ENVIRONMENTAL SOIL INVESTIGATION PROPOSED DEVELOPMENT 2940, 2946 & 2948 BASELINE ROAD **OTTAWA, ONTARIO**

Prepared for:

3223701 Canada Inc. (Brigil Platinum)

By:

SPL CONSULTANTS LIMITED

Project: 1599-710 146 Colonnade Road, Unit 17 June 2013 Ottawa, Ontario K2E 7Y1

Tel: 613.228.0065 Fax: 613.228.0045

Proposed Development – 2940, 2946 & 2948 Baseline Road, Ottawa, ON

_								_
т,	ΛО	16	AE.	CO	NIT	FER	ΝТ	C
	40	LF	L)F		IVI	ГГІ	u 1	. 7

i

1.	INTRODUCTION	1
1.1	SITE DESCRIPTION & ACTIVITIES	1
1.2	PREVIOUS INVESTIGATIONS	1
2.	SCOPE OF WORK/METHODOLOGY	6
3.	FIELD INVESTIGATION	7
3.1	UTILITY LOCATES	7
3.2	BOREHOLES	7
3.3	SOIL SAMPLING	7
3.3	FIELD SCREENING MEASUREMENTS	8
3.4	GROUNDWATER MONITORING WELL INSTALLATION	8
4.	SUBSURFACE CONDITIONS	8
4.1	SOIL CONDITIONS	8
4.2	GROUNDWATER CONDITIONS	9
5.	CHEMICAL ANALYSES	9
5.1	RATIONALE FOR STANDARDS SELECTION	9
5.2	RATIONALE FOR SAMPLE SELECTION	10
5.3	RESULTS OF SOIL ANALYSES	11
6.	CONCLUSIONS AND RECOMMENDATIONS	12

TABLES

- TABLE 1: MONITORING WELL INSTALLATION & WATER LEVELS
- TABLE 2: SUMMARY OF SOIL SAMPLES SUBMITTED FOR CHEMICAL ANALYSIS
- TABLE 3: SUMMARY OF HEADSPACE READINGS USING RKI EAGLE PORTABLE COMBUSTIBLE GAS DETECTOR
- TABLE 4: SUMMARY OF METALS AND INORGANICS IN SOIL
- TABLE 5: SUMMARY OF PETROLEUM HYDROCARBONS (PHCs) AND BTEX IN SOIL
- TABLE 6: SUMMARY OF POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) IN SOIL

DRAWINGS

- DRAWING 1: SITE LOCATION PLAN
- DRAWING 2: BOREHOLE AND MONITORING WELL LOCATION PLAN
- DRAWING 3: CROSS-SECTION A'-A

APPENDICES

- APPENDIX A: BOREHOLE LOGS
- APPENDIX B: CERTIFICATE OF ANALYSES

1

1. **INTRODUCTION**

SPL Consultants Limited (SPL) was retained by Mr. Michel Gagnon, P.Eng., of 3223701 Canada Inc. (Brigil Platinum) to conduct to an Environmental Soil Investigation (ESI) at the above noted property. The terms of reference for the project are as outlined in our proposal number P-13.03.070 dated March 22, 2013 and accepted by Mr. Gagnon on April 16, 2013. This assessment has been requested and performed as part of a geotechnical investigation prior to the proposed redevelopment of the subject site. This report should not be considered as a Phase Two Environmental Site Assessment (ESA) under Ontario Regulation (O.Reg.) 153/04, as amended. It is the understanding of SPL that a Phase Two ESA will be completed to support a Record of Site Condition (RSC) in the future. This report does not contain recommendations related to geotechnical issues; the latter have been addressed in a geotechnical report submitted under a separate cover.

1.1 **SITE DESCRIPTION & ACTIVITIES**

The site under assessment is a quasi-rectangular parcel of land (comprised of two properties: 2940 and 2946 & 2948 Baseline Road) with a total area of approximately 24.5 hectares (6.1 acres) located on the south side of Baseline Road at the intersection of Sandcastle Drive, in the City of Ottawa, Ontario. The property is located in an area of mixed residential, commercial and industrial development and is zoned as Business Park Industrial Zone (2940 Baseline) and General Mixed Use Zone (2946 & 2948 Baseline).

The property of 2940 Baseline Road is currently occupied by an electronic waste recycling company. The property of 2946 & 2948 Baseline Road is currently occupied by a commercial and office building.

The proposed redevelopment of the subject property will involve the demolition of the structures located on the 2940 Baseline property in order to construct a high rise development composed of three (3) residential towers connected at grade by a commercial/retail area with an underground parking.

A site location plan is provided in **Drawing 1**.

1.2 **PREVIOUS INVESTIGATIONS**

A summary of the previous reports provided to SPL as part of this investigation are provided below:

Phase II Environmental Site Assessment, 2940 Baseline Road, Ottawa, Ontario. Prepared for Craig Construction Equipment Limited, prepared by Oliver, Mangione, McCalla & Associates (OMM), dated March 9, 2000.

A Phase II Environmental Site Assessment (ESA) was conducted following the identification of the following issues during a Phase I ESA:

- Potential of petroleum hydrocarbon impact to the soil and/or overburden groundwater regimes due to the former existence of on-site underground storage tanks and pump island;
- Potential of asbestos-containing materials (insulated pipes); and,
- Quality of the on-site bedrock well water.

The investigation included the advancement of three (3) boreholes (BH-1 to 3) drilled down to a depth of 4.42 meters below ground surface. No groundwater monitoring well was installed but a groundwater sample was collected from borehole BH-3. Selected soil samples, including the groundwater sample from BH-3 and a groundwater sample collected from the potable water well located inside the building, were analysed for a selection of the following parameters: BTEX (benzene, toluene, ethylbenzene and xylenes), TPH (total petroleum hydrocarbons) (gas/diesel), TPH (heavy oil), metals, hardness, pH, conductivity, fluoride, nitrate, sulphate and chloride.

The results of the soil and groundwater samples were compared to the Table A (potable groundwater condition) of the Ontario Ministry of the Environment (MOE) Guideline for Use at Contaminated Sites in Ontario (Revised February 1997). The results of the potable groundwater sample were compared to the Ontario Drinking Water Objectives.

The following conclusions were concluded by OMM:

- ➡ Based on the results of this investigation, the underlying soil and overburden groundwater regimes in the vicinity of the former pump island and underground storage tanks have been adversely impacted with petroleum hydrocarbons which exceed provincial remediation criteria. In addition, due to the location of the impacted soil, there is potential for soil and/or groundwater contamination on the adjacent property to the east. The full extent of the on-site and off-site impacted soil and groundwater is undefined;
- A groundwater sample collected from the on-site bedrock well meets the recommended provincial criteria for the parameters tested;
- Asbestos-containing materials have been identified in the water pipe insulation and cement elbows. Several areas of the insulation were noted to be in poor condition and the cut ends of the pipe wrap were noted to be exposed.

<u>Phase I Environmental Site Assessment Update, 2940 Baseline Road, Ottawa, Ontario. Prepared for R.M.</u> Gardiner Construction Company, prepared by Trow Associates Inc., dated August, 2009.

Trow Associates Inc. (Trow) were retained to complete a Phase I ESA update for the property. The Phase I ESA update was to be used as a termination baseline condition audit by comparing the current environmental conditions to those previously documented by Trow in 2000.

The following conclusions and recommendations were drawn as a result of the completion of the Phase I ESA:

- The site is occupied by a commercial building complete with a mixed commercial/residential land use within the City of Ottawa;
- ◆ The building is currently vacant and consists of garages, warehouses, and office space. It was previously occupied by an equipment rental company. A small addition, to the east, is currently occupied by an office;
- Based on provided information, underground storage tank (UST) and aboveground storage tanks (ASTs) and fuel pump islands were formerly located on the site. In addition, waste oil and liquid

drums were historically stored outside of the building. The previous assessments determined that soil and groundwater impact is present on the site, predominantly in association with a former UST to the southeast of the building. Based on the document review, the soil and groundwater impact has not been fully delineated;

- Based on the review of the air-photos and the site review, the general housekeeping practices appear to have been poor. Abandoned drums, ASTs, batteries and various types of mechanical equipment were observed on sand and gravel cover on the property with no evidence of spill containment systems;
- Staining was commonly identified on the property (i.e. within the building, the Quonset hut, and the exterior);
- Large soil mounds were identified along the southern and eastern portions of the property.

Based on the findings of this assessment, Trow summarized the following final areas of potential environmental concern (APEC) to be investigated:

- APEC 1. Historical petroleum hydrocarbon impact southeast of the building. Reported 1800 to 2000 tonnes of impacted soil, but not fully delineated. Also, staining in interior of garage at former AST (southeast). Contaminants of concern (COC) are petroleum hydrocarbons and BTEX. Recommendation: Install two interior monitoring wells and three exterior monitoring wells near the property limits. Assess soil and groundwater.
- APEC 2. Former pump island and former UST/ASTs near Quonset Hut. Limited assessment conducted and wells destroyed. COC are petroleum hydrocarbons and BTEX. Recommendation: Install three monitoring wells in the area to assess soil and groundwater.
- APEC 3. General storage of drums, waste materials, equipment combined, batteries with identified staining on property. COC are petroleum hydrocarbons, volatile organic compounds (VOCs), metals. Recommendation: Excavate 10 to 15 test pits throughout the property to assess surficial soil conditions on the property. Sample monitoring wells installed as per APEC 2 for metals.
- APEC 4. Based on the age of the building and visual observations, several potential designated substances are suspected. COC are special attention substances. Recommendation: Prior to any renovation and/or demolition, a designated substance survey should be completed.

Proposed Development - 2940, 2946 & 2948 Baseline Road, Ottawa, ON

4

Environmental Site Remediation Program, Industrial Property, 2940 Baseline Road, Ottawa, Ontario, prepared for R.M. Gardiner Construction Company Ltd., prepared by Paterson Group Inc., dated <u>December 23, 2009 – Report incomplete, figures were missing from the copy provided.</u>

Paterson Group Inc. (Paterson) reviewed the available site plans, test hole logs, and analytical test results from the following previous studies, which were not provided to SPL for review:

- Phase I ESA, 2940 Baseline Road, Nepean, Ontario, prepared for Craig Construction Equipment Ltd., prepared by Oliver, Mangione, McCalla & Associates (OMM), dated January 2000;
- Site Layout, 2940 Baseline Road, Nepean, Ontario, prepared by Trow Associates, dated July 2009;
- Summary of Environmental Site Assessment Activities and Estimated Remedial Costs, 2940 Baseline Road, Nepean, Ontario, prepared by Watters Environmental Group Inc. (Watters), dated November 2007;
- The previous Watters report included the review of a Phase I ESA prepared for the site by OMM as well a review of a Phase I ESA update for the site prepared by Watters.

The investigation included the advancement of eleven boreholes while nine were instrumented with a groundwater monitoring well. In addition, five near surface soil samples were collected to address concerns associated with fill material and surficial staining. Selected soil and groundwater samples were submitted for laboratory analysis of heavy metals, VOCs including BTEX, petroleum hydrocarbons and/or polycyclic aromatic hydrocarbons (PAHs).

The results of the soil and groundwater samples were compared to the Table 2 of the document entitled Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, prepared by the MOE, March 9, 2004. The Table 2 Industrial/Commercial/Community Property Use standards for coarse grained soil were considered applicable based on the historical and future intended industrial/commercial use of the site and because the site is currently equipped with a potable groundwater well.

Soil samples from three of the boreholes and one of the near surface soil samples were found to exceed the MOE soil standards. Each of the groundwater samples was found to be in compliance with the MOE standards.

A test pit was excavated on-site in the area of known contaminated soil in order to collect a sample for waste classification for disposal of the contaminated soil at a landfill. Seven additional test pits were excavated on-site in areas of potential environmental concerns identified during the review of previous reports.

The following was concluded by Paterson:

The contaminated soil in the area of the former UST and drum storage area was excavated and was disposed of at an appropriate landfill site (WSI in Navan, Ontario). Approximately 4,339 metric tonnes of soil were taken to the WSI Navan landfill. The site then backfilled with engineered backfill and compacted in 0.3 meter lifts using a sheepsfoot roller.

Soil samples were taken from the base and walls of the excavation in regular sampling intervals. A total of twenty-six soil samples were submitted for laboratory analysis of a combination of BTEX, PHCs, VOCs and/or PAHs. Twenty final confirmation of remediation soil samples were collected from the remediated area and were submitted for laboratory analysis. Three additional soil samples from the test pits are considered to be final. The final soil test results are in compliance with the selected MOE Table 2 standards for industrial/commercial/community property use.

Groundwater samples were recovered from two monitoring wells installed in the remediated area prior to backfilling. The groundwater test results are in compliance with the selected MOE Table 2 standards.

Paterson's reported opinion was that the contaminated soil identified during the previous site investigations has been remediated.

<u>Phase I Environmental Site Assessment, Commercial Property, 2946-2948 Baseline Road, Ottawa, Ontario, prepared for Brigil Platinum, prepared by Paterson Group Inc., dated December 1, 2010.</u>

Paterson was retained to complete a Phase I ESA for the property.

The following conclusions and recommendations were drawn as a result of the completion of the Phase I ESA:

- The historical research indicated that the subject site was vacant prior to being developed with the existing commercial building prior to 1978. The site has been occupied by commercial tenants since construction. The area east of the site has been used as an equipment rental facility since the 1960's until recently. A small scale sand pit operation appeared to be present on the south portion of the site and the adjacent property to the east in the 1960's;
- Following the historical review, a site visit was conducted. The subject site is occupied by Bouclair, Quickie Convenience, Fat Albert's Restaurant, Appletree Medical and dentists, who use the building for retail or commercial office space. The neighbouring properties to the north, west and south of the site are used for residential purposes. Vacant equipment rental facility is located to the east of the subject site. However, given the remedial and exploratory work that was conducted at this property by Paterson, this site is not anticipated to pose a risk to the subject land;
- Based on the findings of this assessment, it is Paterson's opinion that a Phase II ESA will not be required for the property at this time;
- Asbestos may be present within the vinyl floor tiles, suspended ceiling tiles and the drywall joint compound throughout site building. These materials were generally in good condition. The encapsulation, handling or removal of asbestos containing material should be carried out by a contractor specialized for these works;
- Lead-based paints may be present on original painted surfaces; and,
- ◆ A designated substance survey (DSS) of the site building will be required prior to demolition in accordance with the Occupational Health and Safety Act. If the building is not going to be demolished, an Asbestos Survey of the building should be conducted as per O. Reg. 278/05.

Environmental Son investigation

Proposed Development – 2940, 2946 & 2948 Baseline Road, Ottawa, ON

<u>Phase I Environmental Site Assessment, 2946-2948 Baseline Road, Ottawa, Ontario, prepared for 6967230 Canada Inc., prepared by Exp Services Inc., dated January 17, 2013.</u>

Exp Services Inc. (exp) was retained to complete a Phase I ESA for the commercial property.

The following conclusions and recommendations were drawn as a result of the completion of the Phase I ESA:

- Based on the results of the Phase I ESA completed at 2946-2948 Baseline Road, Ottawa, Ontario, exp has identified no areas of potential environmental concern due to on or off-site operations. No further environmental work is recommended at this time.
- ♦ However, as a best management practice, based date of construction of the site building and the limited scope of the previous asbestos containing material sampling program, exp recommends that prior to any renovations or demolition, a Designated Substance Survey (DSS) of the building be completed as per section 10 of the Ontario Health and Safety Act, O.Reg. 278/05.

2. SCOPE OF WORK/METHODOLOGY

The objective of the ESI was to, as part of a joint geotechnical investigation, evaluate the environmental condition of the soil and also to install groundwater monitoring wells to be used as part of a future Phase Two ESA at the site. The tasks carried out are summarized below:

- i. requested public and private utility providers to locate and mark the locations of the underground services at the subject site;
- ii. drilled ten (10) boreholes (BH13-1 to 10) to depths ranging from 1.4 m to 19.8 m below existing grade on the subject site;
- iii. installed monitoring wells in four (4) of the boreholes (BH13-2, BH13-3, BH13-5 and BH13-7);
- iv. obtained soil samples at frequent depth intervals from eight (8) of the ten (10) boreholes (BH13-1 to 8);
- v. conducted chemical analyses on representative soil samples;
- vi. compared the results of the chemical analyses of soil to Tables 2 and 3 residential/parkland/institutional (RPI) property use Standards released in April, 2011;
- vii. prepared a report summarizing the results of the investigation.

3. **FIELD INVESTIGATION**

3.1 **UTILITY LOCATES**

Locates for subsurface utilities were obtained from the public and private utility companies for the boreholes prior to drilling. Borehole locations were also scanned by a private utility locator using cable locating equipment.

3.2 **BOREHOLES**

Between May 1 and 7, 2013, a total of ten (10) boreholes were advanced (BH13-1 to BH13-10), under the direct supervision of SPL personnel, using a truck-mounted drill rig supplied and operated by George Downing Estates Drilling of Hawkesbury, Ontario. Soil samples were obtained using a standard splitspoon sampler. Monitoring wells were installed in four (4) of the boreholes (BH13-2, BH13-3, BH13-5, and BH13-7). Borehole locations were chosen based on the requirements of the joint geotechnical investigation as well based on the review of available previous environmental investigations on-site. The locations of the boreholes advanced during this investigation are shown on Drawing 2.

3.3 **SOIL SAMPLING**

All soil samples from the boreholes were collected and handled in accordance with generally accepted sampling and handling procedures used by the environmental consulting industry and in accordance with O. Reg. 153/04 as amended. All sample containers, preservative, and labels were supplied by the laboratory providing sample analysis.

During drilling, the split spoon sampler was brushed clean of soil, washed in municipal water containing phosphate free detergent, rinsed in municipal water and then rinsed with distilled water between each sampling event in order to reduce the potential for cross contamination.

In addition to this, new disposable gloves were used during each sampling event to remove the soil from the sampler and to transfer the samples into plastic bags, glass jars and/or vials filled with methanol to further minimize the potential for cross-contamination.

In accordance with SPL sampling protocols, soil samples from the boreholes selected for potential chemical analysis of volatile organic parameters were field-preserved in methanol. Approximately 5 grams of soil was collected using a designated sampler system and placed into a pre-weighed laboratory supplied vial of methanol. As well, a portion of the soil sample was placed directly into laboratory supplied glass jars. The methanol sample vial and glass sample jars were kept cold (<10°C) during field storage and transportation to the environmental analytical laboratory (ALS Environmental Laboratories).

Detailed descriptions of the subsurface conditions at the borehole locations are presented in the borehole logs included in Appendix A and are discussed in Section 4.1. In general, the soil stratigraphy encountered on the subject property consisted of asphalt covered surfaces (parking areas) overlying fill beneath which a silty clay layer was observed overlying a till layer followed by limestone bedrock.

8

3.3 FIELD SCREENING MEASUREMENTS

Soil samples were examined in the field for lithology as well as for aesthetic evidence of impacts (i.e. debris, staining and odours).

Headspace monitoring was performed on the samples as a preliminary screening for petroleum hydrocarbons (PHCs) or VOCs in order to select soil samples for laboratory analysis. Headspace combustible vapour measurements were taken inside the plastic bags using an Eagle RKI™ Portable Combustible Gas Detector (Part Number: 71-0028RK). The Eagle RKI™ can detect combustible gases from 0 to 100% of the lower explosive limit (LEL). The detector has a precision of three significant figures and an accuracy of ±5%. The detector is calibrated with two-point field calibration of zero and standard reference gases. Calibration is completed periodically to assure proper sensor response following the calibration procedure outlined in the Eagle Series Instruction Manual.

Headspace combustible vapour measurements were made using the device in methane elimination mode. A summary of the headspace combustible vapour measurements is provided in **Table 3**.

3.4 GROUNDWATER MONITORING WELL INSTALLATION

The monitoring wells installed during this investigation were constructed using Schedule 40 polyvinyl chloride (PVC) pipe including a screen section with a factory machined slot width of 0.25 mm and completed with a PVC riser pipe. All the pipe and screen sections were wrapped in plastic that was removed just prior to installation to minimize the potential for contamination. The base of the monitoring well was covered with a PVC cap to prevent the influx of sediment. Clean silica sand supplied in bags from a supplier, was placed in the annular space between the pipe and the sides of the borehole to obtain relatively sediment free water. A bentonite seal was added to the annular space above the sand pack to reduce the infiltration of surface water into the borehole annulus.

Development and sampling of the monitoring wells was not completed as part of this investigation. Water levels were measured on May 14, 2013 and are discussed in **Section 4.2**.

4. SUBSURFACE CONDITIONS

4.1 SOIL CONDITIONS

Detailed descriptions of the subsurface conditions at the borehole locations are presented in the respective borehole logs in **Appendix A. Figure 3** presents a cross-section of the subsurface conditions across selected borehole locations. The following is a general description of the findings.

Four (4) out of ten (10) boreholes encountered a pavement structure consisting of about 50 to 125 mm asphalt overlying granular fill material. Fill material was found in all boreholes, extending from existing ground surface or under the pavement structure down to depths ranging from 0.6 to 3.0 m. The fill material is predominantly sand and gravel. Underlying the fill material is native soil consisting of silty clay. These soils extend to depths of 12.7 to 16.7 m below the existing ground surface. Underlying the silty clay is a thin layer of silt, sand and gravel till encountered at depths of 12.2 to 15.7 m below the

9

existing ground surface. Boreholes BH13-1 to BH13-6 were drilled until auger refusal on limestone bedrock was encountered. Bedrock was encountered at depths ranging between 12.7 m and 16.7 m below surface elevation.

No aesthetic evidence of impacts was observed throughout the course of soil sampling activities as part of this study. Grain size analysis were performed on a certain number of soil samples as part of the geotechnical investigation and confirmed that the majority of the soils encountered on the subject property are considered to be coarse textured.

4.2 **GROUNDWATER CONDITIONS**

Groundwater levels were recorded in all four (4) monitoring wells that were installed as part of this investigation. Three (3) of the monitoring wells (BH13-3, BH13-5 and BH13-7) were installed in the overburden, where the "shallow" groundwater table varied between depths of 1.45 to 2.70 m below ground surface (mbgs). The fourth monitoring well (BH13-2) was installed in bedrock, where the "deep" groundwater table was measured at 4.56 mbgs. A summary of groundwater elevations recorded at the site is provided in **Table 1**.

Based on the groundwater levels observed during this investigation, the "shallow" groundwater flow direction is expected to be in a northwestern direction. Groundwater levels may be influenced by subsurface utility trenching or perched water in the former excavations conducted onsite. Groundwater flow direction can only be confirmed with longer term monitoring.

As mentioned previously, the development and sampling of the newly installed groundwater monitoring wells was not completed as part of this investigation.

5. **CHEMICAL ANALYSES**

5.1 **RATIONALE FOR STANDARDS SELECTION**

The results of the soil chemical analyses were evaluated using the Standards contained in the MOE document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" (the Standards). These Standards were issued in April 2011 by the MOE and are effective as of July 1, 2011. The Standards were used to evaluate soil quality based on the samples collected and tested, to determine whether soil quality complied with MOE Standards and to determine whether additional investigations are required or warranted.

The property is proposed to be redeveloped for a residential and commercial use. Presently, the 2940 Baseline building is serviced by a potable groundwater well while the 2946-2948 Baseline building is serviced by the City of Ottawa potable water distribution system. The majority of the soils encountered on the subject property are considered to be coarse textured, as discussed in Section 4.1. Based on these considerations, the 2011 Table 2 and Table 3 Standards for residential/parkland/institutional (RPI) property uses and coarse textured soil conditions were used to evaluate the environmental quality of the soil at the subject property.

The use of Tables 2 and 3 Standards for the property are considered appropriate based on the following:

- The site is not located within 30 m of a water body;
- The property is not located adjacent to a provincial park or adjacent to an area of natural significance or a wetland area and based on this, it is not anticipated to provide a habitat of endangered or threatened species identified by the Ministry of Natural Resources;
- Potable water for the site (2940 Baseline) is derived from groundwater;
- The property is not an area reserved or set apart as a provincial park or conservation reserve under the Provincial Parks and Conservation Reserves Act, 2006;
- The property is not an area of natural and scientific interest (life science or earth science) identified by the Ministry of Natural Resources as having provincial significance;
- The property is not a wetland identified by the Ministry of Natural Resources as having provincial significance;
- The property is not an area designated by the municipality in its official plan as environmentally significant, however expressed, including designations of areas as environmentally sensitive, as being of environmental concern and as being ecologically significant;
- The property is not an area identified by the Ministry of Natural Resources as significant habitat of a threatened or endangered species;
- The property is not an area designated as an Escarpment Natural Area under the Niagara Escarpment Plan.
- The property is not an area which is habitat of a species that is classified under section 7 of the Endangered Species Act, 2007 as a threatened or endangered species;
- ◆ The property is not a property within an area designated as a natural core area or natural linkage area within the area to which the Oak Ridge's Moraine Conservation Plan under the Oak Ridge's Moraine Conservation Act, 2001 applies;
- The property is not an area set apart as a wilderness area under the Wilderness Areas Act;
- Bedrock was not encountered within 2 m of the ground surface;
- The pH of the soil samples analysed during this investigation indicated that all pH values were within the acceptable range of 5 to 9.

Note that the Table 2 and Table 3 RPI soil Standards for each individual analyzed parameters are identical, except for the case of ethyl benzene.

5.2 RATIONALE FOR SAMPLE SELECTION

Soil chemical analysis completed during this investigation consisted of soil samples analyzed for PHCs (fractions F1 to F4) and BTEX, metals and inorganic parameters, and PAHs. The selection of soil samples was based on visual and olfactory observations, head space readings and professional judgment.

A summary of the soil samples analyzed as part of this investigation is provided in **Table 2**.

Project: 1599-710
Environmental Soil Investigation

Proposed Development – 2940, 2946 & 2948 Baseline Road, Ottawa, ON

5.3 RESULTS OF SOIL ANALYSES

The chemical analyses were conducted by ALS Environmental Laboratories located in Ottawa, Ontario. ALS is a member of the Canadian Association for Laboratory Accreditation (CALA) and meets the requirements of Section 47 of O.Reg. 153/04 certifying that the analytical laboratory be accredited in accordance with the International Standard ISO/IEC 17025 and with standards developed by the Standards Council of Canada. The Certificate of Analysis is included in **Appendix B**.

11

5.3.1 Results of Soil Analyses

A summary of the soil samples analyzed during this investigation are provided in **Tables 4, 5 and 6** and are discussed below.

The results of analysis for all six (6) soil samples submitted for analysis of PHCs (fractions 1 to 4), BTEX, metals and inorganics, and PAHs met both the MOE Table 2 and Table 3 RPI Standards, except for sample BH13-4 SS1 which presented an exceedance for PHCs (fractions 3 and 4) for both MOE Tables 2 and 3 RPI Standards.

5.3.4 Quality Assurance and Quality Control

The results of metal analysis of the blind duplicate (QAQC1) of soil sample BH13-8 SS1 indicated an acceptable correlation between the original sample and the duplicate sample.

Environmental Soil Investigation

Proposed Development - 2940, 2946 & 2948 Baseline Road, Ottawa, ON

6. CONCLUSIONS AND RECOMMENDATIONS

The following is a summary of the findings of the ESI:

- 1. Four (4) out of ten (10) boreholes encountered a pavement structure consisting of about 50 to 125 mm asphalt overlying granular fill material. Fill material was found in all boreholes, extending from existing ground surface or under the pavement structure down to depths ranging from 0.6 to 3.0 m. The fill material is predominantly sand and gravel. Underlying the fill material is native soil consisting of silty clay. These soils extend to depths of 12.7 to 16.7 m below the existing ground surface. Underlying the silty clay is a thin layer of silt, sand and gravel till encountered at depths of 12.2 to 15.7 m below the existing ground surface. Boreholes BH13-1 to BH13-6 were drilled until auger refusal on limestone bedrock was encountered. Bedrock was encountered at depths ranging between 12.7 m and 16.7 m below surface elevation.
- 2. No aesthetic evidence of impacts was observed throughout the course of soil sampling activities as part of this study.
- 3. Groundwater levels were recorded in all four (4) monitoring wells that were installed as part of this investigation. Three (3) of the monitoring wells (BH13-3, BH13-5 and BH13-7) were installed in the overburden, where the "shallow" groundwater table varied between depths of 1.45 to 2.70 m below ground surface (mbgs). The fourth monitoring well (BH13-2) was installed in bedrock, where the "deep" groundwater table was measured at 4.56 mbgs. Based on the groundwater levels observed during this investigation, the "shallow" groundwater flow direction is expected to be in a northwestern direction. Groundwater levels may be influenced by subsurface utility trenching or perched water in the former excavations conducted onsite. Groundwater flow direction can only be confirmed with longer term monitoring.
- 4. The development and sampling of the newly installed groundwater monitoring wells was not completed as part of this investigation.
- 5. The results of analysis for all six (6) soil samples submitted for analysis of PHCs (fractions 1 to 4), BTEX, metals and inorganics, and PAHs met both the MOE Table 2 and Table 3 RPI Standards, except for sample BH13-4 SS1 which presented an exceedance for PHCs (fractions 3 and 4) for both MOE Tables 2 and 3 RPI Standards.

Environmental Soil Investigation

Proposed Development - 2940, 2946 & 2948 Baseline Road, Ottawa, ON

Based on the findings of this investigation, SPL recommends the following:

- i. Since the subject commercial/industrial property will be redeveloped for a residential/commercial use, the filing of a RSC will be required as per O.Reg. 153/04, as amended. The previous environmental studies produced for the subject property do not meet the current requirements of O.Reg. 153/04, as amended, for filing a RSC. Phase One and Phase Two ESAs conducted as per O.Reg. 153/04, as amended, and remediation of any soil or groundwater impacts will be required to file a RSC. These studies should include the review of all previous environmental studies produced for the subject property and should also include the review of past analytical results to the actual applicable Standards, as applicable. The PHCs impacts found as part of this study should also be delineated as part of the Phase Two ESA;
- ii. Since the structures located on the 2940 Baseline property are to be demolished as part of the redevelopment project and that previous reports identified the presence or potential presence of asbestos-containing materials, a designated substance survey (DSS) should be completed as per section 10 of the Ontario Health and Safety Act, O.Reg. 278/05 before any demolition work is initiated;
- iii. Soil cuttings and instrument washing wastewater generated as part of this study and the joint geotechnical investigation have been stored on-site in steel drums and will require to be properly disposed of as per O. Reg. 558;
- iv. All existing groundwater monitoring wells present on-site that are no longer required or are damaged should be decommissioned as per O.Reg. 903;
- v. The potable water well located inside the 2940 Baseline main building should be decommissioned, in accordance with O.Reg. 903, as part of the building demolition work;
- vi. The results of laboratory analysis from this current ESI indicate that PHCs (fractions 3 and 4) impacted soil is present on the subject site in the fill material at borehole location BH13-4. Removal of all impacted soil will be required in order for the on-site soil to meet MOE Table 2 and Table 3 RPI Standards;
- vii. Off-site disposal of impacted soil will require a toxicity characteristic leachate procedure (TCLP) analysis in accordance with O.Reg. 558, to determine waste classification of the soil. Excavated soil with chemical impacts greater than the 2011 MOE Table 2 and 3 RPI Standards or mixed/aesthetically impacted soil, if found, will require disposal as a waste.

Environmental Soil Investigation

Proposed Development - 2940, 2946 & 2948 Baseline Road, Ottawa, ON

7. LIMITATIONS

The findings of the boreholes are believed to be representative of the area of investigation and are based on facts and information determined by SPL during the execution of this project. Soil and/or groundwater conditions at locations other than the boreholes may vary from conditions encountered at the drilling locations. The findings in this report are limited to the environmental conditions on the site at the time of the investigation.

This report was prepared for the account of 3223701 Canada Inc. (Brigil Platinum). The material in this report reflects SPL's judgment in light of the information available to it at the time of preparation. Any use, which a Third Party not noted above makes of this report, or any reliance on decisions to be made based on it, are the responsibility of such Third Parties. SPL Consultants Limited accepts no responsibility for damages, if any, suffered by any Third Party as a result of decisions made or actions based on this report.

8. QUALIFICATIONS OF THE CONSULTANT

This report was conducted under the supervision of Daniel Charette who is considered a Qualified Person ("QP") with the MOE as defined under O.Reg. 153/04. Daniel has reviewed and confirmed the findings and conclusions of this report.

The company SPL Consultants Limited (SPL) was incorporated in Ontario in April 2009. Principals of the company include the original founders of Shaheen & Peaker Limited, which had 180 employees. The principals and the team members bring many years of experience in geotechnical, pavement and environmental fields.

Daniel Charette is a Senior Environmental Engineer with SPL Consultants. Daniel has a Bachelor's Degree in Civil Engineering and is a recognized Professional Engineer in Ontario and in Québec. Daniel has conducted Phase One Environmental Site Assessments (ESA), Phase Two Environmental Soil and Groundwater Investigations (ESGI) and Environmental Remediations since 2000 at various sites across Ontario and Québec. Daniel is a "QP" with the MOE as defined under O.Reg. 153/04.

Chris Hendry is the Ottawa Branch Manager at SPL. Chris has a Master's degree in Geotechnical Engineering from the University of Alberta.

SPL CONSULTANTS LIMITED

Daniel Charette, P.Eng., ing.

Senior Environmental Engineer

Chris Hendry, M.Eng., P.Eng.

Ottawa Branch Manager

Environmental Soil Investigation Proposed Development – 2940, 2946 & 2948 Baseline Road, Ottawa, ON

TABLES

Environmental Soil Investigation

Proposed Development, 2940-2948 Baseline Road, Ottawa, Ontario

<u>Table 1:</u>
<u>Monitoring Well Installation & Water Levels</u>

	Screened Interval	Ground Surface	Monitoring	14-May-13						
Monitoring Well	Location	Elevation (masl)	Well Depth (mbgs)	Depth to Groundwater (mbgs)	Groundwater Elevation (masl)					
BH13-2	Bedrock	77.70	16.30	4.56	73.14					
BH13-3	BH13-3 Overburden		6.05	1.45	76.95					
BH13-5	BH13-5 Overburden		6.00	1.57	78.18					
BH13-7	BH13-7 Overburden		7.52	2.70	75.00					

Environmental Soil Investigation

Proposed Development, 2940-2948 Baseline Road, Ottawa, Ontario

<u>Table 2:</u>
<u>Summary of Soil Samples Submitted for Chemical Analysis</u>

Location/	Sample	Dete	Donath (ms)		Chen	nical An	alyses		Rationale						
Borehole	No.	Date	Depth (m)		M & I	PHCs	BTEX	PAHs	kationale						
BH13-2	SS7	03-May-13	4.6-5.2		1	1	1	1	Representative of native material below water table in area of						
D1113-2	337	03-Way-13	4.0-3.2		Ů	·	·	·	former remediation excavation						
BH13-3	SS1	01-May-13	0.0-0.6		✓	✓	>	✓	Representative of fill material						
BH13-4	SS1	06-May-13	0.0-0.6		✓	1	*	✓	Representative of fill material						
BH13-5	SS1	06-May-13	0.0-0.6		✓	✓	✓	✓	Representative of fill material						
BH13-6	SS1A	02-May-13	0.0-0.3		✓	✓	✓	✓	Representative of fill material						
BH13-8	SS1	02-May-13	0.0-0.6		✓	✓	✓	✓	Representative of fill material						
BH13-8	QAQC1	02-May-13	0.0-0.6	*					Blind duplicate soil sample of BH13-8 SS1						

Proposed Development, 2940-2948 Baseline Road, Ottawa, Ontario

<u>Table 3: Summary of Headspace Readings Using RKI Eagle Portable Combustible Gas Detector</u>

Borehole No.	Sample No.	Headspace Reading (ppm)	Borehole No.	Sample No.	Headspace Reading (ppm)
	SS1	20		SS1	0
	SS2	20		SS2	15
	SS3	30		SS3	25
	SS4	25		SS4	10
	SS5	15		SS5	0
	SS6	15		SS6	0
BH13-1	SS7	45	BH13-2	SS7	20
	SS8	30		SS8	20
	SS9	25		SS9	15
	SS10	35		SS10A	Limited Sample
	SS11	25		SS10B	15
	-	-		SS11	35
	-	-		SS12	Limited Sample
	SS1	15		SS1	0
	SS2	10		SS2	45
	SS3	0		SS3	45
	SS4	20		SS4	50
	SS5	5		SS5	40
DU12 2	SS6	15		SS6	25
	SS7	15		SS7	45
BH13-3	SS8	25	BH13-4	SS8	40
BH13-3	SS9A	Limited Sample		SS9	45
	SS9B	15		SS10	45
	SS10	15		SS11	60
	SS11	20		SS12	40
	SS12	15		-	-
	SS13	25		-	-
	SS1	5		SS1A	30
	SS2	30		SS1B	Limited Sample
	SS3	25		SS2	20
	SS4	35		SS3	Limited Sample
	SS5	40		SS4	45
	SS6	25		SS5	35
	SS7	Limited Sample		SS6	30
BH13-5	SS8	55	BH13-6	SS7	45
	SS9	50		SS8	40
	SS10	30		SS9	35
	SS11A	Limited Sample		SS10	35
	SS11B	30		SS11	45
	SS12	25		SS12A	30
<u> </u>	SS13	Limited Sample		SS12B	Limited Sample

Project: 1599-710
Environmental Soil Investigation

T3, Page 2 of 2

Proposed Development, 2940-2948 Baseline Road, Ottawa, Ontario

<u>Table 3: Summary of Headspace Readings Using RKI Eagle Portable Combustible Gas Detector</u>

Borehole No.	Sample No.	Headspace Reading (ppm)	Borehole No.	Sample No.	Headspace Reading (ppm)
	SS1	Limited Sample		SS1	35
	SS2	Limited Sample		SS2A	30
	SS3	30		SS2B	30
	SS4	30		SS3	15
BH13-7	SS5	20	BH13-8	1	-
	SS6	45		-	-
	SS7	40		-	-
	SS8	35		-	-
	SS9	35		-	-

<u>Table 4:</u>
<u>Summary of Metals and Inorganics in Soil</u>

Parameter			BH13-2 SS7	BH13-3 SS1	BH13-4 SS1	BH13-5 SS1	BH13-6 SS1A	BH13-8 SS1
Date of Collection	2011 MOE	2011 MOE	03-May-13	01-May-13	06-May-13	06-May-13	02-May-13	02-May-13
Date of Analysis			13-May-13	13-May-13	13-May-13	13-May-13	13-May-13	13-May-13
Sampling Depth (m)			4.6-5.2	0.0-0.6	0.0-0.6	0.0-0.6	0.0-0.3	0.0-0.6
Analytical Report Reference No.			L1298752-1	L1298752-2	L1298752-3	L1298752-4	L1298752-5	L1298752-6
Antimony (Sb)	7.5	7.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Arsenic (As)	18	18	1.1	1.9	2.5	2.3	<1.0	2.7
Barium (Ba)	390	390	200	243	281	244	83.3	142
Beryllium (Be)	4	4	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50
Boron (B)	120	120	5.3	17.3	24.3	11.4	6.4	12.6
Boron (B), Hot Water Ext.	1.5	1.5	0.21	0.21	0.24	0.26	0.16	0.19
Cadmium (Cd)	1.2	1.2	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Calcium (Ca)	NL	NL	24.5	39.9	39.5	40.9	35.7	39.1
Chromium (Cr)	160	160	38.3	17.4	17.3	30.2	9.4	16.8
Chromium, Hexavalent	8	8	<0.20	0.50	0.34	1.08	0.31	0.41
Cobalt (Co)	22	22	10.4	5.4	6.9	8.5	3.8	5.6
Conductivity	0.7	0.7	0.338	0.324	0.303	0.365	0.133	0.180
Copper (Cu)	140	140	20.3	14.8	17.4	19.9	9.3	24.2
Cyanide, Weak Acid Diss	0.051	0.051	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Lead (Pb)	120	120	3.9	46.9	20.8	26.9	7.7	28.3
Magnesium (Mg)	NL	NL	12.1	6.5	5.7	10.2	1.9	1.8
Mercury (Hg)	0.27	0.27	<0.010	0.015	0.016	0.014	< 0.010	0.017
Molybdenum (Mo)	6.9	6.9	<1.0	1.5	<1.0	1.2	<1.0	1.9
Nickel (Ni)	100	100	21.4	11.6	14.5	17.0	6.6	14.7
рН	-	-	8.00	7.88	7.75	7.66	7.77	7.60
SAR	5	5	0.29	0.31	0.23	0.54	<0.10	0.11
Selenium (Se)	2.4	2.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Silver (Ag)	20	20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Thallium (TI)	1	1	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50
Uranium (U)	23	23	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vanadium (V)	86	86	55.4	17.5	18.4	38.6	19.9	18.0
Zinc (Zn)	340	340	57.3	38.9	49.5	52.1	22.5	92.9

Proposed Development, 2940-2948 Baseline Road, Ottawa, Ontario

<u>Table 4:</u>
<u>Summary of Metals and Inorganics in Soil</u>

Parameter			QAQC1
Date of Collection	2011 MOE	2011 MOE	Field
Date of Analysis	Table 2 RPI	Table 3 RPI	Duplicate of
Sampling Depth (m)			BH13-8 SS1
Analytical Report Reference No.			L1298752-7
Antimony (Sb)	7.5	7.5	<1.0
Arsenic (As)	18	18	2.1
Barium (Ba)	390	390	107
Beryllium (Be)	4	4	< 0.50
Boron (B)	120	120	8.9
Boron (B), Hot Water Ext.	1.5	1.5	-
Cadmium (Cd)	1.2	1.2	<0.50
Calcium (Ca)	NL	NL	-
Chromium (Cr)	160	160	13.7
Chromium, Hexavalent	8	8	-
Cobalt (Co)	22	22	4.4
Conductivity	0.7	0.7	-
Copper (Cu)	140	140	18.4
Cyanide, Weak Acid Diss	0.051	0.051	-
Lead (Pb)	120	120	20.4
Magnesium (Mg)	NL	NL	-
Mercury (Hg)	0.27	0.27	-
Molybdenum (Mo)	6.9	6.9	1.2
Nickel (Ni)	100	100	10.5
рН	-	-	-
SAR	5	5	-
Selenium (Se)	2.4	2.4	<1.0
Silver (Ag)	20	20	<0.20
Thallium (TI)	1	1	< 0.50
Uranium (U)	23	23	<1.0
Vanadium (V)	86	86	13.8
Zinc (Zn)	340	340	69.1

Project: 1599-710 Environmental Soil Investigation Proposed Development, 2940-2948 Baseline Road, Ottawa, Ontario

<u>Table 5:</u> <u>Summary of PHCs and BTEX in Soil</u>

Parameter			BH13-2 SS7	BH13-3 SS1	BH13-4 SS1	BH13-5 SS1	BH13-6 SS1A	BH13-8 SS1
Date of Collection	2011 MOE	2011 MOE	03-May-13	01-May-13	06-May-13	06-May-13	02-May-13	02-May-13
Date of Analysis		_	13-May-13	13-May-13	13-May-13	13-May-13	13-May-13	13-May-13
Sampling Depth (m)	1		4.6-5.2	0.0-0.6	0.0-0.6	0.0-0.6	0.0-0.3	0.0-0.6
Analytical Report Reference No.			L1298752-1	L1298752-2	L1298752-3	L1298752-4	L1298752-5	L1298752-6
F1 (C6-C10)	55	55	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
F1-BTEX	55	55	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
F2 (C10-C16)	98	98	<10	<10	<10	<10	<10	<10
F2-Naphth	98	98	<10	<10	<10	<10	<10	<10
F3 (C16-C34)	300	300	<50	<50	<u>401</u>	288	<50	113
F3-PAH	300	300	<50	<50	<u>401</u>	288 <50		113
F4 (C34-C50)	2800	2800	<50	<50	1090	455	<50	190
Chrom. to baseline at nC50	NA	NA	YES	YES	NO	NO	YES	YES
F4G-SG (GHH-Silica)	2800	2800	-	-	2850	1400	-	-
Benzene	0.21	0.21	<0.020	<0.020	<0.020	< 0.020	< 0.020	< 0.020
Ethyl Benzene	1.1	2	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Toluene	2.3	2.3	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
o-Xylene	NL	NL	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
m+p-Xylenes	NL	NL	<0.030	<0.030	<0.030	< 0.030	< 0.030	< 0.030
Xylenes (Total)	3.1	3.1	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050

Environmental Soil Investigation

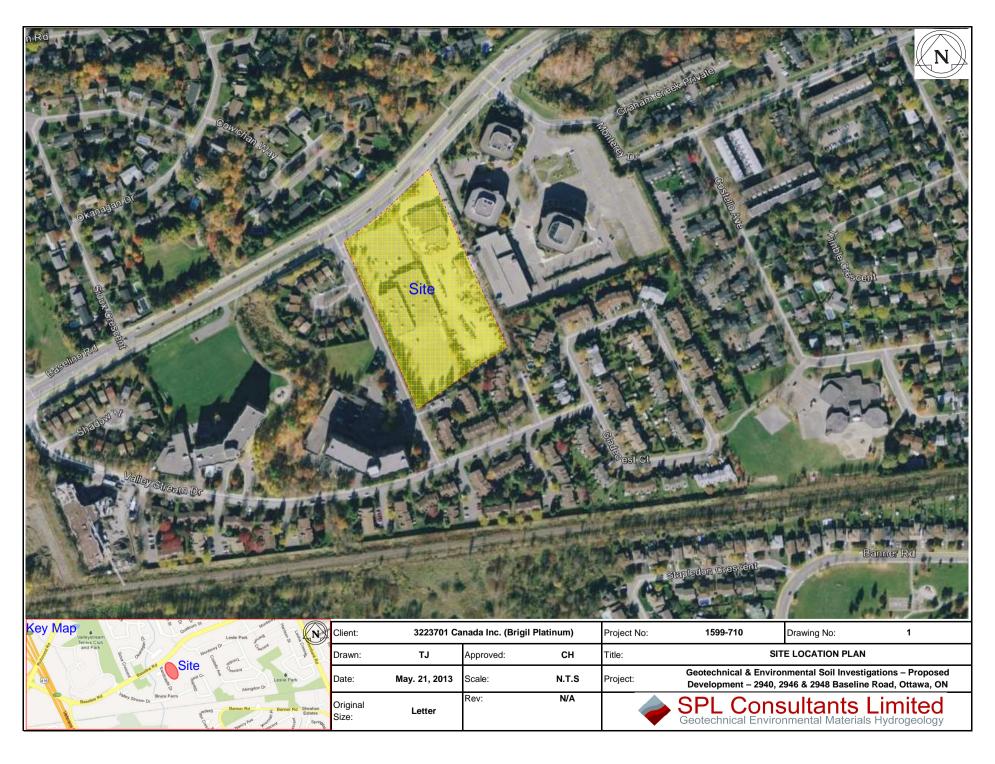
Proposed Development, 2940-2948 Baseline Road, Ottawa, Ontario

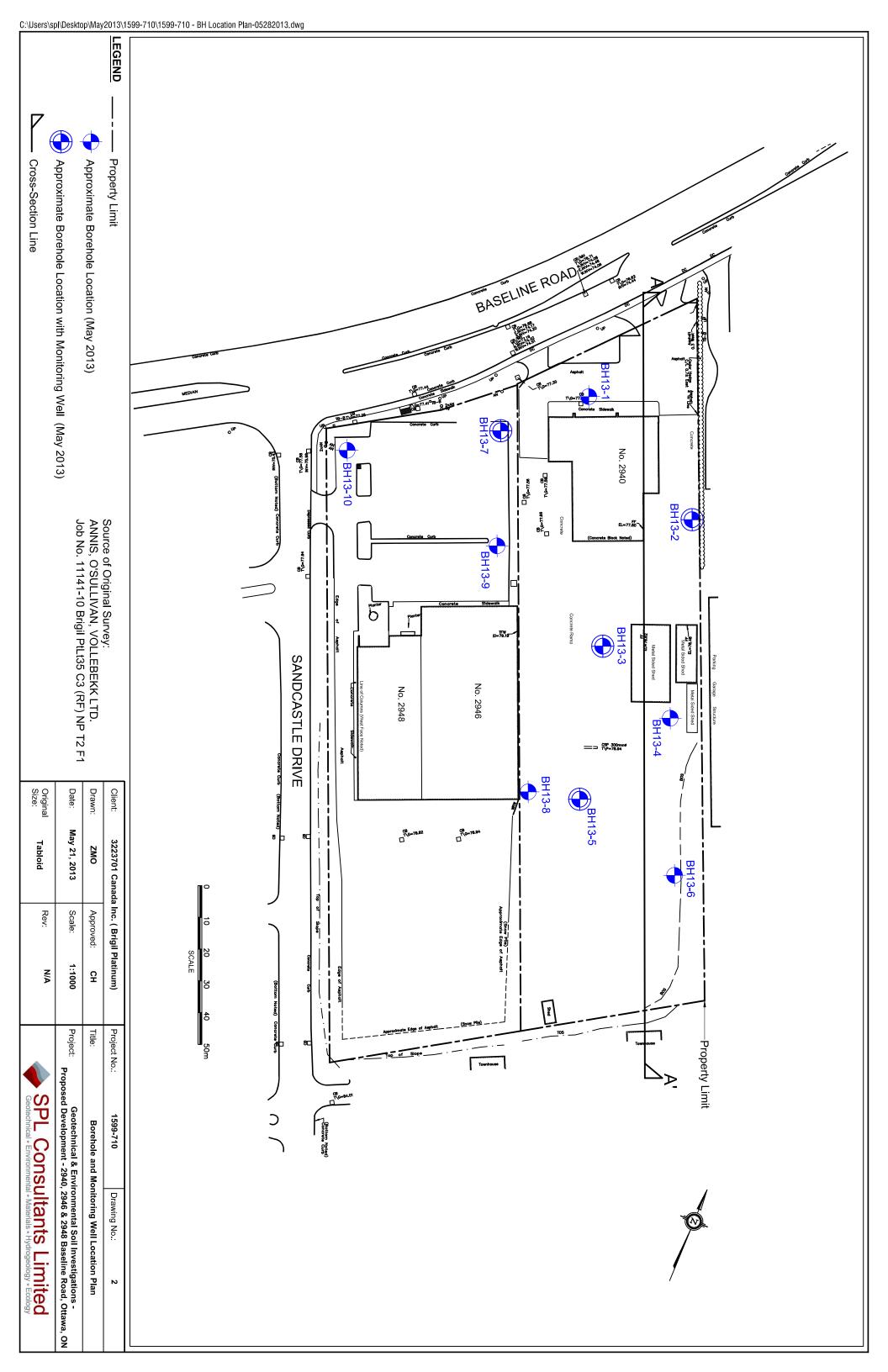
<u>Table 6:</u> <u>Summary of PAHs in Soil</u>

Parameter	2011	2011	BH13-2 SS7	BH13-3 SS1	BH13-4 SS1	BH13-5 SS1	BH13-6 SS1A	BH13-8 SS1
Date of Collection	2011 MOE	2011 MOE	03-May-13	01-May-13	06-May-13	06-May-13	02-May-13	02-May-13
Date of Analysis	Table 2	Table 3	13-May-13	13-May-13	13-May-13	13-May-13	13-May-13	13-May-13
Sampling Depth (m)	RPI	RPI	4.6-5.2	0.0-0.6	0.0-0.6	0.0-0.6	0.0-0.3	0.0-0.6
Analytical Report Reference No.			L1298752-1	L1298752-2	L1298752-3	L1298752-4	L1298752-5	L1298752-6
Acenaphthene	7.9	7.9	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050
Acenaphthylene	0.15	0.15	<0.050	< 0.050	<0.050	< 0.050	< 0.050	<0.050
Anthracene	0.67	0.67	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050
Benzo(a)anthracene	0.5	0.5	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050
Benzo(a)pyrene	0.3	0.3	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	<0.050
Benzo(b)fluoranthene	0.78	0.78	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.058
Benzo(g,h,i)perylene	6.6	6.6	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050
Benzo(k)fluoranthene	0.78	0.78	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	<0.050
Chrysene	7	7	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050
Dibenzo(ah)anthracene	0.1	0.1	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	<0.050
Fluoranthene	0.69	0.69	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	0.065
Fluorene	62	62	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050
Indeno(1,2,3-cd)pyrene	0.38	0.38	< 0.050	< 0.050	<0.050	< 0.050	< 0.050	<0.050
1+2-Methylnaphthalenes	0.99	0.99	< 0.042	< 0.042	<0.042	< 0.042	< 0.042	<0.042
1-Methylnaphthalene	0.99	0.99	<0.030	<0.030	<0.030	<0.030	<0.030	<0.030
2-Methylnaphthalene	0.55	0.99	< 0.030	< 0.030	< 0.030	< 0.030	< 0.030	<0.030
Naphthalene	0.6	0.6	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050
Phenanthrene	6.2	6.2	< 0.050	<0.050	<0.050	<0.050	< 0.050	<0.050
Pyrene	78	78	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.053

Project: 1599-710 Notes, Page 1 of 1

Environmental Soil Investigation


Proposed Development, 2940-2948 Baseline Road, Ottawa, Ontario


Notes for Soil Summary Tables

- 1. mbgs = Meters below ground surface
- 2. masl = Meters above sea level
- 3. Ground surface elevations (masl) were interpolated from a site survey plan provided by 3223701 Canada Inc. (Brigil Platinum)
- 4. Units for all soil analyses are in $\mu g/g$ (ppm) unless otherwise indicated
- 5. Table 2 RPI = Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for a Residential/Parkland/Institutional Property Use with Coarse Textured Soils as contained in Table 2 of the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", published by the MOE on April 15, 2011
- 6. Table 3 RPI = Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for a Residential/Parkland/Institutional Property Use with Coarse Textured Soils as contained in Table 3 of the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", published by the MOE on April 15, 2011
- 7. For soil analytical results: **bold** = Concentration exceeds the 2011 MOE Table 2 RPI Standards
- 8. For soil analytical results: <u>bold</u> = Concentration exceeds the 2011 MOE Table 3 RPI Standards
- 9. NL = Parameter Not Listed
- 10. NA = Not Applicable

Environmental Soil Investigation Proposed Development – 2940, 2946 & 2948 Baseline Road, Ottawa, ON

DRAWINGS

Environmental Soil Investigation Proposed Development – 2940, 2946 & 2948 Baseline Road, Ottawa, ON

APPENDIX A BOREHOLE LOGS

PROJECT: Geotechnical & Environmental Soil Investigations

CLIENT: 3223701 Canada Inc. (Brigil Platinum)

PROJECT LOCATION: 2940-2948 Baseline Road, Ottawa, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Augers

Diameter: 203mm REF. NO.: 1599-710

Date: May/07/2013 ENCL NO.:

BHLC	OCATION: See Borehole Location Plan		_		<u></u>			DANV	MIC: CC	NE PE	NETD V	TION		1				1			
<u> </u>	SOIL PROFILE		5	SAMPL	.ES	~		RESIS	TANCE	NE PEI		IION		PLAST LIMIT	IC NAT	URAL	LIQUID LIMIT	,	TW.	REMA	
(m)		6			(OI	GROUND WATER CONDITIONS	_		1	1	1	30 10		LIMIT W _P	CON	ITENT W	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	AN GRAIN	
ELEV	DESCRIPTION	4 PL	ik.		BLOWS 0.3 m	NOI	NOIL	SHE	AR ST	RENG	TH (kl	Pa) FIELD V. & Sensiti	ANE	** _P		··		S E E S	KN/m	DISTRIE	BUTION
DEPTH	-	STRATA PLOT	NUMBER	TYPE		SOUN	ELEVATION	• Q	UICK T	RIAXIAL	_ ×	LAB VA	ANE	WA		ONTEN	T (%)	٦	¥	(%	6)
77.6	A and all 00	ST	₹	≱	ž	8 8	긥	2	25 5	50 7	75 1	00 12	25	2	25 5	50 7	75	<u> </u>		GR SA	SI CL
70.0 0.1	Asphalt: 90 mm Sandy Gravel: trace silt, brown,	\times																			,
	damp, compact (Fill)	\bowtie	1	SS	16															52 38	(10)
76.9		\bigotimes	-			1	77							_				1			
0.8	Silty Clay: brown, damp, stiff to very stiff					1															
	əuil			NR	11																
			<u> </u>																		
			\vdash				76											1			
			2	SS	12		"								0						
75.5																					
2.1	Silty Clay: grey, moist, stiff																				
				اء ا																	
			3	SS	4		75								•			1			
						1															
			4	SS	3									-		→ I					
			<u> </u>				74											-			
			┝																		
			5	SS	1																
]																		
							70														
							73											1			
			6	SS	WH										0						
			<u> </u>								14										
				VANE							†										
				VANE			72				+8_							1			
	- Silty Sand seam: 50 mm		<u> </u>																		
	- Silly Sand Seam. 30 min		7	SS	WH										0						
/5/13			7	33	***		71											1			
T 29.				VANE		1	′'				+7										
SPL SOIL LOG-OTTAWA 1599-710 - MAY29-2013.GPJ SPL.GDT 29/5/13			\vdash			-															
SPL				VANE							+6										
GPJ			_																		
2013.	- wet below 7.6 m		\vdash			1	70											1			
729-2			8	SS	WH									⊢	0						
MA)			_																		
710-				VANE								+4									
2665				VANE		1	69					Su>10	 0kPa					-			
5 3			<u> </u>	VAINE																	
A A																					
[-6]																					
			9	SS	WH										0						
SOI			_				68											1			
SPL				VANE							+8										
	Continued Next Page					CDADH	2	2				g_20/.									

GROUNDWATER ELEVATIONS

GRAPH NOTES

+ 3 , imes 3 : Numbers refer to Sensitivity

PROJECT: Geotechnical & Environmental Soil Investigations

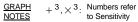
CLIENT: 3223701 Canada Inc. (Brigil Platinum)

PROJECT LOCATION: 2940-2948 Baseline Road, Ottawa, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Augers


Diameter: 203mm REF. NO.: 1599-710

Date: May/07/2013 ENCL NO.:

	SOIL PROFILE		8	AMPL	ES.	<u>_</u>		DYNAI RESIS	MIC CO TANCE	NE PEI PLOT	NETRAT	TION	_	PLASTI	c NATI	JRAL	LIQUID		ΤΛ	REN	//ARK
(m)		7				GROUND WATER CONDITIONS		2	0 4			0 1	00	PLASTI LIMIT	MOIS	TURE TENT	LIQUID	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	A	AND .IN SIZ
ELEV	DESCRIPTION	J S	<u>ر</u>		BLOWS 0.3 m	» o Noi	NO NO	SHE	R STI	RENG	TH (kF	Pa)	ΔNE	W _P		v >	W _L	X 무중	RAL L	DISTR	
EPTH	DEGOME HON	STRATA PLOT	NUMBER	й		NDO TIQN	ELEVATION	1U O	NCONF	INED RIAXIAI	+ , . ×	& Sensit	ivity	WA	TER CC	NTEN	T (%)	δÖ	DAM.		(%)
			N	TYPE	ž	GR CO	BTB			0 7	5 10	00 1:		2	5 5	0 7	75 			GR SA	A SI
	Silty Clay: grey, moist, stiff(Continued)		Ή	VANE							+9										
	,		}—	V/((4L																	
			1_				67											1			
	- some sand below 10.7 m		1		l																
			10	SS	WH										0					0 18	3 (
			╢																		
			1				66														
			1																		
CF 4			1																		
65.4 12.2	Sandy Silt: some clay, grey, wet,	111	┿		50/																
	very dense		11	SS	150									0				1			
64.9 12.7	END OF BOREHOLE	111	\vdash		mm		65											\vdash			
	Notes: 1) Auger refusal at 12.7 m.																	1			
	i) Augei reiusai at 12.7 III.																				
																		1			
																		1			
																		1			
			1	1	1	l	1											1	1		

GROUNDWATER ELEVATIONS

Shallow/ Single Installation $\underline{\underline{V}}$ $\underline{\underline{V}}$ Deep/Dual Installation $\underline{\underline{V}}$ $\underline{\underline{V}}$

PROJECT: Geotechnical & Environmental Soil Investigations

CLIENT: 3223701 Canada Inc. (Brigil Platinum)

DRILLING DATA

Method: Hollow Stem Augers

DESCRIPTION Solution Description Desc	Content Cont	3H LO	OCATION: See Borehole Location Pla	n			<u></u>			DANIVI	MIC CO	NE DEN	JET₽∆	LION									
77.5	77.5	(m)	SOIL PROFILE		8	SAMPL		ATER S		2	0 4	0 6	0 8	0 10		PLASTI LIMIT	C NATU MOIS CON	JRAL TURE TENT	LIQUID LIMIT	PEN.	JNIT WT	ANI)
Asphalt:100 mm 0.1 Gravelly Sand:some silt, brown, damp (Fill) 1 AS 15 30 54	Asphalt:100 mm Gravelly Sand:some silt, brown, damp (Fill) 1 AS 15 77 30 54	PTH	DESCRIPTION	STRATA PLO	NUMBER	TYPE		SROUND W	ELEVATION	● QI	JICK TE	RIAXIAL	. X	LAB VA	NE	WA ⁻	TER CC			POCKET (Cu) (Ki	NATURAL I (KN/m	DISTRIBI	JTI(
		77.5 70.0 0.1	Gravelly Sand:some silt, brown,																				<u> </u>
			END OF BOREHOLE																				

GROUNDWATER ELEVATIONS

Shallow/ Single Installation $\underline{\underline{V}}$ $\underline{\underline{V}}$ Deep/Dual Installation $\underline{\underline{V}}$ $\underline{\underline{V}}$

PROJECT: Geotechnical & Environmental Soil Investigations

CLIENT: 3223701 Canada Inc. (Brigil Platinum)

PROJECT LOCATION: 2940-2948 Baseline Road, Ottawa, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Augers/Coring

Diameter: 203mm REF. NO.: 1599-710

Date: May/03/2013 ENCL NO.:

	SOIL PROFILE		5	AMPL	ES.	<u>بر</u>		RES	ISTAN	ONE PE		-		PLAS1	TIC NAT	URAL	LIQUID LIMIT		ΤW	REM	ARKS
(m) ELEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" BLOWS 0.3 m	GROUND WATER		•	20 EAR S UNCON QUICK 25	TRENG IFINED TRIAXIA	GTH (k	Pa) FIELD	VANE	W _P WA	ATER CO	W ONTEN	LIMIT W _L ——1 T (%) 75	POCKET PEN. (Cu) (kPa)	NATURAL UNIT (KN/m³)	A GRAI DISTRI (' GR SA	BUTI(%)
0.0	Gravel: some sand, some silt, brown, moist, compact (Fill)		1	SS	24		Sai	nd 77						0						52 36	(1
70.0			2	SS	20									0							
76.2 1.5	Sand and Gravel: some silt, brown, moist, compact (Fill)		3	SS	32			76						0						40 46	(*
	- loose and becoming wet below 2.3 m		4	SS	8			75 —						0							
74.7 3.0	Cilty Clays gray wat stiff																				
3.0	Silty Clay: grey, wet, stiff		5	SS	2									l ⊦	•	-					
			6	SS	1			74								0					
			_																		
	- wet below 4.6 m		7	SS	WH	. \(\)		 L. 73.1 / 14, 20							•						
				VANE							+10										
			1—	VANE		ı				+											
				7,4,42				72													
			8	SS	WH			74						 -	 						
				VANE				71			+5										
				VANE			Day	ntonite			+6										
							гъе	lionite													
			\vdash			ı		70													
			9	SS	WH										0						
				VANE							+8										
				VANE				69—			+6										
			1																		
	- 150mm sand seam at 9.1 m		10	SS	WH										0						
		KK	\vdash			s		68	+		+	+		+	+		1	1	l	l	

GROUNDWATER ELEVATIONS

Shallow/ Single Installation $\underline{\underline{V}}$ $\underline{\underline{V}}$ Deep/Dual Installation $\underline{\underline{V}}$ $\underline{\underline{V}}$

GRAPH NOTES

 $+\ ^3,\times^3\colon \ ^{\text{Numbers refer}}_{\text{ to Sensitivity}}$

 \bigcirc 8=3% Strain at Failure

PROJECT: Geotechnical & Environmental Soil Investigations

CLIENT: 3223701 Canada Inc. (Brigil Platinum)

PROJECT LOCATION: 2940-2948 Baseline Road, Ottawa, ON

DRILLING DATA

Method: Hollow Stem Augers/Coring

Diameter: 203mm REF. NO.: 1599-710

	SOIL PROFILE		s	AMPL	ES]		DYNA RESIS	MIC CO TANCE	NE PEI PLOT	NETRA	TION		DI ASTI	C NATI	JRAL	HOHID		F	REMARKS
(m) LEV EPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	L AR STI NCONF JICK TF	L RENG INED RIAXIAL	TH (kf + - ×	1	vity ANE	W _P WA	CON' TER CC	TURE TENT N DNTENT 0 7		POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	AND GRAIN SIZE DISTRIBUTIO (%) GR SA SI
	Silty Clay: grey, wet, stiff(Continued) - stiff below 10.1 m			VANE								+10								
			11	SS	1		67								0					
65.5 12.2	Silty Sand: some clay, grey, wet,						66													
12.2	loose (Till)		12	SS	10		65											-		
64.2	- Auger refusal at 13.5 m. Switch to coring																			
13.5	Limestone with shale partings, fresh, grey, very strong						64													
	TCR = 100% SCR = 78% RQD = 77%		RC 1	RC			Sand											-	27.2	UCS=167
62.7 15.0	Limestone with shale partings, fresh, grey, very strong																			
	TCR = 97% SCR = 97% RQD = 88%		RC 2	RC			Scree 62											-	26.8	
61.2							Sloug	 h 												UCS=162
16.5	END OF BOREHOLE Notes: 1) Auger refusal at 13.5 m. 2) Coring ended at 16.5 m. 3) 50mm dia. monitoring well was installed in the borehole upon completion 4) Depth of Water Date Depth																			

GROUNDWATER ELEVATIONS

Shallow/ Single Installation $\underline{\underline{V}}$ $\underline{\underline{V}}$ Deep/Dual Installation $\underline{\underline{V}}$ $\underline{\underline{V}}$

PROJECT: Geotechnical & Environmental Soil Investigations

CLIENT: 3223701 Canada Inc. (Brigil Platinum)

PROJECT LOCATION: 2940-2948 Baseline Road, Ottawa, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Augers/Coring

Diameter: 203mm REF. NO.: 1599-710

Date: May/01/2013 ENCL NO.:

	SOIL PROFILE		8	SAMPL	ES	<u>α</u>		RESIS	MIC CO STANCE	PLOT	NE IKA	IION		PLAST	IC NAT	URAL	LIQUID		ΤW	REMARKS
(m) ELEV DEPTH 78.4	DESCRIPTION	STRATA PLOT	NUMBER	ТУРЕ	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE	AR STI NCONF UICK TE	0 6 RENG INED RIAXIAL 0 7	TH (ki	Pa) FIELD V & Sensit LAB V	ANE tivity ANE	W _P ⊢ WA	TER CO	w ○ ONTEN	LIQUID LIMIT W _L ——I T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	AND GRAIN SIZI DISTRIBUTIO (%) GR SA SI
0.0	Sand and Gravel: brown/grey, moist, compact(Fill)	X	1	SS	25		Sand 78							D						
			2	SS	8		-Bento								0					
76.9 1.5	Silty Clay: brown, moist, stiff	***	3	SS	9		W. L. May 1	77.0 n	3 						0	— I				
			4	SS	4		76								0			-		
			5	SS	2		75								C	>		-		
	- grey below 3.7 m		6	SS	2		Scree									0				
	- becoming wet at 4.6 m		7	ss	WH		74							F	-10					
				VANE			73			+30										
				VANE						+1	1									
			8	SS VANE	WH	-	72				+17				•					
			├	VANE							+10									
							71											-		
			9A	SS	WH										0					
			9B	SS	WH															
			⊬	VANE			70		-	+				\vdash						
			_	VANE						+12										
	- 9.1 m to 9.3 m sandy seam		10	SS	WH	-	69								0					
	- very stiff below 10 m			VANE							+ ¹⁵									

GROUNDWATER ELEVATIONS

GRAPH NOTES

 $+\ ^3,\times^3\colon \ ^{\text{Numbers refer}}_{\text{ to Sensitivity}}$

 \bigcirc 8=3% Strain at Failure

PROJECT: Geotechnical & Environmental Soil Investigations

CLIENT: 3223701 Canada Inc. (Brigil Platinum)

PROJECT LOCATION: 2940-2948 Baseline Road, Ottawa, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Augers/Coring

Diameter: 203mm REF. NO.: 1599-710

Date: May/01/2013 ENCL NO.:

	SOIL PROFILE		5	SAMPL	ES	<u>~</u>		RESIS	TANCE	NE PEN PLOT		· IOIN		PLASTI	C NAT	URAL	LIQUID		ΤV	REMARK
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	туре	I" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE/	AR ST NCONF UICK TI	RIAXIAL	TH (kl + ×	FIÉLD VA & Sensiti LAB VA	ANE vity ANE	W _P 	CON Y TER CO	TENT w o ONTEN	LIMIT W _L T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	AND GRAIN SIZ DISTRIBUTI (%)
	Silty Clay: brown, moist, stiff(Continued)	S	╀	∠ VANE	Z	5 G		2	25 5	50 7	5 1	00 12 Su>10		2	5 5	50	75			GR SA SI
	Sun(Continued)		11	SS	WH		68							 -				-		
				VANE			67				-	Su>10	0kPa							
				VANE							-	Su>10	0kPa							
			12	SS	WH		66								0					
				VANE							-	Su>10	0kPa							
				VANE			65					Su>10	0kPa							
64.7	01.0						03													
13.7	Sandy Gravel: trace silt, grey, wet, compact (Till)		13	ss	20									0						66 32
63.9	- at 14.5 m bedrock encounted. Switch to coring						64											-		
14.5	Limestone with shale partings, fresh, grey, very strong		RC																	
63.1	TCR = 100% SCR = 97%		1	RC																
15.3	RQD = 83% Limestone with shale partings, fresh, grey, very strong						63													UCS=143
	TCR = 97% SCR = 97% RQD = 82%		RC 2	RC															26.2	000-140
04.0							62													
61.6 16.8	Limestone with shale partings, fresh, grey, very strong																			
	TCR = 100% SCR = 87% RQD = 77%		RC 3	RC			61												26.8	UCS=126
60.1 18.3	END OF BOREHOLE	<i>>>></i>	_																	
	Notes: 1) Auger refusal at 14.5 m. 2) Coring ended at 18.3 m. 3) 50mm dia. monitoring well was installed in a new borehole completed beside original borehole. 4) Depth of Water Date Depth																			
	14/05/2013 1.45m BGS																			

GROUNDWATER ELEVATIONS

PROJECT: Geotechnical & Environmental Soil Investigations

CLIENT: 3223701 Canada Inc. (Brigil Platinum)

PROJECT LOCATION: 2940-2948 Baseline Road, Ottawa, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Augers

Diameter: 203mm REF. NO.: 1599-710

Date: May/06/2013 ENCL NO.:

	SOIL PROFILE		S	AMPL	ES.	· ·		RESIS	MIC CO STANCE	PLOT	NE IRA	IION		PLAST	IC NAT	URAL	LIQUID		ΛΤ	REMARK
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТУРЕ	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	AR STI NCONF UICK TE	LENG RENG INED RIAXIAL	TH (kl + - ×	Pa) FIELD \ & Sensi LAB V	/ANE tivity ANE 25		TER CO	w ○ ONTEN	LIQUID LIMIT WL T (%)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT V (KN/m³)	AND GRAIN SIZ DISTRIBUT (%) GR SA SI
79.0	Sand and Gravel: brown, damp, compact (Fill)	×	1	ss	15									0						GR SA SI
78.3 0.8	Silty Clay: brown, moist, stiff		2	SS	15	-	78								0					
			3	SS	11	-	77								0					
			4	SS	7	_									0					
			5	SS	4		76							F						
	- grey below 3.8 m		6	SS	2	-	75									0				
			7	SS	1		74							ŀ		-a				
				VANE							+4									
72.9				VANE		_	73			+6										
6.1	Clayey Silt and Sand: grey, wet		8	SS	0	-								c	>					1 46 33
							72													
70.8 8.2	Silty Clay: grey, wet, very loose		A	TW		=	71													
0.2	Siny Sidy, groy, well, very loude						70													
			9	SS	2	-	'0							⊢	4					
			\Box	VANE																

Continued Next Page

GROUNDWATER ELEVATIONS

GRAPH NOTES

 $+\ ^3,\times^3\colon \ ^{\text{Numbers refer}}_{\text{ to Sensitivity}}$

 \bigcirc 8=3% Strain at Failure

PROJECT: Geotechnical & Environmental Soil Investigations

CLIENT: 3223701 Canada Inc. (Brigil Platinum)

PROJECT LOCATION: 2940-2948 Baseline Road, Ottawa, ON

DRILLING DATA

Method: Hollow Stem Augers

REF. NO.: 1599-710 Diameter: 203mm

	SOIL PROFILE	_	_ s	SAMPL	ES			RESI	AMIC CC STANCE	NE PEI E PLOT	NETRA	TION		DIACTI	_ NATI	JRAL	LIQUID		E	REMA	RKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE	20 4 AR ST JNCONF QUICK T	40 6 RENG FINED RIAXIAL	TH (kl	Pa)	/ANE itivity /ANE	PLASTI LIMIT W _P 	TER CO	w DNTEN	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	AN GRAIN DISTRIB (%	ID I SIZE BUTIC 5)
	Silty Clay: grey, wet, very loose(Continued)			VANE																	
			10	SS	0		68											-			
							67											-			
			11	SS	3										0						
65.3							66														
13.7	Sand: trace silt, trace gravel, grey, wet, loose (Till)		12	SS	9		65							- 						3 87	(
64.2																					
14.8	END OF BOREHOLE Notes: 1) Auger refusal at 14.8 m.																				

GROUNDWATER ELEVATIONS

Shallow/ Single Installation $\underline{\underline{V}}$ $\underline{\underline{V}}$ Deep/Dual Installation $\underline{\underline{V}}$ $\underline{\underline{V}}$

PROJECT: Geotechnical & Environmental Soil Investigations

CLIENT: 3223701 Canada Inc. (Brigil Platinum)

PROJECT LOCATION: 2940-2948 Baseline Road, Ottawa, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Augers

Diameter: 203mm REF. NO.: 1599-710

Date: May/06/2013 ENCL NO.:

	SOIL PROFILE			SAMPL	ES	~		DYNA RESIS	MIC CC TANCE	NE PEN PLOT	IETRA	ΓΙΟΝ		PLAST	IC NAT	URAL	LIQUID		TW	REMAI	
(m) ELEV DEPTH 79.8	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	AR ST NCONF UICK TI	RENGT RENGT INED RIAXIAL	ΓΗ (kf + ×	O 10 Pa) FIELD V/ & Sensiti LAB V/	ANE vity ANE	W _P WA	TER CO	TENT w o ONTEN	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	ANI GRAIN DISTRIBI (%)	SIZE UTION)
79.2	Sand and Gravel: trace silt, trace clay, brown, damp, compact (Fill)		1	SS	16		Sand							0							
0.6	Silty Clay: brown, damp, stiff		2	SS	9		-Bento								0						
			3	SS	9		+Sand W. L. May 1	 78.2 m	 						0			=			
77.5 2.3	Silty Clay: brown, moist, stiff		4	SS	8		77								0						
	- grey below 3.0 m		5	SS	4										e	ł					
	- becoming wet at 3.8m		6	ss	2		-Scree	n I							0			=			
			7	SS	4		75														
				VANE VANE			74			+5	+4										
			8	SS	WH										0						
				VANE		-	73			7+1	+8										
				VANE			72			+											
	- very stiff below 8.2 m		9	SS VANE	WH	-				+					0					0 24 5	51 2
				VANE			71				_	Su>10	0kPa					_			
			А	TW			70														

GROUNDWATER ELEVATIONS

<u>S</u>

 $\frac{\text{GRAPH}}{\text{NOTES}}$ + 3, 2

+ 3 , imes 3 : Numbers refer to Sensitivity

 \bigcirc 8=3% Strain at Failure

PROJECT: Geotechnical & Environmental Soil Investigations

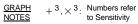
CLIENT: 3223701 Canada Inc. (Brigil Platinum)

PROJECT LOCATION: 2940-2948 Baseline Road, Ottawa, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Augers


Diameter: 203mm REF. NO.: 1599-710

Date: May/06/2013 ENCL NO.:

	SOIL PROFILE			SAMPL	ES	 		RESIS	MIC CO TANCE	NE PEN PLOT	NE IRA	IION		PLASTI	C NATI	JRAL	LIQUID		ΤV	REM	
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEA O UI	20 4 AR STI NCONF UICK TE	RENG INED RIAXIAL	TH (kl + . ×	LAB VA	ANE vity ANE		TER CC	v ⊃——— ONTEN	LIMIT W _L ——	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	GRAI DISTR	
	Silty Clay: brown, moist, stiff(Continued)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N	ΥT	"Z	95	E	2	25 5	0 7	5 1	00 1:	25	2	5 5	0 7	75			GR SA	SI
	- sand lens		10	SS	0		69								0						
				VANE								Su>10									
67.6				VANE			68					Ou>10	on a					-			
12.2	Silty Sand: trace clay, trace gravel, grey, wet, loose (Till)	 	11	SS	4		67								0						
							01														
			12	SS	5		66											-		3 56	
) 																			
					50/		65														
64.4	END OF BOREHOLE Notes: 1) Auger refusal at 15.4 m. 2) 50mm dia. monitoring well installed in a new borehole completed beside original borehole. 3) Depth of Water Date Depth	<u>,1,14</u>	13	SS	100 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\										0						

GROUNDWATER ELEVATIONS

Shallow/ Single Installation $\underline{\underline{V}}$ $\underline{\underline{V}}$ Deep/Dual Installation $\underline{\underline{V}}$ $\underline{\underline{V}}$

PROJECT: Geotechnical & Environmental Soil Investigations

CLIENT: 3223701 Canada Inc. (Brigil Platinum)

PROJECT LOCATION: 2940-2948 Baseline Road, Ottawa, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Augers

Diameter: 203mm REF. NO.: 1599-710

Date: May/02/2013 ENCL NO.:

	SOIL PROFILE		5	SAMPL	ES.	~		RESIS	MIC CON STANCE	PLOT		ION		PLAST	IC NAT MOIS CON	URAL	LIQUID LIMIT		TW	REM	ARKS
(m) ELEV DEPTH 81.0	DESCRIPTION	STRATA PLOT	NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE	AR STF NCONFI UICK TR	RENG NED HAXIAL	ΓΗ (kF + ×	Pa) FIELD V & Sensit LAB V	ANE ivity	W _P ⊢ WA	TER CO	w O ONTEN	LIMIT W _L —— T (%) 75	POCKET PEN. (Cu) (kPa)	NATURAL UNIT \ (KN/m³)	AI GRAII DISTRI (9	BUTI(%)
0.0 80.7	Sand and Gravel: trace silt, brown, moist, loose (Fill)		1A	SS	8									0						47 42	(1
0.3	Silty Clay: grey, moist, stiff		1B	SS	8	-															
			2	SS	5		80								0						
	- becoming wet		3	SS	4		79														
78.7																					
2.3	Silty Clay: grey, wet, firm to stiff		4	SS	2									 		○ -1					
			5	ss	WH		78									0					
				VANE						15 +											
				VANE			77		+	.8											
			\vdash																		
			A	TW			76														
			1	VANE					+	_16											
				VANE						+14											
							75														
			6	SS	WH										C						
			 	VANE			74		+	_8 _13											
			_	VANE						+ -											
			_																		
			7	SS	WH		73								0						
	- becoming stiff			VANE						+	9										
				VANE							+9										
71.9 9.1	Sandy Silt: some clay, grey, wet, very loose		8	ss	WH	-	72								0						
		1 6 1 1	1	1	I	ı	1	ı	1				1	1	1	1	1	i l		ı	

GROUNDWATER ELEVATIONS

GRAPH NOTES

+ 3 , imes 3 : Numbers refer to Sensitivity

 \bigcirc 8=3% Strain at Failure

PROJECT: Geotechnical & Environmental Soil Investigations

CLIENT: 3223701 Canada Inc. (Brigil Platinum)

PROJECT LOCATION: 2940-2948 Baseline Road, Ottawa, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Augers

Diameter: 203mm REF. NO.: 1599-710

Date: May/02/2013 ENCL NO.:

	SOIL PROFILE		S	SAMPL	ES	· ~		RESIS	MIC CO STANCE	PLOT		-		PLAST	IC NAT	URAL	LIQUID		MT	REMARKS
(m)		ТО			(OI	GROUND WATER CONDITIONS	_		1	1	1	80	100	LIMIT W _P	IC NAT MOIS CON	TENT W	LIMIT W _L	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	AND GRAIN SIZE
ELEV	DESCRIPTION	STRATA PLOT	~		BLOWS 0.3 m	∑ VO	ELEVATION	SHE	AR STI	RENG	TH (k	Pa)	VANE	W _P		w 		SKET KET	RAL (KN/m	DISTRIBUTIO
DEPTH	BEGORII HOIV	AT/	⊿BE	ш	9 0	N D D	YAT		NCONF UICK TE	INED RIAXIAI	+	& Sei	nsitivity VANE	WA	TER CO	ONTEN	T (%)	90 00	UAΤΑ,	(%)
		STR	NUMBER	TYPE	ž	GR CO							125	1			75		_	GR SA SI (
	Sandy Silt: some clay, grey, wet,	Ш		VANE																
	very loose(Continued)		⊨																	
		-	Į.																	
70.2			-																	
10.8	Silty Clay: grey, wet, stiff		9	SS	wн		70							\perp	0					
		X	1																	
				VANE		-						1								
			}	VAINL		-														
			1	VANE						+										
							69													
			}			-														
			10	SS	wн										0					
]		****										_					
	- very stiff below 12.8 m		\vdash	VANE		-						Su	100kPa							
		W	1_	VAINL		-	68					C	-100kPa							
			1	VANE								+30,	IUUKFA							
67.3 13.7	Sandy Silt: some clay, grey, wet,	111	1			-														
	very loose		11	SS	WH		67													
			``				"													
						-														
			1																	
			1																	
							66							-						
			100		14/11	-														0 70 (0)
65.3	0114 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		12A	SS	WH	-														3 78 (20
15.7	Silty Sand: trace gravel, grey, wet, stiff (Till)		12B	SS	WH															
	. ,					-	65													
	- Bedrock encountered at 16.7 m.	i.ф																		
	Switched to rock coring	臣臣																		
64.3 16.7	Limestone with shale partings, fresh,		-																	
	grey, very strong	\gg	1				64													UCS=145MI
	TCR = 100%	\mathbb{K}	ADC1	CORE															27.5	
	SCR = 98% RQD = 98%	\gg	IKC I	CORE															21.5	
	NQD = 9070	\mathbb{K}																		
63.2 17.8	Limestone with shale partings, fresh,	X	_			-														
17.0	grey, very strong	S					63													
	TCR = 100%	\mathbb{K}												1						
	SCR = 100%	\gg		CORE																
	RQD = 93%	\mathbb{K}		LUKE										1						
														1						
		\mathbb{X}	1				62							1						
61.7 19.3	Limestone with shale partings, fresh,	X	1			1														
13.3	grey, very strong	×	RC3	CORE										1					27.1	UCS=164MI
61.2	TCR = 100%	K/	<u>L</u>																	
19.8	SCR = 100%	1	1			1	1					_		1			1	\Box		

Continued Next Page

GROUNDWATER ELEVATIONS

GRAPH NOTES

 $+\ ^3,\times ^3\colon \ ^{\text{Numbers refer}}_{\text{ to Sensitivity}}$

 \bigcirc 8=3% Strain at Failure

PROJECT: Geotechnical & Environmental Soil Investigations

CLIENT: 3223701 Canada Inc. (Brigil Platinum)

PROJECT LOCATION: 2940-2948 Baseline Road, Ottawa, ON

DRILLING DATA

Method: Hollow Stem Augers

Diameter: 203mm REF. NO.: 1599-710

	SOIL PROFILE		S	SAMPL	ES			DYNA! RESIS	MIC CO TANCE	NE PEN PLOT	NE IRA	TION		 _ NATI	IRAI			L	BEV.	1ARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	N" BLOWS 0.3 m	GROUND WATER CONDITIONS		SHEA O UN • QU	0 4 AR STI NCONFI JICK TE	RENG NED	0 8 TH (kF + ×	0 10 Pa) FIELD V & Sensiti LAB V	ANE vity ANE	TER CC	TURE TENT V DOMESTICATION ONTENT		POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)	GRAI DISTR	ND N SIZI IBUTIO %)
EN No	DD = 91% ID OF BOREHOLE Ites: Auger refusal at 16.7 m. End of borehole 19.8 m.	A STR	NUM NUM	qYT	*N.	GRC	913	2	5 5 5	0 7:	5 1(LAB V.	25		0 7	5			GR SA	SI

GROUNDWATER ELEVATIONS

Shallow/ Single Installation $\underline{\underline{V}}$ $\underline{\underline{V}}$ Deep/Dual Installation $\underline{\underline{V}}$ $\underline{\underline{V}}$

PROJECT: Geotechnical & Environmental Soil Investigations

CLIENT: 3223701 Canada Inc. (Brigil Platinum)

PROJECT LOCATION: 2940-2948 Baseline Road, Ottawa, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Augers

Diameter: 203mm REF. NO.: 1599-710

Date: May/07/2013 ENCL NO.:

BH LC	CATION: See Borehole Location Plan																			
	SOIL PROFILE		S	AMPL	.ES			DYN. RESI	AMIC C STANC	ONE PE E PLOT	NETRA	TION		DI ACTI	ıc NAT	TURAL	LIQUID		Ł	REMARK
(m)		ОТ			(O)	GROUND WATER	2 _		20	40 6	60 8	30 1	100	PLASTI LIMIT W _P	CON	STURE NTENT W	LIQUID LIMIT W _L ————————————————————————————————————	PEN.	NATURAL UNIT WT (KN/m³)	AND GRAIN SI
ELEV EPTH	DESCRIPTION	STRATA PLOT	띪		BLOWS 0.3 m	N OF	ELEVATION	SHE	AR S	TRENG	TH (k ⊥	Pa)	/ANE	₩ _P		·V	I	SCU) (KE	URAL I	DISTRIBUT
CPIH		-RAT	NUMBER	TYPE		100 Y	EVA.		QUICK	RIAXIAI	_ ×	LAB V	ANE			ONTEN		1 N	¥ E	(%)
77.7 7 9 .6	_Asphalt:125 mm	S	ž	È	ž	5 5	ਤੇ ਜ਼ੋ ∹+Sand	+	25	50	75 1	00 1	125	2	25	50	75	<u> </u>		GR SA S
0.1	Sandy Silt:some clay, brown, damp,	\otimes					Sand	1												
	loose (Fill)	\otimes	1	SS	9															
							-Bent	onite-												
		\bowtie																		
		\bowtie	2	SS	9															
76.2		\bowtie					Sand	t												
1.5	Silty Clay:trace sand, brown, moist, stiff	$\frac{1}{2}$				lE	7	6												
			3	SS	10										0					
						┨														
						1 🗏														
			4	SS	4		. ,								0					
							W L May	51 75.0 i 14, 20	n 13											
						18	,													
			5	SS	2									⊢		I 0				
			_			ŀ₿	_													
	- grey below 3.7 m					┨┋	7	4												
			6	SS	1											0				
						▮▤														
	- wet below 4.5 m]	Scre													
			_	00			7	3										1		
			7	SS	WH	le									0					
				VANE						+5										
			-			╁┋				+										
				VANE		目	7	2		+										
] [
			8	SS	WH										0					
				. / ^ ^ ! -			7	1		-	+3							1		
				VANE																
				VANE							+4									
]:	7	0		-								1		
			9	SS	WH		Sand	1						-	I 0					
69.5 8.2	END OF BOREHOLE						+	+		+				1				\vdash	Н	
	Notes: 1) 50mm dia. monitoring well																			
	installed upon completion of borehole.																			
	porenole. 2) Depth of Water																			
	Date Depth																			
	14/05/2013 2.7 m BGS																			
- 1	<u>-</u> ••	1	1					1						1				1		

GROUNDWATER ELEVATIONS

Shallow/ Single Installation \(\subseteq \quad \text{Deep/Dual Installation} \subseteq \subseteq \text{V} \)

PROJECT: Geotechnical & Environmental Soil Investigations

CLIENT: 3223701 Canada Inc. (Brigil Platinum)

PROJECT LOCATION: 2940-2948 Baseline Road, Ottawa, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Augers

Diameter: 203mm REF. NO.: 1599-710

Date: Feb/05/2013 ENCL NO.:

	JM: Geodetic							Date.	reb/0)5/201	3					Er	NCL N	0.:			
BHIC	OCATION: See Borehole Location Plan SOIL PROFILE		5	SAMPL	ES	1	1	DYNAI	MIC CO	NE PEN PLOT	NETRA	TION						1			
	00.2OI IEE	Τ.	\vdash			띮						30 1	00	PLAST LIMIT	C NATU MOIS CON	JRAL TURE	LIQUID	z z	T WT		MARKS IND
(m)		LOT			SIE	WAT	z			RENG		1	1	W _P	CON	N N	W_{L}	ET PE (kPa)	(Em)	GRA	IN SIZE
ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER		BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	O UI	NCONF	INED	+	FIÉLD V & Sensit	ANE) NITT: "	T (0/)	POCKET PEN. (Cu) (kPa)	NATURAL UNIT WT (KN/m³)		IBUTION %)
		TRA	I M	TYPE	ž	SRO!	I.EV			RIAXIAL 50 7	. ×	LAB VA 00 1:	ANE		TER CC		I (%) 75		₹		
79.7	Sand and Gravel: some silt, trace	XX	_	-	-	00		-				1.		-						GR SA	SI CL
	clay, grey, damp, firm (Fill)	\bowtie	1	SS	7									0						43 44	(13)
		\otimes			'																(/
79.0			2A	SS	7		79								0						
0.8	Silty Clay: trace gravel, grey, moist, firm		2B	SS	7																
			1																		
	- 32.5 mm gravel lens		3	SS	8										0						
77.9 1.8	END OF BOREHOLE	KK.	_				78											1			
1.0	END OF BOREHOLE																				
,																					
;																					
;																					
[
i 																					
<u> </u>			L				L	L						L				L	L		
								_													

GROUNDWATER ELEVATIONS

SPL SOIL LOG-OTTAWA 1599-710 - MAY29-2013.GPJ SPL.GDT 29/5/13

Shallow/ Single Installation $\underline{\underline{\hspace{-0.05cm} V}}$ Deep/Dual Installation $\underline{\underline{\hspace{-0.05cm} V}}$ $\underline{\underline{\hspace{-0.05cm} V}}$

PROJECT: Geotechnical & Environmental Soil Investigations

CLIENT: 3223701 Canada Inc. (Brigil Platinum)

PROJECT LOCATION: 2940-2948 Baseline Road, Ottawa, ON

DATUM: Geodetic

DRILLING DATA

Method: Hollow Stem Augers

Diameter: 203mm REF. NO.: 1599-710

Date: May/07/2013 ENCL NO.:

BH LC	M: Geodetic DCATION: See Borehole Location Plan							Dato.	ay, c	07/201							NCL N	J			
	SOIL PROFILE		S	AMPL	.ES			DYNA! RESIS	MIC CO TANCE	NE PEI PLOT	NETRA	TION		L	_ NATI	IRΔI				REMA	PK
(m)		-				GROUND WATER CONDITIONS						30 1	00	PLASTI LIMIT	C MOIS	TURE	LIQUID LIMIT	Ä.	NATURAL UNIT WT (KN/m³)	AN	ID
(m) ELEV		STRATA PLOT			BLOWS 0.3 m	WA ONS	Z C				1	1		W _P		N	WL	POCKET PEN. (Cu) (kPa)	AL UI	GRAIN DISTRIE	
EPTH	DESCRIPTION	ΙΨ	NUMBER		BLO 0.3	UND	ELEVATION	0 UI	CONF	INED	÷	Pa) FIELD V & Sensit LAB V	ANE ivity	10/0-	TED 00	NITENI	· ·	900	XTUR.	(%	
70.0		STR/	NO.	TYPE	ž	SRO	:LE	● QI	JICK TF 5 5	riaxial 0 7	- × ′5 1	LAB V. 00 1	ANE 25		TER CC 5 5		1 (%) 75			GR SA	
78.6 7 8 .6	Asphalt:50 mm	ν. ΥΥ	Ē		-															OK OA	-
0.1	Sand: some gravel, some organics, brown, damp (Fill)	\otimes																			
	brown, damp (Fill)	\otimes	1	AS			70							0						18 66	(
		XX					78														
77.6		\otimes																			
1.1	Sand and Gravel: brown, damp (Fill)	$\hat{X}\hat{X}$																			
77.4		XX	2	AS										0							
77.1 1.5	END OF BOREHOLE																				
			1			l	I			1		1	1	I		1	1	ı	1		

GROUNDWATER ELEVATIONS

Shallow/ Single Installation \(\subseteq \quad \text{Deep/Dual Installation} \(\subseteq \subseteq \text{V} \)

Project: 1599-710

Environmental Soil Investigation Proposed Development – 2940, 2946 & 2948 Baseline Road, Ottawa, ON

APPENDIX B CERTIFICATE OF ANALYSES

SPL CONSULTANTS LIMITED (Ottawa)

ATTN: Daniel Charette 146 Colonnade Road S

Units 17 & 18

Nepean ON K2E 7Y1

Date Received: 08-MAY-13

Report Date: 15-MAY-13 14:15 (MT)

Version: FINAL

Client Phone: 613-228-0065

Certificate of Analysis

Lab Work Order #: L1298752

Project P.O. #: NOT SUBMITTED

Job Reference: 1599-710 C of C Numbers: 128939

Legal Site Desc:

Bryan Mark Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 190 Colonnade Road, Unit 7, Ottawa, ON K2E 7J5 Canada | Phone: +1 613 225 8279 | Fax: +1 613 225 2801

ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

ANALYTICAL GUIDELINE REPORT

L1298752 CONTD....

Page 2 of 16 5-MAY-13 14:15 (MT)

Sample Details Grouping Analyte L1298752-1 BH13-2 SS7	Result	Qualifier	ь.						
L1298752-1 BH13-2 SS7		Qualifier	D.L.	Units	Analyzed		Guidelin	e Limits	
Sampled By: B. Ritchie/K. Linton on 03-MAY-13									
Matrix: soil						#1	#2	#3	#4
Physical Tests									
Conductivity	0.338		0.0040	mS/cm	13-MAY-13	1.4	1.4	0.7	0.7
% Moisture	27.9		0.10	%	09-MAY-13	1.4	1.4	0.7	0.7
pH	8.00		0.10	pH units	10-MAY-13				
Cyanides	0.00		00	p ae					
Cyanide, Weak Acid Diss	< 0.050		0.050	ug/g	13-MAY-13	0.051	0.051	0.051	0.051
Saturated Paste Extractables						0.00	0.00	0.00	0.00.
SAR	0.29		0.10	SAR	13-MAY-13	12	12	5	5
Calcium (Ca)	24.5		1.0	mg/L	13-MAY-13				, o
Magnesium (Mg)	12.1		1.0	mg/L	13-MAY-13				
Sodium (Na)	6.9		1.0	mg/L	13-MAY-13				
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	13-MAY-13	40	50	7.5	7.5
Arsenic (As)	1.1		1.0	ug/g	13-MAY-13	18	18	18	18
Barium (Ba)	200		1.0	ug/g	13-MAY-13	670	670	390	390
Beryllium (Be)	< 0.50		0.50	ug/g	13-MAY-13	8	10	4	5
Boron (B)	5.3		5.0	ug/g	13-MAY-13	120	120	120	120
Boron (B), Hot Water Ext.	0.21		0.10	ug/g	13-MAY-13	2	2	1.5	1.5
Cadmium (Cd)	< 0.50		0.50	ug/g	13-MAY-13	1.9	1.9	1.2	1.2
Chromium (Cr)	38.3		1.0	ug/g	13-MAY-13	160	160	160	160
Cobalt (Co)	10.4		1.0	ug/g	13-MAY-13	80	100	22	22
Copper (Cu)	20.3		1.0	ug/g	13-MAY-13	230	300	140	180
Lead (Pb)	3.9		1.0	ug/g	13-MAY-13	120	120	120	120
Mercury (Hg)	< 0.010		0.010	ug/g	13-MAY-13	3.9	20	0.27	1.8
Molybdenum (Mo)	<1.0		1.0	ug/g	13-MAY-13	40	40	6.9	6.9
Nickel (Ni)	21.4		1.0	ug/g	13-MAY-13	270	340	100	130
Selenium (Se)	<1.0		1.0	ug/g	13-MAY-13	5.5	5.5	2.4	2.4
Silver (Ag)	< 0.20		0.20	ug/g	13-MAY-13	40	50	20	25
Thallium (TI)	< 0.50		0.50	ug/g	13-MAY-13	3.3	3.3	1	1
Uranium (U)	<1.0		1.0	ug/g	13-MAY-13	33	33	23	23
Vanadium (V)	55.4		1.0	ug/g	13-MAY-13	86	86	86	86
Zinc (Zn)	57.3		5.0	ug/g	13-MAY-13	340	340	340	340
Speciated Metals						0.0	0.0	0.0	0.0
Chromium, Hexavalent	<0.20		0.20	ug/g	10-MAY-13	8	10	8	10
Volatile Organic Compounds							. •	Ū	
Benzene	<0.020		0.020	ug/g	13-MAY-13	0.32	0.4	0.21	0.17
Ethyl Benzene	<0.050		0.050	ug/g	13-MAY-13	1.1	1.6	1.1	1.6
Toluene	<0.20		0.20	ug/g	13-MAY-13	6.4	9	2.3	6
o-Xylene	<0.020		0.020	ug/g	13-MAY-13	0.4	5	2.0	O
m+p-Xylenes	< 0.030		0.030	ug/g	13-MAY-13				
Xylenes (Total)	< 0.050		0.050	ug/g	14-MAY-13	26	30	3.1	25
Surrogate: 4-Bromofluorobenzene	88.3		70-130	%	13-MAY-13				
Surrogate: 1,4-Difluorobenzene	99.7		70-130	%	13-MAY-13				
Hydrocarbons									

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T2-RPI-ICC-C/F-SOIL

#1: T2-Soil-Ind/Com/Commu Property Use (Coarse)

#2: T2-Soil-Ind/Com/Commu Property Use (Fine)

#3: T2-Soil-Res/Park/Inst. Property Use (Coarse)

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L1298752 CONTD....

Page 3 of 16

1599-710	ANALI	IICAL	GUID	LLINL	KLFON	. I	1	Page 3 5-MAY-13 1	
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed			ne Limits	
L1298752-1 BH13-2 SS7									
Sampled By: B. Ritchie/K. Linton on 03-MAY-	13								
Matrix: soil						#1	#2	#3	#4
Hydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	13-MAY-13	55	65	55	65
F1-BTEX	<5.0		5.0	ug/g	14-MAY-13	55	65	55	65
F2 (C10-C16)	<10		10	ug/g	14-MAY-13	230	250	98	150
F2-Naphth	<10		10	ug/g	14-MAY-13				
F3 (C16-C34)	<50		50	ug/g	14-MAY-13	1700	2500	300	1300
F3-PAH	<50		50	ug/g	14-MAY-13				
F4 (C34-C50)	<50		50	ug/g	14-MAY-13	3300	6600	2800	5600
Total Hydrocarbons (C6-C50)	<50		50	ug/g	14-MAY-13				
Chrom. to baseline at nC50	YES			No Unit	14-MAY-13				
Surrogate: 2-Bromobenzotrifluoride	84.7		60-140	%	14-MAY-13				
Surrogate: 3,4-Dichlorotoluene	109.8		60-140	% %	13-MAY-13 14-MAY-13				
Surrogate: Octacosane Polycyclic Aromatic Hydrocarbons	109.7		60-140	70	14-IVIA 1-13				
Acenaphthene	<0.050		0.050	ug/g	13-MAY-13	21	29	7.9	20
Acenaphthylene	<0.050		0.050	ug/g ug/g	13-MAY-13	0.15	29 0.17	0.15	29 0.17
Anthracene	<0.050		0.050	ug/g	13-MAY-13	0.15	0.17	0.15	0.17
Benzo(a)anthracene	<0.050		0.050		13-MAY-13		-		
Benzo(a)pyrene	<0.050		0.050	ug/g ug/g	13-MAY-13	0.96	0.96	0.5	0.63
Benzo(a)pyrene Benzo(b)fluoranthene	<0.050		0.050	-	13-MAY-13	0.3	0.3	0.3	0.3
` '	<0.050		0.050	ug/g	13-MAY-13	0.96	0.96	0.78	0.78
Benzo(g,h,i)perylene	<0.050			ug/g		9.6	9.6	6.6	7.8
Benzo(k)fluoranthene Chrysene	<0.050		0.050 0.050	ug/g	13-MAY-13 13-MAY-13	0.96	0.96	0.78	0.78
	<0.050			ug/g		9.6	9.6	7	7.8
Dibenzo(ah)anthracene Fluoranthene	<0.050		0.050 0.050	ug/g	13-MAY-13 13-MAY-13	0.1	0.1	0.1	0.1
Fluorene	<0.050		0.050	ug/g	13-MAY-13	9.6	9.6	0.69	0.69
	<0.050		0.050	ug/g	13-MAY-13	62	69	62	69
Indeno(1,2,3-cd)pyrene				ug/g	13-MAY-13	0.76	0.95	0.38	0.48
1+2-Methylnaphthalenes	<0.042		0.042	ug/g		30	42	0.99	3.4
1-Methylnaphthalene	<0.030		0.030	ug/g	13-MAY-13	30	42	0.99	3.4
2-Methylnaphthalene	<0.030		0.030	ug/g	13-MAY-13	30	42	0.99	3.4
Naphthalene	<0.050		0.050	ug/g	13-MAY-13	9.6	28	0.6	0.75
Phenanthrene	<0.050		0.050	ug/g	13-MAY-13	12	16	6.2	7.8
Pyrene O. Flygget interest	<0.050		0.050	ug/g	13-MAY-13	96	96	78	78
Surrogate: 2-Fluorobiphenyl Surrogate: p-Terphenyl d14	101.6		50-140	%	13-MAY-13 13-MAY-13				
	104.5		50-140	%	13-IVIA 1-13				
L1298752-2 BH13-3 SS1									
Sampled By: B. Ritchie/K. Linton on 01-MAY-	1 3					#1	#2	#3	#4
Matrix: soil							#4	#3	#4
Physical Tests									
Conductivity	0.324		0.0040	mS/cm	10-MAY-13	1.4	1.4	0.7	0.7
% Moisture	5.74		0.10	%	09-MAY-13				
рН	7.88		0.10	pH units	10-MAY-13				
Cyanides									
Cyanide, Weak Acid Diss	<0.050		0.050	ug/g	13-MAY-13	0.051	0.051	0.051	0.051

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T2-RPI-ICC-C/F-SOIL

#1: T2-Soil-Ind/Com/Commu Property Use (Coarse)

#2: T2-Soil-Ind/Com/Commu Property Use (Fine)

#3: T2-Soil-Res/Park/Inst. Property Use (Coarse)

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L1298752 CONTD....

Page 4 of 16 5-MAY-13 14:15 (MT)

1599-710							1	5-MAY-13 1	4:15 (MT)
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L1298752-2 BH13-3 SS1									
Sampled By: B. Ritchie/K. Linton on 01-MAY-1	3								
Matrix: soil						#1	#2	#3	#4
Saturated Paste Extractables									
SAR	0.31		0.10	SAR	10-MAY-13	12	12	5	5
Calcium (Ca)	39.9		1.0	mg/L	10-MAY-13	12	12	3	3
Magnesium (Mg)	6.5		1.0	mg/L	10-MAY-13				
Sodium (Na)	8.0		1.0	mg/L	10-MAY-13				
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	10-MAY-13	40	50	7.5	7.5
Arsenic (As)	1.9		1.0	ug/g	10-MAY-13	18	18	18	18
Barium (Ba)	243		1.0	ug/g	10-MAY-13	670	670	390	390
Beryllium (Be)	< 0.50		0.50	ug/g	10-MAY-13	8	10	4	5
Boron (B)	17.3		5.0	ug/g	10-MAY-13	120	120	120	120
Boron (B), Hot Water Ext.	0.21		0.10	ug/g	10-MAY-13	2	2	1.5	1.5
Cadmium (Cd)	< 0.50		0.50	ug/g	10-MAY-13	1.9	1.9	1.2	1.2
Chromium (Cr)	17.4		1.0	ug/g	10-MAY-13	160	160	160	160
Cobalt (Co)	5.4		1.0	ug/g	10-MAY-13	80	100	22	22
Copper (Cu)	14.8		1.0	ug/g	10-MAY-13	230	300	140	180
Lead (Pb)	46.9		1.0	ug/g	10-MAY-13	120	120	120	120
Mercury (Hg)	0.015		0.010	ug/g	10-MAY-13	3.9	20	0.27	1.8
Molybdenum (Mo)	1.5		1.0	ug/g	10-MAY-13	40	40	6.9	6.9
Nickel (Ni)	11.6		1.0	ug/g	10-MAY-13	270	340	100	130
Selenium (Se)	<1.0		1.0	ug/g	10-MAY-13	5.5	5.5	2.4	2.4
Silver (Ag)	<0.20		0.20	ug/g	10-MAY-13	40	50	20	25
Thallium (TI)	< 0.50		0.50	ug/g	10-MAY-13	3.3	3.3	1	1
Uranium (U)	<1.0		1.0	ug/g	10-MAY-13	33	33	23	23
Vanadium (V)	17.5		1.0	ug/g	10-MAY-13	86	86	86	86
Zinc (Zn)	38.9		5.0	ug/g	10-MAY-13	340	340	340	340
Speciated Metals									
Chromium, Hexavalent	0.50		0.20	ug/g	10-MAY-13	8	10	8	10
Volatile Organic Compounds									
Benzene	< 0.020		0.020	ug/g	13-MAY-13	0.32	0.4	0.21	0.17
Ethyl Benzene	< 0.050		0.050	ug/g	13-MAY-13	1.1	1.6	1.1	1.6
Toluene	<0.20		0.20	ug/g	13-MAY-13	6.4	9	2.3	6
o-Xylene	<0.020		0.020	ug/g	13-MAY-13		_		
m+p-Xylenes	< 0.030		0.030	ug/g	13-MAY-13				
Xylenes (Total)	< 0.050		0.050	ug/g	14-MAY-13	26	30	3.1	25
Surrogate: 4-Bromofluorobenzene	88.4		70-130	%	13-MAY-13				
Surrogate: 1,4-Difluorobenzene	99.9		70-130	%	13-MAY-13				
Hydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	13-MAY-13	55	65	55	65
F1-BTEX	<5.0		5.0	ug/g	14-MAY-13	55	65	55	65
F2 (C10-C16)	<10		10	ug/g	14-MAY-13	230	250	98	150
F2-Naphth	<10		10	ug/g	14-MAY-13				
F3 (C16-C34)	<50		50	ug/g	14-MAY-13	1700	2500	300	1300
F3-PAH	<50		50	ug/g	14-MAY-13				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T2-RPI-ICC-C/F-SOIL

#1: T2-Soil-Ind/Com/Commu Property Use (Coarse)

#2: T2-Soil-Ind/Com/Commu Property Use (Fine)

#3: T2-Soil-Res/Park/Inst. Property Use (Coarse)

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L1298752 CONTD....

Page 5 of 16

599-710		IIOAL	COID		KLFON	\ !	1	5 Page 15-MAY-13	of 16 4:15 (MT)
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L1298752-2 BH13-3 SS1									
Sampled By: B. Ritchie/K. Linton on 01-MAY-Matrix: soil	13					#1	#2	#3	#4
Hydrocarbons									
F4 (C34-C50)	<50		50	ug/g	14-MAY-13	3300	6600	2800	5600
Total Hydrocarbons (C6-C50)	<50		50	ug/g	14-MAY-13				
Chrom. to baseline at nC50	YES			No Unit	14-MAY-13				
Surrogate: 2-Bromobenzotrifluoride	87.7		60-140	%	14-MAY-13				
Surrogate: 3,4-Dichlorotoluene	103.7		60-140	%	13-MAY-13				
Surrogate: Octacosane Polycyclic Aromatic Hydrocarbons	101.8		60-140	%	14-MAY-13				
Acenaphthene	<0.050		0.050	ug/g	13-MAY-13	21	29	7.9	29
Acenaphthylene	<0.050		0.050	ug/g	13-MAY-13	0.15	0.17	0.15	0.17
Anthracene	<0.050		0.050	ug/g	13-MAY-13	0.67	0.74	0.67	0.74
Benzo(a)anthracene	<0.050		0.050	ug/g	13-MAY-13	0.96	0.96	0.5	0.63
Benzo(a)pyrene	<0.050		0.050	ug/g	13-MAY-13	0.3	0.3	0.3	0.3
Benzo(b)fluoranthene	<0.050		0.050	ug/g	13-MAY-13	0.96	0.96	0.78	0.78
Benzo(g,h,i)perylene	<0.050		0.050	ug/g	13-MAY-13	9.6	9.6	6.6	7.8
Benzo(k)fluoranthene	<0.050		0.050	ug/g	13-MAY-13	0.96	0.96	0.78	0.78
Chrysene	<0.050		0.050	ug/g	13-MAY-13	9.6	9.6	7	7.8
Dibenzo(ah)anthracene	<0.050		0.050	ug/g	13-MAY-13	0.1	0.1	0.1	0.1
Fluoranthene	<0.050		0.050	ug/g	13-MAY-13	9.6	9.6	0.69	0.69
Fluorene	<0.050		0.050	ug/g	13-MAY-13	62	69	62	69
Indeno(1,2,3-cd)pyrene	<0.050		0.050	ug/g	13-MAY-13	0.76	0.95	0.38	0.48
1+2-Methylnaphthalenes	<0.042		0.042	ug/g	13-MAY-13	30	42	0.99	3.4
1-Methylnaphthalene	<0.030		0.030	ug/g	13-MAY-13	30	42	0.99	3.4
2-Methylnaphthalene	<0.030		0.030	ug/g	13-MAY-13	30	42	0.99	3.4
Naphthalene	<0.050		0.050	ug/g	13-MAY-13	9.6	28	0.6	0.75
Phenanthrene	<0.050		0.050	ug/g	13-MAY-13	12	16	6.2	7.8
Pyrene	<0.050		0.050	ug/g	13-MAY-13	96	96	78	7.8
Surrogate: 2-Fluorobiphenyl	101.9		50-140	%	13-MAY-13	50	30	"0	10
Surrogate: p-Terphenyl d14	112.7		50-140	%	13-MAY-13				
L1298752-3 BH13-4 SS1									
Sampled By: B. Ritchie/K. Linton on 06-MAY-	13								
Matrix: soil						#1	#2	#3	#4
Physical Tests									
Conductivity	0.303		0.0040	mS/cm	10-MAY-13	1.4	1.4	0.7	0.7
% Moisture	2.96		0.10	%	09-MAY-13				
рН	7.75		0.10	pH units	10-MAY-13				
Cyanides									
Cyanide, Weak Acid Diss	<0.050		0.050	ug/g	13-MAY-13	0.051	0.051	0.051	0.051
Saturated Paste Extractables									
SAR	0.23		0.10	SAR	10-MAY-13	12	12	5	5
Calcium (Ca)	39.5		1.0	mg/L	10-MAY-13				
Magnesium (Mg)	5.7		1.0	mg/L	10-MAY-13				
Sodium (Na)	5.9		1.0	mg/L	10-MAY-13				
Metals									

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T2-RPI-ICC-C/F-SOIL

#1: T2-Soil-Ind/Com/Commu Property Use (Coarse)

#2: T2-Soil-Ind/Com/Commu Property Use (Fine)

#3: T2-Soil-Res/Park/Inst. Property Use (Coarse)

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L1298752 CONTD....

Page 6 of 16 15-MAY-13 14:15 (MT)

1599-710							1	15-MAY-13 1	4:15 (MT)
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelii	ne Limits	
L1298752-3 BH13-4 SS1									
Sampled By: B. Ritchie/K. Linton on 06-MAY-	13					".4	"0	"0	<i>!! A</i>
Matrix: soil						#1	#2	#3	#4
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	10-MAY-13	40	50	7.5	7.5
Arsenic (As)	2.5		1.0	ug/g	10-MAY-13	18	18	18	18
Barium (Ba)	281		1.0	ug/g	10-MAY-13	670	670	390	390
Beryllium (Be)	<0.50		0.50	ug/g	10-MAY-13	8	10	4	5
Boron (B)	24.3		5.0	ug/g	10-MAY-13	120	120	120	120
Boron (B), Hot Water Ext.	0.24		0.10	ug/g	10-MAY-13	2	2	1.5	1.5
Cadmium (Cd)	<0.50		0.50	ug/g	10-MAY-13	1.9	1.9	1.2	1.2
Chromium (Cr)	17.3		1.0	ug/g	10-MAY-13	160	160	160	160
Cobalt (Co)	6.9		1.0	ug/g	10-MAY-13	80	100	22	22
Copper (Cu)	17.4		1.0	ug/g	10-MAY-13	230	300	140	180
Lead (Pb)	20.8		1.0	ug/g	10-MAY-13	120	120	120	120
Mercury (Hg)	0.016		0.010	ug/g	10-MAY-13	3.9	20	0.27	1.8
Molybdenum (Mo)	<1.0		1.0	ug/g	10-MAY-13	40	40	6.9	6.9
Nickel (Ni)	14.5		1.0	ug/g	10-MAY-13	270	340	100	130
Selenium (Se)	<1.0		1.0	ug/g	10-MAY-13	5.5	5.5	2.4	2.4
Silver (Ag)	<0.20		0.20	ug/g	10-MAY-13	40	50	20	25
Thallium (TI)	<0.50		0.50	ug/g	10-MAY-13	3.3	3.3	1	1
Uranium (U)	<1.0		1.0	ug/g	10-MAY-13	33	33	23	23
Vanadium (V)	18.4		1.0	ug/g	10-MAY-13	86	86	86	86
Zinc (Zn)	49.5		5.0	ug/g	10-MAY-13	340	340	340	340
Speciated Metals				3.3		040	040	040	040
Chromium, Hexavalent	0.34		0.20	ug/g	10-MAY-13	8	10	8	10
Volatile Organic Compounds				-3.3		O	10		10
Benzene	<0.020		0.020	ug/g	13-MAY-13	0.32	0.4	0.21	0.17
Ethyl Benzene	<0.050		0.050	ug/g	13-MAY-13	1.1	1.6	1.1	1.6
Toluene	<0.20		0.20	ug/g	13-MAY-13	6.4	9	2.3	6
o-Xylene	<0.020		0.020	ug/g	13-MAY-13	0.4	9	2.3	O
m+p-Xylenes	<0.030		0.030	ug/g	13-MAY-13				
Xylenes (Total)	<0.050		0.050	ug/g	14-MAY-13	26	30	3.1	25
Surrogate: 4-Bromofluorobenzene	97.1		70-130	%	13-MAY-13				
Surrogate: 1,4-Difluorobenzene	98.1		70-130	%	13-MAY-13				
Hydrocarbons									
F1 (C6-C10)	<5.0		5.0	ug/g	13-MAY-13	55	65	55	65
F1-BTEX	<5.0		5.0	ug/g	15-MAY-13	55	65	55	65
F2 (C10-C16)	<10		10	ug/g	14-MAY-13	230	250	98	150
F2-Naphth	<10		10	ug/g	15-MAY-13				
F3 (C16-C34)	401		50	ug/g	14-MAY-13	1700	2500	*300	1300
F3-PAH	401		50	ug/g	15-MAY-13				
F4 (C34-C50)	1090		50	ug/g	14-MAY-13	3300	6600	2800	5600
F4G-SG (GHH-Silica)	2850		250	mg/kg	15-MAY-13	3300	6600	*2800	5600
Total Hydrocarbons (C6-C50)	1490		50	ug/g	15-MAY-13				
Chrom. to baseline at nC50	NO 74.0		60.440	No Unit	14-MAY-13				
Surrogate: 2-Bromobenzotrifluoride	71.8		60-140	%	14-MAY-13				

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T2-RPI-ICC-C/F-SOIL

#1: T2-Soil-Ind/Com/Commu Property Use (Coarse)

#2: T2-Soil-Ind/Com/Commu Property Use (Fine)

#3: T2-Soil-Res/Park/Inst. Property Use (Coarse)

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L1298752 CONTD....

Page 7 of 16 5-MAY-13 14:15 (MT)

1599-710							1	5-MAY-13 1	4:15 (MT)
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L1298752-3 BH13-4 SS1									
Sampled By: B. Ritchie/K. Linton on 06-MAY-1	3								
Matrix: soil						#1	#2	#3	#4
Hydrocarbons									
Surrogate: 3,4-Dichlorotoluene	93.2		60-140	%	13-MAY-13				
Surrogate: Octacosane	111.8		60-140	%	14-MAY-13				
Polycyclic Aromatic Hydrocarbons									
Acenaphthene	<0.050		0.050	ug/g	15-MAY-13	21	29	7.9	29
Acenaphthylene	<0.050		0.050	ug/g	15-MAY-13	0.15	0.17	0.15	0.17
Anthracene	<0.050		0.050	ug/g	15-MAY-13	0.67	0.74	0.67	0.74
Benzo(a)anthracene	<0.050		0.050	ug/g	15-MAY-13	0.96	0.96	0.5	0.63
Benzo(a)pyrene	<0.050		0.050	ug/g	15-MAY-13	0.3	0.3	0.3	0.3
Benzo(b)fluoranthene	<0.050		0.050	ug/g	15-MAY-13	0.96	0.96	0.78	0.78
Benzo(g,h,i)perylene	<0.050		0.050	ug/g	15-MAY-13	9.6	9.6	6.6	7.8
Benzo(k)fluoranthene	<0.050		0.050	ug/g	15-MAY-13	0.96	0.96	0.78	0.78
Chrysene	<0.050		0.050	ug/g	15-MAY-13	9.6	9.6	7	7.8
Dibenzo(ah)anthracene	<0.050		0.050	ug/g	15-MAY-13	0.1	0.1	0.1	0.1
Fluoranthene	<0.050		0.050	ug/g	15-MAY-13	9.6	9.6	0.69	0.69
Fluorene	<0.050		0.050	ug/g	15-MAY-13	62	69	62	69
Indeno(1,2,3-cd)pyrene	<0.050		0.050	ug/g	15-MAY-13	0.76	0.95	0.38	0.48
1+2-Methylnaphthalenes	<0.042		0.042	ug/g	15-MAY-13	30	42	0.99	3.4
1-Methylnaphthalene	<0.030		0.030	ug/g	15-MAY-13	30	42	0.99	3.4
2-Methylnaphthalene	<0.030		0.030	ug/g	15-MAY-13	30	42	0.99	3.4
Naphthalene	<0.050		0.050	ug/g	15-MAY-13	9.6	28	0.6	0.75
Phenanthrene	<0.050		0.050	ug/g	15-MAY-13	12	16	6.2	7.8
Pyrene	<0.050		0.050	ug/g	15-MAY-13	96	96	78	78
Surrogate: 2-Fluorobiphenyl	100.9		50-140	%	15-MAY-13				
Surrogate: p-Terphenyl d14	106.8		50-140	%	15-MAY-13				
L1298752-4 BH13-5 SS1									
Sampled By: B. Ritchie/K. Linton on 06-MAY-1	13					".4	"0	"0	
Matrix: soil						#1	#2	#3	#4
Physical Tests									
Conductivity	0.365		0.0040	mS/cm	10-MAY-13	1.4	1.4	0.7	0.7
% Moisture	3.62		0.10	%	09-MAY-13				
рН	7.66		0.10	pH units	10-MAY-13				
Cyanides									
Cyanide, Weak Acid Diss	<0.050		0.050	ug/g	13-MAY-13	0.051	0.051	0.051	0.051
Saturated Paste Extractables									
SAR	0.54		0.10	SAR	10-MAY-13	12	12	5	5
Calcium (Ca)	40.9		1.0	mg/L	10-MAY-13				
Magnesium (Mg)	10.2		1.0	mg/L	10-MAY-13				
Sodium (Na)	15.0		1.0	mg/L	10-MAY-13				
Metals			4.0		40 140 140				
Antimony (Sb)	<1.0		1.0	ug/g	10-MAY-13	40	50	7.5	7.5
Arsenic (As)	2.3		1.0	ug/g	10-MAY-13	18	18	18	18
Barium (Ba)	244		1.0	ug/g	10-MAY-13	670	670	390	390

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T2-RPI-ICC-C/F-SOIL

#1: T2-Soil-Ind/Com/Commu Property Use (Coarse)

#2: T2-Soil-Ind/Com/Commu Property Use (Fine)

#3: T2-Soil-Res/Park/Inst. Property Use (Coarse)

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L1298752 CONTD....

Page 8 of 16 15-MAY-13 14:15 (MT)

1599-710 Sample Details							1	5-MAY-13 1	4:15 (MT)
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	e Limits	
L1298752-4 BH13-5 SS1									
Sampled By: B. Ritchie/K. Linton on 06-MAY-	13								
Matrix: soil						#1	#2	#3	#4
Metals									
Beryllium (Be)	<0.50		0.50	ug/g	10-MAY-13	8	10	4	5
Boron (B)	11.4		5.0	ug/g	10-MAY-13	120	120	120	120
Boron (B), Hot Water Ext.	0.26		0.10	ug/g	10-MAY-13	2	2	1.5	1.5
Cadmium (Cd)	<0.50		0.50	ug/g	10-MAY-13	1.9	1.9	1.2	1.2
Chromium (Cr)	30.2		1.0	ug/g	10-MAY-13	160	160	160	160
Cobalt (Co)	8.5		1.0	ug/g	10-MAY-13	80	100	22	22
Copper (Cu)	19.9		1.0	ug/g	10-MAY-13	230	300	140	180
Lead (Pb)	26.9		1.0	ug/g	10-MAY-13	120	120	120	120
Mercury (Hg)	0.014		0.010	ug/g	10-MAY-13	3.9	20	0.27	1.8
Molybdenum (Mo)	1.2		1.0	ug/g	10-MAY-13	40	40	6.9	6.9
Nickel (Ni)	17.0		1.0	ug/g	10-MAY-13	270	340	100	130
Selenium (Se)	<1.0		1.0	ug/g	10-MAY-13	5.5	5.5	2.4	2.4
Silver (Ag)	<0.20		0.20	ug/g	10-MAY-13	40	50	20	25
Thallium (TI)	<0.50		0.50	ug/g	10-MAY-13	3.3	3.3	1	1
Uranium (U)	<1.0		1.0	ug/g	10-MAY-13	33	33	23	23
Vanadium (V)	38.6		1.0	ug/g	10-MAY-13	86	86	86	86
Zinc (Zn)	52.1		5.0	ug/g	10-MAY-13	340	340	340	340
Speciated Metals									
Chromium, Hexavalent	1.08		0.20	ug/g	10-MAY-13	8	10	8	10
Volatile Organic Compounds									
Benzene	<0.020		0.020	ug/g	13-MAY-13	0.32	0.4	0.21	0.17
Ethyl Benzene	<0.050		0.050	ug/g	13-MAY-13	1.1	1.6	1.1	1.6
Toluene	<0.20		0.20	ug/g	13-MAY-13	6.4	9	2.3	6
o-Xylene	<0.020		0.020	ug/g	13-MAY-13				
m+p-Xylenes	<0.030		0.030	ug/g	13-MAY-13				
Xylenes (Total)	<0.050		0.050	ug/g	14-MAY-13	26	30	3.1	25
Surrogate: 4-Bromofluorobenzene	89.3		70-130	%	13-MAY-13				
Surrogate: 1,4-Difluorobenzene	100.1		70-130	%	13-MAY-13				
Hydrocarbons			5 0		40 MAY 40				
F1 (C6-C10)	<5.0		5.0	ug/g	13-MAY-13	55	65	55	65
F1-BTEX F2 (C10-C16)	<5.0 <10		5.0	ug/g	15-MAY-13	55	65	55	65
,	<10		10 10	ug/g	14-MAY-13	230	250	98	150
F2-Naphth F3 (C16-C34)	288		50	ug/g ug/g	15-MAY-13 14-MAY-13	1700	2500	300	1300
F3-PAH	288		50	ug/g	15-MAY-13	1700	2500	300	1300
F4 (C34-C50)	455		50 50	ug/g ug/g	14-MAY-13	3300	6600	2800	5600
F4G-SG (GHH-Silica)	1400		250	mg/kg	15-MAY-13	3300	6600	2800	5600
Total Hydrocarbons (C6-C50)	743		50	ug/g	15-MAY-13	3000			3000
Chrom. to baseline at nC50	NO			No Unit	14-MAY-13				
Surrogate: 2-Bromobenzotrifluoride	80.3		60-140	%	14-MAY-13				
Surrogate: 3,4-Dichlorotoluene	79.6		60-140	%	13-MAY-13				
Surrogate: Octacosane	107.8		60-140	%	14-MAY-13				
Polycyclic Aromatic Hydrocarbons									

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T2-RPI-ICC-C/F-SOIL

#1: T2-Soil-Ind/Com/Commu Property Use (Coarse)

#2: T2-Soil-Ind/Com/Commu Property Use (Fine)

#3: T2-Soil-Res/Park/Inst. Property Use (Coarse)

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L1298752 CONTD....

Page 9 of 16 15-MAY-13 14:15 (MT)

1599-710							1	5-MAY-13 1	4:15 (MT)
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L1298752-4 BH13-5 SS1									
Sampled By: B. Ritchie/K. Linton on 06-MAY-1	3								
Matrix: soil						#1	#2	#3	#4
Polycyclic Aromatic Hydrocarbons									
Acenaphthene	< 0.050		0.050	ug/g	15-MAY-13	21	29	7.9	29
Acenaphthylene	< 0.050		0.050	ug/g	15-MAY-13	0.15	0.17	0.15	0.17
Anthracene	< 0.050		0.050	ug/g	15-MAY-13	0.67	0.74	0.67	0.74
Benzo(a)anthracene	< 0.050		0.050	ug/g	15-MAY-13	0.96	0.96	0.5	0.63
Benzo(a)pyrene	< 0.050		0.050	ug/g	15-MAY-13	0.3	0.3	0.3	0.3
Benzo(b)fluoranthene	< 0.050		0.050	ug/g	15-MAY-13	0.96	0.96	0.78	0.78
Benzo(g,h,i)perylene	< 0.050		0.050	ug/g	15-MAY-13	9.6	9.6	6.6	7.8
Benzo(k)fluoranthene	< 0.050		0.050	ug/g	15-MAY-13	0.96	0.96	0.78	0.78
Chrysene	< 0.050		0.050	ug/g	15-MAY-13	9.6	9.6	7	7.8
Dibenzo(ah)anthracene	< 0.050		0.050	ug/g	15-MAY-13	0.1	0.1	0.1	0.1
Fluoranthene	< 0.050		0.050	ug/g	15-MAY-13	9.6	9.6	0.69	0.69
Fluorene	< 0.050		0.050	ug/g	15-MAY-13	62	69	62	69
Indeno(1,2,3-cd)pyrene	< 0.050		0.050	ug/g	15-MAY-13	0.76	0.95	0.38	0.48
1+2-Methylnaphthalenes	< 0.042		0.042	ug/g	15-MAY-13	30	42	0.99	3.4
1-Methylnaphthalene	< 0.030		0.030	ug/g	15-MAY-13	30	42	0.99	3.4
2-Methylnaphthalene	< 0.030		0.030	ug/g	15-MAY-13	30	42	0.99	3.4
Naphthalene	< 0.050		0.050	ug/g	15-MAY-13	9.6	28	0.6	0.75
Phenanthrene	< 0.050		0.050	ug/g	15-MAY-13	12	16	6.2	7.8
Pyrene	< 0.050		0.050	ug/g	15-MAY-13	96	96	78	78
Surrogate: 2-Fluorobiphenyl	100.8		50-140	%	15-MAY-13				. •
Surrogate: p-Terphenyl d14	108.2		50-140	%	15-MAY-13				
L1298752-5 BH13-6 SS1A									
Sampled By: B. Ritchie/K. Linton on 02-MAY-1	3								
Matrix: soil						#1	#2	#3	#4
Physical Tests									
Conductivity	0.133		0.0040	mS/cm	10-MAY-13	4.4		0.7	0.7
% Moisture	6.16		0.0040	%	09-MAY-13	1.4	1.4	0.7	0.7
pH	7.77		0.10	pH units	10-MAY-13				
Cyanides			00	p ao					
Cyanide, Weak Acid Diss	< 0.050		0.050	ug/g	13-MAY-13	0.051	0.051	0.051	0.051
Saturated Paste Extractables						0.00	0.00.	0.00.	0.00
SAR	<0.10		0.10	SAR	10-MAY-13	12	12	5	5
Calcium (Ca)	35.7		1.0	mg/L	10-MAY-13				Ü
Magnesium (Mg)	1.9		1.0	mg/L	10-MAY-13				
Sodium (Na)	1.4		1.0	mg/L	10-MAY-13				
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	10-MAY-13	40	50	7.5	7.5
Arsenic (As)	<1.0		1.0	ug/g	10-MAY-13	18	18	18	18
Barium (Ba)	83.3		1.0	ug/g	10-MAY-13	670	670	390	390
Beryllium (Be)	< 0.50		0.50	ug/g	10-MAY-13	8	10	4	5
Boron (B)	6.4		5.0	ug/g	10-MAY-13	120	120	120	120
Boron (B), Hot Water Ext.	0.16		0.10	ug/g	10-MAY-13	2	2	1.5	1.5

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T2-RPI-ICC-C/F-SOIL

#1: T2-Soil-Ind/Com/Commu Property Use (Coarse)

#2: T2-Soil-Ind/Com/Commu Property Use (Fine)

#3: T2-Soil-Res/Park/Inst. Property Use (Coarse)

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L1298752 CONTD.... Page 10 of 16

599-710	ANALI	IICAL	שוטט	ELINE	KEPUK	. I	1	Page 10 15-MAY-13 1	of 16 4:15 (MT
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed			ne Limits	
.1298752-5 BH13-6 SS1A									
Sampled By: B. Ritchie/K. Linton on 02-MA	Y-13								
Matrix: soil						#1	#2	#3	#4
Metals									
Cadmium (Cd)	<0.50		0.50	ug/g	10-MAY-13	1.9	1.9	1.2	1.2
Chromium (Cr)	9.4		1.0	ug/g	10-MAY-13	1.9	160	160	160
Cobalt (Co)	3.8		1.0	ug/g	10-MAY-13	80	100	22	22
Copper (Cu)	9.3		1.0	ug/g	10-MAY-13	230	300		180
Lead (Pb)	7.7		1.0	ug/g	10-MAY-13			140	
Mercury (Hg)	<0.010		0.010	ug/g	10-MAY-13	120	120	120	120 1.8
Molybdenum (Mo)	<1.0		1.0	ug/g ug/g	10-MAY-13	3.9	20	0.27	
Nickel (Ni)	6.6		1.0		10-MAY-13	40	40	6.9	6.9
Selenium (Se)	<1.0		1.0	ug/g	10-MAY-13	270	340	100	130
` '				ug/g		5.5	5.5	2.4	2.4
Silver (Ag)	<0.20		0.20	ug/g	10-MAY-13	40	50	20	25
Thallium (TI)	<0.50		0.50	ug/g	10-MAY-13	3.3	3.3	1	1
Uranium (U)	<1.0		1.0	ug/g	10-MAY-13	33	33	23	23
Vanadium (V)	19.9		1.0	ug/g	10-MAY-13	86	86	86	86
Zinc (Zn)	22.5		5.0	ug/g	10-MAY-13	340	340	340	340
Speciated Metals									
Chromium, Hexavalent	0.31		0.20	ug/g	10-MAY-13	8	10	8	10
Volatile Organic Compounds									
Benzene	<0.020		0.020	ug/g	13-MAY-13	0.32	0.4	0.21	0.17
Ethyl Benzene	<0.050		0.050	ug/g	13-MAY-13	1.1	1.6	1.1	1.6
Toluene	<0.20		0.20	ug/g	13-MAY-13	6.4	9	2.3	6
o-Xylene	<0.020		0.020	ug/g	13-MAY-13				
m+p-Xylenes	<0.030		0.030	ug/g	13-MAY-13				
Xylenes (Total)	<0.050		0.050	ug/g	14-MAY-13	26	30	3.1	25
Surrogate: 4-Bromofluorobenzene	94.9		70-130	%	13-MAY-13				
Surrogate: 1,4-Difluorobenzene Hydrocarbons	100.3		70-130	%	13-MAY-13				
•	5.0		- 0	,	40.1417/40				
F1 (C6-C10)	<5.0		5.0	ug/g	13-MAY-13	55	65	55	65
F1-BTEX	<5.0		5.0	ug/g	14-MAY-13	55	65	55	65
F2 (C10-C16)	<10		10	ug/g	14-MAY-13	230	250	98	150
F2-Naphth	<10		10	ug/g	14-MAY-13				
F3 (C16-C34)	<50		50	ug/g	14-MAY-13	1700	2500	300	130
F3-PAH	<50		50 50	ug/g	14-MAY-13 14-MAY-13	0000		0000	500
F4 (C34-C50)	<50		50 50	ug/g	14-MAY-13	3300	6600	2800	560
Total Hydrocarbons (C6-C50) Chrom. to baseline at nC50	<50 YES		50	ug/g No Unit	14-MAY-13				
Surrogate: 2-Bromobenzotrifluoride	98.2		60-140	%	14-MAY-13				
Surrogate: 3,4-Dichlorotoluene	98.9		60-140	%	13-MAY-13				
Surrogate: Octacosane	110.1		60-140	%	14-MAY-13				
Polycyclic Aromatic Hydrocarbons									
Acenaphthene	<0.050		0.050	ug/g	13-MAY-13	21	29	7.9	29
Acenaphthylene	<0.050		0.050	ug/g	13-MAY-13	0.15	0.17	0.15	0.17
Anthracene	<0.050		0.050	ug/g	13-MAY-13	0.67	0.74	0.67	0.74
Benzo(a)anthracene	<0.050		0.050	ug/g	13-MAY-13	0.96	0.96	0.5	0.63
2520(4)411111400110	30.000		0.000	~9′9		0.30	0.90	0.5	0.0

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T2-RPI-ICC-C/F-SOIL

#1: T2-Soil-Ind/Com/Commu Property Use (Coarse)

#2: T2-Soil-Ind/Com/Commu Property Use (Fine)

#3: T2-Soil-Res/Park/Inst. Property Use (Coarse)

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L1298752 CONTD.... Page 11 of 16

180

140

1599-710 15-MAY-13 14:15 (MT) Sample Details Grouping Analyte Result Qualifier D.L. Units Analyzed **Guideline Limits** L1298752-5 BH13-6 SS1A Sampled By: B. Ritchie/K. Linton on 02-MAY-13 #1 #2 #3 #4 Matrix: **Polycyclic Aromatic Hydrocarbons** < 0.050 0.050 13-MAY-13 Benzo(a)pyrene ug/g 0.3 0.3 0.3 0.3 < 0.050 0.050 13-MAY-13 Benzo(b)fluoranthene ug/g 0.96 0.96 0.78 0.78 Benzo(g,h,i)perylene < 0.050 0.050 ug/g 13-MAY-13 9.6 9.6 6.6 7.8 Benzo(k)fluoranthene < 0.050 0.050 ug/g 13-MAY-13 0.78 0.96 0.96 0.78 0.050 13-MAY-13 Chrysene < 0.050 ug/g 9.6 9.6 7 7.8 Dibenzo(ah)anthracene < 0.050 0.050 13-MAY-13 ug/g 0.1 0.1 0.1 0.1 Fluoranthene < 0.050 0.050 13-MAY-13 9.6 ug/g 9.6 0.69 0.69 <0.050 0.050 13-MAY-13 Fluorene ug/g 62 69 62 69 13-MAY-13 < 0.050 0.050 Indeno(1,2,3-cd)pyrene ug/g 0.76 0.95 0.38 0.48 1+2-Methylnaphthalenes < 0.042 0.042 13-MAY-13 ug/g 30 42 0.99 3.4 1-Methylnaphthalene < 0.030 0.030 ug/g 13-MAY-13 30 0.99 42 3.4 2-Methylnaphthalene < 0.030 0.030 ug/g 13-MAY-13 30 42 0.99 3.4 Naphthalene < 0.050 0.050 13-MAY-13 ug/g 28 0.75 9.6 0.6 Phenanthrene < 0.050 0.050 13-MAY-13 ug/g 7.8 12 16 6.2 < 0.050 13-MAY-13 Pyrene 0.050 ug/g 96 96 78 78 50-140 % Surrogate: 2-Fluorobiphenyl 103.1 13-MAY-13 Surrogate: p-Terphenyl d14 50-140 13-MAY-13 105.9 L1298752-6 BH13-8 SS1 Sampled By: B. Ritchie/K. Linton on 02-MAY-13 #1 #2 #3 #4 Matrix: **Physical Tests** Conductivity 0.180 0.0040 mS/cm 10-MAY-13 1.4 1.4 0.7 0.7 8.66 0.10 % 09-MAY-13 % Moisture pH units 10-MAY-13 pН 7.60 0.10 Cyanides Cyanide, Weak Acid Diss < 0.050 0.050 ug/g 13-MAY-13 0.051 0.051 0.051 0.051 **Saturated Paste Extractables** SAR SAR 0.11 0.10 10-MAY-13 12 12 5 5 Calcium (Ca) 39.1 1.0 mg/L 10-MAY-13 10-MAY-13 Magnesium (Mg) 1.8 1.0 mg/L Sodium (Na) 2.6 1.0 mg/L 10-MAY-13 Metals Antimony (Sb) <1.0 1.0 ug/g 10-MAY-13 40 50 7.5 7.5 10-MAY-13 Arsenic (As) 2.7 1.0 ug/g 18 18 18 18 Barium (Ba) 142 1.0 ug/g 10-MAY-13 670 670 390 390 Beryllium (Be) < 0.50 0.50 10-MAY-13 ug/g 8 10 4 5 Boron (B) 12.6 5.0 ug/g 10-MAY-13 120 120 120 120 Boron (B), Hot Water Ext. 0.19 0.10 10-MAY-13 ug/g 2 2 1.5 1.5 Cadmium (Cd) < 0.50 0.50 10-MAY-13 ug/g 1.2 1.9 1.9 1.2 Chromium (Cr) 16.8 10-MAY-13 1.0 ug/g 160 160 160 160 Cobalt (Co) 5.6 1.0 ug/g 10-MAY-13 100 22 22 80

24.2

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T2-RPI-ICC-C/F-SOIL

1.0

ug/g

#1: T2-Soil-Ind/Com/Commu Property Use (Coarse)

#2: T2-Soil-Ind/Com/Commu Property Use (Fine)

230

300

#3: T2-Soil-Res/Park/Inst. Property Use (Coarse)

Copper (Cu)

#4: T2-Soil-Res/Park/Inst. Property Use (Fine)

10-MAY-13

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L1298752 CONTD.... Page 12 of 16

1599-710							1	5-MAY-13 1	4:15 (MT)
Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L1298752-6 BH13-8 SS1									
Sampled By: B. Ritchie/K. Linton on 02-MA	Y-13								
Matrix: soil						#1	#2	#3	#4
Metals									
Lead (Pb)	28.3		1.0	ug/g	10-MAY-13	120	120	120	120
Mercury (Hg)	0.017		0.010	ug/g	10-MAY-13	3.9	20	0.27	1.8
Molybdenum (Mo)	1.9		1.0	ug/g	10-MAY-13	40	40	6.9	6.9
Nickel (Ni)	14.7		1.0	ug/g	10-MAY-13	270	340	100	130
Selenium (Se)	<1.0		1.0	ug/g	10-MAY-13	5.5	5.5	2.4	2.4
Silver (Ag)	<0.20		0.20	ug/g	10-MAY-13	40	50	20	25
Thallium (TI)	<0.50		0.50	ug/g	10-MAY-13	3.3	3.3	1	1
Uranium (U)	<1.0		1.0	ug/g	10-MAY-13	33	33	23	23
Vanadium (V)	18.0		1.0	ug/g	10-MAY-13	86	86	86	86
Zinc (Zn)	92.9		5.0	ug/g	10-MAY-13	340	340	340	340
Speciated Metals	32.3		3.0	ug/g	10-10/21-13	340	340	340	340
Chromium, Hexavalent	0.41		0.20	ua/a	10-MAY-13	0	40		40
Volatile Organic Compounds	0.41		0.20	ug/g	10-1014 1-13	8	10	8	10
• ,	-0.020		0.000		42 MAY 42				
Benzene	<0.020		0.020	ug/g	13-MAY-13	0.32	0.4	0.21	0.17
Ethyl Benzene	<0.050		0.050	ug/g	13-MAY-13	1.1	1.6	1.1	1.6
Toluene	<0.20		0.20	ug/g	13-MAY-13	6.4	9	2.3	6
o-Xylene	<0.020		0.020	ug/g	13-MAY-13				
m+p-Xylenes Xylenes (Total)	<0.030 <0.050		0.030 0.050	ug/g ug/g	13-MAY-13 14-MAY-13	00	20	2.4	05
Surrogate: 4-Bromofluorobenzene	92.3		70-130	ug/g %	13-MAY-13	26	30	3.1	25
Surrogate: 4-Biomondorobenzene	92.3		70-130	% %	13-MAY-13				
Hydrocarbons	33.3		70-130	/0	13-10/41-13				
F1 (C6-C10)	<5.0		5.0	ug/g	13-MAY-13	55	65	55	65
F1-BTEX	<5.0		5.0	ug/g	14-MAY-13	55 55	65	55	65
F2 (C10-C16)	<10		10	ug/g	14-MAY-13	230			
F2-Naphth	<10		10	ug/g	14-MAY-13	230	250	98	150
F3 (C16-C34)	113		50	ug/g ug/g	14-MAY-13	1700	2500	300	1300
F3-PAH	113		50	ug/g	14-MAY-13	1700	2500	300	1300
F4 (C34-C50)	190		50	ug/g	14-MAY-13	3300	6600	2800	5600
Total Hydrocarbons (C6-C50)	303		50	ug/g	14-MAY-13	3300	0000	2000	3000
Chrom. to baseline at nC50	YES		00	No Unit	14-MAY-13				
Surrogate: 2-Bromobenzotrifluoride	76.9		60-140	%	14-MAY-13				
Surrogate: 3,4-Dichlorotoluene	91.5		60-140	%	13-MAY-13				
Surrogate: Octacosane	102.9		60-140	%	14-MAY-13				
Polycyclic Aromatic Hydrocarbons									
Acenaphthene	<0.050		0.050	ug/g	13-MAY-13	21	29	7.9	29
Acenaphthylene	<0.050		0.050	ug/g	13-MAY-13	0.15	0.17	0.15	0.17
Anthracene	<0.050		0.050	ug/g	13-MAY-13	0.67	0.74	0.67	0.74
Benzo(a)anthracene	<0.050		0.050	ug/g	13-MAY-13	0.96	0.96	0.5	0.63
Benzo(a)pyrene	<0.050		0.050	ug/g	13-MAY-13	0.3	0.3	0.3	0.3
Benzo(b)fluoranthene	0.058		0.050	ug/g	13-MAY-13	0.96	0.96	0.78	0.78
Benzo(g,h,i)perylene	<0.050		0.050	ug/g	13-MAY-13	9.6	9.6	6.6	7.8
Benzo(k)fluoranthene	<0.050		0.050	ug/g	13-MAY-13	0.96	0.96	0.78	0.78
· · · · · · · · · · · · · · · · · · ·						-			

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T2-RPI-ICC-C/F-SOIL

#1: T2-Soil-Ind/Com/Commu Property Use (Coarse)

#2: T2-Soil-Ind/Com/Commu Property Use (Fine)

#3: T2-Soil-Res/Park/Inst. Property Use (Coarse)

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

ANALYTICAL GUIDELINE REPORT

L1298752 CONTD.... Page 13 of 16

Sample Details							1	5-MAY-13 1	4. 15 (IVI I
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guidelir	ne Limits	
L1298752-6 BH13-8 SS1									
Sampled By: B. Ritchie/K. Linton on 02-MAY-	3								
Matrix: soil						#1	#2	#3	#4
Polycyclic Aromatic Hydrocarbons									
Chrysene	<0.050		0.050	ug/g	13-MAY-13	9.6	9.6	7	7.8
Dibenzo(ah)anthracene	<0.050		0.050	ug/g	13-MAY-13	0.1	0.1	0.1	0.1
Fluoranthene	0.065		0.050	ug/g	13-MAY-13	9.6	9.6	0.69	0.69
Fluorene	<0.050		0.050	ug/g	13-MAY-13	62	69	62	69
Indeno(1,2,3-cd)pyrene	<0.050		0.050	ug/g	13-MAY-13	0.76	0.95	0.38	0.48
1+2-Methylnaphthalenes	<0.042		0.042	ug/g	13-MAY-13	30	42	0.99	3.4
1-Methylnaphthalene	<0.030		0.030	ug/g	13-MAY-13	30	42	0.99	3.4
2-Methylnaphthalene	<0.030		0.030	ug/g	13-MAY-13	30	42	0.99	3.4
Naphthalene	<0.050		0.050	ug/g	13-MAY-13	9.6	28	0.6	0.75
Phenanthrene	<0.050		0.050	ug/g	13-MAY-13	12	16	6.2	7.8
Pyrene	0.053		0.050	ug/g	13-MAY-13	96	96	78	78
Surrogate: 2-Fluorobiphenyl	96.5		50-140	%	13-MAY-13				
Surrogate: p-Terphenyl d14	103.7		50-140	%	13-MAY-13				
_1298752-7 QAQC1 Sampled By: B. Ritchie/K. Linton on 02-MAY- Matrix: soil	3					#1	#2	#3	#4
Metals									
Antimony (Sb)	<1.0		1.0	ug/g	10-MAY-13	40	50	7.5	7.5
Arsenic (As)	2.1		1.0	ug/g	10-MAY-13	18	18	18	18
Barium (Ba)	107		1.0	ug/g	10-MAY-13	670	670	390	390
Beryllium (Be)	<0.50		0.50	ug/g	10-MAY-13	8	10	4	5
Boron (B)	8.9		5.0	ug/g	10-MAY-13	120	120	120	120
Cadmium (Cd)	<0.50		0.50	ug/g	10-MAY-13				1.2
				~g, g	10-10171-13	1.9	1.9	1.2	1.2
Chromium (Cr)	13.7		1.0	ug/g	10-MAY-13	1.9 160	1.9 160	1.2 160	160
Chromium (Cr) Cobalt (Co)	13.7 4.4								
,			1.0	ug/g	10-MAY-13	160	160	160	160 22
Cobalt (Co)	4.4		1.0 1.0	ug/g ug/g	10-MAY-13 10-MAY-13	160 80	160 100	160 22	160 22 180
Cobalt (Co) Copper (Cu)	4.4 18.4		1.0 1.0 1.0	ug/g ug/g ug/g	10-MAY-13 10-MAY-13 10-MAY-13	160 80 230	160 100 300	160 22 140	160 22 180
Cobalt (Co) Copper (Cu) Lead (Pb)	4.4 18.4 20.4		1.0 1.0 1.0 1.0	ug/g ug/g ug/g ug/g	10-MAY-13 10-MAY-13 10-MAY-13 10-MAY-13	160 80 230 120	160 100 300 120 40	160 22 140 120 6.9	160 22 180 120 6.9
Cobalt (Co) Copper (Cu) Lead (Pb) Molybdenum (Mo)	4.4 18.4 20.4 1.2		1.0 1.0 1.0 1.0	ug/g ug/g ug/g ug/g ug/g	10-MAY-13 10-MAY-13 10-MAY-13 10-MAY-13	160 80 230 120 40	160 100 300 120	160 22 140 120	160 22 180 120 6.9
Cobalt (Co) Copper (Cu) Lead (Pb) Molybdenum (Mo) Nickel (Ni)	4.4 18.4 20.4 1.2 10.5		1.0 1.0 1.0 1.0 1.0	ug/g ug/g ug/g ug/g ug/g	10-MAY-13 10-MAY-13 10-MAY-13 10-MAY-13 10-MAY-13	160 80 230 120 40 270	160 100 300 120 40 340	160 22 140 120 6.9 100 2.4	160 22 180 120 6.9 130 2.4
Cobalt (Co) Copper (Cu) Lead (Pb) Molybdenum (Mo) Nickel (Ni) Selenium (Se)	4.4 18.4 20.4 1.2 10.5 <1.0		1.0 1.0 1.0 1.0 1.0 1.0	ug/g ug/g ug/g ug/g ug/g ug/g	10-MAY-13 10-MAY-13 10-MAY-13 10-MAY-13 10-MAY-13 10-MAY-13	160 80 230 120 40 270 5.5	160 100 300 120 40 340 5.5	160 22 140 120 6.9 100	160 22 180 120 6.9 130
Cobalt (Co) Copper (Cu) Lead (Pb) Molybdenum (Mo) Nickel (Ni) Selenium (Se) Silver (Ag)	4.4 18.4 20.4 1.2 10.5 <1.0 <0.20		1.0 1.0 1.0 1.0 1.0 1.0 1.0	ug/g ug/g ug/g ug/g ug/g ug/g	10-MAY-13 10-MAY-13 10-MAY-13 10-MAY-13 10-MAY-13 10-MAY-13 10-MAY-13	160 80 230 120 40 270 5.5	160 100 300 120 40 340 5.5 50	160 22 140 120 6.9 100 2.4 20	160 22 180 120 6.9 130 2.4 25
Cobalt (Co) Copper (Cu) Lead (Pb) Molybdenum (Mo) Nickel (Ni) Selenium (Se) Silver (Ag) Thallium (TI)	4.4 18.4 20.4 1.2 10.5 <1.0 <0.20 <0.50		1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.20	ug/g ug/g ug/g ug/g ug/g ug/g ug/g	10-MAY-13 10-MAY-13 10-MAY-13 10-MAY-13 10-MAY-13 10-MAY-13 10-MAY-13 10-MAY-13	160 80 230 120 40 270 5.5 40 3.3	160 100 300 120 40 340 5.5 50 3.3	160 22 140 120 6.9 100 2.4 20	160 22 180 120 6.9 130 2.4 25

^{**} Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Ontario Regulation 153/04 - April 15, 2011 Standards = [Suite] - ON-511-T2-RPI-ICC-C/F-SOIL

#1: T2-Soil-Ind/Com/Commu Property Use (Coarse)

#2: T2-Soil-Ind/Com/Commu Property Use (Fine)

#3: T2-Soil-Res/Park/Inst. Property Use (Coarse)

^{*} Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied:

Reference Information

Sample Parameter Qualifier key listed:

Qualifier Description

G QC result did not meet ALS DQO. Refer to narrative comments for further information.

CINT Cooling initiated. Samples were packaged with ice or ice packs upon receipt.

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Method Reference***

B-HWS-R511-WT Soil Boron-HWE-O.Reg 153/04 (July HW EXTR, EPA 6010B

A dried solid sample is extracted with calcium chloride, the sample undergoes a heating process. After cooling the sample is filtered and analyzed by ICP/OES.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

BTX-511-HS-WT Soil BTEX-O.Reg 153/04 (July 2011) SW846 8260

BTX is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CN-WAD-R511-WT Soil Cyanide (WAD)-O.Reg 153/04 MOE 3015/APHA 4500CN I-WAD

(July 2011)
The sample is extracted with a strong base for 16 hours, and then filtered. The filtrate is then distilled where the cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a combination of barbituric acid and isonicotinic acid to form a highly colored complex.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

CR-CR6-IC-R511-WT Soil Hex Chrom-O.Reg 153/04 (July SW846 3060A/7199 R511 2011)

Soil sample undergoes a alkaline digestion process where the sample is acidified and derivatized with 1,5-diphenylcarbazide (DPC) using ion chromatography.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

EC-R511-WT Soil Conductivity-O.Reg 153/04 (July MOEE E3138

Parameters

A representative subsample is tumbled with de-ionized (DI) water. The ratio of water to soil is 2:1 v/w. After tumbling the sample is then analyzed by a conductivity meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

F1-F4-511-CALC-WT Soil F1-F4 Hydrocarbon Calculated CCME CWS-PHC DEC-2000 - PUB# 1310-S

Analytical methods used for analysis of CCME Petroleum Hydrocarbons have been validated and comply with the Reference Method for the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

In cases where results for both F4 and F4G are reported, the greater of the two results must be used in any application of the CWS PHC guidelines and the gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

In samples where BTEX and F1 were analyzed, F1-BTEX represents a value where the sum of Benzene, Toluene, Ethylbenzene and total Xylenes has been subtracted from F1.

In samples where PAHs, F2 and F3 were analyzed, F2-Naphth represents the result where Naphthalene has been subtracted from F2. F3-PAH represents a result where the sum of Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-cd)pyrene, Phenanthrene, and Pyrene has been subtracted from F3.

Unless otherwise qualified, the following quality control criteria have been met for the F1 hydrocarbon range:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing response factors for C6 and C10 within 30% of the response factor for toluene.
- 3. Linearity of gasoline response within 15% throughout the calibration range.

Unless otherwise qualified, the following quality control criteria have been met for the F2-F4 hydrocarbon ranges:

- 1. All extraction and analysis holding times were met.
- 2. Instrument performance showing C10, C16 and C34 response factors within 10% of their average.
- 3. Instrument performance showing the C50 response factor within 30% of the average of the C10, C16 and C34 response factors.
- 4. Linearity of diesel or motor oil response within 15% throughout the calibration range.

F1-HS-511-WT Soil F1-O.Reg 153/04 (July 2011) E3398/CCME TIER 1-HS

Fraction F1 is determined by extracting a soil or sediment sample as received with methanol, then analyzing by headspace-GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

Reference Information

F2-F4-511-WT

Soil

F2-F4-O.Reg 153/04 (July 2011) MOE DECPH-E3398/CCME TIER 1

Fractions F2, F3 and F4 are determined by extracting a soil sample with a solvent mix. The solvent recovered from the extracted soil sample is dried and treated to remove polar material. The extract is analyzed by GC/FID.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

F4G-ADD-511-WT

Soil

F4G SG-O.Reg 153/04 (July

MOE DECPH-E3398/CCME TIER 1

2011)
F4G. gravimetric analysis, is determined if the chromatogram does not return to baseline at or before C50. A soil sample is extracted with a solvent mix, the solvent is evaporated and the weight of the residue is determined.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

HG-R511-WT

Mercury-O.Reg 153/04 (July

SW846 3050B/7471

Solid sample is digested with a heated, strong, mixed acid solution to convert all forms of mercury to divalent mercury. The divalent mercury is then reduced to elemental mercury, sparged from solution and analyzed by CVAAS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental

Protection Act (July 1, 2011).

MET-UG/G-CCMS-WT

Metal Scan Collision Cell ICPMS EPA 200.2/6020A

Sample is vigorously digested with nitric and hydrochloric acid. Analysis is conducted by ICP/MS.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG

must be reported).

METHYLNAPS-CALC-WT Soil

ABN-Calculated Parameters

SW846 8270

MOISTURE-WT Soil % Moisture

Gravimetric: Oven Dried

PAH-511-WT

Soil

PAH-O.Reg 153/04 (July 2011)

SW846 3510/8270

A representative sub-sample of soil is fortified with deuterium-labelled surrogates and a mechanical shaking techniqueis used to extract the sample with a mixture of methanol and toluene. The extracts are concentrated and analyzed by GC/MS. Depending on the analytical GC/MS column used benzo(j)fluoranthene may chromatographically co-elute with benzo(b)fluoranthene or benzo(k)fluoranthene.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011), unless a subset of the Analytical Test Group (ATG) has been requested (the Protocol states that all analytes in an ATG must be reported).

PH-R511-WT

pH-O.Reg 153/04 (July 2011)

MOEE E3137A

A minimum 10g portion of the sample is extracted with 20mL of 0.01M calcium chloride solution by shaking for at least 30 minutes. The aqueous layer is separated from the soil and then analyzed using a pH meter and electrode.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

SAR-R511-WT

WT

SAR-O.Reg 153/04 (July 2011) SW846 6010C

A dried, disaggregated solid sample is extracted with deionized water, the aqueous extract is separated from the solid, acidified and then analyzed using a ICP/OES.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

XYLENES-SUM-CALC-

Soil

Sum of Xylene Isomer Concentrations

CALCULATION

Total xylenes represents the sum of o-xylene and m&p-xylene.

*** ALS test methods may incorporate modifications from specified reference methods to improve performance.

Chain of Custody numbers:

128939

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO ONTARIO, CANADA	,	

Reference Information

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million. < - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.

Workorder: L1298752 Report Date: 15-MAY-13 Page 1 of 19

Client: SPL CONSULTANTS LIMITED (Ottawa)

146 Colonnade Road S Units 17 & 18

Nepean ON K2E 7Y1

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
B-HWS-R511-WT	Soil							
Batch R2602885								
WG1667587-4 DUP Boron (B), Hot Water E	xt.	WG1667587-3 15.3	16.0		ug/g	4.0	40	10-MAY-13
WG1667587-6 DUP Boron (B), Hot Water E	xt.	L1299532-14 3.22	3.10		ug/g	3.8	40	10-MAY-13
WG1667587-2 LCS Boron (B), Hot Water E	xt.		89.0		%		70-130	10-MAY-13
WG1667587-1 MB Boron (B), Hot Water E	xt.		<0.10		ug/g		0.1	10-MAY-13
WG1667587-5 MS Boron (B), Hot Water E	xt.	WG1667587-3	N/A	MS-B	%		-	10-MAY-13
WG1667587-7 MS Boron (B), Hot Water E	xt.	L1299532-14	N/A	MS-B	%		-	10-MAY-13
Batch R2606217								
WG1668716-20 DUP Boron (B), Hot Water E	xt.	L1299891-2 0.51	0.47		ug/g	8.5	40	13-MAY-13
WG1668716-22 DUP Boron (B), Hot Water E	xt.	L1300332-2 <0.10	<0.10	RPD-NA	ug/g	N/A	40	13-MAY-13
WG1668716-5 LCS Boron (B), Hot Water E	xt.		92.6		%		70-130	13-MAY-13
WG1668716-1 MB Boron (B), Hot Water E	xt.		<0.10		ug/g		0.1	13-MAY-13
WG1668716-19 MS Boron (B), Hot Water E	xt.	L1299891-2	N/A	MS-B	%		-	13-MAY-13
WG1668716-21 MS Boron (B), Hot Water E	xt.	L1300332-2	112.5		%		60-140	13-MAY-13
BTX-511-HS-WT	Soil						-	-
Batch R2604559 WG1667167-1 CVS								
Benzene			96.5		%		75-125	13-MAY-13
Ethyl Benzene			95.1		%		75-125	13-MAY-13
m+p-Xylenes			99.0		%		75-125	13-MAY-13
o-Xylene			96.2		%		75-125	13-MAY-13
Toluene			92.9		%		75-125	13-MAY-13
WG1666922-4 DUP Benzene		WG1666922-3 <0.020	<0.020	RPD-NA	ug/g	N/A	40	13-MAY-13
Ethyl Benzene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-MAY-13
m+p-Xylenes		<0.030	<0.030	RPD-NA	ug/g	N/A	40	13-MAY-13

Workorder: L1298752 Report Date: 15-MAY-13 Page 2 of 19

Client: SPL CONSULTANTS LIMITED (Ottawa)

146 Colonnade Road S Units 17 & 18

Nepean ON K2E 7Y1

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
BTX-511-HS-WT	Soil							
Batch R2604	559							
	UP	WG1666922-3						
o-Xylene		<0.020	<0.020	RPD-NA	ug/g	N/A	40	13-MAY-13
Toluene		<0.20	<0.20	RPD-NA	ug/g	N/A	40	13-MAY-13
WG1666922-2 LG Benzene	CS		87.0		%		70-130	13-MAY-13
Ethyl Benzene			86.4		%		70-130	13-MAY-13
m+p-Xylenes			87.9		%		70-130	13-MAY-13
o-Xylene			87.4		%		70-130	13-MAY-13
Toluene			86.3		%		70-130	13-MAY-13
WG1666922-1 M Benzene	В		<0.020		ug/g		0.02	13-MAY-13
Ethyl Benzene			<0.050		ug/g		0.05	13-MAY-13
m+p-Xylenes			<0.030		ug/g		0.03	13-MAY-13
o-Xylene			<0.020		ug/g		0.02	13-MAY-13
Toluene			<0.20		ug/g		0.2	13-MAY-13
Surrogate: 1,4-Diflu	orobenzene		97.2		%		70-130	13-MAY-13
Surrogate: 4-Bromo			103.0		%		70-130	13-MAY-13
WG1666922-5 M	S	WG1666922-3						
Benzene			114.0		%		60-140	13-MAY-13
Ethyl Benzene			98.8		%		60-140	13-MAY-13
m+p-Xylenes			109.0		%		60-140	13-MAY-13
o-Xylene			101.4		%		60-140	13-MAY-13
Toluene			110.1		%		60-140	13-MAY-13
CN-WAD-R511-WT	Soil							
Batch R2606								
WG1669473-3 CV Cyanide, Weak Acid	VS d Dies		106.5		%		90 400	40 MAY 40
		1 4200752 4	100.5		70		80-120	13-MAY-13
WG1667082-4 DI Cyanide, Weak Acid	UP d Diss	L1298752-1 <0.050	<0.050	RPD-NA	ug/g	N/A	35	13-MAY-13
WG1667082-2 LC Cyanide, Weak Acid			100.5		%		80-120	13-MAY-13
WG1667082-1 M Cyanide, Weak Acid			<0.050		ug/g		0.05	13-MAY-13
WG1667082-3 Mac Cyanide, Weak Acid		L1298752-1	95.0		%		70-130	13-MAY-13
CR-CR6-IC-R511-WT	Soil							

Workorder: L1298752 Report Date: 15-MAY-13 Page 3 of 19

Client: SPL CONSULTANTS LIMITED (Ottawa)

146 Colonnade Road S Units 17 & 18

Nepean ON K2E 7Y1

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CR-CR6-IC-R511-WT	Soil							
Batch R26029 WG1667013-3 CR Chromium, Hexavale	M	WT-SQC012	98.0		%		80-120	10-MAY-13
WG1667013-4 DU Chromium, Hexavale		L1298752-1 <0.20	<0.20	RPD-NA	ug/g	N/A	35	10-MAY-13
WG1667013-2 LC Chromium, Hexavale			100.4		%		80-120	10-MAY-13
WG1667013-1 ME Chromium, Hexavale			<0.20		ug/g		0.2	10-MAY-13
EC-R511-WT	Soil							
Batch R26028								
WG1667591-2 DU Conductivity	IP	L1299306-1 0.192	0.187		mS/cm	2.6	20	10-MAY-13
WG1667677-1 LC Conductivity	S		99.4		%		90-110	10-MAY-13
WG1667591-1 ME Conductivity	3		<0.0040		mS/cm		0.004	10-MAY-13
Batch R26045								
WG1668789-3 DU Conductivity	IP	L1298394-3 1.74	1.69		mS/cm	2.9	20	13-MAY-13
WG1668789-4 DU Conductivity	IP	L1300401-4 0.192	0.199		mS/cm	3.6	20	13-MAY-13
WG1668789-5 LC Conductivity	s		99.4		%		90-110	13-MAY-13
WG1668789-1 ME Conductivity	3		<0.0040		mS/cm		0.004	13-MAY-13
F1-HS-511-WT	Soil							
Batch R26045								
WG1667167-1 CV F1 (C6-C10)	'S		93.3		%		80-120	13-MAY-13
WG1666922-4 DU F1 (C6-C10)	IP	WG1666922-3 <5.0	<5.0	RPD-NA	ug/g	N/A	50	13-MAY-13
WG1666922-2 LC F1 (C6-C10)	S		97.2		%		80-120	13-MAY-13
WG1666922-1 ME F1 (C6-C10)	3		<5.0		ug/g		5	13-MAY-13
Surrogate: 3,4-Dichle	orotoluene		114.8		%		60-140	13-MAY-13
WG1666922-7 MS	3	WG1666922-6						

Workorder: L1298752 Report Date: 15-MAY-13 Page 4 of 19

Client: SPL CONSULTANTS LIMITED (Ottawa)

146 Colonnade Road S Units 17 & 18

Nepean ON K2E 7Y1

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F1-HS-511-WT		Soil							
	604559	-							
WG1666922-7 F1 (C6-C10)	MS		WG1666922-6	118.8		%		60-140	13-MAY-13
F2-F4-511-WT		Soil							
Batch R2	606589								
WG1667657-4 F2 (C10-C16)	CRM		ALS PHC2 IRN	1 97.3		%		70-130	14-MAY-13
F3 (C16-C34)				93.6		%		70-130	14-MAY-13
F4 (C34-C50)				84.3		%		70-130	14-MAY-13
WG1669358-1 F2 (C10-C16)	cvs			102.2		%		80-120	14-MAY-13
F3 (C16-C34)				103.6		%		80-120	14-MAY-13
F4 (C34-C50)				108.5		%		80-120	14-MAY-13
WG1669358-2	cvs			402.0		%			
F2 (C10-C16) F3 (C16-C34)				103.8 103.2		%		80-120	14-MAY-13
F4 (C34-C50)				106.6		%		80-120	14-MAY-13
WG1667657-6	DUP		WG1667657-5	100.0		70		80-120	14-MAY-13
F2 (C10-C16)	DUP		2020	2350		ug/g	15	40	14-MAY-13
F3 (C16-C34)			82	83		ug/g	1.0	40	14-MAY-13
F4 (C34-C50)			<50	<50	RPD-NA	ug/g	N/A	40	14-MAY-13
		ed surrogate on s	sample due to hig	h F2 concer	ntrations.				
WG1667657-2 F2 (C10-C16)	LCS			88.6		%		80-120	14-MAY-13
F3 (C16-C34)				93.2		%		80-120	14-MAY-13
F4 (C34-C50)				87.6		%		80-120	14-MAY-13
WG1667657-3 F2 (C10-C16)	LCSD		WG1667657-2 88.6	89.2		%	0.7	50	14-MAY-13
F3 (C16-C34)			93.2	96.7		%	3.8	50	14-MAY-13
F4 (C34-C50)			87.6	94.7		%	7.8	50	14-MAY-13
WG1667657-1 F2 (C10-C16)	МВ			<10			-	10	
F2 (C10-C16) F3 (C16-C34)				<10 <50		ug/g ug/g		50	14-MAY-13
F4 (C34-C50)				<50 <50		ug/g ug/g		50	14-MAY-13 14-MAY-13
Surrogate: Octa	acosane			109.8		ug/g %		60-140	
Surrogate: 2-Br		otrifluoride		91.0		%		60-140	14-MAY-13
Gurroyate. 2-bi	OTTODETIZ(oa maona c		31.0		70		00-140	14-MAY-13

Workorder: L1298752 Report Date: 15-MAY-13 Page 5 of 19

Client: SPL CONSULTANTS LIMITED (Ottawa)

146 Colonnade Road S Units 17 & 18

Nepean ON K2E 7Y1

Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F4G-ADD-511-WT		Soil							
	606830 LCS Silica)			71.3		%		60-140	15-MAY-13
WG1670159-3 F4G-SG (GHH-	LCSD Silica)		WG1670159-2 71.3	78.2		%	9.1	50	15-MAY-13
WG1670159-1 F4G-SG (GHH-	MB Silica)			<250		mg/kg		250	15-MAY-13
HG-R511-WT		Soil							
	602935		WT CC 4						
WG1667581-2 Mercury (Hg)	CRM		WT-SS-1	94.6		%		70-130	10-MAY-13
WG1667581-6 Mercury (Hg)	DUP		WG1667581-5 0.041	0.042		ug/g	0.8	30	10-MAY-13
WG1667581-4 Mercury (Hg)	LCS			100.5		%		80-120	10-MAY-13
WG1667581-1 Mercury (Hg)	MB			<0.010		ug/g		0.01	10-MAY-13
WG1667581-7 Mercury (Hg)	MS		WG1667581-5	89.3		%		70-130	10-MAY-13
Batch R2 WG1668709-2 Mercury (Hg)	604872 CRM		WT-SS-1	86.4		%		70-130	13-MAY-13
WG1668709-6 Mercury (Hg)	DUP		WG1668709-5 <0.010	<0.010	RPD-NA	ug/g	N/A	30	13-MAY-13
WG1668709-8 Mercury (Hg)	DUP		L1299891-5 0.021	0.021		ug/g	1.3	30	13-MAY-13
WG1668709-4 Mercury (Hg)	LCS			94.0		%		80-120	13-MAY-13
WG1668709-1 Mercury (Hg)	MB			<0.010		ug/g		0.01	13-MAY-13
WG1668709-7 Mercury (Hg)	MS		WG1668709-5	95.0		%		70-130	13-MAY-13
WG1668709-9 Mercury (Hg)	MS		L1299891-5	87.2		%		70-130	13-MAY-13
MET-UG/G-CCMS-	WT	Soil							
Batch R2 WG1667618-2 Antimony (Sb)	603015 CVS			93.5		%		70-130	10-MAY-13

Workorder: L1298752 Report Date: 15-MAY-13 Page 6 of 19

Client: SPL CONSULTANTS LIMITED (Ottawa)

146 Colonnade Road S Units 17 & 18

Nepean ON K2E 7Y1

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-UG/G-CCMS-WT	Soil							
Batch R2603015								
WG1667618-2 CVS Arsenic (As)			104.8		%		70-130	10-MAY-13
Barium (Ba)			102.6		%		70-130	10-MAY-13
Beryllium (Be)			109.7		%		70-130	10-MAY-13
Boron (B)			107.0		%		70-130	10-MAY-13
Cadmium (Cd)			100.0		%		70-130	10-MAY-13
Chromium (Cr)			99.5		%		70-130	10-MAY-13
Cobalt (Co)			101.0		%		70-130	10-MAY-13
Copper (Cu)			100.6		%		70-130	10-MAY-13
Lead (Pb)			96.0		%		70-130	10-MAY-13
Molybdenum (Mo)			110.9		%		70-130	10-MAY-13
Nickel (Ni)			99.4		%		70-130	10-MAY-13
Selenium (Se)			99.6		%		70-130	10-MAY-13
Silver (Ag)			94.3		%		70-130	10-MAY-13
Thallium (TI)			92.6		%		70-130	10-MAY-13
Uranium (U)			91.2		%		70-130	10-MAY-13
Vanadium (V)			99.3		%		70-130	10-MAY-13
Zinc (Zn)			97.7		%		70-130	10-MAY-13
WG1667581-6 DUP		WG1667581-5						
Antimony (Sb)		<1.0	<1.0	RPD-NA	ug/g	N/A	30	10-MAY-13
Arsenic (As)		3.82	4.15		ug/g	8.3	30	10-MAY-13
Barium (Ba)		103	114		ug/g	10	40	10-MAY-13
Beryllium (Be)		0.88	0.99		ug/g	11	30	10-MAY-13
Boron (B)		9.5	10.4		ug/g	8.9	30	10-MAY-13
Cadmium (Cd)		<0.50	<0.50	RPD-NA	ug/g	N/A	30	10-MAY-13
Chromium (Cr)		27.5	30.0		ug/g	8.5	30	10-MAY-13
Cobalt (Co)		10.9	11.7		ug/g	7.6	30	10-MAY-13
Copper (Cu)		13.5	14.7		ug/g	8.4	30	10-MAY-13
Lead (Pb)		12.9	14.3		ug/g	9.9	40	10-MAY-13
Molybdenum (Mo)		<1.0	<1.0	RPD-NA	ug/g	N/A	40	10-MAY-13
Nickel (Ni)		19.9	21.7		ug/g	8.6	30	10-MAY-13
Selenium (Se)		<1.0	<1.0	RPD-NA	ug/g	N/A	30	10-MAY-13
Silver (Ag)		<0.20	<0.20	RPD-NA	ug/g	N/A	40	10-MAY-13
Thallium (TI)		<0.50	<0.50	RPD-NA	ug/g	N/A	30	10-MAY-13

Workorder: L1298752 Report Date: 15-MAY-13 Page 7 of 19

Client: SPL CONSULTANTS LIMITED (Ottawa)

146 Colonnade Road S Units 17 & 18

Nepean ON K2E 7Y1

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-UG/G-CCMS-WT	Soil							
Batch R2603015								
WG1667581-6 DUP Uranium (U)		WG1667581- <1.0	5 <1.0	DDD MA	ua/a	NI/A	20	40 MAY 40
Vanadium (V)		39.6	43.0	RPD-NA	ug/g ug/g	N/A 8.2	30 30	10-MAY-13 10-MAY-13
Zinc (Zn)		68.6	75.3		ug/g	9.3	30	
WG1667581-8 DUP		L1298167-15			ug/g	9.3	30	10-MAY-13
Antimony (Sb)		<1.0	<1.0	RPD-NA	ug/g	N/A	30	10-MAY-13
Arsenic (As)		5.9	6.0		ug/g	1.4	30	10-MAY-13
Barium (Ba)		101	102		ug/g	1.1	40	10-MAY-13
Beryllium (Be)		0.74	0.79		ug/g	7.4	30	10-MAY-13
Boron (B)		15.3	15.6		ug/g	2.0	30	10-MAY-13
Cadmium (Cd)		<0.50	<0.50	RPD-NA	ug/g	N/A	30	10-MAY-13
Chromium (Cr)		24.5	25.3		ug/g	3.1	30	10-MAY-13
Cobalt (Co)		10.7	10.7		ug/g	0.3	30	10-MAY-13
Copper (Cu)		21.9	22.2		ug/g	1.3	30	10-MAY-13
Lead (Pb)		12.9	13.0		ug/g	0.7	40	10-MAY-13
Molybdenum (Mo)		<1.0	<1.0	RPD-NA	ug/g	N/A	40	10-MAY-13
Nickel (Ni)		21.8	21.8		ug/g	0.1	30	10-MAY-13
Selenium (Se)		<1.0	<1.0	RPD-NA	ug/g	N/A	30	10-MAY-13
Silver (Ag)		<0.20	<0.20	RPD-NA	ug/g	N/A	40	10-MAY-13
Thallium (TI)		<0.50	< 0.50	RPD-NA	ug/g	N/A	30	10-MAY-13
Uranium (U)		<1.0	<1.0	RPD-NA	ug/g	N/A	30	10-MAY-13
Vanadium (V)		38.8	39.7		ug/g	2.5	30	10-MAY-13
Zinc (Zn)		70.9	72.9		ug/g	2.9	30	10-MAY-13
WG1667581-3 LCS								
Antimony (Sb)			104.9		%		80-120	10-MAY-13
Arsenic (As)			100.6		%		80-120	10-MAY-13
Barium (Ba)			99.7		%		80-120	10-MAY-13
Beryllium (Be)			106.5		%		80-120	10-MAY-13
Boron (B)			108.0		%		80-120	10-MAY-13
Cadmium (Cd) Chromium (Cr)			104.2 103.5		% %		80-120	10-MAY-13
Cobalt (Co)			103.5		%		80-120	10-MAY-13
Copper (Cu)			100.5		%		80-120	10-MAY-13
Lead (Pb)			101.8		%		80-120	10-MAY-13
Leau (FD)			109.6		70		80-120	10-MAY-13

Workorder: L1298752 Report Date: 15-MAY-13 Page 8 of 19

Client: SPL CONSULTANTS LIMITED (Ottawa)

146 Colonnade Road S Units 17 & 18

Nepean ON K2E 7Y1

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-UG/G-CCMS-WT	Soil							
Batch R2603015								
WG1667581-3 LCS Molybdenum (Mo)			110.2		%		80-120	10-MAY-13
Nickel (Ni)			103.3		%		80-120	10-MAY-13
Selenium (Se)			107.1		%		80-120	10-MAY-13
Silver (Ag)			108.6		%		80-120	10-MAY-13
Thallium (TI)			107.4		%		80-120	10-MAY-13
Uranium (U)			112.6		%		80-120	10-MAY-13
Vanadium (V)			101.4		%		80-120	10-MAY-13
Zinc (Zn)			101.3		%		80-120	10-MAY-13
WG1667581-1 MB							30 120	.5 14
Antimony (Sb)			<1.0		ug/g		1	10-MAY-13
Arsenic (As)			<0.20		ug/g		0.2	10-MAY-13
Barium (Ba)			<1.0		ug/g		1	10-MAY-13
Beryllium (Be)			<0.50		ug/g		0.5	10-MAY-13
Boron (B)			<5.0		ug/g		5	10-MAY-13
Cadmium (Cd)			<0.50		ug/g		0.5	10-MAY-13
Chromium (Cr)			<1.0		ug/g		1	10-MAY-13
Cobalt (Co)			<1.0		ug/g		1	10-MAY-13
Copper (Cu)			<1.0		ug/g		1	10-MAY-13
Lead (Pb)			<1.0		ug/g		1	10-MAY-13
Molybdenum (Mo)			<1.0		ug/g		1	10-MAY-13
Nickel (Ni)			<1.0		ug/g		1	10-MAY-13
Selenium (Se)			<1.0		ug/g		1	10-MAY-13
Silver (Ag)			<0.20		ug/g		0.2	10-MAY-13
Thallium (TI)			<0.50		ug/g		0.5	10-MAY-13
Uranium (U)			<1.0		ug/g		1	10-MAY-13
Vanadium (V)			<1.0		ug/g		1	10-MAY-13
Zinc (Zn)			<5.0		ug/g		5	10-MAY-13
WG1667581-7 MS		WG1667581-5						
Antimony (Sb)			84.8		%		70-130	10-MAY-13
Arsenic (As)			N/A	MS-B	%		-	10-MAY-13
Barium (Ba)			N/A	MS-B	%		-	10-MAY-13
Beryllium (Be)			119.6		%		70-130	10-MAY-13
Boron (B)			N/A	MS-B	%		-	10-MAY-13
Cadmium (Cd)			117.5		%		70-130	10-MAY-13

Workorder: L1298752 Report Date: 15-MAY-13 Page 9 of 19

Client: SPL CONSULTANTS LIMITED (Ottawa)

146 Colonnade Road S Units 17 & 18

Nepean ON K2E 7Y1

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-UG/G-CCMS-WT	Soil							
Batch R2603015								
WG1667581-7 MS		WG1667581-5			0/			
Chromium (Cr)			N/A	MS-B	%		-	10-MAY-13
Cobalt (Co)			N/A	MS-B	%		-	10-MAY-13
Copper (Cu)			N/A	MS-B	%		-	10-MAY-13
Lead (Pb)			N/A	MS-B	%		-	10-MAY-13
Molybdenum (Mo)			127.8		%		70-130	10-MAY-13
Nickel (Ni)			N/A	MS-B	%		-	10-MAY-13
Selenium (Se)			115.7		%		70-130	10-MAY-13
Silver (Ag)			104.2		%		70-130	10-MAY-13
Thallium (TI)			103.5		%		70-130	10-MAY-13
Uranium (U)			119.8		%		70-130	10-MAY-13
Vanadium (V)			N/A	MS-B	%		-	10-MAY-13
Zinc (Zn)			N/A	MS-B	%		-	10-MAY-13
Batch R2604829 WG1668720-2 CVS Antimony (Sb)			96.9		%		70-130	13-MAY-13
Arsenic (As)			105.6		%		70-130	13-MAY-13
Barium (Ba)			101.3		%		70-130	13-MAY-13
Beryllium (Be)			101.1		%		70-130	13-MAY-13
Boron (B)			96.9		%		70-130	13-MAY-13
Cadmium (Cd)			103.2		%		70-130	13-MAY-13
Chromium (Cr)			99.3		%		70-130	13-MAY-13
Cobalt (Co)			102.3		%		70-130	13-MAY-13
Copper (Cu)			102.0		%		70-130	13-MAY-13
Lead (Pb)			96.2		%		70-130	13-MAY-13
Molybdenum (Mo)			103.4		%		70-130	13-MAY-13
Nickel (Ni)			100.3		%		70-130	13-MAY-13
Selenium (Se)			96.6		%		70-130	13-MAY-13
Silver (Ag)			97.0		%		70-130	13-MAY-13
Thallium (TI)			94.9		%		70-130	13-MAY-13
Uranium (U)			93.0		%		70-130	13-MAY-13
Vanadium (V)			99.7		%		70-130	13-MAY-13
Zinc (Zn)			100.1		%		70-130	13-MAY-13
WG1668709-10 DUP Antimony (Sb)		L1300401-2 <1.0	<1.0	RPD-NA	ug/g	N/A	30	13-MAY-13

Workorder: L1298752 Report Date: 15-MAY-13 Page 10 of 19

Client: SPL CONSULTANTS LIMITED (Ottawa)

146 Colonnade Road S Units 17 & 18

Nepean ON K2E 7Y1

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-UG/G-CCMS-WT	Soil							
Batch R2604829								
WG1668709-10 DUP Arsenic (As)		L1300401-2 1.9	1.9		ug/g	4.4	30	13-MAY-13
Barium (Ba)		51.2	51.2		ug/g	0.1	40	13-MAY-13
Beryllium (Be)		<0.50	<0.50	RPD-NA	ug/g	N/A	30	13-MAY-13
Boron (B)		8.0	6.3		ug/g	24	30	13-MAY-13
Cadmium (Cd)		<0.50	<0.50	RPD-NA	ug/g	N/A	30	13-MAY-13
Chromium (Cr)		16.6	16.7		ug/g	0.5	30	13-MAY-13
Cobalt (Co)		3.9	3.9		ug/g	1.0	30	13-MAY-13
Copper (Cu)		9.4	9.6		ug/g	1.4	30	13-MAY-13
Lead (Pb)		10.7	10.4		ug/g	2.7	40	13-MAY-13
Molybdenum (Mo)		<1.0	<1.0	RPD-NA	ug/g	N/A	40	13-MAY-13
Nickel (Ni)		9.8	9.7		ug/g	0.4	30	13-MAY-13
Selenium (Se)		<1.0	<1.0	RPD-NA	ug/g	N/A	30	13-MAY-13
Silver (Ag)		<0.20	<0.20	RPD-NA	ug/g	N/A	40	13-MAY-13
Thallium (TI)		<0.50	< 0.50	RPD-NA	ug/g	N/A	30	13-MAY-13
Uranium (U)		<1.0	<1.0	RPD-NA	ug/g	N/A	30	13-MAY-13
Vanadium (V)		26.3	26.2		ug/g	0.6	30	13-MAY-13
Zinc (Zn)		41.2	41.4		ug/g	0.6	30	13-MAY-13
WG1668709-6 DUP Antimony (Sb)		WG1668709- <1.0	5 <1.0	RPD-NA	ug/g	N/A	30	13-MAY-13
Arsenic (As)		1.09	1.04	11. 2 10.1	ug/g	4.7	30	13-MAY-13
Barium (Ba)		196	198		ug/g	0.9	40	13-MAY-13
Beryllium (Be)		<0.50	<0.50	RPD-NA	ug/g	N/A	30	13-MAY-13
Boron (B)		<5.0	5.3	RPD-NA	ug/g	N/A	30	13-MAY-13
Cadmium (Cd)		<0.50	<0.50	RPD-NA	ug/g	N/A	30	13-MAY-13
Chromium (Cr)		37.5	37.2		ug/g	1.0	30	13-MAY-13
Cobalt (Co)		10.2	10.0		ug/g	1.1	30	13-MAY-13
Copper (Cu)		20.4	20.1		ug/g	1.8	30	13-MAY-13
Lead (Pb)		4.0	3.9		ug/g	1.3	40	13-MAY-13
Molybdenum (Mo)		<1.0	<1.0	RPD-NA	ug/g	N/A	40	13-MAY-13
Nickel (Ni)		21.5	21.2		ug/g	1.5	30	13-MAY-13
Selenium (Se)		<1.0	<1.0	RPD-NA	ug/g	N/A	30	13-MAY-13
Silver (Ag)		<0.20	<0.20	RPD-NA	ug/g	N/A	40	13-MAY-13
Thallium (TI)		<0.50	<0.50	RPD-NA	ug/g	N/A	30	13-MAY-13

Workorder: L1298752 Report Date: 15-MAY-13 Page 11 of 19

Client: SPL CONSULTANTS LIMITED (Ottawa)

146 Colonnade Road S Units 17 & 18

Nepean ON K2E 7Y1

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-UG/G-CCMS-WT	Soil							
Batch R2604829								
WG1668709-6 DUP		WG1668709-5		DDD MA	/	N 1/A	00	
Uranium (U) Vanadium (V)		1.1	<1.0	RPD-NA	ug/g	N/A	30	13-MAY-13
		54.4	53.7		ug/g	1.3	30	13-MAY-13
Zinc (Zn)		56.1	56.0		ug/g	0.2	30	13-MAY-13
WG1668709-8 DUP Antimony (Sb)		L1299891-5 <1.0	<1.0	RPD-NA	ug/g	N/A	30	13-MAY-13
Arsenic (As)		5.4	5.4		ug/g	0.0	30	13-MAY-13
Barium (Ba)		116	118		ug/g	1.4	40	13-MAY-13
Beryllium (Be)		0.74	0.75		ug/g	0.4	30	13-MAY-13
Boron (B)		27.8	28.2		ug/g	1.4	30	13-MAY-13
Cadmium (Cd)		<0.50	<0.50	RPD-NA	ug/g	N/A	30	13-MAY-13
Chromium (Cr)		27.9	28.8		ug/g	3.0	30	13-MAY-13
Cobalt (Co)		8.0	8.4		ug/g	5.2	30	13-MAY-13
Copper (Cu)		17.6	17.6		ug/g	0.1	30	13-MAY-13
Lead (Pb)		7.9	8.1		ug/g	2.2	40	13-MAY-13
Molybdenum (Mo)		3.9	3.8		ug/g	1.8	40	13-MAY-13
Nickel (Ni)		27.2	27.1		ug/g	0.3	30	13-MAY-13
Selenium (Se)		<1.0	<1.0	RPD-NA	ug/g	N/A	30	13-MAY-13
Silver (Ag)		<0.20	<0.20	RPD-NA	ug/g	N/A	40	13-MAY-13
Thallium (TI)		<0.50	<0.50	RPD-NA	ug/g	N/A	30	13-MAY-13
Uranium (U)		1.7	1.7		ug/g	1.8	30	13-MAY-13
Vanadium (V)		39.3	40.9		ug/g	3.9	30	13-MAY-13
Zinc (Zn)		48.3	48.4		ug/g	0.1	30	13-MAY-13
WG1668709-3 LCS								
Antimony (Sb)			106.7		%		80-120	13-MAY-13
Arsenic (As) Barium (Ba)			98.5		%		80-120	13-MAY-13
Beryllium (Be)			97.6		% %		80-120	13-MAY-13
Boron (B)			99.3 103.4		%		80-120	13-MAY-13
Cadmium (Cd)			103.4		%		80-120	13-MAY-13
Chromium (Cr)			99.8		%		80-120 80-120	13-MAY-13 13-MAY-13
Cobalt (Co)			97.9		%		80-120 80-120	13-MAY-13
Copper (Cu)			108.4		%		80-120	13-MAY-13
Lead (Pb)			109.4		%		80-120	13-MAY-13
(/					,-		00.120	IO WATER

Workorder: L1298752 Report Date: 15-MAY-13 Page 12 of 19

Client: SPL CONSULTANTS LIMITED (Ottawa)

146 Colonnade Road S Units 17 & 18

Nepean ON K2E 7Y1

Metr-Ug/G-CCMS-WT Soil Statch R2604829 WC1668709-3 LCS WC1668709-3 Molydodnum (Mo) 99.6 % 80-120 13-MAY-13 Selenium (Se) 101.9 % 80-120 13-MAY-13 Silver (Ag) 104.2 % 80-120 13-MAY-13 Molydodnum (Mo) 111.4 % 80-120 13-MAY-13 Molydodnum (Mo) 111.4 % 80-120 13-MAY-13 Molydodnum (Mo) 102.7 % 80-120 13-MAY-13 Molydodnum (Mo) 102.7 % 80-120 13-MAY-13 Molydodnum (Mo) 10.0 Ug/g 1 13-MAY-13 Molydodnum (Mo) 1.0 Ug/g 1	Test	Matrix F	Reference	Result (Qualifier	Units	RPD	Limit	Analyzed	
WG1668709-3 LCS Molybdenum (Mo) 108.6 % 80-120 13-MAY-13 Nickel (Ni) 99.6 % 80-120 13-MAY-13 Selenium (Se) 101.9 % 80-120 13-MAY-13 Silver (Ag) 104.2 % 80-120 13-MAY-13 Thallium (TI) 109.7 % 80-120 13-MAY-13 Uranium (U) 111.4 % 80-120 13-MAY-13 Vanadium (V) 97.8 % 80-120 13-MAY-13 Zince (Zn) 102.7 % 80-120 13-MAY-13 WG1668709-1 MB ** 80-120 13-MAY-13 WG1668709-1 MB ** 80-120 13-MAY-13 WG1668709-1 MB ** ** 80-120 13-MAY-13 WG1668709-1 MB ** ** ** 80-120 13-MAY-13 WG1668709-1 MB ** ** ** ** ** ** ** ** ** **	MET-UG/G-CCMS-WT	Soil								
Molybdenum (Mo) 108.6 % 80-120 13-MAY-13 Nickel (Ni) 99.6 % 80-120 13-MAY-13 Selenium (Se) 101.9 % 80-120 13-MAY-13 Silver (Ag) 104.2 % 80-120 13-MAY-13 Thallium (TI) 109.7 % 80-120 13-MAY-13 Uranium (U) 111.4 % 80-120 13-MAY-13 Vanadium (V) 97.8 % 80-120 13-MAY-13 Zinc (Zn) 102.7 % 80-120 13-MAY-13 WG1668709-1 MB 4 80-120 13-MAY-13 WG1668709-1 MB 4 1 13-MAY-13 Arsenic (As) <0.20 ug/g 0.2 13-MAY-13 Arsenic (As) <0.20 ug/g 0.2 13-MAY-13 Beryllium (Be) <0.50 ug/g 0.5 13-MAY-13 Beryllium (Be) <0.50 ug/g 0.5 13-MAY-13 Cadmium (Cd) <0.50										
Nickel (Ni) 99.6 % 80-120 13-MAY-13 Selenium (Se) 101.9 % 80-120 13-MAY-13 Silver (Ag) 104.2 % 80-120 13-MAY-13 Thallium (TI) 109.7 % 80-120 13-MAY-13 Uranium (U) 111.4 % 80-120 13-MAY-13 Zinc (Zn) 97.8 % 80-120 13-MAY-13 Zinc (Zn) 102.7 % 80-120 13-MAY-13 Arsenic (As) WG1668709-1 MB Antimony (Sb) <1.0 ug/g				108 6		%		80-120	12 MAV 12	
Selenium (Se) 101.9 % 80-120 13-MAY-13 Silver (Ag) 104.2 % 80-120 13-MAY-13 Thallium (TI) 109.7 % 80-120 13-MAY-13 Uranium (U) 111.4 % 80-120 13-MAY-13 Vanadium (V) 97.8 % 80-120 13-MAY-13 Zinc (Zn) 102.7 % 80-120 13-MAY-13 W3-1668709-1 MB Antimony (Sb) <1.0										
Silver (Ag) 104.2 % 80-120 13-MAY-13 Thallium (TI) 109.7 % 80-120 13-MAY-13 Uranium (U) 111.4 % 80-120 13-MAY-13 Vanadium (V) 97.8 % 80-120 13-MAY-13 Zinc (Zn) 102.7 % 80-120 13-MAY-13 WG1668709-1 MB Antimony (Sb) <1.0										
Thallium (TI) 109.7 % 80-120 13-MAY-13 Uranium (U) 111.4 % 80-120 13-MAY-13 Vanadium (V) 97.8 % 80-120 13-MAY-13 Zinc (Zn) 102.7 % 80-120 13-MAY-13 WG1668709-1 MB MB 41.0 ug/g 1 13-MAY-13 Arsenic (As) <0.20										
Uranium (U) 111.4 % 80-120 13-MAY-13 Vanadium (V) 97.8 % 80-120 13-MAY-13 Zinc (Zn) 102.7 % 80-120 13-MAY-13 WG1668709-1 MB MB 41.0 ug/g 1 13-MAY-13 Arsenic (As) <0.20										
Vanadium (V) 97.8 % 80-120 13-MAY-13 Zinc (Zn) 102.7 % 80-120 13-MAY-13 WG168709-1 MB Antinony (Sb) <1.0 ug/g 1 13-MAY-13 Arsenic (As) <0.20 ug/g 0.2 13-MAY-13 Barium (Ba) <1.0 ug/g 1 13-MAY-13 Beryllium (Be) <0.50 ug/g 5 13-MAY-13 Boron (B) <5.0 ug/g 5 13-MAY-13 Cadmium (Cd) <0.50 ug/g 0.5 13-MAY-13 Chromium (Cr) <1.0 ug/g 1 13-MAY-13 Cobalt (Co) <1.0 ug/g 1 13-MAY-13 Lead (Pb) <1.0 ug/g 1 13-MAY-13 Molybdenum (Mo) <1.0 ug/g 1 13-MAY-13 Selenium (Se) <1.0 ug/g 1 13-MAY-13 Selenium (Se) <1.0 ug/g 1 13-MAY-13 <th colsp<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Zinc (Zn) 102.7 % 80-120 13-MAY-13 WG1668709-1 MB Antimony (Sb) MB Antimony (Sb) <1.0 ug/g 1 13-MAY-13 Arsenic (As) <0.20 ug/g 0.2 13-MAY-13 Barium (Ba) <1.0 ug/g 1 13-MAY-13 Beryllium (Be) <0.50 ug/g 0.5 13-MAY-13 Boron (B) <5.0 ug/g 0.5 13-MAY-13 Cadmium (Cd) <0.50 ug/g 1 13-MAY-13 Chromium (Cr) <1.0 ug/g 1 13-MAY-13 Cobalt (Co) <1.0 ug/g 1 13-MAY-13 Copper (Cu) <1.0 ug/g 1 13-MAY-13 Lead (Pb) <1.0 ug/g 1 13-MAY-13 Molybdenum (Mo) <1.0 ug/g 1 13-MAY-13 Nickel (Ni) <1.0 ug/g 1 13-MAY-13 Selenium (Se) <1.0 ug/g 1 13-MAY-13 Silver (Ag) <0.20 ug/g 0.2 13-MAY-13	` ,									
WG1668709-1 MB MB Antimony (Sb) <1.0										
Antimony (Sb) <1.0								30 120	.5 1417 (1 15	
Arsenic (As) <0.20				<1.0		ug/g		1	13-MAY-13	
Beryllium (Be) <0.50	Arsenic (As)			<0.20		ug/g		0.2		
Boron (B) <5.0	Barium (Ba)			<1.0		ug/g		1	13-MAY-13	
Cadmium (Cd) <0.50	Beryllium (Be)			<0.50		ug/g		0.5	13-MAY-13	
Chromium (Cr) <1.0	Boron (B)			<5.0		ug/g		5	13-MAY-13	
Cobalt (Co) <1.0	Cadmium (Cd)			<0.50		ug/g		0.5	13-MAY-13	
Copper (Cu) <1.0	Chromium (Cr)			<1.0		ug/g		1	13-MAY-13	
Lead (Pb) <1.0	Cobalt (Co)			<1.0		ug/g		1	13-MAY-13	
Molybdenum (Mo) <1.0	Copper (Cu)			<1.0		ug/g		1	13-MAY-13	
Nickel (Ni) <1.0	Lead (Pb)			<1.0		ug/g		1	13-MAY-13	
Selenium (Se) <1.0	Molybdenum (Mo)			<1.0		ug/g		1	13-MAY-13	
Silver (Ag) <0.20 ug/g 0.2 13-MAY-13	Nickel (Ni)			<1.0		ug/g		1	13-MAY-13	
	Selenium (Se)			<1.0		ug/g		1	13-MAY-13	
Thallium (TI) <0.50 ug/g 0.5 13-MAY-13	Silver (Ag)			<0.20		ug/g		0.2	13-MAY-13	
	Thallium (TI)			<0.50		ug/g		0.5	13-MAY-13	
Uranium (U) <1.0 ug/g 1 13-MAY-13	Uranium (U)			<1.0		ug/g		1	13-MAY-13	
Vanadium (V) <1.0 ug/g 1 13-MAY-13	Vanadium (V)			<1.0		ug/g		1	13-MAY-13	
Zinc (Zn) <5.0 ug/g 5 13-MAY-13	Zinc (Zn)			<5.0		ug/g		5	13-MAY-13	
WG1668709-11 MS L1300401-2			L1300401-2							
Antimony (Sb) 75.9 % 70-130 13-MAY-13	Antimony (Sb)			75.9				70-130	13-MAY-13	
Arsenic (As) 103.4 % 70-130 13-MAY-13								70-130	13-MAY-13	
Barium (Ba) N/A MS-B % - 13-MAY-13					MS-B			-		
Beryllium (Be) 113.0 % 70-130 13-MAY-13								70-130	13-MAY-13	
Boron (B) N/A MS-B % - 13-MAY-13	` '				MS-B			-	13-MAY-13	
Cadmium (Cd) 101.5 % 70-130 13-MAY-13	Cadmium (Cd)			101.5		%		70-130	13-MAY-13	

Workorder: L1298752 Report Date: 15-MAY-13 Page 13 of 19

Client: SPL CONSULTANTS LIMITED (Ottawa)

146 Colonnade Road S Units 17 & 18

Nepean ON K2E 7Y1

Contact: Daniel Charette

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-UG/G-CCMS-WT	Soil							_
Batch R2604829								
WG1668709-11 MS		L1300401-2	N1/A	140.0	0/			
Chromium (Cr)			N/A	MS-B	%		-	13-MAY-13
Cobalt (Co)			N/A	MS-B	%		-	13-MAY-13
Copper (Cu)			N/A	MS-B	%		-	13-MAY-13
Lead (Pb)			N/A	MS-B	%		-	13-MAY-13
Molybdenum (Mo)			110.0		%		70-130	13-MAY-13
Nickel (Ni)			N/A	MS-B	%		-	13-MAY-13
Selenium (Se)			107.9		%		70-130	13-MAY-13
Silver (Ag)			91.1		%		70-130	13-MAY-13
Thallium (TI)			94.1		%		70-130	13-MAY-13
Uranium (U)			109.2		%		70-130	13-MAY-13
Vanadium (V)			N/A	MS-B	%		-	13-MAY-13
Zinc (Zn)			N/A	MS-B	%		-	13-MAY-13
WG1668709-9 MS		L1299891-5	75.0		0/			
Antimony (Sb)			75.3		%		70-130	13-MAY-13
Arsenic (As)			N/A	MS-B	%		-	13-MAY-13
Barium (Ba)			N/A	MS-B	%		-	13-MAY-13
Beryllium (Be)			102.6		%		70-130	13-MAY-13
Boron (B)			N/A	MS-B	%		-	13-MAY-13
Cadmium (Cd)			102.6		%		70-130	13-MAY-13
Chromium (Cr)			N/A	MS-B	%		-	13-MAY-13
Cobalt (Co)			N/A	MS-B	%		-	13-MAY-13
Copper (Cu)			N/A	MS-B	%		-	13-MAY-13
Lead (Pb)			N/A	MS-B	%		-	13-MAY-13
Molybdenum (Mo)			N/A	MS-B	%		-	13-MAY-13
Nickel (Ni)			N/A	MS-B	%		-	13-MAY-13
Selenium (Se)			111.0		%		70-130	13-MAY-13
Silver (Ag)			96.9		%		70-130	13-MAY-13
Thallium (TI)			101.9		%		70-130	13-MAY-13
Uranium (U)			98.8		%		70-130	13-MAY-13
Vanadium (V)			N/A	MS-B	%		-	13-MAY-13
Zinc (Zn)			N/A	MS-B	%		-	13-MAY-13

MOISTURE-WT Soil

Workorder: L1298752 Report Date: 15-MAY-13 Page 14 of 19

Client: SPL CONSULTANTS LIMITED (Ottawa)

146 Colonnade Road S Units 17 & 18

Nepean ON K2E 7Y1

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MOISTURE-WT	Soil							
Batch R2602504								
WG1666906-3 DUP % Moisture		L1298318-5 4.79	4.74		%	1.0	30	09-MAY-13
WG1666906-2 LCS % Moisture			102.7		%		70-130	09-MAY-13
WG1666906-1 MB % Moisture			<0.10		%		0.1	09-MAY-13
PAH-511-WT	Soil							
Batch R2605131 WG1669145-1 CVS								
1-Methylnaphthalene			94.1		%		50-140	10-MAY-13
2-Methylnaphthalene			96.6		%		50-140	10-MAY-13
Acenaphthene			94.6		%		50-140	10-MAY-13
Acenaphthylene			94.3		%		50-140	10-MAY-13
Anthracene			90.5		%		50-140	10-MAY-13
Benzo(a)anthracene			92.0		%		50-140	10-MAY-13
Benzo(a)pyrene			96.6		%		50-140	10-MAY-13
Benzo(b)fluoranthene			92.4		%		50-140	10-MAY-13
Benzo(g,h,i)perylene			87.3		%		50-140	10-MAY-13
Benzo(k)fluoranthene			97.4		%		50-140	10-MAY-13
Chrysene			97.9		%		50-140	10-MAY-13
Dibenzo(ah)anthracene			93.3		%		50-140	10-MAY-13
Fluoranthene			94.8		%		50-140	10-MAY-13
Fluorene			95.0		%		50-140	10-MAY-13
Indeno(1,2,3-cd)pyrene			93.0		%		50-140	10-MAY-13
Naphthalene			99.5		%		50-140	10-MAY-13
Phenanthrene			94.4		%		50-140	10-MAY-13
Pyrene			94.9		%		50-140	10-MAY-13
WG1669145-2 CVS 1-Methylnaphthalene			93.8		%		50-140	15-MAY-13
2-Methylnaphthalene			101.2		%		50-140	15-MAY-13
Acenaphthene			101.9		%		50-140	15-MAY-13
Acenaphthylene			107.2		%		50-140	15-MAY-13
Anthracene			94.2		%		50-140	15-MAY-13
Benzo(a)anthracene			99.3		%		50-140	15-MAY-13
Benzo(a)pyrene			97.3		%		50-140	15-MAY-13

Workorder: L1298752 Report Date: 15-MAY-13 Page 15 of 19

Client: SPL CONSULTANTS LIMITED (Ottawa)

146 Colonnade Road S Units 17 & 18

Nepean ON K2E 7Y1

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch R2605131								
WG1669145-2 CVS Benzo(b)fluoranthene			88.9		%		50-140	15-MAY-13
Benzo(g,h,i)perylene			86.8		%		50-140	15-MAY-13
Benzo(k)fluoranthene			94.9		%		50-140	15-MAY-13
Chrysene			91.2		%		50-140	15-MAY-13
Dibenzo(ah)anthracene			91.9		%		50-140	15-MAY-13
Fluoranthene			98.2		%		50-140	15-MAY-13
Fluorene			101.5		%		50-140	15-MAY-13
Indeno(1,2,3-cd)pyrene			97.8		%		50-140	15-MAY-13
Naphthalene			96.2		%		50-140	15-MAY-13
Phenanthrene			94.1		%		50-140	15-MAY-13
Pyrene			99.6		%		50-140	15-MAY-13
WG1667030-6 DUP 1-Methylnaphthalene		WG1667030- < 0.030	7 <0.030	RPD-NA	ug/g	N/A	40	13-MAY-13
2-Methylnaphthalene		<0.030	<0.030	RPD-NA	ug/g	N/A	40	13-MAY-13
Acenaphthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-MAY-13
Acenaphthylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-MAY-13
Anthracene		<0.050	<0.050	RPD-NA	ug/g ug/g	N/A	40	
Benzo(a)anthracene		<0.050	<0.050		ug/g ug/g	N/A N/A	40	13-MAY-13
Benzo(a)pyrene		<0.050	<0.050	RPD-NA RPD-NA	ug/g ug/g	N/A N/A		13-MAY-13
Benzo(b)fluoranthene		<0.050	<0.050				40	13-MAY-13
Benzo(g,h,i)perylene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-MAY-13
Benzo(k)fluoranthene		<0.050	<0.050	RPD-NA	ug/g	N/A N/A	40	13-MAY-13
		<0.050	<0.050	RPD-NA	ug/g		40	13-MAY-13
Chrysene Dibenzo(ah)anthracene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-MAY-13
Fluoranthene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-MAY-13
		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-MAY-13
Fluorene		<0.050		RPD-NA	ug/g	N/A	40	13-MAY-13
Indeno(1,2,3-cd)pyrene Naphthalene			<0.050	RPD-NA	ug/g	N/A	40	13-MAY-13
·		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-MAY-13
Phenanthrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-MAY-13
Pyrene		<0.050	<0.050	RPD-NA	ug/g	N/A	40	13-MAY-13
WG1667030-2 LCS 1-Methylnaphthalene			86.8		%		50-140	13-MAY-13
2-Methylnaphthalene			88.7		%		50-140	13-MAY-13
,					· -		00 140	IO-WIA I - IO

Workorder: L1298752 Report Date: 15-MAY-13 Page 16 of 19

Client: SPL CONSULTANTS LIMITED (Ottawa)

146 Colonnade Road S Units 17 & 18

Nepean ON K2E 7Y1

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch R2605131								
WG1667030-2 LCS			07.0		0/		50.440	
Acenaphthene Acenaphthylene			87.0 88.6		%		50-140	13-MAY-13
Anthracene			84.2		%		50-140	13-MAY-13
Benzo(a)anthracene			86.6		%		50-140	13-MAY-13
Benzo(a)pyrene			85.2		%		50-140	13-MAY-13
Benzo(b)fluoranthene			85.7		%		50-140	13-MAY-13
Benzo(g,h,i)perylene			86.4		%		50-140	13-MAY-13
Benzo(k)fluoranthene			80.0		%		50-140 50-140	13-MAY-13 13-MAY-13
Chrysene			84.2		%		50-140	13-MAY-13
Dibenzo(ah)anthracene			83.2		%		50-140	13-MAY-13
Fluoranthene			86.1		%		50-140	13-MAY-13
Fluorene			87.0		%		50-140	13-MAY-13
Indeno(1,2,3-cd)pyrene			86.4		%		50-140	13-MAY-13
Naphthalene			89.7		%		50-140	13-MAY-13
Phenanthrene			84.8		%		50-140	13-MAY-13
Pyrene			86.7		%		50-140	13-MAY-13
WG1667030-3 LCSD		WG1667030-2					00 110	10 10 17
1-Methylnaphthalene		86.8	92.5		%	6.4	50	13-MAY-13
2-Methylnaphthalene		88.7	95.4		%	7.3	50	13-MAY-13
Acenaphthene		87.0	93.6		%	7.3	50	13-MAY-13
Acenaphthylene		88.6	95.2		%	7.2	50	13-MAY-13
Anthracene		84.2	87.9		%	4.2	50	13-MAY-13
Benzo(a)anthracene		86.6	90.6		%	4.6	50	13-MAY-13
Benzo(a)pyrene		85.2	92.1		%	7.8	50	13-MAY-13
Benzo(b)fluoranthene		85.7	89.5		%	4.4	50	13-MAY-13
Benzo(g,h,i)perylene		86.4	92.2		%	6.5	50	13-MAY-13
Benzo(k)fluoranthene		80.0	90.2		%	12	50	13-MAY-13
Chrysene		84.2	93.3		%	10	50	13-MAY-13
Dibenzo(ah)anthracene		83.2	90.9		%	8.9	50	13-MAY-13
Fluoranthene		86.1	92.3		%	6.9	50	13-MAY-13
Fluorene		87.0	94.1		%	7.8	50	13-MAY-13
Indeno(1,2,3-cd)pyrene		86.4	90.0		%	4.1	50	13-MAY-13
Naphthalene		89.7	95.7		%	6.4	50	13-MAY-13

Workorder: L1298752 Report Date: 15-MAY-13 Page 17 of 19

Client: SPL CONSULTANTS LIMITED (Ottawa)

146 Colonnade Road S Units 17 & 18

Nepean ON K2E 7Y1

PAH-511-WT R2605131 WG1667030-2 Phenamthrene 84.8 91.5 % 7.8 50 13-MAY-13 Pyrene 86.7 92.8 WG1667030-1 WG1667030-1 WG1667030-1 WG1667030-1 WG1667030-1 MB 1-Methylnaphthalene < 0.030 Ug/g < 0.03 13-MAY-13 2-Methylnaphthalene < 0.030 Ug/g < 0.05 13-MAY-13 2-Methylnaphthalene < 0.050 Ug/g < 0.05 13-MAY-13 2-MaY-13 2-M	Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
Molestraturene 84.8 91.5 % 7.6 50 13-MAY-13	PAH-511-WT	Soil							
Phenanthrene 84.8 91.5 % 7.6 50 13-MAY-13 Pyrene 86.7 92.8 % 6.8 50 13-MAY-13 WG1667030-1 MB **** ***** ****** ******* ******* ******** ************ ************************************	Batch R2605131								
WG1667030-1 MB 1-Methylnaphthalene <0.030 ug/g 0.03 13-MAY-13 2-Methylnaphthalene <0.030)				%	7.6	50	13-MAY-13
1-Methyhaphthalene	Pyrene		86.7	92.8		%	6.8	50	13-MAY-13
2-Methylnaphthalene <0.030				.0.020		/a		0.02	
Acenaphthene									
Acenaphthylene <0.050									
Anthracene									
Benzo(a)anthracene <0.050									
Benzo(a)pyrene <0.050									
Benzo(b)fluoranthene <0.050									13-MAY-13
Benzo(g,h,i)perylene <0.050									13-MAY-13
Benzo(k)fluoranthene <0.050	, ,					ug/g			13-MAY-13
Chrysene <0.050 ug/g 0.05 13-MAY-13 Dibenzo(ah)anthracene <0.050	Benzo(g,h,i)perylene			<0.050		ug/g		0.05	13-MAY-13
Dibenzo(ah)anthracene <td>Benzo(k)fluoranthene</td> <td></td> <td></td> <td><0.050</td> <td></td> <td>ug/g</td> <td></td> <td>0.05</td> <td>13-MAY-13</td>	Benzo(k)fluoranthene			<0.050		ug/g		0.05	13-MAY-13
Fluoranthene <0.050 ug/g 0.05 13-MAY-13 Fluorene <0.050	Chrysene			< 0.050		ug/g		0.05	13-MAY-13
Fluorene <0.050 ug/g 0.05 13-MAY-13 Indeno(1,2,3-cd)pyrene <0.050 ug/g 0.05 13-MAY-13 Naphthalene <0.050 ug/g 0.05 13-MAY-13 Phenanthrene <0.050 ug/g 0.05 13-MAY-13 Pyrene <0.050 ug/g 0.05 13-MAY-13 Pyrene <0.050 ug/g 0.05 13-MAY-13 Surrogate: 2-Fluorobiphenyl 92.6 % 50-140 13-MAY-13 Surrogate: p-Terphenyl d14 87.9 % 50-140 13-MAY-13 WG1667030-4 MS WG1667030-7 1-Methylnaphthalene 88.3 % 50-140 13-MAY-13 2-Methylnaphthalene 88.9 % 50-140 13-MAY-13 Acenaphthylene 89.2 % 50-140 13-MAY-13 Acenaphthylene 89.2 % 50-140 13-MAY-13 Anthracene 83.9 % 50-140 13-MAY-13 Benzo(a)anthracene 85.8 % 50-140 13-MAY-13 Benzo(a)pyrene 87.4 % 50-140 13-MAY-13 Benzo(b)fluoranthene 86.2 % 50-140 13-MAY-13 Benzo(b,h,i)perylene 87.6 % 50-140 13-MAY-13 Benzo(g,h,i)perylene 87.6 % 50-140 13-MAY-13 Benzo(g,h,i)p	Dibenzo(ah)anthracene	9		< 0.050		ug/g		0.05	13-MAY-13
Indeno(1,2,3-cd)pyrene	Fluoranthene			< 0.050		ug/g		0.05	13-MAY-13
Naphthalene <0.050	Fluorene			< 0.050		ug/g		0.05	13-MAY-13
Phenanthrene <0.050 ug/g 0.05 13-MAY-13 Pyrene <0.050	Indeno(1,2,3-cd)pyrene)		< 0.050		ug/g		0.05	13-MAY-13
Pyrene <0.050 ug/g 0.05 13-MAY-13 Surrogate: 2-Fluorobiphenyl 92.6 % 50-140 13-MAY-13 Surrogate: p-Terphenyl d14 87.9 % 50-140 13-MAY-13 WG1667030-4 MS WG1667030-7 WG167030-7 WG1667030-7 WG1667030-7 WG1667030-7 WG1667030-7	Naphthalene			< 0.050		ug/g		0.05	13-MAY-13
Surrogate: 2-Fluorobiphenyl 92.6 % 50-140 13-MAY-13 Surrogate: p-Terphenyl d14 87.9 % 50-140 13-MAY-13 WG1667030-4 MS WG1667030-7 1-Methylnaphthalene 88.3 % 50-140 13-MAY-13 2-Methylnaphthalene 90.2 % 50-140 13-MAY-13 Acenaphthene 88.9 % 50-140 13-MAY-13 Acenaphthylene 89.2 % 50-140 13-MAY-13 Anthracene 83.9 % 50-140 13-MAY-13 Benzo(a)anthracene 85.8 % 50-140 13-MAY-13 Benzo(a)pyrene 87.4 % 50-140 13-MAY-13 Benzo(b)fluoranthene 86.2 % 50-140 13-MAY-13 Benzo(g,h,i)perylene 87.6 % 50-140 13-MAY-13	Phenanthrene			< 0.050		ug/g		0.05	13-MAY-13
Surrogate: p-Terphenyl d14 87.9 % 50-140 13-MAY-13 WG1667030-4 MS WG1667030-7 WG1667030-7 Solution May-13 May-1	Pyrene			< 0.050		ug/g		0.05	13-MAY-13
WG1667030-4 MS WG1667030-7 1-Methylnaphthalene 88.3 % 50-140 13-MAY-13 2-Methylnaphthalene 90.2 % 50-140 13-MAY-13 Acenaphthene 88.9 % 50-140 13-MAY-13 Acenaphthylene 89.2 % 50-140 13-MAY-13 Anthracene 83.9 % 50-140 13-MAY-13 Benzo(a)anthracene 85.8 % 50-140 13-MAY-13 Benzo(a)pyrene 87.4 % 50-140 13-MAY-13 Benzo(b)fluoranthene 86.2 % 50-140 13-MAY-13 Benzo(g,h,i)perylene 87.6 % 50-140 13-MAY-13	Surrogate: 2-Fluorobipl	henyl		92.6		%		50-140	13-MAY-13
1-Methylnaphthalene 88.3 % 50-140 13-MAY-13 2-Methylnaphthalene 90.2 % 50-140 13-MAY-13 Acenaphthene 88.9 % 50-140 13-MAY-13 Acenaphthylene 89.2 % 50-140 13-MAY-13 Anthracene 83.9 % 50-140 13-MAY-13 Benzo(a)anthracene 85.8 % 50-140 13-MAY-13 Benzo(a)pyrene 87.4 % 50-140 13-MAY-13 Benzo(b)fluoranthene 86.2 % 50-140 13-MAY-13 Benzo(g,h,i)perylene 87.6 % 50-140 13-MAY-13	Surrogate: p-Terpheny	l d14		87.9		%		50-140	13-MAY-13
2-Methylnaphthalene 90.2 % 50-140 13-MAY-13 Acenaphthene 88.9 % 50-140 13-MAY-13 Acenaphthylene 89.2 % 50-140 13-MAY-13 Anthracene 83.9 % 50-140 13-MAY-13 Benzo(a)anthracene 85.8 % 50-140 13-MAY-13 Benzo(a)pyrene 87.4 % 50-140 13-MAY-13 Benzo(b)fluoranthene 86.2 % 50-140 13-MAY-13 Benzo(g,h,i)perylene 87.6 % 50-140 13-MAY-13			WG1667030-7			0/		50.440	40.140./ 40
Acenaphthene 88.9 % 50-140 13-MAY-13 Acenaphthylene 89.2 % 50-140 13-MAY-13 Anthracene 83.9 % 50-140 13-MAY-13 Benzo(a)anthracene 85.8 % 50-140 13-MAY-13 Benzo(a)pyrene 87.4 % 50-140 13-MAY-13 Benzo(b)fluoranthene 86.2 % 50-140 13-MAY-13 Benzo(g,h,i)perylene 87.6 % 50-140 13-MAY-13									
Acenaphthylene 89.2 % 50-140 13-MAY-13 Anthracene 83.9 % 50-140 13-MAY-13 Benzo(a)anthracene 85.8 % 50-140 13-MAY-13 Benzo(a)pyrene 87.4 % 50-140 13-MAY-13 Benzo(b)fluoranthene 86.2 % 50-140 13-MAY-13 Benzo(g,h,i)perylene 87.6 % 50-140 13-MAY-13									
Anthracene 83.9 % 50-140 13-MAY-13 Benzo(a)anthracene 85.8 % 50-140 13-MAY-13 Benzo(a)pyrene 87.4 % 50-140 13-MAY-13 Benzo(b)fluoranthene 86.2 % 50-140 13-MAY-13 Benzo(g,h,i)perylene 87.6 % 50-140 13-MAY-13	•								
Benzo(a)anthracene 85.8 % 50-140 13-MAY-13 Benzo(a)pyrene 87.4 % 50-140 13-MAY-13 Benzo(b)fluoranthene 86.2 % 50-140 13-MAY-13 Benzo(g,h,i)perylene 87.6 % 50-140 13-MAY-13									
Benzo(a)pyrene 87.4 % 50-140 13-MAY-13 Benzo(b)fluoranthene 86.2 % 50-140 13-MAY-13 Benzo(g,h,i)perylene 87.6 % 50-140 13-MAY-13									
Benzo(b)fluoranthene 86.2 % 50-140 13-MAY-13 Benzo(g,h,i)perylene 87.6 % 50-140 13-MAY-13									
Benzo(g,h,i)perylene 87.6 % 50-140 13-MAY-13									
Benzo(k)fluoranthene 83.8 % 50-140 13-MAY-13								50-140	13-MAY-13
	Benzo(k)fluoranthene			83.8		%		50-140	13-MAY-13

Workorder: L1298752 Report Date: 15-MAY-13 Page 18 of 19

Client: SPL CONSULTANTS LIMITED (Ottawa)

146 Colonnade Road S Units 17 & 18

Nepean ON K2E 7Y1

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-511-WT	Soil							
Batch R2605131 WG1667030-4 MS Chrysene		WG1667030-7	86.8		%		50-140	13-MAY-13
Dibenzo(ah)anthracene			84.2		%		50-140	13-MAY-13
Fluoranthene			88.1		%		50-140	13-MAY-13
Fluorene			88.1		%		50-140	13-MAY-13
Indeno(1,2,3-cd)pyrene			88.8		%		50-140	13-MAY-13
Naphthalene			90.2		%		50-140	13-MAY-13
Phenanthrene			86.8		%		50-140	13-MAY-13
Pyrene			88.1		%		50-140	13-MAY-13
PH-R511-WT	Soil							
Batch R2603190 WG1667052-1 DUP pH		L1298167-14 7.51	7.57	J	pH units	0.06	0.3	10-MAY-13
WG1667678-1 LCS pH			6.99	Ü	pH units	0.00	6.7-7.3	10-MAY-13
SAR-R511-WT	Soil							
Batch R2602888 WG1667591-2 DUP Calcium (Ca)		L1299306-1 39.1	37.3		mg/L	4.6	40	40 MAY 42
Sodium (Na)		3.4	37.5		mg/L	2.9	40	10-MAY-13
Magnesium (Mg)		1.1	1.1		mg/L			10-MAY-13
		1.1	1.1		IIIg/L	4.8	40	10-MAY-13
WG1667591-1 MB Calcium (Ca)			<1.0		mg/L		1	10-MAY-13
Sodium (Na)			<1.0		mg/L		1	10-MAY-13
Magnesium (Mg)			<1.0		mg/L		1	10-MAY-13
Batch R2606272								
WG1668721-2 DUP		L1300401-4 62.8	FC 0		ma/l	0.0	40	40.1417/ :-
Calcium (Ca)			56.9		mg/L	9.8	40	13-MAY-13
Sodium (Na)		<1.0 <1.0	<1.0	RPD-NA	mg/L	N/A	40	13-MAY-13
Magnesium (Mg)		<1.0	<1.0	RPD-NA	mg/L	N/A	40	13-MAY-13
WG1668721-1 MB Calcium (Ca)			<1.0		mg/L		1	13-MAY-13
Sodium (Na)			<1.0		mg/L		1	13-MAY-13
Magnesium (Mg)			<1.0		mg/L		1	13-MAY-13

Report Date: 15-MAY-13 Workorder: L1298752

SPL CONSULTANTS LIMITED (Ottawa) Client:

146 Colonnade Road S Units 17 & 18 Nepean ON K2E 7Y1

Contact: **Daniel Charette**

Legend:

ALS Control Limit (Data Quality Objectives)

DUP Duplicate

RPD Relative Percent Difference

N/A Not Available

LCS Laboratory Control Sample Standard Reference Material SRM

MS Matrix Spike

Matrix Spike Duplicate **MSD**

Average Desorption Efficiency ADE

Method Blank MB

Internal Reference Material IRM CRM Certified Reference Material Continuing Calibration Verification CCV CVS Calibration Verification Standard LCSD Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

Page 19 of 19

																						C of	f C # 000	00	
60 NORTHLAND		1	1 -					CHAIN (OF CUSTOF	DY / 4	ΔNA	N VI	ΓΙΓΔ	I SF	RVI	^F\$ I	REQUI	FST F	ORM	Pa	ne l	of	1		
WATERLOO, ON N2V 2B8				CHAIN OF CUSTODY / ANALYTICAL SERV																					
Phone: (519) 886-6910				Note: all TAT Quoted material is in business days which exclude Specify							ecify da						2 day TAT (50%)								
Fax: (519) 886-9047 (ALS)					Statutory homasys and weekenas. TAT samples received past 5.00 pm							equired	ed 5 day (regular)					Next a	lay TA	T (100%)					
Toll Free: 1-800-668-9878					or Saturday/Sunday begin the next day.									3-4 day (25%)						day TA	T (200%)	丄			
COMPANY NAME SPL CONSULTANTS LTD.					CRITERIA Criteria on report YES NO				AN				ANA	IALYSIS REQUEST					PLEASE INDICATE FILTERED, PRESERVED OR BOTH						
OFFICE 17-146 COLONNAGE Rd.S.					Reg 153/04					- - -								•	< (F, P, F/P)						
PROJECT MANAGER DANIEL CHARETE						TCLP MISA PWQO													-		SION #:	~765			
PROJECT # 1599 - 710					ODWS OTHER RESIDENTIAL					×		3	7							124	४७५२,				
PHONE \$13- FAX 613- 228-0065 228-0045					REPORT FORMAT/DISTRIBUTION					BTEX		indleanics	- List						ENTERED BY:						
ACCOUNT # 22763						EMAIL FAX BOTH				NERS	+		Me	tout,			i		Ì		,	NTERED:			
QUOTATION # 2013 MSA PO # N/A					SELECT: PDF V DIGITAL EXCEL BOTH				CONTAINERS	()			5							y 8/1		70b	m		
SAMPLING INFORMATION						EMAIL 1 (1charette & Sylconsultants. CA EMAIL 2				OF CC	F1-F4		5 +	5						BIN #:	B5	75			
Sample Date/Time TYPE MATRIX											~	<u> </u>	I	- 1						0 •	• /				
Date (dd-mm-yy)	Time (24hr) (hh:mm)	СОМР	CRAB	WATER	SOIL	OTHER	SAMPLE DESCRI	PTION TO A	APPEAR ON REPO	RT	NUMBER	(HCs)	PAH	Metals	metals							COMM	MENTS		AB ID
03-05-2013	-				X		BH13-2	557	-		4	×	X	K							on i	Auld 1	at Lab		~ 1
01-05-2013					×		BH13-3	551			+	×	*	Х							cN	11	11		- 1
06-05- 2613	_				×		BH13-4	551	_		4	×	x	×											٠3
06-65-2013	_				X		BH13-5	551		Î	4	K	×	X											٠,
02-05-2013	-				X	1	B413-6	551 R			4	×	乂	¥							04 1	HOLD	AT LAS	,]-	-5
02-05-2013	1				×		BH13-8	951		T	4	X	メ	ズ							01)	1			٠6
02-05-2013					×		GARLI				1				X						67)	1	/	L.	-7
			ļ	<u> </u>	<u> </u>	ļ	ļ									! !! !! ==:	. I	ı	1 1	ı				_	
			<u> </u>			<u> </u>														H a n i	# 1 11 11	il dir	_		
			 	<u> </u>	<u> </u>	<u> </u>													(1)	11111		J III		+	
			<u> </u>	<u> </u>		<u> </u>											 1 1	29875			11 11 11 11	1111	_	+	
			<u> </u>	<u> </u>					· —	}	_		$\overline{}$	·				290/0	2-00	+C				-	
				<u> </u>		<u> </u>				 +					-+									-	
COCC:	1 11/2701/2710	10.460	MARATAT	<u> </u>				THE OUEST	ONE DELOW MILET	PE ANSU	VEDET	EOBA	VATER	SAMPI	ES / CU	ECK Va	e OP No		<u></u> _			CANE	I E CONDIT	101	
SPECIAL INSTRUCTIONS/COMMENTS							THE QUESTIONS BELOW MUST BE ANSWERED FORWATER SAMPLES (C Are any samples taken from a regulated DW System?							E3 (Cn						SAMPLE CONDITION FROZEN			MEAN		
							If yes, an authorized drinking water COC MUST be used for this submission.								res u No S						COLD D TEA			ГЕМР	
						is the water sampled intended to be potable for human consumption?									Yes O No O						AMBIENT			5%.	
SAMPLED BY: B. Ritchie / K. LINTON							DATE & TIME RECEIVED BY: BWARK								1/4/8/12 21						OBSERVATIONS II				
RELINQUISHED BY:							DATE & TIME 2013 RECEIVED AT LAB BY:															If yes add SIF			
Notes	<i>year</i>		-				1 12hoo																		
Quote number must be provided to ensure proper pricing					TAT may vary dependent on complexity of analysis and lab workload at time of submission. Please contact the lab to confirm TATs.									n. 3. Any known or suspected hazards relating to a sample must be noted on the											