Seconds per Vehicle) |
| А        | 0 to 0.60    | <10                         |
| В        | 0.61 to 0.70 | >10 and <15                 |
| С        | 0.71 to 0.80 | >15 and <25                 |
| D        | 0.81 to 0.90 | >25 and <35                 |
| Е        | 0.91 to 1.00 | >35 and <50                 |
| F        | > 1.00       | >50                         |

In accordance with the draft Multi-Modal Level of Service Guidelines (March 2024), a Level of Service target of 'E' is applicable to the study area roads.

### 3.2.3 Intersection Capacity Analysis Results

**Table 3-3** below summarizes the existing traffic operational performance at the study area intersections based on weekday peak hour traffic volumes representative of existing conditions. The intersection capacity analysis is based on locally-specific parameters as described in the TIA Guidelines and incorporates existing signal timing plans obtained from the City of Ottawa. As prescribed in the TIA Guidelines, a peak hour factor (PHF) of 0.90 has been considered in the analysis of existing conditions. The Synchro output files have been provided in **Appendix E**.

Table 3-3 Intersection Capacity Analysis: Existing Traffic

| Intersection     | Traffic Control    | Weekday Peak<br>Hour | Overall LOS<br>(v/c or Delay) | Critical Movement<br>(v/c or Delay) |
|------------------|--------------------|----------------------|-------------------------------|-------------------------------------|
| Bank &           | Signalized         | AM                   | A (0.57)                      | EBL (0.65)                          |
| Miikana/Blais    | Signalized         | PM                   | B (0.65)                      | SBT (0.65)                          |
| Bank & Dun       | Signalized         | AM                   | A (0.48)                      | EBL (0.50)                          |
| Skipper          | Signalized         | PM                   | B (0.62)                      | SBT (0.63)                          |
| Findlay Creek &  | l la siana slima d | AM                   | B (11.6s)                     | SBTRL (11.6s)                       |
| Kelly Farm       | Orisignalized      | Unsignalized PM      | B (12.8s)                     | EBTRL (12.8s)                       |
| Kelly Farm &     | Ungianglized       | AM                   | A (8.0s)                      | NBTRL (8.0s)                        |
| Miikana          | Unsignalized       | PM                   | A (8.5s)                      | NBTRL (8.5s)                        |
| Kelly Farm & Dun | Unaignalized       | AM                   | A (7.8s)                      | WBTRL (7.8s)                        |
| Skipper          | Unsignalized       | PM                   | A (7.6s)                      | EBTRL (7.6s)                        |

Based on the above results, all intersections are currently operating at an acceptable Level of Service. There is no evidence of existing capacity issues at any of the study area intersections.

## 3.3 Existing Pedestrian and Cycling Facilities

Figure 3-2 and Figure 3-3 illustrate the existing pedestrian and cycling facilities within the context area.

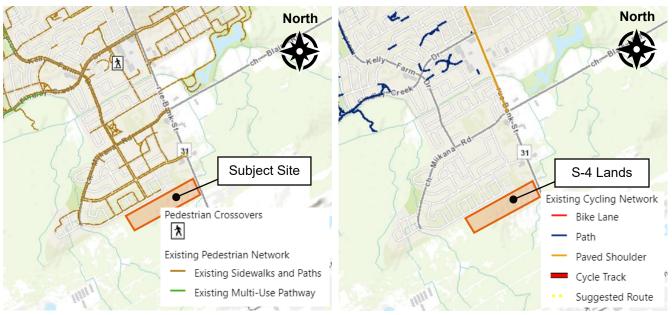



Figure 3-2 Existing Pedestrian Network

Figure 3-3 Existing Cycling Network

Concrete sidewalks are provided on both sides of Kelly Farm Drive, Dun Skipper Drive, Miikana Road, and Findlay Creek Drive, and on one side of several local roads in the area including Paakanaak Avenue.

Cycling facilities in the context area are limited to paved shoulders on Bank Street north of Miikana Road/Blais Road, a shared pathway on Findlay Creek Drive west of Bradwell Way and protected intersections at the intersections of Bank & Miikana and Bank & Dun Skipper.

Missing links, connectivity and desire lines are discussed in Section 6 of this report.

## 3.4 Existing Transit Facilities and Service

 Table 3-4 summarizes the transit routes OC Transpo operates within the context area.

Table 3-4 Existing Transit Routes

| Route            | Route Type                | Terminuses                                               | Peak Period Frequency                                 |
|------------------|---------------------------|----------------------------------------------------------|-------------------------------------------------------|
| #93 <sup>1</sup> | Sunday Only               | Rotary to Leitrim                                        | One trip in the morning and one trip in the afternoon |
| #94              | Weekday, peak period only | Dun Skipper to Leitrim                                   | 30 minutes                                            |
| #304             | Thursday Only             | Billings Bridge/South Keys to<br>Metcalfe/Greely/Osgoode | One trip in the morning and one trip in the afternoon |

<sup>&</sup>lt;sup>1</sup> On Sundays Route #93 follows an alternate route twice per day to provide transit service to the Hindu Temple of Ottawa-Carleton.

www.arcadis.com

TTR\_S4LandsMTS\_MASTER\_2025-10-2010-20 13

**Figure 3-4** below illustrates the path the above transit routes follow within the context area and the Leitrim community.

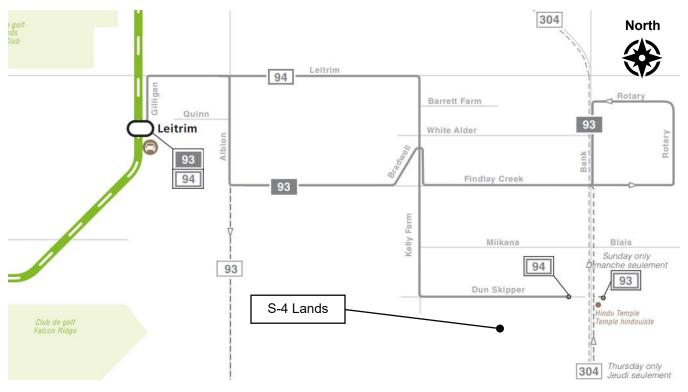



Figure 3-4 Local Transit Network

(Source: OC Transpo)

The transit service maps for the above routes are provided in **Appendix F**.

Based on comments from City staff, it is understood that for planning purposes it should be assumed that a peak period bus has capacity for 45 passengers. Based on existing service frequency, Route #94 therefore has a capacity of approximately 90 passengers per hour (per direction) during the weekday morning and afternoon peak hours. Although there are two other transit routes operating within the study area, these other routes only operate on a single day of the week or are a long walking distance from the site and are therefore unlikely to be used regularly by future residents of the subject site.

The nearest bus stops to the subject lands are located on Kelly Farm Drive near Dun Skipper Drive, approximately 400m north of the subject lands, as illustrated in **Figure 3-5**. There are no transit priority measures (e.g., queue jump lanes, transit-only lanes) within the context area.

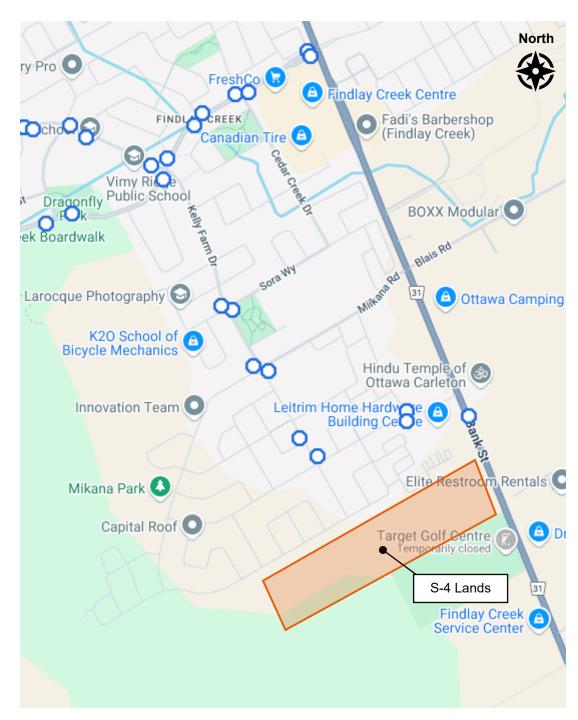



Figure 3-5 Bus Stop Locations (Source: OC Transpo)

## 3.5 Existing Multi-Modal Level of Service

When evaluating roads and intersections, the comfort and safety of all users needs to be assessed and weighed against performance targets. The City of Ottawa has developed the Multi-Modal Level of Service (MMLOS) analysis methodology to allow for the quantitative evaluation of Level of Service for pedestrians, cyclists, transit, and passenger vehicles. The elements considered in the MMLOS analysis for each user group are described below:

- Pedestrian Level of Service (PLOS) evaluates pedestrian comfort, safety, and convenience at intersections
  and along roadway segments. Segment-based PLOS considers the quality of pedestrian facilities, the
  distance between controlled crossings and the impact of adjacent traffic on pedestrian comfort and safety,
  while intersection-based PLOS considers delays experienced by pedestrians and the level of exposure to
  traffic.
- Bicycle Level of Service (BLOS) evaluates the level of traffic stress (LTS) experienced by cyclists travelling
  through intersections or along roadway segments. BLOS takes into consideration both the degree of physical
  separation between cyclists and motorized traffic as well as the operating speed of motorized traffic.
- Transit Level of Service (TLOS) evaluates the reliability of transit based on delays experienced by transit at intersections and travel times along roadway segments.
- Auto Level of Service (ALOS) evaluates the ease of travel for motorized traffic in terms of delays and intersection capacity.

For each travel mode, the City of Ottawa has established a set of MMLOS targets which vary based on Official Plan land use designation or policy area, as well as cycling, transit and roadway network classification. Segment-based MMLOS analysis is completed for boundary roadway segments only, while intersection-based MMLOS analysis is reserved for signalized intersections. For each intersection and roadway segment, an MMLOS score is calculated for the facility, as well as for the worst (critical) portion of the facility. Only the overall MMLOS score is evaluated against the targets.

The following sections summarize the results of the Multi-Modal Level of Service (MMLOS) analysis conducted within the study area for pedestrians, bicycles, transit and auto. Details on the Multi-Modal Level of Service (MMLOS) analysis are provided in **Appendix G**.

It should be noted that the traffic operations analysis presented previously was based on the weekday peak hours, while Automobile Level of Service (ALOS) is evaluated on a peak <u>period</u> basis (i.e. 2.5 hours) through the MMLOS methodology. To convert the peak hour results to peak period results, a 0.84 and 0.92 conversion factor has been applied to the weekday morning and afternoon peak hour v/c results, respectively, in accordance with the guidelines.

The MMLOS analysis results are based on the draft MMLOS Guidelines from the 2025 MMLOS Transportation Guidelines and spreadsheet tool.

## 3.5.1 Segment-Based Multi-Modal Level of Service

For this site, the only existing boundary streets are Bank Street and Kelly Farm Drive. Segment-based MMLOS analysis results are provided in **Table 3-5**.

Table 3-5 Segment-Based MMLOS Analysis Results: Existing Conditions

| Segment                                           | Travel Mode  | Side       | Overall LOS | Critical LOS | Target | Deviation |
|---------------------------------------------------|--------------|------------|-------------|--------------|--------|-----------|
| Bank Street<br>(Dun Skipper<br>to Rideau<br>Road) | Pedestrian   | West       | F           | F            | D      | -2        |
|                                                   |              | East       | F           | F            | Б      | -2        |
|                                                   | Bicycle      | West       | E           | E            | D      | -1        |
|                                                   |              | East       | E           | E            |        | -1        |
|                                                   | Transit      | West       | С           | _            | E      | +2        |
|                                                   |              | East       | С           | -            |        | +2        |
|                                                   | Public Realm | Both Sides | E           | -            | E      |           |
| Kelly Farm                                        | Pedestrian   | West       | Α           | Α            | С      | +2        |
|                                                   |              | East       | Α           | Α            | C      | +2        |
| Drive (Dun                                        | Bicycle      | West       | D           | D            | С      | -1        |
| Skipper to<br>Paakanaak/<br>Rallidale)            |              | East       | D           | D            | C      | -1        |
|                                                   | Transit      | West       | -           |              | E      | -         |
|                                                   |              | East       | -           | -            | Е      | -         |
|                                                   | Public Realm | Both Sides | В           | -            | В      |           |

On Bank Street, the lack of pedestrian or cycling facilities along the site frontage, combined with the high traffic volumes and high operating speeds creates a dangerous and uncomfortable environment for vulnerable road users. Providing dedicated facilities for these road users would be required in order to improve the Level of Service for active transportation modes.

On Kelly Farm Drive, the Bicycle Level of Service is 'D' whereas the City target is 'C'. Lowering the posted speed limit to 40 km/h would be sufficient to achieve the target Level of Service.

#### 3.5.2 Intersection-Based Multi-Modal Level of Service

Intersection-based MMLOS analysis results for the two signalized study area intersections are provided in **Table 3-6**.

Table 3-6 Intersection-Based MMLOS Analysis Results: Existing Conditions

| Intersection                      | Travel Mode | Overall LOS | Critical LOS | Target | Deviation |
|-----------------------------------|-------------|-------------|--------------|--------|-----------|
| Bank & Blais/Miikana <sup>1</sup> | Pedestrian  | С           | С            | В      | -1        |
|                                   | Bicycle     | Α           | В            | С      | +2        |
|                                   | Transit     | Α           | В            | E      | +4        |
|                                   | Auto        | Α           | -            | E      | +4        |
| Bank & Dun Skipper                | Pedestrian  | Α           | В            | В      | +1        |
|                                   | Bicycle     | В           | D            | С      | +2        |

17

| Intersection | Travel Mode | Overall LOS | Critical LOS | Target | Deviation |
|--------------|-------------|-------------|--------------|--------|-----------|
|              | Transit     | Α           | Α            | Е      | +4        |
|              | Auto        | Α           | -            | E      | +4        |

<sup>&</sup>lt;sup>1</sup> Based on the future intersection configuration currently under construction. Refer to Section 4.1 for details on this configuration.

Overall, the existing signalized intersections within the study area generally meet the MMLOS targets for all modes. The exception is the Bank & Miikana/Blais intersection which will not meet the Pedestrian Level of Service target even under its future configuration. The intersection is currently undergoing reconstruction to widen Bank Street which will increase crossing distances and therefore negatively impact Pedestrian Level of Service.

## 3.6 Collision History

A review of historical collision data has been conducted for the road network surrounding the proposed development. The TIA Guidelines require a safety review if at least six collisions for any one movement or of a discernible pattern, over a five-year period have occurred. **Table 3-7** summarizes all reported collisions between January 1, 2017, and December 31, 2022. It should be noted that the last two years of collision data occurred during the COVID-19 pandemic and may have therefore been influenced by the pandemic.

Table 3-7 Historical Collisions

|                                         | # Of Reported Collisions |       |             |                |                          |                            |       |
|-----------------------------------------|--------------------------|-------|-------------|----------------|--------------------------|----------------------------|-------|
| Location                                | Approa-<br>ching         | Angle | Rear<br>End | Side-<br>swipe | Turning<br>Move-<br>ment | Single<br>Motor<br>Vehicle | Total |
| Intersections                           |                          |       |             |                |                          |                            |       |
| Findlay Creek & Kelly Farm              | -                        | -     | 1           | -              | 1                        | -                          | 2     |
| Bank & Blais/Miikana                    | -                        | 3     | 9           | 1              | 2                        | -                          | 15    |
| Bank & Dun Skipper                      | -                        | -     | 2           | -              | 1                        | 1                          | 4     |
| Kelly Farm & Miikana                    | -                        | -     | -           | -              | -                        | -                          | 0     |
| Kelly Farm & Dun Skipper                | -                        | -     | -           | -              | -                        | -                          | 0     |
| Segments                                |                          |       |             |                |                          |                            |       |
| Bank, Blais/Miikana to Dun<br>Skipper   | -                        | -     | 2           | -              | -                        | -                          | 2     |
| Kelly Farm, Findlay Creek to<br>Miikana | 2                        | -     | -           | -              | -                        | 1                          | 3     |
| Kelly Farm, Miikana to Dun<br>Skipper   | -                        | -     | -           | -              | -                        | -                          | 0     |
| Miikana, Kelly Farm to Bank             | -                        | 1     | -           | -              | -                        | -                          | 1     |
| Dun Skipper, Kelly Farm to<br>Bank      | -                        | -     | -           | -              | -                        | 3                          | 3     |

Within the study area, only rear end collisions at the Bank & Blais/Miikana intersection require further review. Of the nine rear end collisions, one occurred when it was dark and road conditions were wet, one occurred while it was raining, another occurred when it was not actively raining but road conditions were wet, and one collision

18

resulted in non-fatal injuries but occurred under ideal driving conditions (i.e., during the daytime with no adverse weather conditions. The remaining four rear end collisions occurred under ideal driving conditions and resulted in property damage only. Four of the nine collisions occurred at midday (i.e., around noon) and three occurred during the afternoon peak period (i.e., 3:30-6:00pm). Overall, there are no obvious patterns associated with these collisions.

Between 2017 and 2022, no fatal collisions were recorded, nor were there any pedestrian or bicycle collisions reported.

## 4 Future Transportation Network

#### 4.1 Future Road Network

The Transportation Master Plan (TMP) Capital Infrastructure Plan outlines future road network modifications required in the 2046 Priority Road Network and has been referenced to identify future road network modifications within the study area. The City's Bank Street Widening project website and the Earl Armstrong Road Extension Environmental Assessment Study (Parsons, November 2019) were also referenced as they provide specific details associated with the planned modifications to these two streets.

The following projects were noted that may have an impact on area traffic within the vicinity of the site:

- Bank Street: Widening from two to four lanes between Leitrim Road and Miikana Road/Blais Road is currently ongoing and completion anticipated to be completed in 2026<sup>2</sup>. Further widening between Miikana Road/Blais Road and the future Earl Armstrong Road extension is expected to be completed by 2046.
- Earl Armstrong Road: Planned extension of Earl Armstrong Road east from its current terminus at High
  Road to Hawthorne Road. The Earl Armstrong Road extension would define the southern boundary of the site
  and would form a three-legged signalized intersection with the Kelly Farm Drive extension as well as form a
  two-lane roundabout where it intersects with Bank Street, according to the Earl Armstrong Road Extension
  Environmental Assessment (2019). The TMP identifies this as a Phase 1 project and it is therefore expected
  that this may be completed within approximately 10 years.

**Figure 4-1** below illustrates the planned changes to the arterial road network projects in the broader area, as per the TMP Priority Road Network.

TTR\_S4LandsMTS\_MASTER\_2025-10-2010-20 19

2

<sup>&</sup>lt;sup>2</sup> https://ottawa.ca/en/city-hall/public-engagement/projects/bank-street-widening-and-reconstruction-south-leitrim-road-south-blais-road#

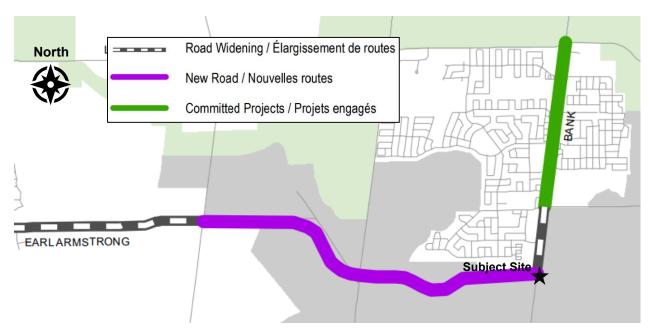



Figure 4-1 Future Road Network Projects

**Figure 4-2** illustrates the location of the subject site relative to the future alignment of the Earl Armstrong Road extension.

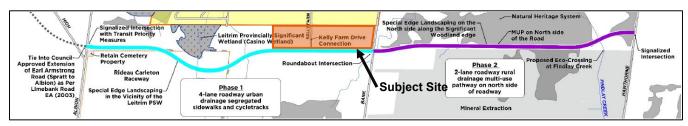



Figure 4-2 Future Earl Armstrong Road Extension Alignment

Figure 4-3 illustrates the future configuration of the Bank & Miikana/Blais intersection.

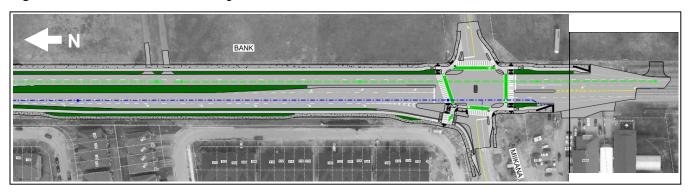



Figure 4-3 Future Bank Street & Miikana Road/Blais Road Intersection

**Figure 4-4** and **Figure 4-5** illustrate the planned configurations for the intersections of Earl Armstrong Road with Bank Street and Kelly Farm Drive, respectively, as extracted from the Earl Armstrong Road EA Recommended Plan.

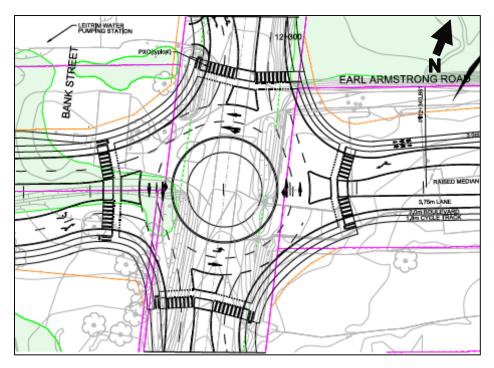



Figure 4-4 Future Bank Street & Earl Armstrong Road Roundabout

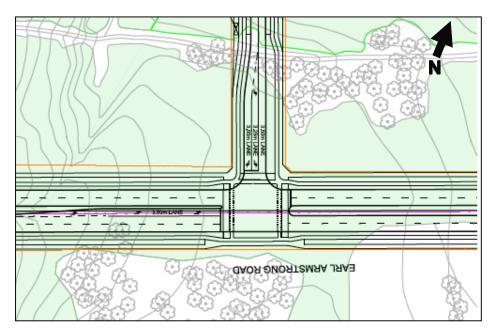



Figure 4-5 Future Earl Armstrong Road & Kelly Farm Drive Intersection

# 4.2 Future Cycling and Pedestrian Facilities

The Official Plan indicates that all urban arterials, major collectors and collectors are cycling routes, regardless of whether they are identified as Cross-Town Bikeways. As such, Bank Street, Findlay Creek Drive, Kelly Farm Drive, Miikana Road and Blais Road are all designated as cycling routes.

The TMP Rural Active Transportation Network indicates that a major pathway will be provided, connecting the Leitrim community to an existing pathway adjacent to the Trillium Line Extension, as illustrated in **Figure 4-6**. This pathway will ultimately connect to a cross-town bikeway which follows the alignment of the Trillium Line Extension.

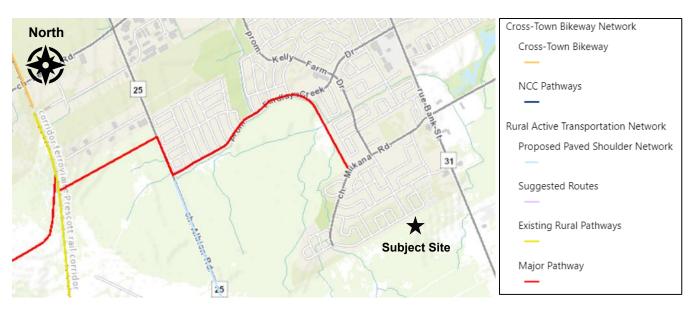
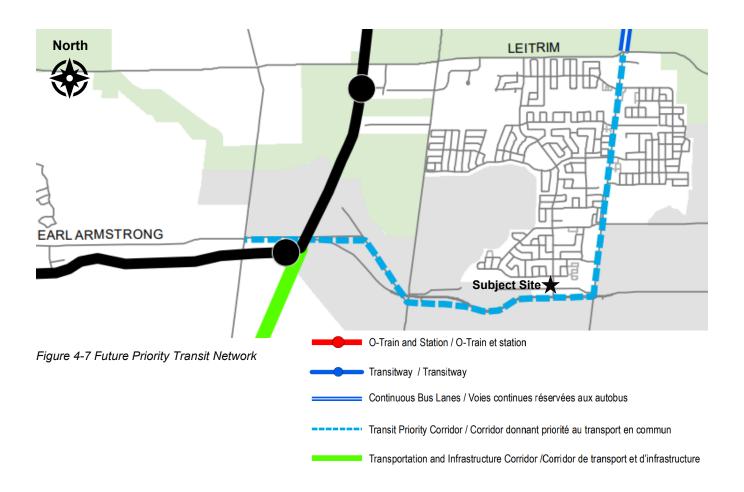



Figure 4-6 Future Rural Active Transportation Network

The TMP also indicates that bike lanes are envisioned on Findlay Creek Drive between Albion Road and Bank Street (where feasible). Sidewalks and cycle tracks will be provided on both sides of Bank Street between Leitrim Road and Miikana Road/Blais Road when it is widened to four lanes, and it is anticipated that this configuration will be extended south if subsequent segments of Bank Street are widened to four lanes as well.

Sidewalks and cycle tracks are also envisioned on both sides of the Earl Armstrong Road extension, transitioning to a multi-use path (MUP) east of Bank Street.


## 4.3 Future Transit Facilities and Service

The TMP Priority Transit Network outlines the transit network modifications which are expected to be implemented by 2046. The following projects were identified that may have an impact on future travel demand in the vicinity of the proposed development:

- Conroy Road Continuous Bus Lanes and Transit Priority Corridor The TMP recommends that
  continuous bus lanes be provided along the northern half of Conroy Road, with transit priority measures along
  the southern half.
- Bank Street Continuous Bus Lanes and Transit Priority Corridor The TMP recommends that continuous bus lanes be provided on Bank Street between Leitrim Road and Conroy Road. Between Leitrim Road and the future Earl Armstrong Road extension, the report recommends that transit priority measures (e.g., queue jump lanes, transit priority signals, etc.) be provided.
- Earl Armstrong Road Extension The TMP indicates that the Earl Armstrong Road extension will be a transit priority corridor between Bowesville Road and Bank Street and will provide connectivity to the planned Park & Ride at Bowesville Station.

Figure 4-7 illustrates the future transit network envisioned in the vicinity of the subject site based on the TMP.

### S-4 Leitrim West of Bank Lands Master Transportation Study



TTR\_S4LandsMTS\_MASTER\_2025-10-2010-20 24

## 4.4 Future Adjacent Developments

In 2017, a Master Transportation Study (MTS) was undertaken by IBI Group (now Arcadis) for the Leitrim community, which considered the cumulative impact of all development lands within the Bank Street corridor. Since this MTS was completed, additional development applications have been submitted for some of the blocks within the subdivisions that were included in the MTS. **Table 4-1** below summarizes the land use details and status of these developments. The location of these developments is shown in **Exhibit 4-1** below.

Table 4-1 Future Adjacent Developments

| Development Name                            | Land Use                                   | Size                    | Anticipated<br>Buildout | Status <sup>3</sup>                                                                                           |
|---------------------------------------------|--------------------------------------------|-------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------|
| Barrett Lands                               | Residential                                | 797 units               | 2029                    | Under construction, partially occupied                                                                        |
| Barrett Lands<br>Extension                  | Residential                                | 150 units               | 2022                    | Fully built-out and occupied                                                                                  |
| Findlay Creek Stage<br>2 Phase 4C           | Residential                                | 240 units               | -                       | Fully built-out and occupied                                                                                  |
| Transport Canada<br>Lands                   | Residential                                | 231 units               | 2029                    | No construction started                                                                                       |
| Cowan's Grove &<br>Lilythorne (OPA 76       | Residential                                | 1,319 units             | 2029                    | Under construction, partially occupied                                                                        |
| Areas 9a & 9b)                              | Commercial                                 | 13.6 acres <sup>1</sup> | 2029                    | 3.5 acres built-out and occupied                                                                              |
| Pathways (Remer & Idone Lands) <sup>2</sup> | Residential                                | 1,155 units             | 2029                    | Under construction, partially occupied                                                                        |
| 4791 Bank Street                            | Residential                                | 102 units               | 2022                    | Under construction                                                                                            |
| 4816 Bank                                   | Residential                                | 188 units               | TBD                     | No construction started                                                                                       |
|                                             | Hardware Store                             | 2,997 m <sup>2</sup>    | 2022                    | Fully built-out and occupied                                                                                  |
| 4836 Bank Street                            | Senior<br>Apartments                       | 141 units               | 0000                    |                                                                                                               |
|                                             | Restaurant                                 | 502 m <sup>2</sup>      | 2023                    | No construction started                                                                                       |
|                                             | Commercial                                 | 1,865 m <sup>2</sup>    |                         |                                                                                                               |
| 4840 Bank Street                            | Residential                                | 180 units               | 2025                    | Fully built-out, however, it was still under construction at the time that the traffic counts were undertaken |
| 150 Dun Skipper<br>Drive                    | Commercial<br>(including a<br>supermarket) | 5,416 m <sup>2</sup>    | 2026                    | No construction started                                                                                       |


#### Notes:

25

<sup>&</sup>lt;sup>1</sup> Formerly 17 acres, however, 3.4 acres have been subtracted as they are now part of the 4791 Bank Street development.

<sup>&</sup>lt;sup>2</sup> Formerly there was 26 acres of commercial lands, however, these lands have been subtracted as they are now part of the 4816 Bank Street, 4836 Bank Street, 4840 Bank Street and 155 Dun Skipper Drive developments.

<sup>&</sup>lt;sup>3</sup> It is important to understand the current status of the adjacent developments in order to properly account for the traffic generated by any units that have already been constructed and occupied. The status of the adjacent developments was established based on Google Earth aerial imagery from September 2024.



Master Transportation Study

# 5 Vision, Objective and Targets

## 5.1 Community Vision

The vision for the subject urban expansion land is to provide housing for people of all ages, income levels and backgrounds, to support active transportation and healthy living, and to be well connected to existing amenities in the surrounding area. Central to this vision is the creation of 15-Minute Neighbourhoods, in which most daily needs of residents can be fulfilled within a 15-minute walk, which is generally equivalent to a 1,200m walking distance.

The following describes how the subject expansion lands will adhere to the Official Plan's "Big Policy Moves"

- 1. More Growth by Intensification than by Greenfield Development: The Official Plan seeks to accommodate 60% of future growth within the existing urban areas, with the remainder to be accommodated in undeveloped areas within the urban boundary and through expanding the urban boundary. The subject site has been identified by the Official Plan as an urban boundary expansion area and therefore will accommodate part of the 40% of growth which is to be accommodated outside the existing urban areas.
- 2. **By 2046, the Majority of Trips Will be Made by Sustainable Transportation:** The Official Plan targets an average city-wide auto driver mode share of less than 50%. As described later in Section 5.3.1, the auto driver mode share target for this community is 50%. It is expected that more central portions of the city will have a lower auto driver mode share which will balance out the higher auto driver mode share of the subject site such that the average city-wide auto driver mode share meets the target.
- 3. **Improve Sophistication in Urban and Community Design:** The subject site will adhere to good urban and community design principles by providing a variety of housing types and providing connections to nearby elements of 15-minute neighbourhoods.
- 4. Embed Environmental, Climate and Health Resiliency and Energy into Planning Policies: To support the future livability of Ottawa, the community will be designed as a 15-minute neighbourhood by providing convenient connections to nearby amenities. This will minimize the number of trips by personal vehicle future residents will need to make, thereby reducing emissions.
- 5. **Embed Economic Development into Planning Policies:** The subject site will help support economic development by providing residents a place to live and supporting nearby businesses.

## 5.2 Development Objectives

In order to achieve the above Vision, the following objectives have been established for the development of the subject lands:

- The community shall include a diversity of residential building typologies at different price ranges and sizes to suit people of different ages, incomes and life stages.
- The design of the transportation network shall take a more deliberate approach to the allocation of space for automobiles and prioritize the role of public transit and active transportation.
- The use of transit shall be encouraged by providing safe and convenient infrastructure and connections.

## 5.3 Transportation Targets

The Vision and Objectives define the overall strategic direction for the community as well as the goals in which the City hopes to achieve through the development of these urban expansion lands. The targets establish the specific means by which these goals will be achieved. The following targets identify how the transportation objectives shall be achieved:

- All pedestrian facilities shall be designed to be universally accessible.
- An active transportation connection (i.e., "shortcut") shall be provided in the northwest corner of the site to
  provide connectivity to Paakanaak Avenue. A pedestrian and cycling connection shall also be provided along
  the eastern boundary of the site connecting to Bank Street.
- Streets shall be designed for lower vehicle speeds, with space for trees and greenery, and a vibrant public realm.
- Opportunities for controlled or uncontrolled pedestrian crossings shall be considered along higher order streets to ensure there are frequent crossing opportunities for pedestrians.
- The road network shall be designed in such a way to minimize cut-through traffic and encourage low vehicle operating speeds.
- All streets within the community shall be designed as access streets.
- A future road block connection, identified as Block 80 on the Draft Plan of Subdivision, has been provided as
  part of the proposed development connecting the subject site to the westerly lands, should the roadway
  network be extended. This is consistent with other neighbourhoods at the edge of urban areas in the City of
  Ottawa.
- The right-of-way width allocated to all new streets shall be in accordance with Schedule C16 of the City of
  Ottawa Official Plan: 14.75m for single-loaded local streets, 18m for double-loaded local streets and 26m for
  collector streets.
- Measures shall be implemented to ensure transit service can be provided within 400m walking distance of 95% of residents. Of critical importance will be ensuring transit service can be provided within an acceptable walking distance prior to the extension of Earl Armstrong Road.

### **5.3.1** Mode Share Targets

Although light rail transit (LRT) service will be provided at the Leitrim Park & Ride as well as an additional station at Bowesville Road, the site's distance of over 4 kilometres from either of these rapid transit stations may limit the transit mode share of this future community as it would only be reasonably accessible through local transit 'feeder bus' service, or through the use of Park and Ride facilities.

Although amenities such as grocery stores and restaurants are currently located more than a 15-minute walk from the site, there are two proposed developments at the intersection of Bank & Dun Skipper which will greatly improve access to these types of amenities. Combined with other existing amenities that are within a 15-minute walk, such as two schools, several parks and a place of worship, it is expected that a relatively large number of daily necessities could be accessed by non-auto travel modes.

Based on data from the 2011 TRANS Origin-Destination Survey Report, approximately 35% and 28% of weekday morning and afternoon peak period trips, respectively, are school, shopping or leisure trips.

Only a portion of school trips<sup>3</sup> are expected to be accommodated by the two English elementary public schools that are within walking distance of the site. Considering the typical number of years of education students undertake (16<sup>4</sup>), as well as the proportion of elementary students that go to English public schools (51%), only 32% of those categorized in the O-D Survey as "school trips" are likely to attend the local schools. The remainder are expected to attend school elsewhere. Once this has been accounted for, only 13% and 28% of weekday morning and afternoon peak period trips, respectively, are expected to be accommodated by local amenities (i.e., the nearby schools, parks, retail, etc.).

For trips less than one kilometre in distance, the Transportation Trends Report (Arcadis, May 2024) indicates that approximately 60% are expected to be active transportation trips (i.e., walking or cycling) and the remainder will be auto driver or passenger trips.

With consideration of the factors outlined above, mode share targets have been developed for the subject lands and are illustrated in **Table 5-1**.

To remain conservative, the trip generation exercise undertaken for this study applied the more conservative existing 'blended' mode share distribution.

| Table 5_1  | Evicting on | d Taraet Mode | Chara  | Distributions |
|------------|-------------|---------------|--------|---------------|
| I able 5-1 | LAISHIN AII | ı Taluci Mouc | Julait | DISHIDUHUIS   |

| Mode           | Existing Mode<br>Share (Single-<br>Detached) <sup>1</sup> | Existing Mode<br>Share (Multi-Unit<br>(Low-Rise))¹ | Existing Blended<br>Mode Share <sup>2</sup> | Mode Share<br>Targets |
|----------------|-----------------------------------------------------------|----------------------------------------------------|---------------------------------------------|-----------------------|
| Auto Driver    | 55%                                                       | 61%                                                | 59%                                         | 50%                   |
| Auto Passenger | 24%                                                       | 19%                                                | 20%                                         | 17%                   |
| Transit        | 11%                                                       | 16%                                                | 15%                                         | 20%                   |
| Bike           | 1%                                                        | 1%                                                 | 1%                                          | 2%                    |
| Walk           | 9%                                                        | 3%                                                 | 5%                                          | 11%                   |
| Total          | 100%                                                      | 100%                                               | 100%                                        | 100%                  |

Notes:

The mode share targets consider an active transportation target of 13% to reflect number of peak period trips that existing and future amenities nearby can likely support. This target also considers the fact that even when amenities are located within a short walking distance, 40% people continue to choose to drive. New direct transit routes to the Leitrim LRT station are assumed to result in an increase in ridership. In addition, the presence of LRT service to the Leitrim community is likely to see a further shift in mode from automobile to transit through the use of the Park-and-Ride lot adjacent to the station. As these trips will continue to leave the study area as auto trips, no changes to the localized mode shares have been made with respect to new park-and-ride users.

TTR\_S4LandsMTS\_MASTER\_2025-10-2010-20 29

<sup>&</sup>lt;sup>1</sup> Average of AM and PM peak period mode shares from the 2020 TRANS Trip Generation Summary Report.

<sup>&</sup>lt;sup>2</sup> Weighted average mode shares based on the projected blend of single-detached and multi-unit (low-rise) units.

<sup>&</sup>lt;sup>3</sup> School trips include trips to pre-school, elementary, high school, and post-secondary institutions.

<sup>&</sup>lt;sup>4</sup> It is assumed that a typical student will attend two years of pre-school, eight years of elementary, four years of high school, and two or more years of post-secondary education.

## 6 Opportunities and Constraints

The size of the subject lands and the minimal frontage along an existing public roadway presents a challenge as to how the lands can be configured for development. At present, the site has only one roadway connection via Kelly Farm Drive to the north, while to the east there is only 20 metres of available frontage on Bank Street. The site is bounded by an existing residential community to the north, various properties along Bank Street to the east, undevelopable terrain to the west, and a future arterial roadway alignment to the south.

The greatest uncertainty with respect to the development of these lands is the potential extension of Earl Armstrong Road along the site's southern boundary. Although the establishment of this major roadway will provide solutions to many mobility constraints for these lands, the design of the subject lands must take into consideration the uncertain timing of this roadway and thus be able to be developed independently, while provisioning for its potential implementation.

## 6.1 Opportunities

**Roads** – In accordance with the Earl Armstrong Extension functional design, Kelly Farm Drive will eventually be extended south from Paakanaak Avenue/Rallidale Street thereby connecting this collector road to the future arterial road network.

At the eastern boundary of the site, there is 20m of frontage on Bank Street which could permit a direct local road connection to the arterial road network. This frontage on Bank Street is located 150m (centreline to centreline) north of the future Bank & Earl Armstrong roundabout. Given the short distance between the roundabout and this potential intersection, the maximum speed within the roundabout could be used as a design speed for a northbound left-turn into this hypothetical road connection. For a 50 km/h design speed (typical maximum speed within a multi-lane roundabout) the minimum length required for a northbound left-turn lane is 75m, including 15m of storage, deceleration length and taper. As such, there is potentially sufficient space for a left-turn lane to be provided at this location, though there are a number of other considerations that negatively influence the feasibility of this access, as discussed in Section 6.2 below.

**Pedestrian Facilities** – Pedestrian facilities along the future Kelly Farm Drive extension would provide connectivity to the existing pedestrian network to the north, as well as connectivity to future pedestrian facilities along the Earl Armstrong Road extension. The 20m of frontage on Bank Street at the eastern boundary of the site could provide connectivity to future active transportation facilities on Bank Street. Additionally, a mid-block active transportation connection to Paakanaak Avenue in the form of a multi-use path could be provided via an existing servicing block at the northwestern corner of the site.

**Cycling Facilities** – A future Kelly Farm Drive extension will allow cyclists to connect to the future pathway linking Miikana Road to the city-wide cycling network as well as future cycling facilities along the Earl Armstrong Road extension. A cycling connection to Bank Street along the 20m of frontage on that street could also provide connectivity to future cycling facilities on Bank Street

**Transit Facilities** – Direct local transit connections to Leitrim Station could be provided via Kelly Farm Drive to the core of the subject lands on an interim basis, while a direct local transit connection to Bowesville Station could be provided in the future once Earl Armstrong Road is extended to Hawthorne Road.

**15-Minute Neighbourhoods** – A number of essential services will be located at the Bank & Dun Skipper intersection, within a short walking distance of the site. Additional development land may be available around the

Bank & Blais/Milkana intersection for essential services in close proximity to the subject site through the future development of the S-5 Leitrim East of Bank Street lands.

### 6.2 Constraints

**Roads** – Although there is an opportunity to provide a road connection to Bank Street, there are a number of constraints associated with such a road connection:

- Any connection to Bank Street along the 20m of frontage would likely need to be classified as a local road.
   Collector roads generally require a minimum of 24m-26m of right-of-way width, though can be as narrow as 22m.
- Local-to-arterial connections are generally discouraged as it does not respect the typical hierarchy of road
  classifications. Best practice is for local roads to connect to collector roads, and for collector roads to connect
  to arterial roads.
- Signalization of the intersection may not be feasible due to the narrow right-of-way available and lack of sufficient 'corner triangles'. Without signalization, delays on the side street approaches are likely to be high (i.e., LOS 'F').
- The location of the intersection does not meet the minimum 200m intersection spacing recommended for intersections on arterial roads.
- Providing a southbound right-turn lane would be prohibitively expensive due to the need for a box culvert extension under Bank Street.
- To discourage cut-through traffic along such a road connection or avoid it from becoming a primary access, it
  would be necessary for the internal street network to be highly circuitous with a high level of traffic calming to
  discourage the use of this road by non-local traffic and maintain 30 km/h operating speeds.
- Local roads cannot accommodate transit service.
- There is the potential that the intersection will be restricted to right-in/right-out only if Bank Street is ever widened to four lanes.

Along the future Earl Armstrong Road extension, the location of the Earl Armstrong & Kelly Farm intersection has been pre-determined through the Environmental Assessment process for that road which will limit the feasibility of providing additional vehicular connections along the southern boundary of the site. The TAC Geometric Design Guide for Canadian Roads indicates that the minimum distance between intersections required along arterial roads is 200m, though 400m spacing is desirable. Two additional local road connections to the future Earl Armstrong Road extension could therefore be provided, however, these connections would be relatively redundant given that Earl Armstrong & Kelly Farm intersection will provide a superior level of access as a signalized intersection.

**Pedestrian Facilities** – Currently, there are no pedestrian facilities on Bank Street which limits the site's connectivity to nearby amenities and would require future residents to use a more circuitous path within the community to access those amenities. This limits the viability of walking as a means of meeting daily needs.

**Cycling Facilities** – Currently, there are no cycling facilities on Bank Street adjacent to the site, nor the existing portions of Kelly Farm Drive. Although cycle tracks are now required on all new collector roads, providing cycle tracks along a future 180m segment of Kelly Farm Drive within the subject site would serve no purpose on an

#### S-4 Leitrim West of Bank Lands Master Transportation Study

interim basis without the presence of the Earl Armstrong extension or cycle tracks along the remainder of Kelly Farm Drive. These cycle tracks would be isolated and minimally used in the interim.

In addition to the above constraints, until the Earl Armstrong Road extension is complete there will be no protected crossings on Bank Street along the site's frontage that would allow cyclists to access the future northbound cycle tracks on Bank Street, thereby forcing northbound cyclists to travel north on Kelly Farm Drive to reach the Bank/Dun Skipper signalized intersection.

**Transit Facilities** – Although a transit connection could be provided to Bank Street for the purposes of bus service looping, such a connection would only be required for a short time period (potentially 5 years) and buses would experience significant delays (i.e., LOS 'F') when turning left onto Bank Street.

Alternatively, a cul-de-sac could be provided at the end of Kelly Farm Drive on an interim basis to facilitate the necessary bus service until such time the Earl Armstrong Road extension is in place, although this cul-de-sac would temporarily use some of the developable land as there is insufficient space within the 26 m right-of-way of Kelly Farm Drive for a cul-de-sac. The cul-de-sac also could not occupy the space that the future Earl Armstrong Road extension will occupy as it would need to remain operational during the construction of the road.

A third alternative would be to loop bus service along Miikana Road (collector), Paakanaak Avenue (local) and Kelly Farm Drive (collector). This would not provide the same level of transit coverage as the above two options, but it would avoid the negative consequences noted above and minimize the need for constructing temporary road infrastructure.

**15-Minute Neighbourhoods** – Small-scale neighbourhood retail is not feasible due the lack of a customer base as a result of the site's location at the periphery of the city and the uncertainty regarding the timing of the Earl Armstrong Road extension. As discussed in Section 6.1, essential services will be available within a 15-minute walking distance of the site.

### PART 2: CONCEPT PLAN DEVELOPMENT

# 7 Community Design

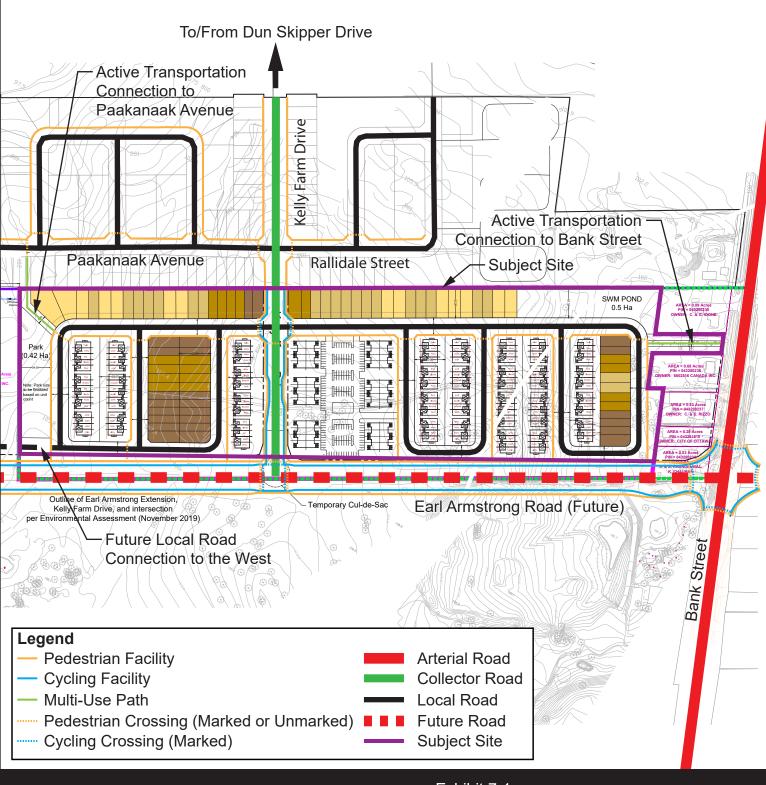
This section of the report provides an overview of the high-level evaluation completed to develop the configuration of the community transportation network. The concept plan that has been developed for the subject site is shown in **Exhibit 7-1** below.

## 7.1 Transportation Network Layout

The following subsections describe the configuration of the road, transit, pedestrian and cycling networks within the subject site.

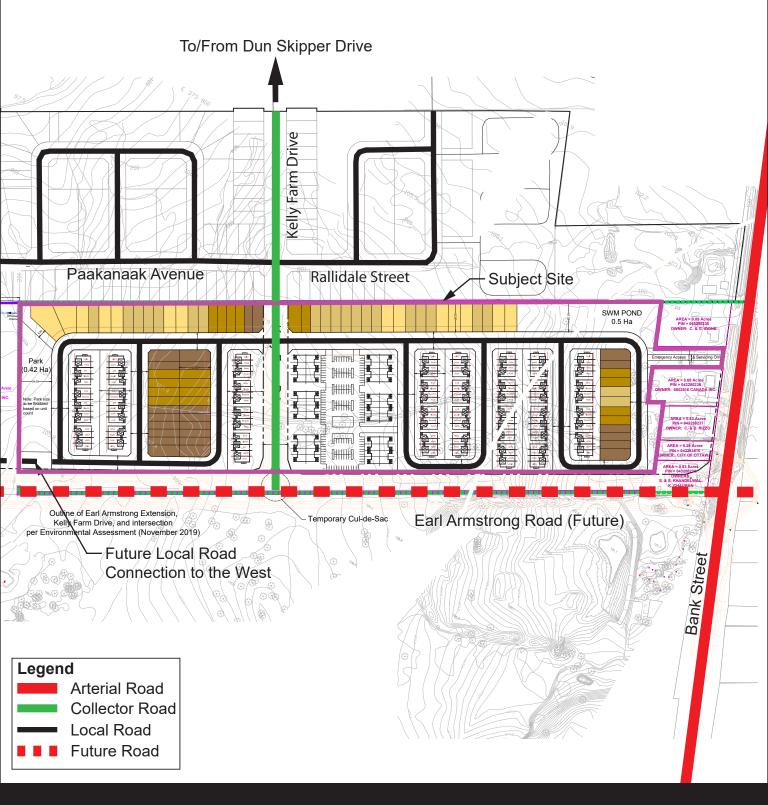
### 7.1.1 Road Network Layout

As noted in Section 6, extending Kelly Farm Drive south to the future Earl Armstrong Road extension presents a key opportunity to provide connectivity to the existing and future road, pedestrian and cycling networks to the north. Once Earl Armstrong Road is extended, Kelly Farm Drive would also provide direct connectivity to the arterial road network and the pedestrian and cycling facilities proposed along this corridor.


The review of opportunities and constraints also identified the possibility of a road connection to Bank Street. Preliminary analysis has identified a number of challenges associated with providing such a connection (see Section 6.2) which would make such a road connection undesirable. The analysis also suggests that this road connection is not a technical requirement for the development of the lands as the existing intersections to the north have sufficient capacity to accommodate the traffic demand that would be generated by the community. As such, a vehicular connection to Bank Street is not recommended.

A future road block connection, identified as Block 80 on the Draft Plan of Subdivision, has been provided as part of the proposed development connecting the subject site to the westerly lands, should the roadway be extended. This is consistent with other neighbourhoods at the edge of urban areas in the City of Ottawa.

As vehicular access to the subject site will be provided via an extension of Kelly Farm Drive rather than a new road connection to an existing street, it is not possible to comment on existing driveways within 200m of the proposed driveways, as no driveways are proposed.


**Exhibit 7-2** illustrates the proposed road network for the subject site. Due the constraints of the site, there are limited alternative configurations for the primary road network.











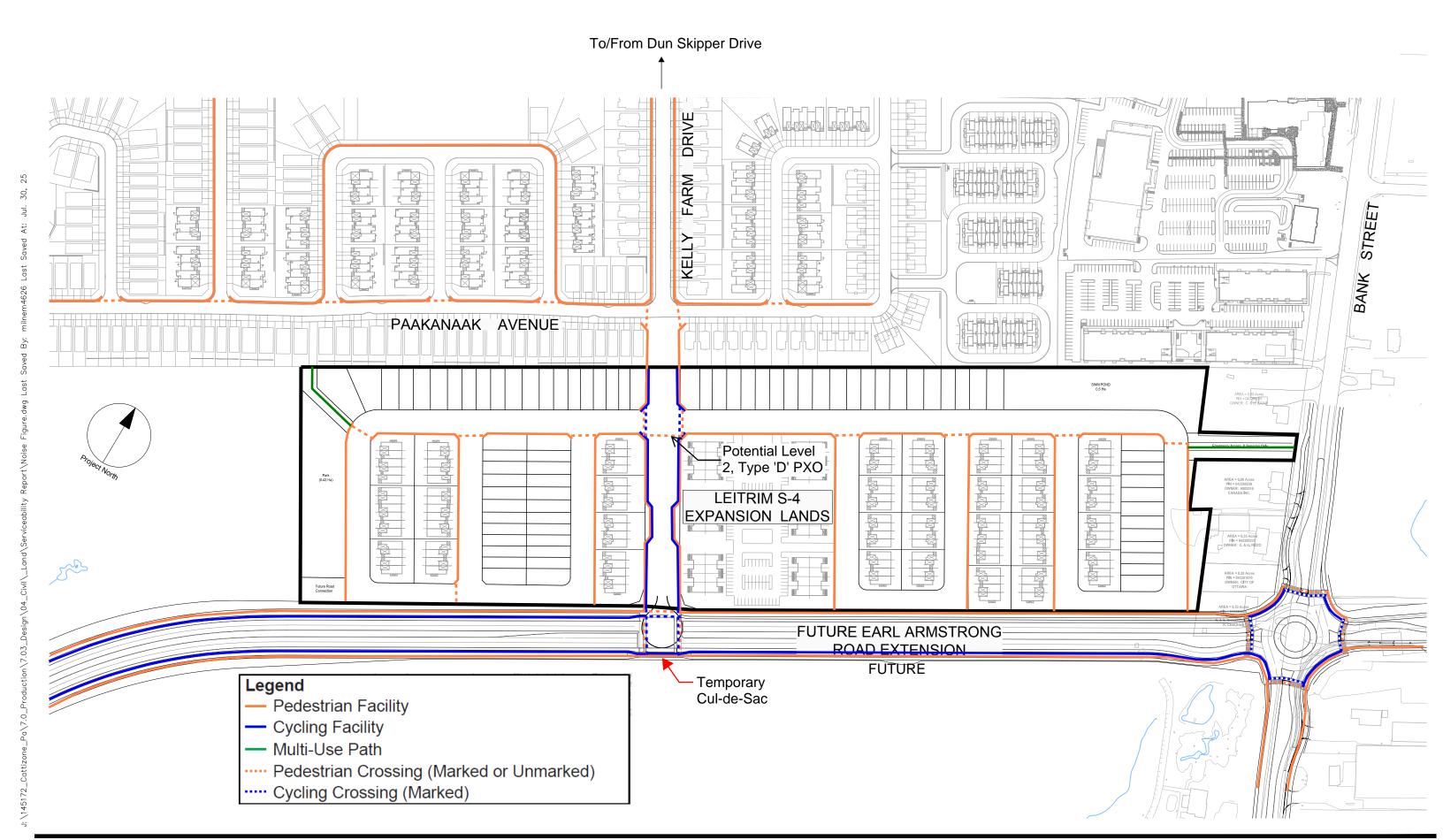
#### 7.1.2 Transit Network

During a meeting with City staff on June 2, 2025, it was agreed that a local road connection to Bank Street was undesirable, however, the City requested that a review be undertaken to assess whether there would be merit in providing a transit-only connection to Bank Street on an interim basis until such time as the Earl Armstrong Road extension is complete. Three alternative options for providing transit service to the subject site were evaluated and the results of the analysis was summarized in the Transit Service Alternative Review memorandum (Arcadis, June 2025), see **Appendix H**. Based on the results of this review, the following transit service alternative is recommended:

- Interim Conditions (prior to Earl Armstrong Road extension): Loop transit service along Miikana Road (collector), Paakanaak Avenue (local) and Kelly Farm Drive (collector).
- Future Conditions (after the extension of Earl Armstrong Road): Provide transit service along Kelly Farm Drive and Earl Armstrong Road.

Under interim conditions, the recommended transit routing will provide transit service within 400 m of 85% of residents within the subject site. Although this transit routing does not meet the 95% transit coverage target for the subject site, it will significantly improve transit coverage for the Pathways Subdivision to the north. When considering the overall transit coverage of both the Pathways Subdivision and the subject site, 98% of residents will be located within 400 m of transit. See **Appendix H** for further information on the recommended transit service routing for interim conditions.

Following the submission of the Transit Service Alternative Review memorandum, City technical staff indicated that transit service would not be extended directly into the subject site at this time, as the majority of the area is already within a 400-metre radius of existing bus stops on Dun Skipper Drive. Over the longer term, transit service will be introduced along Kelly Farm Drive and the future Earl Armstrong Road extension. Once this new transit routing is in place, it is anticipated that all residents within the subject site will be within 400 m of transit. The Earl Armstrong Road extension will also provide an opportunity for more direct service to O-Train Line 2 via transit routes to Bowesville Station.


## 7.1.3 Active Transportation Network

Active transportation is proposed to be accommodated via sidewalks on at least one side of all local roads and on both sides of Kelly Farm Drive, consistent with Official Plan requirements. Cycle tracks will also be provided on both sides of the portion of Kelly Farm Drive within the subject site.

Two active transportation connections to the adjacent community are recommended:

- A multi-use path is recommended in the northwest corner of the site to provide connectivity to Paakanaak
  Avenue. This will improve connectivity with the neighbourhood to the north and provide a shorter, more direct
  route to/from Dun Skipper Park.
- A multi-use path is recommended at the eastern boundary of the site to connect the community to Bank Street. Once pedestrian and cycling facilities are extended south on Bank Street to this point as part of a future urbanization project this will provide the most direct route for residents to/from key amenities such as the Findlay Creek Shopping Centre and the Cowan's Grove Plaza.

**Exhibit 7-3** below illustrates the proposed active transportation network.





Project Title

Drawing Title

### 7.2 Street Cross-Sections

It is anticipated that none of the residential properties will front onto Kelly Farm Drive and instead they will all have driveways located on local roads. As such, there is no benefit in providing additional street width on Kelly Farm Drive for on-street parking and the space usually used for parking will instead be allocated towards additional green space.

Figure 7-1 illustrates the proposed street cross-section for Kelly Farm Drive.

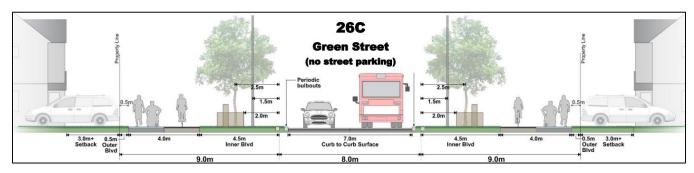



Figure 7-1 Proposed Kelly Farm Drive Cross-Section

(Source: Designing Neighbourhood Collector Streets, City of Ottawa and Parsons, December 2019)

In accordance with the City of Ottawa's local street standard cross-sections approved in 2022, all double-loaded local roads within the subject lands are recommended to have an 18.0m right-of-way which will provide space for on-street parking, 1.8m wide sidewalks and treed boulevards, while single-loaded local streets (i.e. 'window streets') within the site are recommended to have a 14.75m right-of-way, with similar cross-section characteristics.

# 7.3 Land Use Projections

Based on initial land use projections for the site, the following number of residential units are expected.

Table 7-1 Land Use Statistics

| Land Use              | Size |
|-----------------------|------|
| Single-Family Home    | 77   |
| Regular Townhome      | 131  |
| Back-to-Back Townhome | 96   |

## 7.4 Analysis Years and Time Periods

It is anticipated that the subject site will be fully built out in a single phase and occupied by 2031. The following analysis years will therefore be considered in this study:

- Year 2031 Year of development buildout
- Year 2036 Five years after development buildout

Given residential nature of the subject site, intersection capacity analysis will be limited to the peak hours of weekday morning and afternoon.

## 7.5 Community Generated Traffic

### 7.5.1 Peak Period Person-Trip Generation

Peak period person-trips associated with the subject site were estimated using the trip generation rates from the 2020 TRANS Trip Generation Summary Report. The peak period person-trip generation results for the subject site are summarized in **Table 7-2**.

Table 7-2 Peak Period Person-Trip Generation

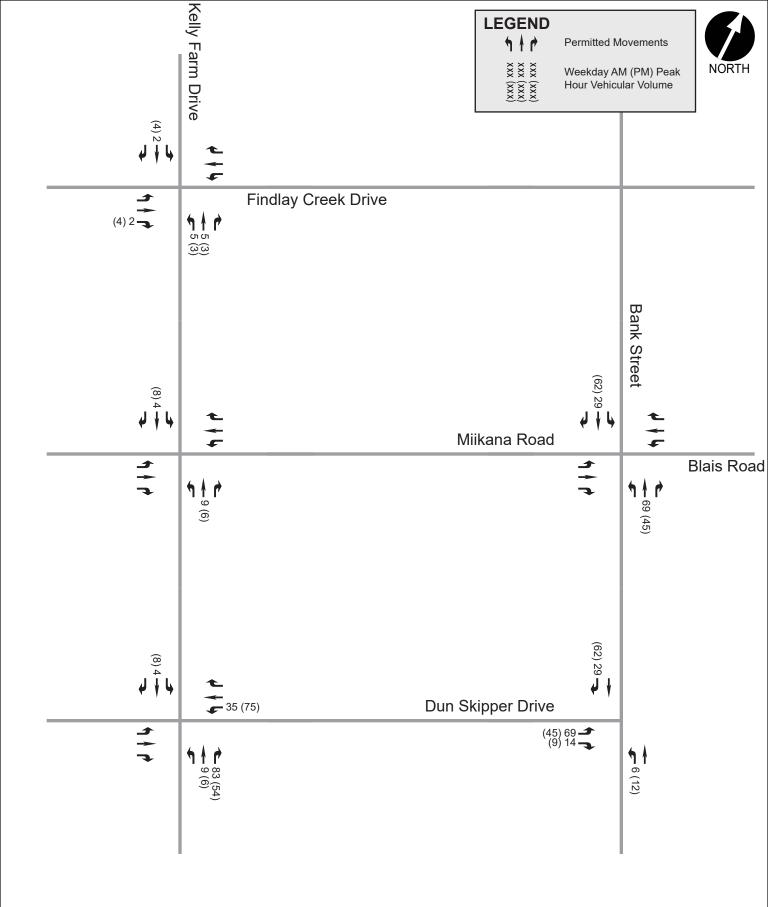
| Land Use            | Size      | Period | Peak Period Person-Trips |     |       |
|---------------------|-----------|--------|--------------------------|-----|-------|
| Lanu USE            |           |        | In                       | Out | Total |
| Single-Family Homes | 77 units  | AM     | 47                       | 111 | 158   |
|                     |           | PM     | 118                      | 73  | 191   |
| T                   | 227 units | AM     | 92                       | 214 | 306   |
| Townhouses          |           | PM     | 201                      | 158 | 359   |
| Total               |           | AM     | 139                      | 325 | 464   |
|                     |           | PM     | 319                      | 231 | 550   |

### 7.5.2 Trip Generation by Mode

The mode share targets from Section 5.3.1 were applied to the peak period person-trips to determine the number of person-trips per travel mode. Peak period to peak hour adjustment factors from Table 4 of the 2020 TRANS Trip Generation Summary Report were subsequently applied to convert to peak hour trips.

The resulting number of person-trips by mode is summarized in **Table 7-3**.

Table 7-3 Development-Generated Peak Hour Person Trips by Mode


| Land Use       |    | AM Peak Hour |       |     | PM Peak Hour |       |  |
|----------------|----|--------------|-------|-----|--------------|-------|--|
| Land USE       | In | Out          | Total | In  | Out          | Total |  |
| Auto Driver    | 39 | 92           | 131   | 83  | 60           | 143   |  |
| Auto Passenger | 13 | 31           | 44    | 28  | 20           | 48    |  |
| Transit        | 11 | 27           | 38    | 22  | 16           | 38    |  |
| Bike           | 1  | 2            | 3     | 2   | 1            | 3     |  |
| Walk           | 4  | 9            | 13    | 8   | 6            | 14    |  |
| Total          | 68 | 161          | 229   | 143 | 103          | 246   |  |

### 7.5.3 Trip Distribution and Assignment

The City of Ottawa provided EMME model results for future 2031 conditions which provide an indication of how traffic is expected to distribute in the future. Based on these projections, it is expected that site-generated traffic will be distributed as follows:

- 75% to/from the North via Bank Street
- 5% to/from the North via Kelly Farm Drive
- 15% to/from the South via Bank Street
- 5% to/from the West via Findlay Creek Drive

Utilizing the estimated number of new auto trips and applying the above distribution, future site-generated traffic volumes at each of the study area intersections was calculated and is illustrated in **Exhibit 7-4**.



# 8 TIA Exceptions Review

The TIA Guidelines provide exemption considerations for elements of the Design Review and Network Impact components. **Table 8-1** summarizes the TIA modules that are not applicable to this study.

Table 8-1 Exemptions Review

| TIA Module                                    | Element                             | Exemption Considerations                                                                                                                                                                                                                                                                                                                                                                   | Required |
|-----------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Design Review Co                              | mponent                             |                                                                                                                                                                                                                                                                                                                                                                                            |          |
| 4.1 Development                               | 4.1.2 Circulation and Access        | Only required for site plans                                                                                                                                                                                                                                                                                                                                                               | ×        |
| Design                                        | 4.1.3 New Street<br>Networks        | Only required for plans of subdivision                                                                                                                                                                                                                                                                                                                                                     | <b>√</b> |
| 4.0 Dankin u                                  | 4.2.1 Parking<br>Supply             | Only required for site plans                                                                                                                                                                                                                                                                                                                                                               | X        |
| 4.2 Parking                                   | 4.2.2 Spillover<br>Parking          | No longer required based on the June 2023 revisions to the TIA guidelines.                                                                                                                                                                                                                                                                                                                 | ×        |
| Network Impact C                              | omponent                            |                                                                                                                                                                                                                                                                                                                                                                                            |          |
| 4.5<br>Transportation<br>Demand<br>Management | All Elements                        | Not required for site plans expected to have fewer<br>than 60 employees and/or students on location at<br>any given time                                                                                                                                                                                                                                                                   | ✓        |
| 4.6<br>Neighbourhood<br>Traffic Calming       | All Elements                        | <ul> <li>Only required when the following conditions are met:</li> <li>1. Access via a collector or local road</li> <li>2. Adjacent to two significant sensitive land uses</li> <li>3. Zoning By-Law Amendment or Draft Plan of Subdivision application</li> <li>4. At least 75 vehicle-trips</li> <li>5. Site-generated traffic will increase peak hour volumes by 50% or more</li> </ul> | X        |
|                                               | 4.7.1 Transit Route<br>Capacity     | Only required when the proposed development<br>generates 75 transit trips or more                                                                                                                                                                                                                                                                                                          | X        |
| 4.7 Transit                                   | 4.7.2 Transit Priority Requirements | Only required when the proposed development<br>generates 75 vehicle trips or more                                                                                                                                                                                                                                                                                                          | ✓        |
| 4.8 Network<br>Concept                        | All Elements                        | Only required when proposed development<br>generates more than 200 person-trips during the<br>peak hour in excess of the equivalent volume<br>permitted by established zoning                                                                                                                                                                                                              | <b>✓</b> |
| 4.9 Intersection<br>Design                    | All Elements                        | Only required when the proposed development<br>generates 75 vehicle trips or more                                                                                                                                                                                                                                                                                                          | <b>✓</b> |

42

### PART 3: NETWORK ANALYSIS

## 9 Transportation Network Review

This section of the report summarizes the results of the transportation analyses undertaken as part of this study to evaluate the impact of the subject site on the surrounding transportation network and identify mitigation measures to address any issues identified.

As noted in Section 4.1, the implementation timing for the Earl Armstrong Road extension is uncertain and may not occur within the timeframe of this study. As such, the subsequent analyses do not consider the potential impact of this extension on the study area transportation network. For an overview of the potential impact of the Earl Armstrong Road extension on the study area transportation network, see Section 10.

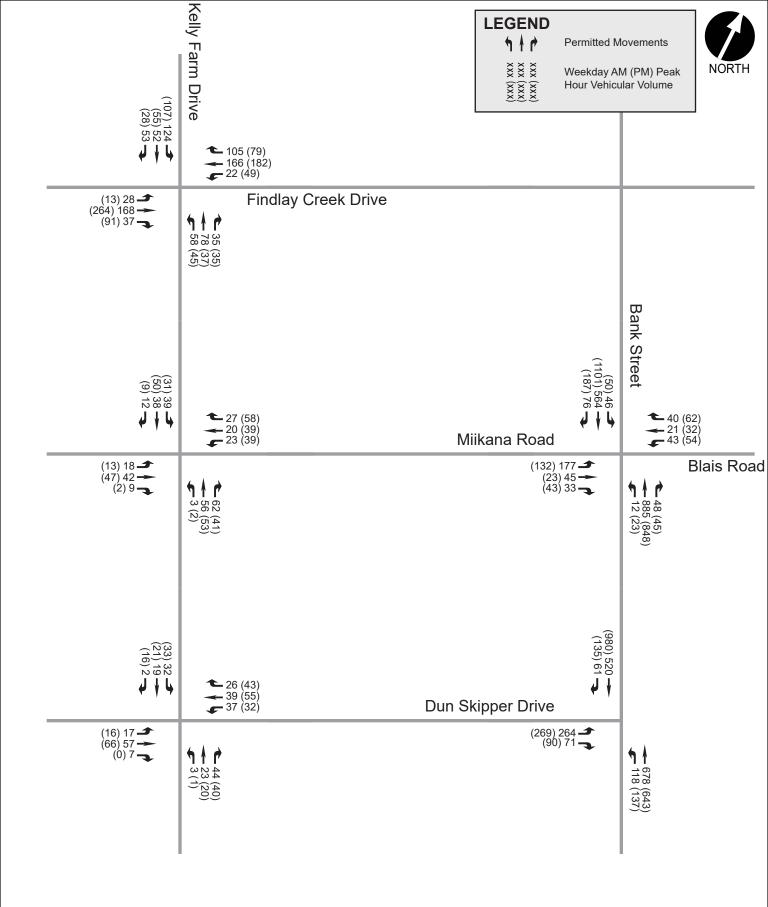
### 9.1 Future Traffic Volumes

### 9.1.1 General Background Growth Rates

Based on a comparison of traffic volume projections between the 2011 and 2031 EMME model provided by City technical staff at the onset of the study, it is anticipated that traffic volumes on the arterial road network will increase by 2.5% per year due to growth in regional traffic passing through the study area. From 2031 to 2036, the linear annual background growth rate is expected to decrease to 1.5% per year, based on population projections for the City of Ottawa<sup>5</sup>. The collector and local road networks are only expected to experience growth as a result of adjacent development traffic.

### 9.1.2 Future Background Traffic

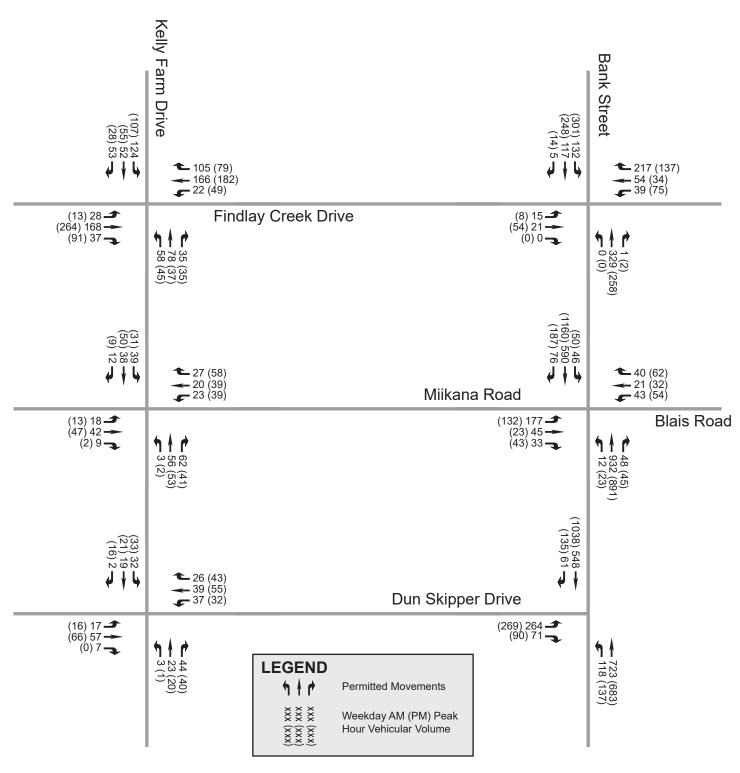
Future background traffic volumes projections have been established by combining the adjacent development traffic and background traffic derived through the application of a growth rate, as discussed previously.


**Exhibit 9-1** and **Exhibit 9-2** present the future background traffic volumes anticipated for the 2031 and 2036 analysis years, respectively.

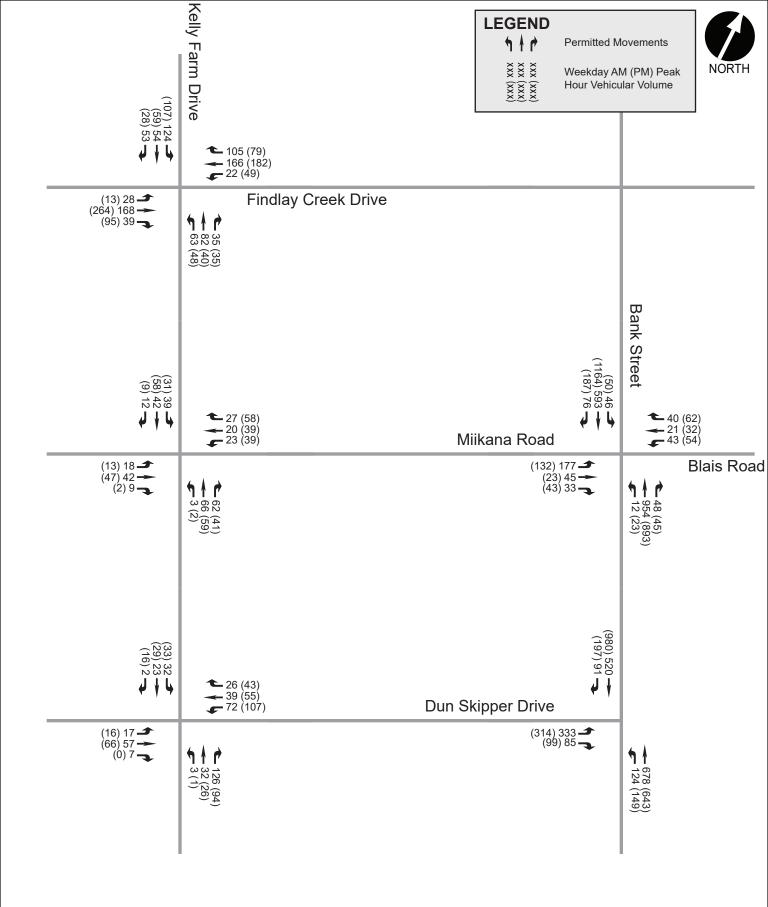
### 9.1.3 Future Total Traffic

Future total volumes have been derived by combining the site-generated traffic volumes with future background volumes. **Exhibit 9-3** and **Exhibit 9-4** present the future total traffic volumes anticipated for the 2031 and 2036 analysis years, respectively.

TTR\_S4LandsMTS\_MASTER\_2025-10-2010-20 43

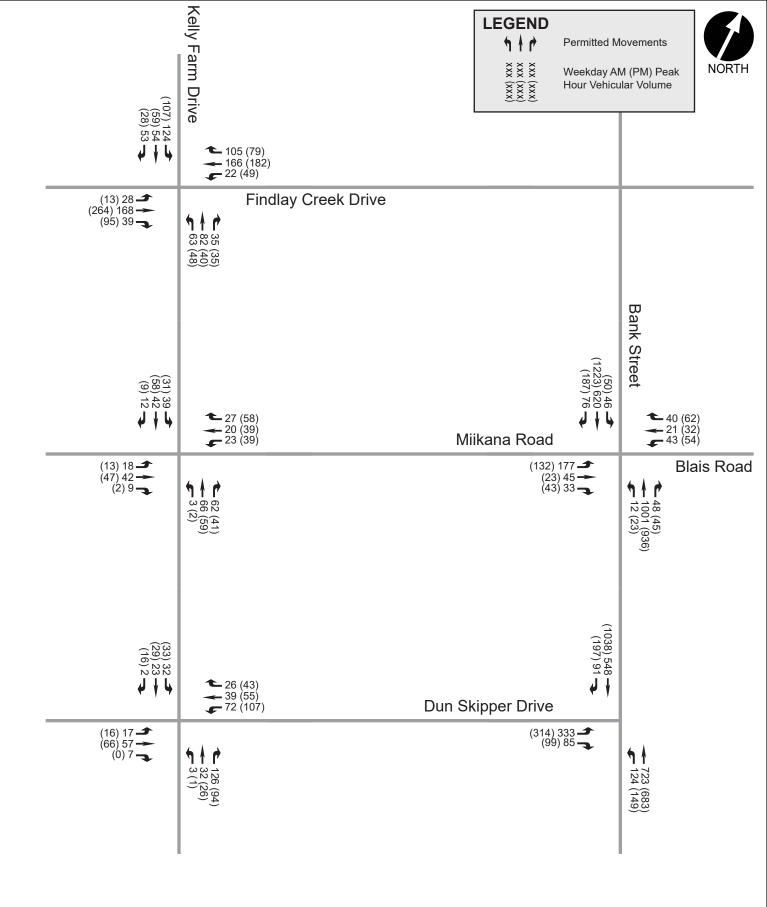

<sup>&</sup>lt;sup>5</sup> Growth projections for Ottawa: 2018-2046 | City of Ottawa
www.arcadis.com




S-4 Leitrim West of Bank Street Lands

Master Transportation Study










S-4 Leitrim West of Bank Street Lands

Master Transportation Study





# 9.2 Review of Network Concept

A screenline is an artificial boundary between areas of major traffic generation that captures all significant points of entry from one area to another to compare crossing demand with the available roadway capacity. Screenlines are typically located along geographical barriers such as rivers, rail lines or within the Greenbelt. To capture existing flow and model future demand, count stations are established by the City of Ottawa at each crossing point along the screenline.

The nearest strategic planning screenlines adjacent to the development have been identified as follows:

- SL8 Leitrim: This is the nearest east/west screenline with respect to the subject site. This screenline has
  four crossing points: River Road, Albion Road, Bank Street, and Hawthorne Road.
- **SL52 Hawthorne South:** This is the nearest north/south screenline relative to the site. This screenline has four crossing points as well: Leitrim Road, Louiseize Road, Rideau Road and Mitch Owens Road.

SL8 and SL52 are shown below in **Figure 9-1**, as determined from the City of Ottawa's Road Network Development Report (2025), a supporting document to the 2025 TMP.

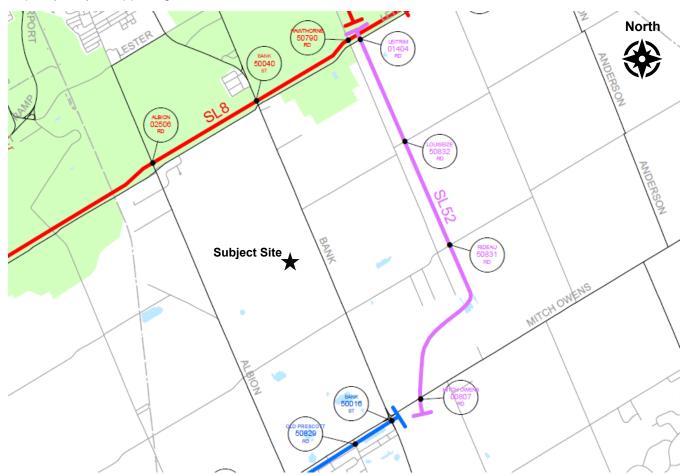



Figure 9-1 Screenlines

(Source: TRANS Screenline System (2010))

**Table 9-1** below summarizes the City's 2046 'Transit First' screenline analysis demand and capacity across these two screenlines.

Table 9-1 2046 Screenline Analysis

| Screenline             | 2046 'Transit First' Inbound |          |           |  |  |
|------------------------|------------------------------|----------|-----------|--|--|
| Screenine              | Demand                       | Capacity | v/c Ratio |  |  |
| SL8 – Leitrim          | 6,114                        | 7,000    | 0.96      |  |  |
| SL52 – Hawthorne South | 1,269                        | 4,000    | 0.32      |  |  |

Overall, although Screenline 8 is expected to approach its theoretical capacity in the long term, it is still operating within acceptable limits and sufficient excess capacity will be available across both nearby screenlines to accommodate site-generated vehicular traffic.

Capital projects such as the Albion Road widening (Leitrim Road to Lester Road) and the Earl Armstrong Road extension to Hawthorne Road will help to alleviate congested conditions experienced on Bank Street as a result of continued background growth within the study area and broader Leitrim Community beyond the study horizon year.

## 9.3 Intersection Operational Review

### 9.3.1 Intersection Capacity Analysis Results

The Level of Service calculation is based on locally specific parameters as described in the TIA Guidelines and incorporates existing signal timing plans obtained from the City of Ottawa. The analysis of existing conditions utilized a Peak Hour Factor (PHF) of 0.90, while analysis of future conditions considers optimized signal timing plans and the use of a Peak Hour Factor (PHF) of 1.0 to recognize peak spreading beyond a 15-minute period in congested conditions.

Following the established intersection capacity analysis criteria described above, future traffic conditions were analyzed using the weekday peak hour traffic volumes derived in this study.

The subsequent sections present the results of the intersection capacity analysis. All tables summarize study area intersection LOS results during the weekday morning and weekday afternoon peak hour periods.

The intersection capacity analysis reports have been provided in **Appendix E**.

### 9.3.1.1 Future (2031) Background Traffic

Intersection capacity analysis has been undertaken using Future (2031) Background Traffic volumes presented previously in **Exhibit 9-1**. The results of the intersection capacity analysis are summarized in **Table 9-2**.

Table 9-2 Intersection Capacity Analysis: Future (2031) Background Traffic

| Intersection     | Traffic Control | Peak Hour | Overall LOS<br>(v/c or Delay) | Critical Movement<br>(v/c or Delay) |
|------------------|-----------------|-----------|-------------------------------|-------------------------------------|
| Bank &           | Signalized      | AM        | A (0.44)                      | EBL (0.77)                          |
| Miikana/Blais    | Signalized      | PM        | A (0.47)                      | EBL (0.71)                          |
| Bank & Dun       | Signalized      | AM        | B (0.64)                      | EBL (0.81)                          |
| Skipper          | Signalized      | PM        | D (0.83)                      | EBL (0.90)                          |
| Findlay Creek &  | Unsignalized    | AM        | B (12.4s)                     | WBTRL (12.4s)                       |
| Kelly Farm       |                 | PM        | B (13.9s)                     | EBTRL (13.9s)                       |
| Kelly Farm &     | Unsignalized    | AM        | A (8.4s)                      | NBTRL (8.4s)                        |
| Miikana          | Unsignalized    | PM        | A (8.9s)                      | NBTRL (8.9s)                        |
| Kelly Farm & Dun | Unsignalized    | AM        | A (8.2s)                      | WBTRL (8.2s)                        |
| Skipper          | Orisignalized   | PM        | A (7.9s)                      | EBTRL (7.9s)                        |

Relative to existing conditions, traffic operations at the two signalized intersections are expected to improve as a result of peak spreading in the future. Peak spreading will also have an impact on the unsignalized intersections but the growth in adjacent development traffic is expected to counteract this benefit resulting in a minor increase in delays at those intersections. Overall, the study area intersections are expected to operate at Level of Service 'D' or better under Future (2031) Background Traffic conditions.

### 9.3.1.2 Future (2036) Background Traffic

Intersection capacity analysis has been undertaken using Future (2036) Background Traffic volumes presented previously in **Exhibit 9-2**. The results of the intersection capacity analysis are summarized in **Table 9-3**.

Table 9-3 Intersection Capacity Analysis: Future (2036) Background Traffic

| Intersection     | Traffic Control | Peak Hour | Overall LOS<br>(v/c or Delay) | Critical Movement<br>(v/c or Delay) |
|------------------|-----------------|-----------|-------------------------------|-------------------------------------|
| Bank &           | Ciava alima d   | AM        | A (0.46)                      | EBL (0.77)                          |
| Miikana/Blais    | Signalized      | PM        | A (0.50)                      | EBL (0.71)                          |
| Bank & Dun       | Signalized      | AM        | B (0.67)                      | EBL (0.81)                          |
| Skipper          | Signalized      | PM        | D (0.86)                      | EBL (0.90)                          |
| Findlay Creek &  | Unsignalized    | AM        | B (12.4s)                     | WBTRL (12.4s)                       |
| Kelly Farm       |                 | PM        | B (13.9s)                     | EBTRL (13.9s)                       |
| Kelly Farm &     | Unsignalized    | AM        | A (8.4s)                      | NBTRL (8.4s)                        |
| Miikana          | Unsignalized    | PM        | A (8.9s)                      | NBTRL (8.9s)                        |
| Kelly Farm & Dun | Unsignalized    | AM        | A (8.2s)                      | WBTRL (8.2s)                        |
| Skipper          | Orisignalized   | PM        | A (7.9s)                      | EBTRL (7.9s)                        |

Continued regional traffic growth is expected to utilize more of the capacity of the two signalized intersections, resulting in a minor increase in the overall v/c ratios of those two intersections. The three unsignalized intersections are not expected to experience any increase in delays relative to Future (2031) Background Traffic conditions.

### 9.3.1.3 Future (2031) Total Traffic

Intersection capacity analysis has been undertaken using Future (2031) Total Traffic volumes presented previously in **Exhibit 9-3**. The results of the intersection capacity analysis are summarized in **Table 9-4** below.

Table 9-4 Intersection Capacity Analysis: Future (2031) Total Traffic

| Intersection     | Traffic Control | Peak Hour | Overall LOS<br>(v/c or Delay) | Critical Movement<br>(v/c or Delay) |
|------------------|-----------------|-----------|-------------------------------|-------------------------------------|
| Bank &           | Signalized      | AM        | A (0.47)                      | EBL (0.77)                          |
| Miikana/Blais    | Signalized      | PM        | A (0.50)                      | EBL (0.71)                          |
| Bank & Dun       | Signalized      | AM        | B (0.69)                      | EBL (0.89)                          |
| Skipper          | Signalized      | PM        | D (0.86)                      | EBL (0.91)                          |
| Findlay Creek &  | Unsignalized    | AM        | B (12.5s)                     | WBTRL (12.5s)                       |
| Kelly Farm       |                 | PM        | B (14.2s)                     | EBTRL (14.2s)                       |
| Kelly Farm &     | Unoignalized    | AM        | A (8.6s)                      | NBTRL (8.6s)                        |
| Miikana          | Unsignalized    | PM        | A (9.0)                       | NBTRL (9.0s)                        |
| Kelly Farm & Dun | Unsignalized    | AM        | A (8.9s)                      | WBTRL (8.9s)                        |
| Skipper          | Orisignalized   | PM        | A (8.9s)                      | WBTRL (8.9s)                        |

The addition of site-generated traffic is expected to have a minor impact on the study area intersections. The overall v/c ratios and delays at the study area intersections will increase by a small amount, but all intersections will continue operating at an overall Level of Service of 'D' or better.

#### 9.3.1.4 Future (2036) Total Traffic

Intersection capacity analysis has been undertaken using Future (2036) Total Traffic volumes presented previously in **Exhibit 9-4**. The results of the intersection capacity analysis are summarized in **Table 9-5**.

Table 9-5 Intersection Capacity Analysis: Future (2036) Total Traffic

| Intersection     | Traffic Control | Peak Hour | Overall LOS<br>(v/c or Delay) | Critical Movement<br>(v/c or Delay) |
|------------------|-----------------|-----------|-------------------------------|-------------------------------------|
| Bank &           | Signalized      | AM        | A (0.49)                      | EBL (0.77)                          |
| Miikana/Blais    | Signalized      | PM        | A (0.51)                      | EBL (0.71)                          |
| Bank & Dun       | Signalized      | AM        | C (0.72)                      | EBL (0.89)                          |
| Skipper          | Signalized      | PM        | E (0.96)                      | EBL (1.01)                          |
| Findlay Creek &  | Unsignalized    | AM        | B (12.5s)                     | WBTRL (12.5s)                       |
| Kelly Farm       |                 | PM        | B (14.2s)                     | EBTRL (14.2s)                       |
| Kelly Farm &     | Unoignalizad    | AM        | A (8.6s)                      | NBTRL (8.6s)                        |
| Miikana          | Unsignalized    | PM        | A (9.0s)                      | NBTRL (9.0s)                        |
| Kelly Farm & Dun | Unsignalized    | AM        | A (8.9s)                      | WBTRL (8.9s)                        |
| Skipper          | Orisignalized   | PM        | A (8.9s)                      | WBTRL (8.9s)                        |

The addition of site-generated traffic, combined with continued growth in background traffic, is expected to result in some capacity issues at the Bank & Dun Skipper intersection which cannot be addressed through signal timing modifications (e.g., providing protected-permitted left-turn phases). As indicated later in Section 10, the extension of Earl Armstrong Road to Bank Street is anticipated to divert traffic within the study area and reduce overall traffic demand at the Bank & Dun Skipper intersection. As such, any potential capacity issues at this intersection are expected to be addressed through planned road network modifications.

Sensitivity analysis suggests that a decrease of just one eastbound left vehicle would be sufficient for the v/c ratio of the eastbound left-turn movement to decrease to 1.0. Given the inherent uncertainty associated with projecting traffic volumes 10 or more years into the future and the fact that the overall v/c ratio is less than 1.0, no mitigation measures are recommended to address this potential capacity issue.

#### 9.3.2 Intersection Control

None of the unsignalized study area intersections are expected to experience any capacity issues within the timeframe of this study. As such, there is no need to consider alternative forms of intersection control.

## 9.4 Auxiliary Lane Requirements

The following section reviewed the need for auxiliary left- and right-turn lanes at signalized and unsignalized study area intersections.

It should be noted that careful consideration was given to any recommendations regarding new auxiliary lanes or lengthening of existing dedicated turning lanes to ensure alignment with the City's MMLOS and Healthy Streets objectives. It is recognized that there is significant potential for this additional right-of-way space to be reallocated for streetscape features which would enhance the overall public realm space for pedestrians and cyclists. This narrower roadway platform would allow for a more compact roadway design, thereby reducing crossing distances for active users and create more inclusive, comfortable and safe environment for these vulnerable users. As such, any transportation operational considerations were balanced with the desire to provide optimal intersection configurations for all road users.

### 9.4.1 Left-Turn Lanes at Signalized Intersections

A review of auxiliary left-turn lane storage requirements was completed under Future (2036) Total Traffic conditions, comparing the highest queue lengths on each intersection approach under weekday morning and afternoon peak hours. The review compared the projected 95th percentile queue lengths from Synchro operational results, and the standard queue length calculation based on the following equation:

Storage Length = 
$$\frac{NL}{C} \times 1.5^*$$

Where:

N = number of vehicles per hour

L = Length occupied by a vehicle in the queue = 7 m

C = number of traffic signal cycles per hour

The results of the auxiliary left-turn lane analysis are summarized below in Table 9-6.

Table 9-6 Auxiliary Left-Turn Storage Analysis at Signalized Intersections

| Intersection Movement    |     | Maximum 95 <sup>th</sup><br>Percentile<br>Queue Length<br>(m) | Maximum<br>Calculated<br>Queue Length<br>(m) | Existing/<br>Future Planned<br>Parallel Lane<br>Length <sup>1</sup> (m) | Storage<br>Deficiency |
|--------------------------|-----|---------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------|-----------------------|
| Bank & Miikana/<br>Blais | EBL | 60                                                            | 20                                           | 100                                                                     | -                     |
|                          | WBL | 25                                                            | 10                                           | 40                                                                      | -                     |
|                          | NBL | 5                                                             | 5                                            | 100                                                                     | -                     |
|                          | SBL | 10                                                            | 10                                           | 75                                                                      | -                     |
|                          | EBL | 125                                                           | 40                                           | 25                                                                      | 100                   |

<sup>\*</sup> For roadways with design speeds of 60 km/h or higher, the average queue length should be multiplied by a factor of 2.0 instead of 1.5.

| Intersection          | Movement | Maximum 95 <sup>th</sup> Percentile Queue Length (m) | Maximum<br>Calculated<br>Queue Length<br>(m) | Existing/<br>Future Planned<br>Parallel Lane<br>Length <sup>1</sup> (m) | Storage<br>Deficiency |
|-----------------------|----------|------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------|-----------------------|
| Bank & Dun<br>Skipper | ⊢ NBI    |                                                      | 20                                           | 120                                                                     | -                     |

<sup>&</sup>lt;sup>1</sup> Future parallel lane lengths at the Bank & Miikana/Blais intersection are based on the design for the four-lane widening of Bank Street.

The results of the analysis indicate that eastbound left-turn queue at the Bank & Dun Skipper intersection will exceed the available storage capacity. As this is a minor street approach, there are no significant concerns associated with this queue spillback.

With a 50<sup>th</sup> percentile and 95<sup>th</sup> percentile queue length of 70m and 125m, respectively, the eastbound left-turn queue may block the entrance to the Home Hardware approximately 12% of the time. Given that Dun Skipper Drive is a local road, and this access blockage will occur infrequently, this can be considered a minor issue which does not warrant any mitigation measures.

### 9.4.2 Left-Turn Lanes at Unsignalized Intersections

Auxiliary left-turn lane warrant analysis has been completed for the Kelly Farm & Dun Skipper intersection under Future (2036) Total Traffic conditions. The results of the analysis are provided in **Appendix I** and indicate that left-turn auxiliary lanes are not warranted at this intersection.

The other stop-controlled study area intersections, including Kelly Farm & Miikana and Kelly Farm & Findlay Creek are anticipated to experience nominal site-generated traffic impacts and operate well within acceptable thresholds. As such, auxiliary left-turn lanes are not warranted at any of the stop-controlled study area intersections either.

Furthermore, all of the above noted intersections are configured as all-way stop-controlled junctions and, as such, the presence of more than one lane on each approach is not desirable from a transportation operations perspective.

### 9.4.3 Right-Turn Lanes at Signalized Intersections

Section 9.14 of TAC suggests that auxiliary right-turn lanes shall be considered when more than 10% of vehicles on an approach are turning right and when the peak hour demand exceeds 60 vehicles. The purpose of this guideline is to mitigate operational impacts to through-traffic, particularly on high-speed arterial roadways, and may not be applicable in all circumstances.

**Table 9-7** summarizes the results of the right-turn warrant analysis for locations with no planned right-turn lanes as well as the projected 95<sup>th</sup> percentile queues at locations with planned right-turn lanes.

Table 9-7 Auxiliary Right-Turn Storage Analysis at Signalized Intersections

| Intersection             | Intersection Movement |     | Existing/ Future Planned Parallel Lane Length¹ (m)  Right-Turn Warrant Met? |    | Storage<br>Deficiency |
|--------------------------|-----------------------|-----|-----------------------------------------------------------------------------|----|-----------------------|
| Bank & Miikana/<br>Blais | EBR                   | -   | N                                                                           | -  | -                     |
|                          | WBR                   | -   | Y                                                                           | -  | -                     |
|                          | NBR                   | -   | N                                                                           | -  | -                     |
|                          | SBR                   | 175 | -                                                                           | 10 | -                     |
| Bank & Dun<br>Skipper    | EBR                   | *   | -                                                                           | 15 | -                     |
|                          | SBR                   | 100 | -                                                                           | 5  | -                     |

<sup>&</sup>lt;sup>1</sup> Future parallel lane lengths at the Bank & Miikana/Blais intersection are based on the design for the four-lane widening of Bank Street.

A right-turn lane is technically warranted on the westbound approach to the Bank & Miikana/Blais intersection. Through volumes on the approach range from 20-30 vehicles per hour, while right-turn volumes range from 40 to 62 vehicles per hour, therefore, the shared through-right lane operates primarily as a de-facto right-turn lane. Given the low volume of through traffic on the approach as well as the fact that a right-turn lane is not operationally required it is not recommended that a right-turn lane be provided on this approach.

### 9.4.4 Right-Turn Lanes at Unsignalized Intersections

Section 9.14 of TAC also provides guidance on the use of auxiliary right-turn lanes at unsignalized intersections and suggests that auxiliary right-turn lanes should be considered "when the volume of decelerating or accelerating vehicles compared with the through traffic volume causes undue hazard". Given that Dun Skipper Drive is a low-volume residential road it is not expected that right-turning traffic will represent a hazard to through or left-turning traffic. As such, right-turn lanes are not recommended at the Kelly Farm & Dun Skipper intersection.

### 9.5 Multi-Modal Level of Service

The following sections summarize the results of the MMLOS analysis of future conditions. Details on the MMLOS analysis are provided in **Appendix G**.

### 9.5.1 Segment-Based MMLOS

Under future conditions, the segment of Bank Street adjacent to the site is expected to maintain its existing configuration. As such, refer to Section 3.5.1 for the results of the segment-based MMLOS analysis for this roadway segment.

<sup>\*</sup> Through lane transitions to a right-turn lane at the intersection.

Segment-based MMLOS analysis has been completed for the future portion of Kelly Farm Drive between Paakanaak Road and the future Earl Armstrong Road extension. The results of the segment-based MMLOS analysis are summarized in **Table 9-8**.

Table 9-8 Segment-Based MMLOS Analysis Results: Future Conditions

| Segment                                           | Travel Mode | Side | Overall LOS | Critical LOS | Target | Deviation |
|---------------------------------------------------|-------------|------|-------------|--------------|--------|-----------|
| Kelly Farm, Paakanaak to Earl Armstrong Extension | Pedestrian  | West | Α           | Α            | С      | +2        |
|                                                   |             | East | Α           | Α            |        | +2        |
|                                                   | Bicycle     | West | Α           | Α            | С      | +2        |
|                                                   |             | East | Α           | Α            |        | +2        |
|                                                   | Transit     | West | С           | -            | Е      | +2        |
|                                                   |             | East | С           |              |        | +2        |

The results of the segment-based MMLOS analysis suggest that all MMLOS results exceed their targets by two letter grades. As such, no mitigation measures were recommended for this segment-based MMLOS analysis.

#### 9.5.2 Intersection-Based MMLOS

None of the signalized study area intersections are expected to be modified within the timeframe of this study. As such, the intersection-based MMLOS analysis results from Section 3.5.2 also apply to future conditions. It should be noted that this previous MMLOS analysis evaluated the Bank & Miikana/Blais intersection based on the intersection configuration that is currently under construction, while the Bank & Dun Skipper intersection was recently constructed as a 'protected intersection' with no further geometric changes planned within the timeframe of this study.

Specific mitigation strategies such as signal plan timing optimization measures such as the implementation of longer effective pedestrian walk times, shortened cycle lengths or Leading Pedestrian Intervals (LPIs) will help to improve the overall PLOS score. The upgrades to the signalized study area intersections on Bank Street at Miikana/Blais and Dun Skipper are already included in the existing MMLOS analysis and therefore no additional analysis was required under Future Total Traffic conditions.

# 9.6 Traffic Calming Plan

The May 2023 revision to the City of Ottawa Transportation Impact Assessment Guidelines outlined five criteria which must be met in order for neighbourhood traffic calming to be considered on existing streets. The five criteria are summarized below:

- 1. Site-generated traffic uses local or collector roads to reach the arterial road network.
- 2. There are significant sensitive land uses<sup>6</sup> adjacent to the subject streets.
- 3. Application is for Zoning By-law Amendment or Draft Plan of Subdivision.
- 4. At least 75 site-generated auto trips.
- 5. Site-generated traffic will increase peak hour volumes along the route(s) by 50% or more.

The only route along which site-generated traffic will increase peak hour volumes by more than 50% is Kelly Farm Drive south of Dun Skipper Drive and Dun Skipper Drive east of Kelly Farm Drive. This route, however, does not meet the criteria for significant sensitive land uses as there are only residential land uses along this route, there is no school, park, retirement facility, childcare centre or community centre along this route. As such there is no need to consider supplementary traffic calming measures along any of the existing collector and local streets within the study area.

Within the proposed development, it is proposed that the following traffic calming measures be implemented to ensure that vehicular operating speeds adhere to the target operating speed:

- As Kelly Farm Drive will be a collector road with transit service, no vertical traffic calming measures can be
  implemented. As such, it is recommended that speed display devices be implemented to remind motorists of
  their operating speed. Additionally, the proposed design of the road utilizes minimum lane widths and treed
  boulevards which will create a sense of confinement for motorists and should encourage lower operating
  speeds.
- To achieve the target 30 km/h operating speeds along the local roads, it is recommended that all crosswalks
  crossing local roads be designed as raised crossings and that speed humps be implemented at 50-60m
  intervals.

# 9.7 Transit Network Requirements

As noted in Section 7.1.2, it is anticipated that transit service to the subject site will be provided as follows:

- Interim Conditions (prior to Earl Armstrong Road extension): Loop transit service along Miikana Road (collector), Paakanaak Avenue (local) and Kelly Farm Drive (collector).
- Future Conditions (after the extension of Earl Armstrong Road): Provide transit service along Kelly Farm
  Drive and Earl Armstrong Road.

Under interim conditions, approximately 85% of residents of the subject site will be within 400m walking distance from transit, only slightly below the 95% target. Following the extension of Earl Armstrong Road, it is expected that bus stops will be provided on Kelly Farm near the Earl Armstrong Road extension which will reduce walking

TTR\_S4LandsMTS\_MASTER\_2025-10-2010-20 58

<sup>&</sup>lt;sup>6</sup> Two or more of the following land uses must be present for this criterion to be met: a school within 250m walking distance, a park, a retirement/older adult facility, a licenced child care centre, a community centre, or 50% or more of adjacent properties along the route(s) are occupied by residential lane uses (minimum of 10 occupied residential units).

distances to transit to less than 400m for all residents of the subject site. The exact location of these bus stops will be identified on the Geometric Roadway Design Drawing (GRDD) plan.

Existing bus transit service within the community has an estimated capacity of 90 passengers per hour per direction. The subject site is anticipated to generate up to 36 transit trips per hour per direction which represents more than a third of the capacity of the existing transit service. It is recommended that OC Transpo review the projected transit demand generated by the subject site as well as other developments within the wider Leitrim community to ensure that sufficient capacity is provided.

# 9.8 Pedestrian Crossing Requirements

Ontario Traffic Manual (OMT) Book 15: Pedestrian Crossing Treatments provides a pedestrian cross-over (PXO) warrant based vehicle and pedestrian volumes, proximity to other controlled crossings, and system connectivity requirements. Based on these criteria, a PXO could be considered on the future portion of Kelly Farm Drive within the subject site to provide system connectivity across this collector road. Based on the traffic volumes projected on Kelly Farm Drive, a Level 2, Type 'D' PXO would be appropriate, provided crossing distances are 7.5m or less.

Implementing a PXO on Kelly Farm Drive would provide a predictable and controlled crossing at the desired spacing of about 200 metres to the nearest east-west crossing of Kelly Farm & Dun Skipper, thereby satisfying this natural desire line for active users accessing future bus stops on either side of Kelly Farm Drive within the subject site, for instance.

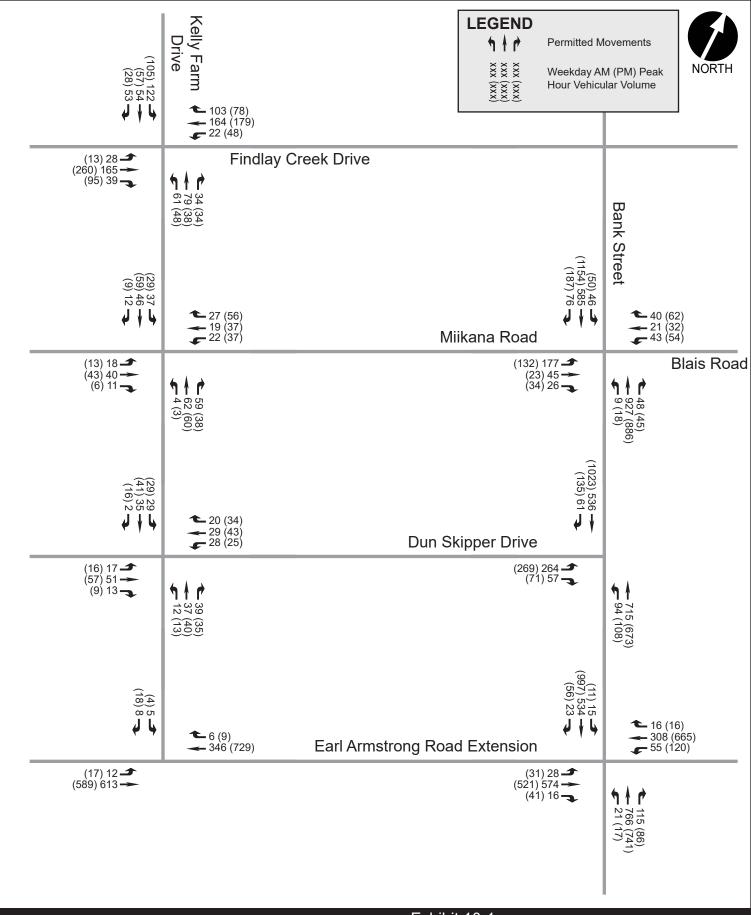
# 10 Earl Armstrong Road Extension Impact

As discussed in Section 4.1, the implementation timing for the Earl Armstrong Road extension is uncertain and may not occur within the timeframe of this study. It has therefore not been considered in the preceding analyses. Sensitivity analysis has been completed, however, to assess the potential impact of this new corridor on study area traffic and the results are summarized in the following subsections.

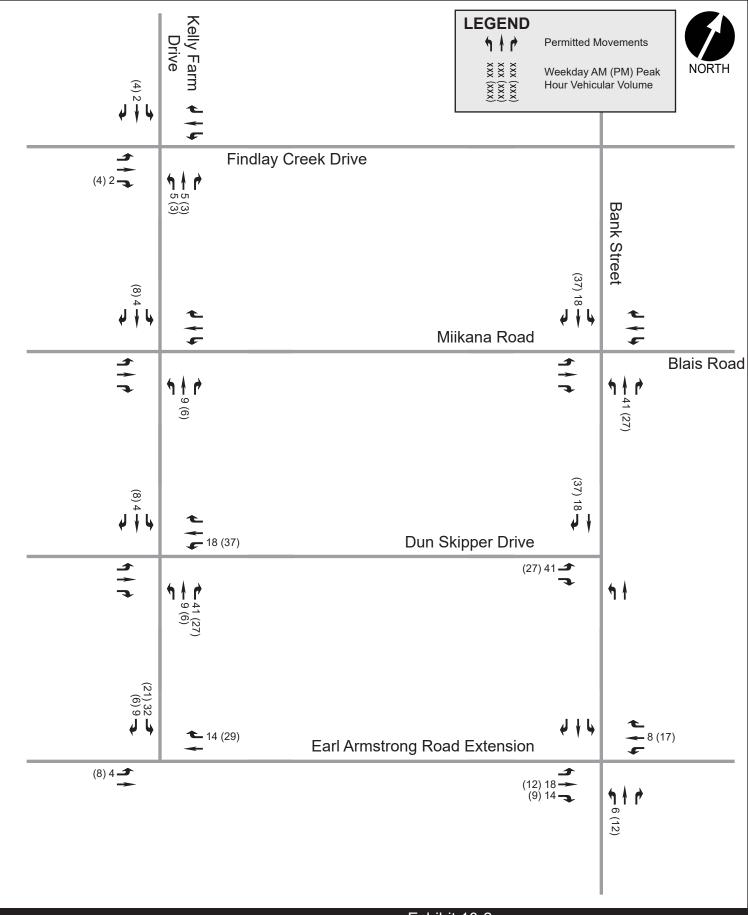
#### 10.1 Traffic Diversion

The extension of Earl Armstrong Road is expected to have a significant impact on travel patterns within the study area. Based on EMME model results provided by the City of Ottawa, it is anticipated that this extension will draw regional traffic from other east-west arterials in the area as it provides a new route to/from the west as well as a new connection to Hawthorne Road, a minor north-south route. It is also expected that the extension of Kelly Farm Drive to the Earl Armstrong Road extension will divert local traffic from Bank Street and redirect it onto Kelly Farm Drive.

The following summarizes the anticipated impacts of the Earl Armstrong Road extension on the study area roads:

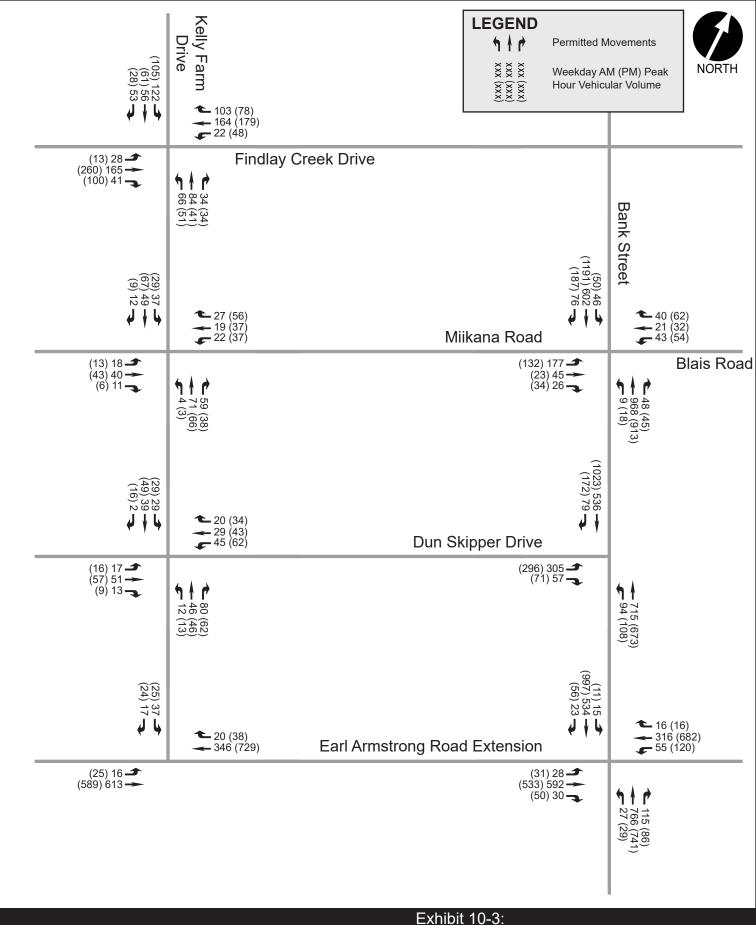

- Traffic on Bank Street south of Earl Armstrong Road will increase by approximately 5% as traffic from eastwest arterials south of Rideau Road is instead redirected up Bank Street to Earl Armstrong Road.
- 30% of traffic on Rideau Road will divert and use Earl Armstrong Road instead.
- Traffic from other east-west arterials (e.g., Leitrim Road) will also divert to Earl Armstrong Road. The traffic from these other east-west arterials will be equivalent to approximately 90% of existing traffic on Rideau Road.
- Approximately 20% of local traffic from the Leitrim community going to/from the south along Bank Street will divert to Kelly Farm Drive instead.

**Exhibit 10-1** illustrates the adjusted Future (2036) Background Traffic volumes which account for the impacts of the Earl Armstrong Road extension.


In addition to impacts to background traffic patterns, the Earl Armstrong Road extension will also impact the distribution of site-generated traffic as it provides alternate routes to/from the west as well as a connection to Hawthorne Road, a north-south road. Based on the EMME model projections, it is expected that site-generated traffic will distribute as follows once Earl Armstrong Road is extended:

- 45% to/from the North via Bank Street
- 5% to/from the North via Kelly Farm Drive
- 15% to/from the South via Bank Street
- 20% to/from the East via Earl Armstrong Road
- 10% to/from the West via Earl Armstrong Road
- 5% to/from the West via Findlay Creek Drive

**Exhibit 10-2** and **Exhibit 10-3** illustrates the adjusted site-generated traffic volumes and Future (2036) Total Traffic volumes which account for the impact of the Earl Armstrong Road extension.










SCALE:



# 10.2 Sensitivity Scenarios - Intersection Capacity Analysis Results

The subsequent sections present the results of the intersection capacity analysis which account for the impact of the Earl Armstrong Road extension.

#### 10.2.1 Future (2036) Background Traffic with Earl Armstrong Extension

Intersection capacity analysis has been undertaken using Future (2036) Background Traffic with Earl Armstrong Extension volumes presented previously in **Exhibit 10-1**. The results of the intersection capacity analysis are summarized in **Table 10-1**. The configuration of the two Earl Armstrong Road intersections is based on the functional design from the EA (see Section 4.1 for details).

Table 10-1 Intersection Capacity Analysis: Future (2036) Background Traffic with Earl Armstrong Extension

| Intersection     | Traffic Control         | Peak Hour | Overall LOS<br>(v/c or Delay) | Critical Movement<br>(v/c or Delay) |
|------------------|-------------------------|-----------|-------------------------------|-------------------------------------|
|                  | Roundabout <sup>1</sup> | AM        | C (24.3s)                     | EBT (24.3s)                         |
|                  | Roundabout              | PM        | F (155.7s)                    | EBR (155.7s)                        |
| Bank & Earl      | Roundabout <sup>2</sup> | AM        | C (20.2s)                     | NBR (20.2s)                         |
| Armstrong        | Roundabout              | PM        | F (55.6s)                     | EBL (55.6s)                         |
|                  | Signalizad <sup>3</sup> | AM        | C (0.76)                      | WBTR (0.88)                         |
|                  | Signalized <sup>3</sup> | PM        | E (0.98)                      | WBTR (0.99)                         |
| Earl Armstrong & | Signalized <sup>1</sup> | AM        | A (0.20)                      | EBT (0.20)                          |
| Kelly Farm       | Signalizeu              | PM        | A (0.24)                      | WBTR (0.25)                         |
| Bank &           | Signalized              | AM        | A (0.46)                      | EBL (0.77)                          |
| Miikana/Blais    | Signalized              | PM        | A (0.49)                      | EBL (0.71)                          |
| Bank & Dun       | Cianolized              | AM        | B (0.66)                      | EBL (0.81)                          |
| Skipper          | Signalized              | PM        | D (0.85)                      | EBL (0.90)                          |
| Findlay Creek &  | Unsignalized            | AM        | B (12.3s)                     | WBTRL (12.3s)                       |
| Kelly Farm       | Offsignalized           | PM        | B (13.9s)                     | EBTRL (13.9s)                       |
| Kelly Farm &     | Unaignalizad            | AM        | A (8.5s)                      | NBTRL (8.5s)                        |
| Miikana          | Unsignalized            | PM        | A (9.0s)                      | NBTRL (9.0s)                        |
| Kelly Farm & Dun | Unaignalizad            | AM        | A (8.1s)                      | WBTRL (8.1s)                        |
| Skipper          | Unsignalized            | PM        | A (8.0s)                      | SBTRL (8.0s)                        |

<sup>&</sup>lt;sup>1</sup> Recommended configuration from the EA.

The results of the analysis suggest that the Bank & Earl Armstrong roundabout configuration recommended by the EA would not have sufficient capacity to accommodate the projected traffic demand, with both the eastbound and westbound approaches projected to operate over capacity under 2036 background traffic conditions.

<sup>&</sup>lt;sup>2</sup> Recommended configuration from the EA with localized four-lane widening of the westbound approach.

<sup>&</sup>lt;sup>3</sup> One through lane on the northbound and westbound approaches, two through lanes on the southbound and eastbound approach, left-turn lanes on all approaches and right-turn lane on the northbound approach.

It is recommended that the City consider revising the EA design for the Bank & Earl Armstrong intersection. The results of the intersection capacity analysis suggest that a signalized intersection would provide sufficient capacity for both background traffic demand and site-generated traffic demand (see Section 10.2.2).

None of the other study area intersections are expected to experience capacity issues under this scenario.

#### 10.2.2 Future (2036) Total Traffic with Earl Armstrong Extension

Intersection capacity analysis has been undertaken using Future (2036) Background Traffic with Earl Armstrong Extension volumes presented previously in **Exhibit 10-3**. The results of the intersection capacity analysis are summarized in **Table 10-2**.

Table 10-2 Intersection Capacity Analysis: Future (2036) Total Traffic with Earl Armstrong Extension

| Intersection     | Traffic Control         | Peak Hour  | Overall LOS    | Critical Movement |
|------------------|-------------------------|------------|----------------|-------------------|
| intersection     | Trainic Control         | T can Hour | (v/c or Delay) | (v/c or Delay)    |
|                  | Roundabout <sup>1</sup> | AM         | D (28.1s)      | EBT (28.1s)       |
|                  | Noundabout              | PM         | F (172.8s)     | EBT (172.8s)      |
| Bank & Earl      | Roundabout <sup>2</sup> | AM         | C (20.9s)      | NBR (20.9s)       |
| Armstrong        | Roundabout              | PM         | F (62.3s)      | EBL (62.3s)       |
|                  | Signalizad <sup>3</sup> | AM         | C (0.74)       | WBTR (0.87)       |
|                  | Signalized <sup>3</sup> | PM         | E (0.96)       | WBTR (0.97)       |
| Earl Armstrong & | Cianalizad              | AM         | A (0.22)       | SBL (0.28)        |
| Kelly Farm       | Signalized              | PM         | A (0.27)       | WBTR (0.27)       |
| Bank &           | Signalized              | AM         | A (0.47)       | EBL (0.77)        |
| Miikana/Blais    | Signalized              | PM         | A (0.51)       | EBL (0.71)        |
| Bank & Dun       | Signalized              | AM         | B (0.69)       | EBL (0.86)        |
| Skipper          | Signalized              | PM         | D (0.87)       | EBL (0.95)        |
| Findlay Creek &  | Unsignalized            | AM         | B (12.5s)      | WBTRL (12.5s)     |
| Kelly Farm       | Ulisighalized           | PM         | B (14.2s)      | EBTRL (14.2s)     |
| Kelly Farm &     | Uncignalized            | AM         | A (8.6s)       | NBTRL (8.6s)      |
| Miikana          | Unsignalized            | PM         | A (9.1s)       | NBTRL (9.1s)      |
| Kelly Farm & Dun | Unsignalized            | AM         | A (8.4s)       | WBTRL (8.4s)      |
| Skipper          | Orisignalized           | PM         | A (8.4s)       | WBTRL (8.4s)      |

<sup>&</sup>lt;sup>1</sup> Recommended configuration from the EA.

The eastbound left-turn movement at the Bank & Dun Skipper intersection is expected to approach its theoretical capacity due to the addition of site-generated traffic, but will remain below the City v/c ratio threshold of 1.0. The addition of site-generated traffic is not expected to have a significant impact on any of the other study area intersections.

As observed under background traffic conditions, the Bank & Earl Armstrong intersection is expected to operate at an acceptable Level of Service (LOS 'E' or better) as a signalized intersection but not as roundabout.

<sup>&</sup>lt;sup>2</sup> Recommended configuration from the EA with localized four-lane widening of the westbound approach.

<sup>&</sup>lt;sup>3</sup> One through lane on the northbound and westbound approaches, two through lanes on the southbound and eastbound approach, left-turn lanes on all approaches and right-turn lane on the northbound approach.

It is acknowledged that the City of Ottawa 2025 TMP indicates that increasing roadway capacity may actually worsen traffic conditions over time. As such, even though the performance of the intersections on Bank Street through the study area may experience slight temporary improvements resulting from the Earl Armstrong Road extension, the long-term impact of adding additional roadway capacity may result in increased overall traffic volumes in the surrounding area. It is important to note that the proposed development is not reliant on this additional arterial roadway capacity to function from a traffic operations perspective.

# **PART 4: IMPLEMENTATION**

# 11 Mobility Plan

The following section describes the measures and programs required to achieve the objective and targets of the community and how City policies and objectives will be met.

# 11.1 Transportation Demand Management

To encourage the targeted increase in active transportation mode share, sidewalks will be provided on at least one side of all local roads and on both sides of the Kelly Farm Drive extension. Mid-block active transportation connections will also be provided at the northern and eastern boundaries to shorten travel distances to daily amenities for these vulnerable road users. Additionally, measures have been identified for both interim and ultimate conditions that will ensure that the majority of future residents of the subject site are located within a 400m walking distance of transit.

In addition to the above measures, it is recommended that consideration be given to the following Transportation Demand Management (TDM) measures to further encourage the use of non-auto travel modes:

 Provide a multimodal travel information package to new residents highlighting routes to/from local amenities, the location of bus stops within walking distance of the site, and the location of potential future amenities. Of particular importance will be highlighting safe routes to/from local schools as it is anticipated that this represents the greatest opportunity to reduce auto usage.

The City of Ottawa's TDM Measures Checklist was completed for the subject site and is provided in Appendix J.

# 11.2 Zoning and Policy Amendments

In general, existing zoning requirements and policies are expected to be adequate to achieve the objectives and targets of the community. It is recommended, however, that the design of the community not provide private approaches on Kelly Farm Drive, the collector street bisecting the site, in order to maximize tree coverage and space for bike parking or other public realm improvements, minimize conflicts between vehicles and cyclists, as well as limit the need for on-street parking along this street within this key focal point of the site. Instead, access and on-street parking should be provided via the local street network to support the typical road hierarchy and provide natural 'friction', in accordance with the City's 30km/h Local Residential Streets Toolbox (2021).

# 11.3 City Policies and Objectives

The City of Ottawa Official Plan and Transportation Master Plan identify a number of policies and objectives. The following describes how the subject site is meeting these policies and objectives:

- Vehicle Kilometres Travelled Reduction: The mode share targets for the community target a reduction in the auto mode share relative to the surrounding area from 59% to 50%.
- Greenhouse Gas Reduction: Decreasing the auto mode share of the site relative to the surrounding area
  will decrease greenhouse gas (GHG) emissions from travel and including street trees on both sides of Kelly
  Farm Drive will reduce the heat island effect which drives the need for artificial cooling.
- Equity, Inclusiveness and Accessibility: By providing a mix of housing typologies, the subject site will cater
  to a variety of income groups. Additionally, all pedestrian facilities will be designed to meet AODA standards
  to accommodate people of all physical abilities.
- Complete Streets: All streets within the subject site will include sidewalks on at least one side. The design of
  the Kelly Farm Drive extension will also include cycle tracks which will connect to cycling facilities on the
  future Earl Armstrong Road extension.
- **Safety:** The design of the subject site's road network will encourage appropriate vehicle speeds for the area. This will ensure that vulnerable road users feel safe crossing or travelling next to roads.
- **15-Minute Neighbourhoods:** A number of active transportation shortcuts are recommended to minimize travel times to amenities within a short walking distance of the site.

# 12 Implementation Plan

Based on the findings of this study, the following infrastructure will be required:

- When the lands east of Kelly Farm Drive are developed, construct an active transportation connection along the 20m of frontage on Bank Street to provide connectivity to future pedestrian and cycling infrastructure. It is anticipated that the mid-block connection to Bank Street would also serve emergency vehicles. Regulatory signage and other preventative measures (e.g. bollards) to limit the use of this mid-block active transportation/ emergency access will be identified on the Geometric Roadway Design Drawing (GRDD) plan, as required.
- When the lands west of Kelly Farm Drive are developed, construct an active transportation connection to Paakanaak Road within the available service block.
- When Earl Armstrong Road is extended, extend Kelly Farm Drive to Earl Armstrong Road and construct the Earl Armstrong & Kelly Farm intersection as recommended by the EA. Additionally, consideration should be given to providing a Level 2 Type 'D' PXO on Kelly Farm Drive.

Additionally, the roundabout configuration at the future Bank & Earl Armstrong recommended by the EA is not expected to be capable of accommodating the projected background and site-generated traffic demand. As such, it is recommended that the City undertake an Addendum to the EA to review the proposed intersection configuration at this location to ensure that it will be capable of supporting the projected traffic demand.

# 13 Conclusion

Based on a review of the existing and future transportation network, a number of opportunities and constraints have been identified for the subject site which have guided the development of the preferred transportation network layout. Vehicular access to the site will be provided via an extension of Kelly Farm Drive which will provide connectivity to the existing road network to the north and the future Earl Armstrong Road extension to the south. This will also provide pedestrian and cycling connectivity to existing and future facilities to the north and south. Additionally, it is recommended that mid-block multi-use path connections be provided at the northern and eastern boundaries of the site to accommodate shorter, more direct routes to nearby amenities for active transportation users. A future road block connection, identified as Block 80 on the Draft Plan of Subdivision, has also been provided as part of the proposed development connecting the subject site to the westerly lands, should the roadway be extended. This is consistent with other neighbourhoods at the edge of urban areas in the City of Ottawa.

It is recommended that sidewalks be provided on at least one side of all local roads within the site and on both sides of the Kelly Farm Drive extension. Cycle tracks are also recommended on both sides of Kelly Farm Drive. Additionally, the analysis suggests that a Level 2, Type 'D' PXO could be considered on Kelly Farm Drive.

Preliminary land use projections for the site suggest that approximately 300 residential units could be accommodated within the space available. The overall vehicle trip generation associated with the site is estimated to range from 131 to 143 two-way vehicle-trips during the weekday peak hours and these trips were distributed and assigned to the study area road network based on EMME model projections.

As indicated by the analysis conducted for this study, no road network modifications are recommended as a result of site-generated traffic. The roundabout configuration for the future Bank & Earl Armstrong intersection from the Earl Armstrong EA, however, is not expected to be capable of accommodating the projected background traffic demand and therefore it is recommended that the City of Ottawa revisit the proposed design for this intersection and consider signalization instead. With consideration of site-generated multi-modal travel demands, sensitivity analysis and mitigation measures recommended through this study, the proposed development is not dependent on the Earl Armstrong Road extension from a transportation perspective.

The results of the Multi-Modal Level of Service (MMLOS) analysis suggests that the segment of Bank Street adjacent to the subject site is not currently meeting its Pedestrian or Bicycle Level of Service targets, although it is expected that this may be ultimately addressed in the future once Bank Street is widened to four-lanes (by others). The Bank & Miikana/Blais intersection is also not meeting its Pedestrian Level of Service due to long crossing distances. The portion of Kelly Farm Drive through the subject site is anticipated to meet and exceed its MMLOS targets.

Based on the projected traffic generation of the site, additional traffic calming measures are not required on any of the existing streets as a result of site-generated traffic. To ensure appropriate operating speeds within the subject site, however, it is recommended that the following traffic calming measures be provided:

- On Kelly Farm Drive: Provide speed display devices.
- On local roads: Provide speed humps every 50-60m and make all crosswalks raised crossing.

Prior to the construction of the Earl Armstrong Road extension, it is recommended that transit service be routed along Miikana Road, Paakanaak Avenue and Kelly Farm Drive. Once the extension is completed, however, it is expected that transit service will be provided along Kelly Farm Drive and Earl Armstrong Road.

S-4 Leitrim West of Bank Lands Master Transportation Study

A mobility and implementation plan has been developed for the subject site to ensure that the objectives and targets of the community and City are met. It is recommended that multi-modal information packages be provided on resident move in and that private approaches on Kelly Farm Drive be avoided. These measures, combined with the other recommendations outlined above, are expected to be sufficient to meet the objectives and targets of the community and City. Additionally, the following infrastructure implementation timeline has been established:

- Construct the mid-block active transportation connection at the eastern boundary of the site when the lands east of Kelly Farm Drive are developed.
- Construct the mid-block active transportation connection at the northern boundary of the site when the lands west of Kelly Farm Drive are developed.
- Extend Kelly Farm Drive and construct the Earl Armstrong & Kelly Farm intersection as recommended by the EA when Earl Armstrong Road is extended.

Based on the findings of this study, it is the overall opinion of Arcadis that the subject site will integrate well with and can be safely accommodated by the adjacent transportation network with consideration of the recommendations outlined above.

# **Appendix A Terms of Reference**

## Transportation Terms of Reference – Future Neighborhoods

(as modified by Arcadis on July 22, 2024 in response to City feedback)

The City has established standard Transportation Terms of Reference for creating Local Plans in areas designated as Future Neighborhoods in Schedule C17 of the Official Plan (OP). The Terms of Reference described below build on the directions in Annex 4: Local Plan Framework and are supplemented by additional details and clarifications.

#### Plan Context

The Local Plans expand on existing and overarching policies for the community. This section aims to understand planned conditions and the policy framework for mobility.

- Identify the community boundaries and the boundaries of the study area. The latter should generally include lands within a 1.5km walking distance or 900m radius, whichever is greater, of the community. See attached justification memo.
- 2) Describe the relationship of the study area to the adjacent community, the transect, and the broader city.
- 3) Summarize approved projects, planned projects, and planning policies that will be considered within the context of the Local Plan and the broader mobility network.

#### **Existing Conditions**

The Future Neighborhood must be woven into the existing built-up areas and connected to adjacent communities; understanding existing conditions will help inform future recommendations. This section will describe the following items:

- 4) Boundaries of the community and key access points for all modes of transportation.
- 5) Characteristics of the vehicular network within a 1.5km walking distance or 900m radius, whichever is greater, buffer of the community, including:
  - a. Road classifications, number of lanes, and capacities;
  - b. Network connectivity to key destinations;
  - c. Designated truck routes and truck desire lines; and
  - d. Current levels of travel demand and safety and operational performance at select intersections within the Study Area, per the attached justification memo.
- 6) Characteristics of the pedestrian and cycling networks within a 1.5km walking distance or 900m radius, whichever is greater, buffer of the community, including:
  - a. Extent and type of facilities in the network;
  - b. Critical missing links in the city's active transportation network;
  - c. Network connectivity to key destinations and adjacent communities; and
  - d. Desire lines to elements of 15-minute neighborhoods.
- 7) Characteristics of the transit network within a an expanded 1.9km buffer of the community, including:
  - a. Transit routes and alignment;
  - b. Capacity and frequencies;

- c. Priority treatments, including connectivity to rapid transit; and
- d. Transit service amenities.
- 8) Existing elements of a 15-minute neighborhood including schools, licensed childcare facilities, community centres, parks and other greenspaces, general retail, grocery stores, and other community infrastructure.

#### Vision, Objectives and Targets

It is essential to establish a clear vision for the Future Neighborhood and related objectives and targets to set the stage for identifying and evaluating future infrastructure requirements. This section should include the following:

- 9) Vision, objectives and targets for healthy and inclusive communities consistent with Subsection 2.2.4 of the OP, including a focus on creating healthy, walkable 15-minute neighborhoods and building inclusive, all-age communities.
- 10) Transportation objectives and targets consistent with the City's OP section 4.1 and the Transportation Master Plan (TMP), including mode share targets for walking, cycling, transit, carpooling, and driving.

#### **Key Plan Components**

Future Neighborhoods are intended to be contemporary communities planned around active transportation and transit with reduced automobile dependence. As per Policy 5-3 of the TMP, "new neighborhood streets should form part of a highly connected multimodal network with a street design that results in low vehicle speeds, safe conditions for all users, space for trees, and a vibrant public realm. New collectors, major collectors and arterials will be spaced with sufficient proximity to support transit and minimize the need for wide streets and intersections that tend to act as barriers between neighborhoods. Fine-grained and fully-connected grid street networks with short blocks will encourage connectivity and walkability". The mobility networks for Future Neighborhoods will be identified as part of the development and evaluation of alternative land use plans. The following key tasks are required:

- 11) Describe and assess the interim and ultimate mobility plan for the Future Neighborhood. The qualitative assessment will identify whether the proposed mobility plan is consistent with City guidelines and policies.
- 12) The performance of the proposed mobility networks should be assessed against the vision, objectives, and targets for the Future Neighborhood identified above.
  - a. Identify the proposed type, scale, phasing, and location of development. The layout and community design will identify connections to rapid transit services during the early stages of development and in the long term. The layout should enhance pedestrian, cycling and transit connectivity to internal and external facilities and destinations.
  - b. Develop population, residential dwellings, and employment scenarios and projections to assess future travel demand.
- 13) Describe and illustrate the mobility network, including arterial and collector streets, transit, and active transportation facilities, focusing on travel within the community and connections to the broader region. The plan should identify the following:
  - a. Community access points;

- b. Street layout and cross-section design;
- c. The function and classification of all internal and boundary roads to confirm their adherence to the OP's classification framework;
- d. Pedestrian and cycling corridors and connections to provide a more granular active transportation network compared to the general road network;
- e. Transit network improvements to facilitate transit service to the community and local servicing requirements to provide high quality service to the nearest rapid transit station for both the existing and planned transit network;

f.

- g. Location of signalized intersections and pedestrian crossings; and
- h. Other planning and design strategies, such as traffic calming or filtered permeability, to support the community's vision, objectives and targets.

#### Forecasting & Analysis

This section is intended to facilitate the seamless integration of land use and transportation planning directions by evaluating and comparing the mobility network's performance and proposed development strategy in an integrated and holistic fashion. It is expected that the forecasting and analysis will occur iteratively with the development of the Key Plan Components above.

The scope of work will largely be dictated by the development proposal's size and the anticipated development pace.

A full Transportation Impact Assessment (TIA) submission is expected for areas of approximately 75 hectares or less and where a subdivision application is anticipated to occur in lockstep with the lifting of the Future Neighborhood Overlay. The TIA should include the scope and specificity typically required to support a similarly sized subdivision application, such as traffic calming location, local street network, and pathway network, and include the items listed below.

In all cases, the time periods and horizon years for analysis will be selected per direction contained within the City of Ottawa TIA Guidelines.

The study horizon years will be as follows:

- Existing (2024) Conditions
- Future (2031) Conditions to align with the assumed completion of all infrastructure projects in the 2013 TMP Affordable Network
- Future (2036) Conditions 5-year study horizon

Note: The assumed 2031 and 2036 future transportation network will be based the planning documents (e.g., Transportation Master Plan, Development Charges Background Study, etc.) that are in effect at the time that the study is completed.

As the development is likely to be primarily residential in nature, only the weekday morning and weekday afternoon peak periods will be considered as these periods represent the critical periods for commuter traffic as it relates to new residential development.

Within the Study Area, the documentation of existing/forecasted conditions and evaluation of traffic impacts will be limited to select intersections, as justified in the attached memo under the heading "Study Area".

- 14) Forecast future travel demand generated by the development and total future demand, including background traffic growth and demand from other planned development. The forecasts should be prepared using accepted forecasting methodologies, including the TIA Guidelines and the use of the most recent TRANS Trip Generation Manual. Background traffic growth rates will be based on EMME model projections provided by the City.
- 15) Assess the impacts on the transportation network's performance at select intersections within the Study Area (see attached justification memo) due to the trips generated by the development. This analysis should include the following:
  - a. Trips within the development and to adjacent communities;
  - b. Downstream transit or road capacity deficiencies triggered or made worse by the new development, including transportation corridors providing access to the area; and
  - c. Missing links between the new neighborhood's pedestrian and cycling networks and the City's broader mobility network.
- 16) Note any barriers that might undermine the successful realization of the goals and objectives of the plan and include steps to overcome shortfalls while harnessing opportunities.
- 17) Identify any network modifications or other measures required to mitigate impacts on network performance.

#### Mobility Plan

The section builds on the previous steps and is intended to describe a road map to support and ensure that the objectives and targets are met.

- 18) List and describe all necessary measures and programs to achieve the objectives and targets for the community and the evolution to a 15-minute neighborhood. Amongst these measures, the following should be considered:
  - a. A Transportation Demand Management Plan to show how the mode share targets will be achieved.
  - b. A strategy to establish sustainable mobility habits during early phases of development, such as the provision of transit through early servicing agreements.
- 19) Identify policy and zoning pain points and suggested amendments to encourage sustainable modes of transportation, such as limiting private approaches along active transportation corridors, permitting shallow setbacks, increasing bicycle parking requirements and reducing vehicle parking requirements.
- 20) Demonstrate how the development will achieve Council policies and objectives such as VKT reduction, GHG reduction, inclusiveness, complete streets, equity, accessibility, safety, and integration of 15-Minute Neighborhoods.

21)

#### Implementation Strategy

The implementation strategy will identify the phasing and timing of development and associated infrastructure needs.

- 22) Identify a phasing strategy for the Future Neighborhood that supports the mobility objectives, constraints, and opportunities for the community, including associated timelines for transportation infrastructure and amenities.
- 23) Identify critical infrastructure necessary to unlock the development potential of each phase and identify mitigation measures to maintain the mobility strategy if these infrastructure projects are delayed.
- 24) Establish the implementation timeframes for each proposed transportation network modification corresponding to the anticipated phasing of development, where works are required external to the Future Neighborhood to support the anticipated travel demand.
- 25) Identify requirements for future transportation studies, including Environmental Assessment studies needed to implement the proposed transportation measures.

#### Memo



**SUBJECT** 

S-4 Leitrim West of Bank Street Alterations to Study Terms of Reference (Transportation)

DATE

July 22, 2024

**DEPARTMENT** 

Transportation

**COPIES TO** 

Amir Zahabi, City of Ottawa Evan Garfinkel, Regional Group Greg Winters, Novatech Ryan Magladry, Arcadis TO

Max Walker Senior Project Manager, Transportation Planning City of Ottawa

**OUR REF** 

/Internal Documents/6.0\_Technical/ 6.23 Traffic/03 Reports/Concept Plan Process

**PROJECT NUMBER** 

145172

NAME

David Hook, P.Eng. Tel. (613) 225-1311 x62049 david.hook@arcadis.com

The purpose of this memorandum is to tailor the scope of the transportation work required in support of the Concept Plan process for the S-4 Leitrim West of Bank Lands.

Following our review the Terms of Reference provided by the City of Ottawa, we have concerns with three (3) elements: Study Area, Selection and Evaluation of Alternative Road Alignments, and Road Safety Audit. A reduced scope relating to these elements has been justified as follows.

#### Study Area

The City's Terms of Reference describe the requirement for a 5km radial study area. Based on the initial Working Group meeting in April 2024, City staff acknowledged that they would be amendable to accepting a reduced radius, based primarily on the requirement for rapid transit within 1.9km of the expansion lands and not necessarily because of traffic as the impacts are understood would be relatively minimal. Based on the following information, a reduced study area is proposed.

a) Availability and Distance to Rapid Transit – 1.9km is a scoring metric established by the City for the Urban Expansion Detailed Evaluation Criteria. This radial distance was based on a 2.5km travel route, representing a 5-minute local bus ride (at 30 km/hr) and a 10-minute bicycle ride (at 15 km/hr). Presently, the nearest access points to rapid transit service are located at Bowesville Station and Leitrim Station, both over 3km from the subject lands. Schedule C-2 of the Official Plan indicates that rapid transit is not envisioned along Bank Street, however the future Earl Armstrong Extension immediately south of the site is identified as Transit Priority Corridor and will provide a direct connection to the Bowesville LRT Station in the



Figure 1 - Official Plan, Schedule C-2

future. Until such time Earl Armstrong Road is exteneded to Bank Street, access to rapid transit from the subject lands will only reasonably accomodated by private vehicle (park-and-ride), local bus or cycling.

b) Local Transit Service – At present, transit service within the Leitrim Community is provided as far south as Dun Skipper Drive via Route 294. This route travels south through the community along Kelly Farm Drive and terminates at the Bank/Dun Skipper intersection. This route presently provides service to the South Keys LRT/BRT station and can be accessed less than 400m from the centroid of the subject lands. The nearest bus route providing direct access to the Leitrim LRT station is Route 293 and operates along Findlay Creek Drive, approximately 1.4km north of the subject site.

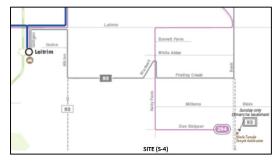



Figure 2 - OC Transpo Network Map (2024)

Local transit service on Kelly Farm Drive south of Dun Skipper is required to support the development of the subject lands.

c) Active Transportation Facilities – Part 1 of the Transportation Master Plan update indicates that there are no planned Crosstown Bikeways in the Leitrim Community. The Rural Active Transportation Network, however, envisions facilities along Findlay Creek Drive and west of Kelly Farm Drive as far south as Miikana/Blais Road. The first phase of the Bank Street widening, expected to start construction in 2024, will also extend as far south as Miikana Road/Blais Road providing high-quality bicycle and pedestrian facilities. Per the 2019 Development Charge By-law, subsequent widening of Bank Street to the south beyond Dun Skipper Drive is expected to occur in approximately 2030-2031 and it is

assumed that it will include similar active transportation

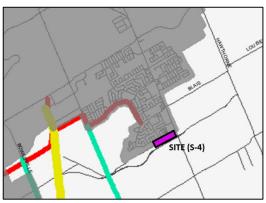



Figure 3 - TMP Part 1, Rural AT Network

facilities. The functional design of the Earl Armstrong extension to Bank Street also includes cycle tracks, sidewalks and protected intersections, though the implementation timing is not presently known.

Provision for active transportation facilities on Kelly Farm Drive south of Milkana Road is required to support the development of the subject lands.

d) 15-Minute Neighborhoods – The 2005 Leitrim Community Design Plan (CDP) identified the following three commercial nodes within Leitrim: Bank/Rotary Way, Bank/Findlay Creek Drive, and Bank/Dun Skipper. The Bank/Dun Skipper node is within a 500m radius of the subject lands, while the next nearest node at Bank/Findlay Creek is 1.5km away. A school has been recently constructed adjacent the Kelly Farm Drive/Miikana intersection, within 800m of the subject site. A public park on Kelly Farm Drive exists within 900m of the subject site. The Official Plan describes a 15-minute neighborhood as a 900m radial walking distance as this is the most universally accessible mode of transportation.



Figure 4 - Leitrim CDP, Annotated

e) Intersection Capacity – As mentioned previously, Bank Street will be widened to 4 lanes as far south as Dun Skipper Drive by 2030-2031. The Leitrim Master Transportation Study (IBI Group, 2018) took into consideration all future developments in this community that were within the urban boundary at that time. Other than the Bank/Leitrim intersection itself, all intersections between Leitrim Road and Dun Skipper Drive were expected to operate with plenty of spare capacity beyond the 2031 horizon year with the planned four-lane widening, with consideration of an annual 1% background growth rate from traffic originating outside of the urban boundary.

The most critical intersections for accommodating additional traffic demand are those subject to new turning movements, with the majority of the impact likely to be localized at the Bank/Dun Skipper intersection.

- Magnitude of Traffic Generation Based on the developable area within the subject lands, it is estimated that up to 375 residential units could be provided, consistent with the existing housing density of the adjacent community. This translates to approximately 250 person-trips generated during the peak hours, further broken down as 150 auto drivers, 50 transit users and the rest by active modes, per the existing modal share. The vast majority of vehicular traffic can be accommodated by the Bank/Dun Skipper intersection, with nominal volumes expected to extend further north along Kelly Farm Drive into the existing community. The vehicular impacts are therefore expected to be localized within a 600m radius of the subject site. The extension of Earl Armstrong Road south of the subject site will further reduce the traffic impacts of these lands on the adjacent community and may have the opposite effect where existing traffic may travel through the subject lands to access Earl Armstrong Road. In this instance, the majority of traffic expected to travel through the subject site is expected to originate south of Milkana Road. In suburban areas, the City of Ottawa's 2017 Transportation Impact Assessment Guidelines specify a 1-kilometer radius when reviewing the transportation context for new developments. The Study Area is established based on the considerations of transportation elements (both existing and planned) within the context area and focuses on key areas of concern. Beyond 1 kilometer from a development site, transportation impacts are sufficiently dispersed and the network impact becomes negligible. The Study Area is therefore typically much smaller than the 1kilometer context area.
- g) Other Considerations There are two areas of planned urban expansion in the Leitrim community. The S-5 Leitrim East of Bank expansion lands are within close proximity to the subject lands and located immediately north of Blais Road. Those lands are nearest the community's other commercial node at Bank/Findlay Creek Drive and the southern limit of the S-5 lands coincides with the Phase 1 terminus of the planned Bank Street widening to Blais Road. As the subject lands (S-4) will focus on the 15-minute neighborhood centered with the Bank/Dun Skipper commercial node, Blais Road represents a logical division between the two expansion land study areas where the relative impacts of each will be clearly distinguished at this common point along the area's primary transportation corridor.



As the impacts of the subject site and the adjacent transportation network will be relatively minimal, ensuring

Figure 5 - Urban Expansion Areas

connections to existing and planned transit, cycling and pedestrian infrastructure south of Blais Road

is essential to ensure a 15-minute neighborhood can be achieved and that localized traffic impacts can be safely accommodated at the nearest access points to the arterial road network.

#### **Recommendation #1:**

As there are Active Transportation Facilities planned west of Kelly Farm Drive and on Bank Street as far south as Miikana Road and within 600m of the site, ensuring quality connections to these will be of utmost importance, along with an extension of local bus service south of Dun Skipper Drive to service the subject lands by all modes of travel. Traffic impacts from the subject lands are projected to be minimal beyond a 1-kilometer radius, and previous assessments of the Bank Street corridor suggest no localized capacity issues at intersections south of Leitrim Road in the foreseeable future. As such, the following study area is recommended.

- Study Area: 1.5km walking distance or 900m radius, whichever is greater.
- Study Area Intersections:
  - 1) Kelly Farm/Miikana
  - 2) Kelly Farm/Dun Skipper
  - 3) Bank/Miikana/Blais
  - 4) Bank/Dun Skipper
  - 5) Kelly Farm/Findlay Creek
  - 6) Bank/Future Site Access (potential)
  - 7) Kelly Farm/Future Earl Armstrong
  - 8) Bank/Future Earl Armstrong

www.arcadis.com 4/7



Figure 6 - Recommended Study Area for S-4 Urban Expansion Lands

#### **Selection and Evaluation of Alternative Road Alignments**

The City's Terms of Reference describe the requirement to select and analyze alternative collector road alignments. Based on the following information, no other collector road configuration is feasible and thus there are no other alternatives that could be considered.

a) Earl Armstrong Extension Environmental Assessment (Functional Design) – The approved functional design for the Earl Armstrong extension established a future intersection with Kelly Farm Drive. This signalized intersection will be located approximately 490m west of Bank Street. At the intersection with Bank Street, a multi-lane roundabout is proposed.

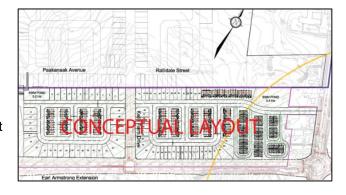



Figure 7 - Earl Armstrong Extension EA Functional Design

b) Intersection Spacing – According to the Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads, the desired spacing of major intersections along an arterial road is 400m for efficient signal progression. The minimum intersection spacing along an arterial roadway is 200m, however this is only recommended in areas of intense existing development and should otherwise be avoided. Existing intersection spacing along the Bank Street corridor complies with this guideline. As a future major intersection is planned along Bank Street at the Earl Armstrong extension, there is insufficient spacing to accommodate another major all-movements intersection. Between major



Figure 8 - Arterial Road Intersection Spacing

intersections, only a local road connection may be possible and would require restriction to only right-in/right-out movements, though local road connections to arterial roads are undesirable. Based on the above, the only feasible alternative for the collector road alignment is to extend Kelly Farm Drive to the future Earl Armstrong extension.

#### **Recommendation #2:**

As there are no viable alternative collector road configurations, it is recommended that any elements of the Terms of Reference associated with selection or evaluation of alternative or preferred roadway alignments be eliminated from the study scope. Associated restrictions to transit service routing will be discussed.

#### Road Safety Audit (RSA)

The City's Terms of Reference describe the need to "undertake a Road Safety Audit", though it does not consider that there are triggers for various types of transportation infrastructure projects.

a) **RSA Requirements** – Within the subject lands, new roads will be classified as either Local or Collector and therefore the requirement to undertake an RSA is stated as being 'optional' at the Planning stage and doesn't become a mandatory requirement until the Preliminary Design stage. It also generally only applies to projects of value greater than \$1-million.

Through the Concept Plan process, transportation infrastructure requirements to support the development of the subject lands will be identified at a high level. As the lands are under single-ownership, any direct roadway modification triggers would be identified at the Plan of Subdivision Stage through a Roadway

Max Walker City of Ottawa July 22, 2024

Modification Application (RMA), though it should be noted that RSA requirements have not yet been integrated with the City's Transportation Impact Assessment process.

Under background conditions, any required modifications to existing transportation facilities based on any identified network gaps within the Study Area do not trigger the absolute need for an RSA. The scale and complexity of any gaps may determine the need for an RSA (based partially on estimated cost), though the trigger for an RSA remains 'optional' at the Planning stage, except in the case of a new arterial road (Earl Armstrong Road), full reconstruction of an arterial road (Bank Street) or major collector road (none present).

| Road Safety Audit (RSA) Requirements by Project Types                                                                                                                                                                                                                                                                                                             |                             |                                                                                                  |                                    |                                             |                    |               |             |                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------|--------------------|---------------|-------------|--------------------|
|                                                                                                                                                                                                                                                                                                                                                                   |                             |                                                                                                  | Road Safety Audit (RSA) Stage      |                                             |                    |               |             |                    |
| Project Type                                                                                                                                                                                                                                                                                                                                                      | Project Description         | Details                                                                                          | Classification                     | Plannning/Feasibility/<br>Functional Design | Preliminary Design | Detail Design | Pre Opening | Existing Condition |
|                                                                                                                                                                                                                                                                                                                                                                   |                             | Major New Road                                                                                   | Freeway, Arterial, Major Collector | √                                           | <b>V</b>           | 4             | 4           | -                  |
| New Schemes                                                                                                                                                                                                                                                                                                                                                       | New Link/Road/Transitway    | Minor New Road                                                                                   | Collector, Local                   | 0                                           | 1                  |               | 4           | -                  |
|                                                                                                                                                                                                                                                                                                                                                                   |                             | Multiuse Pathways (MUPs) <sup>1</sup> ,(Cycle Tracks, Bike Lanes) <sup>1</sup>                   | Any                                | 0                                           | √                  |               | 0           | -                  |
|                                                                                                                                                                                                                                                                                                                                                                   | Full Road Reconstruction    | Major Rehabilitation/Retrofit*, Widening (estimated construction cost >\$10 mil)                 | Arterial, Major Collector          | √                                           | 4                  |               | 0           |                    |
|                                                                                                                                                                                                                                                                                                                                                                   | Puli Rodu Reconstruction    | wajor Renabilitation/Resonit , widerling (estimated constitution) cost >\$10 mil)                | Collector, Local                   | 0                                           | 1                  |               | 0           | -                  |
| 5:0 5 11                                                                                                                                                                                                                                                                                                                                                          | Partial Road Reconstruction | Minor Rehabilitation/Retrofit**, Widening (estimated construction cost \$(1-10) mil              | Any                                | 0                                           | √                  |               | 0           | -                  |
| Existing Road Improvement (including Transitway)                                                                                                                                                                                                                                                                                                                  | Tariai Noau Necorisu ucuori | Minor Rehabilitation/Retrofit** or Any Small Size Projects (estimated construction cost< \$1mil) | Any                                | 0                                           | R                  |               |             |                    |
| Resurfacing*** Road                                                                                                                                                                                                                                                                                                                                               |                             | Road Rehabilitation/Shoulder Improvement                                                         | Any                                | -                                           | -                  |               | -           | R                  |
|                                                                                                                                                                                                                                                                                                                                                                   |                             | Full Geometric Modification # (estimated construction cost \$(1-5) mil)                          | Any                                | 0                                           | 1                  |               | 0           | -                  |
|                                                                                                                                                                                                                                                                                                                                                                   | intersection wodilication   | Partial Geometric Modification (estimated construction cost <\$1 mil)                            | Any                                |                                             | R                  |               | -           |                    |
|                                                                                                                                                                                                                                                                                                                                                                   | Culvert                     | Renewal                                                                                          | Any                                |                                             | R                  |               | -           | -                  |
| Existing Structures on Road                                                                                                                                                                                                                                                                                                                                       | Bridge                      | Renewal (no change in cross-section)                                                             | Any                                | -                                           | R                  |               | -           | -                  |
|                                                                                                                                                                                                                                                                                                                                                                   | Transit Structure           | Renewal                                                                                          | Any                                |                                             | R                  |               | -           | -                  |
| for MUPs or any similar projects (cycle tracks, bike larnes or adewalks) - RSA is to be conducted only if it is adjacent to or crossing a collector or higher classifield road at potential conflict points.  1 – Mandatory O - Optional R - Requirement based on "Safety Performance" and/or "Network Screening" review with the assistance of Road Safety Group |                             |                                                                                                  |                                    |                                             |                    |               |             |                    |

Figure 9 - Road Safety Audit Requirements, City of Ottawa

#### Recommendation #3

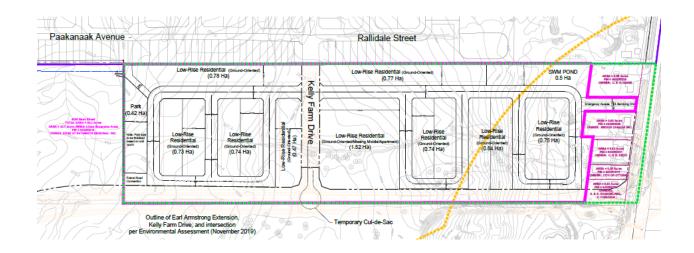
There are no Major Collector roads in the Leitrim community and therefore an RSA would only be considered *mandatory* for the Earl Armstrong Extension (new arterial) or Bank Street (existing arterial) – both of which have already undergone a formal design process. The safety evaluation of these roadways is therefore the responsibility of the Designer/City and not of private landowners. As it relates to the scope of work specifically for the S-4 Leitrim West of Bank expansion lands, the strict requirement to undertake a Road Safety Audit should therefore be eliminated from the Terms of Reference.

www.arcadis.com

7/7

# **Appendix B TIA Screening Form**




## City of Ottawa 2017 TIA Guidelines Screening Form

\*Revised per City of Ottawa update to the TIA Guidelines, effective June 14, 2023.

#### 1. Description of Proposed Development

| Municipal Address                | 4850 Bank Street, Ottawa, ON                                                                                                                                                                                                    |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description of Location          | Leitrim – West of Bank Street, south of Dun Skipper Drive and north of the future Earl Armstrong Road extension.                                                                                                                |
| Land Use Classification          | Residential                                                                                                                                                                                                                     |
| Development Size (units)         | 276                                                                                                                                                                                                                             |
| Development Size (m²)            | N/A                                                                                                                                                                                                                             |
| Number of Accesses and Locations | Kelly Farm Drive will be extended through the site to the future Earl Armstrong Road extension providing access to the site via the existing road network to the north and the future Earl Armstrong & Kelly Farm intersection. |
| Phase of Development             | Single Phase                                                                                                                                                                                                                    |
| Buildout Year                    | TBD                                                                                                                                                                                                                             |

If available, please attach a sketch of the development or site plan to this form.





#### 2. Trip Generation Trigger

Considering the Development's Land Use type and Size (as filled out in the previous section), please refer to the Trip Generation Trigger checks below.

| Land Use Type*                                   | Minimum Development Size (60 person trips) |
|--------------------------------------------------|--------------------------------------------|
| Single-Detatched <sup>1</sup>                    | 60 units <b>√</b>                          |
| Multi-Use Family (Low Rise) <sup>1</sup>         | 90 units ✓                                 |
| Multi-Use Family (High-Rise) <sup>1</sup>        | 150 units                                  |
| Office <sup>2</sup>                              | 1,400 m²                                   |
| Industrial <sup>2</sup>                          | 7,000 m <sup>2</sup>                       |
| Fast-food restaurant or coffee shop <sup>2</sup> | 110 m <sup>2</sup>                         |
| Destination retail <sup>2</sup>                  | 1,800 m²                                   |
| Gas station or convenience market <sup>2</sup>   | 90 m²                                      |

<sup>\*</sup> If the development has a land use type other than what is presented in the table above, estimates of person-trip generation may be made based on average trip generation characteristics represented in the current edition of the Institute of Transportation Engineers (ITE) Trip Generation Manual.

Based on the results above, the Trip Generation Trigger is satisfied.

#### 3. Location Triggers

|                                                                                                                                                                  | Yes | No |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| Does the development propose a new driveway to a boundary street that is designated as part of the City's Transit Priority, Rapid Transit or Cross-Town Bikeway? |     | ✓  |
| Is the development in a Design Priority Area (DPA), Transit-oriented Development (TOD) zone or Hub?*                                                             |     | ✓  |

<sup>\*</sup>DPA and TOD are identified in the City of Ottawa Official Plan (DPA in Section 2.5.1 and Schedules A and B; TOD in Annex 6). See Chapter 4 for a list of City of Ottawa Planning and Engineering documents that support the completion of TIA). Hubs are identified as Protected Major Transit Station Areas (PTMSAs) and identified in Schedule C1-Protected Major Transit Station Areas (PMTSAs).

Based on the results above, the Location Trigger is NOT satisfied.

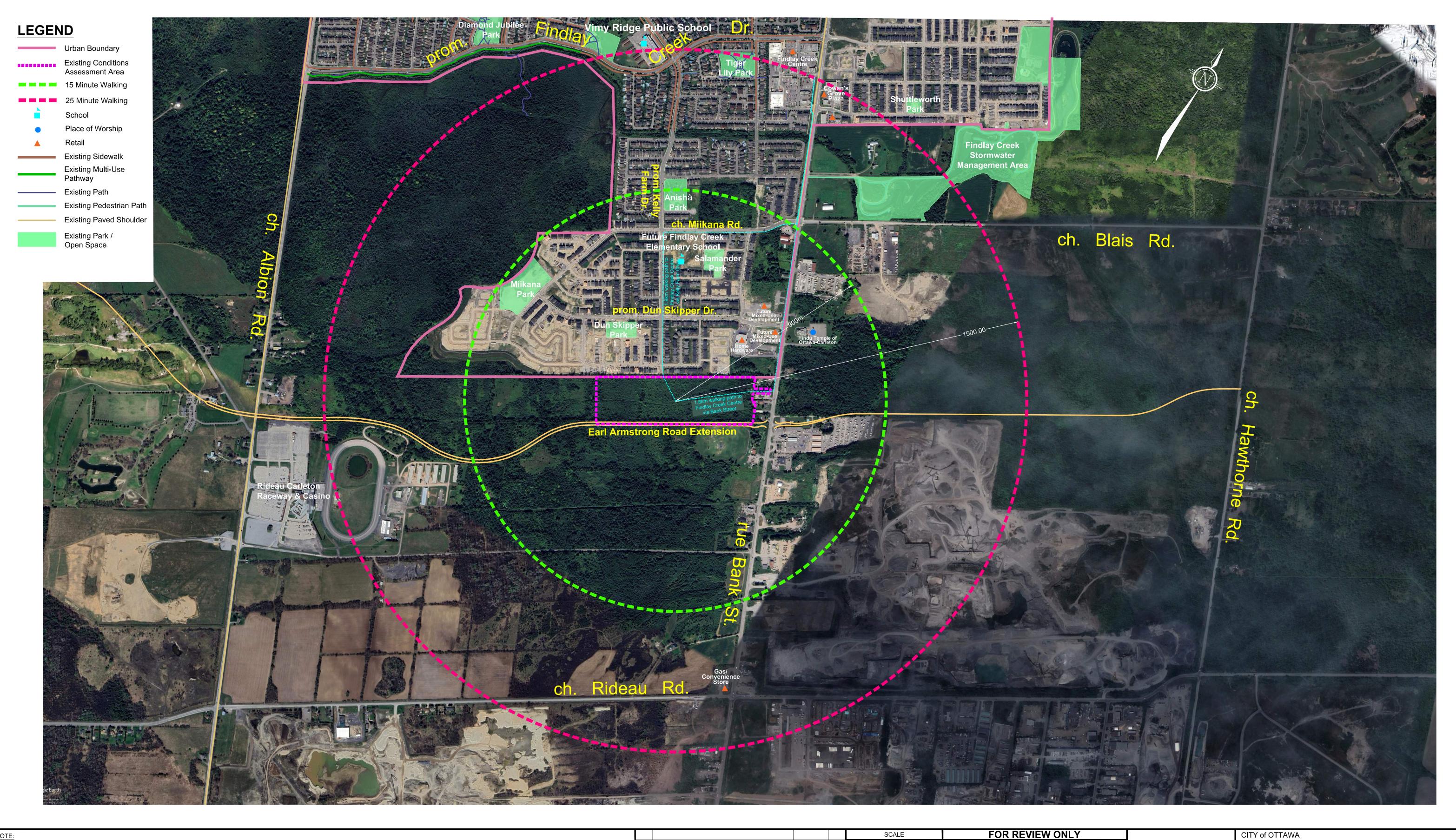
<sup>&</sup>lt;sup>1</sup> Table 2 Table 3 & Table 4 TRANS Trip Generation Summary Report

<sup>&</sup>lt;sup>2</sup> ITE Trip Generation manual 11.1 Ed.



## 4. Safety Triggers

|                                                                                                                                                                                                                           | Yes          | No       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|
| Are posted speed limits on a boundary street are 80 km/hr or greater?                                                                                                                                                     | $\checkmark$ |          |
| Are there any horizontal/vertical curvatures on a boundary street limits sight lines at a proposed driveway?                                                                                                              |              | ✓        |
| Is the proposed driveway within the area of influence of an adjacent traffic signal or roundabout (i.e. within 300 m of intersection in rural conditions, or within 150 m of intersection in urban/ suburban conditions)? |              | ✓        |
| Is the proposed driveway within auxiliary lanes of an intersection?                                                                                                                                                       |              | <b>✓</b> |
| Does the proposed driveway make use of an existing median break that serves an existing site?                                                                                                                             |              | ✓        |
| Is there is a documented history of traffic operations or safety concerns on the boundary streets within 500 m of the development?                                                                                        |              | ✓        |
| Does the development include a drive-thru facility?                                                                                                                                                                       |              | <b>✓</b> |


Based on the results above, the Safety Trigger is satisfied.

## 5. Summary

|                                                           | Yes          | No       |
|-----------------------------------------------------------|--------------|----------|
| Does the development satisfy the Trip Generation Trigger? | $\checkmark$ |          |
| Does the development satisfy the Location Trigger?        |              | <b>✓</b> |
| Does the development satisfy the Safety Trigger?          | <b>√</b>     |          |

One or more of the triggers is satisfied. Therefore, the TIA Study must continue into the next stage (Scoping).

# Appendix C Neighbourhood Amenities



NOTE:
THE POSITION OF ALL POLE LINES, CONDUITS,
WATERMAINS, SEWERS AND OTHER
UNDERGROUND AND OVERGROUND UTILITIES AND
STRUCTURES IS NOT NECESSARILY SHOWN ON
THE CONTRACT DRAWINGS, AND WHERE SHOWN,
THE ACCURACY OF THE POSITION OF SUCH
UTILITIES AND STRUCTURES IS NOT GUARANTEED.
BEFORE STARTING WORK, DETERMINE THE EXACT
LOCATION OF ALL SUCH UTILITIES AND
STRUCTURES AND ASSUME ALL LIABILITY FOR
DAMAGE TO THEM.

|     |                      |            |    | SCALE                              |  |
|-----|----------------------|------------|----|------------------------------------|--|
|     |                      |            |    | 1:7,500 (A1) /<br>1:15,000 (11x17) |  |
| l.  | REVISED PER COMMENTS | JULY 16/24 | RT | 1:7500<br>0 100 200 300            |  |
| No. | REVISION             | DATE       | BY |                                    |  |

Engineers, Planners & Landscape Architects
Suite 200, 240 Michael Cowpland Drive
Ottawa, Ontario, Canada K2M 1P6

Telephone (613) 254-9643
Facsimile (613) 254-5867
Website www.novatech-eng.com

4850 BANK STREET

DRAWING NAME

15 MINUTE

15 MINUTE
NEIGHBOURHOOD PLAN
REV #1
DRAWING No.
123168-00
REV

123168-00
REV

123168-FIG2

# **Appendix D Traffic Data**

# **Traffic Signal Timing**

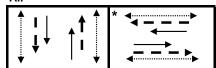
City of Ottawa, Public Works Department

#### **Traffic Signal Operations Unit**

Intersection: Main: Bank Side: Blais / Miikana

Controller: MS 3200 TSD: 5866

Author: Kymen Kwan Date: 30-Jul-2024


## **Existing Timing Plans**<sup>†</sup>

Plan Ped Minimum Time

|         | AM Peak | Off Peak | PM Peak | Night | Weekend | Heavy AM | Walk | DW | A+R     |
|---------|---------|----------|---------|-------|---------|----------|------|----|---------|
|         | 1       | 2        | 3       | 4     | 5       | 11       |      |    |         |
| Cycle   | 110     | 75       | 120     | 70    | 70      | 130      |      |    |         |
| Offset  | 58      | 0        | 18      | 0     | 0       | 16       |      |    |         |
| NB Thru | 80      | 45       | 90      | 40    | 40      | 90       | 7    | 6  | 4.6+2.0 |
| SB Thru | 80      | 45       | 90      | 40    | 40      | 90       | 7    | 6  | 4.6+2.0 |
| EB Thru | 30      | 30       | 30      | 30    | 30      | 40       | 7    | 9  | 3.3+3.3 |
| WB Thru | 30      | 30       | 30      | 30    | 30      | 40       | 7    | 9  | 3.3+3.3 |

#### Phasing Sequence<sup>‡</sup>

Plan: All



#### **Schedule**

Weekday

| Time  | Plan |
|-------|------|
| 0:15  | 4    |
| 6:30  | 1    |
| 7:00  | 11   |
| 8:00  | 1    |
| 9:30  | 2    |
| 15:00 | 3    |
| 18:30 | 2    |
| 22:30 | 4    |

#### Weekend

| Time  | Plan |
|-------|------|
| 0:15  | 4    |
| 6:30  | 2    |
| 11:00 | 5    |
| 19:30 | 2    |
| 22:00 | 4    |

#### **Notes**

- †: Time for each direction includes amber and all red intervals
- ‡: Start of first phase should be used as reference point for offset

Asterisk (\*) Indicates actuated phase

(fp): Fully Protected Left Turn



Pedestrian signal

Bike signal

Cost is \$62.38 (\$55.20 + HST)

## **Traffic Signal Timing**

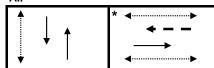
City of Ottawa, Public Works Department

#### **Traffic Signal Operations Unit**

Intersection: Main: Bank Side: Dun Skipper

Controller: MS 3200 TSD: 5869

Author: Hamadoun Issabre Date: 30-Jul-2024


#### **Existing Timing Plans**<sup>†</sup>

Plan Ped Minimum Time

|          | AM Peak | Off Peak | PM Peak | Night | Weekend | AM Heavy | Walk | DW | A+R     |
|----------|---------|----------|---------|-------|---------|----------|------|----|---------|
|          |         | 2        | 3       | 4     | 5       | 11       |      |    |         |
| Cycle    | 110     | 75       | 120     | 70    | 70      | 130      |      |    |         |
| Offset   | 58      | 0        | 18      | 0     | 0       | 40       |      |    |         |
| ND There | 00      | 45       | 00      | 40    | 40      | 00       | 7    | 0  | 4.0.0.4 |
| NB Thru  | 80      | 45       | 90      | 40    | 40      | 90       | 7    | 8  | 4.6+2.1 |
| SB Thru  | 80      | 45       | 90      | 40    | 40      | 90       | 7    | 8  | 4.6+2.1 |
| EB Thru  | 30      | 30       | 30      | 30    | 30      | 40       | 7    | 9  | 3.3+3.3 |
| WB Thru  | 30      | 30       | 30      | 30    | 30      | 40       | 7    | 9  | 3.3+3.3 |

#### Phasing Sequence<sup>‡</sup>

Plan: All



#### **Schedule**

Weekday

| Time  | Plan |  |  |
|-------|------|--|--|
| 0:15  | 4    |  |  |
| 6:30  | 1    |  |  |
| 7:00  | 11   |  |  |
| 8:00  | 1    |  |  |
| 9:30  | 2    |  |  |
| 15:00 | 3    |  |  |
| 18:30 | 2    |  |  |
| 22:30 | 4    |  |  |

#### Weekend

| Time  | Plan |
|-------|------|
| 0:15  | 4    |
| 6:30  | 2    |
| 11:00 | 5    |
| 19:30 | 2    |
| 22:00 | 4    |

#### **Notes**

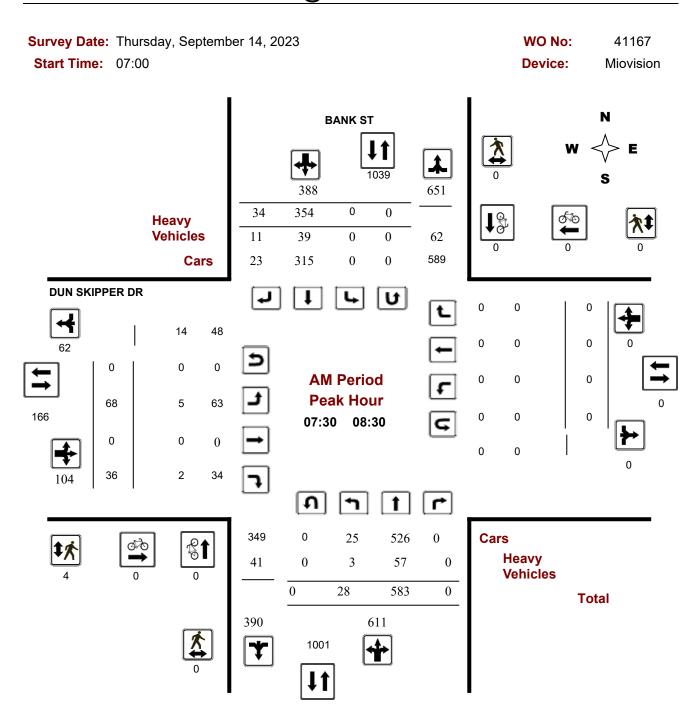
- †: Time for each direction includes amber and all red intervals
- ‡: Start of first phase should be used as reference point for offset

Asterisk (\*) Indicates actuated phase

(fp): Fully Protected Left Turn



Pedestrian signal


Bike signal



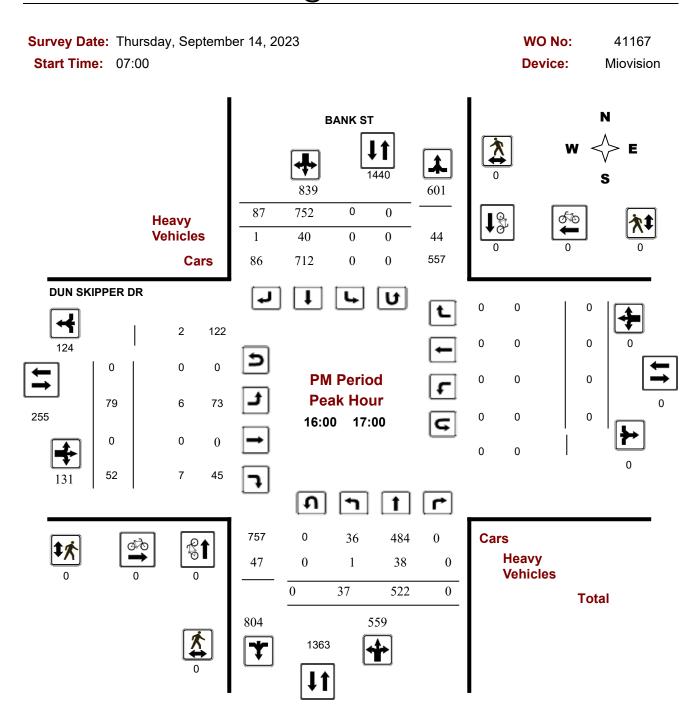
# **Transportation Services - Traffic Services**

# **Turning Movement Count - Peak Hour Diagram**

# **BANK ST @ DUN SKIPPER DR**



**Comments** 


2023-Sep-25 Page 3 of 9



# **Transportation Services - Traffic Services**

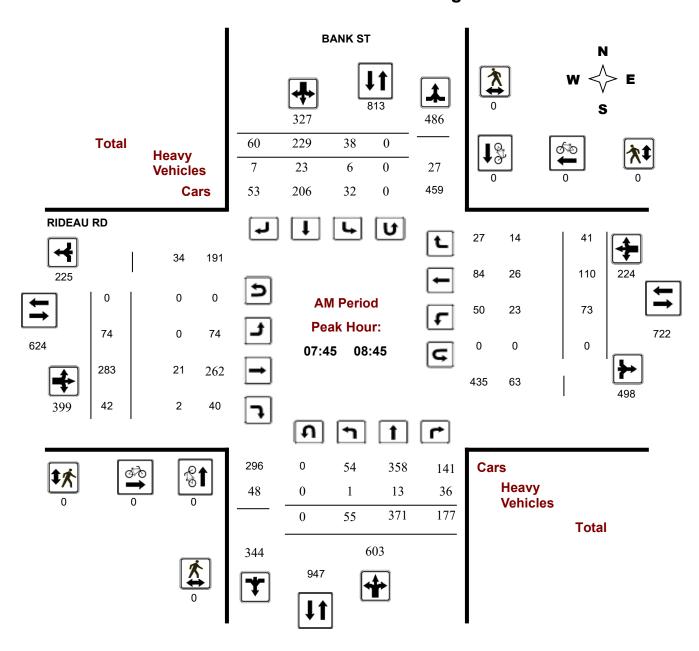
# **Turning Movement Count - Peak Hour Diagram**

# **BANK ST @ DUN SKIPPER DR**



**Comments** 

2023-Sep-25 Page 1 of 9




#### **Turning Movement Count - Study Results**

#### **BANK ST @ RIDEAU RD**

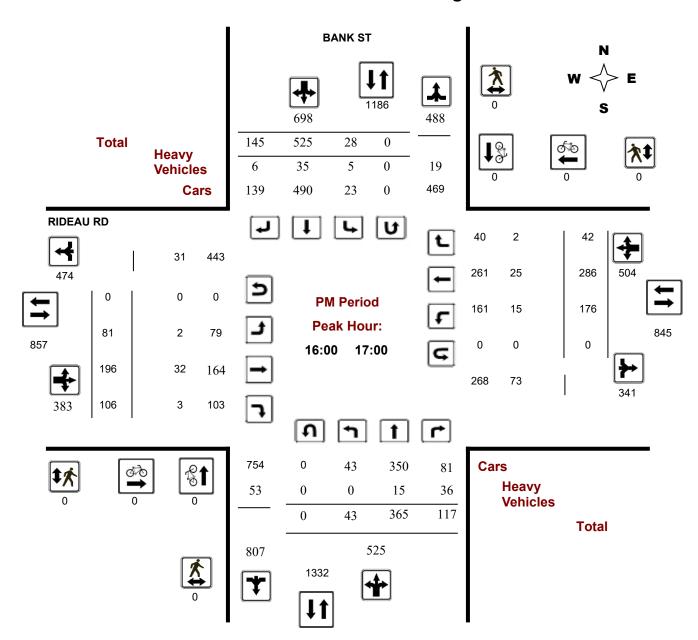
Survey Date: Wednesday, December 06, 2023 WO No: 41376
Start Time: 07:00 Device: Miovision

#### **AM Period Peak Hour Diagram**



May 13, 2024 Page 3 of 11




#### **Turning Movement Count - Study Results**

#### **BANK ST @ RIDEAU RD**

Survey Date: Wednesday, December 06, 2023 WO No: 41376

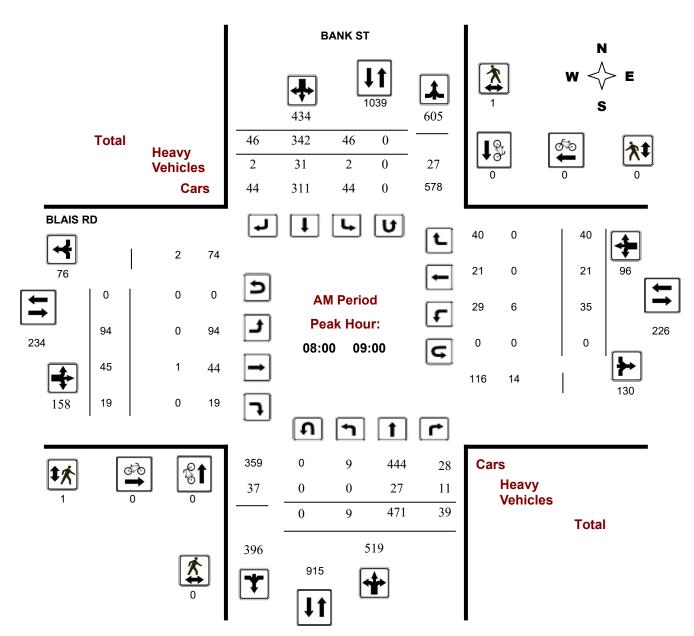
Start Time: 07:00 Device: Miovision

#### **PM Period Peak Hour Diagram**



May 13, 2024 Page 5 of 11




#### **Turning Movement Count - Study Results**

# BLAIS RD @ BANK ST

Survey Date: Thursday, July 06, 2023 WO No: 41064

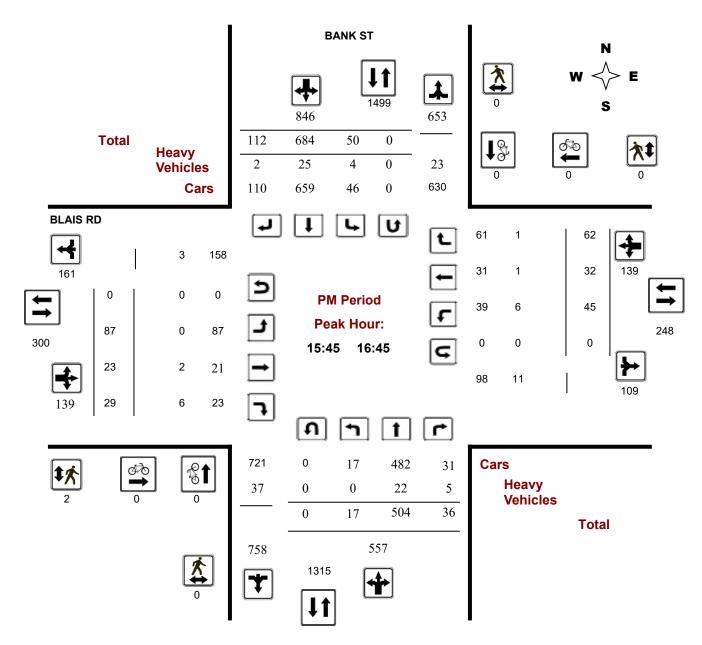
Start Time: 07:00 Device: Miovision

#### **AM Period Peak Hour Diagram**



June 4, 2024 Page 3 of 11




#### **Turning Movement Count - Study Results**

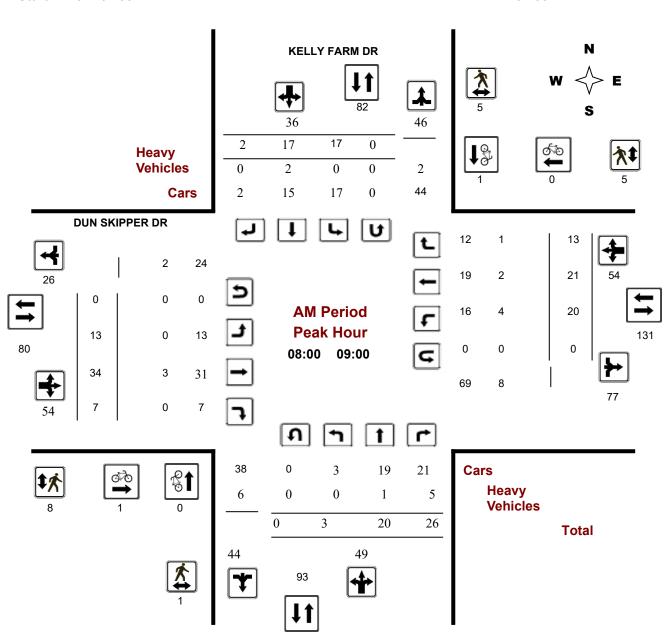
# **BLAIS RD @ BANK ST**

Survey Date: Thursday, July 06, 2023 WO No: 41064

Start Time: 07:00 Device: Miovision

#### **PM Period Peak Hour Diagram**




June 4, 2024 Page 5 of 11

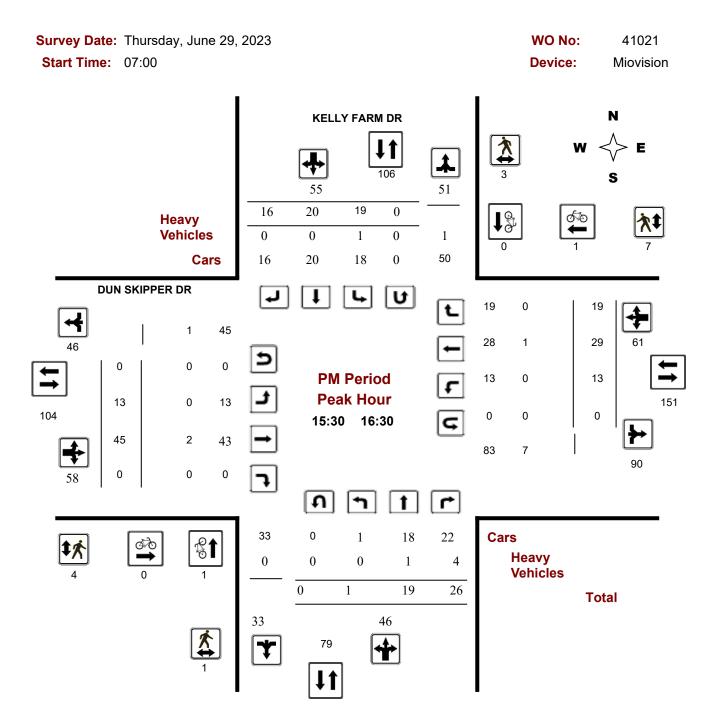


# **Turning Movement Count - Peak Hour Diagram**

#### **DUN SKIPPER DR @ KELLY FARM DR**

Survey Date: Thursday, June 29, 2023 WO No: 41021
Start Time: 07:00 Device: Miovision




**Comments** 

2023-Jul-12 Page 2 of 9



#### **Turning Movement Count - Peak Hour Diagram**

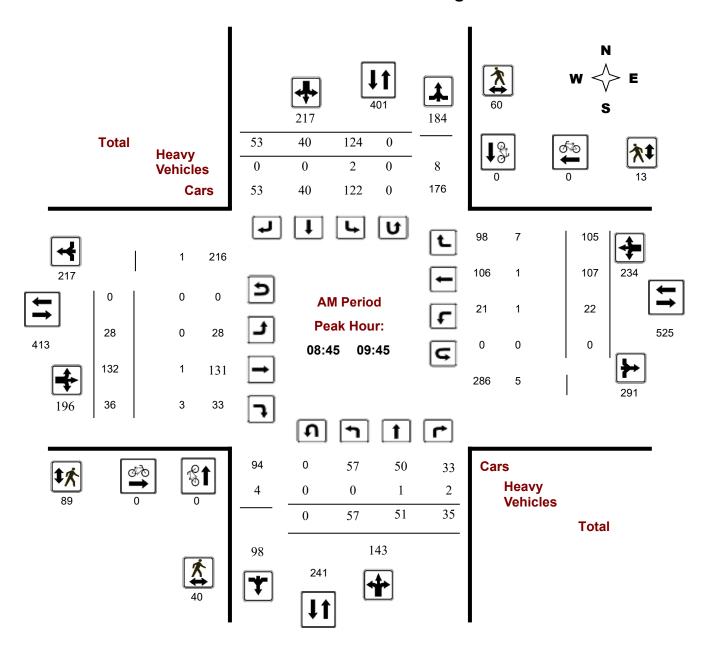
#### **DUN SKIPPER DR @ KELLY FARM DR**



**Comments** 

2023-Jul-12 Page 1 of 9




#### **Turning Movement Count - Study Results**

#### FINDLAY CREEK DR @ KELLY FARM DR

Survey Date: Thursday, February 09, 2023 WO No: 40783

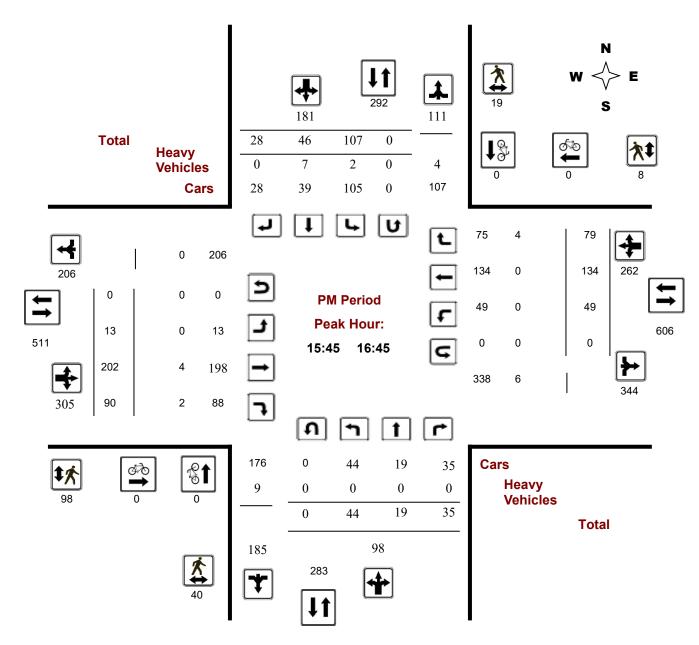
Start Time: 07:00 Device: Miovision

#### **AM Period Peak Hour Diagram**



June 4, 2024 Page 3 of 11




#### **Turning Movement Count - Study Results**

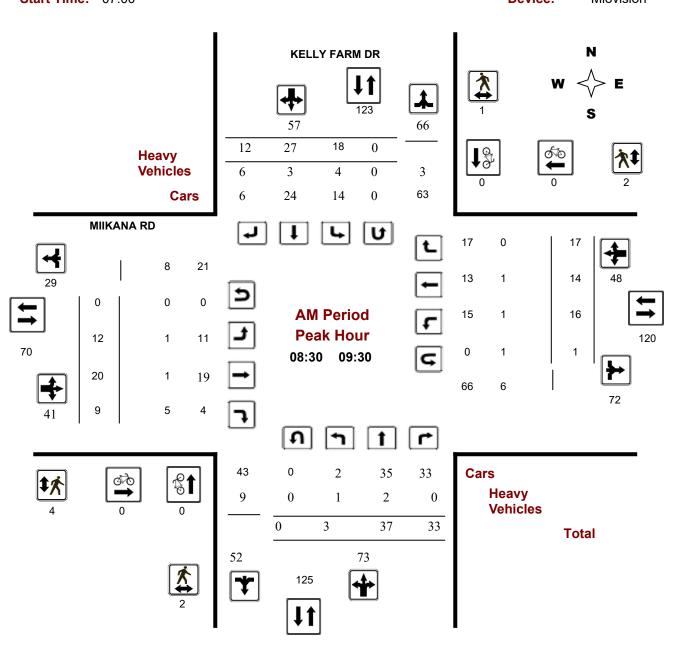
#### FINDLAY CREEK DR @ KELLY FARM DR

Survey Date: Thursday, February 09, 2023 WO No: 40783

Start Time: 07:00 Device: Miovision

#### **PM Period Peak Hour Diagram**




June 4, 2024 Page 5 of 11



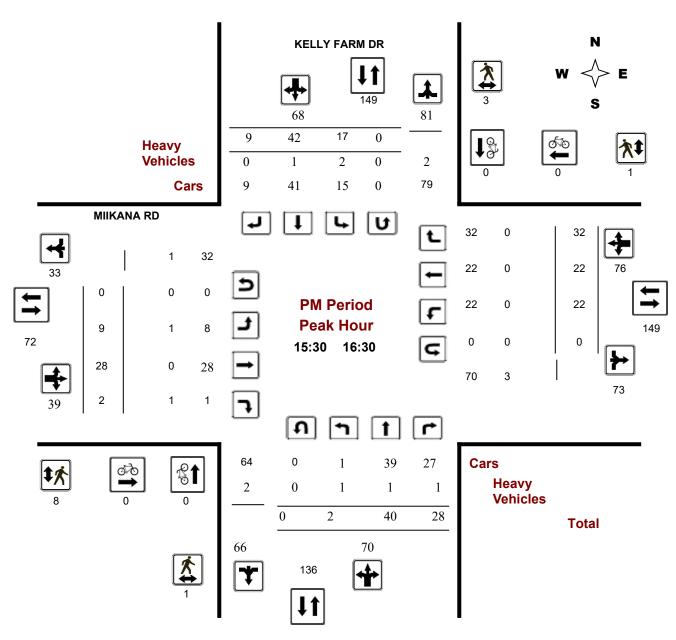
#### **Turning Movement Count - Peak Hour Diagram**

#### **KELLY FARM DR @ MIIKANA RD**

Survey Date: Thursday, February 23, 2023 WO No: 40790
Start Time: 07:00 Device: Miovision



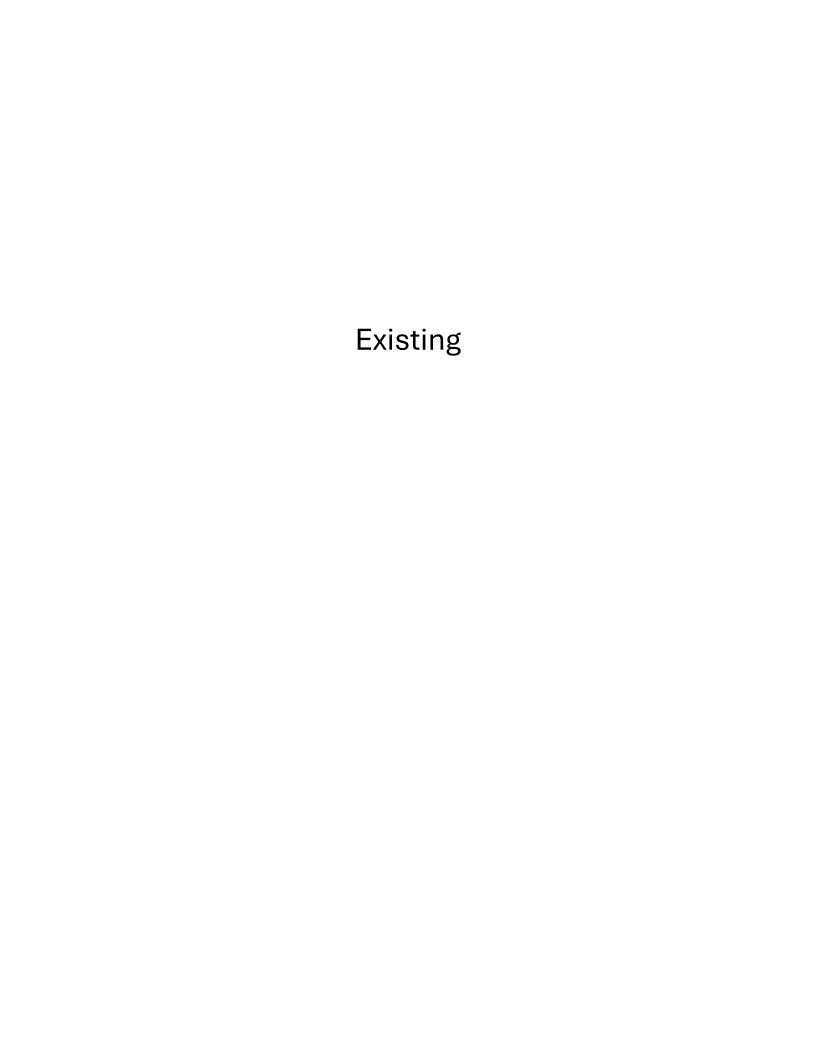
**Comments** 


2023-Mar-09 Page 3 of 9



#### **Turning Movement Count - Peak Hour Diagram**

#### **KELLY FARM DR @ MIIKANA RD**


Survey Date: Thursday, February 23, 2023 WO No: 40790
Start Time: 07:00 Device: Miovision



**Comments** 

2023-Mar-09 Page 2 of 9

# **Appendix E Intersection Capacity Analysis Reports**



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | ۶     | <b>→</b>   | •    | •     | <b>←</b> | •    | 4     | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ţ        | 4     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|------------|------|-------|----------|------|-------|----------|-------------|-------------|----------|-------|
| Traffic Volume (vph) 94 45 19 35 21 40 9 618 39 46 351 46 6 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lane Group              | EBL   | EBT        | EBR  | WBL   | WBT      | WBR  | NBL   | NBT      | NBR         | SBL         | SBT      | SBR   |
| Traffic Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lane Configurations     | *     | <b>1</b> 2 |      | *     | ĵ.       |      | ኻ     | ĵ,       |             | ሻ           | <b>*</b> | 7     |
| Future Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 94    |            | 19   | 35    |          | 40   |       |          | 39          | 46          |          |       |
| Ideal Flow (ryphpi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 94    | 45         | 19   | 35    | 21       | 40   | 9     | 618      | 39          | 46          | 351      |       |
| Storage Langth (m)   250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | 1800  | 1800       | 1800 |       | 1800     | 1800 | 1800  | 1800     | 1800        | 1800        | 1800     | 1800  |
| Storage Lanes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                       | 25.0  |            | 0.0  | 45.0  |          | 0.0  | 115.0 |          | 0.0         | 125.0       |          |       |
| Taper Length (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | 1     |            | 0    | 1     |          | 0    | 1     |          | 0           | 1           |          | 1     |
| Lane Unil Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | 20.0  |            |      | 20.0  |          |      | 20.0  |          |             | 20.0        |          |       |
| Firth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | 1.00  | 1.00       | 1.00 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00        | 1.00        | 1.00     | 1.00  |
| Fit Protected   0.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ped Bike Factor         | 1.00  |            |      |       | 0.98     |      | 1.00  |          |             |             |          | 0.98  |
| Satd. Flow (prot)   1729   1716   0   1478   1613   0   1729   1681   0   1562   1670   1488   Fit Permitted   0.713   0.711   0.524   0.337   Satd. Flow (perm)   1292   1716   0   1106   1613   0   952   1681   0   590   1670   1450   Right Turn on Red   Yes    | Frt                     |       | 0.956      |      |       | 0.901    |      |       | 0.991    |             |             |          | 0.850 |
| Fit Permitted   Satd. Flow (perm)   1292   1716   0   1106   1613   0   952   1681   0   590   1670   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   1450   145 | Flt Protected           | 0.950 |            |      | 0.950 |          |      | 0.950 |          |             | 0.950       |          |       |
| Satd. Flow (perm)   1292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Satd. Flow (prot)       | 1729  | 1716       | 0    | 1478  | 1613     | 0    | 1729  | 1681     | 0           | 1662        | 1670     | 1488  |
| Right Turn on Red   Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Flt Permitted           | 0.713 |            |      | 0.711 |          |      | 0.524 |          |             | 0.337       |          |       |
| Satd. Flow (RTOR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Satd. Flow (perm)       | 1292  | 1716       | 0    | 1106  | 1613     | 0    | 952   | 1681     | 0           | 590         | 1670     | 1450  |
| Link Speed (k/h)   50   50   80   80   80   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6   177.6    |                         |       |            | Yes  |       |          | Yes  |       |          | Yes         |             |          | Yes   |
| Link Speed (k/h)         50         80         80           Link Distance (m)         528.6         234.2         451.0         177.6           Travel Time (s)         38.1         16.9         20.3         8.0           Confl. Peds. (#/hr)         1         1         1         1         1         1           Peak Hour Factor         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90         0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Satd. Flow (RTOR)       |       | 16         |      |       | 44       |      |       | 5        |             |             |          | 51    |
| Travel Time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |       | 50         |      |       | 50       |      |       | 80       |             |             | 80       |       |
| Confil Peds. (#/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Link Distance (m)       |       | 528.6      |      |       | 234.2    |      |       | 451.0    |             |             | 177.6    |       |
| Peak Hour Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Travel Time (s)         |       | 38.1       |      |       | 16.9     |      |       | 20.3     |             |             | 8.0      |       |
| Heavy Vehicles (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Confl. Peds. (#/hr)     | 1     |            |      |       |          | 1    | 1     |          |             |             |          | 1     |
| Adj. Flow (vph)         104         50         21         39         23         44         10         687         43         51         390         51           Shared Lane Traffic (%)         Lane Group Flow (vph)         104         71         0         39         67         0         10         730         0         51         390         51           Turn Type         Perm         NA         Perm         NA         Perm         NA         Perm         NA         Perm         NA         Perm         NA         Perm         NA </td <td>Peak Hour Factor</td> <td>0.90</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Peak Hour Factor        | 0.90  | 0.90       | 0.90 | 0.90  | 0.90     | 0.90 | 0.90  | 0.90     | 0.90        | 0.90        | 0.90     | 0.90  |
| Adj. Flow (vph)         104         50         21         39         23         44         10         687         43         51         390         51           Shared Lane Traffic (%)         Lane Group Flow (vph)         104         71         0         39         67         0         10         730         0         51         390         51           Turn Type         Perm         NA         8         2         2         6 </td <td>Heavy Vehicles (%)</td> <td>0%</td> <td>2%</td> <td>0%</td> <td>17%</td> <td>0%</td> <td>0%</td> <td>0%</td> <td>6%</td> <td>28%</td> <td>4%</td> <td>9%</td> <td>4%</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Heavy Vehicles (%)      | 0%    | 2%         | 0%   | 17%   | 0%       | 0%   | 0%    | 6%       | 28%         | 4%          | 9%       | 4%    |
| Lane Group Flow (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . ,                     | 104   | 50         | 21   | 39    | 23       | 44   | 10    | 687      | 43          | 51          | 390      | 51    |
| Turn Type         Perm         NA         Perm         NA         Perm         NA         Perm         NA         Perm         Perm         NA         Perm         Perm         NA         Perm         NA         Perm         NA         Perm         NA         Perm         Perm         NA         Perm         A <th< td=""><td>Shared Lane Traffic (%)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Shared Lane Traffic (%) |       |            |      |       |          |      |       |          |             |             |          |       |
| Protected Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lane Group Flow (vph)   | 104   | 71         | 0    | 39    | 67       | 0    | 10    | 730      | 0           | 51          | 390      | 51    |
| Permitted Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Turn Type               | Perm  | NA         |      | Perm  | NA       |      | Perm  | NA       |             | Perm        | NA       | Perm  |
| Detector Phase   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Protected Phases        |       | 4          |      |       | 8        |      |       | 2        |             |             | 6        |       |
| Switch Phase         Minimum Initial (s)         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0 <t< td=""><td>Permitted Phases</td><td>4</td><td></td><td></td><td>8</td><td></td><td></td><td>2</td><td></td><td></td><td>6</td><td></td><td>6</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Permitted Phases        | 4     |            |      | 8     |          |      | 2     |          |             | 6           |          | 6     |
| Minimum Initial (s)         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0 </td <td>Detector Phase</td> <td>4</td> <td>4</td> <td></td> <td>8</td> <td>8</td> <td></td> <td>2</td> <td>2</td> <td></td> <td>6</td> <td>6</td> <td>6</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Detector Phase          | 4     | 4          |      | 8     | 8        |      | 2     | 2        |             | 6           | 6        | 6     |
| Minimum Split (s)         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.6         19.0         19.0         19.0         19.0         19.0 <td>Switch Phase</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Switch Phase            |       |            |      |       |          |      |       |          |             |             |          |       |
| Total Split (s)         40.0         40.0         40.0         40.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         46.6         4.6         4.6         4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Minimum Initial (s)     | 10.0  | 10.0       |      | 10.0  | 10.0     |      | 10.0  | 10.0     |             | 10.0        | 10.0     | 10.0  |
| Total Split (%)         30.8%         30.8%         30.8%         30.8%         30.8%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Minimum Split (s)       | 19.6  | 19.6       |      | 19.6  | 19.6     |      | 19.6  | 19.6     |             | 19.6        | 19.6     | 19.6  |
| Maximum Green (s)         33.4         33.4         33.4         33.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4 <td>Total Split (s)</td> <td>40.0</td> <td>40.0</td> <td></td> <td>40.0</td> <td>40.0</td> <td></td> <td>90.0</td> <td>90.0</td> <td></td> <td>90.0</td> <td>90.0</td> <td>90.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total Split (s)         | 40.0  | 40.0       |      | 40.0  | 40.0     |      | 90.0  | 90.0     |             | 90.0        | 90.0     | 90.0  |
| Maximum Green (s)         33.4         33.4         33.4         33.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4         83.4 <td>Total Split (%)</td> <td>30.8%</td> <td>30.8%</td> <td></td> <td>30.8%</td> <td>30.8%</td> <td></td> <td>69.2%</td> <td>69.2%</td> <td></td> <td>69.2%</td> <td>69.2%</td> <td>69.2%</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total Split (%)         | 30.8% | 30.8%      |      | 30.8% | 30.8%    |      | 69.2% | 69.2%    |             | 69.2%       | 69.2%    | 69.2% |
| All-Red Time (s) 3.3 3.3 3.3 3.3 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | 33.4  | 33.4       |      | 33.4  | 33.4     |      | 83.4  | 83.4     |             | 83.4        | 83.4     | 83.4  |
| Lost Time Adjust (s)         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yellow Time (s)         | 3.3   | 3.3        |      | 3.3   | 3.3      |      | 4.6   | 4.6      |             | 4.6         | 4.6      | 4.6   |
| Total Lost Time (s)         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.6         6.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | All-Red Time (s)        | 3.3   | 3.3        |      | 3.3   | 3.3      |      | 2.0   | 2.0      |             | 2.0         | 2.0      | 2.0   |
| Lead/Lag         Lead-Lag Optimize?         Vehicle Extension (s)       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lost Time Adjust (s)    | 0.0   | 0.0        |      | 0.0   | 0.0      |      | 0.0   | 0.0      |             | 0.0         | 0.0      | 0.0   |
| Lead-Lag Optimize?         Vehicle Extension (s)       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total Lost Time (s)     | 6.6   | 6.6        |      | 6.6   | 6.6      |      | 6.6   | 6.6      |             | 6.6         | 6.6      | 6.6   |
| Vehicle Extension (s)         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         4.0         4.0         4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lead/Lag                |       |            |      |       |          |      |       |          |             |             |          |       |
| Recall Mode         None         None         None         None         C-Max         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lead-Lag Optimize?      |       |            |      |       |          |      |       |          |             |             |          |       |
| Walk Time (s)       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vehicle Extension (s)   | 3.0   | 3.0        |      | 3.0   | 3.0      |      | 3.0   | 3.0      |             | 3.0         | 3.0      | 3.0   |
| Flash Dont Walk (s)       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Recall Mode             | None  | None       |      | None  | None     |      | C-Max | C-Max    |             | C-Max       | C-Max    | C-Max |
| Pedestrian Calls (#/hr)         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Walk Time (s)           | 7.0   | 7.0        |      | 7.0   | 7.0      |      | 7.0   | 7.0      |             | 7.0         | 7.0      | 7.0   |
| Pedestrian Calls (#/hr)         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | 6.0   | 6.0        |      | 6.0   | 6.0      |      | 6.0   | 6.0      |             | 6.0         | 6.0      |       |
| Act Effct Green (s)       16.0       16.0       16.0       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8       100.8 <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>0</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 0     |            |      |       |          |      | 0     |          |             | 0           |          |       |
| Actuated g/C Ratio 0.12 0.12 0.12 0.78 0.78 0.78 0.78 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                       | 16.0  | 16.0       |      | 16.0  | 16.0     |      | 100.8 | 100.8    |             | 100.8       | 100.8    |       |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ` ,                     |       |            |      | 0.12  | 0.12     |      | 0.78  |          |             | 0.78        |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | v/c Ratio               | 0.65  | 0.32       |      | 0.29  | 0.28     |      | 0.01  | 0.56     |             | 0.11        | 0.30     | 0.04  |

Lanes, Volumes, Timings EM Synchro 11 Report August 2025

|                        | •    | -     | •   | •    | ←     | •   | •     | <b>†</b> | /   | -     | <b>↓</b> | 4     |
|------------------------|------|-------|-----|------|-------|-----|-------|----------|-----|-------|----------|-------|
| Lane Group             | EBL  | EBT   | EBR | WBL  | WBT   | WBR | NBL   | NBT      | NBR | SBL   | SBT      | SBR   |
| Control Delay          | 72.5 | 42.4  |     | 55.2 | 24.1  |     | 4.1   | 6.9      |     | 5.1   | 5.5      | 1.3   |
| Queue Delay            | 0.0  | 0.0   |     | 0.0  | 0.0   |     | 0.0   | 0.0      |     | 0.0   | 0.0      | 0.0   |
| Total Delay            | 72.5 | 42.4  |     | 55.2 | 24.1  |     | 4.1   | 6.9      |     | 5.1   | 5.5      | 1.3   |
| LOS                    | Е    | D     |     | Е    | С     |     | Α     | Α        |     | Α     | Α        | Α     |
| Approach Delay         |      | 60.3  |     |      | 35.5  |     |       | 6.8      |     |       | 5.0      |       |
| Approach LOS           |      | Е     |     |      | D     |     |       | Α        |     |       | Α        |       |
| Queue Length 50th (m)  | 23.8 | 12.0  |     | 8.5  | 4.9   |     | 0.4   | 47.8     |     | 2.5   | 22.8     | 0.0   |
| Queue Length 95th (m)  | 39.3 | 24.1  |     | 17.9 | 16.6  |     | m1.2  | 66.7     |     | 7.2   | 42.1     | 3.1   |
| Internal Link Dist (m) |      | 504.6 |     |      | 210.2 |     |       | 427.0    |     |       | 153.6    |       |
| Turn Bay Length (m)    | 25.0 |       |     | 45.0 |       |     | 115.0 |          |     | 125.0 |          | 105.0 |
| Base Capacity (vph)    | 331  | 452   |     | 284  | 447   |     | 738   | 1304     |     | 457   | 1294     | 1135  |
| Starvation Cap Reductn | 0    | 0     |     | 0    | 0     |     | 0     | 0        |     | 0     | 0        | 0     |
| Spillback Cap Reductn  | 0    | 0     |     | 0    | 0     |     | 0     | 0        |     | 0     | 0        | 0     |
| Storage Cap Reductn    | 0    | 0     |     | 0    | 0     |     | 0     | 0        |     | 0     | 0        | 0     |
| Reduced v/c Ratio      | 0.31 | 0.16  |     | 0.14 | 0.15  |     | 0.01  | 0.56     |     | 0.11  | 0.30     | 0.04  |
| Intersection Summary   |      |       |     |      |       |     |       |          |     |       |          |       |

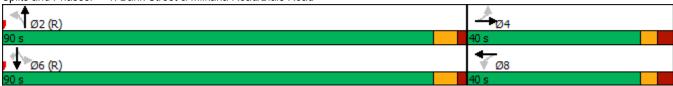
Area Type: Other

Cycle Length: 130 Actuated Cycle Length: 130

Offset: 16 (12%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 60

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.65

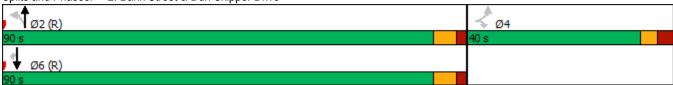
Intersection Signal Delay: 14.4 Intersection LOS: B Intersection Capacity Utilization 63.5% ICU Level of Service B

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: Bank Street & Miikana Road/Blais Road




Synchro 11 Report Lanes, Volumes, Timings August 2025 ΕM

|                                 | ۶     | •     | 4     | <b>†</b> | ţ        | ✓     |
|---------------------------------|-------|-------|-------|----------|----------|-------|
| Lane Group                      | EBL   | EBR   | NBL   | NBT      | SBT      | SBR   |
| Lane Configurations             | ች     | 7     | ሻ     | <u> </u> | <u> </u> | 7     |
| Traffic Volume (vph)            | 68    | 36    | 28    | 598      | 371      | 34    |
| Future Volume (vph)             | 68    | 36    | 28    | 598      | 371      | 34    |
| Ideal Flow (vphpl)              | 1800  | 1800  | 1800  | 1800     | 1800     | 1800  |
| Storage Length (m)              | 25.0  | 0.0   | 120.0 | 1000     | 1000     | 100.0 |
| Storage Lanes                   | 1     | 1     | 120.0 |          |          | 100.0 |
| Taper Length (m)                | 20.0  |       | 20.0  |          |          |       |
| Lane Util. Factor               | 1.00  | 1.00  | 1.00  | 1.00     | 1.00     | 1.00  |
| Ped Bike Factor                 | 1.00  | 1.00  | 0.99  | 1.00     | 1.00     | 0.96  |
| Frt                             |       | 0.850 | 0.55  |          |          | 0.850 |
| FIt Protected                   | 0.950 | 0.000 | 0.950 |          |          | 0.000 |
|                                 | 1616  | 1459  | 1558  | 1655     | 1640     | 1172  |
| Satd. Flow (prot) Flt Permitted |       | 1409  |       | 1000     | 1040     | 11/2  |
|                                 | 0.950 | 1450  | 0.519 | 1055     | 1640     | 1100  |
| Satd. Flow (perm)               | 1616  | 1459  | 845   | 1655     | 1640     | 1129  |
| Right Turn on Red               |       | Yes   |       |          |          | Yes   |
| Satd. Flow (RTOR)               |       | 40    |       |          |          | 38    |
| Link Speed (k/h)                | 50    |       |       | 80       | 80       |       |
| Link Distance (m)               | 528.6 |       |       | 273.1    | 451.0    |       |
| Travel Time (s)                 | 38.1  |       |       | 12.3     | 20.3     |       |
| Confl. Peds. (#/hr)             |       |       | 4     |          |          | 4     |
| Peak Hour Factor                | 0.90  | 0.90  | 0.90  | 0.90     | 0.90     | 0.90  |
| Heavy Vehicles (%)              | 7%    | 6%    | 11%   | 10%      | 11%      | 32%   |
| Adj. Flow (vph)                 | 76    | 40    | 31    | 664      | 412      | 38    |
| Shared Lane Traffic (%)         |       |       |       |          |          |       |
| Lane Group Flow (vph)           | 76    | 40    | 31    | 664      | 412      | 38    |
| Turn Type                       | Perm  | Perm  | Perm  | NA       | NA       | Perm  |
| Protected Phases                |       |       |       | 2        | 6        |       |
| Permitted Phases                | 4     | 4     | 2     | _        |          | 6     |
| Detector Phase                  | 4     | 4     | 2     | 2        | 6        | 6     |
| Switch Phase                    | 7     | 7     |       |          |          | 0     |
| Minimum Initial (s)             | 10.0  | 10.0  | 10.0  | 10.0     | 10.0     | 10.0  |
| Minimum Split (s)               | 22.6  | 22.6  | 21.7  | 21.7     | 21.7     | 21.7  |
|                                 | 40.0  | 40.0  | 90.0  | 90.0     | 90.0     | 90.0  |
| Total Split (s)                 |       | 30.8% |       |          |          |       |
| Total Split (%)                 | 30.8% |       | 69.2% | 69.2%    | 69.2%    | 69.2% |
| Maximum Green (s)               | 33.4  | 33.4  | 83.3  | 83.3     | 83.3     | 83.3  |
| Yellow Time (s)                 | 3.3   | 3.3   | 4.6   | 4.6      | 4.6      | 4.6   |
| All-Red Time (s)                | 3.3   | 3.3   | 2.1   | 2.1      | 2.1      | 2.1   |
| Lost Time Adjust (s)            | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   |
| Total Lost Time (s)             | 6.6   | 6.6   | 6.7   | 6.7      | 6.7      | 6.7   |
| Lead/Lag                        |       |       |       |          |          |       |
| Lead-Lag Optimize?              |       |       |       |          |          |       |
| Vehicle Extension (s)           | 3.0   | 3.0   | 3.0   | 3.0      | 3.0      | 3.0   |
| Recall Mode                     | None  | None  | C-Max | C-Max    | C-Max    | C-Max |
| Walk Time (s)                   | 7.0   | 7.0   | 7.0   | 7.0      | 7.0      | 7.0   |
| Flash Dont Walk (s)             | 9.0   | 9.0   | 8.0   | 8.0      | 8.0      | 8.0   |
| Pedestrian Calls (#/hr)         | 0     | 0     | 0     | 0.0      | 0        | 0     |
| Act Effct Green (s)             | 12.2  | 12.2  | 109.1 | 109.1    | 109.1    | 109.1 |
| Actuated g/C Ratio              | 0.09  | 0.09  | 0.84  | 0.84     | 0.84     | 0.84  |
| v/c Ratio                       | 0.50  | 0.03  | 0.04  | 0.48     | 0.30     | 0.04  |
| V/C Maliu                       | 0.50  | 0.23  | 0.04  | 0.40     | 0.30     | 0.04  |

|                              | ۶            | •        | •        | <b>†</b>    | ļ          | 4          |
|------------------------------|--------------|----------|----------|-------------|------------|------------|
| Lane Group                   | EBL          | EBR      | NBL      | NBT         | SBT        | SBR        |
| Control Delay                | 67.0         | 18.4     | 3.2      | 5.4         | 3.7        | 1.1        |
| Queue Delay                  | 0.0          | 0.0      | 0.0      | 0.0         | 0.0        | 0.0        |
| Total Delay                  | 67.0         | 18.4     | 3.2      | 5.4         | 3.7        | 1.1        |
| LOS                          | Е            | В        | Α        | Α           | Α          | Α          |
| Approach Delay               | 50.3         |          |          | 5.3         | 3.5        |            |
| Approach LOS                 | D            |          |          | Α           | Α          |            |
| Queue Length 50th (m)        | 17.5         | 0.0      | 1.2      | 40.6        | 13.2       | 0.0        |
| Queue Length 95th (m)        | 31.2         | 10.0     | 3.6      | 70.4        | 17.3       | 0.6        |
| Internal Link Dist (m)       | 504.6        |          |          | 249.1       | 427.0      |            |
| Turn Bay Length (m)          | 25.0         |          | 120.0    |             |            | 100.0      |
| Base Capacity (vph)          | 415          | 404      | 709      | 1389        | 1377       | 953        |
| Starvation Cap Reductn       | 0            | 0        | 0        | 0           | 0          | 0          |
| Spillback Cap Reductn        | 0            | 0        | 0        | 0           | 0          | 0          |
| Storage Cap Reductn          | 0            | 0        | 0        | 0           | 0          | 0          |
| Reduced v/c Ratio            | 0.18         | 0.10     | 0.04     | 0.48        | 0.30       | 0.04       |
| Intersection Summary         |              |          |          |             |            |            |
| Area Type:                   | Other        |          |          |             |            |            |
| Cycle Length: 130            |              |          |          |             |            |            |
| Actuated Cycle Length: 13    | 30           |          |          |             |            |            |
| Offset: 40 (31%), Reference  | ced to phase | 2:NBTL a | and 6:SB | T, Start of | Green      |            |
| Natural Cycle: 60            |              |          |          |             |            |            |
| Control Type: Actuated-Co    | oordinated   |          |          |             |            |            |
| Maximum v/c Ratio: 0.50      |              |          |          |             |            |            |
| Intersection Signal Delay:   |              |          |          |             | tersectior |            |
| Intersection Capacity Utiliz | zation 52.6% |          |          | IC          | U Level of | of Service |

Splits and Phases: 2: Bank Street & Dun Skipper Drive

Analysis Period (min) 15



| intersection              |      |      |      |      |      |      |      |      |      |      |      |      |
|---------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Intersection Delay, s/veh | 11.2 |      |      |      |      |      |      |      |      |      |      |      |
| Intersection LOS          | В    |      |      |      |      |      |      |      |      |      |      |      |
|                           |      |      |      |      |      |      |      |      |      |      |      |      |
| Movement                  | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations       |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h        | 28   | 132  | 36   | 22   | 107  | 105  | 57   | 51   | 35   | 124  | 40   | 53   |
| Future Vol, veh/h         | 28   | 132  | 36   | 22   | 107  | 105  | 57   | 51   | 35   | 124  | 40   | 53   |
| Peak Hour Factor          | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %         | 0    | 1    | 8    | 5    | 1    | 7    | 0    | 2    | 6    | 2    | 0    | 0    |
| Myrot Flour               | 31   | 147  | 40   | 24   | 119  | 117  | 63   | 57   | 39   | 138  | 44   | 59   |
| Mvmt Flow                 | 31   | 141  | 40   | 24   | 119  | 117  | 03   | 31   | 33   | 130  | 44   | 59   |

| Number of Lanes            | 0  | 1 | 0 | 0    | 1 | 0 | 0    | 1 | 0 | 0    | 1 | 0 |
|----------------------------|----|---|---|------|---|---|------|---|---|------|---|---|
| Approach                   | EB |   |   | WB   |   |   | NB   |   |   | SB   |   |   |
| Opposing Approach          | WB |   |   | EB   |   |   | SB   |   |   | NB   |   |   |
| Opposing Lanes             | 1  |   |   | 1    |   |   | 1    |   |   | 1    |   |   |
| Conflicting Approach Left  | SB |   |   | NB   |   |   | EB   |   |   | WB   |   |   |
| Conflicting Lanes Left     | 1  |   |   | 1    |   |   | 1    |   |   | 1    |   |   |
| Conflicting Approach Right | NB |   |   | SB   |   |   | WB   |   |   | EB   |   |   |
| Conflicting Lanes Right    | 1  |   |   | 1    |   |   | 1    |   |   | 1    |   |   |
| HCM Control Delay          | 11 |   |   | 11.4 |   |   | 10.4 |   |   | 11.6 |   |   |
| HCM LOS                    | В  |   |   | В    |   |   | В    |   |   | В    |   |   |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 40%   | 14%   | 9%    | 57%   |  |
| Vol Thru, %            | 36%   | 67%   | 46%   | 18%   |  |
| Vol Right, %           | 24%   | 18%   | 45%   | 24%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 143   | 196   | 234   | 217   |  |
| LT Vol                 | 57    | 28    | 22    | 124   |  |
| Through Vol            | 51    | 132   | 107   | 40    |  |
| RT Vol                 | 35    | 36    | 105   | 53    |  |
| Lane Flow Rate         | 159   | 218   | 260   | 241   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.244 | 0.324 | 0.376 | 0.365 |  |
| Departure Headway (Hd) | 5.527 | 5.348 | 5.204 | 5.451 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 648   | 671   | 689   | 658   |  |
| Service Time           | 3.578 | 3.394 | 3.248 | 3.496 |  |
| HCM Lane V/C Ratio     | 0.245 | 0.325 | 0.377 | 0.366 |  |
| HCM Control Delay      | 10.4  | 11    | 11.4  | 11.6  |  |
| HCM Lane LOS           | В     | В     | В     | В     |  |
| HCM 95th-tile Q        | 1     | 1.4   | 1.8   | 1.7   |  |

NB

7.6

1

Α

0.3

0.2

0.2

Conflicting Lanes Left

HCM Control Delay

HCM 95th-tile Q

HCM LOS

Conflicting Approach Right
Conflicting Lanes Right

EΒ

7.9

Α

1

| intersection              |      |      |      |      |      |      |      |      |      |      |      |      |
|---------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Intersection Delay, s/veh | 7.8  |      |      |      |      |      |      |      |      |      |      |      |
| Intersection LOS          | Α    |      |      |      |      |      |      |      |      |      |      |      |
|                           |      |      |      |      |      |      |      |      |      |      |      |      |
| Movement                  | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations       |      | 4    |      |      | 44   |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h        | 12   | 20   | 9    | 16   | 14   | 17   | 3    | 37   | 33   | 18   | 27   | 12   |
| Future Vol, veh/h         | 12   | 20   | 9    | 16   | 14   | 17   | 3    | 37   | 33   | 18   | 27   | 12   |
| Peak Hour Factor          | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %         | 8    | 5    | 56   | 6    | 7    | 0    | 33   | 5    | 0    | 22   | 11   | 50   |
| Mvmt Flow                 | 13   | 22   | 10   | 18   | 16   | 19   | 3    | 41   | 37   | 20   | 30   | 13   |
| Number of Lanes           | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                  | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach         | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes            | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |

WB

8

Α

SB

7.5

Α

1

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |
|------------------------|-------|-------|-------|-------|
| Vol Left, %            | 4%    | 29%   | 34%   | 32%   |
| Vol Thru, %            | 51%   | 49%   | 30%   | 47%   |
| Vol Right, %           | 45%   | 22%   | 36%   | 21%   |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |
| Traffic Vol by Lane    | 73    | 41    | 47    | 57    |
| LT Vol                 | 3     | 12    | 16    | 18    |
| Through Vol            | 37    | 20    | 14    | 27    |
| RT Vol                 | 33    | 9     | 17    | 12    |
| Lane Flow Rate         | 81    | 46    | 52    | 63    |
| Geometry Grp           | 1     | 1     | 1     | 1     |
| Degree of Util (X)     | 0.099 | 0.055 | 0.062 | 0.078 |
| Departure Headway (Hd) | 4.415 | 4.36  | 4.244 | 4.442 |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |
| Сар                    | 802   | 826   | 849   | 796   |
| Service Time           | 2.495 | 2.361 | 2.245 | 2.526 |
| HCM Lane V/C Ratio     | 0.101 | 0.056 | 0.061 | 0.079 |
| HCM Control Delay      | 8     | 7.6   | 7.5   | 7.9   |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |

HCM 2010 AWSC Synchro 11 Report August 2025 EΜ

0.3

| Intersection Delay, s/veh 7.5 Intersection LOS A | Intersection              |     |
|--------------------------------------------------|---------------------------|-----|
| Intersection LOS A                               | Intersection Delay, s/veh | 7.5 |
|                                                  | Intersection LOS          | Α   |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | ₩    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 13   | 34   | 7    | 20   | 21   | 13   | 3    | 20   | 26   | 17   | 17   | 2    |
| Future Vol, veh/h          | 13   | 34   | 7    | 20   | 21   | 13   | 3    | 20   | 26   | 17   | 17   | 2    |
| Peak Hour Factor           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 0    | 9    | 0    | 20   | 10   | 8    | 0    | 5    | 19   | 0    | 12   | 0    |
| Mvmt Flow                  | 14   | 38   | 8    | 22   | 23   | 14   | 3    | 22   | 29   | 19   | 19   | 2    |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 7.4  |      |      | 7.8  |      |      | 7.1  |      |      | 7.5  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |
|------------------------|-------|-------|-------|-------|
| Vol Left, %            | 6%    | 24%   | 37%   | 47%   |
| Vol Thru, %            | 41%   | 63%   | 39%   | 47%   |
| Vol Right, %           | 53%   | 13%   | 24%   | 6%    |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |
| Traffic Vol by Lane    | 49    | 54    | 54    | 36    |
| LT Vol                 | 3     | 13    | 20    | 17    |
| Through Vol            | 20    | 34    | 21    | 17    |
| RT Vol                 | 26    | 7     | 13    | 2     |
| Lane Flow Rate         | 54    | 60    | 60    | 40    |
| Geometry Grp           | 1     | 1     | 1     | 1     |
| Degree of Util (X)     | 0.058 | 0.068 | 0.073 | 0.047 |
| Departure Headway (Hd) | 3.831 | 4.08  | 4.38  | 4.209 |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |
| Cap                    | 922   | 871   | 813   | 840   |
| Service Time           | 1.908 | 2.139 | 2.434 | 2.286 |
| HCM Lane V/C Ratio     | 0.059 | 0.069 | 0.074 | 0.048 |
| HCM Control Delay      | 7.1   | 7.4   | 7.8   | 7.5   |
| HCM Lane LOS           | А     | Α     | Α     | Α     |
| HCM 95th-tile Q        | 0.2   | 0.2   | 0.2   | 0.1   |

Synchro 11 Report August 2025 HCM 2010 AWSC EΜ

|                         | ۶        | <b>→</b> | •    | •     | <b>←</b> | •    | •     | <b>†</b>       | <i>&gt;</i> | <b>/</b> | Ţ       | -√    |
|-------------------------|----------|----------|------|-------|----------|------|-------|----------------|-------------|----------|---------|-------|
| Lane Group              | EBL      | EBT      | EBR  | WBL   | WBT      | WBR  | NBL   | NBT            | NBR         | SBL      | SBT     | SBR   |
| Lane Configurations     | *        | 1>       |      | ሻ     | £        |      | ሻ     | f <sub>a</sub> |             | ች        | <b></b> | 7     |
| Traffic Volume (vph)    | 87       | 23       | 29   | 45    | 32       | 62   | 17    | 561            | 36          | 50       | 784     | 112   |
| Future Volume (vph)     | 87       | 23       | 29   | 45    | 32       | 62   | 17    | 561            | 36          | 50       | 784     | 112   |
| Ideal Flow (vphpl)      | 1800     | 1800     | 1800 | 1800  | 1800     | 1800 | 1800  | 1800           | 1800        | 1800     | 1800    | 1800  |
| Storage Length (m)      | 25.0     |          | 0.0  | 45.0  |          | 0.0  | 115.0 |                | 0.0         | 125.0    |         | 105.0 |
| Storage Lanes           | 1        |          | 0    | 1     |          | 0    | 1     |                | 0           | 1        |         | 1     |
| Taper Length (m)        | 20.0     |          |      | 20.0  |          |      | 20.0  |                |             | 20.0     |         |       |
| Lane Util. Factor       | 1.00     | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00           | 1.00        | 1.00     | 1.00    | 1.00  |
| Ped Bike Factor         |          |          |      |       |          |      |       |                |             |          |         | 0.97  |
| Frt                     |          | 0.917    |      |       | 0.901    |      |       | 0.991          |             |          |         | 0.850 |
| Flt Protected           | 0.950    |          |      | 0.950 |          |      | 0.950 |                |             | 0.950    |         |       |
| Satd. Flow (prot)       | 1729     | 1443     | 0    | 1530  | 1602     | 0    | 1729  | 1724           | 0           | 1601     | 1750    | 1517  |
| Flt Permitted           | 0.689    |          |      | 0.719 |          |      | 0.267 |                |             | 0.369    |         |       |
| Satd. Flow (perm)       | 1254     | 1443     | 0    | 1158  | 1602     | 0    | 486   | 1724           | 0           | 622      | 1750    | 1473  |
| Right Turn on Red       |          |          | Yes  |       |          | Yes  |       |                | Yes         |          |         | Yes   |
| Satd. Flow (RTOR)       |          | 32       |      |       | 69       |      |       | 6              |             |          |         | 124   |
| Link Speed (k/h)        |          | 50       |      |       | 50       |      |       | 50             |             |          | 50      |       |
| Link Distance (m)       |          | 528.6    |      |       | 234.2    |      |       | 451.0          |             |          | 177.6   |       |
| Travel Time (s)         |          | 38.1     |      |       | 16.9     |      |       | 32.5           |             |          | 12.8    |       |
| Confl. Peds. (#/hr)     |          | 00.1     |      |       | 10.0     |      | 2     | 02.0           |             |          | 12.0    | 2     |
| Peak Hour Factor        | 0.90     | 0.90     | 0.90 | 0.90  | 0.90     | 0.90 | 0.90  | 0.90           | 0.90        | 0.90     | 0.90    | 0.90  |
| Heavy Vehicles (%)      | 0%       | 9%       | 21%  | 13%   | 3%       | 2%   | 0%    | 4%             | 14%         | 8%       | 4%      | 2%    |
| Adj. Flow (vph)         | 97       | 26       | 32   | 50    | 36       | 69   | 19    | 623            | 40          | 56       | 871     | 124   |
| Shared Lane Traffic (%) | <u> </u> |          | 02   |       |          |      |       | 020            |             |          | 0.1     |       |
| Lane Group Flow (vph)   | 97       | 58       | 0    | 50    | 105      | 0    | 19    | 663            | 0           | 56       | 871     | 124   |
| Turn Type               | Perm     | NA       |      | Perm  | NA       |      | Perm  | NA             |             | Perm     | NA      | Perm  |
| Protected Phases        |          | 4        |      |       | 8        |      |       | 2              |             |          | 6       |       |
| Permitted Phases        | 4        | •        |      | 8     |          |      | 2     | _              |             | 6        |         | 6     |
| Detector Phase          | 4        | 4        |      | 8     | 8        |      | 2     | 2              |             | 6        | 6       | 6     |
| Switch Phase            | •        | •        |      |       |          |      | _     | _              |             |          |         |       |
| Minimum Initial (s)     | 10.0     | 10.0     |      | 10.0  | 10.0     |      | 10.0  | 10.0           |             | 10.0     | 10.0    | 10.0  |
| Minimum Split (s)       | 19.6     | 19.6     |      | 19.6  | 19.6     |      | 19.6  | 19.6           |             | 19.6     | 19.6    | 19.6  |
| Total Split (s)         | 30.0     | 30.0     |      | 30.0  | 30.0     |      | 90.0  | 90.0           |             | 90.0     | 90.0    | 90.0  |
| Total Split (%)         | 25.0%    | 25.0%    |      | 25.0% | 25.0%    |      | 75.0% | 75.0%          |             | 75.0%    | 75.0%   | 75.0% |
| Maximum Green (s)       | 23.4     | 23.4     |      | 23.4  | 23.4     |      | 83.4  | 83.4           |             | 83.4     | 83.4    | 83.4  |
| Yellow Time (s)         | 3.3      | 3.3      |      | 3.3   | 3.3      |      | 4.6   | 4.6            |             | 4.6      | 4.6     | 4.6   |
| All-Red Time (s)        | 3.3      | 3.3      |      | 3.3   | 3.3      |      | 2.0   | 2.0            |             | 2.0      | 2.0     | 2.0   |
| Lost Time Adjust (s)    | 0.0      | 0.0      |      | 0.0   | 0.0      |      | 0.0   | 0.0            |             | 0.0      | 0.0     | 0.0   |
| Total Lost Time (s)     | 6.6      | 6.6      |      | 6.6   | 6.6      |      | 6.6   | 6.6            |             | 6.6      | 6.6     | 6.6   |
| Lead/Lag                | 0.0      | 0.0      |      | 0.0   | 0.0      |      | 0.0   | 0.0            |             | 0.0      | 0.0     | 0.0   |
| Lead-Lag Optimize?      |          |          |      |       |          |      |       |                |             |          |         |       |
| Vehicle Extension (s)   | 3.0      | 3.0      |      | 3.0   | 3.0      |      | 3.0   | 3.0            |             | 3.0      | 3.0     | 3.0   |
| Recall Mode             | None     | None     |      | None  | None     |      | C-Max | C-Max          |             | C-Max    | C-Max   | C-Max |
| Walk Time (s)           | 7.0      | 7.0      |      | 7.0   | 7.0      |      | 7.0   | 7.0            |             | 7.0      | 7.0     | 7.0   |
| Flash Dont Walk (s)     | 6.0      | 6.0      |      | 6.0   | 6.0      |      | 6.0   | 6.0            |             | 6.0      | 6.0     | 6.0   |
| Pedestrian Calls (#/hr) | 0.0      | 0.0      |      | 0.0   | 0.0      |      | 0.0   | 0.0            |             | 0.0      | 0.0     | 0.0   |
| Act Effct Green (s)     | 14.9     | 14.9     |      | 14.9  | 14.9     |      | 91.9  | 91.9           |             | 91.9     | 91.9    | 91.9  |
| . ,                     | 0.12     | 0.12     |      | 0.12  | 0.12     |      |       | 0.77           |             |          | 0.77    |       |
| Actuated g/C Ratio      |          |          |      |       |          |      | 0.77  |                |             | 0.77     |         | 0.77  |
| v/c Ratio               | 0.62     | 0.28     |      | 0.35  | 0.41     |      | 0.05  | 0.50           |             | 0.12     | 0.65    | 0.11  |

Lanes, Volumes, Timings EM

|                        | •    | -     | •   | •    | •     | •   | 1     | <b>†</b> | /   | -     | <b>↓</b> | 4     |
|------------------------|------|-------|-----|------|-------|-----|-------|----------|-----|-------|----------|-------|
| Lane Group             | EBL  | EBT   | EBR | WBL  | WBT   | WBR | NBL   | NBT      | NBR | SBL   | SBT      | SBR   |
| Control Delay          | 66.4 | 27.6  |     | 53.2 | 23.3  |     | 4.2   | 5.8      |     | 5.1   | 10.2     | 1.0   |
| Queue Delay            | 0.0  | 0.0   |     | 0.0  | 0.0   |     | 0.0   | 0.0      |     | 0.0   | 0.0      | 0.0   |
| Total Delay            | 66.4 | 27.6  |     | 53.2 | 23.3  |     | 4.2   | 5.8      |     | 5.1   | 10.2     | 1.0   |
| LOS                    | Е    | С     |     | D    | С     |     | Α     | Α        |     | Α     | В        | Α     |
| Approach Delay         |      | 51.9  |     |      | 32.9  |     |       | 5.8      |     |       | 8.8      |       |
| Approach LOS           |      | D     |     |      | С     |     |       | Α        |     |       | Α        |       |
| Queue Length 50th (m)  | 20.3 | 5.1   |     | 10.1 | 7.1   |     | 8.0   | 36.1     |     | 2.6   | 73.6     | 0.0   |
| Queue Length 95th (m)  | 34.9 | 15.7  |     | 20.4 | 21.1  |     | m2.3  | 46.2     |     | 7.4   | 135.4    | 4.5   |
| Internal Link Dist (m) |      | 504.6 |     |      | 210.2 |     |       | 427.0    |     |       | 153.6    |       |
| Turn Bay Length (m)    | 25.0 |       |     | 45.0 |       |     | 115.0 |          |     | 125.0 |          | 105.0 |
| Base Capacity (vph)    | 244  | 307   |     | 225  | 367   |     | 372   | 1320     |     | 475   | 1339     | 1156  |
| Starvation Cap Reductn | 0    | 0     |     | 0    | 0     |     | 0     | 0        |     | 0     | 0        | 0     |
| Spillback Cap Reductn  | 0    | 0     |     | 0    | 0     |     | 0     | 0        |     | 0     | 0        | 0     |
| Storage Cap Reductn    | 0    | 0     |     | 0    | 0     |     | 0     | 0        |     | 0     | 0        | 0     |
| Reduced v/c Ratio      | 0.40 | 0.19  |     | 0.22 | 0.29  |     | 0.05  | 0.50     |     | 0.12  | 0.65     | 0.11  |

Intersection Summary

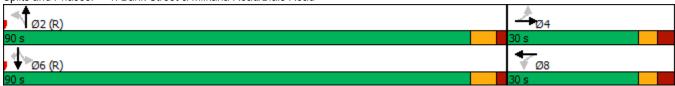
Area Type: Other

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 18 (15%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 60

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.65

Intersection Signal Delay: 12.9 Intersection LOS: B
Intersection Capacity Utilization 66.6% ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal

Splits and Phases: 1: Bank Street & Miikana Road/Blais Road



|                                 | ۶     | •     | 4     | <b>†</b> | <b>↓</b> | 4     |
|---------------------------------|-------|-------|-------|----------|----------|-------|
| Lane Group                      | EBL   | EBR   | NBL   | NBT      | SBT      | SBR   |
| Lane Configurations             | *     | 7     | ሻ     | <u> </u> | <u> </u> | 7     |
| Traffic Volume (vph)            | 79    | 52    | 37    | 535      | 771      | 87    |
| Future Volume (vph)             | 79    | 52    | 37    | 535      | 771      | 87    |
| Ideal Flow (vphpl)              | 1800  | 1800  | 1800  | 1800     | 1800     | 1800  |
| Storage Length (m)              | 25.0  | 0.0   | 120.0 | 1000     | 1000     | 100.0 |
| Storage Lanes                   | 1     | 1     | 120.0 |          |          | 100.0 |
| Taper Length (m)                | 20.0  |       | 20.0  |          |          | 1     |
| Lane Util. Factor               | 1.00  | 1.00  | 1.00  | 1.00     | 1.00     | 1.00  |
| Frt                             | 1.00  | 0.850 | 1.00  | 1.00     | 1.00     | 0.850 |
| Flt Protected                   | 0.950 | 0.000 | 0.950 |          |          | 0.000 |
|                                 | 1601  | 1369  | 1679  | 1701     | 1733     | 1532  |
| Satd. Flow (prot) Flt Permitted | 0.950 | 1309  | 0.283 | 1/01     | 1/33     | 1002  |
|                                 |       | 1260  |       | 1704     | 1722     | 1520  |
| Satd. Flow (perm)               | 1601  | 1369  | 500   | 1701     | 1733     | 1532  |
| Right Turn on Red               |       | Yes   |       |          |          | Yes   |
| Satd. Flow (RTOR)               |       | 58    |       |          |          | 97    |
| Link Speed (k/h)                | 50    |       |       | 80       | 80       |       |
| Link Distance (m)               | 528.6 |       |       | 273.1    | 451.0    |       |
| Travel Time (s)                 | 38.1  |       |       | 12.3     | 20.3     |       |
| Peak Hour Factor                | 0.90  | 0.90  | 0.90  | 0.90     | 0.90     | 0.90  |
| Heavy Vehicles (%)              | 8%    | 13%   | 3%    | 7%       | 5%       | 1%    |
| Adj. Flow (vph)                 | 88    | 58    | 41    | 594      | 857      | 97    |
| Shared Lane Traffic (%)         |       |       |       |          |          |       |
| Lane Group Flow (vph)           | 88    | 58    | 41    | 594      | 857      | 97    |
| Turn Type                       | Perm  | Perm  | Perm  | NA       | NA       | Perm  |
| Protected Phases                |       |       |       | 2        | 6        |       |
| Permitted Phases                | 4     | 4     | 2     | _        |          | 6     |
| Detector Phase                  | 4     | 4     | 2     | 2        | 6        | 6     |
| Switch Phase                    |       |       |       |          |          |       |
| Minimum Initial (s)             | 10.0  | 10.0  | 10.0  | 10.0     | 10.0     | 10.0  |
| Minimum Split (s)               | 22.6  | 22.6  | 21.7  | 21.7     | 21.7     | 21.7  |
| Total Split (s)                 | 30.0  | 30.0  | 90.0  | 90.0     | 90.0     | 90.0  |
| Total Split (%)                 | 25.0% | 25.0% | 75.0% | 75.0%    | 75.0%    | 75.0% |
|                                 |       |       |       |          |          |       |
| Maximum Green (s)               | 23.4  | 23.4  | 83.3  | 83.3     | 83.3     | 83.3  |
| Yellow Time (s)                 | 3.3   | 3.3   | 4.6   | 4.6      | 4.6      | 4.6   |
| All-Red Time (s)                | 3.3   | 3.3   | 2.1   | 2.1      | 2.1      | 2.1   |
| Lost Time Adjust (s)            | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   |
| Total Lost Time (s)             | 6.6   | 6.6   | 6.7   | 6.7      | 6.7      | 6.7   |
| Lead/Lag                        |       |       |       |          |          |       |
| Lead-Lag Optimize?              |       |       |       |          |          |       |
| Vehicle Extension (s)           | 3.0   | 3.0   | 3.0   | 3.0      | 3.0      | 3.0   |
| Recall Mode                     | None  | None  | C-Max | C-Max    | C-Max    | C-Max |
| Walk Time (s)                   | 7.0   | 7.0   | 7.0   | 7.0      | 7.0      | 7.0   |
| Flash Dont Walk (s)             | 9.0   | 9.0   | 8.0   | 8.0      | 8.0      | 8.0   |
| Pedestrian Calls (#/hr)         | 0     | 0     | 0     | 0        | 0        | 0     |
| Act Effct Green (s)             | 12.5  | 12.5  | 94.2  | 94.2     | 94.2     | 94.2  |
| Actuated g/C Ratio              | 0.10  | 0.10  | 0.78  | 0.78     | 0.78     | 0.78  |
| v/c Ratio                       | 0.10  | 0.10  | 0.10  | 0.76     | 0.70     | 0.78  |
| Control Delay                   | 62.0  | 16.0  | 4.2   | 5.8      | 5.7      | 0.00  |
| •                               |       |       |       |          |          |       |
| Queue Delay                     | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   |

|                                                                | ۶             | •         | •          | <b>†</b>   | ļ          | 4     |  |  |
|----------------------------------------------------------------|---------------|-----------|------------|------------|------------|-------|--|--|
| Lane Group                                                     | EBL           | EBR       | NBL        | NBT        | SBT        | SBR   |  |  |
| Total Delay                                                    | 62.0          | 16.0      | 4.2        | 5.8        | 5.7        | 0.5   |  |  |
| LOS                                                            | Е             | В         | Α          | Α          | Α          | Α     |  |  |
| Approach Delay                                                 | 43.7          |           |            | 5.7        | 5.1        |       |  |  |
| Approach LOS                                                   | D             |           |            | Α          | Α          |       |  |  |
| Queue Length 50th (m)                                          | 18.5          | 0.0       | 1.7        | 34.1       | 44.6       | 0.0   |  |  |
| Queue Length 95th (m)                                          | 32.7          | 11.1      | 5.1        | 60.4       | 54.3       | m1.2  |  |  |
| Internal Link Dist (m)                                         | 504.6         |           |            | 249.1      | 427.0      |       |  |  |
| Turn Bay Length (m)                                            | 25.0          |           | 120.0      |            |            | 100.0 |  |  |
| Base Capacity (vph)                                            | 312           | 313       | 392        | 1334       | 1360       | 1223  |  |  |
| Starvation Cap Reductn                                         | 0             | 0         | 0          | 0          | 0          | 0     |  |  |
| Spillback Cap Reductn                                          | 0             | 0         | 0          | 0          | 0          | 0     |  |  |
| Storage Cap Reductn                                            | 0             | 0         | 0          | 0          | 0          | 0     |  |  |
| Reduced v/c Ratio                                              | 0.28          | 0.19      | 0.10       | 0.45       | 0.63       | 0.08  |  |  |
| Intersection Summary                                           |               |           |            |            |            |       |  |  |
| Area Type:                                                     | Other         |           |            |            |            |       |  |  |
| Cycle Length: 120                                              |               |           |            |            |            |       |  |  |
| Actuated Cycle Length: 120                                     |               |           |            |            |            |       |  |  |
| Offset: 18 (15%), Reference                                    | ed to phase   | 2:NBTL a  | and 6:SB   | T, Start o | f Green    |       |  |  |
| Natural Cycle: 65                                              |               |           |            |            |            |       |  |  |
| Control Type: Actuated-Coo                                     | ordinated     |           |            |            |            |       |  |  |
| Maximum v/c Ratio: 0.63                                        | _             |           |            |            |            |       |  |  |
| Intersection Signal Delay: 8                                   |               |           |            |            | tersection |       |  |  |
| Intersection Capacity Utilization 62.3% ICU Level of Service B |               |           |            |            |            |       |  |  |
| Analysis Period (min) 15                                       |               |           |            |            |            |       |  |  |
| m Volume for 95th percer                                       | ntile queue i | s metered | d by upsti | ream sigr  | nal.       |       |  |  |
| Onlite and Diseases O. Da                                      |               | D Ol-i    | D.:        |            |            |       |  |  |
| Splits and Phases: 2: Ba                                       | nk Street &   | Dun Skip  | per Drive  | !          |            |       |  |  |
| ¶ Ø2 (R)                                                       |               |           |            |            |            |       |  |  |



| Intersection              |    |
|---------------------------|----|
| Intersection Delay, s/veh | 12 |
| Intersection LOS          | В  |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 13   | 202  | 90   | 49   | 134  | 79   | 44   | 19   | 35   | 107  | 46   | 28   |
| Future Vol, veh/h          | 13   | 202  | 90   | 49   | 134  | 79   | 44   | 19   | 35   | 107  | 46   | 28   |
| Peak Hour Factor           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 0    | 2    | 2    | 0    | 0    | 5    | 0    | 0    | 0    | 2    | 15   | 0    |
| Mvmt Flow                  | 14   | 224  | 100  | 54   | 149  | 88   | 49   | 21   | 39   | 119  | 51   | 31   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 12.8 |      |      | 11.9 |      |      | 10.1 |      |      | 11.6 |      |      |
| HCM LOS                    | В    |      |      | В    |      |      | В    |      |      | В    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 45%   | 4%    | 19%   | 59%   |  |
| Vol Thru, %            | 19%   | 66%   | 51%   | 25%   |  |
| Vol Right, %           | 36%   | 30%   | 30%   | 15%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 98    | 305   | 262   | 181   |  |
| LT Vol                 | 44    | 13    | 49    | 107   |  |
| Through Vol            | 19    | 202   | 134   | 46    |  |
| RT Vol                 | 35    | 90    | 79    | 28    |  |
| Lane Flow Rate         | 109   | 339   | 291   | 201   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.175 | 0.479 | 0.419 | 0.323 |  |
| Departure Headway (Hd) | 5.791 | 5.087 | 5.177 | 5.778 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 616   | 708   | 693   | 621   |  |
| Service Time           | 3.852 | 3.129 | 3.22  | 3.83  |  |
| HCM Lane V/C Ratio     | 0.177 | 0.479 | 0.42  | 0.324 |  |
| HCM Control Delay      | 10.1  | 12.8  | 11.9  | 11.6  |  |
| HCM Lane LOS           | В     | В     | В     | В     |  |
| HCM 95th-tile Q        | 0.6   | 2.6   | 2.1   | 1.4   |  |

| Movement                   | EBL  | EBI  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBK  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 44   |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 9    | 28   | 2    | 22   | 22   | 32   | 2    | 40   | 28   | 17   | 42   | 9    |
| Future Vol, veh/h          | 9    | 28   | 2    | 22   | 22   | 32   | 2    | 40   | 28   | 17   | 42   | 9    |
| Peak Hour Factor           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 11   | 0    | 50   | 0    | 0    | 0    | 50   | 2    | 4    | 12   | 2    | 0    |
| Mvmt Flow                  | 10   | 31   | 2    | 24   | 24   | 36   | 2    | 44   | 31   | 19   | 47   | 10   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 7.8  |      |      | 7.6  |      |      | 8.5  |      |      | 7.9  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |
|                            |      |      |      |      |      |      |      |      |      |      |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 3%    | 23%   | 29%   | 25%   |  |
| Vol Thru, %            | 57%   | 72%   | 29%   | 62%   |  |
| Vol Right, %           | 40%   | 5%    | 42%   | 13%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 70    | 39    | 76    | 68    |  |
| LT Vol                 | 2     | 9     | 22    | 17    |  |
| Through Vol            | 40    | 28    | 22    | 42    |  |
| RT Vol                 | 28    | 2     | 32    | 9     |  |
| Lane Flow Rate         | 78    | 43    | 84    | 76    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.104 | 0.055 | 0.097 | 0.094 |  |
| Departure Headway (Hd) | 4.798 | 4.566 | 4.129 | 4.463 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 737   | 787   | 871   | 808   |  |
| Service Time           | 2.897 | 2.575 | 2.137 | 2.463 |  |
| HCM Lane V/C Ratio     | 0.106 | 0.055 | 0.096 | 0.094 |  |
| HCM Control Delay      | 8.5   | 7.8   | 7.6   | 7.9   |  |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.3   | 0.2   | 0.3   | 0.3   |  |

| Intersection              |      |      |      |      |      |      |      |      |      |      |      |      |
|---------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Intersection Delay, s/veh | 7.4  |      |      |      |      |      |      |      |      |      |      |      |
| Intersection LOS          | Α    |      |      |      |      |      |      |      |      |      |      |      |
|                           |      |      |      |      |      |      |      |      |      |      |      |      |
| Movement                  | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations       |      | 4    |      |      | 4    |      |      | ↔    |      |      | 4    |      |
| Traffic Vol, veh/h        | 13   | 45   | 0    | 13   | 29   | 19   | 1    | 19   | 26   | 19   | 20   | 16   |
| Future Vol, veh/h         | 13   | 45   | 0    | 13   | 29   | 19   | 1    | 19   | 26   | 19   | 20   | 16   |
| Peak Hour Factor          | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %         | 0    | 4    | 0    | 0    | 3    | 0    | 0    | 5    | 15   | 5    | 0    | 0    |
| Mvmt Flow                 | 14   | 50   | 0    | 14   | 32   | 21   | 1    | 21   | 29   | 21   | 22   | 18   |
| Number of Lanes           | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |

| Approach                   | EB  | WB  | NB  | SB  |
|----------------------------|-----|-----|-----|-----|
| Opposing Approach          | WB  | EB  | SB  | NB  |
| Opposing Lanes             | 1   | 1   | 1   | 1   |
| Conflicting Approach Left  | SB  | NB  | EB  | WB  |
| Conflicting Lanes Left     | 1   | 1   | 1   | 1   |
| Conflicting Approach Right | NB  | SB  | WB  | EB  |
| Conflicting Lanes Right    | 1   | 1   | 1   | 1   |
| HCM Control Delay          | 7.6 | 7.4 | 7.1 | 7.5 |
| HCM LOS                    | Α   | A   | Α   | Α   |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 2%    | 22%   | 21%   | 35%   |  |
| Vol Thru, %            | 41%   | 78%   | 48%   | 36%   |  |
| Vol Right, %           | 57%   | 0%    | 31%   | 29%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 46    | 58    | 61    | 55    |  |
| LT Vol                 | 1     | 13    | 13    | 19    |  |
| Through Vol            | 19    | 45    | 29    | 20    |  |
| RT Vol                 | 26    | 0     | 19    | 16    |  |
| Lane Flow Rate         | 51    | 64    | 68    | 61    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.055 | 0.075 | 0.075 | 0.07  |  |
| Departure Headway (Hd) | 3.839 | 4.19  | 3.998 | 4.146 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 920   | 847   | 887   | 854   |  |
| Service Time           | 1.917 | 2.254 | 2.064 | 2.219 |  |
| HCM Lane V/C Ratio     | 0.055 | 0.076 | 0.077 | 0.071 |  |
| HCM Control Delay      | 7.1   | 7.6   | 7.4   | 7.5   |  |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.2   | 0.2   | 0.2   | 0.2   |  |



|                         | •     | <b>→</b> | •    | •     | •     | •    | 1     | <b>†</b> | ~    | -     | Ţ        | 1     |
|-------------------------|-------|----------|------|-------|-------|------|-------|----------|------|-------|----------|-------|
| Lane Group              | EBL   | EBT      | EBR  | WBL   | WBT   | WBR  | NBL   | NBT      | NBR  | SBL   | SBT      | SBR   |
| Lane Configurations     | *     | 1        |      | 7     | f)    |      | ×     | <b>†</b> |      | *     | <b>^</b> | 7     |
| Traffic Volume (vph)    | 177   | 45       | 33   | 43    | 21    | 40   | 12    | 885      | 48   | 46    | 564      | 76    |
| Future Volume (vph)     | 177   | 45       | 33   | 43    | 21    | 40   | 12    | 885      | 48   | 46    | 564      | 76    |
| Ideal Flow (vphpl)      | 1800  | 1800     | 1800 | 1800  | 1800  | 1800 | 1800  | 1800     | 1800 | 1800  | 1800     | 1800  |
| Storage Length (m)      | 100.0 |          | 0.0  | 40.0  |       | 0.0  | 100.0 |          | 0.0  | 75.0  |          | 175.0 |
| Storage Lanes           | 1     |          | 0    | 1     |       | 0    | 1     |          | 0    | 1     |          | 1     |
| Taper Length (m)        | 20.0  |          |      | 20.0  |       |      | 20.0  |          |      | 20.0  |          |       |
| Lane Util. Factor       | 1.00  | 1.00     | 1.00 | 1.00  | 1.00  | 1.00 | 1.00  | 0.95     | 0.95 | 1.00  | 0.95     | 1.00  |
| Ped Bike Factor         | 1.00  |          |      |       | 0.99  |      | 1.00  |          |      |       |          | 0.98  |
| Frt                     |       | 0.937    |      |       | 0.902 |      |       | 0.992    |      |       |          | 0.850 |
| Flt Protected           | 0.950 |          |      | 0.950 |       |      | 0.950 |          |      | 0.950 |          |       |
| Satd. Flow (prot)       | 1729  | 1686     | 0    | 1478  | 1627  | 0    | 1729  | 3202     | 0    | 1662  | 3172     | 1488  |
| Flt Permitted           | 0.717 |          |      | 0.706 |       |      | 0.440 |          |      | 0.285 |          |       |
| Satd. Flow (perm)       | 1303  | 1686     | 0    | 1098  | 1627  | 0    | 800   | 3202     | 0    | 499   | 3172     | 1455  |
| Right Turn on Red       |       |          | Yes  |       |       | Yes  |       |          | Yes  |       |          | Yes   |
| Satd. Flow (RTOR)       |       | 27       |      |       | 40    |      |       | 8        |      |       |          | 76    |
| Link Speed (k/h)        |       | 50       |      |       | 50    |      |       | 80       |      |       | 80       |       |
| Link Distance (m)       |       | 528.6    |      |       | 234.2 |      |       | 451.0    |      |       | 177.6    |       |
| Travel Time (s)         |       | 38.1     |      |       | 16.9  |      |       | 20.3     |      |       | 8.0      |       |
| Confl. Peds. (#/hr)     | 1     |          |      |       |       | 1    | 1     |          |      |       |          | 1     |
| Peak Hour Factor        | 1.00  | 1.00     | 1.00 | 1.00  | 1.00  | 1.00 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  |
| Heavy Vehicles (%)      | 0%    | 2%       | 0%   | 17%   | 0%    | 0%   | 0%    | 6%       | 28%  | 4%    | 9%       | 4%    |
| Adj. Flow (vph)         | 177   | 45       | 33   | 43    | 21    | 40   | 12    | 885      | 48   | 46    | 564      | 76    |
| Shared Lane Traffic (%) |       |          |      |       |       |      |       |          |      |       |          |       |
| Lane Group Flow (vph)   | 177   | 78       | 0    | 43    | 61    | 0    | 12    | 933      | 0    | 46    | 564      | 76    |
| Turn Type               | Perm  | NA       |      | Perm  | NA    |      | Perm  | NA       |      | Perm  | NA       | Perm  |
| Protected Phases        |       | 4        |      |       | 8     |      |       | 2        |      |       | 6        |       |
| Permitted Phases        | 4     |          |      | 8     |       |      | 2     |          |      | 6     |          | 6     |
| Detector Phase          | 4     | 4        |      | 8     | 8     |      | 2     | 2        |      | 6     | 6        | 6     |
| Switch Phase            |       |          |      |       |       |      |       |          |      |       |          |       |
| Minimum Initial (s)     | 10.0  | 10.0     |      | 10.0  | 10.0  |      | 10.0  | 10.0     |      | 10.0  | 10.0     | 10.0  |
| Minimum Split (s)       | 33.8  | 33.8     |      | 33.8  | 33.8  |      | 42.6  | 42.6     |      | 42.6  | 42.6     | 42.6  |
| Total Split (s)         | 40.0  | 40.0     |      | 40.0  | 40.0  |      | 90.0  | 90.0     |      | 90.0  | 90.0     | 90.0  |
| Total Split (%)         | 30.8% | 30.8%    |      | 30.8% | 30.8% |      | 69.2% | 69.2%    |      | 69.2% | 69.2%    | 69.2% |
| Maximum Green (s)       | 33.2  | 33.2     |      | 33.2  | 33.2  |      | 82.4  | 82.4     |      | 82.4  | 82.4     | 82.4  |
| Yellow Time (s)         | 3.6   | 3.6      |      | 3.6   | 3.6   |      | 5.0   | 5.0      |      | 5.0   | 5.0      | 5.0   |
| All-Red Time (s)        | 3.2   | 3.2      |      | 3.2   | 3.2   |      | 2.6   | 2.6      |      | 2.6   | 2.6      | 2.6   |
| Lost Time Adjust (s)    | 0.0   | 0.0      |      | 0.0   | 0.0   |      | 0.0   | 0.0      |      | 0.0   | 0.0      | 0.0   |
| Total Lost Time (s)     | 6.8   | 6.8      |      | 6.8   | 6.8   |      | 7.6   | 7.6      |      | 7.6   | 7.6      | 7.6   |
| Lead/Lag                |       |          |      |       |       |      |       |          |      |       |          |       |
| Lead-Lag Optimize?      |       |          |      |       |       |      |       |          |      |       |          |       |
| Vehicle Extension (s)   | 3.0   | 3.0      |      | 3.0   | 3.0   |      | 3.0   | 3.0      |      | 3.0   | 3.0      | 3.0   |
| Recall Mode             | None  | None     |      | None  | None  |      | C-Max | C-Max    |      | C-Max | C-Max    | C-Max |
| Walk Time (s)           | 7.0   | 7.0      |      | 7.0   | 7.0   |      | 7.0   | 7.0      |      | 7.0   | 7.0      | 7.0   |
| Flash Dont Walk (s)     | 20.0  | 20.0     |      | 20.0  | 20.0  |      | 28.0  | 28.0     |      | 28.0  | 28.0     | 28.0  |
| Pedestrian Calls (#/hr) | 0     | 0        |      | 0     | 0     |      | 0     | 0        |      | 0     | 0        | 0     |
| Act Effct Green (s)     | 22.9  | 22.9     |      | 22.9  | 22.9  |      | 92.7  | 92.7     |      | 92.7  | 92.7     | 92.7  |
| Actuated g/C Ratio      | 0.18  | 0.18     |      | 0.18  | 0.18  |      | 0.71  | 0.71     |      | 0.71  | 0.71     | 0.71  |
| v/c Ratio               | 0.77  | 0.10     |      | 0.10  | 0.10  |      | 0.02  | 0.41     |      | 0.13  | 0.25     | 0.07  |
| -,01440                 | 0.11  | U.ZT     |      | V.ZZ  | 0.10  |      | 0.02  | V. T I   |      | 0.10  | 0.20     | 0.01  |

|                              | ۶           | <b>→</b> | *         | 1           | <b>←</b>   | *          | 1     | <b>†</b> | -   | 1    | ţ     | 1     |
|------------------------------|-------------|----------|-----------|-------------|------------|------------|-------|----------|-----|------|-------|-------|
| Lane Group                   | EBL         | EBT      | EBR       | WBL         | WBT        | WBR        | NBL   | NBT      | NBR | SBL  | SBT   | SBR   |
| Control Delay                | 72.0        | 30.7     |           | 45.9        | 19.8       |            | 6.7   | 6.5      |     | 8.6  | 7.5   | 1.9   |
| Queue Delay                  | 0.0         | 0.0      |           | 0.0         | 0.0        |            | 0.0   | 0.0      |     | 0.0  | 0.0   | 0.0   |
| Total Delay                  | 72.0        | 30.7     |           | 45.9        | 19.8       |            | 6.7   | 6.5      |     | 8.6  | 7.5   | 1.9   |
| LOS                          | Е           | С        |           | D           | В          |            | Α     | Α        |     | Α    | Α     | Α     |
| Approach Delay               |             | 59.4     |           |             | 30.6       |            |       | 6.5      |     |      | 6.9   |       |
| Approach LOS                 |             | Е        |           |             | С          |            |       | Α        |     |      | Α     |       |
| Queue Length 50th (m)        | 40.3        | 10.3     |           | 8.8         | 4.2        |            | 0.6   | 27.0     |     | 3.1  | 22.0  | 0.0   |
| Queue Length 95th (m)        | 59.2        | 21.6     |           | 17.6        | 14.3       |            | m1.4  | 46.0     |     | 9.2  | 36.3  | 4.9   |
| Internal Link Dist (m)       |             | 504.6    |           |             | 210.2      |            |       | 427.0    |     |      | 153.6 |       |
| Turn Bay Length (m)          | 100.0       |          |           | 40.0        |            |            | 100.0 |          |     | 75.0 |       | 175.0 |
| Base Capacity (vph)          | 332         | 450      |           | 280         | 445        |            | 570   | 2285     |     | 355  | 2261  | 1059  |
| Starvation Cap Reductn       | 0           | 0        |           | 0           | 0          |            | 0     | 0        |     | 0    | 0     | 0     |
| Spillback Cap Reductn        | 0           | 0        |           | 0           | 0          |            | 0     | 0        |     | 0    | 0     | 0     |
| Storage Cap Reductn          | 0           | 0        |           | 0           | 0          |            | 0     | 0        |     | 0    | 0     | 0     |
| Reduced v/c Ratio            | 0.53        | 0.17     |           | 0.15        | 0.14       |            | 0.02  | 0.41     |     | 0.13 | 0.25  | 0.07  |
| Intersection Summary         |             |          |           |             |            |            |       |          |     |      |       |       |
| Area Type:                   | Other       |          |           |             |            |            |       |          |     |      |       |       |
| Cycle Length: 130            |             |          |           |             |            |            |       |          |     |      |       |       |
| Actuated Cycle Length: 13    |             |          |           |             |            |            |       |          |     |      |       |       |
| Offset: 16 (12%), Reference  | ed to phase | 2:NBTL a | and 6:SBT | ΓL, Start o | of Green   |            |       |          |     |      |       |       |
| Natural Cycle: 80            |             |          |           |             |            |            |       |          |     |      |       |       |
| Control Type: Actuated-Co    | ordinated   |          |           |             |            |            |       |          |     |      |       |       |
| Maximum v/c Ratio: 0.77      |             |          |           |             |            |            |       |          |     |      |       |       |
| Intersection Signal Delay:   |             |          |           |             | tersection |            |       |          |     |      |       |       |
| Intersection Capacity Utiliz | ation 69.4% |          |           | IC          | U Level o  | of Service | С     |          |     |      |       |       |
| Analysis Period (min) 15     |             |          |           |             |            |            |       |          |     |      |       |       |

m Volume for 95th percentile queue is metered by upstream signal.



|                         | ۶     | *     | 1     | <b>†</b> | <b>↓</b>   | 1     |
|-------------------------|-------|-------|-------|----------|------------|-------|
| Lane Group              | EBL   | EBR   | NBL   | NBT      | SBT        | SBR   |
| Lane Configurations     | *     | 7     | *     | <b>^</b> | <u> </u>   | 7     |
| Traffic Volume (vph)    | 264   | 71    | 118   | 678      | 520        | 61    |
| Future Volume (vph)     | 264   | 71    | 118   | 678      | 520        | 61    |
| Ideal Flow (vphpl)      | 1800  | 1800  | 1800  | 1800     | 1800       | 1800  |
| Storage Length (m)      | 25.0  | 0.0   | 120.0 | 1000     | 1000       | 100.0 |
| Storage Lanes           | 1     | 1     | 120.0 |          |            | 100.0 |
| Taper Length (m)        | 20.0  | •     | 20.0  |          |            | •     |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00  | 1.00     | 1.00       | 1.00  |
| Ped Bike Factor         | 1.00  | 1.00  | 1.00  | 1.00     | 1.00       | 0.96  |
| Frt                     |       | 0.850 | 1.00  |          |            | 0.850 |
| FIt Protected           | 0.950 | 0.000 | 0.950 |          |            | 0.000 |
| Satd. Flow (prot)       | 1616  | 1459  | 1558  | 1655     | 1640       | 1172  |
| Flt Permitted           | 0.950 | 1409  | 0.423 | 1000     | 1040       | 1112  |
|                         | 1616  | 1/150 | 690   | 1655     | 1640       | 1129  |
| Satd. Flow (perm)       | 1010  | 1459  | 090   | 1655     | 1640       |       |
| Right Turn on Red       |       | Yes   |       |          |            | Yes   |
| Satd. Flow (RTOR)       |       | 71    |       | 00       | 00         | 61    |
| Link Speed (k/h)        | 50    |       |       | 80       | 80         |       |
| Link Distance (m)       | 528.6 |       |       | 273.1    | 451.0      |       |
| Travel Time (s)         | 38.1  |       |       | 12.3     | 20.3       |       |
| Confl. Peds. (#/hr)     | 4.00  | 4.65  | 4     | 4        | 4          | 4     |
| Peak Hour Factor        | 1.00  | 1.00  | 1.00  | 1.00     | 1.00       | 1.00  |
| Heavy Vehicles (%)      | 7%    | 6%    | 11%   | 10%      | 11%        | 32%   |
| Adj. Flow (vph)         | 264   | 71    | 118   | 678      | 520        | 61    |
| Shared Lane Traffic (%) |       |       |       |          |            |       |
| Lane Group Flow (vph)   | 264   | 71    | 118   | 678      | 520        | 61    |
| Turn Type               | Perm  | Perm  | Perm  | NA       | NA         | Perm  |
| Protected Phases        |       |       |       | 2        | 6          |       |
| Permitted Phases        | 4     | 4     | 2     |          |            | 6     |
| Detector Phase          | 4     | 4     | 2     | 2        | 6          | 6     |
| Switch Phase            |       |       |       |          |            |       |
| Minimum Initial (s)     | 10.0  | 10.0  | 10.0  | 10.0     | 10.0       | 10.0  |
| Minimum Split (s)       | 22.6  | 22.6  | 21.7  | 21.7     | 21.7       | 21.7  |
| Total Split (s)         | 40.0  | 40.0  | 90.0  | 90.0     | 90.0       | 90.0  |
| Total Split (%)         | 30.8% | 30.8% | 69.2% | 69.2%    | 69.2%      | 69.2% |
| Maximum Green (s)       | 33.4  | 33.4  | 83.3  | 83.3     | 83.3       | 83.3  |
| Yellow Time (s)         | 3.3   | 3.3   | 4.6   | 4.6      | 4.6        | 4.6   |
| . ,                     | 3.3   |       | 2.1   | 2.1      | 2.1        | 2.1   |
| All-Red Time (s)        |       | 3.3   |       |          |            |       |
| Lost Time Adjust (s)    | 0.0   | 0.0   | 0.0   | 0.0      | 0.0        | 0.0   |
| Total Lost Time (s)     | 6.6   | 6.6   | 6.7   | 6.7      | 6.7        | 6.7   |
| Lead/Lag                |       |       |       |          |            |       |
| Lead-Lag Optimize?      |       |       |       |          |            |       |
| Vehicle Extension (s)   | 3.0   | 3.0   | 3.0   | 3.0      | 3.0        | 3.0   |
| Recall Mode             | None  | None  | C-Max | C-Max    | C-Max      | C-Max |
| Walk Time (s)           | 7.0   | 7.0   | 7.0   | 7.0      | 7.0        | 7.0   |
| Flash Dont Walk (s)     | 9.0   | 9.0   | 8.0   | 8.0      | 8.0        | 8.0   |
| Pedestrian Calls (#/hr) | 0     | 0     | 0     | 0        | 0          | 0     |
| Act Effct Green (s)     | 26.1  | 26.1  | 90.6  | 90.6     | 90.6       | 90.6  |
| Actuated g/C Ratio      | 0.20  | 0.20  | 0.70  | 0.70     | 0.70       | 0.70  |
| v/c Ratio               | 0.81  | 0.20  | 0.25  | 0.59     | 0.45       | 0.08  |
|                         |       |       |       | 2.00     | J <b>J</b> |       |

|                                   | ۶           | *        | 1         | <b>†</b>    | <b>↓</b>   | 1            |     |
|-----------------------------------|-------------|----------|-----------|-------------|------------|--------------|-----|
| Lane Group                        | EBL         | EBR      | NBL       | NBT         | SBT        | SBR          |     |
| Control Delay                     | 68.8        | 9.9      | 9.9       | 13.7        | 10.6       | 1.5          |     |
| Queue Delay                       | 0.0         | 0.0      | 0.0       | 0.0         | 0.0        | 0.0          |     |
| Total Delay                       | 68.8        | 9.9      | 9.9       | 13.7        | 10.6       | 1.5          |     |
| LOS                               | Е           | Α        | Α         | В           | В          | Α            |     |
| Approach Delay                    | 56.3        |          |           | 13.2        | 9.6        |              |     |
| Approach LOS                      | Е           |          |           | В           | Α          |              |     |
| Queue Length 50th (m)             | 59.8        | 0.0      | 9.4       | 75.6        | 67.4       | 0.6          |     |
| Queue Length 95th (m)             | 83.1        | 10.8     | 20.9      | 126.5       | 105.3      | 0.6          |     |
| Internal Link Dist (m)            | 504.6       |          |           | 249.1       | 427.0      |              |     |
| Turn Bay Length (m)               | 25.0        |          | 120.0     |             |            | 100.0        |     |
| Base Capacity (vph)               | 415         | 427      | 480       | 1153        | 1143       | 805          |     |
| Starvation Cap Reductn            | 0           | 0        | 0         | 0           | 0          | 0            |     |
| Spillback Cap Reductn             | 0           | 0        | 0         | 0           | 0          | 0            |     |
| Storage Cap Reductn               | 0           | 0        | 0         | 0           | 0          | 0            |     |
| Reduced v/c Ratio                 | 0.64        | 0.17     | 0.25      | 0.59        | 0.45       | 0.08         |     |
| Intersection Summary              |             |          |           |             |            |              |     |
| Area Type:                        | Other       |          |           |             |            |              |     |
| Cycle Length: 130                 |             |          |           |             |            |              |     |
| Actuated Cycle Length: 13         |             |          |           |             |            |              |     |
| Offset: 40 (31%), Reference       | ed to phase | 2:NBTL a | and 6:SB  | T, Start of | Green      |              |     |
| Natural Cycle: 60                 |             |          |           |             |            |              |     |
| Control Type: Actuated-Co         | ordinated   |          |           |             |            |              |     |
| Maximum v/c Ratio: 0.81           |             |          |           |             |            |              |     |
| Intersection Signal Delay: 2      | 20.4        |          |           | In          | tersection | LOS: C       |     |
| Intersection Capacity Utilization |             |          |           | IC          | CU Level o | of Service ( | )   |
| Analysis Period (min) 15          |             |          |           |             |            |              |     |
| Splits and Phases: 2: Ba          | nk Street & | Dun Skip | per Drive |             |            |              |     |
| Ø2 (R)                            |             |          |           |             |            |              |     |
| 90 s                              |             |          |           |             |            |              | - 1 |



| 11.8 |                             |                                                |                                                                    |                                                                                        |                                                                                                               |                                                                                                                                      |                                                                                                                                                          |                                                                                                                                    |                                                                                                                                             |                                                                                                                                                         |                                                                                                                                                                   |
|------|-----------------------------|------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В    |                             |                                                |                                                                    |                                                                                        |                                                                                                               |                                                                                                                                      |                                                                                                                                                          |                                                                                                                                    |                                                                                                                                             |                                                                                                                                                         |                                                                                                                                                                   |
|      |                             |                                                |                                                                    |                                                                                        |                                                                                                               |                                                                                                                                      |                                                                                                                                                          |                                                                                                                                    |                                                                                                                                             |                                                                                                                                                         |                                                                                                                                                                   |
| EBL  | EBT                         | EBR                                            | WBL                                                                | WBT                                                                                    | WBR                                                                                                           | NBL                                                                                                                                  | NBT                                                                                                                                                      | NBR                                                                                                                                | SBL                                                                                                                                         | SBT                                                                                                                                                     | SBR                                                                                                                                                               |
|      | 4                           |                                                |                                                                    | 4                                                                                      |                                                                                                               |                                                                                                                                      | 4                                                                                                                                                        |                                                                                                                                    |                                                                                                                                             | 4                                                                                                                                                       |                                                                                                                                                                   |
| 28   | 168                         | 37                                             | 22                                                                 | 166                                                                                    | 105                                                                                                           | 58                                                                                                                                   | 78                                                                                                                                                       | 35                                                                                                                                 | 124                                                                                                                                         | 52                                                                                                                                                      | 53                                                                                                                                                                |
| 28   | 168                         | 37                                             | 22                                                                 | 166                                                                                    | 105                                                                                                           | 58                                                                                                                                   | 78                                                                                                                                                       | 35                                                                                                                                 | 124                                                                                                                                         | 52                                                                                                                                                      | 53                                                                                                                                                                |
| 1.00 | 1.00                        | 1.00                                           | 1.00                                                               | 1.00                                                                                   | 1.00                                                                                                          | 1.00                                                                                                                                 | 1.00                                                                                                                                                     | 1.00                                                                                                                               | 1.00                                                                                                                                        | 1.00                                                                                                                                                    | 1.00                                                                                                                                                              |
| 0    | 1                           | 8                                              | 5                                                                  | 1                                                                                      | 7                                                                                                             | 0                                                                                                                                    | 2                                                                                                                                                        | 6                                                                                                                                  | 2                                                                                                                                           | 0                                                                                                                                                       | 0                                                                                                                                                                 |
| 28   | 168                         | 37                                             | 22                                                                 | 166                                                                                    | 105                                                                                                           | 58                                                                                                                                   | 78                                                                                                                                                       | 35                                                                                                                                 | 124                                                                                                                                         | 52                                                                                                                                                      | 53                                                                                                                                                                |
| 0    | 1                           | 0                                              | 0                                                                  | 1                                                                                      | 0                                                                                                             | 0                                                                                                                                    | 1                                                                                                                                                        | 0                                                                                                                                  | 0                                                                                                                                           | 1                                                                                                                                                       | 0                                                                                                                                                                 |
|      | 28<br>28<br>28<br>1.00<br>0 | B  EBL EBT  28 168 28 168 1.00 1.00 0 1 28 168 | B  EBL EBT EBR  28 168 37 28 168 37 1.00 1.00 1.00 0 1 8 28 168 37 | B  EBL EBT EBR WBL  28 168 37 22 28 168 37 22 1.00 1.00 1.00 1.00 0 1 8 5 28 168 37 22 | B  EBL EBT EBR WBL WBT  28 168 37 22 166 28 168 37 22 166 1.00 1.00 1.00 1.00 1.00 0 1 8 5 1 28 168 37 22 166 | B  EBL EBT EBR WBL WBT WBR  28 168 37 22 166 105 28 168 37 22 166 105 1.00 1.00 1.00 1.00 1.00 1.00 0 1 8 5 1 7 28 168 37 22 166 105 | B  EBL EBT EBR WBL WBT WBR NBL  28 168 37 22 166 105 58 28 168 37 22 166 105 58 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0 1 8 5 1 7 0 28 168 37 22 166 105 58 | B  EBL EBT EBR WBL WBT WBR NBL NBT  28 168 37 22 166 105 58 78  28 168 37 22 166 105 58 78  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0 | B  EBL EBT EBR WBL WBT WBR NBL NBT NBR  28 168 37 22 166 105 58 78 35 28 168 37 22 166 105 58 78 35 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 | B  EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL  28 168 37 22 166 105 58 78 35 124 28 168 37 22 166 105 58 78 35 124 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 | B  EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT  28 168 37 22 166 105 58 78 35 124 52 28 168 37 22 166 105 58 78 35 124 52 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 |

| Approach                   | EB   | WB   | NB   | SB   |
|----------------------------|------|------|------|------|
| Opposing Approach          | WB   | EB   | SB   | NB   |
| Opposing Lanes             | 1    | 1    | 1    | 1    |
| Conflicting Approach Left  | SB   | NB   | EB   | WB   |
| Conflicting Lanes Left     | 1    | 1    | 1    | 1    |
| Conflicting Approach Right | NB   | SB   | WB   | EB   |
| Conflicting Lanes Right    | 1    | 1    | 1    | 1    |
| HCM Control Delay          | 11.5 | 12.4 | 10.9 | 11.9 |
| HCM LOS                    | В    | В    | В    | В    |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 34%   | 12%   | 8%    | 54%   |  |
| Vol Thru, %            | 46%   | 72%   | 57%   | 23%   |  |
| Vol Right, %           | 20%   | 16%   | 36%   | 23%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 171   | 233   | 293   | 229   |  |
| LT Vol                 | 58    | 28    | 22    | 124   |  |
| Through Vol            | 78    | 168   | 166   | 52    |  |
| RT Vol                 | 35    | 37    | 105   | 53    |  |
| Lane Flow Rate         | 171   | 233   | 293   | 229   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.27  | 0.353 | 0.433 | 0.359 |  |
| Departure Headway (Hd) | 5.692 | 5.459 | 5.322 | 5.639 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 628   | 657   | 674   | 634   |  |
| Service Time           | 3.754 | 3.513 | 3.373 | 3.696 |  |
| HCM Lane V/C Ratio     | 0.272 | 0.355 | 0.435 | 0.361 |  |
| HCM Control Delay      | 10.9  | 11.5  | 12.4  | 11.9  |  |
| HCM Lane LOS           | В     | В     | В     | В     |  |
| HCM 95th-tile Q        | 1.1   | 1.6   | 2.2   | 1.6   |  |

| Intersection Delay, s/veh | 8.2 |
|---------------------------|-----|
| Intersection LOS          | Α   |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 18   | 42   | 9    | 23   | 20   | 27   | 3    | 56   | 62   | 39   | 38   | 12   |
| Future Vol, veh/h          | 18   | 42   | 9    | 23   | 20   | 27   | 3    | 56   | 62   | 39   | 38   | 12   |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 8    | 5    | 56   | 6    | 7    | 0    | 33   | 5    | 0    | 22   | 11   | 50   |
| Mvmt Flow                  | 18   | 42   | 9    | 23   | 20   | 27   | 3    | 56   | 62   | 39   | 38   | 12   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 8.1  |      |      | 7.9  |      |      | 8.4  |      |      | 8.4  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 2%    | 26%   | 33%   | 44%   |  |
| Vol Thru, %            | 46%   | 61%   | 29%   | 43%   |  |
| Vol Right, %           | 51%   | 13%   | 39%   | 13%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 121   | 69    | 70    | 89    |  |
| LT Vol                 | 3     | 18    | 23    | 39    |  |
| Through Vol            | 56    | 42    | 20    | 38    |  |
| RT Vol                 | 62    | 9     | 27    | 12    |  |
| Lane Flow Rate         | 121   | 69    | 70    | 89    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.154 | 0.088 | 0.086 | 0.117 |  |
| Departure Headway (Hd) | 4.588 | 4.596 | 4.424 | 4.744 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 784   | 782   | 812   | 757   |  |
| Service Time           | 2.603 | 2.612 | 2.44  | 2.759 |  |
| HCM Lane V/C Ratio     | 0.154 | 0.088 | 0.086 | 0.118 |  |
| HCM Control Delay      | 8.4   | 8.1   | 7.9   | 8.4   |  |
| HCM Lane LOS           | А     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.5   | 0.3   | 0.3   | 0.4   |  |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 17   | 57   | 7    | 37   | 39   | 26   | 3    | 23   | 44   | 32   | 19   | 2    |
| Future Vol, veh/h          | 17   | 57   | 7    | 37   | 39   | 26   | 3    | 23   | 44   | 32   | 19   | 2    |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 0    | 9    | 0    | 20   | 10   | 8    | 0    | 5    | 19   | 0    | 12   | 0    |
| Mvmt Flow                  | 17   | 57   | 7    | 37   | 39   | 26   | 3    | 23   | 44   | 32   | 19   | 2    |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 7.7  |      |      | 8.2  |      |      | 7.4  |      |      | 7.8  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 4%    | 21%   | 36%   | 60%   |  |
| Vol Thru, %            | 33%   | 70%   | 38%   | 36%   |  |
| Vol Right, %           | 63%   | 9%    | 25%   | 4%    |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 70    | 81    | 102   | 53    |  |
| LT Vol                 | 3     | 17    | 37    | 32    |  |
| Through Vol            | 23    | 57    | 39    | 19    |  |
| RT Vol                 | 44    | 7     | 26    | 2     |  |
| Lane Flow Rate         | 70    | 81    | 102   | 53    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.078 | 0.094 | 0.126 | 0.066 |  |
| Departure Headway (Hd) | 4.013 | 4.182 | 4.435 | 4.493 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 897   | 842   | 798   | 802   |  |
| Service Time           | 2.015 | 2.282 | 2.524 | 2.495 |  |
| HCM Lane V/C Ratio     | 0.078 | 0.096 | 0.128 | 0.066 |  |
| HCM Control Delay      | 7.4   | 7.7   | 8.2   | 7.8   |  |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.3   | 0.3   | 0.4   | 0.2   |  |

|                         | ۶       | <b>→</b> | *    | •        | •        | •        | 1       | †        | ~    | /       | Ţ        | 4     |
|-------------------------|---------|----------|------|----------|----------|----------|---------|----------|------|---------|----------|-------|
| Lane Group              | EBL     | EBT      | EBR  | WBL      | WBT      | WBR      | NBL     | NBT      | NBR  | SBL     | SBT      | SBR   |
| Lane Configurations     | *       | 1>       |      | *        | ĵ.       |          | *       | <b>†</b> |      | *       | <b>^</b> | 7     |
| Traffic Volume (vph)    | 132     | 23       | 43   | 54       | 32       | 62       | 23      | 848      | 45   | 50      | 1101     | 187   |
| Future Volume (vph)     | 132     | 23       | 43   | 54       | 32       | 62       | 23      | 848      | 45   | 50      | 1101     | 187   |
| Ideal Flow (vphpl)      | 1800    | 1800     | 1800 | 1800     | 1800     | 1800     | 1800    | 1800     | 1800 | 1800    | 1800     | 1800  |
| Storage Length (m)      | 100.0   |          | 0.0  | 40.0     |          | 0.0      | 100.0   |          | 0.0  | 75.0    |          | 175.0 |
| Storage Lanes           | 1       |          | 0    | 1        |          | 0        | 1       |          | 0    | 1       |          | 1     |
| Taper Length (m)        | 20.0    |          |      | 20.0     |          |          | 20.0    |          |      | 20.0    |          |       |
| Lane Util. Factor       | 1.00    | 1.00     | 1.00 | 1.00     | 1.00     | 1.00     | 1.00    | 0.95     | 0.95 | 1.00    | 0.95     | 1.00  |
| Ped Bike Factor         |         |          |      |          |          |          | 1.00    |          |      |         |          | 0.98  |
| Frt                     |         | 0.902    |      |          | 0.901    |          |         | 0.992    |      |         |          | 0.850 |
| Flt Protected           | 0.950   |          |      | 0.950    |          |          | 0.950   |          |      | 0.950   |          |       |
| Satd. Flow (prot)       | 1729    | 1405     | 0    | 1530     | 1602     | 0        | 1729    | 3282     | 0    | 1601    | 3325     | 1517  |
| Flt Permitted           | 0.696   |          |      | 0.714    |          |          | 0.236   |          |      | 0.305   |          |       |
| Satd. Flow (perm)       | 1267    | 1405     | 0    | 1150     | 1602     | 0        | 429     | 3282     | 0    | 514     | 3325     | 1481  |
| Right Turn on Red       |         |          | Yes  |          |          | Yes      |         |          | Yes  |         |          | Yes   |
| Satd. Flow (RTOR)       |         | 43       |      |          | 62       |          |         | 9        |      |         |          | 187   |
| Link Speed (k/h)        |         | 50       |      |          | 50       |          |         | 50       |      |         | 50       |       |
| Link Distance (m)       |         | 528.6    |      |          | 234.2    |          |         | 451.0    |      |         | 177.6    |       |
| Travel Time (s)         |         | 38.1     |      |          | 16.9     |          |         | 32.5     |      |         | 12.8     |       |
| Confl. Peds. (#/hr)     |         |          |      |          |          |          | 2       | 02.0     |      |         |          | 2     |
| Peak Hour Factor        | 1.00    | 1.00     | 1.00 | 1.00     | 1.00     | 1.00     | 1.00    | 1.00     | 1.00 | 1.00    | 1.00     | 1.00  |
| Heavy Vehicles (%)      | 0%      | 9%       | 21%  | 13%      | 3%       | 2%       | 0%      | 4%       | 14%  | 8%      | 4%       | 2%    |
| Adj. Flow (vph)         | 132     | 23       | 43   | 54       | 32       | 62       | 23      | 848      | 45   | 50      | 1101     | 187   |
| Shared Lane Traffic (%) |         |          |      | <u> </u> | <u> </u> | <u> </u> |         |          |      |         |          |       |
| Lane Group Flow (vph)   | 132     | 66       | 0    | 54       | 94       | 0        | 23      | 893      | 0    | 50      | 1101     | 187   |
| Turn Type               | Perm    | NA       |      | Perm     | NA       |          | Perm    | NA       |      | Perm    | NA       | Perm  |
| Protected Phases        | 1 01111 | 4        |      | 1 01111  | 8        |          | 1 01111 | 2        |      | 1 01111 | 6        | . 0   |
| Permitted Phases        | 4       | •        |      | 8        |          |          | 2       | _        |      | 6       |          | 6     |
| Detector Phase          | 4       | 4        |      | 8        | 8        |          | 2       | 2        |      | 6       | 6        | 6     |
| Switch Phase            | •       | ·        |      |          |          |          | _       | _        |      |         |          |       |
| Minimum Initial (s)     | 10.0    | 10.0     |      | 10.0     | 10.0     |          | 10.0    | 10.0     |      | 10.0    | 10.0     | 10.0  |
| Minimum Split (s)       | 33.8    | 33.8     |      | 33.8     | 33.8     |          | 42.6    | 42.6     |      | 42.6    | 42.6     | 42.6  |
| Total Split (s)         | 35.0    | 35.0     |      | 35.0     | 35.0     |          | 85.0    | 85.0     |      | 85.0    | 85.0     | 85.0  |
| Total Split (%)         | 29.2%   | 29.2%    |      | 29.2%    | 29.2%    |          | 70.8%   | 70.8%    |      | 70.8%   | 70.8%    | 70.8% |
| Maximum Green (s)       | 28.2    | 28.2     |      | 28.2     | 28.2     |          | 77.4    | 77.4     |      | 77.4    | 77.4     | 77.4  |
| Yellow Time (s)         | 3.6     | 3.6      |      | 3.6      | 3.6      |          | 5.0     | 5.0      |      | 5.0     | 5.0      | 5.0   |
| All-Red Time (s)        | 3.2     | 3.2      |      | 3.2      | 3.2      |          | 2.6     | 2.6      |      | 2.6     | 2.6      | 2.6   |
| Lost Time Adjust (s)    | 0.0     | 0.0      |      | 0.0      | 0.0      |          | 0.0     | 0.0      |      | 0.0     | 0.0      | 0.0   |
| Total Lost Time (s)     | 6.8     | 6.8      |      | 6.8      | 6.8      |          | 7.6     | 7.6      |      | 7.6     | 7.6      | 7.6   |
| Lead/Lag                | 0.0     | 0.0      |      | 0.0      | 0.0      |          | 7.0     | 7.0      |      | 7.0     | 7.0      | 7.0   |
| Lead-Lag Optimize?      |         |          |      |          |          |          |         |          |      |         |          |       |
| Vehicle Extension (s)   | 3.0     | 3.0      |      | 3.0      | 3.0      |          | 3.0     | 3.0      |      | 3.0     | 3.0      | 3.0   |
| Recall Mode             | None    | None     |      | None     | None     |          | C-Max   | C-Max    |      | C-Max   | C-Max    | C-Max |
| Walk Time (s)           | 7.0     | 7.0      |      | 7.0      | 7.0      |          | 7.0     | 7.0      |      | 7.0     | 7.0      | 7.0   |
| Flash Dont Walk (s)     | 20.0    | 20.0     |      | 20.0     | 20.0     |          | 28.0    | 28.0     |      | 28.0    | 28.0     | 28.0  |
| Pedestrian Calls (#/hr) | 20.0    | 20.0     |      | 20.0     | 20.0     |          | 20.0    | 20.0     |      | 20.0    | 20.0     | 20.0  |
| , ,                     | 17.8    | 17.8     |      | 17.8     | 17.8     |          | 87.8    | 87.8     |      | 87.8    | 87.8     | 87.8  |
| Actuated a/C Patio      |         |          |      |          |          |          |         |          |      |         |          |       |
| Actuated g/C Ratio      | 0.15    | 0.15     |      | 0.15     | 0.15     |          | 0.73    | 0.73     |      | 0.73    | 0.73     | 0.73  |
| v/c Ratio               | 0.71    | 0.27     |      | 0.32     | 0.32     |          | 0.07    | 0.37     |      | 0.13    | 0.45     | 0.17  |

|                        | •     | <b>→</b> | *   | 1    | •     | *   | 1     | <b>†</b> | 1   | 1    | <b>↓</b> | 1     |
|------------------------|-------|----------|-----|------|-------|-----|-------|----------|-----|------|----------|-------|
| Lane Group             | EBL   | EBT      | EBR | WBL  | WBT   | WBR | NBL   | NBT      | NBR | SBL  | SBT      | SBR   |
| Control Delay          | 67.5  | 21.3     |     | 48.5 | 20.3  |     | 4.6   | 4.3      |     | 7.1  | 7.8      | 1.3   |
| Queue Delay            | 0.0   | 0.0      |     | 0.0  | 0.0   |     | 0.0   | 0.0      |     | 0.0  | 0.0      | 0.0   |
| Total Delay            | 67.5  | 21.3     |     | 48.5 | 20.3  |     | 4.6   | 4.3      |     | 7.1  | 7.8      | 1.3   |
| LOS                    | Е     | С        |     | D    | С     |     | Α     | Α        |     | Α    | Α        | Α     |
| Approach Delay         |       | 52.1     |     |      | 30.6  |     |       | 4.3      |     |      | 6.8      |       |
| Approach LOS           |       | D        |     |      | С     |     |       | Α        |     |      | Α        |       |
| Queue Length 50th (m)  | 27.6  | 4.4      |     | 10.6 | 6.1   |     | 0.9   | 20.6     |     | 2.8  | 44.2     | 0.0   |
| Queue Length 95th (m)  | 43.9  | 15.0     |     | 20.6 | 18.6  |     | m1.9  | m28.6    |     | 8.5  | 70.1     | 6.4   |
| Internal Link Dist (m) |       | 504.6    |     |      | 210.2 |     |       | 427.0    |     |      | 153.6    |       |
| Turn Bay Length (m)    | 100.0 |          |     | 40.0 |       |     | 100.0 |          |     | 75.0 |          | 175.0 |
| Base Capacity (vph)    | 297   | 363      |     | 270  | 423   |     | 313   | 2404     |     | 376  | 2433     | 1133  |
| Starvation Cap Reductn | 0     | 0        |     | 0    | 0     |     | 0     | 0        |     | 0    | 0        | 0     |
| Spillback Cap Reductn  | 0     | 0        |     | 0    | 0     |     | 0     | 0        |     | 0    | 0        | 0     |
| Storage Cap Reductn    | 0     | 0        |     | 0    | 0     |     | 0     | 0        |     | 0    | 0        | 0     |
| Reduced v/c Ratio      | 0.44  | 0.18     |     | 0.20 | 0.22  |     | 0.07  | 0.37     |     | 0.13 | 0.45     | 0.17  |

Intersection Summary

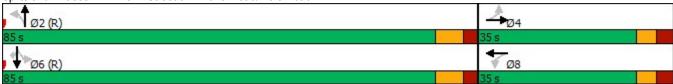
Area Type: Other

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 18 (15%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.71

Intersection Signal Delay: 10.8 Intersection LOS: B Intersection Capacity Utilization 70.2% ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.





Synchro 11 Report Lanes, Volumes, Timings August 2025

|                         | ٠     | *     | 1     | <b>†</b> | <b>↓</b> | 1     |
|-------------------------|-------|-------|-------|----------|----------|-------|
| Lane Group              | EBL   | EBR   | NBL   | NBT      | SBT      | SBR   |
| Lane Configurations     | *     | 7     | *     | <b>^</b> | <u> </u> | 7     |
| Traffic Volume (vph)    | 269   | 90    | 137   | 643      | 980      | 135   |
| Future Volume (vph)     | 269   | 90    | 137   | 643      | 980      | 135   |
| Ideal Flow (vphpl)      | 1800  | 1800  | 1800  | 1800     | 1800     | 1800  |
| Storage Length (m)      | 25.0  | 0.0   | 120.0 | 1000     | 1000     | 100.0 |
| Storage Lanes           | 1     | 1     | 120.0 |          |          | 100.0 |
| Taper Length (m)        | 20.0  |       | 20.0  |          |          | -     |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00  | 1.00     | 1.00     | 1.00  |
| Frt                     | 1.00  | 0.850 | 1.00  | 1.00     | 1.00     | 0.850 |
| FIt Protected           | 0.950 | 0.000 | 0.950 |          |          | 0.000 |
| Satd. Flow (prot)       | 1601  | 1369  | 1679  | 1701     | 1733     | 1532  |
| Flt Permitted           | 0.950 | 1309  | 0.175 | 1701     | 1733     | 1332  |
|                         | 1601  | 1369  | 309   | 1701     | 1733     | 1532  |
| Satd. Flow (perm)       | 1001  |       | 309   | 1/01     | 1/33     | Yes   |
| Right Turn on Red       |       | Yes   |       |          |          |       |
| Satd. Flow (RTOR)       |       | 90    |       | - 00     | - 00     | 135   |
| Link Speed (k/h)        | 50    |       |       | 80       | 80       |       |
| Link Distance (m)       | 528.6 |       |       | 273.1    | 451.0    |       |
| Travel Time (s)         | 38.1  | 4     | 4     | 12.3     | 20.3     | 4.55  |
| Peak Hour Factor        | 1.00  | 1.00  | 1.00  | 1.00     | 1.00     | 1.00  |
| Heavy Vehicles (%)      | 8%    | 13%   | 3%    | 7%       | 5%       | 1%    |
| Adj. Flow (vph)         | 269   | 90    | 137   | 643      | 980      | 135   |
| Shared Lane Traffic (%) |       |       |       |          |          |       |
| Lane Group Flow (vph)   | 269   | 90    | 137   | 643      | 980      | 135   |
| Turn Type               | Perm  | Perm  | Perm  | NA       | NA       | Perm  |
| Protected Phases        |       |       |       | 2        | 6        |       |
| Permitted Phases        | 4     | 4     | 2     |          |          | 6     |
| Detector Phase          | 4     | 4     | 2     | 2        | 6        | 6     |
| Switch Phase            |       |       |       |          |          |       |
| Minimum Initial (s)     | 10.0  | 10.0  | 10.0  | 10.0     | 10.0     | 10.0  |
| Minimum Split (s)       | 22.6  | 22.6  | 21.7  | 21.7     | 21.7     | 21.7  |
| Total Split (s)         | 30.0  | 30.0  | 90.0  | 90.0     | 90.0     | 90.0  |
| Total Split (%)         | 25.0% | 25.0% | 75.0% | 75.0%    | 75.0%    | 75.0% |
| Maximum Green (s)       | 23.4  | 23.4  | 83.3  | 83.3     | 83.3     | 83.3  |
| Yellow Time (s)         | 3.3   | 3.3   | 4.6   | 4.6      | 4.6      | 4.6   |
| All-Red Time (s)        | 3.3   | 3.3   | 2.1   | 2.1      | 2.1      | 2.1   |
|                         | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   |
| Lost Time Adjust (s)    |       |       |       |          |          |       |
| Total Lost Time (s)     | 6.6   | 6.6   | 6.7   | 6.7      | 6.7      | 6.7   |
| Lead/Lag                |       |       |       |          |          |       |
| Lead-Lag Optimize?      |       |       |       |          |          |       |
| Vehicle Extension (s)   | 3.0   | 3.0   | 3.0   | 3.0      | 3.0      | 3.0   |
| Recall Mode             | None  | None  | C-Max | C-Max    | C-Max    | C-Max |
| Walk Time (s)           | 7.0   | 7.0   | 7.0   | 7.0      | 7.0      | 7.0   |
| Flash Dont Walk (s)     | 9.0   | 9.0   | 8.0   | 8.0      | 8.0      | 8.0   |
| Pedestrian Calls (#/hr) | 0     | 0     | 0     | 0        | 0        | 0     |
| Act Effct Green (s)     | 22.5  | 22.5  | 84.2  | 84.2     | 84.2     | 84.2  |
| Actuated g/C Ratio      | 0.19  | 0.19  | 0.70  | 0.70     | 0.70     | 0.70  |
| v/c Ratio               | 0.90  | 0.27  | 0.63  | 0.54     | 0.81     | 0.12  |
| Control Delay           | 79.5  | 10.5  | 26.2  | 10.8     | 14.7     | 0.4   |
| Queue Delay             | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   |
| Quodo Delay             | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   |

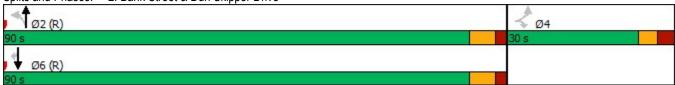
Lanes, Volumes, Timings
EM

Synchro 11 Report
August 2025

|                           | •            | •      | 4        | <b>†</b>    | ţ     | 1     |
|---------------------------|--------------|--------|----------|-------------|-------|-------|
| Lane Group                | EBL          | EBR    | NBL      | NBT         | SBT   | SBR   |
| Total Delay               | 79.5         | 10.5   | 26.2     | 10.8        | 14.7  | 0.4   |
| LOS                       | Е            | В      | С        | В           | В     | Α     |
| Approach Delay            | 62.2         |        |          | 13.5        | 13.0  |       |
| Approach LOS              | Е            |        |          | В           | В     |       |
| Queue Length 50th (m)     | 57.0         | 0.0    | 14.7     | 61.8        | 146.6 | 0.0   |
| Queue Length 95th (m)     | #98.8        | 12.6   | #46.8    | 87.0        | 86.2  | 1.2   |
| Internal Link Dist (m)    | 504.6        |        |          | 249.1       | 427.0 |       |
| Turn Bay Length (m)       | 25.0         |        | 120.0    |             |       | 100.0 |
| Base Capacity (vph)       | 312          | 339    | 216      | 1193        | 1216  | 1115  |
| Starvation Cap Reductn    | 0            | 0      | 0        | 0           | 0     | 0     |
| Spillback Cap Reductn     | 0            | 0      | 0        | 0           | 0     | 0     |
| Storage Cap Reductn       | 0            | 0      | 0        | 0           | 0     | 0     |
| Reduced v/c Ratio         | 0.86         | 0.27   | 0.63     | 0.54        | 0.81  | 0.12  |
| Intersection Summary      |              |        |          |             |       |       |
| Area Type:                | Other        |        |          |             |       |       |
| Cycle Length: 120         |              |        |          |             |       |       |
| Actuated Cycle Length: 12 | 20           |        |          |             |       |       |
| Offset: 18 (15%), Referen | ced to phase | 2:NBTL | and 6:SB | T, Start of | Green |       |
| Natural Cycle: 90         |              |        |          |             |       |       |
| Control Type: Actuated-C  | oordinated   |        |          |             |       |       |
| Maximum v/c Ratio: 0.90   |              |        |          |             |       |       |

Maximum v/c Ratio: 0.90

Intersection Signal Delay: 21.0


Intersection LOS: C Intersection Capacity Utilization 95.2% ICU Level of Service F

Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Bank Street & Dun Skipper Drive



Synchro 11 Report Lanes, Volumes, Timings August 2025 ΕM

| Intersection              |      |      |       |     |       |    |     |     |     |     |     |
|---------------------------|------|------|-------|-----|-------|----|-----|-----|-----|-----|-----|
| Intersection Delay, s/veh | 12.7 |      |       |     |       |    |     |     |     |     |     |
| Intersection LOS          | В    |      |       |     |       |    |     |     |     |     |     |
|                           |      |      |       |     |       |    |     |     |     |     |     |
|                           | EDI  | <br> | 14/51 | MOT | 14/00 | NE | NET | NDD | 001 | 0DT | 000 |

| Movement                   | EBL  | EBI  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 13   | 264  | 91   | 49   | 182  | 79   | 45   | 37   | 35   | 107  | 55   | 28   |
| Future Vol, veh/h          | 13   | 264  | 91   | 49   | 182  | 79   | 45   | 37   | 35   | 107  | 55   | 28   |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 0    | 2    | 2    | 0    | 0    | 5    | 0    | 0    | 0    | 2    | 15   | 0    |
| Mvmt Flow                  | 13   | 264  | 91   | 49   | 182  | 79   | 45   | 37   | 35   | 107  | 55   | 28   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 13.9 |      |      | 12.6 |      |      | 10.5 |      |      | 11.7 |      |      |
| HCM LOS                    | В    |      |      | В    |      |      | В    |      |      | В    |      |      |
|                            |      |      |      |      |      |      |      |      |      |      |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 38%   | 4%    | 16%   | 56%   |  |
| Vol Thru, %            | 32%   | 72%   | 59%   | 29%   |  |
| Vol Right, %           | 30%   | 25%   | 25%   | 15%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 117   | 368   | 310   | 190   |  |
| LT Vol                 | 45    | 13    | 49    | 107   |  |
| Through Vol            | 37    | 264   | 182   | 55    |  |
| RT Vol                 | 35    | 91    | 79    | 28    |  |
| Lane Flow Rate         | 117   | 368   | 310   | 190   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.193 | 0.528 | 0.453 | 0.314 |  |
| Departure Headway (Hd) | 5.951 | 5.165 | 5.264 | 5.943 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 600   | 696   | 682   | 602   |  |
| Service Time           | 4.021 | 3.212 | 3.316 | 4.005 |  |
| HCM Lane V/C Ratio     | 0.195 | 0.529 | 0.455 | 0.316 |  |
| HCM Control Delay      | 10.5  | 13.9  | 12.6  | 11.7  |  |
| HCM Lane LOS           | В     | В     | В     | В     |  |
| HCM 95th-tile Q        | 0.7   | 3.1   | 2.4   | 1.3   |  |

HCM 2010 AWSC Synchro 11 Report EM August 2025

| ITICI SCOTION             |     |
|---------------------------|-----|
| Intersection Delay, s/veh | 8.4 |
| Intersection LOS          | Α   |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 13   | 47   | 2    | 39   | 39   | 58   | 2    | 53   | 41   | 31   | 50   | 9    |
| Future Vol, veh/h          | 13   | 47   | 2    | 39   | 39   | 58   | 2    | 53   | 41   | 31   | 50   | 9    |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 11   | 0    | 50   | 0    | 0    | 0    | 50   | 2    | 4    | 12   | 2    | 0    |
| Mvmt Flow                  | 13   | 47   | 2    | 39   | 39   | 58   | 2    | 53   | 41   | 31   | 50   | 9    |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 8.2  |      |      | 8.1  |      |      | 8.9  |      |      | 8.3  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 2%    | 21%   | 29%   | 34%   |  |
| Vol Thru, %            | 55%   | 76%   | 29%   | 56%   |  |
| Vol Right, %           | 43%   | 3%    | 43%   | 10%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 96    | 62    | 136   | 90    |  |
| LT Vol                 | 2     | 13    | 39    | 31    |  |
| Through Vol            | 53    | 47    | 39    | 50    |  |
| RT Vol                 | 41    | 2     | 58    | 9     |  |
| Lane Flow Rate         | 96    | 62    | 136   | 90    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.135 | 0.081 | 0.16  | 0.117 |  |
| Departure Headway (Hd) | 5.054 | 4.726 | 4.243 | 4.684 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 710   | 760   | 847   | 766   |  |
| Service Time           | 3.076 | 2.747 | 2.261 | 2.706 |  |
| HCM Lane V/C Ratio     | 0.135 | 0.082 | 0.161 | 0.117 |  |
| HCM Control Delay      | 8.9   | 8.2   | 8.1   | 8.3   |  |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.5   | 0.3   | 0.6   | 0.4   |  |

Synchro 11 Report August 2025 HCM 2010 AWSC ΕM

| Intersection                               |     |
|--------------------------------------------|-----|
| Intersection Delay, s/veh                  | 7.8 |
| Intersection Delay, s/veh Intersection LOS | Α   |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 16   | 66   | 0    | 32   | 55   | 43   | 1    | 20   | 40   | 33   | 21   | 16   |
| Future Vol, veh/h          | 16   | 66   | 0    | 32   | 55   | 43   | 1    | 20   | 40   | 33   | 21   | 16   |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 0    | 4    | 0    | 0    | 3    | 0    | 0    | 5    | 15   | 5    | 0    | 0    |
| Mvmt Flow                  | 16   | 66   | 0    | 32   | 55   | 43   | 1    | 20   | 40   | 33   | 21   | 16   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 7.9  |      |      | 7.8  |      |      | 7.4  |      |      | 7.9  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 2%    | 20%   | 25%   | 47%   |  |
| Vol Thru, %            | 33%   | 80%   | 42%   | 30%   |  |
| Vol Right, %           | 66%   | 0%    | 33%   | 23%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 61    | 82    | 130   | 70    |  |
| LT Vol                 | 1     | 16    | 32    | 33    |  |
| Through Vol            | 20    | 66    | 55    | 21    |  |
| RT Vol                 | 40    | 0     | 43    | 16    |  |
| Lane Flow Rate         | 61    | 82    | 130   | 70    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.069 | 0.1   | 0.146 | 0.087 |  |
| Departure Headway (Hd) | 4.055 | 4.373 | 4.142 | 4.473 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 887   | 824   | 871   | 804   |  |
| Service Time           | 2.063 | 2.373 | 2.142 | 2.48  |  |
| HCM Lane V/C Ratio     | 0.069 | 0.1   | 0.149 | 0.087 |  |
| HCM Control Delay      | 7.4   | 7.9   | 7.8   | 7.9   |  |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.2   | 0.3   | 0.5   | 0.3   |  |

HCM 2010 AWSC Synchro 11 Report EM August 2025

## Future (2036) Background Traffic

|                         | ۶       | <b>→</b> | •    | •       | +     | •    | 1       | <b>†</b>   | <i>&gt;</i> | <b>/</b> | ţ        | </th    |
|-------------------------|---------|----------|------|---------|-------|------|---------|------------|-------------|----------|----------|---------|
| Lane Group              | EBL     | EBT      | EBR  | WBL     | WBT   | WBR  | NBL     | NBT        | NBR         | SBL      | SBT      | SBR     |
| Lane Configurations     | *       | 1>       |      | ች       | £     |      | ች       | <b>↑</b> ↑ |             | *        | <b>^</b> | 7       |
| Traffic Volume (vph)    | 177     | 45       | 33   | 43      | 21    | 40   | 12      | 932        | 48          | 46       | 590      | 76      |
| Future Volume (vph)     | 177     | 45       | 33   | 43      | 21    | 40   | 12      | 932        | 48          | 46       | 590      | 76      |
| Ideal Flow (vphpl)      | 1800    | 1800     | 1800 | 1800    | 1800  | 1800 | 1800    | 1800       | 1800        | 1800     | 1800     | 1800    |
| Storage Length (m)      | 100.0   |          | 0.0  | 40.0    |       | 0.0  | 100.0   |            | 0.0         | 75.0     |          | 175.0   |
| Storage Lanes           | 1       |          | 0    | 1       |       | 0    | 1       |            | 0           | 1        |          | 1       |
| Taper Length (m)        | 20.0    |          |      | 20.0    |       |      | 20.0    |            |             | 20.0     |          |         |
| Lane Util. Factor       | 1.00    | 1.00     | 1.00 | 1.00    | 1.00  | 1.00 | 1.00    | 0.95       | 0.95        | 1.00     | 0.95     | 1.00    |
| Ped Bike Factor         | 1.00    |          |      |         | 0.99  |      | 1.00    |            |             |          |          | 0.98    |
| Frt                     |         | 0.937    |      |         | 0.902 |      |         | 0.993      |             |          |          | 0.850   |
| Flt Protected           | 0.950   |          |      | 0.950   |       |      | 0.950   |            |             | 0.950    |          |         |
| Satd. Flow (prot)       | 1729    | 1686     | 0    | 1478    | 1627  | 0    | 1729    | 3207       | 0           | 1662     | 3172     | 1488    |
| Flt Permitted           | 0.717   |          |      | 0.706   |       |      | 0.428   |            |             | 0.269    |          |         |
| Satd. Flow (perm)       | 1303    | 1686     | 0    | 1098    | 1627  | 0    | 778     | 3207       | 0           | 471      | 3172     | 1455    |
| Right Turn on Red       |         |          | Yes  |         |       | Yes  |         | 0_01       | Yes         |          | •        | Yes     |
| Satd. Flow (RTOR)       |         | 27       |      |         | 40    |      |         | 8          |             |          |          | 76      |
| Link Speed (k/h)        |         | 50       |      |         | 50    |      |         | 80         |             |          | 80       |         |
| Link Distance (m)       |         | 528.6    |      |         | 234.2 |      |         | 451.0      |             |          | 177.6    |         |
| Travel Time (s)         |         | 38.1     |      |         | 16.9  |      |         | 20.3       |             |          | 8.0      |         |
| Confl. Peds. (#/hr)     | 1       |          |      |         |       | 1    | 1       |            |             |          | 0.0      | 1       |
| Peak Hour Factor        | 1.00    | 1.00     | 1.00 | 1.00    | 1.00  | 1.00 | 1.00    | 1.00       | 1.00        | 1.00     | 1.00     | 1.00    |
| Heavy Vehicles (%)      | 0%      | 2%       | 0%   | 17%     | 0%    | 0%   | 0%      | 6%         | 28%         | 4%       | 9%       | 4%      |
| Adj. Flow (vph)         | 177     | 45       | 33   | 43      | 21    | 40   | 12      | 932        | 48          | 46       | 590      | 76      |
| Shared Lane Traffic (%) |         |          |      | .0      |       |      |         | 002        |             |          | 000      | . 0     |
| Lane Group Flow (vph)   | 177     | 78       | 0    | 43      | 61    | 0    | 12      | 980        | 0           | 46       | 590      | 76      |
| Turn Type               | Perm    | NA       | •    | Perm    | NA    |      | Perm    | NA         |             | Perm     | NA       | Perm    |
| Protected Phases        | 1 01111 | 4        |      | 1 01111 | 8     |      | 1 01111 | 2          |             | 1 01111  | 6        | 1 01111 |
| Permitted Phases        | 4       | •        |      | 8       |       |      | 2       | _          |             | 6        |          | 6       |
| Detector Phase          | 4       | 4        |      | 8       | 8     |      | 2       | 2          |             | 6        | 6        | 6       |
| Switch Phase            | •       | •        |      |         |       |      | _       | _          |             |          |          |         |
| Minimum Initial (s)     | 10.0    | 10.0     |      | 10.0    | 10.0  |      | 10.0    | 10.0       |             | 10.0     | 10.0     | 10.0    |
| Minimum Split (s)       | 33.8    | 33.8     |      | 33.8    | 33.8  |      | 42.6    | 42.6       |             | 42.6     | 42.6     | 42.6    |
| Total Split (s)         | 40.0    | 40.0     |      | 40.0    | 40.0  |      | 90.0    | 90.0       |             | 90.0     | 90.0     | 90.0    |
| Total Split (%)         | 30.8%   | 30.8%    |      | 30.8%   | 30.8% |      | 69.2%   | 69.2%      |             | 69.2%    | 69.2%    | 69.2%   |
| Maximum Green (s)       | 33.2    | 33.2     |      | 33.2    | 33.2  |      | 82.4    | 82.4       |             | 82.4     | 82.4     | 82.4    |
| Yellow Time (s)         | 3.6     | 3.6      |      | 3.6     | 3.6   |      | 5.0     | 5.0        |             | 5.0      | 5.0      | 5.0     |
| All-Red Time (s)        | 3.2     | 3.2      |      | 3.2     | 3.2   |      | 2.6     | 2.6        |             | 2.6      | 2.6      | 2.6     |
| Lost Time Adjust (s)    | 0.0     | 0.0      |      | 0.0     | 0.0   |      | 0.0     | 0.0        |             | 0.0      | 0.0      | 0.0     |
| Total Lost Time (s)     | 6.8     | 6.8      |      | 6.8     | 6.8   |      | 7.6     | 7.6        |             | 7.6      | 7.6      | 7.6     |
| Lead/Lag                | 0.0     | 0.0      |      | 0.0     | 0.0   |      | 7.0     | 7.0        |             | 7.0      | 7.0      | 7.0     |
| Lead-Lag Optimize?      |         |          |      |         |       |      |         |            |             |          |          |         |
| Vehicle Extension (s)   | 3.0     | 3.0      |      | 3.0     | 3.0   |      | 3.0     | 3.0        |             | 3.0      | 3.0      | 3.0     |
| Recall Mode             | None    | None     |      | None    | None  |      | C-Max   | C-Max      |             | C-Max    | C-Max    | C-Max   |
| Walk Time (s)           | 7.0     | 7.0      |      | 7.0     | 7.0   |      | 7.0     | 7.0        |             | 7.0      | 7.0      | 7.0     |
| Flash Dont Walk (s)     | 20.0    | 20.0     |      | 20.0    | 20.0  |      | 28.0    | 28.0       |             | 28.0     | 28.0     | 28.0    |
| Pedestrian Calls (#/hr) | 0       | 20.0     |      | 20.0    | 20.0  |      | 20.0    | 20.0       |             | 20.0     | 20.0     | 20.0    |
| Act Effct Green (s)     | 22.9    | 22.9     |      | 22.9    | 22.9  |      | 92.7    | 92.7       |             | 92.7     | 92.7     | 92.7    |
|                         |         |          |      | 0.18    |       |      |         | 0.71       |             | 0.71     | 0.71     |         |
| Actuated g/C Ratio      | 0.18    | 0.18     |      |         | 0.18  |      | 0.71    |            |             |          |          | 0.71    |
| v/c Ratio               | 0.77    | 0.24     |      | 0.22    | 0.19  |      | 0.02    | 0.43       |             | 0.14     | 0.26     | 0.07    |

Lanes, Volumes, Timings EM

Synchro 11 Report October 2025

|                        | •     | <b>→</b> | •   | •    | ←     | •   | 4     | <b>†</b> | ~   | -    | <b>↓</b> | 1     |
|------------------------|-------|----------|-----|------|-------|-----|-------|----------|-----|------|----------|-------|
| Lane Group             | EBL   | EBT      | EBR | WBL  | WBT   | WBR | NBL   | NBT      | NBR | SBL  | SBT      | SBR   |
| Control Delay          | 72.0  | 30.7     |     | 45.9 | 19.8  |     | 7.2   | 7.0      |     | 8.7  | 7.6      | 1.9   |
| Queue Delay            | 0.0   | 0.0      |     | 0.0  | 0.0   |     | 0.0   | 0.0      |     | 0.0  | 0.0      | 0.0   |
| Total Delay            | 72.0  | 30.7     |     | 45.9 | 19.8  |     | 7.2   | 7.0      |     | 8.7  | 7.6      | 1.9   |
| LOS                    | Е     | С        |     | D    | В     |     | Α     | Α        |     | Α    | Α        | Α     |
| Approach Delay         |       | 59.4     |     |      | 30.6  |     |       | 7.0      |     |      | 7.1      |       |
| Approach LOS           |       | Е        |     |      | С     |     |       | Α        |     |      | Α        |       |
| Queue Length 50th (m)  | 40.3  | 10.3     |     | 8.8  | 4.2   |     | 0.6   | 29.4     |     | 3.1  | 23.3     | 0.0   |
| Queue Length 95th (m)  | 59.2  | 21.6     |     | 17.6 | 14.3  |     | m1.5  | 56.8     |     | 9.3  | 38.2     | 4.9   |
| Internal Link Dist (m) |       | 504.6    |     |      | 210.2 |     |       | 427.0    |     |      | 153.6    |       |
| Turn Bay Length (m)    | 100.0 |          |     | 40.0 |       |     | 100.0 |          |     | 75.0 |          | 175.0 |
| Base Capacity (vph)    | 332   | 450      |     | 280  | 445   |     | 554   | 2289     |     | 335  | 2261     | 1059  |
| Starvation Cap Reductn | 0     | 0        |     | 0    | 0     |     | 0     | 0        |     | 0    | 0        | 0     |
| Spillback Cap Reductn  | 0     | 0        |     | 0    | 0     |     | 0     | 0        |     | 0    | 0        | 0     |
| Storage Cap Reductn    | 0     | 0        |     | 0    | 0     |     | 0     | 0        |     | 0    | 0        | 0     |
| Reduced v/c Ratio      | 0.53  | 0.17     |     | 0.15 | 0.14  |     | 0.02  | 0.43     |     | 0.14 | 0.26     | 0.07  |

Intersection Summary

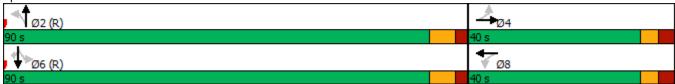
Area Type: Other

Cycle Length: 130 Actuated Cycle Length: 130

Offset: 16 (12%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.77

Intersection Signal Delay: 14.7 Intersection LOS: B
Intersection Capacity Utilization 69.4% ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal

Splits and Phases: 1: Bank Street & Miikana Road/Blais Road



|                         | •     | •     | 1        | <b>†</b> | <b>↓</b>    | 4        |
|-------------------------|-------|-------|----------|----------|-------------|----------|
| Lane Group              | EBL   | EBR   | NBL      | NBT      | SBT         | SBR      |
| Lane Configurations     | 7     | 7     | NDL<br>N |          |             | <u> </u> |
| Traffic Volume (vph)    | 264   | 71    | 118      | 723      | 548         | 61       |
| Future Volume (vph)     | 264   | 71    | 118      | 723      | 548         | 61       |
| Ideal Flow (vphpl)      | 1800  | 1800  | 1800     | 1800     | 1800        | 1800     |
| Storage Length (m)      | 25.0  | 0.0   | 120.0    | 1000     | 1000        | 100.0    |
| Storage Lanes           | 1     | 1     | 120.0    |          |             | 100.0    |
| Taper Length (m)        | 20.0  | -     | 20.0     |          |             |          |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00     | 1.00     | 1.00        | 1.00     |
| Ped Bike Factor         | 1.00  | 1.00  | 1.00     | 1.00     | 1.00        | 0.96     |
| Frt                     |       | 0.850 | 1.00     |          |             | 0.850    |
| Flt Protected           | 0.950 | 0.000 | 0.950    |          |             | 0.000    |
| Satd. Flow (prot)       | 1616  | 1459  | 1558     | 1655     | 1640        | 1172     |
| Flt Permitted           | 0.950 | 1700  | 0.406    | 1000     | 1040        | 1172     |
| Satd. Flow (perm)       | 1616  | 1459  | 663      | 1655     | 1640        | 1129     |
| Right Turn on Red       | 1010  | Yes   | 003      | 1000     | 1040        | Yes      |
|                         |       | 71    |          |          |             | 61       |
| Satd. Flow (RTOR)       | ΕO    | 71    |          | 00       | 00          | 01       |
| Link Speed (k/h)        | 50    |       |          | 80       | 80<br>451.0 |          |
| Link Distance (m)       | 528.6 |       |          | 273.1    | 451.0       |          |
| Travel Time (s)         | 38.1  |       |          | 12.3     | 20.3        | 4        |
| Confl. Peds. (#/hr)     | 4.00  | 4.00  | 4        | 4.00     | 4.00        | 4        |
| Peak Hour Factor        | 1.00  | 1.00  | 1.00     | 1.00     | 1.00        | 1.00     |
| Heavy Vehicles (%)      | 7%    | 6%    | 11%      | 10%      | 11%         | 32%      |
| Adj. Flow (vph)         | 264   | 71    | 118      | 723      | 548         | 61       |
| Shared Lane Traffic (%) |       |       |          |          |             |          |
| Lane Group Flow (vph)   | 264   | 71    | 118      | 723      | 548         | 61       |
| Turn Type               | Perm  | Perm  | Perm     | NA       | NA          | Perm     |
| Protected Phases        |       |       |          | 2        | 6           |          |
| Permitted Phases        | 4     | 4     | 2        |          |             | 6        |
| Detector Phase          | 4     | 4     | 2        | 2        | 6           | 6        |
| Switch Phase            |       |       |          |          |             |          |
| Minimum Initial (s)     | 10.0  | 10.0  | 10.0     | 10.0     | 10.0        | 10.0     |
| Minimum Split (s)       | 22.6  | 22.6  | 21.7     | 21.7     | 21.7        | 21.7     |
| Total Split (s)         | 40.0  | 40.0  | 90.0     | 90.0     | 90.0        | 90.0     |
| Total Split (%)         | 30.8% | 30.8% | 69.2%    | 69.2%    | 69.2%       | 69.2%    |
| Maximum Green (s)       | 33.4  | 33.4  | 83.3     | 83.3     | 83.3        | 83.3     |
| Yellow Time (s)         | 3.3   | 3.3   | 4.6      | 4.6      | 4.6         | 4.6      |
| All-Red Time (s)        | 3.3   | 3.3   | 2.1      | 2.1      | 2.1         | 2.1      |
| Lost Time Adjust (s)    | 0.0   | 0.0   | 0.0      | 0.0      | 0.0         | 0.0      |
| Total Lost Time (s)     | 6.6   | 6.6   | 6.7      | 6.7      | 6.7         | 6.7      |
| Lead/Lag                | 0.0   | 0.0   | 0.7      | 0.7      | 0.7         | 0.1      |
| Lead-Lag Optimize?      |       |       |          |          |             |          |
|                         | 3.0   | 3.0   | 3.0      | 3.0      | 3.0         | 3.0      |
| Vehicle Extension (s)   |       |       |          |          |             |          |
| Recall Mode             | None  | None  | C-Max    | C-Max    | C-Max       | C-Max    |
| Walk Time (s)           | 7.0   | 7.0   | 7.0      | 7.0      | 7.0         | 7.0      |
| Flash Dont Walk (s)     | 9.0   | 9.0   | 8.0      | 8.0      | 8.0         | 8.0      |
| Pedestrian Calls (#/hr) | 0     | 0     | 0        | 0        | 0           | 0        |
| Act Effct Green (s)     | 26.1  | 26.1  | 90.6     | 90.6     | 90.6        | 90.6     |
| Actuated g/C Ratio      | 0.20  | 0.20  | 0.70     | 0.70     | 0.70        | 0.70     |
| v/c Ratio               | 0.81  | 0.20  | 0.26     | 0.63     | 0.48        | 0.08     |

|                              | ٦            | •        | 4        | <b>†</b>   | <b>↓</b>   | 4          |     |
|------------------------------|--------------|----------|----------|------------|------------|------------|-----|
| Lane Group                   | EBL          | EBR      | NBL      | NBT        | SBT        | SBR        |     |
| Control Delay                | 68.8         | 9.9      | 10.1     | 14.7       | 10.9       | 1.4        |     |
| Queue Delay                  | 0.0          | 0.0      | 0.0      | 0.0        | 0.0        | 0.0        |     |
| Total Delay                  | 68.8         | 9.9      | 10.1     | 14.7       | 10.9       | 1.4        |     |
| LOS                          | Е            | Α        | В        | В          | В          | Α          |     |
| Approach Delay               | 56.3         |          |          | 14.1       | 9.9        |            |     |
| Approach LOS                 | Е            |          |          | В          | Α          |            |     |
| Queue Length 50th (m)        | 59.8         | 0.0      | 9.4      | 84.4       | 72.1       | 0.6        |     |
| Queue Length 95th (m)        | 83.1         | 10.8     | 21.2     | 141.9      | 113.0      | 0.6        |     |
| Internal Link Dist (m)       | 504.6        |          |          | 249.1      | 427.0      |            |     |
| Turn Bay Length (m)          | 25.0         |          | 120.0    |            |            | 100.0      |     |
| Base Capacity (vph)          | 415          | 427      | 462      | 1153       | 1143       | 805        |     |
| Starvation Cap Reductn       | 0            | 0        | 0        | 0          | 0          | 0          |     |
| Spillback Cap Reductn        | 0            | 0        | 0        | 0          | 0          | 0          |     |
| Storage Cap Reductn          | 0            | 0        | 0        | 0          | 0          | 0          |     |
| Reduced v/c Ratio            | 0.64         | 0.17     | 0.26     | 0.63       | 0.48       | 0.08       |     |
| Intersection Summary         |              |          |          |            |            |            |     |
| Area Type:                   | Other        |          |          |            |            |            |     |
| Cycle Length: 130            |              |          |          |            |            |            |     |
| Actuated Cycle Length: 13    |              |          |          |            |            |            |     |
| Offset: 40 (31%), Referen    | ced to phase | 2:NBTL a | and 6:SB | T, Start o | f Green    |            |     |
| Natural Cycle: 60            |              |          |          |            |            |            |     |
| Control Type: Actuated-Co    | oordinated   |          |          |            |            |            |     |
| Maximum v/c Ratio: 0.81      |              |          |          |            |            |            |     |
| Intersection Signal Delay:   |              |          |          |            | tersection |            |     |
| Intersection Capacity Utiliz | zation 70.9% |          |          | IC         | CU Level   | of Service | ) C |
| Analysis Period (min) 15     |              |          |          |            |            |            |     |
| 0 - 171 1 D1 0 D             |              |          |          |            |            |            |     |

Splits and Phases: 2: Bank Street & Dun Skipper Drive



| ntersection              |      |
|--------------------------|------|
| ntersection Delay, s/veh | 11.8 |
| ntersection LOS          | В    |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | ₩    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 28   | 168  | 37   | 22   | 166  | 105  | 58   | 78   | 35   | 124  | 52   | 53   |
| Future Vol, veh/h          | 28   | 168  | 37   | 22   | 166  | 105  | 58   | 78   | 35   | 124  | 52   | 53   |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 0    | 1    | 8    | 5    | 1    | 7    | 0    | 2    | 6    | 2    | 0    | 0    |
| Mvmt Flow                  | 28   | 168  | 37   | 22   | 166  | 105  | 58   | 78   | 35   | 124  | 52   | 53   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 11.5 |      |      | 12.4 |      |      | 10.9 |      |      | 11.9 |      |      |
| HCM LOS                    | В    |      |      | В    |      |      | В    |      |      | В    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 34%   | 12%   | 8%    | 54%   |  |
| Vol Thru, %            | 46%   | 72%   | 57%   | 23%   |  |
| Vol Right, %           | 20%   | 16%   | 36%   | 23%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 171   | 233   | 293   | 229   |  |
| LT Vol                 | 58    | 28    | 22    | 124   |  |
| Through Vol            | 78    | 168   | 166   | 52    |  |
| RT Vol                 | 35    | 37    | 105   | 53    |  |
| Lane Flow Rate         | 171   | 233   | 293   | 229   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.27  | 0.353 | 0.433 | 0.359 |  |
| Departure Headway (Hd) | 5.692 | 5.459 | 5.322 | 5.639 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 628   | 657   | 674   | 634   |  |
| Service Time           | 3.754 | 3.513 | 3.373 | 3.696 |  |
| HCM Lane V/C Ratio     | 0.272 | 0.355 | 0.435 | 0.361 |  |
| HCM Control Delay      | 10.9  | 11.5  | 12.4  | 11.9  |  |
| HCM Lane LOS           | В     | В     | В     | В     |  |
| HCM 95th-tile Q        | 1.1   | 1.6   | 2.2   | 1.6   |  |

| Intersection              |     |
|---------------------------|-----|
| Intersection Delay, s/veh | 8.2 |
| Intersection LOS          | Α   |

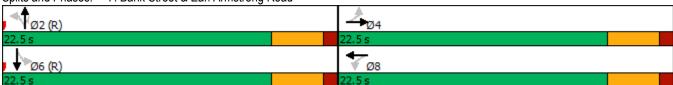
| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 18   | 42   | 9    | 23   | 20   | 27   | 3    | 56   | 62   | 39   | 38   | 12   |
| Future Vol, veh/h          | 18   | 42   | 9    | 23   | 20   | 27   | 3    | 56   | 62   | 39   | 38   | 12   |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 8    | 5    | 56   | 6    | 7    | 0    | 33   | 5    | 0    | 22   | 11   | 50   |
| Mvmt Flow                  | 18   | 42   | 9    | 23   | 20   | 27   | 3    | 56   | 62   | 39   | 38   | 12   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 8.1  |      |      | 7.9  |      |      | 8.4  |      |      | 8.4  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |
|                            |      |      |      |      |      |      |      |      |      |      |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 2%    | 26%   | 33%   | 44%   |  |
| Vol Thru, %            | 46%   | 61%   | 29%   | 43%   |  |
| Vol Right, %           | 51%   | 13%   | 39%   | 13%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 121   | 69    | 70    | 89    |  |
| LT Vol                 | 3     | 18    | 23    | 39    |  |
| Through Vol            | 56    | 42    | 20    | 38    |  |
| RT Vol                 | 62    | 9     | 27    | 12    |  |
| Lane Flow Rate         | 121   | 69    | 70    | 89    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.154 | 0.088 | 0.086 | 0.117 |  |
| Departure Headway (Hd) | 4.588 | 4.596 | 4.424 | 4.744 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 784   | 782   | 812   | 757   |  |
| Service Time           | 2.603 | 2.612 | 2.44  | 2.759 |  |
| HCM Lane V/C Ratio     | 0.154 | 0.088 | 0.086 | 0.118 |  |
| HCM Control Delay      | 8.4   | 8.1   | 7.9   | 8.4   |  |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.5   | 0.3   | 0.3   | 0.4   |  |

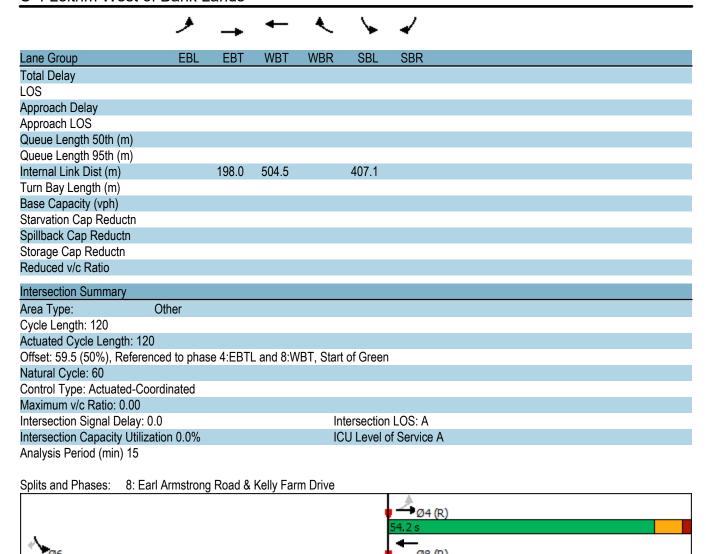
| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 17   | 57   | 7    | 37   | 39   | 26   | 3    | 23   | 44   | 32   | 19   | 2    |
| Future Vol, veh/h          | 17   | 57   | 7    | 37   | 39   | 26   | 3    | 23   | 44   | 32   | 19   | 2    |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 0    | 9    | 0    | 20   | 10   | 8    | 0    | 5    | 19   | 0    | 12   | 0    |
| Mvmt Flow                  | 17   | 57   | 7    | 37   | 39   | 26   | 3    | 23   | 44   | 32   | 19   | 2    |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 7.7  |      |      | 8.2  |      |      | 7.4  |      |      | 7.8  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 4%    | 21%   | 36%   | 60%   |  |
| Vol Thru, %            | 33%   | 70%   | 38%   | 36%   |  |
| Vol Right, %           | 63%   | 9%    | 25%   | 4%    |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 70    | 81    | 102   | 53    |  |
| LT Vol                 | 3     | 17    | 37    | 32    |  |
| Through Vol            | 23    | 57    | 39    | 19    |  |
| RT Vol                 | 44    | 7     | 26    | 2     |  |
| Lane Flow Rate         | 70    | 81    | 102   | 53    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.078 | 0.094 | 0.126 | 0.066 |  |
| Departure Headway (Hd) | 4.013 | 4.182 | 4.435 | 4.493 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 897   | 842   | 798   | 802   |  |
| Service Time           | 2.015 | 2.282 | 2.524 | 2.495 |  |
| HCM Lane V/C Ratio     | 0.078 | 0.096 | 0.128 | 0.066 |  |
| HCM Control Delay      | 7.4   | 7.7   | 8.2   | 7.8   |  |
| HCM Lane LOS           | А     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.3   | 0.3   | 0.4   | 0.2   |  |

| Intersection           |        |      |         |          |          |      |
|------------------------|--------|------|---------|----------|----------|------|
| Int Delay, s/veh       | 0      |      |         |          |          |      |
| Movement               | EBL    | EBR  | NBL     | NBT      | SBT      | SBR  |
|                        | ₩.     | LDIX | NDL     |          |          | ODIN |
| Lane Configurations    |        | 0    | ٥       | <b>4</b> | <b>}</b> | ٥    |
| Traffic Vol, veh/h     | 0      | 0    | 0       | 842      | 599      | 0    |
| Future Vol, veh/h      | 0      | 0    | 0       | 842      | 599      | 0    |
| Conflicting Peds, #/hr | 0      | 0    | 0       | _ 0      | _ 0      | _ 0  |
| Sign Control           | Stop   | Stop | Free    | Free     | Free     | Free |
| RT Channelized         | -      | None | -       | None     | -        | None |
| Storage Length         | 0      | -    | -       | -        | -        | -    |
| Veh in Median Storage  | e, # 0 | -    | -       | 0        | 0        | -    |
| Grade, %               | 0      | -    | -       | 0        | 0        | -    |
| Peak Hour Factor       | 100    | 100  | 100     | 100      | 100      | 100  |
| Heavy Vehicles, %      | 0      | 0    | 0       | 10       | 11       | 0    |
| Mvmt Flow              | 0      | 0    | 0       | 842      | 599      | 0    |
|                        | Ū      | •    | •       | 012      | 000      | •    |
|                        |        |      |         |          |          |      |
| Major/Minor            | Minor2 | N    | //ajor1 | N        | /lajor2  |      |
| Conflicting Flow All   | 1441   | 599  | 599     | 0        | -        | 0    |
| Stage 1                | 599    | -    | -       | -        | -        | -    |
| Stage 2                | 842    | _    | _       | _        | _        | _    |
| Critical Hdwy          | 6.4    | 6.2  | 4.1     | _        | _        | _    |
| Critical Hdwy Stg 1    | 5.4    | -    | 7.1     | _        | _        | _    |
| Critical Hdwy Stg 2    | 5.4    | _    | _       |          | _        | _    |
|                        | 3.5    |      | 2.2     |          |          |      |
| Follow-up Hdwy         |        | 3.3  |         | -        | -        | -    |
| Pot Cap-1 Maneuver     | 148    | 505  | 988     | -        | -        | -    |
| Stage 1                | 553    | -    | -       | -        | -        | -    |
| Stage 2                | 426    | -    | -       | -        | -        | -    |
| Platoon blocked, %     |        |      |         | -        | -        | -    |
| Mov Cap-1 Maneuver     | 148    | 505  | 988     | -        | -        | -    |
| Mov Cap-2 Maneuver     | 148    | -    | -       | -        | -        | -    |
| Stage 1                | 553    | -    | -       | -        | -        | -    |
| Stage 2                | 426    | _    | _       | _        | _        | _    |
| Jugo 2                 | ,20    |      |         |          |          |      |
|                        |        |      |         |          |          |      |
| Approach               | EB     |      | NB      |          | SB       |      |
| HCM Control Delay, s   | 0      |      | 0       |          | 0        |      |
| HCM LOS                | A      |      |         |          |          |      |
|                        |        |      |         |          |          |      |
| Minor Lane/Major Mvn   | nt     | NBL  | NRT     | EBLn1    | SBT      | SBR  |
|                        |        |      | 11011   | LULIII   | 051      | אנטט |
| Capacity (veh/h)       |        | 988  | -       | -        | -        | -    |
| HCM Lane V/C Ratio     |        | -    | -       | -        | -        | -    |
| HCM Control Delay (s)  |        | 0    | -       | 0        | -        | -    |
| HCM Lane LOS           |        | Α    | -       | Α        | -        | -    |
| HCM 95th %tile Q(veh   | )      | 0    | -       | -        | -        | -    |
|                        |        |      |         |          |          |      |


|                         | ۶     | <b>→</b>   | •    | •     | +        | •    | •     | <b>†</b> | ~     | <b>/</b> | ţ          | 4    |
|-------------------------|-------|------------|------|-------|----------|------|-------|----------|-------|----------|------------|------|
| Lane Group              | EBL   | EBT        | EBR  | WBL   | WBT      | WBR  | NBL   | NBT      | NBR   | SBL      | SBT        | SBR  |
| Lane Configurations     | ሻ     | <b>↑</b> ↑ |      | ሻ     | <b>^</b> |      | ሻ     | <b>1</b> | 7     | ሻ        | <b>↑</b> ₽ |      |
| Traffic Volume (vph)    | 0     | 0          | 0    | 0     | 0        | 0    | 0     | 842      | 0     | 0        | 599        | 0    |
| Future Volume (vph)     | 0     | 0          | 0    | 0     | 0        | 0    | 0     | 842      | 0     | 0        | 599        | 0    |
| Ideal Flow (vphpl)      | 1800  | 1800       | 1800 | 1800  | 1800     | 1800 | 1800  | 1800     | 1800  | 1800     | 1800       | 1800 |
| Storage Length (m)      | 25.0  |            | 0.0  | 50.0  |          | 0.0  | 20.0  |          | 15.0  | 15.0     | 1000       | 0.0  |
| Storage Lanes           | 1     |            | 0    | 1     |          | 0    | 1     |          | 1     | 1        |            | 0    |
| Taper Length (m)        | 20.0  |            | •    | 20.0  |          | •    | 20.0  |          | •     | 20.0     |            | •    |
| Lane Util. Factor       | 1.00  | 0.95       | 0.95 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00     | 0.95       | 0.95 |
| Frt                     | 1.00  | 0.00       | 0.00 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00     | 0.00       | 0.00 |
| Flt Protected           |       |            |      |       |          |      |       |          |       |          |            |      |
| Satd. Flow (prot)       | 1820  | 3232       | 0    | 1379  | 1468     | 0    | 1784  | 1750     | 1517  | 1569     | 3144       | 0    |
| Flt Permitted           | 1020  | 0202       |      | 1073  | 1400     | - U  | 1704  | 1700     | 1017  | 1003     | 0177       | U    |
| Satd. Flow (perm)       | 1820  | 3232       | 0    | 1379  | 1468     | 0    | 1784  | 1750     | 1517  | 1569     | 3144       | 0    |
| Right Turn on Red       | 1020  | 0202       | Yes  | 1073  | 1400     | Yes  | 1704  | 1750     | Yes   | 1000     | 0177       | Yes  |
| Satd. Flow (RTOR)       |       |            | 103  |       |          | 103  |       |          | 103   |          |            | 103  |
| Link Speed (k/h)        |       | 80         |      |       | 80       |      |       | 80       |       |          | 80         |      |
| Link Distance (m)       |       | 528.5      |      |       | 292.7    |      |       | 203.7    |       |          | 158.2      |      |
| Travel Time (s)         |       | 23.8       |      |       | 13.2     |      |       | 9.2      |       |          | 7.1        |      |
| Peak Hour Factor        | 1.00  | 1.00       | 1.00 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00     | 1.00       | 1.00 |
|                         | 0%    |            | 5%   | 32%   | 24%      | 34%  | 2%    | 4%       | 20%   | 16%      | 10%        |      |
| Heavy Vehicles (%)      |       | 7%         |      |       |          |      |       |          |       |          |            | 12%  |
| Adj. Flow (vph)         | 0     | 0          | 0    | 0     | 0        | 0    | 0     | 842      | 0     | 0        | 599        | 0    |
| Shared Lane Traffic (%) | 0     | 0          | ^    | 0     | ^        | 0    | ^     | 0.40     | ^     | ^        | F00        | 0    |
| Lane Group Flow (vph)   | 0     | 0          | 0    | 0     | 0        | 0    | 0     | 842      | 0     | 0        | 599        | 0    |
| Turn Type               | Perm  | 4          |      | Perm  |          |      | Perm  | NA       | Perm  | Perm     | NA         |      |
| Protected Phases        | 4     | 4          |      | •     | 8        |      | •     | 2        | ^     | ^        | 6          |      |
| Permitted Phases        | 4     |            |      | 8     |          |      | 2     | _        | 2     | 6        |            |      |
| Detector Phase          | 4     | 4          |      | 8     | 8        |      | 2     | 2        | 2     | 6        | 6          |      |
| Switch Phase            | 40.0  | 40.0       |      |       | 40.0     |      | 40.0  | 40.0     |       | 40.0     | 40.0       |      |
| Minimum Initial (s)     | 10.0  | 10.0       |      | 10.0  | 10.0     |      | 10.0  | 10.0     | 10.0  | 10.0     | 10.0       |      |
| Minimum Split (s)       | 22.5  | 22.5       |      | 22.5  | 22.5     |      | 22.5  | 22.5     | 22.5  | 22.5     | 22.5       |      |
| Total Split (s)         | 22.5  | 22.5       |      | 22.5  | 22.5     |      | 22.5  | 22.5     | 22.5  | 22.5     | 22.5       |      |
| Total Split (%)         | 50.0% | 50.0%      |      | 50.0% | 50.0%    |      | 50.0% | 50.0%    | 50.0% | 50.0%    | 50.0%      |      |
| Maximum Green (s)       | 18.0  | 18.0       |      | 18.0  | 18.0     |      | 18.0  | 18.0     | 18.0  | 18.0     | 18.0       |      |
| Yellow Time (s)         | 3.5   | 3.5        |      | 3.5   | 3.5      |      | 3.5   | 3.5      | 3.5   | 3.5      | 3.5        |      |
| All-Red Time (s)        | 1.0   | 1.0        |      | 1.0   | 1.0      |      | 1.0   | 1.0      | 1.0   | 1.0      | 1.0        |      |
| Lost Time Adjust (s)    | 0.0   | 0.0        |      | 0.0   | 0.0      |      | 0.0   | 0.0      | 0.0   | 0.0      | 0.0        |      |
| Total Lost Time (s)     | 4.5   | 4.5        |      | 4.5   | 4.5      |      | 4.5   | 4.5      | 4.5   | 4.5      | 4.5        |      |
| Lead/Lag                |       |            |      |       |          |      |       |          |       |          |            |      |
| Lead-Lag Optimize?      |       |            |      |       |          |      |       |          |       |          |            |      |
| Vehicle Extension (s)   | 3.0   | 3.0        |      | 3.0   | 3.0      |      | 3.0   | 3.0      | 3.0   | 3.0      | 3.0        |      |
| Recall Mode             | None  | None       |      | None  | None     |      | C-Max | C-Max    | C-Max | C-Max    | C-Max      |      |
| Walk Time (s)           | 7.0   | 7.0        |      | 7.0   | 7.0      |      | 7.0   | 7.0      | 7.0   | 7.0      | 7.0        |      |
| Flash Dont Walk (s)     | 11.0  | 11.0       |      | 11.0  | 11.0     |      | 11.0  | 11.0     | 11.0  | 11.0     | 11.0       |      |
| Pedestrian Calls (#/hr) | 0     | 0          |      | 0     | 0        |      | 0     | 0        | 0     | 0        | 0          |      |
| Act Effct Green (s)     |       |            |      |       |          |      |       | 45.0     |       |          | 45.0       |      |
| Actuated g/C Ratio      |       |            |      |       |          |      |       | 1.00     |       |          | 1.00       |      |
| v/c Ratio               |       |            |      |       |          |      |       | 0.48     |       |          | 0.19       |      |
| Control Delay           |       |            |      |       |          |      |       | 1.0      |       |          | 0.1        |      |
| Queue Delay             |       |            |      |       |          |      |       | 0.0      |       |          | 0.0        |      |
| Queue Delay             |       |            |      |       |          |      |       | 0.0      |       |          | 0.0        |      |

Lanes, Volumes, Timings EM


Synchro 11 Report October 2025

|                               | •           | <b>→</b> | *      | •          | +          | •          | •   | <b>†</b> | <i>&gt;</i> | <b>\</b> | <b>+</b> | 4   |
|-------------------------------|-------------|----------|--------|------------|------------|------------|-----|----------|-------------|----------|----------|-----|
| Lane Group                    | EBL         | EBT      | EBR    | WBL        | WBT        | WBR        | NBL | NBT      | NBR         | SBL      | SBT      | SBR |
| Total Delay                   |             |          |        |            |            |            |     | 1.0      |             |          | 0.1      |     |
| LOS                           |             |          |        |            |            |            |     | Α        |             |          | Α        |     |
| Approach Delay                |             |          |        |            |            |            |     | 1.0      |             |          | 0.1      |     |
| Approach LOS                  |             |          |        |            |            |            |     | Α        |             |          | Α        |     |
| Queue Length 50th (m)         |             |          |        |            |            |            |     | 0.0      |             |          | 0.0      |     |
| Queue Length 95th (m)         |             |          |        |            |            |            |     | 0.0      |             |          | 0.0      |     |
| Internal Link Dist (m)        |             | 504.5    |        |            | 268.7      |            |     | 179.7    |             |          | 134.2    |     |
| Turn Bay Length (m)           |             |          |        |            |            |            |     |          |             |          |          |     |
| Base Capacity (vph)           |             |          |        |            |            |            |     | 1750     |             |          | 3144     |     |
| Starvation Cap Reductn        |             |          |        |            |            |            |     | 0        |             |          | 0        |     |
| Spillback Cap Reductn         |             |          |        |            |            |            |     | 0        |             |          | 0        |     |
| Storage Cap Reductn           |             |          |        |            |            |            |     | 0        |             |          | 0        |     |
| Reduced v/c Ratio             |             |          |        |            |            |            |     | 0.48     |             |          | 0.19     |     |
| Intersection Summary          |             |          |        |            |            |            |     |          |             |          |          |     |
| Area Type:                    | Other       |          |        |            |            |            |     |          |             |          |          |     |
| Cycle Length: 45              |             |          |        |            |            |            |     |          |             |          |          |     |
| Actuated Cycle Length: 45     |             |          |        |            |            |            |     |          |             |          |          |     |
| Offset: 0 (0%), Referenced    | to phase 2: | NBTL and | 6:SBTL | , Start of | Green      |            |     |          |             |          |          |     |
| Natural Cycle: 60             |             |          |        |            |            |            |     |          |             |          |          |     |
| Control Type: Actuated-Coo    | ordinated   |          |        |            |            |            |     |          |             |          |          |     |
| Maximum v/c Ratio: 0.48       |             |          |        |            |            |            |     |          |             |          |          |     |
| Intersection Signal Delay: 0  |             |          |        |            | tersection |            |     |          |             |          |          |     |
| Intersection Capacity Utiliza | tion 50.5%  |          |        | IC         | CU Level   | of Service | Α   |          |             |          |          |     |
| Analysis Period (min) 15      |             |          |        |            |            |            |     |          |             |          |          |     |

Splits and Phases: 7: Bank Street & Earl Armstrong Road



|                         | •        | <b>→</b> | ←        | •    | <b>&gt;</b> | 4       |
|-------------------------|----------|----------|----------|------|-------------|---------|
| Lane Group              | EBL      | EBT      | WBT      | WBR  | SBL         | SBR     |
| Lane Configurations     | ሻ        | <b>^</b> | <b>†</b> |      | ሻ           | 7       |
| Traffic Volume (vph)    | 0        | 0        | 0        | 0    | 0           | 0       |
| Future Volume (vph)     | 0        | 0        | 0        | 0    | 0           | 0       |
| Ideal Flow (vphpl)      | 1800     | 1800     | 1800     | 1800 | 1800        | 1800    |
| Storage Length (m)      | 60.0     | 1000     | 1000     | 0.0  | 40.0        | 0.0     |
| Storage Lanes           | 1        |          |          | 0.0  | 1           | 1       |
| Taper Length (m)        | 20.0     |          |          | U    | 20.0        |         |
| Lane Util. Factor       | 1.00     | 0.95     | 0.95     | 0.95 | 1.00        | 1.00    |
| Frt                     | 1.00     | 0.55     | 0.55     | 0.55 | 1.00        | 1.00    |
| Flt Protected           |          |          |          |      |             |         |
| Satd. Flow (prot)       | 1625     | 3262     | 3007     | 0    | 1596        | 1596    |
| Flt Permitted           | 1023     | 3202     | 3007     | U    | 1090        | 1590    |
|                         | 1605     | 2000     | 2007     | ^    | 1500        | 1500    |
| Satd. Flow (perm)       | 1625     | 3262     | 3007     | 0    | 1596        | 1596    |
| Right Turn on Red       |          |          |          | Yes  |             | Yes     |
| Satd. Flow (RTOR)       |          |          |          |      |             |         |
| Link Speed (k/h)        |          | 80       | 80       |      | 40          |         |
| Link Distance (m)       |          | 222.0    | 528.5    |      | 431.1       |         |
| Travel Time (s)         |          | 10.0     | 23.8     |      | 38.8        |         |
| Peak Hour Factor        | 1.00     | 1.00     | 1.00     | 1.00 | 1.00        | 1.00    |
| Heavy Vehicles (%)      | 12%      | 6%       | 15%      | 12%  | 14%         | 14%     |
| Adj. Flow (vph)         | 0        | 0        | 0        | 0    | 0           | 0       |
| Shared Lane Traffic (%) |          |          |          |      |             |         |
| Lane Group Flow (vph)   | 0        | 0        | 0        | 0    | 0           | 0       |
| Turn Type               | Perm     |          |          |      | Prot        | Perm    |
| Protected Phases        | . 🕠      | 4        | 8        |      | 6           | . 91111 |
| Permitted Phases        | 4        |          |          |      |             | 6       |
| Detector Phase          | 4        | 4        | 8        |      | 6           | 6       |
| Switch Phase            | 7        |          | <u> </u> |      | U           | U       |
| Minimum Initial (s)     | 10.0     | 10.0     | 10.0     |      | 10.0        | 10.0    |
|                         | 24.8     | 24.8     | 24.8     |      | 33.8        | 33.8    |
| Minimum Split (s)       |          |          |          |      |             |         |
| Total Split (s)         | 54.2     | 54.2     | 54.2     |      | 65.8        | 65.8    |
| Total Split (%)         | 45.2%    | 45.2%    | 45.2%    |      | 54.8%       | 54.8%   |
| Maximum Green (s)       | 47.4     | 47.4     | 47.4     |      | 59.0        | 59.0    |
| Yellow Time (s)         | 5.0      | 5.0      | 5.0      |      | 3.2         | 3.2     |
| All-Red Time (s)        | 1.8      | 1.8      | 1.8      |      | 3.6         | 3.6     |
| Lost Time Adjust (s)    | 0.0      | 0.0      | 0.0      |      | 0.0         | 0.0     |
| Total Lost Time (s)     | 6.8      | 6.8      | 6.8      |      | 6.8         | 6.8     |
| Lead/Lag                |          |          |          |      |             |         |
| Lead-Lag Optimize?      |          |          |          |      |             |         |
| Vehicle Extension (s)   | 3.0      | 3.0      | 3.0      |      | 3.0         | 3.0     |
| Recall Mode             | C-Max    | C-Max    | C-Max    |      | None        | None    |
| Walk Time (s)           | 7.0      | 7.0      | 7.0      |      | 7.0         | 7.0     |
| Flash Dont Walk (s)     | 11.0     | 11.0     | 11.0     |      | 20.0        | 20.0    |
| Pedestrian Calls (#/hr) | 0        | 0        | 0        |      | 0           | 0       |
| Act Effct Green (s)     | <b>U</b> | - 0      | - 0      |      | - 0         | - 0     |
| Actuated g/C Ratio      |          |          |          |      |             |         |
| v/c Ratio               |          |          |          |      |             |         |
|                         |          |          |          |      |             |         |
| Control Delay           |          |          |          |      |             |         |
| Queue Delay             |          |          |          |      |             |         |



|                         | ۶     | <b>→</b> | •    | •        | <b>←</b>       | •        | •     | †          | <i>&gt;</i> | <b>/</b> | <b>+</b> | 4     |
|-------------------------|-------|----------|------|----------|----------------|----------|-------|------------|-------------|----------|----------|-------|
| Lane Group              | EBL   | EBT      | EBR  | WBL      | WBT            | WBR      | NBL   | NBT        | NBR         | SBL      | SBT      | SBR   |
| Lane Configurations     | ሻ     | ₽        |      | ሻ        | f <sub>a</sub> |          | ች     | <b>↑</b> ↑ |             | *        | <b>^</b> | 7     |
| Traffic Volume (vph)    | 132   | 23       | 43   | 54       | 32             | 62       | 23    | 891        | 45          | 50       | 1160     | 187   |
| Future Volume (vph)     | 132   | 23       | 43   | 54       | 32             | 62       | 23    | 891        | 45          | 50       | 1160     | 187   |
| Ideal Flow (vphpl)      | 1800  | 1800     | 1800 | 1800     | 1800           | 1800     | 1800  | 1800       | 1800        | 1800     | 1800     | 1800  |
| Storage Length (m)      | 100.0 |          | 0.0  | 40.0     |                | 0.0      | 100.0 |            | 0.0         | 75.0     |          | 175.0 |
| Storage Lanes           | 1     |          | 0    | 1        |                | 0        | 1     |            | 0           | 1        |          | 1     |
| Taper Length (m)        | 20.0  |          |      | 20.0     |                |          | 20.0  |            |             | 20.0     |          |       |
| Lane Util. Factor       | 1.00  | 1.00     | 1.00 | 1.00     | 1.00           | 1.00     | 1.00  | 0.95       | 0.95        | 1.00     | 0.95     | 1.00  |
| Ped Bike Factor         |       |          |      |          |                |          | 1.00  |            |             |          |          | 0.98  |
| Frt                     |       | 0.902    |      |          | 0.901          |          |       | 0.993      |             |          |          | 0.850 |
| Flt Protected           | 0.950 |          |      | 0.950    |                |          | 0.950 |            |             | 0.950    |          |       |
| Satd. Flow (prot)       | 1729  | 1405     | 0    | 1530     | 1602           | 0        | 1729  | 3287       | 0           | 1601     | 3325     | 1517  |
| Flt Permitted           | 0.696 |          |      | 0.714    |                |          | 0.219 |            |             | 0.290    |          |       |
| Satd. Flow (perm)       | 1267  | 1405     | 0    | 1150     | 1602           | 0        | 398   | 3287       | 0           | 489      | 3325     | 1481  |
| Right Turn on Red       |       |          | Yes  |          |                | Yes      |       | 0_0.       | Yes         |          |          | Yes   |
| Satd. Flow (RTOR)       |       | 43       |      |          | 62             |          |       | 8          |             |          |          | 187   |
| Link Speed (k/h)        |       | 50       |      |          | 50             |          |       | 50         |             |          | 50       |       |
| Link Distance (m)       |       | 528.6    |      |          | 234.2          |          |       | 451.0      |             |          | 177.6    |       |
| Travel Time (s)         |       | 38.1     |      |          | 16.9           |          |       | 32.5       |             |          | 12.8     |       |
| Confl. Peds. (#/hr)     |       |          |      |          |                |          | 2     | 00         |             |          |          | 2     |
| Peak Hour Factor        | 1.00  | 1.00     | 1.00 | 1.00     | 1.00           | 1.00     | 1.00  | 1.00       | 1.00        | 1.00     | 1.00     | 1.00  |
| Heavy Vehicles (%)      | 0%    | 9%       | 21%  | 13%      | 3%             | 2%       | 0%    | 4%         | 14%         | 8%       | 4%       | 2%    |
| Adj. Flow (vph)         | 132   | 23       | 43   | 54       | 32             | 62       | 23    | 891        | 45          | 50       | 1160     | 187   |
| Shared Lane Traffic (%) |       |          |      | <u> </u> | <u> </u>       | <u> </u> |       |            |             |          |          |       |
| Lane Group Flow (vph)   | 132   | 66       | 0    | 54       | 94             | 0        | 23    | 936        | 0           | 50       | 1160     | 187   |
| Turn Type               | Perm  | NA       |      | Perm     | NA             |          | Perm  | NA         |             | Perm     | NA       | Perm  |
| Protected Phases        |       | 4        |      | . •      | 8              |          | . •   | 2          |             |          | 6        |       |
| Permitted Phases        | 4     |          |      | 8        |                |          | 2     | _          |             | 6        |          | 6     |
| Detector Phase          | 4     | 4        |      | 8        | 8              |          | 2     | 2          |             | 6        | 6        | 6     |
| Switch Phase            |       |          |      |          |                |          | _     | _          |             |          |          |       |
| Minimum Initial (s)     | 10.0  | 10.0     |      | 10.0     | 10.0           |          | 10.0  | 10.0       |             | 10.0     | 10.0     | 10.0  |
| Minimum Split (s)       | 33.8  | 33.8     |      | 33.8     | 33.8           |          | 42.6  | 42.6       |             | 42.6     | 42.6     | 42.6  |
| Total Split (s)         | 35.0  | 35.0     |      | 35.0     | 35.0           |          | 85.0  | 85.0       |             | 85.0     | 85.0     | 85.0  |
| Total Split (%)         | 29.2% | 29.2%    |      | 29.2%    | 29.2%          |          | 70.8% | 70.8%      |             | 70.8%    | 70.8%    | 70.8% |
| Maximum Green (s)       | 28.2  | 28.2     |      | 28.2     | 28.2           |          | 77.4  | 77.4       |             | 77.4     | 77.4     | 77.4  |
| Yellow Time (s)         | 3.6   | 3.6      |      | 3.6      | 3.6            |          | 5.0   | 5.0        |             | 5.0      | 5.0      | 5.0   |
| All-Red Time (s)        | 3.2   | 3.2      |      | 3.2      | 3.2            |          | 2.6   | 2.6        |             | 2.6      | 2.6      | 2.6   |
| Lost Time Adjust (s)    | 0.0   | 0.0      |      | 0.0      | 0.0            |          | 0.0   | 0.0        |             | 0.0      | 0.0      | 0.0   |
| Total Lost Time (s)     | 6.8   | 6.8      |      | 6.8      | 6.8            |          | 7.6   | 7.6        |             | 7.6      | 7.6      | 7.6   |
| Lead/Lag                | 0.0   | 0.0      |      | 0.0      | 0.0            |          | 7.0   | 7.0        |             | 7.0      | 7.0      | 7.0   |
| Lead-Lag Optimize?      |       |          |      |          |                |          |       |            |             |          |          |       |
| Vehicle Extension (s)   | 3.0   | 3.0      |      | 3.0      | 3.0            |          | 3.0   | 3.0        |             | 3.0      | 3.0      | 3.0   |
| Recall Mode             | None  | None     |      | None     | None           |          | C-Max | C-Max      |             | C-Max    | C-Max    | C-Max |
| Walk Time (s)           | 7.0   | 7.0      |      | 7.0      | 7.0            |          | 7.0   | 7.0        |             | 7.0      | 7.0      | 7.0   |
| Flash Dont Walk (s)     | 20.0  | 20.0     |      | 20.0     | 20.0           |          | 28.0  | 28.0       |             | 28.0     | 28.0     | 28.0  |
| Pedestrian Calls (#/hr) | 0     | 0        |      | 0        | 0              |          | 20.0  | 0          |             | 20.0     | 0        | 20.0  |
| Act Effct Green (s)     | 17.8  | 17.8     |      | 17.8     | 17.8           |          | 87.8  | 87.8       |             | 87.8     | 87.8     | 87.8  |
| Actuated g/C Ratio      | 0.15  | 0.15     |      | 0.15     | 0.15           |          | 0.73  | 0.73       |             | 0.73     | 0.73     | 0.73  |
| v/c Ratio               | 0.15  | 0.15     |      | 0.15     | 0.15           |          | 0.73  | 0.73       |             | 0.73     | 0.73     | 0.73  |
| V/C RAIIO               | 0.71  | 0.27     |      | 0.32     | 0.32           |          | 0.00  | 0.59       |             | 0.14     | 0.40     | 0.17  |

Lanes, Volumes, Timings EM

Synchro 11 Report October 2025

|                        | •     | -     | •   | •    | •     | •   | 4     | <b>†</b> | /   | -    | . ↓   | 4     |
|------------------------|-------|-------|-----|------|-------|-----|-------|----------|-----|------|-------|-------|
| Lane Group             | EBL   | EBT   | EBR | WBL  | WBT   | WBR | NBL   | NBT      | NBR | SBL  | SBT   | SBR   |
| Control Delay          | 67.5  | 21.3  |     | 48.5 | 20.3  |     | 4.8   | 4.5      |     | 7.2  | 8.0   | 1.3   |
| Queue Delay            | 0.0   | 0.0   |     | 0.0  | 0.0   |     | 0.0   | 0.0      |     | 0.0  | 0.0   | 0.0   |
| Total Delay            | 67.5  | 21.3  |     | 48.5 | 20.3  |     | 4.8   | 4.5      |     | 7.2  | 8.0   | 1.3   |
| LOS                    | Е     | С     |     | D    | С     |     | Α     | Α        |     | Α    | Α     | Α     |
| Approach Delay         |       | 52.1  |     |      | 30.6  |     |       | 4.5      |     |      | 7.1   |       |
| Approach LOS           |       | D     |     |      | С     |     |       | Α        |     |      | Α     |       |
| Queue Length 50th (m)  | 27.6  | 4.4   |     | 10.6 | 6.1   |     | 0.9   | 22.5     |     | 2.8  | 47.7  | 0.0   |
| Queue Length 95th (m)  | 43.9  | 15.0  |     | 20.6 | 18.6  |     | m1.8  | m30.5    |     | 8.6  | 75.5  | 6.4   |
| Internal Link Dist (m) |       | 504.6 |     |      | 210.2 |     |       | 427.0    |     |      | 153.6 |       |
| Turn Bay Length (m)    | 100.0 |       |     | 40.0 |       |     | 100.0 |          |     | 75.0 |       | 175.0 |
| Base Capacity (vph)    | 297   | 363   |     | 270  | 423   |     | 291   | 2407     |     | 357  | 2433  | 1133  |
| Starvation Cap Reductn | 0     | 0     |     | 0    | 0     |     | 0     | 0        |     | 0    | 0     | 0     |
| Spillback Cap Reductn  | 0     | 0     |     | 0    | 0     |     | 0     | 0        |     | 0    | 0     | 0     |
| Storage Cap Reductn    | 0     | 0     |     | 0    | 0     |     | 0     | 0        |     | 0    | 0     | 0     |
| Reduced v/c Ratio      | 0.44  | 0.18  |     | 0.20 | 0.22  |     | 0.08  | 0.39     |     | 0.14 | 0.48  | 0.17  |

Intersection Summary

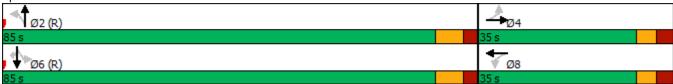
Area Type: Other

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 18 (15%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.71

Intersection Signal Delay: 10.8 Intersection LOS: B
Intersection Capacity Utilization 70.2% ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: Bank Street & Miikana Road/Blais Road



|                         | ٠     | •     | 4     | <b>†</b> | ļ        | 4     |
|-------------------------|-------|-------|-------|----------|----------|-------|
| Lane Group              | EBL   | EBR   | NBL   | NBT      | SBT      | SBR   |
| Lane Configurations     | ች     | 7     | ሻ     | <u> </u> | <u> </u> | 7     |
| Traffic Volume (vph)    | 269   | 90    | 137   | 683      | 1038     | 135   |
| Future Volume (vph)     | 269   | 90    | 137   | 683      | 1038     | 135   |
| Ideal Flow (vphpl)      | 1800  | 1800  | 1800  | 1800     | 1800     | 1800  |
| Storage Length (m)      | 25.0  | 0.0   | 120.0 | 1000     | 1000     | 100.0 |
| Storage Lanes           | 20.0  | 1     | 120.0 |          |          | 100.0 |
| Taper Length (m)        | 20.0  |       | 20.0  |          |          |       |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00  | 1.00     | 1.00     | 1.00  |
| Frt                     | 1.00  | 0.850 | 1.00  | 1.00     | 1.00     | 0.850 |
| FIt Protected           | 0.950 | 0.000 | 0.950 |          |          | 0.000 |
| Satd. Flow (prot)       | 1601  | 1369  | 1679  | 1701     | 1733     | 1532  |
| Flt Permitted           | 0.950 | 1308  | 0.145 | 1701     | 1733     | 1002  |
| Satd. Flow (perm)       | 1601  | 1369  | 256   | 1701     | 1733     | 1532  |
| ., ,                    | 1001  | Yes   | 250   | 1/01     | 1/33     | Yes   |
| Right Turn on Red       |       |       |       |          |          |       |
| Satd. Flow (RTOR)       |       | 90    |       | 00       | 00       | 135   |
| Link Speed (k/h)        | 50    |       |       | 80       | 80       |       |
| Link Distance (m)       | 528.6 |       |       | 273.1    | 451.0    |       |
| Travel Time (s)         | 38.1  |       |       | 12.3     | 20.3     |       |
| Peak Hour Factor        | 1.00  | 1.00  | 1.00  | 1.00     | 1.00     | 1.00  |
| Heavy Vehicles (%)      | 8%    | 13%   | 3%    | 7%       | 5%       | 1%    |
| Adj. Flow (vph)         | 269   | 90    | 137   | 683      | 1038     | 135   |
| Shared Lane Traffic (%) |       |       |       |          |          |       |
| Lane Group Flow (vph)   | 269   | 90    | 137   | 683      | 1038     | 135   |
| Turn Type               | Perm  | Perm  | Perm  | NA       | NA       | Perm  |
| Protected Phases        |       |       |       | 2        | 6        |       |
| Permitted Phases        | 4     | 4     | 2     |          |          | 6     |
| Detector Phase          | 4     | 4     | 2     | 2        | 6        | 6     |
| Switch Phase            |       |       |       |          |          |       |
| Minimum Initial (s)     | 10.0  | 10.0  | 10.0  | 10.0     | 10.0     | 10.0  |
| Minimum Split (s)       | 22.6  | 22.6  | 21.7  | 21.7     | 21.7     | 21.7  |
| Total Split (s)         | 30.0  | 30.0  | 90.0  | 90.0     | 90.0     | 90.0  |
| Total Split (%)         | 25.0% | 25.0% | 75.0% | 75.0%    | 75.0%    | 75.0% |
| Maximum Green (s)       | 23.4  | 23.4  | 83.3  | 83.3     | 83.3     | 83.3  |
| Yellow Time (s)         | 3.3   | 3.3   | 4.6   | 4.6      | 4.6      | 4.6   |
|                         | 3.3   | 3.3   | 2.1   | 2.1      | 2.1      | 2.1   |
| All-Red Time (s)        |       |       |       |          |          |       |
| Lost Time Adjust (s)    | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   |
| Total Lost Time (s)     | 6.6   | 6.6   | 6.7   | 6.7      | 6.7      | 6.7   |
| Lead/Lag                |       |       |       |          |          |       |
| Lead-Lag Optimize?      |       | _     |       |          |          |       |
| Vehicle Extension (s)   | 3.0   | 3.0   | 3.0   | 3.0      | 3.0      | 3.0   |
| Recall Mode             | None  | None  | C-Max | C-Max    | C-Max    | C-Max |
| Walk Time (s)           | 7.0   | 7.0   | 7.0   | 7.0      | 7.0      | 7.0   |
| Flash Dont Walk (s)     | 9.0   | 9.0   | 8.0   | 8.0      | 8.0      | 8.0   |
| Pedestrian Calls (#/hr) | 0     | 0     | 0     | 0        | 0        | 0     |
| Act Effct Green (s)     | 22.5  | 22.5  | 84.2  | 84.2     | 84.2     | 84.2  |
| Actuated g/C Ratio      | 0.19  | 0.19  | 0.70  | 0.70     | 0.70     | 0.70  |
| v/c Ratio               | 0.90  | 0.27  | 0.77  | 0.57     | 0.85     | 0.12  |
| Control Delay           | 79.5  | 10.5  | 43.1  | 11.5     | 17.6     | 0.4   |
| Queue Delay             | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   |
| Queue Delay             | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   |

|                              | •            | •      | 4        | <b>†</b>   | ļ          | 4          |     |
|------------------------------|--------------|--------|----------|------------|------------|------------|-----|
| Lane Group                   | EBL          | EBR    | NBL      | NBT        | SBT        | SBR        |     |
| Total Delay                  | 79.5         | 10.5   | 43.1     | 11.5       | 17.6       | 0.4        |     |
| LOS                          | Е            | В      | D        | В          | В          | Α          |     |
| Approach Delay               | 62.2         |        |          | 16.7       | 15.6       |            |     |
| Approach LOS                 | E            |        |          | В          | В          |            |     |
| Queue Length 50th (m)        | 57.0         | 0.0    | 17.6     | 68.2       | 165.8      | 0.0        |     |
| Queue Length 95th (m)        | #98.8        | 12.6   | #58.3    | 96.0       | 106.2      | 1.2        |     |
| Internal Link Dist (m)       | 504.6        |        |          | 249.1      | 427.0      |            |     |
| Turn Bay Length (m)          | 25.0         |        | 120.0    |            |            | 100.0      |     |
| Base Capacity (vph)          | 312          | 339    | 179      | 1193       | 1216       | 1115       |     |
| Starvation Cap Reductn       | 0            | 0      | 0        | 0          | 0          | 0          |     |
| Spillback Cap Reductn        | 0            | 0      | 0        | 0          | 0          | 0          |     |
| Storage Cap Reductn          | 0            | 0      | 0        | 0          | 0          | 0          |     |
| Reduced v/c Ratio            | 0.86         | 0.27   | 0.77     | 0.57       | 0.85       | 0.12       |     |
| Intersection Summary         |              |        |          |            |            |            |     |
| Area Type:                   | Other        |        |          |            |            |            |     |
| Cycle Length: 120            |              |        |          |            |            |            |     |
| Actuated Cycle Length: 12    | 20           |        |          |            |            |            |     |
| Offset: 18 (15%), Referen    | ced to phase | 2:NBTL | and 6:SB | T, Start o | f Green    |            |     |
| Natural Cycle: 90            |              |        |          |            |            |            |     |
| Control Type: Actuated-Co    | oordinated   |        |          |            |            |            |     |
| Maximum v/c Ratio: 0.90      |              |        |          |            |            |            |     |
| Intersection Signal Delay:   | 23.1         |        |          | In         | tersection | n LOS: C   |     |
| Intersection Capacity Utiliz | zation 98.4% |        |          | IC         | CU Level   | of Service | e F |
| Analysis Period (min) 15     |              |        |          |            |            |            |     |

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Bank Street & Dun Skipper Drive



| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 13   | 264  | 91   | 49   | 182  | 79   | 45   | 37   | 35   | 107  | 55   | 28   |
| Future Vol, veh/h          | 13   | 264  | 91   | 49   | 182  | 79   | 45   | 37   | 35   | 107  | 55   | 28   |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 0    | 2    | 2    | 0    | 0    | 5    | 0    | 0    | 0    | 2    | 15   | 0    |
| Mvmt Flow                  | 13   | 264  | 91   | 49   | 182  | 79   | 45   | 37   | 35   | 107  | 55   | 28   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 13.9 |      |      | 12.6 |      |      | 10.5 |      |      | 11.7 |      |      |
| HCM LOS                    | В    |      |      | В    |      |      | В    |      |      | В    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 38%   | 4%    | 16%   | 56%   |  |
| Vol Thru, %            | 32%   | 72%   | 59%   | 29%   |  |
| Vol Right, %           | 30%   | 25%   | 25%   | 15%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 117   | 368   | 310   | 190   |  |
| LT Vol                 | 45    | 13    | 49    | 107   |  |
| Through Vol            | 37    | 264   | 182   | 55    |  |
| RT Vol                 | 35    | 91    | 79    | 28    |  |
| Lane Flow Rate         | 117   | 368   | 310   | 190   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.193 | 0.528 | 0.453 | 0.314 |  |
| Departure Headway (Hd) | 5.951 | 5.165 | 5.264 | 5.943 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 600   | 696   | 682   | 602   |  |
| Service Time           | 4.021 | 3.212 | 3.316 | 4.005 |  |
| HCM Lane V/C Ratio     | 0.195 | 0.529 | 0.455 | 0.316 |  |
| HCM Control Delay      | 10.5  | 13.9  | 12.6  | 11.7  |  |
| HCM Lane LOS           | В     | В     | В     | В     |  |
| HCM 95th-tile Q        | 0.7   | 3.1   | 2.4   | 1.3   |  |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 13   | 47   | 2    | 39   | 39   | 58   | 2    | 53   | 41   | 31   | 50   | 9    |
| Future Vol, veh/h          | 13   | 47   | 2    | 39   | 39   | 58   | 2    | 53   | 41   | 31   | 50   | 9    |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 11   | 0    | 50   | 0    | 0    | 0    | 50   | 2    | 4    | 12   | 2    | 0    |
| Mvmt Flow                  | 13   | 47   | 2    | 39   | 39   | 58   | 2    | 53   | 41   | 31   | 50   | 9    |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 8.2  |      |      | 8.1  |      |      | 8.9  |      |      | 8.3  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

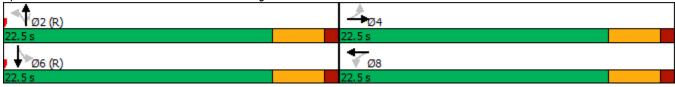
| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 2%    | 21%   | 29%   | 34%   |  |
| Vol Thru, %            | 55%   | 76%   | 29%   | 56%   |  |
| Vol Right, %           | 43%   | 3%    | 43%   | 10%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 96    | 62    | 136   | 90    |  |
| LT Vol                 | 2     | 13    | 39    | 31    |  |
| Through Vol            | 53    | 47    | 39    | 50    |  |
| RT Vol                 | 41    | 2     | 58    | 9     |  |
| Lane Flow Rate         | 96    | 62    | 136   | 90    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.135 | 0.081 | 0.16  | 0.117 |  |
| Departure Headway (Hd) | 5.054 | 4.726 | 4.243 | 4.684 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 710   | 760   | 847   | 766   |  |
| Service Time           | 3.076 | 2.747 | 2.261 | 2.706 |  |
| HCM Lane V/C Ratio     | 0.135 | 0.082 | 0.161 | 0.117 |  |
| HCM Control Delay      | 8.9   | 8.2   | 8.1   | 8.3   |  |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.5   | 0.3   | 0.6   | 0.4   |  |

| Intersection              |     |
|---------------------------|-----|
| Intersection Delay, s/veh | 7.8 |
| Intersection LOS          | Α   |

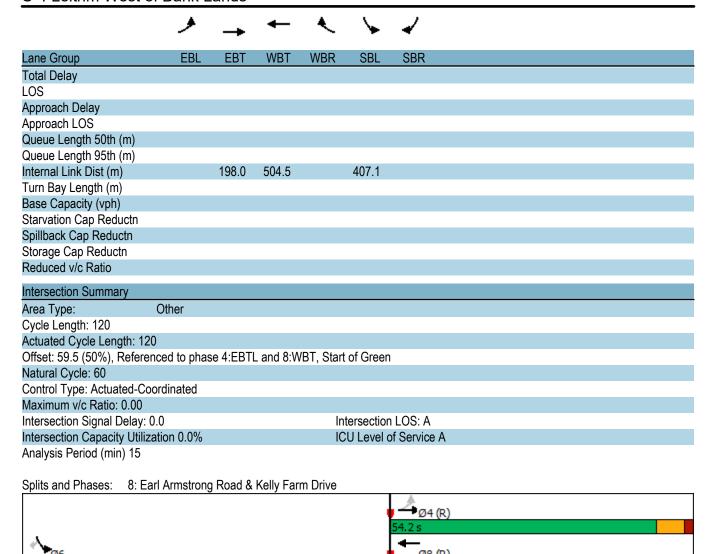
| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 16   | 66   | 0    | 32   | 55   | 43   | 1    | 20   | 40   | 33   | 21   | 16   |
| Future Vol, veh/h          | 16   | 66   | 0    | 32   | 55   | 43   | 1    | 20   | 40   | 33   | 21   | 16   |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 0    | 4    | 0    | 0    | 3    | 0    | 0    | 5    | 15   | 5    | 0    | 0    |
| Mvmt Flow                  | 16   | 66   | 0    | 32   | 55   | 43   | 1    | 20   | 40   | 33   | 21   | 16   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 7.9  |      |      | 7.8  |      |      | 7.4  |      |      | 7.9  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 2%    | 20%   | 25%   | 47%   |  |
| Vol Thru, %            | 33%   | 80%   | 42%   | 30%   |  |
| Vol Right, %           | 66%   | 0%    | 33%   | 23%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 61    | 82    | 130   | 70    |  |
| LT Vol                 | 1     | 16    | 32    | 33    |  |
| Through Vol            | 20    | 66    | 55    | 21    |  |
| RT Vol                 | 40    | 0     | 43    | 16    |  |
| Lane Flow Rate         | 61    | 82    | 130   | 70    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.069 | 0.1   | 0.146 | 0.087 |  |
| Departure Headway (Hd) | 4.055 | 4.373 | 4.142 | 4.473 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 887   | 824   | 871   | 804   |  |
| Service Time           | 2.063 | 2.373 | 2.142 | 2.48  |  |
| HCM Lane V/C Ratio     | 0.069 | 0.1   | 0.149 | 0.087 |  |
| HCM Control Delay      | 7.4   | 7.9   | 7.8   | 7.9   |  |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.2   | 0.3   | 0.5   | 0.3   |  |

| Intersection           |        |      |        |        |         |      |
|------------------------|--------|------|--------|--------|---------|------|
| Int Delay, s/veh       | 0      |      |        |        |         |      |
|                        |        | ED.5 | ND     | Not    | 007     | 000  |
| Movement               | EBL    | EBR  | NBL    | NBT    | SBT     | SBR  |
| Lane Configurations    | ¥      |      |        | र्स    | Դ       |      |
| Traffic Vol, veh/h     | 0      | 0    | 0      | 827    | 1098    | 0    |
| Future Vol, veh/h      | 0      | 0    | 0      | 827    | 1098    | 0    |
| Conflicting Peds, #/hr |        | 0    | 0      | 0      | 0       | 0    |
| Sign Control           | Stop   | Stop | Free   | Free   | Free    | Free |
| RT Channelized         | -      | None | -      | None   | -       | None |
| Storage Length         | 0      | -    | -      | -      | -       | -    |
| Veh in Median Storag   | e,# 0  | -    | -      | 0      | 0       | -    |
| Grade, %               | 0      | -    | -      | 0      | 0       | -    |
| Peak Hour Factor       | 100    | 100  | 100    | 100    | 100     | 100  |
| Heavy Vehicles, %      | 0      | 0    | 0      | 7      | 6       | 0    |
| Mvmt Flow              | 0      | 0    | 0      | 827    | 1098    | 0    |
|                        |        |      |        |        |         |      |
| N.A ' /N.A'            | Min    |      | 1.1.4  |        | 1.1.0   |      |
| Major/Minor            | Minor2 |      | Major1 |        | //ajor2 |      |
| Conflicting Flow All   | 1925   | 1098 | 1098   | 0      | -       | 0    |
| Stage 1                | 1098   | -    | -      | -      | -       | -    |
| Stage 2                | 827    | -    | -      | -      | -       | -    |
| Critical Hdwy          | 6.4    | 6.2  | 4.1    | -      | -       | -    |
| Critical Hdwy Stg 1    | 5.4    | -    | -      | -      | -       | -    |
| Critical Hdwy Stg 2    | 5.4    | -    | -      | -      | -       | -    |
| Follow-up Hdwy         | 3.5    | 3.3  | 2.2    | -      | -       | -    |
| Pot Cap-1 Maneuver     | 74     | 261  | 643    | -      | -       | -    |
| Stage 1                | 322    | -    | -      | -      | -       | -    |
| Stage 2                | 433    | -    | -      | -      | -       | -    |
| Platoon blocked, %     |        |      |        | -      | -       | -    |
| Mov Cap-1 Maneuver     | 74     | 261  | 643    | _      | _       | _    |
| Mov Cap-2 Maneuver     |        |      | -      | _      | _       | _    |
| Stage 1                | 322    | _    | _      | _      | _       | _    |
| Stage 2                | 433    | _    | _      | _      | _       | _    |
| Olago Z                | -100   |      |        |        |         |      |
|                        |        |      |        |        |         |      |
| Approach               | EB     |      | NB     |        | SB      |      |
| HCM Control Delay, s   | 0      |      | 0      |        | 0       |      |
| HCM LOS                | Α      |      |        |        |         |      |
|                        |        |      |        |        |         |      |
| Minor Lane/Major Mv    | mt     | NBL  | NRT    | EBLn1  | SBT     | SBR  |
|                        | iiit.  |      | NDT    | LDLIII | JDT     | אמט  |
| Capacity (veh/h)       |        | 643  | -      | -      | -       | -    |
| HCM Cantrol Dalay      |        | -    | -      | -      | -       | -    |
| HCM Control Delay (s   | 5)     | 0    | -      | 0      | -       | -    |
| HCM Lane LOS           |        | A    | -      | Α      | -       | -    |
| HCM 95th %tile Q(vel   | n)     | 0    | -      | -      | -       | -    |


|                         | ۶       | <b>→</b>   | •    | •       | <b>←</b> | •    | 4       | <b>†</b>  | ~       | <b>&gt;</b> | ţ          | 1    |
|-------------------------|---------|------------|------|---------|----------|------|---------|-----------|---------|-------------|------------|------|
| Lane Group              | EBL     | EBT        | EBR  | WBL     | WBT      | WBR  | NBL     | NBT       | NBR     | SBL         | SBT        | SBR  |
| Lane Configurations     | *       | <b>∱</b> } |      | J.      | ef.      |      | 7       | <b>+</b>  | 7       | ř           | <b>↑</b> ↑ |      |
| Traffic Volume (vph)    | 0       | 0          | 0    | 0       | 0        | 0    | Ö       | 827       | 0       | 0           | 1098       | 0    |
| Future Volume (vph)     | 0       | 0          | 0    | 0       | 0        | 0    | 0       | 827       | 0       | 0           | 1098       | 0    |
| Ideal Flow (vphpl)      | 1800    | 1800       | 1800 | 1800    | 1800     | 1800 | 1800    | 1800      | 1800    | 1800        | 1800       | 1800 |
| Storage Length (m)      | 25.0    |            | 0.0  | 50.0    |          | 0.0  | 20.0    |           | 15.0    | 15.0        |            | 0.0  |
| Storage Lanes           | 1       |            | 0    | 1       |          | 0    | 1       |           | 1       | 1           |            | 0    |
| Taper Length (m)        | 20.0    |            |      | 20.0    |          |      | 20.0    |           |         | 20.0        |            |      |
| Lane Util. Factor       | 1.00    | 0.95       | 0.95 | 1.00    | 1.00     | 1.00 | 1.00    | 1.00      | 1.00    | 1.00        | 0.95       | 0.95 |
| Frt                     |         |            |      |         |          |      |         |           |         |             |            |      |
| Flt Protected           |         |            |      |         |          |      |         |           |         |             |            |      |
| Satd. Flow (prot)       | 1784    | 2981       | 0    | 1670    | 1670     | 0    | 1820    | 1750      | 1389    | 1542        | 3232       | 0    |
| Flt Permitted           |         |            |      |         |          |      |         |           |         |             |            |      |
| Satd. Flow (perm)       | 1784    | 2981       | 0    | 1670    | 1670     | 0    | 1820    | 1750      | 1389    | 1542        | 3232       | 0    |
| Right Turn on Red       |         |            | Yes  |         |          | Yes  |         |           | Yes     |             |            | Yes  |
| Satd. Flow (RTOR)       |         |            |      |         |          |      |         |           |         |             |            | . 00 |
| Link Speed (k/h)        |         | 50         |      |         | 50       |      |         | 50        |         |             | 50         |      |
| Link Distance (m)       |         | 528.5      |      |         | 292.7    |      |         | 203.7     |         |             | 158.2      |      |
| Travel Time (s)         |         | 38.1       |      |         | 21.1     |      |         | 14.7      |         |             | 11.4       |      |
| Peak Hour Factor        | 1.00    | 1.00       | 1.00 | 1.00    | 1.00     | 1.00 | 1.00    | 1.00      | 1.00    | 1.00        | 1.00       | 1.00 |
| Heavy Vehicles (%)      | 2%      | 16%        | 3%   | 9%      | 9%       | 5%   | 0%      | 4%        | 31%     | 18%         | 7%         | 4%   |
| Adj. Flow (vph)         | 0       | 0          | 0    | 0       | 0        | 0    | 0       | 827       | 0       | 0           | 1098       | 0    |
| Shared Lane Traffic (%) |         | U          | U    |         |          |      |         | 021       | U       | - U         | 1000       |      |
| Lane Group Flow (vph)   | 0       | 0          | 0    | 0       | 0        | 0    | 0       | 827       | 0       | 0           | 1098       | 0    |
| Turn Type               | Perm    | U          | U    | Perm    |          |      | Perm    | NA        | Perm    | Perm        | NA         |      |
| Protected Phases        | 1 Cilli | 4          |      | 1 Cilli | 8        |      | 1 Cilli | 2         | 1 Cilli | 1 Cilli     | 6          |      |
| Permitted Phases        | 4       |            |      | 8       |          |      | 2       |           | 2       | 6           |            |      |
| Detector Phase          | 4       | 4          |      | 8       | 8        |      | 2       | 2         | 2       | 6           | 6          |      |
| Switch Phase            | 7       |            |      |         |          |      |         |           |         | U           |            |      |
| Minimum Initial (s)     | 10.0    | 10.0       |      | 10.0    | 10.0     |      | 10.0    | 10.0      | 10.0    | 10.0        | 10.0       |      |
| Minimum Split (s)       | 22.5    | 22.5       |      | 22.5    | 22.5     |      | 22.5    | 22.5      | 22.5    | 22.5        | 22.5       |      |
| Total Split (s)         | 22.5    | 22.5       |      | 22.5    | 22.5     |      | 22.5    | 22.5      | 22.5    | 22.5        | 22.5       |      |
| Total Split (%)         | 50.0%   | 50.0%      |      | 50.0%   | 50.0%    |      | 50.0%   | 50.0%     | 50.0%   | 50.0%       | 50.0%      |      |
| Maximum Green (s)       | 18.0    | 18.0       |      | 18.0    | 18.0     |      | 18.0    | 18.0      | 18.0    | 18.0        | 18.0       |      |
| Yellow Time (s)         | 3.5     | 3.5        |      | 3.5     | 3.5      |      | 3.5     | 3.5       | 3.5     | 3.5         | 3.5        |      |
| All-Red Time (s)        | 1.0     | 1.0        |      | 1.0     | 1.0      |      | 1.0     | 1.0       | 1.0     | 1.0         | 1.0        |      |
| Lost Time Adjust (s)    | 0.0     | 0.0        |      | 0.0     | 0.0      |      | 0.0     | 0.0       | 0.0     | 0.0         | 0.0        |      |
| Total Lost Time (s)     | 4.5     | 4.5        |      | 4.5     | 4.5      |      | 4.5     | 4.5       | 4.5     | 4.5         | 4.5        |      |
| Lead/Lag                | 7.0     | ٦.٥        |      | 7.5     | 4.5      |      | ٦.٥     | 4.5       | 4.5     | 4.5         | 4.5        |      |
| Lead-Lag Optimize?      |         |            |      |         |          |      |         |           |         |             |            |      |
| Vehicle Extension (s)   | 3.0     | 3.0        |      | 3.0     | 3.0      |      | 3.0     | 3.0       | 3.0     | 3.0         | 3.0        |      |
| Recall Mode             | None    | None       |      | None    | None     |      | C-Max   | C-Max     | C-Max   | C-Max       | C-Max      |      |
| Walk Time (s)           | 7.0     | 7.0        |      | 7.0     | 7.0      |      | 7.0     | 7.0       | 7.0     | 7.0         | 7.0        |      |
| Flash Dont Walk (s)     | 11.0    | 11.0       |      | 11.0    | 11.0     |      | 11.0    | 11.0      | 11.0    | 11.0        | 11.0       |      |
|                         |         |            |      |         |          |      |         |           |         |             |            |      |
| Pedestrian Calls (#/hr) | 0       | 0          |      | 0       | 0        |      | 0       | 0<br>45.0 | 0       | 0           | 0<br>45.0  |      |
| Act Effct Green (s)     |         |            |      |         |          |      |         | 45.0      |         |             | 45.0       |      |
| Actuated g/C Ratio      |         |            |      |         |          |      |         | 1.00      |         |             | 1.00       |      |
| v/c Ratio               |         |            |      |         |          |      |         | 0.47      |         |             | 0.34       |      |
| Control Delay           |         |            |      |         |          |      |         | 0.9       |         |             | 0.3        |      |
| Queue Delay             |         |            |      |         |          |      |         | 0.0       |         |             | 0.0        |      |

Lanes, Volumes, Timings EM


Synchro 11 Report October 2025

|                              | ٠           | <b>→</b> | •        | •          | <b>←</b>    | 4          | 4   | <b>†</b> | <b>/</b> | /   | Ţ     | 4   |
|------------------------------|-------------|----------|----------|------------|-------------|------------|-----|----------|----------|-----|-------|-----|
| Lane Group                   | EBL         | EBT      | EBR      | WBL        | WBT         | WBR        | NBL | NBT      | NBR      | SBL | SBT   | SBR |
| Total Delay                  |             |          |          |            |             |            |     | 0.9      |          |     | 0.3   |     |
| LOS                          |             |          |          |            |             |            |     | Α        |          |     | Α     |     |
| Approach Delay               |             |          |          |            |             |            |     | 0.9      |          |     | 0.3   |     |
| Approach LOS                 |             |          |          |            |             |            |     | Α        |          |     | Α     |     |
| Queue Length 50th (m)        |             |          |          |            |             |            |     | 0.0      |          |     | 0.0   |     |
| Queue Length 95th (m)        |             |          |          |            |             |            |     | 0.0      |          |     | 0.0   |     |
| Internal Link Dist (m)       |             | 504.5    |          |            | 268.7       |            |     | 179.7    |          |     | 134.2 |     |
| Turn Bay Length (m)          |             |          |          |            |             |            |     |          |          |     |       |     |
| Base Capacity (vph)          |             |          |          |            |             |            |     | 1750     |          |     | 3232  |     |
| Starvation Cap Reductn       |             |          |          |            |             |            |     | 0        |          |     | 0     |     |
| Spillback Cap Reductn        |             |          |          |            |             |            |     | 0        |          |     | 0     |     |
| Storage Cap Reductn          |             |          |          |            |             |            |     | 0        |          |     | 0     |     |
| Reduced v/c Ratio            |             |          |          |            |             |            |     | 0.47     |          |     | 0.34  |     |
| Intersection Summary         |             |          |          |            |             |            |     |          |          |     |       |     |
| Area Type:                   | Other       |          |          |            |             |            |     |          |          |     |       |     |
| Cycle Length: 45             |             |          |          |            |             |            |     |          |          |     |       |     |
| Actuated Cycle Length: 45    |             |          |          |            |             |            |     |          |          |     |       |     |
| Offset: 0 (0%), Referenced   | to phase 2: | NBTL and | d 6:SBTL | , Start of | Green       |            |     |          |          |     |       |     |
| Natural Cycle: 60            |             |          |          |            |             |            |     |          |          |     |       |     |
| Control Type: Actuated-Co    | ordinated   |          |          |            |             |            |     |          |          |     |       |     |
| Maximum v/c Ratio: 0.47      |             |          |          |            |             |            |     |          |          |     |       |     |
| Intersection Signal Delay: ( |             |          |          |            | ntersection |            |     |          |          |     |       |     |
| Intersection Capacity Utiliz | ation 49.7% |          |          | 10         | CU Level    | of Service | Α   |          |          |     |       |     |
| Analysis Period (min) 15     |             |          |          |            |             |            |     |          |          |     |       |     |

Splits and Phases: 7: Bank Street & Earl Armstrong Road



|                         | ٠     | <b>→</b>   | <b>←</b>   | •    | <b>&gt;</b> | 4        |
|-------------------------|-------|------------|------------|------|-------------|----------|
| Lane Group              | EBL   | EBT        | WBT        | WBR  | SBL         | SBR      |
| Lane Configurations     | 7     | <b>†</b> † | <b>↑</b> ↑ | TOIL | )<br>T      | 7        |
| Traffic Volume (vph)    | 0     | <b>TT</b>  | T ₱        | 0    | 0           | 0        |
| Future Volume (vph)     | 0     | 0          | 0          | 0    | 0           | 0        |
|                         |       |            |            |      |             |          |
| Ideal Flow (vphpl)      | 1800  | 1800       | 1800       | 1800 | 1800        | 1800     |
| Storage Length (m)      | 60.0  |            |            | 0.0  | 40.0        | 0.0      |
| Storage Lanes           | 1     |            |            | 0    | 1           | 1        |
| Taper Length (m)        | 20.0  |            |            |      | 20.0        |          |
| Lane Util. Factor       | 1.00  | 0.95       | 0.95       | 0.95 | 1.00        | 1.00     |
| Frt                     |       |            |            |      |             |          |
| Flt Protected           |       |            |            |      |             |          |
| Satd. Flow (prot)       | 1640  | 3144       | 3232       | 0    | 1820        | 1820     |
| Flt Permitted           |       |            |            |      |             |          |
| Satd. Flow (perm)       | 1640  | 3144       | 3232       | 0    | 1820        | 1820     |
| Right Turn on Red       |       |            |            | Yes  |             | Yes      |
| Satd. Flow (RTOR)       |       |            |            | 100  |             | 100      |
| Link Speed (k/h)        |       | 50         | 50         |      | 50          |          |
|                         |       | 222.0      | 528.5      |      | 431.1       |          |
| Link Distance (m)       |       |            |            |      |             |          |
| Travel Time (s)         | 4.00  | 16.0       | 38.1       | 4.00 | 31.0        | 4.00     |
| Peak Hour Factor        | 1.00  | 1.00       | 1.00       | 1.00 | 1.00        | 1.00     |
| Heavy Vehicles (%)      | 11%   | 10%        | 7%         | 11%  | 0%          | 0%       |
| Adj. Flow (vph)         | 0     | 0          | 0          | 0    | 0           | 0        |
| Shared Lane Traffic (%) |       |            |            |      |             |          |
| Lane Group Flow (vph)   | 0     | 0          | 0          | 0    | 0           | 0        |
| Turn Type               | Perm  |            |            |      | Prot        | Perm     |
| Protected Phases        |       | 4          | 8          |      | 6           |          |
| Permitted Phases        | 4     |            |            |      |             | 6        |
| Detector Phase          | 4     | 4          | 8          |      | 6           | 6        |
| Switch Phase            | -т    |            |            |      | <u> </u>    | <u> </u> |
| Minimum Initial (s)     | 10.0  | 10.0       | 10.0       |      | 10.0        | 10.0     |
|                         |       |            |            |      |             |          |
| Minimum Split (s)       | 24.8  | 24.8       | 24.8       |      | 33.8        | 33.8     |
| Total Split (s)         | 54.2  | 54.2       | 54.2       |      | 65.8        | 65.8     |
| Total Split (%)         | 45.2% | 45.2%      | 45.2%      |      | 54.8%       | 54.8%    |
| Maximum Green (s)       | 47.4  | 47.4       | 47.4       |      | 59.0        | 59.0     |
| Yellow Time (s)         | 5.0   | 5.0        | 5.0        |      | 3.2         | 3.2      |
| All-Red Time (s)        | 1.8   | 1.8        | 1.8        |      | 3.6         | 3.6      |
| Lost Time Adjust (s)    | 0.0   | 0.0        | 0.0        |      | 0.0         | 0.0      |
| Total Lost Time (s)     | 6.8   | 6.8        | 6.8        |      | 6.8         | 6.8      |
| Lead/Lag                | 0.0   | 0.0        | 0.0        |      | 0.0         | 0.0      |
| Lead-Lag Optimize?      |       |            |            |      |             |          |
| <u> </u>                | 2.0   | 2.0        | 2.0        |      | 2.0         | 2.0      |
| Vehicle Extension (s)   | 3.0   | 3.0        | 3.0        |      | 3.0         | 3.0      |
| Recall Mode             | C-Max | C-Max      | C-Max      |      | None        | None     |
| Walk Time (s)           | 7.0   | 7.0        | 7.0        |      | 7.0         | 7.0      |
| Flash Dont Walk (s)     | 11.0  | 11.0       | 11.0       |      | 20.0        | 20.0     |
| Pedestrian Calls (#/hr) | 0     | 0          | 0          |      | 0           | 0        |
| Act Effct Green (s)     |       |            |            |      |             |          |
| Actuated g/C Ratio      |       |            |            |      |             |          |
| v/c Ratio               |       |            |            |      |             |          |
| Control Delay           |       |            |            |      |             |          |
| Queue Delay             |       |            |            |      |             |          |
| Queue Delay             |       |            |            |      |             |          |



## Future (2036) Background Traffic with Earl Armstrong Road Extension

|                         | ۶       | <b>→</b> | •    | •       | <b>←</b>       | •    | •       | †          | <i>&gt;</i> | <b>/</b> | <b>+</b> | 4       |
|-------------------------|---------|----------|------|---------|----------------|------|---------|------------|-------------|----------|----------|---------|
| Lane Group              | EBL     | EBT      | EBR  | WBL     | WBT            | WBR  | NBL     | NBT        | NBR         | SBL      | SBT      | SBR     |
| Lane Configurations     | ች       | <b>f</b> |      | ሻ       | f <sub>a</sub> |      | ሻ       | <b>↑</b> ↑ |             | ች        | <b>^</b> | 7       |
| Traffic Volume (vph)    | 177     | 45       | 26   | 43      | 21             | 40   | 9       | 927        | 48          | 46       | 585      | 76      |
| Future Volume (vph)     | 177     | 45       | 26   | 43      | 21             | 40   | 9       | 927        | 48          | 46       | 585      | 76      |
| Ideal Flow (vphpl)      | 1800    | 1800     | 1800 | 1800    | 1800           | 1800 | 1800    | 1800       | 1800        | 1800     | 1800     | 1800    |
| Storage Length (m)      | 100.0   |          | 0.0  | 40.0    |                | 0.0  | 100.0   |            | 0.0         | 75.0     |          | 175.0   |
| Storage Lanes           | 1       |          | 0    | 1       |                | 0    | 1       |            | 0           | 1        |          | 1       |
| Taper Length (m)        | 20.0    |          |      | 20.0    |                |      | 20.0    |            |             | 20.0     |          |         |
| Lane Util. Factor       | 1.00    | 1.00     | 1.00 | 1.00    | 1.00           | 1.00 | 1.00    | 0.95       | 0.95        | 1.00     | 0.95     | 1.00    |
| Ped Bike Factor         | 1.00    |          |      |         | 0.99           |      | 1.00    |            |             |          |          | 0.98    |
| Frt                     |         | 0.945    |      |         | 0.902          |      |         | 0.993      |             |          |          | 0.850   |
| Flt Protected           | 0.950   |          |      | 0.950   |                |      | 0.950   |            |             | 0.950    |          |         |
| Satd. Flow (prot)       | 1729    | 1698     | 0    | 1478    | 1627           | 0    | 1729    | 3207       | 0           | 1662     | 3172     | 1488    |
| Flt Permitted           | 0.717   |          |      | 0.711   |                |      | 0.431   |            |             | 0.271    |          |         |
| Satd. Flow (perm)       | 1303    | 1698     | 0    | 1106    | 1627           | 0    | 784     | 3207       | 0           | 474      | 3172     | 1455    |
| Right Turn on Red       |         |          | Yes  |         |                | Yes  |         |            | Yes         |          | •        | Yes     |
| Satd. Flow (RTOR)       |         | 21       |      |         | 40             |      |         | 8          |             |          |          | 76      |
| Link Speed (k/h)        |         | 50       |      |         | 50             |      |         | 80         |             |          | 80       |         |
| Link Distance (m)       |         | 528.6    |      |         | 234.2          |      |         | 451.0      |             |          | 177.6    |         |
| Travel Time (s)         |         | 38.1     |      |         | 16.9           |      |         | 20.3       |             |          | 8.0      |         |
| Confl. Peds. (#/hr)     | 1       |          |      |         |                | 1    | 1       |            |             |          | 0.0      | 1       |
| Peak Hour Factor        | 1.00    | 1.00     | 1.00 | 1.00    | 1.00           | 1.00 | 1.00    | 1.00       | 1.00        | 1.00     | 1.00     | 1.00    |
| Heavy Vehicles (%)      | 0%      | 2%       | 0%   | 17%     | 0%             | 0%   | 0%      | 6%         | 28%         | 4%       | 9%       | 4%      |
| Adj. Flow (vph)         | 177     | 45       | 26   | 43      | 21             | 40   | 9       | 927        | 48          | 46       | 585      | 76      |
| Shared Lane Traffic (%) |         |          |      |         |                |      |         | · · ·      |             |          |          |         |
| Lane Group Flow (vph)   | 177     | 71       | 0    | 43      | 61             | 0    | 9       | 975        | 0           | 46       | 585      | 76      |
| Turn Type               | Perm    | NA       |      | Perm    | NA             |      | Perm    | NA         |             | Perm     | NA       | Perm    |
| Protected Phases        | 1 01111 | 4        |      | 1 01111 | 8              |      | 1 01111 | 2          |             | 1 01111  | 6        | 1 01111 |
| Permitted Phases        | 4       |          |      | 8       |                |      | 2       | _          |             | 6        |          | 6       |
| Detector Phase          | 4       | 4        |      | 8       | 8              |      | 2       | 2          |             | 6        | 6        | 6       |
| Switch Phase            |         |          |      |         |                |      | _       | _          |             |          |          |         |
| Minimum Initial (s)     | 10.0    | 10.0     |      | 10.0    | 10.0           |      | 10.0    | 10.0       |             | 10.0     | 10.0     | 10.0    |
| Minimum Split (s)       | 33.8    | 33.8     |      | 33.8    | 33.8           |      | 42.6    | 42.6       |             | 42.6     | 42.6     | 42.6    |
| Total Split (s)         | 40.0    | 40.0     |      | 40.0    | 40.0           |      | 90.0    | 90.0       |             | 90.0     | 90.0     | 90.0    |
| Total Split (%)         | 30.8%   | 30.8%    |      | 30.8%   | 30.8%          |      | 69.2%   | 69.2%      |             | 69.2%    | 69.2%    | 69.2%   |
| Maximum Green (s)       | 33.2    | 33.2     |      | 33.2    | 33.2           |      | 82.4    | 82.4       |             | 82.4     | 82.4     | 82.4    |
| Yellow Time (s)         | 3.6     | 3.6      |      | 3.6     | 3.6            |      | 5.0     | 5.0        |             | 5.0      | 5.0      | 5.0     |
| All-Red Time (s)        | 3.2     | 3.2      |      | 3.2     | 3.2            |      | 2.6     | 2.6        |             | 2.6      | 2.6      | 2.6     |
| Lost Time Adjust (s)    | 0.0     | 0.0      |      | 0.0     | 0.0            |      | 0.0     | 0.0        |             | 0.0      | 0.0      | 0.0     |
| Total Lost Time (s)     | 6.8     | 6.8      |      | 6.8     | 6.8            |      | 7.6     | 7.6        |             | 7.6      | 7.6      | 7.6     |
| Lead/Lag                | 0.0     | 0.0      |      | 0.0     | 0.0            |      | 7.0     | 7.0        |             | 7.0      | 7.0      | 7.0     |
| Lead-Lag Optimize?      |         |          |      |         |                |      |         |            |             |          |          |         |
| Vehicle Extension (s)   | 3.0     | 3.0      |      | 3.0     | 3.0            |      | 3.0     | 3.0        |             | 3.0      | 3.0      | 3.0     |
| Recall Mode             | None    | None     |      | None    | None           |      | C-Max   | C-Max      |             | C-Max    | C-Max    | C-Max   |
| Walk Time (s)           | 7.0     | 7.0      |      | 7.0     | 7.0            |      | 7.0     | 7.0        |             | 7.0      | 7.0      | 7.0     |
| Flash Dont Walk (s)     | 20.0    | 20.0     |      | 20.0    | 20.0           |      | 28.0    | 28.0       |             | 28.0     | 28.0     | 28.0    |
| Pedestrian Calls (#/hr) | 0       | 20.0     |      | 20.0    | 20.0           |      | 20.0    | 20.0       |             | 20.0     | 20.0     | 20.0    |
| Act Effct Green (s)     | 22.9    | 22.9     |      | 22.9    | 22.9           |      | 92.7    | 92.7       |             | 92.7     | 92.7     | 92.7    |
| . ,                     | 0.18    | 0.18     |      |         |                |      |         | 0.71       |             | 0.71     | 0.71     |         |
| Actuated g/C Ratio      |         |          |      | 0.18    | 0.18           |      | 0.71    |            |             |          |          | 0.71    |
| v/c Ratio               | 0.77    | 0.22     |      | 0.22    | 0.19           |      | 0.02    | 0.43       |             | 0.14     | 0.26     | 0.07    |

Lanes, Volumes, Timings EM Synchro 11 Report October 2025

|                        | •     | -     | •   | •    | •     | •   | •     | <b>†</b> | ~   | <b>&gt;</b> | <b>↓</b> | 4     |
|------------------------|-------|-------|-----|------|-------|-----|-------|----------|-----|-------------|----------|-------|
| Lane Group             | EBL   | EBT   | EBR | WBL  | WBT   | WBR | NBL   | NBT      | NBR | SBL         | SBT      | SBR   |
| Control Delay          | 72.0  | 32.5  |     | 45.9 | 19.8  |     | 8.6   | 7.1      |     | 8.7         | 7.6      | 1.9   |
| Queue Delay            | 0.0   | 0.0   |     | 0.0  | 0.0   |     | 0.0   | 0.0      |     | 0.0         | 0.0      | 0.0   |
| Total Delay            | 72.0  | 32.5  |     | 45.9 | 19.8  |     | 8.6   | 7.1      |     | 8.7         | 7.6      | 1.9   |
| LOS                    | Е     | С     |     | D    | В     |     | Α     | Α        |     | Α           | Α        | Α     |
| Approach Delay         |       | 60.7  |     |      | 30.6  |     |       | 7.1      |     |             | 7.0      |       |
| Approach LOS           |       | Е     |     |      | С     |     |       | Α        |     |             | Α        |       |
| Queue Length 50th (m)  | 40.3  | 10.1  |     | 8.8  | 4.2   |     | 0.3   | 18.0     |     | 3.1         | 23.1     | 0.0   |
| Queue Length 95th (m)  | 59.2  | 21.0  |     | 17.6 | 14.3  |     | m1.3  | 55.3     |     | 9.3         | 37.7     | 4.9   |
| Internal Link Dist (m) |       | 504.6 |     |      | 210.2 |     |       | 427.0    |     |             | 153.6    |       |
| Turn Bay Length (m)    | 100.0 |       |     | 40.0 |       |     | 100.0 |          |     | 75.0        |          | 175.0 |
| Base Capacity (vph)    | 332   | 449   |     | 282  | 445   |     | 558   | 2289     |     | 338         | 2261     | 1059  |
| Starvation Cap Reductn | 0     | 0     |     | 0    | 0     |     | 0     | 0        |     | 0           | 0        | 0     |
| Spillback Cap Reductn  | 0     | 0     |     | 0    | 0     |     | 0     | 0        |     | 0           | 0        | 0     |
| Storage Cap Reductn    | 0     | 0     |     | 0    | 0     |     | 0     | 0        |     | 0           | 0        | 0     |
| Reduced v/c Ratio      | 0.53  | 0.16  |     | 0.15 | 0.14  |     | 0.02  | 0.43     |     | 0.14        | 0.26     | 0.07  |

Intersection Summary

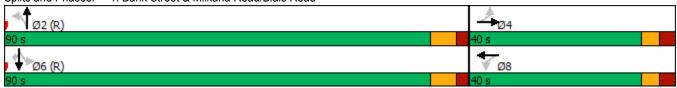
Area Type: Other

Cycle Length: 130 Actuated Cycle Length: 130

Offset: 16 (12%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.77

Intersection Signal Delay: 14.8 Intersection LOS: B
Intersection Capacity Utilization 69.4% ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: Bank Street & Miikana Road/Blais Road



|                                    | •      | •      | 4           | <b>†</b> | Ţ        | 4      |
|------------------------------------|--------|--------|-------------|----------|----------|--------|
| Lane Group                         | EBL    | EBR    | NBL         | NBT      | SBT      | SBR    |
| Lane Configurations                | ሻ      | 7      | 7           | <u> </u> | <u> </u> | 7      |
| Traffic Volume (vph)               | 264    | 57     | 94          | 715      | 536      | 61     |
| Future Volume (vph)                | 264    | 57     | 94          | 715      | 536      | 61     |
| Ideal Flow (vphpl)                 | 1800   | 1800   | 1800        | 1800     | 1800     | 1800   |
| ( , , ,                            | 25.0   | 0.0    | 120.0       | 1000     | 1000     | 100.0  |
| Storage Length (m)                 | 25.0   | 1      | 120.0       |          |          | 100.0  |
| Storage Lanes                      | 20.0   | l l    | 20.0        |          |          | l I    |
| Taper Length (m) Lane Util. Factor | 1.00   | 1.00   | 1.00        | 1.00     | 1.00     | 1.00   |
| Ped Bike Factor                    | 1.00   | 1.00   | 1.00        | 1.00     | 1.00     | 0.96   |
|                                    |        | 0.050  | 1.00        |          |          |        |
| Frt                                | 0.050  | 0.850  | 0.050       |          |          | 0.850  |
| Flt Protected                      | 0.950  | 4.450  | 0.950       | 4055     | 1010     | 4470   |
| Satd. Flow (prot)                  | 1616   | 1459   | 1558        | 1655     | 1640     | 1172   |
| Flt Permitted                      | 0.950  |        | 0.413       |          |          |        |
| Satd. Flow (perm)                  | 1616   | 1459   | 674         | 1655     | 1640     | 1129   |
| Right Turn on Red                  |        | Yes    |             |          |          | Yes    |
| Satd. Flow (RTOR)                  |        | 57     |             |          |          | 61     |
| Link Speed (k/h)                   | 50     |        |             | 80       | 80       |        |
| Link Distance (m)                  | 528.6  |        |             | 273.1    | 451.0    |        |
| Travel Time (s)                    | 38.1   |        |             | 12.3     | 20.3     |        |
| Confl. Peds. (#/hr)                |        |        | 4           |          |          | 4      |
| Peak Hour Factor                   | 1.00   | 1.00   | 1.00        | 1.00     | 1.00     | 1.00   |
| Heavy Vehicles (%)                 | 7%     | 6%     | 11%         | 10%      | 11%      | 32%    |
| Adj. Flow (vph)                    | 264    | 57     | 94          | 715      | 536      | 61     |
| Shared Lane Traffic (%)            | 207    | 01     | J-7         | 7 10     | 300      | 01     |
| Lane Group Flow (vph)              | 264    | 57     | 94          | 715      | 536      | 61     |
| Turn Type                          | Perm   | Perm   | Perm        | NA       | NA       | Perm   |
| Protected Phases                   | Fellii | Pellii | Pellii      | NA<br>2  | NA<br>6  | Pellii |
|                                    |        | 1      | 0           |          | Ö        | C      |
| Permitted Phases                   | 4      | 4      | 2           | ^        |          | 6      |
| Detector Phase                     | 4      | 4      | 2           | 2        | 6        | 6      |
| Switch Phase                       | 10.5   | 10.0   | 10.0        | 40.5     | 10.0     | 10.0   |
| Minimum Initial (s)                | 10.0   | 10.0   | 10.0        | 10.0     | 10.0     | 10.0   |
| Minimum Split (s)                  | 22.6   | 22.6   | 21.7        | 21.7     | 21.7     | 21.7   |
| Total Split (s)                    | 40.0   | 40.0   | 90.0        | 90.0     | 90.0     | 90.0   |
| Total Split (%)                    | 30.8%  | 30.8%  | 69.2%       | 69.2%    | 69.2%    | 69.2%  |
| Maximum Green (s)                  | 33.4   | 33.4   | 83.3        | 83.3     | 83.3     | 83.3   |
| Yellow Time (s)                    | 3.3    | 3.3    | 4.6         | 4.6      | 4.6      | 4.6    |
| All-Red Time (s)                   | 3.3    | 3.3    | 2.1         | 2.1      | 2.1      | 2.1    |
| Lost Time Adjust (s)               | 0.0    | 0.0    | 0.0         | 0.0      | 0.0      | 0.0    |
| Total Lost Time (s)                | 6.6    | 6.6    | 6.7         | 6.7      | 6.7      | 6.7    |
| Lead/Lag                           | 0.0    | 3.0    | <b>J.</b> , | 5.1      | J.1      | J.1    |
| Lead-Lag Optimize?                 |        |        |             |          |          |        |
| Vehicle Extension (s)              | 3.0    | 3.0    | 3.0         | 3.0      | 3.0      | 3.0    |
| Recall Mode                        | None   | None   | C-Max       | C-Max    | C-Max    | C-Max  |
|                                    |        |        |             |          |          |        |
| Walk Time (s)                      | 7.0    | 7.0    | 7.0         | 7.0      | 7.0      | 7.0    |
| Flash Dont Walk (s)                | 9.0    | 9.0    | 8.0         | 8.0      | 8.0      | 8.0    |
| Pedestrian Calls (#/hr)            | 0      | 0      | 0           | 0        | 0        | 0      |
| Act Effct Green (s)                | 26.1   | 26.1   | 90.6        | 90.6     | 90.6     | 90.6   |
| Actuated g/C Ratio                 | 0.20   | 0.20   | 0.70        | 0.70     | 0.70     | 0.70   |
| v/c Ratio                          | 0.20   | 0.17   | 0.20        | 0.62     | 0.47     | 0.08   |

|                               | •              | •        | •          | <b>†</b>    | <b>↓</b>    | 4          |             |
|-------------------------------|----------------|----------|------------|-------------|-------------|------------|-------------|
| Lane Group                    | EBL            | EBR      | NBL        | NBT         | SBT         | SBR        |             |
| Control Delay                 | 68.8           | 10.6     | 5.8        | 16.6        | 10.5        | 1.3        |             |
| Queue Delay                   | 0.0            | 0.0      | 0.0        | 0.0         | 0.0         | 0.0        |             |
| Total Delay                   | 68.8           | 10.6     | 5.8        | 16.6        | 10.5        | 1.3        |             |
| LOS                           | Е              | В        | Α          | В           | В           | Α          |             |
| Approach Delay                | 58.4           |          |            | 15.3        | 9.5         |            |             |
| Approach LOS                  | Е              |          |            | В           | Α           |            |             |
| Queue Length 50th (m)         | 59.8           | 0.0      | 7.8        | 140.7       | 69.7        | 0.6        |             |
| Queue Length 95th (m)         | 83.1           | 9.7      | m11.4      | 206.7       | 108.5       | 0.5        |             |
| Internal Link Dist (m)        | 504.6          |          |            | 249.1       | 427.0       |            |             |
| Turn Bay Length (m)           | 25.0           |          | 120.0      |             |             | 100.0      |             |
| Base Capacity (vph)           | 415            | 417      | 469        | 1153        | 1143        | 805        |             |
| Starvation Cap Reductn        | 0              | 0        | 0          | 0           | 0           | 0          |             |
| Spillback Cap Reductn         | 0              | 0        | 0          | 0           | 0           | 0          |             |
| Storage Cap Reductn           | 0              | 0        | 0          | 0           | 0           | 0          |             |
| Reduced v/c Ratio             | 0.64           | 0.14     | 0.20       | 0.62        | 0.47        | 80.0       |             |
| Intersection Summary          |                |          |            |             |             |            |             |
| Area Type:                    | Other          |          |            |             |             |            |             |
| Cycle Length: 130             |                |          |            |             |             |            |             |
| Actuated Cycle Length: 130    |                |          |            |             |             |            |             |
| Offset: 40 (31%), Reference   | ed to phase    | 2:NBTL   | and 6:SB   | T, Start of | f Green     |            |             |
| Natural Cycle: 60             |                |          |            |             |             |            |             |
| Control Type: Actuated-Coo    | ordinated      |          |            |             |             |            |             |
| Maximum v/c Ratio: 0.81       |                |          |            |             |             |            |             |
| Intersection Signal Delay: 2  |                |          |            |             | tersection  |            |             |
| Intersection Capacity Utiliza | ation 70.2%    |          |            | IC          | CU Level of | of Service | C           |
| Analysis Period (min) 15      |                |          |            |             |             |            |             |
| m Volume for 95th percer      | ntile queue is | s metere | d by upsti | ream sign   | ıal.        |            |             |
| Splits and Phases: 2: Ba      | nk Street &    | Dun Skip | per Drive  |             |             |            |             |
| Ø2 (R)                        |                |          |            |             |             |            | <b>₹</b> ø4 |
| 90 s                          |                |          |            |             |             |            | 40 s        |
| ₩ Ø6 (R)                      |                |          |            |             |             |            |             |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 28   | 165  | 39   | 22   | 164  | 103  | 61   | 79   | 34   | 122  | 54   | 53   |
| Future Vol, veh/h          | 28   | 165  | 39   | 22   | 164  | 103  | 61   | 79   | 34   | 122  | 54   | 53   |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 0    | 1    | 8    | 5    | 1    | 7    | 0    | 2    | 6    | 2    | 0    | 0    |
| Mvmt Flow                  | 28   | 165  | 39   | 22   | 164  | 103  | 61   | 79   | 34   | 122  | 54   | 53   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 11.5 |      |      | 12.3 |      |      | 10.9 |      |      | 11.8 |      |      |
| HCM LOS                    | В    |      |      | В    |      |      | В    |      |      | В    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 35%   | 12%   | 8%    | 53%   |  |
| Vol Thru, %            | 45%   | 71%   | 57%   | 24%   |  |
| Vol Right, %           | 20%   | 17%   | 36%   | 23%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 174   | 232   | 289   | 229   |  |
| LT Vol                 | 61    | 28    | 22    | 122   |  |
| Through Vol            | 79    | 165   | 164   | 54    |  |
| RT Vol                 | 34    | 39    | 103   | 53    |  |
| Lane Flow Rate         | 174   | 232   | 289   | 229   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.275 | 0.351 | 0.428 | 0.358 |  |
| Departure Headway (Hd) | 5.687 | 5.453 | 5.328 | 5.631 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 630   | 657   | 673   | 637   |  |
| Service Time           | 3.747 | 3.51  | 3.38  | 3.687 |  |
| HCM Lane V/C Ratio     | 0.276 | 0.353 | 0.429 | 0.359 |  |
| HCM Control Delay      | 10.9  | 11.5  | 12.3  | 11.8  |  |
| HCM Lane LOS           | В     | В     | В     | В     |  |
| HCM 95th-tile Q        | 1.1   | 1.6   | 2.1   | 1.6   |  |

| ntersection              |     |
|--------------------------|-----|
| ntersection Delay, s/veh | 8.3 |
| ntersection LOS          | А   |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | ₩    |      |
| Traffic Vol, veh/h         | 18   | 40   | 11   | 22   | 19   | 27   | 4    | 62   | 59   | 37   | 46   | 12   |
| Future Vol, veh/h          | 18   | 40   | 11   | 22   | 19   | 27   | 4    | 62   | 59   | 37   | 46   | 12   |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 8    | 5    | 56   | 6    | 7    | 0    | 33   | 5    | 0    | 22   | 11   | 50   |
| Mvmt Flow                  | 18   | 40   | 11   | 22   | 19   | 27   | 4    | 62   | 59   | 37   | 46   | 12   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 8.1  |      |      | 7.9  |      |      | 8.5  |      |      | 8.4  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 3%    | 26%   | 32%   | 39%   |  |
| Vol Thru, %            | 50%   | 58%   | 28%   | 48%   |  |
| Vol Right, %           | 47%   | 16%   | 40%   | 13%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 125   | 69    | 68    | 95    |  |
| LT Vol                 | 4     | 18    | 22    | 37    |  |
| Through Vol            | 62    | 40    | 19    | 46    |  |
| RT Vol                 | 59    | 11    | 27    | 12    |  |
| Lane Flow Rate         | 125   | 69    | 68    | 95    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.16  | 0.088 | 0.084 | 0.125 |  |
| Departure Headway (Hd) | 4.615 | 4.603 | 4.442 | 4.739 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 779   | 780   | 809   | 758   |  |
| Service Time           | 2.632 | 2.62  | 2.459 | 2.756 |  |
| HCM Lane V/C Ratio     | 0.16  | 0.088 | 0.084 | 0.125 |  |
| HCM Control Delay      | 8.5   | 8.1   | 7.9   | 8.4   |  |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.6   | 0.3   | 0.3   | 0.4   |  |

| Intersection              |     |
|---------------------------|-----|
| Intersection Delay, s/veh | 7.8 |
| Intersection LOS          | Α   |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 17   | 51   | 13   | 28   | 29   | 20   | 12   | 37   | 39   | 29   | 35   | 2    |
| Future Vol, veh/h          | 17   | 51   | 13   | 28   | 29   | 20   | 12   | 37   | 39   | 29   | 35   | 2    |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 0    | 9    | 0    | 20   | 10   | 8    | 0    | 5    | 19   | 0    | 12   | 0    |
| Mvmt Flow                  | 17   | 51   | 13   | 28   | 29   | 20   | 12   | 37   | 39   | 29   | 35   | 2    |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 7.7  |      |      | 8.1  |      |      | 7.6  |      |      | 7.8  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 14%   | 21%   | 36%   | 44%   |  |
| Vol Thru, %            | 42%   | 63%   | 38%   | 53%   |  |
| Vol Right, %           | 44%   | 16%   | 26%   | 3%    |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 88    | 81    | 77    | 66    |  |
| LT Vol                 | 12    | 17    | 28    | 29    |  |
| Through Vol            | 37    | 51    | 29    | 35    |  |
| RT Vol                 | 39    | 13    | 20    | 2     |  |
| Lane Flow Rate         | 88    | 81    | 77    | 66    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.1   | 0.096 | 0.098 | 0.081 |  |
| Departure Headway (Hd) | 4.1   | 4.273 | 4.595 | 4.426 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 877   | 842   | 785   | 812   |  |
| Service Time           | 2.109 | 2.285 | 2.595 | 2.436 |  |
| HCM Lane V/C Ratio     | 0.1   | 0.096 | 0.098 | 0.081 |  |
| HCM Control Delay      | 7.6   | 7.7   | 8.1   | 7.8   |  |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.3   | 0.3   | 0.3   | 0.3   |  |

| Intersection           |        |             |        |        |        |      |
|------------------------|--------|-------------|--------|--------|--------|------|
| Int Delay, s/veh       | 0      |             |        |        |        |      |
| Movement               | EBL    | EBR         | NBL    | NBT    | SBT    | SBR  |
| Lane Configurations    | ¥      |             |        | 4      | \$     |      |
| Traffic Vol, veh/h     | 0      | 0           | 0      | 810    | 572    | 0    |
| Future Vol, veh/h      | 0      | 0           | 0      | 810    | 572    | 0    |
| Conflicting Peds, #/hr | 0      | 0           | 0      | 0      | 0      | 0    |
| Sign Control           | Stop   | Stop        | Free   | Free   | Free   | Free |
| RT Channelized         | _      | None        | -      |        | -      | None |
| Storage Length         | 0      | -           | _      | -      | -      | -    |
| Veh in Median Storage, |        | -           | -      | 0      | 0      | -    |
| Grade, %               | 0      | -           | -      | 0      | 0      | -    |
| Peak Hour Factor       | 100    | 100         | 100    | 100    | 100    | 100  |
| Heavy Vehicles, %      | 0      | 0           | 0      | 10     | 11     | 0    |
| Mvmt Flow              | 0      | 0           | 0      | 810    | 572    | 0    |
|                        |        |             |        |        |        |      |
| Mainu/Minau            | l:O    |             | 1-:1   |        | 4-:0   |      |
|                        | linor2 |             | Major1 |        | Major2 |      |
| Conflicting Flow All   | 1382   | 572         | 572    | 0      | -      | 0    |
| Stage 1                | 572    | -           | -      | -      | -      | -    |
| Stage 2                | 810    | -           | -      | -      | -      | -    |
| Critical Hdwy          | 6.4    | 6.2         | 4.1    | -      | -      | -    |
| Critical Hdwy Stg 1    | 5.4    | -           | -      | -      | -      | -    |
| Critical Hdwy Stg 2    | 5.4    | -           | -      | -      | -      | -    |
| Follow-up Hdwy         | 3.5    | 3.3         | 2.2    | -      | -      | -    |
| Pot Cap-1 Maneuver     | 160    | 523         | 1011   | -      | -      | -    |
| Stage 1                | 569    | -           | -      | -      | -      | -    |
| Stage 2                | 441    | -           | -      | -      | -      | -    |
| Platoon blocked, %     | 400    | 500         | 1011   | -      | -      | -    |
| Mov Cap-1 Maneuver     | 160    | 523         | 1011   | -      | -      | -    |
| Mov Cap-2 Maneuver     | 160    | -           | -      | -      | -      | -    |
| Stage 1                | 569    | -           | -      | -      | -      | -    |
| Stage 2                | 441    | -           | -      | -      | -      | -    |
|                        |        |             |        |        |        |      |
| Approach               | EB     |             | NB     |        | SB     |      |
| HCM Control Delay, s   | 0      |             | 0      |        | 0      |      |
| HCM LOS                | A      |             | •      |        | *      |      |
|                        |        |             |        |        |        |      |
| Minor Lane/Major Mvmt  |        | NBL         | NDT    | EBLn1  | SBT    | SBR  |
|                        |        |             | NDI    | LDLIII | SDI    | SDN  |
| Capacity (veh/h)       |        | 1011        | -      | -      | -      | -    |
| HCM Lana V/C Datio     |        | -           | -      | -      | -      | -    |
| HCM Control Dolay (s)  |        | 0           |        | Λ      |        |      |
| HCM Control Delay (s)  |        | 0           | -      | 0      | -      | -    |
|                        |        | 0<br>A<br>0 | -<br>- | 0<br>A | -<br>- | -    |

|                         | ۶     | <b>→</b>   | •    | •     | <b>←</b> | •    | 4     | †        | ~     | <b>/</b> | <b>↓</b>   | ✓    |
|-------------------------|-------|------------|------|-------|----------|------|-------|----------|-------|----------|------------|------|
| Lane Group              | EBL   | EBT        | EBR  | WBL   | WBT      | WBR  | NBL   | NBT      | NBR   | SBL      | SBT        | SBR  |
| Lane Configurations     | ሻ     | <b>†</b> } |      | ሻ     | f.       |      | ሻ     | <b>†</b> | 7     | ሻ        | <b>†</b> } |      |
| Traffic Volume (vph)    | 28    | 574        | 16   | 55    | 308      | 16   | 21    | 766      | 115   | 15       | 534        | 23   |
| Future Volume (vph)     | 28    | 574        | 16   | 55    | 308      | 16   | 21    | 766      | 115   | 15       | 534        | 23   |
| Ideal Flow (vphpl)      | 1800  | 1800       | 1800 | 1800  | 1800     | 1800 | 1800  | 1800     | 1800  | 1800     | 1800       | 1800 |
| Storage Length (m)      | 25.0  |            | 0.0  | 50.0  |          | 0.0  | 20.0  |          | 15.0  | 15.0     |            | 0.0  |
| Storage Lanes           | 1     |            | 0    | 1     |          | 0    | 1     |          | 1     | 1        |            | 0    |
| Taper Length (m)        | 20.0  |            |      | 20.0  |          |      | 20.0  |          |       | 20.0     |            |      |
| Lane Util. Factor       | 1.00  | 0.95       | 0.95 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00     | 0.95       | 0.95 |
| Frt                     |       | 0.996      |      |       | 0.993    |      |       |          | 0.850 |          | 0.994      |      |
| Flt Protected           | 0.950 |            |      | 0.950 |          |      | 0.950 |          |       | 0.950    |            |      |
| Satd. Flow (prot)       | 1729  | 3220       | 0    | 1310  | 1452     | 0    | 1695  | 1750     | 1289  | 1491     | 3122       | 0    |
| Flt Permitted           | 0.325 |            |      | 0.261 |          |      | 0.432 |          |       | 0.248    |            |      |
| Satd. Flow (perm)       | 592   | 3220       | 0    | 360   | 1452     | 0    | 771   | 1750     | 1289  | 389      | 3122       | 0    |
| Right Turn on Red       |       |            | Yes  |       |          | Yes  |       |          | Yes   |          |            | Yes  |
| Satd. Flow (RTOR)       |       | 2          |      |       | 2        |      |       |          | 35    |          | 6          |      |
| Link Speed (k/h)        |       | 80         |      |       | 80       |      |       | 80       |       |          | 80         |      |
| Link Distance (m)       |       | 528.5      |      |       | 292.7    |      |       | 203.7    |       |          | 158.2      |      |
| Travel Time (s)         |       | 23.8       |      |       | 13.2     |      |       | 9.2      |       |          | 7.1        |      |
| Peak Hour Factor        | 1.00  | 1.00       | 1.00 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00     | 1.00       | 1.00 |
| Heavy Vehicles (%)      | 0%    | 7%         | 5%   | 32%   | 24%      | 34%  | 2%    | 4%       | 20%   | 16%      | 10%        | 12%  |
| Adj. Flow (vph)         | 28    | 574        | 16   | 55    | 308      | 16   | 21    | 766      | 115   | 15       | 534        | 23   |
| Shared Lane Traffic (%) |       |            |      |       |          |      |       |          |       |          |            |      |
| Lane Group Flow (vph)   | 28    | 590        | 0    | 55    | 324      | 0    | 21    | 766      | 115   | 15       | 557        | 0    |
| Turn Type               | Perm  | NA         |      | Perm  | NA       |      | Perm  | NA       | Perm  | Perm     | NA         |      |
| Protected Phases        |       | 4          |      |       | 8        |      |       | 2        |       |          | 6          |      |
| Permitted Phases        | 4     |            |      | 8     |          |      | 2     |          | 2     | 6        |            |      |
| Detector Phase          | 4     | 4          |      | 8     | 8        |      | 2     | 2        | 2     | 6        | 6          |      |
| Switch Phase            |       |            |      |       |          |      |       |          |       |          |            |      |
| Minimum Initial (s)     | 10.0  | 10.0       |      | 10.0  | 10.0     |      | 10.0  | 10.0     | 10.0  | 10.0     | 10.0       |      |
| Minimum Split (s)       | 36.2  | 36.2       |      | 36.2  | 36.2     |      | 36.2  | 36.2     | 36.2  | 36.2     | 36.2       |      |
| Total Split (s)         | 47.0  | 47.0       |      | 47.0  | 47.0     |      | 83.0  | 83.0     | 83.0  | 83.0     | 83.0       |      |
| Total Split (%)         | 36.2% | 36.2%      |      | 36.2% | 36.2%    |      | 63.8% | 63.8%    | 63.8% | 63.8%    | 63.8%      |      |
| Maximum Green (s)       | 39.8  | 39.8       |      | 39.8  | 39.8     |      | 75.8  | 75.8     | 75.8  | 75.8     | 75.8       |      |
| Yellow Time (s)         | 5.0   | 5.0        |      | 5.0   | 5.0      |      | 5.0   | 5.0      | 5.0   | 5.0      | 5.0        |      |
| All-Red Time (s)        | 2.2   | 2.2        |      | 2.2   | 2.2      |      | 2.2   | 2.2      | 2.2   | 2.2      | 2.2        |      |
| Lost Time Adjust (s)    | 0.0   | 0.0        |      | 0.0   | 0.0      |      | 0.0   | 0.0      | 0.0   | 0.0      | 0.0        |      |
| Total Lost Time (s)     | 7.2   | 7.2        |      | 7.2   | 7.2      |      | 7.2   | 7.2      | 7.2   | 7.2      | 7.2        |      |
| Lead/Lag                |       |            |      |       |          |      |       |          |       |          |            |      |
| Lead-Lag Optimize?      |       |            |      |       |          |      |       |          |       |          |            |      |
| Vehicle Extension (s)   | 3.0   | 3.0        |      | 3.0   | 3.0      |      | 3.0   | 3.0      | 3.0   | 3.0      | 3.0        |      |
| Recall Mode             | None  | None       |      | None  | None     |      | C-Max | C-Max    | C-Max | C-Max    | C-Max      |      |
| Walk Time (s)           | 7.0   | 7.0        |      | 7.0   | 7.0      |      | 7.0   | 7.0      | 7.0   | 7.0      | 7.0        |      |
| Flash Dont Walk (s)     | 22.0  | 22.0       |      | 22.0  | 22.0     |      | 22.0  | 22.0     | 22.0  | 22.0     | 22.0       |      |
| Pedestrian Calls (#/hr) | 0     | 0          |      | 0     | 0        |      | 0     | 0        | 0     | 0        | 0          |      |
| Act Effct Green (s)     | 33.1  | 33.1       |      | 33.1  | 33.1     |      | 82.5  | 82.5     | 82.5  | 82.5     | 82.5       |      |
| Actuated g/C Ratio      | 0.25  | 0.25       |      | 0.25  | 0.25     |      | 0.63  | 0.63     | 0.63  | 0.63     | 0.63       |      |
| v/c Ratio               | 0.19  | 0.72       |      | 0.60  | 0.87     |      | 0.04  | 0.69     | 0.14  | 0.06     | 0.28       |      |
| Control Delay           | 38.5  | 48.7       |      | 68.6  | 69.2     |      | 11.2  | 20.9     | 8.1   | 18.9     | 15.9       |      |
| Queue Delay             | 0.0   | 0.0        |      | 0.0   | 0.0      |      | 0.0   | 0.0      | 0.0   | 0.0      | 0.0        |      |

|                        | •    | <b>→</b> | •   | •    | ←     | •   | 4    | <b>†</b> | ~    | -    | ļ     | 1   |
|------------------------|------|----------|-----|------|-------|-----|------|----------|------|------|-------|-----|
| Lane Group             | EBL  | EBT      | EBR | WBL  | WBT   | WBR | NBL  | NBT      | NBR  | SBL  | SBT   | SBR |
| Total Delay            | 38.5 | 48.7     |     | 68.6 | 69.2  |     | 11.2 | 20.9     | 8.1  | 18.9 | 15.9  |     |
| LOS                    | D    | D        |     | Е    | Е     |     | В    | С        | Α    | В    | В     |     |
| Approach Delay         |      | 48.3     |     |      | 69.1  |     |      | 19.1     |      |      | 15.9  |     |
| Approach LOS           |      | D        |     |      | Е     |     |      | В        |      |      | В     |     |
| Queue Length 50th (m)  | 5.1  | 66.2     |     | 11.3 | 72.4  |     | 1.8  | 113.0    | 7.1  | 1.2  | 27.6  |     |
| Queue Length 95th (m)  | 12.4 | 79.7     |     | 24.9 | 100.2 |     | 5.6  | 175.9    | 16.2 | m5.2 | 59.8  |     |
| Internal Link Dist (m) |      | 504.5    |     |      | 268.7 |     |      | 179.7    |      |      | 134.2 |     |
| Turn Bay Length (m)    | 25.0 |          |     | 50.0 |       |     | 20.0 |          | 15.0 | 15.0 |       |     |
| Base Capacity (vph)    | 181  | 987      |     | 110  | 445   |     | 489  | 1110     | 830  | 246  | 1982  |     |
| Starvation Cap Reductn | 0    | 0        |     | 0    | 0     |     | 0    | 0        | 0    | 0    | 0     |     |
| Spillback Cap Reductn  | 0    | 0        |     | 0    | 0     |     | 0    | 0        | 0    | 0    | 0     |     |
| Storage Cap Reductn    | 0    | 0        |     | 0    | 0     |     | 0    | 0        | 0    | 0    | 0     |     |
| Reduced v/c Ratio      | 0.15 | 0.60     |     | 0.50 | 0.73  |     | 0.04 | 0.69     | 0.14 | 0.06 | 0.28  |     |

#### Intersection Summary

Area Type: Other

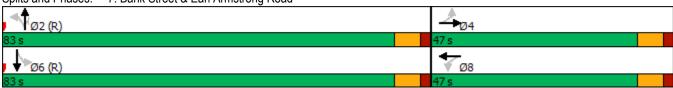
Cycle Length: 130

Actuated Cycle Length: 130

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.87

Intersection Signal Delay: 33.3 Intersection LOS: C
Intersection Capacity Utilization 87.0% ICU Level of Service E

Analysis Period (min) 15

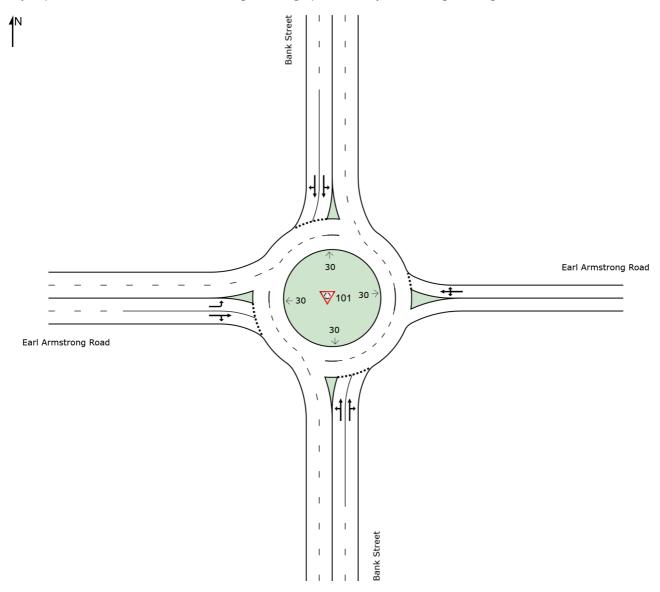
m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 7: Bank Street & Earl Armstrong Road



|                                 | •     | <b>→</b> | <b>←</b>   | •     | <b>&gt;</b> | 4     |
|---------------------------------|-------|----------|------------|-------|-------------|-------|
| Lane Group                      | EBL   | EBT      | WBT        | WBR   | SBL         | SBR   |
| Lane Configurations             | ሻ     | <b>^</b> | <b>↑</b> ↑ | TIDIC | )<br>j      | 7     |
| Traffic Volume (vph)            | 12    | 613      | 346        | 6     | 5           | 8     |
| Future Volume (vph)             | 12    | 613      | 346        | 6     | 5           | 8     |
| Ideal Flow (vphpl)              | 1800  | 1800     | 1800       | 1800  | 1800        | 1800  |
| Storage Length (m)              | 60.0  | 1000     | 1000       | 0.0   | 40.0        | 0.0   |
| Storage Lanes                   | 1     |          |            | 0.0   | 1           | 1     |
| Taper Length (m)                | 20.0  |          |            | U     | 20.0        | 1     |
| Lane Util. Factor               | 1.00  | 0.95     | 0.95       | 0.95  | 1.00        | 1.00  |
| Frt                             | 1.00  | 0.33     | 0.997      | 0.33  | 1.00        | 0.850 |
| FIt Protected                   | 0.950 |          | 0.991      |       | 0.950       | 0.030 |
|                                 | 1544  | 3262     | 2999       | 0     | 1517        | 1357  |
| Satd. Flow (prot) Flt Permitted |       | 3202     | 2333       | U     | 0.950       | 1331  |
|                                 | 0.541 | 2000     | 2000       | 0     |             | 1057  |
| Satd. Flow (perm)               | 879   | 3262     | 2999       | 0     | 1517        | 1357  |
| Right Turn on Red               |       |          | _          | Yes   |             | Yes   |
| Satd. Flow (RTOR)               |       |          | 2          |       |             | 8     |
| Link Speed (k/h)                |       | 80       | 80         |       | 40          |       |
| Link Distance (m)               |       | 222.0    | 528.5      |       | 431.1       |       |
| Travel Time (s)                 |       | 10.0     | 23.8       |       | 38.8        |       |
| Peak Hour Factor                | 1.00  | 1.00     | 1.00       | 1.00  | 1.00        | 1.00  |
| Heavy Vehicles (%)              | 12%   | 6%       | 15%        | 12%   | 14%         | 14%   |
| Adj. Flow (vph)                 | 12    | 613      | 346        | 6     | 5           | 8     |
| Shared Lane Traffic (%)         |       |          |            |       |             |       |
| Lane Group Flow (vph)           | 12    | 613      | 352        | 0     | 5           | 8     |
| Turn Type                       | Perm  | NA       | NA         |       | Prot        | Perm  |
| Protected Phases                |       | 4        | 8          |       | 6           |       |
| Permitted Phases                | 4     |          |            |       |             | 6     |
| Detector Phase                  | 4     | 4        | 8          |       | 6           | 6     |
| Switch Phase                    | •     | •        |            |       |             |       |
| Minimum Initial (s)             | 10.0  | 10.0     | 10.0       |       | 10.0        | 10.0  |
| Minimum Split (s)               | 24.8  | 24.8     | 24.8       |       | 33.8        | 33.8  |
| Total Split (s)                 | 54.2  | 54.2     | 54.2       |       | 65.8        | 65.8  |
| Total Split (%)                 | 45.2% | 45.2%    | 45.2%      |       | 54.8%       | 54.8% |
|                                 | 45.2% | 45.2%    | 45.2%      |       | 59.0        | 59.0  |
| Maximum Green (s)               |       |          |            |       |             |       |
| Yellow Time (s)                 | 5.0   | 5.0      | 5.0        |       | 3.2         | 3.2   |
| All-Red Time (s)                | 1.8   | 1.8      | 1.8        |       | 3.6         | 3.6   |
| Lost Time Adjust (s)            | 0.0   | 0.0      | 0.0        |       | 0.0         | 0.0   |
| Total Lost Time (s)             | 6.8   | 6.8      | 6.8        |       | 6.8         | 6.8   |
| Lead/Lag                        |       |          |            |       |             |       |
| Lead-Lag Optimize?              |       |          |            |       |             |       |
| Vehicle Extension (s)           | 3.0   | 3.0      | 3.0        |       | 3.0         | 3.0   |
| Recall Mode                     | C-Max | C-Max    | C-Max      |       | None        | None  |
| Walk Time (s)                   | 7.0   | 7.0      | 7.0        |       | 7.0         | 7.0   |
| Flash Dont Walk (s)             | 11.0  | 11.0     | 11.0       |       | 20.0        | 20.0  |
| Pedestrian Calls (#/hr)         | 0     | 0        | 0          |       | 0           | 0     |
| Act Effct Green (s)             | 110.6 | 110.6    | 110.6      |       | 10.0        | 10.0  |
| Actuated g/C Ratio              | 0.92  | 0.92     | 0.92       |       | 0.08        | 0.08  |
| v/c Ratio                       | 0.01  | 0.20     | 0.13       |       | 0.04        | 0.07  |
| Control Delay                   | 2.0   | 1.6      | 1.5        |       | 51.6        | 28.5  |
| Queue Delay                     | 0.0   | 0.0      | 0.0        |       | 0.0         | 0.0   |
| Queue Delay                     | 0.0   | 0.0      | 0.0        |       | 0.0         | 0.0   |

|                               | •           | <b>→</b> | <b>←</b>  | •          | <b>\</b>   | 4           |  |
|-------------------------------|-------------|----------|-----------|------------|------------|-------------|--|
| Lane Group                    | EBL         | EBT      | WBT       | WBR        | SBL        | SBR         |  |
| Total Delay                   | 2.0         | 1.6      | 1.5       |            | 51.6       | 28.5        |  |
| LOS                           | Α           | Α        | Α         |            | D          | С           |  |
| Approach Delay                |             | 1.6      | 1.5       |            | 37.4       |             |  |
| Approach LOS                  |             | Α        | Α         |            | D          |             |  |
| Queue Length 50th (m)         | 0.0         | 0.0      | 0.0       |            | 1.0        | 0.0         |  |
| Queue Length 95th (m)         | 1.4         | 17.5     | 9.9       |            | 4.7        | 4.5         |  |
| Internal Link Dist (m)        |             | 198.0    | 504.5     |            | 407.1      |             |  |
| Turn Bay Length (m)           | 60.0        |          |           |            | 40.0       |             |  |
| Base Capacity (vph)           | 810         | 3005     | 2763      |            | 745        | 671         |  |
| Starvation Cap Reductn        | 0           | 0        | 0         |            | 0          | 0           |  |
| Spillback Cap Reductn         | 0           | 0        | 0         |            | 0          | 0           |  |
| Storage Cap Reductn           | 0           | 0        | 0         |            | 0          | 0           |  |
| Reduced v/c Ratio             | 0.01        | 0.20     | 0.13      |            | 0.01       | 0.01        |  |
| Intersection Summary          |             |          |           |            |            |             |  |
|                               | Other       |          |           |            |            |             |  |
| Cycle Length: 120             |             |          |           |            |            |             |  |
| Actuated Cycle Length: 120    |             |          |           |            |            |             |  |
| Offset: 59.5 (50%), Referen   | ced to pha  | se 4:EBT | and 8:W   | /BT, Start | of Green   |             |  |
| Natural Cycle: 60             |             |          |           |            |            |             |  |
| Control Type: Actuated-Coo    | ordinated   |          |           |            |            |             |  |
| Maximum v/c Ratio: 0.20       | _           |          |           |            |            |             |  |
| Intersection Signal Delay: 2  |             |          |           |            | tersection |             |  |
| Intersection Capacity Utiliza | ition 37.6% |          |           | IC         | U Level o  | f Service A |  |
| Analysis Period (min) 15      |             |          |           |            |            |             |  |
| Splits and Phases: 8: Ear     | rl Armstron | g Road & | Kelly Far | m Drive    |            |             |  |
|                               |             |          |           |            | •          | Ø4 (R)      |  |
| 0.5                           |             |          |           |            |            | Ø8 (R)      |  |


## SITE LAYOUT

# ♥ Site: 101 [Bank & Earl Armstrong (Site Folder: BG 2036 w Ext

AM)]

Bank Street & Earl Armstrong Road Future (2036) Background Traffic with Earl Armstrong Extension AM Peak Hour Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.



#### **MOVEMENT SUMMARY**

## 

AM)]

Bank Street & Earl Armstrong Road Future (2036) Background Traffic with Earl Armstrong Extension AM Peak Hour Site Category: (None) Roundabout

| Vehi         | Vehicle Movement Performance |                                 |        |                                 |      |                     |      |                     |                                |      |              |                           |                        |                        |
|--------------|------------------------------|---------------------------------|--------|---------------------------------|------|---------------------|------|---------------------|--------------------------------|------|--------------|---------------------------|------------------------|------------------------|
| Mov<br>ID    | Turn                         | INP<br>VOLU<br>[ Total<br>veh/h |        | DEM,<br>FLO<br>[ Total<br>veh/h |      | Deg.<br>Satn<br>v/c |      | Level of<br>Service | 95% BA<br>QUE<br>[ Veh.<br>veh |      | Prop.<br>Que | Effective<br>Stop<br>Rate | Aver.<br>No.<br>Cycles | Aver.<br>Speed<br>km/h |
| South        | n: Banl                      | k Street                        |        |                                 |      |                     |      |                     |                                |      |              |                           |                        |                        |
| 3            | L2                           | 21                              | 2.0    | 21                              | 2.0  | 0.618               | 16.0 | LOS C               | 4.9                            | 38.2 | 0.76         | 0.96                      | 1.36                   | 49.0                   |
| 8            | T1                           | 766                             | 4.0    | 766                             | 4.0  | 0.618               | 15.6 | LOS C               | 4.9                            | 38.2 | 0.75         | 0.96                      | 1.35                   | 49.1                   |
| 18           | R2                           | 115                             | 20.0   | 115                             | 20.0 | 0.618               | 15.9 | LOS C               | 4.8                            | 38.7 | 0.73         | 0.95                      | 1.34                   | 47.5                   |
| Appr         | oach                         | 902                             | 6.0    | 902                             | 6.0  | 0.618               | 15.7 | LOS C               | 4.9                            | 38.7 | 0.75         | 0.96                      | 1.35                   | 48.9                   |
| East:        | Earl A                       | rmstrong                        | Road   |                                 |      |                     |      |                     |                                |      |              |                           |                        |                        |
| 1            | L2                           | 55                              | 32.0   | 55                              | 32.0 | 0.688               | 23.5 | LOS C               | 4.6                            | 42.9 | 0.75         | 1.08                      | 1.74                   | 43.6                   |
| 6            | T1                           | 308                             | 24.0   | 308                             | 24.0 | 0.688               | 23.1 | LOS C               | 4.6                            | 42.9 | 0.75         | 1.08                      | 1.74                   | 44.1                   |
| 16           | R2                           | 16                              | 34.0   | 16                              | 34.0 | 0.688               | 23.6 | LOS C               | 4.6                            | 42.9 | 0.75         | 1.08                      | 1.74                   | 42.8                   |
| Appr         | oach                         | 379                             | 25.6   | 379                             | 25.6 | 0.688               | 23.2 | LOS C               | 4.6                            | 42.9 | 0.75         | 1.08                      | 1.74                   | 44.0                   |
| North        | ı: Bank                      | Street                          |        |                                 |      |                     |      |                     |                                |      |              |                           |                        |                        |
| 7            | L2                           | 15                              | 16.0   | 15                              | 16.0 | 0.347               | 8.9  | LOSA                | 1.4                            | 11.5 | 0.56         | 0.54                      | 0.56                   | 53.5                   |
| 4            | T1                           | 534                             | 10.0   | 534                             | 10.0 | 0.347               | 8.4  | LOSA                | 1.4                            | 11.5 | 0.55         | 0.52                      | 0.55                   | 54.2                   |
| 14           | R2                           | 23                              | 12.0   | 23                              | 12.0 | 0.347               | 8.2  | LOSA                | 1.4                            | 11.4 | 0.54         | 0.51                      | 0.54                   | 52.7                   |
| Appr         | oach                         | 572                             | 10.2   | 572                             | 10.2 | 0.347               | 8.4  | LOSA                | 1.4                            | 11.5 | 0.55         | 0.52                      | 0.55                   | 54.1                   |
| West         | : Earl /                     | Armstron                        | g Road |                                 |      |                     |      |                     |                                |      |              |                           |                        |                        |
| 5            | L2                           | 28                              | 0.0    | 28                              | 0.0  | 0.039               | 5.4  | LOSA                | 0.1                            | 1.0  | 0.53         | 0.46                      | 0.53                   | 52.9                   |
| 2            | T1                           | 574                             | 7.0    | 574                             | 7.0  | 0.790               | 24.4 | LOS C               | 9.7                            | 77.8 | 0.86         | 1.28                      | 2.11                   | 44.2                   |
| 12           | R2                           | 16                              | 5.0    | 16                              | 5.0  | 0.790               | 24.3 | LOS C               | 9.7                            | 77.8 | 0.86         | 1.28                      | 2.11                   | 43.1                   |
| Appr         | oach                         | 618                             | 6.6    | 618                             | 6.6  | 0.790               | 23.5 | LOS C               | 9.7                            | 77.8 | 0.84         | 1.25                      | 2.03                   | 44.5                   |
| All<br>Vehic | eles                         | 2471                            | 10.1   | 2471                            | 10.1 | 0.790               | 17.1 | LOS C               | 9.7                            | 77.8 | 0.73         | 0.95                      | 1.40                   | 47.9                   |

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

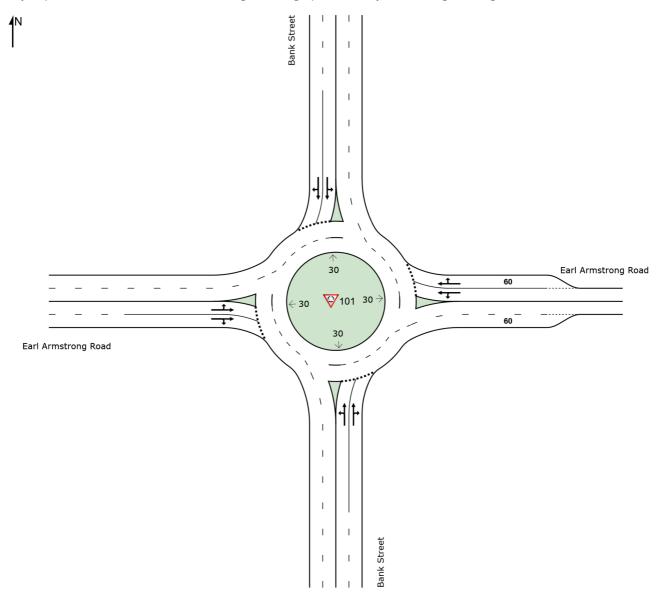
Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Organisation: ARCADIS U.S., INC. | Licence: PLUS / 1PC | Processed: October 18, 2025 12:57:25 PM
Project: C:\Users\pascolob9709.ARCADIS\ARCADIS\145172 Cattizone Parcel 4858 Bank St - Internal Documents\6.0\_Technical\6.23\_Traffic \05\_Analytic Models\CattizoneLands\_Future\_2025-10-18.sip9


## SITE LAYOUT

## ▼ Site: 101 [Bank & Earl Armstrong (w Mods) (Site Folder: BG)

2036 w Ext AM)]

Bank Street & Earl Armstrong Road Future (2036) Background Traffic with Earl Armstrong Extension AM Peak Hour (with Modifications) Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.



#### **MOVEMENT SUMMARY**

## 😽 Site: 101 [Bank & Earl Armstrong (w Mods) (Site Folder: BG

2036 w Ext AM)]

Bank Street & Earl Armstrong Road Future (2036) Background Traffic with Earl Armstrong Extension AM Peak Hour (with Modifications) Site Category: (None)

Roundabout

| Vehi         | icle M           | ovemen         | t Perfo     | rmance         |           |       |       |          |              |               |      |              |               |       |
|--------------|------------------|----------------|-------------|----------------|-----------|-------|-------|----------|--------------|---------------|------|--------------|---------------|-------|
|              | Turn             |                | PUT         | DEM            |           | Deg.  |       | Level of | 95% BA       |               |      | Effective    | Aver.         | Aver. |
| ID           |                  | VOLU<br>[Total | JMES<br>HV] | FLO<br>[ Total | WS<br>HV1 | Satn  | Delay | Service  | QUE<br>[Veh. | EUE<br>Dist ] | Que  | Stop<br>Rate | No.<br>Cycles | Speed |
|              |                  | veh/h          | пv ј<br>%   | veh/h          | пv ј<br>% | v/c   | sec   |          | veh          | m m           |      | Nate         | Cycles        | km/h  |
| Sout         | h: Banl          | k Street       |             |                |           |       |       |          |              |               |      |              |               |       |
| 3            | L2               | 21             | 2.0         | 21             | 2.0       | 0.618 | 16.0  | LOS C    | 4.9          | 38.2          | 0.76 | 0.96         | 1.36          | 49.0  |
| 8            | T1               | 766            | 4.0         | 766            | 4.0       | 0.618 | 15.6  | LOS C    | 4.9          | 38.2          | 0.75 | 0.96         | 1.35          | 49.1  |
| 18           | R2               | 115            | 20.0        | 115            | 20.0      | 0.618 | 20.2  | LOS C    | 4.8          | 38.7          | 0.73 | 0.95         | 1.34          | 47.5  |
| Appr         | oach             | 902            | 6.0         | 902            | 6.0       | 0.618 | 16.2  | LOS C    | 4.9          | 38.7          | 0.75 | 0.96         | 1.35          | 48.9  |
| East         | : Earl A         | rmstrong       | Road        |                |           |       |       |          |              |               |      |              |               |       |
| 1            | L2               | 55             | 32.0        | 55             | 32.0      | 0.363 | 13.6  | LOS B    | 1.3          | 11.9          | 0.65 | 0.72         | 0.85          | 48.7  |
| 6            | T1               | 308            | 24.0        | 308            | 24.0      | 0.363 | 12.4  | LOS B    | 1.3          | 11.8          | 0.64 | 0.71         | 0.83          | 50.5  |
| 16           | R2               | 16             | 34.0        | 16             | 34.0      | 0.363 | 12.4  | LOS B    | 1.3          | 11.8          | 0.64 | 0.70         | 0.82          | 49.2  |
| Appr         | oach             | 379            | 25.6        | 379            | 25.6      | 0.363 | 12.6  | LOS B    | 1.3          | 11.9          | 0.64 | 0.71         | 0.84          | 50.2  |
| North        | n: Bank          | Street         |             |                |           |       |       |          |              |               |      |              |               |       |
| 7            | L2               | 15             | 16.0        | 15             | 16.0      | 0.347 | 8.9   | LOSA     | 1.4          | 11.5          | 0.56 | 0.54         | 0.56          | 53.5  |
| 4            | T1               | 534            | 10.0        | 534            | 10.0      | 0.347 | 8.4   | LOS A    | 1.4          | 11.5          | 0.55 | 0.52         | 0.55          | 54.2  |
| 14           | R2               | 23             | 12.0        | 23             | 12.0      | 0.347 | 8.2   | LOSA     | 1.4          | 11.4          | 0.54 | 0.51         | 0.54          | 52.7  |
| Appr         | oach             | 572            | 10.2        | 572            | 10.2      | 0.347 | 8.4   | LOSA     | 1.4          | 11.5          | 0.55 | 0.52         | 0.55          | 54.1  |
| West         | t: Earl <i>i</i> | Armstron       | g Road      |                |           |       |       |          |              |               |      |              |               |       |
| 5            | L2               | 28             | 0.0         | 28             | 0.0       | 0.564 | 13.4  | LOS B    | 3.9          | 30.9          | 0.71 | 0.88         | 1.20          | 50.6  |
| 2            | T1               | 574            | 7.0         | 574            | 7.0       | 0.564 | 13.5  | LOS B    | 3.9          | 30.9          | 0.68 | 0.79         | 1.01          | 51.4  |
| 12           | R2               | 16             | 5.0         | 16             | 5.0       | 0.288 | 8.8   | LOSA     | 1.1          | 8.7           | 0.61 | 0.61         | 0.61          | 52.4  |
| Appr         | oach             | 618            | 6.6         | 618            | 6.6       | 0.564 | 13.4  | LOS B    | 3.9          | 30.9          | 0.68 | 0.79         | 1.01          | 51.3  |
| All<br>Vehic | cles             | 2471           | 10.1        | 2471           | 10.1      | 0.618 | 13.1  | LOS B    | 4.9          | 38.7          | 0.67 | 0.78         | 1.00          | 50.8  |

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: ARCADIS U.S., INC. | Licence: PLUS / 1PC | Processed: October 18, 2025 12:57:25 PM
Project: C:\Users\pascolob9709.ARCADIS\ARCADIS\145172 Cattizone Parcel 4858 Bank St - Internal Documents\6.0\_Technical\6.23\_Traffic \05\_Analytic Models\CattizoneLands\_Future\_2025-10-18.sip9

|                         | ۶       | <b>→</b> | •        | •        | <b>←</b>       | •        | •       | †          | <i>&gt;</i> | <b>/</b> | <b>+</b> | 4       |
|-------------------------|---------|----------|----------|----------|----------------|----------|---------|------------|-------------|----------|----------|---------|
| Lane Group              | EBL     | EBT      | EBR      | WBL      | WBT            | WBR      | NBL     | NBT        | NBR         | SBL      | SBT      | SBR     |
| Lane Configurations     | ች       | <b>f</b> |          | ሻ        | f <sub>a</sub> |          | ች       | <b>↑</b> ↑ |             | *        | <b>^</b> | 7       |
| Traffic Volume (vph)    | 132     | 23       | 34       | 54       | 32             | 62       | 18      | 886        | 45          | 50       | 1154     | 187     |
| Future Volume (vph)     | 132     | 23       | 34       | 54       | 32             | 62       | 18      | 886        | 45          | 50       | 1154     | 187     |
| Ideal Flow (vphpl)      | 1800    | 1800     | 1800     | 1800     | 1800           | 1800     | 1800    | 1800       | 1800        | 1800     | 1800     | 1800    |
| Storage Length (m)      | 100.0   |          | 0.0      | 40.0     |                | 0.0      | 100.0   |            | 0.0         | 75.0     |          | 175.0   |
| Storage Lanes           | 1       |          | 0        | 1        |                | 0        | 1       |            | 0           | 1        |          | 1       |
| Taper Length (m)        | 20.0    |          |          | 20.0     |                |          | 20.0    |            |             | 20.0     |          |         |
| Lane Util. Factor       | 1.00    | 1.00     | 1.00     | 1.00     | 1.00           | 1.00     | 1.00    | 0.95       | 0.95        | 1.00     | 0.95     | 1.00    |
| Ped Bike Factor         |         |          |          |          |                |          | 1.00    |            |             |          |          | 0.98    |
| Frt                     |         | 0.911    |          |          | 0.901          |          |         | 0.993      |             |          |          | 0.850   |
| Flt Protected           | 0.950   |          |          | 0.950    |                |          | 0.950   |            |             | 0.950    |          |         |
| Satd. Flow (prot)       | 1729    | 1427     | 0        | 1530     | 1602           | 0        | 1729    | 3286       | 0           | 1601     | 3325     | 1517    |
| Flt Permitted           | 0.696   |          |          | 0.720    |                |          | 0.221   |            |             | 0.291    |          |         |
| Satd. Flow (perm)       | 1267    | 1427     | 0        | 1160     | 1602           | 0        | 402     | 3286       | 0           | 490      | 3325     | 1481    |
| Right Turn on Red       |         |          | Yes      |          |                | Yes      |         | 0_00       | Yes         |          |          | Yes     |
| Satd. Flow (RTOR)       |         | 34       |          |          | 62             |          |         | 9          |             |          |          | 187     |
| Link Speed (k/h)        |         | 50       |          |          | 50             |          |         | 50         |             |          | 50       |         |
| Link Distance (m)       |         | 528.6    |          |          | 234.2          |          |         | 451.0      |             |          | 177.6    |         |
| Travel Time (s)         |         | 38.1     |          |          | 16.9           |          |         | 32.5       |             |          | 12.8     |         |
| Confl. Peds. (#/hr)     |         |          |          |          |                |          | 2       | 00         |             |          |          | 2       |
| Peak Hour Factor        | 1.00    | 1.00     | 1.00     | 1.00     | 1.00           | 1.00     | 1.00    | 1.00       | 1.00        | 1.00     | 1.00     | 1.00    |
| Heavy Vehicles (%)      | 0%      | 9%       | 21%      | 13%      | 3%             | 2%       | 0%      | 4%         | 14%         | 8%       | 4%       | 2%      |
| Adj. Flow (vph)         | 132     | 23       | 34       | 54       | 32             | 62       | 18      | 886        | 45          | 50       | 1154     | 187     |
| Shared Lane Traffic (%) |         |          | <u> </u> | <u> </u> |                | <u> </u> |         |            |             |          |          |         |
| Lane Group Flow (vph)   | 132     | 57       | 0        | 54       | 94             | 0        | 18      | 931        | 0           | 50       | 1154     | 187     |
| Turn Type               | Perm    | NA       |          | Perm     | NA             |          | Perm    | NA         |             | Perm     | NA       | Perm    |
| Protected Phases        | 1 01111 | 4        |          | 1 01111  | 8              |          | 1 01111 | 2          |             | 1 01111  | 6        | 1 01111 |
| Permitted Phases        | 4       |          |          | 8        |                |          | 2       | _          |             | 6        |          | 6       |
| Detector Phase          | 4       | 4        |          | 8        | 8              |          | 2       | 2          |             | 6        | 6        | 6       |
| Switch Phase            |         |          |          |          |                |          | _       | _          |             |          |          |         |
| Minimum Initial (s)     | 10.0    | 10.0     |          | 10.0     | 10.0           |          | 10.0    | 10.0       |             | 10.0     | 10.0     | 10.0    |
| Minimum Split (s)       | 33.8    | 33.8     |          | 33.8     | 33.8           |          | 42.6    | 42.6       |             | 42.6     | 42.6     | 42.6    |
| Total Split (s)         | 35.0    | 35.0     |          | 35.0     | 35.0           |          | 85.0    | 85.0       |             | 85.0     | 85.0     | 85.0    |
| Total Split (%)         | 29.2%   | 29.2%    |          | 29.2%    | 29.2%          |          | 70.8%   | 70.8%      |             | 70.8%    | 70.8%    | 70.8%   |
| Maximum Green (s)       | 28.2    | 28.2     |          | 28.2     | 28.2           |          | 77.4    | 77.4       |             | 77.4     | 77.4     | 77.4    |
| Yellow Time (s)         | 3.6     | 3.6      |          | 3.6      | 3.6            |          | 5.0     | 5.0        |             | 5.0      | 5.0      | 5.0     |
| All-Red Time (s)        | 3.2     | 3.2      |          | 3.2      | 3.2            |          | 2.6     | 2.6        |             | 2.6      | 2.6      | 2.6     |
| Lost Time Adjust (s)    | 0.0     | 0.0      |          | 0.0      | 0.0            |          | 0.0     | 0.0        |             | 0.0      | 0.0      | 0.0     |
| Total Lost Time (s)     | 6.8     | 6.8      |          | 6.8      | 6.8            |          | 7.6     | 7.6        |             | 7.6      | 7.6      | 7.6     |
| Lead/Lag                | 0.0     | 0.0      |          | 0.0      | 0.0            |          | 7.0     | 7.0        |             | 7.0      | 7.0      | 7.0     |
| Lead-Lag Optimize?      |         |          |          |          |                |          |         |            |             |          |          |         |
| Vehicle Extension (s)   | 3.0     | 3.0      |          | 3.0      | 3.0            |          | 3.0     | 3.0        |             | 3.0      | 3.0      | 3.0     |
| Recall Mode             | None    | None     |          | None     | None           |          | C-Max   | C-Max      |             | C-Max    | C-Max    | C-Max   |
| Walk Time (s)           | 7.0     | 7.0      |          | 7.0      | 7.0            |          | 7.0     | 7.0        |             | 7.0      | 7.0      | 7.0     |
| Flash Dont Walk (s)     | 20.0    | 20.0     |          | 20.0     | 20.0           |          | 28.0    | 28.0       |             | 28.0     | 28.0     | 28.0    |
| Pedestrian Calls (#/hr) | 20.0    | 20.0     |          | 20.0     | 20.0           |          | 20.0    | 20.0       |             | 20.0     | 20.0     | 20.0    |
| Act Effct Green (s)     | 17.8    | 17.8     |          | 17.8     | 17.8           |          | 87.8    | 87.8       |             | 87.8     | 87.8     | 87.8    |
| . ,                     |         |          |          |          |                |          |         |            |             |          |          |         |
| Actuated g/C Ratio      | 0.15    | 0.15     |          | 0.15     | 0.15           |          | 0.73    | 0.73       |             | 0.73     | 0.73     | 0.73    |
| v/c Ratio               | 0.71    | 0.24     |          | 0.31     | 0.32           |          | 0.06    | 0.39       |             | 0.14     | 0.47     | 0.17    |

Lanes, Volumes, Timings EM

Synchro 11 Report October 2025

|                        | •     | <b>→</b> | •   | •    | ←     | •   | •     | <b>†</b> | <b>/</b> | -    | <b>↓</b> | 1     |
|------------------------|-------|----------|-----|------|-------|-----|-------|----------|----------|------|----------|-------|
| Lane Group             | EBL   | EBT      | EBR | WBL  | WBT   | WBR | NBL   | NBT      | NBR      | SBL  | SBT      | SBR   |
| Control Delay          | 67.5  | 23.3     |     | 48.3 | 20.3  |     | 4.9   | 4.0      |          | 7.2  | 8.0      | 1.3   |
| Queue Delay            | 0.0   | 0.0      |     | 0.0  | 0.0   |     | 0.0   | 0.0      |          | 0.0  | 0.0      | 0.0   |
| Total Delay            | 67.5  | 23.3     |     | 48.3 | 20.3  |     | 4.9   | 4.0      |          | 7.2  | 8.0      | 1.3   |
| LOS                    | Е     | С        |     | D    | С     |     | Α     | Α        |          | Α    | Α        | Α     |
| Approach Delay         |       | 54.2     |     |      | 30.5  |     |       | 4.0      |          |      | 7.1      |       |
| Approach LOS           |       | D        |     |      | С     |     |       | Α        |          |      | Α        |       |
| Queue Length 50th (m)  | 27.6  | 4.4      |     | 10.6 | 6.1   |     | 0.5   | 13.5     |          | 2.8  | 47.5     | 0.0   |
| Queue Length 95th (m)  | 43.9  | 14.4     |     | 20.6 | 18.6  |     | m1.2  | m24.0    |          | 8.6  | 74.9     | 6.4   |
| Internal Link Dist (m) |       | 504.6    |     |      | 210.2 |     |       | 427.0    |          |      | 153.6    |       |
| Turn Bay Length (m)    | 100.0 |          |     | 40.0 |       |     | 100.0 |          |          | 75.0 |          | 175.0 |
| Base Capacity (vph)    | 297   | 361      |     | 272  | 423   |     | 294   | 2407     |          | 358  | 2433     | 1133  |
| Starvation Cap Reductn | 0     | 0        |     | 0    | 0     |     | 0     | 0        |          | 0    | 0        | 0     |
| Spillback Cap Reductn  | 0     | 0        |     | 0    | 0     |     | 0     | 0        |          | 0    | 0        | 0     |
| Storage Cap Reductn    | 0     | 0        |     | 0    | 0     |     | 0     | 0        |          | 0    | 0        | 0     |
| Reduced v/c Ratio      | 0.44  | 0.16     |     | 0.20 | 0.22  |     | 0.06  | 0.39     |          | 0.14 | 0.47     | 0.17  |

Intersection Summary

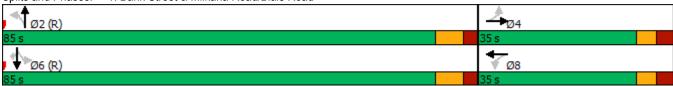
Area Type: Other

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 18 (15%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.71

Intersection Signal Delay: 10.6 Intersection LOS: B
Intersection Capacity Utilization 70.2% ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal

Splits and Phases: 1: Bank Street & Miikana Road/Blais Road



|                         | ۶        | •        | 1        | <b>†</b> | <b>+</b> | 1        |
|-------------------------|----------|----------|----------|----------|----------|----------|
| Lane Group              | EBL      | EBR      | NBL      | NBT      | SBT      | SBR      |
|                         | CDL<br>Š | EDK      | NDL<br>T |          |          | ODK<br>7 |
| Lane Configurations     |          |          |          | 672      | 1022     |          |
| Traffic Volume (vph)    | 269      | 71<br>71 | 108      | 673      | 1023     | 135      |
| Future Volume (vph)     | 269      | 71       | 108      | 673      | 1023     | 135      |
| Ideal Flow (vphpl)      | 1800     | 1800     | 1800     | 1800     | 1800     | 1800     |
| Storage Length (m)      | 25.0     | 0.0      | 120.0    |          |          | 100.0    |
| Storage Lanes           | 1        | 1        | 1        |          |          | 1        |
| Taper Length (m)        | 20.0     |          | 20.0     |          |          |          |
| Lane Util. Factor       | 1.00     | 1.00     | 1.00     | 1.00     | 1.00     | 1.00     |
| Frt                     |          | 0.850    |          |          |          | 0.850    |
| Flt Protected           | 0.950    |          | 0.950    |          |          |          |
| Satd. Flow (prot)       | 1601     | 1369     | 1679     | 1701     | 1733     | 1532     |
| Flt Permitted           | 0.950    |          | 0.153    |          |          |          |
| Satd. Flow (perm)       | 1601     | 1369     | 270      | 1701     | 1733     | 1532     |
| Right Turn on Red       |          | Yes      |          |          |          | Yes      |
| Satd. Flow (RTOR)       |          | 71       |          |          |          | 135      |
| Link Speed (k/h)        | 50       | , ,      |          | 80       | 80       | 100      |
| Link Distance (m)       | 528.6    |          |          | 273.1    | 451.0    |          |
| Travel Time (s)         | 38.1     |          |          | 12.3     | 20.3     |          |
| Peak Hour Factor        | 1.00     | 1.00     | 1.00     | 1.00     | 1.00     | 1.00     |
|                         |          |          |          |          |          |          |
| Heavy Vehicles (%)      | 8%       | 13%      | 3%       | 7%       | 5%       | 1%       |
| Adj. Flow (vph)         | 269      | 71       | 108      | 673      | 1023     | 135      |
| Shared Lane Traffic (%) |          |          | 400      |          | 4000     |          |
| Lane Group Flow (vph)   | 269      | 71       | 108      | 673      | 1023     | 135      |
| Turn Type               | Perm     | Perm     | Perm     | NA       | NA       | Perm     |
| Protected Phases        |          |          |          | 2        | 6        |          |
| Permitted Phases        | 4        | 4        | 2        |          |          | 6        |
| Detector Phase          | 4        | 4        | 2        | 2        | 6        | 6        |
| Switch Phase            |          |          |          |          |          |          |
| Minimum Initial (s)     | 10.0     | 10.0     | 10.0     | 10.0     | 10.0     | 10.0     |
| Minimum Split (s)       | 22.6     | 22.6     | 21.7     | 21.7     | 21.7     | 21.7     |
| Total Split (s)         | 30.0     | 30.0     | 90.0     | 90.0     | 90.0     | 90.0     |
| Total Split (%)         | 25.0%    | 25.0%    | 75.0%    | 75.0%    | 75.0%    | 75.0%    |
| Maximum Green (s)       | 23.4     | 23.4     | 83.3     | 83.3     | 83.3     | 83.3     |
| Yellow Time (s)         | 3.3      | 3.3      | 4.6      | 4.6      | 4.6      | 4.6      |
|                         |          |          |          |          |          |          |
| All-Red Time (s)        | 3.3      | 3.3      | 2.1      | 2.1      | 2.1      | 2.1      |
| Lost Time Adjust (s)    | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
| Total Lost Time (s)     | 6.6      | 6.6      | 6.7      | 6.7      | 6.7      | 6.7      |
| Lead/Lag                |          |          |          |          |          |          |
| Lead-Lag Optimize?      |          |          |          |          |          |          |
| Vehicle Extension (s)   | 3.0      | 3.0      | 3.0      | 3.0      | 3.0      | 3.0      |
| Recall Mode             | None     | None     | C-Max    | C-Max    | C-Max    | C-Max    |
| Walk Time (s)           | 7.0      | 7.0      | 7.0      | 7.0      | 7.0      | 7.0      |
| Flash Dont Walk (s)     | 9.0      | 9.0      | 8.0      | 8.0      | 8.0      | 8.0      |
| Pedestrian Calls (#/hr) | 0        | 0        | 0        | 0        | 0        | 0        |
| Act Effct Green (s)     | 22.5     | 22.5     | 84.2     | 84.2     | 84.2     | 84.2     |
| Actuated g/C Ratio      | 0.19     | 0.19     | 0.70     | 0.70     | 0.70     | 0.70     |
| v/c Ratio               | 0.19     | 0.13     | 0.70     | 0.76     | 0.70     | 0.70     |
|                         |          |          |          |          |          | 0.12     |
| Control Delay           | 79.5     | 11.1     | 9.9      | 1.8      | 16.8     |          |
| Queue Delay             | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |

|                              | ٠             | *        | 1                      | <b>†</b>   | <b>\</b>   | 4            |      |
|------------------------------|---------------|----------|------------------------|------------|------------|--------------|------|
| Lane Group                   | EBL           | EBR      | NBL                    | NBT        | SBT        | SBR          |      |
| Total Delay                  | 79.5          | 11.1     | 9.9                    | 1.8        | 16.8       | 0.4          |      |
| LOS                          | Е             | В        | Α                      | Α          | В          | Α            |      |
| Approach Delay               | 65.2          |          |                        | 2.9        | 14.9       |              |      |
| Approach LOS                 | E             |          |                        | Α          | В          |              |      |
| Queue Length 50th (m)        | 57.0          | 0.0      | 0.5                    | 3.5        | 160.7      | 0.0          |      |
| Queue Length 95th (m)        | #98.8         | 11.3     | m0.9                   | m5.0       | 102.1      | 1.2          |      |
| Internal Link Dist (m)       | 504.6         |          |                        | 249.1      | 427.0      |              |      |
| Turn Bay Length (m)          | 25.0          |          | 120.0                  |            |            | 100.0        |      |
| Base Capacity (vph)          | 312           | 324      | 189                    | 1193       | 1216       | 1115         |      |
| Starvation Cap Reductn       | 0             | 0        | 0                      | 0          | 0          | 0            |      |
| Spillback Cap Reductn        | 0             | 0        | 0                      | 0          | 0          | 0            |      |
| Storage Cap Reductn          | 0             | 0        | 0                      | 0          | 0          | 0            |      |
| Reduced v/c Ratio            | 0.86          | 0.22     | 0.57                   | 0.56       | 0.84       | 0.12         |      |
| Intersection Summary         |               |          |                        |            |            |              |      |
| Area Type:                   | Other         |          |                        |            |            |              |      |
| Cycle Length: 120            |               |          |                        |            |            |              |      |
| Actuated Cycle Length: 12    |               |          |                        |            |            |              |      |
| Offset: 18 (15%), Reference  | ed to phase   | 2:NBTL   | and 6:SB               | T, Start o | f Green    |              |      |
| Natural Cycle: 90            |               |          |                        |            |            |              |      |
| Control Type: Actuated-Co    | ordinated     |          |                        |            |            |              |      |
| Maximum v/c Ratio: 0.90      |               |          |                        |            |            |              |      |
| Intersection Signal Delay:   |               |          |                        |            | tersection |              |      |
| Intersection Capacity Utiliz | ation 97.6%   |          |                        | IC         | CU Level   | of Service F |      |
| Analysis Period (min) 15     |               |          |                        |            |            |              |      |
| # 95th percentile volume     |               |          | ieue may               | be longe   | r.         |              |      |
| Queue shown is maxim         |               |          |                        |            |            |              |      |
| m Volume for 95th perce      | ntile queue i | s metere | d by upst              | ream sign  | nal.       |              |      |
| Splits and Phases: 2: Ba     | ank Street &  | Dun Skip | per Drive              | <b>!</b>   |            |              |      |
| <b>4</b>                     |               | <u>.</u> | <b>F</b> • · · · · · · |            |            |              |      |
| Ø2 (R)                       |               |          |                        |            |            |              | ⇒ Ø4 |
| 90 s                         |               |          |                        |            |            |              | 30 s |
| ₩ Ø6 (R)                     |               |          |                        |            |            |              |      |
| 00 =                         |               |          |                        |            |            |              |      |

| ntersection              |      |
|--------------------------|------|
| ntersection Delay, s/veh | 12.6 |
| ntersection LOS          | В    |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 13   | 260  | 95   | 48   | 179  | 78   | 48   | 38   | 34   | 105  | 57   | 28   |
| Future Vol, veh/h          | 13   | 260  | 95   | 48   | 179  | 78   | 48   | 38   | 34   | 105  | 57   | 28   |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 0    | 2    | 2    | 0    | 0    | 5    | 0    | 0    | 0    | 2    | 15   | 0    |
| Mvmt Flow                  | 13   | 260  | 95   | 48   | 179  | 78   | 48   | 38   | 34   | 105  | 57   | 28   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 13.9 |      |      | 12.5 |      |      | 10.5 |      |      | 11.7 |      |      |
| HCM LOS                    | R    |      |      | R    |      |      | R    |      |      | R    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 40%   | 4%    | 16%   | 55%   |  |
| Vol Thru, %            | 32%   | 71%   | 59%   | 30%   |  |
| Vol Right, %           | 28%   | 26%   | 26%   | 15%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 120   | 368   | 305   | 190   |  |
| LT Vol                 | 48    | 13    | 48    | 105   |  |
| Through Vol            | 38    | 260   | 179   | 57    |  |
| RT Vol                 | 34    | 95    | 78    | 28    |  |
| Lane Flow Rate         | 120   | 368   | 305   | 190   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.198 | 0.527 | 0.446 | 0.313 |  |
| Departure Headway (Hd) | 5.949 | 5.156 | 5.27  | 5.935 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 600   | 696   | 680   | 604   |  |
| Service Time           | 4.017 | 3.206 | 3.323 | 3.996 |  |
| HCM Lane V/C Ratio     | 0.2   | 0.529 | 0.449 | 0.315 |  |
| HCM Control Delay      | 10.5  | 13.9  | 12.5  | 11.7  |  |
| HCM Lane LOS           | В     | В     | В     | В     |  |
| HCM 95th-tile Q        | 0.7   | 3.1   | 2.3   | 1.3   |  |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 13   | 43   | 6    | 37   | 37   | 56   | 3    | 60   | 38   | 29   | 59   | 9    |
| Future Vol, veh/h          | 13   | 43   | 6    | 37   | 37   | 56   | 3    | 60   | 38   | 29   | 59   | 9    |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 11   | 0    | 50   | 0    | 0    | 0    | 50   | 2    | 4    | 12   | 2    | 0    |
| Mvmt Flow                  | 13   | 43   | 6    | 37   | 37   | 56   | 3    | 60   | 38   | 29   | 59   | 9    |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 8.2  |      |      | 8.1  |      |      | 9    |      |      | 8.4  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 3%    | 21%   | 28%   | 30%   |  |
| Vol Thru, %            | 59%   | 69%   | 28%   | 61%   |  |
| Vol Right, %           | 38%   | 10%   | 43%   | 9%    |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 101   | 62    | 130   | 97    |  |
| LT Vol                 | 3     | 13    | 37    | 29    |  |
| Through Vol            | 60    | 43    | 37    | 59    |  |
| RT Vol                 | 38    | 6     | 56    | 9     |  |
| Lane Flow Rate         | 101   | 62    | 130   | 97    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.143 | 0.081 | 0.154 | 0.126 |  |
| Departure Headway (Hd) | 5.083 | 4.714 | 4.272 | 4.675 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 707   | 761   | 841   | 768   |  |
| Service Time           | 3.105 | 2.736 | 2.29  | 2.697 |  |
| HCM Lane V/C Ratio     | 0.143 | 0.081 | 0.155 | 0.126 |  |
| HCM Control Delay      | 9     | 8.2   | 8.1   | 8.4   |  |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.5   | 0.3   | 0.5   | 0.4   |  |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 16   | 57   | 9    | 25   | 43   | 34   | 13   | 40   | 35   | 29   | 41   | 16   |
| Future Vol, veh/h          | 16   | 57   | 9    | 25   | 43   | 34   | 13   | 40   | 35   | 29   | 41   | 16   |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 0    | 4    | 0    | 0    | 3    | 0    | 0    | 5    | 15   | 5    | 0    | 0    |
| Mvmt Flow                  | 16   | 57   | 9    | 25   | 43   | 34   | 13   | 40   | 35   | 29   | 41   | 16   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 7.9  |      |      | 7.8  |      |      | 7.7  |      |      | 8    |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 15%   | 20%   | 25%   | 34%   |  |
| Vol Thru, %            | 45%   | 70%   | 42%   | 48%   |  |
| Vol Right, %           | 40%   | 11%   | 33%   | 19%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 88    | 82    | 102   | 86    |  |
| LT Vol                 | 13    | 16    | 25    | 29    |  |
| Through Vol            | 40    | 57    | 43    | 41    |  |
| RT Vol                 | 35    | 9     | 34    | 16    |  |
| Lane Flow Rate         | 88    | 82    | 102   | 86    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.103 | 0.1   | 0.12  | 0.106 |  |
| Departure Headway (Hd) | 4.198 | 4.373 | 4.229 | 4.446 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 856   | 822   | 850   | 808   |  |
| Service Time           | 2.212 | 2.387 | 2.244 | 2.461 |  |
| HCM Lane V/C Ratio     | 0.103 | 0.1   | 0.12  | 0.106 |  |
| HCM Control Delay      | 7.7   | 7.9   | 7.8   | 8     |  |
| HCM Lane LOS           | А     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.3   | 0.3   | 0.4   | 0.4   |  |

| Intersection           |                  |      |        |       |        |      |
|------------------------|------------------|------|--------|-------|--------|------|
| Int Delay, s/veh       | 0                |      |        |       |        |      |
| Movement               | EBL              | EBR  | NBL    | NBT   | SBT    | SBR  |
| Lane Configurations    | ¥                |      |        | 4     | ĵ.     |      |
| Traffic Vol, veh/h     | 0                | 0    | 0      | 789   | 1064   | 0    |
| Future Vol, veh/h      | 0                | 0    | 0      | 789   | 1064   | 0    |
| Conflicting Peds, #/hr | 0                | 0    | 0      | 0     | 0      | 0    |
| Sign Control           | Stop             | Stop | Free   | Free  | Free   | Free |
| RT Channelized         | -                | None | -      | None  | -      | None |
| Storage Length         | 0                | -    | _      | -     | _      | -    |
| Veh in Median Storage  |                  | _    | _      | 0     | 0      | _    |
| Grade, %               | , <del>n</del> 0 | _    | _      | 0     | 0      | _    |
| Peak Hour Factor       | 100              | 100  | 100    | 100   | 100    | 100  |
| Heavy Vehicles, %      | 0                | 0    | 0      | 7     | 6      | 0    |
| Mvmt Flow              | 0                | 0    | 0      | 789   | 1064   | 0    |
| MINITIL FIOW           | U                | U    | U      | 709   | 1004   | U    |
|                        |                  |      |        |       |        |      |
| Major/Minor            | Minor2           | N    | Major1 | N     | Major2 |      |
| Conflicting Flow All   | 1853             | 1064 | 1064   | 0     | -      | 0    |
| Stage 1                | 1064             | -    | -      | -     | -      | -    |
| Stage 2                | 789              | _    | -      | _     | -      | _    |
| Critical Hdwy          | 6.4              | 6.2  | 4.1    | _     | _      | _    |
| Critical Hdwy Stg 1    | 5.4              | -    | -      | _     | _      | _    |
| Critical Hdwy Stg 2    | 5.4              | _    | _      | _     | _      | _    |
| Follow-up Hdwy         | 3.5              | 3.3  | 2.2    | _     | _      | _    |
| Pot Cap-1 Maneuver     | 82               | 273  | 662    | _     | _      | _    |
| Stage 1                | 335              | -    | - 002  | _     | _      | _    |
| Stage 2                | 451              | _    | _      | _     | _      | _    |
| Platoon blocked, %     | 701              |      |        | _     | _      | _    |
| Mov Cap-1 Maneuver     | 82               | 273  | 662    | -     |        | _    |
|                        | 82               | 213  |        |       |        |      |
| Mov Cap-2 Maneuver     |                  |      | -      | -     | -      | -    |
| Stage 1                | 335              | -    | -      | -     | -      | -    |
| Stage 2                | 451              | -    | -      | -     | -      | -    |
|                        |                  |      |        |       |        |      |
| Approach               | EB               |      | NB     |       | SB     |      |
| HCM Control Delay, s   | 0                |      | 0      |       | 0      |      |
| HCM LOS                | A                |      |        |       |        |      |
|                        |                  |      |        |       |        |      |
| N. 1 (0.4.)            |                  | NE   | Not    | EDL 4 | 057    | 000  |
| Minor Lane/Major Mvn   | nt               | NBL  | NBT    | EBLn1 | SBT    | SBR  |
| Capacity (veh/h)       |                  | 662  | -      | -     | -      | -    |
| HCM Lane V/C Ratio     |                  | -    | -      | -     | -      | -    |
| HCM Control Delay (s)  |                  | 0    | -      | 0     | -      | -    |
| HCM Lane LOS           |                  | Α    | -      | Α     | -      | -    |
| HCM 95th %tile Q(veh   | )                | 0    | -      | -     | -      | -    |
|                        | ,                |      |        |       |        |      |

|                         | ၨ        | <b>→</b> | •    | •     | <b>+</b> | •    | •     | †        | ~     | <b>\</b> | <b></b>  | 1    |
|-------------------------|----------|----------|------|-------|----------|------|-------|----------|-------|----------|----------|------|
| Lane Group              | EBL      | EBT      | EBR  | WBL   | WBT      | WBR  | NBL   | NBT      | NBR   | SBL      | SBT      | SBR  |
| Lane Configurations     | *        | ħβ       |      | ች     | 1>       |      | ሻ     | <b>†</b> | 7     | *        | <b>†</b> |      |
| Traffic Volume (vph)    | 31       | 521      | 41   | 120   | 665      | 16   | 17    | 741      | 86    | 11       | 997      | 56   |
| Future Volume (vph)     | 31       | 521      | 41   | 120   | 665      | 16   | 17    | 741      | 86    | 11       | 997      | 56   |
| Ideal Flow (vphpl)      | 1800     | 1800     | 1800 | 1800  | 1800     | 1800 | 1800  | 1800     | 1800  | 1800     | 1800     | 1800 |
| Storage Length (m)      | 25.0     | 1000     | 0.0  | 50.0  | 1000     | 0.0  | 20.0  | 1000     | 15.0  | 15.0     | 1000     | 0.0  |
| Storage Lanes           | 1        |          | 0.0  | 1     |          | 0.0  | 1     |          | 10.0  | 10.0     |          | 0.0  |
| Taper Length (m)        | 20.0     |          | U    | 20.0  |          | U    | 20.0  |          | '     | 20.0     |          | O    |
| Lane Util. Factor       | 1.00     | 0.95     | 0.95 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00     | 0.95     | 0.95 |
| Frt                     | 1.00     | 0.989    | 0.00 | 1.00  | 0.996    | 1.00 | 1.00  | 1.00     | 0.850 | 1.00     | 0.992    | 0.00 |
| Flt Protected           | 0.950    | 0.000    |      | 0.950 | 0.000    |      | 0.950 |          | 0.000 | 0.950    | 0.002    |      |
| Satd. Flow (prot)       | 1695     | 2973     | 0    | 1586  | 1664     | 0    | 1729  | 1750     | 1181  | 1465     | 3211     | 0    |
| Flt Permitted           | 0.127    |          | •    | 0.386 |          | •    | 0.164 |          |       | 0.115    | <u> </u> | J    |
| Satd. Flow (perm)       | 227      | 2973     | 0    | 645   | 1664     | 0    | 298   | 1750     | 1181  | 177      | 3211     | 0    |
| Right Turn on Red       |          |          | Yes  |       |          | Yes  |       |          | Yes   |          | <u> </u> | Yes  |
| Satd. Flow (RTOR)       |          | 8        | . 00 |       | 1        | 100  |       |          | 38    |          | 6        | 100  |
| Link Speed (k/h)        |          | 50       |      |       | 50       |      |       | 50       |       |          | 50       |      |
| Link Distance (m)       |          | 528.5    |      |       | 292.7    |      |       | 203.7    |       |          | 158.2    |      |
| Travel Time (s)         |          | 38.1     |      |       | 21.1     |      |       | 14.7     |       |          | 11.4     |      |
| Peak Hour Factor        | 1.00     | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00     | 1.00     | 1.00 |
| Heavy Vehicles (%)      | 2%       | 16%      | 3%   | 9%    | 9%       | 5%   | 0%    | 4%       | 31%   | 18%      | 7%       | 4%   |
| Adj. Flow (vph)         | 31       | 521      | 41   | 120   | 665      | 16   | 17    | 741      | 86    | 11       | 997      | 56   |
| Shared Lane Traffic (%) | <u> </u> | 02.      |      |       |          | .,   |       |          |       |          | 001      |      |
| Lane Group Flow (vph)   | 31       | 562      | 0    | 120   | 681      | 0    | 17    | 741      | 86    | 11       | 1053     | 0    |
| Turn Type               | Perm     | NA       | •    | Perm  | NA       | •    | Perm  | NA       | Perm  | Perm     | NA       | J    |
| Protected Phases        |          | 4        |      |       | 8        |      | . •   | 2        | . •   | . •      | 6        |      |
| Permitted Phases        | 4        | -        |      | 8     | -        |      | 2     | _        | 2     | 6        |          |      |
| Detector Phase          | 4        | 4        |      | 8     | 8        |      | 2     | 2        | 2     | 6        | 6        |      |
| Switch Phase            |          |          |      |       |          |      |       |          |       |          |          |      |
| Minimum Initial (s)     | 10.0     | 10.0     |      | 10.0  | 10.0     |      | 10.0  | 10.0     | 10.0  | 10.0     | 10.0     |      |
| Minimum Split (s)       | 36.2     | 36.2     |      | 36.2  | 36.2     |      | 36.2  | 36.2     | 36.2  | 36.2     | 36.2     |      |
| Total Split (s)         | 59.0     | 59.0     |      | 59.0  | 59.0     |      | 61.0  | 61.0     | 61.0  | 61.0     | 61.0     |      |
| Total Split (%)         | 49.2%    | 49.2%    |      | 49.2% | 49.2%    |      | 50.8% | 50.8%    | 50.8% | 50.8%    | 50.8%    |      |
| Maximum Green (s)       | 51.8     | 51.8     |      | 51.8  | 51.8     |      | 53.8  | 53.8     | 53.8  | 53.8     | 53.8     |      |
| Yellow Time (s)         | 5.0      | 5.0      |      | 5.0   | 5.0      |      | 5.0   | 5.0      | 5.0   | 5.0      | 5.0      |      |
| All-Red Time (s)        | 2.2      | 2.2      |      | 2.2   | 2.2      |      | 2.2   | 2.2      | 2.2   | 2.2      | 2.2      |      |
| Lost Time Adjust (s)    | 0.0      | 0.0      |      | 0.0   | 0.0      |      | 0.0   | 0.0      | 0.0   | 0.0      | 0.0      |      |
| Total Lost Time (s)     | 7.2      | 7.2      |      | 7.2   | 7.2      |      | 7.2   | 7.2      | 7.2   | 7.2      | 7.2      |      |
| Lead/Lag                |          |          |      |       |          |      |       |          |       |          |          |      |
| Lead-Lag Optimize?      |          |          |      |       |          |      |       |          |       |          |          |      |
| Vehicle Extension (s)   | 3.0      | 3.0      |      | 3.0   | 3.0      |      | 3.0   | 3.0      | 3.0   | 3.0      | 3.0      |      |
| Recall Mode             | None     | None     |      | None  | None     |      | C-Max | C-Max    | C-Max | C-Max    | C-Max    |      |
| Walk Time (s)           | 7.0      | 7.0      |      | 7.0   | 7.0      |      | 7.0   | 7.0      | 7.0   | 7.0      | 7.0      |      |
| Flash Dont Walk (s)     | 22.0     | 22.0     |      | 22.0  | 22.0     |      | 22.0  | 22.0     | 22.0  | 22.0     | 22.0     |      |
| Pedestrian Calls (#/hr) | 0        | 0        |      | 0     | 0        |      | 0     | 0        | 0     | 0        | 0        |      |
| Act Effct Green (s)     | 50.8     | 50.8     |      | 50.8  | 50.8     |      | 54.8  | 54.8     | 54.8  | 54.8     | 54.8     |      |
| Actuated g/C Ratio      | 0.42     | 0.42     |      | 0.42  | 0.42     |      | 0.46  | 0.46     | 0.46  | 0.46     | 0.46     |      |
| v/c Ratio               | 0.33     | 0.44     |      | 0.44  | 0.97     |      | 0.13  | 0.93     | 0.15  | 0.14     | 0.72     |      |
| Control Delay           | 32.1     | 23.9     |      | 30.4  | 60.9     |      | 22.5  | 50.4     | 12.3  | 34.9     | 41.2     |      |
| Queue Delay             | 0.0      | 0.0      |      | 0.0   | 0.0      |      | 0.0   | 0.0      | 0.0   | 0.0      | 0.0      |      |

|                        | •    | -     | •   | •    | ←      | •   | 4    | <b>†</b> | _    | -    | . ↓   | 1   |
|------------------------|------|-------|-----|------|--------|-----|------|----------|------|------|-------|-----|
| Lane Group             | EBL  | EBT   | EBR | WBL  | WBT    | WBR | NBL  | NBT      | NBR  | SBL  | SBT   | SBR |
| Total Delay            | 32.1 | 23.9  |     | 30.4 | 60.9   |     | 22.5 | 50.4     | 12.3 | 34.9 | 41.2  |     |
| LOS                    | С    | С     |     | С    | Е      |     | С    | D        | В    | С    | D     |     |
| Approach Delay         |      | 24.4  |     |      | 56.3   |     |      | 46.0     |      |      | 41.1  |     |
| Approach LOS           |      | С     |     |      | Е      |     |      | D        |      |      | D     |     |
| Queue Length 50th (m)  | 4.3  | 43.4  |     | 17.8 | 139.2  |     | 2.1  | 150.6    | 5.9  | 2.0  | 106.4 |     |
| Queue Length 95th (m)  | 13.0 | 57.4  |     | 34.3 | #210.3 |     | 6.9  | #223.3   | 15.0 | m2.5 | 127.2 |     |
| Internal Link Dist (m) |      | 504.5 |     |      | 268.7  |     |      | 179.7    |      |      | 134.2 |     |
| Turn Bay Length (m)    | 25.0 |       |     | 50.0 |        |     | 20.0 |          | 15.0 | 15.0 |       |     |
| Base Capacity (vph)    | 97   | 1287  |     | 278  | 718    |     | 135  | 798      | 559  | 80   | 1468  |     |
| Starvation Cap Reductn | 0    | 0     |     | 0    | 0      |     | 0    | 0        | 0    | 0    | 0     |     |
| Spillback Cap Reductn  | 0    | 0     |     | 0    | 0      |     | 0    | 0        | 0    | 0    | 0     |     |
| Storage Cap Reductn    | 0    | 0     |     | 0    | 0      |     | 0    | 0        | 0    | 0    | 0     |     |
| Reduced v/c Ratio      | 0.32 | 0.44  |     | 0.43 | 0.95   |     | 0.13 | 0.93     | 0.15 | 0.14 | 0.72  |     |

#### Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

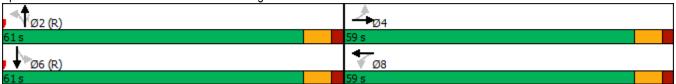
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.97

Intersection Signal Delay: 43.0 Intersection LOS: D
Intersection Capacity Utilization 105.5% ICU Level of Service G


Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

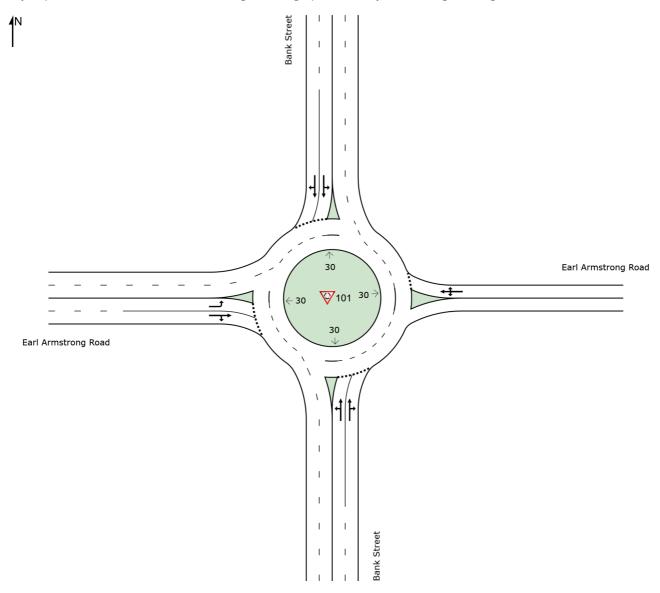
Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal

Splits and Phases: 7: Bank Street & Earl Armstrong Road



|                         | ٠          | <b>→</b>      | <b>←</b>   | •    | <b>/</b>  | 4      |
|-------------------------|------------|---------------|------------|------|-----------|--------|
| Lane Group              | EBL        | EBT           | WBT        | WBR  | SBL       | SBR    |
| Lane Configurations     | T T        | <b>†</b> †    | <b>↑</b> ↑ | WOR  | )<br>T    | 7 JUIN |
| Traffic Volume (vph)    | 17         | <b>TT</b> 589 | T ₱<br>729 | 9    | 4         | 18     |
| Future Volume (vph)     | 17         | 589           | 729        | 9    | 4         | 18     |
| Ideal Flow (vphpl)      | 1800       | 1800          | 1800       | 1800 | 1800      | 1800   |
| ( , , ,                 | 60.0       | 1000          | 1000       | 0.0  | 40.0      | 0.0    |
| Storage Length (m)      | 1          |               |            | 0.0  | 40.0      | 1      |
| Storage Lanes           |            |               |            | U    |           | I      |
| Taper Length (m)        | 20.0       | 0.05          | 0.05       | 0.05 | 20.0      | 1.00   |
| Lane Util. Factor       | 1.00       | 0.95          | 0.95       | 0.95 | 1.00      | 1.00   |
| Frt                     |            |               | 0.998      |      |           | 0.850  |
| Flt Protected           | 0.950      |               |            |      | 0.950     |        |
| Satd. Flow (prot)       | 1558       | 3144          | 3224       | 0    | 1729      | 1547   |
| Flt Permitted           | 0.371      |               |            |      | 0.950     |        |
| Satd. Flow (perm)       | 608        | 3144          | 3224       | 0    | 1729      | 1547   |
| Right Turn on Red       |            |               |            | Yes  |           | Yes    |
| Satd. Flow (RTOR)       |            |               | 1          |      |           | 18     |
| Link Speed (k/h)        |            | 50            | 50         |      | 50        |        |
| Link Distance (m)       |            | 222.0         | 528.5      |      | 431.1     |        |
| Travel Time (s)         |            | 16.0          | 38.1       |      | 31.0      |        |
| Peak Hour Factor        | 1.00       | 1.00          | 1.00       | 1.00 | 1.00      | 1.00   |
| Heavy Vehicles (%)      | 11%        | 10%           | 7%         | 11%  | 0%        | 0%     |
| Adj. Flow (vph)         | 17         | 589           | 729        | 9    | 4         | 18     |
| Shared Lane Traffic (%) | 17         | 509           | 123        | 9    | 4         | 10     |
| . ,                     | 17         | E00           | 738        | 0    | Λ         | 18     |
| Lane Group Flow (vph)   | 17<br>Dorm | 589           |            | 0    | 4<br>Drot |        |
| Turn Type               | Perm       | NA            | NA         |      | Prot      | Perm   |
| Protected Phases        |            | 4             | 8          |      | 6         |        |
| Permitted Phases        | 4          |               |            |      |           | 6      |
| Detector Phase          | 4          | 4             | 8          |      | 6         | 6      |
| Switch Phase            |            |               |            |      |           |        |
| Minimum Initial (s)     | 10.0       | 10.0          | 10.0       |      | 10.0      | 10.0   |
| Minimum Split (s)       | 24.8       | 24.8          | 24.8       |      | 33.8      | 33.8   |
| Total Split (s)         | 54.2       | 54.2          | 54.2       |      | 65.8      | 65.8   |
| Total Split (%)         | 45.2%      | 45.2%         | 45.2%      |      | 54.8%     | 54.8%  |
| Maximum Green (s)       | 47.4       | 47.4          | 47.4       |      | 59.0      | 59.0   |
| Yellow Time (s)         | 5.0        | 5.0           | 5.0        |      | 3.2       | 3.2    |
| All-Red Time (s)        | 1.8        | 1.8           | 1.8        |      | 3.6       | 3.6    |
| Lost Time Adjust (s)    | 0.0        | 0.0           | 0.0        |      | 0.0       | 0.0    |
| - ,                     | 6.8        | 6.8           | 6.8        |      | 6.8       | 6.8    |
| Total Lost Time (s)     | 0.0        | 0.0           | 0.0        |      | 0.0       | 0.0    |
| Lead/Lag                |            |               |            |      |           |        |
| Lead-Lag Optimize?      |            |               |            |      | 2.0       |        |
| Vehicle Extension (s)   | 3.0        | 3.0           | 3.0        |      | 3.0       | 3.0    |
| Recall Mode             | C-Max      | C-Max         | C-Max      |      | None      | None   |
| Walk Time (s)           | 7.0        | 7.0           | 7.0        |      | 7.0       | 7.0    |
| Flash Dont Walk (s)     | 11.0       | 11.0          | 11.0       |      | 20.0      | 20.0   |
| Pedestrian Calls (#/hr) | 0          | 0             | 0          |      | 0         | 0      |
| Act Effct Green (s)     | 110.6      | 110.6         | 110.6      |      | 10.0      | 10.0   |
| Actuated g/C Ratio      | 0.92       | 0.92          | 0.92       |      | 0.08      | 0.08   |
| v/c Ratio               | 0.03       | 0.20          | 0.25       |      | 0.03      | 0.12   |
| Control Delay           | 2.0        | 1.6           | 5.2        |      | 51.2      | 22.8   |
| Queue Delay             | 0.0        | 0.0           | 0.0        |      | 0.0       | 0.0    |
| Queue Delay             | 0.0        | 0.0           | 0.0        |      | 0.0       | 0.0    |


|                               | •             | <b>→</b>             | <b>+</b>   | •          | <b>\</b>   | 4           |    |
|-------------------------------|---------------|----------------------|------------|------------|------------|-------------|----|
| Lane Group                    | EBL           | EBT                  | WBT        | WBR        | SBL        | SBR         |    |
| Total Delay                   | 2.0           | 1.6                  | 5.2        |            | 51.2       | 22.8        |    |
| LOS                           | Α             | Α                    | Α          |            | D          | С           |    |
| Approach Delay                |               | 1.6                  | 5.2        |            | 28.0       |             |    |
| Approach LOS                  |               | Α                    | Α          |            | С          |             |    |
| Queue Length 50th (m)         | 0.0           | 0.0                  | 0.0        |            | 0.8        | 0.0         |    |
| Queue Length 95th (m)         | 1.8           | 17.0                 | m60.6      |            | 4.1        | 6.6         |    |
| Internal Link Dist (m)        |               | 198.0                | 504.5      |            | 407.1      |             |    |
| Turn Bay Length (m)           | 60.0          |                      |            |            | 40.0       |             |    |
| Base Capacity (vph)           | 560           | 2896                 | 2970       |            | 850        | 769         |    |
| Starvation Cap Reductn        | 0             | 0                    | 0          |            | 0          | 0           |    |
| Spillback Cap Reductn         | 0             | 0                    | 0          |            | 0          | 0           |    |
| Storage Cap Reductn           | 0             | 0                    | 0          |            | 0          | 0           |    |
| Reduced v/c Ratio             | 0.03          | 0.20                 | 0.25       |            | 0.00       | 0.02        |    |
| Intersection Summary          |               |                      |            |            |            |             |    |
| Area Type:                    | Other         |                      |            |            |            |             |    |
| Cycle Length: 120             |               |                      |            |            |            |             |    |
| Actuated Cycle Length: 120    |               |                      |            |            |            |             |    |
| Offset: 59.5 (50%), Referen   | nced to phas  | se 4:EBT             | L and 8:W  | /BT, Start | t of Green |             |    |
| Natural Cycle: 60             |               |                      |            |            |            |             |    |
| Control Type: Actuated-Cod    | ordinated     |                      |            |            |            |             |    |
| Maximum v/c Ratio: 0.25       |               |                      |            |            |            |             |    |
| Intersection Signal Delay: 4  |               |                      |            |            | tersection |             |    |
| Intersection Capacity Utiliza | ation 41.2%   |                      |            | IC         | CU Level o | f Service A |    |
| Analysis Period (min) 15      |               |                      |            |            |            |             |    |
| m Volume for 95th percer      | ntile queue i | s metere             | d by upsti | ream sign  | ıal.       |             |    |
| Splits and Phases: 8: Ea      | rl Armstrong  | n Road &             | Kelly Far  | m Drive    |            |             |    |
| Spine and Fridees. C. Ea.     |               | <del>, 11000 0</del> | rtony i ai |            |            | A           |    |
|                               |               |                      |            |            | •          | → Ø4 (R     | .) |
|                               |               |                      |            |            |            | JT. Z S     |    |
| <b>©</b> 06                   |               |                      |            |            |            | Ø8 (R       | )  |
| c= 0                          |               |                      |            |            |            | E4.0 -      | •  |

## SITE LAYOUT

# **♥** Site: 101 [Bank & Earl Armstrong (Site Folder: BG 2036 w Ext PM)]

Bank Street & Earl Armstrong Road Future (2036) Background Traffic with Earl Armstrong Extension PM Peak Hour Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.



SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ARCADIS U.S., INC. | Licence: PLUS / 1PC | Created: October 19, 2025 9:06:48 PM
Project: C:\Users\pascolob9709.ARCADIS\ARCADIS\145172 Cattizone Parcel 4858 Bank St - Internal Documents\6.0\_Technical\6.23\_Traffic \05\_Analytic Models\CattizoneLands\_Future\_2025-10-18.sip9

#### **MOVEMENT SUMMARY**

## 

PM)]

Bank Street & Earl Armstrong Road Future (2036) Background Traffic with Earl Armstrong Extension PM Peak Hour Site Category: (None) Roundabout

| Vehi  | cle M     | ovemen                          | t Perfo | rmance                          |      |                     |       |                     |      |                              |              |                           |                        |                        |
|-------|-----------|---------------------------------|---------|---------------------------------|------|---------------------|-------|---------------------|------|------------------------------|--------------|---------------------------|------------------------|------------------------|
|       | Turn      | INP<br>VOLU<br>[ Total<br>veh/h | TU      | DEM.<br>FLO<br>[ Total<br>veh/h |      | Deg.<br>Satn<br>v/c |       | Level of<br>Service |      | ACK OF<br>EUE<br>Dist ]<br>m | Prop.<br>Que | Effective<br>Stop<br>Rate | Aver.<br>No.<br>Cycles | Aver.<br>Speed<br>km/h |
| Sout  | h: Banl   | k Street                        |         |                                 |      |                     |       |                     |      |                              |              |                           |                        |                        |
| 3     | L2        | 17                              | 0.0     | 17                              | 0.0  | 0.521               | 11.7  | LOS B               | 3.6  | 27.9                         | 0.68         | 0.80                      | 1.01                   | 51.9                   |
| 8     | T1        | 741                             | 4.0     | 741                             | 4.0  | 0.521               | 11.7  | LOS B               | 3.6  | 27.9                         | 0.66         | 0.78                      | 0.99                   | 51.8                   |
| 18    | R2        | 86                              | 31.0    | 86                              | 31.0 | 0.521               | 12.4  | LOS B               | 3.4  | 27.6                         | 0.64         | 0.77                      | 0.97                   | 49.5                   |
| Appr  | oach      | 844                             | 6.7     | 844                             | 6.7  | 0.521               | 11.7  | LOS B               | 3.6  | 27.9                         | 0.66         | 0.78                      | 0.99                   | 51.6                   |
| East  | Earl A    | rmstrong                        | Road    |                                 |      |                     |       |                     |      |                              |              |                           |                        |                        |
| 1     | L2        | 120                             | 9.0     | 120                             | 9.0  | 1.233               | 139.2 | LOS F               | 62.9 | 513.8                        | 1.00         | 3.86                      | 9.84                   | 18.8                   |
| 6     | T1        | 665                             | 9.0     | 665                             | 9.0  | 1.233               | 139.2 | LOS F               | 62.9 | 513.8                        | 1.00         | 3.86                      | 9.84                   | 18.8                   |
| 16    | R2        | 16                              | 5.0     | 16                              | 5.0  | 1.233               | 139.0 | LOS F               | 62.9 | 513.8                        | 1.00         | 3.86                      | 9.84                   | 18.6                   |
| Appr  | oach      | 801                             | 8.9     | 801                             | 8.9  | 1.233               | 139.2 | LOS F               | 62.9 | 513.8                        | 1.00         | 3.86                      | 9.84                   | 18.8                   |
| North | n: Bank   | Street                          |         |                                 |      |                     |       |                     |      |                              |              |                           |                        |                        |
| 7     | L2        | 11                              | 18.0    | 11                              | 18.0 | 0.777               | 26.5  | LOS D               | 8.3  | 66.9                         | 0.85         | 1.24                      | 2.04                   | 43.0                   |
| 4     | T1        | 997                             | 7.0     | 997                             | 7.0  | 0.777               | 24.9  | LOS C               | 8.7  | 69.7                         | 0.85         | 1.24                      | 2.04                   | 43.9                   |
| 14    | R2        | 56                              | 4.0     | 56                              | 4.0  | 0.777               | 23.8  | LOS C               | 8.7  | 69.7                         | 0.84         | 1.24                      | 2.03                   | 43.3                   |
| Appr  | oach      | 1064                            | 7.0     | 1064                            | 7.0  | 0.777               | 24.9  | LOS C               | 8.7  | 69.7                         | 0.85         | 1.24                      | 2.04                   | 43.8                   |
| West  | :: Earl A | Armstron                        | g Road  |                                 |      |                     |       |                     |      |                              |              |                           |                        |                        |
| 5     | L2        | 31                              | 2.0     | 31                              | 2.0  | 0.070               | 9.1   | LOSA                | 0.2  | 1.8                          | 0.68         | 0.68                      | 0.68                   | 50.3                   |
| 2     | T1        | 521                             | 16.0    | 521                             | 16.0 | 1.249               | 156.6 | LOS F               | 45.4 | 388.6                        | 1.00         | 3.63                      | 9.98                   | 17.3                   |
| 12    | R2        | 41                              | 3.0     | 41                              | 3.0  | 1.249               | 155.7 | LOS F               | 45.4 | 388.6                        | 1.00         | 3.63                      | 9.98                   | 17.1                   |
| Appr  | oach      | 593                             | 14.4    | 593                             | 14.4 | 1.249               | 148.8 | LOS F               | 45.4 | 388.6                        | 0.98         | 3.48                      | 9.49                   | 17.9                   |

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

71.5 LOS F

62.9

513.8

0.86

2.16

5.00

28.3

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

1.249

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

3302

8.7

ΑII

Vehicles

Delay Model: HCM Delay Formula (Geometric Delay is not included).

3302

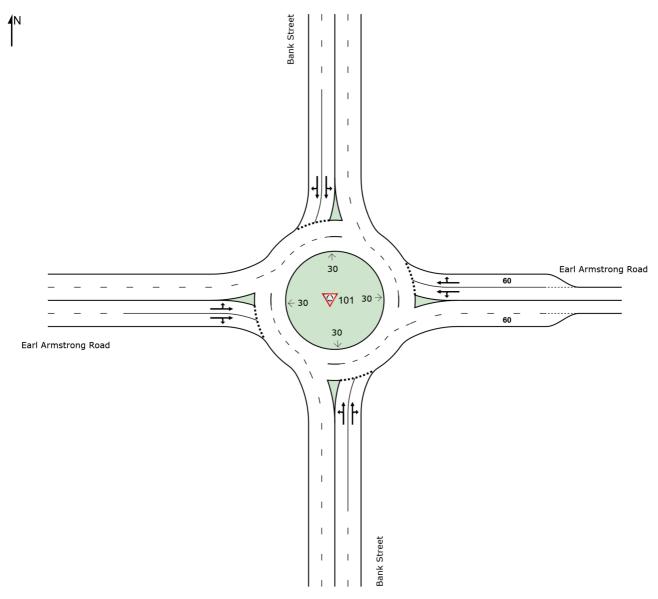
8.7

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Organisation: ARCADIS U.S., INC. | Licence: PLUS / 1PC | Processed: October 18, 2025 12:57:26 PM Project: C:\Users\pascolob9709.ARCADIS\ARCADIS\145172 Cattizone Parcel 4858 Bank St - Internal Documents\6.0\_Technical\6.23\_Traffic

\05\_Analytic Models\CattizoneLands\_Future\_2025-10-18.sip9


## SITE LAYOUT

# ♥ Site: 101 [Bank & Earl Armstrong (w Mods) (Site Folder: BG

2036 w Ext PM)]

Bank Street & Earl Armstrong Road Future (2036) Background Traffic with Earl Armstrong Extension PM Peak Hour (with Modifications) Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.



#### **MOVEMENT SUMMARY**

## 😽 Site: 101 [Bank & Earl Armstrong (w Mods) (Site Folder: BG

2036 w Ext PM)]

Bank Street & Earl Armstrong Road

Future (2036) Background Traffic with Earl Armstrong Extension

PM Peak Hour (with Modifications)

Site Category: (None)

Roundabout

| Vehi         | icle M    | ovemen         | t Perfo     | rmance         |           |       |       |          |               |             |      |           |        |       |
|--------------|-----------|----------------|-------------|----------------|-----------|-------|-------|----------|---------------|-------------|------|-----------|--------|-------|
|              | Turn      | INP            |             | DEM            |           | Deg.  |       | Level of | 95% BA        |             |      | Effective | Aver.  | Aver. |
| ID           |           | VOLU<br>[Total | IMES<br>HV] | FLO<br>[ Total | WS<br>HV] | Satn  | Delay | Service  | QUE           |             | Que  | Stop      | No.    | Speed |
|              |           | veh/h          | пv ј<br>%   | veh/h          | пv ј<br>% | v/c   | sec   |          | [ Veh.<br>veh | Dist ]<br>m |      | Rate      | Cycles | km/h  |
| Sout         | h: Banl   | k Street       |             |                |           |       |       |          |               |             |      |           |        |       |
| 3            | L2        | 17             | 0.0         | 17             | 0.0       | 0.577 | 14.4  | LOS B    | 4.2           | 32.8        | 0.74 | 0.91      | 1.24   | 50.1  |
| 8            | T1        | 741            | 4.0         | 741            | 4.0       | 0.577 | 14.2  | LOS B    | 4.2           | 32.8        | 0.72 | 0.90      | 1.23   | 50.0  |
| 18           | R2        | 86             | 31.0        | 86             | 31.0      | 0.577 | 18.9  | LOS C    | 4.0           | 32.9        | 0.71 | 0.89      | 1.22   | 48.0  |
| Appr         | oach      | 844            | 6.7         | 844            | 6.7       | 0.577 | 14.7  | LOS B    | 4.2           | 32.9        | 0.72 | 0.90      | 1.23   | 49.8  |
| East         | : Earl A  | rmstrong       | Road        |                |           |       |       |          |               |             |      |           |        |       |
| 1            | L2        | 120            | 9.0         | 120            | 9.0       | 0.650 | 20.1  | LOS C    | 4.6           | 37.4        | 0.78 | 1.02      | 1.53   | 45.5  |
| 6            | T1        | 665            | 9.0         | 665            | 9.0       | 0.650 | 19.1  | LOS C    | 4.7           | 38.5        | 0.77 | 1.01      | 1.52   | 46.7  |
| 16           | R2        | 16             | 5.0         | 16             | 5.0       | 0.650 | 18.3  | LOS C    | 4.7           | 38.5        | 0.77 | 1.01      | 1.51   | 46.2  |
| Appr         | oach      | 801            | 8.9         | 801            | 8.9       | 0.650 | 19.3  | LOS C    | 4.7           | 38.5        | 0.77 | 1.01      | 1.52   | 46.5  |
| North        | n: Bank   | Street         |             |                |           |       |       |          |               |             |      |           |        |       |
| 7            | L2        | 11             | 18.0        | 11             | 18.0      | 0.888 | 42.7  | LOS E    | 11.7          | 94.4        | 0.91 | 1.54      | 2.95   | 36.3  |
| 4            | T1        | 997            | 7.0         | 997            | 7.0       | 0.888 | 40.4  | LOS E    | 12.5          | 100.0       | 0.91 | 1.55      | 2.97   | 37.1  |
| 14           | R2        | 56             | 4.0         | 56             | 4.0       | 0.888 | 38.7  | LOS E    | 12.5          | 100.0       | 0.92 | 1.56      | 2.98   | 37.0  |
| Appr         | oach      | 1064           | 7.0         | 1064           | 7.0       | 0.888 | 40.4  | LOS E    | 12.5          | 100.0       | 0.91 | 1.55      | 2.97   | 37.1  |
| West         | t: Earl / | Armstron       | g Road      |                |           |       |       |          |               |             |      |           |        |       |
| 5            | L2        | 31             | 2.0         | 31             | 2.0       | 0.925 | 55.6  | LOS F    | 10.4          | 88.9        | 0.90 | 1.67      | 3.52   | 32.1  |
| 2            | T1        | 521            | 16.0        | 521            | 16.0      | 0.925 | 47.5  | LOS E    | 10.4          | 88.9        | 0.87 | 1.46      | 2.89   | 34.9  |
| 12           | R2        | 41             | 3.0         | 41             | 3.0       | 0.472 | 18.7  | LOS C    | 1.9           | 16.4        | 0.78 | 0.91      | 1.22   | 45.6  |
| Appr         | oach      | 593            | 14.4        | 593            | 14.4      | 0.925 | 45.9  | LOS E    | 10.4          | 88.9        | 0.86 | 1.43      | 2.81   | 35.3  |
| All<br>Vehic | cles      | 3302           | 8.7         | 3302           | 8.7       | 0.925 | 29.7  | LOS D    | 12.5          | 100.0       | 0.82 | 1.23      | 2.14   | 41.5  |

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Organisation: ARCADIS U.S., INC. | Licence: PLUS / 1PC | Processed: October 18, 2025 12:57:26 PM
Project: C:\Users\pascolob9709.ARCADIS\ARCADIS\145172 Cattizone Parcel 4858 Bank St - Internal Documents\6.0\_Technical\6.23\_Traffic \05\_Analytic Models\CattizoneLands\_Future\_2025-10-18.sip9



|                         | •           | <b>→</b> | •    | •       | +              | •    | •       | †          | <i>&gt;</i> | <b>/</b> | <b>↓</b> | -√      |
|-------------------------|-------------|----------|------|---------|----------------|------|---------|------------|-------------|----------|----------|---------|
| Lane Group              | EBL         | EBT      | EBR  | WBL     | WBT            | WBR  | NBL     | NBT        | NBR         | SBL      | SBT      | SBR     |
| Lane Configurations     | ሻ           | f)       |      | ች       | f <sub>a</sub> |      | ሻ       | <b>∱</b> } |             | ሻ        | <b>^</b> | 7       |
| Traffic Volume (vph)    | 177         | 45       | 33   | 43      | 21             | 40   | 12      | 954        | 48          | 46       | 593      | 76      |
| Future Volume (vph)     | 177         | 45       | 33   | 43      | 21             | 40   | 12      | 954        | 48          | 46       | 593      | 76      |
| Ideal Flow (vphpl)      | 1800        | 1800     | 1800 | 1800    | 1800           | 1800 | 1800    | 1800       | 1800        | 1800     | 1800     | 1800    |
| Storage Length (m)      | 100.0       | 1000     | 0.0  | 40.0    | 1000           | 0.0  | 100.0   | 1000       | 0.0         | 75.0     | 1000     | 175.0   |
| Storage Lanes           | 1           |          | 0.0  | 10.0    |                | 0.0  | 1       |            | 0.0         | 1        |          | 170.0   |
| Taper Length (m)        | 20.0        |          | •    | 20.0    |                | •    | 20.0    |            | •           | 20.0     |          | •       |
| Lane Util. Factor       | 1.00        | 1.00     | 1.00 | 1.00    | 1.00           | 1.00 | 1.00    | 0.95       | 0.95        | 1.00     | 0.95     | 1.00    |
| Ped Bike Factor         | 1.00        | 1.00     | 1.00 | 1.00    | 0.99           | 1.00 | 1.00    | 0.00       | 0.00        | 1.00     | 0.00     | 0.98    |
| Frt                     | 1.00        | 0.937    |      |         | 0.902          |      | 1.00    | 0.993      |             |          |          | 0.850   |
| Flt Protected           | 0.950       | 0.507    |      | 0.950   | 0.502          |      | 0.950   | 0.550      |             | 0.950    |          | 0.000   |
| Satd. Flow (prot)       | 1729        | 1686     | 0    | 1478    | 1627           | 0    | 1729    | 3208       | 0           | 1662     | 3172     | 1488    |
| Flt Permitted           | 0.717       | 1000     | U    | 0.706   | 1021           | U    | 0.427   | 0200       | U           | 0.262    | 0172     | 1400    |
| Satd. Flow (perm)       | 1303        | 1686     | 0    | 1098    | 1627           | 0    | 777     | 3208       | 0           | 458      | 3172     | 1455    |
| Right Turn on Red       | 1000        | 1000     | Yes  | 1030    | 1021           | Yes  | 111     | 0200       | Yes         | 730      | 0172     | Yes     |
| Satd. Flow (RTOR)       |             | 27       | 163  |         | 40             | 163  |         | 8          | 163         |          |          | 76      |
| Link Speed (k/h)        |             | 50       |      |         | 50             |      |         | 80         |             |          | 80       | 70      |
| Link Distance (m)       |             | 528.6    |      |         | 234.2          |      |         | 451.0      |             |          | 177.6    |         |
| Travel Time (s)         |             | 38.1     |      |         | 16.9           |      |         | 20.3       |             |          | 8.0      |         |
| Confl. Peds. (#/hr)     | 1           | 30.1     |      |         | 10.3           | 1    | 1       | 20.5       |             |          | 0.0      | 1       |
| Peak Hour Factor        | 1.00        | 1.00     | 1.00 | 1.00    | 1.00           | 1.00 | 1.00    | 1.00       | 1.00        | 1.00     | 1.00     | 1.00    |
| Heavy Vehicles (%)      | 0%          | 2%       | 0%   | 17%     | 0%             | 0%   | 0%      | 6%         | 28%         | 4%       | 9%       | 4%      |
| Adj. Flow (vph)         | 177         | 45       | 33   | 43      | 21             | 40   | 12      | 954        | 48          | 46       | 593      | 76      |
| Shared Lane Traffic (%) | 177         | 40       | 33   | 40      | 21             | 40   | 12      | 334        | 40          | 40       | 393      | 70      |
| Lane Group Flow (vph)   | 177         | 78       | 0    | 43      | 61             | 0    | 12      | 1002       | 0           | 46       | 593      | 76      |
| Turn Type               | Perm        | NA       | U    | Perm    | NA             | U    | Perm    | NA         | U           | Perm     | NA       | Perm    |
| Protected Phases        | I CIIII     | 4        |      | I CIIII | 8              |      | I CIIII | 2          |             | I CIIII  | 6        | I CIIII |
| Permitted Phases        | 4           |          |      | 8       | U              |      | 2       |            |             | 6        | U        | 6       |
| Detector Phase          | 4           | 4        |      | 8       | 8              |      | 2       | 2          |             | 6        | 6        | 6       |
| Switch Phase            | <del></del> |          |      | U       | 0              |      |         |            |             | - U      | 0        |         |
| Minimum Initial (s)     | 10.0        | 10.0     |      | 10.0    | 10.0           |      | 10.0    | 10.0       |             | 10.0     | 10.0     | 10.0    |
| Minimum Split (s)       | 33.8        | 33.8     |      | 33.8    | 33.8           |      | 42.6    | 42.6       |             | 42.6     | 42.6     | 42.6    |
| Total Split (s)         | 40.0        | 40.0     |      | 40.0    | 40.0           |      | 90.0    | 90.0       |             | 90.0     | 90.0     | 90.0    |
| Total Split (%)         | 30.8%       | 30.8%    |      | 30.8%   | 30.8%          |      | 69.2%   | 69.2%      |             | 69.2%    | 69.2%    | 69.2%   |
| Maximum Green (s)       | 33.2        | 33.2     |      | 33.2    | 33.2           |      | 82.4    | 82.4       |             | 82.4     | 82.4     | 82.4    |
| Yellow Time (s)         | 3.6         | 3.6      |      | 3.6     | 3.6            |      | 5.0     | 5.0        |             | 5.0      | 5.0      | 5.0     |
| All-Red Time (s)        | 3.2         | 3.2      |      | 3.2     | 3.2            |      | 2.6     | 2.6        |             | 2.6      | 2.6      | 2.6     |
| Lost Time Adjust (s)    | 0.0         | 0.0      |      | 0.0     | 0.0            |      | 0.0     | 0.0        |             | 0.0      | 0.0      | 0.0     |
| Total Lost Time (s)     | 6.8         | 6.8      |      | 6.8     | 6.8            |      | 7.6     | 7.6        |             | 7.6      | 7.6      | 7.6     |
| Lead/Lag                | 0.0         | 0.0      |      | 0.0     | 0.0            |      | 7.0     | 7.0        |             | 7.0      | 7.0      | 7.0     |
| Lead-Lag Optimize?      |             |          |      |         |                |      |         |            |             |          |          |         |
| Vehicle Extension (s)   | 3.0         | 3.0      |      | 3.0     | 3.0            |      | 3.0     | 3.0        |             | 3.0      | 3.0      | 3.0     |
| Recall Mode             | None        | None     |      | None    | None           |      | C-Max   | C-Max      |             | C-Max    | C-Max    | C-Max   |
| Walk Time (s)           | 7.0         | 7.0      |      | 7.0     | 7.0            |      | 7.0     | 7.0        |             | 7.0      | 7.0      | 7.0     |
| Flash Dont Walk (s)     | 20.0        | 20.0     |      | 20.0    | 20.0           |      | 28.0    | 28.0       |             | 28.0     | 28.0     | 28.0    |
| Pedestrian Calls (#/hr) | 0           | 20.0     |      | 20.0    | 20.0           |      | 20.0    | 20.0       |             | 20.0     | 20.0     | 20.0    |
| Act Effct Green (s)     | 22.9        | 22.9     |      | 22.9    | 22.9           |      | 92.7    | 92.7       |             | 92.7     | 92.7     | 92.7    |
| Actuated g/C Ratio      | 0.18        | 0.18     |      | 0.18    | 0.18           |      | 0.71    | 0.71       |             | 0.71     | 0.71     | 0.71    |
| v/c Ratio               | 0.16        | 0.16     |      | 0.16    | 0.16           |      | 0.71    | 0.71       |             | 0.71     | 0.71     | 0.71    |
| V/C Natio               | 0.77        | 0.24     |      | 0.22    | 0.19           |      | 0.02    | 0.44       |             | 0.14     | 0.20     | 0.07    |

Lanes, Volumes, Timings EM

Synchro 11 Report October 2025

|                        | •     | <b>→</b> | •   | •    | •     | •   | 1     | <b>†</b> | ~   | <b>&gt;</b> | ļ     | 4     |
|------------------------|-------|----------|-----|------|-------|-----|-------|----------|-----|-------------|-------|-------|
| Lane Group             | EBL   | EBT      | EBR | WBL  | WBT   | WBR | NBL   | NBT      | NBR | SBL         | SBT   | SBR   |
| Control Delay          | 72.0  | 30.7     |     | 45.9 | 19.8  |     | 6.2   | 6.1      |     | 8.8         | 7.6   | 1.9   |
| Queue Delay            | 0.0   | 0.0      |     | 0.0  | 0.0   |     | 0.0   | 0.0      |     | 0.0         | 0.0   | 0.0   |
| Total Delay            | 72.0  | 30.7     |     | 45.9 | 19.8  |     | 6.2   | 6.1      |     | 8.8         | 7.6   | 1.9   |
| LOS                    | Е     | С        |     | D    | В     |     | Α     | Α        |     | Α           | Α     | Α     |
| Approach Delay         |       | 59.4     |     |      | 30.6  |     |       | 6.1      |     |             | 7.1   |       |
| Approach LOS           |       | Е        |     |      | С     |     |       | Α        |     |             | Α     |       |
| Queue Length 50th (m)  | 40.3  | 10.3     |     | 8.8  | 4.2   |     | 0.5   | 27.0     |     | 3.1         | 23.4  | 0.0   |
| Queue Length 95th (m)  | 59.2  | 21.6     |     | 17.6 | 14.3  |     | m1.2  | 45.8     |     | 9.4         | 38.4  | 4.9   |
| Internal Link Dist (m) |       | 504.6    |     |      | 210.2 |     |       | 427.0    |     |             | 153.6 |       |
| Turn Bay Length (m)    | 100.0 |          |     | 40.0 |       |     | 100.0 |          |     | 75.0        |       | 175.0 |
| Base Capacity (vph)    | 332   | 450      |     | 280  | 445   |     | 554   | 2289     |     | 326         | 2261  | 1059  |
| Starvation Cap Reductn | 0     | 0        |     | 0    | 0     |     | 0     | 0        |     | 0           | 0     | 0     |
| Spillback Cap Reductn  | 0     | 0        |     | 0    | 0     |     | 0     | 0        |     | 0           | 0     | 0     |
| Storage Cap Reductn    | 0     | 0        |     | 0    | 0     |     | 0     | 0        |     | 0           | 0     | 0     |
| Reduced v/c Ratio      | 0.53  | 0.17     |     | 0.15 | 0.14  |     | 0.02  | 0.44     |     | 0.14        | 0.26  | 0.07  |

Intersection Summary

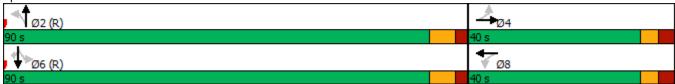
Area Type: Other

Cycle Length: 130 Actuated Cycle Length: 130

Offset: 16 (12%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.77

Intersection Signal Delay: 14.2 Intersection LOS: B
Intersection Capacity Utilization 69.4% ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: Bank Street & Miikana Road/Blais Road



|                         | ٠     | •     | 4     | <b>†</b> | ţ        | 1        |
|-------------------------|-------|-------|-------|----------|----------|----------|
| Lane Group              | EBL   | EBR   | NBL   | NBT      | SBT      | SBR      |
| Lane Configurations     | ኝ     | 7     | ሻ     | <u> </u> | <u> </u> | 7        |
| Traffic Volume (vph)    | 333   | 85    | 124   | 678      | 520      | 91       |
| Future Volume (vph)     | 333   | 85    | 124   | 678      | 520      | 91       |
| Ideal Flow (vphpl)      | 1800  | 1800  | 1800  | 1800     | 1800     | 1800     |
| Storage Length (m)      | 25.0  | 0.0   | 120.0 | 1000     | 1300     | 100.0    |
| Storage Lanes           | 1     | 1     | 120.0 |          |          | 100.0    |
| Taper Length (m)        | 20.0  |       | 20.0  |          |          |          |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00  | 1.00     | 1.00     | 1.00     |
| Ped Bike Factor         | 1.00  | 1.00  | 1.00  | 1.00     | 1.00     | 0.96     |
| Frt                     |       | 0.850 | 1.00  |          |          | 0.850    |
| FIt Protected           | 0.950 | 0.000 | 0.950 |          |          | 0.000    |
|                         | 1616  | 1459  | 1558  | 1655     | 1640     | 1172     |
| Satd. Flow (prot)       |       | 1459  |       | 1000     | 1040     | 11/2     |
| Flt Permitted           | 0.950 | 1450  | 0.412 | 1055     | 1010     | 4400     |
| Satd. Flow (perm)       | 1616  | 1459  | 672   | 1655     | 1640     | 1129     |
| Right Turn on Red       |       | Yes   |       |          |          | Yes      |
| Satd. Flow (RTOR)       |       | 85    |       |          |          | 91       |
| Link Speed (k/h)        | 50    |       |       | 80       | 80       |          |
| Link Distance (m)       | 528.6 |       |       | 273.1    | 451.0    |          |
| Travel Time (s)         | 38.1  |       |       | 12.3     | 20.3     |          |
| Confl. Peds. (#/hr)     |       |       | 4     |          |          | 4        |
| Peak Hour Factor        | 1.00  | 1.00  | 1.00  | 1.00     | 1.00     | 1.00     |
| Heavy Vehicles (%)      | 7%    | 6%    | 11%   | 10%      | 11%      | 32%      |
| Adj. Flow (vph)         | 333   | 85    | 124   | 678      | 520      | 91       |
| Shared Lane Traffic (%) |       |       |       |          |          |          |
| Lane Group Flow (vph)   | 333   | 85    | 124   | 678      | 520      | 91       |
| Turn Type               | Perm  | Perm  | Perm  | NA       | NA       | Perm     |
| Protected Phases        |       |       |       | 2        | 6        |          |
| Permitted Phases        | 4     | 4     | 2     | _        |          | 6        |
| Detector Phase          | 4     | 4     | 2     | 2        | 6        | 6        |
| Switch Phase            | -т    | 7     |       |          | <u> </u> | <u> </u> |
| Minimum Initial (s)     | 10.0  | 10.0  | 10.0  | 10.0     | 10.0     | 10.0     |
| Minimum Split (s)       | 22.6  | 22.6  | 21.7  | 21.7     | 21.7     | 21.7     |
|                         |       | 40.0  |       |          | 90.0     | 90.0     |
| Total Split (s)         | 40.0  |       | 90.0  | 90.0     |          |          |
| Total Split (%)         | 30.8% | 30.8% | 69.2% | 69.2%    | 69.2%    | 69.2%    |
| Maximum Green (s)       | 33.4  | 33.4  | 83.3  | 83.3     | 83.3     | 83.3     |
| Yellow Time (s)         | 3.3   | 3.3   | 4.6   | 4.6      | 4.6      | 4.6      |
| All-Red Time (s)        | 3.3   | 3.3   | 2.1   | 2.1      | 2.1      | 2.1      |
| Lost Time Adjust (s)    | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0      |
| Total Lost Time (s)     | 6.6   | 6.6   | 6.7   | 6.7      | 6.7      | 6.7      |
| Lead/Lag                |       |       |       |          |          |          |
| Lead-Lag Optimize?      |       |       |       |          |          |          |
| Vehicle Extension (s)   | 3.0   | 3.0   | 3.0   | 3.0      | 3.0      | 3.0      |
| Recall Mode             | None  | None  | C-Max | C-Max    | C-Max    | C-Max    |
| Walk Time (s)           | 7.0   | 7.0   | 7.0   | 7.0      | 7.0      | 7.0      |
| Flash Dont Walk (s)     | 9.0   | 9.0   | 8.0   | 8.0      | 8.0      | 8.0      |
| Pedestrian Calls (#/hr) | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0      |
| Act Effct Green (s)     | 30.2  | 30.2  | 86.5  | 86.5     | 86.5     | 86.5     |
| Actuated g/C Ratio      | 0.23  | 0.23  | 0.67  | 0.67     | 0.67     | 0.67     |
| v/c Ratio               | 0.23  | 0.23  | 0.07  | 0.62     | 0.07     | 0.07     |
| W.C. Natio              | 0.09  | U.Z I | 0.20  | 0.02     | 0.40     | U. 1Z    |

| ۶            | •                                                                            | 1                                                                                                                                                               | <b>†</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>↓</b>                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBL          | EBR                                                                          | NBL                                                                                                                                                             | NBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SBT                                                                                                                                                                                                                  | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 73.4         | 8.8                                                                          | 11.7                                                                                                                                                            | 16.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.5                                                                                                                                                                                                                 | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.0          | 0.0                                                                          | 0.0                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 73.4         | 8.8                                                                          | 11.7                                                                                                                                                            | 16.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.5                                                                                                                                                                                                                 | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Е            | Α                                                                            | В                                                                                                                                                               | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | В                                                                                                                                                                                                                    | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 60.2         |                                                                              |                                                                                                                                                                 | 15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.0                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Е            |                                                                              |                                                                                                                                                                 | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | В                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 74.7         | 0.0                                                                          | 11.8                                                                                                                                                            | 88.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74.4                                                                                                                                                                                                                 | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | 11.8                                                                         | 22.2                                                                                                                                                            | 126.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 104.9                                                                                                                                                                                                                | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              |                                                                              |                                                                                                                                                                 | 249.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 427.0                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |                                                                              |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                      | 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 415          | 438                                                                          | 447                                                                                                                                                             | 1101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1091                                                                                                                                                                                                                 | 781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0            | 0                                                                            | 0                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0            |                                                                              | 0                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                                                                              |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.80         | 0.19                                                                         | 0.28                                                                                                                                                            | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.48                                                                                                                                                                                                                 | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |                                                                              |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Other        |                                                                              |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |                                                                              |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0            |                                                                              |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ced to phase | 2:NBTL a                                                                     | and 6:SB                                                                                                                                                        | T, Start o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | f Green                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |                                                                              |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ordinated    |                                                                              |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |                                                                              |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 24.2         |                                                                              |                                                                                                                                                                 | In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tersection                                                                                                                                                                                                           | n LOS: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ation 73.4%  |                                                                              |                                                                                                                                                                 | IC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CU Level of                                                                                                                                                                                                          | of Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | EBL 73.4 0.0 73.4 E 60.2 E 74.7 #114.9 504.6 25.0 415 0 0 0.80  Other  Other | EBL EBR  73.4 8.8 0.0 0.0 73.4 8.8 E A 60.2 E 74.7 0.0 #114.9 11.8 504.6 25.0 415 438 0 0 0 0 0 0 0.80 0.19  Other  Other  Octoded to phase 2:NBTL approximated | EBL EBR NBL  73.4 8.8 11.7 0.0 0.0 0.0 73.4 8.8 11.7 E A B 60.2 E 74.7 0.0 11.8 #114.9 11.8 22.2 504.6 25.0 120.0 415 438 447 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | EBL EBR NBL NBT  73.4 8.8 11.7 16.1 0.0 0.0 0.0 0.0 73.4 8.8 11.7 16.1 E A B B 60.2 15.4 E B 74.7 0.0 11.8 88.9 #114.9 11.8 22.2 126.5 504.6 249.1 25.0 120.0 415 438 447 1101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | EBL EBR NBL NBT SBT  73.4 8.8 11.7 16.1 12.5 0.0 0.0 0.0 0.0 0.0 73.4 8.8 11.7 16.1 12.5 E A B B B 60.2 15.4 11.0 E B B B 74.7 0.0 11.8 88.9 74.4 #114.9 11.8 22.2 126.5 104.9 504.6 249.1 427.0 25.0 120.0 415 438 447 1101 1091 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |

Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Bank Street & Dun Skipper Drive



| Intersection Delay, s/veh | 11.9 |
|---------------------------|------|
| Intersection LOS          | В    |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 28   | 168  | 39   | 22   | 166  | 105  | 63   | 82   | 35   | 124  | 54   | 53   |
| Future Vol, veh/h          | 28   | 168  | 39   | 22   | 166  | 105  | 63   | 82   | 35   | 124  | 54   | 53   |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 0    | 1    | 8    | 5    | 1    | 7    | 0    | 2    | 6    | 2    | 0    | 0    |
| Mvmt Flow                  | 28   | 168  | 39   | 22   | 166  | 105  | 63   | 82   | 35   | 124  | 54   | 53   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 11.6 |      |      | 12.5 |      |      | 11.1 |      |      | 12   |      |      |
| HCM LOS                    | В    |      |      | В    |      |      | В    |      |      | В    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 35%   | 12%   | 8%    | 54%   |  |
| Vol Thru, %            | 46%   | 71%   | 57%   | 23%   |  |
| Vol Right, %           | 19%   | 17%   | 36%   | 23%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 180   | 235   | 293   | 231   |  |
| LT Vol                 | 63    | 28    | 22    | 124   |  |
| Through Vol            | 82    | 168   | 166   | 54    |  |
| RT Vol                 | 35    | 39    | 105   | 53    |  |
| Lane Flow Rate         | 180   | 235   | 293   | 231   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.286 | 0.359 | 0.436 | 0.364 |  |
| Departure Headway (Hd) | 5.721 | 5.494 | 5.363 | 5.673 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 625   | 651   | 668   | 631   |  |
| Service Time           | 3.787 | 3.555 | 3.422 | 3.734 |  |
| HCM Lane V/C Ratio     | 0.288 | 0.361 | 0.439 | 0.366 |  |
| HCM Control Delay      | 11.1  | 11.6  | 12.5  | 12    |  |
| HCM Lane LOS           | В     | В     | В     | В     |  |
| HCM 95th-tile Q        | 1.2   | 1.6   | 2.2   | 1.7   |  |

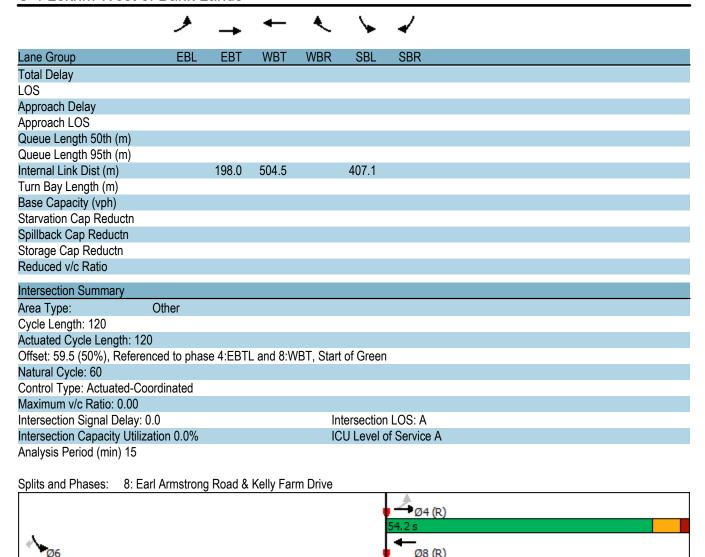
HCM 2010 AWSC Synchro 11 Report October 2025 EΜ

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 18   | 42   | 9    | 23   | 20   | 27   | 3    | 66   | 62   | 39   | 42   | 12   |
| Future Vol, veh/h          | 18   | 42   | 9    | 23   | 20   | 27   | 3    | 66   | 62   | 39   | 42   | 12   |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 8    | 5    | 56   | 6    | 7    | 0    | 33   | 5    | 0    | 22   | 11   | 50   |
| Mvmt Flow                  | 18   | 42   | 9    | 23   | 20   | 27   | 3    | 66   | 62   | 39   | 42   | 12   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 8.1  |      |      | 7.9  |      |      | 8.6  |      |      | 8.4  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 2%    | 26%   | 33%   | 42%   |  |
| Vol Thru, %            | 50%   | 61%   | 29%   | 45%   |  |
| Vol Right, %           | 47%   | 13%   | 39%   | 13%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 131   | 69    | 70    | 93    |  |
| LT Vol                 | 3     | 18    | 23    | 39    |  |
| Through Vol            | 66    | 42    | 20    | 42    |  |
| RT Vol                 | 62    | 9     | 27    | 12    |  |
| Lane Flow Rate         | 131   | 69    | 70    | 93    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.168 | 0.089 | 0.087 | 0.123 |  |
| Departure Headway (Hd) | 4.616 | 4.633 | 4.46  | 4.756 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 778   | 775   | 805   | 755   |  |
| Service Time           | 2.635 | 2.652 | 2.479 | 2.776 |  |
| HCM Lane V/C Ratio     | 0.168 | 0.089 | 0.087 | 0.123 |  |
| HCM Control Delay      | 8.6   | 8.1   | 7.9   | 8.4   |  |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.6   | 0.3   | 0.3   | 0.4   |  |

| Intersection Delay, s/veh 8.3 Intersection LOS A | Intersection              |     |  |  |
|--------------------------------------------------|---------------------------|-----|--|--|
| Intersection LOS A                               | Intersection Delay, s/veh | 8.3 |  |  |
|                                                  | Intersection LOS          | Α   |  |  |

|      | - 40                                                                     |                                                                                         |                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17   | 57                                                                       | 7                                                                                       | 72                                                                         | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17   | 57                                                                       | 7                                                                                       | 72                                                                         | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.00 | 1.00                                                                     | 1.00                                                                                    | 1.00                                                                       | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0    | 9                                                                        | 0                                                                                       | 20                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17   | 57                                                                       | 7                                                                                       | 72                                                                         | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0    | 1                                                                        | 0                                                                                       | 0                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EB   |                                                                          |                                                                                         | WB                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| WB   |                                                                          |                                                                                         | EB                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1    |                                                                          |                                                                                         | 1                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SB   |                                                                          |                                                                                         | NB                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1    |                                                                          |                                                                                         | 1                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NB   |                                                                          |                                                                                         | SB                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1    |                                                                          |                                                                                         | 1                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8.1  |                                                                          |                                                                                         | 8.9                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Α    |                                                                          |                                                                                         | Α                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | 17<br>1.00<br>0<br>17<br>0<br>EB<br>WB<br>1<br>SB<br>1<br>NB<br>1<br>8.1 | 17 57<br>17 57<br>1.00 1.00<br>0 9<br>17 57<br>0 1<br>EB<br>WB<br>1 SB<br>1 NB<br>1 8.1 | 17 57 7 17 57 7 1.00 1.00 1.00 0 9 0 17 57 7 0 1 0  EB  WB 1 SB 1 NB 1 8.1 | 17         57         7         72           17         57         7         72           1.00         1.00         1.00         1.00           0         9         0         20           17         57         7         72           0         1         0         0           EB         WB           WB         EB         1           1         1         1           NB         NB         NB           1         1         1           NB         SB         NB           1         1         1           8.9         1         1           8.9         1         1 | 17         57         7         72         39           17         57         7         72         39           1.00         1.00         1.00         1.00         1.00           0         9         0         20         10           17         57         7         72         39           0         1         0         0         1           EB         WB         WB           WB         EB         1         1           SB         NB         1         1           NB         SB         1         1           NB         SB         1         1           8.1         8.9         8         9 | 17       57       7       72       39       26         17       57       7       72       39       26         1.00       1.00       1.00       1.00       1.00       1.00         0       9       0       20       10       8         17       57       7       72       39       26         0       1       0       0       1       0         EB       WB       WB         WB       EB       1       1       1         SB       NB       1       1       1       1       NB       SB       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 | 17         57         7         72         39         26         3           17         57         7         72         39         26         3           1.00         1.00         1.00         1.00         1.00         1.00           0         9         0         20         10         8         0           17         57         7         72         39         26         3           0         1         0         0         1         0         0           EB         WB         WB         NB         NB           WB         EB         SB         SB         BB           1         1         1         1         1           NB         SB         WB         WB         BB           1         1         1         1         1         1           NB         SB         WB         WB         1         1         1         1           NB         SB         SB         WB         1         1         1         1         1         1         1         1         1         1         1         1         1 | 17         57         7         72         39         26         3         32           17         57         7         72         39         26         3         32           1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00           0         9         0         20         10         8         0         5           17         57         7         72         39         26         3         32           0         1         0         0         1         0         0         1           EB         WB         NB         NB         NB           WB         EB         SB         SB         EB           1         1         1         1         1         NB         NB         EB           NB         SB         WB         NB         N | 17         57         7         72         39         26         3         32         126           17         57         7         72         39         26         3         32         126           1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00           0         9         0         20         10         8         0         5         19           17         57         7         72         39         26         3         32         126           0         1         0         0         1         0         0         1         0           EB         WB         WB         NB         NB | 17         57         7         72         39         26         3         32         126         32           17         57         7         72         39         26         3         32         126         32           1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.0 | 17       57       7       72       39       26       3       32       126       32       23         17       57       7       72       39       26       3       32       126       32       23         1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.0 |


| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 2%    | 21%   | 53%   | 56%   |  |
| Vol Thru, %            | 20%   | 70%   | 28%   | 40%   |  |
| Vol Right, %           | 78%   | 9%    | 19%   | 4%    |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 161   | 81    | 137   | 57    |  |
| LT Vol                 | 3     | 17    | 72    | 32    |  |
| Through Vol            | 32    | 57    | 39    | 23    |  |
| RT Vol                 | 126   | 7     | 26    | 2     |  |
| Lane Flow Rate         | 161   | 81    | 137   | 57    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.18  | 0.102 | 0.182 | 0.074 |  |
| Departure Headway (Hd) | 4.031 | 4.527 | 4.795 | 4.689 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 892   | 792   | 749   | 765   |  |
| Service Time           | 2.047 | 2.553 | 2.819 | 2.711 |  |
| HCM Lane V/C Ratio     | 0.18  | 0.102 | 0.183 | 0.075 |  |
| HCM Control Delay      | 7.9   | 8.1   | 8.9   | 8.1   |  |
| HCM Lane LOS           | А     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.7   | 0.3   | 0.7   | 0.2   |  |

| Intersection                |        |      |        |        |           |      |
|-----------------------------|--------|------|--------|--------|-----------|------|
| Int Delay, s/veh            | 0      |      |        |        |           |      |
| Movement                    | EBL    | EBR  | NBL    | NBT    | SBT       | SBR  |
| Lane Configurations         | ¥      |      |        | 4      | <u>\$</u> |      |
| Traffic Vol, veh/h          | 0      | 0    | 0      | 801    | 583       | 0    |
| Future Vol, veh/h           | 0      | 0    | 0      | 801    | 583       | 0    |
| Conflicting Peds, #/hr      | 0      | 0    | 0      | 0      | 0         | 0    |
|                             |        |      | Free   | Free   | Free      | Free |
| Sign Control RT Channelized | Stop   | Stop |        |        |           |      |
|                             | -      | None | -      | None   | -         | None |
| Storage Length              | 0      | -    | -      | -      | -         | -    |
| Veh in Median Storage       |        | -    | -      | 0      | 0         | -    |
| Grade, %                    | 0      | 400  | -      | 0      | 0         | 400  |
| Peak Hour Factor            | 100    | 100  | 100    | 100    | 100       | 100  |
| Heavy Vehicles, %           | 0      | 0    | 0      | 10     | 11        | 0    |
| Mvmt Flow                   | 0      | 0    | 0      | 801    | 583       | 0    |
|                             |        |      |        |        |           |      |
| Major/Minor I               | Minor2 | N    | Major1 | N      | /lajor2   |      |
| Conflicting Flow All        | 1384   | 583  | 583    | 0      | - najoiz  | 0    |
|                             | 583    | 505  |        |        |           |      |
| Stage 1                     |        |      | -      | -      | -         | -    |
| Stage 2                     | 801    | -    | -      | -      | -         | -    |
| Critical Hdwy               | 6.4    | 6.2  | 4.1    | -      | -         | -    |
| Critical Hdwy Stg 1         | 5.4    | -    | -      | -      | -         | -    |
| Critical Hdwy Stg 2         | 5.4    | -    | -      | -      | -         | -    |
| Follow-up Hdwy              | 3.5    | 3.3  | 2.2    | -      | -         | -    |
| Pot Cap-1 Maneuver          | 160    | 516  | 1001   | -      | -         | -    |
| Stage 1                     | 562    | -    | -      | -      | -         | -    |
| Stage 2                     | 445    | -    | -      | -      | -         | -    |
| Platoon blocked, %          |        |      |        | -      | -         | -    |
| Mov Cap-1 Maneuver          | 160    | 516  | 1001   | -      | -         | -    |
| Mov Cap-2 Maneuver          | 160    | -    | -      | -      | -         | -    |
| Stage 1                     | 562    | -    | _      | _      | _         | -    |
| Stage 2                     | 445    | _    | _      | _      | _         | _    |
| Jugo 2                      | . 10   |      |        |        |           |      |
|                             |        |      |        |        |           |      |
| Approach                    | EB     |      | NB     |        | SB        |      |
| HCM Control Delay, s        | 0      |      | 0      |        | 0         |      |
| HCM LOS                     | Α      |      |        |        |           |      |
|                             |        |      |        |        |           |      |
| Minor Lane/Major Mvm        | .+     | NBL  | NPT    | EBLn1  | SBT       | SBR  |
|                             |        |      | INDI   | LDLIII | JDI       | אמט  |
| Capacity (veh/h)            |        | 1001 | -      | -      | -         | -    |
| HCM Lane V/C Ratio          |        | -    | -      | -      | -         | -    |
| HCM Control Delay (s)       |        | 0    | -      | 0      | -         | -    |
| HCM Lane LOS                |        | Α    | -      | Α      | -         | -    |
| HCM 95th %tile Q(veh)       |        | 0    | -      | -      | -         | -    |
|                             |        |      |        |        |           |      |

|                         | ۶     | <b>→</b>   | •    | •     | <b>←</b> | •    | 1     | <b>†</b> | <i>&gt;</i> | <b>/</b> | ļ          | 4    |
|-------------------------|-------|------------|------|-------|----------|------|-------|----------|-------------|----------|------------|------|
| Lane Group              | EBL   | EBT        | EBR  | WBL   | WBT      | WBR  | NBL   | NBT      | NBR         | SBL      | SBT        | SBR  |
| Lane Configurations     | ሻ     | <b>∱</b> } |      | ሻ     | ĵ»       |      | ሻ     | <b>†</b> | 7           | ሻ        | <b>↑</b> ↑ |      |
| Traffic Volume (vph)    | 0     | 0          | 0    | 0     | 0        | 0    | 0     | 801      | 0           | 0        | 583        | 0    |
| Future Volume (vph)     | 0     | 0          | 0    | 0     | 0        | 0    | 0     | 801      | 0           | 0        | 583        | 0    |
| Ideal Flow (vphpl)      | 1800  | 1800       | 1800 | 1800  | 1800     | 1800 | 1800  | 1800     | 1800        | 1800     | 1800       | 1800 |
| Storage Length (m)      | 25.0  |            | 0.0  | 50.0  |          | 0.0  | 20.0  |          | 15.0        | 15.0     |            | 0.0  |
| Storage Lanes           | 1     |            | 0    | 1     |          | 0    | 1     |          | 1           | 1        |            | 0    |
| Taper Length (m)        | 20.0  |            | -    | 20.0  |          |      | 20.0  |          |             | 20.0     |            |      |
| Lane Util. Factor       | 1.00  | 0.95       | 0.95 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00        | 1.00     | 0.95       | 0.95 |
| Frt                     |       | 0.00       | 0.00 |       |          |      |       |          |             | 1100     | 0.00       | 0.00 |
| Flt Protected           |       |            |      |       |          |      |       |          |             |          |            |      |
| Satd. Flow (prot)       | 1820  | 3232       | 0    | 1379  | 1468     | 0    | 1784  | 1750     | 1517        | 1569     | 3144       | 0    |
| Flt Permitted           | 1020  | 0202       |      | 1073  | 1400     |      | 1704  | 1700     | 1017        | 1003     | 0177       |      |
| Satd. Flow (perm)       | 1820  | 3232       | 0    | 1379  | 1468     | 0    | 1784  | 1750     | 1517        | 1569     | 3144       | 0    |
| Right Turn on Red       | 1020  | 0202       | Yes  | 1075  | 1700     | Yes  | 1704  | 1750     | Yes         | 1000     | 0177       | Yes  |
| Satd. Flow (RTOR)       |       |            | 163  |       |          | 163  |       |          | 163         |          |            | 163  |
| Link Speed (k/h)        |       | 80         |      |       | 80       |      |       | 80       |             |          | 80         |      |
| Link Distance (m)       |       | 528.5      |      |       | 292.7    |      |       | 203.7    |             |          | 158.2      |      |
| Travel Time (s)         |       | 23.8       |      |       | 13.2     |      |       | 9.2      |             |          | 7.1        |      |
| \ <i>\</i>              | 1.00  |            | 1.00 | 1.00  |          | 1.00 | 1.00  |          | 1.00        | 1.00     | 1.00       | 1.00 |
| Peak Hour Factor        | 1.00  | 1.00       | 1.00 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00        | 1.00     |            | 1.00 |
| Heavy Vehicles (%)      | 0%    | 7%         | 5%   | 32%   | 24%      | 34%  | 2%    | 4%       | 20%         | 16%      | 10%        | 12%  |
| Adj. Flow (vph)         | 0     | 0          | 0    | 0     | 0        | 0    | 0     | 801      | 0           | 0        | 583        | 0    |
| Shared Lane Traffic (%) | •     | •          |      |       |          |      |       | 004      | _           | _        |            |      |
| Lane Group Flow (vph)   | 0     | 0          | 0    | 0     | 0        | 0    | 0     | 801      | 0           | 0        | 583        | 0    |
| Turn Type               | Perm  |            |      | Perm  |          |      | Perm  | NA       | Perm        | Perm     | NA         |      |
| Protected Phases        |       | 4          |      |       | 8        |      |       | 2        |             |          | 6          |      |
| Permitted Phases        | 4     |            |      | 8     |          |      | 2     |          | 2           | 6        |            |      |
| Detector Phase          | 4     | 4          |      | 8     | 8        |      | 2     | 2        | 2           | 6        | 6          |      |
| Switch Phase            |       |            |      |       |          |      |       |          |             |          |            |      |
| Minimum Initial (s)     | 10.0  | 10.0       |      | 10.0  | 10.0     |      | 10.0  | 10.0     | 10.0        | 10.0     | 10.0       |      |
| Minimum Split (s)       | 22.5  | 22.5       |      | 22.5  | 22.5     |      | 22.5  | 22.5     | 22.5        | 22.5     | 22.5       |      |
| Total Split (s)         | 22.5  | 22.5       |      | 22.5  | 22.5     |      | 22.5  | 22.5     | 22.5        | 22.5     | 22.5       |      |
| Total Split (%)         | 50.0% | 50.0%      |      | 50.0% | 50.0%    |      | 50.0% | 50.0%    | 50.0%       | 50.0%    | 50.0%      |      |
| Maximum Green (s)       | 18.0  | 18.0       |      | 18.0  | 18.0     |      | 18.0  | 18.0     | 18.0        | 18.0     | 18.0       |      |
| Yellow Time (s)         | 3.5   | 3.5        |      | 3.5   | 3.5      |      | 3.5   | 3.5      | 3.5         | 3.5      | 3.5        |      |
| All-Red Time (s)        | 1.0   | 1.0        |      | 1.0   | 1.0      |      | 1.0   | 1.0      | 1.0         | 1.0      | 1.0        |      |
| Lost Time Adjust (s)    | 0.0   | 0.0        |      | 0.0   | 0.0      |      | 0.0   | 0.0      | 0.0         | 0.0      | 0.0        |      |
| Total Lost Time (s)     | 4.5   | 4.5        |      | 4.5   | 4.5      |      | 4.5   | 4.5      | 4.5         | 4.5      | 4.5        |      |
| Lead/Lag                |       |            |      |       |          |      |       |          |             |          |            |      |
| Lead-Lag Optimize?      |       |            |      |       |          |      |       |          |             |          |            |      |
| Vehicle Extension (s)   | 3.0   | 3.0        |      | 3.0   | 3.0      |      | 3.0   | 3.0      | 3.0         | 3.0      | 3.0        |      |
| Recall Mode             | None  | None       |      | None  | None     |      | C-Max | C-Max    | C-Max       | C-Max    | C-Max      |      |
| Walk Time (s)           | 7.0   | 7.0        |      | 7.0   | 7.0      |      | 7.0   | 7.0      | 7.0         | 7.0      | 7.0        |      |
| Flash Dont Walk (s)     | 11.0  | 11.0       |      | 11.0  | 11.0     |      | 11.0  | 11.0     | 11.0        | 11.0     | 11.0       |      |
| Pedestrian Calls (#/hr) | 0     | 0          |      | 0     | 0        |      | 0     | 0        | 0           | 0        | 0          |      |
| Act Effct Green (s)     |       |            |      |       |          |      |       | 45.0     |             |          | 45.0       |      |
| Actuated g/C Ratio      |       |            |      |       |          |      |       | 1.00     |             |          | 1.00       |      |
| v/c Ratio               |       |            |      |       |          |      |       | 0.46     |             |          | 0.19       |      |
| Control Delay           |       |            |      |       |          |      |       | 0.40     |             |          | 0.13       |      |
| Queue Delay             |       |            |      |       |          |      |       | 0.0      |             |          | 0.0        |      |
| Quoue Delay             |       |            |      |       |          |      |       | 0.0      |             |          | 0.0        |      |

|                                | ٠           | <b>→</b>  | •         | •        | <b>←</b>   | •          | 4   | <b>†</b> | <b>/</b> | <b>/</b> | ļ     | 4   |
|--------------------------------|-------------|-----------|-----------|----------|------------|------------|-----|----------|----------|----------|-------|-----|
| Lane Group                     | EBL         | EBT       | EBR       | WBL      | WBT        | WBR        | NBL | NBT      | NBR      | SBL      | SBT   | SBR |
| Total Delay                    |             |           |           |          |            |            |     | 0.9      |          |          | 0.1   |     |
| LOS                            |             |           |           |          |            |            |     | Α        |          |          | Α     |     |
| Approach Delay                 |             |           |           |          |            |            |     | 0.9      |          |          | 0.1   |     |
| Approach LOS                   |             |           |           |          |            |            |     | Α        |          |          | Α     |     |
| Queue Length 50th (m)          |             |           |           |          |            |            |     | 0.0      |          |          | 0.0   |     |
| Queue Length 95th (m)          |             |           |           |          |            |            |     | 0.0      |          |          | 0.0   |     |
| Internal Link Dist (m)         |             | 504.5     |           |          | 268.7      |            |     | 179.7    |          |          | 134.2 |     |
| Turn Bay Length (m)            |             |           |           |          |            |            |     |          |          |          |       |     |
| Base Capacity (vph)            |             |           |           |          |            |            |     | 1750     |          |          | 3144  |     |
| Starvation Cap Reductn         |             |           |           |          |            |            |     | 0        |          |          | 0     |     |
| Spillback Cap Reductn          |             |           |           |          |            |            |     | 0        |          |          | 0     |     |
| Storage Cap Reductn            |             |           |           |          |            |            |     | 0        |          |          | 0     |     |
| Reduced v/c Ratio              |             |           |           |          |            |            |     | 0.46     |          |          | 0.19  |     |
| Intersection Summary           |             |           |           |          |            |            |     |          |          |          |       |     |
| Jr -                           | Other       |           |           |          |            |            |     |          |          |          |       |     |
| Cycle Length: 45               |             |           |           |          |            |            |     |          |          |          |       |     |
| Actuated Cycle Length: 45      |             |           |           |          |            |            |     |          |          |          |       |     |
| Offset: 0 (0%), Referenced to  | o phase 2:l | NBTL and  | d 6:SBTL  | Start of | Green      |            |     |          |          |          |       |     |
| Natural Cycle: 60              |             |           |           |          |            |            |     |          |          |          |       |     |
| Control Type: Actuated-Cool    | rdinated    |           |           |          |            |            |     |          |          |          |       |     |
| Maximum v/c Ratio: 0.46        |             |           |           |          |            |            |     |          |          |          |       |     |
| Intersection Signal Delay: 0.  |             |           |           |          | tersection |            |     |          |          |          |       |     |
| Intersection Capacity Utilizat | tion 48.3%  |           |           | IC       | U Level    | of Service | A   |          |          |          |       |     |
| Analysis Period (min) 15       |             |           |           |          |            |            |     |          |          |          |       |     |
| Splits and Phases: 7: Ban      | k Street &  | Earl Arms | strong Ro | ad       |            |            |     |          |          |          |       |     |
| √ Ø2 (R)                       |             |           |           |          | 4          | <b>0</b> 4 |     |          |          |          |       |     |

|                         | ٠     | <b>→</b> | <b>←</b> | •     | <b>&gt;</b> | 4     |
|-------------------------|-------|----------|----------|-------|-------------|-------|
| Lane Group              | EBL   | EBT      | WBT      | WBR   | SBL         | SBR   |
| Lane Configurations     | 7     | <b>^</b> | <b>†</b> | TIDIX | )           | 7     |
| Traffic Volume (vph)    | 0     | 0        | 0        | 0     | 0           | 0     |
| Future Volume (vph)     | 0     | 0        | 0        | 0     | 0           | 0     |
| Ideal Flow (vphpl)      | 1800  | 1800     | 1800     | 1800  | 1800        | 1800  |
| Storage Length (m)      | 60.0  | 1000     | 1000     | 0.0   | 40.0        | 0.0   |
|                         | 1     |          |          | 0.0   | 40.0        |       |
| Storage Lanes           |       |          |          | U     |             | 1     |
| Taper Length (m)        | 20.0  | 0.05     | 0.05     | 0.05  | 20.0        | 4.00  |
| Lane Util. Factor       | 1.00  | 0.95     | 0.95     | 0.95  | 1.00        | 1.00  |
| Frt                     |       |          |          |       |             |       |
| Flt Protected           |       |          |          | _     |             |       |
| Satd. Flow (prot)       | 1625  | 3262     | 3007     | 0     | 1596        | 1596  |
| Flt Permitted           |       |          |          |       |             |       |
| Satd. Flow (perm)       | 1625  | 3262     | 3007     | 0     | 1596        | 1596  |
| Right Turn on Red       |       |          |          | Yes   |             | Yes   |
| Satd. Flow (RTOR)       |       |          |          |       |             |       |
| Link Speed (k/h)        |       | 80       | 80       |       | 40          |       |
| Link Distance (m)       |       | 222.0    | 528.5    |       | 431.1       |       |
| Travel Time (s)         |       | 10.0     | 23.8     |       | 38.8        |       |
| Peak Hour Factor        | 1.00  | 1.00     | 1.00     | 1.00  | 1.00        | 1.00  |
| Heavy Vehicles (%)      | 12%   | 6%       | 15%      | 12%   | 14%         | 14%   |
| Adj. Flow (vph)         | 0     | 0 /0     | 0        | 0     | 0           | 0     |
| Shared Lane Traffic (%) | U     | U        | U        | U     | U           | U     |
|                         | 0     | 0        | 0        | 0     | ٥           | 0     |
| Lane Group Flow (vph)   | 0     | 0        | U        | 0     | 0           |       |
| Turn Type               | Perm  | 4        |          |       | Prot        | Perm  |
| Protected Phases        | 4     | 4        | 8        |       | 6           | ^     |
| Permitted Phases        | 4     |          |          |       |             | 6     |
| Detector Phase          | 4     | 4        | 8        |       | 6           | 6     |
| Switch Phase            |       |          |          |       |             |       |
| Minimum Initial (s)     | 10.0  | 10.0     | 10.0     |       | 10.0        | 10.0  |
| Minimum Split (s)       | 24.8  | 24.8     | 24.8     |       | 33.8        | 33.8  |
| Total Split (s)         | 54.2  | 54.2     | 54.2     |       | 65.8        | 65.8  |
| Total Split (%)         | 45.2% | 45.2%    | 45.2%    |       | 54.8%       | 54.8% |
| Maximum Green (s)       | 47.4  | 47.4     | 47.4     |       | 59.0        | 59.0  |
| Yellow Time (s)         | 5.0   | 5.0      | 5.0      |       | 3.2         | 3.2   |
| All-Red Time (s)        | 1.8   | 1.8      | 1.8      |       | 3.6         | 3.6   |
| Lost Time Adjust (s)    | 0.0   | 0.0      | 0.0      |       | 0.0         | 0.0   |
| Total Lost Time (s)     | 6.8   | 6.8      | 6.8      |       | 6.8         | 6.8   |
| Lead/Lag                | 0.0   | 0.0      | 0.0      |       | 0.0         | 0.0   |
| Lead-Lag Optimize?      |       |          |          |       |             |       |
|                         | 2.0   | 2.0      | 2.0      |       | 2.0         | 2.0   |
| Vehicle Extension (s)   | 3.0   | 3.0      | 3.0      |       | 3.0         | 3.0   |
| Recall Mode             | C-Max | C-Max    | C-Max    |       | None        | None  |
| Walk Time (s)           | 7.0   | 7.0      | 7.0      |       | 7.0         | 7.0   |
| Flash Dont Walk (s)     | 11.0  | 11.0     | 11.0     |       | 20.0        | 20.0  |
| Pedestrian Calls (#/hr) | 0     | 0        | 0        |       | 0           | 0     |
| Act Effct Green (s)     |       |          |          |       |             |       |
| Actuated g/C Ratio      |       |          |          |       |             |       |
| v/c Ratio               |       |          |          |       |             |       |
| Control Delay           |       |          |          |       |             |       |
| Queue Delay             |       |          |          |       |             |       |
|                         |       |          |          |       |             |       |



|                         | ۶                                      | <b>→</b> | •    | •     | <b>←</b>       | •    | 4     | †          | <i>&gt;</i> | <b>/</b> | ţ        | -√    |
|-------------------------|----------------------------------------|----------|------|-------|----------------|------|-------|------------|-------------|----------|----------|-------|
| Lane Group              | EBL                                    | EBT      | EBR  | WBL   | WBT            | WBR  | NBL   | NBT        | NBR         | SBL      | SBT      | SBR   |
| Lane Configurations     | *                                      | f)       |      | ሻ     | f <sub>a</sub> |      | ሻ     | <b>↑</b> ↑ |             | ኻ        | <b>^</b> | 7     |
| Traffic Volume (vph)    | 132                                    | 23       | 43   | 54    | 32             | 62   | 23    | 893        | 45          | 50       | 1164     | 187   |
| Future Volume (vph)     | 132                                    | 23       | 43   | 54    | 32             | 62   | 23    | 893        | 45          | 50       | 1164     | 187   |
| Ideal Flow (vphpl)      | 1800                                   | 1800     | 1800 | 1800  | 1800           | 1800 | 1800  | 1800       | 1800        | 1800     | 1800     | 1800  |
| Storage Length (m)      | 100.0                                  |          | 0.0  | 40.0  |                | 0.0  | 100.0 |            | 0.0         | 75.0     |          | 175.0 |
| Storage Lanes           | 1                                      |          | 0    | 1     |                | 0    | 1     |            | 0           | 1        |          | 1     |
| Taper Length (m)        | 20.0                                   |          |      | 20.0  |                |      | 20.0  |            |             | 20.0     |          |       |
| Lane Util. Factor       | 1.00                                   | 1.00     | 1.00 | 1.00  | 1.00           | 1.00 | 1.00  | 0.95       | 0.95        | 1.00     | 0.95     | 1.00  |
| Ped Bike Factor         |                                        |          |      |       |                |      | 1.00  |            |             |          |          | 0.98  |
| Frt                     |                                        | 0.902    |      |       | 0.901          |      |       | 0.993      |             |          |          | 0.850 |
| Flt Protected           | 0.950                                  |          |      | 0.950 |                |      | 0.950 |            |             | 0.950    |          |       |
| Satd. Flow (prot)       | 1729                                   | 1405     | 0    | 1530  | 1602           | 0    | 1729  | 3287       | 0           | 1601     | 3325     | 1517  |
| Flt Permitted           | 0.696                                  |          |      | 0.714 |                |      | 0.218 |            |             | 0.289    |          |       |
| Satd. Flow (perm)       | 1267                                   | 1405     | 0    | 1150  | 1602           | 0    | 397   | 3287       | 0           | 487      | 3325     | 1481  |
| Right Turn on Red       |                                        |          | Yes  |       |                | Yes  |       |            | Yes         |          |          | Yes   |
| Satd. Flow (RTOR)       |                                        | 43       |      |       | 62             |      |       | 8          |             |          |          | 187   |
| Link Speed (k/h)        |                                        | 50       |      |       | 50             |      |       | 50         |             |          | 50       |       |
| Link Distance (m)       |                                        | 528.6    |      |       | 234.2          |      |       | 451.0      |             |          | 177.6    |       |
| Travel Time (s)         |                                        | 38.1     |      |       | 16.9           |      |       | 32.5       |             |          | 12.8     |       |
| Confl. Peds. (#/hr)     |                                        |          |      |       |                |      | 2     |            |             |          |          | 2     |
| Peak Hour Factor        | 1.00                                   | 1.00     | 1.00 | 1.00  | 1.00           | 1.00 | 1.00  | 1.00       | 1.00        | 1.00     | 1.00     | 1.00  |
| Heavy Vehicles (%)      | 0%                                     | 9%       | 21%  | 13%   | 3%             | 2%   | 0%    | 4%         | 14%         | 8%       | 4%       | 2%    |
| Adj. Flow (vph)         | 132                                    | 23       | 43   | 54    | 32             | 62   | 23    | 893        | 45          | 50       | 1164     | 187   |
| Shared Lane Traffic (%) |                                        |          |      |       |                |      |       |            |             |          |          |       |
| Lane Group Flow (vph)   | 132                                    | 66       | 0    | 54    | 94             | 0    | 23    | 938        | 0           | 50       | 1164     | 187   |
| Turn Type               | Perm                                   | NA       |      | Perm  | NA             |      | Perm  | NA         |             | Perm     | NA       | Perm  |
| Protected Phases        |                                        | 4        |      |       | 8              |      |       | 2          |             |          | 6        |       |
| Permitted Phases        | 4                                      |          |      | 8     |                |      | 2     |            |             | 6        |          | 6     |
| Detector Phase          | 4                                      | 4        |      | 8     | 8              |      | 2     | 2          |             | 6        | 6        | 6     |
| Switch Phase            |                                        |          |      |       |                |      |       |            |             |          |          |       |
| Minimum Initial (s)     | 10.0                                   | 10.0     |      | 10.0  | 10.0           |      | 10.0  | 10.0       |             | 10.0     | 10.0     | 10.0  |
| Minimum Split (s)       | 33.8                                   | 33.8     |      | 33.8  | 33.8           |      | 42.6  | 42.6       |             | 42.6     | 42.6     | 42.6  |
| Total Split (s)         | 35.0                                   | 35.0     |      | 35.0  | 35.0           |      | 85.0  | 85.0       |             | 85.0     | 85.0     | 85.0  |
| Total Split (%)         | 29.2%                                  | 29.2%    |      | 29.2% | 29.2%          |      | 70.8% | 70.8%      |             | 70.8%    | 70.8%    | 70.8% |
| Maximum Green (s)       | 28.2                                   | 28.2     |      | 28.2  | 28.2           |      | 77.4  | 77.4       |             | 77.4     | 77.4     | 77.4  |
| Yellow Time (s)         | 3.6                                    | 3.6      |      | 3.6   | 3.6            |      | 5.0   | 5.0        |             | 5.0      | 5.0      | 5.0   |
| All-Red Time (s)        | 3.2                                    | 3.2      |      | 3.2   | 3.2            |      | 2.6   | 2.6        |             | 2.6      | 2.6      | 2.6   |
| Lost Time Adjust (s)    | 0.0                                    | 0.0      |      | 0.0   | 0.0            |      | 0.0   | 0.0        |             | 0.0      | 0.0      | 0.0   |
| Total Lost Time (s)     | 6.8                                    | 6.8      |      | 6.8   | 6.8            |      | 7.6   | 7.6        |             | 7.6      | 7.6      | 7.6   |
| Lead/Lag                |                                        |          |      |       |                |      |       |            |             |          |          |       |
| Lead-Lag Optimize?      |                                        |          |      |       |                |      |       |            |             |          |          |       |
| Vehicle Extension (s)   | 3.0                                    | 3.0      |      | 3.0   | 3.0            |      | 3.0   | 3.0        |             | 3.0      | 3.0      | 3.0   |
| Recall Mode             | None                                   | None     |      | None  | None           |      | C-Max | C-Max      |             | C-Max    | C-Max    | C-Max |
| Walk Time (s)           | 7.0                                    | 7.0      |      | 7.0   | 7.0            |      | 7.0   | 7.0        |             | 7.0      | 7.0      | 7.0   |
| Flash Dont Walk (s)     | 20.0                                   | 20.0     |      | 20.0  | 20.0           |      | 28.0  | 28.0       |             | 28.0     | 28.0     | 28.0  |
| Pedestrian Calls (#/hr) | 0                                      | 0        |      | 0     | 0              |      | 0     | 0          |             | 0        | 0        | 0     |
| Act Effct Green (s)     | 17.8                                   | 17.8     |      | 17.8  | 17.8           |      | 87.8  | 87.8       |             | 87.8     | 87.8     | 87.8  |
| Actuated g/C Ratio      | 0.15                                   | 0.15     |      | 0.15  | 0.15           |      | 0.73  | 0.73       |             | 0.73     | 0.73     | 0.73  |
| v/c Ratio               | 0.71                                   | 0.27     |      | 0.32  | 0.32           |      | 0.08  | 0.39       |             | 0.14     | 0.48     | 0.17  |
|                         | -····································· |          |      |       |                |      |       |            |             |          |          |       |

Lanes, Volumes, Timings EM

Synchro 11 Report October 2025

|                        | •     | -     | •   | •    | ←     | •   | 4     | <b>†</b> | <b>/</b> | <b>&gt;</b> | ļ     | 1     |
|------------------------|-------|-------|-----|------|-------|-----|-------|----------|----------|-------------|-------|-------|
| Lane Group             | EBL   | EBT   | EBR | WBL  | WBT   | WBR | NBL   | NBT      | NBR      | SBL         | SBT   | SBR   |
| Control Delay          | 67.5  | 21.3  |     | 48.5 | 20.3  |     | 4.4   | 4.2      |          | 7.2         | 8.1   | 1.3   |
| Queue Delay            | 0.0   | 0.0   |     | 0.0  | 0.0   |     | 0.0   | 0.0      |          | 0.0         | 0.0   | 0.0   |
| Total Delay            | 67.5  | 21.3  |     | 48.5 | 20.3  |     | 4.4   | 4.2      |          | 7.2         | 8.1   | 1.3   |
| LOS                    | Е     | С     |     | D    | С     |     | Α     | Α        |          | Α           | Α     | Α     |
| Approach Delay         |       | 52.1  |     |      | 30.6  |     |       | 4.2      |          |             | 7.1   |       |
| Approach LOS           |       | D     |     |      | С     |     |       | Α        |          |             | Α     |       |
| Queue Length 50th (m)  | 27.6  | 4.4   |     | 10.6 | 6.1   |     | 0.8   | 20.6     |          | 2.8         | 48.0  | 0.0   |
| Queue Length 95th (m)  | 43.9  | 15.0  |     | 20.6 | 18.6  |     | m1.6  | 25.6     |          | 8.6         | 75.9  | 6.4   |
| Internal Link Dist (m) |       | 504.6 |     |      | 210.2 |     |       | 427.0    |          |             | 153.6 |       |
| Turn Bay Length (m)    | 100.0 |       |     | 40.0 |       |     | 100.0 |          |          | 75.0        |       | 175.0 |
| Base Capacity (vph)    | 297   | 363   |     | 270  | 423   |     | 290   | 2407     |          | 356         | 2433  | 1133  |
| Starvation Cap Reductn | 0     | 0     |     | 0    | 0     |     | 0     | 0        |          | 0           | 0     | 0     |
| Spillback Cap Reductn  | 0     | 0     |     | 0    | 0     |     | 0     | 0        |          | 0           | 0     | 0     |
| Storage Cap Reductn    | 0     | 0     |     | 0    | 0     |     | 0     | 0        |          | 0           | 0     | 0     |
| Reduced v/c Ratio      | 0.44  | 0.18  |     | 0.20 | 0.22  |     | 0.08  | 0.39     |          | 0.14        | 0.48  | 0.17  |

Intersection Summary

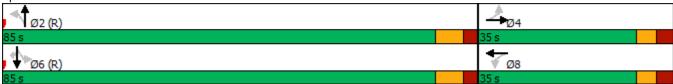
Area Type: Other

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 18 (15%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.71

Intersection Signal Delay: 10.6 Intersection LOS: B
Intersection Capacity Utilization 70.2% ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal

Splits and Phases: 1: Bank Street & Miikana Road/Blais Road



| Lane Group  Lane Configurations  Traffic Volume (vph)  Future Volume (vph) | EBL<br>314 | EBR   | NBL   | NBT      | ODT      |       |
|----------------------------------------------------------------------------|------------|-------|-------|----------|----------|-------|
| Lane Configurations Traffic Volume (vph) Future Volume (vph)               | ሻ          |       |       |          | SBT      | SBR   |
| Traffic Volume (vph) Future Volume (vph)                                   |            | r.    | ř     | <u> </u> | <u> </u> | 7     |
| Future Volume (vph)                                                        | UIT        | 99    | 149   | 643      | 980      | 197   |
|                                                                            | 314        | 99    | 149   | 643      | 980      | 197   |
| Ideal Flow (vphpl)                                                         | 1800       | 1800  | 1800  | 1800     | 1800     | 1800  |
| Storage Length (m)                                                         | 25.0       | 0.0   | 120.0 | 1000     | 1000     | 100.0 |
| Storage Lanes                                                              | 1          | 1     | 120.0 |          |          | 100.0 |
| Taper Length (m)                                                           | 20.0       |       | 20.0  |          |          |       |
| Lane Util. Factor                                                          | 1.00       | 1.00  | 1.00  | 1.00     | 1.00     | 1.00  |
| Frt                                                                        | 1.00       | 0.850 | 1.00  | 1.00     | 1.00     | 0.850 |
| Flt Protected                                                              | 0.950      | 0.000 | 0.950 |          |          | 0.000 |
| Satd. Flow (prot)                                                          | 1601       | 1369  | 1679  | 1701     | 1733     | 1532  |
| Flt Permitted                                                              | 0.950      | 1000  | 0.154 | 1701     | 1100     | 1002  |
| Satd. Flow (perm)                                                          | 1601       | 1369  | 272   | 1701     | 1733     | 1532  |
|                                                                            | 1001       | Yes   | 212   | 1701     | 1733     | Yes   |
| Right Turn on Red                                                          |            | 99    |       |          |          | 197   |
| Satd. Flow (RTOR)                                                          | F0         | 99    |       | 0.0      | 00       | 197   |
| Link Speed (k/h)                                                           | 50         |       |       | 80       | 80       |       |
| Link Distance (m)                                                          | 528.6      |       |       | 273.1    | 451.0    |       |
| Travel Time (s)                                                            | 38.1       | 4.00  | 4.00  | 12.3     | 20.3     | 4.00  |
| Peak Hour Factor                                                           | 1.00       | 1.00  | 1.00  | 1.00     | 1.00     | 1.00  |
| Heavy Vehicles (%)                                                         | 8%         | 13%   | 3%    | 7%       | 5%       | 1%    |
| Adj. Flow (vph)                                                            | 314        | 99    | 149   | 643      | 980      | 197   |
| Shared Lane Traffic (%)                                                    |            |       |       |          |          |       |
| Lane Group Flow (vph)                                                      | 314        | 99    | 149   | 643      | 980      | 197   |
| Turn Type                                                                  | Perm       | Perm  | Perm  | NA       | NA       | Perm  |
| Protected Phases                                                           |            |       |       | 2        | 6        |       |
| Permitted Phases                                                           | 4          | 4     | 2     |          |          | 6     |
| Detector Phase                                                             | 4          | 4     | 2     | 2        | 6        | 6     |
| Switch Phase                                                               |            |       |       |          |          |       |
| Minimum Initial (s)                                                        | 10.0       | 10.0  | 10.0  | 10.0     | 10.0     | 10.0  |
| Minimum Split (s)                                                          | 22.6       | 22.6  | 21.7  | 21.7     | 21.7     | 21.7  |
| Total Split (s)                                                            | 34.0       | 34.0  | 86.0  | 86.0     | 86.0     | 86.0  |
| Total Split (%)                                                            | 28.3%      | 28.3% | 71.7% | 71.7%    | 71.7%    | 71.7% |
| Maximum Green (s)                                                          | 27.4       | 27.4  | 79.3  | 79.3     | 79.3     | 79.3  |
| Yellow Time (s)                                                            | 3.3        | 3.3   | 4.6   | 4.6      | 4.6      | 4.6   |
| All-Red Time (s)                                                           | 3.3        | 3.3   | 2.1   | 2.1      | 2.1      | 2.1   |
| , ,                                                                        | 0.0        | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   |
| Lost Time Adjust (s)                                                       | 6.6        |       | 6.7   | 6.7      | 6.7      | 6.7   |
| Total Lost Time (s)                                                        | 0.0        | 6.6   | 0.7   | 0.7      | 0.7      | 0.7   |
| Lead/Lag                                                                   |            |       |       |          |          |       |
| Lead-Lag Optimize?                                                         | 0.0        |       | 0.0   | 0.0      | 0.0      | 2.0   |
| Vehicle Extension (s)                                                      | 3.0        | 3.0   | 3.0   | 3.0      | 3.0      | 3.0   |
| Recall Mode                                                                | None       | None  | C-Max | C-Max    | C-Max    | C-Max |
| Walk Time (s)                                                              | 7.0        | 7.0   | 7.0   | 7.0      | 7.0      | 7.0   |
| Flash Dont Walk (s)                                                        | 9.0        | 9.0   | 8.0   | 8.0      | 8.0      | 8.0   |
| Pedestrian Calls (#/hr)                                                    | 0          | 0     | 0     | 0        | 0        | 0     |
| Act Effct Green (s)                                                        | 26.0       | 26.0  | 80.7  | 80.7     | 80.7     | 80.7  |
| Actuated g/C Ratio                                                         | 0.22       | 0.22  | 0.67  | 0.67     | 0.67     | 0.67  |
| v/c Ratio                                                                  | 0.91       | 0.27  | 0.82  | 0.56     | 0.84     | 0.18  |
| Control Delay                                                              | 75.6       | 9.2   | 51.9  | 13.0     | 18.1     | 0.6   |
| Queue Delay                                                                | 0.0        | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   |

|                            | •            | $\rightarrow$ | •        | <b>†</b>    | ļ          | 4      |
|----------------------------|--------------|---------------|----------|-------------|------------|--------|
| Lane Group                 | EBL          | EBR           | NBL      | NBT         | SBT        | SBR    |
| Total Delay                | 75.6         | 9.2           | 51.9     | 13.0        | 18.1       | 0.6    |
| LOS                        | Е            | Α             | D        | В           | В          | Α      |
| Approach Delay             | 59.7         |               |          | 20.3        | 15.2       |        |
| Approach LOS               | Е            |               |          | С           | В          |        |
| Queue Length 50th (m)      | 65.8         | 0.0           | 22.3     | 69.8        | 161.5      | 0.0    |
| Queue Length 95th (m)      | #110.2       | 12.6          | #64.6    | 98.3        | 80.5       | 1.9    |
| Internal Link Dist (m)     | 504.6        |               |          | 249.1       | 427.0      |        |
| Turn Bay Length (m)        | 25.0         |               | 120.0    |             |            | 100.0  |
| Base Capacity (vph)        | 365          | 388           | 182      | 1144        | 1165       | 1095   |
| Starvation Cap Reductn     | 0            | 0             | 0        | 0           | 0          | 0      |
| Spillback Cap Reductn      | 0            | 0             | 0        | 0           | 0          | 0      |
| Storage Cap Reductn        | 0            | 0             | 0        | 0           | 0          | 0      |
| Reduced v/c Ratio          | 0.86         | 0.26          | 0.82     | 0.56        | 0.84       | 0.18   |
| Intersection Summary       |              |               |          |             |            |        |
| Area Type:                 | Other        |               |          |             |            |        |
| Cycle Length: 120          |              |               |          |             |            |        |
| Actuated Cycle Length: 12  | 20           |               |          |             |            |        |
| Offset: 18 (15%), Referen  | ced to phase | 2:NBTL        | and 6:SB | T, Start of | f Green    |        |
| Natural Cycle: 90          |              |               |          |             |            |        |
| Control Type: Actuated-Co  | oordinated   |               |          |             |            |        |
| Maximum v/c Ratio: 0.91    |              |               |          |             |            |        |
| Intersection Signal Delay: | 24.6         |               |          | In          | tersection | LOS: C |

Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Intersection Capacity Utilization 98.2%

Splits and Phases: 2: Bank Street & Dun Skipper Drive



ICU Level of Service F

| intersection                                  |      |
|-----------------------------------------------|------|
| Intersection Delay, s/veh                     | 12.9 |
| Intersection Delay, s/veh<br>Intersection LOS | В    |

| Movement                   | EBL  | EBI  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 13   | 264  | 95   | 49   | 182  | 79   | 48   | 40   | 35   | 107  | 59   | 28   |
| Future Vol, veh/h          | 13   | 264  | 95   | 49   | 182  | 79   | 48   | 40   | 35   | 107  | 59   | 28   |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 0    | 2    | 2    | 0    | 0    | 5    | 0    | 0    | 0    | 2    | 15   | 0    |
| Mvmt Flow                  | 13   | 264  | 95   | 49   | 182  | 79   | 48   | 40   | 35   | 107  | 59   | 28   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 14.2 |      |      | 12.8 |      |      | 10.6 |      |      | 11.9 |      |      |
| HCM LOS                    | В    |      |      | В    |      |      | В    |      |      | В    |      |      |
|                            |      |      |      |      |      |      |      |      |      |      |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 39%   | 3%    | 16%   | 55%   |  |
| Vol Thru, %            | 33%   | 71%   | 59%   | 30%   |  |
| Vol Right, %           | 28%   | 26%   | 25%   | 14%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 123   | 372   | 310   | 194   |  |
| LT Vol                 | 48    | 13    | 49    | 107   |  |
| Through Vol            | 40    | 264   | 182   | 59    |  |
| RT Vol                 | 35    | 95    | 79    | 28    |  |
| Lane Flow Rate         | 123   | 372   | 310   | 194   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.205 | 0.537 | 0.457 | 0.322 |  |
| Departure Headway (Hd) | 5.994 | 5.198 | 5.31  | 5.979 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 595   | 692   | 676   | 598   |  |
| Service Time           | 4.068 | 3.254 | 3.369 | 4.046 |  |
| HCM Lane V/C Ratio     | 0.207 | 0.538 | 0.459 | 0.324 |  |
| HCM Control Delay      | 10.6  | 14.2  | 12.8  | 11.9  |  |
| HCM Lane LOS           | В     | В     | В     | В     |  |
| HCM 95th-tile Q        | 0.8   | 3.2   | 2.4   | 1.4   |  |

| Intersection              |     |
|---------------------------|-----|
| Intersection Delay, s/veh | 8.4 |
| Intersection LOS          | Α   |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 13   | 47   | 2    | 39   | 39   | 58   | 2    | 59   | 41   | 31   | 58   | 9    |
| Future Vol, veh/h          | 13   | 47   | 2    | 39   | 39   | 58   | 2    | 59   | 41   | 31   | 58   | 9    |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 11   | 0    | 50   | 0    | 0    | 0    | 50   | 2    | 4    | 12   | 2    | 0    |
| Mvmt Flow                  | 13   | 47   | 2    | 39   | 39   | 58   | 2    | 59   | 41   | 31   | 58   | 9    |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 8.2  |      |      | 8.1  |      |      | 9    |      |      | 8.4  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

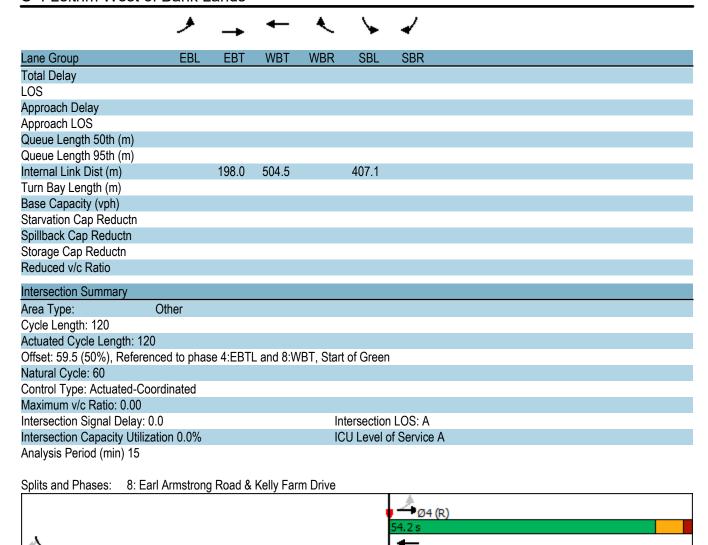
| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 2%    | 21%   | 29%   | 32%   |  |
| Vol Thru, %            | 58%   | 76%   | 29%   | 59%   |  |
| Vol Right, %           | 40%   | 3%    | 43%   | 9%    |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 102   | 62    | 136   | 98    |  |
| LT Vol                 | 2     | 13    | 39    | 31    |  |
| Through Vol            | 59    | 47    | 39    | 58    |  |
| RT Vol                 | 41    | 2     | 58    | 9     |  |
| Lane Flow Rate         | 102   | 62    | 136   | 98    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.144 | 0.082 | 0.162 | 0.128 |  |
| Departure Headway (Hd) | 5.083 | 4.766 | 4.282 | 4.696 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 707   | 753   | 839   | 764   |  |
| Service Time           | 3.107 | 2.788 | 2.3   | 2.719 |  |
| HCM Lane V/C Ratio     | 0.144 | 0.082 | 0.162 | 0.128 |  |
| HCM Control Delay      | 9     | 8.2   | 8.1   | 8.4   |  |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.5   | 0.3   | 0.6   | 0.4   |  |

| Intersection Delay, s/veh 8.4 |
|-------------------------------|
|                               |
| Intersection LOS A            |

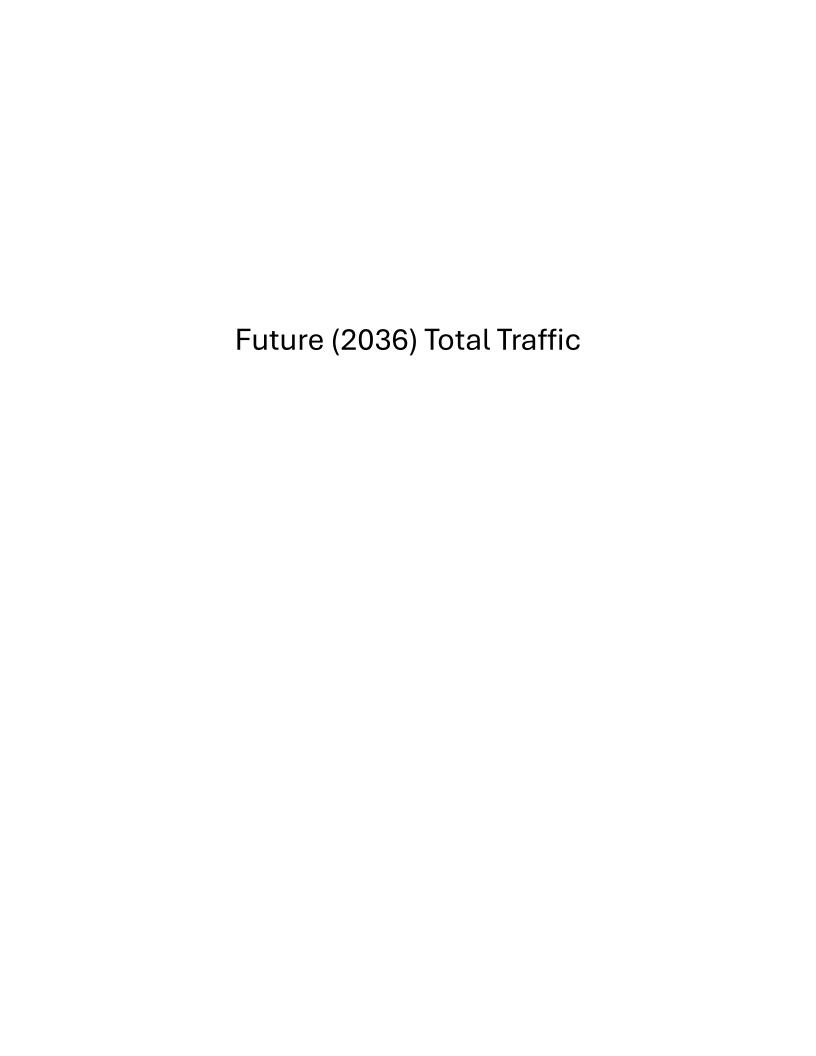
| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 16   | 66   | 0    | 107  | 55   | 43   | 1    | 26   | 94   | 33   | 29   | 16   |
| Future Vol, veh/h          | 16   | 66   | 0    | 107  | 55   | 43   | 1    | 26   | 94   | 33   | 29   | 16   |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 0    | 4    | 0    | 0    | 3    | 0    | 0    | 5    | 15   | 5    | 0    | 0    |
| Mvmt Flow                  | 16   | 66   | 0    | 107  | 55   | 43   | 1    | 26   | 94   | 33   | 29   | 16   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 8.2  |      |      | 8.9  |      |      | 7.9  |      |      | 8.3  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 1%    | 20%   | 52%   | 42%   |  |
| Vol Thru, %            | 21%   | 80%   | 27%   | 37%   |  |
| Vol Right, %           | 78%   | 0%    | 21%   | 21%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 121   | 82    | 205   | 78    |  |
| LT Vol                 | 1     | 16    | 107   | 33    |  |
| Through Vol            | 26    | 66    | 55    | 29    |  |
| RT Vol                 | 94    | 0     | 43    | 16    |  |
| Lane Flow Rate         | 121   | 82    | 205   | 78    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.141 | 0.105 | 0.252 | 0.103 |  |
| Departure Headway (Hd) | 4.19  | 4.616 | 4.42  | 4.741 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 855   | 776   | 812   | 756   |  |
| Service Time           | 2.218 | 2.648 | 2.447 | 2.771 |  |
| HCM Lane V/C Ratio     | 0.142 | 0.106 | 0.252 | 0.103 |  |
| HCM Control Delay      | 7.9   | 8.2   | 8.9   | 8.3   |  |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.5   | 0.4   | 1     | 0.3   |  |

| Intersection                          |           |          |         |        |           |       |
|---------------------------------------|-----------|----------|---------|--------|-----------|-------|
| Int Delay, s/veh                      | 0         |          |         |        |           |       |
| Movement                              | EBL       | EBR      | NBL     | NBT    | SBT       | SBR   |
| Lane Configurations                   | ¥         |          |         | 4      | <b>\$</b> |       |
| Traffic Vol, veh/h                    | 0         | 0        | 0       | 796    | 1045      | 0     |
| Future Vol, veh/h                     | 0         | 0        | 0       | 796    | 1045      | 0     |
| Conflicting Peds, #/hr                | 0         | 0        | 0       | 0      | 0         | 0     |
| Sign Control                          | Stop      | Stop     | Free    | Free   | Free      | Free  |
| RT Channelized                        | Stop<br>- | None     | -       |        | -         | None  |
| Storage Length                        | 0         | None -   | -       | INUITE | _         | NULLE |
| Veh in Median Storage,                |           | <u>-</u> |         | 0      | 0         | _     |
|                                       | # 0       | -        | -       | 0      | 0         | _     |
| Grade, %                              |           |          |         |        |           |       |
| Peak Hour Factor                      | 100       | 100      | 100     | 100    | 100       | 100   |
| Heavy Vehicles, %                     | 0         | 0        | 0       | 7      | 6         | 0     |
| Mvmt Flow                             | 0         | 0        | 0       | 796    | 1045      | 0     |
|                                       |           |          |         |        |           |       |
| Major/Minor N                         | 1inor2    | N        | //ajor1 | N      | Major2    |       |
| Conflicting Flow All                  | 1841      |          | 1045    | 0      | -         | 0     |
| Stage 1                               | 1045      | -        | -       | _      | _         | _     |
| Stage 2                               | 796       | <u>-</u> | _       | _      | _         | _     |
| Critical Hdwy                         | 6.4       | 6.2      | 4.1     | _      | _         |       |
| Critical Hdwy Stg 1                   | 5.4       | 0.2      | 4.1     | _      | _         | -     |
|                                       | 5.4       |          |         |        |           |       |
| Critical Hdwy Stg 2                   |           | -        | -       | -      | -         | -     |
| Follow-up Hdwy                        | 3.5       | 3.3      | 2.2     | -      | -         | -     |
| Pot Cap-1 Maneuver                    | 84        | 280      | 673     | -      | -         | -     |
| Stage 1                               | 342       | -        | -       | -      | -         | -     |
| Stage 2                               | 448       | -        | -       | -      | -         | -     |
| Platoon blocked, %                    |           |          |         | -      | -         | -     |
| Mov Cap-1 Maneuver                    | 84        | 280      | 673     | -      | -         | -     |
| Mov Cap-2 Maneuver                    | 84        | -        | -       | -      | -         | -     |
| Stage 1                               | 342       | -        | -       | -      | -         | -     |
| Stage 2                               | 448       | -        | -       | -      | -         | -     |
| Ü                                     |           |          |         |        |           |       |
|                                       |           |          | ND      |        | 0.0       |       |
| Approach                              | EB        |          | NB      |        | SB        |       |
| HCM Control Delay, s                  | 0         |          | 0       |        | 0         |       |
| HCM LOS                               | Α         |          |         |        |           |       |
|                                       |           |          |         |        |           |       |
| Minor Lane/Major Mvmt                 |           | NBL      | NBT     | EBLn1  | SBT       | SBR   |
| Capacity (veh/h)                      |           | 673      | -       | -      | _         | -     |
| HCM Lane V/C Ratio                    |           | -        | _       | _      | _         | _     |
| HCM Control Delay (s)                 |           | 0        | _       | 0      | _         | _     |
|                                       |           | A        | -       | A      | _         | _     |
| HCM Lane LOS                          |           |          |         |        |           |       |
| HCM Lane LOS<br>HCM 95th %tile Q(veh) |           | 0        | _       |        | _         | _     |


|                         | ۶     | <b>→</b>   | •    | •     | <b>←</b> | •    | 1     | <b>†</b> | <b>/</b> | <b>/</b> | ļ                                       | ✓    |
|-------------------------|-------|------------|------|-------|----------|------|-------|----------|----------|----------|-----------------------------------------|------|
| Lane Group              | EBL   | EBT        | EBR  | WBL   | WBT      | WBR  | NBL   | NBT      | NBR      | SBL      | SBT                                     | SBR  |
| Lane Configurations     | ሻ     | <b>↑</b> ↑ |      | ሻ     | f)       |      | ሻ     | <b>1</b> | 7        | ሻ        | <b>∱</b> }                              |      |
| Traffic Volume (vph)    | 0     | 0          | 0    | 0     | 0        | 0    | 0     | 796      | 0        | 0        | 1045                                    | 0    |
| Future Volume (vph)     | 0     | 0          | 0    | 0     | 0        | 0    | 0     | 796      | 0        | 0        | 1045                                    | 0    |
| Ideal Flow (vphpl)      | 1800  | 1800       | 1800 | 1800  | 1800     | 1800 | 1800  | 1800     | 1800     | 1800     | 1800                                    | 1800 |
| Storage Length (m)      | 25.0  |            | 0.0  | 50.0  |          | 0.0  | 20.0  |          | 15.0     | 15.0     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0.0  |
| Storage Lanes           | 1     |            | 0    | 1     |          | 0    | 1     |          | 1        | 1        |                                         | 0    |
| Taper Length (m)        | 20.0  |            | •    | 20.0  |          | •    | 20.0  |          | •        | 20.0     |                                         |      |
| Lane Util. Factor       | 1.00  | 0.95       | 0.95 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00     | 1.00     | 0.95                                    | 0.95 |
| Frt                     | 1.00  | 0.00       | 0.00 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00     | 1.00     | 0.00                                    | 0.00 |
| Flt Protected           |       |            |      |       |          |      |       |          |          |          |                                         |      |
| Satd. Flow (prot)       | 1784  | 2981       | 0    | 1670  | 1670     | 0    | 1820  | 1750     | 1389     | 1542     | 3232                                    | 0    |
| Flt Permitted           | 1704  | 2301       | U    | 1070  | 1070     | U    | 1020  | 1750     | 1000     | 1042     | 3232                                    | U    |
| Satd. Flow (perm)       | 1784  | 2981       | 0    | 1670  | 1670     | 0    | 1820  | 1750     | 1389     | 1542     | 3232                                    | 0    |
| Right Turn on Red       | 1704  | 2901       | Yes  | 1070  | 1070     | Yes  | 1020  | 1750     | Yes      | 1542     | 3232                                    | Yes  |
| · ·                     |       |            | 165  |       |          | 165  |       |          | 168      |          |                                         | 165  |
| Satd. Flow (RTOR)       |       | 50         |      |       | 50       |      |       | 50       |          |          | E0                                      |      |
| Link Speed (k/h)        |       |            |      |       |          |      |       |          |          |          | 50                                      |      |
| Link Distance (m)       |       | 528.5      |      |       | 292.7    |      |       | 203.7    |          |          | 158.2                                   |      |
| Travel Time (s)         | 4.00  | 38.1       | 4.00 | 4.00  | 21.1     | 4 00 | 4.00  | 14.7     | 4.00     | 4.00     | 11.4                                    | 4.00 |
| Peak Hour Factor        | 1.00  | 1.00       | 1.00 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00     | 1.00     | 1.00                                    | 1.00 |
| Heavy Vehicles (%)      | 2%    | 16%        | 3%   | 9%    | 9%       | 5%   | 0%    | 4%       | 31%      | 18%      | 7%                                      | 4%   |
| Adj. Flow (vph)         | 0     | 0          | 0    | 0     | 0        | 0    | 0     | 796      | 0        | 0        | 1045                                    | 0    |
| Shared Lane Traffic (%) | _     | _          | _    | _     | _        | _    | _     |          | _        | _        |                                         |      |
| Lane Group Flow (vph)   | 0     | 0          | 0    | 0     | 0        | 0    | 0     | 796      | 0        | 0        | 1045                                    | 0    |
| Turn Type               | Perm  |            |      | Perm  | _        |      | Perm  | NA       | Perm     | Perm     | NA                                      |      |
| Protected Phases        |       | 4          |      |       | 8        |      |       | 2        |          |          | 6                                       |      |
| Permitted Phases        | 4     |            |      | 8     |          |      | 2     |          | 2        | 6        |                                         |      |
| Detector Phase          | 4     | 4          |      | 8     | 8        |      | 2     | 2        | 2        | 6        | 6                                       |      |
| Switch Phase            |       |            |      |       |          |      |       |          |          |          |                                         |      |
| Minimum Initial (s)     | 10.0  | 10.0       |      | 10.0  | 10.0     |      | 10.0  | 10.0     | 10.0     | 10.0     | 10.0                                    |      |
| Minimum Split (s)       | 22.5  | 22.5       |      | 22.5  | 22.5     |      | 22.5  | 22.5     | 22.5     | 22.5     | 22.5                                    |      |
| Total Split (s)         | 22.5  | 22.5       |      | 22.5  | 22.5     |      | 22.5  | 22.5     | 22.5     | 22.5     | 22.5                                    |      |
| Total Split (%)         | 50.0% | 50.0%      |      | 50.0% | 50.0%    |      | 50.0% | 50.0%    | 50.0%    | 50.0%    | 50.0%                                   |      |
| Maximum Green (s)       | 18.0  | 18.0       |      | 18.0  | 18.0     |      | 18.0  | 18.0     | 18.0     | 18.0     | 18.0                                    |      |
| Yellow Time (s)         | 3.5   | 3.5        |      | 3.5   | 3.5      |      | 3.5   | 3.5      | 3.5      | 3.5      | 3.5                                     |      |
| All-Red Time (s)        | 1.0   | 1.0        |      | 1.0   | 1.0      |      | 1.0   | 1.0      | 1.0      | 1.0      | 1.0                                     |      |
| Lost Time Adjust (s)    | 0.0   | 0.0        |      | 0.0   | 0.0      |      | 0.0   | 0.0      | 0.0      | 0.0      | 0.0                                     |      |
| Total Lost Time (s)     | 4.5   | 4.5        |      | 4.5   | 4.5      |      | 4.5   | 4.5      | 4.5      | 4.5      | 4.5                                     |      |
| Lead/Lag                |       |            |      |       |          |      |       |          |          |          |                                         |      |
| Lead-Lag Optimize?      |       |            |      |       |          |      |       |          |          |          |                                         |      |
| Vehicle Extension (s)   | 3.0   | 3.0        |      | 3.0   | 3.0      |      | 3.0   | 3.0      | 3.0      | 3.0      | 3.0                                     |      |
| Recall Mode             | None  | None       |      | None  | None     |      | C-Max | C-Max    | C-Max    | C-Max    | C-Max                                   |      |
| Walk Time (s)           | 7.0   | 7.0        |      | 7.0   | 7.0      |      | 7.0   | 7.0      | 7.0      | 7.0      | 7.0                                     |      |
| Flash Dont Walk (s)     | 11.0  | 11.0       |      | 11.0  | 11.0     |      | 11.0  | 11.0     | 11.0     | 11.0     | 11.0                                    |      |
| Pedestrian Calls (#/hr) | 0     | 0          |      | 0     | 0        |      | 0     | 0        | 0        | 0        | 0                                       |      |
| Act Effct Green (s)     |       | •          |      |       |          |      |       | 45.0     |          |          | 45.0                                    |      |
| Actuated g/C Ratio      |       |            |      |       |          |      |       | 1.00     |          |          | 1.00                                    |      |
| v/c Ratio               |       |            |      |       |          |      |       | 0.45     |          |          | 0.32                                    |      |
| Control Delay           |       |            |      |       |          |      |       | 0.43     |          |          | 0.32                                    |      |
| Queue Delay             |       |            |      |       |          |      |       | 0.9      |          |          | 0.0                                     |      |
| Queue Delay             |       |            |      |       |          |      |       | 0.0      |          |          | 0.0                                     |      |

Lanes, Volumes, Timings EM


Synchro 11 Report October 2025

|                                 | •         | <b>→</b>  | •         | •        | •          | •          | 4   | <b>†</b> | <i>&gt;</i> | <b>/</b> | ļ     | 4   |
|---------------------------------|-----------|-----------|-----------|----------|------------|------------|-----|----------|-------------|----------|-------|-----|
| Lane Group                      | EBL       | EBT       | EBR       | WBL      | WBT        | WBR        | NBL | NBT      | NBR         | SBL      | SBT   | SBR |
| Total Delay                     |           |           |           |          |            |            |     | 0.9      |             |          | 0.3   |     |
| LOS                             |           |           |           |          |            |            |     | Α        |             |          | Α     |     |
| Approach Delay                  |           |           |           |          |            |            |     | 0.9      |             |          | 0.3   |     |
| Approach LOS                    |           |           |           |          |            |            |     | Α        |             |          | Α     |     |
| Queue Length 50th (m)           |           |           |           |          |            |            |     | 0.0      |             |          | 0.0   |     |
| Queue Length 95th (m)           |           |           |           |          |            |            |     | 0.0      |             |          | 0.0   |     |
| Internal Link Dist (m)          |           | 504.5     |           |          | 268.7      |            |     | 179.7    |             |          | 134.2 |     |
| Turn Bay Length (m)             |           |           |           |          |            |            |     |          |             |          |       |     |
| Base Capacity (vph)             |           |           |           |          |            |            |     | 1750     |             |          | 3232  |     |
| Starvation Cap Reductn          |           |           |           |          |            |            |     | 0        |             |          | 0     |     |
| Spillback Cap Reductn           |           |           |           |          |            |            |     | 0        |             |          | 0     |     |
| Storage Cap Reductn             |           |           |           |          |            |            |     | 0        |             |          | 0     |     |
| Reduced v/c Ratio               |           |           |           |          |            |            |     | 0.45     |             |          | 0.32  |     |
| Intersection Summary            |           |           |           |          |            |            |     |          |             |          |       |     |
| Area Type:                      | Other     |           |           |          |            |            |     |          |             |          |       |     |
| Cycle Length: 45                |           |           |           |          |            |            |     |          |             |          |       |     |
| Actuated Cycle Length: 45       |           |           |           |          |            |            |     |          |             |          |       |     |
| Offset: 0 (0%), Referenced to   | phase 2:I | NBTL and  | 6:SBTL    | Start of | Green      |            |     |          |             |          |       |     |
| Natural Cycle: 60               |           |           |           |          |            |            |     |          |             |          |       |     |
| Control Type: Actuated-Coor     | dinated   |           |           |          |            |            |     |          |             |          |       |     |
| Maximum v/c Ratio: 0.45         |           |           |           |          |            |            |     |          |             |          |       |     |
| Intersection Signal Delay: 0.5  |           |           |           | In       | tersection | n LOS: A   |     |          |             |          |       |     |
| Intersection Capacity Utilizati | on 48.0%  |           |           | IC       | CU Level   | of Service | Α   |          |             |          |       |     |
| Analysis Period (min) 15        |           |           |           |          |            |            |     |          |             |          |       |     |
| Splits and Phases: 7: Banl      | Street &  | Earl Arms | strong Ro | ad       |            |            |     |          |             |          |       |     |
| Ø2 (R)                          |           |           |           |          | 4          | <b>0</b> 4 |     |          |             |          |       |     |

|                                    | •       | <b>→</b>  | <b>←</b>     | 1    | <b>&gt;</b> | 4       |
|------------------------------------|---------|-----------|--------------|------|-------------|---------|
| Lane Group                         | EBL     | EBT       | WBT          | WBR  | SBL         | SBR     |
| Lane Configurations                | T T     | <b>^</b>  | <b>↑</b> ↑   | TOIL | )<br>T      | 7       |
| Traffic Volume (vph)               | 0       | <b>TT</b> | <b>T P</b> 0 | 0    | 0           | 0       |
| Future Volume (vph)                | 0       | 0         | 0            | 0    | 0           | 0       |
| Ideal Flow (vphpl)                 | 1800    | 1800      | 1800         | 1800 | 1800        | 1800    |
| Storage Length (m)                 | 60.0    | 1000      | 1000         | 0.0  | 40.0        | 0.0     |
|                                    | 1       |           |              | 0.0  | 40.0        | 1       |
| Storage Lanes                      | 20.0    |           |              | U    | 20.0        | l I     |
| Taper Length (m) Lane Util. Factor | 1.00    | 0.95      | 0.95         | 0.95 | 1.00        | 1.00    |
| Frt                                | 1.00    | 0.95      | 0.95         | 0.95 | 1.00        | 1.00    |
|                                    |         |           |              |      |             |         |
| Flt Protected                      | 4040    | 2444      | 2020         | ^    | 4000        | 4000    |
| Satd. Flow (prot)                  | 1640    | 3144      | 3232         | 0    | 1820        | 1820    |
| Flt Permitted                      |         |           | 222          |      | 10          | 10      |
| Satd. Flow (perm)                  | 1640    | 3144      | 3232         | 0    | 1820        | 1820    |
| Right Turn on Red                  |         |           |              | Yes  |             | Yes     |
| Satd. Flow (RTOR)                  |         |           |              |      |             |         |
| Link Speed (k/h)                   |         | 50        | 50           |      | 50          |         |
| Link Distance (m)                  |         | 222.0     | 528.5        |      | 431.1       |         |
| Travel Time (s)                    |         | 16.0      | 38.1         |      | 31.0        |         |
| Peak Hour Factor                   | 1.00    | 1.00      | 1.00         | 1.00 | 1.00        | 1.00    |
| Heavy Vehicles (%)                 | 11%     | 10%       | 7%           | 11%  | 0%          | 0%      |
| Adj. Flow (vph)                    | 0       | 0         | 0            | 0    | 0           | 0       |
| Shared Lane Traffic (%)            |         |           |              |      |             |         |
| Lane Group Flow (vph)              | 0       | 0         | 0            | 0    | 0           | 0       |
| Turn Type                          | Perm    | J         |              |      | Prot        | Perm    |
| Protected Phases                   | i Giiii | 4         | 8            |      | 6           | I GIIII |
| Permitted Phases                   | 4       | 4         | U            |      | U           | 6       |
| Detector Phase                     | 4       | 4         | 8            |      | 6           | 6       |
|                                    | 4       | 4         | 0            |      | Ö           | O       |
| Switch Phase                       | 40.0    | 40.0      | 40.0         |      | 40.0        | 40.0    |
| Minimum Initial (s)                | 10.0    | 10.0      | 10.0         |      | 10.0        | 10.0    |
| Minimum Split (s)                  | 24.8    | 24.8      | 24.8         |      | 33.8        | 33.8    |
| Total Split (s)                    | 54.2    | 54.2      | 54.2         |      | 65.8        | 65.8    |
| Total Split (%)                    | 45.2%   | 45.2%     | 45.2%        |      | 54.8%       | 54.8%   |
| Maximum Green (s)                  | 47.4    | 47.4      | 47.4         |      | 59.0        | 59.0    |
| Yellow Time (s)                    | 5.0     | 5.0       | 5.0          |      | 3.2         | 3.2     |
| All-Red Time (s)                   | 1.8     | 1.8       | 1.8          |      | 3.6         | 3.6     |
| Lost Time Adjust (s)               | 0.0     | 0.0       | 0.0          |      | 0.0         | 0.0     |
| Total Lost Time (s)                | 6.8     | 6.8       | 6.8          |      | 6.8         | 6.8     |
| Lead/Lag                           |         | 1.5       |              |      |             |         |
| Lead-Lag Optimize?                 |         |           |              |      |             |         |
| Vehicle Extension (s)              | 3.0     | 3.0       | 3.0          |      | 3.0         | 3.0     |
| Recall Mode                        | C-Max   | C-Max     | C-Max        |      | None        | None    |
| Walk Time (s)                      | 7.0     | 7.0       | 7.0          |      | 7.0         | 7.0     |
| Flash Dont Walk (s)                | 11.0    | 11.0      | 11.0         |      | 20.0        | 20.0    |
|                                    |         |           |              |      |             |         |
| Pedestrian Calls (#/hr)            | 0       | 0         | 0            |      | 0           | 0       |
| Act Effct Green (s)                |         |           |              |      |             |         |
| Actuated g/C Ratio                 |         |           |              |      |             |         |
| v/c Ratio                          |         |           |              |      |             |         |
|                                    |         |           |              |      |             |         |
| Control Delay                      |         |           |              |      |             |         |



Ø8 (R)



|                                    | ۶       | <b>→</b> | •    | •       | +     | •    | •       | †          | <i>&gt;</i> | <b>/</b> | <b>+</b> | -√      |
|------------------------------------|---------|----------|------|---------|-------|------|---------|------------|-------------|----------|----------|---------|
| Lane Group                         | EBL     | EBT      | EBR  | WBL     | WBT   | WBR  | NBL     | NBT        | NBR         | SBL      | SBT      | SBR     |
| Lane Configurations                | ሻ       | f)       |      | ሻ       | ĵ.    |      | ሻ       | <b>↑</b> ↑ |             | ሻ        | <b>^</b> | 7       |
| Traffic Volume (vph)               | 177     | 45       | 33   | 43      | 21    | 40   | 12      | 1001       | 48          | 46       | 620      | 76      |
| Future Volume (vph)                | 177     | 45       | 33   | 43      | 21    | 40   | 12      | 1001       | 48          | 46       | 620      | 76      |
| Ideal Flow (vphpl)                 | 1800    | 1800     | 1800 | 1800    | 1800  | 1800 | 1800    | 1800       | 1800        | 1800     | 1800     | 1800    |
| Storage Length (m)                 | 100.0   |          | 0.0  | 40.0    |       | 0.0  | 100.0   |            | 0.0         | 75.0     | .000     | 175.0   |
| Storage Lanes                      | 1       |          | 0    | 1       |       | 0    | 1       |            | 0           | 1        |          | 1       |
| Taper Length (m)                   | 20.0    |          | •    | 20.0    |       |      | 20.0    |            | •           | 20.0     |          | •       |
| Lane Util. Factor                  | 1.00    | 1.00     | 1.00 | 1.00    | 1.00  | 1.00 | 1.00    | 0.95       | 0.95        | 1.00     | 0.95     | 1.00    |
| Ped Bike Factor                    | 1.00    |          |      |         | 0.99  |      | 1.00    | 0.00       | 0.00        |          | 0.00     | 0.98    |
| Frt                                | 1.00    | 0.937    |      |         | 0.902 |      | 1.00    | 0.993      |             |          |          | 0.850   |
| Flt Protected                      | 0.950   | 0.001    |      | 0.950   | 0.002 |      | 0.950   | 0.000      |             | 0.950    |          | 0.000   |
| Satd. Flow (prot)                  | 1729    | 1686     | 0    | 1478    | 1627  | 0    | 1729    | 3209       | 0           | 1662     | 3172     | 1488    |
| Flt Permitted                      | 0.717   | 1000     | · ·  | 0.706   | 1021  | •    | 0.414   | 0200       | •           | 0.247    | 0172     | 1 100   |
| Satd. Flow (perm)                  | 1303    | 1686     | 0    | 1098    | 1627  | 0    | 753     | 3209       | 0           | 432      | 3172     | 1455    |
| Right Turn on Red                  | 1000    | 1000     | Yes  | 1000    | 1021  | Yes  | 700     | 0200       | Yes         | 702      | 0172     | Yes     |
| Satd. Flow (RTOR)                  |         | 27       | 103  |         | 40    | 103  |         | 7          | 103         |          |          | 76      |
| Link Speed (k/h)                   |         | 50       |      |         | 50    |      |         | 80         |             |          | 80       | 70      |
| Link Opeca (N/I) Link Distance (m) |         | 528.6    |      |         | 234.2 |      |         | 451.0      |             |          | 177.6    |         |
| Travel Time (s)                    |         | 38.1     |      |         | 16.9  |      |         | 20.3       |             |          | 8.0      |         |
| Confl. Peds. (#/hr)                | 1       | 50.1     |      |         | 10.5  | 1    | 1       | 20.0       |             |          | 0.0      | 1       |
| Peak Hour Factor                   | 1.00    | 1.00     | 1.00 | 1.00    | 1.00  | 1.00 | 1.00    | 1.00       | 1.00        | 1.00     | 1.00     | 1.00    |
| Heavy Vehicles (%)                 | 0%      | 2%       | 0%   | 17%     | 0%    | 0%   | 0%      | 6%         | 28%         | 4%       | 9%       | 4%      |
| Adj. Flow (vph)                    | 177     | 45       | 33   | 43      | 21    | 40   | 12      | 1001       | 48          | 46       | 620      | 76      |
| Shared Lane Traffic (%)            | 111     | 70       | 33   | 70      | 21    | 70   | 12      | 1001       |             | +0       | 020      | 70      |
| Lane Group Flow (vph)              | 177     | 78       | 0    | 43      | 61    | 0    | 12      | 1049       | 0           | 46       | 620      | 76      |
| Turn Type                          | Perm    | NA       | U    | Perm    | NA    |      | Perm    | NA         |             | Perm     | NA       | Perm    |
| Protected Phases                   | 1 01111 | 4        |      | 1 01111 | 8     |      | 1 01111 | 2          |             | 1 01111  | 6        | 1 01111 |
| Permitted Phases                   | 4       |          |      | 8       | 0     |      | 2       |            |             | 6        |          | 6       |
| Detector Phase                     | 4       | 4        |      | 8       | 8     |      | 2       | 2          |             | 6        | 6        | 6       |
| Switch Phase                       | •       | '        |      | , ,     |       |      |         |            |             |          |          |         |
| Minimum Initial (s)                | 10.0    | 10.0     |      | 10.0    | 10.0  |      | 10.0    | 10.0       |             | 10.0     | 10.0     | 10.0    |
| Minimum Split (s)                  | 33.8    | 33.8     |      | 33.8    | 33.8  |      | 42.6    | 42.6       |             | 42.6     | 42.6     | 42.6    |
| Total Split (s)                    | 40.0    | 40.0     |      | 40.0    | 40.0  |      | 90.0    | 90.0       |             | 90.0     | 90.0     | 90.0    |
| Total Split (%)                    | 30.8%   | 30.8%    |      | 30.8%   | 30.8% |      | 69.2%   | 69.2%      |             | 69.2%    | 69.2%    | 69.2%   |
| Maximum Green (s)                  | 33.2    | 33.2     |      | 33.2    | 33.2  |      | 82.4    | 82.4       |             | 82.4     | 82.4     | 82.4    |
| Yellow Time (s)                    | 3.6     | 3.6      |      | 3.6     | 3.6   |      | 5.0     | 5.0        |             | 5.0      | 5.0      | 5.0     |
| All-Red Time (s)                   | 3.2     | 3.2      |      | 3.2     | 3.2   |      | 2.6     | 2.6        |             | 2.6      | 2.6      | 2.6     |
| Lost Time Adjust (s)               | 0.0     | 0.0      |      | 0.0     | 0.0   |      | 0.0     | 0.0        |             | 0.0      | 0.0      | 0.0     |
| Total Lost Time (s)                | 6.8     | 6.8      |      | 6.8     | 6.8   |      | 7.6     | 7.6        |             | 7.6      | 7.6      | 7.6     |
| Lead/Lag                           | 0.0     | 0.0      |      | 0.0     | 0.0   |      | 7.0     | 7.0        |             | 7.0      | 7.0      | 7.0     |
| Lead-Lag Optimize?                 |         |          |      |         |       |      |         |            |             |          |          |         |
| Vehicle Extension (s)              | 3.0     | 3.0      |      | 3.0     | 3.0   |      | 3.0     | 3.0        |             | 3.0      | 3.0      | 3.0     |
| Recall Mode                        | None    | None     |      | None    | None  |      | C-Max   | C-Max      |             | C-Max    | C-Max    | C-Max   |
| Walk Time (s)                      | 7.0     | 7.0      |      | 7.0     | 7.0   |      | 7.0     | 7.0        |             | 7.0      | 7.0      | 7.0     |
| Flash Dont Walk (s)                | 20.0    | 20.0     |      | 20.0    | 20.0  |      | 28.0    | 28.0       |             | 28.0     | 28.0     | 28.0    |
| Pedestrian Calls (#/hr)            | 0       | 0        |      | 0       | 0     |      | 0       | 0          |             | 0        | 0        | 0       |
| Act Effct Green (s)                | 22.9    | 22.9     |      | 22.9    | 22.9  |      | 92.7    | 92.7       |             | 92.7     | 92.7     | 92.7    |
| Actuated g/C Ratio                 | 0.18    | 0.18     |      | 0.18    | 0.18  |      | 0.71    | 0.71       |             | 0.71     | 0.71     | 0.71    |
| v/c Ratio                          | 0.10    | 0.10     |      | 0.10    | 0.10  |      | 0.71    | 0.46       |             | 0.71     | 0.71     | 0.71    |
| v/o radio                          | 0.11    | 0.27     |      | 0.22    | 0.10  |      | 0.02    | 0.70       |             | 0.10     | 0.21     | 0.01    |

Lanes, Volumes, Timings EM

Synchro 11 Report October 2025

|                        | ۶     | <b>→</b> | •   | •    | ←     | •   | 4     | <b>†</b> | ~   | <b>\</b> | <b>↓</b> | 4     |
|------------------------|-------|----------|-----|------|-------|-----|-------|----------|-----|----------|----------|-------|
| Lane Group             | EBL   | EBT      | EBR | WBL  | WBT   | WBR | NBL   | NBT      | NBR | SBL      | SBT      | SBR   |
| Control Delay          | 72.0  | 30.7     |     | 45.9 | 19.8  |     | 7.1   | 6.9      |     | 9.1      | 7.7      | 1.9   |
| Queue Delay            | 0.0   | 0.0      |     | 0.0  | 0.0   |     | 0.0   | 0.0      |     | 0.0      | 0.0      | 0.0   |
| Total Delay            | 72.0  | 30.7     |     | 45.9 | 19.8  |     | 7.1   | 6.9      |     | 9.1      | 7.7      | 1.9   |
| LOS                    | Е     | С        |     | D    | В     |     | Α     | Α        |     | Α        | Α        | Α     |
| Approach Delay         |       | 59.4     |     |      | 30.6  |     |       | 6.9      |     |          | 7.2      |       |
| Approach LOS           |       | Е        |     |      | С     |     |       | Α        |     |          | Α        |       |
| Queue Length 50th (m)  | 40.3  | 10.3     |     | 8.8  | 4.2   |     | 0.5   | 29.5     |     | 3.2      | 24.7     | 0.0   |
| Queue Length 95th (m)  | 59.2  | 21.6     |     | 17.6 | 14.3  |     | m1.3  | 57.7     |     | 9.5      | 40.3     | 4.9   |
| Internal Link Dist (m) |       | 504.6    |     |      | 210.2 |     |       | 427.0    |     |          | 153.6    |       |
| Turn Bay Length (m)    | 100.0 |          |     | 40.0 |       |     | 100.0 |          |     | 75.0     |          | 175.0 |
| Base Capacity (vph)    | 332   | 450      |     | 280  | 445   |     | 536   | 2290     |     | 308      | 2261     | 1059  |
| Starvation Cap Reductn | 0     | 0        |     | 0    | 0     |     | 0     | 0        |     | 0        | 0        | 0     |
| Spillback Cap Reductn  | 0     | 0        |     | 0    | 0     |     | 0     | 0        |     | 0        | 0        | 0     |
| Storage Cap Reductn    | 0     | 0        |     | 0    | 0     |     | 0     | 0        |     | 0        | 0        | 0     |
| Reduced v/c Ratio      | 0.53  | 0.17     |     | 0.15 | 0.14  |     | 0.02  | 0.46     |     | 0.15     | 0.27     | 0.07  |

Intersection Summary

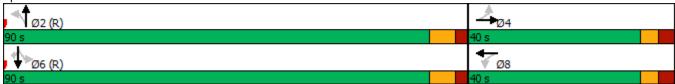
Area Type: Other

Cycle Length: 130 Actuated Cycle Length: 130

Offset: 16 (12%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.77

Intersection Signal Delay: 14.3 Intersection LOS: B
Intersection Capacity Utilization 69.4% ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal


Splits and Phases: 1: Bank Street & Miikana Road/Blais Road



|                         | ٠     | •     | 4     | <b>†</b> | ţ        | 4     |
|-------------------------|-------|-------|-------|----------|----------|-------|
| Lane Group              | EBL   | EBR   | NBL   | NBT      | SBT      | SBR   |
| Lane Configurations     | ች     | 7     | ሻ     | <u> </u> | <u> </u> | 7     |
| Traffic Volume (vph)    | 333   | 85    | 124   | 723      | 548      | 91    |
| Future Volume (vph)     | 333   | 85    | 124   | 723      | 548      | 91    |
| Ideal Flow (vphpl)      | 1800  | 1800  | 1800  | 1800     | 1800     | 1800  |
| Storage Length (m)      | 25.0  | 0.0   | 120.0 | 1000     | 1000     | 100.0 |
| Storage Lanes           | 20.0  | 1     | 120.0 |          |          | 100.0 |
| Taper Length (m)        | 20.0  |       | 20.0  |          |          |       |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00  | 1.00     | 1.00     | 1.00  |
| Ped Bike Factor         | 1.00  | 1.00  | 1.00  | 1.00     | 1.00     | 0.96  |
| Frt                     |       | 0.850 | 1.00  |          |          | 0.850 |
| Flt Protected           | 0.950 | 0.000 | 0.950 |          |          | 0.000 |
| Satd. Flow (prot)       | 1616  | 1459  | 1558  | 1655     | 1640     | 1172  |
| Flt Permitted           | 0.950 | 1409  | 0.394 | 1000     | 1040     | 1112  |
|                         | 1616  | 1/150 | 643   | 1655     | 1640     | 1129  |
| Satd. Flow (perm)       | 1010  | 1459  | 043   | 1655     | 1640     |       |
| Right Turn on Red       |       | Yes   |       |          |          | Yes   |
| Satd. Flow (RTOR)       |       | 85    |       | 0.0      | 00       | 91    |
| Link Speed (k/h)        | 50    |       |       | 80       | 80       |       |
| Link Distance (m)       | 528.6 |       |       | 273.1    | 451.0    |       |
| Travel Time (s)         | 38.1  |       |       | 12.3     | 20.3     |       |
| Confl. Peds. (#/hr)     |       |       | 4     |          |          | 4     |
| Peak Hour Factor        | 1.00  | 1.00  | 1.00  | 1.00     | 1.00     | 1.00  |
| Heavy Vehicles (%)      | 7%    | 6%    | 11%   | 10%      | 11%      | 32%   |
| Adj. Flow (vph)         | 333   | 85    | 124   | 723      | 548      | 91    |
| Shared Lane Traffic (%) |       |       |       |          |          |       |
| Lane Group Flow (vph)   | 333   | 85    | 124   | 723      | 548      | 91    |
| Turn Type               | Perm  | Perm  | Perm  | NA       | NA       | Perm  |
| Protected Phases        |       |       |       | 2        | 6        |       |
| Permitted Phases        | 4     | 4     | 2     |          |          | 6     |
| Detector Phase          | 4     | 4     | 2     | 2        | 6        | 6     |
| Switch Phase            | •     | •     | _     |          |          |       |
| Minimum Initial (s)     | 10.0  | 10.0  | 10.0  | 10.0     | 10.0     | 10.0  |
| Minimum Split (s)       | 22.6  | 22.6  | 21.7  | 21.7     | 21.7     | 21.7  |
|                         | 40.0  | 40.0  | 90.0  | 90.0     | 90.0     | 90.0  |
| Total Split (s)         |       |       |       |          |          |       |
| Total Split (%)         | 30.8% | 30.8% | 69.2% | 69.2%    | 69.2%    | 69.2% |
| Maximum Green (s)       | 33.4  | 33.4  | 83.3  | 83.3     | 83.3     | 83.3  |
| Yellow Time (s)         | 3.3   | 3.3   | 4.6   | 4.6      | 4.6      | 4.6   |
| All-Red Time (s)        | 3.3   | 3.3   | 2.1   | 2.1      | 2.1      | 2.1   |
| Lost Time Adjust (s)    | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   |
| Total Lost Time (s)     | 6.6   | 6.6   | 6.7   | 6.7      | 6.7      | 6.7   |
| Lead/Lag                |       |       |       |          |          |       |
| Lead-Lag Optimize?      |       |       |       |          |          |       |
| Vehicle Extension (s)   | 3.0   | 3.0   | 3.0   | 3.0      | 3.0      | 3.0   |
| Recall Mode             | None  | None  | C-Max | C-Max    | C-Max    | C-Max |
| Walk Time (s)           | 7.0   | 7.0   | 7.0   | 7.0      | 7.0      | 7.0   |
| Flash Dont Walk (s)     | 9.0   | 9.0   | 8.0   | 8.0      | 8.0      | 8.0   |
| Pedestrian Calls (#/hr) | 0     | 0     | 0     | 0        | 0        | 0     |
| Act Effct Green (s)     | 30.2  | 30.2  | 86.5  | 86.5     | 86.5     | 86.5  |
| Actuated g/C Ratio      | 0.23  | 0.23  | 0.67  | 0.67     | 0.67     | 0.67  |
| v/c Ratio               | 0.23  | 0.23  | 0.07  | 0.66     | 0.50     | 0.07  |
| V/C INCUIO              | 0.03  | U.Z I | 0.23  | 0.00     | 0.50     | V. IZ |

|                             | ۶             | •          | 4        | <b>†</b>   | <b>↓</b>   | ✓            |
|-----------------------------|---------------|------------|----------|------------|------------|--------------|
| Lane Group                  | EBL           | EBR        | NBL      | NBT        | SBT        | SBR          |
| Control Delay               | 73.4          | 8.8        | 12.0     | 17.3       | 12.9       | 2.2          |
| Queue Delay                 | 0.0           | 0.0        | 0.0      | 0.0        | 0.0        | 0.0          |
| Total Delay                 | 73.4          | 8.8        | 12.0     | 17.3       | 12.9       | 2.2          |
| LOS                         | Е             | Α          | В        | В          | В          | Α            |
| Approach Delay              | 60.2          |            |          | 16.5       | 11.4       |              |
| Approach LOS                | Е             |            |          | В          | В          |              |
| Queue Length 50th (m)       | 74.7          | 0.0        | 11.9     | 99.5       | 80.1       | 2.7          |
| Queue Length 95th (m)       | #114.9        | 11.8       | 22.7     | 141.9      | 112.6      | 0.7          |
| Internal Link Dist (m)      | 504.6         |            |          | 249.1      | 427.0      |              |
| Turn Bay Length (m)         | 25.0          |            | 120.0    |            |            | 100.0        |
| Base Capacity (vph)         | 415           | 438        | 428      | 1101       | 1091       | 781          |
| Starvation Cap Reductn      | 0             | 0          | 0        | 0          | 0          | 0            |
| Spillback Cap Reductn       | 0             | 0          | 0        | 0          | 0          | 0            |
| Storage Cap Reductn         | 0             | 0          | 0        | 0          | 0          | 0            |
| Reduced v/c Ratio           | 0.80          | 0.19       | 0.29     | 0.66       | 0.50       | 0.12         |
| Intersection Summary        |               |            |          |            |            |              |
| Area Type:                  | Other         |            |          |            |            |              |
| Cycle Length: 130           |               |            |          |            |            |              |
| Actuated Cycle Length: 13   |               |            |          |            |            |              |
| Offset: 40 (31%), Referen   | ced to phase  | 2:NBTL     | and 6:SB | T, Start o | f Green    |              |
| Natural Cycle: 60           |               |            |          |            |            |              |
| Control Type: Actuated-C    | oordinated    |            |          |            |            |              |
| Maximum v/c Ratio: 0.89     |               |            |          |            |            |              |
| Intersection Signal Delay:  |               |            |          |            | tersection |              |
| Intersection Capacity Utili | zation 74.9%  |            |          | IC         | CU Level   | of Service [ |
| Analysis Period (min) 15    |               |            |          |            |            |              |
| # 95th percentile volume    | e exceeds cap | pacity, qu | ieue may | be longe   | r.         |              |
| Queue shown is maxing       | num after two | cycles.    |          |            |            |              |
| Snlite and Phases: 2: B     |               | D . O      | D :      |            |            |              |

Splits and Phases: 2: Bank Street & Dun Skipper Drive



EBL

EBT

EBR

Movement

SBL

SBT

**SBR** 

WBT

WBR

NBL

NBT

NBR

WBL

| Lane Configurations        |      | - 4  |      |      | - 40 |      |      | - 40→ |      |      | - 4  |      |
|----------------------------|------|------|------|------|------|------|------|-------|------|------|------|------|
| Traffic Vol, veh/h         | 28   | 168  | 39   | 22   | 166  | 105  | 63   | 82    | 35   | 124  | 54   | 53   |
| Future Vol, veh/h          | 28   | 168  | 39   | 22   | 166  | 105  | 63   | 82    | 35   | 124  | 54   | 53   |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 0    | 1    | 8    | 5    | 1    | 7    | 0    | 2     | 6    | 2    | 0    | 0    |
| Mvmt Flow                  | 28   | 168  | 39   | 22   | 166  | 105  | 63   | 82    | 35   | 124  | 54   | 53   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1     | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |       |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |       |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |       |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |       |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |       |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |       |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |       |      | 1    |      |      |
| HCM Control Delay          | 11.6 |      |      | 12.5 |      |      | 11.1 |       |      | 12   |      |      |
| HCM LOS                    | В    |      |      | В    |      |      | В    |       |      | В    |      |      |
|                            |      |      |      |      |      |      |      |       |      |      |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 35%   | 12%   | 8%    | 54%   |  |
| Vol Thru, %            | 46%   | 71%   | 57%   | 23%   |  |
| Vol Right, %           | 19%   | 17%   | 36%   | 23%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 180   | 235   | 293   | 231   |  |
| LT Vol                 | 63    | 28    | 22    | 124   |  |
| Through Vol            | 82    | 168   | 166   | 54    |  |
| RT Vol                 | 35    | 39    | 105   | 53    |  |
| Lane Flow Rate         | 180   | 235   | 293   | 231   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.286 | 0.359 | 0.436 | 0.364 |  |
| Departure Headway (Hd) | 5.721 | 5.494 | 5.363 | 5.673 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 625   | 651   | 668   | 631   |  |
| Service Time           | 3.787 | 3.555 | 3.422 | 3.734 |  |
| HCM Lane V/C Ratio     | 0.288 | 0.361 | 0.439 | 0.366 |  |
| HCM Control Delay      | 11.1  | 11.6  | 12.5  | 12    |  |
| HCM Lane LOS           | В     | В     | В     | В     |  |
| HCM 95th-tile Q        | 1.2   | 1.6   | 2.2   | 1.7   |  |

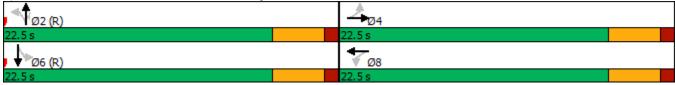
| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 18   | 42   | 9    | 23   | 20   | 27   | 3    | 66   | 62   | 39   | 42   | 12   |
| Future Vol, veh/h          | 18   | 42   | 9    | 23   | 20   | 27   | 3    | 66   | 62   | 39   | 42   | 12   |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 8    | 5    | 56   | 6    | 7    | 0    | 33   | 5    | 0    | 22   | 11   | 50   |
| Mvmt Flow                  | 18   | 42   | 9    | 23   | 20   | 27   | 3    | 66   | 62   | 39   | 42   | 12   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 8.1  |      |      | 7.9  |      |      | 8.6  |      |      | 8.4  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 2%    | 26%   | 33%   | 42%   |  |
| Vol Thru, %            | 50%   | 61%   | 29%   | 45%   |  |
| Vol Right, %           | 47%   | 13%   | 39%   | 13%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 131   | 69    | 70    | 93    |  |
| LT Vol                 | 3     | 18    | 23    | 39    |  |
| Through Vol            | 66    | 42    | 20    | 42    |  |
| RT Vol                 | 62    | 9     | 27    | 12    |  |
| Lane Flow Rate         | 131   | 69    | 70    | 93    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.168 | 0.089 | 0.087 | 0.123 |  |
| Departure Headway (Hd) | 4.616 | 4.633 | 4.46  | 4.756 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 778   | 775   | 805   | 755   |  |
| Service Time           | 2.635 | 2.652 | 2.479 | 2.776 |  |
| HCM Lane V/C Ratio     | 0.168 | 0.089 | 0.087 | 0.123 |  |
| HCM Control Delay      | 8.6   | 8.1   | 7.9   | 8.4   |  |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.6   | 0.3   | 0.3   | 0.4   |  |

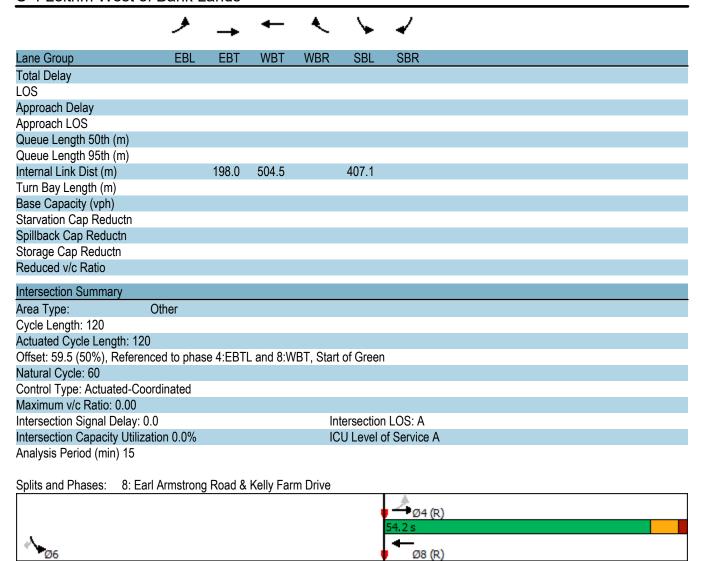
| Intersection              |     |     |     |     |     |     |     |     |     |     |     |     |
|---------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Intersection Delay, s/veh | 8.3 |     |     |     |     |     |     |     |     |     |     |     |
| Intersection LOS          | Α   |     |     |     |     |     |     |     |     |     |     |     |
|                           |     |     |     |     |     |     |     |     |     |     |     |     |
| Movement                  | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR |

| Movement                   | EBL  | EBI  | EBK  | WBL  | WBI  | WBR  | NBL  | NRI  | NBK  | SBL  | SBT  | SBK  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 17   | 57   | 7    | 72   | 39   | 26   | 3    | 32   | 126  | 32   | 23   | 2    |
| Future Vol, veh/h          | 17   | 57   | 7    | 72   | 39   | 26   | 3    | 32   | 126  | 32   | 23   | 2    |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 0    | 9    | 0    | 20   | 10   | 8    | 0    | 5    | 19   | 0    | 12   | 0    |
| Mvmt Flow                  | 17   | 57   | 7    | 72   | 39   | 26   | 3    | 32   | 126  | 32   | 23   | 2    |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 8.1  |      |      | 8.9  |      |      | 7.9  |      |      | 8.1  |      |      |
| HCM LOS                    | Δ    |      |      | Δ    |      |      | Δ    |      |      | Δ    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 2%    | 21%   | 53%   | 56%   |  |
| Vol Thru, %            | 20%   | 70%   | 28%   | 40%   |  |
| Vol Right, %           | 78%   | 9%    | 19%   | 4%    |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 161   | 81    | 137   | 57    |  |
| LT Vol                 | 3     | 17    | 72    | 32    |  |
| Through Vol            | 32    | 57    | 39    | 23    |  |
| RT Vol                 | 126   | 7     | 26    | 2     |  |
| Lane Flow Rate         | 161   | 81    | 137   | 57    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.18  | 0.102 | 0.182 | 0.074 |  |
| Departure Headway (Hd) | 4.031 | 4.527 | 4.795 | 4.689 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 892   | 792   | 749   | 765   |  |
| Service Time           | 2.047 | 2.553 | 2.819 | 2.711 |  |
| HCM Lane V/C Ratio     | 0.18  | 0.102 | 0.183 | 0.075 |  |
| HCM Control Delay      | 7.9   | 8.1   | 8.9   | 8.1   |  |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.7   | 0.3   | 0.7   | 0.2   |  |


| Intersection                                                   |        |        |        |        |         |        |
|----------------------------------------------------------------|--------|--------|--------|--------|---------|--------|
| Int Delay, s/veh                                               | 0      |        |        |        |         |        |
|                                                                |        | EDD    | ND     | NET    | OPT     | 000    |
| Movement                                                       | EBL    | EBR    | NBL    | NBT    | SBT     | SBR    |
| Lane Configurations                                            | ¥      |        |        | 4      | 4       |        |
| Traffic Vol, veh/h                                             | 0      | 0      | 0      | 848    | 613     | 0      |
| Future Vol, veh/h                                              | 0      | 0      | 0      | 848    | 613     | 0      |
| Conflicting Peds, #/hr                                         | 0      | 0      | 0      | 0      | 0       | 0      |
| Sign Control                                                   | Stop   | Stop   | Free   | Free   | Free    | Free   |
| RT Channelized                                                 | -      | None   | -      | None   | -       | None   |
| Storage Length                                                 | 0      | -      | -      | -      | -       | -      |
| Veh in Median Storage                                          |        | -      | -      | 0      | 0       | -      |
| Grade, %                                                       | 0      | -      | -      | 0      | 0       | -      |
| Peak Hour Factor                                               | 100    | 100    | 100    | 100    | 100     | 100    |
| Heavy Vehicles, %                                              | 0      | 0      | 0      | 10     | 11      | 0      |
| Mvmt Flow                                                      | 0      | 0      | 0      | 848    | 613     | 0      |
|                                                                |        |        |        |        |         |        |
| Major/Minor I                                                  | Minor2 |        | laior1 |        | /aior?  |        |
|                                                                |        |        | Major1 |        | /lajor2 |        |
| Conflicting Flow All                                           | 1461   | 613    | 613    | 0      | -       | 0      |
| Stage 1                                                        | 613    | -      | -      | -      | -       | -      |
| Stage 2                                                        | 848    | -      | -      | -      | -       | -      |
| Critical Hdwy                                                  | 6.4    | 6.2    | 4.1    | -      | -       | -      |
| Critical Hdwy Stg 1                                            | 5.4    | -      | -      | -      | -       | -      |
| Critical Hdwy Stg 2                                            | 5.4    | -      | -      | -      | -       | -      |
| Follow-up Hdwy                                                 | 3.5    | 3.3    | 2.2    | -      | -       | -      |
| Pot Cap-1 Maneuver                                             | 143    | 496    | 976    | -      | -       | -      |
| Stage 1                                                        | 544    | -      | -      | -      | -       | -      |
| Stage 2                                                        | 423    | -      | -      | -      | -       | -      |
| Platoon blocked, %                                             |        |        |        | -      | -       | -      |
| Mov Cap-1 Maneuver                                             | 143    | 496    | 976    | -      | -       | -      |
| Mov Cap-2 Maneuver                                             | 143    | -      | -      | -      | -       | -      |
| Stage 1                                                        | 544    | -      | -      | -      | -       | -      |
| Stage 2                                                        | 423    | _      | _      | _      | _       | -      |
| <b></b>                                                        |        |        |        |        |         |        |
|                                                                | ==     |        | NE     |        | 0.5     |        |
| Approach                                                       | EB     |        | NB     |        | SB      |        |
| HCM Control Delay, s                                           | 0      |        | 0      |        | 0       |        |
| HCM LOS                                                        | Α      |        |        |        |         |        |
|                                                                |        |        |        |        |         |        |
| Minor Lane/Major Mvm                                           | nt     | NBL    | NRT    | EBLn1  | SBT     | SBR    |
| Capacity (veh/h)                                               |        | 976    | ווטוו  |        | 051     | ODIT   |
| HCM Lane V/C Ratio                                             |        |        | -      | -      | -       | -      |
|                                                                |        | 0      | -      | 0      | -       | -      |
| HCM Control Doloy (a)                                          |        | U      | -      | U      | -       | -      |
| HCM Lang LOS                                                   |        |        |        | ٨      |         |        |
| HCM Control Delay (s)<br>HCM Lane LOS<br>HCM 95th %tile Q(veh) |        | A<br>0 | -      | A<br>- | -       | -<br>- |

| Lane Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | ۶    | <b>→</b>   | •    | •    | <b>←</b> | •    | 4    | <b>†</b> | ~    | <b>/</b> | <b>+</b>   | 4    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|------------|------|------|----------|------|------|----------|------|----------|------------|------|
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lane Group          | EBL  | EBT        | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL      | SBT        | SBR  |
| Traffic Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | *    | <b>♠</b> ₽ |      | ች    | ĵ.       |      | *    | <b>*</b> | 1    | ች        | <b>♠</b> ₽ |      |
| Future Volume (vph)   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |      |            | 0    |      |          | 0    |      |          | 0    |          |            | 0    |
| Ideal Flow (yphpi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |      | 0          |      |      |          |      |      |          | 0    | 0        |            |      |
| Storage Length (m)   250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( , ,               |      |            |      |      |          |      |      |          |      |          |            | 1800 |
| Storage Lanes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |      |            |      |      |          |      |      |          |      |          |            |      |
| Taper Length (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |      |            |      |      |          |      |      |          |      |          |            |      |
| Lane Util. Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |      |            |      | 20.0 |          |      | 20.0 |          | •    | 20.0     |            |      |
| Fit Protected Satd. Flow (prot) 1820 3232 0 1379 1468 0 1784 1750 1517 1569 3144 0 Fit Permitted Satd. Flow (perm) 1820 3232 0 1379 1468 0 1784 1750 1517 1569 3144 0 Right Turn on Red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,                   |      | 0.95       | 0.95 |      | 1 00     | 1 00 |      | 1 00     | 1 00 |          | 0.95       | 0.95 |
| Fit Protected   Satc. Flow (prot)   1820   3232   0   1379   1468   0   1784   1750   1517   1569   3144   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | 1.00 | 0.00       | 0.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 0.00       | 0.00 |
| Satd Flow (prot)   1820   3232   0   1379   1468   0   1784   1750   1517   1569   3144   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |      |            |      |      |          |      |      |          |      |          |            |      |
| Fit Permitted   Satol. Flow (perm)   1820   3232   0   1379   1468   0   1784   1750   1517   1569   3144   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 1820 | 3232       | 0    | 1379 | 1468     | 0    | 1784 | 1750     | 1517 | 1569     | 3144       | 0    |
| Satd. Flow (perm)   1820   3332   0   1379   1468   0   1784   1750   1517   1569   3144   0   0   1817   1760   768   524   768   524   768   768   524   769   770   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   700   | (, ,                | 1020 | OLOL       |      | 1010 | 1100     |      | 1701 | 1100     | 1017 | 1000     | 0111       |      |
| Right Turn on Red Satd. Flow (RTOR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | 1820 | 3232       | 0    | 1379 | 1468     | 0    | 1784 | 1750     | 1517 | 1569     | 3144       | 0    |
| Satd. Flow (RTOR)   Link Speed (k/h)   80   80   80   80   80   158.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1 /                | 1020 | 0202       |      | 1075 | 1400     |      | 1704 | 1750     |      | 1000     | 0177       |      |
| Link Speed (k/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |      |            | 163  |      |          | 163  |      |          | 163  |          |            | 163  |
| Link Distance (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                   |      | 80         |      |      | 80       |      |      | 80       |      |          | 80         |      |
| Travel Time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |      |            |      |      |          |      |      |          |      |          |            |      |
| Peak Hour Factor   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1. | . ,                 |      |            |      |      |          |      |      |          |      |          |            |      |
| Heavy Vehicles (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | 1.00 |            | 1.00 | 1.00 |          | 1 00 | 1 00 |          | 1 00 | 1.00     |            | 1.00 |
| Adj. Flow (vph)         0         0         0         0         0         0         848         0         0         613         0           Shared Lane Traffic (%)         Lane Group Flow (vph)         0         0         0         0         0         0         0         0         613         0           Turn Type         Perm         Perm         Perm         Perm         NA         Perm         NA         Perm         NA           Permitted Phases         4         8         2         2         2         6         Bectoor Phase         4         4         8         2         2         2         6         6         Bectoor Phase         4         4         8         8         2         2         2         6         6         Bectoor Phase         4         4         8         8         2         2         2         6         6         Bectoor Phase         4         4         8         8         2         2         2         6         6         Bectoor Phase         4         4         8         8         2         2         2         6         6         Bectoor Phase         8         2         2         2<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |      |            |      |      |          |      |      |          |      |          |            |      |
| Shared Lane Traffic (%)   Lane Group Flow (vph)   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • ,                 |      |            |      |      |          |      |      |          |      |          |            |      |
| Lane Group Flow (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | U    | U          | U    | U    | U        | U    | U    | 040      | U    | U        | 013        | U    |
| Turn Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | ^    | 0          | 0    | 0    | ^        | ^    | ^    | 0.40     | ^    | 0        | C42        |      |
| Protected Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |      | U          | U    |      | U        | U    |      |          |      |          |            | U    |
| Permitted Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | Perm |            |      | Perm |          |      | Perm |          | Perm | Perm     |            |      |
| Detector Phase   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |      | 4          |      | •    | 8        |      | •    | 2        | •    | •        | ь          |      |
| Switch Phase         Minimum Initial (s)         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>^</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |      |            |      |      |          |      |      |          |      |          | ^          |      |
| Minimum Initial (s)         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0 </td <td></td> <td>4</td> <td>4</td> <td></td> <td>8</td> <td>8</td> <td></td> <td>2</td> <td>2</td> <td>2</td> <td>ь</td> <td>ь</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | 4    | 4          |      | 8    | 8        |      | 2    | 2        | 2    | ь        | ь          |      |
| Minimum Split (s)         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5 <td></td> <td></td> <td>40.0</td> <td></td> <td>40.0</td> <td>400</td> <td></td> <td>40.0</td> <td>40.0</td> <td>400</td> <td>40.0</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |      | 40.0       |      | 40.0 | 400      |      | 40.0 | 40.0     | 400  | 40.0     |            |      |
| Total Split (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |      |            |      |      |          |      |      |          |      |          |            |      |
| Total Split (%) 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% Maximum Green (s) 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |      |            |      |      |          |      |      |          |      |          |            |      |
| Maximum Green (s)         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |      |            |      |      |          |      |      |          |      |          |            |      |
| Yellow Time (s)         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         4.5         4.5         4.5         4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                   |      |            |      |      |          |      |      |          |      |          |            |      |
| All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |      |            |      |      |          |      |      |          |      |          |            |      |
| Lost Time Adjust (s)         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ( )                 |      |            |      |      |          |      |      |          |      |          |            |      |
| Total Lost Time (s)         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5         4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |      |            |      |      |          |      |      |          |      |          |            |      |
| Lead/Lag         Lead-Lag Optimize?         Vehicle Extension (s)       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • ( )               |      |            |      |      |          |      |      |          |      |          |            |      |
| Lead-Lag Optimize?         Vehicle Extension (s)       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0 <td></td> <td>4.5</td> <td>4.5</td> <td></td> <td>4.5</td> <td>4.5</td> <td></td> <td>4.5</td> <td>4.5</td> <td>4.5</td> <td>4.5</td> <td>4.5</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | 4.5  | 4.5        |      | 4.5  | 4.5      |      | 4.5  | 4.5      | 4.5  | 4.5      | 4.5        |      |
| Vehicle Extension (s)         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |      |            |      |      |          |      |      |          |      |          |            |      |
| Recall Mode         None         None         None         None         C-Max         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>            |      |            |      |      |          |      |      |          |      |          |            |      |
| Walk Time (s)       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |      |            |      |      |          |      |      |          |      |          |            |      |
| Flash Dont Walk (s) 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |      |            |      |      |          |      |      |          |      |          |            |      |
| Pedestrian Calls (#/hr)       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |      |            |      |      |          |      |      |          |      |          |            |      |
| Act Effct Green (s)       45.0       45.0         Actuated g/C Ratio       1.00       1.00         v/c Ratio       0.48       0.19         Control Delay       1.0       0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |      |            |      |      |          |      |      |          |      |          |            |      |
| Actuated g/C Ratio       1.00       1.00         v/c Ratio       0.48       0.19         Control Delay       1.0       0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | 0    | 0          |      | 0    | 0        |      | 0    |          | 0    | 0        |            |      |
| v/c Ratio         0.48         0.19           Control Delay         1.0         0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Act Effct Green (s) |      |            |      |      |          |      |      |          |      |          |            |      |
| Control Delay 1.0 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Actuated g/C Ratio  |      |            |      |      |          |      |      | 1.00     |      |          | 1.00       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | v/c Ratio           |      |            |      |      |          |      |      | 0.48     |      |          | 0.19       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |      |            |      |      |          |      |      | 1.0      |      |          | 0.1        |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |      |            |      |      |          |      |      |          |      |          |            |      |


Lanes, Volumes, Timings EM

Synchro 11 Report October 2025

|                                 | ۶          | <b>→</b> | •         | •          | •          | 4          | 4   | <b>†</b> | <i>&gt;</i> | <b>/</b> | ļ     | 4   |
|---------------------------------|------------|----------|-----------|------------|------------|------------|-----|----------|-------------|----------|-------|-----|
| Lane Group                      | EBL        | EBT      | EBR       | WBL        | WBT        | WBR        | NBL | NBT      | NBR         | SBL      | SBT   | SBR |
| Total Delay                     |            |          |           |            |            |            |     | 1.0      |             |          | 0.1   |     |
| LOS                             |            |          |           |            |            |            |     | Α        |             |          | Α     |     |
| Approach Delay                  |            |          |           |            |            |            |     | 1.0      |             |          | 0.1   |     |
| Approach LOS                    |            |          |           |            |            |            |     | Α        |             |          | Α     |     |
| Queue Length 50th (m)           |            |          |           |            |            |            |     | 0.0      |             |          | 0.0   |     |
| Queue Length 95th (m)           |            |          |           |            |            |            |     | 0.0      |             |          | 0.0   |     |
| Internal Link Dist (m)          |            | 504.5    |           |            | 268.7      |            |     | 179.7    |             |          | 134.2 |     |
| Turn Bay Length (m)             |            |          |           |            |            |            |     |          |             |          |       |     |
| Base Capacity (vph)             |            |          |           |            |            |            |     | 1750     |             |          | 3144  |     |
| Starvation Cap Reductn          |            |          |           |            |            |            |     | 0        |             |          | 0     |     |
| Spillback Cap Reductn           |            |          |           |            |            |            |     | 0        |             |          | 0     |     |
| Storage Cap Reductn             |            |          |           |            |            |            |     | 0        |             |          | 0     |     |
| Reduced v/c Ratio               |            |          |           |            |            |            |     | 0.48     |             |          | 0.19  |     |
| Intersection Summary            |            |          |           |            |            |            |     |          |             |          |       |     |
| · · · / / · ·                   | Other      |          |           |            |            |            |     |          |             |          |       |     |
| Cycle Length: 45                |            |          |           |            |            |            |     |          |             |          |       |     |
| Actuated Cycle Length: 45       |            |          |           |            |            |            |     |          |             |          |       |     |
| Offset: 0 (0%), Referenced to   | phase 2:   | NBTL and | d 6:SBTL  | , Start of | Green      |            |     |          |             |          |       |     |
| Natural Cycle: 60               |            |          |           |            |            |            |     |          |             |          |       |     |
| Control Type: Actuated-Coor     | dinated    |          |           |            |            |            |     |          |             |          |       |     |
| Maximum v/c Ratio: 0.48         |            |          |           |            |            |            |     |          |             |          |       |     |
| Intersection Signal Delay: 0.6  |            |          |           |            | tersection |            |     |          |             |          |       |     |
| Intersection Capacity Utilizati | ion 50.9%  |          |           | IC         | CU Level   | of Service | A   |          |             |          |       |     |
| Analysis Period (min) 15        |            |          |           |            |            |            |     |          |             |          |       |     |
| Splits and Phases: 7: Bank      | k Street & | Earl Arm | strong Ro | ad         |            |            |     |          |             |          |       |     |
| . ≪∯an m                        |            |          |           |            |            |            |     |          |             |          |       |     |



|                         | ٠     | <b>→</b> | <b>←</b> | •     | <b>&gt;</b> | 4     |
|-------------------------|-------|----------|----------|-------|-------------|-------|
| Lane Group              | EBL   | EBT      | WBT      | WBR   | SBL         | SBR   |
| Lane Configurations     | 7     | <b>^</b> | <b>†</b> | TIDIX | )<br>j      | 7     |
| Traffic Volume (vph)    | 0     | 0        | 0        | 0     | 0           | 0     |
| Future Volume (vph)     | 0     | 0        | 0        | 0     | 0           | 0     |
| Ideal Flow (vphpl)      | 1800  | 1800     | 1800     | 1800  | 1800        | 1800  |
| Storage Length (m)      | 60.0  | 1000     | 1000     | 0.0   | 40.0        | 0.0   |
|                         | 1     |          |          | 0.0   | 40.0        |       |
| Storage Lanes           |       |          |          | U     |             | 1     |
| Taper Length (m)        | 20.0  | 0.05     | 0.05     | 0.05  | 20.0        | 4.00  |
| Lane Util. Factor       | 1.00  | 0.95     | 0.95     | 0.95  | 1.00        | 1.00  |
| Frt                     |       |          |          |       |             |       |
| Flt Protected           |       |          |          | _     |             |       |
| Satd. Flow (prot)       | 1625  | 3262     | 3007     | 0     | 1596        | 1596  |
| Flt Permitted           |       |          |          |       |             |       |
| Satd. Flow (perm)       | 1625  | 3262     | 3007     | 0     | 1596        | 1596  |
| Right Turn on Red       |       |          |          | Yes   |             | Yes   |
| Satd. Flow (RTOR)       |       |          |          |       |             |       |
| Link Speed (k/h)        |       | 80       | 80       |       | 40          |       |
| Link Distance (m)       |       | 222.0    | 528.5    |       | 431.1       |       |
| Travel Time (s)         |       | 10.0     | 23.8     |       | 38.8        |       |
| Peak Hour Factor        | 1.00  | 1.00     | 1.00     | 1.00  | 1.00        | 1.00  |
| Heavy Vehicles (%)      | 12%   | 6%       | 15%      | 12%   | 14%         | 14%   |
| Adj. Flow (vph)         | 0     | 0 /0     | 0        | 0     | 0           | 0     |
| Shared Lane Traffic (%) | U     | U        | U        | U     | U           | U     |
|                         | 0     | 0        | 0        | 0     | ^           | 0     |
| Lane Group Flow (vph)   | 0     | 0        | U        | 0     | 0           |       |
| Turn Type               | Perm  | 4        |          |       | Prot        | Perm  |
| Protected Phases        | 4     | 4        | 8        |       | 6           | ^     |
| Permitted Phases        | 4     |          |          |       |             | 6     |
| Detector Phase          | 4     | 4        | 8        |       | 6           | 6     |
| Switch Phase            |       |          |          |       |             |       |
| Minimum Initial (s)     | 10.0  | 10.0     | 10.0     |       | 10.0        | 10.0  |
| Minimum Split (s)       | 24.8  | 24.8     | 24.8     |       | 33.8        | 33.8  |
| Total Split (s)         | 54.2  | 54.2     | 54.2     |       | 65.8        | 65.8  |
| Total Split (%)         | 45.2% | 45.2%    | 45.2%    |       | 54.8%       | 54.8% |
| Maximum Green (s)       | 47.4  | 47.4     | 47.4     |       | 59.0        | 59.0  |
| Yellow Time (s)         | 5.0   | 5.0      | 5.0      |       | 3.2         | 3.2   |
| All-Red Time (s)        | 1.8   | 1.8      | 1.8      |       | 3.6         | 3.6   |
| Lost Time Adjust (s)    | 0.0   | 0.0      | 0.0      |       | 0.0         | 0.0   |
| Total Lost Time (s)     | 6.8   | 6.8      | 6.8      |       | 6.8         | 6.8   |
| Lead/Lag                | 0.0   | 0.0      | 0.0      |       | 0.0         | 0.0   |
| Lead-Lag Optimize?      |       |          |          |       |             |       |
|                         | 2.0   | 2.0      | 2.0      |       | 2.0         | 2.0   |
| Vehicle Extension (s)   | 3.0   | 3.0      | 3.0      |       | 3.0         | 3.0   |
| Recall Mode             | C-Max | C-Max    | C-Max    |       | None        | None  |
| Walk Time (s)           | 7.0   | 7.0      | 7.0      |       | 7.0         | 7.0   |
| Flash Dont Walk (s)     | 11.0  | 11.0     | 11.0     |       | 20.0        | 20.0  |
| Pedestrian Calls (#/hr) | 0     | 0        | 0        |       | 0           | 0     |
| Act Effct Green (s)     |       |          |          |       |             |       |
| Actuated g/C Ratio      |       |          |          |       |             |       |
| v/c Ratio               |       |          |          |       |             |       |
| Control Delay           |       |          |          |       |             |       |
| Queue Delay             |       |          |          |       |             |       |
|                         |       |          |          |       |             |       |



|                         | ۶     | <b>→</b> | •    | •     | <b>←</b>       | •    | 4     | †          | <i>&gt;</i> | <b>/</b> | ţ        | -√       |
|-------------------------|-------|----------|------|-------|----------------|------|-------|------------|-------------|----------|----------|----------|
| Lane Group              | EBL   | EBT      | EBR  | WBL   | WBT            | WBR  | NBL   | NBT        | NBR         | SBL      | SBT      | SBR      |
| Lane Configurations     | ሻ     | <b>^</b> |      | ሻ     | f <sub>a</sub> |      | ሻ     | <b>↑</b> ↑ |             | ኻ        | <b>^</b> | 7        |
| Traffic Volume (vph)    | 132   | 23       | 43   | 54    | 32             | 62   | 23    | 936        | 45          | 50       | 1223     | 187      |
| Future Volume (vph)     | 132   | 23       | 43   | 54    | 32             | 62   | 23    | 936        | 45          | 50       | 1223     | 187      |
| Ideal Flow (vphpl)      | 1800  | 1800     | 1800 | 1800  | 1800           | 1800 | 1800  | 1800       | 1800        | 1800     | 1800     | 1800     |
| Storage Length (m)      | 100.0 |          | 0.0  | 40.0  |                | 0.0  | 100.0 |            | 0.0         | 75.0     |          | 175.0    |
| Storage Lanes           | 1     |          | 0    | 1     |                | 0    | 1     |            | 0           | 1        |          | 1        |
| Taper Length (m)        | 20.0  |          |      | 20.0  |                |      | 20.0  |            |             | 20.0     |          |          |
| Lane Util. Factor       | 1.00  | 1.00     | 1.00 | 1.00  | 1.00           | 1.00 | 1.00  | 0.95       | 0.95        | 1.00     | 0.95     | 1.00     |
| Ped Bike Factor         |       |          |      |       |                |      | 1.00  |            |             |          |          | 0.98     |
| Frt                     |       | 0.902    |      |       | 0.901          |      |       | 0.993      |             |          |          | 0.850    |
| Flt Protected           | 0.950 |          |      | 0.950 |                |      | 0.950 |            |             | 0.950    |          |          |
| Satd. Flow (prot)       | 1729  | 1405     | 0    | 1530  | 1602           | 0    | 1729  | 3287       | 0           | 1601     | 3325     | 1517     |
| Flt Permitted           | 0.696 |          |      | 0.714 |                |      | 0.202 |            |             | 0.274    |          |          |
| Satd. Flow (perm)       | 1267  | 1405     | 0    | 1150  | 1602           | 0    | 367   | 3287       | 0           | 462      | 3325     | 1481     |
| Right Turn on Red       |       |          | Yes  |       |                | Yes  |       |            | Yes         |          |          | Yes      |
| Satd. Flow (RTOR)       |       | 43       |      |       | 62             |      |       | 8          |             |          |          | 187      |
| Link Speed (k/h)        |       | 50       |      |       | 50             |      |       | 50         |             |          | 50       |          |
| Link Distance (m)       |       | 528.6    |      |       | 234.2          |      |       | 451.0      |             |          | 177.6    |          |
| Travel Time (s)         |       | 38.1     |      |       | 16.9           |      |       | 32.5       |             |          | 12.8     |          |
| Confl. Peds. (#/hr)     |       |          |      |       |                |      | 2     |            |             |          |          | 2        |
| Peak Hour Factor        | 1.00  | 1.00     | 1.00 | 1.00  | 1.00           | 1.00 | 1.00  | 1.00       | 1.00        | 1.00     | 1.00     | 1.00     |
| Heavy Vehicles (%)      | 0%    | 9%       | 21%  | 13%   | 3%             | 2%   | 0%    | 4%         | 14%         | 8%       | 4%       | 2%       |
| Adj. Flow (vph)         | 132   | 23       | 43   | 54    | 32             | 62   | 23    | 936        | 45          | 50       | 1223     | 187      |
| Shared Lane Traffic (%) |       |          |      |       |                |      |       |            |             |          |          |          |
| Lane Group Flow (vph)   | 132   | 66       | 0    | 54    | 94             | 0    | 23    | 981        | 0           | 50       | 1223     | 187      |
| Turn Type               | Perm  | NA       |      | Perm  | NA             |      | Perm  | NA         |             | Perm     | NA       | Perm     |
| Protected Phases        |       | 4        |      |       | 8              |      |       | 2          |             |          | 6        |          |
| Permitted Phases        | 4     |          |      | 8     |                |      | 2     |            |             | 6        |          | 6        |
| Detector Phase          | 4     | 4        |      | 8     | 8              |      | 2     | 2          |             | 6        | 6        | 6        |
| Switch Phase            |       |          |      |       |                |      |       |            |             |          |          |          |
| Minimum Initial (s)     | 10.0  | 10.0     |      | 10.0  | 10.0           |      | 10.0  | 10.0       |             | 10.0     | 10.0     | 10.0     |
| Minimum Split (s)       | 33.8  | 33.8     |      | 33.8  | 33.8           |      | 42.6  | 42.6       |             | 42.6     | 42.6     | 42.6     |
| Total Split (s)         | 35.0  | 35.0     |      | 35.0  | 35.0           |      | 85.0  | 85.0       |             | 85.0     | 85.0     | 85.0     |
| Total Split (%)         | 29.2% | 29.2%    |      | 29.2% | 29.2%          |      | 70.8% | 70.8%      |             | 70.8%    | 70.8%    | 70.8%    |
| Maximum Green (s)       | 28.2  | 28.2     |      | 28.2  | 28.2           |      | 77.4  | 77.4       |             | 77.4     | 77.4     | 77.4     |
| Yellow Time (s)         | 3.6   | 3.6      |      | 3.6   | 3.6            |      | 5.0   | 5.0        |             | 5.0      | 5.0      | 5.0      |
| All-Red Time (s)        | 3.2   | 3.2      |      | 3.2   | 3.2            |      | 2.6   | 2.6        |             | 2.6      | 2.6      | 2.6      |
| Lost Time Adjust (s)    | 0.0   | 0.0      |      | 0.0   | 0.0            |      | 0.0   | 0.0        |             | 0.0      | 0.0      | 0.0      |
| Total Lost Time (s)     | 6.8   | 6.8      |      | 6.8   | 6.8            |      | 7.6   | 7.6        |             | 7.6      | 7.6      | 7.6      |
| Lead/Lag                |       |          |      |       |                |      |       |            |             |          |          |          |
| Lead-Lag Optimize?      |       |          |      |       |                |      |       |            |             |          |          |          |
| Vehicle Extension (s)   | 3.0   | 3.0      |      | 3.0   | 3.0            |      | 3.0   | 3.0        |             | 3.0      | 3.0      | 3.0      |
| Recall Mode             | None  | None     |      | None  | None           |      | C-Max | C-Max      |             | C-Max    | C-Max    | C-Max    |
| Walk Time (s)           | 7.0   | 7.0      |      | 7.0   | 7.0            |      | 7.0   | 7.0        |             | 7.0      | 7.0      | 7.0      |
| Flash Dont Walk (s)     | 20.0  | 20.0     |      | 20.0  | 20.0           |      | 28.0  | 28.0       |             | 28.0     | 28.0     | 28.0     |
| Pedestrian Calls (#/hr) | 0     | 0        |      | 0     | 0              |      | 0     | 0          |             | 0        | 0        | 0        |
| Act Effct Green (s)     | 17.8  | 17.8     |      | 17.8  | 17.8           |      | 87.8  | 87.8       |             | 87.8     | 87.8     | 87.8     |
| Actuated g/C Ratio      | 0.15  | 0.15     |      | 0.15  | 0.15           |      | 0.73  | 0.73       |             | 0.73     | 0.73     | 0.73     |
| v/c Ratio               | 0.71  | 0.27     |      | 0.32  | 0.32           |      | 0.09  | 0.41       |             | 0.15     | 0.50     | 0.17     |
|                         | V., 1 | V.L1     |      | 0.02  | 0.02           |      | 0.00  | V. 1 1     |             | 0.10     | 3.00     | <u> </u> |

Lanes, Volumes, Timings EM

Synchro 11 Report October 2025

|                        | ၨ     | <b>→</b> | `    | •    | ←     | •    | •     | <b>†</b> | <b>/</b> | -    | Ţ     | 4     |
|------------------------|-------|----------|------|------|-------|------|-------|----------|----------|------|-------|-------|
| Lane Group             | EBL   | EBT      | EBR  | WBL  | WBT   | WBR  | NBL   | NBT      | NBR      | SBL  | SBT   | SBR   |
|                        |       |          | LDIX |      |       | WDIX |       |          | NDIX     |      |       |       |
| Control Delay          | 67.5  | 21.3     |      | 48.5 | 20.3  |      | 4.6   | 4.3      |          | 7.4  | 8.3   | 1.3   |
| Queue Delay            | 0.0   | 0.0      |      | 0.0  | 0.0   |      | 0.0   | 0.0      |          | 0.0  | 0.0   | 0.0   |
| Total Delay            | 67.5  | 21.3     |      | 48.5 | 20.3  |      | 4.6   | 4.3      |          | 7.4  | 8.3   | 1.3   |
| LOS                    | Е     | С        |      | D    | С     |      | Α     | Α        |          | Α    | Α     | Α     |
| Approach Delay         |       | 52.1     |      |      | 30.6  |      |       | 4.3      |          |      | 7.4   |       |
| Approach LOS           |       | D        |      |      | С     |      |       | Α        |          |      | Α     |       |
| Queue Length 50th (m)  | 27.6  | 4.4      |      | 10.6 | 6.1   |      | 0.9   | 22.5     |          | 2.9  | 52.0  | 0.0   |
| Queue Length 95th (m)  | 43.9  | 15.0     |      | 20.6 | 18.6  |      | m1.6  | m29.1    |          | 8.7  | 81.9  | 6.4   |
| Internal Link Dist (m) |       | 504.6    |      |      | 210.2 |      |       | 427.0    |          |      | 153.6 |       |
| Turn Bay Length (m)    | 100.0 |          |      | 40.0 |       |      | 100.0 |          |          | 75.0 |       | 175.0 |
| Base Capacity (vph)    | 297   | 363      |      | 270  | 423   |      | 268   | 2407     |          | 338  | 2433  | 1133  |
| Starvation Cap Reductn | 0     | 0        |      | 0    | 0     |      | 0     | 0        |          | 0    | 0     | 0     |
| Spillback Cap Reductn  | 0     | 0        |      | 0    | 0     |      | 0     | 0        |          | 0    | 0     | 0     |
| Storage Cap Reductn    | 0     | 0        |      | 0    | 0     |      | 0     | 0        |          | 0    | 0     | 0     |
| Reduced v/c Ratio      | 0.44  | 0.18     |      | 0.20 | 0.22  |      | 0.09  | 0.41     |          | 0.15 | 0.50  | 0.17  |

Intersection Summary

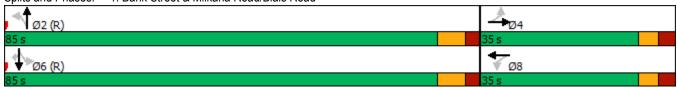
Area Type: Other

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 18 (15%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.71

Intersection Signal Delay: 10.7 Intersection LOS: B
Intersection Capacity Utilization 70.2% ICU Level of Service C

Analysis Period (min) 15

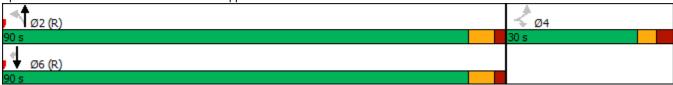
m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: Bank Street & Miikana Road/Blais Road



|                         | ۶     | •     | 4          | <b>†</b> | <b>↓</b> | 1     |
|-------------------------|-------|-------|------------|----------|----------|-------|
| Lane Group              | EBL   | EBR   | NBL        | NBT      | SBT      | SBR   |
| Lane Configurations     | *     | 7     | <b>110</b> | <u> </u> | <u> </u> | 7     |
| Traffic Volume (vph)    | 314   | 99    | 149        | 683      | 1038     | 197   |
| Future Volume (vph)     | 314   | 99    | 149        | 683      | 1038     | 197   |
| Ideal Flow (vphpl)      | 1800  | 1800  | 1800       | 1800     | 1800     | 1800  |
| Storage Length (m)      | 25.0  | 0.0   | 120.0      | 1000     | 1000     | 100.0 |
| Storage Lanes           | 1     | 1     | 120.0      |          |          | 1     |
| Taper Length (m)        | 20.0  |       | 20.0       |          |          |       |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00       | 1.00     | 1.00     | 1.00  |
| Frt                     | 1.00  | 0.850 | 1.00       | 1.00     | 1.00     | 0.850 |
| Flt Protected           | 0.950 | 0.000 | 0.950      |          |          | 0.000 |
| Satd. Flow (prot)       | 1601  | 1369  | 1679       | 1701     | 1733     | 1532  |
| Flt Permitted           | 0.950 | 1303  | 0.140      | 1701     | 1733     | 1332  |
|                         | 1601  | 1369  | 247        | 1701     | 1733     | 1532  |
| Satd. Flow (perm)       | 1001  | Yes   | 241        | 1/01     | 1/33     | Yes   |
| Right Turn on Red       |       |       |            |          |          |       |
| Satd. Flow (RTOR)       |       | 99    |            | 00       | 00       | 197   |
| Link Speed (k/h)        | 50    |       |            | 80       | 80       |       |
| Link Distance (m)       | 528.6 |       |            | 273.1    | 451.0    |       |
| Travel Time (s)         | 38.1  |       |            | 12.3     | 20.3     |       |
| Peak Hour Factor        | 1.00  | 1.00  | 1.00       | 1.00     | 1.00     | 1.00  |
| Heavy Vehicles (%)      | 8%    | 13%   | 3%         | 7%       | 5%       | 1%    |
| Adj. Flow (vph)         | 314   | 99    | 149        | 683      | 1038     | 197   |
| Shared Lane Traffic (%) |       |       |            |          |          |       |
| Lane Group Flow (vph)   | 314   | 99    | 149        | 683      | 1038     | 197   |
| Turn Type               | Perm  | Perm  | Perm       | NA       | NA       | Perm  |
| Protected Phases        |       |       |            | 2        | 6        |       |
| Permitted Phases        | 4     | 4     | 2          |          |          | 6     |
| Detector Phase          | 4     | 4     | 2          | 2        | 6        | 6     |
| Switch Phase            |       |       | _          | _        |          |       |
| Minimum Initial (s)     | 10.0  | 10.0  | 10.0       | 10.0     | 10.0     | 10.0  |
| Minimum Split (s)       | 22.6  | 22.6  | 21.7       | 21.7     | 21.7     | 21.7  |
| Total Split (s)         | 30.0  | 30.0  | 90.0       | 90.0     | 90.0     | 90.0  |
| Total Split (%)         | 25.0% | 25.0% | 75.0%      | 75.0%    | 75.0%    | 75.0% |
|                         | 23.4  | 23.4  |            | 83.3     | 83.3     | 83.3  |
| Maximum Green (s)       |       |       | 83.3       |          |          |       |
| Yellow Time (s)         | 3.3   | 3.3   | 4.6        | 4.6      | 4.6      | 4.6   |
| All-Red Time (s)        | 3.3   | 3.3   | 2.1        | 2.1      | 2.1      | 2.1   |
| Lost Time Adjust (s)    | 0.0   | 0.0   | 0.0        | 0.0      | 0.0      | 0.0   |
| Total Lost Time (s)     | 6.6   | 6.6   | 6.7        | 6.7      | 6.7      | 6.7   |
| Lead/Lag                |       |       |            |          |          |       |
| Lead-Lag Optimize?      |       |       |            |          |          |       |
| Vehicle Extension (s)   | 3.0   | 3.0   | 3.0        | 3.0      | 3.0      | 3.0   |
| Recall Mode             | None  | None  | C-Max      | C-Max    | C-Max    | C-Max |
| Walk Time (s)           | 7.0   | 7.0   | 7.0        | 7.0      | 7.0      | 7.0   |
| Flash Dont Walk (s)     | 9.0   | 9.0   | 8.0        | 8.0      | 8.0      | 8.0   |
| Pedestrian Calls (#/hr) | 0     | 0     | 0          | 0        | 0        | 0     |
| Act Effct Green (s)     | 23.4  | 23.4  | 83.3       | 83.3     | 83.3     | 83.3  |
| Actuated g/C Ratio      | 0.20  | 0.20  | 0.69       | 0.69     | 0.69     | 0.69  |
| v/c Ratio               | 1.01  | 0.29  | 0.87       | 0.58     | 0.86     | 0.03  |
| Control Delay           | 101.1 | 10.2  | 61.1       | 11.8     | 18.3     | 0.10  |
| •                       |       | 0.0   | 0.0        | 0.0      |          |       |
| Queue Delay             | 0.0   | 0.0   | 0.0        | 0.0      | 0.0      | 0.0   |

| •            | •                                                                            | 1                                                                                                                                     | <b>†</b>                                                                                                                                                                              | <b>↓</b>                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBL          | EBR                                                                          | NBL                                                                                                                                   | NBT                                                                                                                                                                                   | SBT                                                                                                                                                                                                                                                                                                              | SBR                                                                                                                                                                                                                                                                                                                                                                        |
| 101.1        | 10.2                                                                         | 61.1                                                                                                                                  | 11.8                                                                                                                                                                                  | 18.3                                                                                                                                                                                                                                                                                                             | 0.5                                                                                                                                                                                                                                                                                                                                                                        |
| F            | В                                                                            | Ε                                                                                                                                     | В                                                                                                                                                                                     | В                                                                                                                                                                                                                                                                                                                | Α                                                                                                                                                                                                                                                                                                                                                                          |
| 79.3         |                                                                              |                                                                                                                                       | 20.6                                                                                                                                                                                  | 15.4                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                            |
| Е            |                                                                              |                                                                                                                                       | С                                                                                                                                                                                     | В                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                            |
| ~69.4        | 0.0                                                                          | 22.5                                                                                                                                  | 68.2                                                                                                                                                                                  | 165.5                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                        |
|              | 13.2                                                                         | #66.5                                                                                                                                 |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                  | 1.3                                                                                                                                                                                                                                                                                                                                                                        |
|              |                                                                              |                                                                                                                                       | 249.1                                                                                                                                                                                 | 427.0                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                            |
|              |                                                                              |                                                                                                                                       |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                  | 100.0                                                                                                                                                                                                                                                                                                                                                                      |
| 312          | 346                                                                          | 171                                                                                                                                   | 1180                                                                                                                                                                                  | 1202                                                                                                                                                                                                                                                                                                             | 1123                                                                                                                                                                                                                                                                                                                                                                       |
| 0            | 0                                                                            | 0                                                                                                                                     | 0                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                          |
| 0            | 0                                                                            | 0                                                                                                                                     | 0                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                          |
| 0            | 0                                                                            | 0                                                                                                                                     | 0                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                          |
| 1.01         | 0.29                                                                         | 0.87                                                                                                                                  | 0.58                                                                                                                                                                                  | 0.86                                                                                                                                                                                                                                                                                                             | 0.18                                                                                                                                                                                                                                                                                                                                                                       |
|              |                                                                              |                                                                                                                                       |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                            |
| Other        |                                                                              |                                                                                                                                       |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                            |
|              |                                                                              |                                                                                                                                       |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                            |
| 0            |                                                                              |                                                                                                                                       |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                            |
| ed to phase  | 2:NBTL                                                                       | and 6:SB                                                                                                                              | T, Start o                                                                                                                                                                            | f Green                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                            |
|              |                                                                              |                                                                                                                                       |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                            |
| ordinated    |                                                                              |                                                                                                                                       |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                            |
|              |                                                                              |                                                                                                                                       |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                            |
|              |                                                                              |                                                                                                                                       |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                            |
| ation 101.4% |                                                                              |                                                                                                                                       | IC                                                                                                                                                                                    | CU Level                                                                                                                                                                                                                                                                                                         | of Service (                                                                                                                                                                                                                                                                                                                                                               |
|              | 101.1 F 79.3 E ~69.4 #122.3 504.6 25.0 312 0 0 1.01  Other  Other  ordinated | 101.1 10.2 F B 79.3 E ~69.4 0.0 #122.3 13.2 504.6 25.0 312 346 0 0 0 0 0 0 1.01 0.29  Other  Other  Oced to phase 2:NBTL accordinated | 101.1 10.2 61.1 F B E 79.3 E ~69.4 0.0 22.5 #122.3 13.2 #66.5 504.6 25.0 120.0 312 346 171 0 0 0 0 0 0 0 0 0 0 0 0 1.01 0.29 0.87  Other  Other  Other  Oced to phase 2:NBTL and 6:SB | 101.1 10.2 61.1 11.8 F B E B 79.3 20.6 E C ~69.4 0.0 22.5 68.2 #122.3 13.2 #66.5 96.0 504.6 249.1 25.0 120.0 312 346 171 1180 0 0 0 0 0 0 0 0 0 0 0 0 0 1.01 0.29 0.87 0.58  Other   101.1 10.2 61.1 11.8 18.3 F B E B B 79.3 20.6 15.4 E C B ~69.4 0.0 22.5 68.2 165.5 #122.3 13.2 #66.5 96.0 100.0 504.6 249.1 427.0 25.0 120.0 312 346 171 1180 1202 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.01 0.29 0.87 0.58 0.86  Other  


Analysis Period (min) 15

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Bank Street & Dun Skipper Drive



| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 13   | 264  | 95   | 49   | 182  | 79   | 48   | 40   | 35   | 107  | 59   | 28   |
| Future Vol, veh/h          | 13   | 264  | 95   | 49   | 182  | 79   | 48   | 40   | 35   | 107  | 59   | 28   |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 0    | 2    | 2    | 0    | 0    | 5    | 0    | 0    | 0    | 2    | 15   | 0    |
| Mvmt Flow                  | 13   | 264  | 95   | 49   | 182  | 79   | 48   | 40   | 35   | 107  | 59   | 28   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 14.2 |      |      | 12.8 |      |      | 10.6 |      |      | 11.9 |      |      |
| HCM LOS                    | В    |      |      | В    |      |      | В    |      |      | В    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 39%   | 3%    | 16%   | 55%   |  |
| Vol Thru, %            | 33%   | 71%   | 59%   | 30%   |  |
| Vol Right, %           | 28%   | 26%   | 25%   | 14%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 123   | 372   | 310   | 194   |  |
| LT Vol                 | 48    | 13    | 49    | 107   |  |
| Through Vol            | 40    | 264   | 182   | 59    |  |
| RT Vol                 | 35    | 95    | 79    | 28    |  |
| Lane Flow Rate         | 123   | 372   | 310   | 194   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.205 | 0.537 | 0.457 | 0.322 |  |
| Departure Headway (Hd) | 5.994 | 5.198 | 5.31  | 5.979 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 595   | 692   | 676   | 598   |  |
| Service Time           | 4.068 | 3.254 | 3.369 | 4.046 |  |
| HCM Lane V/C Ratio     | 0.207 | 0.538 | 0.459 | 0.324 |  |
| HCM Control Delay      | 10.6  | 14.2  | 12.8  | 11.9  |  |
| HCM Lane LOS           | В     | В     | В     | В     |  |
| HCM 95th-tile Q        | 8.0   | 3.2   | 2.4   | 1.4   |  |
|                        |       |       |       |       |  |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 13   | 47   | 2    | 39   | 39   | 58   | 2    | 59   | 41   | 31   | 58   | 9    |
| Future Vol, veh/h          | 13   | 47   | 2    | 39   | 39   | 58   | 2    | 59   | 41   | 31   | 58   | 9    |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 11   | 0    | 50   | 0    | 0    | 0    | 50   | 2    | 4    | 12   | 2    | 0    |
| Mvmt Flow                  | 13   | 47   | 2    | 39   | 39   | 58   | 2    | 59   | 41   | 31   | 58   | 9    |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 8.2  |      |      | 8.1  |      |      | 9    |      |      | 8.4  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

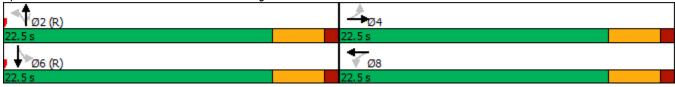
| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 2%    | 21%   | 29%   | 32%   |  |
| Vol Thru, %            | 58%   | 76%   | 29%   | 59%   |  |
| Vol Right, %           | 40%   | 3%    | 43%   | 9%    |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 102   | 62    | 136   | 98    |  |
| LT Vol                 | 2     | 13    | 39    | 31    |  |
| Through Vol            | 59    | 47    | 39    | 58    |  |
| RT Vol                 | 41    | 2     | 58    | 9     |  |
| Lane Flow Rate         | 102   | 62    | 136   | 98    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.144 | 0.082 | 0.162 | 0.128 |  |
| Departure Headway (Hd) | 5.083 | 4.766 | 4.282 | 4.696 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 707   | 753   | 839   | 764   |  |
| Service Time           | 3.107 | 2.788 | 2.3   | 2.719 |  |
| HCM Lane V/C Ratio     | 0.144 | 0.082 | 0.162 | 0.128 |  |
| HCM Control Delay      | 9     | 8.2   | 8.1   | 8.4   |  |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.5   | 0.3   | 0.6   | 0.4   |  |

| ntersection              |     |
|--------------------------|-----|
| ntersection Delay, s/veh | 8.4 |
| ntersection LOS          | Α   |

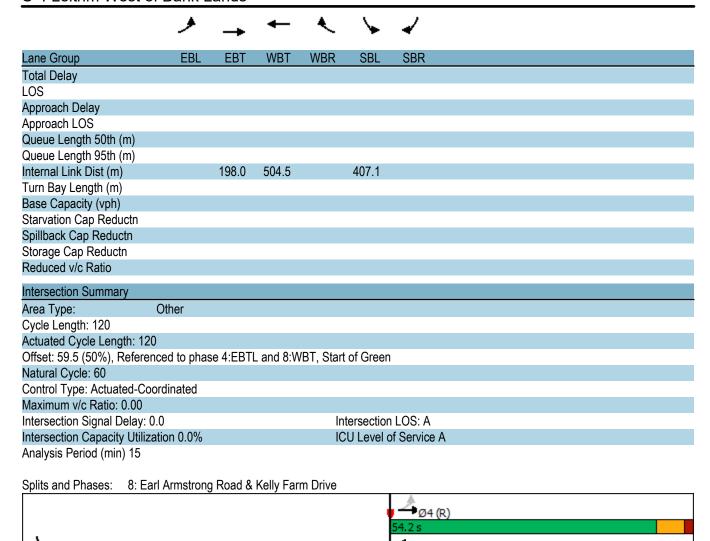
| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 16   | 66   | 0    | 107  | 55   | 43   | 1    | 26   | 94   | 33   | 29   | 16   |
| Future Vol, veh/h          | 16   | 66   | 0    | 107  | 55   | 43   | 1    | 26   | 94   | 33   | 29   | 16   |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 0    | 4    | 0    | 0    | 3    | 0    | 0    | 5    | 15   | 5    | 0    | 0    |
| Mvmt Flow                  | 16   | 66   | 0    | 107  | 55   | 43   | 1    | 26   | 94   | 33   | 29   | 16   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 8.2  |      |      | 8.9  |      |      | 7.9  |      |      | 8.3  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 1%    | 20%   | 52%   | 42%   |  |
| Vol Thru, %            | 21%   | 80%   | 27%   | 37%   |  |
| Vol Right, %           | 78%   | 0%    | 21%   | 21%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 121   | 82    | 205   | 78    |  |
| LT Vol                 | 1     | 16    | 107   | 33    |  |
| Through Vol            | 26    | 66    | 55    | 29    |  |
| RT Vol                 | 94    | 0     | 43    | 16    |  |
| Lane Flow Rate         | 121   | 82    | 205   | 78    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.141 | 0.105 | 0.252 | 0.103 |  |
| Departure Headway (Hd) | 4.19  | 4.616 | 4.42  | 4.741 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 855   | 776   | 812   | 756   |  |
| Service Time           | 2.218 | 2.648 | 2.447 | 2.771 |  |
| HCM Lane V/C Ratio     | 0.142 | 0.106 | 0.252 | 0.103 |  |
| HCM Control Delay      | 7.9   | 8.2   | 8.9   | 8.3   |  |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.5   | 0.4   | 1     | 0.3   |  |

| Intersection           |        |      |        |       |          |      |
|------------------------|--------|------|--------|-------|----------|------|
| Int Delay, s/veh       | 0      |      |        |       |          |      |
| Movement               | EBL    | EBR  | NBL    | NBT   | SBT      | SBR  |
| Lane Configurations    | ¥      | LDIT | 1100   | 4     | <u>₽</u> | OBIT |
| Traffic Vol, veh/h     | 0      | 0    | 0      | 839   | 1107     | 0    |
| Future Vol, veh/h      | 0      | 0    | 0      | 839   | 1107     | 0    |
| •                      | 0      | 0    | 0      | 039   | 0        | 0    |
| Conflicting Peds, #/hr |        |      |        |       |          |      |
| Sign Control           | Stop   | Stop | Free   | Free  | Free     | Free |
| RT Channelized         | -      | None | -      | None  | -        | None |
| Storage Length         | 0      | -    | -      | -     | -        | -    |
| Veh in Median Storage  |        | -    | -      | 0     | 0        | -    |
| Grade, %               | 0      | -    | -      | 0     | 0        | -    |
| Peak Hour Factor       | 100    | 100  | 100    | 100   | 100      | 100  |
| Heavy Vehicles, %      | 0      | 0    | 0      | 7     | 6        | 0    |
| Mvmt Flow              | 0      | 0    | 0      | 839   | 1107     | 0    |
|                        |        |      |        |       |          |      |
| NA - : /NA:            | N4:    |      | 1-11   |       | 4-10     |      |
|                        | Minor2 |      | Major1 |       | Major2   |      |
| Conflicting Flow All   | 1946   |      | 1107   | 0     | -        | 0    |
| Stage 1                | 1107   | -    | -      | -     | -        | -    |
| Stage 2                | 839    | -    | -      | -     | -        | -    |
| Critical Hdwy          | 6.4    | 6.2  | 4.1    | -     | -        | -    |
| Critical Hdwy Stg 1    | 5.4    | -    | -      | -     | -        | -    |
| Critical Hdwy Stg 2    | 5.4    | -    | -      | -     | -        | -    |
| Follow-up Hdwy         | 3.5    | 3.3  | 2.2    | -     | -        | -    |
| Pot Cap-1 Maneuver     | 72     | 258  | 638    | -     | -        | -    |
| Stage 1                | 319    | _    | -      | -     | _        | -    |
| Stage 2                | 427    | _    | -      | _     | -        | -    |
| Platoon blocked, %     |        |      |        | _     | _        | _    |
| Mov Cap-1 Maneuver     | 72     | 258  | 638    | _     | _        | _    |
| Mov Cap-1 Maneuver     | 72     | 230  | -      |       |          | _    |
| •                      |        |      |        | -     | -        |      |
| Stage 1                | 319    | -    | -      | -     | -        | -    |
| Stage 2                | 427    | -    | -      | -     | -        | _    |
|                        |        |      |        |       |          |      |
| Approach               | EB     |      | NB     |       | SB       |      |
| HCM Control Delay, s   | 0      |      | 0      |       | 0        |      |
| HCM LOS                | A      |      | · ·    |       | V        |      |
| TIOW LOO               |        |      |        |       |          |      |
|                        |        |      |        |       |          |      |
| Minor Lane/Major Mvn   | nt     | NBL  | NBT    | EBLn1 | SBT      | SBR  |
| Capacity (veh/h)       |        | 638  | -      | -     | -        | -    |
| HCM Lane V/C Ratio     |        | -    | -      | -     | -        | -    |
| HCM Control Delay (s   | )      | 0    | -      | 0     | -        | -    |
| HCM Lane LOS           |        | A    | -      | A     | _        | -    |
| HCM 95th %tile Q(veh   | 1)     | 0    | _      | -     | _        | _    |
|                        | 7      |      |        |       |          |      |


| Lane Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | ۶    | <b>→</b>   | •    | •    | <b>←</b> | •    | 1    | <b>†</b> | <b>/</b> | <b>/</b> | ļ          | ✓    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------|------------|------|------|----------|------|------|----------|----------|----------|------------|------|
| Traffic Volume (vph) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lane Group             | EBL  | EBT        | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR      | SBL      | SBT        | SBR  |
| Traffic Volume (vph) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lane Configurations    | *    | <b>♦</b> % |      | ሻ    | ĵ.       |      | ኻ    | <b>*</b> | 7        | ሻ        | <b>♦</b> % |      |
| Future Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |      |            | 0    |      |          | 0    |      |          | 0        |          |            | 0    |
| Ideal Flow (ppip)   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1800   1   | \ , ,                  | 0    | 0          | 0    | 0    | 0        | 0    | 0    |          | 0        | 0        |            |      |
| Storage Length (m)   25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · ·                |      | 1800       | 1800 | 1800 | 1800     | 1800 |      |          |          |          |            | 1800 |
| Storage Lanes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \ <i>,</i>             |      |            |      | 50.0 |          | 0.0  |      |          |          |          |            |      |
| Taper Length (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |      |            |      |      |          |      |      |          |          |          |            |      |
| Lane Util. Factor   1.00   0.95   0.95   1.00   1.00   1.00   1.00   1.00   1.00   1.00   0.95   0.95   0.95   Frt Fit Protected   Satt. Flow (prot)   1784   2981   0   1670   1670   0   1820   1750   1389   1542   3232   0   Fit Permitted   Satt. Flow (perm)   1784   2981   0   1670   1670   0   1820   1750   1389   1542   3232   0   Right Turn on Red   Satt. Flow (perm)   1784   2981   0   1670   1670   0   1820   1750   1389   1542   3232   0   Right Turn on Red   Satt. Flow (Prot)   50   50   50   Link Speed (kih)   50   50   50   50   Link Distance (m)   528.5   292.7   203.7   158.2   Travel Time (s)   38.1   21.1   14.7   111.4   Peak Hour Factor   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   Heavy Vehicies (%)   2%   16%   3%   9%   9%   5%   0%   4%   31%   18%   7%   4%   Alg.; Flow (prot)   0   0   0   0   0   0   0   0   339   0   0   1107   0   Shared Lane Traffic (%)   Lane Group Flow (prh)   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                      | 20.0 |            |      | 20.0 |          |      | 20.0 |          |          | 20.0     |            |      |
| Fit Protected   Satd. Flow (prot)   1784   2981   0   1670   1670   0   1820   1750   1389   1542   3232   0   1767   1768   1768   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   1769   176 |                        |      | 0.95       | 0.95 |      | 1.00     | 1.00 |      | 1.00     | 1.00     |          | 0.95       | 0.95 |
| File Protected   Sate   File   From   Sate   File   From   File   File   From   File   File   From   From   File   From   File   From   File   From   File   From   From   File   From   File   From   From   File   From   |                        |      |            |      |      |          |      |      |          |          |          |            |      |
| Satd. Flow (prot)   1784   2981   0   1670   1670   0   1820   1750   1389   1542   3232   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |      |            |      |      |          |      |      |          |          |          |            |      |
| Fit Permitted   Satd. Flow (perm)   1784   2981   0   1670   1670   1670   0   1820   1750   1389   1542   3232   0   Right Turn on Red   Yes    |                        | 1784 | 2981       | 0    | 1670 | 1670     | 0    | 1820 | 1750     | 1389     | 1542     | 3232       | 0    |
| Satd. Flow (perm)   1784   2981   0   1670   1670   0   1820   1750   1389   1542   3232   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | 1701 | 2001       |      | 1010 | 1010     |      | 1020 | 1100     | 1000     | 1012     | 0202       | J    |
| Right Turn on Red Satit. Flow (RTOR)   Satit. Flo   |                        | 1784 | 2981       | 0    | 1670 | 1670     | 0    | 1820 | 1750     | 1389     | 1542     | 3232       | 0    |
| Satd. Flow (RTOR) Link Speed (k/h) 50 50 50 50 50 50 50 50 11k Link Distance (m) 528.5 292.7 203.7 158.2  Travel Time (s) 38.1 21.1 14.7 11.4  Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · ,                    | 1701 | 2001       |      | 1010 | 1010     |      | 1020 | 1700     |          | 1012     | OZOZ       |      |
| Link Speed (k/h) 50 50 50 50 50 50 50 50 158.2  Link Distance (m) 528.5 292.7 203.7 518.2  Link Distance (m) 528.5 292.7 203.7 518.2  Travel Time (s) 38.1 2.1.1 1.4 7 11.4  Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                      |      |            | 100  |      |          | 100  |      |          | 100      |          |            | 100  |
| Link Distance (m) 528.5 292.7 203.7 158.2   Travel Time (s) 38.1 21.1 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 14.7 11.4 11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |      | 50         |      |      | 50       |      |      | 50       |          |          | 50         |      |
| Travel Time (s)   38.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . ,                    |      |            |      |      |          |      |      |          |          |          |            |      |
| Peak Hour Factor         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         4.9%         4.9%         Ady         31%         18%         7%         4.9%         Ady                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |      |            |      |      |          |      |      |          |          |          |            |      |
| Heavy Vehicles (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>\(\frac{1}{2}\)</b> | 1 00 |            | 1.00 | 1 00 |          | 1 00 | 1 00 |          | 1 00     | 1 00     |            | 1 00 |
| Adj. Flow (vph)         0         0         0         0         0         839         0         0         1107         0           Shared Lane Traffic (%)         Lane Group Flow (vph)         0         0         0         0         0         0         0         0         1107         0           Turn Type         Perm         Perm         NA         Perm         NA         Perm         NA           Protected Phases         4         8         2         2         2         6           Bermitted Phases         4         8         8         2         2         2         6           Minimum Initial (s)         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |      |            |      |      |          |      |      |          |          |          |            |      |
| Shared Lane Traffic (%)   Lane Group Flow (vph)   0 0 0 0 0 0 0 0 0 839 0 0 1107 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • ,                    |      |            |      |      |          |      |      |          |          |          |            |      |
| Lane Group Flow (vph)         0         0         0         0         0         0         0         0         0         10         10         1107         0           Turn Type         Perm         Perm         NA         Perm         NA         Perm         NA           Protected Phases         4         8         2         2         2         6           Permitted Phases         4         4         8         8         2         2         2         6           Detector Phase         4         4         8         8         2         2         2         6         6           Switch Phase         Winimum Initial (s)         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | U    | U          | U    | U    | U        | U    | U    | 039      | U        | U        | 1107       | U    |
| Turn Type         Perm         Perm         Perm         NA         Perm         NA         Perm         NA           Protected Phases         4         8         2         2         6         6           Detector Phase         4         4         8         8         2         2         2         6           Switch Phase         8         2         2         2         6         6           Minimum Initial (s)         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ` ,                    | ٥    | 0          | 0    | 0    | ۸        | ٥    | 0    | 020      | ٥        | 0        | 1107       | 0    |
| Protected Phases         4         8         2         2         6           Permitted Phases         4         4         8         8         2         2         2         6           Switch Phase           Winimum Initial (s)         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0 <t< td=""><td></td><td></td><td>U</td><td>U</td><td></td><td>U</td><td>U</td><td></td><td></td><td></td><td></td><td></td><td>U</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |      | U          | U    |      | U        | U    |      |          |          |          |            | U    |
| Permitted Phases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | Perm | 4          |      | Perm | 0        |      | Perm |          | Perm     | Perm     |            |      |
| Detector Phase   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        | 1    | 4          |      | 0    | 0        |      | 0    |          | 0        | c        | Ö          |      |
| Switch Phase         Minimum Initial (s)         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0 <t< td=""><td></td><td></td><td>4</td><td></td><td></td><td>0</td><td></td><td></td><td>2</td><td></td><td></td><td>c</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |      | 4          |      |      | 0        |      |      | 2        |          |          | c          |      |
| Minimum Initial (s)         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0 </td <td></td> <td>4</td> <td>4</td> <td></td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>b</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 4    | 4          |      | 0    | 0        |      |      |          |          | 0        | b          |      |
| Minimum Split (s)         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5         22.5 <td></td> <td>40.0</td> <td>40.0</td> <td></td> <td>40.0</td> <td>40.0</td> <td></td> <td>40.0</td> <td>40.0</td> <td>40.0</td> <td>40.0</td> <td>40.0</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | 40.0 | 40.0       |      | 40.0 | 40.0     |      | 40.0 | 40.0     | 40.0     | 40.0     | 40.0       |      |
| Total Split (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . ,                    |      |            |      |      |          |      |      |          |          |          |            |      |
| Total Split (%) 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50 |                        |      |            |      |      |          |      |      |          |          |          |            |      |
| Maximum Green (s)         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         18.0         28.2         2         2         2         2         2         2         2         2         2         2         2         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         4.5         4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |      |            |      |      |          |      |      |          |          |          |            |      |
| Yellow Time (s)         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         3.5         4.5         4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |      |            |      |      |          |      |      |          |          |          |            |      |
| All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |      |            |      |      |          |      |      |          |          |          |            |      |
| Lost Time Adjust (s)         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |      |            |      |      |          |      |      |          |          |          |            |      |
| Total Lost Time (s) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 Lead/Lag  Lead-Lag Optimize?  Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0  Recall Mode None None None None C-Max C-Max C-Max C-Max C-Max Walk Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |      |            |      |      |          |      |      |          |          |          |            |      |
| Lead/Lag         Lead-Lag Optimize?         Vehicle Extension (s)       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |      |            |      |      |          |      |      |          |          |          |            |      |
| Lead-Lag Optimize?         Vehicle Extension (s)       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        | 4.5  | 4.5        |      | 4.5  | 4.5      |      | 4.5  | 4.5      | 4.5      | 4.5      | 4.5        |      |
| Vehicle Extension (s)         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |      |            |      |      |          |      |      |          |          |          |            |      |
| Recall Mode         None         None         None         None         C-Max         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |      |            |      |      |          |      |      |          |          |          |            |      |
| Walk Time (s)       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |      |            |      |      |          |      |      |          |          |          |            |      |
| Flash Dont Walk (s) 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |      |            |      |      |          |      |      |          |          |          |            |      |
| Pedestrian Calls (#/hr)       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |      |            |      |      |          |      |      |          |          |          |            |      |
| Act Effct Green (s)       45.0       45.0         Actuated g/C Ratio       1.00       1.00         v/c Ratio       0.48       0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . ,                    |      |            |      |      |          |      |      |          |          |          |            |      |
| Actuated g/C Ratio       1.00       1.00         v/c Ratio       0.48       0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                      | 0    | 0          |      | 0    | 0        |      | 0    |          | 0        | 0        |            |      |
| v/c Ratio 0.48 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . ,                    |      |            |      |      |          |      |      |          |          |          |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |      |            |      |      |          |      |      |          |          |          |            |      |
| Control Delay 0.9 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | v/c Ratio              |      |            |      |      |          |      |      |          |          |          |            |      |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Control Delay          |      |            |      |      |          |      |      | 0.9      |          |          | 0.3        |      |
| Queue Delay 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                      |      |            |      |      |          |      |      | 0.0      |          |          | 0.0        |      |

Lanes, Volumes, Timings EM


Synchro 11 Report October 2025

|                                                           | ٠           | <b>→</b> | •      | •          | <b>←</b>    | •          | 1   | <b>†</b> | <b>/</b> | <b>/</b> | <b>↓</b> | 4   |
|-----------------------------------------------------------|-------------|----------|--------|------------|-------------|------------|-----|----------|----------|----------|----------|-----|
| Lane Group                                                | EBL         | EBT      | EBR    | WBL        | WBT         | WBR        | NBL | NBT      | NBR      | SBL      | SBT      | SBR |
| Total Delay                                               |             |          |        |            |             |            |     | 0.9      |          |          | 0.3      |     |
| LOS                                                       |             |          |        |            |             |            |     | Α        |          |          | Α        |     |
| Approach Delay                                            |             |          |        |            |             |            |     | 0.9      |          |          | 0.3      |     |
| Approach LOS                                              |             |          |        |            |             |            |     | Α        |          |          | Α        |     |
| Queue Length 50th (m)                                     |             |          |        |            |             |            |     | 0.0      |          |          | 0.0      |     |
| Queue Length 95th (m)                                     |             |          |        |            |             |            |     | 0.0      |          |          | 0.0      |     |
| Internal Link Dist (m)                                    |             | 504.5    |        |            | 268.7       |            |     | 179.7    |          |          | 134.2    |     |
| Turn Bay Length (m)                                       |             |          |        |            |             |            |     |          |          |          |          |     |
| Base Capacity (vph)                                       |             |          |        |            |             |            |     | 1750     |          |          | 3232     |     |
| Starvation Cap Reductn                                    |             |          |        |            |             |            |     | 0        |          |          | 0        |     |
| Spillback Cap Reductn                                     |             |          |        |            |             |            |     | 0        |          |          | 0        |     |
| Storage Cap Reductn                                       |             |          |        |            |             |            |     | 0        |          |          | 0        |     |
| Reduced v/c Ratio                                         |             |          |        |            |             |            |     | 0.48     |          |          | 0.34     |     |
| Intersection Summary                                      |             |          |        |            |             |            |     |          |          |          |          |     |
| Area Type:                                                | Other       |          |        |            |             |            |     |          |          |          |          |     |
| Cycle Length: 45                                          |             |          |        |            |             |            |     |          |          |          |          |     |
| Actuated Cycle Length: 45                                 |             |          |        |            |             |            |     |          |          |          |          |     |
| Offset: 0 (0%), Referenced                                | to phase 2: | NBTL and | 6:SBTL | , Start of | Green       |            |     |          |          |          |          |     |
| Natural Cycle: 60                                         |             |          |        |            |             |            |     |          |          |          |          |     |
| Control Type: Actuated-Coo                                | ordinated   |          |        |            |             |            |     |          |          |          |          |     |
| Maximum v/c Ratio: 0.48                                   | _           |          |        |            |             |            |     |          |          |          |          |     |
| Intersection Signal Delay: 0                              |             |          |        |            | ntersection |            |     |          |          |          |          |     |
| Intersection Capacity Utiliza<br>Analysis Period (min) 15 | ation 50.4% |          |        | IC         | CU Level    | of Service | Α   |          |          |          |          |     |

Splits and Phases: 7: Bank Street & Earl Armstrong Road



|                         | ٠        | <b>→</b> | ←        | •    | <b>&gt;</b> | 4       |
|-------------------------|----------|----------|----------|------|-------------|---------|
| Lane Group              | EBL      | EBT      | WBT      | WBR  | SBL         | SBR     |
| Lane Configurations     | <u> </u> | <b>^</b> | <b>†</b> |      | ሻ           | 7       |
| Traffic Volume (vph)    | 0        | 0        | 0        | 0    | 0           | 0       |
| Future Volume (vph)     | 0        | 0        | 0        | 0    | 0           | 0       |
| Ideal Flow (vphpl)      | 1800     | 1800     | 1800     | 1800 | 1800        | 1800    |
| Storage Length (m)      | 60.0     | 1000     | 1000     | 0.0  | 40.0        | 0.0     |
| Storage Lanes           | 1        |          |          | 0.0  | 1           | 1       |
| Taper Length (m)        | 20.0     |          |          | U    | 20.0        | •       |
| Lane Util. Factor       | 1.00     | 0.95     | 0.95     | 0.95 | 1.00        | 1.00    |
| Frt                     | 1.00     | 0.00     | 0.00     | 0.00 | 1.00        | 1.00    |
| Flt Protected           |          |          |          |      |             |         |
| Satd. Flow (prot)       | 1640     | 3144     | 3232     | 0    | 1820        | 1820    |
| Flt Permitted           | 1040     | 3144     | JZJZ     | U    | 1020        | 1020    |
|                         | 1640     | 2444     | 2020     | ^    | 1000        | 1000    |
| Satd. Flow (perm)       | 1640     | 3144     | 3232     | 0    | 1820        | 1820    |
| Right Turn on Red       |          |          |          | Yes  |             | Yes     |
| Satd. Flow (RTOR)       |          | ==       |          |      |             |         |
| Link Speed (k/h)        |          | 50       | 50       |      | 50          |         |
| Link Distance (m)       |          | 222.0    | 528.5    |      | 431.1       |         |
| Travel Time (s)         |          | 16.0     | 38.1     |      | 31.0        |         |
| Peak Hour Factor        | 1.00     | 1.00     | 1.00     | 1.00 | 1.00        | 1.00    |
| Heavy Vehicles (%)      | 11%      | 10%      | 7%       | 11%  | 0%          | 0%      |
| Adj. Flow (vph)         | 0        | 0        | 0        | 0    | 0           | 0       |
| Shared Lane Traffic (%) |          |          |          |      |             |         |
| Lane Group Flow (vph)   | 0        | 0        | 0        | 0    | 0           | 0       |
| Turn Type               | Perm     |          |          |      | Prot        | Perm    |
| Protected Phases        | · Oilii  | 4        | 8        |      | 6           | . 51111 |
| Permitted Phases        | 4        | 7        |          |      | <u> </u>    | 6       |
| Detector Phase          | 4        | 4        | 8        |      | 6           | 6       |
| Switch Phase            | 4        | 4        | U        |      | U           | U       |
|                         | 10.0     | 10.0     | 10.0     |      | 10.0        | 10.0    |
| Minimum Initial (s)     | 10.0     | 10.0     |          |      | 10.0        |         |
| Minimum Split (s)       | 24.8     | 24.8     | 24.8     |      | 33.8        | 33.8    |
| Total Split (s)         | 54.2     | 54.2     | 54.2     |      | 65.8        | 65.8    |
| Total Split (%)         | 45.2%    | 45.2%    | 45.2%    |      | 54.8%       | 54.8%   |
| Maximum Green (s)       | 47.4     | 47.4     | 47.4     |      | 59.0        | 59.0    |
| Yellow Time (s)         | 5.0      | 5.0      | 5.0      |      | 3.2         | 3.2     |
| All-Red Time (s)        | 1.8      | 1.8      | 1.8      |      | 3.6         | 3.6     |
| Lost Time Adjust (s)    | 0.0      | 0.0      | 0.0      |      | 0.0         | 0.0     |
| Total Lost Time (s)     | 6.8      | 6.8      | 6.8      |      | 6.8         | 6.8     |
| Lead/Lag                |          |          |          |      |             |         |
| Lead-Lag Optimize?      |          |          |          |      |             |         |
| Vehicle Extension (s)   | 3.0      | 3.0      | 3.0      |      | 3.0         | 3.0     |
| Recall Mode             | C-Max    | C-Max    | C-Max    |      | None        | None    |
| Walk Time (s)           | 7.0      | 7.0      | 7.0      |      | 7.0         | 7.0     |
| Flash Dont Walk (s)     | 11.0     | 11.0     | 11.0     |      | 20.0        | 20.0    |
| Pedestrian Calls (#/hr) | 0        | 0        | 0        |      | 20.0        | 20.0    |
| ,                       | U        | U        | U        |      | U           | U       |
| Act Effct Green (s)     |          |          |          |      |             |         |
| Actuated g/C Ratio      |          |          |          |      |             |         |
| v/c Ratio               |          |          |          |      |             |         |
| Control Delay           |          |          |          |      |             |         |
| Queue Delay             |          |          |          |      |             |         |



Ø8 (R)

Future (2036) Total Traffic (w NBL pm + pt)

|                         | ۶       | <b>→</b> | •    | €       | +     | •    | •       | <b>†</b>   | <i>&gt;</i> | <b>/</b> | <b>+</b> | -√      |
|-------------------------|---------|----------|------|---------|-------|------|---------|------------|-------------|----------|----------|---------|
| Lane Group              | EBL     | EBT      | EBR  | WBL     | WBT   | WBR  | NBL     | NBT        | NBR         | SBL      | SBT      | SBR     |
| Lane Configurations     | ሻ       | f)       |      | ሻ       | f)    |      | ሻ       | <b>↑</b> ↑ |             | ኻ        | <b>^</b> | 7       |
| Traffic Volume (vph)    | 132     | 23       | 43   | 54      | 32    | 62   | 23      | 936        | 45          | 50       | 1223     | 187     |
| Future Volume (vph)     | 132     | 23       | 43   | 54      | 32    | 62   | 23      | 936        | 45          | 50       | 1223     | 187     |
| Ideal Flow (vphpl)      | 1800    | 1800     | 1800 | 1800    | 1800  | 1800 | 1800    | 1800       | 1800        | 1800     | 1800     | 1800    |
| Storage Length (m)      | 100.0   |          | 0.0  | 40.0    |       | 0.0  | 100.0   |            | 0.0         | 75.0     | .000     | 175.0   |
| Storage Lanes           | 1       |          | 0    | 1       |       | 0    | 1       |            | 0           | 1        |          | 1       |
| Taper Length (m)        | 20.0    |          |      | 20.0    |       |      | 20.0    |            |             | 20.0     |          | •       |
| Lane Util. Factor       | 1.00    | 1.00     | 1.00 | 1.00    | 1.00  | 1.00 | 1.00    | 0.95       | 0.95        | 1.00     | 0.95     | 1.00    |
| Ped Bike Factor         | 1.00    | 1.00     | 1.00 | 1.00    | 1.00  | 1.00 | 1.00    | 0.00       | 0.00        | 1.00     | 0.00     | 0.98    |
| Frt                     |         | 0.902    |      |         | 0.901 |      | 1.00    | 0.993      |             |          |          | 0.850   |
| Flt Protected           | 0.950   | 0.002    |      | 0.950   | 0.001 |      | 0.950   | 0.000      |             | 0.950    |          | 0.000   |
| Satd. Flow (prot)       | 1729    | 1405     | 0    | 1530    | 1602  | 0    | 1729    | 3287       | 0           | 1601     | 3325     | 1517    |
| Flt Permitted           | 0.696   | 1100     | •    | 0.714   | 1002  | •    | 0.202   | 0201       | •           | 0.274    | 0020     | 1011    |
| Satd. Flow (perm)       | 1267    | 1405     | 0    | 1150    | 1602  | 0    | 367     | 3287       | 0           | 462      | 3325     | 1481    |
| Right Turn on Red       | 1201    | 1400     | Yes  | 1100    | 1002  | Yes  | 007     | 0201       | Yes         | 702      | 0020     | Yes     |
| Satd. Flow (RTOR)       |         | 43       | 103  |         | 62    | 103  |         | 8          | 103         |          |          | 187     |
| Link Speed (k/h)        |         | 50       |      |         | 50    |      |         | 50         |             |          | 50       | 101     |
| Link Distance (m)       |         | 528.6    |      |         | 234.2 |      |         | 451.0      |             |          | 177.6    |         |
| Travel Time (s)         |         | 38.1     |      |         | 16.9  |      |         | 32.5       |             |          | 12.8     |         |
| Confl. Peds. (#/hr)     |         | 30.1     |      |         | 10.5  |      | 2       | 32.3       |             |          | 12.0     | 2       |
| Peak Hour Factor        | 1.00    | 1.00     | 1.00 | 1.00    | 1.00  | 1.00 | 1.00    | 1.00       | 1.00        | 1.00     | 1.00     | 1.00    |
| Heavy Vehicles (%)      | 0%      | 9%       | 21%  | 13%     | 3%    | 2%   | 0%      | 4%         | 14%         | 8%       | 4%       | 2%      |
| Adj. Flow (vph)         | 132     | 23       | 43   | 54      | 32    | 62   | 23      | 936        | 45          | 50       | 1223     | 187     |
| Shared Lane Traffic (%) | 102     | 20       | 70   | 77      | 52    | 02   | 20      | 330        | 70          | 30       | 1220     | 107     |
| Lane Group Flow (vph)   | 132     | 66       | 0    | 54      | 94    | 0    | 23      | 981        | 0           | 50       | 1223     | 187     |
| Turn Type               | Perm    | NA       | U    | Perm    | NA    | U    | Perm    | NA         | U           | Perm     | NA       | Perm    |
| Protected Phases        | 1 Cilli | 4        |      | 1 Cilli | 8     |      | 1 Cilli | 2          |             | 1 Cilli  | 6        | 1 Cilli |
| Permitted Phases        | 4       |          |      | 8       |       |      | 2       |            |             | 6        |          | 6       |
| Detector Phase          | 4       | 4        |      | 8       | 8     |      | 2       | 2          |             | 6        | 6        | 6       |
| Switch Phase            | 7       | - Т      |      | J       | U     |      |         |            |             | U        |          | J       |
| Minimum Initial (s)     | 10.0    | 10.0     |      | 10.0    | 10.0  |      | 10.0    | 10.0       |             | 10.0     | 10.0     | 10.0    |
| Minimum Split (s)       | 33.8    | 33.8     |      | 33.8    | 33.8  |      | 42.6    | 42.6       |             | 42.6     | 42.6     | 42.6    |
| Total Split (s)         | 35.0    | 35.0     |      | 35.0    | 35.0  |      | 85.0    | 85.0       |             | 85.0     | 85.0     | 85.0    |
| Total Split (%)         | 29.2%   | 29.2%    |      | 29.2%   | 29.2% |      | 70.8%   | 70.8%      |             | 70.8%    | 70.8%    | 70.8%   |
| Maximum Green (s)       | 28.2    | 28.2     |      | 28.2    | 28.2  |      | 77.4    | 77.4       |             | 77.4     | 77.4     | 77.4    |
| Yellow Time (s)         | 3.6     | 3.6      |      | 3.6     | 3.6   |      | 5.0     | 5.0        |             | 5.0      | 5.0      | 5.0     |
| All-Red Time (s)        | 3.2     | 3.2      |      | 3.2     | 3.2   |      | 2.6     | 2.6        |             | 2.6      | 2.6      | 2.6     |
| Lost Time Adjust (s)    | 0.0     | 0.0      |      | 0.0     | 0.0   |      | 0.0     | 0.0        |             | 0.0      | 0.0      | 0.0     |
| Total Lost Time (s)     | 6.8     | 6.8      |      | 6.8     | 6.8   |      | 7.6     | 7.6        |             | 7.6      | 7.6      | 7.6     |
| Lead/Lag                | 0.0     | 0.0      |      | 0.0     | 0.0   |      | 7.0     | 7.0        |             | 7.0      | 7.0      | 7.0     |
| Lead-Lag Optimize?      |         |          |      |         |       |      |         |            |             |          |          |         |
| Vehicle Extension (s)   | 3.0     | 3.0      |      | 3.0     | 3.0   |      | 3.0     | 3.0        |             | 3.0      | 3.0      | 3.0     |
| Recall Mode             | None    | None     |      | None    | None  |      | C-Max   | C-Max      |             | C-Max    | C-Max    | C-Max   |
| Walk Time (s)           | 7.0     | 7.0      |      | 7.0     | 7.0   |      | 7.0     | 7.0        |             | 7.0      | 7.0      | 7.0     |
| Flash Dont Walk (s)     | 20.0    | 20.0     |      | 20.0    | 20.0  |      | 28.0    | 28.0       |             | 28.0     | 28.0     | 28.0    |
| Pedestrian Calls (#/hr) | 0       | 0        |      | 0       | 0     |      | 0       | 0          |             | 0        | 0        | 0       |
| Act Effct Green (s)     | 17.8    | 17.8     |      | 17.8    | 17.8  |      | 87.8    | 87.8       |             | 87.8     | 87.8     | 87.8    |
| Actuated g/C Ratio      | 0.15    | 0.15     |      | 0.15    | 0.15  |      | 0.73    | 0.73       |             | 0.73     | 0.73     | 0.73    |
| v/c Ratio               | 0.13    | 0.13     |      | 0.13    | 0.13  |      | 0.73    | 0.73       |             | 0.75     | 0.73     | 0.13    |
| V/O I (dilo             | 0.7 1   | 0.21     |      | 0.02    | 0.02  |      | 0.00    | 0.71       |             | 0.10     | 0.00     | 0.17    |

Lanes, Volumes, Timings EM

Synchro 11 Report October 2025

|                        | ۶     | <b>→</b> | •   | •    | ←     | •   | 4     | <b>†</b> | /   | -    | <b>↓</b> | 1     |
|------------------------|-------|----------|-----|------|-------|-----|-------|----------|-----|------|----------|-------|
| Lane Group             | EBL   | EBT      | EBR | WBL  | WBT   | WBR | NBL   | NBT      | NBR | SBL  | SBT      | SBR   |
| Control Delay          | 67.5  | 21.3     |     | 48.5 | 20.3  |     | 4.5   | 4.6      |     | 7.4  | 8.3      | 1.3   |
| Queue Delay            | 0.0   | 0.0      |     | 0.0  | 0.0   |     | 0.0   | 0.0      |     | 0.0  | 0.0      | 0.0   |
| Total Delay            | 67.5  | 21.3     |     | 48.5 | 20.3  |     | 4.5   | 4.6      |     | 7.4  | 8.3      | 1.3   |
| LOS                    | Е     | С        |     | D    | С     |     | Α     | Α        |     | Α    | Α        | Α     |
| Approach Delay         |       | 52.1     |     |      | 30.6  |     |       | 4.6      |     |      | 7.4      |       |
| Approach LOS           |       | D        |     |      | С     |     |       | Α        |     |      | Α        |       |
| Queue Length 50th (m)  | 27.6  | 4.4      |     | 10.6 | 6.1   |     | 8.0   | 17.4     |     | 2.9  | 52.0     | 0.0   |
| Queue Length 95th (m)  | 43.9  | 15.0     |     | 20.6 | 18.6  |     | m1.5  | m45.4    |     | 8.7  | 81.9     | 6.4   |
| Internal Link Dist (m) |       | 504.6    |     |      | 210.2 |     |       | 427.0    |     |      | 153.6    |       |
| Turn Bay Length (m)    | 100.0 |          |     | 40.0 |       |     | 100.0 |          |     | 75.0 |          | 175.0 |
| Base Capacity (vph)    | 297   | 363      |     | 270  | 423   |     | 268   | 2407     |     | 338  | 2433     | 1133  |
| Starvation Cap Reductn | 0     | 0        |     | 0    | 0     |     | 0     | 0        |     | 0    | 0        | 0     |
| Spillback Cap Reductn  | 0     | 0        |     | 0    | 0     |     | 0     | 0        |     | 0    | 0        | 0     |
| Storage Cap Reductn    | 0     | 0        |     | 0    | 0     |     | 0     | 0        |     | 0    | 0        | 0     |
| Reduced v/c Ratio      | 0.44  | 0.18     |     | 0.20 | 0.22  |     | 0.09  | 0.41     |     | 0.15 | 0.50     | 0.17  |

Intersection Summary

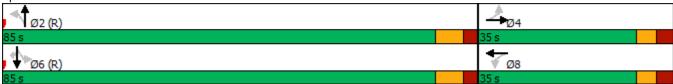
Area Type: Other

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 18 (15%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.71

Intersection Signal Delay: 10.8 Intersection LOS: B
Intersection Capacity Utilization 70.2% ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 1: Bank Street & Miikana Road/Blais Road



|                         | ۶        | •     | 4     | <b>†</b> | <b>↓</b> | 1     |
|-------------------------|----------|-------|-------|----------|----------|-------|
| Lane Group              | EBL      | EBR   | NBL   | NBT      | SBT      | SBR   |
| Lane Configurations     | <u> </u> | 7     | ሻ     | <u> </u> | <u> </u> | 7     |
| Traffic Volume (vph)    | 314      | 99    | 149   | 683      | 1038     | 197   |
| Future Volume (vph)     | 314      | 99    | 149   | 683      | 1038     | 197   |
| Ideal Flow (vphpl)      | 1800     | 1800  | 1800  | 1800     | 1800     | 1800  |
| Storage Length (m)      | 25.0     | 0.0   | 120.0 | 1000     | 1000     | 100.0 |
| Storage Lanes           | 1        | 1     | 120.0 |          |          | 1     |
| Taper Length (m)        | 20.0     | •     | 20.0  |          |          | •     |
| Lane Util. Factor       | 1.00     | 1.00  | 1.00  | 1.00     | 1.00     | 1.00  |
| Frt                     | 1.00     | 0.850 | 1.00  | 1.00     | 1.00     | 0.850 |
| Flt Protected           | 0.950    | 0.000 | 0.950 |          |          | 0.000 |
| Satd. Flow (prot)       | 1601     | 1369  | 1679  | 1701     | 1733     | 1532  |
| Flt Permitted           | 0.950    | 1303  | 0.051 | 1701     | 1733     | 1332  |
|                         | 1601     | 1369  | 90    | 1701     | 1733     | 1532  |
| Satd. Flow (perm)       | 1001     | Yes   | 90    | 1/01     | 1/33     | Yes   |
| Right Turn on Red       |          |       |       |          |          |       |
| Satd. Flow (RTOR)       |          | 99    |       | 00       | 00       | 197   |
| Link Speed (k/h)        | 50       |       |       | 80       | 80       |       |
| Link Distance (m)       | 528.6    |       |       | 273.1    | 451.0    |       |
| Travel Time (s)         | 38.1     |       |       | 12.3     | 20.3     |       |
| Peak Hour Factor        | 1.00     | 1.00  | 1.00  | 1.00     | 1.00     | 1.00  |
| Heavy Vehicles (%)      | 8%       | 13%   | 3%    | 7%       | 5%       | 1%    |
| Adj. Flow (vph)         | 314      | 99    | 149   | 683      | 1038     | 197   |
| Shared Lane Traffic (%) |          |       |       |          |          |       |
| Lane Group Flow (vph)   | 314      | 99    | 149   | 683      | 1038     | 197   |
| Turn Type               | Perm     | Perm  | pm+pt | NA       | NA       | Perm  |
| Protected Phases        |          |       | 5     | 2        | 6        |       |
| Permitted Phases        | 4        | 4     | 2     |          |          | 6     |
| Detector Phase          | 4        | 4     | 5     | 2        | 6        | 6     |
| Switch Phase            |          |       |       |          |          |       |
| Minimum Initial (s)     | 10.0     | 10.0  | 5.0   | 10.0     | 10.0     | 10.0  |
| Minimum Split (s)       | 22.6     | 22.6  | 11.7  | 21.7     | 21.7     | 21.7  |
| Total Split (s)         | 30.0     | 30.0  | 12.0  | 90.0     | 78.0     | 78.0  |
| Total Split (%)         | 25.0%    | 25.0% | 10.0% | 75.0%    | 65.0%    | 65.0% |
|                         | 23.4     | 23.4  | 5.3   | 83.3     | 71.3     | 71.3  |
| Maximum Green (s)       |          |       |       |          |          |       |
| Yellow Time (s)         | 3.3      | 3.3   | 4.6   | 4.6      | 4.6      | 4.6   |
| All-Red Time (s)        | 3.3      | 3.3   | 2.1   | 2.1      | 2.1      | 2.1   |
| Lost Time Adjust (s)    | 0.0      | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   |
| Total Lost Time (s)     | 6.6      | 6.6   | 6.7   | 6.7      | 6.7      | 6.7   |
| Lead/Lag                |          |       | Lead  |          | Lag      | Lag   |
| Lead-Lag Optimize?      |          |       | Yes   |          | Yes      | Yes   |
| Vehicle Extension (s)   | 3.0      | 3.0   | 3.0   | 3.0      | 3.0      | 3.0   |
| Recall Mode             | None     | None  | None  | C-Max    | C-Max    | C-Max |
| Walk Time (s)           | 7.0      | 7.0   |       | 7.0      | 7.0      | 7.0   |
| Flash Dont Walk (s)     | 9.0      | 9.0   |       | 8.0      | 8.0      | 8.0   |
| Pedestrian Calls (#/hr) | 0        | 0     |       | 0        | 0        | 0     |
| Act Effct Green (s)     | 23.4     | 23.4  | 83.3  | 83.3     | 71.3     | 71.3  |
| Actuated g/C Ratio      | 0.20     | 0.20  | 0.69  | 0.69     | 0.59     | 0.59  |
| v/c Ratio               | 1.01     | 0.29  | 1.13  | 0.58     | 1.01     | 0.20  |
| Control Delay           | 101.1    | 10.2  | 142.7 | 11.8     | 48.5     | 0.20  |
| Queue Delay             | 0.0      | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   |
| Queue Delay             | 0.0      | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   |

|                        | •      | •    | 1     | <b>†</b> | ţ      | 1     |
|------------------------|--------|------|-------|----------|--------|-------|
| Lane Group             | EBL    | EBR  | NBL   | NBT      | SBT    | SBR   |
| Total Delay            | 101.1  | 10.2 | 142.7 | 11.8     | 48.5   | 0.9   |
| LOS                    | F      | В    | F     | В        | D      | Α     |
| Approach Delay         | 79.3   |      |       | 35.3     | 40.9   |       |
| Approach LOS           | Е      |      |       | D        | D      |       |
| Queue Length 50th (m)  | ~69.4  | 0.0  | ~23.8 | 68.2     | ~223.4 | 0.0   |
| Queue Length 95th (m)  | #122.3 | 13.2 | #62.3 | 96.0     | #309.4 | 3.2   |
| Internal Link Dist (m) | 504.6  |      |       | 249.1    | 427.0  |       |
| Turn Bay Length (m)    | 25.0   |      | 120.0 |          |        | 100.0 |
| Base Capacity (vph)    | 312    | 346  | 132   | 1180     | 1029   | 990   |
| Starvation Cap Reductn | 0      | 0    | 0     | 0        | 0      | 0     |
| Spillback Cap Reductn  | 0      | 0    | 0     | 0        | 0      | 0     |
| Storage Cap Reductn    | 0      | 0    | 0     | 0        | 0      | 0     |
| Reduced v/c Ratio      | 1.01   | 0.29 | 1.13  | 0.58     | 1.01   | 0.20  |
|                        |        |      |       |          |        |       |

### Intersection Summary

Area Type: Other

Cycle Length: 120

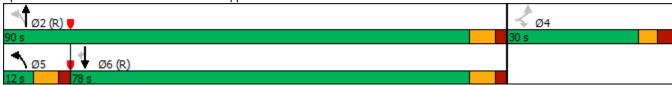
Actuated Cycle Length: 120

Offset: 18 (15%), Referenced to phase 2:NBTL and 6:SBT, Start of Green

Natural Cycle: 130

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 1.13


Intersection Signal Delay: 45.4 Intersection LOS: D
Intersection Capacity Utilization 101.4% ICU Level of Service G

Analysis Period (min) 15

- Volume exceeds capacity, queue is theoretically infinite.
   Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 2: Bank Street & Dun Skipper Drive



| Intersection              |      |
|---------------------------|------|
| Intersection Delay, s/veh | 12.9 |
| Intersection LOS          | В    |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 13   | 264  | 95   | 49   | 182  | 79   | 48   | 40   | 35   | 107  | 59   | 28   |
| Future Vol, veh/h          | 13   | 264  | 95   | 49   | 182  | 79   | 48   | 40   | 35   | 107  | 59   | 28   |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 0    | 2    | 2    | 0    | 0    | 5    | 0    | 0    | 0    | 2    | 15   | 0    |
| Mvmt Flow                  | 13   | 264  | 95   | 49   | 182  | 79   | 48   | 40   | 35   | 107  | 59   | 28   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 14.2 |      |      | 12.8 |      |      | 10.6 |      |      | 11.9 |      |      |
| HCM LOS                    | В    |      |      | В    |      |      | В    |      |      | В    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 39%   | 3%    | 16%   | 55%   |  |
| Vol Thru, %            | 33%   | 71%   | 59%   | 30%   |  |
| Vol Right, %           | 28%   | 26%   | 25%   | 14%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 123   | 372   | 310   | 194   |  |
| LT Vol                 | 48    | 13    | 49    | 107   |  |
| Through Vol            | 40    | 264   | 182   | 59    |  |
| RT Vol                 | 35    | 95    | 79    | 28    |  |
| Lane Flow Rate         | 123   | 372   | 310   | 194   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.205 | 0.537 | 0.457 | 0.322 |  |
| Departure Headway (Hd) | 5.994 | 5.198 | 5.31  | 5.979 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 595   | 692   | 676   | 598   |  |
| Service Time           | 4.068 | 3.254 | 3.369 | 4.046 |  |
| HCM Lane V/C Ratio     | 0.207 | 0.538 | 0.459 | 0.324 |  |
| HCM Control Delay      | 10.6  | 14.2  | 12.8  | 11.9  |  |
| HCM Lane LOS           | В     | В     | В     | В     |  |
| HCM 95th-tile Q        | 0.8   | 3.2   | 2.4   | 1.4   |  |

| Intersection Delay, s/veh 8.4 | Intersection              |     |
|-------------------------------|---------------------------|-----|
|                               | Intersection Delay, s/veh | 8.4 |
| Intersection LOS A            | Intersection LOS          | Α   |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 13   | 47   | 2    | 39   | 39   | 58   | 2    | 59   | 41   | 31   | 58   | 9    |
| Future Vol, veh/h          | 13   | 47   | 2    | 39   | 39   | 58   | 2    | 59   | 41   | 31   | 58   | 9    |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 11   | 0    | 50   | 0    | 0    | 0    | 50   | 2    | 4    | 12   | 2    | 0    |
| Mvmt Flow                  | 13   | 47   | 2    | 39   | 39   | 58   | 2    | 59   | 41   | 31   | 58   | 9    |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 8.2  |      |      | 8.1  |      |      | 9    |      |      | 8.4  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

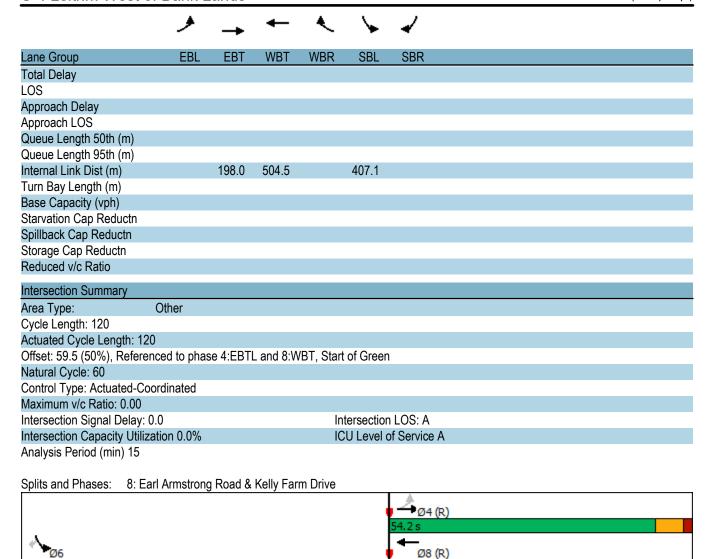
| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 2%    | 21%   | 29%   | 32%   |  |
| Vol Thru, %            | 58%   | 76%   | 29%   | 59%   |  |
| Vol Right, %           | 40%   | 3%    | 43%   | 9%    |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 102   | 62    | 136   | 98    |  |
| LT Vol                 | 2     | 13    | 39    | 31    |  |
| Through Vol            | 59    | 47    | 39    | 58    |  |
| RT Vol                 | 41    | 2     | 58    | 9     |  |
| Lane Flow Rate         | 102   | 62    | 136   | 98    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.144 | 0.082 | 0.162 | 0.128 |  |
| Departure Headway (Hd) | 5.083 | 4.766 | 4.282 | 4.696 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 707   | 753   | 839   | 764   |  |
| Service Time           | 3.107 | 2.788 | 2.3   | 2.719 |  |
| HCM Lane V/C Ratio     | 0.144 | 0.082 | 0.162 | 0.128 |  |
| HCM Control Delay      | 9     | 8.2   | 8.1   | 8.4   |  |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.5   | 0.3   | 0.6   | 0.4   |  |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 16   | 66   | 0    | 107  | 55   | 43   | 1    | 26   | 94   | 33   | 29   | 16   |
| Future Vol, veh/h          | 16   | 66   | 0    | 107  | 55   | 43   | 1    | 26   | 94   | 33   | 29   | 16   |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 0    | 4    | 0    | 0    | 3    | 0    | 0    | 5    | 15   | 5    | 0    | 0    |
| Mvmt Flow                  | 16   | 66   | 0    | 107  | 55   | 43   | 1    | 26   | 94   | 33   | 29   | 16   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 8.2  |      |      | 8.9  |      |      | 7.9  |      |      | 8.3  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 1%    | 20%   | 52%   | 42%   |  |
| Vol Thru, %            | 21%   | 80%   | 27%   | 37%   |  |
| Vol Right, %           | 78%   | 0%    | 21%   | 21%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 121   | 82    | 205   | 78    |  |
| LT Vol                 | 1     | 16    | 107   | 33    |  |
| Through Vol            | 26    | 66    | 55    | 29    |  |
| RT Vol                 | 94    | 0     | 43    | 16    |  |
| Lane Flow Rate         | 121   | 82    | 205   | 78    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.141 | 0.105 | 0.252 | 0.103 |  |
| Departure Headway (Hd) | 4.19  | 4.616 | 4.42  | 4.741 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 855   | 776   | 812   | 756   |  |
| Service Time           | 2.218 | 2.648 | 2.447 | 2.771 |  |
| HCM Lane V/C Ratio     | 0.142 | 0.106 | 0.252 | 0.103 |  |
| HCM Control Delay      | 7.9   | 8.2   | 8.9   | 8.3   |  |
| HCM Lane LOS           | А     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.5   | 0.4   | 1     | 0.3   |  |

| Intersection           |        |      |        |       |          |      |
|------------------------|--------|------|--------|-------|----------|------|
| Int Delay, s/veh       | 0      |      |        |       |          |      |
| Movement               | EBL    | EBR  | NBL    | NBT   | SBT      | SBR  |
| Lane Configurations    | ¥      | LDIT | 1100   | 4     | <u>₽</u> | OBIT |
| Traffic Vol, veh/h     | 0      | 0    | 0      | 839   | 1107     | 0    |
| Future Vol, veh/h      | 0      | 0    | 0      | 839   | 1107     | 0    |
| •                      | 0      | 0    | 0      | 039   | 0        | 0    |
| Conflicting Peds, #/hr |        |      |        |       |          |      |
| Sign Control           | Stop   | Stop | Free   | Free  | Free     | Free |
| RT Channelized         | -      | None | -      | None  | -        | None |
| Storage Length         | 0      | -    | -      | -     | -        | -    |
| Veh in Median Storage  |        | -    | -      | 0     | 0        | -    |
| Grade, %               | 0      | -    | -      | 0     | 0        | -    |
| Peak Hour Factor       | 100    | 100  | 100    | 100   | 100      | 100  |
| Heavy Vehicles, %      | 0      | 0    | 0      | 7     | 6        | 0    |
| Mvmt Flow              | 0      | 0    | 0      | 839   | 1107     | 0    |
|                        |        |      |        |       |          |      |
| NA - : /NA:            | N4:    |      | 1-11   |       | 4-10     |      |
|                        | Minor2 |      | Major1 |       | Major2   |      |
| Conflicting Flow All   | 1946   |      | 1107   | 0     | -        | 0    |
| Stage 1                | 1107   | -    | -      | -     | -        | -    |
| Stage 2                | 839    | -    | -      | -     | -        | -    |
| Critical Hdwy          | 6.4    | 6.2  | 4.1    | -     | -        | -    |
| Critical Hdwy Stg 1    | 5.4    | -    | -      | -     | -        | -    |
| Critical Hdwy Stg 2    | 5.4    | -    | -      | -     | -        | -    |
| Follow-up Hdwy         | 3.5    | 3.3  | 2.2    | -     | -        | -    |
| Pot Cap-1 Maneuver     | 72     | 258  | 638    | -     | -        | -    |
| Stage 1                | 319    | _    | -      | -     | _        | -    |
| Stage 2                | 427    | _    | -      | _     | -        | -    |
| Platoon blocked, %     |        |      |        | _     | _        | _    |
| Mov Cap-1 Maneuver     | 72     | 258  | 638    | _     | _        | _    |
| Mov Cap-1 Maneuver     | 72     | 230  | -      |       |          | _    |
| •                      |        |      |        | -     | -        |      |
| Stage 1                | 319    | -    | -      | -     | -        | -    |
| Stage 2                | 427    | -    | -      | -     | -        | _    |
|                        |        |      |        |       |          |      |
| Approach               | EB     |      | NB     |       | SB       |      |
| HCM Control Delay, s   | 0      |      | 0      |       | 0        |      |
| HCM LOS                | A      |      | · ·    |       | V        |      |
| TIOW LOO               |        |      |        |       |          |      |
|                        |        |      |        |       |          |      |
| Minor Lane/Major Mvn   | nt     | NBL  | NBT    | EBLn1 | SBT      | SBR  |
| Capacity (veh/h)       |        | 638  | -      | -     | -        | -    |
| HCM Lane V/C Ratio     |        | -    | -      | -     | -        | -    |
| HCM Control Delay (s   | )      | 0    | -      | 0     | -        | -    |
| HCM Lane LOS           |        | A    | -      | A     | _        | -    |
| HCM 95th %tile Q(veh   | 1)     | 0    | _      | -     | _        | _    |
|                        | 7      |      |        |       |          |      |

|                                 | ۶       | <b>→</b>   | •    | •       | -     | •    | •       | <b>†</b>     | <b>/</b> | <b>/</b> | <b>↓</b>   | ✓    |
|---------------------------------|---------|------------|------|---------|-------|------|---------|--------------|----------|----------|------------|------|
| Lane Group                      | EBL     | EBT        | EBR  | WBL     | WBT   | WBR  | NBL     | NBT          | NBR      | SBL      | SBT        | SBR  |
| Lane Configurations             | ሻ       | <b>↑</b> ↑ |      | ሻ       | ą.    |      | ሻ       | <b>†</b>     | 7        | ች        | <b>†</b> } |      |
| Traffic Volume (vph)            | 0       | 0          | 0    | 0       | 0     | 0    | 0       | 839          | 0        | 0        | 1107       | 0    |
| Future Volume (vph)             | 0       | 0          | 0    | 0       | 0     | 0    | 0       | 839          | 0        | 0        | 1107       | 0    |
| Ideal Flow (vphpl)              | 1800    | 1800       | 1800 | 1800    | 1800  | 1800 | 1800    | 1800         | 1800     | 1800     | 1800       | 1800 |
| Storage Length (m)              | 25.0    |            | 0.0  | 50.0    |       | 0.0  | 20.0    |              | 15.0     | 15.0     |            | 0.0  |
| Storage Lanes                   | 1       |            | 0    | 1       |       | 0    | 1       |              | 1        | 1        |            | 0    |
| Taper Length (m)                | 20.0    |            |      | 20.0    |       |      | 20.0    |              | •        | 20.0     |            |      |
| Lane Util. Factor               | 1.00    | 0.95       | 0.95 | 1.00    | 1.00  | 1.00 | 1.00    | 1.00         | 1.00     | 1.00     | 0.95       | 0.95 |
| Frt                             |         | 0.00       | 0.00 |         | 1100  |      |         |              |          |          | 0.00       | 0.00 |
| Flt Protected                   |         |            |      |         |       |      |         |              |          |          |            |      |
| Satd. Flow (prot)               | 1784    | 2981       | 0    | 1670    | 1670  | 0    | 1820    | 1750         | 1389     | 1542     | 3232       | 0    |
| Flt Permitted                   | 1701    | 2001       |      | 1010    | 10.0  |      | .020    | 1100         | 1000     | .0.2     | 0202       |      |
| Satd. Flow (perm)               | 1784    | 2981       | 0    | 1670    | 1670  | 0    | 1820    | 1750         | 1389     | 1542     | 3232       | 0    |
| Right Turn on Red               | 1701    | 2001       | Yes  | 1010    | 1010  | Yes  | 1020    | 1100         | Yes      | 1012     | 0202       | Yes  |
| Satd. Flow (RTOR)               |         |            | 100  |         |       | 100  |         |              | 100      |          |            | 100  |
| Link Speed (k/h)                |         | 50         |      |         | 50    |      |         | 50           |          |          | 50         |      |
| Link Distance (m)               |         | 528.5      |      |         | 292.7 |      |         | 203.7        |          |          | 158.2      |      |
| Travel Time (s)                 |         | 38.1       |      |         | 21.1  |      |         | 14.7         |          |          | 11.4       |      |
| Peak Hour Factor                | 1.00    | 1.00       | 1.00 | 1.00    | 1.00  | 1.00 | 1.00    | 1.00         | 1.00     | 1.00     | 1.00       | 1.00 |
| Heavy Vehicles (%)              | 2%      | 16%        | 3%   | 9%      | 9%    | 5%   | 0%      | 4%           | 31%      | 18%      | 7%         | 4%   |
| Adj. Flow (vph)                 | 0       | 0          | 0    | 0       | 0     | 0    | 0 /8    | 839          | 0        | 0        | 1107       | 0    |
| Shared Lane Traffic (%)         | U       | U          | U    | U       | U     | U    | U       | 009          | U        | U        | 1107       | U    |
| Lane Group Flow (vph)           | 0       | 0          | 0    | 0       | 0     | 0    | 0       | 839          | 0        | 0        | 1107       | 0    |
| Turn Type                       | Perm    | U          | U    | Perm    | U     | U    | Perm    | NA           | Perm     | Perm     | NA         | U    |
| Protected Phases                | i Giiii | 4          |      | I GIIII | 8     |      | i Giiii | 2            | i Giiii  | I GIIII  | 6          |      |
| Permitted Phases                | 4       |            |      | 8       | U     |      | 2       |              | 2        | 6        | U          |      |
| Detector Phase                  | 4       | 4          |      | 8       | 8     |      | 2       | 2            | 2        | 6        | 6          |      |
| Switch Phase                    | 4       | 7          |      | 0       | U     |      |         |              |          | U        | U          |      |
| Minimum Initial (s)             | 10.0    | 10.0       |      | 10.0    | 10.0  |      | 10.0    | 10.0         | 10.0     | 10.0     | 10.0       |      |
| Minimum Split (s)               | 22.5    | 22.5       |      | 22.5    | 22.5  |      | 22.5    | 22.5         | 22.5     | 22.5     | 22.5       |      |
| Total Split (s)                 | 22.5    | 22.5       |      | 22.5    | 22.5  |      | 22.5    | 22.5         | 22.5     | 22.5     | 22.5       |      |
| Total Split (%)                 | 50.0%   | 50.0%      |      | 50.0%   | 50.0% |      | 50.0%   | 50.0%        | 50.0%    | 50.0%    | 50.0%      |      |
| Maximum Green (s)               | 18.0    | 18.0       |      | 18.0    | 18.0  |      | 18.0    | 18.0         | 18.0     | 18.0     | 18.0       |      |
| Yellow Time (s)                 | 3.5     | 3.5        |      | 3.5     | 3.5   |      | 3.5     | 3.5          | 3.5      | 3.5      | 3.5        |      |
| All-Red Time (s)                | 1.0     | 1.0        |      | 1.0     | 1.0   |      | 1.0     | 1.0          | 1.0      | 1.0      | 1.0        |      |
| Lost Time Adjust (s)            | 0.0     | 0.0        |      | 0.0     | 0.0   |      | 0.0     | 0.0          | 0.0      | 0.0      | 0.0        |      |
|                                 | 4.5     |            |      | 4.5     | 4.5   |      | 4.5     | 4.5          | 4.5      | 4.5      | 4.5        |      |
| Total Lost Time (s)<br>Lead/Lag | 4.5     | 4.5        |      | 4.5     | 4.5   |      | 4.5     | 4.5          | 4.5      | 4.5      | 4.5        |      |
|                                 |         |            |      |         |       |      |         |              |          |          |            |      |
| Lead-Lag Optimize?              | 2.0     | 2.0        |      | 2.0     | 2.0   |      | 2.0     | 2.0          | 2.0      | 2.0      | 2.0        |      |
| Vehicle Extension (s)           | 3.0     | 3.0        |      | 3.0     | 3.0   |      | 3.0     | 3.0<br>C-Max | 3.0      | 3.0      | 3.0        |      |
| Recall Mode                     | None    | None       |      | None    | None  |      | C-Max   |              | C-Max    | C-Max    | C-Max      |      |
| Walk Time (s)                   | 7.0     | 7.0        |      | 7.0     | 7.0   |      | 7.0     | 7.0          | 7.0      | 7.0      | 7.0        |      |
| Flash Dont Walk (s)             | 11.0    | 11.0       |      | 11.0    | 11.0  |      | 11.0    | 11.0         | 11.0     | 11.0     | 11.0       |      |
| Pedestrian Calls (#/hr)         | 0       | 0          |      | 0       | 0     |      | 0       | 0            | 0        | 0        | 0          |      |
| Act Effct Green (s)             |         |            |      |         |       |      |         | 45.0         |          |          | 45.0       |      |
| Actuated g/C Ratio              |         |            |      |         |       |      |         | 1.00         |          |          | 1.00       |      |
| v/c Ratio                       |         |            |      |         |       |      |         | 0.48         |          |          | 0.34       |      |
| Control Delay                   |         |            |      |         |       |      |         | 0.9          |          |          | 0.3        |      |
| Queue Delay                     |         |            |      |         |       |      |         | 0.0          |          |          | 0.0        |      |


Lanes, Volumes, Timings EM

Synchro 11 Report October 2025

Ø6 (R)

|                                | •           | <b>→</b>  | •         | •          | <b>←</b>    | •          | •   | <b>†</b> | <b>/</b> | <b>&gt;</b> | ļ     | 4   |
|--------------------------------|-------------|-----------|-----------|------------|-------------|------------|-----|----------|----------|-------------|-------|-----|
| Lane Group                     | EBL         | EBT       | EBR       | WBL        | WBT         | WBR        | NBL | NBT      | NBR      | SBL         | SBT   | SBR |
| Total Delay                    |             |           |           |            |             |            |     | 0.9      |          |             | 0.3   |     |
| LOS                            |             |           |           |            |             |            |     | Α        |          |             | Α     |     |
| Approach Delay                 |             |           |           |            |             |            |     | 0.9      |          |             | 0.3   |     |
| Approach LOS                   |             |           |           |            |             |            |     | Α        |          |             | Α     |     |
| Queue Length 50th (m)          |             |           |           |            |             |            |     | 0.0      |          |             | 0.0   |     |
| Queue Length 95th (m)          |             |           |           |            |             |            |     | 0.0      |          |             | 0.0   |     |
| Internal Link Dist (m)         |             | 504.5     |           |            | 268.7       |            |     | 179.7    |          |             | 134.2 |     |
| Turn Bay Length (m)            |             |           |           |            |             |            |     |          |          |             |       |     |
| Base Capacity (vph)            |             |           |           |            |             |            |     | 1750     |          |             | 3232  |     |
| Starvation Cap Reductn         |             |           |           |            |             |            |     | 0        |          |             | 0     |     |
| Spillback Cap Reductn          |             |           |           |            |             |            |     | 0        |          |             | 0     |     |
| Storage Cap Reductn            |             |           |           |            |             |            |     | 0        |          |             | 0     |     |
| Reduced v/c Ratio              |             |           |           |            |             |            |     | 0.48     |          |             | 0.34  |     |
| Intersection Summary           |             |           |           |            |             |            |     |          |          |             |       |     |
| Jr -                           | Other       |           |           |            |             |            |     |          |          |             |       |     |
| Cycle Length: 45               |             |           |           |            |             |            |     |          |          |             |       |     |
| Actuated Cycle Length: 45      |             |           |           |            |             |            |     |          |          |             |       |     |
| Offset: 0 (0%), Referenced to  | o phase 2:I | NBTL and  | d 6:SBTL  | , Start of | Green       |            |     |          |          |             |       |     |
| Natural Cycle: 60              |             |           |           |            |             |            |     |          |          |             |       |     |
| Control Type: Actuated-Cool    | rdinated    |           |           |            |             |            |     |          |          |             |       |     |
| Maximum v/c Ratio: 0.48        |             |           |           |            |             |            |     |          |          |             |       |     |
| Intersection Signal Delay: 0.  |             |           |           |            | ntersection |            |     |          |          |             |       |     |
| Intersection Capacity Utilizat | tion 50.4%  |           |           | IC         | CU Level    | of Service | Α   |          |          |             |       |     |
| Analysis Period (min) 15       |             |           |           |            |             |            |     |          |          |             |       |     |
| Splits and Phases: 7: Ban      | k Street &  | Earl Arms | strong Ro | ad         |             |            |     |          |          |             |       |     |
| Ø2 (R)                         |             |           |           |            | 4           | <b>0</b> 4 |     |          |          |             |       |     |
| 22.5 s                         |             |           |           |            | 22.5 s      |            |     |          |          |             |       |     |

|                                    | •       | <b>→</b>  | <b>←</b>     | 1    | <b>&gt;</b> | 4       |
|------------------------------------|---------|-----------|--------------|------|-------------|---------|
| Lane Group                         | EBL     | EBT       | WBT          | WBR  | SBL         | SBR     |
| Lane Configurations                | T T     | <b>^</b>  | <b>↑</b> ↑   | TOIL | )<br>T      | 7       |
| Traffic Volume (vph)               | 0       | <b>TT</b> | <b>T P</b> 0 | 0    | 0           | 0       |
| Future Volume (vph)                | 0       | 0         | 0            | 0    | 0           | 0       |
| Ideal Flow (vphpl)                 | 1800    | 1800      | 1800         | 1800 | 1800        | 1800    |
| Storage Length (m)                 | 60.0    | 1000      | 1000         | 0.0  | 40.0        | 0.0     |
|                                    | 1       |           |              | 0.0  | 40.0        | 1       |
| Storage Lanes                      | 20.0    |           |              | U    | 20.0        | l I     |
| Taper Length (m) Lane Util. Factor | 1.00    | 0.95      | 0.95         | 0.95 | 1.00        | 1.00    |
| Frt                                | 1.00    | 0.95      | 0.95         | 0.95 | 1.00        | 1.00    |
|                                    |         |           |              |      |             |         |
| Flt Protected                      | 4040    | 2444      | 2020         | ^    | 4000        | 4000    |
| Satd. Flow (prot)                  | 1640    | 3144      | 3232         | 0    | 1820        | 1820    |
| Flt Permitted                      |         |           | 222          |      | 10          | 10      |
| Satd. Flow (perm)                  | 1640    | 3144      | 3232         | 0    | 1820        | 1820    |
| Right Turn on Red                  |         |           |              | Yes  |             | Yes     |
| Satd. Flow (RTOR)                  |         |           |              |      |             |         |
| Link Speed (k/h)                   |         | 50        | 50           |      | 50          |         |
| Link Distance (m)                  |         | 222.0     | 528.5        |      | 431.1       |         |
| Travel Time (s)                    |         | 16.0      | 38.1         |      | 31.0        |         |
| Peak Hour Factor                   | 1.00    | 1.00      | 1.00         | 1.00 | 1.00        | 1.00    |
| Heavy Vehicles (%)                 | 11%     | 10%       | 7%           | 11%  | 0%          | 0%      |
| Adj. Flow (vph)                    | 0       | 0         | 0            | 0    | 0           | 0       |
| Shared Lane Traffic (%)            |         |           |              |      |             |         |
| Lane Group Flow (vph)              | 0       | 0         | 0            | 0    | 0           | 0       |
| Turn Type                          | Perm    | J         |              |      | Prot        | Perm    |
| Protected Phases                   | i Gilil | 4         | 8            |      | 6           | I GIIII |
| Permitted Phases                   | 4       | 4         | U            |      | U           | 6       |
| Detector Phase                     | 4       | 4         | 8            |      | 6           | 6       |
|                                    | 4       | 4         | 0            |      | Ö           | O       |
| Switch Phase                       | 40.0    | 40.0      | 40.0         |      | 40.0        | 40.0    |
| Minimum Initial (s)                | 10.0    | 10.0      | 10.0         |      | 10.0        | 10.0    |
| Minimum Split (s)                  | 24.8    | 24.8      | 24.8         |      | 33.8        | 33.8    |
| Total Split (s)                    | 54.2    | 54.2      | 54.2         |      | 65.8        | 65.8    |
| Total Split (%)                    | 45.2%   | 45.2%     | 45.2%        |      | 54.8%       | 54.8%   |
| Maximum Green (s)                  | 47.4    | 47.4      | 47.4         |      | 59.0        | 59.0    |
| Yellow Time (s)                    | 5.0     | 5.0       | 5.0          |      | 3.2         | 3.2     |
| All-Red Time (s)                   | 1.8     | 1.8       | 1.8          |      | 3.6         | 3.6     |
| Lost Time Adjust (s)               | 0.0     | 0.0       | 0.0          |      | 0.0         | 0.0     |
| Total Lost Time (s)                | 6.8     | 6.8       | 6.8          |      | 6.8         | 6.8     |
| Lead/Lag                           |         | 1.5       |              |      |             |         |
| Lead-Lag Optimize?                 |         |           |              |      |             |         |
| Vehicle Extension (s)              | 3.0     | 3.0       | 3.0          |      | 3.0         | 3.0     |
| Recall Mode                        | C-Max   | C-Max     | C-Max        |      | None        | None    |
| Walk Time (s)                      | 7.0     | 7.0       | 7.0          |      | 7.0         | 7.0     |
| Flash Dont Walk (s)                | 11.0    | 11.0      | 11.0         |      | 20.0        | 20.0    |
|                                    |         |           |              |      |             |         |
| Pedestrian Calls (#/hr)            | 0       | 0         | 0            |      | 0           | 0       |
| Act Effct Green (s)                |         |           |              |      |             |         |
| Actuated g/C Ratio                 |         |           |              |      |             |         |
| v/c Ratio                          |         |           |              |      |             |         |
|                                    |         |           |              |      |             |         |
| Control Delay                      |         |           |              |      |             |         |

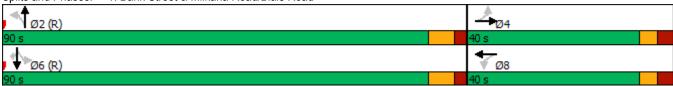


# Future (2036) Total Traffic with Earl Armstrong Road Extension

|                         | ۶     | <b>→</b> | •    | •     | <b>←</b> | •    | •     | †          | <i>&gt;</i> | <b>/</b> | ţ        | 4     |
|-------------------------|-------|----------|------|-------|----------|------|-------|------------|-------------|----------|----------|-------|
| Lane Group              | EBL   | EBT      | EBR  | WBL   | WBT      | WBR  | NBL   | NBT        | NBR         | SBL      | SBT      | SBR   |
| Lane Configurations     | ሻ     | f.       |      | ሻ     | <b>^</b> |      | ሻ     | <b>↑</b> ↑ |             | ሻ        | <b>^</b> | 7     |
| Traffic Volume (vph)    | 177   | 45       | 26   | 43    | 21       | 40   | 9     | 968        | 48          | 46       | 602      | 76    |
| Future Volume (vph)     | 177   | 45       | 26   | 43    | 21       | 40   | 9     | 968        | 48          | 46       | 602      | 76    |
| Ideal Flow (vphpl)      | 1800  | 1800     | 1800 | 1800  | 1800     | 1800 | 1800  | 1800       | 1800        | 1800     | 1800     | 1800  |
| Storage Length (m)      | 100.0 |          | 0.0  | 40.0  |          | 0.0  | 100.0 |            | 0.0         | 75.0     |          | 175.0 |
| Storage Lanes           | 1     |          | 0    | 1     |          | 0    | 1     |            | 0           | 1        |          | 1     |
| Taper Length (m)        | 20.0  |          |      | 20.0  |          |      | 20.0  |            |             | 20.0     |          |       |
| Lane Util. Factor       | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00  | 0.95       | 0.95        | 1.00     | 0.95     | 1.00  |
| Ped Bike Factor         | 1.00  |          |      |       | 0.99     |      | 1.00  |            |             |          |          | 0.98  |
| Frt                     |       | 0.945    |      |       | 0.902    |      |       | 0.993      |             |          |          | 0.850 |
| Flt Protected           | 0.950 |          |      | 0.950 |          |      | 0.950 |            |             | 0.950    |          |       |
| Satd. Flow (prot)       | 1729  | 1698     | 0    | 1478  | 1627     | 0    | 1729  | 3208       | 0           | 1662     | 3172     | 1488  |
| Flt Permitted           | 0.717 |          |      | 0.711 |          |      | 0.423 |            |             | 0.257    |          |       |
| Satd. Flow (perm)       | 1303  | 1698     | 0    | 1106  | 1627     | 0    | 769   | 3208       | 0           | 450      | 3172     | 1455  |
| Right Turn on Red       |       |          | Yes  |       |          | Yes  |       |            | Yes         |          |          | Yes   |
| Satd. Flow (RTOR)       |       | 21       |      |       | 40       |      |       | 7          |             |          |          | 76    |
| Link Speed (k/h)        |       | 50       |      |       | 50       |      |       | 80         |             |          | 80       |       |
| Link Distance (m)       |       | 528.6    |      |       | 234.2    |      |       | 451.0      |             |          | 177.6    |       |
| Travel Time (s)         |       | 38.1     |      |       | 16.9     |      |       | 20.3       |             |          | 8.0      |       |
| Confl. Peds. (#/hr)     | 1     |          |      |       |          | 1    | 1     |            |             |          |          | 1     |
| Peak Hour Factor        | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00       | 1.00        | 1.00     | 1.00     | 1.00  |
| Heavy Vehicles (%)      | 0%    | 2%       | 0%   | 17%   | 0%       | 0%   | 0%    | 6%         | 28%         | 4%       | 9%       | 4%    |
| Adj. Flow (vph)         | 177   | 45       | 26   | 43    | 21       | 40   | 9     | 968        | 48          | 46       | 602      | 76    |
| Shared Lane Traffic (%) |       |          |      |       |          |      |       |            |             |          |          |       |
| Lane Group Flow (vph)   | 177   | 71       | 0    | 43    | 61       | 0    | 9     | 1016       | 0           | 46       | 602      | 76    |
| Turn Type               | Perm  | NA       |      | Perm  | NA       |      | Perm  | NA         |             | Perm     | NA       | Perm  |
| Protected Phases        |       | 4        |      |       | 8        |      |       | 2          |             |          | 6        |       |
| Permitted Phases        | 4     |          |      | 8     |          |      | 2     |            |             | 6        |          | 6     |
| Detector Phase          | 4     | 4        |      | 8     | 8        |      | 2     | 2          |             | 6        | 6        | 6     |
| Switch Phase            |       |          |      |       |          |      |       |            |             |          |          |       |
| Minimum Initial (s)     | 10.0  | 10.0     |      | 10.0  | 10.0     |      | 10.0  | 10.0       |             | 10.0     | 10.0     | 10.0  |
| Minimum Split (s)       | 33.8  | 33.8     |      | 33.8  | 33.8     |      | 42.6  | 42.6       |             | 42.6     | 42.6     | 42.6  |
| Total Split (s)         | 40.0  | 40.0     |      | 40.0  | 40.0     |      | 90.0  | 90.0       |             | 90.0     | 90.0     | 90.0  |
| Total Split (%)         | 30.8% | 30.8%    |      | 30.8% | 30.8%    |      | 69.2% | 69.2%      |             | 69.2%    | 69.2%    | 69.2% |
| Maximum Green (s)       | 33.2  | 33.2     |      | 33.2  | 33.2     |      | 82.4  | 82.4       |             | 82.4     | 82.4     | 82.4  |
| Yellow Time (s)         | 3.6   | 3.6      |      | 3.6   | 3.6      |      | 5.0   | 5.0        |             | 5.0      | 5.0      | 5.0   |
| All-Red Time (s)        | 3.2   | 3.2      |      | 3.2   | 3.2      |      | 2.6   | 2.6        |             | 2.6      | 2.6      | 2.6   |
| Lost Time Adjust (s)    | 0.0   | 0.0      |      | 0.0   | 0.0      |      | 0.0   | 0.0        |             | 0.0      | 0.0      | 0.0   |
| Total Lost Time (s)     | 6.8   | 6.8      |      | 6.8   | 6.8      |      | 7.6   | 7.6        |             | 7.6      | 7.6      | 7.6   |
| Lead/Lag                |       |          |      |       |          |      |       |            |             |          |          |       |
| Lead-Lag Optimize?      |       |          |      |       |          |      |       |            |             |          |          |       |
| Vehicle Extension (s)   | 3.0   | 3.0      |      | 3.0   | 3.0      |      | 3.0   | 3.0        |             | 3.0      | 3.0      | 3.0   |
| Recall Mode             | None  | None     |      | None  | None     |      | C-Max | C-Max      |             | C-Max    | C-Max    | C-Max |
| Walk Time (s)           | 7.0   | 7.0      |      | 7.0   | 7.0      |      | 7.0   | 7.0        |             | 7.0      | 7.0      | 7.0   |
| Flash Dont Walk (s)     | 20.0  | 20.0     |      | 20.0  | 20.0     |      | 28.0  | 28.0       |             | 28.0     | 28.0     | 28.0  |
| Pedestrian Calls (#/hr) | 0     | 0        |      | 0     | 0        |      | 0     | 0          |             | 0        | 0        | 0     |
| Act Effct Green (s)     | 22.9  | 22.9     |      | 22.9  | 22.9     |      | 92.7  | 92.7       |             | 92.7     | 92.7     | 92.7  |
| Actuated g/C Ratio      | 0.18  | 0.18     |      | 0.18  | 0.18     |      | 0.71  | 0.71       |             | 0.71     | 0.71     | 0.71  |
| v/c Ratio               | 0.77  | 0.22     |      | 0.10  | 0.19     |      | 0.02  | 0.44       |             | 0.14     | 0.27     | 0.07  |
|                         | 7     | V        |      |       |          |      |       | ¥          |             | ÷        | J        |       |

Lanes, Volumes, Timings EM

|                           | •            | -        | •        | •         | ←        | •   | 4     | <b>†</b> | ~   | <b>&gt;</b> | <b>↓</b> | 4     |
|---------------------------|--------------|----------|----------|-----------|----------|-----|-------|----------|-----|-------------|----------|-------|
| Lane Group                | EBL          | EBT      | EBR      | WBL       | WBT      | WBR | NBL   | NBT      | NBR | SBL         | SBT      | SBR   |
| Control Delay             | 72.0         | 32.5     |          | 45.9      | 19.8     |     | 8.6   | 7.4      |     | 8.9         | 7.6      | 1.9   |
| Queue Delay               | 0.0          | 0.0      |          | 0.0       | 0.0      |     | 0.0   | 0.0      |     | 0.0         | 0.0      | 0.0   |
| Total Delay               | 72.0         | 32.5     |          | 45.9      | 19.8     |     | 8.6   | 7.4      |     | 8.9         | 7.6      | 1.9   |
| LOS                       | Е            | С        |          | D         | В        |     | Α     | Α        |     | Α           | Α        | Α     |
| Approach Delay            |              | 60.7     |          |           | 30.6     |     |       | 7.4      |     |             | 7.1      |       |
| Approach LOS              |              | Е        |          |           | С        |     |       | Α        |     |             | Α        |       |
| Queue Length 50th (m)     | 40.3         | 10.1     |          | 8.8       | 4.2      |     | 0.4   | 23.7     |     | 3.1         | 23.8     | 0.0   |
| Queue Length 95th (m)     | 59.2         | 21.0     |          | 17.6      | 14.3     |     | m1.1  | 55.3     |     | 9.4         | 39.0     | 4.9   |
| Internal Link Dist (m)    |              | 504.6    |          |           | 210.2    |     |       | 427.0    |     |             | 153.6    |       |
| Turn Bay Length (m)       | 100.0        |          |          | 40.0      |          |     | 100.0 |          |     | 75.0        |          | 175.0 |
| Base Capacity (vph)       | 332          | 449      |          | 282       | 445      |     | 548   | 2289     |     | 320         | 2261     | 1059  |
| Starvation Cap Reductn    | 0            | 0        |          | 0         | 0        |     | 0     | 0        |     | 0           | 0        | 0     |
| Spillback Cap Reductn     | 0            | 0        |          | 0         | 0        |     | 0     | 0        |     | 0           | 0        | 0     |
| Storage Cap Reductn       | 0            | 0        |          | 0         | 0        |     | 0     | 0        |     | 0           | 0        | 0     |
| Reduced v/c Ratio         | 0.53         | 0.16     |          | 0.15      | 0.14     |     | 0.02  | 0.44     |     | 0.14        | 0.27     | 0.07  |
| Intersection Summary      |              |          |          |           |          |     |       |          |     |             |          |       |
| Area Type:                | Other        |          |          |           |          |     |       |          |     |             |          |       |
| Cycle Length: 130         |              |          |          |           |          |     |       |          |     |             |          |       |
| Actuated Cycle Length: 13 | 30           |          |          |           |          |     |       |          |     |             |          |       |
| Offset: 16 (12%), Referen | ced to phase | 2:NBTL a | and 6:SB | TL, Start | of Green |     |       |          |     |             |          |       |
| Natural Cycle: 80         |              |          |          |           |          |     |       |          |     |             |          |       |
| Control Type: Actuated-C  | oordinated   |          |          |           |          |     |       |          |     |             |          |       |


Maximum v/c Ratio: 0.77

Intersection Signal Delay: 14.8 Intersection LOS: B
Intersection Capacity Utilization 69.4% ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.





| Lane Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | ٠     | •     | 4     | <b>†</b> | <b>↓</b> | 4     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------|-------|-------|----------|----------|-------|
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lane Group         | EBL   | EBR   | NBL   | NBT      | SBT      | SBR   |
| Traffic Volume (vph) 305 57 94 715 536 79 Future Volume (vph) 305 57 94 715 536 79 Future Volume (vph) 305 57 94 715 536 79 4 715 536 79 4 715 536 79 4 715 536 79 4 715 536 79 4 715 536 79 70 70 77 0 70 70 70 100 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |       |       |       |          |          |       |
| Future Volume (vph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |       |       |       |          |          |       |
| Ideal Flow (vphpl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ( : ,              |       |       |       |          |          |       |
| Storage Length (m)   25.0   0.0   120.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   100.0   10 | · · · ·            |       |       |       |          |          |       |
| Storage Lanes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ( ,                |       |       |       | 1000     | 1000     |       |
| Taper Length (m)         20.0         20.0         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.12         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |       |       |       |          |          |       |
| Lane Util. Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                  |       |       |       |          |          | •     |
| Ped Bike Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |       | 1 00  |       | 1 00     | 1.00     | 1 00  |
| Frt         0.850         0.950         0.950           Satd. Flow (prot)         1616         1459         1558         1655         1640         1172           Flt Permitted         0.950         0.406         Satd. Flow (perm)         1616         1459         1658         1655         1640         1129           Right Turn on Red         Yes         Yes         Yes         Yes           Satd. Flow (RTOR)         57         80         80           Link Speed (k/h)         50         80         80           Link Distance (m)         528.6         273.1         451.0           Travel Time (s)         38.1         12.3         20.3           Confl. Peds. (#/hr)         4         4         4           Peak Hour Factor         1.00         1.00         1.00         1.00         1.00           Heavy Vehicles (%)         7%         6%         11%         10%         11%         32%           Adj. Flow (vph)         305         57         94         715         536         79           Turn Type         Perm         Perm         Perm         NA         NA         Perm           Premitted Phases         4         4<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | 1.00  | 1.00  |       | 1.00     | 1.00     |       |
| Fit Protected   0.950   0.950   Satd. Flow (prot)   1616   1459   1558   1655   1640   1172   Fit Permitted   0.950   0.406   Satd. Flow (perm)   1616   1459   663   1655   1640   1129   Satd. Flow (perm)   1616   1459   663   1655   1640   1129   Satd. Flow (perm)   57   79   Satd. Flow (RTOR)   57   79   Satd. Flow (RTOR)   57   79   Satd. Flow (RTOR)   50   80   80   Sol. Link Distance (m)   528.6   273.1   451.0   Travel Time (s)   38.1   12.3   20.3   Confl. Peds. (#/hr)   4   4   4   4   4   4   4   4   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |       | 0.850 | 1.00  |          |          |       |
| Satd. Flow (prot)         1616         1459         1558         1655         1640         1172           Flt Permitted         0.950         0.406         1172           Satd. Flow (perm)         1616         1459         663         1655         1640         1129           Right Turn on Red         Yes         Yes         Yes         Satd. Flow (RTOR)         79         1100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | 0 050 | 0.000 | 0.950 |          |          | 0.000 |
| Fit Permitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |       | 1/150 |       | 1655     | 1640     | 1179  |
| Satd. Flow (perm)         1616         1459         663         1655         1640         1129           Right Turn on Red         Yes         79           Satd. Flow (RTOR)         57         80         79           Link Speed (k/h)         50         80         80           Link Distance (m)         528.6         273.1         451.0           Travel Time (s)         38.1         12.3         20.3           Confl. Peds. (#/hr)         4         4         4           Peak Hour Factor         1.00         1.00         1.00         1.00         1.00         1.00           Heavy Vehicles (%)         7%         6%         11%         10%         11%         32%           Adj. Flow (vph)         305         57         94         715         536         79           Shared Lane Traffic (%)         2         6         11%         10%         11%         32%           Adj. Flow (vph)         305         57         94         715         536         79           Turn Type         Perm         Perm         Perm         NA         NA         Perm           Protected Phases         4         4         2         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (, ,               |       | 1409  |       | 1000     | 1040     | 11/2  |
| Right Turn on Red         Yes         79           Satd. Flow (RTOR)         57         80         80           Link Speed (k/h)         50         80         80           Link Distance (m)         528.6         273.1         451.0           Travel Time (s)         38.1         12.3         20.3           Confl. Peds. (#/hr)         4         4         4           Peak Hour Factor         1.00         1.00         1.00         1.00         1.00           Heavy Vehicles (%)         7%         6%         11%         10%         11%         32%           Adj. Flow (vph)         305         57         94         715         536         79           Shared Lane Traffic (%)         2         8         79         79         79         79         79         79         79         79         79         79         79         79         79         79         79         79         79         79         79         79         79         79         79         79         79         79         79         79         79         79         79         79         715         536         79         79         79         70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |       | 1/150 |       | 1655     | 1640     | 1120  |
| Satd. Flow (RTOR)         57         80         80           Link Speed (k/h)         50         80         80           Link Distance (m)         528.6         273.1         451.0           Travel Time (s)         38.1         12.3         20.3           Confl. Peds. (#/hr)         4         4         4           Peak Hour Factor         1.00         1.00         1.00         1.00         1.00           Heavy Vehicles (%)         7%         6%         11%         10%         11%         32%           Adj. Flow (vph)         305         57         94         715         536         79           Shared Lane Traffic (%)         Lane Group Flow (vph)         305         57         94         715         536         79           Turn Type         Perm         Perm         Perm         Perm         NA         NA         Perm           Protected Phases         4         4         2         6         6           Detector Phase         4         4         2         6         6           Switch Phase         Minimum Initial (s)         10.0         10.0         10.0         10.0         10.0         10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (, ,               | 1010  |       | 003   | 1000     | 1040     |       |
| Link Speed (k/h)         50         80         80           Link Distance (m)         528.6         273.1         451.0           Travel Time (s)         38.1         12.3         20.3           Confl. Peds. (#/hr)         4         4         4           Peak Hour Factor         1.00         1.00         1.00         1.00         1.00           Heavy Vehicles (%)         7%         6%         11%         10%         11%         32%           Adj. Flow (vph)         305         57         94         715         536         79           Shared Lane Traffic (%)         Lane Group Flow (vph)         305         57         94         715         536         79           Turn Type         Perm         Perm         Perm         Perm         NA         NA         Perm           Protected Phases         4         4         2         6         6         6           Permitted Phases         4         4         2         6         6         6           Permitted Phases         4         4         2         2         6         6           Detector Phase         4         4         2         2         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |       |       |       |          |          |       |
| Link Distance (m)         528.6         273.1         451.0           Travel Time (s)         38.1         12.3         20.3           Confl. Peds. (#/hr)         4         4         4           Peak Hour Factor         1.00         1.00         1.00         1.00         1.00         1.00           Heavy Vehicles (%)         7%         6%         11%         10%         11%         32%           Adj. Flow (vph)         305         57         94         715         536         79           Shared Lane Traffic (%)         2         57         94         715         536         79           Furn Type         Perm         Perm         Perm         Perm         NA         NA         Perm           Protected Phases         4         4         2         6         6         6           Permitted Phases         4         4         2         2         6         6           Switch Phase         4         4         2         2         6         6           Minimum Initial (s)         10.0         10.0         10.0         10.0         10.0         10.0         10.0           Total Split (s)         22.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |       | 5/    |       | 00       | 00       | 79    |
| Travel Time (s)         38.1         12.3         20.3           Confl. Peds. (#/hr)         4         4         4           Peak Hour Factor         1.00         1.00         1.00         1.00         1.00         1.00           Heavy Vehicles (%)         7%         6%         11%         10%         11%         32%           Adj. Flow (vph)         305         57         94         715         536         79           Shared Lane Traffic (%)         57         94         715         536         79           Turn Type         Perm         Perm         Perm         NA         NA         Perm           Protected Phases         2         6         6         6         6         6           Permitted Phases         4         4         2         2         6         6           Switch Phase         4         4         2         2         6         6           Switch Phase         4         4         2         2         6         6           Minimum Initial (s)         10.0         10.0         10.0         10.0         10.0         10.0           Total Split (s)         22.6         22.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . , ,              |       |       |       |          |          |       |
| Confl. Peds. (#/hr)         4         4         4           Peak Hour Factor         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |       |       |       |          |          |       |
| Peak Hour Factor         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . ,                | 38.1  |       |       | 12.3     | 20.3     |       |
| Heavy Vehicles (%)         7%         6%         11%         10%         11%         32%           Adj. Flow (vph)         305         57         94         715         536         79           Shared Lane Traffic (%)         Lane Group Flow (vph)         305         57         94         715         536         79           Turn Type         Perm         Perm         Perm         Perm         NA         NA         Perm           Permitted Phases         4         4         2         6           Detector Phase         4         4         2         2         6           Switch Phase         Minimum Initial (s)         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , ,                | 4.00  | 4.00  |       | 4.00     | 4.00     |       |
| Adj. Flow (vph)         305         57         94         715         536         79           Shared Lane Traffic (%)         Lane Group Flow (vph)         305         57         94         715         536         79           Turn Type         Perm         Perm         Perm         NA         NA         Perm           Protected Phases         4         4         2         6           Permitted Phases         4         4         2         6         6           Detector Phase         4         4         2         2         6         6           Switch Phase         Minimum Initial (s)         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |       |       |       |          |          |       |
| Shared Lane Traffic (%)         Lane Group Flow (vph)         305         57         94         715         536         79           Turn Type         Perm         Perm         Perm         NA         NA         Perm           Protected Phases         2         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         9         2%         6         9.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ` ,                |       |       |       |          |          |       |
| Lane Group Flow (vph)         305         57         94         715         536         79           Turn Type         Perm         Perm         Perm         NA         NA         Perm           Protected Phases         2         6         6         6         6         6           Permitted Phases         4         4         2         2         6         6           Switch Phase         8         4         4         2         2         6         6           Minimum Initial (s)         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | 305   | 57    | 94    | 715      | 536      | 79    |
| Turn Type         Perm         Perm         Perm         NA         NA         Perm           Protected Phases         4         4         2         6         6           Detector Phase         4         4         2         2         6         6           Switch Phase         Minimum Initial (s)         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.2         10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · ,                |       |       |       |          |          |       |
| Protected Phases         2         6           Permitted Phases         4         4         2         6           Detector Phase         4         4         2         2         6         6           Switch Phase         8         5         5         6         6         6         6         6           Minimum Initial (s)         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.2         10.2         10.2         10.2         10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |       |       |       |          |          |       |
| Permitted Phases         4         4         2         2         6         6           Detector Phase         4         4         2         2         6         6           Switch Phase         8         5         5         6         6         6           Minimum Initial (s)         10.0         10.0         10.0         10.0         10.0         10.0           Minimum Split (s)         22.6         22.6         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.1         21.1         21.1 <td>Turn Type</td> <td>Perm</td> <td>Perm</td> <td>Perm</td> <td>NA</td> <td>NA</td> <td>Perm</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Turn Type          | Perm  | Perm  | Perm  | NA       | NA       | Perm  |
| Detector Phase         4         4         2         2         6         6           Switch Phase           Minimum Initial (s)         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         80.2         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2% <t< td=""><td>Protected Phases</td><td></td><td></td><td></td><td>2</td><td>6</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Protected Phases   |       |       |       | 2        | 6        |       |
| Switch Phase         Minimum Initial (s)         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0         90.0 <t< td=""><td>Permitted Phases</td><td>4</td><td>4</td><td>2</td><td></td><td></td><td>6</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Permitted Phases   | 4     | 4     | 2     |          |          | 6     |
| Minimum Initial (s)         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         10.0         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         21.7         22.8         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2%         69.2% </td <td>Detector Phase</td> <td>4</td> <td>4</td> <td>2</td> <td>2</td> <td>6</td> <td>6</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Detector Phase     | 4     | 4     | 2     | 2        | 6        | 6     |
| Minimum Split (s)         22.6         22.6         21.7         21.7         21.7         21.7           Total Split (s)         40.0         40.0         90.0         90.0         90.0         90.0           Total Split (%)         30.8%         30.8%         69.2%         69.2%         69.2%         69.2%           Maximum Green (s)         33.4         33.4         83.3         83.3         83.3         83.3           Yellow Time (s)         3.3         3.3         4.6         4.6         4.6         4.6           All-Red Time (s)         3.3         3.3         2.1         2.1         2.1         2.1           Lost Time Adjust (s)         0.0         0.0         0.0         0.0         0.0         0.0           Total Lost Time (s)         6.6         6.6         6.7         6.7         6.7         6.7           Lead-Lag         Optimize?         Vehicle Extension (s)         3.0         3.0         3.0         3.0         3.0         3.0           Recall Mode         None         None         C-Max         C-Max         C-Max         C-Max           Walk Time (s)         7.0         7.0         7.0         7.0         7.0 <t< td=""><td>Switch Phase</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Switch Phase       |       |       |       |          |          |       |
| Minimum Split (s)         22.6         22.6         21.7         21.7         21.7         21.7           Total Split (s)         40.0         40.0         90.0         90.0         90.0         90.0           Total Split (%)         30.8%         30.8%         69.2%         69.2%         69.2%         69.2%           Maximum Green (s)         33.4         33.4         83.3         83.3         83.3         83.3           Yellow Time (s)         3.3         3.3         4.6         4.6         4.6         4.6           All-Red Time (s)         3.3         3.3         2.1         2.1         2.1         2.1           Lost Time Adjust (s)         0.0         0.0         0.0         0.0         0.0         0.0           Total Lost Time (s)         6.6         6.6         6.7         6.7         6.7         6.7           Lead-Lag         Optimize?         Vehicle Extension (s)         3.0         3.0         3.0         3.0         3.0         3.0           Recall Mode         None         None         C-Max         C-Max         C-Max         C-Max           Walk Time (s)         7.0         7.0         7.0         7.0         7.0 <t< td=""><td></td><td>10.0</td><td>10.0</td><td>10.0</td><td>10.0</td><td>10.0</td><td>10.0</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | 10.0  | 10.0  | 10.0  | 10.0     | 10.0     | 10.0  |
| Total Split (s)         40.0         40.0         90.0         90.0         90.0         90.0           Total Split (%)         30.8%         30.8%         69.2%         69.2%         69.2%         69.2%           Maximum Green (s)         33.4         33.4         83.3         83.3         83.3         83.3           Yellow Time (s)         3.3         3.3         4.6         4.6         4.6         4.6           All-Red Time (s)         3.3         3.3         2.1         2.1         2.1         2.1           Lost Time Adjust (s)         0.0         0.0         0.0         0.0         0.0         0.0         0.0           Total Lost Time (s)         6.6         6.6         6.7         6.7         6.7         6.7           Lead/Lag         Lead-Lag Optimize?         Vehicle Extension (s)         3.0         3.0         3.0         3.0         3.0         3.0           Recall Mode         None         None         C-Max         C-Max         C-Max         C-Max           Walk Time (s)         7.0         7.0         7.0         7.0         7.0         7.0           Flash Dont Walk (s)         9.0         9.0         8.0         8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |       |       |       |          |          |       |
| Total Split (%)         30.8%         30.8%         69.2%         69.2%         69.2%         69.2%           Maximum Green (s)         33.4         33.4         83.3         83.3         83.3         83.3           Yellow Time (s)         3.3         3.3         4.6         4.6         4.6         4.6           All-Red Time (s)         3.3         3.3         2.1         2.1         2.1         2.1           Lost Time Adjust (s)         0.0         0.0         0.0         0.0         0.0         0.0           Total Lost Time (s)         6.6         6.6         6.7         6.7         6.7         6.7           Lead/Lag         Lead-Lag Optimize?         Vehicle Extension (s)         3.0         3.0         3.0         3.0         3.0         3.0           Recall Mode         None         None         None         C-Max         C-Max         C-Max         C-Max           Walk Time (s)         7.0         7.0         7.0         7.0         7.0         7.0           Flash Dont Walk (s)         9.0         9.0         8.0         8.0         8.0           Pedestrian Calls (#/hr)         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |       |       |       |          |          |       |
| Maximum Green (s)       33.4       33.4       83.3       83.3       83.3       83.3         Yellow Time (s)       3.3       3.3       4.6       4.6       4.6       4.6         All-Red Time (s)       3.3       3.3       2.1       2.1       2.1       2.1         Lost Time Adjust (s)       0.0       0.0       0.0       0.0       0.0       0.0         Total Lost Time (s)       6.6       6.6       6.7       6.7       6.7       6.7         Lead/Lag       Lead-Lag Optimize?         Vehicle Extension (s)       3.0       3.0       3.0       3.0       3.0       3.0         Recall Mode       None       None       None       C-Max       C-Max       C-Max       C-Max         Walk Time (s)       7.0       7.0       7.0       7.0       7.0       7.0       7.0         Flash Dont Walk (s)       9.0       9.0       8.0       8.0       8.0       8.0         Pedestrian Calls (#/hr)       0       0       0       0       0       0         Act Effct Green (s)       28.6       28.6       88.1       88.1       88.1         Actuated g/C Ratio       0.22       0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |       |       |       |          |          |       |
| Yellow Time (s)       3.3       3.3       4.6       4.6       4.6       4.6         All-Red Time (s)       3.3       3.3       2.1       2.1       2.1       2.1         Lost Time Adjust (s)       0.0       0.0       0.0       0.0       0.0       0.0         Total Lost Time (s)       6.6       6.6       6.7       6.7       6.7       6.7         Lead/Lag       Lead-Lag Optimize?         Vehicle Extension (s)       3.0       3.0       3.0       3.0       3.0       3.0         Recall Mode       None       None       None       C-Max       C-Max       C-Max       C-Max         Walk Time (s)       7.0       7.0       7.0       7.0       7.0       7.0       7.0         Flash Dont Walk (s)       9.0       9.0       8.0       8.0       8.0       8.0         Pedestrian Calls (#/hr)       0       0       0       0       0       0         Act Effct Green (s)       28.6       28.6       88.1       88.1       88.1         Actuated g/C Ratio       0.22       0.22       0.68       0.68       0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |       |       |       |          |          |       |
| All-Red Time (s)       3.3       3.3       2.1       2.1       2.1       2.1         Lost Time Adjust (s)       0.0       0.0       0.0       0.0       0.0       0.0       0.0         Total Lost Time (s)       6.6       6.6       6.7       6.7       6.7       6.7         Lead/Lag       Lead-Lag Optimize?         Vehicle Extension (s)       3.0       3.0       3.0       3.0       3.0       3.0         Recall Mode       None       None       C-Max       C-Max       C-Max       C-Max         Walk Time (s)       7.0       7.0       7.0       7.0       7.0       7.0         Flash Dont Walk (s)       9.0       9.0       8.0       8.0       8.0         Pedestrian Calls (#/hr)       0       0       0       0       0         Act Effct Green (s)       28.6       28.6       88.1       88.1       88.1         Actuated g/C Ratio       0.22       0.22       0.68       0.68       0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |       |       |       |          |          |       |
| Lost Time Adjust (s)         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.7         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |       |       |       |          |          |       |
| Total Lost Time (s)         6.6         6.6         6.7         6.7         6.7         6.7           Lead/Lag         Lead-Lag Optimize?           Vehicle Extension (s)         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         8.0         8.0         8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |       |       |       |          |          |       |
| Lead/Lag         Lead-Lag Optimize?         Vehicle Extension (s)       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       2.0       2.0       2.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |       |       |       |          |          |       |
| Lead-Lag Optimize?         Vehicle Extension (s)       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       3.0       2.0       2.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0 <td>. ,</td> <td>ხ.ხ</td> <td>0.0</td> <td>6.7</td> <td>6.7</td> <td>6.7</td> <td>6.7</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . ,                | ხ.ხ   | 0.0   | 6.7   | 6.7      | 6.7      | 6.7   |
| Vehicle Extension (s)         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         C-Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |       |       |       |          |          |       |
| Recall Mode         None         None         C-Max         C-Max         C-Max         C-Max           Walk Time (s)         7.0         7.0         7.0         7.0         7.0         7.0           Flash Dont Walk (s)         9.0         9.0         8.0         8.0         8.0         8.0           Pedestrian Calls (#/hr)         0         0         0         0         0         0           Act Effct Green (s)         28.6         28.6         88.1         88.1         88.1         88.1           Actuated g/C Ratio         0.22         0.22         0.68         0.68         0.68         0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>           |       |       |       |          |          |       |
| Walk Time (s)       7.0       7.0       7.0       7.0       7.0       7.0       7.0         Flash Dont Walk (s)       9.0       9.0       8.0       8.0       8.0       8.0         Pedestrian Calls (#/hr)       0       0       0       0       0       0         Act Effct Green (s)       28.6       28.6       88.1       88.1       88.1       88.1         Actuated g/C Ratio       0.22       0.22       0.68       0.68       0.68       0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ` '                |       |       |       |          |          |       |
| Flash Dont Walk (s)       9.0       9.0       8.0       8.0       8.0         Pedestrian Calls (#/hr)       0       0       0       0       0         Act Effct Green (s)       28.6       28.6       88.1       88.1       88.1         Actuated g/C Ratio       0.22       0.22       0.68       0.68       0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |       |       |       |          |          |       |
| Pedestrian Calls (#/hr)       0       0       0       0       0       0         Act Effct Green (s)       28.6       28.6       88.1       88.1       88.1       88.1         Actuated g/C Ratio       0.22       0.22       0.68       0.68       0.68       0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ` ,                |       |       |       |          |          |       |
| Act Effct Green (s)       28.6       28.6       88.1       88.1       88.1       88.1         Actuated g/C Ratio       0.22       0.22       0.68       0.68       0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |       |       |       |          |          |       |
| Actuated g/C Ratio 0.22 0.22 0.68 0.68 0.68 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |       |       |       |          |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |       |       |       |          |          |       |
| v/c Ratio 0.86 0.16 0.21 0.64 0.48 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Actuated g/C Ratio | 0.22  | 0.22  | 0.68  | 0.68     | 0.68     | 0.68  |
| 3.10 3.10 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | v/c Ratio          | 0.86  | 0.16  | 0.21  | 0.64     | 0.48     | 0.10  |

|                              | •             | •        | •          | <b>†</b>   | <b>↓</b>   | 4          |              |
|------------------------------|---------------|----------|------------|------------|------------|------------|--------------|
| Lane Group                   | EBL           | EBR      | NBL        | NBT        | SBT        | SBR        |              |
| Control Delay                | 70.9          | 10.3     | 7.1        | 19.1       | 11.8       | 1.9        |              |
| Queue Delay                  | 0.0           | 0.0      | 0.0        | 0.0        | 0.0        | 0.0        |              |
| Total Delay                  | 70.9          | 10.3     | 7.1        | 19.1       | 11.8       | 1.9        |              |
| LOS                          | Е             | В        | Α          | В          | В          | Α          |              |
| Approach Delay               | 61.3          |          |            | 17.7       | 10.5       |            |              |
| Approach LOS                 | Е             |          |            | В          | В          |            |              |
| Queue Length 50th (m)        | 68.9          | 0.0      | 9.9        | 150.0      | 74.0       | 2.2        |              |
| Queue Length 95th (m)        | 96.8          | 9.7      | m11.4      | 206.7      | 108.4      | 0.6        |              |
| Internal Link Dist (m)       | 504.6         |          |            | 249.1      | 427.0      |            |              |
| Turn Bay Length (m)          | 25.0          |          | 120.0      |            |            | 100.0      |              |
| Base Capacity (vph)          | 415           | 417      | 449        | 1121       | 1110       | 790        |              |
| Starvation Cap Reductn       | 0             | 0        | 0          | 0          | 0          | 0          |              |
| Spillback Cap Reductn        | 0             | 0        | 0          | 0          | 0          | 0          |              |
| Storage Cap Reductn          | 0             | 0        | 0          | 0          | 0          | 0          |              |
| Reduced v/c Ratio            | 0.73          | 0.14     | 0.21       | 0.64       | 0.48       | 0.10       |              |
| Intersection Summary         |               |          |            |            |            |            |              |
| Area Type:                   | Other         |          |            |            |            |            |              |
| Cycle Length: 130            |               |          |            |            |            |            |              |
| Actuated Cycle Length: 13    |               |          |            |            |            |            |              |
| Offset: 40 (31%), Reference  | ed to phase   | 2:NBTL   | and 6:SB   | T, Start o | f Green    |            |              |
| Natural Cycle: 60            |               |          |            |            |            |            |              |
| Control Type: Actuated-Co    | ordinated     |          |            |            |            |            |              |
| Maximum v/c Ratio: 0.86      |               |          |            |            |            |            |              |
| Intersection Signal Delay: 2 |               |          |            |            | tersection |            |              |
| Intersection Capacity Utiliz | ation 72.6%   |          |            | IC         | CU Level   | of Service | C            |
| Analysis Period (min) 15     |               |          |            |            |            |            |              |
| m Volume for 95th perce      | ntile queue i | s metere | d by upsti | ream sigr  | nal.       |            |              |
| Splits and Phases: 2: Ba     | ank Street &  | Dun Skir | per Drive  |            |            |            |              |
|                              |               | _ 3 101  |            |            |            |            | <b>→</b>     |
| Ø2 (R)                       |               |          |            |            |            |            | → Ø4<br>40 s |
| d                            |               |          |            |            |            |            |              |
| Ø6 (R)                       |               |          |            |            |            |            |              |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 28   | 165  | 41   | 22   | 164  | 103  | 66   | 84   | 34   | 122  | 56   | 53   |
| Future Vol, veh/h          | 28   | 165  | 41   | 22   | 164  | 103  | 66   | 84   | 34   | 122  | 56   | 53   |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 0    | 1    | 8    | 5    | 1    | 7    | 0    | 2    | 6    | 2    | 0    | 0    |
| Mvmt Flow                  | 28   | 165  | 41   | 22   | 164  | 103  | 66   | 84   | 34   | 122  | 56   | 53   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 11.6 |      |      | 12.5 |      |      | 11.1 |      |      | 12   |      |      |
| HCM LOS                    | В    |      |      | В    |      |      | В    |      |      | В    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 36%   | 12%   | 8%    | 53%   |  |
| Vol Thru, %            | 46%   | 71%   | 57%   | 24%   |  |
| Vol Right, %           | 18%   | 18%   | 36%   | 23%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 184   | 234   | 289   | 231   |  |
| LT Vol                 | 66    | 28    | 22    | 122   |  |
| Through Vol            | 84    | 165   | 164   | 56    |  |
| RT Vol                 | 34    | 41    | 103   | 53    |  |
| Lane Flow Rate         | 184   | 234   | 289   | 231   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.292 | 0.357 | 0.432 | 0.364 |  |
| Departure Headway (Hd) | 5.717 | 5.495 | 5.376 | 5.668 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 626   | 651   | 668   | 633   |  |
| Service Time           | 3.782 | 3.557 | 3.433 | 3.729 |  |
| HCM Lane V/C Ratio     | 0.294 | 0.359 | 0.433 | 0.365 |  |
| HCM Control Delay      | 11.1  | 11.6  | 12.5  | 12    |  |
| HCM Lane LOS           | В     | В     | В     | В     |  |
| HCM 95th-tile Q        | 1.2   | 1.6   | 2.2   | 1.7   |  |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 18   | 40   | 11   | 22   | 19   | 27   | 4    | 71   | 59   | 37   | 49   | 12   |
| Future Vol, veh/h          | 18   | 40   | 11   | 22   | 19   | 27   | 4    | 71   | 59   | 37   | 49   | 12   |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 8    | 5    | 56   | 6    | 7    | 0    | 33   | 5    | 0    | 22   | 11   | 50   |
| Mvmt Flow                  | 18   | 40   | 11   | 22   | 19   | 27   | 4    | 71   | 59   | 37   | 49   | 12   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 8.1  |      |      | 7.9  |      |      | 8.6  |      |      | 8.5  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 3%    | 26%   | 32%   | 38%   |  |
| Vol Thru, %            | 53%   | 58%   | 28%   | 50%   |  |
| Vol Right, %           | 44%   | 16%   | 40%   | 12%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 134   | 69    | 68    | 98    |  |
| LT Vol                 | 4     | 18    | 22    | 37    |  |
| Through Vol            | 71    | 40    | 19    | 49    |  |
| RT Vol                 | 59    | 11    | 27    | 12    |  |
| Lane Flow Rate         | 134   | 69    | 68    | 98    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.173 | 0.089 | 0.084 | 0.129 |  |
| Departure Headway (Hd) | 4.639 | 4.634 | 4.473 | 4.751 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 776   | 775   | 802   | 757   |  |
| Service Time           | 2.656 | 2.652 | 2.492 | 2.77  |  |
| HCM Lane V/C Ratio     | 0.173 | 0.089 | 0.085 | 0.129 |  |
| HCM Control Delay      | 8.6   | 8.1   | 7.9   | 8.5   |  |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.6   | 0.3   | 0.3   | 0.4   |  |

| Intersection              |   |  |  |
|---------------------------|---|--|--|
| Intersection Delay, s/veh | 8 |  |  |
| Intersection LOS          | Α |  |  |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | ₩    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 17   | 51   | 13   | 45   | 29   | 20   | 12   | 46   | 80   | 29   | 39   | 2    |
| Future Vol, veh/h          | 17   | 51   | 13   | 45   | 29   | 20   | 12   | 46   | 80   | 29   | 39   | 2    |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 0    | 9    | 0    | 20   | 10   | 8    | 0    | 5    | 19   | 0    | 12   | 0    |
| Mvmt Flow                  | 17   | 51   | 13   | 45   | 29   | 20   | 12   | 46   | 80   | 29   | 39   | 2    |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 7.9  |      |      | 8.4  |      |      | 7.8  |      |      | 8    |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 9%    | 21%   | 48%   | 41%   |  |
| Vol Thru, %            | 33%   | 63%   | 31%   | 56%   |  |
| Vol Right, %           | 58%   | 16%   | 21%   | 3%    |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 138   | 81    | 94    | 70    |  |
| LT Vol                 | 12    | 17    | 45    | 29    |  |
| Through Vol            | 46    | 51    | 29    | 39    |  |
| RT Vol                 | 80    | 13    | 20    | 2     |  |
| Lane Flow Rate         | 138   | 81    | 94    | 70    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.156 | 0.099 | 0.124 | 0.088 |  |
| Departure Headway (Hd) | 4.065 | 4.412 | 4.752 | 4.524 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 885   | 813   | 756   | 794   |  |
| Service Time           | 2.079 | 2.432 | 2.773 | 2.542 |  |
| HCM Lane V/C Ratio     | 0.156 | 0.1   | 0.124 | 0.088 |  |
| HCM Control Delay      | 7.8   | 7.9   | 8.4   | 8     |  |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.6   | 0.3   | 0.4   | 0.3   |  |

| Intersection           |        |      |         |            |          |      |
|------------------------|--------|------|---------|------------|----------|------|
| Int Delay, s/veh       | 0      |      |         |            |          |      |
| Movement               | EBL    | EBR  | NBL     | NBT        | SBT      | SBR  |
| Lane Configurations    | ¥*     | LDIX | NDL     | 4          | 3B1<br>♣ | ODIT |
| Traffic Vol, veh/h     | 0      | 0    | 0       | <b>810</b> | 572      | 0    |
| •                      |        |      |         | 810        | 572      |      |
| Future Vol, veh/h      | 0      | 0    | 0       |            |          | 0    |
| Conflicting Peds, #/hr | 0      | 0    | 0       | 0          | 0        | 0    |
| Sign Control           | Stop   | Stop | Free    | Free       | Free     | Free |
| RT Channelized         | -      | None | -       | None       | -        | None |
| Storage Length         | 0      | -    | -       | -          | -        | -    |
| Veh in Median Storage  |        | -    | -       | 0          | 0        | -    |
| Grade, %               | 0      | -    | -       | 0          | 0        | -    |
| Peak Hour Factor       | 100    | 100  | 100     | 100        | 100      | 100  |
| Heavy Vehicles, %      | 0      | 0    | 0       | 10         | 11       | 0    |
| Mvmt Flow              | 0      | 0    | 0       | 810        | 572      | 0    |
|                        |        |      |         |            |          |      |
|                        |        |      |         |            |          |      |
| Major/Minor            | Minor2 | N    | //ajor1 | N          | /lajor2  |      |
| Conflicting Flow All   | 1382   | 572  | 572     | 0          | -        | 0    |
| Stage 1                | 572    | -    | -       | -          | -        | -    |
| Stage 2                | 810    | -    | -       | _          | _        | -    |
| Critical Hdwy          | 6.4    | 6.2  | 4.1     | _          | _        | _    |
| Critical Hdwy Stg 1    | 5.4    | -    |         | _          | _        | _    |
| Critical Hdwy Stg 2    | 5.4    | _    | _       |            | _        | _    |
|                        | 3.5    | 3.3  | 2.2     | -          |          |      |
| Follow-up Hdwy         |        |      |         | -          | -        | -    |
| Pot Cap-1 Maneuver     | 160    | 523  | 1011    | -          | -        | -    |
| Stage 1                | 569    | -    | -       | -          | -        | -    |
| Stage 2                | 441    | -    | -       | -          | -        | -    |
| Platoon blocked, %     |        |      |         | -          | -        | -    |
| Mov Cap-1 Maneuver     | 160    | 523  | 1011    | -          | -        | -    |
| Mov Cap-2 Maneuver     | 160    | -    | -       | -          | -        | -    |
| Stage 1                | 569    | -    | -       | -          | -        | -    |
| Stage 2                | 441    | _    | _       | _          | _        | _    |
| J                      |        |      |         |            |          |      |
|                        |        |      |         |            |          |      |
| Approach               | EB     |      | NB      |            | SB       |      |
| HCM Control Delay, s   | 0      |      | 0       |            | 0        |      |
| HCM LOS                | A      |      |         |            |          |      |
|                        | ,,     |      |         |            |          |      |
|                        |        |      |         |            |          |      |
| Minor Lane/Major Mvr   | nt     | NBL  | NBT     | EBLn1      | SBT      | SBR  |
| Capacity (veh/h)       |        | 1011 | -       | -          | -        | -    |
| HCM Lane V/C Ratio     |        | -    | -       | -          | -        | -    |
| HCM Control Delay (s   | )      | 0    | -       | 0          | -        | -    |
| HCM Lane LOS           |        | A    | -       | Ā          | _        | _    |
| HCM 95th %tile Q(veh   | )      | 0    | _       | - '.       | _        | _    |
| TOWN JOHN JUHIC Q(VEI  | '/     | U    |         |            |          |      |

|                         | ۶     | <b>→</b>   | •    | •     | +     | •    | •     | <b>†</b> | ~     | <b>/</b> | <b>↓</b>   | ✓    |
|-------------------------|-------|------------|------|-------|-------|------|-------|----------|-------|----------|------------|------|
| Lane Group              | EBL   | EBT        | EBR  | WBL   | WBT   | WBR  | NBL   | NBT      | NBR   | SBL      | SBT        | SBR  |
| Lane Configurations     | ሻ     | <b>↑</b> ↑ |      | ሻ     | 1>    |      | ሻ     | <b>†</b> | 7     | ሻ        | <b>∱</b> ∱ |      |
| Traffic Volume (vph)    | 28    | 592        | 30   | 55    | 316   | 16   | 27    | 766      | 115   | 15       | 534        | 23   |
| Future Volume (vph)     | 28    | 592        | 30   | 55    | 316   | 16   | 27    | 766      | 115   | 15       | 534        | 23   |
| Ideal Flow (vphpl)      | 1800  | 1800       | 1800 | 1800  | 1800  | 1800 | 1800  | 1800     | 1800  | 1800     | 1800       | 1800 |
| Storage Length (m)      | 25.0  |            | 0.0  | 50.0  |       | 0.0  | 20.0  |          | 15.0  | 15.0     |            | 0.0  |
| Storage Lanes           | 1     |            | 0    | 1     |       | 0    | 1     |          | 1     | 1        |            | 0    |
| Taper Length (m)        | 20.0  |            |      | 20.0  |       |      | 20.0  |          |       | 20.0     |            |      |
| Lane Util. Factor       | 1.00  | 0.95       | 0.95 | 1.00  | 1.00  | 1.00 | 1.00  | 1.00     | 1.00  | 1.00     | 0.95       | 0.95 |
| Frt                     |       | 0.993      |      |       | 0.993 |      |       |          | 0.850 |          | 0.994      |      |
| Flt Protected           | 0.950 |            |      | 0.950 |       |      | 0.950 |          |       | 0.950    |            |      |
| Satd. Flow (prot)       | 1729  | 3212       | 0    | 1310  | 1452  | 0    | 1695  | 1750     | 1289  | 1491     | 3122       | 0    |
| Flt Permitted           | 0.320 |            |      | 0.242 |       |      | 0.431 |          |       | 0.244    |            |      |
| Satd. Flow (perm)       | 582   | 3212       | 0    | 334   | 1452  | 0    | 769   | 1750     | 1289  | 383      | 3122       | 0    |
| Right Turn on Red       |       |            | Yes  |       |       | Yes  |       |          | Yes   |          |            | Yes  |
| Satd. Flow (RTOR)       |       | 4          |      |       | 2     |      |       |          | 35    |          | 6          |      |
| Link Speed (k/h)        |       | 80         |      |       | 80    |      |       | 80       |       |          | 80         |      |
| Link Distance (m)       |       | 528.5      |      |       | 292.7 |      |       | 203.7    |       |          | 158.2      |      |
| Travel Time (s)         |       | 23.8       |      |       | 13.2  |      |       | 9.2      |       |          | 7.1        |      |
| Peak Hour Factor        | 1.00  | 1.00       | 1.00 | 1.00  | 1.00  | 1.00 | 1.00  | 1.00     | 1.00  | 1.00     | 1.00       | 1.00 |
| Heavy Vehicles (%)      | 0%    | 7%         | 5%   | 32%   | 24%   | 34%  | 2%    | 4%       | 20%   | 16%      | 10%        | 12%  |
| Adj. Flow (vph)         | 28    | 592        | 30   | 55    | 316   | 16   | 27    | 766      | 115   | 15       | 534        | 23   |
| Shared Lane Traffic (%) |       |            |      |       |       |      |       |          |       |          |            |      |
| Lane Group Flow (vph)   | 28    | 622        | 0    | 55    | 332   | 0    | 27    | 766      | 115   | 15       | 557        | 0    |
| Turn Type               | Perm  | NA         |      | Perm  | NA    |      | Perm  | NA       | Perm  | Perm     | NA         |      |
| Protected Phases        |       | 4          |      |       | 8     |      |       | 2        |       |          | 6          |      |
| Permitted Phases        | 4     |            |      | 8     |       |      | 2     |          | 2     | 6        |            |      |
| Detector Phase          | 4     | 4          |      | 8     | 8     |      | 2     | 2        | 2     | 6        | 6          |      |
| Switch Phase            |       |            |      |       |       |      |       |          |       |          |            |      |
| Minimum Initial (s)     | 10.0  | 10.0       |      | 10.0  | 10.0  |      | 10.0  | 10.0     | 10.0  | 10.0     | 10.0       |      |
| Minimum Split (s)       | 36.2  | 36.2       |      | 36.2  | 36.2  |      | 36.2  | 36.2     | 36.2  | 36.2     | 36.2       |      |
| Total Split (s)         | 48.0  | 48.0       |      | 48.0  | 48.0  |      | 82.0  | 82.0     | 82.0  | 82.0     | 82.0       |      |
| Total Split (%)         | 36.9% | 36.9%      |      | 36.9% | 36.9% |      | 63.1% | 63.1%    | 63.1% | 63.1%    | 63.1%      |      |
| Maximum Green (s)       | 40.8  | 40.8       |      | 40.8  | 40.8  |      | 74.8  | 74.8     | 74.8  | 74.8     | 74.8       |      |
| Yellow Time (s)         | 5.0   | 5.0        |      | 5.0   | 5.0   |      | 5.0   | 5.0      | 5.0   | 5.0      | 5.0        |      |
| All-Red Time (s)        | 2.2   | 2.2        |      | 2.2   | 2.2   |      | 2.2   | 2.2      | 2.2   | 2.2      | 2.2        |      |
| Lost Time Adjust (s)    | 0.0   | 0.0        |      | 0.0   | 0.0   |      | 0.0   | 0.0      | 0.0   | 0.0      | 0.0        |      |
| Total Lost Time (s)     | 7.2   | 7.2        |      | 7.2   | 7.2   |      | 7.2   | 7.2      | 7.2   | 7.2      | 7.2        |      |
| Lead/Lag                |       |            |      |       |       |      |       |          |       |          |            |      |
| Lead-Lag Optimize?      |       |            |      |       |       |      |       |          |       |          |            |      |
| Vehicle Extension (s)   | 3.0   | 3.0        |      | 3.0   | 3.0   |      | 3.0   | 3.0      | 3.0   | 3.0      | 3.0        |      |
| Recall Mode             | None  | None       |      | None  | None  |      | C-Max | C-Max    | C-Max | C-Max    | C-Max      |      |
| Walk Time (s)           | 7.0   | 7.0        |      | 7.0   | 7.0   |      | 7.0   | 7.0      | 7.0   | 7.0      | 7.0        |      |
| Flash Dont Walk (s)     | 22.0  | 22.0       |      | 22.0  | 22.0  |      | 22.0  | 22.0     | 22.0  | 22.0     | 22.0       |      |
| Pedestrian Calls (#/hr) | 0     | 0          |      | 0     | 0     |      | 0     | 0        | 0     | 0        | 0          |      |
| Act Effct Green (s)     | 33.9  | 33.9       |      | 33.9  | 33.9  |      | 81.7  | 81.7     | 81.7  | 81.7     | 81.7       |      |
| Actuated g/C Ratio      | 0.26  | 0.26       |      | 0.26  | 0.26  |      | 0.63  | 0.63     | 0.63  | 0.63     | 0.63       |      |
| v/c Ratio               | 0.19  | 0.74       |      | 0.64  | 0.87  |      | 0.06  | 0.70     | 0.14  | 0.06     | 0.28       |      |
| Control Delay           | 37.9  | 48.9       |      | 73.5  | 68.6  |      | 11.6  | 21.6     | 8.3   | 21.3     | 18.3       |      |
| Queue Delay             | 0.0   | 0.0        |      | 0.0   | 0.0   |      | 0.0   | 0.0      | 0.0   | 0.0      | 0.0        |      |
|                         | 0.0   | 0.0        |      | 0.0   | 0.0   |      | 0.0   | 0.0      | 0.0   | 0.0      | 0.0        |      |

|                        | •    | -     | •   | •     | ←     | •   | 1    | <b>†</b> | ~    | -    | ţ     | 4   |
|------------------------|------|-------|-----|-------|-------|-----|------|----------|------|------|-------|-----|
| Lane Group             | EBL  | EBT   | EBR | WBL   | WBT   | WBR | NBL  | NBT      | NBR  | SBL  | SBT   | SBR |
| Total Delay            | 37.9 | 48.9  |     | 73.5  | 68.6  |     | 11.6 | 21.6     | 8.3  | 21.3 | 18.3  |     |
| LOS                    | D    | D     |     | Е     | Е     |     | В    | С        | Α    | С    | В     |     |
| Approach Delay         |      | 48.4  |     |       | 69.3  |     |      | 19.7     |      |      | 18.4  |     |
| Approach LOS           |      | D     |     |       | Е     |     |      | В        |      |      | В     |     |
| Queue Length 50th (m)  | 5.1  | 69.8  |     | 11.4  | 74.1  |     | 2.4  | 114.8    | 7.2  | 1.5  | 35.6  |     |
| Queue Length 95th (m)  | 12.3 | 83.4  |     | #26.3 | 102.0 |     | 6.8  | 179.6    | 16.6 | m5.1 | 61.4  |     |
| Internal Link Dist (m) |      | 504.5 |     |       | 268.7 |     |      | 179.7    |      |      | 134.2 |     |
| Turn Bay Length (m)    | 25.0 |       |     | 50.0  |       |     | 20.0 |          | 15.0 | 15.0 |       |     |
| Base Capacity (vph)    | 182  | 1010  |     | 104   | 457   |     | 483  | 1100     | 823  | 240  | 1964  |     |
| Starvation Cap Reductn | 0    | 0     |     | 0     | 0     |     | 0    | 0        | 0    | 0    | 0     |     |
| Spillback Cap Reductn  | 0    | 0     |     | 0     | 0     |     | 0    | 0        | 0    | 0    | 0     |     |
| Storage Cap Reductn    | 0    | 0     |     | 0     | 0     |     | 0    | 0        | 0    | 0    | 0     |     |
| Reduced v/c Ratio      | 0.15 | 0.62  |     | 0.53  | 0.73  |     | 0.06 | 0.70     | 0.14 | 0.06 | 0.28  |     |

### Intersection Summary

Area Type: Other

Cycle Length: 130

Actuated Cycle Length: 130

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.87

Intersection Signal Delay: 34.4
Intersection Capacity Utilization 87.5%

Intersection LOS: C
ICU Level of Service E

Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal

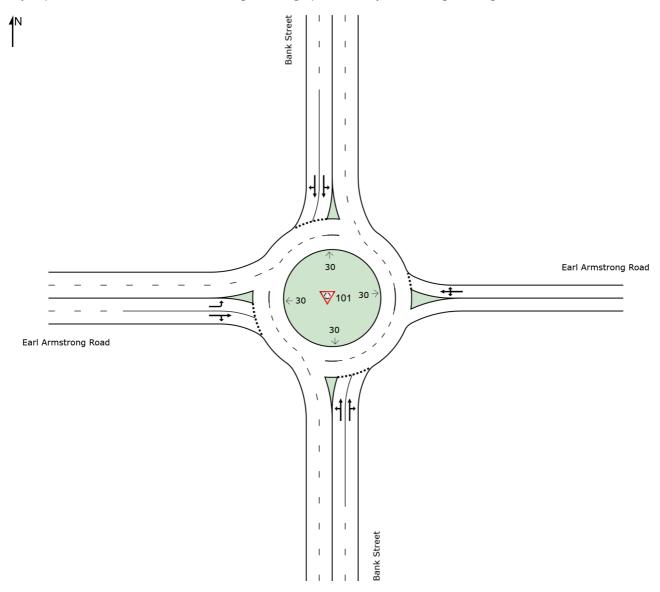
Splits and Phases: 7: Bank Street & Earl Armstrong Road



|                         | •       | <b>→</b>   | <b>←</b>   | 4    | <b>\</b> | 4     |
|-------------------------|---------|------------|------------|------|----------|-------|
| Lane Group              | EBL     | EBT        | WBT        | WBR  | SBL      | SBR   |
| Lane Configurations     | ነ       | <b>†</b> † | <b>↑</b> ↑ | WOR  | JDL<br>Š | 7     |
| Traffic Volume (vph)    | 16      | 613        | 346        | 20   | 37       | 17    |
| Future Volume (vph)     | 16      | 613        | 346        | 20   | 37       | 17    |
| Ideal Flow (vphpl)      | 1800    | 1800       | 1800       | 1800 | 1800     | 1800  |
| Storage Length (m)      | 60.0    | 1000       | 1000       | 0.0  | 40.0     | 0.0   |
| Storage Lanes           | 1       |            |            | 0.0  | 40.0     | 1     |
| Taper Length (m)        | 20.0    |            |            | U    | 20.0     |       |
|                         | 1.00    | 0.95       | 0.95       | 0.95 | 1.00     | 1.00  |
| Lane Util. Factor Frt   | 1.00    | 0.95       | 0.95       | 0.95 | 1.00     | 0.850 |
|                         | 0.050   |            | 0.992      |      | 0.050    | 0.000 |
| Fit Protected           | 0.950   | 2060       | 2007       | 0    | 0.950    | 1257  |
| Satd. Flow (prot)       | 1544    | 3262       | 2987       | 0    | 1517     | 1357  |
| Flt Permitted           | 0.534   | 2022       | 0007       | _    | 0.950    | 4057  |
| Satd. Flow (perm)       | 868     | 3262       | 2987       | 0    | 1517     | 1357  |
| Right Turn on Red       |         |            |            | Yes  |          | Yes   |
| Satd. Flow (RTOR)       |         |            | 6          |      |          | 17    |
| Link Speed (k/h)        |         | 80         | 80         |      | 40       |       |
| Link Distance (m)       |         | 222.0      | 528.5      |      | 431.1    |       |
| Travel Time (s)         |         | 10.0       | 23.8       |      | 38.8     |       |
| Peak Hour Factor        | 1.00    | 1.00       | 1.00       | 1.00 | 1.00     | 1.00  |
| Heavy Vehicles (%)      | 12%     | 6%         | 15%        | 12%  | 14%      | 14%   |
| Adj. Flow (vph)         | 16      | 613        | 346        | 20   | 37       | 17    |
| Shared Lane Traffic (%) |         |            |            |      |          |       |
| Lane Group Flow (vph)   | 16      | 613        | 366        | 0    | 37       | 17    |
| Turn Type               | Perm    | NA         | NA         |      | Prot     | Perm  |
| Protected Phases        | , Jiiii | 4          | 8          |      | 6        | . •.  |
| Permitted Phases        | 4       |            |            |      | 0        | 6     |
| Detector Phase          | 4       | 4          | 8          |      | 6        | 6     |
| Switch Phase            | 4       | 4          | U          |      | U        | U     |
|                         | 10.0    | 10.0       | 10.0       |      | 10.0     | 10.0  |
| Minimum Initial (s)     |         | 10.0       |            |      | 10.0     |       |
| Minimum Split (s)       | 24.8    | 24.8       | 24.8       |      | 33.8     | 33.8  |
| Total Split (s)         | 54.2    | 54.2       | 54.2       |      | 65.8     | 65.8  |
| Total Split (%)         | 45.2%   | 45.2%      | 45.2%      |      | 54.8%    | 54.8% |
| Maximum Green (s)       | 47.4    | 47.4       | 47.4       |      | 59.0     | 59.0  |
| Yellow Time (s)         | 5.0     | 5.0        | 5.0        |      | 3.2      | 3.2   |
| All-Red Time (s)        | 1.8     | 1.8        | 1.8        |      | 3.6      | 3.6   |
| Lost Time Adjust (s)    | 0.0     | 0.0        | 0.0        |      | 0.0      | 0.0   |
| Total Lost Time (s)     | 6.8     | 6.8        | 6.8        |      | 6.8      | 6.8   |
| Lead/Lag                |         |            |            |      |          |       |
| Lead-Lag Optimize?      |         |            |            |      |          |       |
| Vehicle Extension (s)   | 3.0     | 3.0        | 3.0        |      | 3.0      | 3.0   |
| Recall Mode             | C-Max   | C-Max      | C-Max      |      | None     | None  |
| Walk Time (s)           | 7.0     | 7.0        | 7.0        |      | 7.0      | 7.0   |
| Flash Dont Walk (s)     | 11.0    | 11.0       | 11.0       |      | 20.0     | 20.0  |
| Pedestrian Calls (#/hr) | 0       | 0          | 0          |      | 20.0     | 20.0  |
|                         | 100.8   | 100.8      | 100.8      |      | 10.3     | 10.3  |
| Act Effct Green (s)     |         |            |            |      |          |       |
| Actuated g/C Ratio      | 0.84    | 0.84       | 0.84       |      | 0.09     | 0.09  |
| v/c Ratio               | 0.02    | 0.22       | 0.15       |      | 0.28     | 0.13  |
| Control Delay           | 2.6     | 2.8        | 2.5        |      | 57.1     | 23.2  |
| Queue Delay             | 0.0     | 0.0        | 0.0        |      | 0.0      | 0.0   |

|                               | •            | <b>→</b> | <b>←</b>  | •          | <b>\</b>   | 4           |     |
|-------------------------------|--------------|----------|-----------|------------|------------|-------------|-----|
| Lane Group                    | EBL          | EBT      | WBT       | WBR        | SBL        | SBR         |     |
| Total Delay                   | 2.6          | 2.8      | 2.5       |            | 57.1       | 23.2        |     |
| LOS                           | Α            | Α        | Α         |            | Е          | С           |     |
| Approach Delay                |              | 2.8      | 2.5       |            | 46.5       |             |     |
| Approach LOS                  |              | Α        | Α         |            | D          |             |     |
| Queue Length 50th (m)         | 0.6          | 13.5     | 7.4       |            | 7.7        | 0.0         |     |
| Queue Length 95th (m)         | 1.9          | 19.2     | 11.2      |            | 17.5       | 6.5         |     |
| Internal Link Dist (m)        |              | 198.0    | 504.5     |            | 407.1      |             |     |
| Turn Bay Length (m)           | 60.0         |          |           |            | 40.0       |             |     |
| Base Capacity (vph)           | 729          | 2739     | 2509      |            | 745        | 675         |     |
| Starvation Cap Reductn        | 0            | 0        | 0         |            | 0          | 0           |     |
| Spillback Cap Reductn         | 0            | 0        | 0         |            | 0          | 0           |     |
| Storage Cap Reductn           | 0            | 0        | 0         |            | 0          | 0           |     |
| Reduced v/c Ratio             | 0.02         | 0.22     | 0.15      |            | 0.05       | 0.03        |     |
| Intersection Summary          |              |          |           |            |            |             |     |
| Area Type:                    | Other        |          |           |            |            |             |     |
| Cycle Length: 120             |              |          |           |            |            |             |     |
| Actuated Cycle Length: 120    |              |          |           |            |            |             |     |
| Offset: 59.5 (50%), Referer   | nced to phas | se 4:EBT | L and 8:W | /BT, Start | of Green   |             |     |
| Natural Cycle: 60             |              |          |           |            |            |             |     |
| Control Type: Actuated-Co     | ordinated    |          |           |            |            |             |     |
| Maximum v/c Ratio: 0.28       |              |          |           |            |            |             |     |
| Intersection Signal Delay: 5  |              |          |           |            | tersection |             |     |
| Intersection Capacity Utiliza | ation 37.6%  |          |           | IC         | U Level c  | f Service A | A   |
| Analysis Period (min) 15      |              |          |           |            |            |             |     |
| Splits and Phases: 8: Ea      | rl Armstrong | g Road & | Kelly Far | m Drive    |            |             |     |
|                               | •            |          | •         |            |            |             | R)  |
|                               |              |          |           |            | ]          | 54.2 s      | . 7 |

Synchro 11 Report October 2025 Lanes, Volumes, Timings ΕM


# **SITE LAYOUT**

# ₩ Site: 101 [Bank & Earl Armstrong (Site Folder: TT 2036 w Ext

AM)]

Bank Street & Earl Armstrong Road Future (2036) Total Traffic with Earl Armstrong Extension AM Peak Hour Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.



### **MOVEMENT SUMMARY**

# ▼ Site: 101 [Bank & Earl Armstrong (Site Folder: TT 2036 w Ext

AM)]

Bank Street & Earl Armstrong Road Future (2036) Total Traffic with Earl Armstrong Extension AM Peak Hour Site Category: (None) Roundabout

| Vehicle Movement Performance |         |                  |           |                  |           |       |       |          |               |             |      |           |        |       |
|------------------------------|---------|------------------|-----------|------------------|-----------|-------|-------|----------|---------------|-------------|------|-----------|--------|-------|
|                              | Turn    |                  |           | DEMAND           |           | Deg.  |       | Level of | 95% BACK OF   |             |      | Effective | Aver.  | Aver. |
| ID                           |         | VOLU             |           | FLO              |           | Satn  | Delay | Service  | QUE           |             | Que  | Stop      |        | Speed |
|                              |         | [ Total<br>veh/h | HV ]<br>% | [ Total<br>veh/h | HV ]<br>% | v/c   | sec   |          | [ Veh.<br>veh | Dist ]<br>m |      | Rate      | Cycles | km/h  |
| South                        | h: Ban  | k Street         |           | 7 51 1/11        |           |       |       |          |               |             |      |           |        | 1     |
| 3                            | L2      | 27               | 2.0       | 27               | 2.0       | 0.633 | 16.7  | LOS C    | 5.1           | 39.8        | 0.77 | 0.99      | 1.42   | 48.5  |
| 8                            | T1      | 766              | 4.0       | 766              | 4.0       | 0.633 | 16.4  | LOS C    | 5.1           | 39.8        | 0.76 | 0.98      | 1.41   | 48.6  |
| 18                           | R2      | 115              | 20.0      | 115              | 20.0      | 0.633 | 16.6  | LOS C    | 5.0           | 40.4        | 0.75 | 0.97      | 1.40   | 47.1  |
| Appr                         | oach    | 908              | 6.0       | 908              | 6.0       | 0.633 | 16.4  | LOS C    | 5.1           | 40.4        | 0.76 | 0.98      | 1.41   | 48.4  |
| East:                        | Earl A  | rmstrong         | Road      |                  |           |       |       |          |               |             |      |           |        |       |
| 1                            | L2      | 55               | 32.0      | 55               | 32.0      | 0.706 | 24.7  | LOS C    | 5.0           | 45.7        | 0.75 | 1.11      | 1.82   | 43.0  |
| 6                            | T1      | 316              | 24.0      | 316              | 24.0      | 0.706 | 24.3  | LOS C    | 5.0           | 45.7        | 0.75 | 1.11      | 1.82   | 43.5  |
| 16                           | R2      | 16               | 34.0      | 16               | 34.0      | 0.706 | 24.8  | LOS C    | 5.0           | 45.7        | 0.75 | 1.11      | 1.82   | 42.2  |
| Appr                         | oach    | 387              | 25.6      | 387              | 25.6      | 0.706 | 24.3  | LOS C    | 5.0           | 45.7        | 0.75 | 1.11      | 1.82   | 43.4  |
| North                        | n: Bank | Street           |           |                  |           |       |       |          |               |             |      |           |        |       |
| 7                            | L2      | 15               | 16.0      | 15               | 16.0      | 0.352 | 9.1   | LOSA     | 1.4           | 11.6        | 0.57 | 0.55      | 0.57   | 53.3  |
| 4                            | T1      | 534              | 10.0      | 534              | 10.0      | 0.352 | 8.6   | LOSA     | 1.4           | 11.6        | 0.56 | 0.54      | 0.56   | 54.0  |
| 14                           | R2      | 23               | 12.0      | 23               | 12.0      | 0.352 | 8.4   | LOSA     | 1.4           | 11.5        | 0.55 | 0.52      | 0.55   | 52.5  |
| Appr                         | oach    | 572              | 10.2      | 572              | 10.2      | 0.352 | 8.6   | LOSA     | 1.4           | 11.6        | 0.56 | 0.54      | 0.56   | 53.9  |
| West                         | :: Earl | Armstron         | g Road    |                  |           |       |       |          |               |             |      |           |        |       |
| 5                            | L2      | 28               | 0.0       | 28               | 0.0       | 0.039 | 5.4   | LOSA     | 0.1           | 1.0         | 0.53 | 0.46      | 0.53   | 52.9  |
| 2                            | T1      | 592              | 7.0       | 592              | 7.0       | 0.833 | 28.1  | LOS D    | 11.8          | 94.6        | 0.89 | 1.41      | 2.41   | 42.3  |
| 12                           | R2      | 30               | 5.0       | 30               | 5.0       | 0.833 | 28.0  | LOS D    | 11.8          | 94.6        | 0.89 | 1.41      | 2.41   | 41.3  |
| Appr                         | oach    | 650              | 6.6       | 650              | 6.6       | 0.833 | 27.1  | LOS D    | 11.8          | 94.6        | 0.87 | 1.37      | 2.33   | 42.6  |
| All<br>Vehic                 | cles    | 2517             | 10.1      | 2517             | 10.1      | 0.833 | 18.6  | LOS C    | 11.8          | 94.6        | 0.74 | 1.00      | 1.52   | 47.0  |

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

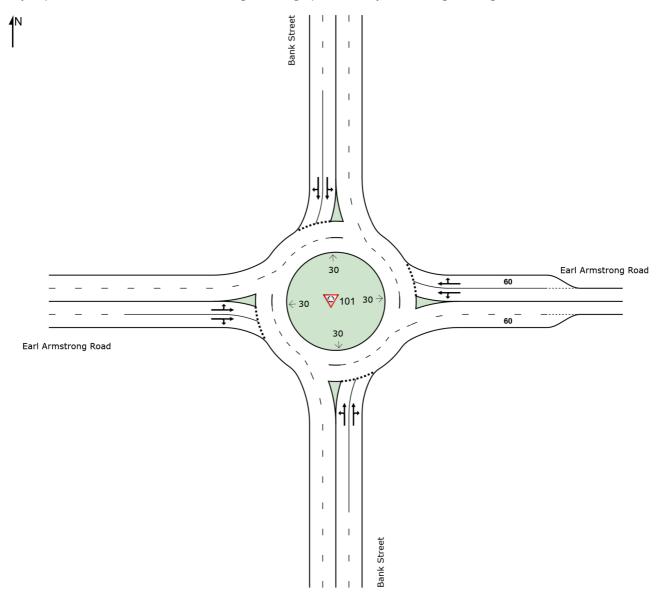
Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Organisation: ARCADIS U.S., INC. | Licence: PLUS / 1PC | Processed: October 18, 2025 11:57:29 AM
Project: C:\Users\pascolob9709.ARCADIS\ARCADIS\145172 Cattizone Parcel 4858 Bank St - Internal Documents\6.0\_Technical\6.23\_Traffic \05\_Analytic Models\CattizoneLands\_Future\_2025-10-18.sip9


### SITE LAYOUT

# ▼ Site: 101 [Bank & Earl Armstrong (w Mods) (Site Folder: TT)

2036 w Ext AM)]

Bank Street & Earl Armstrong Road Future (2036) Total Traffic with Earl Armstrong Extension AM Peak Hour (with Modifications) Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.



### **MOVEMENT SUMMARY**

# ▼ Site: 101 [Bank & Earl Armstrong (w Mods) (Site Folder: TT)

2036 w Ext AM)]

Bank Street & Earl Armstrong Road Future (2036) Total Traffic with Earl Armstrong Extension AM Peak Hour (with Modifications) Site Category: (None)

Roundabout

| Vehicle Movement Performance |              |                  |           |                  |           |       |          |             |               |                 |      |      |        |       |
|------------------------------|--------------|------------------|-----------|------------------|-----------|-------|----------|-------------|---------------|-----------------|------|------|--------|-------|
|                              | v Turn INPUT |                  | DEMAND    |                  | Deg.      |       | Level of | 95% BACK OF |               | Prop. Effective |      |      | Aver.  |       |
| ID                           |              | VOLU             |           | FLO              |           | Satn  | Delay    | Service     | QUE           |                 | Que  | Stop | No.    | Speed |
|                              |              | [ Total<br>veh/h | HV ]<br>% | [ Total<br>veh/h | HV ]<br>% | v/c   | sec      |             | [ Veh.<br>veh | Dist ]<br>m     |      | Rate | Cycles | km/h  |
| Sout                         | h: Banl      | k Street         |           |                  |           |       |          |             |               |                 |      |      |        |       |
| 3                            | L2           | 27               | 2.0       | 27               | 2.0       | 0.633 | 16.7     | LOS C       | 5.1           | 39.8            | 0.77 | 0.99 | 1.42   | 48.5  |
| 8                            | T1           | 766              | 4.0       | 766              | 4.0       | 0.633 | 16.4     | LOS C       | 5.1           | 39.8            | 0.76 | 0.98 | 1.41   | 48.6  |
| 18                           | R2           | 115              | 20.0      | 115              | 20.0      | 0.633 | 20.9     | LOS C       | 5.0           | 40.4            | 0.75 | 0.97 | 1.40   | 47.1  |
| Appr                         | oach         | 908              | 6.0       | 908              | 6.0       | 0.633 | 17.0     | LOS C       | 5.1           | 40.4            | 0.76 | 0.98 | 1.41   | 48.4  |
| East                         | : Earl A     | rmstrong         | Road      |                  |           |       |          |             |               |                 |      |      |        |       |
| 1                            | L2           | 55               | 32.0      | 55               | 32.0      | 0.372 | 13.9     | LOS B       | 1.3           | 12.4            | 0.66 | 0.73 | 0.88   | 48.6  |
| 6                            | T1           | 316              | 24.0      | 316              | 24.0      | 0.372 | 12.7     | LOS B       | 1.3           | 12.4            | 0.65 | 0.72 | 0.86   | 50.3  |
| 16                           | R2           | 16               | 34.0      | 16               | 34.0      | 0.372 | 12.7     | LOS B       | 1.3           | 12.4            | 0.64 | 0.71 | 0.85   | 49.1  |
| Appr                         | oach         | 387              | 25.6      | 387              | 25.6      | 0.372 | 12.8     | LOS B       | 1.3           | 12.4            | 0.65 | 0.72 | 0.86   | 50.0  |
| North                        | h: Bank      | Street           |           |                  |           |       |          |             |               |                 |      |      |        |       |
| 7                            | L2           | 15               | 16.0      | 15               | 16.0      | 0.352 | 9.1      | LOSA        | 1.4           | 11.6            | 0.57 | 0.55 | 0.57   | 53.3  |
| 4                            | T1           | 534              | 10.0      | 534              | 10.0      | 0.352 | 8.6      | LOSA        | 1.4           | 11.6            | 0.56 | 0.54 | 0.56   | 54.0  |
| 14                           | R2           | 23               | 12.0      | 23               | 12.0      | 0.352 | 8.4      | LOSA        | 1.4           | 11.5            | 0.55 | 0.52 | 0.55   | 52.5  |
| Appr                         | oach         | 572              | 10.2      | 572              | 10.2      | 0.352 | 8.6      | LOSA        | 1.4           | 11.6            | 0.56 | 0.54 | 0.56   | 53.9  |
| West                         | t: Earl /    | Armstron         | g Road    |                  |           |       |          |             |               |                 |      |      |        |       |
| 5                            | L2           | 28               | 0.0       | 28               | 0.0       | 0.593 | 14.2     | LOS B       | 4.3           | 34.7            | 0.73 | 0.92 | 1.28   | 50.0  |
| 2                            | T1           | 592              | 7.0       | 592              | 7.0       | 0.593 | 14.2     | LOS B       | 4.3           | 34.7            | 0.69 | 0.83 | 1.08   | 50.8  |
| 12                           | R2           | 30               | 5.0       | 30               | 5.0       | 0.303 | 9.0      | LOSA        | 1.2           | 9.3             | 0.61 | 0.61 | 0.61   | 52.2  |
| Appr                         | oach         | 650              | 6.6       | 650              | 6.6       | 0.593 | 14.0     | LOS B       | 4.3           | 34.7            | 0.69 | 0.82 | 1.07   | 50.9  |
| All<br>Vehic                 | cles         | 2517             | 10.1      | 2517             | 10.1      | 0.633 | 13.7     | LOS B       | 5.1           | 40.4            | 0.68 | 0.80 | 1.04   | 50.5  |

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Organisation: ARCADIS U.S., INC. | Licence: PLUS / 1PC | Processed: October 18, 2025 11:55:15 AM
Project: C:\Users\pascolob9709.ARCADIS\ARCADIS\145172 Cattizone Parcel 4858 Bank St - Internal Documents\6.0\_Technical\6.23\_Traffic \05\_Analytic Models\CattizoneLands\_Future\_2025-10-18.sip9

|                         | ۶     | <b>→</b> | •    | •     | <b>←</b> | •    | 1     | †          | <b>/</b> | <b>/</b> | ţ        | 4     |
|-------------------------|-------|----------|------|-------|----------|------|-------|------------|----------|----------|----------|-------|
| Lane Group              | EBL   | EBT      | EBR  | WBL   | WBT      | WBR  | NBL   | NBT        | NBR      | SBL      | SBT      | SBR   |
| Lane Configurations     | Ť     | f)       |      | ň     | f)       |      | ř     | <b>∱</b> } |          | ň        | <b>^</b> | 7     |
| Traffic Volume (vph)    | 132   | 23       | 34   | 54    | 32       | 62   | 18    | 913        | 45       | 50       | 1191     | 187   |
| Future Volume (vph)     | 132   | 23       | 34   | 54    | 32       | 62   | 18    | 913        | 45       | 50       | 1191     | 187   |
| Ideal Flow (vphpl)      | 1800  | 1800     | 1800 | 1800  | 1800     | 1800 | 1800  | 1800       | 1800     | 1800     | 1800     | 1800  |
| Storage Length (m)      | 100.0 |          | 0.0  | 40.0  |          | 0.0  | 100.0 |            | 0.0      | 75.0     |          | 175.0 |
| Storage Lanes           | 1     |          | 0    | 1     |          | 0    | 1     |            | 0        | 1        |          | 1     |
| Taper Length (m)        | 20.0  |          |      | 20.0  |          |      | 20.0  |            |          | 20.0     |          |       |
| Lane Util. Factor       | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00  | 0.95       | 0.95     | 1.00     | 0.95     | 1.00  |
| Ped Bike Factor         |       |          |      |       |          |      | 1.00  |            |          |          |          | 0.98  |
| Frt                     |       | 0.911    |      |       | 0.901    |      |       | 0.993      |          |          |          | 0.850 |
| Flt Protected           | 0.950 |          |      | 0.950 |          |      | 0.950 |            |          | 0.950    |          |       |
| Satd. Flow (prot)       | 1729  | 1427     | 0    | 1530  | 1602     | 0    | 1729  | 3287       | 0        | 1601     | 3325     | 1517  |
| Flt Permitted           | 0.696 |          |      | 0.720 |          |      | 0.211 |            |          | 0.282    |          |       |
| Satd. Flow (perm)       | 1267  | 1427     | 0    | 1160  | 1602     | 0    | 384   | 3287       | 0        | 475      | 3325     | 1481  |
| Right Turn on Red       |       |          | Yes  |       |          | Yes  |       |            | Yes      |          |          | Yes   |
| Satd. Flow (RTOR)       |       | 34       |      |       | 62       |      |       | 8          |          |          |          | 187   |
| Link Speed (k/h)        |       | 50       |      |       | 50       |      |       | 50         |          |          | 50       |       |
| Link Distance (m)       |       | 528.6    |      |       | 234.2    |      |       | 451.0      |          |          | 177.6    |       |
| Travel Time (s)         |       | 38.1     |      |       | 16.9     |      |       | 32.5       |          |          | 12.8     |       |
| Confl. Peds. (#/hr)     |       |          |      |       |          |      | 2     |            |          |          |          | 2     |
| Peak Hour Factor        | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00  | 1.00       | 1.00     | 1.00     | 1.00     | 1.00  |
| Heavy Vehicles (%)      | 0%    | 9%       | 21%  | 13%   | 3%       | 2%   | 0%    | 4%         | 14%      | 8%       | 4%       | 2%    |
| Adj. Flow (vph)         | 132   | 23       | 34   | 54    | 32       | 62   | 18    | 913        | 45       | 50       | 1191     | 187   |
| Shared Lane Traffic (%) |       |          |      |       |          |      |       |            |          |          |          |       |
| Lane Group Flow (vph)   | 132   | 57       | 0    | 54    | 94       | 0    | 18    | 958        | 0        | 50       | 1191     | 187   |
| Turn Type               | Perm  | NA       |      | Perm  | NA       |      | Perm  | NA         |          | Perm     | NA       | Perm  |
| Protected Phases        |       | 4        |      |       | 8        |      |       | 2          |          |          | 6        |       |
| Permitted Phases        | 4     |          |      | 8     |          |      | 2     |            |          | 6        |          | 6     |
| Detector Phase          | 4     | 4        |      | 8     | 8        |      | 2     | 2          |          | 6        | 6        | 6     |
| Switch Phase            |       |          |      |       |          |      |       |            |          |          |          |       |
| Minimum Initial (s)     | 10.0  | 10.0     |      | 10.0  | 10.0     |      | 10.0  | 10.0       |          | 10.0     | 10.0     | 10.0  |
| Minimum Split (s)       | 33.8  | 33.8     |      | 33.8  | 33.8     |      | 42.6  | 42.6       |          | 42.6     | 42.6     | 42.6  |
| Total Split (s)         | 35.0  | 35.0     |      | 35.0  | 35.0     |      | 85.0  | 85.0       |          | 85.0     | 85.0     | 85.0  |
| Total Split (%)         | 29.2% | 29.2%    |      | 29.2% | 29.2%    |      | 70.8% | 70.8%      |          | 70.8%    | 70.8%    | 70.8% |
| Maximum Green (s)       | 28.2  | 28.2     |      | 28.2  | 28.2     |      | 77.4  | 77.4       |          | 77.4     | 77.4     | 77.4  |
| Yellow Time (s)         | 3.6   | 3.6      |      | 3.6   | 3.6      |      | 5.0   | 5.0        |          | 5.0      | 5.0      | 5.0   |
| All-Red Time (s)        | 3.2   | 3.2      |      | 3.2   | 3.2      |      | 2.6   | 2.6        |          | 2.6      | 2.6      | 2.6   |
| Lost Time Adjust (s)    | 0.0   | 0.0      |      | 0.0   | 0.0      |      | 0.0   | 0.0        |          | 0.0      | 0.0      | 0.0   |
| Total Lost Time (s)     | 6.8   | 6.8      |      | 6.8   | 6.8      |      | 7.6   | 7.6        |          | 7.6      | 7.6      | 7.6   |
| Lead/Lag                |       |          |      |       |          |      |       |            |          |          |          |       |
| Lead-Lag Optimize?      |       |          |      |       |          |      |       |            |          |          |          |       |
| Vehicle Extension (s)   | 3.0   | 3.0      |      | 3.0   | 3.0      |      | 3.0   | 3.0        |          | 3.0      | 3.0      | 3.0   |
| Recall Mode             | None  | None     |      | None  | None     |      | C-Max | C-Max      |          | C-Max    | C-Max    | C-Max |
| Walk Time (s)           | 7.0   | 7.0      |      | 7.0   | 7.0      |      | 7.0   | 7.0        |          | 7.0      | 7.0      | 7.0   |
| Flash Dont Walk (s)     | 20.0  | 20.0     |      | 20.0  | 20.0     |      | 28.0  | 28.0       |          | 28.0     | 28.0     | 28.0  |
| Pedestrian Calls (#/hr) | 0     | 0        |      | 0     | 0        |      | 0     | 0          |          | 0        | 0        | 0     |
| Act Effct Green (s)     | 17.8  | 17.8     |      | 17.8  | 17.8     |      | 87.8  | 87.8       |          | 87.8     | 87.8     | 87.8  |
| Actuated g/C Ratio      | 0.15  | 0.15     |      | 0.15  | 0.15     |      | 0.73  | 0.73       |          | 0.73     | 0.73     | 0.73  |
| v/c Ratio               | 0.13  | 0.13     |      | 0.13  | 0.13     |      | 0.75  | 0.40       |          | 0.13     | 0.49     | 0.13  |
|                         | 0.7 1 | U.ZT     |      | 0.01  | 0.02     |      | 0.00  | 0.70       |          | U. 17    | 0.70     | 0.17  |

Lanes, Volumes, Timings EM

Synchro 11 Report October 2025

|                        | •     | <b>→</b> | •   | •    | ←     | •   | •     | <b>†</b> | ~   | -    | <b>↓</b> | 4     |
|------------------------|-------|----------|-----|------|-------|-----|-------|----------|-----|------|----------|-------|
| Lane Group             | EBL   | EBT      | EBR | WBL  | WBT   | WBR | NBL   | NBT      | NBR | SBL  | SBT      | SBR   |
| Control Delay          | 67.5  | 23.3     |     | 48.3 | 20.3  |     | 4.8   | 3.8      |     | 7.3  | 8.2      | 1.3   |
| Queue Delay            | 0.0   | 0.0      |     | 0.0  | 0.0   |     | 0.0   | 0.0      |     | 0.0  | 0.0      | 0.0   |
| Total Delay            | 67.5  | 23.3     |     | 48.3 | 20.3  |     | 4.8   | 3.8      |     | 7.3  | 8.2      | 1.3   |
| LOS                    | Е     | С        |     | D    | С     |     | Α     | Α        |     | Α    | Α        | Α     |
| Approach Delay         |       | 54.2     |     |      | 30.5  |     |       | 3.8      |     |      | 7.2      |       |
| Approach LOS           |       | D        |     |      | С     |     |       | Α        |     |      | Α        |       |
| Queue Length 50th (m)  | 27.6  | 4.4      |     | 10.6 | 6.1   |     | 0.5   | 13.5     |     | 2.8  | 49.7     | 0.0   |
| Queue Length 95th (m)  | 43.9  | 14.4     |     | 20.6 | 18.6  |     | m1.1  | m23.4    |     | 8.6  | 78.6     | 6.4   |
| Internal Link Dist (m) |       | 504.6    |     |      | 210.2 |     |       | 427.0    |     |      | 153.6    |       |
| Turn Bay Length (m)    | 100.0 |          |     | 40.0 |       |     | 100.0 |          |     | 75.0 |          | 175.0 |
| Base Capacity (vph)    | 297   | 361      |     | 272  | 423   |     | 280   | 2407     |     | 347  | 2433     | 1133  |
| Starvation Cap Reductn | 0     | 0        |     | 0    | 0     |     | 0     | 0        |     | 0    | 0        | 0     |
| Spillback Cap Reductn  | 0     | 0        |     | 0    | 0     |     | 0     | 0        |     | 0    | 0        | 0     |
| Storage Cap Reductn    | 0     | 0        |     | 0    | 0     |     | 0     | 0        |     | 0    | 0        | 0     |
| Reduced v/c Ratio      | 0.44  | 0.16     |     | 0.20 | 0.22  |     | 0.06  | 0.40     |     | 0.14 | 0.49     | 0.17  |

Intersection Summary

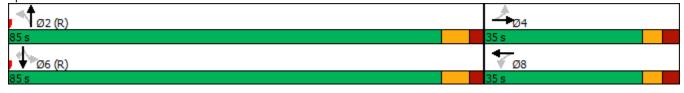
Area Type: Other

Cycle Length: 120 Actuated Cycle Length: 120

Offset: 18 (15%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.71

Intersection Signal Delay: 10.5 Intersection LOS: B
Intersection Capacity Utilization 70.2% ICU Level of Service C

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal

Splits and Phases: 1: Bank Street & Miikana Road/Blais Road



|                                 | ۶        | •     | 1     | <b>†</b> | <b>↓</b> | 4     |
|---------------------------------|----------|-------|-------|----------|----------|-------|
| Lane Group                      | EBL      | EBR   | NBL   | NBT      | SBT      | SBR   |
| Lane Configurations             | <u> </u> | 7     | ሻ     | <u> </u> | <u> </u> | 7     |
| Traffic Volume (vph)            | 296      | 71    | 108   | 673      | 1023     | 172   |
| Future Volume (vph)             | 296      | 71    | 108   | 673      | 1023     | 172   |
| Ideal Flow (vphpl)              | 1800     | 1800  | 1800  | 1800     | 1800     | 1800  |
| Storage Length (m)              | 25.0     | 0.0   | 120.0 | 1000     | 1000     | 100.0 |
| Storage Lanes                   | 1        | 1     | 120.0 |          |          | 100.0 |
| Taper Length (m)                | 20.0     | •     | 20.0  |          |          | •     |
| Lane Util. Factor               | 1.00     | 1.00  | 1.00  | 1.00     | 1.00     | 1.00  |
| Frt                             | 1.00     | 0.850 | 1.00  | 1.00     | 1.00     | 0.850 |
| Flt Protected                   | 0.950    | 0.000 | 0.950 |          |          | 0.000 |
|                                 | 1601     | 1369  | 1679  | 1701     | 1733     | 1532  |
| Satd. Flow (prot) Flt Permitted |          | 1309  | 0.148 | 1/01     | 1/33     | 1332  |
|                                 | 0.950    | 1260  |       | 1701     | 1722     | 1520  |
| Satd. Flow (perm)               | 1601     | 1369  | 262   | 1701     | 1733     | 1532  |
| Right Turn on Red               |          | Yes   |       |          |          | Yes   |
| Satd. Flow (RTOR)               |          | 71    |       |          |          | 172   |
| Link Speed (k/h)                | 50       |       |       | 80       | 80       |       |
| Link Distance (m)               | 528.6    |       |       | 273.1    | 451.0    |       |
| Travel Time (s)                 | 38.1     |       |       | 12.3     | 20.3     |       |
| Peak Hour Factor                | 1.00     | 1.00  | 1.00  | 1.00     | 1.00     | 1.00  |
| Heavy Vehicles (%)              | 8%       | 13%   | 3%    | 7%       | 5%       | 1%    |
| Adj. Flow (vph)                 | 296      | 71    | 108   | 673      | 1023     | 172   |
| Shared Lane Traffic (%)         |          |       |       |          |          |       |
| Lane Group Flow (vph)           | 296      | 71    | 108   | 673      | 1023     | 172   |
| Turn Type                       | Perm     | Perm  | Perm  | NA       | NA       | Perm  |
| Protected Phases                |          |       |       | 2        | 6        |       |
| Permitted Phases                | 4        | 4     | 2     |          |          | 6     |
| Detector Phase                  | 4        | 4     | 2     | 2        | 6        | 6     |
| Switch Phase                    |          |       | _     | _        |          |       |
| Minimum Initial (s)             | 10.0     | 10.0  | 10.0  | 10.0     | 10.0     | 10.0  |
| Minimum Split (s)               | 22.6     | 22.6  | 21.7  | 21.7     | 21.7     | 21.7  |
| Total Split (s)                 | 30.0     | 30.0  | 90.0  | 90.0     | 90.0     | 90.0  |
|                                 | 25.0%    | 25.0% | 75.0% | 75.0%    | 75.0%    | 75.0% |
| Total Split (%)                 |          |       |       |          |          |       |
| Maximum Green (s)               | 23.4     | 23.4  | 83.3  | 83.3     | 83.3     | 83.3  |
| Yellow Time (s)                 | 3.3      | 3.3   | 4.6   | 4.6      | 4.6      | 4.6   |
| All-Red Time (s)                | 3.3      | 3.3   | 2.1   | 2.1      | 2.1      | 2.1   |
| Lost Time Adjust (s)            | 0.0      | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   |
| Total Lost Time (s)             | 6.6      | 6.6   | 6.7   | 6.7      | 6.7      | 6.7   |
| Lead/Lag                        |          |       |       |          |          |       |
| Lead-Lag Optimize?              |          |       |       |          |          |       |
| Vehicle Extension (s)           | 3.0      | 3.0   | 3.0   | 3.0      | 3.0      | 3.0   |
| Recall Mode                     | None     | None  | C-Max | C-Max    | C-Max    | C-Max |
| Walk Time (s)                   | 7.0      | 7.0   | 7.0   | 7.0      | 7.0      | 7.0   |
| Flash Dont Walk (s)             | 9.0      | 9.0   | 8.0   | 8.0      | 8.0      | 8.0   |
| Pedestrian Calls (#/hr)         | 0.0      | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   |
| Act Effct Green (s)             | 23.3     | 23.3  | 83.4  | 83.4     | 83.4     | 83.4  |
| Actuated g/C Ratio              | 0.19     | 0.19  | 0.70  | 0.70     | 0.70     | 0.70  |
| v/c Ratio                       | 0.19     | 0.19  | 0.70  | 0.70     | 0.70     | 0.70  |
|                                 |          |       |       |          |          |       |
| Control Delay                   | 88.9     | 11.0  | 11.1  | 2.0      | 17.4     | 0.4   |
| Queue Delay                     | 0.0      | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   |

|                              | ٠              | •        | 4          | <b>†</b>    | <b>↓</b>   | 4            |             |
|------------------------------|----------------|----------|------------|-------------|------------|--------------|-------------|
| Lane Group                   | EBL            | EBR      | NBL        | NBT         | SBT        | SBR          |             |
| Total Delay                  | 88.9           | 11.0     | 11.1       | 2.0         | 17.4       | 0.4          |             |
| LOS                          | F              | В        | В          | Α           | В          | Α            |             |
| Approach Delay               | 73.8           |          |            | 3.3         | 14.9       |              |             |
| Approach LOS                 | Е              |          |            | Α           | В          |              |             |
| Queue Length 50th (m)        | 64.0           | 0.0      | 0.5        | 3.4         | 160.2      | 0.0          |             |
| Queue Length 95th (m)        | #112.8         | 11.3     | m0.8       | m4.9        | 99.0       | 1.3          |             |
| Internal Link Dist (m)       | 504.6          |          |            | 249.1       | 427.0      |              |             |
| Turn Bay Length (m)          | 25.0           |          | 120.0      |             |            | 100.0        |             |
| Base Capacity (vph)          | 312            | 324      | 181        | 1182        | 1204       | 1117         |             |
| Starvation Cap Reductn       | 0              | 0        | 0          | 0           | 0          | 0            |             |
| Spillback Cap Reductn        | 0              | 0        | 0          | 0           | 0          | 0            |             |
| Storage Cap Reductn          | 0              | 0        | 0          | 0           | 0          | 0            |             |
| Reduced v/c Ratio            | 0.95           | 0.22     | 0.60       | 0.57        | 0.85       | 0.15         |             |
| Intersection Summary         |                |          |            |             |            |              |             |
| Area Type:                   | Other          |          |            |             |            |              |             |
| Cycle Length: 120            |                |          |            |             |            |              |             |
| Actuated Cycle Length: 12    |                |          |            |             |            |              |             |
| Offset: 18 (15%), Reference  | ed to phase    | 2:NBTL   | and 6:SB   | T, Start of | f Green    |              |             |
| Natural Cycle: 90            |                |          |            |             |            |              |             |
| Control Type: Actuated-Co    | ordinated      |          |            |             |            |              |             |
| Maximum v/c Ratio: 0.95      |                |          |            |             |            |              |             |
| Intersection Signal Delay: 2 |                |          |            |             | tersection |              |             |
| Intersection Capacity Utiliz | ation 99.1%    |          |            | IC          | CU Level   | of Service F |             |
| Analysis Period (min) 15     |                |          |            |             |            |              |             |
| # 95th percentile volume     |                |          | eue may    | be longer   | r.         |              |             |
| Queue shown is maxim         |                | •        |            |             |            |              |             |
| m Volume for 95th perce      | ntile queue is | s metere | d by upsti | ream sign   | ıal.       |              |             |
| Splits and Phases: 2: Ba     | ank Street & I | Dun Skip | per Drive  |             |            |              |             |
| √ do 2 (R)                   |                |          |            |             |            |              | <b>₹</b> Ø4 |
| 90 s                         |                |          |            |             |            |              | 30 s        |
| <b>₩</b> Ø6 (R)              |                |          |            |             |            |              |             |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 13   | 260  | 100  | 48   | 179  | 78   | 51   | 41   | 34   | 105  | 61   | 28   |
| Future Vol, veh/h          | 13   | 260  | 100  | 48   | 179  | 78   | 51   | 41   | 34   | 105  | 61   | 28   |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 0    | 2    | 2    | 0    | 0    | 5    | 0    | 0    | 0    | 2    | 15   | 0    |
| Mvmt Flow                  | 13   | 260  | 100  | 48   | 179  | 78   | 51   | 41   | 34   | 105  | 61   | 28   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 14.2 |      |      | 12.7 |      |      | 10.7 |      |      | 11.9 |      |      |
| HCM LOS                    | В    |      |      | В    |      |      | В    |      |      | В    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 40%   | 3%    | 16%   | 54%   |  |
| Vol Thru, %            | 33%   | 70%   | 59%   | 31%   |  |
| Vol Right, %           | 27%   | 27%   | 26%   | 14%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 126   | 373   | 305   | 194   |  |
| LT Vol                 | 51    | 13    | 48    | 105   |  |
| Through Vol            | 41    | 260   | 179   | 61    |  |
| RT Vol                 | 34    | 100   | 78    | 28    |  |
| Lane Flow Rate         | 126   | 373   | 305   | 194   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.21  | 0.538 | 0.451 | 0.322 |  |
| Departure Headway (Hd) | 5.997 | 5.194 | 5.321 | 5.976 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 595   | 690   | 674   | 599   |  |
| Service Time           | 4.07  | 3.249 | 3.38  | 4.042 |  |
| HCM Lane V/C Ratio     | 0.212 | 0.541 | 0.453 | 0.324 |  |
| HCM Control Delay      | 10.7  | 14.2  | 12.7  | 11.9  |  |
| HCM Lane LOS           | В     | В     | В     | В     |  |
| HCM 95th-tile Q        | 0.8   | 3.2   | 2.3   | 1.4   |  |

HCM 2010 AWSC Synchro 11 Report EM October 2025

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 13   | 43   | 6    | 37   | 37   | 56   | 3    | 66   | 38   | 29   | 67   | 9    |
| Future Vol, veh/h          | 13   | 43   | 6    | 37   | 37   | 56   | 3    | 66   | 38   | 29   | 67   | 9    |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 11   | 0    | 50   | 0    | 0    | 0    | 50   | 2    | 4    | 12   | 2    | 0    |
| Mvmt Flow                  | 13   | 43   | 6    | 37   | 37   | 56   | 3    | 66   | 38   | 29   | 67   | 9    |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 8.2  |      |      | 8.1  |      |      | 9.1  |      |      | 8.5  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 3%    | 21%   | 28%   | 28%   |  |
| Vol Thru, %            | 62%   | 69%   | 28%   | 64%   |  |
| Vol Right, %           | 36%   | 10%   | 43%   | 9%    |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 107   | 62    | 130   | 105   |  |
| LT Vol                 | 3     | 13    | 37    | 29    |  |
| Through Vol            | 66    | 43    | 37    | 67    |  |
| RT Vol                 | 38    | 6     | 56    | 9     |  |
| Lane Flow Rate         | 107   | 62    | 130   | 105   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.152 | 0.082 | 0.156 | 0.137 |  |
| Departure Headway (Hd) | 5.105 | 4.749 | 4.307 | 4.682 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 703   | 755   | 833   | 765   |  |
| Service Time           | 3.134 | 2.777 | 2.33  | 2.711 |  |
| HCM Lane V/C Ratio     | 0.152 | 0.082 | 0.156 | 0.137 |  |
| HCM Control Delay      | 9.1   | 8.2   | 8.1   | 8.5   |  |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.5   | 0.3   | 0.6   | 0.5   |  |

HCM 2010 AWSC Synchro 11 Report EM October 2025

| Intersection              |     |  |
|---------------------------|-----|--|
| Intersection Delay, s/veh | 8.2 |  |
| Intersection LOS          | Α   |  |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 16   | 57   | 9    | 62   | 43   | 34   | 13   | 46   | 62   | 29   | 49   | 16   |
| Future Vol, veh/h          | 16   | 57   | 9    | 62   | 43   | 34   | 13   | 46   | 62   | 29   | 49   | 16   |
| Peak Hour Factor           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Heavy Vehicles, %          | 0    | 4    | 0    | 0    | 3    | 0    | 0    | 5    | 15   | 5    | 0    | 0    |
| Mvmt Flow                  | 16   | 57   | 9    | 62   | 43   | 34   | 13   | 46   | 62   | 29   | 49   | 16   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 8.1  |      |      | 8.4  |      |      | 8    |      |      | 8.2  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 11%   | 20%   | 45%   | 31%   |  |
| Vol Thru, %            | 38%   | 70%   | 31%   | 52%   |  |
| Vol Right, %           | 51%   | 11%   | 24%   | 17%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 121   | 82    | 139   | 94    |  |
| LT Vol                 | 13    | 16    | 62    | 29    |  |
| Through Vol            | 46    | 57    | 43    | 49    |  |
| RT Vol                 | 62    | 9     | 34    | 16    |  |
| Lane Flow Rate         | 121   | 82    | 139   | 94    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.142 | 0.103 | 0.171 | 0.12  |  |
| Departure Headway (Hd) | 4.23  | 4.516 | 4.422 | 4.583 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 848   | 795   | 812   | 783   |  |
| Service Time           | 2.254 | 2.539 | 2.443 | 2.607 |  |
| HCM Lane V/C Ratio     | 0.143 | 0.103 | 0.171 | 0.12  |  |
| HCM Control Delay      | 8     | 8.1   | 8.4   | 8.2   |  |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.5   | 0.3   | 0.6   | 0.4   |  |

HCM 2010 AWSC Synchro 11 Report EM October 2025

| Intersection           |        |      |         |        |                 |      |
|------------------------|--------|------|---------|--------|-----------------|------|
| Int Delay, s/veh       | 0      |      |         |        |                 |      |
| Movement               | EBL    | EBR  | NBL     | NBT    | SBT             | SBR  |
| Lane Configurations    | ¥      | LDIN | NDL     | 4      | - 1 <u>00</u> 1 | ODIN |
| Traffic Vol, veh/h     |        | Λ    | ٥       | 789    | 1064            | 0    |
| •                      | 0      | 0    | 0       |        |                 | 0    |
| Future Vol, veh/h      | 0      | 0    | 0       | 789    | 1064            | 0    |
| Conflicting Peds, #/hr | 0      | 0    | 0       | 0      | 0               | 0    |
| Sign Control           | Stop   | Stop | Free    | Free   | Free            | Free |
| RT Channelized         | -      | None | -       | None   | -               | None |
| Storage Length         | 0      | -    | -       | -      | -               | -    |
| Veh in Median Storage  | e, # 0 | -    | -       | 0      | 0               | -    |
| Grade, %               | 0      | -    | -       | 0      | 0               | -    |
| Peak Hour Factor       | 100    | 100  | 100     | 100    | 100             | 100  |
| Heavy Vehicles, %      | 0      | 0    | 0       | 7      | 6               | 0    |
| Mvmt Flow              | 0      | 0    | 0       | 789    | 1064            | 0    |
|                        |        |      |         |        |                 |      |
|                        |        |      |         |        |                 |      |
|                        | Minor2 |      | //ajor1 | N      | /lajor2         |      |
| Conflicting Flow All   | 1853   | 1064 | 1064    | 0      | -               | 0    |
| Stage 1                | 1064   | -    | -       | -      | -               | -    |
| Stage 2                | 789    | -    | -       | -      | -               | -    |
| Critical Hdwy          | 6.4    | 6.2  | 4.1     | _      | -               | -    |
| Critical Hdwy Stg 1    | 5.4    | -    | -       | _      | _               | _    |
| Critical Hdwy Stg 2    | 5.4    | _    | _       | _      | _               | _    |
| Follow-up Hdwy         | 3.5    | 3.3  | 2.2     | _      | <u> </u>        | _    |
|                        | 82     | 273  | 662     | -      |                 |      |
| Pot Cap-1 Maneuver     |        |      | 002     | -      | -               | -    |
| Stage 1                | 335    | -    | -       | -      | -               | -    |
| Stage 2                | 451    | -    | -       | -      | -               | -    |
| Platoon blocked, %     |        |      |         | -      | -               | -    |
| Mov Cap-1 Maneuver     |        | 273  | 662     | -      | -               | -    |
| Mov Cap-2 Maneuver     | 82     | -    | -       | -      | -               | -    |
| Stage 1                | 335    | -    | -       | -      | -               | -    |
| Stage 2                | 451    | -    | -       | -      | -               | -    |
| - ··· <b>y</b> -       |        |      |         |        |                 |      |
|                        |        |      |         |        |                 |      |
| Approach               | EB     |      | NB      |        | SB              |      |
| HCM Control Delay, s   | 0      |      | 0       |        | 0               |      |
| HCM LOS                | Α      |      |         |        |                 |      |
|                        |        |      |         |        |                 |      |
| Minor Lane/Major Mvr   | nt     | NBL  | NPT     | EBLn1  | SBT             | SBR  |
|                        | IIL    |      | INDI    | LDLIII | ומט             | אמט  |
| Capacity (veh/h)       |        | 662  | -       | -      | -               | -    |
| HCM Lane V/C Ratio     |        | -    | -       | -      | -               | -    |
| HCM Control Delay (s   |        | 0    | -       | 0      | -               | -    |
| HCM Lane LOS           |        | Α    | -       | Α      | -               | -    |
| HCM 95th %tile Q(veh   | 1)     | 0    | -       | -      | -               | -    |
|                        |        |      |         |        |                 |      |

HCM 2010 TWSC Synchro 11 Report EM October 2025

|                                   | ۶            | <b>→</b>     | •    | •            | +          | •    | •      | <b>†</b>     | <b>/</b>      | <b>/</b> | <b>+</b>   | ✓    |
|-----------------------------------|--------------|--------------|------|--------------|------------|------|--------|--------------|---------------|----------|------------|------|
| Lane Group                        | EBL          | EBT          | EBR  | WBL          | WBT        | WBR  | NBL    | NBT          | NBR           | SBL      | SBT        | SBR  |
| Lane Configurations               | ሻ            | <b>†</b> }   |      | ሻ            | <b>f</b> ə |      | ሻ      | <b>†</b>     | 7             | *        | <b>↑</b> ₽ |      |
| Traffic Volume (vph)              | 31           | 533          | 50   | 120          | 682        | 16   | 29     | 741          | 86            | 11       | 997        | 56   |
| Future Volume (vph)               | 31           | 533          | 50   | 120          | 682        | 16   | 29     | 741          | 86            | 11       | 997        | 56   |
| Ideal Flow (vphpl)                | 1800         | 1800         | 1800 | 1800         | 1800       | 1800 | 1800   | 1800         | 1800          | 1800     | 1800       | 1800 |
| Storage Length (m)                | 25.0         |              | 0.0  | 50.0         |            | 0.0  | 20.0   |              | 15.0          | 15.0     |            | 0.0  |
| Storage Lanes                     | 1            |              | 0    | 1            |            | 0    | 1      |              | 1             | 1        |            | 0    |
| Taper Length (m)                  | 20.0         |              | -    | 20.0         |            |      | 20.0   |              |               | 20.0     |            |      |
| Lane Util. Factor                 | 1.00         | 0.95         | 0.95 | 1.00         | 1.00       | 1.00 | 1.00   | 1.00         | 1.00          | 1.00     | 0.95       | 0.95 |
| Frt                               |              | 0.987        |      |              | 0.997      |      |        | ,,,,,,       | 0.850         |          | 0.992      |      |
| Flt Protected                     | 0.950        | 0.00.        |      | 0.950        | 0.001      |      | 0.950  |              | 0.000         | 0.950    | 0.00=      |      |
| Satd. Flow (prot)                 | 1695         | 2971         | 0    | 1586         | 1666       | 0    | 1729   | 1750         | 1181          | 1465     | 3211       | 0    |
| Flt Permitted                     | 0.123        | 20.1         |      | 0.376        | 1000       |      | 0.159  | 1100         | 1101          | 0.104    | 0211       |      |
| Satd. Flow (perm)                 | 219          | 2971         | 0    | 628          | 1666       | 0    | 289    | 1750         | 1181          | 160      | 3211       | 0    |
| Right Turn on Red                 | 210          | 2071         | Yes  | 020          | 1000       | Yes  | 200    | 1700         | Yes           | 100      | J_ 11      | Yes  |
| Satd. Flow (RTOR)                 |              | 10           | 100  |              | 1          | 100  |        |              | 38            |          | 6          | 100  |
| Link Speed (k/h)                  |              | 50           |      |              | 50         |      |        | 50           | 30            |          | 50         |      |
| Link Opeca (NT) Link Distance (m) |              | 528.5        |      |              | 292.7      |      |        | 203.7        |               |          | 158.2      |      |
| Travel Time (s)                   |              | 38.1         |      |              | 21.1       |      |        | 14.7         |               |          | 11.4       |      |
| Peak Hour Factor                  | 1.00         | 1.00         | 1.00 | 1.00         | 1.00       | 1.00 | 1.00   | 1.00         | 1.00          | 1.00     | 1.00       | 1.00 |
| Heavy Vehicles (%)                | 2%           | 16%          | 3%   | 9%           | 9%         | 5%   | 0%     | 4%           | 31%           | 18%      | 7%         | 4%   |
| Adj. Flow (vph)                   | 31           | 533          | 50   | 120          | 682        | 16   | 29     | 741          | 86            | 10 /0    | 997        | 56   |
| Shared Lane Traffic (%)           | JI           | 555          | 30   | 120          | 002        | 10   | 29     | 741          | 00            | 11       | 991        | 50   |
| Lane Group Flow (vph)             | 31           | 583          | 0    | 120          | 698        | 0    | 29     | 741          | 86            | 11       | 1053       | 0    |
|                                   | Perm         | NA           | U    | Perm         | NA         | U    | Perm   | NA           | Perm          | Perm     | NA         | U    |
| Turn Type Protected Phases        | Pellii       | 4            |      | Pellii       | NA<br>8    |      | Pellii | 2            | Pellii        | Pellii   |            |      |
| Permitted Phases                  | 4            | 4            |      | 8            | 0          |      | 2      |              | 2             | 6        | 6          |      |
| Detector Phase                    | 4            | 4            |      | 8            | 8          |      | 2      | 2            | 2             | 6        | 6          |      |
|                                   | 4            | 4            |      | 0            | 0          |      |        |              | 2             | 0        | 0          |      |
| Switch Phase                      | 10.0         | 10.0         |      | 10.0         | 10.0       |      | 10.0   | 10.0         | 10.0          | 10.0     | 10.0       |      |
| Minimum Initial (s)               | 10.0<br>36.2 | 10.0<br>36.2 |      | 10.0<br>36.2 |            |      | 10.0   | 10.0<br>36.2 | 10.0          | 10.0     | 10.0       |      |
| Minimum Split (s)                 |              |              |      |              | 36.2       |      | 36.2   |              | 36.2          | 36.2     | 36.2       |      |
| Total Split (s)                   | 60.0         | 60.0         |      | 60.0         | 60.0       |      | 60.0   | 60.0         | 60.0<br>50.0% | 60.0     | 60.0       |      |
| Total Split (%)                   | 50.0%        | 50.0%        |      | 50.0%        | 50.0%      |      | 50.0%  | 50.0%        |               | 50.0%    | 50.0%      |      |
| Maximum Green (s)                 | 52.8         | 52.8         |      | 52.8         | 52.8       |      | 52.8   | 52.8         | 52.8          | 52.8     | 52.8       |      |
| Yellow Time (s)                   | 5.0          | 5.0          |      | 5.0          | 5.0        |      | 5.0    | 5.0          | 5.0           | 5.0      | 5.0        |      |
| All-Red Time (s)                  | 2.2          | 2.2          |      | 2.2          | 2.2        |      | 2.2    | 2.2          | 2.2           | 2.2      | 2.2        |      |
| Lost Time Adjust (s)              | 0.0          | 0.0          |      | 0.0          | 0.0        |      | 0.0    | 0.0          | 0.0           | 0.0      | 0.0        |      |
| Total Lost Time (s)               | 7.2          | 7.2          |      | 7.2          | 7.2        |      | 7.2    | 7.2          | 7.2           | 7.2      | 7.2        |      |
| Lead/Lag                          |              |              |      |              |            |      |        |              |               |          |            |      |
| Lead-Lag Optimize?                | 2.0          | 2.0          |      | 2.0          | 2.0        |      | 2.0    | 2.0          | 2.0           | 2.0      | 2.0        |      |
| Vehicle Extension (s)             | 3.0          | 3.0          |      | 3.0          | 3.0        |      | 3.0    | 3.0          | 3.0           | 3.0      | 3.0        |      |
| Recall Mode                       | None         | None         |      | None         | None       |      | C-Max  | C-Max        | C-Max         | C-Max    | C-Max      |      |
| Walk Time (s)                     | 7.0          | 7.0          |      | 7.0          | 7.0        |      | 7.0    | 7.0          | 7.0           | 7.0      | 7.0        |      |
| Flash Dont Walk (s)               | 22.0         | 22.0         |      | 22.0         | 22.0       |      | 22.0   | 22.0         | 22.0          | 22.0     | 22.0       |      |
| Pedestrian Calls (#/hr)           | 0            | 0            |      | 0            | 0          |      | 0      | 0            | 0             | 0        | 0          |      |
| Act Effct Green (s)               | 51.9         | 51.9         |      | 51.9         | 51.9       |      | 53.7   | 53.7         | 53.7          | 53.7     | 53.7       |      |
| Actuated g/C Ratio                | 0.43         | 0.43         |      | 0.43         | 0.43       |      | 0.45   | 0.45         | 0.45          | 0.45     | 0.45       |      |
| v/c Ratio                         | 0.33         | 0.45         |      | 0.44         | 0.97       |      | 0.22   | 0.95         | 0.16          | 0.15     | 0.73       |      |
| Control Delay                     | 32.2         | 23.4         |      | 29.9         | 60.5       |      | 26.7   | 54.2         | 12.7          | 37.4     | 43.4       |      |
| Queue Delay                       | 0.0          | 0.0          |      | 0.0          | 0.0        |      | 0.0    | 0.0          | 0.0           | 0.0      | 0.0        |      |

|                        | •    | -     | •   | •    | ←      | •   | 4    | <b>†</b> | ~    | -    | <b>↓</b> | 1   |
|------------------------|------|-------|-----|------|--------|-----|------|----------|------|------|----------|-----|
| Lane Group             | EBL  | EBT   | EBR | WBL  | WBT    | WBR | NBL  | NBT      | NBR  | SBL  | SBT      | SBR |
| Total Delay            | 32.2 | 23.4  |     | 29.9 | 60.5   |     | 26.7 | 54.2     | 12.7 | 37.4 | 43.4     |     |
| LOS                    | С    | С     |     | С    | Е      |     | С    | D        | В    | D    | D        |     |
| Approach Delay         |      | 23.8  |     |      | 56.0   |     |      | 49.1     |      |      | 43.3     |     |
| Approach LOS           |      | С     |     |      | Е      |     |      | D        |      |      | D        |     |
| Queue Length 50th (m)  | 4.5  | 46.0  |     | 17.7 | 142.7  |     | 3.8  | 153.1    | 6.0  | 2.1  | 108.2    |     |
| Queue Length 95th (m)  | 13.3 | 60.3  |     | 34.2 | #215.2 |     | 11.0 | #226.6   | 15.2 | m2.6 | 129.0    |     |
| Internal Link Dist (m) |      | 504.5 |     |      | 268.7  |     |      | 179.7    |      |      | 134.2    |     |
| Turn Bay Length (m)    | 25.0 |       |     | 50.0 |        |     | 20.0 |          | 15.0 | 15.0 |          |     |
| Base Capacity (vph)    | 96   | 1312  |     | 276  | 733    |     | 129  | 783      | 549  | 71   | 1441     |     |
| Starvation Cap Reductn | 0    | 0     |     | 0    | 0      |     | 0    | 0        | 0    | 0    | 0        |     |
| Spillback Cap Reductn  | 0    | 0     |     | 0    | 0      |     | 0    | 0        | 0    | 0    | 0        |     |
| Storage Cap Reductn    | 0    | 0     |     | 0    | 0      |     | 0    | 0        | 0    | 0    | 0        |     |
| Reduced v/c Ratio      | 0.32 | 0.44  |     | 0.43 | 0.95   |     | 0.22 | 0.95     | 0.16 | 0.15 | 0.73     |     |

#### Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

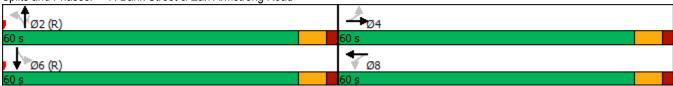
Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 100

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.97

Intersection Signal Delay: 44.3 Intersection LOS: D
Intersection Capacity Utilization 106.4% ICU Level of Service G


Analysis Period (min) 15

# 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

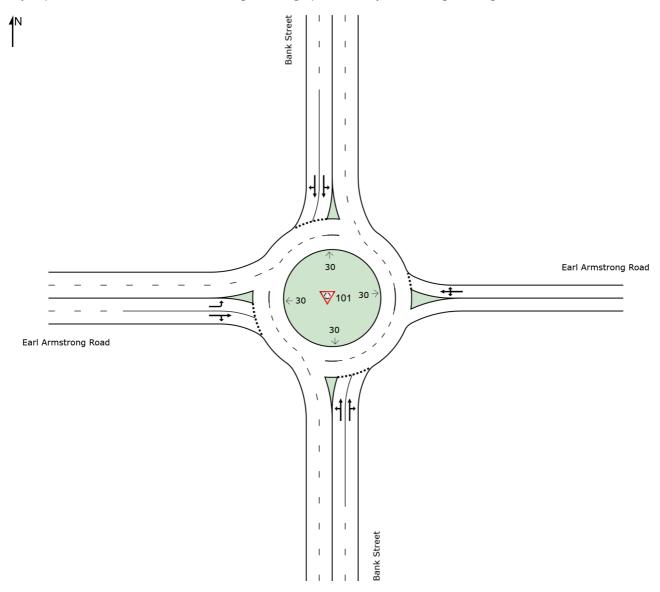
m Volume for 95th percentile queue is metered by upstream signal

Splits and Phases: 7: Bank Street & Earl Armstrong Road



|                         | •       | <b>→</b>   | <b>—</b> | •        | <b>\</b> | 4       |
|-------------------------|---------|------------|----------|----------|----------|---------|
| Lane Group              | EBL     | EBT        | WBT      | WBR      | SBL      | SBR     |
| Lane Configurations     | T T     | <b>†</b> † | <b>↑</b> | WOIN     | JDL<br>Š | 7       |
| Traffic Volume (vph)    | 25      | 589        | 729      | 38       | 25       | 24      |
| Future Volume (vph)     | 25      | 589        | 729      | 38       | 25       | 24      |
| Ideal Flow (vphpl)      | 1800    | 1800       | 1800     | 1800     | 1800     | 1800    |
| Storage Length (m)      | 60.0    | 1000       | 1000     | 0.0      | 40.0     | 0.0     |
| Storage Lanes           | 1       |            |          | 0.0      | 40.0     | 1       |
| Taper Length (m)        | 20.0    |            |          | U        | 20.0     | 1       |
| Lane Util. Factor       | 1.00    | 0.95       | 0.95     | 0.95     | 1.00     | 1.00    |
| Frt                     | 1.00    | 0.95       | 0.95     | 0.95     | 1.00     | 0.850   |
|                         | 0.050   |            | 0.993    |          | 0.050    | 0.000   |
| Fit Protected           | 0.950   | 2444       | 2002     | ^        | 0.950    | 1517    |
| Satd. Flow (prot)       | 1558    | 3144       | 3203     | 0        | 1729     | 1547    |
| FIt Permitted           | 0.361   | 0444       | 2022     |          | 0.950    | 45.47   |
| Satd. Flow (perm)       | 592     | 3144       | 3203     | 0        | 1729     | 1547    |
| Right Turn on Red       |         |            |          | Yes      |          | Yes     |
| Satd. Flow (RTOR)       |         |            | 5        |          |          | 24      |
| Link Speed (k/h)        |         | 50         | 50       |          | 50       |         |
| Link Distance (m)       |         | 222.0      | 528.5    |          | 431.1    |         |
| Travel Time (s)         |         | 16.0       | 38.1     |          | 31.0     |         |
| Peak Hour Factor        | 1.00    | 1.00       | 1.00     | 1.00     | 1.00     | 1.00    |
| Heavy Vehicles (%)      | 11%     | 10%        | 7%       | 11%      | 0%       | 0%      |
| Adj. Flow (vph)         | 25      | 589        | 729      | 38       | 25       | 24      |
| Shared Lane Traffic (%) |         |            |          |          |          |         |
| Lane Group Flow (vph)   | 25      | 589        | 767      | 0        | 25       | 24      |
| Turn Type               | Perm    | NA         | NA       | <u> </u> | Prot     | Perm    |
| Protected Phases        | I GIIII | 4          | 8        |          | 6        | 1 01111 |
| Permitted Phases        | 4       | 4          | U        |          | U        | 6       |
| Detector Phases         | 4       | 4          | 8        |          | 6        | 6       |
|                         | 4       | 4          | 0        |          | Ö        | Ö       |
| Switch Phase            | 40.0    | 10.0       | 10.0     |          | 10.0     | 10.0    |
| Minimum Initial (s)     | 10.0    | 10.0       | 10.0     |          | 10.0     | 10.0    |
| Minimum Split (s)       | 24.8    | 24.8       | 24.8     |          | 33.8     | 33.8    |
| Total Split (s)         | 54.2    | 54.2       | 54.2     |          | 65.8     | 65.8    |
| Total Split (%)         | 45.2%   | 45.2%      | 45.2%    |          | 54.8%    | 54.8%   |
| Maximum Green (s)       | 47.4    | 47.4       | 47.4     |          | 59.0     | 59.0    |
| Yellow Time (s)         | 5.0     | 5.0        | 5.0      |          | 3.2      | 3.2     |
| All-Red Time (s)        | 1.8     | 1.8        | 1.8      |          | 3.6      | 3.6     |
| Lost Time Adjust (s)    | 0.0     | 0.0        | 0.0      |          | 0.0      | 0.0     |
| Total Lost Time (s)     | 6.8     | 6.8        | 6.8      |          | 6.8      | 6.8     |
| Lead/Lag                |         |            |          |          |          |         |
| Lead-Lag Optimize?      |         |            |          |          |          |         |
| Vehicle Extension (s)   | 3.0     | 3.0        | 3.0      |          | 3.0      | 3.0     |
| Recall Mode             | C-Max   | C-Max      | C-Max    |          | None     | None    |
| Walk Time (s)           | 7.0     | 7.0        | 7.0      |          | 7.0      | 7.0     |
| Flash Dont Walk (s)     | 11.0    | 11.0       | 11.0     |          | 20.0     | 20.0    |
|                         | 0       | 0          | 0        |          | 20.0     | 20.0    |
| Pedestrian Calls (#/hr) |         |            |          |          |          |         |
| Act Effct Green (s)     | 105.8   | 105.8      | 105.8    |          | 10.0     | 10.0    |
| Actuated g/C Ratio      | 0.88    | 0.88       | 0.88     |          | 0.08     | 0.08    |
| v/c Ratio               | 0.05    | 0.21       | 0.27     |          | 0.17     | 0.16    |
| Control Delay           | 2.5     | 2.2        | 7.0      |          | 54.3     | 21.2    |
| Queue Delay             | 0.0     | 0.0        | 0.0      |          | 0.0      | 0.0     |

|                                   | ϶          | <b>→</b> | <b>←</b>   | •          | <b>\</b>   | 4            |    |
|-----------------------------------|------------|----------|------------|------------|------------|--------------|----|
| Lane Group                        | EBL        | EBT      | WBT        | WBR        | SBL        | SBR          |    |
| Total Delay                       | 2.5        | 2.2      | 7.0        |            | 54.3       | 21.2         |    |
| LOS                               | Α          | Α        | Α          |            | D          | С            |    |
| Approach Delay                    |            | 2.2      | 7.0        |            | 38.1       |              |    |
| Approach LOS                      |            | Α        | Α          |            | D          |              |    |
| Queue Length 50th (m)             | 0.9        | 13.0     | 59.6       |            | 5.1        | 0.0          |    |
| Queue Length 95th (m)             | 2.4        | 17.0     | m61.2      |            | 13.2       | 7.7          |    |
| Internal Link Dist (m)            |            | 198.0    | 504.5      |            | 407.1      |              |    |
| Turn Bay Length (m)               | 60.0       |          |            |            | 40.0       |              |    |
| Base Capacity (vph)               | 522        | 2773     | 2826       |            | 850        | 772          |    |
| Starvation Cap Reductn            | 0          | 0        | 0          |            | 0          | 0            |    |
| Spillback Cap Reductn             | 0          | 0        | 0          |            | 0          | 0            |    |
| Storage Cap Reductn               | 0          | 0        | 0          |            | 0          | 0            |    |
| Reduced v/c Ratio                 | 0.05       | 0.21     | 0.27       |            | 0.03       | 0.03         |    |
| Intersection Summary              |            |          |            |            |            |              |    |
| Area Type: O                      | ther       |          |            |            |            |              |    |
| Cycle Length: 120                 |            |          |            |            |            |              |    |
| Actuated Cycle Length: 120        |            |          |            |            |            |              |    |
| Offset: 59.5 (50%), Reference     | ed to phas | se 4:EBT | L and 8:W  | /BT, Start | of Green   |              |    |
| Natural Cycle: 60                 |            |          |            |            |            |              |    |
| Control Type: Actuated-Coord      | dinated    |          |            |            |            |              |    |
| Maximum v/c Ratio: 0.27           |            |          |            |            |            |              |    |
| Intersection Signal Delay: 6.0    |            |          |            | In         | tersection | LOS: A       |    |
| Intersection Capacity Utilization | on 42.2%   |          |            | IC         | U Level c  | of Service A |    |
| Analysis Period (min) 15          |            |          |            |            |            |              |    |
| m Volume for 95th percentil       | e queue i  | s metere | d by upstr | ream sign  | al.        |              |    |
| Splits and Phases: 8: Earl A      | Armstrono  | n Road & | Kelly Far  | m Drive    |            |              |    |
| Spine sila i iladooi S. Edit i    |            | ,        |            | 5          |            | A            |    |
|                                   |            |          |            |            | •          | Ø4 (R        | () |
| ١,                                |            |          |            |            |            | 54.2 s       |    |
| <b>₹</b> 06                       |            |          |            |            |            | Ø8 (R        | )  |


### SITE LAYOUT

### ♥ Site: 101 [Bank & Earl Armstrong (Site Folder: TT 2036 w Ext

PM)]

Bank Street & Earl Armstrong Road Future (2036) Total Traffic with Earl Armstrong Extension PM Peak Hour Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.



#### **MOVEMENT SUMMARY**

#### ▼ Site: 101 [Bank & Earl Armstrong (Site Folder: TT 2036 w Ext

PM)]

Bank Street & Earl Armstrong Road Future (2036) Total Traffic with Earl Armstrong Extension PM Peak Hour Site Category: (None) Roundabout

| Vehi         | cle M   | ovemen                          | t Perfo | rmance                          |      |                     |       |                     |                                |                              |                |                           |                        |                        |
|--------------|---------|---------------------------------|---------|---------------------------------|------|---------------------|-------|---------------------|--------------------------------|------------------------------|----------------|---------------------------|------------------------|------------------------|
| Mov<br>ID    | Turn    | INP<br>VOLU<br>[ Total<br>veh/h |         | DEM,<br>FLO<br>[ Total<br>veh/h |      | Deg.<br>Satn<br>v/c |       | Level of<br>Service | 95% BA<br>QUI<br>[ Veh.<br>veh | ACK OF<br>EUE<br>Dist ]<br>m | Prop.  <br>Que | Effective<br>Stop<br>Rate | Aver.<br>No.<br>Cycles | Aver.<br>Speed<br>km/h |
| South        | n: Ban  | k Street                        |         |                                 |      |                     |       |                     |                                |                              |                |                           |                        |                        |
| 3            | L2      | 29                              | 0.0     | 29                              | 0.0  | 0.526               | 11.8  | LOS B               | 3.6                            | 28.6                         | 0.68           | 0.80                      | 1.01                   | 51.8                   |
| 8            | T1      | 741                             | 4.0     | 741                             | 4.0  | 0.526               | 11.7  | LOS B               | 3.6                            | 28.6                         | 0.66           | 0.79                      | 1.00                   | 51.7                   |
| 18           | R2      | 86                              | 31.0    | 86                              | 31.0 | 0.526               | 12.5  | LOS B               | 3.5                            | 28.3                         | 0.64           | 0.77                      | 0.98                   | 49.5                   |
| Appr         | oach    | 856                             | 6.6     | 856                             | 6.6  | 0.526               | 11.8  | LOS B               | 3.6                            | 28.6                         | 0.66           | 0.79                      | 1.00                   | 51.5                   |
| East:        | Earl A  | rmstrong                        | Road    |                                 |      |                     |       |                     |                                |                              |                |                           |                        |                        |
| 1            | L2      | 120                             | 9.0     | 120                             | 9.0  | 1.272               | 155.1 | LOS F               | 69.7                           | 569.2                        | 1.00           | 4.12                      | 10.69                  | 17.4                   |
| 6            | T1      | 682                             | 9.0     | 682                             | 9.0  | 1.272               | 155.1 | LOS F               | 69.7                           | 569.2                        | 1.00           | 4.12                      | 10.69                  | 17.4                   |
| 16           | R2      | 16                              | 5.0     | 16                              | 5.0  | 1.272               | 154.9 | LOS F               | 69.7                           | 569.2                        | 1.00           | 4.12                      | 10.69                  | 17.3                   |
| Appr         | oach    | 818                             | 8.9     | 818                             | 8.9  | 1.272               | 155.1 | LOS F               | 69.7                           | 569.2                        | 1.00           | 4.12                      | 10.69                  | 17.4                   |
| North        | ı: Banl | Street                          |         |                                 |      |                     |       |                     |                                |                              |                |                           |                        |                        |
| 7            | L2      | 11                              | 18.0    | 11                              | 18.0 | 0.781               | 27.0  | LOS D               | 8.4                            | 67.7                         | 0.85           | 1.25                      | 2.07                   | 42.7                   |
| 4            | T1      | 997                             | 7.0     | 997                             | 7.0  | 0.781               | 25.4  | LOS D               | 8.8                            | 70.6                         | 0.85           | 1.25                      | 2.06                   | 43.6                   |
| 14           | R2      | 56                              | 4.0     | 56                              | 4.0  | 0.781               | 24.2  | LOS C               | 8.8                            | 70.6                         | 0.85           | 1.25                      | 2.06                   | 43.1                   |
| Appr         | oach    | 1064                            | 7.0     | 1064                            | 7.0  | 0.781               | 25.3  | LOS D               | 8.8                            | 70.6                         | 0.85           | 1.25                      | 2.06                   | 43.6                   |
| West         | : Earl  | Armstron                        | g Road  |                                 |      |                     |       |                     |                                |                              |                |                           |                        |                        |
| 5            | L2      | 31                              | 2.0     | 31                              | 2.0  | 0.070               | 9.0   | LOSA                | 0.2                            | 1.8                          | 0.68           | 0.68                      | 0.68                   | 50.3                   |
| 2            | T1      | 533                             | 16.0    | 533                             | 16.0 | 1.291               | 172.8 | LOS F               | 51.2                           | 437.8                        | 1.00           | 3.88                      | 10.82                  | 16.1                   |
| 12           | R2      | 50                              | 3.0     | 50                              | 3.0  | 1.291               | 171.9 | LOS F               | 51.2                           | 437.8                        | 1.00           | 3.88                      | 10.82                  | 16.0                   |
| Appr         | oach    | 614                             | 14.2    | 614                             | 14.2 | 1.291               | 164.5 | LOS F               | 51.2                           | 437.8                        | 0.98           | 3.72                      | 10.30                  | 16.7                   |
| All<br>Vehic | cles    | 3352                            | 8.7     | 3352                            | 8.7  | 1.291               | 79.0  | LOS F               | 69.7                           | 569.2                        | 0.86           | 2.29                      | 5.41                   | 26.8                   |

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

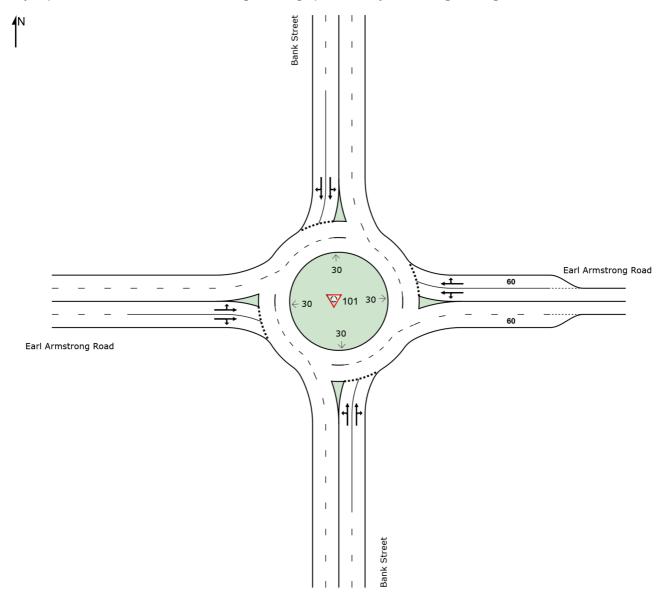
Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Organisation: ARCADIS U.S., INC. | Licence: PLUS / 1PC | Processed: October 18, 2025 11:58:51 AM
Project: C:\Users\pascolob9709.ARCADIS\ARCADIS\145172 Cattizone Parcel 4858 Bank St - Internal Documents\6.0\_Technical\6.23\_Traffic \05\_Analytic Models\CattizoneLands\_Future\_2025-10-18.sip9


#### SITE LAYOUT

### \( \text{Site} : 101 [Bank & Earl Armstrong (w Mods) (Site Folder: TT) \)

2036 w Ext PM)]

Bank Street & Earl Armstrong Road Future (2036) Total Traffic with Earl Armstrong Extension PM Peak Hour (with Modifications) Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.



SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: ARCADIS U.S., INC. | Licence: PLUS / 1PC | Created: October 19, 2025 9:06:48 PM
Project: C:\Users\pascolob9709.ARCADIS\ARCADIS\ARCADIS\145172 Cattizone Parcel 4858 Bank St - Internal Documents\6.0\_Technical\6.23\_Traffic \05\_Analytic Models\CattizoneLands\_Future\_2025-10-18.sip9

#### **MOVEMENT SUMMARY**

#### ▼ Site: 101 [Bank & Earl Armstrong (w Mods) (Site Folder: TT)

2036 w Ext PM)]

Bank Street & Earl Armstrong Road Future (2036) Total Traffic with Earl Armstrong Extension PM Peak Hour (with Modifications) Site Category: (None)

Roundabout

| Vehi         | cle M   | ovemen                          | t Perfo | rmance                          |      |                     |      |                     |                                        |       |              |                           |                        |                        |
|--------------|---------|---------------------------------|---------|---------------------------------|------|---------------------|------|---------------------|----------------------------------------|-------|--------------|---------------------------|------------------------|------------------------|
| Mov<br>ID    | Turn    | INP<br>VOLU<br>[ Total<br>veh/h |         | DEM,<br>FLO<br>[ Total<br>veh/h |      | Deg.<br>Satn<br>v/c |      | Level of<br>Service | 95% B <i>A</i><br>QUE<br>[ Veh.<br>veh |       | Prop.<br>Que | Effective<br>Stop<br>Rate | Aver.<br>No.<br>Cycles | Aver.<br>Speed<br>km/h |
| South        | n: Ban  | k Street                        |         |                                 |      |                     |      |                     |                                        |       |              |                           |                        |                        |
| 3            | L2      | 29                              | 0.0     | 29                              | 0.0  | 0.592               | 15.0 | LOS B               | 4.4                                    | 34.4  | 0.75         | 0.93                      | 1.28                   | 49.6                   |
| 8            | T1      | 741                             | 4.0     | 741                             | 4.0  | 0.592               | 14.8 | LOS B               | 4.4                                    | 34.4  | 0.73         | 0.92                      | 1.28                   | 49.6                   |
| 18           | R2      | 86                              | 31.0    | 86                              | 31.0 | 0.592               | 19.5 | LOS C               | 4.2                                    | 34.6  | 0.72         | 0.91                      | 1.27                   | 47.6                   |
| Appro        | oach    | 856                             | 6.6     | 856                             | 6.6  | 0.592               | 15.3 | LOS C               | 4.4                                    | 34.6  | 0.73         | 0.92                      | 1.28                   | 49.4                   |
| East:        | Earl A  | Armstrong                       | Road    |                                 |      |                     |      |                     |                                        |       |              |                           |                        |                        |
| 1            | L2      | 120                             | 9.0     | 120                             | 9.0  | 0.670               | 21.4 | LOS C               | 4.9                                    | 40.0  | 0.79         | 1.05                      | 1.61                   | 44.9                   |
| 6            | T1      | 682                             | 9.0     | 682                             | 9.0  | 0.670               | 20.3 | LOS C               | 5.0                                    | 41.2  | 0.78         | 1.04                      | 1.60                   | 46.0                   |
| 16           | R2      | 16                              | 5.0     | 16                              | 5.0  | 0.670               | 19.4 | LOS C               | 5.0                                    | 41.2  | 0.78         | 1.04                      | 1.59                   | 45.6                   |
| Appro        | oach    | 818                             | 8.9     | 818                             | 8.9  | 0.670               | 20.4 | LOS C               | 5.0                                    | 41.2  | 0.78         | 1.04                      | 1.60                   | 45.8                   |
| North        | ı: Banl | < Street                        |         |                                 |      |                     |      |                     |                                        |       |              |                           |                        |                        |
| 7            | L2      | 11                              | 18.0    | 11                              | 18.0 | 0.912               | 47.6 | LOS E               | 12.8                                   | 103.3 | 0.92         | 1.63                      | 3.23                   | 34.7                   |
| 4            | T1      | 997                             | 7.0     | 997                             | 7.0  | 0.912               | 45.2 | LOS E               | 13.7                                   | 109.9 | 0.92         | 1.64                      | 3.25                   | 35.5                   |
| 14           | R2      | 56                              | 4.0     | 56                              | 4.0  | 0.912               | 43.3 | LOS E               | 13.7                                   | 109.9 | 0.93         | 1.66                      | 3.27                   | 35.4                   |
| Appro        | oach    | 1064                            | 7.0     | 1064                            | 7.0  | 0.912               | 45.1 | LOS E               | 13.7                                   | 109.9 | 0.92         | 1.64                      | 3.25                   | 35.5                   |
| West         | : Earl  | Armstron                        | g Road  |                                 |      |                     |      |                     |                                        |       |              |                           |                        |                        |
| 5            | L2      | 31                              | 2.0     | 31                              | 2.0  | 0.956               | 62.3 | LOS F               | 12.3                                   | 105.1 | 0.91         | 1.81                      | 3.97                   | 30.4                   |
| 2            | T1      | 533                             | 16.0    | 533                             | 16.0 | 0.956               | 52.9 | LOS F               | 12.3                                   | 105.1 | 0.88         | 1.57                      | 3.25                   | 33.3                   |
| 12           | R2      | 50                              | 3.0     | 50                              | 3.0  | 0.488               | 19.2 | LOS C               | 2.1                                    | 17.3  | 0.78         | 0.92                      | 1.26                   | 45.3                   |
| Appro        | oach    | 614                             | 14.2    | 614                             | 14.2 | 0.956               | 50.6 | LOS F               | 12.3                                   | 105.1 | 0.87         | 1.53                      | 3.13                   | 33.8                   |
| All<br>Vehic | cles    | 3352                            | 8.7     | 3352                            | 8.7  | 0.956               | 32.5 | LOS D               | 13.7                                   | 109.9 | 0.83         | 1.29                      | 2.32                   | 40.2                   |

Site Level of Service (LOS) Method: Delay & v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).

Roundabout Capacity Model: US HCM 6.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

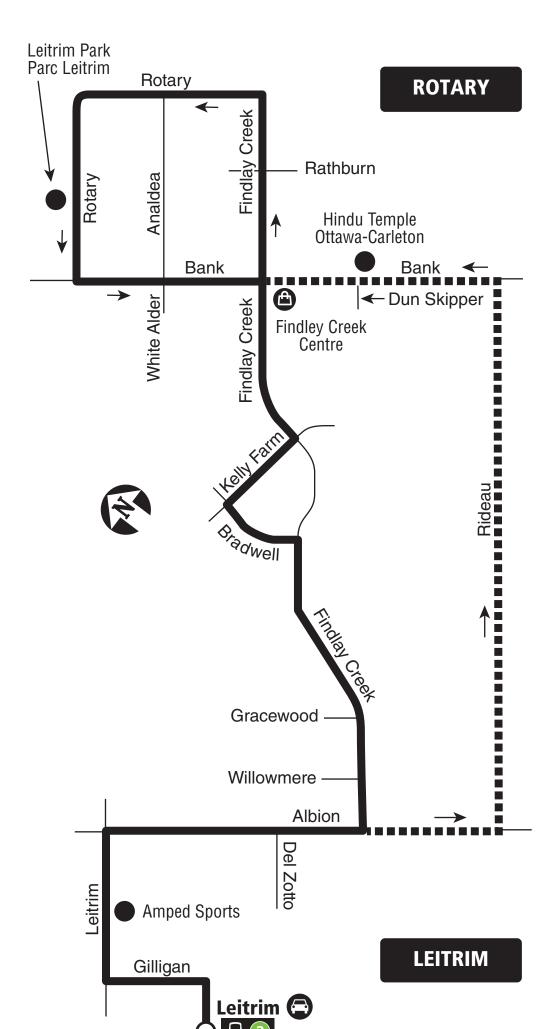
SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

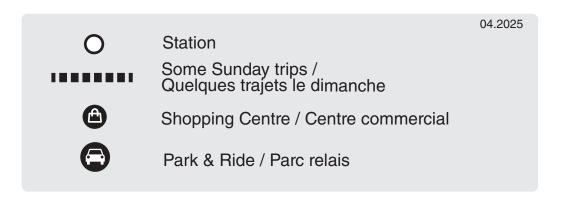
Organisation: ARCADIS U.S., INC. | Licence: PLUS / 1PC | Processed: October 18, 2025 11:59:20 AM
Project: C:\Users\pascolob9709.ARCADIS\ARCADIS\145172 Cattizone Parcel 4858 Bank St - Internal Documents\6.0\_Technical\6.23\_Traffic \05\_Analytic Models\CattizoneLands\_Future\_2025-10-18.sip9

## **Appendix F Transit Service Maps**

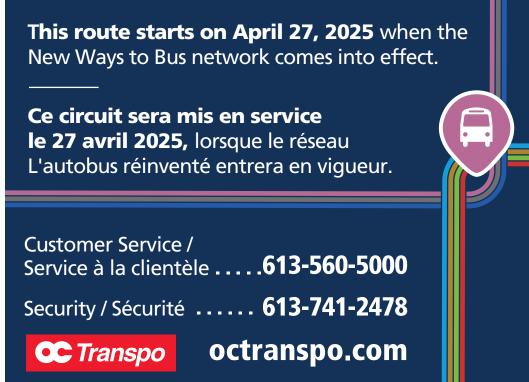


## 93


## **ROTARY**


## **LEITRIM**

## Local


## 7 days a week / 7 jours par semaine

All day service Service toute la journée



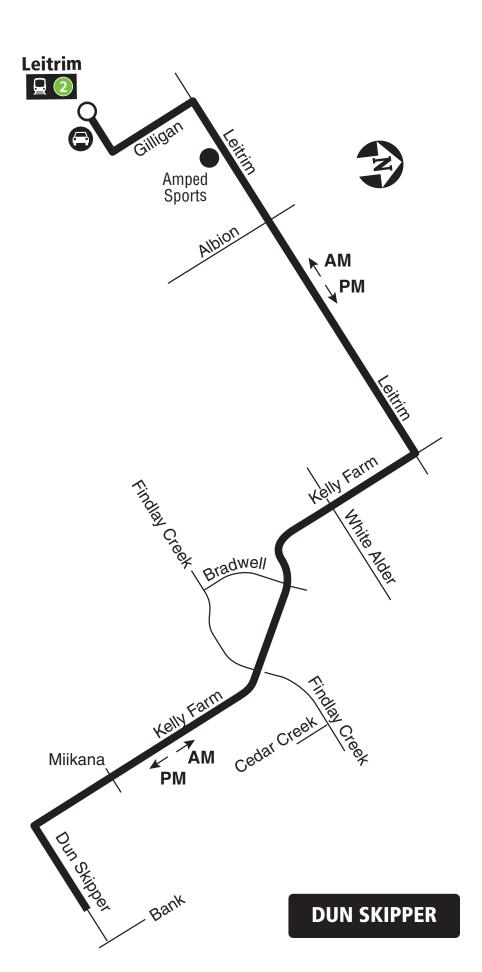


2025.04





94


## **DUN SKIPPER LEITRIM**

Local

## Monday to Friday / Lundi au vendredi

Peak periods only Périodes de pointe seulement

## **LEITRIM**



0

Station

**CC** Transpo

Park & Ride / Parc relais

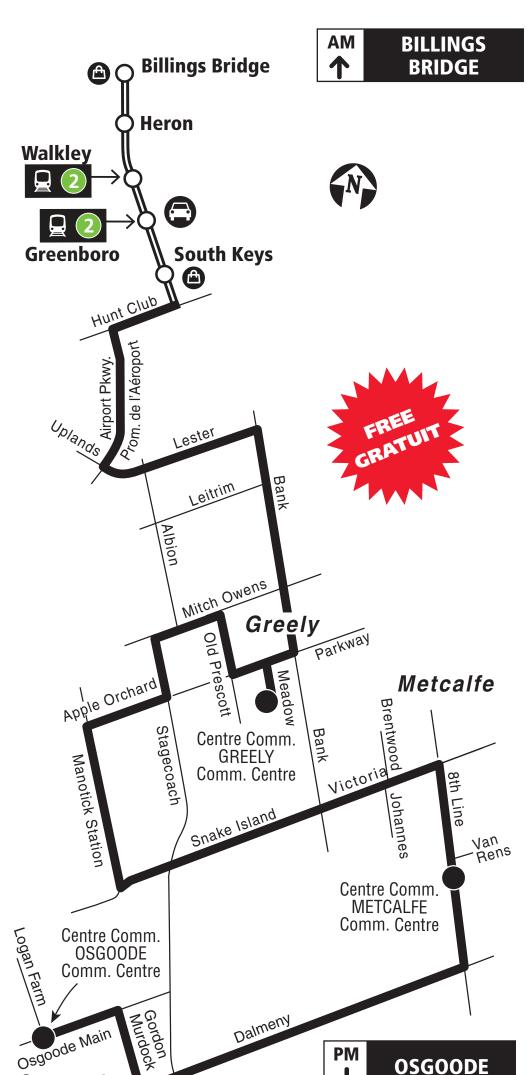
04.2025

2025.04



octranspo.com






## BILLINGS BRIDGE METCALFE, GREELY OSGOODE

## Local

## Thursday only / Jeudi seulement

Selected time periods Périodes sélectionnées





Osgoode

Transitway & Station



Park & Ride / Parc relais



Shopping Centre / Centre commercial

En vigueur 3 mai 2020

**C** Transpo

INFO 613-560-5000 octranspo.com

## **Appendix G Multi-Modal Level of Service Analyses**

Multi-Modal Level of Service - Segments Form Project: S-4 Leitrim West of Bank Lands MTS Consultant: Arcadis Date: Oct 2, 2025 Scenario: Existing

| Scenario:    |                                                                                                  |                                      |                                      |                                         |                        |                                                 |                            |                        |                        |  |
|--------------|--------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------------|------------------------|-------------------------------------------------|----------------------------|------------------------|------------------------|--|
|              | Segment Name                                                                                     |                                      | Bank - Dun Ski                       | pper to Rideau                          |                        | Kelly Farm - Dun Skipper to Paakanaak/Rallidale |                            |                        |                        |  |
|              | OP Transect / Policy Area                                                                        |                                      | Greenbel                             | t or Rural                              |                        |                                                 | Outer Urban                | or Suburban            |                        |  |
|              | Segment Component                                                                                | Majorit                              | / (>50%)                             | Cri                                     | tical                  | Majority                                        | v (>50%)                   | Crit                   | ical                   |  |
|              | Side of Street                                                                                   | W or N                               | E or S                               | W or N                                  | E or S                 | W or N                                          | E or S                     | W or N                 | E or S                 |  |
|              | PLOS Inputs                                                                                      | W 01 N                               | 2 01 0                               | *************************************** | 2 01 0                 | 77 O. R                                         | 2010                       | 11 31 14               | 2010                   |  |
|              |                                                                                                  |                                      |                                      |                                         |                        |                                                 |                            |                        |                        |  |
|              | Posted Speed (km/h)                                                                              |                                      | xm/h                                 |                                         | km/h                   |                                                 | km/h                       |                        | :m/h                   |  |
|              | Two-Way ADT                                                                                      | 13                                   | 950                                  | 13                                      | ,950                   | 1,                                              | 060                        | 1,0                    | 060                    |  |
|              | Pedestrian Facility                                                                              | None                                 | None                                 | None                                    | None                   | Sidewalk                                        | Sidewalk                   | Sidewalk               | Sidewalk               |  |
|              | Does the facility meet the TMP Sidewalk or                                                       |                                      |                                      |                                         |                        |                                                 |                            |                        |                        |  |
|              | MUP Policy? If not, for MUPs, does the location<br>have a low volume of peak daily users AND are | No                                   | No                                   | No                                      | No                     | Yes                                             | Yes                        | Yes                    | Yes                    |  |
| జ            | pedestrian volumes likely less than 20% of total users?                                          |                                      |                                      |                                         |                        |                                                 |                            |                        |                        |  |
| stri         | Facility Width (m)                                                                               |                                      |                                      |                                         |                        | 2.00m                                           | 2.00m                      | 2.00m                  | 2.00m                  |  |
| Pedestrian   | Offset from Motor Vehicle                                                                        |                                      |                                      |                                         |                        | 1.5-2.99m                                       | 1.5-2.99m                  |                        |                        |  |
| _            | Travel Lanes (m)                                                                                 | -                                    |                                      | -                                       | •                      |                                                 |                            | 1.5-2.99m              | 1.5-2.99m              |  |
|              | Presence of Adjacent Parking?                                                                    |                                      | •                                    | -                                       | •                      | -                                               | •                          | -                      | •                      |  |
|              | General Purpose Curb Lane ADT  Max. Distance between                                             | -                                    | •                                    | -                                       | •                      | ≤ 3000                                          | ≤ 3000                     | ≤ 3000                 | ≤ 3000                 |  |
|              | Controlled Crossings (m)                                                                         | -                                    | •                                    | -                                       | •                      | -                                               | •                          | -                      | •                      |  |
|              | Score                                                                                            | 0.00                                 | 0.00                                 | 0.00                                    | 0.00                   | 5.00                                            | 5.00                       | 5.00                   | 5.00                   |  |
|              | PLOS                                                                                             | F                                    | F                                    | F                                       | F                      | Α                                               | Α                          | Α                      | Α                      |  |
|              | Target PLOS                                                                                      |                                      | [                                    | )                                       |                        |                                                 | (                          |                        |                        |  |
|              | BLOS Inputs                                                                                      |                                      |                                      |                                         |                        |                                                 |                            |                        |                        |  |
|              | Cycling Route Classification                                                                     |                                      | Elsev                                | here                                    |                        |                                                 | Elsev                      | where                  |                        |  |
|              | Cycling Facility                                                                                 | Shared Operating Space               | Shared Operating Space               | Shared Operating Space                  | Shared Operating Space | Shared Operating Space                          | Shared Operating Space     | Shared Operating Space | Shared Operating Space |  |
|              | Is the minimum level of separation provided according to OTM Book 18 Pre-Selection               |                                      |                                      |                                         |                        |                                                 |                            |                        |                        |  |
|              | Nomograph - Rural Context (Figure 5.6)? (for                                                     |                                      | •                                    | -                                       |                        | -                                               | -                          | -                      | •                      |  |
|              | paved shoulders) Facility Operation                                                              |                                      |                                      |                                         |                        | _                                               |                            |                        |                        |  |
|              | Pedestrian/Cyclist Volume                                                                        |                                      |                                      |                                         |                        |                                                 |                            |                        |                        |  |
|              | Facility Width                                                                                   |                                      |                                      |                                         |                        |                                                 |                            |                        |                        |  |
|              | racinty Width                                                                                    | -                                    |                                      | -                                       | •                      | -                                               | -                          | -                      | •                      |  |
| Bicycle      | Boulevard/Buffer Width (excluding curb)                                                          |                                      |                                      |                                         |                        | _                                               |                            |                        |                        |  |
| Bi           |                                                                                                  |                                      |                                      |                                         |                        |                                                 |                            |                        |                        |  |
|              | Unsignalized Roadway Crossing Type<br>(where cyclists are required to yield)                     | None                                 | None                                 | None                                    | None                   | None                                            | None                       | None                   | None                   |  |
|              | Number of Travel Lanes at Crossing                                                               |                                      |                                      | -                                       |                        | -                                               |                            | -                      | -                      |  |
|              | Crossing includes Median<br>Refuge (≥ 2.7m)                                                      | -                                    |                                      | -                                       | -                      | -                                               | -                          | -                      | -                      |  |
|              | Cross-street Posted Speed (km/h)                                                                 |                                      |                                      |                                         |                        |                                                 |                            |                        |                        |  |
|              | Cycling Path Blockages                                                                           | Rare                                 | Rare                                 | Rare                                    | Rare                   | Rare                                            | Rare                       | Rare                   | Rare                   |  |
|              | (e.g. bus stops and/or loading zones)  Score                                                     | 0.75                                 | 0.75                                 | 0.75                                    | 0.75                   | 1.60                                            | 1.60                       | 1.60                   | 1.60                   |  |
|              | BLOS                                                                                             | E                                    | E                                    | E                                       | E                      | D                                               | D                          | D                      | D                      |  |
|              | Target BLOS                                                                                      | -                                    |                                      |                                         | -                      |                                                 |                            | ;                      |                        |  |
|              | TLOS Inputs                                                                                      |                                      |                                      |                                         |                        |                                                 |                            |                        |                        |  |
|              |                                                                                                  | BA:                                  | Troffic                              |                                         |                        | Coloot Tue :                                    | it Decignation             |                        |                        |  |
|              | Transit Facility                                                                                 |                                      | Traffic                              |                                         |                        |                                                 | it Designation             |                        |                        |  |
| Transit      | Facility Type                                                                                    | Mixed Traffic                        | Mixed Traffic                        |                                         |                        | Mixed Traffic                                   | Mixed Traffic              |                        |                        |  |
| Īā           | Expected Transit Running Time                                                                    | Slightly Impeded                     | Slightly Impeded                     |                                         |                        | Slightly Impeded                                | Slightly Impeded           |                        |                        |  |
| •            | Transit Travel Speed (if available)                                                              | Enter Speed (if available)           | Enter Speed (if available)           |                                         |                        | Enter Speed (if available)                      | Enter Speed (if available) |                        |                        |  |
|              | TLOS                                                                                             | С                                    | С                                    |                                         |                        | С                                               | С                          |                        |                        |  |
|              | Target TLOS                                                                                      | E (D for freque                      | t transit routes)                    |                                         |                        |                                                 |                            |                        |                        |  |
|              | PRLOS Inputs                                                                                     |                                      |                                      |                                         |                        |                                                 |                            |                        |                        |  |
|              | Context                                                                                          | Other Streets                        | Other Streets                        |                                         |                        | Other Streets                                   | Other Streets              |                        |                        |  |
|              |                                                                                                  |                                      |                                      |                                         |                        |                                                 |                            |                        |                        |  |
|              | Inner Boulevard Width                                                                            | ≤ 0.6m                               | ≤ 0.6m                               |                                         |                        | 2.0-3.99m                                       | 2.0-3.99m                  |                        |                        |  |
| 트            | Middle Boulevard Width                                                                           | ≤ 0.5m                               | ≤ 0.5m                               |                                         |                        | ≤ 0.5m                                          | ≤ 0.5m                     |                        |                        |  |
| Rea          | Outer Boulevard (Frontage) Width                                                                 | ≥ 3.0m                               | ≥ 3.0m                               |                                         |                        | ≥ 3.0m                                          | ≥ 3.0m                     |                        |                        |  |
| Public Realm | Transit Route on Segment?                                                                        | Yes                                  | Yes                                  |                                         |                        | No                                              | No                         |                        |                        |  |
| Put          | Bus Stop Elements                                                                                | No platform, landing zone or shelter | No platform, landing zone or shelter |                                         |                        | -                                               | -                          |                        |                        |  |
|              | Number of Midblock Traffic Lanes                                                                 |                                      | 2                                    |                                         |                        | <u> </u>                                        | 52                         |                        |                        |  |
|              | (both travel directions) Score                                                                   | -                                    | 8.10                                 |                                         |                        | 24.60                                           | 24.60                      |                        |                        |  |
|              |                                                                                                  | -                                    | E                                    |                                         |                        | В                                               | В                          |                        |                        |  |
|              | PRLOS                                                                                            |                                      | _                                    |                                         |                        |                                                 | <u> </u>                   |                        |                        |  |
|              |                                                                                                  |                                      |                                      |                                         |                        |                                                 |                            |                        |                        |  |



#### Multi-Modal Level of Service - Intersections Form

Project: S-4 Leitrim West of Bank Lands MTS

Consultant: Arcadis

Date: Oct 2, 2025

|                 | Existing AM                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            | D 1 01 1 0 1 1 1 1                                                                                           |                                                                                                         |                                              |                                                                 |                                                                                                                                             |                                             |                                                       |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|
|                 | Intersection Name                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            | Bank Street & Milka                                                                                          | ına Road/Blais Road                                                                                     |                                              |                                                                 | Bank Street & Du                                                                                                                            | ın Skipper Drive                            |                                                       |
|                 | OP Transect / Policy Area                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            | Mainstreet Corrid                                                                                            | or (outside a Hub)                                                                                      |                                              |                                                                 | Mainstreet Corrido                                                                                                                          | or (outside a Hub)                          |                                                       |
|                 | PLOS Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |                                                                                                              |                                                                                                         |                                              |                                                                 |                                                                                                                                             |                                             |                                                       |
|                 | Pedestrians Crossing the                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            |                                                                                                              |                                                                                                         |                                              | North Leg                                                       |                                                                                                                                             |                                             |                                                       |
|                 | Number of Travel Lanes Crossed                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                          | 5                                                                                                            | 1-3                                                                                                     | 4                                            | 1-3                                                             | 1-3                                                                                                                                         | No Crosswalk                                | 1-3                                                   |
|                 | <u>Median Refuge (≥2.7m)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                     | No                                                                         | No                                                                                                           | No                                                                                                      | No                                           | No                                                              | No                                                                                                                                          |                                             | No                                                    |
|                 | Crosswalk Treatment                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zebra Stripe Hi-Vis Markings                                               | Zebra Stripe Hi-Vis Markings                                                                                 | Zebra Stripe Hi-Vis Markings                                                                            | Zebra Stripe Hi-Vis Markings                 | Zebra Stripe Hi-Vis Markings                                    | Zebra Stripe Hi-Vis Markings                                                                                                                |                                             | Zebra Stripe Hi-Vis Marking                           |
|                 | Signal Cycle Length (sec)                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            | 13                                                                                                           | 0.0                                                                                                     |                                              |                                                                 | 130                                                                                                                                         | 1.0                                         |                                                       |
|                 | Effective Walk Time (sec)                                                                                                                                                                                                                                                                                                                                                                                                                                        | 77.4                                                                       | 77.4                                                                                                         | 27.4                                                                                                    | 27.4                                         | 75.3                                                            | 75.3                                                                                                                                        |                                             | 24.4                                                  |
|                 | Conflict with Right-Turn Vehicles (For PLOS & BLOS)                                                                                                                                                                                                                                                                                                                                                                                                              | WBR                                                                        | EBR                                                                                                          | NBR                                                                                                     | SBR                                          | WBR                                                             | EBR                                                                                                                                         | NBR                                         | SBR                                                   |
|                 | Right-Turn Geometry                                                                                                                                                                                                                                                                                                                                                                                                                                              | Right-Turn With No Channel                                                 | Right-Turn With No Channel                                                                                   | Right-Turn With No Channel                                                                              | Smart Channel w/ Raised<br>Crossing          | No Right-Turn / Prohib.                                         | Right-Turn With No Channel                                                                                                                  | No Right-Turn / Prohib.                     | Right-Turn With No Channe                             |
| ian             | Right-Turn Signal Phasing                                                                                                                                                                                                                                                                                                                                                                                                                                        | Permissive                                                                 | Permissive                                                                                                   | Permissive                                                                                              | -                                            |                                                                 | Permissive                                                                                                                                  |                                             | Permissive                                            |
| Pedestrian      | Right-Turn Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                | ≤ 150 veh/h                                                                | ≤ 150 veh/h                                                                                                  | ≤ 150 veh/h                                                                                             | > 150 to 300 veh/h                           |                                                                 | ≤ 150 veh/h                                                                                                                                 |                                             | ≤ 150 veh/h                                           |
| Ped             | Right-Turn Effective Corner Radius                                                                                                                                                                                                                                                                                                                                                                                                                               | ≤ 8m                                                                       | ≤ 8m                                                                                                         | ≤ 8m                                                                                                    |                                              |                                                                 | > 8m                                                                                                                                        |                                             | > 8m                                                  |
|                 | Cross-street Posted Speed (km/h)                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50 k                                                                       | m/h                                                                                                          | 80 k                                                                                                    | m/h                                          | 50 F                                                            | km/h                                                                                                                                        | 80                                          | km/h                                                  |
|                 | Conflict with Left-Turn Vehicles                                                                                                                                                                                                                                                                                                                                                                                                                                 | EBL                                                                        | WBL                                                                                                          | SBL                                                                                                     | NBL                                          | EBL                                                             | WBL                                                                                                                                         | SBL                                         | NBL                                                   |
|                 | (For PLOS & BLOS) Left-Turn Signal Phasing                                                                                                                                                                                                                                                                                                                                                                                                                       | Perm or Prot+Perm                                                          | Perm or Prot+Perm                                                                                            | Perm or Prot+Perm                                                                                       | Perm or Prot+Perm                            | Perm or Prot+Perm                                               | No Left-Turn / Prohib.                                                                                                                      | No Left-Turn / Prohib.                      | Perm or Prot+Perm                                     |
|                 | Left-Turn Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                 | > 100 veh/h                                                                | ≤ 50 veh/h                                                                                                   | ≤ 50 veh/h                                                                                              | ≤ 50 veh/h                                   | > 50 to 100 veh/h                                               | NO ECITATITY FORD.                                                                                                                          | THO EGIT-TUITI / TTOTILD.                   | ≤ 50 veh/h                                            |
|                 | Left-Turn Opposing Lanes                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                          | -                                                                                                            | -                                                                                                       | -                                            | ≤ 1                                                             |                                                                                                                                             |                                             | -                                                     |
|                 | Score                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.65                                                                       | 3.45                                                                                                         | 4.20                                                                                                    | 3.45                                         | 4.80                                                            | 4.65                                                                                                                                        |                                             | 4.05                                                  |
|                 | 00010                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C                                                                          | C                                                                                                            | В                                                                                                       | С                                            | A                                                               | Α                                                                                                                                           |                                             | В                                                     |
|                 | PLOS                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                            |                                                                                                              | C S                                                                                                     |                                              |                                                                 | Δ                                                                                                                                           |                                             |                                                       |
|                 | Target PLOS                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |                                                                                                              | <u>~</u><br>В                                                                                           |                                              |                                                                 |                                                                                                                                             |                                             |                                                       |
|                 | BLOS Inputs                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            | •                                                                                                            |                                                                                                         |                                              |                                                                 |                                                                                                                                             | <u>'</u>                                    |                                                       |
|                 | Cycling Route Classification                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                            | Flsev                                                                                                        | where                                                                                                   |                                              |                                                                 | Elsew                                                                                                                                       | here                                        |                                                       |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | North Log                                                                  |                                                                                                              |                                                                                                         | Wastlag                                      | North Log                                                       |                                                                                                                                             | East Leg                                    | Wastlag                                               |
|                 | Cyclists Crossing the                                                                                                                                                                                                                                                                                                                                                                                                                                            | North Leg                                                                  | South Leg                                                                                                    | East Leg                                                                                                | West Leg                                     | North Leg                                                       | South Leg                                                                                                                                   | East Leg                                    | West Leg                                              |
|                 | Type of Cycling Facility Across Leg                                                                                                                                                                                                                                                                                                                                                                                                                              | Crossride                                                                  | Crossride                                                                                                    | Crossride                                                                                               | Crossride                                    | Crossride                                                       | Mixed Traffic                                                                                                                               |                                             | Crossride                                             |
|                 | Two-Way ADT (in Cyclist Travel Direction) Floating Bike Lane or Right-Turn Lane                                                                                                                                                                                                                                                                                                                                                                                  | 3,0                                                                        | 156                                                                                                          | 14,                                                                                                     | 720                                          | 1,8                                                             | 533                                                                                                                                         | 15                                          | ,622                                                  |
|                 | Crossover Approaching the Crossing?                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            |                                                                                                              |                                                                                                         |                                              |                                                                 |                                                                                                                                             |                                             |                                                       |
|                 | **                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No                                                                         | No                                                                                                           | No                                                                                                      | No                                           | No                                                              | No                                                                                                                                          |                                             | No                                                    |
| Ф               | Crossride Operation                                                                                                                                                                                                                                                                                                                                                                                                                                              | Unidirectional                                                             | Unidirectional                                                                                               | Unidirectional                                                                                          | Unidirectional                               | No<br>Unidirectional                                            | No<br>-                                                                                                                                     |                                             | Unidirectional                                        |
| cycle           | Crossride Operation Target Crossride Setback Met?                                                                                                                                                                                                                                                                                                                                                                                                                | Unidirectional<br>Yes                                                      | Unidirectional<br>Yes                                                                                        | Unidirectional<br>Yes                                                                                   | Unidirectional -                             | Unidirectional<br>-                                             |                                                                                                                                             |                                             | Unidirectional<br>No                                  |
| Bicycle         | Crossride Operation Target Crossride Setback Met? Right-Turn Vehicle Volume from Adjacent Roadway > 100 veh/h?                                                                                                                                                                                                                                                                                                                                                   | Unidirectional<br>Yes                                                      | Unidirectional Yes -                                                                                         | Unidirectional<br>Yes                                                                                   | Unidirectional<br>-<br>-                     | Unidirectional<br>-<br>-                                        |                                                                                                                                             |                                             | Unidirectional<br>No                                  |
| Bicycle         | Crossride Operation  Target Crossride Setback Met?  Right-Turn Vehicle Volume                                                                                                                                                                                                                                                                                                                                                                                    | Unidirectional Yes - WBL                                                   | Unidirectional<br>Yes                                                                                        | Unidirectional<br>Yes                                                                                   | Unidirectional -                             | Unidirectional WBL                                              | EBL                                                                                                                                         |                                             | Unidirectional No - SBL                               |
| Bicycle         | Crossride Operation Target Crossride Setback Met? Right-Turn Vehicle Volume from Adjacent Roadway > 100 veh/h?                                                                                                                                                                                                                                                                                                                                                   | Unidirectional<br>Yes                                                      | Unidirectional Yes -                                                                                         | Unidirectional<br>Yes                                                                                   | Unidirectional<br>-<br>-                     | Unidirectional<br>-<br>-                                        |                                                                                                                                             |                                             | Unidirectional<br>No                                  |
| Bicycle         | Crossride Operation  Target Crossride Setback Met?  Right-Turn Vehicle Volume from Adjacent Roadway > 100 veh/h?  Cyclist Left-Turn Operation                                                                                                                                                                                                                                                                                                                    | Unidirectional Yes - WBL                                                   | Unidirectional Yes - EBL                                                                                     | Unidirectional Yes - NBL                                                                                | Unidirectional SBL                           | Unidirectional WBL                                              | EBL General Purpose Through-Left or                                                                                                         | -<br>-<br>NBL                               | Unidirectional No - SBL                               |
| Bicycle         | Crossride Operation Target Crossride Setback Met? Right-Turn Vehicle Volume from Adjacent Roadway > 100 veh/h? Cyclist Left-Turn Operation Cyclist Left-Turn Treatment Type                                                                                                                                                                                                                                                                                      | Unidirectional Yes - WBL Protected Corner - 100                            | Unidirectional Yes - EBL Protected Corner - 140                                                              | Unidirectional Yes - NBL Protected Corner                                                               | Unidirectional SBL Protected Corner          | Unidirectional WBL No Left-Turn                                 | EBL General Purpose Through-Left or Single Left-Turn Lane One Lane Crossed                                                                  | NBL Protected Corner                        | Unidirectional No - SBL No Left-Turn                  |
| Bicycle         | Crossride Operation Target Crossride Setback Met? Right-Turn Vehicle Volume from Adjacent Roadway > 100 veh/h? Cyclist Left-Turn Operation Cyclist Left-Turn Treatment Type Vehicle Lanes Crossed by Cyclists                                                                                                                                                                                                                                                    | Unidirectional Yes  - WBL  Protected Corner -                              | Unidirectional Yes - EBL Protected Corner - 140 A                                                            | Unidirectional Yes  - NBL Protected Corner - 140 A                                                      | Unidirectional  SBL Protected Corner -       | Unidirectional  WBL No Left-Turn -                              | EBL  General Purpose Through-Left or Single Left-Turn Lane One Lane Crossed  50 D                                                           | NBL Protected Corner                        | Unidirectional<br>No<br>-<br>SBL<br>No Left-Turn<br>- |
| Bicycle         | Crossride Operation Target Crossride Setback Met? Right-Turn Vehicle Volume from Adjacent Roadway > 100 veh/h? Cyclist Left-Turn Operation Cyclist Left-Turn Treatment Type Vehicle Lanes Crossed by Cyclists Score BLOS                                                                                                                                                                                                                                         | Unidirectional Yes - WBL Protected Corner - 100                            | Unidirectional Yes  - EBL Protected Corner - 140                                                             | Unidirectional Yes  - NBL Protected Corner - 140 A                                                      | Unidirectional  SBL Protected Corner - 130   | Unidirectional  WBL No Left-Turn - 150                          | EBL  General Purpose Through-Left or Single Left-Turn Lane One Lane Crossed  50 D                                                           | NBL Protected Corner                        | Unidirectional  No  -  SBL  No Left-Turn  -  130      |
| Bicycle         | Crossride Operation Target Crossride Setback Met? Right-Turn Vehicle Volume from Adjacent Roadway > 100 veh/h? Cyclist Left-Turn Operation Cyclist Left-Turn Treatment Type Vehicle Lanes Crossed by Cyclists Score                                                                                                                                                                                                                                              | Unidirectional Yes - WBL Protected Corner - 100                            | Unidirectional Yes  - EBL Protected Corner - 140                                                             | Unidirectional Yes  - NBL Protected Corner - 140 A                                                      | Unidirectional  SBL Protected Corner - 130   | Unidirectional  WBL No Left-Turn - 150                          | EBL  General Purpose Through-Left or Single Left-Turn Lane One Lane Crossed  50 D                                                           | NBL Protected Corner                        | Unidirectional  No  -  SBL  No Left-Turn  -  130      |
| Bicycle         | Crossride Operation Target Crossride Setback Met? Right-Turn Vehicle Volume from Adjacent Roadway > 100 veh/h? Cyclist Left-Turn Operation Cyclist Left-Turn Treatment Type Vehicle Lanes Crossed by Cyclists Score BLOS Target BLOS TLOS Inputs                                                                                                                                                                                                                 | Unidirectional Yes - WBL Protected Corner - 100                            | Unidirectional Yes  - EBL Protected Corner - 140 A                                                           | Unidirectional Yes - NBL Protected Corner - 140 A                                                       | Unidirectional  SBL Protected Corner - 130   | Unidirectional  WBL No Left-Turn - 150                          | EBL  General Purpose Through-Left or Single Left-Turn Lane One Lane Crossed  50  D                                                          | NBL Protected Corner                        | Unidirectional No - SBL No Left-Turn - 130            |
| Bicycle         | Crossride Operation Target Crossride Setback Met? Right-Turn Vehicle Volume from Adjacent Roadway > 100 veh/h? Cyclist Left-Turn Operation Cyclist Left-Turn Treatment Type Vehicle Lanes Crossed by Cyclists Score BLOS Target BLOS TLOS Inputs Transit Facility                                                                                                                                                                                                | Unidirectional Yes  WBL  Protected Corner  100  B                          | Unidirectional Yes - EBL Protected Corner - 140 A                                                            | Unidirectional Yes  - NBL Protected Corner - 140 A A C                                                  | Unidirectional  SBL Protected Corner - 130   | Unidirectional  WBL No Left-Turn - 150 A                        | EBL General Purpose Through-Left or Single Left-Turn Lane One Lane Crossed 50 D                                                             | NBL Protected Corner Traffic                | Unidirectional No - SBL No Left-Turn - 130 A          |
|                 | Crossride Operation Target Crossride Setback Met? Right-Turn Vehicle Volume from Adjacent Roadway > 100 veh/h? Cyclist Left-Turn Operation Cyclist Left-Turn Treatment Type Vehicle Lanes Crossed by Cyclists Score BLOS Target BLOS TLOS Inputs                                                                                                                                                                                                                 | Unidirectional Yes - WBL Protected Corner - 100                            | Unidirectional Yes  - EBL Protected Corner - 140 A                                                           | Unidirectional Yes - NBL Protected Corner - 140 A                                                       | Unidirectional  SBL Protected Corner - 130   | Unidirectional  WBL No Left-Turn - 150                          | EBL  General Purpose Through-Left or Single Left-Turn Lane One Lane Crossed  50  D                                                          | NBL Protected Corner                        | Unidirectional No - SBL No Left-Turn - 130            |
|                 | Crossride Operation Target Crossride Setback Met? Right-Turn Vehicle Volume from Adjacent Roadway > 100 veh/h? Cyclist Left-Turn Operation Cyclist Left-Turn Treatment Type Vehicle Lanes Crossed by Cyclists Score BLOS Target BLOS TLOS Inputs Transit Facility                                                                                                                                                                                                | Unidirectional Yes  WBL  Protected Corner  100  B                          | Unidirectional Yes - EBL Protected Corner - 140 A                                                            | Unidirectional Yes  - NBL Protected Corner - 140 A A C                                                  | Unidirectional  SBL Protected Corner - 130   | Unidirectional  WBL No Left-Turn - 150 A                        | EBL General Purpose Through-Left or Single Left-Turn Lane One Lane Crossed 50 D                                                             | NBL Protected Corner Traffic                | Unidirectional No - SBL No Left-Turn - 130 A          |
| Transit Bicycle | Crossride Operation Target Crossride Setback Met? Right-Turn Vehicle Volume from Adjacent Roadway > 100 veh/h? Cyclist Left-Turn Operation Cyclist Left-Turn Treatment Type Vehicle Lanes Crossed by Cyclists Score BLOS Target BLOS TLOS Inputs Transit Facility Vehicles Travelling                                                                                                                                                                            | Unidirectional Yes  - WBL Protected Corner - 100 B                         | Unidirectional Yes  - EBL Protected Corner - 140 A Mixed Northbound                                          | Unidirectional Yes  - NBL Protected Corner - 140 A A C                                                  | Unidirectional  SBL Protected Corner - 130   | Unidirectional  WBL No Left-Turn - 150 A                        | EBL  General Purpose Through-Left or Single Left-Turn Lane One Lane Crossed  50  D  E  Mixed  Northbound                                    | NBL Protected Corner Traffic                | Unidirectional No - SBL No Left-Turn - 130 A          |
|                 | Crossride Operation Target Crossride Setback Met? Right-Turn Vehicle Volume from Adjacent Roadway > 100 veh/h? Cyclist Left-Turn Operation Cyclist Left-Turn Treatment Type Vehicle Lanes Crossed by Cyclists  Score BLOS Target BLOS TLOS Inputs Transit Facility Vehicles Travelling Average Transit Delay (if available) Example Transit Priority Treatment                                                                                                   | Unidirectional Yes  - WBL  Protected Comer  - 100  B  Southbound ≤ 10 sec  | Unidirectional Yes  - EBL Protected Corner - 140 A  Mixed Northbound                                         | Unidirectional Yes  - NBL Protected Corner - 140 A A C                                                  | Unidirectional  SBL Protected Corner - 130   | Unidirectional  WBL  No Left-Turn - 150  A  Southbound ≤ 10 sec | EBL General Purpose Through-Left or Single Left-Turn Lane One Lane Crossed  50 D  Mixed  Northbound  \$10 sec                               | NBL Protected Corner Traffic                | Unidirectional No - SBL No Left-Turn - 130 A          |
|                 | Crossride Operation Target Crossride Setback Met? Right-Turn Vehicle Volume from Adjacent Roadway > 100 veh/h? Cyclist Left-Turn Operation Cyclist Left-Turn Treatment Type Vehicle Lanes Crossed by Cyclists Score BLOS Target BLOS TLOS Inputs Transit Facility Vehicles Travelling Average Transit Delay (if available) Example Transit Priority Treatment TLOS                                                                                               | Unidirectional Yes  . WBL  Protected Corner . 100 B  Southbound ≤ 10 sec . | Unidirectional Yes  - EBL Protected Corner - 140 A  Mixed Northbound  11-20 sec - B                          | Unidirectional Yes  - NBL Protected Corner - 140 A A C                                                  | Unidirectional  SBL Protected Corner - 130 A | Unidirectional  WBL No Left-Turn - 150 A  Southbound ≤ 10 sec - | EBL  General Purpose Through-Left or Single Left-Turn Lane One Lane Crossed  50  D  E  Mixed  Northbound  ≤ 10 sec                          | NBL Protected Corner                        | Unidirectional No - SBL No Left-Turn - 130 A          |
|                 | Crossride Operation Target Crossride Setback Met? Right-Turn Vehicle Volume from Adjacent Roadway > 100 veh/h? Cyclist Left-Turn Operation Cyclist Left-Turn Treatment Type Vehicle Lanes Crossed by Cyclists  Score BLOS Target BLOS TLOS Inputs Transit Facility Vehicles Travelling Average Transit Delay (if available) Example Transit Priority Treatment                                                                                                   | Unidirectional Yes  . WBL  Protected Corner . 100 B  Southbound ≤ 10 sec . | Unidirectional Yes  - EBL Protected Corner - 140 A  Mixed Northbound  11-20 sec - B                          | Unidirectional Yes  - NBL Protected Corner - 140 A A C Traffic Westbound                                | Unidirectional  SBL Protected Corner - 130 A | Unidirectional  WBL No Left-Turn - 150 A  Southbound ≤ 10 sec - |                                                                                                                                             | NBL Protected Corner  3 - Traffic Westbound | Unidirectional No - SBL No Left-Turn - 130 A          |
|                 | Crossride Operation Target Crossride Setback Met? Right-Turn Vehicle Volume from Adjacent Roadway > 100 veh/h? Cyclist Left-Turn Operation Cyclist Left-Turn Treatment Type Vehicle Lanes Crossed by Cyclists  Score  BLOS Target BLOS TLOS Inputs  Transit Facility Vehicles Travelling Average Transit Delay (if available) Example Transit Priority Treatment TLOS  Target TLOS AutoLOS Inputs                                                                | Unidirectional Yes  . WBL  Protected Corner . 100 B  Southbound ≤ 10 sec . | Unidirectional Yes  - EBL Protected Corner - 140 A  Mixed Northbound  11-20 sec - B                          | Unidirectional Yes  - NBL  Protected Corner 140  A A C  Traffic  Westbound                              | Unidirectional  SBL Protected Corner - 130 A | Unidirectional  WBL No Left-Turn - 150 A  Southbound ≤ 10 sec - | EBL  General Purpose Through-Left or Single Left-Turn Lane One Lane Crossed  50  D  Mixed  Northbound  ≤ 10 sec  - A                        | NBL Protected Corner  3 - Traffic Westbound | Unidirectional No - SBL No Left-Turn - 130 A          |
| Transit         | Crossride Operation Target Crossride Setback Met? Right-Turn Vehicle Volume from Adjacent Roadway > 100 veh/h? Cyclist Left-Turn Operation Cyclist Left-Turn Treatment Type Vehicle Lanes Crossed by Cyclists  Score BLOS Target BLOS TLOS Inputs  Transit Facility Vehicles Travelling Average Transit Delay (if available) Example Transit Priority Treatment TLOS Target TLOS AutoLOS Inputs Overall Intersection Volume to Capacity Ratio                    | Unidirectional Yes  . WBL  Protected Corner . 100 B  Southbound ≤ 10 sec . | Unidirectional Yes  - EBL Protected Corner - 140 A  Mixed Northbound 11-20 sec - B                           | Unidirectional Yes  - NBL  Protected Corner 140  A A C  Traffic  Westbound                              | Unidirectional  SBL Protected Corner - 130 A | Unidirectional  WBL No Left-Turn - 150 A  Southbound ≤ 10 sec - | EBL  General Purpose Through-Left or Single Left-Turn Lane One Lane Crossed  50  D  Mixed  Northbound  ≤ 10 sec  - A                        | NBL Protected Corner                        | Unidirectional No - SBL No Left-Turn - 130 A          |
|                 | Crossride Operation Target Crossride Setback Met? Right-Turn Vehicle Volume from Adjacent Roadway > 100 veh/h? Cyclist Left-Turn Operation Cyclist Left-Turn Treatment Type Vehicle Lanes Crossed by Cyclists  Score  BLOS Target BLOS TLOS Inputs  Transit Facility Vehicles Travelling Average Transit Delay (if available) Example Transit Priority Treatment TLOS  Target TLOS AutoLOS Inputs                                                                | Unidirectional Yes  . WBL  Protected Corner . 100 B  Southbound ≤ 10 sec . | Unidirectional Yes  - EBL  Protected Corner  - 140  A  Mixed  Northbound  11-20 sec  - B  E (D for frequent) | Unidirectional Yes  - NBL Protected Corner - 140 A A C Traffic Westbound  - A nt transit routes)        | Unidirectional  SBL Protected Corner - 130 A | Unidirectional  WBL No Left-Turn - 150 A  Southbound ≤ 10 sec - | EBL  General Purpose Through-Left or Single Left-Turn Lane One Lane Crossed  50  D  Mixed  Northbound  \$ 10 sec  -  A  E (D for frequent   | NBL Protected Corner                        | Unidirectional No - SBL No Left-Turn - 130 A          |
| Transit         | Crossride Operation Target Crossride Setback Met? Right-Turn Vehicle Volume from Adjacent Roadway > 100 veh/h? Cyclist Left-Turn Operation Cyclist Left-Turn Treatment Type Vehicle Lanes Crossed by Cyclists Score BLOS Target BLOS TLOS Inputs Transit Facility Vehicles Travelling Average Transit Delay (if available) Example Transit Priority Treatment TLOS Target TLOS AutoLOS Inputs Overall Intersection Volume to Capacity Ratio Individual Movements | Unidirectional Yes  . WBL  Protected Corner . 100 B  Southbound ≤ 10 sec . | Unidirectional Yes  - EBL  Protected Corner - 140  A  Mixed  Northbound  11-20 sec - B  E (D for frequer     | Unidirectional Yes  NBL  Protected Corner  - 140  A  A  C  Traffic  Westbound  - A  Int transit routes) | Unidirectional  SBL Protected Corner - 130 A | Unidirectional  WBL No Left-Turn - 150 A  Southbound ≤ 10 sec - | EBL  General Purpose Through-Left or Single Left-Turn Lane One Lane Crossed  50  D  E  Mixed  Northbound  ≤ 10 sec  -  A  E (D for frequent | NBL Protected Corner                        | Unidirectional No - SBL No Left-Turn - 130 A          |



## **Appendix H Transit Service Alternative Review**

### Memo



**SUBJECT** 

S-4 Leitrim West of Bank Lands – Transit Service Alternative Review

DATE

June 5, 2025

**DEPARTMENT** 

Transportation Engineering

**COPIES TO** 

TO
Evan Garfinkel
Senior Manager, Land Development
Regional Group

\6.0 Technical\6.23 Traffic\03 Reports\Transit Review

**PROJECT NUMBER** 

145172

**OUR REF** 

NAME

Eric McLaren

eric.mclaren@arcadis.com

Arcadis was retained by Regional Group to undertake a Master Transportation Study (MTS) in support of the Concept Plan application for the S-4 Leitrim West of Bank Lanes located at the southern edge of the Leitrim community west of Bank Street.

On June 2, 2025, it was agreed with City of Ottawa staff that a road connection to Bank Street for general traffic would be undesirable for a number of reasons. However, City staff requested a review of the potential alternative options for providing transit service to the proposed development, including one alternative with a transit-only connection to Bank Street. This memorandum summarizes the results of this review.

The following topics are discussed in this report:

- Transit Service Alternatives
- 2. Planned Roadway Network
- 3. Traffic Control Requirements
- 4. Comparison of Alternatives
- 5. Preferred Alternative

## **Transit Service Alternatives**

Currently, transit service in the vicinity of the subject site is provided by Route #94. Route #94 provides peak period service only with 30-minute headways between departures. This route extends from Leitrim Station and travels along Kelly Farm Drive and Dun Skipper Drive to provide transit service to the portion of the Leitrim community west of Bank Street.

Three alternatives have been identified for extending transit service into the subject site:

- Alternative 1: Extend transit service along Kelly Farm Drive. Buses would use the cul-de-sac at the end of Kelly Farm Drive to turn around. It is assumed that buses would no longer turn around on Dun Skipper Drive.
- Alternative 2: Loop transit service along Miikana Road, Paakanaak Avenue and Kelly Farm Drive. It is assumed that buses would no longer turn around on Dun Skipper Drive.
- Alternative 3: Provide a transit-only connection to Bank Street along the proposed servicing block and loop transit service along Kelly Farm Drive, through the subject site via a local road and the Bank Street transit-only connection, and then along Bank Street and Dun Skipper Drive.

Figure 1 illustrates the proposed transit route for each of the three alternatives.

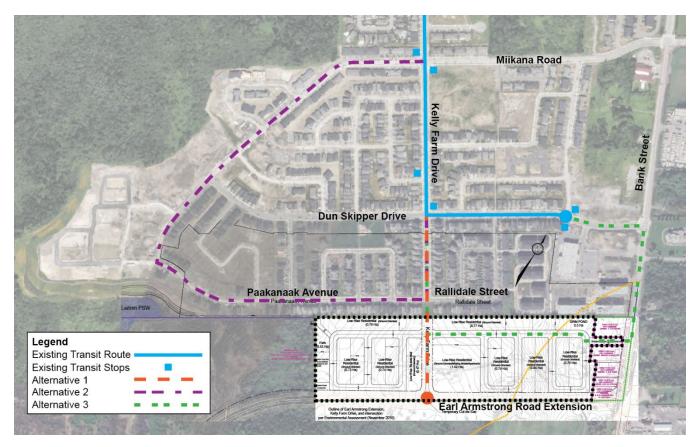



Figure 1 Transit Service Alternatives

## **Planned Roadway Network**

The draft Transportation Master Plan (TMP) Road Network Development Report (March 31, 2025) identifies the Earl Armstrong Road extension from Bowesville Station to Bank Street as a Phase 1 project. It is therefore expected to be implemented within the next ten years. The subject site will likely require approximately five years to be fully built out and occupied. As such, the transit service alternatives identified above will only be required for approximately 5 years and note that for Alternative 3 the transit-only connection to Bank Street will likely cease usage after the construction of the Earl Armstrong Road extension due to superior connectivity and routing options. Therefore, the transit-only connection will likely require reconstruction, modification or repurposing resulting in additional costs.

## **Traffic Control Requirements**

Both Alternative 1 and 2 will be operating in mixed-traffic conditions with no transit-only facilities. As such, no additional traffic controls will be required.

In contrast, Alternative 3 will include a transit-only connection to Bank Street. The only means of enforcing this transit-only restriction will be to install appropriate signage and on-road pavement markings advising drivers that the connection is only available for buses. However, it is anticipated that there will be challenges with maintaining vehicular compliance (e.g., commuters, taxis, Uber drivers, etc.) given the low frequency of bus service in the

Evan Garfinkel Regional Group June 5, 2025

area (i.e., low risk of being caught) and the level of convenience that this connection will provide. Without controlling these non-permitted uses, there is the potential that the transit-only connection to Bank Street could introduce another conflict area with the MUP and increases the likelihood of incidents with vulnerable road users.

## **Comparison of Alternatives**

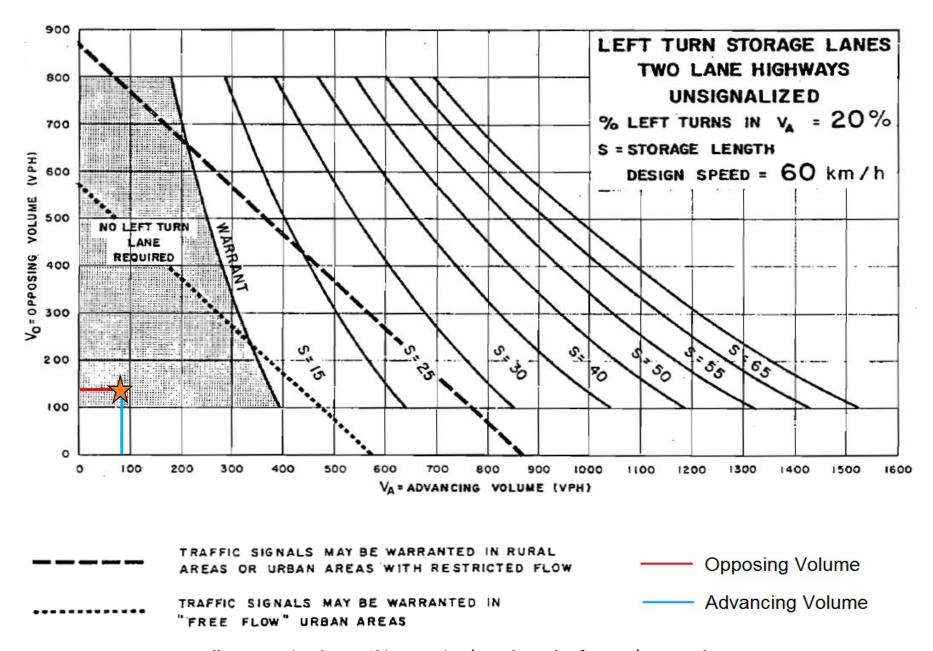
**Table 1** summarizes the key differences between each of the three alternatives.

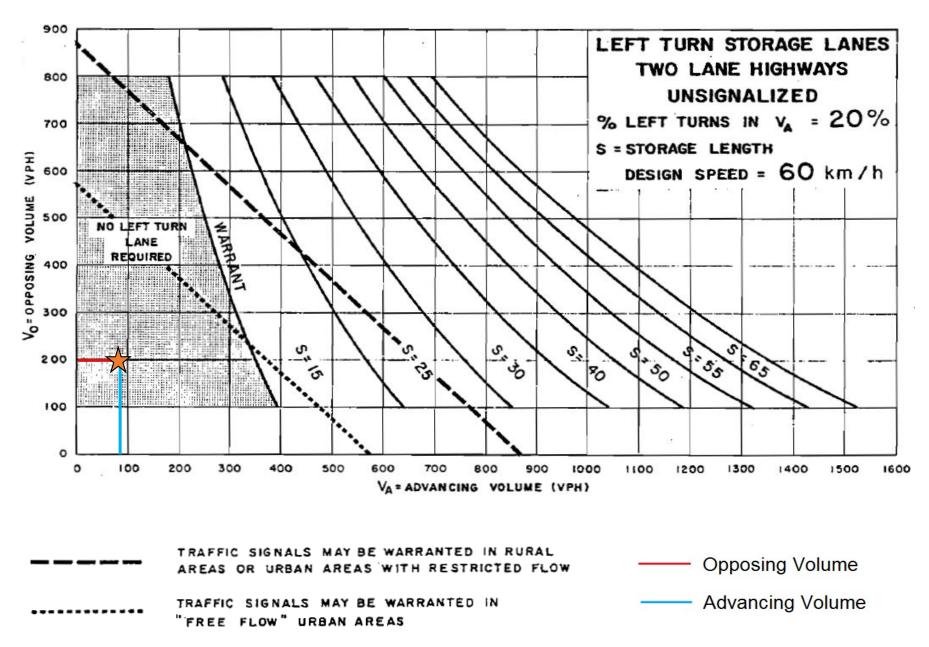
Table 1 Comparison of Alternatives

|                                                                           | Alternative 1                                                                                                                                                                                                                                                                                                                                                                                                                                             | Alternative 2                                                                                                                                       | Alternative 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Travel Distance<br>(from Kelly Farm &<br>Miikana and back)                | 1,600 m                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,100 m                                                                                                                                             | 2,300 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Transit Coverage<br>(area within 400m of<br>existing/future bus<br>stops) | Subject Site: 95% Pathways Subdivision: 39% Total: 48%                                                                                                                                                                                                                                                                                                                                                                                                    | Subject Site: 85% Pathways Subdivision: 100% Total: 98%                                                                                             | Subject Site: 100% Pathways Subdivision: 39% Total: 48%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Infrastructure<br>Requirements                                            | A cul-de-sac would be required at the southern end of Kelly Farm Drive to allow buses to turn around. As the cul-de-sac would need to remain operational during the construction of the Earl Armstrong Road extension, it will be necessary to temporarily use some of the residential land adjacent to Kelly Farm Drive to provide the space required for the cul-de-sac. The cul-de-sac would not fit within the 26 m right-of-way of Kelly Farm Drive. | This alternative utilizes existing roadways and would only require the construction of temporary bus stops along Miikana Road and Paakanaak Avenue. | Currently, the active transportation connection to Bank Street will be 6 m wide to accommodate emergency service.  To allow transit operations along this connection, there are three options:  • Widen the path to 7 m and add a multi-use path (MUP) for active transportation users.  • Widen the path to 7 m and do not provide any space for active transportation users.  • Widen the path to 7 m and allow one-way transit service only.  It is estimated that providing the temporary transit-only connection to Bank Street may cost up to an additional \$30,000 for infrastructure that will only |

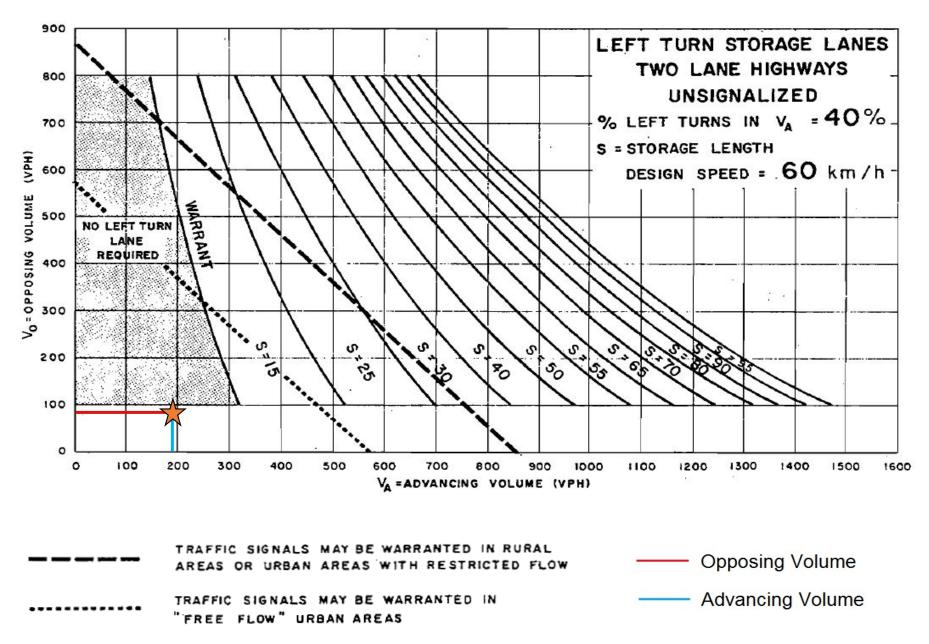
|                               | Alternative 1                                                                                                                                                                                                                      | Alternative 2                                                                                                                                                                                                                                                         | Alternative 3                                                                                                                                                                          |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                       | be required for<br>approximately 5 years in<br>the interim until the Earl<br>Armstrong Road extension<br>is completed.                                                                 |
| Delays to Transit             | Minimal delays anticipated given the low traffic volumes on Kelly Farm Drive.  The intersections of Kelly Farm & Miikana and of Kelly Farm & Dun Skipper are projected to experience average delays of 6 to 8 seconds per vehicle. | Minimal delays anticipated given the low traffic volumes on Kelly Farm Drive, Miikana Road and Paakanaak Avenue.  The intersections of Kelly Farm & Miikana and of Kelly Farm & Dun Skipper are projected to experience average delays of 6 to 8 seconds per vehicle. | Buses turning eastbound left via the Bank Street connection are projected to experience average delays of 32 seconds (LOS 'D') in the AM peak and 61 seconds (LOS 'F') in the PM peak. |
| Distance Along<br>Local Roads | 0 m                                                                                                                                                                                                                                | 680 m                                                                                                                                                                                                                                                                 | 500 m                                                                                                                                                                                  |

### **Preferred Alternative**


Based on the results of the comparison of alternatives (see **Table 1**), **the preferred alternative is Alternative 2**. Alternative 2 proposes to loop transit service along Miikana Road, Paakanaak Avenue and Kelly Farm Drive.


Although Alternative 2 only achieves 85% transit coverage for the subject site (as opposed to the target of 95%), when considering the transit coverage of both the subject site and the adjacent Pathways subdivision, this alternative achieves an overall transit coverage of 98%. In comparison, the other two alternatives only achieve an overall transit coverage of 48%.

Additionally, Alternative 2 has a shorter travel distance than Alternative 3 while still allowing for looped bus service, largely makes use of existing infrastructure, is projected to experience minimal delays and is not expected to create potential compliance issues.


In comparison, Alternative 1 has a shorter travel distance than Alternative 2, but will result in fewer residential units on an interim basis until the Earl Armstrong Road extension is complete to provide the space required for the cul-de-sac. Alternative 3 also has significant issues compared to Alternative 2, including high left-turn delays at Bank Street, potential compliance issues and additional costs for infrastructure that would only be required for approximately 5 years. Alternative 3 may also result in either excess pavement space in the long term, no active transportation connection to Bank Street until the Earl Armstrong Road extension is complete, or one-way transit service only, depending on the configuration of the connection to Bank Street. Either of these three outcomes is undesirable.

## Appendix I Left-Turn Warrant Analysis









## **Appendix J Transportation Demand Management**

### **TDM Measures Checklist:**

Residential Developments (multi-family, condominium or subdivision)

# Legend The measure is generally feasible and effective, and in most cases would benefit the development and its users The measure could maximize support for users of sustainable modes, and optimize development performance The measure is one of the most dependably effective tools to encourage the use of sustainable modes

|         | TDM   | measures: Residential developments                                                                                               | Check if proposed & add descriptions |
|---------|-------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|         | 1.    | TDM PROGRAM MANAGEMENT                                                                                                           |                                      |
|         | 1.1   | Program coordinator                                                                                                              |                                      |
| BASIC ★ | 1.1.1 | Designate an internal coordinator, or contract with an external coordinator                                                      | Not Applicable to Subdivisions       |
|         | 1.2   | Travel surveys                                                                                                                   |                                      |
| BETTER  | 1.2.1 | Conduct periodic surveys to identify travel-related<br>behaviours, attitudes, challenges and solutions,<br>and to track progress |                                      |
|         | 2.    | WALKING AND CYCLING                                                                                                              |                                      |
|         | 2.1   | Information on walking/cycling routes & des                                                                                      | tinations                            |
| BASIC   | 2.1.1 | Display local area maps with walking/cycling access routes and key destinations at major entrances (multi-family, condominium)   | Not Applicable to Subdivisions       |
|         | 2.2   | Bicycle skills training                                                                                                          |                                      |
| BETTER  | 2.2.1 | Offer on-site cycling courses for residents, or subsidize off-site courses                                                       |                                      |

|        | TDM     | measures: Residential developments                                                                                                | Check if proposed & add descriptions |
|--------|---------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|        | 3.      | TRANSIT                                                                                                                           |                                      |
|        | 3.1     | Transit information                                                                                                               |                                      |
| BASIC  | 3.1.1   | Display relevant transit schedules and route maps at entrances (multi-family, condominium)                                        | ☐ Not Applicable to Subdivisions     |
| BETTER | 3.1.2   | Provide real-time arrival information display at entrances (multi-family, condominium)                                            | □ Not Applicable to Subdivisions     |
|        | 3.2     | Transit fare incentives                                                                                                           |                                      |
| BASIC  | ★ 3.2.1 | Offer PRESTO cards preloaded with one monthly transit pass on residence purchase/move-in, to encourage residents to use transit   | To be considered                     |
| BETTER | 3.2.2   | Offer at least one year of free monthly transit passes on residence purchase/move-in                                              |                                      |
|        | 3.3     | Enhanced public transit service                                                                                                   |                                      |
| BETTER | ★ 3.3.1 | Contract with OC Transpo to provide early transit services until regular services are warranted by occupancy levels (subdivision) | If required                          |
|        | 3.4     | Private transit service                                                                                                           |                                      |
| BETTER | 3.4.1   | Provide shuttle service for seniors homes or lifestyle communities (e.g. scheduled mall or supermarket runs)                      | Not Applicable to Subdivisions       |
|        | 4.      | CARSHARING & BIKESHARING                                                                                                          |                                      |
|        | 4.1     | Bikeshare stations & memberships                                                                                                  |                                      |
| BETTER | 4.1.1   | Contract with provider to install on-site bikeshare station ( <i>multi-family</i> )                                               | □ Not Applicable to Subdivisions     |
| BETTER | 4.1.2   | Provide residents with bikeshare memberships, either free or subsidized (multi-family)                                            | ☐ Not Applicable to Subdivisions     |
|        | 4.2     | Carshare vehicles & memberships                                                                                                   | :                                    |
| BETTER | 4.2.1   | Contract with provider to install on-site carshare vehicles and promote their use by residents                                    | □ Not Applicable to Subdivisions     |
| BETTER | 4.2.2   | Provide residents with carshare memberships, either free or subsidized                                                            | □ Not Applicable to Subdivisions     |
|        | 5.      | PARKING                                                                                                                           |                                      |
|        | 5.1     | Priced parking                                                                                                                    |                                      |
| BASIC  | ★ 5.1.1 | Unbundle parking cost from purchase price (condominium)                                                                           | □ Not Applicable to Subdivisions     |
| BASIC  | ★ 5.1.2 | Unbundle parking cost from monthly rent (multi-family)                                                                            | □ Not Applicable to Subdivisions     |

| TDI            | Il measures: Residential developments                                   | Check if proposed & add descriptions |
|----------------|-------------------------------------------------------------------------|--------------------------------------|
| 6.             | TDM MARKETING & COMMUNICATION                                           | IS                                   |
| 6.1            | Multimodal travel information                                           |                                      |
| BASIC ★ 6.1.   | Provide a multimodal travel option information package to new residents |                                      |
| 6.2            | Personalized trip planning                                              |                                      |
| BETTER ★ 6.2.1 | Offer personalized trip planning to new residents                       |                                      |

Ottawa Arcadis Canada Inc. Ontario K1S 5N4 Suite 500-333 Preston Street Ottawa, ON K1S 5N4

Phone: 613-225-1311613 721 0555

www.arcadis.com